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Institut de Mathématiques de Toulouse (UMR 5219)

Directeur de Thèse :
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Abstract

Key words:
water waves, shallow water, dispersive models, vorticity, artificial boundary conditions

Water waves propagation is a complex physical process. The direct numerical simulation
using Navier-Stokes/Euler equations is a time-consuming and mathematically complicated
solution. A good description of large-scale phenomena can be obtained by using relatively
simple approximate models. However, if we are interested in a precise description of wave
profiles, advanced modelling approaches are required. Once the model is derived, it needs
to be solved numerically, and one faces another kind of challenges related to numerical
simulations.

The first part of the present thesis is devoted to the modelling of surface and internal
ocean waves propagation, including dispersive effects and dynamics of the vorticity. In
the framework of shallow water hypothesis, two models are derived. Both models involve
additional equations for the vorticity evolution. To include the internal waves propagation,
first, we consider a system of two immiscible fluids with constant densities. It represents a
simple model of the ocean where the upper layer corresponds to the (thin) layer of fluid above
the thermocline whereas the lower layer is under the thermocline. The second model includes
a surf zone phenomenon. Shearing and turbulence effects in breaking waves are taken into
account by a vorticity generation. Both models are governed by dispersive systems and
reduce to a classical Green-Naghdi model in the case of vanishing vorticity. Additionally, an
algorithm for the numerical resolution of the second model is proposed, and the validation
by experimental results is performed.

When dispersive/non-hydrostatic effects are taken into account, this usually leads to
more accurate models of wave propagation like Green-Naghdi equations, or the two models
derived in the first part, for example. The counterpart is that such a type of models requires
advanced numerical techniques. In particular, one of the main issues is to define boundary
conditions allowing the simulation of wave propagation in infinite physical space but on
bounded numerical domains. In the second part of the present research, we focus on a
definition of such boundary conditions for the Green-Naghdi equations. Artificial boundary
conditions are first proposed for the linearized system. Then we address a hyperbolic system
recently proposed to approximate the Green-Naghdi equations. A relatively simple structure
of this new hyperbolic system allows for successful applications of Perfect Matched Layer
(PML) techniques in order to deal with artificial numerical boundaries. Numerical tests
are performed to validate the proposed approaches. In result, we have a correct description
of numerical boundaries for non-linear cases. We have shown that the PML equations can
be applied to the nonlinear system. Both approaches are then reformulated to solve the
problem of injecting propagating waves in a computational domain.



Résumé

Mots clés:
propagation de vagues, eaux peu profondes, modèles dispersifs, vorticité, conditions aux
limites artificielles

La propagation des vagues est un phénomène complexe. La simulation directe de ce
phénomène à l’aide des équations d’Euler ou de Navier Stokes à surface libre sont complexes
et très coûteuses numériquement. Si certains phénomènes aux grandes échelles sont bien
décrits par des modèles réduits plus simples à simuler numériquement, des modèles plus
avancés sont nécessaires pour décrire des échelles plus fines.

La première partie de cette thèse est consacrée aux modèles prenant en compte les effets
de vorticité. Deux modèles moyennés sur la profondeur sont dérivés sous l’hypothèse d’eau
peu profonde. Le premier concerne la propagation des ondes de surface et des ondes internes
dans le cadre d’un système de deux fluides non miscibles. Le deuxième est un modèle de
propagation des ondes côtières. Les effets turbulents sont pris en compte à travers l’équation
de vorticité. Un algorithme numérique est construit pour la validation du second modèle et
des comparaisons avec des résultats expérimentaux sont proposées.

Dans la deuxième partie on s’intéresse à l’étude des conditions aux limites. Les problèmes
initialement posés dans l’espace infini demandent des conditions aux limites spéciales pour
le traitement numérique. On s’intéresse ici au cas des équations de Green-Naghdi. Dans un
premier temps, des conditions aux limites transparentes sont dérivées, et des validations
numériques sont proposées. Les tests montrent que des conditions aux limites similaires
peuvent s’appliquer pour des ondes rentrantes. Dans un deuxième temps, on considère
une technique de relaxation pour un système Green-Naghdi mis sous forme d’un système
hyperbolique. En particulier, ce formalisme nous permet d’appliquer la technique de Perfect
Mached Layers (PML) pour traiter les ondes sortantes et rentrantes.
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3



4
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Introduction

The mathematical description of fluid motions needs to be grounded in physical laws.
Essential assumptions about mass, momentum and energy conservation form a basis for
the following derivation of mathematical equations of the medium motion. The description,
understanding, or even prediction of medium behaviour comes then from the mathematical
analysis of the equations, usually partial differential equations (PDE), or less often ordinary
differential equations (ODE).

We are interested in the present research in the derivation of mathematical models of
dispersive wave propagation and particular numerical issues related to such models. The
principal purpose of the first part of the present thesis is to include additional physical
effects into classical dispersive wave models in order to describe correctly wave profiles.
The second part deals with particular numerical issues related to numerical boundaries.
The discretization of dispersive models requires in particular special boundary conditions
allowing the simulation of wave propagation in infinite (or very large) physical space but
on bounded numerical domains. In the second part such conditions are derived for some
particular models.

Before proceeding to central topics, we consider briefly in this introduction classical well-
known general theoretical results and notions which we rely on in the following chapters
of the present research. Further analysis of the recently proposed studies including results
focusing on particular problems is proposed in each of the two parts of the present thesis.

Focus on the Euler equations

We consider first the derivation of the equations of motion ([80], [32]). The moving fluid
is described by a law of the particles motion of the form ~x = ~x(t, ~ξ ), where ~ξ is an initial
position of the particles,

~x

∣∣∣∣
t=0

= ~ξ, and the fluid velocity is defined as v = ∂~x(t, ~ξ)
∂t

.

To complete the fluid motion description, the pressure p and density ρ need to be defined
as well.

There exist two classical approaches to the motion description. The Lagrangian speci-
fication consists in the observation of each fluid particle moving in space and time. All
unknown quantities are related to the Lagrangian coordinate ~ξ (note that ~ξ is constant for
a given parcel during the media motion and when we need to consider the domain as a
whole, ~ξ has the role of being the independent, spatial coordinate): velocity v = v(t, ~ξ ),

8
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pressure p = p(t, ~ξ ), etc. In the Eulerian specification, all quantities are represented as a
function of the spatial position ~x: v = v(t, ~x), p = p(t, ~x), etc. In most cases it is more
convenient to use Eulerian description for the stationary (v = v(~x)) and potential motions
(v = ∇ϕ). We will consider only Eulerian description ~x = (x, y, z), although, in some cases
the Lagrangian one is preferable.

The integral conservation laws are written for the mass, momentum and energy in the
form

d

dt

∫
Ω(t)

ρ dΩ +
∫
∂Ω(t)

ρv · ~n dΣ = 0,

d

dt

∫
Ω(t)

ρv dΩ +
∫
∂Ω(t)

(
ρv(v · ~n)− P · ~n

)
dΣ =

∫
Ω(t)

ρ~g dΩ,

d

dt

∫
Ω(t)

ρ

(
|v|2

2 + ρ~gz
)
dΩ +

∫
∂Ω(t)

(
ρ
|v|2

2 − P + ρ~gz
)

(v · ~n) dΣ = 0,

(1)

where Ω(t) is a fluid volume with smooth boundary ∂Ω, n is the unit outward normal to ∂Ω
and · denotes scalar product. It is supposed that the volume Ω(t) experiences a resulting
force which includes external forces and internal surface forces defined by a tension vector
P · ~n. We consider here the case where external action is limited to the the gravity forces,
and ~g = (0, 0,−g). However, as external forces, we can also consider the Coriolis force, or
forces resulting from the bottom motion of wind action.

The modelling of the term ∇ · P depends on the media properties. Generally, P is
supposed to be a function of the Cauchy’s strain tensor D defined as

D = 1
2

(
∂v
∂~x

+ ∂v
∂~x

>
)
,

where > stands for transposition. However, in the case of incompressible perfect (non-
viscid) fluid, the tension tensor is written simply P = −pI, where I is the identity tensor.

In order to write the system of integral laws (1) as a system of PDEs, we use the Reynolds
transport theorem [107] (originally found in [115]), which for an arbitrary differentiable
function f reads

d

dt

∫
Ω(t)

f dΩ =
∫

Ω(t)

(
Df
Dt + f∇ · v

)
dΩ.

Above we employed the widely used notation in fluid mechanics for the material derivative

Df
Dt = ∂f

∂t
+ v · ∇f. (2)

Finally, it leads to the well-known system of Euler equations for incompressible flows:

∇ · v = 0,

∂ρ

∂t
+ v∇ · ρ = 0,

∂v
∂t

+
(
v · ∇

)
v = − 1

ρ
∇p− g~ez.

(3)
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The system (3) is closed. The energy conservation law follows from mass and momentum
equations. On the contrary, for compressible flows, one needs to close the system with a
state equation.

In the present study, we consider incompressible constant-density flows (ρ = ρ = const),
and the Euler system is written even easier:

∇ · v = 0,

∂v
∂t

+
(
v · ∇

)
v = −1

ρ
∇p− g~ez.

(4)

To study the fluid motions, the system (4) generally needs to be completed with initial
and boundary conditions. The consistent initial data for the velocity are given as

v(t, ~x)
∣∣∣∣
t=0

= v0(~x), such that ∇ · v0(~x) = 0.

Different common types of boundaries might be considered in applications:

1. Rigid walls (impermeability condition):

(v− V ) · ~n
∣∣∣∣
Γ

= 0, where V is a velocity of the moving boundary Γ.

If the rigid boundary is given by the equation F (t, ~x) = 0, then

V = − Ft
|∇F |

(Ft denotes the time derivative).

2. Boundary between two fluids (fluid-fluid interface):
a. Kinematic condition (vI , vII are velocities of the two fluids at the boundary Γ):

If the interface is described by F (t, ~x) = 0, then the conditions are
Ft + vI · ∇F = vII · ~n,
Ft + vII · ∇F = vI · ~n.

b. Dynamic condition (pI , pII are pressures of the two fluids at the interface Γ):
pI = pII ;

3. Free-surface condition:
a. Kinematic condition:

If the free surface is described by z = h(t, ~x), then
DF (t, ~x)

Dt

∣∣∣∣
Γ

= 0, where F (t, ~x) = h(t, ~x)− z;

b. Dynamic condition:
p = 0 (if atmospheric pressure is normalized to zero).

The principal challenge in solving problems with free surfaces and fluid interfaces lies in
the determination of the unknown boundary where the conditions are established.
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In the description of the fluid motion, one of the important quantities is defined as the
curl of the flow velocity v, namely (~x = (x, y, z), indices denote derivatives)

ω = ∇× v = ∇×

 u

v

w

 =

 wy − vz
uz − wx
vx − uy

 , (5)

and referred to as vorticity. Vorticity field describes the rotating motion of the fluid. The
knowledge of the vorticity distribution allows for the velocity reconstruction in some cases.

The Lagrange theorem [54] reads as: In a perfect barotropic fluid moving in potential
field, the volume of fluid that is initially irrotational remains irrotational.

In order to demonstrate this mathematically, we provide the equation for the vorti-
city evolution. Applying ’curl’ operator to the momentum equation and using the mass
conservation law, one finds the vorticity equation

∂ω

∂t
+ (v · ∇)ω − (ω · ∇)v = 0.

The term (ω · ∇)ω relates to a vorticity advection by the velocity field, while the term
(v · ∇)ω represents rotation and stretching of vortex lines. However, there are no terms
which relate to the vorticity generation. Nevertheless, the effect of viscosity implies the
diffusion of vorticity in the fluid, in addition to advection, since the Laplace operator ∆ω
appears in the equation. Moreover, vorticity may be generated if the external force field is
not a potential.

The Euler system of equations is well studied in particular cases. First, the integral
relations such as Bernoulli and Cauchy-Lagrange integrals can be derived as corollaries
of the energy conservation law [80], [54]. Furthermore, effective mathematical tools are
developed for studying potential flows, where ∇ × v = 0 (see, for example, §9, [80]). It
implies that one can define the potential ϕ as v = ∇ϕ. If the flow is two-dimensional,
the stream function ψ is introduced as v = (−∂ψ/∂x, ∂ψ/∂y). Then powerful tools of
the theory of functions of a complex variable can be applied to the holomorphic function
F = ϕ+ iψ (i is the imaginary unit) in order to simplify the analysis of flow characteristics.
Classes of exact solutions are provided for many different physical conditions.

The Euler equations involve different physics beyond them when different external force
fields are considered. The domain of application is vast, from small-scale effects, such as
surface tension, or boundary layer, to large scale ocean wave propagation, for example.

Water Waves

When waves propagate under the gravity action, dispersive effects are observed. In water
waves theory the dispersion is related to the frequency dispersion, which means that the
velocity of wave propagation depends on its wavelength.

When gravity water waves are studied mathematically, the linear theory is used as a
first approximation. Let us consider a potential flow. The equations for the potential
ϕ are obtained from equations of motion and boundary conditions discussed above (the
motion over a flat bottom z = 0 is assumed, and the free surface displacement is defined as
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z = h(t, x, y))
∆ϕ = 0,

∂ϕ

∂z
= 0, z = 0,

∂h

∂t
+ ∂ϕ

∂x

∂h

∂x
+ ∂ϕ

∂y

∂h

∂y
= ∂ϕ

∂z
, z = h(t, x, y),

∂ϕ

∂t
+ 1

2 |∇ϕ|
2 + gh = 0, z = h(t, x, y).

(6)

The momentum equation is replaced by the Cauchy-Lagrange integral which is used for the
pressure definition. Therefore the dynamic boundary condition is written as above. This
mathematical system is referred to as Cauchy-Poisson problem. For more details on this
and other models and methods, we refer to [54].

The fundamental issue of water wave problem is that the free surface is unknown, and
the boundary condition is an additional equation to solve.

The dispersion relation relating the frequency and the wavenumber is defined by the
linear analysis (which is also referred to as Stokes linear theory [128]). The system is
linearized around the state ϕ = 0, h = const. The solution is constructed in the form of
wave packets:

ϕ(t, x, y) = Φ(z)exp{i(kx+ ly − ωt)},
h(t, x, y) = H(z)exp{i(kx+ ly − ωt)}.

The functional dependence between frequency ω and magnitude of the wave number m =√
k2 + l2 is defined as ([128], [79, §228]):

ω2(k) = gm tanh(mh) (7)

where tanh denotes the hyperbolic tangent.
Even though the Euler equations are studied well, they remain very costly from a

numerical point of view (whether for small and large scale oceanic simulation), since the
equations need to be resolved in a fully 3D statement. Therefore, more simple approximate
models are required. The dispersion relation (7) is used as a criterion to evaluate the
dispersion property of an approximate model and determine its limits of validity.

On a shallow-water approximation

In the present thesis, we consider approximate depth-average models derived under the
hypothesis of long water waves (or shallow water hypothesis). It is assumed that the
characteristic wavelength L is much larger than the characteristic water depth H. The
parameter µ = H/L is called dispersion parameter and plays an essential role in the ap-
proximate model derivations. The hypothesis µ � 1 corresponds to small water depth or
very long waves. The consideration of different orders of the system expansion with respect
to µ allows for a simplification of the equations, while keeping still some significant physical
effects in this specific regime. The depth-average procedure (mathematically, corresponds
to the integration from the bottom to the free surface with respect to z, see e.g. [81]) allows
to reduce the dimension of the problem. Thus, approximate systems couple the equations
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for the average velocity and free surface elevation. In this context, approximate models in
a two-dimensional space (x, z) are commonly referred to as a one-dimensional (1D) models,
because z is not included explicitly. Similarly, two-dimensional depth-average (2D) models
correspond to the physical space (x, y, z).

Let us first consider classical examples of such models. The velocity is supposed to
be uniform over the depth for the models considered below. We limit ourseves to the 1D
models only, the generalization to the 2D case is following the same lines.

Many asymptotic models were proposed in the last decades for the coastal wave propa-
gation under hypothesis made on µ. The first approximation of lower order with respect
to µ is the well-known nonlinear shallow water (Saint-Venant) equations (h(t, x) is the
free-surface elevation as before, u(t, x) – depth-average velocity)

∂h

∂t
+ ∂hu

∂x
= 0,

∂hu

∂t
+ ∂

∂x

(
hu2 + gh2

2

)
= 0.

(8)

De Saint Venant first proposed this model in 1871 [39], and it was established later that
the model (8) could be derived from the depth-average Euler equations as a model of order
O(µ2). This system is hyperbolic and prescribes discontinuous solutions for some initial
datum. Moreover, the dispersion relation is linear and no frequency dispersion is observed
for the solutions, and pressure distribution is supposed to be hydrostatic. However, in the
context of coastal ocean flows this model (fully justified in [81]) prescribes non-dispersive
wave behaviour relatively well [25].

As we see, significant simplifications come from the assumptions of shallow water (as a
consequence of hydrostatic pressure) and uniform velocity. This leads us to a next class of
approximate equations, commonly referred to as Boussinesq type models. The pressure is
now supposed non-hydrostatic, though, the weakly dispersive and weakly nonlinear effects
are included. The terms of order O(µ3) are neglected, and an additional hypothesis of small
wave amplitude a is made. The new small nonlinearity parameter ε = a/H is introduced,
which is supposed to be small ε = O(µ). A review of the different type of such models can
be found in [93], [82].

The natural generalization of weakly nonlinear Boussinesq models is to derive a fully-
nonlinear model. The one derived by Serre in [124] for the 1D case, or the 2D model
presented in [57], is now referred to as the Green-Naghdi model or the fully nonlinear
Boussinesq model. The terms of third order are neglected again, but no hypothesis on the
wave amplitude is made, see e.g. [81] for details. The system couples again the equations
for free surface and depth-averaged velocity

∂h

∂t
+ ∂hu

∂x
= 0,

∂hu

∂t
+ ∂

∂x

(
hu2 + gh2

2 + h2 D2h

Dt2

)
= 0,

(9)

where D/Dt denotes again the material derivative (2). A mathematical justification of
the Green-Naghdi model is given in [97] and in [4], [81]. The dispersive properties of
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the system (9) fit well to the ones obtained by Stokes which we discussed above. Being
rigorously justified and having good dispersive properties, the Green-Naghdi model became
very attractive in applications to shallow-water flows [21], [86], [43], [84]. Moreover, Green-
Naghdi equations admit a solution of a particular form referred to as solitary wave. It
is a travelling wave propagating in time without deformation (observed firstly by Russell
[121]). The existence of such a type of wave results from the balance between nonlinear
and dispersive effects.

Additionally, the effects of topography can be included in all classes of approximate
models discussed above.

Dispersive properties and turbulent motions

Generally speaking, during the derivation of the simplest model (8) the dispersive/non-
hydrostatic effects were neglected. The two classes of approximate models discussed next
are successful attempts to include essential physical effects such as dispersion into the
model; while keeping, however, a relatively simple equations structure compared to the full
Euler system.

The next step is to include a non-uniform velocity distribution assumption into the
modelling. It should be noticed that the vorticity ω defined previously by (5) is neglected
in all the models described above due to the assumptions made when the models are
derived. However, the vorticity effects are directly related to turbulent flows. Therefore
for the modelling of turbulent motions, we must get rid of irrotational flow hypothesis.
The Part I is devoted to the derivation of models taking into account vorticity dynamics.
The first model is designed to apply to the surf zone wave propagation, where the wave
breaking takes place, and flows are clearly turbulent. The second model considers internal
waves propagation, where in order to include the interactions between surface waves and
currents we allow for a general (or constant) vorticity.

If the velocity is assumed to be non-uniform over the depth, then an additional small
term is included in the velocity decomposition, and a closure is required. This closure can
be found from additional relations such as the energy conservation law or the vorticity
equation as it is proposed in [117], [29].

More specifically, the non-uniform velocity assumption can be interpreted as shearing
effects. These effects can be added directly to the non-dispersive system (8) as it was done
in [137], and generalized with empirical dissipation in [117], [118]. The systems considered
in these studies are hyperbolic, and vorticity generation is related to the shocks (discon-
tinuities) formation. The vorticity equation is derived from the energy conservation law.
These models provide a good description of hydraulic jumps and roll waves.

A non-uniform velocity profile is added to the dispersive models of Green-Naghdi type
in [29], where several fully nonlinear models in the presence of vorticity are derived for the
cases of constant vorticity in 1D, general vorticity in 1D and 2D; the terms up to O(µ4)
are kept. This work deals with a conservative framework: to close the system the vorticity
equation is used, which as we saw does not include terms related to the vorticity creation.
However, the dispersive properties are better than the one of the Green-Naghdi model
since higher order terms are included. Another distinctive feature of the proposed models
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Figure 1: Wave propagation on a coastal zone.

is a coupling between surface waves and underlying currents retained in the framework of
depth-averaged equations.

In [119] a dispersive model including the shearing effect is derived. Unlike the derivation
in [29], this model allows for turbulence generation in the solitary wave propagation due
to an additional distinction between shearing and turbulence based on the scales (these
terms are of the same order with respect to µ in [29]). Therefore, additional terms are
neglected. In Chapter 1 of the present thesis, we follow this idea in order to derive an
approximate depth-average model for the description of surf zone propagation (Figure 1),
where the vorticity and dispersive effects play an essential role. The wave breaking is a
complex physical phenomenon which is hard to incorporate in the context of depth-average
models. The main issue is to take into account dissipation effects and especially to find a
way to include the vorticity generation during breaking in the context of dispersive models.
For this purpose, following the idea found in [117], [118], a new variable enstrophy related
to the second moment of the velocity fluctuation with respect to the vertical coordinate is
added. Turbulent viscosity hypothesis governs the generation of the enstrophy. The final
system couples the balance equations for mass and momentum with a transport equation
for the enstrophy. Dissipation is empirically added, which leads to the introduction of
constant empirical parameters. A numerical algorithm is constructed for this new model,
and comparisons are performed with experimental data for solitary wave propagation over
different mild slope topographies. Empirical laws for the parameters included in the model
are proposed.

In Chapter 2, the one-layer models derived in [29] are generalized to the case of two-
layer fluids. This study aims at taking into account the internal waves propagation in the
presence of vorticity. We consider a two-layer flow of inviscid incompressible and immiscible
fluids of constant densities. It corresponds to a simple model of wave propagation in the
ocean, where the upper layer corresponds to the (thin) layer of fluid above the thermocline
whereas the lower layer is under the thermocline (see Figure 2). The derivation is performed
in the case of constant and general vorticity in 1D. We reformulate the proposed model for
constant vorticity as the Euler-Lagrange equations, following the considerations in [14] for
the two-layer irrotational flow.

The Green-Naghdi equations are central in the present thesis. Both models derived
in the first part reduce to the classical Green-Naghdi equations in the case of vanishing
vorticities (or enstrophy). The models derived in the first part include some additional
physical effects; however, they have a relatively close structure with the Green-Naghdi
model (9). The second part is entirely devoted to particular numerical issues appearing
when the system (9) is solved numerically.
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Figure 2: Modelling assumption and profile of the density distribution ρ(z).

On particular boundary conditions

Part II deals with numerical issues which appear when dispersive models are integrated
numerically. Common boundary conditions were discussed above. However, generally in
the applications, we are interested in imposing a particular type of numerical conditions
which are referred to as transparent (or artificial) boundary conditions (see, e.g. [46]), which
are generally much harder to handle numerically.

Mathematical models for dispersive wave propagation are set on infinite domains. For
real ocean waves, one can imagine a very large propagation domain as well. However, when
the equations are solved numerically, one has to confine the numerical domain and deal
with artificial numerical boundaries (see, Figure 3). The natural question of interest is
how to impose the conditions for incoming and/or outgoing waves. This numerical issue
also appears when different models are applied to describe wave propagation, and artificial
boundary conditions are required in order to couple different models.

Mathematically, this numerical problem is formulated as follows: given an initial data
compactly supported, one searches for suitable boundary conditions so that the solution
computed with these boundary conditions approximates well on the bounded domain the
solution set on the whole space. This issue is independent of the numerical algorithm
used for the discretization, though the number of conditions may vary from one method to
another. Dispersive models like the system (9), or other models discussed above, represent
a significant challenge for this issue since they include high order derivatives.

Several techniques are used for now to deal with boundary conditions for simulations
of systems set initially on unbounded domains. In Part II we consider two approaches
in application to Green-Naghdi-type systems. First, in Chapter 3, transparent boundary
conditions are constructed for the system (9) linearized around the steady state h = h0,
u = 0. We derive first continuous boundary conditions using the Laplace transform. These
conditions are non-local in time and turn to be difficult to implement numerically. Then,
following the approach proposed for example in [17] for the Airy equation, we start directly
from the discretization of the equations set on the whole space and mimic the approach in
the continuous case: the Laplace transform is replaced by its discrete counterpart, the Z-
transform. The technique is validated numerically for outgoing waves with different initial
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Figure 3: Numerical domain restriction for problem initially set on a infinite domain.

data. In addition, we show how to apply the proposed approach to a wave generation
problem and investigate the accuracy of the proposed method with numerical tests. The
derived conditions provide a good approximation of the solution on the original unbounded
domain and permit to generate incoming waves. Unfortunately, these conditions may not
be applied directly to the nonlinear Green-Naghdi (9), and a more complex strategy is
needed. For example, one can imagine to adapt our strategy to linear equations with
variable coefficients and then adopt a fixed point strategy.

In order to provide suitable conditions for the nonlinear case, in Chapter 4 we focus
on a new hyperbolic formulation of the system (9) recently proposed in [49]. This new
model represents a significant improvement in the simulations of dispersive waves since it is
hyperbolic. It may also lead to simplifications of the construction of transparent boundary
conditions, and if so this new system might be particularly promising for further applications
in ocean wave modelling. Unfortunately, the proposed system does not admit a Riemann
invariants form, and another approach needs to be proposed. We apply a technique which is
referred to as Perfectly Matched Layers (PML). In this case, no specific conditions are given
on the artificial boundary, but the equations are modified inside small layers around the
computational domain in such a way to ensure the wave amplitude decay and reflections are
as small as possible inside the layers. These equations include generally several parameters.
In Chapter 4, we are interested in the derivation of PML equations for this new Green-
Naghdi system. The derivation of the PML equations and numerical validations for the
linear case are provided first. We propose a preliminary stability result through an energy
estimation of the solution of the resulting linear PML equations. Generalization in the
weakly nonlinear case are partially justified, and then the proposed approach is successfully
confirmed numerically. For the strongly nonlinear solitary waves, only small reflections are
observed. The optimization of the parameters values, however, is left for the future work.

Outline

Finally, we emphasize briefly the main issues addressed in the present research:

• Part I is answering the question how to include the vorticity effects in the derivation
of dispersive depth-average models. For the breaking waves, mechanisms of vorticity
generation and energy dissipation are included in order to describe correctly the wave
profiles. Then, internal gravity waves are modelled in the presence of vorticity effects.
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• Part II deals with boundary conditions for Green-Naghdi type models in order to
provide a proper procedure for the simulations of incoming and outgoing waves.

In the Annex Chapter A we examine the existence of a solitary wave solution for the
hyperbolic extended formulation of the Green-Naghdi system derived in [49].

In Conclusions and Outlook the obtained results are summarised and perspectives for
the future research are proposed.



Part I

Vorticity



Introduction : Vorticity effects

In the present part, we aim to derive dispersive shallow water models where vorticity
effects are included. This leads to a natural generalization of the Green-Naghdi equations,
applied in order to extend its validity to the regions where rip currents or wave breaking
appear.

The classical hyperbolic nonlinear shallow water model [39], mathematically justified in
[106, 4], is widely used for ocean wave propagation. However, in coastal regions, dispersive
effects play a significant role and require an advanced modelling approach. The Green-
Naghdi model [57, 124] is generally used for this purpose. Certainly, there are other models
which consider dispersion effects, and we refer to [15] for a review. However, the Green-
Naghdi model has relatively good dispersive properties with respect to the linear Stokes
theory. Contrary to well-known one directional dispersive models as Korteweg–de Vries
(KdV), or Benjamin-Bona-Machony equations, the Green-Naghdi model predicts bidirec-
tional wave motion, which is physically more relevant. Moreover, unlike Boussinesq equa-
tions [23], the Green-Naghdi equations admit a closed form for solitary wave solutions.
In [4], this model is reformulated using the Zakharov approach [150] with the non-local
Dirichlet-Neumann operator. Fundamental properties of this operator allow for a rigorous
justification of the model. For all of these reasons, the Green-Naghdi model is very popular
for the numerical simulation of coastal wave propagation; for different numerical methods
we refer for example to [35, 86, 22, 45, 83, 43].

It is known that the Green-Naghdi equations represent a depth-average second order
approximation of the classical Euler equation under a shallow water hypothesis. The ex-
pansion is performed with respect to the dispersive parameter µ � 1, defined as the ratio
between the characteristic water depth H and the characteristic wavelength L. There-
fore the associated dispersive relation slightly differs from the classical one and might be
corrected in order to improve the dispersive properties. This question received a lot of
attention recently. A fully dispersive model for small wave steepness is developed in [82],
using correction terms in the expansion of the Dirichlet-Neumann operator. This model
has the same dispersion relation than the one of the full water wave problem derived by
Stokes. However, this model is valid in shallow water regimes with less precision than the
Green-Naghdi equations. Another approach is considered in [22] where a small corrective
term with some constant parameter is added artificially. This term is consistent with the
approximation order of the model. The optimization of the constant parameter is proposed
in order to have a dispersion relation close to the Stokes theory. Unfortunately, the inversion
of the non-local in time operator is computationally time-consuming. This drawback, which
is typically encountered in numerical methods used to integrate the Green-Naghdi system
(or more generally, dispersive systems), was overcome in [83], where a time independent
operator consistent with the approximation order of the model was introduced.

Another weakness of the Green-Naghdi model is an assumption of irrotational flow made
during the model derivation. As a consequence, the vorticity effects are not included, and
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the model is not valid any more in regions of vortical currents, for example, in the shoaling
zone where wave breaking takes place or in cases of underlying current. The relation
between vortex flows and surface wave propagation needs to be understood in order to
extend the validity of the models.

During the past decade, there has been an increase of interest for the derivation of
models with vorticity effects. In all these studies, it is supposed that the velocity profile
is not uniform over the depth and therefore the depth-average procedure becomes more
complicated. The Green-Naghdi equations are still able to describe the vertical vorticity
conservation up to the order of approximation (see [31]). However, when a general vorticity
is included, an additional term appears in the momentum equation, and a closure is needed
[see 29, for details]. The vorticity equation is chosen as a closure in [29]. It follows from this
equation that, if no empirical terms are added, the vorticity is conserved and transported. A
more restrictive strategy is applied in [154], where a polynomial velocity profile is assumed,
and a similar approach coupled with a shallow water hypothesis can be found in [109].
Despite a simplification assumption on the velocity profile, in this case, the 2D velocity
field is truly 2D, and equations need to be solved in the vertical direction. Rather, the
essential feature of the model derived in [29] is that a non-uniform velocity profile with
general vorticity is taken into account in the framework of a depth-averaged model, and
therefore a physical 2D (or 3D) flow is resolved in the 1D (or 2D) statement. It is shown
numerically in [84] that in the context of this model, new effects in wave-current interactions
are possible.

A similar dispersive model derived in [119] generalizes the idea applied in [137], [117],
[118] for the hyperbolic system with shearing effects. In order to allow for vorticity gener-
ation, a scaling analysis is performed with an additional distinction between shearing and
turbulence, which is reminiscing the Reynolds decomposition for the velocity field. The
new quantity related to the second moment of the velocity fluctuation is introduced and
called enstrophy by analogy with thermodynamics. This model predicts the appearance of
turbulence through the variation of the enstrophy.

In Chapter 1, a model capable to take wave breaking into account is derived. Following
the idea found in [119] we use a filtering method as in the classical large-eddy simulation
approach (instead of the Reynolds decomposition used in [119]). The energy transfer rate
from the filtered scales towards the residual scales is assumed almost equal to the dissipa-
tion, and the empirical closure for the dissipation is proposed using a turbulent viscosity
hypothesis. Then we apply a standard depth-average procedure. This procedure results
in a nonlinear model having the same dispersive properties as the Green-Naghdi equa-
tion, capable to describe wave shoaling and surf zone propagation in the same time. The
model features three empirical parameters, and closure relations are proposed for all of
them. These dependencies give a predictive character to the model which is suitable for
further developments. Numerical algorithms and validation by experimental results of the
literature are proposed.

In Chapter 2, a generalization of the approach found in [29] is considered. In order to
include the internal wave propagation, we consider a two-layer fluid with constant densities
of each layer. This system represents a preliminary approximation of real density distribu-
tion in the ocean. Internal waves are a subsurface analogue of the familiar surface waves
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that break on beaches. The breaking of internal waves, because of their strong vertical
and horizontal currents, and the turbulent mixing, has a great impact on a panoply of
oceanic processes (for experimental results we refer to [99]). It is then important to allow
for vorticity effects when internal wave propagation models are derived.

There is a considerable variety of internal wave propagation models in the literature, as
far as the possible scaling regimes in nature are numerous. We refer only to some studies
performed under the shallow water (long wave) hypothesis. A weakly-nonlinear two-layer
model is derived in [33], and then generalized to the fully nonlinear case in [34]. These
models are compared with experimental observations and direct numerical simulations with
the full Euler system in [27]. In [20], the two-layer full Euler system model is reduced to a
system which involves a non-local operator under a rigid lid and flat bottom assumptions;
the models mentioned above are recovered by an asymptotic expansion of this operator.
The non-hydrostatic effects are also added in [42] in the regime of a medium amplitude.
A Lagrangian approach is applied to the derivation of a two-layer generalization of the
classical Green-Naghdi model in [14]. All models are derived under the assumption of
irrotationality of the flow.

In the present work, we allow for the presence of constant vorticity and derive a 1D
fully nonlinear model of the same approximation order O(µ3) as the classical Green-Naghdi
equations. The model with a lower order than the Green-Naghdi model is derived in the
case of a general vorticity. The terms related to vorticity are involved in the momentum
equations, and only one vorticity equation is added in each layer in order to close the
system. On the contrary, for the model derived in [29], the vorticity effects contribute
to the averaged momentum by a cascade of equations following from the same vorticity
equation since higher order terms are included.



Chapter 1

Modelling shoaling and breaking
waves on a mild sloping beach

Mathematical modelling of coastal wave propagation is a quite challenging issue since it
is difficult to describe in the same model the dispersive effects in the shoaling zone and
the energy dissipation of breakers in the surf zone. As it is impractical to solve the full
Navier-Stokes system over any significant domain, approximate models must be used. Many
asymptotic models were proposed in the last decades for the coastal wave propagation.
Some of them are dispersive, although there are some attempts to use hyperbolic models.
Although some the existing models provide a very good agreement for non breaking solitary
waves, models that describe correctly the free surface of breaking waves are rare.

The first attempt to describe a surf zone wave propagation was made in the context of
the nonlinear shallow-water equations, also called the Saint-Venant equations [39]. In [98]
Meyter & Taylor reviewed analytic solutions of the shallow-water equations over a beach.
Stocker presented perhaps the first numerical solution of the shallow-water equations for a
sloping beach using the method of characteristics (see [127]). His method produces quite
accurate results for the simple cases. Freeman & Le Méhauté [51] and later Iwasaki &
Togashi [66] improved this method. However when the characteristic lines cross at the
breaking point the wave evolution has to be treated in a different manner. Further for
non-uniformly sloping beaches, this method is cumbersome.

In order to be able to calculate the wave breaking Hibbert & Peregrine proposed in
[62] a groundbreaking method based on the numerical solution of the nonlinear shallow-
water equations in their conservative form. This method gives physically realistic results.
However it is not very robust in the run-up phase [134]. Furthermore, it is important to
take into account a large energy dissipation following the wave breaking. Consequently
in subsequent version of this algorithm [108, 76, 75, 74] artificial dissipative terms such
as viscosity and friction are added for an accurate wave amplitude description. Titov &
Synolakis [141] proposed a numerical method without any ad-hoc parameters for wave

The results of this chapter are obtained in collaboration with Gaël Richard (LAMA UMR5127 CNRS,
Université de Savoie Mont-Blanc)
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shoaling which describes very well the run-up of breaking and non-breaking waves but
unfortunately, it does not model correctly the free surface.

Indeed the non-linear shallow-water equations give a rather good description of breaking
waves representing them as shocks, and the run-up simulations generally give accurate
results. However due to the absence of dispersive effects the wave profile is not described
particularly in the shoaling zone. Moreover this model predicts that all waves break, which
is obviously incorrect. Thereby, a more relevant modelling of wave shoaling before breaking
is based on various Boussinesq type models [25]. Non-breaking numerical solutions for the
Boussinesq equations are reviewed by Liu [91]. Since the 1990’s considerable efforts were
made to improve the dispersive properties of the Boussinesq model [94, 104, 147].

Most of Boussinesq models are derived in the assumption of a weak nonlinearity (the
wave amplitude is much smaller than the characteristic water depth). The natural idea
is to use a fully nonlinear model, as the one derived by Serre [124] and Su & Gardner
[130] in the one-dimensional (1D) case, or the two-dimensional (2D) fully nonlinear model
presented by Green & Naghdi in [57]. This model can be derived from the Euler equations
as an asymptotic model in the shallow water regime without any hypothesis on the wave
amplitude [see e.g. 81]. This fully-nonlinear model has better dispersive properties than
the Boussinesq equations, and the water wave profile is better described. Except for being
formulated in terms of the velocity vector at an arbitrary level, the equations of Wei [147]
mentioned above are basically equivalent to the 2D Green-Naghdi equations. In fact the
Green-Naghdi equations are often known in the literature as the fully-nonlinear Boussinesq
type model.

However the weakly nonlinear or fully nonlinear Boussinesq type equations do not in-
clude dissipation due to the wave breaking, and thus become invalid in the surf zone. To
extend the validity of those equations, Heitner & Housner [61] introduced an artificial vis-
cosity term into the momentum balance equation. This approach was followed by many
researchers. Zelt [151] used an eddy viscosity formulation together with a Lagrangian
Boussinesq model. The inclusion of this term in the momentum equation helps to control
the energy dissipation, and it must be calibrated with experiments. Similar techniques
were used in [95] and [146]. Another close idea is to use the so-called roller models which
include dissipation through an extra convective term in the momentum equation [see for
example 131, 133, 37]. In this case additional terms are included not only in the momentum
equation, but also in the mass balance equation and the thickness of the roller region has
to be estimated. For the recent advances on the roller model development we refer to [24],
[145], [40].

In the so-called switching or hybrid approach the dispersive terms are suppressed in the
breaking regions. Contrary to the nonlinear shallow-water system the Boussinesq equations
do not admit discontinuities because they are dispersive. The removal of the dispersive
terms reduces the system to the nonlinear shallow water equations. This relatively simple
idea was developed in many studies [for example 142, 125, 22, 140, 43, 44, 69, 50].

Generally speaking, two large groups of methods can be distinguished. The first one
includes additional terms such as viscous terms or rotational effects and the second one uses
hybrid methods. In both approaches some parameters need to be calibrated. Moreover
some criteria must be defined to initiate or terminate the breaking process. Generally
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those criteria are based on different empirical relations. For example the breaking process
is activated if the wave local energy dissipation forms a peak, or if the wave slope reaches
a critical value.

Detailed analysis of the different approaches cited above and an estimation of the influ-
ence of the numerical dissipation can be found in [70]. The authors highlight that despite
the absence of an explanation for the physical meaning of the coefficients in the eddy vis-
cous terms, this approach shows little sensitivity to the grid, while hybrid methods are not
very robust and lead to numerical instabilities that depend on the mesh size.

The aim of the present study is to derive a dispersive model which resolves the large-scale
turbulence. In most models the turbulence is not resolved but modelled with a turbulent
viscosity hypothesis. In some models, this turbulent viscosity is calculated with a turbulent
kinetic energy for which a transport equation with source terms is solved ([105, 152]). It is
often assumed a local balance between production and dissipation, especially in the case of
a mixing-length approach ([105]), which is not assured in a breaking wave.

A common assumption for the Boussinesq type model, and for the Green-Naghdi model
as well, is that the horizontal velocity component is uniform or almost uniform over the
whole water depth. For the modelling of the flow with turbulent structures this hypothesis
is not correct, since considerable velocity fluctuations are observed.

An alternative approach is to get rid entirely of any velocity profile assumptions by
adding a new variable to the equations. The addition of an extra variable implies to add
also an equation to the model. This new equation is given by the averaged kinetic energy
equation. Svendsen & Madsen ([132]) use the energy as the extra variable and solved the
energy equation. However because they divided vertically the flow into a turbulent region
and a non-turbulent region both having a variable thickness, an assumption on velocity
profile is still needed. In this case, this profile was a third-order polynomial. Moreover
the pressure was taken hydrostatic, and therefore no dispersive effects are included. A
2D hyperbolic model of shear flows without any velocity profile assumption was derived in
[137] from the Euler equations also with the assumption of a hydrostatic pressure. When
augmented with dissipation ([117], [118]) it gives an excellent description of roll waves and
classical hydraulic jumps. The addition of a non-hydrostatic correction to the pressure and
thus of dispersive effects was proposed in the conservative case in [29] and [119]. Gavrilyuk
et al. (2016) first included both dissipative and dispersive effects in the framework of this
approach with a two-layer model, the upper turbulent layer including shearing effects and
the irrotational lower layer being described by the Green-Naghdi model. In the present
work this method is extended to include dissipation and dispersion in a one-layer model.

The chapter is organised as follows, in section 1.1 the filtered equations are presented.
Then the depth-average model is derived in section 1.2 and the empirical laws for the eddy
viscosity and the turbulent dissipation are discussed in section 1.3. The last two sections
deal with numerical tests. The numerical implementation is presented in section 1.4. In
section 1.5 the model is validated by comparison with experimental results.
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1.1 Filtered conservation equations

We study the propagation of coastal waves from the shoaling zone to the shoreline. The
flow can be highly turbulent, especially in the breaking zone and thereafter in the surf zone.
An suitable model of turbulence is thus needed to capture important physical features of
the breaking waves.

The classical approach to turbulence is based on the Reynolds decomposition. The
velocity field is written as the sum of the mean velocity and of the turbulent fluctuation.
The mean kinetic energy of the flow can be decomposed into the kinetic energy of the mean
flow and the turbulent kinetic energy. Turbulent processes usually remove energy from the
mean flow and transfer it to the fluctuating velocity field. This transfer is called production
since most of the time it refers to a loss of the mean kinetic energy and a production of
turbulent kinetic energy.

The turbulent motions range in size from large scales, which are of the order of the
characteristic lengthscales of the flow, to small scales. According to the energy cascade
hypothesis ([120]) and to the Kolmogorov hypothesis ([77]), the production transfers en-
ergy first to the large-scale motions. This energy is then transferred to smaller and smaller
scales until the Kolmogorov scales where the energy is dissipated by viscous processes. The
large scales contain most of the energy and are therefore called the energy-containing range.
The dissipating small scales are called the dissipation range. Between these two ranges,
at sufficiently high Reynolds numbers lies the inertial subrange where the lengthscales are
high enough so that the viscous effects are negligible but small enough compared to the
lengthscales of the flow such that there is almost no production. In the inertial subrange,
the energy is transferred by inviscid processes toward the smaller scales. Another fea-
ture of turbulent motions according to Kolmogorov hypothesis is that the large eddies are
anisotropic whereas the small eddies are isotropic.

We use an approach similar to the large-eddy simulation (LES) method. The velocity
field v is filtered to decompose the velocity into a filtered velocity field v and a residual
velocity field vr

v = v + vr.

The difference between the Reynolds decomposition and this filtering operation is that the
former decomposes the velocity field into a non-turbulent (mean) field and a turbulent field
whereas in the latter the filtered velocity field includes the large-scale turbulence and the
residual velocity field includes the small-scale turbulence. Ideally, the filtering operation
is a low-pass filter that allows to resolve turbulent motions of a scale greater than some
specified length chosen in the inertial subrange. It follows that the anisotropic energy-
containing range is in the filtered field and that the isotropic dissipation range is in the
residual field. Another difference with the Reynolds decomposition is that, in general, the
filtered residual velocity is not equal to zero i.e. vr 6= 0, although if the filter is a projector
such as the sharp spectral filter, v = v and vr = 0 (for more details on all this approach,
see [111]).

The filtering operation is applied to the Navier-Stokes equations of an incompressible
fluid of density ρ and kinematic viscosity ν. The filter is supposed to be homogeneous. The
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filtered continuity equation becomes simply

div v = 0.

The filtered momentum equation is

∂v

∂t
+ div (v ⊗ v) = g − 1

ρ
grad p+ ν∆v

where p is the filtered pressure and ⊗ the tensorial product. The residual stress tensor is
defined by

σr = −ρ (v ⊗ v − v ⊗ v) .

The residual kinetic energy is defined from the trace of this tensor as

kr = −trσr
2ρ . (1.1)

The residual stress tensor can be decomposed into an isotropic part and a deviatoric
anisotropic part Ar as

σr = −2
3ρk

rI + Ar.

The tensor I is the identity tensor. The residual stress tensor is then modelled by a
turbulent-viscosity hypothesis. This usual hypothesis implies that there is no backscatter
in the model i.e. the energy is transferred only from the large scales toward the small scales.
Denoting by D the filtered strain rate tensor defined by

D = 1
2

[
gradv + (gradv)>

]
, (1.2)

the anisotropic residual stress tensor is written

Ar = 2ρνTD , (1.3)

where νT is a turbulent viscosity. The isotropic part of the residual stress tensor is then
absorbed into a modified pressure which is denoted simply by p to simplify the notations
and which is

p = p+ 2
3ρk

r.

The filtered momentum equation is finally written

∂v

∂t
+ div (v ⊗ v) = g − 1

ρ
gradp+ div

(
2 νTD

)
+ ν∆v.

The filtered specific kinetic energy is

ek = 1
2v · v.

It follows from the definition (1.1) that

ek = ef + kr,
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where ef is the kinetic energy of the filtered velocity field

ef = 1
2v · v.

Writing g = −grad ep, the latter satisfies the equation

∂ef
∂t

+ div
(
efv + pv

ρ
− v · Ar

ρ
− 2νv · D + epv

)
= −εf − P r

where
εf = 2νD : D

and
P r = 2νTD : D .

The dot and the colon mean the dot product and the double dot product respectively. For
a very high Reynolds number, the terms involving the molecular viscosity can be neglected.
This is the case of the term εf which represents the viscous dissipation from the filtered
velocity field. Most of the viscous dissipation processes take place in the dissipation range
and thus in the residual velocity field. The dominant dissipative term in the equation for
ef is Pr which represents an energy transfer from the filtered motions towards the residual
motions i.e. from the large scales towards the small scales. Since most of the energy is
contained in the energy-containing range, the mean kinetic energy 〈e〉 is almost equal to
the mean kinetic energy of the filtered velocity field 〈ef 〉 (the brackets denote the Reynolds
averaging). The dissipation due to the mean flow being negligible at high Reynolds numbers,
the dissipation of the mean kinetic energy is almost entirely due to the dissipation of the
turbulent kinetic energy, usually denoted by ε and called simply dissipation. Consequently,
the mean dissipation of 〈ef 〉, denoted by 〈Pr〉 is nearly equal to the dissipation. This also
implies the equality of the dissipation of the mean residual kinetic energy and its rate of
production ([89], see also [111], [63])

〈P r〉 ' ε. (1.4)

The classical closure of this approach is due to [126] who modelled the eddy viscosity by
analogy with the mixing-length hypothesis. We do not follow this path because the filtered
equations will be averaged over the fluid depth. We will use instead a simpler closure by
assuming that the turbulent viscosity is uniform over the water depth but otherwise variable
in space and time. The empirical law chosen for this eddy viscosity is discussed in section
1.3.

1.2 Averaged conservation equations

1.2.1 Governing equations

We study the particular case of a two-dimensional flow over a variable bottom. The no-
tations are presented in Figure 1.1. The components of the velocity field are u in the
horizontal direction Ox and w in the vertical direction Oz. The bottom topography is
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Z(x,t)

�(x,t)

z

O
x

h(x,t)
h (x)

0

Figure 1.1: Scheme of the flow, where h(x, t) is the water depth, η(t, x) is the free-surface
elevation, b(x) denotes the bottom topography

(
Z(x, t) = h(t, x) + b(x)

)
, horizontal water

level is denoted by h0(x).

measured by its elevation b(x) over a horizontal datum. The elevation of the free surface
over this horizontal datum is Z(x, t) while the water depth is h(x, t) = Z(x, t)− b(x). The
still water depth is denoted by h0(x) and the water elevation over this level is η(x, t). In
the case of a solitary wave, the amplitude a of the wave is defined as the maximum value
of the elevation i.e. a = maxη(x, t).

The filtered mass conservation equation is

∂u

∂x
+ ∂w

∂z
= 0.

The filtered momentum balance equation writes in the Ox direction

∂u

∂t
+ ∂u2

∂x
+ ∂uw

∂z
= −1

ρ

∂p

∂x
+ 1
ρ

(
∂Arxx
∂x

+ ∂Arxz
∂z

)
+ ν

(
∂2u

∂x2 + ∂2u

∂z2

)
and in the Oz direction

∂w

∂t
+ ∂uw

∂x
+ ∂w2

∂z
= −g − 1

ρ

∂p

∂z
+ 1
ρ

(
∂Arxz
∂x

+ ∂Arzz
∂z

)
+ ν

(
∂2w

∂x2 + ∂2w

∂z2

)
.

The balance equation for the kinetic energy of the filtered motions can be written

∂

∂t

(
u2

2 + w2

2

)
+ ∂

∂x

[
u

(
u2

2 + w2

2 + gz

)
+ pu

ρ
− Arxxu

ρ
− Arxzw

ρ
− τxxu

ρ
− τxzw

ρ

]
+ ∂

∂z

[
w

(
u2

2 + w2

2 + gz

)
+ pw

ρ
− Arxzu

ρ
− Arzzw

ρ
− τxzu

ρ
− τzzw

ρ

]
= −εf − P r.

In this equation, the filtered viscous stress tensor is τ = 2ρνD . The components of the
involved symetrical tensors are defined as

Ar = Arxxex ⊗ ex +Arxzex ⊗ ez +Arxzez ⊗ ex +Arzzez ⊗ ez
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and
τ = τxxex ⊗ ex + τxzex ⊗ ez + τxzez ⊗ ex + τzzez ⊗ ez,

ex and ez are the unit vectors in the Ox and Oz directions.
The boundary conditions are the no-penetration condition at the bottom

w(b) = u(b)b′,

where b′ = db/dx, the kinematic boundary condition at the free surface

w(Z) = ∂h

∂t
+ u (Z) ∂Z

∂x

and the dynamic boundary condition at the free surface

(σ · n) (Z) = 0, (1.5)

where σ = −pI +Ar +τ is the Cauchy stress tensor and where n is the unit normal vector
at the free surface.

1.2.2 Scaling

The model is derived within the scope of the shallow-water approximation. If h∗0 is a
reference value of the still-water depth and if L is a characteristic length of variation of the
flow parameters in the horizontal direction, then there is a small parameter

µ = h∗0
L
� 1.

The equations are then written in dimensionless form. The dimensionless quantities are
denoted by a tilde symbol. The following scaling is classical for this situation ([8]):

x̃ = x

L
, z̃ = z

h∗0
, ũ = u√

gh∗0
, w̃ = w

µ
√
gh∗0

, t̃ = µt

√
g

h∗0
, h̃ = h

h∗0
, p̃ = p

ρgh∗0
.

For the viscous stress tensor, the scaling is

τ̃xx = Lτxx

ρν
√
gh∗0

τ̃zz = Lτzz

ρν
√
gh∗0

τ̃xz = h∗0τxz

ρν
√
gh∗0

.

The Reynolds number is defined by Re = h∗0
√
gh∗0/ν. The turbulent viscosity is supposed

to be of O(µ) and it is written in dimensionless form as in [8]:

ν̃T = νT

µh∗0
√
gh∗0

. (1.6)

Consequently the components of the deviatoric part of the residual stress tensor are scaled
as

Ãrxx = Arxx
µ2ρgh∗0

Ãrzz = Arzz
µ2ρgh∗0

Ãrxz = Arxz
µρgh∗0

.

We can write

Ãrxx = 2ν̃T
∂ũ

∂x̃
Ãrzz = −Ãrxx Ãrxz = ν̃T

(
∂ũ

∂z̃
+ µ2∂w̃

∂x̃

)
.



CHAPTER 1. MODELLING OF BREAKING WAVES 31

The dimensionless mass conservation equation is simply

∂ũ

∂x̃
+ ∂w̃

∂z̃
= 0. (1.7)

The momentum equation in the Ox direction becomes in dimensionless form

∂ũ

∂t̃
+ ∂ũ2

∂x̃
+ ∂ũw̃

∂z̃
= −∂p̃

∂x̃
+ µ2∂Ã

r
xx

∂x̃
+ ∂Ãrxz

∂z̃
+ µ

Re

∂τ̃xx
∂x̃

+ 1
µRe

∂τ̃xz
∂z̃

. (1.8)

In the Oz direction, the momentum equation can be written as

µ2
(
∂w̃

∂t̃
+ ∂ũw̃

∂x̃
+ ∂w̃2

∂z̃

)
= −1− ∂p̃

∂z̃
+ µ2∂Ã

r
xz

∂x̃
+ µ2∂Ã

r
zz

∂z̃
+ µ

Re

∂τ̃xz
∂x̃

+ µ

Re

∂τ̃ zz
∂z̃

. (1.9)

It follows from the chosen scaling that the dimensionless viscous dissipation in the filtered
velocity field can be defined as ε̃f = h∗0εf/(gν) and that the dimensionless energy transfer
toward the residual motion is P̃ r = P r/(µg

√
gh∗0). The dimensionless energy equation can

then be written

∂

∂t̃

(
ũ2

2 + µ2 w̃
2

2

)
+ ∂

∂x̃

[
ũ

(
ũ2

2 + µ2 w̃
2

2 + z̃

)
+ p̃ũ− µ2 (Ãrxxũ+ Ãrxzw̃

)
− µ

Re
(τ̃xxũ+ τ̃xzw̃)

]
+ ∂

∂z̃

[
w̃

(
ũ2

2 + µ2 w̃
2

2 + z̃

)
+ p̃w̃ − Ãrxzũ− µ2Ãrzzw̃ −

1
µRe

τ̃xzũ−
µ

Re
τ̃ zzw̃

]
= − 1

µRe
ε̃f − P̃ r. (1.10)

The boundary conditions are also written in dimensionless form with b̃ = b/h∗0 and Z̃ =
Z/h∗0. If we assume that b varies horizontally on a characteristic length of O(L), then
b̃′ = b′/µ. The no-penetration condition on the bottom and the kinematic condition at the
free surface read simply

w̃(b) = ũ(b)b̃′ w̃(Z) = ∂h̃

∂t̃
+ ũ(Z)∂Z̃

∂x̃
,

whereas the dynamic boundary condition at the free surface (1.5) gives two scalar equations

Ãrxz(Z) +
[
p̃(Z)− µ2Ãrxx(Z)

] ∂Z̃
∂x̃

= 0, (1.11)

p̃(Z)− µ2Ãrzz(Z) + µ2Ãrxz(Z)∂Z̃
∂x̃

= 0. (1.12)

There is no surface tension and no shear stress condition imposed at the free surface.
The filtered equations are averaged over the depth. For any quantity a, its average

value over the depth is denoted by 〈〈·〉〉 and defined as

〈〈a〉〉 = 1
h

∫ Z(x,t)

b(x)
a dz.
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The averaged horizontal velocity is denoted by U = 〈〈u〉〉 and in dimensionless form Ũ =
〈〈ũ〉〉. The filtered horizontal velocity is decomposed as

u(x, z, t) = U(x, t) + u′(x, z, t).

Equivalently, u = U+u′+ur. The term u′ represents the deviation of the filtered horizontal
velocity from its averaged value. It includes the anisotropic large-scale turbulence which
contains most of the turbulent energy and the depth variations of the Reynolds-averaged
velocity field (shearing effects). On the other hand, the residual velocity field ur includes
the isotropic small-scale turbulence where most of the dissipation takes place. The model is
derived in the hypothesis of a weakly turbulent (and weakly sheared) flow which means that
u′ is of O(µ). This hypothesis is very similar in effect as the hypothesis of a weakly-sheared
flow (Teshukov 2007) with a value of Teshukov’s exponent β is equal to 1. Therefore we
write

ũ(x, z, t) = Ũ(x, t) + µũ′(x, z, t).

In the following derivation of the model, all terms of an order up to O(µ2) will be kept
and the terms of O(µ3) will be neglected.

The Reynolds number is supposed to be high enough so that all viscous terms can be
neglected. This hypothesis is usual for this kind of problems (see for example [8]). It can be
written Re = O(µ−3). The terms of O(µ/Re) are then of O(µ4). The terms of O(1/(µRe))
involve τ̃xz whose dominant term is ∂ũ/∂z̃. Since ∂Ũ/∂z̃ = 0, τ̃xz is in fact of O(µ) and
the terms of O(1/(µRe)) are of O(µ3) and therefore negligible. The term ε̃f is negligible
for the same reason.

The effect of the hypothesis of a weakly turbulent flow can also be applied to the scaling
of D and P r. In D the dominant component is normally, in dimensionless form

D̃xz = 1
2

(
∂ũ

∂z̃
+ µ2∂w̃

∂x̃

)
. (1.13)

However, ∂ũ/∂z̃ = µ∂ũ′/∂z̃. This implies that

P̃ r = P r

µ3g
√
gh∗0

. (1.14)

Consequently, the last term in (1.10) writes in fact −µ2P̃ r. It is thus of O(µ2) and must
be kept.

As in [144], the shear stress on the bottom is neglected and this implies a free-slip
condition at the sea bed. The whole deviatoric residual stress tensor is neglected on the
bottom i.e. Ar(b) ' 0.

1.2.3 Averaging procedure

To simplify the notations, the tilde are dropped in this section dealing entirely with dimen-
sionless quantities. Averaging the mass conservation equation (1.7) over the depth, taking
into account the boundary conditions, gives

∂h

∂t
+ ∂hU

∂x
= 0. (1.15)
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The continuity equation (1.7) allows us to find an expression for the vertical filtered velocity

w = (z − b) ḣ
h

+ Ub′ +O (µ) , (1.16)

where the dot symbol is the different notation for the material derivative (see Introduction,
(2)) along the average flow

ḣ = ∂h

∂t
+ U

∂h

∂x
. (1.17)

The momentum equation in the Oz direction (1.9) gives first

∂p

∂z
= −1− µ2 (z − b) ḧ

h
− µ2 Db′U

Dt + µ2∂A
r
xz

∂x
+ µ2∂A

r
zz

∂z
.

and then, with the dynamic boundary condition (1.12), an expression of the pressure

p = Z − z − µ2 ḧ

h

[
z2 − Z2

2 − b (z − Z)
]
− µ2 Db′U

Dt (z − Z)

+ µ2 ∂

∂x

∫ z

Z
Arxzdz + µ2Arzz. (1.18)

In these expressions, both the notations Da/Dt and ȧ denote the material derivative of a
quantity a along the average flow (see (1.17)). With the dynamic boundary condition (1.11)
and since we took Ar(b) ' 0, the integration of the pressure terms and of the residual stress
terms gives

−
∫ Z

b

∂p

∂x
dz +

∫ Z

b
µ2∂A

r
xx

∂x
dz +

∫ Z

b

∂Arxz
∂z

dz

= − ∂

∂x

∫ Z

b
p dz − p(b)b′ + µ2 ∂

∂x

∫ Z

b
Arxxdz.

The integration of the pressure leads to∫ Z

b
p dz = h2

2 + µ2h
2ḧ

3 + µ2h
2

2
Db′U

Dt + µ2
∫ Z

b
dz ∂
∂x

∫ z

Z
Arxzdz + µ2

∫ Z

b
Arzzdz. (1.19)

We can write ∫ z

Z
Arxzdz =

∫ z

Z
νT
∂u

∂z
dz +O(µ2).

Since the turbulent viscosity is uniform over the fluid depth,∫ z

Z
νT
∂u

∂z
dz = νT (u− u(Z)) .

The hypothesis of a weakly turbulent flow implies that u−u(Z) = O(µ). The corresponding
term in (1.19) is thus of O(µ3) and negligible. Then∫ Z

b
Arxxdz = −

∫ Z

b
Arzzdz.

With the expression of Arxx, we get∫ Z

b
Arxxdz = 2νT

∫ Z

b

∂u

∂x
dz.
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The hypothesis of a weakly turbulent flow allows us to write u(Z) = U +O(µ) and u(b) =
U +O(µ). This leads to ∫ Z

b
Arxxdz = 2νTh

∂U

∂x
.

The calculation of the pressure at the sea bed gives

p(b)b′ = hb′ + µ2hb′
(
ḧ

2 + Db′U
Dt

)
.

Finally the integration of the right-hand side of equation (1.8) gives

−
∫ Z

b

∂p

∂x
dz +

∫ Z

b
µ2∂A

r
xx

∂x
dz +

∫ Z

b

∂Arxz
∂z

dz

= − ∂

∂x

(
h2

2 + µ2h
2ḧ

3 + µ2h
2

2
Db′U

Dt − 4νTh
∂U

∂x

)
− hb′ − µ2hb′

(
ḧ

2 + Db′U
Dt

)
.

Taking into account the boundary conditions, the integration of the left-hand side of equa-
tion (1.8) leads to∫ Z

b

(
∂u

∂t
+ ∂u2

∂x
+ ∂uw

∂z

)
dz = ∂hU

∂t
+ ∂

∂x

(
h
〈〈
u2〉〉) .

The treatment of
〈〈
u2〉〉 is the same as in [117]. First,

〈〈
u2〉〉 is written U2 + µ2 〈〈u′2〉〉

since, by definition, 〈〈u′〉〉 = 0. Second, a new variable, ϕ, called enstrophy, is defined as

ϕ :=
〈〈
u′2
〉〉

h2 .

The averaged momentum equation can finally be written

∂hU

∂t
+ ∂

∂x

(
hU2 + µ2h3ϕ+ h2

2 + µ2Π + µ2Π′
)

= −hb′ − µ2f ′ +O(µ3) (1.20)

where
Π = h2ḧ

3 − 4νTh
∂U

∂x
, (1.21)

Π′ = h2

2
Db′U

Dt (1.22)

and
f ′ = hb′

(
ḧ

2 + Db′U
Dt

)
. (1.23)

We will say that the sea bed has a mild slope if b varies horizontally on a characteristic
length of O(µL). In this case, the terms in µ2Π′ and −µ2f ′ become of O(µ3) and are
negligible. The averaged momentum equation reduces to

∂hU

∂t
+ ∂

∂x

(
hU2 + µ2h3ϕ+ h2

2 + µ2h
2ḧ

3 − 4νTh
∂U

∂x

)
= −hb′ +O(µ3). (1.24)

Since the model features three variables h, U and ϕ, three equations are needed. Two
equations are provided by the averaged mass conservation equation and by the averaged
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momentum equation and the third equation is the averaged energy equation. With the
boundary conditions, we can integrate∫ Z

b

[
∂

∂t

u2

2 + ∂

∂x

u3

2 + ∂

∂z

wu2

2

]
dz = ∂

∂t

(
h

2
〈〈
u2〉〉)+ ∂

∂x

(
h

2
〈〈
u3〉〉) .

We expand as above
〈〈
u2〉〉 = U2 + µ2h2ϕ. The same method yields

〈〈
u3〉〉 = U3 +

3µ2h2Uϕ+O(µ3). As in [137], the hypothesis of weakly turbulent flows allows us to neglect〈〈
u′3
〉〉

and thus to close the problem. Another integration combined with the boundary
conditions and with the expression (1.16) of the vertical velocity leads to

µ2
∫ Z

b

[
∂

∂t

w2

2 + ∂

∂x

uw2

2 + ∂

∂z

w3

2

]
dz

= µ2 ∂

∂t

(
hḣ2

6 + hU2b′2

2 + hb′Uḣ

2

)
+ µ2 ∂

∂x

[
U

(
hḣ2

6 + hU2b′2

2 + hb′Uḣ

2

)]
.

With the expression (1.18) of the pressure and with the boundary conditions, we get∫ Z

b

[
∂

∂x

(
uz + pu− µ2Arxxu− µ2Arxzw

)
+ ∂

∂z

(
wz + pw −Arxzu− µ2Arzzw

)]
dz

= ∂

∂t

(
h2

2

)
+ ∂

∂x

[
U

(
h2 + µ2h

2ḧ

3 + µ2h
2

2
Db′U

Dt − µ
24νTh

∂U

∂x

)]
+ hb′U.

The averaged value of P r over the depth is estimated by the averaged value over the depth
of its mean value (in the Reynolds sense) 〈P r〉. Then the approximation (1.4) gives

〈〈P r〉〉 ' 〈〈ε〉〉 . (1.25)

Physically, this means that the energy dissipation of the model is mostly due to the dissi-
pation of the turbulent kinetic energy in the dissipation range i.e. in the small scales. The
expression of 〈〈ε〉〉 is discussed in section 1.3. The averaged energy equation can finally be
written

∂

∂t

[
h
(
e+ µ2e′

)]
+ ∂

∂x

[
hU
(
e+ µ2e′

)
+ U

(
µ2h3ϕ+ h2

2 + µ2Π + µ2Π′
)]

= −hb′U − µ2h 〈〈ε〉〉+O(µ3) (1.26)

where Π and Π′ are given by (1.21) and (1.22) respectively and where

e = U2

2 + µ2h
2ϕ

2 + µ2 ḣ
2

6 + h

2 ; e′ = b′2U2

2 + ḣ

2 b
′U. (1.27)

The factor µ2 in front of h 〈〈ε〉〉 comes from the hypothesis of a weakly turbulent flow as
explained at the end of section 1.2.2 (see relation (1.14)). In the case of a mild slope, e′
and Π′ become negligible and the energy equation reduces to

∂he

∂t
+ ∂

∂x

[
hUe+ U

(
µ2h3ϕ+ h2

2 + µ2Π
)]

= −hb′U − µ2h 〈〈ε〉〉+O(µ3). (1.28)
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1.2.4 Enstrophy equation

The model is composed of the mass equation (1.15), the momentum equation (1.20 or 1.24
for a mild slope) and the energy equation (1.26 or 1.28 for a mild slope). From these three
equations, an evolution equation for the enstrophy can be derived. From equation (1.20),
we first obtain the equation

∂

∂t

hU2

2 + ∂

∂x

hU3

2 + U
∂

∂x

(
µ2h3ϕ+ h2

2 + µ2Π + µ2Π′
)

= −hb′U − µ2Uf ′. (1.29)

Subtracting this equation from equation (1.26) leads to

∂

∂t

(
µ2h

3ϕ

2 + µ2hḣ
2

6 + h2

2 + µ2he′
)

+ ∂

∂x

[
µ2h

3Uϕ

2 + h2U

2 + µ2hUḣ
2

6 + µ2hUe′ + U

(
µ2h3ϕ+ h2

2 + µ2Π + µ2Π′
)]

− U ∂

∂x

(
µ2h3ϕ+ h2

2 + µ2Π + µ2Π′
)

= −µ2 〈〈ε〉〉+ µ2Uf ′.

The mass equation implies that
ḣ = −h∂U

∂x
.

The following equalities are satisfied

∂he′

∂t
+ ∂

∂x

(
hUe′ + UΠ′

)
= U

∂Π′
∂x

+ Uf ′,

∂

∂t

hḣ2

6 + ∂

∂x

(
hUḣ2

6 + U
h2ḧ

3

)
= U

∂

∂x

h2ḧ

3 ,

∂

∂t

h2

2 + ∂h2U

∂x
= U

∂

∂x

h2

2
and

∂

∂t

h3ϕ

2 + ∂

∂x

3h3Uϕ

2 − U ∂

∂x

(
h3ϕ

)
= h3

2
Dϕ
Dt .

The evolution equation of the enstrophy can finally be written

∂hϕ

∂t
+ ∂hUϕ

∂x
= 8νT

h

(
∂U

∂x

)2
− 2
h2 〈〈ε〉〉 . (1.30)

The enstrophy ϕ is related to the averaged large-scale turbulent kinetic energy and to
the shearing effects of the Reynolds-averaged flow. The above equation shows that it is
created by the effect of the turbulent viscosity and dissipated by the dissipation of the
turbulent kinetic energy. The latter takes place in the small scales after the energy had
been transferred from the large scales.

The underlying conservative hyperbolic system has the mathematical structure of the
Euler equations of compressible fluids. For this system, the enstrophy is analogous to the
entropy. If this hyperbolic system had to be resolved, the appearance of discontinuities
would impose to solve the mass, momentum and energy equations since these discontinu-
ities would conserve the energy and would create enstrophy. Because of the diffusive and
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dispersive terms of our model, no discontinuity can arise. It is thus equivalent in theory to
solve the mass, momentum and energy equations or to solve the mass, momentum and ens-
trophy equation. However, in practice, the enstrophy equation (1.30) is much simpler than
the energy equation (1.26). The enstrophy equation has no dispersive term and no term
depending on the topography. Numerically, this equation is much easier to handle than
the energy equation. The substitution of the enstrophy equation for the energy equation in
order to solve numerically the equations was already made in [84] for the dispersive model
including terms up to O(µ3) but no dissipation nor viscosity. Take care of the notation
differences since their µ is for us µ2 and the quantity they denote by Ẽ is hϕ.

1.3 Dissipation and eddy viscosity

The closure of the model composed of equations (1.15), (1.20) (or (1.24)) and (1.30) requires
to know the dissipation 〈〈ε〉〉 and the eddy viscosity νT . We can assume that these quantities
can depend on h and on the enstrophy ϕ but not on the average velocity U in order to
satisfy easily the principle of Galilean invariance [11] (ϕ is a Galilean invariant quantity).
Including a dependence on U would in fact requires a dependence on a velocity difference
U − v∗ where v∗ would be a suitable velocity. The only obvious choice for v∗ would be
the bottom velocity but it is difficult to explain a dependence on the bottom velocity while
the turbulent and viscous processes close to the bottom are completely neglected in this
model. Another choice for the turbulent viscosity would be a dependence on h and g

writing νT = Cνh
√
gh as in [103], where Cν is a dimensionless constant. However such an

expression would imply that the turbulent viscosity is greater where the depth is greater,
thus in the shoaling zone, and smaller where the wave breaks and in the surf zone whereas
the opposite variation would be expected. This would make the model highly dependent on
the breaking criterion. It seems much more preferable to be inspired by the models using
a dependence of the viscosity with the turbulent kinetic energy.

With a dependence on h and ϕ only, a dimensional analysis shows that

νT = Cph
2√ϕ,

where Cp is a dimensionless quantity, and that

〈〈ε〉〉 = Cr
2 h2ϕ3/2 (1.31)

where Cr is another dimensionless quantity. Note that Cp can be interpreted as the inverse
of a Reynolds number R such that

νT =
h2√ϕ
R

. (1.32)

With these choices, the model has the mathematical structure of the turbulent-kinetic-
energy model (TKE or k − `m) proposed by [78] and [113] who suggested to base the tur-
bulent viscosity and the dissipation on the turbulent kinetic energy and the mixing length.
In our model, the enstrophy and the water depth replace the turbulent kinetic energy and
the mixing length respectively (the turbulent kinetic energy is in fact homogeneous to h2ϕ)
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with the difference that the problem of completeness of the TKE model does not apply to
this model since h is variable of the model and does not need to be specified.

Another difference is that, although the equation of the enstrophy is analogous to the
equation of the turbulent kinetic energy of the TKE model, the mass equation (1.15) shows
that our model is analogous to the equations of a compressible fluid (the water depth h

being the analogous of the density).
The relation (1.31) implies that the dimensionless form of 〈〈ε〉〉 is

〈〈ε̃〉〉 = 〈〈ε〉〉
µ3g
√
gh∗0

. (1.33)

This is in accordance with (1.14). The relation (1.32) is also in agreement with the scaling
(1.6) of the eddy viscosity. It follows that the quantities Cp, R and Cr are all of O(1).
In this approach the scaling and the dependence of the turbulent viscosity have a clear
physical meaning and interpretation. There is no need to impose a variation of the turbulent
viscosity with the depth which would greatly complicate the model for a doubtful benefit.
The viscous terms are needed for their diffusive role and to create enstrophy. The only
important thing is to be able to predict the value of the eddy viscosity in all cases and the
hypothesis of a viscosity which is constant over the depth is sufficient for this purpose as it
is shown in the following sections.

1.4 Numerical resolution

In this section, the proposed model is validated by comparison with experimental results.
Finally, the resulting system for mild slope topography can be written as (L ≤ ∞ denotes
the length of the flow domain)

∂h

∂t
+ ∂hU

∂x
= 0, ∀x ∈ [0, L], t > 0

∂hU

∂t
+ ∂

∂x

(
hU2 + gh2

2 + h3ϕ+ h2ḧ

3

)
= ∂

∂x

(
4
R
h3√ϕ∂U

∂x

)
− ghb′,

∂hϕ

∂t
+ ∂hUϕ

∂x
=

8h√ϕ
R

(
∂U

∂x

)2
− Crh3ϕ3/2.

(1.34)

We focus here on numerical tests for this system, intended to determine general laws for
the empirical constants appearing in the model. It should be mentioned that the proposed
system (1.34) can be treated in the same manner as the Green-Naghdi system. Conse-
quently, the same techniques as the ones used for the Green-Naghdi equations can be
applied for all challenging issues such as the evaluation of the high-order derivatives, or
the preservation of the steady states. In the last two decades, the Green-Naghdi system
has received much of attention due to its improved dispersive properties. Many different
approaches have been applied to the one-dimensional system. A finite-difference method
is proposed in [7, 6]. A finite-volume method is developed in [35, 36], [86] and [49]. A
pseudo-spectral approach is applied in [45]. Hybrid methods are implemented in [30], [22]

Numerical animations are available https://www.math.univ-toulouse.fr/∼mkazakov

https://www.math.univ-toulouse.fr/~mkazakov/numerics.html
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and [140]. For continuous finite element methods and discontinuous Galerkin methods we
refer to [101, 102] for the former, and to [109], [41], and [43] for the latter. Two-dimensional
numerical studies can be found in [86], [125], [6], [83], [112],[50] and [44]. In this study, we
focus only on one-dimensional equations to validate the proposed model.

The numerical integration of the Green-Naghdi equations generally includes an elliptic
operator inversion. The change of variables proposed in [86] allows a splitting of the nu-
merical resolution into two steps. Firstly, the system is rewritten as a hyperbolic system
of equations and treated with a Godunov’s type method. Then an elliptic equation for the
velocity is solved. We adopted this strategy for the model (1.34) due to its straightforward
realization.

1.4.1 Numerical scheme

Following [86], we introduce the new variables

K = U + 1
3h
∂(h2ḣ)
∂x

, (1.35)

α = −2
3h

3∂(hU)
∂x

. (1.36)

Under this change of variables the system (1.34) can be rewritten in the following form:

∂h

∂t
+ ∂hU

∂x
= 0, , ∀x ∈ [0, L], t > 0

∂hK

∂t
+ ∂

∂x

(
hUK + gh2

2 + h3ϕ+ α

)
= ∂

∂x

(
4
R
h3√ϕ∂U

∂x

)
− ghb′,

∂hϕ

∂t
+ ∂hUϕ

∂x
=

8h√ϕ
R

(
∂U

∂x

)2
− Crhϕ3/2.

(1.37)

The idea to replace the variable u byK was firstly used in [28] for a Hamiltonian formulation
of the Green-Naghdi model.

1.4.2 Hyperbolic system

For the discretization of (1.37), we use a Godunov’s type method since this system is hyper-
bolic. The viscous and topography source terms being not stiff an explicit algorithm can be
applied. However, the influence of viscosity on the time discretization step should be taken
into account. The flow domain is discretized with time and space steps δt, δx, respectively.
Noting the vector of unknowns Vn

i = (hni , hKn
i , hϕ

n
i )>, where index i corresponds to the

space cell xi = iδx, and n correspond to the time instant tn = nδt, we write the second
order in space and time numerical scheme,

Vi = Vn
i + δt

2δx

(
F(V n

i−1/2)− F(V n
i+1/2)

)
+ δt

2 S(V n
i ), i = 1, .., L/δx.

This step is repeated twice in conformity with the Runge-Kutta time scheme of the second
order (RK2), i.e.:

Vi = Vi + δt

2δx
(
F(V i−1/2)− F(V i+1/2)

)
+ δt

2 S(V i).
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Finally, the solution is updated as

Vn+1
i = 1

2

(
Vn
i + Vi

)
(1.38)

The fluxes are calculated with respect to inter-cell values (with indexes i ± 1/2) by using
an approximate Harten-Lax-van Leer (HLL) Riemann solver [143], [88] (n in time index
is omitted to show that fluxes for the intermediate state V are calculated in the same
manner):

Fi±1/2 = Fhll
((

Vi±1/2
)`
,
(
Vi±1/2

)r)
.

Left and right cell value
(
Vi±1/2

)`,r are reconstructed with a second order MUSCL ap-
proximation [143], [88]. In the HLL solver the eigenvalues associated to the non-dissipative
part of the system (1.34)

λ1 = U, λ2,3 = U ±
√
gh+ 3h2ϕ

are used.
In case of zero viscosity the time step δt is restricted by the classical

Courant–Friedrichs–Lewy (CFL) condition, which is a necessary condition for stabil-
ity,

δt < CFL · δx

λmax
,

where λmax is the maximum eigenvalue calculated in each time layer. But in the case of
non zero viscous source term for the stability of algorithm we are obliged to choose a more
restrictive time step

δt < CFL ·min
(

δx

λmax
,
R δx2

4

)
.

For the further validation of the model (1.34) it is not a very restrictive condition, but
one should imagine a more efficient algorithm for the numerical realization of concrete
applications, implying an implicit treatment of viscous terms, for example.

The source term S(V i) is discretized with a standard finite-difference second order
approach. However, the topography term in the momentum equation should be discretized
in a special manner to preserve a steady state h+ b = const, U = K = 0, ϕ = 0, otherwise
the scheme is not well-balanced (which means here does not preserve the so called lake at rest
steady state). Following the idea found in [12], we obtain an appropriate discretization of
the topography source term by considering the reduction of the system (1.37) for h = const,
U = K = 0, ϕ = 0:

(ghb′)i = −g2
(
hi−1/2

)− + g

2
(
hi+1/2

)+
,

where
(
hi±1/2

)± are the reconstructed values obtained with the condition of a constant
steady water level, namely hi + bi = hi+1 + bi+1. Generally speaking, the well-balanced
reconstruction described above results in changing the fluxes Fn

i±1/2, and adding a correction
cell-centred source term for the second order approximation. That procedure gives us an
exact steady state conservation (for the detailed proof see [12]).
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1.4.3 Elliptic equation

Once the (hn+1
i , hKn+1

i ) is computed, the velocity field is defined by solving the equation
(1.35). We rewrite this equation in terms of hu and hK

hK = hu− 1
3
∂

∂x

(
h2∂(hu)

∂x

)
+ 1

6
∂

∂x

(
hu
∂h2

∂x

)
,

which leads to the equation

∂2(hu)
∂x2 +A

∂(hu)
∂x

+B(hu) + C = 0,

with
A = 1

2h2
∂h2

∂x
, B = − 1

2h2

(
6 + ∂2h2

∂x2

)
,

C = 3
h2hK.

This equation is solved at the end of each time step, using the following finite-difference
discretization (index n+ 1 is omitted over all variables)(

1
δx2 + Ai

2δx

)
(hu)i+1 +

(
Bi −

2
δx2

)
(hu)i +

(
1
δx2 −

Ai
2δx

)
(hu)i−1 + Ci = 0,

where
Ai = 1

2h2
i

h2
i+1 − h2

i−1
2δx , Bi = − 1

2h2
i

(
6 +

h2
i+1 − h2

i + h2
i−1

δx2

)
Ci = 3

h2
i

(hK)i.

This results in the inversion of a three-diagonal matrix, which is done with the tridiagonal
matrix algorithm, also known as Thomas algorithm [123] (originally described in [138]).
Obviously, this step is the most time-consuming of all numerical algorithm.

Boundary conditions for both, hyperbolic and elliptic steps, must be imposed. We
use the Dirichlet boundary conditions for the Riemann invariants Il,r by analogy with the
nonlinear shallow water equations, defined as

Ir,l = K ±
√
gh.

This information allows for a definition of the water depth at inflow and outflow boundaries.

1.4.4 Solitary wave propagation over a flat bottom

The numerical scheme is validated in the case of the classical soliton solution. The Green-
Naghdi system admits an exact solution which corresponds to a wave propagating without
deformation. This solution was found by Su & Gardner [130] and coincides with the ex-
pression derived by Rayleigh (see [114]). This particular kind of solitary wave was first
observed by Russell ([121]). The model (1.34) admits also such a type of solution on a flat
horizontal bottom in the absence of dissipation. The exact expressions for the water depth
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hex, the fluid velocity U ex and the enstrophy ϕex were derived in a more general case in
[119]. In this particular case, these expressions reduce to ϕex = ϕ0 = constant,

hex

h∗0
= 1 +

2ã
(
Fr2 − 1− 3ϕ̃

)
Fr2 − 1− (3 + ã2)ϕ̃+ [Fr2 − 1− (3− ã2) ϕ̃] cosh [κ (x− c0t− x0) /h∗0] (1.39)

and
U ex = c0

(
1− h∗0

hex

)
, (1.40)

where x0 is the initial abscissa of the wave maximum depth position, h∗0 is the still water
depth at an infinite distance from the wave, c0 is the celerity of the soliton, ã = δ =
a/h∗0 its dimensionless amplitude (and the nonlinearity parameter), Fr = |c0|/

√
gh∗0 a

Froude number representing the dimensionless wave celerity, ϕ̃ = ϕh∗0/g the dimensionless
enstrophy and where

κ =
√

3
Fr2 (Fr2 − 1− 3ϕ̃). (1.41)

The celerity of the soliton can be written

c0 =
√

(h∗0 + a) [g + ϕ (3h∗0 + a)]. (1.42)

The dimensionless amplitude of the wave ã is

ã = 1
2ϕ̃

[
− (1 + 4ϕ̃) +

√
(1 + 4ϕ̃)2 + 4ϕ̃ (Fr2 − 1− 3ϕ̃)

]
. (1.43)

This soliton solution reduces to the one of the 1D Green-Naghdi equations, if ϕ0 = 0.
If ϕ0 6= 0, this solution describes a wave with a smaller amplitude for the same Froude
number compared to Green-Naghdi solitary wave. The depth profile of a soliton calculated
for Fr = 1.095, h∗0 = 1m and ϕ0 = 0.05s−2 is presented in Figure 1.2 (a) where it is
compared to the depth profile of the classical soliton (ϕ0 = 0) for the same reference water
depth and Froude number. The main effect of the enstrophy is to decrease the soliton
amplitude.

The proposed numerical scheme preserves the dynamics of the solitary waves (see figure
1.2 (c)). This case is used to study the convergence of the algorithm. We define the error
function of the approximation as a discrete version of the norm error. Let us first denote

en =| h(tn, ·)− hex(tn, ·) |L2 ,

for all time step tn. Then the discrete norm is defined as

Lerr∞ = max
0<n≤N

(en) .

The accuracy of the numerical scheme is of second order in space if

Lerr∞ ≤ C∞x δx2,

where C∞x is a constant depending on the reference solution. This condition is numerically
verified (see Figure 1.2 (b)).



CHAPTER 1. MODELLING OF BREAKING WAVES 43

40 42 44 46 48 50 52 54 56 58 60

1

1.05

1.1

1.15

1.2

(a)
10

-1
10

0
10

1

x

10
-4

10
-3

10
-2

10
-1

L
∞ e
r
r

1,962
dx

2

(b)

0 20 40 60 80 100 120 140 160 180 200

x

1

1.05

1.1

1.15

1.2

h
(t
,x
)

(c)

Figure 1.2: Propagation of the solitary wave (1.39) for Fr = 1.095, ϕ0 = 0.05s−2, (a) com-
parison between (1.39) (solid line) and exact Green-Naghdi solution (dashed line), (b) Lerr∞
error in a logarithmic scale for the free surface elevation for different space discretization,
(c) solitary wave (solid line) propagation compared to the exact solution (1.39) (crosses)
for different time instant t = 0s, t = 10s, t = 20s, t = 30s, t = 40s.
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1.4.5 Virtual enstrophy breaking criteria

The nonlinearity parameter of the initial waves is defined by δ = a∗/h∗0 where a∗ is the
initial amplitude of the wave and where h∗0 is the still water level at the initial position of the
wave. When δ < 0.05 the model (1.34) can be applied directly without any modification.
The breaking position is described correctly due to the sudden growth of enstrophy from a
very small value at the beginning of the wave propagation to a large value in the breaking
region. An example of a solitary wave with δ = 0.048 propagating on a constant slope equal
to tgβ = 1/60 is presented in Figure 1.4 (a), where the maximal value of the enstrophy is
given as a function of the position during the wave propagation. This is a simulation of an
experiment of Hsiao et al. ([64]) whose geometrical characteristics are presented in Figure
1.3. In this case, the still water depth at the initial position was h∗0 = 1.2m. The values
of the parameters of the model are Cr = 0.48 and R = 6 and these values can be used for
all solitary waves with δ < 0.05 on this slope. The increase of enstrophy corresponds to
the breaking point since it implies also a brutal increase of the large-scale turbulent energy
and a diminution of the wave amplitude. As shown in Figure 1.4 (a), the enstrophy keeps
a very small value from the beginning of the wave propagation until the breaking region
where the sudden increase takes place. In the shoaling zone the values of the enstrophy
range from 10−7s−2 to 10−4s−2 whereas in the surf zone, the enstrophy is in the order of
1s−2 or 10s−2, thus several orders of magnitude higher. This evolution is also presented in
Figure 1.4 (b) with another scale showing that the enstrophy is much smaller than 10−3s−2

in the shoaling zone. The extreme steepness of the enstrophy curve at the breaking point
shows that the enstrophy is a relevant quantity to characterize the wave breaking.

However, for solitary waves with a nonlinearity greater than about 0.05, the initial
evolution of the enstrophy causes an important attenuation of the wave amplitude. The
evolution of the maximum value of the enstrophy for a solitary wave with a nonlinearity
parameter δ = 0.137 and the conditions of Hsiao et al. (2008) with h∗0 = 2.2m is presented
in Figure 1.4 (a). The increase of ϕ just before the breaking point is rapid but it is less steep
than for δ = 0.048. With the different scale presented in Figure 1.4 (b), it can be seen that
the maximum value of ϕ increases first from its initial value 10−9s−2 to a constant value of
about 0.2 · 10−3s−2 corresponding to the part of the propagation over a horizontal bottom.
When the wave arrives over the sloping bottom (see Figure 1.3), the maximum value of
the enstrophy is no longer constant and increases until the wave breaking. Although the
maximum value of ϕ in the shoaling zone is small, it is several orders of magnitude greater
than for δ = 0.048. The enstrophy is still a relevant quantity for breaking but its values
are not small enough before breaking to be entirely negligible and this is the cause of the
wave attenuation. Therefore, in such conditions the enstrophy must not be created in the
shoaling zone. This implies that the turbulent viscosity should be activated only when the
breaking is likely to occur and that a breaking criterion is needed for these waves.

There exist several breaking criteria based on empirical relations for the horizontal
velocity, the free-surface gradient or the local energy dissipation (see e.g. [22]), for other
criteria we refer to [69], [13], or [43]. Although most of those criteria can be adapted to our
model, we introduce a new criterion specific to this model and based on the sudden increase
of the enstrophy at the breaking point. The idea is to calculate the enstrophy produced by
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Figure 1.3: Experiment setup. A solitary wave of amplitude a in the fluid of depth h∗0 at
rest propagates over a topography with incline β, aB is the breaking amplitude, hB is the
breaking depth.
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Figure 1.4: Evolution of the maximal value of the enstrophy for the different values of
the nonlinearity parameter δ = 0.048, δ = 0.137, (a) propagation until the wave breaking
defined in the experiment (vertical lines), (b) detailed zoom on the initial values of virtual
enstrophy.

the wave while preventing any feedback on the wave’s characteristics to avoid the spurious
amplitude attenuation. A new quantity denoted by ψ is introduced. It follows the same
equation as the real enstrophy ϕ except that the turbulent viscosity is always activated.
This new quantity, homogeneous to the enstrophy, represents the amount of enstrophy that
the wave is potentially able to create and therefore it is called virtual enstrophy. The virtual
enstrophy undergoes a sudden increase when the wave is about to break and this can be
used to characterize the breaking point. The eddy viscosity in the equation of the real
enstrophy is set equal to zero as long as the virtual enstrophy did not reach a threshold
value ψ0. This means that there is no enstrophy creation before the breaking point and
thus no amplitude attenuation in the shoaling zone. The cell where ψ becomes equal to ψ0
is the beginning of the breaking process.

Moreover, the experiments and the numerical simulations show that the vorticity gener-
ation and the turbulence generation take place during breaking in approximately the same
front region of the wave ([90], [26],[72]). A depth-averaged model cannot describe all the de-
tails of the breaking process. The vorticity and turbulence generation during the steepening
of the free surface is taken into account by an enstrophy creation caused by the production
term in the enstrophy equation (1.30). When the free surface steepens, (∂U/∂x)2 and con-
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sequently the production term increases and enstrophy is created. However the particular
generation mechanism that takes place at the front side of the crest cannot be captured by
a depth-averaged model. The information on the sign of ∂U/∂x is lost in the production
term. Consequently enstrophy can be produced not only at the front side of the wave but
also at the rear side, particularly if the wave profile is weakly asymetrical. In the case of
a soliton, the wave profile is completely symetrical. In the absence of a description of the
generation of vorticity and turbulence on the front surface of the wave, there is a produc-
tion on both sides of the crest. A sloping bottom creates some asymmetry in the wave
but this does not always prevent an enstrophy production in the rear of the wave. This
gives the grounds for the introduction of a second element of breaking criterion. We allow
for an enstrophy production only at the front side of a wave. This condition is equivalent
to ḣ < 0 since the mass equation implies that the material derivative of the water depth
is ḣ = −h∂U/∂x. The front part of the wave is thus defined as ḣ > 0. There are many
cases where this condition is needless and, even when it is useful, its omission causes only a
transient problem that is rapidly corrected by the action of the dissipation. However, since
its implementation is easy, it seems that there is no reason not to include it.

To formalize what has been said, until the condition max
x

ψ(t, x) < ψ0 is satisfied we
calculate the numerical solution of the system



∂h

∂t
+ ∂hU

∂x
= 0,

∂hK

∂t
+ ∂

∂x

(
hUK + gh2

2 + α

)
= −ghb′,

∂hψ

∂t
+ ∂(hUψ)

∂x
= Gp

8h
√
ψ

R

(
∂U

∂x

)2
− Crhψ3/2,

∀t < t∗,∀x ∈ [0, L] :
max
x

ψ(t, x) < ψ0,
(1.44)

where Gp = 0, if ∂U/∂x > 0. Further, the enstrophy ϕ(t, x) is activated after the time
instant t∗ such that max

x
ψ(t∗, x) > ψ0, and the system (1.44) is extended to



∀t > t∗,

∀x ∈ [0, L]

∂h
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+ ∂hU

∂x
= 0,

∂hK
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+ ∂
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(
hUK + gh2

2 + h3ϕ+ α

)
= ∂

∂x

(
4
R
h3√ϕ∂U
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)
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∂hψ

∂t
+ ∂(hUψ)

∂x
= Gp

8h
√
ψ

R

(
∂U

∂x

)2
− Crhψ3/2,

∀t > t∗,

∀x ∈
t⋃

`=t∗
{x : max

x
ψ(`, x) > ψ0},

∂hϕ

∂t
+ ∂(hUϕ)

∂x
= Gp

8h√ϕ
R

(
∂U

∂x

)2
− Crhϕ3/2.

(1.45)
An appropriate criteria for the virtual enstrophy critical value ψ0 is proposed further, based
on comparison with experiments. The advantage of the proposed criteria is that it does not
depend on discrete parameters and its implementation is straightforward. It is necessary
to make clear that from the form of the equation for ψ(t, x) (respectively ϕ(t, x)) only a
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non-zero initial distribution must be given for ψ(t, x) (ϕ(t, x)). Numerical tests show that
even tiny value 10−12 − 10−9 are sufficient for a further evolution of ψ(t, x) (ϕ(t, x)). One
can notice a similarity with common turbulence modelling.

Propagation of a soliton in a constant water depth

The evolution of the virtual enstrophy for a solitary wave propagating over a flat bottom
is studied now. We show numerically that the virtual enstrophy is a bounded function for
different initial wave conditions. Considering the solitary wave defined with (1.39), (1.40)
with ϕ0 equal to an infinitesimal value, we establish several dependences. The maximal
value of ψ(t, x) is bounded for different Reynolds numbers, nonlinearity parameters and
initial depths, and it depends on the initial wave amplitude. For strongly nonlinear waves
the maximal value is bigger than for weakly nonlinear waves (Figure 1.5 (a)). This maximal
value is also bigger if R is smaller or if the depth h0 is greater (Figure 1.5 (b) (c)). This
guides us in the definition of the critical value ψ0. Moreover, it is known that a soliton
cannot physically exist if the nonlinearity parameter of the wave is greater than some limit
value. The most commonly accepted limit value is δ = 0.78 (McCowan 1894). For a
nonlinearity greater than this limit, the wave breaks and dissipation appears. On this first
point we base our further investigation on the criteria for virtual enstrophy. Moreover, the
dependence on the initial water depth points that a dimensionless critical value ψ0 must
be found. Generally speaking, for the systems (1.44), (1.45) three parameters Cr, R and
dimensionless ψ0 should be defined. We base our criteria on comparison with experiments,
and numericals tests are proposed in the next section. In addition, as was mentioned before
the initial distribution of the enstrophy is non zero, we have checked numerically that the
maximal value of ψ(t, x) does not depend on this initial value if it is small enough.

1.5 Application to a mild-slope topography

We study now the waves propagation over a mild-slope topography. The recent experimen-
tal research [64] is used to validate the model (1.34). In these experiments a solitary wave
is generated with a high-resolution wavemaker and it propagates in a channel 300 m long,
5.0 m wide and 5.2 m deep. A plane beach with a slope equal to tgβ = 1/60 starts 50m
after the wavemaker. The setup is shown on Figure 1.3. The study of wave shoaling and
wave breaking is presented for different values of the nonlinearity parameter δ ranging from
0.019 to 0.338, and initial depth h∗0 = 1.2 m, 2.2 m, 2.9 m. The breaking position is given
for each test case, and time series of wave propagation are available. The localization of
breaking points is a quite challenging issue. Moreover the definition of the breaking point
itself can have several interpretations. For example, the amplitude is dramatically decreas-
ing for strongly nonlinear waves when breaking occurs. In the works of [64] the breaking
points are defined as the location where the front of the leading wave becomes near vertical
tangent and bubbles subsequently appear. We can interpret it physically as a turbulent
energy increase, that is to say an enstrophy growth in the proposed approach. This idea
allows us to determine an appropriate value for the limit virtual enstrophy ψ0, in order to
have a good agreement with experimental breaking points. It is clear that the viscosity
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Figure 1.5: Dependence of maximal value of ψmax = max
x

ψ(t, x) on different initial param-
eters of the solitary wave solution (a) R = 2, h∗0 = 1, 2m, for δ = 0.3 − 0.8, (b) δ = 0.3,
h∗0 = 2.2m, for R = 1, 2, 4, (c) R = 2, δ = 0.7, for h∗0 = 1.2m, 2.2m
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δ h∗0,m δ h∗0,m δ h∗0,m δ h∗0,m δ h∗0,m

0.048 1.2 0.248 1.2 0.0195 2.2 0.120 2.2 0.019 2.9
0.112 1.2 0.2875 1.2 0.054 2.2 0.137 2.2 0.086 2.9
0.227 1.2 0.338 1.2 0.069 2.2 0.152 2.2

Table 1.1: The test conditions of solitary waves up a mild sloping beach.

added to the model is responsible for the amplitude decrease after breaking; therefore this
enables to define the Reynolds number value R. Tests are made for different initial depths
and initial nonlinearity parameters (see Table, 1.1). We conclude on the next definition for
the parameters:

ψ0 = g

h∗0
ψ̃0, ψ̃0 =


(

0.1 + 0.031
δ

)
, δ > 0.05,

0, δ < 0.05,
R =

 1.7, δ > 0.05,

6, δ < 0.05,
(1.46)

The constant Cr = 0.48 is taken for all numerical tests. Choosing a constant Reynolds
number for all tests lead to a good agreement on the wave profile after breaking. The value
ψ0, as discussed in subsection 1.4.5, depends on h∗0 and δ, so we propose dimensionless value
ψ̃0, which depends on the nonlinearity parameter δ. As we mentioned above, no criteria is
needed for small values δ < 0, 05, the evolution of the enstrophy during wave shoaling is
very small and does not influence the wave amplitude. The breaking position is in a good
agreement as well.

1.5.1 Experimental comparison

We provide several comparisons based on the time series experimental data, using the
parameters given above by (1.46). The numerical breaking position is defined as the moment
when the virtual enstrophy criterion max

x
ψ > ψ0 is satisfied. For the given breaking points

in [64], the simulation errors are of order 0.2 − 1m. This can be explained by the fact
that the development of bubbly layer takes some time from the beginning of the breaking
process, as well as the evolution of the enstrophy in the model, but one can imagine that
a non-zero level of enstrophy corresponds to bubble generation. Numerical results are
presented on Figures 1.6, 1.7, 1.8. The numerical and experimental profiles are in good
agreement, and the breaking positions defined by ψ0 is in agreement with the experimental
ones. The enstrophy profiles corresponding to the wave propagation are shown in the same
figures. For the test case 1.6 δ = 0.048, no breaking criterion is applied, however the
enstrophy stays very small at initial times of the wave motion. For the test cases 1.7, 1.8
the nonlinearity parameter δ is equal to 0.137 and 0.086 respectively, and the criterion is
therefore used. It provides that enstrophy stays very small and a good agreement on the
amplitude is reached at the initial times of the wave propagation.

Note that after the criterion activation, the wave amplitude decreases but not immedi-
ately. One can imagine to define the breaking position as a moment when the amplitude
starts to decrease (note that the same remark is made on the difficulties to define the
breaking position in [64], and finally the experimental breaking position is defined with the
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experiment ψ0 decrease of a
figure 1.6 116.7m – 115.85m
figure 1.7 148m 148.2m 149.05m
figure 1.8 193m 192.7m 193.5m

Table 1.2: Correspondence of breaking positions found in experiments, defined by the
virtual enstrophy criteria and by the decreasing of the wave amplitude.

Figure 1.6: Comparison of numerical (blue line) with experimental (black line) time series
for the free surface evolution h∗0 = 1.2m, δ = 0.048. Enstrophy evolution is shown in red.

amplitude decrease as well). In this case the numerical breaking points are in correspon-
dence with the experimental ones as well (see table 1.2). This definition works even if no
criteria is given as in the cases of small nonlinearity parameter.

No attempt is made here to improve the dispersive properties. The model is fully
nonlinear and has the same dispersive properties as the equations of Green-Naghdi. Its
dispersive properties are thus better than those of weakly-nonlinear Boussinesq models.
However the dispersive properties can be improved in the same way as those of the Green-
Naghdi model as in [22] or [83]. Because in this part the standard dispersive properties
of the Green-Naghdi system are kept, a small deviation to the experimental profiles in the
shoaling zone can sometimes be observed. For example, in Figure 1.8 the calculated wave
amplitude is smaller than the experimental one at x = 192.36m just before the breaking
point.

The model predictions on the evolution of the wave amplitude are compared to the
power-law of Synolakis & Skjelbreia [135]:

ηmax
hb
∼
(
h

hb

)n
(1.47)
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Figure 1.7: Comparison of numerical (blue line) with experimental (black line) time series
for the free surface evolution h∗0 = 2.2m, δ = 0.137. Enstrophy evolution is shown in red.

Figure 1.8: Comparison of numerical (blue line) with experimental (black line)time series
for the free surface evolution h∗0 = 2.9m, for δ = 0.086. Enstrophy evolution is shown in
red.
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Figure 1.9: Evolution of the maximal amplitude in numerical tests (points) for a solitary
wave with (left) h∗0 = 1.2m, δ = 0.338 (right) h∗0 = 2.2m, δ = 0.152, solid line represents
theoretic slopes according to the law (1.47).

where n = −1/4 (Green’s law) for the zone of gradual shoaling, n = −1 (Boussinesq’s law)
for the zone of rapid shoaling, n = 4 for the zone of rapid decay and n = 1 for the zone of
gradual decay, respectively, as proposed by [135]. In [139] and [64] the existence of a fifth
zone where n = 1/4 after the zone of gradual decay is shown. The numerical results are in
good agreement with the experimental results and with the values of the exponent of the
law (1.47) in each zone including in the fifth zone where we find a value of the exponent n
close to 1/4 (see Figure 1.9). The curve is a little bit less sharp than the experimental one
at the breaking point. This is probably due to the dispersive properties of the model which
are identical to the Green-Naghdi equations and which are not optimal as it is explained
above. It results that the amplitude is slightly underestimated just before the breaking
point. In all other regions, the predicted wave amplitude evolution is very similar to the
experimental results of [64].

The other law proposed in [58] permits to confirm that the breaking position is defined
correctly with the criteria (1.46). We have:

hb
h∗0

= 0.149
(S0/δ)0.523 , for S0 < 0.30, (1.48)

where the slope parameter S0 = 1.521 (tgβ) /
√
δ is related to the nonlinearity of the initial

wave and the topography angle. On the whole this law was also confirmed by the exper-
iments of Hsiao et al. (2008). The comparison of the breaking depths predicted by our
model with this law are presented in Figure 1.10. Our numerical results are very close to
the experimental results of Hsiao et al. (2008). There is an overall agreement with the
law (1.48). The deviations follow exactly the same trends as the experimental measures.
In particular, as noted by Hsiao et al. (2008), the law (1.48) under-predicts slightly the
breaking water depth for S0/δ < 2. This small deviation has the greatest value, both in
the experiments and in the numerical simulations, for S0/δ close to 1. Conversely, for large
values of S0/δ (between 9 and 10), the numerical results are smaller than the values pre-
dicted by the law (1.48). In the experiments of Hsiao et al. (2008), most values of hb/h∗0 for
S0/δ between 9 and 10 are also smaller than the predictions of this law. This comparison
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Figure 1.10: Comparison of the numerical breaking depth (points) with prediction by (1.48).

shows that the model gives an accurate prediction of the breaking depth and position, in a
very good agreement with the experiments.

Finally we have checked whether the model prescribes a good velocity of the propagating
solitary wave. The resulting plot is given in Figure 1.11, for the initial wave with δ = 0.152
on 2.2m depth channel.

1.5.2 Wave transformation over different slopes

The influence of the slope on the values of the virtual enstrophy threshold ψ0 and on
R is studied based on recent experimental works [52] and [59], for various slope angles
(β = 1◦, 3◦, 6◦ and 11◦) and a nonlinearity parameter ranging from 0.2 to 0.7. The value
of the bottom slope angle in the experiments studied above is β = 0.95◦, which is very
close to β = 1◦. The numerical tests confirm that the proposed laws for ψ0 and R give also
satisfactory predictions for the case β = 1◦ of [59]

However numerical tests show that these values are not valid for other slope angles.
Since the increase of virtual enstrophy is faster if R is smaller, a given breaking point can
be obtained with different sets of values for ψ0 and R. The wave breaks later if ψ0 or R
are increased. However, given the steepness of the variation of the virtual enstrophy near
the breaking point (see Figure 1.4), the threshold value ψ0 has a much smaller effect on the
breaking position than R. The value of ψ0 must be strongly modified to change significantly
the breaking point. It is therefore more practical to keep the same value of ψ0 as above
and to suppose that only R depends on the slope. This choice is also simpler to implement
in the numerical scheme because in this case R is locally determined by the bathymetry.
According to our numerical tests, supposing that R depends on the slope but not ψ0 is not
only the simplest choice but it works also better.

We based our final laws for virtual enstrophy limit and R on the measurement of break-
ing depths and positions from [64] and [59], and the analysis of a soliton over a plane
horizontal bottom with the nonlinearity limit (δ = 0.78). The following expressions are
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proposed:
ψ0 =

(
0.1 + 0.031

δ

)
g

h∗0
for δ > 0.05, (1.49)

and
R = 0.85 + 60 tg β. (1.50)

If δ < 0.05, then ψ0 = 0 and R = 6. Predictions obtained with these expressions for β
equal to 1◦, 3◦ and 6◦ and δ equal to 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 are compared to the
law 1.48 proposed in [58] in Figure 1.12. The results are in good agreement with the law
(1.48). The deviations are of the same order as those found in [58]. The case δ = 0.2 and
β = 6◦ has S0 = 0.36 and is not shown since the breaking type is a surging breaker ([58])
and the law (1.48) does not apply.

1.6 Conclusion

We derived a unified model which is capable to describe the breaking of a solitary wave
in a surf zone. Mechanism of wave breaking is related to the appearance of turbulent
structures. It is taken into account by introducing a new variable (enstrophy) in addition
to water depth and average velocity of the flow. The enstrophy generation is governed by
a turbulent viscosity hypothesis. Initially, filtered conservation equations are given, and
the averaging with respect to depth is then made. The final system is a system of balance
equations for mass, momentum and energy. In the resulting system, we choose to replace
the energy balance law with the enstrophy transport equation as this system is dispersive
and no shock solutions can arise. The system written in this form is more convenient
for numerical implementation. The proposed model includes three empirical parameters,
namely Reynolds number R, dissipation parameter Cr and virtual enstrophy limit value ψ0
which are defined through comparison with experiments. Numerical tests are conducted
for a significant range of values of the initial wave nonlinearity δ = 0.01 − 0.7 and for
different slopes of the mild topography (0.95◦, 1◦, 3◦, 6◦, 11◦). It is established that the
parameter R depends on the topography of the problem, and the limit value ψ0 is related
to the nonlinearity of the initial wave. The proposed empirical laws seem to define well the
model parameters, as confirmed by preliminary works on 2D simulations [116].

In conclusion, we define some directions for the future research. The proposed model
gives a good description of waves propagating over a mild topography. Therefore it should
be promising to study if the method can be successfully applied to non-uniform topogra-
phies, including dry zones. However, a more robust numerical algorithm should be con-
structed for such a purpose. Investigations of the enstrophy evolution in the case of wave
packets or cnoidal waves propagation should provide a better understanding of the waves
influence at the coast. Furthermore, an additional study might be required to define the
enstrophy limit value to terminate breaking process. In the present study, no additional
criterion was used since it was not needed for the investigated experimental cases. How-
ever, it is important to note that enstrophy decreases to a small value after breaking and
we suppose (at least in some cases) that no stopping criterion is needed. The verification
is left for the future. One of the advantages of the proposed approach is the possibility to
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capture an essential physical behaviour with such a simple depth-average model without
any criterion for weakly-nonlinear waves. However, a breaking criterion is required for the
simulations of the propagation of strongly nonlinear waves. One of the perspectives of this
approach is to find a way to get rid of the breaking criterion once for all. Of course, the
DNS for the Euler equations or the Navier-Stokes system could be applied, but it is a very
time-consuming solution.

There are two main numerical issues related to the studied system of equations. The
first one is the discretization of the high-order derivatives corresponding to the dispersive
effects, and the second one is dealing with numerical boundaries. And if the numerical
algorithm used in the present chapter is an appropriate way to treat the dispersive effects
simply enough, the proposed boundary conditions are not very robust. In the case of a short
channel as for the last experimental study we are obliged to introduce a long extension of
the numerical area to prevent unphysical reflections in the numerical domain. This issue
takes place usually when one deals with dispersive equations. There is no uniform strategy
to treat such problem in the case of nonlinear dispersive equations. We address this question
in the application to the Green-Naghdi equation in Part II of the present work.



Chapter 2

Two-layer asymptotic model for
the wave propagation in the

presence of vorticity

In the present study, we consider a simple two-layer representation of the ocean wave
propagation. The upper layer corresponds to the (thin) layer of fluid above the thermocline,
whereas the lower layer is below the thermocline. The densities of the layers are assumed
to be constant. Even in this simple setting, using the full Euler system is computationally
too expensive. Hypothesis such as shallowness, vanishing vorticity and hydrostatic pressure
are usually made to obtain two-layer shallow water models that are mathematically more
manageable. However, such models cannot describe the propagation of both internal and
free surface waves correctly, while non-hydrostatic effects are not included. The present
chapter aims to derive a two-layer dispersive model considering regimes from medium to
large vorticities in shallow water flows. Such assumptions allow taking into account the
interaction between both surface and interface waves and underlying currents. Following
[29], we derive a model in the conservative framework. No assumptions are made on the
velocity profiles in the layers, which leads to additional variables. The closure is found using
the vorticity equations. The derivation is very similar to the one presented in Chapter 1,
except that the creation of the vorticities is not addressed here. This chapter concerns the
model derivation; the numerical study is left for future research.

2.1 Euler equations

We consider a two-layer flow of inviscid incompressible and immiscible fluids of constant
densities ρ1, ρ2, under a stable stratification assumption ρ1 > ρ2. The flow area is bounded
by a free surface z = ζ1(~x, t) above and by a nonuniform bottom z = −h20 + ζ2(~x, t)
below (see Figure 2.1), h0i denotes the reference free surface and bottom levels. Hereafter
quantities with index ‘1’ correspond to the upper layer, and index ‘2’ to the lower one.

We introduce the following notations for the velocities and pressure fields, respectively,

57
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x

z

g

h 10

h 20 h 20
z = -     + b(x)

Figure 2.1: Scheme of the two-layer flow in the gravity field.

Vi = (~ui(t, ~x, z), wi(t, ~x, z)), ~ui(t, ~x, z) = (ui(t, ~x, z), vi(t, ~x, z)) and pi, i = 1, 2. We will skip
the arguments when confusion is not possible. The governing equations are given by the
full two-layer Euler system: (Vi)t + Vi · ∇~x,zVi = − 1

ρi
∇~x,zpi − gez,

∇~x,z · Vi = 0,
(~x, z) ∈ R3, t > 0, (i = 1, 2) (2.1)

which is complemented with the kinematic boundary conditions:

ζ1t + ~u1
∣∣
z=h10+ζ1

· ∇ζ1 = w1
∣∣
z=h0

1+ζ1
,

ζ2t + ~u1
∣∣
z=ζ2
· ∇ζ2 = w1

∣∣
z=ζ2

,

ζ2t + ~u2
∣∣
z=ζ2
· ∇ζ2 = w2

∣∣
z=ζ2

,

~u2
∣∣
z=−h20+b · ∇b = w2

∣∣
z=−h20+b(x),

(2.2)

and the dynamic boundary conditions:

p1
∣∣
z=h10+ζ1

= 0, p1
∣∣
z=ζ2

= p2
∣∣
ζ2
. (2.3)

The gravity acceleration is denoted by g. Hereandafter, the indices t, x, z denote the deriva-
tives, while i = 1, 2 corresponds to the layers. The gradient operator ∇~x,z is divided into
horizontal and vertical parts.

It is well known that under assumptions of shallowness, vanishing vorticity and hy-
drostatic pressure, the model (2.1) can be reduced to the two-layer shallow water model;
by construction, the dispersive/non-hydrostatic effects are not included. In [14, 42] such
effects are taken into consideration in the context of a two-layer model, though the hypoth-
esis of vanishing vorticity is made. We aim to include dispersive terms and non-hydrostatic
pressure components in the derivation of the depth-averaged system. For that purpose,
we follow the strategy [29, 119]. We reduce the full two-layer Euler equations (2.1) to a
non-dimensional depth-average system that describes the evolution of the fluid heights, the
horizontal momentums and other average quantities, as pressure contributions and velocity
fluctuation tensors, which can be formally called ‘Reynolds tensors’ by analogy with the
turbulent theory. This system is exact but requires closure relations, since no assumptions
on velocities fluctuations are made. In what follows, we derive models of different orders
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of approximation in the case of constant and general vorticities. To find the closure rela-
tions, following the strategy found in [29] for the one-layer model, we define shear velocities
as horizontal vorticity contributions to the horizontal velocity fields (for irrotational flow
these contributions are zero, and the system is closed). The pressure gradients and velocity
fluctuations can be represented in terms of the shear velocities. By using vorticity and
incompressible equations, we find equations for shear velocities, and therefore the system
becomes closed. This technique is very reminiscent to the one applied in Chapter 1, except
that we are using the vorticity equation instead of the energy equation. Moreover, the
dissipation effects and vorticity creation included in Chapter 1 are now dropped. We in-
clude the influence of underlying currents on surface and interface wave propagation in the
conservative framework. The difference with the one-layer derivation lies in the additional
terms which are responsible for the interaction between the layers.

2.2 Asymptotic analysis

2.2.1 Dimensionless form of the averaged equations

We introduce the following dimensionless parameters:

ρ = ρ1
ρ2

> 1, ε1 = a1
h10

, ε2 = a2
h10

, µ =
h2

10

L2 , δ = h10

h20
, β = aB

h10
, (2.4)

where several characteristic quantities are specified: the typical amplitudes a1 of the surface
waves and a2 of the internal waves, the typical amplitude of the bottom variations aB, the
typical depths h10 and h20 of two layers and the typical wavelength L.

Parameters ε1 and ε2 are the nonlinearity parameters. The parameter µ is the shallow-
ness, or dispersion parameter, determining which wave scales are taken into account. In
order to avoid confusion we emphasize the difference with the notations used in Chapter 1.

We are interested in shallow water flows and therefore we assume that the shallowness
parameter is small, µ � 1, but no smallness assumption is made for the nonlinearity
parameters ε1, ε2, allowing for large-amplitude waves.

We define the dimensionless variables (with tildes) as follows:

x̃ = x

L
, z̃ = z

h10
, ζ̃1 = ζ1

a1
, ζ̃2 = ζ2

a2
, b̃ = b

aB
. (2.5)

The dimensionless velocities, time and pressure fields are given by:

~̃ui = ~ui

εi
√
gh10

, w̃i = wiL

h10Ui
, p̃i = pi

ρigh10
, t̃ =

t
√
gh10

L
, (i = 1, 2), (2.6)

In terms of dimensionless variables, the Euler equations take the form (tildes are omitted): (Vi)t + εiVi · ∇~x,zVi = − Ri
εiM

(∇~x,zpi + ez),

∇~x,z · Vi = 0,
(2.7)

where M = (0, 0, µ)>, ez = (0, 0, 1)>, R1 = 1, R2 = ρ, coupled with the dimensionless
boundary conditions. Hereafter, the index i = 1, 2 corresponds to the layer parameters.
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The vertical averaged values of the horizontal velocity components are introduced as

u1 = 1
h1

∫ 1+ε1ζ1

ε2ζ2

~u1 dz, u2 = 1
h2

∫ ε2ζ2

− 1
δ

+βb(x)
~u2 dz, (2.8)

where h1 = 1 + ε1ζ1 − ε2ζ2 and h2 = ε2ζ2 + 1
δ − βb(x) are the variable layer depths.

Therefore the velocity field decompositions can be given by:

~u1 = u1 +√µ~u∗1(t, ~x, z), ~u2 = u2 +√µ~u∗2(t, ~x, z). (2.9)

No assumptions on the velocity fluctuations ~u∗i are made, which means that no velocity
profiles are assumed. In the terminology of [137], or [117], we consider weakly sheared
flows.

The system of depth-averaged equations is obtained by integrating the system (2.7) over
z and taking into account the boundary conditions (2.2), (2.3) in dimensionless form,

(hi)t + εi∇ · (hiui) = 0,

(hiui)t + εi∇ · (h1ui ⊗ ui) + εiµ∇ ·
(∫ Bi

Ai

~u∗i ⊗ ~u∗i dz
)

+ Ri
εi

∫ Bi

Ai

∇pidz = 0,

(wi)t + εi(ui∇·)wi + εiwi(wi)z = − 1
µεi

(Ri(pi)z + 1),

(2.10)

where ∇ = (∂x, ∂y) is a two-dimensional operator, and

A1 = ε2ζ2, B1 = 1 + ε1ζ1, A2 = −1
δ

+ βb(x), B2 = ε2ζ2, (2.11)

denote the upper and lower layer boundaries.
The system (2.10) is exact and couples the equations for depths hi and average velocities

ui. However, a closure for ‘Reynolds tensors’ and pressure terms:∫ Bi

Ai

~u∗i ⊗ ~u∗i dz,
Ri
εi

∫ Bi

Ai

∇pi

in terms of ui, hi is required.
In the Chapter 1 the procedure is similar; the new variable enstrophy is added and the

energy conservation law is used. Now, in order to find a closure we introduce dimensionless
vorticities Ωi = ∇× ui. Taking into account (2.9), we represent Ωi as:

Ωi =
εi
√
gh10

h10

√
µ

 −ṽ∗iz +√µw̃iy
ũ∗iz −

√
µw̃ix

∇⊥ · ~̃ui

 ≡ εi
√
gh10

h10

√
µ

(
~ωih
ωiv

)
, (2.12)

where the orthogonal operator ∇⊥ is defined as ∇⊥ = (−∂y, ∂x), and we divide the vorticity
fields into horizontal ~ωih, and vertical ones ωiv, i = 1, 2.
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Velocity fields decompositions

Now we can find representations for the velocity fields in terms of vorticities. Indeed, an
integration of the continuity equations leads to the following expressions for the vertical
velocities components in terms of horizontal velocities:

w1 = −∇ · [u1(z − ε2ζ2)]−√µ∇ ·
∫ z

ε2ζ2

~u∗1dz + ε2
ε1
ζ2t ,

w2 = −∇ ·
[
u2

(
z − βb(x) + 1

δ

)]
−√µ∇ ·

∫ z

βb(x)− 1
δ

~u∗2dz,

(2.13)

using the boundary conditions.
The definition of the vorticities (2.12) gives the equations for the components of the

horizontal velocity fields:
∂z~u
∗
i = √µ∇wi − (~ωih)⊥. (2.14)

Integrating (2.14) and taking into account the expressions for vertical velocities (2.13) yields
(we use ∂z~u∗i = ∂zui)

~u∗1 = √µ
(∫ 1+ε1ζ1

z
∇∇ · [u1(z − ε2ζ2)]

)∗
+ µ

(∫ 1+ε1ζ1

z
∇∇ ·

∫ z

ε2ζ2

~u∗1

)∗

−√µ
(∫ 1+ε1ζ1

z

ε2
ε1
∇ζ2t

)∗
+
(∫ 1+ε1ζ1

z
(~ω1

h)⊥
)∗

, (2.15)

~u∗2 = √µ
(∫ ε2ζ2

z
∇∇ ·

[
u2

(
z − βb(x) + 1

δ

)])∗
+ µ

(∫ ε2ζ2

z
∇∇ ·

∫ z

− 1
δ

+βb(x)
~u∗2

)∗

+
(∫ ε2ζ2

z
(~ω2

h)⊥
)∗

. (2.16)

We introduce the operators Ti, i = 1, 2, defined as:

T1V =
∫ 1+ε1ζ1

z
∇∇ ·

∫ z

ε2ζ2

V, T2V =
∫ ε2ζ2

z
∇∇ ·

∫ z

− 1
δ

+βb(x)
V,

T ∗1 V = (T1V )∗, T ∗2 V = (T2V )∗,

and the shear velocities which represent the contribution of the horizontal vorticities to the
horizontal velocities:

~u1sh =
∫ 1+ε1ζ1

z
(~ω1

h)⊥, ~u2sh =
∫ ε2ζ2

z
(~ω2

h)⊥, (2.17)

so that the expressions (2.15), (2.16) can be rewritten as

(1− µT ∗1 )~u∗1 = ~u∗1sh +√µ
(
T ∗1 u1 −∇ζ2t

(
−z + 1 + ε1ζ1 + ε2ζ2

2

))
,
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(1− µT ∗2 )~u∗2 = ~u∗2sh +√µ (T ∗2 u2) .

These expressions are exact, however for the model derivation we will use approximate
expressions. Applying the operators (1 +µT ∗i ) on both sides of each identity, we obtain the
approximations

~u∗1 = (1 + µT ∗1 )~u∗1sh +√µ
(
T ∗1 u1 −∇ζ2t

(
−z + 1 + ε1ζ1 + ε2ζ2

2

))
+O(µ3/2), (2.18)

~u∗2 = (1 + µT ∗2 )~u∗2sh +√µ (T ∗2 u2) +O(µ3/2). (2.19)

Recalling the velocity field decompositions (2.9), we can write first order approximations
of the complete velocity fields ui:

u1 = u1 +√µu∗1sh +O(µ), u2 = u2 +√µu∗2sh +O(µ), (2.20)

and second order approximations:

u1 = u1 +√µu∗1sh + µ

(
T ∗1 u1 −∇ζ2t

(
−z + 1 + ε1ζ1 + ε2ζ2

2

))
+ µ3/2T ∗1 u

∗
1sh +O(µ2),

u2 = u2 +√µu∗2sh + µ (T ∗2 u2) + µ3/2T ∗2 u
∗
2sh +O(µ2).

(2.21)
Significantly, even at first order O(µ) the velocity field is coupled with vorticities effects, and
layer velocities depend on z. We also note that the model includes a coupling between the
layers through the interface dynamical condition, which leads to a term with an explicit
dependence on z in the upper velocity field representations (2.21). Finally, if the shear
velocities are known then the system is closed. The next step is to define the equations for
the shear velocities evolution.

Equations for the shear velocities

The vorticity in each layer is transported in the absence of viscous and dissipation effects.
These assumptions are physically relevant in some flow regimes. The vorticity equations
are found by applying the curl operator to the momentum equations

ωit + εi(~ui∇x,z)ωih = εiω
i
h∇ui + εi√

µ
ωiv(ui)z. (2.22)

We derive first the equation for the shear velocity in the upper layer u∗1sh. Recalling the
definition of u1sh (2.17), we integrate the upper layer equation (2.22),(i = 1) with respect
to z over the interval (z, 1 + ε1ζ1):

∂tu1sh + ε1u1 · ∇u1sh + ε1u1sh · ∇u1 − (ε1∇ · (u1(z − ε2ζ2))− ε2ζ2t)∂zu1sh = O(ε1
√
µ).
(2.23)

The following vectorial identity is used above

(∇ ·A)B + B⊥ · ∇A⊥ + (∇⊥ ·A)B = B ·A.
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Then we integrate the equation (2.23) once again over the layer depth, in order to find
the equation for the average component u1sh. Subtracting one from another gives us the
following equation for u∗1sh:

∂tu
∗
1sh+ε1u1 ·∇u∗1sh+ε1u

∗
1sh ·∇u1−

(
ε1∇·(u1(z−ε2ζ2))−ε2ζ2t

)
∂zu
∗
1sh = O(ε1

√
µ). (2.24)

Analogously, we obtain the equation for the shear velocity of the lower layer:

∂tu
∗
2sh + ε2u2 · ∇u∗2sh + ε2u

∗
2sh · ∇u2 −

(
ε2∇ ·

(
u2

(
z − βb(x) + 1

δ

)))
∂zu
∗
2sh = O(ε2

√
µ).

(2.25)
It is should be noted that the order O(εi

√
µ) of equations obtained in this section is not

enough to derive the models of order O(µ2) in the case of general vorticities. Then more
precise equations are needed for the shear velocities in order to derive a Green-Naghdi
model of order O(µ2). This derivation is left for future work. In the case of a general
vorticity, a model of intermediate order O(µ3/2) is proposed.

Pressure fields closures

The pressure field is represented in terms of the velocities by integrating the vertical compo-
nents of the Euler equations (2.10). Taking into account the dynamic boundary conditions
(2.3) we have:

1
ε1
∇p1 = ∇

∫ 1+ε1ζ1

z

(
− 1
ε1
∂zp1

)
dz =

∇ζ1 + µ∇
∫ 1+ε1ζ1

z
(w1t + ε1(u1∇·)w1 + ε1w1w1z) dz, (2.26)

ρ

ε2
∇p2 = ∇

(∫ ε2ζ2

z

(
− ρ

ε2
∂zp2

)
dz + ρ

ε2
p1
∣∣
ε2ζ2

)
=

= ∇ζ2 + µ∇
∫ ε2ζ2

z
(w2t + ε2(u2∇·)w2 + ε2w2w2z) dz +∇

(
ρ

ε2
p1
∣∣
ε2ζ2

)
. (2.27)

The first terms on the right-hand sides in both representations are related to the hydrostatic
pressure. An expansion for non-hydrostatic terms will be found in the next section in the
case of constant vorticities.

Generally speaking, the required closures are already constructed. The algorithm for
the solution can be outlined as follows:

• The shear velocities u∗1sh, u∗1sh are defined by equations (2.24), (2.25);

• Using the equations (2.18), (2.19) the velocity fluctuations ~u∗1, ~u∗2 are calculated;

• The horizontal velocity fields are reconstructed using (2.20), or (2.21) depending on
the approximation order of the model; the vertical velocities are specified by (2.13);



CHAPTER 2. TWO-LAYER ASYMPTOTIC MODEL 64

• The pressure field contributions are determined from (2.27), (2.26) using the vertical
velocities w1, w2.

However, the order of the equations (2.24), (2.25) for shear velocities must be consistent
with the model order, and therefore sometimes more precise equations than (2.24), (2.25)
are needed. Moreover, the main issue encountered in the derivations is the calculation of
the pressure contributions with (2.27), (2.26). We will limit ourselves only to some special
cases. First we consider the constant vorticity case, and derive a model of the same order
as the classical Green-Naghdi equations. Then we turn to the general vorticity case and
derive a model of lower order.

2.3 Constant vorticities 1d case

We consider a one-dimensional depth-averaged approach, which means that we consider
the plane (x, z), and velocities have only two non-zero components. In this case, only one
component of each vorticity is non-zero, and we assume that these components remain
constant for all time:

Ωi =

 0
ωi
0

 , ωi = ∂z~u
∗
i −
√
µ∂xwi ≡ const.

The horizontal vorticity fields are then written as (ωih)⊥ = −(ωi, 0)>. The shear velocities
defined by (2.17) are calculated explicitly without using the equations (2.24), (2.25). One
obtains

uish =
∫ Bi

Ai

(ωih)⊥dz = −ωi
(
Bi − z −

hi
2

)
, (2.28)

where Ai, Bi are boundaries of the layers defined above by (2.11). Therefore, the vertical
velocities are defined with (2.13):

w1 = ∂x(u1(z − ε2ζ2)) +
√
µ

2 ∂x (ω1 (z − ε2ζ2) (1 + ε1ζ1 − z)) + ε2
ε1
ζ2t ,

w2 = ∂x

(
u2

(
z − βb(x) + 1

δ

))
+
√
µ

2 ∂x

(
ω2 (z − ε2ζ2)

(
βb(x)− 1

δ
− z
))

.

(2.29)

2.3.1 ‘Reynolds tensor’ contributions for the constant vorticity case

Using velocity field reconstructions (2.20) and shear velocities (2.28) calculated above, we
define the ‘Reynold tensors’ with second order approximation O(µ2). For the upper layer
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one has

ε1µ∂x

∫ 1+ε1ζ1

ε2ζ2

|u∗1|2dz = ε1µ∂x

∫ 1+ε1ζ1

ε2ζ2

|u∗1sh|2 dz + 2ε1µ
3/2∂x

∫ 1+ε1ζ1

ε2ζ2

u∗1shT1u1 dz

− 2ε2µ
3/2∂x

(
ζ2t

∫ 1+ε1ζ1

ε2ζ2

u∗1sh(1 + ε1ζ1− z)dz
)

=

ε1µ

12 ω
2
1(h3

1)x−
ε1µ

3/2

12 ω1∂x
(
h3

1(h1∂
2
xu1 − 4ε2∂xζ2∂xu1 − 2ε2∂

2
xζ2u1)

)
+ ε1µ

3/2

6 ω1∂x(h3
1ζ2t).
(2.30)

Likewise, for the lower layer we obtain

ε2µ∂x

∫ ε2ζ2

− 1
δ

+βb(x)
|u∗2|2dz =

ε2µ

12 ω
2
2(h3

2)x −
ε2µ

3/2

12 ω2∂x
(
h3

2(h2∂
2
xu2 − 4βb′(x)∂xu2 − 2βb′′(x)u2)

)
. (2.31)

Therefore, for the constant vorticity case, the required closure relations for the ‘Reynold
tensors’ are calculated directly, without shear velocities equations. Moreover, these terms
are defined only in terms of hi, ui and on the other known parameters such as a bottom
parametrisation b(x) and constant vorticities ωi.

2.3.2 Pressure contributions

In order to compute the pressure contributions, we represent the vertical velocity (2.29) in
the following form:

w1 = f1(x, t) + zg1(x, t), w2 = f2(x, t) + zg2(x, t).

Here fi(x, t), gi(t, x) are defined as:

f1(x, t) = ε2
ε1
ζ2t + ε2∂x(u1ζ2)−

√
µ

2 ω1(ε1ε2∂x(ζ1ζ2) + ε2ζ2x),

g1(x, t) =
√
µ

2 ω1∂x(ε1ζ1 + ε2ζ2)− ∂xu1,

f2(x, t) = β∂x(u2b(x))− 1
δ
∂xu2 −

√
µ

2 ω2

(
ε2β∂x(ζ2b(x))− 1

δ
ε2ζ2x

)
,

g2(x, t) =
√
µ

2 ω2∂x (ε2ζ2 + βb(x))− ∂xu2.
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Using such notations, the pressure integrals take the form:

1
ε1

∫ 1+ε1ζ1

ε2ζ2

∇p1 dz = h1ζ1x

+ µ

(
ε2ζ2xh1

(
D1f1
D1t

+ ε1f1g1 + 1
2

(
D1g1
D1t

+ ε1g
2
1

)
(1 + ε1ζ1 + ε2ζ2)

)

+∂x
(
h2

1
2

(
D1f1
D1t

+ ε2ζ2
D1g1
D1t

+ ε1f1g1 + ε1ε2ζ2g
2
1

)
+ h3

1
3

(
D1g1
D1t

+ ε1g
2
1

)))

− µ3/2ω1ε1

(
h3

1
12ε2ζ2x∂

2
xu1 + ∂x

(
h3

1
12

(
∂xf1 +

(
1 + ε1ζ1 −

h1
2

)
∂xg1

)
+ h4

1
24∂xg1

))
,

(2.32)

1
ε2

∫ ε2ζ2

− 1
δ

+βb(x)
∇p2 dz = h2ζ2x

+ µ

(
βb′(x)h2

(
D2f2
D2t

+ ε2f2g2 + 1
2

(
D2g2
D2t

+ ε2g
2
2

)(
ε2ζ2 −

1
δ

+ βb(x)
))

+∂x
(
h2

2
2

(
D2f2
D2t

−
(

1
δ
− βb(x)

)
D2g2
D2t

+ ε2f2g2 − ε2

(
1
δ
− βb(x)

)
g2

2

)
+ h3

2
3

(
D2g2
D2t

+ ε2g
2
2

)))

− µ3/2ω2ε2∂x

(
h3

1
12βb

′(x)∂2
xu2 + ∂x

(
h3

2
12

(
∂xf2 +

(
ε2ζ2 −

h2
2

)
∂xg2

)
+ h4

2
24∂xg2

))
,

(2.33)

with the material derivative operators given by:

D1f

D1t
= ∂tf + ε1u1∂xf,

D2f

D2t
= ∂tf + ε2u2∂xf. (2.34)

Thus, gathering the ‘Reynolds tensors’ (2.30), (2.31) and pressure contributions (2.32),
(2.33), we finally obtain a model of first order O(µ):

h1t + ε1(h1u1)x = 0,

(h1u1)t + ε1(h1u
2
1)x + µε1

12 ω1(h3
1)x + h1ζ1x + 1

6µh1Mε1ε2 = 0,

h2t + ε2(h2u2)x = 0,

(h2u2)t + ε2(h2u
2
2)x + µε2

12 ω2(h3
2)x + h2ζ2x+

∫ ε2ζ2

− 1
δ

+βb(x)
∇

(
ρ

ε2
p1

∣∣∣∣
ε2ζ2

)
+ 1

6µh2Mb = 0,

(2.35)
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where the terms of order µ are the constant vorticity terms and the termsMε1ε2 andMb

are defined as follows

Mε1ε2 = 3ε1ε2u
2
1G(h1, ζ1, ζ2) + 2h2

1(ε1u1xu1xxu1txx)
+ u1T1(u1) + 6ε2ζ1x(ζ2tt + ε1ζ2xu1t) + 3h1T2(u1),

Mb = 3βε2u
2
2B(h2, b) + ε2u2R1(u2) + 6βb′(βb′ + h2x)u2t + h2R2(u2).

In calligraphic here we denote the following operators:

T1(V ) = −6ε1h1x(ε1ζ1x∂xV + h1∂xxV ) + ∂xV (6ε3
1(ζ1x)2) + 9ε1ε2h1ζ2xx)−

2ε1h
2
1∂xxxV + 12ε1ε2ζ1xζ2tx + 6ε2h1ζ2txx ,

T2(V ) = 2ε2
1(∂xV )2ζ1x + ε2ζ2xx∂tV − 2h1x∂txV + 2ε2∂xV ζ2tx + ε2ζ2ttx ,

R1(V ) = (6β2(b′)2 + 6βb′h2x + 9h2βb
′′)∂xV − 6h2h2x∂

2
xV − 2h2

2∂
3
xV,

R2(V ) = 6ε2(βb′ + h2x)(∂xV )2 + 3βb′′∂tV − 6h2x∂txV + h2(2ε2∂xV ∂xxV − 2∂txxV ),

G(h1, ζ1, ζ2) = 2ε1ζ1xζ2xx + h1ζ2xxx ,

B(h2, b) = 2(βb′ + h2x)b′′ + h2b
′′′.

The interface pressure term is defined as:

∫ ε2ζ2

− 1
δ

+βb(x)
∇

(
ρ

ε2
p1

∣∣∣∣
ε2ζ2

)
dz = ρ

ε2
h1x + ρ

ε1
ε2
µ3/2∂x

(
h3

1
12ω1B1x

)

+ ρ
ε1
ε2
µ∂x

(
h1

(
D1A1
D1t

+ ε1A1B1

)
+ h1

(
D1B1
D1t

+ ε1B
2
1

)
(1 + ε1ζ1 + ε2ζ2)

)
(2.36)

A generalized Green-Naghdi model of second order O(µ2) in the presence of constant vor-
ticity can be written directly from the contribution (2.30), (2.31), (2.32), (2.33) with the
additional interface term (2.36).

2.4 1d Equations with general vorticity.

In the present section, we derive the 1D equations in the presence of general vorticities
in each layer. As already discussed, the calculation of the pressure contributions for the
model of order O(µ2) are cumbersome, and additional terms in the shear velocity equations
need to be added. Here, we limit ourselves to the derivation of a model of intermediate
order O(µ3/2). Assuming that medium wave amplitudes are considered (ε = √µ) like in
the case of the classical Boussinesq equations, we drop the O(µ2) terms. The vorticities are
not included in the pressure terms at this order, however the pressure is non hydrostatic
it each layer. Moreover, the pressure contributions are calculated explicitly, and the result
coincides with the one calculated before, for the constant vorticity case without taking into
account the vorticity terms (see Subsection 2.3.2).
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The ‘Reynolds tensor’ contributions are written in terms of shear velocities, and closure
relations are needed. We have

ε1µ∂x

∫ 1+ε1ζ1

ε2ζ2

|u∗1|2dz = ε1µ∂x

∫ 1+ε1ζ1

ε2ζ2

|u∗1sh|2dz +O(µ3/2),

ε2µ∂x

∫ ε2ζ2

− 1
δ

+βb(x)
|u∗2|2dz = ε2µ∂x

∫ ε2ζ2

− 1
δ

+βb(x)
|u∗2sh|2dz +O(µ3/2).

We introduce the general vorticities E1, E2 defined as:

E1 =
∫ 1+ε1ζ1

ε2ζ2

|u∗1sh|2dz, E2 =
∫ ε2ζ2

− 1
δ

+βb(x)
|u∗2sh|2dz.

In order to find the closure relations, we use the equations for the shear velocities (2.24),
(2.25) derived with the order O(εi

√
µ).

Multiplying each equation (2.24), (2.25) by uish, respectively, upon integration over the
layer depths, we obtain the equations for E1, E2:

E1
t + ε1u1E

1
x + 3ε1u1xE

1 = O(ε1
√
µ), (2.37)

E2
t + ε2u2E

2
x + 3ε2u2xE

2 = O(ε2
√
µ). (2.38)

Then, the closure is found by adding the two additional equations (2.37), (2.38) to the
model. Since E1, E2 appear only in the terms of order O(µ), the order of the approximate
equation (2.37), (2.38) is enough for the derivation of a model of order O(µ3/2).

Following [29] we introduce the operators

T1(V ) = 1
3h1

∂x
(
h3

1∂xV
)

+ ε2ζ2xh1∂x V, (2.39)

Q1(V ) = 2
3h1

∂x

(
h3

1 (∂xV )2
)

+ 2ε2ζ2xh1

(
∂x V

)2
, (2.40)

for the equations in the upper layer, and the operators

T2(V ) = 1
3h2

∂x
(
h3

1∂xV
)
, (2.41)

Q2(V ) = 2
3h2

∂x

(
h3

2 (∂xV )2
)
, (2.42)
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for the lower layer. The final system reads as follows,

h1t + ε1∂x (h1u1) = 0,

(
1 + µ

2 T1

) D1u1
D1t

− µε1
2 Q1(u1)+

µε1ζ1x
D2

1ζ1
D1t2

+ µh1
2 ∂x

(
D1ζ1
D1t

+ ε2
ε1

D1ζ2t
D1t

)
+ µε1

h1
E1 + ζ1x = 0,

E1
t + ε1u1E

1
x + 3ε1u1xE

1 = 0,

h2t + ε2∂x (h2u2) = 0,

(
1 + µ

2 T2

) D2u2
D2t

− µε2
2 Q2(u2)+

µε2h2x
D2ζ2
D2t

+ µh2
2 ∂x

(
D2ζ2
D2t

+ βbx
D2u2
D2t

)
+ µε2

h2
E2 + Pint = 0,

E2
t + ε2u2E

2
x + 3ε2u2xE

2 = 0,

(2.43)

where the interface pressure contribution Pint is the same as previously defined by (2.36).
By introducing the operators (2.39)-(2.42) we aim to write the model in a formulation close
to the one used for the numerical study of the Green-Naghdi equations in [21], [43], or [83],
for example. The methods considered in these works are constructed for an efficient treat-
ment of high order derivatives coming with dispersive effects, using a similar operator form
of the Green-Naghdi system. Another strategy, used to overcome the numerical difficulties
related to dispersive effects, found in [86], is applied in Chapter 1. In order to allow for
the application of the second strategy to the case of constant vorticity, in the next section
we follow the Lagrangian approach proposed in [14] for a two-layer model derivation in
the absence of vorticity effects. We provide preliminary derivations for the Euler-Lagrange
equations and corresponding additional conservation laws with constant vorticities in each
layer.

2.5 Lagrangian approach: Constant vorticity 1d case.

The equations in the case of constant vorticity in each layer can be obtained by applying
the Hamiltonian principle to the master Lagrangian L of the two-layer system. Following
the approach described in [14], we define the Lagrangian for the two-layer system as:

L =
∫
R2

∫ ε2ζ2

− 1
δ

(
ε2

2
2
(
|~u2|2 + µw2

2
)
− z
)
dxdz+

∫
R2

∫ 1+ε1ζ1

ε2ζ2

(
ρε2

1
2
(
|~u1|2 + µw2

1
)
− ρz

)
dxdz.

We introduce the same dimensionless variables (2.5), (2.6). Integrating and dropping the
O(µ3/2) terms, the following approximate expression for L is obtained:

L =
∫
R2
T 2 −W 2

(
h2,

D2h2
D2t

)
dz +

∫
R2
T 1 −W 1

(
h1, h2,

D1h1
D1t

,
D1h2
D1t

)
dz, (2.44)
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where the kinetic energies T i and the potentials W i

(
hi,

Dihi
Dit

)
are defined as follows:

T 2 = ε2
2
2 |u2|2h2, T 1 = ρε2

1
2 |u1|2h1,

W 2
(
h2,

D2h2
D2t

)
= h2(h2 − 2/δ)

2 − ε2
2
2

(
µε2
12h2

ω2
2(h3

2) + µ
h2
3

(
D2h2
D2t

)2
)
,

W 1
(
h1, h2,

D1h1
D1t

,
D1h2
D1t

)
= ρh1(h1 + 2h2 − 2/δ)

2

−ρε
2
1

2

(
µε1
12h1

ω2
1(h3

1) + µh1

(
D1(h1 + h2)

D1t

)2 D1h2
D1t

+ µh1

(
D1h1
D1t

)2
)
.

The dimensionless parameters used above are defined earlier by (2.4). The horizontal
velocity decompositions (2.9) are taken into account, and the velocities u1, u2 denote again
the depth-average horizontal velocities (see (2.8)).

The corresponding Euler-Lagrange equations lead to the equations for the system mo-
tion. By adding the mass conservation laws

(h1)t + ε1∂x(h1u1) = 0,

(h2)t + ε2∂x(h2u2) = 0,
(2.45)

as constraint relations to the action integral, we construct the momentum conservation
equations. We first introduce the notations

ρ1 = h1, ρ2 = ρh2.

For the upper layer, we find the following momentum equation

D1u1
D1t

+ ∂x

(
ρ1
ρ

+ ρ2 + µε2
1

8ρ2ω
2
1ρ

2
1

)

−∂x

(
µε2

1

(
1
2

(
D1ρ2
D1t

)2
+ 1

2
D1ρ1
D1t

D1ρ2
D1t

+ 1
6ρ

(
D1ρ1
D1t

)2
)
− ρ1µε

2
1

(
1
2

D2
1ρ2

D1t2
+ 1

3ρ
D2

1ρ1
D1t2

))
+

µε2
1

((
1
2

D2
1ρ2

D1t2
+ 1

3ρ
D2

1ρ1
D1t2

)
ρ1x +

(
1
2

D1ρ2
D1t

+ 1
3ρ

D1ρ1
D1t

)
D1ρ1x
D1t

)
+µε2

1

((
D2

1ρ2
D1t2

+ 1
2

D2
1ρ1

D1t2

)
ρ2x +

(
D1ρ2
D1t

+ 1
2

D1ρ1
D1t

)
D1ρ2x
D1t

)
+u1xµε

2
1

[(
1
2

D1ρ2
D1t

+ 1
3ρ

D1ρ1
D1t

)
ρ1x +

(
D1ρ2
D1t

+ 1
2

D1ρ1
D1t

)
ρ2x

]
= 0,

(2.46)



CHAPTER 2. TWO-LAYER ASYMPTOTIC MODEL 71

and the equation in the lower layer reads
D2u2
D2t

+ ∂x

(
ρ1 + ρ2 + µε2

2
8 ω2

2ρ
2
2

)

−∂x

(
1
6µε

2
2

(
D2ρ2
D2t

)2
− 1

3ρ2µε
2
2
D2

2ρ2
D2t2

− ρ1µε
2
1

(
D2

1ρ2
D1t2

+ 1
2

D2
1ρ1

D1t2

))

+µε2
2

(
1
3

D2
2ρ2x

D2t2
+ 1

3
D2ρ2
D2t

D2ρ2x
D2t

)
+ 1

3u2xµε
2
2
D2ρ2
D2t

ρ2x = 0.

(2.47)
One property of variational structure of the obtained system is that total momentum and
energy conservation can be derived. One obtains the two conservation laws:

(ρ1u1 + ρ2u2)t +
(
ρ1u

2
1 + ρ2u

2
2 + µ

12

(
ε2

1ω
2
1ρ

3
1

ρ2 + ε2
2ω

2
2ρ

3
2

)
+ p

)
x

= 0,(
1
2ρ1u

2
1 + 1

2ρ2u
2
2 + E

)
t

+
(
u1

(
1
2ρ1u

2
1 + F1

)
+ u2

(
1
2ρ2u

2
2 + F2

))
x

= 0,
(2.48)

where the ”pressure“ p, ”internal energy“ E, and energy fluxes F1, F2 are defined as follows

p = 1
2

(
ρ2

1
ρ

+ ρ1ρ2 + ρ2
2

)
+ 1

3ρ
2
2µε

2
2
D2

2ρ2
D2t2

+ µε2
1ρ1

(ρ1
2 + ρ2

) D2
1ρ2

D1t2
+ µε2

1

(
ρ1
3ρ + ρ2

2

)
D2

1ρ1
D1t2

,

E = ρ2
2

(
ρ2 −

2
δ

)
+ ρ1

2

(
ρ1
ρ

+ 2
(
ρ2 −

1
δ

))
+ µ

24

(
ε2

1ρ
3
1ω

2
1

ρ2 + ε2
2ρ

3
2ω

2
2

)

+ 1
6µρ2ε

2
2

(
D2ρ2
D2t

)2
+ 1

6ρµρ1ε
2
1

(
D1ρ1
D1t

)2
+ 1

2µρ1ε
2
1

(
D1ρ2
D1t

)2
+ 1

2µρ1ε
2
1
D1ρ1
D1t

D1ρ2
D1t

,

F1 = ρ1

(
ρ1
ρ

+ ρ2 + µε2
1

8ρ2ω
2
1ρ

2
1

)

−ρ1

(
µε2

1

(
1
2

(
D1ρ2
D1t

)2
+ 1

2
D1ρ1
D1t

D1ρ2
D1t

+ 1
6ρ

(
D1ρ1
D1t

)2
)
− ρ1µε

2
1

(
1
2

D2
1ρ2

D1t2
+ 1

3ρ
D2

1ρ1
D1t2

))
,

F2 = ρ2

(
ρ1 + ρ2 + µε2

2
8 ω2

2ρ
2
2 −

1
6µε

2
2

(
D2ρ2
D2t

)2
+ 1

3ρ2µε
2
2
D2

2ρ2
D2t2

+ ρ1µε
2
1

(
D2

1ρ2
D1t2

+ 1
2

D2
1ρ1

D1t2

))
.

This preliminary model needs to be analysed in details. It is necessary to compare the
presented model with the model (2.35). We expect that the two models coincide in the
approximation order O(µ3/2).

In order to proceed with a numerical strategy similar to the one used in Chapter 1, the
following change of variables is used

K1 = u1 + µε2
1

((
1
2

D1ρ2
D1t

+ 1
3ρ

D1ρ1
D1t

)
ρ1x +

(
D1ρ2
D1t

+ 1
2

D1ρ1
D1t

)
ρ2x

)
,

K2 = u2 + 1
3µε

2
2

(
D2ρ2
D2t

)
ρ2x.

The numerical study of the presented model is left for future work.
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2.6 Conclusion

In the present chapter, two-layer model derivations are proposed in the case of rotational
flows. The models describe free surface and interface waves propagation in the framework
of depth average equations. Without irrotationality assumptions, the model requires a
closure. When constant vorticities are assumed, the model is automatically closed, and
we derive a second order model which reduces to the Green-Naghdi equations in the case
of vanishing vorticities. However, for the general vorticity case, additional equations are
needed to define the ’Reynolds tensor‘ and pressure contributions. The vorticity equation is
used to find a closure. For the general vorticity case, we derived a weakly nonlinear model.

The natural perspective of this work is to derive a model in the case of general vorticities
with better dispersive properties, in order to correct non-hydrostatic pressure terms and
obtain closures in the classical Green-Naghdi order or higher. According to [29], it is
possible to close the system through a cascade of equations which is consistent with the
model order. It implies an additional correction for the pressure contribution terms, which
is a non-trivial task. Firstly, for the sake of simplicity, one can imagine considering the rigid
lid approximation (when it is assumed that the displacements of the surface are negligible
compared to the interface displacements). Another direction of future research is to perform
numerical simulations for the obtained models.



Part II

Boundaries



Introduction : Boundary conditions

This part is devoted to a particular numerical issue which appears when dispersive mod-
els of wave propagation are solved numerically. The physical space, where the phenomenon
takes place, has generally to be limited in order to study in details some regions of interest,
and boundary conditions must be imposed. Mathematically, the equations are set on an
infinite space, and it is a hard problem to provide suitable boundary conditions which lead
to a well-posed initial-boundary problem approximating the initial value problem.

The construction of boundary conditions (BC) for dispersive problems is recognised as
being a challenging issue for numerical simulations. In particular, the problem of providing
well-posed conditions is considerably complicated by a wide range of phase speeds at the
boundary. Some physical settings allow for simplifications of the procedure. If we are
interested in short-time simulations, the Neumann boundary conditions are appropriate. If
the solution stays compactly supported for all time, periodic boundary conditions can be
applied. Finally, reflecting solid wall conditions lead generally to a stable behaviour at the
boundary. For examples of applications either of these boundary conditions, we refer to
[86], [83], or [70].

However, in more general applications, a proper procedure for the simulation of incom-
ing and outgoing waves is of fundamental concern. These particular type of conditions are
referred to artificial/transparent boundary conditions as well as open/open sea boundary
conditions. As discussed in the Introduction, the dispersive Green-Naghdi system is gener-
ally used in the context of coastal water wave propagation, and when this system is solved
numerically, artificial conditions are often required. The same issue arises for the models
derived in Part I. We focus in this part only on the Green-Naghdi equations, because even
in this case, construction of BCs is also far from trivial.

Generally, boundary conditions are not a central subject in the literature devoted to
studies on ocean waves propagation in the context of Boussinesq type and Green-Naghdi
models. This is partly due to the fact that the proposed approaches are mostly heuristic
and often adapted for every special case. However, we can distinguish several numerical
techniques used for the Boussinesq/Green-Naghdi type models.

In [92] Madsen proposed a relaxation technique, where the computational domain is ex-
tended with thin relaxation zones, inside which a particular forcing of a numerical solution
to a target one is applied at the end of each time step. The sponge layer approach firstly
proposed in [65] has been followed by many others researchers (e.g. [85], [73]). The principle
idea is to add an artificial damping term to the right-hand side of the momentum equa-
tion. In the original work [65], three different kinds of damping mechanism are proposed:
Newtonian cooling, viscous damping and sponge filter. Also, there it is mentioned that the
last one is the best for an open sea boundary condition. However, any of these terms are
generally used based on what works the best. In [71], [125] it is discovered that the model
used in [73] is noisy and it is partially due to the boundary condition implementation. In
[153], modified sponge layers are proposed in order to obtain a more predictable behaviour
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at the boundaries; it is also shown that this modified approach is practically identical to the
relaxation technique, with the only significant difference that the new system is invariant
with respect to the time step and, as a consequence, has a more predictable properties.
All these techniques allow for the wave generation when the forcing is performed to an
exact profile, and not to zero. A different approach is used in [36, 100, 21], where efficient
absorbing-generating boundary conditions are implemented, using that outflow-inflow Rie-
mann invariants might be locally conserved along the characteristics. According to [148], an
ad-hoc source function added in the mass conservation law is used for the wave generation.
Different types of source functions are used in the following studies, see for example [73],
[70].

In this thesis, we aim to propose a more general and rigorous approach for the boundary
conditions treatment in application to the Green-Naghdi system. In Chapter 3 we propose
artificial boundary conditions for the equations linearized around the steady state h =
const, u = 0. In [149] continuous transparent boundary conditions are constructed for
the Airy equation using the Laplace transform, and then the initial-boundary problem is
discretized. Following the authors we construct continuous boundary conditions. However,
the discretization of the obtained conditions is not a trivial task, and we follow the different
strategy found in [17] (in application to the Airy equation). The approach consists in a
direct application of the method, similar to the one used in the continuous case, to a
fully discrete system. The Laplace transform is replaced by its discreet counterpart, the
Z−transform. This strategy was already successfully applied to other unidirectional wave
propagation models [19, 18]. In Chapter 3, we consider two discretizations of the initial
linear system on staggered and collocated grids. The procedure for the discrete boundary
conditions construction involves the inversion of a nonlocal in time Z−transform operator.
In the case when a staggered grid is used, this inversion is done explicitly, while for the
discretization on a collocated grid, a more sophisticated numerical inversion procedure
needs to be designed. Both schemes are proved to be stable, consistent and convergent.
Numerical tests are performed for Gaussian and wave packet initial data. We show that
the procedure can be adapted for the wave generation. Unfortunately, tries to use the same
conditions for the nonlinear Green-Naghdi system have not been successful, and further
investigations are envisaged.

In order to provide a suitable boundary treatment for the nonlinear case, we apply
another method, used for this issue, which is referred to as Perfect Matched Layer (PML)
technique [16]. The idea is to surround the computational domain with thin layers where
the properties of wave propagation are modified in order to have an amplitude decay and
reflections as small as possible for all frequencies and angles of incidence. This leads to
modifications in the original equations and allows for the absorption of outgoing waves. In
Chapter 4, we consider the new hyperbolic system recently proposed in [49] to approximate
the original Green-Naghdi equations. The hyperbolicity of this new system allows for a
simplification of the PML technique application. Following [1], we construct the modified
equations. The proposed approach is validated on different numerical tests for linear and
nonlinear cases. Using the same arguments, the PML equations can be constructed to
handle incoming waves. Numerical tests are provided to illustrate this procedure.



Chapter 3

Discrete transparent boundary
conditions for the linearized

Green-Naghdi system

In this chapter we introduce artificial boundary conditions (ABCs) for the linearized Green-
Naghdi system. We will consider two spatial discretizations of the initial system either on
a staggered grid or on a collocated grid, both of interest from the practical point of view.

The dimensional Green-Naghdi equations read asht + div(h~u) = 0,

(h~u)t + div(h~u⊗ ~u+ pI) = 0, p = gh2

2 + 1
3h

2ḧ,
x ∈ R2, t > 0, (3.1)

where h is a fluid depth, ~u is a depth-averaged horizontal velocity, indexes mean the deriva-
tion with respect to t, x ∈ R2, and dot is a material derivative ḣ = ht + ~u · ∇h. The
consistency result with the Euler equations can be found in [81]. The model (3.1) de-
scribes bidirectional propagation of dispersive water waves in the shallow water regime. It
is physically more relevant for water wave problems than the unidirectional models like the
Korteweg-de Vries equation or the Benjamin-Bona-Mahony equation which only describe
small amplitude/unidirectional water waves.

The original system (3.1) is derived and set on the whole space. For practical applica-
tions, as already discussed, the area of study is restricted to a bounded domain and one
has to prescribe suitable boundary conditions.

We focus here on artificial boundary conditions in order to let waves go out of the
computational domain without reflection or to prescribe an incoming wave on a part of the
domain. From a mathematical point of view, the problem is set, in both cases, as follows:
given compactly supported initial data, one searches for suitable boundary conditions such
that the solution computed with these boundary conditions coincide on the bounded do-
main with the restriction of the solution set on the whole space. One possibility to solve
this problem is to compute the solution on a sufficiently large domain with, say, periodic
boundary conditions. However, it is cumbersome from a numerical point of view and re-

76
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quires the solution to remain compactly supported for all time. In particular it is untrue for
large classes of dispersive equations like the Korteweg-de Vries equation or the Schrödinger
equation. Moreover, the energy of the exact solution for the problem set on the whole space
is conserved whereas the energy of the restricted solution should decrease. For all these
reasons it is important to determine the suitable boundary conditions, which absorb the
energy at the boundaries and lead to a well-posed initial boundary value problem.

A review on different techniques for the construction of such conditions for the linear
and nonlinear Schrödinger equations can be found in [5]. For linear equations, the construc-
tion of the exact transparent boundary conditions (TBCs) is carried out by using Laplace
transform in time and impose boundary conditions so as to obtain finite energy solutions.
The inversion of those conditions yields boundary conditions that are in general nonlocal
in time. For nonlinear equations, pseudodifferential or paradifferential calculus is needed to
provide transparent boundary conditions in the high frequency/short time regime [5]. A nu-
merical implementation of these boundary conditions is not straightforward: see e.g. [149]
for a discretization of transparent boundary conditions for the Airy equation which requires
an approximation of fractional derivatives. An alternative and fruitful approach consists in
starting directly from a discretization of the equations set on the whole space and mimic
the approach in the continuous case: the Laplace transform is replaced by the Z-transform:
see e.g. [17] for an application of this strategy to the Airy equation. In this chapter the
inverse Z-transform cannot be carried out explicitly and the authors implemented directly
the explicit formula of the inverse transform. This procedure is not stable from a numerical
point of view. Recently the same idea provided the appropriate continuous and discrete
boundary conditions for other dispersive equations for unidirectional wave propagation such
as the Benjamin-Bona-Mahoney (BBM) equation [18] and the mixed KDV-BBM equation
[19] where an alternative, stable method is introduced to compute the inverse transform.
These equations model unidirectional, small amplitude water waves: for practical applica-
tions, it is important to consider more general equations which model waves propagating
possibly in all directions. We focus here on the Green-Naghdi equations which are widely
used in coastal engineering to model dispersive non linear waves. In this case, classical
techniques are useless (in particular factorisation of pseudo-differential operators: [5] for
more details) and one has to introduce a more robust methodology.

In this chapter, we focus on a version of the model (3.1) linearized about the steady
state (h, u) := (H0, 0)+(η, w) with |(η, w)| � 1. In the one-dimensional case, this linearized
system is written as: {

ηt + wx = 0,
wt + ηx − εwtxx = 0,

x ∈ R, t > 0, (3.2)

where ε > 0 is a dispersion parameter. We are interested in the derivation of discrete
transparent boundary conditions (DTBCs) for (3.2): they should provide suitable absorbing
boundary conditions for the full system (3.1) for small amplitude waves. For that purpose,
we focus on two spatial discretizations by working either on a collocated grid (η, w are
evaluated at the same points) or on a staggered grid (i.e. η is evaluated at the cell centre
and w is evaluated at the cell faces). Both grids are used in oceanography depending on the
applications: these are the so-called A (collocated) grid for compressible like flows and C
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(arakawa) grids for incompressible (low Froude) flows. We use a Crank-Nicolson scheme for
the time discretization. We then follow the same strategy as for the derivation of continuous
transparent boundary conditions (the two strategies do not commute though): we apply the
Z−transform and identify modes which are increasing exponentially as x tends to ±∞. By
restricting our attention to finite energy solutions, we impose conditions at the boundary
points and then apply either explicitly or numerically the inverse Z−transform. These
conditions are in general nonlocal in time and can be cumbersome from a numerical point
of view. There are various strategies to implement efficiently those DTBC. Let us mention
in particular “sum of exponentials” techniques: this approach is well documented. See e.g.
[9], [10], for quantum evolution equations and [17] for an application in the case of the
linearized (KdV) equation.

In section 3.1, we apply the technique found in [149] to construct the exact boundary
conditions for the linear system (3.2). Moreover one can notice that the system (3.2) is
equivalent to a linearized version of the Boussinesq equation:

(w − εwxx)tt − wxx = 0, ∀x ∈ R, ∀t > 0,

and we focus on the construction of boundary conditions for this equation too. It is use-
ful when we construct the discrete conditions for Crank-Nicolson time-discretization on
a staggered grid: see section 3.2. As it was already mentioned the procedure of discrete
boundary conditions construction involves the inversion of nonlocal-in-time Z-transform
operator, and the main reason to consider the scheme on the staggered grid is that this in-
version can be done explicitly. The inversion of conditions for a scheme on a collocated grid
needs to be done numerically, and a more sophisticated procedure of inversion is presented
in section 3.3. Finally, in section 3.4, we present some numerical simulations to illustrate
the accuracy of the proposed boundary conditions. We perform three types of simulations.
The examples are inspired by works [19], [18]. We show different dispersive effects with a
Gaussian and a wave packet initial data.

3.1 Exact transparent boundary conditions

In this section we show how to derive transparent boundary conditions in the continuous
case and prove the absorbing property of constructed conditions.

3.1.1 Exact boundary conditions for the linearized Green-Naghdi system

We derive first the continuous boundary conditions for the system (3.2). We consider the
initial value problem set on the whole space

ηt + wx = 0, ∀x ∈ R, ∀t > 0,
wt + ηx − εwtxx = 0, ∀x ∈ R, ∀t > 0,

η(0, x) = η0(x), w(0, x) = w0(x), ∀x ∈ R,

lim
x→±∞

w(t, x) = lim
x→±∞

η(t, x) = 0,
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where the initial data η0, w0 are compactly supported functions in a finite interval [x`, xr].
In order to construct the transparent boundary conditions at x`, xr, we consider the “ex-
terior” solution of the problem set on the complement of [x`, xr] ⊂ R:

η̃t + w̃x = 0, ∀x ∈ R \ [x`, xr], ∀t > 0,

w̃t + η̃x − εw̃txx = 0, ∀x ∈ R \ [x`, xr], ∀t > 0,

η̃(0, x) = 0, w̃(0, x) = 0, ∀x ∈ R \ [x`, xr],
lim

x→±∞
w̃(t, x) = lim

x→±∞
η̃(t, x) = 0,

with transmission conditions at x`, xr (continuity with “interior” solution)
η̃(t, x`) = η(t, x`), w̃(t, x`) = w(t, x`), η̃(t, xr) = η(t, xr), w̃(t, xr) = w(t, xr).

(3.3)

This problem is homogeneous in time. We can apply the Laplace transform defined as

L(f)(s;x) =
∞∫

0

e−stf(t;x)dt,

where s is a parameter such as <(s) > 0 (where < denotes the real part). We obtain the
ordinary differential equations:

sL(η̃) + L(w̃x) = 0,
sL(w̃) + L(η̃x)− εsL(w̃xx) = 0. (3.4)

The solutions of the system (3.4) have the from(
L(w̃)(s, x)
L(η̃)(s, x)

)
= αr+V

+eλ
+x + αr−V

−eλ
−x, ∀x > xr,(

L(w̃)(s, x)
L(η̃)(s, x)

)
= α`+V

+eλ
+x + α`−V

−eλ
−x, ∀x < x`,

where αr,`+ , αr,`− are constant coefficients, λ+, λ− are given by

λ+ = +

√
s2

1 + εs2 , λ− = − +

√
s2

1 + εs2 ,

and V +, V − are the constant vectors:

V + = (1,−λ+/s)>, V − = (1, λ+/s)>.

The number +
√
z corresponds to the principal square root of the complex number z ∈ C:

∀z = ρeiθ, θ ∈]− π, π], +√z = √ρeiθ/2.

Note that the function s 7→ s2/(1+εs2) maps {s ∈ C,<(s) > 0} into C\R−, therefore λ+ has
a strictly positive real part whereas λ− has a negative one. As a result, x 7→ eλ+x increases
exponentially fast as x→∞. In order to have a bounded solution L(w̃)(s, x),L(η̃)(s, x) for
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all x ≥ xr, one must impose αr+ = 0. Similarly, one has α`− = 0. The constant coefficients
αr+, α`− are written as:

2αr+ = L(w̃)(s, xr)− +
√

1 + εs2L(η̃)(s, xr) = 0,

2α`− = L(w̃)(s, x`) + +
√

1 + εs2L(η̃)(s, x`) = 0.

By using the transmission conditions (see (3.3)) at the points x`, xr, we then deduce a
relation between L(η) and L(w) at the boundary points x`, xr:

L(w)(s, xr) = 1 + εs2

+√1 + εs2
L(η)(s, xr), L(w)(s, x`) = − 1 + εs2

+√1 + εs2
L(η)(s, x`). (3.5)

The inversion of the Laplace transform can be carried out explicitly and finally we get the
following nonlocal in time transparent boundary conditions:

εwtx(t, xr)− η(t, xr) = −
∫ t

0

J2 + J0
2
√
ε

(
s√
ε

)
w(t− s, xr)ds−

√
εwt(t, xr),

εwtx(t, x`)− η(t, x`) =
∫ t

0

J2 + J0
2
√
ε

(
s√
ε

)
w(t− s, x`)ds+

√
εwt(t, x`),

(3.6)

where Jn is the Bessel function of the first kind:

Jn(t) = 1
π

∫ π

0
cos(nτ − t sin τ)dτ

with n ∈ N. Note that there are several alternative formulations of the boundary conditions
(3.6) depending on how the relations (3.5) are inverted. We have chosen the formulation
that is useful to prove dissipativity of these boundary conditions set on a bounded domain.

Now we prove the following stability result.

3.1.1 Proposition. The problem

ηt + wx = 0, wt + ηx − εwtxx = 0 ∀x ∈]x`, xr[, ∀t > 0,

η(0, x) = η0(x), w(0, x) = w0(x), ∀x ∈]x`, xr[,

εwtx(t, xr)− η(t, xr) = −
∫ t

0

J2 + J0
2
√
ε

(
s√
ε

)
w(t− s, xr)ds−

√
εwt(t, xr),

εwtx(t, x`)− η(t, x`) =
∫ t

0

J2 + J0
2
√
ε

(
s√
ε

)
w(t− s, x`)ds+

√
εwt(t, x`),

(3.7)

is L∞(R+, H1(R) × L2(R)) stable: for all t > 0 and for all smooth solutions of (3.7), we
have

∫ xr

x`

η2(t, x)
2 + w2(t, x)

2 + ε
(wx(t, x))2

2 dx ≤
∫ xr

x`

η2
0(x)
2 + w2

0(x)
2 + ε

(w0,x(x))2

2 dx. (3.8)
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Proof. We deduce directly from the equations a derivative of the generalized kinetic energy
with respect to time:

d

dt

∫ xr

x`

η2(t, x)
2 + w2(t, x)

2 + ε
(wx(t, x))2

2 dx =
[
w(t, x) (εwtx(t, x)− η(t, x))

]xr
x`
,

where the brackets denote a jump of the function between x` and xr. By integrating this
equation with respect to the time variable on the interval (0, t), one obtains:∫ xr

x`

η2(t, x)
2 + w2(t, x)

2 + ε
(∂xw(t, x))2

2 dx−
∫ xr

x`

η2
0(x)
2 + w2

0(x)
2 + ε

(∂xw0(x))2

2 dx

=
∫ t

0
w(s, xr)(εwtx − η)(s, xr)ds−

∫ t

0
w(s, x`)(εwtx − η)(s, x`)ds =: Jr − J`

if Jr ≤ 0 and J` ≥ 0 then the inequality (3.8) is satisfied. Let us consider Jr first: by
substituting the boundary condition (3.6), one obtains

Jr = −
∫ t

0

(
J2 + J0

2
√
ε

(
.√
ε

)
∗ w(s, xr) +

√
εwt(s, xr)

)
w(s, xr)ds, (3.9)

where ∗ denotes time convolution. Next, we fix T > 0 and denote W (t) = w(t, xr)1[0,T ](t).
One has

w′(t) = W ′(t) +W (T )δt=T .

Substitution into the formula (3.9) for Jr gives

Jr = −
∫ ∞

0

(
J2 + J0

2
√
ε

( .√
ε

) ∗W (s) +
√
εW ′(s)

)
W (s, xr)ds−

√
εW (T )2.

By applying Plancherel’s identity [110], one finds:

Jr =− 1
2π<

∫
R

+
√

1− εξ2|Ŵ |2(ξ)dξ −
√
ε|W (T )|2,

−
∫ 1/

√
ε

−1/
√
ε

√
1− εξ2|Ŵ |2(ξ)dξ −

√
ε|W (T )|2 ≤ 0.

Similarly, one proves that J` ≥ 0 which concludes the proof of the proposition.

3.1.2 Exact boundary conditions for the linearized Boussinesq equation

We can obtain alternative transparent boundary conditions. Indeed, the system (3.2) is
equivalent to the linearized Boussinesq equation:

(w − εwxx)tt − wxx = 0, ∀x ∈ R, ∀t > 0. (3.10)

We consider the initial value problem set on the whole space

(w − εwxx)tt − wxx = 0, ∀x ∈ R,∀t > 0

w(0, x) = w0(x), wt(0, x) = v0(x), ∀x ∈ R

lim
x→∞

w(t, x) = lim
x→−∞

w(t, x) = 0,
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where the initial data w0, v0 are compactly supported in [x`, xr]. The problem set on the
complement of the interval [x`, xr] ⊂ R reads as:

(w̃ − εw̃xx)tt − w̃xx = 0, ∀x ∈ R, ∀t > 0,

w̃(0, x) = 0, w̃t(0, x) = 0, ∀x ∈ R \ [x`, xr],

w̃(t, x`) = w(t, x`), w̃(t, xr) = w(t, xr), ∀t > 0,

w̃x(t, x`) = wx(t, x`), w̃x(t, xr) = wx(t, xr), ∀t > 0,

lim
x→∞

w̃(t, x) = lim
x→−∞

w̃(t, x) = 0.

By applying the Laplace transform, one finds:

s2
(
L(w)(s, x)− εL(w)xx(s, x)

)
− L(w)xx(s, x) = 0.

We are searching again for the solution decaying at infinity: this gives us one condition
on the left boundary and one on the right one for the function L(w):

L(wx)(s, xr) = − s
+√1 + εs2

L(w)(s, xr), L(wx)(s, x`) = s
+√1 + εs2

L(w)(s, x`).

The inversion of the Laplace transform can be found explicitly and finally we get

wx(t, xr) = 1
ε

∫ t

0
J1

(
s√
ε

)
w(t− s, xr)ds−

1√
ε
w(t, xr),

wx(t, x`) = −1
ε

∫ t

0
J1

(
s√
ε

)
w(t− s, x`)ds+ 1√

ε
w(t, x`),

(3.11)

with Jn(t) = 1
π

∫ π

0
cos(nτ − x sin(τ))dτ . An alternative formulation of these boundary

conditions is given by

(
1 + ε

∂2

∂t2

)
wx(t, xr) = −

∫ t

0

J2 + J0
2
√
ε

(
t− s√
ε

)
wt(s, xr)ds−

√
εwtt(t, xr),(

1 + ε
∂2

∂t2

)
wx(t, x`) =

∫ t

0

J2 + J0
2
√
ε

(
t− s√
ε

)
wt(s, x`)ds+

√
εwtt(t, x`).

(3.12)

For these boundary conditions, the absorbing property is fulfilled as well:

3.1.2 Proposition. Any smooth solution of the problem

(w − εwxx)tt − wxx = 0, ∀x ∈ [xl, xr],∀t > 0

w(0, x) = w0(x), wt(0, x) = v0(x), ∀x ∈]x`, xr[(
1 + ε

∂2

∂t2

)
wx(t, xr) = −

∫ t

0

J2 + J0
2
√
ε

(
t− s√
ε

)
wt(s, xr)ds−

√
εwtt(t, xr),(

1 + ε
∂2

∂t2

)
wx(t, x`) =

∫ t

0

J2 + J0
2
√
ε

(
t− s√
ε

)
wt(s, x`)ds+

√
εwtt(t, x`),

(3.13)
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satisfies for all t > 0 the following estimate:∫ xr

x`

(
(wt)2 + (wx)2 + ε (wtx)2) (t, x)dx ≤

∫ xr

x`

(
v2

0 + (w0,x)2 + ε (v0,x)2) dx.
Proof. The proof is carried out in the same manner as Proposition 3.1.1. The time-
derivative of the generalized kinetic energy in this case reads

d

dt

∫ xr

xl

(
(wt)2

2 + (wx)2

2 + ε
(wtx)2

2

)
(t, x)dx =

[
wt(t, x)

(
εwxtt(t, x) + wx(t, x)

)]xr
xl

,

where the brackets denote a jump of the function. Integrating over the time interval (0, t)
yields:∫ xr

xl

(
(wt)2

2 + (wx)2

2 + ε
(wtx)2

2

)
(t, x)dx−

∫ xr

xl

(
(v0)2

2 + (w0,x)2

2 + ε
(v0,x)2

2

)
dx

=
∫ t

0

(
wt(εwxtt + wx)

)
(s, xr)ds−

∫ t

0

(
wt(εwxtt + wx)

)
(s, xl)ds =: Jr − Jl.

If Jr ≤ 0, Jl ≥ 0 then the inequality is satisfied. Let us first consider Jr using the boundary
condition

Jr =
∫ t

0
wt(s, xr)(εwxtt + wx)(s, xr)ds

=−
∫ t

0
wt(s, xr)

(
J2 + J0

2
√
ε

( .√
ε

) ∗ wt(s, xr) +
√
εwtt(s, xr)

)
ds.

Next, we fix T > 0 and denote W (t) = wt(t, xr) · 1[0,T ](t). Then, one has

wtt = Wt +W (T )δt=T .

We can then write Jr as

Jr =−
∫ ∞

0
W (s)

(
J2 + J0

2
√
ε

( .√
ε

) ∗W (s) +
√
εWt(s)

)
ds−

√
εW (T )2

=− 1
2π

∫
R
< +
√

1− εξ2|Ŵ |2(ξ)dξ −
√
ε|W (T )|2 ≤ 0.

The estimate of J` is carried out similarly which concludes the proof of the proposition.

The discretization of the conditions (3.6) or the conditions (3.11) is not a trivial task.
In the next section, we show how to obtain a consistent discretization of the boundary
conditions which is compatible with the discrete numerical scheme used to carry out the
simulation of the model (3.2). The proofs of consistency with the continuous conditions are
carried out in the sections 3.2, 3.3.

3.2 Discrete transparent boundary conditions: Staggered
grid

In this section we derive discrete artificial boundary conditions for the linearized Green-
Naghdi system (3.2). In order to construct these conditions, we follow the strategy of
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[17] and [18] and consider directly the problem on the fully discretized equations. In this
section, we focus on a spatial discretization on a staggered grid and a Crank-Nicolson
time discretization. A staggered grid is a setting for the spatial discretization, in which
the unknowns are evaluated at the different space positions, i.e. wnj ≈ w(nδt, x` + jδx),
ηnj+1/2 ≈ η(nδt, x` + (j + 1/2)δx). The numerical scheme is written as:

ηn+1
j+1/2 − η

n
j+1/2

δt
+ 1

2

(
wn+1
j+1 − w

n+1
j

δx
+
wnj+1 − wnj

δx

)
= 0,

wn+1
j − wnj
δt

− ε

δt

(
wn+1
j+1 − 2wn+1

j + wn+1
j−1

δx2 −
wnj+1 − 2wnj + wnj−1

δx2

)

+1
2

(
ηn+1
j+1/2 − η

n+1
j−1/2

δx
+
ηnj+1/2 − η

n
j−1/2

δx

)
= 0, j ∈ Z, n ∈ N

(3.14)

where δt > 0, δx > 0 are time and space steps. The procedure mimics what was done for
the continuous case in the previous section. We assume (w0

j )j∈Z is compactly supported
in [1, J ] and η0

j+1/2 is compactly supported in [1 + 1/2, J + 1/2] with J ∈ N such that
xr−x` = (J + 1)δx. We consider a solution η̃nj+1/2, w̃

n
j of (3.14) for all j ≥ J + 1 and j ≤ 0

with the transmission conditions

w̃nJ+1 = wnJ+1, w̃n0 = wn0 , η̃nJ+1/2 = ηnJ+1/2, η̃n1/2 = ηn1/2.

and the initial conditions η̃0
j+1/2 = 0, w̃0

j = 0, ∀j ∈ Z \ [1, J ]. The index j = 0 stands
for the point x = x` and j = J + 1 stands for x = xr. We first apply a discrete analogue
of the Laplace transform which is referred to as Z−transform [68]. The definition reads as
follows:

û(z) = Z{(u)n}(z) =
∑
n≥0

unz
−n, |z| > R > 0,

z is the complex variable and R is the radius of convergence of the Laurent series. Hereafter
the hat will denote the result of the Z−transform of the discrete sequences η̃nj+1/2, w̃nj with
respect to the time index n. The discrete system (3.14) reduces to the linear difference
equation:

η̂j+1/2 = − 1
s(z)δx(ŵj+1 − ŵj),

−εs(z)
δx2 ŵj−1 + s(z)

(
1 + 2ε

δx2

)
ŵj −

εs(z)
δx2 ŵj+1 +

η̂j+1/2 − η̂j−1/2

δx
= 0,

∀j ∈ Z \ [1, J ]

(3.15)
where

s(z) = 2
δt

z − 1
z + 1 (3.16)

is the generator function of the Crank-Nicolson scheme. As the function z 7→ s(z) has
a singularity at z = −1, we assume |z| > 1, which in turn yields < (s(z)) > 0. We can
eliminate η̂j+1/2 from the system (3.15) so as to obtain a scalar difference equation:

(1+εs2(z))ŵj−1−2
(

1 + s2(z)
(
ε+ δx2

2

))
ŵj+

(
1+εs2(z)

)
ŵj+1 = 0, j ∈ Z\[1, J ], n ∈ N.

(3.17)
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The characteristic polynomial P associated to (3.17) is given by

P (r) =
(

1 + εs2(z)
)
r2 − 2

(
1 + s2(z)

(
ε+ δx2

2

))
r +

(
1 + εs2(z)

)
.

The roots of P are written as

r±(z) = 1 + s2(z)δx2

2(1 + εs2(z)) ±
s(z)δx

√
δx2 + 4(1 + εs2(z))

2(1 + εs2(z)) . (3.18)

We show now an important separation property of r±(z).

3.2.1 Proposition. The roots of the characteristic polynomial P associated with the linear
difference equation (3.17) have the following separation property: for all z ∈ C such that
|z| > 1, one has

|r+(z)| > 1, |r−(z)| < 1.

Proof. We follow the idea found in [155]. First let us show that there is no root on the unit
circle. We assume that there is a root r = eiϕ such that P (r) = 0. This equation reads(

1 + εs2(z)
)
e2iϕ − 2

(
1 + s2(z)

(
ε+ δx2

2

))
eiϕ +

(
1 + εs2(z)

)
= 0

and one deduces that
s2(z) = − 4 sin2(ϕ/2)

2ε(1− cos(ϕ)) + δx2 ∈ R−,

and therefore <(s) = 0, which is in contradiction with the assumption |z| > 1. Therefore,
there is no root of P on the unit circle.

The product of the roots is equal to one due to relation between the coefficients of P
and there are no roots with modulus one. Therefore there is necessarily one root with a
modulus larger than one and the other one with modulus smaller than one. In the limit
|s(z)| → ∞ one has |r+(z)| > 1 and |r−(z)| < 1. By continuity of z 7→ |r±(z)| on the
domain {z ∈ C, |z| > 1}, this remains true for all |z| > 1. This completes the proof of the
proposition.

The construction of the boundary conditions is then carried out just as in the continuous
case. First note that the solution to (3.17) reads

ŵj = αr+r+(z)j + αr−r−(z)j , ∀j ≥ J,

ŵj = α`+r+(z)j + α`−r−(z)j , ∀j ≤ 1.

We search for bounded solutions as x tends to ±∞. Using the separation property shown
in Proposition 3.2.1, we conclude that that α`− = 0, and αr+ = 0. These conditions are
equivalent to the boundary conditions:

ŵ1 = r+(z)ŵ0, ŵJ+1 = r−(z)ŵJ . (3.19)
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Here we have the conditions for the images in the Z−domain. In order to apply the
Z−inverse transform, we present the conditions (3.19) in the following form (we have used
the explicit formula (3.16) for s(z)):

ŵ1 =
(

1 + 2δx2(z − 1)2

Λz2 − 2µz + Λ + 2δx(z − 1)
√

Γz2 − 2νz + Γ
Λz2 − 2µz + Λ

)
ŵ0,

ŵJ+1 =
(

1 + 2δx2(z − 1)2

Λz2 − 2µz + Λ −
2δx(z − 1)

√
Γz2 − 2νz + Γ

Λz2 − 2µz + Λ

)
ŵJ ,

(3.20)

where Λ = 4ε + δt2, µ = 4ε − δt2, Γ = Λ + δt2δx2/4, ν = µ − δt2δx2/4. The inversion of
the constructed conditions can be done explicitly and it is a key aspect in using the scheme
on a staggered grid. In the next section we will show that such inversion is not possible for
the scheme with collocated grid, and another strategy for the inversion should be used.

We focus on the inversion of the left boundary condition, the treatment of the right one
being similar. Let us first mention a useful result for the inversion of (3.20), namely

3.2.2 Lemma. [87]

Z−1
(

z√
z2 − 2νz + 1

)
=
∞∑
n=0
Pn(ν)z−n,

for all |z| > max(z1, z2), where z1, z2 are the roots of z2 − 2νz + 1 and Pn(ν) is the n−th
Legendre polynomial.

In order to use this result, we write√
Γz2 − 2νz + Γ =

√
Γ(z − 2v + z−1) z√

z2 − 2vz + 1
, v = ν

Γ .

By multiplying the left boundary condition by Λz2−2µz+ Λ and by using the inverse shift
property of Z−transform, one finds

Λwn+1
1 − (Λ + 2δx2 + 2δx

√
Γ)wn+1

0 = 2(µwn1 − (µ+ 2δx2 + δx
√

Γ(v + 1))wn0 )−

− (Λwn−1
1 − (Λ + 2δx2 + 2δx

√
Γ)wn−1

0 ) + 2δx
√

Γ
(

(P2 − 2v2 + v)wn−1
0 +

n∑
k=2

skw
n−k
0

)
.

(3.21)

A similar calculation gives the boundary condition on the right:

Λwn+1
J+1 − (Λ + 2δx2 − 2δx

√
Γ)wn+1

J = 2(µwnJ+1 − (µ+ 2δx2 − δx
√

Γ(v + 1))wnJ )−

−(Λwn−1
J+1−(Λ+2δx2−2δx

√
Γ)wn−1

J )−2δx
√

Γ
(

(P2 − 2v2 + v)wn−1
J +

n∑
k=2

sk(v)wn−kJ

)
,

(3.22)

where

∀k ∈ N : sk(v) = Pk+1(v)− (2v + 1)Pk(v) + (2v + 1)Pk−1(v)− Pk−2(v),
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Figure 3.1: Coefficients of the discrete boundary conditions (3.21), (3.22) (a) and (3.35),
(3.36) (b) with δx = 2−10, δt = 10−2, ε = 10−3.

and P−1 = 0, P−2 = 0. Thus, the evaluation of n convolution coefficients requires O(n)
operations. In order to prove that the boundary conditions (3.21) and (3.22) are stable
with respect to round off errors, we verify that the convolution coefficients (sn)n∈N decrease
sufficiently fast. We found numerically (see Figure 3.1a) that they decrease as O(n−3/2).

This conjecture can be proved rigorously. For that purpose, we recall that the Legendre
polynomial satisfy the estimate Pn(v) = O(n−1/2) for all v ∈]0, 1[ (see [10] for more details)
and the recurrence relation

(n+ 1)Pn+1(v) = (2n+ 1)v Pn(v) + nPn−1(v), ∀n ∈ N\{0}.

Then, the coefficients (sn(v))n∈N have the alternative representation formula:

sn(v) = Pn−1(v)− Pn+1(v)
2n+ 1 − Pn−2(v)− Pn(v)

2n− 1 , ∀n ≥ 2.

From this relation, one finds sn(v) = O(n−3/2) as n → ∞. This is exactly the decay rate
found in convolution coefficients involved in the discrete transparent boundary conditions
for the linear Schrödinger equation [10]. This estimate implies that the boundary conditions
(3.21) and (3.22) are stable with respect to round off errors.

As a conclusion, the full scheme consists in boundary conditions (3.21) and (3.22) to-
gether with the interior scheme written as

− a+w
n+1
j+1 + (1 + 2a+)wn+1

j − a+w
n+1
j−1 = 2(−a−wnj+1 + (1 + 2a−)wnj − a−wnj−1)

− (−a+w
n−1
j+1 + (1 + 2a+)wn−1

j − a+w
n−1
j−1 ), 1 ≤ j ≤ J, n ∈ N, (3.23)

where
a− = ε− δt2/4

δx2 , a+ = ε+ δt2/4
δx2 .

The interior scheme (3.23) is second order accurate in time and in space. In what
follows, we check the consistency of the boundary conditions (3.21) and (3.22).
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3.2.1 Consistency and stability theorem

In order to provide a good approximation of the continuous solution of (3.10) by numerical
solution of (3.23) with (3.21), (3.22), one should prove a consistency result. In what follows,
we show that (3.21) and (3.22) are second order accurate in time and space.

3.2.3 Theorem. Let w be a smooth solution of (3.10) which satisfies the transparent
boundary conditions (3.11). We define the Z−transform of w(·, x) for all x ∈ [x`, xr] by

∀z 6= 0, ŵ(z, x) =
∞∑
n=0

w(nδt, x)
zn

.

Then for all compact K ⊂ C+ = {z ∈ C,<(z) > 0}, for all s ∈ K, we have

ŵ(esδt, x` + δx)− r+(esδt)ŵ(esδt, x`) = O(δt2 + δx2),

ŵ(esδt, xr)− r−(esδt)ŵ(esδt, xr − δx) = O(δt2 + δx2),

where r±(z) are defined by (3.18).

Proof. First of all, let us note that the Z−transform, defined above, is an approximation
of the Laplace transform. More precisely, for all smooth functions f(0) = f ′(0) = · · · =
f (k)(0) = 0 (k ∈ N), and all s ∈ C+, we have:

L(f)(s) = δtf̂(esδt) +O(δtk+2), (3.24)

where s is a parameter of the Laplace transform. See [18] for a proof of this result. Recalling
the definition of the roots (3.18), we have

ŵ(z, x` + δx)− r+(z)ŵ(z, x`) =

ŵ(z, x` + δx)−
(

1 + s2(z)δx2

2(1 + εs2(z)) + s(z)δx
√
δx2 + 4(1 + εs2(z))

2(1 + εs2(z))

)
ŵ(z, x`) =

ŵ(z, x` + δx)− ŵ(z, x`)−
s2(z)δx2

2(1 + εs2(z)) ŵ(z, x`)−
s(z)δx√

1 + εs2(z)

√
1 + δx2

4(1 + εs2(z)) ŵ(z, x`).

Note that the function s(z) defined in (3.16) with z = esδt is approximated as

s(z) = s+O(δt2).

We then find

ŵ(z, x` + δx)− r+(z)ŵ(z, x`) =

δx

(
∂xŵ(esδt, x`) + δx

2 ∂xxŵ(esδt, x`)−
s2δx

2(1 + εs2) ŵ(esδt, x`)−
s√

1 + εs2
ŵ(esδt, x`)

)
+O(δx2 + δxδt2) = δx

δt

(
δt

(
∂xŵ(esδt, x`)−

s√
1 + εs2

ŵ(esδt, x`)
)

+δtδx2

(
∂xxŵ(esδt, x`)−

s2

1 + εs2 ŵ(esδt, x`)
))

+O(δx2 + δxδt2).
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By applying the relation (3.24) to the last line, we find that the first expression between
the parentheses is the Laplace transform of the continuous boundary condition on the left
and the second one is the Laplace transform of (3.10):

ŵ(z, x` + δx)− r+(z)ŵ(z, x`) =

δx

(
∂xL(w)− s√

1 + εs2
L(w)

)
+ δx2

2

(
∂xxL(w)− s2

1 + εs2L(w)
)

+O(δx2 + δt2)

= O(δx2 + δt2).

This completes the proof of consistency for the boundary on the left, the proof being similar
for the boundary on the right.

Let us now prove a stability result on boundary conditions (3.21) and (3.22) similar to
the stability property 3.1.2. For that purpose, we introduce the following notations: for
any sequence (wnj ), we set

D+
x (w)nj =

wnj+1 − wnj
δx

, D−x (w)nj =
wnj − wnj−1

δx

D+
t (w)nj =

wn+1
j − wnj
δt

, D−t (w)nj =
wnj − w

n−1
j

δt
,

The numerical scheme associated to (3.14) can then be written as a discretization of the
linearized Boussinesq equation (3.10)

D+
t

(
D−t

(
w − εD+

x (D−x (w))
))n
j

= D−x
(
D+
x (w)

)n
j
, ∀j ∈ [1, J ], ∀n ≥ 0. (3.25)

Let us introduce the following discretization of the continuous energy

E(t) = 1
2

∫ xr

x`

(
(wt)2 + (w2

tx + (wx)2) (t, x)dx,

with w as smooth solution of (3.10):

En =δx

4

(
wn0 − w

n−1
0

δt

)2

+ δx

4

(
wnJ+1 − w

n−1
J+1

δt

)2

+ δx

2

J∑
j=1

(
wnj − w

n−1
j

δt

)2

+ δx

2

J∑
j=0

(
D+
x (w

n + wn−1

2 )j
)2

+
(
D+
x (w)nj −D+

x (w)n−1
j

δt

)2

.

We prove the following proposition

3.2.4 Proposition. Assume (wnj )j∈[0,J+1],n∈N is a solution of (3.25) with boundary condi-
tions (3.21) and (3.22). Then one has EN ≤ E1 for all N ∈ N\{0}.

In order to prove this proposition, we state the following result on a discrete analogue
of integration by parts, called “summation by parts”
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3.2.5 Lemma. For all sequences (vj)j∈[1,J+1], (wj)j∈[1,J+1], one has
J∑
j=1

δx vjD
−
x

(
D+
x (w)

)
j

= −
J∑
j=0

δxD+
x (v)j D+

x (w)j + vJ+1D
−
x (w)J+1 − v0D

+
x (w)0.

Proof. We follow the strategy in the proof of Proposition 3.1.2: we multiply equations

(3.25) by
wn+1
j − wn−1

j

2δt for all j = 1, . . . , J , sum over all j = 1, . . . , J and perform a
discrete integration by parts. One finds
Ẽn+1 − Ẽn

δt
= (3.26)

wn+1
J+1 − w

n−1
J+1

2δt

{
εD−x

(
wn+1 − 2wn + wn−1

δt2

)
J+1

+D−x

(
wn+1 + 2wn + wn−1

4

)
J+1

}

− wn+1
0 − wn−1

0
2δt

{
εD+

x

(
wn+1 − 2wn + wn−1

δt2

)
0

+D+
x

(
wn+1 + 2wn + wn−1

4

)
0

}
,

with

Ẽn = δx

2

J∑
j=1

(
wnj − w

n−1
j

δt

)2

+ δx

2

J∑
j=0

(
D+
x (w

n + wn−1

2 )j
)2

+
(
D+
x (w)nj −D+

x (w)n−1
j

δt

)2

.

Next, we rewrite the boundary conditions (3.21) and (3.22) in a suitable form just as we
did in the continuous case. Recall that these boundary conditions can be written as

ŵJ(z) = r+(z)ŵJ+1(z), ŵ1(z) = r+(z)ŵ0(z)

which are equivalent to(
(z + 1)2

4 + ε
(z − 1)2

δt2

)
D−x (ŵ)J+1 = −δx2

(z − 1)2

δt2
ŵJ+1 − α

√
z2 − 2βz + 1z − 1

δt
ŵJ+1,(

(z + 1)2

4 + ε
(z − 1)2

δt2

)
D+
x (ŵ)0 = δx

2
(z − 1)2

δt2
ŵ0 + α

√
z2 − 2βz + 1z − 1

δt
ŵ0,

with

α =
√

1
4 + ε

δt2
+ δx2

4δt2 and β = 4ε+ δx2 − δt2

4ε+ δx2 + δt2
∈]− 1, 1[.

These boundary conditions can be written alternatively as

εD−x

(
wn+1 − 2wn + wn−1

δt2

)
J+1

+D−x

(
wn+1 + 2wn + wn−1

4

)
J+1

=

−δx2
wn+1
J+1 − 2wnJ+1 + wn−1

J+1
δt2

− α

{
wn+1
J+1 − wnJ+1

δt
+

n∑
m=0

tn−m(β) D−t (w)mJ+1

}

εD+
x

(
wn+1 − 2wn + wn−1

δt2

)
0

+D+
x

(
wn+1 + 2wn + wn−1

4

)
0

= δx

2
wn+1

0 − 2wn0 + wn−1
0

δt2

+α
{
wn+1

0 − wn0
δt

+
n∑

m=0
tn−m(β)D−t (w)m0

}
,
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where tn(β) are defined as tn(β) = Pn+1(β)−2βPn(β)+Pn−1(β) with Pn denotes the n-th
Legendre polynomial and P−1 = 0. By plugging these boundary conditions into the energy
estimate (3.26), one finds

En+1 − En

δt
=− α

wn+1
J+1 − w

n−1
J+1

2δt

{
wn+1
J+1 − wnJ+1

δt
+

n∑
m=0

tn−m(β)D−t (w)mJ+1

}

− αw
n+1
0 − wn−1

0
2δt

{
wn+1

0 − wn0
δt

+
n∑

m=0
tn−m(β)D−t (w)m0

}
.

We sum this equation for all n = 1, . . . , N − 1 and extend the sequences (wn0 )n∈N and
(wnJ+1)n∈N by setting wN+2n+1

0 = wN−1
0 and wN+2n

0 = wN0 for all n ∈ N, the extension
being the same for wnJ+1 . One finds

EN − E1 =− αδt
∞∑
n=1

wn+1
J+1 − w

n−1
J+1

2δt

{
wn+1
J+1 − wnJ+1

δt
+

n∑
m=0

tn−m(β)D−t (w)mJ+1

}

− αδt
∞∑
n=1

wn+1
0 − wn−1

0
2δt

{
wn+1

0 − wn0
δt

+
n∑

m=0
tn−m(β)D−t (w)m0

}
.

Then, by introducing the sequences D0
tw

n
k =

wn+1
k − wn−1

k

2δt with k = 0, J + 1 and by using
the Plancherel formula, one obtains

EN − E1 =− δt

2π

∫ π

−π
<
√

1 + (ε+ δx2

4 )s2(eiθ)
(∣∣∣D̂0

t (w)J+1(eiθ)
∣∣∣2 +

∣∣∣D̂0
t (w)0(eiθ)

∣∣∣2) dθ,

− δt2π

∫ π

−π
<

√
1− 4

δt2
(ε+ δx2

4 ) tan2
(
θ

2

)(∣∣∣D̂0
t (w)J+1(eiθ)

∣∣∣2 +
∣∣∣D̂0

t (w)0(eiθ)
∣∣∣2) dθ.

We deduce from this formula that EN ≤ E1 for all N ≥ 1 and the proof of the proposition
is complete.

3.3 Discrete transparent boundary conditions: Collocated
grid

In this section, we consider transparent boundary conditions associated to a spatial dis-
cretization of (3.2) on collocated grids (functions η, w are evaluated at the same points) .
We keep a Crank-Nicolson time discretization, i.e. the numerical scheme reads as follows:

ηn+1
j − ηnj
δt

+ 1
2

(
wn+1
j+1 − w

n+1
j−1

2δx +
wnj+1 − wnj−1

2δx

)
= 0,

wn+1
j − wnj
δt

− ε

(
wn+1
j+1 − 2wn+1

j + wn+1
j−1

δx2 −
wnj+1 − 2wnj + wnj−1

δx2

)
(3.27)

+ 1
2

(
ηn+1
j+1 − η

n+1
j−1

2δx +
ηnj+1 − ηnj−1

2δx

)
= 0,
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for all 1 ≤ j ≤ J and n ∈ N. By applying the Z−transform, the system (3.27) reduces to
the second order linear difference equations (|z| > 1):

ŵj+1 = ŵj−1 − s(z)η̂j ,

η̂j+1 = η̂j−1 + ε s(z)
δx2 ŵj+1 − s(z)(1 + 2ε

δx2 )ŵj + ε s(z)
δx2 ŵj−1,

s(z) = 2
δt

z − 1
z + 1 . (3.28)

We search for a basis of solutions of this system of difference equations. We first write
(3.28) as a first order system
ŵj+1
η̂j+1
t̂j+1
r̂j+1

 =


0 −2δxs(z) 1 0

−2δxs(z)(1 + 2ε/δx2) −4εs2(z) 4εs(z)/δx 1
1 0 0 0
0 1 0 0




ŵj
η̂j
t̂j
v̂j

 := A(z)


ŵj
η̂j
t̂j
v̂j

 ,

where we have set t̂j = ŵj−1, v̂j = η̂j−1. The solutions of this system of difference equations
have the form

(
ŵj , η̂j , t̂j , v̂j

)> =
4∑

k=1
αrkr

j
kVk, ∀j ≥ J + 1,

(
ŵj , η̂j , t̂j , v̂j

)> =
4∑

k=1
α`kr

j
kVk, ∀j ≤ 0,

where rk, k = 1, 2, 3, 4 are the roots of the characteristic polynomial P associated to the
matrix A(z)

P (r) = r4 + 4εs2(z)r3 −
(
2 + 4s2(z)(δx2 + 2ε)

)
r2 + 4εs2(z)r + 1, (3.29)

whereas Vk are the corresponding eigenvectors, and αr,`k are constant coefficients. The
expressions for the roots of P (r) are explicit but useless when we will have to carry out
the inversion of the Z−transform. We also do not need it to prove the following separation
property.

3.3.1 Proposition. The roots of the characteristic polynomial P given by (3.29) have the
following separation property: for all z ∈ C such that |z| > 1, one has

|r1(z)| > 1, |r2(z)| > 1, |r3(z)| < 1, |r4(z)| < 1.

Here the roots are ordered as |r1(z)| ≥ |r2(z)| ≥ |r3(z)| ≥ |r4(z)|.

Proof. First let us show that there is no root on the unit circle. Assume that there is a
root r = eiϕ of P , then the equation P (r) = 0 reads

s2(z) = − sin2 ϕ

δx2 + 2ε(1− cosϕ) ∈ R−,

and thus <(s(z)) = 0 which is in contradiction with |z| > 1.
There remains to locate the four roots with respect to unit circle. We order the roots

as follows |ri(z)| ≥ |ri+1(z)| with i = 1, 2, 3. First, note that the constant term of P is
equal to 1 which means that |r1(z)r2(z)r3(z)r4(z)| = 1. Moreover, if r is a root of P so
is r−1. As a consequence we have necessarily |r1(z)| ≥ |r2(z)| > 1 > |r3(z)| ≥ |r4(z)| and
r3(z) = r2(z)−1 and r4(z) = r1(z)−1.
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3.3.2 Remark. The characteristic equation P (r) = 0 can be written in the following form

(r − 1)2 ((r + 1)2 + 4s2(z)εr
)

= 4s2(z)r2δx2,

which can be rewritten as

(r − 1)2 = 4s2(z)r2δx2

(r + 1)2 + 4s2(z)εr ,

and so by applying the implicit function theorem, we can compute an expansion of the
roots r2,3 bifurcating form 1 at δx = 0:

r2(z) = 1 + s(z)δx√
1 + εs2(z)

+O(δx2), r3(z) = 1− s(z)δx√
1 + εs2(z)

+O(δx2).

A similar argument yields also an asymptotic expansion of r1,4:

r1 = −
(
1 + 2εs2(z)

)
− 2
√
εs2(z)(1 + εs2(z)) +O(δx2),

r4 = −
(
1 + 2εs2(z)

)
+ 2
√
εs2(z)(1 + εs2(z)) +O(δx2).

Thanks to the roots separation, we have a decomposition of the solutions space into a
stable subspace Es(z) = span(V3;V4) of solutions decreasing to 0 as j →∞ and an unstable
subspace Eu(z) = span(V1, V2) of solutions decreasing to 0 as j → −∞. In order to obtain
bounded solutions, one must impose(

ŵJ+1, η̂J+1, t̂J+1, v̂J+1
)> ∈ Es(z), (

ŵ1, η̂1, t̂1, v̂1
)> ∈ Eu(z),

which is equivalent to

(ŵJ+1, η̂J+1, ŵJ , η̂J)> ∈ Es(z), (ŵ1, η̂1, ŵ0, η̂0)> ∈ Eu(z).

Let us start with the left boundary condition: the vector (ŵ1, η̂1, ŵ0, η̂0)> is given by


ŵ0
η̂0
ŵ1
η̂1

 =



r1 r2 r3 r4

1− r2
1

2δxs(z)
1− r2

2
2δxs(z)

1− r2
3

2δxs(z)
1− r2

4
2δxs(z)

1 1 1 1
1− r2

1
2δxr1s(z)

1− r2
2

2δxr2s(z)
1− r2

3
2δxr3s(z)

1− r2
4

2δxr4s(z)




α`1
α`2
α`3
α`4

 , (3.30)

with α`3 = α`4 = 0. Then from (3.30) we have:

η̂0 = 1− r2
1

2δxr1s(z)
α`1 + 1− r2

2
2δxr2s(z)

α`2, η̂1 = 1− r2
1

2δxs(z)α
`
1 + 1− r2

2
2δxs(z)α

`
2.

In order to determine α`1, α`2, we use the remaining two equations of (3.30). We set
r1 + r2 = Su and r1r2 = P u: the left boundary conditions are given by

(1 + P u)ŵ1 = Suŵ0 − 2δxP us(z)η̂0,

2δx s(z)η̂1 + Suŵ1 = (1 + P u)ŵ0.
(3.31)
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The derivation of the right boundary conditions are carried out with the same method.
We set r3 + r4 = Ss and r3r4 = P s. The right boundary conditions are given by:

(1 + P s)ŵJ+1 = SsŵJ − 2δxP ss(z)η̂J ,

2δx s(z)η̂J+1 + SsŵJ+1 = (1 + P s)ŵJ .
(3.32)

The coefficients of the boundary conditions (3.31), (3.32) contain a singularity at z = −1,
which in turn implies that the expansion coefficients for Ss, P s, Su, P u decrease slowly.
In order to remove this singularity, we multiply the boundary conditions (3.31), (3.32) by
(1 + z−1)q, where the power q depends on the order of a pole z = −1 of the coefficients.
For example, as we have seen the unstable root r1 has the following asymptotic behaviour
r1 ∼ s2(z) (see Proposition 3.3.1). For stabilization, the coefficient −2δxP us(z) needs to
be multiplied by (1 + z−1)3. The roots r3, r4 stay bounded as well as P s and Ss and,
therefore, we need to deal only with the singularity of s(z), and q = 1. We thus consider
the new unknowns P̃ u = (1 + z−1)2P u and S̃u = (1 + z−1)2Su. We set z−1 = x and obtain
the following boundary conditions with coefficients decreasing faster which ensures stability
with respect to round off errors:

((1 + x)3 + (1 + x)P̃ u)ŵ1 = (1 + x)S̃uŵ0 −
4δx
δt

(1− x)P̃ uη̂0,

4δx
δt

(1− x2)η̂1 + S̃uŵ1 = ((1 + x)2 + P̃ u)ŵ0,

((1 + x) + (1 + x)P s)ŵJ+1 = (1 + x)SsŵJ −
4δx
δt

(1− x)P sη̂J ,
4δx
δt

(1− x)η̂J+1 + (1 + x)SsŵJ+1 = ((1 + x) + (1 + x)P s)ŵJ .

(3.33)

In order to invert the Z−transform, it is required to find the coefficients in the expan-
sions of Ss, P s, S̃u, P̃ u which are defined as

Ss(x) =
∑
n≥0

ssnx
n, P s(x) =

∑
n≥0

psnx
n,

S̃u(x) = (1 + x)2Su(x) = (1 + x)2
∑
n≥0

sunx
n =

∑
n≥0

s̃unx
n,

P̃ u(x) = (1 + x)2P u(x) = (1 + x)2
∑
n≥0

punx
n =

∑
n≥0

p̃unx
n.

We follow the procedure proposed in [19] and use the relation between the roots and coef-
ficients of P . More precisely we have

Ss + Su = −4εs2(x),

P u + SuSs + P s = −(2 + 4s2(x)(δx2 + 2ε)),

P uSs + P sSu = −4εs2(x),

P uP s = 1.
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Then, the system satisfied by Ss, P s, S̃u, P̃ u is given by

(1 + x)2Ss + S̃u = −16ε(1− x)2/δt2,

P̃ u + S̃uSs + (1 + x)2P s = −(2(1 + x)2 + 16(1− x)2(δx2 + 2ε)/δt2),

P̃ uSs + P sS̃u = −16ε(1− x)2/δt2,

P̃ uP s = (1 + x)2.

By substituting the expansion of Ss, P s, S̃u, P̃ u in this system, one finds for all n ≥ 1

ssn + s̃un = −(2ssn−1 + ssn−2)− 16εσn/δt2,

p̃un + ss0s̃
u
n + s̃u0s

s
n + psn = −(2psn−1 + psn−2)−

n−1∑
k=1

ssks̃
u
n−k − κn,

ss0p̃
u
n + p̃u0s

s
n + ps0s̃

u
n + s̃u0p

s
n = −

n−1∑
k=1

sskp̃
u
n−k −

n−1∑
k=1

psks̃
u
n−k − 16εσn/δt2,

ps0p̃
u
n + p̃u0p

s
n = −

n−1∑
k=1

pskp̃
u
n−k + ζn.

(3.34)

where the sequence σn, ζn, κn are given by formulas

σn = δ0 − 2δ1 + δ2,

ζn = δ0 + 2δ1 + δ2,

κn = (2 + 16(δx2 + 2ε)/δt2)δ0 − (4− 32(δx2 + 2ε)/δt2)δ1 + (2 + 16(δx2 + 2ε)/δt2)δ2,

and δ0 = (1, 0, . . . 0, . . . ), δ1 = (0, 1, 0, . . . 0, . . . ), δ2 = (0, 0, 1, 0 . . . 0, . . . ). We used the
convention ss−1 = ps−1 = 0. The quantities s̃s0, s̃u0 , p̃s0, p̃u0 are found directly via the roots of
P for z−1 = x = 0, and the resolution of (3.34) is implemented numerically. The evaluation
of the n first coefficients requires O(n2) operations. Now it remains to invert the boundary
conditions (3.33). One finds on the left

(1 + p̃u0)wn+1
1 − s̃u0wn+1

0 + 4δx
δt

p̃u0η
n+1
0 = −(3 + p̃u1 + p̃u0)wn1 + (s̃u1 + s̃u0)wn0 −

4δx
δt

(p̃u1 − p̃u0)ηn0

−3wn−1
1 − wn−2

1 −
n∑
k=1

(p̃uk+1 + p̃uk)wn−k1 +
n∑
k=1

(s̃uk+1 + s̃uk)wn−k0 − 4δx
δt

n∑
k=1

(p̃uk+1 − p̃uk)ηn−k0 ,

4δx
δt

ηn+1
1 + s̃u0w

n+1
1 − (1 + p̃u0)wn+1

0 =

−s̃u1wn1 + (2 + p̃u1)wn0 + 4δx
δt

ηn−1
1 + wn−1

0 −
n∑
k=1

s̃uk+1w
n−k
1 +

n∑
k=1

p̃uk+1w
n−k
0 ,

(3.35)
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and on the right:

(1 + ps0)wn+1
J+1 − s

s
0w

n+1
J + 4δx

δt
ps0η

n+1
J = −(1 + ps1 + ps0)wnJ+1 + (ss1 + ss0)wnJ −

4δx
δt

(ps1 − ps0)ηnJ

−
n∑
k=1

(psk+1 + psk)wn−kJ+1 +
n∑
k=1

(ssk+1 + ssk)wn−kJ − 4δx
δt

n∑
k=1

(psk+1 − psk)ηn−kJ ,

4δx
δt

ηn+1
J+1 + ss0w

n+1
J+1 − (1 + ps0)wn+1

J = 4δx
δt

ηnJ+1 − (ss0 + ss1)wnJ+1 + (1 + ps1 + ps0)wnJ

+
n∑
k=1

(psk+1 + psk)wn−kJ −
n∑
k=1

(ssk+1 + ssk)wn−kJ+1 .

(3.36)

3.3.1 Consistency theorem

We show that the discrete boundary conditions (3.35), (3.36) are consistent of order O(δt2+
δx2).

3.3.3 Theorem. Let η, w be a smooth solution of (3.2) and (3.6). We define the
Z−transform of f(·, x) for all x ∈ [x`, xr] by

∀z 6= 0, f̂(z, x) =
∞∑
n=0

f(nδt, x)
zn

.

For all compact K ⊂ C+ and for all λ ∈ K:

(1 + r1r2)ŵ(eλδt, x` + δx)− (r1 + r2)ŵ(eλδt, x`) + 2δxr1r2s(eλδt)η̂(eλδt, x`) = O(δt2 + δx2),

2δxs(eλδt)η̂(eλδt, x` + δx) + (r1 + r2)ŵ(eλδt, x` + δx)− (1 + r1r2)ŵ(eλδt, x`) = O(δt2 + δx2),

(1 + r3r4)ŵ(eλδt, xr)− (r3 + r4)ŵ(eλδt, xr − δx)

+2δxr3r4s(eλδt)η̂(eλδt, xr − δx) = O(δt2 + δx2),

2δxs(eλδt)η̂(eλδt, xr) + (r3 + r4)ŵ(eλδt, xr)− (1 + r3r4)ŵ(eλδt, xr − δx) = O(δt2 + δx2),

where ri, i = 1, .., 4 are the roots of the polynomial (3.29) such that |r1| ≥ |r2| > 1 > |r3| ≥
|r4|.

Proof. The proof of this theorem is similar to the proof of Theorem 3.2.3. However the
explicit expressions for the roots ri are exceedingly lengthy and useless. Instead, we consider
asymptotic expansions of the roots as δx→ 0. Recall that (ri)i=1,...,4 is expanded as

r2 = 1 + s(z)δx
+
√

1 + εs2(z)
+O(δx2), r3 = 1− s(z)δx

+
√

1 + εs2(z)
+O(δx2),

r1 = −1− 2εs2(z)− 2 +
√
εs2(z)(1 + εs2(z)) +O(δx2),

r4 = −1− 2εs2(z) + 2 +
√
εs2(z)(1 + εs2(z)) +O(δx2).

Let us denote by e1(δt, δx) the consistency error associated to the first boundary condition:

e1 = (1 + r1r2)ŵ(eλδt, x` + δx)− (r1 + r2)ŵ(eλδt, x`) + 2δxr1r2s(eλδt)η̂(eλδt, x`)
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and define R1, R2 as

R1 = −1− 2εs2(z)− 2 +
√
εs2(z)(1 + εs2(z)), R2 = s(z)

+
√

1 + εs2(z)
,

such that r1 = R1 +O(δx2), r2 = 1 +R2 δx+O(δx2). The consistency error e1 reads:

e1 = (1 +R1 +R1R2δx)ŵ(eλδt, x` + δx)

−(1 +R1 +R2δx)ŵ(eλδt, x`) + 2δxs(eλδt)R1η̂(eλδt, x`) +O(δx2)

= δx
(

(1 +R1)∂xŵ(eλδt, x`) +R2(R1 − 1)ŵ(eλδt, x`) + 2s(eλδt)R1η̂(eλδt, x`)
)

+O(δx2)

= δx (R1 + 1)
(
∂xŵ + s(eλδt)η̂

)
(eλδt, x`) + δx(R1 − 1)

(
R2ŵ + s(eλδt)η̂

)
(eλδt, x`) +O(δx2).

Recall that the function s(z) with z = eλδt is approximated by s(eλδt) = λ + O(δt2). By
applying the relation (3.24) between Z−transform and Laplace transform, we find that

e1 = δx

δt
(R1 + 1) (∂xL(w) + λL(η)) (λ, x`)+

δx

δt
(R1 − 1)

(
λ

+√1 + ελ2
L(w) + λL(η)

)
(λ, x`) +O(δx2 + δt2). (3.37)

Since η, w is a smooth solution of (3.2), one has ∂xL(w) + λL(η) = 0. Moreover η, w
satisfies (3.6) so that (R2L(w) + λL(η)) (s, x`) = 0. As a result, one has e1 = O(δt2 + δx2).
We proceed similarly for the other consistency errors. This concludes the proof of the
proposition.

We observed numerically that the coefficients involved in (3.36) and (3.35) decrease as
n−3/2. The coefficients are plotted in Figure 3.1, b. One finds similar decay properties for
the linear Korteweg-de Vries equation [19], Benjamin-Bona-Mahony equation [18] or the
Schrödinger equation [46]. The discrete boundary conditions (3.36) and (3.35) are thus
stable with respect to round off errors.

In the next section we will discuss the results of numerical simulations for equation (3.23)
with the boundary conditions (3.21), (3.22) and for the system (3.14) with the boundary
conditions (3.35), (3.36).

3.4 Numerical results

In this section we present a numerical validation of the discretized transparent boundary
conditions through various tests. First we validate the boundary conditions for a Gaussian
initial data. Different dispersion properties are analysed for a wave packet as initial datum.
This analysis is based on the dispersion relation corresponding to the linearized Green-
Naghdi equation. All test are carried out for both types of boundary conditions on a
staggered and on a collocated grid. Finally, we show how to inject a (planar) wave into

Numerical animations are available https://www.math.univ-toulouse.fr/∼mkazakov

https://www.math.univ-toulouse.fr/~mkazakov/numerics.html
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the computational domain. To validate the efficiency of the artificial boundary conditions
we perform a numerical analysis of the approximation error. The tests show second order
of approximation with respect to time and space. Let us introduce first the numerical
implementation of the numerical methods considered in this chapter.

3.4.1 Numerical implementation

Staggered grid

We present a numerical strategy to solve the problem on a staggered grid. The discretization
(3.14) is equivalent to the scheme (3.23) and the conditions (3.21), (3.22) are written for the
values of velocity wn0,J+1. It remains to reconstruct the values for the free surface elevations
ηn+1
j+1/2, j ∈ (0, J). By taking into account the boundary condition and setting

Λ− = Λ + 2δx2 − 2δx
√

Γ, Λ+ = Λ + 2δx2 + 2δx
√

Γ,

µ− = µ+ 2δx2 − δx
√

Γ(v + 1), µ+ = µ+ 2δx2 + δx
√

Γ(v + 1),

the full numerical step written as a one time step method reads

MWn+1 = 2NWn −MWn−1 + V n, n ∈ N,

where Wn+1 = [wn+1
0 , . . . , wn+1

J+1]> is the unknown vector, and the matrices M,N ∈
MJ+2(R) are defined as:

M =


−Λ+ Λ
−a+ 1 + 2a+ −a+

. . . . . . . . .
−a+ 1 + 2a+ −a+

−Λ− Λ

 , N =


−µ+ µ

−a− 1 + 2a− −a−
. . . . . . . . .

−a− 1 + 2a− −a−
−µ− µ

 .

The vector V n on the right hand side has only two non-zero components:

V n =


2δx
√

Γ
(

(P2 − 2v2 + v)wn−1
0 +

n∑
k=2

sk(v)wn−k0

)
...

−2δx
√

Γ
(

(P2 − 2v2 + v)wn−1
J +

n∑
k=2

sk(v)wn−kJ

)


.

The matrixM is easily proved to be invertible (for δx small enough) and the solution vector
at time tn+1 is given by

Wn+1 = M−1(2NWn + V n)−Wn−1, n ∈ N,

so that the velocity components can be computed at each time step.
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Once the velocity field is computed, there remains to reconstruct the values of the free-
surface elevation η. This can be done by solving the first equation of (3.14). Since the
velocity at iterations n and (n+ 1) is known, one finds

ηn+1
j+1/2 = ηnj+1/2 −

δt

2

(
wn+1
j+1 − w

n+1
j

δx
+
wnj+1 − wnj

δx

)
.

Note that this equation has no influence on the velocity calculations and should be solved
simply for the correct description of the water wave problem.

We need to set the initial values for the velocityW 0 at t = 0 andW 1 at t = δt. In order
to take into account the physics of the problem the initial conditions should be imposed for
the velocity W 0 and the elevation η0. To find a value for W 1 at t = δt we use the Taylor
expansion in the vicinity of t = 0:

(w − εwxx) |t=δt= (w − εwxx)
∣∣
t=0 + δt(w − εwxx)t

∣∣
t=0 + δt2

2 (w − εwxx)tt
∣∣
t=0 +O(δt3),

using the continuous equations (3.2) one finds

(w − εwxx)
∣∣
t=δt =

(
w −

(
ε− δt2

2

)
wxx

)∣∣
t=0 − δt ηx

∣∣
t=0. (3.38)

The discretization of (3.38) gives the linear system for the requested value. Note that the
order of approximation for values W (t = δt) is the same as for the numerical scheme itself.

Collocated grid

We rewrite in a matrix form the discrete equations (3.27) on a collocated grid coupled with
the boundary conditions derived in Section 3.3. We have:[

A+ B+
C+ D+

](
ηn+1

wn+1

)
=
[
A− B−
C− D−

](
ηn

wn

)
+ V

n
,

where the matrices A±, B±, C±, D± are block matrices in MJ+2(R) defined as follows

A+ =


p̃u0/c

0 1 0
. . . . . . . . .

0 1 0
0 1/c 0 0

 , B+ =


−s̃u0 1 + p̃u0
−c 0 c

. . . . . . . . .
−c 0 c

−(1 + p̃u0) s̃u0 0

 ,

C+ =


0 0 ps0/c 0
−c 0 c

. . . . . . . . .
−c 0 c

0 0 1/c

 , D+ =


0 −ss0 1 + ps0
−a 1 + 2a −a

. . . . . . . . .
−a 1 + 2a −a

−(1 + ps0) ss0

 ,
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and :

A− =


−(p̃u1 − p̃u0)/c

0 1 0
. . . . . . . . .

0 1 0
0 0 0 0

 , B− =


s̃u0 + s̃u1 −(3 + p̃u0 + p̃u1)

c 0 −c
. . . . . . . . .

c 0 −c
2 + p̃u1 −s̃u1 0

 ,

C− =


0 0 −(ps1 − ps0)/c 0
c 0 −c

. . . . . . . . .
c 0 −c

0 0 1/c

 ,

D− =


0 (ss0 + ss1) −(1 + ps0 + ps1)
−a 1 + 2a −a

. . . . . . . . .
−a 1 + 2a −a

1 + ps0 + ps1 −(ss0 + ss1)

 .

We have denoted c = δt/(4δx) and a = εδt/δx2. It follows from the form of the boundary
conditions that the vector ~Vn on the right hand side contains the previous time-iteration
values of the functions ηnj , wnj :

V
n
0 = −3wn−1

1 −wn−2
1 −

n∑
k=1

(p̃uk+1+p̃uk))wn−k1 +
n∑
k=1

(s̃uk+1+s̃uk))wn−k0 −4δx
δt

n∑
k=1

(p̃uk+1−p̃uk)ηn−k0 ,

V
n
J+1 = 4δx

δt
ηn−1

1 −
n∑
k=1

s̃uk+1w
n−k
1 + wn−1

0 +
n∑
k=1

p̃uk+1w
n−k
0

V n
J+2 = 4δx

δt

n∑
k=1

(psk+1 − psk)ηn−kJ −
n∑
k=1

(psk+1 + psk)wn−kJ+1 +
n∑
k=1

(ssk+1 + ssk)wn−kJ ,

V n
2(J+2) = −

n∑
k=1

(ssk+1 + ssk)wn−kJ+1 +
n∑
k=1

(psk+1 + psk)wn−kJ ,

V
n
j = 0, j = 1, .., J, (J + 3), .., 2J + 3.

3.4.2 Gaussian initial distribution

In this section we show the numerical results when we take a Gaussian initial distribution
for the free surface elevation and zero distribution for velocity

η0(x) = exp(−400× (x− 1/2)2), w0(x) = 0,

whereas the computational domain (t, x) ∈ [0, 1]× [0, 1] is meshed with N × (J + 2) nodes.
We first show that there is no reflection on the boundaries of the computational domain.
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a b

Figure 3.2: Numerical solution on a staggered (up) and collocated (down) grids: Evolution
of (a) the surface elevation, (b) the fluid velocity for δx = 10−3, δt = 10−2, ε = 10−3.

We present results both for staggered and collocated spatial grids. The velocity and free
surface evolution are shown on the (x, t)-plane on the Figure, 3.2. Following the numerical
strategy described at the beginning of this section we have reconstructed the value for
w(t = δt) from the initial datum for the method on a staggered grid.

Let us comment the computed results. Recall that the dispersion relation associated to
(3.2) is written as

ω2(k) = k2

1 + εk2 . (3.39)

There are two solutions for ω(k), that corresponds to the fact that the Green-Naghdi
system describes bi-directional propagation of waves, just as we can see in Figure, 3.2. On
the left Figure 3.3, the positive solution of the dispersive relation (3.39) is plotted. From
the dispersive relation (3.39), we find that phase and group velocities are given by

vϕ(k) = ω(k)
k

= 1√
1 + εk2

, vg(k) = dω(k)
dk

= 1
(1 + εk2)3/2 .

The group velocity is always smaller than the phase velocity (see right Figure 3.3).
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Figure 3.3: Positive solution of dispersive relation ω(k) for ε = 10−4 (solid), ε = 10−3

(dashed) (left) and phase (continued) and group (dashed) velocities for ε = 10−3 (right).

3.4.3 Wave packet

In order to observe more clearly the dispersive behavior of the Green-Naghdi system, we
consider the solution of (3.2) with the next initial datum

η0(x) = exp(−400× (x− 1/2)2) sin(20πx), w0(x) = 0. (3.40)

For different values of ε, the dispersive properties are not the same. The results are pre-
sented in Figure 3.4. As dispersive effects are more important for ε = 10−3 we have more
diversity for frequency values, but for smaller value ε = 10−4 the behaviour of the solution
is closer to the solutions of the hyperbolic Saint-Venant system. Namely, the velocity pro-
file splits into two waves travelling at speed ±1: in this case, phase and group velocities
coincide.

In order to check numerically the order of approximation of the numerical schemes, we
have constructed the reference solution for the velocity. The reference solution of (3.10)
can be written as

wref (t, x) = F−1

(
ξ 7→ cos

(
ξt√

1 + ξ2ε

)
F(w0)(ξ)

)
(t, x),

here F , F−1 are the Fourier and inverse Fourier transforms in space, and w0 denotes
the initial data. For the numerical test, the reference solution is calculated with periodic
boundary conditions and the Fast Fourier transform. The extension of the computational
domain is chosen large enough to avoid any spurious effects of the boundary conditions.
The evolution of the reference solution is shown in Figure 3.5.

We define the error functions of the approximation which corresponds to the discrete
version of Lt∞Lx2 and Lt2Lx2 norms of the errors. Let us first denote

en =| w(tn, ·)− wref (tn, ·) |L2 ,

for all time step tn, then the discrete norms are defined as

L2err =
(
δt

N∑
n=1

(e2
n)
)1/2

, L∞err = max
0<n≤N

(
en
)
.
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ε = 10−3 ε = 10−4

Figure 3.4: Evolution of the velocity profile for δx = 10−3, δt = 10−2 with (3.40) initial
datum with ε = 10−3 (left) and ε = 10−4 (right).

The next estimates are satisfied due to the second order of accuracy for both the nu-
merical scheme on a staggered and collocated grid

L2err = C2
t δt

2 + C2
xδx

2, L∞err = C∞t δt
2 + C∞x δx

2,

where C2
t,x, C∞t,x are constants depending on the reference solution. We start the analysis of

the behaviour of the error functions with respect to δx. For that purpose, we take N = 103

which leads to a value for δt small enough to ensure that the dominating error term is
linked to Cx . The errors are plotted in Figure 3.6. The second order accuracy with respect
to the space step is satisfied. In the case of staggered grid, the space discretization induced
errors that stagnate after δx ≤ 0.005: in this area, the time discretization induced error
dominates.

In order to check the approximation order with respect to δt, we fix J = 215, to take δx
small enough and ensure that there is no influence of C2

x, C∞x . We find the second order
of approximation as well. The plots are presented in Figure 3.7. We find also in one case
that the time discretization error stagnate: here the spatial discretization errors dominate.

3.4.4 Incoming wave

In this subsection we will consider the numerical test with a travelling wave entering the
computational domain, which is an important real physical case. Indeed, it is still an open
problem for the Green-Nagdhi equation to impose an incoming wave like a solitary wave
or a cnoidal wave which can model tidal waves at the edge of the computational domain
without perturbing the solution computed numerically in the domain. We follow here the
method presented in [3] for the Schrödinger-Poisson system and successfully applied in [18]
for the Benjamin-Bona-Mahoney equation.

Let us denote by win(x, t) = β cos(kx− ω(k)t) a plane wave solution for the velocity of
the linear equation (3.10). Now we are searching for the transparent boundary conditions
for the linear equation with an initial data w0 satisfying w0(x) = win(x), ∀x ≤ xl and
w0(x) = 0, ∀x ≥ xr. For that purpose, we decompose w as w(x, t) = χ(x)win(x, t)+v(x, t),
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ε = 10−2 ε = 10−3

Figure 3.5: Evolution of the reference solution for ε = 10−2 (left) and ε = 10−3 (right).

where the cut-off function χ is defined as χ = 1, ∀x ≤ xl χ = 0, ∀x ≥ xr and is smooth:
its derivatives χ′ is compactly supported in [x`, xr]. Then, the new unknown function v is
compactly supported in [x`, xr]. One finds that v satisfies the following equation with a
source term:

(v − εvxx)tt − vxx = Gε(x, t)

Gε(x, t) = ε(χ′′(x)wintt (t, x) + 2χ′winxtt(t, x)) + χ′′(x)win(t, x) + 2χ′′(x)winx (t, x).

The derivation of the continuous boundary conditions for v is exactly similar to the homo-
geneous case (win = 0) discussed above, one finds

wx(t, xr) = −∂/∂t
∫ t

0
J0(s/

√
ε)w(t− s, xr)ds,

∂x(w − win)(t, xl) = ∂/∂t

∫ t

0
J0(s/

√
ε)(w − win)(t− s, xl)ds.

(3.41)

For the discrete boundary condition, we consider the problem set on a staggered grid.
The procedure repeats the method proposed in the homogeneous case win = 0. The
continuous plane wave solution is replaced by the discrete solution

winn,j = β cos(jkδx− nω̃(k)δt), ω̃(k) = 1
δt

arccos
(

2δx2 + (4ε− δt2) sin2(kδx/2)
2δx2 + (4ε+ δt2) sin2(kδx/2)

)
,

and the condition on the left boundary is written as

Λ(wn+1
1 − [win]n+1

1 )− (Λ + δx2 + 2δx
√

Γ)(wn+1
0 − [win]n+1

0 ) =

2(µ(wn1 − [win]n1 )− (µ+ 2δx2 + δx
√

Γ(v + 1))(wn0 − [win]n0 ))−

(Λ + (wn−1
1 − [win]n−1

1 )− (Λ + δx2 + 2δx
√

Γ)(wn−1
0 − [win]n−1

0 ))+

2δx
√

Γ
(

(P2 − 2v2 + v)(wn−1
0 − [win]n−1

0 ) +
n∑
k=2

sk(wn−k0 − [win]n−k0 )
)
, (3.42)
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Figure 3.6: Evolution of the error functions for the numerical methods on a collocated (up)
and staggered (down) grid with respect to δx.
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and staggered (right) grid with respect to δt.
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p = 4, ε = 10−3 p = 8, ε = 10−3

Figure 3.8: Evolution of incoming wave solutions for different wave number.

whereas on the right boundary, one has:

Λ(wn+1
J+1 − [win]n+1

J+1)− (Λ + δx2 − 2δx
√

Γ)(wn+1
J − [win]n+1

J ) =

2(µ(wnJ+1 − [win]nJ+1)− (µ+ 2δx2 − δx
√

Γ(v + 1))(wnJ − [win]nJ)−

− (Λ(wn−1
J+1 − [win]n−1

J+1)− (Λ + δx2 − 2δx
√

Γ)(wn−1
J − [win]n−1

J )−

− 2δx
√

Γ
(

(P2 − 2v2 + v)(wn−1
J − [win]n−1

J ) +
n∑
k=2

sk(v)(wn−kJ − [win]n−kJ )
)
. (3.43)

The boundary conditions for the numerical scheme (3.27) (collocated grids) can be written
in the same manner.

The numerical results are plotted in Figure 3.8. We write the wave number as k = 2πp,
p ∈ N and we present the results for different wave numbers (p = 4, 8). In both cases there
exists a transient regime, but after the wave solution propagates correctly. We observe
again the difference between phase and group velocities. Note that the characteristics in
the (x, t)-plane have all a slope close to 1 in the zone after transition, which corresponds to
the velocity of the waves (a coefficient preceding wx). But a part of the energy is carried
along the characteristic with the smaller slope on the border of the transient regime which
corresponds to the fact that the group velocity is smaller.

3.5 Conclusion

In this chapter, we have derived exact and discrete transparent boundary conditions for
the linear Green-Naghdi system for a Crank-Nicolson discretization on a staggered and a
collocated grid. Both schemes are proved to be stable, consistent and convergent. The
technique is validated numerically for outgoing waves with different initial data. We show
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how to deal with the problem of wave generation in water wave problems and prove the
accuracy of the proposed method on numerical tests.

In practice, we will have to deal with nonlinear equations. It remains an open question
what are the transparent boundary conditions for this case. One can imagine to adapt our
strategy to linear equations with variable coefficients and then adopt a fixed point strategy,
as it was done for nonlinear Schrödinger equation in [5]. Another question of interest is to
derive discrete transparent boundary conditions in the case of the two-layer Green-Naghdi
equations which are used to describe internal waves propagation.



Chapter 4

Perfectly Matched Layers:
Application to a relaxation
system for the Green-Naghdi

equations

Mathematical modelling of dispersive wave propagation in large domains requires advanced
numerical techniques. In particular, as already mentioned, a much smaller numerical do-
main than the physical space is generally used in order to reduce the computational costs.
Therefore suitable boundary conditions must be imposed. As discussed in Introduction,
the dispersive Green-Naghdi system is generally used in the context of coastal water wave
propagation. The same problem arises for the models derived in Part I. We focus in this
chapter first on the Green-Naghdi equations, since both models obtained in the previous
part reduce to this system for particular cases.

Nonlinear Green-Naghdi equations are set initially on the whole space, but when in-
tegrating numerically, one has to confine the computational domain. Naturally, in appli-
cations, we are interested in simulating incoming and outgoing waves. For ocean wave
propagation, classical numerical boundaries (reflecting walls, periodic settings) are limit-
ing. This numerical issue is not specific to fluid dynamics, one faces the same problem in
acoustics, quantum mechanics, electrodynamics, optics, and the other fields implying wave
propagation.

In the previous Chapter 3, transparent boundary conditions are proposed for the lin-
earized Green-Naghdi system. The derived conditions provide a good approximation of the
solution on the original unbounded domain and permit to generate incoming waves. Un-
fortunately, transposition of such techniques to a nonlinear setting is, up to our knowledge,
still an open question.

We have already discussed methods used to resolve the difficulties with boundary condi-
tions in the case of dispersive Green-Naghdi (more generally Boussinesq type) models. Now
let us focus on a model recently proposed in [49]. The idea is to extend the Green-Naghdi

108
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system to a hyperbolic system, introducing new variables. The equations are derived by
using a Lagrangian approach. The proposed system may be interpreted as a numerical
relaxation strategy for the initial Green-Naghdi equations (like the one initially proposed
in [67]). The introduction of new variables allows for the reduction of the order, a more
straightforward resolution. Consequently, the proposed approach resolves one of the main
difficulties encountered with the dispersive terms discretization: there is no need to inverse
an elliptic operator. The system can be solved with a classical Godunov-type method,
supplemented by a splitting strategy for the source terms.

This new formulation is a significant improvement in the simulations of dispersive waves.
However, one has to impose suitable boundary conditions, and notably when dealing with
reduced numerical domains. Contrary to the original equations, the system under consid-
eration is hyperbolic. This may allow simplifying the boundary conditions treatment, and
if so this new system might be very promising for further applications in ocean wave mod-
elling. Validations considered in [49] implied solitary wave propagation and Favre waves,
more general test cases may require a proper procedure for boundary conditions. In par-
ticular, we need to propose a suitable procedure for inflow and outflow simulations, which
is the primary goal of the present study.

Dealing with boundary conditions in the classical context of 1D hyperbolic systems
the equations should be rewritten, if possible, in Riemann invariants form. Unfortunately,
this is not the case for the proposed system. Moreover, the generalization of the notion
of Riemann invariants for multidimensional cases is not a trivial task. Another approach
needs to be proposed.

Several techniques are used for now to deal with boundary conditions for simulations of
systems set initially on unbounded domains. We briefly mention two strategies which are
not discussed here in details. The problem can be treated with Infinite Element Methods
(IEM), and Boundary Element Methods (BEM). IEM are usually used in acoustics, where
the unbounded outer region is modelled in its entirety by particular elements of infinite
extent. BEM methods are used for problems for which Green’s functions can be calculated.

Another approach is the construction of artificial boundary conditions (ABC), conside-
red in the previous chapter. Engquist and Majda performed one of the first pioneering works
on such a type of conditions in [48]. They applied the theory of reflection of singularities
developed earlier in [96]. Since this work, many research works concerned the generalization
of these conditions for different application fields. A review of these approaches can be
found in [55], and another one devoted to the Schrödinger equation in [5]. In general, the
construction of ABCs may be performed at the continuous level, for example in [60] where
a general method for evolution problems is proposed. In [47], well-posed ABCs are found
for a general hyperbolic system using pseudo-differential operators. Another possibility
is to construct ABCs at a discrete level directly, as it was done recently in [18] for the
Benjamin–Bona–Mahony (BBM) equation, or in [19] for the KdV-BBM equation, and in
Chapter 3 for the linearized Green-Naghdi system.

Generally speaking, all those techniques give specific conditions on the artificial bound-
ary by factorization of the differential equations into inflow and outflow parts. A different
approach is referred to as absorbing layer approach. In this case, a more physical interpre-
tation is applied: a damping medium is put around the computational domain. It leads
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to modifications of the equations since the physical properties of the part of the medium
where waves propagate are changed. One of the pioneering work employing such a strategy
was proposed by Bérenger [16] with the Perfectly Matched Layer (PML) approach, where
thin layers are introduced around the computational domain in the context of electromag-
netics. Since then, this idea was followed by other researchers. A review of applications
to electrodynamics is given in [136]. Particular applications to advective acoustics can be
found in [2]. For linear water waves, we refer to [38] among others.

In the present study, we are interested in the derivation of PML equations for the new
relaxed system introduced before. The chapter is organised as follows: the first two sections
are devoted to the new relaxed Green-Naghdi system introduced in [49] and its mathemat-
ical structure. The derivation of the PML equations and numerical validations are given
in the next two sections. Then we provide a preliminary stability result through an energy
estimation of the solution of the resulting linear PML equations. Explanations on how to
proceed in the nonlinear case are considered in section 4.6, together with nonlinear numer-
ical tests. In the last Section, we show that using the same arguments the PML equations
can be applied to the wave generation in both linear and nonlinear cases. Numerical tests
are provided to illustrate the procedure.

4.1 From Green-Naghdi to a hyperbolic system

We consider a robust numerical method proposed recently in [49]. The idea is to extend
the Green-Naghdi system to a hyperbolic system, using a Lagrangian approach. The one-
dimensional Green-Naghdi equations are written as

∂h

∂t
+ ∂(hu)

∂x
= 0,

∂(hu)
∂t

+ ∂

∂x
(hu2 + p) = 0, p = gh2

2 + 1
3h

2ḧ,

t > 0, x ∈ R, (4.1)

with ḧ denotes the second order material derivative:

ḣ = ∂h

∂t
+ u

∂h

∂x
, ḧ =

(
∂

∂t
+ u

∂

∂x

)
h.

The system describes an evolution of the water depth h(t, x) and velocity u(t, x). The
equations admit a variational formulation ([53], [122]) with the Lagrangian L defined as

L =
∫ ∞
−∞

hu2

2 −W (h, ḣ) dx. (4.2)

The potential W (h, ḣ) is

W (h, ḣ) = gh2

2 − hḣ2

6 .

The corresponding Euler-Lagrange equations lead to the dispersive Green-Naghdi equa-
tions.

The main idea used in [49] is to extend (4.2) to

L∗ =
∫ ∞
−∞

hu2

2 + hη̇2

6 − gh2

2 − λh

6

(η
h
− 1
)2

dx, λ = const, (4.3)
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using a non-equilibrium variable η with the property that in equilibrium one has η = h.
The Euler-Lagrange equations then leads to the new extended system (see [49] for

details):
∂U
∂t

+ ∂F(U)
∂x

= S(U), (4.4)

where the vector functions are defined as follows

U = (h, hu, hη, hw)> , F(U) =
(
hu, hu2 + gh2/2− λ

3

(η
h
− 1
)
, hηu, hwu

)>
S(U) =

(
0, 0, hw,−λ

(η
h
− 1
))>

.

By construction the function w(t, x) corresponds to the material derivative of water depth
h.

For the definition of the value of the relaxation parameter λ, we turn to a dispersion
relation analysis. For the model (4.4), the phase velocity reads

(v∗ϕ(k))2 = 1
2

gh3
0 + λh2

0
3 + λ

(kh0)2 ±

√
gh3

0 + λh2
0

3 + λ

(kh0)2 −
4gh0λ

k2

 , (4.5)

while for the original Green-Naghdi system the phase velocity is simpler and written as

(vϕ(k))2 = 3gh0 k
2

3 + (kh0)2 . (4.6)

The wave number is denoted by k, and h0 = const is an equilibrium water depth. For the
choice of a reliable value of λ, one should pay attention to how close the values v∗ϕ(k) are
to the values of vϕ(k) for all k. In [49] it is shown that for relatively big values of λ one
can guarantee a good approximation of (4.6) by (4.5).

4.2 Mathematical structure of the system

We begin with the study of hyperbolicity of the system (4.4). Generally, the homogeneous
system of the form

∂U
∂t

+ ∂F(U)
∂x

= 0, (4.7)

where U = U(t, x) is the conservative state, F(U) is the flux, is hyperbolic if the Jacobian
matrix of F(U) with respect to U has real eigenvalues and a set of associated eigenvectors
which form a basis of Rd, where d is the dimension of vector U.

For the system (4.4) the Jacobian matrix DF(U) has form:

DF(U) =


u h 0 0

g + λ

3
η2

h3 u −λ3

(
2η
h
− 1
)

0

0 0 u 0
0 0 0 u

 . (4.8)
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All eigenvalues of (4.8) are real, and one is multiple. Indeed,

det(DF− siI) = 0,

this leads to the following eigenvalues si:

s1,2(U) = u, s3,4(U) = u±
√
gh+ λ

3
η2

h2 . (4.9)

The corresponding eigenvectors are given by

q1 =


0
0
0
1

 , q2 =


λ(h− 2η)/3

0
gh+ λη2/(3h2)

0

 , q3,4 =


1

±
√
gh+ λη2/(3h2)

0
0

 . (4.10)

We conclude that the system is hyperbolic since the set of eigenvectors is complete. More-
over ∇Us1,2 · q1,2 = 0, where ∇U is the gradient with respect to dependent variables
U = (h, u, η, w). It follows that the corresponding characteristic field is linear degenerated.
For the other characteristics we have ∇Us3,4 · q3,4 < 0 and the fields associated with s3,4
are genuinely non-linear.

For hyperbolic equations, according to the system structure, solutions can be decom-
posed on inflow and outflow parts. Indeed, one can see it in the linear case. In this case,
the matrix DF(U) is constant with constant eigenvalues si. Therefore the characteristics
defined as dx/dt = si are straight lines. The matrix DF(U) can be diagonalized in this
case. Denoting by D = diag(si) a diagonal matrix whose entries are the eigenvalues si, we
obtain from (4.7)

∂W
∂t

+D
∂W
∂x

= 0, W = L`U,

where L` is a matrix whose row vectors are the left eigenvectors of DF(U). The part of the
solution W, constant along the characteristics with positive slopes (si > 0) define inflow
part, and characteristics with negative slopes (si < 0) define outflow part, respectively.
This knowledge allows deducing the number of boundary conditions. Only inflow part
needs to be imposed at the left boundary and outflow at right one; initial conditions define
the rest of the information. For the nonlinear case, we have similar conclusions when the
system is endowed with a coordinate system of Riemann invariants. For example, in the
case of nonlinear shallow water (Saint-Venant) equations nonlinear Riemann invariants can
be constructed. Unfortunately, it is not always the case for a general nonlinear system.

First of all, we linearize the system (4.4) around the constant flow state h = h̃ + H0,
u = ũ+U0, η = η̃+H0, w = w̃, in order to find the linear Riemann invariants. One obtains

∂V
∂t

+Adim
∂V
∂x

= S(V), (4.11)

where V = (h̃, ũ, η̃, w̃) is a vector of the perturbations, S(V) = (0, 0, w, λ(η−h)/H2
0 )>, and
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Adim is a square matrix defined as

Adim =


U0 1 0 0

g + λ

3H0
1 − λ

3H0
0

0 0 U0 0
0 0 0 U0

 . (4.12)

The system is simplified by elimination of ht from the last three equations.
We introduce now nondimensional variables (denoted with primes),

h′ = h̃

H0
, u′ = ũ

V0
, η′ = η̃

H0
, x′ = x

L
,

where L is the characteristic horizontal length of the flow. From the equations (4.11) we
then conclude the following dimensionless form:

w′ = L

H0V0
w̃, λ′ = λ

V 2
0
, t′ = V0

L
t.

The nondimensional system takes the form:

∂V′

∂t′
+A

∂V′

∂x′
= S′(V′), (4.13)

with unknown vector V ′ = (h′, u′, η′, w′) and source term S′(V′) = (0, 0, w,−λ′(η′−h′)/µ2).
To simplify the notation, primes are dropped further. The matrix A reads

A =


ν 1 0 0

1
F 2 + λ

3 ν −λ3 0
0 0 ν 0
0 0 0 ν

 (4.14)

The nondimensional quantities F and µ are respectively a Froude number, and a shallow
water parameter:

F 2 = V 2
0

gH0
, µ2 = H2

0
L2 .

Note that the velocity is scaled with V0 which is different from the equilibrium velocity U0,
and ν = U0/V0 stands for the velocity ratio. In the linear case, this choice is optional, and
in the sake of simplicity we take ν = 1. However, the assumption ν 6= 1 is useful for the
PML equations construction.

We consider now the homogeneous system associated with (4.13)

∂V
∂t

+A
∂V
∂x

= 0. (4.15)

To construct the Riemann invariants in the linear case we need to derive the left eigenvectors
of the matrix A (4.14). The eigenvalues are given by

s1,2 = 1, s3,4 = 1±
√

1
F 2 + λ

3 . (4.16)
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We have s1,2,3 > 0, and thus three characteristics propagate to the right, and s4 < 0 defines
one left-propagating characteristic. The corresponding left eigenvectors are written as

q`1 =


0
0
1
0

 , q`2 =


0
0
0
1

 , q`3,4 =



−
(

1
F 2 + λ

3

)

∓
√

1
F 2 + λ

3
λ

3

0


. (4.17)

The left eigenvectors form a matrix of change of variables. A standard diagonalization
procedure yields:

(∂t + ∂x) η = 0, (∂t + ∂x)w = 0,

(∂t + s3∂x)
((

1
F 2 + λ

3

)
h−

√
− 1
F 2 + λ

3 u−
λ

3 η
)

= 0,

(∂t + s4∂x)
((

1
F 2 + λ

3

)
h+

√
1
F 2 + λ

3 u−
λ

3 η
)

= 0,

where the differential operators above correspond to the operators along the characteristic
directions of the linear system. We conclude that the values rη = η, rw = w and

r =
(

1
F 2 + λ

3

)
h+

√
1
F 2 + λ

3 u−
λ

3 η (4.18)

are constant along the characteristics corresponding to the right-propagating waves, and

l =
(

1
F 2 + λ

3

)
h−

√
1
F 2 + λ

3 u−
λ

3 η (4.19)

is constant along the left-propagating one.
Therefore, one finds that r, η, w define the inflow part, and l the outflow part. In order

to impose boundary conditions correctly, only variables transported from the boundaries
towards the interior can be freely imposed. The remaining variables will depend on this
information. One can choose the Dirichlet boundary conditions for r, η, w at the left
boundary, and for l at the right one.

For the linear homogeneous system, such conditions define incoming and outgoing waves
exactly, and no reflection is observed. We demonstrate this numerically below, once the
numerical resolution algorithm is presented. However, when the dispersion is taken into
account by adding the source terms, this approach is not valid for all range of frequencies.
For high-frequency range, the source terms are almost negligible. But, for the main range of
interest, low-frequency range, it is not the case, and another more robust technique should
be applied.
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4.3 PML equations construction

Now let us focus on another more general technique for the boundary conditions which
is referred to as Perfectly Matched Layers (PML). We will see that this approach can be
applied to the non-homogeneous system and the nonlinear equations as well. As it was
discussed in the introduction, the idea of this method is to add absorbing layers around
the computational domain, where the original set of equations is modified in such a way
that the waves decay in all directions. Generally, the PML technique is applied to linear
systems. We are searching for the solution of the initial problem with initial data compactly
supported on [x`, xr]. The solution is decomposed into waves going in different directions
(in the present one-dimensional case to the left and the right), and then the equations are
modified in a right or left thin layer, according to the wave characteristics.

We consider plane wave solutions to the system (4.15) of the form (i is the imaginary
unit)

V =


h

u

η

w

 = qjeiω(t−sjx) =


qj1
qj2
qj3
qj4

 eiω(t−sjx).

The representation of the solution in such a form leads to the definition of si as inverse
quantities of the eigenvalues (4.16) (ν 6= 1 is supposed now):

s1,2 = 1
ν
, s3,4 = 1

ν ±
√

1
F 2 + λ

3

.

The vectors qj are the full set of corresponding eigenvectors defined as

(a) q1 =



λ

3
0

1
F 2 + λ

3
0


(b) q2 =


0
0
0
1

 (c) q3,4 =



±1√
1
F 2 + λ

3
0

0


. (4.20)

Three eigenvalues λ1,2,3 correspond to the right going waves, and the last one to the only
wave propagating to the left. This leads to different equations in the right and left thin
layers.

4.3.1 Construction of absorbing layer equations

We add now into the computational domain [x`, xr] finite width intervals (x`, x` + δx) on
the left and (xr − δx, xr) on the right, where the media properties are modified in such
a way that the waves propagate into those layers with amplitude decay and reflections as
small as possible. Following the PML construction approach, presented in [2], we define a
solution ansatz. We then modify the equations in order to make this new ansatz a solution
of the problem.
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To construct PML equations in the right absorbing layer, we modify the plane wave so-
lution corresponding to three rightward propagating waves. Thus we consider the following
ansatz 

h

u

η

w

 =


0
0
0

1 + k1(x)

 e
iω

(
t−
x

ν

)
exp

{
−
∫ x>0

0
σR(ξ)dξ

}
, (4.21)


h

u

η

w

 =



λ

3 (1 + f2(x))
0(

1
F 2 + λ

3

)
(1 + h2(x))

0

 e
iω

(
t−
x

ν

)
exp

{
−
∫ x>0

0
σR(ξ)dξ

}
(4.22)

and 
h

u

η

w

 =


−Λ(1 + f3(x))

(Λν − 1)(1 + g3(x))
0
0

 eiω(t−Λx)exp

{
−
∫ x>0

0
σR(ξ)dξ

}
, (4.23)

where σR(x) is positive a function of x and Λ denotes the eigenvalue

Λ = 1

ν +
√

1
F 2 + λ

3

.

A modulation of wave vectors by unknown functions fj , gj , hj , kj , (j = 1, .., 3) should be
defined. For this, we based on the assumption that the amplitude decay is independent on
the frequency of the waves incoming in the absorbing layer.

It should be pointed out that in general, we must consider an ansatz which is an arbitrary
linear combination of solutions put forward in (4.21)-(4.23). However, since we consider a
linear system, we can resolve three systems independently. More explicitly, the form of the
ansatzes (4.21) - (4.23) allows to split the system into three independent subsystems for
w(t, x) (coming from the last equation of the homogeneous system (4.15)), (h, η) (first and
third equations) and (h, u) (first and second equations).

Subsystem w(t, x)

Firstly let us consider the substitution of (4.21) into (4.15). Only the last scalar equation
for w(t, x) is not trivial:

wt + U0wx = Sw4 e
iω

(
t−
x

ν

)
exp

{
−
∫ x>0

0
σR(ξ)dξ

}
= S̃w4 ,

where

Sw4 = (1+k1(x))iω+ν
(

(1 + k1(x))
(
− iω
ν
− σR

)
+ k′1(x)

)
= −ν(1+k1(x))σR+k′1(x).
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It is necessary to provide PML equations guaranteeing the absorption of waves of all fre-
quencies. That is to say, Sw4 must be cast in a form that precludes the explicit appearance
of ω, Λ, U0 and only depends on the unknown functions h, u, η, w and σR. This leads to
the choice k1(x) = 0.

By referring to (4.20) (b), we obtain

S̃w4 = −νσR(x)w.

Subsystem (h, u)

The substitution of (4.23) into the initial linear system gives the following subsystem for
(h, u):

ht + νhx + ux = Shu1 eiω(t−Λx)exp

{
−
∫ x>0

0
σR(ξ)dξ

}
= S̃hu1 ,

ut +
(

1
F 2 + λ

3

)
hx + νux −

λ

3 ηx = Shu2 eiω(t−Λx)exp

{
−
∫ x>0

0
σR(ξ)dξ

}
= S̃hu2 ,

(4.24)
with

Shu1 = −Λ2 (f3(x)− g3(x)) +
+ Λ

(
νσR(f3(x)− g3(x))− iω(f3(x)− g3(x))− ν(f ′3(x)− g′3(x))

)
+

+ σR(1 + g3(x))− g′3(x), (4.25)

Shu2 = iωΛ2ν2(f3(x)− g3(x))+
+ Λ

(
ν2(f3(x)− g3(x))σR + iω(f3(x)− g3(x))(1− 2ν)

)
+

+ νσR(g3(x)− 2f3(x)− 1) + 1 + f3(x)
Λ σR. (4.26)

We must express Shu1 , Shu2 again only in terms of unknown functions and σR. We first
require the coefficients of Λ2 in (4.25) to vanish, which implies f3 = g3, ∀x ∈ [x`, xr]. One
obtains

Shu1 = σR(1 + g3(x))− g′3(x).

Therefore (with the choice g3 = 0):

S̃hu1 = −σReiω(t−Λx)exp

{
−
∫ x>0

0
σR(ξ)dξ

}
= −σRh. (4.27)

The last equality is established by comparison with (4.20) (c).
Plugging the found condition f3(x) = g3(x) = 0 into (4.26) leads to

S̃hu2 = −σRΛν − 1
Λ eiω(t−Λx)exp

{
−
∫ x>0

0
σR(ξ)dξ

}
= −σRu.
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Subsystem (h, η)

Now we consider in the same manner the last (h, η) subsystem. Substituting the corre-
sponding ansatz (4.22) into (4.15) we have

ht + νhx + ux = Shη1 eiω(t−x/U0)e
iω

(
t−
x

ν

)
exp

{
−
∫ x>0

0
σRx (ξ)dξ

}
= S̃hη1 ,

ut +
(
g + λ̄

H0

)
hx + νux −

λ̄

H0
ηx = Shη2 e

iω

(
t−
x

ν

)
exp

{
−
∫ x>0

0
σRx (ξ)dξ

}
= S̃hη2 ,

ηt + νηx = Shη3 e
iω

(
t−
x

ν

)
exp

{
−
∫ x>0

0
σRx (ξ)dξ

}
= S̃hη3 ,

(4.28)
where

Shη1 = −λ3
(
ν(1 + f2(x))σR + f ′2(x)

)
, (4.29)

Shη2 = −λ3

(
1
F 2 + λ

3

)((
iω

ν
+ σR

)
(f2(x)− h2(x))− (f ′2(x)− h′2(x))

)
, (4.30)

Shη3 = −ν
((

1
F 2 + λ

3

)
(1 + h2(x))σR −

(
1
F 2 + λ

3

)
h′2(x)

)
. (4.31)

Again, one needs to get the expressions only in terms of the unknown function and σR. It
implies that f2 ≡ g2 ≡ 0. Thus we obtain Shη2 = 0, and therefore S̃hη2 = 0. Hence, we get

Shη1 = −ν λ3σ
R, S̃hη1 = −ν λ3σ

Re
iω

(
t−
x

ν

)
exp

{
−
∫ x>0

0
σRx (ξ)dξ

}
= −νσRh,

Shη3 = −ν
(

1
F 2 + λ

3

)
, S̃hη3 = −ν

(
1
F 2 + λ

3

)
e
iω

(
t−
x

ν

)
exp

{
−
∫ x>0

0
σRx (ξ)dξ

}
= −νσRη,

Finally, the modified system reads:

ht + νhx + ux = −σRh,

ut +
(

1
F 2 + λ

3

)
hx + νux −

λ

3 ηx = −σRu,

ηt + νηx = w − νσRη,

wt + νwx = − λ

µ2 (η − h)− νσRw.

(4.32)

By construction, the waves propagate with amplitude decay in the layer (1, δx > 0), when
an appropriate positive function σR is chosen.

We consider now the part of the solution corresponding to the left-propagating waves.
The PML equations are constructed similarly. We obtain almost the same ansatz as (4.23)
for the modulated solution

h

u

η

w

 =


−M(1 + f3(x))

(Mν − 1)(1 + g3(x))
0
0

 eiω(t−Mx)exp

{
−
∫ 0

x<0
σL(ξ)dξ

}
, (4.33)
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with the only difference that M is now given by:

M = 1

ν −
√

1
F 2 + λ

3

.

As a result, the strategy is similar to the one employed for the subsystem (h, u) considered

above. In contrast, the sign of the derivative of
(
−
∫ 0

x<0
σL(ξ)dξ

)
with respect to the

integral limit x is positive due to the integration sense.
Only the two first component of the eigenvector are not zero, which leads to modifica-

tions in the two first equations only. The resulting system reads as follows:

ht + νhx + ux = −σLh,

ut +
(

1
F 2 + λ

3

)
hx + νux −

λ

3 ηx = −σLu,

ηt + νηx = w,

wt + νwx = − λ

µ2 (η − h).

(4.34)

The assumption ν 6= 1 is of interest only for the treatment of the non-linear case. We
will suppose that the flow is stationary at the infinity (as in the case of the solitary wave
propagation). In particular, it means that only the first two equations need to be modified
in both right and left layers. Thus, without loss of generality, we suppose once again ν = 1
for the linear case.

4.4 Linear case : numerical implementation

Gathering the left and right PML systems (4.34), (4.32), we are left with the study of the
following problem

∂V
∂t

+ ∂F(V)
∂x

= Sσ(V), (4.35)

with the unknown vector V = (h, u, η, w)>, the fluxes

F =
(
h+ u,

(
1
F 2 + λ

3

)
h+ u− λ

3 η, η, w
)>

,

and source terms Sσ = (−(σL + σR)h,−(σL + σR)u,−σRη + w,−σRw − λ(η − h)/µ2)>.

Algorithm

For the discretization, we use a second order splitting method with a Crank-Nicolson scheme
for the source terms. The numerical resolution consists of three steps. We use the Strang
splitting strategy in time [129]; the hyperbolic part is solved by the Godunov-type. We
decompose the solution operator S(·) associated with the discretization of the system (4.35)
as follows

S(δt) = S1(δt/2)S2(δt)S1(δt/2)

Numerical animations are available https://www.math.univ-toulouse.fr/∼mkazakov

https://www.math.univ-toulouse.fr/~mkazakov/numerics.html
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where S1 corresponds to the discretization of ordinary differential equations (ODE) of the
first order with respect to t with Crank-Nicolson scheme:

∂V
∂t

= Sσ(V). (4.36)

In [49] this system of ODE is solved exactly, since it is relatively simple, the two first
equations being homogeneous. In the present case, the modified system has additional
source terms, and an implicit numerical scheme is used. However, there is no need to
inverse a matrix at each iteration, since explicit formulas can be found for all variables.

The operator S2 denotes the Godunov-type second-order scheme for the homogeneous
system

∂V
∂t

+ ∂F(V)
∂x

= 0, (4.37)

where we use Rusanov numerical flux definition together with MUSCL reconstruction,
in order to obtain a second order scheme in space. The second order time scheme is
implemented using the Heun method.

For the stability of the present scheme, a CFL condition must be satisfied. The esti-
mation for the time step comes from hyperbolic part resolution. Implicit scheme for ODE
part is unconditionally stable. We must respect the following condition

δt < CFL
δx

max
i

(si)
,

where the eigenvalues si are defined by (4.16).

Initial data

The variables initialization should be consistent with the approach used for the model
derivation ([49]). The assumptions made when the new variables η(t, x), w(t, x) were in-
troduced should be satisfied when setting the initial conditions.

More precisely, in the equilibrium we have η = h, and this must be respected in the
initial conditions. To define w we use the third equation of the system. Notably, if h(t, x),
u(t, x) are given at initial time as

h(0, x) = h0(x),
u(0, x) = u0(x), (4.38)

thus, η(t, x) and w(t, x) are initialized as follows,

η(0, x) = h0(x),

w(0, x) = −h0(x) ∂
∂x

(u0(x)).
(4.39)

Boundary conditions

Once the PML equations are used, the boundary conditions might be chosen arbitrarily.
One can use linearized Riemann invariant or simply Neumann boundary conditions.
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(a) (b)

Figure 4.1: (x, t)-diagram for the depth h(t, x) and η(t, x) evolutions for non-dispersive
problem (λ = 0). Initialization: h0(x) – Gaussian distribution, u0(x) – zero initial data.
No PML equations used.

Numerical tests

We begin with numerical test considering the propagation of initial Gaussian distribution
for water depth h(t, x) with zero velocity,

h(0, x) = e−(x−D)2
, D = const,

u(0, x) = 0.
(4.40)

We first set λ = 0, so there is no connection between the subsystems (h, u) and (η, w).
As a result, there is no dispersion. The evolution of the water depth h(t, x) describes a
bi-directional wave propagation, just as in the case of nonlinear shallow water equations,
whereas η(t, x) is simply transported (see Figure 4.1). The right-propagating part of the
solution moves faster since the equations are linearized around a constant flow with a
positive velocity.

The parameters used for the first test are the following

x` = 0, xr = 10,
D = 5,

CFL = 0.5, δx = 0.02.
(4.41)

The Riemann invariants are used to impose boundary conditions as described above.
The PML equations are not needed since the Riemann invariants r, l ((4.18), (4.19)) cor-
respond to the left- and right- propagating waves exactly. As can be seen in the figure 4.2,
no reflection is observed.

Now, we turn to a dispersive case. We set λ = 1000 for a good approximation of
the Green-Naghdi dispersive relation. We set the dispersive parameter µ = 0.25 (in the
previous test for λ = 0 the value of µ is not needed). The smaller its value is, the closer the
behaviour of propagating waves to the one obtained in the previous non-dispersive test. We
observe now the dispersive effects appearing in the problem: the phase velocity of a wave
depends now on its frequency, and more than just two waves propagate in both directions.
Moreover, η(t, x) is now relaxed to h(t, x), i.e. the evolution of η(t, x) coincides with to the
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(a) (b)

Figure 4.2: Riemann invariants propagation for non dispersive problem (λ = 0). Initializa-
tion: h0(x) – Gaussian distribution, u0(x) zero initial data. No PML used.

(a) (b)

Figure 4.3: Evolution of log10(h(t, x)) and log10(η(t, x)) for dispersive problem (λ = 1000,
µ = 0.25). Initialization: h0(x) – Gaussian distribution, u0(x) – zero initial data. No PML
used.

evolution of h(t, x). In Figure 4.3, the (x, t) diagrams for the waves propagation are given.
We present the results in a logarithmic scale in order to see the wave reflections properly.
On the right boundary, we observe a form of stagnation effect. It can be explained by
both the constant steady flow used as an equilibrium speed for the linearization and the
boundary reflections. Besides, it is not clear whether the reflection on the left boundary
comes from a fallible procedure for the boundary conditions, or from a residual dispersive
waves propagation coming from an initial perturbation moving with the constant flow to
the right. However, the Riemann invariants are not constant along the characteristics any
more due to the presence of the source terms (see Figure 4.4). Moreover, the reflection is
observed more clearly for both left and right propagating waves.

Moreover, the additional test shows that the reflections are observed more clearly if
a smaller value is chosen for µ (see figure 4.5). In this case, the behaviour is closer to
non-dispersive wave propagation, and larger wave amplitudes are observed.

We turn now to the tests of the PML equations derived in the previous section. We first
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(a) (b)

Figure 4.4: Riemann invariants propagation for dispersive problem (λ = 1000, µ = 0.25).
Initialization: h0(x) – Gaussian distribution, u0(x) zero initial data. No PML used.

(a) (b)

Figure 4.5: Riemann invariants propagation for dispersive problem (λ = 1000, µ = 0.01).
Initialization: h0(x) – Gaussian distribution, u0(x) zero initial data. No PML used.
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(a) (b)

Figure 4.6: PML application: Evolution of log10(h(t, x)) and log10(η(t, x)) evolution for
dispersive problem (λ = 1000). Initialization: h0(x) – Gaussian distribution, u0(x) – zero
initial data

perform the same numerical test as one considered just before. The initial data are chosen
as (4.40). We add in the calculation domain layers of width δx = 5 in both directions. All
parameters are the same as in the previous case, only a larger domain is considered:

x` = 0, xr = 20,
D = 10,

CFL = 0.5, δx = 0.02, µ = 0.25.
(4.42)

The functions σL,R determine the amplitude decay in the intervals [x` − δx, x`] and [xr −
δx, xr] respectively, and read as follows

σL(x) = min(0, C(x− δx))p,
σR(x) = max(0, C(x− δx))p. (4.43)

This form for σL,R is standard for PML schemes, and we will use those representations for
all further tests. For the current test, we set C = 0.1, δx = 5, p = 2. Generally speaking, δx
might be chosen differently for the left and right layers. It should be noted that the choice
of those parameters is based on a proper absorption in the layers. A rigours analysis of the
optimal parameter values is left for future research.

The (x, t) diagrams are presented in figure 4.6. We conclude that the reflections observed
in the previous case are related to the boundary conditions. The modified system (4.35)
gives the desired behaviour on the boundaries, since the amplitudes of outgoing waves
decay. The results are presented again in logarithmic scale; the evolution of h(t, x) and
η(t, x) are plotted for the interval [5, 15] in order to see the correspondence with the cases
studied previously. The waves propagate into the layers without reflection.

4.5 Energy estimation

We show now that the use of PML equation leads to a dissipativity of the solution of
the problem set on a bounded domain. This leads to a well-posed initial boundary value
problem.
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First, an energy estimation is established for the solution of the problem set on the
infinite domain. We recall the original system (4.13) (primes are dropped):

∂V
∂t

+A
∂V
∂x

= S(V), (4.44)

where the matrix A and the source term S are defined earlier. According to the classical
theory developed by Godunov et al. [56] (and also by Friedrichs and Lax), this system
of conservation laws can be symmetrised using the energy conservation law. To find a
symmetrizer for the matrix A, we use the nonlinear energy equation given in [49] and
related directly to the Lagrangian (4.3). We obtain the positive definite matrix

Z =



1
F 2 + λ

3 0 −λ3 0

0 1 0 0

−λ3 0 λ

3 0

0 0 0 µ2

3


.

Multiplying the original system by this matrix, we have

Z
∂V
∂t

+ ZA
∂V
∂x

= Z S(V), (4.45)

where the matrix ZA = ZA is symmetric:

ZA =



1
F 2 + λ

3
1
F 2 + λ

3 −λ3 0

1
F 2 + λ

3 1 −λ3 0

−λ3 −λ3
λ

3 0

0 0 0 µ2

3


.

Multiplying (4.45) by V >, one finds the following energy conservation law:

1
2
∂

∂t
V>ZV + 1

2
∂

∂x
V>ZAV = 0. (4.46)

Moreover, the source terms in (4.46) naturally vanish, indeed,

Z S(V) =
(
− λw/3, 0, λw/3,−λ(η − h)/3

)
,

which gives V>Z S(V) = 0.
The energy E(V) given by:

E(V) = 1
2V
>ZV.
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is conserved for the problem set on whole space. However, it should dissipate for the one
set on a finite interval [x`, xr]. When boundary conditions are imposed at x = x`, x = xr
the following condition must be satisfied:

1
2
∂

∂t

∫ xr

x`

V>ZV dx = −1
2V
>SV

∣∣∣∣xr
x`

< 0.

It induces restrictions for the boundary conditions choice. For example one of the ways to
satisfy this energy inequality is to define the boundary conditions concerning the Riemann
invariants found above together with Dirichlet boundary conditions. We can rewrite this
inequality as

1
2

∫ xr

x`

E(V(t, x)) dx ≤ 1
2

∫ xr

x`

E(V(0, x)) dx (4.47)

Once we have this estimation for the energy in the interval [x`, xr], we recall the defini-
tion of the solution to the modified PML equations:

VPML = V
κ(x) , (4.48)

where κ(x) is defined as

κ(x) =



exp

{∫ x`+δx

x`

σ(ξ) dξ
}
, x` < x < x` + δx,

1, x` + δx < x < xr − δx,

exp

{∫ xr

xr−δx
σ(ξ) dξ

}
, xr − δx < x < xr.

(4.49)

The energy estimation in the computational interval [x` + δx, xr − δx] for the modified
solution comes directly. Using the definitions (4.48), (4.49)∫ xr−δx

x`+δx
E(κ(x)VPML(t, x)) dx =

∫ xr−δx

x`+δx
E(V(t, x)) dx ≤

∫ xr

x`

E(V(t, x)) dx ≤

≤
∫ xr

x`

E(V(0, x)) dx =
∫ xr

x`

E(κ(x)VPML(0, x)) dx =
∫ xr−δx

x`+δx
E(κ(x)VPML(0, x)) dx.

Positivity of the energy E(V(t, x)) gives the very first inequality, then the estimation (4.47)
is used. Because the initial data are compactly supported, we established the last equality.
The estimation provides dissipative properties of the PML approach for the linear boundary
value problem.

4.6 Toward the nonlinear case: weak nonlinearity

The main issue in the PML construction for the nonlinear case is that the eigenstructure de-
pends on the solution. Therefore it is more complicated to decompose the solution into left
and right propagating waves. Thus, in what follows the equations for the absorbing layers
in the nonlinear case are written without strict demonstration. However, the construction



CHAPTER 4. PERFECTLY MATCHED LAYERS 127

of the nonlinear PML equations will be guided by the considerations given next. Let us
consider the first equation of the linear system (4.11) (tildes denote the perturbations from
the equilibrium state again)

h̃t + νh̃x + ũx = −σL+Rh̃,

where we denote by σL+R the sum σL + σR. For the passage to the nonlinear case we
suppose that ν = 0, that is to say, the system is linearized at a steady state h = 1 + h̃,
u = 0 + ũ. We set h = 1 in the equilibrium since we consider nondimensional equations.
Thus this equation can be rewritten as

(1 + h̃)t + ((1 + h̃)ũ)x = −σL+Rh̃,

where we add the term h̃ũ, considered relatively small. Hence in the original variables one
obtains

ht + (hu)x = −σL+R(h− 1).

Application of such a procedure to the rest of the equations gives finally

ht + (hu)x = −σL+R(h− 1),

(hu)t +
(
hu2 + h2

2F 2 + λ

3

(η
h
− 1
)
η

)
x

= −σL+Rhu,

(hη)t + (huηx) = hw,

(hw)t + (huw)x = − λ

µ2

(η
h
− 1
)
.

(4.50)

The assumption ν = 0 leads to the absence of modifications in two last equations.

Numerical tests

For the nonlinear case the classical benchmark test for Green-Naghdi equations is solitary
wave propagation. Following [49] we use a classical Green-Naghdi solitary wave solution
written in the non-dimensional form as initial data,

hex = 1 + ε sech2
( √

3ε
2µFS (x− St−D)

)
,

uex = S

(
1− 1

hex

)
,

(4.51)

where F is the Froude number, µ = H0/L the dispersive parameter introduced before,
ε = a/H0 the nonlinearity parameter, a the wave amplitude, H0 the characteristic water
depth, and S is a characteristic speed defined as

S = 1
F

√
1 + ε.

After η(t, x), w(t, x) are initialized as in (4.39). This solution is only an approximate
solution of the extended system (4.4). However, the tests in [49] have shown that for
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(a) (b)

Figure 4.7: Evolution of log10(| h(t, x)−1 |) for solitary wave propagation with nonlinearity
parameter (a) ε = 0.3, (b) ε = 0.7.

λ = 1000 the solution of (4.4) with initial data (4.51) is in good agreement with the
Green-Naghdi solitary wave (only a small phase difference has been observed). However,
the current model admits a solitary wave solution as well; it will be shown in the Annex,
Chapter A.

We perform the test for different initial nonlinearities of the solitary wave. The resulted
plots are given in the Figure 4.7 for the intermediate value of nonlinearity (ε = 0.3) and
a strongly nonlinear wave (ε = 0.7). For this two tests, we consider the following set of
parameters

ε = 0.3
x` = 0
xr = 20
δ`x = 3
δrx = 6
D = 6.5
δx = 0.02
CFL = 0.1
µ = 0.1

ε = 0.7
x` = 0
xr = 20
δ`x = 3
δrx = 8
D = 6.5
δx = 0.02
CFL = 0.1
µ = 0.1

The different widths of the left and right layers are chosen as soon as the wave is propagating
to the right. We observe a small reflection which is more intensive if the case of the strong
nonlinearity. For ε = 0.3 the reflection reaches the order of 10−6 − 10−7, and 10−5 − 10−6

for ε = 0.7.
We perform a comparison of the proposed approach with direct application of Neumann

boundary conditions. The results are presented in Figure 4.8. We consider the propagation
of a solitary wave initially located at x = 11 with nonlinearity ε = 0.5. In the first case
(Figure 4.8, (a)), we consider a wave propagation interval [0, 17], while the equations are
modified in the right interval [11, 17] according to the proposed approach. The second test
(Figure 4.8, (b)) is performed on the interval x ∈ [0, 11] with Neumann boundary condition
at x = 11. Reflection is observed when the PML equations are used, with an amplitude of
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order 0.004, which ranges about 0.8% of initial amplitude. The reflection obtained in the
second case is of order 0.12, which corresponds to 24%.

4.7 Wave generation

In this section, we are interested in the application of the obtained PML equations to the
simulations of the incoming waves. This question was considered in the previous chapter
for the transparent boundary conditions. We follow similar considerations here.

We initially focus on the linear system (4.11) written in the scalar form as

ht + hx + ux = 0,

ut +
(

1
F 2 + λ

3

)
hx + ux −

λ

3 ηx = 0,

ηt + ηx = w,

wt + wx = − λ

µ2 (η − h).

(4.52)

We decompose V = (h, u, η, w)> as V = χ(x)Vex + V̄. Where Vex = (hex, uex, ηex, wex)>
is a profile which enters in the domain and supposed to be an exact solution of the system.
The cut-off function χ(x) is defined as χ(x < x`) = 1, χ(x > xr) = 0. It is assumed
that this function is smooth and its derivatives is compactly supported. The new unknown
vector function V̄ = (h̄, ū, η̄, w̄)> is compactly supported and satisfies the equations with
the source terms

h̄t + h̄x + ūx = −χ′(x)(hex + uex),

ūt +
(

1
F 2 + λ

3

)
h̄x + ūx −

λ

3 η̄x = −χ′(x)
((

1
F 2 + λ

3

)
hex + uex −

λ

3 ηex
)
,

η̄t + η̄x = w̄ − χ′(x)ηex,

w̄t + w̄x = − λ

µ2 (η̄ − h̄)− χ′(x)wex.

It implies that for this system we can construct the PML equations in exactly the same
way as before (i.e. the strategy used to obtain (4.35)). The right propagating incoming
wave is chosen as an exact profile, this leads to the modification of the terms corresponding
to the left layer. We obtain

h̄t + h̄x + ūx = −χ′(x)(hex + uex)− σL+Rh̄,

ūt +
(

1
F 2 + λ

3

)
h̄x + ūx −

λ

3 η̄x = −χ′(x)
((

1
F 2 + λ

3

)
hex + uex −

λ

3 ηex
)
− σL+Rū,

η̄t + η̄x = w̄ − χ′(x)ηex − σRη̄,

w̄t + w̄x = − λ

µ2 (η̄ − h̄)− χ′(x)wex − σRw̄.

It remains to go back to the original variables V using the decomposition V = χ(x)Vex+V̄.
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(a) (b)

Figure 4.8: Comparison of the PML approach (a) with direct application of Neumann
boundary conditions (b).

One obtains:

ht + hx + ux = −σL(h− χ(x)hex)− σRh,

ut +
(

1
F 2 + λ

3

)
hx + ux −

λ

3 ηx = −σL(u− χ(x)uex)− σRu,

ηt + ηx = w − σRη,

wt + wx = − λ

µ2 (η − h)− σRw.

(4.53)

The same considerations for the nonlinear case, together with idea explained in subsection
4.6 lead to the system

ht + (hu)x = −σL((h− χ(x)hNLex )− 1)− σ(h− 1),

(hu)t +
(
hu2 + h2

2F 2 + λ

3

(η
h
− 1
)
η

)
x

= −σL(hu− χ(x)hexuNLex )− σRhu,

(hη)t + (huηx) = hw,

(hw)t + (huw)x = − λ

µ2 (η
h
− 1).

(4.54)

Here Vex = (hNLex , uNLex ) defines a perturbation from the constant state h = 1 of the incoming
solution profile.

Let us turn to the numerical validations of the introduced equations for incoming waves.
First of all, one should construct the exact solution for the linear problem (4.52) in order
to define Vex. We seek for plane wave solutions of the form

h

u

η

w

 =


h̃

ũ

η̃

w̃

 exp{i(kx− ωt)}.
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The phase speeds are defined as the relation of the frequency ω to the wave number k:
ci = ω/k and can be determined as eigenvalues of the following matrix:

L =



1− ω

k
1 0 0

1
F 2 + λ

3 1− ω

k
−λ3 0

0 0 1− ω

k

i

µk
iλ

µk
0 − iλ

µk
1− ω

k


. (4.55)

This matrix is very to close to the matrix (4.12). The only difference is that the source
terms are included in order to construct an exact solution to the complete system (4.11).

The matrix is complex, but the characteristic polynomial is real(
1− ω

k

)2
((

1− ω

k

)2
− λ

k2 −
1
F 2 −

λ

3

)
+ λ

F 2k2 = 0.

The eigenvalues ci = ω/k might be calculated explicitly. However the expressions are
cumbersome, and moreover, the construction of the solution requires computing the eigen-
vectors. For the numerical tests, we will calculate both the eigenvalues and eigenvectors
numerically. We denote p the eigenvector of the matrix L corresponding to the maximal
eigenvalue max

i
c to guarantee that the wave propagating to the right is chosen. The exact

solution is defined as

Vex = R(p) cos(kx− ωt)− IM(p) sin(kx− ωt). (4.56)

Since we consider the linear system (4.52), the real part of the solution is a solution again,
here R, IM denote real and imaginary parts of the eigenvectors.

The initial data are given as follows

Vini = χ(x) (R(p) cos(kx)− IM(p) sin(kx)) .

Once the wave number k is chosen, the frequency is calculated with respect to the maximal
eigenvalue ω(k) = kmax

i
c. We recall that the smooth function χ(x) satisfies the conditions

χ(x < x`) = 1, χ(x > xr) = 0,

and its derivative is compactly supported.
We first perform a test with the initial conditions presented in Figure 4.9. The second

test represents an incoming wave generation over the zero initial profile. The results of the
numerical tests for the depth h(t, x) are presented in Figure 4.10 for k = 2π.

For the generation of a solitary wave in the nonlinear case, we use the approximate
solution (4.51) as an exact incoming profile (hNLex , uNLex ) again. The parameters are defined
as

ε = 0.1,
x` = 0, xr = 15, δ`x = 5, δrx = 5,

D = −5,
δx = 0.02, CFL = 0.1, µ = 0.25.
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Figure 4.9: Initialization of an incoming wave profile: solid line – initial function h(0, x) =
h0(x), dashed line – cut-off function χ(x).

(a) (b)

Figure 4.10: PML application to the incoming wave simulation: Linear case. Evolution of
h(t, x) for dispersive problem (λ = 1000) (a) non-zero initial profile, (b) zero initial profile.
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Figure 4.11: PML application to the incoming solitary wave simulation: (a) evolution of
h(t, x) evolution for dispersive problem (λ = 1000), (b) numeric (solid) and exact (dashed)
incoming profile.

The negative shift of the initial position D means that initially the wave is not located in
the domain [x`, xr]. The results are shown in logarithmic scale in Figure 4.11. The profile
of the incoming solitary wave is slightly different (1% of the amplitude of the solitary wave
solution) from the exact solution (4.11, b).

The difference comes into particular prominence for the strongly nonlinear wave. We
perform another numerical test with the following parameters

ε = 0.6,
x` = 0, xr = 20, δ`x = 8, δrx = 6,

D = −5,
δx = 0.02, CFL = 0.1, µ = 0.25.

The incoming solitary wave has a smaller amplitude than the exact profile and then
propagates with a small deformation (see Figure 4.12). There might be several explana-
tions. Firstly, the parameters for the PML equations are probably not optimal. Moreover,
the solution (4.51) is just an approximate solution of the system (4.4) and the relaxation
parameter λ probably needs to be calibrated with respect to the value of dispersive param-
eter µ. Since the source term responsible for the dispersive effects has a factor λ/µ. Finally,
the proposed numerical scheme might be improved to a scheme of the higher order. This
question requires a more precise investigation.

The last test concerns the interaction of a pair of solitary waves. We use the PML
equations to generate a relatively fast moving solitary wave, while an initial slow moving
solitary wave is already imposed inside the domain. During the propagation, two waves
interact elastically. After the collision, the faster one propagates ahead. Both waves are
absorbed after in the right layer. Results are plotted for the water depth in Figure 4.13.
Again an optimisation of the PML parameter and the relaxation parameter λ might be
required here. Indeed, we observe small reflections in the generation layer and both solitary
waves propagate with small defects. Also, a small perturbation propagating to the left from
the solitary wave initially situated inside the domain is observed.
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Figure 4.12: PML application to the incoming solitary wave simulation: (a) evolution of
h(t, x) evolution for dispersive problem (λ = 1000), (b) numeric (solid) and exact (dashed)
incoming profile.

Figure 4.13: Interaction of a pair of solitary waves. One is situated inside the domain
initially, another generated using PML equations, both absorb on the left layer.

The incoming solitary wave profile (hNLex , uNLex ) is constructed with following parameters

ε = 0.5,
D = −5,
µ = 0.7.

The second solitary wave are defined by

ε = 0.1,
D = 21,
µ = 0.3.

The widths of the layers are chosen as δrx = 8, δlx = 8. The computational domain is chosen
large enough [0, 250] to include a collision before absorption in the right layer. The space
step is defined as δx = 0.05, and for the stability, CFL = 0.1 is chosen.
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4.8 Conclusion

In this chapter, we proposed a strategy for the boundary condition setting for the hyperbolic
generalization of the Green-Naghdi system proposed in [49]. The Perfectly Matched Layer
approach is used. The derivation of the modified equations is rigours for the linear case. We
have shown the dissipative properties of the solution of the PML system, which guarantee
that the problem is well-possessed.

The application of the PML approach to a dispersive system may lead to a sophisticated
form of additional terms, including the derivatives of the solution, and additional equations
to solve. The hyperbolic structure of the system leads to simple PML equations. The final
structure of the modified equations is similar to the one used in the sponge layer approach
discussed earlier. However, the procedures are different, the PML approach is based on
the separation of the solution components to guarantee the amplitude decays, whereas the
sponge layer approach provides a forcing of the solution to a target one, which is more close
to the relaxation technique.

In practice, we have to deal with non-linear equations. The main advantage of the
proposed approach is that the derived equations can be applied for the nonlinear case
successfully in weakly nonlinear case. For the strongly nonlinear case, the further analysis
is needed for both the relaxation and PML equations parameters. However, the outgoing
and incoming solitary waves are simulated only with small defects.

In this chapter, we performed several test cases for the simulations of outgoing and
incoming waves in both linear and nonlinear cases. A natural perspective of this work is to
apply this approach for real test cases, coming from experimental studies. Another direct
perspective is a generalization of the obtained PML equations to the classical dispersive
Green-Naghdi model or models derived in Part I.



Conclusions
and Outlook



In the present thesis, modelling and numerical issues of the dispersive wave theory were
investigated. To sum up, the question of including additional complex physical effects in
the classical models was considered in the first part; the second part was devoted to special
numerical techniques designed to overcome the difficulties appearing when dispersive models
are solved numerically. The classical Green-Naghdi system has been extended in the first
part with vorticity effects and studied from a numerical point of view in the second part.

The first part of the present study concerns the turbulent motion modelling. Chaotic
turbulent flow is a complex phenomenon which is hard to describe with a simplified model.
However, using previously found simplifications ([29], [119]), in Chapter 1, we have man-
aged to construct a model of 2D coastal breaking waves in the context of 1D depth-average
settings. The turbulence in the surf zone is taken into account through an additional vari-
able which is governed by a transport equation with empirical source terms responsible for
the vorticity creation. This empirical law was justified by classical turbulent hypothesis on
the turbulent scales and energy dissipation. A numerical algorithm for the model valida-
tion has been constructed, and comparison with experiments in the context of mild sloping
beach was performed. One set of experimental data allowed to define the closure relations
for empirical parameters and another one permitted the verification of the founded closure.
The preliminary results from [116] showed that the obtained relation prescribed well the
parameter values for complex 1D and 2D test cases. Additionally, a breaking criterion was
proposed, in order to initiate the breaking process only when needed. In the end, breaking
waves are described with a unified model of propagation which has the same dispersive
properties as the Green-Naghdi equation.

In Chapter 2, a two-layer model for internal wave propagation is derived rigorously
from the Euler equations in a conservative framework. The vorticity effects were taken
into account in a similar manner as in the previous chapter. The pressure was supposed
non-hydrostatic, and a non-uniform velocity profile was considered. The equations for the
vorticity evolution in each layer close the system. The model is written in two different for-
mulations, allowing for future numerical validations with existing approaches for dispersive
systems.

Both models are reduced to the classical Green-Naghdi equations in the case of vanishing
vorticity.

The second part was devoted to the boundary conditions construction. When dispersive
models are solved numerically, establishing a proper procedure for incoming and outgoing
waves is a fundamental concern. We proposed two different approaches, which allow for
the justification of a boundary conditions procedure in linear and weakly nonlinear cases.
In the context of dispersive wave propagation in a coastal zone, we considered the classical
Green-Naghdi equation and its hyperbolic extension proposed recently.

In Chapter 3, we have obtained continuous and discrete artificial boundary conditions
for the Green-Naghdi system linearized around a steady state. Two different discretizations
were investigated. In both cases, the discrete initial-boundary problem is proved to be
stable, convergent and consistent with the continuous one. Numerical tests have been
constructed to validate the proposed approach, for different initial data. It has been shown
that a similar technique can be adapted to the incoming wave generation, and numerical
tests illustrating this method were performed.

137
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However, the approach proposed in Chapter 3 requires a more sophisticated strategy for
applications to the nonlinear case. In order to deal with nonlinear equations, we turned our
attention to a recently proposed hyperbolic formulation of the Green-Naghdi equations. In
Chapter 4, a different procedure for the boundary treatment was considered. We applied
the Perfectly Matched Layers (PML) technique to this new system. The PML equations
were constructed for the linear case first, and numerical implementation was performed.
A partial justification of the method is possible for the weakly nonlinear case. Numerical
tests were performed, implying weakly and strongly nonlinear waves. We observed small,
but non-negligent reflections for strongly nonlinear waves. Also, a further analysis of the
problem parameters is needed. Using the same arguments, the PML equations can be
constructed to handle incoming waves. Numerical tests of incoming plane linear waves and
solitary waves were proposed. A further systematic analysis is required to determine the
range of parameter values ensuring the stability of the method.

A natural perspective opened by 1D investigations of boundary conditions is a 2D ex-
tension. In real-life applications, it is essential to ensure a detailed description of nearshore
dynamics, including wave-breaking and swash motion, for example. For this reason, the
transfer to 2D simulations for the dispersive models is a crucial concern. Dispersive terms
issues aside, there is an essential need for a proper boundary conditions treatment. The
extension of transparent boundary conditions to the 2D case requires an elaborate study
and may be difficult. The PML approach seems to be a more promising one since it is
possible to apply the splitting strategy. Therefore, the extension of the PML equations to
the second dimension should be similar to the 1D case.

Brought together, the results of both parts may constitute a promising basis for fu-
ture application in coastal engineering. In well-known methods dedicated to coastal wave
propagation, wave breaking is modelled in a more sophisticated way than the one proposed
in Chapter 1 (changing of the model propagation, or including artificial terms). More-
over, some cases can be modelled directly without any breaking criteria using the obtained
model. These early successes may bring hope to resolve one day this issue in the context
of a simple universal model without any criteria. Turbulent motions seem have significant
responsibility for the coastal erosion. In the context of the proposed model, the analy-
sis of the enstrophy behaviour may allow a deeper understanding and description of this
phenomenon. Concerning the mathematical analysis of the obtained model, one of the
interesting research directions is the study of existence and stability of solutions when tur-
bulent viscosity is added. The internal wave propagation in the presence of vorticity may
lead to very different flow regimes, as it was shown for the surface waves in previous research
on the one-layer model in (see [84]). The proposed model from Chapter 2 has not been
investigated numerically yet, and it is one of the open perspectives related to this result.

The boundary conditions implementation is another weakness of existing approaches
in coastal wave propagation. Providing a well-posed boundary-initial problem is essential
for stable numerical calculations. The conditions obtained in Part II, which are partially
justified, open perspectives toward applications to more complex physical situations. Ap-
plications of the transparent boundary conditions found in 3 to the nonlinear case might be
complicated, but possible using a fixed point strategy. The generalization of the proposed
approaches to the model derived in Chapter 1 is an immediate aim, since it allows for the
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model validation on more advanced tests cases, as discussed above. A direct application of
the PML technique to the dispersive Green-Naghdi equation is likely possible, at least in
the linear case, and stands for another perspective of this work. The hyperbolicity of the
model proposed in [49], coupled with the boundary condition approach found in Chapter
4, could lead to considerable practical advances in coastal engineering. However, to extend
these applications to real phenomenon in coastal zones, energy dissipation is still needed,
but it is likely that this will not influence the proposed boundary treatment.
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Annex A

On the existence of a solitary wave
solution

We consider the extended hyperbolic system derived in [49] which approximates the disper-
sive Green-Naghdi equations. This model is considered in Chapter 4 with a more detailed
explanation of the derivation procedure. The equations are written as follows

∂U
∂t

+ ∂F(U)
∂x

= S(U), (A.1)

where the vector functions are defined as follows

U = (h, hu, hη, hw)> , F(U) =
(
hu, hu2 + gh2/2− λ

3

(η
h
− 1
)
, hηu, hwu

)>
S(U) =

(
0, 0, hw,−λ

(η
h
− 1
))>

.

Here, h(t, x) is the water depth, u(t, x) is the fluid velocity and η(t, x), w(t, x) are non
equilibrium variables added to extend the system to a hyperbolic one. The relaxation
parameter λ is chosen large enough in order to have a good approximation of the original
Green-Naghdi equations.

Two effects are essential for the dispersive wave propagation: nonlinearity, which tends
to steepen the wave form, and dispersion, which leads to the dependence of the phase speed
on wave frequencies. The equilibrium between these two effects results in the existence of
solitary wave solutions, which is observed in nature as well (firstly by Russell [79]).

In this Annex A, we consider the question whether the extended system inherits this
property from the Green-Naghdi equations.
A.1 Theorem. The system (A.1) admits a solitary wave solution for relatively large value
of the parameter λ and F 6= 0:

λ > max
(

3
(

1 + 1
2F 2

)2
,

√
54(1 + 2F 2)
F 4 min(1, H1)

)
,

where H1 = −1
2 +
√

1 + 8F 2

2 .
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Proof. From a physical point of view, the solitary wave is a wave that propagates without
changing its form; mathematically a travelling wave solution is expressed by functions
depending only on ξ = x− ct, where c is the constant speed of propagation.

Reduced dimensionless system

We start by setting U(x, t) = U(ξ) = U(x− ct), namely

h(t, x) = H(ξ), u(t, x) = U(ξ), η(t, x) = E(ξ), w(t, x) = W (ξ).

The equations reduce to the following system of ordinary differential equations (ODEs)
(prime denotes the derivative with respect to ξ)

(H(U − c))′ = 0,(
HU(U − c) + gH2

2 − λ

3

(
E

H
− 1
)
E

)′
= 0,

(HE(U − c))′ = HW,

(HW (U − c))′ = −λ
(
E

H
− 1
)
,

with boundary conditions at the infinity (we suppose E = H at the infinity, which corre-
sponds to the assumptions made in the model derivation [49])

H(x =∞) = H∞,

U(x =∞) = 0,
E(x =∞) = H∞,

U(x =∞) = 0.

Without loss of generality, the system can be rewritten in a simpler form if we refer
to a Cartesian coordinate system moving with a constant speed c. This leads to a simple
change U = U − c (tildes are immediately dropped):

(HU)′ = 0,(
H(U − c)U + gH2

2 − λ

3

(
E

H
− 1
)
E

)′
= 0,

(HEU)′ = HW,

(HWU)′ = −λ
(
E

H
− 1
)
,

with the modified boundary condition U(x =∞) = −c.
We introduce dimensionless variables, the dispersion parameter µ and the Froude num-

ber F :

ξ = Lξ̄, U = cŪ, H = H∞H̄, E = H∞Ē, W = cH∞
L

W̄, µ = H∞
L
, F 2 = c2

gH∞
.
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The dimensionless equations take the form (bars are omitted)

(HU)′ = 0,(
HU2 + H2

2F 2 −
λ

3

(
E

H
− 1
)
E

)′
= 0,

(HEU)′ = HW,

(HWU)′ = − λ

µ2

(
E

H
− 1
)
.

The two first equations are simply integrated taking into account the conditions at the
infinity for dimensionless variables:

H(x =∞) = 1,
U(x =∞) = −1,
E(x =∞) = 1.

We have 

HU = 1,

1
H

+ H2

2F 2 −
λ

3

(
E

H
− 1
)
E = 1 + 1

2F 2 ,

E′ = HW,

W ′ = − λ

µ2

(
E

H
− 1
)
.

(A.2)

The first equation defines the dimensionless velocity U = 1/H. If we go back to the
dimensional variables one finds in the fixed coordinate system U = c(1 − 1/H), which
corresponds precisely to the velocity definition of the classical Green-Naghdi solitary wave.
The second equation is an algebraic equation which relates H and E. Indeed,(

E

H

)2
−
(
E

H

)
− 3(H − 1)(H2 +H − 2F 2)

2λF 2H2 = 0,

choosing the positive root, one obtains the expression for E as a function of H

E(H) = H

2 + 1
2

√
H2 + 6(H − 1)(H2 +H − 2F 2)

λF 2 . (A.3)

In order to prove that the square root is real for H > 0, we need to show that the radicand
is positive, we denote

f(H) = 6(H − 1)(H2 +H − 2F 2)
λF 2 , (A.4)

and consider H2 + f(H). First, the function f(H) has three roots,

H0 = 1, H1,2 = −1
2 ±
√

1 + 8F 2

2 , (A.5)

H2 is always negative, while H1 is always positive if F 6= 0. Moreover, we have
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f(H) ≤ 0, if H ∈ (−∞, H2],

f(H) ≥ 0, if H ∈ [H2,min(1, H1)],

f(H) ≤ 0, if H ∈ [min(1, H1),max(1, H1)],

f(H) ≥ 0, if H ∈ [max(1, H1),∞).

Therefore the sign of H2+f(H) is defined simply everywhere for H > 0, except in the inter-
val [min(1, H1),max(1, H1)] (see Figure A.1). It follows that the square root

√
H2 + f(H)

is real for H ∈ [0, H0]∪ [H1,∞]. We now analyse the derivative of H2 + f(H) with respect
to H for H ∈ [H0, H1] to define a sign,

H2 + f(H)
∣∣∣∣
H=H0

= min(1, H1)2 > 0, (H2 + f(H))′H = 2H + 6
λF 2

(
3H2 − (1 + 2F 2)

)
.

In order to allow a definite conclusion on the sign of the derivative, we solve the following
quadratic equation

18
λF 2H

2 + 2H − 3
λF 2 (1 + 2F 2) = 0. (A.6)

The roots r1,2 are defined as

r1,2 = −λF
2

18 ±
λF 2

18

√
1 + 108(1 + 2F 2)

F 4
1
λ2 . (A.7)

If the positive root r1 is smaller than min(1, H1), the derivative of H2 + f(H) is positive
∀H > min(1, H1). The expansion for r1 with respect to the small parameter 1/λ2 is written
as

r1 = −λF
2

18 + λF 2

18

(
1 + 54(1 + 2F 2)

F 4
1
λ2

)
+O

(
1
λ4

)
. (A.8)

One has r1 < min(1, H1) for all relatively large values of λ. A rough estimation reads

λ >

√
54(1 + 2F 2)
F 4 min(1, H1) .

This inequality is verified since for a good approximation of the initial Green-Naghdi equa-
tions by the system (A.1), the value for the parameter λ should be chosen of order 1000.
Finally, we have shown that

(H2 + f(H))
∣∣∣∣
H=H0

= min(1, H1)2 > 0,

(H2 + f(H))′H > 0 ∀H > r1, r1 < min(1, H1),

which means that the square root
√
H2 + f(H) is real ∀H > 0.

We turn back to the system (A.2); the two last equations are rewritten taking into
account the notation (A.3) 

H ′ = HW

dE(H)/dH ,

W ′ = − λ

µ2

(
E(H)
H

− 1
)
.

(A.9)
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H
2

f(H)

Figure A.1: Curves representing the two terms of the square root expression
√
H2 + f(H),

here Hmin = min(1, H1), Hmax = min(1, H1).

Number of stationary points

We determine the stationary points for the system

W = 0, H = H(i=0,1,2),

where Hi are the roots of the equation

E(H)
H

= 1,

which coincide with the ones defined by (A.5). If dE(H)/dH 6= 0 ∀H > 0, there are no
other stationary points.

Let us consider the explicit expression for dE(H)/dH,

dE(H)/dH = 1
2 + 2H + f ′H(H)

4
√
H2 + f(H)

, (A.10)

where the function f(H) is defined by (A.4). One has dE(H)/dH = 0 if

2H + f ′H(H) = −2
√
H2 + f(H). (A.11)

First, we denote the left- and right-hand sides of this equation as

f `(H) = 2H + f ′H(H), f r(H) = −2
√
H2 + f(H).

The function
√
H2 + f(H) is always positive for a relatively large value of λ and H > 0.

As a consequence f r(H) is always negative. On the other hand f `(H) > 0, ∀H > r1, where
r1 is a small positive value defined by (A.7). We conclude that the equation (A.11) has no
roots for all H > r1.

Moreover, we note that

f `(0) = −12
λ

(
1 + 1

2F 2

)
> f r(0) = −2

√
12
λ
, ∀λ > 3

(
1 + 1

2F 2

)2
.

We analyse now the behaviour of f `(H), f r(H) in the interval H ∈ (0, r1). There are two
possible cases presented in Figure A.2. The functions H2 + f(H) and f r(H) have the local
extremum at H = r1 since f ` = (H2 + f(H))′H . In a favourable case there are no roots
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r1

  f  (H)

  f  (H)
l

r

Figure A.2: Possible characteristic behaviour

in the interval (0, r1). To prove this we analyse the functions f `(H), f r(H). First, the
function f ` is strictly convex, indeed

(f `)′′H = 36
λF 2 > 0.

We establish now that the function f r is concave in the interval (0, r1) using that H2 +
f(H) > 0 ∀H ∈ (0, r1). We calculate directly the second derivative

(f r)′′H = − 1√
H2 + f(H)3/2

(
(2 + f ′′H(H))(H2 + f(H))− (2H + f ′H(H))2) .

The expression in the parenthesis,

D(H) = (2 + f ′′H(H))(H2 + f(H))− (2H + f ′H(H))2

is positive for a relatively large value of λ since

D(0) = 48
λ
− 36
λ2F 4

(
1 + 2F 2)2 > 0, ∀λ > 3

(
1 + 1

2F 2

)2
,

and
D′H(H) = 64

λF 2 (H2 + f(H)) > 0, ∀H > 0.

Subsequently, the derivative (f r)′′H is negative and f r is concave in the interval (0, r1).
Finally, we have a convex function f ` and a concave function f r with the following

property for H = 0, f `(0) > f r(0). Then it suffices to show that (f r)′H(0) < (f `)′H(0) in
order to establish dE(H)/dH 6= 0 for H > 0. We have

(f `)′H(0) = 2 > (f r)′H(0) =
√

3√
λ

(
1 + 1

2F 2

)
∀λ > 3

(
1 + 1

2F 2

)2
.

Since there are no roots of the equation (A.11), the only stationary points of the system
(A.9) in the positive half plane H > 0 are defined by

(H1
s ,W

1
s ) = (1, 0) and (H2

s ,W
2
s ) =

(
−1

2 +
√

1 + 8F 2

2 , 0
)
. (A.12)

These two points can permute, depending on the flow regime (supercritical flow F > 1,
subcritical flow F < 1).
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Figure A.3: Phase portrait for the system (A.9) for F = 1.3, µ = 0.4, λ = 1000. Red curve
corresponds to the solitary wave solution.

Integral curves: existence of homoclinic orbit

The system (A.9) admits the first integrals,∫ H

Hmin

N (λ, H̃)dH̃ + W 2

2 = C = const, (A.13)

where we denote Hmin = min(1, H1) and

N (λ, H̃) = λ

µ2
1
H̃

(
E(H̃)
H̃

− 1
)
dE(H̃)
dH̃

. (A.14)

The integral curves described by (A.13) are shown in Figure A.3 for the parameters
values F = 1.3, µ = 0.4, λ = 1000. The solitary wave solution is a homoclinic solution
to the stationary point (min(1, H1); 0) which is implicitly described by (A.13) for chosen
initial conditions. To show that this homoclinic solution exists, in what follows we show
that Hmin is a multiple root of F(H, 0) and there exists another root H∗ > Hmin. First,
we note that the implicit function

F(H,W ) =
∫ H

Hmin

N (λ, H̃)dH̃ + W 2

2 ,

is equal to zero for H = Hmin, W = 0. Moreover, its derivatives are equal to zero for
H = Hmin,

∂F
∂H

= N (λ,H), (A.15)

since N (λ,H) = 0 has the roots defined by (A.5) as shown above. Therefore H = Hmin is
a multiple root, and then a saddle point in the phase plane.

The behaviour in the interval H ∈ (Hmin,∞) is determined by the sign of the derivative
(A.15). As shown above dE(H)/dH 6= 0 for H > 0. Moreover it is easy to see that
dE(H)/dH > 0 for H →∞. As consequence dE(H)/dH > 0 for H > 0. Then the sign of
N (λ,H) is defined by (E(H)/H − 1). The function (E(H)/H − 1) has the same roots as



APPENDIX A. ON THE EXISTENCE OF SOLITARY WAVE SOLUTION 148

H H*

(H,0)

H

W

H  
*Hmax H

(H,0)
�

�H

�

_
+ +

Hmin Hmin Hmax Hmin Hmax

(a) Integral curve; (b) Function (A.13) for W = 0 (c) and its derivative.

Figure A.4: Analysis of the characteristic behaviour of (A.13).

f(H), defined by (A.5). Furthermore, (E(H)/H−1) > 0 when H →∞. From all has been
said it follows that the function (A.13) reaches its local minimum H = Hmax ≡ max(1, H1)
and then increases in the interval (Hmax,∞)) (see Figure A.4). In order to show the
existence of another root H∗ : F(H∗, 0) = 0, it suffices to note that the integral in (A.13)
diverges for H →∞. Indeed, the rough analysis for H →∞ gives(

E(H)
H

− 1
)
∼
√
H,

E(H)
H

∼
√
H. (A.16)

It implies that
λ

µ2
1
H

(
E(H)
H

− 1
)
dE(H)
H

∼ λ

µ2 , (A.17)

whereas the integration limit H →∞.
Therefore the limit value of F(H, 0) is positive, and there exists another root H∗. It

implies the existence of bounded periodic solutions, as a consequence H∗ is the stationary
point.

We conclude that there exists a homoclinic orbit which corresponds to the solitary wave
solution.

A.1 Remark. Equilibrium points (A.12) coincide with the stationary points of the original
Green-Naghdi system.

Indeed, the same considerations for travelling wave solutions of the original Green-
Naghdi equations lead to the system of ODEs:

H ′

H
= Y,

Y ′ = − 3
H2

(H − 1)(H2 +H − 2F 2)
2F 2 .

(A.18)

Indeed, we obtain the same stationary point in the phase plane (H,H ′) as the one defined
before by (A.12).
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Figure A.5: Phase portrait for the original Green-Naghdi system F = 1.3. Red curve
corresponds to the solitary wave solution.

In order to remove the singularity we introduce the new variable X = ln(H). The system
takes the form 

X ′ = Y,

Y ′ = − 3
e2X

(H − 1)(e2X + eX − 2F 2)
2F 2 .

(A.19)

Similarly, the definition of the first integrals reads as∫ H

1

3
H̃2

(H̃ − 1)(H̃2 + H̃ − 2F 2)
2F 2 dH̃ + Y 2

2 = C = const. (A.20)

The phase portrait in the plane (X,Y ) is given in Figure A.5.
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