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Foreword

THIS manuscript is a condensed report of my scientific work in unconventional imaging tech-
niques, including polarimetric imaging, quantum imaging and imaging through turbid media.

Ranging from theory, through instrumental system design, to statistical signal processing, my scien-
tific contribution aims at covering, as best as possible, the whole chain of understanding behind a
physical imaging problem. This position is in phase with the recently celebrated “co-design” way of
thinking which consists of jointly optimizing the hardware (physics of imaging, instrumental setup)
and software (signal/image processing) building blocks required to provide the best image quality
(of best processing performance) to an end-user for a dedicated application.

This work has been conducted over the last ten years, during my PhD at Institut Fresnel, in the
Physics and Image Processing group (Phyti), then through a post-doctoral position at ONERA (the
french aerospace lab) in the Lidar and Laser Sources group (DOTA-SLS), and finally at the Institute
of Physics of Rennes, Optics and Photonics Department1, where I actively contributed to create a
recognized research activity in imaging (Advanced imaging axis).

In an attempt to present a unified vision of my scientific work, this document will be decomposed
into two parts, corresponding to the two main aspects of my research activity. However, as imposed
by any frontier, many connections between them are to be found, in terms of either applicative or
scientific domains, which will be made appearant in this manuscript.

The first part, Physics of light depolarization and non conventional polarimetric imaging, is
focused on polarimetric imaging, whose principles, methods and main topical challenges will be
briefly recalled in Chapter 1. In spite of its long history, and of the huge number of contributors
in this domain (either academic or industrial), this unconventional imaging technique still opens
interesting scientific perspectives, in terms of physical understanding of the light-matter interaction,
especially in random scattering media. As a result, there is still a topical debate about the clear
definition and understanding of light depolarization, which is however one of the most used figure
of merit in a wide number of polarimetric imaging applications. The theoretical and experimental
developments conducted during these last years have allowed us to gain some physical insight in
this domain, which will be summarized in Chapter 2.

The second challenge that I have tried to tackle in the polarimetric imaging domain concerns the
simplification and robustness of the imaging processes. Indeed, full-Stokes or full-Mueller imaging
polarimeters are very powerful and precise instruments, but to the expense of sometimes unafford-
able price, time-consuming acquisitions, low wavelength tunability and complex calibration, correc-
tion and post-processing tasks in order to indirectly retrieve relevant polarimetric parameters. In
that context, I will briefly present in Chapter 3 various simplified polarimetric imaging techniques,
that aim at strongly reducing acquisition times, cost, and complexity of the image interpretation by
providing a direct measurement of the desired polarimetric figure of merit. The first approach is

1At the date of the defense, and since July 1st 2017, the Optics and Photonics Department in now part of Institut
Foton, UMR 6082, University of Rennes 1, CNRS, INSA. The scientific activity of the former departement will continue as
the DOP-team of the Institut Foton, which results from the merging of the Optics and Photonics Department of the IPR,
and the former teams of the Foton laboratory, namely Foton-SP (Photonic Systems, Lannion, ENSSAT) and Foton-OHM
(Optoelectronics, Heteroepitaxy and Materials, Rennes, INSA), in an attempt to federate the research in photonics at the
University of Rennes 1.
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very original with respect to standard polarimetric imaging techniques, as it relies on a specific dual-
frequency dual-polarization laser illumination of the scene and on the detection of a radiofrequency
(RF) beatnote component in the detected optical signal. The second approach represents the first pro-
posal to my best knowledge of direct polarimetric sensing using a computational imaging approach,
relying on the disseminating concept of compressed sensing. Lastly, the third technique that will be
presented is based on the local analysis of the speckle intensity statistics in the image, and represents
the utmost simplification for polarimetric sensing.

In the second part, titled Optimal processing of optical signals in non conventional imaging
approaches, I will show how some of the well-known tools of information theory can be used in a
scientific/engineering approach (i) to characterize the performance of an imaging setup and (ii) to
develop efficient signal/image processing algorithms for specific tasks. In this document, the pro-
cessing tasks considered will range from estimation of parameters, to contrast enhancement of active
targets in images and unsupervised model selection in infrared spectroscopic data. After a brief
reminder of the main information theoretic tools that have been used in my research (Shannon en-
tropy, Fisher information, Kolmogorov complexity) in Chapter 4, the second part of this manuscript
will address optimal extraction of information from non conventional optical signals, in different ap-
plication domains. In Chapter 5, the issue of imaging through scattering media will be considered,
relying on either a polarimetric approach or a fast intensity-modulation technique. I will illustrate
how the Fisher information allowed us to define relevant gain criteria in terms of contrast enhance-
ment of a remote target in turbid atmosphere, making it possible to evaluate the potentiality of these
imaging setups for navigation assistance through fog.

Chapter 6 will present another example of information theory-based processing of unconven-
tional optical signals. In the context of unsupervised wideband infrared spectroscopy, I will show
how the principle of Minimum Description Length (MDL), inspired from the algorithmic definition
of the information (Solomonoff-Kolmogorov’s information theory), can be implemented to achieve
unsupervised model selection, and how it can outperform standard penalized regression techniques
for detection and estimation of atmospheric gas concentrations.

Lastly, a general conclusion along with scientific perspectives for future work will be provided in
the last part of this manuscript.
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Part I

Physics of light depolarization and non
conventional polarimetric imaging
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Chapter 1

Introduction: polarimetric imaging and
depolarization

1.1 Polarization formalisms

Polarimetry and, by extension, polarimetric imaging aims at measuring the state of polarization of a
light beam, i.e., the orientation of the electric field of the light as a function of time and space along its
propagation, or at characterizing the polarimetric response of a sample when this latter is illuminated
by a light with given polarization state (e.g., ellipsometry).

Among the mathematical descriptions and models of such (linear) light-matter interactions, Jones
and Stokes/Mueller formalisms have always appeared as dual and often exclusive approaches, whose
specific characteristics have been exploited for diverse applications. On the one hand, the description
of field coherence in the Jones calculus, which relates the input and output 2-dimensional complex
electric field through Eout = JEin via a 2 × 2 complex Jones matrix, justifies its use in ellipsom-
etry [Azz87, Web10], optical design [Chi89, Kam81, Col93, Kli12], spectroscopy [Kli12], astronomy
[Cou94] or radar (PolSar) [Lee09]. On the other hand, Stokes/Mueller calculus is widely used in
applications such as biophotonics [Pie11, Ala15], material characterization [Rog11, Mag14] or telede-
tection [Tyo06], as it is based on intensity measurements, relating the input and output 4-dimensional
real Stokes vector through sout = Msin, where M represents the 4× 4 real Mueller matrix.

A consequence of the difference between these two mathematical representations is the way these
approaches fundamentally differ in their capacity to characterize depolarizing light-matter interac-
tions, as will be discussed below. However, as far as deterministic non depolarizing polarization
transformations are concerned, the Jones and Stokes/Mueller descriptions are equivalent. In that
case indeed, there is a clear one-to-one relationship between the Jones matrix J and the so-called
Mueller-Jones matrix, denoted by Mnd, through [Sim82, Kim87]

Mnd = A(J⊗ J∗)A†, with A =
1√
2




1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0


 , (1.1)

where ⊗ denotes Kronecker product. The unitary matrix A verifies A−1 = A†, and can also be
rewritten in compact form as A =

[
vec(σ0) vec(σ1) vec(σ2) vec(σ3)

]T
/
√

2, where vec(σi) denotes
the ith Pauli matrix σi written in (column) vector form2 Interestingly, if we restrict matrices J and
Mnd to be unit-determinant, both descriptions appear to be isomorphic representations of the same
6-dimensional group, namely the proper orthochronous Lorentz group SO+(1, 3) for Mueller ma-
trices Mnd and the special linear group SL(2,C) for Jones matrices J [Clo86, Han97]. As a result,

2In the remainder of this document, superscripts ∗, T and †will respectively denote complex conjugation, standard and
Hermitian matrix transposition.
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1.2. Polarimetric imaging

there is a well-known analogy between deterministic polarization transformations and special rela-
tivity [Han97, PF92, Mor03, Sim10, Lak12, Tud15, Fra15]. In particular, non-depolarizing interactions
correspond to Lorentz transformations and must therefore preserve the Minkowski metric ‖s‖1,3 of
any input Stokes vector denoted by s. This metric is defined by ‖s‖21,3 = sTGs = I2(1 − P2), with
G = diag[1,−1,−1,−1] and where P =

√
s2

1 + s2
2 + s2

3/s0 denotes the light degree of polarization
(DOP), and I = s0 denotes the light intensity [Sim10]. By extension, this invariance property can be
related to the preservation of the Shannon entropy3 of the field, which is an informational measure
of the disorder of the two-dimensional transverse electric field, as

H(s) = −
∫
PE(E) lnPE(E) = lnπ2e2 ‖s‖21,3 /4, (1.2)

under the assumption of complex Gaussian circular fluctuations [Réf04]. Such an invariance property
verified by non depolarizing deterministic polarization transformations will be put in perspective
with a corresponding irreversibility property that we have established for depolarizing transforma-
tions, and which will be discussed in Chapter 2.

1.2 Polarimetric imaging

1.2.1 Standard polarimetric imaging techniques

Developed since a few decades, polarimetric imaging systems are still of growing interest for many
applications like remote sensing [Tyo06], astronomy [Tin96], defense [Gou02, Dem97], biomedicine
[Bue07, Gho11], synthetic-aperture radar [Lee01], and machine or enhanced vision [Mer08, Fad14b].
References [Tyo06, Sni14] provide recent reviews of the main applications of polarimetric imaging,
either active or passive. Active polarimetric techniques are widely used to reveal contrasts that are
not visible in standard intensity images, but can also provide valuable information of a given scene
or sample from the measure of its anisotropic and depolarizing properties. Unlike ellipsometric
techniques, which will not be addressed in this document, active polarimetric imaging is mostly
often operated in a monostatic configuration, with co-located illumination source and polarization-
analysing detector, either in the context of long range active imaging for defence applications, or in
biomedical optics (tissue imaging, microscopy,. . . ).

In that context, Mueller polarimetry is the most exhaustive active technique, as it completely
characterizes the polarimetric response of an object. This technique typically implies registering 16
images, since four images must be acquired through four polarization analyzer configurations4 and
for four different illumination polarization states5.

When it simply comes to analyzing the state of polarization of the light backscattered by an object,
the so-called Stokes imaging is the recommended approach to be used. In that case, one can limit
oneself to a single illumination state, while acquiring the same 4 images (Stokes images si, i ∈ {0, 3})
through various polarization analyzer configurations. These four measurements give access to the
full polarization matrix defined as,

Γ = 〈E(r, t)E†(r, t)〉. (1.3)

These “classical” techniques have proved efficient in many applications, but suffer from a number
of practical limitations, which will be briefly enumerated below, and which justify the contributions
about simplified polarimetry detailed in Chapter 3.

3See Chapter 4 for the definition of Shannon entropy.
4Linear horizontal, vertical, 45◦, and circular polarization analyses.
5Identically, linear horizontal, vertical, 45◦, and circular polarization states
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1.2. Polarimetric imaging

1.2.2 Polarimetric parameters and figures of merit

To each polarimetric imaging modality, one can associate several polarization parameters, or con-
trasts, that could deliver relevant information to the end-user, revealing additional, enhanced or
even new contrasts with respect to standard (reflectance) intensity imaging. In Stokes imaging, the
most widely used parameter is the degree of polarization (DOP) P defined above, but also expressed
from the polarization matrix Γ as

P =

√
1− 4

det[Γ]

tr[Γ]2
. (1.4)

A complementary polarization contrast is often obtained by the Angle of Linear Polarization map
(AoLP) [Kup14], which basically provides the azimuth of the polarization state at each location of
the scene.

As for Mueller imaging, the complete characterization of the sample polarimetric response gives
access to a wide range of polarization parameters whose expressions will not be recalled here for the
sake of conciseness: angle and amount of retardation, angle and amount of diattenuation, depolar-
ization properties6,. . . Regarding depolarization, it is customary in the Mueller/Stokes formalism to
model purely depolarizing samples by a diagonal Mueller matrix

Mpuredep. =




1 0 0 0
0 PL,1 0 0
0 0 PL,2 0
0 0 0 PC


 (1.5)

, with PL,1 and PL,2 respectively denoting linear depolarization along X/Y and +45◦/ − 45◦ direc-
tions and PC circular depolarization. In most situations, PL,1 = PL,2, whereas PC can be sometimes
slightly different, though of the same order of magnitude [Bre99]. It can be noted here that many de-
polarization parameters have been defined and proposed from the expression of the Mueller matrix,
as will be recalled in Chapter 2.

The variety and complementarity of the polarimetric maps obtained for each of these parameters
often leads to one of the following situations:

• On the one hand, it can happen that only one, or very few parameters carry relevant informa-
tion about the sample imaged. In that case, performing full-Mueller or full-Stokes measure-
ments corresponds to oversampling the available information in the image, leading to largely
redundant acquisitions. This situation is quite sub-optimal in terms of acquisition time, immu-
nity to noise, calibration errors, etc.

• On the other hand, the information can be distributed over many polarimetric information
channels (up to 16 in Mueller imaging), leading to a very difficult image interpretation by the
end-user, who may not be an optics scientist in general, but a practicioner in a hospital, a sol-
dier on the battlefield, or even an algorithm in an automated detection/navigation system. In
that situation, it is highly desirable that the many polarimetric channels could be combined to
provide a final synthetic image to the end-user with improved interpretability.

These two situations illustrate the reasons why these standard polarimetric imaging techniques
are often replaced by simplified imaging systems, as will be described below. In addition, we can
mention here that the complexity of these imaging techniques imply quite sophisticated calibration
procedures (especially in the case of Mueller imaging, where calibration of instruments has given
birth to an impressive literature) that are essential to guarantee physically acceptable results (See
[Gil16b] for instance).

6Usually identified through the celebrated Lu-Chipman Mueller matrix decomposition [Lu96] (or similarly, through
more recent types of decompositions).
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1.3 Constraints and current challenges in polarimetric imaging

1.3.1 Simplification of the systems and real-time imaging

As recalled above, standard polarimetric approaches require that several images must be recorded
for various illumination/analysis polarization states in order to provide a polarimetric image (po-
tentially multi-dimensional). This is mainly due to the fact that optical techniques generally do not
give access to a direct measurement of the electric field of the beam, as only intensity observables
can be detected on an image sensor7. Historically, the acquisition of 16 – or 4 images depending on
the technique – was initially operated sequentially, which causes a number of technical issues, such
as long acquisition times, and complexity/cost of the imaging process8. . . In addition, these different
images must then be combined together in order to provide the desired polarimetric parameters or
contrasts listed above, implying possible image registration issues when imaging moving objects or
living organisms, which can hinder the polarimetric consistency of the final polarimetric images ob-
tained. These technological difficulties and constraints are probably largely responsible of the lack of
diffusion of polarimetric approaches in real life imaging applications.

As a result, a topical challenge in polarimetric imaging is to avoid such sequential acquisitions
by using different multiplexing “domains” such as spatially or spectrally multiplexed techniques
[LaC11, Ale14, LG15], which appear as promising approaches to tackle the real-time challenge in
Stokes or even Mueller imaging. Among the proposed setups, one can list various schemes includ-
ing prisms [Bén09a], Savart plates [Luo08], polarization gratings [Kud12], liquid crystal modulators
[Ala13], etc. In parallel, the recent development and commercialization of microgrid division-of-focal
plane polarimetric cameras (Polaris, 4D-Technology, MoxTek,. . . ) provide an appealing compromise
towards mechanical reliability and real-time acquisition and processing, to the expense of course of
spatial resolution. These commercial cameras are so far limited to measuring the degree and angle
of linear polarization, but recent developments in laboratories have demonstrated the capacity of
performing circular polarization measurements (S3 Stokes parameter) [Hsu14].

However, the complexity of the systems and the loss of performance entailed by the different
multiplexing methods listed above have led the community to propose several simplified polarimet-
ric techniques which optimize the measurement of some specific polarimetric properties at a high
performance [Ann12b, Ann12a, Tyo02, Tow01, Réf07b, Nan09, Jia05], without giving access to the
whole polarimetric information (i.e., the Mueller matrix M for Mueller imaging, or the whole polar-
ization matrix Γ for Stokes imaging). For instance, scalar polarimetric contrast images are commonly
achieved from only two intensity measurements in the family of two-channel division-of-aperture
imaging systems. Widely used in many applications due to its ease of implementation and sim-
plicity of interpretation, the scalar polarimetric contrast imaging is mostly referred to as Orthogonal
States Contrast (OSC) imaging [Gou04], or Degree of Linear Polarization imaging (DoLP) [Kup14]. The
polarimetric contrast retrieved is given by

OSC =
I‖ − I⊥
I‖ + I⊥

, (1.6)

where I‖ and I⊥ respectively denote the two polarimetric images acquired along linear directions of
polarization, with orientation parallel (resp. perpendicular) to the illumination polarization direc-
tion. This polarimetric contrast is widely used in practice, as it correctly estimates the DOP of the
backscattered light when the interaction with the sample is purely depolarizing (i.e., for samples ex-
hibiting no diattenuation or birefringence). Such samples being modeled by a diagonal Mueller ma-
trix as recalled above, it is quite obvious that the OSC parameter provides an estimate of the linear

7Let aside some interferometric polarization imaging techniques which can be of interest [Col02, Oka03], but to the
expense of other kinds of technical complexity.

8Need of moving parts such as rotating polarizer, removable waveplate,. . . or use of electro-optic components (liquid
crystal voltage-controlled retarders,. . . )
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depolarization parameter9 PL1 . This hypothesis is mostly often valid in macroscopic imaging sce-
narii or when important light scattering occurs, which justifies the use of such a technique in remote
sensing, target detection, imaging in turbid media and biological tissues imaging applications. We
can also mention a recent scalar polarimetric imaging concept based on the acquisition of a single im-
age through an optimized pair of illumination/analysis polarization states [Gou09, Ric09, Ann12b].
The technique has proved efficient in several situations, but the computation of the optimized states
remains a non trivial problem which strongly depends on the noise statistics [Ann12a].

Generally speaking, these “incomplete” polarimetric techniques propose to operate a tradeoff
between systems simplicity, rapidity, cost, and the polarimetric content of the final image provided
to the user. As mentioned above, such a tradeoff is often justified by the context of the application
addressed: in many situations, a single polarimetric contrast map will be provided to the end-user.

The work presented in Chapter 3 utterly corresponds to this last outlook on polarimetric imaging.
In the various studies described in this chapter, our motto was also that, whatever be the polarimetric
figure of merit relevant in the considered context, it would be highly desirable that it could be ac-
cessed within the smallest number of measurements/images/operations. Of course in some cases,
extreme simplication can lead to a degradation of the performance with respect to standard complex
techniques. However, it should make sense for the physicist that the most direct measure of a pa-
rameter must be the guarantee of the best immunity to crosstalk with other polarimetric parameters,
but also to experimental noise, registration issues, calibration artifacts,. . . All such practical issues
that limit the ease of Mueller imaging for instance. As will be detailed in Chapter 3, the three origi-
nal simplified polarimetric imaging modalities studied allow the polarimetric contrast of interest for
each modality to be obtained as far as possible from a direct measurement.

1.3.2 Endoscopic polarimetric imaging

Another ill-solved technological challenge in the field of polarimetric imaging is endoscopy for re-
mote biomedical imaging and diagnosis. Indeed, the implementation of fiber-guided polarimetric
imaging systems constitutes a challenging issue, due to the fact that the state of polarization of the il-
luminating beam is modified by the optical waveguide in an uncontrolled way. This is a remarkable
aspect to be adressed for endoscopic applications, where the optical fiber stress-induced birefrin-
gence is the dominant effect on beam polarization [Woo10]. The feasibility of a multimodal endo-
scopic system including cross-polarized imaging has been demonstrated [The13]. However, such
technique provides an orientation-dependent contrast, which entails some drawbacks for in vivo ap-
plications. Moreover, the fact that the polarimetric elements and the CCD camera are located at the
distal end of the endoscope is quite restrictive in terms of miniaturization to access every organ of the
human body. Regarding Mueller polarimetry, a narrow band 3×3 Mueller polarimetric endoscope
was presented and validated with ex vivo experiments [Qi13]. However, the use of a rigid endoscope
is unfeasible for most practical applications. Finally, a full Mueller endoscopic polarimeter was pro-
posed in [Man15]. Nevertheless, this novel technique is still suboptimal in terms of acquisition time,
as it is based on a first characterization of the optical fiber using a micro-switchable mirror before
every Mueller matrix acquisition. A recent upgrade of the technique has permitted to lift the ne-
cessity of a movable mirror at the distal end of the endoscope by replacing it with a sharp dichroic
spectral filter that reflects a first wavelength used to probe the Mueller matrix of the fiber itself, while
a second wavelength transmitted by the filter probes the polarimetric response of the sample [Viz16].
However, as standard Mueller imaging systems, this technique necessitates a very precise calibration
step, and requires ad hoc endoscopes to be developed with a specific optical architecture. As will be
described in Chapter 3, the Depolarization/Dichroism Sensing by Orthogonality Breaking (DSOB)
technique that we have developed at the Institute of Physics of Rennes can be seen as an alternative

9We can mention here the recent proposal of a 3-OSC imaging approach, using three pairs of OSC images acquired along
X/Y , +45◦/−45◦ and rcp/lcp, encoded in a composite RGB image, which allows the three depoalrization parameters PL,1,
PL,2 and PC to be measured. This technique seems promising for target detection applications [Van16].
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1.4. Light depolarization

approach to provide polarization-sensitive endoscopic measurements, while being compatible with
standard monomode or few-mode fibers/endoscopes.

1.4 Light depolarization

As mentioned above, the DOP of the light on the one hand, and the depolarization parameter(s)
of a sample on the other hand represent very relevant figures of merit that often provide contrasts
able to reveal structures, objects or shapes that are not visible in a standard intensity image. Even
though such parameters are in general quite straightforward to measure with the imaging systems
listed above, the question of their physical meaning and interpretability is sometimes not so obvious,
when departing from most standard imaging systems and/or experimental conditions, e.g. in the
presence of speckle noise under coherent illumination, or in an endoscopic configuration through
a spatially monomode waveguide, as will be discussed in Chapter 2. More generally – and quite
problematically ! – the exact same scene characterized with different polarimetric imaging systems
can yield different values of the DOP or of the sample depolarization parameters.

These observations illustrate the fact that in the most general case, the generic notion of light
depolarization must encompass:

• (i) the optical anisotropic properties of the sample considered; but also (ii) its local structural
organization, including spatial randomization effects;

• (iii) the properties of the illumination field (e.g. spectral bandwidth);

• and (iv) the characteristics of the detection setup (e.g. numerical aperture, spatial/spectral
resolutions. . . ).

Indeed, light depolarization occurs as the polarization state of the light analyzed undergoes a form
of randomization.

This is clearly evidenced in the way the Stokes/Mueller and the Jones formalisms differ when
non-deterministic polarization transformations are to be described. On the one hand, the Mueller
formalism can model depolarization in a straightforward way, using depolarizing Mueller matrices
Mdep, whose elements can be any deterministic real values, as soon as the resulting Mueller matrix
obeys standard physicality conditions. On the other hand, deterministic Jones matrices are unable
to directly account for depolarizing interactions, which can only be apprehended under the Jones
formalism using random sets of Jones matrices, i.e., Jdep = 〈Jλ〉λ, where 〈.〉λ stands for ensemble
averaging over statistical realizations λ. This discrepancy between both formalisms is mainly due
to the fact that Jones formalism is a coherent description, as it models the evolution of the electri-
cal field, whereas the Mueller formalism is incoherent. In fact, despite its apparent simplicity, the
Mueller formalism implies such a randomization/averaging process when dealing with depolar-
izing Mueller matrices. As a result, the expression of a depolarizing Mueller matrix10 implicitely
assumes (at least partial) averaging over (at least) one of the above “dimensions” (spatial, spectral,
temporal,. . . ). However, in a broad range of experimental setups, the characteristics of the sens-
ing/imaging system only lead to a partial averaging operation. As a result, the description of the
sample by a diagonal depolarizing Mueller matrix can be no longer physically appropriate in such
cases, as will be illustrated in Chapter 2.

Surprisingly at the beginning of the XXIth century, a deeper insight into the physical origins of
depolarization is still a topical debate in the polarimetric imaging community [Bic92, Bro98, Aie05,
Xu05, Set08, MR11, Sor11, Pou12, Dev13], as well as a consensual definition of depolarization param-
eters is still under discussion [Gil85, Fad16, OQ15b, Lip15, Gil16b, Gil16a]. In the next chapter, I will
illustrate how I to strived through my research activity to contribute to the understanding of light
depolarization, both from an theoretical and experimental standpoints.

10such as the matrix Mpuredep. introduced above in Eq.(1.5) that models a purely depolarizing sample.
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Chapter 2

Contribution to the physics of light
depolarization

As mentioned in Chapter 1, the notion of light depolarization is quite subtle to define since it depends
on almost all physical conditions of a light-matter experiment. Not only does it depends on the
anisotropic optical properties of the sample illuminated and its local organization11, but also on the
way it is illuminated (wavelength, bandwidth, direction12 of the illuminating light), and on the way
it is detected (bandwidth, angular acceptance, resolution,. . . of the detector).

For instance in polarimetric imaging, the depolarization undergone when light is backscattered
on the surface of a sample depends on the rugosity of the material, but also on the penetration depth
of the wave in the sample. In this case, the depolarization mechanisms that occur for a surfacic or
volumic interaction are today well understood when one considers ensemble averaged situations
[Alo08, Amr08, Sor09]. That is to say when the illumination spectrum is wide enough; and/or when
the illuminated surface is large with respect to the wavelength; and/or when the numerical aperture
of the imaging system is large. In these conditions, the statistical description of the backscattered light
field is well-known and can be used to probe the spatially-averaged degree of polarization (DOP) of
the light with an extremely simple experimental setup, as will be described in Chapter 3.

Contrarily, as soon as the above conditions are not satisfied, the notion of depolarization must
be handled with care. Indeed, even in the presence of a temporally frozen disorder (high temporal
coherence of the light source and static object and detector, hence fixed speckle pattern during the
analysis), the depolarization properties of the sample measured can vary dramatically as a function
of the geometry of the imaging system. This observation has motivated the experimental study of the
spatial repartition of the local state of polarization (SOP) in a static speckle pattern highly resolved
on the camera. The results of this study are presented in the next section.

2.1 Polarimetric imaging at the speckle grain scale and spatial depolar-
ization

Speckle is a ubiquitous phenomenon in all research fields studying the interaction between random
media and propagating waves, whether electromagnetic [Goo07, Sko01, Jao84, Gar89] or acoustic
[She06]. This phenomenon has been thoroughly investigated for decades [Goo07, Sko01, She06] but
is still widely studied in very active research fields of physics, such as control of light through dis-
ordered media [Fre92, Pop10], optical non-linear effects in random media [Pee10] or polarization
singularities [Ang02, Dup15]. In the optical imaging domain, speckle has often been considered as a
noise detrimental to image quality [Alo09, Bén09a]. Nevertheless, speckle contrast imaging is known
to be an efficient remote-sensing technique providing information on surface roughness properties

11at the scale of the volume probed by the light.
12i.e., temporal and spatial coherence properties of the incoming beam.
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2.1. Spatial depolarization

[Lég75, Leh95, Spr72], fluid velocity [And99], and biological activity [Nas14, Rou17] for instance.
More recently, new applications involving speckle contrast images have been proposed to character-
ize polarization of light [Roc07, Réf07b, Fad12b] or diffusion properties of materials [Sor11, Cur11].

Despite this intense research activity, an open debate still remained about how the polarization
state distribution of a speckle pattern can be clearly linked with a material’s depolarization proper-
ties. This issue has occasioned a number of publications [Set08, Bro10, Bro11, Sor11, Li02, Amr08,
Zer10, Ell04, Kor05, Ter09], questioning for instance the definition and the measurement of polariza-
tion correlation lengths in a spatial speckle pattern [Set08, Bro10, Bro11, Ell04, Kor05, Ter09], or the
partial “repolarization” of unpolarized coherent light when backscattered by a depolarizing material
[Sor11]. In order to link depolarization properties of a sample with the scattered light polarization
distribution, former experimental studies were carried out using a spatial multiple-scale statistical
analysis of the speckle polarization properties [Bro10, Li02, Amr08, Zer10]. In these experiments,
light depolarization was studied from a “macroscopic” point of view, by conducting a statistical anal-
ysis of the DOP values or of the Orthogonal State Contrast (OSC), over a great number of coherence
areas (“speckle grains”). These results tended to experimentally validate the fact that the polarization
state is deterministic (light is fully polarized) at the “local” scale of a single speckle grain, whereas
global depolarization induced by interaction (reflection or transmission) with the sample results from
spatial averaging on the detector over several coherence areas [Bro10, Li02, Amr08, Zer10].

However, the various experimental devices used in these references were not able to study the
polarization state of the speckle pattern at the local scale, i.e., beyond the speckle grain scale. To the
best of our knowledge, an imaging setup capable of measuring the full Stokes vector (4 components)
of light backscattered by a diffusive sample below the speckle grain scale in the optical wave domain
had never been clearly addressed in the literature. Indeed, if such study could be carried out quite
easily in the microwave range as suggested in [Zha09], it turned out to be a mere challenge when
the wavelength is only a few hundreds of nanometers. Indeed, Stokes measurements require polar-
izers and wave plates (at least one) to be inserted and rotated in front of the imaging detector, thus
inevitably modifying the optical wavefront of the scattered light and hence the speckle pattern itself.
This experimental difficulty was mostly often eluded in the literature, suggesting that conventional
experimental schemes based on the statistical analysis over many speckle grains were in fact not able
to perform reliable Stokes measurements at an imaging scale well below the typical size of speckle
grain.

It thus appeared to us that is was important to propose and develop a reliable and optimized ex-
perimental setup, cleared for all sources of instrumental bias that could easily hide the polarimetric
effects by modifying (even very slightly) the wavefront of the light backscattered towards the detec-
tor. All the technical details about how we ensured the best immunity to turbulence, thermal drifts,
sample heating, insertion/rotation of optical analyzing components in the path of light, etc. are de-
tailed in [Pou12] (attached article (AA) I-1, p. 99). We used a 532 nm Coherent-Verdi pump laser
to enlighten the sample, so as to ensure an extremely high temporal coherence to our illumination.
This way, we could avoid any spectral/temporal depolarization effects in our experiment which was
dedicated to probing the spatial depolarization. Using a 200 µm diameter objective lens in front of
the detector, we were able to obtain highly resolved speckle grains on the camera (about 2000 pix-
els/speckle grain on the CCD). Polarization analysis was performed using a quarter-wave plate and
a linear polarizer in a rotating mount, located in an intermediate image plane and finely oriented so
as to minimize wavefront deformations. For the sake of conciseness, the details of the setup sketched
in Fig. 2.1-[I] will not be given here but can be found in [Pou12] (AA I-1, p. 99). In Fig. 2.1-[II], we
plot an example of speckle pattern imaged through various orientations of the polarization analysis
element (each orientation corresponding to a different contour plot), showing fair spatial stability of
the speckle pattern of the light backscattered on a non-depolarizing metallic surface.

This experimental setup has first permitted to confirm, without ambiguity for the first time at
optical wavelengths, that the SOP of light is well defined (i.e., with unitary DOP) in all locations
of a speckle field. This was expected theoretically, but deserved a clear experimental confirmation.
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2.1. Spatial depolarization

Moreover, this experiment has also confirmed what was hinted from previous statistical analyses:
in coherent active polarimetric imaging with static objects (frozen disorder), the notion of depolar-
ization results from a spatial averaging of the SOP over various coherence areas. In other words,
a sample characterized as non-depolarizing in standard polarimetric experiments exhibits a constant
SOP over all the speckle grains imaged: this is confirmed in Fig. 2.2 where the first two rows show
the repartition on the Poincaré’s sphere of the SOP of the pixels coming from three distinct speckle
grains. It can be seen that all SOP’s are located close to the one of the incident light. On the other
hand, a depolarizing sample, as the one considered in the third row of Fig. 2.2 will have various SOP’s
across the different speckle grains of the pattern, as can be seen in the figure. The value of the DOP
(0.4 for this last sample) measured from a standard polarimetric experiment is thus the result of a
spatial averaging of these many SOPs across the Poincaré’s sphere, as was confirmed by a statistical
analysis over many grains [Pou12].

Lastly, this specific polarimetric imaging system has permitted an interesting observation to be
made. On the depolarizing sample, we analyzed the polarimetric transition between two adjacent
speckle grains, as sketched in Fig. 2.3-[I], by drawing a straight line between the centers of the grains,
and plotting the evolution of the SOP across the Poincaré’s sphere. The resulting “polarization tra-
jectory” is plotted in Fig. 2.3-[II], which shows that the evolution is continuous (adiabatic) between
the central SOPs of each grain, and seems to follow the shortest path on the sphere surface.

[I] [II]

Figure 2.1: [I] Experimental setup of Stokes imaging beyond the speckle grain scale. [II] In con-
tour plots, the speckle intensity patterns observed after speckle registration for four Stokes images,
superimposed on a grayscale image of the total intensity S0.

This last observation would deserve a more thorough study to generalize or not such a behaviour.
However, the exploitation of the setup proposed remained very limited due to the complexity of the
measurement protocol required, and the acquisition time needed. As a result, the study of many
interesting fundamental aspects that remain to be addressed with such an experimental setup has
been temporarily postponed. In order to propose a more operational setup, we have upgraded it
these last years by replacing the rotating polarization analyzer by a fixed system using liquid crystal
retarder plates developed on purpose for this experiment. We are now close to having an automated
setup allowing calibration and acquisition within reasonable acquisition times, and which will be
used in the next years to push forward this interesting research field.

Lastly, it can be noted that this first measure of the spatial repartition of the SOP over a highly
resolved speckle pattern has galvanized the community, as several french groups in Marseille and
Toulouse have now developed similar optical benches, with higher precision and easier/faster ac-
quisition, that confirm our seminal experimental results in this domain.
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2.2. Temporal depolarization

Figure 2.2: Repartition of the pixels SOP on Poincaré’s sphere for a metallic sample (first row), a
non-depolarizing red paint sample (second row), and a depolarizing green paint sample (third row).
First column, SOP in the whole ROI; second and third column, SOP in two different speckle grains.

2.2 DOP tunable coherent source by temporal depolarization control

As seen above, light depolarization measured through its DOP must be defined with respect to a
given spatial resolution (or spatial bandwidth) of the detector. As stated in the introduction, the
temporal bandwidth of the detector should also be taken into account in the description of the exper-
iment as it can influence the measure of the polarimetric properties of samples when depolarization
effects are at stake. It is however hardly ever done in practice, as the temporal resolution of usual
detectors is well below the typical time constants that characterize the temporal evolution of the light
electric field.

In that context, we have shown that such temporal depolarization can be “tuned” by using a
specific laser arrangment, making it possible to generate a coherent beam with precise control of
its (temporal) DOP when the detector considered is sufficiently slow. The development of such a
source presents a high potential for several applications like polarimetric imaging, interferometric
sensing, gyroscopy, quantum communications, and instrument calibration. Several tunable sources
based on different technologies have been demonstrated during the last decade, however, they entail
a number of limitations (among others: single/fixed SOP, incomplete depolarization, or very long
acquisition times). Moreover, all of them inherently provide a temporally incoherent beam, as they
rely either on spectral dispersion of the SOP of light, or on temporal delays to make two fractions
of the beam temporally incoherent with each other. They are thus incompatible with techniques
requiring coherent beams, like interferometric systems.

In this context, we recently proposed a simple way of producing a coherent beam with full, precise
and independent control on the SOP and DOP. This apparatus has been recently patented [OQ17a].
Our approach is based on an imbalanced dual-frequency dual-polarization (DFDP) light source ex-
hibiting a potentially very fast temporal modulation of its SOP, which results in a partially depolar-
ized beam when measured at the temporal scale of most standard optical detectors. The implementa-
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[I] [II]

Figure 2.3: [I] Speckle intensity (S0) repartition on a depolarizing sample (green paint) allowing
the definition of a linear path across two adjacent speckle grains. [II] Observation of an adiabatic
polarization state transition along the geometrical path defined in [I] between two adjacent speckle
grains on a depolarizing sample.

tion of this source can be easily done using fibered optical components, as sketched in Fig. 2.4, using
a fibered polarization sensitive Mach-Zehnder architecture comprising a variable optical attenuator
to tune the intensity imbalance between the two polarization states, and an acousto-optic modula-
tor (AOM) that operates a frequency shift ∆ν = 80 MHz on one of the two states. The full details
about the source implementation will be omitted here for the sake of concision, but can be found
in [OQ17b] (AA I-2, p. 111). In addition, a very similar setup will be more thoroughly described in
Chapter 3, as it is required to implement an original active polarimetric imaging technique that has
been developed these last years in the laboratory.

It is more interesting here to focus on the mathematical description of this specific polarization
state. In the case of linear input polarization states of azimuth α for the sake of clarity, it can be easily
shown [OQ17b] that the Stokes vector describing such a beam can be written, as a function of time,
as

S(t) = S0




1
cos 2α(1−γ)−2

√
γ sin 2α cos ∆ωt

1+γ
sin 2α(1−γ)+2

√
γ cos 2α cos ∆ωt

1+γ
2
√
γ cos ∆ωt
1+γ



, (2.1)

where γ is the intensity imbalance parameter such that Iν+∆ν/Iν = γ. This expression shows that
the Stokes parameters of the field evolve rapidly at the detuning frequency ∆ν, hence justifying
the term instantaneous Stokes vector used in [OQ17b, OQ15b] (AA I-2, AA I-5). At a temporal scale
faster than τbeam = 1/∆ν, i.e., with a fast photodetector for instance, this SOP describes a circular
trajectory across the Poincaré’s sphere surface which indicates that the light is always temporally
fully polarized. When the states are perfectly balanced, the SOP runs across a great circle (equator)
of the sphere, whereas for γ 6= 1, the trajectory corresponds to a parallel line of the sphere, coming
closer to the pole when γ � 1 or γ � 1.

On the other hand, a standard low frequency detector (which will be the case with imaging de-
tectors that cannot resolve so far frequencies in the 10-100 MHz range) will observe a time-averaged
Stokes vector

〈
S(t)

〉
= S0




1
1−γ
1+γ cos 2α
1−γ
1+γ sin 2α

0


 , (2.2)
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from which expression it is obviously seen that the time-averaged degree of polarization is DOP=1−γ
1+γ .

Therefore, an imbalanced DFDP source constitutes a pretty straightforward way of generating a beam
with a fully tunable state and degree of polarization, with the sole condition that the frequency shift
∆ν is much higher than the bandwidth of the detector to be used with. This behaviour is illustrated
in Fig. 2.5-[I], where the overall DOP measured with a slow fibered polarimeter (Thorlabs PAT 9000,
τdet ' 0.03 s) is plotted as a function of the imbalance parameter γ(t) which is varied sinusoidally in
time in the experiment with period τmod=20 s. The black curve demonstrates the ability of the source
to provide a tunable DOP between 0 and 1 by adjusting γ (here γ can be set between γ � 1 and γ = 1),
when the detector bandwidth is below the detuning frequency, i.e. for τdet � τbeam. At each time
t, the partially polarized beam results from the time-averaging of a SOP describing a sphere parallel
line. Interestingly, when γ is varied fast enough such that τmod � τdet, the slow detector will “see” in
that case a perfectly depolarized SOP, which results from the averaging of all possible SOPs across the
Poincaré’s sphere, thereby ensuring ideal depolarization model. This is illustrated by the red curve in
Fig. 2.5-[I], where the overall DOP in this situation is measured to 0.44 (theoretical value ' 0.4), due
to the fact that in our experimental setup, only one half of the sphere could be ran across by the SOP.
Lastly, in the opposite situation where a fast photodetector is used that can resolve the time-evolution
of the SOP, the exact same experimental setup makes it possible to generate interesting trajectories,
at very fast rates, across the Poincaré’s sphere. This is illustrated in Fig. 2.5-[II] where we have been
able to measure and plot the SOP evolution on the Poincaré’s sphere using a slow polarimeter. For
that purpose, the trick consisted of using a frequency down-conversion of the fast SOP evolution
at frequency ∆ν to a very low frequency (well below � 1/τdet) by modulating the intensity of the
front laser at a frequency close to ∆ν with a 2-ports signal generator (see [OQ17b] AAI-2, p. 111 for
details). The resulting trajectory when γ is time modulated is a spiral on the surface of the Poincaré’s
sphere. This demonstrated that such trajectories can be generated at radiofrequencies using a simple
experimental scheme, which could find interesting applications in detectors characterization, optical
communications, etc. but also for the developement of original polarimetric imaging approaches.

Besides its practical interest for generating coherent sources with finely tunable DOP, this exper-
iment demonstrated that a strict analogy can be drawn between time depolarization and the spatial
depolarization studied in the previous experiment. On the one hand, spatial depolarization can only
be meaningful when the coherence area of the speckle pattern is well below the pixel size (spatial
resolution of the detector). On the other hand, depolarization occurs when the instantaneous tempo-
ral evolution of the SOP cannot be probed by the detector used (temporal resolution of the detector).
Again, these two experiments illustrate the strong interplay between the sample properties, the light
used to probe it, and the illumination/detection conditions experimental conditions, that should be
all encompassed to define depolarization on rigorous and sound bases in a polarimeric imaging ex-
periment.

Figure 2.4: Production of a coherent light beam with (a) fixed, (b) time-modulated, precisely con-
trolled DOP using an intensity-imbalanced DFDP source. The intensity imbalance can be obtained
using a variable optical attenuator (VOA) in one arm of the Mach-Zehnder architecture, or (b) by
modulating the RF power of the electrical signal on the acousto-optic modulator (AOM) used to
operate the frequency shift.
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[I] [II]

Figure 2.5: [I] Temporal evolution of the DOP for slow (black dashed curve) and fast (red solid curve)
AOM modulation signals. [II] Temporal evolution of the instantaneous DFDP state of polarization
over the Poincaré’s sphere.

2.3 Stochastic model of depolarizing Mueller matrix from random optical
anisotropies

Let aside the spatial and temporal depolarization mechanisms discussed above that can occur due to
limited bandwidth(s) of the detector, we shall now address in the next two sections of this chapter
the question of modeling the depolarization properties of a sample from the random nature of its
anisotropic properties. As mentioned above, depolarization arises from a randomization of the SOP
of the light, as a result we proposed to describe a depolarizing sample by means of a stochastic model
of random anisotropic optical properties. Our motivation was to lift the veil on depolarizing Mueller
matrices, that most of the time dissimulate such randomization mechanisms as evoked in Chapter 1.

In this section, we briefly describe a stochastic model of a depolarizing anisotropic medium con-
sisting of the action of random linear dichroic elements. Though simple, this model has a nice illus-
trative potential, as it makes it possible to characterize the progressive transition from a deterministic
anisotropic sample to a strongly random one (characterized by a Mueller matrix of a diagonal depo-
larizer) as the averaging conditions evolve.

Let us thus model a dichroic depolarizing medium assuming that depolarization arises from the
heterogeneity of its anisotropy properties at the spatial scale of the light illumination/collection13.
For that purpose, we consider that the incoming beam urdergoes random local dichroic interactions,
each polarization transformation having a Mueller matrix MLDµ of a partial diattenuator with same
diattenuation coefficient d, but randomly distributed linear dichroism angle φµ, and where the sub-
script µ denotes one realization of a random event. Consequently, the Mueller matrix of a single
random event is not depolarizing (Mueller-Jones matrix), as the individual polarization transforma-
tion is purely deterministic.

When averaged over many random events, the (macroscopic) Mueller matrix reads M̄LD =
〈MLDµ〉µ. Using a convenient Wrapped-Gaussian Distribution (WGD) model for the statistical dis-
tribution of anisotropy angle [OQ16] (see AA I-5, p. 129 for further details), we have been able to

13i.e., at the scale of the focal volume of the excitation in microscopy, or the spatial resolution of the pixel/detector in
most other imaging schemes.
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provide a closed form expression of M̄LD as

M̄LD = ρ




1 d ξ cos 2φ̄ d ξ sin 2φ̄ 0

d ξ cos 2φ̄ 1+T
2 + 1−〈T 〉

2 ξ4 cos 4φ̄ (1− T ) ξ4 cos 2φ̄ sin 2φ̄ 0

d ξ sin 2φ̄ (1− T ) ξ4 cos 2φ̄ sin 2φ̄ 1+T
2 − 1−T

2 ξ4 cos 4φ̄ 0
0 0 0 T


 , (2.3)

where ρ denotes the average isotropic absorption, and where T = ρ
√
TmaxTmin is the transmission

parameter. It can be readily observed that this Mueller matrix is very similar to the Mueller matrix
of a standard partial diattenuator with diattenuation parameter d, and average angle φ̄ = 〈φ〉, except
for the presence of the parameter ξ, which only depends on the variance σ2

φ of the distribution of the
anisotropy angle through ξ = exp(−2σ2

φ).
Interestingly, when σφ → 0, i.e., when no randomization occurs limσφ→0 M̄LD = MLD, which

corresponds to the trivial case of a deterministic diattenuating sample. In the intermediate case, the
angular dispersion of φ naturally reduces the diattenuation capacity of the sample, since in that case

the diattenuation coefficient, defined by D =
√∑4

j=2(M̄LD)2
1j/(M̄LD)11 is equal to D = d ξ ≤ d

[OQ15b]. The evolution of the “effective” diattenuation coefficient D is plotted in Fig. 2.6.(a) as a
function of σφ and of log10 Tmax/Tmin (which is 0 for an isotropic sample and tends to infinity for
a perfect polarizer). It can be seen that the diattenuation coefficient of the Mueller matrix rapidly
decreases with σφ, whereas it increases for higher values of log10 Tmax/Tmin as expected. Now when
the angular distribution becomes strongly randomized (i.e., σφ � 1), the Mueller matrix tends to the
form of a diagonal depolarizer:

lim
σφ�1

M̄LD = ρ diag
[
1, (1 + T )/2, (1 + T )/2, T

]
. (2.4)

Furthermore, if dichroism is perfect (d = 1), then T = 0 and the previous matrix corresponds to a
sample that completely depolarizes the fourth element of the Stokes vector, and reduces by 0.5 the
DOP of any linear input SOP. For other values of T , the depolarization strength of such a diagonal
depolarizer varies for each Stokes vector element.

Figure 2.6: (a) Evolution of the effective diattenuation coefficient D as a function of angular dis-
persion σφ and of log10 Tmax/Tmin. (b) Evolution of the Cloude entropy S as a function of angular
dispersion σφ and of log10 Tmax/Tmin. Evolution of the diattenuation coefficient D (c) and of the
Cloude entropy S (d) as a function of log10 Tmax/Tmin for σφ = 0 (blue), σφ = 1/2 (red), and σφ = 2
(magenta).

These features confirm that this model makes it possible to simply account for the continuous
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transition from a non-depolarizing sample characterized by a deterministic polarization transforma-
tion on the one hand, to a fully depolarizing sample depending on the statistical properties of the
random diattenuation parameters on the other hand. To confirm such behaviour, let us analyze the
depolarizing properties of this matrix. Among the several depolarization metrics that can be used
to quantify the depolarizing properties of a sample [Lu96, Clo86, Gil85, Chi05, Oss10, OQ15b], we
relied on the Cloude entropy, which is a well-established metric to characterize the overall depolariz-
ing nature of a given Mueller matrix [Clo86]. The Cloude entropy is given by S = −∑4

i=1 λ
′
i log4 λ

′
i,

where λ′i = λi/
∑4

j=1 λj are the normalized eigenvalues of the 4×4 Cloude coherency matrix [Clo86],
which is derived from M̄LD by

C(M̄LD) =

∑4
j,k=1(M̄LD)jk A

(
σj ⊗ σ∗k

)
A†

4
, (2.5)

where matrix A is given in Eq. (1.1). The Cloude entropy S is a measure of the dispersion of the rela-
tive magnitude of the four eigenvalues of C(M̄LD), and varies between 0 for deterministic transfor-
mations and 1 for totally depolarizing interactions [Clo86]. The evolution of S is plotted in Fig. 2.6.b
as a function of σφ and of log10 Tmax/Tmin. It can be seen in Fig. 2.6.b that the Cloude entropy S
increases with σφ, thus evidencing that depolarization is stronger as the angular dispersion grows.
On the other hand, the Cloude entropy increases with log10 Tmax/Tmin. For high σφ and significant
anisotropy (log10 Tmax/Tmin 6= 0), it can be noted that the Cloude entropy reaches a maximum value
below unity (Smax = 0.75), simply because the stochastic model of the sample considered does not
lead to a complete depolarization of any input SOP, as we have only considered the subset of random
linearly dichroic events without including elliptical dichroism.

Through this simple analytical example, we have illustrated how the intrinsic (local, microscopic)
dichroic properties of the sample gradually vanish as more orientations of the dichroism are taken
into account by increasing σφ, providing the sample with a “macroscopic” depolarizing nature. This
situation could occur in practice as the transverse dimension of the beam used to probe a sample is
increased with respect to scale of the microscopic structural organization of the sample responsible
for its anistropic optical behaviour. The same reasoning could hold in the longitudinal (propagation)
direction, where depolarization could occur gradually as the beam is propagated deeper in the sam-
ple. This latter situation is specifically addressed in the last section of this chapter, where we show
how the so-called differential polarization formalisms allow to shed new light on the physics of light
depolarization.

2.4 Description, characterization and irreversibility properties of depo-
larizing interaction from differential formalism

The differential formalisms were historically introduced in the domain of polarimetry by Jones him-
self [Jon48] and Azzam [Azz78], who respectively proposed to define a differential Jones matrix
(dJm) j and a differential Mueller matrix (dMm) mnd, where the subscript nd still indicates a non-
depolarizing transformation. Both approaches describe the local evolution of a transversally polar-
ized wave along direction, say z, through the respective differential equations dE/dẑ = j E, and
ds/dẑ = mnd s , with

j =
1

2

[
2κi + κq − i(2ηi + ηq) κu − ηv − i(ηu + κv)
κu + ηv − i(ηu − κv) 2κi − κq − i(2ηi − ηq)

]
, (2.6)

and, mnd =




2κi κq κu κv
κq 2κi −ηv ηu
κu ηv 2κi −ηq
κv −ηu ηq 2κi


 . (2.7)
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In the above matrices, the parameter κi denotes the isotropic extinction coefficient (in amplitude)
induced by the sample or material, whereas parameter ηi stands for the isotropic (absolute) optical
phase incurred by the interaction with the sample, and whose information is lost in the (incoherent)
Mueller description [Jon47]. As for the other terms, the subscripts q, u, and v refer to linear x-y, linear
±45◦ and circular left/right optical anisotropies, through xq,u,v = xx,45◦,rcp − xy,−45◦,lcp, with x = κ
when describing absorption anisotropy (diattenuation), or x = η when describing phase anisotropy
(birefringence).

According to group theory, these differential descriptions lead to a representation of determin-
istic polarization transformations14, either in group SL(2,C) for J̃ or in SO+(1, 3) for M̃nd, by their
counterpart in the corresponding Lie algebra sl(2,C) for j, or so+(1, 3) for mnd, which latter verifies
Minkowski G-antisymmetry, i.e., mnd + G mT

nd G = 0 [Lou01]. There is a clear equivalence between
these four representations which are linked through a commutative diagram plotted in Fig. 2.7, the
macroscopic and differential matrices being related by the exponential map, i.e., J̃ = exp(j∆z) and
M̃nd = exp(mnd∆z) when propagation over ∆z through a homogeneous medium is assumed. As
Lie algebras can be viewed as the tangent spaces to the corresponding Lie groups at the identity el-
ement [Lou01, Gal11], the differential Jones or Mueller formalisms allow polarization properties of
a sample or a material to be described in a linearized geometry, which appears through the simple
linear parameterizations of the differential matrices in terms of anisotropic optical properties of the
sample15.

Figure 2.7: Commutative diagram verified by the macroscopic Jones matrix J and non-depolarizing
Mueller matrix Mnd as elements of two isomorphic groups, and by the differential Jones matrix j and
non-depolarizing differential Mueller matrix mnd as corresponding elements of two isomorphic Lie
algebras.

A few years ago, the differential Mueller formalism has been extended to the more intricate case of
depolarizing transformations, by the introduction of depolarizing dMm’s. This approach has permit-
ted a number of interesting results to be obtained on depolarizing transformations [OQ12, Kum12,
OQ14, Ell14, Vil14, Oss14b, OQ15b, Oss15, Aga15]. We recently proposed in [Fad16] (see AA I-3,
p. 115) to shed new light on the recent developments on depolarizing dMms, by using an alterna-
tive description involving stochastic differential Jones matrices. For that purpose, we considered
a stochastic differential Jones matrix j = j0 + ∆j, modeling a random depolarizing local transfor-
mation of the field, where j0 = 〈j〉 is the deterministic average polarization transformation, whose
parametric form has been recalled in Eq. (2.6), and where the fluctuation matrix verifies 〈∆j〉 = 0.
Assuming infinitesimal propagation over ∆z in the considered medium, the Jones matrix for such
a transformation can be written J = exp(j∆z) ' Id + j∆z at first order in ∆z. From Eq. (2.6),
this relation can be conveniently rewritten in a vector form in the Pauli matrices basis {σi}i={0,3} as

VJ '
[
1+ ∆z

2 p
(0) ∆z

2 p
]T , with p(0) = p

(0)
0 +∆p(0), p = p0+∆p. In these expressions, the deterministic

14In the remainder of this section, the notation X̃ will denote a normalized unit-determinant matrix.
15Contrarily to the parameterization of standard macroscopic Mueller matrices for instance, whose elements exhibit

highly non linear (e.g., trigonometric) expressions as a function of the anisotropy parameters.
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average values read

p
(0)
0 = 2κi − 2ηi, and p0 =



κq − iηq
κu − iηu
κv − iηv


 , (2.8)

whereas ∆p(0) and ∆p denote zero mean random variables describing the fluctuations of the anisotropy
parameters.

The Cloude’s coherency matrix (CCM) of the polarimetric transformation, which can be obtained
from the Mueller matrix using relation (2.5), is also fundamentally defined as the second-order mo-
ment matrix of vector VJ, i.e., C(J) = 〈VJV

†
J〉 [Clo86]. With the above notations, it is readily

seen that the CCM can be decomposed into a sum of two terms C(J) = 〈VJV
†
J〉 = Cnd + Cd,

where Cnd = VJ0V
†
J0

with VJ0 '
[
1 + ∆z

2 p
(0)
0

∆z
2 p0

]T , and where the covariance matrix Cd =〈
(VJ −VJ0)(VJ −VJ0)†

〉
reads

Cd =
(∆z

2

)2
[
c0 c†

c Σ

]
, (2.9)

with c0 = 〈|∆p(0)|2〉, c = 〈∆p(0)∗∆p〉 and the 3× 3 submatrix Σ = 〈∆p∆p†〉.
From such a decomposition, it appears clearly that a deterministic transformation (with ∆p(0) = 0

and ∆p = 0, hence Cd = 0) results in a CCM of rank one, Cnd being the matrix of a projector. As
stated above, a CCM of rank one yields a null Cloude entropy, which is thus Cloude’s condition for
a polarimetric transformation to be non-depolarizing. Conversely, as soon as Σ is a non-null ma-
trix, the rank of C(J) is greater than one, hence the corresponding transformation is depolarizing
according to Cloude’s criterion [Clo86, Clo90]. This decomposition allowed us to conclude that the
depolarizing nature of a transformation appears to be completely comprehended by the 3 × 3 posi-
tive semi-definite Hermitian submatrix C, i.e., by 9 independent real parameters consisting of vari-
ance/covariance terms of the random anistropic optical properties of the sample considered16. Such
an observation had been previously reported with the Mueller formalism, using a model of stochas-
tic dMm’s for the first time in [Dev13], and then further improved in [Oss14a], but without offering
the straighforward derivation obtained with Jones formalism. By identifying our result with these
references, we interestingly showed that the nine depolarization terms that enter into the expression
of the depolarizing dMm proposed simultaneously and independently in 2011 by Ortega-Quijano
et al. [OQ11a, OQ11b] and Ossikovski [Oss11] can be directly linked to the second order statistical
properties of random anisotropic parameters through the following set of equations

2dµq,u,v =
〈
[(∆η)2 + (∆κ)2]u,v,q + [(∆η)2 + (∆κ)2]v,q,u

〉
, (2.10)

2dηq,u,v =
〈
∆κu,v,q∆κv,q,u + ∆ηu,v,q∆ηv,q,u

〉
, (2.11)

2dκq,u,v =
〈
∆κu,v,q∆ηv,q,u −∆ηu,v,q∆κv,q,u

〉
. (2.12)

As depolarization properties seem to be comprehensively described by the 3× 3 submatrix Σ in-
troduced above, we then proposed in [Fad16] to define intrinsic depolarization metrics based on this
matrix. Indeed, usual depolarization metrics are defined either on the macroscopic Mueller matrix
of the medium (e.g., the standard depolarization index P =

{
(tr[MTM] −M2

1,1)/3M2
1,1

}1/2 [Gil86],
which can vary between 0 – totally depolarizing – to 1 – non depolarizing), or on its CCM (e.g. the
Cloude entropy recalled above). Though often used, such depolarization metrics can nevertheless be
unsatisfactory in some situations since two interactions sharing identical fluctuations properties of
the optical anisotropy parameters (i.e., same matrix Σ) but with distinct principal (deterministic) po-

16Moreover, this first-order decomposition evidences the fact that depolarization effects must locally pile up quadrati-
cally in ∆z, whereas deterministic anisotropy parameter classically evolve linearly with propagation distance. This inter-
esting property of depolarization in samples has been recently verified experimentally on controlled test samples [Aga15],
and it may have crucial implications in the analysis of depolarizing media in experimental polarimetry [Web10, Mar03].
However, current developemnts tend to show that such quadratic evolution of depolarization properties is not a general
result, and could be different for varying illumination geometries [Cha16].
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larization transformation vector p0 can have different depolarization indices or Cloude entropies in
the general case. This is due to the fact that both metrics simultaneously depend on the deterministic
polarization transformation and on the fluctuating parameters.

To solve this issue, we proposed to define intrinsic depolarization metrics, which only depend on
the fluctuations of the anisotropy parameters of the sample, i.e., only on the submatrix Σ. The intrin-
sic differential depolarization metric was first defined as Pδ = ||Σ||F , where ||X||F =

√
tr[X†X] denotes

the Frobenius matrix norm [OQ15b, Fad16]. Such a quantity can vary from 0 – for non-depolarizing
interactions – to (potentially) infinity and can be efficient in situations where standard approaches fail
to correctly describe the depolarizing nature of a light-matter interaction. This property was empha-
sized with an illustrative example in Reference [OQ15b]. In addition, one can gain further physical
insight into the depolarization properties of such interaction by analyzing other quantities, such as
the determinant of Σ which can be interpreted as an intrinsic depolarization volume17 Vδ = det[Σ],
or an intrinsic Cloude entropy Sδ of the submatrix Σ itself where the subscript δ indicates that it is
computed under the differential approach. These three differential depolarization metrics share the
interesting property that they are defined irrespective of the propagation distance, and are invariant
by deterministic unitary transformations, thus justifying their qualification of intrinsic metrics. This
has the strong physical meaning that the sample or the light-matter interaction studied must keep
the same depolarization properties whatever be its deterministic anisotropic properties [Fad16].

The combination of the differential formalism and of a stochastic model of anisotropic optical
properties has thus permitted us to gain a fundamental insight on the origin of depolarization as
a randomization of light polarization due to statistical fluctuations of the anisotropy parameters,
giving access to meaningful intrinsic depolarization metrics. In addition, this work also allowed us to
demonstrate a fundamental irreversibility property of depolarizing light-matter interactions, which
is a clear counterpart of the invariance property for deterministic transformations briefly recalled in
Section 1.1 of Chapter 1. This irreversibility property can be stated as follows:

Property 1 For any admissible fully or partially polarized input Stokes vector sin, a physically realizable de-

polarizing non-singular and unit determinant Mueller matrix M̃ verifies ‖sout‖21,3 =
∥∥∥M̃ sin

∥∥∥
2

1,3
≥ ‖sin‖21,3.

The demonstration of this property in the general case of a standard Mueller matrix had never
been reported to our best knowledge, and is provided in a general form in [Fad16] (AA I-3). A similar
“local” property holds for a depolarizing dMm m = mnd+m′d with null trace (κi = 0). This property,
which offers insightful physical interpretation, reads

d ‖s‖21,3
dz

= sT
[
m′Td G + G m′d

]
s ≥ 0 (2.13)

for any physical Stokes vector s, with equality if and only if the dMm is non depolarizing (m′d = 0).
Property 1 and its “local” counterpart have a strong physical meaning since they reveal the irre-

versible effect of a depolarizing transformation on the propagating field. This irreversibility clearly
appears through the necessary increase of the Minkowski metric of the Stokes vector defining the
field polarization state. Interestingly, this irreversibility property has an informational or thermody-
namical counterpart, under the hypothesis of complex Gaussian circular random fluctuations of the
field. Indeed, as a consequence of Eq. (1.2), the Shannon entropy of the bidimensional electrical field
vector must obey an irreversible evolution with depolarizing transformations, as

dH(s)

dz
=

2

‖s‖1,3
d ‖s‖1,3
dz

≥ 0. (2.14)

Such an irreversible behavior of the Minkowski metric ||s||1,3 (or equivalently of the Shannon en-

17This quantity is equal to zero as soon as one polarimetric direction has null fluctuations, indicating perfect correlation
between at least two polarization “directions”
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Figure 2.8: Schematic representation of the effect of a non-depolarizing (M̃nd) or a depolarizing (M̃d)
transformation on (a) the standard DOP P , and (b) the Minkowski metric ||s||1,3 or Shannon en-
tropy H(s), for all possible input Stokes vectors sin (represented around a chromatic disk for the
sake of simplicity). Contrarily to the DOP, ||s||1,3 or H(s) are preserved for non-depolarizing (deter-
ministic and reversible) transformations, and must necessarily grow for depolarizing (random and
irreversible) transformations.

tropy H(s)) confirms that these quantities are best adapted to describe the polarimetric randomization
(depolarization) of a propagating beam. Indeed, contrarily to the field intensity or the standard DOP
P , the quantities ‖s‖1,3 and H(s) are preserved through non-singular deterministic (and reversible)

transformations as dH(s)
dz =

d‖s‖1,3
dz = 0 in that case, but must necessarily grow with irreversible de-

polarizing transformations. This is schematically illustrated in Fig. 2.8 where it can be seen that,
depending on the input Stokes vector sin, a non-depolarizing M̃nd or depolarizing M̃d polarimetric
transformation can lead to an increase or a decrease of P . An illustrative example can be found in
[Fad16] (see AA I-3), but will not be detailed here for the sake of concision.

Conclusion

The different contributions briefly described in this chapter illustrate the fact that light depolariza-
tion is a complex notion, which cannot be defined rigorously without clearly stating the experimen-
tal conditions at hands (spectral bandwith, spatial/temporal bandwidth of the detector, illumina-
tion/detection geometry,. . . ). Moreover, it fundamentally involves a randomization process of the
SOP on either dimension (spectral, spatial, temporal...), and/or can result from the random aspect of
the light/matter interaction considered due to the sample local random anisotropic properties. Treat-
ing light depolarization as a whole by encompassing clearly all the effects is still a very interesting
challenge, both theoretically to define rigorous descriptions of all these randomization processes, or
experimentally to confirm and guide the definition of operational theoretical tools.

Even though presented in a first chapter, the above contributions to the physics of light depo-
larization have in fact accompanied the development of original polarimetric imaging systems that
will be detailed in the next chapter. Gathering experimental results and trying to interpret them has
naturally led us to question light depolarization from a theoretical perspective. In turn, the physical
insight gained from these fundamental studies has been leveraged to optimize the imaging systems
developed, and to better interpret the unconventional polarimetric constrast images obtained with
such systems.
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Chapter 3

Non conventional approaches for
simplified polarimetric imaging

This chapter will draw an overview of the scientific work conducted at the Optics and Photonics de-
partment of IPR towards the development of original unconventional simplified polarimetric imag-
ing modalities.

Though very different from each other, the underling principles of the three imaging techniques
described below are in agreement with the global approach presented in Chapter 1, which can be in
a sense related to the currently famous co-design trend in imaging system/processing design. Indeed,
in all these studies, we aimed at simplifying the acquisition process by radically departing from
usual polarimetric techniques, in order to gain acquisition ease, speed, cost-effectiveness, etc. but
also better image interpretation and easier calibration. Such simplifications were operated of course
to the expense of a limited partial information on the full polarimetric response of the samples (i.e.,
their Mueller matrix), but as mentioned in Chapter 1, a direct access to a clearer polarimetric contrast
image might sometimes be preferable for some applications.

Originally and remarkably, it can also be mentioned here that the three techniques presented
below are very unconventional in the sense that they do not require any polarization analysis com-
ponent at the detection. Indeed, the polarimetric sensitivity of these “polarizer-free” polarization
sensing modalities is obtained by three different ways:

• The first technique was invented and patented in our laboratory in 2011 [Alo11], and relies on a
very specific dual-frequency dual-polarization light illumination of the sample. As will be de-
scribed below, the polarimetric information is based on the analysis of the spectral components
of the light intensity signal detected on a fast photodetector. The technique is clearly inspired
from microwave photonics approaches, microwave photonics being a reputed area of expertise
of the Optics and Photonics Department. An important effort has been devoted to the study
and development of this technique, which was supported by an ANR/DGA project that I man-
aged, and which permitted to welcome Noé Ortega-Quijano for a two-year postdoctoral stay
in our laboratory. In addition, a PhD student, François Parnet, is currently involved since more
that two years on this research activity. His PhD, which I contribute to supervise, is funded by
the DGA and the Région Bretagne.

• The second technique has been recently proposed through a collaboration with CEA Saclay,
and consists of an original and new way of matching polarimetric imaging with the currently
active domain of compressive sensing. Indeed, using a polarimetric “defect” of micromirrors
MOEMS devices, we showed that an OSC image could be retrieved through a simultaneous
signal acquisition on two single-pixel detectors.

• As for the last technique, the polarimetric sensitivity is gained by a statistical analysis of a
speckle pattern intensity distribution under coherent polarized illumination. As will be seen
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below, this technique, characterized during my PhD thesis at Institut Fresnel and validated ex-
perimentally at the IPR, provides the ultimate stage of simplification for a polarimetric imaging
system while providing relevant polarimetric contrast18.

3.1 Depolarization/Dichroism Sensing by Orthogonality Breaking

3.1.1 Principle

The concept of Depolarization/Dichroism Sensing by Orthogonality Breaking (DSOB) is based on
the preparation of a specific probe light beam, which is used to enlighten the target (or sample) to
characterize. This probe beam contains two light waves with respective optical frequencies ν1 and ν2

which are slightly detuned by a quantity ∆ν = ν1 − ν2. These two waves can have any deterministic
states of polarization e1 and e2 (Jones vectors of fully polarized fields), but these two states have to
be orthogonal to each other in a mathematical sense (e1 ⊥ e2). Such light field, that will be termed in
the following as dual-frequency dual polarization (DFDP), can be written in the general form

Ein(r, t) =
E0√

2
e−j(2πνt−k·r)

[
e1 + e−j2π∆νte2

]
, (3.1)

where E0/
√

2 is the (equalized19) amplitude of the two polarization states emitted. The intensity of
this field I(r, t) = |Ein(r, t)|2 = |E0|2 is constant in time since the two frequencies components of the
light field oscillate along two orthogonal polarization states, and therefore, no interference beatnote
can occur.

The underlying philosophy of the DSOB polarimetric sensing approach is the following: with
such very specific probe beam used to illuminate a sample and made to interact with it (either in
transmission or in reflection), a polarimetric information should be in principle retrieved by a simple
analysis of the intensity of the light transmitted or backscattered by the sample and detected on a
fast photodetector with bandwidth above the detuning frequency ∆ν [Fad12a] (see AA I-4, p. 124).
Let us illustrate the principle of the DSOB approach with Fig. 3.1: when the above beam Ein is made
to interact with a sample that can be described with a deterministic unitary Jones matrix20 Ju , the
intensity of the output field is given by Iout(t) = ρ |E0|2, which is still constant in time, since orthog-
onality (in the mathematical sense) between the two output field states Jue1 and Jue2 is maintained
with unitary transformations21 in spite of the polarization transformation undergone, as illustrated
in Fig. 3.1.a. This situation occurs with birefringent samples or samples showing optical activity.
Now, when the sample is dichroic (i.e., in the presence of absorption anisotropy), or depolarizing
(only under very particular detection conditions, see below), the mathematical orthogonality is bro-
ken when light interacts with the sample, which is illutrated in Fig. 3.1.b. As soon as orthogonality
breaking occurs, the light intensity is affected by an oscillating interference term (intensity beatnote
at frequency ∆ν). As a result, the dichroic (or in some conditions the depolarizing) nature of the
target can be easily and directly detected on the output beam intensity itself, without requiring any
polarization analysis component at the detection level.

It can be noted at this level that the DSOB approach is in essence insensitive to birefringence and
polarization rotation, thus enabling in principle remote sensing through optical fibers. In addition,
the technique does not require any component to be inserted at the distal fiber end, and it may thus
be directly adapted to commercial endoscopes in which stress or torsion-induced birefringences are

18To the expense of course of spatial resolution and estimation precision.
19Contrarily to the generation of coherent light beam with controllable DOP presented in Chapter 2, where the intensity

imbalance between the two polarization states makes it possible to control the DOP of the light, it was shown that a
perfectly balanced DFDP beam is optimal for the application of the DSOB imaging techniques.

20or proportional to a unitary Jones matrix, up to an isotropic absorption factor ρ.
21This affirmation is valid provided no significant dispersion of the birefringence appears between frequencies ν1 and

ν2, which is very unlikely to occur in practice since ∆ν will not exceed tens of gigahertz for the beatnote to be detectable
on a photodetector
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usually highly detrimental to usual polarimetric measurements. Moreover, this technique offers a
direct characterization of some polarimetric properties of a sample with high sensitivity and rapidity
(< 1 µs/pixel is feasible with high frequency detuning and optimized demodulation electronics). As
will be shown below, such capacity is exploited towards the development of real-time long-range
polarimetric imaging systems with high sensitivity and rapidity.

Figure 3.1: General principle of depolarization/dichroism sensing by orthogonality breaking
(DSOB).

[I] [II]

Figure 3.2: [I] Schematic representation of the first DSOB setup. Dashed box and photograph:
Er,Yr;Glass dual-frequency laser. [II] Measurement of the RF contrast obtained on a fibred mirror
and a perfect dichroic element (NIR polarizer).

The first experimental implementation of the DSOB technique was performed using a diode-
pumped (Er,Yb)-doped glass 4-cm-long external cavity laser emitting at 1550 nm, and specially ad-
justed to emit a DFDP laser beam as described in Eq. (3.1) [Fad12a]. Indeed, a 500-µm-thick YVO4

crystal, cut at 45◦ of its optical axis, was inserted into the laser cavity in order to favor dual-frequency
operation of the laser by inducing a slight spatial walk-off between the two eigen polarization modes
in the gain medium [Bru97, Bai09]22. In this configuration sketched in Fig. 3.2-[I], the output field
is generated along two linear polarization eigenstates defined by the eigen axes of the YVO4 crystal,
each of it oscillating at a given frequency, the frequency difference ∆ν being proportional to the cavity

22Dual-frequency lasers is a reknowned research activity of the Optics and Photonics Department, finding various ap-
plications in Lidar-Radar, microwave photonics and metrology. Contarily to these applications where a polarizer is used
at the laser output to readily create a RF modulation an optical carrier, the DSOB approach requires absorption/reflection
anisotropies to be minimized in the path of light towards and from the sample. For instance, this prevented us from using
an optical isolator at the output of the cavity, hence hindering the stability of the laser.
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free-spectral-range and to the intracavity phase anisotropy between the two eigenstates [Bru97]. By
slightly tilting an intracavity 40-µm silica etalon used to ensure single-longitudinal mode oscillation,
it was possible to set this frequency difference to a value compatible with the detection setup, namely
within the radio-frequency (RF) range, i.e., ∆ν < 2 GHz. In this configuration, the laser provided an
output power of 1.8 mW equally distributed on two orthogonal states of polarization (horizontal and
vertical), with a pump power of approximately 130 mW [Fad12a].

Using this homemade laser, which provides a direct and elegant solution to output the desired
DFDP beam, we tested the DSOB approach in a fibred configuration which is represented in Fig. 3.2-
[I]. For that purpose, the dual-frequency probe beam was injected and guided into a 2 m-long single-
mode optical fiber (SMF28) before illuminating a target. The backscattered light was back propagated
into the same fiber, and analyzed through a polarization-insensitive circulator (PIC) and directed on
a high-band pass (16 GHz) photodiode (PD). A high-gain voltage amplifier and an electrical spec-
trum analyzer (ESA) were finally used to analyze the detected signal. We estimated the available
dynamics of such polarimetric measurement by comparing the residual beatnote power when light
was reflected on a perfect Faraday mirror23 to the maximum beat note power obtained when the two
eigen polarization states are maximally projected on a perfect infrared polarizer oriented at a 45◦ an-
gle with respect to the illumination polarization directions. A contrast of about 30 dB was measured
from the corresponding electrical spectra analyzed around frequency ∆ν on the ESA, as illustrated in
Fig. 3.2-[II]. Additional measurements showed that orthogonality was fairly well maintained during
propagation in a single-mode fiber over tens of kilometers, which was encouraging for endoscopic
operation [Fad12a].

During this first experimental work, we also tried the DSOB technique on several samples that
were assumed to be purely depolarizing in order to validate its capacity to measure depolarization.
These results can be found in [Fad12a] (AA I-4), where the orthogonality breaking contrast measured
through a single-mode fiber as described above seemed to be in agreement with control values of
the DOP of the light backscattered by the samples under polarized illumination. These results thus
seemed to validate the capacity of the DSOB approach to gauge depolarization in a direct way.

However, a thorough theoretical modeling and understanding of the physical origins of the or-
thogonality breaking signatures was still necessary at this time. Within the course of an ANR/DGA
collaborative project “Radio-Libre” which I managed and conducted in collaboration with M. Roche
from Institut Fresnel (PHYTI team), such a theoretical investigation was rigorously performed using
the instantaneous Stokes/Mueller formalism presented in Chapter 2. This theoretical work allowed
us to confirm that orthogonality breaking is produced by the sample diattenuation, and that it is im-
mune to birefringence [OQ15a] (see AA I-5, p. 129). As for depolarization however, the predictions
were in contradiction with the conclusions of our first experimental work described above. Indeed,
according to the theory, the DSOB technique should be totally insensitive to pure diagonal depolar-
ization24.

Yet, more fundamental studies on light depolarization were conducted in the laboratory in paral-
lel with the study of the DSOB technique, which allowed us to finally lift the apparent contradiction
between experiments and theory, and to better interpret our initial measurements in [Fad12a]. In-
deed, according to the discussions presented in Section 2.3 of Chapter 2, a difference in experimental
conditions can have strong consequences on the notion and on the measured values of depolariza-
tion. On the one hand, the reference Stokes polarimetry measurements were carried out in free-space
in [Fad12a], with a relatively high spot size on the sample and high numerical aperture for the light
collection. Such an experimental configuration effectively implied a spatial averaging operation over
the sample surface and over several spatial coherence areas (speckle grains). On the other hand,
the OB signals detected on the same samples were collected through a standard single-mode SMF28
optical fiber whose FC-APC connector end was placed in vicinity of the samples. Under such con-

23This residual beatnote was caused by imperfect orthogonality between the polarization states emitted, due to fiber
coupling, circulator component, etc.

24i.e., unable to produce any beatnote signal on samples exhibiting a diagonal Mueller matrix.
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ditions, the spatial or angular averaging was very moderate. This presumably corresponded to an
intermediate position in the transition from a non-depolarizing sample to a depolarizing one, which
was conveniently modeled using the stochastic model of depolarizing Mueller matrix from random
optical anisotropies presented in the previous chapter and in [OQ15a]. Therefore, in light of the
modelization proposed in [OQ15a], we finally concluded that the orthogonality breking signatures
measured in [Fad12a] were most likely due to a moderate spatial averaging of the local diattenuation
properties of the samples rather than due to pure depolarization.

3.1.2 Dichroism imaging for microscopy and active infrared imaging

The theoretical investigation of the physical origins of orthogonality has also permitted us to identify
optimal polarization states to fully characterize the anisotropy parameters (magnitude and orien-
tation angle) of a linear dichroic sample in a single measurement. This feature encouraged us to
transpose the initial pointwise measurement to imaging, by implementing the DSOB technique on a
confocal microscope for biological microscopy first, and then by developing an near infrared (NIR)
active imaging demonstrator for defence applications in the context of the ANR/DGA project. Let us
indeed consider a DFDP beam emitting orthogonal right eR and left eL circular polarization states.
In that case, using Jones calculus, it is straightforward to show that when such beam interacts with
a sample showing linear dichroism of magnitude d, with anisotropy axis orientation φ, the output
intensity Iout(t) measured by a fast photodetector is the sum of a DC term and a radiofrequency (RF)
term oscillating at the beatnote frequency ∆ν between the two modes. These intensity components
respectively read

I0
out = ρ I0, (3.2)

I∆ν
out(t) = ρ d I0 cos(2π∆νt+ 2φ+ pπ), (3.3)

with p=0 for transmission measurements, and p=1 in reflexion/backscattering configuration. The
above epxressions show that the measurement of the DC and the RF beatnote components of the
output intensity directly gives access indeed to all the sample parameters25. A so-called orthogo-
nality breaking contrast (OBC) parameter was defined to directly provide a measure of the sample
diattenuation through

OBC =
|I∆ν
out(t)|

I0
out(t)

= d, (3.4)

and the anisotropy orientation φ is directly given by the beatnote signal phase, up to a π factor, since
Arg

[
I∆ν
out(t)

]
= 2φ + pπ. It is a remarkable property that the different parameters of interest that

characterize the sample anisotropy are obtained in an uncoupled and straightforward way, which
considerably simplifies the determination and analysis of the acquired data.

The imaging setup that was developped to validate this approach is shown in Figs. 3.3-[I] and
3.3-[II]. To ensure stable operation in the visible range, we had to replace the former homemade dual-
frequency laser that was operating in the NIR range. For that purpose, since no dual frequency laser
was available in the laboratory at the required wavelength, we developped an optical setup allowing
to produce intense stable DFDP laser illumination. This setup depicted in Fig. 3.3-[I] comprises a
40 mW commercial monomode source emitting at 488 nm, which is injected into a polarization split-
ting/combining Mach-Zehnder architecture, where one of the two arms comprises an acousto-optical
modulator (AOM) which shifts the beam frequency by a fixed frequency shift of ∆ν = 80 MHz. The
two orthogonal linearly-polarized modes obtained at the output after recombination are spatially fil-
tered using a pinhole – or a section of single-mode polarization maintaining (PM) fiber. A quarter
wave plate (QWP) oriented at 45 degrees with respect to the linear polarization directions turns them
into two orthogonal right and left circular SOP’s. A portion of the output signal is detected through
a polarizer on a fast silicon photodiode at the exit of the Mach-Zehnder architecture to produce a

25Obviously, the isotropic absorption ρ can be directly obtained from the DC intensity, as in conventional non-
polarimetric techniques.
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[I] [II]

[III]

Figure 3.3: [I] Dual-frequency dual-polarization (DFDP) source based on a Mach-Zehnder architec-
ture used for orthogonality breaking imaging at λ = 488 nm. [II] Sketch of the laser scanning imaging
setup in reflection configuration. [III] Synthetic dichroic sample (made of polaroid sheets on a mirror)
used for validation (intensity image). DSOB measurements results: linear diattenuation magnitude
(b) and orientation (c) of the measured sample. Each image is 10 × 7.5 mm.

reference signal used for demodulation. The produced DFDP beam is then sent into the confocal
microscope and imaging is performed by laser beam scanning using galvanometric mirrors, which
enable to acquire a 256× 256 pixels image of a 2.5 mm side sample in about 4 s (see Fig. 3.3-[II]). The
DFDP beam is focused on the sample with an objective lens and the reflected light is collected by a
beamsplitter on a high-speed PIN photodiode, whose output is connected to a lock-in amplifier to
retrieve amplitude and phase of the beatnote signal. Further details about the imaging system can be
found in [OQ15a, Sch14].

The very first images were obtained on a controlled dichroic sample made of several polaroid
rectangular cuts radially placed around a central one [OQ15a]. Each polaroid piece was cut along its
dichroic axis and glued on a microscope slide placed on the surface of a mirror. The measured diat-
tenuation magnitude, obtained from the measurement of the DC component and 80 MHz beatnote
as described above, is shown in Fig. 3.3-[III].b. The most relevant characteristic is that the contrast
is homogeneous all over the image, diattenuation being actually close to 1 for each polaroid frag-
ment whatever its orientation, and almost 0 elsewhere, as expected.26 The linear dichroism angle is
presented in Fig. 3.3-[III](c). It can be observed that the measured parameter enables to succesfully
discriminate the orientation of each dichroic segment. The value in each of them is almost constant,
the uniformity of the results being indeed greater than that observed in the diattenuation magnitude
image. This behaviour is a consequence of the fact that phase is usually less prone to be affected by
noise and other fluctuations than amplitude27. This setup is currently being deployed on a cell bi-
ology platform (mRic-BIOSIT) of the University of Rennes 1 in order to evaluate the interest of such

26This is a strong asset of the proposed method when compared to standard simplified polarimetric approaches such as
OSC imaging, which contrast values depends on the orientation of the dichroism in that case.

27Another interesting feature of this approach is that the calculated parameters are not affected by variations in the
sample illumination, being either a ratio, or a phase value. In this example, the background of the DC intensity image
(not included here) indeed showed strong inhomogeneity in the sample illumination and a mosaicing pattern which is not
visible in the polarimetric images [OQ15a].
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unconventional polarimetric approach for biological samples. One of the potential interest of this
technique could be to provide marker-free structural or functional imaging of cell constituents, such
as actin network.

In the context of active imaging for defense applications and within the course of the “Radio-
Libre” project, we have also recently developed an infrared active polarimetric imaging demonstra-
tor based on the orthogonality breaking technique to investigate its potential for long range target
detection and decamouflage [Par17]. We showed that a DFDP source using acousto-optic frequency
shift could be easily built up using commercially available fibred components from the telecommuni-
cation domain around 1.5 µm (a spectral range of great interest of defence application, since it allows
furtivity and eye-safe operation). The source developped is very similar to the one depicted in Fig. 2.4
in Chapter 2, and we refer the reader to it or to [Par17] for further details about the source optimiza-
tion. We designed an original laser scanning imaging system prototype depicted in Figs. 3.4-[I] and
3.4-[II]. The signal is detected on an avalanche photodiode in a confocal configuration, and then de-
modulated using a dedicated synchronous quadrature demodulation electronics allowing images of
the amplitude and phase of the beatnote to be built-up within limited acquisition time (< 1 s). An
example of experimental result at 1.5 µm is given in Fig. 3.4-[III], which confirms the ability of this
“circular” DSOB approach to fully characterize the diattenuation properties of a scene/sample in a
single acquisition.

[I] [II] [III]

Figure 3.4: [I] Photograph and [II] schematic of the active infrared imaging demonstrator based on
the DSOB technique. [III] Visible (a) and NIR (b) intensity pictures of the sample made of three IR
polarizers on dark patterns printed on a white sheet. NIR OSC image is acquired for reference (c).
Acquisitions with the demonstrator of the DC image (c), OBC contrast (d) and phase (e) maps.

3.1.3 Towards polarimetric endoscopy ? – DSOB sensing through few-mode fibers

Due to its insensitivity to birefringence (a property which is not commonplace among existing po-
larimetric imaging techniques), and its simple operation through single-mode fibers [Fad12a], the
DSOB approach was expected since its invention in 2011 to be a good candidate for enabling polari-
metric endoscopic imaging. However, among commercially available endoscopes used for medical
diagnosis, an important subset of them guide the light through slightly multimode fiber bundles or
multicore fibers.28 Hence, it was necessary to investigate the feasibility of polarimetric orthogonal-
ity breaking sensing through few-mode optical fibers, a question which was not obviously solvable
beforehand.

28In these cases, the image can be formed either by laser beam scanning of the multiple fibers/cores at the endoscope
proximal end, or using a scanning optomechanical stage at the distal end of the bundle.
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[I] [II]

[III]

Figure 3.5: [I] Illustration of local polarimetric orthogonality breaking and global orthogonality
preservation in a two-mode configuration with fundamental mode LP01 (not repre- sented) and
mode LP11. [II] Evolution of the beatnote amplitude versus the fraction of cropped intensity after
optimization of the injection in the fiber (squares) and for the non optimized injection (triangles). [III]
Experimental scheme used to study the propagation of a DFDP beam in an optical fiber multimode
at 488 nm.

Indeed, injecting a DFDP beam into a multimode fiber results in the distribution of the incident
orthogonal pair of polarizations onto n guided modes. The birefringence modal dispersion of the
fiber changes the SOP of each mode independently. As a result, the superimposition of the n modes
at the exit of the multimode fiber generates locally a beatnote in the detector plane (transverse plane),
hence indicating local breaking of the polarimetric orthogonality which a priori should forbid any
DSOB measurement. Nevertheless, we demonstrated that the orthogonality can be recovered, and
the intensity delivered by a detector can be kept constant provided the entire beam is integrated on
the detector active area [Par16]. Indeed, due to the spatial modal orthogonality of the guided modes
in the fiber, adding intensity contributions in a coherent manner over the entire beam leads to the
perfect compensation of the locally produced beatnotes.29 This property is illustrated in Fig. 3.5-[I]
where we considered a simple example of a two-mode beam in the detector plane. At each location
of the transvers plane, the intensity is modulated by the overlap of the two modes, yielding local
breaking of the polarimetric orthogonality. However, in that simple two-mode case, the symmetrical
distribution of the non-fundamental mode leads to modulations in antiphase with respect to the
Y axis as illustrated on the figure, and total integration over the beam does cancel out these local
beatnote contributions.

We experimentally checked this result using the experimental setup depicted in Fig. 3.5-[II]. For
that purpose, a DFDP beam (at λ=488 nm) was injected into the fiber under test. The output of the

29Note that if the beam is partially integrated over the detector surface, the orthogonality can still be kept provided a
symmetric detection geometry of the beam is ensured.
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fiber was imaged simultaneously on a fast photodiode and a camera. A mask was placed in a first
conjugated plane to simulate an imperfect detection of the beam. As a convenient way to obtain
an interference/speckle-free image of the multimode beam repartition at the fiber output, we used
a fluorescent slab so as to break the coherency of the beam, which fluorescent image was finally
imaged on the camera through appropriate dichroic filters. Two-mode and four-mode fibers were
tested and the experiments confirmed that a significant beatnote was detected when the beam was
partially cropped, as illustrated in Fig. 3.5-[II]. Nevertheless, the complete symmetric integration
of the beam on the detector yielded a low residual beatnote, as expected. As a consequence, the
detection geometry is crucial to avoid bias in the beatnote measurements when propagating a DFDP
beam in few-mode fibers. We also studied the limits of the DSOB technique when a few-mode fiber is
used to probe a sample in reflection. The experimental results obtained showed that measurements
through few-mode fibers were limited to a smaller angular excursion when compared to single-mode
operation. In addition, we also identified a decrease of the measurement dynamics with the number
of guided modes [Par16]. Despite these operational constraints when used through few-mode fibers,
the DSOB technique still appears as a potential solution to polarimetric endoscopy, for instance to
enhance contrast between diseased and healthy tissues or organs that are not accessible in free-space
with conventional polarimetric imaging systems. A perspective for future work will of course consist
of adapting the DSOB sensing to a multimode endoscopic imaging system using galvanometric scan
system, and investigate the interest of DSOB for endoscopic biomedical imaging.

3.2 Two pixel polarimetric contrast imaging by compressive sensing

In this section, we briefly present an original compressive imaging architecture offering a way to per-
form OSC imaging with only two single-pixel detectors, and based on an algorithmic image recon-
struction step following the recently introduced principle of compressive sensing, which is recalled
below.

3.2.1 Context

Compressive sensing (CS) is a very recent field of research in signal/image processing which has
gained enormous popularity during the last decade due to its appealing theoretical results, but most
of all due to innumerable potential applications. The CS theory basically states that a signal x writ-
ten as a row vector of dimension N can be in principle recovered mathematically or algorithmically
through a reconstruction procedure from a limited number of M � N measurements30 with reason-
able quality, provided the two following conditions are fulfilled [Can06, Don06]:

• Sparsity condition: the signal x must be sparse in a given representation, i.e., there should exist
a signal basis transformation Ψ (Fourier transform, wavelets,. . . ) such that x = sΨ, with the
vector of expansion coefficients s having exactly K non-null terms (K-sparsity) or K domi-
nant terms (approximate K-sparsity). This condition is most of the time largely fulfilled in the
context of image processing, as evidenced by the huge compressibility obtained with wavelet-
based compression techniques (e.g., JPEG2000 standard);

• “Incoherent” measurements: information about x must be acquired in an “incoherent” manner
with respect to the sparse basis representation. Classically, usual (pixel-wise) measurements
on x are thus replaced by linear projections of x through a sensing operator Φ verifying31

maxi,j |〈Φi,Ψj〉| ≤ 1. It was notably shown that using pseudo-random projections could lead
in general to fairly incoherent measurements, particularly in the context of image processing.

30hence, the term compressive.
31An example in image processing of optimally incoherent signal representation/sensing bases is the pixel basis (Dirac)

(well adapted to represent an image with punctual objects) and the Fourier basis that will represent the best sensing basis
in the CS framework.
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With these two ingredients, it remains to reconstruct the initial signal x from the limited number of
measurements, which is now classically performed using non linear iterative procedures that enforce
the sparsity, in a given basis Ψ, of the reconstructed signal x̂, by minimizing the `1 norm32 of the
expansion coefficients vector s. During the last decade also, intense work was indeed carried out on
a class of iterative algorithms dedicated to solving non differentiable convex optimization problems
(so-called proximal algorithms). It has enabled fast (accelerated) optimized iterative algorithms to be
developed, such as the celebrated FISTA algorithm [Bec09], which was used in this work.

Few months after the initial results and predictions of the CS theory were issued [Can06, Don06],
CS-derived original imaging concepts had already been proposed such as the single-pixel camera
(SPC), which has attracted much attention these past years [Bar08, Cha08]. With this latter approach,
the imaging process relies on the spatial sampling of the image of interest with a Digital Micromir-
ror Device (DMD), and on numerical reconstruction of the image from intensity measurements on
a single photodetector for different sampling patterns on the DMD, allowing a compressed version
of the image to be recovered from the photocurrent signal acquired. More recently, the concept of
SPC has been applied to a number of domains including, among others, multi/hyperspectral imag-
ing [Wag08, Ram10, Stu12, Aug13], THz imaging [Cha08], or random media-assisted CS [Liu14].
However, despite the swarming interest in CS, only few attempts were reported so far to perform
polarimetric CS imaging [Ram10, Dur12, Sol13, Wel15, Fu15]. The imaging setups proposed in these
references are all directly based on the SPC concept, where polarimetric sensitivity was simplistically
gained by detecting the optical signals through appropriate polarization analyzing devices during
sequential acquisitions. Moreover, they solved as many CS reconstruction problems as polarimetric
channels were considered (2 or 4) thereby inducing a two-fold (respectively four-fold) increase in the
measurement/reconstruction time, while at the same time suffering from the loss in intensity due to
the use of a polarization analyzer.

3.2.2 2-pixel CS polarimetric sensing

In collaboration with J. Bobin (CEA Saclay, Palaiseau, France), we recently proposed to revisit the
problem of 2-channel polarimetric CS by proposing an original polarimetric imaging architecture us-
ing two single-pixel detectors [Fad17] (see AA I-7, p. 146). The proposed setup is still inspired from
the initial concept of SPC, but does not require any polarization analyzing element as it relies on im-
perfections of the DMD itself, more precisely, on the variation of the Fresnel’s reflection coefficients
with incidence angle, and polarization direction of light. Contrarily to previous attempts in polari-
metric CS, the polarimetric information is obtained through a single temporal data acquisition on the
two photodetectors, and the polarimetric channels are recovered simultaneously from a single recon-
struction step. It also offers in principle the best detectivity tradeoff, as all the light directed towards
the DMD is involved in the imaging process without passing through any polarization analysis com-
ponent. As we will show below through simulations, this approach is in principle able to provide a
compressive sensing of the total intensity image, denoted xT in the remainder of this section, and of
the OSC map, that will be rewritten with a specific notation throughout this section as

OSC =
xS − xP
xS + xP

, (3.5)

where we have replaced subscript ‖ (resp. ⊥) by S (resp. P ) with respect to the initial definition in
Eq. (1.6).

The proposed setup is described in Fig. 3.6-[I]. An object enlightened by a fully (horizontally) po-
larized light is imaged onto the surface of a DMD, which spatially samples it by applying a controlled

32Minimizing the `1 norm ‖s‖1 =
∑N
i=1 |si| of s is in fact an approximation that allows the optimization problem to

be convex (and thus algorithmically tractable). The `1 norm is in that case used as an approximation of the `0 norm of s
(i.e., the number of non-null coefficients in s) that would of course naturally enforce sparsity, but that leads to non-convex
minimization problems.
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[I] [II]

Figure 3.6: [I] CS polarimetric imaging setup proposed. It is inspired from the concept of SPC where
the image is first spatially sampled by a DMD which reflects light in two directions, and where the
total photon flux is detected on a single photodetector in each direction. [II] Evolution of (a) the
reflection coefficients in intensity, and (b) of the condition number of mixing matrix A for two tilt
directions and two polarimetric components S and P , as a function of incidence angle θ on the DMD
surface at wavelength 780 nm.

binary pattern on the micromirrors. The light reflected in direction 1 is integrated and detected on a
first photodetector (P1), whereas photodetector P2 detects the light reflected in the second direction
of the tilted mirrors (instead of being discarded as in the original SPC scheme), thereby producing
two temporal signals y1 and y2. After a few simplifications (see [Fad17]), one can show that these
signals can be written as

Y =

[
y1

y2

]
= AXΦ + b = Y◦Φ + b, (3.6)

where the M × N sampling matrix Φ contains the M binary patterns applied on the DMD. The
matrix X contains the two polarimetric components of the image to recover, with XT = [xTS xTT ]T ,
and where xS (resp. xP ) represents the polarization component parallel (resp. perpendicular) to the
incident illumination. In the above equation, b accounts for a noise contribution that we assume
additive Gaussian, while the mixing matrix A depends on the Fresnel’s reflection coefficients (in
intensity) of the two polarimetric components, for the two incidence angles considered:

A =
1

2

[
rS1 rP1
−rS2 −rP2

]
. (3.7)

This parameterization indeed shows that the polarimetric sensitivity only relies in this setup on the
diversity of the reflection coefficients33 which slightly depend on the incidence angle and polarization
direction, as illustrated in Fig. 3.6-[II] [Fad17].

Assuming that the polarimetric components are sparse in the same basis {Ψi}, i.e., xS,P = sS,P Ψ,
it is easily seen that Eq. (3.6) can be treated as a CS reconstruction problem consisting of recovering a
mixture Y◦ = AX of the polarimetric components of the image. As a result, it should be in principle
possible to recover the data X containing 2N pixels (N pixels per component) from a limited number
2M (M � N ) of measures. Contrarily to most CS inverse problems that have been considered so far,
we are facing an additional difficulty in this particular situation, as the signals to recover are strongly
mixed in the measurement process via the mixing matrix A. Indeed, as illustrated in Fig. 3.6-[II], the
reflection coefficients of metals are usually quite similar for polarization directions S and P , causing

33hence, justifying the notation S and P for the polarimetric components in this study.
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a strong crosstalk between the two components of interest. As a consequence, the signals detected
at photodetectors P1 and P2 are almost perfectly anticorrelated, the polarimetric information lying in
the tiny discrepancies between these two signals. This is illustrated in Fig. 3.7.a (lower inset), where
simulated intensity signals are plotted.

3.2.3 Reconstruction algorithms and numerical results

We proposed and implemented several approaches to tackle this unmixing/CS reconstruction prob-
lem, either by considering the two problems independently, or by solving them simultaneously in the
recovery process [Fad17]. A first simple two-step approach consisted of first solving the CS problem
to recover the mixture Y◦, using an accelerated forward-backward algorithm (namely a reweighted
FISTA algorithm). Under this form, the CS reconstruction problem can be written very classically as

Ŷ◦ = ArgminY◦

∥∥Λ�
(
Y◦ΨT

)∥∥
`1

+
1

2
‖Y −Y◦Φ‖2F . (3.8)

Basically, such iterative algorithm will aim at optimizing fidelity between the measured signal Y and
the reconstructed signal Y◦Φ (by minimizing the square Frobenius norm of their difference, with
‖X‖2F = Trace(XXT )), while enforcing the sparsity of the reconstructed mixture by minimizing the
`1 norm above of its wavelet expansion coefficients vector Y◦ΨT . In the above equation, the 2 × N
matrix Λ stands for a weight matrix used in the implementation of the reweighted FISTA algorithm,
the symbol � standing for the Hadamard matrix product (see [Fad17] for more details).

Then, in the second step, the signal X is recovered by matrix inversion, i.e., X̂ = A−1Ŷ◦ since
A is invertible. Despite its simplicity, this two-stage approach suffers from a major drawback: the
mixed components Y◦ will not be perfectly estimated, especially when only few measurements in
Y are available and when noise contaminates the data. These estimation errors will be amplified in
the unmixing stage. Since the mixing matrix A is likely to be ill-conditioned34 due to the similar-
ity of the reflection coefficients, these errors will largely impact the reconstruction accuracy of the
reconstruction process.

A more effective strategy consisted in jointly tackling both the compressed sensing recovery and
the unmixing problems. Extending standard reconstruction procedures yielded the following opti-
mization problem

X̂ = ArgminX

∥∥Λ�
(
XΨT

)∥∥
`1

+
1

2
‖Y −AXΦ‖2F , (3.9)

that can also be solved using a reweighted FISTA procedure.
Further improvement in the components recovery was obtained by imposing additional con-

straints on X (see [Fad17] AA I-7) , that reflect the specific physical constraints that hold in active
polarimetric imaging: each component xS and xP must have non-negative values, and under the as-
sumption of purely depolarizing samples illuminated by fully polarized light, the components must
verify the following inequality: xS ≥ xP . As a result of these new constraints, the optimization
problem to tackle is now described as follows

X̂ = ArgminX

∥∥Λ�
(
XΨT

)∥∥
`1

+ iX�0(X)

+iDX�0(X) +
1

2
‖Y −AXΦ‖2F ,

(3.10)

where iX�0(X) stands for the characteristic function of the positive orthant {X; ∀i, j, [X]ij ≥ 0} and
iDX�0(X) for the characteristic function of the convex set {X; ∀i, j, [DX]ij ≥ 0}where D = [1,−1].

34The condition number of a matrix A reads κ(A) = ‖A−1‖2 · ‖A‖2, and is basically the ratio of the highest to the lowest
eigen value of A. The condition number κ(A) is plotted at the bottom of Fig. 3.6-[II] as a function of the incidence angle
θ of the light on the DMD. The influence of θ and of the wavelength on κ(A) and on the reconstruction quality have been
throughly addressed in [Fad17] (AA I-7).
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[I] [II]

Figure 3.7: [I] Main figure: plot of intensity y2 as a function of y1 revealing strong anticorrelation
between the two detected signals. Inset (a): Synthetic 1D polarimetric test signal used to assess
recontruction algorithms performance, and example of reconstructed signal. Inset (b): example of
measured intensities on photodetectors P1 and P2 for M = 306 different binary patterns (Hadamard)
applied on the DMD. [II] Evolution of the PSNR of the signal X̂ reconstructed with the 4 compared
algorithms as a function of detected signal SNR for a compression rate of 40 %.

In contrast to the standard problem in Eq. (3.9), the problem in Eq. (3.10) is composed of a sum
of convex penalizations that cannot be tackled with the FISTA algorithm. Multiple convex penaliza-
tions can be handled using a specific implementation of the Generalized Forward Backward (GFB)
algorithm [Rag13] that was developed on purpose for the considered problem, and which is detailed
in [Fad17]. The main drawback of the GFB algorithm lies in its lack of acceleration, thus leading to
weak convergence rates and hence slower implementation35. Optimization of the parameters of the
three algorithms mentioned is a quite subtle task, but we refer the interested reader to [Fad17] for the
sake of conciseness.

To compare the performance of these algorithms with reasonable computation times, we first con-
sidered a synthetic 1D polarimetric data described in Fig. 3.7. In Fig. 3.7.b, we plot the evolution of
the PSNR36 of X̂, for a moderate compression rate of 40 %, as a function of the SNR of the simulated
data Y. It can first be seen that all the algorithms asymptotically exhibit a linear evolution of their
PSNR as a function of the SNR. Then, it is interesting to note that for intermediate values of SNR
(10 dB<SNR<50 dB), the 2-step approach underperforms with respect to the simplest implementa-
tion of the combined reconstruction approach (denoted by combined-FISTA). However, as soon as a
reweighted procedure is implemented, solving the CS and the unmixing problems simultaneously
(algorithm denoted as combined-rFISTA) provides an asymptotical gain of about 12 dB in PSNR with
respect to the 2-step algorithm. Lastly, imposing physical positivity constraints on x̂S , x̂P and x̂S−x̂P
through the implementation of the GFB algorithm (denoted as combined-GFB) does not bring any
additional gain in performance for highest values of SNR. However, in noisy situations, for SNR< 50
dB, the positivity constraints prove efficient to improve the reconstruction quality. A maximum gain
of almost 10 dB is obtained for SNR = 0 dB. These simulation results are further detailed in [Fad17],

35In practice, the proposed GFB-based algorithm was initialized with the result of the reweighted FISTA algorithm in
order to accelerate convergence and minimize computation time.

36The Peak Signal to Noise Ratio (PSNR) is a standard measure used in image processing to assess the quality of a
reconstructed or compressed image with respect to the original image. It is defined as PSNRdB = 10 log10

[max(X)]2

MSE(X̂,X)
, with

mean square error MSE(X̂,X) = 1
N

∑N
i=1

(
X̂i −Xi

)2.
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Figure 3.8: Example of numerical polarimetric imaging experiment. First row: total intensity image
xT , reconstruction x̂T and error map. Second row: true OSC image, reconstructed OSC image and
error map.

but suffice to demonstrate the validity and interest of the joint reconstruction approaches proposed.
Lastly, we present below an example of reconstructed polarimetric image on a more realistic imag-

ing scenario to validate the potential of the technique for polarimetric imaging. For that purpose, we
considered a true intensity image xT (the cameraman image, famous in the image processing commu-
nity) with size N = 512×512, as plotted in Fig. 3.8. Appropriate polarimetric components xS and xP
were generated so that a true OSC map would reveal four hidden objects (three in the grass, one in
the buildings) over a depolarizing background, as can be seen in Fig. 3.8. The reconstruction results
with the combined reweighted-FISTA approach are also displayed in Fig. 3.8, along with reconstruc-
tion error maps. The total intensity image is almost perfectly reconstructed, as would be the case
with a SPC imaging system. The four hidden objects remain of course invisible in the reconstructed
image x̂T . Contrarily, the reconstructed OSC map makes it possible to identify the presence of the
four hidden objects by revealing their polarimetric contrast over the background. The analysis of
the reconstruction error map of OSC shows that the polarimetric information about the four hidden
objects is fairly retrieved, despite significant reconstruction errors in the darkest regions of the image
(cameraman body and tripod).

These numerical simulations have permitted to validate the possibility of obtaining fairly com-
pressed polarimetric contrast images with good reconstruction quality using optimized reconstruc-
tion algorithms. This is done in principle with an extremely simple sensing setup, which does not
require any polarization analysis component, hence offering optimal tradeoff in terms of photon bud-
get and spectral operating range. A perspective to this work is to implement such an imaging setup
in a laboratory experiment, and further investigate the application of CS theory to the polarimetric
imaging domain.

3.3 Computational snapshot DOP imaging from a single speckle image

Lastly, let us briefly present in this chapter an alternative computational technique that allows DOP
imaging to be performed with an experimental setup showing the most extreme simplification, as
it only requires an illumination laser source and a standard grayscale camera. This technique was
theoretically thoroughly characterized during my PhD thesis work in terms of ultimate estimation
performance [Réf07b, Fad08c], practical estimators [Fad08c], robustness to Poisson noise in low flux
situations [Fad08a], etc., and since validated experimentally in the Optics and Photonics Department
[Fad12b]. A summary of this work is given below.
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[I] [II]

Figure 3.9: [I] Schematic standard measurement setup for measuring the DOP of the light in active
coherent imagery. The incoming polarized laser light is backscattered by the scene. The backscattered
light is acquired on a CCD camera through a polarization analyzing component (Stokes imaging). An
additional image without any polarization analyzing component provides a speckle image which
is were partitioned (green grid) to obtain homogeneous zones of 20x20 pixels on which the DOP
is estimated. [II] Example of imaging contrasts obtained with OSC (upper row) and single-image
computational DOP estimation (lower row) on a slightly depolarizing sample (left), and a strongly
depolarizing sample (right).

3.3.1 DOP inference from speckle statistics

As recalled in Chapter 2, a rough surface illuminated by a coherent light will produce a highly con-
trasted speckle pattern when imaged on a detector, which results from interferences of the backscat-
tered light at each location of the sample. Though often treated in classical coherent imaging as a
source of noise that must be get rid of, we will show that one can take advantage of these pertur-
bations, in particular since they contain information on the degree of polarization of the reflected
light [Goo85, Bro98, Réf07b, Fad12b]. This technique can be interesting for polarization imaging
applications that require the greatest simplicity and the shortest acquisition time. Indeed, after en-
lightenment of the scene by laser light, the proposed method only requires a single image acquisition
and a very short processing time to provide a DOP map of the scene, to the expense of a loss in spatial
resolution.

The proposed estimation technique assumes a standard model of speckle statistics for a partially
polarized light, whose second order statistical parameters are completely described by the polariza-
tion matrix Γ introduced in Chapter 1. This matrix allows one to define the degree of polarization
(DOP), referred to as P , by Eq. (1.4). The intensity of an image degraded by speckle noise can be
considered as a random variable I of mean value µI . Moreover, it is well-known from statistical
optics developments [Goo85] that when light is partially polarized with DOP P , the intensity can
be decomposed as an incoherent sum of a fully polarized component with mean intensity µIP and
a totally unpolarized component with mean intensity µI(1 − P). Such decomposition can also be
conveniently rewritten into a sum of two incoherent polarized components denoted here IX and
IY , which correspond to two fictitious orthogonal polarization states of the electric field, whose re-
spective mean values µX = (1 + P)/2 and µY = (1 − P)/2 correspond to the eigenvalues of the
polarization matrix Γ. If the speckle is fully developed37, each of these two components follows an
independent exponential probability density function (pdf) [Goo85]. From this decomposition, it is
then straightforward to show that the pdf of the speckle pattern intensity follows a specific law, being

37Speckle can be termed as fully developed when random phases undergone by light – upon scattering on a rough
surface or transmission through a disordered medium – are uniformly distributed across [0; 2π[, and when speckle grains
are not averaged on the detector (i.e., a pixel covers at most one spatial coherence area of the field).
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Figure 3.10: [I] Comparison of the DOP estimated from a single speckle image (blue diamond sym-
bols) and from standard DOP estimation techniques (Stokes (red squares) and OSCI (green trian-
gles)) on (a) a reference test sample (8 realizations) and (b) 8 distinct test samples. [II] Square DOP
estimated from two images (OSC) and from one speckle image on a birefringent sample, showing the
robustness of the speckle estimation method.

the convolution of two exponential pdfs of different means, which basically reads as a difference of
exponentials [Goo85, Réf07b] and whose shape strongly depends on P . From the shape of this inten-
sity distribution, it is quite clear that P can in principle be retrieved easily. A part of my PhD thesis
work has been dedicated to studying the optimal estimation precision for the estimation of P from a
single speckle image. The remainder of this section will briefly mention some of these contributions,
but also detail the experimental validation that has been conducted at IPR since 2010.

For the sake of generality, we have proposed to extend the above statistical description by adopt-
ing a more general model of speckle [Fad08c]. For that purpose, we assumed that IX and IY are
still independent random variables with the same multiplicative probability law of general form
PZ(z) = 1/µZf(z/µZ), with Z = X ,Y . The pdf of the total intensity I is still obtained from the
convolution of the two marginal pdfs with different means. This more general model accounts for
speckles of higher order38 L (i.e., with a gamma law of order L) or even less standard models of
speckle, when f belongs to a different family of pdfs such as Weibull laws for instance39 [Fad12b].
With such model, it is quite straightforward to show that the variance of the intensity distribution
reads var(I) = (1 +P2)κ2µ

2
I/2, where κi represents the statistical cumulant of order i of the pdf f (κ2

being the reduced variance of f , equal to 1 when f is an exponential law). This relation demonstrates
that the DOP can be estimated as soon as the mean value and the variance of the intensity have been
measured and provided the cumulant κ2 of f is known. This latter quantity can be either deduced
from theoretical considerations or measured from a calibration step as shown below.

This estimation approach requires an analysis of the speckle pattern intensity statistics, typically
on N pixels of a homogeneous region χ in the image40. One of the outcomes of the theoretical study
of this technique during my PhD is that homogeneous regions of about N = 20× 20 pixels is a good
tradeoff between precision (10% precision on P) and resolution of the final DOP image, when κ2 ' 1.

3.3.2 Experimental validation

Among the experimental work that I have conducted at IPR, I have undertaken the experimental
validation of this imaging technique on various samples in a reflection configuration, in collaboration
with M. Roche (Institut Fresnel, Marseille, France). This experimental study allowed us to analyze
its precision in regard to the theory, and to test its robustness with illumination wavelength or with

38which situation occurs when L speckle grains are averaged in one pixel of the detector.
39Such laws (Weibull, lognormal, K-laws) are commonly used to model non uniform reflectivity of materials, and widely

used for instance to model ground clutter in radar signal processing.
40A simple sliding window moved along the image dimensions can be used, as shown here, but segmentation algorithms

can be used in a preprocessing step to get statistically homogeneous regions χj of maximum size in the image [Fad08b].
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non purely depolarizing samples [Fad12b] (see AA I-8, p. 158). A sketch of the experimental setup
is given in Fig. 3.9-[I]: a vertically-polarized, 15 mW, collimated 633 nm He:Ne laser beam was used
to illuminate the samples, located at a 3 m distance from the emission/reception setup. As for the
imaging part, the samples were imaged through a 50 mm objective on a 12-bit Basler CCD camera
(782 x 582 pixels) selected for its good noise properties under low illumination levels. As shown in
Fig. 3.9-[I].a, four Stokes images could be recorded with appropriate configurations of a polarization
analyzer (P2) and a quarter-wave plate. These 4 Stokes images were processed to estimate the DOP
at each pixel of the scene, and provide a reference DOP map, used as benchmark for the validation
of the single speckle image technique. In addition, OSC images could be derived from the first two
Stokes images acquired for comparison.

The snapshot polarizer-free computational estimation of the DOP from speckle contrast was per-
formed using another image acquisition, obtained by removing any polarization analyzing device in
front of the camera objective. In that case, the DOP image resulted from a statistical analysis of the
speckle intensity fluctuations at a local scale, using the simplest estimator that can be derived from
the above statistical description, i.e.,

P̂2 =
2

κ2

[〈
I2
〉
χ〈

I
〉2

χ

− 1

]
− 1, (3.11)

which basically boils down to estimating mean and variance of the pixels graylevels in a homo-
geneous region χ. Local estimation was performed over homogeneous zones of 20x20 pixels repre-
sented by the green grid in Fig. 3.9-[I].b, superimposed over an example of speckle image acquisition.
The parameter κ2 in Eq. (3.11) was directly linked to the geometry of the imaging setup as L = 1/κ2

is an indication of the mean number of speckle grains that were averaged per pixel, and which was
controlled by the objective aperture. Calibration of κ2 was easily operated by measuring the reduced
variance of a fully polarized light field (i.e., on the Stokes images acquired). For the experimental
conditions at hand (wavelength, objective aperture, geometry,. . . ), we obtained a final estimation of
κ2 = 0.808± 0.003 (see [Fad12b] (AA I-8) for further details).

Once calibrated, the snapshot computational DOP estimation technique can be operated on the
speckle image acquisitions recorded over 8 realizations of the reference sample and a variety of 8 dis-
tinct samples with varying depolarization properties. As can be checked in Fig. 3.10.[I], the estimator
given in Eq. (3.11) provides a correct value of the square DOP, in agreement with standard techniques
(Stokes or OSC imaging). As shown in [Fad12b], it can be checked that the precision of this estimator
is in good agreement with theoretical predictions of the variance, which had been shown to depend
only on P and on the first four cumulants of the marginal law f [Fad08c]. Other experiments were
conducted which demonstrate the robustness of the technique over several operating wavelengths
and various imaging geometries (and thus various speckle order). We also checked that, contrarily
to OSC imaging, the snapshot computational imaging technique addressed here is able to estimate
the DOP in the presence of birefringent samples, as evidenced in Fig. 3.10.[II].

The above results can also be presented in an alternative way, as shown in Fig. 3.9-[II] to pro-
vide an insight on the imaging capabilities of the described technique. In this figure, each of the
20x20 pixels homogeneous regions provides a local estimate of the degree of polarization of the two
objects imaged, which is color-encoded in Fig. 3.9-[II] as “macro-pixels”. In the first row, the es-
timation is performed using OSC whereas the lower row corresponds to an estimation performed
using the polarizer-free, single image technique presented here. The DOP values are rendered using
a colormap where null DOP appears in blue, while unitary DOP corresponds to dark red. From this
figure, it can be observed that the OSC enables clear discrimination of the two regions in the case of
the depolarizing sample (white paper, on the right), and a slight contrast remains between the two
objects in the left case (black cardboard), allowing two objects with DOP values separated by 10 %
to be discriminated. This is not the case with the computational technique presented in the lower
row when only 20x20 pixels regions are considered. However, one can notice that a clear discrimi-
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nation is possible when DOP values are frankly different, as in the case of the depolarizing sample
on the right. As a result, provided the loss in resolution is acceptable for a given application, using
the single-shot polarizer-free DOP imaging technique presented in this work can be an interesting
alternative for cheap, instantaneous and robust object inspection, only requiring a coherent illumina-
tion with a laser source. Recently, this extremely simple approach has been used for food inspection
applications [Rou17], in conjonction with other metrics derived from the same speckle acquisition,
such as the biospeckle activity [Nas14]. To facilitate its transfer to practical applications, it would be
very interesting to further investigate the potentialities of this approach for discrimination/detection
tasks, for it is important to provide some quantitative results, and to determine the best statistical
processing strategies adapted to the situation at hand. This will be explored in forthcoming works.

Conclusion

In this chapter, I have summarized the work conducted towards the development of original polari-
metric imaging modalities offering strong simplification of the systems, but also direct and immedi-
ate access to specific polarimetric figures of merit (DOP, OSC, diattenuation magnitude/angle). Of
course, these techniques only provide partial information about the polarimetric properties of the
samples, and therefore may be confined to specific applications that require fast acquisitions (DSOB,
DOP from single speckle image), large spectral range of use (DSOB, OSC compressive imaging, DOP
from single speckle image), or long range operation (DSOB), or acquisitions in spectral bandwidths
where polarization analysis elements or array detectors are unavailable (OSC compressive imaging).

From the reading of Chapters 2 and 3, it should appear to the reader that these developments
were conducted in conjunction with experimental and theoretical developments about the physical
origins and interpretation of light depolarization. Such an interplay between fundamental works
and applicative developments have permitted us to contribute to the clarification of a number of
issues that were still pending about depolarization and polarimetric imaging. We believe that this
unconventional point of view on polarimetric imaging, between fundamental polarization physics,
laser/microwave photonics and advanced signal processing will continue to open interesting scien-
tific questions and supply original experimental schemes to answer it.
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Part II

Optimal processing of optical signals with
information theoretic tools

45





Chapter 4

A (very) succinct introduction to
information theory

In the second part of this manuscript, I will describe the work that I have conducted since my PhD on
two other research domains about optimal processing of optical signals in non conventional imaging
approaches. First, the development of original experimental facilities and processing tools for long
range ballistic photons imaging in turbid atmosphere will be described in Chapter 4. Then, Chap-
ter 5 will briefly summarize the numerical implementation of an original technique for unsupervised
model selection in the context of wideband infrared optical spectroscopy based on the Minimum
Description Length principle.

In these two chapters, I will make use of a number of tools derived from information theory that
are offered to the physicist to design optimal processing strategies. Though very well known to most
physicists nowadays, these tools derived from either probabilistic41 (Shannon’s) information theory or
algorithmic (Solomonoff-Kolmogorov’s) information theory are very briefly recalled in the remainder
of this chapter, at least for notational purposes.

4.1 General definition of information theory

Information theory is a rather recent science whose development started since the early XXth cen-
tury, following important developments in thermodynamical physics. However, the most important
breakthrough that gave rise to the wide spread of these concepts in all areas of science and technology
occured in the 1940’s, with Shannon’s seminal contributions that founded the probabilistic informa-
tion theory. Later, tremendous progress in computer science led to the development of an alternative
algorithmic information theory, notably through Solomonoff, Kolmogorov and Chaitin’s work.

Generally speaking, information theory corresponds to an attempt to measure and quantify in-
formation on a rational basis42. Remarkably, as soon as such information measures were proposed,
information theory provided an impressively large number of theoretical mathematical results with
important practical consequences for many areas of science and technology. Without claiming ex-
haustivity, we can cite coding/compression/cryptography theories, communications theory, statis-
tical inference (estimation & decision theories), gambling & portfolio theories, model selection, etc.
which have found many applications in physics, computer science, telecommunications, but also
biology and economy [Cov91]. . .

For the physicist, information theory provides for instance reliable guidelines for the develop-
ment of optimal estimation procedures, and for assessing the best estimation precision expectable
from a given experiment. It also offers efficient approaches to design unsupervised sparse model
selection strategies. These two aspects are briefly introduced below.

41We use the term probabilistic here to distinguish Shannon’s theory from the algorithmic information theory.
42without restriction to the information support: binary sequence, text, image, audio record, DNA chain, . . .
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4.2 Shannon information theory and tools for statistical image process-
ing

4.2.1 Definition of entropy

Shannon’s definition of information requires that a probability measure P (ω) can be assigned to an
observation or event ω considered as random. When such probability is known a priori (or measured,
or hypothezised), the opposite logarithm of P defines the information carried by the observation of
ω, I(ω) = − log(P (ω)) where log(.) will denote the base 2 logarithm (log(.) = ln(.)/ ln(2)), so that
I(ω) is expressed in bits. With such definition, the information I(ω) can be regarded as a “measure
of improbability” with a number of interesting properties43. The well-known Shannon entropy then
simply consists of the information averaged over all possible outcomes of the random event ω, i.e.,
assuming P is a continuous probability distribution,

H(P ) = 〈I(ω)〉 = −
∫

S
P (x) logP (x)dx, (4.1)

where S is the support of the probability density function (pdf) P . This quantity indicates the average
amount of information, in bits, obtained when observing one outcome of the random event ω.

Kullback-Leibler divergence (KLD) (termed relative entropy in the case of discrete probability dis-
tributions) is a closely related quantity which can be defined in a similar way as

D(P ||Q) = −
∫

S
P (x) log

P (x)

Q(x)
dx, (4.2)

where P (x) and Q(x) denote two continuous pdf’s. This non-negative quantity interestingly acts as
a measure of “distance” between two probability distributions (even though not a distance mathe-
matically speaking) since D(P ||Q) = 0 if and only if ∀x, P (x) = Q(x).

4.2.2 Consequences of information theory for parameter estimation

Let us now consider a probability distribution PX(x; θ) on a random variable x that depends on a
parameter θ, assumed – in a non-Bayesian framework – to have a fixed yet unknown value. When
inference about the value of parameter θ is performed from the observation of K samples of the
random variable x (through K various experiments), the probability of the set of K independent
observations reads Pχ(χ; θ) = PX1,...,XK (x1, . . . , xK ; θ) =

∏K
i=1 PX(x; θ). This quantity is referred to

as the likelihood of the observed data χ under the hypothesis that the parameter value is θ.
In that case, a local measure of information content about θ is given by the Fisher information (FI),

which is defined as

IχF (θ) =

〈(∂ lnPX(x1, . . . , xK ; θ)

∂θ

)2
〉

= K ×
∫

S
PX(x; θ)

(∂ lnPX(x; θ)

∂θ

)2
dx. (4.3)

This quantity has a strong physical meaning, as it represents the amount of information that can be
maximally retrieved about θ from the set of observations χ. In other words, the Fisher information is
a measure of the “sensitivity” of the pdf PX(x; θ) to the variations of parameter θ. This can be readily
understood by analyzing the following approximation

IF (θ) ∼ 2

(δθ)2
D(PX(x; θ)||PX(x; θ + δθ)), (4.4)

where the KLD D(PX(x; θ)||PX(x; θ + δθ)) measures the local variation of the pdf with small incre-

43such as non-negativity, monotonicity and continuity with P , and additivity for independent events.

48



4.2. Shannon information theory and tools for statistical image processing

ments δθ of the parameter of interest.

A direct and very important consequence of the definition of the FI is the well-known Cramer-
Rao theorem which states that the variance of any unbiased estimator θ̂ of the parameter θ from the
dataset χ = {x1, . . . , xK}must verify44

var(θ̂) ≥ 1

IχF (θ)
= CRBχ(θ), (4.5)

where CRBχ(θ) denotes the Cramer-Rao lower bound45 (CRB) on the estimation of θ. This is a
very strong fundamental result, as it makes it possible to compute a lower bound on the minimum
variance of estimation of a parameter, regardless of the estimation strategy adopted, as it does not
depend specifically on θ̂. Due to its “universality” property, the CRB (or equivalently the FI) will
be used in the next chapter to assess the quality of the practical estimators proposed and tested.
But most importantly, the computation of the FI will be leveraged to quantify and study the best
precision expectable in a physical experiment as a function of all the parameters regardless of the
estimation strategy. As a result, this information theoretic tool is in phase with the co-design strategy
presented in Chapter 3: it allows the performances of an optical or physical system to be assessed (to
a certain extent) independently from the processing strategy, which can in turn be optimized to reach
or approach the estimation bound.

Unfortunately, there is no guarantee in the most general case that an efficient estimator exists (i.e.,
an estimator whose precision reaches the CRB), nor that there exists a systematic “recipe” to build
such an optimal estimator. However, if the pdf PX(x; θ) from which the data was drawn belongs
to the exponential family of distributions46, the well-known Maximum-Likelihood estimation (MLE)
procedure often leads to an optimal estimator47. The ML estimator is very simply defined as the
value of θ that maximizes the likelihood of the observed data, i.e.,

θ̂ML = argmaxθ
{
PX(x1, . . . , xK ; θ)

}
, (4.6)

but its practical implementation can sometimes be a bit tedious, requiring an iterative optimization
procedure. For instance, in the context of single speckle computational DOP imaging presented in
Chapter 3, a ML estimation technique was proved to be efficient during my PhD work [Réf07b],
even though the distribution does not belong to the exponential family. Unfortunately, this estimator
required a slow iterative solving procedure.

As a result, the MLE strategy and the CRB theorem provide interesting guidelines to design opti-
mal estimation strategies, as will be illustrated in the next chapter. However, they both share the gen-
eral drawback of Shannon’s probabilistic definition of information: all the concepts derived within
this theory strongly depend on the pdf of the data, which most of the time is hypothesized. An
incorrect estimation or hypothesis can thus be highly detrimental in that case to the validity of the
theoretical predictions, and thus caution should be taken to check the actual data distribution on the
experimental acquisitions.

44This theorem holds under proper regularity conditions on the pdf PX(x; θ) [Gar95] which are assumed verified here.
It can also be noted that a version of the theorem holds for a biased estimator θ̂, but which does not share the “estimator-
independent” property.

45Similarly, a lower bound on estimation covariance matrix can be derived from the Fisher information matrix (FIM) in
the case of a multivariate parameter vector θ [Réf07a].

46i.e., if it can be written as PX(x; θ) = exp
{∑m

j=1 Aj(θ)Bj(x) + C(x) +D(θ)
}

.
47Provided the MLE is unbiased, it is minimum-variance among all estimators for samples of limited sizes, and asymp-

totically efficient for large samples [Gar95].
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4.3 Algorithmic information theory and Minimum Description Length
principle

4.3.1 Algorithmic information theory and Kolmogorov complexity

As mentioned above, an alternative definition of information, and an alternative information theory
can be built on an algorithmical basis. The algorithmic definition of the information content of a
message is also termed descriptive information, since it aims at quantifying the amount of information
needed to describe a sequence, without any reference to the underlying probabilistic model that
generated it, contrarily to Shannon’s notion of information. As a result, this approach circumvents
the main drawback of the probabilistic information theory briefly sketched above.

Within this framework, the Kolmogorov complexity, denoted K(x), is a measure of information
contained in a message x, and defined as the size, in bits, of the shortest binary computer program
that can describe (or output) the sequence when processed by a computer [Cov91]. Despite the
extreme simplicity of its formal definition, the Kolmogorov complexity remains however a very con-
ceptual (and barely practical) notion. Indeed, it can be shown that the Kolmogorov complexity is in
general not computable. Such impossibility is related to the halting problem in computer science,
i.e., for any computer model, there is no general algorithm to decide whether a program will halt in a
finite time or not48 [Cov91]. As a result, practical use of algorithmic information theory requires ap-
proximations of the Kolmogorov complexity. Nevertheless, this conceptual definition of information
gave rise to several fundamental notions, such as algorithmically random sequences49, or universal
probability50 which find use in universal source coding theory [Cov91].

4.3.2 Minimum Description Length principle

An interesting concept which originated from the algorithmic information theory is the Minimum
Description Length (MDL) principle which has found many applications in various research do-
mains. It is based on a parcimony principle51, which is a rationally acceptable heuristic belief stating
that between two possible explanations of the same phenomenon, same data or same message, one
should favour the simplest one, i.e., the one that has the minimum complexity (i.e., the one requiring
the least hypotheses, parameters, variable, etc.).

MDL is simply a formal application of this principle to practical issues in data processing where
one wants to decide, in an automated way, between several hypotheses that can fairly explain the
observations. This is a common problem in many data processing areas, such as data clustering,
detection/classification, inverse problems, regression/model selection, image segmentation,. . . Gen-
erally denoting byH the set of possible hypotheses at hand, the MDL principle consists in finding and
selecting the hypothesis H ∈ H that minimizes the length LH(X1, . . . , Xn) (in bits) of the description
of the observed data χ = {X1, . . . , Xn} under hypothesis H , i.e.,

select H = argmin
H

{
LH(X1 . . . Xn) = K(H) + `dataH

}
. (4.7)

In this equation, the total length is given by the sum of two terms: on the one hand, the Kol-
mogorov complexity K(H) of the model (pdf, parameter vector, class decision boundaries, seg-
mentation map. . . ) retained by hypothesis H – i.e., the number of bits required to describe the

48This halting problem is directly related to Gödel’s incompleteness theorem.
49A sequence of length N bits is said algorithmically random if it cannot be described in less than N bits (simple enu-

meration), i.e., K(x1x2 . . . xN |N) ≥ N .
50Being also an extremely conceptual notion, the universal probability of a message is the probability that a program

randomly drawn as fair coin flips will issue such message.
51This pinciple, often quoted as Occam’s razor from Occam’s writing (1285-1347), has important implications in philoso-

phy, epistemology, etc. but can be connected to algorithmic information theory which provides mathematical justifications
of this principle [Cov91].
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selected model – and on the other hand, the number of bits `dataH required to encode the residu-
als of the data not described by the model H . This latter quantity can be generally expressed as
`dataH = − logPX(X1 . . . Xn;H), which is the opposite loglikelihood of the data under hypothesis H .
This quantity can also be regarded as the length of the optimal (Shannon’s) code that describes the
data residuals, when the data set χ = {X1, . . . , Xn} is supposed distributed according to the pdf
assumed under the selected hypothesis H .

Due to the non-computability of Kolmogorov complexity, Rissanen suggested in the early 1970’s
to replace the first term in the above minimization problem by an approximation, termed (Rissanen’s)
stochastic complexity [Ris78, Ris89, Ris07]. Under such an approximation, the minimization problem
now reads

select H = argmin
H

{
`modelH + `dataH

}
(4.8)

and solving it will naturally consist of making a balance between the complexity of the model (de-
scribed with `modelH bits) and the fidelity to the observed data (requiring `dataH bits to be described
under hypothesis H). The approach may look very similar to other penalization approaches (very
well-known in regression, inverse problem issues, etc.), however, an important feature of MDL is that
the two contributions are naturally expressed in the same unity (bits). This automatically circum-
vents the common problem of selecting a regularization parameter (the famous “λ”) which weights
the penalization term and the data fidelity term, and which may depend on the data set. As a result,
MDL approaches have proved to be very interesting in applications where supervision by an oper-
ator was impossible or had to be minimized [Gal03]. Since Rissanen’s seminal contribution, a lot of
work has been conducted on that topic to propose refined and more general, robust versions of the
MDL, some of which will be used and compared in Chapter 6 in the context of unsupervised optical
spectroscopy. These advanced MDL implementations are based for instance on Bayesian approaches
(with universal priors) or using universal distributions. For the sake of concision, we will not delve
into such approaches and we refer the reader to [Ris96, Ris07] for further reading on that techniques.
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Chapter 5

Long distance imaging through turbid
atmosphere

5.1 Objectives and motivations

Imaging through and within turbid media is an area of interest that has tremendous application
in medical diagnostics [Boa01], underwater vision [Sch04, Bof12, Dub13], imaging through colloids
[Ram98] and transportation and navigational aids [Wat00, Hau07]. Light traveling through a com-
plex medium with randomly distributed positions and refractive indices undergoes absorption and
random scattering and loses the spatial and temporal information of its source. The photons that
undergo such multiple scattering are labeled as diffused photons. A small fraction of the total pho-
tons called ballistic (and quasi-ballistic photons) undergo no (or very few) forward scattering events
before they reach the detector, and they retain the information of their source (direction, polarization
state, modulation,...). It is of wide interest to discriminate the ballistic/quasi-ballistic photons from
the diffused photons for resolution enhanced imaging through turbid media. However, the diffuse
light that strongly depends on the properties of the scattering medium can be used to deduce various
parameters related to the medium itself. Thus, imaging in turbid media can be classified into two
broad categories: parameter estimation using only diffused light to obtain image of heterogeneities
in turbid media, and filtering of ballistic photons from diffused light for high resolution imaging
through turbid media.

In this chapter, we will be more focused on this latter issue, for applications of navigational aid
through turbid atmosphere, and for relatively long distances of typically one kilometer. In typical
fog, light propagation is diffusive rather than ballistic with the diffusive photons overwhelmingly
large. To image through such media several techniques have been developed in the last few decades.
Optical Diffusion Tomography [Gon95, Sch97] uses image reconstruction strategies based on the
inverse-source algorithm to recover the hidden objects from the scattered photons detected. The nu-
merical algorithms used to solve such inverse problems are usually sophisticated, computationally
intensive and time-consuming, prohibiting real-time imaging. Other approaches aim at isolating the
few ballistic photons, i.e., photons that have not been (significantly) scattered along their trajectory
through the scattering medium. A first category of ballistic imaging is based on time-gating tech-
niques [Wan91, Dun91], which employ a pulsed light source (typically, pulse durations ranging from
few tens of femto-seconds to few picoseconds) to illuminate the scattering medium. The technique is
based on the use of a time-gated ultra-fast camera to detect ballistic photons, which, unlike scattered
photons, are not delayed by multiple scattering. In spite of their efficiency and their depth-scanning
capability, such techniques are not easily implemented due to their complexity and the prohibitive
cost of both the light source and the detection equipment.

On the other hand, ballistic photon imaging can also be attempted with continuous-wave ap-
proaches, using either polarization of light [Hor95, Emi96, Ram98], or intensity modulation tech-
niques. The use of polarized light and polarization imaging has been long used for image contrast
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enhancement in turbid media (see for example [Dem96, Row95, San97]). These investigations mainly
conducted in laboratory short-range experiments, have given interesting results on the influence of
the polarization state of the incident light [Sch92, Kar05], or of the particles size [Sch98], anisotropy
[Muj04], or of the noise properties [Bén09a, Bén09b] on the image quality. Other techniques based on
light intensity modulation have also been experimentally studied in the laboratory [O’l92, Mul04].
However, real-time imaging in real fog conditions has not been demonstrated so far, especially for
application to navigation due to the inability of most of the techniques to handle long-range media.

The main objective of the work reported in this chapter was thus to implement these two tech-
niques in real-field conditions (in real atmospheric conditions and over long distances), while aiming
at real-time operability. These developments have mainly been conducted within a collaborative
project with the Raman Research Institute (Bangalore, India), during more than 3 years (CEFIPRA
project “RITFOLD”). This project offered us the opportunity to supervise an indian student, Swap-
nesh Panigrahi during his PhD thesis in Rennes. The motivation of this project was to propose cheap,
and low-complexity solutions for assistance to aerial navigation and landing52 in low visibility condi-
tions, which could appear as an alternative to cost-prohibitive pulsed approaches, or electromagnetic
guidance systems such as ILS which are not available on small airports and small aircrafts. Even with
ILS, international aviation regulation rules require a minimum visibility for landing, often expressed
in terms of Runway Visual Range (RVR), defining the distance over which the centreline of the run-
way can be visually identified by the pilot [Ric00, ICA96]53. Below this minimal visibility, aircrafts
are not authorized to land and have to be rerouted to another airport, one of the reasons for that be-
ing that ILS is not able to provide a visual real-time representation of the landing scene. As a result,
it appeared to us that it would be very beneficial to develop cheap, portable and easy-to-implement
alternative systems, which could be easily installed on small aircrafts, and introduced on the vast
majority of small airports that are not equipped with ILS54.

During this project, we first addressed a simple solution allowing efficient background rejection
and contrast enhancement of an active beacon (as the ones that could be implemented on a landing
area) over long distances and through turbid atmosphere. Such contrast enhancement is illustrated
in the drawing of Fig. 5.1.b, where it can be seen that wiping out the contribution of the ambient il-
lumination can significantly improve the visibility of light beacons, demarcating a landing area with
respect to the initial image provided to a pilot as sketched in Fig. 5.1.a. The corresponding work
and results about optimal contrast enhancement using polarized light are summarized below in the
first section of this chapter. Though such efficient background rejection can be interesting for prac-
tical application and visual aid to a pilot, it does not constitute however a true “ballistic” photon
imaging. Indeed, ballistic filtering would allow for instance a clear suppression of the diffuse light
contribution of the emitter itself on the final image55, as sketched in Fig. 5.1.c. To address this is-
sue without resorting to pulsed illumination, we then considered modulated-light techniques, which
could be an interesting cost-effective alternative. This raises however two issues which are (i) what
is the miminum frequency ωmin that should be advocated to achieve ballistic filtering ?, and (ii) how
to perform full-field image demodulation in real time at such high frequencies ? These questions are
addressed below in the second section of this chapter, which details the first theoretical and experi-
mental developements that were conducted on this topic at the Optics and Photonics Department of
the IPR.

52Other areas of application could be envisaged of course, such as coastal navigation or road transportation. . .
53The minimum visibility requirements vary with the ILS categories and regulation, (from 800 m for Cat. I ILS system,

up to 91 m for a Cat. III-b ILS, nowadays the most sophisticated equipment on commercial airplanes) [ICA96].
54e.g., only about 160 runways were equipped with ILS among the 1100 landing areas in the state of California in 2010

[Ils10].
55and hence also provide better spatial resolution of the emitter.
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Figure 5.1: (a) Illustration of an aircraft landing scenario in low visibility conditions due to the pres-
ence of intense background illumination (ambiant spurious light) and strong light scattering causing
reduction of the visibility and of the spatial resolution of the light beacons. (b) Illustration of the
resulting image after perfect background removal processing. (c) Illustration of the resulting image
expected after ideal ballistic photon imaging process.

5.2 Polarimetric approach for optimal contrast enhancement

5.2.1 Polarimetric imaging facilities for long-distance imaging through fog

During the first years of my work at IPR, I have contributed to the design and settling of an original
polarimetric imaging facility in Rennes, to perform experiments in real-field conditions trough fog
and over long distances. The facility consists of a highly linearly polarized incoherent source, located
on a telecommunication tower (about 80 m in height), belonging to the TDF company, represented
in Figs. 5.2 and 5.3.a, imaged from a distance of about 1.3 km with a polarization-sensitive camera.
The source used is a 300 W halogen incandescent lamp with a linear vertical polarizer (LCD projector
polarizer replacement sheets for heat tolerance), both placed inside a weatherproof steel housing as
shown in Fig. 5.3.a. The light source is connected to a GSM switch enabling easy remote control of the
emitter. The distance of the tower from the laboratory site in the campus of University of Rennes 1 is
1.3 km, which is optimal for the aerial navigation application addressed with this long-range imaging
through fog experiment.

Figure 5.2: Left: View of the TDF telecommunication tower from the laboratory, distant from 1.3 km.
The red arrow indicates the location of the polarized beacon. Center: View of the reception site (red
ellipse) from the top of the telecommunication tower. Right: Close view of the TDF tower from the
ground.

At the reception site, the polarimetric sensitivity is obtained with a modular optical add-on at-
tached to a grayscale camera. As sketched in Figs. 5.3.b and 5.3.c, the polarimetric add-on first com-
prises an arrangement of lenses L1 and L2 after a monochromatic filter F (at 612 nm, FWHM = 12
nm). The image is partly masked by a slit (FM) in an intermediate image plane, then collimated
and passed through a Wollaston prism (WP) to produce, on a single detector (C) and using lens L3,
two images I‖ and I⊥ corresponding to two orthogonal polarization directions (with I‖ aligned with
the direction of polarization of the source). The camera used is a low noise, high dynamics Andor
NEO sCMOS camera (5.5 Mpixels , 16-bits, 0.015 e-/pixel/s dark noise at -30◦C sensor temperature).
The high dynamics detector enables fine sampling of the intensity levels and noise statistics in the
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acquired images. The whole acquisition has been made autonomous by designing a specific Lab-
View acquisition program, able to acquire series of images over long periods of time (> 10h), and
with varying imaging conditions (day/night, clear sky/fog/etc.). This has required a number of
acquisition parameters to be automated, such as the exposure time, or the frame grabbing mode56.
All details about the Wollaston prism-based polarimetric add-on and its calibration can be found in
[Bén09a, Fad14b], whereas all the technical details about the whole long-distance polarimetric imag-
ing facility and interfacing are detailed in [Fad14b] (see AA II-1, p 162), and are not reproduced here
for the sake of conciseness. The whole setup for application to navigation assistance in obscured
weather has been patented in 2014 [Ram16].

Figure 5.3: (a) Schematic of the long range imaging setup. The source and the camera are separated by
a distance of 1.3 km. Sketch (b) and 3D view (c) of the Wollaston prism-based optical setup allowing
snapshop polarimetric imaging.

An example of raw image acquisition in a clear sky condition is shown in Fig. 5.4-[I], where the
polarized source can be clearly seen in the parallel polarimetric channel (upper image), whereas it ap-
pears dark in the perpendicular channel (lower image). After extracting the two polarimetric images,
one obtains a set of two-dimensional pixels, such that the polarimetric image IP = {XP

i }i∈[1,N ] =

[I‖ I⊥]T , is formed by the set of pixels XP
i = [x‖,i x⊥,i]T . In this work, as a unique polarized beacon

was considered, with a priori known location in the image, we were mainly focused on the central
region of the image (light-blue dashed square in Fig. 5.4-[I]) as the source usually spreads between
1 × 1 up to about 5 × 5 pixels depending on the weather conditions. A relevant contrast measure
allowing the visibility of the polarized beacon to be evaluated has been defined as the contrast-to-
noise ratio (CNR) of a central 3 × 3 region, denoted by s (signal region) (red square in Fig. 5.4-[II]),
with respect to its surrounding neighbourhood χk of size Nk pixels (region delineated between the
two blue squares in Fig. 5.4-[II].b). The CNR expression then reads

CNR =
γs − 〈γ〉χk√

1
Nk−1

∑Nk
i∈χk

(
γi − 〈γ〉χk

)2 , (5.1)

where γ stands for a given representation fo the polarimetric data in the image, for instance, the total
intensity γΣ = x‖ + x⊥ that would be acquired on a standard camera.57

This setup that has necessitated more than two years of work to settle it completely, and to reach
full remote operability from any location, at any time. This allowed us to launch long-term acqui-
sitions during day or night, and allowed our colleagues in Bangalore (India) to also have access to
it. These efforts turned out to be crucial, and the development of such an experimental facility was

56For instance, we implemented a so-called cumulative grab mode (CGM) to avoid recording the 100 Hz intensity fluc-
tuations due to the 50 Hz modulation of the electrical supply network when exposure time was lower than 10 ms (see
[Fad14b]).

57As can be seen in Fig. 5.4-[II].b, the spatial average 〈γ〉χk =
∑Nk
i=1 γi/Nk is performed on a set of 320 pixels defined by

the region χk comprised between the 21× 21 square region around the source location, excluding a 11× 11 central region
to prevent the spatial extent of the light source from perturbing computation of the background statistical properties.
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indeed an important milestone for our collaborative project, as very few experiments can be found
in the litterature concerning polarimetric imaging over long distances in real fog conditions. Indeed,
most research groups have focused, for simplicity reasons, on toy models of atmospheric proapaga-
tion in turbid water, or in water vapor chambers inside the laboratory. However, one of the main
outcomes of our work was to understand that such short-distance models were poorly efficient at
reproducing the behaviour of light scattering, absorption, or depolarization in real fog over long dis-
tances. After three years of exploitation of this setup, we have gathered important quantities of data
over long time series, and in all possible conditions of illumination (day-time, twilight, dawn, night-
time) or atmospheric visibility (clear sky, haze, fog, clouds, rain, snow...). A subset of long time-series
acquisitions is reported and commented thoroughly in [Fad14b] (see AA II-1, p. 162). We shall here
only summarize the most important outcomes of this experimental campaign:

• In our experiments in real conditions, either during day-time or night-time due to city lighting,
the presence of a very important amount of ambient illumination cannot be neglected, contrar-
ily to usual in-laboratory experiments were spurious illumination is generally avoided. This
has the strong consequence that visibility of the beacon is further decreased, as the observer (or
a standard camera) is always completely overwhelmed – dazzled – by the bright ambient light.

• Due to the long propagation distance considered, and due to the small numerical aperture of
the imaging system (at least for the few pixels corresponding to the polarized beacon), our
system already operates a kind of ballistic filtering of the photons emitted by the source by
filtering the photons direction of arrival. This may explain why we were never able to observe
any depolarization halo around the central pixel, contrarily to what was expected initially from
previous laboratory studies.

• Another remarkable observation was that as soon as a thin layer of haze or fog was present
in the sky, the whole scene including tower structures, ground, sky (excluding the polarized
beacon of course) appeared totally depolarized, with a measured DOP very close to zero. Ac-
cording to the previous remark above, the DOP of the light detected from the source was always
perfectly unitary.

• Most importantly, a comparison of standard polarimetric representations of the two-component
polarimetric data recorded by the camera showed quite clearly that the best visibility con-
trast (evaluated with the CNR) was not always provided by the same representation, i.e., no
standard poalrimertic representation could be considered as a uniformly optimal representation
[Fad14b].

Table 5.1: Polarimetric representations and gains in CNR.
Representation Symbol (u = 1, v = ) gΣ = C(γ)/C(γΣ)

Intensity-summed γΣ 1 1
Pol. filtered γ‖ 0

√
2(1 + ρ)

Pol. difference γ∆ −1
√

(1 + ρ)/(1− ρ)

Computational γCS vCS −
Max. Likelihood γML −ρ

√
2/(1− ρ)

This last observation, which has motivated the search and derivation of an optimal polarimetric
representation for maximum contrast enhancement, is illustrated in Fig. 5.4-[II].b. It provides the
contrast image and CNR figure of the polarized beacon with three simple and standard polarimetric
representations, which are recalled in the upper part of Table 5.1, among which the polarization
differnce γ∆ or the polarization filtered image γ‖ for two different acquired frames labeled as [A]
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and [B]. It can be readily seen that the best CNR is obtained with γ‖ in situation [A] (low visibility),
whereas γδ provide better CNR in situation [B]58.

[I] [II]

Figure 5.4: [I] Raw image obtained from the camera with 782 × 582 pixels. Extraction of two image
channels after applying image registration process is demarcated in yellow dashed box. The cyan
square delineates the 21× 21 pixels region-of-interest around the source location. [II] (a) Examples of
raw images from the polarimetric camera, showing the tower and the source with varying conditions
of fog density and visibility. The time stamp of acquisition and measured correlation coefficient
of noise at the source pixel location are respectively indicated below and above each image. (b)
Comparison of four polarimetric representations for two frames labeled as [A] and [B].

5.2.2 Contrast gain and optimal representations from information theory

In light of the above observation, it appeared interesting for the application at hand to derive an
optimal signal representation that could ensure best contrast maximization in any weather and vis-
ibility condition. Moreover, we also aimed at quantifying theoretically the gain in visibility offered
by polarimetric imaging, either with standard representations, or with the optimal one. Before sum-
marizing the theoretical study that we carried out for the derivation of such optimal representation
using information theory, let us illustrate on real data that a contrast-maximizing adaptive polari-
metric representation can indeed be found. In the last column of Fig. 5.4-[II].b, we have represented
the image of the polarized beacon obtained with an optimized polarimetric representation, denoted
γCS = ux‖ + v x⊥. Such representation consisting of a linear combination of the two polarimetric
channels acquired, is computed so as to provide maximum CNR of the polarized beacon with respect
to its surrounding neighbourhood. The optimal weights of the linear combination were obtained
here by a computational search (hence the subscript CS) over all possible values of u and v, with
u ∈ [0; 1]59 and v ∈ [−1; 1]. The CNR figures provided in Fig. 5.4-[II] show that γCS does outperform
the standard representations. More interestingly, the 2D search map over u and v plotted in Fig. 5.5-[I]
reveals that the optimal representation lies in general between the two standard polarimetric repre-
sentations, namely the polarization filtered image γ‖ and the polarization-difference image γ∆. Such
an optimization over all possible weigth values – which is further described in [Pan15a] (see AA
II-3, p. 186) – needs be realized at each pixel of the image in a practical situation where the location

58One can notice that the OSC contrast map has not been represented. This is indeed another outcome of the experimental
work described in [Fad14b] to observe that the normalization step (division by total intensity) incurred by the expression
of the OSC appears to be highly detrimental to its robustness to noise. This is the reason why OSC is not relevant and not
considered here for a task of optimal contrast enhancement of an active polarimetric target through fog.

59Since under the hypotheses considered the CNR metric is invariant by multiplication with a scalar, it suffices in practice
to fix u = 1 and optimize v. This is why u = 1 in the expressions of the representations in Table 5.1. The display of the 2D
search has been retained in Fig. 5.5-[I] for the sake of better visual illustration.
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and number of polarized sources to be detected will be unknown. As a result, may the technique be
efficient, it may fall down well beyond the requirements for real-time imaging and processing with
limited computation resources such as the ones that could be embarked in a light aircraft.

[I] [II]

Figure 5.5: [I] Example on frames [A] and [B] of the computational search for an optimum contrast-
maximizing linear combination of polarimetric images. [II] (a) Time evolution over a 80 minutes
dataset of the gain in CNR of various polarimetric representations, with respect to a standard inten-
sity image. (b) Gain in CNR represented as a function of estimated correlation coefficient ρ (symbols,
same dataset), and comparison with theoretical gain expressions (solid curves) for two standard po-
larimetric representations γ‖ and γ∆ and the optimal adaptive representation ΓML.

As a consequence, it can be interesting to investigate whether a closed-form expression of an
optimal representation suited to the conditions at hand can be obtained using an information theo-
retical approach . In an anterior theoretical work [Fad14a] (see AA II-2, p. 174), we have shown that
a simple Gaussian noise model including partial correlation in the noise features of the polarimetric
channels could lead to interesting results in terms of optimal variance bounds – obtained by comput-
ing the Fisher Information of the estimation problem at hand – and on optimal estimation strategies
in the Maximum-Likelihood (ML) sense [Fad14a], as recalled in Chapter 4. Indeed, it appeared on
the experimental data gathered that the noise corrupting the images was well modeled by gaussian
fluctuations, and that significant correlation could be identified between the two polarimetric chan-
nels. Such partial correlation is understandable as the polarimetric camera used in our setup operates
in a snapshot mode, and therefore the spatio-temporal fluctuations of the turbid atmosphere (due to
wind, turbulence, etc.) and possible temporal source fluctuations are identically reproduced on the
two images acquired simultaneously.

Considering the most general case of a partially polarized beacon of DOP P and a partially po-
larized background of DOP β, we therefore modeled the bidimensional measurement vector XP

i at
pixel i by a bivariate Gaussian random variable with covariance matrix

Γi =
〈(

XP
i − 〈XP

i 〉
)(

XP
i − 〈XP

i 〉
)T〉

=




1+β
2 ε2i ρ

√
1−β2

2 ε2i

ρ

√
1−β2

2 ε2i
1−β

2 ε2i


 , (5.2)

and mean value 〈XP
i 〉 =

[
1+P

2 si + 1+β
2 bi

1−P
2 si + 1−β

2 bi

]
. The correlation parameter ρ accounts for the partial cor-

relation of noise between the two polarimetric channels, and the source (respectively background)
mean intensity is denoted by s (respectively b). The detector electronic noise contribution has been
neglected here for the sake of simplicity60.

60See [Fad14a] for further discussion about the influence of the detector electronic noise.
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For the sake of brevity and to favour the physical insight about the theoretical results derived
from this model, we refer the reader to [Fad14a] (AA II-2) for the full details of their derivation.
A first outcome of these results is the demonstration that the optimal representation, in the sense
that it derives from a ML estimation procedure known to be minimum-variance under Gaussian
fluctuations, corresponds to a simple linear combination of the two polarimetric images, according
to the computational search procedure implemented above. In the most general case of possibly
unperfectly polarized beacon P ∈ [0, 1] and partially polarized background β ∈ [0, 1], the optimal
polarimetric representation indeed reads:

γML =

[√
1− β
1 + β

− ρ1− P
1 + P

]
x‖ +

[
1− P
1 + P

√
1 + β

1− β − ρ
]
x⊥, (5.3)

with ρ denoting the background noise correlation coefficient, estimated in practice over region χk.
Interestingly, in the actual physical conditions of the experiments conducted in real fog for which we
checked that we always had P = 1 and β = 0, the optimal estimator has a very simple expression
[Pan15a] γML = x‖ − ρ x⊥, i.e., it suffices to weight the perpendicular image with the opposite noise
correlation coefficient ρ̂ estimated empirically in the image.

As detailed in [Pan15a] (see AA II-3, p. 186), we checked the optimality of this representation on
actual data, by comparing the evolution of the CNR gain gΣ

ML = CNR(γML)/CNR(γΣ) obtained
with the γML representation with respect to a standard intensity image γΣ in Fig. 5.5-[II].a. The
time evolution of gΣ

ML is plotted in Fig. 5.5-[II].a with blue crosses symbols, and can be seen to closely
follow the best possible gain obtained with γCS (plotted in black solid line), i.e., with a computational
search over all possible linear combinations. This is an interesting result, confirming on the one hand
the efficiency of the ML approach, and on the other hand, allowing the optimal representation to be
obtained in an analytical way. Moreover, this simple representation behaves adaptively to present the
best source contrast in the final image for any fog density condition, since it was shown to depend on
the actual experimental conditions which are assessed by the estimation of the correlation parameter
ρ [Pan15a].

We were also interested in studying the behaviour of the gain in CNR for each representation
in relation with the noise statistics in the polarimetric images. According to the theoretical devel-
opments presented in [Fad14a], the gain in CNR of each standard representation with respect to
standard intensity imaging can be readily obtained, and the expressions are recalled in Table 5.1.
As for the maximum expectable gain in CNR (obtained with the ML representation as it saturates
Cramer-Rao inequality), we showed in [Fad14a, Pan15a] that it can be derived from the ratio of the
Fisher information IF

P (s) accessible with polarimetric measurements for the estimation of the source
mean intensity s, to the Fisher information accessible with standard intensity measurements IF

I(s).
In the most general case of arbitrary P and β, and with neglegible detector noise, the expression of
the gain is

µopt(P, β, ρ) =
IF
P (s)

IF
I(s)

=
(1− 2βP + P 2)− ρ(1− P 2)

√
1− β2

(1− ρ2)(1− β2)
. (5.4)

This theoretical expression has been extensively analyzed in [Fad14a] (see AA II-2). From this result,
it is quite straightforward to derive the theoretical optimal gain in CNR with respect to the intensity-
summed image γΣ, which in our conditions for P = 1 and β = 0, yields gΣ

opt =
√

2/(1− ρ), as recalled
in Table 5.161.

We found very relevant to analyze the evolution of the gain in CNR for each representation as a
function of the estimated background correlation ρ. This is plotted in Fig. 5.5-[II].b, where it can be
seen that the CNR gain for each representation depends on ρ in an orderly fashion which was not

61The comparison between the expression of gΣ
opt and µopt(P = 1, β = 0, ρ) reveals that gΣ

opt =
√

(1 + ρ)µopt(1, 0, ρ).
The correction factor

√
1 + ρ in the expression of gΣ

opt accounts for the fact that a true intensity image as considered in the
information theoretic treatment when computing IF

I(s) is not strictly equivalent in terms of noise variance to a intensity-
summed image γΣ = I‖ + I⊥.
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obvious in the “noisy” time-series data in Fig. 5.5-[II].a, and which fairly coincides with the theoret-
ical expressions of the gains in CNR derived and recalled in Table 5.1. In this figure, the optimality
of the ML representation appears clearly, since it approaches the best contrast representations for all
values of ρ. It is interesting to notice that the polarization difference image γ∆ is outperformed by
the polarization-filtered image γ‖ as the value of ρ falls bellow 0.5, but as soon as ρ ≥ 0.5, the gain
in CNR provided by γ∆ rises steeply when ρ → 1, leading in this experiment to gains of more than
twelve-fold. This is easily interpreted as the main benefit of γ∆ relies in its ability to suppress highly
structured (and thus correlated) background in the final image. On the other hand, with uncorrelated
background (ρ = 0), the perpendicular image I⊥ does not bring any further information, making γ‖
optimal in very low visibility conditions [Fad14a, Pan15a].

5.2.3 Conclusion

Such a study about the optimal contrast-enhancement of a polarized beacon through turbid atmo-
sphere over long distances has permitted an original experimental facility to be settled on the campus
of the University of Rennes 1. The large amount of experimental data gathered has revealed interest-
ing features about propagation of polarized light in fog, which in turn motivated the development
of original signal processing strategies for all-weather adaptive contrast enhancement. Clever soft-
ware implementations of the simple optimal polarimetric representation have also been proposed
[Pan15b], demonstrating that such computationally-efficient representation could be easily imple-
mented in real-time applications as a pre-processing task for automated detection/localization on
wide field images.

More generally, this study has shown that such a polarimetric approach could be an efficient,
simple and cost-effective way to obtain clear background rejection, and hence better detectivity of
polarized beacon in obscured weather conditions. However, despite the significant gain in contrast
obtained with this polarimetric system, this approach fails to perform true ballistic photon filtering.
Indeed, it was observed that light polarization was not relevant in the context of long-range imaging
to effectively discriminate ballistic photons from diffused photons. In the next section, we shall
consider intensity-modulation as a possible way to achieve true ballistic photon imaging.

5.3 Ballistic photon imaging through turbid media using intensity-modu-
lated light

This section summarizes the first contributions and results obtained at the Optics and Photonics De-
partment in the domain of ballistic photon imaging through turbid media using intensity-modulated
light. Indeed, this technique appears as an interesting compromise between efficiency and cost-
effectiveness. On the one hand, using of pulsed lasers and time-gated cameras provide very efficient
means of performing 3D imaging with time-of-flight measurements along with true ballistic filter-
ing by detecting only the fastest photons corresponding to ballistic propagation. However, this is
achieved to the expense of very complex and costly imaging systems, which are hardly compati-
ble with the application initially aimed at, namely, the assistance to navigation in obscured weather
conditions.

On the other hand, with the recent development of light sources such as LEDs that are easy to
modulate at relatively high frequencies, and with the availability of first generation of demodulating
image sensors such as the time-of-flight (ToF) cameras, using continuous wave intensity modulation
(as a counterpart to time-gated imaging) appears as an interesting way to achieve ballistic imaging
at relatively low cost.

In the remainder of this section, we shall first briefly describe an experimental work conducted in
Bangalore in collaboration with our colleague Hema Ramachandran. This experiment illustrates how
low-frequency intensity-modulation and an accelerated implementation of a software demodulation
technique can allow real-time contrast enhancement through turbid media to be achieved in a simple
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and efficient way. However, to achieve true ballistic filtering, high modulation frequency operation
is needed. We analyzed this issue in a theoretical work relying on information theory and diffusion
approximation to derive the optimal modulation frequencies for ballistic photon filtering in diffusing
media. The main aspects and results of this study will be summarized below ina second section.
Lastly, we shall conclude this chapter by presenting a novel imaging system architecture that we
recently patented in 2016 [Pan16b], and which allows full-field snapshot quadrature demodulation
of high-frequency components of an image to be performed without requiring any synchronization
with the emitter. This last original contribution opens a large number of scientific perspectives in
terms of instrument developement but also in the field of biomedical imaging.

5.3.1 Contrast enhancement by low-frequency quadrature software demodulation

Within the course of the collaborative CEFIPRA project with Prof. Hema Ramachandran, from the
Raman Research Institute (Bangalore, India), I had the opportunity to travel several times to India
for 2-week periods each time, allowing me to participate to a number of experiments that were to
be developed in India within the project. One of these experiments consisted of performing contrast
enhancement of an active beacon in strongly scattering medium, by efficient background rejection
using an intensity-modulated light. The main objective of this study was to demonstrate the feasi-
bility of such background rejection in real-time (i.e., faster than the natural human eye flicker), using
low-frequency modulation and hence a cheap apparatus including (almost) standard laptop compu-
tation resources. Assuming that the modulation frequency is known, we showed how a quadrature
demodulation scheme could outperform a simple spectral (Fourier) analysis of the temporal evolu-
tion of the graylevel at each pixel in the image, either in terms of demodulation performance or in
terms of computation speed.

[I] [II]

Figure 5.6: [I] Illustration of the efficient background removal reachable using a low frequency
intensity-modulated illumination and a real-time software quadrature demodulation: (a) original
scene without scattering medium; (b) scene observed with a standard intensity camera; and (c) de-
modulated image allowing visibility of the scene to be partly recovered. [II] Illustration of the com-
putational speed-up offered by multithreading and GPU programming.

One of the main contribution of our work was to show that the quadrature demodulation, which
could be operated here by software at low modulation frequencies (∼ 10-100 Hz), could be highly
accelerated to reach real-time acquisition, computation and display by using multithreading pro-
gramming and parallel computation on graphical processing units (GPUs). These results will not
be detailed here for the sake of conciseness, but can be found in [Sud16]. We simply comment here
a convincing example of experimental acquisition and final processed image in Fig. 5.6-[I]. When
imaged by a standard camera through a thick scattering medium (in laboratory, milk suspension in
small tank), the objects in the scene (a palm tree and a cow, see Fig. 5.6-[I].a) which are enlightened
by modulated light (fmod = 17 Hz) are absolutely indiscernable, as can be observed in Fig. 5.6-[I].b.
However, after quadrature demodulation at fmod, the two objects appear clearly in the final image,
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which is demodulated and displayed in real time with the optimized processing proposed in [Sud16].
In addition, Fig. 5.6-[II] shows the huge acceleration offered by multithreading and GPU computa-
tion approaches for this demodulation issue.

These results appear already very interesting for practical applications to ensure highly efficient
background rejection of ambiant, unmodulated light and to disciminate active sources (or passive tar-
gets, but enlightened as in the above example) in strongly scattering media or atmosphere. However,
the very low frequency operation of the modulated illumination does not permit any true ballistic fil-
tering. Indeed, in this case and for the short propagation distances considered here (and even for the
kilometric range we aim at, in the final scenario), the ballistic photons as well as the diffuse photons
arrive at the detector with the same modulation index, and without any discernable phase difference.
In the next section however, we briefly summarize a theoretical study that we conducted using in-
formation theoretic tools and diffusion theory to quantify the minimum modulation frequency that
would be required for given optical properties (scattering, absorption) of the scattering medium.

5.3.2 Optimal modulation frequencies for ballistic photon filtering in turbid media

The diffusion theory for photon transport provides a simple, fast and analytical method for model-
ing light propagation through turbid media. The properties of intensity modulated light through a
diffusing medium have been well studied and reviewed [Pat89, Mar97, Fis93, Gra97]. The diffusion
model arises when the photons are allowed to perform a random walk, diffusing from high photon
density regions to low photon density regions. The theory has proved efficient when modeling light
in a predominantly scattering medium where the source and the detector are far from boundaries of
the medium and when detection is carried out sufficiently away from a point source, in a supposed
infinite geometry.

For the problem at hand, we considered an intensity modulated source of light having modula-
tion angular frequency ω and amplitude modulation index M (also termed modulation depth), whose
intensity reads i(t) = I0(1 +M cosωt). After propagation through a scattering medium, the ballistic
light that follows Beer-Lambert’s law is only attenuated and reaches the detector with instantaneous
intensity ib(t) = IB(1 + mB cosωt) without any change in received modulation index, mB = M , but
with reduced mean intensity IB � I0. The attenuation IB/I0 mainly depends on the total extinction
coefficient µ+µs (inverse value of the mean free path MFP), where µ and µs respectively stand for the
absorption coefficient and the scattering coefficient of the medium. Consequently, for a propagation
distance of r, we can define an effective attenuation factor for the ballistic light asRb = r/MFP , such
that IB/I0 ∼ e−Rb .

On the other hand, using the model of the propagation of sinusoidally modulated light through a
scattering medium as derived in [Tro93, Fis93, Jac08], it can be analytically shown that the modulated
light is received at the detector with reduced modulation index and additional phase [Tro93]. Within
the framework of diffusion theory, the instantaneous diffuse light intensity received at the detector
is shown to read id(t) = ID(1 + mD cosωt+ ∆φ), where the condensed expression of the reduced
modulation index mD and the phase ∆φ respectively read62

mD =Me−Rδ(q−1), (5.5a)

∆φ =Rδ
√
q2 − 1. (5.5b)

The parameter Rδ corresponds to the reduced propagation distance, normalized by the optical pene-
tration depth δ =

[
3µ(µ+ (1− g)µs

]−1/2 in the scattering medium, i.e., Rδ = r/δ, with g standing for
the scattering anisotropy factor63. If Rδ only depends on the medium properties, the dimensionless

62As for the mean attenuation of the diffuse light component, one can show that α = IB/ID is related to the geometry
of the illumination source and to the scattering parameters of the medium (see [Pan16a] for further details).

63Defined as the mean cosine of the scattering phase function [Ish78] (see [Pan16a] for further details about the derivation
of these results and the problem parameterization).
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parameter q =
√

(1 +
√

1 + (ω/µc)2)/2 appearing in the above equation, is related to the angular
frequency of modulation, and ranges between [1,∞) when ω ∈ [0,∞). Although the physical inter-
pretation of this parameter is not straightforward, we were able to interpret qRδ as a dimensionless,
frequency-dependent, effective attenuation of the modulation index of the diffused light. More pre-
cisely, in the following we denote by β = mB/mD the ratio of the modulation indices of ballistic light
to diffuse light. It can now be clearly understood from this analytical model how intensity-modulated
light can be used to achieve ballistic-photon filtering and imaging: it suffices to select a modulation
frequency ω sufficiently high such that the modulation index of the diffused light contribution fades
out after demodulation of light at the detector location.

To complement this physical propagation model and to describe the imaging system, we consid-
ered a classical noise model [Muf11] describing the intensity fluctuations of a possible demodulating
imaging scheme. More precisely, we assumed that the detector was able to perform, at each pixel
location, a so-called 4-bucket temporal sampling of the modulated signal, as represented in Fig. 5.7-[I]
[Pan16a] (see AA II-4, p. 193). With such noise model, we were able to compute and compare the
Fisher information (FI) for the estimation of the modulation index M with ballistic photons on the
one hand, and with diffuse photons on the other hand. We were then in a position to define the gain
in information by the ratio of the FI when observing diffused and ballistic photons to the FI when
observing diffused photons only. The expression of the gain thus reads

Gbf =
IB⊕D(M)

ID(M)
∼ K1e

2(qRδ−Rb)
(

1 +K2e
−(qRδ−Rb) cos[

√
2(q2 − 1)Rδ]

)
, (5.6)

where K1 and K2 in the right-hand-side asymptotic expression of Gbf are polynomials expressions of
the imaging geometry and scattering parameters [Pan16a]. From the above approximate expression
of the gain, it appeared clearly that a significant gain could occur only if

q > Rb/Rδ =
δ

MFP
, (5.7)

i.e., if the effective attenuation of the modulation index of the diffused light is greater than the effec-
tive attenuation for ballistic photons. The minimum frequency condition – which interestingly ap-
pears to be independent of the propagation distance r – has a simple expression when expressed in
terms of the parameter q, since it only depends on the relative magnitude of the mean free path (MFP)
and of the optical penetration depth δ defined above. When expressed in terms of angular frequency
ω, the expression is more involved, but the gain condition can be plotted as the red dashed line on
the contour maps in Fig. 5.7-[II] and seems to provide a well-defined condition for attaining ballis-
tic gain. Further simplification holds under the validity conditions of the diffusion theory, where
σ > 10µ. In this case, the condition for achieving ballistic filtering reduces to ω/c > 2σ/3(1 − g)2,
and is insensitive to the value of the absorption coefficient µ. This clearly indicates that filtering of
ballistic photons using an imaging demodulation technique will be more difficult, and hence require
higher modulation frequency, in forward anisotropically scattering media with g > 0. Indeed, this
can be physically understood, as diffused photons will be less likely to deviate from the ballistic path
in a significantly forward scattering medium.

According to the above results, ballistic filtering in biomedical applications would require very
high (if not unrealistic) modulation frequencies, as for typical values of σ = 10 cm−1, refraction in-
dex n = 1.33, and a propagation distance r = 5 cm, one obtains fmin = 23.9 GHz (respectively
fmin = 597 GHz) when g = 0 (respectively g = 0.8)! The expression derived above can also serve
conversely to provide the range of visibilities that can be handled by a ballistic filtering device work-
ing at any fixed modulation-demodulation frequency. For instance, for transport safety in foggy
weather, if we consider r = 1 km, n = 1.33, and a modulation frequency of f = 10 MHz, the above
rule of thumb indicates that ballistic filtering can be obtained when µs ≤ 0.42 m−1 (respectively
µs ≤ 0.084 m−1) when g = 0 (respectively g = 0.8). According to the World Meteorological Or-
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ganization’s recommendations [WMO08], such values of µs correspond to very low visibilities (in
terms of meteorological optical range MOR = 3/µs) of 7.5 m (respectively 36 m), still assuming a
homogeneous, mostly scattering medium (µs � µ).

[I] [II]

Figure 5.7: [I] Illustration of the four-bucket temporal sampling of a signal. I0 stands for the average
intensity, wheras A denotes the amplitude of the modulation. [II] Contour plot of the logarithm of
the gain Gbf expressed in Eq. (5.6) for range σ/µ ∈ [1, 100] and ω/µc ∈ [0.01, 90], with anisotropy
factor g = 0. The inset shows a zoomed-in section of the plot where the effect of the cosine term is
clearly visible. The condition of Eq. (5.7) for expecting a gain is displayed as the black dashed line.
The diffusion approximation remains valid in the unshaded region.

In addition to these interesting indications about the feasibility of ballistic photon filtering using
intensity-modulated light, we also studied the optimal modulation frequency for parameter estima-
tion in scattering media/tissues. This issue is of great interest in the biomedical imaging domain,
since estimating and imaging the scattering parameters makes it possible to produce inhomogeneity
maps revealing internal structures or inclusions in the biological tissues. By deriving the Fisher infor-
mation matrix (and hence the corresponding Cramer-Rao lower bounds on estimation variance) for
the estimation of the scattering parameters (see [Pan16a], AA II-4), we analytically demonstrated the
existence of an optimal modulation frequency, which had already been predicted through numerical
simulations, and observed experimentally. This optimal modulation frequency is shown to be solely
a function of optical penetration depth δ and the source-detector distance r through

ωopt = µc

√
2

R4
δ

√
1 +

√
1 + 4R2

δ +R2
δ

(
3 +

√
1 + 4R2

δ

)
. (5.8)

These theoretical results allowed us to evaluate the range of frequency at which one should oper-
ate to perform optimal scattering parameter estimation/imaging or ballistic filtering/imaging. Pro-
viding an analytical form of these optimal frequencies, these results are in agreement with previous
experiments and numerical simulations implementing more complex photon propagation models
(typically, Monte-Carlo solving of Boltzmann’s transport equation) [Tor03, Kim08]. The minimum
frequencies required for efficient ballistic filtering appear to be relatively high, and beyond the capa-
bilities of standard full-field imaging systems. This raised the question of developing an optical setup
able to answer such technological issue at relatively low cost and complexity. This issue is addressed
in the last section of this chapter, were we report the first modeling and experimental developments
of a full-field quadrature demodulating camera.
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5.3.3 Prototype of an all-optical full-field quadrature demodulating camera

As seen above, for typical distances encountered in aerial navigation (kilometric range) and for typi-
cal scattering parameters of fog, it turns out that the minimum modulation frequency required should
lie above 10 to 100 MHz. Such figures, which could have seemed unrealistic a few years ago, are now
perfectly conceivable, at least from the emitter side, with the availability of cost-effective and energy-
effective semiconductor LED lamps which can be potentially modulated at such high frequencies (in
the radiofrequency RF range) as evidenced by the development of LIFI64 communication systems
with low-power LEDs. To reach long range imaging capabilities, there is no major technological bot-
tleneck preventing from modulating high-power LEDs in the RF domain, or at least large arrays of
smaller LEDs. As a result, there is a strong need to design and develop an imaging system able to
demodulate and detect such high-frequency modulated sources in real-time and with limited cost
and bulk, which could be embarked in small aircrafts or drones to help in navigation/target de-
tection tasks. Demodulation of light at radio frequencies and higher poses practical challenges like
phase synchronization, timing jitters etc., and no existing technology is currently able to answer it
perfectly:

• Scanning single pixel imaging systems like LIDARs (LIght Detection And Ranging) – which
have been used since many decades as demodulation imagers and are still in active use in both
military and civil applications – do not offer full-field instantaneous demodulation;

• Modulated gain intensifier cameras (iCCDs) have also been tested as full-field demodulating
cameras. Indeed, the voltage controlled gain can act as a fast shutter that may be used to
demodulate multiple pixels at the same time [Pay08]. However, they require synchronization
with the emitter(s) and high voltage (4 kV - 8 kV) electronics. Moreover, they are bulky and
rather expensive for a very poor spatial resolution and dynamics;

• Time-of-Flight (ToF) cameras provide a compact and inexpensive means of correlating an op-
tical source signal with an internal reference electronic signal to estimate the intensity, am-
plitude and phase received at each pixel for frequencies typically between 5 to 30 MHz so far
[Muf11, Li14]. However, ToF cameras suffer from a number of limitations, in terms of maximum
operating frequency (limited commercially to 40 MHz until now) and frequency tunability (no
continuous tunability), low resolution (typically 320× 240 pixels) and dynamics. Moreover, ToF
cameras have different architecture and fabrication from standard cameras, which prevents the
use of conventional, high quality cameras.

The limitations of the above mentioned state-of-the-art techniques thus pave way for a techno-
logical advancement to fill the gap in the high frequency full-field optical demodulation area. Owing
to this, and within the course of the CEFIPRA project conducted in collaboration with Pr. Hema
Ramachandran, we recently proposed and patented an innovative system inspired from the well-
known quadrature (“I/Q”)demodulation approach in electronics [Pan16b]. Such an approach is ro-
bust to timing jitters and provides demodulation without a need of a synchronization signal. This last
advantage is especially important when the source and detector are far apart and a synchronization
signal may not be available. For example, when using modulated light for assisting in aircraft land-
ing and taxiing, the source on the ground and the on-board demodulating camera should preferably
be independent and demodulation be operated without synchronization. In a quadrature detection
scheme, both the received amplitude and the relative phase of the signal can be estimated without
need of a synchronized source. We very recently established the proof-of-concept of such a full-field
quadrature demodulation camera (referred to as ffQDC in the following) by designing and building
a preliminary low-frequency version, in the visible range, of a stand-alone all-optical modular device
which could be inserted in front of any conventional camera in order to offer full-field demodula-
tion of spatially distributed modulated sources, without requiring synchronization. The sketch of

64or VLC (visible light communication).
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the setup and a photograph of our initial prototype are given in Figs. 5.8-[I] and 5.8-[II]. The modu-
larity of the optical setup offers strong versatility and potential use in numerous domains, as a user
could choose between inexpensive web-cameras and HD cameras to EMCCDs and low-noise, high
dynamics cameras depending on the application area.

[I]

[II]

Figure 5.8: Schematic 3D view [I] and photograph [II] of the first prototype of a full-field quadrature
demodulating camera proposed and developed in the laboratory. At the heart of the system, an
EOM is driven by an external high voltage source, and appropriate beam separating prisms are used
to retrieve four images simultaneously with four distinct demodulation phases, allowing four-bucket
sampling to be performed instantaneously on a single detector.

Our technique, unlike in electrical shuttering approaches, first preserves the average incoming
optical power, and second, it does not require any image intensifier but only a basic camera. More-
over, the demodulation is performed directly in the optical domain, (it does not rely on specific elec-
tronics embedded in the pixel matrix as in ToF cameras). Thus our invention has the potential to be
portable with moderate power requirement. Most importantly, this new concept is not limited by the
camera speed and is able to handle demodulation frequencies ranging from a few Hz up to several
GHz, without requiring synchronization between the modulating and demodulating parts (source
and receiver). At the heart of the imaging system proposed lies an electro-optic (EO) modulator.
Based on a specific arrangement of a birefringent electro-optic crystal (such as Lithium Niobate) and
two crossed polarizers oriented at 45◦ from the crystal optical axes, it is possible to obtain a voltage-
controlled optical gate. The transfer function created is a cosine function of the phase induced in the
EOM by the input voltage. When a ramp voltage of Vπ × ωt/π is applied as a function of time t,
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the transfer function is oscillatory with an angular frequency of ω, which should correspond to the
angular frequency of the sources to be demodulated in the image. As a result, such a sinusoidal op-
tical transfer function operates a product demodulation of the incoming light passing through such
arrangement at angular frequency ω. With a simple modification of this optical configuration, it is
possible to detect simultaneously the quadrature component of the modulated light, still with a sin-
gle electro-optic crystal (to limit the requirements in electronics and optical components). Indeed, a
transfer function that is in quadrature with the above described configuration can be achieved eas-
ily by introducing a quarter-wave plate (QWP) before the exit polarizer. As a result, splitting the
beam at the exit of the EO crystal allows one to obtain the in-phase and in-quadrature information
simultaneously, by passing the first split beam into a polarizer and the second split beam through
the juxtaposition of a QWP and the exit polarizer. Finally, a last step of polarization-insensitive beam
splitting, provided by a Fresnel biprism arrangement, allows four images to be detected simultane-
ously on the same sensor. As a result, it can be shown that these four images sample the modulated
signals in each pixel of the image with four equidistant phases, allowing an equivalent “four-bucket
detection” to be achieved in a snapshot acquisition by spatial multiplexing [Pan16b].

A sketch of the optical setup enabling all-optical quadrature image demodulation is provided
in Fig. 5.8-[I]. The last stage of classical quadrature demodulating electronic circuits that consists of
temporal integration via a low-frequency low-pass filter is here automatically performed by the inte-
gration time of the camera itself. Any conventional camera with exposure time longer than the time
period of modulation can be used, thereby ensuring high versatility of the proposed optical setup
utilisable with any commercially available camera. It must be noted that in the presence of intense
background illumination, acquiring the four images as described above also enables the spurious
background illumination to be suppressed, along with quadrature demodulation of the signals of
interest in a single frame. Finally, the magnitude and phase of the detected signals in the image is
then directly obtained by squaring each image, and adding them together. In this case of single-shot
I/Q demodulation, the relative phase stability required between emitter and receiver is limited to
the integration time of a single frame on the camera, which can be of the order of 100 µs. This figure
is very interesting for the application aimed at in this project, namely the assistance to a pilot for
landing through obscured atmosphere. The relative motion of the airplane with respect to the light
beacon will indeed impose lowest time stability requirements on the demodulation.

Currently, preliminary experimental acquisitions and results (that will not be described here for
the sake of concision) obtained with our first prototype (see Fig. 5.8-[II]) allowed us to initiate the
proof-of-concept of the setup at low-frequency (200 kHz). This imaging setup requires an important
calibration step which has been developed within the PhD thesis of S. Panigrahi to compensate for
all experimental imperfections, amplitude/phase mismatches at each pixel, etc. As a function of the
exposure time, we were able to measure quality factors of about ∆f = 5 Hz for an exposure time of
200 ms, whereas ∆f ' 1Hz for an exposure time of about 1.5 s, for a central modulation frequency of
15 kHz. These figures appear to be compatible with efficient frequency discrimination with standard
camera exposure times. This new concept of a demodulating add-on for standard camera has been
patented in 2016 [Pan16b], and an article is in preparation about the optical design, calibration, and
first experimental validation of this full-field quadrature demodulating camera. The development
of this new camera constitutes an important perspective for future work, as will be more precisely
described in the next part of this document.

Conclusion

The contributions to imaging through turbid atmosphere that have been described in this chapter
showed that efficient contrast enhancement of an active polarized beacon could be performed at
low-cost, with a simple imaging device, and algorithmically efficient processing enabling real-time
capabilities. On the other hand, performing true ballistic filtering using intensity-modulated light
appears as a more difficult challenge, requiring high frequency operation, and thus the development
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of original imaging systems able to perform reference-free image demodulation at such high frequen-
cies. A concept of a novel imaging setup has been described to solve this technical issue, which is
currently being tested and validated in the laboratory.

Besides these achievements, this chapter has permitted to show how the interplay between the
physical modeling of light propagation in turbid media and of the image formation, the statistical
description of the noise properties, and some basic concepts of information theory made it possible
to design efficient processing strategies, and to derive relevant figures of merit for the design of
future experiments. Closing the loop, these theoretical results have been sucessfully validated on
experimental results in the first study using light polarization, whereas they motivated the design of
an original optical setup for image demodulation in quadrature at high speed in the second study.
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Chapter 6

MDL model selection for unsupervised
optical spectroscopy

The context of the work described in this last chapter is unsupervised optical absorption spectroscopy
in the infrared range for air pollution monitoring or noxious gas remote detection in the atmosphere.
This work has been initiated and mostly conducted during my post-doctoral stay at ONERA (the
French aerospace Lab) in Palaiseau, as a post-doctoral engineer. In a monitoring context, a sin-
gle instrument should ideally be able to detect and quantify numerous gas species, thus imposing
wide spectral range operability. Narrow-line tunable lasers have been used in multi-wavelength sys-
tems like DIfferential Absorption Lidars (DIAL) [Wei04, Qua97] and Tunable-Diode Laser Absorp-
tion Spectroscopy (TD-LAS) [Wys08], however, the recent development of mi-infrared instantaneous
broadband sources such as supercontinuum fiber lasers has motivated the design of experimental
supercontinuum lidar systems for wideband absorption spectroscopy [Kaa07, Bro08, Cez11, Cez14].

All these techniques provide multi-spectral absorption data that can be processed by standard
multivariate statistical analysis in order to characterize the gas mixture [War96, Yin06, Fad10], pro-
vided the number and nature of the chemical species are a priori known. In practice however, in
a monitoring system, the number, nature, and concentration of gas components are all likely to be
unknown. It is therefore necessary to design unsupervised methods enabling model selection (to
identify the gas components) and concentrations estimation simultaneously. As described in Chap-
ter 4, the MDL approach appears as a good candidate for designing unsupervised model selection
algorithms. During my post-doctoral stay at ONERA (French Aerospace Laboratory), I have thus
proposed to apply MDL techniques to optical absorption spectroscopy, and I benchmarked their
potential with respect to usual penalization criteria on simulated data. In the meanwhile, the devel-
opment of an experimental supercontinuum lidar facility (in the visible) initiated during my work at
ONERA has permitted to obtain first experimental validations on the technique on real data. More
recently, I have proposed a slightly modified version of the most efficent MDL approach for optical
spectroscopy (so called nMDL, see below) so as to provide control of the probability of false alarm
(Pfa), which can be very interesting for the implementation of such algorithm on a real monitoring
system. These contributions are briefly summarized in the remainder of this chapter.

6.1 Active optical absorption spectroscopy in the mid-infrared range

Let us first model an active optical absorption spectroscopy experiment, which is sketched in Fig. 6.1-
[I]. We shall denote by a M -dimensional column vector X the intensities detected on M spectral slits
(or wavelengths, not necessarily adjacent). In the presence of absorbing gas species, these spectral
measurements reveal specific absorption patterns depending on the nature and concentration of the
chemicals encountered by the probe light beam. Considering small absorption optical depths, the
Beer-Lambert’s absorption law can be linearized to obtain a simple linear regression model of the
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[I] [II]

Figure 6.1: [I] Sketch of an atmospheric optical absorption spectroscopy experiment. [II] Absorption
spectra of the 4 gas components present in the mixture (red curves) and of 4 other chemicals of the
spectral database (black and green curves).

following form:
Ỹ = b0 −H · c + n, (6.1)

where b0 denotes a known spectral baseline65, and where the absorption features depend on a K-
dimensional gas concentrations vector c, and a M × K matrix H = [h1,h2, . . . ,hK ] contains the
absorption spectra of the K gas species66, an example of which is represented in Fig. 6.1-[II].

For the sake of simplicity, the M -dimensional zero-mean random vector n modelling the ex-
perimental noise is assumed centered Gaussian with unknown variance, and with no correlation
between two distinct spectral slits. In that case, given a mixture model H, a simple and optimal
estimator for the concentration vector c is the minimum mean squared error (MMSE) estimator
ĉ = (HHT )−1HT (Ỹ − b0), which corresponds here to the maximum likelihood estimator (MLE).

Indeed, this estimator minimizes the Residual Sum of Squares RSS =
∥∥∥Ỹ−

(
b0 −Hĉ

)∥∥∥
2
, which can

be shown to be related to the loglikelihood of the observed data through the following equation

`Ỹ(Ỹ|H) = lnPỸ(Ỹ|H) = −M
2

lnRSS + ct, (6.2)

where ct denotes an additive constant independent of the measured data.

6.2 Penalized model selection using MDL principle

Although the estimation problem is trivial, the main issue in this data processing task is model se-
lection: how many gas components (regressors) are needed to describe the experimental data, and
which regressors have to be selected in the linear regression model of Eq.(6.1) to best explain the
observations ? Using the full spectral database of absorbing species in H would lead to misleading
and incorrect results, due to noise overfitting. For that purpose, many penalization methods can be
implemented, which basically consist of minimizing the sum of the RSS (data fidelity) and an ad-
ditive penalization term C. The most classical penalization criteria (so-called information criteria) are
the Akaike Information Criterion (AIC) [Aka74] (C(a)) = K) and its refinements such as AICc67 and
the Bayesian Information Criterion (BIC) C(b) = (K/2) lnM [Sch78]. Other information criteria can

65This baseline being the spectrum of the active illumination source, possibly modified by the spectral response of a
topographic or atmospheric reflecting target as depicted in Fig. 6.1-[I].

66Here we assumed that the hi are directly convolved by the spectral slit function of the system for the sake of notational
simplicity.

67In the case of samples of limited size, AIC is commonly replaced by the AICc: C(a) = (M+K)/2[M−(K+2)] [Han01].
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be found in abundance in the literature, suggesting that an appropriate “most efficient” criterion at
hand can be designed for a given statistical problem.

As described in Chapter 4, the MDL principle proposes a quite general and systematic framework
to interpret model complexity. Interestingly, under Gaussian hypothesis, the BIC corresponds to the
simplest form of the MDL: the so-called two-stage description length. Indeed, with a M -dimensional
data, the code length needed to describe a parametric modelHK with K components can be shown to
be equal to approximatelyK/2 lnM [Ris07, Han01], whereas one needs a codelength of−`(Ỹ;HK) =
RSS to encode the data residuals under the parametric model HK . More recently, sophisticated
forms of the MDL principle have been proposed, with a constant effort towards loosening the as-
sumptions held on the observed data. For instance, the mixture MDL [Ris89] uses a prior distribution
on the parameters vector in order to extend the MDL approach to an entire model class (e.g., family
of pdf’s) instead of restricting it to a single element of the class. Using Zellner’s “g-prior”, one ob-
tains the so-called gMDL [Han01] whose closed-form expression C(g) is recalled in [Fad10] (see AA
II-5, p. 211) and which was applied to spectroscopic data.

The most recent MDL version pushes forward the generalization of this principle to entire families
of distributions [Ris96], relying on the normalized maximized likelihood coding scheme [Sht87] which is
subtended by the notion of universal distributions [Cov91, Myu06]. This approach has proved efficient
in various practical problems [Han01, Grü05] and has shown several optimality properties [Ris07,
Han01]. The details of the implementation of the so-called nMDL penalization C(n) are given in
[Fad10, Ris07] and omitted here for the sake of conciseness. Though complex, the expressions of C(g)

and C(n) are analytically computable, hence offering fast processing capabilities.

[I] [II]

Figure 6.2: [I] Example of simulated noisy data (blue curve) superimposed with the true spectrum
(black curve). (b)-(f) Reconstructed signal after various steps of nMDL-based stepwise model selec-
tion (red dotted curve). [II] Histograms of the number of regressors selected by AICc, BIC, gMDL
and nMDL criteria for S-SNR=6.3 dB, (a): with a 4-component gas mixture; (b): without gas mixture.

Whatever be the penalization selected, solving the minimization issue to reach optimal model
selection is operated with a forward stepwise algorithm for the sake of computational speed, instead
of performing an exhaustive search among all possible models. At each step of the algorithm, the
regressor (i.e., the gas species) that most diminishes the criterion is included in the model, until
any further increase in the model complexity leads to an increase of the criterion68. An example of
iterative model selection is illustrated in Fig.6.2-[I].

To assess the performances of MDL based model selection in spectroscopy, we simulated a typi-
cal absorption spectroscopy experiment by numerically generating spectral measurements overM =
400 adjacent spectral slits, spanning between 3.2 and 3.6 µm, with a simulated instrumental spectral

68This algorithm could be further refined for future developments, for instance by including backward elimination steps
to reduce the risk of reaching local minima.
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6.2. Penalized model selection using MDL principle

Table 6.1: Percentage of correct models selected by the stepwise algorithm with four information
criteria (AICc, BIC, gMDL, nMDL) and for various values of the SNR (a), or for various amounts of
outliers measurements (b). The scenario simulated corresponds to a gas mixture with 4 components
among a database of 16 interfering species.

(a) (b)
S-SNR AICc BIC gMDL nMDL % outliers AICc BIC gMDL nMDL

20.3 dB 16.5 83.6 96.0 >99.9 [S-SNR=6.3 dB]
14.3 dB 18.6 83.7 92.8 99.9 0 % 17.7 83.1 80.8 98.9
9.8 dB 18.5 83.8 87.6 99.8 5 % 13.7 80.0 75.7 97.4
6.3 dB 17.7 83.1 80.8 98.9 20 % 7.3 62.2 53.6 90.1
4.3 dB 18.0 82.5 76.6 90.0
2.0 dB 16.4 74.0 63.5 53.5

resolution of 2.3 nm (Gaussian slit function) and flat baseline. We assumed propagation through a
gas mixture with 4 components, namely O3 (6000 ppm.m), NO2 (500 ppm.m), CH4 (70 ppm.m) and
H2CO (30 ppm.m), whose absorption features were significantly overlapping over the spectral band-
width considered (see Fig. 6.1-[II]). The full spectral database considered in this simulation contained
Kmax = 16 gas species, including the 4 gases of the “true” model and 12 spectrally interfering species
(such as H2O, N2O, NH3, HCl, etc.).

[I] [II]

Figure 6.3: [I] Blue curve: experimental supercontinuum absorption spectrum around 1.3-1.4 µm.
Red curves: nMDL-estimated models at iterations 1, 2 and 3 (final). [II] Percentage of correct model
selections as a function of the S-SNR with a simulated gas mixture, for two fixed values of Pfa for the
nMDL. Inset: Comparison of the Pfa obtained with BIC, gMDL, original nMDL and modified nMDL
with various fixed values of Pfa.

The results of the numerical simulations (N = 20 acquisitions, R = 104 Monte-Carlo realizations)
are summarized in Table 6.1.a, where the percentage of correct model selections is given for the 4
information criteria compared in this paper and for different SNRs. This table clearly reveals that in
the context of unsupervised spectral unmixing, the MDL approaches implemented outperform the
classical information criteria such as AICc or BIC, for reasonably high values of the SNR. The nMDL
is by far the most efficient criterion, with less than 2% erroneous selected models for reasonable SNR
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6.3. False alarm rate control with nMDL criterion

values (S-SNR ≥ 6.3 dB)69, while the standard BIC selects approximately 17% of erroneous models
and AICc is strongly inefficient. In Fig. 6.2-[II].a, the histogram of the selected model sizes is plotted
for the 4 criteria and for an S-SNR=6.3 dB, revealing that the AICc is prone to overfitting. The size
distributions for BIC and gMDL are very similar, with approximately 16% of overestimated models
(K = 5), but the nMDL appears very efficient at avoiding overfitting, with only 1% of overestimated
selections and 0.4% of selections with only K = 3 components. This tendency to enforce sparse
models had already been observed in previous implementations of nMDL in other application fields
[Ris07], and seems interesting in the context of absorption spectroscopy, as it decreases the probabil-
ity of erroneously detecting a gas component in excess, and consequently strengthens the confidence
in the components selected with nMDL. This behavior remains valid in the situation where no ab-
sorption occurred on the optical beam (i.e., null model), which is represented in Fig. 6.2-[II].b. With
approximately 99% of correct models, the gMDL criterion leads to the lowest probability of false gas
detection (probability of false alarm) Pfa ' 1 − 0.99 = 1%, whereas the nMDL criterion appears at
first sight less efficient with a Pfa ' 6.5%.

The promising capabilities of nMDL to operate efficient unsupervised model selection was con-
firmed by its robustness to outliers measurements. Indeed, in practical situations of in-field experi-
ments, measurement artifacts may exist, that were simulated here by averaging among the N = 20
independent measures a varying proportion of outliers, corresponding to the simulated noisy ab-
sorption spectrum of a single interferent gas species (HCl [80 ppm.m]). Once again, it can be clearly
seen from Table 6.1.b that the nMDL criterion outperforms the other methods, with still 90% of correct
models for a significant amount of outliers (20%). Moreover, contrarily to the other criteria imple-
mented, the inclusion of 20% of outliers did not significantly influence the Pfa obtained with nMDL
(approximately 1− 0.933 ' 6, 7%).

The outcomes of this theoretical and numerical study have motivated the use of the nMDL model
selection algorithm in the first experimental implementation of optical spectroscopy at ONERA using
supercontinuum sources. An example of acquisition and efficient model selection with the stepwise
algorithm presented above in given in Fig. 6.3-[I] in the simple situation of two interfering gases
[Cez11].

6.3 False alarm rate control with nMDL criterion

In a more recent theoretical work [Fad15] (see AA II-6, p. 222), I have investigated the possibility
of slightly modifying the nMDL criterion by adding a supplementary parameter in the selection
stage in order to gain tunability on the probability of false alarm. The main objective would be to
control the tendency of the automated model selection procedure to include at least one gas in the
model, i.e., rejecting the null hypothesis in which no gas is present. Such a feature can be of great
interest in practice in the context of unsupervised optical spectroscopy for air pollution monitoring
and detection or noxious gas detection.

For that purpose, I have proposed a modified version of the nMDL criterion, which is not reported
here for the sake of concision, but which is detailed in [Fad15]. It turns out that the modified nMDL
criterion for discrimination between null/non-null hypotheses leads to the following decision rule:

−`Ỹ(Ỹ;HK) + C′(n)
HK

H0

≷
H1

−`Ỹ(Ỹ;H0) + C′(n)
H0

+ δPfa

⇔ ∆C′(n)
(Ỹ,M,K)

4
=−`glrt(Ỹ) + C′(n)

HK
− C′(n)

H0

H0

≷
HK

δPfa,

(6.3)

where the additional parameter is denoted δPfa. The second formulation of the decision rule illus-

69The S-SNR denotes a spectral signal-to-noise ratio, quantifying the amount of noise with respect to the of the “strength”
of the absorption features in the mixture, and defined such that S-SNR2 =

∥∥Hc
∥∥2
/Mσ2.
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trates that the nMDL criterion rejects the null hypothesis H0 (no gas mixture) if ∆C′(n)(`glrt,M,K) is
lower than a threshold δPfa that fixes the probability of false alarm. Indeed, with such formulation,
the thresholded nMDL criterion can be seen as an equivalent implementation of a generalized likelihood
ratio test (glrt) which is optimal in the Neyman-Pearson sense [The89]. Indeed, taking the logarithm
of the likelihood ratio yields `glrt(Ỹ) = −`Ỹ(Ỹ;HK) + `Ỹ(Ỹ;H0) = lnPỸ(Ỹ;H0)/PỸ(Ỹ;HK). In
[Fad15], we detail how the threshold δPfa can be determined as a function of the desired Pfa and of
the pdf of the data.

Let us now simply summarize here some simulation results that demonstrate the ability of this
modified nMDL to operate efficient model selection while offering false alarm control capability.
With some necessary precautions in the implementation that are detailed in [Fad15], numerical re-
sults have been obtained on the same simulated data as presented in Fig. 6.2-[I], which are presented
in Fig. 6.3-[II]. These results allow us to check the validity of the proposed approach for Pfa control:
indeed, it can be clearly seen in the inset of Fig. 6.3-[II] that tuning the parameter δPfa allows one
to adjust the Pfa of the nMDL selection criterion at will. In addition, the main plot of Fig. 6.3-[II]
confirms the efficiency of the nMDL criterion for sparse model selection for sufficiently high values
of the S-SNR (typically > 5 dB). The comparison with the gMDL approach shows that the nMDL is
less sensitive to a degradation of the SNR, and is thus better adapted for practical implementation in
real field scenarios.

Conclusion

The work described in this last chapter has permitted to reveal the interest of unsupervised model
selection procedure using most advanced refinements of the MDL principle. Namely, the nMDL
approach has proved very efficient in selecting sparse models in unsupervised wideband optical ab-
sorption spectroscopy, while showing significant robustness with respect to the presence of measure-
ment outliers. Even though the criterion requires little more involved calculations, it can be readily
computed from an analytical expression, hence allowing fast processing, especially when using an
iterative approach such as the stepwise implementation proposed. Lastly, this criterion can be easily
modified so as to ensure direct control of the probability of false alarm. This potentiality offers great
flexibility of use for practical real-field implementations of unsupervised optical spectroscopy, which
remains a current environmental issue for air pollution monitoring and noxious gas detection for
defence applications.
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General conclusion

THROUGHOUT this document, I have made my best to present a condensed and structured vision
of my scientific contribution in the domain of unconventional imaging. I hope that in spite of

the apparent diversity of the studies conducted, and of the aspects studied (physical and statistical
optics, instrumentation, algorithmics, information processing), the coherence of the whole research
project conducted during the last ten years distinctly reveals itself while reading this manuscript.
More precisely, I wish that it will be apparent to the reader that the originality, the coherence and the
fertility of the work conducted so far in the Optics and Photonics Departement (DOP) of the IPR lie
in the permanent exchange between three domains of interest, namely (i) physical interpretation; (ii)
design of original systems that match specific uses; and (iii) rigorous search for optimum statistical
processing within the framework of information theory.

The willpower to develop a dynamic and original research axis in advanced imaging within the
Optics and Photonics Department of the IPR was supported in 2010 by my recruitment as an assis-
tant professor. This position provided me reduced teaching duty, as I was holder of a “CNRS chair”
during the first five years, and of CNRS “delegations” for the next two years. Since then, I had the op-
portunity to benefit from the research environment of the DOP, which is very conducive to scientific
exchanges between research axes (notably with microwave photonics or vectorial lasers). Such ad-
vantageous work conditions as a young researcher at the University have allowed me to devote my-
self to the success of this project. Once cleared the initial difficulties and delays inherent to the birth of
new research activities in a laboratory (experimental rooms layout, search for fundings, equipement
purchases, valorization/patenting, building of setups, collaborations and recruitments,. . . ), these ef-
forts have been rewarded by the present existence of various original research axes (at a national,
or even international scale for some of them). Today, material and scientific means (equipment, lab-
oratory rooms, collaborations, fundings,. . . ) are at the disposal of these research axes, which turns
the “Advanced imaging” axis into an enduring and recognized research field of the Optics and Pho-
tonics Department of the IPR. In the near future, this research domain will be at the heart of one
the main axes of the Institut Foton, which results, starting from July 2017, from the merging of the
Optics and Photonics Department of the IPR, and the former teams of the Foton laboratory, namely
Foton-SP (Photonic Systems, Lannion, ENSSAT) and Foton-OHM (Optoelectronics, Heteroepitaxy
and Materials, Rennes, INSA).

Scientific perspectives
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[Jia05] Jiao S., Todorović M., Stoica G. and Wang L.V. “Fiber-based polarization-sensitive mueller
matrix optical coherence tomography with continuous source polarization modulation.”
Applied optics, 44 (26), pp. 5463–5467 (2005).

[Jon47] Jones R.C. “A new calculus for the treatment of optical systemsv. a more general formula-
tion, and description of another calculus.” J. Opt. Soc. Am., 37 (2), pp. 107–110 (1947).

[Jon48] Jones R.C. “A new calculus for the treatment of optical systems. vii. properties of the n-
matrices.” J. Opt. Soc. Am., 38 (8), pp. 671–685 (1948).

[Kaa07] Kaasalainen S., Lindroos T. and Hyyppa J. “Toward hyperspectral lidar: Measurement of
spectral backscatter intensity with a supercontinuum laser source.” IEEE Geoscience and
Remote Sensing Letters, 4 (2), pp. 211–215 (2007).

86

https://sites.google.com/site/ilsapproaches/


[Kam81] Kaminow I.P. “Polarization in optical fibers.” IEEE Journal of Quantum Electronics, 17, pp.
15–22 (1981).

[Kar05] Kartazayeva S., Ni X. and Alfano R. “Backscattering target detection in a turbid medium by
use of circularly and linearly polarized light.” Optics letters, 30 (10), pp. 1168–1170 (2005).

[Kim87] Kim K., Mandel L. and Wolf E. “Relationship between Jones and Mueller matrices for
random media.” J. Opt. Soc. Am. A, 4 (3), pp. 433–437 (1987).

[Kim08] Kim H.K., Netz U.J., Beuthan J. and Hielscher A.H. “Optimal source-modulation frequen-
cies for transport-theory-based optical tomography of small-tissue volumes.” Optics Ex-
press, 16 (22), pp. 18082–18101 (2008).

[Kli12] Kliger D.S. and Lewis J.W. Polarized light in optics and spectroscopy. Elsevier (2012).

[Kor05] Korotkova O. and Wolf E. “Generalized Stokes parameters of random electromagnetic
beams.” Opt. Lett., 30 (2), pp. 198–200 (2005).

[Kud12] Kudenov M.W., Escuti M.J., Hagen N., Dereniak E.L. and Oka K. “Snapshot imaging
mueller matrix polarimeter using polarization gratings.” Opt. Lett., 37 (8), pp. 1367–1369
(2012).

[Kum12] Kumar S., Purwar H., Ossikovski R., Vitkin I.A. and Ghosh N. “Comparative study of dif-
ferential matrix and extended polar decomposition formalisms for polarimetric characteri-
zation of complex tissue-like turbid media.” Journal of Biomedical Optics, 17 (10), p. 105006
(2012).

[Kup14] Kupinski M., Chipman R. and Clarkson E. “Relating the statistics of the angle of linear
polarization to measurement uncertainty of the stokes vector.” Optical Engineering, 53 (11),
p. 113108 (2014).

[LaC11] LaCasse C.F., Chipman R.A. and Tyo J.S. “Band limited data reconstruction in modulated
polarimeters.” Optics express, 19 (16), pp. 14976–14989 (2011).

[Lak12] Lakshminarayanan V., Calvo M.L. and Alieva T. Mathematical Optics: Classical, Quantum,
and Computational Methods. CRC Press (2012).

[Lee01] Lee J.S., Grunes M.R. and Pottier E. “Quantitative comparison of classification capability:
Fully polarimetric versus dual and single-polarization sar.” IEEE Transactions on Geoscience
and Remote Sensing, 39 (11), pp. 2343–2351 (2001).

[Lee09] Lee J.S. and Pottier E. Polarimetric radar imaging: from basics to applications. CRC Press (2009).

[Lég75] Léger D., Mathieu E. and Perrin J.C. “Optical surface roughness determination using
speckle correlation technique.” Appl. Opt., 14, pp. 872–877 (1975).

[Leh95] Lehman M., Pomarico J.A. and Torroba R.D. “Digital speckle pattern interferometry applied
to a surface roughness study.” Optical Engineering, 34, pp. 1148–1152 (1995).

[LG15] Le Gratiet A., Rivet S., Dubreuil M. and Le Grand Y. “100 khz mueller polarimeter in
reflection configuration.” Optics letters, 40 (4), pp. 645–648 (2015).

[Li02] Li J., Yao G. and Wang L.V. “Degree of polarization in laser speckles from turbid media:
implication in tissue optics.” Journal of Biomedical Optics, 7, pp. 307–312 (2002).

[Li14] Li L. “Time-of-flight camera–an introduction.” Tech. Rep. SLOA190B, Texas Instruments
Dallas, Tex, USA (2014).

87



[Lip15] Lippok N., Villiger M. and Bouma B.E. “Degree of polarization (uniformity) and depo-
larization index: unambiguous depolarization contrast for optical coherence tomography.”
Optics letters, 40 (17), pp. 3954–3957 (2015).

[Liu14] Liutkus A., Martina D., Popoff S., Chardon G., Katz O., Lerosey G., Gigan S., Daudet L.
and Carron I. “Imaging with nature: Compressive imaging using a multiply scattering
medium.” Scientific reports, 4, p. 5552 (2014).

[Lou01] Lounesto P. Clifford algebras and spinors. Cambridge University Press (2001).

[Lu96] Lu S.Y. and Chipman R.A. “Interpretation of mueller matrices based on polar decomposi-
tion.” J. Opt. Soc. Am. A, 13 (5), pp. 1106–1113 (1996).

[Luo08] Luo H., Oka K., Edward D., Kudenov M., Schiewgerling J. and Dereniak E. “Compact and
miniature snapshot imaging polarimeter.” Applied optics, 47 (24), pp. 4413–4417 (2008).

[Mag14] Magnusson R., Birch J., Sandström P., Hsiao C.L., Arwin H. and Järrendahl K. “Optical
mueller matrix modeling of chiral al x in 1- x n nanospirals.” Thin Solid Films, 571, pp.
447–452 (2014).

[Man15] Manhas S., Vizet J., Deby S., Vanel J.C., Boito P., Verdier M., De Martino A. and Pagnoux
D. “Demonstration of full 4× 4 mueller polarimetry through an optical fiber for endoscopic
applications.” Optics express, 23 (3), pp. 3047–3054 (2015).

[Mar97] Martelli F., Contini D., Taddeucci A. and Zaccanti G. “Photon migration through a turbid
slab described by a model based on diffusion approximation. I. Theory.” Appl. Opt., 36, pp.
4587–4599 (1997).

[Mar03] Marinopoulos A.G., Reining L., Rubio A. and Vast N. “Optical and loss spectra of carbon
nanotubes: Depolarization effects and intertube interactions.” Phys. Rev. Lett., 91, p. 046402
(2003).

[Mer08] Meriaudeau F., Ferraton M., Stolz C., Morel O. and Bigué L. “Polarization imaging for
industrial inspection.” In Electronic Imaging 2008, pp. 681308–681308. International Society
for Optics and Photonics (2008).

[Mor03] Morales J.A. and Navarro E. “Minkowskian description of polarized light and polarizers.”
Physical Review E, 67 (2), p. 026605 (2003).

[MR11] Macias-Romero C., Foreman M. and Török P. “Spatial and temporal variations in vector
fields.” Optics Express, 19 (25), pp. 25066–25076 (2011).

[Muf11] Mufti F. and Mahony R. “Statistical analysis of signal measurement in time-of-flight cam-
eras.” ISPRS journal of photogrammetry and remote sensing, 66 (5), pp. 720–731 (2011).

[Muj04] Mujumdar S. and Ramachandran H. “Imaging through turbid media using polarization
modulation: dependence on scattering anisotropy.” Optics communications, 241 (1), pp. 1–9
(2004).

[Mul04] Mullen L., Laux A., Concannon B., Zege E.P., Katsev I.L. and Prikhach A.S. “Amplitude-
modulated laser imager.” Applied optics, 43 (19), pp. 3874–3892 (2004).

[Myu06] Myung J.I., Navarro D.J. and Pitt M.A. “Model selection by normalized maximum likeli-
hood.” Journal of Mathematical Psychology, 50 (2), pp. 167–179 (2006).

[Nan09] Nan Z., Xiaoyu J., Qiang G., Yonghong H. and Hui M. “Linear polarization difference
imaging and its potential applications.” Applied optics, 48 (35), pp. 6734–6739 (2009).

88



[Nas14] Nassif R., Nader C.A., Afif C., Pellen F., Le Brun G., Le Jeune B. and Abboud M. “Detec-
tion of golden apples’ climacteric peak by laser biospeckle measurements.” Applied optics,
53 (35), pp. 8276–8282 (2014).

[Oka03] Oka K. and Kaneko T. “Compact complete imaging polarimeter using birefringent wedge
prisms.” Opt. Express, 11 (13), pp. 1510–1519 (2003).

[O’l92] O’leary M., Boas D., Chance B. and Yodh A. “Refraction of diffuse photon density waves.”
Physical Review Letters, 69 (18), p. 2658 (1992).

[OQ11a] Ortega-Quijano N. and Arce-Diego J.L. “Depolarizing differential mueller matrices.” Optics
Letters, 36 (13), pp. 2429–2431 (2011).

[OQ11b] Ortega-Quijano N. and Arce-Diego J.L. “Mueller matrix differential decomposition.” Optics
Letters, 36 (10), pp. 1942–1944 (2011).

[OQ12] Ortega-Quijano N., Haj-Ibrahim B., Garcia-Caurel E., Arce-Diego J.L. and Ossikovski R.
“Experimental validation of mueller matrix differential decomposition.” Optics Express,
20 (2), pp. 1151–1163 (2012).

[OQ14] Ortega-Quijano N., Fanjul-Vélez F. and Arce-Diego J.L. “Polarimetric study of birefringent
turbid media with three-dimensional optic axis orientation.” Biomedical Optics Express, 5 (1),
pp. 287–292 (2014).

[OQ15a] Ortega-Quijano N., Fade J., Schaub E., Parnet F. and Alouini M. “Full characterization of
dichroic samples from a single measurement by circular polarization orthogonality break-
ing.” Optics letters, 40 (7), pp. 1270–1273 (2015).

[OQ15b] Ortega-Quijano N., Fanjul-Vélez F. and Arce-Diego J.L. “Physically meaningful depolariza-
tion metric based on the differential mueller matrix.” Optics letters, 40 (14), pp. 3280–3283
(2015).

[OQ16] Ortega-Quijano N., Fade J., Roche M., Parnet F. and Alouini M. “Orthogonality-breaking
sensing model based on the instantaneous stokes vector and the mueller calculus.” JOSA
A, 33 (4), pp. 434–446 (2016).

[OQ17a] Ortega-Quijano N., Fade J. and Alouini M. “Coherent light source with fully controllable
state and degree of polarization.” Patent EP17165383.5 (2017).

[OQ17b] Ortega-Quijano N., Fade J., Parnet F. and Alouini M. “Generation of coherent light beam
with precise and fast dynamic control of the state and degree of polarization.” submitted to
Opt. Lett. (2017).

[Oss10] Ossikovski R. “Alternative depolarization criteria for mueller matrices.” JOSA A, 27 (4),
pp. 808–814 (2010).

[Oss11] Ossikovski R. “Differential matrix formalism for depolarizing anisotropic media.” Optics
Letters, 36 (12), pp. 2330–2332 (2011).

[Oss14a] Ossikovski R. and Arteaga O. “Statistical meaning of the differential mueller matrix of
depolarizing homogeneous media.” Optics Letters, 39 (15), pp. 4470–4473 (2014).

[Oss14b] Ossikovski R. and Devlaminck V. “General criterion for the physical realizability of the
differential mueller matrix.” Optics Letters, 39 (5), pp. 1216–1219 (2014).

[Oss15] Ossikovski R. and De Martino A. “Differential mueller matrix of a depolarizing homoge-
neous medium and its relation to the mueller matrix logarithm.” JOSA A, 32 (2), pp. 343–348
(2015).

89



[Pan15a] Panigrahi S., Fade J. and Alouini M. “Adaptive polarimetric image representation for con-
trast optimization of a polarized beacon through fog.” Journal of Optics, 17 (6), p. 065703
(2015).

[Pan15b] Panigrahi S., Fade J. and Alouini M. “Optimal contrast enhancement in long distance snap-
shot polarimetric imaging through fog.” In Proc. SPIE, vol. 9613, p. 96130V (2015).

[Pan16a] Panigrahi S., Fade J., Ramachandran H. and Alouini M. “Theoretical optimal modulation
frequencies for scattering parameter estimation and ballistic photon filtering in diffusing
media.” Optics express, 24 (14), pp. 16066–16083 (2016).

[Pan16b] Panigrahi S., Ramachandran H., Fade J. and Alouini M. “Optical receiver for full-field
optical quadrature demodulation.” Patent PCT/FR2016/051086 (2016).

[Par16] Parnet F., Fade J. and Alouini M. “Orthogonality breaking through few-mode optical fiber.”
Applied optics, 55 (10), pp. 2508–2520 (2016).

[Par17] Parnet F., Fade J., Ortega-Quijano N., Frein L., Alouini M. et al. “Free-space active polarimet-
ric imager operating at 1.55 µm by orthogonality breaking sensing.” Optics Letters, 42 (4),
pp. 723–726 (2017).

[Pat89] Patterson M.S., Chance B. and Wilson B.C. “Time resolved reflectance and transmittance
for the non-invasive measurement of tissue optical properties.” Applied Optics, 28 (12), pp.
2331–2336 (1989).

[Pay08] Payne A.D., Dorrington A.A., Cree M.J. and Carnegie D.A. “Characterizing an image in-
tensifier in a full-field range imaging system.” IEEE Sensors Journal, 8 (11), pp. 1763–1770
(2008).

[Pee10] Peeters W.H., Moerman J.J.D. and van Exter M.P. “Observation of two-photon speckle pat-
terns.” Phys. Rev. Lett., 104, p. 173601 (2010).

[PF92] Pellat-Finet P. and Bausset M. “What is common to both polarization optics and relativistic
kinematics?” Optik, 90 (3), pp. 101–106 (1992).

[Pie11] Pierangelo A., Benali A., Antonelli M.R., Novikova T., Validire P., Gayet B. and De Martino
A. “Ex-vivo characterization of human colon cancer by mueller polarimetric imaging.”
Optics Express, 19 (2), pp. 1582–1593 (2011).

[Pop10] Popoff S.M., Lerosey G., Carminati R., Fink M., Boccara A.C. and Gigan S. “Measuring the
transmission matrix in optics: An approach to the study and control of light propagation in
disordered media.” Phys. Rev. Lett., 104, p. 100601 (2010).

[Pou12] Pouget L., Fade J., Hamel C. and Alouini M. “Polarimetric imaging beyond the speckle
grain scale.” Applied Optics, 51 (30), pp. 7345–7356 (2012).

[Qi13] Qi J., Ye M., Singh M., Clancy N.T. and Elson D.S. “Narrow band 3× 3 mueller polarimetric
endoscopy.” Biomedical optics express, 4 (11), pp. 2433–2449 (2013).

[Qua97] Quagliano J.R., Stoutland P.O., Petrin R.R., Sander R.K., Romero R.J., Whitehead M.C.,
Quick C.R., Tiee J.J. and Jolin L.J. “Quantitative chemical identification of four gases in
remote infrared (9-11 µm) differential absorption lidar experiments.” Appl. Opt., 36 (9), pp.
1915–1927 (1997).

[Rag13] Raguet H., Fadili J. and Peyre G. “A Generalized Forward-Backward Splitting.” SIAM
Journal on Imaging Sciences, 6 (3), pp. 1199–1226 (2013).

90



[Ram98] Ramachandran H. and Narayanan A. “Two-dimensional imaging through turbid media
using a continuous wave light source.” Optics Communications, 154 (5), pp. 255–260 (1998).

[Ram10] Ramos A.A. and Ariste A.L. “Compressive sensing for spectroscopy and polarimetry.”
Astronomy & Astrophysics, 509, p. A49 (2010).

[Ram16] Ramachandran H., Bretenaker F., Fade J. and Alouini M. “System and method for naviga-
tion assistance in scattering environment.” Patent EP14305269.4 (2016).

[Réf04] Réfrégier P., Goudail F., Chavel P. and Friberg A. “Entropy of partially polarized light and
application to statistical processing techniques.” J. Opt. Soc. Am. A, 21, pp. 2124–2134 (2004).

[Réf05a] Réfrégier P. “Polarization degree of optical waves with non gaussian probability density
functions: Kullback relative entropy-based approach.” Opt. Lett., 30 (10), pp. 1090–1092
(2005).

[Réf05b] Réfrégier P. and Goudail F. “Invariant degrees of coherence of partially polarized light.”
Opt. Express, 13 (16), pp. 6051–6060 (2005).

[Réf07a] Réfrégier P. “Symmetries in coherence theory of partially polarized light.” J. of Math. Physics,
48 (3), p. 033303 (2007).

[Réf07b] Réfrégier P., Fade J. and Roche M. “Estimation precision of the degree of polarization from
a single speckle intensity image.” Opt. Lett., 32 (7), pp. 739–741 (2007).

[Ric00] Richman I. “Real time imaging system and method for use in aiding a landing operation of
an aircraft in obscured weather conditions.” US Patent 6,119,055 (2000).

[Ric09] Richert M., Orlik X. and De Martino A. “Adapted polarization state contrast image.” Optics
express, 17 (16), pp. 14199–14210 (2009).

[Ris78] Rissanen J. “Modeling by shortest data description.” Automatica, 14, pp. 465–471 (1978).

[Ris89] Rissanen J. Stochastic Complexity in Statistical Inquiry, Series in Computer Science, vol. 15.
World Scientific, Singapore (1989).

[Ris96] Rissanen J. “Fisher information and stochastic complexity.” IEEE Trans. Inform. Theory, 42,
pp. 48–54 (1996).

[Ris07] Rissanen J. Information and Complexity in Statistical Modeling. Springer, New-York (2007).

[Roc07] Roche M., Fade J. and Réfrégier P. “Parametric estimation of the square degree of polariza-
tion from two intensity images degraded by fully developed speckle noise.” J. Opt. Soc. Am.
A, 24, pp. 2719–2727 (2007).

[Rog11] Rogers P., Kang T., Zhou T., Kotelyanskii M. and Sirenko A. “Mueller matrices for
anisotropic metamaterials generated using 4× 4 matrix formalism.” Thin Solid Films, 519 (9),
pp. 2668–2673 (2011).

[Rou17] Rousseau D., Berthelon X. and Frindel C. “BRP imaging a multicomponent speckle imag-
ing.” In Journée Imagerie Optique Non-Conventionnelle (2017).

[Row95] Rowe M.P., Pugh E.N., Tyo J.S. and Engheta N. “Polarization-difference imaging : a bio-
logically inspired technique for observation through scattering media.” Opt. Lett., 20, pp.
608–610 (1995).

[San97] Sankaran V., Schnenberger K., Walsh J.T. and Maitland D.J. “Polarization discrimination of
coherently propagating light in turbid media.” Appl. Opt., 38 (19), pp. 4252–4261 (1997).

91



[Sch78] Schwartz G. “Estimating the dimension of a model.” Annals of Statistics, 9, pp. 461–464
(1978).

[Sch92] Schmitt J., Gandjbakhche A. and Bonner R. “Use of polarized light to discriminate short-
path photons in a multiply scattering medium.” Applied optics, 31 (30), pp. 6535–6546 (1992).

[Sch97] Schotland J.C. “Continuous-wave diffusion imaging.” JOSA A, 14 (1), pp. 275–279 (1997).

[Sch98] Schilders S., Gan X. and Gu M. “Effect of scatterer size on microscopic imaging through
turbid media based on differential polarisation-gating.” Optics communications, 157 (1), pp.
238–248 (1998).

[Sch04] Schechner Y. and Karpel N. “Clear underwater vision.” Proceedings of the 2004 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., 1
(2004).

[Sch14] Schaub E., Fade J., Ortega-Quijano N., Hamel C. and Alouini M. “Polarimetric contrast
microscopy by orthogonality breaking.” Journal of Optics, 16 (12), p. 122001 (2014).

[Set08] Setälä T., Shevchenko A., Kaivola M. and Friberg A.T. “Polarization time and length for
random optical beams.” Physical Review A, 78 (3), p. 033817 (2008).

[She06] Sheng P. Introduction to wave scattering, localization and mesoscopic phenomena, 2nd ed. Springer
(2006).

[Sht87] Shtar’kov Y.M. “Universal sequential coding of single messages.” Problemy Peredachi Infor-
matsii, 23 (3), pp. 3–17 (1987).

[Sim82] Simon R. “The connection between mueller and jones matrices of polarization optics.”
Optics Communications, 42 (5), pp. 293–297 (1982).

[Sim10] Simon B., Simon S., Mukunda N., Gori F., Santarsiero M., Borghi R. and Simon R. “A com-
plete characterization of pre-mueller and mueller matrices in polarization optics.” JOSA A,
27 (2), pp. 188–199 (2010).

[Sko01] Skolnik M.I. Introduction to Radar Systems : Third Edition. Mc Graw-Hill (2001).

[Sni14] Snik F., Craven-Jones J., Escuti M., Fineschi S., Harrington D., De Martino A., Mawet D.,
Riedi J. and Tyo J.S. “An overview of polarimetric sensing techniques and technology
with applications to different research fields.” In SPIE Sensing Technology+ Applications,
pp. 90990B–90990B. International Society for Optics and Photonics (2014).

[Sol13] Soldevila F., Irles E., Durán V., Clemente P., Fernández-Alonso M., Tajahuerce E. and Lancis
J. “Single-pixel polarimetric imaging spectrometer by compressive sensing.” Applied Physics
B, 113 (4), pp. 551–558 (2013).

[Sor09] Sorrentini J., Zerrad M. and Amra C. “Statistical signatures of random media and their
correlation to polarization properties.” Opt. Lett., 34 (16), pp. 2429–2431 (2009).

[Sor11] Sorrentini J., Zerrad M., Soriano G. and Amra C. “Enpolarization of light by scattering
media.” Opt. Express, 19 (22), pp. 21313–21320 (2011).

[Spr72] Sprague R.A. “Surface roughness measurement using white light speckle.” Appl. Opt., 11,
pp. 2811–2817 (1972).

[Stu12] Studer V., Bobin J., Chahid M., Mousavi H.S., Candes E. and Dahan M. “Compressive flu-
orescence microscopy for biological and hyperspectral imaging.” Proceedings of the National
Academy of Sciences, 109 (26), pp. E1679–E1687 (2012).

92



[Sud16] Sudarsanam S., Mathew J., Panigrahi S., Fade J., Alouini M. and Ramachandran H. “Real-
time imaging through strongly scattering media: seeing through turbid media, instantly.”
Scientific reports, 6, p. 25033 (2016).

[Ter03] Tervo J., Setälä T. and Friberg A.T. “Degree of coherence for electromagnetic fields.” Opt.
Express, 11, pp. 1137–1142 (2003).

[Ter09] Tervo J., Setälä T., Roueff A., Réfrégier P. and Friberg A.T. “Two-point stokes parameters:
interpretation and properties.” Opt. Lett., 34 (20), pp. 3074–3076 (2009).

[The89] Therrien C.W. Decision, Estimation, and Classification. John Wiley and Sons, Inc., New York
(1989).

[The13] Thekkek N., Pierce M.C., Lee M.H., Polydorides A.D., Flores R.M., Anandasabapathy S. and
Richards-Kortum R.R. “Modular video endoscopy for in vivo cross-polarized and vital-dye
fluorescence imaging of barrett’s-associated neoplasia.” Journal of biomedical optics, 18 (2),
pp. 026007–026007 (2013).

[Tin96] Tingerben J. Astronomical polarimetry. Cambridge University Press (1996).

[Tor03] Toronov V., D’Amico E., Hueber D., Gratton E., Barbieri B. and Webb A. “Optimization
of the signal-to-noise ratio of frequency-domain instrumentation for near-infrared spectro-
imaging of the human brain.” Optics Express, 11 (21), pp. 2717–2729 (2003).

[Tow01] Tower T.T. and Tranquillo R.T. “Alignment maps of tissues: Ii. fast harmonic analysis for
imaging.” Biophysical journal, 81 (5), pp. 2964–2971 (2001).

[Tro93] Tromberg B.J., Svaasand L.O., Tsay T.T. and Haskell R.C. “Properties of photon density
waves in multiple-scattering media.” Applied optics, 32 (4), pp. 607–616 (1993).

[Tud15] Tudor T. “On a quasi-relativistic formula in polarization theory.” Optics Letters, 40 (5), pp.
693–696 (2015).

[Tyo02] Tyo J.S. “Design of optimal polarimeters: Maximization of snr and minimization of system-
atic errors.” Appl. Opt., 41, pp. 619–630 (2002).

[Tyo06] Tyo J.S., Goldstein D.L., Chenault D.B. and Shaw J.A. “Review of passive imaging polarime-
try for remote sensing applications.” Appl. Opt., 45, pp. 5453–5469 (2006).

[Van16] Vannier N., Goudail F., Plassart C., Boffety M., Feneyrou P., Leviandier L., Galland F. and
Bertaux N. “Comparison of different active polarimetric imaging modes for target detection
in outdoor environment.” Applied optics, 55 (11), pp. 2881–2891 (2016).

[Vil14] Villiger M. and Bouma B.E. “Practical decomposition for physically admissible differential
mueller matrices.” Optics Letters, 39 (7), pp. 1779–1782 (2014).

[Viz16] Vizet J., Manhas S., Tran J., Validire P., Benali A., Garcia-Caurel E., Pierangelo A., Martino
A.D. and Pagnoux D. “Optical fiber-based full mueller polarimeter for endoscopic imaging
using a two-wavelength simultaneous measurement method.” Journal of Biomedical Optics,
21 (7), p. 071106 (2016).

[Wag08] Wagadarikar A., John R., Willett R. and Brady D. “Single disperser design for coded aper-
ture snapshot spectral imaging.” Applied optics, 47 (10), pp. 44–51 (2008).

[Wan91] Wang L., Ho P. et al. “Ballistic 2-d imaging through scattering walls using an ultrafast optical
kerr gate.” Science, 253 (5021), p. 769 (1991).

93



[War96] Warren E.R. “Optimum detection of multiple vapor materials with frequency-agile lidar.”
Appl. Opt., 35 (21), pp. 4180–4193 (1996).

[Wat00] Watkins W.R., Tofsted D.H., CuQlock-Knopp V.G., Jordan J.B. and Merritt J.O. “Navigation
through fog using stereoscopic active imaging.” In Enhanced and Synthetic Vision 2000, vol.
SPIE-4023, pp. 20–28 (2000).

[Web10] Weber J., Calado V. and Van de Sanden M. “Optical constants of graphene measured by
spectroscopic ellipsometry.” Applied Physics Letters, 97, p. 091904 (2010).

[Wei04] Weibring P., Abrahamsson C., Sjöholm M., Smith J.N., Edner H. and Svanberg S. “Multi-
component chemical analysis of gas mixtures using a continuously tuneable lidar system.”
Appl. Phys. B, 79, pp. 525–530 (2004).

[Wel15] Welsh S.S., Edgar M.P., Bowman R., Sun B. and Padgett M.J. “Near video-rate linear stokes
imaging with single-pixel detectors.” Journal of Optics, 17 (2), p. 025705 (2015).

[WMO08] WMO. Guide to meteorological instruments and methods of observation (7th ed.). Secretariat of
the World Meteorological Organization (2008).

[Wol03] Wolf E. “Unified theory of coherence and polarization of random electromagnetic beams.”
Phys. Lett. A, 312, pp. 263–267 (2003).

[Woo10] Wood T.C. and Elson D.S. “Polarization response measurement and simulation of rigid
endoscopes.” Biomedical optics express, 1 (2), pp. 463–470 (2010).

[Wys08] Wysocki G., Lewicki R., Curl R., Tittel F., Diehl L., Capasso F. et al. “Widely tunable mode-
hop free external cavity quantum cascade lasers for high resolution spectroscopy and chem-
ical sensing.” Appl. Phys. B: Lasers and Optics, 92 (3), pp. 305–311 (2008).

[Xu05] Xu M. and Alfano R. “Circular polarization memory of light.” Physical Review E, 72, p.
065601 (2005).

[Yin06] Yin S. and Wang W. “Novel algorithm for simultaneously detecting multiple vapor mate-
rials with multiple-wavelength differential absorption lidar.” Chinese Opt. Lett., 4 (6), pp.
360–363 (2006).

[Zer10] Zerrad M., Sorrentini J., Soriano G. and Amra C. “Gradual loss of polarization in light
scattered from rough surfaces: Electromagnetic prediction.” Opt. Express, 18 (15), pp. 15832–
15843 (2010).

[Zha09] Zhang S., Lockerman Y.D., Park J. and Genack A.Z. “Interplay between generic and meso-
scopic speckle statistics in transmission through random media.” Journal of Optics A: Pure
and Applied Optics, 11 (9), p. 094018 (2009).

94



Selection of publications

95





Selection of publications - Part I

• Lucien Pouget, Julien Fade, Cyril Hamel, Mehdi Alouini. “Polarimetric imaging beyond the
speckle grain scale”. Applied Optics, 51 (30), pp. 7345-7356 (2012).

• Noe Ortega-Quijano, Julien Fade, François Parnet, Mehdi Alouini. “Generation of coherent
light beam with precise and fast dynamic control of the state and degree of polarization”. Sub-
mitted to Optics Letters. (2017).

• Julien Fade, Noe Ortega-Quijano. “Differential description and irreversibility of depolarizing
light-matter interactions”. Journal of Optics, 2016, 18, pp. 125604 (2016).

• Julien Fade, Mehdi Alouini. “Depolarization remote sensing by orthogonality breaking”. Phys-
ical Review Letters, 109 (4), pp. 043901 (2012).

• Noe Ortega-Quijano, Julien Fade, Muriel Roche, François Parnet, Mehdi Alouini. “Orthogonality-
breaking sensing model based on the instantaneous Stokes vector and the Mueller calculus”.
Journal of the Optical Society of America A, 33 (4), pp. 434-446 (2016).

• Noe Ortega-Quijano, Julien Fade, Emmanuel Schaub, François Parnet, Mehdi Alouini. “Full
characterization of dichroic samples from a single measurement by circular polarization or-
thogonality breaking”. Optics Letters, 40 (7), pp. 1270-1273 (2015).

• Julien Fade, Esteban Perrotin, Jérôme Bobin. “Two-pixel compressive sensing polarimetric cam-
era”. Submitted to IEEE Transactions in Computational Imaging. (2017).

• Julien Fade, Muriel Roche, Mehdi Alouini. “Computational polarization imaging from a single
speckle image”. Optics Letters, 37 (3), pp. 386-388 (2012).

97



Polarimetric imaging beyond the speckle grain scale

Lucien Pouget, Julien Fade,* Cyril Hamel, and Mehdi Alouini
Institut de Physique de Rennes, CNRS, Université de Rennes 1, Campus de Beaulieu, Rennes 35042, France

*Corresponding author: julien.fade@univ‐rennes1.fr

Received 12 June 2012; revised 14 September 2012; accepted 14 September 2012;
posted 18 September 2012 (Doc. ID 170496); published 18 October 2012

We address an experimental Stokes imaging setup allowing one to explore the polarimetric properties of
a speckle light field with spatial resolution well beyond the speckle grain scale. We detail how the various
experimental difficulties inherent to suchmeasurements can be overcome with a dedicatedmeasurement
protocol involving a careful speckle registration step. The setup and protocol are then validated on a
metallic reference sample, and used to measure the state of polarization (SOP) of light in each pixel
of highly resolved speckle patterns (>2000 pixels per speckle grain) resulting from the scattering of
an incident coherent beam on samples exhibiting different polarimetric properties. Evolution of the
SOP with spatial averaging and across adjacent speckle grains is eventually addressed. © 2012 Optical
Society of America
OCIS codes: 110.5405, 260.5430, 110.6150, 030.0030, 220.4830.

1. Introduction

Speckle is a ubiquitous phenomenon in all research
fields studying the interaction between randommed-
ia and propagating waves, whether electromagnetic
[1–4] or acoustic [5]. Since speckle intensity patterns
often represent the simplest and most accessible ob-
servables to gauge such interaction, this phenomen-
on has been thoroughly investigated for decades
[1,2,5] but is still widely studied in very active re-
search fields of physics, such as wave localization [5],
control of light through disordered media [6,7],
optical nonlinear effects in random media [8], or
polarization singularities [9]. In the optical imaging
domain, speckle has often been considered as a noise
detrimental to image quality [10,11]. Nevertheless,
speckle contrast imaging is known to be an efficient
remote-sensing technique providing information on
surface roughness properties [12–14] or fluid velocity
[15], for instance. More recently, new applications in-
volving speckle contrast images have been proposed
to characterize polarization of light [16–19] or diffu-
sion properties of materials [20,21].

Despite this intense research activity, an open de-
bate still remains about how the polarization state
distribution of a speckle pattern can be clearly linked
with materials depolarization properties. Recently,
this issue has occasioned a number of publications
[20,22–30], questioning, for instance, the definition
and measurement of polarization correlation lengths
in a spatial speckle pattern [22–24,28–30], or the
partial “repolarization” of unpolarized coherent light
backscattered by a depolarizing material [20]. In or-
der to link depolarization properties of a sample with
the scattered light polarization distribution, experi-
mental studies have been carried out using a spatial
multiple-scale analysis of the speckle polarization
properties [23,25–27]. In these experiments, light de-
polarization has been studied from a “macroscopic”
point of view, by conducting a statistical analysis
of a scalar parameter {degree of polarization (DOP)
[31] or orthogonal state contrast (OSC) [32]}, over
a great number of coherence areas (speckle “grains”).
These results tended to experimentally validate that
the polarization state is deterministic (light is fully
polarized) at the “local” scale of a single speckle
grain, whereas global depolarization induced by in-
teraction (reflection or transmission) with the sam-
ple results from spatial averaging on the detector
over several coherence areas [23,25–27].
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However, the various experimental devices used in
these references were not specifically dedicated to
studying the polarization state of the speckle pattern
at the local scale, i.e., beyond the speckle grain scale.
To the best of our knowledge, an imaging setup cap-
able of measuring the full Stokes vector (four compo-
nents) of light scattered by a diffusive sample below
the speckle grain scale in the optical wave domain
has not been clearly addressed in the literature. If
such study could be carried out quite easily in the mi-
crowave range as suggested in [33], it turns out to be
a mere challenge when the wavelength is only a few
hundred nanometers, as already noticed in [9]. In-
deed, Stokes measurements require polarizers and
wave plates (at least one) to be inserted and rotated
in front of the imaging detector, thus inevitably mod-
ifying the optical wavefront of the scattered light and
hence the speckle pattern itself, as will be evidenced
in the next section. This experimental difficulty is
mostly often eluded in the literature, suggesting that
conventional experimental schemes are not suitable
to perform Stokes imaging at the speckle grain level.
In this paper, we tackle this problem by proposing
a rigorous experimental setup as well as the metho-
dology allowing one to acquire Stokes images of a
speckle pattern, where each grain covers several
hundreds or thousands of pixels on the detector sur-
face. The paper is organized as follows: in Section 2,
the experimental setup and measurement protocol
proposed to achieve Stokes imaging beyond the
speckle grain scale are described and calibrated. Test
samples are then described and characterized in
Section 3. Lastly, we report in Section 4 experimental
Stokes imaging of highly resolved speckle patterns
obtained with this setup. The processing and analy-
sis of these results are also addressed and commen-
ted in this section. Conclusions and future work
directions are finally given in Section 5.

2. Experimental Setup

Analyzing the polarization properties of a speckle
field beyond the speckle grain scale requires per-
forming a measurement of the Stokes vector of light
at any point of a highly resolved speckle pattern.
Before detailing the experimental setup used, let
us briefly recall the Stokes vector formalism and
the principle of Stokes imaging.

A. Stokes Imaging Principle

Stokes formalism is commonly used to characterize
the light state of polarization (SOP) [31]. According
to this formalism, the polarization state of light is
fully described by a four-component vector:

S �

0
BBB@

S0 � Ix � Iy
S1 � Ix − Iy

S2 � I�45° − I
−45°

S3 � IR − IL

1
CCCA: (1)

The four components of the Stokes vector Si can
thus be simply obtained from intensity measure-
ments (Ix, Iy, I�45°, I−45°, IR, IL) through six configura-
tions of a polarization analyzer (PA). In the context of
polarimetric imaging considered in the paper, the PA
is used to record six intensity images on a detector
matrix. From these six images, the SOP (i.e., the
four-component Stokes vector) in each pixel of the
image is then determined. A global and scalar char-
acterization of the SOP in each pixel is classically ob-
tained by computing the DOP image, given by [31]

DOP �

������������������������������
S2
1 � S2

2 � S2
3

q

S0
�

������������������������������
S2
1 � S2

2 � S2
3

q
; (2)

or the OSC, given by

OSC � S1

S0
� S1; (3)

where the Si � Si=S0 stand for the normalized
Stokes components.

This method has been preferred to a Fourier ana-
lysis technique involving a rotating quarter-wave
plate [31]. Indeed, this one implies recording multi-
ple intensity snapshots through a moving plate,
which is inconsistent with the extreme stability
required for the experimental setup, as will be evi-
denced below. Another alternative would be using
a liquid-crystal variable retarder, but it would be
necessary to check that no wavefront distortion is in-
troduced when its configuration is changed during
the measurement.

Indeed, to ensure validity of the polarimetric data
recorded at the speckle grain scale, one needs to pre-
vent any modification in the wavefront of the scat-
tered light during the measurement procedure.
Understandably, this last condition is not easily
achieved since speckle is nothing but an interference
pattern, and therefore any change in the optical path
of the order of a fraction of wavelength will modify
the speckle pattern. As will be detailed afterward,
unwanted wavefront distortions can be caused by air
turbulence within the optical path, thermal expan-
sions of the sample, or mechanical vibrations, but the
main difficulty is to keep the wavefront unchanged
while switching between the six different configura-
tions of the PA. In the remainder of this section, we
will address these technical issues in detail and
propose an optimized experimental setup and mea-
surement protocol allowing one to perform Stokes
imaging beyond the speckle grain scale.

B. Description of the Experimental Setup

The experimental setup proposed is depicted in
Fig. 1. Stokes imaging of the speckle pattern is per-
formed in a reflection geometry (quasi-monostatic
configuration). Indeed, the polarimetric imaging sys-
tem analyzes light scattered by the sample in a direc-
tion close to backscattering direction. Consequently,
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it has to be noted that in the remainder of this paper,
the word backscattering will not refer to the strict
sense of scattering in the incident beam direction.
The setup comprises several building blocks, which
are described in detail below.

Illumination: In the experimental configuration
chosen, the scattering sample is enlightened with
a frequency-doubled Nd:YVO4 laser (Coherent
Verdi) emitting a maximum output power of 2 W
at λ � 532 nm. Although the light emitted by the la-
ser is linearly polarized, we use a Glan polarizer to
ensure high-contrast horizontal linear polarization
of the illumination beam. The laser beam is then ex-
panded and collimated with the association of a mi-
croscope objective (×10, 0.25 NA) and a convex lens
L0 (f 00 � 200 mm). A diaphragm is used to adjust the
beam diameter and suppress unwanted diffusions or
reflections on the edges of the collimation lens (L0).
Finally, this beam forms a 2.5 cm diameter illumina-
tion spot on the scattering sample under test.

Imaging optics: A set of two converging lenses L1
(f 10 � 80 mm) and L2 (f 20 � 40 mm) is used to image
the surface of the sample on the detector plane. Such
optical configuration makes it possible to position
the PA between the two lenses, in the intermediate
image plane (IIP). The distance between the two
lenses is 22.5 cm and the distance between L2 and
the IIP is set to 12 cm.

Though unusual in polarimetric imaging setups,
positioning of the polarization analysis components
in a conjugate plane of the sample and of the CCD
is justified here since it helps minimizing wavefront
deformations when the PA configuration is changed.
Indeed, the beam has a minimum size in the IIP,
forming an intermediate image of diameter 6.2 mm
on the PA. Provided the beam is well centered with
the rotation axis of the PA, such configuration mini-
mizes any spurious effect of planarity imperfections
of the polarization analysis components (see para-
graph “Polarization analyzer” below).

Imaging pinhole: To ensure a sufficient size of
the coherence area on the detector, such that a
speckle grain covers a few thousands of pixels, the
aperture of the imaging system is shrunk by insert-
ing a circular pinhole of diameter ϕ � 200 μm on the
imaging lens L2. The typical size of a speckle grain on
the detector is then given by

δ � 1.22λ
2D
ϕ

≃ 0.4 mm; (4)

whereD � 6 cm corresponds to the distance between
imaging lens L2 and the detector plane. In this
configuration, each speckle grain of circular shape
covers in the final image approximately 2300 square
pixels of dimension 7.4 μm.

Imaging detector: Due to the tiny imaging aper-
ture used in the experiment, the cameramust exhibit
good noise properties under low illumination levels.
Consequently, we choose to record the images on a
12 bit monochromatic 659 × 494 pixels CCD camera
(Basler scA640-70 fm). Moreover, to enhance the dy-
namic range, a dual exposure with two different ac-
quisition times (T2 � 10T1) is used to extract data
from the low intensity areas. Image processing is ne-
cessary to recombine the two snapshots, finally pro-
viding an intensity image with higher dynamics than
the 4096 grayscale levels of the 12 bit camera [see
pixels grayscale values of Fig. 9(a), for instance].

Polarization analyzer (PA): Most conventional
polarimetric imaging experiments use a single adjus-
table polarizer to measure Ix, Iy, I�45°, I−45°, and then
add a quarter-wave plate to access the two images
IR and IL associated with circular polarization of
light. This simple and natural approach is not satis-
factory in our experiment. Indeed, inserting an opti-
cal element between the sample and the CCD
detector will necessarily modify the optical path of
the backscattered light and modify the speckle pat-
tern, thus inevitably spoiling the measurement as
will be evidenced below. To maintain a constant
optical path during the six intensity measurements,
the PA used consists of a nanoparticles linear film
polarizer plate (2 mm thickness) and an achromatic
quarter-wave plate (400–700 nm, λ=10 wavefront
distortion, 1 mm thick) closely packed together. These
components are inserted in a single rotating optical
mount with the axes of the polarizer and of the
quarter-wave plate forming an angle of 45°. The rela-
tive positioning of the polarizer and quarter-wave
plate, as well as the calibration of the PA axes, were
operated preliminary to any measurement, using
the vertically polarized illumination laser beam.
Calibration is an important step in the design of a
polarimeter due to possible polarization artifacts in-
troduced by the optical elements of the system [34].

To switch from a linear polarization analysis to a
circular polarization analysis, the whole mount is
turned around so that the analyzed light enters
the polarizer first, or the quarter-wave plate first, re-
spectively. To this aim, the PA is set on a motorized
rotating stage for precise and repeatable positioning.
This configuration allows us to access the whole six
intensity measurements needed to determine the full
Stokes vector [31]. In addition, two angular degrees
of freedom are added to the PA mount to enable fine
adjustment of the orientation of the polarization
analysis plates with respect to the optical axis (one
rotation about e⃗x and one about e⃗y). The lens L1

Fig. 1. Experimental setup (see text for details).

20 October 2012 / Vol. 51, No. 30 / APPLIED OPTICS 7347

100



(f 10 � 80 mm) is also placed on a micrometric trans-
lation mount allowing fine positioning of the focal
spot on the polarization analysis plates. These me-
chanical degrees of freedom associated to the PA
are sketched in Fig. 2. As will be evidenced in the
next subsection, these additional degrees of freedom
are indispensable to refine the relative positioning
between the center of the PA and the focal spot in
the IIP and thus minimize wavefront deformations
between two successive acquisitions with different
configurations of the PA.

Mechanical stability and housing: As will be
detailed below, mechanical stability and air turbu-
lence must be taken into account to ensure stability
of the speckle pattern. To this end, the optical setup
is compactly built on an optical table and bread-
board. The whole setup (apart from laser) is inserted
within a Plexiglas housing to protect it from air
flows.

C. Measurement Protocol and Speckle Pattern
Registration

A crucial point to achieve Stokes imaging beyond the
speckle grain scale is to ensure that the wavefront is
not modified by the movement of the PA during the
complete Stokes measurement. In other words, when
the configuration of the PA is switched to measure
the different Stokes components, the speckle pattern
must not change. As the PA is neither strictly plane
nor placed in a plane strictly perpendicular to the
optical axis, this condition is not a priori satisfied.
This is evidenced in Fig. 3, where a first Stokes in-
tensity image Ix is plotted [Fig. 3(a)] and can be com-
pared with a second intensity image I�45° obtained
after rotating the polarizer by a 45° angle [Fig. 3(b)].
As can be clearly seen, the speckle intensity pattern
observed is obviously different. At this level, if wave-
front distortions caused by PA rotation were to be ig-
nored, such modification of the speckle intensity
repartition could erroneously be interpreted as a sig-
nature of different SOPs across the speckle grains ob-
served. Indeed, the images of Fig. 3 were recorded on
a metallic slab sample. For such nondepolarizing ma-
terial, we have checked that the SOP after reflection

is strictly identical to the illumination state. Conse-
quently, the speckle intensity pattern must have
different intensity levels but the same spatial repar-
tition for each Stokes intensity measurement. Since
this is clearly not the case in Fig. 3(b), one has to act
on the fine PA orientation adjustments to recover the
initial wavefront (or at least minimize the distor-
tions). Acting very slightly and accurately on the
three degrees of freedom of the PA (two rotations
about e⃗x and e⃗y and the translation of the lens L1
along e⃗z), it is indeed possible to recover the initial
speckle pattern reasonably well, as can be seen in
Fig. 3(c). Such procedure will be referred to in the re-
mainder of this article as speckle pattern registration.

Once the possibility of experimental speckle pat-
tern registration is evidenced, let us now detail the
measurement protocol proposed to achieve Stokes
imaging beyond the speckle grain scale. This protocol
is based on the use of a metallic reference slab sam-
ple as follows:

• After a first intensity measurement, say Ix, is
operated on a given sample, the metallic reference
slab is inserted in front of the sample, in the vicinity
of the sample surface. The speckle intensity pattern
formed by the light backscattered on the metallic
slab is temporarily stored as a reference.
• Then the PA is rotated to the next configura-

tion to measure, say I�45°, thus inevitably causing
wavefront distortions and hence modifying the cur-
rent speckle intensity pattern.
• Registration of the speckle pattern is then car-

ried out as described above, until the previously
stored reference pattern is recovered. A coarse regis-
tration is first operated by trying to adjust the bright
speckle grains; then a fine tuning is done byminimiz-
ing numerical criteria [spatial average of the whole
difference image between the reference speckle pat-
tern image and the current image (normalized in
terms of average intensity) on the one hand, and root
mean square of this difference image on the other
hand]. Once these two indicators are minimized,
we can warrant that the initial wavefront has been
recovered with minimum distortion.
• The metallic slab is then removed and the next

image (I�45° in this example) can be eventually
acquired on the sample under test.

To get a full characterization of the Stokes vector
in each point of a highly resolved speckle pattern,
the above protocol has to be followed between each
Stokes intensity measurement to ensure that the
same speckle pattern is analyzed all along the six
acquisitions. This registration protocol can be quite
long and tedious but is unavoidable. It must be noted
that the speckle pattern might sometimes not be
recovered if the mechanical or thermal drifts are
not properly cancelled, as will be shown in the follow-
ing subsection.

An illustration of the quality of speckle registra-
tion obtained during four successive Stokes measure-
ments I�45°, I−45°, IR, IL is given in Fig. 4. It can be

Fig. 2. (Color online) Schematic description of the PA in a linear
analyzer configuration. The PA mechanical mount provides two
angular degrees of freedom (rotation θ about axis e⃗x and rotation
ψ about axis e⃗y) used during the speckle registration procedure.
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observed that the registration procedure allows the
speckle pattern to be recovered when the sample is
nondepolarizing (metallic reference) with various
orientations of the PA.

D. Air Flow and Thermal Effects

To minimize wavefront aberrations caused by air
turbulence, the whole setup (apart from the laser)
is packaged in a Plexiglas housing. However, modifi-
cations of the PA configuration and adjustment of
the mount during speckle registration are done
manually and it is thus necessary to keep a part of
the housing open during the measurement process.
The evolution during half an hour of the intensity
of 10 pixels arbitrarily chosen on a resolved speckle
intensity pattern obtained on a metallic sample is
plotted in Fig. 5. During this experiment, the setup
has been disturbed by some actions at various times
indicated with vertical dotted lines in Fig. 5. It can be
seen that the speckle pattern is highly sensitive to
these actions, indicating that handling of the PA
mechanical mountmust be operated with care.More-
over, we were able to measure a typical stabilization
time of 50 s for the speckle field to stabilize to its
initial pattern. This time was then considered as
the typical time to wait between any intervention
on the setup and the next measurement.

Besides, since imaging of the sample is operated
through a small aperture (200 μm pinhole), it is thus
necessary to illuminate the sample with a laser
power of a few hundreds of milliwatts to warrant
sufficient signal-to-noise ratio on the detector.
Taking into account the illumination spot diameter
of 3.5 cm, the illumination intensity is around
10 mW=cm2. Despite this relatively moderate value,
we found that thermal effects occur in the samples
that undergo sufficient mechanical dilatation at a
microscopic scale to alter the speckle interference in-
tensity pattern acquired on the detector. It can in-
deed be seen in Fig. 5 that thermalization of the
sample takes some time on a metallic slab (typically
>10 min). This thermalization can be longer or even
never reached on other samples, as illustrated in
Fig. 6 on a cardboard sheet sample. In this figure,
the time evolution of the intensity of 10 pixels in a
resolved speckle intensity pattern is recorded during
30 min. As one can see, the speckle intensity pattern
shows important variations during all the experi-
ment, which are also imputed to bad mechanical sta-
bility of the sample.

These experimental results indicate that the
measurement of Stokes parameters on a highly re-
solved speckle intensity pattern requires a sufficient
preliminary illumination time for the sample to

(a) (b) (c)

Fig. 3. (Color online) Reference speckle intensity pattern (a) acquired on a metallic slab, (b) wavefront distortions caused by rotation of
the PA modify the speckle intensity pattern, and (c) the reference speckle pattern can be fairly recovered after speckle registration.

Fig. 4. (Color online) Contour plots: speckle intensity patterns
observed after speckle registration with four orientations of the
PA on ametallic reference slab. Grayscale background image: total
intensity image S0.

Fig. 5. (Color online) Time evolution of the intensity of 10 pixels
in a speckle intensity pattern with perturbations when the sample
is a metallic slab. (1) Cover is opened and air is blown inside,
(2) 360° rotation about e⃗z of the PA, and (3) 360° rotation about
e⃗y of the PA.
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thermalize (and the speckle pattern to stabilize).
In addition, the samples have to show good thermal
and mechanical stability to optimize the stability
of the observed speckle pattern. For these reasons,
the samples used in the following experiments
have been deposited on a heavy marble block to help
heat dissipation and to ensure mechanical stability.
In these conditions, an acceptable stability of the
speckle pattern can be obtained, which has been
checked experimentally. It can indeed be observed
in Fig. 7 that after a 14 min (840 s) thermalization
of a diffusive red paint sample deposited on a heavy
marble block, the grayscale values of the 10 pixels do
not evolve by more than 5% for 6 min.

3. Description of the Experiment

To illustrate the possibilities offered by the experi-
mental setup and protocol described in the previous
section, different experiments have been carried out
by considering different samples with distinct scat-
tering properties. Before displaying the experimen-
tal results obtained in Section 4, we describe the
samples considered as well as their “macroscopic”
(large spatial scale) depolarization properties given
by the measurement of the Stokes parameters on un-
resolved speckle patterns.

A. Sample Selection

The samples considered have been selected for their
distinct depolarization properties. First, a metallic
slab has been used as a reference sample to check
the validity of the method because of the well-known
polarimetric behavior of such material. Next, two
samples with distinct scattering characteristics have
been designed for the purpose of the experiment by
depositing a red and a green paint on a heavy marble
block to warrant heat dissipation and mechanical
stability as mentioned in the previous section.

On the one hand, in the case of the red paint
sample, the green illuminating light (λ � 532 nm)
is rapidly absorbed at the sample surface. As a con-
sequence, the small amount of backscattered light
predominantly comes from surface reflection with
a quasi-normal incidence angle and the incident SOP
is thus maintained [35]. This is sketched in Fig. 8(a),
and this sample can thus be considered as nondepo-
larizing. On the other hand, in the case of the green
paint sample, incident light is much less absorbed,
enabling multiple scattering to occur in the bulk of
the material, as illustrated in Fig. 8(b) [35]. Such a
volume scattering regime highly depolarizes the in-
cident light, as will be checked in the next subsection.
These two samples will make it possible to compare
the effect of two different types of scattering on the
local polarization below the speckle grain scale in the
next section.

B. Large-Scale Polarimetric Characterization of Speckle
Patterns

Large-scale polarimetric characterization of the
speckle fields backscattered by each sample has been
carried out by measuring the values of the DOP and
of the OSC in a measurement configuration where
the speckle is not resolved, i.e., with each pixel of

Fig. 6. (Color online) Time evolution (30 min) of the intensity of
10 pixels when the sample is a cardboard sheet sample.

Fig. 7. (Color online) Time evolution (20 min) of the intensity
of 10 pixels when the sample is a red paint deposited on a heavy
marble block.

Fig. 8. (Color online) Schematic illustration of (a) surface and
(b) volume scattering regimes obtained by scattering of a green
illumination on red and green samples, respectively. The white
arrows symbolize the electric field polarization direction.
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the camera averaging several speckle grains, as in
standard coherent polarimetric imaging setups. For
this purpose, we removed the pinhole in order to de-
crease speckle grains dimension below the pixel size.
In this configuration, one can estimate how many
speckle grains are averaged per pixel by determining
the speckle contrast when backscattered light is fully
polarized, which is given by [1]

c � hIi
σI

; (5)

where hIi � hS0i is themean intensity computed over
the whole image and σI � σS0

is the standard devia-
tion of the intensity. In this configuration, we mea-
sured a speckle contrast of 2.5, meaning that each
pixel contains 2.5 speckle grains on average. We
emphasize that in that case, as in standard coherent
polarimetric imaging setups, the measurement of the
Stokes parameters can be operated without the need
of any speckle registration procedure. Indeed, uncon-
trolled wavefront distortions occurring during the
measurement are wiped out by spatial averaging
of several speckle grains in each pixel. Moreover, the
Stokes vectors were estimated on homogeneous re-
gions of 100 pixels (square regions of 10 × 10 pixels),
thus increasing the effect of spatial averaging.
Table 1 gives the results of the estimation on 420 sub-
regions of 100 pixels of the normalized Stokes para-
meters S1 � OSC, S2, S3 for each sample.

It can be noted that the values of the DOP and the
OSC are similar for the metallic reference and the
red paint sample. This confirms that these two ma-
terials share a similar nondepolarizing action and
thus illustrates that light does not undergo multiple
scattering in a surface scattering regime. For the
green sample, the value of the DOP and of the OSC
are much lower, which is in agreement with the ex-
pected depolarizing behavior of this sample due to
volume scattering of light in the bulk of the material.

This large scale polarimetric characterization gi-
ven in Table 1 will now be compared in the next sec-
tion with polarimetric measurements beyond the
speckle grain scale obtained with the setup and pro-
tocol presented in Section 2. More particularly,
this preliminary characterization will allow us to
analyze how “global” depolarization occurs from a
spatial averaging of locally well-defined polarization
states.

4. Results and Discussion

A. Stokes Imaging Beyond the Speckle Grain Scale

Let us now present the experimental results of
Stokes imaging beyond the speckle grain scale
obtained with the setup and protocol detailed in
Section 2. These experimental acquisitions were con-
ducted on the three samples described in the pre-
vious section. For each sample, six intensity images
were recorded with a careful speckle registration
step between each image acquisition, as described
in Section 2.

Reference metallic slab: For the sake of conci-
sion, we only present the raw images obtained on
the reference metallic slab sample in Fig. 9. An ex-
ample of raw image Ix acquired with a horizontal
linear polarization direction is given in Fig. 9(a).
A region of interest (ROI) of 200 × 150 pixels is then
selected in the initial image. In Fig. 9(b), the first
Stokes image S0 is plotted and represents the total
intensity of the speckle pattern as S0 � Ix � Iy.
One can notice that each speckle grain covers

Table 1. Large Scale Polarimetric Characterization of Light
Backscattered by the Three Samples Considereda

Sample DOP S1 � OSC S2 S3

Metal slab 0.97 0.96 0.12 0
Red paint 0.95 0.94 0.16 −0.01
Green paint 0.44 0.43 0.07 −0.01
aA maximum standard deviation of 0.02 was obtained over

these 12 estimated values (estimation on 420 homogeneous
regions of 100 pixels).

Fig. 9. (Color online) Stokes imaging of a speckle intensity pat-
tern obtained on the metallic reference slab. (a) Example of raw
image acquisition (Ix) and selection of the ROI. From the six acqui-
sitions, the four Stokes images are determined. (b) First Stokes
image S0 (total intensity). Two sub-ROIs are defined to compare
the SOP in distinct speckle grains. (c) Second normalized Stokes
image S1. (d) Third normalized Stokes image S2. (e) Fourth
normalized Stokes image S3. (f) DOP. Total intensity repartition
is indicated in contour plots in (c), (d), (e), and (f) thumbnails.
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approximately 1000 pixels. Figure 9(c) shows the
computed second normalized Stokes parameter S1,
which is equal to the OSC, as shown in Eq. (3). The
third and fourth Stokes images are respectively
plotted in Figs. 9(d) and 9(e), and are finally used
to determine the experimental DOP map, which is
given in Fig. 9(f).

As expected, the values of the OSC and of the DOP
are close to 1 across the ROI considered, while S2 and
S3 maps are close to null values. This is particularly
well verified in areas exhibiting a high intensity
(bright speckle spots). Conversely, it decreases in
the low-intensity areas where DOP values exceeding
1 can be observed, thus revealing experimental
biases in the measurement in spite of experimental
care in the speckle registration procedure. As a con-
sequence, these areas in the image should not be ana-
lyzed since the signal-to-noise ratio is too low to draw
any conclusion.

Other samples: The experimental results ob-
tained on the two other samples considered are given
in Fig. 10, which provides the total intensity image
(Stokes parameter S0) as well as the computed
OSC and DOPmaps on a 200 × 150 pixels ROI. It can
be checked in Figs. 10(a), 10(c), and 10(e) that the red
sample exhibits a behavior strongly similar to the
metallic sample with DOP and OSC values close to
1 in high-intensity areas. This nondepolarizing
behavior is in agreement with the expected surface
scattering regime, and with the large-scale polari-
metric measurements presented in Subsection 3.B.
Moreover, this figure thus confirms experimentally
that incident polarization is maintained during in-
teraction with the material in a surface scattering
regime.

In the case of the green paint sample, it can first be
observed in Fig. 10(d) that the SOP of light is well-
defined within each coherence area (speckle grain)
since the value of the DOP remains close to 1 in each
pixel in a bright speckle spot. This is in agreement
with theoretical predictions and previous experimen-
tal hints obtained from multiple-scale analyses of
nonresolved speckle intensity patterns [23,25–27].
By contrast, unlike the red paint and metallic sam-
ples, it can be seen in Fig. 10(f) that for the green
paint sample, the initial polarization is not necessa-
rily maintained in all the coherence areas since OSC
values significantly lower than unity can be observed
in areas corresponding to bright speckle spots with
DOP values close to 1.

In the next subsection, these experimental results
are analyzed with more detail through the mapping
of the spatial repartition of the SOPs on Poincaré’s
sphere.

B. Analysis of Polarization States Spatial Repartition

To complement the study of the spatial repartition of
local SOPs within the speckle pattern, it is possible
to map the normalized Stokes components of each
pixel on a Poincaré sphere as shown in Fig. 11. In
Fig. 11(a), the repartition of the pixels SOP obtained

on the reference metallic slab in the whole ROI de-
fined in Fig. 9(a) is plotted on Poincaré’s sphere,
whereas Figs. 11(b) and 11(c) represent the pixels
SOP in sub-ROIs 1 and 2 defined in Fig. 9(b). The
colors associated with each point on the sphere de-
note the total intensity (parameter S0) of the corre-
sponding pixel, in agreement with pixel colors of
Fig. 9(b). As a consequence, a larger degree of confi-
dence can be granted to the red points, corresponding
to the pixels of the bright speckle grains, but the
SOPs for the darkest pixels plotted in blue must be
interpreted warily due to significant experimental
noise. In addition, the red circle corresponds to the
mean value of the Stokes vector estimated in the
whole ROI, whereas the black circle shows the value
of the Stokes vector determined from the preliminary
large-scale polarimetric characterization presented
in Subsection 3.B. and given in Table 1. From
Figs. 11(b) and 11(c), it can be observed that the two
speckle grains share the same SOP, corresponding
almost perfectly to the incident illumination polari-
metric state and to the “global” polarimetric state ob-
served after spatial averaging [Fig. 11(a)]. This

Fig. 10. (Color online) Stokes imaging beyond the speckle grain
scale of a speckle intensity pattern obtained on a red paint sample
[(a), (c), and (e)] and a green paint sample [(b), (d), and (f)]. (a),
(b) First Stokes image S0 (total intensity). Two sub-ROIs are de-
fined to compare the SOP in distinct speckle grains. (c), (d) Map of
the computed DOP. (e), (f) Map of the computed OSC. Total inten-
sity repartition is indicated in contour plots in (c), (d), (e), and (f)
thumbnails.
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confirms the nondepolarizing behavior of this metal-
lic reference sample as every single speckle is in the
same polarization state. We highlight again that the
important dispersion of the SOPs plotted in blue is
due to important experimental noise in darkest re-
gions of the speckle patterns.

A similar behavior is confirmed for the red paint
sample by analyzing the polarimetric repartition
over Poincaré’s sphere given in Fig. 11(d) for the
whole ROI and in Figs. 11(e) and 11(f) for sub-ROIs
1 and 2 defined in Fig. 10(a). As is the case for the
metallic sample, the two speckle grains selected in
sub-ROIS 1 and 2 share the same SOP, matching
with the illumination polarization, and the “global”
polarimetric state measured after spatial averaging.

In the case of the green paint sample, the analysis
of the spatial mapping of SOPs over Poincaré’s
sphere is more interesting. It can first be checked
that after averaging over the whole ROI, the mean
polarimetric state represented by the red circle in
Fig. 11(g) is in agreement with the “global” polariza-
tion measured in Subsection 3.B. after spatial aver-
aging (black circle). Averaging over the ROI indeed
yields a globally depolarized state (DOP � 0.44 in
average from Table 1), corresponding to a point lying
inside Poincaré’s sphere. However, at a single speckle
grain scale, the SOP is well defined. Indeed, as can be
seen in Figs. 11(h) and Fig. 11(i), which correspond
respectively to the SOP of the pixels in sub-ROIs 1
and 2 defined in Fig. 10(b), the DOP is close to 1

Fig. 11. (Color online) Repartition of the pixels SOPon Poincaré’s sphere for ametallic sample (first line), a red paint sample (second line),
and a green paint sample (third line). First column, SOP in the whole ROI; second column, SOP in sub-ROI 1; third column, SOP in
sub-ROI 2. Sub-ROIs are respectively defined in Figs. 9(b), 10(a), and 10(b).
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and the polarization state lies on the surface of Poin-
caré’s sphere. In addition, contrarily to the previous
samples, one can see that the two speckle grains con-
sidered exhibit different SOPs, which do not exactly
resemble the illumination polarization state. Such
behavior is a consequence of multiple scattering oc-
curring in the bulk of the sample in the case of the
green paint sample, as explained in Subsection 3.A.

These results thus represent clear experimental
evidence in the optical domain and beyond the
speckle grain scale that light is fully polarized at a
local scale, whatever the scattering regime consid-
ered (surface or bulk). As suggested by previous
results obtained from a statistical analyses of polar-
ization states on nonresolved speckle patterns
[23,27], global depolarization properties stem from
a spatial averaging of local SOPs over several coher-
ence areas. Using the experimental results gathered,
we analyze this property in the next subsection.

C. Multiple-Scale Analysis of the DOP

A multiple-scale analysis of the DOP has been con-
ducted on the highly resolved Stokes images mea-
sured. The results are summarized in Table 2,
which contains the values of the DOP and the OSC
averaged over the whole ROI after local binning with
different binning pitches. For instance, a binning
pitch of 30 means that 33 blocks of 30 × 30 pixels
have been averaged in a ROI of 200 × 150 pixels.
As the binning pitch is increased, it can be seen that
DOP and OSC values tend to the values measured in
Subsection 3.B (see Table 1), which is in agreement
with previous works [23,27]. This result, which is
better evidenced in the case of the green paint
sample, thus tends to confirm that the global depo-
larizing behavior emerges from a spatial averaging
of varying polarization states, well-defined at a local
scale.

D. SOP Mapping Across Speckle Pattern: Observation of
an Adiabatic Polarization Transition

To illustrate the potentialities offered by the setup
and protocol proposed in this paper, let us lastly

present how the spatial evolution of the SOP can be
mapped along a geometrical path across the speckle
pattern studied. Let us, for instance, consider the two
contiguous speckle grains corresponding to the sub-
ROIs defined for the green paint sample in Fig. 10(b).
This case is indeed interesting since it has been
checked in the previous section and in Fig. 11 that
these two speckle grains exhibit different SOPs
but a DOP close to unity. With the setup proposed,
it is possible to study how this polarization evolves
from one speckle grain to the other. The data plotted
in Fig. 12(a) on Poincaré’s sphere correspond to the
evolution of the SOP along the black dotted line
drawn in Fig. 10(b). On the sphere, the dark points
correspond to the pixels located at the beginning of
the line and the bright points to those located at the
tip of the black dashed arrow of Fig. 10(b). The OSC
and DOP measured along this line are also plotted
respectively with dashed and plain lines in Fig. 12(b).
From these results, we can see that the spatial SOP
transition between two speckle grains is continuous,
which is consistent with previous works [9,36]. In the
situation considered, the incident illumination SOP,
which is almost maintained in the first speckle grain,
then rapidly evolves toward a distinct polarization
state, which does not resemble the initial laser polar-
ization. Nevertheless, this evolution is shown to be
adiabatic so that the SOP follows a continuous tra-
jectory along the surface of Poincaré’s sphere.

Table 2. Average Value of the DOP and of the OSC for Different
Binning Pitchesa

Bin.
Pitch

Binned
Areas

DOP OSC

Sample h·i σ h·i σ

Metal slab 3 3333 1.00 0.23 0.85 0.17
10 300 0.97 0.16 0.86 0.14
30 33 0.93 0.06 0.91 0.07

Red paint 3 3333 0.80 0.18 0.69 0.23
10 300 0.80 0.16 0.71 0.21
30 33 0.80 0.10 0.77 0.12

Green
paint

3 3333 0.78 0.30 0.38 0.47
10 300 0.76 0.28 0.39 0.45
30 33 0.61 0.24 0.41 0.36

aThe estimated value and the corresponding standard
deviations were estimated in the whole ROI on a varying
number of binned regions.
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Fig. 12. (Color online) Observation of the adiabatic polarization
state transition along the geometrical path defined in Fig. 10(b)
between two adjacent speckle grains on the green paint sample
exhibiting bulk scattering regime. (a) Evolution of the SOP on
Poincaré’s sphere. (b) Evolution of the OSC (dotted curve) and
DOP (plain curve).
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5. Conclusion

In this article, we addressed the experimental issue
of coherent active Stokes imaging beyond the speckle
grain scale, i.e., on a highly resolved speckle pattern
with each speckle grain covering several hundreds or
thousands of pixels. The numerous experimental dif-
ficulties encountered to achieve such a measurement
have been identified and solved to design the first
realization, to the best of our knowledge, of a polari-
metric imaging setup dedicated to such measure-
ment. In addition, we proposed an experimental
protocol able to warrant a constant wavefront during
the entire measurement process. We demonstrated
that the setup and the speckle registration protocol
proposed allow the measurement of the full Stokes
vector to be achieved in each pixel of a highly re-
solved speckle pattern. After a validation of the tech-
nique on a metallic reference sample exhibiting a
well-known nondepolarizing behavior, experimental
Stokes imaging beyond the speckle grain scale has
been demonstrated on two scattering samples exhi-
biting different scattering regimes (surface and
bulk). The influence of these distinct scattering re-
gimes on the local polarization state of light has been
studied and commented, and the conclusions ob-
tained are in agreement with previous experimental
works using a statistical analysis on moderately
resolved speckle pattern. Lastly, these experiments
allowed us to experimentally demonstrate in the op-
tical domain that the polarization transition between
two contiguous speckles follows a continuous and
adiabatic evolution.

There are various perspectives to this work among
which we can cite a more thorough study of SOP
transitions between adjacent speckle grains and
the analysis of polarimetric correlation lengths in re-
gard to speckle intensity coherence areas. The inves-
tigation of the influence of the source wavelength and
coherence on polarization beyond the speckle grain
scale is currently in progress. Besides, the analysis
of specific samples exhibiting nonstandard scatter-
ing properties is also an interesting perspective.
From an applicative point of view, we are quite con-
vinced that exploring the polarization properties at a
microscopic scale could lead to a more accurate un-
derstanding of the physics happening in optical sys-
tems or techniques using the speckle [6,7,16–19,21]
and thus might help in optimizing these systems.
All these perspectives would benefit from the develop-
ment of more robust experimental designs, by auto-
mating the speckle registration optimization stage,
for instance (programmable actuators, liquid-crystal
polarimetric devices, etc.), or even using a four-
arm division of amplitude system with appropriate
phase plates/polarizers and calibration in order to
perform simultaneous imaging of the four Stokes
components.
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Abstract
The widely used Jones and Mueller differential polarization calculi allow non-depolarizing
deterministic polarization interactions to be described in an efficient way. Recently, the
differential Mueller formalism has been successfully extended to the case of depolarizing
transformations. In this article, a stochastic differential Jones formalism is shown to provide a
clear physical insight on light depolarization, which arises when the interaction of polarized light
with a medium involves randomized anisotropic properties. Based on this formalism, several
intrinsic depolarization metrics which naturally arise to efficiently characterize light
depolarization in a random medium are presented, and an irreversibility property of depolarizing
transformations is finally established.

Keywords: polarimetry, depolarization, irreversibility, differential polarization formalisms

(Some figures may appear in colour only in the online journal)

1. Introduction

In the field of polarimetry, Jones and Stokes/Mueller form-
alisms have always appeared as dual and often exclusive
approaches, whose specific characteristics have been exploi-
ted for diverse applications. On the one hand, the description
of field coherence in the Jones calculus, which relates the
input and output two-dimensional complex electric field
through =E JEout in, justifies its use in ellipsometry [1, 2],
optical design [3–6], spectroscopy [6], astronomy [7] or radar
(PolSar) [8]. On the other hand, Mueller calculus is widely
used in applications such as biophotonics [9, 10], material
characterization [11, 12] or teledetection [13], as it is based on
optical field observables (intensity measurements), relating
the input and output four-dimensional real Stokes vector
through =s Msout in. As a consequence, these approaches
fundamentally differ in their capacity to characterize depo-
larizing light–matter interactions (i.e., non-deterministic
polarization transformations yielding a partial randomization
of the input electric field). As Jones already pointed out in one
of his seminal papers [14], deterministic Jones matrices are
unable to directly describe depolarizing interactions, which
can however be handled in the Mueller formalism via depo-
larizing Mueller matrices. This discrepancy between both

standpoints takes part in the debate, still topical in the sci-
entific community, about the physical origin of light depo-
larization [15–23].

In this article, after recalling some well-known properties
of non-depolarizing Mueller matrices and the differential
Jones and Mueller formalisms in section 2, we show in
section 3 that these differential polarization formalisms,
which naturally arise from group theory, provide new phy-
sical insight on depolarizing light–matter interactions. This
approach allows us to define new intrinsic depolarization
metrics which are described in section 4, before an irrever-
sibility property for depolarizing transformations is demon-
strated in section 5, as a counterpart to the well-known
invariance property verified by deterministic interactions,
which is recalled below.

2. Properties of non-depolarizing light–matter
interactions and differential polarization formalisms

Let us first review some well-known properties of determi-
nistic polarization transformations, which can be described by
a 2×2 complex Jones matrix J, or equivalently, by a 4×4
real-valued non-depolarizing Mueller matrix denoted Mnd,
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where the subscript nd indicates a non-depolarizing trans-
formation. In that case, there is a clear one-to-one relationship
between J and the so-called Mueller–Jones matrix Mnd

through [24, 25]

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
*= Ä = -

-

M A J J A A, with
1

2

1 0 0 1
1 0 0 1
0 1 1 0
0 i i 0

, 1nd ( ) ( )†

where ⊗ denotes Kronecker product. The matrix A verifies
=-A A1 †, and can also be rewritten in compact form as

s s s s=A vec vec vec vec 2T
0 1 2 3[ ( ) ( ) ( ) ( )] , where

svec i( ) denotes the ith Pauli matrix si written in (column)
vector form. In the remainder of this article, superscripts ∗, T
and † respectively denote complex conjugation, standard and
Hermitian matrix transposition. Interestingly, when one con-
siders normalized unit-determinant matrices, respectively
denoted J and

~
Mnd, both descriptions appear to be isomorphic

representations of the same six-dimensional group, namely
the proper orthochronous Lorentz group +SO 1, 3( ) for unit-
determinant Mueller matrices

~
Mnd and the special linear

group SL 2,( ) for unit-determinant Jones matrices J [26,
27]. As a result, there is a well-known analogy between
deterministic polarization transformations and special rela-
tivity [27–33]. In particular, non-depolarizing interactions
correspond to Lorentz transformations and must therefore
preserve the Minkowski metric  s 1,3 of the input Stokes
vector sin. This metric is defined by = s 1,3

2

= -G Is s 1T 2 2( ), with = - - -G diag 1, 1, 1, 1[ ] and

where  = + +s s s s1
2

2
2

3
2

0 denotes the light degree of
polarization (DOP), and =I s0 denotes the light intensity
[30]. By extension, this invariance property can be related to
the preservation of the Shannon entropy of the field, which is
an informational measure of the disorder of the two-dimen-
sional transverse electric field, as

ò p= - =  H P P es E E sln ln 4, 2E E
2 2

1,3
2( ) ( ) ( ) ( )

under the assumption of complex Gaussian circular fluctua-
tions [34]. As pointed out in [33], such an invariance property
is neither verified by the light intensity, I, nor by its DOP,  .

Historically, Jones [35] and Azzam [36] respectively
introduced the so-called differential Jones and Mueller cal-
culi, with a corresponding differential Jones matrix (dJm) j
and a differential Mueller matrix (dMm) mnd, where the
subscript nd still indicates a non-depolarizing transformation.
Both approaches describe the local evolution of a transver-
sally polarized wave along direction n̂ through the respective
differential equations =E n jEd d ˆ , and =s n m sd d ndˆ .
According to group theory, these differential descriptions lead
to a representation of deterministic polarization transforma-
tions, either in group SL 2,( ) for J or in +SO 1, 3( ) for~Mnd,
by their counterpart in the corresponding Lie algebra sl 2,( )
for j, or so+ 1, 3( ) for mnd, the latter verifying Minkowski G-
antisymmetry, i.e., + =m G m G 0T

nd nd [37]. There is a
clear equivalence between these four representations, which

are linked through the following commutative diagram

ð3Þ

the macroscopic and differential matrices being related by the
exponential map, through = D zJ jexp( ) and =

~
Mnd

Dzmexp nd( ) when propagation over Dz through a homo-
geneous medium is assumed.

As Lie algebras can be viewed as the tangent spaces to
the corresponding Lie groups at the identity element [37, 38],
the differential Jones or Mueller formalisms allow polariza-
tion properties of a sample or a material to be described in a
linearized geometry. One of the powerful consequences of
such a linearization lies in the simple linear parameterizations
of the differential matrices in terms of anisotropic optical
properties of the sample. Indeed, the dJm j and dMm mnd,
that both characterize the polarimetric properties of an infi-
nitesimal plane-parallel slab of a deterministic linear optical
medium, read

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

k k h h k h h k

k h h k k k h h
=

+ - + - - +

+ - - - - -
j

1

2

2 i 2 i

i 2 i 2
,

4

i q i q u v u v

u v u v q i qi

( ) ( )
( ) ( )

( )
⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

k k k k
k k h h
k h k h

k h h k

=
-

-

-

mand,

2

2

2

2

. 5

i q u v

q i v u

u v i q

v u q i

nd ( )

This choice of notation conventions implies that the con-
sidered monochromatic plane wave can be written as

w= +z t t pzE E, exp i0( ) ( ) where k h= -p i , with propa-
gation constants k p l= k2 and h p l= n2 respectively
related to the imaginary and real part of the complex refrac-
tive index = +n n ki˜ [35, 39]. By analogy, in the above
matrices parameter ki denotes the isotropic extinction coeffi-
cient (in amplitude) induced by the sample or material.
Parameter hi stands for the isotropic (absolute) optical phase
incurred by the interaction with the sample, and whose
information is lost in the Mueller description [14]. As for the
other terms, the subscripts q, u, and v refer to linear x–y, linear
 45 and circular left/right optical anisotropies, through

= - - x x xq u v x y, , ,45 ,rcp , 45 ,lcp, with k=x when describing
absorption anisotropy (diattenuation), or h=x when
describing phase anisotropy (birefringence).

3. Stochastic Jones and Mueller differential
formalisms for depolarizing interactions

After having recalled the polarization differential formalisms
and these well-established properties of deterministic non

2
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depolarizing transformations, it is naturally motivating to
question whether such differential formalisms can deepen the
physical understanding of depolarizing light–matter interac-
tions. In fact, it has recently been proposed to extend the
differential Mueller formalism to the more intricate case of
depolarizing transformations, by the introduction of depolar-
izing dMm’s. This approach has paved the way for a number
of interesting results obtained on depolarizing transformations
[40–48]. We propose below to shade new light on the recent
developments on depolarizing dMms, by using an alternative
description involving stochastic differential Jones matrices.
For that purpose, let us consider a stochastic dJm
= + Dj j j

0
, modeling a random depolarizing local trans-

formation of the field, where = á ñj j
0

is the deterministic
average polarization transformation, whose form has been
recalled in equation (4), and where the fluctuations matrix
verifies áD ñ =j 0. Assuming infinitesimal propagation over
Dz in the considered medium, the Jones matrix for such a
transformation can be written = D + Dz zJ j jexp Id( ) at
first order in Dz. From equation (4), this relation can be
conveniently rewritten in a vector form in the Pauli matrices

basis s =i i 0,3{ } { } as ⎡⎣ ⎤⎦+ D D pV p1 z z T
J 2

0
2

( ) , with

= + Dp p p0
0

0 0( ) ( ) ( ), = + Dp p p0 . In these expressions, the
deterministic average values read

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

k h
k h

k h
k h

= - =

-

-
-

p p2 2 , and

i

i

i

, 6i i

q q

u u

v v

0
0

0 ( )( )

whereas Dp 0( ) and Dp denote zero mean random variables
describing the fluctuations of the anisotropy parameters.

From VJ, one can derive the Cloude’s coherency matrix
(CCM) of the polarimetric transformation, defined as the
second-order moment matrix of vector VJ, i.e., = á ñC J V VJ J( ) †
[26]. The CCM can also be directly computed from a Mueller
matrix M through

*å å s s= Ä
= =

C M MA A
1

2
, 7

j k
j k

0

3

0

3

( ) ( ) ( )†

with si denoting the ith Pauli matrix [26, 49]. The CCM is
widely used in the field of Mueller polarimetry as it provides
relevant criteria to assess the physical realizability of mac-
roscopic Mueller matrices [26, 49]. With the above notations,
the CCM can be decomposed into a sum of two terms

= á ñ = +C J V V C CdJ J nd( ) † , where =C V Vnd J J0 0

† with
⎡⎣ ⎤⎦+ D D pV p1 z z T

J 2 0
0

2 00
( ) , and where the covariance matrix

= á - - ñC V V V Vd J J J J0 0( )( )† reads

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥=

Dz cC c
c2

, 8d

2
0 ( )†

with = á D ñc p0
0 2∣ ∣( ) , *= áD D ñpc p0( ) and the 3×3 sub-

matrix  = áD D ñp p† . From such a decomposition, it is clear
that a deterministic transformation (with D =p 00( ) and
D =p 0, hence =C 0d ) results in a CCM of rank one, Cnd

being the matrix of a projector. A CCM of rank one is pre-
cisely known as the Cloude’s condition for a polarimetric

transformation to be non-depolarizing [26, 49]. Conversely,
as soon as  is a non-null matrix, the rank of C J( ) is greater
than one, hence the corresponding transformation is depo-
larizing according to Cloude’s criterion [26, 49]. As a result,
the depolarizing nature of a transformation appears to be
completely comprehended by the 3×3 positive semi-definite
Hermitian (PSDH) submatrix  , i.e., by 9 independent real
parameters. As will be seen below, this submatrix also allows
one to define interesting intrinsic depolarization metrics.

It is now quite straightforward to identify the two terms
of the CCM, namely Cnd and Cd, with the CCM’s of,
respectively, the non-depolarizing and the depolarizing
dMm’s introduced in earlier works [50–52]. Indeed, in the
dMm formalism, the Mueller matrix for the considered local
transformation reads = D + Dz zM m mexp Id( ) at first
order in Dz. As suggested in [52], the dMm m can be
decomposed into a G-antisymmetric part, namely mnd given
in equation (5), and a G-symmetric part ¢md which corre-
sponds to the depolarizing contribution. With such a
decomposition, it can be checked that the 3×3 lower-right
submatrix of the CCM of M is only due to the G-symmetric
(depolarizing) part of m. As a result, since equation (8)
indicates that this submatrix must have a quadratic behavior
in Dz, the parameterization of the dMm must be written

= + ¢ = + Dzm m m m md dnd nd , with the 9-parameters G-
symmetric part reading [50–52]

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
=

- -

- -

- -

k k k

k m h h

k h m h

k h h m

d d d

d d d d

d d d d

d d d d

m

0

. 9d

q u v

q q v u

u v u q

v u q v

( )

The proposed decomposition of the dMm m has an important
physical meaning: the depolarization properties of light pro-
pagating in a sample must pile up quadratically with Dz,
whereas deterministic anisotropy parameters classically evolve
linearly with propagation distance. Such a decomposition of m
involving a quadratic behavior of the depolarizing dMm has
been recently proposed in [53], but without a clear physical
justification that is brought by the above approach. This
interesting property of depolarization in samples has been
recently verified experimentally on controlled test samples
[48], and it may have crucial implications in the analysis of
depolarizing media in experimental polarimetry [2, 54].

With such parameterizations of mnd and md, respectively
described through equations (5) and (9), the CCM of

+ D zM mId can be obtained using the relationship
recalled in equation (7). A direct calculus yields

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

k

S
=

+ D D

D D

z
C M

p

p

1 2 i
z

z z

2 0

2 0 2

2( )( )
†

, with

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
S =

+ -

- +

+ -

h k h k

h k h k

h k h k

- + +

- +

+ -

m m m

m m m

m m m

d d d d

d d d d

d d d d

2

i i

i i

i i

.

d d d

d d d

d d d

2

2

2

q u v

v v u u

v v

q u v

q q

u u q q

q u v

3
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It can be observed that C M( ) corresponds to an approx-
imation of the CCM obtained above with the Jones formal-
ism, where each element has been truncated to the first non-
null term of its Taylor expansion in Dz, and where all
information about the absolute phase delay hi has been lost.
However, the lower-right 3×3 submatrixS and its previous
expression  = áD D ñp p† given in equation (8) can be iden-
tified, as they correspond to the same order of approximation
(in Dz2) yielding the following set of equations:

h k h k

k k h h

k h h k

=á D + D + D + D ñ

= áD D + D D ñ

= áD D - D D ñ

m

h

k

d

d

d

2 ,

2 ,

2 .

u v q v q u

u v q v q u u v q v q u

u v q v q u u v q v q u

2 2
, ,

2 2
, ,

, , , , , , , ,

, , , , , , , ,

q u v

q u v

q u v

, ,

, ,

, ,

[( ) ( ) ] [( ) ( ) ]

This clearly shows that the nine depolarization para-
meters md

q u v, ,
, hd

q u v, ,
and kd q u v, ,

of the dMm md are physically
related to the second-order statistical properties (variance/
covariance terms) of the anisotropy parameters, hence
implying specific relationships between their nine respective
values. Such an observation was reported for the first time in
[23] through a somewhat intricate calculus involving sto-
chastic dMm’s. In addition, these specific relationships imply
necessary conditions on the elements of Md so that it is
physically admissible. In that perspective, it can be shown
[45, 53] that a physically admissible depolarizing dMm md

must belong (up to double cosetting by Lorentz transforma-
tions) to one of the two canonical forms derived in [55, 56]:

= + + - -
- + - - - +

d d d d d d

d d d d d d

m diag ; ;

; , 10
d
I

1 2 3 1 2 3

1 2 3 1 2 3

[
] ( )

( )

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
=

+
- -

-
-

d d d
d d d

d
d

m

0 0
0 0

0 0 0
0 0 0

, 11d
II

1 2 2

2 1 2

1

1

( )( )

with the following conditions on the canonical depolarization
parameters: d 0i , for Îi 1, 3{ }.

4. Intrinsic depolarization metrics

These previous results evidence the fact that the depolariza-
tion properties of light propagating in a medium at an infi-
nitesimal level are intrinsically described by the matrixS (or
equivalently ), which contains the 9 depolarization para-
meters described above. However, usual depolarization
metrics are defined either on the macroscopic Mueller matrix
of the medium, or on its CCM. For instance, the standardly
used depolarization index is defined as
= -P M M M Mtr 3T

1,1
2

1,1
2 1 2{( [ ] ) } [57], and can vary

between 0 (totally depolarizing) to 1 (non depolarizing).
Another description of depolarization uses the so-called
Cloude entropy [26, 49, 58], derived from the eigenvalues
l Îi, 1, 4i { } of the CCM C M( ) by  l l= -å ¢ ¢= logi i i1

4
4

with l l l¢ = å =i i j j1
4( ) or, written in compact form,  =

- M M M Mtr log1 4 1[( ∣∣ ∣∣ ) ( ∣∣ ∣∣ )], where =M M Mtr1∣∣ ∣∣ †

denotes the trace norm [59], with X and
=X Xlog ln ln 44( ) ( ) ( ) respectively referring to square root

and logarithm of a matrix X. Fundamentally differing from
the Shannon entropy H s( ) of a Stokes vector s introduced in
equation (2), the Cloude entropy (denoted by  to avoid any
confusion) is essentially a measure of the dispersion of the
relative magnitude of the CCM eigenvalues, ranging from 0
(non depolarizing sample) to 1 (perfect depolarizer). Though
often useful, such depolarization metrics can nevertheless be
unsatisfactory in some situations. Indeed, two interactions
sharing identical fluctuations properties of the optical aniso-
tropy parameters (i.e., same matrix S) but with distinct
principal polarization transformation vector p0 can have dif-
ferent depolarization indices or Cloude entropies in the gen-
eral case. This is due to the fact that the depolarization index
is calculated from the entire Mueller matrix, and that the
Cloude entropy depends on the four eigenvalues of the CCM,
i.e., both metrics simultaneously depend on the deterministic
polarization transformation and on the fluctuating parameters.

Contrarily, the new insight brought by the differential
Jones and Mueller calculi allows one to naturally define
intrinsic depolarization metrics, which only depend on the
fluctuations of the anisotropy parameters of the sample . One
can first define the intrinsic differential depolarization metric
as S=dP F∣∣ ∣∣ , where =X X XtrF∣∣ ∣∣ [ ]† denotes the Fro-
benius matrix norm [46]. Such a quantity can vary from 0 (for
non-depolarizing interactions) to (potentially) infinity and can
be efficient in situations where standard approaches fail to
correctly describe the depolarizing nature of a light–matter
interaction. This property is emphasized with an illustrative
example in [46]. In addition, one can gain further physical
insight into the depolarization properties of such interaction
by analyzing other quantities on the submatrix S. For
instance, the determinant of S can be interpreted as a depo-
larization volume  S=d det[ ]. This quantity is equal to zero
as soon as one polarimetric direction has null fluctuations,
indicating perfect correlation between at least two polariza-
tion ‘directions’. Another interesting approach is to analyze
the Cloude entropy of the submatrix S itself, i.e.,
 S S S S= -d tr log1 3 1[( ∣∣ ∣∣ ) ( ∣∣ ∣∣ )], where the subscript δ

indicates that the Cloude entropy is computed under the
differential approach. This Cloude entropy varies between 0
and 1 with the relative distribution of the eigenvalues of S,
thus revealing possible depolarization anisotropy.

It is interesting to note that the quantities Pδ, d and d
are defined irrespective of the propagation distance, and are
invariant by deterministic unitary transformations, thus justi-
fying their qualification of intrinsic metrics. This has the
strong physical meaning that the sample or the light–matter
interaction studied must keep the same depolarization prop-
erties regardless of its deterministic anisotropic properties.
Moreover, combining these three depolarization parameters,
one can get direct information on the number and degeneracy
of non-null canonical parameters, as evidenced in table 1.
Such a procedure, which does not require reducing md to its
canonical form, also allows one to identify type- I( ) canonical
family from type- II( ) when all three canonical parameters are
non-null. It is important to note that, in practice, the intrinsic

4
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depolarization metrics proposed above can be computed
directly from the Mueller matrix M using the following
procedure: (i) compute the matrix logarithm of M; (ii) identify
md by taking the G-symmetric part of Mlog( ) and normal-
izing by the square sample thickness Dz ;2 (iii) compute the
CCM of md to identify the submatrix S; (iv) and finally
compute the above metrics Pδ, d and d.

5. Irreversibility property of depolarizing light–matter
interactions

These considerations provide a fundamental insight on the
origin of depolarization as a randomization of light polar-
ization due to statistical fluctuations of the anisotropy para-
meters, giving access to meaningful intrinsic depolarization
metrics. Finally they also allow us to demonstrate the fol-
lowing irreversibility property of depolarizing light–matter
interactions:

Property 1. For any admissible fully or partially polarized
input Stokes vector sin, a physically realizable depolarizing
non-singular and unit determinant Mueller matrix

~
M

verifies =
~     s M s sout 1,3

2
in 1,3

2
in 1,3

2 .

The demonstration of this property in the general case of
a standard Mueller matrix has never been reported before to
our best knowledge, and is provided in a more general form in
appendix (property A.1). For the sake of conciseness, we
provide the demonstration of an equivalent ‘local’ property
for a depolarizing dMm = + ¢m m mnd d with null trace
(k = 0i ), which reads

= ¢ + ¢
 

z

s
s m G Gm s

d

d
0 12T

d
T

d
1,3
2

[ ] ( )
for any physical Stokes vector s, with equality if and only
if the dMm is non depolarizing ( ¢ =m 0d ). The above
expression of   zsd d1,3

2 is easily obtained by computing
the first order Taylor expansion of + D = z zs 1,3

2( )
+ D z zm sId 1,3

2( ) ( ) and using the G-antisymmetry of
mnd when k = 0i . The positivity can then be easily
shown on the two canonical forms of ¢md recalled above.
One indeed has = D + + -  z z s d d d ssd d 21,3

2
0
2

1 2 3 1
2[ ( )

- - - - - - - -d d d s d d d s d d d1 2 3 2
2

2 3 1 3
2

3 1 2( ) ( ) ( )]for

type-(I) depolarizing dMm, whereas, for type-(II),
= D + + - + +  z z d s s d s s s ssd d 21,3

2
2 0

2
1
2

1 0
2

1
2

2
2

3
2[ ( ) ( )].

These two quantities are obviously non negative under the
physicality conditions recalled above (i.e.,

" Îi d1, 3 , 0i{ } ) and for admissible Stokes vectors
(i.e.,  s 01,3 ).

Property 1 and its ‘local’ counterpart have a strong
physical meaning since they reveal the irreversible effect of a
depolarizing transformation on the propagating field. This
irreversibility clearly appears through the necessary increase
of the Minkowski metric of the Stokes vector defining the
field polarization state. Interestingly, this irreversibility
property has an informational or thermodynamical counter-
part, under the hypothesis of complex Gaussian circular
random fluctuations of the field. Indeed, as a consequence of
equation (12), the Shannon entropy of the bidimensional
electrical field vector must obey an irreversible evolution with

depolarizing transformations, as =
 

  0H

z z

s
s

sd

d

2 d

d1,3

1,3( ) .

Such an irreversible behavior of the Minkowski metric s 1,3∣∣ ∣∣
(or equivalently of the Shannon entropy H s( )) confirms that
these quantities are best adapted to describe the polarimetric
randomization (depolarization) of a propagating beam.
Indeed, contrarily to the field intensity or the standard DOP
 , the quantities  s 1,3 and H s( ) are preserved through non-
singular deterministic (and reversible) transformations as

= =  0H

z z

s sd

d

d

d
1,3( ) in that case, but must necessarily grow

with irreversible depolarizing transformations. This is sche-
matically illustrated in figure 1 where it can be seen that,
depending on the input Stokes vector sin, a non-depolarizing
~
Mnd or a depolarizing

~
Md polarimetric transformation can

lead to an increase or a decrease of  .
This can be also quantitatively illustrated with the

following simple example. Let us consider the Mueller
matrix =

~ ~~
a bM M M formed by the sequential combination

of a (unit-determinant) diagonal depolarizer =
~

bM
b b b bdiag 1, , , 3 4[ ] with b Î 0, 1[ ], followed by a partial

polarizer along the X axis with (unit-determinant) Mueller
matrix:

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥a

a
a

a

a

a

=
- -

-

Î

~
aM

1

1

1 0 0
1 0 0

0 0 1 0

0 0 0 1

,

with 0, 1 .

2
2

2

[ ]
Let us now consider for instance that the fully polarized
Stokes vector =s 1, 1, 0, 0 T

in,1 [ ] , with DOP  =s 1in,1( ) and
Minkowski metric = s 0in,1 1,3 , interacts with a sample

described by
~
M. In that case, the DOP of the output Stokes

vector =
~

s Msout,1 in,1 reads  a b ab= + +s 1out,1( ) ( ) ( )
which is clearly lower than the unit DOP of the input light,
seemingly indicating a depolarizing interaction. This is
confirmed by the evolution of the Minkowski metric
which verifies property 1 as b b= - s 1 0out,1 1,3

2 2 3 2( ) .
This is also the case with the Stokes vector

=s 1, 0, 0, 0 T
in,2 [ ] of a totally unpolarized light, as

Table 1. Intrinsic differential depolarization metric, volume and
Cloude entropy for the two canonical dMmʼs of equation (10).

Parameters Îdi i, 1,3{ } dP2 d d

(I) = =d d di j k d3 i di
3 1

= ¹d d di j k +d d2 i k d di k
4 < <d 1ln 2

ln 3

¹ ¹d d di j k + +d d di j k d d di j k < <d0 1

(I/II) =d d 0i j d2 i 0 ln 2
ln 3

¹d d 0i j +d di j 0 < <d0 ln 2
ln 3

d 0 0i di
2 0 0

5

J. Opt. 18 (2016) 125604 J Fade and N Ortega-Quijano

118



b= =   s s1 1out,2 1,3
2 3 2

in,2 1,3
2 . However in that case,

the polarimetric transformation described by
~
M leads to an

increase of the DOP since  a=sout,2( ) , whereas
 =s 0in,2( ) , which could be apparently in contradiction with

the depolarizing nature of
~
M. This simple example thus

confirms that the evolution of the standard DOP does not
share the same irreversibility behavior, described in property
1, that is followed by the Minkowski metric or the field
Shannon entropy.

6. Conclusion

As a conclusion, we have illustrated in this article how diff-
erential polarimetric formalisms could provide a clear physi-
cal picture of the origins of depolarization of light when
interacting with a medium. The derivation conducted from the
differential Jones formalism approach provides a straighfor-
ward derivation of the CCM of a depolarizing polarimetric
transformation, from which we have been able to confirm that
9 independent parameters are required to describe depolar-
ization. Moreover, the statistical analysis presented has evi-
denced the fact that depolarization properties locally grow up
quadratically with propagation distance, contrarily to deter-
ministic anisotropy properties which pile up linearly. We have
also proposed to define new intrinsic depolarization metrics,
which are able to describe how a polarization transformation
will randomize the input field components, independently of
the main deterministic polarization transformation. Lastly, a
physically meaningful implication regarding an irreversibility
property of the Minkowski metric of the Stokes vector under
depolarizing transformations has been established, with an
insightful interpretation in terms of growth of the beam
Shannon entropy under the hypothesis of complex Gaussian
circular fluctuations.

Appendix

In this appendix, we provide the demonstration of the fol-
lowing property, which is a generalized version of property 1
for non unit-determinant Mueller matrices.

Property A.1. For any admissible fully or partially polarized
input Stokes vector sin, a physically realizable non-singular
Mueller matrix M with >Mdet 0( ) verifies

=     Ms M s sdet . A.1out 1,3
2

in 1,3
2 1 2

in 1,3
2[ ( )] ( )

It can be readily checked that when =Mdet 1( ) , one obtains
the formulation of the property 1 given in the article.

Before providing the demonstration of this property, let
us recall the definitions of Stokes realizability and Cloude
realizability for general Mueller matrices [60, 61]:

Stokes realizability: A Mueller matrix M is said Stokes
realizable if, for any fully polarized Stokes vector sin ver-
ifying = s 0in 1,3 and >s 00 , one has = sout 1,3

 M s 0in 1,3 . It must be noted that this last inequality is a
particular case of the condition of equation (A.1). In that
sense, property A.1 can be seen as a generalized version of
the Stokes realizability condition.

Cloude realizability: A Mueller matrix M is said Cloude
realizable (or Jones realizable in [60, 61]) if and only if its
CCM C M( ) is PSDH [26, 49, 61]. The Cloude realizability
implies the Stokes realizability whereas the converse is not true.

The demonstration of the above property A.1, which has
never been reported so far to our best knowledge, is largely
based on the work conducted by Rao et al [60, 61], which has
permitted to exhibit two canonical forms of Stokes realizable
non-singular Mueller matrices, under double cosetting by

+SO 1, 3( ) elements. Their main result can be summarized
through the following theorem:

Theorem 1. (Rao et al [60]) If a non-singular Mueller matrix
M verifying >Mdet 0( ) is Stokes realizable then
$ Î +SOL L, 1, 3L R ( ) such that =M L M LL R

I( ) with

r r r r=M diag , , ,I
0 1 2 3[ ]( )

with   r r r r > 0;0 1 2 3 or =M L M LL R
II( ) with

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

r
r

r
r

=

-n n n

n
M

0 0

0 0 0

0 0 0

0 0 0

II

0 0 0 0

0 0

2

3

( )
( )

with r r r> > > >n 00 0 2 3 .

Figure 1. Schematic representation of the effect of a non-depolarizing (
~
Mnd) or a depolarizing (

~
Md) transformation on (a) the standard DOP  ,

and (b) the Minkowski metric s 1,3∣∣ ∣∣ or Shannon entropy H s( ), for all possible input Stokes vectors sin (represented around a chromatic disk
for the sake of simplicity).
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It can be noted that additional constraints on the cano-
nical parameters apply in order to ensure Cloude realizability
[61], leading to the same canonical forms and constraints
derived by Bolshakov et al in [62], where the authors ana-
lyzed the physical realizability of Mueller matrices from the
viewpoint of the so-called G-polar decomposition. However,
these additional constraints are not required here for the fol-
lowing demonstration.

We now come to the demonstration of property A.1. The
condition of equation (A.1) is obviously a sufficient condition
for Stokes realizability since it implies the usual Stokes rea-
lizability condition. To demonstrate that it is a necessary
condition, it suffices to show that the two canonical forms of
Stokes realizable non-singular Mueller matrices (recalled in
theorem 1) verify the condition of equation (A.1). The gen-
eralization to any Stokes realizable non-singular Mueller
matrix is then straightforward since the double cosetting by

+SO 1, 3( ) elements does not modify the Minkowski metric.
Without loss of generality, we consider an input Stokes

vector with unit intensity = ¢s s1 T
in [ ] , with ¢ = s s ss T

1 2 3[ ]
and ¢ =s 2

2 2∣∣ ∣∣ . In that case, one has = - s 1in 1,3
2 2

where  Î 0, 1[ ] denotes the DOP of the input light.
Canonical form M I( ): In that case, one has

r r r r=Mdet I
0 1 2 3

1 2[ ] [ ]( ) and sout 1,3
2 = s M G M sT T

in
I I

in( )( ) ( )

= r r r r- + +s s s0 1
2

1 2
2

2 3
2

3[ ]. We now compute

⎡⎣






r r r r

r r r r

r r r

= -

= - + +

- -

- + + - - =

   

s s s

s s s

s s M sdet

1

1 0,

I in out 1,3
2 I 1 2

in 1,3
2

0 1
2

1 2
2

2 3
2

3

0 1 2 3
1 4 2

0 0 1
2

2
2

3
2

0
2

( ) [ ( )]
]

[ ] ( )
[ ] ( )

( ) ( )

since r r " Îi, 1, 3i 0 { }.
Canonical form M (II): The demonstration for the second

canonical form is a little more involved. In that case, one has
r r r=Mdet II

0 2 3
1 2[ ] [ ]( ) and





r r r

r r r

= -

= - + - - +

- -

   

n s s s s s

s s M sdet

1 2 1

1 .

II in out 1,3
2 II 1 2

in 1,3
2

0 1
2

0 1 1 2 2
2

3 3
2

0
1 2

2 3
1 4 2

( ) [ ( )]
( ) ( ) ( )

[ ] ( )

( ) ( )

Since  r r 02 3 , and noticing that + = -s s s2
2

3
2 2

1
2, it

is easy to show that



 

 r

r r r

- + -

- - - -

n s s s

s

s 1 2 1

1 .

II in 0 1
2

0 1 1

2
2

1
2

0 2
1 2 2

( ) ( ) ( )
( ) [ ] ( )

( )

As a result, it now suffices to prove the positivity of the term
at the right-hand side of the above inequality, for any input
Stokes vector sin.

For that purpose, we first notice that this quantity is a
polynomial function of order 2 in s1, which we shall rewrite
f s1( ). For the input Stokes vector to be physically admissible,
one must have  Î -s ,1 [ ]. Let us first show that f s 01( )

at its boundaries:

 

  






 

r r r
r r r
r

- = +
´ + - - -

+ - >
>

f

n

n

n

1

1 2 1

1 , since

0, since and 0.

0 0 0 2
1 2

2
0 0 0 2

0 0

( ) ( )
[ ( ) [ ] ( )]

( ) ( )

 

  








r r r
r r r

r

= -
- + - +

- - >

> Î

f

n

n

n

1

1 2 1

1 , since

0, since and 0, 1 .

0 0 0 2
1 2

2
0 0 0 2

0 0 [

( ) ( )
[ ( ) [ ] ( )]
( ) ( )

]
Lastly, a parabolic function verifying  -f 0( ) and
 f 0( ) is necessarily non-negative over the interval
 - ,[ ] if the function is concave, i.e., if





r r r= - - - = -



f s

s
n U V

U V

d

d
2 2 0

2
1

1
2 0 0 0 2

( ) [( ) ( )] [ ]

with r= - >U n 00 0( ) and r r= - >V 00 2( ) .

On the other hand, if the function is convex, one has
U V and f s1( ) can be negative over  - ,[ ] only if its

minimum *  Î -s ,1 [ ]. However, it is easy to show that
solving =f s sd d 01 1( ) leads to *  = -s U U V 11 ( )
since > >U V0, 0 and -U V 0, thus implying that
the function f s1( ) cannot admit a minimum value in
the interval  - ,[ ]. This finally proves the positivity of
f s1( ) for  Î -s ,1 [ ], and thus of  sII in( )( ) for any admis-
sible input Stokes vector sin, hence achieving the proof of
property A.1.
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A new concept devoted to sensing the depolarization strength of materials from a single measurement is

proposed and successfully validated on a variety of samples. It relies on the measurement of the

orthogonality breaking between two orthogonal states of polarization after interaction with the material

to be characterized. Due to orthogonality preservation between the two states after propagation in

birefringent media, this measurement concept is shown to be perfectly suited to depolarization remote

sensing through fibers, opening the way to real-time depolarization endoscopy.

DOI: 10.1103/PhysRevLett.109.043901 PACS numbers: 42.25.Ja, 07.07.Df, 07.60.Vg, 42.62.�b

The interaction of electromagnetic radiation with natural
objects has long been the subject of intensive investiga-
tions. Most significant advances in terms of understanding
and applications of the physics are in the microwave
domain where the amplitude, the phase, and the polariza-
tion of the field are routinely used, for instance, in long-
range sensing systems in order to optimize the information
extracted from a given scene [1–4]. Conversely, in the
optical domain where common sensors are based on qua-
dratic detection, it is usual to cope with the intensity of the
backscattered field. In particular, in the case of polarimet-
ric imaging, the determination of the state of polarization
of the backscattered light involves the Stokes vector whose
four elements correspond to measured intensities [5]. A
rigorous analysis of the depolarization nature of a given
material implies the determination of its Mueller matrix
which linearly couples the backscattered Stokes vector to
the illumination Stokes vector, thus requiring 16 measure-
ments [6]. Consequently, this common approach is very
stringent since it implies a perfect control of the polariza-
tion states of the emitted light as well as a precise projec-
tion of the backscattered electric field on the four analysis
states of polarization. Moreover, this approach is very
restrictive in terms of wavelength tuning and applies only
to free space propagation, forbidding the use of fibers as
part of the polarimetric apparatus.

Although some techniques have been recently proposed
in the context of biomedical imaging to perform polari-
metric measurements through fibers [7,8], they are again
based on the same principle, namely, illuminating the
object with a diversity of states of polarization and analyz-
ing the backscattered signal with a polarization-sensitive
detector. In Ref. [7], it is demonstrated that the degree of
polarization of a given material can be recovered statisti-
cally but at the expense of a large and time consuming
number of realizations. In this context, we felt that, as far
as the depolarization strength (degree of polarization) of a
material is the parameter of interest, the usual approaches
are not optimal from an experimental point of view.
Indeed, as far as one parameter has to be determined, it

should be possible in principle to retrieve it from a single
measurement. More importantly, if such a single measure-
ment is achievable experimentally, then it automatically
solves the problem of polarimetric remote sensing through
fibers. In this Letter we propose to revisit the way of
performing depolarization measurements in the optical
domain using the optical electric field rather than its inten-
sity. To this aim, we propose a novel polarimetric sensing
modality which involves the concept of polarization or-
thogonality breaking. We show theoretically and confirm
experimentally that this new sensing modality is able to
provide the depolarization nature of a material and is by
essence insensitive to propagation through fibers. These
results thus open the way for high-sensitivity real-time
endoscopic polarimetric imaging, a very promising tool
in biomedical optics for in vivo and in situ marker-free
diagnosis [7,8]. Although limited so far to free-space mea-
surements, polarization-sensitive imaging techniques have
indeed proven efficient in the diagnosis of a number of skin
pathologies [9–12] and precancerous lesions [12–14].
In a majority of applications, including biomedical

diagnosis, polarimetric imaging end-users are mainly
interested in revealing polarization contrasts which may
not appear on standard intensity images [5,9–15]. In such
a context, characterizing the full Mueller matrix or the
Stokes vector S provides superfluous information, as
evidenced by the variety of simplified polarimetric imaging
designs available [9,15–17]. In most applications, a
relevant contrast parameter to consider is the degree of

polarization (DOP) P ¼ ½1–4 detð�outÞ=trð�outÞ2�1=2, with
�out ¼ hEoutE

y
outi denoting the polarization matrix of the

backscattered light which can be bijectively derived from S
[5], and with hi denoting a statistical (ensemble) average.
However, a majority of materials can be considered as
purely depolarizing [15,18], i.e., their Mueller matrix is
well approximated by a diagonal matrix of rank 2. In that
case, P can be evaluated from only two intensity measure-
ments through orthogonal polarizers P ¼ ðIk � I?Þ=
ðIk þ I?Þ, when the samples are illuminated with line-

arly polarized light. In general, the action of a purely
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depolarizing material on an incident state of polarization
jEini can be phenomenologically modeled by a partial
projection of the incident state onto the orthogonal polar-
ization direction denoted jE?

ini, i.e., jEouti ¼ ffiffiffiffi

�
p ðjEini þ

�jE?
iniÞ, where� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� P
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ P
p

. Using Jones matrix

formalism, such a relation reads

jEouti¼JmjEini¼ ffiffiffiffi

�
p ½RjEini�y

1 �

� 1

 !

RjEinijEini; (1)

where the unitary matrix RjEini 2 SUð2Þ corresponds to

the generalized polarization rotation mapping the trans-

verse field eigenbasis fje1i; je2ig ¼4 fjeini; je?inig into the

standard linear transverse field basis fjeXi; jeYig.
From Eq. (1), it is seen that a nonnull off-diagonal term

� leads to a superposition of the two orthogonal states of
the electromagnetic field. Assuming that these two eigen-
states je1i and je2i are nondegenerate, that is, they have
two distinct eigenfrequencies, a coherence oscillation at
the difference of the eigenfrequencies is expected, as illus-
trated in Fig. 1(a). Moreover, the amplitude of the coher-
ence oscillation is directly linked to the depolarization
value P through �. Thus, the depolarization strength of a
given material can be recovered from the way this material
breaks the orthogonality of a properly prepared state of the
electromagnetic field. To illustrate this property, let us
consider a light source emitting two distinct frequencies
along two orthogonal polarization states

jEinðr; tÞi ¼ E0
ffiffiffi

2
p ½c 1ðr; tÞje1i þ c 2ðr; tÞje2i�; (2)

with c kðr; tÞ ¼ MkðrÞe�2j��kt. Such a state is a physical
implementation of a nonquantum entangled state [19,20].
For the sake of simplicity, we consider the case of orthogo-
nal states of equal intensities, which can be shown to be the
best compromise in terms of detection performance, and
we restrict ourselves to the case of plane waves, i.e.,
MkðrÞ ¼ 1. In the most general case, the eigenstates je1i
and je2i can be elliptical with orthogonal azimuth direc-
tions and equal ellipticity. The polarization matrix �in of
such an illumination field can be decomposed into two

terms �in ¼ �0 þ ���e�j2���t. The first term �0 accounts
for the continuous part of second-order correlations
between the field transverse components, whereas ���

describes interference terms, oscillating at the beat note
frequency �� ¼ �2 � �1. From the above definitions, one
can easily derive the input field continuous intensity
I0in ¼ trð�0Þ ¼ jE0j2, while the amplitude of the beat note

intensity modulation I��in ¼ trð���Þ ¼ 0, since the two

orthogonal input states do not interfere.
When such a field interacts with an object characterized

by its Jones matrix J, the value of the beat note intensity
modulation of the resulting field I��out ¼ trðJ���JyÞ pro-
vides direct information on the depolarization properties
of the object. As illustrated in Fig. 1(a), the loss of
orthogonality induced by the interaction with a depolariz-
ing sample gives rise to an interference intensity compo-
nent oscillating at a frequency �� whose amplitude is
bijectively related to the material depolarization strength.
If the depolarizing sample is described by Jm given in
Eq. (1), one indeed has

C��; 0
out ¼4 P��

out

P0
out

¼ 4�2

ð1þ �2Þ2 ¼ 1� P 2: (3)

The DOP of the sample can thus be directly retrieved from
a single measurement of the beat note optical power P��

out

(normalized by the cw optical power P0
out). This quantity

can be measured by heterodyne detection, thus enabling
fast (< 1 �s for �� ¼ 1 GHz), highly-sensitive depolar-
ization measurements.
On the other hand, nondepolarizing media (isotropic,

birefringent or optically active media) are characterized
by unitary trace-preserving Jones matrices. Such a matrix

verifies JuJ
y
u / Id, where Id is the identity matrix, and thus

I��out ¼ 0, demonstrating that orthogonality between the two
illumination states is preserved when light propagates
through such media. This property, illustrated in Fig. 1(b),
is valid provided no significant dispersion appears between
frequencies �1 and �2. This is very unlikely to occur in
practice since �� will not exceed tens of gigahertz for
the beat note to be detectable on a photodetector. A con-
sequence of this result is that the depolarization sensing
by orthogonality breaking (DSOB) technique proposed in
this Letter is in essence insensitive to birefringence and
polarization rotation, thus enabling remote sensing through
optical fibers, in which stress- or torsion-induced birefrin-
gences are usually highly detrimental to usual polarimetric
measurements [7].
In order to experimentally illustrate and validate the

DSOB principle, we have implemented the setup depicted
in Fig. 2(a). In this setup, the probe field state is prepared
using a single laser source which inherently produces the
two orthogonal states with shifted frequencies. This laser
consists of an (Er,Yb)-doped glass 4-cm-long external cav-
ity laser emitting at 1550 nm. Single-longitudinal-mode
oscillation is obtained with an intracavity 40-�m-thick

FIG. 1 (color online). Principle of depolarization sensing by
orthogonality breaking (DSOB).
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silica etalon both sides of which are coated for 40% reflec-
tion at 1550 nm. Moreover, a 500-�m-thick YVO4 crystal,
cut at 45� of its optical axis, is inserted into the laser cavity
in order to, at the same time, define two linear polarization
eigenstates, lift the frequency degeneracy, and finally ensure
a slight polarization walk-off (50 �m) in the active me-
dium. This walk-off reduces the nonlinear coupling between
the two eigenstates [21], leading to robust and simultaneous
oscillation of the two polarization eigenstates. The active
medium is diode pumped at 976 nm. Lateral positioning
of the pump beam enables equalization between the two
eigenstates intensities. By slightly tilting the etalon and
the YVO4 crystal, it is possible to set the frequency differ-
ence �� ¼ �2 � �1 to a value compatible with the detec-
tion setup, namely within the radio-frequency range, i.e.,
��<2GHz. With this configuration, the laser provides an
output power of 1.8 mW with a pump power of approxi-
mately 130 mW.

We emphasize that the depolarization measurement con-
cept we propose here is expected to be well suited for
remote sensing. In order to validate this expectation, the
laser output is injected into, and guided along, a 2 m-long
single-mode optical fiber (SMF28) before illuminating the
sample. The backscattered light is backpropagated into the
same fiber, extracted with a polarization-insensitive circu-
lator (PIC) and directed on a high-band pass (16 GHz)
photodiode (PD). The detected rf signal is amplified with a
high-gain (60 dB, 2 GHz cutoff frequency) voltage ampli-
fier and analyzed on a 40 GHz band pass electrical spec-
trum analyzer (ESA). It is worth noticing that this
measurement setup does not require any component to be
inserted at the distal fiber end and may thus be directly
adapted to commercial endoscopes. More importantly, no
polarizing or birefringent elements are needed, and the
spectral range of the setup is therefore only limited by
the source, the photodiode, and the fiber spectral excur-
sions. As a consequence, the DSOB technique could easily
provide spectrally resolved polarimetric measurements,

which can be interesting for materials characterization or
biomedical diagnosis [22].
To calibrate and test this experimental setup, we first

evaluated the maximum ‘‘polarimetric orthogonality con-
trast’’ available with such a measurement scheme. This
was done by comparing the residual beat note power P��

(caused by imperfect orthogonality between the polariza-
tion states) to the maximum beat note power available
P��
proj, obtained by inserting a polarizer (transmission

Tp ¼ 85%) at a 45� angle with respect to the illumination

polarization directions at the laser output. This contrast
was derived from the corresponding spectra analyzed
around frequency �� on the ESA, as illustrated in
Fig. 2(b). After injection into the fiber, we measured a
high contrast of �34� 1 dB. After propagation through
a 20 km-long single-mode optical fiber, a reduced but still
high contrast of �25� 1 dB was measured, showing that
orthogonality is fairly well maintained during propagation
over tens of kilometers. It was also observed that the
circulator was rather detrimental to orthogonality, since a
contrast of �28� 1 dB has been measured at the output
port (2) of this component, and �27� 1 dB at the output
port (3) after reflection on a fibered mirror. At this level, it
is interesting to note that such a setup providing measure-
ment dynamics of 25 dB makes it possible to measure
values of P up to 99.5% (99.95% with 30 dB dynamics).
The new DSOB technique addressed in this Letter may
therefore be a very efficient tool when slight depolarization
contrasts have to be characterized.
Further calibration was also conducted by using the

setup of Fig. 2(a) and a fibered collimator to illuminate a
rotating polarizer (axis �0 ¼ 32�) followed by a mirror.
The polarimetric contrast of the light backpropagated
into the fiber was analyzed on the spectrum analyzer for
various orientations � of the polarizer. The obtained results
are plotted in Fig. 3 and are in fair agreement with our
theoretical predictions, showing that in the experimental
configuration considered, one has

I��

I��proj

¼
�
�
�
�
�
�
�
�

2fsin½2ð�� �0Þ� þ K0g
Tpf1þ K0 þ sin½2ð�� �0Þ�g

�
�
�
�
�
�
�
�

; (4)

FIG. 2 (color online). (a) Schematic representation of the
depolarization remote-sensing setup. Dashed box: description
of the (Er,Yb)-doped glass laser producing the two orthogonally
polarized and frequency shifted fields. (b) Measurement of the rf
contrast obtained on a fibered mirror (�� ¼ 1:254 GHz).

FIG. 3 (color online). Polarimetric orthogonality contrast mea-
sured with the setup of Fig. 2(a) on a rotating polarizer and
mirror. Radio-frequency power was measured with an ESA.
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with K0 ¼ 0:3% denoting the amount of intensity reflected
at the fiber or collimator end.

Once calibrated, the setup of Fig. 2(a) was tested on a
variety of materials [see inset of Fig. 4(b)] to validate
experimentally the DSOB technique. To match endo-
scopic application requirements, we considered a challeng-
ing experimental configuration where the materials under
investigation were placed in the vicinity of the ferule
connector-angled physical contact (FC-APC) fiber-end
connector without any collimation optics. In such condi-
tions, a very weak proportion of the illumination optical
power was backscattered into the fiber mode and propa-
gated to the detector: ’ 10 �W on a metallic adhesive
sample (sample 3) and only ’ 0:7 �W on a diffusive paper
sheet (sample 5). However, the heterodyne detection
scheme involved in DSOB enables a very high sensitivity
after amplification of the detected signal and analysis on
the ESA. A natural improvement of this setup would be to
use a lock-in detection to measure precisely the output
electrical power at frequency ��. Indeed, the ESA used
here for the proof of concept is not required and could be
advantageously replaced by a demodulation circuit since
the frequency of interest �� is known.

The results obtained are reported in Fig. 4. It can first be
checked in Fig. 4(a) that the relative beat note optical

power is low (C��;0
out ¼�22:5�1 dB) on a nondepolarizing

medium (metal adhesive, P ¼ 0:99), whereas it consider-

ably increases (C��; 0
out ¼ �1:5� 1 dB) on a diffusive and

depolarizing sample (white paper, P ¼ 0:11). For the sake

of experimental convenience, C��; 0
out was determined here

by normalizing the rf output power P��
out (blue dark curves)

by P��
out;proj (green light curves), i.e., the rf power obtained

with projected polarization states at the laser output, which
provides the overall optical power backscattered by the
sample (up to a factor Tp=2). Then, on a variety of ten

samples with distinct depolarization properties, the relative

beat note optical power C��; 0
out was measured and injected

in Eq. (3) to provide an estimation of the DOP. The

estimated values of P̂ are plotted in Fig. 4(b) and are in
good agreement with the DOP of the samples, character-
ized independently with standard Stokes free-space mea-
surements performed at 1:55 �m. These experimental
results validate the concept of remote depolarization sens-
ing by polarization orthogonality breaking, as well as the
DSOB setup proposed.
In this Letter, we introduced a new polarimetric measure-

ment technique, based on the concept of orthogonality
breaking, that allows one to measure the depolarization
strength of a material from a single measurement in a few
tens of milliseconds. In addition, the DSOB technique is
per se insensitive to propagation through a fiber and is easily
implemented without requiring any specific component at
the distal end of the fiber, or in front of the detector, thus
paving the way for depolarization remote-sensing of bio-
logical tissues with conventional endoscopes. Based on a
heterodyne detection setup, the proposed method is highly
sensitive and therefore perfectly suited for biomedical
applications where biological tissues are often slightly de-
polarizing and prone to photodamage. A first step toward
applying the DSOB technique to real-time polarization-
sensitive endoscopic imagingwould beworking on improv-
ing the source control and implementing a demodulation
circuit. On a wider scope, the DSOB principle may find
applications in a number of fields, such as remote sensing
and radar, materials characterization, fibre-based sensors,
or any other physical measurement resorting to the orthogo-
nality breaking principle.
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Polarimetric sensing by orthogonality breaking has been recently proposed as an alternative technique for per-
forming direct and fast polarimetric measurements using a specific dual-frequency–dual-polarization (DFDP)
source. Based on the instantaneous Stokes–Mueller formalism to describe the high-frequency evolution of the
DFDP beam intensity, we thoroughly analyze the interaction of such a beam with birefringent, dichroic, and
depolarizing samples. This allows us to confirm that orthogonality breaking is produced by the sample diatten-
uation, whereas this technique is immune to both birefringence and diagonal depolarization. We further analyze
the robustness of this technique when polarimetric sensing is performed through a birefringent waveguide, and
the optimal DFDP source configuration for fiber-based endoscopic measurements is subsequently identified.
Finally, we consider a stochastic depolarization model based on an ensemble of random linear diattenuators,
which makes it possible to understand the progressive vanishing of the detected orthogonality-breaking signal
as the spatial heterogeneity of the sample increases, thus confirming the insensitivity of this method to diagonal
depolarization. The fact that the orthogonality-breaking signal is exclusively due to the sample dichroism is an
advantageous feature for the precise decoupled characterization of such an anisotropic parameter in samples
showing several simultaneous effects. © 2016 Optical Society of America

OCIS codes: (110.5405) Polarimetric imaging; (120.5410) Polarimetry; (260.2130) Ellipsometry and polarimetry; (100.1930)

Dichroism.

http://dx.doi.org/10.1364/JOSAA.33.000434

1. INTRODUCTION

Polarimetric imaging systems are of growing interest for many
applications like remote sensing [1], astronomy [2], defense
[3,4], biomedicine [5–8], synthetic-aperture radar [9], and ma-
chine or enhanced vision [10,11]. Active polarimetric techniques
allow valuable information of a given scene or sample to be
retrieved from the measure of its anisotropic and depolarizing
properties. Mueller polarimetry is the most exhaustive active
technique, as it completely characterizes the polarimetric param-
eters of an object. This technique typically implies registering
16 images using different approaches to modulate the measure-
ment in the spatial, temporal, and/or spectral domain [12–17].
However, the complexity of the system and the loss of perfor-
mance entailed by the different multiplexing methods have led
to proposals for several simplified polarimetric techniques that
optimize the measurement of some specific polarimetric proper-
ties at high performance [18–21].

In this context, the implementation of fiber-guided polari-
metric imaging systems constitutes a challenging issue, due to

the fact that the state of polarization of the illuminating beam
is modified by the optical waveguide in an uncontrolled way.
This is a remarkable aspect to be addressed for endoscopic
applications, where the optical fiber stress-induced birefrin-
gence is the dominant effect on beam polarization [22]. The
feasibility of a multimodal endoscopic system including cross-
polarized imaging has been demonstrated for Barrett’s metapla-
sia imaging [23]. However, such a technique provides an ori-
entation-dependent contrast, which entails some drawbacks for
in vivo applications. Moreover, the fact that the polarimetric
elements and the CCD camera are placed in the distal end of
the endoscope is quite restrictive in terms of miniaturization.
Regarding Mueller polarimetry, a narrow band 3 × 3 Mueller
polarimetric endoscope was presented and validated ex vivo
on a Sprague Dawley rat [24]. However, the use of a rigid endo-
scope is unfeasible for most practical applications. Finally, a
full Mueller endoscopic polarimeter, based on a first characteri-
zation of the optical fiber using a micro-switchable mirror
before every Mueller matrix acquisition, was proposed in [25].
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Recently, this novel technique has been combined with spectral
encoding of polarimetric channels to significantly reduce the
acquisition time [26].

Recently, we proposed a novel polarimetric imaging modality
based on the orthogonality-breaking sensing principle [27]. This
technique uses a dual-frequency–dual-polarization (DFDP) co-
herent source, and is based on the measurement of the detected
intensity component at the radio-frequency beat note after in-
teraction with the sample or scene under analysis. This technique
enables a subset of its polarimetric properties to be determined
from a single acquisition at both high speed and high dynamic
range. The first implementation of a polarimetric contrast micro-
scope by orthogonality breaking was presented in [28]. A modi-
fied source architecture, enabling the linear diattenuation and
optical axis of the sample to be completely characterized, was
subsequently described and validated in [29]. Though insensitive
to birefringence effects, which are predominant in biological tis-
sues, this technique provides an alternative method to character-
ize biological anisotropic structures. Indeed, biological tissues
usually show both birefringence and dichroism sharing the same
anisotropy axis [30,31]. As a result, biological anisotropic struc-
tures can nonetheless be addressed by measuring their diatten-
uation properties, provided the measurement dynamics is high
enough. However, all these previous works on orthogonality-
breaking imaging [27–29] were focused on specific examples
and particular measurement configurations. The in-depth analy-
sis of the physical origin of the orthogonality-breaking signal
amplitude and phase, in relation with the polarimetric properties
of the sample and the characteristics of the illumination system,
is still an open question.

In this work, we develop a comprehensive theoretical model
of orthogonality-breaking sensing based on the instantaneous
Stokes vector and the Mueller calculus. This approach makes
it possible to describe the interaction of the DFDP beam with
anisotropic depolarizing samples. Based on this method, we de-
velop a thorough analysis of the orthogonality-breaking signal
characteristics for both free-space and fiber-guided measure-
ments. The results are presented for the basic types of optical
elements, namely, isotropic absorbers, elliptical, circular, and
linear retarders and diattenuators, and diagonal depolarizers.
This theoretical analysis is then completed with a detailed
discussion, based on both simulations and experimental
measurements, which allows us to conclude that the orthogo-
nality-breaking technique is definitely not sensitive to diagonal
depolarization. Throughout this work, a special emphasis is
placed on the practical implications of each configuration for
experimental polarimetry.

This paper is organized as follows: the instantaneous Stokes
vector description of a polarized light beam is reviewed in
Section 2, before applying it to the specific characterization
of the DFDP source in Section 3. Using the instantaneous
Stokes–Mueller formalism, we then thoroughly study in
Section 4 how this type of laser source can be used for free-space
polarimetric sensing by the orthogonality-breaking principle.
The influence of an optical waveguide on orthogonality-
breaking sensing is then investigated in Section 5 to analyze the
potential of this technique for endoscopic applications. Last, a
discussion on the sensitivity of this technique to depolarization

is presented in Section 6 using a stochastic model of linear dia-
ttenuation with random optical axis orientation, before the
conclusion of this work is given in Section 7.

2. INSTANTANEOUS STOKES VECTOR

First, we consider a fluctuating optical plane wave described by
its transverse electric field. The reference frame is set so that
propagation is along the z axis in a right-handed Cartesian
coordinate system xyz, and thus the complex electric field at
a specific point z0 can be resolved into a pair of orthogonal
polarization states:

E⃗�t� �
�
E1�t�
E2�t�

�
: (1)

The corresponding instantaneous Stokes vector is a four-
element real vector,

S⃗�t� �

2
664
S0�t�
S1�t�
S2�t�
S3�t�

3
775; (2)

whose elements are the instantaneous Stokes parameters, de-
fined in terms of the complex electric field components as [32]

S0�t� � E1�t�E�
1�t� � E2�t�E�

2�t�; (3)

S1�t� � E1�t�E�
1�t� − E2�t�E�

2�t�; (4)

S2�t� � E1�t�E�
2�t� � E�

1�t�E2�t�; (5)

S3�t� � i�E1�t�E�
2�t� − E�

1�t�E2�t��: (6)

The first component S0�t� � E⃗�t�†E⃗�t� is the instantaneous
intensity of the field, with † denoting the Hermitian conjugate.

The instantaneous Stokes vector completely characterizes
the state of polarization (SOP) of a partially polarized light
beam, except its absolute phase. The conventional Stokes
parameters are the ensemble averages of the instantaneous
Stokes parameters. Assuming stationarity and ergodicity, the
conventional Stokes vector is

S⃗ � hS⃗�t�i �

2
664
hS0�t�i
hS1�t�i
hS2�t�i
hS3�t�i

3
775; (7)

which involves the following time average:

hX �t�i � lim
T→∞

1

T

Z
T

0

X �t�dt: (8)

It is worth recalling that the conventional Stokes parameters are
defined in this way simply because, in most experimental set-
ups, the fluctuations of the electric field are produced at optical
frequencies that are obviously many orders of magnitude higher
than those achievable by the fastest photodetector (so far, ultra-
fast optical measurements can only be performed by specific
techniques like nonlinear optical gating or interferometric de-
tection, which are able to indirectly measure light intensity as
well as its time delay). However, in the next section, it is shown
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that the instantaneous Stokes vector is a very useful way to char-
acterize DFDP sources.

3. DFDP SOURCE

A. General Equations

Assuming a DFDP source whose two orthogonal modes propa-
gate along the z axis, its transversal electric field can be ex-
pressed as

E⃗�t� � E0ffiffiffi
2

p e−i2πνt
�h a1

b1

i
� ffiffiffi

γ
p

e−i2πΔνt
h a2
b2

i�
; (9)

where Δν is the frequency shift between the two modes, and γ
accounts for a possible intensity unbalancing between them.
Taking into account the orthogonality condition between the
SOPs of the two polarization modes, the components ai and bi
in the Cartesian basis can be parameterized in the following
general form:

a1 � cos α cos ε − i sin α sin ε;

b1 � sin α cos ε� i cos α sin ε; (10)

and

a2 � − sin α cos ε� i cos α sin ε;

b2 � cos α cos ε� i sin α sin ε; (11)

where α is the polarization ellipse azimuth and ε is its ellipticity
[32]. These equations verify the polarization orthogonality
condition a1a�2 � b1b�2 � 0. We set α � 0 without loss of
generality, as we later consider optical elements with arbitrary
azimuth. From Eqs. (2)–(6), the instantaneous Stokes vector of
a general DFDP source is

S⃗�t� � I 0

2
6664

1
1−γ
1�γ cos�2ε� − 2

ffiffi
γ

p
1�γ sin�2ε� sin�Δωt�

2
ffiffi
γ

p
1�γ cos�Δωt�

1−γ
1�γ sin�2ε� � 2

ffiffi
γ

p
1�γ cos�2ε� sin�Δωt�

3
7775; (12)

where I 0 � jE⃗�t�j2 � �1� γ�E2
0∕2, and with Δω � 2πΔν

denoting the angular frequency that corresponds to the inter-
ference between the two modes. The frequency shift Δν can be
tuned to values within the radio-frequency (RF) range, typically
from several megahertz up to tens of gigahertz. It can be
observed that the instantaneous intensity S0�t� of this DFDP
illumination is constant and equal to I 0.

B. Linear and Circular DFDP Source

On the one hand, if the DFDP source provides two purely
linear orthogonal SOPs, then ε � 0 and the instantaneous
Stokes vector is

S⃗L�t� � I0

2
6664

1
1−γ
1�γ

2
ffiffi
γ

p
1�γ cos�Δωt�

2
ffiffi
γ

p
1�γ sin�Δωt�

3
7775: (13)

Moreover, if a perfectly balanced source is used (γ � 1), S⃗L�t�
simplifies to

S⃗L�t� � I 0

2
64

1
0

cos�Δωt�
sin�Δωt�

3
75; (14)

which corresponds to an instantaneous Stokes vector continu-
ously oscillating at an angular frequencyΔω from a linear	45°
SOP to a purely circular one, as shown in the Poincaré sphere
representation included in Fig. 1(a).

On the other hand, if we consider a circular DFDP source,
ε � π∕4 and the instantaneous Stokes vector is given by

S⃗C�t� � I 0

2
6664

1
−2

ffiffi
γ

p
1�γ sin�Δωt�

2
ffiffi
γ

p
1�γ cos�Δωt�

1−γ
1�γ

3
7775; (15)

which reduces to the following expression for a balanced source:

S⃗C�t� � I 0

2
64

1
− sin�Δωt�
cos�Δωt�

0

3
75: (16)

It can be observed that the latter instantaneous Stokes vector
oscillates along all the possible linear SOPs, as depicted in
Fig. 1(b). The advantages of each of these sources for polari-
metric measurements are analyzed in the next sections.

4. FREE-SPACE ORTHOGONALITY-BREAKING
SENSING

In this section, we focus on free-space orthogonality-breaking
sensing, in which the source beam directly impinges on the
sample. According to the Mueller calculus, the output Stokes
vector S⃗out�t� after interaction with an anisotropic depolarizing
medium is given by

S⃗out�t� � MS⃗in�t�; (17)

where M is the Mueller matrix of the sample and S⃗in�t� is the
input Stokes vector. It is worth recalling that this equation is
valid for both the instantaneous and the conventional Stokes
vector. All the subsequent results assume that the propagation
direction is kept constant, so the measurement is made in trans-
mission. The procedure can be equivalently developed for the
reverse direction (reflection or backscattering configuration)

Fig. 1. Poincaré sphere representation of the instantaneous Stokes
vector at the output of (a) the linear DFDP balanced source and (b) the
circular DFDP balanced source.
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provided that M is replaced by its corresponding Mueller
matrix for the reverse direction:

M̂ � OMTO−1; (18)

where O � diag�1; 1; −1; 1� if the reversal coordinate system
x̂ ŷ ẑ is set as x̂ � −x, ŷ � y, and ẑ � −z [32] (or, alternatively,
x̂ � x, ŷ � −y, and ẑ � −z).

In the remainder of this paper we will focus on the study of
the detected intensity signal I out�t�, which is a linear combina-
tion of the input instantaneous Stokes vector determined by the
first row of the Mueller matrix:

Iout�t� � �M 11M 12M 13M 14�S⃗in�t�: (19)

A. Isotropic Absorber

The Mueller matrix of an isotropic absorber is the identity
matrix weighted by the isotropic absorption coefficient ρ such
that Mabs � ρI, and, hence, the output intensity is simply
I out�t� � ρI0. In this trivial case, it is straightforward to verify
that the orthogonality between the two SOPs generated by a
general DFDP source is unaltered by the sample, and, conse-
quently, the measured intensity remains constant in time.

B. Elliptical Retarder

A sample with elliptical birefringence presents a Mueller matrix
of the following form [33]:

MER �
�
1 0⃗T

0⃗ M3×3

�
; (20)

where M3×3 is the 3 × 3 retardance submatrix, and
0⃗ � � 0 0 0 �T . It can be readily observed that the beam in-
tensity is unaltered by such a sample:

I out�t� � I 0; (21)

as expected for unitary polarization elements [32]. As a result,
the polarimetric orthogonality between the two SOPs provided
by the DFDP source is preserved during propagation through
birefringent samples. This is the property that was originally
used to make orthogonality-breaking measurements insensitive
to propagation through fibers.

C. Diagonal Depolarizer

The general expression of the Mueller matrix of a diagonal
depolarizer sample is [32]

MΔ �

2
664
1 0 0 0
0 PL1 0 0
0 0 PL2 0
0 0 0 PC

3
775: (22)

Diagonal depolarizers are thus defined by the three depolariza-
tion parameters PL1, PL2, and PC . Such depolarizers are the
most usual ones. In the particular situation of isotropic linear
depolarization (like the one produced by a turbid medium with
randomly located nearly spherical particles [34]), PL1 � PL2.
Furthermore, if completely homogeneous depolarization is
assumed, the sample is usually called a pure depolarizer, and it
can be quantified by a single parameter as PL1 � PL2 � PC .

In any case, the elements of the first row of MΔ satisfy
M 1j � 0 for j ≠ 1, so, according to Eq. (19), such a sample

does not modify the orthogonality of the two orthogonally
polarized SOPs, and the beam intensity is expected to remain
constant in time as I out�t� � I 0.

As a result, the instantaneous Stokes–Mueller calculus de-
tailed in this article indicates that the orthogonality-breaking
sensing principle is not able to provide a measurement of diago-
nal depolarization. This is in contradiction with what was
claimed in an earlier work [27], and with some experimental
results obtained in the same reference, which actually seemed to
corroborate the possibility of characterizing depolarization.
This aspect is analyzed and discussed in detail in Section 6.

D. Diattenuator

1. Linear Diattenuator

The Mueller matrix of a sample showing linear dichroism is

MLD

� ρ

2
664

1 d cos�2ϕ� d sin�2ϕ� 0

d cos�2ϕ� 1�T
2 � 1−T

2 cos�4ϕ� 1−T
2 sin�4ϕ� 0

d sin�2ϕ� 1−T
2 sin�4ϕ� 1�T

2 − 1−T
2 cos�4ϕ� 0

0 0 0 T

3
775;

(23)

where ρ � �Tmax � Tmin�∕2 accounts for the isotropic ab-
sorption, d � �Tmax − Tmin�∕�Tmax � Tmin� is the diattenu-
ation coefficient, and T � 2�TmaxTmin�12∕�Tmax � Tmin�.
Parameters Tmax and Tmin ≤ Tmax are the maximum and
minimum transmittances, respectively, both of them bounded
between 0 and 1, so 0 ≤ d ≤ 1. Finally, the parameter ϕ is the
linear dichroism angle, i.e., the azimuth of the maximum trans-
mittance axis. We note that MLD can be obtained from the
Mueller matrix of an elliptical diattenuator (explicitly derived
in Appendix A for the sake of generality) by setting ϵ � 0. An
ideal polarizer corresponds to a perfect linear dichroic sample
showing Tmax � 1 and Tmin � 0, so ρ � 1∕2, d � 1, and
T � 0.

In this section and in the remainder of this article we
will consider a perfectly balanced source (γ � 1). Indeed, the
equations of the output intensity for a linear diattenuator using
a nonbalanced linear and circular DFDP source have been
included in Appendix B for the sake of completeness, and they
show that the balanced configuration is actually the most
advantageous one for characterizing the sample properties with
the highest dynamics.

According to Eq. (19), if a linear diattenuator is illuminated
with a balanced linear DFDP source, the first element of the
instantaneous output Stokes vector is

I outL�t� � ρI 0�1� d sin�2ϕ� cos�Δωt��; (24)

where the subscript L indicates the use of linear illumination
states. This equation shows the essential characteristic of the
orthogonality-breaking sensing principle, namely, an AC com-
ponent in the output intensity. This is because the diattenuator
partially projects the two SOPs onto each other, making them
interfere. Provided that the source can be tuned to set the fre-
quency difference to a value that lies within the bandwidth of
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commercially available detectors, it is then perfectly possible to
observe the intensity beat note with a fast photodiode.

According to the previous equation, the DC and AC com-
ponents of the output intensity are, respectively,

I0outL � ρI 0; (25)

IΔωXoutL � ρI 0d sin�2ϕ�; (26)

where the superscript X accounts for the in-phase component
of the beat-note signal at Δω.

The orthogonality-breaking contrast (OBC) is a scalar
parameter defined from the DC and AC components of the
detected signal as

OBC � IΔωout
I 0out

; (27)

where IΔωout �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�IΔωXout �2 � �IΔωYout �2

p
is the amplitude of the de-

tected beat-note signal. In this case, the quadrature component
IΔωYoutL is null, so IΔωoutL � jIΔωXoutL j and the OBC is thus

OBCL � d j sin�2ϕ�j: (28)

Concerning the phase of the AC signal, in this case it is obvi-
ously zero as ∠IΔωoutL � arctan�IΔωYoutL ∕IΔωXoutL �. Consequently,
when a linear DFDP source is used, the beat-note component
does not undergo any phase delay while interacting with the
dichroic sample, and the beat-note intensity depends on both
the diattenuation coefficient d and the linear dichroism angle
ϕ. It can be observed that the OBC takes a maximum value of
d for a linear diattenuator oriented at ϕ � 45°. This property
has been used in previous works to calibrate the measurement
system [27,28].

If a circular DFDP source is now considered, the different
components of the output intensity are

I 0outC � ρI 0; (29)

IΔωXoutC � ρI 0d sin�2ϕ�; (30)

IΔωYoutC � −ρI0d cos�2ϕ�; (31)

where the subscript C denotes circular illumination states.
In this case the OBC and the beat-note signal phase are, respec-
tively,

OBCC � d ; (32)

∠IΔωoutC � 2ϕ − π∕2: (33)

From the latter equation, the linear dichroism orientation can
be readily obtained by

ϕ � 1

2
�∠IΔωoutC � π∕2�: (34)

As a result, under circular illumination, the amplitude of the
beat-note signal is independent of the dichroism orientation,
giving access directly and without ambiguity to the sample di-
chroism. Moreover, the linear dichroism angle can be directly
retrieved by the phase measurement. Such a feature is actually
quite advantageous for linear dichroism sensing, as has been
recently demonstrated in a microscopic imaging setup [29].

2. Elliptical/Circular Diattenuator

The complete equations of the detected intensity when the sam-
ple presents elliptical dichroism are included in Appendix C. For
the sake of conciseness, we shall consider here only the very spe-
cific case of a circular diattenuator whose Mueller matrix is

MCD � ρ

2
64
1 0 0 d
0 T 0 0
0 0 T 0
d 0 0 1

3
75; (35)

which is obtained by setting ε � π∕4 in theMueller matrix of an
elliptical diattenuator (Appendix A), T and d still corresponding
to their initial definition given after Eq. (23). If the sample is
illuminated with a linear DFDP source, the resulting OBC and
phase are

OBCL � d ; (36)

∠IΔωoutL � π∕2: (37)

These equations show that such a configuration is actually sen-
sitive to circular dichroism, which is directly characterized by the
OBC, while the phase of the beat-note signal is constant. This
latter information actually provides additional information about
the dichroism properties when a linear DFDP source is used, as it
is 0 for linear dichroism, π∕2 for circular dichroism, and takes
intermediate values for elliptical dichroism.

However, if a circular DFDP source is used, the OBC com-
pletely vanishes:

OBCC � 0; (38)

which means that such a sample does not break the orthogo-
nality between the circular SOPs. This is because they are pre-
cisely the eigenstates of a circular diattenuator. Consequently,
there is no beat-note signal in this case.

5. ORTHOGONALITY-BREAKING SENSING
THROUGH A WAVEGUIDE

In this section, orthogonality-breaking sensing through a
monomode waveguide is considered. It is thus assumed that
the source beam is delivered through a waveguide with Mueller
matrixMwg1, when it impinges on the sample still described by
its Mueller matrixM, and is finally collected by a second wave-
guide with Mueller matrix Mwg2 (which is not necessarily the
same as the illumination one for the sake of generality), so the
output instantaneous Stokes vector is

S⃗out�t� � Mwg2MMwg1S⃗in�t�: (39)

We define the intermediate Stokes vector S⃗out 0 �t� �
MMwg1S⃗in�t� as the instantaneous Stokes vector after interac-
tion of the fiber-guided DFDP beam with the sample. In gen-
eral, it can be assumed that an optical waveguide behaves as a
retarder [25] (with possible isotropic loss, but with no dichroic
effects). We thus model it by the Mueller matrix of a birefrin-
gent element. If we denote I out 0 the first element of the inter-
mediate Stokes vector, one can readily verify that Iout � I out 0 ,
as the Mueller matrix of a unitary optical element does not
modify the beam intensity. A remarkable implication of this
fact is that the collecting fiber does not modify the beat-note
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signal possibly produced by the sample, because such informa-
tion is exclusively carried by the intensity. This means that we
can focus our analysis on the effect of the illuminating wave-
guide—while light collection can be performed by any nondi-
chroic optical waveguide.

Concerning the illuminating fiber, its effect is a modification
of the orthogonal SOPs provided by the source, so it obviously
has to be taken into account. The results for isotropic absorbers,
elliptical retarders, and diagonal depolarizers are not discussed in
this section, as the conclusions obtained in the previous section
are valid regardless of the SOPs of the DFDP illuminating beam.
Moreover, if we focus on biomedical applications, circular di-
chroism is extremely unusual in biological samples [6,35], so
we will exclusively analyze fiber-guided orthogonality-breaking
sensing of linearly dichroic samples.

A. Waveguide Acting as a Circular Retarder

Let us first consider a waveguide acting as a circular retarder,
whose Mueller matrix is

MCR �

2
664
1 0 0 0
0 cos�2θ� sin�2θ� 0
0 − sin�2θ� cos�2θ� 0
0 0 0 1

3
775; (40)

θ being the optical rotation angle. If such a waveguide is used to
illuminate a linear diattenuator with a DFDP source, it is easily
shown that the results obtained in the previous section hold, up
to a rotation angle of value θ, due to optical rotation in the
waveguide. Typically, one has OBCL � d j sin�2�ϕ� θ��j
with a linear DFDP source, whereasOBCC � d and ∠IΔωoutC �
2�ϕ� θ� − π∕2 with a circular DFDP source.

From these results, it is interesting to note that, with circular
DFDP illumination states, the presence of an illuminating
waveguide acting as a rotator does not prevent us from
measuring the diattenuation coefficient, while the phase can
be determined up to an additive term depending on the fiber.

B. Waveguide Acting as a Linear Retarder

More typically, an optical waveguide behaves as a linear
retarder, whose general Mueller matrix is

MLR �

2
664
1 0 0 0
0 cos δ sin2�2ψ� � cos2�2ψ� �1 − cos δ� cos�2ψ� sin�2ψ� − sin δ sin�2ψ�
0 �1 − cos δ� cos�2ψ� sin�2ψ� cos δ cos2�2ψ� � sin2�2ψ� sin δ cos�2ψ�
0 sin δ sin�2ψ� − sin δ cos�2ψ� cos δ

3
775; (41)

with ψ denoting the linear birefringence orientation, whereas δ
stands for the retardation introduced between the birefringence
slow and fast axes [32].

Illuminating a linear diattenuator through a linearly bire-
fringent waveguide gives a lengthy expression of the output in-
tensity that can be simplified to

I0outL � ρI 0; (42)

IΔωXoutL � I 0ρd �sin�2ψ� cos�2�ϕ − ψ��
� cos�2ψ� sin�2�ϕ − ψ�� cos δ�; (43)

IΔωYoutL � I 0ρd sin�δ� sin�2�ϕ − ψ��: (44)

It can be checked that, when the linear birefringence axis of the
waveguide is parallel to the linear dichroism �ψ � ϕ�, the pre-
vious equations are exactly the same as the results obtained
without the waveguide [Eqs. (25) and (26)], i.e., IΔωoutL;δ≠0�t�−
IΔωoutL;δ�0�t� � 0. However, in general, the linear birefringence
introduced by the waveguide can modify the calculated param-
eters, and produces an intricate expression of the OBC. Let us
define the bias of the measurement as

BL�t� �
IΔωoutL;δ≠0�t� − IΔωoutL;δ�0�t�

I0outL
: (45)

With a linear DFDP source, the bias due to a linear birefringent
waveguide then reads

BL�t� � 2d sin

�
δ

2

��
− cos�2ψ� sin

�
δ

2

�
cos�Δωt�

� cos

�
δ

2

�
sin�Δωt�

�
sin�2�ϕ − ψ��: (46)

If we consider the particular case of a slightly birefringent fiber
(δ ≪ 1), the series expansion of BL�t� in δ leads at first order in
δ to

BL�t� � d sin�2�ϕ − ψ�� sin�Δωt�δ� O�δ�: (47)

If a circular DFDP source is now taken into account, the out-
put intensity components are

I0outC � ρI0; (48)

IΔωXoutC � IΔωXoutL ; (49)

IΔωYoutC � −I0ρd �cos�2ψ� cos�2�ϕ − ψ��
− sin�2ψ� sin�2�ϕ − ψ�� cos δ�: (50)

Again, it can be verified that these equations coincide with the
free-space sensing ones for the particular case in which the fiber
optical axis is parallel to the sample linear dichroism �ψ � ϕ�.
Nonetheless, any other situation leads to a modification of the
results by the retarding action of the waveguide. Applying the

bias defined in Eq. (45) to the circular DFDP source using
Eqs. (49) and (50), one gets

BC �t� � 2d sin

�
δ

2

�
2

sin�2�ϕ − ψ�� cos�Δωt − 2ψ�: (51)

If a slightly birefringent fiber is again considered, it can be veri-
fied that the bias is null at first order in δ, and that

BC �t� � d sin�2�ϕ − ψ�� cos�Δωt − 2ψ� δ
2

2
� O�δ2�: (52)

The bias in this case is actually at order 2 in δ. This is an in-
teresting result, showing that the circular DFDP source is more
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advantageous for orthogonality-breaking sensing through a lin-
ear birefringent waveguide, since the measured OBC is less
prone to be biased by a slight birefringence in the waveguide.

6. DISCUSSION

In this last section, we complement the preceding description of
the orthogonality-breaking signatures on various optically
anisotropic samples by a discussion on the ability of this tech-
nique to sense depolarization. Indeed, even though calculations
using the instantaneous Mueller–Stokes formalism in Section 4
show that the technique yields no orthogonality-breaking con-
trast on a diagonal depolarizer, previous experimental results
[27] seemed to be in contradiction with this statement.

To clarify this essential aspect, we first performed a verifi-
cation measurement using a linear DFDP blue source at λ �
488 nm whose development was detailed in a previous work
[28]. The measurements were performed in free space for
two different diffusing samples, namely, a blue paper and a
red paper. The detector was fixed in a reflection configuration,
with an incidence angle of roughly 45° on the sample. This
measurement configuration was kept identical for both sam-
ples. As explained in detail in a previous work dealing with
spectropolarimetric imaging of diffuse objects [36], illuminat-
ing both samples with a visible blue source yields two different
situations. On the one hand, the main contribution to the
backscattered light when the blue paper is measured comes
from volume multiple scattering, as the incoming light is
weakly absorbed. This type of scattering is very depolarizing,
and its Mueller matrix corresponds to a diagonal depolarizer.
On the other hand, when the red paper is used as a sample,
the incident blue light beam is strongly absorbed by the red
pigments. Consequently, the fraction of light reflected toward
the detector mostly results from surface scattering, which im-
plies much weaker depolarization and possible anisotropy of the
reflection coefficients.

The measurements are presented in Fig. 2, which shows the
AC component of the detected intensity for both samples using
the linear DFDP source with the states oriented in two different

ways, namely, along the 0°–90° and the	45° directions. In the
first configuration, the two linear states of the DFDP beam,
respectively, correspond to the so-called s- and p-polarization
components at the surface, whereas, in the second configura-
tion, both linear states have partial projections on the s and p
directions. It can be observed that the AC component for
the blue paper is almost zero regardless of linear state orienta-
tion (dotted light blue curve and dashed dark blue curve, re-
spectively). In this case, the dominant effect is volume multiple
scattering, as mentioned above, which constitutes an initial
verification of the fact that diagonal depolarization due to
the sample does not produce an orthogonality-breaking signal.
Regarding the red paper, one can note that there is a significant
variation from roughly no AC signal when the linear modes are
oriented at 0°–90° (dashed–dotted light red curve), to a sub-
stantial AC component when the modes are along 	45° (solid
dark red curve). This result is in agreement with the expected
behavior, as in this case surface effects are not masked by vol-
ume scattering, and, thus, slight differences in the reflectance
coefficients for the s and p components of the incident light
beam can result in dichroic effects in the polarized fraction
of the detected backscattered light.

An appropriate interpretation of the aforementioned dis-
crepancy between these results and some of our previous ones
requires a deeper insight into the physical origins of depolari-
zation. In the most general case, this generic notion must ob-
viously encompass (i) the optical anisotropic properties of the
sample considered, but must also include (ii) its local structural
organization, including spatial randomization effects, (iii) the
properties of the illumination field (e.g., spectral bandwidth),
and (iv) the characteristics of the detection setup (e.g., numeri-
cal aperture [37] and spatial/spectral resolution). Describing a
depolarizing medium with the Mueller matrix of a diagonal
depolarizer [asMΔ in Eq. (22)] implicitly assumes full incoher-
ent averaging over at least one of the above aspects. However, in
a broad range of experimental setups, the characteristics of the
sensing/imaging system lead to an only partial averaging oper-
ation. As a result, the description of the sample by a diagonal
depolarizing Mueller matrix is no longer physically appropriate
in such cases.

In the remainder of this section, we propose to use a simple
stochastic model of the Mueller matrix of a depolarizing aniso-
tropic medium consisting of the action of random linear
dichroic elements. It must be noted that this description does
not represent a fully comprehensive model of depolarization, as
many physical parameters involved in light depolarization are
neglected. However, it is shown that it successfully allows us to
characterize the progressive transition from a deterministic
anisotropic sample to a strongly random one (characterized
by a Mueller matrix of a diagonal depolarizer) as the averaging
conditions evolve. We then analyze the polarimetric properties
of the resulting “macroscopic” depolarizing Mueller matrix
obtained, and we characterize the orthogonality-breaking
signatures produced by such a sample and physical sensing
conditions. A simple experimental validation using a synthetic
depolarizing sample is also included. These results and discus-
sions finally allow us to validate the calculations presented in
this work, and to understand how the subtle aspects discussed

Fig. 2. AC component of the detected backscattered light under
blue illumination for a blue paper and linear modes along the 0°–90°
directions (dotted light blue curve) and the 	45° directions (dashed
dark blue curve), and for a red paper along the same directions
(dashed–dotted light red curve and solid dark red curve, respectively).
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regarding the measurement conditions were actually involved
in our previous experimental measurements.

A. Stochastic Depolarization Model of an Ensemble
of Random Linear Diattenuators

We consider the specific case of a dichroic depolarizing
medium in which depolarization is due to the heterogeneity of
its anisotropy properties. For that purpose, we consider that the
incoming beam undergoes random local dichroic interactions,
each polarization transformation having a diattenuation coeffi-
cient dμ, linear dichroism angle ϕμ, isotropic absorption ρμ,
and transmission parameter T μ, where μ denotes one realiza-
tion of a random event. The effect of a given random event on a
DFDP illumination beam is obviously strictly equivalent to the
one studied in Section 4, and can consequently be represented
by a single Mueller matrix MLDμ with the same form as that
given in Eq. (23). Consequently, the Mueller matrix of a single
random event is not depolarizing (Mueller–Jones matrix), as
the individual polarization transformation is purely determin-
istic. In this case, there is a well-known one-to-one relationship
between MLDμ and its corresponding Jones matrix, as stated in
Eq. (A3) of Appendix A [38,39].

The macroscopic Mueller matrix of the sample that deter-
mines the detected intensity now implies averaging over random
events, i.e., MΔ

LD � hMLDμiμ. For the sake of simplicity, let us
assume that the random variable ϕμ is independent from d μ and
ρμ. Regarding its probability density function, we propose adopt-
ing a convenient statistical model for angular random variables,
namely, the wrapped-Gaussian distribution (WGD), with
average value ϕ and variance σ2ϕ [40]. The definition and main
properties of WGDs, which basically correspond to normal
probability distributions “wrapped” around the unit circle, are
recalled in Appendix D. Using these properties, the ensemble-
averaged Mueller matrix of the sample is

MΔ
LD � hMLDμiμ � ρ

2
664

1 d cos 2ϕe−2σ
2
ϕ d sin 2ϕe−2σ

2
ϕ 0

d cos 2ϕe−2σ
2
ϕ 1�hT i

2
� 1−hT i

2
cos 4ϕe−8σ

2
ϕ �1 − hT i� cos 2ϕ sin 2ϕe−8σ

2
ϕ 0

d sin 2ϕe−2σ
2
ϕ �1 − hT i� cos 2ϕ sin 2ϕe−8σ

2
ϕ 1�hT i

2
− 1−hT i

2
cos 4ϕe−8σ

2
ϕ 0

0 0 0 hT i

3
775; (53)

where, for the sake of generality, random variables Tmin and
Tmax are simply assumed to admit average values Tmin and
Tmax, hence ρ � �Tmax � Tmin�∕2, and we set d � �Tmax−
Tmin�∕2ρ.

From this matrix, the output intensity can be obtained from
Eq. (19) (in the same way as the calculations detailed in
Sections 4 and 5), and it is quite straightforwardly shown that
the orthogonality-breaking contrast obtained for this sample is

OBCL � de−2σ
2
ϕ j sin 2ϕj; (54)

in the case of linear input polarization states, whereas circular
states would yield

OBCC � de−2σ
2
ϕ ; and ∠IΔωoutC � 2ϕ −

π

2
: (55)

These results are very similar to the case of deterministic trans-
formations of the state of polarization [Eq. (28) and Eqs. (32)

and (33)], up to a “fading” factor of the beat-note amplitude
equal to e−2σ

2
ϕ . As a result, a strong dispersion of the dichroism

orientations would blur the orthogonality-breaking signal
produced by the diattenuation properties of the sample. Once
again, one can note that using circular input states is more
favorable, since the mean value of the diattenuation orientation
ϕ can be retrieved from the measurement of the beat-note
phase, provided the beat-note amplitude is not completely
attenuated.

To further analyze the previous results, let us now assume
that the diattenuation angle ϕμ is the only random parameter,
d , ρ, and T being now considered as deterministic. On the one
hand, it can be immediately observed that when σϕ → 0,
MΔ

LDσϕ→0 � MLD, which corresponds to the trivial case of a
deterministic sample, whose measurement using the orthogo-
nality-breaking technique obviously yields the same results as
those obtained in the previous sections. On the other hand,
when the angular distribution becomes strongly randomized
(i.e., σϕ ≫ 1), the Mueller matrix tends to the form of a diago-
nal depolarizer:

MΔ
LDσϕ≫1 � ρ diag�1; �1� T �∕2; �1� T �∕2; T �: (56)

We recall that if dichroism is perfect (d � 1), then T � 0 and
the previous matrix corresponds to a sample that completely
depolarizes the fourth element of the Stokes vector, and reduces
by 0.5 the degree of polarization of any linear input SOP. For
other values of T , the depolarization strength of such a diagonal
depolarizer for each Stokes vector element varies. In any case, it
is verified that the resulting intensity is constant Iout�t� � ρI 0
(in agreement with the results obtained in Section 4.C for
diagonal depolarizers), so no orthogonality-breaking signal
appears. Apart from that, we note that MΔ

LDσϕ≫1 turns out to
be proportional to the identity matrix (isotropic absorption)

when T → 1 (or, equivalently, d → 0). These features confirm
that the presented approach makes it possible to simply model
the continuous transition from a nondepolarizing sample char-
acterized by a deterministic polarization transformation on
the one hand, to a fully depolarizing sample depending on
the statistical properties of the random diattenuation parame-
ters on the other hand.

The polarimetric properties of the stochastic Mueller matrix
obtained above can now be quantified by several parameters.
The first one is the diattenuation coefficient, which can be cal-
culated from MΔ

LD (assuming again that ϕμ is the only random
parameter) by [33]

D �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
4
j�2 �MΔ

LD�21j
q

�MΔ
LD�11

� de−2σ
2
ϕ ; (57)

showing that it scales exactly as the OBC with the angular dis-
persion. As a result, on this sample, the orthogonality-breaking
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technique using circular states, for instance, would provide a
direct measure of the effective linear diattenuation of the
sample (as OBCC � D � de−2σ

2
ϕ ), and of the average diatten-

uation orientation ϕ. The evolution of the effective dichroism
D is plotted in Fig. 3(a) as a function of σϕ and of
log10 Tmax∕Tmin (which is 0 for an isotropic sample and tends
to infinity for a perfect polarizer). It can be seen that the
effective linear dichroism rapidly decreases with σϕ, whereas it
increases for higher log10 Tmax∕Tmin as expected. The evolu-
tion of D for σϕ � 0 corresponds to the diattenuation coeffi-
cient of a linear diattenuator with a fixed deterministic
orientation.

It is now interesting to analyze the depolarizing properties of
the MΔ

LD matrix. There are several depolarization metrics that
can be used to quantify the depolarizing properties of a sample
[33,41–45]. In this work we use Cloude entropy, which is a
well-established metric to characterize the overall depolarizing
nature of a given Mueller matrix [41]. Cloude entropy is given
by S � −

P
4
i�1 λ

0
i log4 λ

0
i, where λ 0i � λi∕

P
4
j�1 λj are the nor-

malized eigenvalues of the 4 × 4 Cloude coherency matrix [41],
whose derivation from MΔ

LD is detailed in Appendix E. Cloude
entropy S is plotted in Fig. 3(b) as a function of σϕ and of
log10 Tmax∕Tmin. To facilitate the physical interpretation,
the evolution of parameters D and S with log10 Tmax∕Tmin

for three different values of σϕ (namely, 0, 1/2, and 2) are, re-
spectively, plotted in Figs. 3(c) and 3(d).

It can be seen in Fig. 3(b) that Cloude entropy S increases
with σϕ, thus evidencing that depolarization is stronger as the
angular dispersion grows. On the other hand, Cloude entropy
increases with log10 Tmax∕Tmin. The Mueller matrix of the
sample at σϕ � 0 or log10 Tmax∕Tmin � 0 corresponds to a
deterministic Mueller matrix, hence leading to a null entropy.
Cloude entropy reaches a maximum at S � 0.75 for high val-
ues of σϕ and significant anisotropy (log10 Tmax∕Tmin ≠ 0). It
can be noted that the maximum Cloude entropy does not reach

unity, simply because the stochastic model of the sample con-
sidered does not lead to a complete depolarization of any input
SOP, as we have only considered the subset of random linearly
dichroic events without including elliptical dichroism.

More generally, the joint analysis of the plots in Figs. 3(a)
and 3(b) clearly confirms the gradual evolution of MΔ

LD from a
deterministic Mueller matrix of a diattenuator (S � 0, D ≠ 0)
to a depolarizing Mueller matrix (maximum S, D → 0) when
the angular dispersion σϕ increases, as predicted by Eq. (53). In
other words, we observe that the intrinsic dichroic properties of
the sample gradually vanish as more orientations of the dichro-
ism are taken into account by increasing σϕ, providing the sam-
ple with a “macroscopic” depolarizing nature.

B. Interpretation of Experimental Results

The previous results can be easily confirmed by a simple labo-
ratory experiment. For that purpose, we used the DFDP visible
source (λ � 488 nm) emitting linear polarization states to
shine a sample composed of two orthogonally oriented linear
Polaroid film sheets placed in juxtaposition to each other. A
sketch of the sample is presented in the inset of Fig. 4. The
position of the laser beam is then displaced along the sample,
whose Mueller matrix Ms can be written

Ms � AMLDϕ�0 � �1 − A�MLDϕ�π∕2; (58)

where A is the fraction of the laser spot area lying on the hori-
zontal polarizer. In the central position A � 1∕2, so the two
polarizers equally contribute to the detected intensity, and
the resulting Mueller matrix is

Mscenter � ρ diag�1; 1; T ; T �: (59)

It is readily observed that such a Mueller matrix corresponds to
a diagonal depolarizer. The commercial Polaroid films used sat-
isfy T ≃ 0, so when the laser spot is centered in the middle of
the synthetic sample proposed in this section (i.e., xb � 0), it
behaves as a diagonal depolarizer that completely depolarizes
the third and fourth elements of the input Stokes vector,
without altering the second one apart from the isotropic
absorption. As a result, such a sample provides an OBC that
evolves from a maximum value when the spot entirely lies on

Fig. 3. (a) Evolution of the effective diattenuation coefficient D as a
function of angular dispersion σφ and of log10 Tmax∕Tmin.
(b) Evolution of Cloude entropy S as a function of angular dispersion
σφ and of log10 Tmax∕Tmin. Evolution of (c) diattenuation coefficient
D and of (d) Cloude entropy S as a function of log10 Tmax∕Tmin for
σφ � 0 (blue dashed), σφ � 1∕2 (red dashed–dotted), and σφ � 2
(magenta solid).

Fig. 4. Evolution of the OBC and phase as a function of beam
position. Inset: sketch of the synthetic sample composed of a juxta-
position of two orthogonally oriented Polaroid film sheets. The illu-
mination beam centered in xb is made to horizontally scan across the
sample, xb � 0 corresponding to the juxtaposition edge of the two
polarizing films.
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a single polarizing film, to a null value when it is placed at the
center. The same conclusion can be reached by separately cal-
culating the output intensities for ϕ � 0 and ϕ � π∕2 using
Eq. (26) and adding them, which results in a destructive inter-
ference between the two beat-note signals in the central posi-
tion since they show a relative phase of π.

The OBC for this sample was measured using the previously
reported setup in transmission [29]. The evolution of the OBC
as a function of the beam position is plotted in Fig. 4. This
experimental curve follows the expected behavior, evidencing
how the maximum orthogonality-breaking contrast obtained
on a perfectly dichroic sample (extremal positions of the sam-
ple) is gradually lost as the beam simultaneously interacts with
two orthogonally oriented polarizers. Indeed, it is confirmed
that when the beam is centered, the contributions from each
half of the beam destructively interfere on the detector, result-
ing in a null beat-note amplitude.

In light of all the above results, we are now able to provide
an interpretation of the discrepancy between the theoretical
predictions presented in Section 4 and the experimental obser-
vations at λ � 1.55 μm reported in [27]. In that work, orthog-
onality-breaking measurements were carried out in a fibered
configuration, and then compared to the control values deter-
mined with a standard free-space Stokes polarimeter at
λ � 1.55 μm. According to the discussions presented in this
section, the difference in the experimental conditions of the
two measurements can have strong consequences on the mea-
sured depolarization. Indeed, the standard Stokes polarimetry
measurements were carried out in free space, with a relatively
high spot size on the sample and high numerical aperture for
the light collection. Such an experimental configuration effec-
tively implies a spatial averaging operation over the sample sur-
face and over several spatial coherence areas (speckle grains) as
discussed in [37]. However, the orthogonality-breaking signals
detected on the same samples were collected through a standard
single-mode SMF28 optical fiber whose FC-APC connector
end was placed in the vicinity of the samples. Under such
conditions, the spatial or angular averaging is very moderate,
which presumably corresponds to an intermediate position in
the aforementioned transition from a nondepolarizing sample
to a depolarizing one. In that case, both the diattenuation co-
efficient and the sample depolarization lie between their respec-
tive maximum and minimum values, as shown in Fig. 3.
Therefore, in light of the thorough modelization proposed in
this work and of the discussion detailed in this section, we can
conclude that the OBCmeasured in [27] was most likely due to
a moderate spatial averaging of the local diattenuation proper-
ties of the samples rather than pure depolarization.

7. CONCLUSION

In this work, the instantaneous Stokes–Mueller formalism has
been applied to conveniently describe the DFDP beam used in
the polarimetric sensing by the orthogonality-breaking tech-
nique, and to model the interaction of such a beam with aniso-
tropic depolarizing media. Based on this formalism, we have
thoroughly analyzed the characteristics of the orthogonality-
breaking signal after interacting with birefringent, dichroic,
and depolarizing samples. It has thus been confirmed that this

measurement technique provides a direct characterization of di-
chroic samples, and that using a circular DFDP source makes it
possible to readily determine the diattenuation magnitude and
orientation from the amplitude and the phase of the detected
intensity. Moreover, the insensitivity of this technique to bire-
fringence has been confirmed. This constitutes an interesting
property for remote polarimetric measurements, especially
for endoscopic applications involving optical fibers. We have
consequently characterized the influence of a birefringent wave-
guide on the detected beat-note component, showing that the
OBC is affected by a slight bias at order 2 in the residual fiber
birefringence when a circular DFDP source is used.

Last, we have proposed a simple stochastic model of a de-
polarizing sample composed of randomly oriented linear diatte-
nuators. Such an analytical model, along with the results of a
simple and meaningful laboratory experiment, clearly illustrates
the gradual OBC vanishing as the orientation randomization of
the sample increases, due to the destructive interference of the
dephased individual orthogonality-breaking beat notes. All
these considerations have led us to reinterpret our first exper-
imental results [27], in which the observed OBC was most
likely due to the effective diattenuation of the samples rather
than to their depolarizing properties. Consequently, in light of
the comprehensive model and the experimental measurements
presented in this work, it is concluded that the orthogonality-
breaking technique is insensitive to diagonal depolarization.
This is an important property to be highlighted. Indeed, most
polarimetric techniques are influenced by depolarization, which
encompasses many physical aspects, including the structural
properties of the sample, the detection geometry, and the source
and detector bandwidth. Being exclusively sensitive to dichro-
ism, the orthogonality-breaking technique is thus remarkably
advantageous for characterizing such a parameter without being
affected by other sample properties, hence potentially leading to
a more specific and robust sample characterization.

The general method presented in this work provides an in-
depth analysis on the physical origin of the detected signals in
different measurement configurations. These results allow
orthogonality-breaking sensing to be adequately modeled,
which paves the way for the optimal design of orthogonality-
breaking imaging systems with the capacity to perform direct
and fast polarimetric measurements at high dynamics. The fu-
ture development of this technique includes a systematic com-
parative study with standard polarimetric imaging techniques
in various application contexts, and its extension to remote en-
doscopic measurements through fiber bundles for biomedical
applications.

APPENDIX A

A characteristic property of the Jones matrix of a general
dichroic sample is that its two eigenvalues are real and take
the form λ1 � T 1∕2

max and λ2 � T 1∕2
min, where Tmax and Tmin

are, respectively, the maximum and minimum transmittances.
If we consider the eigenvector E⃗eig corresponding to the great-
est eigenvalue,

E⃗eig �
�
a
b

�
; (A1)
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the Jones matrix of any elliptic dichroic sample is, according to
Ref. [46],

JED �
�
λ1aa� � λ2bb� �λ1 − λ2�ab�
�λ1 − λ2�ba� λ2aa� � λ1bb�

�
: (A2)

If a and b are parameterized according to the general expres-
sions given in Eq. (10), the Mueller matrixMED of an elliptical
diattenuator can be readily obtained by applying the well-
known relationship between a Jones matrix and its equivalent
Mueller–Jones matrix:

M � T�J ⊗ J��T−1; (A3)

where ⊗ stands for Kronecker product and matrix T is

T �

0
BB@

1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

1
CCA; (A4)

which satisfies T−1 � 1∕2T† [39]. From the previous equa-
tions, the explicit form of MED is found to be

MED � ρ

2
664

1 dC2ϕC2ε dS2ϕC2ε dS2ε
dC2ϕC2ε

1�3 T
4 � 1−T

4 �C4ε � 2C4ϕS22ε� 1−T
2 S4ϕC2

2ε
1−T
2 C2ϕS4ε

dS2ϕC2ε
1−T
2
S4ϕC2

2ε
1�3 T

4
� �C4ε − 2C4ϕS22ε� 1−T

2
S2ϕS4ε

dS2ε 1−T
2 C2ϕS4ε 1−T

2 S2ϕS4ε 1�T
2 − 1−T

2 C4ε

3
775; (A5)

where the compact notation Cn
kϕ � cosn�kϕ� and Snkϕ �

sinn�kϕ� has been used. The well-known matrix of an ideal
elliptical diattenuator [38] results from substituting Tmax �
1 and Tmin � 0, so ρ � 1∕2, d � 1, and T � 0 in the pre-
vious equation.

APPENDIX B

We shall consider a linear diattenuator illuminated by a non-
balanced linear DFDP source, whose instantaneous Stokes
vector is given in Eq. (13). The output intensity shows the fol-
lowing DC and in-phase AC components:

I 0outL � ρI0 � d
1 − γ

1� γ
cos�2ϕ�; (B1)

IΔωXoutL � 2ρI 0

ffiffiffi
γ

p
1� γ

d sin�2ϕ�: (B2)

It can be shown that the calculation of the OBC parameter
according to Eq. (27) does not provide useful information
for characterizing the sample dichroism, as the sample param-
eters ρ, d , and ϕ are strongly mixed. If a nonbalanced circular
DFDP source is instead used, the DC, in-phase, and quadra-
ture components of the output intensity are

I0outC � ρI 0; IΔωXoutC � IΔωXoutL ; (B3)

IΔωYoutC � −2ρI 0d
ffiffiffi
γ

p
1� γ

cos�2ϕ�: (B4)

In this case, the OBC and the beat-note signal phase are,
respectively,

OBCC � 2d
ffiffiffi
γ

p
1� γ

; and ∠IΔωoutC � 2ϕ − π∕2: (B5)

It should be noted that the OBC is directly the diattenuation
coefficient if γ � 1. Therefore, a balanced source constitutes
the most appropriate choice for our purposes. Regarding the
phase of the beat-note signal, it enables the linear dichroism
orientation to be readily obtained, as discussed in Section 4.

APPENDIX C

We shall now consider a sample with elliptic dichroism, whose
Mueller matrix MED has been derived in Appendix A. Using a
linear DFDP source, the output is

I 0outL � ρI 0; (C1)

IΔωXoutL � ρI0d cos�2ε� sin�2ϕ�; (C2)

IΔωYoutL � ρI 0d sin�2ε�; (C3)

which results in the following parameters:

OBCL � d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2�2ε� � cos2�2ε� sin2�2ϕ�

p
; (C4)

∠IΔωoutL � arctan

�
tan�2ε�
sin�2ϕ�

�
: (C5)

Using a circular DFDP source, the results are

I 0outC � ρI 0; IΔωXoutC � IΔωXoutL ; (C6)

IΔωYoutC � −ρI0d cos�2ε� cos�2ϕ�; (C7)

which leads to

OBCC � d j cos�2ε�j; (C8)

∠IΔωoutC � 2ϕ − π∕2: (C9)

We can highlight two aspects of this configuration. The first
one is that the measured diattenuation coefficient d diminishes
as a function of the dichroism ellipticity, completely vanishing
in the case of circular dichroism. The second one is that
the phase of the beat-note signal is the same regardless of
the sample ellipticity, so it can be extracted in the same way
as in Eq. (34).

APPENDIX D

Let θ be a random variable distributed according to a WGD
with probability density function (pdf ) [40]

f WG�θ; μ; σ� �
1ffiffiffiffiffi
2π

p
σ

X�∞

k�−∞
e−

�θ−μ�2kπ�2
2σ2 ; (D1)
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where the parameters μ and σ, respectively, identify with the
mean and standard deviation of θ. Such a WGD verifies the
following property:

hzni �
Z
Γ
einθf WG�θ; μ; σ�dθ � einμe−

n2σ2
2 ; (D2)

where z � eiθ, and Γ is an integration interval of length 2π. As
a result, the first moments of z are thus hzi � eiμe−

σ2

2 and
hz2i � e2iμe−2σ2 , and one has

hsin θi � e−
σ2

2 sin μ; hcos θi � e−
σ2

2 cos μ: (D3)

APPENDIX E

The Cloude coherency matrix CM of a Mueller matrix M can
be straightforwardly derived from the relations given in [41]:
CM � �P4

j;k�1 Mjkηjk�∕4, with ηjk � T�σj ⊗ σ�k �T†, where
the σi;i∈�1;4� stand for the standard Pauli matrices, and where
T is given in Eq. (A4). Using these relations, one obtains
the Cloude coherency matrix of MΔ

LD [Eq. (53)], as

CMΔ
LD � ρ

�
CMΔ

LD;3×3 0⃗

0⃗T 0

�
; (E1)

where the upper 3 × 3 matrix CMΔ
LD;3×3 reads

ρ

2
664

1� hT i dC2ϕe
−2σ2ϕ dS2ϕe

−2σ2ϕ

dC2ϕe
−2σ2ϕ 1−hT i

2 �1� C4ϕe
−8σ2ϕ � 1−hT i

2 S4ϕe
−8σ2ϕ

dS2ϕe
−2σ2ϕ 1−hT i

2 S4ϕe
−8σ2ϕ 1−hT i

2 �1 − C4ϕe
−8σ2ϕ �

3
775:

(E2)

It can be clearly seen that this matrix is of rank three as soon as
σϕ ≠ 0, whereas it is of rank one (independently of σϕ ) when
hT i � 1 (isotropic case), thus leading to null Cloude en-
tropy (S � 0).
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We report a novel method to unambiguously determine the magnitude and orientation of linear dichroism in a
simultaneous way. It is based on the use of a dedicated dual-frequency dual-polarization coherent source providing
two orthogonal circularly polarized modes at the output. We show that the interaction of such a beamwith dichroic
media gives rise to a beatnote signal whose amplitude and phase enable the full determination of the diattenuation
coefficient and axis orientation, respectively. The application of this method to polarimetric imaging provides
single-shot sample characterization by its diattenuation coefficient and optical axis angle, with potential applica-
tions in biomedical imaging. © 2015 Optical Society of America
OCIS codes: (110.5405) Polarimetric imaging; (120.5410) Polarimetry; (120.0120) Instrumentation, measurement, and

metrology; (100.1930) Dichroism.
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Polarimetry is a widely used technique to enhance con-
trast and perform beam and/or sample characterization
in many different fields like atmospheric remote sensing,
target detection, astronomy, and biomedical diagnostics
[1]. Active polarimetric imaging is based on illuminating
and analyzing a given scene or sample using controlled
states of polarization (SOPs). The number of required
SOPs depends on the specific polarimetric technique.
Complete Mueller polarimetry enables the anisotropic
and depolarizing optical properties of a sample to be fully
characterized, but requires to perform a minimum of 16
measurements that can be multiplexed either spatially,
temporally, or spectrally [2]. Incomplete polarimetric
techniques make it possible to diminish the number of
measurements to the detriment of the measurable infor-
mation about the sample. For instance, scalar polarimet-
ric contrast images are commonly achieved from only
two intensity measurements in the family of two-channel
imaging systems [3–5], and degree-of-polarization maps
can be estimated from a single-image acquisition under
coherent illumination [6].
Polarimetric sensing by orthogonality breaking is a re-

cently proposed measurement principle that enables the
direct characterization of the sample dichroism and/or
depolarization in a single measurement (i.e., using a sin-
gle signal acquisition without either temporal or spatial
multiplexing), with a high dynamic range and acquisition
speed [7]. Its essential aspects are the use of a specific
dual-frequency dual-polarization coherent source and
the fact that the polarimetric information is carried
by a radio-frequency (RF) intensity beatnote induced by
the sample dichroism/depolarization. Being inherently in-
sensitive to birefringence effects, orthogonality breaking
sensing is specially adapted for endoscopic applications,
and for biomedical imaging in general. Indeed, biological
tissues show both birefringence and dichroism sharing
the same optical axis [8–10], so the characterization of
its anisotropic structure (including its pathological alter-
ations) can be advantageously performed by measuring
its linear diattenuation. In that perspective, we have

recently reported the development of a polarimetric
contrast microscope based on this technique [11]. Never-
theless, as far as dichroism is the measurement purpose,
one can wonder whether the orthogonality breaking
principle upgraded with a dedicated arrangement can
bring a simple and elegant solution to fully characterize
linear dichroism.

In this Letter, we present a novel dual-frequency
dual-polarization source configuration that enables the
anisotropy parameters (magnitude and orientation an-
gle) of a linear dichroic sample to be fully characterized
in a simultaneous way. Specifically, we show that gener-
ating two orthogonal circularly polarized modes with a
detuning frequency between them makes it possible to
extract the dichroism parameters from the measurement
of the RF beatnote signal after interaction with the sam-
ple. The source architecture is described and a concise
model of the light-sample interaction is presented. These
theoretical developments are then validated on several
test samples. Finally, the potential of this technique to
perform real-time dichroism imaging is explored on a
synthetic imaging scenario using a laser scanning
imaging setup.

Let us consider a specific dual-frequency dual-circular-
polarization (DF-DCP) laser source. Assuming plane
waves propagation along z, the beam at a given distance
can be denoted, up to a propagation phase factor, by

Ein�t� �
E0���
2

p e−j�2πνt��eR � e−j2πΔνteL�; (1)

where eL;R � �1� j�T∕
���
2

p
stands for the Jones vector of a

left (respectively right) circularly polarized light beam.
The initial intensity of the generated DF-DCP beam is
I0 � jE0j2. When such probe beam is used to illuminate
a sample showing linear dichroism with optical axis ori-
entation ϕ, the Jones formalism allows us to easily write
the output field as
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Eout�t� � Jd;ϕEin�t� � R�−ϕ�JdR�ϕ�Ein�t�; (2)

where R�ϕ� is the standard rotation matrix, and Jd is the
Jones matrix of a dichroic element along the x axis:

Jd � ���
ρ

p � ������������
1� d

p
0

0
�����������
1 − d

p
�
; (3)

where ρ � �Tmin � Tmax�∕2 stands for its isotropic
absorption, and d � �Tmax − Tmin�∕�Tmax � Tmin� is the
diattenuation coefficient, Tmin and Tmax respectively
being the minimum and maximum transmittances. It
can be noted that the orientation angle of such dichroic
sample is defined up to a π angle, since Jd;ϕ � Jd;ϕ�π .
The output intensity which can be measured by a fast

photodetector after interaction of the DF-DCP beamwith
the sample is given by Iout � E†

outEout, where † is the com-
plex conjugate transpose. Its calculation leads to the de-
composition of the output intensity into a DC term (I0out)
and a RF term at the beatnote frequency Δν between the
two modes (IΔνout�t�). These intensity components are
given by

I0out � ρI0; (4)

IΔνout�t� � ρdI0 cos�2πΔνt� 2ϕ� pπ�; (5)

where the π phase shift depends on the experimental
configuration (p � 0 for transmission measurements,
whereas p � 1 for the reflection/backscattering configu-
ration). These equations show that measuring the DC and
the RF beatnote components of the output intensity
directly gives access to all sample parameters. Firstly,
the orthogonality breaking contrast parameter, already
introduced in our previous work [11], is readily found
to equal the sample diattenuation:

OBC � jIΔνout�t�j∕I0out�t� � d: (6)

Regarding the optical axis orientation, it can be ob-
served that ϕ is directly given by the beatnote signal
phase, up to a π term, as arg�IΔνout�t�� � 2ϕ� pπ. Finally,
isotropic absorption ρ is directly calculated from the DC
intensity, as in conventional non-polarimetric techniques.
We highlight that all these parameters are obtained in an
uncoupled and straightforward way, which considerably
simplifies the sample characteristics determination
and analysis. It should be noted that in more complex
situations involving multiple anisotropic effects like
circular birefringence (e.g., in multilayered samples or
fiber-guided measurement systems), the implementation
of this method would require a more detailed analysis,
which is out of the scope of this work.
The first experimental setup used to validate the pre-

sented method is shown in Fig. 1(a). It is composed of a
40-mW commercial 488-nm source that is introduced into
a polarization splitting/combining Mach–Zehnder archi-
tecture. One of the arms has an acousto-optical modula-
tor that introduces a fixed frequency shift of Δν �
80 MHz. A pinhole is used to spatially filter the two

orthogonal linearly polarized modes at the output and
to ensure perfect superposition of their respective wave
vectors. Then a quarter wave plate (QWP) oriented at 45
degrees with respect to the linear polarization directions
turns them into two orthogonal right and left circular
SOPs. Note that a fraction of the output signal is taken
at the exit of the Mach–Zehnder interferometer architec-
ture, before the pinhole and the QWP. It is sent on a linear
polarizer at 45 degrees followed by a fast Si PIN photo-
diode that provides us with a beatnote reference signal.
Such 80-MHz reference is used for signal demodulation
instead of the AOM driver output to avoid any drift
between the phases of the reference and the measured
beatnote signal that might be induced by optical path
depth residual fluctuations in the interferometer. More-
over, it enables the measurement of the maximum
beatnote amplitude achievable by our system, which is
subsequently used to normalize the measurements.

We first performed a free-space single-point measure-
ment of several control samples in transmission. Optical
elements with different diattenuation coefficients were
chosen, namely a VIS polarizer (LP-VIS-A, Thorlabs)
and a NIR polarizer (LP-NIR, Thorlabs). First, the diatten-
uation coefficient was determined from the conventional
measurement of the minimum and maximum transmit-
tances, with a result of 0.99 and 0.45, respectively, in
agreement with manufacturer’s specifications at λ �
488 nm. Subsequently, the diattenuation magnitude and
orientation angle were determined following the
approach detailed above using an oscilloscope. The mea-
surements were repeated for multiple sample orienta-
tions. The calculated diattenuation is shown in Fig. 2(a).
It can be observed that the measured coefficient for the
VIS polarizer is around 0.97, which is approximately
constant independently of the sample orientation as ex-
pected. We note that the presence of a small modulation
arises from the fact that the generated SOPs were not
perfectly circularly polarized. This residual modulation
could be easily calibrated out in an operational system.
Regarding the NIR polarizer, its diattenuation coefficient

Fig. 1. (a) Dual-frequency dual-circular-polarization source
architecture at λ � 488 nm. (b) Complete imaging setup in
reflection configuration.
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yields an almost constant value of around 0.43, which
shows a good agreement with the expected value. The
optical axis orientation was retrieved from the phase
shift between the signal and the reference, after an initial
calibration on a polarizer of known orientation to com-
pensate the phase delay due to the electrical wires
length. It is worth noting that this compensation has to
be performed only once and remains valid for all the sub-
sequent measurements. The orientation angle of the VIS
polarizer has been plotted in Fig. 2(b). The measured an-
gles are in fair agreement with the control values (which
are the known orientation angles directly read from the
VIS polarizer graduated rotation mount). Finally, a neu-
tral density filter and a half wave plate (at λ � 850 nm)
were measured. Ideally, the diattenuation of these ele-
ments is null. The measured diattenuation was respec-
tively 0.09 and 0.045, as shown in the lower part of
Fig. 2(a). These small deviations from 0 are explained
by the presence of a residual systematic signal at
80 MHz (mainly due to unperfect electronic shielding
of the AOM RF driver and of the photodiode wiring) that
introduces a slight bias in the measurements.
The previous results validate the proposed method for

single point measurements, enabling its application to a
polarimetric contrast imaging system. We have previ-
ously reported the implementation of a microscopic
imager in which the sample was moved using a motorized
translation stage, which considerably limited the acquis-
ition speed [11]. In this work, we have used the galvano-
metric mirror capability of our 4PI microscope prototype
(PIXEL facility of the University of Rennes 1) for laser
beam scanning. Such new arrangement acquires a 256 ×
256 pixels image of a 2.5-mm side sample in about 4 s
only. The system is sketched in Fig. 1(b). The DF-DCP

beam is delivered using a polarization-maintaining fiber
(that replaces the pinhole used in the previous measure-
ment) and focused on the sample using a conventional
lens (LA1608, Thorlabs), and the reflected light is col-
lected by a 90:10 beamsplitter cube after passing back
through the scanning mirrors (descanned detection
mode). The beam is detected by a high-speed photore-
ceiver whose signal is connected to a RF lock-in amplifier
(SR844, Stanford Research Systems).

We have used a controlled dichroic sample made of
several polaroid rectangular cuts radially placed around
a central one. Each polaroid stripe was cut along its di-
chroic axis and mounted between a mirror and a cover-
slip, using microscope objective oil as the mounting
medium. The region of interest was about 10 × 7.5 mm,
so a mosaic of several individual images was made to
have a proper rendering of the full sample. The diatten-
uation magnitude and orientation were directly obtained
from the DC intensity and the 80-MHz beatnote amplitude
and phase, which were measured simultaneously in a sin-
gle laser scan following the method described above. The
measured diattenuation magnitude is shown in Fig. 3(a).
The most relevant characteristic is that the contrast is
effectively constant all over each polaroid stripe, as
the measured diattenuation is unaffected by the relative
orientation of the dichroic axis. Diattenuation is actually
close to 1 for each polaroid fragment, and almost 0
elsewhere, as expected. The linear dichroism angle is
presented in Fig. 3(b). It can be observed that the mea-
sured parameter successfully discriminates the orienta-
tion of each dichroic segment. The value in each of
them is almost constant, the uniformity of the results
being indeed greater than that observed in the diattenu-
ation magnitude image. This behavior is a consequence
of the fact that phase is usually less prone to be affected
by noise and other fluctuations than amplitude.

Fig. 2. (a) Linear diattenuation coefficient of a visible linear
polarizer (▪), a near-infrared polarizer (•), a neutral density fil-
ter (▴), and a λ∕2@850-nm waveplate (▾) as a function of the
sample orientation angle. (b) Control (dotted line) and mea-
sured (▪) linear dichroism angle of the visible linear polarizer.

Fig. 3. Linear diattenuation magnitude (a) and orientation
(b) of the measured sample. Each image is 10 × 7.5 mm.
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Another interesting feature of these results is that the
calculated parameters are not affected by variations in
the sample illumination. The background of Fig. 4 shows
the DC intensity, where there is an apparent inhomoge-
neity in the sample illumination for each individual
image. The beatnote amplitude mosaic (not included)
shows a similar pattern. Intensity fluctuations are can-
celled in the diattenuation parameters calculation, so
the diattenuation magnitude and orientation images
(which are presented without any image processing)
are unaffected by illumination inhomogeneities.
Additionally, we present a reconstruction of the orien-

tation angles to further check the validity of the results.
In order to do that, the dichroism angle image is divided
into a set of 30 × 30 pixels subimages. A threshold is
fixed so that only the pixels with a diattenuation coeffi-
cient greater than 0.5 are taken into account. The average
angle is subsequently estimated for all the valid pixels of
each subimage. The estimated local angle is graphically
indicated by the oriented lines in Fig. 4, where the color
corresponds to the colorbar in Fig. 3(b). It can be ob-
served that the measured orientation angle is indeed
aligned with the polaroid fragments, being constant in
each polaroid stripe as stated above.
In conclusion, we have presented a method for deter-

mining diattenuation magnitude and orientation with a
single-shot and fast measurement. Our approach is based

on a specific DF-DCP source. It has then been predicted
that the measurement of the beatnote signal that results
from the interaction of such beam with dichroic samples
enables linear dichroism (magnitude and angle) to be
fully characterized in a straightforward and decoupled
way. When applied to polarimetric imaging, this leads
to a uniform contrast independently of the sample orien-
tation, which is very useful for real-time applications. The
potentially high dynamic range of this method and its
ability to characterize dichroism in a single shot entail
a high potential for biomedical applications. Moreover,
the fact that orthogonality breaking sensing is easily
adaptable to endoscopic systems makes the presented
approach an interesting technique for minimally invasive
tissue characterization.
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Two-pixel polarimetric camera by compressive
sensing

Julien Fade, Estéban Perrotin, and Jérôme Bobin

Abstract—We propose an original concept of compressive sens-
ing (CS) polarimetric imaging based on a digital micro-mirror
(DMD) array and two single-pixel detectors. The polarimetric
sensitivity of the proposed setup is due to an experimental
imperfection of reflecting mirrors which is exploited here to form
an original reconstruction problem, including a CS problem and
a source separation task. We show that a two-step approach
tackling each problem successively is outperformed by a ded-
icated combined reconstruction method, which is explicited in
this article and preferably implemented through a reweighted
FISTA algorithm. The combined reconstruction approach is then
further improved by including physical constraints specific to the
polarimetric imaging context considered, which are implemented
in an original constrained GFB algorithm. Numerical simulations
demonstrate the efficiency of the 2-pixel CS polarimetric imaging
setup to retrieve polarimetric contrast data with significant
compression rate and good reconstruction quality. The influence
of experimental imperfections of the DMD are also analyzed
through numerical simulations, and 2D polarimetric imaging
reconstruction results are finally presented.

Index Terms—compressed sensing, polarimetric imaging,
sparse signal modeling, proximal algorithms

I. INTRODUCTION

IN various application domains such as biomedical diagno-
sis, defence or remote sensing, standard intensity imaging

techniques sometimes fail to reveal relevant contrasts or to
gather sufficient information. In these domains, polarimetric
approaches have proved efficient to enhance the estimation
or detection capabilities of the imaging systems [1], [2], [3],
[4], [5], [6], [7]. Mostly often, the polarimetric information
is provided by a scalar polarization contrast image, which
offers complementary constrast information with respect to
the conventional intensity image. This polarization contrast
image usually corresponds to the map of the degree of po-
larization (DOP) of the light backscattered at each location of
the scene. Four polarimetric measurements are theoretically
needed to determine such a DOP image [8]. However, to
reduce both cost and acquisition time, simplified 2-channel
imaging modalities are usually preferred in active polarimet-
ric imaging, such as in Orthogonal States Contrast (OSC)
imaging. This approach consists of computing a contrast map
OSC = (xS − xP )/(xS − xP ) between two polarimetric
images (xS and xP ) of the scene, acquired through a linear
polarizer oriented along two orthogonal directions, denoted S
and P throughout the article where S denotes the polarization
direction of the illumination source. Owing to its instrumental
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simplicity, which can be further improved using voltage-
controlled electro-optics devices [9], [10] or appropriate op-
tical design [11], and due to the fact that OSC provides a good
estimate of the DOP (under the assumption that the imaged
objects are purely depolarizing [4], [12]), OSC imaging is
today widely used in many applications [12].

On the other hand, compressive sensing (CS) and CS-
derived original imaging concepts such as the single-pixel
camera (SPC) have attracted much attention these past years
[13], [14]. With this approach, the measurement process relies
on the spatial sampling of the image of interest with a Digital
Micromirror Device (DMD), and on numerical reconstruc-
tion of the image from intensity measurements on a single
photodetector for different sampling patterns on the DMD,
allowing a compressed version of the image to be recovered
from the photocurrent signal acquired. More recently, the
concept of SPC has been applied to a number of domains
including, among others, multi/hyperspectral imaging [15],
[16], [17], [18], THz imaging [14], or random media-assisted
CS [19]. However, despite the swarming interest in CS, only
few attempts were reported so far to perform polarimetric
CS imaging [16], [20], [21], [22], [23]. The imaging setups
proposed in these references are all directly based on the SPC
concept, where polarimetric sensitivity was simply gained by
detecting the optical signals through appropriate polarization
analyzing devices during sequential acquisitions, or with a
unique acquisition on several detectors after appropriate beam
splitting of the light reflected by the DMD. In these refer-
ences, the reconstruction process consisted of solving as many
CS reconstruction problems as polarimetric channels were
considered (2 or 4). More precisely, in [20], [21], the SPC
scheme was readily improved by adding a rotating polarizer
in front of the detector. These techniques can operate as
polarimetric imaging systems only at the expense of a two-
fold (respectively four-fold) increase in the measurement time,
while at the same time suffering from the loss in intensity
due to the use of a polarization analyzer. In references [22],
[23], the measurement time was limited, but the complexity
of the imaging system was largely increased, to the expense
of important losses in the imaging setup.

In this article, we revisit the problem of 2-channel po-
larimetric CS by proposing an original polarimetric imaging
architecture using two single-pixel detectors. The proposed
setup is still inspired from the initial concept of SPC, but
does not require any polarization analyzing element as it relies
on imperfections of the DMD itself. Contrarily to previous
attempts in polarimetric CS, the polarimetric information is
obtained through a single temporal data acquisition on the two
photodetectors, and the polarimetric channels are recovered
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Fig. 1. Sketch of the 2-pixel CS polarimetric imaging setup proposed. It is
inspired from the concept of SPC where the image is first spatially sampled
by a DMD which reflects light in two directions, and where the total photon
flux is detected on a single photodetector in each direction.

simultaneously from a single reconstruction step. It also offers
in principle the best detectivity tradeoff, as all the light directed
towards the DMD is involved in the imaging process without
passing through any polarization analysis component.

This article is organized as follows: in Section II, the
principle and the optical setup proposed to achieve CS po-
larimetric imaging are detailed. Then in Section III, various
algorithms are presented to tackle this original CS inverse
problem, along with several possible algorithmic optimizations
such as reweighted approaches or constrained algorithms that
can be implemented to improve the reconstruction results. The
performance of the algorithms and of the 2-pixel polarimetric
CS imaging approach are finally discussed in Section IV
through numerical simulations on 1D and 2D test signals. In
this section, the influence of experimental imperfections on
the reconstruction quality is also analyzed, before conclusions
and perspectives of the article are provided in Section V.

II. PRINCIPLE OF 2-PIXEL CS POLARIMETRIC IMAGING

A. 2-pixel CS polarimetric imaging setup

The polarimetric CS imaging approach proposed relies on
the SPC imaging architecture. As will be demonstrated, it
makes it possible to perform standard intensity and polarimet-
ric contrast imaging using CS, without requiring any polar-
ization analysis component. The corresponding experimental
setup is sketched in Fig. 1. In the context of active imaging,
we assume that the scene or object of interest is enlightened by
an horizontally polarized light source. An image of the scene
is formed through a lens L onto the surface of the DMD,
which spatially samples it by applying a controlled binary
pattern on the micromirrors. The detection setup is strictly
similar to the SPC architecture, with a first photodetector (P1)
used to detect light reflected in the first reflection direction
through a lens (L′). However, the light reflected in the second
direction of the tilted mirrors is directed towards a second
photodetector (P2) via a lens (L′), instead of being discarded
as in the original SPC scheme. By applying a series of different

patterns on the DMD, the detection of the total light intensity
reflected in directions 1 and 2 by photodetectors P1 and P2

provides two temporal signals that are sampled and digitized
on a Analog to Digital Converter (ADC), before they can be
used for numerical inversion of the intensity and polarimetric
contrast images.

Throughout this article, we will denote the total intensity
image of the scene by a single dimensional row vector
xT = {xTi

}i=1,...,N of length N . We assume that the total
intensity image can be written as the sum of two polarimetric
components, i.e., xT = xS + xP . Subscripts S and P
denote two orthogonal linear polarization directions w.r.t. the
orientation of the DMD surface and to the direction of linear
polarization of the illuminating beam (S), as sketched in
Fig. 1. We assume that these two components are compressible
in the same sparse representation {Ψk}k=1,...,N ′ , i.e., they can
be written as xS,P = sS,P Ψ, where Ψ = [Ψ1, . . . ,ΨN ′ ] is a
N ′×N matrix with N ′ ≥ N , and sS,P are N ′×1 column vec-
tors containing the expansion coefficients. In the compressed
sensing framework, compressibility means that most of these
expansion coefficients have a small amplitude. Only the few
large-amplitude coefficients code for the salient information
of the polarimetric signals. This assumption generally refers
to the approximately sparse signal model in the CS literature
[24].

Upon reflection on the DMD surface, the polarimetric
components of the original image xT are altered by the
Fresnel’s reflection coefficients (in intensity) of the mirror,
depending on the reflection angle. Let us denote by rSi and
rPi the Fresnel’s reflection coefficients (in intensity) of the
mirror for each tilt direction i = 1, 2 and respectively for the
S and P polarimetric components of the image formed on the
DMD surface. Neglecting absorption effects, these coefficients
are real and verify rS,P1,2 ∈ [0, 1]. With such notations, the
images respectively reflected towards detectors P1 and P2 read
ỹ◦1 = rS1 xS + rP1 xP and ỹ◦2 = rS2 xS + rP2 xP , which can be
rewritten in a compact form as

Ỹ◦ =

[
ỹ◦1
ỹ◦2

]
=

[
rS1 rP1
rS2 rP2

] [
xS
xP

]
= ÃX. (1)

When a given pattern indexed by k is applied on the DMD to
spatially sample the image, the total intensity reflected towards
direction 1 and integrated on detector P1 can be denoted by
ỹ
(k)
1 = ỹ◦1ϕ

(k), where ϕ(k) is a binary valued N -dimensional
column vector encoding the set of orientations of the individual
mirrors (DMD pattern). Similarly, ỹ(k)2 = ỹ◦2ϕ

(k), where
ϕ(k) = 1N − ϕ(k) is the complement of vector ϕ(k). Then,
when M measurements are accumulated with various sets of
pseudo-random configurations of the DMD, the detected inten-
sities {ỹ(1)i . . . ỹ

(M)
i }i=1,2 organized in a 2×M measurement

matrix read
Ỹ =

[
ỹ◦1ϕ
ỹ◦2ϕ

]
, (2)

with sensing matrix ϕ = [ϕ(1) . . . ϕ(M)] and ϕ =
[ϕ(1) . . . ϕ(M)] .

Under the above assumptions, we will show that such
a simple setup suffices to retrieve a compressive measure-
ment of the polarimetric components xS and xP , and thus
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of the intensity image xT = xS + xP , and OSC image
OSC = (xS − xP)/xT . It is worth noting here that all the
available light incoming from the scene is detected, thereby
offering optimal energy balance, and that no polarimetric
optical component has been inserted in the setup. Indeed, to
achieve polarimetric sensitivity, this CS imaging setup relies
on the slight variation of the Fresnel coefficients for the S and
P -polarized components of light as a function of the angle of
incidence of the incoming light beam. As sketched in Fig. 1,
the angle of incidence on the mirror is denoted by θ1 = θ− t1
(respectively θ2 = θ − t2) for tilt direction 1 (respectively
direction 2), where θ is the angle of incidence with respect to
the DMD surface, and where t1 and t2 denote the tilt angle of
the mirrors (typically t1 = 12◦ and t2 = −12◦ on most DMDs
[25]). This dependency with θ is illustrated in Fig. 2.a, where
we plotted the evolution of the four reflection coefficients
rS,P1,2 at wavelength 780 nm for aluminum mirrors when θ
varies from 17◦ to 65◦. The influence of the value of these
coefficients on the CS reconstruction problem is discussed
below in Section II-C and their calculation is recalled in
Appendix A. At this level, it is interesting to note that
polarization vision mechanisms in some animal species rely
on such polarization sensitivity of the Fresnel reflection or
refraction coefficients[26].

B. Description of the CS inverse problem

With the above notations, we will now describe this imaging
process as a CS inverse problem. We first rewrite the binary
sensing matrix ϕ as ϕ = (1N,M + Φ)/2, and consequently,
ϕ = (1N,M −Φ)/2, where the elemets of Φ take on −1 and
+1 values. We impose that, for all DMD configurations, 50
% of the micromirrors are oriented towards direction 1 such
that

∑N
i=1 Φ

(k)
i = 0. In such a case, the measurement matrix

can then be rewritten as Ỹ = Y + Y, with Y = Ỹ◦1N,M/2,
and

Y =
1

2

[
ỹ◦1Φ
−ỹ◦2Φ

]
=

QỸ◦Φ
2

, with Q =

[
1 0
0 −1

]
.

(3)
For the sake of simplicity, we will assume in the following

that the constant term Y can be easily estimated and subtracted
out from the measured data, e.g. by averaging the acquisitions
over all M DMD pattern realizations considered. In this case,
the CS problem that must be solved is given in Eq. (3) and
reads Y = QỸ◦Φ/2 = QÃXΦ/2. For the sake of clarity,
and taking into account an additive noise contribution b on the
detected intensities, we propose to rewrite it with simplified
notations as

Y = AXΦ + b, with A =
QÃ

2
=

1

2

[
rS1 rP1
−rS2 −rP2

]
.

(4)
We also introduce Y◦ = AX, such that Y = Y◦Φ.

As a result, the N -dimensional polarimetric components of
the image contained in X can be in principle recovered from
a number of measurements M � N provided the problem
described in the above equation can be solved. Contrarily to
most CS inverse problems that have been considered so far, we
are facing an additional difficulty in this particular situation, as

Fig. 2. (a) Evolution of the reflection coefficients in intensity for two tilt
directions and two polarimetric components S and P , as a function of
incidence angle θ on the DMD surface at wavelength 780 nm. (b) Evolution
of the condition number κ(A) of matrix A as a function of θ at 780 nm.
(c) Contour plot of κ(A) as a function of θ and wavelength. The black cross
indicates the physical situation addressed in the numerical experiments.

the signals to recover are strongly mixed in the measurement
process via the mixing matrix A. Indeed, as illustrated in
Fig. 2.a, the reflection coefficients on metals are usually
quite similar for polarization directions S and P , causing
a strong crosstalk between the two components of interest.
As a consequence, the signals detected at photodetectors P1

and P2 are almost perfectly anticorrelated, the polarimetric
information lying in the tiny discrepancies between these
two signals. This is illustrated in Fig. 3, where simulated
intensity signals are plotted. As will be shown in Section III,
several approaches can be used to tackle this unmixing/CS
reconstruction problem, either by considering the two prob-
lems independently, or by solving them simultaneously in the
recovery process.

C. Experimental parameters and imperfections

Before we detail the reconstruction algorithms used to
achieve polarimetric CS imaging with the 2-pixel camera
setup proposed, let us analyze the possible influence of some
experimental parameters on the reconstruction quality, and
how these parameters can be optimized.

Obviously, an important parameter that will control the
difficulty of the unmixing problem is the mixing matrix A,
which depends on the wavelength and bandwidth of the
illuminating source, on the incidence angles θ1 and θ2 on the
two tilt positions, and on the optical coating of the reflective
surface of the micromirrors. Sticking to the specifications of
commercially available DMDs [25], we have simulated the
values of the rS,P1,2 coefficients for aluminum-coated metallic
micromirrors with tilt angles ±12◦, for varying wavelengths
over the spectral bandwidth of commercially available DMDs
(450-850 nm), and for varying incidence angle θ. The expres-
sion of the Fresnel’s intensity reflection coefficients on metals
is recalled in Appendix A. The evolution of parameters rS,P1,2

with θ is plotted in Fig. 2.a for a wavelength of 780 nm,
showing that the four reflection coefficients considered do not
differ much (typically, less that 15% difference for reasonable
incidence angles). The unmixing step in the reconstruction
problem consisting basically of an “inversion” of matrix A,
the condition number κ(A) = ‖A−1‖2 · ‖A‖2 naturally gives
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an indication about the difficulty of such inversion procedure.
We have thus plotted in Fig. 2.b the evolution of κ(A) as
a function of θ, which confirms that high incidence angles
may be favored. We further analyzed the evolution of κ(A)
with θ and with the illumination wavelength. The contour
plot in Fig. 2.c shows that the condition number can vary
by a factor of 5 across the range of wavelength and incidence
angle considered, higher wavelengths being best adapted to
maximize the polarimetric sensitivity of the reflection on
aluminum mirrors. As a result, owing to the availability of
laser and LED sources at such wavelength, and to keep
reasonable incidence angles, we will consider throughout the
remainder of this article the situation of a monochromatic
illumination at 780 nm, with incidence angle θ = 50◦ (black
cross in Fig. 2), yielding a reasonably low condition number
of κ(A) = 26.

It can be noted here that dielectric coated micromirrors
could offer stronger polarization dependence of the reflection
coefficients, but to the expense of totally revisiting the fabri-
cation process of DMDs. For the sake of simplicity, we will
neglect in this article the influence of the anti-reflection coated
cover slit that protects the DMD surface [25]. We also neglect
the dispersion of the values of coefficients rS,P1,2 with the source
spectral bandwidth and with the slight variation of incidence
angle when the image of the scene is formed on the DMD
surface. All these possible sources of imperfections can be
neglected here to study the principle of 2-pixel polarimetric
camera, but may be addressed in further work to achieve the
experimental validation of this CS imaging scheme.

Nevertheless, we shall analyze in our simulations how a
bias in the estimated incidence angle θ can have an impact
on reconstruction quality. Indeed, it is quite obvious that
a bias on θ will lead to using an incorrect mixing matrix
in the inversion process, hence hindering the recovery of a
satisfactory polarization contrast image. Moreover, we also
consider the influence of possible individual random errors
in the tilt angles of each micromirror of the DMD. Indeed,
the typical individual tilt error is about ±1◦ to ±2◦ according
to standard DMD’s specifications [25], thus its consequences
on the reconstruction process may not be negligible. If global
angle bias on θ and individual tilt errors can affect the
reconstruction, their influence on image quality is likely to
be very different. Global bias on θ can be basically treated as
a calibration error, whereas individual tilt errors would rather
behave as additional random noise on the inversion process.

Lastly, we will consider that the only source of noise is
the photodetectors electronic noise, and we assume statistical
independence between the noise at photodetectors P1 and P2,
and between noise realizations as the DMD patterns are varied.
In the above inverse problem, noise vector b can thus be
modeled by a centered Gaussian distribution of variance σ2,
i.e., ∀i ∈ {1, 2},∀j ∈ [1,M ],bij ∼ N (0, σ2).

III. RECONSTRUCTION ALGORITHMS

In this section, we describe different strategies to reconstruct
the polarimetric data X from the compressed measurements
Y = AXΦ + b. In the framework of compressed sensing,

the signal recovery problem is generally described as a “large
p, small n” problem, where the number of unknown, i.e. the
number of samples in the polarimetric components, can be
much larger than the number of measurements in Y. Hence,
it is essential to enforce additional constraints on the signal
to be recovered, which eventually boils down to solving a
minimization problem of the form

X̂ = ArgminX P (X) +
1

2
‖Y −AXΦ‖2F , (5)

where the first term is a penalization term that favors solutions
with certain desired properties, and the second term is a data
fidelity term that measures the discrepancy between the data
Y and the model AXΦ. The Frobenius norm is defined as
‖Y‖2F = Trace

(
YYT

)
.

In the context of CS [27], [28], it is customary to enforce
the sparsity of the unknown variable X in some signal
representation Ψ that is chosen a priori. In the following
sections, we describe and compare several strategies that
are precisely dedicated to solve the two-pixel polarimetric
compressed sensing recovery problem.

A. 2-stage reconstruction approach

The recovery problem in Eq. (5) can described as the
combination of two classical inverse problems: a compressed
sensing problem and a source separation problem. A first
straightforward approach consists in tackling alternately both
problems. Then, recovering the polarimetric components can
be performed with the following 2-stage approach.
• Compressed sensing: denoting the non-compressed

mixed polarimetric components by Y◦ = AX, the
actual measurements Y can be defined as Y = Y◦Φ.
Recovering Y◦ then boils down to a standard compressed
sensing recovery problem. This step is customarily solved
by finding the minimum of the problem

Ŷ◦ = ArgminY◦

∥∥∥Λ�
(
Y◦ΨT

)∥∥∥
`1

+
1

2
‖Y −Y◦Φ‖2F ,

(6)
where the 1-norm ‖ . ‖`1 enforces the sparsity of Y◦ in
Ψ and Λ stands for the regularization parameters, which
is composed of strictly positive entries (see section
III-D for details about the parameters’ selection). This
optimization problem is solved using the reweighting
FISTA algorithm. This algorithm is referred to as
Algorithm 2 and is detailed in Appendix B.

• Source separation: once the mixed polarimetric com-
ponents Y◦ are estimated, retrieving X from Y◦ = AX
is equivalent to a source separation or unmixing prob-
lem, which can be tackled by minimizing the Euclidean
distance between Y◦ and the model AX as follows

X̂ = ArgminX

∥∥∥Ŷ◦ −AX
∥∥∥
2

F
. (7)

Since A is invertible, the solution of this problem is
given by X̂ = A−1Ŷ◦.
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B. Combined sparse reconstruction

Despite its simplicity, this two-stage approach suffers from
a major drawback: the mixed components Y◦ won’t be
perfectly estimated, especially when only few measurements
in Y are available and when noise contaminates the data.
These mis-estimation errors will be amplified in the unmixing
stage. Since the mixing matrix A is likely to be ill-
conditioned, this errors will largely impact the reconstruction
accuracy of the reconstruction process.

A more effective strategy consists in jointly tackling both
the compressed sensing recovery and unmixing problems.
Extending standard reconstruction procedures yields the fol-
lowing optimization problem

X̂ = ArgminX

∥∥∥Λ�
(
XΨT

)∥∥∥
`1

+
1

2
‖Y −AXΦ‖2F , (8)

where the 2×N matrix Λ stands for the same weight matrix
we introduced in the 2-stage approach (see section III-D). In
the next, we make use of the reweighted FISTA algorithm (see
Appendix B) to solve (8).

C. Constrained sparse reconstruction

Further improving the accuracy of the components’ recovery
requires imposing additional, more physical, constraints on X.
In the context of polarimetric data, each component xS and
xP has naturally non-negative samples. As well, under ac-
tive polarized illumination, and assuming purely depolarizing
samples, the components must verify the following inequality:
xS � xP . In this section, we propose extending the reweighted
FISTA algorithm to enforce these additional constraints. The
optimization problem to tackle is described as follows

ArgminX

∥∥∥Λ�
(
XΨT

)∥∥∥
`1

+ iX�0(X)

+ iDX�0(X) +
1

2
‖Y −AXΦ‖2F ,

(9)

where iX�0(X) stands for the characteristic function
of the positive orthant {X; ∀i, j, [X]ij ≥ 0} and
iDX�0(X) for the characteristic function of the convex
set {X; ∀i, j, [DX]ij ≥ 0} where D = [1,−1].

In contrast to the standard problem in Eq. (8), the problem
in Eq. (9) is composed of a sum of convex penalizations that
cannot be tackled with the FISTA algorithm. For that end, the
Generalized Forward Backward (GFB) algorithm [29] is the
perfect algorithm to solve such an optimization problem. The
application of the GFB to Eq. (9) is described in Alg. 1, where
γ stands for the gradient path length used in the algorithm, and
L denotes the maximum iteration number.

Algorithm 1:
Combined GFB

1: Choose Λ (see III-D), γ < 1
‖A‖22

, {µi}i=1,··· ,3 such that
∑3
i=1 µi = 1, X(0), {Ui}i=1,··· ,3

2: while l < Louter do
3:

4: while t < L do
5:
6: • Gradient of the data fidelity term:

G = −AT
(
Y −AX(t)Φ

)
ΦT

7: • Sparsity penalization U1 :
8:

U
(t+1)
1 = U

(t)
1 +

proxγ‖Λ(l)�( .ΨT )‖`1

(
2X(t) −U

(t)
1 − γG

)
−X(t)

9: • Positivity constraint variable U2 :
10:

U
(t+1)
2 = U

(t)
2 +

proxiX≥0(.)

(
2X(t) −U

(t)
2 − γG

)
−X(t)

11: • Components’ inequality U3 :
12:

U
(t+1)
3 = U

(t)
3 +

proxiDX≥0(.)

(
2X(t) −U

(t)
3 − γG

)
−X(t)

13: • Polarimetric components X:
14:

X(t+1) =
3∑

i=1

µiU
(t+1)
i

15: Update the weights Λ(l) - see section III-D.
16:

end
In this algorithm, the application of each penalization or

constraint is performed independently on distinct interme-
diate variables {Ui}i=1,··· ,3. Updating each of these vari-
ables only requires the current estimate of the polarimetric
components X(t), the gradient of the quadratic data fidelity
term G = −AT

(
Y −AX(t)Φ

)
ΦT as well as the so-

called proximal operator of the penalization or constraint.
The proximal operators required in the above algorithms are
defined in Appendix B.
The convergence of the GFB algorithm is guaranteed as long
as the gradient path length verifies γ < 1

‖A‖22
, where the

spectral norm of A is defined as its largest singular value.
The scalar weights {µi}i=1,··· ,3 must be strictly positive and
have to sum to 1. Hence, the final update of the polarimetric
components is a weighted average of the different intermediate
variables. In the remainder of this paper, these weights will
all be set equal to 1/3. The proposed GFB-based algorithm
is initialized with the polarimetric signals provided by the
reweighted FISTA algorithm described in the above section.
Since the problem 9 is convex, this initialization does not
change the solution but it dramatically reduces its computa-
tional cost.

D. Optimization of algorithm parameters

The three above signal recovery approaches require tuning
a certain number of parameters, whose setting is essential for
an accurate estimation:
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• Sparse signal representation: the choice of the sparse
signal representation Ψ highly depends on the geomet-
rical content of the components X. For instance, if the
signal X is assumed to be composed of oscillatory struc-
tures, it is customary to choose Ψ as a discrete cosine
transform or its localized variant. In case X mainly con-
tains local anisotropic contour-like features, the curvelet
transform is a good fit. In this framework, redundant
wavelets are a generic choice that generally provides
good recovery results for most reconstruction problems
that involve natural images. In this article, Ψ will be
chosen as an undecimated wavelet frame [30]. Strictly
speaking, undecimated wavelet frames are not orthogonal
representations, which entails that the proximal operator
defined in Eq. (12) of Appendix B is an approximation.
Nevertheless, it is customary to use Eq. (12) along with
undecimated wavelets. Indeed, in that specific case, the
Gram matrix of the representation ΨTΨ is diagonally
dominant, which makes it close to an isometry.

• Regularization parameters: whether it is in the 2-step
reconstruction approach, or in the combined reconstruc-
tion approaches including the reweighted FISTA or the
proposed constrained GFB, the regularization parame-
ters contained in matrix Λ aim at balancing between
the sparsity constraint and the data fidelity term. These
parameters define thresholds that are applied to the ex-
pansion coefficients of X in the sparse representation Ψ,
which eventually act as a denoising procedure. Therefore,
in practice, these parameters are chosen so as to reject
noise-dominated coefficients in Ψ. For that purpose, the
weight matrix is built so that each of its elements are the
product of two terms: [Λ]ij = λiwij where λi > 0 and
0 < wij ≤ 1.
The first term defines the global threshold per polarimet-
ric component and its value is derived straight from the
derivative of the data fidelity term:

∀i ∈ {1, 2}; λi = τ .mad
(

[GΨT ]i

)
,

where the median absolute deviation (mad) is a robust
empirical estimator of a Gaussian noise standard devia-
tion, G is the gradient of the data fidelity term, and τ is
a scalar that is generally chosen between 2 and 3. This
choice holds true for the three reconstruction approaches.
The extra parameters {wij} are the standard parameters
that are defined in reweighted `1 techniques. Following
[31], these parameters are chosen based on some estimate
X̂ of the polarimetric components

∀i, j; wij =
ε

ε+
|[X̂ΨT ]ij|
‖X̂ΨT ‖∞

, (10)

where ε is a small scalar. This procedure is applied to the
reweighted FISTA algorithm as well as the constrained
GFB.

• Number of iterations, reweighted steps and stop-
ping criterion : In the next, the maximum number
of iterations is fixed to L = 20000, except specified

Fig. 3. Inset (a): Synthetic 1D polarimetric test signal used to assess
recontruction algorithms performance. An example of reconstructed signal is
also given (see text for details). Inset (b): example of measured intensities on
photodetectors P1 and P2 for M = 306 (compression 40 %) different binary
patterns (Hadamard) applied on the DMD. Main figure: plot of intensity y2

as a function of y1 revealing strong anticorrelation between the two detected
signals.

otherwise. For the reweighted algorithms, two reweighted
steps (Louter = 2) taking place respectively after 2000
and 4000 iterations were sufficient to maximize recon-
struction quality. Lastly, for all reconstruction algorithms,
the stopping criterion is based on the relative variation
of the solution X̂ between two consecutive iterations:
‖X̂(t+1) − X̂(t)‖F /‖|X̂(t)‖F < ε, where ε = 10−9.

IV. NUMERICAL RESULTS

In this section, we analyze the performance of the recon-
struction algorithms and regularization procedures described
above. These algorithms will also be compared in terms of
robustness to some of the experimental imperfections men-
tioned in Section II. This analysis will be conducted on a
1D test signal for the sake of computation speed. The qual-
ity of the reconstructed signals will be standardly evaluated
throughout this section by computing the Peak Signal to Noise
Ratio (PSNR) of a concatenated vector of the reconstructed
polarimetric components, i.e., [x̂S x̂P ]. Then, we will present
some polarimetric imaging numerical results on 2D signals
that demonstrate the ability of this concept of 2-pixel polari-
metric camera to provide satisfactory compressed polarization
contrast images at low cost and low complexity.

A. Comparison of algorithms performance and robustness

1) Description of 1D test signal: In order to optimize
computation resources, we generated a synthetic polarimetric
1D data sample of length N = 512, that will be used
throughout this subsection to compare the performance of the
above algorithms. The corresponding signals xS and xP are
plotted in the inset (a) of Fig. 3, respectively with blue and red
solid lines. The simulated polarimetric components verify the
positivity constraint xS � xP , and it can be noted that their
supports are not joint, for the sake of generality. In the inset
(b) of Fig. 3, we plot a set of simulated detected intensity
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signals y1 and y2, with 40 % compression rate (M = 306),
and SNR = 40 dB. The mixing matrix A used to generate the
data has been calculated as detailed in Appendix A, assuming
an incidence angle θ = 50◦ and wavelength of 780 nm (i.e.,
the optimal conditions identified in Section II-C). The patterns
used on the DMD to sample the image were generated from
a randomly scrambled Hadamard transform of the signal
X of size N = 512. Unless otherwise specified, the same
experimental conditions will be assumed for all numerical
results presented in this article. In Fig. 3, y2 is plotted as a
function of y1, evidencing the strong anticorrelation existing
between the two detected signals. Lastly, in the inset (a) of
Fig. 3, we show an example of reconstructed signals x̂S
and x̂P obtained with the reweighted FISTA algorithm, and
yielding PSNR = 37.7 dB. As for all reconstructions of the
1D signal presented below, the reconstruction process makes
use of the unidimensional undecimated wavelet transform
with the Haar filter, which is well suited to sparesely represent
piecewise constant signals. It can be checked in the inset
(a) of Fig. 3 that the algorithm has not been constrained to
ensure positivity of either x̂S , x̂P or x̂S − x̂P .

2) Algorithms performance: Using this 1D test signal, we
are now able to compare the performance of the various
algorithms as a function of the different parameters involved
in the imaging process. Let us first analyze the influence of
the data SNR on the reconstruction quality, for an intermediate
compression rate of 40 %. The evolution of the PSNR of X̂
as a function of the SNR is given in Fig. 4. All the data
points in Fig. 4 have been obtained from 30 realizations of
the numerical experiments, with the error bars indicating the
interquartile range, i.e., distance between the first to the third
quartile of the data series.

It can first be seen that all the algorithms asymptotically
exhibit a linear evolution of their PSNR as a function of
the SNR. Then, it is interesting to note that for intermediate
values of SNR (10 dB<SNR<50 dB), the 2-step approach
underperforms with respect to the simplest implementation of
the combined reconstruction approach (denoted by combined-
FISTA). However, as soon as a reweighted procedure is im-
plemented, solving the CS and the unmixing problems simul-
taneously (algorithm denoted as combined-rFISTA) provides
an asymptotical gain of about 12 dB in PSNR with respect
to the 2-step algorithm. Lastly, imposing physical positivity
constraints on x̂S , x̂P and x̂S−x̂P through the implementation
of the GFB algorithm (denoted as combined-GFB) does not
bring any additional gain in performance for highest values
of SNR. However, in noisy situations, for SNR < 50 dB, the
positivity constraints prove efficient to improve the reconstruc-
tion quality. A maximum gain of almost 10 dB is obtained
for SNR = 0 dB, a situation where the unconstrained rFISTA
approach fails to surpass the reconstruction quality obtained
with the 2-step procedure.

We now analyze the influence of the compression rate and
of the incidence angle θ on the PSNR of the reconstructed
signals. As discussed in Section II-C, the incidence angle
controls the condition number κ(A) of the mixing matrix,
and hence the difficulty of the unmixing problem. For this

Fig. 4. Evolution of the PSNR of the signal X̂ reconstructed with the 4
compared algorithms as a function of detected signal SNR for a compression
rate of 40 %. The symbols represent the mean PSNR over 30 realizations
with error bars indicating the interquartile range. The lines are only guides
for the eyes.

Fig. 5. 2D map of the PSNR (averaged over 10 realizations) of X̂ recon-
structed with the combined-reweighting FISTA algorithm, as a function of
incidence angle θ, and compression rate. The corresponding condition number
κ(A) is indicated as a function of θ.

numerical experiment, we consider only the combined-rFISTA
algorithm (plotted in blue solid line in the previous figure),
with fixed number of iterations (L = 104), and with a SNR
of 60 dB. A 2D-plot of the average PSNR obtained over
10 realizations of each numerical experiment is provided in
Fig. 5, for 40 values of θ ranging between 25◦ to 65◦, and 49
values of compression rate between 0 % (no compression) to
96 %. It can be observed that the reconstruction quality obeys
a classical “phase transition” behaviour frequenty observed
in CS problems, with three main domains which can be
identified. Firstly, for compression rates below 50 %, the
reconstruction is almost perfect (PSNR ≥ 55 dB), whatever
be the value of θ. Only for highest values of κ(A) (i.e., for
θ ≤ 30◦), the algorithm fails is reaching a PSNR of 50 dB,
but remains above 45 dB. Then, for intermediate values of
compression rate between 50 % and 80 %, the reconstruction
quality gradually decreases while remaining above 35 dB.
In that regime, the influence of the condition number κ(A)
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appears clearly on the reconstruction quality. Lastly, a sharp
transition occurs around 85 % compression rate, above which
no satisfactory reconstruction can be obtained regardless
of θ. This 2D-map is rather encouraging towards possible
experimental implementations of the 2-pixel polarimetric CS
camera. Indeed, it shows that provided a good SNR can be
ensured (here 60 dB), polarimetric signals can be retrieved at
relatively high compression rates (≤ 80%), and for reasonable
incidence angles on the DMD.

3) Robustness to incidence angle bias and tilt errors:
Before presenting results on a polarimetric imaging scenario
with 2D test signals, we report a last numerical experiment
conducted on the 1D test signal to assess the robustness of
the various algorithms to experimental imperfections, such as
a bias on the incidence angle θ, and random errors on the
micromirrors tilt angles.

The influence of a bias in θ has been analyzed as follows.
Measurement vector Y was generated assuming a SNR of 80
dB, and an incidence angle θ = 50◦, as in Fig. 4. However,
the reconstruction procedure was run with an incorrect mixing
matrix A, assuming a wrong incidence angle of θ + δθ. This
way, we mimicked an experimental bias δθ comprised between
0.05◦ and 10◦ on the incidence angle. The reconstruction
PSNR obtained with different algorithms is plotted in Fig. 6
in solid lines for a compression rate of 0 %. It can be seen
that the presence of a bias in reconstruction angle leads to a
linear degradation of the PSNR in a log-log scale for all three
algorithms tested. Even for a very small bias (δθ = 0.05◦), a
significant drop of more than 20 dB in reconstruction quality
can be observed for all three algorithms with respect to
unbiased reconstruction, but still offering satisfactory recovery
quality (PNSR ≥ 55 dB). Applying physical constraints in the
reconstruction procedure with the GFB algorithm seems to
alleviate the degradation, for any magnitude of δθ, as far as
simple angular bias is considered. However, the PSNR value
of the reconstructed vector X̂ which is used to gauge recon-
struction quality is not satisfactory here: it has indeed been
observed on reconstructed signals that applying constraints
with an erroneous mixing matrix often leads to singular results,
where second polarimetric component xP is forced to zero,
thus yielding null polarimetric contrast. This is interpreted by
the fact that the physical constraints applied can be no longer
valid for the measured data with an incorrect matrix A.

Concerning the influence of random tilt errors on the
micromirrors, we simulated this effect by computing individual
mixing matrices A for all N micromirrors simulated, assuming
that the tilt angles t1 and t2 were affected by a random error.
For the sake of computational speed, we assumed a uniform
distribution over 11 values of the tilt error between ±1◦.
The PSNR of the reconstructed signal with angular bias and
uniform tilt error is also plotted in Fig. 6 in dashed lines for 0
% compression. On the one hand, the additional random tilts
do not modify significantly the results for highest values of
angular bias (δθ ≥ 1◦) where the incorrect “average” matrix
A is responsible for most of the quality degradation. On the
other hand, for very low values of δθ, the PSNR reaches a limit
upper value of about 35-40 dB, due to the presence of random

Fig. 6. Influence of the bias on incidence angle θ in the reconstruction quality
(PSNR) for 0 % compression (solid lines). PSNR of the reconstructed signal in
the presence of bias and random tilt error on individual micromirrors (dashed
line).

tilt errors which seems to affect more strongly the constrained
version of the algorithm. Despite such degradation of recon-
struction quality, these numerical experiments evidence that
with imperfect experimental configurations, using a combined
recovery approach instead of a 2-step reconstruction procedure
can be advantageous. Correct PSNR values (≥ 35 dB) can be
reached with the rFISTA or GFB algorithms with small angular
biases (≤ 1◦) and in the presence of random tilt errors.

B. Numerical polarimetric imaging results on 2D signals

In this last section, we analyze the ability of the 2-
pixel polarimetric CS camera to retrieve polarimetric contrast
images from simulated 2D data. Owing to its performance
and its simple implementation with respect to constrained
GFB, we only consider in this section the reweighted FISTA
algorithm implementing a combined reconstruction procedure.
We first consider in the next subsection a simple imaging
scenario to study the influence of polarimetric contrast on
the reconstuction quality, before a more realistic example of
polarimetric image reconstruction is given in Section IV-B2.

1) Influence of polarimetric contrast: For this first imag-
ing scenario, we consider a square object with high total
intensity value over a dark background, forming an image of
N = 128 × 128 pixels. This intensity image xT , plotted in
Fig. 7 is supposed to be the sum of two polarimetric image
components xS and xP , yielding a true OSC map also plotted
in Fig. 7. In this scenario, we assume that a first object (smaller
square) cannot be distinguished from the second object (bigger
square) on the intensity image xT , while OSC map allows
the two objects to be clearly identified. The background is
assumed totally depolarizing (OSC = 0). The smaller square
object is always supposed slightly depolarizing (OSC = 0.8)
whereas the OSC of the second object (bigger square) is varied
between 0 and 1 in the following numerical experiments.
Fig. 7 shows an example of reconstruction of the total intensity
and the OSC map with the combined-rFISTA algorithm (with
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Fig. 7. Simulated polarimetric imaging scenario containing two objects
over constant background. First row: total intensity image xT (true),
x̂T (reconstruction) and reconstruction error map. The two objects are indis-
tinguishable in the total intensity image. Second row: true and reconstructed
OSC image, and reconstruction error map.

Haar wavelets) for SNR = 40 dB, compression rate 40%,
incidence angle θ = 50◦ and without bias or uncertainty on
the tilt directions. The reconstruction quality is visually very
good (PSNR = 52.8 dB), as evidenced by the reconstruction
error map of the total intensity and OSC shown in Fig. 7.
This simple example demonstrates the possibility of providing
relevant polarimetric information from the proposed concept
of 2-pixel polarimetric CS camera.

In the first row (a) of Fig. 8, we plotted the reconstructed
OSC maps for three other values of the OSC of the second
object (bigger square). The reconstruction error map is given
in the second row (b), while the evolution of the PSNR
with the OSC of the second object is plotted in Fig. 8.c.
These results evidence the fact that the reconstruction quality
naturally decreases when the polarimetric contrast between the
two objects is reduced, i.e., when the reconstruction problem
becomes more difficult. This can be easily understood as the
smallest variations of contrast are likely to be burried in the
noise and totally filtered out by the regularization process. This
is clearly seen for OSC = 0.6, where the sharpest features
of the first object disappear in the reconstructed OSC map.
Obviously, reconstruction quality is maximimed when the
OSC of the second object reaches 0.8, i.e., a single object
is to be identified in the image, thus yielding a simpler
reconstruction problem.

2) Example of reconstruction on realistic image data:
Laslty, we present an example of reconstructed polarimetric
image on a more realistic imaging scenario. For that purpose,
we considered a true intensity image xT of the cameraman
with size N = 512 × 512, as plotted in Fig. 9. Appropriate
polarimetric components xS and xP were generated so that a
true OSC map would reveal 4 hidden objects (3 in the grass,
1 in the buildings) over a depolarizing background, as can
be seen in Fig. 9. The reconstruction results with Symmlet
wavelet transform are also displayed in Fig. 9, along with

Fig. 8. (a) Reconstructed OSC image (a) and reconstruction error map (b)
for various values of the OSC of the second object. (c) Evolution of the
reconstruction PSNR of X when the OSC of the second object is varied
between 0 and 1.

reconstruction error maps. The total intensity image is almost
perfectly reconstructed, as would be the case with a SPC
imaging system. However, the 4 hidden objects remain of
course invisible in the reconstructed image x̂T . Contrarily,
the reconstructed OSC map makes it possible to identify the
presence of the 4 hidden objects by revealing their polarimetric
contrast over the background. The analysis of the reconstruc-
tion error map of OSC shows that the polarimetric information
about the 4 hidden objects is fairly retrieved. However one can
notice significant reconstruction errors in the darkest regions of
the image (cameraman and tripod). These imperfections could
be lowered in the future by refining regularization parameters
and constraints in the algorithm implementation.

V. CONCLUSION AND PERSPECTIVES

In this article, we have proposed a new concept of CS
polarimetric imaging inspired from the SPC principle. Relying
on the tiny differences in reflection coefficients of mirrors with
incidence angle and polarization direction, the setup proposed
allows intensity and polarimetric contrast informations to be
recovered from the temporal acquisition on two single-pixel
detectors, and without requiring any polarization analysis
optical component. We have shown that this recovery problem
could be analyzed as a joint CS and source separation tasks,
that can be tackled independantly and successively using
standard approaches (respectively `1 minimization and direct
matrix inversion), or optimally treated in an original combined
reconstruction approach. For that purpose, we have presented
different versions of a combined algorithm, including FISTA
implementation of the combined optimization problem, with
potential reweighted steps that have proved efficient to increase
the reconstruction quality. Moreover, to enforce additional
physical constraints on the measured data, we have proposed
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Fig. 9. Example of numerical polarimetric imaging experiment on realistic
512×512 pixels image data. First row: total intensity image xT , reconstruc-
tion x̂T and error map. The total intensity image is the standard cameraman
test image, where the 4 hidden objects are totally hidden. Second row: true
OSC image, reconstructed OSC image and error map. The 4 hidden objects
are revealed by their polarimetric contrast over depolarizing background on
the OSC images.

a constrained sparse reconstruction method based on the GFB
algorithm, allowing the reconstruction quality to be improved
in low SNR conditions.

Numerical simulations have permitted to validate these
approaches and to analyze the influence of experimental con-
ditions, such as incidence angle, SNR, micromirrors tilt errors,
etc. Generally speaking, these results are encouraging towards
the experimental implementation of such an imaging setup
as good reconstruction quality was obtained for reasonable
incidence angles on the mirror, even in the presence of a small
bias or randomness in the mirrors tilt direction. Significant
compression rates could be achieved while still offering suffi-
cient reconstruction quality, as illustrated on the 2D simulation
results presented.

Experimental implementation of this computational imaging
approach appears as a natural perspective to this work. Another
interesting research track is the design of a blind calibration
method so as to compensate possible mis-estimation of the
mixing matrix A involved in the reconstruction process. More
generally, applying CS concepts to more sophisticated multi-
channel polarimetric imaging techniques which are character-
ized by very specific algebraic constraints is likely to raise
interesting reconstruction issues.

APPENDIX A
COMPUTATION OF THE REFLECTION COEFFICIENTS

We consider a mirror with complex refraction index ñ =
n + jk, which can be conveniently rewritten ñ = n(1 + jκ)
[32]. We consider the reflection of a beam propagating in an
input medium consisting of air (na = 1). For an incidence
angle θ on the mirror, one has from the generalized Snell’s
law na sin θ = ñ sin τ , with τ the refraction angle. Setting
u = n cos r and v = nκ cos r, one has ñ cos r = u+ jv.

It can be shown [32] that with such notations the reflection
coefficient in intensity for TE waves (S-polarized) can be
written [32]

rS(θ) =
(na cos θ − u)2 + v2

(na cos θ + u)2 + v2
=

(cos θ − u)2 + v2

(cos θ + u)2 + v2
,

whereas for the TM (P-polarized) waves, one has

rP (θ) =
(n2(1− κ2) cos θ − u)2 + (2n2κ cos θ − v)2

(n2(1− κ2) cos θ + u)2 + (2n2κ cos θ + v)2
, (11)

with u =
√

(A+
√
B)/2 and v =

√
(−A+

√
B)/2, and

A = n2(1− κ2)− sin2 θ and B = A2 + 4n4κ2.
From these equations, we were able to compute the mi-

cromirrors reflection coefficients for any incidence and any
wavelength. The complex refraction index was obtained from
a recent evaluation of aluminum reflection coefficients in
Reference [33].

APPENDIX B
RECONSTRUCTION ALGORITHMS

A. Forward-backward splitting algorithm

Whether it is in the 2-step or in the combined sparse
reconstruction approach, recovering the polarimetric signal X
requires solving optimization problems of the form

min
X

P(X) + L(X),

where the data fidelity term L(X) is a quadratic norm that
is differentiable and whose gradient is Lipschitz with some
constant Li, and P(X) is a convex but non-smooth penaliza-
tion. Minimization problem can be carried out efficiently with
recent proximal algorithms [34], and more precisely with the
Forward-Backward Splitting (FBS) algorithm [35]. The FBS
algorithm is an iterative procedure that can be described with
the following update rule at iteration t

X(t+1) = proxγP
(
X(t) − γ∇L(X(t))

)

where ∇L(X(t)) stands for the derivative of L in X(t) and γ
is the gradient path length. The proximal operator proxγP is
defined by the solution to the problem

proxγP(Z) = ArgminXγP(X) +
1

2
‖Z−X‖2F .

While the proximal operator of the penalization function is
defined as the solution of an optimization problem, standardly
used proximal operators admit a closed form expression (see
Appendix B-B).
In this article, the term P will penalize non sparse solutions
and will be based on the `1 norm. Introduced in [31], the re-
weighted `1 norm further introduces weights Λ that aim at
reducing the bias induced by the standard `1 norm. Conse-
quently, the penalization term used in this article will take the
generic form

P(X) =
∥∥∥Λ�

(
XΨT

)∥∥∥
`1

where Ψ is the signal representation where sparsity is mod-
eled. The final optimization procedure then alternates between

154



IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. ??, NO. ?, ??? 11

updates of X for fixed weights Λ and updates of these weights,
which has been showed to dramatically improves the accuracy
of the reconstruction.
In the proposed reweighted algorithm, updates of the polari-
metric signals are carried out using an accelerated version of
the FBS algorithm coined FISTA [36]. The generic description
of the reweighted FISTA algorithm is given in Algorithm 2

Algorithm 2:
Reweighted FISTA algorithm

1: Choose initial point X(0) and set the weights to 1.
2:
3: while l < Louter do
4:
5: Update the polarimetric components with starting

point W(0) = X(l−1) and Z(0) = X(l−1). Fix ρ(0) = 1.
6:
7: while t < L do
8: W(t+1) = proxγ‖Λ�( . ΨT )‖

`1

(
Z(t) − γ∇L(Z(t))

)

9: ρ(t+1) =
1+
√

1+4ρ(t)2

2

10: Z(t) = W(t+1) + ρ(t)−1
ρ(t+1) (W(t+1) −W(t))

11:
Fix X(l) = Z(L)

12: Update the weights Λ(l) - see Section III-D.

end
This procedure generally increases the accuracy of the recon-
struction process with few updates of the weights Λ, typically
Louter between 3 to 5. Details about practical parameter tuning
are given in Section III-D.

B. Useful proximal operators

Hereafter, we described different proximal operators that are
used in the proposed reconstruction algorithms.

Reweighted `1: Assuming that the sparse signal represen-
tation Ψ is an orthogonal matrix, the proximal operator of∥∥∥Λ�

(
XΨT

)∥∥∥
`1

is defined as

prox‖Λ�( .ΨT )‖`1 (Z) = ΨSΛ

(
ZΨT

)
(12)

where the weighted soft-thresholding operator SΛ is defined
as

∀i, j; SΛ (Zij) ={
Zij −Λijsign(Zij) if |Zij | > Λij

0 otherwise
(13)

Positivity constraint: The proximal operator of the positivity
constraint is defined as the orthogonal projector onto the non-
negative orthant:

∀i, j; proxiX�0(.)
(Zij) =

{
Zij if Zij > 0
0 otherwise

(14)

Inequality constraint: The inequality constraint xs � xp
can be recast as DX � 0, where D = [1,−1]. Its proximal
operator is defined as the orthogonal projector onto the convex
set {Z; ∀i, j, [DZ]ij ≥ 0}, which is defined as

proxiD . �0
(Z) = ArgminDX�0

1

2
‖Z−X‖2F .

This expression can be more conveniently recast in a Lagra-
gian formulation by introducing the Lagrange multipliers π

proxiD . �0
(Z) = ArgminX < DX,π > +

1

2
‖Z−X‖2F .

Its optimum is obtained for X = Z − DTπ, which should
verify the constraint DX � 0. This entails

DZ− 2π � 0.

Consequently, the Lagrange multipliers must take the values

∀j; πj =

{
1
2 [DZ]j if [DZ]j < 0
0 otherwise (15)

From this expression of the Lagrange multipliers, the proximal
operator is then defined as

proxiD . �0
(Z) = Z−DTπ. (16)
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We experimentally demonstrate that imaging of the degree of polarization (DOP) can be achieved from a single
intensity image acquired under coherent illumination. This computational technique is based on the analysis of
the speckle characteristics in a statistically homogeneous neighborhood of the pixel. Over a variety of samples ob-
tained experimentally, we show that a simple calibration step allows this method to quickly and simply provide
correct estimated values of the DOP, with precision in agreement with theoretical predictions. It is shown that unlike
linear polarimetric contrast imaging, this method remains valid on birefringent samples. © 2012 Optical Society of
America
OCIS codes: 120.5410, 030.4280, 120.6150, 030.6600.

Polarimetric imaging is a promising and widely investi-
gated technique in many different fields of application,
such as military, medical, or robotics domains [1,2]. In
particular, imaging the degree of polarization (DOP) of
the light backscattered by a scene can reveal contrasts
that do not appear in standard intensity images [2]. Four
polarimetric measurements are actually needed to deter-
mine the polarization state of light, but simplified imaging
modalities have been proposed to reduce both costs and
acquisition times, such as orthogonal states contrast
(OSC) imaging, requiring only two measurements [2].
Recently, theoretical studies [3–7] have shown that an al-
ternative DOP imaging technique, using a single-image
acquisition under coherent active illumination and with-
out a polarizing element, could lead to estimation per-
formance compatible with potential applications. This
computational approach is based on the analysis of the
speckle statistics in the image, which contain information
on the DOP of the reflected light [8]. In addition to its
simplicity, this technique is applicable at any wavelength
and is not affected by image registration issues, which
are in general detrimental to the quality of polarimetric
imaging devices. In this Letter, we experimentally de-
monstrate the applicability of such a technique over a
variety of samples, and we analyze its precision in com-
parison to theoretical characterizations [5] and to stan-
dard methods.
The experimental setup used is sketched in Fig. 1(a).

The sample is illuminated with a 5 cm diameter spot from
a collimated 633 nmHe:Ne laser beam of 15 mW power. A
polarizer (P1) ensures a vertical direction of the illumina-
tion polarization. Imaging of the sample is operated with
a 12-bit Basler A312f CCD camera (782 pixels × 582 pixels
pixels) and a 50 mm objective, whose line of sight is al-
most aligned with the illumination beam axis (to avoid
undesirable specular reflections). The camera has been
selected for its good noise properties under low illumina-
tion, when the objective aperture is shrunk to obtain at
least a speckle grain per pixel on average. Four Stokes
images can be recorded with the appropriate configura-
tions of a polarization analyzer (P2) and a quarter-wave

plate [see Fig. 1(a)]. The image of the DOP in each pixel
of the scene can then be classically obtained from these
four Stokes measurements [9]. In addition, the OSC im-
age can also be derived from OSC � �I∥ − I⊥�∕�I∥ � I⊥�,
where I∥ and I⊥ denote the first two Stokes images ac-
quired. OSC is often used in polarimetric imaging appli-
cations, since it is equal to the DOP over a majority of
materials (purely depolarizing materials) [2].

In addition to these four Stokes measurements, a fifth
image denoted IT is recorded without any polarimetric
component in front of the camera objective. As detailed
in [3–7], the square DOP, denoted P2, can be retrieved
very simply from this bare speckle intensity image,

by computing the following estimator: cP2 � 2�hI2T iχ∕
hIT i2χ − 1�∕κ − 1, where h:iχ denotes statistical averaging
over a homogeneous neighborhood χ of the considered
pixel. Previous theoretical work [5] has shown that

Fig. 1. (Color online) (a) Experimental setup, (b) example of
an intensity image of the reference sample and sample 5 (green
paint).
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statistically homogeneous neighborhoods of typically a
few hundred pixels are needed for such a method to pro-
vide satisfactory estimation precision (about 10%). In the
previous equation, the parameter κ is directly linked to
the speckle order L � 1∕κ, which characterizes the aver-
age number of speckle grains contained in one pixel of
the imaging system [5]. This computational method must
therefore be calibrated to characterize the value of the
parameter κ, which will be detailed in the following.
In the first experiment reported here, we have consid-

ered eight different polarimetric scenes [see Fig. 1(b)]
comprising an identical reference material (beige painted
cardboard slab) in the upper part of the image and eight
different test materials, described in Table 1, in the lower
part of the image. To avoid illumination inhomogeneities,
regions of interest of 240 pixels × 100 pixels are selected
in the upper and lower parts of the images. These regions
are then further partitioned into 60 subregions of 400
pixels each [see Fig. 1(b)]. Indeed, performing the esti-
mation on such regions of limited size appears more rea-
listic (homogeneous regions >104 pixels are unlikely to
occur in real conditions), and smaller regions ensure
good illumination uniformity. Lastly, it allows a statistical
analysis of the estimation precision to be carried out
from the 60 realizations.
As mentioned previously, a precise characterization of

the parameter κ is needed before the estimator cP2 can be
applied on a single intensity image. For a fixed wave-
length and experiment geometry, κ is inversely propor-
tional to the objective aperture and does not depend
on the sample considered. Computing the ratio of the var-
iance to the square mean intensity of a fully polarized
speckle pattern is a simple way to determine this param-
eter experimentally [8]. We thus calibrated the estimator
cP2 on the reference sample by computing κ on the four
Stokes images acquired (which are fully polarized). Very
similar results were obtained on each Stokes image and
along the eight experiments, finally leading to the esti-
mated value κ̂ � 0.808� 0.003, which corresponds to a
speckle order of L � 1.24.
Once the parameter κ is characterized, the estimator

cP2 can be applied on the image IT acquired without a
polarimetric component. Estimation results are plotted
with blue diamond symbols in Fig. 2(a) for the reference
sample and for the eight test samples. It can be immedi-
ately checked that except for test sample 8, the estimator
cP2 provides the correct value of the square DOP, in
agreement (at least within the estimated error bar) with
the results obtained with standard Stokes measurements
(red squares) or OSC (green triangles). This experimen-
tally demonstrates the applicability of the computational

technique addressed here. Furthermore, this result
shows that the value of κ estimated on the reference sam-
ple remains valid on other materials. Unfortunately, this
might not be always the case, for instance, with samples
showing a nonuniform reflectivity distribution or with
textured materials. We suspect such a situation occurs

with sample 8, for which cP2 leads to irrelevant values

(cP2 � 1.2). It has been checked that the parameter κ
was equal to 0.95 on this black plastic slab, which can
be interpreted as follows: since the sample is very dark,
light mainly undergoes surface backscattering (and
hence very low depolarization [10]) on the smooth,
glossy plastic surface, making it difficult to avoid a detri-
mental contribution from specular backscattering.

As stated previously, the precision of the single-image
computational estimation method can be evaluated from
the 60 homogeneous regions of 400 pixels on which the
estimation was operated. In Fig. 2(a), one can see that a
larger standard deviation is of course the price to pay
for a simplification of the imaging system. It must, how-
ever, be noticed that even on samples of limited size
(20 pixels × 20 pixels), the computational estimation
method allows materials of distinct polarimetric proper-
ties to be discriminated, with a 10% precision on P2.
Previous theoretical results can be used to assess the var-

iance of cP2 for various speckle models [5]. This can
be checked in Fig. 2(b), where the experimental variance

of cP2 is compared with theoretical predictions
obtained when a so-called standard (respectively, com-
pound) speckle model is considered, i.e., when the inten-
sity distribution for P � 1 is assumed to follow a gamma
distribution (respectively, a K distribution) [8], with an

Table 1. Description of the Samples

Reference: Beige cardboard [0.61]
1: Black paper [0.72] 2: White paper [0.04]
3: Cream plastic [0.20] 4: Gray paint [0.60]
5: Green paint [0.98] 6: Aluminum [0.98]
7: Sandblasted aluminum [0.70] 8: Black plastic [0.91]

Bracketed figures correspond to the values of P2 estimated from
Stokes measurements.

Fig. 2. (Color online) (a) Values of the square DOP estimated
on homogeneous regions of 400 pixels on the nine samples,

(b) comparison between experimental variance of cP2 and the-
oretical predictions for distinct speckle models. Sample 8, lead-
ing to an erroneous estimated value of P, is not represented in
this figure. The error bar on experimental variance is estimated
from the eight experiments conducted on the reference sample.
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appropriate shape parameter equal to L � 1∕κ. As can
be seen from the linear fit parameters, fair agreement be-
tween experiments and theory can be observed, espe-
cially with a compound speckle model, which seems
to be more relevant in the conditions of our experiment.
To check the validity of the method when the speckle

order varies, a second experiment has been conducted
with a green 532 nm frequency-doubled Nd:YVO4 laser
of 10 mW power. Two samples have been imaged (a
metal slab and a cardboard sheet) for two distinct objec-
tive apertures (f/16 and f/4), leading to different para-
meters κ (see Table 2). Both measurements of κ and
P2 have been carried out on 100 homogeneous regions
of 10 pixels × 10 pixels. In this experiment, the calibra-
tion procedure has been performed on the cardboard re-
ference sample. The results are summarized in Table 2. It
can be seen that the single-image computational techni-
que remains valid for different values of the parameter κ,
provided it has been carefully characterized.
A last experiment is reported in this Letter to check the

applicability of the single-image computational technique
on non-purely depolarizing materials (e.g., birefringent
samples). The experimental configuration is similar to
the one described in the previous paragraph, but we
added a tunable Babinet–Soleil (BS) compensator within
the path of the backscattered light, with slow and fast
axes oriented at a 45° angle from the illumination polar-
ization direction. With the metallic sample, we were thus
able to obtain an almost fully polarized backscattered
speckle field (P2 � 0.93 from Stokes measurements),
with a polarization state varying between a vertical linear
polarization and a circular polarization, when the BS
compensator retardation angle φ was varied between 0
and π∕2. In Fig. 3, we plotted the estimation results ob-
tained with the computational method (blue diamonds)
and with the OSC (green triangles). It can first be
checked on this figure that the OSC is unable to correctly
evaluate the DOP in the presence of birefringent samples,

while estimator cP2 remains valid for any polarization
state. It can be also noted that estimation precision
does not depend on the polarization state ellipticity, in

agreement with theoretical predictions plotted with a
dashed error bar for a compound speckle model.

In this Letter, a computational technique involving
single-image acquisition has been tested successfully
on a variety of nontextured materials to achieve DOP
estimation with precision in agreement with theory [5].
The applicability of such a technique at different
wavelengths, on birefringent materials, and for distinct
speckle orders has also been demonstrated. Too add per-
spective to this work, other experiments should be con-
ducted to validate previous theoretical predictions that
showed that this computational technique should be
quite robust to photon noise [6] and detector noise [7],
thus enabling low-flux real-time polarimetric imaging.

The authors thank Pr. Ph. Réfrégier for fruitful
discussions.
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Table 2. Estimated Values of the Square DOP
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for Different Speckle Orders

Sample f/ κ dP2
OSC

cP2

Metal f/16 0.7 [0.1]a 0.94 [0.01] 0.9 [0.3]
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Cardboard f/16 0.66 [0.07] 0.05 [0.02] 0.04 [0.1]
f/4 0.14 [0.02] 0.06 [0.01] −0.03 [0.1]

aBracketed numbers are the estimation standard deviation.
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We report an experimental implementation of long-range polarimetric imaging through fog over
kilometric distance in real field atmospheric conditions. An incoherent polarized light source settled
on a telecommunication tower is imaged at a distance of 1.3 km with a snapshot polarimetric camera
including a birefringentWollaston prism, allowing simultaneous acquisition of two images along orthogo-
nal polarization directions. From a large number of acquisitions datasets and under various environmen-
tal conditions (clear sky/fog/haze, day/night), we compare the efficiency of using polarized light for
source contrast increase with different signal representations (intensity, polarimetric difference, polari-
metric contrast, etc.). With the limited-dynamics detector used, a maximum fourfold increase in contrast
was demonstrated under bright background illumination using polarimetric difference image. © 2014
Optical Society of America
OCIS codes: (110.0113) Imaging through turbid media; (110.5405) Polarimetric imaging; (010.7295)

Visibility and imaging; (110.4280) Noise in imaging systems.
http://dx.doi.org/10.1364/AO.53.003854

1. Introduction

Imaging of objects and light sources hidden behind a
turbid medium has wide applications in areas per-
taining to medical diagnostics [1,2], remote sensing
[3], and transport and navigation [4]. More specifi-
cally, imaging through nebulous media encountered
in nature, like fog, rain, and light haze, is still a top-
ical issue that attracts a lot of attention. Enhanced
vision in such weather conditions has indeed tremen-
dous applications for assistance in navigation of all
modes of vehicular transport. Vision systems that
can offer enhanced visibility during such weather
conditions can be used to provide visual assistance
by means of augmented reality displays that can ef-
ficiently detect and isolate light sources hidden be-
yond foggy intervening media. Besides, with the

advent of autonomous vehicles, both airborne and
terrestrial, this problem becomes increasingly impor-
tant in the field of machine vision and vehicular
safety as well.

In general, the photons traveling through any
randommedium can be classified into ballistic, snake,
and diffused photons. The diffused photons undergo
maximum scattering as they travel through the
medium, whereas ballistic and snake photons
undergo predominantly forward scattering. As a re-
sult, the diffused photons randomly take longer paths
and times to reach the detector. Consequently, in the
process, they are received as noise over the ballistic
photons that retain the spatial and temporal informa-
tion of the source (signal). Various approaches have
been studied to discriminate and record only the bal-
listic and snake photons in order to attain a better
contrast of signal over the noise. For instance, time-
gated imaging, using a gated camera synchronized
to a pulsed illumination source, is shown to be an

1559-128X/14/183854-12$15.00/0
© 2014 Optical Society of America
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efficient way to recover the information carried by bal-
listic photons [1,5]. Other approaches have also been
studied suchas spatial filtering techniques [6,7], inten-
sitymodulation schemes [8,9] or laser optical feedback
imaging [10,11].

An alternative approach, such as polarization-
gated imaging [12–16], involves this time light
polarization. It is based on the preservation of the
state of polarization of light (linear or circular) dur-
ing propagation through thick scatteringmedia, such
as heavy fog conditions, with minor depolarization.
This so-called polarization memory effect has been
analyzed in numerous references, both for linearly
polarized [17] and circularly polarized light [18,19].
As a result, such an effect can be exploited using a
polarization-sensitive imaging device to enhance the
visibility of a source provided this latter emits polar-
ized light. These approaches have already proved ef-
ficient and been reported in a number of laboratory
experiments [12–16], with simulated turbidity condi-
tions on very short distances using artificial scatter-
ers like aerosols.

In case of light traveling through fog, photons
undergo scattering by a cloud of randomly distrib-
uted particles with sizes in the order of 5–50 μm and
varying number density [20]. Moreover, depending
on the environmental conditions, the scatterers in
the intervening medium may not retain a perfect
spheroid shape due to drag (as in case of large rain
drops) or may have ice crystals with preferred
orientations [21].

Although these overall studies on polarized light
propagation bring very useful elements of under-
standing, they remain quite difficult to exploit for siz-
ing an outdoor imaging system because they are
carried out in well-established and well-controlled
conditions. Indeed, the combined effects of sun illu-
mination, surrounding artificial illumination, visibil-
ity evolution, change of scatterers density and size,
and varying atmospheric conditions are extremely
difficult to mimic or anticipate in a laboratory. In
addition, unless resorting to numerical scattering
simulations, long-range propagation is a phenome-
non that cannot be easily simulated by a laboratory
experiment, even with a scaling approach.

Keeping in mind the aforementioned applications
and requirement of study of such vision systems in
real atmospheric conditions, we report in this paper
the design, implementation, and operation of an im-
aging experiment we developed to investigate the
polarimetric contrasts of a scene including a polar-
ized light source in a real foggy environment over
a kilometric distance. Such distance corresponds to
a reasonable range requirement for transport safety
applications. We also analyze the efficiency of several
representations of the polarimetric information ob-
tained with our imaging installation in various envi-
ronmental conditions (clear sky/fog/haze, day/night).

This article is organized as follows: in the next sec-
tion, we recall some basics of polarimetric imaging
and the corresponding experimental techniques.

Then, in Section 3, we detail the long-range polari-
metric imaging setup used in this experiment, as well
as calibration procedures in Section 4. Two represen-
tative datasets are then extensively analyzed in
Section 5, among numerous datasets acquired during
experimental campaigns. The efficiency of different
polarimetric signal representations to increase visual
contrast of a polarized light source in fog over long dis-
tances is discussed for varying environmental condi-
tions. Then, a general discussion and conclusion on
the experiment is eventually provided in Section 6.

2. Polarimetric Contrast Imaging

Polarization-sensitive imaging has proved efficient in
the context of enhanced vision through turbid media
[22], industrial quality control [23,24], and machine
vision [25]. To probe the complete polarimetric prop-
erties of a light source, one needs to measure the
Stokes vector S given by

S �

0
BBBB@

S0

S1

S2

S3

1
CCCCA

�

0
BBBB@

Ix � Iy
Ix − Iy

I�45° − I
−45°

IR − IL

1
CCCCA
; (1)

from which the degree of polarization (DOP) of the
source can be obtained using the relation

DOP �
������������������������������
S2
1 � S2

2 � S2
3

q
∕S0. Hitherto, various tech-

niques have been employed to fully or partially
measure the Stokes vectors of an image and obtain
the polarimetric information of the scene of interest.
Most often, rotating polarizers and/or moving bire-
fringent plates are used. Other schemes including
prisms [26], Savart plates [27], polarization gratings
[28], liquid crystal modulators [29], or microgrid
division-of-focal-plane polarimetric imagers [30] have
beenusedwithvaryingdegrees of compromise toward
mechanical reliability and real-time acquisition and
processing. Measuring the full Stokes vector at each
pixel can be a slow and storage-heavy task and hence
not very suitable for imaging moving objects, thus
limiting their application in real-time scenarios. In
the experiment presented here, we consider a highly
polarized source with a priori known linear polariza-
tion state with the intervening medium being nonbir-
efringent. Therefore, it is not necessary to measure
the full Stokes vector but only the first two compo-
nents of the Stokes vector to define the so-called
orthogonal states contrast (OSC) given by Eq. (2):

OSC � S1

S0
� I∥ − I⊥

I∥ � I⊥
; (2)

where I∥ and I⊥ are the intensities obtained through
orthogonally aligned analyzers or through a
polarization splitting Wollaston prism. In the case
considered here of a linearly polarized light propagat-
ing through a nonbirefringent medium, the OSC is
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equal to the DOP of the source after passing through
the atmosphere and fog. The intensity measures re-
corded by a pixel of a camera are of course affected
by various noise sources, for instance, (1) the Gaus-
sian electronic noise induced by the electronic read-
out circuit of the CCD array sensor and (2) optical
noise due to photon noise, atmospheric turbulence,
and fluctuations introduced by spatial/temporal evo-
lutions of the intermediate foggy medium. As will be
seen later, the computation of the OSC may be
strongly affected by this noise, especially in low illu-
mination conditions, since the division by total inten-
sity (IT � I∥ � I⊥) may lead to unbounded values.

3. Long-Range Experimental Setup

The experiment presented here is designed to imple-
ment a long-range polarimetric imaging system over
kilometric distances and in real-field outdoor condi-
tions. Such an experiment allows us to assess the
benefits of using polarized light for improved detect-
ability of a lightmark through turbid atmosphere
over long distances. Such a system can have practical
applications in aviation or navigation at sea in poor
visibility conditions. The setup mainly consists of a
polarized light emitter and a polarimetric imaging
system that simultaneously acquires two images of a
scene corresponding to the two orthogonal directions
of polarization. These elements, which are exten-
sively described in this section, are located on the
Beaulieu campus of University of Rennes 1 and
are separated by 1.27 km. The source is located on
the top of a telecommunication tower owned by the
TDF company. The detection setup is located in a lab-
oratory building as illustrated in Fig. 1. The various
parts of the setup are described in detail in the fol-
lowing subsections.

A. Polarized Source

The source used is a 300 W halogen incandescent
lamp with a linear polarizer, both placed inside a
weatherproof steel housing as shown in Fig. 1. The
light from the incandescent lamp is polarized using
an adhesive dichroic polymer polarizing sheet glued
to a glass plate and oriented such that the polariza-
tion axis is vertical. Half the optical power provided
by the lamp being absorbed by the polarizer, it turned

out that standard polaroid sheets are subject to
deterioration after a few minutes of illumination.
For this reason, we use polarizing sheets specifically
designed for the LCD projector industry, thus ensur-
ing high durability under high power operation con-
ditions. Before installing the source, we conducted
durability tests in indoor conditions with a 300 W
lamp. The lamp was allowed to run continuously dur-
ing daytime. In these conditions, it was noticed that
the polarimetric contrast of the sheet was reduced by
57.4% in a period of five days with continuous day-
time usage. In light of this, a weather-proof steel
housing was designed, such that the polarizing sheet
glued on a glass plate is placed sufficiently far
(20 cm) from the lamp. Moreover, holes have been
drilled in the bottom and top of the housing to enable
air flow between the lamp and the glass plate. This
air flow is stimulated by convection when the tem-
perature of the glass plate increases, allowing the
hot air in between to be removed, thus providing
an efficient heat dissipation. Such a mechanical de-
sign ensures a reasonable lifetime of almost one year
in outdoor conditions before requiring replacement.

The telecommunication tower is about 80 m in
height and provides a suitable location for the source.
The distance of the tower from the laboratory site in
the University of Rennes 1 is optimal for various ap-
plications where long-range imaging through fog
may be crucial. The tower is also the tallest structure
in the surrounding area and is in line of sight from
the laboratory buildings. The polarized source is
connected to a Global system for mobile telecommu-
nications (GSM) switch, enabling easy remote con-
trol of the emission part of the experiment.

B. Snapshot Polarimetric Camera

The detection system consists of a snapshot polari-
metric imaging setup and a computer dedicated for
control and image acquisition. The detection system
is housed on a mezzanine floor of a laboratory build-
ing in the line of sight of the emitter. The schematic of
the imaging setup is shown in Figs. 2(a) and 2(b). The
imaging setup consists of a telescopic arrangement of
lenses L1 (50 mm, F/2.8 camera objective) and L2
(25 mm, F/2.1 camera objective) which creates a col-
limated beam of light that is incident on a Wollaston
prism (WP). The WP is a calcite birefringent prism
with a 5° splitting angle which introduces an angular
separation between the vertical and horizontal
polarization components of the incident beam. These
ordinary and extraordinary beams are then focused
onto the camera using a third lens L3 (25 mm, F/2.1
camera objective), thus creating two images I∥ and I⊥
on the CCD. This setup allows us to simultaneously
record a scene along orthogonal polarization direc-
tions using a single camera. This has a huge advan-
tage in real-time processing of moving objects and
has proved to be efficient in the presence of turbu-
lence and relative motion of the scene [26], such
as fog in our case. It has been demonstrated that
this configuration suffers from lower geometrical

Fig. 1. Long-range polarimetric imaging experimental setup. The
source and the camera are separated by 1.27 km with the camera
placed in the University of Rennes 1 campus and the source
located on a telecommunication tower of the TDF company. The
photograph shows the polarized light source settled on the tele-
communication tower.
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aberration as well [26]. In order to avoid chromatic
aberrations due to the WP, we use a selective red fil-
ter (F) with a central wavelength of 612 nm and a
linewidth of 12 nm. The two images produced on
the CCD have considerable overlap because of the
small splitting angle of the WP. To prevent this over-
lap, a stainless-steel slit painted with dark matte
paint of dimension 3 mm× 18 mm is used as a field
mask (FM) and is placed in the intermediate image
plane existing between lenses L1 and L2. The CCD
camera is a 12 bit, 782 × 582 pixels resolution camera
(Basler A312f) with pixel size of 8 μm and average
dark count of 23 e−∕s with standard deviation of
0.6 e−∕s. The camera was selected for its low noise
properties in low light conditions, which as we will
see is preferable while performing arithmetic on
the acquired polarimetric images.

C. Control Program

The camera is controlled through an IEEE 1394a in-
terface by a custom acquisition program developed
using LabVIEW. A number of features are imple-
mented in the program that suit the experiment and
provide automation of acquisition using a user-
friendly interface. One of the features implemented
is what we will refer to as auto-exposure mode
(AEM). We had to implement such an AEM because
the imaging system is by essence operated for long
time periods under varying weather conditions.
Under this mode, the exposure time of the camera
is automatically changed depending on the illumina-
tion of a given predefined pixel. This pixel can be

chosen to be the pixel representing the source on
the camera (we will refer to this pixel as the source
pixel for brevity in further sections), thereby avoid-
ing saturation or underexposure of the source pixel
with respect to the surrounding scene. It is also pos-
sible to feed this control loop with the average bright-
ness of a region of interest (ROI) or of the overall
scene. The advantage of this mode is most apparent
during twilight and in foggy conditions when the
illumination of the scene varies strongly in time.
Using dynamically controlled exposure time, one ob-
tains a time series of frames, which can be normal-
ized to their respective exposure times (which are
stored in a data file by the program) so as to continu-
ally exploit the full dynamic range of the camera. We
also implement a so-called cumulative grab mode
(CGM) to avoid recording the 100 Hz intensity fluc-
tuations due to the 50 Hz modulation of the electrical
supply network. This mode is automatically acti-
vated for exposures smaller than 10ms, that is, when
the source blinking becomes apparent. Under CGM
mode, a frame having maximum gray-level value
of the source pixel is chosen from a sample of NCGM
frames where NCGM depends on the exposure time
Texp in milliseconds as NCGM � 20 �ms�∕Texp. The
program also displays the calculated OSC of the
source pixel in real time and allows for compensation
of the ambient light contribution, in which case the
OSC reads

OSCA �
�
Is∥ − Ia∥

�
−

�
Is⊥ − Ia⊥

�
�
Is∥ − Ia∥

�� �
Is⊥ − Ia⊥

� : (3)

In Eq. (3), Is∥ (respectively Is⊥) denotes the average in-
tensity over a 3 × 3 pixels area enclosing the pixel
corresponding to the source location (source pixel)
in I∥ (respectively I⊥). On the other hand, Ia∥ (respec-
tively Ia⊥) estimates the ambient illumination by
averaging a 3 × 3 pixels area in the vicinity of the
source pixel but strictly distinct from the source spa-
tial extent. With such definition, the OSC is com-
puted taking into account intensity measures Ia∥
and Ia⊥ of a reference area close to the source repre-
senting the ambient illumination.

Using such control software with AEM allows us
to acquire images at predefined intervals over
long periods of time with strongly varying illumina-
tion conditions (i.e., clear sky, obstructed vision,
daytime/nighttime and twilight).

4. Experiment Calibration

In this section, we first describe the camera calibra-
tion and image registration procedures which have to
be implemented so as to provide reliable polarimetric
images and measurements. Then, we report some
experimental results which allowed us to validate
the experimental system (emission and acquisition)
and laboratory calibration on real field conditions.

Fig. 2. Polarimetric imaging setup: The WP angularly separates
the incident beam into two orthogonal polarization components
forming two images I∥ and I⊥ on the CCD. The illustration in
(a) shows a orthographic view of the polarimetric imager while
the schematic in (b) geometrically indicates the working principle
of the imaging setup. A top view photograph of the imaging setup
is shown in (c).
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A. Imaging Setup Calibration

The frames obtained in the experiment described
above are binary values obtained from the camera.
Processing of the frames to extract the images is
at this step carried out in a post-acquisition stage.
The post-processing includes fixed pattern dark
frame subtraction, pixel nonuniformity correction,
image registration and optical distortion correction.
The latter processing steps are organized in the
following manner.

1. Detector Calibration
For a camera sensor there are mainly three calibra-
tions to be performed in order to record an image
that closely corresponds to the scene being imaged,
namely dark pattern calibration, nonuniformity of
pixel gain, and removal of hot and dead pixels.
Each pixel has different dark noise properties at
a particular temperature and exposure time. After
averaging over a number of dark frames acquired
in total darkness, one obtains the fixed pattern
dark frame (IFPD) that can be subtracted from
the images of interest. It must be noted that this
correction depends on the exposure time. We thus
averaged 500 dark frames to obtain the IFPD for dif-
ferent exposure times. Another important correc-
tion to be made is the nonuniformity in pixel gain.
Owing to the fabrication process, each pixel in the
sensor may not have the same sensitivity/gain. This
nonuniformity is estimated by illuminating the
sensor with spatially uniform white light and re-
cording the resulting pattern. This image is nor-
malized by dividing by the mean gray level to
create a gain nonuniformity image IGNU. Using
the above two calibration images, a raw image
recorded is systematically corrected using
Icorr � �Iraw − IFPD�∕IGNU.

2. Image Registration and Distortion Calibration
Once the above calibrations and corrections are per-
formed on the bare detector itself (without any image
forming optics), the polarimetric optical imaging sys-
tem is mounted. When the system is assembled and
images are recorded, one has to extract the two im-
ages corresponding to orthogonal polarization direc-
tions from a single frame. It is required that the two
extracted images have a one-to-one correspondence
between pixels such that they map the same scene.
This process is straightforward if there is no geomet-
rical distortion or if both the images share the same
geometrical distortion. However, the WP used in the
polarimetric imaging setup does introduce astigma-
tism and anamorphic distortion in the resulting im-
ages [31]. The distortion is nonsymmetrical with
respect to the two image channels, and hence a per-
fect image registration is not possible by merely
translating one of the image to match the other.
The difference in distortion in the two images can
be reduced by a nonlinear coordinates transforma-
tion on I⊥ to match the distortion in I∥.

To perform such corrections, a grid of equally
spaced dots (printed black dots on white paper with
no specific polarization orientation) was imaged
through the system, and the acquired images were
used to calibrate the two image registration methods,
namely simple translation and nonlinear coordinates
transformation. The correction by translation was
obtained by a maximum correlation technique where
one of the image channels, say I⊥, was translated in
the x and y directions over 21 × 21 pixels, and corre-
lation values with I∥ were recorded for each transla-
tion position. Then, a best match was found by
looking for the maximum correlation value and
translating I⊥ accordingly. The inset in Fig. 3 shows
the correlation map, and Fig. 3(b) shows the
difference image IΔ � I∥ − I⊥ after correction by
translation. This shows a great improvement in com-
parison to uncorrected images [Fig. 3(a)], but it can
be observed that pixel registration is imperfect in the
outer regions of the image.

Therefore, to digitally remove the residual mis-
match caused by the nonsymmetrical aberrations
in both channels, we resort to a nonlinear coordi-
nates transformation on the pixels of image I⊥ to
match the distortion in I∥. This is performed by
extracting the coordinates of the centroids of the dots
in two thresholded polarimetric images and finding
the coefficients of a two-dimensional polynomial of
degree 3 for the x–y coordinates transformation. The
coefficients of the polynomial are found using a least
squares optimization procedure. A polynomial of
degree 3 has been found to be sufficient to describe
the nonlinear transformation as the higher order co-
efficients of the polynomial are negligible compared

Fig. 3. Difference image (I∥ − I⊥) of the calibration target (grid of
dots) (left) and test object (right). The top images correspond to the
difference images formed with approximate extraction of the two
image channels. The middle row is the result of image registration
correction by pixel linear translation, and the bottom row corre-
sponds to the difference images created after applying the distor-
tion correction algorithm. The inset shows the correlation map
obtained by translating the I⊥ over 21 × 21 pixels and finding
maximum correlation with I∥.
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to the lower order coefficients. By applying this non-
linear coordinates transformation to the pixels of I⊥,
we obtain a distorted version of the latter, which now
shares the same geometrical distortions as I∥. For
further processing of the polarimetric images, it is
lastly necessary to resample the resulting image on
the same regular (square) set of pixels locations as I∥,
which is done by a Matlab implementation of a stan-
dard bicubic interpolation algorithm. The result of
this geometrical correction procedure can be ob-
served in the difference image after correction given
in Fig. 3(c).

A comparison of the effectiveness of the calibra-
tion and of the image registration using simple
translation and nonlinear correction is given in
Figs. 3(d)–3(f) on a test object (plain white paper with
circular pattern in black). In comparison to approxi-
mate extraction [Fig. 3(d)], simple translation allows
for a reduction by 63%of the span of extreme values in
the difference image [Fig. 3(e)], whereaswith the non-
linear distortion correction, a further reduction by
30% is obtained [Fig. 3(f)].

It must be noted that the nonlinear correction
method is computationally slower than finding linear
translation parameters by the maximum correlation
method. The calculation of parameters for nonlinear
correction is a one-time calibration procedure that
takes about a minute for completion on a standard
computer (Matlab on 2.60 GHz processor). This time
is acceptable even though it is 25 times slower than
finding themaximum correlation in a small neighbor-
hood of 21 × 21 pixels. However, the computational
time required to correct each frame becomes very
stringent for real-time applications. In this case,
the simple translation is four orders of magnitude
faster than the nonlinear correction, which takes
about 2 s to process because of interpolation of a large
number of pixel values. As a consequence, for applica-
tions requiring high processing speed and where only
a small region of the image is of interest, it is sufficient
to use only linear translation. Thus, in the remainder
of this article, aswe shall consider a small ROI around
the source location, we will limit ourselves to simple
translation registrations for the sake of computa-
tional effectiveness on long time series experiments.

3. Intensity Asymmetry
It is important to take note of any transmission
asymmetry in the two image channels introduced
by theWP. In our case a 2.7% asymmetry in intensity
was observed after imaging a uniformly illuminated
depolarizing object (plain white paper observed with
different orientations) through the system. The mea-
sured average intensity ratio (I∥∕I⊥ � 1.027) was
used to correct this asymmetry. This ratio was seen
to be constant over a large central region including
the ROI.

B. In Situ Verification

Along with the above calibration procedures, further
alignment of the detection system with the polariza-

tion direction of the source is done while mounting
the detection system. The polarimetric camera setup
and the control/acquisition computer are settled in a
mezzanine floor of a building facing the telecommu-
nication tower. It has first been checked that the
spread of the light source was close to our expectan-
cies (1 × 1 pixel with the selected 50 mm focal length
objective lens), with an actual horizontal spread of
1.5 pixels and vertical spread of about 2 pixels.
The main discrepancy in the vertical direction is
due to the influence of the WP.

The whole setup is placed on a stable mechanical
mount with adjustable angle (pitch) so that the im-
aging system can be aligned in line of sight with the
source on the tower. In addition, the tilt angle (roll)
must be well aligned so that the polarization axis of
the imager is strictly aligned with the polarization
direction of the source. This calibration is preferably
done during nighttime in clear sky with the polarized
lightmark turned on. It is indeed easier to minimize
and even nullify the intensity at the source location
in the perpendicular polarization image (I⊥) in dark
background. After such calibration, we observed an
OSC of 0.97 for the source pixel which increased to
a value of 1.00 when OSC was computed taking into
account the low intensity background contribution,
as in Eq. (3).

During these preliminary calibration acquisitions,
it was checked on the acquired frames that the day-
time clear sky is polarized to some extent, depending
on sun location, and that the ambient light backscat-
tered on the tower structures and imaged on the
camera can partly retain polarization. However, we
observed that the imaged scene is almost totally de-
polarized as soon as a thin layer of fog or haze is
present in the atmosphere or when the weather is
covered by (even very thin) clouds. As a result, the dif-
ference image of the two image channels is expected to
provide an obvious advantage over intensity imaging
due to its ability to cancel theunpolarizedbackground
and isolate the polarized source.

5. Experimental Results: Signal Contrast in Foggy
Condition

Once the imaging system described in previous sec-
tions was settled, optimized, and calibrated, and us-
ing the above-mentioned control program, we were
able to acquire numerous series of frames of the
source at different times of the day (dawn, daytime,
dusk, nigthtime) with varying atmospheric condi-
tions (clear sky, thin haze, fog, cloud, rain, snow, etc.).
The corresponding time series acquisitions were
recorded during years 2011 and 2012 with various
time periods (10 images/min to 6 images/h) over long
time spans of several hours or tens of hours.

During these long-term acquisitions, the dynami-
cally varying exposure time in AEM was recorded
for each acquisition, and the frames were normalized
to their respective exposure times during postacqui-
sition analysis. From each raw frame, we then ex-
tracted the two subimages Ij∥ and Ij⊥ (with j
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corresponding to the jth image in the time series). One
raw image extracted froma time series is represented
in Fig. 4, with an overlay indicating the image regis-
tration (rectangles in yellow) from which ROIs corre-
sponding to Ij∥ and Ij⊥ are extracted. The example of
ROI shown in light blue in Fig. 4 is a 21 × 21 pixels
rectangle surrounding the source location.

A. Principle of the Measurement

These numerous acquisitions were used to gauge the
effectiveness of polarimetric imaging under various
atmospheric conditions. The analysis of the experi-
mental results led us to retain four main different
scenarios, associating clear sky/foggy conditions and
daytime/nighttime. The conditions in daytime with
fog are indeed such that the intensity of the pixels
around the source are nearly uniform, making it dif-
ficult to identify the source from the background in a
simple intensity image. In clear sky conditions, the
background consists of the telecommunication tower
structures and installations. On the other hand, in
nighttime we have conditions where the source is
brighter and the background is dark with unpolar-
ized and localized bright light sources (for instance,
the red aircraft warning lights on the tower) or some-
times, during heavy fog, a uniformly lit background
because of scattering of city lights.

In all these conditions, we are interested in maxi-
mizing the visual contrast of the source with respect
to its background. Polarimetric imaging provides us
with two data sets (I∥ and I⊥) for the same image and
thus allows us to create various representations of
the image with different visual contrasts. We thus
propose to consider four simple signal representa-
tions of the available data, generally referred to as γ,
and compare their visual contrast under various
environmental conditions. These four signal repre-
sentations correspond to a simple intensity image
(γI), a polarimetric difference image (γΔ), the OSC im-
age (γOSC), and a polarimetric ratio image (γratio) and
are given in Table 1, along with their respective sym-
bols and mathematical definitions.

It is obviously seen that the absolute values of
these signal representations are different. However,
we will be interested in the remainder of this section
in comparing the visual contrast of the polarized
source that can be obtained with these different
representations. We must therefore provide a fair
comparison between the contrasts obtained in differ-
ent representations. For this purpose we define a
contrast-to-noise ratio (CNR) such that the CNR
value is insensitive to the scale of these four repre-
sentations. The CNR is defined for a central pixel
denoted s (signal γs) with respect to its surrounding
square neighborhood χk of size Nk pixels as

CNR � γs − hγiχk������������������������������������������������
1

Nk−1

P
i∈χk

�
γi − hγiχk

�
2

q ; (4)

where hγiχk �
PNk

i�1 γi∕Nk is the spatial average over
χk. It must be noted that the evaluation of the spatial
averages is carried out for a sample of pixels defined
by the region χk that excludes the 2 × 2 central region
centered on the source pixel to prevent the spatial
extent of the light source from perturbing computa-
tion of the background statistical properties. With
the above definition, the CNR is basically the mea-
sure of how many standard deviations away the sig-
nal pixel lies from the distribution of its surrounding
pixels. The CNR values computed on the data pro-
vide a more quantitative evaluation of the contrast
than a visual analysis of the polarimetric images
plotted in subsequent figures. Moreover, in an appli-
cative context, the CNR would be directly linked to
the performance of automated detection of polarized
sources of unknown number and locations in a scene.
In the presence of a structured background and/or
unpolarized spurious sources, a high CNR would
warrant good detection probability along with low
false alarm rate.

In the following subsections, we provide a thorough
data analysis performed on two particular time-
series acquisitions, allowing one to observe clear
sky and foggy conditions in daytime (Section 5.B)
and nighttime (Section 5.C). These two experimental
data series are representative of the wide variability
of environmental conditions that were made possible
to address with the experimental facility described in
this article.
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Fig. 4. Raw image obtained from the camera with 782 × 582 pix-
els. Extraction of two image channels after applying image regis-
tration process is demarcated in the yellow dashed box. The
ambient illumination is obtained by averaging over the region
shown in red-dashed lines, and the region shown in blue dashed
lines is the 21 × 21 pixel ROI that includes the source at its center.

Table 1. Signal Representations of Polarimetric Data, with hiχ k
Denoting Spatial Averaging over a Square Neighborhood χ k of

the Central Pixel of Size Nk Pixels

Signal Representation Symbol Definition

Intensity γI I∥ � I⊥
Polarimetric difference γΔ I∥ − I⊥

OSC γOSC
I∥−I⊥
I∥�I⊥

Polarimetric ratio γratio
I∥

hI⊥iχk
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B. Daytime Measurement

This first data acquisition series that we will focus on
has been recorded on October 17, 2011, between
10:02 a.m. and 10:57 a.m. During this 55 min acquis-
ition, an image has been recorded every 10 s, making
it possible to observe rapid rising of a thick fog and
evolution of its density within a period of 30 min. The
evolution of the experimental conditions can be ob-
served in Fig. 5. In Fig. 5(a), the intensity of the pixel
corresponding to the location of the polarized source
(signal pixel) is plotted as the red curve as a function
of time. In addition, the evolution of the ambient
intensity is represented by the black curve. This
quantity was estimated from a spatial averaging of
the total intensity I � I∥ � I⊥ in a homogeneous
21 × 21 pixels sky region, marked in Fig. 4 with a
red square. The camera exposure time during the
whole experiment was controlled by the software
in AEM so as to prevent underexposure or saturation
of the signal pixel. The evolution of the exposure time
is also provided in Fig. 5(a) by the dotted blue curve,
revealing the smooth evolution of the fog density and
background illumination during the experiment.

Across this experimental dataset (330 images),
four instants will be considered, labeled H, I, J,
and K in Fig. 5(b). The corresponding raw images
acquired by the imager are, respectively, plotted in
Fig. 5(c). They correspond to different interesting
situations of visibility of the source through fog.
The first situation H corresponds to high fog density
where the source is completely embedded in the
background illumination, as can be checked in
Fig. 5(a) by comparing the levels of the signal and
background intensities. Acquisition I is the first im-
age recorded on which the light source begins to be
detectable over the background. Then, acquisition J
corresponds to an intermediate situation of a light
haze limiting the visibility of the source, whereas
the last measurement K has been acquired in clear
sky but with a significantly higher background
illumination than in the J situation.

Let us now analyze the CNRs associated with the
four signal representations considered in this article

and defined in Table 1. The evolution of the CNRs
across thewhole dataset is given in Fig. 5(b). In Fig. 6,
we also provide the contrast images computed for
each signal representation and for each situation H
through K on a 21 × 21 pixels neighborhood of the
central signal pixel. The numerical values indicated
in Fig. 6 correspond to the CNR of the central pixel
estimated on this neighborhood. As can be seen from
these results, the source is hidden behind heavy fog
until 10:13 a.m., and all CNR values remain close to
zero in this situation. It can be indeed checked in
Fig. 6 that the source is not distinguishable on any
of the four signal representations studied.

Measurements performed after 10:13 a.m. are
more interesting. Indeed, they first allowed us to ob-
serve that, as soon as the light emitted by the source
is visible over the background, it retains a very high
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Fig. 5. (a) Time evolution of the source (signal) intensity, ambient intensity, and camera exposure time across daytime experiment.
(b) Time evolution of the CNR of four polarimetric signal representations. (c) Raw images of four frames labeled H, I, J, and K,
corresponding to various visibility conditions across daytime experiments.

Fig. 6. CNR images of the 21 × 21 ROI around the polarized light
source, extracted at times indicated byH, I, J, andK in Fig. 5. Rows
1 to 4 correspond to the CNR obtained with intensity image, differ-
ence image, OSC image, and contrast ratio image, respectively.
The corresponding CNRs for the central source pixel are also given
as numerical figures for comparison.
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polarization degree, with no detectable depolariza-
tion induced by turbid atmosphere nor partially de-
polarized halo in the vicinity of the source location.
Following a similar interpretation as in prior labora-
tory experiments [12–17] on short distances, this re-
sult can be understood by considering properties of
Mie scattering on large particle size in fog droplets
[16,32]. In our case, since we are working at a very
long distance, the light emitted by the source can be
almost totally absorbed by a thin fog, which in return
cannot be considered as a strongly diffusive medium
and hence cannot induce strong depolarization. In
addition, the low numerical aperture of the imaging
system at such a distance acts as a spatial filter [6,7],
thus preventing most of the scattered and snake pho-
tons (slightly scattered) from entering the imaging
system.

Then, the results given in Figs. 5 and 6 reveal that,
as soon as the intensity coming from the source is
detectable, all polarimetric signal representations
(γΔ, γOSC, and γratio) provide CNR values significantly
higher than the CNR obtained with a standard
nonpolarimetric intensity measurement (γI). This
general result thus confirms the interest of polari-
metric measurements for enhanced vision through
poor visibility conditions. The analysis can be how-
ever refined so as to identify the best signal represen-
tation in a given situation. In very low visibility
conditions (acquisition I), it appears that γratio gives
the best improvement in terms of CNR (60% in-
crease) with respect to an intensity measurement γI.

On the other hand, when visibility increases, the
best signal representation corresponds to a differ-
ence image γΔ, allowing the CNR to be enhanced
up to a factor of almost 4 (acquisition K). The effi-
ciency of the difference image is due to its ability to
suppress the background contribution. This en-
hancement is either due to diffused light in the
turbid atmosphere, as in acquisition J, or due to
the surrounding scene, as in acquisition K, on which
elements of the telecommunication tower can be
identified on the intensity image. Indeed, as has been

noticed in Section 4.B, the ambient light does not
exhibit noticeable polarization as soon as the sky is
covered by clouds or when a thin layer of haze or fog
is obscuring the atmosphere. Hence, the contribu-
tions of this ambient background on the two polari-
metric images I∥ and I⊥ are strictly identical and
can be suppressed on a difference image.

Lastly, it is interesting to note that γOSC never ap-
pears to be the best representation, contrary to ante-
rior work on active polarimetric imaging [33,34]
(where, due to the reflection geometry of imaging,
the background has a significant polarized compo-
nent). Indeed, in the present context of an active
polarized source and passive totally unpolarized
background, OSC implies a normalization of γΔ by
the total intensity γI, which, on the dark background
image γΔ obtained, increases the relative noise in the
final image and thus decreases the CNR. In the next
section, it will be shown that such normalization can
be much more detrimental to signal quality in night-
time conditions. Therefore, this normalization must
be avoided when it comes to locating or detecting a
target in poor visibility conditions, unless one wants
to assess the DOP of the light source.

C. Nighttime Measurement

A similar experiment was conducted during night-
time on October 14, 2011, between 1:53 a.m. and
7:17 a.m. During this 324 min acquisition, a raw
frame has been recorded every minute. As in the pre-
vious section, the evolution of signal pixel and back-
ground intensities are plotted, respectively, in red
and black curves in Fig. 7(a). The evolution of the ex-
posure time over this long time period is given in
Fig. 7(a) by the dotted blue curve (logarithmic scale).
This curve shows the strong variations of the expo-
sure time at night with atmospheric conditions, rang-
ing from 7 ms to a maximum value of 4 s authorized
by the camera used. From the observation of these
curves, it can be noted that a dense fog cloud has to-
tally obscured the visibility of the source between
3:40 a.m. and 4:55 a.m., leading to a maximum
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exposure time in total darkness, as in situation la-
beled M in Fig. 7. On the other hand, the beginning
and end of the acquisition correspond to almost clear
sky conditions (as in situations labeled L and O). The
strong signal intensity variations observed in clear
sky conditions are mainly due to atmospheric turbu-
lence which causes flicker of the location of the signal
pixel on the images and can also be partly due to an
imperfect smoothing of the source intensity modula-
tion at 100 Hz. In the conditions of the experiment,
one other situation labeled N has retained our atten-
tion since it corresponds to one of the rare instants of
fog setting/rising in which the source is partly visible.
The raw images corresponding to these four situa-
tions are also plotted in Fig. 7(c).

As in Fig. 5, the CNRs associated with the four sig-
nal representations are plotted in Fig. 7(a) across the
whole dataset. The contrast images obtained at each
particular situation analyzed, L, M, N, and O, are
given in Fig. 8. These experimental results first con-
firm that OSC is not a relevant signal representation
due to noise amplification occurring with normaliza-
tion. The corresponding CNR is indeed always close
to zero, and the noise amplification can be clearly ob-
served in Fig. 8. This effect is particularly enhanced
in night conditions since background values are very
close to or equal to zero [since the exposure time is
limited in clear sky to prevent saturation of the
source pixel; see Fig. 7(a)], thus leading to non-
numerical values in the final image, which are not
taken into account in the computation of CNR.

The comparison of the three other signal represen-
tations considered in this paper is more informative.
It can first be noted that between 3:40 a.m. and
4:55 a.m., none of the representations allows the
source to be significantly detected over the back-
ground due to total absorption of the emitted light
when propagating through dense fog. In clear sky

conditions, however (situations L and O), or partially
reduced visibility (situation N), it can be observed
that the simple intensity image and polarimetric dif-
ference image share comparable CNR values. This
confirms the fact that γΔ only outperforms a simple
intensity image in the presence of significant back-
ground contribution, as observed above in daytime
conditions. In nighttime conditions, the very dark
background is strongly affected by camera dark
noise, and a difference image could, in some configu-
rations of noise realization, lead to a degradation of
the CNR with respect to an intensity detector. Only
the ratio representation γratio allows improving the
CNR values by a factor comprised between 10%
and 35%, which can be explained by the noise reduc-
tion induced by the spatial averaging of the back-
ground in the expression of γratio.

These results, which seem to soften the interest of
polarimetric imaging for vision enhancement
through turbid atmosphere in night conditions, ac-
tually reveal the limitations of the sensor used for
these experiments. These nocturnal acquisitions in-
deed allow us to identify two ways of improvement
for our detection system, which are (1) the minimiza-
tion of the dark noise and most importantly (2) the
increase in detector dynamics. Reducing the dark
noise would limit the level of noise in the dark back-
ground in nighttime conditions for polarimetric sig-
nal representations, as stated above. Moreover, it can
be observed in Fig. 7(b) that between 6:00 a.m. and
7:10 a.m., strong variations in all the CNR values oc-
cur, following the same abrupt “steps” at each modi-
fication of the exposure time. This is a confirmation
that in these situations, the dark image background
is perturbed with camera dark noise. Usually, the
dark noise level increases with the acquisition time.
However, the Basler A312f camera used implements
a Sony ICX 415AL sensor, whose hole-accumulation
diode technology makes it possible to inhibit the in-
crease of dark noise level with integration time. As a
result, the noise contribution is thus artificially
doubled in our measurements relatively to the signal
pixel value when exposure time is divided by two,
hence leading to a strong decrease in terms of CNR.
This also confirms that adapting the exposure time
cannot increase the dynamics of a detector when
the illumination variations across the scene exceed
the actual sensor dynamics. It would thus be highly
beneficial to use a high dynamics sensor to improve
these results and potentially increase the range of
environmental conditions for which polarimetric im-
aging could be advantageous for vision enhancement
through turbid atmosphere over long distances.

6. Conclusion

In this paper, we have reported an experimental
setup allowing us to perform snapshot polarimetric
contrast imaging of a light emitter through turbid
atmosphere over kilometric distances. With this
setup it has been possible to acquire long time series
of measurements in various real environmental

Fig. 8. Same as Fig. 6 for nighttime experiments. The OSC image
is observed to be noisy and has the least signal contrast as a result.

20 June 2014 / Vol. 53, No. 18 / APPLIED OPTICS 3863

170



conditions of weather and visibility. The results re-
ported in the article have permitted us to assess
the benefits of using a polarized light source and a
polarization-sensitive camera to increase visual
contrast or detectability of such a light source in de-
graded visibility conditions and at a distance compat-
ible with potential applications, such as navigation
assistance for airborne, maritime, or terrestrial
transportation. It can be concluded from these re-
sults that for the purpose of detecting a polarized
source embedded in an unpolarized background, us-
ing polarized beacons and polarimetric cameras can
lead to a significant improvement of the contrast.
This is particularly true in the presence of high back-
ground illumination levels, which are likely to occur
in daytime conditions, or in nighttime situations, due
to scattering of unpolarized ambient light by the
atmosphere itself. This is indeed beneficial, as com-
puting a simple polarization-difference image would
make it possible to isolate the target from ambient
light and hence provide higher contrast in foggy sit-
uations in real time.

Another result of this article is that no significant
depolarization of the polarized source nor depolar-
ized halo could be detected during propagation
through fog over a kilometer with a standard dynam-
ics camera such as the one used in this experiment.
This observation, unreported to our best knowledge
at a kilometric distance, thus confirms the interest of
conducting such experiments in real-field conditions
over long distances. This behavior, similar to the one
observed in short distance laboratory experiments,
was not an entirely predictable result. It is indeed
difficult to mimic the physical conditions that were
encountered during these experiments with in-
laboratory short distance measurements using
highly diffusive water or gas tanks.

As a perspective to this work, we are currently im-
plementing in our setup a new camera with a higher
dynamics range and lower noise level so as to refine
the first analyses presented in this article. Such a
camera will make it possible to analyze situations
in which observations were limited by the detector
itself. More importantly, it is also expected that a
high dynamics sensor will increase the range of ap-
plication of polarimetric imaging in terms of visibil-
ity distance for beacon detection or localization in
turbid atmosphere. Other important perspectives
to this work can be enumerated, among which is
the definition of clear figures of merit that link image
contrast ratios with visibility range. Another impor-
tant field of research that will be addressed is the
definition of optimal signal representation as a func-
tion of environmental or instrumental conditions for
various image processing tasks, such as estimation
or detection. Recent results have evidenced the
potential of polarimetric imaging contrast when
relevant statistical parameters, such as partial cor-
relation between measurements, are considered [35].
Applying these theoretical results to experimental
data will necessitate a more thorough analysis of

the images in terms of statistical properties, which
will also be enabled with the use of a better camera.
Then, the implementation of these optimal estima-
tors/detectors on field-programmable gate array
(FPGA) boards for in-line real-time image processing
and display is also an interesting perspective to
this work.

The authors are grateful to the TDF company, and
in particular to A. Lecluse and P. Gelebart, for pro-
viding a location for the emitter on the telecommuni-
cation tower. This work has been partly funded by
the CEFIPRA (project no. 4604-4).
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1. Introduction and posing of the problem

1.1. Introduction

Polarimetric-sensitive detectors (PSD) have long been implemented and have proved efficient
in many application fields, such as biomedical imaging [1,2], and vision/contrast enhancement
through turbid media [3–5]. In this context, the benefits of polarimetric imaging have been
thoroughly investigated by considering various imaging architectures and noise models [6–9].
However, the gain in measurement precision that can be reached when a PSD is used instead of
a standard intensity detector (ID), in the presence of significantly correlated noise fluctuations
in each polarimetric channel, is still unexplored to the best of our knowledge. Indeed, for prac-
tical reasons it is usually assumed that these noise fluctuations are uncorrelated. As a result,
considering the most favorable situation of a perfectly polarized source (or polarizing object)
embedded in unpolarized background, the polarimetric channel which offers the best contrast
is the one corresponding to the polarization state of the source. In this channel, the mean in-
tensity level of the source is thus preserved, whereas that of the unpolarized background is
reduced by a factor of two, leading to a doubling of contrast as compared to standard intensity
detection [1, 10]. Nevertheless, the assumption of uncorrelated noise fluctuations is not repre-
sentative of most real field scenarios especially when the polarimetric channels are acquired
simultaneously [11]. For instance, a polarized source appearing through fog or haze is a situa-
tion where the background mean level is time-varying [12] especially when the imaging system
is moving or vibrating. More generally, similar situations might be encountered when imaging
objects through turbid media, as in the fields of underwater imaging [13, 14], or infrared target
detection [15]. Imaging a static scene might also be subject to intensity fluctuations of the illu-
minating source, as often encountered in polarimetric microscopy [16]. Thus, one can wonder
whether the noise correlation properties of the different polarimetric channels could be prop-
erly exploited in order to optimize, in terms of contrast, the representation of the polarimetric
image.

In this article, we intend to rigorously quantify the gain in measurement precision that can
be reached when a PSD is used in the presence of significantly correlated noise fluctuations
in each polarimetric channel. This article is organized as follows: in the remainder of the first
Section, we describe the general polarimetric image formation model addressed, as well as
the correlated-noise statistical model considered throughout this article. Within the theoretical
framework of information theory, the benefit of using PSD instead of a standard ID is then
derived in Section 2, for a general estimation problem consisting in measuring a parameter
(intensity, absorbance, location, etc.) on a polarized source over an intense background. The
expression of this gain in optimal estimation precision is then thoroughly analyzed in Section
3 in relation with realistic experimental imaging conditions. Lastly, optimal estimation pro-
cedures are derived and discussed in Section 4, before providing conclusions of the article in
Section 5.
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1.2. Image formation model

We will consider a general framework consisting in the estimation of a given parameter (in-
tensity, location, etc.) from a polarized signal contribution, denoted si at location i, with a de-
gree of polarization (DOP) denoted by P ∈ [0,1], which is either emitted by an active source
or backscattered by an object of interest. Using a simple classical but realistic illumination
model [9, 10, 17], the intensity XI

i detected at location i is assumed to also comprise a back-
ground contribution bi, with a DOP denoted by β ∈ [0,1]. This background contribution is
due to ambient light scattering through a turbid medium (atmosphere, water, or biological tis-
sue). For the sake of generality, we shall analyze any couple of polarization parameters P and
β which can correspond to many different experimental conditions. Although in most experi-
ments the signal contribution is highly polarized in comparison to an unpolarized background
(P � β ), some situations can involve opposite physical conditions (β � P), such as underwater
imaging as mentioned in [10].

Fig. 1. Sketch of the image formation model: a polarization-splitting analyzing device
(PSAD) can be any suitable birefringent crystal in case of simultaneous acquisitions of
images X// and X⊥ [11], or a rotating polarizer or liquid crystal device for sequential
acquisitions. Image formation optics are not represented for the sake of clarity.

A non-polarimetric ID with N pixels gives access to a sample XI
i = {XI

i }i=1,...,N , with 〈XI
i 〉 =

si +bi, whereas a PSD provides a bidimensional vector XP
i =

[
X//

i , X⊥
i

]T
at each location i of

the detector, obtained from the intensities recorded along two orthogonal polarization directions
[11], as sketched in Fig. 1. With the above illumination model, the average value of XP

i is simply
given by

〈XP
i 〉 =

[
1+P

2 si +
1+β

2 bi
1−P

2 si +
1−β

2 bi

]
. (1)

1.3. Noise model

Throughout this article, we shall consider a Gaussian noise model, which makes it possible to
take into account various sources of noise in realistic situations. In addition, such model pro-
vides closed-form expressions which is in favour of physical interpretation. At a given location
i, the second order statistical properties of the bidimensional measurement vector XP

i are mod-

eled by a covariance matrix Γi =
〈

δXP
i

(
δXP

i

)T
〉

, with δXP
i = XP

i − 〈XP
i 〉, of the following

form:

Γi =

[
σ2

//,i ci

ci σ2
⊥,i

]
=

⎡
⎣

1+β
2 ε2

i +σ2
0 ρ

√
1−β 2

2 ε2
i

ρ
√

1−β 2

2 ε2
i

1−β
2 ε2

i +σ2
0

⎤
⎦ .
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The Gaussian probability density function of a N−pixels measurement sample is then given by
PX(XP) = ∏N

i=1 exp
{
− 1

2

(
δXP

i

)T Γ−1
i δXP

i

}
/2π

√
det[Γi].

Table 1. List and description of symbols and acronyms. Dependency in scene location i has
been omitted for the sake of concision.

Symbols: Acronyms:
s / b Source / background mean value PSD Polarization-sensitive
P / β Source / background DOP detector
XI / XP Intensity / polarimetric sample measured ID Intensity detector
X// / X⊥ Orthogonal polarimetric measures DOP Degree of polarization
Γ Covariance matrix of XP PSAD Polarization-splitting
σ2

// / σ2
⊥ Noise variance on polarimetric channels analyzing device

σ2
0 Detector electronic noise variance FI / IF Fisher information

ε2 Optical multiplicative noise variance CRB Cramer-Rao bound
ω2 Ratio of noise variances (ω2 = ε2/σ2

0 ) SNR Signal-to-noise ratio
ρ Correlation parameter ML Maximum likelihood
μ / μ∞ Gain / asymptotic gain in optimal estimation precision
ŝI

ML / ŝP
ML Intensity / polarimetric ML estimator

ŝP
Δ Polarimetric difference estimator

Let us focus on the parallel channel: through this statistical description, we assume that
the noise variance can be written σ2

//,i = (1 + β )ε2
i /2 + σ2

0 , with the detector electronic noise

contribution σ2
0 being rationally independent from the location i in the image, and from the il-

lumination level or polarization properties. The first term in the expression of σ2
//,i accounts for

a multiplicative “optical” noise, introduced by background optical intensity fluctuations, and
hence depends on the background DOP β . This noise contribution, proportional to the back-
ground average level bi, can model the effect of turbulence or variations of scatterers density,
as well as photon noise in the high background intensity limit.

Due to these scene-dependent optical fluctuations, the intensity measurements in the two po-
larimetric channels are likely to be correlated, especially in the case of simultaneous acquisition
of the polarimetric images with a polarization-splitting analyzing device (PSAD), as sketched
in Fig. 1 or as extensively described in [11]. Such partial correlation will be modeled by a non-
null covariance term ci in Γi. We assume that the scene-dependent noise contributions only are
partially correlated through a correlation parameter ρ , whereas the detector noise is assumed to
be uncorrelated between the two channels.

2. Gain in optimal estimation performance

2.1. Principle

To characterize the gain in terms of estimation precision when PSDs are used instead of classi-
cal IDs, we propose to resort to information theory, by determining and comparing the Fisher
Information (FI) associated to each imaging modality. The FI characterizes the amount of in-
formation available in a sample X for the estimation of a parameter y, and is defined as [18]

IF(y) = −
〈

∂ 2 lnPX(X)

∂y2

〉
. (2)

According to the well-known Cramer-Rao theorem, its inverse value IF−1(y) defines a lower
bound (Cramer-Rao bound (CRB)) on the minimum variance expectable for estimating param-
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eter y with an unbiased estimation procedure [18]. In the following, we shall limit ourselves
to the estimation of the mean signal intensity si at location i for the sake of simplicity but
without loss of generality. Indeed, it is possible to extrapolate the results of this article to
other physical situations since one has IF(z) = IF(y)

[
dy/dz

]2
from simple variable transfor-

mation relations. For instance, for the estimation of an atmospheric transmittance τ such that
s = e−Lτ , the FI is directly obtained with IF(τ) = L2s2IF(s), which simply involves the FI for
the estimation of the mean signal intensity IF(s). Another illutration is the interesting case of
image registration addressed in [9], in which a translation parameter η is to be estimated over
the whole image such that s = {s(xi − η)}i=1,...,N . In this latter case, the above relation yields
IF(η) = ∑N

i=1[s
′(xi −η)]2IF(si), which again only involves the FI for the estimation of the mean

intensity at each location i.

2.2. Expression of the gain

The FI in the case of polarimetric and intensity measurements are derived in Appendix A, and
are not recalled here for the sake of concision. We propose to define a gain in optimal precision
by comparing the FI available with a polarimetric setup over the FI available with a standard
intensity detector, for given experimental conditions. This definition, which has been used in
other references [9, 19], yields:

μ(ω,P,β ,ρ) =
IF

P(s)

IF
I(s)

=
(1+ω2)

[
1+P2

2 + Q
4 ω2

]

1+ω2 + (1−ρ2)(1−β 2)
4 ω4

, (3)

where
Q = (1−2βP+P2)−ρ(1−P2)

√
1−β 2, (4)

and with ω2 = ε2/σ2
0 . This last parameter ω2 gives the relative value of the noise contributions

variances, allowing one to identify the dominant noise term. Thus, “optical” noise ε2 dominates
when ω2 � 1, whereas electronic fluctuations are the main source of noise when ω2 
 1. As
an illustration, the evolution of the gain μ(ω,P,β ,ρ) given in Eq. (3) is plotted in Fig. 2 as
a function of ρ for various values of ω , and for a partially polarized source (P = 0.4) and
background (β = 0.1). It can be immediately checked that the gain does not depend on ρ when
electronic noise dominates (ω 
 1), and that it increases as ω increases.

As will be shown in the following, such definition of a gain in optimal estimation precision
can provide insightful results on the physical estimation problem at hands, regardless of the
actual estimation procedure used, since derived from information theory. In addition, it can
have practical implications if optimal estimators can be identified, as will be shown in Section
4.

3. Physical analysis of the gain μ(ω,P,β ,ρ)

In this section, we derive and analyze a number of properties of the gain in optimal precision
μ(ω,P,β ,ρ) defined above. These results will allow us to study the benefits of using PSDs
for estimation tasks in the presence of intense background and potentially correlated measure-
ments.

3.1. Influence of ambient illumination level

Let us first study how the gain evolves as a function of the ambient background illumination
level b. For that purpose, we analyze the behaviour of the gain μ(ω,P,β ,ρ) as a function of
ω = ε/σ0, since ε has been assumed proportional to b. A tractable but tedious calculus sketched
in Appendix B leads to this first property:
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Fig. 2. Evolution of μ(ω,P,β ,ρ) for P = 0.4 and β = 0.1 as a function of ρ for ω =
{10−3,1,5,104}.

Property 1 The gain μ(ω,P,β ,ρ) is a monotonically increasing function of ω .

This is an interesting result, showing that increasing the relative amount of “optical” noise
with respect to electronic noise tends to favour a polarimetric setup in terms of estimation
performance, even if the polarimetric measurements are totally uncorrelated (ρ → 0).

When electronic noise dominates, the gain falls down below unity, since μ(ω 
 1,P,β ,ρ) →
(1 + P2)/2 ≤ 1. Indeed, for a given amount of light energy entering the imaging system, the
PSAD reduces the signal-to-noise ratio (SNR) on the detectors in comparison to a standard ID
since energy is splitted into two polarization channels. This property can be checked in Fig. 2
where μ(ω,P,β ,ρ) is plotted as a function of ρ , when P = 0.4 and β = 0.1.

3.2. Asymptotic behaviour in the high intensity regime

Focusing on the high intensity regime by setting ω → ∞, we obtain a simpler expression

μ∞(P,β ,ρ) = μ(ω � 1,P,β ,ρ) =
Q

(1−ρ2)(1−β 2)
, (5)

which will be referred to as asymptotic gain subsequently.
Let us analyze the evolution of the asymptotic gain as a function of the correlation between

polarimetric channels. Surprisingly, it can be shown that μ∞(P,β ,ρ) is not a monotonically
increasing function of the correlation parameter ρ , as can be observed in Fig. 2. The following
property can indeed be demonstrated (see Appendix C):

Property 2 The asymptotic gain μ∞(P,β ,ρ) reaches a minimum value μ∞,min for a correlation
parameter ρmin, such that

⎧
⎨
⎩

μ∞,min = (1+P)2

2(1+β ) and ρmin = 1−P
1+P

√
1+β
1−β , if β ≤ 2P

1+P2

μ∞,min = (1−P)2

2(1−β ) and ρmin = 1+P
1−P

√
1−β
1+β , otherwise

(6)

This property is rather counter-intuitive but can be interpreted as follows. First, when the two
acquired polarimetric images are uncorrelated (ρ  0), gain in estimation precision only occurs
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if SNR reduction caused by intensity splitting between the two polarization channels is com-
pensated by the increase in size of the statistical sample considered (Two sets of N measures
with a PSD, instead of one in an standard ID). Though, as soon as ρ �= 0, the polarimetric
measures are no longer independent, and thus the available FI is necessarily lower than the one
available with two independent sets of N measurements. This remains true for smaller values
of ρ . However, for values of ρ > ρmin, the strongly correlated noise perturbing each polariza-
tion channel can be partly cancelled out by taking profit of the two acquired images, leading
to a potentially strong increase in the gain. This is indeed possible if signal and background
contributions exhibit different relative intensity levels on the two acquired images. In this case,
an optimal estimation procedure, such as the one described in Section 4, can take profit of this
relative contrast mismatch to estimate the desired parameter on the signal contribution with a
high precision.

Using the expression of the asymptotic gain given in Eq. (5), let us now analyze in which
physical conditions one should favour using a PSD rather than a standard ID. For that pur-
pose, the two following properties can be established. A sketch of the demonstration of these
properties is given in Appendix D.

Property 3 For a given value of P, the asymptotic gain μ∞(P,β ,ρ) is greater or equal to a
minimum gain value K (with K ≥ 1) for any value of the correlation parameter ρ provided

β ≤ (1+P)2

2K
−1, if β ≤ P, (7)

β ≥ 1− (1−P)2

2K
if β ≥ P. (8)

Property 4 When the conditions of Property 3 are not verified, the asymptotic gain μ∞(P,β ,ρ)
is greater or equal to a minimum gain value K (with K ≥ 1) provided the correlation parameter
ρ verifies

ρ ≥ ρK
lim =

1−P2

2K
√

1−β 2
+

√
Φ, (9)

where

Φ =
[
1− 1

2K
(1−P)2

1−β

]
×

[
1− 1

2K
(1+P)2

1+β

]
. (10)

3.3. Discussion

The previous properties provide conditions on the physical parameters at hand in order to ensure
a minimum gain K when using PSDs instead of standard imagers. In this subsection, we propose
to quantitatively analyze these theoretical results.

We obviously start focusing on the case of unitary gain (i.e., K = 1) which delimitates situa-
tions in which polarimetric imaging systems can bring an improvement in estimation precision.
In this case, the conditions of Eqs. (7) and (8) respectively read β ≤ (1+P)2/2−1 when β ≤ P,
and β ≥ 1− (1−P)2/2 when β ≥ P. For a fully depolarized background (β = 0), for instance,
this means that a polarimetric imaging system can improve the quality of estimation, whatever
be the value of ρ , as long as a moderately polarized source is used with a minimum value of
P =

√
2 − 1  0.414. On the other hand, when the source is totally unpolarized, a gain can

be expected for any value of ρ provided β ≥ 1/2. In the two-dimensional plot of Fig. 3(a) as
a function of polarization parameters P and β , the conditions of Eqs. (7) and (8) for K = 1
are represented with continuous green curves and delimitate two regions. When the conditions
hold (greyed region in Fig. 3(a)), the values of μ∞,min and ρmin are represented in contour plots,
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respectively in blue dashed lines and green dot-dashed lines. In the second region, i.e., when
the inequalities of Eqs. (7) and (8) are not verified, the correlation parameter ρ has to be greater
than a minimum value denoted ρK=1

lim so as to ensure μ∞(P,β ,ρ) ≥ 1. The values of ρK=1
lim are

plotted in Fig. 3(a) in red continuous lines, as a function of P and β .
The same graphical representation has been used in Fig. 3(b)-3(d) in the case of K =

{2,5,10} respectively, to plot the values of ρmin and μ∞,min when the relation of Eq. (8) holds,
and the values of ρK

lim otherwise. It is interesting to notice that when P ≥ β , a limit value
ρK

lim > 0 always has to be ensured for any couple of parameters P and β as long as K ≥ 2
since condition of Eq. (7) cannot be fulfilled in this case. On the other hand, when a highly
polarized background is considered and β ≥ P, a high asymptotic gain value K can be reached
with uncorrelated measurements (i.e., ρ = 0) provided P is small enough. This property can be
understood by noticing that a high value of β implies a low background contribution on one of
the two acquired images, thus facilitating estimation of a parameter on the low polarized signal
contribution. This result must be however mitigated since the detector noise has been neglected
to derive Properties 3 and 4, but should be taken into account in this latter case involving low
background illumination levels.

In terms of practical application, the charts given in Fig. 3 provide insightful information
about the expectable gain in precision using a PSD for a given set of physical parameters P, β
and ρ . As could be expected, the best performance gain is obtained when a high polarimetric
contrast can be observed between the background and signal contributions (high P and low
β , or high β and low P). However, these charts clearly evidence that the gain in performance
increases also when the measurements are significantly correlated. Yet, these charts may be
of great use to assess the optimal performance of a real field polarimetric imaging system, in
which all intermediate situations are likely to occur. For instance, the degradation of the DOP
of a highly polarized source could be taken into account in the dimensioning of an experiment.
The influence of unwanted or unexpected polarization/depolarization of the background could
be also analyzed with the above results.

4. Optimal estimation procedure

The relevance of the above results is however conditioned to the definition of efficient estima-
tion procedures, i.e., estimators ensuring unbiased estimation and a minimum variance which
reaches the CRB studied above. Let us thus consider estimators of s in the maximum likelihood
(ML) sense, since ML estimators are known to be efficient under Gaussian fluctuations [18],
which is the noise model considered throughout this article. Limiting ourselves to the high in-
tensity regime (ω → ∞), and assuming that the background mean value b is a priori known, the
ML estimator of s using a standard intensity detector is simply given by ŝI

ML = X̂ I −b. When a
polarimetric imager is used, the derivation of the ML estimator of s is detailed in Appendix E
and leads to

ŝP
ML =

UX̂// +V X̂⊥ +Z
W

, (11)

where U , V , W and Z are functions of P, β , ρ and b, which parameters are assumed a priori
known. These functions can be easily derived from Appendix E with appropriate changes of
variable, but are not detailed here for brevity reasons. Both ML estimators are unbiased, i.e.,
〈ŝP

ML〉 = 〈ŝI
ML〉 = s, and their variances are easily compared using the above characterization of

the FIs since they respectively reach the CRBs computed above in the cases of polarimetric and
intensity measurements. As a result, the gain studied in the previous section corresponds to the
ratio of the variances of these two ML estimators: μ∞(P,β ,ρ) = var(ŝI

ML)/var(ŝP
ML).

For a fair comparison, the estimation samples should involve the same number of pixels.
Thus, a PSD with N pixels in each polarimetric channels must be compared to a 2N-pixels
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Fig. 3. Contour plots of ρK
lim for various values of K as a function of P and β . Additional

contour plots of ρmin and μ∞,min are provided when relations (7) and (8) hold. The yellow
circles correspond to the situation addressed in Fig. 2 (P = 0.4 and β = 0.1).

standard ID. In this case, the relative performance of the two estimators can be directly as-
sessed from the chart plotted in Fig. 3(b), which gives conditions for a minimum gain value
of μ∞(P,β ,ρ) ≥ K = 2. The analyzis of this chart interestingly shows that PSDs are not sys-
tematically preferable to standard ID if the correlation between the fluctuations lies below a
lower limit ρK=2

lim determined above. As a result, the chart plotted in Fig. 3(b) turns out to be
a useful tool for determining the optimal estimation procedure, depending on the experimental
conditions.

Lastly, it can be interesting to compare the ML estimator with other estimation procedures
which are classically used in polarimetric imaging. For instance, when polarimetric measure-

#200923 - $15.00 USD Received 8 Nov 2013; revised 22 Dec 2013; accepted 23 Dec 2013; published 24 Feb 2014
(C) 2014 OSA 10 March 2014 | Vol. 22,  No. 5 | DOI:10.1364/OE.22.004920 | OPTICS EXPRESS  4928

181



ments along orthogonal polarization directions are available, a simple difference image is clas-
sically obtained by substraction of the two polarimetric channels [1]. For the estimation of the
parameter s, such difference estimator would simply read ŝP

Δ = [X̂// − X̂⊥ −βb]/P. However, it
can be shown that this standard estimator is not optimal, in general, in the situation addressed in
this article. Its variance, derived in Appendix F, is indeed greater that var(ŝP

ML) (and thus greater
than the CRB) except when ρ = (1− βP)/(1− β 2), in which case the difference estimator ŝP

Δ
identifies with ŝP

ML.

5. Conclusion

As a conclusion, the theoretical results derived in this article quantitatively demonstrate that
polarimetric imagers can significantly improve the estimation precision, provided noise fluc-
tuations in each polarimetric channels are significantly correlated. Hence, this confirms the
interest of snapshot polarimetric imagers as described in [11] since they may favour correlated
background/noise fluctuations in the two polarimetric channels, which are acquired simultane-
ously. In these conditions, we have also shown that the optimal estimation procedure differs
from a natural difference image, but can be simply implemented. These results can be useful
for the design of polarimetric imaging systems involving estimation through turbid media, or
in other fields of application, for post-processing of polarimetric images exhibiting temporally
or spatially correlated fluctuations.

Appendix

To derive the expressions presented in this article, it is interesting to introduce the following
simplified notations: a = (1+P)/2 and α = (1−P)/(1+P) on the one hand, and, on the other
hand, c2 = (1 + β )/2 and γ2 = (1 − β )/(1 + β ). In a single pixel configuration (N = 1) for
the sake of simplicity, the polarimetric measurement considered is XP = [X//, X⊥]T , such that
〈XP〉 = [as+ c2b, αas+ γ2c2b]T and

Γ = 〈δXδXT 〉 = c2
[

ε2 + ς2 ργε2

ργε2 γ2ε2 + ς2

]
,

with ς2 = 2σ2
0 /(1+β ). It is easily checked that the conditions P ∈ [0,1], β ∈ [0,1] and β ≤ P

are equivalent to α ∈ [0,1], γ ∈ [0,1] and γ2 ≥ α .

A. Fisher informations calculations

With the Gaussian noise model used in this article, the loglikelihood of the polarimetric mea-
sure XP can be written �(XP) = lnPX(XP) = −

(
δXP

)T Γ−1δXP/2 up to an additive term in-
dependent of s. An application of Eq. (2) leads to the FI for the estimation of s, which reads
IF

P(s) =
[
〈X〉′P

]T Γ−1〈X〉′P, with 〈X〉′P = ∂ 〈X〉P/∂ s = 〈∂XP/∂ s〉 = [a, aα]T . A direct calcu-
lation gives:

IF
P(s) =

a2

c2ε2 · (α2 −2ραγ + γ2)+(1+α2)u−2

γ2(1−ρ2)+(1+ γ2)u−2 +u−4 , (12)

with u2 = ε2/ς2 = (1+β )ω2/2.
The FI for the estimation of s from the total intensity of the beam (non-polarimetric measure-

ment) is a standard result under Gaussian fluctuations hypothesis. One has

IF
I(s) =

a2

c2ε2 · (1+α)2

(1+ γ2)+u−2 =
σ−2

1+ω2 . (13)
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The gain μ(u,α,γ,ρ) = IF
P(s)/IF

I(s) can then be easily derived, leading to Eq. (3) with appro-
priate changes of variables.

B. Monotonicity of μ(u,α,γ,ρ) as a function of u

To demonstrate Property 1, let us first rewrite μ(u,α,γ,ρ) as

μ(u,α,γ,ρ) =
Au2 +B

Du4 +Cu2 +1
× Cu2 +1

E
, (14)

with A = (α2 −2ραγ +γ2), B = 1+α2, C = 1+γ2, D = γ2(1−ρ2) and E = (1+α)2, all these
expressions being greater or equal to zero. Let us notice that μ(0,α,γ,ρ) = B/E = (1+P2)/2.

The derivative of μ(u,α,γ,ρ) as a function of u is thus

∂ [μ(u,α,γ,ρ)]

∂u
=

2uH (u)
[
1+Cu2 +Du4

]2
E

, (15)

with H (u) = A+2(AC −BD)u2 +(AC2 −AD−BCD)u4.
The function μ(u,α,γ,ρ) is monotonically increasing on u ∈ [0; ∞[ if ∂ [μ(u,α,γ,ρ)]/∂u ≥

0 ⇔ H (u) ≥ 0, ∀u ∈ [0; ∞[. Noticing that H (0) = A ≥ 0, and that H (u) is a second-order
polynomial in u2, we can compute the discriminant

Δ = 4D(A2 +DB2 −ABC) = −4γ2(1−ρ2)
[
α(1− γ2)−ργ(1−α2)

]2
, (16)

which is negative. As a consequence, H (u) does not admit real root on u ∈ [0; ∞[, and hence,
H (u) is positive on u ∈ [0; ∞[. As a result, μ(u,α,γ,ρ) is a positive, monotonically increasing
function of u for u ∈ [0; ∞[.

C. Minimum value of the asymptotic gain μ∞(α,γ,ρ):

The asymptotic gain is obtained by setting u → ∞:

μ∞(α,γ,ρ) =
(α2 −2ραγ + γ2)(1+ γ2)

γ2(1−ρ2)(1+α)2 (17)

It is easily shown that μ∞(α,γ,ρ) reaches a minimum if (αρ − γ)(α − ργ) = 0. Since ρ ∈
[0,1], the only admissible root is ρmin = α/γ when γ ≥ α and thus μ∞,min(α,γ) = (1+γ2)/(1+
α)2. When γ ≤ α , the only admissible root is ρmin = γ/α , and in this case μ∞,min(α,γ) =
α2(1 + γ2)/γ2(1 + α)2. The expressions of ρmin and μ∞,min(P,β ) given in the article can be
recovered with an appropriate change of variables.

From the above results, the conditions for μ∞,min(α,γ) ≥ K are directly derived as

γ2 ≥ K(1+α)2 −1 when γ ≥ α (18)

γ2 ≤ α2/
[
K(1+α)2 −α2] when γ ≤ α. (19)

D. Condition for minimum gain μ∞(α,γ,ρ) = K:

Solving μ∞(α,γ,ρ) = K leads to two roots ρK
1/2 =

[
α(1 + γ2) ∓

√
Φ

]
/Kγ(1 + α)2 verifying

ρK
1/2 ∈ [0,1], with Φ =

[
1+ γ2 −K(1+α)2

][
α2(1+ γ2)−K(1+α)2γ2

]
, or with the notations

of Appendix B, Φ =
[
C −KE

][
α2C −KEγ2

]
.

Let us focus on the greatest root, denoted ρK
lim = ρK

2 in the following, and which defines
the minimum value of ρ such that μ∞(α,γ,ρ) ≥ K, ∀ρ ≥ ρK

lim. It can first be checked that
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the expressions of ρK
lim and Φ respectively given in the Eqs. (9) and (10) of Property 4 can be

retrieved with appropriate changes of variables. In particular, one has Φ = Ψ/
[
K2γ2(1+α)4

]
.

Let us now study in which conditions this upper root ρK
lim actually defines a real-valued limit

on the correlation parameter ρ . It is clear that ρK
lim is imaginary if Φ ≤ 0, which occurs when

one of the two following inequalities is verified: (a): α2C/γ2E ≤ K ≤ C/E; or (b): α2C/γ2E ≥
K ≥ C/E. When γ ≥ α , inequality (b) is impossible, and (a) is verified if γ2 ≥ K(1+ α)2 −1.
When γ ≤ α , inequality (a) is impossible, and (b) is verified if γ2 ≤ α2/

[
K(1 + α)2 − α2

]
.

These conditions obviously correspond to those derived above in Appendix C in Eqs. (18) and
(19) for ensuring μ∞,min(α,γ) ≥ K.

For the sake of physical interpretation, we can rewrite these conditions as

γ2 ≥ K(1+α)2 −1, if α ≤ γ2, and (20)

γ2 ≤ α2/
[
K(1+α)2 −α2], if α ≥ γ2, (21)

which allows relations (7) and (8) of Property 3 to be retrieved by appropriate change of vari-
ables. Indeed, it can be checked that none of the conditions of Eqs. (18) and (19) apply when
γ2 ≤ α ≤ γ .

E. ML estimator ŝP
ML

We derive the ML estimator in a situation of negligible detector noise, i.e., u → ∞ (or ω → ∞).
From the expression of �(XP) given in Appendix A, we derive ŝP

ML by solving ∂�(XP)/∂ s =

0, leading to equation
(
δXP

)T Γ−1〈X〉′ +
(
〈X〉′

)T Γ−1δXP = 0. A straightforward but tedious
calculation finally gives the expression of Eq. (11), with U = γ[γ − αρ ], V = [α − γρ ], Z =
bc2γ[ρ(α +γ2)−γ(1+α)], and W = a[α2 −2ραγ +γ2]. It is easily checked that this estimator
is unbiased 〈ŝP

ML〉 = s, since 〈X̂//〉 = as+c2b and 〈X̂⊥〉 = aαs+c2γ2b. Moreover, the variance
of this estimator necessarily reaches the CRB since ML estimator is efficient under Gaussian
fluctuations [18]. This can be checked by noticing that var(ŝP

ML) =
[
U2 var(X̂//)+V 2 var(X̂⊥)+

UVcov(X̂//, X̂⊥)
]
/W 2 which, after a simplification step, is equal to limu→∞{1/IF

P(s)}.

F. Difference image estimator ŝP
Δ

With the notations used in this appendix, the estimator ŝP
Δ given in Section 4 reads ŝP

Δ =[
(X̂// − X̂⊥) − bc2(1 − γ2)

]
/
[
a(1 + α2)

]
. One easily checks that it is unbiased and that

var(ŝP
Δ) =

[
var(X̂//) + var(X̂⊥) − 2cov(X̂//, X̂⊥)

]
/
[
a2(1 + α)2

]
, which is equal to var(ŝΔ) =

c2ε2
[
1+ γ2 −2ργ

]
/
[
a2(1+α)2

]
.

Lastly, it can be shown that var(ŝP
Δ) = var(ŝP

ML) if α + γ2 −ρ(1+α)γ = 0, i.e., if ρ = (α +
γ2)/γ(1+α) = (1−βP)/(1−β 2), in which case ŝP

Δ = ŝP
ML.

Acknowledgments

This work has been supported by the TDF company and by Rennes Metropole through Dr. J.
Fade’s AIS grant.

#200923 - $15.00 USD Received 8 Nov 2013; revised 22 Dec 2013; accepted 23 Dec 2013; published 24 Feb 2014
(C) 2014 OSA 10 March 2014 | Vol. 22,  No. 5 | DOI:10.1364/OE.22.004920 | OPTICS EXPRESS  4931

184



Adaptive polarimetric image representation
for contrast optimization of a polarized
beacon through fog

Swapnesh Panigrahi, Julien Fade and Mehdi Alouini

Institut de Physique de Rennes, CNRS, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes,
France

E-mail: julien.fade@univ-rennes1.fr

Received 29 January 2015, revised 19 March 2015
Accepted for publication 20 March 2015
Published 1 May 2015

Abstract
We present a contrast-maximizing optimal linear representation of polarimetric images obtained
from a snapshot polarimetric camera for enhanced vision of a polarized light source in obscured
weather conditions (fog, haze, cloud) over long distances (above 1 km). We quantitatively
compare the gain in contrast obtained by different linear representations of the experimental
polarimetric images taken during rapidly varying foggy conditions. It is shown that the adaptive
image representation that depends on the correlation in background noise fluctuations in the two
polarimetric images provides an optimal contrast enhancement over all weather conditions as
opposed to a simple difference image which underperforms during low visibility conditions.
Finally, we derive the analytic expression of the gain in contrast obtained with this optimal
representation and show that the experimental results are in agreement with the assumed
correlated Gaussian noise model.

Keywords: polarimetric imaging, imaging through turbid media, image processing

1. Introduction

Polarimetric imaging produces multi-dimensional pixel data
that is either interpreted in terms of polarimetric properties of
the imaged objects, or quite often, processed into a single
image revealing specific contrasts which may not appear on
standard reflectance images. In simplified polarimetric ima-
ging systems, a pair of monochromatic images are acquired
along two orthogonal polarization directions. The two-
dimensional (2D) pixel data obtained can then be presented
by either color encoding or by a combination of the two
components so as to enhance contrast between objects in a
scene sharing different polarimetric properties. Such contrast-
maximizing representation of the polarimetric information
can prove helpful in underwater polarimetric imaging [1] and
imaging through turbid media [2] (like colloids [3], tissues [4]
and fog [5]). In most laboratory based imaging experiments
[6, 7], the scene is static and the object of interest is usually
embedded in a uniform background, thus allowing for pro-
cessing over multiple frames acquired over a period of time.
However, in real-world scenarios with fast moving scene and/

or camera, it is often desirable to reach real-time imaging and
processing. This requires the identification and use of com-
putationally simple and optimal representations of the
polarimetric images that are adapted to the experimental
scenarios at hand.

In this article, we address the specific issue of contrast
enhancement of an intentionally polarized beacon of light (or
semaphore), imaged at a long distance through obscured
atmosphere with a polarization-sensitive camera. Such situa-
tion is of great interest for applications in transportation
safety. In this context, we demonstrate, both analytically and
experimentally, that an optimal processing of the polarimetric
images allows such contrast maximization under all experi-
mental conditions encountered. The optimal polarimetric
representation derived differs from commonly used polari-
metric contrasts, but remains computationally compatible
with real-time processing at video rate, which is a stringent
constraint in the applicative context considered here.

This article is organized as follows: in section 2, the
experimental setup is described, as well as the statistical
measure used to assess the contrast of the source in the image.
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Then, the numerical and theoretical derivation of an optimal
polarimetric representation is reported in section 3. The effi-
ciency of this optimal representation to enhance contrast of a
polarized source through fog is then discussed on experi-
mental data in section 4, allowing us to confirm theoretical
predictions in real field conditions. Conclusion and perspec-
tives of this article are finally given in section 5.

2. Long distance polarimetric imaging experiment
through fog

The long distance polarimetric imaging experiment described
in the following has been set up in the vicinity of the campus
of University of Rennes 1 to gather experimental data on real
atmospheric conditions. The imaging experiment covers a
kilometric distance which is the typical range of distance one
aims at for transportation safety applications like air and sea
transport. A thorough description of this experimental facility
and of the snapshot polarimetric imager designed is reported
in [5], along with a detailed depiction of the experiment
control and calibration procedure.

2.1. Experimental setup

The experiment basically consists of a highly linearly polar-
ized source of incoherent light, placed on a telecommunica-
tion tower (about 80 m in height and 1.3 km far from the
detection site at the laboratory), and a Wollaston-prism based
polarimetric camera for imaging. The experimental setup
reported in [5] is improved here using a higher dynamics, low
noise camera (Andor NEO sCMOS 5.5 Mpixels, 16 bit, 0.015
e-/pixel/s dark noise at −30 °C sensor temperature) which is
more suitable for this experiment. Such high-dynamics
detector enables finer sampling of intensity levels and noise

statistics in the acquired images. The entire imaging system
has been thoroughly re-calibrated with this new camera. As
mentioned before and shown in the schematic in figure 1(a),
the source is imaged from a distance of about 1.3 km, and the
snapshot polarimetric imager enables the simultaneous
acquisition of two images on the camera (namely, ∥I and ⊥I )
corresponding to the two orthogonal polarization directions,
with ∥I aligned with the direction of polarization of the source.
For the purpose of illustration in this article, we pick a dataset
of images taken during an experiment conducted on 24-01-
2014 between 1:00 p.m. and 2:20 p.m. (at a time interval of 1
frame/10 s). During this 80 min acquisition, successive pas-
sing fog layers obscured the source intermittently, causing the
visibility of the source to evolve rapidly and significantly. An
example of eight frames acquired by the polarimetric camera
can be observed in figure 1(b).

2.2. Polarimetric contrast image

Using the image registration method described in [5], the two
images can be extracted to form a set of 2D pixels, such that
the ith pixel = ∥ ⊥X x x[ , ]i

P
i i

T
, , is a part of the polarimetric

image = =∈ ∥ ⊥I X I I{ } [ , ]P i
P

i N
T

[1, ] . In practice, this 2D data
is processed to provide the end-user with a final contrast
image, or to feed a higher-level image processing algorithm
(detection and tracking, segmentation, etc). For that purpose,
the recorded 2D data can be represented by a linear combi-
nation of both images ∥I and ⊥I , i.e., as a projection of the
individual vectors XP

i over a row vector =W u v[ , ]. Thus, a
linear representation denoted generically by γ can be written
as

γ = = +∥ ⊥WI u I v I . (1)P

In each such representation, the source will have different
contrast and with different overall scaling depending on the

Figure 1. (a) The schematic shows the long range imaging setup. The polarimetric camera consists of the arrangement of lenses L1 and L2
after a monochromatic filter F (at 612 nm, FWHM = 12 nm). The image is partly masked by a slit (FM) and passed through a Wollaston
prism (WP) to produce two images ∥I and ⊥I on a single camera (C) using lens L3. (b) A subset of the raw images from the polarimetric
camera, showing the tower and the source with varying conditions of fog density and visibility. The eight images are sorted in increasing
order of background correlation (ρ) estimated over a small ROI surrounding the source pixel. The time stamp of acquisition is indicated
below each image.
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values of u and v. As a result, we resort to a contrast-to-noise
ratio (CNR) in order to fairly compare the contrast of the
source in each representation. Using a local region of interest
(ROI) of size 21 × 21 pixels around the source, we identify
two sets of pixels (shown as colored squares in figure 2(a) and
described in the caption) denoted by  (background) and 
(source), and we define the CNR of the source in a general
representation γ as


γ

γ γ
σ γ

= −  


( )
( )

, (2)

where

∑ ∑γ
γ

σ γ γ γ= = − −χ
χ χ

χ
χ χ

χ
∈ ∈

( )
N N

and ( )
1

1
i

i

i
i

2 2

respectively stand for the empirical mean and variance over
region χ, with cardinality χN . This contrast measure returns
the local contrast of a central pixel w.r.t. its immediate
background and remains invariant under scaling of the gray
levels in the image, i.e., for different values of u v[ , ]. In a
general case, the intervening medium may be birefringent and
thus the values of u and v can range between [−1, 1].
However, for non-birefringent medium, where no rotation of
polarization is observed, the weight (u) of ∥I remains non-zero
and thus can be scaled out so that the representation depends
only on the weight (v) of ⊥I . Further, for a generic
representation γ, we define a gain in contrast with respect to
an intensity-summed image (γ = +Σ ∥ ⊥I I ) which would be
acquired with a standard camera. For brevity, we denote this
gain as

γ
γ

=Σ

Σ


g

( )

( )
. (3)

3. Derivation of an optimal polarimetric
representation

Several combinations of the acquired polarimetric images can
be envisaged for producing a final contrast image. In the

context of this article, we aim at maximizing the CNR of a
polarized light source over a background. This naturally raises
the question of finding the optimal representation that pro-
vides the best contrast independent of the atmospheric situa-
tion, while remaining computationally efficient to match real-
time requirements. Before deriving such optimal representa-
tion, let us first recall standard polarimetric representations
which are commonly used in the literature for various appli-
cations in polarimetric imaging.

3.1. Standard polarimetric representations

From the two acquired polarimetric images ∥I and ⊥I , most
simple and standard representations are:

Intensity-summed image (γ =Σ I[1, 1] P): such combination
qualitatively provides the image that would be acquired
with a standard, polarization-insensitive camera. Thus,
other representations can be compared as a gain with
respect to the intensity-summed image.
Polarization filtered image (γ =∥ I[1, 0] P): another very
simple approach is to use a polarization-filtered image,
which can be obtained on our setup by retaining only the
polarimetric image corresponding to the direction of
polarization of the light source.
Polarization-difference image (γ = −Δ I[1, 1] P): computing
a difference image by subtracting the two polarimetric
frames acquired is a very standard technique, widely used
in polarimetric imaging [8, 12] for its efficiency in contrast
enhancement. In the first experiments conducted with the
imaging system described above, it was indeed noticed that
the difference image performs generally better than the
other standard representations [5]. Nevertheless, it was also
observed that γΔ does not always provide the best possible
contrast in the context of polarimetric imaging through fog
considered in this article.
Orthogonal states contrast image ( γ γ= Δ ΣOSC ): this
polarimetric contrast is obtained by normalizing the
difference image by the intensity-summed image. It is
widely used and has proved efficient in active polarimetric

Figure 2. (a) Comparison of the contrasts obtained for three representations of the polarimetric images for frames labeled as [I] and [J] in
figure 1(b). The source region,  is bounded by the 3 × 3 pixels red square and  is the background region between the two blue squares of
sizes 11 × 11 pixels and 21 × 21 pixels. (b) CNR-maximizing 1D search over values of v keeping u = 1 for the two frames.
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imaging for its ability to provide an estimate of the degree
of polarization of light scattered by an object (or an imaged
scene) [10, 11]. However, it was shown that such
normalization tends to increase the noise in the final image
due to possible low intensity values in the intensity-
summed image [5]. For that reason, and due to the fact that
the OSC cannot be written as a linear combination of ∥I and

⊥I , this representation will not be considered in the
remainder of this article.

In the next subsections, we derive an optimal polari-
metric representation, which in general differs from the most
classical ones, whose expressions are summarized in table 1.

3.2. Computational representation: numerical maximization
of CNR

It is possible to determine the optimal projection numerically
for each acquired frame by a simple grid search over possible
coefficient vectors W. As a result, the optimal representation,
denoted =W u v[ , ]CS CS CS in the following, is obtained by
computationally solving = W WIargmax{ ( )},

W
PCS for

∈u [0, 1] and ∈ −v [ 1, 1] and obtaining an image
γ = W IPCS CS .

On the resulting processed images of two individual
frames in figure 2(a), on the ROI defined above, it can be
checked that a significant contrast enhancement can be
obtained over the difference image γΔ and the intensity-sum-
med image γΣ , which indicates that the optimal representation
γCS differs, in these cases, from both γΔ and γΣ . It can be
observed that for the frame labeled [I], the optimal repre-
sentation is very close to a polarization-filtered image γ∥. On
the other hand, for the frame [J], the computational search
leads to optimal weight of vCS corresponding to an inter-
mediate situation between representations γΔ and γ∥.

3.3. Optimal representation: theoretical maximization of CNR

As observed in the previous subsection, the optimum linear
combination of the polarimetric images for contrast
enhancement may differ from the commonly used polari-
metric representations, and may vary from frame to frame.
Accordingly, identifying the physical parameter that influ-
ences the weights of the optimum linear combination would
make it possible to implement an adaptive representation of
polarimetric image that provides the best contrast for any
weather condition. However, in such a long distance imaging

setup, there is no a priori knowledge of the properties of the
intervening medium, and thus we rely on the noise properties
of the image. We hypothesize a correlated Gaussian noise
model treating each pixel Xi

P as a bivariate random variable
having a mean of 〈 〉 = +X s b b[ 2, 2]P T at the source
location and 〈 〉 =X b b[ 2, 2]P T outside the source location.
Here, s and b denote the mean intensities of the highly
polarized source and the depolarized background, respec-
tively. The second-order statistical properties of XP are
modeled by the covariance matrix Γi defined as

Γ
ϵ ρ

ρ= − − =( )( )X X X X
2

1
1

, (4)i i
P

i
P

i
P

i
P T i

2 ⎛
⎝⎜

⎞
⎠⎟

where ϵi stands for the standard deviation of the overall
multiplicative optical noise, which is likely to be partially
correlated in polarimetric channels especially in snapshot
imaging. The correlation coefficient is denoted by ρ. With
such statistical noise model, the theoretical expression of the
CNR of a generic representation γ has been derived in the
appendix. The obtained expression can be easily and
analytically maximized w.r.t. ρ, which indeed leads to the
following linear representation γ = W IPML ML with

ρ= −W [1, ]ML . This provides a simple adaptive representa-
tion where the background noise correlation coefficient, ρ,
can in practice be estimated locally over the region  using
the following empirical estimator


 

∑ρ
σ σ

= − −
∈

∥ ∥ ⊥ ⊥

∥ ⊥

 

 

( )
( )

( )
( )

X X X X

X X
, (5)

i

i i

where  still denotes the background region comprised
between the two blue squares of sizes 11 × 11 pixels and
21 × 21 pixels depicted in figure 2(a). This representation is
denoted as γML (for maximum likelihood) since, for the
experimental conditions at hand (with highly polarized source
and completely depolarized background), its form could be
equivalently derived from a likelihood maximizing approach
[9]. Using this representation on the same dataset, it can be
seen in figure 2(a) that γCS and γML consistently provide
enhanced contrast compared to other simple polarimetric
representations. As can be observed in figure 2(b), these
representations are almost equivalent, the small discrepancy
between each other being due to numerical errors in the
computation of the estimators and/or to possible deviation of
the actual statistics from a Gaussian model. This result is
verified over the entire dataset and further discussed in the
next section.

4. Results and discussion

4.1. Experimental results

In figure 3, we plot the time evolution of the gain in CNR
defined in equation (3) for each representation. For reference,
the CNR γΣ ( ) is shown as black-dotted line in the bottom of
figure 3. The comparison confirms that the difference image
γΔ (solid red lines) is not always the best representation and in

Table 1. Polarimetric representations and gains in CNR.

Representation Symbol W γ γ=Σ
Σ g ( ) ( )

Intensity-summed γΣ [1, 1] 1

Pol. filtered γ∥ [1, 0] ρ+2(1 )

Pol. difference γΔ [1, −1] ρ ρ+ −(1 ) (1 )

Computational γCS [1, vCS] —

Max. Likelihood γML [1, −ρ] ρ−2 (1 )

4

J. Opt. 17 (2015) 065703 S Panigrahi et al

188



many cases is outperformed by a simple ‘polarization-filtered’
image γ∥, i.e., the raw ∥I image (solid, filled green). Further-
more, γCS (solid black), presents the best contrast gain, and in
general differs from both γΔ and γ∥. It can be clearly observed
that the gain in source contrast in the ML representation (γML)
closely follows the best possible gain obtained with γCS, i.e.,
with a computational search over all possible linear combi-
nations. As a result, this simple analytical representation
behaves adaptively to present the best source contrast in the
final image for all fog density conditions. These experimental
results also quantify the advantage in using a polarimetric
camera for long distance contrast-enhancement of a polarized
beacon through fog, as the CNR gain rises from two-fold to a
maximum of 12-fold compared to an intensity-summed image
which is qualitatively similar to an image obtained from a
standard intensity camera. It must be noticed at this level that
the noise statistics of an intensity-summed image may differ
in general from the ones obtained with a true intensity imager.
As shown in appendix, a fair comparison with a true intensity
imager would imply a gain comprised between two and six-
fold, for the noise model considered.

4.2. Influence of ρ and theoretical gains in CNR

As stated in the previous section, the derivation of the ML
representation allowed us to identify the background corre-
lation, ρ, as a crucial factor in determining the optimal con-
trast linear representation. In the above framework it is
straightforward to calculate the theoretical CNR for each
representation and thus compute the functional dependence of
the gain in contrast with the correlation parameter (see
appendix). The theoretical forms are tabulated in table 1 and
plotted as solid lines in figure 4(a). Furthermore, the experi-
mentally generated contrast gains are plotted alongside
(scattered symbols) as a function of locally estimated back-
ground correlation. The plot shows that the CNR gain for
each representation depends on ρ in an orderly fashion which

was not obvious in the ‘noisy’ time-series data in figure 3. It is
interesting to notice that the difference image γΔ gives the best
CNR with high values of ρ, but is outperformed by the
polarization-filtered image γ∥ as the value of ρ falls bellow 0.5.
The performance of γ∥ remains linear with ρ, with a maximum
gain of 2 for high values of ρ, while that of γΔ rises steeply
when ρ → 1. Again, the optimality of the ML representation
is clearly seen, as it corresponds to the best contrast repre-
sentation for all values of ρ.

The ρ-dependant performance of the studied representa-
tions (particularly γΔ and γML) can be interpreted by noting
that, in the present context, ρ is a measure of the visibility of
background structure in the local scene or local non-uni-
formity in reflectance. This can also be checked on the frames
shown in figure 1(b) that are sorted in increasing order of ρ.
As a result, the main benefit of γΔ relies in its ability to sup-
press highly structured (and thus correlated) background in
the final image. This property is retained by the γML, which
identifies with γΔ for ρ → 1. On the other hand, with uncor-
related background (ρ = 0), the perpendicular image ⊥I does
not bring any further information, making γ∥ optimal during
very low visibility conditions. The experiment also quantifies
the advantage in using a polarimetric camera as we observe a
maximum CNR gain of 12-fold compared to the intensity-
summed image which is qualitatively similar to an image
obtained from standard intensity camera.

4.3. Implementation of optimal representations

Finally, we briefly discuss the implementation and some
generic issues associated with computing such contrast-
maximizing representations in realistic field conditions. For
instance, in the context of assistance to navigation in foggy
weather, the camera and the beacons may be in relative
motion. As a result, the number and location of the beacons
that have to be identified in the foggy images are unknown,
and must be retrieved on a frame-to-frame basis to be dis-
played to the user, or to an automated detection algorithm.
According to the previous results, computing the optimal
polarimetric representation at each location of each frame
(using a sliding window) will provide a contrast-maximized
image that reveals the presence of a source embedded in fog,
or that better isolates the polarized source from the rest of the
image as compared to a standard intensity image, as illu-
strated in figure 4(b).

To obtain the contrast-maximized image (or a pixel-wise
CNR map of this contrast-maximized image), the estimation
of local statistics over a sliding window can be replaced with
a convolution approach which performs quickly by using fast
Fourier transforms. For computing γCS, multiple CNR images
must be generated and the maximum value at each pixel must
be chosen to form the final image. In contrast, for the ML
representation one would need fewer Fourier transforms to
calculate the local correlation coefficients, thus providing γML
a noticeable time advantage over γCS. However, with fast
computers or FPGA based embedded system, both techniques
should remain within real-time requirement. Another para-
meter of importance is the size and shape of ROI, which

Figure 3.Gain in contrast (log scale) reached by the difference image
γΔ (red solid lines) and γCS representation (black solid line) w.r.t the
intensity-summed image γΣ . The blue crosses show the gain obtained
with γML representation, which can be seen to follow the maximum
attainable contrast. The green filled curve shows the gain of the γ∥
image with respect to the intensity-summed image.
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should also be varied to maximize the CNR over multiple
scales, especially when the spread of the source is unknown
and may evolve in time. The ML method remains specifically
suitable in this case as only a 1D maximization over scale is
required as opposed to a search over both scale and linear
weighting of polarimetric images.

5. Conclusion

In this article, we first showed experimentally that when
performing real field polarimetric imaging, two polarimetric
channels acquired along two orthogonal polarization direc-
tions can have intensity fluctuations that are significantly
correlated. Moreover, experiments reveal that the contrast of a
polarized light source under any visibility condition can be
maximized using a linear combination of the two acquired
polarimetric images, which differs in general from the stan-
dard polarimetric representations used in literature. Under a
correlated Gaussian noise hypothesis, we also demonstrated
that the optimal representation is simply related to the noise
correlation coefficient, which is also observed experimentally.
As a result, such computationally-efficient representation can
replace a numerical search of the optimal weighting coeffi-
cients, and could thus be easily implemented in real-time
applications as a pre-processing task for automated detection/
localization on wide field images. Lastly, the results presented
here could be easily generalized to any case of partially
polarized source and background with finite detector noise,
which could be of interest for underwater imaging or imaging
in biological tissues.
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Appendix

As noted above, the polarimetric pixel can be written as a 2D
random vector = ∥ ⊥X x x[ , ]P T , where the dependency in pixel
location i is omitted in the appendix for the sake of clarity.
Assuming a correlated Gaussian noise model and keeping the
same notations as in section 2.2, we derive the expression for
CNR for a generic polarimetric representation γ. Its mean
value at a given location in the image is directly given by
γ〈 〉 = 〈 〉W X P , and its variance reads σ γ Γ= W W( ) T2 . From
the definition of the CNR in equation (2), a straightforward
calculation yields

γ
ϵ ρ

= + + s u

u uv v
( )

2

2
.

2

2 2

As a result, the gain in CNR with respect to the intensity-
summed representation γΣ reads

γ
γ

ρ
ρ

= = +
+ +

Σ

Σ


g

u

u uv v

( )

( )

2 (1 )

2
,

2

2 2

from which the gain expressions of table 1 are easily derived.
If one now considers a true intensity imager, and given

the notations above, the intensity level XI recorded at a given
pixel would have a mean value of 〈 〉 = +X s bI at the
source location, and 〈 〉 =X bI in the background region,
with variance σ ϵ=X( )I2 2. The CNR is thus ϵ= X s( )I ,
and as a result,

γ γ
γ

γ
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= = = +Σ

Σ
Σ
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X X
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1
. (A.1)I
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Figure 4. (a) The experimentally obtained gain in CNR (scattered points) for each representation is plotted in log scale along-side the
corresponding functional forms (solid lines) of the gain listed in table 1. (b) Comparison of the intensity-summed image obtained with a
standard camera (left, (i)) with a processed CNR map of γML (right, (ii)) that can be provided as a final contrast enhanced image to the end-
user or to a higher-level image processing unit.
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This shows that the gain with respect to a true intensity
imager is equivalent to the gain with respect to the intensity-
summed image only when the correlation parameter ρ tends to
0, and is lower by a factor of 2 when ρ approaches unity.
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in this article. Using the diffusion model for modulated photon transport and considering a noisy
quadrature demodulation scheme, the minimum-variance bounds on estimation of parameters of
interest are analytically derived and analyzed. The existence of a variance-minimizing optimal
modulation frequency is shown and its evolution with the properties of the intervening medium is
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discrimination depends only on the reduced scattering coefficient of the medium in a linear
fashion for a highly scattering medium.
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1. Introduction

Imaging through and within turbid media is an area of interest that has tremendous application in
medical diagnostics [1], underwater vision [2], imaging through colloids [3] and transportation
and navigational aids [4,5]. Light traveling through a complex medium with randomly distributed
positions and refractive indices undergoes absorption and random scattering and loses the spatial
and temporal information of its source. The photons that undergo such multiple scattering
are labeled as diffused photons. A small fraction of the total photons called ballistic and quasi-
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ballistic photons, undergo no or very few forward scattering events before they reach the detector,
and they retain the information of its source (direction, polarization state, modulation,...). It is
of wide interest to discriminate the ballistic/quasi-ballistic photons from the diffused photons
for resolution enhanced imaging through turbid media. However, the diffuse light that strongly
depends on the properties of the scattering medium can be used to deduce various parameters
related to the medium itself. Thus, imaging in turbid media can be classified into two broad
categories: parameter estimation using only diffused light to obtain image of heterogeneities in
the turbid media and filtering of ballistic photons from diffused light for high resolution imaging
through turbid media.

Parameter estimation In parameter estimation, the physical properties of the intervening
media are of interest and controlled light sources may be used to estimate the scattering and
absorption parameters [6, 7]. Diffuse optical imaging which has been widely studied and applied
in medical imaging [8] is used to estimate the scattering and absorption coefficient in the
intervening media for detection of malignant tissues in breast [9] or for brain imaging [10].
Various methodologies have been developed that utilize the diffusion equation to model light
transport through tissues to estimate its scattering parameters. Steady-state solution is generally
used in case where continuous wave light sources are used [11] or when patterned light source
is used as in case of spatial frequency domain imaging [12]. Diffusion approximation is also
commonly used to model the transport of pulsed light [13, 14] or modulated light [15–18]
through the scattering media. The precision of estimation of the parameters is crucial in this
case. In practice, intensity modulated light with diffusion theory are widely used in frequency-
domain photon migration measurements, where an intensity modulated light with modulation
frequencies of a few hundred MHz is transmitted through a diffusing medium. According to
the time dependent solution of the diffusion theory, at these frequencies, the wave number of
the density wave traveling through the medium is dependent on the scattering and absorption
properties of the medium. As a result, the detected modulated light has reduced modulation index
and an additional phase, both of which depend on the scattering properties of the medium and its
thickness. As the diffusion theory provides an analytical model for the change of modulation
index and phase of the modulated light, the parameters of the intervening medium could be
estimated by using a single or multiple modulation frequencies.

Ballistic discrimination On the other hand, ballistic filtering is used when the spatial resolu-
tion of objects embedded in scattering media is of interest [19, 20]. For instance, for industrial
applications where it is required to image objects embedded in colloidal system, or in navigation
where vision through fog can be efficiently achieved with ballistic filtering. The problem of
imaging through such media has been addressed using various techniques that essentially rely
on discriminating ballistic/quasi-ballistic photons from multiply scattered (diffuse) photons
traversing through a turbid medium. For example, time gated imaging [21, 22], polarization
gated imaging [23], intensity modulation imaging [24] etc., where information carried by the
ballistic/quasi-ballistic photons is filtered from the diffuse light. It is challenging to efficiently
detect the ballistic photons that have low signal to noise ratio as compared to the diffused photons,
especially in highly scattering media. Ballistic photon filtering could also be achieved with an
intensity modulation imaging scheme by discriminating them from the diffused light that arrives
with reduced modulation index and additional phase. One of the purposes of this article is to
theoretically study the feasibility of such an approach, which is currently the topic of active
research [25].

In this article, we analyze the widely used diffusion approximation for transport of modulated
light, from an information theoretical point of view for efficient parameter estimation and for
ballistic photons discrimination. Assuming a general scheme of optical quadrature demodulation
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detection and a corresponding noise model, this approach provides a rigorous insight into the
maximal precision of estimation of parameters using the diffusion equation, thereby providing a
robust theoretical argument for choosing the frequency of modulation suited to the experiment
at hand. Similarly, for ballistic filtering, we will present an information theoretic performance
metric and study the optimum ballistic discrimination efficiency that can be achieved under this
imaging scheme.

In section 2, we provide a brief description of the use of diffusion equation, the transport of
modulated light in diffusing media and the imaging scheme along with the parameters that will
be used in the theoretical analysis. In section 3, a generalized demodulation scheme is defined
and a noise model is presented. Then, in section 4, the noise model and the diffusion theory
are used to calculate the Cramer-Rao bound for parameter estimation. Finally, in section 5, the
ballistic filtering efficiency is analyzed and discussed with respect to real field situations.

2. Imaging scheme and diffusion model

r

P0

λ0±∆λ
Ω dΩ

Fig. 1. Imaging scheme: A directional source of light with power, P0, forward cone solid
angle, Ω, having a limited spectral width (λ ±∆λ ) is detected at a distance r by a detector
that subtends an angle dΩ from the source.

The diffusion theory for photon transport provides a simple, fast and analytical method
for modeling the light propagation through various turbid media. The properties of intensity
modulated light through a diffusing medium have been well studied and reviewed [15, 26–28].
Here, we present a brief introduction underlining concepts that are relevant in the context of
this article. We will follow the modeling of the intensity modulated light in diffusing media as
derived in several references [16,28,29] in the context of diffuse optical imaging. We will use the
formulations previously derived by the cited authors to parameterize our detection scheme and
then use information theoretical tools to derive simple rules for choosing frequency operating
points to efficiently use intensity modulation light depending on the properties of the medium.

2.1. Diffusion model

The diffusion model arises when the photons are allowed to perform a random walk, diffusing
from high photon density regions to low photon density regions. The theory has proved efficient
when modeling light in a predominantly scattering medium where the source and the detector
are far from boundaries of the medium and when detection is carried out sufficiently away from
a point source, in a supposed infinite geometry. The efficiency of the diffusion theory has been
studied alongside Monte-Carlo simulation and shown to have well acceptable accuracy in the
domain of its validity [30]. Let us now identify some parameters that are important for describing
light transport in a scattering medium. First, the absorption coefficient, denoted by µ (in units of
m−1), corresponds to the inverse of the mean distance traveled by a photon before it is absorbed.
Similarly, the scattering coefficient µs (m−1) is the inverse mean distance before a photon is
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scattered in the medium. We shall also consider the reduced scattering coefficient, denoted
by σ in this work, and classically defined as σ = µs(1− g), where g is the (dimensionless)
anisotropy factor, defined as the mean cosine of the scattering phase function [31, 32]. Such a
reduced scattering coefficient allows anisotropic scattering media to be easily described (notably
through diffusion equation), and may be interpreted as the inverse of the scattering length for a
fictitious isotropically scattering (g = 0) medium having the same macroscopic light-transport
parameters as the real anisotropically scattering (g 6= 0) medium. Within this framework, an
important length scale is the transport mean free path (T MFP) denoted by l∗, which is the mean
distance traveled by photons before they lose their initial directional information and is equal
to [µ +σ ]−1. The diffusion theory also includes two other constants: the diffusion length (D)
defined as D = l∗/3 and the optical penetration depth (δ ), which is the inverse of the effective
attenuation coefficient (

√
µ/D) in diffusing medium.

In addition, for the analysis in the following sections we will use various dimensionless
constants that are also given in the right side of Table 1. For instance, the dimensionless parameter
Rδ = r/δ corresponds to the effective optical attenuation of diffused light. The parameter q is
related to the angular frequency of modulation and the non-trivial form of the reparameterization
will be justified in following sections. For ease of reading, the corresponding definitions of all
these parameters are tabulated in Table 1.

2.2. Imaging scheme

Table 1. Left column: definitions, symbols and units of experimental parameters and diffusing
medium parameters. Right column: definition of dimensionless reduced parameters.

Meaning Symbol Unit Param. Defn.
Distance of propagation r (m) – –
Mean Free Path (MFP) MFP = 1/(µ +µs) (m) Rb r/MFP
Transport MFP (TMFP) l∗ = 1/(µ +σ) (m) R∗ r/l∗
Diffusion length D = l∗/3 (m) – –
Optical penetration depth δ = [D/µ]

1
2 Rδ r/δ

= [3µ(µ +σ)]−
1
2 (m)

Angular modulation frequency ω (rad/s) q
√

1+
√

1+(ω/µc)2

2
Effective refractive index n -
Speed of light in medium c (m/s) – –

The imaging scheme considered in this article includes a directional point source of light with
a forward cone solid angle Ω and that subtends a solid angle of dΩ at the detector which is placed
at a distance r from the source. For the sake of simplicity, we shall consider a source of limited
spectral range λ0±∆λ , so that the above diffusion parameters can be considered as constant over
the considered spectral range. The schematic in Fig. 1 illustrates the scenario. In the presence
of an intervening scattering medium, the net intensity of ballistic photons reaching the detector
of collection area dΩr2 is proportional to the total power P0 emitted by the source. It is given
by the Bouguer-Beer-Lambert’s law as IB = ξ P0 e−(µ+µs)r dΩr2

Ωr2 = ξ P0 e−(µ+µs)r dΩ
Ω [31], with

an extinction coefficient µ +µs, (equal to the inverse MFP, see Table 1) allowing us to define
Rb = r/MFP as the effective optical attenuation of ballistic light. The scaling factor ξ represents
the overall detector efficiency on the considered spectral range. Similarly, according to the steady
state solution of the diffusion theory, the diffuse photon intensity reaching the detector is also
proportional to the total power emitted by source, such that ID = ξ P0 e−r/δ dΩr2

4πDr = ξ P0 e−r/δ dΩ
4π

r
D

[16, 29]. The expressions for the intensities of ballistic and diffused light show that there are
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clearly two important length scales to be considered, namely, the TMFP (l∗) and the optical
penetration depth (δ ). Considering only the above two classes of photons, it is possible to obtain
an order of magnitude value of the ratio (α) of ballistic photons to diffuse photons reaching the
detector as

α =
IB

ID
= Ω′

D
r

e−r(µ+µs−1/δ ) = Ω′
eRδ−Rb

3R∗
, (1)

where we use dimensionless variables R∗, Rδ , Rb and Ω′ = 4π/Ω.

2.3. Modulated light in diffusing media

The propagation of sinusoidally modulated light through a scattering medium has been modeled
using diffusion theory and it has been shown that the transport of modulated light behaves as
photon density waves whose properties are dependent on the properties of the medium [15, 16,
27, 28]. In this article, we consider an intensity modulated source of light having modulation
angular frequency ω and amplitude modulation index M (also classically termed modulation
depth), which describes the amplitude of the periodic fluctuation of light intensity around its
unmodulated level. In that case, the instantaneous intensity reads i(t) = I0(1+M cos [ωt]). The
ballistic light that follows Bouguer-Beer-Lambert’s law, is only attenuated and reaches the
detector with instantaneous intensity ib(t) = IB(1+mB cos [ωt]) without any change in received
modulation index, mB = M.

However, the time dependent solution of the photon diffusion theory shows that the modulated
light traversing through a scattering medium is received at the detector with reduced modulation
index and additional phase [16]. Then, the instantaneous diffuse light intensity received at the
detector is id(t) = ID(1+mD cos [ωt +∆φ ]). Without derivation, we present the expression of
the reduced modulation index mD and the phase ∆φ which is identically reported in [16, 29] for
an infinite medium:

mD = M exp
[
−r
√

3µ(µ +σ)

(√
1+
√

1+(ω/µc)2

2 −1
)]

= M e−Rδ (q−1),

∆φ = r
√

3µ(µ +σ)

√
−1+
√

1+(ω/µc)2

2 = Rδ
√

q2−1. (2)

where the parameter q =
√

(1+
√

1+(ω/µc)2)/2, is related to the angular frequency of mod-
ulation and ranges between [1,∞) when ω ∈ [0,∞). Although the physical interpretation of this
parameter is not straightforward, we will see later that qRδ can be identified as a dimensionless,
frequency-dependent, effective attenuation of the diffused light. In the remainder of this article,
we define β = mB/mD as the ratio of the modulation indices of ballistic light to diffuse light. The
expressions of the intensity, phase and modulation index of ballistic and diffuse light components
are recalled in Table 2.

It is quite straightforward to see that using the above equations, the parameters Rδ and q can
be estimated when the modulation index and phase of the diffuse light are accurately detected.
The model can indeed be inverted as shown in Eq. (2.3):

Rδ =
∆φ 2−2( ln [β ])2

4 ln [β ]
, (3)

q =
∆φ 2 +2( ln [β ])2

∆φ 2−2( ln [β ])2 . (4)
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Table 2. Expressions of intensity, modulation index and relative phase for the ballistic and
diffuse components of the detected light.

Detection Ballistic photons Diffuse photons Ratio (Ballistic/Diffuse)
Relative phase (∆φ ) 0 Rδ

√
2(q2−1) –

Modulation index mB = M mD = Me−Rδ (q−1) β = eRδ (q−1)

Intensity IB = ξ dΩ
Ω P0 e−Rb ID = ξ dΩ

4π 3P0R∗ e−Rδ α = Ω′ e
Rδ−Rb
3R∗

d1 d2

d3

d4

1 2 3 4 5 6

2A

0

I0

Fig. 2. Illustration of the optical signal received at the detector. As an example, four samples
are shown here to form the quadrature components which, consequently, can be used for
estimation of amplitude and phase of the signal.

Thus, the above formulation provides a simple analytical method for estimation of the scatte-
ring and absorption parameters of the scattering medium using only diffuse light and a modulated
light source. In practice, especially in diffuse optical imaging, the modulation frequency is
scanned to obtain corresponding values of modulation index and phase. Then, a non-linear fit of
the theoretical prediction with the data provides the estimates for the scattering and absorption
properties of the medium [16]. The effect of scattering media on modulation index and phase can
also be exploited to attain discrimination of ballistic photons that retain the modulation index and
phase. These application scenarios can be analyzed from an information theoretical point of view
for a well-defined detection technique. The detection of the modulation index and the phase can
be performed in various ways. Generally in a demodulation scheme, the amplitude, phase and
mean intensity are recorded and then the modulation index can be easily estimated. Quadrature
demodulation is one of the simplest and the most widely used scheme for demodulation. It avoids,
in particular, phase tracking of the incoming signal which brings additional noise contributions.
In the following section we look at a quadrature detection scheme and derive the noise model for
the detection.

3. Quadrature detection scheme and noise model

Demodulation of a sinusoidally modulated signal can be performed by product detection, where
the signal is continuously multiplied with a sine and cosine of the same frequency to obtain the
quadrature amplitudes. This quadrature detection can be interpreted as follows. Let us consider
a detection system where a sinusoidal signal of angular frequency ω , modulation index M and
mean intensity I0 is sampled N times in a period producing photon count or grey level data di
(i = 1 to N). Then the quadrature components can be estimated by applying sinusoidal weighting
of the data points and computing the two quadratures U = ∑N

i=1 di cos [ωti +φ ] = A cos [φ ] and
V = ∑N

i=1 di sin [ωti +φ ] = A sin [φ ], for N ≥ 2, where φ denotes the relative phase difference
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between the signal and the demodulating waveforms. From the obtained variables U and V ,
estimates of the amplitude A = MI0/2 and relative phase φ of the demodulated signal are
respectively given by Â =

√
U2 +V 2 and φ̂ = tan−1[V/U ].

The intensity statistics of the random variables U and V can be derived by knowing that the
photon count within an infinitesimal sampling window at time ti may follow Poisson distribution
with mean and variance equal to the intensity received at the sampling window, which is di in the
current notation. Then, a weighted addition of the Poisson distributed data is also Poissonian,
indicating that U and V will also be distributed as Poisson random variables with variance I0/2
(see Appendix A.1). For high intensities, the Poisson distribution can be well approximated by a
Gaussian distribution (N ) with variance equal to the mean. Thus, we approximate that U and
V are distributed as N (A cos [φ ] ,Λ2) and N (A sin [φ ] ,Λ2), respectively, with Λ2 = I0/2 and
N (x̄,var(x)) denoting the normal distribution with mean x̄ and variance var(x). Knowing the
distribution of the quadrature components, it is then possible to derive the joint probability density
function (PDF) of the random variables, Z =

√
U2 +V 2 and Ψ = tan−1(V/U), respectively

associated with the modulation amplitude A and relative phase φ , by applying the appropriate
change of variables to the Gaussian distribution, as given in the Appendix A.2. The expected
values of the random variables Z, Ψ and their variance form the parameter vector θ ′ = [A,φ ,Λ2],
where 2A = MI0 is the peak-to-peak amplitude as shown in the schematic of Fig. 2. Then, the
joint PDF of the amplitude and phase is

PZ,Ψ(z,ψ|A,φ ,Λ2) =
z

2πΛ2 exp
[
− 1

2Λ2 (z
2 +A2−2zA cos [ψ−φ ])

]
. (5)

Quadrature demodulation cameras are in widespread use, especially in 3D imaging. For
instance, novel demodulation cameras like time-of-flight (TOF) cameras collect four samples per
period to obtain the quadratures U = d1−d3 and V = d2−d4 at frequencies up to 20 MHz [33].
Information theoretical studies have been made to accurately determine the phase which contains
the depth information of a scene using the above PDF [34]. In the following, we will use Fisher
information (FI) and Cramer-Rao bound (CRB) to analyze how well the diffusion parameters
of the scattering medium can be estimated using modulated light and the quadrature detection
technique.

3.1. Fisher information

Fisher information (FI) is a useful and efficient method of quantifying the precision with which
the unknown parameters in a data model can be estimated. It can be further used to analyze the
behavior of the covariance of estimators and its dependency on other parameters. FI is ultimately
related to the minimum covariance bound on the unbiased estimation of the unknown parameters.
Here, we will use the FI to quantitatively derive simple rules that must be taken into account
when using intensity modulated light in diffusion approximation for estimation of scattering
properties of a medium and for ballistic filtering applications.

The expected Fisher information matrix (FIM) for a parameter vector (η) is defined as
F (η)i j =−

〈
∂ 2 ln[P(x|η)]

∂ηi∂η j

〉
, where 〈.〉 denotes the expectation value. We present below the FIM

for the detection procedure described above with respect to the parameter vector θ ′ = [A,φ ,Λ2].
It is straightforward to show that the FI reads in that case

F (θ ′) =

(A) (φ) (Λ2)


1
Λ2 0 0

0 A2

Λ2 0

0 0 1
Λ4




(A)

(φ)

(Λ2)

,
(6)
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where the bracketted grey symbols are a guide for the reader to better identify the pair of
parameters addressed by each element of the FIM.

The above FIM is diagonal, which shows that the three parameters in θ ′ can be estimated
independently. Moreover, the precision in estimation of the phase increases with the amplitude of
the signal. The detection technique described in the preceding section is not limited to detector
arrays, but is generally adopted in lock-in detection. In this detection scheme, the recorded
amplitude and phase of the diffuse light through a scattering media can be modeled by the
diffusion theory as presented in preceding sections. Using this model, the noise model of the
detection can be reparametrized as shown below and consequently, estimation precision of the
parameters can be calculated.

3.2. Reparametrization of noise model using diffusion theory

Let us consider the effect of diffused light only, and obtain the FIM with respect to the new set
of parameters θ = [M,Rδ ,R∗] to deduce some insight into the precision of estimation of each
respective parameter and its dependency on other parameters. The FI with respect to the new
parameters can be obtained by calculating the Jacobian matrix, JD , of the transformation θ ′→ θ
in the presence of diffuse light only, as denoted by the subscript D . The ith, jth component of this
matrix is

[
JD

]
i, j =

∂θ ′i
∂θ j

. Given the modulation index, phase and the intensity expected for diffuse
light from the diffusion model, the amplitude, phase and variance can be written as AD =mDID/2,
∆φ = Rδ

√
2(q2−1) and Λ2

D = ID/2 = 3S0R∗ e−Rδ /2, where we have set S0 = ξ dΩP0/4π . The
Jacobian is then calculated to obtain the FIM with respect to parameter vector θ using the
transformation FD (θ) = JT

DF (θ ′)JD . Both, the Jacobian and the FIM FD (θ) are shown in
Appendices B and C, for reference. It is worth mentioning here that in applications where the
SNR of the amplitude and phase are important, the noise model presented here can be used to
obtain the SNR of detected amplitude and phase as a function of frequency by using the above
relations. However, we will focus on deriving and analyzing the minimum variance bounds on
estimation of scattering parameters as presented in the following section.

4. Maximal precision in estimation of scattering parameters in diffuse optical
imaging

4.1. Lower bound on estimation variance

The above re-parameterization allows us to study the variance bound in estimation of θ with
respect to the frequency of modulation represented by the variable q. According to the Cramer-
Rao theorem, for any unbiased estimator θ̂ of the parameter vector θ , and for any row vector
w having the same dimension as θ , one has w

〈
θ̂ θ̂ T

〉
wT ≥ wF (θ)−1wT . Thus, the Cramer-

Rao bound (CRB) provides a minimum covariance bound that can be reached by an efficient
estimation technique. Generically, it is not guaranteed that such an efficient estimator always
exists, however, Maximum Likelihood (ML) estimators has been shown to be asymptotically
unbiased and efficient for a large collection of data, with optimality strictly proved in the case
of exponential family of distributions [35]. The exact forms of ML estimators in this case are
solutions to transcendental equations and remain out of the scope of this article. Instead, let
us analyze the lower covariance bound to reveal some simple conclusions and rules for the
estimation problem. We provide the bound as CRBD (θ) = FD (θ)−1 for the invertible matrix
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FD (θ) which is shown in the Appendix C:

CRBD (θ) =

(M) (Rδ ) (R∗)


M2 + 4e(−1+2q)Rδ q
3(1+q)R∗S0

2e(−1+2q)Rδ
3M(1+q)R∗S0

−MR∗+ 2e(−1+2q)Rδ
3M(1+q)S0

2e(−1+2q)Rδ
3M(1+q)R∗S0

2e(−1+2q)Rδ

3M2(−1+q2)R∗S0

2e(−1+2q)Rδ

3M2(−1+q2)S0

−MR∗+ 2e(−1+2q)Rδ
3M(1+q)S0

2e(−1+2q)Rδ

3M2(−1+q2)S0
R2
∗+

2e(−1+2q)Rδ R∗
3M2(−1+q2)S0




(M)

(Rδ )

(R∗)

,
(7)

where again the bracketed grey symbols are a guide for the reader to identify the pair of
parameters addressed by each element of the CRB matrix.

It is clearly seen that the variances are functions of the frequency of modulation (represented
by q). Let us first look at the variance in estimation for the parameters Rδ and R∗. The variance
of R∗ increases with its mean value and has an additional frequency dependent term, while
the variance of Rδ decreases with R∗. The dependence of both the parameters on frequency is
the same and has a functional form e(−1+2q)Rδ /(−1+q2). A simple calculus shows that this

function reaches a minimum at qopt =
(
1+
√

1+4R2
δ
)
/2Rδ . This indicates that there exists an

optimal angular frequency ωopt around which the variance of the estimation is minimum. This
optimal angular frequency depends only on Rδ and is given by the following expression

ωopt

µc
=

√
2
[

1+
[
1+4R2

δ
] 1

2 +R2
δ
(
3+
[
1+4R2

δ
] 1

2
)] 1

2

R2
δ

, (8)

whose evolution is plotted in Fig. 3(a). It can be readily seen that in the small-Rδ limit, the
optimal frequency behaves like ωopt/µc = 2/R2

δ , whereas it evolves as ωopt/µc = 2/
√

Rδ when
Rδ → ∞. In the next subsection we analyze the properties and evolution of the optimal frequency
ωopt obtained for the estimation of scattering parameters.

4.2. Optimal operating frequency

The expression for the variance-minimizing optimal angular frequency ωopt has a non-trivial
form that depends on the normalized optical attenuation Rδ = r/δ , which basically represents
the inverse of an overall visibility factor for the diffuse photons. The existence of an optimal
operating point has interesting consequences, especially in the context of diffused optical imaging,
where the SNR of the images is an important limiting factor. Generally, in such applications, the
operating frequency, denoted here by ωa, is chosen such that ωa/µc = 1 [29]. This is indeed a
reasonable choice of operating frequency, justified by the fact that at smaller frequencies the
phase change due to diffusion is too small to be detected, while at much higher frequencies, the
change in phase becomes comparatively insensitive to further increase in frequency, thereby not
bringing any further improvement in the estimation of the medium parameters [29].

To understand the loss incurred by an imperfect choice of operating frequency, we compare
the performance of estimation provided by the two frequencies, ωopt and ωa. We plot the ratio
of the variance in the estimation of Rδ obtained when using ωopt against ωa in Fig. 3(b). The
figure provides a quantitative study of the loss in optimal precision in using ωa as opposed to
using ωopt . The precision of estimation are equal only when Rδ = 5.3, at which point ωopt = ωa,
as indicated by the dashed lines in the figures. For example, taking typical values of scattering
parameters valid in tissues, such that µ = 0.1 cm−1 and σ = 10 cm−1, the two operating points
are the same only for a detector placed as distance of 3 cm. The standard operating frequency
ωa is independent of the propagation distance r and of σ , depending only on the absorption
coefficient µ . As illustrated in Fig. 3(a), for a detection carried out at a distance higher than
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Fig. 3. (a) Ratio of the optimal frequency ωopt to standard operating frequency ωa = µc as
a function of the normalized optical attenuation Rδ . (b) Loss in precision in the estimation
of Rδ using modulation angular frequency ωa as opposed to ωopt as a function of Rδ . (c)
Contours of optimal frequency of modulation as a function of absorption coefficient µ and
reduced scattering coefficient σ and the detection distance r for an intervening medium
having refractive index 1. The frequencies can be scaled down by a factor of n for a medium
with refractive index n.

3 cm, the optimal frequency is in fact smaller, which may reduce the cost and complexity of
the electronics required at high frequencies while providing better results. On the other hand,
if the detection is carried out closer than 3 cm, operating frequencies higher than the standard
operational frequency are suggested.

Similarly, since Rδ is a function of σ , µ and r, the dependency of the optimal modulation
frequency on these three parameters can be analyzed from the contour plot shown in Fig. 3(c).
Firstly, for fixed values of σ and µ , the optimal operating frequency decreases with increase in r.
Secondly, for fixed values of r and µ , the optimal frequency is seen to decrease with the increase
in σ . The above two dependencies can be interpreted by noticing that longer distance of travel
or higher scattering coefficient would allow for a larger amount of multiple scattering events
leading to greater modification of the phase and the modulation index of the diffused light, for a
given coefficient µ .

Finally, the optimal frequency is seen to increase with the increase in µ , for fixed values of r
and σ . An increase in absorption would lead to smaller amplitude of modulation at the detector.
To compensate for this loss that occurs at a rate of µc, the photon density arrival rate should be
increased leading to a increase in optimal frequency of operation. It can also be noticed that the
change of optimal operating frequency is more sensitive to a change in absorption coefficient
than to a change in σ or r. The above conclusions can also be easily obtained by noticing that
equation Eq. (8) can be approximated to ωopt = 2µc/

√
Rδ = 2

√µc[r
√

3(1+σ/µ)]−1/2, for
sufficiently large value of Rδ , as noted above. It is interesting to notice at this level that the above
analytical deductions about the existence of an optimal operating frequency and its evolution
with scattering parameters are qualitatively in very good agreement with previous numerical
simulations and experimental studies presented in [36–38].

More generally, the above results show that our analysis, based on a diffusion model for the
propagation of photons coupled with an information theoretical approach, makes it possible to
account for several competing phenomena involved in light diffusion. For instance, the noise
variance Λ2 observed with the quadrature detection scheme described in Section 3 decreases
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with Rδ but is independent of ω , whereas the modulation index and the phase depend on Rδ
but with rates of change that are functions of the angular frequency). This analysis is able to
provide the functional dependence of the optimal operating frequency with respect to properties
of the medium under consideration and practical indications concerning the optimal experimental
parameters for the estimation task considered. The conclusion obtained appears to be more
specific than the usual rule of thumb used in similar experiments, as it reveals the optimal
operating frequency and provides insight into the various competing phenomena that produce it.

It is possible to extend such an information theoretical analysis towards another problem,
namely, ballistic photon filtering in diffusing media, where the goal is to efficiently discriminate
the ballistic photons from the diffused photons. In the next section we will introduce a perfor-
mance metric for ballistic discrimination and present the optimal operating point based on the
information theoretical approach coherent with the previous discussions.

5. Ballistic filtering

The importance of ballistic discrimination has been discussed in the introduction section, for
instance when imaging objects embedded in nebulous media like fog. As noted above, when
high-frequency modulated light propagates in a turbid medium, the ballistic photons and diffused
photons have different transport properties in terms of modulation index and phase, which can
be exploited by a demodulating detector to attain discrimination of ballistic photons.

By contrast, such a physical ballistic filtering effect cannot be obtained with a standard
intensity camera, or with low-frequency modulation/lock-in detection. In both cases, detection of
an extremely small ballistic contribution over a spatially uniform diffuse illumination would be
possible only at the expense of a dramatic increase in the detector dynamics or acquisition time.

In this section, we investigate the conditions required to obtain significant ballistic filtering
with modulated light in a turbid medium. More particularly, we derive the minimum modulation
frequency required to attain ballistic filtering irrespective of photon budget and exposure time.

5.1. Gain definition for ballistic filtering efficiency

We will again resort to FI to define a ballistic filtering efficiency as the gain in information
provided by the ballistic light for the estimation of the modulation index M of the light source.
Let us consider a quadrature demodulation camera that receives ballistic light over the diffused
light on a set of pixels denoted B⊕D and another set of pixels that receive only diffused light at
a region denoted by D . In most cases, the contrast between these two regions is marginal because
fewer ballistic photons reach the detector. To quantify this contrast in a demodulation scheme,
we define the ballistic discrimination efficiency (or gain) as the ratio of FIs in the estimation of
the actual modulation index M of the source when using data from region B⊕D as opposed to
D . The gain in information, denoted by Gb f is thus defined as

Gb f =
[FB⊕D (θ)]11

[FD (θ)]11
, (9)

where [FD (θ)]11 = [JT
DF (θ ′)JD ]11 is the first (upper left) term of the FIM FD (θ) given in Ap-

pendix C when only diffused light is considered, whereas [FB⊕D (θ)]11 = [JT
B⊕DF (θ ′)JB⊕D ]11

stands for the first term of [FB⊕D (θ)]11 obtained when ballistic and diffused light are simulta-
neously taken into account. In the above expressions, JB⊕D is the Jacobian of the transformation
θ ′→ θ in the presence of ballistic and diffuse light. Here, we do not need to compute either the
entire Jacobian JB⊕D or the entire FIM FB⊕D (θ), as our problem is restricted to finding the
first term in the FIM, which provides a limiting but reasonable condition for achieving ballistic
filtering when other parameters like Rδ and R∗ are already known or assumed to be known.
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Fig. 4. (a) Contour plot of ln[Gb f ] for range σ/µ ∈ [1,100] and ω/µc ∈ [0.01,90], with
anisotropy factor g = 0. (Inset) Shows a zoomed in section of the plot where the effect of
the cosine term is clearly visible. The cosine term makes it difficult to analytically obtain
the contour of unity gain but the condition of Eq. (13) for expecting a gain is displayed as
red dashed line. The diffusion approximation remains valid in the region below the yellow
dashed line. (b) Same contour plot as (a) for anisotropy factor g = 0.15.

Consequently, the gain can be calculated as

Gb f =

1
Λ2

B⊕D

(
∂AB⊕D

∂M

)2

1
Λ2

D

(
∂AD
∂M

)2 , (10)

where the AB⊕D and AD are the amplitudes received at the regions B⊕D and D , respectively
(see Appendix D). Finally, the expression for the gain Gb f can be written as

Gb f =
1

1+α
(
1+α2β 2 +2αβ cos∆φ

)
(11)

=
1+

Ω′2 eτ
(

1+ 6R∗
Ω′ e−τ/2 cos

√
2(q2−1)Rδ

)

9R2∗
1+α

, (12)

where τ = 2(qRδ −Rb), β = eRδ (q−1) and α = IB/ID is the ratio of received ballistic light over
diffused light.

5.2. Condition for ballistic filtering gain

The contour plot of the ln[Gb f ] as a function of the normalized angular modulation frequency
(ω/µc) and of σ/µ is shown in Fig. 4 for two values of the anisotropy coefficient g, taking
Ω′ = 1 (isotropic emitter) and rµ = 10. In Figs. 4(a) and 4(b), the domain of validity of the
diffusion approximation is delimited by the region below the yellow dashed line (see Section 5.4).
It can be seen that a gain much greater than unity can be obtained for angular frequencies that
lie above a roughly linear contour. Thus, the minimum angular frequency required for ballistic
filtering depends roughly linearly on the scattering properties (through µs, σ and/or g) of the
medium. The analytical expression of the contour for unity gain is not easily computed because
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of the oscillating cosine term in Eq. (11), as can be seen in the inset of Fig. 4. Taking a closer look
at the expression of ballistic gain, it can be noticed that a significant gain can be obtained only
when τ > 0, which allows exponential increase in gain and at the same time makes it possible
to neglect the cosine term inside the bracketed expression. Moreover, it can be easily checked
that it is a sufficient condition to ensure that Gb f of Eq. (11) is greater than unity. The above
simple condition can be rewritten as qRδ > Rb, which interestingly suggests that qRδ effectively
behaves as a frequency-dependent attenuation for diffused light, which should be greater than
the effective attenuation experienced by ballistic light (Rb) in order to achieve efficient ballistic
filtering. The above inequality leads to a condition in terms of minimum frequency of operation
which can be written as

q > Rb/Rδ =
(1−g)+ σ

µ

(1−g)
√

3(1+ σ
µ )

, (13)

which interestingly appears to be independent of the propagation distance r. When expressed
in terms of angular frequency ω , this gain condition can be plotted as the red dashed line on
the contour maps in Fig. 4 and seems to provide a well-defined condition for attaining ballistic
gain. Further simplification holds under the validity conditions of the diffusion theory, where
σ > 10µ . In this case, the condition for achieving ballistic filtering reduces to

ω
c
>

2
3

σ
(1−g)2 , (14)

and is insensitive to the value of the absorption coefficient µ . This clearly indicates that filtering
of ballistic photons using an imaging demodulation technique will be more difficult, and hence
require higher modulation frequency, in forward anisotropically scattering media with g > 0.
Indeed, this can be physically understood, as diffused photons will be less likely to deviate from
the ballistic path in a significantly forward scattering medium.

As a result, the above equation provides a simple rule of thumb for achieving ballistic filtering
in the context of intensity modulation and quadrature detection. It must be noted that the effect
of Ω′ and rµ (that are set as constants in Fig. 4) is only on the value of the gain and they do not
affect the above condition for efficient ballistic discrimination. Identification of this minimum
modulation frequency for ballistic filtering is also important from a practical point of view as it is
easier to design electronic or electro-optic devices that work at low modulation and demodulation
frequencies. According to the above results, ballistic filtering in biomedical applications would,
however, require very high (if not unrealistic) modulation frequencies, as for typical values
of σ = 10 cm−1, refraction index n = 1.33, and a propagation distance r = 5 cm, one obtains
fmin=23.9 GHz (respectively fmin=597 GHz) when g = 0 (respectively g = 0.8)!

The expression derived above can also serve conversely to provide the range of visibilities
that can be handled by a ballistic filtering device working at any fixed modulation-demodulation
frequency. For instance, for transport safety in foggy weather, if we consider r = 1 km, n = 1.33,
and a modulation frequency of f =10 MHz, the above rule of thumb indicates that ballistic filtering
can be obtained when µs ≤ 0.42 m−1 (respectively µs ≤ 0.084 m−1) when g = 0 (respectively
g = 0.8). According to the World Meteorological Organization’s recommendations [39], such
values of µs correspond to very low visibilities (meteorological optical range MOR = 3/µs) of
7.5 m (respectively 36 m), still assuming a homogeneous, mostly scattering medium (µs� µ).

5.3. Maximum expectable gain

Lastly, we can estimate the maximum expectable gain under the condition of highly diffusing
medium with reduced ballistic contribution (α � 1). The gain values derived below may not be
quantitatively relevant for practical experiments because many phenomena have been neglected
in our analysis so far, such as detector noise, turbulence, spurious ambient illumination, limited
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dynamics of the detector, etc. Under the above conditions, the maximal expected gain using an
intensity modulation scheme and a quadrature demodulation technique is roughly driven by the
exponential term, i.e., ln[Gb f ]∼ τ , which allows one to fairly retrieve the gain values plotted in
Fig. 4. As noted above, the value of the maximum expectable gain depends not only on ω and σ
but also on r and µ .

The evolution of the maximum gain with the physical parameters involved can be analyzed
from the expression of τ . It is obvious to see that Gb f naturally increases with ω , but also with
r. This can be interpreted by noticing that increasing the number of spatial periods along the
propagation must increase the efficiency of the ballistic filtering. It is also quite straightforward
to show that Gb f increases with the absorption coefficient µ when the diffusion approximation
is valid (σ/µ > 10). Though difficult to interpret, it is also possible to demonstrate from the
expression of τ that ln[Gb f max ] increases with σ when ω/µc > 8σ/3µ(1−g)2 (which condition
is satisfied on the left side of the dotted black lines plotted in Figs. 4(a) and 4(b)), otherwise it
should decrease with σ .

5.4. Limitations and validity of the study

However, it is important to note here that the diffusion equation for modulated photon transport
is admitted to be valid for frequencies lower than ω/c < µ +σ [40], which correspond in
Fig. 4 to the region lying below the yellow dashed line. More generally, it is easy to check that
when g > 1−

√
2/3 = 0.1835, the minimum frequency derived above ωmin/c = 2σ/3(1−g)2

lies outside the domain of validity of the diffusion approximation. This restricts our analysis
to situations of quasi-isotropic diffusion regime, in fair agreement with primal premises of the
diffusion equation approximation for photon transport.

Finally, we would like to stress again that the quantitative gain values retrieved from Fig. 4 are
highly unlikely to be achieved in a practical experiment because we have neglected all sources of
experimental imperfections in our work, and, for very high frequencies, the extrapolated gains
are obtained from the diffusion approximation beyond its validity. However, the above study
makes it possible to understand the interplay of the main physical parameters at stake in ballistic
filtering for contrast enhancement.

6. Conclusion

We have used the photon diffusion theory and its predictions for transport of intensity modulated
light in a diffusing medium along with the noise model for quadrature demodulation scheme, to
derive optimal operating points for two application scenarios: scattering parameter estimation as
used in diffuse optical imaging and ballistic photon filtering as used in ballistic photon imaging.
In the case of estimation of scattering parameters using only diffused light, the Cramer-Rao
lower bound on the estimation of scattering parameters was derived and was shown to have a
minimum at an optimal modulation frequency. The derived optimal frequency of modulation
that achieves minimum variance of estimation depends on the optical penetration depth and
the distance of propagation. The evolution of this optimal operating frequency was analytically
shown to be increasing with higher absorption coefficient and decreasing with increase in distance
of detection and/or the scattering coefficient of the medium. The loss in estimation precision
incurred when using a non-optimal operating frequency was quantified. These results pave way
for better design of diffuse optical imaging setups that are used in medical instruments. Indeed,
given the average scattering parameters of the tissue under test, an optimal frequency can be
inferred from the above analytical expressions, and used in the setup to optimize its performance
when estimating the parameters of the scattering inhomogeneities.

In the case of ballistic photon imaging using intensity modulated light, an information theo-
retical metric was introduced to quantify the efficiency of discriminating ballistic photons from
diffused photons. A minimum operating angular frequency was derived which appeared to be
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essentially a linear function of the scattering coefficient of the intervening medium only: it was
shown that a significant gain in ballistic filtering can be expected when the angular frequency
of modulation ω > 2σc/3(1−g)2. According to this rule of thumb, ballistic filtering using
modulated imaging seems within reach for transport safety applications. On the other hand,
the minimum frequencies derived for typical parameters and propagation lengths encountered
in biomedical applications seem hardly compatible with available imaging systems, thereby
motivating the search for high frequency demodulation imaging systems.

In this approach, diffusion theory of photon transport and noise model of a quadrature demodu-
lation scheme were tied together using information theoretical tools to provide minimumvariance
operating points and to derive the expression of expected gains by taking into account various
competing phenomena in the system. It must, however, be kept in mind that the analysis is valid
within the applicability of the diffusion approximation, which is supposed to breaks down at large
angular modulation frequencies close to ω/c = µ +σ . Moreover, the extremely high numerical
values of gain presented in the article are only limited by physical photon noise that is carried
forward to the detection scheme. The properties of the detector, like detection noise and detector
dynamics were ignored so far to limit the calculations and to focus on the physical limits and
optimal operation of such a scheme. However, in real life application, additive detector noise and
source phase noise must be taken into account. Incorporating such additional noise factors in our
approach is a clear perspective to this work, which will indeed limit the attainable gain values to
more realistic values.

Appendix

A. Noise model

A.1. Noise variance

At each time slice ti the photons received at the detector can be modeled as having Poisson
noise with variance equal to the mean. Then, the optical noise variance at each slice is I(ti) =
I0(1+M cos [2πti/T ]). The quadrature components are obtained by weighting each slice with
sine and cosine of same frequency. Thus, the total noise variance will propagate as var(V) =
∑nT

i=0 sin [2πti/T +φr]
2 I(t)

= I0
2 + I0M ∑nT

i=0( sin [2πti/T +φr] ( sin [4πti/T +φr]+ sin [φr]))

= I0
2 Similarly, one shows var(U) = I0

2 .

A.2. Joint PDF of amplitude and phase

Let us consider quadrature components [U,V ]T as joint Gaussian random variables with mean
[A cos [φ ] ,A sin [φ ]]T and covariance matrix Σ = Diag [Λ2,Λ2]. Then, the joint distribution of
the random variables U and V is

PU,V (u,v|A,φ ,Λ2) =
1

2πΛ2 exp
[
− (u−A cos [φ ])2 +(v−A sin [φ ])2

2Λ2

]
. (15)

For a change of variables, such that Z =
√

U2 +V 2 and Ψ = tan−1[V/U ]U = Z cos [Ψ] ,V =
Z sin [Ψ], changed PDF can be obtained by noting that

PZ,Ψ(z,ψ|A,φ ,Λ2)=PU,V (u,v|A,φ ,Λ2)
∣∣Jz,ψ

u,v
∣∣ = z

2πΛ2 exp
[
− 1

2Λ2 (z
2 +A2−2zA cos [ψ−φ ])

]
,

(16)
where, Jz,ψ

u,v is the Jacobian of the transformation {u,v}→ {z,ψ} and |.| is the determinant.
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B. Jacobian matrix of the transformation θ ′→ θ for diffuse light only

The Jacobian matrix for θ ′→ θ

JD =




3
2 e−qRδ R∗S0 − 3

2 e−qRδ MqR∗S0
3
2 e−qRδ MS0

0
√
−1+q2 0

0 − 3
2 e−Rδ R∗S0

3
2 e−Rδ S0


 . (17)

C. Fisher information FD (θ)

In the presence of diffused light only, the FIM for a change of coordinates θ ′→ θ is simply
calculated by FD (θ) = JT

D F (θ ′) JD

F (θ)=




3
2 e(1−2q)Rδ R∗S0 − 3

2 e(1−2q)Rδ MqR∗S0
3
2 e(1−2q)Rδ MS0

− 3
2 e(1−2q)Rδ MqR∗S0 1+ 3

2 e(1−2q)Rδ M2
(
−1+2q2

)
R∗S0 − 1

R∗ −
3
2 e(1−2q)Rδ M2qS0

3
2 e(1−2q)Rδ MS0 − 1

R∗ −
3
2 e(1−2q)Rδ M2qS0

2+3e(1−2q)Rδ M2R∗S0
2R2∗


 .

(18)

D. Amplitude detected at ballistic and diffused regions

Diffused region D When the detector (or a pixel) receives only diffused light, the quadrature
components detected are given by uD =

∫
ID(1+mD cos [ωt−φD]) cos [ωt +δφ ]dt

= IDmD
2 cos [φD +δφ ]

vD =
∫

ID(1+mD cos [ωt−φD]) sin [ωt +δφ ]dt
= IDmD

2 sin [φD +δφ ] .

Ballistic + Diffused region B⊕D When the detector (or a pixel) receives both contributions
of diffused light and ballistic light, the quadrature components detected have the following
expressions

uB⊕D =
∫
[ID(1+mD cos [ωt−φD])+ IB(1+mB cos [ωt−φB])]

× cos [ωt +δφ ]dt

= IDmD
2 cos [φD +δφ ]+ IBmB

2 cos [δφ ]

Similarly,

vB⊕D =
IDmD

2
sin [φD +δφ ]+

IBmB

2
sin [δφ ] .

Amplitudes As a consequence of the above derivations, the amplitudes estimated on detectors
that receive only diffused light and detectors that receive both ballistic and diffused light respec-
tively read

A2
D =

I2
Dm2

D
4

A2
B⊕D =

I2
Dm2

D
4

+
I2
Bm2

B
4

+
IDIBmDmB

2
cos [φD] =

I2
Dm2

D
4
(
1+α2β 2 +2αβ cos [φD]

)
.
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Abstract: We address an original statistical method for unsupervised
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components of unknown nature and number. We show that such spectral
unmixing can be efficiently achieved using information criteria derived
from the Minimum Description Length (MDL) principle, outperforming
standard information criteria such as AICc or BIC. In the context of
spectroscopic applications, we also show that the most efficient MDL
technique implemented shows good robustness to experimental artifacts.
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1. Introduction

Air pollution monitoring in the atmosphere has motivated the development of many active op-
tical instruments based on absorption spectroscopy. Ideally, a single instrument should be able
to detect and quantify numerous gas species. It is therefore appropriate to use an illumina-
tion source that can cover a large spectral range. Two kinds of sources can be used, which
are: i) narrow-line lasers with broad tunability, and ii) instantaneous broadband sources. Both
families have demonstrated high potential for measurement of multi-components gas mixtures
in the atmosphere. Narrow-line tunable lasers have been used in multi-wavelength systems
like DIfferential Absorption Lidars (DIAL) [1, 2] and Tunable-Diode Laser Absorption Spec-
troscopy (TD-LAS) [3]. Instantaneous broadband sources have been used in various experi-
ments schemes such as Differential Optical Absorption Spectroscopy (DOAS) [4], open-path
active Fourier-Transform InfraRed (FTIR) spectroscopy [5], white-light filament-induced spec-
troscopy [6], and more recently, supercontinuum fiber laser spectroscopy [7, 8]. These various
techniques share a common experimental design which is sketched in Fig. 1.

All these techniques provide multi-spectral absorption data that can be processed by multi-
variate statistical analysis in order to characterize the gas mixture. When the number and nature
of the chemicals are a priori known, efficient algorithms can be designed to estimate their con-
centrations [9–11]. However, in many practical cases, the number, nature, and concentration of
gas components are all unknown. In such situations, the same algorithms are inclined to over-
fit signal noise by assigning non-zero concentrations to many gas species in the fixed list of
expectable gases (all of them being estimated at the same time). This results in complex and
often unrealistic gas diagnosis. To avoid this, it is necessary to design unsupervised methods
enabling simultaneous gas selection and concentration estimation. In this paper, we use the
powerful concept of Minimum Description Length (MDL) principle to tackle this problem. We
illustrate the potential of the method for spectral unmixing of several chemicals in the mid-
infrared range. This spectral range is of particular interest for air pollution monitoring, as many
industrial and greenhouse gases exhibit strong absorption lines in this band.

In broad outline, the MDL principle is based on the idea that the best model describing the
measured data must minimize the code length needed to describe the data and to encode the
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model itself [12]. Such a principle has already been applied in various domains, such as social
sciences [13], biology [14] or radar signal processing [15] for instance. For the first time to the
best of our knowledge, we show that this principle can be used for spectroscopic applications.
More precisely, the approach presented in this paper allows unsupervised spectral unmixing
of gas mixtures to be simply operated, with detection performances that outperform standard
information criteria.

This paper is organized as follows: in the next section, we present the physical situation
considered, and the principle of the MDL-based spectral unmixing algorithm is detailed. In
section 3, we present and analyze some simulation results, allowing us to quantitatively com-
pare the performance of the MDL-based approaches with standard methods. We also analyze
the robustness of the proposed method when experimental outliers occur in the measurement
process. Finally, the conclusion and perspectives of the paper are given in Section 4.

Fig. 1. Illustration of an absorption spectroscopy experiment using an active broadband
illumination or tunable laser source.

2. Principle of unsupervised spectral unmixing algorithm

2.1. Posing of the problem

Before presenting the principle of the unsupervised spectral unmixing method addressed in
this paper, let us detail the physical model that will be considered in the following. In most of
absorption spectroscopy experiments, one is interested in measuring a vector X containing in-
tensity measures on M spectral slits (or wavelengths) not necessarily adjacent. In the presence
of absorbing gas species, these spectral measurements reveal specific absorption patterns de-
pending on the nature and concentration of the chemicals encountered by the probe light beam.
These spectral absorption patterns are superimposed with the spectral baseline of the active
illumination source. The vector X of the measured intensities is linked to the K-dimensional
vector c containing the gases concentrations c = [c1, . . . ,cK ]T through the following equation

X =
(
a0ue−Huc)∗g, (1)

where g denotes the spectral slit (or laser linewidth) convolution function, which is assumed
known in the following. In this equation, a0u denotes the baseline spectrum, and the M × K
matrix Hu = [hu1,h2, . . . ,huK ] contains the unconvolved high-resolution absorption spectra of
the K gas species. For the sake of simplicity, we will only consider in this paper the case of
small absorption optical depths (i.e., Huc � 1). Moreover, we assume that the baseline a0 is
varying slowly with respect to both the absorption lines and the convolution function widths. In
such conditions, the measured intensities can be written,

X = a0e−Hc, (2)
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where the matrix H = [(hu1 ∗ g),(hu2 ∗ g), . . . ,(huK ∗ g)] contains the convolved absorption
spectra of the K gas species, and where the convolved spectral baseline a0 is assumed known,
either from instrumental calibration or with a precise radiometric model of the illumination
source. More accurate models involving deconvolution procedures, as well as the influence of
a possible resolution mismatch between the instrument and the model are outside the scope of
this paper, but could deserve investigation in future work.

The noisy experimental intensity measures over the M spectral slits, obtained for instance
with a dispersive spectrometer or a FTIR spectrometer, will be denoted X̃ in the remaining of
this paper. It is a common procedure to use the logarithm of the measured data so as to obtain
a linear regression model of the following form:

Ỹ = ln X̃ = b0 −H · c+n, (3)

with b0 = lna0, and where the M-dimensional zero-mean random vector n allows us to model
the experimental noise. We assume that the noise contribution to the measured signal Ỹ can
be correctly accounted for with a Gaussian additive model. We also assume independence be-
tween the noise affecting two distinct spectral slits, i.e., 〈ni n j〉 = 0 if i �= j. For such a linear
regression model, the usual estimator is ĉ = (HHT )−1HT (Ỹ−b0) and is usually referred to as
the Minimum Mean Squared Error (MMSE) estimator since it minimizes the Residual Sum of
Squares RSS = (Ỹ− Ŷ)T (Ỹ− Ŷ), with Ŷ = b0 −Hĉ.

Under the hypothesis of Gaussian fluctuations and if the noise variance is not assumed a
priori known during the estimation procedure, it can be shown [16] that this quantity is related
to the loglikelihood �Ỹ(Ỹ|H) of the observed data through the following equation

�Ỹ(Ỹ|H) = lnPỸ(Ỹ|H) = −M
2

lnRSS + ct, (4)

where ct denotes an additive constant independent of the measured data. It can be noted that
this last equation shows that the MMSE is also the Maximum Likelihood (ML) estimator under
Gaussian fluctuations.

2.2. Model selection

The issue of model selection arises in many practical situations. For the problem at hand, two
questions have to be answered: how many gas components (regressors) do we need to describe
the experimental data, and which regressors have to be selected in the linear regression model
of Eq. (3) to best explain the observations ? Without any model selection step, the most ex-
haustive regression model would include any gas species presenting characteristic absorption
lines within the spectral range considered, and may lead to misleading and imprecise (if not
incorrect) results, mostly due to overfitting of the noise. To avoid such undesirable situations,
many penalization methods have been proposed among which we can cite the Akaike Infor-
mation Criterion (AIC) [18], the Bayesian Information Criterion (BIC) [19], the Risk Inflation
Criterion (RIC) [20], etc. These so-called information criteria make it possible to introduce
sparsity constraints in the regression model, by selecting the solution (i.e., the regressor ma-
trix H) which minimizes −�Ỹ(Ỹ|H)+C , with a different penalization term C depending on
the information criterion considered. It can be noted however that since the loglikelihood is
proportional to the logarithm of the RSS, up to an additive constant independent of the se-
lected regression model [16], the model selection can be operated equivalently by minimizing
M/2lnRSS +C .

Let us briefly recall two of the classical information criteria, which will be used in the re-
maining of the paper as benchmarks to assess the quality of the proposed MDL-based methods.
The simplest is the Akaike Information Criterion (AIC) [18], which introduces a penalization
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term equal to the number K of regressors included in the model. In the case of samples of lim-
ited size, this penalization term can be refined and is usually referred to as AICc and will be
denoted C (a) in the following, with [16]

C (a) =
M
2

1+K/M
1− (K +2)/M

. (5)

We shall also consider the well-known Bayesian Information Criterion (BIC) [19], whose pe-
nalization term reads

C (b) =
K
2

lnM. (6)

Other information criteria can be found in abundance in the literature, which may suggest
that an appropriate “most efficient” criterion at hand can be designed for a given statistical
problem. Among various attempts to build a general theoretical framework to interpret model
complexity, the Minimum Description Length (MDL) principle introduced by Rissanen [12] is
an interesting and fruitful approach. The MDL principle is based on the underlying idea that
the best description of the data will be given by the model leading to the shortest code length
(expressed in bits or in nats (1 nat= ln2 bits)) needed to both describe the data given the model,
and to encode the model itself [12, 16].

It is interesting to note that one of the simplest forms of the MDL, the so-called two-stage
description length, is intimately related to the BIC. Indeed, assuming a M-dimensional data
described with a probability density function (Pdf) parametrized with a K-dimensional vector
θ , it can be shown that the code length (in nats) needed to describe the data is given by the
negative loglikelihood (−�(Ỹ|θ)) [12,16]. In addition, the code length needed to describe such
a model with K parameters can be shown to be equal to approximately K/2lnM [12,16]. From
this result, it can thus be seen that minimizing the two-stage MDL boils down to applying a
BIC penalization.

More recently, sophisticated forms of the MDL principle have been proposed, with a constant
effort towards loosening the assumptions held on the observed data. We shall focus in the
following on two MDL approaches whose expressions are recalled below. Detailed theoretical
foundings of these MDL theories can be found in Refs [12, 16, 21].

Mixture MDL and g-prior (gMDL): Within the framework of mixture MDL [21], a prior
distribution is assigned to the vector parameter θ . With a specific choice of the prior distribution
(Zellner’s g-prior), one obtains the so-called gMDL for which the criterion to minimize has the
following closed form expression [16]:

min

{
M
2 lnRSS +C (g) if F > 1

M
2 ln(Ỹ−b0)

T (Ỹ−b0) otherwise,
(7)

where F = (M − K)
[
(Ỹ − b0)

T (Ỹ − b0)− RSS
]
/K RSS is the standard F-ratio for testing the

null model containing the spectral baseline only. The penalization term C (g) in Eq.(7) is given
in [16] and can be written

C (g) =
K
2

lnF +
M
2

ln
M

M −K
. (8)

Normalized Maximized Likelihood (nMDL): Lastly, we shall be interested in the recently
proposed Normalized Maximized Likelihood form of the MDL [22]. This approach has proved
efficient in various practical problems and has shown several optimality properties [12, 16].
For the statistical problem considered in this paper, the nMDL theory suggests to introduce the
following penalization terms [12]:
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• For a model including the baseline only:

C (n) =
M
2

ln
2π
M

+
1
2

ln
M
2

+ ln ln
b
a
. (9)

• In any other cases:

C (n) =
K
2

lnF +
1
2

lnK(M −K)+
K
2

lnM +
M
2

ln
2π

M −K
+2ln ln

b
a

− ln2+Lc, (10)

where Lc denotes the code length needed for encoding the model. Following Rissanen,
we use the code length

Lc = min

{
Kmax,

[
ln

K!(Kmax −K)!
Kmax!

+ lnK + log2 ln(eKmax)
]}

(11)

for a selection among Kmax potential regressors contained in the spectral database.

It must be noted that the nMDL approach requires the hyperparameters a and b to be estimated.
According to Rissanen’s indications [12], the estimator of the hyperparameter a is given by
the RSS obtained with the most exhaustive model (i.e. Kmax regressors included) while the
estimator of the hyperparameter b is the RSS obtained with the less exhaustive model (i.e.
baseline only).
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Fig. 2. (a) Example of simulated noisy data with S-SNR=6.3 dB (blue curve) superimposed
with the true spectrum (black curve) and baseline (green dashed curve). (b)-(f) Comparison
of the reconstructed signal after various steps of nMDL-based stepwise model selection
(red dotted curve) with the true spectrum (black curve).

#144366 - $15.00 USD Received 31 Mar 2011; revised 6 May 2011; accepted 9 May 2011; published 6 Jul 2011
(C) 2011 OSA 18 July 2011 / Vol. 19,  No. 15 / OPTICS EXPRESS  13867

215



2.3. Stepwise algorithm for unsupervised spectral unmixing

Whatever the criterion selected, the determination of the optimal model requires an exhaustive
search among all possible models which is computationally intensive if the number of potential
regressors Kmax is important. Instead of carrying out extensive operational research techniques
such as branch & bound for instance, we implement a stepwise search algorithm for the sake
of computation rapidity. We use a forward stepwise algorithm with an initialization state con-
taining the baseline only. At each step of the algorithm, the regressor (i.e., the gas species)
that most diminishes the criterion is included in the model, until any further increase in the
model complexity leads to an increase of the criterion. An example of iterative model selection
is illustrated in Fig. 2. At each step of the algorithm implementing nMDL criterion, the cor-
responding reconstructed signal is plotted in red dashed curve, and can be compared with the
signal obtained with the true model (black curve).

Since we are concerned with absorption spectroscopy applications, we also implement a
modified version of the algorithm so as to include a positivity constraint in the estimation results
by rejecting models leading to physically unwanted negative concentration values.

It can be noted that this algorithm could be further refined for future developments by in-
cluding backward elimination steps to reduce the risk of reaching local minima. Nevertheless,
as will be shown in the next section, the algorithm implemented here is sufficient to compare
the quality of the MDL approaches and standard information criteria such as AICc and BIC for
unsupervised spectral unmixing of gas components.

3. Implementation and comparison of MDL-based information criteria

3.1. Simulated absorption spectroscopy experiment

We simulated a typical absorption spectroscopy experiment by numerically generating spectral
measurements over M = 400 adjacent spectral slits, spanning between 3.2 and 3.6 μm, with
a simulated instrumental spectral resolution of 2.3 nm (Gaussian slit function). The physical
situation considered in this experiment consisted of a spectrally uniform illumination propa-
gated through a gas mixture with 4 components: O3 (6000 ppm.m), NO2 (500 ppm.m), CH4

(70 ppm.m) and H2CO (30 ppm.m), where the numerical values in brackets correspond to their
respective path-length integrated concentration.

The model selection was operated with the stepwise algorithm presented above from a spec-
tral database containing Kmax = 16 gas species, including the 4 gases of the “true” model and
12 spectrally interfering species (such as H2O, N2O, NH3, HCl, etc.) with significant absorp-
tion strength within the spectral range considered. The strong spectral overlap of the database
species can be checked in Fig. 3, where the absorption spectra of 8 gas species (among 16 in the
spectral database) are plotted. In this figure, the spectra are convolved with a Gaussian kernel to
match the spectral resolution of the instrument considered in the simulated experimental data.

To account for experimental/detection noise, M statistically independent realizations of
Gaussian random noise with variance σ2 were added to the absorption spectra generated over
M spectral slits. Varying the noise variance allowed us to simulate experiments with different
values of the Signal to Noise Ratio (SNR), usually defined in the context of additive Gaussian
noise as the ratio of the flat baseline value to the noise standard deviation σ . However, this
quantity is poorly adapted to assess the difficulty of the estimation problem considered, since it
only depends on the active illumination power, and does not depend on the absorption strength
of the gas mixture to be detected. We thus introduce another figure of merit, denoted S-SNR
for spectral SNR, and defined as:

S-SNR =

√
1
M (b0 −Y)T (b0 −Y)

σ
=

√
1
M cT HT Hc

σ
. (12)
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In this expression, the numerator can be interpreted as the root mean square of the absorption
signal b0 − Y = Hc from which the nature and concentration of the gas components have to
be estimated. An increase of the gas mixture concentrations accentuates the spectral absorption
patterns in the measured spectrum, thus leading to an easier identification/estimation. In that
case, it can be seen from the above definition that the S-SNR value is correspondingly increased.
An example of simulated noisy data is given in Fig.2(a) for a S-SNR=6.3 dB.

Fig. 3. Absorption spectra of the 4 gas components present in the mixture (red curves)
and of 4 other chemicals of the spectral database (black and green curves) with resolution
2.3 nm. The green curve corresponds to the absorption spectrum of HCl, which is used in
section 3.4 to simulate anomalous measurements (outliers).

3.2. Simulation results

The results of the numerical simulations are summarized in Table 1, where the percentage of
correct model selections is given for the 4 information criteria compared in this paper and
for different SNRs. For each physical situation considered, this percentage is evaluated over
R = 5.103 realizations of the selection/estimation task on statistically independent simulated
data. Two situations were considered according to whether light has undergone absorption from
the gas mixture or not.

This table clearly reveals that in the context of unsupervised spectral unmixing, the MDL
approaches implemented outperform the classical information criteria such as AICc or BIC,
for reasonably high values of the SNR. This general result can be refined by observing that
when the gas mixture is present, the nMDL is by far the most efficient criterion, with less
than 2% erroneous selected models when S-SNR ≥ 6.3 dB, while the standard BIC selects
approximately 17% erroneous models in the same conditions and AICc is strongly ineffective,
leading to a large majority of erroneous selections. For lower values of the signal to noise
ratio (S-SNR <4.3 dB) however, the percentage of correct models selected by nMDL strongly
diminishes, and better performance is obtained with BIC. As for the gMDL approach, it can be
noted that this criterion outperforms BIC for high SNRs (S-SNR≥ 9.8 dB), but the advantage
quickly drops out as the SNR decreases.

To complement this analysis, it is interesting to focus on the distribution of the size of the
selected models. In Fig. 4.a, the histogram of the selected models sizes is plotted for the 4
criteria and for a S-SNR=6.3 dB. This figure reveals a clear tendency for AICc to overfit the
noise patterns, thus leading to strongly overestimated model sizes. If the size distributions for
BIC and gMDL are very similar, with approximately 16% of overestimated models (K = 5),
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Table 1. Percentage of Correct Models Selected by the Stepwise Algorithm with Four In-
formation Criteria (AICc, BIC, gMDL, nMDL) and for Various Values of the SNR

With gas mixture No gas mixture
S-SNR AICc BIC gMDL nMDL AICc BIC gMDL nMDL

20.3 dB 16.5 83.6 96.0 >99.9 11.1 81.5 98.8 93.6
14.3 dB 18.6 83.7 92.8 99.9 11.0 80.3 99.2 93.1
9.8 dB 18.5 83.8 87.6 99.8 10.3 81.7 99.0 93.6
6.3 dB 17.7 83.1 80.8 98.9 10.6 82.0 99.0 92.3
4.3 dB 18.0 82.5 76.6 90.0 10.0 81.8 99.0 94.0
2.0 dB 16.4 74.0 63.5 53.5 10.8 81.7 98.9 92.8

it is however interesting to note that nMDL appears very efficient at avoiding overfitting, with
only 1% of overestimated selections and 0.4% of selections with only K = 3 components.
This property has already been addressed in Ref. [12] and remains valid in the less favorable
situations of low SNRs where nMDL is outperformed by BIC: when S-SNR=2 dB, nMDL
leads to only 53.5% of correct models but more than 99% of the remaining selections have an
underestimated size (K = 3) and the “missing” gas component is always H2CO. In the context
of absorption spectroscopy, this behavior seems interesting since it decreases the probability
of erroneously detecting a gas component in excess and thus strengthens the confidence in the
components selected with nMDL.
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Fig. 4. Histograms of the number of regressors selected by AICc, BIC, gMDL and nMDL
criteria for S-SNR=6.3 dB, (a): with a 4-components gas mixture; (b): without gas mixture.

Let us now analyze the second physical situation considered in the simulations where the
illumination beam does not undergo any absorption. In this situation, it appears clearly again
that MDL approaches lead to better results, when compared with standard criteria such as AICc
and BIC. Once again, this result can be interpreted from the ability of MDL approaches to avoid
overfitting, which can also be checked on the histograms of Fig.4.b. With approximately 99%
of correct models, the gMDL criterion leads to the lowest probability of false alarm Pfa �
1− 0.99 = 1%, which we define as the probability of detecting any gas mixture when there is
not. On this particular point, the nMDL criterion appears less efficient with a Pfa � 6.5%.

From the above results, an interesting strategy for a practical implementation could be to use
the gMDL criterion to test the null hypothesis. In case this hypothesis is rejected, the algorithm
could switch to the nMDL criterion, which showed the best performance for model selection.
In the next subsection, we analyze how a positivity-constrained implementation of the stepwise
algorithm influences the previous results.
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3.3. Influence of a positivity constraint

As stated in section 2.3, we also implemented a positivity-constrained version of the stepwise
algorithm to provide physically acceptable results in the context of absorption spectroscopy. As
can be checked in Table 2, such a constraint noticeably improves the quality of model selection
with all the criteria considered. For instance, with a S-SNR=6.3 dB, the positivity-constrained
algorithm selects 42.4% of correct models with AICc, 91.2% with BIC, 90.2% with gMDL and
99.3% with nMDL. When there is no gas mixture, the proportion of erroneous rejection of the
null model hypothesis also diminishes whatever the criterion considered.

Table 2. Percentage of Correct Models Selected by the Stepwise Algorithm Implement-
ing a Positivity Constraint on the Regression Coefficients (i.e., on the Gas Components
Concentrations)

With gas mixture No gas mixture
S-SNR AICc BIC gMDL nMDL AICc BIC gMDL nMDL

20.3 dB 40.0 92.6 98.4 >99.9 31.2 89.2 99.4 96.9
6.3 dB 42.4 91.2 90.2 99.3 28.6 89.3 99.50 97.0
4.3 dB 40.8 90.4 87.0 90.6 29.2 88.0 99.4 97.1
2.0 dB 41.6 81.8 77.6 57.3 29.1 88.8 98.4 96.9

It can be noticed however that the performance of nMDL is less influenced by this constraint
than the other criteria. This property may indicate that the nMDL criterion is intrinsically ef-
ficient at avoiding non-physical results in the context addressed here, even if no positivity-
constraint is applied to the algorithm.

3.4. Influence of outliers

To complete our analysis, we study the influence of measurement outliers. In practical situations
of in-field experiments, many sources of measurement artifacts may exist, and it is likely that
some amount of anomalous measures may occur. It is thus interesting to check the robustness
of the implemented methods to the occurrence of outliers.

For that purpose, simulations were carried out in the same physical conditions as in the
previous section, but the simulated data were generated in that case from the averaging of N =
20 independent measures. Among these N = 20 measures, we included a varying proportion of
outliers, corresponding to the simulated noisy absorption spectrum of a single interferent gas
species (HCl [80 ppm.m]), whose absorption spectrum is represented in green curve in Fig. 3.

Table 3. Percentage of Correct Models Selected by the Stepwise Algorithm with a S-
SNR=6.3 dB for a Varying Proportion of Measurement Outliers

With gas mixture No gas mixture
% outliers AICc BIC gMDL nMDL AICc BIC gMDL nMDL

0 % 17.7 83.1 80.8 98.9 10.6 82.0 99.0 92.3
5% 13.7 80.0 75.7 97.4 8.3 77.1 98.1 93.8

20 % 7.3 62.2 53.6 90.1 5.2 59.7 92.4 93.9

The results obtained are summarized in Table 3, where the percentage of correct models is
given for a S-SNR=6.3 dB on the averaged signal. Once again, it can be clearly seen that in
the context of spectral unmixing of interfering gas species, the nMDL criterion outperforms the
other methods, with still 90% of correct models for a significant amount of outliers (20%). It
can also be noted that the inclusion of outliers does not influence the Pfa obtained with nMDL
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(approximately 1−0.933 � 6,7%) while this quantity noticeably decreases when other criteria
are implemented.

4. Conclusion

In this paper, we presented an original technique for unsupervised spectral unmixing of multiple
gas species. More precisely, we have shown that two Minimum Description Length approaches
can be successfully implemented in a stepwise model selection algorithm. Applied on spectro-
scopic data, this algorithm allows one to estimate the number, nature and concentration of the
components of an unknown gas mixture without requiring ajustment of any parameter.

In the context addressed in this paper, numerical simulations have demonstrated that the
MDL approaches outperform the standard information criteria tested (AICc, BIC). When a
gas mixture is present within the path of the illumination beam, the gMDL approach does not
provide great improvement in comparison to classical BIC, but we illustrated its efficiency in
avoiding false alarms when no gas mixture is present. However, the most promising results for
a practical implementation were obtained with the Normalized Maximized Likelihood (nMDL)
approach, which seems to be a very interesting alternative to standard criteria, and can still
be implemented with a simple algorithm. The nMDL criterion strongly outperforms the other
methods for reasonable values of the SNR and provides the best robustness to measurements
artifacts.

A promising perspective to this work is the opportunity to apply this method to experi-
mental spectroscopic data due to recent development in our laboratories of appropriate mid-
infrared powerful sources with broadband spectrum [23], or with highly tunable operating
wavelength [24]. It must be noted that this approach is not limited to the case of absorption
spectroscopy, and could be also applied in many situations requiring spectral unmixing (Ra-
man spectroscopy, hyperspectral data processing, etc.). A further analysis of the influence of
the spectral resolution and of the noise model would be also a useful theoretical continuation
of this work, as well as the study of detection performances. A comparison of the MDL-based
model selection techniques presented in this paper with other parsimonious model selection
methods such as the lasso approaches [25, 26] is another interesting perspective.
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a b s t r a c t

Stochastic complexity-based penalization criteria can prove efficient and robust in spectroscopy applications

for unsupervised identification and concentration estimation of spectrally interfering chemical components.

It is shown here how the so-called Normalized Maximized Likelihood (nMDL) introduced in [17] can be tai-

lored to provide control of the detection performances in terms of probability of false alarm. Numerical ex-

periments conducted on realistic simulated optical spectroscopy signals evidence that the nMDL approach

outperforms standard information criteria in terms of model selection performances. Moreover, the ability to

control false alarm rates with the proposed modified nMDL criterion is demonstrated on simulations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Model selection is a very common issue in the field of data

analysis and regression. Many questions usually have to be answered

simultaneously: does the data reveals the presence of a significant

feature (regressor), or not? If so, how many and which regressors

must be selected in the linear regression model to better explain the

observations? Without any model selection step, the most exhaustive

regression model would include all potential regressors, and may

lead to misleading and imprecise (if not incorrect) results, mostly

due to overfitting of the noise. This can have harmful consequences

in some situations, for instance in the context of trace gas detection

by optical spectroscopy as addressed by this paper as an illustration.

To avoid such undesirable situations, and to provide unsupervised

model selection strategies, many penalized regression methods

have been proposed using various penalization criteria, such as the

classical information criteria (Mallow’s Cp [13], Akaike’s AIC and

variants [1,10], Schwarz’s BIC [20], RIC [5], etc.). However, many

“best” penalization criteria have been introduced in the literature to

refine these standard selection rules, so as to optimize the quality of

model selection depending on the problem at hand [22]. This raises

the question of the generality of such penalization strategies. In that

context, since its introduction by Rissanen’s seminal work [15], the

Minimum Description Length (MDL) principle is an interesting and

fruitful attempt to build a general theoretical framework to interpret

model complexity and to provide unsupervised model selection

✩ This paper has been recommended for acceptance by Dr. G. Moser.
∗ Tel.: +33 223 235 215; fax: +33 223 236 717.

E-mail address: julien.fade@univ-rennes1.fr

rules. The MDL principle states that the best description of the data

must be given by the model leading to the shortest code length, or

stochastic complexity (SC) (expressed in bits or in nats (1 nat= ln 2

bits)) required to describe both the model and the data [9,15,18]. The

MDL principle has found wide applicability in very distinct contexts,

such as model selection [9], data clustering [8], but also radar signal

processing [3] or image segmentation [6].

In this paper, we focus on a sophisticated form of the SC, referred

to as Normalized Maximized Likelihood (nMDL) [17]. We show how

this penalization criterion can be modified so as to provide proba-

bility of false alarm (Pfa) control in the context of model selection,

and we illustrate this property on realistic numerical simulations

of an unsupervised optical spectroscopy experiment. The paper

is organized as follows: in Section 2, the expression of the nMDL

criterion is first recalled, and a modified version of this criterion is

derived, allowing to control the Pfa in the model selection procedure.

Then, a simulated experiment of optical spectroscopy is described

in Section 3 and numerical simulation results allow us to compare

the quality of the standard nMDL criterion with respect to more

standard information criteria. The possibility of Pfa control using the

proposed modified nMDL criterion is finally illustrated on simulated

data, before the conclusion of the paper is given in Section 4.

2. Normalized-Maximized Likelihood (nMDL) criterion and false

alarm rate control

Throughout this paper, we shall consider the simple problem of

linear regression, with m-dimensional observation vector ỹ modeled

as

ỹ = H · c + n, (1)

http://dx.doi.org/10.1016/j.patrec.2015.07.022

0167-8655/© 2015 Elsevier B.V. All rights reserved.

221



J. Fade / Pattern Recognition Letters 65 (2015) 152–156 153

with m × k regressor matrix H and unknown parameters vector c. We

further assume the m components of the additive noise vector n to

be independent realizations of a centered Gaussian random variable.

Under this hypothesis, applying a penalized criterion in the model

selection procedure corresponds to minimize the following quantity:

−�ỹ(ỹ; H) + C, (2)

where the expression of C depends on the penalization criterion

used (AIC, BIC, etc.), and where the log-likelihood is directly related

to the regression residual sum of squares (RSS) through �ỹ(ỹ; H) =
−(m/2) ln RSS.

2.1. nMDL criterion

The Normalized Maximized Likelihood (nMDL) is a recently intro-

duced form of SC [17] which has proved efficient in various practical

problems [4,9,18] and which presents various optimality properties

[18]. The nMDL theory suggests the following penalization terms to

be introduced in the criterion given in Eq. (2), depending on the hy-

pothesis considered [18]:

C(n)
|H0

= m

2
ln π − ln �

(
m

2

)
+ ln ln

b

a
(3)

and

C(n)

|H(k)
1

= k

2
ln

kF

m − k
+ m

2
ln π − ln

[
�

(
k

2

)
�

(
m − k

2

)]

+ Lk + 2 ln ln
b

a
, (4)

where hypothesis H0 refers to the null-model (no regressor) and

hypothesis H(k)
1

to a selected model containing k regressors among

Km potential regressors. In this last equation, F denotes the stan-

dard F-ratio, which depends on the RSS of the regression through

F = (m − k)[ỹT ỹ − RSS]/(k RSS). The code length Lk needed for en-

coding model H(k)
1

is given by Lk = ln (Km
k ) + ln k + log2 ln (e Km) [18].

Lastly, it must be noted that the nMDL approach requires two hy-

perparameters a and b to be estimated. According to indications in

[18], they can be respectively estimated with the regression sum of

squares (i.e., ỹT ỹ − RSS) obtained with the most exhaustive model

H(Km)
1

and the regression sum of squares under null hypothesis H0.

As with standard information criteria, model selection is finally

carried out by identifying the set of regressors which minimizes the

penalized criterion. This operation can be performed by exhaustive

search, or by appropriate stepwise procedures, in which the num-

ber of regressors is gradually increased until no further decrease of

the criterion can be reached. Such a stepwise method will be used in

Section 3.

In the remainder of this section, we show and illustrate how the

nMDL criterion can be tailored so as to provide control of the false

alarm rate (Pfa) in a model selection procedure.

2.2. Pfa control and model selection

The link between detection performance and model selection is

a known result for standard information criteria. For instance, it is

quite straightforward to understand that using the AIC or BIC criteria

for model selection is equivalent to applying a standard generalized

likelihood ratio test (GLRT) with given threshold depending on the

penalization considered [23]. For example, to discriminate between

hypothesis H0 and hypothesis H1 (at least one regressor included in

the selected model), this decision rule can be summarized as

�glrt(ỹ) = ln

[
P(ỹ|H1)

P(ỹ|H0)

]
= �ỹ(ỹ;H1) − �ỹ(ỹ;H0)

H1

≷
H0

τ, (5)

where the value of the threshold τ fixes the Pfa. For a Gaussian noise

model, one simply has

�glrt(ỹ) = m

2
ln

RSS0

RSS1

. (6)

A similar property has been recently analyzed in the case of the

nMDL criterion in [7], where the authors evidenced that the applica-

tion of the nMDL criterion is formally equivalent to a GLRT with fixed

threshold. In the following, we show how to exploit this property so

as to control the Pfa in a model selection procedure. This is made pos-

sible by introducing a slightly modified version of the nMDL criterion.

2.3. Thresholded nMDL criterion for Pfa control

Although one of the main concerns that underlies MDL ap-

proaches is to minimize the number of user-defined parameters in

the criterion, we propose to introduce a fixed threshold in the appli-

cation of the nMDL criterion. Meanwhile, this avoids resorting to the

hyperparameters a and b included in the former criterion, which is

easily obtained by setting a = be in Eqs. (3) and (4). Such modified

nMDL criterion for discrimination between null/non-null hypotheses

leads to the following decision rule:

�C(n)(ỹ, m, k) = −�ỹ(ỹ;H(k)
1

) + C(n)

|H(k)
1

+ �ỹ(ỹ;H0) − C(n)
|H0

H0

≷
H1

δPfa

⇔ �C(n)(ỹ, m, k)= − �glrt(ỹ) + C(n)

|H(k)
1

−C(n)
|H0

H0

≷
H1

δPfa,

(7)

illustrating that the nMDL criterion will reject hypothesis H0 if

�C(n)(ỹ, m, k) is lower than a given threshold.

Let us now analyze the relationship between the Pfa and the

value of the user-defined threshold δPfa. First, by noticing that �glrt =
m/2 ln[1 + kF/(m − k)], a few calculation steps allow us to show that

the quantity �C(n) can be rewritten as a function of the generalized

log-likelihood test (GLRT) �glrt as (see [7])

�C(n)(�glrt , m, k) = g(�glrt , m, k) + η(m, k) + Lk, (8)

with η(m, k) = − ln B[k/2, (m − k)/2], where the Beta function reads

B(x, y) = [�(x)�(y)]/�(x + y), and with

g(x, m, k) = −x + k

2
ln[e2x/m − 1]. (9)

Lk still denotes the code length needed to encode the model. Using

Stirling’s approximation of the Beta function, this modified nMDL cri-

terion can be rewritten �C′(n)
(�glrt , m, k) = g(�glrt , m, k) + η′(m, k) +

Lk, with

η′(m, k) = 1

2

[
f (m) − f (m − k) − f (k) + ln

[
k(m − k)

4πm

]
(10)

and f (x) = x ln (x).

From this expression, it can first be observed that

�C′(n)
(�glrt , m, k) does not evolve monotonously as a function

of �glrt. Nevertheless, following a similar reasoning as in [7], it can

be shown that the function �C′n(�glrt , m, k) is concave and takes

on positive values when �glrt lies within an interval [�−
glrt

, �+
glrt

] (see

Fig. 1), ∀ k ∈ [1; m], as soon as Km > 2. It is now quite obvious that the

application of the modified (thresholded) nMDL decision rule given

in Eq. (7) corresponds to a fixed value of the false alarm rate, which is

equal to the probability that �glrt lies outside the interval [�−
δPfa

; �+
δPfa

]

when hypothesis H0 is true, i.e.,

Pfa = Pr(�glrt < �−
δPfa

|H0) + Pr(�glrt > �+
δPfa

|H0). (11)

This is illustrated in Fig. 1 where the obtained Pfa corresponds to the

darkened areas under the red dashed curve representing the proba-

bility density function (pdf) of the log-likelihood ratio �glrt under hy-

pothesis H0. From this last relation, it is now clear that provided the
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Fig. 1. Evolution of the modified nMDL criterion as a function of the log-likelihood

ratio test �glrt (blue solid curve). A possible probability density function (Pdf) of �glrt

under hypothesis H0 is plotted in red dashed curve for illustration. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version

of this article.)

GLRT pdf under the null model hypothesis PL(�glrt |H0) is known, one

can determine (at least numerically) the appropriate threshold δPfa

so as to provide the desired value of the Pfa.

3. Application to model selection in optical spectroscopy

3.1. Model selection for unsupervised optical spectroscopy

Let us now apply the previous model selection procedures to the

practical case of unsupervised optical spectroscopy. In that context,

we assume that the intensities of the analyzed light detected on m

distinct spectral slits form a vector x. This vector is linked to the k-

dimensional vector c containing the concentrations of the gas com-

ponents c = [c1 . . . ck]T through the following equation

x = a0e−Hc, (12)

where a0 denotes the baseline spectrum. The m × k regressors matrix

H = [h1, h2, . . . , hk] contains the absorption spectra hi of the k com-

ponents of the regression model. We assume that the hi are known

on the m spectral slits considered, with a resolution adapted to the

spectral resolution of the spectrometer used in the measurement. For

the sake of simplicity, we shall also assume that the spectral baseline

a0 is known, either by instrumental calibration or with an accurate

radiometric model of the illumination source, which can be passive

or active using for instance a supercontinuum laser [2].

Let x̃ denote the measurement vector containing experimental in-

tensity measurements over the m spectral slits (obtained for instance

with a dispersive spectrometer or an optical spectrum analyzer). It

is a standard procedure in spectroscopic measurements to use the

logarithm of the measured data x̃, so as to obtain a linear regres-

sion model of the form of Eq. (1) with ỹ = ln a0 − ln x̃ and where the

vector n allows us to model the influence of experimental noise. We

assume that the noise can still be considered as Gaussian and we

hypothesize independence between the noise affecting two distinct

spectral slits, i.e., 〈ni n j〉 = 0 if i 	= j. In the presence of intense spec-

tral baseline and of limited absorption strengths, such assumptions

are realistic and are quite common in spectroscopy for other stan-

dard linear model selection techniques such as Least Squares, or Par-

tial Least Squares approaches [14,24]. For such a classical linear re-

gression model, the estimator minimizing the RSS = ỹT (Id − W)ỹ is

referred to as Minimum Mean Squared Error (MMSE) estimator and

reads ĉ = (HT H)−1HT ỹ = H−1Wỹ, with W being the projection ma-

trix. Under the hypothesis of Gaussian fluctuations with unknown

variance, this estimator identifies with the Maximum Likelihood (ML)

estimator.

In the context of optical spectroscopy considered in this paper,

the Pfa will correspond to the probability of erroneously selecting a

model including at least one gas component, when there is actually

no gas mixture to be detected. This corresponds to an important prac-

tical situation for noxious trace gas detection in industrial or military

context, in which optical spectroscopy in the mid-infrared proves ef-

ficient.

3.2. Numerical implementation and simulation results

3.2.1. Other penalization criteria

In this last section, we shall consider two classical information cri-

teria and a different MDL penalization form as benchmarks to assess

the quality of the nMDL method explored. The simplest penalization

is the Akaike Information Criterion (AIC) [1], which is equal to the

number k of regressors included in the model. In the case of samples

of limited size, this criterion can be refined, and is usually referred

to as AICc [10], which we will denote C(a) in the following and which

reads C(a) = m(m − k)/2(m − k − 2). We shall also consider the well-

known Bayesian Information Criterion (BIC) [20], whose penalization

term reads C(b) = (k/2) ln m.

In addition, we also consider the so-called gMDL criterion, intro-

duced in [16], within the framework of mixture MDL. In this approach,

a prior distribution is assigned to the pdf parameters vector, and the

gMDL criterion corresponds to a specific choice of the prior distri-

bution, namely Zellner’s g-prior, and can be written in the following

form :

min

{
m
2

ln RSS + C(g) if F > 1

m
2

ln ỹT ỹ otherwise.
(13)

By taking the penalization term C(g) in Eq. (13) equal to

C(g) = k

2
ln F + m

2
ln

m

m − k
, (14)

this form of the gMDL is strictly equivalent to the criterion given in

[9], up to the code length of two hyperparameters that can be rea-

sonably neglected according to [16].

3.2.2. Model selection implementation

We considered a realistic optical spectroscopy scenario within

the mid-infrared range (3.2–3.6 μm), with simulated absorption

spectra on M = 400 spectral slits, obtained from the high-resolution

Hi-Tran spectral database [19], and convolved with a Gaussian kernel

to match an instrumental spectral resolution of 2.4 nm. We assumed

that the incoming light from a flat spectral baseline was absorbed

by a mixture of k = 4 gas, among a simulated spectral database

containing Km = 16 components. The individual spectra of the 4

gas components are plotted in red curves Fig. 2, and the figures in

brackets denote their respective concentrations (indicated in ppm.m)

in the simulated mixture. The spectra of 4 other “interfering” gas

species of the spectral database (but not included in the actual

simulated mixture) are also plotted to show the potentially strong

overlap between the gas species of the database. The simulated

optical spectrum intensity obtained with the considered gas mixture

is plotted in magenta continuous curve in Fig. 2, and a simulated

noisy experimental spectrum is given in blue continuous curve. The

noise model is Gaussian with variance σ 2 on the M spectral slits.

The model selection has been performed with various penaliza-

tion criteria (AICc, BIC, gMDL, nMDL) using an approximate forward

stepwise search algorithm, with initial state containing the spectral

baseline only (hypothesis H0). Without loss of generality, we consid-

ered in the experiments simulated datasets of N = 20 independent

measurement outcomes, which corresponds to reasonable signal av-

eraging in a field experiment. Two situations have been considered,

corresponding to the following hypotheses: (a) the 4-components gas

mixture described above was present on the path of the light (hy-

pothesis H(4)
1

) and, (b) no gas mixture were present (hypothesis H0).
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Fig. 2. Absorption spectra of the 4 components of the simulated gas mixture (red

curves) and of 4 interfering gas species in the simulated spectral database (black and

gray curves). The intensity spectrum corresponding to the actual gas mixture model

is plotted in magenta curve, along with the flat spectral baseline (dashed green curve)

and a realization of a noisy signal acquisition is represented in blue curve. (For inter-

pretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

Table 1

Percentage of correct/incorrect model sizes selected by the stepwise

algorithm with four information criteria (AICc, BIC, gMDL, nMDL) for

a SNR of 6.3 dB.

With gas mixture (H1) No gas mixture (H0)

= +1 +2 ≥ 3 = +1 ≥ 2

AICc 17.7 32.6 26.5 23.2 10.6 25.3 64.1

BIC 83.2 15.6 1.2 – 82.0 16.2 1.8

gMDL 80.9 17.4 1.6 0.1 99.0 0.2 0.8

nMDL 95.9 3.9 0.2 – 93.3 6.7 –

R = 5000 realizations of each model selection experiment have been

carried out to statistically assess the performance of each penaliza-

tion criterion.

3.2.3. Simulation results

Table 1 summarizes the results obtained on the two considered

scenarios with various penalization criteria, and for a low SNR of

6.3 dB, with SNR = ||Hc||/√Mσ, as defined in [4]. These results il-

lustrate the efficiency of the nMDL approach for unsupervised model

selection, since it leads to a significantly higher percentage of cor-

rectly selected models under hypothesis H1. Moreover, as pointed out

in previous works [4,18], it tends to avoid model overfitting, which is

a strong benefit in the context of trace gas detection.

Under hypothesis H0, it can first be noted that the MDL ap-

proaches outperform the standard AICc and BIC criteria. It is never-

theless observed that the nMDL leads to a greater probability of false

alarm (6.7%) than gMDL (1%), where the Pfa is defined here as the

proportion of non-null models selected by the algorithm under the

H0 hypothesis. Since we consider a forward stepwise selection algo-

rithm, such definition identifies with the Pfa defined in Section 2.3.

It appears from these simulation results that using the nMDL cri-

terion can be very beneficial in the context of unsupervised optical

spectroscopy. As noted in previous work [4], it also gathers interest-

ing properties for real-field experimental implementation, such as

being quite robust to measurement outliers.

3.3. False alarm rate control with nMDL criterion

In this last subsection, we illustrate the potentiality of Pfa control

using the modified nMDL criterion introduced in Section 2.3, in the

physical context of unsupervised optical spectroscopy. For that pur-

pose, new simulations have been carried out to implement the modi-

fied nMDL criterion. Since we used a stepwise algorithm, the decision

between a null model (H0) and a non-null model (H1) is operated

during the first step of the model selection algorithm. In that case,
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Fig. 3. Evolution of the percentage of correct model selections as a function of the

SNR with a gas mixture. Comparison between BIC (blue circles), gMDL (red triangles)

and nMDL with Pfa fixed to 18% (light blue squares) and to 1% (orange squares). Inset:

Comparison of the Pfa as a function of SNR, obtained with BIC (blue circles), gMDL, (red

triangles), original nMDL (black crosses) and modified nMDL with various fixed values

of Pfa (1, 5, 10, 18 and 20% in square symbols). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

and with the Gaussian model of fluctuations considered, it is well-

known that PL(�glrt |H0) corresponds to a centered χ2-law with one

degree of freedom [11].

Moreover, it is also a well-known result that the multiple hypothe-

ses test involved in a stepwise algorithm naturally results in an exces-

sive false alarm rate [12]. This can be understood by noting that test-

ing a larger number of hypotheses reduces the power for rejecting all

of them, i.e., reduces the probability for selecting the correct model

H0. This unwanted situation can nevertheless be easily avoided by

applying a classical Bonferroni correction [12,21]. In our case, this cor-

rection simply consists of implementing the algorithm with a thresh-

old δPfa/Km
, calculated for a false alarm rate of Pfa/Km, where Km is the

number of potential regressors in the initial spectral database.

With this precaution taken into account, the numerical results

presented in Fig. 3 allow us to check the validity of the proposed ap-

proach for Pfa control. We considered the same physical situation as

in Section 3.2.2, and the percentage of correctly selected models un-

der hypothesis H(4)
1

in the presence of the gas mixture is plotted as

a function of the SNR, for the standard BIC (blue circle symbols), the

gMDL (red triangle symbols) and the modified nMDL. For this last cri-

terion, two thresholds have been considered so as to provide a false

alarm rate of 18% (respectively, 1%) similar to the Pfa obtained with

the BIC (respectively, the gMDL), and the corresponding results are

plotted with light blue square symbols (respectively, orange square

symbols). This can be checked in the inset of Fig. 3, where the proba-

bilities of false alarm are plotted for BIC (blue circle symbols), gMDL

(red triangle symbols), and nMDL with appropriate thresholds so as

to match the Pfas of BIC (blue square symbols) or gMDL (orange

square symbols). The Pfas obtained with the modified nMDL for three

other values of the threshold are also displayed in square symbols,

as well as the Pfa that would be obtained with the standard uncon-

strained nMDL (black crosses symbols) for comparison. This demon-

strates the ability to control the Pfa with the modified nMDL criterion.

In addition, the results obtained allow us to confirm the conclu-

sions of section 3.2.3, showing that the nMDL criterion strongly out-

performs a standard information criterion such as BIC, for sufficiently

high values of the SNR (typically > 5 dB). The comparison with the

gMDL approach shows that the nMDL is less sensitive to a degrada-

tion of the SNR, and is thus better adapted for practical implementa-

tion in real field scenarios. It can be noticed in Fig. 3 that the nMDL
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criterion leads to similar percentages of correct models for distinct

values of the threshold δPfa. Indeed, when at least one regressor has

been included in the model, the next selection steps of the stepwise

algorithm are operated by applying the nMDL criterion of Eq. (4) be-

tween non-null models of varying number of regressors k > 1, in

which cases the constant threshold δPfa no longer plays a role in the

decision.

4. Conclusion

In this paper, we have shown that a modified nMDL penalization

criterion could ensure Pfa control in a model selection procedure.

This property relies on the fact, evidenced by Giurcaneanu and Razavi

[7], that the nMDL criterion in model selection is formally equivalent

to applying a GLRT for rejecting the null hypothesis. To manage

Pfa control, we proposed in this paper to introduce an additional

parameter in the nMDL criterion, whose value can be linked to the

desired Pfa. We illustrated this property on simulated data, in the

context of unsupervised optical spectroscopy which is a current

environmental issue for air pollution monitoring and detection.

These numerical simulations have permitted to confirm that nMDL

penalization outperforms standard information criteria, reinforcing

the interest of MDL approaches for model selection tasks.

The perspectives of this work will be to apply this approach and

the Pfa control ability to real field optical spectroscopy experiments.

These interesting properties could also be useful in other applica-

tions, in which unsupervised model selection is required.
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