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Titre : Analyse quantitative des tissus cérébraux à l'aide de modèles multi-compartiments en IRM 
de relaxométrie T2 

Mots clés : relaxométrie T2, IRM,  microstructures, sclérose en plaques 

Résumé : L'imagerie par résonance magnétique 
(IRM) est l'une des méthodes d'imagerie in-vivo 
les plus utilisées pour obtenir de l'information sur 
la santé du cerveau. Cependant, les voxels 
d'IRM ont une résolution limitée en raison de 
contraintes physiques. L'objectif de cette thèse 
est d'obtenir des estimations quantitatives des 
microstructures tissulaires cérébrales (comme la 
myéline, les matières intra/extra-cellulaires et 
l'eau libre) à partir des données d'IRM T2 
relaxométrie. Deux modèles paramétriques 
multi-compartiments (MCT2) sont proposés 
dans cette thèse. L'approche et le cadre 
d'estimation pour les deux modèles sont justifiés 
en utilisant des études de simulation. Une série 
de simulations et d'expériences sur des données 
IRM in vivo ont été réalisées pour évaluer  

l'exactitude et la robustesse de ces modèles. Le 
modèle jugé plus robuste a ensuite été utilisé 
pour deux études sur de patients atteints de 
sclérose en plaques (SEP). Dans la première 
étude, l’évolution des biomarqueurs de MCT2 a 
été étudiée dans les lésions de SEP présentant 
une prise de contraste gadolinium (Gd) ou non 
chez 10 patients sur une période de trois ans. 
Dans la deuxième étude, nous avons démontré 
le potentiel de l'utilisation combinée des 
biomarqueurs MCT2 proposés avec ceux 
obtenus à partir de modèles existants de 
diffusion multi-compartiment IRM pour répondre 
à une tâche cliniquement pertinente et difficile : 
identifier les régions de lésions SEP en cours de 
dégradation de la barrière hémato-encéphalique 
sans utilisation de produit de contraste. 

 

Title :  Gaining insights into brain tissues using multi-compartment T2 relaxometry models 

Keywords : T2 relaxometry, MRI, microstructure, multiple sclerosis 

Abstract: Magnetic resonance imaging (MRI) 
is one of the most widely used in-vivo imaging 
method for obtaining information on brain 
health. However, MRI voxels have limited 
resolution due to physical constraints. The 
objective of this thesis is to obtain quantitative 
estimates of brain tissue microstructures (such 
as myelin, intra/extracellular matters and free 
water) from T2 relaxometry MRI data. Two 
parametric multi-compartment T2 relaxometry 
(MCT2) models are proposed in this thesis. 
The approach and estimation framework for 
both models were justified using cost function 
simulation studies. A range of simulation and 
in-vivo MRI data experiments were performed 
to evaluate the accuracy and robustness of 
these models.  

The model found to be more robust of the two 
was then used for two studies on multiple 
sclerosis (MS) lesions. In the first study the 
evolution of the MCT2 biomarkers was studied 
in gadolinium (Gd) enhancing and non-
enhancing regions of MS lesions in 10 patients 
with clinically isolated syndrome over a period 
of three years. In the second study we 
demonstrated the potential of combined use of 
the proposed MCT2 biomarkers with those 
obtained from existing multi-compartment 
diffusion MRI models to address a clinically 
relevant and challenging task of identifying 
regions of MS lesions undergoing active blood 
brain barrier breakdown without use of Gd 
injection. 
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Chapter 1

Obtaining brain tissue
microstructure information from

T2 relaxometry MRI

Contents
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1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1 In vivo imaging using MRI

The nucleus must possess the property of spin to undergo nuclear magnetic res-
onance (NMR). It might have a spin quantum number of 0, a half integer or a
whole number. Nucleus with a half integer or whole number spin quantum num-
ber can undergo NMR. Magnetic resonance imaging (MRI) is an application of
NMR for in-vivo imaging of the human body. The hydrogen nuclei posses the spin
property (1/2 spin). Its abundance in the human body (in the form of protons
in water) makes it an important element while studying NMR in the context of
in-vivo imaging. The principles of NMR are discussed in much greater detail in
[Bloch 1946, Purcell 1946, Callaghan 1993] among the many other reports. In the
scope of this thesis, we shall discuss introductory concepts in the field of NMR and
spin echo methods. Further discussions will be carried out assuming we are imaging
hydrogen nuclei (i.e. proton in water).

1.1.1 Introduction

The positively charged spinning proton behaves like a tiny bar magnet. In the
absence of any external field, these dipoles are randomly aligned. However, in the
presence of an external magnetic field (say B0), the nucleus experiences a torque
as its moment is aligned along the B0 direction. This causes the nucleus to precess
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around B0 at a frequency called the Larmor frequency (ω0). The Larmor frequency
is proportional to B0. They are associated with a constant called the gyromagnetic
ratio (γ) as ω0 = γB0. This is illustrated in Fig. 1.1.

(a)

B0

ω=γB0

(b)

Figure 1.1: (a) In absence of an external field, spinning nuclei are randomly oriented.
When a bulk of these are considered, the net magnetization tends to be zero. (b)
In the presence of an external field (B0), the spinning nuclei precesses around the
external field at a frequency ω0 (Larmor frequency).

Henceforth we shall discuss the concepts considering many protons are present
in the system (which is usually the case when a voxel is imaged using MRI). In the
presence of an external field, the hydrogen nuclei can have two states: magnetization
aligned along B0 and magnetization aligned against B0. In the presence of a high
strength external magnetic field the former outnumber the later, resulting in a net
magnetization value in direction of B0. The net magnetization on the transverse
plane in this state still tends to being nil.

This state is disturbed when an external radio frequency (RF) signal (at fre-
quency ω0) is applied perpendicular to B0 i.e. on the transverse plane. This trans-
verse magnetic field is commonly referred to as B1. Due to this RF pulse, the net
magnetization vector (M) direction starts tilting away from the B0 field direction.
The amount by which the tilt occurs is dependent on the magnitude and duration
for which the RF pulse is applied. As a result of B1 application, M now precesses
around both B0 and B1. This also results in a non-zero magnetization signal in
the transverse plane which can be detected and measured. This is illustrated in
Fig. 1.2a. Let us say that observations made from outside is the laboratory frame.
The axis directions for the laboratory framework are as shown in Fig. 1.2a. In the
illustrations (and henceforth in this section) B0 is applied in the z-direction. From
the laboratory frame, the trajectory followed by the net magnetization when pre-
cessing away from the B0 field direction and towards the transverse plane is spiral in
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nature as the precession occurs both around B0 and B1. Hence from the laboratory
frame, understanding the precession in the transverse plane is not straight forward.
The transverse plane analysis becomes simplified when observed from the frame of
rotation around B0. This is illustrated in Fig. 1.2b, where the B1 is considered
to be along the x′-axis. From the rotating frame, M precesses only around B1 as
illustrated in Fig. 1.3.

(a) (b)

Figure 1.2: In these illustrations, B0 is applied in the z-direction. (a) The bulk
magnetization precesses around both B0 and B1. (b) Observation from the rotating
frame allows us to describe the transverse plane magnetization with much more ease.
Image courtesy: [Tofts 2005].

Figure 1.3: The RF signal while observing from the (left) laboratory and (right)
rotation frame. When observation is made from the rotation frame, the B1 ap-
plied along the transverse plane is constant (unlike oscillating when observed from
laboratory frame). Image courtesy: [Brown 2014].

1.1.2 Relaxation

After the external RF signal is removed after some time, M starts aligning itself
along the B0 direction. Hence, the isochromats1 transit from higher to lower energy

1An isochromat is a group of nuclei exposed to the same magnetic field B, hence precessing
at the same frequency [Tofts 2005]. This concept is useful as in realistic scenarios (heterogeneous
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states. This energy loss occurs in two forms: from the spin system to the lattice
and within the spin system itself. The lattice may be regarded as the large thermal
reservoir surrounding the spin system. The longitudinal magnetization goes back to
the value existing prior to the RF signal application. This is referred to as the T1

relaxation, or spin-lattice relaxation. The isochromats start losing the phase coher-
ence due to the energy lost within the spin system. Hence the transverse component
of M starts decaying (and does so exponentially). This is referred to as the T2 de-
cay. The spin-spin relaxation is caused due to a background magnetic field formed
as result of a variety of processes2. Among these, the background magnetic field
due to the dipole-dipole interaction is the most dominant (especially while studying
relaxation of hydrogen nuclei in absence of contrast agents). Two components of this
background field are important: (a) the component perpendicular to the B0 direc-
tion, and (b) the one parallel to the B0 direction. The former component is similar
to an external RF signal and the precession due to this field results in a T1 type
relaxation. This phenomenon introduces a T2 decay by removing some of the spin
states in the transverse plane. This is also referred to at T1 contribution to T2, or as
nonsecular T2 contribution. Now let us discuss the effect of the second component
of the background field i.e. the external magnetic field component parallel to the
B0 (say B′0). An isochromat now experiences precession at two frequencies where
one is proportional to (B0 +B′0) and the other is proportional to only B0. Over a
time t, this creates a phase difference in precession proportional to B′0 t with respect
to the isochromats precessing around B0. Each isochromat develops such phase dif-
ferences depending on the B′0 value experienced by it. This knocks the isochromats
out of phase leading to each one precessing at a different rate and hence causing
the T2 relaxation. This phenomenon is referred to as the secular contribution to T2

relaxation. So these are the basic phenomenons which explain the relaxation due to
the energy disbursement within the spin system.

The assumption so far has been the uniformity of B0 in and around the measured
system. However, this is not always true. The B0 value at the measured location
might be slightly higher or lower than the expected value, due to which the phase
coherence loss rate is higher than expected. Hence the observed transverse decay
time is higher than the true value. This observed decay time is referred to as T ∗2
and is as shown below:

1

T ∗2
=

1

T2
+

1

T ′2
(1.1)

where T2 is the true value and T ′2 is due to the field inhomogeneity. This observation
implies that the transverse decay measured after an external RF pulse is T ∗2 weighted
rather than being purely T2 weighted.

However, measuring the true T2 value is of interest as it is characteristic of the
composition of the measured substance. It is a quantitative measurement. Mea-

systems), observing phenomenons from a single spin point of view is not always feasible. The
isochromats help in explanation of the change of net magnetization while understanding relaxation
phenomenons.

2refer Section 6.4 in [Tofts 2005] for further reading
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surement of T2 weighted signal was proposed by [Hahn 1952] using the spin echo
method. In this method, a 90◦ RF pulse is applied along the x′ direction (for axes
refer to Fig. 1.2b) which tilts M along the transverse plane. Once the RF pulse is
withdrawn, the isochromats start precessing at different rates. After a time duration
(say τ), a 180◦ RF pulse is applied along the y′ direction which flips the precessing
isochromats as illustrated in Fig. 1.4. The 180◦ pulse is known as the refocusing
pulse which creates the echo at time, t = 2τ . The flip causes the faster precessing
isochromats to lag behind the slower ones and is thus critical for forming the T2

weighted echo signal. This is illustrated in Fig. 1.5.

Figure 1.4: The spin echo method has been shown here. The signal at echo time
(2τ) is T2 weighted. Image courtesy: [Brown 2014].

In the classical spin echo method, a single echo is obtained after each 90◦ RF
pulse. However, multiple refocusing pulses can be applied successively to obtain the
T2 decay signal at multiple echo times [Carr 1954]. This multiple echo spin echo
method is shown in Fig. 1.6. The ability of this sequence to generate a perfect
T2 weighted echo train is reliant on the application of perfect refocusing pulse (i.e.
exactly 180◦) for each echo. This is however not always possible in measurement
systems. A solution to this was proposed as a modified multiple echo spin echo
method in [Meiboom 1958]. This method is popularly referred to as the Carr-
Purcell-Meiboom-Gill (CPMG) method. The main idea of the CPMG method is to
apply the 180◦ pulse with a slight error and with a phase in quadrature with the
initial 90◦ pulse. As a result of this, the even echoes are T2 weighted without error.
The odd echoes are affected by the error introduced in the 180◦ pulse. Ideally, the
error prone echoes should be left out of any analysis performed using the CPMG
data.

Although the CPMG method addresses the issue of imperfect refocusing pulses,
the echoes with imperfect refocusing generate stimulated echoes [Crawley 1987].
The stimulated echoes deform the T2 exponential decay curve (examples shown in
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Figure 1.5: The spin echo formation is illustrated here. On application of the
refocusing pulse (at t = τ) the phases of the isochromats are flipped. This refocuses
them to form an echo at time 2τ . Image courtesy: [Brown 2014].

Figure 1.6: The multiple echo spin echo method has been shown here. The signal
at multiple echo times by applying successive refocusing pulses. Image courtesy:
[Brown 2014].
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next section). However, there are methods which can account for the stimulated
echo effects in the data. This is particularly important when the echo train data
is used for fitting signal models to estimate the T2 of the measured signal. This
approach is popularly known as T2 relaxometry. Obtaining T2 relaxometry data of
human tissues and using signal models to obtain their T2 values has proved to be an
effective technique for detecting anomalies [Tofts 2005]. Several decades of research
have also been performed to develop signal models to obtain tissue microstructure
information of tissues from T2 relaxometry signals. An overview of such techniques
will be provided in the next section.

1.2 Microstructure information from T2 relaxometry MRI

In this section we focus on a few methods used for obtaining tissue microstructure
information from T2 relaxometry MRI data. As discussed in the last section, T2

relaxometry MRI data acquires T2 decay values of the image at multiple echo times.
The most basic analysis would thus be to fit a single exponential curve (or a echo
phase graph (EPG) curve accounting for the stimulated echoes) to the acquired data
points for each voxel. The decay rate would provide us information on the transverse
relaxation constants for the voxels. This is often referred to as mono-exponential
analysis. Let us say that the acquired data (Y ) has N echoes with an echo spacing
of ∆TE. Hence we seek to solve the formulation shown below for each voxel:

arg min
M0,T2

N∑
i=1

(
yi −M0 exp

(
−i×∆TE

T2

))2

where M0, T2 ≥ 0 (1.2)

The above equation can be solved using a non-negative least square optimization
[Lawson 1995]. The stimulated echoes can be accounted for in Eq. 1.2 using the
EPG curve instead of a pure exponential. In the EPG formulation we need to
estimate the B1 scale factor to account for the field inhomogeneity. This formulation
for a mono T2 analysis is shown below:

arg min
M0,T2,B1

N∑
i=1

(yi −M0EPG (i,∆TE, T1, T2, B1))2 where M0, T2, B1 ≥ 0 (1.3)

The inaccuracies in the application of perfect refocusing pulse is accounted for
using a scale factor term in the EPG. For example, a scale factor of 0.95 would
imply a 5% error in the refocusing pulse. In Eq. 1.3, the term B1 is the scale
factor correction for the flip angle error (not to be confused with the B1 in earlier
sections). It is usually optimized for only in a definite interval. The flip angle
error is considered to be in the range of 0% and 50% in this work (i.e. the scaling
factor ranges from 1.0 to 1.5). The T1 value can be obtained from a quantitative T1

map. However, it has been shown in earlier work that for white matter assuming
a constant T1 of 800ms is good enough [Prasloski 2012]. The effect of stimulated
echoes can be clearly seen in data acquired using a multiple echo spin echo sequence.
This has been shown via an example using an in vivo brain image in Fig 1.7.
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T2 map using
pure exponenetial fit

T2 map using
EPG fit

estimated FAE
relative difference map

(w.r.t pure exponential fit)

True decay and estimated decay curves using pure exponential and EPG fit

1  white matter 2  gray matter 3  cerebrospinal fluid

Figure 1.7: Mono T2 estimations using pure exponential and EPG fitting models are
compared here. In general, using pure exponential leads to higher T2 estimations.
The fitting shows that accounting for stimulated echoes leads to better fit of the
estimated curve to the observed decay curve.

The data used in this example was acquired using a 2D multi-slice CPMG se-
quence. The T2 relaxometry data had 32 echoes with an echo spacing of 9ms and
repetition time of 3720ms. A mono T2 estimation was performed using: (i) pure
exponential fit (refer Eq. 1.2) and (ii) EPG fit (refer Eq. 1.3) accounting for the
stimulated echoes. The observed echoes are compared to the estimated echoes using
two approaches for three voxels, one in white matter, one in gray matter and one
in cerebrospinal fluid (CSF). The observed echoes are not pure exponentials and
have stimulated echo effects. This can be observed from the T2 decay curves of the
voxels shown in Fig. 1.7. The second echo signal magnitude of the observed signal
is generally higher than the first echo signal magnitude. Using the EPG shows a
better fit to the observed curve compared to pure exponential. The T2 map using
pure exponential has a higher T2 value. For example, the white matter voxel (label
1) has a T2 value of 94ms using pure exponential fit compared to 81ms when using
the EPG fit model. For a voxel in dense white matter with close to 20% myelin
(which has T2 values in range of 10-50ms), a T2 value of greater than 90ms is higher
than expected. The T2 value for the gray matter voxel (label 2) was higher by
around 25ms when using pure exponential fit model. The estimated flip angle error
(FAE) percentage map is also shown in Fig. 1.7. The relative difference map shown
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in Fig. 1.7 was computed as shown below:

Relative Difference =
T2exp − T2EPG

T2exp

× 100%

where T2exp and T2EPG are T2 values estimated using pure exponential and EPG
respectively. On comparing the observed and estimated decay curves, it is clear
that pure exponentials are not ideal when using FSE sequences. Hence imperfect
refocusing after the 180◦ RF pulse should be factored into the signal model while
performing T2 fittings.

1.2.1 Multiple T2 analysis

The brain white matter has been shown to possess multiple T2 water pools. Hence a
mono T2 estimation maps is not enough when we are analyzing T2 relaxometry data
of the brain. This was first reported by [Whittall 1997]. A range of studies suggest
that there are primarily two water pools in the brain white matter [MacKay 1994,
Whittall 1997, Stanisz 1998]. There is no certain explanation to it, but it might
be attributed to the fact that white matter is quite dense and contains tightly
packed nerve fibers [Does 2018]. The nerve fibers contain axons and layers of tightly
wrapped myelin around it. The myelin water and water associated with axons,
intra/extracellular bodies are well separated with respect to their T2 relaxation
times. Myelin has a short T2 relaxation time compared to other white matter tissues.
This has been illustrated in Fig. 1.8.

Myelinated CNS tissue

myelin
sheath

Intra/extracellular
water

Figure 1.8: (Left) Electron microscope image of myelinated CNS tissue. The
myelin sheath surrounds the axons. (Right) T2 distributions of the myelin and
intra/extracellular water are shown here. Image courtesy: [MacKay 2016].

Since the T2 water pools are well separated, their contributions in a voxel can be
quantified using models to analyze the T2 relaxometry data. The common approach
is to quantify the fraction of myelin in a voxel, popularly referred to as myelin
water fraction (MWF). MWF has been shown to be an indicator of myelin (and its
absence) in brain tissues using histological studies [Laule 2007a].
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1.2.1.1 Multi-component T2 relaxometry model

The most popular method of obtaining the myelin water fraction is a multi-component
T2 relaxometry analysis. The central idea of this model is to consider the observed
T2 relaxometry signal as a (weighted) composition of arbitrary number of exponen-
tial decays (or EPG curves [Prasloski 2012]). The fractional contributions of the
decay curves with short T2 values is referred to as the MWF. This interpretation
of the T2 relaxometry signal was proposed by Whittall et al. [Whittall 1989]. The
capability of this method to obtain a myelin water fraction was demonstrated on
in-vivo brain T2 relaxometry MRI data [MacKay 1994]. The multi-component T2

relaxometry model is shown below:

s(ti) =

M∑
k=1

wk exp

(
−ti
T2k

)
(1.4)

In the above equation, the signal magnitude at each echo is considered to be a
weighted combination of M number of T2 curves. The most popular strategy for
choosing the T2 values of the decay curve is to select logarithmically equally spaced
values. The number of T2 values choice is however arbitrary. But the most popu-
lar choice remains as 80 logarithmically spaced points between 10ms and 2000ms
[Laule 2007a, MacKay 2016]. In such a case, there are 80 variables to estimate
from far less number of observations. A standard T2 relaxometry data consists of
32 echoes. Hence this is an extremely ill posed problem. This is usually tackled
by introducing regularization terms in the estimation [Graham 1996, Whittall 1997,
Laule 2007a]. The choice of a fixed regularization weight is not an appropriate
choice. Hence strategies to update the regularization based on the current cost
function value is usually adopted to mitigate this issue. Graham et al. discuss this
approach in their work [Graham 1996].

Sensitivity to noise

Other than the ill-posed nature of the problem, the high signal to noise ratio (SNR)
requirement of this model is another challenge. Graham et al. showed that the
ideal scan parameters and SNR requirements for a reliable estimation of short T2

water fraction using the T2NNLS (refer [Graham 1996]) model from a 32 echo T2

relaxometry data would be an echo time of 6.5ms and a SNR of around 500. The
usual echo time used for the T2 relaxometry data is around 10ms, for which the SNR
requirement was found to be 700 for reliable estimation of myelin water fraction in
white matter tissues. Resolution of T2 peaks from the multi-component T2 relax-
ometry analysis is challenging at low SNRs. This has been shown in [Fenrich 2001].
Fenrich et al. fixed the distribution of a T2 pool and investigated the capability of
multi-component T2 relaxometry analysis at resolving two T2 pools for varying levels
of SNR. Another variable which was factored in the analysis was the separation of
the T2 pools.
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(a) (b)

Figure 1.9: (a)The resolution (R) and separation (S) between the T2 pools are shown
here as defined by [Fenrich 2001]. (b) The resolution capability is shown for a given
separation and SNR level. The plot is color coded with respect to the resolution
values. It can be seen that greater separation is required for full resolution as the
SNR drops. Image courtesy: [Fenrich 2001].

The resolution (R) and separation (S) are illustrated in Fig. 1.9a. A T2 pool
(the short T2 in this case) was fixed and the resolution and separation character-
istics were studied for the other two pools for varying levels of SNR (result shown
in Fig. 1.9b). It can be observed from the definition of R, that R = 1 ensures
complete separation of the T2 pools. Ideally, we would like to have full resolution
between the peaks while using a multi-component T2 analysis. The usual SNR for
in-vivo imaging is 100 (without multiple signal averages). As the plot shows in
Fig. 1.9b, we can have a non-zero resolution for a SNR of 100 only at separation
values greater than 1.35. This study highlights the challenge that lies with the
multi-component T2 relaxometry model in identifying T2 pools in close proximity
to each other. Although Lancester et al. proposed a three pool model for white
matter [Lancaster 2003], studies like [Fenrich 2001] show the underlying complexi-
ties which make realizations of such models on in-vivo data with a SNR of around
100. Hence, reliable separation of T2 pools can only be performed on high SNR
T2 relaxometry data. A higher SNR image can be obtained using multiple signal
averages. However, this leads to a longer acquisition time which is not favorable
for clinical conditions. Levesque et al. proposed an acquisition scheme for multi-
echo T2 data in 4 min sequence [Levesque 2010a]. However, to maintain the SNR
requirements for the multi-exponential fitting, the voxel resolution was maintained
at 2×2×7mm3. Although the chosen scanning parameters help in reducing the ac-
quisition time while maintaining the required SNR levels for multi-exponential T2

fitting, it is not appropriate while studying pathologies like MS lesions where lesion
dimensions are considerably smaller than the voxel dimensions used in the study.
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Table 2 in [Alonso-Ortiz 2015] compares the scan times of popular multiple echo
spin echo acquisitions popularly used for myelin imaging.

T2 threshold for MWF

The multi-component T2 model requires thresholds on T2 values for which the signal
is considered to be from myelin. In Table 1 of [Lancaster 2003], authors compare the
T2 values used by multiple reports for representing the three pools in white matter:
myelin, myelinated axons and mixed pool. The myelin and myelinated axons are
stated to have a T2 value of around 10ms and 40ms respectively. Whereas MacKay
et al. considered myelin to be represented by T2 decay curves with values in the
range of 10-55ms and all decay curves with T2 curves beyond it belonging to a
mixed pool [MacKay 1994]. The T2 threshold considered for deciding the myelin
water fraction also affects its values. An example of this can be observed from Fig.
3 and 4 in [Levesque 2010a], where a change in threshold by 10ms leads to visible
changes in the myelin water fraction values in various regions of the brain. The
authors also observed an increased variability in the inter-scan myelin water fraction
measurements when using a 10-50ms threshold compared to 10-40ms threshold.
Hence the T2 threshold value to decide for myelin not only leads to observable
changes in MWF, but also affects the inter-scan variability of estimations.

Myelin is not the only brain tissue microstructure information which the multi-
echo T2 relaxometry data can provide. The MS lesion regions have inflammation
due to continuous tissue injuries. The inflammation can be seen in FLAIR images.
The water accumulation in the MS lesion regions leads to them having a prolonged
T2 relaxation time compared to the normal appearing brain matters. This has been
observed in earlier studies where 48 echo T2 relaxometry data were acquired for MS
patients [Laule 2007b, Laule 2007c].

Despite the challenges existing around the multi-component exponential models,
Alex Mackay and his group’s studies have proved its efficacy in obtaining MWF es-
timates from T2 relaxometry data using this method [Whittall 1989, MacKay 1994,
Whittall 1997, Laule 2007a, MacKay 2016]. The MWF has been shown to be a
reliable indicator of myelin on healthy subjects and MS patient. This was also
shown using histology studies on healthy and MS affected brain tissues [Laule 2006].
Among all the limitations, SNR is the most important limitations which needs to
be factored in while performing multi-component T2 relaxometry analysis. A com-
prehensive discussion on this topic can be found in the review article by Mark D.
Does [Does 2018].

1.2.1.2 Multi-compartment T2 relaxometry models

The multi-component model discussed in the earlier section does not assume any-
thing on the distribution of weights of the T2 curves. The multi-component expo-
nential fitting is essentially a non-parametric model. The model is based on the
knowledge of underlying physiology of the imaged tissues. Elaborative studies using
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the multi-component T2 model on images with high SNR has shown the existence of
two distinguishable T2 pools in human brain white matter (refer Fig. 1.8). The chal-
lenges of the non-parametric method of multi-exponential fitting can be addressed
using parametric models. The parametric models can deal effectively with the curse
of dimensionality associated with the multi-component T2 models.

The basic idea of the parametric models is to consider multiple T2 compart-
ments in a T2 relaxometry MRI voxel. Stanisz et al. proposed a two compartment
model where each compartment was modeled as a log-Gaussian probability density
function (PDF) [Stanisz 1998]. In another parametric formulation, Raj et al. mod-
eled the T2 spectrum as weighted sum of two Gaussian PDFs describing the myelin
and intra/extra-cellular matter and a delta function describing the CSF [Raj 2014].
The authors performed a simultaneous estimation of weights and parameters of the
PDF, and the weight and location of the delta function representing the CSF. The
model also included two regularization terms. The first one is a general Tikhonov
regularization term. The second regularization term is aimed at obtaining spatial
consistency. It is realized using a first difference operator matrix. The weights of the
regularization terms are obtained via a semi-supervised method. Although authors
used Gaussian PDFs to model the underlying compartments, they chose not to adopt
a integration based approach but a matrix based formulation. The authors demon-
strated the application of the parametric method on low SNR simulated and in-vivo
data (acquired in around 10-26 minutes). Application was shown on MS patients
where myelin maps obtained from the proposed parametric model had significantly
lower values in lesions compared to normal appearing white matter. However, the
myelin maps for the in-vivo data with low SNR (acquired using T2 prep method)
showed elevated MWF in gray matter. The authors have attributed this to the spi-
ral sequence rather than the method used for MWF estimation. The authors have
however not commented on the performance of estimation for the parameters other
than MWF.

As pointed out by Layton et al. in their work, simultaneous estimation of PDF
parameters and weights using NNLS is non-trivial and non-reliable [Layton 2013].
In Figure 7 of [Raj 2014] the authors showed estimated T2 distributions for deep
gray matter and white matter voxel. Both have similar Gaussian PDF parameters.
However, the deep brain gray matter tissues should have had a different T2 spec-
trum compared to a normal appearing white matter tissue in the brain due to the
difference in tissue composition. The challenge of not being able to identify it might
lie either with the method, or presence of the information in the data. A cost func-
tion (and simulation) analysis can reveal more on whether the method is capable of
identify such phenomenons. Both [Stanisz 1998] and [Raj 2014] have assumed pure
exponential decay and have not accounted for stimulated echoes.

Akhondi-Asl et al. proposed a method where the T2 signal at a voxel was con-
sidered to be a mixture of three Wald PDFs [Akhondi-Asl 2015]. The three PDFs
represented the following compartments: myelin, intra/extracellular water and free
water (CSF). The PDF parameters and their associated weights were estimated.
Unlike [Stanisz 1998] and [Raj 2014], Akhondi-Asl et al. accounted for the effect of
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stimulated echoes in their model using Bloch equations. The PDF parameters were
estimated using a variable projection approach [Golub 2003]. Analytical derivatives
were obtained to make the estimation faster. The B1 inhomogeneity scale factor
was estimated in a separate step by performing an exhaustive search over a range of
feasible values. Synthetic data, in-vivo phantom data and in-vivo brain MRI data
was used to evaluate performance of the proposed method for estimating MWF
maps. Authors also commented on the ability of this method to obtain superior
(smoother and less noisy) MWF maps from 2D Multi-slice CPMG data as com-
pared to multi-component models (on low SNR synthetic and in-vivo brain data).
Unlike [Raj 2014], [Stanisz 1998] and [Akhondi-Asl 2015] used an integration based
approach. This might be the reason that [Stanisz 1998] and [Akhondi-Asl 2015] did
not require any external regularization term (such as the spatial smoothening used
in [Raj 2014]) since continuous functions are used to describe the compartments
and an integration based method is used to solve for the weights and other param-
eters. This also relieves the method of accounting for techniques (semi-supervised
or otherwise) to update the regularization weight term(s).

1.3 Discussion

Quantitative tissue microstructure information on fast relaxing tissues in brain such
as myelin can be obtained from T2 relaxometry data using parametric and non-
parametric analytical models. The non-parametric methods have been shown to be
effective in obtaining MWF maps but require high SNR to reliably and accurately
estimate myelin content. This makes the data acquisition time longer (multiple sig-
nal averages). Estimation of a large number of variables with far fewer observations
is also a concern with non-parametric models. Regularization terms can be used
for tackling this issue. This requires additional techniques to ensure regularization
weights are properly updated so as not to under or over estimate variables. The abil-
ity to identify distinct T2 pools is also a challenge at lower SNR levels. Other than
MWF, T2 relaxometry has been shown to provide information on long T2 tissues as
well. This is encouraging for clinical studies as most brain tissue abnormalities have
an increased water level in and around affected tissues (such as edema in MS).

The parametric methods on the other hand estimate much lesser number of
parameters and evade the problem with the curse of dimensionality. The simulation
studies have shown them to be reliable even at low SNR values. The evaluation of
the estimation methods is however critical for the parametric methods. The difficult
nature of the estimation for such models has been highlighted by Layton et al.
(especially simultaneous T2 pool parameters and weights estimation) [Layton 2013].
Rigorous cost function analysis can provide more insights into it. It has also been
found that accounting for stimulated echoes is important for accurate estimation of
tissues with short T2 relaxation time such as myelin. This can either be performed
using various realizations of the EPG algorithm [Prasloski 2012, Layton 2013] or
just by using Bloch equations [Akhondi-Asl 2015].
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2.1 Introduction

In this chapter, we shall briefly discuss the understanding of clinical and pathological
aspects of multiple sclerosis (MS). This is important for interpretation of the results
from any (advanced) MRI analysis model. In terms of appearance, relapse and
progress, MS is a clinically and pathologically heterogeneous disease [Tofts 2005]. A
healthy nerve fiber has an axon with myelin wrapping around it. Degeneration of
myelin marks the onset of MS. Hence, demyelination is a primary indication of MS.
The healthy nerve fiber and a nerve fiber with degenerated myelin are illustrated
in Fig 2.1. Myelin is a tightly wrapped structure around the axons. It is critical
for normal functioning of nerve fibers as it ensures proper transmission of message
signals via the axons (refer illustration in Fig. 2.2). Demyelination disrupts the
normal transmission capability of signal in nerve fibers thus causing handicap to the
patients.

Demyelination exposes the axons to damages from external cellular bodies. Per-
manent disability due to MS is a result of axonal loss [Tofts 2005, Ferguson 1997].
However, demyelination and axonal loss follow varying trends for different patient
groups [Lassmann 2001]. The knowledge of the pathological features of MS can pro-
vide potentially valuable insights into understanding of the clinical heterogeneity.
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Myelin degeneration marks onset of multiple sclerosis.
Demyelination exposes the axons.

Figure 2.1: The normal nerve fiber and a demyelinated one are illustrated here.
Demyelination marks the onset of MS in patients.

Figure 2.2: Demyelination exposes the axons. This disrupts the capability of nerve
fibers to normally transmit messages. Demyelination also exposes the axons to
damage from extracellular bodies.

2.2 Clinical trend of MS

Multi-focal lesions and demyelination are widely considered to be a distinguishing
feature of MS. Clinically speaking, the progress of MS can be classified into a pre-
liminary (onset of disease) and an advanced stage [Leray 2010]. In preliminary stage
a patient is ambulatory and has isolated syndromes. Whereas the advanced stage
is characterized by significant ambulatory disability and/or memory impairments.
Based on clinical observations, severity of physical/memory disability are scored as
per laid guidelines [Kurtzke 1983]. The Expanded Disability Status Scale (EDSS)
is used to rate physical disability of a MS patient on a scale of 0− 10, where a score
of 0 is healthy and 10 is death due to MS. Intermediate scores represent varying
progression of physical disability. It should be noted that, beyond certain EDSS
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scores (EDSS = 3 & EDSS = 6), the damage caused by MS is considered irre-
versible [Leray 2010]. Also, the progress from EDSS score of 0 to 3 is highly variable
[Leray 2010]. As discussed later, the irreversible damages in MS is mainly attributed
to axonal damage and the variability in early onset of MS is due to demyelination,
to which every patient responds uniquely. Evidence to support this claim is dis-
cussed later in pathological aspects of MS. This is one aspect which adds to the
heterogeneity of the disease.

MS in patients is classified based its clinical courses. These are primarily classi-
fied into three main categories:

1. Relapsing-remitting MS (RRMS)

2. Primary progressive MS (PPMS)

3. Secondary progressive MS (SPMS).

It shall however be noted that these are the classifications post clinical identifica-
tion of MS. In most cases, the first episode of MS after which an in-vivo imaging
(checkup) might be prescribed, is known as Clinically Isolated Syndrome (CIS).
Patients reporting CIS may or may not go on to develop MS. However, patients re-
porting CIS are considered at a high risk of developing MS, especially if lesions (with
characteristics of MS) are identified in brain MRI. Follow-up MRI of CIS patients
are studied to conclude on MS progress-type (RRMS or PPMS). The observations
are based on the revised McDonald criteria of 2010 [Rovira 2015].

Representative trends of MS classified based on clinical observations are shown in
Fig. 2.3. The majority of patients who develop MS post CIS usually develop RRMS
followed by SPMS. Few patients directly follow the PPMS pattern. It shall be noted
that prior to disease progressions, there are no indications for PPMS, contrary to
that of SPMS. MS phenotype descriptions for relapsing and progressive disease are
explained in [Lublin 2014].

Definitions of active and progression of MS as defined in [Lublin 2014] for relaps-
ing and progression phenotype can be found in Table 2.1 and Table 2.2 respectively.
Phenotype descriptions for clinical protocol for initial detection or onset of MS is
shown in Figure 2.4. The decision whether CIS progresses as RRMS is taken based
on follow up MRI scans of the patients who exhibit CIS. Scan intervals may vary from
patient to patient based on the neurologist’s recommendation. If there active lesions
(for definition refer Table 2.1) which follow McDonald’s criteria [Rovira 2015], then
the patient is considered to be in RRMS phase. RRMS more or less follows pattern
shown in Fig 2.3.

However, classifying progressive MS is a more subjective task. Whether pro-
gression of MS is PPMS or SPMS is carried out by investigating whether the lesion
is active (refer Table 2.2). The activity of lesion is concluded predominantly from
MRI scans but the progression of MS is concluded from clinical scores such as EDSS
and other clinical evaluations [Kurtzke 1983]. Phenotype description for Progressive
MS is shown in Fig 2.5. Fig 2.5 suggests that progressive accumulation of disability
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(a) (b) (c)

Figure 2.3: (a)RRMS (b)SPMS and (c)PPMS type of MS. Image courtesy:
[Lublin 2014]

right after onset suggests PPMS, and progressive accumulation of disability after
initial relapse course suggests SPMS. However, there is an uncertainty in identifying
the type of progressive MS in patients from clinical point of view. This is attributed
to a couple of significant reasons [Lublin 2014].

1. Measuring the progression using clinical observations misses on some subtle
indications, either due to frequency of clinical observations taken or variance
of human observation.

2. Another important factor is the determination of whether a lesion is active
(for definition refer Table 2.2). For this, radiologists rely on MRI scans. For
example: although T2 and Gd-Lesions are indications of active lesions, there
is a lack of standardized protocol in place to make quantitative judgments of
a lesion being active (or not).

The solution to the second problem may be found in quantitative biomarkers being
proposed for the detection of early lesions. This will need understanding of the
pathology of MS lesions and addressing them accordingly. However, recent pub-
lications from clinicians and radiologists cite lack of confidence on advanced MRI
techniques for inferring the biomarkers that indicate activity and progression of a
lesion [Rovira 2015, Lublin 2014]. One possible reason might be the lack of speci-
ficity and reproducible capability of the methods proposed. This lack of consensus
between clinical disability/prediction and quantitative predictions made by MRI is
known as clinico-radiological paradox.

From the discussion it can be concluded that there are uncertainties in clinical
predictions (especially for progression of MS) which can be resolved by providing
concrete and reliable inputs from quantitative MRI techniques. Whereas the clinical
observations are critical in grading the status of a MS patient, it suffers from the
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Determined by clinical relapses and/or MRI activity (contrast
Active enhancing lesions; new or unequivocally enlarging T2 lesions

assessed at least annually); if assessments are not available,
activity is indeterminate.

Table 2.1: Definition of Active for Relapsing MS

Determined by clinical relapses assessed at least annually
Active and/or MRI activity contrast enhancing lesions; new and

(such as unequivocally enlarging T2 lesions).
Measured by clinical evaluation, assessed at least annually.

Progression If assessments are not available, activity and progression
are indeterminate.

Table 2.2: Definition of Active and Progression for Progressive MS

drawback of being subjective. Quantitative medical imaging techniques can help
in making this procedure more objective. This becomes more important because
based on the status of the MS patient, therapy is provided. Correct MS therapy at
a correct time can modify the time-line of the disease.

2.3 Pathological features of MS

Pathological features of MS are quite heterogeneous which has wide implications
on diagnosis and therapy of the disease. Demyelination and multifocal lesions are
distinguishing features of MS pathology. Demyelination is followed by axonal de-
struction. It is a primary event, but axonal losses can not be overruled completely in
the primary stages of the disease. As mentioned in the previous section, axonal losses
cause irreversible damage. Based on the clinical trends’ study, we can thus associate
PPMS with a condition where there is demyelination and axonal losses (at high rate)
simultaneously from the onset of MS. Likewise, when there is only demyelination in

CIS RRMS

Not
Active

Active
Not

Active
Active

Figure 2.4: MS Phenotype for Relapsing Disease [Lublin 2014]
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Figure 2.5: MS Phenotype for Progressive MS [Lublin 2014]

the primary stage (or onset) of MS, a patient shall display symptoms corresponding
to RRMS (refer Fig 2.3). Hence by monitoring the demyelination and axonal losses,
assertive assumptions can be made whether the progression of MS in a patient will
follow RRMS (followed by SPMS) or PPMS. This can be a significant information
from the MS therapy point of view where it shall be noted that inflammation and
demyelination may be reversible unlike axonal damage [Lassmann 2001].

There is evidence in favor of the hypothesis that pathology of demyelination
and inflammation varies among different patient subgroups [Lassmann 2001]. It has
been shown in [Leray 2010] that MS is a two stage disease, and rate of progress of a
patient from EDSS score of 0-3 (onset of MS) is highly variable. In contrast, rate of
progress from EDSS score of 3-6 is fairly consistent. Observations from [Leray 2010]
are shown in Fig 2.6. It might be helpful to recall here that, [Leray 2010] states that
EDSS scores of 3 & 6 are stages beyond which damages caused are irreversible. The
heterogeneous nature of the MS onset can be attributed to different demyelination
(or inflammation) pathogenetic pathways followed by patient subgroups.

Figure 2.6: Disability progression during Phase 2 (mean time from DSS 3 to DSS
6) in five subgroups defined according to the duration of Phase 1 (mean time from
multiple sclerosis clinical onset to DSS 3) in the 718 multiple sclerosis patients who
had reached both DSS 3 & DSS 6. Image courtesy: [Leray 2010]
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2.3.1 Pathology of demyelination

Demyelination is the most prominent activity in the primary stage of Myelin. De-
myelination is accompanied by inflammation too. Inflammation activity during the
primary stage of MS will be discussed later. Axons, nerve cells and astrocytes are
also affected during active demyelination, but to a much lesser degree (unless patient
starts exhibiting PPMS symptoms). Damage to astrocytes are critical because they
are responsible for

1. Providing critical support for blood-brain barrier maintenance.

2. Promoting myelinating activity of oligodendrocytes. Oligodendrocytes are
critical in the creation of myelin sheaths.

Axonal damages during active demyelination are mainly attributed to:

1. Macrophage toxins.

2. Direct effect of cytotoxic T-cells.

In [Lassmann 2001] authors propose possible pathogentic pathways leading to
demyelination in MS patients (based on their patient subgroup study):

1. Macrophage mediated. In this case, there might be demyelination also due to
toxic products produced by the macrophages.

2. Antibody mediated.

3. Distal Oligodendrogliopathy & Apoptosis. Due to degenerative changes in distal
processes, in particular those of periaxonal oligodendrocytes (distal oligoden-
drogliopathy), followed by apoptosis. Apoptosis refers to automatic death of
cells due to some reason. This is however caused by factors like ischemia or
toxic viruses.

4. Primary oligodendroglia degeneration. This is a metabolic defect. Absence
of oligodendrocytes diminishes regeneration of myelin sheaths. Observation
of this phenomenon in MS patients has been restricted only to patients with
primary progressive disease [Lucchinetti 1999].

Hence, we observe that most of the factors are dependent heavily on the immune
system of a patient. Hence heterogeneity of response of patients to demyelination
vary across patient subgroups. Based on pathology, lesions can be classified into
inactively or actively demyelinating. For definitions refer to Table 2.3.

2.3.2 Pathology of MS inflammation

Pathology of inflammation in MS lesions is consistent with a T-cell-mediated im-
mune reaction[Lassmann 2001]. Such a T-cell mediated immune reaction has two
important consequences:
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1. Recruitment of hematogenous macrophages

2. Activation of microglia.

Microglia act as the first and main form of active immune defense in central ner-
vous system. Although most evidences indicate towards an inflammation driven
by Th1 mediated autoimmune response, there is substantial evidence against it too
[Hohlfeld 1997]. Authors in [Lassmann 2001] show evidence to argue in favor of
the point that MS inflammation is more complicated than a pure Th1 autoimmune
response, and is rather a combination of Th1, Th2 and Tc1 autoimmune response1.

Feature Active Inactive
Macrophage infiltration Yes May or may not be
Immunoreactive for all myelin protein For minor protein only

Including minor ones
Others Demyelinated/Remyelinated

Table 2.3: Definition of active and inactive MS lesions in terms of demyelination
[Lassmann 2001, Brück 1995]

2.3.3 Pathology of Axonal Loss

Axonal damage is critical as it is irreversible. Axonal injury in MS occurs in two
stages [Lassmann 2001]:

1. During active stage of myelin degeneration (refer Table 2.3)

2. Continued axonal degeneration in active MS plaques. This stage kicks in
only if there is no remyelination of axons post initial myelin-degeneration and
inflammation.

The extent of axonal injuries caused during the first phase is correlated to the
number of macrophages and class-I-restricted T cells in the lesion. The later stage
of axonal injury is attributed to the inability of oligodendrocytes in remyelinating
the actively demyelinating lesions. The axonal damage in this stage can be quite
aggressive.

The axonal loss thus depends on the extent of remyelination and inflammation
of the lesions during active demyelination of lesions. Hence the heterogeneity in
susceptibility of individual patients is also an important factor for axonal injuries in
lesions.

1Th1: T helper 1 cells. Th2: T helper 2 cells. Tc1: Class I-restricted cytotoxic T cells
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2.4 In-vivo imaging of MS lesions using MRI

Magnetic resonance imaging (MRI) has played a critical role in detection and mon-
itoring of MS in patient [Rovira 2013, Rovira 2015, Barillot 2016]. Evidence for
appearance of new lesions in MS is considered to be a crucial parameter for deciding
the clinical course the patient needs to take. Another important clinical indicator
is the presence or absence of active lesions in MS patients. MRI has emerged as
a leading in-vivo imaging technique for monitoring MS lesions. The MS lesions
have different contrast than the normal appearing brain tissues in MRI. Based on
the type of MRI measurement performed, the MS lesions are either hyper-intense
or hypo-intense compared to the intensity of normal appearing brain tissues. Use
of contrast agents (such as gadolinium) allows identifying lesions undergoing active
blood brain barrier breakdown. These are also commonly referred to as active lesions
(early stage lesions). Presence of active lesions is an important clinical observation.
Four different MRI measurements for the same subject with a MS lesion is shown
in Fig. 2.7. The MS lesion in the subject is highlighted using red arrow.

FLAIR T2-w T1-w Post Gd T1-w

Figure 2.7: (Left to right) Fluid-attenuated inversion recovery (FLAIR). T2 weighted
image. T1 weighted image. T1 weighted image acquired post gadolinium injection.

The fluid-attenuated inversion recovery (FLAIR) image is similar to a T2 weighted
image (transverse relaxation), except that the signal from free fluids is suppressed.
The edema in the lesion affected region leads to its higher contrast than the sur-
rounding and contra-lateral normal appearing white matter tissues. The lesion
region appears brighter than the normal appearing white matter regions in the T2

weighted images as well. However, unlike the FLAIR image there is a greater con-
trast between the normal appearing white matter tissue and the gray matter and
the cerebrospinal fluids appear bright as well. Free fluids have the highest contrast
on a T2 weighted image. The edema is relatively less bright than the CSF due to
its (relatively) smaller mobility.

2.5 Discussion

From the existing literature on clinical trends of MS and pathogenetic ways of its
onset and progression, we can conclude that MS is a highly heterogeneous disease.
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The uncertainty in deciding the category to which a MS patient belongs based on
clinical observations may be attributed to the heterogeneity in susceptibility of indi-
vidual patients towards MS progression (in pathogenetic ways). The heterogeneity
in pathogenetic progression may be due to the fact that the ability to cope up with
degenerating aspects of onset of MS is heavily dependent on immune response of the
patient. Since there is no clinically-accepted quantitative in-vivo imaging method
to quantify initial onset of MS (such as extent of demyelination, glial-cell activity,
etc.), prescription drugs to inhibit onset of MS at a very early stage is an existing
challenge [Rovira 2015, Bakshi 2008]. Although emerging qMRI techniques have re-
ceived positive acclamation from the radiologists, due to lack of specificity of these
techniques they are not in clinical use at present [Rovira 2015].

But from a single MS lesion point of view, stage-wise progression has been es-
tablished [Lassmann 2001, Leray 2010] where each stage may be represented by a
set of defined degeneration characteristics [Lassmann 2001, Van Waesberghe 1999,
Laule 2007a]. This fact is a motivating factor to investigate biomarkers which can
give an overall sense of MS disease progression in a MS patient, as well as provide
insights into the microstructure information of individual lesions.

Advanced MRI techniques which can provide quantitative information of brain
tissues (popularly) include diffusion MRI, Magnetization Transfer (MT), and relax-
ometry imaging technique. The standard MRI techniques in clinical practice today
include T2 & T1 weighted imaging methods. Authors in [Van Waesberghe 1999] dis-
cuss how the advanced MRI techniques compare to standard MRI-techniques with
respect to histology reports of axonal damage. The study was done for a population
of early stage lesions, actively progressing lesions and lesions in advanced stages of
MS. T2 weighted images are very sensitive to detection of lesions. Among the T2 vis-
ible lesions, axonal density varied between 0−100%. Hence, a standard T2 weighted
image lacks specificity in terms of explaining axonal density in a lesion, which is an
important marker for the disease progression. But the high sensitivity of T2 images
with respect to lesion detection makes it useful for detecting lesions in early stages.
This high sensitivity of T2 can also be explained from the fact that T2 predominantly
reflects the changes that occur in NAWM (which bear early degenerations in MS).
T1 hypo-intensity and MTR shared similar and strong correlation scores with the
degree of axonal density. MT is however more sensitive because its measurement
reflects the loss of membrane integrity. Thus unlike T1, MT also reflects changes in
WM (& hence demyelination). Authors in [Van Waesberghe 1999] show that MT

shows higher correlation strength with axonal loss than with myelin density for ac-
tive lesions. For demyelination, Myelin Water Fraction (MWF ) has been shown as
an effective biomarker based on histology studies [MacKay 2006, Laule 2007a].

Multi-exponential methods for T2 Relaxometry MRI have been shown to pro-
vide information on myelin content in the brain tissues [MacKay 2016, Laule 2007b,
Laule 2007c, Levesque 2010b, Laule 2007a]. Earlier work has shown that there are
multiple (and distinct) T2 pools in whiter matter tissues [Whittall 1997]. This
has been illustrated in Fig. 2.8. The edema in MS lesions are observed to have
a T2 value higher than the intra/extracellular water T2 pool shown in Fig. 2.8
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[Laule 2007b, Laule 2007c]. In this thesis we propose models and the estimation
framework to estimate tissues with short, medium and high T2 relaxation times in
a MRI voxel from low SNR T2 relaxometry MRI data.

Myelinated CNS tissue

myelin
sheath

Intra/extracellular
water

Figure 2.8: (Left) Electron microscope image of myelinated CNS tissue. The
myelin sheath surrounds the axons. (Right) T2 distributions of the myelin and
intra/extracellular water are shown here. Image courtesy: [MacKay 2016].





Chapter 3

Gaining insights into brain tissues
using multi-compartment T2

relaxometry MRI

In this thesis two realizations of parametric T2 relaxometry models and their pa-
rameter estimation framework are proposed and analyzed. Each tissue in the brain
is considered to be composed of three compartments with tissues having: short
T2, medium T2 and high T2 relaxation times. These will henceforth be referred to
as short T2, medium T2 and high T2. The objective of the proposed models is to
obtain quantitative estimates of the fraction of tissues belonging to each of these
compartments present in a T2 relaxometry MRI voxel. This is illustrated in Fig. 3.1.

Figure 3.1: The idea of the multi-compartment T2 relaxometry model is illustrated
here. The objective is to obtain robust and reliable short T2, medium T2 and high
T2 water fraction maps from a T2 relaxometry MRI data.

The short T2 water fraction map provides information on myelin and highly
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myelinated axons in the voxel. The medium T2 water fraction provides information
on a mixed pool comprising intra and extracellular matters in the voxel. The high
T2 water fraction is an estimate of the fraction of the voxel containing freely moving
water, which can be CSF and long T2 components such as edema.

The contributions in this thesis have been divided into two parts: (i) Methods
and (ii) Applications.

Methods

In chapter 5 we present a multi-compartment T2 relaxometry model where each com-
partment is represented using Gaussian PDFs. The difficult nature of simultaneous
estimation of PDF parameters and their weights was shown by studying the cost
function on synthetic data for varying levels of SNR. In this chapter, we decided
to fix the PDF parameters based on the T2 pool descriptions provided in earlier
studies. The weights of short T2, medium T2 and high T2 compartment PDFs are
estimated in this framework. The stimulated echoes were accounted for using the
EPG algorithm. The flip angle error percentage is also estimated. The method was
validated on T2 relaxometry data of a synthetic phantom and two in-vivo phantoms.
The repeatability of the proposed method was evaluated on healthy controls. The
water fraction maps were observed for a MS patient case.

In chapter 6 we proposed a multi-compartment T2 relaxometry model using
gamma PDFs. In this chapter we evaluate the possibility of estimating PDF pa-
rameters along with their weights. Based on the cost function evaluation, we found
that estimation of the medium T2 PDF mean is feasible (although difficult). We
estimated the PDF parameters and their weights in a variable projection framework.
Similarly to chapter 5, stimulated echoes were accounted for by estimating the flip
angle error percentage. The model was validated on synthetic and in-vivo phan-
tom data with known ground truth. Repeatability of the estimated water fractions
were evaluated on four healthy controls. The MS patient study revealed that the
estimated medium T2 PDF parameter provided useful insights into the lesions. The
short T2 water fraction map indicated demyelination lesion affected regions.

Applications

In chapter 7 we observed the longitudinal evolution of multi-compartment T2 re-
laxometry biomarkers in regions of lesions undergoing active blood brain barrier
breakdown and the inactive regions of the lesions in 10 patients with clinically iso-
lated syndrome over a period of three years. The biomarkers were obtained using
the method proposed in chapter 5. A substantial part of this chapter was to evaluate
the performance of the method on T2 relaxometry data acquired in low acquisition
time (< 7 minutes). We designed synthetic phantom experiments to compare the
performance of the method on T2 relaxometry data acquired with standard protocol
parameters and with that of data acquired under clinical settings (short acquisition
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time). There were several important observations made by studying the evolution
of the water fractions in these regions. It was observed that the active lesions re-
gions showed activity latest till 9 months from the baseline scan. We also observed
significant differences in the short T2 and high T2 water fractions values between
the active and inactive lesion regions. Traditionally studies have focused only on
evolution of the short T2 components in the tissues which is an indicator of myelin.
However, our study emphasizes on the importance of interpreting the changes in the
short T2 component in conjunction with the changes observed in the representation
of other T2 compartments in the lesions.

In the second application described in chapter 8 we address a challenging and
relevant clinical problem. Reports on the issue of gadolinium retention in tissues due
to its repeated usage have been on an increase in the recent years. Moreover, usage
of gadolinium contrast agent is not possible for patients with renal complications.
However, gadolinium contrast agents play an important role in understanding the
status and progress of neurodegenerative diseases such as MS. We proposed a method
to identify gadolinium enhanced regions in MS lesions using tissue microstructure
information obtained from T2 relaxometry and diffusion MRI data. This chapter had
two important observations. The tissue microstructure information obtained from
T2 relaxometry and diffusion MRI data complement each other. The experiment
on a test case demonstrated the potential of the proposed framework in detecting
active regions in the MS lesions without using gadolinium contrast agent injection.
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4.1 Contexte

La mesure de la propriété de relaxation T2 en imagerie par résonance magnétique
(IRM) est intéressante car elle est caractéristique de la composition de la substance
mesurée. Il s’agit de plus d’une mesure quantitative, c’est à dire ne variant pas ou
peu d’un examen à l’autre. La mesure du signal pondéré T2 a été proposée par Hahn
en utilisant la méthode spin echo [Hahn 1952]. Dans la méthode classique d’écho
de spin, un seul écho est obtenu par l’application d’une impulsion de refocalisation
après l’impulsion radio fréquence (RF) initiale (donc un seul point sur la courbe
de relaxation T2). Cependant, plusieurs impulsions de recentrage peuvent être ap-
pliquées après l’impulsion RF successivement pour obtenir le signal de désintégration
T2 à plusieurs temps d’écho [Carr 1954]. Cette technique est communément appelée
imagerie par résonance magnétique relaxométrie T2. Les données communément
appelées de relaxométrie T2 correspondent á différentes valeurs le long de la courbe
de relaxation T2 de l’image à plusieurs temps d’écho.

L’analyse la plus simple consisterait à adapter une courbe exponentielle unique
(ou une courbe de graphe de phase d’écho (EPG) représentant les échos stim-
ulés [Crawley 1987]) aux points de donnés acquis pour chaque voxel. Le taux de
décroissance de cette courbe nous fournirait des informations sur les constantes
transversales de relaxation pour le voxels. Ceci est souvent appelé analyse mono-
exponentielle. Cependant, il a été démontré que la matière blanche du cerveau
possède plusieurs classes de tissus ayant différents temps de relaxation T2. Par con-
séquent, une carte d’estimation mono T2 ne suffit pas lorsque nous analysons les
données relaxométrie T2 du cerveau. Ceci a été rapporté pour la première fois par
[Whittall 1997]. Une série d’études suggère qu’il existe principalement deux com-
partiments d’eau dans la matière blanche ducerveau [MacKay 1994, Whittall 1997,
Stanisz 1998]. Ceci pourrait être attribué au fait que la matière blanche est assez
dense et contient des fibres nerveuses serrées et empactées [Does 2018].
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Les fibres nerveuses contiennent des axones et des couches de myéline étroitement
enveloppées autour de lui. L’eau de la myéline et l’eau associée aux axones, aux
corps intra/extracellulaires sont donc séparées en terme de temps de relaxation T2.
La myéline a un court temps de relaxation T2 par rapport à d’autres tissus de la
matière blanche. Ceci est illustré dans la Fig. 4.1. Comme les compartiments de
T2 sont bien séparés, leurs contributions dans un voxel peuvent être quantifiées à
l’aide de modèles pour analyser les données relaxométrie T2. L’approche commune
consiste à quantifier la fraction de la myéline dans un voxel, communément appelée
fraction d’eau de la myéline (MWF) [MacKay 1994]. Il a été montré que le MWF
est un indicateur de la myéline (et de son absence) dans les tissus cérébraux à l’aide
d’études histologiques [Laule 2007a].

Myelinated CNS tissue

myelin
sheath

Intra/extracellular
water

Figure 4.1: (Gauche) Image au microscope électronique de tissus du système nerveux
central montrant la myéline enveloppant les axones. (Droite) Distributions T2 de la
myéline et des tissus intra/extra cellulaires. Image extraite de [MacKay 2016].

Dans cette thèse, deux modèles paramétriques de relaxométrie T2 et leur cadre
d’estimation de paramètres sont proposés et analysés. Les tissus dans le cerveau sont
considéré comme composés de trois compartiments ayant des propriétés différentes
: court, moyen et long temps de relaxation T2. L’objectif des modèles proposés
est d’obtenir des estimations quantitatives de la fraction de tissus appartenant à
chacune de ces composantes présentes dans un voxel de relaxométrie T2 en IRM.
Ceci est illustré dans la Fig. 4.2.

La carte de fraction de T2 court fournit des informations sur la myéline et les
axones fortement myélinisés dans le voxel. La fraction de T2 intermédiaire fournit
des informations sur un compartiment mixte comprenant les tissus intra et extra-
cellulaires dans le voxel. La fraction de T2 haut est une estimation de la fraction de
l’eau se déplaçant librement, par exemple du CSF ou encore un œdème.

Les contributions de cette thèse ont été divisées en deux parties: (1) méthodes,
et (2) applications.
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Figure 4.2: Idée générale des modèles multi-compartiment T2 de relaxométrie.
L’objectif est d’obtenir de manière robuste les fractions de trois compartiments T2:
court, moyen et long T2, et ce à partir d’images cliniques de relaxométrie.

4.2 Méthodes

Chapitre 5

Dans ce chapitre, nous présentons un modèle relaxométrie T2 multi-compartiment
où chaque compartiment est représenté à l’aide d’une densité de probabilité (PDF)
Gaussienne. L’estimation simultanée des paramètres des PDFs et leurs poids est
étudiée et sa difficulté démontrée par l’étude de la fonction de coût sur des données
synthétiques pour différents niveaux de bruit. Dans ce chapitre, nous proposons donc
de fixer les paramètres des PDFs en se basant sur les descriptions de compartiments
T2 fournies dans des études antérieures. Le poids des compartiments T2 court, moyen
et long sont donc estimés dans ce cadre. Les échos stimulés dûs à une acquisition
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imparfaite sont pris en compte à l’aide de l’algorithme de l’EPG. La méthode a
été validée sur les données de relaxométrie T2 d’un fantôme synthétique et deux
fantômes in-vivo. La répétabilité de la méthode proposée a été évaluée sur des
sujets sains. Les cartes de fraction de chaque compartiment ont été observées pour
un cas de patient atteint de sclérose en plaques.

Chapitre 6

Dans ce chapitre, nous proposons un modèle relaxométrie T2 multi-compartiment
où chaque compartiment est représenté à l’aide d’une densité de probabilité (PDF)
Gamma. Nous évaluons la possibilité d’estimer les paramètres des PDFs ainsi que
leurs poids. Basé sur l’évaluation de fonction de coût, nous avons trouvé que
l’estimation de la moyenne de la PDF pour le compartiment T2 intermédiaire est pos-
sible (bien que difficile). Nous avons estimé ce paramètre etles fractions de chaque
PDF dans un cadre de projection de variable [Golub 2003]. De manière similaire au
chapitre 4, les échos stimulées sont pris en compte par la méthode EPG. Le modèle
a été validé sur des données synthétique et fantômes in vivo où la réalité terrain
est connue. La répétabilité des fractions estimées ont été évaluées sur quatre sujets
sains. L’étude de patients souffrant de sclérose en plaques (SEP) a révélé que le
paramètre estimé pour le compartiment T2 moyen fournit des indications utiles sur
les lésions. La démyélinisation des lésions est par ailleurs bien visible sur les cartes
de poids du compartiment T2 court.

4.3 Applications

Chapitre 7

Dans ce chapitre, nous avons observé l’évolution longitudinale des biomarqueurs
issus de relaxométrie T2 multi-compartiment dans les régions de lésions SEP où
la barrière hémato-encéphalique est en cours (partie de lésion active) ou terminée
(partie de lésion inactive) chez 10 patients atteints d’un syndrome cliniquement
isolé sur une période de trois ans. Les biomarqueurs ont été obtenus à l’aide de la
méthode proposée au chapitre 5. Une partie substantielle de ce chapitre a consisté
à évaluer la performance de la méthode sur les données T2 relaxométrie acquises
en temps d’acquisition faible (< 7 minutes). Nous avons conçu des expériences
sur des fantômes synthétiques pour comparer les performances de la méthode sur
les données T2 relaxométrie acquises avec des paramètres de protocole standard et
avec celles des données acquises dans un contexte clinique. Plusieurs observations
importantes ont été faites en étudiant l’évolution des fractions T2 dans ces régions.
Il a été observé que les régions actives de lésions ont montré une activité plus tard
jusqu’à 9 mois de l’analyse de base. Nous avons également observé des différences
significatives dans les valeurs des fractions T2 court et T2 élevées entre les régions
de lésion active et inactive. Traditionnellement, les études n’ont porté que sur
l’évolution des composantes T2 court dans les tissus, qui est un indicateur de la
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myéline. Cependant, notre étude met l’accent sur l’importance d’interpréter les
changements dans la composante T2 court en conjonction avec les changements
observés dans la représentation des autres compartiments T2 dans les lésions.

Chapitre 8

Dans la deuxiéme application, nous avons abordé un probléme clinique récent et
important. Les rapports sur la question de la rétention gadolinium dans les tis-
sus dus à son utilisation répétée ont augmenté ces dernières années. En outre,
l’utilisation de l’agent de contraste gadolinium n’est pas possible pour les patients
souffrant de complications rénales. Cependant, les agents de contraste gadolinium
jouent un rôle important dans la compréhension de l’état et de la progression des
maladies neurodégénératives telles que la SEP. Nous avons donc proposé dans ce
chapitre une méthode pour identifier les régions prenant le contraste gadolinium
en utilisant uniquement l’information de microstructure tissulaire obtenue par des
données d’IRM de relaxométrie et de diffusion de T2 (donc sans injection de produit
de contraste). Ce chapitre a permis deux observations importantes. Tout d’abord,
les informations de microstructure tissulaire obtenues à partir des données T2 relax-
ométrie et diffusion IRM se complètent. Ensuite, l’expérience sur un cas de test a
démontré le potentiel du cadre proposé pour la détection des régions actives dans
les lésions SEP sans utiliser l’injection d’agent de contraste gadolinium.

4.4 Conclusion

Les remarques concluantes des observations des méthodes et des applications pro-
posées sont abordées dans ce chapitre. Nous y présentons également un certain
nombre de perspectives qui peuvent être poursuivies en tant que travaux futurs
basés sur les conclusions de cette thèse.
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5.1 Introduction

In this chapter, we propose a method for computing water fractions corresponding
to fast−, medium− and slow− decaying components with respect to T2 relaxation
times. This method is applied on T2 relaxometry MRI data acquired using 2D mul-
tislice Carr-Purcell-Meiboom-Gill (CPMG) sequence. In this estimation framework,
the T2 space is modeled as a weighted mixture of three continuous probability den-
sity functions (PDF) representing the three T2 compartments. Imperfect refocusing
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(due to the B1 inhomogeneities) leads to errors in T2 estimation due to stimulated
echo effects [Crawley 1987]. We used the extended phase graph (EPG) algorithm to
account for these stimulated echoes [Prasloski 2012]. Since the T2 space is modeled
as a weighted mixture of three continuous PDFs representing the three components,
the proposed model does not include any regularization on the water fractions. The
estimated weights of each compartment provide a quantitative estimate of the tissue
microstructure in a voxel. The multi-compartment T2 relaxometry signal model is
explained in Section 5.2.1.

For such parametric models, the robustness and accuracy of the implementations
to simultaneously estimate the weights and parameters of the distributions was
found to be non-trivial and not reliable [Layton 2013]. Simulations are performed for
varying levels of signal to noise ratio (SNR) to evaluate the feasibility of simultaneous
estimation of weight and PDF parameters for the signal model in Section 5.2.2.
Based on the observations of the cost function analysis, we setup the problem in
Section 5.2.3. The flip angle error is estimated numerically. In section 5.3.1, 5.3.2
and 5.3.2 we described experiments to validate the proposed method using synthetic
phantom and in-vivo phantom data experiments. In section 5.3.4 the experiment
to evaluate the repeatability of the method on test-retest data of in-vivo MRI brain
data of healthy subjects is discussed. The analysis on multiple sclerosis (MS) case
application has been discussed in section 5.3.5.

5.2 Method

5.2.1 Signal model

We model the T2 space as a weighted mixture of three continuous PDFs representing
the three T2 relaxometry compartments. The compartments represent tissues with
short, medium and high T2 relaxation times. The weight of the j−th distribution is
denoted by wj . The weights are normalized such that

∑
j wj = 1. Hence, the signal

of a voxel at the i−th echo time (ti) is given as:

s (ti) = M0

3∑
j=1

wj

 ∞∫
0

fj (T2; pj)EPG (T2,4TE, i, B1) dT2

 (5.1)

where ti = i × 4TE and 4TE is the echo spacing of the 2D Multi-slice CPMG
sequence. Each fj (T2; p) is the chosen PDF with parameters pj ∈ R+lj (assuming
the chosen PDF is explained using lj number of parameters). In Eq. (5.1), M0 is
the magnetization constant. EPG(·) represents the stimulated echo computed at
the time point (ti = i×4TE) using the EPG algorithm [Layton 2013]. The FAE
is realized as B1 is the field inhomogeneity scale factor [Layton 2013].
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Optimization The optimization is thus formulated as a least square problem:

(
M̂0, ŵ, p̂, B̂1

)
= arg min

M0,w,p,B1

m∑
i=1

(yi − s (ti))
2

= arg min
M0,w,p,B1

‖Y −Λ (M0,p, B1) w‖22 (5.2)

where m is the number of echoes; Y ∈ Rm is the observed signal. The parameters
to be estimated in Eq. (5.2) are: {M0,w,p, B1}. M0 ∈ R+; {wj}3j=1 ∈ [0, 1]; p ∈
R+l×3 and

∑
j wj = 1. Each element of Λ (Λij = λj (ti;M0,p, B1) ; i = {1, ...,m},

j = {1, 2, 3}) in Eq. (5.2) is computed as:

λj (ti;M0,p, B1) = M0

∞∫
0

fj (T2; p)EPG (T2,4TE, i, B1) dT2 (5.3)

In this chapter, the PDFs to represent each T2 relaxometry compartment ({fj(·)}3j=1

in Eq. (5.1)) are chosen as Gaussian PDFs:

fj (T2;µj , σj) =
1√

2πσ2
j

exp

(
−(T2 − µj)2

2σ2
j

)
(5.4)

where µj and σj are the mean and standard deviation of PDF (fj).

5.2.2 Cost function evaluation

Before going ahead with the optimization of the proposed signal model, we will
evaluate the feasibility of the simultaneous estimation of the PDF parameters and
weights for our estimation framework. To realize this objective we observed the
nature of the cost function with respect to the variables (PDF parameters and
their associated weights) for the three compartments for varying levels of signal
to noise ratio (SNR) levels. The noise free signal is generated using the forward
model (shown in Eq. 5.1) for known values of PDF parameters and weights. The
true multi-compartment T2 relaxometry model values chosen for the simulation are
shown in Table 5.1. A magnetization constant (M0) value of 950 was chosen for the
simulations.

Short T2 Medium T2 High T2
µ 20.0 100.0 2000.0
σ 5.0 10.0 80.0

weight 0.4 0.4 0.2

Table 5.1: True values of the variables used for generating the decay curve using the
multi-compartment T2 relaxometry model. The units for the Gaussian PDF mean
(µ) and standard deviation (σ) are in ms.
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In this experiment, we first evaluate a simple scenario where we observe the pos-
sibility of estimating the mean and weight of a single compartment simultaneously.
The mean of the compartments are varied within a reasonable range for each com-
partment. The mean of short, medium and high T2 compartments are varied in the
range of [10, 30], [70, 120] and [1900, 2100] respectively (all values in milliseconds).
The weight values are varied from 0 to 1. The other weights are maintained same
as true values. Simulations are carried out for SNR values of {25, 50, 75, 100, 200}.
Gaussian noise was added and the SNR was defined with respect to the first echo
signal magnitude. The nature of the cost function i.e. the expression on the right
hand side of Eq. 5.2 is observed to decide on the feasibility of simultaneous PDF
parameter and weights estimations for a compartment. Simulation results for the
cost function when the mean and weights of a compartment are simultaneously var-
ied is shown in Fig. 5.1. For the short T2 compartment, minimization operations for
PDF mean and compartment weight simultaneously at SNR of 25 is very difficult.
Although we observe an enhancement in the regularity of the cost function with
increasing SNR, optimization for this cost function is unreliable. Similar observa-
tions can be made for the case of medium and high T2 compartments (refer Fig.
5.1b and 5.1c respectively). It can be argued that if we consider a greater range of
PDF mean values, we may obtain cost function values which are more convenient
for simultaneous optimization of the PDF mean and weights. However, that would
then dissolve the purpose of a multi-compartment T2 relaxometry model where each
compartment is intended to represent tissues with certain common characteristics
(for example, mobility of water in the tissues in our case). Hence the cost func-
tion was evaluated on a suitable range of values for each compartment based on
the findings in the literature [Laule 2007a, Lancaster 2003, MacKay 2016]. In the
next experiment we studied the nature of the cost function when the weights of two
compartments are varied simultaneously for different SNR levels. Results are shown
in Fig. 5.2. For all three possible combinations, simultaneous estimation of weights
of different compartments is feasible. This is however expected as when fixing the
PDF parameters, the problem reduces to that of minimizing a quadratic expression.

5.2.3 Final problem setup

The observations from Section 5.2.2 indicate that simultaneous estimation of PDF
parameters and weights for the compartments is non-trivial and unreliable. Hence
in this chapter we choose to fix the PDF parameters. The mean and standard
deviations are chosen for the three compartments based on histology findings re-
ported in the literature [Laule 2007a, Lancaster 2003, MacKay 2016] and are set as
µ = {20, 100, 2000} and σ = {5, 10, 80} (all values in milliseconds).

Without any loss of generality, M0 and {wj}3j=1 in Eq. (5.1) can be combined
into a single term, {αj}3j=1 ∈ R+. The weight corresponding to each compartment
can be obtained as wj = αj/

∑
i αi and M0 as

∑
i αi. The signal of the voxel at
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No noise SNR=25 SNR=50

SNR=75 SNR=100 SNR=200

(a) With respect to short T2 PDF mean and weights. True values:
Short T2 PDF mean = 20.0 milliseconds, weight = 0.4.

No noise SNR=25 SNR=50

SNR=75 SNR=100 SNR=200

(b) With respect to medium T2 PDF mean and weights. True values:
Medium T2 PDF mean = 100.0 milliseconds, weight = 0.4.

No noise SNR=25 SNR=50

SNR=75 SNR=100 SNR=200

(c) With respect to high T2 PDF mean and weights. True values:
High T2 PDF mean = 2000.0 milliseconds, weight = 0.2.

Figure 5.1: Cost function values as a function of PDF mean and weights evaluated
separately for the three compartments are shown for varying levels of SNR.
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No noise SNR=25 SNR=50

SNR=75 SNR=100 SNR=200

(a) With respect to short and medium T2 compartment weights.
True values: Short T2 weight = 0.4, Medium T2 weight = 0.4.

No noise SNR=25 SNR=50

SNR=75 SNR=100 SNR=200

(b) With respect to short and high T2 compartment weights. True
values: Short T2 weight = 0.4, High T2 weight = 0.2.

No noise SNR=25 SNR=50

SNR=75 SNR=100 SNR=200

(c) With respect to medium and high T2 compartment weights. True
values: Medium T2 weight = 0.4, High T2 weight = 0.2.

Figure 5.2: Cost function values as a function of weights of two compartments
evaluated separately are shown for varying levels of SNR.
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time ti is thus expressed as:

s (ti) =
3∑
j=1

αj

 ∞∫
0

fj (T2; pj)EPG (T2,4TE, i, B1) dT2

 (5.5)

The optimization problem to be solved now is as shown below:(
α̂, B̂1

)
= arg min

α,B1

m∑
i=1

(yi − s (ti))
2

= arg min
α,B1

‖Y −Λ (B1)α‖22 (5.6)

Each element of Λ ∈ R+m×3 in Eq. (5.6) is now computed as:

λj (ti;B1) =

∞∫
0

fj (T2; pj)EPG (T2,4TE, i, B1) dT2 (5.7)

The parameters to be estimated in the least squares optimization problem stated in
Eq. (5.6), α and B1, are linear and non-linear in nature respectively. However they
are linearly separable. Hence we chose to perform the optimization for α and B1

alternatively until convergence is obtained in a desired error limit. In the first step,
α is computed by non-negative least squares (NNLS) optimization [Lawson 1995]
with a fixed B1 value. In the next step, the weights computed in the first step
are used to compute B1 by a gradient free optimizer (BOBYQA). We choose to
perform a numerical optimization to obtain B1 as it does not have any closed form
solution [Prasloski 2012]. The integral in Eq. (5.7) also does not have a closed form
solution and the EPG gradient computations are computationally expensive. Hence
the integral is computed using the Riemann sum approach by dividing the T2 region
into rectangles of finite width (= 0.33ms in our case) over the range of [0, 2500] ms.

5.3 Experiments

We begin by evaluating the proposed method on a synthetic phantom in Sec-
tion 5.3.1. The synthetic phantom is created with multiple sections representing
various tissues such as normal appearing white matter, free fluid and MS lesion like
tissues. The lesion like tissue voxels were simulated with low short T2 content and
presence of high T2 components to account for myelin degeneration and inflamma-
tion (presence of edema) respectively. In the next two experiments we performed
experiments on in-vivo T2 relaxometry images of two phantoms. The phantoms and
the associated experiment are explained in Section 5.3.2 and 5.3.3. Repeatability
is an important aspect of quantitative MRI techniques. In Section 5.3.4 we discuss
the test-retest experiments carried out to assess the repeatability of the proposed
method on 4 healthy controls. The agreements of the values are evaluated with the
help of Bland-Altman plots. Finally we evaluate the performance of the proposed
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method on a MS patient in Section 5.3.5. In this experiment we observe the evolu-
tion of water fraction values in lesions and compare them with those of the normal
appearing white matter.

5.3.1 Synthetic phantom experiment

A synthetic phantom with sections of different water fraction values was created to
evaluate the proposed method. In addition to sections with different water fraction
values, the phantom has four sections with FAE percentages of {0%, 5%, 10%, 20%}.
This allowed us to account for the effect of stimulated echoes observed in multiple
echo spin echo sequences, as opposed to pure exponentials [Crawley 1987]. The flip
angle error values are used to account for the effect of stimulated echoes using the
EPG algorithm [Prasloski 2012, Layton 2013]. The true water fraction values and
FAE percentages are shown in Fig. 5.3.

short T2 medium T2 high T2 FAE

0% 20%

Figure 5.3: True values of the flip angle error (FAE) percentage, short T2, medium
T2 and high T2 water fraction for the synthetic phantom are shown here.

For simulating a multi-compartment T2 relaxometry voxel, decay components for
each voxel are mixed in the proportion of the corresponding true water fraction value
(shown in Fig. 5.3). The T2 values for short, medium and high T2 compartments
are drawn randomly from Gaussian PDFs with (mean, standard deviation) of (20,
5), (100, 10) and (2000, 80) respectively (all in ms). The simulations are performed
for six SNR levels of 50, 75, 100, 200, 500 and 1000. Gaussian noise was added and
the SNR is defined with respected to the first echo signal. Please refer Appendix A
for details on how the synthetic phantom is generated. The first echo images of the
synthetic phantom with echo spacing of 9ms and number of echoes = 32 are shown
in Fig. 5.4 for all SNR levels evaluated in this work. We evaluate the accuracy of
the proposed method for the estimated water fraction values and B1 scale factors
for all SNRs.

5.3.2 In-vivo phantom experiment I

The second experiment is performed on a phantom with three sections. Each section
contains water with a different level of Gadolinium (Gd) and is intended to simulate
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SNR 1000 SNR 500 SNR 200

SNR 100 SNR 75 SNR 50

Figure 5.4: The first echo for all SNR levels of the synthetic phantom are shown
here. The synthetic phantom data is generated with following specification: echo
spacing = 9.0ms, number of echoes = 32.

one of the three major compartments in the brain. An observed echo of the phantom
is shown in Fig. 5.5. This phantom was made by Onur Afacan, Boston Children’s
Hospital, Boston, MA, USA. Since each section contains a single solution, a mono
T2 estimation of the T2 relaxometry data was performed to confirm the in-vivo T2

values of the sections. Section 1 contains 6mM Gd-DPTA (Magnevist) solution.
The mono T2 estimation (using EPG instead of pure exponential) showed that this
section had a mean T2 value of 39.78 ms (standard deviation = 1.37). This represents
the short T2 compartment. The water and Gd-DPTA (Magnevist) solution in the
section 2 has a mean T2 value of 141.93 ms (standard deviation = 4.13). Hence this
shall represent the medium T2 compartment. Section 3 contains saline water and
the mean T2 value in this section was found to be 1985.68 ms (standard deviation =
186.02). This is not a perfect test for a multi-compartment T2 relaxometry model
as each section contains values pertaining to only one compartment. The objective
of this experiment is to evaluate how the method performs in presence of a single
compartment in a voxel.

The acquisition details are as follows: Siemens 3T MRI machine; 2D multislice
CPMG sequence; number of echoes = 32; first Echo at 9ms; echo spacing = 9ms;
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Section - 1

Section - 2

Section - 3

Figure 5.5: The T2 relaxometry MRI of the phantom used for in-vivo phantom
experiment I is shown here. The three sections are annotated in this figure.

single slice acquisition; in plane resolution = 1.1mm × 1.1mm; slice thickness =
4mm; matrix size = 192 × 192.

5.3.3 In-vivo phantom experiment II

For this experiment we tested our method against the NIST phantom, "Phannie"
[Russek 2012]. This phantom is illustrated in Fig. 5.6.

(a) (b)

Figure 5.6: The NIST phantom "Phannie". Images source:
https://www.nist.gov/news-events/news/2010/05/meet-phannie-nists-standard-
phantom-calibrating-mri-machines

As it can be observed from Fig. 5.6a, the phantom contains three layers of
spheres. The middle layer (red spheres) consists of spheres containing solutions of
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varying T2 relaxation times. The in-vivo T2 values for the scanner at our research
center were found using mono T2 analysis. The values ranged from around 10ms to
700ms. The water fraction values for the short T2, medium T2 and high T2 were
estimated for these spheres. Objective of this experiment is to observe whether the
water fraction values estimated for the spheres reflect the changing T2 values of the
solution in the spheres.

The acquisition details are as follows: Siemens 3T MRI machine; 2D multislice
CPMG sequence; number of echoes = 32; first Echo at 9ms; echo spacing = 9ms;
in plane resolution = 1.33mm × 1.33mm; slice thickness = 3mm; spacing between
slice centers = 3mm; matrix size = 192 × 192.

5.3.4 Repeatability test

The objective of this experiment is to observe whether the proposed model is repeat-
able in terms of estimation of the microstructure maps. For that purpose, test retest
T2 relaxometry scans of 4 healthy controls were obtained. The age of the healthy
controls was in the range of 26-32 years. 15 regions of interest (ROI) marked in
the brain for each healthy control over which the test and retest values of the com-
partments’ water fractions were compared. All the ROIs were marked for one case.
The ROIs were then registered on the other cases using a rigid followed by an affine
registration [Ourselin 2000, Commowick 2012] to ensure that similar regions were

Figure 5.7: Test retest scans were performed for 4 healthy controls to study the
repeatability of the proposed method. This figure shows the 15 regions which were
marked on the healthy controls over which the repeatability was studied.
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analyzed for repeatability in all cases. An illustration of these ROI on a subject is
shown in Fig. 5.7.

The details of the acquired data are as follows: 3T MRI scanner; 2D multislice
CPMG sequence; 32 echoes; first echo at 9ms; echo spacing = 9ms; TR = 2000ms;
single slice acquisition; in plane resolution= 1.1mm ×1.1mm; slice thickness of 5mm;
matrix size of 192×192; number of averages= 1. The data was acquired on the same
day. The subject was moved out and then placed back in the scanner to acquire the
test and the retest data.

A Bland-Altman plot was used to observe the repeatability of the estimations
over the ROIs. From the plot we obtained the mean deviation (md) of the test retest
values for the ROIs and checked whether there are noticeable systematic changes
in the estimations. We further look at the limits of agreement (LoA) between the
test retest estimations. The voxel wise values in the ROI are compared in a scatter
plot between estimated test and retest values. The coefficient of determination was
computed for a linear fit. The slope and intercept of the linear fit was also observed.
The ideal fit shall have a R2 fit score of 1.0 and a slope and intercept of 1.0 and 0.0
respectively.

5.3.5 Application on healthy control and multiple sclerosis patient

In this experiment we will observe the water fraction maps for a healthy control and
multiple sclerosis (MS) patient. Water fraction values in two lesions are observed.
The same patient had two scans following the baseline scan at 12 and 24 months time
intervals. Hence we observe the evolution of the water fraction values of the three
compartments in the two lesions. In another analysis, evolution of water fraction
values for all the lesions are compared with the evolution of few normal appearing
white matter (NAWM) regions in the MS patient. The lesion and NAWM regions
are marked on the baseline scan and the water fraction values of these regions is
analyzed for the follow-up scans. All lesions are marked by a radiologist on FLAIR
images. All the water fraction maps are registered on the FLAIR image acquired at
the baseline using a block matching algorithm [Commowick 2012, Ourselin 2000].

The details of the T2 relaxometry data acquired for the healthy control are as
follows: 3T MRI scanner; 2D multislice CPMG sequence; 32 echoes; first echo at
9ms; echo spacing = 9ms; TR = 3720ms; in plane resolution= 1.33mm ×1.33mm;
slice thickness of 4mm; space between consecutive slices = 4mm; matrix size of
192 × 192; number of averages= 1. The MS patient had the following details:
3T MRI scanner; 2D multislice CPMG sequence; 11 echoes; first echo at 8.4ms;
echo spacing = 8.4ms; TR = 4650ms; in plane resolution= 1.33mm ×1.33mm; slice
thickness of 3mm; space between consecutive slices = 3mm; matrix size of 192×192;
number of averages= 1. All images were registered to the FLAIR image acquired
at baseline scan (on which the lesions were marked). The FLAIR image had voxel
size of = 0.5mm ×0.5mm ×1.1mm (matrix size of 256× 246).



5.4. Results 53

5.4 Results

5.4.1 Synthetic phantom experiment

Relative mean square error (rMSE) was used to quantify the error in estimation.
The rMSE was computed as shown below:

rMSE =

∑N
i=1 (q̂(i)− qtrue(i))2∑N

j=1 qtrue(j)
2

(5.8)

where q̂ is the estimated quantity and qtrue is the true value. Results are shown in
Fig. 5.8. The rMSE values are in the order of 10−2 for all the water fraction values.
The rMSE values reduce as the SNR improves. The errors in FAE estimation were
observed to be in the order of 10−5. The water fraction maps estimated for all SNRs
are shown in Fig. 5.9.

FAE

Figure 5.8: rMSE values for estimated water fraction (left) and FAE (right) are
shown here. Both axes are in log scale.

5.4.2 In-vivo phantom experiment I

Results of the experiment discussed in section 5.3.2 are shown in Fig. 5.10 and 5.11.
The statistics of the estimated water fractions corresponding to short, medium and
high T2 compartments for each section are computed over the regions of the phantom
shown in Fig. 5.10. The statistics of the short T2, medium T2 and high T2 water
fraction are computer over the blue, green and red masks respectively. The FAE
percentage estimated using the method is shown also shown in Fig. 5.10.

The water fraction maps estimated for the sections are shown in Fig. 5.11. The
statistics computed over the regions shown in Fig. 5.10 are summarized in Table 5.2.
For each section the water fraction value for the relevant compartment is stated.
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Figure 5.9: Short, medium and high T2 water fraction maps estimated using the
proposed methods for different levels of SNRs are shown here.

0% 50%

Relaxo T2 image Evaluation masks Flip angle error (%)

Section - 1

Section - 2

Section - 3

Figure 5.10: (Left to right) The phantom with the annotated sections. Region of
interest over which statistics of the estimated water fraction is computed for the
three sections. FAE maps estimated using the model.

5.4.3 In-vivo phantom experiment II

The results of the NIST phantom analysis is discussed in this section. The phantom
consists of multiple spheres where each contains solution with a specific T2 value
(see Section 5.3.3). The T2 relaxometry image, evaluation masks for each of the 14
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0.00 1.00 0.00 1.00 0.00 1.00

Short T2 Medium T2 High T2

Figure 5.11: (Left to right) Short T2, medium T2 and high T2 water fraction maps
estimated for the in-vivo phantom I.

Short T2 weight Mono T2 value
µ σ µ σ

Section 1 0.93 0.012 29.78 1.37

Medium T2 weight Mono T2 value
µ σ µ σ

Section 2 0.93 0.009 131.93 4.13

High T2 weight Mono T2 value
µ σ µ σ

Section 3 0.99 0.005 1985.68 186.02

Table 5.2: The water fractions for short T2, medium T2 and high T2 compartments
for the three sections are shown here. The mean (µ) and standard deviation (σ) of
the water fraction maps are computed over for each section over the regions indicated
in Fig. 5.10.

T2 spheres and the B1 scale factor map for the NIST phantom is shown in Fig. 5.12.
The estimated water fraction maps for the spheres are shown in Fig. 5.13. The
spheres in the NIST phantom have mono T2 solution. The water fraction statistics
for all the T2 spheres are shown in Table 5.3. We show additionally in Fig. 5.14 in
red, green and blue shades the regions where the short T2, medium T2 and high T2

water fractions dominate respectively. The T2 spheres with values less than 35ms
are represented by short T2 compartment. From 35 to 130 ms, the water fraction
values are represented by the medium T2 compartment. The high T2 water fraction
value gains representation from 130ms onward. The T2 spheres having T2 values
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numbers as referred to in the text

Figure 5.12: (Left to right) The phantom with the annotated sections. Region of
interest over which statistics of the estimated water fraction values are analyzed for
the 14 T2 spheres. FAE percentage maps estimated using the model.

Short T2 Medium T2 High T2

0.00 1.00 0.00 1.00 0.00 1.00

Figure 5.13: (Left to right) Short , medium and high T2 water fraction maps es-
timated for the T2 spheres in the NIST phantom using the proposed model are
shown.

greater than 200ms are represented solely by the high T2 compartment.

5.4.4 Repeatability test

The Bland-Altman (BA) plots for short, medium and high-T2 water fraction esti-
mates over the ROIs are shown in Fig. 5.15. BA plots are scatter plots between
the average test-retest measurement and the difference between test-retest measure-
ments. We measured the means of the estimated values of 15 ROIs in 4 healthy
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Short T2 weights Medium T2 weights High T2 weights
Region T2 value µ σ µ σ µ σ

Label 1 31.84 0.96 0.05 − − 0.04 0.05
Label 2 21.92 0.96 0.04 − − 0.04 0.04
Label 3 16.56 0.98 0.03 − − 0.02 0.03
Label 4 19.56 0.99 0.01 − − 0.01 0.01
Label 5 26.07 0.93 0.03 0.06 0.04 − −
Label 6 34.79 0.29 0.15 0.71 0.15 − −
Label 7 47.59 − − 1.00 0.00 − −
Label 8 65.59 − − 1.00 0.00 − −
Label 9 91.64 − − 0.99 0.01 0.01 0.01
Label 10 130.64 − − 0.88 0.01 0.12 0.01
Label 11 200.02 − − 0.40 0.06 0.60 0.06
Label 12 286.89 − − 0.01 0.02 0.99 0.02
Label 13 378.11 − − − − 1.00 0.00
Label 14 603.03 − − − − 1.00 0.00

Table 5.3: This table show the mean (µ) and standard deviation (σ) of short T2,
medium T2 and high T2 compartments for the 14 T2 spheres in the NIST phantom.
The label index can be checked from Fig. 5.12. The T2 values shown in this table
are obtained by performing a mono T2 analysis of the data.

controls. The BA plots for short, medium and high-T2 water fraction estimates for
the 15 ROIs are shown in Fig. 5.15a, 5.15b and 5.15c respectively. The plots shows
the level of mean error (md) observed. The gray area around the mean error level is
its 95% confidence interval (CI). Along with md, the md ± 1.96× σd levels are also
shown and are referred to as levels of agreement (LoA). σd is the standard deviation
associated with the errors observed in the test-retest measurements. LoA is thus
an empirical estimate of the range around md within which 95% of the differences
are expected to exist. The 95% CI of the LoAs for each plot is shown with a yellow
shade around LoA in the plots. The BA plot statistics are summarized in Table 5.4.
From Fig. 5.15, we observe that the mean bias of difference between the test-retest
ROI mean values (md) is close to zero for short, medium and high-T2 water fraction
estimates. For all three water fraction estimations, the zero level lies comfortably
inside the 95% CI of the md. The test retest differences lie within the LoA and its
95% CI.

5.4.5 Application on healthy control and multiple sclerosis patient

The water fraction maps for a healthy control are shown in Fig. 5.16. Results
for a MS patient are shown in Fig. 5.17. Two lesions are indicated in the axial
slice: lesion-1 and lesion-2 are marked with green and red arrows respectively. The
absence or very low short T2 water fraction values in the lesion region (and its
immediate surrounding) indicates demyelination. The high T2 water fractions in
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Figure 5.14: The values for the estimated water fraction value for three compart-
ments are plotted with respect to the T2 value of the spheres. The three sections
shown in the graph pertain to regions where water fractions for one compartment
is dominant.

Mean bias (md) 95% CI around md LoA

Short T2 −0.0005 [−0.0051, 0.0039] 0.0161

Medium T2 0.0006 [−0.0039, 0.0051] 0.0161

High T2 −0.0001 [−0.0005, 0.0002] 0.0001

Table 5.4: This table summarizes the statistics of the Bland-Altman (BA) plots
shown in Fig. 5.15 for short, medium and high-T2 water fraction estimates. For
each compartment the mean bias of the difference in the estimates (md), the 95%
confidence interval (CI) around md and the limits of agreement (LoA) are shown.

these regions are higher compared to the surrounding NAWM in the brain, indicating
inflammation. In lesion-2, the medium T2 water fraction values decrease as we move
from the surrounding NAWM regions towards the lesion core. This might be an
indication of the axonal damage caused by MS. Hence from the water fraction maps,
we observe indications of the expected demyelination and inflammation in the lesion
affected regions.

As mentioned in section 5.3.5, there were two follow-up scans from the baseline
scan for the MS patient. For the two lesions highlighted, we observed the change in
the water fraction for the three compartments over a 24 months period. Results are
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Bland Altman Plot: ROI mean comparison Scatter Plot: Voxel wise comparison

(a) Short T2 water fraction

Bland Altman Plot: ROI mean comparison Scatter Plot: Voxel wise comparison

(b) Medium T2 water fraction

Bland Altman Plot: ROI mean comparison Scatter Plot: Voxel wise comparison

(c) High T2 water fraction

Figure 5.15: The test retest values for the estimated water fraction of three compart-
ments in the ROIs (shown in Fig. 5.7) are compared in the form of Bland-Altman
(BA) plots and scatter here. The BA plots compare the ROI mean values whereas
the scatter plot compares values at each the voxel in ROIs. The BA plot and scatter
plot statistics are summarized in Table 5.4 and 5.5 respectively.
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Figure 5.16: Water fraction maps estimated for the short T2, medium T2 and high
T2 compartments for a healthy control.
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Water fraction R2 Slope Intercept

Short T2 0.888 0.952 0.012

Medium T2 0.861 0.947 0.039

High T2 0.966 1.005 0.000

Table 5.5: This table summarizes the regression statistics of the plots shown in
Fig. 5.15 for short, medium and high-T2 water fraction estimates respectively. The
regression statistics are obtained by comparing all the voxels in the 15 ROIs of four
healthy controls.

0.00 0.50 0.00 1.00 0.00 1.00

T2 relaxometry Short T2 Medium T2 High T2

Lesion-1

Lesion-2

Figure 5.17: Water fraction maps estimated for the short T2, medium T2 and high
T2 compartments for a MS patient.

shown in Fig. 5.18. In both lesions, an increase in the short T2 water fraction value
over 24 months indicates remyelination. A slight decline in the medium T2 water
fraction values is observed for lesion-2. This might be an indication of axonal loss.

In the next analysis, we evaluate the evolution of the water fractions in all lesions
and 8 NAWM ROIs in the same patient. Results are shown in Fig. 5.19. The
short T2 values in the NAWM regions (refer Fig. 5.19b) do not show indications of
demyelination. Absence of high T2 water fraction values in NAWM regions indicate
no signs of inflammation. On the contrary, tissues affected by MS lesions have a
very low short T2 water fraction values and substantial presence of high T2 water
fraction values indicating demyelination and presence of inflammation.
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Short T2 Medium T2 High T2FLAIR images
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Figure 5.18: Evolution of the water fraction values of the short T2, medium T2 and
high T2 compartments over a period of 24 months for two lesions in a MS patient.
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Figure 5.19: The evolution of water fractions for the three compartments are com-
pared for lesions and NAWM regions in MS patients.

5.5 Discussion

An initial validation of the method was carried out on a synthetic phantom. The
relative mean square error for the estimated short and high T2 water fractions was
of the order of 10−2, whereas it was of the order of 10−3 for the medium T2 water
fraction. This might be attributed to the fact that the data specification used for
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simulation (echo spacing = 9.0ms; echo train length = 32) had maximum echoes
corresponding to the medium T2 compartment. However, it shall be noted that
rMSE was quite low for all SNRs and reduced as the SNR improved. The water
fraction maps also show a visual improvement in the estimation with improving
SNR.

The next stage of validation of the method was carried out on two phantoms.
Both phantoms had multiple sections with single T2 values. The first phantom
had three sections and each section’s T2 values fell within the range of a single
compartment. The estimation results showed that the model predicted this with
high accuracy. The second phantom had a wider range of T2 values. Some T2 values
were in the transition range of the T2 compartments. There were two important
outcomes of this experiments. The first observation is that for a range of values
which were well within the range of a single T2 compartment were predicted with
high accuracy. Secondly, this method provided insights into how the model behaves
when the T2 values are in the transition stages of the compartment. For the choice
of parameters made for the model in this work, we can roughly say that the short
T2 and high T2 compartments represent tissues with T2 values lesser than 35ms and
greater than 200ms respectively. The medium T2 compartment has representations
for T2 values in the range of 35-200ms. Hence this experiment provides us a rough
idea of T2 values of the tissues depicted by each compartment. However, it shall be
noted that these are mono T2 voxels whereas the tissues in the brain and other parts
of the body are multi T2 (other than regions with only fluids such as CSF etc.). Hence
this experiment is not a perfect depiction of a multi-compartment T2 relaxometry
voxel, but does provide a fair idea of the T2 values which compartments resemble for
in-vivo MRI data. Phantom experiments like this is useful in analyzing the effect
of fixing parameters in parametric models where the parameters are preselected.
Similarly, it can also be used to select the parameters to be fixed for the model.

The test-retest experiment results show that the quantitative MRI markers es-
timated by the proposed method is repeatable. For all the markers estimated, the
zero level was comfortably inside the 95% confidence interval of the mean difference
observed between the test and retest values of the marker for the 15 ROIs (refer the
Bland-Altman plots in Fig. 5.15). Hence there are no noticeable systematic changes
in the estimated markers for the test and retest data [Lexell 2005]. The regression
results on the scatter plot shows a good linear fit and the slope and intercept of the
linear fit being close to ideal. Thus, combining the observations from results of the
experiments on synthetic phantom data, in-vivo phantom data and repeatability
tests on healthy controls, the proposed method appears to be robust and a good
alternative to the conventional non-parametric methods (which suffer from the ap-
prehensions around the use of regularization [Does 2018]) and parametric methods
which employ complex estimation methods known for their difficult and unreliable
nature of the estimation framework [Layton 2013].

Application of the proposed method on MS patient data provided interesting
observations. As compared to the contra-lateral NAWM regions, the MS lesion af-
fected brain tissues show absence or lower short T2 water fraction values and higher
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values of for high T2 water fractions. These observations indicate demyelination
and inflammation in the MS affected tissues. In some large lesions a drop in the
medium T2 water fraction values were observed. This might indicate axonal de-
generation in such lesions. The observations from the longitudinal studies showed
that lesions slightly gained short T2 water fraction values. This was accompanied
by a small reduction in high T2 values over the period of 24 months. This might
indicate remyelination and reduction of inflammation in the lesion affected regions.
However, the changes observed for water fraction values (between acquisitions) were
in the order of the LoA (refer Table 5.4) obtained from the test retest experiment.
Hence we can not comment much on whether the indications of remyelination and
reduction of inflammation were possibly true. We should also bear in mind that
these experiments were performed on only one patient and there was a long in-
terval between successive scans. The water fraction values of NAWM in the same
patient were also observed for the baseline and the follow-up scans. In contrast
to the lesion, there was substantial short T2 and no high T2 water fraction values
in the NAWM regions. There are no observable changes in these values over the
period of 24 months. The multi-compartment T2 relaxometry biomarkers are able
to represent the demyelination and inflammation in MS lesions. The observations
are consistent with the pathological findings in the literature [Lassmann 2001]. The
MS lesion analysis was done on clinically acquired data. The acquisition time of
the data used in the presented study was around 11 minutes. The non parametric
methods (multiple exponential fitting) would have to rely heavily on regularization
for such clinical data. However, the parametric method presented is simple and can
be used for clinically acquired data. In the chapters 7 and 8 we have shown more
exhaustive clinical study and application using the method proposed here.
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6.1 Introduction

In the last chapter we discussed multi-compartment T2 relaxometry model where
probability density function (PDF) parameters representing the T2 pools had been
fixed based on the cost function analysis. We used synthetic data simulations to
observe the cost function while simultaneously varying the T2 pool PDF parameters
and its weight. We observed a (stretched) valley of cost function values around the
true minima whose values are close to cost function value at true minima. This
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suggested that for a NNLS estimation framework simultaneous T2 pool PDF pa-
rameter and its weights is non-trivial and non-reliable. The observation from the
cost function analysis in the last chapter is in agreement with the observations made
in [Layton 2013].

In this chapter we evaluate the possibility of estimating the PDF parameters
and its weights for a multi-compartment T2 relaxometry model. Rather than using
a direct non-negative least square approach trying to solve T2 pool PDF parame-
ters and their weights simultaneously, we adopted a variable projection (VARPRO)
approach. This approach has been used by Akhondi-Asl et al, where the authors
modeled the T2 pools using Wald PDFs and estimated all the T2 pool PDF param-
eters [Akhondi-Asl 2015]. The authors addressed the issue of stimulated echoes by
using generalized echo curves (using Bloch equations). In this chapter (similar to
the last one) we studied the VARPRO cost function to evaluate the difficulty of
estimating multiple T2 pool PDF parameters. Based on the cost function analysis
observations, we form the optimization problem. As in the last chapter, we also
estimated the flip angle error (FAE) percentage to account for stimulated echoes.

The model is first validated on synthetic data where the estimated water fraction
values against ground truth. In-vivo phantom experiments were performed using two
different phantoms. The water fraction estimates were compared for test-retest data
of healthy controls to asses the repeatability of the proposed method. The method
was then applied on a patient with multiple sclerosis patient.

6.2 Method

6.2.1 Signal Model

As in chapter 5, the T2 space is modeled as a weighted mixture of three PDFs,
representing each of the three T2 relaxometry compartments: short−, medium−
and high−T2. Thus the voxel signal at the i−th echo time (ti) is given as:

s (ti) = M0

3∑
j=1

wj

∞∫
0

fj (T2; pj) EPG (T2,4TE, i, B1) dT2 (6.1)

Each compartment is described by a chosen PDF, fj (T2; pj), where pj = {pj1 , . . . , pjn} ∈
Rn are the PDF parameters. In Eq. (6.1), wj is the weight of the j-th distribution
with

∑
j wj = 1. ∆TE and M0 are the echo spacing and magnetization constant

respectively. Imperfect rephasing of the nuclear spins after application of refocus-
ing pulses leads to the generation of stimulated echoes [Hennig 2004]. Hence the
T2 decay is not purely exponential. The stimulated echoes are thus obtained us-
ing the EPG algorithm [Layton 2013]. EPG(·) is the stimulated echo computed at
ti = i∆TE where i = {1, . . . ,m} and m is the number of echoes. The flip angle
error has been realized using a B1 (as in Eq. (6.1)) scale factor to account for the
stimulated echoes [Layton 2013].
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Optimization M0 and wj can be combined into a single term αj ∈ R+ without
any loss of generality. In that case, the weight wj corresponding to each compart-
ment is obtained as wj = αj/

∑
i αi. In the most general case, the least squares

minimization problem is thus formulated as:

(
α̂, p̂, B̂1

)
= arg min

α,p,B1

m∑
i=1

yi − 3∑
j=1

αjλj (ti; pj, B1)

2

= arg min
α,p,B1

‖Y −Λ (p, B1)α‖22 (6.2)

where Y ∈ Rm is the observed signal and m is the number of echoes; α ∈ R+3 ;
Λ ∈ Rm×3; p = {p1,p2,p3} ∈ Rk, where k = 3n. pj are the PDF parameters
describing the j-th T2 pool. Unlike the method proposed in chapter 5, let us consider
optimizing the T2 pool PDF parameters (at least some if not all). In Eq. (6.2), each
element of Λ, Λij =λ (ti; pj, B1), is computed as:

Λij =

∞∫
0

fj (T2; pj)EPG (T2,4TE, i, B1) dT2 (6.3)

There is no closed form derivative solution for the optimization of B1 due to
the EPG formulation [Prasloski 2012]. Hence, we opt for an alternate optimization
scheme where we iterate between optimization of {p,α} with a fixed value of B1

and optimization for B1 using the obtained {p,α} values. The terms Λ (p, B1) and
α in Eq. (6.2) are linearly separable. Hence we can use the VARPRO approach to
solve for {p,α} [Golub 2003]. The unknown α is linearly associated with Λ and can
be substituted by Λ (p)+ Y, where Λ (p)+ is the Moore-Penrose generalized inverse
of Λ (p). The VARPRO cost function is therefore computed as:

arg min
p

∥∥(I−Λ (p) Λ (p)+)Y
∥∥2

2
(6.4)

where, I−Λ (p) Λ (p)+ is the projector on the orthogonal complement of the column
space of Λ (p). Since p ∈ Rk, the Jacobian matrix J ∈ Rk×m and its columns are
computed using the results shown in [Golub 2003]. To compute the elements of J,
we therefore need to obtain ∂Λ/∂pji , for all i and j. After solving Eq. (6.4) for p,
the values of α are obtained as Λ (p)+ Y. Similar to chapter 5, the optimization for
{α,p} and B1 is performed alternatively until convergence. B1 is optimized using
a gradient free optimizer (BOBYQA), as it does not have any closed form solution
[Prasloski 2012].

6.2.2 Multi-compartment model using gamma PDF

The previous estimation framework is generic as it does not depend on the chosen
PDF. We choose here to use gamma PDF for fj(·) for j = {1, 2 ,3} since their
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non-negative support and skewed nature are well suited to describe the compart-
ments used to model the T2 space. The mean T2 values of myelin, myelinated axons,
inter- and extra-cellular and free fluids in the brain are well studied in the litera-
ture [Lancaster 2003, MacKay 2016]. Hence we parameterized each fj in terms of
its mean (µj) and variance (vj) rather than the usual shape and scale parameter
representation (refer Eq. (6.5)). Using this parametric form of the gamma PDF
makes the choice of optimization bounds convenient.

f (T2;µj , vj) =
T

(µ2j/vj)−1

2

Γ
(
µ2
j/vj

)
(vj/µj)

µ2
j
vj

exp

(
−T2

vj/µj

)
(6.5)

Hence we have, p = {µs , vs, µm, vm, µh, vh} where, (·)s, (·)m and (·)h are the
PDF parameters describing the short-, medium- and high-T2 compartments respec-
tively. Due to practical limitations such as feasible acquisition time, coil heating
and specific absorption rate (SAR) guidelines, T2 relaxometry MRI sequences have
limitations on the shortest echo time and number of echoes per acquisition. The
high-T2 compartment aims at capturing of free fluids in the brain, and hence has a
T2 relaxation time larger than 1 second [MacKay 2016]. A standard T2 spin echo
multi-echo sequence has the shortest T2 acquisition (first echo) at around 8-10ms

and has 20-40 acquired echoes. Hence for the short-T2 compartment, we usually
have a very limited (around 3-4) number of echoes. There are almost no echoes
available which correspond to the high-T2 compartment. Since there are no echoes
with echo time corresponding to the free water, we decided to fix the PDF param-
eters for the high T2 compartment. The mean and variance of the gamma PDF
for high T2 compartment (free water) is chosen as 2000ms and 6400ms2 respec-
tively [MacKay 2016].

The cost function analysis of chapter 5 demonstrated that the robustness and
accuracy of the implementations to simultaneously estimate the weights and all the
PDF parameters has been found to be not reliable [Layton 2013]. Several previous
works have shown that multiple sclerosis lesions cause a shift in the spectrum of the
medium T2 pool (also referred to as mixed pool in [Lancaster 2003]) [Laule 2007b,
Laule 2007c]. To evaluate this, we decided to estimate the T2 pool PDF parameters.
It will be interesting to see whether estimated T2 spectrum from parametric models
are able to demonstrate similar phenomenons. Throughout this work, the variances
of the short T2 and medium T2 pools are fixed as {vs, vm, } = {50, 100, }ms2. In the
VARPRO formulation of our problem, we are simultaneously estimating the PDF
parameters (mean) of short and medium T2 gamma PDF. It is important to analyze
the cost function characteristics before we go ahead with the idea of simultaneous
estimation of the PDF parameters. In the next section we perform the cost function
analysis in two different ways. In the first experiment we generate the signal using
the signal model formulation shown in Eq. (5.1) for known gamma PDF parameters
and their associated weights, and study the VARPRO cost function characteristics
(shown in Eq. (6.4)) with respect to mean of the gamma PDF representing the short
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and medium T2 compartments. In the next experiment, the VARPRO cost function
characteristics is studied for a few voxels of human brain T2 relaxometry MRI data
to confirm the findings from the earlier experiment. Based on the findings of the
experiments shown in Section 6.2.3, we propose the final problem setup is Section
6.2.4.

6.2.3 VARPRO cost function analysis

Based on the discussions in the previous section, we evaluated the potential of
minimizing the VARPRO cost function with respect to the variable p, where p =

{µs, µm}. The cost function is evaluated for the following ranges: µs ∈ [15, 50]ms,
µm ∈ [80, 200]ms. The range of values chosen for observing the cost function contain
the realistic values (and beyond) for each variable.

We studied the cost function for a T2 relaxometry data of a healthy volunteer.
The evaluation is performed a few voxels at different locations in the brain. The
cost function is computed for few voxels of a brain image acquired with the following
specifications: 3T MRI scanner; 2D multislice CPMG sequence; 32 echoes; first echo
at 9ms; echo spacing = 9ms; TR = 3720ms; voxel resolution= 1.33mm ×1.33mm
×4mm; matrix size of 192× 192; number of averages= 1.

Voxel of interest Cost function plot

(1)

(2)

Figure 6.1: VARPRO cost function values for two voxels in the dense white matter
region are shown here.
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The cost function plots for two voxels in dense white matter region are shown
in Fig. 6.1. Both voxels have a similar cost function pattern. These regions of
the brain have substantial representation from both short and medium T2 compart-
ments. Despite this, the cost function plot for both voxels show the difficult nature
of optimization with respect to gamma PDF mean of short T2 and medium T2 com-
partments. The cost function plots for two voxels in other regions of the white
matter are shown in Fig. 6.2. We observe similar trends for the cost function as
those observed for dense white matter shown in Fig. 6.1. Performing optimization
for short T2 gamma PDF mean in bounded intervals shall hit the lower bound for
all choices of suitable medium T2 gamma PDF means. The cost function for a voxel
in a free fluid region of the brain is shown in Fig. 6.3. The cost function is vastly
flat and there is not clear minima in the reasonable ranges for mean of the gamma
PDF representing short T2 and medium T2 pools.

(1)

(2)

Voxel of interest Cost function plot

Figure 6.2: VARPRO cost function plots for voxels in other white matter regions.

6.2.4 Problem setup

The cost function plots suggest that when we minimize for short T2 and medium T2

PDF mean, the former always hits its lower bound set for the optimization. However,
for a fixed value of short T2 PDF mean, it is viable to estimate the medium T2 PDF
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Figure 6.3: The VARPRO cost functions for a voxel in a free water region of the
brain tissue.

mean. Hence we choose to estimate only the mean of the gamma PDF corresponding
to the medium-T2 compartment in this chapter.

Using the VARPRO approach we thus estimate four parameters of the signal
model: mean of the medium-T2 gamma PDF (µm) and the three weights corre-
sponding to each compartment. In the first step µm was estimated and then α was
obtained as Λ†(p)Y. The derivation for the Jacobian to be used for our problem
has been provided in Appendix B following the approach shown by [Golub 2003].
The specific Jacobian term required to obtain the gradient update step is:

J = −

[(
P⊥Λ

∂Λ

∂µm
Λ†
)

+

(
P⊥Λ

∂Λ

∂µm
Λ†
)T]

Y (6.6)

Hence only ∂Λ/∂µm is required for computing the Jacobian matrix. The expression
for elements of the matrix ∂Λ/ ∂µm is derived as shown below:

∂Λi,.
∂µm

=

∫
T2

∂f (T2;µm, vm)

∂µm
EPG (T2,4TE, i, B1) dT2 (6.7)

where f(·) is the gamma PDF with mean (µm) and variance (vm) (as in Eq. (6.5)).
To compute the expression in Eq. 6.7, we need to obtain:

∂f (T2;µm, vm)

∂µm
=

∂

∂µm

 T
(µ2m/vm)−1

2

Γ (µ2
m/vm) (vm/µm)

µ2m
vm

exp

(
−T2

vm/µm

) (6.8)

Substituting µm/ vm = β in Eq. (6.8), we obtain:

∂f (T2;µm, vm)

∂µm
=

∂

∂β

(
T vmβ

2−1
2

Γ (vmβ2)
βvmβ

2
exp (−βT2)

)
︸ ︷︷ ︸

A

×

B︷ ︸︸ ︷
∂β

∂µm
(6.9)
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where, A in Eq. (6.9) is solved by using differentiation by parts approach. The
term B can be obtained from the definition of β as 1/ v. The term A is obtained
as shown below:

A =
∂

∂β

[
T vmβ

2−1
2

Γ (vmβ2)

]
︸ ︷︷ ︸

A1

βvmβ
2

exp (−βT2)+
T vmβ

2−1
2

Γ (vmβ2)

∂

∂β

[
βvmβ

2
exp (−βT2)

]
︸ ︷︷ ︸

A2

(6.10)

The expression for A1 is then obtained as:
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]
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Γ (vmβ2)
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2−1
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[
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(
vmβ

2
)]

(6.11)

where Ψ(·) is the digamma function. The expression for A2 in Eq. (6.10) is obtained
as:
∂

∂β

[
exp (−βT2) βvmβ

2
]

= βvmβ
2

(−T2) exp (−βT2) + vmβ
(
1 + log β2

)
βvmβ

2
exp (−βT2)

= exp (−βT2)βvmβ
2 [−T2 + vmβ

(
1 + log β2

)]
(6.12)

Substituting the results of Eq. (6.11) and (6.12) in Eq. (6.10) we obtain:
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Now, substituting the above result in Eq. (6.9) we obtain the expression of ∂f/∂µm
as:

∂f (T2;µm, vm)

∂µm
= f (T2;µm, vm)

[
2vmβ

(
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(
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2
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−
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[
β
(
2 log (T2β)− 2Ψ

(
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2
)

+ 1
)
− T2
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]
(6.14)
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Substituting β = µm/ vm in the above equation, we obtain the final result as follows:

∂f (T2;µm, vm)

∂µ
= f (T2;µm, vm)

[
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vm

(
2 log
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T2
µm
vm

)
− 2Ψ
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)
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)
− T2

vm

]
Hence, the term to be computed to obtain the jacobian is shown below:
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2 log
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)
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m

vm

)
+ 1

)
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]
EPG (T2,4TE, i, B1) dT2 (6.15)

We assumed a reasonable bound on µm of [95ms, 150ms] for its optimization.
The FAE percentage was optimized for in the range of 0% to 50%. The mini-
mization problem in Eq. (6.4) is solved for µm with a gradient based optimizer
[Svanberg 2002] using the analytically obtained derivative in Eq. (6.15) .

Interpretation of the compartment weights. The short T2 compartment here
indicates the condition of myelin and myelinated axons [Lancaster 2003]. The
medium T2 compartment’s water fraction conveys information on the condition of
axons, glial cells and extracellular fluids [Lancaster 2003]. The condition of free flu-
ids (such as in ventricles and fluid accumulation due to tissue injuries) is indicated
by the high T2 water fraction values.

6.3 Experiments

The first experiment is conducted on synthetic data to assess the performance of
the proposed method on data with known ground truth. The next experiment is
performed on an in-vivo phantom with multiple spheres containing mono T2 solu-
tions. In the third experiment we evaluate the repeatability of the proposed method
by evaluating it on test-retest scans obtained for 4 healthy controls. In the final
experiment we apply our method on a MS patient and observe the water fraction
maps and study its relevance with the known pathology of MS lesions.

6.3.1 Synthetic data

A multi-compartment T2 relaxometry voxel was generated with known ground truth
with various levels of signal to noise ratios (SNR) to evaluate the proposed method.
The voxel is simulated with a short T2, medium T2 and high T2 water fraction values
of 0.25, 0.74 and 0.01 respectively. A total of N = 100 T2 curves are combined in
proportion of the stated water fraction values to create the multi-compartment T2

relaxometry voxel. To do so, the T2 values for the short T2, medium T2 and high T2

compartments are chosen from a Gaussian distribution with mean of 25ms, 125ms,
1000ms and standard deviation of 5ms, 20ms, 80ms respectively. The stimulated
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echoes were accounted for using the EPG algorithm. A flip angle error value of 10%
was used for the synthetic data. The echo spacing and number of echoes was chosen
as 9ms and 32 for the simulations. Evaluations were performed for 10 SNR values
ranging from 50 to 150. Noise was introduced as additive white Gaussian noise and
the SNR was considered with respect to the signal observed at the first echo. We
performed 1000 simulations for each SNR level. The multi-compartment voxel was
regenerated for each simulation to maintain the randomness of the choice of T2 values
corresponding to each compartment. We observed the estimation performance of all
three water fractions over the SNR levels.

6.3.2 In-vivo phantom data

In this experiment we tested our method against the NIST phantom, "Phannie"
[Russek 2012]. The phantom has been shown in Fig. 6.4.

(a) (b)

Figure 6.4: The NIST phantom "Phannie". Images source:
https://www.nist.gov/news-events/news/2010/05/meet-phannie-nists-standard-
phantom-calibrating-mri-machines

As it can be observed from Fig. 6.4a, the phantom contains three layers of
spheres. The middle layer (red spheres) consists of spheres containing solutions of
varying T2 relaxation times. The in-vivo T2 values for the scanner at our research
center were found using mono T2 analysis. The values ranged from around 10 ms to
700 ms. A mono T2 estimation was performed to know the T2 values of the solution
in each sphere. The water fraction values for the short T2, medium T2 and high T2

were performed for these spheres.
There are two main objectives of this experiment:

• Objective 1: The NIST phantom spheres contain mono T2 solutions. Hence
the first objective is to evaluate the performance of the multi-compartment T2

relaxometry model in such scenarios.
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• Objective 2: Few spheres have T2 values which do not lie in whether com-
partment clearly. Hence the other objective of the experiment is to observe
whether and the manner in which the water fraction values estimated for the
spheres reflect the changing T2 values of the solution in the spheres.

The acquisition details are as follows: Siemens 3T MRI machine; 2D multislice
CPMG sequence; number of echoes = 32; first Echo at 9ms; echo spacing = 9ms;
single slice acquisition; in plane resolution = 1.33mm × 1.33mm; slice thickness =
3mm; matrix size = 192 × 192.

6.3.3 Repeatability test

The objective of this experiment is to observe whether the proposed model is re-
peatable in terms of estimation of the microstructure maps. For that purpose, test
retest T2 relaxometry scans of 4 healthy controls were obtained to evaluate the re-
peatability of the proposed method. The age of the healthy controls was in the
range of 26-32 years.

15 regions of interests (ROIs) were marked in the brain for each healthy control
over which the test and retest values of the compartments’ water fractions were
compared. All the ROIs were marked for one case. The ROIs were then registered
on the other cases using a rigid followed by an affine registration [Ourselin 2000,
Commowick 2012] to ensure that similar regions were analyzed for repeatability in
all cases. An illustration of these ROI on a subject is shown in Fig. 6.5.

ROI 15

ROI 14

ROI 13

ROI 12

ROI 11

ROI 10

ROI 9

ROI 8

ROI 7

ROI 6

ROI 5

ROI 4

ROI 3

ROI 2

ROI 1

Figure 6.5: Test retest scans were performed for 4 healthy controls to study the
repeatability of the proposed method. This figure shows the 15 regions which were
marked on the healthy controls over which the repeatability was studied.

The details of the acquired data are as follows: 3T MRI scanner; 2D multislice
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CPMG sequence; 32 echoes; first echo at 9ms; echo spacing = 9ms; TR = 2000ms;
single slice acquisition; in plane resolution = 1.1mm × 1.1mm; slice thickness of
5mm; matrix size of 192 × 192; number of averages = 1. The data was acquired on
the same day. The subject was moved out and then placed back in the scanner to
acquire the test and the retest data.

A Bland-Altman plot was used to measure the agreement between the mean
of estimated water fraction values in the 15 ROIs. For voxel wise comparison,
regression statistics were studied for a scatter plot between the estimated water
fraction values of the test and retest data for all voxels in the ROIs.

6.3.4 Multiple sclerosis patient data

In the final experiment we studied the estimated maps for a multiple sclerosis pa-
tient. This experiment is only intended at studying the potential of the proposed
method for MS. Demyelination and inflammation in and around MS lesions is a well
known phenomenon. In these contexts, the estimated medium T2 PDF mean and
water fraction maps are studied. The estimated medium T2 PDF mean can provide
leads into whether the T2 spectrum estimation has the potential to provide more
insights into MS lesions.

The details of the acquired data are as follows: 3T MRI scanner; 2D multislice
CPMG sequence; 32 echoes; first echo at 9ms; echo spacing = 9ms; TR = 2000ms;
single slice acquisition; in plane resolution = 1.1mm × 1.1mm; slice thickness of
5mm; matrix size of 192 × 192; number of averages = 1.

6.4 Results

6.4.1 Synthetic Data

The results of synthetic data are shown in Fig. 6.6. The experiments are done for
various levels of SNR. It shows that with increasing SNR the weight estimation gets
more accurate. The red line in the plots show the true value. It can be observed
that for all levels of SNR, the true values are quite close to the true value. The
variation in the estimation over 1000 simulations reduce with increasing SNR for
short T2, medium T2 and high T2 water fractions.

6.4.2 In-vivo phantom data

It shall be noted that the spheres in the NIST phantom contain mono T2 solutions.
The T2 values of the spheres were estimated using a mono T2 estimation. The T2

relaxometry image of the first echo of the phantom and the estimated water fraction
maps are shown in Fig. 6.7. The spheres are annotated for identification using
a label index number as shown in the leftmost figure of Fig. 6.7 for convenience
of discussion and analysis. The T2 values of the spheres obtained using mono T2

estimation are shown in Table 6.1.
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(a) Short T2 water fraction (b) Medium T2 water fraction

(c) High T2 water fraction

Figure 6.6: The plots show distribution of the estimated values over 1000 iterations
for each SNR of the synthetic data. The red line shows the true value for each case.
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Illustration indicates the sphere
numbers as referred to in the text

Figure 6.7: (Left to right) First echo of the T2 relaxometry data is shown with label
annotations. The estimated water fractions maps for short T2, medium T2 and high
T2 compartments are shown here.

It can be seen that spheres with T2 values lower than 40ms (i.e. spheres 1 to 6)
have a short T2 water fraction value of 1.0. The short T2 water fraction value is zero
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Label 1 2 3 4 5 6 7
T2 value (ms) 31.84 21.92 16.56 19.56 26.07 34.79 47.59

Label 8 9 10 11 12 13 14
T2 value (ms) 65.59 91.64 130.64 200.02 286.89 378.11 603.03

Table 6.1: The T2 values of the spheres of the NIST phantom (refer Fig. 6.7) are
shown here. The values are obtained by performing a mono T2 estimation from the
T2 relaxometry data. The label values correspond to the annotations in Fig. 6.7.

for sphere number 8 and above. The medium T2 water fraction values have non-zero
values for sphere number 7 (i.e. T2 = 47.8ms) and above. The high T2 water fraction
value is zero for all spheres with T2 value less than 200ms. The estimated water
fraction values are plotted with respect to the T2 value of each sphere in Fig. 6.8.
We can observe that the multi-compartment model is able to successfully identify
spheres where only one component is present. The estimated water fractions change
with increasing T2 values in an expected manner.
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Figure 6.8: The water fraction values estimated is plotted against the T2 values of
each sphere of the NIST phantom containing mono T2 solution. The red region
in the graph denotes the T2 values where the estimated short T2 water fraction is
greater than or equal to all other weights. In a similar manner, the green and blue
regions correspond to the estimated medium T2 and high T2 water fraction being
greater than the others respectively.
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6.4.3 Repeatability test

The repeatability of the proposed method was evaluated on 15 white matter ROIs
in four healthy controls. The ROIs evaluated are shown in Fig. 6.5. Two evaluation
criteria were used to assess the repeatability of the method.

In the first criteria the test-retest estimation values of the mean of 15 ROIs is
compared using a Bland-Altman (BA) plot. From the plot we observed the mean
bias in the estimation (b) and the 95% confidence interval around it (CI95%) and
the limits of agreement (LoA) of the test-retest estimation. The LoA is computed
as b± 1.96×SD, where SD is the standard deviation of the observations. The 95%
confidence interval around the LoA is also shown in BA plots. The 95% confidence
interval around the mean bias and LoA are computed as discussed in [Lévy 2018].

In the second criteria we performed a voxel wise comparison of the values in the
15 ROIs of 4 healthy controls. The linear regression was performed on all voxels
of the ROIs. Regression statistics were computed for the scatter plots between the
water fraction estimates for test-retest data. The slope and intercept of the linear
regression fit and their correlation coefficient

(
R2
)
fit score were observed.

The BA and scatter plots for short T2, medium T2 and high T2 water fraction
repeatability experiments are shown in Fig. 6.9a, 6.9b and 6.9c respectively. The
shaded regions around the mean bias and LoA are shown with their respective
95% confidence intervals. In the scatter plot voxels belonging to different ROIs are
represented with varying shades. The ROI labels indexes correspond to the ones
shown in Fig. 6.5. The scatter plots show the actual regression fit, as well as the
ideal fit (i.e. slope=1 and intercept=0). The BA plot and linear regression analysis
statistics are summarized in Table 6.2 and 6.3 respectively. The mean bias for
estimates of all three water fractions are close to zero and it confidence intervals
contain zero level in all cases as well. The regression analysis shows that the slope
and intercept of all the estimates are close to an ideal fit with a high R2 (> 0.864).

The water fraction maps estimated for a few axial slices for a healthy control
are shown in Fig. 6.10. We observed high values of short T2 water fraction at deep
brain gray matter. This is however attributed to the iron rich nature of the region
and has been observed to have fast decaying T2 curves.

Water fraction Mean bias (md) 95% CI around md LoA

Short T2 −0.0007 [−0.0075, 0.0059] 0.0239

Medium T2 −0.0009 [−0.0076, 0.0056] 0.0234

High T2 0.0001 [−0.0006, 0.0009] 0.0002

Table 6.2: Statistics of the Bland-Altman (BA) plots shown in Fig. 6.9 for short,
medium and high-T2 water fraction estimates respectively. For each compartment
the mean bias of the difference in the estimates (md), the 95% confidence interval
(CI) around md and the limits of agreement (LoA) are shown.
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Figure 6.9: The repeatability of the water fraction estimation in four healthy con-
trols are compared over 15 ROIs (refer Fig. 6.5) using Bland-Altman plot (where
ROI means are compared) and voxel-wise regression plot. The repeatability re-
sults for short T2, medium T2 and high T2 water fraction estimations are shown in
Fig. 6.9a, 6.9b and 6.9c. The Bland-Altman and regression plot statistics for the
plots shown here are summarized in Table 6.2 and 6.3 respectively.
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Figure 6.10: The estimated water fraction maps for five axial slices of a
healthy control are shown here. The acquired data had following specifications:
echo spacing = 9ms, 32 echoes, repetition time = 3720ms, voxel resolution =
1.3mm×1.33mm×4.0mm, matrix size = 192×192.
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Water fraction R2 Slope Intercept

Short T2 0.904 0.938 0.018

Medium T2 0.864 0.918 0.058

High T2 0.886 0.986 0.000

Table 6.3: Regression statistics of the plots shown in Fig. 6.9 for short, medium
and high-T2 water fraction estimates. The regression statistics are obtained by
comparing all the voxels in the 15 ROIs of four healthy controls.

6.4.4 Multiple sclerosis patient case

The estimated water fractions and medium T2 gamma PDF mean for the MS pa-
tient case are shown in Fig. 6.11. There are multiple lesions present in the patient.
Absence of short T2 water fraction values in and around the lesions suggests demyeli-
nation in the lesion and its surroundings. The medium T2 water fraction values are
also higher as compared to the observations from healthy control water fraction
maps. This might be attributed to the presence of increased extra and intracellular
matters in the regions undergoing demyelination. The medium T2 PDF mean map
provides information on the spectrum of medium T2 compartment. The lesion re-
gions clearly have a higher gamma PDF mean as compared to the normal appearing
white matter.

T2 relaxometry
Estimated water fraction maps

Short T2 Medium T2 High T2

Estimated mean

Medium T2 PDF

0.00 0.40 0.00 1.00 0.00 1.00 90 155

Figure 6.11: The estimated water fraction maps and medium T2 gamma PDF mean
are shown here for a patient with MS lesions.

The medium T2 gamma PDF mean increases as we approach the center of the
lesion from its boundary. This is further explored in Fig. 6.12. For two lesions,
we observe the change in medium T2 mean values along a line profile. For each
example, the direction of the profile starts from label indexed as 1 and increases
along the direction illustrated in the figures. In general, the indexes start from
normal appearing white matter and then traverses the lesion. In the first example
(refer Fig. 6.12a) we observe that the medium T2 gamma PDF mean increases as we
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Figure 6.12: The medium T2 gamma PDF mean are observed along a line profile
shown for each of the three MS lesion examples shown here. For each example, the
medium T2 PDF mean is plotted against the label indexes to observe its trend as
the lesion is traversed. The gamma PDFs are also plotted for each index to observe
the shift in the spectrum of the medium T2 compartment.
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approach the inner lesion regions, and then gradually decreases as we exit the lesion
and enter normal appearing white matter region. The gamma PDFs are plotted
corresponding to the label indexes to show the shift in the location of the medium T2

spectrum. In the second example (refer Fig. 6.12b) we look at the shift in spectrum
for a relatively smaller lesion. The highest medium T2 PDF mean observed in this
example is around 108ms. It is lower compared to what was observed in example 1
(≈116ms). In the last example (refer Fig. 6.12c) we observe a profile which traverses
two lesions very close to each other. The larger lesion in example 3 is the same as
the one shown in the first example. We can see two peaks in the medium T2 gamma
PDF mean as we move along the profile. However, the peak values are different.

6.5 Discussion

We adopted a variable projection approach to estimate parameters of a parametric
multiple compartment T2 relaxometry model and its associated weights. The cost
function analysis of the parametric multiple compartment T2 relaxometry model
revealed the difficult nature of simultaneously estimating multiple PDF parameters.
Although it is feasible to perform such multi-parameter estimation, it is not trivial
and might be always converging to the (upper or lower) bound set for the optimiza-
tion framework. Based on our analysis, the parameters of the short T2 and high T2

compartments are fixed and the mean of medium T2 compartment is optimized for
in the problem setup.

The validation on synthetic data shows that the accuracy of estimation improves
with increasing SNR. The simulation was performed in a comprehensive framework.
1000 estimations were performed for each SNR level, where the multi-compartment
T2 voxel was generated for each one from randomly sampled T2 values from each
compartment. The healthy volunteer and multiple sclerosis patient data analyzed
in this work had SNR range of around 100 (depending on the measurement re-
gion). The SNR was measured using ROI based method. Appropriate correction
for non-Gaussian nature of the background noise was performed for the SNR mea-
surements [Henkelman 1985].

Repeatability is an important aspect of quantitative MRI biomarkers. Test-
retest experiments showed good agreement between the quantitative estimation
maps of test and retest data. No systematic bias is observed in the test-retest
quantitative estimates.

The estimation maps for the MS patient showed indications of demyelination
in and around the lesion. These regions also showed elevated levels of medium T2

water fraction values indicating an increased presence of extra-cellular matters in
the lesion regions as compared to normal appearing white matter regions of the
brain. These observations are in agreement with the MS lesion pathological studies
where degeneration of myelin and an increased presence of extracellular matters
(such as glial and astrocytes cell bodies) and cellular debris deposition in brain
tissues affected by MS lesions have been observed [Lassmann 2001]. An important
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aspect of this work was to evaluate the T2 spectrum of the compartments and
whether it provides extra insights into brain tissue microstructures. In our work,
we estimated the parameter for T2 spectrum of the medium T2 compartment. It
provided useful insights in the MS case study. The MS lesion regions are known to
undergo axonal degeneration post demyelination. Since MS lesions are focal lesions,
the degeneration is expected to be higher in the inner regions of the lesion. The water
bound to the injured white matter tissues would hence be loosely bound compared
to water in normal appearing white matter tissues. There is also a higher presence
of extra-cellular matters in the MS lesion regions. All these phenomenons should
lead to shift in the peak of the spectrum of the medium T2 compartment. This
shall explain the observed gradual increase in the mean of the medium T2 gamma
PDF as we approached the inner regions of the lesion from its boundary. This
observation is similar to what [Laule 2007b, Laule 2007c] observe in their work using
multi-component T2 relaxometry model. The highest medium T2 mean observed for
each lesion also varies. This variability observed in the medium T2 spectrum of
different MS lesions in the same patient can be attributed to the already known
heterogeneity of the MS lesions [Lassmann 2001, Barillot 2016] (both intra-patient
and inter-patients).

From experiments performed on MS data with fewer echoes, it has been found
that this method is reliable for data acquired with a final echo time of greater than
200ms. This allows sufficient number of observations for fitting the medium T2 PDF
parameters. However, acquiring T2 relaxometry data with large number of echoes
(typically around 32) is time consuming. Hence such implementations might not be
favorable in a clinical setting. The medium T2 PDF mean for white matter regions
hit the lower bound set for it in our method. This is however not surprising from
what we observed from the cost function plots of the white matter voxels. However,
the medium T2 PDF mean is found to be valuable in regions of the brain with
pathologies, or regions with sufficiently high T2 value (such as CSF and neighboring
partial volume regions). The proposed method was demonstrated on one MS patient
case. In the future work we plan to evaluate the method on a larger MS patient
dataset.
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7.1 Introduction

In this chapter, we show application of the method Gaussian multi-compartment
T2 relaxometry model proposed in Chapter 5 on MS patients. We reported ob-
servations on the evolution of the quantitative markers obtained from the model
in enhancing (MS lesion regions undergoing active blood brain barrier breakdown)
and non-enhancing MS lesion regions. Vavasour et al. studied the myelin wa-
ter fraction and total water content in three new MS lesions in two patients over a
year [Vavasour 2009]. Levesque et al. studied evolution of myelin water fraction and
geometric mean of T2 values of gadolinium enhancing lesions in five MS patients over
a period of one year [Levesque 2010b]. Although myelin water fraction was found to
be quite informative in suggesting changes in active lesions, the geometric mean T2
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values was sensitive to changes in the active lesions. Vargas et al. studied myelin wa-
ter fraction of gadolinium enhanced and non-enhanced lesions [Vargas 2015]. Mea-
surements were compared for two scans with median duration of around 6 months
between them. Authors found that contrary to the non-enhancing lesions, there
was significant improvement in myelin water fraction of enhancing lesions between
the two scans. Vargas et al. also mention that myelin water fraction is a combined
measure of edema and demyelination [Vargas 2015]. The myelin water fraction is a
relative measure and a change in its values should be studied in conjunction with
the remaining water fraction measures. In our analysis, we observed and compared
the change in water fractions of tissues with short, medium and high T2 values in
enhancing and non-enhancing regions of lesions in 10 MS patients over a period of 3
years. The study on the MS patients was a retrospective one. The protocol used for
the MS study was different from the ones on which the repeatability experiments
were performed. Hence, the water fraction estimations were compared for a T2 re-
laxometry data with standard acquisition parameters (32 echoes with echo spacing
of 9ms) to that of the one used for MS study using a synthetic phantom experiment.

7.2 Method and data

7.2.1 Signal model and estimation framework

The short T2, medium T2 and high T2 compartments are defined as mentioned in
Chapter 5. Each T2 relaxometry voxel is considered to be composed of tissues with
short T2, medium T2 and high T2 relaxation times. The compartments are defined
as Gaussian PDFs. The T2 relaxometry signal (s (ti)) at each voxel at i-th echo time
(ti) is modeled as shown below:

s (ti) =
3∑
j=1

αj

 ∞∫
0

fj (T2;µ, σ)EPG (T2,4TE, i, B1) dT2

 (7.1)

where ti = i×∆TE; ∆TE is the echo spacing of the T2 relaxometry data; the flip
angle error percentage (FAE) is realized as B1 scale factor; EPG(·) is the stimulated
echo computed as in [Layton 2013]; fj(·) is the Gaussian PDF representing each T2

compartment. The means and variances for the short T2, medium T2 and high T2

PDF are { 20ms, 100ms, 2000ms} and { 25ms2, 100ms2, 6400ms2} respectively.
The optimization problem is therefore as shown below:

(
α̂, B̂1

)
= arg min

α,B1

m∑
i=1

(yi − s (ti))
2

= arg min
α,B1

‖Y −Λ (B1)α‖22 (7.2)
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where yi is the observed signal at i-the echo; α ∈ R+3. Each element of Λ ∈ R+m×3

in Eq. (5.6) is computed as:

λj (ti;B1) =

∞∫
0

fj (T2; p)EPG (T2,4TE, i, B1) dT2 (7.3)

EPG(·) does not have a closed form solution. However, B1 and α are linearly
separable. Hence, B1 and α are optimized alternatively. In the first step, α is
computed by non-negative least square optimization [Lawson 1995] for a fixed B1.
In the next step, B1 is numerically optimized for using a gradient free optimizer
(BOBBYQA) and the weight values are maintained as found from the earlier step.
This alternate optimization is performed till we obtain the required convergence.
Finally, the respective weight are obtained as wj = αj/

∑
i αi for j = {1, 2, 3}. The

method has been explained in more detail in Section 5.2 of Chapter 5.

7.2.2 Data

We studied 10 MS patients over a period of 36 months. All patients included in
this study had an episode of clinically isolated syndrome (CIS). The patient cohort
included equal number of male and female subjects and their median age was 28
years. Data was acquired at eight time points over a period of 36 months. An
acquisition at the baseline was followed by acquisitions at 3, 6, 9, 12, 18, 24 and 36
months from the baseline. The lesions in patient scans were marked by an expert
radiologist on T2 weighted images at the baseline. All participants were informed
and provided their written consent for the study.

Acquisition details All data was acquired on a 3T MRI scanner. The acquisition
details for the T2 relaxometry data are as follows: 2D multislice CPMG sequence;
7 echoes; first echo at 13.8ms; 4TE = 13.8ms; TR = 4530ms; voxel dimensions
= 1.3 × 1.3 × 3.0 mm3; spacing between slices of 3mm; matrix size of 192 × 192;
number of averages = 1; acquisition time ≈ 7 minutes. A T1 weighted scan was
obtained post gadolinium injection to identify the lesions undergoing active blood
brain barrier breakdown. The post Gadolinium injection (0.1mmol/kg gadopentate
dimeglumine) acquisition details are as follows: transverse spin echo T1 weighted
images; voxel dimensions = 1.0 × 1.0 × 3.0 mm3; spacing between slices of 3mm;
matrix size of 256× 256; number of averages = 1. The protocols were approved by
the institutional review board of Rennes University Hospital.

7.3 Experiments

7.3.1 Synthetic phantom experiment

Repeatability experiments in chapter 5 were conducted on a T2 relaxometry data
with 32 echoes with an echo spacing of 9ms. However, the MS data being analyzed
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has 7 echoes with an echo spacing of 13.8ms as data from a retrospective study
was used for the longitudinal study. In this experiment we compared the estimation
performance for: (i) Protocol A: echo spacing/number of echoes = 9ms/32 and
(ii) Protocol B: echo spacing/number of echoes = 13.8ms/7. The repeatability
experiments were performed using Protocol A in Chapter 5. The synthetic phantom
data generated as explained in Appendix A was used for this purpose. The true
water fraction and flip angle error (FAE) percentage of the synthetic phantom is
shown in Fig.!7.1. The phantom has five sections with a variety of water fraction
values. The phantom sections are annotated in Fig. 7.2 and the corresponding true
water fraction values are shown in Table 7.1.

short T2 medium T2 high T2 FAE

0% 20%

Figure 7.1: True values of the flip angle error (FAE) percentage, short T2, medium
T2 and high T2 water fraction for the synthetic phantom.

section 5

section 4

section 3section 2

section 1

Figure 7.2: Different sections in the synthetic phantom consisting of multi-
compartment T2 relaxometry voxels with varying short, medium and high T2 water
fraction values.

The water fraction values from Section 1 to Section 3 are intended to represent
normal appearing white matter (NAWM) in the brain. Section-4 has very low
short T2 water fraction value and has around 20% representation from the high T2
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short T2 medium T2 high T2
Section 1 0.20 0.79 0.01
Section 2 0.15 0.84 0.10
Section 3 0.10 0.85 0.05
Section 4 0.05 0.75 0.20
Section 5 0.01 0.01 0.98

Table 7.1: Water fraction values for the short, medium and high T2 compartments
for the different sections of the phantom shown in Fig. 7.2.

compartment. This reduced short T2 and some high T2 component is intended at
representing a white matter MS lesion which has undergone myelin degeneration and
has presence of edema (i.e. the long T2 component). As explained in Algorithm 1
of Appendix A, each voxel of the synthetic phantom (for Protocol A and Protocol
B) is generated by randomly sampling T2 values from the PDFs describing each
compartment as per the true water fraction and FAE maps and selected protocol
parameters (echo spacing and number of echoes). The analysis was performed for
varying levels of signal to noise ratio (SNR): 50, 75, 100, 200, 500 and 1000. The SNR
is defined with respect to the first echo and noise was added as additive Gaussian
noise. Decay curves for a voxel each from various sections of the phantom for
Protocol A and Protocol B are shown in Fig. A.3. The synthetic phantom images
for Protocol A of the first echo for different levels of SNR are shown in Fig. 5.4.

In this experiment we perform two analyses. In the first analysis we observe the
relative mean square error in estimation of water fractions and FAE for Protocol B.
The results of the same analysis for Protocol A can be found in Section 5.4.1 (refer
Fig. 5.8). The relative mean square error is observed for the water fractions and
FAE. In the second analysis we compare the water fraction estimations for Protocol
A and Protocol B. A paired t-test is performed for the water fraction estimations
from Protocol A and Protocol B. The difference is considered not significant if
p > 0.05 is observed from the paired t-test.

7.3.2 Longitudinal MS study

MS lesions are focal lesions and grow in a concentric manner [Guttmann 1995]. In
the early stages, brain tissues in the MS lesions undergo active blood brain barrier
breakdown [Lassmann 2001, Guttmann 1995]. Surrounding the core of the lesion
is the edema as a result of tissue inflammation due to ongoing tissue damage. As
compared to the normal appearing brain matter, the entire MS lesion regions appear
hyper-intense on T2 weighted MRI. However, only the regions of the lesion undergo-
ing active blood brain barrier breakdown appear hyperintense on T1 weighted MRI
acquired post Gd injection. Hence, lesions in active state have two regions, a region
which actively undergoes blood brain barrier breakdown and the regions which do
not.

The objective of this experiment is to study the evolution of compartments’
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water fractions in regions of lesions in MS patients undergoing active blood brain
barrier breakdown and the regions which are not. In addition to that, we shall
observe whether the water fraction values of the compartments for the two regions
are in confirmation with the pathological knowledge of MS lesions.

In this study, we defined two groups of MS lesions, (a) E+: lesion regions which
appear hyper-intense on post-Gd injection T1-weighted images at the baseline and
(b) L−: lesion regions appearing hyper-intense on T2-weighted images only. Thus
a lesion might have both E+ and L− regions in it. An illustration of the lesion
regions is shown in Fig. 7.3. The lesion ROIs are marked at baseline and the same
region is observed over a period of three years. In the 10 MS patients, we observed
229 L− and 25 E+ lesion regions. Since the lesions were marked on T2 weighted
images, all processed images were registered to the T2 images using a block matching
algorithm [Ourselin 2000, Commowick 2012].

M00 M03 M06 M09 M12 M18 M24 M36

same regions are observed over 3 years

MS lesion on T2-w MRI Regions studied

appears on T2-w
but not on Gd

(L-)

appears only on
Gd post contrast

(E+)

regions
marked
at M00

Illustration of lesion ROIs studied

Figure 7.3: MS lesions were marked on T2 weighted and on Gd post contrast T1

spin echo MR images of the patients acquired at the first visit (i.e. M00). Eight
scans are obtained from the first visit over a period of 36 months for each patient
at intervals shown in the figure. The regions of interest (ROI) marked at M00 are
studied over the period of 36 months. Two ROIs are studied: (i) E+: region of
the lesion which appears on the gadolinium post contrast T1 weighted spin echo
images. These are the regions of the lesions undergoing active blood brain barrier
breakdown, (ii) L−: lesion regions appearing on T2 weighted MR images but not
on gadolinium post contrast images.
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7.4 Results

7.4.1 Synthetic phantom experiment

The Relative mean square error (rMSE) was used to quantify the error in estimation.
The rMSE is computed as shown below:

rMSE =

∑N
i=1 (q̂(i)− qtrue(i))2∑N

j=1 qtrue(j)
2

(7.4)

where q̂ is the estimated water fractions and qtrue is the true value. Results for
different water fractions pertaining to the two protocols are shown in Fig 7.4. The
rMSE values are in the order of 10−2 for all the water fraction values. We also
observed that the rMSE values reduce as the SNR improves. The errors in FAE
estimation were observed to be in the order of 10−5. The water fraction maps
estimated for both protocols evaluated are shown in Fig. 7.5.

FAE

Figure 7.4: rMSE values for estimated water fraction (left) and FAE (right) are
shown here. Both axes are in log scale.

The difference in the estimated water fraction maps from the synthetic phantom
data with parameters of Protocol A and Protocol B are shown in Fig. 7.6. The
differences are shown for each section of the phantom for more clarity. For each
section the zero level is very close to the median of the differences in the estimations
for all water fractions. The existence of any significant difference between the esti-
mations from Protocol A and Protocol B are further evaluated using a paired t-test.
Significant differences (p < 0.1) are observed between the estimated water fraction
maps from Protocol A and Protocol B for SNR level of 50: short T2: p-value=0.035,
medium T2: p-value=0.002 and high T2: p-value=0.085. No significant difference
(p > 0.05) was observed for any other water fraction estimated (for all SNR levels).

Relative absolute difference percentage (rAD) was computed to observe the
change in estimation when using Protocol B relative to Protocol A. The rAD for
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Figure 7.5: The estimated water fraction maps for Protocol A (32 echoes) and
Protocol B (7 echoes) are shown here for various levels of SNR.

the i−th voxel was computed as shown below:

rAD (i) =

∣∣∣∣ q̂A(i)− q̂B(i)

q̂A(i)

∣∣∣∣× 100 (7.5)

where q̂A and q̂B are estimations using data from Protocol A and Protocol B re-
spectively. The rAD and mean of the relative absolute difference values are shown
in Fig. 7.7. The calculations are shown for Section 1 to 4 for short T2 and medium
T2 water fractions, and Section 4 to 5 for the high T2 water fraction. The left out
sections for the respective water fractions had negligible values in the corresponding
sections of the synthetic phantom (for example short T2 and medium T2 had only
0.01 value in free fluids section i.e. section 5). The images used for clinical study has
SNR in the range of 75 to 100 (from ROI based measurements [Henkelman 1985]).
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Section 1

Section 2

Section 3

Section 4

Section 5

All sections

(a) Short T2 water fraction

Section 1

Section 2

Section 3

Section 4

Section 5

All sections

(b) Medium T2 water fraction
Section 1

Section 2

Section 3

Section 4

Section 5

All sections

(c) High T2 water fraction

Figure 7.6: The difference between estimated short T2, medium T2 and high T2

water fraction maps from Protocol A and Protocol B are shown here. Along with
the whole phantom, section-wise differences are also shown to provide a greater
understanding. The section label numbers can be referred from Fig. 7.2.

The short T2 water fraction values vary by around 5% for those SNR levels for Sec-
tion 1 to 3. For the same sections and SNR value, variations for medium T2 water
fraction is less than 2%. Section 4 has water fraction values similar to what we may
expect in MS lesions. The short T2 water fraction has a low value of 0.05 and high
T2 water fraction has a value of 0.20. At SNR of 75 and 100, we observed a mean
relative absolute difference of around 9%, 2% and 6% for short T2, medium T2 and
high T2 water fraction values respectively.

7.4.2 Application to Multiple Sclerosis (MS)

In this experiment we observed and compared the evolution of water fraction maps
of the three compartments between E+ and L− MS lesion regions in 10 patients
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Section 1

Section 2

Section 3

Section 4

All the above

Section 1

Section 2

Section 3

Section 4

(Left) Box plots showing distribution of relative mean absolute
difference for relevant sections.
(Below) Bar plots showing point estimates (mean and 95% CI)
for relevant sections.

(a) Short T2 water fraction
Section 1

Section 2

Section 3

Section 4

All the above

Section 1

Section 2

Section 3

Section 4

(Left) Box plots showing distribution of relative mean absolute
difference for relevant sections.
(Below) Bar plots showing point estimates (mean and 95% CI)
for relevant sections.

(b) Medium T2 water fraction
Section 4

Section 5

All the above

Section 4

Section 5

(Left) Box plots showing distribution of relative mean absolute
difference for relevant sections.
(Below) Bar plots showing point estimates (mean and 95% CI)
for relevant sections.

(c) High T2 water fraction

Figure 7.7: The relative mean absolute difference (in percentage) between estimated
short T2, medium T2 and high T2 water fraction maps from Protocol A and Protocol
B for relevant sections of the synthetic phantom are shown here. The section label
numbers can be referred from Fig. 7.2.
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over a period of 3 years. We observed the water fraction values for E+ and L− at
each scan point. In addition to it, we also observed the change in the water fraction
values (for E+ and L−) between consecutive scans which is computed as: ∆wf,i =(
wfscani+1

− wfscani

)
. Hence positive values indicate a gain in the water fraction

values between consecutive scans. The E+ and L− group difference analysis was
performed using Mann-Whitney U test.

An example illustrating the comparison between the water fraction maps for a
healthy control and MS patient is shown in Fig. 7.8. Lesion-1 in the MS patient has
a large active core, whereas a very small region of lesion-2 is active. Both lesions
show indications of extensive demyelination. The medium T2 and high T2 water
fraction maps show varying trends among the lesions, and also between the regions
of the lesion undergoing active blood brain barrier breakdown and otherwise.

0.00 0.50 0.25 1.00 0.00 0.50

T2 relaxometry Short-T2 Medium-T2 High-T2

0.00 0.50 0.25 1.00 0.00 0.50

T2 relaxometry Short-T2 Medium-T2 High-T2 Post Gd T1 MRI

Lesion-1

Lesion-2

Lesion-1

Lesion-2

Healthy subject

MS patient

Figure 7.8: A comparison between water fraction maps for (top) healthy subject
and (bottom) MS patient with lesions is shown here. Lesion-1 (yellow arrows) has a
large active core compared to lesion-2 (red arrows). The difference in water fraction
maps can be observed between the enhancing and non-enhancing lesion regions.

Short T2 water fraction Results for short T2 water fraction (ws) maps are shown
in Fig. 7.9. The ws values of the E+ and L− lesions at all time points are shown in
Fig. 7.9a. The L− lesion regions are significantly associated with higher ws values as
compared to E+ at M00 (p = 0.014). However, the ws distributions of E+ and L−
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regions at the end of 3 years are similar. The changes in ws values (∆ws) between
consecutive scans in shown in Fig. 7.9b. Largely positive ∆ws,0 values for E+ lesion
regions suggest increased ws values between M00 and M03. After M06 we observed
less changes in ws values in E+ lesion regions. The observed change in ws values
for the L− lesions regions was very less throughout the 3 year period. Only ∆ws,0
values E+ and L− were significantly different (p = 0.009).

Medium T2 water fraction The results are shown in Fig. 7.10. The evolution
of the medium T2 water fraction (wm) in E+ and L− lesion regions is shown in
Fig. 7.10a. Although the wm values for both groups reduce slightly at the end of
3 years, there is no evidence of difference between E+ and L− with respect to the
change in wm values between successive scans (refer Fig. 7.10b).

High T2 water fraction The high T2 water fraction (wh) values for E+ and
L− lesion regions are shown in Fig. 7.11a. The E+ lesion regions are significantly
associated with a higher value of wh as compared to the L− population at M00 (p =

0.002). Largely negative ∆wh,0 values (refer Fig. 7.11b) for E+ lesion regions suggest
a decrease in their wh values between M00 and M03. Subsequently, E+ lesion
regions undergo negligible change between consecutive scans. L− lesion regions
show negligible change in their wh values throughout the period of the study. The
change in wh values were found to be significantly different between E+ and L−
lesion regions for scan periods M00-M03, M03-M06 and M06-M09 with p-values of
0.008, 0.011 and 0.011 respectively.

It is also important to observe the effect size of the datasets when observing
the p-values for group differences. Whereas the p-value conveys information on the
strength of the water fraction values to reject the null hypothesis, the effect size
is a measure of the magnitude of the difference. We used the common language
(CL) effect size statistic and the associated p-values to observe the group differ-
ences [McGraw 1992, Grissom 2005]. The CL effect size for the groups that were
found to be significantly different from the Mann-Whitney U test is shown in Table
7.2. In this work, the CL effect size value denotes the percentage of times the wf
value of L− is higher than E+ when both samples are selected at random from each
group. It can hence be interpreted as the probability of superiority of L− over E+

for a measurement.
The evolution of water fraction maps for a lesion in a MS patient has been

shown in Fig. 7.12. The water fraction maps show indication of remyelination and
reduction of edema in the lesion region observed at baseline scan over a period of 3
years.
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E+

L-∗

(a) Values at each acquisition point

E+

L-
∗∗

(b) Change in values between consecutive acquisitions

Figure 7.9: Evolution of short T2 water fraction values over 3 years: The plots in
this figure show the median and upper and lower quartile levels of the data. (a)
The short-T2 water fraction value (ws) at each scan. (b) The change in ws between
consecutive scans is shown in Fig. 7.9b. Significant differences between groups are
shown using ∗ (p < 0.05) and ∗∗ (p < 0.01).
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E+

L-

(a) Values at each acquisition point

E+

L-

(b) Change in values between consecutive acquisitions

Figure 7.10: Evolution of medium T2 water fraction values over 3 years: The plots
in this figure show the median and upper and lower quartile levels of the data. (a)
The medium T2 water fraction value (wm) at each scan. (b) The change in wm
between consecutive scans. Significant differences between groups are shown using
∗ (p < 0.05) and ∗∗ (p < 0.01).
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(a) Values at each acquisition point
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∗∗ ∗ ∗

(b) Change in values between consecutive acquisitions

Figure 7.11: Evolution of high T2 water fraction values over 3 years The plots in this
figure show the median and upper and lower quartile levels of the data. (a) The high
T2 water fraction value (wh) at each scan. (b) The change in wh between consecutive
scans. Significant differences between groups are shown using ∗ (p < 0.05) and ∗∗

(p < 0.01).
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Value p-value CL effect size

Short-T2 water fraction (ws) at M00 0.014 65.05%
∆ws between M00 and M03 0.009 34.25%
High-T2 water fraction (wh) at M00 0.002 31.51%
∆wh between M00 and M03 0.008 66.08%
∆wh between M03 and M06 0.011 65.51%
∆wh between M06 and M09 0.011 34.55%

Table 7.2: The common language (CL) effect size are reported for the measurements
which were significantly different for E+ and L−.

Figure 7.12: An evolution of the water fraction a maps and corresponding T2

weighted images are shown for a lesion of a MS case used in this study. It can
be observed that the T2 lesion shrinks after the initial scan. The short T2 water
fraction maps indicates signs of remyelination and the high T2 water fraction map
indicates reduction in the edema.

7.5 Discussion

In this work, we used the parametric multi-compartment T2 relaxometry method
proposed in Chapter 5 for studying change in water fraction values in MS lesions.
In that analysis we had investigated the repeatability of the method using test-
retest experiments on healthy controls (discussed in Sections 5.3.4 and 5.4.4). The
results of the repeatability experiments showed that this method can be used for
longitudinal studies where the estimations across time points can be compared.

In this study we used MS patient data acquired in under 8 minutes. The num-
ber of echoes acquired and the echo spacing were coarser (compared to test=retest
experiment data) to obtain the T2 relaxometry data in a shorter time than usual
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(> 20 minutes). However, the test-retest data could not be acquired with this pro-
tocol as the clinical study was performed on a retrospective dataset. To address
this, we designed a synthetic phantom experiment where images with same ground
truth were generated with the protocol on which the repeatability experiments were
performed in Chapter 5 and the protocol used for the MS study discussed in this
chapter. The synthetic phantom had multiple sections representing normal appear-
ing white matter and sections emulating water fractions usually present in lesions
and free water (as CSF). In addition to having sections with varying water fraction
values, the phantom had four sections with different FAE values. Experiments were
performed for very low to high SNR values. The operating SNR for the images
used in this study was in the range of 75-100. The SNR was computed for vari-
ous white matter regions (of the first echo of T2 relaxometry image) using the ROI
based methods and suitable corrections were made for non-Gaussian nature of the
background noise [Henkelman 1985].

The water fraction values estimated for synthetic phantom using MS study and
test-retest experiment protocol parameters were compared. The normal appearing
white matter regions showed around 5% and less than 2% relative difference in esti-
mations of the short T2 and medium T2 water fraction values while using the protocol
used for the MS study compared to the protocol used for the repeatability study in
Chapter 5. The lesion like section showed a relative difference of around 9% and
less than 2% and approximately 5% for the short T2, medium T2 and high T2 water
fraction estimates. A paired t-test showed no significant differences (p-value>0.05)
between the water fraction estimates for all compartments for the operating SNR
range. Even at very low water fraction values, the method proposed in Chapter 5
performs close enough for the clinical (acquisition time <7 minutes) and a high
quality T2 relaxometry data (acquisition time >20 minutes). The comprehensive
synthetic phantom experiment enables us to apply the method on the protocol used
in the retrospective MS study.

In Section 7.4.2 the evolution of water fraction markers in MS lesion regions
which are undergoing active blood brain barrier breakdown are compared to the MS
lesion regions in the later stages. At the baseline scan, the E+ lesion regions are
prone to having lower short T2 water fraction values as compared to L− regions
(p = 0.014, CL = 65.05%). This might indicate that regions of the lesion under-
going active blood brain barrier breakdown have undergone greater demyelination.
However, there seems to be no significant difference between the two groups with
respect to the short T2 water fraction values for all scans three months after the
baseline. The E+ lesion regions tend to have significantly higher values for high T2

water fraction as compared to L− at the baseline scan (p < 0.01, CL = 31.51%).
The demyelination of MS lesions is accompanied by inflammation due to increased
macrophage intervention [Lassmann 2001]. This might explain the low and high
values of short T2 and high T2 water fraction values observed at the baseline scan
for E+ lesion regions. The gain in short-T2 water fraction values for E+ lesion
regions between the scans at M00 and M03 is significantly greater than that for L−
(p < 0.01, CL = 34.25%). The increase in short-T2 values in this period is accompa-
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nied by a considerable drop in high-T2 values for the E+ lesion regions. The drop
in high-T2 water fraction values between the baseline and the next scan for E+ is
significantly larger than that of L− (p < 0.01, CL = 66.08%). All E+ lesion regions
incur a decrease in high T2 values over the first six months of observation.

Hence, the observations from the change in water fraction values between con-
secutive scans are: (i) although both groups show indications of remyelination,
E+ lesion regions undergo significantly greater remyelination as compared to L−
between the baseline and scan at M03, (ii) there is a considerable reduction of in-
flammation in E+ over the first three months but L− show little or no change in
this aspect. The myelination activity of E+ and L− is similar three months after
baseline. However, the inflammation activity seems to continue for 9 months from
baseline scan time. Some L− lesion regions observed at the baseline scan would have
been in the E+ stage at some point of time. This explains the similar water fraction
values for E+ and L− by the end of three years. Unlike short T2 and high T2 water
fraction values, the medium T2 water fraction values for E+ and L− lesion regions
never show any significant difference, which might be attributed to the fact that in
terms of T2 values considered, the medium T2 water pool is highly heterogeneous.
It conveys information on unmyelinated axons, glia, interstitial and extra-cellular
matters [Lancaster 2003].

Our study on MS patients has certain limitations. First, the clinical data avail-
able was not of the highest quality possible due to acquisition time constraints in
a clinical setting. T2 relaxometry data with a higher number of echoes and shorter
echo times are favorable for multi-compartment models. To address this concern
we performed a comprehensive synthetic phantom experiment where the estima-
tion results were compared for a data acquired with the MS study protocol used
in for this study and a standard multi-echo T2 relaxometry sequence. The results
showed that for the operating SNR (of the clinical data), the water fraction maps
are not significantly different (based on paired t-test with a significance threshold of
p− value=0.1). Second, the time gap between the first and second scan was three
months. A shorter interval between successive acquisitions would be beneficial to
study the fast evolving active lesions.

7.6 Conclusion

In this chapter we proposed to use the multi-compartment T2 relaxometry model
proposed in chapter 5 to study evolution of obtained biomarkers from the model in
enhancing and non-enhancing regions of the MS lesions. The study of the evolution
of multi-compartment T2 relaxometry markers on 10 MS patients over a period of
3 years had two important observations: (i) the markers have the potential to dis-
tinguish between gadolinium enhanced and non-enhanced regions in MS lesions and
(ii) both lesion regions have similar water fraction values by the end of the third year
and show little distinction after 3 months from baseline scan. The observations from
the longitudinal study shows that the biomarkers obtained from this model explains
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the MS lesion evolution along the lines reported in the pathological and radiological
studies on MS lesions [Lassmann 2001, Guttmann 1995]. The former observation
on the other hand motivates us to investigate methods by which biomarkers from
multi-compartment models based on advanced MRI techniques can help distinguish
between lesion regions undergoing active blood brain barrier breakdown without in-
jection of contrast enhancers in MS patients, which we shall investigate in the next
chapter.
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8.1 Introduction

Multiple sclerosis (MS) patients have multiple focal lesions in the brain. In the
early stages, the MS lesions undergo active blood brain barrier (BBB) breakdown
[Guttmann 1995, Lassmann 2001]. Lesions in this stage are referred to as enhancing
lesions and the clinical significance of its identification is well established. Gadolin-
ium based contrast agents (GBCA) are popularly used by radiologists to iden-
tify enhancing MS lesions. A T1-weighted MRI acquired post GBCA injection
is a part of the recommended MRI protocols for diagnosis and follow-up exam-
inations of MS patients [Brownlee 2017]. However, the use of GBCAs has been
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a recent topic of debate, primarily due to reports of Gd deposition in the brain
[Kanda 2013, Olchowy 2017]. Suggestions insisting on greater debate before GBCA
administration has gained traction due to observed MRI signal changes in the brain
tissues due to repeated GBCA administrations and other possible health issues
[Gulani 2017]. A MS lesions in its enhancing stage has different pathological traits
as compared to late or non-enhancing MS lesions [Lassmann 2001]. Regions of le-
sion undergoing active BBB breakdown has a higher water content owing to the
undergoing tissue damages such as functional impairment of the morphologically
intact endothelial cells [Guttmann 1995]. Hence by the virtue of the brain tissue
microstructure characteristics of MS lesions, we may identify enhancing regions in
the lesion (if any). Although MRI effectively provides in-vivo images of the brain,
it is constrained by the limited imaging resolution it can provide. This limitation is
primarily attributed to hardware limits and the need for adhering to reasonable scan
times for clinical implementations. However, advanced MRI methods, such as diffu-
sion MRI (dMRI) and T2 relaxometry help us obtain estimates on condition of brain
tissue microstructure. The multi-compartment models (MCM) [Panagiotaki 2012]
in dMRI provide information on the organization of the nerve fibers in the brain.
MS lesions disrupt the normal organization of fibers in the brain. The extent of
this damage may be assessed from the tissue microstrucutre estimates derived from
dMRI MCMs. Myelin is also a critical biomarker in neurodegenerative diseases such
as MS [Lassmann 2001, Laule 2007a, MacKay 2016]. Demyelination marks the on-
set of MS [Lassmann 2001]. Myelin has a very short T2 relaxation time (<50ms)
due to its tightly wrapped structure [Lancaster 2003]. Due to higher TEs in dMRI,
the myelin information is not present in the dMRI signals. However, myelin in-
formation can be obtained by estimating the myelin water fraction (MWF) from
T2 relaxometry MRI signal [Laule 2007a, MacKay 2016]. The inflammation in MS
lesions can be assessed from T2 relaxometry and dMRI signal. Hence, by com-
bining the tissue microstructure information from these two MRI methods, we can
obtain considerable information on brain tissue health. In this work we combine
the microstructure information obtained from T2 relaxometry and dMRI to identify
Gd enhanced regions in MS lesions.We performed experiments to evaluate whether
combining the tissue microstructures is advantageous as compared to using them
alone. The observations from this experiment is carried forward to the next stage
where we perform enhancing lesion region predictions in a MS patient.

8.2 Material and methods

8.2.1 Multi-compartment T2 relaxometry model (MCT2)

Three T2 relaxometry compartments are considered in a voxel based on their T2
relaxations times and are referred to as short-, medium- and high-T2. The short-
T2 compartment conveys information on brain tissues with T2 relaxation times
shorter than 50ms. These tissues primarily include myelin and highly myelinated
axons [Lancaster 2003]. The high-T2 compartment represents the tissues with T2
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values greater than 1000ms, comprising primarily of free fluids (CSF in healthy
volunteer) and water accumulated in tissues due to pathology (edema regions in MS
lesions). The medium-T2 compartment is a mixed pool and conveys information on
intracellular matter (such as unmyelinated axons and glia), intra and extracellular
fluids [Lancaster 2003]. The T2 space is modeled as a weighted mixture of the three
compartments, where each compartment is represented by a continuous probability
density function (PDF). The signal of a voxel at the i-th echo in the MCT2 is
modeled as:

s (ti) =

3∑
j=1

αj

∞∫
0

fj (T2; pj)EPG (T2,4TE, i, B1) dT2 (8.1)

In Eq. (8.1), fj (T2; p) is the chosen PDF to represent the j-th compartment with
parameters pj = {pj1 , pj2 , . . .}. We used the 2D multislice Carr-Purcell-Meiboom-
Gill (CPMG) sequence to acquire T2 relaxometry data. CPMG sequences suffer
from the effect of the stimulated echoes due to imperfect refocusing. It is impor-
tant to address this effect as this leads to errors in T2 estimation [Crawley 1987].
Here we tackle is the problem of stimulated echoes using the iterative technique
of Extended Phase Graph (EPG) algorithm [Prasloski 2012]. Each compartment’s
weight is obtained as, wj = αj/

∑
i αi. Simultaneous estimation of the weights and

parameters of the distributions of such multi-compartment models is non-trivial and
not reliable in terms of robustness and accuracy [Layton 2013]. Hence we choose to
fix the PDF parameters. In this work, the {fj(·)}3j=1 are chosen as Gaussian PDFs.
Their mean and standard deviation are fixed based on the findings from the litera-
ture [Laule 2007a, MacKay 2016, Lancaster 2003] and are set as µ = {20, 100, 2000}
and σ = {5, 10, 80} (all values in milliseconds). Estimating the model thus resorts
to finding the optimal {αj}3j=1 and B1 for the following least squares problem:

(
α̂, B̂1

)
= arg min

α,B1

m∑
i=1

yi − 3∑
j=1

αjλj (ti;B1)

2

(8.2)

where Y ∈ Rm is the observed signal; m is the number of echoes; α ∈ R+3. Although
the optimization of α and B1 are linear and non-linear in nature, these variables
are linearly separable. α and B1 are computed by non-negative least squares and
BOBYQA optimization respectively. The weights of short-T2 (ws), medium-T2
(wm) and high-T2 (wh) compartment for every voxel are used as a feature for each
voxel.

8.2.2 Multi-compartment Diffusion model (MCDiff)

For diffusion MRI (dMRI), we considered the recently introduced MCM as they pro-
vide an intuitive way of describing the different fascicles, cells and free water contri-
butions to each voxel. MCM are defined as a weighted sum of several compartments
each describing a fascicle (i.e. a dense set of fibers sharing the same orientation) or
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isotropic matter (such as free water or water trapped in cell bodies). Similar to T2
relaxometry, each compartment in MCDiff is defined by a PDF. However in MCDiff,
the PDFs describe water diffusion probability inside the compartments. A variety of
compartment types may be defined [Panagiotaki 2012] based on the assumed white
matter microstructure and the acquired dMRI data (the more gradient directions
and b-values, the more information may be extracted). Our proposed method is
quite independent of this choice and can be applied generically to all parameters
that may be extracted from MCM. In the specific study in Section 8.4, we have
focused on the following model:

p(x) = fwpFW (x) +
N=3∑
i=1

aipi(x) (8.3)

where fw +
∑

i ai = 1 are the weights of the individual compartments, pFW is an
isotropic Gaussian PDF specific to free water (i.e. with a variance of 3.0 × 10−3

mm2.s−1), pi(x) denotes the i-th fascicle compartment PDF here defined as a stick
model (i.e. a Gaussian PDF with equal secondary eigenvalues, fixed from an outside
reference). We have specifically chosen this ball and stick model for our experiments
as it can be estimated reliably on our clinical data (see Section 8.2.3). This esti-
mation was performed using the method proposed by Stamm et al. [Stamm 2016],
which uses a variable projection on the linear elements of the cost function (the com-
partment weights) to perform a fast maximum likelihood estimation of the model
parameters with Levenberg-Marquardt optimization. We then defined different pa-
rameters from this MCM which describe the white matter microstructure inside the
voxel. First, each anisotropic compartment pi is defined as a constrained tensor.
Hence we can extract the usual tensor scalar maps for each anisotropic compart-
ment. However, to enable comparison between voxels, we need to average those
compartment specific values over all anisotropic compartments. We have thus com-
puted the weighted average of those values (using the weights ai) to get the following
scalar maps: fractional anisotropy (FAmc), apparent diffusion coefficient (ADCmc)

and axial diffusivity (ADmc). In addition to those maps, the weight of isotropic free
water (fw) is a crucial one that could identify edema or other free water related
phenomena and we therefore included it in the parameters as well.

8.2.3 Data

All acquisitions were made on a 3T MRI scanner. The T2 relaxometry data was
obtained using a 2D multislice CPMG sequence with the following specifications:
first echo time (TE) = 13.8ms; echo spacing = 13.8ms; 7 echoes; repetition time
(TR) = 4530ms; 1.33× 1.33× 3mm3 voxel resolution; acquisition time was just less
than 7min. The dMRI acquisition was performed with 30 directions on a single shell
of b-value at 1000s/mm2, with a 2×2×2mm3 voxel resolution, on a 128×128×60

matrix with TE and TR of 94ms and 9.3s respectively. Transverse SE T1-w images
(1×1×3mm3) post Gd contrast agent infusion (0.1mmol/kg gadopentetate dimeg-
lumine) were acquired to find Gd enhanced lesions. A T1-w image was also acquired
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for performing the distortion correction in diffusion images. A 3D MPRAGE image
was acquired with inversion time, TR and TE of 900ms, 1900ms and 2.98ms respec-
tively. The voxel resolution was 1× 1× 1mm3 on a 256× 256× 160 matrix. Lesions
were segmented on T2-w images by radiologist. Hence all images were registered
to the T2 image (1 × 1 × 3mm3 voxel resolution) linear registration using a block-
matching algorithm [Commowick 2012, Ourselin 2000]. Our data set consisted of
10 MS patient datasets demonstrating clinically isolated syndrome (CIS) condition.
There were a total of 227 MS lesions in all patients, out of which 28 lesions had
gadolinium enhancing regions. The voxels are divided into two groups: (a) (E+):
voxels appearing on Gd enhanced T1 SE images and (b) (L-): lesion voxels which
are hyperintense on T2-w images but do not appear on Gd enhanced T1-weighted
images. The protocols were approved by the institutional review board, and all
participants gave their written consent.

8.2.4 Identifying enhancing voxels in lesions

We performed enhancing voxel identification using the MCT2 and MCDiff estimates.
In our database, we had 15012 and 3904 (L-) and (E+) voxels respectively. We
adopted a random shuffle and repeat strategy to compensate for the imbalance in
the class. 5000 (L-) and 3400 (E+) voxels are randomly selected from the dataset to
train the classifier. The remaining (L-) and (E+) voxels are then used to evaluate
the classifier performance. This method is repeated 100 times to avoid any bias
in sampling the data set for model training. The accuracy statistics are recorded
for every repetition. It shall be noted that the model from one repetition is not
retained for the next. For a new repetition, the model is trained and validated on
a different dataset. We then observe the validation error of the classifier over 100
repetitions. We used support vector machine classifier (with radial basis function
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Figure 8.1: The method used to predict the enhancing voxels is illustrated here.
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kernel) in this work [Cortes 1995]. The method for predicting enhancing voxels has
been illustrated in Fig. 8.1.

8.3 Experiments

8.3.1 Experiment 1: Feature evaluation

The predictions are performed using three features sets: (a) MCT2 derived mi-
crostructure information: FR = {ws, wm, wh, } ∈ R3, (b) MDiff derived mi-
crostructure information: FD = {fw , FAmc, ADCmc, ADmc} ∈ R4 and (c) a
features set containing both MCT2 and MCDiff derived microstructure information(
FRD ∈ R7

)
. The aim of this experiment is to observe whether combining the diffu-

sion and T2 relaxometry derived microstructure increases the accuracy of prediction.
The observations from this experiment will help us comment on complimentary na-
ture of the feature sets (if any). The MCT2 and MCDiff estimation maps are shown
for a lesion of a MS patient in Fig. 8.2. The region of the lesion undergoing active
blood brain barrier breakdown can be distinguished from the other regions of the
lesions from visual inspection of the estimated MCT2 and MCDiff maps.

Figure 8.2: The MCT2 and MCDiff maps for a case is shown here as an example.
The hyperintense region in the lesion visible on the T1 weighted image acquired
post Gd injection indicates the lesion region undergoing active blood brain barrier
breakdown. The same lesion appears as hyperintense in the T2 weighted image.
The hyperintiensity in the T2 weighted images is larger as it also includes the edema
region around the lesion. The estimated MCT2 and MCDiff maps are shown in the
top and bottom row respectively.
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8.3.2 Experiment 2: Test case evaluation

In this experiment we illustrate the application of the proposed method on a MS
patient. We maintain a MS patient dataset which was never used for training the
data set in any of the repetitions. The classifier trained in every repetition is used to
predict to which category the voxels in the validation image belong. We perform a
majority voting on the 100 predictions to decide the final prediction for each voxel.
Subsequently we compute the dice measure on the (E+) and (L-) masks to judge
the performance of the classifier. The classifier implementation was performed using
the scikit-learn package in Python v2.7.

8.4 Results

8.4.1 Experiment 1: Feature evaluation

We show in Fig. 8.3 comparison of the prediction performance of the classifier
on validation sets over 100 repititions using features sets derived from: (a) MCT2
model only (FR), (b) MCDiff model only (FD) and (c) combination of both (FRD).
The mean overall accuracy of prediction when using FRD, FR and FD are 85.57%,
84.24% and 81.73% respectively. From the overall accuracy plot shown in Fig. 8.3
we observe that combining the microstructure measures from MCT2 and MCDiff
model yields better (E+) detection. The true positive rate (TPR) and true negative
rate (TNR) plots in Fig. 8.3 show that MCT2 and MCDiff features are better than
the other at detecting non-enhanced and enhanced voxels respectively in MS lesions.
However, combining both features (FRD) yields better prediction results. Hence we
use FRD for performing predictions in experiment-2.

8.4.2 Experiment 2: Test case evaluation

Results are shown in Fig. 8.4. This MS patient had 18 MS lesions out of which 3 of
them had Gd enhancing regions. The dice score for (E+) and (L-) voxel prediction
was 0.64 and 0.86 respectively.The top row in Fig. 8.4 shows a lesion which had only
(L-) voxels and the proposed method successfully predicted that there were no (E+)
voxels in the lesion. The second and third row of Fig. 8.4 shows performance of the
method in presence of Gd enhanced voxels in the lesion. Our method identified the
(E+) voxels in the lesion. However there were false positives around the Gd enhanced
core of the lesions where non-enhancing voxels were identified as belonging to the
enhancing region of the lesion.

8.5 Discussion

Our analysis shows that combining tissue microstructure information from multi-
compartment T2 relaxometry and diffusion MRI model helps at yielding better
prediction accuracy as compared to each feature being used alone. The higher TPR
of features derived from MCDiff might be attributed to the fact that during an active
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Figure 8.3: (Top to bottom) Overall accuracy, true positive rate and true negative
rate of the predictions of the validation set over 100 iterations.
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Correctly predicted (L-) Correctly predicted (E+) (E+) false positive

Prediction T1 post-Gd T2 image

Figure 8.4: The (E+) prediction results on a test image is shown here. Legend for
the segmentation labels are shown below the illustrations.

BBB breakdown, there is a greater presence of inter and extra cellular fluid matters
and inflammation as compared to non-enhancing parts of the lesion. The high-
T2 water fraction from MCT2 model is capable of identifying higher inflammation.
However, the medium-T2 water fraction, as described section 8.2.1 is heterogeneous
in terms of inter and extra-cellular fluids. However, MCDiff models are able to
better explain such scenarios. The non-enhancing regions are demyelinated regions
with inflammation which can be explained using MCT2 microstructure information.

Our study has certain limitations. The clinical data used in this work did not
favor use of state of the art multi-compartment models. Single b-value data with 30
directions limited us to use a relatively simpler MCM model for MCDiff for reliable
estimations. Higher number of echoes and shorter echo times for the T2 relaxometry
data will facilitate MCT2 models. However, this study illustrates that even with
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clinical protocols, we have good detection of enhanced lesion regions using only
MCT2 and MCDiff features.

8.6 Conclusion

We proposed a method to identify MS lesion voxels in which the brain tissues are
undergoing active BBB breakdown using brain tissue microstructure information
derived from advanced MRI techniques. The proposed method shows promise and
motivation to work on improvement of the model from its current form. In the
future work, we plan to have uncertainty measures on the predictions so that we
can tackle the issue of false positive detection effectively. We also plan to test it on
higher quality data to realize the true potential of the current framework.
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9.1 Conclusive remarks

There were two major aspects of this thesis. The first objective was to propose
and evaluate parametric multi-compartment T2 relaxometry models and their es-
timation. The second objective was to demonstrate the potential of the methods
proposed in the thesis on a neurodegenerative disease. In this thesis we applied the
method on multiple sclerosis (MS) patient data.

9.1.1 Contributions on methods

Two multi-compartment T2 relaxometry models were proposed in this thesis. The
estimation of parameters for such models has been shown to be non-trivial and non-
reliable [Layton 2013]. Hence we performed a cost function analysis for each of the
models before the problem formulation was finalized. In chapter 5 we proposed a
multi-compartment model where each T2 pool was modeled using a Gaussian proba-
bility density function (PDF). Rather than choosing an estimation framework where
all parameters and weights are estimated, we adopted a more careful approach where
the cost function for the model was analyzed using synthetic data. In this analysis
we found that the target cost function for simultaneous estimation of weights and
PDF parameters is of a very difficult nature. The convergence to the true value is
made tough by presence of a valley of local minima around the true region. Hence we
decided to fix the PDF parameters describing each T2 pool based on values reported
in earlier studies. The importance of including the effect of stimulated echoes while
using T2 relaxometry data from fast spin echo sequences has been reported in the
literature [Prasloski 2012]. The stimulated echoes were accounted for using the ex-
tended phase graph (EPG) algorithm [Prasloski 2012, Layton 2013]. The flip angle
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error (FAE) percentage required to compute the EPG is estimated in the proposed
method.

It has been observed in the literature that pathologies such as multiple sclerosis
cause a shift in the spectrum of the T2 pools. Fig. 1 in [Laule 2007c] adds credence
to this argument. In chapter 6 we realized a more complex model. The objective
of the proposed was to identify the best possible framework for which the PDF
parameters of the T2 pools and their associated weights can be estimated. The
underlying idea was to observe whether an estimation framework where the PDF
parameters are estimated along with the weights is able to confirm such reports. The
complexity of the problem was limited to estimating the shift (i.e. mean) parameter
of the PDFs. A variable projection (VARPRO) approach was adopted to solve to the
optimization problem [Golub 2003]. The cost function to be optimized with respect
to the weights and PDF parameters was reduced to an optimization problem only
with respect to the PDF parameters in the VARPRO formulation. The weights were
later obtained as discussed in chapter 6 [Golub 2003]. As for chapter 5, we analyzed
the VARPRO cost function on feasibility of simultaneous estimation of the T2 pool
PDF means. The cost functions for in-vivo brain MRI data were used to investigate
nature of the VARPRO cost function. This analysis revealed the difficult nature of
the cost function. The observations suggested that for short T2 pool PDF mean, the
cost function always converged at the minimum bound set for optimization. Hence
we decided to optimize only for the PDF mean of the medium T2 pool. The FAE
was estimated to account for the effect of stimulated echoes.

Both methods were validated on synthetic data with known ground truth and
in-vivo phantom data. The water fractions estimated by the methods were close to
the ground truth. Even at low SNR the method performs well. The experiments on
in-vivo phantom data showed that the proposed method adapted well to scenarios
where mono T2 solutions were imaged. One in-vivo phantom had mono T2 solutions
with T2 values gradually increasing from around 15ms to 600ms. The estimated
water fractions showed a gradual shift of weights from the short T2 pool, to the
medium T2 pool and finally to the high T2 pool as the T2 values of the imaged
solutions increased. Once the validation was performed on known ground truths,
estimation maps for the in-vivo brain MRI were observed. Repeatability is an im-
portant aspect of quantitative biomarkers (especially when used for longitudinal
studies). The values on multiple white matter regions were compared for test-retest
data acquired on four healthy volunteers. The estimated water fraction values for
the test and retest data were in good agreement. The performance of the methods in
the presence of pathologies is of critical importance. Both methods were evaluated
on MS patients. The short T2 water fraction map showed very low values in the
lesion regions when compared to the normal appearing white matter regions in MS
patients. This indicated demyelination in these regions. Presence of high T2 compo-
nent in some white matter lesions indicated edema presence. Hence, the proposed
methods detects] the long T2 component which has been shown to be present in
MS lesions [Laule 2007b, Laule 2007c]. The estimated PDF mean for the medium
T2 pool using the method proposed in chapter 6 showed interesting results in the
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case of pathologies. The medium T2 pool spectrum showed a shift towards higher
T2 value as compared to the normal appearing white matter. This is in accordance
with observations from previous studies [Laule 2007c].

The study revealed the difficult nature of parameter estimation, especially for
the T2 pool PDF parameters. However with an appropriate choice of the T2 pools
PDF parameters, the weights estimation has been found to be robust and reliable.
The observations suggest that estimating PDF parameters of all the T2 pools and
their weights might lead the estimated PDF parameters hitting the upper/lower
bounds set for optimization in each case. The proposed methods do not require any
regularization terms to enforce spatial smoothness. The validation and evaluations
of the methods demonstrated their potential in quantifying tissue microstructures
in brain tissues from T2 relaxometry data. Application of the method on MS pa-
tient cases showed that the water fraction maps estimated from these methods can
act as useful biomarkers for neurodegenerative disease such as MS. Repeatability
experiment results showed that these methods can be used for longitudinal studies.

9.1.2 Contributions on applications in MS

In the first application discussed in chapter 7 we studied and compared the evolution
of weights of the three T2 compartments in active and inactive regions of MS lesions
in 10 patients with clinically isolated syndrome (CIS) over a period of three years.
The method proposed in chapter 5 was used for obtaining the water fraction maps
from T2 relaxometry data. This study was performed on a retrospective clinical
data. The T2 relaxometry data was acquired under 8 minutes with fewer echoes and
greater echo spacing (7 echoes; 13.8ms spacing) than the data used for repeatability
experiments (32 echoes; 9ms spacing). Hence, we compared the performance of
water fraction estimation while using the protocol as in the clinical trial and a stan-
dard T2 relaxometry protocol (which was also used for repeatability experiments).
Simulations were performed using the synthetic phantom data for varying levels of
SNR. The synthetic phantom had five sections. Three sections resembled NAWM,
one section had MS lesion-like water fraction values and the remaining section re-
sembled free water. The operating range of SNR for the data used in clinical study
was around 100. The NAWM regions showed around 5% and less than 2% relative
difference in estimations of the short T2 and medium T2 water fraction values while
using the protocol used for the MS study compared to the protocol used for the
repeatability study in Chapter 5. The lesion like section showed a relative difference
of around 9% and less than 2% and approximately 5% for the short T2, medium
T2 and high T2 water fraction estimates respectively. A paired t-test showed no
significant differences (p-value>0.05) between the water fraction estimates from the
two protocols for all compartments for the operating SNR range. This experiment
demonstrated the robustness of the method in terms of being applicable to T2 re-
laxometry data acquired under low scan times with fewer echoes and larger echo
spacings. With this observation, we performed the longitudinal study on patients.
There were two main observations from the longitudinal study: (i) the active lesions
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regions showed activity latest till 9 months from the baseline scan, and (ii) signif-
icant differences were observed in the short T2 and high T2 water fractions values
between the active and inactive regions only at the baseline scan. The follow-up
scan to the baseline was performed after 3 months. The water fraction evolution
trend indicated signs of remyelination and subsiding inflammation in lesion regions
(especially in the active lesion regions). One recommendation which emerges from
the observations of this chapter is the importance of interpreting the changes in the
short T2 component in conjunction with the changes observed in the representation
of other T2 compartments in the lesions. Traditionally studies have focused only on
evolution of the short T2 components in the tissues which is an indicator of myelin.
However, myelin being judges only on the basis of myelin water fraction (MWF) is
not appropriate as the MWF can be influenced by an increasing/decreasing amount
of water in the lesions due to inflammation in affected tissues.

In chapter 8 we addressed a critical and challenging clinical problem. An in-
creasing number of reports are raising concerns on the retention of gadolinium in
brain tissues due to its repeated usage. While there are health concerns surrounding
this retention, this phenomenon has also lead to observable signal changes in the
brain MRI. Moreover, administration of gadolinium to patients with renal compli-
cations is not possible. However, the importance of identifying enhancing lesions in
MS patients using gadolinium injection has been well established. In this chapter
we proposed a method to identify gadolinium enhanced regions in MS lesions us-
ing tissue microstructure information obtained from T2 relaxometry and diffusion
MRI data. The T2 relaxometry microstrucutre information was obtained using the
method proposed in chapter 5. This chapter had two important observations. The
tissue microstructure information obtained from T2 relaxometry and diffusion MRI
data complemented each other. Whereas the tissue microstructure information ob-
tained from diffusion MRI was more effective at identifying the active regions of the
lesion, the T2 relaxometry microstructure information performs better at identifying
non-enhancing lesion regions. The experiment on the test case demonstrated the
potential of the proposed framework in detecting active regions in the MS lesions
without using gadolinium contrast agent injection.

9.1.3 Thesis related publications

Preprint

[1] Sudhanya Chatterjee, Olivier Commowick, Onur Afacan, Benoit Combes,
Simon K. Warfield, and Christian Barillot. "A three year follow-up study of
gadolinium enhanced and non-enhanced regions in multiple sclerosis lesions
using a multi-compartment T2 relaxometry model." bioRxiv (2018): 365379.

Peer reviewed conference papers

[1] Sudhanya Chatterjee, Olivier Commowick, Onur Afacan, Simon K.Warfield,
and Christian Barillot. "Multi-compartment model of brain tissues from T2
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relaxometry MRI using gamma distribution." In Biomedical Imaging (ISBI
2018), 2018 IEEE 15th International Symposium on, pp. 141-144. IEEE,
2018.

[2] Sudhanya Chatterjee, Olivier Commowick, Onur Afacan, Simon K.Warfield,
and Christian Barillot. "Identification of Gadolinium contrast enhanced re-
gions in MS lesions using brain tissue microstructure information obtained
from diffusion and T2 relaxometry MRI." In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pp. 63-71.
Springer, Cham, 2018.

Peer review conference abstracts

[1] Sudhanya Chatterjee, Olivier Commowick, Onur Afacan, Benoît Combès,
Anne Kerbrat, Simon Warfield, and Christian Barillot. "A 3-year follow-
up study of enhancing and non-enhancing multiple sclerosis (MS) lesions in
MS patients demonstrating clinically isolated syndrome (CIS) using a multi-
compartment T2 relaxometry (MCT2) model." In ISMRM Annual Meeting
2018. 2018. [Oral]

[2] Sudhanya Chatterjee, Olivier Commowick, Simon Warfield, and Christian
Barillot. "Gaining Insights Into Multiple Sclerosis Lesion Characteristics from
Brain Tissue Microstructure Information: A Multi-Compartment T2 Relax-
ometry Approach." In ISMRM 25TH annual meeting and exhibition. 2017.

[3] Sudhanya Chatterjee, Olivier Commowick, Simon K. Warfield, and Chris-
tian Barillot. "Multi-Compartment T2 Relaxometry Model Using Gamma
Distribution Representations: A Framework for Quantitative Estimation of
Brain Tissue Microstructures." In ISMRM 25TH annual meeting and exhibi-
tion. 2017.

Currently we are in the process of submitting the pre-print to a journal by
including the simulation results discussed in chapter 5 and 7. The work discussed
in chapter 6 is an extension of a conference paper mentioned above and shall be
submitted to a peer reviewed journal. The work discussed in chapter 8 will also be
extended with a different problem formulation and then submitted for review in the
coming months.

9.2 Perspectives

The multi-compartment models where T2 pool compartments are described using
continuous functions PDFs do not require regularization terms for imposing smooth-
ness and perform better on low SNR data as compared to multi-component T2 re-
laxometry models. Mackay and Laule raised a concern on behavior of such models
in presence of T2 pools which are not accounted for in the model [MacKay 2016].
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This can be addresses in a few ways. To start with, simulations along the lines of
[Graham 1996] can be performed to detect the resolution capability of parametric
models for multiple T2 pools which lie in close proximity. The results however might
be similar to the findings of Graham et al. that at low SNRs, the resolution ca-
pability might be limited [Graham 1996]. Another analysis can be carried out on
figuring out the interplay between weights of the PDFs and their parameters. From
the observations made in this work, when the PDF parameters are fixed we can ex-
pect to see more variations in the weights in case of pathologies. And on the other
hand, when the PDF parameters are varied the weights in the pathology regions
remain more or less the same. So the degree of freedom when optimizing for the
weights and PDF parameters can be evaluated to conclude whether there is value
in performing such complex estimations. These experiments will also usher more
light on the interpretation of the estimated parameters of the multi-compartment
T2 relaxometry models.

In our work, we showed the difficult nature of simultaneously estimating the PDF
parameters and its weights for the T2 pools. We also show that even the problem of
simultaneously estimating the PDF parameters alone is quite challenging and prone
to hitting the boundaries set for optimization of the parameters. All this work was
performed based on simulations on synthetic and in-vivo brain MRI data. Although
this establishes the difficult nature of such estimations, it would be fruitful to have
a rigorous mathematical analysis of such models to state the underlying cause for
such behavior. The presence of stimulated echoes (and hence invalidity of pure
exponential analysis) does make this task very challenging.

The other interesting aspect to look into is the relation between the T2 relax-
ometry and diffusion MRI derived microstructures. Recent works have shown great
potential by proposing a variety of models in this field. Benjamini et al. pro-
posed a framework for creating such 2D spectra by using marginal distributions
[Benjamini 2016]. Kim et al. on the other hand proposed joint signal model to
identify diffusion and relaxation components using diffusion-relaxation correlation
spectroscopic imaging [Kim 2017]. The basic idea is that by having both diffusion
and relaxation information in the same voxel, the ill-posed nature of the multi-
exponential model is reduced. Although this is a very powerful and effective tool,
acquiring such data is extremely time consuming. The other approach is to com-
bine myelin water fraction and diffusion microstructure to obtain biomarkers such
as g-ratio [Campbell 2017]. Combination of biomarkers from T2 relaxometry and
diffusion MRI makes it implicit that the obtained biomarkers are held to high stan-
dards of accuracy and reliability. All models have underlying assumptions which
affects the estimation in some way or the other. This might be due to reliance of
the methods on certain specifications of acquisition or the estimation framework it-
self. When the biomarkers from two methods such as relaxometry and diffusion MRI
acquired separately are combined using metrics such as ratios, linear combinations
etc. such effects become difficult to track. This might become a more pertinent
challenge when dealing with pathologies. Hence, if at all a joint signal model and
biomarker is aspired for, the methods proposed by [Benjamini 2016] and [Kim 2017]



9.2. Perspectives 127

are ideal. However, it is difficult to dedicate so much time for acquisition when
clinical studies are conducted. Keeping all these in mind, for clinical T2 relaxometry
and diffusion MRI data using the type of method proposed in chapter 8 is more
justified. The study performed in chapter 8 can be carried out in greater depth
where a feature wise analysis for prediction effectiveness can be performed. Multi-
compartment diffusion MRI models can be adapted for single shell data with better
initializations and analysis techniques. This does not recommend against multiple
b-value diffusion MRI data acquisition for clinical studies. Recent advances allow
acquisition of high quality diffusion MRI data in under 8 minutes. However, there
are lot of clinical studies which have single shell diffusion MRI data which can be
used for providing valuable insights to the research community.
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Appendix A

Synthetic phantom

A synthetic phantom is created to validate the multi-compartment T2 relaxoemtry
methods proposed in this thesis. Sections are created in the phantom with different
water fraction and B1 scale factor values. There are five sections in the phantom
with different water fraction values. An illustration of the sections with different
water fraction values are shown in Fig. A.1. The water fraction values corresponding
to each section in shown in Table A.1.

section 5

section 4

section 3section 2

section 1

Figure A.1: The different sections in the synthetic phantom consisting of multi-
compartment T2 relaxometry voxels with varying short, medium and high T2 water
fraction values are shown here.

short T2 medium T2 high T2
Section 1 0.20 0.79 0.01
Section 2 0.15 0.84 0.10
Section 3 0.10 0.85 0.05
Section 4 0.05 0.75 0.20
Section 5 0.01 0.01 0.98

Table A.1: The water fraction values for the short, medium and high T2 compart-
ments for the different sections of the phantom shown in Fig. A.1 are provided
here.

Section 1 in the phantom is representation of voxels which have free water, such
as cerebrospinal fluids. The section 2 of phantom contains voxels emulating MS
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short T2 medium T2 high T2 FAE

0% 20%

Figure A.2: True values of the B1 scale water, short T2, medium T2 and high T2

water fraction for the synthetic phantom are shown here.

lesions with a representation of 5% and 20% from the short and high T2 compart-
ments. The low short T2 and presence of high T2 water fraction are chosen to account
for the demyelination and edema formation observed in the MS lesions. Sections
3, 4 and 5 are created with water fraction values chosen so as to represent normal
appearing white matter tissues. In addition to having sections with varying contri-
butions from the T2 relaxometry compartments, the phantom contains four sections
with different B1 scale factor values. The multiple echo spin echo sequences are
well known to have stimulated echo effects [Crawley 1987]. Hence it is important
to account for them in the simulations. The true maps for the B1 scale factors and
water fraction values of the compartments are shown in Fig. A.2. The B1 scale
factor values chosen for simulation are: {1.0, 1.05, 1.1, 1.2}. The T1 value for the
whole phantom is chosen as 1000ms.

Algorithm 1 Generating Synthetic Phantom
Require: B1, sT2, mT2, hT2 → Maps containing true values of B1 scale factor,

short, medium and high T2 water fraction values.
Require: S → SNR level of the image to be generated.
Require: nbase → number of T2 curves required to compose each voxel.
Require: e, ne: echo spacing (in millisecond), number of echoes.
1: for (i, j) ∈ phantom do
2: ns = sT2(i, j)× nbase; nm = mT2(i, j)× nbase; nh = hT2(i, j)× nbase
3: Draw s ∈ Rns , m ∈ Rnm and h ∈ Rnh randomly from gaussian probability

distributions as N (20, 5), N (100, 10) and N (2000, 80) respectively.
4: short(i, j) =

∑
s GenerateEPG [s(k), B1(i, j), e, ne]

medium(i, j) =
∑

m GenerateEPG [m(k), B1(i, j), e, ne]

high(i, j) =
∑

h GenerateEPG [h(k), B1(i, j), e, ne]

5: phantom(i, j) = short(i, j) + medium(i, j) + high(i, j), phantom(i, j) ∈ Rne
6: phantom(i, j)+ = noise(S)

The voxels of the synthetic phantom are generated as described in Algorithm
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1. Each voxel in the synthetic phantom is composed of 50 (= nbase) T2 curves in
proportion of the true water fraction values as shown in Fig. A.2. Instead of using
the pure exponentials, we account for the stimulated echoes [Crawley 1987] using
the extended phase graph (EPG) method [Prasloski 2012, Layton 2013]. The B1

scale factor for generating the EPG curve is chosen from the true B1 map shown
in Fig. A.2. The T2 curve for a voxel from each section for different B1 values are
shown in Fig. A.3. The simulations are performed for six levels of additive Gaussian
noise. The SNR values evaluated are {50, 75, 100, 200, 500, 1000}. The SNR is
stated with respect to the signal value at first echo. The T2 curves were generated
for two specifications: (i) echo spacing = 9.0ms, echo train length = 32 and (ii) echo
spacing = 13.8ms, echo train length = 7.
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Figure A.3: The T2 decay curves for all a voxel from each section with the different
B1 values are shown here. The sections mentioned in the figure are the same as
those annotated in Fig. A.1. The water fraction values for the sections are provided
in Table A.1.
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Gradient computation for
VARPRO cost function

The variable projection (VARPRO) technique is useful for solving least square prob-
lems where the non-linear variables are linearly combined [Golub 2003]. Here we
present the computation of gradient for solving the VARPRO formulation. We have
a similar problem in Chapter 6 (refer Eq. 6.2 in Section 6.2.1). As mentioned in
Section 6.2.1, we optimize for the PDF parameters and its associated weights, and
the field inhomogeneity factor in separate steps. The original cost function (refer
Eq. 6.2) is restated below:

arg min
µ,α

‖Y − Λ (µ)α‖22 (B.1)

where Y ∈ Rm is the observed signal; α ∈ R+3 is the weighted contribution of
each gamma PDF to the signal; µ is the mean of the gamma PDF representing the
medium T2 compartment and Λ(µ) ∈ Rm×3 is an internal term of the signal model
(with 3 compartments). The i-th row and j-th columns element of Λ(µ) is shown
below:

Λij(µ) =

∫
T2

f (T2;µ, v)EPG (T2, T1, B1, iecho) dT2 (B.2)

In Eq. (B.2), f(·) is the gamma PDF with mean and variance as PDF param-
eters. As elaborated in Chapter 6, we only optimize for the mean of the medium
T2 gamma PDF. In the VARPRO formulation, α in Eq. (B.1) is substituted by
Λ(µ)†Y . Λ(µ)† is the Moore-Penrose pseudo inverse of Λ(µ). Hence, the VARPRO
cost function is as shown below:

C =
∣∣∣∣∣∣(I − Λ(µ)Λ(µ)†

)
Y
∣∣∣∣∣∣2

2
(B.3)

Henceforth we will use only Λ for Λ(µ) as in our work this internal terms is only
a function of mean of the gamma PDF representing the medium T2 compartment.
The aim is to minimize the error function with respect to the variable: µ. The error
function in this case is:

e =
(
I − ΛΛ†

)
Y (B.4)

The gradient with respect to the variable is obtained as shown below:

g =
∂
(
eT e
)

∂µ
= eT

∂e

∂µ
+
∂eT

∂µ
e = 2 eT

∂e

∂µ
(B.5)
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The Jacobian term to compute g in Eq. (B.5) is obtained as follows:

J =
∂e

∂µ
= −

∂
(
ΛΛ†

)
∂µ

Y (B.6)

The expression to obtain the elements of Jacobian matrix is provided in [Golub 2003].
However, a brief derivation of the same is shown here for convenience of the reader.
The derivation is performed assuming that the optimization problem is to minimize
the cost function with respect to a single variable (µ).

We need to obtain the expression for ∂
(
ΛΛ†

)
/ ∂µ to compute the Jacobian

shown in Eq. (B.6). Note that the term ΛΛ† in Eq. (B.6) can be substituted by(
ΛΛ†

) (
ΛΛ†

)
. Hence ∂

(
ΛΛ†

)
/ ∂µ in Eq. (B.6) can be computed as shown below:

∂
(
ΛΛ†

)
∂µ

=
∂
((

ΛΛ†
) (

ΛΛ†
))

∂µ

=

[(
ΛΛ†

) ∂ (ΛΛ†
)

∂µ

]
+

[
∂
(
ΛΛ†

)
∂µ

(
ΛΛ†

)]
(B.7)

Note that ΛΛ† is symmetric. Hence Eq. (B.7) can be re-written as:

∂
(
ΛΛ†

)
∂µ

=

[
∂
(
ΛΛ†

)
∂µ

(
ΛΛ†

)]
+

[
∂
(
ΛΛ†

)
∂µ

(
ΛΛ†

)]T
(B.8)

Hence we need to compute only the first term in Eq. (B.8) to obtain the elements
of the jacobian matrix. Since Λ is same as ΛΛ†Λ, we may write the derivative of Λ

with respect to µ as:

∂Λ

∂µ
=
∂
[(

ΛΛ†
)

Λ
]

∂µ

=
(

ΛΛ†
) ∂Λ

∂µ
+
∂
(
ΛΛ†

)
∂µ

Λ (B.9)

Rearranging the terms in Eq. (B.9) we obtain:

∂
(
ΛΛ†

)
∂µ

Λ =
∂Λ

∂µ
−
(

ΛΛ†
) ∂Λ

∂µ

=
(

1− ΛΛ†
) ∂Λ

∂µ
= P⊥Λ

∂Λ

∂µ
(B.10)

Multiplying the left and right hand sides of Eq. (B.10) by Λ† we obtain:

∂
(
ΛΛ†

)
∂µ

ΛΛ† = P⊥Λ
∂Λ

∂µ
Λ†

∂
(
ΛΛ†

)
∂µ

= P⊥Λ
∂Λ

∂µ
Λ† (B.11)



137

Using the expression obtained in Eq. (B.11), the first term on the right hand
side of Eq. (B.8) can be written as:

∂
(
ΛΛ†

)
∂µ

(
ΛΛ†

)
=

(
P⊥Λ

∂Λ

∂µ
Λ†
) (

ΛΛ†
)

= P⊥Λ
∂Λ

∂µ
Λ† (B.12)

Substituting the result of Eq. (B.12) and (B.8) in the Jacobian formulation
shown in Eq. (B.6), we obtain:

J = −

[(
P⊥Λ

∂Λ

∂µ
Λ†
)

+

(
P⊥Λ

∂Λ

∂µ
Λ†
)T]

Y (B.13)

The expression for the Jacobian from Eq. (B.13) can be substituted in the
gradient formulation shown in Eq. (B.5) to obtain the gradient update term as
follows:

g = −2 eT

[(
P⊥Λ

∂Λ

∂µ
Λ†
)

+

(
P⊥Λ

∂Λ

∂µ
Λ†
)T]

Y (B.14)

Hence to the gradient update values can be obtained by deriving the expression
for ∂Λ/ ∂µ for our problem.
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Gaining insights into brain tissues using multi-compartment T2

relaxometry models

Abstract: Magnetic resonance imaging (MRI) is one of the most widely used
in-vivo imaging method for obtaining information on brain health. However, MRI
voxels have limited resolution due to physical constraints. The objective of this
thesis is to obtain quantitative estimates of brain tissue microstructures (such as
myelin, intra/extracellular matters and free water) from T2 relaxometry MRI data.
Two parametric multi-compartment T2 relaxometry (MCT2) models are proposed
in this thesis. The approach and estimation framework for both models were justi-
fied using cost function simulation studies. A range of simulation and in-vivo MRI
data experiments were performed to evaluate the accuracy and robustness of these
models. The model found to be more robust of the two was then used for two stud-
ies on multiple sclerosis (MS) lesions. In the first study the evolution of the MCT2
biomarkers was studied in gadolinium (Gd) enhancing and non-enhancing regions
of MS lesions in 10 patients with clinically isolated syndrome over a period of three
years. In the second study we demonstrated the potential of combined use of the
proposed MCT2 biomarkers with those obtained from existing multi-compartment
diffusion MRI models to address a clinically relevant and challenging task of identi-
fying regions of MS lesions undergoing active blood brain barrier breakdown without
use of Gd injection.
Keywords: microstructure, brain, multiple sclerosis, relaxometry, T2
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