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Résumé étendu en français de la thèse intitulée

Distributed query processing over �uctuating data

streams

Roland Kotto Kombi

1 Introduction et motivation

Avec la démocratisation d'applications consommant des données en temps
réel (géolocalisation, recommandations ciblées, appareils intelligents, etc.), de
larges volumes de données, dits �ux de données, transitent entre les sources
ayant produites ces données et des services de traitement. Un �ux peut être
représenté comme une séquence potentiellement in�nie de données estam-
pillées et émises en temps réel. Les utilisateurs peuvent interrogés un en-
semble de �ux via un langage de requête dédié [1, 2, 3]. Cependant, à l'inverse
des requêtes sur des données statiques, les requêtes sur des �ux de données
génèrent de nouveaux résultats dès que de nouveaux n-uplets sont reçus en
entrée et sont alors dites continues. Ces requêtes continues sont traitées par
des systèmes de gestion de �ux de données (SGFD) académiques [4, 5, 6],
industriels [2, 7, 8] et libres [9, 10, 11] reposant sur une infrastructure dis-
tribuée. Une infrastructure distribuée est composée d'un ensemble d'unités
de traitement dé�nies par des ressources initiales (processeur et mémoire)
potentiellement partagées.

A�n de répartir l'utilisation des ressources nécessaires à l'exécution d'une
requête continue, un SGFD distribué transforme chaque requête soumise par
un utilisateur en un graphe d'opérateurs [3, 9, 10]. En fonction de son type,
un opérateur peut être répliqué en plusieurs tâches. Ce nombre de tâches
est appelé le degré de parallélisme de l'opérateur. Les tâches sont ensuite
a�ectées sur des unités de traitement. Il est important de noter que le �ux
en entrée de chaque tâche a potentiellement un débit variant en terme de
volume et de distribution des valeurs au cours du temps. La qualité des
résultats générés par les requêtes continues émises par l'utilisateur dépend
de la capacité de l'infrastructure à absorber la charge induite par les �ux
d'entrée.

1



1.1 Traitement distribué et élastique de �ux de données

Ces travaux ont été réalisés dans le cadre du projet ANR Socioplug 1

(ANR-13-INFR-0003), nous nous intéressons à une plateforme de traitement
de �ux distribuée où chaque unité de traitement est un nano-ordinateur
connecté à Internet ayant des capacités de traitement et de stockage limi-
tées. Chaque utilisateur dispose d'une unité de traitement et peut interroger
un ensemble de �ux via des requêtes continues. A�n de garantir le traite-
ment de ces requêtes indépendamment du débit des �ux d'entrée, la plate-
forme regroupe tous les utilisateurs intéressés par les mêmes résultats en une
communauté. La requête continue caractérisant une communauté est alors
distribuée et exécutée une seule fois sur l'ensemble des unités de traitement
associées à la communauté. Cela permet aux utilisateurs d'interroger des �ux
potentiellement massifs tout en leur donnant le contrôle sur le traitement de
leurs données et leurs requêtes.

1.2 Problématique

En considérant des �ux variants, deux phénomènes peuvent être obser-
vés ; phénomènes pouvant être problématique du point de vue de l'utilisateur,
si cela implique une dégradation de la qualité des résultats et du point de vue
du fournisseur de ressources si des ressources allouées ne sont pas exploitées.

� Le premier phénomène dit de sur-allocation apparait lorsque le débit
des �ux d'entrée est largement inférieur au débit de traitement des
tâches d'un opérateur. Cela implique que le degré de parallélisme est
trop important et donc que des ressources super�ues sont sollicités
par le SGFD. Ces ressources peuvent être libérés a�n de béné�cier à
d'autres tâches.

� Le second phénomène dit de risque de congestion apparait lorsque
des tâches ne peuvent plus traiter les n-uplets aussi vite qu'ils ar-
rivent. En e�et, le débit de traitement d'un opérateur est borné par
la complexité de la fonction qu'il implémente. Dans ce cas, les n-
uplets en entrée de la tâche s'accumulent en attendant d'être traité
ce qui rallonge la latence de traitement globale (i.e., le temps mis par
un n-uplet pour traverser le graphe d'opérateurs). Lorsque le volume
de n-uplets accumulés en entrée d'une tâche dépasse la quantité de
mémoire prévue au stockage temporaire des données, cela entraine la
congestion de l'opérateur. Dès lors, l'opérateur congestionné entraine
la perte irréversible de n-uplets et requiert davantage de ressources
disponibles pour traiter l'intégralité de ses entrées.

Or, le SGFD n'a pas de contrôle sur l'évolution des �ux d'entrée du point
de vue du volume et de la distribution des valeurs. Il est donc nécessaire
d'adapter l'exécution d'une requête continue sur l'infrastructure distribué

1. http://socioplug.univ-nantes.fr/index.php/SocioPlug_Project
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lorsque l'un des phénomènes est observé. Le problème est donc de savoir
comment ajuster dynamiquement et automatiquement les ressources utili-
sables par chaque opérateur aux besoins de traitement évoluant au cours du
temps. Pour ce faire, nous nous intéressons dans le cadre de ces travaux de
thèse à la dé�nition d'une stratégie d'auto-parallélisation des opérateurs qui
possèdent les caractéristiques suivantes :

� Augmenter le degré de parallélisme d'un opérateur lorsqu'il présente
un risque de congestion et ce avant que la congestion ne soit e�ective.

� Réduire le degré de parallélisme d'un opérateur lorsque ses besoins de
traitement sont signi�cativement inférieurs à son débit de traitement
global.

� E�ectuer les modi�cations de degré de parallélisme uniquement lorsque
cela présente un béné�ce en terme de performance sur la durée a�n
d'éviter d'introduire des coûts de recon�guration trop importants.

1.3 Contributions

A�n de répondre aux di�érents dé�s, nous proposons les contributions
suivantes :

� Une étude bibliographique présentant les di�érents mécanismes per-
mettant un traitement élastique des �ux de données. Nous expliquons
également comment ces méthodes sont utilisées dans les principaux
SGFD et nous suggérons une classi�cation des méthodes de détection
d'opérateurs congestionnés.

� Une classi�cation d'une large sélection de SGFD représentatifs des so-
lutions existantes. Cette classi�cation est basée sur des critères allant
de la représentation des requêtes à la gestion d'opérateurs congestion-
nés.

� Une architecture générique, appelée ORACL, distinguant les di�é-
rents étapes pour la recon�guration dynamique de requêtes continues.

� Une approche originale d'auto-parallélisation des opérateurs baptisée
autoscale. Cette approche repose sur une observation régulière de
l'activité des opérateurs a�n de déduire la charge à traiter dans un
futur proche. Cela permet d'ajuster le degré de parallélisme des opé-
rateurs de manière proactive. De plus, nous proposons un algorithme
permettant de véri�er la cohérence d'un ensemble de recon�gurations
à l'échelle du graphe d'opérateurs.

� Une extension d'autoscale, nommée autoscale+ prenant en compte
la consommation réelle du processeur pour chaque tâche.

� Une association d'autoscale+ avec une stratégie d'équilibrage de
charge compatible a�n de proposer une approche combinée nommée
DABS. Cette approche permet d'identi�er avec précision les besoins
en ressources d'opérateurs sensibles, en terme de latence de traite-
ment, à la distribution des valeurs des �ux d'entrée.
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2 État de l'art

Durant ces travaux de thèse, nous nous sommes intéressés aux di�érents
aspects du traitement de �ux de données sur des infrastructures distribuées.
Cela nous a conduit a étudié dans un premier temps les notions fondamen-
tales nécessaires à l'interrogation de �ux de données via des requêtes conti-
nues.

2.1 Traitement de �ux de données

Les �ux de données sont des séquences potentiellement in�nies de données
éphémères arrivant à des débits variants au cours du temps. Nous identi�ons
4 classes de �ux en fonction de la variation de leurs débits : des �ux constants,
bornés, par motifs réguliers et en�n erratiques. Pour chacune de ces classes
nous considérons deux types : les �ux équilibrés et déséquilibrés. Le type d'un
�ux dépend à la fois de la distribution des valeurs et de la sensibilité d'une
requête continue aux valeurs en entrée en terme de latence de traitement.

A�n de dé�nir ces requêtes continues plusieurs types de langages existent :
� Des langages déclaratifs permettant de dé�nir une requête continue

sous forme d'une expression composée d'opérateurs prédé�nis.
� Des langages graphiques permettant de dé�nir une requête continue

directement comme un graphe d'opérateurs prédé�nis.
� Des langages impératifs permettant de dé�nir une requête continue

comme une succession d'opérateurs dé�nis par l'utilisateur dans un
langage de programmation haut niveau tel que Java ou Python.

Quelque soit le type de langage utilisé, un SGFD distribué transforme la
requête en un graphe d'opérateurs. Chaque opérateur peut être divisé en un
ensemble de tâches qui sont allouées sur des unités de traitement du support
d'exécution. Chaque tâche reçoit en entrée un �ux au débit variant au cours
du temps.

2.2 Gestion d'opérateurs congestionnés en contexte �ux

Le �ux d'entrée de chaque tâche pouvant atteindre des débits critiques à
n'importe quel instant durant le traitement, il apparait alors nécessaire que
les SGFD intègrent des mécanismes permettant d'adapter les traitements au
débit en entrée. Ces mécanismes sont alors dits élastiques car ils permettent
d'augmenter ou de réduire le débit de traitement global d'un graphe d'opé-
rateurs. Ces di�érents mécanismes peuvent modi�er le graphe d'opérateurs
à di�érents niveaux :

� Au niveau du graphe d'opérateurs dans son intégralité en modi�ant
l'ordre d'exécution des opérateurs sur les données entrantes.

� Au niveau des opérateurs en modi�ant le nombre de tâches associées
à chaque opérateur. L'enjeu majeur de la parallélisation consiste à
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ajuster le degré de parallélisme des opérateurs pour fournir les res-
sources processeur et mémoire nécessaires aux traitements. De plus,
le placement des tâches sur les unités de traitement peut impacter le
débit entre tâches successives.

� Au niveau de l'implémentation, le choix d'une implémentation au
détriment d'une autre peut avoir un impact important sur la latence
de traitement et donc sur le débit de traitement.

� En fonction de la distribution des valeurs et de la fonction appliquée
par l'opérateur, il peut être nécessaire d'équilibrer la charge de don-
nées à traiter entre les di�érentes tâches. Cela consiste à partitionner
les données entrantes entre toutes les tâches associées à un même opé-
rateur. En�n, lorsque le volume de données est trop important, des
stratégies d'échantillonnage permettent de réduire le débit d'entrée
tout en maitrisant la dégradation de la qualité des résultats.

À chaque niveau, les mécanismes élastiques peuvent être déclenchés soit
sur demande de l'utilisateur, soit de manière automatique. Le déclenchement
manuel requiert une expertise et une observation constante de la part de l'uti-
lisateur a�n d'améliorer les performances d'une requête continue. Le déclen-
chement automatique permet d'ajuster les ressources allouées aux besoins
des traitements, toutefois, la réactivité de la méthode dépend des métriques
considérées pour identi�er des opérateurs congestionnés. A�n de mettre en
évidence les di�érences entre les méthodes de détection d'opérateurs conges-
tionnés, nous proposons de les regrouper en catégories. Ces catégories sont
basées sur la capacité d'anticipation de ces méthodes et sur l'algorithme de
prise de décision, i.e. quand une augmentation ou une diminution du degré
de parallélisme doit être e�ectuée.

2.3 Classi�cation des SGFD

Suite à l'étude bibliographique, nous avons identi�é une grande variété de
langages de requêtes et de méthodes de gestion d'opérateurs congestionnés.
Nous suggérons alors une classi�cation de SGFD basée sur la représentation
des requêtes continues (graphes d'opérateurs ou jobs MapReduce), le type
de langage de requêtes supporté et la gestion des opérateurs congestion-
nés. Pour chacun des systèmes sélectionnés, nous analysons chaque critère
et expliquons comment une requête est gérée de sa déclaration à la ges-
tion d'opérateurs congestionnés pendant l'exécution. Les SGFD analysés et
intégrés dans cette classi�cation ont été sélectionné pour leur performance
et leur représentativité des solutions existantes. Cette classi�cation met en
évidence la grande diversité des solutions mais également l'absence de solu-
tions prenant en compte tous les aspects nécessaires à la gestion dynamique
d'opérateurs congestionnés.
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3 Traitement élastique de �ux de données

Di�érents facteurs interviennent dans l'apparition d'une congestion. En
e�et, entre la requête continue dé�nie par l'utilisateur et les tâches distribuées
sur un ensemble d'unités de traitement interconnectées, plusieurs phases
d'optimisation sont appliquées. Les choix e�ectués par le SGFD durant cha-
cune de ces phases peut causer l'apparition d'un goulot d'étranglement au
niveau du réseau ou des traitements.

3.1 Optimisation algébrique

À l'instar des SGBD, certains SGFD [12, 3, 5] permettent aux utilisateurs
de dé�nir des requêtes à l'aide d'un langage déclaratif. La requête correspond
alors à une expression traduite par le SGFD en une topologie équivalente. En
fonction des propriétés algébriques des opérateurs, le SGFD peut chercher
l'ordonnancement optimal des opérateurs a�n de minimiser le volume de
données transitant entre les opérateurs. Cette phase d'optimisation se base
sur les solutions éprouvées depuis de nombreuses années dans les systèmes
de gestion de base de données (SGBD).

3.2 Parallélisation des opérateurs

Une fois un graphe d'opérateurs choisi, un SGFD distribué peut �xer
le degré de parallélisme de chaque opérateur. Ce choix a un impact direct
sur le débit de traitement théorique de l'opérateur et donc le débit maximal
que l'opérateur peut recevoir en entrée sans accumuler de n-uplets sur sa
�le d'attente. Il apparait donc évident qu'un degré de parallélisme sous-
évalué par rapport au débit réel du �ux entrainera à terme une congestion.
À l'inverse, un degré de parallélisme signi�cativement surévalué implique une
réservation de ressources super�ues pour les besoins de traitement.

3.3 Allocation des tâches

Lorsque le degré de parallélisme de tous les opérateurs est �xé, le SGFD
doit décider du plan d'a�ectation des tâches sur les unités de traitement. Ce
plan d'allocation est dé�ni selon une stratégie d'allocation. Certaines stra-
tégies [13, 14] ont pour objectif de minimiser les échanges réseaux entre les
unités de traitement tandis que d'autres stratégies [9] ont pour objectif de
concentrer toutes les tâches sur un sous-ensemble minimal d'unités de trai-
tement. Pour chacune de ces stratégies, des contraintes sur les ressources
processeur et mémoire nécessaires sont considérées. En fonction des opéra-
teurs et de la structure du graphe d'opérateurs, l'adoption d'une stratégie
peut amener à la formation de goulots d'étranglement réseaux ou à des sur-
charges fréquentes des unités de traitement actives. Dans les deux cas, cela
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entrainera des déplacements de tâches, réduisant la stabilité du système et
augmentant la latence de traitement globale.

3.4 Optimisation locale

Certains SGFD proposent un ensemble d'opérateurs logiques pour la dé-
�nition de requêtes continues. Pour chaque opérateur logique, plusieurs im-
plémentations peuvent être disponibles a�n d'adapter localement les traite-
ments en fonction du contexte d'exécution. Par exemple, pour un opérateur
de jointure, un SGFD peut disposer d'une implémentation basée sur un algo-
rithme de hachage et une autre implémentation sur des boucles liées. Selon
la taille des entrées une implémentation est plus performante que l'autre.

Grâce à l'étude approfondie de di�érents SGFD, nous avons identi�é que
les choix de stratégies pour la parallélisation des opérateurs, l'équilibrage
de charge intra-opérateur et l'allocation des tâches sont primordiaux pour
maintenir un équilibre entre besoins des traitement et ressources allouées.
Bien que des solutions automatiques et quasi-optimales existent pour l'équi-
librage de charge intra-opérateur et l'allocation des tâches, les stratégies de
parallélisation des opérateurs présentent des limites importantes en terme de
réactivité et d'automaticité.

4 autoscale : Une approche préventive pour le
traitement élastique de �ux de données

Dans le cadre de cette thèse, nous proposons une approche préventive
d'auto-parallélisation des opérateurs, nommée autoscale, identi�ant les
opérateurs présentant un risque de congestion dans un futur proche et ana-
lysant le contexte d'exécution pour estimer le degré de parallélisme adapté.
Pour ce faire, autoscale repose sur les deux grandes étapes suivantes : i)
l'estimation de l'activité de chaque opérateur dans un futur proche grâce
à une métrique d'activité ii) une analyse à l'échelle du graphe d'opérateurs
permettant d'identi�er le sous-ensemble cohérent d'opérateurs à recon�gurer
pour éviter l'apparition d'opérateurs congestionnées.

4.1 Estimation de l'activité des opérateurs

A�n d'estimer les risques de congestion dans un futur proche, nous ob-
servons chaque opérateur individuellement sur une fenêtre d'observation. À
intervalle de temps régulier, le nombre de n-uplets en entrée est mesuré. À
partir de toutes les mesures e�ectuées durant la fenêtre d'observation, nous
estimons, par régression linéaire, le volume global de n-uplets que l'opérateur
aura à traiter durant la prochaine itération de la fenêtre d'observation. Dans
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le même temps, nous mesurons la latence moyenne par n-uplet de l'opérateur
a�n de dériver le nombre théorique de n-uplets qu'il pourra traiter durant la
prochaine itération de la fenêtre d'observation en tenant compte également
du nombre de tâches traitant les données en parallèle. En comparant ces
deux volumes, nous pouvons alors estimer si l'opérateur est capable, avec
son degré de parallélisme courant, de traiter le volume estimé de n-uplets
dans un futur proche.

4.2 Analyse des recon�gurations à l'échelle du graphe d'opé-
rateurs

Grâce à la métrique d'activité, il est alors possible de déterminer si un
opérateur nécessite une augmentation, une diminution ou la conservation de
son degré de parallélisme courant. Toutefois, une prise de décision basée sur
des estimations locales peut s'avérer inappropriée du point de vue de l'état
global d'une topologie.

En e�et, la modi�cation du degré de parallélisme d'un opérateur peut
impacter fortement la quantité de données en entrée des opérateurs en aval
de celui-ci. Il serait donc importun de prendre la décision locale de réduire le
degré de parallélisme d'un opérateur suite à l'observation d'une faible activité
si le degré de parallélisme de l'opérateur en amont est fortement modi�é.

Cette analyse globale favorise la stabilité du système en évitant de déclen-
cher des recon�gurations qui seront contredites à court terme mais également
en évitant des recon�gurations antagonistes qui dégradant les performances
du SGFD au lieu de les améliorer. En�n, cette analyse globale permet au
SGFD de disposer de deux estimations de l'activité d'un opérateur et de
choisir soit une stabilité accrue en ne modi�ant le degré de parallélisme que
lorsque les deux estimations le suggèrent soit une réactivité accrue en modi-
�ant le degré de parallélisme dès la détection d'un risque de congestion.

4.3 Évaluation expérimentale d'autoscale

A�n d'évaluer l'approche autoscale, nous avons choisi de la comparer
avec le comportement natif de la solution Apache Storm selon di�érentes
con�gurations. Apache Storm permet aux utilisateurs de dé�nir le degré de
parallélisme de chaque opérateur à l'initialisation de la requête continue. Par
défaut, ces degrés initiaux ne sont pas modi�és par Storm.

Nous avons proposé un micro-benchmark composé de quatre requêtes
continues ou topologies :

� Trois topologies simples : linéaire, diamant et en étoile. Ces topologies
sont dites élémentaires car la majorité des topologies peuvent être
découpées selon ces motifs. Chacune de ces topologies est composée
d'une ou plusieurs sources, d'au moins un opérateur à forte latence de
traitement et d'au moins un opérateur à faible latence de traitement.
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� Une topologie complexe inspirée par un cas d'usage réel. Cette topolo-
gie possède plusieurs opérateurs à forte et faible latence de traitement.

Pour chacune de ces topologies, nous pouvons appliquer 2 types de �ux :
un �ux ayant une évolution progressive du débit en entrée et un �ux ayant
des augmentations et des diminutions soudaines du débit en entrée.

Nous dé�nissons également deux con�gurations pour chaque topologie :
une con�guration minimale dé�nissant un degré de parallélisme pour chaque
opérateur adapté à des débits faibles en entrée et une con�guration experte
dé�nissant des degrés de parallélisme adaptés au débits maximaux des �ux.

Sur l'ensemble des évaluations, nous mettons en évidence l'intérêt d'autoscale
pour éviter la congestion d'opérateurs en con�guration minimale au démar-
rage. En e�et, lors de l'augmentation du débit en entrée, autoscale aug-
mente le degré de parallélisme des opérateurs à forte latence de traitement
a�n de maintenir un débit de traitement supérieur au débit d'entrée. Dans le
cas de Storm, la congestion entraîne un arrêt complet des traitement et des
pertes irréversibles de données. Lorsque la con�guration experte est choisie,
autoscale parvient à maintenir une latence de traitement globale su�sam-
ment faible pour éviter l'apparition de congestions tout en réduisant lorsque
cela est possible les degrés de parallélisme des opérateurs. Au plus, autos-
cale parvient à réduire la consommation de ressources de 37% pour des
performances équivalentes.

5 Vers un modèle d'auto-parallélisation prenant en
compte le contexte d'exécution

autoscale propose une approche d'auto-parallélisation entièrement gui-
dée par les données. En e�et, l'adéquation entre ressources nécessaires pour
les traitements et ressources disponibles avec le degré de parallélisme courant
est estimée sous réserve que les deux conditions suivantes soient remplies :

� Chaque tâche dispose d'autant de ressources que nécessaire sur l'unité
de traitement sur laquelle elle est assignée.

� La charge de traitement est équitablement répartie entre les tâches
associée à un même opérateur indépendamment des propriétés du
�ux.

La première condition peut ne pas être véri�ée lorsque, sur une unité de
traitement donnée, la somme des ressources requises par les tâches dépasse
les ressources disponibles. Dans ce cas, une concurrence pour l'utilisation du
processeur et de la mémoire apparait, causant potentiellement un décalage
entre débit de traitement estimé et débit de traitement réel.

Concernant la seconde condition, il est important de noter que certaines
applications sont composées d'opérateurs naturellement sensibles aux valeurs
passées en entrée. Par exemple, une jointure génère un volume de données
en sortie fonction du volume de données en entrée et de la répartition des
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valeurs dans l'ensemble des données en entrée. Si le résultat de cette jointure
est calculé en parallèle grâce à un partitionnement des entrées, il n'est pas
garantie que chaque partition nécessite un temps de traitement équivalent
aux autres du fait de distributions de valeurs potentiellement di�érentes.

Il apparait alors nécessaire de prendre en considération les ressources
réellement utilisables pour chaque tâche a�n d'estimer un débit de traitement
plus proche de la valeur réelle. De plus, la combinaison d'autoscale avec
une stratégie d'équilibrage de charge adaptée est nécessaire a�n de maintenir
une charge équivalente entre les tâches associées à même un opérateur.

5.1 Prise en compte des ressources pour l'évaluation de l'ac-
tivité

A�n d'estimer la capacité de chaque opérateur tout en prenant en compte
les ressources réellement utilisables, nous nous focalisons sur le temps pro-
cesseur utilisable pour chaque tâche. À la di�érence de certains systèmes [9]
considérant uniquement des réservations de temps processeur statiques, nous
suggérons de mesurer régulièrement, l'usage réel du processeur par chaque
tâche. Ainsi, pour un opérateur donné, nous pouvons estimer le temps proces-
seur moyen réellement utilisable par chacune de ses tâches et donc, déduire
la capacité globale de l'opérateur avec une précision accrue par rapport à
l'approche autoscale.

5.2 Évaluation expérimentale d'autoscale+

Lors de l'évaluation d'autoscale+, nous avons choisi de nous concen-
trer sur l'apport d'une approche préventive par rapport à des approches cou-
rantes de la littérature. Nous avons ainsi implémenté deux stratégies d'auto-
parallélisation : une approche par exploration incrémentale des degrés de
parallélisme et une approche par apprentissage avec renforcement.

Nous avons modi�é le micro-benchmark en considérant une topologie
linéaire possédant un opérateur à forte latence et insensible aux valeurs en
entrée, une topologie linéaire équivalente mais avec un opérateur à latence
sensible aux valeurs en entrée et en�n une topologie complexe possédant un
opérateur sensible aux valeurs en entrées.

Nous avons considéré cette fois-ci 4 �ux :
� 2 �ux ayant respectivement des variations progressives et soudaines

du débit et une distribution uniforme des valeurs.
� 2 �ux ayant les mêmes variations en terme de débit mais ayant une

distribution des valeurs biaisée selon une loi de distribution prédé�nie.
Étant donné que nous comparons uniquement des stratégies de paral-

lélisation automatique des opérateurs, toutes les topologies sont initialisées
avec une con�guration minimale. Nous observons qu'autoscale+ adapte
au moins aussi bien le degré de parallélisme d'une topologie qu'une straté-
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gie basée sur de l'apprentissage par renforcement déjà entraînée. De plus,
autoscale+ parvient à réduire la latence de traitement en ne réduisant
le degré de parallélisme que lorsque cela présente un intérêt signi�catif en
terme d'économie de ressources.

6 DABS : Association d'autoscale+ avec une stra-
tégie d'équilibrage de charge

6.1 Principe

Pour pallier le déséquilibre de charge entre les tâches associées à un même
opérateur, plusieurs stratégies existent. Certaines stratégies établissent des
partitions en fonction de la valeur de chaque n-uplet présent dans le �ux.
D'autres stratégies tendent à répartir équitablement le nombre de n-uplets
dans chaque partition indépendamment des valeurs des n-uplets. Dans les
deux cas, la charge entre les tâches n'est équilibrée que sous l'hypothèse
que le �ux d'entrée a une distribution des valeurs ne variant pas signi�ca-
tivement tout au long des traitements. Nous suggérons alors de combiner
autoscale+ avec une stratégie d'équilibrage de charge prenant en compte
l'évolution de la distribution des valeurs dans le �ux. Cette stratégie, bap-
tisée osg, est basée sur une évaluation de temps de traitement de chaque
valeur présente dans le �ux d'entrée. Grâce à une structure de données com-
pressée, osg peut évaluer la charge de chaque tâche en terme de temps de
traitement, a�n d'équilibrer les �les d'attentes de chaque tâche.

6.2 Évaluation expérimentale de dabs

A�n d'évaluer la performance de l'approche dabs, nous avons étudié
la performance combinée de stratégies d'auto-parallélisation avec di�érentes
solutions pour l'équilibrage de charge entre tâches d'un même opérateur. En
e�et, certains opérateurs étant naturellement sensible aux valeurs en entrée,
en terme de latence de traitement, le choix de la méthode d'équilibrage de
charge peut avoir un impact majeur sur les performances.

Nous avons testé dabs face à autoscale+ sur une topologie complexe
face à des �ux ayant un biais important dans la distribution des valeurs.
Il apparait que dabs permet de réduire considérablement le déséquilibre
de charge entre les tâches d'un même opérateur. Cela a pour conséquence
de réduire le taux de remplissage des �les d'attente jusqu'à 11% sur un
même �ux et donc de réduire la latence de traitement globale. De plus, dabs
peut délivrer de meilleures performances qu'autoscale+ avec un degré de
parallélisme moins élevé. En e�et, grâce à une meilleure répartition de la
charge, le débit de traitement global d'un opérateur est plus important pour
un degré de parallélisme donné.
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1 Stream Processing

During the last decade, stream processing has become a very active research domain as presented
in [Babcock et al., 2002, Cherniack et al., 2003a, Ishii and Suzumura, 2011, Hummer et al., 2013,
Lohrmann et al., 2015, Hochreiner et al., 2015]. These researches are motivated by the growing
number of domains using stream-based applications. For instance, in the e-marketing domain,
advertising applications analyze in real time logs of users browsing online in order to suggest
relevant advertisements. Suggesting promotional o�ers in real time is more e�cient than delayed
o�ers because it relies on current interests and activity of users. In digital entertainment, online
servers collects massive amount of data describing actions performed by players through sensors
like gamepads or keyboards. It allows game providers to synchronize multiplayer sessions with
low latency, which is necessary to o�er a satisfying gaming experience. Another use case is ge-
olocalization. Stream-based applications take in input the localization of users at high frequency
and return their positions on a synthetic map. In addition, some sponsorized places (restaurants,
shops, etc.) are also suggested to users. To guide users and promote some places, it is crucial
that applications approximate positions of users and cross them with geographic data as soon as
new GPS signals are received.

This proliferation and diversi�cation of sources emitting data in real-time has led to the devel-
opment of speci�c techniques for data stream management [Heinze et al., 2014b]. In opposition
to persistent data stored on disk, data streams are potentially in�nite sequences of transient data
emitted by sources as soon as they are produced.

Users can process these data streams by submitting speci�c queries, denoted continuous queries,
as introduced in [Babcock et al., 2002, Arasu et al., 2006, Arasu et al., 2004]. Contrary to one-
shot queries on persistent data which are submitted each time a new result is expected, contin-
uous queries are submitted once and potentially never terminate. A continuous query generates
updates of the result as soon as new data arrive through input streams.
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So processing data streams continuously requires to deal with Big Data issues linked to
velocity and volume [Babcock et al., 2002, Cherniack et al., 2003a, Abadi et al., 2005]. Indeed,
stream-based applications require that new data are processed on the �y to return results before
they become obsolete for end users. Moreover, most stream-based applications requires to keep
the recent history of data streams in memory to perform aggregate or join operations. Never-
theless, the volume of data sharing a common timestamp may signi�cantly vary and critically
increase the resources needed to store and process the recent history.

Initially, some centralized solutions [Schreier et al., 1991] have been suggested to compute
continuous queries over database management systems (DBMS). These solutions store both data
and queries to compute updates of results at regular interval. Continuous queries are turned
into equivalent direct acyclic graphs (DAGs) of operators, denoted work�ows. An operator is
an atomic sequence of instructions applying a prede�ned, eventually user-de�ned, function on
inputs. So, operators are applied sequentially on new data to generate result updates at regular
interval. Nevertheless, it presents several limitations in terms of velocity and volume. First, as
data arrive continuously, it requires frequent disk accesses which involve important latency to
store and retrieve data. While the frequency of data arrival exceeds the frequency of disk access,
it causes an accumulation of data in main memory until over�ow. Likewise, when a continuous
query contains one or many operators with high processing latency (e.g., cartesian product)
applied sequentially, the data input rate may exceed the throughput of the continuous query.
Then, as data streams are potentially in�nite they cannot be stored fully in memory or disk,
so relying on �nite memory and disk spaces require to manage data lifecycle to discard obsolete
data. It involves additional management overheads having an impact on the performance of the
system.

Then, some centralized solutions [Arasu et al., 2004, Abadi et al., 2003, Chandrasekaran et al., 2003]
exploiting the parallelism of a multicore architecture have been suggested. They are intrinsically
di�erent from DBMS derived solutions because they keep data on main memory for faster ac-
cesses and they push new data in a pipeline of operators running in parallel. Moreover, an
operator with high latency may be split in equivalent tasks running in parallel. It assumes that
it is feasible according to operator properties (e.g., algebraic properties). These architectural
modi�cations signi�cantly improve the scalability of systems and de�ne a new class of systems
called data streams management systems (DSMS). Nevertheless, at the era of Big Data, volumes
of data transferred in real time exceed signi�cantly the resources (CPU, memory and bandwidth)
of a single multicore machine. Even if operators can be replicated to scale treatments, the num-
ber of threads a machine can handle is limited and it prevents computing complex queries over
multiple input streams.

To tackle these issues, some industrial [Peng et al., 2015, Akidau et al., 2013, Gedik et al., 2008,
Biem et al., 2010], academic [Abadi et al., 2005, Chandrasekaran et al., 2003, Gulisano et al., 2012,
Balazinska et al., 2004], and open-source [Peng et al., 2015, Noghabi et al., 2017, Carbone et al., 2015]
distributed DSMS have been developed. They aim at exploiting the inherent of a distributed
infrastructure without requiring speci�c knowledge to end users. They allow users to de�ne con-
tinuous queries over sets of data streams through stream-oriented languages [Arasu et al., 2006,
Jain et al., 2008] or API [Peng et al., 2015, Akidau et al., 2013, Yang et al., 2012, Zaharia et al., 2012b]
in a programmation language like Java, C or Python. Distributed DSMS use parallelization
frameworks as MapReduce [Dean and Ghemawat, 2004] to improve the scalability of stream-
based applications. So, contrary to centralized DSMS [Arasu et al., 2004, Abadi et al., 2003,
Backman et al., 2012], distributed DSMS are not bounded in terms of resource by the features

2



2. Problem Statement

of a single machine but can exploit an extensible cluster. It allows users to process larger volumes
of data with low latency. To distribute continuous queries over a cluster of machines, operators
are potentially replicated into many tasks. Then, all tasks are assigned for a parallel execution.

In the context of the ANR project Socioplug1 (ANR-13-INFR-0003), we consider a sets of
users, denoted communities, interested by results of some continuous queries. Each user has at
its disposal a processing unit with limited resources in terms of CPU and memory. The objective
of the project Socioplug is to provide a platform allowing each user to compute results over large
volumes of data arriving over time. Users should be able to submit multiple continuous queries
simultaneously and so, belong to many communities. The problem is that users have their dis-
posal limited resources but also want to get results with low latency independently of stream
rates and the number of continuous queries running in parallel. So, an architectural adaptation
of data management systems is required to satisfy users requirements. It appears that the ex-
ploitation of a distributed infrastructure is the key feature to suggest a reliable stream processing
platform as expected in the project Socioplug. However, one objective of this project is to rely on
resources owned by users instead of processing continuous queries on a third cluster. To answer
this problem, processing units of users belonging to a same community are interconnnected to
build a cluster. This way, each community has at its disposal a cluster to compute once results
of the continuous query.

As mentioned above, each user may belong to many communities. Thus, for the provider manag-
ing the cluster, the general problem is to balance resource usage of each processing unit between
all continuous queries it should process. In consequence, it becomes crucial for the provider to �t
resource usage of continuous queries to their respective processing requirements. In a stream pro-
cessing context, it is a major challenge as processing requirements vary as stream rates �uctuate
over time. The dynamic adaptation of work�ows representing continuous queries, called elas-
tic stream processing [Ishii and Suzumura, 2011, Hochreiner et al., 2015, Heinze et al., 2014b],
is then necessary to maintain a balance between processing requirements and resource usage at
runtime.

2 Problem Statement

On one side, the elastic treatment of continuous queries satisfy user requirements independently
of variations happening in the execution environment. On the other side, it allows DSMS to take
advantage dynamically of available resources without needing an oversized cluster. Neverthe-
less, recon�guring work�ows representing queries implies important recon�guration overheads.
Indeed, as operators process continuously transient data stored in main memory, modifying the
con�guration of some operators requires to pause treatments, apply some transformations on
a work�ow and spread them over the cluster. Moreover, it may involve code and data trans-
fers through network. All those operations are time and resource consuming so they degrade
momentarily the performance of the DSMS.

To take fully advantage of elastic stream processing, a DSMS must identify when a recon�gu-
ration is needed or recommended to improve processing latency and result quality of continuous
queries. To ensure that a recon�guration �ts e�ectively processing requirements to resource us-
age, it is crucial that the type of recon�guration corresponds to the problem caused by a variation
in the execution environment. Three types of recon�guration are usually considered to adapt
the con�guration of a DSMS:

1http://socioplug.univ-nantes.fr/index.php/SocioPlug_Project
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• Operator scheduling aims at assigning operators such as the global scheduling plan sat-
isfy some conditions. It can be achieved by spreading evenly the processing load over all
available machines [Zaharia et al., 2012b] or minimize network tra�c to avoid network bot-
tlenecks [Xu et al., 2014]. So, operator scheduling can prevent congestion due to massive
network transmissions but it cannot increase the global processing rate of an operator.
If computations are bounded by the time complexity of the operator, reassigning it on
another machine is ine�cient.

• Load balancing should serve as guarantee that the load is evenly distributed over tasks
associated to a given operator [Rivetti et al., 2015]. If it is not the case, it signi�cantly
reduces bene�ts brought by parallel execution. To improve the global processing rate, a
load balancing strategy assumes there is a natural imbalance in data that a speci�c routing
plan may compensate.

• Parallelization of operators [Lohrmann et al., 2015, Schneider et al., 2009, Gedik et al., 2014,
Shukla and Simmhan, 2017] consists in increasing (scale-out) or decreasing (scale-in) the
number of tasks, also denoted parallelism degree, of an operator. It has a direct impact on
the processing rate of an operator and bounded theoretically the input rate an operator is
able to handle without going to congestion. So, adapting the number of tasks associated
to an operator de�nes mainly the input rate an operator can process.

Most distributed DSMS integrate parallelization mechanism, scheduling and load balancing
strategies. All recon�guration types can be triggered o�ine [Aniello et al., 2013, Zaharia et al., 2012b,
Neumeyer et al., 2010] to de�ne a static con�guration which is not modi�ed unless they are trig-
gered manually. Some DSMS [Xu et al., 2014, Gedik et al., 2014, Lei and Rundensteiner, 2014]
can also adapt execution of work�ows at runtime according to a continuous monitoring of the
execution environment. Nevertheless, to our knowledge, most elastic solutions focus on one
recon�guration type and neglect the synergy between the di�erent mechanisms adapting the
execution of work�ows at runtime.

From these observations, we look after a solution which integrates both dynamic mechanisms
for parallelization, scheduling and load balancing of operators in a distributed stream processing
context. Many DSMS integrate near optimal scheduling [Peng et al., 2015, Aniello et al., 2013]
and load balancing strategies [Rivetti et al., 2015, Lei and Rundensteiner, 2014] but the auto-
matic parallelization, or auto-parallelization, of operators raise several challenges: (i) when a
modi�cation of parallelism degree should be triggered? (ii) which metrics should be considered
to adjust the parallelism degree? (iii) how to avoid massive recon�guration overheads system
but prevent congestion of operators? (iv) how to avoid recon�gurations which do not adapt
e�ectively resource usage?

Thus, we focus on auto-parallelization of operators to perform elastic stream processing. The
�rst challenge (i) is linked to the reactivity of the system. Actually, as presented above, the global
rate in input of an operator may vary at any time. So, if the system reacts with an important
delay to a signi�cant increase in input rate, it may only correct an e�ective congestion and let
result quality degrades for a certain period of time. Nevertheless, if the system performs a scale-
out or a scale-in each time the input varies signi�cantly, it may recon�gure itself continuously,
bringing important overheads and causing a major degradation of performance and result quality.

The second aspect (ii) deals with the accuracy of each recon�guration. While considering
recent �uctuations in input rate, which value or aggregated value should be considered as the
expected input rate? Several approaches have been proposed to forecast values in near future
under some assumptions on the evolution of stream rate.
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Then, the stability of the system (iii) can be evaluated at the scope of each task (i.e., con-
trolling the frequency of recon�guration) but it can also be evaluated at the scope of the entire
continuous query. Indeed, limiting the occurrence of scale-in/out for each operator does not guar-
antee that the system does not recon�gure operators belonging to the same continuous query
with a domino e�ect. For instance, if a work�ow performing a join between two input streams
receives larger volumes in input, it is bene�cial for the system to recon�gure simultaneously all
downstream operators as the system can anticipate that the join operator will generate large
volumes of outputs.

Finally, in a distributed multicore context, some aspects like concurrency for resource usage
may create a gap between expected and e�ective resource usage(iv). Catching such restric-
tions imposed by the execution support is necessary to adapt accurately resource usage for each
continuous query.

3 Contributions and Organization

In a �rst time, we analyze which aspects have an impact on distributed stream processing. We
suggest an abstract architecture for elastic stream processing. This architecture highlight the
di�erent levels of query execution from logical layer to physical layer. For each layer, we detail
its role, how a recon�guration needed is detected and which impact it has on global execution
of continuous queries. We also give an overview of common adaptation strategies used at each
level of query execution. In addition, we expose dependencies between adaptations and discuss
about the compatibility of di�erent adaptation strategies.

From this generic architecture, we highlight lacks in elasticity while facing critical �uctuations
in input rate and distribution in terms of reactivity and automaticity. To tackle this issue, we
suggest an original auto-parallelization strategy which allow to perform preventive elastic stream
processing. Indeed, our auto-parallelization analyzes both stream and operator properties like
the selectivity factor to estimate accurately processing requirements at runtime. Compared to
other solutions suggested in the literature, our solution requires neither a learning phase nor user
expertise or intervention to size available resources to treatments.

The contributions presented in this manuscript are the following:

• A survey on congestion management presenting common techniques used to enable elastic
stream processing over a distributed infrastructure. In addition, we suggest a classi�cation
of detection methods for congestion management extending the classi�cation of auto-scaling
methods presented in [Lorido-Botran et al., 2014].

• The review of a selection of DSMS covering the variety of solutions existing in the literature.
For each DSMS, we present its speci�c features in terms of query de�nition and congestion
management.

• The abstract architecture for elastic stream processing, called ORACL loop, which identify
the di�erent steps of dynamic recon�guration for congestion management.

• The original auto-parallelization autoscale which relies on a monitoring module observes
the recent history of operator activity at regular interval of time. Through this module,
autoscale can analyze the behavior of the operator at local scope and compute an activity
metric. This metric estimates the gap between input and processing rates at operator scope
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and in near future. It allows to adjust the parallelism degree of operators in a proactive
way and prevent congestion.

• An algorithm checking the consistency at work�ow scope of recon�gurations detected at
operator scope and integrated to autoscale. This algorithm takes as input local re-
con�guration requirements and the structure of the work�ow and computes the set of
recon�gurations to trigger simultaneously in order to improve the performance and the
stability of system. It aims at avoiding recon�gurations with domino e�ect and antago-
nist modi�cations of parallelism degrees. We highlight the e�ectiveness of this algorithm
through an experimental study against di�erent strategies.

Then, we extend this auto-parallelization strategy to the approach autoscale+ with the
support of concurrency and load imbalance between tasks. To do so, the following improvements
have been integrated:

• The consideration of e�ective resource usage for each task of operator. We focus on CPU
usage as it is the most crucial resource for computation in a stream processing context.

• A resource-aware variation of the activity metric which takes e�ective resource usage into
account to de�ne the gap between input and processing rate.

We integrate autoscale+ within a solution, named dabs, which adapts resource usage to
processing needs. The solution has the following properties:

• The auto-parallelization strategy autoscale+ associated to a complementary load balanc-
ing strategy. The association of compatible approaches for auto-parallelization of operators
and load balancing ensures that each operator has the capacity to process input streams
independently of data volume and distribution.

• Con�gurable parameters allowing users to adapt treatments to their needs.

We implemented these auto-parallelization strategies over the DSMS Apache Storm2 and
suggest a comparative evaluation with the native behavior of this solution.

In this research, we focus our e�orts on preventive auto-parallelization of operators with con-
sideration for the trigger of scale-in/out, the consistency of recon�guration and the stability of the
system. All aspects linked to data partitioning and state management [Shukla and Simmhan, 2017,
Castro Fernandez et al., 2013, Gedik, 2014, Wu and Tan, 2015, Ding et al., 2015, Nasir, 2016,
Cardellini et al., 2016] are out of the scope of this research.

Organization of the manuscript

In chapter 2, we introduce the background about data stream representation and stream pro-
cessing. In chapter 3, we suggest a survey of elastic stream processing oriented on congestion
management. It is composed of a catalog of techniques for congestion detection and manage-
ment and also a classi�cation of DSMS illustrated by representative academic, industrial and
open-source solutions. The generic architecture ORACL for elastic stream processing is detailed
in chapter 4. Then, in chapter 5, we present the auto-parallelization strategy autoscale and
explain how it adapts dynamically and automatically parallelism degrees of operators. We ex-
pose an experimental study of optimizations integrated in the algorithm. The extension, called

2http://storm.apache.org/
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autoscale+, is detailed in chapter 6 and we test its compatibility with a load balancing strat-
egy of the literature. Experiments on microbenchmark and complex topologies are commented
in chapter 7. Finally, we summarize conclusions of our works and present future works in chapter
8.
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In this chapter, we brie�y remind basic concepts about data streams and data stream pro-
cessing. We present the execution context that we consider in the remainder of this work. In
addition, we give an overview of main methods used to detect congestion in a stream processing
context. Finally, we expose issues linked to operator congestion and concepts related to system
elasticity.

1 Data Streams

1.1 Modeling and features

Intuitively, data streams are sequences of stream element sets [Arasu et al., 2006, Tucker et al., 2003]
arriving continuously over time. More formally, a stream is de�ned as follow:

De�nition 1. (Stream) [Arasu et al., 2006] Let consider a stream S described by a schema and
an ordered timestamp set τ . A stream is a potentially in�nite multiset of elements < si , τi >
where si is a tuple of the stream respecting the schema of S and τi ∈ τ the associated timestamp.

A timestamp τi belongs to a timespace τ which de�nes the chronological order over stream
elements.

De�nition 2. (Timespace) [Petit et al., 2010] A timespace τ is an isomorphism of R naturally
and totally ordered. Any timestamp τi belongs to τ .

It is worth noting that a timestamp τi may be assigned explicitly by the source which emit
the stream element or implicitly by the processing system upon arrival according to wall-clock
time. For example, let consider a stream consumed by a heatwave monitoring application.
Stream elements belonging to this stream are described by attributes corresponding to climatic
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properties like temperature, humidity and CO2 concentration. According to such schema, a
stream element can be < [23, 60.0, 320], 1508154964> where the �rst value is the temperature
in celsius degrees, the second the humidity in percentage and the third the CO2 concentration in
parts-per million. The timestamp is the time elapsed since an initial timestamp (e.g., January,
1st 1970) in seconds.

Data streams are not only collections of timestamped data, they are emitted as soon as they
are produced and this ephemeral nature raises several issues while processing streams:

• Most data stream sources cannot delay emission of stream elements or store the recent
history of emitted elements so any loss of stream elements due to computation or network
failure is de�nitive. So, processing systems must remain available to receive new data at
anytime.

• The number of stream elements arriving at each timestamp is �nite but potentially huge
implying that processing systems must be able to receive large stream element sets.

• Data streams may be described by simple attributes (e.g., numerical attributes for me-
teorological sensors) but also complex attributes (e.g., large matrices for high de�nition
video streams). The variety of data a system is able to handle de�nes the perimeter of
applications it is able to support.

1.2 Classi�cation of data streams

After this formalization of data streams and the presentation of their inherent properties, we
suggest a classi�cation of data streams and illustrate each category with some typical examples.
It highlights speci�c features of streams to take into account while processing each category of
streams.

1.2.1 Criteria of classi�cation

As illustrated on Figure 1, streams can be described according to the evolution of two properties
over time: rate and distribution of values.

Figure 1: A stream with variations in input rate and distribution of values

Stream rate

Stream rate refers to the quantitative aspect of streams where we only consider the number of
stream elements arriving at each timestamp. Considering an in�nite stream, the distribution of
values de�nes the relative occurrence of each possible value.
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We distinguish four types of streams: steady, bounded, per-pattern and erratic streams.

Figure 2: Stream types according to rate

Steady streams are emitted by sources sending stream elements of prede�ned size and at reg-
ular time interval. Typically, it corresponds to measurements generated by sensors or monitoring
systems. There are several application domains manipulating such streams: in a context of home
automation, sensors send at con�gurable time intervals measurements about the temperature,
the humidity and the luminosity. In military logistic context3, sensors send latitude, longitude
and speed of vehicles for GPS tracking and coordination. We also �nd steady streams in stock
analysis context like Nasdaq4 updating values of stock prices with a frequency up to the minute.

Bounded streams are variable but have absolute bounds in input rate as illustrated on Figure
2. For example, let consider a �xed number of motion sensors connected to a single wireless
receptor and generating a stream element each time they detect a movement. This receptor
sends the union of all sensor streams to an application analyzing this merged stream. Strictly
in term of input rate, the maximal workload the application has to process corresponds to all
sensors sending a stream element at the same timestamp. As the number of sensors is �xed, the
input rate cannot be greater than this case. At the opposite, if no sensor detects a movement
the stream is empty.

Per-pattern streams �uctuate according to patterns more or less long over time. According to
the complete history of stream variations on a signi�cant time period, �uctuations in near future
are predictable with high probability. In a real-world context, many domains use per-pattern
streams. For example, streams generated by road tra�c monitoring �uctuate periodically in
terms of volume at di�erent granularities. At day granularity, the volume is important around
working hours and low during them. At year granularity, the volume increases signi�cantly
around summer holidays. Another example of per-pattern streams are click logs generated by
websites especially online stores. Actually, at year granularity, users visit massively such websites
around holiday season compared to the rest of year.

As shown on Figure 2, rate of erratic streams at a given timestamp are independent of
previous variations making those streams unpredictable. An example of erratic stream is online
auctions supported by platform such as eBay where new items can be added for auction at
anytime and bids arrive depending on the popularity of items, their prices and several other
parameters.

3http://infolab.stanford.edu/stream/sqr/
4http://www.nasdaq.com/quotes/real-time.aspx
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Stream distribution

As mentioned above, for all these types of stream, the distribution of values may change over
time too but contrary to stream rate, the impact of this property on computations depends com-
pletely of the consuming application. Streams can be grouped in two categories independently
of the four types presented above: even and uneven streams.

If an application has a �xed overall latency no matter which value is passed in input, the
stream is said even. According to a given application, the distribution of values of an even stream
could be ignored as it has no impact on computation. A stream may be even for several reasons:

• Some values with similar impacts on processing latency are extremely frequent (i.e., the
sum of their relative occurrence is close to 1).

• All computations performed within a given application are independent of values in input
(e.g, projection of attributes).

• Computations which have a time complexity depending on the value in input have a
marginal impact on the overall latency of the considered application.

Contrary to even streams, variations in data distribution of uneven streams may have a
signi�cant impact on processing latency. It is due to an application containing treatments with
time complexity depending of input values and consuming streams with varying distribution of
values over time. It may cause important variations of processing latency for a given application
and with �xed resources.

To sum up, streams are intrinsically di�erent from static data. They are potentially in�nite
and arrive continuously over time. Moreover, they may or may not signi�cantly �uctuate in terms
of volume and value distribution over time as shown on Figure 2. Nevertheless, if �uctuations in
stream rate have a direct impact on computations, �uctuations in distribution of values have only
an impact under assumptions mentioned above. In all cases, processing streams raises several
issues due to their ephemeral nature and their variety in a Big data context.

2 Data Stream Processing

To tackle issues linked to velocity and volume of data streams, some solutions based on traditional
Database Management Systems (DBMS) [Schreier et al., 1991, Rosenthal et al., 1989] have been
suggested but they show some serious limitations [Abadi et al., 2003, Stonebraker et al., 2005]
essentially due to data availability. Indeed, processing data streams involves two main features:
on-the-�y computation of ephemeral data and an active processing model to submit query.
So, it appears that DBMS cannot satisfy high velocity requirement [Stonebraker et al., 2005]
because of the important latency due to I/O accesses on disk. Thus, reversing active and passive
protagonists is necessary to compute data on-the-�y. This processing paradigm allow to keep
ephemeral data in movement without requiring a costly storage. Moreover, it favors availability
and velocity of systems [Stonebraker et al., 2005] as data remain in memory for all computations.

DBMS suggest a human active database passive (HADP) paradigm [Schreier et al., 1991,
Abadi et al., 2003] for data processing. Each time a user wants an updated result, he has to
submit a query over static data stored on disk. It means that every time there is an update on
data, the user must submit again his query to update the result. While processing streams, a
user wants to submit a query once and to receive result updates as soon as the system receives
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new stream elements. So, it corresponds to a paradigm database active human passive (DAHP).
To turn from HADP to DAHP paradigms, queries must support operators turning substreams
into �nite relations. That means dividing the potentially in�nite sequence of stream elements
into �nite subsequences which can be processed within a �nite time.

2.1 Continuous queries

To enable DAHP paradigm, a new class of queries, called continuous queries [Babu and Widom, 2001],
appeared.

De�nition 3. (Continuous query) A continuous query is an endless and deterministic applica-
tion taking as input a set of streams and generating one or many output streams. A result may
be generated as soon as a new stream element arrives or at regular interval.

Contrary to queries on static data, continuous queries may never terminate as input streams
are potentially in�nite. They can be applied on a single stream element (e.g., �ltering or trans-
formation) or on sets of stream elements (e.g., aggregation). Nevertheless to perform an ag-
gregation, it requires theoretically to store the entire stream on memory but it is impossible as
streams may be in�nite. So a common trade-o� between completeness and storage space consists
in considering only the recent history of data streams to perform aggregation.

2.1.1 Computation windows

As data are produced and arrive in real time, recent data have a greater impact in most appli-
cation domains. For instance, geolocalization applications rely on GPS signals received within
the last seconds to approximate the position and the direction of the end user. Likewise, most
stream-based applications generate results which loose quickly interest for end users over time.
Thus, using recent history is a common approximation while processing data streams. It ensures
that results are relevant for users and reduce the volume of data to consider at each computation.

Window semantic

Recent history, or window [Babcock et al., 2002], de�nes the �nite portion of the stream to
consider.

De�nition 4. (Computation Window) A computation window is a logic stream discretiza-
tion [Zaharia et al., 2012b] which is de�ned by a size and a slide (see Figure 3). Considering the
front of a window and the chronological order, the size de�nes the subset of elements to consider.
The slide de�nes the step between two consecutive window fronts.

When the slide is smaller than the size, the window is called a sliding window [Arasu et al., 2006,
Arasu et al., 2004, Golab et al., 2004]. Sliding windows are characterized by an overlap be-
tween one or many consecutive iterations. Several works [Golab et al., 2004, Kang et al., 2003,
Qiao et al., 2003] exploit this property to optimize query execution over data streams. When
the slide equals the size, the window is called tumbling. In this case, the intersection between
two consecutive iterations is empty.

A window is an operator turning a �nite subset of stream elements into an instantaneous,
or temporal [Petit et al., 2010], relation R(τi) [Arasu et al., 2006]. As discussed in section 1.1
and considering stream elements timestamped explicitly or implictly, the problem is to de�ne
which stream elements are relevant for computation. Indeed, there are two ways to de�ne
window size and step: time-based and count-based windows [Golab et al., 2004, Kang et al., 2003,
Qiao et al., 2003].
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Figure 3: Two iterations of a computation window

Time-based windows

Considering the current timestamp τnow, a time-based window [Arasu et al., 2006, Golab et al., 2004]
de�nes as relevant all stream elements associated to a timestamp τi with τi ∈ ]τnow −∆; τnow].
The duration ∆ is the size of the window. Formally, it produces an instantaneous relation
R(τnow) from a stream S de�ned in formula (1) (see [Arasu et al., 2006]):

R(τnow) = {s|〈s, τi〉 ∈ S ∧ (τi ≤ τnow) ∧ (τi ≥ max{τnow −∆, 0}} (1)

From this de�nition, it appears that a time-based window contains a �nite but potentially
variable number of stream elements.

Count-based windows

A count-based window, or tuple-based window [Arasu et al., 2006, Arasu et al., 2004], is de-
�ned by a size N de�ning how many stream elements are relevant for computation. The slide
de�nes the number of new elements to receive before computing a new result on the updated
window content. As zero, one or many stream elements may be associated to a timestamp,
there is no guarantee about acquisition time. Contrary to time-based, count-based windows are
not deterministic. Indeed, stream elements associated to a same timestamp cannot be ordered
explicitly so considering last N stream elements may not produce a similar result depending on
stream sources.

A variation of count-based windows are partition-based windows [Arasu et al., 2006]. A
partition-based window is de�ned by a size N and a �nite set of attribute/value pairs de�ning
each partition. A partition-based window is complete when there are N stream elements satisfying
each partition.

Window implementation

There are two main mechanisms to implement windows:

• Punctuations [Tucker et al., 2003] to consider stream as the union of �nite substreams.
They are speci�c elements in a stream which de�ne the end of a substream. This mechanism
is particularly useful because it allows elements to be processed on the �y [Backman et al., 2012]
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without meeting issues with blocking operators. Nevertheless, punctuations rely on a a pri-
ori knowledge on data. To insert punctuation correctly in a stream, it is required to know
when the last element of the last timestamp belonging to a given window is arrived in the
system.

• Bu�er-based stream discretization [Gedik et al., 2008] turns a stream fragment into an in-
memory relation. Bu�ers gather stream elements according to window de�nition. For
time-based windows, timestamps are used to determine when a bu�er is full and ready to
be processed.

To sum up, the use of computation windows allows users to specify which data elements to
consider. It enables in-memory processing through the reduction of a stream to an instantaneous
relation. Depending on operator semantic, an instantaneous relation may be processed as a batch
of static data or on-the-�y as new stream elements arrive to the system. Indeed a distinction
between stateless and stateful operators [Zaharia et al., 2012b] is made.

2.1.2 Operator types

Stateless operators

Stateless operators, for example �lters based on an attribute value, process data streams
element by element. They return a new result with an unpredictable frequency an input may not
generate an output depending on its value (e.g., if a �ltering predicate is not statis�ed). Moreover,
these operators do not have information about previous and current computation windows when
a data stream element is processed. Nevertheless, a stateless operator may used historic data
stored on local memory or disk. It allows to compute joins with a static dataset within a stateless
operator [Abadi et al., 2005, Abadi et al., 2003, Cherniack et al., 2003b, Balazinska et al., 2004].

Stateful operators

In opposition, stateful operators take as input a set of elements grouped on a window to
compute a single result. When stateless operators can be applied on-the-�y on each new stream
element, stateful operators can only return a result after the completion of a window iteration.
In addition, these operators keep information like the identi�er of the current window or any
intermediate result. Information generated during a stateful operator runtime is denoted its
state [Zaharia et al., 2012b]. For example, a window-based stateful operator computes the sum
of values associated to an attribute. Its state contains the identi�er of the current window, the
attribute to group and the current sum value.

Thus, stateless and stateful operators are de�ned with di�erent parameters. When stateless
operators require only a function to apply on each input, a stateful operator relies on a compu-
tation window to complete its de�nition. This semantic gap has to be taken into account by the
query language.

2.1.3 Query languages

To de�ne continuous queries, we distinguish three main categories of query languages: declara-
tive, imperative and graphical languages.
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Declarative de�nition

Declarative approaches [Arasu et al., 2006, Abadi et al., 2005, Chandrasekaran et al., 2003] sug-
gest algebraic extensions of traditional declarative query languages like SQL to support stream
management. As any declarative language, they allow users to use a prede�ned set of operators
to describe expected results. The system takes charge of turning the declarative expression into
an ordered set of operators.

CQL [Arasu et al., 2006, Arasu et al., 2004] is declarative language for continuous query def-
inition derived from SQL-99 and supporting both traditional relation and data streams. There
are three classes of operators in CQL:

• Stream-To-Relation operators turn a data stream into an instantaneous relation. It corre-
sponds to window declaration through a clause range taking as parameter window size.
It is worth noting that window slide is not explicitly de�ne in CQL queries and is consid-
ered as a global parameter of the system. CQL supports timed-based, count-based and
partition-based windows.

• Relation-To-Relation operators take as input a set of instantaneous relation and produce
an instantaneous relation. It correspond to standard SQL operators (Filter, Projection,
Join...) and can be applied on instantaneous relations like SQL operators on static data.

• Relation-To-Stream operators produce a stream from a set of instantaneous relations. There
are three Relation-To-Stream operators: IStream returns only updates between the current
and the previous iteration of the window. DStream returns results produced during the
previous iteration of the window and which not belong to results of the current iteration.
Finally, RStream returns all results.

There are several declarative languages to process data streams. In most cases, they include a
subset of SQL relation-to-relation operators and provide speci�c stream-to-relation and relation-
to-stream operators.

SQLStream5 is an extension of SQL which support complex window de�nition through a
clause window. Compared to CQL, SQLStream has a greater expressiveness as time-based and
count-based windows are de�ned with explicit window size and slide. It allow to �x the o�set
between the reception of the last stream element included in the iteration of the window and the
arrival of updated results to end users.

SparkSQL6 o�ers a support of common SQL operators over Apache Spark7. This language re-
stricts SQL expressiveness and is not especially dedicated to stream processing even if it supports
the window clause for aggregation.

There are several declarative languages for stream processing built around SQL. If they in-
duce low e�orts for maintenance and reusability due to short de�nition of continuous queries,
some applications are intrinsically di�cult to turn into a SQL expression (e.g., matrix multipli-
cation). To increase expressiveness of the de�nition language, some solutions [Peng et al., 2015,
Zaharia et al., 2012b, Neumeyer et al., 2010] support high-level imperative languages.

5http://sqlstream.com
6https://spark.apache.org/docs/latest/sql-programming-guide.html
7https://spark.apache.org/
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Imperative de�nition

Some solutions [Peng et al., 2015, Zaharia et al., 2012b, Neumeyer et al., 2010] support con-
tinuous queries de�ned through an imperative high-level language like Java, Python or C++.
From user side, query de�nition is signi�cantly di�erent. Instead of de�ning the entire query
through a single expression, users have to de�ne the query operator by operator through some
operator patterns and the implementation of business logic. These patterns specify the form of
input and, optionally, output data and manage data lifecycle automatically [Peng et al., 2015,
Neumeyer et al., 2010]. Some patterns replace explicit declaration of stream-to-relation opera-
tors. Relation-to-relation operators are entirely part of business logic implemented by users and
relation-to-stream operators are managed implicitly by patterns.

If imperative de�nition requires important development and maintenance e�orts, it o�ers
more expressiveness for applications managing complex data (e.g., video stream or motion sensors
analysis). At the edge of these two categories of query languages, some approaches [Abadi et al., 2005,
Abadi et al., 2003] suggest languages more user-friendly which require less development e�ort
than imperative de�nition but more �exibility than declarative languages.

Graphical de�nition

Box and arrow paradigm [Abadi et al., 2003, Cherniack et al., 2003b, Balazinska et al., 2004]
represents an application as a direct acyclic graph (DAG) of boxes connected by arrows. A box
corresponds to an operator, stateless or stateful, taking stream elements as input. Arrows indicate
how stream elements are routed between boxes. Authors in [Abadi et al., 2003] suggest a query
language named SQuAl composed of some standard SQL operators like Join and Filter enriched
with stream-oriented operators like Tumble and WSort [Abadi et al., 2003]. Operators can be
connected to de�ne the DAG through a graphical interface. SQuAl has a limited expressiveness
compared to CQL because it o�ers only a subset of standard SQL operators. Moreover, stream-
based operators support only treatments over tumbling windows restricting possible applications.
The main di�erence between SQuAl and CQL is that continuous queries cannot bene�t from
automatic query optimization based on algebraic properties. Performances of box and arrow
DAGs depend more on user implementation than an equivalent CQL query. In [Pruett, 2007],
authors present the interface Yahoo Pipes allowing users to de�ne graphically continuous queries
over RSS streams. Yahoo Pipes suggests mainly �ltering operators.

As traditional DBMS, a DSMS has to de�ne an execution plan for each submitted continuous
query. It means turning a user de�nition into a set of connected operators. This operator
set is the internal representation of any continuous query for DSMSs. Actually, if users de�ne
continuous queries through an imperative language or a graphical interface, the DSMS can use
directly queries as de�ned by users but if queries are de�ned through a declarative language, the
DSMS takes charge of turning the declarative expression into a set of prede�ned operators.

2.1.4 Execution plans and paradigms

As performed in DBMS, query plans are de�ned at two levels: logical and physical. Query plans
at logical level corresponds to a direct acyclic graph (DAG) of logical operators (e.g., Select-
Project-Join for SQL-derived languages). According to user de�nition, it organizes the sequence
of operators to apply on operators. If the query is de�ned through a declarative language the
de�nition of the query plan is based on algebraic properties to �nd the sequence of operators
having the lowest cost [Garcia-Molina, 2008] (e.g., transferring the lowest number of stream
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elements between operators). If the query has been de�ned through an imperative or a graphical
language, the execution plan corresponds directly to user de�nition.

Then, logical operators are mapped to physical operators [Garcia-Molina, 2008, Graefe, 1993]
to de�ne physical query plans. If a continuous query has been de�ned using a declarative lan-
guage, prede�ned implementations of operators are used such as users do not have to implement
them. Otherwise, users must implement explicitly the logic of operators through a high level
programming language.

So, each continuous query is equivalent to an execution plan within a DSMS. However,
all query plans do not share a same structure. We distinguish two structures of query plans:
work�ows andMapReduce jobs [Dean and Ghemawat, 2004]. These structures impact applicable
forms of parallelism between operators. Moreover, they a�ect data representation and lifecycle.

Work�ow paradigm

Work�ows are most generic structures that we will use by default to represent query plans.

De�nition 5. (Work�ow) A work�ow is a DAG where vertices are operators and edges de�ne
data transmission between operators.

Let consider a work�ow W1 composed of some stateless operators. As operators process each
stream element as soon as it arrives in input, the work�ow exploits naturally stream pipelin-
ing [Sattler and Beier, 2013], also denoted task parallelism [Hirzel et al., 2014].

De�nition 6. (Stream pipelining) Let W be a work�ow which can be divided into k consecutive
operators. Each Oi, i ∈ [1;k], is denoted the i-th stage of W and is executed on an exclusive
process.

According to De�nition 6, stream elements are routed through all stages sequentially. Of
course, stream pipelining is limited if a stateful operator belongs to the work�ow. Indeed, as
stateful operators group stream elements by windows before computing a result, they limit the
bene�t of parallel treatments. However, stateful and stateless operators may bene�t from data
parallelism [Hirzel et al., 2014], or stream partitioning, depending on their respective semantics.

De�nition 7. (Data parallelism) Let T 1
i , T 2

i ,..., T ki be k equivalent tasks. We suppose that all

tasks T ji take as input, outputs produced by an operator O0. In order to process T 1
i , T 2

i ,..., T ki
in parallel, O0 can split its outputs in k partitions and distribute a partition to each tasks T ji .

According to De�nition 7, data parallelism can be exploited e�ciently only under the as-
sumption that tasks T 1

i , T 2
i ,..., T ki are semantically equivalent. Moreover, the global result of

operators T 1
i , T 2

i ,..., T ki must be independent of the partitioning method.

MapReduce paradigm

MapReduce [Dean and Ghemawat, 2004] is a well-known framework developed initially to pro-
cess huge amount of disk-based data on large clusters. The strength of this framework is to exploit
e�ciently data parallelism (see De�nition 7) with a simple programming paradigm. Actually,
the core of any MapReduce application relies on two functions: Map and Reduce. These generic
functions are de�ned as follow according to [Dean and Ghemawat, 2004]:

• Map (k1, v1) −→ list(k2, v2)

• Reduce (k2, list(v2)) −→ list(v3)
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As mentioned above, MapReduce framework aims disk-based data processing. Contrary to
DBMS, MapReduce-based systems do not rely on data model to optimize treatments. In order
to distribute great amount of data on a large cluster, data are partitioned with regards to cluster
con�guration (e.g. number of nodes executing Map and Reduce functions). Each partition
is identi�ed with a key used to a�ect the partition to a Map node. The scheduling between
partitions and Map nodes follows distribution strategies like Round-Robin in order to balance
computation load.

Each Map node applies the user-de�ned Map function on one or many partitions. The
function produces a list of intermediate key/value list pairs depending on partition contents.
Then, outputs of Map nodes are shu�ed and sorted in order to perform Reduce phase more
easily.

Figure 4: A MapReduce job

As illustrated on Figure 4, an optional phase, called Combine, can be performed on each
Map node. This phase consists in applying the Reduce function on Map outputs in order to
have results for each partition. It may be useful while having potentially several redundant
computation like presented in [Backman et al., 2012]. Each Reduce node gathers intermediate
key/value list pairs and computes a list of value which are �nal results.

To sum up, we have introduced a formal representation of data streams. They di�er from static
data in the way that they are potentially in�nite multiset of elements arriving to the system with
�uctuating rates. From this, traditional DBMSs cannot process these data streams with low
latency and a �nite amount of memory. To tackle this issue, some DSMSs have been developed
and use computation windows to query data streams without restricting the expressiveness of
query languages. Even if DSMSs allow processing streams without storing huge amount of data,

19



Chapter 2. Preliminaries

they need computation resources to process data on the �y. As data streams may have high
input rates, it is necessary that DSMSs rely on scalable infrastructures. To do so, many DSMSs
have been designed such as they can exploit e�ciently a distributed infrastructure.

2.2 Distributed Stream Processing

To meet processing requirements involved by stream processing, DSMSs must take advantage of
a distributed infrastructure [Stonebraker et al., 2005] able to evolve as streams do. Some pro-
cessing units can be added to a cluster statically or dynamically to extend the overall processing
capacity. In order to facilitate the reading, we refer to execution plans (see section 2.1.4) as
work�ows without distinction between work�ows or MapReduce jobs in the remainder of this
chapter.

2.2.1 Execution context

We present here the execution context of distributed stream processing. We consider users
interested by services generating streams. To query streams, users can submit continuous queries
on a distributed infrastructure8.

Figure 5: Distributed stream processing

Let us consider three continuous queries Q1, Q2 and Q3 represented respectively by work�ows
W1, W2 and W3. Q1, Q2 and Q3 are submitted on the distributed infrastructure by some

8Execution context motivated by ANR project Socioplug (ANR-13-INFR-0003), http://socioplug.univ-
nantes.fr/index.php/SocioPlug_Project
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users as illustrated on Figure 5. Each continuous query takes as input one or many streams
in the stream set {S1, S2, S3}. An input stream may have �uctuations in input rate and value
distribution as shown on the left of Figure 5. Work�ow W1 is linear, W2 is organized in diamond
and W3 is a star work�ow. Most complex work�ows can be decomposed in such elementary
patterns [Peng et al., 2015].

As illustrated on Figure 5, tasks T2
1 and T2

2 are devoted to operator O2 so it means that
O2 has a parallelism degree of two. Tasks are assigned on processing units of machines M1 to
M8 according to a scheduling plan. It corresponds to a mapping from tasks to processing units
setting resources available for each operator composing a work�ow. On Figure 5, the four tasks
of work�ow W1 are assigned on processing units of machines M1 to M4.

We distinguish three states of machines: machines M1 to M4 are actives because some tasks
are assigned on their processing units. Machines M5 and M6 are con�gured but inactive because
there is no task assignment on their processing units. Finally, machines M7 and M8 are available
but not con�gured so no task can be assigned on their processing units.

Result streams S'1, S'2 and S'3 are respectively associated to queries Q1, Q2 and Q3. Each
output may result from the treatment of a single stream element or an element set if work�ows
W1, W2 or W3 include some aggregative operators.

Each task Tji applies the operator Oi and receives stream elements on an input queue, also
called pending queue, which has a �xed and �nite size.

With each continuous query, users provide a policy, denoted quality-of-service (QoS), specify-
ing expected performance and result quality. Commonly, performance corresponds to a constraint
on overall latency. From this speci�cation, latency constraints can be inferred for each opera-
tor [Abadi et al., 2005, Cherniack et al., 2003b] or each processing unit [Balazinska et al., 2004].
Result quality de�nes acceptable losses on a computing windows in order to discriminate relevant
results from irrelevant ones. The objective is to guarantee results satisfying QoS constraints to
users. These QoS constraints are considered as �xed for the complete lifetime of each query.

The global processing capacity of a distributed infrastructure is extensible through the add
of con�gured machines. When the all resources of the cluster are exploited, some machines
should be added to the con�gured machine set in order to limit the violation of QoS constraints.
Indeed, on a cluster like Amazon EC29, starting a new VM may take several minutes before
new resources are available. Thus, it is important that DSMSs integrate some mechanisms to
maintain the global capacity of the cluster over processing requirements. Moreover, as streams
may decrease signi�cantly in terms of volume (e.g., a road monitoring stream when the tra�c is
low), some con�gured machines may be idle for a signi�cant period. With the generalization of
pay-as-you-consume solutions (Amazon EC2, Microsoft Azure, Google Cloud Data�ow) and the
emergence of GreenIT [Murugesan and Gangadharan, 2012], it represents an important waste
of �nancial and energetic resources. So, it appears necessary that DSMSs �t resource usage to
processing requirements.

2.2.2 Congestion issue

According to the execution context presented above, tasks are assigned on processing units.
Each task processes a substream which has a varying input rate. In some cases, this input
rate may causes the congestion [Heinze et al., 2014b, Peng et al., 2015, Schneider et al., 2009,
Heinze et al., 2014a, Xu and Peng, 2016] of the task and by consequence the congestion of the
work�ow.

9https://aws.amazon.com/fr/ec2/

21



Chapter 2. Preliminaries

De�nition 8. (Congestion) The congestion is an execution state de�ned by irreversible losses of
stream elements due to an overload in input of a task, an operator or a work�ow.

According to De�nition 8, some query results may be lost de�nitively when a congestion
appears. In a stream processing context, managing congestion of operators consists in solving
some Big Data issues. Contrary to query processing over static data, an overload may happen
anytime during treatments and implies an irreversible degradation of result quality. In addition,
the apparition of a congestion involves a degradation of the processing latency at work�ow scope.

Detecting a congestion can be performed at di�erent scopes (task, operator, work�ow). How-
ever, in order to identify the exact cause of a congestion, it is necessary to observe the co-evolution
of some metrics. We identify two characteristic situations, or critical cases, causing the apparition
of congestion:

• Critical case 1 (CC1): Considering a task T ji with a �xed processing throughput TP ji ,
if its input rate is greater than its processing throughput, the task starts to accumulate
pending elements on its input queue [Stonebraker et al., 2005, Babcock et al., 2002]. It
delays execution of stream elements and emission of new results on output implying a
degradation of the global processing latency.

• Critical case 2 (CC2): Let consider a task T 1
i sending its outputs to another task T 1

j

through network interface. If the bandwidth linking those two tasks is smaller than the
throughput of T 1

i , the bandwidth limits the input rate of T 1
j and slows down the global

processing latency.

Managing congestion is di�cult because it depends of several parameters from the complexity
of operators to capacities of available processing units. To remove congestion, some adaptations
of treatments and resource usage must be performed statically and dynamically to respect QoS
constraints. To do so, some techniques adapting treatments and available resources to stream
variations have been developed and integrated into DSMSs.

2.2.3 Resource management

Considering a distributed infrastructure managed as a service (IaaS) [Nikolov et al., 2014], there
are two methods to adapt con�gured resources to processing requirements: substituting or adding
some processing units. The substitution consists in a replacement of processing units with others
having di�erent capacities. For example, on a cloud provider like Amazon EC2, it consists in
replacing some virtual machines (VM) with a new set of VMs having greater (scale-up) or smaller
(scale-down) CPU and RAM resources. Adding processing units consists in increasing (physical
scale-out) or decreasing (physical scale-in) the number of processing units. According to the
example on Amazon EC2, it consists in adding or deleting VMs from con�gured machines.

Substitution of processing units

In order to substitute processing units at runtime, some cloud-based solutions have been pro-
posed in [Maurer et al., 2011, Sedaghat et al., 2013]. These solutions are based on service level
agreement (SLA) of cloud applications to de�ne optimal VM con�guration in order to pre-
vent SLA violations. These approaches are rule-based [Lorido-Botran et al., 2014] and when a
potential SLA violation is detected according to CPU, memory and bandwith usage, applica-
tions are moved to other VMs with more available resources. However, it has been highlighted
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that many operating systems do not support migration of running applications without reboot-
ing [Lorido-Botran et al., 2014, Nikolov et al., 2014] which is time and resource consuming. An-
other approach integrated in VMWare ESXI10 suggests a scale-up and scale-down approach by
shared resources. It consists in overprovisioning VMs and let some CPU, memory and bandwidth
resources inactive when they are not necessary to respect SLA. When a potential violation is
detected, these resources are used to simulate scale-up without rebooting. The main problem of
this approach is that it requires a constant overprovisioning of resources to perform the substi-
tution at runtime. So, most cloud providers (Amazon EC2, Microsoft Azure...) only suggest to
add processing units at runtime.

Add of processing units

For distributed and low latency applications, adding processing units appears more natural
to adapt dynamically available resources. It is important to notice that approaches supporting
the add of processing units [Nikolov et al., 2014, Andrzejak et al., 2010, Zhu and Agrawal, 2012]
consider a unique VM con�guration in terms of CPU, memory and bandwidth for all processing
units. So, scale-up and scale-down cannot be performed at all. In [Andrzejak et al., 2010], au-
thors suggest a probabilistic model taking SLA constraints as input and de�ning how many VMs
are necessary to prevent violation. This approach is limited by recon�guration costs. Indeed,
while modeling the system to predict how many VMs are necessary, applications with short-term
bursts imply heavy recon�guration. Moreover, it does not take into account unexpected system
failures and may removes useful resources. In [Zhu and Agrawal, 2012], an approach relying on
control-based theory is presented. This solution o�ers controllable parameters de�ning resource
requirements and a feedback loop on application execution after physical scale-out and scale-in
to guide manually users to optimal settings.

In this chapter, we have presented some formal concepts and de�nitions for data stream pro-
cessing. As data streams are ephemeral sequences of data arriving at �uctuating rates, it is
necessary to process them on the �y. To scale available resources to data volumes, it is nec-
essary that DSMSs exploit distributed infrastructures. Nevertheless, it is di�cult to maintain
consistently enough resources to process all incoming data. To tackle this issue, it is possible
to substitute or add processing units at runtime. Nevertheless, these adaptations between pro-
cessing needs and resource usage are costly in terms of recon�guration time and energy. Instead
of adding the global capacity of the cluster, it is possible to adjust resources consumed by each
continuous query with regards to their respective processing needs. To do so, it is necessary to
modify work�ows according to their de�nitions, the parallelism degree of their operators, the
load balance between their tasks and the assignment of their tasks on processing units.

10https://www.vmware.com/fr/products/esxi-and-esx.html
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In this chapter, we suggest a survey of congestion management in DSMSs. This survey is
composed of three parts. In a �rst time, we present a catalog of patterns used in the literature to
manage congestion of operators at di�erent scopes. Then, we explain how DSMSs trigger these
patterns through an analysis of methods used to detect congestion of operators. Moreover, we
highlight advantages and limits of each class of methods. Finally, we suggest an classi�cation of
distinctive DSMSs selected for their performance and popularity. This classi�cation is based on
query representation, congestion management and the expressiveness of the query language.

1 Congestion management

1.1 Principle

Congestion management is a major challenge while processing continuous queries over streams
with �uctuating input rates. As a congestion (see De�nition 8 in chapter 2 section 2.2.2) may
happen anytime, it is necessary to maintain a balance between processing needs and resource
usage for each operator composing a work�ow. Some elastic mechanisms have been developed
in order to tackle congestion issues. We group some elastic mechanisms, or patterns, into elastic
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mechanisms at logical layer. They have in common to modify work�ows such as they exploit more
or less available resources instead of modifying the execution support. It allows to perform adap-
tation of resource usage at runtime with short recon�guration times compared to substitution
and add of processing units at runtime.

We present some common patterns used by DSMSs to tackle congestion issue at logical layer.
We distinguish four types of patterns:

• Patterns at query level rely on algebraic properties to organize e�ciently logical operators
according to features like the selectivity factor of operators.

• Patterns at operator level modify the the way a logical operator is executed via one or
more physical operator without changing the query plan.

• Patterns at implementation level map operators to an implementation runnable on the
execution support.

• Patterns at data level adapt the transmission of streams between operators according to
execution parameters.

For each of them, we motivate its interest through an example highlighting a speci�c case.
Then, we explicit assumptions made on operators (algebraic properties, de�nition, potential
parallelism) to specify the applicability of patterns. After this, we expose the principle of each
pattern. In addition, we present bene�ts and overheads induced by each pattern. We sum
up patterns with main characteristics in Table 1. More patterns and details can be found
in [Hirzel et al., 2014].

Level Pattern Required parallelism

Work�ow Operator reordering task parallelism
Operator Operator parallelization data parallelism
Operator Task scheduling none

Implementation Algorithm selection none
Data Load balancing data parallelism
Data Load shedding none

Table 1: Patterns for congestion management

As presented in Table 1, each pattern apply modi�cations which change the entire work�ow,
a single operator, the implementation used for an operator or data lifecycle. It is also worth
noting that patterns may require that operators support a type of parallelism (see De�nitions 6
and 7 in chapter 2) to be e�ective.

1.2 Adaptation at work�ow level

1.2.1 Operator reordering

Figure 1: Operator reordering

26



1. Congestion management

Motivation

In many continuous queries, operators have di�erent processing cost and produce di�erent
amount of data. For example, considering an application detecting heatwaves, temperature and
air pollution sensors, at distinct locations send their identi�er with average temperature and
variation of CO2 concentration. A �rst operator O1 enriches this data with information about
sensors like the model and the GPS location. A second operator O2 �lters temperature and
CO2 concentration values and forwards critical measures to an alert system. It appears that O1

enriches stream elements discarded by O2 downstream. As O2 does not �lter attributes modi�ed
by O1, some stream elements could be discarded upstream.

Assumptions

Reordering operators can only be performed under some assumptions:

• Before reordering, the upstream operator must be have a �xed selectivity factor. Indeed, the
probability that the downstream operator �lters a stream element must remain independent
from the selectivity factor of the upstream operator.

• Operators must be commutative. Moving an operator Oj upstream of an operator Oi
requires that executing Oj before Oi and executing Oi before Oj generates same results.
Indeed, let consider the attribute set Ai composed of attributes added or deleted by an
operator Oi and Aj the set of attributes used by Oj . If the intersection between Ai and
Aj is empty, then moving Oj upstream of Oi is safe. Indeed, attributes used by Oj are
available before the execution of Oi.

Principle

De�nition 9. (Selectivity factor) The selectivity factor of an operator is the ratio between the
number of stream elements in input and output.

For example, an operator which forwards 25% of received data has a selectivity factor of 0.25.
For two consecutive operators, reordering is de�ned as follow:

De�nition 10. (Operator reordering) [Hirzel et al., 2014] Let Oi and Oj be two consecutive
operators respectively with a �xed selectivity factor Seli independently of value distribution in
input and a �uctuating selectivity factor Selj. If Selj becomes smaller than Seli, moving Oj
upstream of Oi eliminates unnecessary data exchanged between Oi and Oj.

Operator reordering is performed statically before the execution of the continuous query or
dynamically at runtime. Thus, static reordering of operators is equivalent to logical query plan
selection in traditional DBMS [Chaudhuri, 1998]. In this case, selectivity factors of operators are
estimated on a subset of representative data and an optimal query plan minimizing amount of ex-
changed data is de�ned accordingly. In the other hand, dynamic reordering of operators requires
to monitor selectivity factors at runtime and a support of data re-routing [Arasu et al., 2004,
Abadi et al., 2005, Chandrasekaran et al., 2003]. In [Chandrasekaran et al., 2003], authors sug-
gest a module, named Eddy [Madden et al., 2002], for adaptive routing of stream elements. An
Eddy receives some streams and routes each stream element to connected operators. Each out-
put produced by operators goes to the Eddy before being forwarded to next operator. This
approach allows to reorder operators through a light modi�cation of the routing policy of the
Eddy. Overheads involved by such dynamic approach have been analyzed in [Deshpande, 2004].
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Bene�ts for congestion management

Operator reordering reduces amount of data exchanged between operators. It avoids risk of
network bottlenecks due to massive volumes of data to route from a processing unit to another
one. In addition, if a query plan contains operators with high selectivity factors and great
processing latency (e.g., joins) and operators with low selectivity factors, reordering ensures that
costly operators will be moved downstream and receive as less data as possible.

1.3 Adaptation at operator level

1.3.1 Operator parallelization

Figure 2: Operator parallelization

Motivation

With the proliferation of multicore machines and the development of distributed computing,
many data-intensive applications are executed on infrastructures managing several threads in par-
allel. Stream-based applications should take advantage of this potential to adapt the throughput
of a sequential operator to its input rate. For example, let consider a tra�c jam application
consuming data from radars. The input rate depends on the number of vehicles observed at each
time unit. An operator taking as input registration plates and extracting information about the
driver from a remote database is stateless (see chapter 2 section 2.1.2) but has an important
processing latency. If the operator receives important volumes in input, it requires more CPU
and memory resources to avoid congestion.

Assumptions

Operator parallelization does not require modi�cation of the continuous query only under the
following assumptions:

• Operators should be naturally parallel. An operator is naturally parallel if the union of
results computed on disjoint data partitions is equal to the result computed on the union
of these data partitions. Operator parallelization can be performed on both stateless and
stateful operators if they belong to the class of operators naturally parallel [Karp, 1988].

• For stateful operators, it is worth noting that they should keep their states disjoint or
synchronized. Parallelizing a stateful operator raises the problem of state management
introduced in [Sattler and Beier, 2013, Gedik et al., 2014]. While tasks of stateless oper-
ators process stream elements independently from each other, tasks of stateful operators
should maintain a global state [Castro Fernandez et al., 2013] or keep independent states
on stream partitions. For example, a stock-price analysis application computes average
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price values for each stock label. Splitting such stateful operator consists in partitioning
stock labels among some tasks so states are completely disjoint.

Principle

De�nition 11. (Operator parallelization) An operator Oi is parallelization if it is replaced by a
set of equivalent tasks {T 1

i ,...,T
k
i } processing stream elements in parallel. Each task receives in

input a partition of Oi inputs.

Like reordering, parallelization can be static or dynamic. Static parallelization consists in
selecting a number of tasks, or parallelism degree [Mehta and DeWitt, 1995], according to an
expected workload. The parallelism degree is set to improve throughput with light overheads. In
a stream processing context, the workload is not known before execution so di�erent approaches
have been developed. Some approaches [Xu and Peng, 2016, Heinze et al., 2014a] monitors in-
put rates and processing latencies of operators and adapt parallelism degrees accordingly. It
suits to parallel operators under the assumption that a greater parallelism degree improves
throughput. To eliminate this assumption, some approaches based on trial-and-error learning
algorithms [Schneider et al., 2009, Gedik et al., 2008, Gedik et al., 2014] aim to map throughput
to parallelism degree after an exploration phase.

Bene�ts for congestion management

Operator parallelization spreads input data of a single operator among many equivalent tasks
in order to exploit data parallelism (see De�nition 7). It may reduces the input size of each task
depending on the number of tasks and the partitioning method. So, it limits over�ow in input
and improves throughput as long as distribution [Deshpande, 2004] and network [Xu et al., 2014]
overheads are compensated.

1.3.2 Task scheduling

Figure 3: Task scheduling

Motivation

Processing streams on a distributed infrastructure involves communication costs. Indeed, a
continuous query is represented as a DAG of operators (see chapter 2 section 2.1) where edges
are inner-streams. These inner-streams are supported by the infrastructure through:
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• Main memory if tasks are assigned on the same machine and can share common memory
space.

• Network interface if tasks are assigned on di�erent machines.

Depending on the volume of inner-streams and available resources (memory and bandwidth),
it is better to assign some tasks on the same machine or on distinct machines. For example,
let consider an application following the celestial bodies from telescopic images. An operator
O1 turning raw images into matrices sent to an operator O2 compressing matrices. Then, an
operator O3 receives compressed matrices and analyzes orbits of celestial bodies. As operator
O1 and O2 manage important volumes of data and reduce signi�cantly data volume through
compression, it is interesting to assign tasks associated to these operators on the same machine
to avoid massive network communications.

Assumptions

Task scheduling can be performed on a distributed infrastructure assuming the following con-
ditions:

• Processing cost of operators must not exceed available resource on each processing unit as
explained in [Aniello et al., 2013, Peng et al., 2015]. To avoid failure of processing units,
a scheduling plan should not assign operators requiring more resources than there are on
a processing unit. To avoid this situation, scheduling plans can be de�ned according to
provided resource requirements [Peng et al., 2015] or they can be updated through oper-
ation re-assignment, or box sliding [Abadi et al., 2003, Cherniack et al., 2003b], according
to metrics monitored continuously.

• Each processing unit must have an access to all hardware and software resources needed
for computation. Commonly, stream-based applications communicate with remote and
disk-based systems (e.g., databases and HDFS �le systems). These communications are
established within some operators which can be assigned on any processing unit, so it is
crucial that all processing units have an access to remote and disk-based systems.

• States of operators must be transferred without loss. It is necessary that operator states
can be moved to perform dynamic operator scheduling. To move states, some coordination
systems11 are used. They rely on checkpointing mechanisms to update operator states. So,
when an operator is moved and restarted on another processing unit, its state is initialized
according to the last checkpoint.

Principle

De�nition 12. (Scheduling plan) Let consider a �nite set of tasks T = {T 1
i , T

2
i , ..., T

k
i } and a

�nite set of processing units M = {M1,M2, ...,Mq}. A scheduling plan SP : T → M is an

application assigning each task T ji on a processing unitMn with T ji ∈ T ,Mn ∈ M.

A scheduling plan describes the global layout [Hirzel et al., 2014] of continuous queries on
processing units and is de�ned statically or dynamically. The static de�nition relies on oper-
ator properties in order to reach an objective [Aniello et al., 2013] (e.g., minimizing network

11https://zookeeper.apache.org/
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tra�c [Xu et al., 2014]). It requires to have algebraic properties on operators and eventually to
train the scheduler with representative data to extract selectivity factors. So, the static version
is only suitable for solutions based on a query language associated to a prede�ned algebra. Op-
erator scheduling can be performed dynamically if a monitoring mechanism observes operator
properties at runtime to compute updated scheduling plans.

Bene�ts for congestion management

The bene�t of operator scheduling depends on the compromise made between resource usage
and communication costs. If two operators assigned on a same processing unit have concurrent
usages of some resources (CPU, memory and disk) and they receive critical data volumes in
input, it is interesting to move at least one of these operators on another processing unit. The
problem is that the performance improvement induced by the re-assignment should compensate
communication overheads caused by the migration. On the contrary, if two tasks assigned on
di�erent processing units exchange important volume of data but there is a processing unit able
to provide available resources without starving one of the tasks, it is preferable to collocate these
tasks.

1.4 Adaptation at implementation level

1.4.1 Algorithm selection

Figure 4: Algorithm selection

Motivation

Let consider an application de�ned through a declarative language or a graphical interface
(see chapter 2 section 2.1). This application computes a join between two streams S1 and S2
over sliding windows (see chapter 2 section 2.1.1). As streams have independent �uctuations
in input rate, instantaneous relations R1(τi) and R2(τi) generated at timestamp τi respectively
from S1 and S2 may have di�erent cardinalities. Let consider that the system supports two
implementations of join operation: nested-loop and sort-merge algorithms. If R1(τi) has a higher
cardinality in comparison to R2(τi), nested-loop implementation delivers good performance. But
if R1(τi) and R2(τi) have approximately same cardinalities, the sort-merge implementation is
more e�cient as it scans both relations only once [Mishra and Eich, 1992]. So, the choice of
implementation may have an important impact on performance.

Assumptions

Algorithm selection assumes that continuous queries are de�ned through a declarative lan-
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guage. To ensure that algorithm selection does not degrade results or performance of the system,
the following assumptions must be valid:

• All implementations of a same operator must be strictly equivalent. Indeed, if there are
some speci�c cases where an implementation I1 delivers di�erent results than an implemen-
tation I2 supposed equivalent, algorithm selection may a�ect the semantic of the operator
and the continuous query may return wrong results. It is speci�cally important after op-
erator parallelization because some operators cannot keep their original semantic (e.g.,
standard deviation).

• Implementations of operators de�ned through a declarative expression must be available on
all processing units. If operator scheduling is performed only statically [Aniello et al., 2013],
a site-aware scheduling of operators may ensure that all operators have available implemen-
tations where they are assigned. But if operator scheduling is performed dynamically to
avoid congestion or recover from a failure, the availability of implementations is not guar-
anteed anymore. Of course, this issue cannot happen when continuous queries are de�ned
through an imperative language as the implementation is moved with the assignment of
the operator on a processing unit.

Principle Algorithm selection is common in database systems. It corresponds to physical query
plan de�nition [Garcia-Molina, 2008, Graefe, 1993] mapping operators from logical algebra (e.g.,
sort or join) to the physical algebra (e.g., heapsort, mergesort, hash join or nested loop join).

De�nition 13. (Physical query plan) Let consider the set of tasks T = {T 1
i , T

2
i , ..., T

k
i }. Let

I = {I1, I2, ..., Im} be the set of available implementations. A physical query plan QP : T → I
is an injective application which associates an implementation Ij ∈ I to each task T ji ∈ T .

According to De�nition 13, the cardinality m of implementation set is equal or greater than
than the cardinality n of operator set if we do not count equivalent tasks generated after operator
parallelization as presented above. Moreover, it is important to note that in the case of operator
parallelization, some implementations cannot be used in parallel or involve important overheads
to merge results on partitions. Algorithm selection can be performed dynamically to adapt
the implementation to input properties. In [Abadi et al., 2005], authors suggests a runtime
mechanism having a static set of implementations for each operator and picking the fastest one
according to input properties.

Bene�ts for congestion management

Algorithm selection may increase processing latency of operators if there are a faster implemen-
tation than the current one available locally. The speedup may be absolute (e.g., quicksort over
bubblesort) or relative (e.g., sort-merge join over nested-loop join) according to input properties.

1.5 Adaptation at data level

1.5.1 Load balancing

Motivation

Let consider an application receiving vehicle speeds observed by radars. An operator O1 takes
as input speeds violating the limit with the associate registration license. O1 queries a remote
database depending on registration license to extract driver information. Each remote database
has a speci�c communication latency. If the load in input of O1 becomes critical, it can be
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Figure 5: Load balancing

parallelized as presented above. If a task mostly receives registration licenses linked to remote
databases with high communication latency, its processing latency is greater than other tasks. It
involves an imbalance between tasks and decreases throughput of the parallel region composed
of all tasks. So, adapting the distribution of stream elements to loads of tasks may improve the
global throughput.

Assumptions

As load balancing becomes relevant after operator parallelization, all assumptions mentioned
for operator parallelization are valid for load balancing. In addition, load-aware strategies require
a strict equivalence between tasks. Indeed, let consider a stateful operator computing average
values of stock prices for multiple stock label. The operator computing average values can be
naturally parallelized if disjoint subsets of stock labels are associated to each task. In such case,
each task is only able to process a partition of stream elements so load imbalance cannot be
corrected.

Principle

De�nition 14. (Load balancing) Let consider a set of equivalent tasks T = {T 1
i , ..., T

k
i } and the

set of their respective loads L = {L1, ...,Lk} according to a load metric. For any �nite subset of
stream elements E = {e1, ..., en}, balancing load consists in �nding k partitions of E such as the
standard deviation of loads in L is minimized at any time.

The choice of the strategy for load balancing and the metric load depends mainly on as-
sumptions on stream properties. Load balancing strategies can be classi�ed in two main cate-
gories [Pearce et al., 2012]:

• Value-aware strategies [Neumeyer et al., 2010] route stream elements according to key val-
ues without consideration for balance between tasks.

• Load-aware strategies [Rivetti et al., 2016] tend to balance load between threads. They
consider load balance in term of execution time or resource consumption (CPU, RAM).

Bene�ts for congestion management

Load balancing reduces imbalance between equivalent tasks processing stream elements in
parallel according to data parallelism. As the global throughput of such parallel region is directly
impacted by the slowest operator, load balancing improves global throughput proportionally to
the skew in data distribution. Without load balancing, operator parallelization does not improve
signi�cantly the global throughput of an operator.
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1.5.2 Load shedding

Figure 6: Load shedding

Motivation

Let consider a website suggesting articles to buy online. To suggest in priority interesting
products according to user behavior, the website monitors clicks to identify points of interest.
Monitoring logs are consumed in real time by a stream-based application identifying behavior
of users and suggesting relevant products. The distributed infrastructure executing this appli-
cation is calibrated to analyze logs generated by a standard tra�c on the website. When the
festive season starts, the tra�c increases by orders of magnitude causing an over�ow in input
of the stream-based application. In such case, the owner of the website is no more interested in
suggesting products very relevant products to each users and accepts to degrade result quality.
It avoids to add resources for this speci�c period through a limitation of the maximal input rate.

Assumptions

As mentioned in motivation of load shedding, this pattern degrades result quality so there
is no assumption guaranteeing the preservation of result quality. The single assumption for
load shedding concerns the control of the degradation of result quality. Actually, load shedding
is enabled to avoid uncontrollable loss of stream elements. The load shedding method must
provide a feedback on dropped elements to estimate the impact on �nal results.

Principle

De�nition 15. (Load shedding) Let consider a task T ji with an average throughput TP de�ned
in stream elements processed per time unit and a potentially in�nite multiset S = {S1, S2, ..., }
composed of �nite sets arriving at each time unit. Load shedding consists in �nding for each set
Si ∈ S a subset S′i such as the cardinality of S′i remains lower or equal to TP .

Load shedding inverts the adaptation compared to patterns presented previously. Indeed,
while other patterns adapt the DAG of operators and its execution on an infrastructure, load
shedding adapts streams to available processing rates [Tatbul et al., 2007]. In [Tatbul et al., 2003],
authors suggest load shedders which drop stream elements to satisfy some QoS metrics about
overall latency and precision of �nal results. Aurora* analyzes impact of operators on those met-
rics through their processing latencies and selectivity factors [Abadi et al., 2003, Cherniack et al., 2003b].
In [Arasu et al., 2004], multiple techniques for load shedding are suggested including load shhed-
ing through statistical approximation of aggregative queries. The distributed solution Bo-
realis [Abadi et al., 2005, Tatbul et al., 2007, Ahmad et al., 2005] suggests several techniques
to control quality degradation caused by load shedding including window-aware load shed-
ding [Tatbul and Zdonik, 2006].

Bene�ts for congestion management

Load shedding avoids over�ow in input of tasks. So, it helps to maintain a maximal throughput
when initial input rates exceed processing throughput. Load shedding can also be used before
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operators generating multiple outputs per stream element in input like joins. It allows to control
output rate and have an approximation of result quality.

To sum up, we presented a collection of common patterns adapting continuous query execution
or streams in order to avoid congestion. They can tackle issues involved by some speci�c cases
under certain assumptions on the execution context. Nevertheless, �nding the right moment
to trigger a recon�guration is complex. On one hand, as adaptation patterns have overheads
during and potentially after recon�guration, it is not advisable to use them if they do not
e�ectively compensate a degradation in the execution. On the other hand, waiting that e�ective
congestion occurs has important e�ects on system stability and the recovering time (i.e., time
elapsed between recon�guration and an optimal throughput). To trigger recon�guration with a
high probability that it compensates e�ectively a degradation of the execution, some detection
methods have been developed and integrated to DSMSs.

2 Detection methods for congestion management

As presented in section 1, some speci�c cases can be encountered while processing streams.
The e�ectiveness of patterns presented above relies on the reactivity of the system. We dis-
tinguish two main categories of detection methods. On one hand, on user-demand meth-
ods [Xu and Peng, 2016] rely on users to trigger a recon�guration when a degradation of perfor-
mance or result quality is observed. When user alerts the system, recent history of the behavior
of operators, which may be an instantaneous snapshot, is considered to perform appropriate
modi�cations. On the other hand, some automatic methods [Xu et al., 2014, Gedik et al., 2014,
Schneider et al., 2009] suggest monitoring mechanisms observing at runtime some metrics about
behavior of operators and triggering automatically adequate modi�cations to respect some QoS
constraints.

In this section, we aim at giving an overview of detection techniques to manage congestion
of operators. Each method is presented with its principle, advantages and limits illustrated by
main variants.

2.1 On user-demand methods

Methods relying on user demand [Aniello et al., 2013, Xu and Peng, 2016] performs operator
parallelization and scheduling when user triggers a recon�guration. The aim is to �nd an adapted
con�guration according to a recent history of operator behaviors. For each operator, metrics like
input rate, throughput and processing latency are monitored at regular interval. When the user
triggers a recon�guration of a continuous query, the system takes these measures into account
to decide which critical cases are encountered and which patterns are appropriate to satisfy QoS
constraints.

In [Aniello et al., 2013], authors suggest an o�ine scheduler aiming at generating a low net-
work tra�c between processing units. To do so, the scheduling algorithm has as inupt the
work�ow representing a continuous query and returns a scheduling plan minimizing the number
of edges between processing units. As the scheduler is o�ine, it is only when users submit or
re-submit continuous queries on the system. In [Xu and Peng, 2016], authors present an online
algorithm enabling operator parallelization at runtime. This algorithm, named Stela, takes as
input user action like add 2 processing units and a threshold discriminating critical operators
from normal ones. This threshold is given by user and speci�es the upper bound of the ratio
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input rate on processing rate. Stela returns the set of operators to parallelize in order to avoid
congestion of critical operators.

Bene�ts brought by approaches on user-demand mainly depend from the master user reactiv-
ity and expertise. By, master user, we refer to the user having credentials to recon�gure a given
continuous query. As data streams may have �uctuations in input rate and value distribution
over time, a �xed con�guration may not deliver optimal performance over time. Moreover, a
given con�guration may lead a work�ow to congestion (e.g., a scheduling plan generating network
bottlenecks).

Logically, limits of approaches on user demand are users. In [Aniello et al., 2013], as a
scheduling plan is generated only on user demand, users have to re-submit continuous queries
when there are some execution bottlenecks which could be eliminated through scheduling of
operators. In addition, the o�ine scheduler does not have information about operator proper-
ties (selectivity factor or processing latency) so it is assumed that operators do not amplify or
downplay a variation in input rate. For example, a cartesian product ampli�es signi�cantly a
variation in input rate. This assumption is irrelevant for most stream-based applications �ltering
stream elements. In [Xu and Peng, 2016], if a user adds only few processing units when there
are massive over�ow, performance is not signi�cantly improved while recon�guration involved
important overheads. Moreover, users may trigger recon�guration with an important o�set after
some operators start to accumulate stream elements on their input queues.

2.2 Automatic methods

Stream processing requires high reactivity to maintain treatments while facing critical �uctua-
tions in input rate and value distribution. To ease the management of continuous queries from
user point of view, most elastic solutions [Abadi et al., 2003, Zaharia et al., 2012b, Arasu et al., 2004,
Abadi et al., 2005, Schneider et al., 2009, Gedik et al., 2014, Xu et al., 2014] integrate automatic
and dynamic mechanisms to detect critical cases and trigger recon�guration of the system ac-
cording to metrics monitored continuously. These metrics are observed at di�erent scopes of the
execution:

• At infrastructure scope, some global metrics are observed like the network tra�c [Xu et al., 2014],
CPU load and memory usage on each processing unit [Zaharia et al., 2012b].

• At operator scope, metrics describing the execution are observed. It concerns essentially in-
put and output rate [Schneider et al., 2009, Gedik et al., 2014], processing latency [Abadi et al., 2005]
and selectivity factors [Abadi et al., 2003, Arasu et al., 2004] of operators.

Automatic methods considering these metrics in input can be grouped two main classes [Das et al., 2005,
Lorido-Botran et al., 2014]: reactive and proactive.

2.2.1 Reactive methods

Like on user demand methods, reactive methods rely on user expertise but not on its reactivity.
User expertise is required before treatments to de�ne what is a normal state of the system. By
state, we consider a set of metrics describing the execution of some continuous queries. There are
two types of reactive methods: threshold-based and reinforcement learning-based approaches.
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Threshold-based

Threshold-based algorithms takes as input maximal and minimal thresholds for monitored met-
rics at infrastructure [Zaharia et al., 2012b, Xu et al., 2014] and/or operator scope [Abadi et al., 2003,
Arasu et al., 2004, Abadi et al., 2005]. These thresholds compose a policy de�ning conditions for
the stability of the system. When the value of a monitored metric is under the minimal thresh-
old or over the maximal threshold, some patterns for congestion management are applied. The
objective is to maintain a stable state of the system.

Threshold-based algorithms ensure that a given policy is respected but they are strictly
reactive. Actually, only an e�ective violation of the policy triggers a recon�guration of the
system. Depending on user expertise, the policy may allow temporary congestion of operators
having an important impact on performance of the system and result quality. Moreover, some
thresholds like input/process rate may be more critical for some operators like join which generate
potentially multiple output per input element and have intrinsically a greater impact on result
quality. Adjusting thresholds may be laborious according to the complexity of a continuous query
and the execution support.

Reinforcement learning-based

Reinforcement learning-based algorithms (RL-based) aim at reaching a performance goal
through interactions with the system but without a priori knowledge. In RL model, an agent
receives as input a state describing the execution context (e.g., input rate and throughput of
an operator) and applies an action ai from the set of all possible actions A = {a1, a2, ..., an}.
According to the evolution of scalar metric, the agent receives a reward as feedback. Through a
learning phase, the agent maps rewards to actions for each encountered states. The state-action-
reward map is denoted the policy of the agent. Once the agent meets a known state, it applies
the best action according to its policy and updated it according to the new reward.

In [Heinze et al., 2014b, Heinze et al., 2014a], authors present a distributed reinforcement
learning solution, named FUGU, which maintains independent policies on each processing unit.
This solution presents the advantage to be independent from workload as it is able to converge to
a appropriate con�guration. A problem is the convergence time which could be important if the
workload varies often. An other limit of this approach is that it considers exclusively variations
in input rate to associate parallelism degrees without taking distribution of values into account.
Thus, if the distribution of values has an important impact on the processing latency and changes
signi�cantly over time, the knowledge base built through training may be obsolete quickly.

Control-based

Control systems [De Matteis and Mencagli, 2016] aim at automating the management of online
environments. There are three classes of reactive control-based systems [Lorido-Botran et al., 2014]:
open loop and feedback.

Open-loop approaches relies on a model of the system and a controllable metric which should
not exceed some thresholds according to the model and the current state of the system. The
controller does not receive feedback about the e�ectiveness of recon�guration making this solution
limited if the system di�ers from the model over time. For feedback controllers, the model of the
system is replaced by an output metric associated to a desired value. Any signi�cant deviation
from this value triggers a recon�guration. For example, considering that the output metric
is the throughput of an operator, the controller may increase the parallelism degree when the
throughput decreases at constant input rate.

In cite [Gedik et al., 2014], authors suggest a feedback controller relying on a congestion
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metric which indicates if an operator is potentially critical. When the value of the congestion
metric degrades (increase of input queue sizes), the algorithm triggers operator parallelization
for the overloaded operator. To control if the recon�guration is bene�cial to the execution, the
evolution the throughput is observed. If the control metric evolves positively, the recon�guration
is repeated until the congestion metric reaches a satisfying value according to QoS constraints.

Control-based algorithms o�er more �exibility than threshold-based approaches as it only re-
quire that users de�ne congestion and control metrics. The main limit of control-based approach
is the accuracy of recon�guration [Gedik et al., 2014]. Indeed, if the recon�guration has a minor
impact of the congestion metric, it will require several recon�guration before stabilization.

2.2.2 Proactive methods

Proactive methods aim at anticipating the behavior of system to avoid congestion before a crit-
ical workload appear. Contrary to reactive methods, these methods might trigger unnecessary
recon�guration because of sudden variations of workload (e.g., an input rate increasing continu-
ously for a signi�cant time and decreasing massively within a short period) but they react faster
to speci�c cases leading to congestion. On one side, control-based and queuing-based approaches
use a model to predict how the system reacts to modi�cations of the workload. On the other
side, time-series based approaches estimate the behavior of the system without model but from
recent history.

Control-based

A third class of control-based systems, denoted feed-forward [Lorido-Botran et al., 2014], try
to anticipate deviation from the desired value in output. According to the model, they predict
the behavior of the system with current inputs and reacts before a deviation appears. In most
cases, feed-forward controllers are combined with feedback controllers to compensate prediction
errors.

Queuing-based

Queuing-based algorithms use mathematical methods associated to te queuing theory as pre-
sented in [Kalashnikov, 2013] to model the execution of operators having pending queues as
presented in section 1. To model an operator through queuing theory, several parameters are
required:

• Stream elements are supposed to arrive at a mean rate λ and are enqueued before being
processing.

• The operator has an average throughput µ for all possible values of stream elements.

• The inter-arrival time distribution A which corresponds to the distribution law describing
the evolution of λ over time.

• The service time distribution B which corresponds to the distribution law describing the
evolution of µ according the arrival rate λ.

• The number of operators C in the case multiple operators share a common pending queue
(e.g., after parallelization of operators).

• The system capacity K which corresponds to queue length.
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• The calling population N which is the size of the stream. In the case of in�nite streams,
the queuing model is said open.

• The service discipline D which matches with the priority order in the execution context.
In most systems, D is FIFO (First In First Out).

According to these parameters, a system is modeled according to the Kendall notation
A/B/C/K/N/D or just A/B/C as K, N and D are optional as presented in [Kendall, 1953].
Actually, when not precised K and N are considered as in�nite and D is FIFO. A and B are
generally equal to M, D or G. M refers to Poisson distribution, D for uniform distribution and
G corresponds to any general distribution with known mean and variance.

The aim is to approximate the response time R for an incoming stream element according
to the queuing model in Kendall notation. For example, the response time for a M/M/1 is R=
1

µ−λ .
In [Jiang and Chakravarthy, 2003], authors present models for Select-Project-Join operators

according to queuing theory in a stream processing context. It allows to estimate response time
of these operators to apply dynamically operator reordering and parallelization to respect some
QoS constraints.

Time-series based

Time-series refer to sequence of values generally measured at regular time interval. Time-
series analysis can be used for two goals: forecasting future values of a sequence or �nd repeating
patterns to extrapolate future values. According to an estimation of future values, a decision-
making policy de�nes if the system should be recon�gured and how.

Let focus �rst on forecasting problem. From a recent history of monitored metrics, the aim
is to predict resource usage or workload. Common forecasting techniques are Moving Aver-
age, Auto-regression, the combination of the two, denoted ARMA [Li and McLeod, 1981] and
machine-learning techniques.

Moving Average assumes the next value yt+1 is the weighted average of the last n observed
values xi as follow:

yt+1 = a1x1 + a2x2 + ...+ anxn (1)

such as the sum of weights ai is equal to 1. From this general de�nition, three variants exist:

• Simple Moving Average associates a weight 1
n to each measure xi. It corresponds to the

arithmetic average.

• Weighted Moving Average associates di�erent weights to measures. Commonly, the older
is the stream element, the lower is the associated weight. So, it gives more weight to recent
measures.

• Exponential smoothing assigns decreasing weights over time to measures according to an
exponential distribution.

Auto-regression of order n relies on the same principle than Weighted Moving Average but
weights are computed as auto-correlation coe�cients. The correlation between former forecasted
values ytj with j < t+ 1 is used to calculate weights for each timestamp.
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Auto-regressive Moving Average or ARMA combines Weighted Moving Average with Auto-
regression. The next value is a weighted average of previous forecasted values and values of the
recent history.

Machine learning techniques include statistical and neural network-based methods. Statistical
methods corresponds to regression techniques. Regression aims at determining the polynomial
function such that it minimizes the distance to each point composing the recent history. The
particular case of polynomial function of order is denoted linear regression. This function is
used to predict future values. Methods based on neural networks consider a group of neurons
interconnected on several layers from input layer having some measures to output layer returning
a result. In a stream processing context, the input layer contains one neuron for each measure in
the recent history and the output layer contains one neuron for the expected value. The network
is trained with initial weights chosen randomly. These weights are adapted through the neural
network in order to �nd a polynomial function which returns the expected value from measures.

To sum up, relying on user demand to manage congestion involves that it is assumed that the
user monitors continuously states of the cluster and continuous queries. In addition, users should
have an expertise to operate appropriate modi�cations of the execution context at physical and
logical layers. As many applications composed of several operators consume streams varying
frequently, some automatic solutions have been proposed. Some of them react to e�ective situ-
ations leading to congestion while other anticipate the behavior of systems to identify needs of
recon�guration to respect QoS constraints.

3 Classi�cation of distributed DSMSs

We have suggested a formalization of streams and continuous queries. In addition, we presented
challenges involved by stream processing and described elastic mechanisms for congestion man-
agement. In this section, we aim at giving an overview of principal distributed DSMSs developed
on last years. This collection is neither exhaustive nor a strict top-tier ranking but it covers
most DSMSs in terms of variety according to classi�cation criteria. Centralized DSMSs like
STREAM [Arasu et al., 2004], Aurora [Abadi et al., 2003], Medusa [Cetintemel, 2003] and Nia-
garaCQ [Chen et al., 2000] are detailed in former surveys [Babcock et al., 2002, Stephens, 1997]

3.1 Criteria of classi�cation

As illustrated on Figure 8, we suggest a classi�cation of DSMSs based on the paradigm used
to represent continuous queries. It has a major impact on the expressiveness of the de�nition
language and the e�ectiveness of data and task parallelisms a�ecting congestion management. As
presented in chapter 2 section 2.1.4, two paradigms are commonly used to represent continuous
queries: work�ow and MapReduce. In addition, a secondary criterion is the expressiveness of the
language. Indeed, while processing streams, it is necessary that query languages support speci�c
operators like windows to process streams with stateless and stateful operators. Then, detection
method for congestion management de�nes the reactivity of the system and the con�guration
e�ort required to maintain respect QoS constraints at runtime. Finally, according to the stream
classi�cation suggested in chapter 2 section 1.2, we highlight which types of streams each DSMS
is able to process e�ciently and detail which properties determine that choice.
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Figure 7: Classi�cation of distributed DSMSs

3.2 Work�ow-based solutions

3.2.1 RStorm

The open-source DSMS Apache Storm12 integrates a resource-aware scheduler since its version
1.x.x and is also called RStorm [Peng et al., 2015]. RStorm o�ers a high �exibility for query
de�nition and performance tuning. It allows users to specify processing requirements of each
operator in terms of CPU and memory and guarantee minimal waste of resources according to
these speci�cations.

Query de�nition: RStorm relies on a high level language (Java, Scala, Python) for query
de�nition. A continuous query is de�ned as a sequence of user-de�ned operators subscribing to
sets of streams and generating zero, one or many streams. Each operator follows a template
which corresponds to stateless or stateful operators. RStorm integrates a growing collection of
templates corresponding to complex relational operators like Joins.

Query representation: A continuous query is represented as a work�ow of operators. RStorm
considers two types of operators:

• Spouts are connectors to stream generating services like sensors, databases or a distributed
messaging service like Apache Kafka13. Spouts are responsible to manage the lifecycle of
stream elements through a work�ow. Each spout produces one or many streams.

• Bolts is an operator consuming one or many streams and producing a set of streams which
may be empty. Bolts follow templates for stateless or stateful operators.

Each operator may or may not support data parallelism. However, for stateful operators,
users take charge to declare and update states. RStorm serves as guarantee that states are moved
when the operator is moved or restarted after node failure.

Window support: RStorm supports time-based and count-based sliding and tumbling win-
dows through speci�c templates. Windowing templates take as parameters window size, an
optional slide and a function describing business logic.

12http://storm.apache.org/
13https://kafka.apache.org/
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Congestion management: RStorm is able to adapt continuous queries at operator level ex-
clusively. Indeed, operator scheduling is performed at the initialization of a continuous query
according to processing requirements speci�ed by users. RStorm relies on a greedy algorithm to
�nd a near-optimal scheduling plan which maximize resource usage on a minimal subset of avail-
able machines. Operator parallelization are triggered on user demand with the constraint that
users assume that parallelized operators support data parallelism without changing the semantic
of results (e.g., parallelization of a mean operator).

Target streams: As RStorm relies on user expertise and reactivity, it is basically designed to
handle even steady streams involving rare modi�cations at runtime. The absence of load shedding
mechanism and the guarantee that each stream element is processed exactly once suppose that
users set adequate con�guration in terms of parallelism degrees and processing requirements
according to input volumes.

3.2.2 Sonora

Sonora [Yang et al., 2012] is platform for mobile cloud computing. Sonora is designed to support
the execution of distributed cloud services on mobile devices. Sonora integrates a stream engine
able to perform fast failover after node failure as mobile devices supporting computations come
in and out frequently from the cloud. In addition, Sonora has to be energy e�cient to respect
battery constraints of mobile devices.

Query de�nition: Sonora provides interfaces for continuous query de�nition in a high level
language. These interfaces allow users to de�ne functions on streams without restriction. A con-
tinuous query is de�ned as a succession of operators subscribing to some streams and generating
an output stream.

Query representation: Continuous queries are represented as work�ows of user-de�ned op-
erators. Even if users de�ne stateless operators, Sonora may group and send stream elements
into batches in order to save battery. Indeed, it allows to send a batch of stream elements and
turn o� the radio instead of keeping the radio active and send stream elements continuously as
they arrive.

Window support: Sonora supports time-based and count-based sliding and tumbling win-
dows. Windows are explicitly de�ned by users through the de�nition of timespans on streams.
Sonora computes incrementally results on sliding windows thanks to overlaps between consecu-
tive iterations as discussed in chapter 2 section 2.1.1. In addition, Sonora computes incrementally
mean, variance and Discrete Fast Fourier Transformation (DFFT) operators over sliding win-
dows. Incremental computations for these operators remove redundant computations in order to
save energy.

Congestion management: Sonora performs adaptation of continuous queries at operator
and data level. Operator parallelization is managed through the storage system Paci�cA which
splits dynamically streams into partitions as presented in [Lin et al., 2008]. It allows to perform
operator parallelization while Paci�cA takes charge of splitting input streams and balancing the
load at runtime. Sonora can also perform load shedding through a sampling mechanism. It
allows Sonora to maintain a �xed rate in input that the execution support (i.e., a mobile cloud)
can handle.
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Target streams: Sonora is suitable to process even and uneven steady streams like sensors
streams. As Sonora does not integrate mechanisms to detect congestion at operator scope,
it is not adapted for �uctuating streams. Adaptation mechanisms integrated in Sonora aims
at recovering after failure more than facing �uctuations in input streams. Moreover, the load
shedding mechanism consists in turning a massive stream (steady or �uctuating) into a steady
stream with a maximal input rate.

3.2.3 Millwheel

Google Millwheel [Akidau et al., 2013] is a distributed DSMS designed to analyze data streams
at Internet scale. Millwheel is fault-tolerant as the failure of any active machine does not a�ect
results delivered to users. To guarantee fault-tolerance, operators communicate through the
following pattern: An operator O1 applies a function on a stream element, creates a checkpoint
locally and returns a result to an operator O2. As soon as O2 as processed the result, the
checkpointing mechanism saves the state of O2 and sends a acknowledgement message to O1 to
update its current state.

Query de�nition: Continuous queries are de�ned in Millwheel according to a programming
model hiding parallelism and concurrency issues to developers. The programming model is
designed to facilitate the de�nition of low latency streaming applications. Each continuous
query is de�ned as sequence of user-de�ned operators like in RStorm, but with a main di�erence
on operator patterns. When bolts consume stream elements described by a set of attributes,
operators in Millwheel consume stream elements linked to a key and users must implement a
key extractor. Indeed, the business logic of an operator is applied exclusively on that key. For
example, an operator computing the average price of a stock, the key extractor returns the price
among the list of values describing the stock and apply mean function on the price.

Query representation: Millwheel represents continuous queries as work�ows of user-de�ned
operators.

Window support: Millwheel supports time-based sliding and tumbling windows through its
API. A speci�c operator pattern allows to de�ne a stateful operator over a computation window
like RStorm.

Congestion management: Millwheel adapts continuous queries at operator and data levels.
It supports operator parallelization and load balancing through a threshold-based algorithm
which detects lack of available resources in terms of CPU and memory. When an overload is
detected by local monitors, an operator can be parallelized on another processing unit to share
the load. Load balancing is performed by key grouping among tasks of an operator. For example,
considering an operator which consumes keys in a range from 0 to 9 and has 2 tasks, the input
stream in partitioned in two partitions, one receiving keys between 0 and 4 and another receiving
keys between 5 and 9. It assumes that the distribution of keys over stream elements is uniform
over time.

Target streams: Millwheel supports e�ciently even erratic streams in terms of volume as it
relies on a threshold-based algorithm to detect and correct potential congestion of operators.
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Nevertheless, its load balancing strategy based on key partitioning assumes that value distribu-
tion over keys is almost uniform at any time and processing latency associated to keys are pretty
similar.

3.2.4 TelegraphCQ

TelegraphCQ [Chandrasekaran et al., 2003] is a �exible solution enabling fault-tolerant stream
processing over PostgreSQL. Originally, it was designed for centralized multicore architecture
but it can be extended to distributed infrastructure through an extension of the FluX mod-
ule [Chandrasekaran et al., 2003].

Query de�nition: As TelegraphCQ is built over a PostgreSQL DBMS, it supports declarative
expressions written in SQL and includes window statement. The de�nition is enriched with
imperative expressions like for loops to apply treatments only on a �nite number of window
iterations.

Query representation: TelegraphCQ represents continuous queries as work�ows having a
star topology and associated to a routing policy. Indeed, the heart of each continuous query
is a module named Eddy [Madden et al., 2002, Chandrasekaran et al., 2003] which receives the
initial stream to process and route stream elements to operators according to its routing policy.
Work�ows in TelegraphCQ are composed of common operators (Select, Project, Join) of the
relational algebra.

Window support: TelegraphCQ supports multiple window semantics: time-based and count-
based sliding and tumbling windows but also landmark windows [Chandrasekaran et al., 2003]
which have a growing size over time. Indeed, landmark windows are only de�ned by a slide and
consider all elements since the start of the execution. Each iteration of a landmark window is
superset of previous iterations.

Congestion management: TelegraphCQ integrates adaptation mechanisms at work�ow, op-
erator and data levels. To do so, TelegraphCQ relies on a threshold-based algorithm to detect
potential congestion of operators. It is able to perform both operator reordering and load shed-
ding through the Eddy module. Indeed, as the routing policy associated to the Eddy module
de�nes the execution sequence of operators, a modi�cation of this policy corresponds to operator
reordering. The Eddy module can also discard some stream elements to reduce the workload in
input of an operator. Operator parallelization and load balancing are supported in TelegraphCQ
by a FluX module which is responsible to manage distribution of stream elements routed by the
Eddy. FluX can add tasks of an operator and decides how inputs are distributed among them.

Target streams: TelegraphCQ has been designed to process e�ciently even and uneven er-
ratic streams. Indeed, the design of TelegraphCQ is centered on dynamic Eddy modules to
route streams and shed load anytime without recon�guration cost but with permanent over-
heads [Deshpande, 2004]. So, it is assumed that these overheads are compensated by frequent
adaptations due to �uctuations in input rate and value distribution. Even if TelegraphCQ can
also manage e�ciently periodic streams, there is no model or learning-based modules to opti-
mize adaptation to such streams. Finally, steady streams are processed by TelegraphCQ with
permanent overheads that are never compensated as soon as an appropriate con�guration has
been found.
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3.2.5 Borealis

Borealis [Abadi et al., 2005, Ahmad et al., 2005] is a distributed DSMS which inherits the stream
processing engine from Aurora and its management policy of distributed infrastructures from
Medusa [Balazinska et al., 2004]. The main improvement brought by Borealis is the support of
revisions at runtime. In a real-world context, some stream sources may send stream elements
out-of-order or send incorrect values and correct them later. For example, in a context of �nancial
market analysis, some values may be out-of-date for some stock prices. A correction is sent after
to update the value. Borealis integrates mechanisms which support revisions of results being
computed to soften errors in a real-world context.

Query de�nition: Borealis inherits the graphical de�nition interface of Aurora and its boxes-
and-arrows query model introduced in [Abadi et al., 2003]. Users select operators from a pre-
de�ned set, named SQuAl [Cherniack et al., 2003b], and de�ne a graph which is considered as
optimal. Indeed, even if Borealis integrates prede�ned operators, there is no query optimiza-
tion based on relational algebra. The set of operators supported by Borealis includes common
operators like Select-Projection-Join and some aggregate operators as sort and union.

Query representation: Each continuous query is a graph where vertices are boxes which
implements an operator. Boxes are linked by arrows which specify the routing policy of stream
elements through the graph.

Window support: As Aurora, Borealis supports time-based and count-based sliding and tum-
bling windows through an Aggregate operator which takes as parameters a function, an order O
for grouping, a window size and a window slide. For example, computing the average price on
the last stream elements according to the chronological order hour each 30 minutes corresponds
to an Aggregate operator taking as parameter the average function on the attribute price, the
order On Time, a size 1 hour and a slide 30 minutes.

Congestion management: Borealis supports adaptation of continuous queries at each level:
work�ow, operator, implementation and data. It relies on a feedback control-based algorithm
as presented in section 2.2. When a deviation in throughput is detected, Borealis can trigger
operator reordering, operator scheduling or load shedding at runtime. Operator reordering is
based on a cost model between two operators. According to SQuAl algebra, if operators are
commutative and selectivity factors measured online satisfy conditions presented in section 1,
Borealis inverts operators. Operator scheduling relies on bottleneck detection. When stream
elements are accumulated on input queues, Borealis looks on the processing unit if it is due to
a lack of CPU or bandwidth. In both cases, Borealis moves the operator on a processing unit
which is more available according to the lacking resource. If the scheduler cannot �nd such
processing unit, it enables load shedding through two phases. First, according to an algebraic
analysis, Borealis may add Projection operators to reduce data volumes. If it is not feasible, load
shedding is triggered on operators which a�ects the less result quality.

Target streams: Borealis has been designed to manage real-world even and uneven erratic
streams and even support out-of-order and incorrect streams. While facing a signi�cant variation
in input rate or value distribution, Borealis tries to adapt dynamically the execution of continuous
queries at query and work�ow scopes and if it cannot �nd a satisfying con�guration, it sheds
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load to respect QoS constraints about performance. As TelegraphCQ, the absence of model and
learning-based mechanisms denotes that Borealis has not been optimized for per-pattern streams.
Finally, Borealis supports algorithm selection through a mechanism similar to Eddy module. The
SQuAl compiler provides multiple implementations of prede�ned operators on each processing
unit and depending of input properties, the implementation may be changed at runtime.

3.2.6 ESC

ESC [Satzger et al., 2011] is cloud-based DSMS designed for real-time demands such as online
data mining. The particularity of ESC is the capacity to support elasticity at infrastructure and
work�ow levels. Indeed, ESC can attach and release VMs at runtime to adapt the number of
con�gured machines to processing requirements.

Query de�nition: ESC o�ers a programming model based on key/value pairs as MapReduce
model [Dean and Ghemawat, 2004]. Users de�ne operators according to programming patterns
which take as input a stream element or a set of stream elements. Operators are de�ned in a high
de�nition language named Erlang [Wikström, 1994] supporting natively parallel and concurrent
programming.

Query representation: Continuous queries are represented as work�ows of user-de�ned op-
erators. In addition to query de�nition, users can de�ne rewriting rules for some operators. For
example, a user-de�ned operator Oi can be associated to a rewriting rule split→ Oi →merge to
trigger operator parallelization while needed.

Window support: Basically, ESC supports count-based tumbling windows. The order is
based on arrival time making stateful operators not deterministic as window content may vary
randomly. The management of other types of windows is delegated to user implementation.

Congestion management: ESC supports exclusively adaptation of continuous queries at
operator level. Congestion is managed by a reinforcement learning-based algorithm in ESC. An
autonomic manager implementing a Monitor-Analyze-Plan-Execute (MAPE) loop which enriches
a knowledge base through interactions with ESC platform.

As mentioned above, ESC manages elasticity at physical and logical levels. At physical level,
ESC integrates mechanisms to perform horizontal elasticity. After a physical scale-out, ESC can
perform operator scheduling to avoid bottleneck due to a lack of CPU on active VMs. ESC relies
on rewriting rules to perform operator parallelization as there are not algebraic properties on
operators if users do not declare it explicitly.

Target streams: ESC centralizes the management of continuous queries and infrastructure in
a single decision system. Combined to a reinforcement learning-based algorithm, ESC can add
and delete processing units to execution support periodically. It makes ESC e�cient to process
even bounded streams after a learning phase. During that phase, ESC builds a knowledge base
which covers the range of rates in input without shedding the load when data volumes become
important. Intuitively, the convergence time to a complete and accurate knowledge base over
any uneven or erratic streams is potentially in�nite as any variation may happen anytime.
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3.2.7 System S

System S [Amini et al., 2006, Jain et al., 2006] is a distributed DSMS developed at IBM sup-
porting structured and unstructured data stream processing. It is fault-tolerant and integrates
security mechanisms in a distributed context.

Query de�nition: System S relies on the language SPADE [Gedik et al., 2008] for continuous
query de�nition. This language o�ers a set of stream-oriented operators which are speci�c to a
domain (e.g., signal processing or data mining) in addition to relational operators like Select-
Project-Join. Users de�ne a continuous query as a sequence of SPADE operators consuming
and generating speci�ed streams. SPADE relies on a logical and physical algebra turning logical
operators into sets of physical operators. Each operator in SPADE may be executed in parallel
without speci�cations from users.

Query representation: System S represents continuous queries as work�ows where vertices
are Processing Elements (PE) linked by inner-streams. A PE is composed of a working receiving
input streams and three types of threads taking charge of routing and processing stream elements
but also adapting the throughput of the PE to variation of workload.

Window support: System S supports time-based sliding and tumbling windows [Wu et al., 2007]
through the use the operator Aggregate similar to the Aggregate operator included Borealis.
Windows can also be declared through the use of the operator Punctor [Biem et al., 2010] which
apply a stateless operator on stream elements and inserts punctuations in output streams ac-
cording to a prede�ned interval.

Congestion management: System S integrates mechanisms to adapt continuous queries at
operator and data levels. This DSMS is able to perform operator parallelization for each PE
individually. Indeed, for each PE, the dispatch thread reevaluates periodically the number of
worker threads to enable so it performs operator parallelization according to a reinforcement-
based algorithm at PE scope. When an overload is detected, the dispatch thread increases the
number of worker threads until there is no improvement of the throughput. When the workload
decreases signi�cantly, the dispatch thread puts some worker threads into sleep. Worker threads
are not deleted because it is cheaper to wake up a thread than creating it. Through a continuous
monitoring of window contents, System S is able to perform load shedding when data volumes
are critical in input of PEs running stateful operators.

Target streams: PEs manage parallelization individually according to a reinforcement learn-
ing algorithm. This design �ts to even bounded streams as each PE builds its own knowledge
base and is able to adapt quickly its parallelism degree according to input rate after a learning
phase. Moreover, when some working threads are not necessary to handle the current work-
load, they are only put into sleep to speed up adaptations to future increases. Such mechanism
is costly while processing steady streams as �uctuations are rare. Processing uneven streams
involve several modi�cations of the knowledge base which lower its interest.

3.2.8 Infosphere

IBM Infosphere [Biem et al., 2010] is a distributed DSMS able to process static data and streams
with the same processing engine. It is extensible as it allows to add domain speci�c operators
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implemented in a high level language like C++ in addition to prede�ned operators o�ered by
the declarative language SPADE [Gedik et al., 2008].

Query de�nition: As System S, Infosphere relies on the declarative language SPADE for
query de�nition. The declaration of continuous queries sits between a declarative expression like
a CQL expression and an implementation in a high level language using stream-oriented APIs.
User-de�ned operators follow templates which allow or not data parallelism.

Query representation: SPADE expressions are turned into work�ows of PE as explained
above. However, Infosphere classi�es PEs into 3 main categories:

• Source PEs are connected to stream generating services. Infosphere integrates several
connectors to receive streams from GPS devices or databases.

• Sink PEs convert a stream into a relation stored in a �le or database system. Generally,
relations produced by a Sink are meant to be used by another system.

• All other PEs consume and generate streams or set of streams.

Window support: Infosphere supports time-based and tumbling windows exactly like System
S as they both rely on the same query language.

Congestion management: Infosphere adapts continuous queries at operator level exclusively.
Indeed, Infosphere supports operator parallelization and scheduling on user demand and auto-
matically. Indeed, through SPADE primitives, parallelism degrees and assignment on processing
units can be speci�ed for each PE. In addition, a reinforcement learning-based algorithm allows
Infosphere to analyze online properties of PEs as input and output volumes to collocate operators
on same processing units in order to avoid network bottlenecks.

Target streams: As Infosphere turns continuous queries into graphs of PEs like System S, it
�ts also to even bounded streams but with the di�erence that its initial con�guration is de�ned
by users.

3.2.9 Flink

Apache Flink [Carbone et al., 2015] is an open-source DSMS processing indi�erently static data
and data streams as continuous sequences of stream elements running through fault-tolerant
data�ows.

Query de�nition: Flink provides several API for data manipulation and transformation.
These APIs include relational operators like Select-Project-Join or machine learning operators
like k-mean clustering. Like Sonora, continuous queries are de�ned as sequences of user-de�ned
operators. As some operators are user-de�ned, their semantics are hidden to Flink's optimizer.
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Query representation: From the de�nition of a continuous query, Flink generates an op-
timized graph of stateless and stateful operators. In opposition to other work�ow systems,
Flink may bu�er stream elements between two operators before emission. Indeed, as illustrated
in [Carbone et al., 2015], two stateless operators processing stream elements in pipeline exchange
stream element as soon as they are produced. These exchanges are performed concurrently and
the throughput does not increase when the rate exceeds a certain threshold due to this concur-
rency. Bu�ering stream elements and sending them into microbatches increase the throughput
after this threshold.

Window support: Flink supports time-based and count-based sliding, tumbling and landmark
windows. Windows are declared as options within stateful operators. Flink takes advantages
of overlaps between consecutive iterations of a sliding window to compute incrementally results.
This incremental processing model reduces signi�cantly computation latency of stateful operators
over sliding windows.

Congestion management: Flink only supports adaptation of continuous queries at operator
level. Flink performs resource-aware scheduling according to user speci�cations about CPU and
memory requirements for each operator like RStorm. As explained above, Flink relies on dynamic
microbatching of stream elements between operators to improve throughput instead of shedding
the load or parallelize operators at runtime.

Target streams: Flink does not integrate operator parallelization and load shedding at run-
time. Nevertheless, Flink is able to maintain a near optimal throughput through dynamic mi-
crobatching. It makes it reliable for even erratic streams under the assumption that it exists
an optimal size of microbatches which compensates an over�ow in input. Otherwise, Flink is
appropriate for steady streams if the bandwidth supports microbatches.
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3.3 MapReduce-based solutions

All solutions based on the MapReduce framework (see chapter 2 section 2.1.4) support the
key/value data model with possible extensions. By default, we consider in the section that all
approaches represent continuous queries as pipelines of MapReduce jobs except if mentioned
di�erently.

3.3.1 C-MR

Continuous-MapReduce(C-MR) [Backman et al., 2012] is a DSMS enabling the pipeline execu-
tion of MapReduce jobs over unbounded data streams. C-MR extends the MapReduce framework
to support window de�nition and ensures order preservation between parallel nodes processing
partitions of a global input stream.

Query de�nition: C-MR extends MapReduce framework with window de�nition. Continuous
queries are de�ned as standard MapReduce jobs (see chapter 2 section 2.1.4). Map and Reduce
operators are enriched with windowing parameters (size and slide).

Query representation: A continuous query is represented as a DAG of MapReduce jobs run-
ning in pipeline. C-MR bene�ts from optimization of MapReduce jobs like sorting and merging
between Map and Reduce phases. Note that Map and Reduce phases are executed asynchronously
in C-MR to process a microbatch of stream elements as soon as it arrives.

Window support: C-MR supports time-based sliding and tumbling windows. Windows are
declared directly as parameters of Map and Reduce operators. They are implemented through
punctuations (see section chapter 2 2.1.1) to maintain chronological order within streams. C-
MR takes advantage of sliding windows to compute incrementally results like Flink. Intermediate
results are computed by Combine operators which keep updated results over sliding windows.

Congestion management: C-MR supports the adaptation of continuous queries at operator
level. C-MR performs operator scheduling according to a�nities between operators. As a
continuous is represented by a DAG of MapReduce jobs processing stream elements in pipeline,
C-MR collocate operators exchanging highest amount of data to limit network bottlenecks.

Target streams: C-MR aims even and uneven erratic streams as presented in [Backman et al., 2012].
To absorb �uctuations in input rate, C-MR relies on incremental computations over sliding win-
dows as discussed above. According to this optimization, C-MR is able to process streams with
short latency independently of input rate. The dynamic scheduling of operators allow C-MR to
compensate critical over�ows in input rate.

3.3.2 iMR

In-situ MapReduce (iMR) [Logothetis et al., 2011] is designed to processing timestamped data
without preliminary storing phase. It allows to process data with frequent updates (e.g., server
logs) where they are produced.
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Query de�nition: iMR extends the MapReduce framework with window de�nition like C-MR.
It allows to discretize timestamped data and apply MapReduce jobs to process stream elements
in pipeline. The main di�erence with C-MR is that iMR requires that data are stored on disk
to replay them as a sequence of �nite substreams. Nevertheless, an iMR application processes
stream elements continuously and generates new results as soon as updates are stored.

Query representation: As C-MR, iMR represents a continuous as MapReduce jobs process-
ing stream elements in pipeline. Nevertheless, iMR applications does not integrate Combine
operators.

Window support: Time-based sliding and tumbling windows are supported by iMR. Like
C-MR, iMR takes advantage of overlaps between consecutive iterations of a sliding window to
process incrementally results. However, iMR does not require a Combine phase but discretize
streams into panes [Logothetis et al., 2011]. Let consider a sliding window of size R and slide S,
a pane is a subwindow of size R/S. Map operators compute results on panes instead of complete
windows and results are updated incrementally during the Reduce phase.

Congestion management: iMR supports the adaptation of continuous queries at data level
exclusively. iMR enables load shedding when the workload lead to a violation of QoS constraint
about end-to-end latency. Indeed, the number of stream elements included in a pane requires
a processing time greater than user speci�cation, the pane is discarded in case of a violation of
QoS constraints. A �delity metric, denoted C2, re�ects the quality of results according to losses
during computation.

Target streams: According to its load shedding policy, iMR processes even and uneven erratic
streams as it is designed to handle any massive increase in input rate. But contrary to Sonora,
iMR does not sample inputs to obtain a steady stream. Indeed, when iMR detects a critical
workload, it discards entire logic substreams (i.e., elements included in a subwindow) until the
global workload becomes acceptable.

3.3.3 Spark Streaming

Apache Spark Streaming [Zaharia et al., 2012b] is a stream processing engine built over Apache
Spark14. It aims at bringing the e�ciency and simplicity of MapReduce paradigm to stream pro-
cessing. Apache Spark outperforms other MapReduce implementations (Hadoop, Hive) because
of its better memory management to perform most computation on main memory and avoid disk
accesses.

Query de�nition: A continuous query is de�ned as a MapReduce job with window clauses.
Spark Streaming bene�ts from Spark APIs to query relational data or use domain speci�c oper-
ators (e.g., machine learning methods). Each operator Map and Reduce is declared with input
and output streams.

14https://spark.apache.org/
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Query representation: Continuous queries correspond to MapReduce jobs processing stream
elements in pipeline like C-MR and iMR applications. Data are grouped and sent in Resilient
Distributed Datasets (RDDs) [Zaharia et al., 2012a]. RDDs rely on the same principle presented
for Flink. As it assumed that Spark Streaming processes huge volume of data, global throughput
is signi�cantly improved if data are bu�ered before being sent between operators.

Window support: Spark Streaming supports time-based and count-based sliding and tum-
bling windows. Windows are declared through Spark Streaming API potentially for each op-
erator. Size of RDDs is adapted to window size and slide in order to perform incremental
computations.

Congestion management: Spark Streaming only supports adaptation of continuous queries
at operator level. It optimizes the execution of Spark applications to �t most requirements in-
duced by a stream context. Operator scheduling is performed according to a threshold-based
algorithm which detects overload in entry of operators and move them in order to avoid compu-
tation bottlenecks on some processing units. It does not take network overheads into account.

Target streams: Spark Streaming takes advantage of its threshold-based mechanism for con-
gestion management to process even and uneven erratic streams. A signi�cant �uctuation in
input rate or value distribution may be compensated by reallocation of operators on processing
units. The absence of recon�guration traces like knowledge base shows that Spark Streaming is
not speci�cally optimized for bounded stream processing.

3.3.4 Samza

Apache Samza [Noghabi et al., 2017] is a distributed DSMS supporting stateful processing and
recovering fast from failures. Samza relies on partitioned local states updated by a low-overhead
mechanism. It allows states to scale to hundred of terabytes without increasing failover latency.

Query de�nition: As other MapReduce approaches, Samza relies on the key/value data
model. To manipulate such data, it provides an API integrating three types of operators:

• One-to-one operators correspond to operators taking in input a stream and producing a
single stream in output. One-to-one operators o�ered by Samza are map, �lter, window
and partition operators.

• Many-to-one operators take as input many streams in input and produce a single stream
in output. Samza suggests join and merge operators for this type. The operator merge
returns the union of all input streams.

• One-to-many operators correspond to partitioning operators and are user-de�ned.

With these operators, users can de�ne a continuous query as a sequence of operators sub-
scribing and publishing some streams.

Query representation: Continuous queries are represented as Samza jobs. A job is a work�ow
where vertices are one of the operator mentioned above.
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Window support: Samza supports time-based tumbling windows through the operator win-
dow mentioned above. It takes as parameter a size and a function which could be user-de�ned.

Congestion management: Apache Samza integrates mechanisms to adapt continuous queries
at operator level and can potentially adapt queries at data level. In addition to fast failover,
Apache Samza supports operator parallelization and scheduling at runtime triggered by a threshold-
based monitoring module. Load balancing is performed by a user-de�ned partitioner.

Target streams: Like Spark Streaming, Samza adapts execution of operators according to
a threshold-based algorithm so even and uneven erratic streams can be processed e�ciently.
Indeed, Samza monitors continuously operators and adapts parallelism degrees and assignments
on processing units accordingly.

3.3.5 S4

Yahoo Simple Scalable Streaming System (S4) [Neumeyer et al., 2010] is a general purpose
stream processing system built for large clusters and supporting massively parallel applications.
S4 o�ers a decentralized architecture where all nodes share same functions and responsibilities.

Query de�nition: S4 o�ers a simple programming interface based on the key/value data
model. A continuous query is de�ned as a sequence of user-de�ned operators following a pattern.
A method processEvent speci�es which keys are consumed by the operator and a method output
describes keys produced the operator. These methods have stateful variations which require
window speci�cation.

Query representation: S4 represents continuous queries as work�ows of Processing Elements
(PE) di�erent from PE presented previously. In S4, a PE is the combination of a functionality
which corresponds to the operator logic, the type of consumed events, the list of keyed attributes
the operator consumes and optionally considered values of keyed attributes. A PE may also be
associated to a Time-To-Live (TTL). If no stream elements enters a PE during its TTL, the PE
is discarded.

Window support: Time-based sliding and tumbling are supported in S4 through parame-
ters included in stateful operators. As iMR and C-MR, S4 takes advantage of sliding window
de�nition to compute incrementally results.

Congestion management: S4 integrates automatic failover but does not integrate mecha-
nisms to adapt continuous queries. Indeed, no mechanism can tackle the apparition of network
and computation bottlenecks. Moreover, routes are de�ned statically. It is also assumed that
key partitions de�ned by users do not involve major imbalance. Only the TTL may remove a
PE receiving no stream elements.

Target streams: S4 is the less �exible DSMS presented in this classi�cation so it is assumed
that input streams are steady and even. Even if the TTL allows the deactivation of idle PEs, it
is supposed that the value distribution does not change often.
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3.3.6 Data�ow

Google Cloud Data�ow15, or just Data�ow [Akidau et al., 2015], is MapReduce-based DSMS
designed natively for stream processing. Data�ow supports unordered data streams and provides
multiple windowing schema. It results of the extension of FlumeJava API [Chambers et al., 2010]
developed over Google Millwheel. FlumeJava is an API for the development of pipelines of
MapReduce jobs. It facilitates the creation, the execution and the modi�cation of such pipelines
through a simple programming interface providing high-level operators mapped automatically
on optimized MapReduce jobs.

Query de�nition: Data�ow provides two primitive operators:

• ParDo is the generic parallel function. It receives in input a stream element or a collection
of stream elements and apply a function DoFn on input elements. DoFn is de�ned either
by users in a high level imperative language like Java either with a high level operator
provide by FlumeJava API. For each stream element, it returns zero, one or many outputs.

• GroupByKey is a key grouping operator applying a function on collections of stream ele-
ments sharing a same key.

Users de�ne continuous queries through Data�ow API as sequences of ParDo/GroupByKey
pairs.

Query representation: Continuous queries are represented as pipelines of MapReduce jobs
composed of ParDo and GroupByKey operators. According to query de�nition, Data�ow can
merge ParDo functions on a single operator if they share same keys.

Window support: To apply windowing on stream elements, Data�ow enriches the key/value
data model with two additional metadata: event time and window. Event time corresponds to
the arrival date of a stream element and window refers to the window it belongs for GroupByKey
operators.

Congestion management: Data�ow only supports the adaptation of continuous queries at
implementation level. Data�ow performs implementation selection at runtime through Flume-
Java. Indeed, while using prede�ned operators, FlumeJava may have multiple implementations
and select the most appropriate one according to execution features like input size.

Target streams: The absence of load shedding and adaptation of operators limit the ability
of Data�ow to process even and uneven erratic streams. The algorithm selection is limited to
compensate a substantial variation in input rate and value distribution for all operators.

15https://cloud.google.com/data�ow
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4 Discussion

After a formalization of basic concepts about data streams, we introduced the problem of conges-
tion. In a real-time context, resources may not be adapted for computations during the complete
lifetime of a query. It requires to elastically adapt resources (i.e., infrastructure) and continuous
queries to processing requirements over time. To adapt the global capacity of the cluster, we pre-
sented solutions for substituting or adding processing units at runtime. Substituting processing
units allows to bene�t from more resources on a single processing unit but has many incon-
veniences. It requires to overprovision the execution support or to allow important migration
overheads which is not acceptable for low-latency applications processing streams continuously.
Adding processing units at runtime is supported in [Satzger et al., 2011] but is limited by the
number of available machines and �ts exclusively to cloud environments.

Elasticity at logical layer can be applied independently of the execution support. Main
patterns presented in section 1 allow removing congestion due to computation and network
bottleneck. Moreover, they can improve signi�cantly performance of DSMSs (e.g., operator
parallelization) when used at runtime. The triggering of such elastic techniques at runtime re-
quire a continuous monitoring of submitted queries coupled to a detection mechanism. This
mechanism relies either on external intervention (users or tier application) or on an automatic
method. Relying on external intervention limits the elasticity of DSMSs to user reactivity and
expertise. Automatic solutions based on queuing theory are limited by the static model used to
predict the behavior of DSMSs. Indeed, clusters executing continuous queries evolve over time
(e.g., node failure [Yang et al., 2012]) so a static model is not appropriate in a stream process-
ing context. Threshold-based approaches [Zaharia et al., 2012b, Chandrasekaran et al., 2003,
Noghabi et al., 2017] are exclusively reactive as they only trigger recon�guration according to
the current state of the system. Control-based [Abadi et al., 2005] and reinforcement learning-
based approaches [Amini et al., 2006, Biem et al., 2010] can anticipate congestion of operators
through a continuous adaptation of work�ows to workload. Nevertheless, �nding an optimal
con�guration may require an important number of interactions with the DSMS and induce re-
con�guration overheads.

Figure 8: Classi�cation of distributed DSMSs

To our knowledge, it appears that no solution integrates elastic mechanisms able to anticipate
critical �uctuations in input rate and value distribution.



58 Chapter 3. State of the art



4

A generic framework for elastic stream

processing: a global picture

Contents

1 The ORACL loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.1 Steps for query optimization . . . . . . . . . . . . . . . . . . . . . . . . 60

1.2 Adaptation levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.3 Optimization strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2 Orchestration of optimization . . . . . . . . . . . . . . . . . . . . . . . 67

2.1 Adaptation triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.2 Challenges and dependencies between adaptation levels . . . . . . . . . 68

3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

We presented a wide variety of DSMSs and suggest a classi�cation to highlight di�erences in
terms of target streams and congestion management between categories of DSMSs. It shows that
di�erent optimization techniques allow DSMSs to process streams elastically. For example, let
consider a continuous query Q1 consuming an uneven erratic stream S1. Adapting Q1 consists
in avoiding processing and network bottlenecks due to overload in input of operators while
critical increases in input rate happen. Triggering operator parallelization and scheduling is an
appropriate solution in that case. Moreover, as the distribution of values has an impact on
processing latency too, adapting computations to �uctuations in distribution of values consists
in balancing the load to avoid processing bottlenecks due to imbalance between equivalent tasks.
Nevertheless, there may be no satisfying solution based on load balancing if the parallelism degree
is undersized according to the input rate. It shows that the e�ciency of a con�guration may not
only depend on a single pattern but a combination of patterns.

According to the classi�cation of DSMSs suggested in the previous chapter, it appears, to our
knowledge, that no DSMS can handle e�ciently any type of streams. It highlight the di�culty to
extract features of DSMSs which bring a bene�t without limiting global elasticity or degrading
performance.

In this section, we focus on di�erent adaptation levels enabling elastic stream processing
through the identi�cation of their roles, which triggers are used to detect recon�guration needs
and relations between these levels. It facilitates the identi�cation of key aspects for elastic stream
processing and their impacts on execution properties (i.e., processing latency and result quality).

59
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Finally, we present common strategies used in literature and discuss their e�ciency while facing
di�erent stream types.

1 The ORACL loop

1.1 Steps for query optimization

In the previous chapter, we expose some patterns commonly used to optimize the treatment
of continuous queries presented in chapter 3 Table 1 (see page 26), a pattern may modify a
continuous query at di�erent scopes: the entire work�ow, a single operator or data lifecycle.
Nevertheless, modi�cations performed at each level may have an impact on other ones. In this
chapter, we aim at specifying the di�erent steps for query optimization. We present and detail
their roles and the relation order between them. Indeed, optimizing a continuous query requires
to follow a speci�c process composed of two main steps: the logical and the physical steps.
The logical step aims at de�ning an optimal work�ow according to input streams and composed
of operators potentially parallelized. The physical step aims at de�ning optimal assignment
and customization of tasks on processing units. By customization, we mean the choice of the
implementation and the selection of input data. For both logical and physical steps, we identify
two substeps: the inter and the intra-operator optimization. It de�nes an optimization process
composed of 4 steps performed in the following order:

• The logical inter-operator step aims at de�ning a near-optimal work�ow corresponding to
the submitted continuous query and according to stream �uctuations in terms of distribu-
tion of values.

• The logical intra-operator aims at de�ning appropriate parallelism degrees (i.e., number
of tasks) for each operator belonging to the work�ow according to stream �uctuations in
input rate.

• The physical inter-operator step looks for an optimal assignment plan of all tasks composing
a work�ow on available processing units. Criteria de�ning an optimal assignment plan
depends on user objectives in terms of resource usage.

• The physical inter-operator step de�nes optimal implementations for tasks according to
input stream properties (e.g., distribution of values) and manages data lifecycle.

1.2 Adaptation levels

Through the identi�cation of these optimization steps, we suggest an abstract framework which
formalizes the function of each step and existing dependencies between them according to query
and stream characteristics.

As illustrated on Figure 1, these levels de�ne an adaptation loop, denoted ORACL loop,
which is composed of steps Order (logical level and inter-operator step), Replicate (logical level
and intra-operator step), Assign (physical level and inter-operator step) and Custom Locally
(physical level and intra-operator step). Adaptation steps are revised according to a top-down
model. For example, a revision at Replicate involves revisions of Assign and Custom Locally
steps but not of Order step.

• The Order step performs an algebraic optimization of continuous queries. Let consider a
continuous query Q applying a global function f on inputs to generate outputs. An optimal
work�ow W of Q, from logical point of view, respects the following properties:
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Figure 1: ORACL loop

� W applies the function f on inputs so it is logically equivalent to Q.

� The sequence of operators composing W is de�ned such as the work�ow minimizes a
cost function.

• The Replicate step adapts parallelism degrees of operators in order to maintain processing
rates greater or equal to input rate. Let consider an operator Oi, with an input rate ri and
an average processing latency lati. As lati can be de�ned in second per stream element, the
inverse value 1

lati
corresponds to the processing rate pri of Oi. Maintaining pri greater than

ri is the major challenge of operator parallelization. Actually, if k tasks associated to an
operator process stream elements in parallel, they virtually multiply pri by k. Nevertheless,
partitioning and transmission overheads limit the bene�t brought by parallelization. In
addition, depending on the number of available processing units, increasing the parallelism
degree of an operator over a certain threshold may create concurrency between tasks.
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• The Assign step revises assignments of tasks on processing units, denoted scheduling plan,
in order to adjust resource usage to processing requirements. As mentioned above, the
de�nition of an optimal scheduling plan is guided by a targeted usage of resources. As
most continuous queries are composed of heterogeneous operators in terms of processing
requirements (e.g., stateless �lters and stateful joins), usage of resources on each machine
depends on the subset of operators assigned on it. An optimal scheduling plan should
ensure that each operator bene�ts of enough resources such as its processing rate is not
limited by resources.

• Finally, the Custom Locally step aims at taking advantage of local implementations of
operators in order to select an algorithm adapted to execution context. Indeed, the com-
putational complexity of equivalent implementations of an operator may di�er in term of
time (e.g., nested loop join or hash join). Selecting the most appropriate implementation
may increase signi�cantly the processing rate of a given operator.

1.3 Optimization strategies

As presented above, each step of the ORACL loop aims at producing a output which has speci�c
properties. However, if the behavior of each step can be de�ned in a generic way, it exists several
strategies to produce targeted output. The choice of the strategy depends on user objectives in
terms of performance and resource usage but also on technical constraints (e.g., query language
used to de�ne continuous queries). We provide a brief overview of common strategies used to
implement each step and detail their impacts on outputs.

1.3.1 Improvement through Order step

Figure 2: Order step

The Order step considers continuous queries de�ned by users. As presented in chapter
2 section 2.1, continuous queries can be declarative expressions (e.g., CQL expressions), se-
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quences of operators declared in a high level language [Peng et al., 2015, Zaharia et al., 2012b,
Yang et al., 2012, Akidau et al., 2013] or graphs of connected operators de�ned through a graph-
ical interface [Abadi et al., 2003, Abadi et al., 2005]. This step is only relevant for DSMSs rely-
ing on a declarative language. Moreover, a cost function is necessary to evaluate each possible
work�ow associated to a continuous query.

The generation of an optimized work�ow is totally dependent of the query language and possi-
bilities of algebraic optimization. While using a declarative language, some approaches [Arasu et al., 2004,
Chandrasekaran et al., 2003] use algebraic properties like traditional DBMS [Garcia-Molina, 2008].
Nevertheless, an optimal work�ow cannot be de�ned for an entire stream as its properties can-
not be anticipate at the initialization of the continuous query. Only some choices will not be
contradicted at runtime (e.g., projection of attributes before selective operators if there are
commutative), other permutations of operators are performed at runtime according to oper-
ator properties (e.g., selectivity factor). Approaches using graphical interfaces for query def-
inition [Abadi et al., 2003, Abadi et al., 2005] may use formal semantics of operators in order
to permute safely operators. Approaches relying on imperative languages [Peng et al., 2015,
Akidau et al., 2013, Noghabi et al., 2017, Akidau et al., 2015] cannot bene�t of such optimiza-
tion as there is no explicit semantic nor algebraic properties (e.g., commutative operator) linked
to operators.

1.3.2 Improvement through Replicate step

Figure 3: Replicate step

Once an optimized work�ow has been de�ned, parallelism degrees are set. Each operator of
the optimized work�ow is associated to a set of equivalent tasks. Stream elements are routed to
tasks according to a load balancing strategy. It is worth noting that operator parallelization and
load balancing are intrinsically linked to exploit fully data parallelism.

The parallelization of operators can be performed on user demand or automatically. Paral-
lelization of operators on user demand [Xu and Peng, 2016] relies on user expertise. Automatic
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parallelization of operators is triggered automatically at runtime to compensate a signi�cant gap
between input and processing rate. Some approaches [Schneider et al., 2009, Gedik et al., 2014]
rely on trial-and-error algorithms to explore parallelism degrees for each operator independently
of all others and associate a rank of input rates managed e�ciently.

A major risk of operator parallelization is that the frequency of recon�gurations becomes too
important. Indeed, creating a thread on the �y and balance partitions between new tasks involve
important overheads. To limit this negative e�ect, authors [Gedik et al., 2008, Biem et al., 2010]
suggest to create threads once and instead of deleting them when they are not necessary, threads
are only put into sleep.When additional working threads are necessary, the DSMS just wake up
some sleeping threads. Another major inconvenient common to most solutions is the paralleliza-
tion of operator independently of the e�ect on downstream operators. Indeed, modifying the
parallelism degree of an operator may have an impact on its processing rate and throughput.
Missing this relation between operators �xed during Order step may cause instability due to
contradictory recon�guration.

Once parallelism degrees have been set for each operator, it is necessary to de�ne a strategy
for load balancing between tasks. As presented in chapter 3 section 1, maintaining a balance
between tasks of an operator is crucial to bene�t completely from data parallelism. For example,
let consider an operator Oi divided into tasks T1 to Tn. During a period of time ∆, each task
Tj receives in input a partition Pj of global inputs P which may di�er from other partitions in
term of volume and distribution of values. According to this and as all tasks apply the function
corresponding to Oi, overall processing times may be di�erent for each task. So, the global
processing time of P by Oi is at least the greatest of all processing times of its tasks. In this
context, it is crucial to minimize imbalance in term of processing time between tasks.

To do so, we distinguish three categories of load balancing strategies:

• Round-Robin strategies [Abadi et al., 2003, Abadi et al., 2005, Chandrasekaran et al., 2003,
Peng et al., 2015] distribute fair numbers of stream elements between tasks. This strategy
is e�cient to balance load under two assumptions. First, the input stream is even so parti-
tions of same size involve theoretically same processing times. Secondly, all tasks has same
available resources (CPU, RAM) to process stream elements.

• Key-based strategies [Neumeyer et al., 2010, Akidau et al., 2013, Akidau et al., 2015] asso-
ciate a key set to each task and route stream elements accordingly. It assumes that input
streams are even and key distribution is uniform over time. To remove the uniformity
constraint, authors in [Rivetti et al., 2015] suggest an approach which builds balanced key
groups associated to each task according to key distribution at runtime. This approach
serves as guarantee that key grouping maintains balanced partitions in term of volume over
time.

• Load-aware strategies aim at balancing processing times between tasks. In [Rivetti et al., 2016],
a load balancing strategy based on sketches associates average processing times to encoun-
tered keys in order to route dynamically stream elements on tasks able to process them
with shortest delays. This solution has the advantage to be applicable on both even and
uneven streams with a reduced footprint on memory.

1.3.3 Improvement through Assign step

The de�nition of the scheduling plan is guided by an objective function describing an optimized
usage of resources. We distinguish three main objective functions for operator scheduling:
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Figure 4: Assign step

• The �rst objective function fequality can be denoted as equality-aware. They aim at bal-
ancing processing requirements evenly between all processing units. More formally, let
consider n processing unitsM1,M2,...,Mn described by resource usages U1, U2,..., Un. A
optimal scheduling plan assigns operators such as:

fequality = argmin



√√√√ 1

n

(
n∑

i=1

U2
i

)
− Ū2


 (1)

where Ū is the mean value of all resource usages. It corresponds to minimize standard
deviation of resource usage among processing units. Spreading computations uniformly
over processing units has the advantage to spread the impact of an overload over all
processing units. Commonly, this strategy is implemented through a Round-Robin dis-
tribution [Xu et al., 2014, Zaharia et al., 2012b] of operators on slots or more generally
processing units. Nevertheless, it assumes that all operators require same resources which
may be wrong in real-world applications.

• Tra�c-aware objective function ftraffic aims at minimizing the global network tra�c. As
presented in [Xu et al., 2014], transmitting important volumes of data over network has a
signi�cant impact on global processing latency. Indeed, considering a parallelized work�ow,
edges de�ne transmissions of stream elements between operators, denoted inner-streams.
These inner streams can be supported through shared memory or network involving se-
rialization/deserialization and transmission overheads. Assigning operators on processing
units such heaviest inner streams, in term of volume, are supported by shared memory
improves signi�cantly overall latency and throughput. Formally, considering inner streams
S1, S2,..., Sn belonging to a parallelized work�ow, an optimal scheduling plan is de�ned as
follow:
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ftraffic = argmin

(
n∑

i=1

|Si|
)

(2)

where |Si| is the volume of stream elements transmitted through the inner stream Si.
A side-e�ect of this strategy is to concentrate consecutive operators on same processing
units. In comparison to equality-aware strategy, it limits signi�cantly the risk of network
bottlenecks as heaviest inner-streams are supported by shared memory but it increases
the risk of processing bottlenecks as operators manipulating greatest volumes of data are
assigned on same resource.

• Resource-aware objective function fresource aims at minimizing combined usage of all re-
sources (i.e., CPU, memory and bandwidth). This approach extends the tra�c-aware
strategy through the consideration of CPU and memory constraints. In [Peng et al., 2015],
authors suggest to consider static CPU and memory requirements for each operator and
to assign operators such as network is minimized and each operator meets its resource
requirements. It corresponds to a multi-dimensional multi-choice knapsack problem which
is solvable through a heuristic algorithm with a polynomial complexity. The main di�er-
ence with ftraffic is the consideration of explicit resource requirements which bound the
minimal network tra�c.

1.3.4 Improvement through Custom Locally step

Figure 5: Custom Locally step

As presented in section chapter 3 1, this step applies algorithm selection to adapt operator
implementation to inputs. Of course, this step is relevant only for DSMSs o�ering many im-
plementations per operator. It mainly corresponds to DSMSs based on a declarative language.
The choice of the algorithm may have a signi�cant impact on processing latency. The exam-
ple of join algorithms is the most representative as equivalent implementations have di�erent
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time complexity. Borealis [Abadi et al., 2005] takes advantage of its algebra to provide di�er-
ent implementations of its prede�ned operators. Each processing unit is provisioned with all
implementations and operators select at runtime which one �ts the best to execution context.

In [Welsh et al., 2001], authors give a di�erent semantic to algorithm selection as it corre-
sponds to a controlled load shedding. Indeed, in case of overload, operators managed by SEDA
can apply a degraded service. It corresponds to a implementation of the service integrating a
sampling mechanism to reduce the workload.

An other load shedding strategy has been introduced in [Babcock et al., 2004] and developed
in [Tatbul et al., 2007]. It relies on the introduction of shedders in work�ows composed of aggre-
gation operators (e.g., sum or count). The aimed shedding ratio of the work�ow, i.e. the ratio
between the input rate before and after shedding, is used to compute where shedders with their
respective shedding ratios should be placed such as the relative error due to shedding does not
exceed a maximal threshold.

2 Orchestration of optimization

2.1 Adaptation triggers

To enable dynamic adaptation of continuous queries, a DSMS needs a monitoring module which
observes continuously relevant metrics and optionally a set of parameters which discriminate
normal execution of continuous queries. We describe here metrics observed at each level and
optional parameters used to trigger each step of the ORACL loop.

2.1.1 Order step

As mentioned above, the Order step aims at optimizing continuous queries according to algebraic
properties of operators. It corresponds to dynamic operator reordering (see 3 section 1). Re-
ordering is based on evolution of selectivity factors. For reminder, considering two commutative
operators O1 and O2, if O2 is more selective than O1 and is executed downstream, permuting
O1 and O2 reduces the volume of data exchanged between these operators without modifying
the global semantic of the query. In addition to selectivity factors and volumes of data, DSMSs
need algebraic properties of all operators composing the work�ow.

2.1.2 Replicate step

Detecting a need of operator parallelization relies on a continuous monitoring of input and pro-
cessing rates. As explained above, modifying the number of tasks associated to an operator has
an impact on its global processing rate. Adjusting parallelism degrees allows operators to process
stream elements as soon as they arrive and prevent processing bottlenecks due to an accumula-
tion of pending stream elements. In some approaches [Schneider et al., 2009, Gedik et al., 2014],
throughput is observed instead of processing rate. It relies on the assumption that selectivity
factor does not vary signi�cantly so for a given input rate, a maximal throughput could be
identi�ed and remain valid for the entire stream.

2.1.3 Assign step

Two event types can trigger reassignment of operators at runtime:
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• Overload and underload of processing units. While a processing unit is overloaded according
to some resources (CPU and RAM), it is necessary to move some operators assigned to
this processing unit on others which have enough available resources. An overload means
that usage of some resources have exceeded prede�ned thresholds. This detection could
be done according to a resource monitoring at di�erent scopes. Some DSMS like Apache
Storm or Apache Flink allow users to instantiate multiple processing units on a single
machines which have declared resources. Depending on the resource sharing policy between
processing units (i.e., if resources are exclusive to a processing unit or not), monitoring of
resources is relevant only at machine or processing unit scope.

• Network tra�c. The appearance of network bottlenecks requires to revise the scheduling
plan [Xu et al., 2014] in order to prevent an important degradation of the overall latency.
Such bottlenecks are detected through an observation of inner-stream rates coupled with
the current scheduling plan. For each inner-stream supported by network interface, if the
rate is limited by the bandwidth, assignments of associated operators should be revised.
More generally, authors show in [Xu et al., 2014] the interest to keep dynamically heaviest
inner-streams on same machines.

2.1.4 Custom Locally step

Like the Order step, the Custom Locally step is only relevant for DSMSs based on a declarative
language. Indeed, changing the local implementation of an operator depends on both inputs and
implementation properties. For example, considering a common operator like join, two frequent
implementations are nested-loop join and hash-join. Depending on the ratio between cardinal-
ities of driving and probed relations, nested-loop implementation may be faster or slower than
hash-join implementation. So, while changing the algorithm, speci�c metrics may be required
according to implementation properties.

If implementations associated to an operator only suggest more or less degraded versions of
the same algorithm (i.e., versions integrating a sampling or load shedding policy), selecting an
other implementation at runtime relies on the ratio between input and processing rate. It is closed
from the triggering condition for operator parallelization but it is commonly used when operator
parallelization is not applicable (e.g., maximal usage of resources or absence of parallelization
support at runtime).

2.2 Challenges and dependencies between adaptation levels

As presented on Figure 1, there is an execution order between steps . Considering an adaptation
level, it results that choices performed at previous step have an impact on optimization possibil-
ities. We present here dependencies be adaptation levels through a generic description of each
intermediate output.

In output of theOrder step, an optimal work�ow is de�ned. It �xes data transmission between
operators which has an impact on data volumes transferred during processing. Depending on
these transmissions, more or less important volumes must be exchanged to execute the query
de�ned by a user. Generating a non-optimal work�ow in output of this step may cause overloads
on inner-streams which must be managed during next steps despite they could be avoided through
algebraic optimization.

This optimized work�ow is used by the Replicate step to generate an optimal and parallelized
work�ow. It is composed all operators to assign on processing units. It �xes the parallelism
degree for each operator which bounds theoretical processing rates. In addition, for parallel
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areas, the load balancing has been de�ned and should compensate �uctuations in distribution
of values while processing uneven streams. So, choices made during this phase de�ne which
�uctuations in input rate and distribution of values can be handled without recon�guration.
According to the current input rate, underestimating parallelism degrees for some operators may
lead to processing bottlenecks which degrade the global latency. The single solution to manage
an overload at �xed parallelism degree is load shedding. So, it requires to degrade result quality
to maintain acceptable latency according to user constraints. At the opposite, overestimating
parallelism degrees add more operators to schedule without bene�t in terms of performance.
Moreover, it degrades global latency because of partitioning and routing overheads.

According to a set of available processing units, a scheduling plan assigning each operator of
the parallelized work�ow on processing units is generated. It de�nes the set of active processing
units and the network tra�c between them. In case of e�ective overload (e.g., CPU overload) or
deviation from the optimal scheduling plan, the Assign step is revised to �nd to avoid node failure.
In the case of heterogeneous processing units in terms of available resources (e.g., processing units
shared by multiple continuous queries) or available implementations of operators, assignments
restricts opportunities of local customization.

Finally, when all operators are assigned, the Custom Locally step associated them to imple-
mentations. Stream elements can be routed to operators and computed according to selected
implementations.

To sum up, the management of �uctuations in input rate and value distribution can be done
at di�erent steps. Nevertheless, according to the order on adaptation levels, optimizing the
execution of a continuous query early o�ers favors performance and result quality.

3 Discussion

The ORACL loop gathers key aspects for elastic stream processing and order them into steps. It
highlights possibilities of elastic optimization while processing streams and points impacts of each
step on global execution. For example, the Replicate step sets parallelism degrees of operators
and load balancing strategy between tasks. It has a de�nes average processing rates of operators
which have a direct impact on maximal input rate operators are able to absorb. Moreover,
it shows that the global performance of a DSMS is the result of a sequence of optimization
decisions. To obtain a full elastic stream processing, this sequence should be revised dynamically
to maintain a near-optimal con�guration according to �uctuations in input rate and distribution
of values.

Nevertheless, the ORACL loop is not fully applicable to any DSMS to enable a full elastic
stream processing. For example, DSMS based on imperative de�nition languages cannot perform
the Order step as operators are user-de�ned and do not have explicit algebraic properties (e.g.,
commutativity). In consequence, such DSMS rely on user expertise for the de�nition of optimal
work�ows. Moreover, algorithm selection cannot be performed during Custom step due to the
absence of di�erent implementations. It limits signi�cantly optimization at query and operator
scopes.

Concerning Assign step, several works [Aniello et al., 2013, Xu et al., 2014, Peng et al., 2015]
suggested solutions using heuristic algorithm to obtain near-optimal scheduling plans according
to an objective function as discussed above. The de�nition of a scheduling plan is mainly of-
�ine [Aniello et al., 2013, Peng et al., 2015] and takes as inputs a set of operators, a set of avail-
able processing units and optional constraints speci�ed by users. Then, this initial scheduling
plan may be revised dynamically through migrations of operators at runtime to remove machine
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overloads when necessary [Xu et al., 2014].
It appears that Replicate step lacks strategies able to recon�gure e�ciently parallelism de-

grees of operators at runtime. In [Xu and Peng, 2016], a solution named Stela is able to identify
critical operators in a work�ow and according to available resources, adjust parallelism degrees
in order to maximize global throughput. Nevertheless, this solution relies completely on user
expertise and reactivity to add or delete resources when necessary. In several cases, end users
cannot have such control on execution (e.g., execution of continuous queries on the cloud through
a service provider). In [Schneider et al., 2009, Gedik et al., 2014], authors suggest solutions en-
abling automatic parallelization of operators at runtime over System S [Gedik et al., 2008]. Their
approaches relies on processing elements (see 3 section 3) to modify parallelism degree of each
operator independently of all others. The parallelization strategy relies on reinforcement learn-
ing based only on input volumes to build a speci�c knowledge base for each processing element
without consideration for modi�cation performed upstream. So, the global convergence time
may be in�nite in presence of erratic streams. Moreover, as parallelism degrees are exclusively
associated to ranges of input rates, uneven streams may extend considerably the duration of
the learning phase. Finally, all solutions for automatic parallelization estimate appropriate par-
allelism degrees according to a stable input stream, i.e., steady streams like GPS signals or
temperature sensors in a smart building context. It means that in the case of an input stream
increasing quickly, recon�guration of parallelism degrees will be frequent and involve important
overheads. Identifying evolution trend of input stream may avoid these overheads in most cases.
Moreover, adapting the parallelism degree of an operator without taking upstream operators into
account degrades the consistency and the stability of the DSMS. For example, while observing a
signi�cant increase of input rate upstream a costly operator (e.g., join) it is interesting to adapt
its parallelism degree in a proactive way so the impact of the overload is soften by the quick
adaptation.

Concerning load balancing, load-aware strategy presented in [Rivetti et al., 2016] builds bal-
anced stream partitions between tasks based on e�ective processing latency. So, it is independent
of stream type according to distribution of values and application (i.e., even or uneven).
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Through the presentation of the ORACL loop and bibliography, we highlighted the need of
automatic, reactive and accurate strategies for operator parallelization. Once on user demand
approaches require user presence and expertise, the e�ciency automatic approaches based on
reinforcement learning are limited by stream properties in terms of �uctuations in input rate
and distribution of values. To tackle this issue, we suggest an auto-parallelization strategy,
named autoscale, which prevents operator congestion and limit degradation of result quality.
This approach relies on an automatic and dynamic adaptation of resource consumption for each
continuous query. This solution takes advantage of i) a metric estimating the activity level of
operators in the near future ii) the autoscale approach which evaluates the need to modify
parallelism degrees at operator and work�ow scope.

71
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1 Execution context

1.1 Assumptions

According to the execution context presented in chapter 2 section 2.2, we assume that there are
enough available resources to process all queries (H1).

We consider that the DSMS manages state migration when some tasks of operators are added
or deleted (H2). Otherwise, it requires to manage states [Hirzel et al., 2014] as they allow the
system to distinguish stream elements waiting in pending queues from ones being processed and
waiting for the completion a current computation window. This management is out of the scope
of this chapter.

Concerning the execution of each query, we consider that all operators can be processed in
parallel by multiple tasks and scheduled potentially on di�erent machines. Nevertheless, the
global incoming load is divided evenly between tasks applying a same operator (H3).

These tasks are assigned on machines according to a scheduling strategy. We assume that the
scheduling strategy revises periodically assignments of operators. Moreover, this strategy assigns
at most one task for each operator on a given processing unit (H4) so there is no concurrency
on resource usage (CPU,RAM) between two tasks of a same operator.

Finally, the auto-parallelization strategy is integrated to a system processing streams elas-
tically according to the ORACL loop (see chapter 4 section 1). So, modi�cations of operator
ordering and scheduling are performed respectively before and after any modi�cation of paral-
lelism degree (H5).

1.2 Challenges

Each task applies a function de�ned by a user on each stream element in input. Depending on the
time complexity of its function and available CPU, an operator can process, in average, a certain
number of items per time unit. This number is called the capacity of the task. This capacity
limits the input rate an operator can handle. According to his, a congestion may happen when
the input rate is greater than the capacity. In order to limit the impact of a critical input rate,
a solution consists in modifying the parallelism degree of the operator in order to distribute the
incoming load between more tasks.

In order to prevent congestion, a DSMS should be able to detect when the rate in entry of
an operator reaches or exceeds its capacity. Indeed, a detection based on resource consumption
(CPU or memory) only allow to remedy an e�ective congestion. It is not satisfying because the
quality of treatments is deteriorating before the system recon�gures itself. Even if no stream
element is lost, the overall latency su�ers from the congestion of one or many operators.

Yet, it is not easy to decide judiciously when increasing (scale-out) or decreasing (scale-in) the
parallelism degree of an operator. Actually, given a task, if its input rate exceeds its capacity,
the associated operator tends to congestion. But the congestion is e�ective only if the input
rate remains equal or higher than the capacity for a signi�cant time. Otherwise, a scale-out is
triggered too early lead to the creation and assignment of one or many unnecessary tasks. Thus,
it degrades the stability of the system and generates important recon�guration overheads. It
is crucial that a relevant parallelization strategy takes the stability of the system into account.
Moreover, it is important that this strategy reduces the parallelism degree of underused operators.
It �ts global capacity to processing needs and, depending on the scheduling strategy, it allows
to free unnecessary processing units which become available for other queries.

To sum up, the automatic and dynamic adaptation of capacities of operators requires that a
DSMS is able to detect potential congestion before it becomes e�ective in most cases. Moreover, a
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relevant strategy should not overreact to sudden peaks of input rate. It degrades the stability and
the performance of the DSMS because of recon�guration overheads. Finally, the system should
�t capacities of operators to their processing needs in order to consume only necessary resources.
The objective of an auto-parallelization strategy is then to detect when a recon�guration is needed
and to adjust accurately the parallelism degree. Finding a satisfying compromise between these
issues is a major challenge for elastic stream processing. Indeed, with the growing popularity of
pay-as-you-consume solutions (Amazon EC2, Microsoft Azure...) and the emergence of Green
IT, it is crucial for the current generation of DSMS to take elasticity of treatments into account.

1.3 Overview of the autoscale approach

From these observations, let consider streams evolving progressively on a time interval ∆. Ex-
tracting knowledge from the recent history of stream �uctuations through time-series analysis
allows to estimate appropriate parallelism degrees of operators with an accuracy depending on
the regression model (see chapter 3 section 2.2). Indeed, time-series analysis presents the advan-
tage to forecast future states of a system without an a priori knowledge so parallelism degrees of
operators can be adapted in constant time independently of stream rates encountered previously.

In the remainder of this chapter, we suggest an auto-parallelization strategy, named au-

toscale based on time-series analysis on recent history of operators as presented in section2.
These histories are built by a monitoring module which observes metrics describing the execution
of each operator. A derived metric discriminating potential processing bottlenecks is computed
from monitored ones. The computation of this metric and the interpretation of its possible values
are detailed in section 3. Once a suggestion of recon�guration is available for each operator, an
algorithm checks the consistency of each suggested recon�guration at work�ow scope. Checking
the consistency at work�ow scope consists in identifying the set of necessary recon�gurations
according to processing requirements. It aims at improving the stability of the system. Steps
of this algorithm are presented in section 4 and we motivate its choice through highlighting ex-
amples. Then, we detail, in section 5 how we compute parallelism degrees according to globally
consistent estimations of workloads. Finally we discuss limits and advantages of our approach in
section 6 and expose an empirical study justifying the selected strategy for consistency checking.

2 Monitoring management

To identify potential congestion of operators through time-series analysis, we need to build
recent histories of operators. These histories are composed of metrics describing execution states
of operators. In this section, we suggest an attribute/value model to represent operators. Values
are gathered over sliding monitoring windows presented below.

2.1 Operator model

We consider as operators, in the monitoring model, logical operators belonging to the optimized
work�ow (see chapter 4 section 1). Thereafter, we describe operators at any timestamp t with
three metrics: input load, pending queue size and average processing latency.

• The input load corresponds to the number of received stream elements.

• Pending queue size matches the number of stream elements pending in operator queue as
illustrated on Figure 1.
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• The average processing latency is the average processing time per stream element without
distinction for each value appearing in the stream.

Figure 1: Operator model

For each metric, we consider the recent history. As logical operators may be applied by
many tasks, each value belonging to a history is the aggregation of measured values for all tasks.
For example, let consider an operator Oi applied by tasks T 1

i and T 2
i , the number of stream

elements in input of Oi at a timestamp t0 is the sum of input stream elements of T 1
i and T 2

i . We
also consider the sum to aggregate pending queue size. Nevertheless for the average processing
latency, we select the maximal value between average processing latency of T 1

i and T 2
i . So,

we consider that the operator Oi is limited by its slowest task, i.e. the task with the greatest
processing latency.

2.2 Formalization

Let T = (O,V) be the topology of a continuous query represented as a direct acyclic graph where
O is the set of operators and V the set of streams.

Figure 2: Monitoring window

Let F be a set of monitoring sliding windows Fi = {(F ij )}j∈N+ . Each window Fi is associated
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with the operator Oi, as illustrated on Figure 2, and is composed of iterations F ij . Each F ij is
de�ned by a duration ∆ and groups measurements collected during this interval. These mea-
surements are done according to a prede�ned set of timestamps Mi = {mi

1,m
i
2, ..., m

i
n}n∈N+ .

For each operator Oi, we collect measurements taking into account items received and processed
in the interval [mi

k−1,m
i
k[ with k=1,...,n. It is worth noting that a master process (e.g. Nim-

bus for Storm or JobTracker for Hadoop) serves as guarantee that measurements are collected
synchronously on each processing unit.

In order to compute relevant metrics from these monitored values, some constraints must be
considered:

• The interval [mi
k−1,m

i
k[ should be greater than the time required to pre-process and store

measurements in a standard database management system, which is around a second. It
reduces redundant measurements and massive monitoring overheads.

• The duration ∆ de�ning the size of the monitoring should be greater than all processing
window sizes of stateful operators belonging to T . It ensures that all metrics presented in
the remainder of this section can be computed for both stateless and stateful operators.
Indeed, if a stateful operator computes results during a duration greater than ∆, it is
impossible to analyze multiple measurements within a single window.

• A grace period must be considered after each recon�guration triggered by autoscale.
Variations in input rates due to system stabilization are not considered during this period
of time. In the remainder of this chapter, we consider a grace period of ∆ after each
recon�guration.

Let Ri be the set, potentially in�nite, of stream elements received by operator Oi. We
consider Ri,j as the subset of stream elements received by Oi during the iteration F ij , and Rik
the subset of elements received between [mi

k−1,m
i
k[. In the example presented on Figure 3, Ri,j

is the sum of measurements Ri0 to Ri4, and Ri,j+1 the sum of measurements Ri1 to Ri5.
In addition to the number of stream elements received, we collect the processing latency per

stream element of the operator observed during F ij , denoted LatF i
j
. This does not include the

time an item may spend in pending queues.

3 Detection of recon�guration needs

Now, that we have detailed how each operator belonging to a work�ow is monitored, we focus
on how recon�guration needs and opportunities are detected from observed metrics. An auto-
parallelization strategy prevents congestion without degradation in result quality only if it can
anticipate appearance of processing bottlenecks. According to this requirement, it is necessary
to estimate input load and capacity in near future for each operator. On the contrary, if the
input load decreases signi�cantly, the capacity should be decreased accordingly to avoid waste
of resources. In the remainder, we detail how autoscale detects recon�guration needs through
estimations of input load and capacity in near future.

3.1 Estimation of input load in near future

Let consider an operator Oi observed at the start of an iteration F ij of the monitoring window
Fi. The global workload of Oi during F ij , denoted Inputij corresponds to the number of stream
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elements received during F ij added to the total number of stream elements pending in input
queues of tasks applying Oi at the end of the previous iteration F ij−1 of the monitoring window.
This workload is expressed in formula (1).

Inputij = |Ri,j |+ pendingF i
j−1

(1)

As illustrated on �gure 3, the e�ective number of received elements |Ri,j | cannot be computed
exactly before the end of F ij . Nevertheless, to anticipate an eventual congestion of Oi during F ij ,
it is possible to approximate |Ri,j | at the end of F ij−1.

Figure 3: Recent history F ij−1 at the start of iteration F
i
j

The estimation of |Ri,j | can be performed through a linear regression model based on mea-
surements collected during F ij−1. Let f

i
j−1 be the a�ne function computed by linear regression

as illustrated on �gure 4. For each timestamp mi
k corresponding to a future measurement in F

i
j ,

f ij−1 is applied to estimate the number of received stream elements Rik. So, the total number of
stream elements received during F ij is estimated as in formula (2) by |EstimRi,j |:

|EstimRi,j | =
∑

mi
k∈Mi

df ij−1(mi
k)e (2)

It is worth noting that some regression models have been tested without improving signi�-
cantly the accuracy of estimations.

With the knowledge of |EstimRi,j |, it is possible to estimate the expected workload during
F ij at the end of F ij−1 according to formula (3).

EstimInputF i
j

= |EstimRi,j |+ pendingF i
j−1

(3)

According to formulas (1) and (2), the workload of each operator can be estimated with a
maximal anticipation ∆, where ∆ is the size of each iteration of the monitoring window. The
estimation of the workload is updated at each end of an iteration which corresponds to the ac-
quisition of a new measurement. It allows to keep estimations close from e�ective workloads. To
optimize the computation of the estimated workload, sums used for regression are updated incre-
mentally instead of recalculating aggregates common to overlapping iterations of the monitoring
window.
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Figure 4: Estimated number of received stream elements over F ij

3.2 Estimation of processing capacity in near future

Now that an estimation of future workload has been computed for each operator, it is necessary
to estimate the capacity in near future for each of them. Thus, it will be possible to determine if
the capacity of an operator �ts the expected workload during next iteration F ij . To do so, we aim
at estimating the number of stream elements each operator should be able to process during F ij .
The processing capacity of an operator Oi depends on the average number of stream elements Oi
has been able to process during the previous iteration F ij−1. This number can be computed from
the average latency per stream element of Oi during F ij−1, denoted LatF i

j−1
. Thus the capacity

CapacityF i
j−1

is computed according to the formula (4).

CapacityF i
j−1

=
1

LatF i
j−1

×∆× degj−1(Oi) (4)

As the processing latency may �uctuate over time, we take the covariance between CapacityF i
j−1

and previous iterations into account to estimate the expected capacity during F ij . The estimated
capacity of Oi is computed as follow:

EstimCapacityF i
j

= CapacityF i
j−1

+ εi (5)

where εi is the covariance between the capacity during F ij−1 and the capacities observed
during the previous iteration of the monitoring window.

3.3 Identi�cation of potential congestion at operator scope

We have presented methods to estimate input workload and processing capacity in near future
at operator scope. To identify if a modi�cation of parallelism degree will be bene�cial to an
operator, it is necessary to evaluate if the operator will be able to process its estimated workload.
Intuitively, for a given operator Oi, if the estimated workload exceeds the capacity, Oi will
accumulate stream elements on its pending queue and may become a processing bottleneck. At
the contrary, if the capacity exceeds signi�cantly the estimated workload, it means that the
parallelism degree of Oi is oversized for future processing requirements and could be reduced to
save resources.
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3.3.1 Local estimation of activity level

To represent the balance between estimated input load and capacity, we suggest the notion of
activity level.

De�nition 16. (Activity level) Let consider an operator Oi applied by a set of tasks observed at
the start of the iteration F ij of a monitoring window. The activity level of Oi is the ratio between

estimations of its input load and its processing capacity on F ij .

Applied at operator, or local, scope, the Local Activity Level, denoted LAL, is de�ned in
formula (6).

LALF i
j

=
EstimInputF i

j

EstimCapacityF i
j

(6)

The LAL is said local because it relies exclusively on operator history without consideration
for upstream operators. It is computed at the end of each iteration of the monitoring window
independently for all operators belonging to a work�ow. From the value of the LAL, a modi�ca-
tion of parallelism degree can be suggested to �t current capacity to estimated workload in near
future.

3.3.2 Identi�cation of activity states

Let θmin and θmax be two thresholds delimiting respectively a low and a high activity level, with
θmin, θmax ∈ ]0;1]. For a given operator Oi, modi�cations of parallelism degrees are suggested
according to the following policy:

• If LALF i
j
≤ θmin, the local activity of the operator is 'low' because operator capacity is at

least 1
θmin

greater than the estimated workload EstimInputF i
j
.

• If θmin < LALF i
j
≤ θmax, the local activity of the operator is 'medium' because the operator

is able to process all items during F ij butEstimInputF i
j
is greater than θminEstimCapacityF i

j
.

• If θmax < LALF i
j
≤ 1, the local activity of the operator is 'high' because the operator has

just the capacity to process stream elements waiting to be processed during F ij .

• If LALF i
j
> 1, the local activity of the operator is then 'critical' because the operator is

not able to process EstimInputF i
j
with its estimated capacity EstimCapacityF i

j
during

F ij .

4 Consistency at work�ow scope

We have determined processing requirements of each operator in near future according to their
own histories. From activity states recommended locally for each operator, we could trigger scale-
in and scale-out without considering the upstream and downstream operators. Nevertheless,
when the activity level is critical, a modi�cation of the parallelism degree of an operator may
a�ect the throughput of the operator. By consequence the input rate of downstream operators
may be a�ect accordingly. If parallelism degrees of multiple operators are changed simultaneously,
it may lead to inconsistent recon�gurations while considering a work�ow in its entirety.
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Figure 5: An example of inconsistent recon�guration at work�ow scope

For example, let consider a work�ow W and let suppose that the system applies suggestions
of recon�guration computed locally.

As illustrated on �gure 5, performing a scale-out increases the throughput of an operator so
the input load of downstream operators will increase accordingly after recon�guration. Consid-
ering that modi�cations of parallelism degrees are performed simultaneously for all operators in
order to minimize recon�guration overheads, three inconsistent cases may occur after recon�gu-
ration:

• If a scale-out is performed upstream and a scale-in is performed locally (see �gure 6), it
may cause a congestion because the input rate increases while the capacity decreases. Of
course, it depends on amplitudes of scale-out and scale-in.

Figure 6: Potential inconsistent case 1

• In the same logic, if a scale-out is performed upstream and nothing is changed locally (see
�gure 7), the operator may have a high or critical activity level in near future and it is
necessary to reevaluate if the current parallelism degree will handle the increasing load.

Figure 7: Potential inconsistent case 2
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• Finally, when scale-out is performed upstream and locally (see �gure 8), and it is necessary
to reevaluate if the expected capacity after recon�guration will be appropriate to handle the
input load. Indeed, a scale-out suggested locally may be based on a undersized estimation
of local input load. By consequence, it may involve an additional scale-out later which
degrades the stability of the system.

Figure 8: Potential inconsistent case 3

It appears necessary to consider dependencies between operators while computing the set of
recon�gurations to perform. Nevertheless, it requires to evaluate the impact of a recon�guration
on downstream operators.

4.1 Construction of the instantaneous graph of local activities

To tackle the consistency issue at work�ow scope, we suggest an instantaneous graph of local
activities (IGLA) which allows to analyze the activity of an operator and take activities of
upstream operators into account. The IGLA sums up metrics necessary to evaluate the impact
of a recon�guration on downstream operators.

Figure 9: An example of IGLA

As illustrated on �gure 9, an IGLA is an attributed graph where each vertex corresponds to an
operator of the work�ow to recon�gure. Each vertex is associated to a vector of attribute/value
pairs where each attribute corresponds to a metric computed locally as shown on �gure 9. In-
deed, from local estimations, we can infer which modi�cations should be applied and detect
inconsistencies as explained above.

4.2 Evaluation of recon�guration impact

Let consider a monitored operator Oi during an iteration F ij . We have measured the total
number of stream elements it has processed, denoted processedF i

j
, and the total number of

stream elements it has emitted during F ij , denoted outputF i
j
. Considering that Oi can be selective

(a �lter, a join...), we compute its selectivity factor SFF i
j
during the iteration F ij according
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to formula (7). It is worth noting that processedF i
j
is a measurement and not a theoretical

estimation like CapacityF i
j
.

SFF i
j

=
outputF i

j

processedF i
j

(7)

According to the estimation of incoming load EstimInputF i
j
and the current capacity CapacityF i

j

of the operator Oi, we de�ne the estimated number of processed elements during the next itera-
tion, denoted EstimProcessedF i

j
, according to formula (8).

EstimProcessedF i
j

= min(EstimInputF i
j
, CapacityF i

j
×∆) (8)

Indeed, an operator can at most process the number of items corresponding to its capacity
per time unit multiplied by the duration of an iteration. With this estimation and the selectivity
factor SFF i

j
, we estimate then number of items emitted by Oi on F ij+1, denoted EstimOuputF i

j+1

thanks to the following formula:

EstimOutputF i
j+1

= EstimProcessedF i
j
× SFF i

j
(9)

According to this value, it is possible to have a complementary estimation of the incoming
load of next operators. Actually, let consider a child operator Oc receiving its inputs from a
parent operator Op. The value EstimOutputF p

j+1
is intrinsically di�erent from EstimInputF c

j

because it is not based on items already received by Oc as illustrated on Figure 10. Indeed,
EstimOutputF p

j+1
is computed from items received and processed by the previous operator, in

this example, Op. Intuitively, it gives a greater anticipation of critical variations of the global
input rate.

4.3 Consistency checking at work�ow scope

So, still considering an operator Oc receiving its inputs from an operator Op, we have at disposal
two distinct estimations of the incoming load of Oc: its local estimation EstimInputF c

j
and the

global estimation EstimOutputF p
j+1

. The choice of the estimation to consider depends on which
aspect the DSMS should favor.

Indeed, if the DSMS serves as guarantee that the capacity of each operator remains great
enough to absorb its incoming load, the maximal value betweenEstimInputF c

j
andEstimOutputF p

j+1

is considered to adjust the parallelism degree of Oc. According to available estimations and H1,
it ensures that each operator is able to process all incoming elements. Nevertheless, it prevents to
perform a scale-in until local and global estimations con�rms that it does not lead to a potential
congestion.

In opposition, if the DSMS aims at using only necessary resources, the minimal value between
EstimInputF c

j
and EstimOutputF p

j+1
is used. According to that combination strategy, the

DSMS decreases the capacity of operators as soon as it is locally or globally advisable. Yet,
this strategy presents as drawback to degrade the stability of the system. Indeed, decreasing
capacities of operators to save resources as soon as possible also means increasing them each
time the incoming load increases signi�cantly.

For both combination strategies, we consider the globally consistent estimation as the result
of a function combine which takes both estimations as input and returns the globally consistent
estimation according to the DSMS' objective.
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Considering a combination strategy, we consider that the consistent estimation of input vol-
ume is the result of a function combine. This function takes as input the estimationEstimInputF c

j

computed locally and the estimation EstimOutputF p
j+1

computed upstream.

4.3.1 Global estimation of activity level

To evaluate accurately which operators should be revised, it is necessary to estimate and prop-
agate the e�ect of each recon�guration along the work�ow. Thus, autoscale is able to detect
if a recon�guration recommended locally worth being triggered according to recon�gurations
performed upstream. Formally, we will override the value of the LALF i

j
for an operator Oi by an

activity level taking into account estimations of inputs performed upstream. We compute this
Global Activity Level, or GAL, according to formula (10).

GALF i
j

=
combine(EstimInputF i

j
,
∑
EstimOutput

F
Pi
j+1

)

EstimCapacityF i
j

(10)

where
∑
EstimOutput

F
Pi
j+1

is the sum of the estimated outputs of all parent operators of Oi.
Once the LAL has been replaced by the GAL, autoscale can reconsider the activity state

(low, medium, high and critical) of each operator and decide which recon�guration should be
triggered.
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4.3.2 Algorithm

Algorithm 1 Global consistency checking
Require: sources, local-based IGLA
Ensure: globally consistent IGLA
sources ← ∅;
checked ← ∅;
for all source in sources do
operators ← operators ∪ children(source);

end for

for all Oi in operators do
current ← currentDegree(Oi);
if activity(source) == 'critical' ∧ unchecked(Oi) then
EstimParentOutput ← ∑

EstimOutput
F

Pi
j+1

;

EstimInputF i
j
← combine(EstimInputF i

j
, EstimParentOutput);

next ← degreej(Oi);
if current > next then
setScaleIn(IGLA, Oi, next);

end if

if current == next then
setNothing(IGLA, Oi, current);

end if

if current < next then
setScaleOut(IGLA, Oi, next);

end if

checked ← checked ∪ {Oi};
end if

end for

if operators 6= ∅ then
checkConsistency(operators, IGLA);

end if

As presented in Algorithm 1, the consistency checking algorithm explore the IGLA from
sources. Estimations of input loads computed on source operators cannot be combined with
estimations computed on upstream operators as there are entries of the work�ow. Then, the
function children() look for all children operators of each source. If the function activity()
returns that a child operator has a critical parent at local scale and the method unchecked()
returns that it has not been checked already, we compute the globally consistent estimation of
its incoming load and replace its local estimation. It propagates the e�ect of critical estimation
to all operators processing stream elements emitted by a source. Then, we compare the current
parallelism degree given by function currentDeg() and the adequate parallelism.

We can map each operator to a modi�cation of its parallelism degree as presented in Table 1.
This decision takes into account the global activity of a given operator and the evolution trend
of its incoming load. As a reminder, the a�ne function f ij is computed with linear regression
to estimate the load of an operator. This function allows to evaluate the evolution trend of the
load according to its derivative value. If this value is strictly positive, the load is considered
increasing. Otherwise the load is estimated as decreasing or constant.
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Table 1: Decision Matrix for IGLA computation
HHHHHHHHHHHHH

Operator
activity

Evolution
trend of
inputs Decreasing or

constant
Increasing

GALF i
j
< θmin scale-in nothing

θmin ≤ GALF i
j
< θmax nothing nothing

θmax ≤ GALF i
j
< 1 nothing scale-out

1 ≤ GALF i
j

scale-out scale-out

To sum up, autoscale estimates the activity at local and global scope for each operator as
illustrated on Figure 10. At local scope, autoscale computes an estimation of the incoming
load thanks to monitoring data on received items and pending queues. This incoming load is
divided by the estimated capacity of the operator to give a value of its local activity level. To
propagate local estimations to next operators, the estimated output is computed. It relies on an
estimation of processed items and the selectivity factor of the operator. For children operators,
this estimation is combined to their local estimation of the incoming load to help the DSMS to
reach its objective as introduced above.

Figure 10: Estimations at local and global scope

5 Quanti�cation of recon�guration

For each operator requiring scale-in or scale-out, we have to evaluate an appropriate parallelism
degree. As we consider that users do not have an a priori knowledge of stream �uctuations, the
system cannot be trained on relevant input rates to build workload→parallelism degree mappings
upstream. So, we have to approximate the parallelism degree under the assumption that the total
capacity of an operator is strictly proportional to the number of tasks. It assumes that overheads
induced by input split and merge are negligible.

Let degj−1(Oi) be the parallelism degree of Oi during the iteration F ij . Let maxPOi be the
maximal parallelism degree of Oi, we consider that its appropriate parallelism degree is de�ned
according to formula (11). It is worth noting that we consider a maximal parallelism maxPOi

for Oi because most DSMSs limit the number of tasks associated to a single operator. Moreover,
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when the parallelism degree of an operator a threshold, overheads involved by data routing and
potential network transmissions balance the bene�t brought by the parallel execution.

degj(Oi) =

{
min(maxPOi , degj−1(Oi) + 1), if activity is 'high'

min(maxPOi , ddegj−1(Oi)×GALF i
j
e), otherwise (11)

We distinguish the speci�c case where an operator has a high activity and an increasing input
rate. Indeed, the value of GALF i

j
is smaller than 1, but a scale-out is recommended (see Table

1). In this case, we simply increment the parallelism degree of the operator by 1. In any other
case, autoscale considers as the appropriate parallelism degree, the smallest parallelism degree
greater than the current parallelism weighted by the value of GALF i

j
.

6 Discussion

We have presented an auto-parallelization strategy estimating common metrics of the literature
for each operator and in near future. It allows to anticipate potential congestion of operators
instead of removing e�ective ones. In addition, we suggest an algorithm for consistency checking
at work�ow scope in order to avoid inconsistent recon�guration of operators.

Nevertheless, the time complexity of this algorithm is in O(V + E) where V is the set of
operators and E the set of streams between operators, or inner streams. If the work�ow is
composed of many operators highly connected, the computation of the global activity for each
operator may add some overheads.

So, to improve the anticipation of congestion, two alternative policies to congestion may be
used: a policy considering exclusively local estimations for each operator, denoted LocalOnly
and a policy checking the consistency considering only the type of recon�guration performed
upstream, denoted Straight policy.

scale-in and scale-out may be decided from estimated metrics at local scope (i.e., exclusively
from operator history).

While the local activity has been computed, scale-in opportunities and scale-out needs can
be identi�ed as presented in Table 2.

HHHHHHHHHHHHH

Evolution
trend in
input rate

Operator
activity

Low
activity

Medium
activity

High
activity

Critical
activity

Decreasing or stable scale-in nothing nothing scale-out

Increasing nothing nothing scale-out scale-out

Table 2: Local decision matrix for recon�guration evaluation

We can apply the straight policy for consistency checking which does not take the impact into
account but only symbolic inconsistencies. By nominal, we mean scale-in, scale-out and nothing.
After deciding locally which recon�guration suits to an operator, the decision matrix presented
in Table 3 can be used to replace inconsistent decisions. We explore the IGLA according to a
breadth-�rst search, or BFS, from sources to �nal operators. Considering the global decision
matrix, we identify the consistent subset of actions to perform for each work�ow. For instance,
if a scale-in is recommended at local scope but a scale-out has been validated upstream then the



86 Chapter 5. Preventive auto-parallelization approach for elastic stream processing

current parallelism degree of the operator is remains unchanged. It is interesting to notice that if
a scale-in intervenes upstream current operator and nothing has been recommended locally, this
policy prefers maintaining the current parallelism degree than decreasing it because it presents
more risks to decrease parallelism degree before local and global recommendations con�rm such
recon�guration. In comparison to the consistency checking algorithm of autoscale, it saves
computations for global consistency as the selectivity factor and the combine function.

PPPPPPPPPPPPPPPPPPPP

Prevailing
action upstream
operator

Local suggestion
for operator

nothing scale-in scale-out

nothing nothing scale-in scale-out

scale-in nothing scale-in scale-out

scale-out scale-out nothing scale-out

Table 3: Decision matrix for global consistency

Nevertheless, an issue occurs when the current operator has multiple parents with di�erent
suggestions of recon�guration. To solve this issue, we suggest a relation order on actions. So, a
scale-out prevails on a scale-in which prevails on a nothing action. To determine if a local action
is globally consistent, we introduce the global decision matrix (see Table 3).

According to the relation order on possible actions, the Straight policy can determine the
predominant action for all nodes upstream. Thus, if at most a scale-in is validated upstream the
current node, the local action is validated otherwise it is replaced by a nothing or a scale-out in
order to avoid foreseeable congestion in near future.

This policy increases the consistency of recon�guration at work�ow scope but it assumes that
each upstream scale-out causes a signi�cant increase of input rate which is not systematically the
case. So, we suggest to enrich the IGLA with additional metrics in order to evaluate accurately
the impact of each recon�guration on downstream operators.

6.1 Empirical study of consistency checking

In order to evaluate the interest of the consistency checking algorithm integrated in autoscale,
we test it in front of autoscale without consistency checking (LocalOnly) and autoscale

with nominal consistency checking. The stream illustrated on Figure 11 has major increases in
input rate followed by decreases to highlight adaptations performed by autoscale.

This stream is played in entry of the work�ow illustrated on Figure 12. This linear work�ow is
composed of a source emitting the stream illustrated on Figure 11 to an operator (FastNonFilter)
transmitting each stream element within a millisecond without �ltering inputs. Outputs of this
operator are sent to an operator (SlowNonFilterMid) applying heavy treatments without �ltering.
Each stream element is processed around 100ms. Outputs of the SlowNonFilter operator are
consumed by an quick �lter (FastFilter) which processes each input within a milliseconds but
also �lter its inputs. The operator FastFilter has a �xed selectivity factor of 0.1. Finally, the
operator SlowNonFilterEnd has the same properties than the operator SlowNonFilterMid.

This work�ow is interesting to evaluate consistency checking because the heterogeneity of
processing latency and selectivity factors represent real-world complex applications. So, in front
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Figure 11: Stream �uctuations in input rate

of �uctuations in input rate, scale-in and scale-out of operators will not need same modi�cation
of their parallelism degrees.

Figure 12: Heterogeneous work�ow

For each strategy for consistency checking, we observe modi�cation of parallelism degree
performed for each operator, the average end-to-end latency of the work�ow, the throughput
and the number of stream elements processed over a prede�ned threshold. In this case, we set
this threshold to 30 seconds.

Figure 13: Modi�cation of parallelism degree

From left to right, we can observe on Figure 13 modi�cations of parallelism degrees respec-
tively for operators SlowNonFilterMid, FastFilter and SlowNonFilterEnd. When autoscale

takes only local estimations into account (LocalOnly), the parallelism degree of the operator
SlowNonFilterMid is increased and decreased according to �uctuations in input rate. Indeed,
upstream operator FastNonFilter does not modify signi�cantly variations in input rate. The
parallelism degree of the operator FastFilter remains unchanged according to local metrics. It
can be explained by the fact that the input rate is limited by the throughput of the operator
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SlowNonFilterMid and the average processing latency of the FastFilter is greater or equal to the
processing latency of upstream operators. Finally, the parallelism degree of the �nal operator
SlowNonFilterEnd is increased by 1 when the stream is at its maximal rate. It does not have
same modi�cations of parallelism degree than SlowNonFilterMid because the original input rate
has been limited by SlowNonFilterMid processing rate and reduced by FastFilter which has a
selectivity factor of 0.1.

When a nominal consistency checking strategy is applied (Straight policy), the operator
SlowNonFilterMid is initially recon�gured according to local estimations but this recon�guration
implies a scale-out of the operator FastFilter according to the decision matrix presented in
Table 3. The parallelism degree of FastFilter is adapted according to the linear projection on
SlowNonFilterMid workload. It involves an additional recon�guration which is not necessary
as the maximal throughput SlowNonFilterMid can deliver with 14 tasks is smaller than the
processing rate of FastFilter with a single task. So, the operator FastFilter is recon�gured each
time SlowNonFilter requires a modi�cation of parallelism degree. In the same logic, the �nal
operator SlowNonFilterEnd is recon�gured each time FastFilter is recon�gured.

When autoscale uses a consistency checking strategy computing the GAL for each operator
(GALPolicy), we observe that the parallelism degree of SlowNonFilterMid is increased initially
according to local metrics. But, at the second recon�guration, we note that the parallelism
degree is increased by 7 tasks instead of 3 because the estimation of inputs based on upstream
operators is greater than the local estimation. The same phenomenon can be noticed on the
third scale-out. Then, instead of taking local estimations into account to get down to 1 task, the
parallelism degree of SlowNonFilterMid is decreased to 2 before being decreased to 1 later. As
recommended by local estimations the parallelism degree of SlowNonFilterEnd is increased by 1
like it was without consistency checking.

Figure 14: Impact of consistency checking strategy on performance and quality

The impact of each sequence of scale-out/in can be evaluated in terms of performance and
result quality at work�ow scope. The GALPolicy strategy improves both aspects compared
to StraightPolicy and LocalOnly strategies. Concerning performance, GALPolicy maintains a
smaller end-to-end latency because it does not trigger unnecessary scale-out like StraightPolicy
and it anticipates predictable �uctuations of workload at work�ow scope contrary to LocalOnly
strategy. The throughput is signi�cantly greater when the input rate reaches its maximal value
compared to StraightPolicy because of less recon�guration and a better accuracy while estimating
future workload. It can also be observed from out-of-time elements happening almost only
with StraightPolicy because of consecutive recon�gurations of multiple operators which delays
signi�cantly processing latency. In this testing simulation, the major improvement of GALPolicy
compared to LocalOnly strategy is the combine method which avoid to underestimate processing
requirements. So, the processing latency can decrease signi�cantly with GALPolicy because
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there are enough tasks to empty pending queues and process incoming stream elements without
accumulating them for a long period of time.

6.2 Estimation of capacity

We justi�ed empirically the interest of the consistency checking with GAL metric. Through the
computation of the GAL, autoscale reconsiders the local estimation of input load. Never-
theless, the estimation of the capacity performed locally is only considered locally. Indeed, a
local estimation of the capacity that suppose that two assumptions are true. First, the average
processing latency of the operator will not change in near future. Such variations may be due to
a sensitivity to values in input. To ensure that autoscale adapts accurately operators in front
of even and uneven streams, the processing latency of each operator should remain as stable as
possible. In the case of operators executed by multiple tasks, it can be done with a load-aware
strategy for load balancing. Second, it is assumed that on an estimation period ∆, the operator
will have as much available CPU time as it requires. Depending on the scheduling strategy and
available processing units, some operators may be assigned on a same processing unit and share
CPU time. To improve the accuracy of estimations, it is crucial to take concurrency into account
for the computation of operator capacity.
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1 Motivation

1.1 Impact of thread concurrency on operator capacity

We presented the preventive auto-parallelization strategy autoscale which anticipates modi�-
cation of parallelism degrees according to local and global estimations. The aim of this approach
is to prevent congestion and limit increases of average processing latency due to accumulation
of stream elements. So, it is assumed that each scale-out and scale-in respectively increase and
decrease resources reserved for a given operator. For example, when autoscale estimates that
an operator Oi will have two times more stream elements to process in near future, its parallelism
degree is at least multiplied by two to double available resources. Nevertheless, considering a
scheduling strategy assigning tasks such as there could be concurrency for CPU and memory us-
age [Xu et al., 2014, Peng et al., 2015], this assumption may be wrong. Considering the operator
Oi, if its parallelism degree is multiplied by two but some tasks are assigned on processing units

91
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having less available resources than necessary, the processing capacity is not e�ectively doubled.
Some solutions[Peng et al., 2015] o�er the possibility to associate resource constraint for each
operator. Still considering the operator Oi, users can specify that a task of Oi is assignable on a
processing unit only if there are at least 20% of idle CPU time and 256Mb of free memory space.
Then, the scheduling strategy de�nes the scheduling plan such as each task has at least required
resources declared by users. It assumes two conditions:

• Users have a complete knowledge of relative time and space complexity of each operator.
This knowledge is particularly di�cult to build if there are some user-de�ned operators
without declared algebraic properties.

• Resources are fragmented such as if a task uses less resource than required, the di�erence
between required and used resources should be available at any time. In practice, idle
resources may be used by other processes. The scheduling of active threads varies in
according to CPU architecture and operating system.

So, such systems are designed to let users give indicative requirements for each operator with
an accuracy depending totally of user expertise. While estimating processing capacities, the
di�erence between required and used resources by an operator a�ects signi�cantly the accuracy
of the estimation. When there are concurrency on resource usage, taking e�ective resource
usage into account is crucial to improve the accuracy of modi�cation of parallelism degrees. In
the remainder of this chapter, we consider DSMSs considering reservation of resources for each
operator as described above.

1.2 Managing load between tasks in presence of uneven streams

To estimate the processing latency of an operator Oi applied by many tasks, we consider the
average latency of all tasks applying Oi without evaluating the potential imbalance between
tasks. Indeed, let consider a task T i1 which processed values AAAB and another task T i2 which
processed values BBAB. Let consider that the key A takes 1 time unit to be processed and the
key B takes 10 time units, the average latency of Oi is 5.5 time units per stream element but
the standard derivation is more than 2. This imbalance is negative for performance as it implies
di�erent processing requirements for task of a same operator. To tackle this issue, some load
balancing strategies [Rivetti et al., 2015] have been developed. They aim at compensating such
skew in value distribution through adaptive routing policy based on incoming values.

In the remainder of this chapter, we aim at de�ning an auto-parallelization strategy which
takes concurrency on resource usage into account while estimating processing requirements of
operators. This solution should not rely on static knowledge provided by users as it assumes
user expertise and processing requirements may vary over time. In addition, this strategy should
be paired with a load balancing strategy to serve as guarantee that value distribution does not
lower bene�ts brought by modi�cation of parallelism degree.

2 Resource-aware auto-parallelization of operators

In this section, we present the auto-parallelization strategy autoscale+ which aims at tackling
problems mentioned above. autoscale+ relies on the monitoring module of autoscale to get
recent history of operators. In addition to these information, autoscale+ collects information
about CPU usage for each task of operator. It allows to perform resource-aware parallelization
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of operators. In the remainder of this section, we detail the computation of input workload in
near future at local and global scope within a single pass. Then, we present the evaluation of
processing capacity taking potential concurrency on resource usage into account. Finally, we
suggest a con�gurable adaptation policy o�ering the possibility to users to control the stability
of the system.

2.1 Enhancement of workload estimation

As presented in chapter 5 section 3, autoscale+ aims at computing an estimation of the volume
of stream elements to process in near future. autoscale+ reduces the computation time of
workload estimation and increases the accuracy through the following improvements:

• Instead of estimating the activity level through a local and a global estimation, au-
toscale+ explores each work�ow according to a breadth-�rst search. For each operator
Oi, the value of |EstimRi,j | and EstimOutputF i

j
is computed according to formulas (2)

and (9) presented in chapter 5 section 3. For sources, i.e. operators without upstream
operators, the value of EstimInputF i

j
is computed according to formula (3) presented in

chapter 5 section 3. For other operators, autoscale+, the value of EstimInputF i
j
is

computed according to formula (1).

EstimInputF i
j

= combine(EstimRi,j ,
∑

p∈par(Oi)

EstimOutputF i
j
) + pendingF i

j−1
(1)

where par(Oi) returns all parent operators of Oi

• To improve the accuracy of the regression model, autoscale+ applies linear, logarithmic
and exponential regression models and selects the model �tting the best to the previous
iteration of the window. It implies light computation overheads but allow to detect char-
acteristic stream �uctuations with improved accuracy.

Figure 1: Metrics
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2.2 Estimation of available resources

Now that we have estimated incoming and outcoming volumes for each operator, we need to
approximate the maximal number of stream elements each operator can process during an iter-
ation of duration ∆. We denote this number of stream elements the capacity of the operator.
According to both estimations, then we are able to detect potential congestion. In an ideal case,
the capacity is de�ned as follow:

IdealCapacityF i
j

=
∆

LatF i
j

(2)

where LatF i
j
is the processing latency. This processing latency does not take into account

time spent in pending queue. Nevertheless, using this approximation means that each thread
associated to the operator is able to maintain its execution during duration ∆ without being
interrupted by other threads. In a distributed and multi-threaded environment, this assumption
favors over-estimations of operator capacities.

Figure 2: Usable CPU for threads on one core

As illustrated on Figure 2, the thread TA requires more CPU time than its reservation. At
the opposite, threads TB and TC use less CPU time than they reserved. A percentage of the
CPU time is neither reserved nor used, so it could be used by any thread. Considering current
CPU reservation and usage, we aim at estimating usable CPU time for each thread. Each thread
is associated to a CPU constraint used by the scheduler. The interest of such kind of constraint
is to avoid assignments leading to resource starvation.

Thus, on a given CPU, let consider three operators OA, OB and OC executed respectively
by threads TA, TB and TC as shown on �gure 2. Each thread is associated to a resource con-
straint [Peng et al., 2015] and a current usage which could be greater, equal and smaller than
the constraint. As CPU usage may vary suddenly overt time, we also consider a weighting factor
α ∈ [0;1[. Thus, we underestimate lightly available CPU time to avoid fast overload. Let TX be
a thread associated to a reservation constraint ResaCPUX . This thread is in concurrence with
n other threads for the usage of a CPU C. We estimate that the usable CPU time by TX is
de�ned according to formula (3).
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UtilCPU(TX , C) = α×max(UsedCPU(TX , C), ResaCPUX)

+
1

n
(100−

∑

∀TY 6=TX
UsedCPU(TY , j)) (3)

Considering all threads T 1
i , T

2
i ,..., T

m
i applying an operatorOi, we de�ne the global CPU time

UtilCPUi for T 1
i , T

2
i ,..., T

m
i consuming resources of CPUs CPU(T 1

i ), CPU(T 1
i ),..., CPU(Tmi )

as follow:

UtilCPUi = min
x=1...x=m

(UtilCPU(T xi , CPU(T xi )) (4)

We assume that an increase in input rate a�ects all threads executing the same function
equally.

With this estimation, we can approximate usable CPU time with a greater precision according
to current thread assignments. Thus, we can improve the de�nition of the capacity as follow:

CapacityF i
j

=
∆

LatF i
j

× UtilCPUi (5)

2.3 Balance between processing requirements and resources

Now, we have an estimation of incoming volumes and accurate capacities for all operators, we
can detect imbalance between processing requirements and resource usage. There are three
possibilities: detecting a need of scale-out, a possibility of scale-in or doing nothing. While
autoscale+ detects a need of scale-out, the system should recon�gure itself to avoid at least
a degradation of performance due to the accumulation of stream elements on pending queues.
In the case of a scale-in, the system should bene�t from a decrease of parallelism degree in
terms of performance and active resources. Nevertheless, performing a scale-in brings overheads
that future bene�ts does not systematically compensate. For example, if performing a scale-in
reduces overall resource usage by 2% but increases massively the average processing latency until
migrations of pending queues are completed, it does not worth for users wanting results with
short latency or paying for all available resources without distinction between active and inactive
ones. In such case, it appears relevant to let users de�ne which bene�t should bring a scale-in,
in terms of resources saved, to compensate recon�guration overheads.

2.3.1 Working interval

Now that we have an estimation of the incoming workload and the capacity taking resource
usage into account, we can approximate the ideal parallelism degree, denoted idealK according
to formula (6).

idealK =
EstimInputF i

j

CapacityF i
j

(6)

The problem is then to de�ne if it worth modifying the current parallelism degree. Indeed, if
the parallelism degree idealK is lower than the current parallelism degree k but does not bring a
minimal bene�t in terms of performance, triggering a scale-in involves recon�guration overheads
that are not compensated by a signi�cantly better performance.
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To represent this notion of bene�t, we suggest a controllable working interval associated to
each parallelism degree k. This interval has as upper bound the current parallelism degree k and
as lower bound a parallelism degree mink which is function of the current parallelism degree k.
The value of mink is de�ned according to formula (7).

mink = β × k (7)

where β ∈ ]0;1] is a controllable parameter. If β is close from 0, it means that autoscale+
performs scale-in only when input volumes are very small compared to operator capacities. If
β is close from 1, autoscale+ performs scale-in as soon as a smaller parallelism degree k'
guaranties theoretically that input volumes can be processed.

Figure 3: Working interval

2.3.2 Modi�cation of parallelism degree

Figure 4: Modi�cation of parallelism degree

A scale-out should be performed for an operator Oi when idealK exceeds the working interval
as represented on �gure 4. It means that k will be under-evaluated during next iteration of the
monitoring window and may lead to congestion.

On the contrary, if idealK is smaller than mink, it means that k will be over-evaluated for
the next iteration F ij+1.

Within this working interval, a possibility of scale-in is not considered as it does not save
enough resources to compensate recon�guration overheads.

More formally autoscale+ recommends to keep the current parallelism for an operator Oi
as long as the following condition is valid:

mink ≤ idealK ≤ k (8)

It is worth noting that the greater is k, the greater is the associated working interval. We
opt for such property because the more there are tasks to merge into less tasks, the more it takes
time to merge pending queues distributed over the cluster and re-route stream elements.
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2.3.3 Computation of the appropriate parallelism degree

Thus, autoscale+ computes an appropriate parallelism degree k ' according to formula (9).

argmink′(
EstimInputF i

j

ResCapacityF i
j

≤ k) (9)

where ResCapacityF i
j
is the capacity of Oi considering the CPU constraint ResCPUi. The

capacity ResCapacityF i
j
is de�ned according to formula (10).

ResCapacityF i
j

=
∆

LatF i
j

×ResCPUi × α (10)

where α ∈ ]0;1] is a parameter allowing autoscale+ to consider a relative margin between
e�ective CPU usage and CPU reservation. It means that autoscale+ takes into account the
fact that some threads may need more than their reservation at runtime. As β, the parameter
α can be de�ned through several methods like empirical study, reinforcement learning or user
expertise.

It is worth noting that the new parallelism degree is computed considering only the CPU
requirement declared by users and not the last value of UtilCPUi. Indeed, a modi�cation of
parallelism degree will lead to a modi�cation of thread assignments so UtilCPUi may change
after recon�guration of the system.

3 Load management

3.1 Auto-parallelization of operator with load imbalance

Load imbalance may occur in a stream processing context. Let consider an operator Oi applied
by k tasks T i1 to T ik. In addition, the average processing latency per stream element Lati of
Oi is a function of the value vj in input. Each value vj belongs to an ordered set of values
V={v1, v2, ..., vm} and is associated to a speci�c processing latency Lati(vj) such as Lati(vj) <
Lati(vj+1). Let consider a stream sequence S of size q×k stream elements such as the distribution
of values over S is uniform.

Figure 5: Worst and optimal cases of load balancing
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Now, let consider a load balancing strategy distributing stream elements in a Round-Robin
fashion. As illustrated on �gure 5, after the distribution of q×k stream elements, processing
requirements in terms of computation of times are q×Lat(v1) for T i1 and q×Lat(vm) for T ik in
the worst case. Considering that the capacity of Oi is computed taking the average processing
latency into account, tasks associated to Oi and having greater processing requirements will be
under-provisioned in CPU time due to load imbalance. It causes more pending stream elements
and increases future estimation of the workload. At the opposite, an optimal load balancing
strategy would have distributed the same stream sequence of q×k such as each task has an
average processing latency per stream element equals to the average latency Lati(V ) with Lati(V )
de�ned as follow:

Lati(V ) = q ×

m∑
j=1

Lat(vj)

m
(11)

By consequence, the imbalance due to load balancing may lead the auto-parallelization strat-
egy to perform unnecessary scale-out which does not improve the performance but at the con-
trary bring additional overheads with recon�guration. It appears then necessary to combine
autoscale+ with a load balancing strategy.

3.2 Compatibility issues

Combining an auto-parallelization strategy with a load balancing strategy may raise some com-
patibility issues. Indeed, an auto-parallelization approach like autoscale+ relies on the fact
that a congestion is due to an overload in input of all tasks associated to an operator, i.e., adding
more tasks reduces e�ectively the workload of each task. In the speci�c case of load imbalance,
a task may be overloaded while others process stream elements normally. This overload comes
from an uneven distribution of stream elements according to their values. As some operators are
sensitive to stream element values, the processing latency can signi�cantly vary depending on
which value is read in input.

To tackle this issue, the auto-parallelization should rely on a load balancing strategy guar-
anteeing that the workload is evenly distributed between tasks of an operator with regards to
the distribution of values. So, load balancing strategies relying of key grouping to build par-
titions [Neumeyer et al., 2010] are not e�cient in this context. Indeed, they route statically
stream elements to tasks according to their values without consideration for the volume of each
partition. On the opposite, load balancing strategies balancing statically the number of stream
elements in each partition may create imbalance if the operator is sensitive to values in input
and the distribution of values changes over time.

To sum up, it appears necessary to combine autoscale+ with a load balancing strategy
which takes into account the processing latency for each value appearing in the stream. Thus, the
workload of each partition may be balanced at runtime according to the distribution of values.

4 Discussion

We presented the preventive auto-parallelization strategy autoscale+ which takes e�ective
resource usage into account to modify parallelism degree of operators. For a given operator,
autoscale+ assumes that the incoming load is evenly distributed over its tasks. This property
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is guaranteed by the resource-aware load balancing strategy OSG. In this section, we aim at eval-
uating bene�ts brought by the combined approach through a comparison with static parallelism
management.

4.1 Online Shu�e Grouping for resource-aware load balancing

As explained above, autoscale+ should modify parallelism degree of operators more accurately
if it is combined with an optimal load balancing strategy. Indeed, the optimal load balancing
strategy ensures that each task has the same workload. So, the estimation of the required
capacity computed at operator scope �ts to the input load of each task.

Computing an optimal routing policy of stream elements requires an a priori knowledge of
Lat(vj) for all vj ∈ V . Nevertheless, in a stream processing context, the set V is generally
unknown at the beginning of treatments as the time complexity of Oi. Moreover, the scheduling
of tuples to tasks must be performed online i.e., the load balancing algorithm does not know the
sequence of stream elements to schedule.

To solve this issue, we choose to associate autoscale+ to the resource-aware load balancing
strategy OSG [Rivetti et al., 2016], for Online Shu�e Grouping. OSG performs online load bal-
ancing through the combination of two Count Min Sketches [Cormode and Muthukrishnan, 2005]
and a Greedy Online Scheduler. OSG associates two matrices of controllable sizes to each
operator Oi. For each matrix, each row is mapped to an exclusive 2-universal hash func-
tion [Carter and Wegman, 1979]. Each time a stream element t is read in input, the Count
Min Sketch algorithm updates the occurrence of t in the �rst matrix and the completion time in
the second matrix. Thus, according to both sketches, OSG is able to return the average comple-
tion time of any value seen previously. This estimation is approximated with a bounded error
as analyzed in [Rivetti et al., 2016]. A Greedy Online Scheduler uses these estimations to route
an incoming stream element to the task able to process it with the shortest delay. This delay is
computed as the time needed to execute all pending stream elements. More details about OSG
and theoretical analysis can be �nd in [Rivetti et al., 2016].

4.2 Empirical study of the combination autoscale+ and OSG

We implemented autoscale+ and OSG over the stream engine Apache Storm 1.0.216. We
perform tests on a the work�ow illustrated on �gure 6.

Figure 6: Complex sensitive topology

This work�ow is composed of several operators with various selectivity factors and average
processing latency. The spout (OpinionSource) emits stream elements concerning opinions sub-
mitted by users about a topic. Each opinion is described by information on the user, like its age

16https://storm.apache.org/
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and code representing its location, the topic and user opinion. Stream elements are sent to a bolt
(CategoryDispatcher) �ltering unnecessary attributes and depending on the branch downstream.
In addition, it �lters stream elements concerning a prede�ned list of irrelevant topics. A branch
starts with a bolt (CityNormalizer) retrieving information on user location from the code. This
bolt has the exact same properties than the sensitive bolt of the simple sensitive topology. In-
deed, depending on the code, retrieving information on the city takes more or less time. It allows
us to compare the impact of work�ow structure and complexity on bolt behavior and dynamic
adaptation of its parallelism degree. Then, a bolt (CityAnalyzer) extracts relevant subgroups
according to opinion and location. The other branch starting from the bolt CategoryDispatcher
performs similar treatments in order to de�ne subgroups on user opinion and age. Finally, the
Persister takes in input descriptions of subgroups and persists them in a storage �le system.

Figure 7: Fluctuations in input rate of synthetic streams

We generated two synthetic streams following �uctuations in input rate illustrated on �gure
7. The �rst stream has an uniform distribution of values. The second stream follows a Zipf dis-
tribution law of values such as keys requiring greatest processing time have smallest occurrences.
The skew of the Zipf law is set to 1.5 in the remainder of this section.

In a �rst time, we focus on bene�ts brought by the association of autoscale+ and OSG
introduced in [Rivetti et al., 2016]. We observed the behavior of the work�ow presented on �gure
6 while receiving the synthetic streams in function of following con�gurations:

• The default con�guration de�ning statically parallelism degree of operators for the complete
lifetime of the work�ow and balancing the load of each operator stream elements according
to a Round-Robin (shu�e) policy.

• The same con�guration but using OSG as load balancing strategy.

• autoscale+ as the auto-parallelization strategy and the shu�e policy for load balancing.

• autoscale+ as the auto-parallelization strategy and OSG for load balancing.

For each con�guration we observe the average processing latency and the throughput of
the work�ow to evaluate the performance. Concerning result quality, we de�ne a processing
latency threshold discriminating �nal results computed within a satisfying end-to-end latency.
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Size of monitoring window (in s) 90
Monitoring frequency (in s) 90

α (autoscale+) 0.3
β (autoscale+) 0.7

θ (osg) 0.05
ε(osg) 0.05

Table 1: Parameters for autoscale+ and OSG

Finally, we analyze the e�ect on resource usage through the cumulative CPU usage of the critical
operator. Parameters for autoscale+ and OSG con�gurations are summarized in table 1:

Parameters α and β have been de�ned through an empirical study. Indeed, we have evaluated
the impact of these parameters on scale-in and scale-out and choose these values as the most
appropriate ones.

4.2.1 Evaluation with uniform distribution

While processing the synthetic stream with the di�erent con�gurations, we notice major di�er-
ences between static management of parallelism degrees and autoscale+. Indeed, con�gura-
tions using autoscale+ maintain treatments while facing critical �uctuations in input rate as
illustrated on �gure 8. So, result quality is improved with 94.8% of all stream elements processed
under the time threshold against 26.1% with the static management of parallelism degree.

Figure 8: Comparison between static parallelization of operators and autoscale+

With the static solution, we can observe that the CPU usage of the critical operator (CityNor-
malizer) increases until it uses all available CPU of the machine. When the machine is overloaded,
the throughput degrades until complete congestion. Then, stream elements are considered as
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processed out-of-time. Contrary to static con�gurations, autoscale+ adapts the parallelism
degree of the critical operator such as it could use more than 200% cumulative CPU time on
multiple hosts and avoid congestion.

Figure 9: Comparison between Round-Robin and OSG

Now, let observe in more details di�erences between autoscale+ with Round-Robin and
OSG strategies for load balancing. Concerning performance, it is worth noting that OSG keeps
latency 39% lower than Round-Robin strategy after recon�guration. Load balancing between
tasks of the critical operator is improved faster with OSG. Actually, when OSG detects new tasks,
it routes new stream elements in priority to thee new tasks. At the opposite, the Round-Robin
strategy keeps an imbalance between old and new tasks for a longer duration.

To highlight this imbalance, we focus on con�gurations using autoscale+ with the Round-
Robin strategy and with OSG. It is worth noting that the standard deviation of CPU usage
of all tasks of the critical operator is in average 4.4% with OSG and 5.6% even with a uniform
distribution of values. Moreover, the �ll ratio of pending queues is in average 26% lower with OSG
than with the Round-Robin strategy. The lower �ll ratio of pending queue has an impact on input
workload and estimations performed by autoscale+. So, with OSG, autoscale+ estimates
more accurately parallelism degree to handle maximal load and delivers better performance.

4.2.2 Evaluation with biased distribution

We repeat the same experiment but this time, we play in input the biased version of the synthetic
stream described in introduction of experimental study. For remainder, �uctuations in input rate
remain unchanged but the distribution of values follows a Zipf law. Each value in the stream is
associated to a speci�c processing time going from 10 to 90 milliseconds.

Between static con�gurations and con�gurations using autoscale+, we observe similar
behaviors mentioned above. So, adaptations performed by autoscale+ allows the system to
process 94.6% of all stream elements against 26.8% in average for static con�gurations.
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Figure 10: Comparison between static parallelization of operators and autoscale+

Figure 11: Comparison between Round-Robin and OSG

For con�gurations using autoscale+, we observe same behaviors too. Nevertheless, the
bias in data distribution has an impact on load balancing. Indeed, compensating load imbalance
with such stream is harder than with a uniform distribution of values. So, the standard deviation
of CPU usage of all tasks is increased to 6.8% with the Round Robin strategy and reduced to
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3.8% with OSG. Nevertheless, the �ll ratio of pending queues is in average 11% less important
with OSG than the Round-Robin strategy.

In conclusion, the auto-parallelization strategy autoscale+ allows to adapt parallelism
degrees of operator before the host of a critical operator is overloaded. It maintains treatments
while facing critical �uctuations in input rate. The association with the load strategy OSG
reduces the imbalance between tasks of an operator. It has two e�ects: decrease the �ll ratio
of pending queues which improves the end-to-end latency of the work�ow. Then, it reduces
workload estimations performed by autoscale+ which results in better performance in front
of important input rate.

4.3 Limits of autoscale+

We presented the approach autoscale+ which is able to anticipate the congestion of operators.
The estimation of workload in near future is accurate under the assumption that the evolution
trend of stream rate does not vary signi�cantly in near future. Indeed, if autoscale+ detects
a signi�cant increase input rate for an operator, it may trigger a scale-out. If the input decreases
deeply after the analysis performed by autoscale+, a scale-in can be triggered and involve
recon�guration overheads.
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1 Overview of solutions

In this section, we summarize solutions for parallelization, load balancing and scheduling of
operators that we experiment in the remainder of this chapter (see Figure 1). Each solution
solution has selected for its popularity over existing solutions and is described brie�y with its
speci�c features.

For the parallelization of operators, we consider �ve approaches:

• The static approach o�ers only the opportunity to set parallelism degree of operators on
user demand. To prevent the congestion of operators with this approach, users must mon-
itor continuously states of operators and trigger scale-in or scale-out manually. Moreover,
users must have an expertise in order to determine which parallelism degrees satisfy current
processing requirements.

• The approach autoscale presented in chapter 5 prevents the congestion of operators
according to an estimation of processing requirements in near future.

105
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Figure 1: Experimented solutions

• The extension of autoscale, named autoscale+ (asplus) and introduced in chapter
6, takes resource usage into account to adapt the parallelism degree of operators according
to stream variations in input rate.

• An incremental (incr) strategy observes the input rate and the throughput of each operator.
Considering two thresholdsmin andmax, the INC strategy increases the parallelism degree
by one if the ratio input rate on throughput exceeds max and a scale-in if this ratio is lower
than min.

• A reinforcement learning-based (rlearn) strategy mapping input rates to appropriate par-
allelism degrees at runtime. The RL strategy is initialized with a knowledge base covering
stream �uctuations in input rate. It assumes that users can train the system with repre-
sentative �uctuations which is not always the case in practice.
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In order to balance the load within operators, we consider two solutions:

• The shu�e grouping (shu�e) which corresponds to a Round-Robin distribution of stream
elements to tasks (see chapter 4). This solution aims at balancing the number of stream
elements processed by each task of an operator without consideration for the distribution
of values.

• The OSG (osg) approach presented in chapter 6 which estimates the processing time
necessary to compute each value of stream element. Thus OSG can balance the load
between tasks of an operator even if the distribution of values varies signi�cantly over
time.

Finally, we consider a single scheduling strategy named resource-aware scheduling and pre-
sented in [Peng et al., 2015]. This strategy takes in input constraints on resource availability for
each operator (CPU and memory) and returns a near-optimal scheduling plan which minimize
the consumption of resources.

All those approaches have been implemented in the DSMS Apache Storm due to the lack
of open-source and extensible solutions integrating at least one the solutions mentioned above.
Moreover, we have chosen this solution over other e�cient SPEs such as Apache Spark Stream-
ing [Zaharia et al., 2012b] due to data management. Yet, Spark Streaming systematically groups
stream elements into batches, called Resilient Distributed Datasets (RDD). Nevertheless, if RDD
sizes are large compared to incoming volumes, detection of congestion and over-consumption of
resources is delayed. Thus, RDD size must be managed dynamically in addition to parallelism
degrees. Compared to Apache Flink, Storm also provides technical support to implement an
auto-parallelization strategy without a�ecting the core of the system. In addition, at the be-
ginning of developments, Apache Flink was not released yet and lack documentation about its
design and performance.

2 Design and implementation of autoscale and autoscale+

2.1 Overview of Apache Storm

Apache Storm is an open-source SPE, allowing users to de�ne continuous queries as graphs of
operators, called topologies. Users de�ne each operator in a high-level programming language
such as Java, Python or Clojure.

Figure 2: Storm architecture

To summarize, operators, named components in Storm terminology, belong to one of two
categories: spouts or bolts. A spout is a connector to a raw stream source and represents an
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entry of a topology. It distributes stream elements to components to which it is connected and
can process �ltering operations if required. Bolts consume stream elements from any component
and compute a result for each element received (stateless bolt) or for a set of stream elements
(windowed bolt).

Each component is executed in parallel by executors. An executor is an instance of an opera-
tor. Each executor is assigned to a processing unit by the scheduler (see �gure 2). The number of
executors for a given spout/bolt is revised at runtime only at user request [Xu and Peng, 2016].

Concerning the execution support, Storm relies on two types of processing nodes: Nimbus
and supervisor. The Nimbus acts as a JobTracker for Hadoop . As illustrated on �gure 2, each
supervisor manages a pool of workers, i.e. processing units, and monitors executors assigned on
them.

2.2 Implementation of autoscale

Figure 3: autoscale architecture

We have implemented autoscale and autoscale+ over Storm 1.0.2. It implements the
IScheduler interface of the Storm API. autoscale and autoscale+ modify the parallelism
degree of operators and then let the resource-aware scheduler introduced in [Peng et al., 2015]
de�ne a near-optimal scheduling plan. To perform auto-parallelization according to monitored
metrics, autoscale and autoscale+ rely on three modules:

• Component Monitor : this module is in charge of monitoring continuous queries at opera-
tor scope and triggering recon�gurations when necessary. To collect all measurements at
runtime, a client listens to internal metrics gathered by the Nimbus node. This client is in-
tegrated within a sub-module named the Nimbus listener. These raw data are pre-processed
and stored in a MySQL database through a Statistic Storage Manager sub-module. The
Statistic Storage Manager is also in charge of providing methods to group measurements by
iterations of the monitoring window. Measurements are analyzed by the Scaling Monitor
sub-module which includes the auto-parallelization strategy presented in chapter 5 or 6
depending on the version.
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• Assignment Monitor : this module is in charge of collecting information on the execu-
tion support and assignments of operators on processing units. Through this module,
autoscale can extract the scheduling plan and compute the parallelism degree of each
operator, which resources are available on each processing unit and the amount of CPU
and memory resources each task requires.

• Topology Explorer : this module is in charge to facilitate the exploration of each submitted
queries. Indeed, each time a new continuous query is submitted, this module builds static
knowledge on its structure for faster exploration. For example, it provides methods to
identify entry and output operators of a topology but also methods to identify the children
and parents operators of a given operator.

3 Evaluation of autoscale

In this section, we present the an experimental evaluation of autoscale. Due to the lack of
open-source implementations of auto-parallelization strategies compatible with Storm, we focus
our e�orts on the comparison of autoscale with the static approach (see section 1) natively
integrated in Storm. We evaluate the bene�t brought by Storm depending on the expertise level
of the user on a micro-benchmark.

3.1 Experimental protocol

3.1.1 Execution support

Our test cluster is composed of 7 VMs. Each VM has at its disposal a dual-core CPU Intel(R)
Xeon(R) E5-2620 running at 2.00GHz, 4Gb of RAM and 40Gb of hard disk space. A machine
runs the Nimbus daemon and is dedicated to cluster coordination. Each supervisor manages 4
workers. On the Nimbus host, a MySQL database is also deployed in order to store historical
data as illustrated above.

3.1.2 Work�ows and streams

To validate our approach, we choose to study its impact on three elementary topologies: a linear,
a diamond and a star topology. Each elementary topology is composed of two types of bolts:
intermediate bolts with low latency and sink bolts with high latency.

(a) Linear topology (b) Diamond topology (c) Star topology

In this section, we choose to present only some results relative to the linear, diamond, star
and a complex topology. More detailed results are also available on our website17. Moreover,

17https://perso.liris.cnrs.fr/roland.kotto-kombi/autoscale/v2/
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implementation, datasets and topologies can be downloaded for reproductibility.

Figure 4: 3-step and 5-step streams

We built a 3-step synthetic stream with the following characteristics: 1) distribution with a
small standard derivation 2) signi�cant increase and decrease in load. Indeed, as illustrated on
�gure 4, input load is constant at a low rate. Load increases progressively before stabilizing at
a high rate. Finally, rates decrease markedly until it reaches the initial low rate. We also add
small and irregular �uctuations in order to simulate �uctuations in a real stream. To comply
with good Storm practices, we implemented the replay of out-of-time stream elements.

Then, we apply a 5-step stream with sudden input rate peaks (see �gure 4) to test the
reactivity of our approach. This second stream moves from a low input to a very high one
without a progressive transition as presented above. The input rate decreases suddenly before
increasing again.

3.1.3 Criteria of evaluation

We summarize the main experimental parameters in table 3.1.3.

Table 1: Control parameters
window size 60s

monitoring frequency 10s
θmin (autoscale) 0.3
θmax (autoscale) 0.8

processing timeout (autoscale) 30s
combine strategy (autoscale) max

We collect all measurements each 10 seconds and group them in windows of 60 seconds.
autoscale considers that the activity level of an operator is low if it is lower than 0.3 and high
or critical if it exceeds 0.8 (see chapter 5 section 3). A stream element is considered as out of
time, or obsolete, if it has spent 30 seconds or more within the topology. This timeout takes time
spent in pending queues and network latency into account in addition to processing times within
operators. Finally, the consistency checking of recon�guration at work�ow scope (see chapter 5)
considers the max as the combine function.

For each con�guration, we measured the global latency of the topology (performance) and
the number of dephased stream elements (result quality). Concerning system reactivity and the
usage of resources, we observed parallelism degrees of each bolt.
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3.2 Results on the microbenchmark

3.2.1 Application on the linear topology

We compare autoscale to the native scheduler of Apache Storm according to two con�gura-
tions. We summarize experimental con�gurations for the linear topology in table 2:

Table 2: Con�guration of operators for Linear topology
intermediate sink

average latency 2ms 80ms
min degree 1 1
expert degree 1 8
max degree 8 8

CPU reservation 20.0 80.0
memory reservation 256Mb 512Mb

With the con�guration ConfMin, the initial number of executors per bolt corresponds to
minimal degrees (see table 2). Intuitively, the con�guration ConfMin is adapted to small in-
coming loads but cannot handle large ones. With the con�guration ConfExpt, initial numbers of
executors correspond to expert degrees (see table 2). Expert degrees have been chosen with full
knowledge of stream variation and latency of operators. This con�guration can in fact handle
the maximal load without wasting resources.

(a) Comparison between Storm (Default) and autoscale for the Linear topology in front of the 3-step stream
with ConfMin.

(b) Comparison between Storm (Default) and autoscale for the Linear topology in front of the 3-step stream
with ConfExpt.

Figure 5: Experimental results for the Linear topology

With ConfMin, we observe that the incoming load cannot be handled, thus leading to the
complete congestion of the topology. Indeed, the topology is not able to process stream elements
completely. As soon as congestion occurs, new stream elements emitted by the spout are dephased



112 Chapter 7. Experiments

and replayed inde�nitely until a user intervenes (see �gure 5a). On the contrary, our auto-
parallelization strategy increases dynamically and automatically the parallelism degree of critical
operators in order to adjust their capacities to future incoming loads. When the stream rate
decreases, the parallelism degree decreases accordingly. It also prevents overusing resources that
are no longer necessary.

With ConfExpt (see Figure 5b), we start with a con�guration able to handle large loads.
Nevertheless, this con�guration overuses resources when the stream rate is low. It corresponds
to the start and the end of the synthetic stream. Our auto-parallelization strategy reduces
the parallelism degree when operators do not need large capacities. In this case, just as with
ConfMin, the parallelism degree is adapted dynamically. Thus, autoscale achieves equivalent
performance with approximately 37.5% less CPU and memory resources. The signi�cant increase
in topology latency with autoscale is due to a scale-in from three to one supervisor, which
re-routes multiple stream elements and implies this signi�cant overhead.

Figure 6: Comparison between Storm (Default) and autoscale for the Linear topology in front
of the 5-step stream with ConfMin.

Unsurprisingly, we can see on Figure 6, that with ConfMin, Storm is unable to handle the
sudden increase in input rate and that topology is completely congested. Even the decrease in
input rate is not enough to restore normal operator activity. Indeed, due to replay of out-of-time
stream elements more and more emissions are carried out by the spout, with the result that
pending queues remain full. On the contrary, the autoscale approach reacts in multiple stages
to adapt the capacity of each operator to �uctuations in input rate. Even the intermediate
bolt, which has a very low latency, performs a scale-out as a precaution thanks to the global
context. As a result of this adaptation, operators can consume their respective pending queues
fast enough to bene�t from the decrease in input rate. autoscale adapts dynamically the
parallelism degree. Finally, a recon�guration is performed as soon as a new peak appears.

3.2.2 Application on the diamond topology

We reused same con�gurations for the diamond topology (see table 2).
For the con�guration ConfMin, we observe that the default scheduler of Storm is not able

to avoid the congestion as illustrated on �gure 7a. As exposed for the linear topology, operators
accumulate stream elements on their pending without being able to respect the maximal timeout.
So, stream elements are replayed inde�nitely which leads to complete congestion. autoscale
detects a congestion risk before it becomes e�ective and performs scale-out on sink operator in
order to adapt dynamically its parallelism degree.

With ConfExpt, autoscale decreases the parallelism of the sink operator after a short time
because the input rate does not require an important parallelism degree. Then, autoscale
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(a) Comparison between Storm (Default) and autoscale for the Diamond topology in front of the 3-step stream
with ConfMin.

(b) Comparison between Storm (Default) and autoscale for the Diamond topology in front of the 3-step stream
with ConfExpt.

Figure 7: Experimental results for the Diamond topology

adapts dynamically the parallelism of the sink operator as shown on �gure 7b. Thus, it allows
to uses around 35% less resources than the default scheduler.

When sudden increases of input rate are applied on the diamond topology, the default sched-
uler is not able to absorb the input stream and operators are completely congested. So, au-
toscale is able to performs scale-out to absorb the input stream almost as fast as it arrives.
So, when the input rate decreases deeply between two peaks, autoscale performs scale-in to
�t dynamically and automatically capacity of operators to their processing needs.

3.2.3 Application on the star topology

For the star topology, we used parameters presented in table 3 to de�ne con�gurations ConfMin
and ConfExpt. It is important to note that the average processing latency of sink operators is
signi�cantly than it is for linear and diamond topologies. It relies on the fact that a star topology
contains multiple sink operators so they receive their input load is divided by a factor of 3 in
comparison to linear and star topologies.

Table 3: Con�guration of operators for Star topology
intermediate sink

average latency 2ms 240ms
min degree 1 1
expert degree 1 8
max degree 8 8

CPU reservation 20.0 30.0
memory reservation 256Mb 512Mb
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Concerning the star topology, a similar behavior is observed. It is worth noting that because
of the structure of the star topology, autoscale is able to detect the risk of congestion (see
�gure 8a) before it actually happens. This can be done according to the awareness of the global
context o�ered by autoscale. Finally, autoscale reduces resource usage around 24.6% as
illustrated on �gure 8b. It is less than linear and diamond because there are more slow operators.
Indeed, slow operators tend naturally to be more often in high or critical activity than fast ones.

(a) Comparison between Storm (Default) and autoscale for the Star topology in front of the 3-step stream with
ConfMin.

(b) Comparison between Storm (Default) and autoscale for the Star topology in front of the 3-step stream
with ConfExpt.

Figure 8: Experimental results for the Star topology

3.3 Results on advertising topology

We test our approach on an advertising topology mainly inspired from a topology used in [Peng et al., 2015]
and available on Github18 to validate our approach in a real context. We essentially modify the
source to be able to reproduce the same stream with di�erent con�gurations and add two op-
erators (ip projection and ip processor) to obtain a complex topology. Moreover, we apply the
3-step input stream illustrated on �gure 4.

This topology takes as input, logs representing an event linked to an advertisement on a web
page. Each log is �rst deserialized before being transmitted to an event �lter. Two projection
operators receive stream elements from this �lter, one looking for user IP addresses and the
other for information on the ad. A join with a static dataset is performed to link the ad to a
promotion campaign. Finally, IP and campaign processors increase users and campaign counts
to update a remote database. The main interest of this topology is the signi�cant selectivity of a
�lter operator (see �gure 9), as this implies that a large increase in input rate will have a minor
impact on �nal operators even if they have large latency in comparison with other operators.

18https://github.com/yahoo/streaming-benchmarks/
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Figure 9: Advertising topology for stream benchmarking

(a) Comparison between Storm (Default) and autoscale for the Advertising topology in front of the 3-step
stream with ConfMin.

(b) Comparison between Storm (Default) and autoscale for the Advertising topology in front of the 3-step
stream with ConfExpt.

Figure 10: Experimental results for the Advertising topology

We observe that even if the topology is not congested, the autoscale approach performs
some scale-outs in order to adapt operator capacity to their respective input rates as illustrated
on �gure 10a. This is due to the combine strategy (see chapter 5 section 4), which takes into
account the maximum between local and global estimations as the globally consistent one. There-
fore, when a slow operator begins to accumulate some stream elements on its pending queue,
the autoscale approach performs a scale-out to avoid congestion. Nevertheless, autoscale
performs a similar throughput even if there are some unnecessary recon�gurations in one case.
We can estimate overheads induced by autoscale to 12% in comparison to actual needs in
terms of CPU and memory requirements.

If a user bases his/her choice of parallelism degree exclusively on latencies, he/she will start
the topology with some unnecessary executors (see �gure 10b). The autoscale approach per-
forms scale-in to �t capacities of operators to their respective processing needs. It is important to
notice that the dynamic adaptation made by autoscale, combined with the scheduler, allows
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all treatments to be collected on a single supervisor. With autoscale, Storm is able to handle
biggest amount of data without generating network tra�c, which is a large overhead factor, as
explained in [Xu et al., 2014], and using 50% less resources.

4 Evaluation of autoscale+ with osg

In this section, we evaluate the behavior of DABS on a di�erent micro-benchmark composed
of topologies sensitive and insensitive to stream element values. As a reminder, a topology is
sensitive to stream element values if the processing latency is function of the value read in input.
As we have demonstrated the e�ectiveness of autoscale compared to the native solution of
Storm, we suggest here implementations of INC and RL strategies (see section 1) to evaluate
the performance of DABS in front of common auto-parallelization strategies integrated in other
DSMSs. We assume that these implementations are not as optimized as they are in other systems
but they have characteristic behaviors that we want to observe ad analyze.

4.1 Experimental protocol

We used the same cluster described in section 3.1 but extended the number of processing units to
10. The module managing the distribution of stream elements between executors implements the
CustomStreamGrouping interface of Storm API. We also deploy a MySQL database on Nimbus
to store monitoring data. We summarize main experimental parameters in table 4.

Table 4: Main parameters
window size 90s

monitoring frequency 10s
processing timeout 30s
α (autoscale+) 0.3
β (autoscale+) 0.8

combine strategy (autoscale+) max
θ (osg) 0.05
ε (osg) 0.05

To validate our approach, we demonstrate its e�ectiveness on three topologies.

(a) Simple insensitive topology (b) Simple sensitive topology (c) Complex sensitive topology

The simple insensitive topology (see �gure 11a) composed of a spout (Source) emitting stream
elements without �ltering them. These stream elements are processed by a bolt (InsensitiveBolt)
applying a function with a time complexity independent of the value read in input. So, streams
are all even when played in input of this topology. Finally, a bolt (FinalizeBolt) ends the
computation of each stream element by sending a termination signal to Storm monitor.

The simple sensitive topology (see �gure 11b) has the same structure as the simple insensitive
topology but the function applied by the intermediate bolt (SensitiveBolt) has a time complexity
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which depends directly from the value read in input.
The complex sensitive topology (see �gure 11c) is composed of several operators with various

selectivity factors and average processing latency. The spout (OpinionSource) emits stream
elements concerning opinions submitted by users about a topic. Each opinion is described by
information on the user, like its age and code representing its location, the topic and user
opinion. Stream elements are sent to a bolt (CategoryDispatcher) �ltering unnecessary attributes
and depending on the branch downstream. In addition, it �lters stream elements concerning
a prede�ned list of irrelevant topics. A branch starts with a bolt (SensitiveBolt) retrieving
information on user location from the code. This bolt has the exact same properties than
the sensitive bolt of the simple sensitive topology. Indeed, depending on the code, retrieving
information on the city takes more or less time. It allows us to compare the impact of work�ow
structure and complexity on bolt behavior and dynamic adaptation of its parallelism degree.
Then, a bolt (CityAnalyzer) extracts relevant subgroups according to opinion and location. The
other branch starting from the bolt CategoryDispatcher performs similar treatments in order to
de�ne subgroups on user opinion and age. Finally, the Persister takes in input descriptions of
subgroups and persists them in a storage �le system.

(a) Progressive stream (b) Erratic stream

As illustrated on Figures 11a and 11b, we build two synthetic streams with following common
features: 1) at least one critical increase in input rate leading the system to congestion with a
minimal (one executor per operator) and static con�guration 2) decrease of input rate to evaluate
the elasticity of the system. For each stream, we can set the distribution law. It can be uniform
over all possibles values or biased according to a zipf law with a prede�ned skew. These streams
allow us to determine which impact has DABS while facing critical �uctuations in both input
rate and value distribution.

4.2 Results on simple insensitive topology

4.2.1 Simple insensitive topology in front of the progressive stream

As presented above, the simple insensitive topology has an average processing latency indepen-
dent of input values. It exclusively depends of the volume of stream elements to process. For this
reason, we decide to enable only autoscale+ for parallelism management and let the default
grouping solution of Storm, denoted shu�e grouping, route stream elements to executors.

As presented above, the reinforcement learning strategy relies on a knowledge base such
as it can associate a parallelism degree to an input rate. While processing the progressive
stream (see �gure 11a), the reinforcement learning strategy increases the parallelism degree of
the operator InsensitiveBolt (see �gure 11a). We notice that the parallelism degree decreases
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Figure 11: Simple insensitive topology with progressive stream

signi�cantly as soon as the peak in input rate decreases. Nevertheless, most stream elements
are just delayed by the processing rate and pending in input queue. So, the parallelism degree
must be increased to avoid congestion. These modi�cations have a major impact on average
processing latency and result quality. Indeed, recon�guring the system while large volumes of
data are running between operators causes increases of average processing latency exceeding the
maximal threshold. It is due to recon�guration overheads including migrations of pending queues
and activation/deactivation of tasks on machines. It has also an impact on result quality because
17% stream elements cannot be processed under the maximal threshold.

In comparison, the incremental strategy increases continuously the parallelism degree of the
operator as long as long the workload exceeds the processing rate. By workload, we refer to
the sum of incoming and pending stream elements. Even if the parallelism degree is increased,
it cannot reach a suitable value to handle maximal �uctuations in input rate. It implies large
increases of average processing latency causing 29% losses of stream elements over the complete
execution. In addition, in terms of resource usage, the incremental strategy requests 64% more
active processing units than the reinforcement learning and 18% more than autoscale+.

While using autoscale+, Storm is able to anticipate suitable parallelism degrees over the
complete execution. Even if autoscale+ tends to overestimate the required parallelism degree
due to regression, recon�guration overheads are compensate by bene�ts on processing latency.
Actually, the average processing latency remains stable over the complete execution reducing
losses to 7%. It can also be observed on throughput as autoscale+ is able to maintain a
throughput close to input rate with short time shift.
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4.2.2 Simple insensitive topology in front of the erratic stream

We applied the erratic stream (see �gure 11b page 117) in input of the simple insensitive topology
to test the reactivity of each auto-parallelization strategy while facing sudden and large peaks
in input rate.

Figure 12: Simple insensitive topology with erratic stream

The reinforcement learning strategy increases and decreases the parallelism degree of the
operator InsensitiveBolt according to two main peaks corresponding essentially to the increase
in input rate happening at the end of the erratic stream. Indeed, brief increases in input rate
does not imply important scale-out. They do not increase signi�cantly the average input rate on
recent history so the parallelism degree does not require large increase of its parallelism degree.
Nevertheless, the sudden accumulation of a large number of stream elements on pending queues
increases the average processing latency. The impact on result quality remains negligible with
only 0.6% of stream elements lost over the complete execution.

The incremental strategy bene�ts from the short duration of peaks in input rate. Indeed,
as the incremental strategy over-provisions the operator, resources necessary to handle brief
increases in input rate are available. So, the average processing latency increases signi�cantly
only when the input rate remains high for a long duration like it is happening at the end of the
erratic stream. Losses of stream elements are reduced to 19% over the complete execution but
the usage of processing units remains 85% higher than the reinforcement learning strategy and
4% higher than autoscale+.

Concerning autoscale+, the appearance of sudden increases in input rate has an impact on
the regression model used to anticipate processing requirements. So, the parallelism degree of the
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operator is increased sooner causing a degradation of the average processing latency as the the
input rate decreases immediately. autoscale+ overestimates processing requirements as the
immediate decrease in input rate cannot be predicted. This overestimation allows to maintain
a throughput close to the input rate and process the entire stream with 18% losses. As critical
increase and decrease of input rate are sudden and brief, they cannot be anticipated and a�ect
the processing latency before autoscale+ recon�gures the system.

4.3 Results on simple sensitive topology

4.3.1 Simple sensitive topology in front of the progressive stream

We present now same results with the simple sensitive topology. Input streams follow same
�uctuations in input rate but the distribution of values is biased. It follows a zipf distribution
with a skew of 1,5 as used in [Rivetti et al., 2016]. To compensate the skew in value distribution,
we used the OSG grouping solution for all con�gurations. So, auto-parallelization strategies are
not penalized by imbalance between executors of same operator.

Figure 13: Simple sensitive topology with progressive stream

As observed with the simple insensitive topology, autoscale+ anticipates processing re-
quirements and is able to maintain a smaller processing latency while the stream is at its max-
imal rate. Nevertheless, the reinforcement learning strategy is able to decrease signi�cantly the
processing latency when the input rate decreases. The incremental strategy is penalized by OSG
because the frequent modi�cation of parallelism degree forces OSG to reevaluate its routing
policy. Indeed, as OSG tracks the load of each task associated to an operator, the frequent
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modi�cation of parallelism degree involves frequent updates of the monitoring structure.
In terms of result quality, the incremental strategy is able to keep loss of stream elements at

17% but it requires 94% more active processing units than reinforcement learning strategy and
83% more than DABS (autoscale+ with OSG). The reinforcement learning strategy reacts to
increase in input rate and cannot prevent 19% of losses while autoscale+ looses 20% of stream
elements during the complete execution.

Concerning throughput, all solutions deliver close performance even if autoscale+ remains
the auto-parallelization strategy keeping the smaller time shift between �uctuation in input rate
and throughput.

4.3.2 Simple sensitive topology in front of the erratic stream

Figure 14: Simple sensitive topology with erratic stream

As discussed above, the erratic stream has two short �uctuations in input rate spaced by
a signi�cant decrease. We notice that DABS is signi�cantly more accurate than autoscale+
alone. Indeed, the average processing latency remains low except two punctual increases during
the �rst two peaks in input rate and before the last increase in input rate which lasts longer (see
�gure 11b). DABS reduces losses of stream elements to 4.8% even if sudden increases cannot be
anticipate. It is due to OSG which delivers fast routing when slightly overprovisionned in execu-
tors, what DABS does through regression. It makes the major di�erence with the reinforcement
learning strategy which provides only the suitable number of executors to avoid congestion. The
incremental strategy maintains a low processing latency and delivers a throughput close to the
input rate but it still uses considerably more resources to complete the treatment of the entire
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stream. Moreover, losses are more important than reinforcement learning solution and DABS and
go up to 20% over the complete execution. It is also interesting to notice that DABS maintains a
lower time shit between �uctuations in input rate and throughput than the reinforcement learn-
ing solution. So, even if stream elements arrive at important rates, preventive recon�guration
performed by DABS does not delay their treatment.

4.4 Results on complex sensitive topology

4.4.1 Complex sensitive topology in front of the progressive stream

After testing the behavior of auto-parallelization strategies in front of simple topologies, we
applied same biased streams in input of a complex topology (see �gure 11c). This topology is
more representative of real-world continuous queries. It includes common operators as �lters on
values and attributes, joins with static bases and also user-de�ned functions from expert domains
like data mining.

Figure 15: Complex sensitive topology with progressive stream

There are two signi�cant di�erences between this experimental setup and ones presented
above:

• The operator becoming critical is not directly connected to the source. Stream elements
emitted by the source are �ltered and transformed by other operators before reaching the
operator. Its inputs may not present same �uctuations than original ones.
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• Operators processing stream elements upstream critical operators can be analyzed to evalu-
ate consistency at work�ow scope. Indeed, simple topologies composed of a single operator
cannot bene�t from analysis at work�ow scope because there is no complementary estima-
tion to compare with local estimations.

While playing the progressive stream in input of the complex topology, DABS anticipates
the �rst scale-out compared to autoscale+ with the simple topology. It also maintains an
important parallelism degree longer than autoscale+ does for the simple topology. According
to these modi�cations of parallelism degree, DABS maintains a lower processing latency than the
reinforcement learning strategy and requests 30% less active resources than incremental strategy
for equivalent performance.

In terms of result quality, DABS bene�ts from the analysis at work�ow scope to improve
anticipation of scale-out and to reduce losses to 10%. In comparison, reinforcement learning
strategy reduces losses only to 27% and the incremental strategy to 18%. It is due to the
accumulation of stream elements which has a greater impact of processing latency when multiple
operators are a�ected downstream.

Except a time shift when the stream reaches its maximal input rate, all strategies maintain
a throughput close to input rate. DABS is slightly more reactive than other auto-parallelization
strategies and deliver a maximal throughput sooner.

4.4.2 Complex sensitive topology in front of the erratic stream

Figure 16: Complex sensitive topology with erratic stream
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The complex structure of the topology makes an important di�erence in the treatment of
the erratic stream. For all auto-parallelization strategies, we can observe that brief but large
�uctuations in input rate do not a�ect signi�cantly the operator. These �uctuations are absorbed
by the processing rate of upstream operators and inter-operator transmissions.

In this context, DABS performs all scale-out before any scale-in. It allows the system to
maintain a low latency even when it faces critical variations in input rate. The incremental
strategy also keep a low processing latency but uses 36% more active processing units to achieve
treatments. On its side, the reinforcement learning strategy keeps reacting to average input
rate to adjust parallelism degree. It results in an inconsistent scale-in at work�ow scope which is
contradicted afterwards. It has a major impact on processing latency and result quality. Actually,
when DABS and the incremental strategy maintains losses at 13% and 19% respectively, the
reinforcement learning strategy looses 26% of stream elements at the end of the observation.

5 Discussion

To sum up, we presented the evaluation of autoscale and autoscale+ approaches for auto-
parallelization of operators. They both present the advantage to avoid congestion of operators
through an automatic of the parallelization. It appears that autoscale may involve some
recon�guration overheads when it overestimates the workload in near future. Nevertheless, it
consistently reduces the usage of resources at runtime for equivalent performance.

Moreover, the experimental evaluation highlights the ability of autoscale+ to maintain a
low processing latency compared to auto-parallelization strategies commonly used in DSMSs. In
most cases, autoscale+ looses less stream elements than other auto-parallelization strategies
while facing critical �uctuations in input rate. The combination with the load balancing strategy
osg improves the performance of the system while processing streams with high skew in data
distribution.
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1 Summary of our contributions

The focus of this research is congestion management. As presented in chapter 3, congestion may
be due to di�erent reasons. For a given operator belonging to a continuous query, an input rate
signi�cantly greater than the processing rate induce an accumulation of stream elements on the
input queue. This accumulation increases the time spent by each stream element in the input
queue up to saturation. In such case, exploiting data parallelism can be a solution. Indeed,
duplicating an operator increases its overall processing rate.

To answer this problem, users may set maximal parallelism degree for each operator. It
ensures that all available resources are exploited to process streams. Nevertheless, this solution
is costly as it requires to consume resources on all available machines. In a Green IT context
and from a economical point of view, this solution implies major waste of resources.

Thus, we suggest the auto-parallelization strategy autoscale which performs scale-in and
scale-out according to �uctuations in input rate. It adapts usage of resources to processing
requirements avoiding congestion of operators and overconsumption of resources at the same
time. Each recon�guration is triggered after the following steps:

• At operator scope, a monitoring module collects metrics (input rate and processing latency)
describing the execution of the operator. From the recent history, autoscale estimates the
input workload and the processing capacity in near future. According to these estimations,
we suggest a metric of local activity used to detect recon�gurations requirements in a
proactive way.

• From these estimations of processing requirements in near future, autoscale identi�es
which operators may bene�t from scale-in or scale-out according to metrics computed
locally.

• We propose an algorithm checking the consistency of recon�guration requirements at work-
�ow scope. Through an exploration of the work�ow from sources to sinks, the algorithm

125
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validates or invalidates suggested local recon�guration requirement according to modi�ca-
tions validated upstream. Indeed, autoscale computes a global activity metric relying on
the processing capacity estimated locally and a combination of input workloads estimated
locally and upstream. It aims at triggering a consistent set of recon�gurations, includ-
ing anticipated scale-out of operators. It improves system stability by avoiding antagonist
scale-in and scale-out.

The execution model considered by autoscale does not take concurrency for resource usage
and load imbalance into account. To bridge this gap, we extend autoscale to autoscale+
through the following improvements:

• The monitoring module collects the CPU time allocated to each task associated to an
operator during the recent history. It allows to evaluate which CPU is e�ectively available
for each task and take the concurrency between tasks into account.

• From these new metrics, we suggest a resource-aware variant of our global activity metric.
This variant evaluates the processing capacity of a given operator according to available
resources of machines running its associated tasks. So, each scale-in/out is triggered accu-
rately with regards to resources of processing units.

• We modify the consistency checking at work�ow scope to perform both local and global
estimations in one-pass. On complex topologies with several operators, it reduces the
computation time of the set of recon�gurations globally consistent.

• We associate autoscale+ to the load balancing strategy OSG [Rivetti et al., 2016] such
as the accuracy of scale-in/out is not biased by a skew in data distribution. Thus, this
combined solution is able to adapt dynamically and automatically work�ows while facing
critical �uctuations in input rate and data distribution at the same time.

Experimental studies of autoscale and autoscale+ show respectively that consistency
checking at work�ow improves signi�cantly the stability of the system and the association with a
load balancing strategy serves as guarantee that even and uneven streams are processed similarly.

Concerning autoscale, experiments on a micro-benchmark shows that autoscale avoids
congestion of work�ows when the input rate becomes critical. According to our experiments,
autoscale is able to save up to 37,5% less CPU and memory resources and at least 12% for
equivalent performance. While computing several continuous queries on the same cluster, it
improves signi�cantly the scalability of the system.

Improvements included in autoscale+ let users de�ne more accurately their priorities in
terms of performance and resource usage. With an appropriate con�guration, autoscale+ is
able to consume up to 18% less resources than a reactive auto-parallelization strategy based on
reinforcement learning. Moreover, autoscale+ is able to limit losses to 7% while receiving
streams at critical input rates.

Combining autoscale+ with the load balancing strategy osg signi�cantly improves the
performance and usage of resources of the DSMS. Indeed, even when a biased stream in terms
of distribution of values is received at rates changing suddenly, losses are limited to 10% and
resource usage is reduced by 30% compared to common solutions for elastic stream processing
implemented in the DSMS Apache Storm. We develop some auto-parallelization strategies as
custom modules integrated into Apache Storm, including autoscale and autoscale+ and
demonstrate the e�ectiveness of autoscale and autoscale+ approach in order to manage
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congestion of operators. We develop microbenchmarks in order to evaluate bene�ts brought by
these solutions while processing a variety of continuous queries over di�erent streams. We give
the possibility to users to reuse these work�ows and streams for further developments and works.

2 Perspectives

Contributions suggested during this research can be improved and extended in several direc-
tions to reach a fully elastic stream processing with a better synergy between adaptation levels
presented in chapter 4.

Exploiting user pro�le

In chapter 5, we present a combine strategy which takes local and global workload estimations
into account to return the considered estimation. We can o�er the possibility to users to prioritize
performance (i.e., performing scale-out as soon as it can prevent any increase of the end-to-end
latency) or resource usage (i.e., performing scale-out only when congestion cannot be avoided and
performing scale-in as soon as possible). Indeed, depending on the critical aspect of a continuous
query and the �nancial cost of computations, users may not have same priorities. The problem
is then to integrate user pro�le within the auto-parallelization strategy. It raises several issues
such as the identi�cation of metrics describing user pro�le and the integration of these metrics
in the decision algorithm.

Generalizing the resource-aware scheduler

As studied in chapter 6, autoscale+ takes advantage of the load balancing strategy OSG to
perform accurate scale-in/out in presence of bias in data distribution. In the same idea, when
a task su�ers from a lack of resources on its host (e.g., the scheduling strategy assigned sev-
eral complex operators on the same machine), imbalance between processing capacities appears
because of concurrency between threads. To compensate such kind of imbalance, it would be
interesting to associate autoscale+ with a resource-aware scheduling strategy. Such strate-
gies [Peng et al., 2015, Aniello et al., 2013] have already been investigated in the literature but
they take as input static user constraints de�ning resource requirements for each operator. Even
if it is assumed that users are experts knowing the time and space complexity of each operator,
it remains particularly di�cult to estimate resource requirements such as the ratio of allocated
CPU time and memory space. Moreover, it induces that there is a minimal subset of available
machines which will stay active even if the input stream is signi�cantly lower than the expected
input rate (e.g., a road monitoring stream at di�erent hours of a day). Instead of considering
static user constraints, it would be interesting to consider user preferences which can be mod-
i�ed at runtime depending on e�ective resource usages. For example, let consider an operator
associated to a preference of 20% on CPU usage. If this operator requires in average 50% at
runtime, the scheduler will consider that each task applying this operator requires 50% instead
of user preference. The main issue consists in the evaluation of processing requirements of each
operator at runtime as it depends on several parameters like the type of the operator (stateless
or stateful) and its sensitivity to values of stream elements. Another challenge is to evaluate
when it is bene�cial to move an operator from a processing unit to another as resource usage
(e.g., CPU usage) may vary quickly.
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Introducing operator model for auto-parallelization

Auto-parallelization strategies suggested in this research focus on adapting the processing capac-
ity to the estimated workload without considering the type of the operator (stateless or stateful).
As stateful operators process stream elements micro-batch by micro-batch, evaluating the ac-
curately workload requires to distinguish stream elements being processed and stream elements
pending in input queue until the next micro-batch. More generally, as several DSMS support
declarative languages for query de�nition, it could be interesting to exploit algebraic properties
of prede�ned operators (selectivity factor, time complexity) to improve the regression model
used by autoscale. The problem is then to de�ne for each class of operators, speci�c features
re�ning the regression model in order to anticipate congestion with a better accuracy.

Auto-parallelization on limited resources

During this research, we assumed that users submit their continuous queries to a cluster managed
by a service provider. With the democratization of small single-board computers (e.g., Rapsberry
Pi), establishing a cluster of multiple processing units located at di�erent places becomes a
viable solution according to the economical aspect. It allows to process data closer from stream
sources [Logothetis et al., 2011] and have a control on distributed execution. Nevertheless, such
solution is limited by the performance of each processing unit. Depending on the input rate and
the complexity of continuous queries, treatments may be limited by resources [Yang et al., 2012].
To perform elastic stream processing, it is then necessary to prioritize some operators. The
prioritization of scale-out has been studied in [Xu and Peng, 2016] and has been presented as
the impact of an operator on the throughput of a work�ow. Depending on the application,
some operators may have a great impact on results in terms of quality without generating the
greatest volume of outputs. It appears interesting to re�ne the notion of impact of an operator
in a stream processing context. Thus, autoscale+ can be extended with a prioritization
of operators combined to the resource-aware activity metric in order to maximize the result
quality under resource constraints. It could also be extended to the preemption of resources by
some operators even if it implies reducing reserved resources of other operators. In such context,
autoscale+ could also be combined with a load shedding strategy to discard judiciously stream
elements of non-priority operators.
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RESUME : Le traitement de flux de données est au cœur des problématiques actuelles liées au Big Data. Face à de grandes 
quantités de données (Volume) accessibles de manière éphémère (Vélocité), des solutions spécifiques tels que les systèmes 
de gestion de flux de données (SGFD) ont été développés. Ces SGFD prennent en entrée des flux et des requêtes continues 
pour générer de nouveaux résultats aussi longtemps que des données arrivent en entrée. Dans certains domaines, les flux 
considérés ont des débits qui varient en termes de nombre de données produites par unité de temps ou en termes de 
distribution de valeurs des données. Ces variations peuvent impacter fortement les besoins en ressources nécessaires au 
traitement des requêtes continues. 
 
Dans le contexte de cette thèse, qui s’est réalisée dans le cadre du projet ANR Socioplug (ANR-13-INFR-0003), nous 
considérons une plateforme collaborative de traitement de flux de données. Chaque utilisateur peut soumettre des requêtes 
continues et contribue aux ressources de traitement de la plateforme. Cependant, chaque unité de traitement mise à disposition 
pour le traitement des requêtes dispose de ressources limitées en termes de processeur et de mémoire ce qui peut engendrer 
la congestion du système en fonction des variations des flux en entrée. Le problème est alors de savoir comment adapter 
dynamiquement les ressources utilisées par chaque requête continue par rapport aux besoins de traitement ? Cela soulève 
plusieurs défis : i) comment détecter un besoin de reconfiguration ? ii) quand reconfigurer le système pour éviter sa congestion 
? iii) comment éviter des reconfigurations n’ajustant pas l’usage des ressources aux besoins des traitements ? 
 
Durant ces travaux de thèse, nous nous sommes intéressés aux différentes étapes de traitement d’une requête continue sur 
une infrastructure distribuée. De cette analyse, nous avons pu identifier les limites de l’existant et les mécanismes permettant 
d’adapter dynamiquement les ressources utilisées pour l’exécution d’une requête continue. Nous avons focalisé nos efforts sur 
la gestion automatique de la parallélisation des opérateurs composant le plan d’exécution d’une requête. Nous proposons une 
approche originale basée sur l’observation des opérateurs et une estimation des besoins de traitement dans un futur proche. 
Ainsi, nous pouvons augmenter (scale-out) ou diminuer (scale-in) le niveau de parallélisme des opérateurs composant une 
requête continue de manière proactive afin d’ajuster les ressources utilisées aux besoins des traitements. Par rapport à une 
configuration statique définie par un expert, nous montrons qu’il est possible à la fois d’éviter la congestion du système dans 
certains cas ou de la retarder dans les cas les plus critiques. Nous montrons également qu’il est possible de réduire 
significativement la consommation de ressources tout en maintenant une performance et une qualité des résultats 
équivalentes. 
 
Nous proposons également de combiner cette approche avec des mécanismes complémentaires tels que l’équilibrage de 
charge pour l’adaptation dynamique de requêtes continues. Ces différents travaux ont été implémentés et validés dans un 
SGFD largement utilisé avec différents jeux de tests reproductibles. 
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ABSTRACT :  
In a Big Data context, stream processing has become a very active research domain. In order to manage ephemeral data 
(Velocity) arriving at important rates (Volume), some specific solutions, denoted data stream management systems (DSMSs), 
have been developed. DSMSs take as inputs some queries, called continuous queries,defined on a set of data streams. A 
continuous query generates new results as long as new data arrive in input. In many application domains, data streams have 
input rates and distribution of values which change over time. These variations may impact significantly processing 
requirements for each continuous query. 
 
This thesis takes place in the ANR project Socioplug (ANR-13-INFR-0003). In this context, we consider a collaborative platform 
for stream processing. Each user can submit multiple continuous queries and contributes to the execution support of the 
platform. However, as each processing unit supporting treatments has limited resources in terms of CPU and memory, a 
significant increase in input rate may cause the congestion of the system. The problem is then how to adjust dynamically 
resource usage to processing requirements for each continuous query ? It raises several challenges : i) how to detect a need of 
reconfiguration ? ii) when reconfiguring the system to avoid its congestion at runtime ? iii) how to avoid reconfigurations that do 
not improves the performance of the system ? 
 
In this work, we are interested by the different processing steps involved in the treatment of a continuous query over a 
distributed infrastructure. From this global analysis, we extract mechanisms enabling dynamic adaptation of resource usage for 
each continuous query. We focus on automatic parallelization, or auto-parallelization, of operators composing the execution 
plan of a continuous query. We suggest an original approach based on the monitoring of operators and an estimation of 
processing requirements in near future. Thus, we can increase (scale-out), or decrease (scale-in) the parallelism degree of 
operators in a proactive way such as resource usage fits to processing requirements dynamically. Compared to a static 
configuration defined by an expert, we show that it is possible to avoid the congestion of the system in many cases or to delay it 
in most critical cases. Moreover, we show that resource usage can be reduced significantly while delivering equivalent 
throughput and result quality. 
 
We suggest also to combine this approach with complementary mechanisms for dynamic adaptation of continuous queries at 
runtime. These differents approaches have been implemented within a widely used DSMS and have been tested over multiple 
and reproductible micro-benchmarks. 
 
KEYWORDS : stream processing, continuous query, distributed computing, dynamic adaptation 
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