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Chapter 1

Synopsis

According to my initial thoughts this document should have started by pointing out the
coherent red line, the guiding principle, the meaning of it all. Provide a careful argumentation
of why I have planned my scientific career in this particular way, and why this was the optimal
way to procede. However, after searching very hard, I decided to face the facts: there is no
such master plan, not even in retrospect. There never was one. Coming to think about it,
it seems to me that such a Newtonian vision of a research career no longer applies to junior
scientists as they make their way into science, and in my case I have no regrets about this.
At the end of the day, a part of it is simply random. Indeed, it would appear useless to deny
all the numerous elements of randomness involved, such as personal encounters, availability of
funding, colleagues one happens to overlap with, personal constraints etc. etc. etc.

Thus, as the opposite caricatural representation, the idea would spring to mind that my
research trajectory should really be envisaged as a random walk. On the other hand, even ac-
knowledging the significant number of unforeseeable influences, I would certainly like to believe
that we are at least looking at a biased random walk. Which in turn raises the question as to
the nature of the bias (a question which is more easily answered with hindsight). It certainly
involves curiosity, the desire to complete my understanding of Physics from complementary
points of view, as well as a taste for statistical mechanics, simple models, for numerical sim-
ulation and for Biology-inspired problems. I feel that a common theme in my research work
translates my personal viewing angle of Physics, as a way of understanding the world (within
and beyond Physics): reducing complexity to an (overly) simplified representation, in order to
extract the most generic features, which can then be contrasted to reality. Any outcome of this
comparison then helps me to better understand the world: either a fundamental mechanism
has been revealed, or we then know that other ingredients are missing in the description. In
some sense this way of seeing things has influenced many of the choices I have made. Problems
more or less directly inspired from Biology are probably a perfect example for this: text-book
explanations for a complex biological process based on boxes and arrows have always left me
wondering about what they actually mean, and in which way they might be ‘real’. Understand-
ing how, in many cases, it is ultimately statistical physics or non-linear physics which make
those explanations work has been a huge source of satisfaction for me.

Another element seems important, which I think is clearly reflected in my career to date:
I like things to be simple and, somewhat non-scientifically, there is an element of esthetics to
this. I am most pleased with a piece of research work when it leads to a simple model, the
assumptions of which can be stated clearly. The phenomenology will more often than not be
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complicated, and the mathematics or the simulation methods to establish conclusions may be
technically involved. But at the end of the day what I look for on top of the potentially com-
plex results as such is a hand-waving argument, which makes one feel that the result is indeed
qualitatively expected, or at least why it is reasonable. This is when I feel that a problem
has been properly solved, and I certainly hope this transpires in the publications I have been
involved in.

This report thus is a guided tour of selected topics along the path of my research trajec-
tory. To start, a brief chronological sketch appears useful in order to outline my activities
in various domains of soft matter physics, often with inspiration from biological problems,
mostly exploiting the tool of computer modelling. The intention is to give an overview, before
developing some of the topics in greater detail in the following chapters, but also to convey
some of my motivations. Overlapping and bifurcating projects make it difficult to present all
ramifications of my activities in an exhaustive yet coherent manner. The following outline is
therefore rather pragmatically labeled in terms of geographical locations, corresponding to the
successive positions I have held. This also reflects the spirit of a journey both through Europe
and through Physics, in the fashion of a not-quite-random walk, and consequently includes
personal reflections on this apprenticeship at the end of each step of this trajectory.

1.1 Grenoble (pre-doc)

Although not entirely within the scope of this document, it seems appropriate to define a start-
ing point by briefly recalling the topic of my ‘doctorate’, with B. Fourcade at the Université
Joseph Fourier in Grenoble. This is not only because it constitutes my first incursion into
research, but also since it has been a great motivation for me to engage in a scientific career,
and since I still consider useful and important many of the things I have learned at this stage.

At that point I worked on models for phospholipidic vesicles. The phospholipidic bilayers
constituting their membranes imply elastic properties which are, in most situations, governed
by a resistance to bending this membrane. The water-filled vesicle can be modeled as a topo-
logically closed shape of given volume and area, but subject to a bending energy, such as the
one defined by Helfrich [92]. The typical vesicle shapes are then obtained by minimisation of
this energy subject to the constraints that both their volume and total membrane area are
fixed. This defines the equilibrium shape of a vesicle, around which thermal fluctuations occur.
Vesicles are commonly studied as model systems in soft matter experiments, and one aspect
of the interest they receive is that their bilayer structure is also present in the (infinitely more
complex) lipid membranes of biological cells [2]. My contribution was twofold.

One aspect was to explore the effects one could produce by using ferro-fluids [168,169], i.e.
stabilised suspensions of nanometric magnetic particles, in the presence of a magnetic field, as
had been done experimentally by Bacri and co-workers [8]. Using the response to the applied
field in order to deduce the membrane elastic parameters is one potential application. The
simplest scenario is the one where the magnetic grains stick to the membrane, in which case
an approximate description can be made in terms of an additional magnetic surface energy.
An applied magnetic field can then be used to provoke shape changes, leading to elongated
(‘prolate’) shapes in the presence of a static uniform field and a flattened (‘oblate’) shape if
a (rapidly) rotating field is applied. The magnetic field furthermore reduces the amplitude of
thermal shape fluctuations, an effect which can be described in terms of a magnetic contri-
bution to the tension in the membrane [109]. Similar systems have been revisited in recent
experiments [124–126].
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The other aspect of my work was concerned with shape changes due to hydrodynamic
effects as vesicles are dragged through the surrounding aqueous solution, as would for example
be the case for ferro-vesicles in a field gradient. The approach, following Kraus et al. [119],
was to discretise the 3d shape of a vesicle, modelling its elastic properties by finite element-
like methods. The relevant low-Reynolds hydrodynamics were then treated, based on the
same discretisation, via boundary integral methods exploiting the Oseen tensor approach for
hydrodynamic interactions [119,129,153]. It turns out [110] that both prolate and oblate shapes
are stationary when pulled, but undergo deformations due to the flow. Rather more surprisingly,
we have shown that a vesicle sedimenting under the effect of gravity should take a pear-like
shape, somewhat counter-intuitively exposing its broad side towards the flow direction. The
approach has recently been re-visited by Leonetti and Boedec [22,23], with similar results but
with a much finer resolution, due to the gain in computational performance. The pear shape,
amongst others, has recently been observed in experiments [96].

Personal upshot This entry point into research in Physics has been a fantastic opportunity
to discover a whole variety of domains and techniques. Elasticity theory and finite element
methods, which had not been part of my academic curriculum to any great extent, are such
topics which I have been able to discover and put to use. Variational calculus has been an-
other such element. The low Reynolds hydrodynamics, and in particular the boundary layer
techniques, have given me useful insight into the micrometric world, which I still benefit from
today. Exploiting Stokes hydrodynamics, coupled with the problem of membrane elasticity as
well as volume and area constraints has been a challenge, and developing taylor-made codes,
in this case using the C++ programming language, has been one of the key ingredients. This
has since remained a constant in most of my work.

On a more general level my PhD work has helped me to lay the foundations of my physical
intuition, as well as to develop the necessary working methodology for research. The oppor-
tunity to attend summer schools, on soft matter physics as well as on the interface between
Physics and Biology, has also been an important factor for opening my eyes towards the vaster
fields in Physics, and ultimately for making me wish to pursue a career in research.

I have also been fortunate enough to have been offered a complementary teaching con-
tract (known as ‘monitorat’ at the time), which has given me a first teaching experience in
an undergraduate level academic context. Getting a first glimpse of what the activity of an
‘enseignant-chercheur’ represents has also been an important element for my subsequent career
choice.

1.2 Amsterdam (post-doc)

After having completed a PhD using models based on a continuous, macroscopic description,
it was my wish to also acquire intuition on microscopic processes. This aim took me to a post-
doctorat in Daan Frenkel’s group at Amolf in Amsterdam. There I have worked on the phase
behaviour of simple models for complex fluids, in particular with respect to the fluid phase.
One inspiration for this project was the problem of protein crystallisation, an important prac-
tical step in the study of structural features of these biologically omnipresent macro-molecules.
Indeed, it has been shown that certain aspects of their phase behaviour are well described by
rather simple ‘effective’ parameters (the second virial coefficient, as it happens). This suggests
that rather simple, generic models, in the spirit of what is usually known as ‘simple fluids’, may
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be useful for understanding the overall phase behaviour of protein solutions.

One result of this work has been to point out the importance of the range of the potential
with respect to gelation: although the virial coefficient characterises the overall attractivity
resulting from an interaction, one must be aware that short-ranged contributions in particular
affect the occurrence of gelation [143]. This implies that the fluid-fluid critical point may be-
come pre-empted by a metastable but long-lived gel state. Since the fluid-fluid critical point
has been shown to play a role in the nucleation of the crystal [189], this supplies an argument
why proteins may crystallise in conditions where artificial colloids do not [143].

Another aspect of my work was to devise a model for highly directional interactions. This
is also directly inspired by proteins, for which interactions are often specific to certain zones
on their surface. But the description is also relevant to artificial colloidal systems, which it
has since become possible to synthesise with great control (see for example [52,121,204]). The
model I have worked on combines a hard-sphere excluded volume with an additional short-
ranged attractive potential which requires attractive ‘patches’ on the particle surface to face
each other. In particular I have studied the effect of patchiness on the fluid-fluid coexistence,
using (amongst others) Gibbs-ensemble Monte Carlo simulations. It turns out that for patchy
attractions the virial coefficient is no longer the only parameter characterising the fluid-fluid
critical point [111]. The model we have introduced in this context has since then been used in
many further studies [80,131,166,176] and remains of interest today [72].

During this time I have also had the opportunity to interact with Bela Mulder on the topic
of diffusive transport in tip growth. This is a particular growth mode typical for funghi, in
which vesicles appear to be produced in one very localised region, usually associated with a
physiological feature known as Spitzenkörper. The formulation established by Bartnicki and
Garcia [15, 78] assimilates this process to a so-called vesicle supply center, where vesicles are
liberated and then travel in a diffusive manner to deliver the membrane material necessary
for the cell wall expansion. The problem is to solve for a stationary growth mode, observed in
living funghi, in which the supplied material is incorporated in a way which maintains the shape
of the tip. An initial model was formulated in 2d [15], a 3d model was given later [78], but
both of them remained unsatisfactory to a physicist in that they used a ballistic, rather than
diffusive, delivery process. I started with Bela Mulder to develop a formulation which would be
suitable for including the actual diffusion process, and this work has later been continued by
Simon Tindemans [191]. The main result is that corrections to the stationary tip shapes can
now be calculated, for various growth modes and properly accounting for the diffusive transport
process.

Personal upshot Entirely on purpose, this postdoc position has exposed me to the micro-
scopic vision of matter, and of soft matter in particular. I have thus had the opportunity to
discover the methods of stochastic simulations (in particular Monte Carlo methods), as well as
a certain number of the subtleties and pitfalls that come with it. In terms of physics, this was
my first real-world contact with thermodynamic calculations and simulations in general, and
with analysing phase behaviour in particular.

I have had the opportunity to implement rather complex simulations (such as Gibbs en-
semble simulations) and also to get a glimpse into the world of parallel computing (when
implementing the parallel tempering procedure required to achieve equilibration). Acquiring
skills in scripting languages, and in particular in the Python language, has been another bonus,
which I still exploit regularly, both for research and for teaching activities.
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Again, I have found the contact points with biological questions very stimulating. This
wa the case for the idea of using colloidal models as a way of understanding the collective
behaviour of biologically relevant proteins. The project on tip growth in fungal cells, which I
have collaborated on with Bela Mulder, has constituted another element in this sense: it has
allowed me for the first time to think about a specific biological situation, on the scale of a cell,
to which modelling could be applied, and has indeed permitted to clarify the effect of certain
(heretofore unphysical) assumptions.

1.3 Dublin (Marie Curie fellow)

The opportunity of obtaining a Marie Curie scholarship has made it possible for me to join the
group of Denis Weaire at Trinity College in Dublin to work on various aspects of foam physics,
a topic I had become interested in since my PhD work. At the first level of description the
cellular structure of foams can be represented as an ensemble of bubbles separated by films, the
features of which are ultimately all determined by surface tension effects. This conceptually
simple description of the structure, both in 2d or 3d, provides a seducing starting point, making
foams interesting to both theory and experiments, but also for pure and applied mathemat-
ics [199]. More complex aspects of foam physics may then be understood by building on and
refining this description, such as physico-chemical effects, which become particularly relevant
for phenomena of foam flow and/or rheology. The projects I have worked on have concerned
both the structure and the dynamics of foams.

Concerning the static structure, I have mainly explored the question how the description
of foams, in terms of films delimiting bubbles and subject to surface tension, might need to
be complexified in certain situations. One such case is the scenario of ‘loaded’ foams, where
the weight of the fluid present in the liquid-filled channels known as ‘Plateau borders’ is taken
into account. It turns out that this gravitational energy contribution can be shown to modify
the equilibrium rules known as Plateau’s laws [199] which dictate, amonst others, the angles
at which the Plateau borders meet in a vertex. Another case concerns the closer inspection
of what one means by the currently used ‘dry foam approximation’, which is the case where
there is only negligible fluid content in the foam, and for which our analysis has provided new
insight. In particular we have characterised the asymptotic behaviour of very dry foams, and
provided the relevant scaling as a function of the liquid fraction, for example for rheological
situations [112]. The argument is that the liquid content leads to an energy term which may be
interpreted as a negative line tension, and which can lead to an instability in numerical work.
The presence of such a term has indeed been verified experimentally shortly after [87], and has
been exploited very recently [57] for an experimental characterisation of the elastic properties
of a Plateau border.

A major result concerning the dynamical behaviour of foams, including dissipation effects,
has been obtained for so-called 2d foams (bubbles squeezed between two parallel plates): for
this case we have formulated the viscous froth model, which includes dissipation effects due to
the displacement of Plateau borders over the glass plates. The model maintains the description
of (2d) bubbles, but includes a linear drag force on the Plateau borders as they move. A
numerical strategy to solve this simple model for 2d foam dynamics has been provided and
implemented [108]. It has even been possible, in collaboration with R. Delannay and I. Cantat,
to experimentally elucidate the dissipation relation to be expected in real systems [31].
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Personal upshot Working on the physics of foams has been a great opportunity for me to
explore this system, about which I had become very curious over the preceding years: a curios-
ity nurtured by many discussions with F. Graner, who so rightly highlighted the richness of the
physics underlying such cellular fluids. The context of the renowned Trinity College group has
been a perfect environment, encouraging me to work on many different aspects, ranging from
theory on the static structure to numerical simulations on the flow of foams, to direct contact
with rather original experiments on bubbles flowing through narrow channels, and which have
ultimately lead to the notion of ‘discrete microfluidics’ [51].

My collaboration with I. Cantat and R. Delannay in Rennes has even allowed me to take
part in actual experiments (getting my hands wet for real!): this too has been a very inter-
esting experience, which I would be ready to renew if the right opportunity were to present
itself. It has certainly given me yet more appreciation for the experimental work which Physics
ultimately relies on.

There has not been an opportunity within my activity on foams to work on biologically
inspired problems. On the other hand, models inspired from cellular fluids have been exploited
for a long time to model cellular tissues (see, e.g., [79, 82–84]), and recent developments have
lead to much refined approaches inspired by methods and descriptions which have proven useful
in foams (see [25, 101] for two recent publications). It is one of the topics I would be curious
about returning to in a biology-inspired setting such as biological tissues.

In this context the question of specificity springs to mind: if one intends to use a cellular-
liquid based description for actual biological tissues, one must clearly be aware of the potential
limitations, due to the fact that many interactions between cells are in fact quite complex, and
in many cases specific. In addition, dealing with a living tissue, interactions can be regulated
by the tissue itself. The real challenge therefore is to evaluate to which extent it will be possible
to isolate generic feature, which it would be useful to address based on physics-based arguments.

In this respect, foam physics nicely illustrates that, even within the realm of Physics, certain
questions become subject to the influence of physico-chemistry. This is highlighted rather
strikingly by the debate [53,115,201] whether the drainage of liquid through a foam is limited
by flow through the Plateau borders or through the junctions. The ultimate conclusion has
been that it depends . . . on whether one uses Fairy or Dawn washing up liquid (or, more
precisely, on the surface viscosity of the surfactant). To me this has come as a reminder, not
without irony: Yes, it is possible to obtain useful insight by simplifying away the specificity of a
microscopic system (like the biological protein interactions in the previous topic). But it is just
as well possible to discover that unsuspected specificities play an important role in a supposedly
simple, well characterised system, as it is required for a description by macroscopic physics.
This example will always serve me as a reminder to be careful before drawing conclusions from
simple models for any specific system, a precaution which applies even more so to biologically
inspired questions.

1.4 Montpellier (‘Mâıtre de Conférences’)

My work in Montpellier, in the context of the group of Statistical Physics (formerly Theory
and Simulation) has seen me, and is still seeing me, work on various topics, involving Molecular
Dynamics and Monte Carlo simulations on systems both in and out of thermal equilibrium.
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Scientific context Arriving at the University of Montpellier, I joined what was at the time
the ‘Laboratoire des Verres’, with a strong tradition on glasses, out-of-equilibrium dynamics
and glassy dynamics in particular. I thus became involved in the study of a simple model for
a particle gel, a study which has also allowed me to gain experience in Molecular Dynamics
simulations. In this model we have considered particles with a propensity to forming a particle
gel, stabilised by suitable energy barriers in the pair interactions. We have explored [184] the
dynamics with which a gel-like fractal assembly of particles ages, or finally desintegrates, de-
pending on the applied conditions (and the temperature in particular). The simulations have
furthermore given access to the microscopic processes corresponding to the structural rear-
rangements which lead to aging over time. In particular, a subdiffusive dynamics arises after
long waiting times. The scaling of the mean-squared displacement with time has been linked
to the collective dynamics of particle chains in the gel.

I am thus presently part of a renowned group with experts in statistical physics in gen-
eral and out-of-equilibrium dynamics and glassy systems in particular, but also in computer
techniques of molecular simulation. But I was also fortunate enough to find myself in an
open environment, favourable to interdisciplinary work. My own research has evolved towards
stochastically driven out-of-equilibrium transport, as it would model the biological situation
of molecular motors (such as myosin, kinesin or dynein) driving transport along bio-filaments
(actin fibers or microtubules). In its simplest variant the corresponding model is called the
TASEP (Totally Asymmetric Simple Exclusion Process [130]), in which particles stochastically
hop along a regularly spaced lattice, subject only to an excluded volume interaction. This
model is also a paradigm in fundamental physics, since it is arguably the simplest model for
stochastically driven out-of-equilibrium transport. Much of my recent research effort has been
spent, in collaboration with Andrea Parmeggiani, on understanding the physics of this type of
process in the presence of branched structures on a network. In the interdisciplinary context
this amounts to an attempt to develop minimal models for understanding some of the mecha-
nisms at work in cytoskeletal transport.

The results include a straightforward procedure allowing to model, with many simplify-
ing assumptions, the flow of molecular motors on a complex network. We have presented the
method in [140]. It builds upon our earlier approach [61] with a different angle, by decomposing
the network structure in a mean-field spirit, exploiting the fact that the transport properties
of a single segment are known. Indeed, we have shown that one can construct the entire flow
pattern by decomposing the global network into segments, which couple at the junction points
only. This mean-field analysis works remarkably well. Thanks to this approach we have been
able to devise a numerical algorithm which allows to handle TASEP transport on large networks
very efficiently. With this tool it has become possible to investigate the role of the network
topology: regular networks (having an equal number of incoming and outgoing segments at
all of their nodes) behave differently from irregular ones, and in particular they are prone to
showing ‘traffic-jam’-like density discontinuities. The approach furthermore generalises to more
complex variants of the model. Most importantly this is the case for the process including the
attachment and detachment of motors, as they occur in a biological setting, thus coupling the
transport on the network to a (homogeneous) bulk concentration [142]. Beyond the partic-
ular models considered, a convenient representation has been identified which may be used
to characterise the transport state of the entire network by mapping it onto that of a sin-
gle segment. Remarkably, this simple view captures many important features of the resulting
physics, and it can furthermore be expected to be applicable to many future generalisations of
the transport model [141]. Finally, we have taken a further step towards modelling actual bio-
logical transport processes, by highlighting how local rules at the junctions affect the flow [160].
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An ongoing PhD project (P. Nadal) on modelling the effect of conformational changes on
the collective behaviour of protein-like particles is closer to my postdoc work on simple fluids,
but still biologically inspired. It also has points in common with my research activity on motor
protein based transport (see the final chapter).

Teaching and tuition of research students Holding a teaching position since my arrival
in Montpellier, there is of course another side to my activities. Having arrived in 2003 I have
had the opportunity to discover the program preceding the major reform of 2004, as well as the
system following that reform, and the reformed version of that (if there is a stationary state it
appears to be characterised by a high rate of reforms. . . ). I have thus contributed to a whole
variety of classes, from teaching introductory physics to students in geological sciences, through
computer modelling for undergraduate Physics students, to simulation techniques for students
taking a combined Master in Physics and Computer Sciences. In many cases I have also been
able to set up these modules and define their content, as well as the pedagogical approach.
Most of these have been a real pleasure to teach, and interacting with students has been an
important part of the process, requiring continually to revise one’s approach, just like one has
to do in research.

I have furthermore been fortunate enough to contribute my share towards mentoring grad-
uate students and PhD students. This activity is of course more closely related to my research
work, and the work of several of these students has found its way directly or indirectly into the
resulting publications. I would specifically like to mention the Master students whose projects
I have contributed to supervising: Étienne Loiseaux (M1), Mirko Mikosalec (M1), Adéläıde
Raguin (M2), Pascal Nadal (M2), and a joint project by F. Honno, M. A. Kamoun et J.-F.
Zaragoci (M1).

Some of these projects have evolved into PhD projects, and I thus have co-supervised the
PhD project of Adéläıde Raguin (with Andrea Parmeggiani). Others have come as an ‘ex-
tra’, like a stay of several months by Ben Embley, sent by his Phd supervisor (Paul Grassia)
to explore an orthogonal topic to his PhD work, in the context of a European PhD scholar-
ship. Currently I am involved in the PhD project of P. Nadal mentioned above (with Daniele
Coslovich and Vladimir Lorman).

Although not considered student tuition, I would also especially like to mention Izaak Neri,
whose postdoc activity I have contributed to supervising: this, too, has been a very fruitful
and rewarding experience.

Responsibilities within the local scientific community In terms of administrative and
community activities, beyond the regular share of paperwork that comes with both teaching
and research, two contributions come to mind. One has been playing the role of group leader for
what was then called the group of ‘Theory and Simulation’. This has given me the opportunity
to discover the inner workings of a research laboratory and, to a lesser extent, a University. The
other activity has consisted in being part of an interdisciplinary committee of three colleagues
taking on the responsibility to implement the certification of computer literacy (C2i), at the
level of the University Montpellier 2. I have contributed to developing the underlying courses
and the associated evaluation process over a number of years.

Finally, I have also had the opportunity to be a member of recruiting commissions for
openings at the ‘Mâıtre de Conférences’ (lecturer) level.
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Personal upshot My research activity here in Montpellier has been tremendously motivat-
ing for me. The topic of active quasi-1d transport has allowed me to learn new Physics, as well
as work on models which clearly have their place at the interface with molecular cell biology,
and which have proven to appeal to a number of experimentalists working on molecular motors.

The collaboration with Andrea Parmeggiani has provided the context for such a topic to
prosper. One interesting point was to see in full size how problems at an interface with other
sciences can lead to a ‘cross-fertilisation’: here, the physics-based approach attempts to pro-
vide insight into molecular mechanisms which may be relevant, for living systems or at least
for in vitro experiments. But at the same time, the biological context also raises new questions,
which may be challenging to Physics. Here, a simple stochastic transport process has provided
a useful concept, but ultimately requires refinements (for particle attachment/detachment, bulk
diffusion, internal degrees of freedom in the stepping process, etc.), which all raise further in-
teresting questions within out-of-equilibrium physics.

In terms of mentoring PhD and Master students, I have taken great pleasure in this part
of my work. Taking on the responsibility for a project at this level of a student’s curriculum
is always a challenge, but it is also very satisfying from a personal point of view: helping PhD
students on their way into Physics research has proven to be another rewarding aspect of the
life of an ‘enseignant-chercheur’. In terms of the scientific implications, without much surprise,
I can definitely confirm that the additional questioning and discussing with young scientists
systematically leads to deeper understanding. I am grateful for the contribution of all the
students and postdocs I have worked with.
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Personal Details

Born 10 may 1969, German nationality.
Married, three children (born in 2001, 2003, 2007).
National service accomplished (1988/89).

Contact details :
Laboratoire Charles Coulomb UMR 5221 CNRS-UM2
Université Montpellier
Place Eugène Bataillon - CC069
F-34095 Montpellier Cedex 5 - France
Tél : +33 (0)4 67 14 93.06
Fax : +33 (0)4 67 14 34 98

Education and Career

2003-... : Mâıtre de Conférences

Université Montpellier 2

2001-03 : European ’Marie Curie’ scholarship

c/o D. Weaire, Trinity College, Dublin (Ireland)
topic: structure and dynamics of foams

1998-01 : Post-doctorat

c/o D. Frenkel, Amolf/Fom, Amsterdam (Netherlands)
topic: proteins vs. colloids

1995-98 : Doctorat in Physics;

Université Joseph Fourier, Grenoble (France)
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Advisor : B. Fourcade
“très honorable avec félicitations” (oct. 1998)

1989-96 : Diploma in Physics

Universität Karlsruhe (Germany)
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As part of these studies: stays at the University of Edinburgh
(Scotland, 92/93) and at the Université Joseph Fourier in Grenoble
(DEA 94/95, “Diplomarbeit” 95/96), with a mobility scholarship
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1988-89 : National service

1988 : “Abitur” (baccalauréat); Karolinen-Gymnasium Frankenthal (Allemagne)
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Distinctions

• ANR “ModelN” (responsible for partner 2, University Montpellier 2) (2010-13)

• Funding (3500 euros) for interdiscplinary research projects (with A. Parmeggiani) from
the Conseil Scientifique of University Montpellier 2 (2007)

• Sabbatical (6 months) for interdisciplinary research, University Montpellier 2 (2005-06)

• European scholarship “Marie Curie” for postdoc at Trinity College, Dublin (2001-03)

• ‘Monitorat’ (additional contract as teaching assistant) during doctorate (1995-98)

• Scholarship of the “Collège Franco-Allemand” for studying at the Université J. Fourier,
Grenoble (1994-95)

Tuition of Postgraduate and PhD students

PhD students

• P. Nadal (2013-. . . ), joint tuition (33 %) with D. Coslovich and V. Lorman

• A. Raguin (2010-2013), joint tuition (50 %) with A. Parmeggiani
CNRS interdisciplinary scholarship (physics-biology)

Master students

• P. Nadal: M1, Master Physique-Informatique (2013), co-tuition with D. Coslovich

• M. Mikolasek: M1, Master Physique-Recherche (2012)

• A. Raguin: M2, Master Physique-Recherche (2010), co-tuition with A. Parmeggiani

• E. Loiseaux: M1, Master Recherche (2006), co-tuition with A. Parmeggiani

• F. Honno, M. A. Kamoun and J.-F. Zaragoci: M1, Master Physique-Informatique (2005),
co-tuition with I. Mougenot and A. Parmeggiani

• A. Martin: Master, Trinity College Dublin (2002-3), under the responsibility of D. Weaire

Participation in PhD committees and examinations

• F. Turci (2012), c/o E. Pitard, Montpellier

• T. Green (2008), c/o P. Grassia and L. Lue, Manchester

Participation in PhD ’steering’ committees

• O. Dauloudet (2013/14 - ... ), c/o A. Parmeggiani, Montpellier

• F. Turci (2009/10 - 2011/12), c/o E. Pitard, Montpellier

• R. Garces (2009/10 - 2013/14.), c/o V. Lorman, Montpellier
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Implication in the local scientific community

• Group leader ‘Théorie et Simulation’ (2009-2011)

• Member of recruiting commissions

– Member of the “Commission de Spécialistes”, UM2 (Section 28), juin 2007 (full
member)

– Member of “Pool d’Experts” for the recruiting commissions, UM2, 2013

– Member of the “Commission de Spécialistes”, UM2 (Sections 29-30), mars 2008
(additional member)

• Creation (with M. Rolland et T. Libourel) of the certificate of computer literacy ‘c2i’ at
the Faculté des Sciences, UM2 (2007-2010)

• In charge of the ‘delocalised’ library, LCVN (2005-2012)

Refereeing for Scientific Journals

Refereeing activity for Physical Review Letters, Physical Review E, Journal of Chemical Physics,
Philosophical Magazine Letters

Publications

Scientific Journals

• “Modelling Collective Cytoskeletal Transport and Intracellular Traffic”
A. Parmeggiani, I. Neri, N. Kern
chapter in: The Impact of Applications on Mathematics: Proceedings of the Forum of
Mathematics for Industry Vol. 1, Springer (2014)

• “The crucial role of junctions for TASEP transport on networks”
A. Raguin, A. Parmeggiani, N. Kern
Phys. Rev. E 88, 042104 (2013)

• “Exclusion processes on networks as models for cytoskeletal transport“
I. Neri, N. Kern, and A. Parmeggiani
New Journal of Physics 15, 085005 (2013)

• “Modelling cytoskeletal traffic: an interplay between passive diffusion and active trans-
port”
I. Neri, N. Kern, and A. Parmeggiani
Phys. Rev. Lett. 110 (9), 098102 (2013)

• “Totally Asymmetric Simple Exclusion Process on Networks”
I. Neri, N. Kern, and A. Parmeggiani
Phys. Rev. Lett., 107 (6), 068702 (2011)
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• “Understanding totally asymmetric simple-exclusion-process transport on networks: generic
analysis via effective rates and explicit vertices”
B. Embley, A. Parmeggiani, N. Kern
Phys. Rev. E 80, 041128 (2009)

• “Aging dynamics of a fractal model gel”
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• “Hex-Tasep: Dynamics of Pinned Domains for Tasep transport on a Periodic Lattice of
Hexagonal Topology”
B. Embley, A. Parmeggiani, N. Kern
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• Loaded foam structures”
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N. Kern & D. Weaire
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N. Kern & D. Frenkel
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• “The role of long-ranged forces in the phase behaviour of colloids and proteins”
M. Noro, N. Kern & D. Frenkel
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N. Kern & B. Fourcade
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Europhys. Lett. 38(5), pp. 395-400 (1997)

General articles written about our results

• “Transport sur réseau irrégulier”, by M. Mashaal,
http://www.pourlascience.fr/ewb_pages/a/actu-transport-sur-reseau-irregulier-27804.php

• “Les grandes artères ne profitent pas au trafic !”
Actus Labo, Sciences & Vie, Octobre (2011), 28

• “Random Roads Less Travelled”, by M. Schirber,
Phys. Rev. Focus 28, 6 (2011)

Recent presentation of results at conferences, etc.

• DPG meeting, 2014 (Berlin), “Exclusion processes on networks” (talk), I. Neri, N. Kern,
A. Parmeggiani

• GDR Phénix, “Complex Network Dynamics”, 2013 (Montpellier), “Characterising sta-
tionary states in exclusion processes on networks” (invited talk), N. Kern, I. Neri, A.
Raguin, A. Parmeggiani

• Conference, 2013 (Coventry, England), “Understanding quasi-1d active transport on net-
works” (talk), N. Kern, I. Neri, A. Raguin, A. Parmeggiani

• International Summer School Fundamental Problems in Statistical Physics XIII, 2013
(Leuven), “Exclusion processes on networks” (talk), I. Neri, N. Kern, A. Parmeggiani

• 4ième École Interdisciplinaire sur les Syst‘emes Complexes, 2012 (Rennes), “Transport
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Chapter 2

Simple fluids mimicking globular
proteins

2.1 Tour d’horizon

The phase behaviour of simple, or not quite so simple, fluids is obviously a huge topic, and re-
search over the last century has progressively made it possible to link the macroscopic behaviour
of fluids to the microscopic features of the interactions between its constituents (‘particles’ in
the following) [13,90]. This is an important conceptual progress from the point of view of funda-
mental physics, but also has many direct applications. In particular, this holds for the problem
of protein crystallisation, which is an important issue in structural biology. Accordingly, the
questions addressed in this section are motivated by experimental situations, but may also be
viewed as fundamental considerations.

Indeed, initially the notion of fluids is often understood in molecular terms, its constituents
(‘particles’) taken to be atoms or simple molecules. The interactions then are the direct phys-
ical interactions (electrostatic forces, Van der Waals forces etc.) if one is interested in making
predictions on any particular sample or material. However, one important achievement, and a
rather beautiful one, due to research on ‘simple’ fluids is the fact that it is possible to largely
simplify the interaction potential, for example in the spirit of a Lennard Jones fluid, and still
preserve its essential features. In this frame of mind one sacrifices the ability to quantitatively
predict material properties (such as the melting point, the heat capacity etc.) for a specific
substance. On the other hand, the approach allows to establish a deeper understanding of
what the generic features are due to. In the above example, the Lennard Jones potential,
which combines a hard core-like repulsion with an attraction, produces a gas phase, a liquid
phase and a solid phase. It thus allows one to study all corresponding transitions, in a rather
generic way, but which remains useful for many materials once the interaction parameters are
adjusted accordingly.

It is both convenient and intriguing that even simpler models allow to further analyse the
generic phase behaviour of liquids, and in fact obtain further insight. Indeed, one may be
surprised at how much one can learn from almost caricatural potentials like hard sphere repul-
sion or square well attraction, or slightly more sophisticated variations thereof (hard ellipsoids,
sticky hard spheres, etc.). Historically this push for further simplifications was of course due to
constraints of analytical tractability, but it is also this approach which has made it possible to
address many issues based on computer simulations from a very early stage on. As an example,
it is remarkable how the very first simulations of hard sphere liquids [3, 203] have allowed to
make the point that hard spheres, despite being purely repulsive, undergo a freezing transi-
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Figure 2.1: Schematic illustration of a depletion interaction, here having in mind a suspension
of colloids (large spheres) to which coiled polymers are added. Due to the steric interaction of
the colloids and the polymer coils, spherical on average, the centre of gravity of the latter
cannot access the ‘depletion shell’ around the colloidal particles. As two colloids approach their
depletion shells overlap, thus reducing the overall depleted volume, which therefore effectively
increases the available free volume. Attraction through depletion is thus seen to be an entropic
effect.

tion. This approach has provided decisive evidence for the presence of a real phase transition,
driven by an entropic effect, rather than an artifact due to an approximation in the analyt-
ical treatment. The problems considered in the following may be viewed in the line of such
considerations on simple (or not quite so simple) fluids. But they are also directly inspired by
questions relevant for experimental systems.

Colloidal suspensions It turns out that the hard sphere liquid is also a very natural starting
point for describing colloidal suspensions. Here the size of the interacting particles are not
atomic but rather, for artificially produced colloids, micrometric. Their interactions can be
complex (and typically they are), including electrical charges, counter-ions in the solution, Van
der Waals forces, etc. In addition, special procedures are used in experiments as to modify
the interactions in order to stabilise the colloids against aggregation (such as application of
polymer brushes to the surface) and against sedimentation (density matching), but also to
achieve better visibility in light scattering experiments (refractive index matching). Finally,
more and more frequently selected molecules, and in particular bio-molecules, are grafted to
the colloids in order to achieve specific interactions [52]. Despite this complexity, it is obvious
that the steric exclusion between colloidal particles remains a major effect, and thus the hard-
sphere repulsion may indeed serve as a first, albeit crude, description of the interaction between
colloidal particles.

Depletion interactions One advantage in using colloidal systems, rather than atoms, to
study collective effects and phase behaviour is that one can intervene and tune the interactions.
One particularly convenient way to induce a well controlled attraction is by means of adding
polymer molecules to the suspension. The idea here is that each polymer chain forms a coil
of a certain (average) size corresponding to its radius of gyration, typically chosen smaller but
not much smaller than the colloids. Therefore its centre of gravity cannot approach the colloids
beyond the radius of gyration, which corresponds to a depletion zone around each colloidal
particle (see Fig. 2.1 for a schematic illustration). As two colloidal particles approach, their
respective depletion zones overlap, which in turn frees volume elsewhere for occupation by the
polymer coils, which thus ultimately leads to an entropic attraction. The resulting so-called
depletion interaction [7] is therefore a way to induce an attractive interaction between colloidal
particles, the size of which is set by the radius of gyration of the polymer coils, and the inten-
sity of which can be adjusted via the polymer concentration. These qualitative arguments have
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been made explicit by Vrij [197] and its effect on applied to the phase behaviour of colloidal
particles, explored both theoretically [74] and experimentally [128].

The upshot here is that the interactions between colloidal particles can be tuned, and that
depletion forces may be used to provoke a short-ranged attraction on top of the hard-sphere
excluded volume interaction.

Proteins and protein suspensions One particularly interesting case where a description
in terms of colloidal suspensions proves useful concerns proteins, as they are omnipresent in
biological cells.

Proteins are macromolecules, consisting of a chain of typically several hundreds of amino-
acids in a sequence specific to each variant of protein, synthesised by living organisms according
to their genetic code [2]. This sequence constitues the primary structure of a protein. But
the interactions between the amino-acids also imply a certain local structure, which typically
organises the polypeptide chain in terms of common motifs (alpha-helices, beta-strands or beta-
sheets), which are stabilised by hydrogen bonds between the amino-acid groups; this is known
as secondary structure. These local sub-structures in turn spatially organise in a specific way,
which thus defines the protein’s tertiary structure. Often (but not always) this results in rather
compact structures, and in this case we speak of globular proteins.

The process how the protein chain curls into its final shape is known as protein folding, and is
highly non-trivial: Molecular Dynamics simulations of the folding process are only just becom-
ing possible, for proteins with a particularly fast folding process and with huge computational
effort. Other approaches are typically based on highly simplified models for the interactions
between the amino-acids, coarse-grained and not including explicit solvent molecules. A major
difficulty is that, as it turns out, there is typically a large number of intermediate metastable
states which the conformation gets trapped in. Indeed, studying artificial ‘proteins’ made of
random sequences of amino-acids has highlighted this process, which is often assimilated to
‘glassy’ dynamics, thus exposing the difficulty in predicting the folding process [145]. As a
result, predicting the stable structure of a protein based only on its sequence of amino-acids is
a timely field of research, but such predictions remain extremely difficult.

This has furthermore direct implications for biologists, since the full 3d structure of a protein
determines which functional groups are exposed at the surface of the globule, and this in turn
gives valuable hints at the biological function which the protein carries out in an organism. To
measure the difficulty, one may consider that even mutations of single amino-acids have been
shown to modify the interaction between the proteins significantly [72].

Protein cristallisation as a colloidal problem In practice, the structure of proteins is
thus essentially determined using X-ray crystallography. These experiments are not only dif-
ficult to analyse, but also require crystals, and good quality crystals for that matter, for the
scattering methods to work. Unfortunately, the task of achieving protein crystallisation is a
tremendously difficult task: there is no straightforward stategy which would allow to predict
the appropriate conditions to provoke crystallisation within a particular sample of proteins in
solution. Indeed, looking at some of the ‘nucleating agents’ tells a tale by itself: cellulose,
dried seaweed and horse hair are among them [41]. Achieving protein crystallisation is thus
often a matter of trial and error, using educated guesses based on what has worked for similar
proteins, and thus often requires significant time to succeed (if succeed they do). Consequently
the cristallisation step is often the main bottleneck in experimentally determining the structure
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of a protein: it has been estimated that, even today, appropriate crystallisation conditions have
been found not even for 30% out of those proteins which have been expressed and purified. As
a result, all in all we know the structure of only about one percent of the 10 million distinct
protein sequences known [71]. Any attempt at providing physical insight is thus bound to be
acknowledged even for any partial success.

At this stage it is useful to realise that proteins in suspension may be viewed as colloidal
particles. They differ from the artificial ones in that their size is in the namometre range
(as opposed to micrometres for artifical colloids). But also, whereas the synthesis of colloids
typically leads to a polydisperse size distribution (typically of the order of a few percent), the
size distribution of proteins is essentially monodisperse by construction: since they have an
identical sequence they fold to an identical structure (if we exclude a small portion of misfolded
configurations and the existence of several competing folded states, a case we will return to in
the following).

One may thus hope that a description in terms of colloidal fluids might be applicable to
protein suspensions, or at least so for a majority of globular proteins. Experimental evidence
that this is indeed the case has been provided [75,167], pointing to the fact that the crystallisa-
tion curves of a number of (globular) proteins can be understood in terms of hard spheres with
a short-ranged (Yukawa) attraction [88]. They built on the observation that the interactions
between colloidal particles can be characterised by an overall ‘attractiveness’, quantified by the
(second) virial coefficient.

Virial coefficients Virial coefficients are most conveniently introduced through an expansion
of the pressure-density relation in terms of the particle number density ρ:

p

kBT
= ρ+B2 ρ+B3 ρ

3 + ... . (2.1)

They thus characterise the non-idealness of particles, i.e. their interactions. It is furthermore
interesting for our purpose that the first correction term, the second virial coefficient B2, can
be measured experimentally in light-scattering experiments [4].

A link with the microscopic vision of statistical physics can be made via the relation

B2 =
1

2

∫ ∞
0

(
1 − e−u(r)/kT

)
4π r2dr (2.2)

which links the second virial coefficient directly to the interaction potential u(r) between pairs
of particles (which, for this discussion, we have taken to be isotropic). It thus reflects the
overall attractiveness (B2 < 0) or repulsiveness (B2 > 0) between particles, but carries no trace
of their range.

The main point of Rosenbaum et al. [167] as well as George and Wilson [75] has been to
show that the crystallisation conditions for many globular proteins can be associated with a
particular window in the virial coefficient. An interpretation in terms of the physics of phase
transitions can be made as follows.

Nucleation and gelation It is worth recalling that, depending on the interaction parame-
ters, a fluid-fluid critical point may not be present in the equilibrium phase diagram. Typically,
an attraction of sufficient range is required for a stable fluid-fluid phase [74]. However, even
when the fluid-fluid phase is metastable and buried in the gas-solid coexistence region, the
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location of the fluid-fluid critical point remains important with respect to crystallisation. In-
deed, this has been illustrated by Ten Wolde and Frenkel [189], using computer simulations
of a Lennard-Jones fluid. They have shown that in this case the nucleation rate for forming
crystallite germs which are sufficiently large to initiate crystallisation is increased by orders
of magnitude close to the fluid-fluid critical point. This effect, which can be attributed to
the presence of critical fluctuations, therefore suggests a potentially interesting way to provoke
crystallisation.

Modelling strategy In terms of a modelling strategy, the choice is necessarily simple. Rep-
resenting each amino-acid by an atomistically realistic potential, or even and effective atomic
potential, is not feasible in terms of the required computing power. One could thus envisage
models regrouping parts of the protein chains into effective units, representing for example
sections of alpha-helices or beta-sheets, as an attempt to devise effective interactions between
these. This is indeed an approach which is useful for understanding details in the structure of
proteins and the associated functions they perform, but it requires significant input in terms of
the protein structure. For the question of protein crystallisation raised above, however, this is
not an option, since the structure is unknown: the goal is to attempt to determine crystallisa-
tion conditions for experiments, precisely in order to determine this structure. The way to cut
this gordian knot is to start from overly simplistic models, retaining only the essential features
of the interactions, and to establish an overall understanding of the phase behaviour of protein
solutions. This is quite in line with the above discussion on modelling colloidal interactions,
the models of which will be borrowed. In practice it amounts to re-defining the goal as mak-
ing predictions for typical proteins, or certain classes of proteins, acknowledging the fact that
they may not hold for those proteins showing specific features in their structure or in their
interactions.

2.2 Selected publications

The introduction has outlined a range of phenomena involved in the crystallisation process of
proteins, and leaves many open questions. Amongst them are the following. Can the virial
coefficient systematically be used to characterise the fluid-fluid critical point of protein suspen-
sions? Can simulations help to elucidate the nature and dynamics of a gel of particles? Can
one devise criteria to understand under which circumstances gelation is expected to interfere
with crystallisation? The following discussion briefly summarises the research contributions I
have been involved in concerning these questions.

2.2.1 Gelation vs. fluid-fluid coexistence
Reference to the original work:

“The role of long-range forces in the phase behavior of colloids and proteins”
Massimo Noro, Norbert Kern and Daan Frenkel
Europhys. Lett., p. 332 (1999)

As argued in the introduction, it is a useful starting point to describe a protein suspension
as a fluid of simple colloidal particles. Amongst others, this provides hints at what might be
underlying the observation that the crystallisation conditions of many different proteins all fall
into a narrow window characterised by the value of the second virial coefficient. In essence, the
argument is that there is a metastable fluid-fluid critical point, which leads to critical fluctua-
tions which, in turn, help the formation of a crystal by lowering the nucleation barrier [189].
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However, the same mechanism does not appear to hold for the artificially produced colloids,
thus contradicting the above analogy between protein solutions and colloidal suspensions. In-
deed, rather than showing a fluid-fluid coexistence, colloidal solutions instead produce a disor-
dered gel-like structure which turns out to be metastable but very long-lived, which can delay
or suppress crystallisation [100,181]. In this respect, one has to be aware that the equilibrium
phase diagram does not contain all elements required as to the formation of a crystal. To that
matter, it is entirely possible that a suspension which is expected to crystallise will instead
evolve to a disordered metastable state, with a cluster spanning the whole sample and which
can be very long-lived. This is known as gelation, and whenever such long-lived metastable
structures form it becomes exceedingly difficult to obtain a crystal. In order to establish a
comprehensive understanding of the differences between suspensions of colloids and proteins,
it is thus important to elucidate this point.

The difference in scale (proteins are a thousand times smaller than colloids) should not
matter as such, since the particle size only sets the reference scale on which the range of in-
teractions are to be measured. The interactions between proteins on the other hand cannot
be expected to be necessarily similar to those between colloids, which opens a very complex
discussion. However, basing the arguments on simplified, schematic interactions opens a path
for exploring the effect of such differences. For example, directionality may be expected to play
a role (see below). The present study provides a qualitative argument showing that it may be
the presence of long-range forces which accounts for the absence of gelation in protein solutions.

The argument may be made in three steps.

Fluid: Short-ranged vs. long-ranged attraction Here we wish to point out the respec-
tive roles of long-ranged and short-ranged contributions to the attraction. To make our point we
oppose somewhat schematically two extreme contributions, one with an infinitely short range
(in the spirit of Baxter’s ‘sticky spheres’ [11,16], see below) and the other one with an infinitely
long-ranged (Van-der-Waals mean-field) attraction.

For the long-ranged attractions, we attribute them to pairs of particles, considering their
range to be infinite. This leads to a pressure term proportional to the square of the particle
density, but indifferent to the particle positions:

uvdW = −α η2 (2.3)

where α is a constant and we have used the packing fraction η

η =
π

6
σ3ρ ∼ ρ , (2.4)

which is proportional to the number density ρ, for compatibility with the following expressions.

As concerns the short-ranged attractions, it is important to realise that the precise distance
dependence is not crucial for very short ranges (compared to the particle size) [162, 163]. We
can thus consider for example an attractive potential of the form

uε(r) = −ε
(
r

σ

)−n
(2.5)

for an exponent n, where σ is the particle diameter and ε is the coefficient setting the attraction
strength of the short-ranged contribution. For numerical purposes we have used n = 50 in
order to ensure a very short range, but analytically it is convenient to assimilate the potential
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to the limiting case of sticky hard spheres introduced by Baxter [11, 16]. These are conceived
as a somewhat subtle limiting case where the attraction is only present upon contact (zero
range) but where the attraction is infinitely strong. These two limits are taken simultaneously,
maintaining the virial coefficient constant, which therby characterises the ‘sticky’ limit.

Role of the virial coefficients The analytical arguments are helped by this scenario since
every contribution to the interactions corresponds to a particular distance: hard sphere exclu-
sion for r < σ, ‘sticky’ attraction for r = σ and (constant) long-range attraction for r > σ.
This simplifies determining the virial coefficient from the potential via Eq. (2.2), since every
contribution to the potential leads to an additive term in the virial coefficient:

B2 = B
(HS)
2 + ∆B

(SS)
2 + ∆B

(V dW )
2 , (2.6)

where both attractions contribute negatively to the virial coefficient.

It will furthermore be convenient to characterise the respective attractiveness of each at-
tractive contribution by a stickiness coefficient τ , anologous to the one introduced by Baxter
for sticky hard spheres:

B2 = B
(HS)
2

(
1− 1

4 τSS
− 1

4 τV dW

)
= B

(HS)
2

(
1− 1

4 τeff

)
(2.7)

where the factor of four is pure convention.

Equilibrium phase diagram The equation of state can now easily be established from the
three contributions. The starting point for the pressure-density relation in the fluid phase is the
Carnahan Sterling equation of state for hard spheres [32]. We must then add a contribution
accounting for the stickiness, established by Baxter, which depends on the density and the
‘stickiness’ parameter τSS. And finally a simple mean-field term represents the infinitely long-
ranged attraction:

Pfl = p(HS)(η, T ) + p(SS)(η, T ; τSS) + p(V dW )(η, T ; τV dW ) . (2.8)

A similar argument can be made for the solid phase, using the inverse-power potential and
applying a cell theory where all particles are assumed to rattle around their position in the
crystal, as in [40].

Based on these constitutive equations the phase diagram can now be solved for numeri-
cally via the Maxwell construction. They are conveniently characterised in terms of the total
attractiveness parameter τeff , which thus accounts for the overall attractiveness due to both
long-ranged and short-ranged contributions. Three results are shown in Fig. 2.2, contrasting
the case of short-ranged interactions only (α0 = 0) with two others having progressively more
long-ranged contributions. At this stage we discuss the phase boundary of the solid phase
(continuous line) and of the fluid-fluid phase (dashed line).

One thus sees that the location of the fluid-fluid critical point varies very little as the
attraction is shifted from the short to the long range; this is coherent with the results by
Vliegenthart et al. [195]. Furthermore, the fluid-fluid phase is metastable for the parameter
range considered, and would become stable only if the long-range attractions became yet more
important, in agreement with results by Ilett et al. [100]. This sets the scene for discussing
gelation.
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Figure 2.2: Phase diagrams obtained for the same overall virial coefficient B2, but with
short-ranged attraction progressively being replaced by long-ranged ones. Gelation may arise
below the (dotted) percolation line. As short-ranged atttractions dominate, the (metastable)
fluid-fluid critical point is seen to lie in the region where gelation may interfere, thus impeding
an acceleration of the crystallisation process due to critical fluctuations. It is freely accessible,
however, if a significant part of the attractivity is provided by long-ranged forces.

Percolation and gelation The question we have set out to address was how gelation is
expected to interfere with crystal nucleation. However, gelation is a complex process, and even
determining the microscopic nature of the gel structure is not a simple matter since it is formed
out of thermal equilibrium. Rather than discussing gelation as such, one can make the assump-
tion that it corresponds to a space-spanning structure. Thus gelation requires percolation.

The criterion for percolation to occur in a system of sticky hard spheres is known from the
work by Chiew and Glandt [33],

τSS ≤
1− 2η + 19η2

12 (1− η)2
(2.9)

and the corresponding percolation line is also shown, as a dashed line, in Fig. 2.2. Note that
the criterion (2.9) is not expected to vary significantly in the presence of additional long-ranged
attractions, which would not have a significant effect on the structure of the fluid; this has
indeed been shown to be the case even for electrostatic long-range interactions [106].

The main observation is that, as the attractiveness is progressively shifted from the short
range to the long range, the percolation line moves towards higher densities. The key point,
however, is the position of the fluid-fluid critical point with respect to the percolation line: it
falls into the percolation zone when only short-ranged attractions are present. In contrast, it
moves out of the percolation domain as the long-ranged contribution is increased.

Conclusion We can now interpret this result in the context of experiments on colloidal sus-
pensions as well as on protein solutions. One should first remark that long-ranged forces must
expected to be present, to a certain extent, in all such systems. This is particularly true for
proteins, for which the interactions are very complex indeed. For colloids, however, the typical
experimental approach is to perform index matching, which consists in producing the colloidal
particles in such a way that their optical index is very close to the aqueous environment: this
is done in view of light scattering experiments, which allow to penetrate into the bulk of the
suspension only if the occurrence of multiple scattering can be limited. But this also amounts
to suppressing the attractive, long-ranged dispersion forces.
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Consequently, the presence of long-ranged attractions are one element which distinguishes
experiments on proteins from those on colloids. The above considerations suggest that their
effect may be to liberate the fluid-fluid critical point from the zone of percolation, for which
one may expect gelation to occur. Accordingly, the critical fluctuations, which can help nu-
cleation of a crystal, could be exploited for protein solutions, but not for (index-matched)
colloids. And gelation is indeed seen to interfere in colloids, but not in proteins. Although this
argument cannot rule out other explanations (such as polydispersity, directional attractions,
etc.), the presence of long-ranged forces thus indeed constitutes one coherent explanation for
the differences observed in experiments.

2.2.2 Fluid-fluid coexistence of ‘patchy’ particles

Reference to the original work:

“Fluid-fluid coexistence in colloidal systems with short-ranged strongly directional attrac-
tion”
Norbert Kern and Daan Frenkel
Journal of Chemical Physics 118, 9882 (2003)

Another, arguably very important, feature of proteins is that their interactions are not typ-
ically isotropic, but must be expected to have strongly directional contributions. Indeed, the
complexity of their folded structure provides many reasons for this, such as non-uniform surface
charges, hydrophilic or hydrophobic zones due to the section of the chain exposed at the surface
of the protein, or the occurence of hydrogen bonds between specific parts of the amino-acid
chains. The directionality is also relevant from a biological point of view, since they allow for
key-lock like interactions which are omnipresent in biological processes. They also constitute
another factor which must be expected to have an impact on the phase behaviour, and thus
on crystallisation conditions. Previously, the interest in directional interactions has often been
motivated by questions relating to structural details in water [77, 192], where hydrogen bonds
play an important role. Today, one may also invoke complementary considerations, such as
the possibility of realising the corresponding experiment, by confering directional interactions
to colloidal particles [205, 207] or producing entirely new molecules with altogether innovative
directional interactions [20].

We have therefore set out to devise a model which consists of hard spheres with an addi-
tional short-ranged attraction, limited to localised zones (‘patches’) on their surface. Each such
patch α is described by its location on the sphere (parametrised through a unit vector t̂α, and
an opening angle δ), as indicated in the sketch (see Fig. 2.3). A particle can then carry n such
patches which, for the sake of this study, we assume all to be identical.

We use a potential of hard spheres with a short-ranged square-well attraction, but which
is limited to those orientations where (any) two patches face (see Fig. 2.3). Representing the
orientation of a particle by Ω̃, we have

uij(~rij; Ω̃i, Ω̃j) = u
(hssw)
ij (rij) · f(Ω̃i, Ω̃j) . (2.10)

for the interaction between particles i and j, thus factorising the radial and the orientational
degrees of freedom. Here the radial interaction potential is as hard sphere square well (hssw)
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Figure 2.3: Illustration of the geometry of an attractive patch and of the patch-wise attraction.
Each particle carries patches on its surface. The corresponding solid angle is characterised by
the (half) opening angle δ. An attractive interaction arises whenever two particles have facing
patches, i.e. if the vector ~rij = ~ri − ~rj joining their centres passes through some patch on both
particles.

potential with a cutoff at λσ:

u
(hssw)
ij (r) =


∞ for r < σ
−ε for σ ≤ r < λσ
0 for λσ ≤ r

. (2.11)

The ‘patchy’ orientational part is taken to be

fij(r̂ij; Ω̃i, Ω̃j) =

 1 if

{
both êα · r̂ij ≤ cos δ for some patch α on i
and êα · r̂ij ≤ cos δ for some patch β on j

0 otherwise
. (2.12)

The role of the angular modulation function f(...) thus is to limit the attraction to those rel-
ative orientations where particles i and j have two patches facing each other. The decoupling
between radial and angular degrees of freedom is convenient, and in particular allows to estab-
lish an analytical expression for the second virial coefficient.

A choice has to be made as concerns the patch distribution on the particles. We have
chosen to study distributions among those which preserve a certain degree of symmetry: those
of n=2 patches on opposing sides, n=4 patches in a tetrahedral arrangement and n=6 patches
with a cubic symmetry. For each of these we vary the degree of directionality, by varying the
patch size until they touch (thus excluding overlapping patches). We also consider the role of
the attraction range, juxtaposing results for λ = 1.5 and λ = 1.25. In order to compare the
different patch geometries on a common footing we define the surface coverage

χ = n sin2

(
δ

2

)
, (2.13)

indicating which fraction of the surface is covered by attractive patches.

Computational approach: Gibbs ensemble and parallel tempering Here we have set
out to study the effect of directionality on the fluid-fluid coexistence, using Monte Carlo sim-
ulations. A well-adapted tool is the Gibbs ensemble method [69, 179, 180], which consists in
simulating two boxes at once. In addition to the Monte Carlo moves for particle displacements
one then allows for a stochastic exchange of both volume and particles (while keeping the total
volume and particle number constant). This exchange equalises both pressure and chemical po-
tential between the two boxes. Therefore, if the overall density is chosen within the coexistence
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region, this procedure leads to coexisting fluids of different densities, one in each simulation
box. Since this circumvents the appearance of an interface, it greatly limits the impact of finite
size effects and the method is therefore ideally suited for mapping out the fluid-fluid binodal.

We have used the Gibbs ensemble method, which has worked well as long as the attrac-
tion range was not too short and the directionality was not too pronounced. Otherwise the
equilibration process became very slow and did not allow to achieve equilibrium within in a
reasonable simulation time. To address this problem, we have resorted to regular NV T Monte
Carlo simulations, for which one can accelerate equilibration using the method of parallel tem-
pering. It consists in simulating, in parallel, several copies of the system, each one at a slightly
different temperature (T1 < T2 < T3 < ...). In addition to the regular Monte Carlo moves,
regular attempts are made to swap entire configurations between adjacent temperature levels i
and j, which are accepted with a Metropolis-like probability [76]

p = min(1, e
−( 1

Ti
− 1

Tj
) (Ej−Ei)

). (2.14)

where Ej − Ei is the energy difference between the two configurations at temperatures Ti and
Tj. The idea is that this can help the system to evolve towards equilibrium, especially when this
requires passing through energetically unfavourable configurations, which typically correspond
to long-lived states at low temperatures. The exchange between temperature levels essentially
allows to stochastically promote configurations to higher temperatures where they evolve more
easily, such that they eventually return to their initial temperature level as a statistically
independent configuration. The rule given by equation 2.14 is designed to guarantee detailed
balance, and thus to respect thermal equilibrium [56,69,76].

Fluid-Fluid coexistence curves The simulation results show that the fluid-fluid critical
temperature decreases as the attraction range is reduced, or as the surface coverage decreases.
Both results are expected, and are consistent with the difficulties in equilibrating the configu-
rations indicated above, which arise at lower temperatures. The critical density is found not to
vary significantly. For a given range, the coexistence curves collapse onto a master curve when
plotted in terms of the rescaled units of T/Tc and ρ/ρc. Its width depends on the attraction
range (as expected, see [192]), but neither a variation in patch number nor in surface coverage
destroys this universality.

However, when relating the fluid-fluid critical temperature to the corresponding virial coef-
ficient (or, equivalently, the corresponding ‘stickiness’ parameter as defined by Eq. (2.8), one
sees that particles with ‘patchy’ interactions do deviate significantly from those with isotropic
attractions. Consequently, the fluid-fluid transition is no longer characterised by its virial coef-
ficient as soon as the surface coverage falls below 60 or 70%, as is illustrated in Fig (2.4). The
critical virial coefficient is lowered by directionality (it becomes more negative), which reflects
the fact that more attractivity is necessary to achieve phase separation. This is consistent with
the observation that an additional loss in configurational entropy must be overcome as the fluid
is formed.

This is an important observation, since it clearly shows that one cannot hope to use the
second virial coefficient as a guide to targetting the fluid-fluid critical point in a system with
strongly directional attractions.

It is furthermore interesting to remark that these deviations are stronger for short attraction
ranges, in the sense that they appear already for higher surface coverages, i.e. closer to the
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Figure 2.4: Stickiness coefficient corresponding to the fluid-fluid critical point for spheres with
‘patchy’ attractions, here in a tetrahedral arrangement on the particle surface (n=4) and for
two patches at opposing poles (n=2). Two values for the attraction range λ are considered. As
the patches become smaller, the critical point is no longer characterised by the virial coefficient
(directly related to the stickiness coefficient); rather, a higher stickiness (smaller τ) is required to
achieve fluid-fluid coexistence. The points where the behaviour changes significantly corresponds
to those patch sizes below which there are no longer any three-particle bonds, as shown in the
sketch.

isotropic case. As the interactions become very strongly directional, however, the range of the
attractions is no longer important: instead, it is now the patch geometry which governs the
behaviour, despite an identical surface coverage rate. Thus, even in the limit of very short-
ranged attractions, knowing the surface coverage of the patches is no longer sufficient to predict
the fluid-fluid transition.

2.3 Follow-up

Significant progress has been made, by many contributors, since the work summarised above.

Gelation has been studied in great detail, and many of the associated phenomena have been
put onto a microscopic basis. In particular, the idea has been put forward that their long-
lived metastable states may be viewed as ‘attractive glasses’ [18, 42, 67]. These contrast with
the commonly studied glasses with strongly repulsive interactions, such as excluded-volume
constraints. Repulsive glasses arise as fluids are so strongly compressed that particles can no
longer efficiently explore configuration space, as would be required for the system to evolve into
equilibrium. For attractive gels, this slowing down is due to the short-ranged attractions, and
also leads to exceedingly long-lived metastable states. In particular, such dynamically arrested
states have been seen to give rise to a logarithmic decay of density correlation functions (rather
than the usually observed stretched exponentials) [175]. There is now a huge body of work
analysing such slow, non-ergodic dynamics. Experimentally, such low-density glasses have in-
deed been produced in the form of colloidal gels, based on the depletion attraction [150].

The role of the attraction range has also been explored in various ways. A combination of
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short-ranged attraction and long-ranged repulsion has been advocated as a way to encourage
longer bond life times, which would thus stabilise a physical gel [175]. In a sense this is com-
plementary support to the argument made above, stating that long-ranged attraction hinders
the formation of a gel.

The interest in patchy interactions has soared since the time of the contribution summarised
above, for a variety of reasons. One important aspect continues to be their relevance to protein
interactions, a point we will briefly return to below. Another reason is the fact that intererest-
ing fundamental questions have been identified, to which patchy systems provide an additional
angle: gelation, the formation of so-called ‘empty liquids’, spinodal decomposition, etc. A final
reason, of utmost importance, is the fact that it has become possible to experimentally produce
colloids with strongly directional attractions, and thus many of the questions related to patchy
attractions designed in a particular way are becoming experimentally relevant. The idea of
self-assembly is a major point here, which involves all of these questions and obviously has a
huge potential for applications.

The patchy model introduced above has been widely used by many authors, and comple-
mented by other models. Many aspects of its physics have been explored, in particular by
Sciortino and co-workers, who have established full phase diagrams. These include, as a spe-
cial case, the concept of Janus particles, which are essentially spherical particles carrying two
patches, each of which covers half of the surface. This is an interesting limit, since it eliminates
additional parameters (number of patches, patch orientations, opening angles), but still retains
much interesting physics [131, 176]. But even the fully general patchy model has been studied
in great detail, including the solid phase (or rather, depending on the interactions, several solid
phases) [80, 166].

The alternative model encountered most often consists in defining attractive sites on the
surface of the spherical particles, between which simple interactions are defined. The Lennard-
Jones potential is often used with a suitably adjusted range: the sticky spots therefore interact
isotropically, and the directionality in the interactions between particles is due to the positioning
of the spots only. Remarkably, Zhang [207] have been able to produce a system with such sticky
spots in the laboratory.

Maximum valency models are another way of mimicking some (but not all) effects of direc-
tionality. In these models particles are subject to strictly isotropic interactions, but are limited
to establishing no more than a given number of bonds. They have been shown to help to achieve
open, low-density metastable structures [175] reminiscent of a gel. Zaccarelli et al. [206] have
furthermore shown that the fluid-solid coexistence is weakened in a limited-valency model.
This is interesting, since it makes it possible to study the low density gels without running into
phase coexisence at the same time. In particular, they have exposed a difference with respect
to glasses: whereas all wavelengths are non-ergodic in high-density glasses, this is only true for
large wavelengths in a gel-like low-density glass.

Several aspects of the fluid-fluid coexistence in systems with patchy attraction have been
clarified. Tavares et al. [188] have shown that particles must have at least three patches for a
liquid-liquid coexistence to be present. In one line of thought the question of empty liquids has
been brought up: the way the fluid-fluid critical point evolves suggests that it may be possible to
maintain fluid-fluid coexistence down to arbitrarily small volume fractions: [19]. Experimental
confirmation that this should indeed be possible has been provided recently [171].

In terms of protein crystallisation, many contributions have been made recently by Char-
bonneau and co-workers, based on patchy models. They have exploited biological databases
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in order to establish λ = 1.1 and cos−1(0.89) ≈ 27o as a reasonable choice for the range of
attraction and for the size of a patch if one wishes to mimic typical proteins [71]. Using these
parameters they have then explored various aspects of the phase behaviour. One line of work
was to incorporate the fact that most proteins do not have the strong symmetries imposed
above. This is modeled [72] by randomising both the interaction strength of the patches and
the patch positions (subject only to compatibility with an orthorhombic crystal structure, which
turns out to be the most commonly observed structure in monomeric proteins. The observa-
tion is that this variability in patch positions tends to decrease Tc (which one can attribute
to the fact that it decreases the entropy of the liquid). The asymmetry furthermore favours
the growth of a single cluster, rather than having several micro-clusters which then re-arrange.
Strong variability in the patch bonding energies has been seen to favour a long-lived percolat-
ing state (the ‘gel’), and thereby hinder crystallisation. All in all, one can say that disorder
in the bond geometry has been shown to have a rather weak effect, or at least so as long as
it maintains the compatibility with the crystal structure, whereas the patch interaction energy
is the more important parameter. In particular, Fusco et al. have shown that the Wilson B2

criterion (specifying the crystallisation window in terms of the virial coefficient) is necessary,
but not sufficient for crystallisation.

Very recently, a different approach to studying protein-protein interactions has been put
forward. It goes beyond the schematic description via patchy interactions, by calling upon
multiscale simulations. Such a procedure has been devised by De Simone et al. [178], who are
interested in a particular family of proteins (hyperthermophilic rubredoxins). These have a
closely packed core, and are thus reasonably well represented by a ‘hard sphere’. Molecular
Dynamics is then used with a detailed force resolution, based on structural details of the pro-
tein. The results are then compared to those of a patchy model (the one introduced above, but
allowing for attraction energies to vary from one patch to another). The authors thus show that
mapping onto hard spheres with anisotropic short-ranged attractions (‘patches’) is successful
for the case of rubredoxin. Other results include the observation that a protein crystallises
more easily if it has many (albeit weaker) patches, rather than having only a few strongly
attractive patches. The study has also been able to explore the effect of structural defects in
this particular protein. Interestingly, it has shown that even small changes (such as mutations
in single amino-acids) can lead to significantly modified protein-protein interactions.

The drawback of this approach is of course that it cannot be used for predictive modelling,
since it requires a rather detailed knowledge of the structure as input. It does, however, confirm
that the modelling approach via patchy interaction potentials, even in a rather schematic
fashion, can make valid contributions towards understanding the crystallisation behaviour of
real proteins.



Chapter 3

Foams: structure

3.1 Tour d’horizon

Foams are those fascinating structures which form by simply stirring a little detergent in wa-
ter, thus creating a volume filled of bubbles separated by films. From an academic point of
view they are interesting in many respects, since they constitute a conceptually rather simple
soft-matter system which shows a tremendous range of interesting phenomena. These range
from the local rules (which determine its static geometry through energy minimisation), the
global structure (also involving the topology of the ensemble of bubbles), to its time evolution
via coarsening (due to gas exchange and fusing bubbles), drainage of liquid through an exist-
ing structure (involving highly non-trivial hydrodynamic phenomena), to its physico-chemical
parameters (which can affect the hydrodynamics in rather subtle ways), to rheology (i.e. the
flow behaviour of an entire foam). Foam physics therefore involves many fields of expertise,
and all of them contribute additional understanding, but often also benefit from studying foams.

In addition to this academic motivation, one has to be aware that foams also find a huge
number of applications, since their properties make them suitable for many different fields.
Some of these are: domestic products such as cosmetics and food stuffs (for their relatively
stable structure achieved with cheap ingredients), fire fighting (for very quickly yielding a huge
amount of foam from very little material), nuclear decontamination (for rinsing the polluted
material into a very small amount of liquid), oil production (for sweeping out porous structures),
engineering (for producing strong metallic structures with comparatively very little weight) and
so on and so forth. Many of these applications rely on particular features of a particular type
of foam, and many of them still pose challenges to fundamental understanding.

For a physicist, foams are an intriguing system since they constitute a well-defined visco-
elasto-plastic system. They are essentially defined on a macroscopic (millimetric) scale, and
thermal fluctuations as such play no role. An intriguing feature is the fact that one can formulate
a rather simple description of the structure of foam, based on mathematical idealisations, to
which one can then add more evolved physical features as required. In this introduction we
will recall the most fundamental points, having in mind liquid foams, such as those produced
in a bubble bath as mentioned above. Dynamical features and flow will be the subject of the
following chapter.

Foam structure in 2d The key to understanding foams, or at least their static structure,
resides in surface tension: in essentially all situations, all structural features are ultimately due
to surface tension effects.

37



38 CHAPTER 3. FOAMS: STRUCTURE

This point is made most easily in a 2d space, where the geometry is flat and thus simple. It
appears useful to make them the first example for introducing foam physics. Many terms are
used interchangeably between 1d and 2d foams, and somewhat inaccurately, which is at first
confusing but ultimately convenient. Here we shall make an effort to use the proper wording
both for 2d and 3d foams, in order not to create any ambiguity in the vocabulary.

By a 3d foam we mean a space-filling ensemble of gas-filled bubbles, each having a certain
volume, separated by surfaces which correspond to liquid films, subject to a surface tension. A
2d foam may be envisaged as being a special case of a 3d foam with a translational invariance
along the third spatial dimension, or it may be seen as a strictly 2d structure, embedded in a 2d
space (as mathematicians would do). In the first picture we speak of bubble volume and film
area, and the physical parameters are the gas pressure in the bubbles and the surface tension
in the films. In the second picture this becomes bubble area and film length, and the physical
parameters are the 2d gas pressure P2d (i.e. a force per unit length, in 2d) and the films are
subject to a line tension σ2d (i.e. an energy per unit length). Fig. 3.1 sketches an example,
which will be useful for the following discussion. More precisely this defines what we mean by a
dry foam, since it does not retain any finite volume of water in the films or in their intersections.

Confusion may arise from the fact that, in the picture of a translationally invariant foam
structure, the points where films meet also define line-like objects (in the third spatial dimen-
sion), which are referred to as Plateau borders. These are obviously entirely distinct objects
from the lines separating 2d bubbles, but experimental realisations of quasi-2d foams require
producing a foam squeezed between glass plates, in which case the situation is more compli-
cated. We discuss the simple case, strictly 2d foams, before returning to the subtleties involved
in their experimental realisation.

A (strictly) 2d foam thus consists of bubbles separated by films, which carry a line tension.
This then directly implies Laplace’s law, which relates the pressure difference across a film to
its curvature:

∆P2d = σ2d
1

R
. (3.1)

Consequently, it is immediately clear that all films must have constant curvature, i.e. be
arcs of circles (or rather, for a physicist, the surfaces produced by translating arcs of circles
along the 3rd spatial dimension). This is one of the main rules for an equilibrium foam struc-
ture, known as Plateau’s rules, here stated for a 2d foam.

The other Plateau rule, for the 2d case, is that films meet in groups of three, and at those
points (called ‘vertices’) they form an angle of 120 degrees between them. This is again based
on surface tension effects. Indeed, higher order vertices are energetically unstable. To see this
we might envisage a 4-fold vertex, as illustrated in Fig. 3.2. It quickly becomes clear, however,
that the total line length in the structure having all four bubbles meet in one point is larger than
a configuration where we have two 3-fold vertices. Thus any 4-fold vertex is intrinsically un-
stable, and will be reduced into two 3-fold vertices. Furthermore, each of these films is subject
to a line tension and therefore exerts a pulling force onto the vertex. Since the surface tension
is the same in all three films, the vertex is bound to displace until it reaches the configuration
of equal angles which ensures its mechanical equilibrium. Note that the pressures of adjacent
bubbles are not generally equal, but this does not affect the equilibrium angles, since the vertex
is a point-like object and thus pressure forces do not enter the balance.

Another element which is most easily illustrated in 2d is the role of topological changes.
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Figure 3.1: Example of a 2d foam structure illustrating how bubbles fill space, subject to
Plateau’s laws (here in their 2d variants). The image has been obtained by R. Delannay and I.
Cantat (Rennes).

Figure 3.2: Illustration of an unstable 4-fold vertex in a 2d foam. Plateau’s laws require that,
in equilibrium, films meet in threes, forming equilibrium angles of 120 degrees. Accordingly, a
4-fold vertex dissociates into two 3-fold vertices, which can form in two ways according to how
the new edge is spanned, leading to different topologies. The 4-fold vertex may be seen as the
intermediate step in the neighbour-swapping process illustrated in Fig 3.3.
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Figure 3.3: Illustration of a T1 topological change. As the length of the edge between adjacent
bubbles B and D reduces to zero, a 4-fold vertex would arise (labelled by a star). The latter being
unstable, a new edge must develop in order to restore two 3-fold vertices, adjacent to bubbles A
and C. This change of vicinity relations is known as a T1 neighbour swapping process.

This is related to the statement made above concerning the instability of a four-fold vertex.
We can make the concept explicit in the following example where a regular foam structure is
successively deformed, in this case illustrated by a shear deformation (see Fig. 3.2). To see
the topological change we focus on two bubbles which are neighbours through a common edge.
But as the edge length reduces to zero a 4-fold vertex is created and, being unstable, separates
into two 3-fold vertices. In this new configuration a new pair of bubbles become neighbours,
whereas the initial neighbours are now separated.

This process is known as a ‘T1’ process, or a ‘topological change of type 1’. Other topological
changes arise when an infinitesimally small bubble disappears and requires the connectivity of
remaining edges to be re-defined, or when a film is ruptured and two bubbles join [199].

Dry foam structures in 3d It now remains to generalise these results to 3d foam structures.
Here we are dealing with bubbles having a pressure and a volume, and they are separated by
films which are subject to a surface tension. Again, no explicit water content is present in this
description.

First of all, Laplace’s law now reads

∆P = σK , with K =
1

2

(
1

R1

+
1

R2

)
. (3.2)

where K is the mean curvature of the 2d surface corresponding to the film and σ represents
the surface tension of a film (and not the interfacial tension γ due to the water-air interface,
which will become important below and which is roughly half this value).

The equilibrium rules now become

• Bubbles are separated by films, which are of constant mean curvature, set by by Laplace’s
law through the surface tension and the pressure difference between adjacent bubbles.

• Films separating the bubbles meet in pairs of three, locally forming an angle of 120 degrees
between them; their line of intersection is called a Plateau border.

• Plateau borders meet in pairs of four, locally forming a tetrahedral angle (of 109.5 de-
grees); the point-like structure of their intersection is called a vertex.

The latter rule again follows from equilibrium mechanics. These statements are known as
Plateau’s laws. Topological changes are more complex to visualise in 3d, but are equally present.
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Figure 3.4: Example of a 3d foam structure illustrating how bubbles fills space. The films
separating the bubbles meet in line-like Plateau borders. In equilibrium the structure is subject
to Plateau’s laws. Image by M. Boran (Dublin).

Minimum energy structures The problem of determining a foam structure thus amounts
to minimising the surface energy, i.e. the total film area between bubbles (we focus on the 3d
case here). The solution is obvious for a single bubble (which of course assumes a spherical
shape), but it is non-trivial already for the case of a double-bubble if the bubbles do not have
identical volume [98], and becomes highly complex for a large number of bubbles.

Part of this complexity is of course the fact that one needs to find a minimum in a high-
dimensional space, which is always a difficult undertaking. There is, however, an additional
aspect in the question of collectively minimising the foam structure, in that it must involve
varying both the overall bubble geometry and the topology. Some exact results are known for
regular bubble structures, with all bubbles having identical size. Thus the minimum energy
structure of a 2d foam is a hexagonal arrangement of bubbles, with all straight edges: this
result may appear intuitive, but has been proven rigorously only in 2001 by Hales [89]. The
equivalent of this structure in 3d would be a space-filling structure of identical icosahedra,
which is known as a Kelvin foam, after Lord Kelvin who postulated it in 1887 [190]. It turns
out, however, that a slightly lower energy is achieved by the Weaire-Phelan structure, in which
two types of bubbles intervene which, while having identical volume, carry different pressures.
That this is an energetically preferable structure has been shown using numerical methods, and
in particular Ken Brakke’s Surface Evolver program [26]. For any more complex structures,
and in particular those with unequal bubble sizes, the results become invariably complex.

Elastic moduli Elastic constants corresponding to any particular strain can be deduced
directly as the linear term of the associated energy increase. For simple shear the elastic
modulus G is given [199] by the relation

G =
1

4A

d2E

dε2

∣∣∣∣∣
ε=0

. (3.3)

The only relevant energy being a surface energy, it follows that the elastic moduli are propor-
tional to the surface tension γ.

Coarsening Let us also point out that we have assumed the volume of any bubble to be
given. Mathematically speaking this corresponds to a constraint which is to be imposed dur-
ing the minimisation process. Physically speaking, it amounts to excluding the gas exchange
between bubbles across films. Depending on the physico-chemical properties of the foam, this
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is often indeed a very good approximation on the time scale of experiments.

If, however, gas can be exchanged across the films, then one is dealing with a phenomenon
of coarsening. One may take the rate of volume exchange between adjacent bubbles to be given
by Fick’s law, i.e. proportional to the pressure difference (and thus to the edge curvature) and
of course to the film area. Denoting the permeability of the film κ it is then easy to show [199]
that, for the 2d system maintaining 120 degree angles at the Plateau borders, the rate of change
for the area Ab of a bubble b obeys

dAb
dt

=
π

3
κγ (nb − 6) , (3.4)

where nb is the number of sides to the bubble b. This is known as Von Neumann’s law [196] for
coarsening.

In the following we shall maintain the bubble volume constant, which thus excludes any
coarsening process. Nevertheless, considerations along these lines will become useful in the
following chapter when we shall introduce the viscous froth model for foam dynamics.

Wet foams The above description is obviously a simplification, which consists in describing
the foam structure as if it were composed of soap films only, without any actual liquid content:
this idealisation is known as a dry foam. The actual liquid content of a foam is measured in
terms of the liquid fraction, defined as

φliq =
Vliquid
Vtot

=
Vliquid

Vliq + Vgas
. (3.5)

In two dimensions, at moderate but non-zero liquid fractions, the liquid is located primarily
in the vertices (recalling that these are in fact Plateau borders in the third spatial dimension).
Remarkably, the decoration theorem [198] states that any such structure in two dimensions can
be thought of as a dry foam structure, the Plateau borders of which have been ‘decorated’ with
the corresponding liquid content, and the decorated sample remains an equilibrium structure
(albeit with slightly modified bubble volumes).

In three dimensional structures, liquid is essentially present in the (line-like) Plateau borders
and, to a lesser extent, the (point-like) vertices. No generalisation of the decoration theorem
is known. Nevertheless, the way in which one can formally conceive the dry limit in three
dimensions is one of the topics to be discussed as an example below.

Drainage Gravity acts on the fluid contained in the Plateau borders and in the junctions,
which causes liquid to drain through the network of Plateau borders. In free drainage, this will
continue to remove liquid from the upper regions of the foam, until a local equilibrium between
gravity and capillary forces is established throughout the sample. This asymptotic state is char-
acterised by a gradient in liquid fraction. Another scenario is that of forced drainage, where
water is continually added at the top of the foam. In this way one can establish a stationary
state, where liquid drains at a steady rate through an otherwise stationary foam structure.

The question of how the liquid fraction varies with the height [157] in the asymptotic state
of free drainage can be established by the local force balance on a slice through a Plateau border
(here considered to be vertical). Note first that the liquid fraction φliq is proportional to the
cross-sectional area A(z) of the Plateau border, at any height z:

φliq(z) = cA(z) = c′ r2(z) (3.6)
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where c and c′ are geometrical constants and r is the radius of curvature of the sides of the
Plateau border (see Fig. 3.8). As the cross-sectional area varies with the height there is an
imbalance in the force due to hydrostatic pressure, which must compensate the weight of the
liquid:

−ρg Adz = p(z) dA(z) , (3.7)

and thus, using the Young-Laplace law to relate the pressure to the local Plateau border radius
(p = pgas+γ/r ≈ γ/r, the latter equality restricting the validity to the zones where the foam is
still sufficiently dry, such that the Plateau border radius remains sufficiently small). This yields
a differential equation for the Plateau border area A(z) as a function of the vertical position:

dA = −cρg
γ
A3/2 dz (3.8)

and thus

A(z) =

(
2γ

c

1

c′′ + ρgz

)
. (3.9)

The constant c′′ is subtle (one would expect it to be determined by matching the liquid content
at the height where the foam floats on the bulk water, but here the foam is no longer sufficiently
dry for the formula to hold, see [199]).

In forced drainage [193, 199, 201] the fluid is no longer static, and thus the force balance
must also account for viscous forces. Again for a single vertical Plateau border, the simplest
argument assumes that the liquid cannot flow at the boundary corresponding to the film. This
is not strictly true, since the film constitutes a free interface, but it will hold if the surface
viscosity of the film is sufficiently high. Then we are dealing with Poiseuille flow, for which the
viscous force at the boundaries is given in terms of the average flow velocity ū (averaged over
the Plateau border area A). For a slice of height dz the force balance between the viscous and
gravitational forces reads

f ηliqū dz = ρliqAg dz , (3.10)

where ηliq is the bulk viscosity of the fluid, and f is a geometric factor accounting for the shape
of the Plateau border, which can be determined at least numerically. This directly yields

ū(z) =
ρg

f ηliq
A . (3.11)

This relation can also be interpreted as Darcy’s law, viewing the Plateau border as a porous
medium.

From liquid conservation we can furthermore write the flow rate Q as

Q = A ū =

(
ρg

f ηliq
A2

)
, (3.12)

and this directly implies Q ∼ A2. The flow rate imposed in an experiment thus directly sets
the liquid fraction as

φliq ∼
√
Q . (3.13)

This scaling is an important result, and can be verified in experiments.

At this stage it remains to determine the variation of the liquid fraction with height, and
to show that the intuition one may have of a homogeneous liquid fraction, and hence constant
Plateau border cross sections, indeed yields a stationary state. We indicate the argument, since
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it is full of physics, and will be useful for the following section. It proceeds by admitting, for
the moment, that A(z) = c r2 may vary. Then, the vertical derivative of the Laplace relation
(Eq. 3.2) for the pressure drop across the Plateau border film is

∂

∂z
pliq =

∂

∂
pgas +

∂

∂z

γ

r
, (3.14)

where γ refers to the liquid-gas interfacial tension (roughly half the surface tension, γ ≈ σ/2).
There is no significant gas-pressure gradient in a homogeneous foam (but see the discussion
in the following section). Thus eliminating the Plateau border radius r in favour of its cross
section A readily yields

∂pliq
∂z

=
1

2
Cγa−3/2 ∂A

∂z
, (3.15)

which underlines that a vertical pressure gradient in the liquid directly results from the varia-
tion of the Plateau border size.

The complete force balance between gravity, viscous forces and the liquid pressure gradient
now becomes

∂pliq
∂

A = ρg A− fηliq
Q

A
, (3.16)

which correctly reduces to the simpler force balance above (Eq. 3.10) for a Plateau border of
constant area. From this one can isolate an expression for the flow rate Q(z) in terms of the
cross-section A(z) and its derivative ∂A

∂z
.

One can now call upon volume conservation via the continuity equation,

∂A

∂t
+
∂Q

∂z
= 0 (3.17)

and average over all orientations of Plateau borders in a foam [193], to establish what is known
as the foam drainage equation:

3ηliq f
∂A

∂t
+

∂

∂z

(
ρliqgA

2 − cγ
√
A

2

∂A

∂z

)
= 0 . (3.18)

Recall that c and f are purely numerical constants related to the Plateau border geometry. In-
terestingly, this equation admits a solution corresponding to a wetting front propagating like a
solitary wave [193]. The simplest solution, however, is one of a homogeneous Plateau border size
(and hence constant liquid fraction) throughout the sample, as was indeed the point to be made.

The above description of foam has been shown by the Dublin group to hold for experiments,
including the scaling φliq ∼ Q1/2. On the other hand, another set of experiments, performed by
scientists in Harvard [114] was clearly incompatible with these results and pointed to a power
law φliq ∼ Qα with an exponent of α ≈ 1/3.

Importantly, the above model has taken into account the Plateau borders only. This would
appear reasonable, since most of the liquid is contained in those channels, whereas the junc-
tions only contribute a higher order term to the liquid fraction. On the other hand, all the
liquid draining through the Plateau borders must also cross the junctions where they intersect.
Consequently there is another contribution to the viscous forces, attributable to the junctions.
Its relative importance turns out to depend on the surface viscosity of the films: if this is suffi-
ciently low, there can be surface flow in the liquid-air interfaces, and we are then dealing with
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(a) Top view (b) Side view

Figure 3.5: Illustration of the Plateau border geometry in an experimental realisation of a 2d
foam, as bubbles are confined between two parallel glass plates. Films span the space between the
glass plates and, in the top view (a), define the lines separating the bubbles. The side view (b)
shows that each of these lines in fact corresponds to two Plateau borders, one at each plate. Each
of these corresponds to three films meeting, one spanning the gap and two more corresponding
to the bubble boundaries against the plates (which are strictly speaking only half-films, since they
only involve one water-air interface). An ambiguity in terminology thus arises: in the top view,
the lines separating two bubbles correspond to (double) Plateau borders, but they also correspond
to the films separating the bubbles. Having a 2d foam in mind, it is thus more appropriate to
refer to them as films. At the vertices where these films meet, they form 120 degree angles, as is
appropriate for a 2d foam. A vertex corresponds in fact to another (very short) Plateau border,
perpendicular to the glass plates. These geometrical aspects are important if one is interested
in flow in this 2d geometry, which implies sliding of the plate-bound Plateau borders over the
glass surface (see next chapter).

plug flow (rather than Poiseuille flow) in the Plateau borders. It turns out that dissipation is
dominated by the junctions, and in this case an exponent of α = 1/3 can be deduced [114].
Experiments with direct control over the surface viscosity have confirmed that both exponents
characterise opposing limiting cases [53]. The physico-chemical details can thus play a major
role in drainage.

Quasi-2d foams A comment is in order to avoid confusion between the terminology in 2d
and 3d foams. The simplest way to think of a 2d foam is in terms of a translational invariance
of the structure, say in the z direction. All bubbles would then be infinite in this direction,
and their projection onto the xy-plane yields a strictly 2d foam as it was introduced above.
Consequently, the lines separating the 2d bubbles in this setup indeed represent the 2d films.
However, the vocabulary becomes ambiguous in that the vertices in the 2d projection actually
correspond to Plateau borders in the 3d foam, which run parallel to the z direction. A first
difficulty in terminology is thus due to the fact that one may speak of the edges in a 2d foam
as being subject to a line tension, but one can also be tempted to refer to a surface tension,
having the underlying 3d foam in mind.

In addition, further confusion arises when one is dealing with an experimental realisation of
2d foams, achieved by confining bubbles between parallel glass plates which are separated by
a distance small compared to the bubble size (see Fig. 3.5 for an illustration). In this case the
(flattened 3d) bubbles are still separated by films subject to a surface tension, which project
onto lines subject to a line tension (although this is only approximately true, since there may
well be a curvature also in the z direction of the films). The (2d) vertices still correspond to
Plateau borders running (roughly) in the z direction, but there are now other Plateau borders
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where a film meets the glass plates. Consequently, the (2d) vertices also correspond to (3d)
vertices, joining a vertical Plateau border with three Plateau borders, at the top and bottom
plates, respectively. We will focus on this geometry in the following chapter on dynamics and
flow.

3.2 Selected publications

The following pages discuss two contributions to aspects of foam structure, both related to
the presence of liquid. The first argument considers the effect of the weight of the liquid, as a
simple example of an applied force, and discusses the implications this has for simple 2d foam
structures. Instabilities observed experimentally in foams are one point of interest. The second
argument concerns the link between wet foams and dry foams, and in particular asymptotic
expansion arguments as to how the dry limit is approached in foams. The analysis points to a
somewhat surprising correction in terms of a (negative) line tension to be applied to the dry
foam skeleton, which may lead to instabilities in numerical models.

3.2.1 Foam structure: ‘loaded’ foams

Reference to the original work:

“Loaded foam structures”
Denis Weaire, Norbert Kern and Guy Verbist
Phil. Mag. Lett. 84(2), p. 117 (2004)

By the concept of a ‘loaded’ foam we mean a foam structure subject to external forces
acting on its vertices and/or on its Plateau borders. Probably the simplest example is a foam
with small but non-negligible liquid content, which is subjected to a gravitational force. In this
case one can resort to discussing a dry foam backbone and introduce the necessary corrections
due to the external forces. Here we consider the simplest example, which is a 2d honeycomb
structure, gravity acting in the plane of the foam.

In the case of a 2d foam the liquid content would be present at the vertices, and its weight
would produce an external force ~W acting on a each vertex. We analyse the effect on a regular
honeycomb lattices. In the following discussion we focus on the most instructive case where
the loading force is applied parallel to one of the symmetry directions of the honeycomb lattice.
In this case, analytical arguments allow to clearly expose the essence of the physics. One can
easily generalise to loading in an arbitrary direction [200], but the essential conclusions remain
unchanged.

Unit cell and structural deformation The hexagonal (honeycomb) structure we focus
on in order to illustrate the effect of gravitational loading can be constructed by periodically
replicating a unit cell involving two vertices. In our case the argument can thus be made based
on two vertices constituting this unit cell, which is conveniently chosen as illustrated in Fig. 3.6.

We can distinguish two mechanisms. Firstly, the weight acting on the vertices modifies the
force balance between the line tensions of the three films attached to the vertex. Consequently,
we can no longer expect angles of 120 degrees. Secondly, if the ensemble of the foam is to
remain at rest, the overall weight force must be balanced. This is naturally achieved by a
gradient in the bubble pressures: the bubble pressures cannot remain uniform, as is the case
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Figure 3.6: Illustration of a convenient choice for the unit cell in loaded foams having a
periodic honeycomb structure. It consists of two non-equivalent vertices, the one in the center
and the one at the cell boundaries (where each of the indicated vertices contributes to three unit
cells). As loading is introduced, the geometry of the entire structure can be deduced from the
local equilibrium conditions at both of these vertices.

Figure 3.7: Effect of loading on a 2d hexagonal foam, the loading force being applied down-
wards, i.e. coinciding with one of the symmetry directions of the hexagonal cells. The structures
shown are those corresponding to a loading parameter W/σ = 0 (no loading), then W/σ = 0.3,
W/σ = 0.6 and finally W/σ = 0.95. At the critical value W ∗/σ = 1 the surface tension can no
longer support the loading force, and the structure collapses. Picture as in [112].

for a honeycomb structure in the absence of loading.

According to Laplace’s law (Eq. 3.1) this goes hand in hand with bending the films. Their
shape are easily determined: they remain arcs of circles, their curvature being set by the
pressure drop between bubbles, according to Laplace’s law. Unlike for the honeycomb lattice
before loading, the two vertices in the unit cell are no longer equivalent, and must thus be
distinguished in the model. At both of them the external force ~W must be balanced by the
pull of the line tension. Parametrising the geometry in terms of two angles, θ and φ, as in Fig.
3.6, the equilibrium condition reads

cos θ =
1

2

(
1 +

W

σ

)
(3.19)

cosφ =
1

2

(
1 − W

σ

)
. (3.20)

From this, all other variables, such as the positions of the vertices, the film radius and hence the
pressure differences can be deduced. The resulting deformations are represented, for various
loading forces, in Fig. 3.7.
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Instability Probably the most intriguing observation, already apparent from the force bal-
ance equations, is that no equilibrium structure exists for loading beyond W ∗ = σ: there is a
threshold beyond which the honeycomb structure must become unstable. This is particularly
interesting for example in the context of wet foams. We make contact with the liquid fraction
by recalling that the (2d) vertices correspond to Plateau borders perpendicular to the plane of
the (2d) projected foam. Thus the load force (per length L, in the perpendicular direction, of
a Plateau border) is

W =
ρliq Vliq g

2L
= ρliq g φliq A (3.21)

where A is the size of a unit cell and the factor of 2 in the denominator accounts for the fact that
the liquid in a unit cell is shared between two vertices. The stability threshold thus corresponds
to a liquid fraction of

φ∗liq =
σ

ρliq g A
,

which turns out to be of the order of 10 % for bubbles of the size of a a square centimetre. The
effect is thus seen to be relevant, and the threshold is further reduced for larger bubbles.

Relevance for drainage One interesting question is whether this mechanism may play a
role in the instability which arises in a foam undergoing forced drainage. In this situation the
(stationary) liquid content may achieve 20 %, suggesting that the effect of instability due to
loading may be a relevant mechanism. On the other hand, what is typically seen in experiments
is an instability via the formation of convective rolls [99].

To exploit the above intuition we must first make contact with a 3d foam. Here, the weight
of the fluid acts on the (3d) vertices and, mainly, on the Plateau borders. This implies that
the angles between films meeting at the Plateau borders deviate from the 120 angles. This in
turn imposes film curvature, reflecting the presence of macroscopic gas pressure gradients, as
in the 2d case.

A first point to be made is that this directly affects the drainage rate. To see this, we consider
a vertical Plateau border, as in standard drainage theory (see the summary in the introduction
above). Recall that the drainage equation (Eq. 3.18) has a stationary solution corresponding
to a constant liquid fraction throughout the sample for stationary forced drainage, implying
a constant cross section of a (3d) Plateau border. Note, however, that the drainage equation
has been established assuming the absence of a gas pressure gradient: this implied that, in
the stationary state, in order to have a constant Plateau border radius there could not be a
pressure gradient in the liquid. Here, however, this is no longer true, and the pressure gradients
in gas and liquid must go hand in hand. The gas pressure gradient can readily be evaluated
on a mesoscopic scale, considering a bubble as a buoyant body in the surrounding foam. The
archimedian relation

∇P Vcell = 2W = 2 ρliqφliqVcell g (3.22)

must hold, expressing that the buoyancy force must compensate the weight of two vertices
per unit cell. It follows directly from the Laplace relation (Eq. 3.2) that there must be a
corresponding pressure gradient in the liquid:

∇P = 2ρliq φliq g . (3.23)

The gravitational force draining the liquid is reduced by this amount, which can be incorporated
into standard drainage theory by substituting gravity according to

g −→ (1− φliq) g . (3.24)
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The effect of the pressure gradient in the liquid due to loading thus is to reduce the drainage
rate and, since the liquid fraction in forced drainage can approach 20%, the correction can
indeed be significant.

The second, yet more crucial point concerns the instability which may arise in a foam as the
drainage rate, and hence the liquid content, is increased. One can analyse how the threshold
scales with the bubble size R. On one hand, for the instability due to gravitational loading, the
criterion W = σ, using W ∼ φR2, implies that φ∗grav ∼ 1/R2. On the other hand, the threshold
for convection is known [99] to scale as φconv ∼ 1/R. Hence one deduces that the instability
due to loading may be expected to pre-empt convection for large bubble sizes.

3.2.2 Foam structure: the dry limit

Reference to the original work:

“Approaching the dry limit in foam”
Norbert Kern and Denis Weaire
Phil. Mag. 83, 2973-2987 (2003)

The idealised idea of a ‘dry’ foam, with vanishing liquid content in the Plateau border (as
well as in the junctions between them and, even more so, in the films), is clearly a useful
concept. It is this picture which allows to regard the structure as consisting of films which
meet according to Plateau’s laws, implying that all the physics is due to surface tension effects,
or at least so concerning the static structure of foams. This picture is what makes much of
foam physics so esthetically pleasing, and also establishes many contact points with rigourous
mathematics on minimal surfaces, tilings of space, and other related mathematics [185].

The question addressed here is how the ‘dry’ limit comes about, starting from bubbles in a
liquid from which the liquid is progressively removed. This process first yields a ‘wet’ foam, in
which a significant amount of liquid remains. The dry foam then corresponds to the limiting
case where all liquid has been drained away. The ‘dry’ limit considered concerns the regime
where only an infinitesimal amount of liquid is left in the foam.

Expansion parameter based on osmotic pressure A useful notion is the osmotic pres-
sure Π as defined by Princen [155, 155–157]. It can be illustrated by thinking of a sample of
foam sitting on top of a liquid reservoir. Imposing a pressure pliq in the reservoir will push
liquid into the foam, but ultimately the process will stop. The difference between the external
pressure in the surrounding air and the liquid pressure must thus be balanced by a pressure
contribution from the foam itself,

Π = pext − pliq . (3.25)

Unlike the osmotic pressure in thermodynamics it is not of an entropic nature, but reflects the
fact that capillarity naturally pulls water into the foam. Said the other way round, a (negative)
external pressure pext must be applied to pull the liquid from the foam, since this leads to
progressive deformation of the bubbles and thus implies a cost in surface energy. The pressure
in the liquid pliq is uniform in a static foam. The key observation here is that a vanishing liquid
fraction φliq requires an infinite osmotic pressure:

lim
Π→∞

φliq = 0 . (3.26)

For any given Plateau border, the geometry of which is sketched in Fig. 3.8, the Laplace
equation relates the liquid pressure to the gas pressure in each of the adjacent bubbles i, and
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Figure 3.8: Schematic illustration of the Plateau border geometry in an (almost) dry foam. Its
cross-section is delimited by three circular arcs, with a curvature such that the surface tension
force at the water-gas interface matches the pressure drop (Laplace’s law). In principle Plateau
borders do not need to be straight, and the curvature setting the surface tension force is the
mean curvature of the interface. In the dry limit, however, the perpendicular radius r of the
Plateau border is seen to go to zero: any Plateau border can thus be considered to be locally
straight in the dry limit.

the bubble pressures pi must remain finite in the dry limit. Consequently, the dry limit is
characterised by a (negatively) diverging liquid pressure, in agreement with the idea that the
Plateau border radii must vanish in the dry limit. The notion of a diverging osmotic pressure
thus promises to provide a useful approach for formalising this limit.

Indeed, in the dry limit the osmotic pressure must dominate as compared to the pressure
drop pij between any neighbouring bubbles i and j. We thus must have

∆pij =
2γ

Rij

� Π , (3.27)

where Rij characterises the typical radius of curvature of the bubbles. Using the average bubble
size 〈R〉 to provide an upper bound for the radius of curvature, we thus conclude that in the
dry limit the parameter

ε =
r

R
=

γ

Π 〈R〉
(3.28)

is a suitable small parameter. One can thus conceive an expansion, close to the dry limit, in
terms of the appropriately non-dimensionalised inverse osmotic pressure.

Liquid fraction From the geometry of a Plateau border (which can be taken to be straight
in the present limit) it follows directly that the liquid fraction scales as

φliq ∼ ε2 ∼ Π−2 , (3.29)

which is an important result. It shows that there is a subtlety in using the liquid fraction
itself as a way of parametrising the approach to the dry limit: if one wishes to do so, the first
contribution which should be accounted for in an expansion is of order φ

1/2
liq , and the linear

contribution in φliq is already a second-order term.

Note also that the contribution of the junctions to the liquid content, which can be expected
to be of order ε3, is neglected here.
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Figure 3.9: Illustration of the notion of ‘decorating’ a 2d dry foam backbone with a small but
finite liquid content. The theorem says that an equilibrium structure with a finite liquid content
may be constructed from a ‘dry’ backbone structure, by replacing the kinks at the vertices where
films meet at 120 degree angles by arcs of circles. A rigourous generalisation to 3d structures
is not straightforward. Figure as in [112].

Negative line tension Another implication concerns the question how the liquid content in
the Plateau border affects the energy in the foam. If we use the limiting dry foam backbone as
a reference value, adding a finite liquid content in the Plateau borders reduces the energy: this
is a direct consequence of the fact that less interfacial area between liquid and gas is present
in this ‘decorated’ backbone (see Fig. 3.9). This difference can be quantified, again from
straightforward geometry [112], and relating it to the liquid content reveals that the leading
term scales as

∆Eφliq ∼ −ε lPB ∼ −
√
φliq lPB , (3.30)

where lPB is the total length of the Plateau borders in the structure. We are thus lead to
consider a somewhat surprising correction to the energy of a dry foam backbone: for any finite
liquid content, we must add a contribution which can be described as a negative line tension

T , and which scales as
√
φliq.

One is thus lead to wonder to which extent such a negative line tension might compromise
the established results for the structure of foams. There clearly is no modification of the dry
structure as such, since the line tension vanishes in this limit. But an effect may in principle
arise for close-to-dry foams, like they are used in experiments. To this end, we consider the line
tension corresponding to a liquid fraction of 35 %: in this extremely wet foam a description in
terms of a dry foam is no longer applicable, but it does provide an upper bound on what can
reasonably be expected.

Energy minimisations via Evolver simulations would appear appropriate but require think-
ing through a subtlety: a negative line tension will tend to reinforce ondulations of an otherwise
straight Plateau border. Indeed, a stability analysis in terms of Fourier modes [112] readily
shows that this leads to a somewhat unusual instability: perturbations grow without limit for
wave lengths below a certain threshold. As concerns real systems, this is an artefact in that
the corresponding length scale is small compared to the Plateau border radius, which in a real
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Figure 3.10: Illustration of the effect of a (deliberately overestimated) line tension on a Kelvin
structure: the line tension used here is the positive equivalent of what would correspond to a
liquid fraction of 35%, which is clearly no longer close to a dry foam. Note that a positive
tension is used to appreciate the effect while avoiding numerical instabilities. Even at these
unrealistically high values for the line tension the structure is only weakly modified. Figure as
in [112].

system would effectively introduce a cutoff and suppress this instability. Nevertheless, it must
be avoided in simulations, for example by limiting the numerical refinements of the line-like
Plateau border.

In order to appreciate the importance of the correction to the structure, Fig. (3.10) shows
the effect of an extreme positive line tension, corresponding (in modulus) to a liquid content of
φliq = 35%. The structural changes on a Kelvin structure (see Fig. 3.10) can thus be expected
to be rather limited.

Elastic shear modulus There is nevertheless an indication that it may be important to
account for a negative line tension, if one is interested in the (elastic) shear modulus. The latter
can be taken to be

G =
d

dα2

E

〈V 〉
, (3.31)

where α is the shear angle. This will now involve a correction due to the presence of the liquid
content:

G = Gdry + ∆G(φliq) . (3.32)

The leading term in the correction has heretofore been taken to be linear in the liquid fraction
(see the full relation in [183]), as appears to have been confirmed by experiments [6, 134].

However, in the light of a negative line tension and the scaling introduced above, one would
expect a leading order correction of the form

∆G(φliq) ∼
√
φliq , (3.33)

which would result in a much larger correction. This is not necessarily in contradiction with the
experimental results: the square-root behaviour would dominate for very small liquid fractions,
but these are notoriously difficult to achieve in experiments, since film rupture becomes om-
nipresent. Nevertheless, there is a conclusion to be drawn if the experimental data for various
liquid fractions are used to extrapolate to the ‘dry’ value of the elastic shear modulus: in the
fitting procedure one should account for the square-root term due to the line tension, since
otherwise the extrapolated Gdry may be significantly underestimated.
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3.3 Follow-up

The concept of gravitational loading has been picked up by Embley and Grassia, who have
introduced various generalisations in order to explore its impact on real 3d foam structures,
using both analytical arguments and numerical structure calculations based on the Surface
Evolver [26]. Considering a single Plateau border they have included the variation of the cross
section along the border in order to determine the structural deformation of the underlying dry
skeleton. Transverse loading forces are shown to lead to ‘sagging’. Longitudinal loading forces
are transmitted along the Plateau border and affect the balance on vertices, deflecting them
from their equilibrium position and causing deviations from the tetrahedral angles. The local
elastic properties are seen to be modified, making the structure locally softer in the former case
and locally stiffer in the latter [59]. Too strong a loading leads to collapse, just as in the 2d
case. These results have then been shown to be robust as the constraint of liquid conservation
is introduced, albeit with an increased stability threshold [58].

The presence of a negative line tension in foams has been directly confirmed in experiment.
Géminard et al. [87] have performed a detailed analysis of the shape of a Plateau border delim-
iting a circular film, held up by catenoid-shaped soap films. They have shown that there are
significant deviations from the 120 degree Plateau equilibrium angles, and that these are well
explained by a negative line tension due to the effects described above.

Fortes and Teixeira [68] have revisited the dry limit for simple bubble structures in a theoret-
ical work. They argue that it is not straightforward to generalise the decoration theorem to 3d.
This is because, in wet (‘decorated’) 2d structures, one can extrapolate the interfaces between
bubbles into the decorated vertex, to see that they always meet in one point: the position of
the vertex in the dry foam (before decoration). These extrapolated films are furthermore seen
to meet at their equilibrium angle of π/3. In 3d, this is in no way obvious (and possibly not
true, also given that it is not quite clear how one is to perform this extrapolation). However,
Fortes and Teixeira show that the construction holds for very simple examples of 3d structures,
such as a double bubble. Even in this simple scenario the angles deviate form their equilibrum
value. However, in these cases the deviations can be explained in terms of the (negative) line
tension introduced above.
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Chapter 4

Foams: dynamics and flow

Essentially all applications using foams require making them flow, whether it be during prepa-
ration (such as for producing metal foams or for fire fighting purposes) or during the application
itself (such as for oil recovery or nuclear decontamination). We are thus no longer dealing with a
foam structure which is stationary, but it evolves over time. One consequence is that Plateau’s
equilibrium rules need no longer apply and must be revisited. The required modifications
are not always straightforward, since they call upon many different effects, ranging from local
hydrodynamics in the liquid to global collective relaxations due to topological changes. The
following pages attempt to provide a very brief overview over those aspects of foam dynamics,
before addressing two examples.

4.1 Tour d’horizon

One way of looking at foams, on a macroscopic level, is to consider them as complex fluids.
One then has to acknowledge the various facets of their behaviour: elastic response, viscous
dynamics and plastic deformations. One interesting aspect of this system is that one can
attribute these features of the global behaviour to particular processes and local effects, at the
scale of the bubbles or below.

Rheology A flowing foam is characterised by its visco-elasto-plastic behaviour. On a ‘macro-
scopic’ level, considering an entire foam sample with many bubbles, a yield-stress fluid may be
used as a simplified rheological description. One commonly used constitutive relation is the
Herschel-Bulkley relation for the shear stress S

S = Syield + ηplastic ε̇ν , (4.1)

where ε̇ is the shear rate, Syield is the yield stress, ηplastic is the so-called plastic viscosity

and ν is an exponent. The simplest variant is a Bingham fluid [199], for which the constitutive
relation is linear (ν = 1). Both the yield stress and the plastic viscosity depend on the liquid
content. In particular, the yield stress drops drastically at a critical value for the liquid fraction,
a phenomenon which is also known as the rigidity loss transition [24].

Elasticity: surface tension The elastic response is directly due to surface tension effects:
deforming a foam structure from its equilibrium (minimum energy) structure requires an exter-
nal force, in order to supply the energy necessary for increasing the film area. If the amplitude
of the perturbation was not too large (see below), the foam thus spontaneously returns to its
equilibrium structure as the external stress is released. Surface tension hence accounts for the
quasi-static response of a foam, or at least so for small deformations.

55
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Figure 4.1: Illustration of the role of neighbour swapping (T1) processes as a foam is sheared,
here shown for a regular honeycomb structure. It may be viewed as a process in which an edge
length progressively vanishes. This leads to an (unstable) fourfold vertex, which thus sponta-
neously separates into two threefold vertices. As a consequence, the neighbourship relations have
changed. In a disordered foam structure this amounts to plasticity. Figure as in Princen [154].

Plasticity: topological changes The above description must be refined if the deformations
become sufficiently large. This is easily seen for a honeycomb structure undergoing shear. As
the shear amplitude increases quasi-statically, the length of one of the edges goes to zero (see
illustration in Fig. 4.1). At this point a fourfold vertex is formed, which is unstable and initiates
a T1 process (see the previous chapter, and in particular Fig. 3.3). Even if the shear strain
is reduced afterwards, the structure then cannot relax back to its initial state. For the simple
example of a honeycomb structure, due to its periodicity, the new equilibrium structure is of
course equivalent to the initial one. However, this is not true in a general structure. Thus
the occurrence of T1 processes constitutes the end of the elastic regime and implies a plastic
deformation.

Viscosity: dissipation Real-world deformations typically will not take place in a quasi-
static fashion, and thus one must also consider dissipation effects. There are several sources
for these. One of them is the in-plane flow of soap films as they expand or deform. This
essentially invokes the surface viscosity of the films, as it has already been seen to play a role
in drainage processes (see previous chapter). Depending on the physico-chemical properties of
the detergents this effect may be very important or entirely negligible [53]. The other source
of dissipation is the evolution of Plateau borders. As they adapt to the changes in structure,
liquid must re-distribute along the Plateau border network. This becomes particularly relevant
in the experimental situation of a foam confined between glass plates, where any rheological
deformation requires Plateau borders to slide over the glass plate, giving rise to non-trivial
hydrodynamics [29]. Both surface viscosity at the liquid-gas interface and the bulk viscosity in
the liquid may contribute. In contrast, the bulk dissipation due to the flow of gas within the
bubbles, is typically negligible.

In the simplest scenario, the bubble boundaries in a 2d foam can be attributed a dissipation
force of the type

F ∼ vν , (4.2)

where F is the viscous force, v is the velocity with which the bubble boundary moves, and ν
is an exponent allowing for a potentially non-linear relation. This will be exploited further in
the following, and we will refer to Eq. (4.2) as the pressure-velocity relation.
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v

(a)

Figure 4.2: Sketch of a Plateau border sliding across a glass plate, as in the experimental
realisation of a 2d foam (see Fig. 3.5).

Quasi-static flow Understanding dissipation is obviously a major factor if fast changes arise,
i.e. in the presence of high flow rates or high shear rates. One might be tempted to conclude
that, in the opposite case of very slow flow processes, dissipative effects would not play a role.
However, this is not entirely true. Indeed, as concerns the mechanical relaxation of a perturbed
geometry, the structure can adapt to external changes. If these are infinitesimally slow, this
process does not involve significant dissipation. This amounts to a (quasi) instantaneous relax-
ation, maintaining the foam in mechanical equilibrium at all times. This quasi-static regime
can thus be adequately modelled by solving for the minimum energy structure at every instant
in time.

However, the approach fails as soon as topological changes take place. As discussed in the
previous chapter, a neighbour-swapping T1 process is in fact a singular event: an edge retracts
to zero length at some point in time leading to an unstable four-fold vertex. This, however,
necessarily creates a structure which is not in mechanical equilibrium. As the fourfold vertex
dissociates into two threefold vertices which separate in order to re-establish the equilibrium
following Plateau’s rules, this is not a quasi-static process. Indeed, we will highlight the asso-
ciated singular dynamics in the following. It thus becomes clear that, through the singular T1
events, dissipative effects always interfere - a fact which is entirely neglected in the quasi-static
flow model.

4.2 Selected publications

The following discussion will focus on analysing the behaviour of a flowing foam in a 2d ge-
ometry, which significantly simplifies the description, the modelling and also the experimental
setup required to confirm the theoretical results. We first discuss in some detail the dissipation
mechanism in the flow of a foam over a glass plate, as it can be exemplified experimentally in
an even simpler geometry. We then show how one can construct a simplified model for the flow
of a 2d foam, taking into account all the aspects discussed above.

Here we neglect bulk dissipation within the bubbles, as well as surface viscosity effects, and
concentrate on the bulk dissipation due to hydrodynamic effects within the Plateau borders.
The focus will be on quasi-1d and quasi-2d geometries. These are particularly well suited to
understanding the role of the container walls, i.e. the motion of plateau borders over the glass
plates, a process which necessarily intervenes in an experimental setup.
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film velocity

dissipation

Figure 4.3: Illustration of flow in a Plateau border sliding over a glass plate, shown in a
cross-section, perpendicular to the film. Far from the Plateau border, no flow takes place in
the liquid film along the wall. Velocity gradients, and therefore dissipation, arise mainly in the
highlighted zone.

4.2.1 Dissipation in 2d foams

Reference to the original work:

“Dissipation in foam flowing through narrow channels”
Isabelle Cantat, Norbert Kern and Renaud Delannay
Europhys. Lett. 65, p. 726-732 (2004)

In the context of dissipative mechanisms the 2d scenario is particularly interesting due to
the simplifications it introduces, both for the dissipative processes themselves as well as for
modelling the foam dynamics. Indeed, in a 2d foam one can attribute the dominant contribu-
tions to the motion of Plateau borders located at the confining glass plates. We refer to Fig.
4.2, which points out how every film separating two 2d bubbles corresponds to two Plateau
borders. In the equilibrium situation these meet at angles of 120 degrees, like in a strictly 2d
foam. The fourth Plateau border, perpendicular to the plates, essentially translates without
involving flow within the fluid.

The overall situation concerning the hydrodynamics is thus sketched in Fig. 4.3, illustrat-
ing that the sliding of a Plateau border leads to a flow pattern which must respect the no-slip
boundary conditions. In typical 2d soap froths the bubbles measure of the order of at least a
centimeter, whereas the glass plates are separated by a few millimeters. The Plateau borders
are yet much smaller than this, and the velocity gradients thus are important. The zones of
highest dissipation arise at the regions where the film is peeled off the plate (upstream) and
where it is deposited back onto the plate (downstream) [29].

One central question for understanding the impact on rheology is to understand the relation
which determines the pressure gradient required to make a Plateau border advance at a given
speed. One may assume a power law

∆p ∼ V α . (4.3)

The process being complex (for example since the Plateau borders also deform in response to
being pushed), nonlinearity (α 6=1) is to be expected.

It has been shown theoretically [29, 94] that, for low capillary numbers Ca = ηV/σ � 1 (η
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Figure 4.4: Regular monodisperse foam structures within cylindrical tube. The simplest
structure (not shown) has a bamboo-like topology, where bubbles line up along the tube, separated
by films which span the entire cross-section. For smaller bubble sizes one finds the ‘staircase’
structure shown here, and progressively more complex variations involving several strings of
bubbles alongside each other.

being the bulk viscosity of the liquid and σ the interfacial surface tension), the scaling given by
Eq. (4.3) is expected to be obeyed with an exponent α = 2/3. A simple experimental setup,
devised by E. Cantat and R. Delannay in Rennes, has allowed us to confirm this relation, and
has furthermore suggested that it is the motion of the Plateau borders perpendicular to their
orientation which provides the dominant contribution to dissipation.

The procedure consists in creating a foam in a tube-like plexiglass channel, having a diam-
eter comparable to the bubble size. In the simplest case this results in a bamboo-like structure
of bubbles, or in progressively more complex but regular bubble trains (see Fig. 4.4). The ad-
vantage of this bamboo geometry, in some sense closer to a 1d arrangement, is that it involves
only identical, circular Plateau borders. As the tube, which is open below, is then plunged
into a container of water, the hydrostatic pressure pushes the entire structure up into the tube,
requiring the Plateau border to slide upwards along the glass wall. Filming the process with a
high-speed camera allows to measure both the depth of immersion of the structure, from which
both the driving hydrostatic pressure and its velocity can be deduced. The result is shown in
Fig. 4.5, from which one deduces that a power law relation with an exponent of 2/3 is indeed
appropriate.

In the above analysis the coefficient of proportionality is of course linear in the total length
of the Plateau borders gliding over the glass surface. Further information is obtained from
considering slightly more complex structures, which involve various columns of bubbles disposed
in a regular fashion within the tube (see Fig. 4.4). These now involve both ring-like Plateau
borders, which are oriented orthogonally to their direction of motion, and Plateau borders at an
angle, which therefore move with both a perpendicular and a parallel component. Decomposing
each Plateau border into these components then shows that the data is well described if only
the orthogonally projected Plateau border lengths are taken into account: it is indeed the
perpendicular sliding of Plateau borders over the glass plates which dominate dissipation.
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Figure 4.5: Example of an experimental results showing the velocity-pressure relation, as they
are obtained for simple regular structures within a tube. The tube is partially plunged into a
water-filled basin at time t = 0. The graph shows the position of the bubbles in the tube as a
function of time, as they are pushed upwards by hydrostatic pressure. The best fit is a power law
of the form of Eq. 4.2, with an exponent of ν = 2/3, as expected. Also shown, for comparison,
is the result expected if the pressure-velocity relation were linear.

4.2.2 The viscous froth model for a 2d foam

Reference to the original work:

“Two-dimensional viscous froth model for foam dynamics”
Norbert Kern, Denis Weaire, Aengus Martin, Stefan Hutzler, and Simon J. Cox
Phys. Rev. E 70, 041411 (2004)

We now return to quasi-2d foams, confined between two parallel glass plates. Formulating
a model for the dynamics of such a 2d foam is a first step towards understanding the rheology
of foams in general. Restricting the debate to a 2d system is an obvious simplification, both in
terms of topological complexity and concerning the dissipation mechanisms. Nevertheless, even
these simplified 2d systems are known to display an entire range of interesting phenomena, for
example as one makes trains of bubbles flow through fairly narrow channels [51]. In that setup
it has been shown that one can use the channel geometry to split bubble trains, make them
cross, reunite them, etc, by provoking topological changes as required: applications in the spirit
of ‘lab on a chip’ technology spring to mind [97, 186]. Many phenomena can be understood
in terms of surface tension effects and quasi-static flow, others cannot. One such example is
the case of a two-fold bubble train being pushed around a bend, see Fig. 4.6. One observes in
experiments [51] that the inner bubble train becomes the leading one, by way of a controlled
sequence of topological changes. Intriguingly, quasi-static flow is not sufficient to explain this
effect.

In this section we set out to formulate a model accounting for dissipation in such flowing
2d foams.
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Figure 4.6: Bubble trains pushed around narrow bends constitute an interesting experimental
setup, which shows many relevant phenomena. Here we illustrate a T1 process (figure from
[51]). The viscous froth model developed here establishes that this process crucially relies on
dissipation, without which no topological change would occur.

Viscous froth model The viscous froth model [108] may be seen as a framework for mod-
elling the dynamics of the flow of 2d foams. It is, however, a more general model, which can
be arrived at by formulating generalisations to various starting points and provides a unified
point of view, and thus accommodates elements of various physical mechanisms, as we shall
discuss below.

The defining relation for the model is the force balance on an element ds of a Plateau border,
as it slides over the glass plates, which we take to be a generalisation of Laplace’s law taking
into account dissipation effects:

λ v(s) = ∆Pbb′(s)− γ Kbb′(s) . (4.4)

Here b and b′ refer to a neighbouring pair of bubbles. v is the velocity of the Plateau border
(or, more precisely, its component normal to the element ds) and λ is a friction coefficient. γ
stands for the interfacial (line) tension and Kbb′ for the curvature of the film separating bubbles
b and b′, and ∆Pbb′ is the pressure drop across this film.

The essential statement thus is that the friction force on the Plateau border segment ds
must cancel the driving force, due to the pressure gradient and the elastic surface tension. This
is an overdamped motion, neglecting inertia, which is a very good approximation.

The dissipation relation has been simplified to a linear relation, taking the drag force to be
proportional to the velocity of the film segment. This amounts to assuming a coefficient of α=1
(rather than 2/3) in the relation 4.3 discussed above. This considerably simplifies setting up the
numerics, but the simplification is not essential and a different exponent could be implemented.
Another implicit assumption it only the velocity v(s) component normal velocity of the Plateau
border matters, as appears indeed justified based on the experimental results discussed in the
previous chapter.
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Generalisations and limiting cases The viscous froth model, as introduced above, can
be viewed as using the ideal soap froth, corresponding to a quasistatic equilibrium to which a
viscous drag force has been added. This is how we have motivated the model. At the same
time, it may be seen as a generalisation of a domain growth model [202], initially formulated
for the growth of domains in metal [139]. For those systems there is no relevant pressure, which
is thus added by the present model. Finally, one may also think about pressure driven coars-
ening [196], as discussed briefly in the introduction to the previous chapter, to which surface
tension effects have been introduced.

The relative importance of these effects can be appreciated in terms of the associated time
scales:

Tλ =
λR2

γ
(structural relaxation)

Tκ =
R2

κγ
(coarsening)

Tζ̇ =
1

ζ̇
(shear)

(4.5)

where R is a typical length scale characterising the structure, such as the average bubble size,
and ζ̇ is an applied shear rate.

Coarsening dynamics It is worth pointing out that the Von Neumann law (Eq. 3.4) for
the coarsening dynamics of an ideal soap froth can be generalised to account for the effect of
viscous drag. In this case one can show [202] that the rate of change of the area of a bubble b
follows

dAb
dt

=
π

3

κγ

1 + λκ
(nb − 6) , (4.6)

and thus the ratio λ/κ = Tλ/Tκ is seen to be the relevant dimensionless parameter which
interpolates between Von Neumann law in the limiting cases of an ideal soap froth and Mc
Mullin’s law, which is the equivalent for grain growth. Eq. (4.6) thus constitutes the generalised
Von Neumann’s law interpolating between those cases in the full viscous froth model.

Quasistatic limit Note that the time scales defined above in particular provide an argument
as to when the quasistatic model for rheology is recovered. First of all, the time scale of
coarsening has to be slower than that attributed to shear. But also, for the dynamics to be
‘slow’, the structural relaxation after T1 must be fast compared to other structural changes,
such as those imposed by the shear rate.

Implementation The numerical implementation is based on a discretisation of the Plateau
border network. It must include topological bookkeeping to keep track of the vicinity of bubbles,
films and film segments, which represents a considerable coding effort. Forces on discretisation
points can be calculated in a finite element-like fashion to include all contributions to Eq. (4.4).
They are complemented by two additional, somewhat technical procedures.

One element is the displacement rules for the vertices. It is based on the fact that the films
meeting at a vertex maintain an angle of 120 degrees, despite the presence of viscous forces.
This may appear surprising at first sight, but is readily seen by looking at an infinitely small
control volume around a vertex: as it vanishes, only the interfacial tension remains, whereas
the viscous contributions disappear. The rule for displacing the vertices is thus to maintain
the appropriate angles, for which analytical solutions are available [85]. The novelty in the
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dynamics with respect to the quasistatic, ideal soap froth therefore lies in the fact that there
no longer is any requirement for the films to be arcs of circles.

The other technical point concerns the variation of bubble volumes. In principle, for the
purpose of rheology as discussed above, this variation is required to be zero. But a more gen-
eral procedure can be devised to include coarsening effects, for which the variation of bubble
volumes is given by the generalised Von Neumann relation stated above (Eq. 4.6). This is the
point where the linear viscous drag relation (Eq. (4.3 with α = 1) simplifies the procedure: in
this case, Eq. (4.6) tells us how all areas vary, which leads to a self-consistency condition in
terms of a matrix equation for the bubble pressures. One can thus impose the bubble pressures
as to achieve the desired area change. If coarsening is to be excluded, the same procedure
provides numerical stability on the bubble volumes.

In addition to the smooth part of the dynamics, topological changes must be handled dur-
ing time evolution. In the absence of coarsening this amounts to the T1 processes, which can
be handled by defining a minimum value for the length of a film, beyond which a neighbour
swapping process is attempted. It is thus an energetic criterion, applied locally at the vertex,
which triggers the (infinitesimal) topological change, following which the structure then evolves
according to viscous froth dynamics.

There are technical aspects to the implementation which are required to keep the numerical
procedure well-defined, smooth and stable; full technical details are reported in [108].

Neighbour swapping and film rupture Two test cases are well suited for showing the
effect of singular topological events, as they would not appropriately be handled in the qua-
sistatic, ideal soap froth model, as discussed above.

One is the rupture of a film, as indeed it arises commonly in dry foams, and which can
also be provoked in experiments. In this case one sees that a relaxation process ensues, in
which the former vertices, i.e. the points which used to be connected by the ruptured film,
move apart (see illustration in Fig. 4.7). One confirms [108] that their distance increases in a
square-root fashion, indicating in particular an initially singular motion at these points, as is
expected from the rules for the vertex motion. The time scale for this structural relaxation is
set by Tλ = λR2/γ (see Eq. 4.5).

The second case is a T1 process, achieved by preparing an equilibrated configuration with
one edge having close to zero length, illustrated in Fig 4.8. As soon as the neighbour switching
is performed on this essentially fourfold vertex, the structure becomes unstable and relaxes
by developing a new edge. The length of this edge initially increases following a square-root
law, again reflecting the singular nature of the topological change. Asymptotically, the new
equilibrium configuration is achieved through an exponential relaxation process.

Importance of the model The viscous froth model for 2d foams has thus been seen to
lend itself to a numerical implementation, and provides valid results for the topological changes
above, including estimates for time constants of the subsequent relaxation process. Never-
theless, the above examples are mere illustrations of our implementation. The main point is
not that one can reproduce isolated topological changes, but that the time interval following
these singular events is handled by the model. This is an important difference with respect
to any quasi-static description, where any topological change is followed by an instantaneous
relaxation to equilibrium. As discussed above, the out-of-equilibrium relaxation following these
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Figure 4.7: Simulation of a film-rupture event in a film. The foam structure evolves according
to viscous-froth dynamics. As a consequence, the distance between the points where the vertices
of the disappeared edge used to be located grows in a square-root like fashion, thus representing
the singular nature of the perturbation.

1 1 1
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Figure 4.8: Dynamics of a foam structure following a T1 event. At first (left) bubbles are
inflated/deflated as required to produce a zero edge length, implying an (unstable) 4-fold vertex
(middle). The foam then evolves according to the viscous froth dynamics (right). Note in
particular that the angles between films quickly return to the 120 degree equilibrium values,
which remain valid even in the presence of dissipation. Films, on the other hand, are no longer
required to remain arcs of circles. Here too, the new edge grows in a square-root fashion,
reflecting the fact that the topological change constitutes a singular event.
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Figure 4.9: Full results on a bubble train being pushed around a bend. For low velocities the
experimental observations are well represented by quasistatic results, whereas the viscous froth
model is required to reproduce deviations for higher velocities. Most interestingly, the viscous
froth model correctly predicts the occurrence of a T1 topological change as the bubble trains are
pushed around the bend, which is absent in the quasi-static dynamics.

events can intrinsically not be handled by a quasi-static model. This is where the viscous froth
model innovates, since it allows to resolve this singular time interval. In particular, this will
resolve the ambiguity concerning the order of events in avalanches of T1 processes, as they can
arise in rheological situations [1, 102–104].

Application to neighbour switching in a channel bend A nice illustration of the rele-
vance of the viscous froth model has been provided based on the setup of bubble trains flowing
along channels, which we have briefly touched upon in the introduction. We consider the exam-
ple of a bent channel, around which a double train of bubbles is pushed. In order to incorporate
the constraints due to the channel walls, the viscous froth implementation has been ported to
the Surface Evolver program by S. Cox [38], exploiting its facilities to this effect. The results
show that the viscous froth model indeed has the potential to explain many of the observations.
This is illustrated in Fig. 4.9, highlighting the role of the viscous drag specific to the viscous
froth model. One sees that pushing the bubbles very slowly around the bend, corresponding
to the case of a quasi-static description without friction, the double row of bubbles is pushed
around the bend ‘as is’, undergoing deformation but without any topological changes taking
place. As viscous drag becomes important (i.e. for higher velocities), however, a neighbour
swapping process is provoked, which amounts to topologically promoting the inner bubbles one
step ahead of the outer bubbles. Such a T1 process takes place successively whenever a new
bubble pair passes this critical area, and the resulting advance maintained as the bubble train
is pushed further around the bend. This correctly reproduces the experimental observations
performed at different flow velocities.

4.3 Follow-up

The work on dissipation as bubbles move through narrow tubes has been pushed further by
Dollet and Cantat [49], who have experimentally studied the case of higher velocities for the
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bubble trains. They show that ultimately the high velocities lead to the bursting of films or
to unsteady motion. However, these experiments have also shown that this only occurs at a
relatively high speeds (of the order of meters per second), and that the Bretherton law holds up
to these surprisingly high velocities. The line of work touched upon above, where the channel
geometry is used to manipulate, order, separate or recombine bubbles and bubble trains has
been summarised in a further publication [51]. It has since been re-visited in the somewhat
more applied vision of a ‘lab on a chip’ technology [97,186], where many of our original setups
are represented.

The viscous froth model has been used by Barry, Weaire and Hutzler [14] in order to inves-
tigate shear-localisation (initially reported by Debrégeas et al. [45]). In particular, they have
established a correspondence with a continuum model. The Herschel-Bulkley exponent (ν in
Eq. 4.1) has been estimated as 1/3, as is compatible with experimental data.

Green et al. [85] have applied the viscous froth model to a lens bubble, consisting of only
three films and one vertex, pushed through a channel. Their analysis quantifies the deformation
of the bubble as a function of driving pressure or flow velocity, and highlights the differences
with quasi-static motion. Most interestingly, they show that the expected stationary solution
only holds up to a threshold in the driving velocity, beyond which a topological change is trig-
gered through a non-stationary process. Their very careful analysis of this simple scenario has
also led to various technical improvements of the implementation, in particular concerning the
numerical precision and the spatial and temporal resolution. Ultimately this results in extend-
ing the time scales which are accessible in simulations of a viscous froth.

Other dissipative processes have been considered, which may intervene in foam rheology and
would require the model to be generalised. For example, Cantat [30] has explored the effect
of Gibbs elasticity, in this case on a 2d foam. This amounts to acknowledging the fact that
the films can grow or shrink during the flow process, which requires the surface concentration
of surfactant to adjust. Assuming this to be the slowest process, they have shown that this
type of dissipation leads to a Herschel-Bulkley law for the foam constitutive relation, with an
exponent differing slightly from other models. However, this work has adopted the so-called
vertex model, in which all films are straight lines [144]. Thus the full detail of the bubble ge-
ometry is not represented, and in particular the Plateau rule on equilibrium angles cannot be
respected. Nevertheless, these simulations provide an additional angle to the question of dissi-
pation in a 2d foam, which could in principle be implemented to extend the viscous froth model.

An entirely different approach to simulating a viscous 2d foam has been exploited very
recently by Kähärä, Tallinen and Timonen [105]. In their simulations the bubble boundaries
are represented through discretisation points, which evolve in a molecular-dynamics like fashion,
subject to specially designed forces. These include the pressure force, as well as viscous forces,
similar to the viscous froth model. The novelty here is that the discretised shape is that
of the gas-liquid interface, i.e. half a film: two such lines, which repel each other through
elastic forces, resolve the interfaces of the liquid film with both adjacent bubbles. In this sense
the model attempts to combine the features of a viscous froth with that of Durian’s bubble
mechanics [54, 55]. In this way it is possible to resolve structures with a finite liquid content,
and one may hope that extending simulations including viscous effects beyond dry foams would
eventually become possible.



Chapter 5

Active transport on quasi-1d structures

5.1 Tour d’horizon

The interest in 1d, or quasi-1d, active transport can be motivated from many points of view.
Some of these directly originate from fundamental theoretical physics (such as out-of-equilibrium
statistical physics), from real-world applications (such as traffic or crowd control), from com-
munication issues (such as internet routing protocols) or from biological questions (such as
cytoskeletal transport based on molecular motors). The latter example is particularly suitable
for introducing the essential ideas, in that it can be conceived, with quite little simplification,
as a rather direct realisation of a completely abstract and generic lattice process, of which it is
often said that it constitutes for non-equilibrium physics what the Ising model is to equilibrium
physics. We shall therefore use the example of molecular motors to motivate and introduce the
model. We then review its main features, and in particular the resulting collective behaviour.
This will lay the basis for discussing, in the following sections, the various contributions to
this domain in terms of simple models. In particular these concern branched structures and
networks, before returning to discuss the interest of the approach with respect to intracellular
transport (see [28] for a recent review of this topic).

Molecular motors as 1d active ‘particles’ Molecular motors are complex protein molecules,
which are ubiquitous in living cells. They come in several families (dynein, kinesin and myosine,
for the molecular motors producing linear motion), each of which features several variants of
similar (from out point of view) molecules. The conformations taken by these proteins typi-
cally allow to distinguish several parts: a docking region for binding other bio-molecules (the
‘cargo’), a central part (the ‘body’) and one or two, according to the type of motor, elongated
strands (‘heads’) which can bind to track-like bio-polymers (see sketch in Fig. 5.1).

By ‘tracks’ we mean long, rather stiff biopolymers which, in the right conditions, self-
assemble from identical building blocks which are themselves globular proteins. The struc-
turally simplest case is that of actin fibers, in which actin monomers assemble to a long chain-
like molecule, rather like a long polymer chain. These have a bending rigidity which confers
them a persistence length of the order of 15 µm. Microtubules are a somewhat more complex
example, where tubulin dimers assemble to form long chains, several (typically 12) of which
gather to form a bundle resembling a hollow cylinder. As a consequence the microtubule fibers
are more rigid, which is reflected in their larger persistence length (of the order of a few mil-
limetres). Both actin filaments and microtubules, along with another type of biomolecules (the
‘intermediate filaments’) are present in eukaryotic cells. These cells typically assemble larger
structures from such filaments, either by bundling or by criss-crossing and interlinking them.
Together with the lipidic cell membranes, these structures largely contribute to the mechanical
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Figure 5.1: Illustration of a motor protein, here dynein, moving along a microtubule. The
typical elements are a rather compact ‘body’ with two flexible ‘heads’. These can successively
attach to the microtubule, always further ahead, thus making the motor ‘walk’ along the (polar)
filament. Each step occurs stochastically, and consumes energy in form of ATP (or GTP). The
body of the motor protein also serves to anchor a cargo, for example a vesicle or an organelle,
which is pulled along and thus undergoes active transport. Filaments are typically populated by
many motors, such that their interaction becomes an issue, making their stepping dynamics a
collective process. Image from the website of Harvard Medical School [174].

properties of a cell. Another important structural property of these filaments is that they are
polar, i.e. they come with an orientation, which is of course important for directing the trans-
port processes.

Molecular motors bind to these tracks, according to biological specificities (myosin walks on
actin filaments, dynein and kinesin bind to microtubules). The particular feature of the motors
resides in the fact that they can take on various conformations, which correspond to various
degrees of structural deformation and also to various affinities with respect to biochemical in-
teractions. Certain changes of conformation can release the binding to the supporting filament.
Others can bind molecules of ATP (adenosine-triphosphate) and exploit its hydrolysis to ADP
(adenosine-diphosphate) as a source of energy. Each such hydrolysis liberates an energy of the
order of 10 kBT . The molecular motor can then undergo a cyclic succession of these conforma-
tions which, using the energy provided by ATP to pull the molecular motor (and its biological
cargo) one step forward along the track. One molecule of ATP is consumed in each such step,
and the forward motion is more or less of a fixed step size (of the order of several nanometres
to several tens of nanometres).

TASEP: the model To a physicist’s eye, striving to neglect all biological complexity and
biochemical details, we are thus dealing with the simplest possible non-trivial active transport
process: we have a 1d structure, in which ‘particles’ move stochastically (whenever a motor
catches a molecule of ATP) under energy consumption (ATP hydrolysis). It then steps ahead
one site on a regular lattice (reflecting the periodic structure of the underlying biofilament).
The only complication which arises in this process is the condition of excluded volume, i.e. the
fact that two motors cannot bind simultaneously to the same lattice site. This model is known
as a Totally Asymmetric Simple Exclusion Process (TASEP), and it is graphically summarised
in the sketch provided in Fig. (5.2).

Formally, the model can be written in terms of a master equation

dni
dt

= γ [ni−1 (1− ni)− ni (1− ni+1)] , (5.1)

where i = 1 . . . L identifies the position on a lattice of size L and ni ∈ {0, 1} indicates whether
a given site is empty or occupied by a motor. γ is a rate constant, which sets the probability
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Figure 5.2: Sketch illustrating the Totally Asymmetric Simple Exclusion Process (TASEP).
Particles stochastically attempt to hop to the next site on a lattice, in a predefined direction.
The hop fails whenever that site is already occupied.

with which a given motor will attempt a forward hop within the time interval dt. This can also
be written in terms of the net current resulting from particles leaving site i and those entering
from site i− 1:

dni
dt

= Ji − Jn−1 , (5.2)

where the current leaving site i is

Ji = γ (ni (1− ni+1)) . (5.3)

As to describing actual molecular motors, this model is obviously a crude simplification,
and many assumptions may be questioned. Is the distribution of ATP in the surrounding
solution homogeneous, as to justify an entirely equal stochastic motion for any motor? Is the
step size strictly constant? Does it correspond to precisely one lattice site, reflecting the size
of the monomers? Can the motor really step in one direction only? Can the excluded volume
condition on a single binding site be used when there is a cargo present? What is the role of
intermediate states in the cycle of configurational changes? Etc., etc. All of these questions
(and many more) deserve to be raised, all of them are of biological importance, and a significant
number of studies have been performed to address certain of these issues. At the same time, the
answer to these questions is typically specific, and may differ from one motor to another, from
one track to another, from one cell to another or even from one stage in the cell cycle to another.
As physicists, this is clearly not what we want to be concerned with at first, but we would rather
start by understanding a ‘purified’ (translate: entirely oversimplified) model such as TASEP,
before entering any more specific issues. This is what we will discuss in the following. It turns
out (see the discussion below), maybe against all odds, that the TASEP indeed provides a valid
starting point for describing the motion of molecular motors. In particular, it helps to unravel
the collective effects which are crucial phenomena in this type of transport process, including
those in real biological systems [127].

Fundamental physics and applications The simplicity of its defining rules makes TASEP
also a paradigmatic model for out-of equilibrium transport, just like the Ising model con-
stitutes a paradigm for equilibrium phase transitions (for recent reviews see [34, 132, 133]).
TASEP has received considerable attention also from this point of view, and the exact solution
is known [46]. It has since been studied using various techniques, such as the matrix product
method [21,47,48], large deviation theory [44], the Bethe ansatz [43,81,93]. The resulting phase
diagram is well studied by many authors, such as Derrida et al. [47], Schütz and Domany [73],
Kolomeisky and Straley [118], amongst others.

In terms of applications TASEP, and a variety of related models based on stochastic lattice
gases, have been recognised as useful to a whole spectrum of topics. These include the motion of
pedestrian and crowd control [5], vehicular traffic [36] (where the stochastic motion is typically
replaced by a synchronised update rule), spintronics [164], information flow on the internet
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or on wireless networks [182], amongst others. We shall return below to the applications of
TASEP in the biological realm.

TASEP on a ring: current-density relation A mean-field analysis of TASEP is very
straightforward indeed, and reveals much of its behaviour. On a closed ring (periodic boundary
conditions) the average current can be deduced from Eq. (5.3), noting that it is necessarily
constant along the track (due to particle conservation). We thus have, in a mean-field spirit,

J = γ ρ (1− ρ) (5.4)

where ρ is the overall particle density, obtained from the number of particles N and the number
of lattice sites L as ρ = N/L. The argument uses the local (averaged) density, on site i, defined
as

ρi = 〈ni〉 , (5.5)

which thus amounts to the probability of having site i occupied by a particle, and we have used
homogeneity (ρi = ρ = const), due to the periodic boundary conditions. In this simple mean-
field argument cross-correlations between neighbouring sites have been neglected by assuming

〈ni ni+1〉 ≈ 〈ni〉 〈ni + 1〉 = ρi ρi+1 . (5.6)

It is remarkable, however, that the parabolic density-current relation J(ρ) given by Eq. (5.4)
has been shown to also be the exact result [47, 48] for TASEP.

The origin of the non-monotonic current-density relation lies, of course, in the excluded
volume interaction between particles. It immediately reveals several important features. One is
the fact that there is a symmetry with respect to half-filling (ρ = 1/2), such that J(ρ) = J(1−ρ).
This in fact reflects a particle-hole symmetry: particles hopping forwards follow rules entirely
analogous to those of holes hopping backwards. A direct consequence is the fact that any
particular current can be sustained by two different densities. This suggests that two segments
of these two complementary densities can coexist in a stationary state. This observation will
be useful in the following.

TASEP on a finite segment: density profile ρi The full spectrum of features of the
TASEP emerges as boundaries are introduced. This requires defining particle injection and
extraction, which is done via additional boundary rates. Thus a particle is injected into the
first site, if this is empty, at a rate α. Similarly, a particle on the last site of the segment is
extracted at a rate β. On a mean-field level this is equivalent to introducing two reservoir sites,
one with particle density α at the entry and another one with particle density 1−β at the exit.

The first remarkable result is that, in the stationary state, the density along the segment is
still constant, except for boundary regions. This is not entirely trivial: stationarity necessarily
requires a uniform current (Ji = J = const), but not a priori a constant density, as was the
case for a closed ring. One way to establish the fact that the density profile ρi (representing the
average density as a function of the position i along the segment) is constant relies on analysing
the current conservation condition as given by Eq. (5.3). Reading it as a recurrence relation
for the occupation number ni it becomes, in a mean-field approximation,

ρi+1 = 1− J

γ

ρ

ni
. (5.7)

We are thus dealing with a discrete dynamical system, which has two fixed points at

ρ∗± =
1±

√
1− 4J/γ

2
, (5.8)
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ρ∗− being unstable and ρ∗+being stable. Thus no fixed points can exist corresponding to currents
J/γ > 1/4, as was to be expected from the current-density relation. Furthermore, whatever
the initial value for the map (the entry density ρ1 at the first site), the density profile ρi asymp-
totically reaches ρi −→ ρ∗+ as i −→∞, and one can show that this occurs on a typical length
scale which does not depend on the segment length (in fact only a few sites). This proves
that the density profile is asymptotically constant for a sufficiently large segment, and that the
asymptotic density is independent of that at the entry site.

It is, however, important to realise that this is not the only scenario. Indeed, the discrete
map given by Eq. ( 5.7) can also be established ‘backwards’, iterating from the exit density
towards the entry site. In this case one finds asymptotic convergence towards ρ∗− at the entry
site, i.e. the particle-hole symmetric scenario in reverse direction, the asymptotic density being
independent of that at the exit site. Not also that we have necessarily ρ∗− ≤ 1/2 ≤ ρ∗+, which
is why the corresponding regimes are denominated ‘low density’ and ‘high density’, respectively.

Juxtaposing these two behaviours provides a first glimpse of the fact that we are dealing
with a boundary controlled process, as we shall discuss now.

TASEP: boundary induced phase transitions We have established that, except for a
boundary effect, we are essentially dealing with a constant density profile. We can now call
upon further mean-field arguments to establish complementary intuition. Indeed, from the
above discussion we know that we must distinguish several phases for the stationary transport
regime:

• A high density (HD) regime, for which the bulk density is equal to the density at the
exit, and thus set to ρHD = 1 − β by the exit reservoir. The corresponding current is,
JHD = β (1− β), from Eq. (5.4).

• A low density (LD) regime, for which the bulk density is set by the entry reservoir density
α. The corresponding current is JLD = α (1− α).

• A maximum current (MC) regime, for which the current is at its maximum value, JMC =
γ/4. This occurs at half-filling (ρMC = 1/2).

These different regimes are usually presented in terms of a ‘phase diagram’, mapping out
the occurrence of each of these regimes in a two-dimensional ‘phase space’ corresponding to the
entry and exit rates α and β. This is presented in Fig. (5.3). We can thus complete the above
list to

• HD: β < α and β < 1/2 (exit-limited flow)

• LD: α < β and α < 1/2 (entry-limited flow)

• MC: α, β > 1/2 (bulk-limited flow)

Here we have highlighted that, as established above, in each of these regimes the density ρ is the
parameter which characterises transport. In LD, current and density are set by the entrance
density: we are dealing with an entry limited current. In contrast, in HD we are dealing with
exit limited transport. For the MC phase, however, nor the entry rate α nor the exit rate β
have an effect on the flow: this is the bulk-limited regime, where particles can essentially enter
and exit freely, but it is their hopping from one site to the next which becomes the limiting
process.
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Figure 5.3: Illustration of the ‘phase diagram’ for TASEP on a single segment. According to
the in-rate α and the out-rate β, one finds a low density (LD) phase, a high density (HD) phase
or a maximal current (MC) phase. The line LD:HD indicates a coexistence of both phases on
the same segment, corresponding to a first order transition.

Terming the respective regions in parameter space ‘phases’, as one would have done for
an equilibrium system, suggests pushing the interpretation further by considering ‘phase tran-
sitions’ between the corresponding regimes. Acknowledging the important role of the entry
and exit rates, we are thus dealing with boundary-induced phase transitions, a term coined
by Krug [120] and now well adopted [93, 151]. The somewhat loose denomination in terms of
‘phase transitions’ is widely used, but refers of course to bifurcations concerning the stationary
solutions, rather than implying any features of equilibrium phase transitions. Nevertheless, the
analogy is in fact very useful. We can thus consider how one crosses from one of the LD or
HD regions into the MC regions. A straightforward analysis based on the mean-field results
shows that the (bulk) density ρ and the current J vary continuously and with a smooth first
derivative, as the boundaries of the MC phase are crossed. This is reminiscent of a second order
transition. In contrast, as one crosses the line α = β from the LD to the HD regions, both
density and current evolve with a discontinuity in their first derivative, suggesting a first-order
‘transition’.

Domain walls The analogy with a first-order transition is further strengthened by recalling
that the density corresponding to a given current is double-valued: in principle, two values for
the density can sustain the same current. This is a key observation. One can thus envisage a
segment consisting of a LD zone followed by a HD zone, the two separated by an interface.
And one can show, based on a description in terms of partial differential equations [48, 70],
that this is indeed a viable solution corresponding to a soliton, often referred to as a domain
wall. The HD phase then corresponds to the case where this domain wall has been pushed
right towards the exit, whereas the LD phase corresponds to it being pushed to the entry.
The transition line α = β on the other hand, for α, β < 1/2, is the borderline case. Here the
interface can persist in the bulk. It thus leads to a coexistence of a LD and a HD phase on
the same segment, again reminiscent of coexistence of two phases in the same sample, as in
first-order phase transitions.

In this coexistence phase, the position of the domain wall is set by the total number of
particles in the system: this determines how large the HD zone can be, and needs to be. In
an open segment on the other hand, coupled to reservoirs, the domain wall position fluctuates.
Through a collective process it can thus diffuse throughout the segment, albeit on a much larger
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time scale than that associated with particle motion. The domain wall motion, including its
diffusion coefficient, can be characterised by what is known as domain wall theory [118].

Stochastic simulations of TASEP It is important to critically examine any results which
are established based on mean-field arguments, and this can be readily done using computer
simulations, which are very straightforward for TASEP. They consist simply in representing
N particles on a lattice of L sites, which undergo stochastic hopping events. For TASEP, the
procedure is close to what one would do in Monte Carlo simulations:

• randomly pick a site i ∈ [0, L], thus allowing for an extra site (i = 0) which represents
the entry reservoir

• perform the associated random process:

– if i = 0: with probability α, insert a particle onto the entry site i = 1 (provided the
latter is empty)

– if i = L: with probability β, remove the particle from the exit site L

– otherwise (i.e. if i ∈ [1, L − 1]): move the particle from site i (if any) to site i + 1
(provided the latter is empty)

• sample whatever observable one is interested in over this chain of configurations

Performing L+ 1 such (attempted) moves corresponds to one cycle, which serves as basic time
scale (in units of 1/γ). Counting the number of successful moves then directly allows to deduce
the particle current, and averaging the occupancy on a given site i yields the average density
ρi on this site.

This scheme is the conceptually simplest procedure, but can of course be optimised (for
example by directly picking particles, rather than the sites, which are potentially empty). It
can also be generalised to other models, for example to include particle absorption/desorption.
In this case it may also prove useful to use a continuous-time algorithm [107] as a variant.

Biological relevance of TASEP We have introduced TASEP above as a simplified model
for describing the stochastic active motion of molecular motors. Initially, however, it has been
introduced by MacDonald et al. [130] in the context of protein synthesis. For a protein to be
‘expressed’, the corresponding sequence in the DNA chain must be converted into a protein
molecule. This is done by synthesising a corresponding sequence of amino-acids, but this step
does in fact not happen directly on the DNA. Instead, a messenger-RNA (m-RNA) chain is
produced in a first step which codes the complementary structure to the DNA chain, i.e. for
each nucleic acid in the original DNA blueprint the complementary nucleic acid is placed in
the m-RNA chain (transcription). It is this chain which is then, in a second step, ‘read’ and
translated into protein chains (translation). This is achieved by ribosomes, themselves complex
proteins, which step along the m-RNA chain and synthesise the protein sequence as coded by
the m-RNA. In this process, too, ‘particles’ (ribosomes) stochastically step along a linear struc-
ture, with a regular step size, and subject to an excluded volume condition. It is this analysis
which has prompted MacDonald et al. [130] to formulate the TASEP.

At the first level of detail, as introduced above, the model also describes the motion of
molecular motors (for recent reviews see [35], but also [34]). It has the great merit of establishing
a connection between the (simple) microscopic motion of individual motors and the (potentially
complex) collective behaviour in molecular transport along actin fibers or microtubule filaments.
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Figure 5.4: Schematic illustration of the Totally Asymmetric Simple Exclusion Process with
Langmuir Kinetics (TASEP-LK). It amounts to a TASEP, but in which particles can also detach
from the filament (rate ωoff ), or can adsorb from the bulk (rate ωon). The bulk concentration
is taken to be uniform and constant.

One may thus wonder how realistic this description is in view of the many drastic simplifications
introduced above. Very recent work [161] has confronted predictions to experimental results
in various situations, concluding that a valid description is obtained once one acknowledges
the fact that molecular motors have a finite processivity, i.e. that they do not run indefinitely
along a track, but will ultimately unbind. This feature had been explored by Parmeggiani and
Frey [146, 147] in a model known as TASEP-LK, where LK stands for ‘Langmuir kinetics’. In
this model particles can be exchanged with a surrounding reservoir where they are assumed to
be present in a homogeneous concentration. They stochastically undergo binding and unbinding
events, in the same spirit as the Langmuir absorption process [123], hence the name of TASEP-
LK. The mathematics of these models are rather more involved than those of TASEP, even on
a mean-field level.

TASEP-LK: the model and a brief review of its phenomenology The model of
TASEP subject to a Langmuir adsorption/desorption process has been introduced and solved
by Parmeggiani, Franosch and Frey [146, 147]. It generalises TASEP by additionally letting
motors detach from each site (with a detachment rate ωoff ), but also allows for an empty site
to catch a molecular motor from a surrounding bulk reservoir (attachment rate ωon). On its
own this Langmuir process would establish an average density of

ρLangmuir =
K

1 +K
(5.9)

where K characterises the ratio of adsorption and desorption rates:

K =
ωon
ωoff

, (5.10)

and this is the density one expects for TASEP-LK on a ring. On an open segment, however,
the local equilibrium due to the Langmuir kinetics can be modified due to to the transit of
particles actively hopping along the filament. The current among the filament thus need not
be conserved, and the density profile no longer needs to be uniform (like in TASEP), but it
can vary linearly along the segment, due to the particle exchange process operating along the
filament. Nevertheless, one can still distinguish high density and low density phases, and it is
still possible to achieve coexistence of these two ‘phases’ on the same segment. The MC phase
is replaced by a Langmuir phase, where the density is no longer half-filling, but rather it is
directly set by the exchange process: it turns out to be the same density that one would find
on an independent site in contact with a reservoir, ρLangmuir given by Eq. (5.9).

The mean-field phase diagram [146, 147] is simplest in the particular case of equal on- and
off-rates (K=ωonωoff=1), in which case it remains very reminiscent of that of TASEP. The ma-
jor difference is that the coexistence phases are now extended phases, which occupy a surface
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in the (α, β) plane, rather than being confined to a line. This case is illustrated in the middle
column of Fig. 5.5, as a reference for discussions in the following.

Most of the phenomenology is already apparent from this particular case. There is one ad-
ditional parameter which sets the ease at which the exchange takes place, which is conveniently
chosen as

Ω =
ω L

γ
. (5.11)

This is a dimensionless measure for the ratio of the time it takes an isolated motor to cross the
filament (L 1

γ
) and the time it takes for a motor to detach (1/ω). The parameter Ω thus mea-

sures the importance of the exchange with the bulk. Its inverse 1/Ω characterises the fraction
of the segment which a single (isolated) motor would cover before detaching. Note that this
parameter does not only depend on microscopic rates, but also on the length of the segments.

The corresponding phase diagram is shown in Fig. 5.5. We see that the coexistence phases
progressively dominate as the exchange parameter Ω is increased, involving the matching of
two mathematically different solutions in different regions of the segment. Such the LD-HD
coexistence is present, as in standard TASEP, but it now corresponds to an extended phase
occupying a finite region in the (α, β) parameter plane (contrary to what is seen in standard
TASEP, where the coexistence is limited to a line). However, in TASEP-LK it is localised at a
particular position, and no longer diffuses freely over the entire length of the segment.

In addition, further ‘extended phases’ arise as a LD-MC and MC-HD phases, in which there
is coexistence between LD (or HD) sections with a MC phase. In the HD and LD phases, the
density profile is linear along the segment, its slope directly set by Ω. In contrast, the MC
phase has a homogeneous density profile at a value of ρ = K/(1 + K) = 1/2. Note also that
an extended region in parameter space sustains a three-fold coexistence, LD-MC-HD.

The general case, ωoff 6= ωon, is mathematically more complex [147], but it is governed
by similar physics. It requires two parameters, which could be chosen by defining separately
Ωoff = ωoffL/γ and Ωon = ωonL/γ, but it is more convenient to use the (dimensionless)
combinations

K =
Ωon

Ωoff

and Ω =
1

2
(Ωoff + Ωon) . (5.12)

Thus K indicates to which extent the particle attachment is faster than the process of particle
detachment, whereas Ω characterises the overall exchange with the bulk reservoir.

As an example, the phase diagram for K = 1.5 > 1 is sketched in Fig. (5.5). Essentially,
the LD phase is progressively disfavoured. This is a consequence of the fact that, for K = 1.5,
particle attachment is faster than detachment, which disfavours low particle densities. As soon
as the exchange, characterised by Ω, is sufficiently efficient, the HD phase is entirely eliminated,
and remains present only as a coexistence phase. The other difference to be pointed out is that
the MC phase indicated in the phase diagrams is actually a modified MC phase, the density of
which is set by the Langmuir process as ρLangmuir = K/(1+K), which is thus larger than the

half-filling density of 1/2 corresponding to the MC phase in TASEP. Full mathematical details
and a full discussion of the phase diagrams are given in the work by Parmeggiani et al. [147].
Note also that it is sufficient to consider K > 1, since a symmetry can be established which
allows to deduce the corresponding phase diagram for the inverse parameter K ′ = 1/K < 0.
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Figure 5.5: Overview of the mean-field phase diagrams for a single segment of TASEP-LK.
The exchange parameter Ω increases from top to bottom. The middle column (d-f) corresponds
to the case of equal attachment and detachment rates (K = ωoff/ωon = 1).
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Figure 5.6: Example of a cytoskeleton, comprising both actin filaments (red) and microtubules
(green). The cell nucleus is shown in blue. Note that the structure is in fact dynamic, and its
re-organisation plays an important role in the cell division process. Image from [137], available
at [138].

5.2 Selected publications

The active, motor-protein driven transport mechanisms introduced above play an important
role in biological cells. One aspect, which as been explored very little heretofore, is the fact that
the fibers along which the transport takes place are in fact highly interconnected. Microtubules
are known to cross-link due to special cross-linking proteins (so-called MAPs, microtubule-
associated proteins) which create a junction by fixing them close together. Actin fibers can
also cross-link, or even branch their actual structure (due to proteins called called Arp com-
plexes). The resulting network of fibers is the scaffold of what is known as the cytoskeleton:
see Fig. (5.6) for an illustration allowing to appreciate its complexity. This compound plays
an important role also for the structure, elasticity and active shape adaptation of cells [2, 95].
In the context of intra-cellular transport, the interconnections modify the transport, and we
must understand the role of the network connectivity. The work discussed in the following is
motivated by this question, and attempts to provide insight into active transport on branched
structures or on networks. It is also worth pointing out that networks of microtubules or of
actin filaments can now be produced in laboratory conditions [152,165,172], with some degree
of control on the network geometry.

Having in mind the picture of a cross-linked network, we will often refer to junctions as a
synonym of the term vertex used above.

5.2.1 TASEP on structures of branched filaments
Reference to the original work:

“Understanding totally asymmetric simple-exclusion-process transport on networks:
Generic analysis via effective rates and explicit vertices”
Ben Embley, Andrea Parmeggiani, and Norbert Kern
Phys. Rev. E 80, 041128 (2009)
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Figure 5.7: Illustration of all variants of a 4-fold vertex: a V(3:1), i.e. 3 incoming and one
outgoing segment; a V(2:2), i.e. 2 incoming and 2 outgoing vertices; a V(1:3), i.e. 1 incoming
and 3 outgoing vertices.

The first question to ask is how one can go about generalising the study of TASEP to a
system of branched filaments. Only a few studies had addressed these questions [27, 158] for
particular structures, such as a segment with a double-section in its middle or a 3-fold vertex.
Furthermore, they did not tackle the questions in a way which would be easy to generalise
to other topologies. We have thus first set out to analyse TASEP on a regular honeycomb
structure of segments [60], and then to address generic elements (4-fold vertices of any type),
developing a systematic procedure for treating a general topology. We will do so on a mean-field
level: to our knowledge, there is currently no exact solution available for TASEP involving any
branched topology, and even for simpler systems in equilibrium branching continues to pose a
formidable challenge for exact methods [39].

Junction site and effective rates Four-fold vertices come in three kinds, which we will
name V(1:3) for ‘1-in-3-out’, V(2:2) for ‘2-in-2-out’ and V(3:1) for ‘3-in-1-out’. They are
schematically represented in Fig. 5.7. We limit the discussion to having all incoming/outgoing
segments equivalent (i.e. identical in-rate α for all incoming segments, and identical out-rate
β for all outgoing segments of the vertex under consideration). We also assume, for the time
being, that the particles leaving the vertex pick one of the outgoing edges at random, with
equal probability (i.e. for now we do not allow bias).

We analyse the transport by singling out one particular site, which we attribute to the
vertex v itself. It will be convenient to label quantities local to a vertex by a tilde, and thus
the average occupancy on the site of vertex v site is noted ρ̃v. The key observation is that it
is this (average) density which sets the flow into and out of the vertex. Thus the mean-field
current from a given incoming segment s into the vertex v is

Js→v = γ ρ(out)
s (1− ρ̃v) , (5.13)

which is proportional to the hopping rate, to the probability of having a particle on the last
site of the segment s (noted ρ(out

s )), and the probability of having the vertex site empty, 1− ρ̃v.
Similarly, the current out of the vertex v into an outgoing segment s′ is

Jv→s′ =
γ

c
(out)
v

ρ̃v (1− ρ(in)
s′ ) , (5.14)

where ρ
(in)
s′ stands for the average occupancy of the first site of the outgoing segment s′. The

factor 1/c(out)
v accounts for the fact that any particle hopping out of the vertex site selects one

of the c(out)
v outgoing segments, where c(out)

v is the out-degree of this vertex.

The above expressions for the mean-field current amount to saying that the vertex v plays
the role of a reservoir for both the incoming and outgoing edges. Thus the incoming segments s
receive particles from a reservoir of density ρv; equivalently, their effective out-rate is βs′ = 1−ρ̃v.
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Analogously, the outgoing segments s′ are fed by a reservoir of density ρ̃/c(out)
v ; this is equivalent

to attributing entry and exit rates to those segments. Thus we have

in-segment s : αs = α , βs = 1− ρ̃v
out-segment s’ : αs′ =

1

c
(out)
v

ρ̃v , βs = β .
(5.15)

These effective rates allow us to treat each of the segments separately, just as if it were a single
TASEP segment, with its ‘phase diagram’ as established above. This also sets the current
through each segment, via the relation Js = J(αs, βs) established in the introduction, and the
density as ρs = ρ(αs, βs).

Current conservation The only remaining step is to determine the vertex occupancy ρ̃v,
which can be done by imposing current conservation at the vertex:∑

s→v
J [α, βs = 1− ρ̃v] =

∑
v→s′

J

[
αs =

ρ̃v

c
(out)
v

, β

]
. (5.16)

We use J [αeff , βeff ] to indicate the mean-field TASEP current as set by the effective entry/exit
rates of the segment. In this example the sums are of course just a complicated way of repre-
senting the fact that there are c(in)

v identical contributions to the in-current, and c(out)
v identical

contributions to the out-current. However, the explicit notation in Eq. (5.16) is more appro-
priate in view of generalisations to come.

Eq. (5.16) thus yields one (linear) equation for the vertex occupancy ρ̃v, from which the
mean-field currents and densities follow directly for the incoming and outgoing segments. With
this procedure, which is entirely generic for any vertex topology, the analysis of a 4-fold vertex
becomes straightforward.

One result which can be established is the effective ‘phase diagram’ of the composite vertex,
as it is driven by entry rates α and exit rates β. This is shown the Fig. (5.10), where the
notation LD:3HD, for example, indicates that a V(1:3) has its entry segments in HD and its
three exit segments in HD phases. These have been confirmed directly by simulation [61], but
we turn to other predictions which allow to confirm the mean-field results more quantitatively.

Periodic V(2:2) as an example Two directly predicted observables are the current J as
a function of the entry/exit rates, or the current-density relation J(ρ), as well as the junction
occupancy ρ̃, which turns out to contain significant insight. We show this data, in Fig. 5.9. To
be precise, we should state that it has been obtained for a periodic equivalent of the V(2:2),
resulting from connecting the outgoing segments back into the incoming ones, as shown in Fig.
5.8. This is equivalent to a 2-fold loop sharing one vertex site, and corresponds to imposing the
relation α = 1−β in the (α, β) plane (we avoid going into the discussion of strict periodicity vs.
periodicity-on-average, see [60]). This mean-field prediction can be summarised and interpreted
as follows:

• for small densities (ρ < 1/3) both segments are in a LD phase, and their current increases
quadratically, following the corresponding relation J(ρ) for a single segment,

• for high densities (ρ > 2/3) both segments are in the HD phase, with the corresponding
quadratic decrease of the current,

• in the intermediate region (1/3 < ρ < 2/3) the mean-field prediction is a plateau, which
corresponds to a LD-HD coexistence in both of the rings. Here the vertex acts as a
bottleneck.
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Figure 5.8: Periodic system corresponding to a V(2:2). Whenever the entry and exit rates
satisfy α = 1 − β, a V(2:2) forms a system which is periodic on average, and most of its
physics can be understood by studying a simpler system consisting of two TASEP loops having
one shared site.
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Figure 5.9: Current-density relation of a periodic V(2:2), topologically equivalent to a double
loop sharing a junction site. The line indicates the mean-field prediction, symbols are from
stochastic simulations.

The simulation data (symbols) confirm the mean-field prediction (continuous lines) exception-
ally well, except for the plateau-region around half-filling, where the mean-field predictions
slightly underestimate the current. This can be attributed to inter-segment correlations across
the junction, as has been argued very recently by Baek et al. [9].

In fact, the most remarkable feature is not that the mean-field results require a correction
in the density range corresponding to the presence of two LD-HD domain walls. Rather, it may
seem surprising that, despite having a shared vertex which must be expected to act as a bottle-
neck for both rings, the (mean-field) current in the low and high density regimes is exactly what
we would expect for two entirely independent rings with no junction. This is obvious for very
low (and very hight) densities, but it is surprising for this to hold for densities as high as 1/3. A
careful analysis shows that this is due to two cancelling effects. On one hand the vertex acts as
a bottleneck, making it less likely for a particle to succeed a hop into the junction. On the other
hand, particles pile up in front of the junction, and thus hops are attempted more often. It
turns out [61] that the two effects cancel, right to the point where the LD-HD coexistence arises.

Another feature that emerges from this data is that the current-density relation J(ρ) is
particle-hole symmetric. This is not entirely surprising for the topologically symmetric V(2:2),
but the microscopic aspects are in fact a little subtle: particles hopping forwards obey the
same rules as holes hopping backwards, except at the vertex site, where the symmetry is broken
due to branching. It nevertheless turns out that one can establish a generalised particle-
hole symmetry for branched structures [61], which also covers the symmetric phase behaviour
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Figure 5.10: Phases of a 4-fold vertex. Shown is a V(1:3), i.e. a vertex consisting of
three incoming segments and one outgoing one, as well as a V(2:2) and a V(3:1). The phase
diagrams of the V(3:1) and the V(1:3) are related by symmetry rules generalising the particle-
hole symmetry in a single segment.

between the V(1:3) and the V(3:1), shown in Fig. 5.10.

Bias at a junction As a test case for the generality of our approach, one may consider the
above V(2:2) but with a bias at the junction: the jumps out of the vertex site take place giving
preference to segment 1, say, with a ratio σ1 : σ2 (where σ1 + σ2 = 1, i.e. the overall jump rate
is still set by γ). This scenario shows nicely that the approach is generic, since we can easily
incorporate the bias into the effective rates of the segments. The in-rates for the two segments
are most easily written thinking about the segments directly:

segment s1 : α1 =
σ1

c
(out)
v

ρ̃ , β1 = 1− ρ̃v ,

segment s2 : α2 =
σ2

c
(out)
v

ρ̃ , β2 = 1− ρ̃v ,
(5.17)

whereas both out-rates remain unchanged, since they are independent of the bias.

Applying the condition of current conservation at the junction still closes the set of equa-
tions and yields the full behaviour of the system. The mean-field calculations become more
tedious but remain straightforward. An example for the resulting flow is characterised in Fig.
5.11 for a bias of σ1 : σ2 = 0.75 : 0.25. They are confirmed, with rather small deviations, by
microscopic simulations. Two remarkable features arise:

First of all, the current in the loop favoured by the bias is indeed higher than that in the
other one, but only up to half-filling. For ρ > 1/2 it turns out that both branches carry the
same current. This amounts to saying that, rather surprisingly, beyond this threshold the bias
has no effect whatsoever. The explanation again resides in a cancellation of two terms, showing
that the bias falls victim to it’s own success: as more and more particles are pushed into the
favoured branch, the occupancy at its entrance site rises, making it more and more difficult for
further particles to enter. The inverse feedback takes place in the less-favoured branch, and
beyond half-filling both currents become equivalent.

The other feature is that we are now dealing with two current plateaus. A first plateau,
at around ρ ≈ 1/3, corresponds to current saturation close to the maximum of the parabolic
current, and is attributable to a LD-HD coexistence in the favoured loop. The other one, ex-
tending from ρ = 0.5 to about ρ ≈ 0.75, is due to a LD-HD coexistence in the less favoured
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Figure 5.11: Current-density relation for TASEP on a periodic V(2:2), in the presence of
bias (σA : σB = 75 : 25). Shown are the currents through the individual loops, JA and JB, as
well as the total current through the junction site (J = JA + JB).
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Figure 5.12: Phases of the current plateaus for the current through a periodically closed
V(2:2). For any given bias (σA, knowing that σB = 1−σA) the diagram indicates which phases
are present in the system. The hatched zones indicate LD-HD coexistence, the first one in the
favoured loop, the second one in the other loop.

loop. The mean-field equations reveal full details as to how these plateaus evolve as a function
of the bias, as is represented in Fig. 5.12.

One major conclusion which can be drawn from the previous discussion is that the junctions
play a major role in the flow. This suggests that introducing the (average) occupancy at the
junction as an explicit variable, ρ̃, is a fruitful approach, and we shall exploit this further in the
following. The example of a bias has furthermore highlighted the impact of junctions on the
flow. This will also be explored further below, with a view towards experiments on molecular
motors.

5.2.2 TASEP transport on a network

Reference to the original work:

“Totally Asymmetric Simple Exclusion Process on Networks”
Izaak Neri, Norbert Kern, and Andrea Parmeggiani
Phys. Rev. Lett. 107, 068702 (2011)
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Having analysed the flow through a simple junction has shown us how to use the mean-
field approach in order to address the question of branched structures, and has provided a
glimpse of the behaviour one should expect. The subsequent challenge is of course to study
a full network. We shall show that the method can easily be generalised and provides an
efficient method for analysing large networks, far beyond the scale which would be accessible
in stochastic simulations. At this point it does not appear useful to taylor the structure of the
network as to represent any particular biological situation: high-resolution structural studies
of the cytoskeleton are still rather recent [17, 66, 135] and may vary from one type of cell to
the other, but also with the localisation within the cell and over time. Also, depending on the
type of network one might be interested in (for example actin or microtubule networks) the
nature of the junctions may require further thought (see below). For the moment, in order to
develop our argumentation, we focus on random networks, which will allow us to expose the
role of their topological features on the transport process.

Random networks In the following it will be necessary to refer to the connectivity of the
network, and we adopt a pragmatic notation, as light as possible yet inspired by the mathe-
matical literature on graphs. We thus refer to the nodes or junctions as vertices, represented as
{v} ∈ V , where |V | is the total number of vertices. Similarly, we refer to the (polar) filaments
as segments {s} ∈ S; note that in graph theory they would be referred to as (directed) links
or edges, but the name ‘segments’ anticipates the fact that they will be analysed in the same
spirit as the single open segment for TASEP transport, discussed in the first section.

The connectivity of the resulting network is typically described by a connectivity matrix [12],
but we do not need to define it explicitly here. It will be sufficient to observe that the topology
of each vertex is characterised locally by its degree or cardinal number c. Since we are dealing
with directed segments, we must distinguish the in-degree c(in)

v and the out-degree c(out)
v , each

of which counts the number of incoming/outgoing segments for a given vertex v, just as for the
single vertex considered above.

A network for which all vertices have the same degree (and therefore c(in)
v = c(out)

v ∀ v ∈ V )
is called regular. By contrast, a network in which the vertices do not satisfy this constraint (the
general case) are called irregular networks. Here we use random networks, which are described
by the distribution from which the network instances are drawn or, equivalently, by the set of
rules by which they are constructed.

A regular network of degree c can be thought of as a randomised version of a lattice. We
start from a regular (cubic) lattice in c-dimensional space, which is a particularly ordered ex-
ample of a regular network. Each vertex has then c incoming and c outgoing segments. By
iteratively picking pairs a vertex at random and exchanging either two of their incoming or two
of its outgoing segments, we ultimately obtain a randomised network in which any vertex is
connected to any other vertex with the same probability, but which remains regular. This is
also known as a Bethe network.

Irregular networks can be constructed from various rules. Here we consider Poissonian
networks, which can be obtained by starting from a set of |V | nodes without any segments.
Each of the potentially present |V | × (|V | − 1) directed segments is then added with a finite
probability. As a result one obtains a poissonian distribution for the vertex degrees [12]. In
mathematics this would correspond to the Erdös-Renyi graph. Technically speaking, in order to
avoid pathological contributions, we restrict our analysis to the strongly connected component,
obtained by removing unconnected vertices or sub-graphs.
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Numerical approach to solving TASEP transport on a network The goal is thus the
following: once an instance of a network is drawn at random, we wish to determine the (steady
state) transport features. It turns out that, once the problem is formulated as we have done
in the introduction above, there is a straightforward numerical procedure to determine this
stationary state. It is based on the particle count at a junction v which, in the mean-field
approximation, reads

dρv
dt

=
∑
s→v

J [αs, βs]−
∑
s′←v

J [αs′ , βs′ ] , (5.18)

where the sums run over the segments entering (s← v) or leaving (s→ v) the vertex v under
consideration and J [α, β] stands for the single-segment mean-field current, as in the previous
section. In the stationary state this reduces to the equation of current conservation, Eq. (5.16),
which we must impose. Here the procedure consists in implementing this equation iteratively.
Since the currents of a TASEP segment are given by Eq. (5.4), in terms of the effective rates
(Eq. 5.17) set by the junction occupancies, we can rewrite this as

dρv
dt

=
∑
v′→v

J [
ρv′

c
(out)
v′

, 1− ρv]−
∑
v′←v

J [
ρv

c
(out)
v

, 1− ρv′ ] . (5.19)

We can thus simultaneously modify the mean-field occupancy of all vertices v of the network
according to this rule, until a stationary state is achieved. In this way we obtain the sta-
tionary transport state which simultaneously satisfies current conservation at all junctions.
Convergence is typically fast as long as the vertex degrees are not extremely high, and the gain
in performance with respect to particle-based simulations is obviously extremely interesting:
rather than simulating particles on L sites for each segment, we simply have to solve for one
variable per vertex, which is its (mean-field) average occupancy ρv. This is what has made it
possible to investigate rather large networks.

Phenomenology of regular vs. irregular network topologies The simplest case to dis-
cuss is that of regular networks. For these the mean-field predictions are particularly simple,
based on the observation that all vertices, and all segments, are topologically equivalent. Since
inter-segment correlations are neglected by the approach we thus expect all vertices (and conse-
quently all segments) to obey the same relations, which are in fact simply those of a V(c/2:c/2),
i.e. a vertex with c/2 incoming and c/2 outgoing segments. The corresponding behaviour is a
straightforward generalisation of the V(2:2) discussed above, and leads to the density-current
relation

J(ρ) =

{
c

(c+1)2
for ρ∗ < ρ < 1− ρ∗

ρ(1− ρ) otherwise ,
(5.20)

where the density threshold setting the mean-field transition to the LD-HD coexistence phase
(or shock phase, SP) is ρ∗ = 1/(c + 1). This current-density relation is represented by contin-
uous lines in Fig. 5.13. The correspondence with both numerical mean-field solutions outlined
above (full symbols) and explicit particle-based simulations (open symbols) is excellent in the
LD and HD regions (the plateau corresponding to the LD-HD coexistence region is not acces-
sible by the numerical implementation, which assumes homogeneous segments).

The main physical observation within the mean-field picture is that the junction clogs up
as the connectivity is increased, as was to be expected. The numerical approach is entirely
validated, since the results coincide with the analytical mean-field predictions. As for the
slight deviations on and close to the coexistence plateau, they allow to appreciate the effect of
cross-segment correlations, as already concluded for the V(2:2). This has been elucidated very
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the iterative method presented in the main text. For comparison, the dashed lines indicate the
mean-field prediction for a regular network with an equivalent vertex degree.
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recently by Baek et al. [9].

We now turn to the current-density relation for irregular, poissonian networks, which is
non-trivial (see Fig. 5.14). Unavoidably the overall behaviour remains qualitatively similar:
the current initially increases with density and then decreases again (due to steric exclusion),
and the current drops as the connectivity increases. On the other hand, there no longer is
a particle-hole symmetry. Accordingly, the optimal transport no longer occurs at half-filling,
but at lower densities instead. There is no analytical mean-field prediction for this case, but
directly comparing results from the numerical mean-field method and full simulations shows
excellent agreement for all densities. The coexistence plateau, for which deviations occurred in
the case of regular networks, is not present here.

Indeed, the absence of a coexistence plateau pinpoints the huge difference between the two
types of networks. This is best illustrated in terms of a network containing very few particles
(low overall density ρ), to which particles are added progressively. Initially, all segments are in
a LD phase, irrespective of the network topology. As further particles are added, the density
simply increases in each segment. The difference arises in the way the segments transit to the
LD phase. In a regular network, there is a density threshold (ρ∗ = 1/(c + 1) at which the
density of the segments becomes too high for a LD phase. Importantly, since all segments are
equivalent, this point is reached simultaneously for all segments. On the other hand, at this
point there are not yet enough particles for all segments to adopt a HD phase (which requires
an overall density of ρ > 1 − ρ∗ = c/(c + 1). This is of course similar to what happens in a
single segment, and leads to the presence of a LD-HD coexistence (‘shock phase’) in all of the
segments. Consequently, the current-density relation of a regular network reproduces the coex-
istence plateau. In contrast, in irregular networks, there is no unique point at which segments
undergo the transition from LD to HD. Consequently, the overall current-density relation does
not show a plateau.

This point of view is further illustrated in Fig. 5.15, which juxtaposes the distribution W (ρs)
of segment densities, i.e. the probability of finding segments with a (local) density ρs, for the
regular and the irregular case. The example corresponds to an intermediate overall density ρ.
It clearly shows that the regular network leads to a monomodal distribution, centered around
the overall density ρ, and it is the position of this peak which increases as further particles are
added. In contrast, for the irregular network the distribution of segment densities is bimodal,
and it is the relative weight of the two contributing peaks which shifts towards the higher one
as further particles are added to the system.

5.2.3 Active transport vs. diffusion

Reference to the original work:

“Modeling Cytoskeletal Traffic: An Interplay between Passive Diffusion and Active
Transport”
Izaak Neri, Norbert Kern, and Andrea Parmeggiani
Phys. Rev. Lett. 110, 098102

One important motivation for studying TASEP is its importance in Biology. Initially de-
signed to account for the ribosome mediated transcription process [130], a whole variety of ex-
tensions and variations of TASEP has more recently been applied to modelling motor protein
driven cytoskeletal transport, where molecular motors stochastically hop along bio-filaments
such as microtubules or actin fibers. In particular, it has been shown recently that TASEP
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Figure 5.15: Distribution of segment densities ρs on an irregular (Poissonian) vs. a regular
(Bethe) network. (a) has been obtained for an overall density of ρ = 0.3, whereas (b) corre-
sponds to the complementary density, ρ = 0.7. The black lines refer to numerical mean-field
predictions, black circles to the corresponding stochastic simulations. The dashed lines labeled
LD-HD indicate the location of the delta function predicted from analytical mean-field theory
for the regular network, red symbols show results from stochastic simulations. Simulations for
filled diamonds have run for longer, indicating that there is indeed a (slow) convergence to the
delta-function like behaviour. Figure as in [141].

transport subject to absorption/desorption kinetics (TASEP-LK, see [146, 147] is a valid de-
scription for transport by molecular motors.

One may thus wonder whether, in the context of TASEP transport on a network, any of the
above results can be generalised to more complex models such as TASEP-LK. We shall see that
this is indeed the case. Via this model we address the question of whether the active transport
via TASEP-LK is able to maintain gradients in the cell, which is one of its crucial functions.
As we shall show this is indeed possible, but the network topology has an important impact on
how spatial inhomogeneities are promoted by the network.

The second aspect we focus on in this model is that it allows to gauge the effectiveness of
active transport (along the filament) with respect to diffusion (in the bulk). This is because
TASEP-LK implements an exchange with a bulk reservoir which is assumed to be homogeneous
(the attachment rate in particular, but also the detachment rate, do not vary with the position).
This amounts to assuming that the bulk density is homogenised as soon as a particle attachment
or detachment has taken place. In this sense we are thus dealing with the limiting case of an
infinitely efficient diffusion process in the bulk. We can thus use this extreme case to make our
point that, despite a continuous exchange with the bulk, the active transport on the segments
is still able to build up gradients in the particle density along the segments, and we will analyse
the way in which this happens on a network.

Simulations and mean-field equations on a network The approach is identical to
TASEP for both cases. In simulations, it suffices to implement the attempts to attach an
additional particle to any site of the segment (which succeeds if this site is free) and to re-
move particles from any site of the network (which always succeeds), with the corresponding
rates. The mean-field numerical procedure also goes through, where the current-density rela-
tion J [α, β] to be used in Eq. (5.18) is now that known for TASEP-LK [147]. Note that this
is straightforward since, although the current is no longer necessarily constant along a given
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Figure 5.16: Illustration of active transport vs. (infinitely fast) diffusion, as represented
in TASEP-LK. Particles (motors) are exchanged between the segments and the bulk reservoir,
which is taken to be maintained at a constant and homogeneous bulk density.

segment, there still is current conservation at the junctions.

Effective rate plots for the network Here our goal is to study how the transport on the
network takes place in the presence of an exchange with a bulk reservoir. To this end it proves
useful to have a way to characterise the overall transport features of the network. We thus
recall that the transport through a single segment s is entirely characterised by is effective
entrance and exit rates, αs and βs, which allows to position the segment on the single-segment
phase diagram. We can thus achieve a characterisation of the entire network by constructing a
cloud of all points (αs, βs) representing all segments in the network.

In standard TASEP, the distribution of points in an effective rate plot depends on the topol-
ogy only: for a regular network we expect them to coincide (since all segments are equivalent),
whereas they are spread out for irregular networks (due to the locally varying connectivity).
The distribution of points on the phase diagram then accounts for the overall state of the net-
work, and the way how they evolve when parameters (such as the network connectivity) are
varied.

This remains true for TASEP-LK, but in a more complicated scenario: varying the exchange
parameter Ω changes both the distribution of state-points, but so makes the underlying single-
segment phase diagram evolve. This is illustrated in Fig. (5.17). The main role of the exchange
parameter Ω is seen to be to modify the underlying single-segment phase diagram, whereas it
has little influence on how the (α, β) points are distributed in the phase space plane. We will
now interpret these effective-rate plots on the scale of the network.

Inhomogeneities in the network The question we have raise is how spatial inhomogeneities
arise due to active transport as opposed to the diffusive motion in the bulk. We will analyse
this process by varying the exchange parameter Ω, which regulates the exchange with the bulk
reservoir, for a given network connectivity. The picture emerges most clearly from the case
c = 10 in Fig. (5.17).

In particular, we see that the points progressively retract to a zone close to the origin as
the average vertex degree is increased. The role of the exchange parameter Ω on the other
hand, is mainly to modify the underlying single-segment phase diagram. But it has little in-
fluence on the zone in the (α, β) plane into which segments fall (despite having an effect on
the finer details of their distribution). The overall result of these two effects is to modify the



5.2. SELECTED PUBLICATIONS 89

Figure 5.17: Effective rate plots for a TASEP-LK network, for various Ω. The leftmost
column shows a sequence of increasing exchange parameters Ω for a very weak exchange pa-
rameter, close to standard TASEP. TASEP-LK in the special case K = 1. The right column
shows a similar sequence for non-equal attachment/detachment rates (K = 1.5).
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phases which are predominantly found in the network, and we shall exploit this in the following.

Reading the corresponding graphs from top to bottom, we first consider a weak exchange,
i.e. a behaviour close to standard TASEP. The effective rate plot indeed confirms that the
predominant phases are LD and HD. The MC phase is marginal or absent, which is due to
the fact that only segments with more incoming than outgoing nodes can ever sustain a MC
phase, and will only do so if the right conditions are met. The LD-HD, which corresponds to
a zone of finite but still rather narrow extension in the (α, β) plane, accommodates only a few
points: the number of segments in this phase is no longer zero (as it would be for TASEP),
but it remains small. We refer to this regime as the network regime, since the main source of
heterogeneity is on the scale of the network: we are dealing with an interconnected ensemble
of segments which are either densely occupied (HD) or very sparsely occupied (LD).

The picture changes as the exchange parameter Ω is increased, and the LD-HD phase in-
vades the single-segment phase diagram at the expense of the LD phase. By far the largest
number of segments now shows coexistence, implying the presence of a domain wall within the
segment. We thus term this the segment regime, since the spatial heterogeneities now arise
within the segments.

Finally, when Ω increases even further, all segments are in the LD-HD phase. However, this
is different from the previous case: the Langmuir kinetics dominates in this case, and imposes
the Langmuir density ρLangmuir onto each site. Note that this is not immediately obvious from
the effective rate plot, but is due to another mechanism: the domain wall in the LD-HD sec-
tions is progressively shifted to one of the edges in this limit, thus ensuring that a larger and
larger part of the LD-HD segments is effectively governed by the direct site-wise exchange via
the Langmuir exchange process with the bulk. In this site regime (or Langmuir regime) any
heterogeneities are thus limited to fluctuations from one site to another.

The different regimes of spatial heterogeneities are graphically summarised in Fig. 5.18.

Decoupling The widespread occurrence of the LD-HD coexistence phase has a direct conse-
quence for the transport process on the network. Indeed, in this composite phase it is known
that the in-rate αs of a segment directly sets the density and current profile upstream of the
domain wall, whereas the out-rate βs sets the density and current profile downstream of the
domain wall. This effectively makes it easier to satisfy the constraint on the current conserva-
tion at the vertices, since one of the bounding vertices has no effect whatsoever on the current.
As soon as this decoupling occurs all over the network, as is expected for strong exchange pa-
rameters Ω, the problem greatly simplifies, and one can again obtain an analytical mean-field
solution (see [142]).

5.2.4 Towards cytoskeletal transport: TASEP networks and beyond

Reference to the original work:

“Role of network junctions for the totally asymmetric simple exclusion process”
Adéläıde Raguin, Andrea Parmeggiani and Norbert Kern
Phys. Rev. E 88, 042104 (2013)

The previous section has taken one step towards modelling biological active transport, by
acknowledging the importance of the attachment/detachment process. Indeed, real molecular
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Figure 5.18: Sketch representing the scales at which spatial heterogeneities occur. As long
as the exchange with the bulk reservoir is weak, inhomogeneities arise at the network scale:
individual segments are mainly either in the LD or in the HD phase. For intermediate exchange
parameters the LD-HD coexistence phase dominates, and thus inhomogeneities arise within
these segments. For a very strong exchange, an increasing part of the LD-HD segments becomes
dominated by the exchange with the reservoir, ultimately limiting all heterogeneity to the level
of individual sites.

motors can (and will) detach stochastically from the filaments they ‘walk’ on. The exchange
parameter Ω is related to the length an (isolated) motor is expected to move along the filament
before detaching, and is thus closely related to what biologists refer to as the motor processivity.
The recent validation of TASEP-based modelling for molecular motors has also included this
ingredient [64,136].

Other modifications may be necessary, such as taking into account the fact that molecular
motors can also ‘backstep’, i.e. perform a backwards step from time to time. The importance
of this varies greatly from one motor to another, but the phenomenon can be of considerable
importance. In terms of modelling, this would suggest to build a model based on the Asym-
metric Exclusion Process (ASEP), also known as the Partially Asymmetric Exclusion Process
(PASEP), which incorporates separate rates for the forward and backward steps. The impor-
tant message here is that, as we have shown [141, 148] the physics remains similar, and the
method of solving numerically for transport on a network and analysing the result in terms of
effective rate diagrams can easily be generalised.

Dynamics at the junctions Another crucial phenomenon, however, has not been consid-
ered at this stage: the behaviour of a molecular motor as it crosses a junction can of course be
much more involved than the simple rule of picking an outgoing segment with equal probability.
One element of this line of thought is that the junction site introduced above rather crudely
represents in fact quite different scenarios, like a branching point in the structure (in actin
fibers) or a crossing of filaments in contact or closeby (in microtubules). One may argue that
the sub-structure of the filaments (e.g. the constituting protofilaments) should be taken into
account: this is work well in progress [159].

In a first step we have approached the other side of the issue, consisting in a more complex
dynamical behaviour of the particles crossing the junction point. It is known from experiments
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[10, 170] that a number of different events can take place, according to the type of motor
and the type of filament: motors have been observed to obey a different stepping rate at the
junction (for example implying a delay before crossing the junction), to detach rather than
enter the junction, but also to proceed preferentially to certain of the outgoing segments. We
have explored the role of two effects, a modified stepping rate at the junction and a bias towards
certain outgoing segments, in a schematic model consisting of one junction site which is shared
between two (or more) segment loops. As discussed in the previous section for the symmetric
2-fold vertex V(2:2), the c loops sharing a common site is similar to the V(c:c), but implements
a closed topology. This is technically a little simpler to study but provides the same physical
insight.

Modified stepping rate at the junction: ‘pumping’ The modification of the model is
simple here: it consists in attributing a different stepping rate, say ν̃ γ, to a particle at the
junction site. Clearly a reduced rate must be expected to increase the bottleneck effect already
present due to the shared site. The more interesting case is that of an increased stepping rate
(ν̃ > 1) on the junction. We have termed ν̃ the pumping rate, to reflect its locally increased
throughput. One may imagine mechanisms which would bring about such an increased rate
(due to regulation of the motor activity, for example, or due to the proximity of several seg-
ments which would increase the chances for the next motor to successfully project one of its
heads for an outgoing step), but no specific mechanism is put forward at this point.

The interesting question here is whether, and to which extent, ‘pumping’ at the junction
can help to overcame the bottleneck effect imposed by the shared site. The answer is clearly
‘yes’, which is easily seen within the mean-field picture for the system of c loops sharing one
junction site. The effective rate at which particles attempt to leave a given segment (to enter
the junction) is unchanged,

β = 1− ρ̃ . (5.21)

The in-rate into the segment (coming from the junction), however, is modified to

α = ν̃ γ
1

c
. (5.22)

We thus see that a pumping ‘neutralises’ the bottleneck for ν̃ > c, and makes the segment
enter a maximum current (MC) phase. This is confirmed by direct simulation (see Fig. 5.19).
From the same figure we also see that pumping only affects the current in the density zone
which corresponds to LD-HD coexistence. Furthermore, once the threshold ν̃∗ = c is attained,
additional pumping beyond this value is no longer useful. At this point the junction no longer
plays the role of a defect, since it is evacuated as easily as any other site, and thus increasing
the hopping rate on the junction alone is no longer useful: the current saturates at the value
which would correspond to indepedent loops.

Combining ‘pumping’ and bias We have thus seen several ways in which the junction
affects transport: as a direct consequence of sharing a site (see section 5.2.1), due to a bias
giving priority to certain exiting segments (see section 5.2.4 for a 2-loop system, but see [160]
for the general case), and via an active ‘pumping’ mechanism tending to accelerate the depar-
ture of motors out of the junction site (as discussed above). All of these have been analysed,
in a mean-field framework, for an arbitrary number (c) of loops sharing a junction site. We
now raise the question of the effects caused by simultaneously ‘pumping’ on top of an existing
bias. The arguments are generic and can therefore be made for any number of loops, but it
is more useful to focus on the case of only two loops (c = 2) in order to expose the new features.
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Figure 5.19: Effect of ‘pumping’ on junction shared between c = 5 loops sharing a junction
site. ν = 1 corresponds to the regular hopping rate at the junction, whereas the latter is ν-fold
increased for the other values. Pumping counteracts the bottleneck effect, until the threshold
ν∗ = c is reached. At this stage any additional pumping has no further effect on the current.

We are thus dealing with three independent parameters: the bias (σ1 : σ2), the pumping
rate ν and the overall particle density ρ. Here we proceed by analysing a fixed bias, and then
explore the effect of its variation in a second step.

Before addressing the full picture (Fig. 5.20) it is now useful to establish a point of view
which looks at the system in terms of an increasing overall density ρ, as particles are progres-
sively added to the system. The complexity increases in the following fashion (noting A:B the
phases of the two segments):

• In the absence of both bias and pumping, we have seen that the system will pass through
the phases

LD : LD → LD-HD : LD-HD → HD : HD (5.23)

since the coexistence occurs simultaneously in both loops.

• In the presence of bias (but no pumping) the sequence is

LD : LD → LD-HD : LD → HD : LD → HD : LD-HD → HD : HD (5.24)

i.e. the coexistence phase LD-HD arises first in the favoured loop, and later in the
secondary one.

• In the presence of pumping (but no bias) the sequence depends on the pumping rate.

ν<ν∗ : LD : LD → LD-HD : LD-HD → HD : HD

ν>ν∗ : LD : LD → MC : MC → HD : HD
(5.25)

Thus, whenever the pumping rate is below the critical threshold, the sequence is the
same as that in the absence of pumping (but with a reduced coexistence zone, see below).
Above the critical pumping rate, however, the coexistence phase (LD-HD) is replaced by
the restored maximum current (MC) phase.

In the general case, bias and pumping can be present simultaneously. The first point to
notice is that now the criterion giving the critical pumping rate (for which the pumping neu-
tralises the bottleneck of the junction), must be established separately for each loop. Reasoning
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in terms of effective rates readily yields the two critical rates

ν∗1 =
1

σ
<

1

σ2

= ν∗2 (5.26)

where σ1 and σ2 = 1−σ1 are the probabilities of selecting the respective segments, and we take
the first segment to be the favoured one (σ1 > σ2). This implies that we have to distinguish
three different cases for the pumping rate. The corresponding sequences are

ν<ν∗1 : LD : LD → LD - HD : LD → HD : LD → HD : LD - HD → HD : HD

ν∗1<ν<ν
∗
2 : LD : LD → MC : LD → HD : LD → HD : LD - HD → HD : HD

ν∗2<ν : LD : LD → MC : LD → MC : MC → HD : HD

(5.27)
The ensemble of these results are represented graphically in Fig. 5.20, which also contains

the information of the density ranges corresponding to each of those phases. From this diagram
one can also deduce the sequence of phases which would be produced by the complementary
approach, varying the pumping rate while maintaining the overall density ρ.

To summarise, the ensemble of these results shows that the statistics as well as the dynamics
of the hopping process at the junctions crucially affects the transport properties. The local
connectivity, a bias towards certain segments and a modified hopping rate out of the junction
are examples for such effects, for which we have explored the scenarios in detail. The ensemble
of these results underlines that acting at the junction constitutes a way not only to direct
cargoes to a particular destination, but also to regulate the overall transport on the network.

5.3 Follow-up

A further publication [141] on TASEP-like transport processes on networks, only partially re-
ferred to above, extends our studies, and also aims to examine several questions concerning
applications to biophysical problems. This comprises the ASEP, also known as PASEP (Par-
tially Asymmetric Exclusion Process), a generalisation of TASEP where backward hops are also
authorised, albeit with a smaller probability. This is a simple representation of the backstepping
of molecular motors, which is indeed observed in experiments: for kinesin-I, they have been
shown to account for 2-10% of the displacemements [116,173,194]. Most of the phenomenology
remains valid and, most importantly, the effective rate approach and the network analysis in
terms of effective rate plots remain applicable. Further details on the TASEP-LK process on
the network are given, of which only some are reflected in the discussion above. In particular,
estimations of the TASEP-LK parameters show that it might be possible to provoke a tran-
sition from the network-regime (dominated by LD and HD segments) to the segment-regime
(dominated by LD-HD coexistence segments). One mechanism to do so would be to modify
the exchange parameters Ω = ω L

γ
, and one way of doing this is by changing the typical segment

length L. This can be achieved by modifying the crosslinking, and indeed special proteins to
do this are available [2]. It is thus tempting to speculate that this could indeed constitute a
mechanism for regulating intra-cellular transport.

A very recent paper by Baek, Ha and Jeong [9] sheds further light onto the approximations
we have made in our analysis by treating all segments essentially as independent mean-field
segments, coupled only via the junctions. This study critically examines finite size effects for a
regular network. It concludes that, even in the thermodynamic limit, the current-density rela-
tion still differs from the mean-field prediction: simulations yield a current for the coexistence
plateau which is slightly above the mean-field value. An improved theory taking into account
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cross-segment correlations at the junctions is proposed, which achieves better correspondence
with the numerical data, in particular at the center of the current plateau. Furthermore an al-
gebraically decreasing boundary zone is identified, which develops at the inlet of a HD segment
or at the outlet of a HD segment. An analogy is established with the slow bond problem [117],
for which such behaviour is known. The notion of a ‘slow bond’ refers to the fact that hopping
through a junction is necessarily slower, since there are two outward links: note that this obser-
vation is analogous to what we have concluded by the study on junctions in the previous section.

Ezaki and Nishinari [65] have introduced the concept of balance networks, which consist of
TASEP segments which couple to each other, or to a reservoir, via bi-directional links. They
have shown that in this case one can establish a notion of detailed balance, which makes it
possible to establish a statistical-mechanics approach, despite the fact that the constituents of
the network are out-of-equilibrium. This does however not apply if unidirectional bonds are
allowed, or if the network exchanges with multiple reservoirs.

Greulich and Santen [86] have undertaken mainly numerical work on networks constructed
from intersecting segments in a plane, as one would in a criss-cross of filaments deposited on
a glass surface. They consider both entirely regular (square) lattices and random structures,
on which particles evolve according to TASEP-LK dynamics; the size distribution of particle
queues is found to be unimodal in the first case but algebraic in the latter. They develop a
phenomenological description of particle cluster formation, in which the intersections act as
defects. The random length segments in the model are discussed as a feature of a network
resulting from growing actin filaments.

Pesheva and Brankov [149] have revisited their earlier model of a double-chain section in the
middle of a single filament, i.e. a bifurcation of two segments (in our notation a V(1:2) which
then recombines via a V(2:1)). They have pointed out the possibility of a position-induced
phase change for the case where the double section should be in a LD-HD coexistence phase:
according to the position of the double-section within the single filament, the double section can
be pushed either into a HD phase or into a LD phase. These are finite size effects, which would
not occur in a thermodyamically large system, but it is speculated that they may nevertheless
be interesting for regulation, since such a transition could for example significantly affect the
travel time.

Further work by my local collaborators has explored the impact of the fact that, in contrast
to what is assumed in TASEP-LK (and what is artificially imposed in many experiments),
there is not actually an infinite reservoir of molecular motors in cells. Quite on the contrary,
cells would be expected to keep the expenses of building and fuelling molecular motors to a
minimum. This study [37] has envisaged two models. The first one acknowledges that the
concentration in the (finite but homogeneous) bulk reservoir decreases as motors attach to
the filament. The second model furthermore incorporates the fact that the bulk concentration
cannot remain homogeneous: as motors are depleted from or restituted to the bulk, a diffusive
transport process is required to make them available at another place. Albeit being much more
difficult to treat mathematically, it turns out that many of the overall features of TASEP-LK
remain valid. However, the phases requiring high particle numbers (LD and MC) progressively
disappear from the phase diagram as the ressources become more and more scarce. In particu-
lar, it is observed that the position of the domain wall in coexisting phases now depends on the
overall number of motors available. This prediction, if verified experimentally, would allow to
appreciate the importance of the scarceness of motors, and the mechanism of supply-demand
balance might then prove relevant to regulation of transport.
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Chapter 6

Present work and outlook

Many aspects of the investigations presented above still generate further research activities
today, and I am currently pursuing several of these. They leave many leads to be followed
up, as well as several projects on a short to medium term time scale. They reflect biological
elements which may require the models presented above to be refined, but they are also of
interest in terms of fundamental physics. Finally, several lines of thought for more long-term
projects will be sketched.

Ongoing projects: direct follow-up To start with the topic discussed last, non-equilibrium
transport on quasi-1d structures, I think it is fair to say that our contributions have provided
an angle to address the question of TASEP or TASEP-like transport on a network. At this
general level, many interesting questions remain open. We may, for example, mention a detailed
analysis of the link between flow and topology, on a local or on a global level. Little is known
for instance on how the current through a given vertex correlates to its local connectivity. Even
on a phenomenological level, such a description would be interesting and would allow to make
contact with other processes on networks. We may also think about exploring other types of
networks, such as fractal structures or small-world networks. Another aspect is the anisotropy
of actual cytoskeletal networks: their structure differs, both geometrically and topologically,
according to the location in the cell, its biological role, as well as the phase of the cell cycle.

Such questions have now become computationally feasible on large networks, due to the
compromise of a mean-field approach, sustained by direct stochastic simulations, as advocated
in the previous chapter. In principle the numerical method should also be applicable to other
types of boundary-controlled flow, and the same holds for the analysis in terms of effective rate
plots. This makes the approach potentially interesting to many applications (such as traffic
control or queuing problems, to cite but these two).

On a more biologically oriented note it is obvious that the model presented, even in its
most sophisticated formulation including the attachment and detachment of motors, is a rather
dramatic simplification with respect to the actual transport processes on a cytoskeletal network.
The PhD project of A. Raguin, only part of which has been reflected in this manuscript, has
made one step towards taking into account additional features of how real motor proteins
behave at junctions. Some such aspects have been included in the above discussions, others
haven’t and remain to be studied. One further line of thought is to acknowledge the structural
complexity of the filaments, and in particular at the junctions. This has been partially explored,
still in the context of A. Raguin’s thesis, in terms of a model retaining several protofilaments
on which the motors move. These individual ‘lanes’ then interconnect at the junction in a way
which differentiates the protofilaments and attempts to resolve the spatial organisation of e.g.
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a junction of two microtubules, at least in a schematic way. This is work well in progress, and
it turns out that it leads to surprises as to what one would measure in experiments, given that
it is not currently possible to spatially resolve transport on the individual protofilaments.

Other ongoing projects: role of fluctuating interactions Two further ongoing activi-
ties are concerned with the effect of fluctuating interactions in general, and shape fluctuations
in particular, on the collective behaviour of stochastic systems subject to excluded volume in-
teractions.

The first project aims at resolving the effect of fluctuating steric effects as molecular motors
move along a filament. Within the simplified description of TASEP, no mention is made of the
fact that there are typically two heads, which must step along consecutively. In reality, we are
thus dealing with an internal state, requiring the stepping cycle to go through an intermediate
step. For instance, in the hand-over-hand scenario, only one of the heads is attached during
part of the cycle: this allows to alternate between having one head ahead to having the second
head ahead. The two associated reaction rates are not necessarily equal. A related model for
this hand-over-hand motion has been studied by Klumpp et al. [113]. However, a closer look
suggests that a further feature should be taken into account, which is the fact that the steric
interactions must be different in the intermediate phase of the stepping cycle.

This would thus correspond to a modified TASEP model, in which particles successively
occupy one or two lattice sites, according to the phase of their stepping process. Alternatively,
a ‘reptating’ motion has been proposed, in which the same motor always remains the leading
one, stepping ahead an additional site during its hydrolysis cycle. Here we would thus be look-
ing at a sequence of states occupying successively two and three lattice sites. Whereas TASEP
has been generalised to extended objects [50,122,177], fluctuating sizes have not been studied,
and it is a priori unclear whether such size fluctuations give rise to interesting correlations.
With L. Ciandrini, we are currently exploring the question as to how such fluctuations in the
steric exclusions modify the collective transport. First results indicate that a simple mean-field
approach is no longer sufficient for this problem.

The second project may in some sense be considered to be similar in spirit, but also revives
questions close to my postdoc activity, and in particular the topic of protein crystallisation.
We are thus undertaking (PhD project of P. Nadal, with D. Coslovich and V. Lorman) to
explore the effect of configurational changes, within simple fluid models. Competing structures
in proteins are common, and can involve significant changes in the structure, usually by motion
of entire sub-domains [187]. Typically one of the structures is favoured in the environment of
the cell (the ‘native’ conformation), but being able to switch to alternative conformations can
be important, for example for regulation or for catalytic activity. The idea is to model parti-
cles having an internal state which corresponds to several (say, two) competing conformations.
The switching event being considered to be quick, the questions of interest within the protein
context are twofold.

First: how does the stochastic switching between these states, which would be a ‘native’
and a ‘non-native’ protein conformation, alter the phase behaviour? To which extent do these
fluctuations make the crystal less stable, or to which extent do they help the nucleation pro-
cess? Indeed, evidence based on database analysis has been given that forming a regular crystal
structure becomes very difficult in the presence of considerable conformational disorder [145].
The same study points out that an excess of flexible domains may have the same effect.
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Second: which is the conformation which will be (predominantly) present once the crystal
has formed? This too is relevant to proteins, since one issue is whether the structural anal-
ysis based on diffraction from crystals is representative of the ‘native’ protein structure. We
are currently working towards these investigations, representing conformational transitions as
simple changes in size, shape or interaction potential.

More long-term thoughts Being exposed to biological problems, even without penetrating
Biology to any significant depth so far, has made me wonder about many questions, as it is
bound to do with any physicist.

The first point one realises is the sheer complexity of even the simplest organism, cell or,
for that matter, even the tiniest sub-system involved. The number of biochemical protagonists
is usually huge, and not always is it obvious which ones are the important ones. Biologists,
now seconded by powerful databases, somehow manage to develop an intuition allowing them
to navigate through this complexity. A physicist’s mind, however, just doesn’t work this way
(or in any case mine certainly doesn’t).

A second difficulty arises from the fact that whenever a living organism is involved, we are
almost always dealing with situations involving regulation: the effect of varying a parameter can
trigger biochemical feedback, through regulation networks (such as gene expression networks),
sensitive to the concentration of the biochemical agents to be produced. This is a sizeable com-
plication when exploring the role of a parameter which one is interested in: the impact may be
more dramatic than expected (if there is positive feedback) or much weaker (if a negative feed-
back mechanism compensates the response). A response may also be entirely absent, whenever
an independent regulation mechanism is present which ensures a certain function otherwise (as
is indeed often the case for vital functions). As a consequence, it is very difficult to identify
well-defined control parameters, and to impose a variation of a single parameter, a strategy
which is of course a key element in the success of Physics. Also, certain parameters simply do
not allow for any significant variation, at the risk of simply killing the organism to be studied. . .

Finally, one has to be very wary to use any kind of minimisation principle, another corner-
stone of Physics. This is partly related to the previous point, since regulation can often provide
an escape mechanism. But it is also related to another seducing type of argument, such as
optimal performance, minimum energy consumption, etc. Yes, at the level of an organism, all
biochemical mechanisms at work have ultimately been selected by evolution. But there is no
certainty as to whether any particular process has indeed evolved to its optimum, or whether
evolution has simply gotten stuck in a local extremum.

It thus clearly appears delicate to claim that there will one day be a theory explaining
biological reality in a particular mechanism from physics-based fundamental first principles.
However, Physics does have its role to play. For one part, it is becoming increasingly possi-
ble to strip down important parts of cells and organisms to minimalist systems, or even to
reconstruct these artificially. Such in vitro systems are much more suitable for a systematic
physics-based approach. This is what is being done for many important problems, such as the
phospholipid cell membrane, the backbone of a cytoskeleton, etc. In vivo systems are much
more delicate, both experimentally and conceptually. But even here, it seems to me, a physics-
based approach has many contributions to make. Elucidating specific microscopic processes is
one such contribution. Exploring the resulting collective effects on a mesoscopic level is another
one. An effective description on a macroscopic level is a further useful point of view. Often
physics-based models can be helpful for exploring competing scenarios, and pinpoint measur-
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able quantities which will ultimately allow to disciminate between them in an experiment. At
other times, the study of even an over-simplified system can serve to establish fundamental lim-
itations, and possibly to decide whether a certain biologically plausible mechanism can indeed
respect the fundamental constraints on the time, length and energy scales involved.

The following paragraphs sketch a few ideas for such thoughts, which could become part of
research projects in time.

Dynamical details of excluded volume interactions between cargos One project
where I think simple models can contribute understanding in a bottom-up way concerns the
role of cargos on collective effects in motor protein drive transport. Indeed, the model based on
TASEP is formulated in terms of strict excluded volume interactions between motors. But for
any physiological process there will be cargos attached to the motors, which are often vesicles
or organelles, and thus of significant size. A simplistic model would describe the motor as a
simple docking point which stochastically steps along a filament, pulling on an elastic spring
(a short polymer-like chain domain in the motor) which attaches a hard sphere-like object (the
cargo vesicle). Typical dimensions are about a hundred nanometres for the spring-like chain
and about a hundred to a thousand nanometres for the diameter of the cargo. The first level of
analysis concerns the roles of the viscous drag and the thermal motion of the cargo, and how
they affect the effective behaviour of the motor.

This has indeed been explored recently by Erickson et al. [63], using a computational imple-
mentation of such a model, based on a Langevin equation. They have shown that the viscous
drag reduces both the speed of the motor and the distance it covers before detaching. On the
other hand, being bound to the slowly moving cargo helps a detached motor to re-attach to the
filament before diffusing away, thus increasing its overall on-rate. Further simulations [62] have
shown that the details of this process provide insight into how the switching process between
two nearby microtubules operates.

To my knowledge, however, there is so far no study on the excluded volume effect between
the cargos. Two limiting cases would appear simple: a very high motor stepping rate (for which
all cargos should essentially be aligned in the wake of their motor) and a very slow stepping
rate (such that the cargo can explore all configurations before stepping ahead). One question
is to which extent one can establish a description in terms of an ‘effective’ interaction between
motor molecules. Whenever this is possible, one would be dealing with an effective repulsion
between motors, presumably quite soft but extending over distances much larger than that of
the step size of an individual motor. The goal would be to include this repulsion on top of the
regular TASEP exclusion at the filament level, and assess its impact on the transport process.

For intermediate stepping rates, however, one may expect a more complex picture. In any
case, the time scale set by the viscous process is an entirely new factor: it must be expected
to imply a velocity-dependent current-density relation, which is an intriguing new feature. As
one application, it would be interesting to consider cargos being pulled along separate proto-
filaments of a microtubule: here, the diffusion of the cargo may make it possible for nearby
cargos to overtake, and the probability for this to happen will again be velocity-dependent.
The questions of finite processivity, as well as the fact that cargos can be bound by multiple
motors, provide further aspects to be explored.

Intracellular delivery: targetting and traffic shared between multiple species
This is another line of thought of obvious importance but daunting complexity. Beyond any
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doubts and reservations as to the details of how active transport along the filamentary structure
of the cytoskeleton should be modelled: yes, active transport provides a transport mechanism
which is efficient over length scales where diffusion is no longer viable, it allows to transport ma-
terial against existing gradients, and thus also to maintain gradients within the cell against the
levelling effect of diffusion. But that is not all that is required: just how does a cell manage to
deliver its cargos, at the right time to the right place, for a specific biological process to operate?

Again, the complexity of the overall intracellular traffic is mindblowing, and there is no way
a simple physical model can even attempt to explain it. Regulation clearly is one important
issue, targetting and sorting cargos via biological markers is another one. Many questions relat-
ing to such issues will be specific, and any attempt at modelling will require intense exchanges
with specialists on the corresponding biology. Nevertheless, there may be more generic features
which one could address.

One such question is the fact that many different types of biochemical cargos share the
same physical cytoskeleton as a transport network, and they thus compete for transport ca-
pacity. Stated another way, the network must accomodate several types of ‘payloads’, and the
fact that the excluded volume constraint applies also between different types means that their
transport must be coupled. In terms of a simple TASEP model, one could think of various
types of cargos, which are supplied to the network locally, at rates specific to each type, and
received (or actively extracted) at other places. A basic model could be formulated on a single
segment, a more sophisticated variant would require generalising the network descriptions es-
tablished above to open networks with local sources and sinks. Such a model should allow to
establish the main mechanisms accounting for the mutual hinderance between payloads. One
of the reasons why the problem is non-trivial resides in the non-monotonuous current-density
relation: having transport of an additional species interfere will always induce a slow-down
but, depending on the overall saturation of the network, it may be marginal. It is tempting to
speculate that this might lead to principles of how such shared transport should be organised
in order to be efficient for all actors involved. Or, on the contrary, how it would be designed to
tolerate a slow-volume traffic of other cargos to be carried while remaining selectively efficient
for one particular actor.

There are other aspects to this line of thought. For example, what can one say about
delivery times? We should remember that the same current can be achieved at two different
densities (corresponding to LD and HD phases), but the travel times are very different for these
two cases. If certain biological cargoes come with a (molecular) ‘expiration date’, then this puts
additional constraints on how the transport must be organised.

Tissues Biological tissues are a fascinating example of naturally ocurring cellular struc-
tures, which are in many ways reminiscent of foams. Indeed, such analogies have been exploited
repeatedly, and have reproduced interesting processes, such as cell sorting, where the cells in a
structure reorganise according to their affinity [79]. The similarity between tissues and foams
is visually striking, and particularly so in a 2-d scenario (tissues grown on a flat substrate).
At second thoughts though, the analogy is in no way obvious: the cell membrane carries a
curvature energy (absent in foams); there is no homogeneous interfacial tension (but rather a
protein-mediated affinity for putting cell walls in contact); the cytoskeleton confers an entirely
new set of elastic properties to each cell, and may even actively promote changes of the cell
shape. On the other hand, volume constraints are present in both systems, threefold vertices
dominate in 2-d cellular tissues too, and topological changes (such as the T1 process discussed
above) do arise. And it indeed turns out that the language and phenomenology of foam physics
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is useful for addressing certain aspects of cellular tissues [82,84]. Even minimum energy models,
using and extending those of foams, have been shown to yield useful results, for example on
the way different cell types organise in small cellular aggregates [91].

At this stage no particular project is outlined, but the study of tissues as a cellular ‘liquid’
is certainly a topic which I would be curious to explore. It would furthermore allow me to put
to profit many of the things I have learned working on the heretofore somewhat complementary
main topics summarised in this manuscript.
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[80] C. Gögelein, F. Romano, F. Sciortino, and A. Giacometti. Fluid-fluid and fluid-solid tran-
sitions in the Kern-Frenkel model from Barker-Henderson thermodynamic perturbation
theory. J. Chem. Phys., 136:094512, 2012.

[81] O. Golinelli and K. Mallick. The asymmetric simple exclusion process: an integrable
model for non-equilibrium statistical mechanics. J. Phys. A: Math. Gen., 39:12679, 2006.

[82] F. Graner. Can surface adhesion drive cell rearrangement? Part I: biological cell-sorting.
J. theor. Biol., 164:455–476, 1993.

[83] F. Graner and J. A. Glazier. Simulation of biological cell-sorting using a two-dimensional
extended potts model. Phys. Rev. Lett., 69:2013–2016, 1992.

[84] F. Graner and Y. Sawada. Can surface adhesion drive cell rearrangement? Part II: a
geometrical model. J. theor. Biol., 164:477–506, 1993.

[85] T. E. Green, A. Bramley, L. Lue, and P. Grassia. Viscous froth lens. Phys. Rev. E,
74:051403, 2006.



110 BIBLIOGRAPHY

[86] P. Greulich and L. Santen. Active transport and cluster formation on 2d networks. Eur.
Phys. J. E, 32(2):191–208, 2010.
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