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Chapter 1

Introduction

Forework: The introduction will be split into two chapters. This first chap-
ter will introduce the overall setting of my research, as well as give the big
picture of what this thesis will discuss in depth and what it will just sketch.

Chapter 2 on page 9 will give an overview of the main technique used in
this thesis, go through other competing techniques, as well as introduce the
chapters and describe their content.

Further, the bibliography is partitioned into two parts: first the external
bibliography after Chapter 7 on page 71 will list all the papers cited in this
thesis, at the exclusion of those I am a coauthor of. The self-citations will be
part of the second bibliography after Chapter 7 on page 78, and the citations
themselves will carry the names of the venue (conference or journal) in small
letters together with the year, e.g. [jdeds14b], to differentiate them from the
"normal" citations, e.g. [MW01].

Internet of Things, Cloud, Cloud computing, DDOS, (massively) mul-
ticore, GPGPU ... Most buzzwords of this decade have a dimension syn-
onymous with distributed systems. The issue with distributed systems is
twofold. First, it is hard for a human to understand all the possible behav-
iors of a distributed system. E.g. it is easy to understand what happens
when the different components of a distributed system evolve somehow at a
comparable speed. But when one component is much faster than another,
it can create situations which were not foreseen by the designers, and it is a
potential source of bugs. Even more than for sequential systems, this calls
for powerful tools to help the design of distributed systems.

Formal methods propose many tools to find bugs in a design, be it based

5



CHAPTER 1. INTRODUCTION

on theorem prover, abstract interpretation, tests, or model-checking. In this
thesis, we will discuss the latter to analyze distributed systems. In model-
checking, a formal model of the system is used (usually in the form of some
transition system), and a specification of what the design should do or should
avoid is given (usually in the form of some logical formula). The shortcom-
ing with these approaches is that in case bugs are found, it is the task of
the designer to modify the design in order to correct the bugs, potentially
introducing other bugs, etc.

Another approach is to automatically produce a system fulfilling by con-
struction a given specification. Formal methods provide at least two such
methods. The first one is certified program produced using a proof assistant
(COQ...). The second one, which we will discuss in this thesis, is imple-
mentation and control of a model given a specification (a la Pnueli Rosner
[PR90]). Here, an architecture describing the peers and the possible commu-
nications between them is given, together with potentially non-controllable
actions which have to be allowed by the system. The aim is to produce a sys-
tem with this architecture and satisfying a specification (equality or inclusion
of language).

The second challenge which needs to be tackled when dealing with dis-
tributed system is the combinatorial explosion. Indeed, it is easy to describe
with few small components (hence in a very compact way) a very large global
system. Analyzing the components one by one is not sufficient to understand
their composition, and advanced techniques need to be deployed in order to
have techniques which are sound and complete for the global system, without
having to consider every single interleaved behavior of this global system. In
other word, it is necessary to have techniques to tame the concurrency. One
such technique will be described in length in this thesis, namely set of repre-
sentatives (see Chapter 2 on page 9). The potential of this technique will be
demonstrated in several contexts, from model checking to implementation of
distributed systems. Comparisons with other important techniques will also
be performed.

I have chosen to describe in this thesis the work using set of representa-
tives to tame the concurrency, which sums up a main part of my research
activity performed after my PhD (defended in 2004). The associated publi-
cations are [i&c06, jcss06, fi07, am&ai09, tcs09, i&c10, ipl12, forte06, icalp06,
icalp07, concur07, fossacs08, concur08, icalp10, ictac12, icalp13, fsttcs13,
fossacs15, icatpn16]. Some important contributions are however not de-
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CHAPTER 1. INTRODUCTION

scribed in this thesis; in particular the following two research directions:
The first line of work concerns the application of formal method ideas,

in particular methods to handle distributed systems, to the analysis of data
centric workflows. This line of work took place in the ANR Docflow project
(2006-2009). I was responsible for one central workpackage of this ANR
project. In this context, I supervised with Albert Benveniste the PhD of
Debmalya Biswas [seke08, hase08, xsym09, jdeds14b]. He defended success-
fully in January 2009, and he is now a research fellow at Swisscom. Some of
this work [hase08] has been done together with Thomas Gazagnaire, a PhD
student at that time (he defended in 2008). Also, [xsym09] has been per-
formed following the internship of Ashwine Jiwane, supervised by Debmalya
and myself. In the ANR Docflow context, a technique to model check Ac-
tive XML [ABGM09] documents have also been developed [atva08, fsttcs10],
applying well-structured transition system techniques [FS01]. In particular,
with the help of Zhilin Wu, a postdoc at that time, we explained [fsttcs10]
how infinite data can be handled, using bounded treewidth graphs.

Last, since 2008, I have been involved in the verification of stochastic sys-
tems [lics09, lics12, jacm15, jdeds14b, cmsb11, tcbb12, qest14, cmsb15]. This
will be described in more length in the conclusive chapter 7 on page 65. In
this context, I am leading ANR Stoch-MC (2014-2018). I am co-supervising
with Wieslaw Zielonka the PhD of Burno Karelovic (the defense is planned in
early 2016), as well as supervising (with a derogation) the PhD of Matthieu
Pichené, which started in December 2014.
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Chapter 2

Overview of the Thesis

2.1 Introduction

This thesis tackles several classes of systems: sequential automata, networks
of automata (mainly in chapter 3 on page 19), Asynchronous Automata
(chapter 4 on page 31), communicating automata (chapters 5 on page 45),
and (Time-Constrained) Message Sequence Graphs (chapter 5 on page 45
and chapter 6 on page 53).

We will not describe in this preliminary chapter every class of systems.
Instead they will be introduced in the first chapter using each one of them.

We will give the formal definition for the usual class of sequential au-
tomata. This class can be used as a common semantics to all the systems
considered. We will also introduce in this chapter Mazurkiewicz traces, de-
scribing a fixed commutation architecture (that is, the fixed set of processes,
the set of actions, and the distribution of actions on the processes). This
will allow us to settle the notations which will be used throughout the thesis.
Last but not least, we will explain in this chapter the main technique we
advocate in this thesis, applied on the commutation structure we introduce
with Mazurkiewicz traces.

2.2 Automata

A (finite) alphabet Σ is a (finite) set of letters denoted a, b . . .. We denote by
Σ∗ the set of words, that is of finite sequences of letters of Σ. The empty word
will be denoted ε. An automaton over the finite alphabet Σ is a structure
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2.3. MAZURKIEWICZ TRACES CHAPTER 2. OVERVIEW

(S,→, I, F ) where

• S is the (possibly infinite) set of states,

• →⊆ S × Σ × S is the transition relation. For each (s, a, s′) ∈→, we
also write s a−→ s′. It expresses that action a can be played from state
s, in which case the new state is s′,

• I ⊆ S is the set of initial states and

• F ⊆ S is the set of final states.

An accepting path (usually denoted by ρ, σ) of an automaton is a finite
sequence s0a1s1 · · · ansn such that s0 ∈ I, sn ∈ F and for all i < n, si

ai+1−→
si+1. An automata A = (S,→, I, F ) defines a set of words L(A), called
the language of A such that w ∈ L(A) iff there is an accepting path ρ =
s0a1s1 · · · ansn of A with w = a1 · · · an. One such automaton can be found
on Figure 3.1 on page 23, with states s0, . . . , s6, with transition labeled by
letters on alphabet Σ = {a, b, c, z}. The set of languages of finite automata
is the class of regular languages. We will not recall the usual equivalence
between regular, rational and recognizable languages for finite words, nor
the equivalence with monadic second order logic.

2.3 Mazurkiewicz Traces

Words express executions of sequential systems. In order to represent exe-
cutions of distributed systems, one may use Mazurkiewicz traces. Namely,
a Mazurkiewicz traces [Maz86, DR95] is a pair (Σ, I) with a finite alphabet
Σ and an (independence) relation I ⊆ Σ × Σ such that I is symmetric and
(a, a) /∈ I for all a ∈ Σ. We will denote by D the relation Σ \ I, called the
dependence relation. We can represent (Σ, D) by its dependency graph, with
a link between two letters a, b whenever (a, b) ∈ D. The relation I induces
an equivalence relation ∼I⊆ Σ∗×Σ∗ between two words: u, v are equivalent
iff there exists a sequence of words u0 · · ·un such that u0 = u, un = v and
for all i ∈ [1, n], there exist v, w ∈ Σ∗ and (a, b) ∈ I with ui−1 = vabw and
ui = vbaw. For all u ∈ Σ∗, we denote by [u]I the equivalence class containing
u. Usually, I will be clear from context. In this case, we will avoid men-
tioning it to avoid clutter. For instance, consider alphabet Σ = {a, b, c, z}
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CHAPTER 2. OVERVIEW 2.4. NETWORK OF AUTOMATA

with the independence relation I = {(a, b), (b, a), (c, b), (b, c)}, that is b is
independent with both a and c. We have bcab ∼ bbca.

With each equivalence class [u]I , one can associate a labeled partial order
(E,≤, λ) with:

• let E = e1, . . . , en such that n is the number of letters of u,

• λ : E → Σ such that λ(ei) is the i-th letter of u,

• We define ≤ the transitive closure of ≺, where ≺ is defined with ei ≺ ej
iff i < j and (ei, ej) ∈ D (ie. (ei, ej) /∈ I).

It is easy to check that no matter what v we pick with u ∼I v, the labeled
partial order is isomorphic to the one obtained with [u]I . As from the labeled
partial order, one can obtain easily the trace [u]I , the labeled partial order
and the trace are in bijection, and we interchangeably use the labeled partial
order or the equivalence class representation to define a trace.

For instance, for [bbca]I , the labeled partial order has four events e1, e2, e3, e4

with λ(e1) = λ(e2) = b, λ(e3) = c, and λ(e4) = a. We have e1 < e2 and
e3 < e4 and e1, e2 is in parallel with e3, e4.

2.4 Network of Automata
The simplest class of systems exhibiting Mazurkiewicz trace behavior is a
network of automata (Ap)p∈P (intuitively one for each process p ∈ P), over
(non-disjoint) alphabet Σp. The automata synchronize over common actions:
for all a ∈ Σ, we denote by dom(a) = {p | a ∈ Σp} the fact that a is a
synchronization between processes in dom(a). The associated trace alphabet
is defined as (Σ, I), with Σ =

⋃
p∈P Σp and I = Σ2 \ D for the dependency

D defined as (a, b) ∈ D iff dom(a) ∩ dom(b) 6= ∅. The local states are just
the union over all p ∈ P of the set of states of every automaton Ap.

We now give the semantics of (Ap)p∈P in term of a global automaton A.
We denote Ap = (Sp,→p, Ip, Fp) for all p ∈ P . The set of states of A is
S =

∏
p∈P Sp. A state s ∈ S is a global state s = (sp)p∈P with sp a state of

Ap for each p ∈ P . We have (sp)p∈P
a−→ (s′p)p∈P iff sp

ai−→ s′p for p ∈ dom(a),
and sp = sp otherwise. We have I =

∏
p∈P Ip and F =

∏
p∈P Fp. A run of A

is called a global run of (Ap)p∈P . A word labeling a global run is called an
interleaving or a linearization. The language of a network of automata is the
language of A.

11



2.5. REPRESENTATIVES CHAPTER 2. OVERVIEW

Consider a network of two automata Ap and Aq. The automaton Ap
associated with process p is made of states s1, . . . , sn, and for all 1 ≤ i < n,
si

a−→ si+1 and si+1
b−→ si, Automata Aq is very similar to Ap, with letter

a′ replacing a and letter b′ replacing b. That is Ap, Aq have no synchronizing
letter. The automaton A associated with (Ap, Aq) is depicted on the left of
Figure 3.2 on page 26.

2.5 Set of Representatives as main technique.

2.5.1 Closure by commutation

For a set S ⊆ Σ∗ of words, we will denote by [S] the closure by commutation
of S, that is [S] = {w | ∃w′ ∈ S,w′ ∼I w}. This notion is crucial in our
work. Indeed, for a system distributed over the alphabet (Σ, I), its language
L is closed by commutation, that is [L]I = L. Moreover, two words w ∼I w′,
w,w′ have the same distributed action on the system: each process sees the
same sequence of local states and local actions when either of those words are
executed. The language of a network of automaton is closed by commutation,
for the commutation defined by its associated trace alphabet.

In particular, the final global state after each word is the same, although
intermediate global states may differ: this can be noticed only with a global
supervisor with exact global time, and cannot be noticed in a distributed way.
That is, as long as the property one wants to check is closed by commutation
as well (if w satisfies the property, then any w′ ∼ w will also satisfy the prop-
erty), two equivalent words w ∼I w′ will be indistinguishable, that is either
both will satisfy the property, or neither of them will. Several logics generate
formulae which are always closed by commutation: LTrL [TW02], local LTL
[DG04], MSO on traces [MM01], Template MSCs [fossacs04]. Notice that
it is not always the case. For instance, some (sequential) LTL property can
distinguish between w ∼I w′ (there is an execution with letter a followed by
letter b, while (a, b) ∈ I ), as well as some property over atomic proposition
on states of the system (can we reach a global state with property p1 holding
on process 1 and p2 on process 2?).

These observations are the basis of Partial Order Reduction (POR for
short) techniques. In POR, the idea is to reduce the number of runs to con-
sider. Instead of considering all the global runs of the systems, one either
reduces the number of states (Persistent set [God94], ample set [Pel94], stub-
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CHAPTER 2. OVERVIEW 2.5. REPRESENTATIVES

born set [Val92]), or the number of transitions (sleep set [God94], edgelean
reduction [am&ai09]) to explore.

The POR techniques contrast with other techniques handling Partial Or-
der directly without exploring (part of) the global runs of the system. Unfold-
ings [McM95], [ERV02] are one of these techniques, considering the (infinite)
event structure produced by distributed systems, and giving ways to present
it in a finite way by cutting the branches. Lately, a new technique based on
representing the partial order as a graph and using tree automata techniques
to handle the graph [CG14] (for the numerous cases where the graph has
bounded treewidth) has been used, allowing to scale decidability to more
complex distributed systems (using stacks, data, and possibly time).

Using any of these Partial Order techniques allows handling the high
complexity of distributed systems. We will develop the presentation of some
of the Partial Order Reduction techniques in the following.

2.5.2 Set of Representatives

The first idea is that when considering model checking a bounded system,
made of a finite set S of words closed by commutation ([S] = S), one can
avoid some of them, as long as a set of representatives R is checked. We
call R a set of representatives for S whenever [R] = [S]. Notice that as
R ⊆ [R] and S = [S], it means that R ⊆ S. This strategy to model check
a bounded system has been used in several works. Among them, we can
mention Learning Grey box systems [forte06] and Bounded model checking
[WYKG08, KWG09].

2.5.3 Lexical Normal Form

In order to chose a minimal set of representatives, our strategy is to consider
only words in some normal form nf . The normal form of a word w is a word
nf(w) ∼ w, such that for all w′ ∼ w, nf(w) = nf(w′). Considering only
those words w with w = nf(w) allows to consider a set of representatives
R = nf(S) such that there does not exists w,w′ ∈ R with w ∼ w′.

The normal form we will mainly consider in this Thesis is the Lexical
Normal Form (LNF for short), used in particular in the central theorem of
Ochmanski [Och95] characterizing a class of rational trace languages equiv-
alent with regular trace languages.

13



2.6. USING REPRESENTATIVES CHAPTER 2. OVERVIEW

Let � be an order on the letters of Σ. The word u = a0 · · · an is said
to be in Lexical Normal form (LNF) if for all v = b0 · · · bn with u ∼ v, we
have b0 · · · bi−1 = a0 · · · ai−1 and ai � bi for some i (i is unique). We define
LNF (u) to be the (unique) word v ∼ u in Lexical Normal Form. That is,
LNF (u) is the first word w for the lexicographic order such that w ∼ u.

We describe now different framework where representatives can be used
to reduce the complexity of distributed systems.

2.6 Using Representatives

We introduce here the 4 next chapters of this thesis, one for each application,
each focused on one class of systems.

• Chapter 3 on page 19 describes how to reduce the complexity of model
checking of regular distributed systems (network of automata), using
partial order reduction of transitions.

• Chapter 4 on page 31 explains how to reduce the complexity for synthesis
of distributed system (Deterministic Asynchronous Automata).

• Chapter 5 on page 45 describes how to obtain decidability for model
checking of non regular message passing systems (Communicating Fi-
nite State Machines, MSC-Graphs).

• Chapter 6 on page 53 extends the decidability to some non-regular timed
distributed systems (Timed Constrained MSC-Graphs).

2.6.1 Partial Order Reduction of Transitions

It seems reasonable to extend the method with set of representatives from
model checking of a finite set of runs [forte06, WYKG08, KWG09] to the
model checking of systems with finite states (that is of a regular language
closed by commutation). Model checking a regular system boils down to
checking the existence of a loop around one state in a set in a finite automa-
ton. This in turn can be reduced for simplicity to the accessibility of some
state. Hence, the question is basically to explore all the reachable states from
a given state. What we need is to explore a set of words R ⊆ S, such that
every reachable state of the system is reached using R, but some transitions

14



CHAPTER 2. OVERVIEW 2.6. USING REPRESENTATIVES

may not be explored. This has been for instance used in the so called Par-
tial Order Reduction (of transitions), either with SleepSets [God94] or with
EdgeLean reduction [icalp07, am&ai09].

Model checking a regular set, even against a formula closed by commuta-
tion, is not as straightforward as on a finite set of words. Indeed, one needs
to combine the partial order reduction with a finite search, which avoids
loops, e.g. Breadth First Search (BFS), Depth First Search (DFS). So far,
no partial order reduction considering at most one representative per trace
is known to work with Depth First Search. In Chapter 3 on page 19, we
will discuss more on this issue. We will provide examples where LNF fails
with DFS. This is similar to what happens with unfoldings [EKS08], where
no adequate order (which is used to truncate the infinite unfolding) is known
to be compatible with DFS (unlike BFS). We will propose a non-minimal
reduction compatible with DFS. On the other hand, BFS and LNF are com-
patible, because they consider somehow the same lexicographic ordering of
paths, unlike DFS and LNF.

2.6.2 Set of Representatives as Model

We explained how using set of representatives can help reducing the number
of transitions considered. One can also use set of representatives to represent
in a regular way a non-regular language. A language L which is closed by
commutation can be represented by a regular set R of representatives, such
that [R] = L. This is actually a variant definition of rational trace languages.
For instance, with Σ = {a, b}; I = {(a, b), (b, a)}, the regular set R = (ab)∗

represents the language [R] = {w | |w|a = |w|b}, that is the set of words with
as many a’s as b’s, which is non-regular. That’s also the way MSC-graphs
(see chapter 5 on page 45) can be presented, although it is not the original
definition.

Now, model checking can be directly applied to the set R of representa-
tive representing the language L = [R], granted that the property to verify
is expressed in a closed by commutation form (formulas of e.g. MSO on
traces [MM01], LTrL [TW02], Template MSCs [fossacs04]). The answer of
the model checking procedure for R will hold for the full language L = [R]
as well. Last, intersections of two system represented by a set of representa-
tives was also considered [jcss06]. The two sets of representatives need not
be compatible, and the emptiness of intersection is undecidable in general.
Decidability is obtained for a large subclass of systems (namely globally co-
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2.6. USING REPRESENTATIVES CHAPTER 2. OVERVIEW

operative, also called weakly star connected), and the complexity becomes
polynomial time for the more restricted class of local choices systems [jcss06].

2.6.3 Distributed Timed systems

The situation becomes more complicated when (global) time is involved.
Indeed, time defines a total order which breaks the partial order defined by
the concurrent model. In presence of time, most decidability results hold on
regular systems. The technique is to generate a global automaton accepting
the language, before using the usual region abstraction [AD94] to handle
time. Because of the explicit generation of every state, this is computationally
very intensive in practice.

In Chapter 6 on page 53, we will explain how model checking can be
applied for many non-regular timed systems represented by a regular set
of representatives R, namely timed constrained MSC-graphs [GMN09]. In
general, model-checking is undecidable[GMN09]. For the reasonably large
subclass of non-drifting system, we show that the emptiness problem is how-
ever decidable. We will provide two different techniques to do so. First, we
show that as for the untimed case, it suffices to model check a regular set of
representatives R′, which is built from R. This demonstrates the flexibility of
this technique to accommodate different generalization, as time. We will also
show an ad-hoc algorithm based on Fourier-Motzkin constraint elimination,
preserving the partial order. This technique uses a symbolic representation,
and allows to check whether a system is non b-drifting.

2.6.4 Synthesis of Distributed Systems

Designing distributed systems is notoriously difficult, as it is hard to grasp
all the possible behaviors of a distributed system. One way to facilitate the
design is to a posteriori verify automatically the design with e.g. some model
checking algorithms we describe in this thesis. In case a bug is discovered,
the designer could change its design. Another possibility is to automatically
produce a distributed system satisfying a specification. The specification can
take many forms: logical formula (PDL [BKM10], EMSO [BL06]), or a global
(regular) specification describing the set of interleavings.

Producing a distributed system equivalent with a global specification is
not easy. Intuitively, a process p does not know what the other processes
are doing concurrently. In a deterministic distributed system, p needs to
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be ready for anything done in parallel. In a non-deterministic distributed
system, p could guess what happens in parallel, and check whether it is
what happened, creating a deadlock if it did not guess correctly. Unlike with
sequential systems, deadlocks are hard to remove a posteriori, and it is usually
preferred to generate a deterministic system. The complexity to determinize
a system can be doubly exponential for distributed systems [KMS94].

In Chapter 4 on page 31, we tackle the synthesis of deterministic dis-
tributed systems complying to a global regular specification. Representatives
are also useful to manage the complexity for synthesis in this case. Indeed,
instead for a process of keeping every possible combination of behaviors for
the other processes, it can keep only a small number of representatives which
allows reconstructing every possible combination.

Notice that the set of representative factors are not kept explicitely, as it
would potentially require unbounded memory to keep. Only a summary of
the factors is kept in terms of the states of the automaton reached, and the
processes involved.

In chapter 4 on page 31, we also explain how to use this construction in
order to compute in an efficient way what a process knows about others. We
extend this to open systems, where not all actions are controllable.
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Chapter 3

Partial Order Reduction for
Network of Automata

3.1 Introduction

The problem of state space search is fundamental to many areas of computer
science, such as, e.g., AI and formal methods. Often, the state space to be
searched is huge, so optimizing the search is an important issue. This will
be the first application of the set of representatives technique. The setting is
the one of a network of automata where each local automaton is known, and
the global state space (not initially known) needs to be entirely explored.
We show how to use commutativity to achieve full coverage of the states,
while traversing a relatively small number of edges, defining a new Partial
Order Reduction of transitions. One previously known such Partial Order
Reduction of transitions is the sleep set method [GW91]. The transitions
pruned are actually the same, even though the algorithms (and its overhead)
differ. The overhead of our method is arguably very light.

3.2 Preliminaries

Let (Σ, I) be a trace alphabet (see section 2.3 on page 10). We recall that ∼
denotes the trace equivalence relation between words of (Σ, I). For example,
for Σ = {a, b} and I = {(a, b), (b, a)} we have abbab ∼ ababb ∼ bbbaa.

For � a total order on letters, we extend � to the lexicographic order
on words in a standard way, i.e., by setting v � vu and vau� vbw for any

19



3.3. GENERATING LNF CHAPTER 3. NETWORK OF AUTOMATA

v, u, w ∈ Σ∗ and any a, b ∈ Σ such that a� b. We recall (see section 2.5.3
on page 13) that the Lexical Normal Form of a word w ∈ Σ∗ is LNF (w) the
least word under the relation � that is equivalent to w [Och95].

3.3 Generating the LNF set of representatives.
Let S ⊆ Σ∗ be a finite set of words closed by commutation, that is [S] = S,
with [S] = {w′ | ∃w ∈ S,w ∼ w′}. Assume that S is prefix-closed. In many
applications (bounded model checking of a network of automata [WYKG08],
checking compliance of an automata with a black box, important in learning
an automaton [forte06]), one has to check some property over a prefix closed
set S, which is also closed by commutation. When the property is closed
by commutation, which is often the case, it suffices to check the property
over a set R of representative, that is with [R] = S. We explain here how to
generate such a set R in an efficient way, choosing R = LNF (S) the set of
words of S in lexical normal form.

We assume S is given as a tree, as it is closed by prefix. The algorithm to
generate R = LNF (S) uses summaries (also called last appearance records in
other contexts), which are data structures that represent the order in which
the last appearance of each letter occurred in the string. Using summaries
provides a significant computational advantage, as they are much cheaper to
store and analyze than the strings themselves.

Definition 1 Given a string σ, let α(σ) denote the set of letters occurring in
σ. A summary of σ is the total order ≺σ on the letters from α(σ) such that
a ≺σ b if and only if the last occurrence of a in σ precedes the last occurrence
of b in σ. That is, a ≺σ b if σ can be represented as vaubw, where v ∈ Σ∗,
u ∈ (Σ \ {a})∗, w ∈ (Σ \ {a, b})∗.

We will also represent a summary ≺σ as a word over Σ in which each letter
occurs at most once, and a ∈ Σ appears before b ∈ Σ if and only a ≺σ b.
For instance, in this notation, the summary of the word w = bcbabza is cbza.
Clearly, the length of a summary is always at most |Σ|.

We will now formulate a criterion that allows us to check whether adding
a letter to a string in LNF results in a string that is also in LNF.

Lemma 1 Consider a string σ ∈ Σ∗ in LNF and a letter a ∈ Σ. The string
σa is not in LNF if and only if there is a letter b ∈ α(σ) such that a � b
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and for each c such that b �σ c we have (a, c) ∈ I.

Intuitively, Lemma 1 means that σa is not in LNF iff we can move a
backwards past an appropriate suffix of σ to obtain a string that is lexico-
graphically smaller than σ.

Now, in order to generate the set R = LNF (S), it suffices to prune top
down the tree representing S, keeping in each node n of the tree, from the
root to the leaves, the summary ≺σ of the word σ labeling the branch of the
tree leading to n. If at any point, the summary is σa with a letter b ∈ α(σ)
such that a� b and for each c such that b �σ c we have aIc, then we delete
the subtree rooted at node n from the tree. The result is a tree representing
the set R = LNF (S). Some results of this procedure can be found in [forte06].
We report them here. Different sets are tested, with a different number of
letters and maximal length of words in S. We report the number of words in
millions, as well as the time in minutes (or seconds if indicated by s in the
case of DAS) to generate them, either by just reading the tree, or by reading
and pruning the tree on the fly.

example letters length Tree LNF
simple_2 2 18 .5M (9) .5M (9)
simple_4 6 9 7.2M (22) 2.3M (3)

DAS 12 4 .25M (13s) .13M (8s)
COMA(1) 8 6 9.8M (33) 5.7M (16)
COMA(2) 8 7 46M (190) 25M (75)

These examples do not exhibit too much parallelism, having only 4 pro-
cesses at most. The number of words considered can be reduced up to 3
times, with a mean reduction of 2 times. The overhead due to checking the
summary is negligible. LNF is never slower than checking the whole tree
without the summary overhead.

3.4 LNF for Global finite-state Systems?
We give a generic definition of global finite state system, which applies to
the global state space of network of automata but is more general. A global
finite-state system over the trace alphabet (Σ, I) is a tuple A = 〈S, s0, T 〉
where:
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• S is a finite set of global states.

• s0 ∈ S is the initial global state.

• Σ is a finite alphabet of actions.

• T ⊆ S ×Σ× S is a labeled transition relation. We write s a−→ s′ when
(s, a, s′) ∈ T .

• I ⊆ Σ × Σ is the symmetric and irreflexive independence relation on
actions.

We say that the system has the diamond property if for every global
state s and any pair of independent actions (a, b) ∈ I it is the case that if
s

a−→ q
b−→ r then there exists a global state q′ ∈ S such that s b−→ q′

a−→ r.
For instance, the global finite-state systems associated with networks of Au-
tomata (see Section 2.4 on page 11) and Asynchronous Automata (introduced
in Chapter 4 on page 31) have the diamond property. Every global finite-
state system considered in this chapter is thus assumed to have the diamond
property. Notice that if the system has the diamond property and u ∼ v,
then s u−→ r if and only if s v−→ r.

However, we do not require the forward diamond property:

If s a−→ q and s b−→ q′ then there exists a state r ∈ S such that
s

a−→ q
b−→ r.

From now on, we will call a global state just a state. An action a is enabled
from a state s ∈ S if there exists some state s′ ∈ S such that s a−→ s′. We say
that a path ρ = s0

a1−→ · · · an−→ sn is loop-free or simple if si 6= sj for all i 6= j.
A labeling `(ρ) of a path ρ = s0

a1−→ · · · an−→ sn is given by `(ρ) = a1 · · · an.
We extend the arrow notation from transitions to paths, denoting the above
path by s0

a1...an−→ sn.
Most of the search algorithms to be presented are based on depth-first

search (DFS), which provides some advantages over breadth-first search (e.g.,
linear time detection of loops using Tarjan’s algorithm [Tar71]). It uses a hash
table to check whether a state has been previously visited.

proc Dfs(q);
local variable q’;
hash(q);
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forall q
a−→ q′ do

if q′ is not hashed then Dfs(q’);
end Dfs;

The idea would be simply to make the DFS search, without exploring an
action if it would generate a word (the word on the stack) which is not in
LNF. We call LNF_Dfs such an algorithm.

proc LNF_Dfs(q,≺w);
local variable q’;
hash(q);
forall q

a−→ q′ do
if ≺wa is in LNF and q′ is not hashed then Dfs(q’,≺wa);

end LNF_Dfs;

For each state on the stack, it is sufficient to remember the current sum-
mary ≺w, in order to know whether the word is in LNF or not. This simple
algorithm actually fails to explore every state, because LNF and the DFS
search are somehow not compatible. Consider the example on Figure 3.1.

s0

s1 s2 s3 s4

s5 s6

bb b b bb

z

a

b

c

c

a

a

Figure 3.1: A state space for which LNF_Dfs does not explore every state.

Figure 3.1 provides an example of a state space that satisfies the diamond
property, but is not fully explored by LNF_Dfs. The nodes, except s6, are
numbered in the order in which they are discovered. The node s6 is not
discovered. The alphabet is {a, b, c, z}, with the ordering a � b � c �
z, which is also used to choose which state is explored first by the DFS
search. The independence relation is I = {(a, b); (b, a); (b, c); (c, b)}. Letter
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z is dependent on every other letter a, b, c, and a, c are dependent. The
state s6 can only be visited through s3 and s5. The word on the stack
when s3 is visited is bca. However, bcab which would visit s6 is not in LNF
(LNF (bcab) = bbca). In the same way, the word on the stack when s5

is visited is bcazb, but bcazba which would visit s6 is not in LNF either
(LNF (bcazba) = bcazab). Hence s6 is not visited. However, on graph without
cycles, LNF_Dfs explores all the reachable states [am&ai09]. In the next
section, we explain how to perform suboptimal pruning of the transitions,
but which is yet compatible with DFS and explore all the reachable states,
even in the presence of cycles.

In [icalp07, am&ai09], it is shown that when using breadth-first search
(BFS), ignoring paths labeled by words not in LNF, every state is explored,
even on graphs with cycles. The resulting algorithm is called LNF_Bfs.

Proposition 1 [icalp07, am&ai09] For any state system A, the algorithm
LNF_Bfs(s0) explores all states that are reachable from s0.

3.5 An Edge Lean Algorithm for Complete State
Coverage

In this section, we show how to reduce the number of explored transitions in
a DFS search by making use of the diamond property. In what follows, we
define a smaller relation on strings in Σ∗ than LNF, and prove that it suffices
to explore paths whose labeling is minimum with respect to this relation.

Definition 2 We denote ubav =̂⇒ uabv when (a, b) ∈ I and a � b, and
let =⇒ be the transitive closure of =̂⇒ . We say that a word w ∈ Σ∗ is
irreducible if there exists no w′ 6= w such that w =⇒ w′.

Intuitively, a word is irreducible if it cannot be transformed into a smaller
word with respect to =⇒ by a local fix (a single permutation of adja-
cent independent letters). We call a path ρ irreducible if its labeling `(ρ)
is an irreducible word. Observe that a prefix of an irreducible path is
also irreducible. Note that if w is in LNF, then it is irreducible. How-
ever, the converse does not necessarily hold. Indeed, consider a � b � c,
I = {(a, b), (b, a), (b, c), (c, b)} (that is a and c are dependent). Then x = cab
is irreducible, but LNF (x) = bca 6= x.
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The algorithm EdgeLeanDfs [am&ai09] only explores paths whose label-
ing are irreducible. For this, it suffices to remember the last letter x seen
along the current path, and not to extend this path with letter y whenever
x I y and y � x. This algorithm is given below:

EdgeLeanDfs(s0,ε);

proc EdgeLeanDfs(q,prev);
local variable q’;
hash(q);
forall q a−→q’ such that prev= ε or ¬(aIprev) or prev � a do

begin
if q’ not hashed then EdgeLeanDfs(q’, a);

end EdgeLeanDfs;

Theorem 1 EdgeLeanDfs(s0, ε) explores all states of A that are reachable
from s0.

The proof of this theorem, which can be found in [icalp07, am&ai09], is
actually far from trivial. It uses a well-founded order (based on the Parikh
image of a word) and the number of occurrences of letters in the suffixes of
paths leading to a given state.

We now give an example that illustrates the performance of our algorithm.
Consider two processes p and p′ with a counter from 1 to n on each process.
These counters can be incremented through actions a and a′, respectively, and
decremented through actions b and b′, respectively. Clearly, the independence
relation between these actions is I = {(a, a′), (a′, a), (a, b′), (b′, a), (b, a′), (a′, b),
(b, b′), (b′, b)}. Let a� b� a′ � b′. The left part of Figure 3.2 shows in solid
edges the paths explored by regular depth-dirst search (Dfs), and in dotted
edges the transitions which lead to a state already explored. On the right,
we indicate in the same way the path followed by EdgeLeanDfs, though we
have deleted the transitions not considered by EdgeLeanDfs.

It is easy to see that Dfs considers almost twice as many transitions as
EdgeLeanDfs (i.e., 4n(n−1) versus (2n+2)(n−1)). Moreover, the stack size
in DFS is n2 − 1 (path labeled by (ana′bna′)(n−1)/2), while for EdgeLeanDfs
it is only 2n. Generalizing this example from 2 to n processes, we obtain an
example in which EdgeLeanDfs has an exponentially smaller maximum stack
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Figure 3.2: Paths explored by Dfs (left) and by EdgeLeanDfs (right).

size than Dfs. We indeed witnessed stack size reduction in experiments with
real life systems (see Table 3.1 on the facing page, see [am&ai09] for details
and more tests), where we report the number of states and edges explored,
as well as the maximal stack size, the maximal memory taken and the time
taken by the algorithms.

Although LNF_Dfs may fail to explore the entire state space (each of our
examples contains cycles), there is only one case (RW6) where we observed
a difference between the number of states generated by EdgeLeanDfs and
LNF_Dfs. In most of the experiments, both of our algorithms explore consid-
erably fewer transitions than regular depth-first search. On the other hand,
the difference between EdgeLeanDfs and LNF_Dfs regarding the number of
transitions is not very significant. With respect to the stack size (and thus
memory consumption), our algorithms are up to 1000 times better than reg-
ular DFS (see, e.g., DMS examples).

3.6 Related Work

We now start the related work section with very closely related work, and
end with different approach to tame the complexity for the model checking
of distributed regular systems.

Set of Representatives for a finite set. In [WYKG08, KWG09], the
authors apply Partial Order Reduction to Bounded Model Checking of dis-
tributed systems. Bounded model checking implies that only a finite set of
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Table 3.1: Experimental Results.
DMSnoCC

states edges stack memory [MB] time [s]
Spin with regular DFS 229M 1009M 26M 1060 (1126.5) 12623
Spin with EdgeLeanDfs 229M 296M 264.5K 40.9 (41.1) 12620
Spin with LNF_Dfs 229M 265M 32.2K 31.4 (33.8) 11638

DMSwithCC
states edges stack memory [MB] time [s]

Spin with regular DFS 132M 541M 18.9M 760 (860) 8469
Spin with EdgeLeanDfs 132M 174M 384K 19.8 (30.9) 8523
Spin with LNF_Dfs 132M 151M 29.2K 5.2 (5.6) 8158

RW4
states edges stack memory [MB] time [s]

Spin with regular DFS 263K 1.1M 2253 26.1 (27.4) 5.34
Spin with EdgeLeanDfs 263K 558K 1247 26.0 (26.5) 4.22
Spin with LNF_Dfs 263K 462K 625 26.0 (26.5) 3.87

RW6
states edges stack memory [MB] time [s]

Spin with regular DFS 11.5M 65.6M 827K 42.9 (43.5) 560
Spin with EdgeLeanDfs 11.5M 59.6M 784K 42.0 (46.1) 556
Spin with LNF_Dfs 9.9M 41.3M 148K 12.3 (15.3) 432
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paths is tested. The idea for Partial Order Reduction is simply to reduce
the number of paths considered, by removing redundant ones. The proce-
dure used in [KWG09] generates exactly the set of paths in LNF, while the
procedure used in [WYKG08] generates the set of irreducible paths. The
authors however miss this fact. They need tedious proof in order to prove
that at least an equivalent path is explored by their algorithms. Also, they
seem to miss the difference between Partial Order Reduction of states (see
below) and Partial Order Reduction of transitions - which they and we do.
It is somehow our impression that these differences are indeed not known by
most of the researchers even in our field.

Partial Order Reduction for finite state Systems. The most re-
lated work with LNF_Dfs and with EdgeLeanDfs is the SleepSet method
[God94, GHP95, GW91]. It also reduces the set of transitions considered
by the search. We proved in [icalp07, am&ai09] that the transitions reduced
by SleepSet and By LNF_Dfs are actually exactly the same, although the
algorithms - and their overhead - differ. SleepSet was not designed tailored
to a particular search strategy (DFS,BFS). Hence at least for DFS, applying
it straight may fail to explore every reachable states. In [GHP95], it was pro-
posed to reopen previously visited states (that is, consider path with loops)
in order to obtain a correct algorithm. We believe that EdgeLeanDfs is a
better tradeoff as it has extremely small overhead, preventing to explore a
state twice at the cost of more transitions explored (but no transition can be
explored twice). The result is that the computation time taken by SleepSet
[God94] is sometimes worse than a straight DFS, which is never the case with
EdgeLeanDfs. Also, for systems with loops, it cannot reduce the stack size
as EdgeLeanDfs does.

The second kind - and the original one- of Partial Order Reduction is
the one reducing the number of states visited. Not exploring a state is dan-
gerous as it can change the result of model checking. The reduction is thus
made carefully, according to the property being checked. Several heuristic
have been developed, mainly Ample Sets [Pel94], Stubborn Sets [Val92], and
Persistent sets [God94]. Overall, there is more time saved by not exploring
some states than by not exploring some transitions, although the overhead
can be negative when not many states can be pruned. On the other hand,
reducing the number of states does not help the memory consumption (stack
size) as well as reducing the number of transitions.
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Unfoldings. Historically, unfoldings [McM95], [ERV02] were the first tech-
nique to handle distributed sytems as such, considering the associated (infi-
nite) event structure. The important feature of event structures is that there
is no duplication of states for two threads in parallel. Executing "ab" with
(a, b) ∈ I is simply represented as action a in parallel with action b. There
is no need to say that nothing, a, b, ab and ba are possible. On the other
hand, two (non-equivalent) runs leading to the same global states will not
be merged as with an automata based approach. Hence, POR comes for
free, and instead the analysis of the global states of the system - ensuring
that only a finite number of paths are explored (cutting the branches at some
point) while exploring every global states (complete prefix)- is more involved.
Adequate orders exist ensuring that global states will be explored only once
using BFS [ERV02]. However, when using DFS, some states may not be
explored [EKS08]. These results on BFS and DFS are very similar to ours
concerning LNF_Dfs. One important point is that both the adequate order
and LNF_Dfs use LNF, but in a different way. To compare both methods, it
is understood that unfolding works better when there are lots of concurrency
and few non-equivalent runs leading to the same global states, while in the
opposite case, it is more efficient to run an automata based technique consid-
ering interleavings plus POR. For instance, unfolding works very well with
monitoring [FBHJ05], which consider a state space which is the product with
an observation - which makes few runs reach the same global product state.
Also, unfolding allows to represent the possible explanations in an efficient
way [FBHJ05]. Very recently, [RSSK15] proposed a new POR method, using
unfolding to keep a memory of configuration visited. The idea is to consider
only one maximal path in the search, and only at the backtrack phase to visit
transitions in local-conflict. Using the local conflict relation seems promising,
as it allows to explore at most one execution per Mazurkiewicz trace, while
ensuring to explore every configuration reached by maximal executions.

Tree Like Structure Concerning the new technique which represents the
partial order as a graph and use tree automata techniques to handle it [CG14]
(for the numerous cases where the graph has bounded treewidth), the general
impression is that it is very useful to scale decidability to more complex dis-
tributed systems (using stacks, data, and possibly time). Concerning taming
the complexity when decidability is obvious, as is the case in this chapter,
there is not yet tangible evidence that this techniques is efficient.
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3.7 Perspectives

Büchi automata. Results presented in this chapter mostly refer to finding
all the reachable states using DFS. DFS is particularly interesting for model-
checking Büchi automata, as one can use the Tarjan’s algorithm (or the
Double DFS alternative) in order to find loops in linear time. One can wonder
if EdgeLeanDfs would find loops. The answer is negative if we consider
only irreducible paths (a path spanning over both DFSs). However, if one
reinitializes the path for the second DFS (that is, it is only asked that path
in the first DFS are irreducible, and path in the second DFS are irreducible
-but not the concatenation of them), then it is not too complex to prove that
loops will be found, if they exist, as all the reachable states will be found by
the second search from the backtracked state of the first DFS.

POR of states vs POR of transitions. It could seem interesting to
compare the performance of Partial Order Reductions of states vs transitions.
There is however no reason to oppose these two techniques, as they can be
used together [God94]. It would be interesting to show how EdgeLeanDfs
could be used together with POR of states (e.g. Persistent set [God94]).

Unfoldings vs POR of transitions. As mentioned, many results are sim-
ilar concerning POR of transitions and unfoldings. However, there is no
equivalent of the EdgeLeanDfs in terms of unfoldings. It might be feasible to
define complete prefixes according to irreducible linearizations, that is dupli-
cate some configurations when they represent the same prefix but different
irreducible linearizations. A in-depth comparison between LNF_Bfs (which
never consider two linearizations of the same trace) and BFS on unfoldings
(which also never consider two linearizations of the same trace) could also be
interesting to undestand if these two approaches are really different or closer
than most people believe.
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Chapter 4

Asynchronous Automata and the
Zielonka Construction

4.1 Introduction

Zielonka’s theorem [Zie87], established almost 30 years ago, gives the theo-
retical background for distributing a global control over several processes. It
states that any regular language closed under commutation is the language
of an asynchronous automaton (a tuple of automata, one per process, ex-
changing information when performing common actions). We will show in
this chapter that using representatives, the complexity of this construction
can be improved.

4.2 Asynchronous Automata

Asynchronous Automata generalize Network of Automata by allowing pro-
cesses involved in a common action to exchange information on their state.
Thus, the local state on process p after a common action a with q may de-
pend on the state process q was in before a. This generalization is necessary
in order to implement in a distributed way every regular language closed by
commutation.

We keep the same notation as in the overview chapter. Let P be a fixed
set of processes, and Σ and alphabet and dom : Σ→ 2P a function assigning
each letter to a set of processes executing that letter. For any p ∈ P , we
denote Σp = {a ∈ Σ | p ∈ dom(a)}. Actions a and b are independent, that is
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c

d

a b

(a)

Figure 4.1: An asynchronous automata. States of process p (resp. q) are
unshaded (resp. shaded). Dashed lines mark global final states.

(a, b) ∈ I, iff dom(a) ∩ dom(b) = ∅.

An asynchronous automaton is a tuple ((Sp)p∈P , (∆a)a∈Σ, In,Fin), where
for all p ∈ P , Sp is the set of local states of process p, and for all a ∈ Σ, ∆a ⊆∏

p∈dom(a) Sp×
∏

p∈dom(a) Sp defines the (partial) transition relation. Note that
while we define the transition relation on letters for ease of presentation, it
is equivalent to a corresponding definition on processes. Any s = (sp)p∈P ∈∏

p∈P Sp is called a global state and In,Fin ⊆ (Sp)p∈P denote the set of global
initial and final states, respectively.

The semantics of an asynchronous automatonAA = ((Sp)p∈P , (∆a)a∈Σ, In,Fin)
is given by the (sequential) automaton S(AA) = (C,→, In,Fin) over Σ,
where C =

∏
p∈P Sp is the set of global states, and the global transition

relation is given by →: C → C with (sp)p∈P
a−→ (s′p)p∈P iff (s′p)p∈dom(a) ∈

∆a((sp)p∈dom(a)) and s′p = sp for all p /∈ dom(a). The language L(AA) ac-
cepted by AA is by definition L(S(AA)), the language accepted by S(AA).

Notice that S(AA) is diamond (cf. Chapter 3 on page 19) for any given
asynchronous automaton AA, that is for all s, s′, t ∈ C and all (a, b) ∈ I, if
s

a−→ s′
b−→ t, then there exists t′ with s b−→ t′

a−→ t. Thus L(AA) is closed
by commutation: for all v ∈ L(AA) and w ∼ v, we also have w ∈ L(AA).
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4.3 Survey of the different Zielonka’s construc-
tions

In the past 30 years, several attempts have been made to construct from reg-
ular (commutation-closed) specifications asynchronous automata with some
additional properties. We start by giving some of the properties:

Definition 3 (determinism) We call an asynchronous automaton AA =
((Sp)p∈P , (∆a)a∈Σ, In,Fin) deterministic, if |In| = 1 and |∆a(s)| ≤ 1 for all
a ∈ Σ and s ∈

∏
p∈dom(a) Sp.

Non-determinism allows a process to guess what another process is doing
concurrently. Note that every asynchronous automaton can be transformed
into a deterministic asynchronous automaton, albeit with an unavoidable
doubly exponential blow-up in the number of states [KMS94].

Definition 4 (deadend-freeness) A global state s is called a deadend, if
there does not exist a word w ∈ Σ∗ and global state s′ ∈ Fin with s w−→ s′.
An asynchronous automaton is deadend-free iff no global state reachable from
an initial state is a deadend: for all v ∈ Σ∗, s0 ∈ In, and all s with s0

v−→ s,
the state s is not a deadend.

Deadend-freeness prevents a process from performing actions that will
not be observable in terms of the language.

Definition 5 (local acceptance) An asynchronous automaton
((Sp)p∈P , (∆a)a∈Σ, In,Fin) is said to be locally accepting (or said to have
local final states), if Fin =

∏
p∈P Finp for some Finp ⊆ Sp for all p ∈ P.

We summarize now the different results.

Theorem 2 Let L be a regular language closed by commutation. Then,
there exists three asynchronous automata AA1, AA2, AA3 over (Σ, dom) with
L(AAi) = L for all i ∈ {1, 2, 3} such that:

1. AA1 is deterministic [Zie87, CMZ93, DR95, MS94, icalp06, icalp10],

2. AA2 is deadend-free [Zie89],

3. AA3 has local initial and final states [Bau09].
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We provide here the worst case space complexities (the number of lo-
cal states) to obtain a deterministic or non-deterministic asynchronous au-
tomaton (Det AA, Non Det AA), given a deterministic or non-deterministic
diamond automaton A over a set of processes P :

complexity Det AA Non Det AA
Det A |A|O(|P|2) · 22|P|4 [icalp10] −
Non Det A 2O(|A|·|P|2+|P|4) [icalp06] |A|O(|P|2) [Bau09]

The complexities stated to obtain a deterministic asynchronous automa-
ton from [icalp06, icalp10] are optimal, while optimality is not proven for
obtaining a non-deterministic asynchronous automaton (using [Bau09] for
instance). Note that [Bau09] uses a construction not based on Zielonka’s.
Determinizing an asynchronous automaton is possible, but the blow-up is
doubly exponential [KMS94]: constructing a deterministic asynchronous au-
tomaton directly is preferable.

4.4 Representatives to reduce the complexity

The original complexity of [Zie87], analyzed by [MS94], is stated as building
a (monolithic) asynchronous automaton such that every process has at most
O(2|A|

|Σ|
). Later, [MS94] improved the complexity to O(2|A|

|P|2
), giving an on

the fly algorithm requiring only an exponential number of bits in the number
of processes for a process to remember its configuration.

In parallel, [CMZ93] presented a (monolithic) algorithm with a complexity
of O(|A|2|Σ|

) number of states, granted that the original specification is a
deterministic diamond automaton.

In order to obtain the complexity 2O(|A|·|P|2+|P|4) (even from a non-deterministic
diamond specification), we resort to representatives once more [icalp06]. One
can also obtain an on the fly algorithm requiring only a polynomial number
of bits for a process to remember its configuration. The idea is the following.

First, events in the primary information of a labeled partial order T =
(E,≤, λ) over (Σ, I) are important, as we show below. Formally, we denote
lastp(T ) the last (for ≤) event e ∈ E on process p (e ∈ Σp) (if it exists),
that is such that there is no f ∈ E on p with e ≤ f . We denote S1(T ) =
{lastp(T ) | p ∈ P}. Notice that we can have lastp(T ) = lastq(T ) for p 6= q.
Clearly, S1(T ) has at most |P| elements.
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We define the view of a process p as viewp(T ) = (E ′,≤′, λ′) with E ′ =
{e ∈ E | e ≤ lastp(T )}, and ≤′=≤ |E′ , λ′ = λ|E′ being the restriction to E ′.
When a trace is presented as an equivalence class [u] of a word u ∈ Σ∗, then
viewp([u]) is also the shortest trace [v] such that there exists v′ with w ∼ vv′,
and each action a ∈ Σp occurs as many times in v as in w. We have that
(E ′,≤′, λ′) is the labeled partial order associated with [v], both definitions
are equivalent.

When p and q synchronize with action a, p needs the information on
what had happened in q and which did not happend on p before a. That
is, viewq(T ) \ viewp(T ). What happens in viewq(T ) \ viewp(T ) is entirely
defined by viewp(T )∩viewq(T ). This is entirely determined by viewq(T ) and
by max(viewp(T ) ∩ viewq(T )), the maximal events of viewp(T ) ∩ viewq(T ).
We can use the following lemma from [MS94]:

Lemma 2 [MS94] Let a partial order T = (E,≤, λ) and p, q ∈ P. Then:

max(viewp(T ), viewq(T )) ⊆ S1(viewp(T )) ∩ S1(viewq(T )).

Assume that process q knows viewq(T ) but not viewp(T ) (which is what
happens in a distributed system). Process q cannot know viewq(T )\viewp(T )
with certainty. However, q can compute a set F such that viewq(T )\viewp(T )
is one of the element in F no matter what p is doing in parallel. Formally, for
a trace T = (E,≤, λ), a trace T ′ is a factor of T if there exists F ⊆ E with
g ∈ F whenever there exists e, f ∈ F and e ≤ g ≤ f , and T ′ = (F,≤ |F , λ|F ).
Now, for each S ⊆ S1(viewq(T )) (at most exponentially many in the number
of processes), we compute the factor FS = {e ∈ viewq(T ) |6 ∃f ∈ S, e ≤ f}.
Then F = {FS | S ⊆ S1(viewq(T )}. We know that viewq(T ) \ viewp(T ) ∈ F
thanks to lemma 2. The original constructions [Zie87, CMZ93, MS94] keeps
all these factors explicitely, explaining the doubly exponential complexity for
the number of states.

Instead, we keep only a small number of representatives which allows
to reconstruct every possible combination [icalp06]. Our representatives are
called zones. When a viewq(T ) \ viewp(T ) is needed, we compose the zones
included in viewq(T ) \ viewp(T ). Zones are defined as equivalence classes of
the following relation:

Let T = (E,≤, λ) be a trace. For an event e ∈ E we define the set
of events S(e) = {f ∈ S1(T ) | e ≤ f}. We say that two events e, f are
equivalent (denoted as e ≡ f) if and only if S(e) = S(f). The equivalence
classes of ≡ are called zones.
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Figure 4.2: The three zones of viewr(T ). The distinguished nodes are those
in S1(viewr(T )).

Let Z be a zone and define S(Z) = S(e) for some event e ∈ Z. Let also
Z,Z ′ be two zones of some trace T . We write Z < Z ′ if Z 6= Z ′ and if e < e′

for some events e ∈ Z, e′ ∈ Z ′. By dom(Z) we denote the set of processes
occurring in the zone Z, i.e., dom(Z) = ∪e∈Zdom(e). The following lemma
is easy to show:

Lemma 3 1. A zone of T is a factor of T .

2. The set of zones partitions the set of events of T .

3. The relation < on zones is acyclic. It induces the least partial order
such that S(Z) ) S(Z ′) and dom(Z) ∩ dom(Z ′) 6= ∅ implies Z < Z ′.

Figure 4.2 depicts the trace T = [cbadcbad] with P = {p, q, r}, dom(a) =
{p, q}, dom(b) = {q, r}, dom(c) = {p}, dom(d) = {r}. We have S1(viewr(T ))
consists of the first a, the second b and the second d. There are three zones
in viewr(T ): Z1 is the first a, b and c, Z2 is the first d and the second b, and
Z3 is the second d (see also Figure 4.2). We have Z1 < Z2 < Z3. Also, S(Z2)
consists of the second b and the second d.

Zones enjoy some crucial properties, stated in the following Proposition.

Proposition 2 [icalp06] Let T be a trace, p, q ∈ P be processes, and Z a
zone of viewp(T ). Then either Z ⊆ viewp(T ) ∩ viewq(T ), or Z ∩ (viewp(T ) ∩
viewq(T )) = ∅.

Further, the number of zones is polynomial.

Proposition 3 [icalp06] Let T be a trace. There are at most |P|2+|P| zones
in T .
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We obtain:

Theorem 1 [icalp06] Let A be a (non-deterministic) I-diamond automaton
over the independence alphabet (Σ, I). We can construct an equivalent deter-
ministic asynchronous automaton B with less than 2|A|

2×(|P|2+|P|)+2|P|4 states.
Each process has a memory of size O(|A|2 × |P|2 + |P|4), and computes its
next state in time O(|A|2 × |P|2 + |P|4).

Notice that in order to obtain the complexity |A|O(|P|2)·22|P|4 from a deter-
ministic diamond specification, we apply the trick of [CMZ93] to the previous
construction, although adapting it to obtain an on-the-fly algorithm with a
polynomial time complexity and logarithmic (in the number of states of A,
quadratic in the number of processes) for the number of bits to remember
to encode a configuration of a process is non-trivial [icalp10]. We detail the
algorithm and give some experimental results in the next section.

4.5 Synthesis Algorithm from Deterministic Spec-
ification

Let A = (V,Σ,→, v0, F ) be a deterministic I-diamond automaton. We ex-
plain in the following how to build a deterministic asynchronous automaton B
with the same language. The local p-state of B reached on a prefix viewp(T )
is the tuple (TS, dom, 〈dom(Zi), S(Zi), sZi

〉i=1,...m), where:

• {Z1 . . . , Zm} is the set of zones of viewp(T ).

• The timestamping TS : P → {0, · · · , |P|}P associates every process q
with the timestamp of the last event on q in viewp(T ) [DR95, Zie87].

• The domain dom : P → 2P associates every process q with the domain
of the last event on q in viewp(T ).

• For a zone Z, dom(Z) denotes the set of processes occurring in Z.

• For a zone Z, S(Z) ⊆ P . That is, q ∈ S(Z) means that there is an
event of Z before the last event lastq(viewp(T )) on q in viewp(T ).

• sZ is the state reached from the initial state by executing events in
zones Z ′ ≤ Z (state sZ is unique as A is deterministic).
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We now define the local transition function δp of the asynchronous au-
tomaton B. Recall that the order on zones Zi < Zj can be computed from
the knowledge of S(Zi) and of dom(Zi), for all zones Zi (see Lemma 3). We
do not recall how to update TS and dom (see [Zie87, DR95]). Notice that
we do not need the function S : P → 2P as SZi

includes this information.

We first compute a prestate, that is a set of pre zones for viewp(T )a: some
(final) zones of viewp(T )a can be decomposed into several prezones. We de-
note dom(a) = {p, q1, · · · qm}. We first add the new information given by pro-
cess q = qi, inductively on i, to the information that p gets. Assume that we
have already computed the state for the set of processes P = {p, q1, · · · qi−1}.

Assume that the process q is in local state (TSq, domq, 〈dom(Zq
i ), S(Zq

i ),
sZq

i
〉i=1,...,n) with history viewq(T ). Moreover, the current prestate (associ-

ated with events viewP (T ) seen by P = {p, q1, · · · qi−1}) is (TS, dom,
〈dom(Zi), S(Zi), sZi

〉i=1,...,m〉. We now explain how to update the prestate,
taking into account the state of q. The updated prestate for P ∪ {q} af-
ter reading q = qi is denoted (TS ′, dom′, 〈dom(Z ′i), S(Z ′i), sZ′

i
〉i=1,...,k), with

viewP∪q(T ) as history, where:

1. Let Common = {r ∈ P | ∃p ∈ P , (TSq, domq)(r) 6= (TS, dom)(p)} be
the set of process r such that the primary event lastr(viewq(T )) is a
primary event of viewp(T ).

2. Let J = {i ∈ {1, . . . , n} | S(Zq
i ) ∩ Common = ∅}, and k = m+ |J |,

3. Set (TS ′, dom′)(r) = (TSq, domq)(r) if there exists i ∈ J with r ∈
S(Zq

i ), and (TS ′, dom′)(r) = (TS, dom)(r) otherwise,

4. Let 〈dom(Z ′j), S(Z ′j), sZ′
j
〉j=1,...,m = 〈dom(Zj), S(Zj), sZj

〉j=1,...,m,

5. 〈dom(Z ′m+j), S(Z ′m+j), sZ′
m+j
〉j=1,...,|J | = 〈dom(Zq

i ), S(Zq
i ), sZq

i
〉i∈J ,

6. The partial order <′ on the new zones is given by the transitive closure
of the relation < ∪ <q ∪{(Z ′i, Z ′j) | i ≤ m < j, dom(Z ′i)∩dom(Z ′j) 6= ∅},

7. For all Z ′i <′ Z ′j, S ′(Z ′i)← S ′(Z ′i) ∪ S ′(Z ′j),

Once the information from all processes have been added, we add a last
prezone Zm+1 corresponding to action a. Assume that the current p-prestate
is (TS, dom, 〈dom(Zi), S(Zi), sZi

〉i=1,...,m).
The new p-prestate is (TS ′, dom′, 〈dom(Z ′i), S(Z ′i), sZ′

i
〉i=1,...,m+1), with:
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1. Let dom(Z ′m+1) = dom(a), and S(Z ′m+1) = dom(a).

2. Let 〈dom(Z ′j), S(Z ′j), sZ′
j
〉j=1,...,m = 〈dom(Zj), S(Zj), sZj

〉j=1,...,m.

3. For all i ∈ {1, . . . ,m}, let S(Z ′i)← S(Z ′i) ∪ dom(a),

4. Hence <′=< ∪{(Z ′i, Z ′m+1 | i ∈ {1, . . . ,m}})

5. Compute a new Timestamp TT for a. For all p /∈ dom(a), let (TS ′, dom′)(p) =
(TS, dom)(p). For all p ∈ dom(a), let dom′(p) = dom(a) and TS ′(p) =
TT .

Now, it remains to do two things. First, clean the prestate in order to
obtain the (final) set of zones, mainly merging zones together. Finally, we
will compute the state information corresponding to these zones.

Assume that the current p-prestate is (TS, dom, 〈dom(Zi), S(Zi), sZi
〉i=1,...,m).

We first merge prezones together. Intuitively, prezones Zi, Zj with the same
value S(Zi) = S(Zj) will be merged, such that all (final) zones will have
different S-values. More formally, let X = {S(pz) | pz is a prezone}. For
each x ∈ X, we create a zone Zx. We set S(Zx) = x, and dom(Zx) =⋃

prezone pz,S(pz)=x dom(pz). We also set Zx < Zy for all zone x, y such that
there exists two prezones pz < pz′ with S(pz) = x and S(pz′) = y.

Now, we describe how to create the state information sZ for each zone
Z. The state information sZ is computed using function trick defined below.
The inputs we pass to function trick are state information on prezones that
we already have.

The function trick(r, s, t, Q) is defined for three states r, s, t and a domain
Q ⊆ P : first, compute any word w such that dom(w) ⊆ Q, and such that
r

w−→ s (using a depth first search restricted to actions a with dom(a) ⊆ Q).
Then compute the state t′ such that t w−→ t′. Then set trick(r, s, t, Q) = t′.
We have the following result:

Lemma 4 [icalp10] Let r be a state of a deterministic diamond automaton.
Let r w−→ s

w′
−→ t′ be a path such that for all letters a ∈ w′, b ∈ w, we have

(a, b) ∈ I. Let t such that r w′
−→ t

w−→ t′ (it exists because the automaton is
diamond). Then trick(r, s, t, {q ∈ P | ∃a ∈ w, q ∈ dom(a)}) = t′.

Here is how we compute sZx , for all x. First, take {Zy1 , · · · , Zyn} the set
of zones smaller or equal to Zx. We assume that the order is defined such
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that Zyi 6> Zyj for all i < j (i.e. it is a linearization). We then enumerate
(in a linearized order) for all i the prezones pzi1 · · · pzik contained in Zi, that
is with S(pzij) = yi. Using function compute defined below, we finally set
s(Zx) = compute(pz1

1 , · · · , pz1
k · · · pzn1 , · · · pznk′).

We now define the function compute(pz1, · · · , pzn) for a list of prezone
pz1, · · · , pzn, given as a linearization (that is pzi 6< pzj for i > j). For all
i ≤ k ≤ n, we will compute inductively the state si,k corresponding to the
state reached after reading the set of prezones Bi,k = {pz1, . . . , pzi} ∪ {pzj |
pzj ≤ pzk, j > i}.

Compute(pz1, · · · , pzn):
• set s1,1 = spz1

• for all k = 2 · · ·n

– set s0,k = spzk

– for all i = 1 · · · k
1. If pzi ≤ pzk, then set si,k = si−1,k

2. else, set si,k = trick(si−1,i−1, si,i, si−1,k, dom(pzi))

• return sn,n

To compute spz for pz the last prezone corresponding to the last letter a,
we modify Compute(pz1, · · · , pzn) to take into account the last letter a.

We now report some experiments. See [fsttcs13] for more details. For 7
systems, we report the number of states and processes. We also report the
number of global state produced by the heuristic of [SEM03], by the original
Zielonka’s construction [Zie87], as well as the number of global as well as local
states of our construction [icalp10]. Notice that the original and the heuristic
build only a global state space, the reason why we cannot report a number of
local states. Notice also the in an on-the-fly algorithm (used e.g. for runtime
verification or runtime computation of causal knowledge [fossacs15]), not all
the local states need to be constructed by [icalp10]. Overall, heuristic and
our new constructions are (almost) always better than the original Zielonka’s
construction. In term of global state space, the heuristic manages to find very
compact representation for some systems, while for other systems, our new
construction is better for all metrics.
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|A| |P| heuristic original global local
mutex-a 13 3 13 1493 271 126
mutex-b 14 4 14 34 22 16
simple 3 3 5 12 12 9
phil 5 4 5 70 71 60
prop2 6 2 188 188 36 21
prop3 11 3 639 639 240 92
L4 8 2 N/A 10 10 5

4.6 Related Work

A very thorough survey on synthesis is [Dar07].
Other Constructions Most of the constructions [Zie87, CMZ93, MS94,
DR95, icalp06, icalp10] are close in spirit to the the Zielonka construction,
improving various part of the constructions. It is worth noting that the
Timestamping used is roughly unchanged from [Zie87]. When the complexity
is stated in terms of letters rather than processes, [Zie06] provides actually
a better timestamping, requiring only 1 bit for |Σ|2 events instead of log(p)
bits for |Σ|2 (labeling letters) or |P|2 (labeling processes) events as in [Zie87].

In [BM05, Bau09], a different construction is given, guessing a correct
path for each process. This construction thus gives rise to non-deterministic
Asynchronous Automaton, albeit with a good complexity (polynomial in the
number of states of the non-deterministic Automaton given as specification).
Obtaining a deterministic Asynchronous Automaton from this non deter-
ministic Asynchronous Automaton can be done, but at a doubly exponential
price [KMS94], making the construction interesting only when determinism is
irrelevant (for implementation, determinism seems important). In [Pig93], a
construction is given as a structural induction on a rational language. Com-
parisons are thus harder to draw with other constructions.

Last, some constructions are given with better complexity for restricted
systems. A simpler construction is given in [DR95] for the case of chordal
graphs, extending the case where the dependency relation D is acyclic, but
with exponential complexity in the number of states of the automaton given
as specification. For acyclic communication pattern, where there is a unique
flow of information from a process to another process, [KM13] provides a
quadratic algorithm. In this latter case, synthesis with non-controllable ac-
tions is also decidable [icalp13] (see the next section).
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Realistic Synthesis None of these constructions (nor [icalp10]) gives a gen-
eral realistic distributed implementation: either the constructions are plagued
by deadends [Zie87, CMZ93, MS94, DR95, icalp06, icalp10, Bau09, BM05],
non-deterministic guesses [Zie89, BM07, Bau09], or the acceptance condition
or choice of actions are not distributed [Zie87, CMZ93, MS94, DR95, icalp06,
icalp10]. Further, while the initial state is trivially distributed in Zielonka’s
construction (since it is unique, due to determinism), this is not the case in
[Zie89, BM07]. There are systems for which it is not possible to obtain an
implementation satisfying all these conditions. In the case of prefix-closed
and forward diamond [DR95] specifications, [Muk02, SEM03] gives a deter-
ministic deadlock-free implementation with local final states. In the general
case, we provide in [fsttcs13] semantical and syntactical characterizations of
languages of asynchronous automata with deadends, and/or local accepting
states, and/or local decisions.

4.7 Perspectives

Language equivalence is not always sufficient for implementation. A bisim-
ulation equivalence between the specification and the transition system of
the asynchronous automaton would be more precise. In the case of a deter-
ministic specification, [fsttcs13] actually provides a bisimilar Asynchronous
Automaton as soon as the specification is forward diamond [DR95] (which is
necessary and sufficient to obtaining a deadlock-free implementation, needed
for the bisimulation). It is much harder to obtain a bisimilar Asynchronous
Automaton from a non-deterministic specification. The main problem is to
obtain a necessary and sufficient condition for the existence of a bisimilar
(deadlock-free) implementation, as it is possible that n edges labeled by a
letter a from a state correspond to the same actions in a different interleaving
as m 6= n edges labeled by a from a different state. Starting from a non-
deterministic I-diamond (interleaved) automaton does not seem easy, and a
different non-deterministic specification seems needed in that case, may be
under the form of an unfolding.

An important extension of this work is when the I-diamond specification
has some non-controllable actions. One can ask whether there exist asyn-
chronous distributed controllers reaching a goal (for instance reaching some
global state). A distributed controller on a process has only a local view of
what happens, using information received from other processes during past
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common actions, and can enable and disable controllable actions. Non con-
trollable actions can never be disabled, and may or may not happen. In this
context, several work have been done, providing decidability of distributed
control for various subcases, ranging from serial parallel alphabets [GLZ04],
often-communicating processes through satisfiability of MSO [MTY05], to
acyclic communication pattern [icalp13]. There is hope in the future to ob-
tain decidability in the general case of distributed control of an I-diamond
regular specification, as well as extending MSO satisfiability [MTY05] to grid
free system. Complexity is usually non elementary when the number of pro-
cesses is not fixed, with matching lower bound proved in [icalp13]. Complex-
ity can be improved for subclasses, for instance EXPTIME-complete when
non-controllable actions never commute [FO14].

Finally, synthesis with message passing instead of synchronous commu-
nication will be considered in the next chapter.
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Chapter 5

Message Passing Systems

5.1 Introduction
Exchanging information by handshaking, that is by performing an action
synchronizing all the processes performing it (as for Network of Automaton,
Asynchronous Automaton, Petri Nets, etc.), can seem restrictive. For in-
stance, the symmetry in the communication ensures that process p knows
when process q receives a message from p tp q. We explain in this chapter
how results concerning model checking and implementation can be extended
to message passing systems, where the communication itself is asynchronous,
made by sending and receiving messages. We also explain how set of repre-
sentatives can be used to specify non-regular message passing specifications,
under the form of MSC-graphs.

5.2 Channel Bound

5.2.1 Message Sequence Charts

Let P be a finite set of processes. Let C be a finite set of message contents
or control messages. The set of actions is Σ =

⋃
p∈P Σp = Σ! ∪ Σ?, with:

• Σ! = {p!q(c) | p, q ∈ P , c ∈ C} is the set of send actions. The action
p!q(c) represent a send from p to q of a message of content c.

• Σ? = {p?q(c) | p, q ∈ P , c ∈ C} is the set of send actions. The action
p?q(c) represent a receive in p from q of a message of content c.
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• The set of actions on process p is Σp = {p?q(c), p!q(c) | q ∈ P , c ∈ C}.

We assume a unidirectional channel from p to q for each pair of processes
(p, q) ∈ P2. For simplicity, we ignore internal actions local to a process. We
assume that the channels are FIFO, that is the n-th action p?q(c) receives
the n-th sending q!p(d) of message from p to q, and further c = d. A word
w ∈ Σ∗ is well-formed if for all prefix v of w ending with some p?q(c), we
have at least as many sends q!p as receives p?q in v, that is |v|q!p ≥ |v|p?q.
In particular, there cannot be more messages p?q received than sent in any
prefix. Word w is complete if further, |w|q!p = |w|p?q for all p, q, c.

As with traces, we can associate a labeled partial order with any word over
Σ∗. For simplicity, we will explicitly specify the message matching function
m, but it could be recovered from ≤ as well thanks to FIFO. We will call such
structuresMessage Sequence Charts (MSCs for short). Let w = a1 · · · an ∈ Σ∗

be a well-formed word. We define the MSC (E,≤,m, λ) with:

• E = {e1, . . . , en} is the set of events, with the same number n of events
as w,

• λ(ei) = ai,

• m : E → E is a partial one to one function, with m(ei) = ej if
λ(ei) = p!q(c) and λ(ej) = q?p(c) for some p, q, c, and |a1 · · · ai|p!q =
|a1 · · · aj|q?p,

• ei ≤ ej iff m(ei) = ej; or ei, ej ∈ Σp for some process p and i ≤ j.

Notice that as w is well-formed, m(ei) = ej implies that i ≤ j. We say
that 2 words over Σ are equivalent if they have isomorphic MSCs. In general,
it is not possible to generate MSCs using a trace alphabet, because one has
to count the numbers of messages of every type, which cannot be done with
a finite alphabet. There exist two positive results though, in the case of
universal and existential channel bounds [LM04].

5.2.2 Universal Channel Bound

Consider a set W ⊆ Σ∗ of words. Assume that there exists a b such that
for all w ∈ W , for all prefix v of w, |v|p!q − |v|q?p ≤ b for all p, q. In such a
case, we say that the channels of W are universally b-bounded. One can then
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use the Kuske’s trace alphabet [Kus02], defined below, in order to obtain the
same set of partial orders.

Consider the trace alphabet (Σ′, I), with Σ′ = Σ× {0, . . . , b}. We define
D = Σ2 \ I as follows: ((a, i), (b, j)) ∈ D iff there exists p ∈ P with a, b ∈ Σp,
or i = j and {a, b} = {p!q(c), q?p(c)} for some p, q, c. For a, b ∈ Σ, we denote
a ≡ b whenever a = p!q(c) and b = p!q(d), or a = p?q(c) and b = p?q(d) for
some p, q, c, d.

We define a function f : Σ∗ → Σ′∗, such that for each word w = a1 . . . an ∈
W , we have f(w) = a′1 · · · a′n with a′i = (ai, k) with k being the number
modulo b + 1 of letters aj ≡ ai in a1 · · · ai. We define the set W ′ ⊆ Σ′∗ with
W ′ = {w′ | ∃w ∈ W, f(w) = w′}.

Then one can show [Kus02] that the set of MSCs associated with words in
W is isomorphic to the set of labeled partial orders associated with words in
W ′. This encoding allows to lift many results from trace theory to universally
bounded communicating systems, including the Zielonka’s implementation
theorem [Zie87] (see also Chapter 4).

5.2.3 Existential Channel Bound

Set of representatives can also be useful in the context of asynchronous mes-
sage passing. Consider a setW ⊆ Σ∗ of words closed by commutation, that is
such that every word w′ equivalent with w ∈ W (that is with the same MSC)
satisfies w′ ∈ W . We say that W is existentially b-bounded if there exists a
set W ′ of representatives for W (that is W ′ ⊆ W and for each w ∈ W , there
exists w′ ∈ W ′ associated with the same MSC), such that W ′ is universally
b-bounded.

Now, the same Kuske’s trace alphabet can be used, but with a twist.
It is no more the case that the set of MSCs associated with words in W is
isomorphic to the set of labeled partial orders associated with words in W ′.
Indeed, taking the word p!q(c)q?p(c)p!q(c)q?p(c), this word is existentially
one bounded but not universally 1 bounded (it is universally 2 bounded).
Applying the Kuske’s alphabet with b = 1 gives a partial order on set of
events {s1, r1, s2, r2} with λ(s1) = λ(s2) = p!q(c), λ(r1) = λ(r2) = q?p(c),
s1 < s2, r1 < r2, s1 < r1, s2 < r2 (which are relations of the MSC), plus
the reversed relation r1 < s2, which is not present in the MSC. What we
have is that W ′ captures exactly the set of b bounded words in W . Usually,
this can be used to lift results from Mazurkiewicz trace theory. Actually,
even Zielonka’s implementation theorem [Zie87] can be lifted. However, the
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implementation obtained is non-deterministic [i&c06], and this is unavoid-
able [i&c06].

In the following, we introduce several classes of systems, and give for each
class the different results.

5.3 Communicating Finite State Machines

Communicating Finite State Machines (CFSM for short) are a class of models
in this framework, close to the implementation of programs communicating
with asynchronous messages.

Definition 6 A communicating finite-state machine is a tuple A = ((Ap)p∈P , F )
where

• For every p ∈ P, Ap = (Sp,→p, s
0
p) is a finite labeled transition system

over the alphabet Σp×C for any p ∈ P (i.e., →p ⊆ Sp× (Σp×C)×Sp)
with initial state s0

p ∈ Sp.

• F ⊆
∏

p∈P Sp is a set of global final states.

The CFSM A is deterministic if

• s p!q,m1−→ p s1 and s p!q,m2−→ p s2 implies s1 = s2 and m1 = m2

• s p?q,m−→ p s1 and s p?q,m−→ p s2 implies s1 = s2.

To define the semantics of a CFSM, we can define a global (infinite) state
systemA on set of states: S =

∏
p∈P Ap×(C∗)P

2 . Namely, each configuration
c of A is of the form c = ((sp)p∈P , (νp,q)p 6=q∈P) ∈ S, where for each p, q ∈ P ,
νp,q is the sequence of message contents, from messages sent from p to q

and not yet received, in their send order. We have ((sp)p∈P , (νp,q)p6=q∈P)
a−→

((s′p)p∈P , (ν
′
p,q)p 6=q∈P) iff

• for a ∈ Σp, we have sp
a−→ s′p and s′r = sr for all r 6= p,

• for a = p!q(c) or a = q?p(c), ν ′q,r = νq,r for all (r, s) 6= (p, q),

• for a = p!q(c), ν ′p,q = νp,qc, that is c is appended at the end of νp,q,
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• for a = q!p(c), cν ′p,q = νp,q, that is c is removed from the beginning of
νp,q,

An execution of a CFSM (Ap)is a word on alphabet Σ which is in the
language L(A). It is easy to see that if w ∈ L(A), then for all w′ equivalent
with w (that is with the same MSC), we have w′ ∈ L(A) as well, that is
L(A) is closed by commutation.

Thanks to the closure by commutation, one can apply the technique de-
scribed in the previous section. We call a CFSM A existentially b-bounded
if its language L(A) is. We can state the decidability model checking for
existentially bounded CFSM against an MSO formula [MM01].

Proposition 4 Let A be a CFSM existentially b-bounded. Then for all MSO
formula ϕ on MSCs, it is decidable whether A has an execution which does
not satisfy ϕ.

Existentially bounded CFSM having good properties, it is interesting to
wonder whether it is a decidable class. For decidability, deadend-free CFSM
are important, namely CFSMs such that from every reachable configuration,
a final state can be reached. We have the following results:

Theorem 2 [fi07] Let A a CFSM. It is undecidable to know whether there
exists b such that A is existentially b-bounded, even if A is deadend-free.

Given b, it is undecidable to know whether A is existentially b-bounded.
Given b, knowing whether A is existentially b-bounded is PSPACE-complete.

We can actually apply a semi-algorithm to know if there exists b such
that A is existentially b-bounded in the case where A is deadend-free. If
we interpret A as weak FIFO, that is messages with different contents can
overtake each other, we can interpret the CFSM as a Petri Net and modify
the algorithm for boundedness in Petri Net to answer this question. This
interpretation does not remove runs from the CFSM, but can create (un-
bounded) ones. Thus if the algorithm answers that the CFSM is bounded
with weak FIFO, then it is bounded with the usual FIFO interpretation as
well. We state the theorem for the case where there is no content of message,
for which both interpretations collapse.

Theorem 3 [i&c10] Let c ∈ C. Let A be a deadend-free CFSM sending only
message of content c. Then it is decidable whether there exists b such that A
is existentially b-bounded.
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5.4 Regular Set of Representatives as Model

Another way to specify a communicating system is to use representative sets
as model. That is, assume that we have an automaton A over Σ whose
language L(A) accepts only well-formed and complete runs. However, L(A)
is not necessarily closed by commutation, that is, there may be two words
w,w′ with the same MSC such that w ∈ L(A) and w′ /∈ L(A). We can
give an MSC interpretation to this automaton: LMSC(A) is the set of MSCs
associated to runs of A. We denote by [L(A)] = {w | w is associated with
an MSC in LMSC(A)}. That is, we consider every word equivalent with a
word of L(A). It is easy to see that L(A) is a regular set of representatives
for [L(A)]. In general, [L(A)] is not regular, although L(A) is.

This specification corresponds to safe Compositional MSC-graphs [GMP03],
which have nice properties. First, it is easy to show that there exists a b such
that all the words in L(A) are b-bounded [jcss06]. That is, [L(A)] is existen-
tially b-bounded.

Using the set of representatives idea, as the set of words satisfying an
MSO formula and the language of a CFSM are both closed by commutation,
by checking only those words in L(A), we obtain:

Theorem 3 [jcss06] Let A be a safe Compositional MSC-graph, ϕ be an
MSO formula over MSCs, and let B be a CFSM. Then

• One can check whether there exists a word in [L(A)] which satisfies ϕ.

• One can check in PSPACE whether there exists a word in the intersec-
tion of [L(A)] and L(B).

5.5 Related work

There are many more results, on the topic of communicating finite state
machines, but the ones stated in this chapter are quite representative of
what can be done. We now compare with other connected results.

Direct proofs for asynchronous communication. Historically, proofs
for asynchronous message passing systems have been performed without us-
ing the trace alphabet, either for model checking [AY99] or for implementa-
tion [HMNST05]. The proofs tend to be more tedious as messages in transit
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need to be kept explicitly. Techniques like bounding phases (cycles between
processes of unbounded queues) [BE12] can however handle well complexity.

Implementation Results. Concerning implementation, many results have
been proved. The first results concern implementation of CFSM equivalent to
a global specification, either with FIFO [AEY03] or with weak FIFO [Mor02].
The latter enjoys decidability in slightly more cases thanks to the theory of
Petri Nets. In the case where processes of a CFSM are allowed to pass
some information together with messages, equivalent implementation can be
obtained in more cases, using the Zielonka’s construction. This has been
done directly [HMNST05] or using trace encoding [Kus02] for bounded chan-
nels, later extended to existentially bounded channels [i&c06]. Non-Zielonka
construction has also been used [BM07], resulting to non-deterministic im-
plementation. Last, implementation can also be made from a somehow lo-
cal EMSO logic using direct message and process order [BL06], using Hanf
[Han65] and Gaifman [Gai82] theorems.

Serializability. Existential channel bounds are still under studies in the
Software Engineering community, particularly concerning web services. Names
and setting may slightly differ though (e.g. conversation protocols where
message receives are not specified). This line of work started with the serial-
izability notion of Bultan [BB14], which is roughly equivalent to existentially-
1-bounded. A system is serializable [BB14] if assuming that each message
are received as soon as they are sent (ie. synchronous messages), then the
behavior of the system is not reduced. In [BB14, SY15], this is extended
to the existence of a bound such that no behavior is lost once this bound is
fixed on message channels, similar to existential-boundedness.

Programming Languages. Recently, a new global specification formal-
ism has been defined in the realm of programming language and type the-
ory, namely (multiparty) session types [DY12, DY13]. In [DY12], well-
formed global session types defines a subset of local-choice MSC-graphs
[HJ00, jcss06]. They are transformed to CFSM by considering the projection
to each processes [AEY03]. In [DY13], it is shown how to a build global
session type automatically from a serializable CFSM.

Quasi Static Scheduling. Quasi Static Scheduling (QSS) [CKLPW04] asks
to design a scheduler which does not disallow any local choice, such that a
distributed system under schedule is regular. This control problem is actu-
ally tightly related to existential channel bound (which also generate a sort
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of scheduler which does not disallow any local choices). In [concur08, i&c10],
we showed that QSS is undecidable in general (even for system without
deadends). We show that QSS is equivalent with existential channel bound,
and thus decidable, in the case where the system is deadend-free and data-
branching, that is there is no state with two outgoing receive actions (the
choice of process p cannot be made by another process q sending two different
messages to p). Previously, only heuristic were known [CKLPW04].
Extensions of Communicating Systems. Communicating systems have
been extended in several ways. Different kind of product forms have been
considered for specifying communicating systems: parallel composition of
different modules synchronized on common actions [fossacs08], or low level
fibered interleaving [tcs09]. It is also possible to automatically implement
parametric CFSM where the number of processes can evolve [Bol14]. Last,
recently, the techniques expressing the partial order as a bounded treewidth
graphs have been used to prove the decidability of model check of existentially
bounded CFSMs with stacks and data [CG14].

5.6 Perspectives
We now have solid foundations for the theory of CFSMs. Properties are well
understood, as well as numerous techniques to exploit them. For instance,
it should not be too difficult to lift results on the control of asynchronous
automata (see previous chapter) to the control of bounded CFSMs.

There are still several things which remain to be done. The first one
is to export these foundations to other field, such as Programming Lan-
guages and Software Engineering, and in particular Web Service choreogra-
phy (conversation protocols, etc). For instance, allowing some liberty in the
implementation would allow implementing more specification automatically,
as was done for CFSM. A particularly interesting class is the class of Lo-
cal choice specification [jcss06], which has not yet been considered in Web
Service Choreography.

As was recently shown [CG14], new techniques can still bring new result
concerning extensions of CFSMs. For instance, analyzing quantified values
in CFSMs is important. We will discuss about timed system in the next
chapter. Probabilistic CFSMs are also an important topic which has seen
very few results so far. One reason is that it is not trivial to define an
intuitive probability law on distributed systems [Abb14].
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Chapter 6

Timed and Distributed Systems.

6.1 Introduction

Systems involving both time and concurrency are notoriously difficult to an-
alyze. The main problem is that reasoning about partial orders is difficult in
the presence of global time, which imposes a total order on executed events.
In this chapter as in the previous one, the concurrent systems we consider use
mainly message to communicate. In this setting, existing decidability results
apply when clocks on different processes cannot be compared or when the set
of timed executions is regular [AD94]. We now show how using representa-
tives, we can get decidability results for message passing systems with time,
requiring neither restriction. First, we consider a non-regular timed system
given under the form of a set of representatives, namely time-constrained
MSC-graphs (TC-MSC graphsfor short) introduced in [AMN07]. We study
if the set of timed executions generated by a TC-MSC graph is empty. This
emptiness problem is known to be undecidable in general [GMN09].

We describe two different approaches. The first one consists in finding a
regular set R of representative timed executions, i.e., such that every consis-
tent timed-constrained scenario of the system has a timed execution in R.
This extends the results of the previous chapter, showing that set of repre-
sentatives can be useful also in a timed setting. This allows us to decide the
emptiness problem under the assumption that the TC-MSC graph is prohib-
ited from (1) forcing any basic scenario to take an arbitrarily long time to
complete and (2) enforcing unboundedly many events to occur within one
unit of time [ipl12].
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Figure 6.1: A TC-MSC graph G1 and two TC-MSCs it generates

The second approach is more ad hoc but also more efficient, as we do not
keep several equivalent interleaved representations. Instead, time constraints
are encoded symbolically as a system of inequalities. We obtain decidability
when condition (1) above is met. That is, we can drop condition (2) above.
Also, we can effectively check condition (1): for a given K, it is decidable
whether a path of the TC-MSC graph forces some node to take more than
K time units to complete [ictac12].

6.2 Time-Constrained MSC graphs

Let I(N) denote the set of open and closed intervals whose end points are in
N, plus the intervals of the form [c,∞), (c,∞), where c ∈ N. We shall use
intervals in I(N) to constrain the lower and upper bounds on the difference
of occurrence times of events in a scenario. We remark that in what follows,
intervals involving non-negative rational numbers can be easily simulated by
scaling them to integers. We adopt the basic definitions from [AMN07].

Definition 7 A time-constrained message sequence chart (TC-MSC) over
a set P of processes is a tuple T = (E, (<p)p∈P , λ, µ, δ) where E is a finite
non-empty set of events; λ : E → Σ labels each event with an action type
in Σ such that:

(i) Each <p⊆ Ep × Ep is a total order, where Ep = λ−1({p} × {!, ?} × P).
Members of Ep are termed p-events.
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(ii) The message relation µ is a bijection from Esend = λ−1(P × {!} × P)
(send events) to Erecv = λ−1(P×{?}×P) (receive events). For any e, f
with µ(e) = f , for some p, q, we have λ(e) = p!q and λ(f) = q?p. For
each e, e′ with λ(e) = λ(e′) = p!q for some p, q ∈ P, we have e <p e

′ iff
µ(e) <q µ(e′). (FIFO)

(iii) Writing < for the transitive closure of (
⋃
p∈P <p)∪µ, the time constraint

labeling function δ associates an interval in I(N) to each pair of events
(e, f) ∈ E × E with e < f .

With a slight abuse of notation, we write a TC-MSC as T = (E,<, λ, µ, δ),
with < as above. A linearization of T is a sequence σ = a1 . . . a` over Σ∗,
where ` = |E| and such that E can be enumerated as e1 . . . e` with ai = λ(ei),
and ei < ej implies i < j for any i, j in {1, . . . , `}. Note that due to the
FIFO condition (see Condition (ii) in the definition above), the enumeration
e1 . . . e` is uniquely determined by a1 . . . a`. A TC-MSC T defines a collec-
tion of linearizations augmented with occurrence times such that the relative
delay between each pair of causally ordered events falls within the interval
dictated by δ. To avoid confusion, we shall term occurrence times as dates :
A timed execution w of T is a sequence (a1, d1) . . . (a`, d`), where a1 . . . a`
is a linearization of T , each date di is a non-negative real for i = 1, . . . , `,
and d1 ≤ . . . ≤ d`. Let e1 . . . e` be the enumeration corresponding to the
linearization a1 . . . a`. Then ei < ej implies dj − di is in the interval δ(ei, ej).

To describe infinite collections of TC-MSCs, we use TC-MSC graphs:

Definition 8 Let T be a finite non-empty set of TC-MSCs. A TC-MSC
graph over T is a tuple G = (N,−→, nini , Nfin ,Λ,∆) where N is a finite
set of nodes, −→⊆ N × N a transition relation, nini ∈ N the initial node,
Nfin ⊆ N the subset of final nodes, and Λ : N → T labels each node with a
TC-MSC from T . Further, the mapping ∆ associates each transition (n, n′)
in −→ with a P-indexed family of intervals in I(N), such that if either n or
n′ has no p-event, then the p-component of ∆(n, n′) is [0,∞).

For each p, we write ∆p(n, n
′) for the p-th component of ∆(n, n′). The

interval ∆p(n, n
′) specifies the range of relative delay on p when moving from

n to n′. We write ⊥ for the interval [0,∞). Figure 6.1 displays a TC-MSC
graph G1 whose nodes are n1, n2, n3, with n1 being the initial node and n2

the final node. In n1, the relative delay between the send event of p and
the receive event of q is constrained to lie within [0, 3]. The ([0, 2],⊥,⊥) on
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transition (n1, n2) indicates ∆p(n1, n2) = [0, 2], ∆q(n1, n2) = ⊥, ∆r(n1, n2) =
⊥. It asserts that the relative delay between the last event of p of n1 and the
first event of p of n2 should be in [0, 2]. To reduce clutter in the figures, we
omit time constraints of the form ⊥ inside a TC-MSC labeling a node, and
(⊥)|P| on transitions.

We fix a TC-MSC graph G = (N,−→, nini , Nfin ,Λ,∆). We write n −→ n′

for (n, n′) ∈−→ and speak interchangeably of a node n and its associated
TC-MSC Λ(n). A TC-MSC graph defines a collection of TC-MSCs arising
from concatenating TC-MSCs in paths of G. First, for a TC-MSC T = (E,<
, λ, µ, δ), we call the <p-minimal event in Ep the first p-event, and the <p-
maximal event in Ep the last p-event. Simply put, for a transition (n, n′), the
concatenation of n with n′ is the TC-MSC resulting from placing n′ after n,
and for each process p, take ∆p(n, n

′) to be the time constraint between the
last p-event of n and the first p-event of n′. Formally, letting Λ(n) = (E,<
, λ, µ, δ) and Λ(n′) = (E ′, <′, λ′, µ′, δ′), the concatenation of Λ(n) and Λ(n′),
denoted Λ(n) ◦Λ(n′), is the TC-MSC (E ′′, <′′, λ′′, µ′′, δ′′) detailed as follows.
Firstly, E ′′ is the disjoint union of E and E ′; λ′′ agrees with λ on events in E,
and with λ′ on events in E ′. Secondly, for each p, <′′p is <p ∪ <′p ∪Ep × E ′p;
µ′′ is the union of µ and µ′. Lastly, for e, f ∈ E ′′ with e <′′ f , δ′′(e, f) is
given as follows: (i) if e, f ∈ E, then δ′′(e, f) = δ(e, f); (ii) if e, f ∈ E ′, then
δ′′(e, f) = δ′(e, f); (iii) suppose e ∈ E, f ∈ E ′. If for some p, e is the last
p-event of n and f the first p-event of n′, δ′′(e, f) = ∆p(n, n

′), otherwise,
δ(e, f) = ⊥. Note that the restriction ∆p(n, n

′) = ⊥ whenever En
p = ∅ or

En′
p = ∅ in Definition 8 is equivalent to the restrictions in [AMN07, GMN09].

It implies that ◦ is associative.

A path of G is a sequence of nodes ρ = n0 . . . n` of G such that n0 =
nini and ni −→ ni+1 for i = 0, . . . , ` − 1. Since ◦ is associative, we can
unambiguously define the TC-MSC induced by ρ, denoted T ρ, to be Λ(n0) ◦
. . . ◦ Λ(n`). The path ρ is final if n` ∈ Nfin . The TC-MSC language of G
is the set of TC-MSCs induced by final paths of G. For a TC-MSC T , let
L(T ) denote its set of timed executions. For TC-MSC graph G, the timed
execution language of G, denoted L(G), is the union of L(T ρ) over final paths
ρ of G. That is, in L(G), there may be events from one node appearing
before all the events of the previous nodes are executed, because G is defines
as a regular set of representatives representing all the equivalent executions
L(G). We say that a TC-MSC T (resp. a path ρ) is consistent iff L(T ) 6= ∅
(resp. L(T ρ) 6= ∅). In what follows, timed executions of the TC-MSC T ρ are
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sometimes refered to as timed executions of ρ and L(ρ) refers to L(T ρ).
We tackle the emptiness problem for TC-MSC graphs, which is: given

a TC-MSC graph G, determine whether L(G) is empty. The emptiness of
L(G) implies that for any TC-MSC T ρ induced by a final path ρ of G, no
assignment of dates to events in T ρ can satisfy all the time constraints in
T ρ. Thus, such a G with L(G) = ∅ should be considered ill-specified, and
should be checked for. However, it is known from [GMN09] that the empti-
ness problem for TC-MSC graphs is undecidable. In [AMN07], decidability is
obtained for locally-synchronized TC-MSC graphs. This syntactical restric-
tion limits concurrency, and implies that the timed execution language is
regular, which is a severe restriction. Indeed, even simple examples, such as
G1 from Figure 6.1 or the producer-consumer protocol, do not have regular
timed execution languages.

6.3 Regular Set of Representative Timed Exe-
cutions

We demonstrate how regular sets of representatives can be used to obtain de-
cidability of the emptiness problem for TC-MSC graphs. Here, regular stands
for timed regular, i.e., languages accepted by finite timed automata [AD94].
Notice that timed regularity implies regularity of the untimed projection of
the timed language.

Let R be a set of representative timed executions for G. That is, for all
consistent final path ρ of G, there exists a timed execution w in R such that
w is a timed execution of L(ρ). We have L(G) = ∅ iff R = ∅. Now, many
timed executions of a TC-MSC graph G are equivalent, in the sense that
they are timed executions of the TC-MSC induced by the same final path
of G. To check for emptiness of L(G), it suffices to consider emptiness of
a set R of representatives for G, instead of L(G) itself. If R turns out to
be regular and effective, then the emptiness problem for TC-MSC graphs
can be decided. For example, consider G2 in Figure 6.2. The language
L(G2) is not regular. However, the set {σ0, σ0σ1, σ0σ1σ2, . . .}, where σi =
(p!q, 4i)(q?p, 4i + 1)(s!r, 4i + 2)(r?s, 4i + 3) for all i ∈ N, is a regular set of
representatives for G2.

We fix TC-MSC graph G = (N,−→, nini , Nfin ,Λ,∆), a path ρ = n0 . . . n`
of G, a timed execution w = (a1, d1) . . . (ah, dh) of ρ, and e1 . . . eh the enu-
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Figure 6.2: Two TC-MSC graphs G2, G3. Specification G2 is scenario-
connected and G3 is not.

meration of E associated with a1 . . . ah. We start by giving a first set of
representatives.

Definition 9 Let K be an integer. We call w K-drift-bounded if for each
0 ≤ u ≤ `, and i, j ∈ {1, . . . , h}, if ei, ej are in Λ(nu), then |di − dj| ≤ K.

Thus w isK-drift-bounded if the difference between the first and last date
associated with an event of any TC-MSC Λ(nu) is bounded by K. Interpret-
ing the scenario in each node of a TC-MSC graph as one phase or transaction
of a distributed protocol, it is realistic to believe that at least some (but not
necessarily all) executions of an implemented system are K-drift-bounded.

Now, for a TC-MSC graph G and an integer K, we say that G is K-drift-
bounded if for every consistent path ρ of G, there exists a K-drift-bounded
timed execution in L(ρ). We emphasize that all timed executions of L(ρ) are
not required to be K-drift-bounded. Observe that, G being K-drift bounded
implies that the set LK(G) of K-drift-bounded executions of G is a set of
representatives of G. Unfortunately this set may not be regular because of
arbitrarily many events executed in one time unit. We thus introduce the
following.

For K ′ ∈ N, w has at most K ′ events per unit of time if for any i, j ∈
{1, . . . , h}, dj − di ≤ 1 implies j − i < K ′. A language L is strongly non-
Zeno [BBBB09] if there exists K ′ ∈ N such that every execution of L has at
most K ′ events per unit of time. It turns out that by imposing the following
syntactical condition, a TC-MSC graph has a strongly non-Zeno set of rep-
resentatives (this is one consequence of Proposition 5 below). We say that
a transition (n, n′) of G is positively constrained if for every p, ∆p(n, n

′) is
not [0, 0] (but can be [0, 1), [3, 3], [2,∞) . . .). G is positively constrained if
every transition of G is positively constrained. This restriction does not im-
ply that L(G) is itself strongly non-Zeno: consider the positively constrained
TC-MSC graph G2 of Figure 6.2 (where transitions without labels are im-
plicitly labeled by ∆p = ⊥ for all p). L(G2) is not strongly non-Zeno since
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unboundedly many events can occur at date 0 (and hence within a unit of
time). However, there exist timed executions where time elapses between
positively constrained transitions.

We now present our regular set of representatives, namely the set LK,K′(G)
of (K,K ′)-well-behaved timed executions, as well as the restriction needed
on G for representativity.

Definition 10 A TC-MSC graph is K-well-formed if it is K-drift-bounded
and positively constrained. It is scenario-connected if for every transition
(n, n′), there exists a process p s.t. both n and n′ have at least one p-event.

For instance, in Figure 6.2, G2 is scenario-connected while G3 is not.

Proposition 5 [ipl12] Let K ∈ N. If G is K-well-formed and scenario-
connected, then LK,K′(G) is a regular set of representative timed executions
of L(G), with K ′ = (4(|P|+ 1) + 2) · |P| ·M , where M is the max number of
events in a node of G.

With a regular set of representatives, we can obtain the decidability of
emptiness. We can actually lift the scenario-connected restriction still using
this method by building an equivalent TC-MSC graph which is scenario-
connected from any non scenario-connected TC-MSC graph[ipl12].

In the following, we give another technique based on a symbolic rep-
resentation which allows to lift the non-Zeno restriction as well as enable
decidability of whether G is K-well-formed.

6.4 Symbolic Encoding
To avoid clutter, we assume that constraints are only of the form [a, b] and
[a,∞). We also assume that the TC-MSC graph H is full, that is every node
has at least one event on every process. We show in [ictac12] how to generate
an equivalent drift bounded full TC-MSC graph from any drift bounded TC-
MSC graph by adding dummy events. We first describe intuitively the key
ingredients of the proof.

• First, we observe that checking consistency of a path ρ of H, i.e.,
L(T ρ) 6= ∅, is equivalent to checking for the existence of a solution
to a system of inequalities over (real-valued) variables xe depicting the
dates of events e of T ρ.
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• Next, checking whether a dated MSC can be extended by a node by
assigning appropriate dates to events of this node can be done with
information only on the relative difference of dates of the last event
of the dated MSC on each process. This motivates us to associate a
symbolic profile PF (ρ) to each path ρ. A symbolic profile is a system
of inequalities whose solutions correspond to the dates of final events
of dated MSCs generated by T ρ, and vice versa. In particular, PF (ρ)
has a solution iff ρ is consistent.

• We remark that constants appearing in symbolic profiles can be chosen
as integers. Restricting constants to be within [−K,K] does not ex-
clude any consistent K-drift-bounded path of H. We can then represent
with a finite automaton the set of consistent K-drift-bounded paths of
H.

Systems of inequalities and Fourier-Motzkin elimination. We first
fix basic terminologies for systems of difference inequalities. Let X be a
finite nonempty set of real-valued variables. A (difference) inequality is an
inequality of the form x− y ≤ a, where x, y are two different variables in X.

Definition 11 A system of (difference) inequalities ϕ over X is ∧(x,y)∈R x−
y ≤ axy where R ⊆ X × X is an irreflexive relation. We say that ϕ has
integral coefficients whenever axy is a (possibly negative) integer for all
(x, y) ∈ R.

We assume that the system is simplified, that is, for each x, y ∈ X, there
is at most one inequality of the form x−y ≤ a. If x−y ≤ a appears in ϕ, we
say that ϕ contains an edge (x, y), and the weight of this edge is a. We say
that two systems ϕ, ψ of inequalities are equivalent when ϕ has a solution (in
the real domain) iff ψ has a solution (in the real domain).

A key idea is to propagate constraints concerning variables in a subset
Y ( X on variables in X \ Y , and then safely remove variables in Y while
keeping an equivalent system, using the Fourier-Motzkin elimination method.

For F ⊆ X, let Resϕ denote the (unique) system of inequalities over
variables F obtained by performing Fourier-Motzkin elimination of variables
in X \ F following a fixed order. We have that ϕ and Resϕ are equivalent.
If ϕ has integral coefficients, then so does Resϕ.

60



CHAPTER 6. TIME AND DISTRIBUTION6.4. SYMBOLIC ENCODING

Symbolic Profiles. Let T ρ = (E, (<p), µ, λ, δ) be the TC-MSC associated
with some path ρ = n0 . . . n` of H. We denote by xe a R≥0-valued variable,
standing for the date of event e ∈ E, and letXE = {xe | e ∈ E}. We associate
path ρ with a system of linear inequalities Φ(ρ) with integral coefficients as
follows:

Definition 12 The system Φ(ρ) associated with ρ is the smallest system of
inequalities over the set of variables XE such that, for any e, f ∈ E with
el f ,

• if δ(e, f) = [L,U ], then Φ(ρ) contains both xf − xe ≤ U and xe − xf ≤
−L;

• if δ(e, f) = [L,∞), then Φ(ρ) contains xe − xf ≤ −L.

We easily have that ρ is consistent iff Φ(ρ) has a solution. Let ep be the
last event of T ρ on p, for each process p. Let Elast be the set {ep | p ∈ P}.
Using Fourier-Motzkin elimination of variables X ′ = {xe | e /∈ Elast}, we
obtain a system Φ(ρ)|Xlast

over variables Xlast = {xe | e ∈ Elast}, with
integral coefficients, equivalent with Φ(ρ). Once simplified, this system has
at most |P|2 inequalities with integral coefficients. We encode this system as
a symbolic profile.

Definition 13 A symbolic profile σ is a function from P × P to Z ∪ {∞}.
We denote by PF the (infinite) set of all profiles.

Notice that symbolic profiles are syntactically similar to Difference Bounded
Matrices (DBMs) [BY03] over |P| clocks. However, unlike a DBM, a sym-
bolic profile may not correspond to a timed linearization, and the update
function (defined below) is very different when compared to DBMs.

Let ϕ be a system of inequalities with integral coefficients over Xlast =
{xp | p ∈ P}. We define the symbolic profile prof ϕ induced by ϕ as
prof ϕ[p, q] = apq if xp − xq ≤ apq belongs to ϕ, and prof ϕ[p, q] = ∞ oth-
erwise. Intuitively, prof ϕ[p, q] = ∞ means that there is no inequality of
the form xp − xq ≤ apq in ϕ. We abusively use prof ϕ as a system of in-
equalities in the following, and denote xp for xep . For a path ρ, we denote
prof ρ = prof (Φ(ρ))|Xlast

. We say that a symbolic profile σ ∈ PF is satisfi-
able if it has a solution. It is easy to check whether prof ρ is satisfiable, either
by using Fourier-Motzkin elimination till reaching a trivial equation, or by
using Shostak characterization.
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Figure 6.3: The TC-MSC induced by path n1 · n1 of G1 and its profile

Proposition 6 prof ρ is satisfiable iff ρ is consistent.

As an example, consider the TC-MSC T n1·n1 in Figure 6.3. Let eij denote
the ith event on process j and E be the set of events of T n1·n1 . We obtain
Φ(n1 · n1) to be the set of inequalities over X = {xe | e ∈ E}, where
for instance the inequations xe2p − xe1p ≤ 3 and xe1p − xe2p ≤ −1 capture
the timing constraint [1, 3] between e1

p and e2
p. Now eliminating variables

xe1p , xe1q , xe1r , xe1s results in a set of equations on Xlast = {xe2p , xe2q , xe2r , xe2s} =
{xp, xq, xr, xs} as shown. E.g., prof n1 · n1)[p, q] = min(3,−1+3+1) = 3 and
prof n1 · n1)[s, r] =∞. This system of inequalities has many solutions.

Bounded profiles. Notice that the set of symbolic profiles as defined above
is not finite in general (the coefficients range over Z), and so, it cannot be
recorded by a finite state automaton. Instead, we use bounded profiles.

Let L ∈ N. The set PFL is finite. We denote by ΦL(ρ) the system
of inequalities obtained from Φ(ρ) by the following modification: for each
i = 0, . . . , `, for any two different events e, f in the same node n of ρ, if Φ(ρ)
contains xe − xf ≤ ae,f , then replace it by xe − xf ≤ min(ae,f ,L). If Φ(ρ)
does not have an edge (e, f), then add the inequality xe − xf ≤ L.

Proposition 7 Let ρ be a path of a full TC-MSC graph H. Then PFL(ρ) ∈
PFL, and PFL(ρ) is satisfiable iff ρ is consistent and L-drift-bounded.

It is not possible to obtain PFL(ρ) directly from PF (ρ). Instead, it can
be computed inductively along the path ρ [ictac12].

This enables us to check both the emptiness of a K-drift-bounded TC-
MSC graph G, and the K-drift-boundedness of any TC-MSC graph G, by
working with a full TC-MSC graph constructed from G.

Theorem 4 [ictac12] Let K ∈ N and G be a K-drift-bounded TC-MSC
graph. Then checking whether L(G) is empty is decidable in PSPACE.

The drift-boundedness hypothesis of Theorem 4 can be effectively checked
using bounded profiles, giving rise to an effective decidability procedure.
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Theorem 5 [ictac12] Let K ∈ N and G be a TC-MSC graph. Then checking
whether G is K-drift-bounded is decidable in PSPACE.

6.5 Related Work
Other Constructions Compared with [AGMN10], which builds an automa-
ton accepting every timed linearizations of a regular TC-MSC graph, [ictac12]
provides a construction with a much smaller automaton in the worst case (ex-
ponential in |P|2 instead of exponential in |G| for [AGMN10]). Further, be-
ing symbolic, the worst case is not always reached, contrary to constructions
based on zones of timed automata [AGMN10, ipl12, AMN07, ZXLZZ02]. In
[DL07], decidability is obtained for non-global time. That is, time is never
compared between processes.

Time and Timed Petri Nets. In order to go beyond regular timed specifi-
cation, well-structured transition systems is another possibility [FS01], whose
most well-known member is Petri Nets. Two main extensions of Petri Nets
with time have been made. In Time Petri Nets, transitions are labeled with
a time constraint intervals: a transition is firable if it has been enabled for
an amount of time inside the interval. Also, when a transition has been en-
abled for the maximal amount of time according to its associated interval, it
must fire. This is called urgency. Most problems (reachability, termination,
control-state reachability, boundedness) are undecidable for Time Petri Nets.
To obtain decidability, one either restricts to bounded TPNs [BD91], or gives
up urgency [RS09]. In this latter case, the untimed language of a TPN with-
out urgency (also known as its weak-time semantics) is the language of the
associated Petri Net without timing constraints.

On the other hand, Timed Petri Nets (also called Timed-arc Petri Nets)
associate an age to each token [AN01]. The number of ages is in general
unbounded. Each arc can be constrained by a timing interval: only to-
kens with age in the interval can be consumed by this transition. Timed
Petri Nets cannot encode urgency [AN01]. Although the number of token
ages is unbounded, the theory of well-structured transition systems [FS01]
can be applied because of monotonicity (a token is always allowed to stay
forever at a place as there is no urgency). Thus, control-state reachabil-
ity and boundedness are decidable for Timed Petri Nets [AN01]. However,
(marking) reachability is undecidable. These decidability results hold be-
yond regularity, for global time, as in [ipl12, ictac12]. It can be proved that
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decidability is preserved in the presence of urgency on the bounded part of
the net [icatpn16].

Unfolding and Partial Order Techniques. In [ZXLZZ02], a set of finite
paths is analyzed using Partial Order Techniques, allowing to reduce the
complexity by not considering all the paths but only a set of representative
timed executions. In [BHR06] and [CCJ06], complete finite prefix of unfold-
ings are defined for network of timed automata, but it stays in the realm of
regular systems.

6.6 Perspectives
The results of [ictac12] is interesting but holds in a particular setting of TC-
MSC graphs. In order to generalize the result to other class of systems, one
possibility could be to use the encoding of a timed distributed systems in a
bounded treewidth graph [CG14], handling time symbolically as in [ictac12],
using Fourier-Motzkin elimination.

In the last decade, robustness properties started to be considered, i.e,
whether the system can withstand infinitesimal timing errors. This has been
extensively studied for timed automata [Pur00, BMS13], etc. It would be
interesting to extend the study started for TPNs (e.g. [AHJR12]) to dis-
tributed timed systems.
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Perspectives

This thesis presents several applications of the technique of regular set of
representatives. This technique can be used to specify in a finite way infinite
states distributed systems; to avoid some combinatorial blow up for model
checking of distributed systems; and even to improve the complexity of im-
plementing and controlling distributed systems. It can be applied to different
classes of distributed models: network of automata, asynchronous automata,
etc., and it can be extended to message passing systems and to distributed
timed systems.

Using representatives to improve the complexity [Pel93] and to handle
infinite states systems [GMP03, MM01] has been done before, even though
not always totally explicitly [GMP03, MM01]. However, we believe that our
work, spanning over a decade, showed that regular set of representatives
should be considered seriously as a main technique to tame the complexity of
any form of distributed systems. Still, there are other main techniques which
should be considered as well to tame the complexity of distributed systems.
Further, in many contexts, other techniques work simply better.

• First, other Partial Order Reduction techniques exist, in particular to
reduce the number of global states of the system [Pel94, Val92, GW91],
which is more effective at improving the speed of the algorithm.

• More importantly, unfoldings [McM95, ERV02] have shown their ben-
efit to handle extremely distributed systems, for instance in diagnostic
[FBHJ05].

• Recently, a new technique representing the partial orders as bounded
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treewidth graphs [CG14] gives promising results to extend decidability
to more complex distributed systems, with data, stacks, etc.

• An efficient method to find bugs is to assume some bound on the sys-
tem, and look for bugs within this bounded framework, e.g. bounded
phase analysis [BE12]. Such bounds can be controlled by efficient type
systems [GMO06]. Type systems can actually model realistic message
passing protocols [DY12, DY13].

However, there are still many contexts for which its simplicity and effi-
ciency is clear (bounded model checking [WYKG08, KWG09], etc.). Last, it
can be used in combination with other techniques to produce better results,
for instance with POR of states [God94].

Concerning our perspectives on distributed systems, several levels should
be considered. First, several topics, for which a lot of time has been in-
vested, need to be completed (POR of transitions, control of distributed
systems, etc.). The details are in the perspective section of each chapter.
The techniques developed in this thesis should also be better advertised, in
particular to other communities (Software engineering, etc.) in order to find
more applications.

I devoted more than a decade working on algorithms for distributed sys-
tems, and I am slowly shifting away: as a large part of the model checking
community, I recently switched to more quantitative matters: quantitative
models and quantitative properties, in particular stochastic ones. I follow
two tracks at the same time. First, discrete techniques (automata techniques,
etc.) can be used in order to solve some quantitative problems. Concerning
continuous time, it is well known [AD94] that discrete abstractions (regions,
etc.) of the system allows to answer many questions, including quantitative
questions (see also Chapter 6 on page 53). Concerning stochastic systems,
discrete techniques can also be used to analyze many qualitative properties
(e.g. almost all paths conforming to a property (that is the set of paths
not conforming to the property is of measure zero)). We had some result on
that front, solving qualitative questions for 2-player games with imperfect in-
formation [lics09], optimizing the number of queries in one-and-a-half-player
games with imperfect information [fsttcs11], or solving the value-one problem
for MDP with 1 continuous clock [qest14].

In a more original fashion for someone from formal methods, I am also
devoted to develop approximation algorithms for the quantitative analysis of
stochastic systems. It is a novel topic we discussed with the late Philippe
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Figure 7.1: The TRAIL-induced apoptosis pathway.

Darondeau. The idea is to mix techniques from the formal methods with tech-
niques from the AI and the Information Theory communities, which scales
to large systems. One of the applications is computational system biology,
developed inside ANR project STOCH-MC that I am leading. For instance,
take the apoptosis pathway (one way for a cell to die), depicted in Fig.7.1.
On reception of a biochemical message (e.g. Trail drug) binding to the cell,
a set of biochemical reactions eventually create holes in the Mitochondria,
and the cell dies. It involves around fifty biochemical species, and around an
hundred chemical reactions. It is very hard to understand how this system
works as a whole. Low level models of this biological system exist, gener-
ating distribution of time of death and survivability comparable to what is
observed biologically. This model can be used only through time-consuming
simulations with micro steps, making time evolve by few micro seconds only
each step. It is thus very time consuming to analyze a model of this form
using many simulations for extended period of time, e.g. modeling medical
trials. The first challenge is to obtain a stochastic model behaving like the
low level model, usually under the form a Dynamic Bayesian Network, that is
a compact version of a Markov Chain [cmsb15, sub-1]. Analytical algorithms
need to be designed to understand the property of the model.
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The second challenge is to handle such a large system, usually correspond-
ing to Markov chains with more than 1020 states. That’s where approxima-
tions can be very useful: [cmsb11] builds on AI community approximate
inference [MW01] in order to obtain algorithms running in polynomial time
in the number of variables, that is logarithmic in the number of states of
the Markov chain. The algorithm is parameterized by a value having direct
impact on the accuracy and the runtime. Further, [tcbb12] performs an error
analysis to bound errors made at each step of the approximation. If errors
are too large, an approximation with better accuracy (but also slower) should
be performed. We plan to use Information Theory techniques to get more
efficient approximation schemes.

Here, properties are not expressed under the usual PCTL* format, famil-
iar to many people in the model checking community. Indeed, the problem
is not to know a measure on the set of paths satisfying a property (hence
the time it takes for a path to satisfy a property can take any value), but
rather to know whether there exists a time point for which the proportion of
paths satisfying a property (which we can match with biological experiments
at a given time point) is large or small enough. This latter kind of properties
will be called distribution based properties. Surprisingly, these two kinds
of properties are incomparable [BRS02]. Worse, while PCTL* have efficient
model checking procedure - polynomial time for Markov Chain - this is not
the case for distribution based properties. It has been shown [AAOW15] that
checking whether the proportion of paths of a Markov chain which falls in a
state never goes above some threshold at any time point is actually equiva-
lent with Skolem, whose decidability is a long-standing open problem. This
calls for a second type of approximations, in order get around undecidability
[lics12, jacm15]. A challenge we will tackle in the forthcoming years is to
obtain decidable fragments and approximation scheme for Markov Decision
Processes for distribution based properties, which is highly non-trivial.
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