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Abstract

Highly redundant robots, such as humanoids, possess vast industrial and commercial potential. Unfor-
tunately, producing useful behaviors on complex robots is a challenging undertaking, particularly when
the robot must interact with the environment. Model-based whole-body control alleviates some of this
difficulty by allowing complex whole-body motions to be broken up into multiple atomic tasks, which
are performed simultaneously on the robot. However, tasks are generally planned without close consid-
eration for the underlying controller and robot being used, or the other tasks being executed, resulting
in infeasible and/or incompatible task combinations when executed on the robot. Consequently, there is
no guarantee that the prescribed tasks will be accomplished, resulting in unpredictable, and most likely,
unsafe whole-body motions.

The adverse side-effects of simultaneous task combinations have been well known to the robotics
community since the inception of redundant robots. Typically, these effects are managed by prioritizing
between tasks and tuning their gains and parameters, but never is their root cause eliminated. Planning
techniques can account for additional tasks to improve whole-body motions prior to execution. Never-
theless, because of modeling errors, there are always differences between what is planned and what is
executed on a real robot. On the other end of the spectrum, model-free learning methods attempt to by-
pass modeling errors by using reinforcement learning and policy search to incrementally improve task(s)
through trial-and-error. Regrettably, these tasks must often be demonstrated kinesthetically to the robot
beforehand, and require many trials to improve — this is no small feat on robots such as humanoids.
Regardless of the technique used to generate the tasks, either the tasks themselves or their parameters
need to be tuned on the real robot and this can be both time consuming and costly.

The objective of this work is to better understand what makes tasks infeasible or incompatible, and de-
velop automatic methods of improving on these two issues so that the overall whole-body motions may be
accomplished as planned. We start by building a concrete analytical formalism of what it means for tasks
to be feasible with the control constraints and compatible with one another. By studying the underlying
convex optimization problem produced by the model-based whole-body controller, we develop metrics
for analyzing and quantifying these two phenomena. Using the model-based feasibility and compatibility
metrics, we demonstrate how the tasks can be optimized using non-linear model predictive control, while
also detailing the shortcomings of this model-based approach. In order to overcome these weaknesses,
we then develop a model-free approach to quantify task feasibility and compatibility through simple con-
troller and robot agnostic cost functions. Using these measures, an optimization loop is designed, which
automatically improves task feasibility and compatibility using model-free policy search in conjunction
with model-based whole-body control. Through a series of simulated and real-world experiments, we
demonstrate the effects of infeasible and incompatible task sets, and show that by simply optimizing
the tasks to improve both feasibility and compatibility, complex and useful whole-body motions can be
realized. By endowing robots with an automated mechanism for correcting poorly designed tasks, we not
only reduce the need for fine tuning of task priorities and parameters, but also open the door to more
complex, robust, and useful whole-body behaviors.
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Preface

Despite their unwavering capacity for repetition, exacting precision, and inhuman speed, robots all have
one problem — they do precisely what we tell them to do. They do not yet possess the ability to modify,
abstract, or tweak, the tasks we ask of them to best fit their way of functioning, thus they are limited
to only performing as well as we command. In this work, we focus on humanoid robots because of their
redundancy and ability to execute multiple simultaneous tasks. Nevertheless, the work remains valid for
all arborescent robots. When a human is asked to do something, that request is translated to action
by layers upon layers of planning and control. For humans, requests are not made via trajectories of
muscular actuation, but at abstract, goal-based levels. It would be quite the chore to ask someone to
grab an object by handing them a plan with the appropriate neuro-chemical impulses to send to their
muscles. Furthermore, it is unlikely that a sufficiently accurate model of the person’s neuromechanics
is available, and any plan they might be given would be inherently flawed. Fortunately for humans,
evolution has already done all of the hard work for us in converting high-level goals into muscular
actuation. Unfortunately for robots, these layers of planning and control must be built from scratch, and
the only place to start is from the ground up. So, at every fraction of a second we tell robots exactly how
to move their actuators based on a plan made using “reasonably” accurate models. But even the best
laid plans of robots and men often go awry.

The work presented in this dissertation attempts to lay the foundation for understanding why robots
do not perform as expected given a set of tasks and constraints. To make this endeavor tractable, we
only consider situations where there are no unmodeled external perturbations. With this simplification,
we know that the reasons robots do not perform as expected must all be intrinsic to the definition of
the control problem. Keeping this in mind, we examine the tools of whole-body control, which solve the
inverse dynamics control problem using all of the robot’s degrees of freedom under the control constraints.
By looking at this control problem as a multi-objective optimization problem we extract the notions of
task compatibility and feasibility. Through these two concepts we learn why robots produce unexpected
overall behaviors and most importantly, why this is a difficult problem to solve. Using the tools of policy
search, we show how learning schemes can be implemented to resolve complex task incompatibilities and
infeasibilities through trial-and-error. Via multiple simulated and real-world scenarios, we demonstrate
how task compatibility and feasibility can be maximized, thus rendering the overall whole-body behavior
successful in a control sense.

During the defense of the this work, which took place on November 20th 2017, a number of poignant
questions were raised that resulted in a very fruitful discussion, and I would like to discuss a few of
the most interesting topics. In Chapters 3 and 4, a number of metrics and measures are developed to
quantitatively evaluate the compatibility and feasibility of a set of tasks and constraints. Most of these
measures employ Euclidean norms to measure “distances” in the control solution space, which consists of
torques or forces, joint accelerations, and external wrenches. The question raised by multiple reviewers
was: “does it make any mathematical sense to calculate distances in this space?" What does it mean to
determine the distance in 90-plus dimensional space between a set of torques, accelerations, and wrenches?
My response to this question has two parts. The first part is: no — it probably doesn’t make any sense
to use a Euclidean norm, although it may provide a useful heuristic in certain circumstances. The second
part is: weighting or homogenizing the norm may be the solution. Let’s elaborate. Since our solution
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space is assumed to be convex and connected (if not, then we could not use convex optimization to
solve it) at each time step, then there is no reason why we can not determine a distance between two
points in this set. This being said, without any form of homogenization between units, then there is no
physical correlation between these units, save for the equations of motion. Thus, by using quantities from
the whole-body dynamics of the robot, distances in the controller solution space can be evaluated in a
consistent manner. This is explored in more depth on pp. 77-78 in [Salini et al., 2011], however is not
implemented in this work.

Throughout the dissertation we make the distinction between model-based and model-free techniques
for maximizing task compatibility and feasibility. While this is useful from a purely organizational
standpoint, when we look closely at the update strategies used by the policy search algorithm detailed
in Chapter 5, we see that Bayesian Optimization, which is widely employed in the experiments, is a
model-based technique in the sense that models are learned using cost data and are all based on specific
Gaussian Process priors. This might be a sticky subject for the learning community, but we can easily
draw corollaries to stochastic adaptive control where stochastic models of the plant dynamics are updated
as the plant evolves. Since this might be a point of confusion for readers, I would like to emphasize that
where we use the term “model-based” we mean, techniques which rely exclusively on simulated model
information (i.e. integration of the system dynamics), and by “model-free” we mean, techniques which
can use both simulated model information and real-world information (i.e. data from simulated and real
rollouts). If it helps, look at it like state feedback control vs. episodic reinforcement learning.

In Chapter 5, we discuss policy optimization in detail, but later in the dissertation refer often to
the resulting trajectories as being optimized. This discrepancy was pointed out by the defense jury and
opened up the question of whether or not we are optimizing policies or trajectories? In the policy search
algorithm explored here, the parameters of the policies are the optimization variables and the policy
outputs one or more trajectories which are executed by the whole-body controller. Therefore, for the
sake of clarity we use the terms optimal policy and optimal trajectory interchangeably and admit that
this linguistic equivalence may hide a deeper question.
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Chapter 1

The Problem with Robots

When controlling complex robots like humanoids, it is often the case that the exe-
cuted behavior does not match that which was planned, and the ability to modify
the behavior online is a crucial missing piece in the architecture of modern control
schemes. In this chapter, we explain why this mismatch between planning and ex-
ecution occurs, and show how a variety of methods have been used to solve this
problem. Drawing from these works, we propose methods for analyzing and cor-
recting this mismatch. At the end of the chapter, the main contributions of this work
are summarized and an overview of the document layout is presented.

Complex robots, such as humanoids, can execute multiple simultaneous tasks and perform complicated
whole-body behaviors. However, the problem with these robots is that when they perform multiple
simultaneous tasks, they often do not execute them exactly as planned. The result is typically a failure
to accomplish the desired behavior, and in the case of humanoids, usually a costly repair as well. This
happens because the models used to plan and execute the tasks are always somewhat inaccurate, do not
account for the other tasks being executed, and generally, ignore the robot’s constraints. Planning in this
way produces tasks which may be incompatible with one another, infeasible with the control constraints,
and ultimately impossible to properly execute. Unfortunately, re-planning the tasks is generally not a
good option, because it is either too slow to be done on-line, or the source of the task incompatibilities
and infeasibilities in the first place. The objective of this work is to introduce the necessary tools and
techniques to understand mathematically what it means for tasks to be incompatible and infeasible,
measure how incompatible and infeasible they are, and optimize them to maximize their compatibility
and feasibility, without re-planning. In order to understand exactly why this is a problem, it is helpful
to look at how complex robots are controlled.

1.1 How to Control a Robot

When using the term robots in this work, we are referring to redundant robots, and specifically, hu-
manoids, unless otherwise stated. However, despite being geared towards humanoids, the work presented
here is just as applicable to any robot. The control of robots begins with high-level goals such as “reach
for that object while balancing”. Complex goals like these must be translated into tasks for the robot,
which are operational-space and joint-space objectives for all or part of the robotic mechanism. The
process of converting high-level goals to tasks is termed task planning . This high-level task planning
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may be automated or done by an expert operator, and generally takes seconds to minutes (≤ 0.1Hz),
making it open-loop. The output is one or more tasks and their associated trajectories, which are needed
to accomplish high-level goals. A whole-body controller is then used to determine the torques to send
to the robot actuators at each control time step (∼ 1kHz) to minimize the error between the actual
task values, and the reference task values provided by the planned task trajectories. Unfortunately, this
control scheme is typically subject to a large degree of error and drift in the task trajectory follow-
ing. To avoid task divergence, a layer of task servoing is placed between whole-body control and the
task planning. Task servoing uses feedback strategies to ensure that the desired task values, used by
the whole-body controller, force the tasks to converge on the reference values provided by their trajec-
tories. These servoing feedback controllers generally operate at frequencies between 100Hz and 10Hz.
This control hierarchy of task planning, task servoing, and whole-body control is presented in Fig. 1.1.

Task Planning

Task Servoing

Whole-Body Control

Robot

<
0.

1H
z

∼
10

0
H
z

∼
1k

H
z

task trajectories

desired task values

torques

robot state

Figure 1.1 – A modern control hierarchy for highly
redundant robotic systems, e.g. humanoid robots.
At the lowest level is whole-body control, which de-
termines the torques needed to accomplish a set of
tasks. These tasks are controlled by the task servoing
level where task trajectory errors are compensated
using feedback. Finally the task trajectories are pro-
vided by high-level task planning, which is usually
a combination of operator expertise and automated
planning.

At each of these levels, a different abstraction of
the control problem is employed. This is done to
make the problem of converting high-level goals
into joint torques more tractable, but entails the
downside of producing tasks which may be incom-
patible and infeasible. Looking more deeply at
each of these levels reveals why.

1.1.1 Task Planning

Planning, or more specifically, motion planning , in
humanoid robotics focuses primarily on the prob-
lem of finding a collision free path in configura-
tion space from one configuration to another: get-
ting from point A to B. To do so, a map of the
robot’s environment is projected into the configu-
ration space, and search techniques such as A*, or
Rapidly exploring Random Tree, (RRT) are used
to find a collision free path [Lavalle, 1998]. This
path is then smoothed using interpolation and pro-
vided as a joint-space task trajectory to a low-level
whole-body controller.

Kinodynamic Planning Unfortunately, not all
configurations are stable, and static equilibrium
criteria need to be added to the search to make
sure the joint-space task does not cause the robot
to lose balance [Kuffner et al., 2002]. Using pre-
planned footsteps, Yoshida et al. [2005a] project
the operational-space feet tasks into the configuration space, which enables walking motions to be planned.
However, these planners only consider kinematics and accounting for dynamics is impossible. As such,
a decoupled approach, where a path is planned and used as an input to a reactive controller, such as a
Zero Moment Point (ZMP) generator, is adopted by [Yoshida et al., 2005b; Harada et al., 2008]. This so-
called kinodynamic planning can produce reasonably stable joint-space tasks but the dynamic model used
by the ZMP generator oversimplifies the true dynamics of bipedal locomotion. Therefore, the resulting
whole-body motions are typically not stable when executed in an open-loop.

Planning with Whole-Body Dynamics Planning while accounting for the whole-body dynamics is
very time consuming and typically intractable without a good initial guess for the plan [Bouyarmane and
Kheddar, 2012; Ibanez et al., 2017]. To counter this, Dai et al. [2014] propose a planning scheme which
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uses the robot’s centroidal dynamics, rather than the whole-body dynamics, to attain highly dynamic
motions in minutes to hours of computation. These motions however do not consider the actuator limits
and are likely impossible on a real platform. Time-Optimal Path Parameterization (TOPP) uses the
whole-body dynamics and can efficiently compute bang-bang style time laws for predefined paths, but
cannot account for multiple tasks [Pham, 2014; Pham et al., 2016].

Incorporating Additional Tasks To extend planners to incorporate or consider other tasks than just
those involved in walking, [Weghe et al., 2007], [Berenson et al., 2009b], [Dalibard et al., 2009], [Berenson
et al., 2009a], [Berenson et al., 2011], and [Cognetti et al., 2014] all propose methods of projecting
operational-space tasks or constraints into the configuration space. These works, however, do not take
into account the many gains and parameters of the whole-body controller, which greatly affect the final
whole-body motion.

Operator Intervention Most of the aforementioned studies focus solely on moving the robot from
one point to another without hitting any obstacles, but many tasks are planned manually. Object
manipulation and grasping are often planned entirely by expert operators. The best example of this is
the DARPA Robotics Challenge, where robots were controlled using both automated planning techniques
and human intervention. A review of the various intervention techniques is provided by [Yanco et al.,
2015]. Planning done by humans is of course prone to human error, and the vague models used to
plan task trajectories are based on human motor control intuition, which is generally unsuited to robot
control. Regardless of the planning technique, the underlying whole-body controller and task servoing
layers are ignored in order to make the problem manageable. Unfortunately, ignoring these levels leads
to incompatible and infeasible tasks.

1.1.2 Task Servoing

Assuming task trajectories have been planned using some automated method or by an expert operator
the next step in the control hierarchy is to apply some task specific control law or policy to the servoing of
the task trajectories. This is done because any open-loop control scheme is bound to build up error and
drift, so simple feed-forward control, i.e. passing the planned task trajectories directly to the whole-body
controller, is not enough to ensure the tasks correct any accumulated errors.

PID Controllers The most basic and common task servoing controllers are Proportional-Integral-
Derivative (PID) controllers and their variants: PI, PD. These are easily implemented for any task and
will ensure convergence to a set reference given appropriate selection of the gains, and that the reference
can be attained. Adding a feed-forward term to PID controllers has been shown to improve convergence
[An et al., 1986], assuming the task trajectory dynamics are feasible. From a practical standpoint, such
task servoing controllers can also serve to convert position and velocity signals into acceleration signals
which are required when using inverse dynamics control. Unfortunately, simple PID controllers only
ensure the asymptotic convergence of the task that they are servoing, and this may not even be possible
given the other tasks and constraints. For tasks such as those involved in walking more complex feedback
controllers are needed to stabilize the task dynamics.

MPC and LQR Model Predictive Control (MPC) can improve the robustness of task execution in the
face of incompatibilities and infeasibilities by repeatedly recomputing an optimal control trajectory over a
given horizon of time using Linear Time-Invariant (LTI) models of the desired task dynamics. One of the
most prolific usages of task-level MPC is the generation of stable walking patterns for bipedal locomotion
[Ibanez et al., 2017]. Given a ZMP trajectory and footstep locations, the MPC algorithm produces a
Center of Mass (CoM) trajectory, which should ensure stable walking [Kajita et al., 2003, 2006; Wieber,
2006]. These algorithms are typically real-time or close to real-time, and certain assumptions can yield
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closed form solutions which are even faster [Tedrake et al., 2015]. As an alternative to (computationally
costly) MPC algorithms, Linear Quadratic Regulators (LQRs) can also be used to control CoM tasks
for locomotion [Kuindersma et al., 2014]. The LTI dynamic models used in both LQR and MPC work
well for walking, but are not sufficiently expressive to account for tasks other than a CoM tracking.
Extensions of these controllers can be used to determine optimal foot-placement (i.e. operational-space
task trajectories for the feet) in addition to the CoM trajectory [Ibanez et al., 2014; Deits and Tedrake,
2014]. But stringent convexity requirements keep such methods from being extended to generic multi-task
optimization.

The Limits of Task Servoing Regardless of the task servoing controller used, no current method
allows for real-time global optimization of the task trajectories based on the overall execution of the
whole-body motion. Furthermore, all task servoing controllers rely on the task references provided by
the high-level task planning. If those trajectories are impossible to execute on the real system, then in
the best case scenario, the servoing controllers will simply prevent the robot from executing the task
because it will render the motion unstable. This is problematic because if the task was specified, then it
should probably be executed. In the worst case scenario, the servoing controller will aggressively try to
correct tracking errors, and this could lead to dangerous whole-body motions for both the robot and any
bystanders.

1.1.3 Whole-Body Control

With the planned task trajectories, and their servoing controllers, the final and lowest-level in the control
hierarchy is whole-body control. Whole-body controllers reactively calculate the joint torques, necessary
to accomplish some set of tasks expressed in either operational-space or joint-space, for all of the actuated
Degrees of Freedom (DoF) of the given robot, while respecting physical constraints. We restrict our
overview of whole-body control to Inverse Dynamics (ID) whole-body control because it allows compliant
interaction with the environment to be achieved. Inverse Velocity Kinematics (IVK) whole-body control
is also possible, but not the focus here.

Whole-Body Control Challenges The concept of whole-body control is first concretized by [Khatib
et al., 2004; Gienger et al., 2005; Sentis and Khatib, 2005], using a multi-task based approach to producing
complex whole-body behaviors. The main advantages of humanoids such as, multi-tasking, compliant
multi-contact interaction, and floating-base dynamics, are also the primary challenges in whole-body
control. Dealing with the complexities of floating-base dynamics and compliant contacts is not trivial
many works in whole-body control tackle these issues [Sentis and Khatib, 2005; Aghili, 2005; Mistry et al.,
2010; Righetti et al., 2011].

The Need for Prioritization Being able to execute multiple simultaneous tasks using all of the DoF
is the key to complex whole-body motions, but combining tasks, as we have already stated, leads to
conflicting control objectives if they are incompatible and/or infeasible. This is such a challenge in fact,
that in all the aforementioned works, the tasks are combined using hierarchical null-space projection
techniques. Hierarchies ensure that important tasks such as the CoM tasks, which manage balance, are
unperturbed by unimportant tasks, like postural tasks. However, sometimes, multiple tasks are important
and not doing one of them is unacceptable. For example we take the classic example of a balancing CoM
task, and a hand reaching task, where the robot has to hit a button to stop a nuclear apocalypse.
Prioritization is therefore necessary, but picking priorities is not always a simple issue.

Dealing with Constraints Beyond multi-tasking, whole-body control has to respect the system con-
straints. Determining an appropriate distribution of contact forces for a given CoM state requires delicate
treatment of the equilibrium constraints and whole-body dynamics [Pratt and Pratt, 1998; Hyon et al.,
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2007; Stephens and Atkeson, 2010; Righetti et al., 2013]. With nullspace projection methods, equality
constraints can be handled via Lagrange multipliers, but inequality constraints, like friction contacts and
actuator limits, must be converted into objective functions [Dietrich et al., 2015].

Numerical Optimization Techniques Techniques from numerical optimization offer another route
for solving robot control problems, because inequality constraints can be directly included into the prob-
lem formulation [Kanoun et al., 2009; Decre et al., 2009]. Tasks become objective functions and are
formulated as quadratic errors between the joint-space projection of the task and the desired task value.
If the constraints are affine, then the problem is formulated as a Quadratic Program (QP) [Salini et al.,
2011; Saab, 2011; Bouyarmane and Kheddar, 2011]. More details on QPs are provided in Chapter 3.
Formulating the whole-body controller as a QP allows rigid contact constraints to be accounted for di-
rectly as shown by Salini [2012]; Saab et al. [2013], and bipedal equilibrium can be robustly integrated
into the whole-body controller [Herzog et al., 2014]. An interesting corollary to QP based control is the
LQR whole-body controller developed by Mason et al. [2014], which can be looked at as a hybrid of the
task servoing and whole-body control layers. Formulating the control problem directly as an optimization
problem affords some flexibility in the mixing of tasks, or objective functions. As with projection meth-
ods, tasks may be accomplished hierarchically using a cascade of QPs as presented by [Escande et al.,
2014]. Alternatively, tasks can be combined using “soft” prioritization techniques, where the importance
of the task is a continuous value from 0 to 1. Such methods have been explored by [Salini et al., 2011;
Saab, 2011; Bouyarmane and Kheddar, 2011; Liu et al., 2015b].

Modeling Issues Despite all of these advancements, whole-body control is a reactive model-based
control method and therefore prone to modeling errors and tracking drift. Work by Feng et al. [2014]
attempts to reject modeling errors on a real humanoid system by mixing IVK and ID whole-body con-
trollers. Prete and Mansard [2016] investigate the robustness of whole-body control regarding torque
tracking errors (an important real-world consideration) and show that model uncertainties can generate
unstable behaviors. They also go on to propose a method of including these uncertainties directly in
the whole-body controller. In addition to model uncertainties and errors, whole-body control is reactive
in nature, and solves a new control problem at each time step. It does not use the horizon of future
control objectives to predict the future states of the robot, and because of this, can get in states where
the constraint set becomes infeasible.

1.2 The Problem with Modern Control Architectures

(a) (b)

Figure 1.2 – Incompatible and infeasible tasks
which result in (a) the robot getting stuck in a
constrained configuration and (b) a loss of equilib-
rium.

At each level in the control hierarchy, assumptions
are made about the control problem to make the
problem scope reasonable. At the whole-body con-
troller level, the model is highly complex but gener-
ally does not include complex non-linear effects like
articular friction and model uncertainties. To main-
tain the convexity of the whole-body control prob-
lem, the whole-body dynamics must be recomputed
at each control instant. This sort of reactive whole-
body control can only optimally minimize task er-
rors at an instant in time and has no knowledge of
future task objectives and constraints. This makes
reactive whole-body control myopic with regard to
the whole-body motion. One consequence of this
myopia is getting “stuck” in constrained states and
configurations as in Fig. 1.2a.
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At the task servoing level, the whole-body dynamics and kinematics are mostly ignored in order to
render the task servoing problems tractable in near real-time. Task servoing controllers use LTI models
as simplifications of the task dynamics. These simple models enable rapid computation of predictive
and reactive control. However, it is generally because the tasks are planned individually with simplified
models that they cannot be executed properly. Thus, task servoing can render the low-level control more
robust to divergence, but if the task trajectories being servoed are impossible, then the task servoing can
lead to unwanted motions.

Moving up the hierarchy, automated task planning uses kinematic and possibly dynamic models of
the robot and its environment, to convert high-level objectives into task trajectories. Alternatively, the
task planning could be done by an expert operator, and therefore, it is the operator’s model of the robot
which is used to devise the task trajectories. Regardless of the method, task planning is too slow or too
simplistic to account for the two lower levels of control, complex whole-body dynamics, and high-level
objectives, simultaneously. For this reason, it cannot be used on-line to replan tasks when they are not
executed as expected.

The result of these various assumptions is a set of task trajectories, which may or may not be com-
patible with one another, and/or feasible with the system constraints. Incompatible and infeasible tasks
result in unexpected and generally undesirable whole-body motions such as a loss of balance due to
reaching as in Fig. 1.2b.

The Missing Link Ultimately, what is missing is a way to automatically modify task trajectories using
feedback from the execution of the whole-body motion, in order to maximize their compatibility and
feasibility without fully re-planning them. This missing component of the control hierarchy is presented
in Fig. 1.3. Thus, the primary objective of this work develop this layer of task compatibility
and feasibility maximization but in order to do this, we first need to understand how others have
attempted to solve similar issues.
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Figure 1.3 – The task compatibility and feasibility maximization loop proposed in this paper is designed
to correct incompatible and infeasible tasks produced by this modern control architectures.

1.3 Related Work

The goal of understanding and improving task compatibility and feasibility is a relatively new one, which
has arisen from improvements in humanoid whole-body control. Bouyarmane and Kheddar [2015] are the
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first to consider the numerical problems which arise from treating whole-body control as a multi-objective
constrained optimization problem. In their work, they show how under certain weighting conditions,
asymptotic stability can be ensured.

The concept of viability for humanoids, which is first introduced in [Wieber, 2000] and elaborated in
[Wieber et al., 2016], defines the set of states from which a feasible control input can be found to keep the
robot from entering states of disequilibrium. Viability is a restriction of controllability which simply says
that it is possible to find a feasible control input to move from some starting state to some final state.
With regards to task compatibility and feasibility, the concept of viability can be seen as a whole-body
corollary to the problem of task feasibility. In task feasibility, the goal is to determine the set of feasible
task trajectories (inputs), which move the tasks from their initial states, to some specified goal states.
Unfortunately, viability is typically intractable to compute for systems like humanoids.

In [Wieber et al., 2017], the nature of why task objectives cannot be realized simultaneously on a
redundant system is posed as a problem of linear dependency. To solve this for a 2 DoF system, “trust
region” bounds are placed on the objective variable, which keep the objectives from becoming linearly
dependent. To the best of our knowledge no other works have directly addressed the issue of task
compatibility and feasibility.

Although few works consider the problem of incompatible or infeasible tasks as it is described here,
these issues manifest themselves as performance degradation in terms of task trajectory tracking. The
more compatible and feasible the tasks are, the better the robot will follow the task trajectory references,
up to its precision limits. Thus, any work related to improving the control performance of robots using
task-based control, has directly or indirectly attacked this problem, and can be lumped into two basic
categories:

1. Works which modify the controller and/or its parameters to reject the effects of task incompatibility
and/or infeasiblity.

2. Works which modify the task trajectories to remove task incompatibility and/or infeasiblity.

In the case where task trajectories cannot be modified, the incompatibilities and infeasibilities associated
with them will exist and produce undesirable behaviors. These effects can be attenuated, and in some
cases removed completely, through modification of the underlying controller and its parameters, e.g.
weight, hierarchies, and gains. When the task trajectories can be modified, it may be possible to render
tasks both compatible and feasible, thus mitigating the need to tune controller parameters. Each of these
methods have their pros and cons, but the endgame is the same, make the robot execute the desired
behavior properly, i.e. track the task trajectory references accurately.

1.3.1 Manipulator Performance Measures

Figure 1.4 – Velocity ellipsoid
described by Chiu [1987].

In the earliest robotics literature, the main causes of tasks not being
executed properly are kinematic singularities.

Avoiding Singularities In this case, tasks are infeasible with respect
to geometrical constraints, and the objective is to find feasible task tra-
jectories. The performance measure developed in [Salisbury and Craig,
1982] is based on the workspace volume and singularities associated
with manipulation tasks. They show that maximizing the number of
isotropic points in the workspace can minimize error propagation in
tasks. Isotropic points are configurations where the columns of the Ja-
cobian are orthogonal and equal in magnitude. Klein and Huang [1983]
consider the numerical divergence associated with pseudoinverse con-
trol of redundant manipulators, first proposed by Whitney [1969], and
build on the work of [Liegeois, 1977] to approximate a minimax solution
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for the inverse velocity kinematics. Baillieul [1985] looks at an alternative approach to the non-closedness
of pseudoinverse control by proposing an extended Jacobian technique for redundancy resolution, which
explicitly avoids singularities both kinematically and algorithmically.

Improving Performance Measures Locally Yoshikawa [1984] presents the first manipulability mea-
sure, which measures the ability of a manipulator to move in any direction in operational-space. This
work is elaborated in [Yoshikawa, 1985a], and then adapted to task dynamics in [Yoshikawa, 1985b].
The dynamic manipulability , is then the relationship between joint torques and the end-effector (EE)
acceleration. Chiu [1987] first attributes the word task compatibility to mean the appropriateness of a
posture for performing either fine or coarse movements. Here a manipulator is viewed as a mechanical
transformer and compatibility is a function of the transmission ratios defined by the velocity ellipsoid
(see Fig. 1.4), and force ellipsoid . A compatibility index is computed from these ratios, which is max-
imized in the control by adding a low priority joint-space task, yielding human-like postures for tasks
like writing. A review of these measures and their application to redundant manipulators is provided by
[Klein and Blaho, 1987]. Throughout these works, gradient minimization tasks are used to maximize the
manipulability, and dynamic manipulability ellipsoid volumes in a reactive manner, using a secondary
task. This can help keep reactive controllers from getting too close to singularities and joint limits, but
without a view of the whole task trajectory, it cannot ensure global task feasibility.

Improving Performance Measures Globally Lee and Lee [1988], encode task trajectories as ma-
nipulability ellipsoids, which are then maximized in volume, thus optimizing the singularity avoidance of
the task trajectory. Cloutier et al. [1994] introduce the task conformance index which takes into account
the task constraints as well as the robot constraints. These measures are then used to globally optimize
task feasibility in [Kapoor et al., 1998]. In [Lee, 1989], it is shown that application of the manipulability
measures to a dual manipulator scenario system is non-trivial due to added kinematic constraints of
the arm interactions. Furthermore, application of the many performance criteria is ill-defined for the
humanoid case, where there are many tasks being executed simultaneously and on a free-floating base.
Consequently, alternative forms of trajectory optimization must be explored to ensure tasks are feasible.

1.3.2 Trajectory Optimization & Optimal Control

Trajectory optimization is a large field which is tightly coupled with the domain of optimal control, [Kirk,
2012]. Focusing on robotics, most of the earliest works in trajectory optimization revolve around finding
joint-space or operational-space task trajectories which maximize or minimize some optimality criterion,
while respecting the robot constraints.

Manipulator Trajectory Optimization From a task compatibility and feasibility perspective, this
corresponds to tasks which are globally feasible given the constraints, and optimal according to tracking
criteria. For example, Bobrow et al. [1985] explore time optimal trajectories for a specified path under
dynamic constraints, e.g. minimum and maximum torques actuator torques. In [Nakamura and Hanafusa,
1987], Pontryagin’s maximum principle is used for globally optimal redundancy resolution using kinematic
and dynamic performance indexes as optimality criteria. Mayorga et al. [1995] find the optimal trajectory
for obstacle avoidance via potential fields (see [Khatib, 1986]) and singularity avoidance. In [Hayward
et al., 1994], the energy optimal path and trajectory is found for a given set of operational-space waypoints
and the robot’s constraints. In [Field and Stepanenko, 1996] energy-optimal trajectories are determined
using a variation of dynamic programming which scales linearly with the number of DoF. Regrettably,
the majority of these techniques result in trajectories which saturate the actuators (a consequence of
bang-bang control), and may result in poor tracking at run-time. Chettibi et al. [2004] therefore propose
the use of additional acceleration and jerk constraints in joint-space and simplify the optimal control
problem using clamped cubic splines.
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Humanoid Trajectory Optimization These methods, unfortunately, do not scale well to high-
dimensional systems because they require that the entire control horizon be integrated. Given changing
contacts, discontinuous dynamics, and the high-dimensionality of humanoid robots, most classical opti-
mal control approaches cannot be applied to humanoids. Approximating contact dynamics as smooth
processes can alleviate some of these difficulties, but results in potentially unrealistic overall behaviors
[Todorov, 2011]. Kolter and Ng [2009] render optimal control efficient by reducing the floating-base rep-
resentation to fixed base kinematic chains and considering only spline-parameterized operational-space
trajectories. Local approximations of the dynamics can also be used to circumvent the dimensional ex-
plosion of global methods, such as the iterative Linear Quadratic Gaussian (LQG) control developed by
Todorov and Li [2005], and then extended to stochastic optimal control by Toussaint [2009]. Using simple
optimality criteria and a spline parameterization of a joint-space trajectory, Borno et al. [2013] produce
highly dynamic movements on a simulated humanoid with changing contacts, but the optimizations take
between 1 and 15 hours. Posa et al. [2014] and Neunert et al. [2017] show that formulating the problem
as a Sequential Linear Quadratic (SLQ) program can achieve global trajectory optimality (see Fig. 1.5)
but limits the types of constraints which can be used in the problem. Recently, direct collocation methods
have been used to alleviate these constraint restrictions, but still require minutes of computing time even
for short horizons [Posa et al., 2016; Pardo et al., 2017].

Figure 1.5 – Example of optimal task trajectories
from [Neunert et al., 2017].

Modeling and Dimensionality Issues Model-
based methods such as these are subject to mod-
eling errors and uncertainties, which can render
them unstable. Adaptive control methods simul-
taneously estimate model parameters while per-
forming control, allowing the controller to com-
pensate for modeling errors [Åström, 1983; Craig
et al., 1987]. However, parameter convergence is
not always guaranteed [Boyd and Sastry, 1983].
Robust control allows model uncertainty bounds
to be taken into account in the control problem,
but the output is sensitive to the chosen bounding
[Slotine, 1985]. None of these methods, however,
account for the underlying task servoing and whole-body control layers, nor any additional tasks which
may be active. In order to maximize task compatibility and feasibility, errors in the model must be
compensated and task trajectories need to be re-planned in a closed-loop manner, while accounting for
the underlying control hierarchy and the existence of multiple tasks. Regrettably, the dimensionality of
systems like humanoids creates prohibitively large state-spaces and limits the use of global optimization
methods to open-loop high-level task trajectory planning. By only looking at a short control horizon
rather than the entire control time line, whole-body non-linear MPC can reduce the dimensional com-
plexity of the optimal control problem.

1.3.3 Whole-Body Non-Linear Model Predictive Control

Given a set of tasks and constraints, whole-body Non-linear MPC (NMPC) attempts to find the optimal
control signals for the current time step, by predicting the evolution of the robot over a short control
horizon, using the whole-body non-linear time-varying dynamics. The output of whole-body NMPC is a
trajectory of joint torques which optimally accomplishes the tasks over a horizon of time. The advantage
of this approach is that the full model information can be exploited to optimally carry out all tasks
thus optimizing performance criteria globally in a control sense. The disadvantage is the computational
complexity. At a single time step the equations of motion can be considered linear; however, over a
horizon of time, the dynamics are non-linear and the problem of predictive control becomes time-varying,
non-linear, and non-convex. NMPC problems are computationally expensive to resolve and often hindered
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by local optima, but advances in non-linear optimization routines improve greatly on these points [Tassa
et al., 2008; Allgöwer and Zheng, 2012; Grüne and Pannek, 2011].

Figure 1.6 – Example of optimized multi-contact
whole-body motion on the HRP-2 humanoid robot
using whole-body NMPC from [Koenemann et al.,
2015].

Implementation Concerns Despite the power
of whole-body NMPC, in order to make it suffi-
ciently computationally rapid for high DoF sys-
tems, many approximations must be made. Most
notably, whole-body NMPC requires that the sys-
tem dynamics be differentiated at various points
along the whole-body trajectory. This is compu-
tationally costly and numerically unstable if the
contacts are too realistic. Thus, the contact dy-
namics must be efficiently differentiated in or-
der to use gradient-based trajectory optimization
schemes [Todorov, 2011]. Beyond the major com-
putational challenges, which are many, the control
problem formulation is not evident. [Tassa et al.,
2012] apply NMPC to a humanoid robot control
problem and develop a custom cost function based
on control and state costs. For their humanoid ex-
ample, the state cost is essentially the combination

of kinematic CoM and torso operational-space tasks. Using these costs (tasks), the robot starts from the
ground and determines the torques needed to move to a standing position in simulation. These custom
costs are formalized as tasks which can be specified by an operator in [Erez et al., 2013]. In [Tassa et al.,
2014] a method of imposing control constraints (i.e. torque limits) on the NMPC problem is presented
to keep humanoid robots from optimally tracking infeasible control trajectories. Koenemann et al. [2015]
demonstrate an almost real-time implementation of these controllers on the real HRP-2 humanoid robot
as shown in Fig. 1.6.

The Problem of Poorly Planned Tasks Whole-body NMPC is rapidly becoming a practical replace-
ment for whole-body control and task servoing, but despite the gains in robustness from the closed-loop
predictive scheme, whole-body NMPC is still sensitive to modeling errors. Furthermore, NMPC can opti-
mally track all tasks, but if the task trajectories, or set points, are incompatible or infeasible, then NMPC
is faced with the same dilemma as task servoing: either ignore the tasks because they are incompatible
or infeasible, or try to track them aggressively and produce dangerous whole-body motions. So for all
these advances, model-based optimization methods, for the moment, cannot solve two basic issues which
produce incompatible and infeasible tasks. Firstly, they cannot modify the task trajectories themselves,
only track them more or less. Secondly, they are subject to modeling inaccuracies which are part of why
planned tasks are incompatible and infeasible in the first place. One alternative then is to forget the
model all together and turn to model-free learning.

1.3.4 Model-Free Policy Search

In robotics, Model-Free Policy Search (MFPS) offers an interesting alternative to analytical model-based
approaches like optimal control [Deisenroth et al., 2013; Kober et al., 2013]. The basic concept behind
MFPS is that parameterized control strategies, or policies, can be improved incrementally to minimize
(maximize) some cost (reward) attributed to the execution of the policy, or rollout . These rollouts can
occur in simulation or in the real world. The benefit of this approach is that all of the modeling errors,
un-modeled phenomena, and repetitive perturbations, which only appear when the whole-body motion
is executed, can be captured by the cost attributed to the rollout. For the sake of simplicity, we use only
the term “cost” for the remainder of this review, but it should be noted that costs and rewards can easily
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be interchanged. Using this cost, a policy update strategy, which is a numerical optimization routine
in most cases, is used to optimize the policy parameters according to the rollout data. This process of
episodic learning is iterated until some convergence criterion is met, e.g. a difference threshold between
the previous and proposed policy parameter vector from the update.

Figure 1.7 – Example of MFPS used to learn how to
flip a pancake in [Kormushev et al., 2010].

Learning in Joint-Space Typically Dynamic
Movement Primitives (DMPs) are used to param-
eterize the policies in joint-space [Ijspeert et al.,
2013], and they are generally learned from demon-
stration [Billard et al., 2008; Argall et al., 2009]1.
With an initial DMP, MFPS is used to iteratively
improve the policy (DMP) based on high-level cost
functions. In [Peters and Schaal, 2008b] a manipu-
lator learns to play tee-ball after 200-300 rollouts.
Kober and Peters [2009] use MFPS to learn the
ball-in-cup game over 75 rollouts. Kober et al.
[2011] learn to play ping pong and throw a dart
after 200-300 rollouts. Each of these works use
specialized cost functions, which encode the high-
level objective of the task they are trying to ac-
complish. For instance, Kober and Peters [2009]
use the ball’s distance from the cup as a cost func-
tion. Despite being able to achieve highly complex dynamic tasks, which might be impossible to program
by hand, the MFPS in these studies requires many rollouts. This is because low-level joint-space control
policies learned as part of the high-level task policy. In a preliminary work to [Kober and Peters, 2009],
Kober et al. [2008] try to learn the joint-level PD controllers as part of the ball-in-cup policy. Here, it
takes MFPS 500-600 rollouts in simulation to converge, as opposed to the 75 rollouts achieved on the
real robot in their later work, where the joint PD controllers are not integrated as part of the learning.
While this is an improvement, humanoids have many more DoF than manipulators, and learning policies
in joint-space, even with low-level torque PD controllers, takes 500-1500 rollouts [Stulp et al., 2010].

Learning in Operational-Space Learning in operational-space rather than joint-space has been
shown to improve MFPS efficiency [Peters and Schaal, 2008a; Kormushev et al., 2010], but trying to
learn control policies for tasks as well as the low-level joint-space control is impractical for humanoids.

Figure 1.8 – Example of learned operational-space
wrench tasks from [Kalakrishnan et al., 2011].

Combining MFPS and low-level model-based con-
trol has been shown to reduce some of the learn-
ing complexity, and produce more efficient MFPS
[Mühlig et al., 2009; Calinon et al., 2014; Calinon,
2016]. For example, Kalakrishnan et al. [2011]
are able to learn complex manipulation skills (see
Fig. 1.8) by learning control policies for wrench
tasks which are then executed using IVK and ID
controllers. Nevertheless, special considerations
must be made for humanoids such as the fact that
they can fall. Thus, MFPS needs to be as sam-
ple efficient as possible. To achieve this, different
parameterizations can be used.

If a whole-body controller is exploited by the
MFPS, then compact parameterizations can be

1See Sec. A.4 in the Appendix for more details on DMPs.
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used to achieve complex task control policies. Modugno et al. [2016] use the task priorities in a whole-
body controller as a policy parameterization, and learn the optimal task weights as a function of time for
performing specific tasks. In [Spitz et al., 2017] a joint-space cost function within a whole-body controller
is learned to avoid states where modeling errors make the control unstable. Mukovskiy et al. [2017] use
DMPs to generate joint angle and CoM references for a walking pattern generator and a whole-body
controller to re-plan walking trajectories online. While the results of these works show the benefit of
combining MFPS with whole-body control, sample efficiency is still an issue.

Sample Efficient Learning If an underlying whole-body controller is used, then policies can be param-
eterized with fewer variables, and more efficient update strategies can be used. Most notably, Bayesian
Optimization (BO) has become a favorite in humanoid robotics due to its sample efficiency [Mockus,
2012]. Calandra et al. [2014] use BO to determine the state-feedback gains for sagittal bipedal locomo-
tion. In [Englert and Toussaint, 2016] the PR2 robot learns how to open a door using BO to optimize
manipulation policy parameters. Marco et al. [2016] use BO to tune the weighting matrices of an LQR
controller. Despite this sample efficiency, BO does not scale well to high dimensional policy representa-
tions and is limited therefore in terms of the policy complexity which it can learn. In [Antonova et al.,
2016] and [Antonova et al., 2017], these limitations are pushed back by using specialized kernels which
better capture the desired policy dynamics (bipedal locomotion in this case), and allow for clearer par-
titioning of the parameter space. Unfortunately, if the policy parameterization is made more complex,
then more data, i.e. more rollouts, are needed to optimize the policy parameters.

1.3.5 Deep Learning Methods

Figure 1.9 – The PR2 robot learning Deep MPC con-
trol for slicing food from [Lenz et al., 2015].

Moving in the opposite direction, towards high-
dimensional and highly expressive policy param-
eterization, Deep Reinforcement Learning (DRL)
approaches attempt to learn end-to-end control
policies (i.e. vision to actions) by training large
neural networks over thousands of rollouts. Lilli-
crap et al. [2015] extend DRL to continuous con-
trol problems through the use of policy gradients,
coining the term Deep Deterministic Policy Gra-
dient (DDPG). [Lenz et al., 2015] propose the use
of DRL to learn the dynamic model used in an
MPC controller to cut food as shown in Fig. 1.9.
In [Zhang et al., 2015], [Levine et al., 2016], and
[Levine et al., 2017] manipulation skills are learned
using visual feedback. In [Duan et al., 2016], a
number of these algorithms are benchmarked for
simulated control problems of various difficulty,
but all require a vast amount of pre-training and
rollouts to learn useful policies. [Gu et al., 2016]
and [Gu et al., 2017] improve on the sample efficiency of these DRL methods but still require thousands
of rollouts to learn policies, which may or may not be physically possible.

The Problem with DRL The benefit of DRL methods is that they have virtually limitless expressive
potential in terms of the policy complexity they can learn. This potential comes at the cost of needing
large quantities of data to properly train the deep networks and this is a serious practical problem. Even
if the policies are learned in simulation, it is a certainty that they will not perform exactly as expected on
a real robot. Accounting for these discrepancies may require hundreds or thousands of rollouts, which just
is not possible on a humanoid [Koos et al., 2013]. These methods also have the issue of being very tailor
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made to specific activities: jumping, walking, swimming, etc. From a practicality standpoint, robots
need to be able to do many things at once, and learning all these possible combinations is intractable.
Some method is therefore needed to properly mix policies learned by DRL methods to accomplish useful
tasks. For the purpose of maximizing task compatibility and feasibility, these methods could be used to
entirely replace the control hierarchy presented in Fig. 1.1, and be adapted over time using cost functions
to train the network to maximize task compatibility and feasibility. However, the number of rollouts
needed to accomplish all of this would likely be prohibitive, and being in its infancy, DRL has yet to be
demonstrated on a real humanoid.

1.4 Contributions

Modern whole-body control architectures have been proven to produce useful motions on complex real-
world systems. The ability to specify tasks and constraints with these methods allows virtually any
dynamically feasible whole-body motion to be achieved. In Chapter 2, a description of the whole-body
controller used in this work is presented. The formulation is the one proposed by Salini [2012], and all of
the relevant components of the task, constraint definitions as well as prioritization schemes are presented.
More details on the controller and its software architecture are presented in [Eljaik et al., submitted].

Rather than ignore tried-and-true whole-body control, we attempt to build on its intuitive architecture
and task/constraint specification methodology. Therefore, the objective of this work is to establish the
task compatibility and feasibility maximization loop, shown on the left in Fig. 1.1. By closing the loop
between low-level whole-body control and high-level task trajectory planning, modeling errors, assump-
tions, and uncertainties, which create incompatible and infeasible tasks, can be observed during the task
execution and accounted for through optimization of the tasks. In this work, we show that by combining
MFPS and model-based whole-body control architectures, we are able to close the task compatibility and
feasibility maximization loop through trial-and-error learning, and produce useful whole-body motions
on real humanoids in few trials. In order to reach this point, however, task compatibility and feasibility
must be better understood.

The first contribution of this work is to provide precise definitions of task compatibility and feasi-
bility in the context of optimization-based whole-body control. Following the work of [Bouyarmane and
Kheddar, 2015] and [Wieber et al., 2017], in Chapter 3, we look at the generic case of a multi-objective
convex optimization problem and build a mathematical foundation for what it means for objectives to
be compatible with one another and feasible with the problem constraints.

In Chapter 4, these tools are applied to a specific formulation of the ID whole-body control problem,
and used to analytically measure task compatibility and feasibility. With these measures, a general
model-based solution to rendering tasks optimally compatible and feasible is formulated and shown to be
a complex NMPC problem. The complexity of the problem is discussed and leads to the realization that
an efficient resolution may currently be untenable.

With an understanding of task compatibility and feasibility at a mathematical level, and the potential
complexities of trying to resolve incompatibilities and infeasibilities using model-based techniques, the
second major contribution is to redefine task compatibility and feasibility from a model-free standpoint. In
Chapter 5, the task compatibility and feasibility problem is reformulated using a model-free perspective
based on [Lober et al., submitted]. This formulation captures the underlying task servoing and whole-
body controller in a generic parameterized control policy. The parameters of this policy are task relevant
quantities which can be used to explore new control policies. A series of cost functions are introduced to
measure the effects of incompatible and/or infeasible tasks, which are generic to the task and whole-body
controller definitions. Using the model-free formulation and cost functions a model-free Task Compatibility
and Feasibility Maximization (TCFM) algorithm is developed. The end result is a model-free method for
optimizing task trajectories to maximize task compatibility and feasibility which is controller and task
agnostic. The TCFM is designed to exploit the underlying model-based control architecture allowing for
compact policy parameterizations. This leads to sample efficient learning designed to be implemented on
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real platforms to compensate for un-modeled phenomena.
In order to validate the proposed TCFM algorithm, we start by evaluating the different model-based

task compatibility and feasibility metrics in Chapter 6. Using a series of scenarios with known task
incompatibilities and infeasibilities, the metrics are tested to determine which are actually useful for
quantifying and qualifying task compatibility and feasibility. With these metrics, the TCFM algorithm
is validated in Chapter 7. Given the knowledge that the proposed method can truly maximize task
compatibility and feasibility, it is tested on complex humanoid examples in Chapter 8 [Lober et al.,
2014]. The results from these tests indicate that the method is viable on a humanoid platform However,
far too many trials are needed to optimize the tasks. To improve the sample efficiency, a new policy
parameterization in combination with BO is used in Chapter 9 [Lober et al., 2015, 2016]. Here, we
show that by reducing the number of policy parameters and choosing an efficient update strategy, the
TCFM is capable of solving complex task incompatibilities and infeasibilities in few trials. Finally, the
parameterization is further refined in Chapter 10 and demonstrated on a real humanoid [Lober et al.,
submitted]. The results from these experiments prove that the MFPS method is both controller agnostic
and feasible on real platforms.

Because of the trial-and-error nature of MFPS, the proposed method is only as fast as the motion
being optimized. Thus it does not operate at the desired frequency of 0.1Hz as shown in Fig. 1.3.
Nevertheless, by combining analytical model-based controllers with data-driven MFPS, we are able to
solve problems which would be otherwise intractable using simply one or the other — e.g. producing
dynamically complex motions on real robots, like the example shown in Figs. 1.10a-1.10c. InChapter 11,
these and other conclusions on the body of work and future perspectives are presented to the reader.

(a) 0.0s (b) 3.0s (c) 8.0s

Figure 1.10 – In (a), (b), and (c), a time-lapse is shown of an optimized standing motion performed
by an iCub robot, which was found using the task compatibility and feasibility maximization algorithm
developed in this work. The un-optimized motion caused the robot to fall.
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Chapter 2

Reactive Whole-Body Control

Whole-body control is at the core of this work. In this chapter, we present a detailed
description of the whole-body controller used here in order to lay the groundwork
for the rest of the study. First, an overview of the free-floating parameterization
is presented, followed by task and constraint formulations, prioritization strategies,
and finally the task servoing controllers. These details later allow us to formulate a
mathematical notion of what it means for tasks to be compatible and feasible.

In this chapter, the primary reactive whole-body controller used in this work is presented. This con-
troller follows the design laid out by Salini et al. [2011] and Bouyarmane and Kheddar [2011]. The reader
is directed to these work for more details on the minutia of the controller. The primary concern of this
summary is to present the necessary equations and relationships to understand the critical aspects of the
controller used. Here, an optimization-based controller is developed, which formulates the control prob-
lem as one of minimizing control objective functions while respecting the system constraints. Specifically,
the problem is formulated as a Quadratic Program (QP) using the second-order rigid body dynamics of
the robot. Therefore, the control objectives are expressed as either accelerations, torques or wrenches,
allowing for complex dynamic interactions with the environment. The control constraints are expressed
directly in the QP as affine equalities and inequalities. For the purposes of the controller formulation,
details on convex optimization are omitted in this chapter, as they are not required for understanding
the overall controller structure. However, convex optimization is studied more closely in Chapter 3.

The most generic form of the whole-body controller studied here can be summarized by the following
optimization problem,

argmin
χ

f task(χ) (2.1)

s.t. Gχ ≤ h (2.2)
Aχ = b. (2.3)

The objective, f task(χ), is a function of the optimization variable, χ, and is determined by control
objectives, or tasks. The resolution of the objective is subject to (s.t.) the inequality and equality
constraints in (2.2) and (2.3) respectively, which ensure that the control constraints are respected. We
begin this chapter with a brief description of the free-floating rigid body dynamics of the system. The
parameterization of the dynamics forms the optimization variable. The control objectives, or tasks, and
constraints are then detailed and written in terms of the optimization variable. Finally, task prioritization
schemes are discussed.

47
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2.1 Free-Floating Rigid Body Dynamics
For robots whose root link can float freely in Cartesian space, e.g. humanoids, it is necessary to
consider the pose of the root link with respect to (w.r.t.) the inertial reference frame. The pri-
mary method for doing so is to account for the root link pose directly in the generalized coordinates,
q, of the robot as shown by [Sentis and Khatib, 2005; Mistry et al., 2010; Righetti et al., 2011].

Figure 2.1 – A diagram indicating visually
what it means to include the root link pose
in the parameterization. The 6-DoF of the
floating base are modeled as a 6-DoF link-
age with the world or inertial frame. Im-
age taken from [Mistry et al., 2010].

The generalized configuration parameterization for floating
base robots,

q =

{
ξb
qj

}
, (2.4)

therefore contains the pose of the base link w.r.t. the iner-
tial reference frame, ξb, and the joint space coordinates, qj .
Set brackets are used in (2.4) because ξb is a homogeneous
transformation matrix in R4×4 and qj is a vector in Rn, with
n the number of DoF of the robot, thus ξb and qj cannot be
concatenated into a vector. However, the twist of the base,
vb, with the joint velocities, q̇j , can be concatenated in vec-
tor notation, along with the base and joint accelerations to
obtain,

ν =

[
vb
q̇j

]
, and ν̇ =

[
v̇b
q̈j

]
. (2.5)

These representations provide a complete description of the
robot’s state and its rate of change, and allow the equations
of motion to be written as,

M(q)ν̇ + C(q,ν)ν + g(q)︸ ︷︷ ︸
n(q,ν)

= S>τ + eJ>(q)eω. (2.6)

In (2.6), M(q) is the generalized mass matrix, C(q,ν)ν and
g(q) are the Coriolis-centrifugal and gravitational terms, S is a selection matrix indicating the actuated
degrees of freedom, eω is the concatenation of the external contact wrenches, and eJ their concatenated
Jacobians. Grouping C(q,ν)ν and g(q) together into n(q,ν), the equations can by simplified to

M(q)ν̇ + n(q,ν) = S>τ + eJ>(q)eω. (2.7)

The joint torques induced by friction force could also be included in (2.7), but are left out for the sake of
simplicity. Additionally, the variables ν̇, τ , and eω, can be grouped into the same vector,

χ =



ν̇
τ
eω


 , (2.8)

forming the optimization variable from (2.1), and allowing (2.7) to be rewritten as,
[
−M(q) S> eJ>(q)

]
χ = n(q,ν). (2.9)

Equation (2.9) provides an equality constraint which can be used to ensure that the minimization of the
control objectives respects the system dynamics.

2.2 Control Objectives (Tasks)
The basic problem of control is to drive a system from some initial state to some desired state. The
control of robots is no different, but the term state takes on greater ambiguity. For simple systems, such
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as the double integrator, linearized inverted pendulum, etc., state-space control is sufficient for virtually
any high-level objective one could envision for the system. However, for a robot, describing the control
problem solely in terms of its state, i.e. q and ν, is limiting and one may also want to describe it in
terms of the pose and twist of an end-effector, or possibly even a wrench on some link (although not
technically a state in the classical control sense). Far from being a detriment, this variability is what
makes robots so useful but requires a bit of abstraction from classical state-space control vocabulary. For
this reason, the term task is commonly used to indicate a control objective for a robot. Tasks, in second-
order controllers, can be driven by desired accelerations, wrenches, or torques, and in operational-space
or joint-space. They are expressed in the whole-body controller as functions of the errors between the
desired and current values of the task. In this work, the square of the l2-norm is used to create a quadratic
objective function. Consequently, the task errors are expressed in the least-squares formulation.

2.2.1 Acceleration Task

Probably the most important, if not most prevalent, task is to move a link on the robot from one pose
to another. Typically it is the end-effector(s) which are of interest, in the case of humanoids, the hands
and/or feet. For the whole-body controller studied here, these tasks, which are generally expressed
as desired positions or orientations, are converted to acceleration tasks, through means of task servoing.
More details on task servoing are provided in Sec. 2.5. Once given a desired operational-space acceleration
for a link, ξ̈

des
i , an acceleration task consists in finding the joint-space values which produce ξ̈

des
i ,

ξ̈
des
i = Ji(q)ν̇ + J̇i(q,ν)ν, (2.10)

where Ji(q) and J̇i(q,ν) are the link Jacobian and its derivative. For the control objective, one simply
rewrites the task as an error which must be minimized,

f ξ̈i =
∥∥∥Ji(q)ν̇ + J̇i(q,ν)ν − ξ̈des

i

∥∥∥
2

2
. (2.11)

Using the squared l2-norm produces a quadratic error term, which defines the objective function f ξ̈i to
be minimized. The objective function f ξ̈i is then rewritten in terms of the optimization variable, χ,

f ξ̈i =
∥∥∥
[
Ji(q) 0

]
χ−

(
ξ̈

des
i − J̇i(q,ν)ν

)∥∥∥
2

2
. (2.12)

In (2.12) the term 0 represents a matrix of zeros. Regrouping terms as,

Eξ̈ =
[
Ji(q) 0

]
(2.13)

f ξ̈ = ξ̈
des
i − J̇i(q,ν)ν, (2.14)

allows (2.12) to be written in the classical least-squares form as,

f ξ̈i =
∥∥∥Eξ̈χ− f ξ̈

∥∥∥
2

2
. (2.15)

The dependencies of Eξ̈ and f ξ̈ have been removed for brevity. Acceleration tasks can be expressed in
either joint-space or in operational-space. Here, the operational-space form is presented but the joint-
space form can easily be produced as,

f ν̇i =
∥∥∥ν̇ − ν̇des

i

∥∥∥
2

2
, (2.16)
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with

Eν̇ =
[
I 0

]
(2.17)

f ν̇ = ν̇des
i , (2.18)

where I is the identity matrix. Substituting (2.17) and (2.18) into (2.16) gives,

f ν̇i =
∥∥Eν̇χ− f ν̇

∥∥2

2
. (2.19)

2.2.2 Wrench Task
In order for robots to work properly in their environment, they must be able to interact with it. Not
only does this allow the robot to manipulate and modify its environment, but it also allows the robot
to exploit the environment to compensate for its underactuation and more generally to dynamically
perform complex behaviors. Walking and balance are two pertinent examples of such behaviors because
to achieve them, contact forces with the ground must be properly exploited. For details on this see [Park
and Khatib, 2005], [Sentis et al., 2010], and [Righetti et al., 2013].

In order to interact with the environment, wrench tasks can be formulated to manage the interaction
forces and torques,

eωi = eωdes
i . (2.20)

where eωdes
i is the desired external wrench to affect, and eωi is the wrench applied on the environment.

Again, to formulate a control objective function, fωi , the task is rewritten as the squared norm of a task
error,

fωi =
∥∥eωi − eωdes

i

∥∥2

2
. (2.21)

Rewriting (2.21) in terms of χ gives,

fωi =
∥∥[0 Sωi

]
χ− eωdes

i

∥∥2

2
, (2.22)

where Sωi is a wrench selection matrix which allows the ith wrench to be controlled. Using,

(2.23)

Eω =
[
0 Sωi

]
(2.24)

fω = eωdes
i , (2.25)

(2.22) can be written as,
fωi = ‖Eωχ− fω‖22 . (2.26)

2.2.3 Torque Task
Finally, it may also be desirable to specify torque tasks for purposes of regularization, among other
possibilities. As with wrench tasks, torque tasks, can be written simply as,

τ = τ des. (2.27)

To formulate the control objective function, fτ , the square norm of the task error is written,

fτ =
∥∥τ − τ des∥∥2

2
, (2.28)

which can be reformulated in terms of χ as,

fτ =
∥∥[0 S> 0

]
χ− τ des∥∥2

2
. (2.29)
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Once again regrouping terms,

Eτ =
[
0 S> 0

]
(2.30)

fτ = τ des, (2.31)

the least-squares form of the torque task is written,

fτ = ‖Eτχ− fτ‖22 . (2.32)

2.3 Control Constraints
As with all real world control problems, there are limits to what the system being controlled can do. In
this particular case, the main constraint is that of the system dynamics, i.e. the equations of motion.
This means that any solution found must be dynamically feasible. Apart from this, the control input is
typically bounded. For robots with revolute joints, this means that the torque which can be generated
by the actuators is limited to plus or minus some value. Likewise, the joints themselves generally have
limited operating ranges for various mechanical reasons. In addition to these common limiting factors,
other phenomena such as unilateral and bilateral contacts can come into play.

2.3.1 Dynamics
The rigid body dynamics of the robot are governed by the equations of motion from (2.9). This constraint
ultimately dictates the achievable dynamics of the system, and is formulated as the following equality
constraint, [

−M(q) S> eJ>(q)
]

︸ ︷︷ ︸
Ad

χ = n(q,ν)︸ ︷︷ ︸
bd

. (2.33)

The terms Ad and bd are used to distinguish the equality constraint matrix and vector, respectively, for
the dynamic constraints. This is done because the constraints presented here are combined by vertically
concatenating them to form (2.3) and (2.2) in the controller.

2.3.2 Actuator Limits
Here, we assume that all articulations are revolute and therefore all actuation limits are torque limits,
however, expression of force limits for prismatic joints would be another possibility. Writing these limits
as an inequality provides an upper and lower bound on the amount of torque which can be exerted to
accomplish the tasks.

τmin ≤ τ ≤ τmax. (2.34)

Expressing (2.34) in terms of χ creates the following linear inequality,
[
0 S> 0
0 −S> 0

]

︸ ︷︷ ︸
Gτ

χ ≤
[
τmax
−τmin

]

︸ ︷︷ ︸
hτ

. (2.35)

2.3.3 Joint Limits
Probably the most common limitation of any robot is the range of motion which each joint can achieve.
Whether linear or angular, most joints have a finite range through which they can move thus limiting q.
These joint limits can easily be expressed as a inequality on q,

qmin ≤ q ≤ qmax. (2.36)
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Similarly to these position limits, we can also define limits on the joint velocities and accelerations,

νmin ≤ ν ≤ νmax (2.37)
ν̇min ≤ ν̇ ≤ ν̇max. (2.38)

The joint position limits, unlike the torque limits, must be manipulated somewhat in order to be properly
expressed in χ. To formulate this constraint, q needs to be calculated while taking into account a second
order prediction of the joint-space movement,

q(t+ h) = q(t) + hν(t) +
h2

2
ν̇(t), (2.39)

where h is the prediction period, which is generally some multiple of the control period. Note that
the floating base components of the configuration variable are not subject to articular limits, and their
corresponding components in q, ν, and ν̇, are disregarded in (2.39). Dropping the time dependencies,
the limits are written,

qmin ≤ q + hν +
h2

2
ν̇ ≤ qmax

⇔ 2

h2
[qmin − (q + hν)] ≤ ν̇ ≤ 2

h2
[qmax − (q + hν)] . (2.40)

Using χ, (2.40) can be rewritten as,
[
I 0
−I 0

]

︸ ︷︷ ︸
Gq

χ ≤ 2

h2

[
qmax − (q + hν)
− [qmin − (q + hν)]

]

︸ ︷︷ ︸
hq

. (2.41)

From (2.41), one can of course naturally derive joint velocity and acceleration limits,
[
I 0
−I 0

]

︸ ︷︷ ︸
Gν

χ ≤ 1

h

[
νmax − ν
− (νmin − ν)

]

︸ ︷︷ ︸
hν

(2.42)

[
I 0
−I 0

]

︸ ︷︷ ︸
Gν̇

χ ≤
[
ν̇max
−ν̇min

]

︸ ︷︷ ︸
hν̇

. (2.43)

The choice of the prediction period, h, in the joint-space limits is crucial to the proper functioning of
these constraints. Smaller values of h lead to more aggressive approaches to the joint limits, while larger
values produce a more conservative treatment. This variability is due to the fact that the prediction does
not take into account the deceleration capabilities of the joints [Rubrecht et al., 2010].

2.3.4 Contact Constraints

When a robot interacts with its environment, it does so through contacts. These contacts can be unilateral
contacts, or bilateral contacts. Simply put, unilateral contacts are those the robot can only push, e.g.
foot contact with the floor, and bilateral contacts are those which allow the robot to push or pull, e.g.
gripping the rung of a ladder. For unilateral contact constraints, a linearized approximation of the
Coulomb friction cone is employed. Following the formulations in [Salini et al., 2011] and [Saab et al.,
2013], a friction contact constraint in the controller must ensure that the linear velocity at the contact
point is zero,

FJi(q)ν̇ + F J̇i(q,ν)ν = 0, (2.44)
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and that the wrench remains within a linearized approximation of a friction cone,

FCi
Fωi ≤ 0. (2.45)

In (2.44), FJ and F J̇ contain the linear components of the ith contact Jacobian. In (2.45), FCi is a
matrix which linearly approximates the second-order norm cone,

∥∥Fωi − (Fωi · n̂i)n̂i
∥∥

2
≤ µi(Fωi · n̂i), (2.46)

where Fωi is are the force components of the ith contact wrench, n̂i is the normal vector of the contact,
and µi is the friction coefficient. Finally, expressing these two constraints in terms of χ, and defining
Fωi = SFi χ, gives the following coupled equality and inequality constraints,

[
FJi(q) 0

]
︸ ︷︷ ︸

Aω

χ = −F J̇i(q,ν)ν︸ ︷︷ ︸
bω

(2.47)

[
0 FCiS

F
i

]
︸ ︷︷ ︸

Gω

χ ≤ 0︸︷︷︸
hω

, (2.48)

where SFi selects the ith contact force vector. Equations (2.47) and (2.48) are valid for a single contact
point. For surface contacts, e.g. a foot sole, multiple points on the surface can be used for friction contact
constraints — usually the four corners of the foot. Equation (2.47) introduces 3 equality constraints for the
linear velocity of the contact point. The number of inequality constraints introduced by (2.48) depends
on the number of polygon edges used to approximate the friction cone. Here, 6 edges are used, and
because of symmetry, this introduces 3 inequality constraints per contact to the whole-body controller.

For bilateral contacts, it is sufficient to ensure no relative motion between the two links, i and j in
contact. It should be noted that here a link can be some part of the environment for which a kinematic
model exists. To ensure no motion between the links, the following relationship must be true,

(Ji(q)− Jj(q)) ν̇ +
(
J̇i(q,ν)− J̇j(q,ν)

)
ν = 0, (2.49)

where Ji(q), J̇i(q,ν), Jj(q), and J̇j(q,ν), are the Jacobians and their derivatives for the ith and jth links
respectively. Putting (2.49) in terms of χ produces,

[
(Ji(q)− Jj(q)) 0

]
︸ ︷︷ ︸

Abc

χ = −
(
J̇i(q,ν)− J̇j(q,ν)

)
ν

︸ ︷︷ ︸
bbc

. (2.50)

2.4 Prioritization Strategies
Up to this point, only one task objective function has been considered in the whole-body controller in
(2.1). If multiple task objective functions are combined (using operations that preserve convexity) in
the resolution of the control problem, then they can be performed simultaneously. In these cases, it
is important to select a strategy for the resolution of the optimization problem. In turn, the strategy
determines how tasks interact/interfere with one another. The two prevailing methods for dealing with
multiple tasks are hierarchical and weighted prioritization.

2.4.1 Hierarchical Prioritization

In hierarchical prioritization, the tasks are organized by order of importance in discrete levels. Each task
error is minimized in descending order of its importance and the solution to the optimization problem is
then used in the equality constraints for the proceeding optimizations.
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Algorithm 1 Hierarchical Multi-Objective Optimization
1: for i = 1 . . . ntask do
2:

χ∗i = argmin
χ

f task
i (χ) + w0f

task
0 (χ)

s.t. Gχ ≤ h
Aiχ = bi

3: Ai+1 ←
[
Ai
Ei

]

4: bi+1 ←
[
bi
χ∗i

]

5: χ∗ ← χ∗i
6: end for
7: return χ∗

Algorithm 1 is tantamount to null-space projection in the dynamic domain; however, inequality con-
straints can be accounted for. As a note, the regularization term, w0f

task
0 (x), in each optimization

cascade serves to remove solution redundancy when the objective function has a null space, but this

redundancy is necessary for executing the subsequent tasks. The operation, Ai+1 ←
[
Ai
Ei

]
, propagates

the null space of the objective function, which has just been solved, to the proceeding objective functions
through the equality constraint. Treating (2.51) hierarchically has the benefit of strictly ensuring the
optimization of one task error over another; however, it makes task transitioning and blending more
difficult. Using continuous, or soft, priorities can alleviate some of these issues.

2.4.2 Weighted Prioritization
In multi-objective optimization, task weights dictate where, on the Pareto front of solutions, the QP
calculates an optimum. Consequently, the optimum found favors the minimization of tasks with higher
weights. This affords a method of prioritization, which ensures that critical tasks, such as those for
balance, are preferentially accomplished, in situations where other less-critical tasks, such as a reach,
have conflicting optima. However, using continuous priorities between tasks cannot guarantee that the

Algorithm 2 Weighted Whole-Body Controller
1:

χ∗ = argmin
χ

ntask∑

i=1

wif
task
i (χ) + w0f

task
0 (χ)

s.t. Gχ ≤ h
Aχ = b.

(2.51)

2: return χ∗

tasks will not interfere with one another.

2.4.3 Hybrid Schemes
It can be seen that the weighted strategy is a subset of the hierarchical strategy, by observing that each
level in a hierarchical scheme can be solved as a weighted problem. This hybrid prioritization strategy can
provide the best of both hierarchical and weighted methods, but at the cost of increase implementation
and computational complexity. In addition to the simple mixing of weights and hierarchies, continuous
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generalized projection schemes are developed by [Liu et al., 2016]. These methods allow priorities to
continuously vary from weighted to purely hierarchical through scalar values. Such approaches can
provide smooth transitions between tasks, as is common in complex activities such as walking, but
require substantially more computation time than purely weighted or hierarchical methods.

2.5 Task Servoing

The desired terms, ξ̈
des
i , ν̇des

i , eωdes
i , and τ des, from (2.10), (2.16), (2.20), and (2.27), respectively are

provided by higher-level task servoing. Commonly, the high-level reference of a task is simply to attain
some pose, and in the case of a wrench task, some force and/or torque. For acceleration tasks, if the
desired task value is expressed as a pose, position, or orientation, then it must be converted to an
acceleration. This is done here using a feedforward (PD) controller,

ξ̈
des
i (t+ ∆t) = ξ̈

ref
i (t+ ∆t) +Kpεi(t) +Kdε̇i(t), (2.52)

where ξ̈
ref
i (t + ∆t) is the feedforward frame acceleration term, εi(t) and ε̇i(t) are the current pose error

and its derivative, with Kp and Kd = 2
√
Kp, their proportional and derivative gains respectively. As

seen in Sec. 2.2, this term also serves to remove drift at the controller level and stabilize the output
of the task. The terms, εi(t) and ε̇i(t), are not explicitly defined here because they are representation
dependent (see [Siciliano and Khatib, 2008]). For wrench and torque tasks a similar servoing controller
can be developed using a Proportional-Integral (PI) controller.

ωdes(t+ ∆t) = ωref (t+ ∆t) +Kpεω(t) +Ki

∫
εω(t)dt (2.53)

This servoing helps stabilize the whole-body controller by driving the desired task values to some fixed
state in asymptotically stable manner. Without the servoing the the task error objective term, f task

i (χ),
could change discontinuously between time steps resulting in discontinuous jumps in the optimal joint
torques determined between two time steps. See Sec. 1.1.2 for more about task servoing.

2.6 Conclusions
The equations and relationships presented in this chapter are sufficient for understanding the methods
presented in this study. However, they are far from covering the entire body of work on reactive whole-
body control. There are many ways to formulate whole-body controllers, each with its own advantages
and disadvantages, and a review of these controllers is outside the scope of this study. The critical
information to retain from this chapter is the fact that a controller can basically be separated into two
parts, based on the fact that it is simply an optimization problem. The first part consists of the objective
function(s), which are the control tasks being performed. These tasks are designed to produce some
desired overall behavior and may or may not be achievable. They are objectives the robot operator,
or higher-level planning, seeks to accomplish with varying degrees of importance, and are in no way
guaranteed to be carried out by the robot. The second part consists of the control constraints. These
constraints dictate what the robot can or cannot do, and must be respected absolutely. This distinction
between objectives and constraints is an important concept which lays the groundwork for understanding
the concepts of task compatibility and feasibility in the following chapter.
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Chapter 3

Mathematical Foundations of Task
Compatibility and Feasibility

In this chapter, we try to understand mathematically what makes tasks incompatible
or infeasible. To do so, we explore the properties of the underlying multi-objective
convex optimization problem within the whole-body controller described in Chap-
ter 2. This allows us to formulate a series of metrics and measures based only
on the details of numerical optimization and linear systems of equations. These
metrics quantify the compatibility and feasibility of objective functions (i.e. tasks).

3.1 Introduction

When multiple simultaneous tasks are executed on a robot, it is often the case that the tasks interfere
with one another. An example of this would be a postural task preventing an end-effector Cartesian
task from perfectly following its reference trajectory. The big question then, is why exactly does this
happen? From a roboticist’s perspective, this sort of interference could be explained by any number
of physical phenomena common to robotics: a loss of redundancy, hitting joint limits, actuator limits,
limited workspace, etc. Numerous indicators have been developed to try to capture various combinations
of these phenomena (see Chapter 1). However, these root causes may be difficult to identify for a given
set of tasks without closely studying the problem. Additionally, these causes may only occur at certain
instants in the movement.

Looking at how the control problem is formulated, we can gain insight into the numerical causes
of these problems. To be more specific, the model-based whole-body controller presented in Chapter 2
is formulated as a constrained convex optimization problem. Within the optimization problem are the
control objectives and constraints. Therefore, virtually all possible reasons for tasks interfering with one
another are embedded in the control problem as either objectives or constraints. The objectives (tasks)
are either incompatible with one another, and/or infeasible with the constraints. It should be noted
that in this work, the case of unknown/un-modeled perturbations occurring is ignored. Such scenarios
introduce infinitely many possible causes for task incompatibility and infeasibility and are considered
another challenge entirely, as they require high-level decision making to replan the whole-body behavior;
thus, they are outside the scope of this work.

In this chapter, a mathematical formalism is developed for the notions of task compatibility and
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feasibility. Following the work of [Bouyarmane and Kheddar, 2015] and [Wieber et al., 2017], this is
accomplished by looking at the problem of task compatibility and feasibility from a numerical optimization
perspective rather than a control perspective. Therefore, the notion of a task is put aside for the moment,
and this chapter focuses on the more generic concept of objective compatibility and feasibility.

3.2 A Brief Overview of Convex Optimization
In this section, the fundamental concepts of convex optimization, and specifically linearly constrained
Quadratic Programs (QPs), are succinctly presented. It begins with a general overview of what constitutes
a convex optimization problem and then moves on to the specifics of QPs. Finally, multi-objective QPs
are presented.

3.2.1 A General Convex Problem
An optimization problem is generically formulated as the minimization (or maximization) of a function,
subject to any number of equality and inequality constraints,

argmin
x

f(x) (3.1)

s.t. b(x) = 0 (3.2)
g(x) ≤ 0. (3.3)

This work focuses on continuous optimization, where x ∈ Rn. The function, f(x), is the problem
objective, or objective function. The variable which is used to minimize f(x) is x and is known as the
optimization variable. This minimization may be subject to equality, (3.2), and/or inequality constraints,
(3.3), on the optimization variable. In the general non-linear and non-convex case, (3.1) may admit zero
or infinitely many optima making it difficult or impossible to efficiently find a global minimum. In the
special case where,

f(θa+ (1− θ)b) ≤ θf(a) + (1− θ)f(b), (3.4)

for all a and b in the domain of f(x), and 0 ≤ θ ≤ 1, the function f(x) is convex (or even affine).
Figure 3.1 shows two examples of such functions. If the equality and inequality constraints are affine or
quadratic in x as well, then (3.1) is convex in x and can be solved globally and efficiently. The sets of
problems that fall into this category are known as convex optimization problems. The reader is directed
to [Boyd and Vandenberghe, 2004] for more details on convex optimization. When f(x) is quadratic in
x and the constraints are affine in x, the problem becomes a QP, which is a special subset of convex
optimization that is prevalent in optimal control problems.

3.2.2 Quadratic Programming
Quadratic Programs (QPs) derive their name from having a quadratic objective function which is ex-
pressed as,

argmin
x

f(x) =
1

2
x>Px+ q>x+ r (3.5)

= x>(E>E)x− 2(E>f)>x+ f>f

= ‖Ex− f‖22 , (3.6)

where (3.5) is the classical formulation of a QP, and (3.6) is the least-squares formulation. We will
continue using (3.6), which admits an analytical minimum-norm solution, x∗, in the unconstrained case.

x∗ = argmin
x

‖Ex− f‖22 = E†f , (3.7)
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(a) an affine function, f(x) = 0.5x+ 1 (b) a quadratic function, f(x) = x2

Figure 3.1 – Two examples of convex functions. For each example, two test points, a and b, are chosen
in the domain of x ∈ R1 to show that (3.4) is respected. This can be seen by observing that the chord
which connects the points a and b lies on or within the function epigraphs, which are the sets of all points
which lie above the function graphs.

where E† is the Moore-Penrose pseudoinverse of the E matrix. This solution will be found assuming the
rank of the linear system is consistent. Details on rank conditions are presented in depth in Sec. 3.3.1.
Adding an affine equality constraint to (3.6) produces a constrained least squares problem,

argmin
x

‖Ex− f‖22 (3.8)

s.t. Ax = b, (3.9)

which can be solved analytically, assuming a solution exists, using the Karush Kuhn Tucker (KKT)
equations,

[
E>E A>

A 0

]

︸ ︷︷ ︸
KKT Matrix

[
x
z

]
=

[
E>f
b

]
(3.10)

⇔
[
x
z

]
=

[
E>E A>

A 0

]−1 [
E>f
b

]
, (3.11)

where z is the solution to the dual problem and contains the Lagrange multipliers. Adding an affine
inequality constraint to the problem produces the following QP,

argmin
x

‖Ex− f‖22 (3.12)

s.t. Ax = b (3.13)
Gx ≤ h. (3.14)

Equation (3.12) can no longer be solved analytically and one must use numerical methods such as interior
point, or active set methods [Boyd and Vandenberghe, 2004]. Resolution of (3.12) will provide a globally
optimal solution for x∗ provided that the constraint equations are consistent, i.e. the set of possible
solutions is not empty.
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3.2.3 Multi-Objective Optimization

Objective functions represent the intentions of the problem designer: what meaningful quantity or mea-
sure is to be minimized to best solve some issue. As is often the case, there may be more than one quantity
or measure which must be minimized and therefore multiple objective functions are combined together.
When multiple objective functions, fi(x), are considered simultaneously, a multi-objective optimization
problem (a.k.a. multicriteria, multicriterion, or Pareto optimization) is created. One common method
of solving multi-objective optimization problems is through scalarization. Scalarization is the process
of combining of multiple objective costs into one scalar cost. There are a multitude of scalarization
techniques but weighted summation is of the most common,

argmin
x

no∑

i=1

wifi(x) =

n∑

i=1

wi ‖Eix− fi‖22 . (3.15)

In (3.15), no is the total number of objective functions. This scalarization can be written compactly by
concatenating the individual objectives as,

argmin
x

‖Ewx− fw‖22 (3.16)

where

Ew =




√
w1E1√
w2E2

...√
wnEno


 and fw =




√
w1f1√
w2f2
...√

wnfno


 . (3.17)

Each weight, wi ≥ 0, dictates the relative importance of its objective fi(x) and therefore its impact on
the solution. In (3.16) the weights are assumed to be scalars, but it is also possible to use matrices of
different weights as long as they remain positive semi-definite.

As an alternative to scalarization, the objective functions can be minimized hierarchically in order of
importance to ensure that the most important objective(s) are minimized as much as possible without
influence of the lower priority objectives. This is known as lexicographic optimization in multi-objective
optimization. To achieve this, the objectives are treated individually as a cascade of QPs where the
solutions are reused as equality constraints in the subsequent QP minimizations. See Algorithm 1 from
Sec. 2.4.1 for an implementation outline of hierarchical optimization.

3.2.4 Comparing Weighted Scalarization and Hierarchical Optimization

To understand the impact of both weighted scalarization and hierarchical optimization on the overall so-
lution of the multi-objective problem, we take the following two dimensional problem, i.e. x =

[
x1 x2

]>,
with 4 trivial objective functions.

fi(x) = wi ‖Eix− fi‖22 + w0 ‖x‖22 ∀i ∈ 1 . . . 4, (3.18)

where ‖x‖22 is the so-called regularization term, which ensures a solution for problems with infinitely
many solutions, and 0 ≤ w0 � 1, is a small positive weight; here, w0 = 1e − 10. The effects of the
objective rank are explored in detail in Sec. 3.3.1. The chosen numerical values are as follows,

E1 =

[
0 0
0 1

]
E2 = E3 = E4 =

[
1 0
0 1

]
(3.19)

f1 =

[
0
−1

]
f2 =

[
−3
7

]
f3 =

[
4
4

]
f4 =

[
2
8

]
. (3.20)
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By choice E1 is rank 1 and therefore has a nullity of 1 as well. This means any value of x1 can satisfy the
minimization problem, and that a regularization term must be included in order to ensure convergence of
the optimization. The unconstrained optimal value of all four objective functions can be easily determined
as x∗i = fi. Given the following objective function weights, w1 = w2 = w3 = w4 = 1, one obtains an overall
optimum at x∗ =

[
1.0 4.5

]> using weighted sum scalarization. Using the objective function numbering
as a prioritization order, with 1 being the highest priority, a hierarchical optimization provides an overall
optimum at x∗ =

[
−3.0 −1

]>. Both results are shown in Fig. 3.2. In Fig. 3.2a, the weighted case, it
can be seen that x∗ is a mix of all of the individual objective optima, x∗i , with each objective imparting
equal influence on the overall optimum. In the hierarchical case, the minimization of f1(x) dictates that
any proceeding solutions lie within its null space, indicated by the red dashed line in Fig. 3.2b. The next
objective to be minimized is f2(x) and only the x1 component of its solution is compatible. At this point,
the equality constraints defined by the first two levels of the QP hierarchy fully specify a solution and
the optimization is stopped.

(a) weighted sum scalarization (b) hierarchical optimization

Figure 3.2 – Examples of unconstrained optima, x∗, found using both weighted scalarization and hierar-
chical optimization. The individual unconstrained objective optima, x∗i , are shown as the blue dots. For
the weighted case, (a), all weights are equal to 1.0. In the hierarchical case, (b), the numbering of the
objective functions dictates the objective priority, with i = 1 being of highest priority.

Regardless of the method, when dealing with multiple objective functions, compromises must be
made between them, except in the trivial case where all objective functions share the same global opti-
mum. Things are further complicated by the introduction of constraints which can limit the feasible set.
Introducing the following inequality constraints,




−0.9 0.4
−0.3 0.9
0.7 0.7
0.4 −0.9
−0.4 −0.9




︸ ︷︷ ︸
G

[
x1

x2

]
≤




0
3.2
9.9
3.6
0




︸ ︷︷ ︸
h

, (3.21)

produces the following global optima, x∗ =
[
2.0 4.0

]> and x∗ =
[
1.9 −1.0

]>, for the weighted and
hierarchical cases respectively. Figure 3.3 shows the constraint polygon and optimization results graph-
ically. In the weighted case, 3.3a, x∗ falls on the vertex of two constraints which is the closest point in
the feasible set to the unconstrained optimum shown in transparent red. For the hierarchical optimiza-
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tion, 3.3b, the first objective function minimization is constrained by an inequality and this immediately
restricts the solution space, precluding further optimization of the objective functions.

(a) weighted sum scalarization (b) hierarchical optimization

Figure 3.3 – Examples of constrained optima, x∗, found using both weighted scalarization and hierarchical
optimization. The individual unconstrained objective optima, x∗i ∀i ∈ 1 . . . 4, are shown as the blue dots.
The unconstrained optima found using both methods are shown in translucent red.

3.3 Objective Compatibility and Feasibility

With the basic concepts of convex multi-objective optimization presented in Sec. 3.2, two crucial notions
are formalized: objective compatibility and objective feasibility . The concept of compatibility indicates how
well the various objective functions can be minimized when mixed together using weighted scalarization
or hierarchical optimization. Objective feasibility gives a notion of how well the individual and combined
objective functions respect the problem constraints, or conversely, how much the constraints restrict their
minimization. In the following section, a formal definition of these concepts is built in the context of
convex multi-objective optimization.

3.3.1 Objective Compatibility

The goal of this section is to develop a concrete definition of what it means for two or more objective
functions to be compatible with one another. To do so, we start by contradiction and discuss what it
means for objectives to be incompatible.

Strict Objective Compatibility

If two or more objective functions are combined in a multi-objective optimization problem, using weighted
scalarization or hierarchical optimization, and do not share the same global optimum, then some com-
promise is necessarily made between them in the solution of the multi-objective problem. To be explicit,
compromise means that one or more objective functions will not be perfectly minimized, i.e.

∇fi(x∗) 6= 0. (3.22)

For a QP this can be written as, ∥∥∥x∗ − E†i fi
∥∥∥

2
> 0 (3.23)
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which says that if the Euclidean norm of the distance from x∗ to the individual unconstrained objective
optimum, x∗i = E†i fi, is greater than 0 then one or more of the individual objective functions is incom-
patible with the others. A first trivial definition of objective compatibility could then be formulated as,

Eix
∗ = fi ∀i ∈ 1 . . . no, (3.24)

which basically comes down to the question of whether or not there exists an x∗ which perfectly satisfies,

Ẽx∗ = f̃ , (3.25)

where Ẽ and f̃ are defined by the concatenation of the no least-squares objective functions,

Ẽ =




E1

E2

...
Eno


 and f̃ =




f1
f2
...

fno


 . (3.26)

It can therefore be stated that ∃ x∗ : Ẽx∗ = f̃ if,

rank(Ẽ) = rank([Ẽ|f̃ ]) ≤ n, (3.27)

where [Ẽ|f̃ ] is the augmented matrix of the linear system of equations, and n is the number of columns
in Ẽ, or alternatively, the number of rows in x. If,

rank(Ẽ) < rank([Ẽ|f̃ ]), (3.28)

then the system is inconsistent and no solution exists. If,

rank(Ẽ) = rank([Ẽ|f̃ ]) = n, (3.29)

then there is exactly one solution which satisfies (3.25), while if

rank(Ẽ) = rank([Ẽ|f̃ ]) < n, (3.30)

then there exist infinitely many solutions. It must also be noted, that these rank conditions are also
valid for one objective, not just a combination of objectives. In this case the issue is whether or not the
objective function is consistent and not compatible.
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Example 1

Given two objective functions, we wish to determine if they are strictly compatible.

f1 = ‖E1x− f1‖ (3.31)
f2 = ‖E2x− f2‖ (3.32)

CASE 1:
In this first case the following numerical values are used:

E1 =

[
1.2 3.0 −1.0
2.3 −1.5 4.0

]
f1 =

[
2.92
1.67

]
(3.33)

E2 =

[
−3.2 1.7 −2.4
2.0 3.1 1.5

]
f2 =

[
−2.818
4.876

]
. (3.34)

Evaluating (3.27) for case 1,

rank
([
E1

E2

])
= 3 = rank

([
E1 f1
E2 f2

])
= rows(x), (3.35)

it can be determined that there is exactly one x∗1 = Ẽ†f̃ which can perfectly satisfy both objective
functions. In this case, x∗1 =

[
1.2 0.46 −0.1

]>.

CASE 2:
In this case the second row of each E and f from case 1 is removed,

E1 =
[
1.2 3.0 −1.0

]
f1 =

[
2.92

]
(3.36)

E2 =
[
−3.2 1.7 −2.4

]
f2 =

[
−2.818

]
, (3.37)

then,

rank
([
E1

E2

])
= 2 = rank

([
E1 f1
E2 f2

])
< rows(x). (3.38)

In (3.38), it can be observed that, because the rank of the linear system is less than the number of
problem variables, there will be infinitely many solutions which satisfy the system. In this case, the
solution from (3.35) remains valid, i.e. Ẽx∗1 = f̃ , but the solution found using the pseudoinverse,
x∗2 = Ẽ†f̃ =

[
1.0652 0.609 0.1852

]> is different than before because it minimizes the norm of
x∗ as well,

‖x∗2‖2 < ‖x∗1‖2 (3.39)
⇒ 1.24 < 1.29. (3.40)

CASE 3:
Finally, as a counterexample, we take the values used in (3.33) and (3.34) from case 1, and slightly alter
f2,

f2 =

[
−2.818

1

]
, (3.41)

and evaluate the rank conditions,

rank
([
E1

E2

])
= 3 < rank

([
E1 f1
E2 f2

])
= 4, (3.42)

which imply that no solution, x∗3, exists which satisfies the two objective functions.
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For the first two cases studied in Example 1, the solutions found, x∗1 and x∗2, hold regardless of whether
weighted scalarization or hierarchical optimization is used. While in the third case it is certain that no
x∗3 can be found which perfectly minimizes the two objective functions. A strict definition of objective
compatibility can therefore be written as,

Strict objective compatibility: A set of objective functions are compatible if
there exists an x∗ ∈ Rn which satisfies, Ẽx∗ = f̃ , and consequently
rank(Ẽ) = rank([Ẽ|f̃ ]) ≤ n, where Ẽ and f̃ are written as in (3.26).

Applying this definition to the chapter example from (3.19) and (3.20), one obtains the relatively evident
solution of rank(Ẽ) = 2 < rank([Ẽ|f̃ ]) = 3, which indicates that no solution x∗ can satisfy all objective
functions. These rank conditions establish a binary criterion for objective compatibility, and open the
question of how to measure incompatibility for inconsistent cases such as the one observed in (3.42).

Objective Compatibility Metrics

While precise, imposing that all tasks be perfectly compatible, even for high-dimensional problems, is
overly restrictive and probably impossible in most cases. It is therefore necessary to develop measures
of compatibility which can provide finer gradations than simply, compatible or incompatible. A possible
starting point for such a measure is to approximate the rank conditions for strict compatibility on a
continuous scale. As proven by [Recht et al., 2010], the nuclear norm, or trace norm, can be used as an
approximation1 of the rank of a matrix, M ∈ Rm×n, and is defined by the sum of its singular values, σi,

‖M‖∗ :=

n∑

i=1

σi(M). (3.43)

Given that strict compatibility represents the state of maximal compatibility, and is defined when
rank(Ẽ) = rank([Ẽ|f̃ ]), a useful application of the nuclear norm is to approximate how far from the
strict compatibility criterion the objectives are. This is possible by defining the Nuclear norm Ratio
(NR),

κNR =

∥∥∥Ẽ
∥∥∥
∗∥∥∥

[
Ẽ|f̃
]∥∥∥
∗

. (3.44)

This ratio is bounded between [0, 1]. As κNR tends towards one, the objectives should approach strict
compatibility, while a κNR tending towards zero would indicate decreasing compatibility.

Moving away from rank-based criteria, the distance between each objective’s unconstrained optimum
and the multi-objective optimum, or Optimum Distance (OD) can be determined,

κOD
i = ‖x∗ − x∗i ‖2 . (3.45)

In (3.45), κOD
i is the compatibility of the ith objective function w.r.t. the chosen global optimum x∗, and

therefore, w.r.t. the other objective functions. Summing over the n objective functions, the κOD metric
can be defined as,

κOD =

n∑

i=1

κOD
i . (3.46)

Another approach, similar to the norm metrics of compatibility, is to look directly at the individual
objective functions and evaluate them at x∗ giving the Optimum Cost (OC) metric,

κOC
i = wifi(x

∗) ∀i ∈ 1 . . . n. (3.47)
1Some bounds on the error of this approximation can be found in [Srebro and Shraibman, 2005], and parallels can

be drawn with trace minimization heuristics in automatic control as in [Mesbahi and Papavassilopoulos, 1997]. A good
explanation of the nuclear norm can be found in [Osnaga, 2014].
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In (3.47), wi, is the weight of fi, if weighted scalarization is used. If hierarchical scalarization is used then
one can either omit weights in (3.47), or use approximate weights which would lead to nearly hierarchical
resolution of the QP; e.g. w1 = 1.0, w2 = 1.0e− 5, w3 = 1.0e− 10, etc. The objectives with the largest
κOC
i are those which are most poorly minimized and therefore the least compatible with the others.

Looking at the example problem, in Table 3.1, it can be observed that objective f1 has the highest κOC

value for the weighted case and the lowest for the hierarchical case, which follows logically in that it is the
highest priority objective in the latter method. Using these measures, one can conclude which objectives
are the most and least compatible by observing those which are most and least minimized, respectively.
Additionally, it can be shown that different prioritization strategies yield different overall compatibilities,
by looking at the sum of the κOC

i ,

κOC =

n∑

i=1

κOC
i . (3.48)

Again, in Table 3.1, the results of (3.48) for each prioritization strategy are shown, and it can be concluded
that the resulting x∗ from the weighted scalarization produces the most compatible overall solution, in
the sense that the overall sum cost of the individual objectives is less than that of the hierarchical case.

prioritization strategy κOC
1 κOC

2 κOC
3 κOC

4 κOC

weighted 30.25 22.25 9.25 13.25 75

hierarchical 9.8e− 05 63.8 73.5 105.5 243

Table 3.1 – Computation of the objective compatibility measure defined in (3.47) for the x∗ calculated
using weighted scalarization and hierarchical optimization — both in the unconstrained case.

Compatibility Ellipsoid

Alternatively, one could look for more global descriptors of objective compatibility by looking at the
objectives as a whole rather than individually. Each objective has an unconstrained optimum, x∗i = E†i fi,
and the finite set of these optima can be written,

C = {x∗1,x∗2, . . . ,x∗n} . (3.49)

With the set C, the minimum volume ellipsoid, which covers the convex hull defined by C, can be written

Eκ = {u | ‖Au+ b‖2 ≤ 1} , (3.50)

with A a square symmetric positive definite matrix. This is known as the Löwner John Ellipsoid . The A
and b matrices can be determined by solving the following convex optimization problem,

argmin
A,b

log det A−1 (3.51)

s.t. ‖Ax∗i + b‖2 ≤ 1 ∀i ∈ 1 . . . n.

To solve (3.51), the log det A−1 term is transformed into det(A
1
n ), where n is again the dimension

(number of rows) of x, and a Semidefinite Programming (SDP) solver can be used. See p. 411 of [Boyd
and Vandenberghe, 2004] for more details. This ellipsoid covers the volume of the convex set defined
by C. Figure 3.4 shows the Löwner John Ellipsoid for the example problem from Sec. 3.2.4. Equation
(3.51) defines the inverse image of a Euclidean unit ball under an affine mapping. This formulation can
be converted to the more common representation of an ellipsoid,

Eκ = {Bκw + cκ | ‖w‖ ≤ 1} , (3.52)
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with the following relationships:

cκ = −A−1b (3.53)

Bκ = −A−1. (3.54)

Here, cκ is the center of the ellipsoid and the eigenvectors and eigenvalues of Bκ determine the directions
and magnitudes of the semi-principal axes respectively. Using Singular Value Decomposition (SVD),
these values can be determined easily since Bκ is square symmetric,

Bκ = USV > (3.55)

U =
[
u1 u2 . . . un

]
(3.56)

S = diag (λ1, λ2, . . . , λn) , (3.57)

where ui are the eigenvectors and λi are the eigenvalues which represent the direction and length, σi = λi,
of each semi-axis of the ellipsoid. Again, n is the dimension of the optimization variable x.

Figure 3.4 – The compatibility ellipsoid, or Löwner
John ellipsoid over the objective optima, x∗i , for the
example problem from Sec. 3.2.4

From a compatibility standpoint, this ellipsoid
can compactly approximate the directions of great-
est and least objective compatibility. This ellip-
soid is therefore denoted the compatibility ellip-
soid . Those directions with the largest eigenvec-
tors represent the directions of least compatibil-
ity in the optimization variable space. If a prin-
cipal axis becomes degenerate, i.e. λi ' 0, then
the objective functions are maximally compatible
in that direction. For the example problem from
Sec. 3.2.4,

S =

[
σ1 0
0 σ2

]
=

[
5.2 0
0 3.6

]
, (3.58)

These singular values indicate that the majority
of the incompatibility is in the σ1 principal axis
and by looking at the corresponding u1 vector’s
components in the x1 and x2 directions,

U =

[
−0.25 0.97

︸︷︷︸
u1

0.97 ︸︷︷︸
u2

0.25

]
(3.59)

it can be seen that the x2 dimension has the great-
est amount of incompatibility. This can be con-
firmed visually in Fig. 3.4.

The compatibility ellipsoid indicates not only
the directions of greatest or least compatibility, but also provides a global measure of compatibility
through its Ellipsoid Volume (EV), i.e.

κEV = det(Bκ) =

n∏

i=1

σi. (3.60)

A perfectly compatible set of objectives would result in a completely degenerate ellipse with zero volume,
so any non-zero volume should be an indicator of some objective incompatibility. In the case of our
example shown in Fig. 3.4, κEV = 18.75. For perfectly compatible objectives, however, the compatibility
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ellipsoid cannot be computed because (3.51) becomes infeasible for A � 0, which occurs when the volume
of the ellipsoid goes to zero. The chosen SDP solver should then indicate the infeasibility of the problem
and this could be used as an indicator of compatibility.

One final option for measuring compatibility is to use the compatibility ellipsoid center in the place
of x∗ in (3.46) and calculate an Ellipsoid Distance (ED) metric,

κED =

no∑

i=1

κED
i =

no∑

i=1

‖cκ − x∗i ‖2 . (3.61)

One advantage of this approach is that it is independent of the scalarization technique used to solve the
optimization problem.

3.3.2 Objective Feasibility
While objective compatibility captures the relative congruency of the objective functions to be minimized,
it is also necessary to understand how feasible the objectives are w.r.t. the problem constraints. To this
end, objective feasibility must be defined by approximating the constraint set in a meaningful way.

To develop this approximation, equality constraints must not be considered because they imply
strict notions of what is feasible. Essentially, equality constraints do not admit any margin of feasi-
bility/infeasibility as they are inherently binary in meaning. Therefore, if equality constraints exist, then
they should be included in the resolution of each objective function — i.e. using (3.11) rather than (3.7),
as explored in Chapter 4. This leaves the inequality constraints, Gx ≤ h, which, if consistent, form a
convex polyhedron solution space. This space is a polytope bounded by the convex hull of the inequality
halfspaces. The number of vertices of this polytope becomes combinatorially complex as the problem
dimension increases, so it is necessary to search for a compact representation of the constraint set.

Feasibility Ellipsoid

Following the approach in Sec. 3.3.1, one solution is to find the largest ellipsoid which can be inscribed
within the polyhedron defined by the inequality constraint set. This is a conservative approximation of
the set and describes it with only n×n parameters, where n is the dimension of the optimization variable,
x.

Given a set of linear inequalities, Gx ≤ h, the objective is to find the maximum volume ellipsoid,
parameterized by (3.52), which can be inscribed within polyhedron defined by the inequality half-spaces
using,

argmin
Bφ,cφ

log det B−1
φ (3.62)

s.t. ‖Bφgi‖2 + g>i cφ ≤ hi, ∀i ∈ 1 . . . nc,

where gi and hi are the ith rows of G and h, respectively, and nc is the number of inequality constraints.
Similarly to (3.51), the log det term is transformed into the nth root determinant to make the problem
solvable using SDP. See p. 414 of [Boyd and Vandenberghe, 2004] for more details. Applying (3.62) to
the example problem, the feasibility ellipsoid depicted in Fig. 3.5a can be found. Again, the direction
and length of semi-axes can be determined using the SVD of the B matrix.

The most feasible region of solutions is at the center of the feasibility ellipsoid, cφ, while the least
feasible regions are near its surface. Here the concept of feasibility is a continuous notion of how possible
it is to perfectly optimize one or more objective functions. Firstly, in order to ensure absolute objective
feasibility , all of the unconstrained objective optima, x∗i , must lie inside the feasibility ellipsoid. This can
be verified by evaluating the feasibility ellipsoid inequality for each x∗i ,

(x∗i − cφ)
>
P−1
φ (x∗i − cφ) ≤ 1 (3.63)

where B−2
φ = P−1

φ .
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(a) (b)

Figure 3.5 – (a) the feasibility ellipsoid for the example problem from Sec. 3.2.4. (b) evaluation of (3.63)
for the example problem shows that only x∗3 lies within the feasibility ellipsoid and concordantly, inside
the feasible set defined by the inequality constraints.

Figure 3.6 – An example showing that even if the
unconstrained objective optima lie within the feasi-
bility ellipsoid, then there is still the possibility that
their combination will result in an infeasible optimal
value. Here, hierarchical optimization is used to pro-
duce x∗, but this same result could be found with
the right combinations of weights as well.

In the case of the example problem, shown in
Fig. 3.5b, the only objective optimum which re-
spects (3.63) is x∗3.

If (3.63) is true for a given x∗i then it is certain
that fi(x) can be perfectly minimized (assuming
it is consistent) given the current problem con-
straints. However, it is not guaranteed that the
unconstrained optimum of a combination of mul-
tiple objective functions, whose x∗i respect (3.63),
will fall entirely within the feasibility ellipsoid. If
each Ei and its corresponding fi satisfy the follow-
ing condition,

rank(Ei) = rank([Ei|fi]) = n ∀ i ∈ 1 . . . no,
(3.64)

then each fi(x) admits only one solution for x∗i ,
and if those x∗i respect (3.63), then they will be
contained within the convex feasible set. As a re-
minder no is the number of objective functions.
In turn, these x∗i will form a convex set within
the feasible set, and any solution to the multi-
objective optimization will exist in this set. On
the other hand, if one or more Ei and fi produce
the following relationship,

rank(Ei) = rank([Ei|fi]) < n, (3.65)

then the fi(x) objective function admits infinitely
many solutions and those solutions exist on a hyper-plane defined by the null-space of Ei. This hyper-
plane is in no way guaranteed to be bounded by the feasible set, and could therefore produce an infeasible
unconstrained optimum to the multi-objective problem. This is illustrated by Fig. 3.6, where the fi values
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of the example problem have been modified to the following,

f1 =

[
4
−1

]
f2 =

[
8.5
3

]
f3 =

[
4
4

]
f4 =

[
2
1

]
. (3.66)

Keeping the Ei values the same and solving the multi-objective optimization problem hierarchically
starting with f1(x) and ending with f4(x), produces an optimum, x∗ =

[
8.5 −1

]>, which violates
the inequality constraints despite all of the unconstrained objective optima being within the feasibility
ellipsoid. This is the result of the null-space in the E1 matrix, indicated by the dashed red line.

Figure 3.7 – Scaled feasibility ellipsoid using n =
2 since x ∈ R2. Evaluation of (3.63) shows now
that both x∗1 and x∗3 lie within the scaled feasibility
ellipsoid; however, x∗1 is outside of the true feasible
set defined by the inequality constraints.

One obvious problem with the feasibility el-
lipsoid is that it does not closely approximate
the space near the constraint polyhedron vertices,
which can have large volumes when n > 3. Ideally,
one would calculate the Löwner John ellipsoid for
the convex polyhedron defined by the inequality
constraints to obtain a less conservative approxi-
mation which encompasses the vertices; however,
this problem is NP-hard. Fortunately, given the
maximum volume inscribed ellipsoid from (3.5a),
simply scaling it by a factor of n (the dimension
of x), assures that the entire polyhedron will be
covered by the ellipsoid [Boyd and Vandenberghe,
2004]. In Fig 3.7, the scaled feasibility ellipsoid is
presented for the example problem. As can be ob-
served, the scaled ellipsoid indicates that both x∗1
and x∗3 should be feasible; however, it is clear in
this example that although x∗1 is close to the true
feasible set, it does not lie within it, so this scaled
ellipsoid measure should be used with caution.

Objective Feasibility Metrics

As with objective compatibility, it is also necessary
to be able to measure the level of objective feasi-
bility keeping in mind that feasibility is maximal
at the center of the feasibility ellipsoid. Measures
of objective feasibility, φ, are thus developed. An
initial option is to calculate the Optima Distance (OD) between each x∗i and the feasibility ellipsoid
center,

φOD
i = ‖cφ − x∗i ‖ ∀i ∈ 1 . . . no. (3.67)

The sum of the φOD
i can then be used as a global objective feasibility metric,

φOD =

no∑

i=1

φi. (3.68)

For a more concise alternative, the Ellipsoid Distance (ED), or the distance between the compatibility
ellipsoid and the feasibility ellipsoid centers can be determined,

φED = ‖cκ − cφ‖2 . (3.69)

Figure 3.8 shows the evaluation of these two objective feasibility metrics for the example problem. Both
φOD and φED provide distance values which can be interpreted as feasibility values. Unfortunately,
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without a basis for comparison, there is no way of knowing if a single value indicated by the metric is
feasible or not. Thus, a comparison of two or more metric values is necessary to determine a relative
notion of which objectives are more feasible than others.

(a) φOD = 25.2 (b) φED = 5.4

Figure 3.8 – Evaluation of the two proposed objective feasibility measures. (a) shows the metric defined
by Equations (3.67) and (3.68), and (b) shows the metric defined by (3.69).

It would be useful to know whether a single optimum is feasible or not. To do so, the feasibility
ellipsoid equation, (3.63), can be evaluated at each objective optimum,

φEE
i = (x∗i − cφ)

>
P−1
φ (x∗i − cφ) ∀i ∈ 1 . . . no, (3.70)

as well as at the overall unconstrained optimum,

φEE∗ = (x∗ − cφ)
>
P−1
φ (x∗ − cφ) . (3.71)

These metrics are denoted the Ellipsoid Evaluation (EE) metrics and can be seen as a weighted version
of the φOD metrics where the ellipsoid matrix, P−1

φ , is used to weight the squared norm of the distance.
What is useful about this measure is that any value ≤ 1.0 indicates that the x∗i is on or inside the
feasibility ellipsoid, and any value > 1.0 means that x∗i is outside of the feasibility ellipsoid. This allows
each objective to be analyzed as feasible or infeasible according to the ellipse. This estimate of feasibility
is conservative. To obtain a less conservative estimate, the ellipsoid can be scaled by n to obtain an
enclosing ellipse,

φEE
i = (x∗i − cφ)

>
(nBφ)−2 (x∗i − cφ) ∀i ∈ 1 . . . no. (3.72)

Finally, to observe the evolution of the constraint set, the feasibility Ellipsoid Volume (EV) can be
calculated to estimate how large the feasible set is, and how likely it is that an objective optimum will
fall inside of it,

φEV = det(Bφ). (3.73)

However, the measure φEV does not indicate how feasible a particular optimum is w.r.t. the feasibility
ellipsoid, just how large or small the polyhedron defined by the constraints has become.

3.4 Conclusions
In this chapter we have looked at what makes tasks incompatible or infeasible from a pure optimization
standpoint. By ignoring the control aspect of whole-body control and considering only its formulation
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as a multi-objective optimization problem, metrics are developed for measuring the compatibility and
feasibility of a set of objectives and constraints. Tables A.3 and A.4 in Sec. A.2 of the Appendix summarize
these metrics for the reader’s convenience.

Ignoring the control aspects of the task compatibility and feasibility problem allows generic multi-
objective optimization metrics to be constructed with no priors on the control formulation. What remains
is to apply these metrics to the problem of redundant robot control and explore their ability to accurately
describe the phenomena they are designed to measure.



Chapter 4

A Model-Based Approach to
Maximizing Task Compatibility and
Feasibility

In this chapter, the metrics developed to analyze the compatibility and feasibility of
objective functions are applied to the problem of whole-body control. Using the
whole-body controller objectives and constraint equations, the compatibility and
feasibility metrics are reformulated, and implementation issues are discussed. By
examining the underlying concepts behind the metrics, a whole-body Non-linear
Model Predictive Control (NMPC) problem is developed which could theoretically
maximize task compatibility and feasibility. Unfortunately, the computational com-
plexity of the problem prohibits it from being an effective solution to real world prob-
lems.

4.1 Introduction

In Chapter 3, a number of compatibility and feasibility metrics are developed based purely on multi-
objective optimization concepts. Compatibility indicates how possible it is for two or more objectives to
be perfectly minimized. Feasibility indicates how well each objective can be minimized, given the problem
constraints. The goal of these metrics is to provide information on how possible it is to accomplish all
the desired objectives for a given optimization problem. In the context of whole-body control, this
corresponds to a single control time step or one computation of the control problem,

χ̃∗ = argmin
χ

ntask∑

i=1

wif
task
i (χ) + w0f

task
0 (χ) (4.1)

s.t. Gχ ≤ h (4.2)
Aχ = b. (4.3)

In (4.1), a generic weighted sum prioritization whole-body controller is presented; however, the proceeding
analyses remain valid for a hierarchical controller as well. As a reminder, χ is the optimization variable

75
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which contains joint accelerations, torques and external wrenches, f task
i (χ) are the task objective func-

tions, wi their weights or priorities, and w0f
task
0 (χ) the regularization task. The inequality and equality

constraints, (4.2) and (4.3), are composed of the constraints described in Sec. 2.3 such as joint position
and torque constraints, and the dynamics. Here, we examine only the weighted prioritization scheme but
the concepts developed apply to any convex combination or cascade of objectives. The use of the tilde
notation in χ̃∗, to represent the solution to the problem, is explained in Sec 4.2.2.

The objective of this Chapter is to apply the metrics developed in Chapter 3 to the whole-body
controller detailed in Chapter 2, and determine a method of maximizing task compatibility and feasibility.
Because the concepts developed are based on the structure of the whole-body controller optimization
problem, we refer to them as model-based. Beyond simply equating the formulae of the controller to
the compatibility and feasibility metrics, it is necessary to develop a notion of the temporality of these
measures given that an optimization problem is solved at each control time step and there are generally
many time steps in a single movement.

4.2 Computing the Metrics

To begin, the discrepancies between the whole-body controller formulae in Chapter 2 and the metrics
described in Chapter 3 must be reconciled. For convenience, Table A.1 and Table A.2 are provided to
remind the reader of the relevant whole-body control formulae.

4.2.1 Equating Representations

It is chosen at the outset of this work to use the least-squares formulation of QPs. Thanks to this
decision, the metrics described in Chapter 3 have an almost one to one variable correspondence with the
equations presented in Chapter 2. The most notable exception to this is the optimization variable which
is x in Chapter 3 and χ in Chapter 2. Through a simple redefinition of the optimization variable, i.e.
x := χ, the compatibility and feasibility metrics can be rewritten as shown in Tables 4.1 and 4.2. All
variables maintain the same definitions as explained in Chapter 3; however, the unconstrained objective
(task) optima, χ∗i , require a bit more treatment due to the existence of the equations of motion equality
constraints.

Compatibility Metric Mathematical Formulae

Nuclear norm Ratio (NR) κNR =
‖Ẽ‖∗
‖[Ẽ|f̃ ]‖∗

Optimum Distance (OD) κOD =
∑no
i=1 κ

OD
i =

∑no
i=1 ‖χ∗ − χ∗i ‖2

Optimum Cost (OC) κOC =
∑no
i=1 κ

OC
i =

∑no
i=1 wifi(χ

∗)

Ellipsoid Volume (EV) κEV = det(Bκ) =
∏n
i=1 σi

Ellipsoid Distance (ED) κED =
∑no
i=1 κ

ED
i =

∑no
i=1 ‖cκ − χ∗i ‖2

Table 4.1 – Compatibility metrics formulated using the whole-body controller variables from Chapter 2.
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Feasibility Metric Mathematical Formulae

Optima Distance (OD) φOD =
∑no
i=1 φ

OD
i =

∑no
i=1 ‖cφ − χ∗i ‖2

Ellipsoid Distance (ED) φED = ‖cκ − cφ‖2

Ellipsoid Evaluation (EE) φEE =
∑no
i=1 φ

EE
i =

∑no
i=1 (χ∗i − cφ)

>
P−1
φ (χ∗i − cφ)

Ellipsoid Evaluation (EE) φEE∗ = (χ∗ − cφ)
>
P−1
φ (χ∗ − cφ)

Ellipsoid Volume (EV) φEV = det(Bφ) =
∏nc
i=1 σi

Table 4.2 – Feasibility metrics formulated using the whole-body controller variables from Chapter 2.

4.2.2 Handling Equality Constraints
In the whole-body controller, equality constraints on χ are used to respect the equations of motion and
no relative motion at contact locations. As a reminder the equality constraint for the equation of motion
from (2.33) is expressed as, [

−M(q) S> eJ>(q)
]

︸ ︷︷ ︸
Ad

χ = n(q,ν)︸ ︷︷ ︸
bd

,

and the contact constraint from (2.47) which ensures no relative motion of the contact point is,
[
eJi(q) 0

]
︸ ︷︷ ︸

Aω

χ = −eJ̇i(q,ν)ν︸ ︷︷ ︸
bω

.

While it is possible to project these constraints into the objective functions, difficulties can arise in the free-
floating case (see [Sentis and Khatib, 2005; Mistry et al., 2010]). Therefore, the equality constraints are
used explicitly here. Because of these equality constraints, the unconstrained objective function optima,
which are the task optima, cannot be calculated as χ∗i = E†i fi because the equality constraints are not
taken into consideration. Luckily, the equality constrained least-squares problem admits an analytical
solution (when one exists) as shown in (3.11), which can be applied to the whole-body controller task
optima,

[
E>E A>

A 0

]

︸ ︷︷ ︸
Ê

[
χ
z

]

︸︷︷︸
χ̂

=

[
E>f
b

]

︸ ︷︷ ︸
f̂

(4.4)

⇔ χ̂∗ = Ê−1f̂ . (4.5)

In (4.4), z are the Lagrange multipliers and a solution exists if Ê is invertible. It should be noted that
redundancy in the DoF must be dealt with through regularization of the least-squares problem,

f(χ) = ‖Eχ− f‖+ w0 ‖χ‖ , (4.6)

where w0 � 1 is the regularization weight. The regularization objective function can be incorporated
into (4.10) by redefining E and f as,

E :=

[
E√
w0I

]
(4.7)

f :=

[
f
0

]
, (4.8)
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with I ∈ Rn×n, where n is the dimension of χ, and 0 ∈ Rn. Note that the regularization objective can be
something other than 0. Using (4.5) for an individual task provides the equality constrained optimum,
χ̂∗i for that task,

χ̂∗i = Ê−1
i f̂i, (4.9)

where the first n rows of χ̂∗i , are the primal objective optimum, χ∗i , which can be obtained with,

χ∗i = Snχ̂∗i =
[
I 0

]
Ê−1
i f̂i. (4.10)

In (4.10), Sn is a selection matrix used to extract the first n rows of χ̂∗i , and Sn =
[
I 0

]
with I ∈

Rn×n. Because the unconstrained objective optima is no longer used in the analysis of compatibility and
feasibility, it is necessary to properly distinguish between the optima found from the analytical resolution
of each task objective function and the numerical solution to the constrained whole-body control problem
from (4.1). To do so, the following definitions are created,

Task Optimum: (χ∗i ) The analytical equality constrained optimum of a single
task objective function, determined using (4.10).

Prioritized Optimum: (χ∗) The analytical equality constrained optimum of the
prioritized combination of task objective functions, determined by solving the

problem in (4.1), without the inequality constraints.

Controller Optimum: (χ̃∗) The numerical equality and inequality constrained
optimum of a combination of task objective functions, determined by solving (4.1).

These definitions should help clarify the following sections.
Finally, to calculate the Nuclear norm Ratio, κNR, Ẽ and f̃ must be formed. For this, two options are

available. The first is simply to use the equations described in 3.26 directly, and form the two variables
with only the task Ei and fi ∀i ∈ 1 . . . ntask, i.e.

Ẽ =




E1

E2

...
Entask


 f̃ =




f1
f2
...

fntask


 . (4.11)

This should indicate how compatible the tasks are without regards to the equations of motion. The
second option then, is to include the equation of motion and contact equality constraints from (2.33) and
(2.47),

ẼA =




E1

E2

...
Entask

Ad
Aω




f̃A =




f1
f2
...

fntask

bd
bω



, (4.12)

to form the augmented versions of Ẽ and f̃ and solve the Augmented Nuclear norm Ratio,

κNR
A =

∥∥∥ẼA
∥∥∥
∗∥∥∥

[
ẼA|f̃A

]∥∥∥
∗

. (4.13)

Equation (4.13) should indicate how compatible the tasks are with one another, the system dynamics,
and any contact constraints.
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4.2.3 Computing the Compatibility and Feasibility Ellipsoids

Calculating the compatibility and feasibility ellipsoids for the whole-body control problem is essentially
the same as the examples given in Chapter 3. The generic definition of the χ∗i from (4.10) can be applied
to each task type,

χξ̈
∗

= SnÊξ̈
−1

f̂ ξ̈, (4.14)

χω
∗

= SnÊω
−1

f̂ω, (4.15)
etc.,

because each has been formulated in the same least-squares manner. Dropping the task type superscripts,
the compatibility ellipsoid is computed by combining all of the ntask task optima into the set C,

C =
{
χ∗1,χ

∗
2, . . . ,χ

∗
ntask

}
(4.16)

=
{
SnÊ−1

1 f̂1, S
nÊ−1

2 f̂2, . . . , S
nÊ−1

ntask
f̂ntask

}
. (4.17)

and solving the SDP detailed in (3.51).
Computing the feasibility ellipsoid is similarly straightforward and requires only the concatenation

of the relevant inequality constraints. These constraints come from those described in Sec. 2.3 and only
those which are actively being used on the robot need to figure into the computation of the feasibility
ellipsoid. Thus, given the final Gχ ≤ h used in (4.1), the feasibility ellipsoid can be computed through
direct application of (3.62).

4.3 The Temporality of Compatibility and Feasibility

The compatibility and feasibility metrics and measures developed in this study have, until now, been
regarded from the optic of a single optimization problem. In whole-body control, this represents one
control time step and therefore, a very small part of a whole-body motion. A single control time step is
on the order of 1ms, and can be seen as an instant in time w.r.t. timescales commensurate with robotic
applications. Given that a single optimization problem represents an instant in time, the metrics designed
here to understand the task compatibility and feasibility of the problem are only valid at that instant. By
computing the metrics over the duration of a movement, then a timeline of compatibility and feasibility
is constructed. This timeline should provide an idea of how the task compatibility and feasibility evolves
with the control problem. This introduces the notion of temporality to the concepts of compatibility and
feasibility — something unique to control applications. As the tasks track their references which come
from the servoing of task trajectories, their compatibility and feasibility will evolve and change. Thus,
a clear link between task trajectories and task compatibility and feasibility is created, allowing us to
formulate a method for maximizing the task compatibility and feasibility.

4.4 Maximizing Task Compatibility and Feasibility

The goal of this work is to provide a mechanism by which task compatibility and feasibility can be
maximized for a given whole-body control architecture, by observing the performance of the whole-
body motion and optimizing the task trajectories to maximize task compatibility and feasibility. Given
the various task compatibility and feasibility metrics developed in this chapter, a problem could be
formulated using any combination of these metrics as optimality criteria. However, two simple notions
can be extracted from the developed metrics. Firstly, task compatibility is at a maximum when the task
optima, χ∗i are all coincident, or in the null spaces of the other task objective functions. Secondly, task
feasibility is maximized when the tasks are near the feasibility ellipsoid center, i.e. far from the control
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constraints. We can easily combine these two concepts by trying to move the task optima, χ∗i , to the
center of the feasibility ellipsoid, cφ. Doing so, would shrink the space between the task optima, thereby
improving their compatibility, and distance the task optima from the constraints, thus improving their
feasibility. Therefore, to maximize task compatibility and feasibility, the following optimization problem
is formulated,

argmin
χ̌i(k)

‖χ̌i(k)− cφ(k)‖22 (4.18)

s.t. A(k)dχ̌i(k) = bd(k), (4.19)

where k is the control time step, and χ̌i is the objective variable. The equality constraint in (4.19)
contains the equations of motion for the system from (2.9), which are repeated here:

[
−M(q(k)) S> eJ>(q(k))

]
︸ ︷︷ ︸

Ad

χ̌i(k) = n(q(k),ν(k))︸ ︷︷ ︸
bd

. (4.20)

This optimization can be performed at each time step over the full control horizon of the movement,
k = 0, 1, . . . , nh,

X∗i = argmin
Xi

‖Xi − C‖22 (4.21)

s.t. AXi = B (4.22)

where,

Xi =




χ̌i(k)
χ̌i(k + 1)

...
χ̌i(k + nh − 1)


 C =




cφ(k)
cφ(k + 1)

...
cφ(k + nh − 1)


 A =




A(k)
A(k + 1)

...
A(k + nh − 1)


 B =




b(k)
b(k + 1)

...
b(k + nh − 1)


 .

(4.23)

Equation (4.21) defines a whole-body NMPC problem. The optimum of this problem, X∗i , then contains
all of the new objective optima which would maximize the ith task’s compatibility and feasibility,

X∗i =




χ̌∗i (k)
χ̌∗i (k + 1)

...
χ̌∗i (k + nh − 1)


 . (4.24)

By optimizing Xi in (4.21), the task trajectory is modified. While this is the ultimate goal of our work, the
tasks must nevertheless attain their specified goals. These goals are typically specified by the trajectory
waypoints. If (4.21) is solved, then it is likely that the optimized task trajectory will deviate wildly from
the original task trajectory. To avoid this behavior, and ensure that all task waypoints are achieved,
constraints must be placed on Xi. Here, constraints are developed for an operational-space acceleration
task, but constraints can also be applied to joint-space acceleration tasks and wrench tasks using similar
techniques. To enforce position constraints on an operational-space acceleration task, the relationship
from (2.15) can be rewritten,

Eξ̈i (k)χ̌i(k) = f ξ̈i (k), (4.25)

with
Eξ̈i (k) =

[
Ji(q(k)) 0

]
and f ξ̈i (k) = ξ̈

des
i (k)− J̇i(q(k),ν(k))ν(k). (4.26)

Rearranging terms gives,
ξ̈

des
i (k) = Eξ̈i (k)χ̌i(k) + J̇i(q(k),ν(k))ν(k). (4.27)
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Given position constraints on the task trajectory in the form of,

ξimin
(k) ≤ ξdes(k) ≤ ξimax

(k), (4.28)

and using discrete integration,

ξdes
i (k) = ξdes

i (k − 1) + hξ̇
des
i (k − 1) +

h2

2
ξ̈

des
i (k − 1) (4.29)

ξdes
i (k) = ξdes

i (k − 1) + hξ̇
des
i (k − 1) +

h2

2

(
Eξ̈i (k − 1)χ̌i(k − 1) + J̇i(q(k − 1),ν(k − 1))ν(k − 1)

)

(4.30)

a relationship is established between task position constraints along the task trajectory and the optimiza-
tion variable χ̌i. Reformulating (4.28) and (4.30) produces the following inequality constraint,

ξimin
(k + 1) ≤ ξdes

i (k) + hξ̇
des
i (k) +

h2

2

(
Eξ̈i (k)χ̌i(k) + J̇i(q(k),ν(k))ν(k)

)
≤ ξimax

(k + 1) (4.31)

hmin(k + 1) ≤ Eξ̈i (k)χ̌i(k) ≤ hmin(k + 1) (4.32)

with

hmin(k + 1) =
2

h2

(
ξimin

(k + 1)−
(
ξdes
i (k) + hξ̇

des
i (k)

))
− J̇i(q(k),ν(k))ν(k) (4.33)

hmax(k + 1) =
2

h2

(
ξimax

(k + 1)−
(
ξdes
i (k) + hξ̇

des
i (k)

))
− J̇i(q(k),ν(k))ν(k). (4.34)

Putting (4.32) in matrix form gives,
[
Eξ̈i (k)

−Eξ̈i (k)

]

︸ ︷︷ ︸
Gi

χ̌i(k) ≤
[
hmax(k + 1)
−hmin(k + 1)

]

︸ ︷︷ ︸
hi

(4.35)

Gi(k)χ̌i(k) ≤ hi(k). (4.36)

Finally, concatenating (4.36) over the entire control horizon using the variables,

Gi =




Gi(k)
Gi(k + 1)

...
Gi(k + nh − 1)


 Hi =




hi(k)
hi(k + 1)

...
hi(k + nh − 1)


 , (4.37)

produces the inequality constraint,
GiXi ≤ Hi. (4.38)

Introducing (4.38) into (4.21), allows the NMPC problem to take into account position constraints on
the task trajectory,

X∗i = argmin
Xi

‖Xi − C‖22 ∀i ∈ 1 . . . ntask (4.39)

s.t. AXi = B (4.40)
GiXi ≤ Hi. (4.41)

The constraints defined by GiXi = Hi require that position constraints for each time step in the trajectory
exist. At the waypoints along the trajectory the margin for error should be low and thus tightly con-
strained. Between these waypoints, there is less need for staying close to the original trajectory. During
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these phases of the trajectory, less stringent spatial bounds can be applied to the trajectory optimization.
Methods for determining these bounds are not proposed here.

It should be noted that the optimization problem developed here is non-linear, non-convex, time-
varying and possibly discontinuous. These factors make its resolution numerically complex, and poten-
tially intractable in time scales which would be useful for robotics.

4.5 Conclusions
In this chapter, the objective compatibility and feasibility metrics developed in Chapter 3 are translated
into task compatibility and feasibility metric through a few basic reformulations of the original metric
definitions. However, these metrics remain to be tested on a real example and this is the goal of Chapter 6.
It should be reiterated that the reason for developing these metrics is simply to better understand why
tasks are incompatible and/or infeasible, and how this evolves over the course of the motion execution.
Such insight would be invaluable for operators for tuning gains, parameters, and replanning.

Beyond simply understanding task compatibility and feasibility, the metrics also help us to understand
how best to maximize task compatibility and feasibility. By developing the optimization problem in
(4.39) which tries to move the task optima towards the feasibility ellipsoid center, task compatibility and
feasibility could be maximized while ensuring that task trajectory waypoints are attained. This means
that it is possible to seek task trajectories which improve both the compatibility and feasibility of the
overall movement, while respecting the original intent of the movement. This is of course predicated on
the assumption that one or more task trajectories can be modified, and that there exist such trajectories
which improve task compatibility and feasibility.

Unfortunately, the full horizon whole-body NMPC problem defined by (4.39) is computationally
difficult to solve due to its dimension, non-convexity, and time-dependence. While it is likely possible
to determine a locally optimal solution to the problem, doing so would take too much time (as of this
writing) to be used online. However, it could be used to optimize planned task trajectories for maximal
compatibility and feasibility, prior to execution. A common alternative, is to solve (4.39) over a short
preview horizon, rather than the whole trajectory. Reducing the problem dimension might make it
tractable in task servoing time scales, given the many advances in whole-body NMPC (see Sec. 1.3.3).

Besides the complexity of any whole-body NMPC problem, solving (4.39) is particularly challenging
because it requires the computation of the feasibility ellipsoid at each time step. While the feasibility
ellipsoid is useful for compactly describing the constraint set, it may be overkill when only the approximate
center is needed. To this end, another approach would be to use the analytic center, which can be found
using,

argmin
χ

−
∑

(log (hwbc −Gwbcχ)) , (4.42)

where hwbc and Gwbc are the inequality constraint equations of the whole-body controller (see p. 434 of
[Boyd and Vandenberghe, 2004]). The NMPC objective function from (4.18) could then be expressed as,

argmin
χ̌i(k)

−
∑

(log (hwbc(k)−Gwbc(k)χ̌i(k))) (4.43)

s.t. A(k)dχ̌i(k) = bd(k) (4.44)
Gi(k)χ̌i(k) ≤ hi(k), (4.45)

which would drive the task optima towards the analytic center of the constraint set, while respecting the
position bounds of the original task trajectory defined by (4.36). This computation is far less complex
than that needed for the feasibility ellipsoid, and could make the proposed NMPC problem tractable.
However, the complexities of integrating the whole-body dynamics at each optimization iteration remain
an issue.

Sadly, even if this problem can be rendered numerically efficient, it still does not solve the issue of
modeling errors and uncertainties. Despite the robustness of predictive methods, there will always be
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errors in the model used. These errors lead to incompatible and infeasible tasks and are only seen when
the tasks are executed. For these reasons, a model-based solution to task compatibility and feasibility
may not be possible or even desirable. Consequently, it is necessary to explore other avenues of resolution
using model-free approaches.
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Chapter 5

A Model-Free Approach to Maximizing
Task Compatibility and Feasibility

Knowing that a model-based method for maximizing task compatibility and feasibil-
ity is numerically intractable for the moment, in this chapter, we approach the same
problem from a model-free perspective. Specifically, the task servoing, whole-body
control and low-level torque control are viewed as generic policies, which are pa-
rameterized by the task trajectories provided by the high-level task planning. From
there, a simple series of cost functions are developed, which allow the side-effects
(performance degradation) of task incompatibility and infeasibility to be measured.
With the parameterized policies and cost functions, we develop a task compatibility
and feasibility maximization algorithm, which uses model-free policy search tech-
niques to optimize the task trajectories.

5.1 Introduction

The model-based techniques for measuring and optimizing task compatibility and feasibility developed
in Chapter 4, provide insight as to why tasks are or are not executed as planned, and offer the potential
to optimize them if needed. However, the complexity of the problem developed in Sec. 4.4 leads to a
problem which may or may not be solvable in reasonable timescales. Furthermore, these model-based
methods are subject to modeling errors. Consequently, model-based optimization may not be the best
solution for removing task incompatibility and infeasibility, which is due in part to modeling errors [Prete
and Mansard, 2016]. Because of these issues, the obvious solution is to use model-free techniques. More
specifically, Model-Free Policy Search (MFPS), has been shown to be a powerful alternative to model-
based planning (optimization) for dynamic robot tasks [Deisenroth et al., 2013].

In this chapter we show how MFPS can be integrated into the model-based control architecture
presented in Fig. 1.3 in order to iteratively improve task trajectories to maximize task compatibility and
feasibility. To do so, the task compatibility and feasibility problem is posed using the MFPS state-action
formulation. The problem is formulated in such a way that any generic whole-body control architecture
can be included into the control policy and by rolling out the policies, the real-world execution errors can
be captured. The parameters of policy are specified at the task level and do not require any special task
formulation. A series of cost functions are then developed to measure the effects of task incompatibility

85
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and infeasibility on the overall whole-body motion execution. Using the model-free formulation and cost
functions, a Task Compatibility and Feasibility Maximization (TCFM) algorithm is developed. Important
practical considerations, such as how to parameterize the policy, and different update strategies are
explored. The formulation and TCFM algorithm are then demonstrated using a simple example problem.

5.2 Model-Free Formulation
agent

control
architecture
πθi(s(k))

environment
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s(k + 1) = P(s(k),a(k))

Figure 5.1 – In MFPS, the problem is
composed of an agent (control architec-
ture) which interacts with its environ-
ment (robot + surroundings) using ac-
tions, a(k), the environment’s state, s(k+
1), changes and a cost, j(k) is associated
with that interaction.

To develop an MFPS algorithm for maximizing the compat-
ibility and feasibility of one or more tasks, the problem must
first be formulated in the standard MFPS fashion by defin-
ing the agent, environment, states, and actions. This helps
define clearly how control policies can be developed, which
exploit an underlying model-based control architecture. The
components of MFPS are represented graphically in Fig. 5.1.

5.2.1 Agent & Environment

The agent is an abstract entity which decides what action,
a(k), to take at time k, given the current state, s(k), of its
environment . In this case, the environment consists of the
robot and its surroundings, which are everything outside of
the robot which can interact with or have an impact on the
robot. The agent makes its decisions using a control policy ,
πθ(s(k)). Here, the policy is the robot control architecture
being used. More details on policies are provided in Sec. 5.2.3

5.2.2 States & Actions

The robot state, s(k) is captured by its q and ν variables.
These two pieces of information indicate the precise state
of the robot w.r.t. some world frame, at the discrete con-
trol time step k. For the purposes of this study, the robot’s
surroundings are encoded by the wrenches and contact con-
straints used within the control. It may be advantageous for
other applications to develop a more detailed encoding for
the environment (e.g. depth map, symbolics, etc.) but here,
the concern is how well tasks are performed without regard
to why they are being performed, thus such encodings would
only add superfluous data.

The transition dynamics, s(k + 1) = P(s(k),a(k)), are
governed by continuous time second order dynamics; however, because the states must be sampled in order
to control the robot (discrete time control) they are represented as discrete quantities. The application
and removal of contacts, whether internal to the robot or between the robot and environment, produces
discontinuities in these dynamics. The actions, a(k), are the actuator torques, developed at each control
instant, a(k) = τ (k). The actuator torques cause the robot to move, changing its state, and possibly
changing its state of interaction with the environment (i.e. contacts). Torques are considered here, but
forces (linear actuation) can also be part of the agent’s action vector. Again, these actions are generated
using discrete time control, and are therefore discrete in the formulation.
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5.2.3 Policies
We assume that a model-based whole-body control architecture is being used to control the robot. The
policies,

a(k) = π (s(k)) , (5.1)

determine the action at time k given the current state of the robot in its environment1. Since the actions
are the torques computed by the whole-body controller and the states the robot’s state and its contacts
with the environment, then the policy must contain the whole-body controller. The whole-body controller
is provided with desired task values by the task servoing level, therefore any task servoing controllers
being used are also contained within π (s(k)). Moving up the control hierarchy, the task servoing level
is fed with reference task values by the task trajectories. The policies, therefore, provide mappings from
task reference inputs, ν̇ref

i , ξ̈
ref
i , etc. ∀i ∈ 1, 2, . . . , ntask, to actuator torques, τ . This mapping is detailed

in Fig. 5.2, in which all of the internal workings of, π (s(k)), are indicated by the red bounding box.
Formulating the control policies in this manner means that they are directly dictated by the task

trajectories. Thus, whatever parameterization is used to generate the task trajectories is therefore the
policy parameterization.
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Figure 5.2 – A visual description of the MFPS policy formulation and parameterization. The parame-
terized policy generation function is the collection of task trajectory generators. Their parameters are
the policy parameters. The policies then contain the task servoing and whole-body control layers of the
model-based control hierarchy. This policy determines the actions to take, (torques), given the current
state of the environment.

5.3 Policy Parameterizations
Given the high dimensionality of the system’s states and actions, it is necessary to seek a lower dimensional
representation, which can be more easily manipulated. This can be accomplished by using a parameterized
function to generate the policy,

πθ(s(k)) = ρ(θ), (5.2)
1Here, control policies are deterministic and time-dependent, unless otherwise indicated.
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where θ is a vector of parameters which dictate the resulting policy, πθ. By design, the task reference
values provided by the task trajectories dictate the resulting control policy. Therefore, any valid trajectory
parameterization is also a valid policy parameterization. This has the advantage of easily being integrated
into existing control schemes.

A variety of representations can be employed (e.g. splines, polynomials, etc.) for producing task
trajectories. It is the ensemble of task trajectory generators, and their parameters, θi, which then
constitute the policy parameterization, ρ(θ) in (5.2), and,

θ =




θ1

θ2

...
θntask


 .. (5.3)

The ρ(θ) function is therefore simply the set of task trajectory generators, and the reference output of
these trajectories dictates the policy executed by the robot. The choice of trajectory generation scheme
has a large impact on the manner in which ρ(θ) behaves when components of θ are modified, and they
can roughly be broken up into two main categories:

1. Parameterizations learned from existing trajectory demonstrations.

2. Parameterizations based on task keyframes or waypoints.

Here we look at both categories, and detail a few specific methods applied to the problem of task com-
patibility and feasibility.

5.3.1 Learning From Demonstration
When one or more task trajectories are provided a priori, it is necessary to parameterize these preexist-
ing trajectories in order to parameterize the policy. Associating a parameterized function with one or
more trajectories is typically accomplished using regression techniques, where the trajectory data is ap-
proximated by a parametric or non-parametric function [Atkeson and Schaal, 1997]. Despite their name,
non-parametric functions, such as Gaussian Processes (GPs), do have parameters but the number of those
parameters is unbounded. These functions must project the trajectory (typically a non-linear function in
time) into a higher dimensional space where linear regression can be used to approximate the projected
data, or trajectory. Any number of functions can be used, but polynomials and most prominently, lin-
ear combinations of non-linear kernel functions, are commonly implemented [Billard et al., 2008; Argall
et al., 2009]. Many different kernel functions exist, but all consist of meta-parameters which are found
through regression and optimization techniques. Once this function is learned, it is generally coupled
with a servoing controller to ensure that the resultant trajectory is stable. In recent years, Dynamical
Movement Primitives (DMPs) and their variants have become a popular way to learn trajectories from
demonstration [Ijspeert et al., 2013].

Dynamic Movement Primitives

DMPs are used to learn movements or trajectories from demonstration. They are based on point or limit
cycle attractor landscapes augmented with a learned forcing term to guide the trajectory from start to
goal, and typically some additional coupling terms to regulate their temporal evolution. In the context
of humanoid robotics, DMPs present an interesting tool with which to learn, modify and store various
routine movements or tasks. In Sec. A.4 of the Appendix, a DMP formulation based on [Kulvicius et al.,
2012] and [Stulp, 2014] is detailed. The first two lines of the DMP presented in (A.1),



ẏ
ż
...


 =




z/τ
((K(yγ − y)−Dz) + v · f(x,θ))/τ

...


 , (5.4)
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are the most important because they show the primary elements of the DMP. The most important of
these terms is the forcing term, f(x,θ), which parameterizes the trajectory. This forcing term is a non-
linear kernel based function, whose meta-parameters, θ, are determined through regression fitting a set
of similar trajectories which have been demonstrated by an expert. These kernel meta-parameters, which
in this case are the affine slopes and offsets, a and b, as well as the Gaussian centers and widths, c and
σ2,

θi =




a
b
c
σ2


 , (5.5)

can then be used as policy parameters in ρ(θ). The number of meta-parameters, θi, depends on the
number of kernels used in f(x,θ), which can be chosen through heuristics or with automated methods.

5.3.2 Waypoint Based Methods
If a trajectory is not provided for the task ahead of time, then it is necessary to generate one from the
goals of the task. These goals are specified most commonly through keyframes, or waypoints, which
represent task coordinates of particular importance. These coordinates are specific to the task being
controlled and may be Cartesian poses, ξ, joint angles, q, wrenches, eω, and so on. Inherent in these
waypoints are the overall objectives of some task; e.g., for a point-to-point reaching task, the waypoints
are given by the start and goal states of the reach. This is the manner in which tasks are generally
specified by an expert operator in human planning [Yanco et al., 2015].

In this study, it is assumed that the objective of any trajectory is to pass through the waypoints or
else they should not be specified. For instance, a single waypoint for an operational-space acceleration
task, λi, with 6 DoF in this case, ξ, is given by,

λi = ξi =




ξ1
ξ2
. . .
ξ6



i

(5.6)

while a set of nλ waypoints is denoted,

Λ =
[
λ1 λ2 . . . λnλ

]
. (5.7)

For all trajectory generation schemes, an associated time law is either generated or required. Thus, it is
sometimes necessary to associate a corresponding time step, tλi , to each waypoint, λi. This can be done
by hand or via some heuristic method, and should provide the waypoint times in the vector,

tλ =
[
tλ1 tλ2 . . . tλnλ

]
. (5.8)

From Λ, and possibly tλ, a trajectory should be generated, which outputs,
[
ξref ξ̇

ref
ξ̈

ref
]

(5.9)

at each time, t, from tλ1 to tλnλ .
As proposed by [Lober et al., 2016], for policy parameterization, the waypoints and their times can

be used,
θi =

[
λ>1 λ>2 . . . λ>nλ tλ1 tλ2 . . . tλnλ

]>
. (5.10)

If one or more waypoints and times are fixed, then a subset of θi can be used in the policy parameters.
Each case depends on the task being executed.
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Gaussian Process Trajectories

Given Λ and tλ, a trajectory generator should be able to produce a smooth (twice differentiable) trajectory
which respects the given times. The output at each time step is the task reference values. For this,
generators such as splines, polynomials, and blended linear motions, are all good candidates. Though, to
go a bit further, it would be useful if the generator produced not only a trajectory, but bounds on the
trajectory. That is to say, at the specified waypoints, near perfect accuracy is desired or else they would
not have been specified; however, between waypoints, having some margins for error in the trajectory
could be useful. One example would be to provide bounds for the NMPC problem described in Sec. 4.4.
These margins for error then represent spatial variance in the trajectory.

Trajectory variance is typically calculated from multiple demonstrations of the same movement [Cali-
non et al., 2010; Kormushev et al., 2010]. Unfortunately, demonstration data is not always available, and
it is advantageous to be able to compute task variance with only waypoint data. For this purpose, there
are no “off the shelf” solutions. However, inspiration can drawn from the field of Gaussian Process (GP)
regression. GPs, are widely used in machine learning for modeling complex data sets [Rasmussen and
Williams, 2006]. They belong to the family of kernel based supervised learning techniques and are used
to stochastically model relationships between input and output data. Depending on the kernel function
used to compute the GP, they are mathematically similar to b-splines, but with the added advantage of
providing an associated prediction variance for each predicted output mean. The details of GP regression
are provided in Sec. A.5 of the Appendix.

To exploit GPs for the purpose of trajectory generation, and create a non-parametric stochastic
trajectory generator, one can simply substitute the waypoints, Λ, for b and their time steps, tλ, for a in
the GP equations from (A.14). This process is originally described by [Lober et al., 2015], where firstly,
tλ is determined using a conservative maximum velocity, ξ̇max, between waypoints and by computing,

tθi+1 = tθi +
‖λi+1 − λi‖2

ξ̇max
∀i ∈ 2, 3, . . . , nλ, (5.11)

with tθ1 = 0.0s. Evaluating the GP equations at each new time step, t, using Λ and tλ, outputs a
trajectory mean, ξµ(t), and variance, ξ2

σ(t),
[
ξµ(t)
ξσ2(t)

]
=

[
K∗K−1ΛT

K∗∗ −K∗K−1KT
∗

]
= GP(t, tλ,Λ) . (5.12)

With a Gaussian Process Trajectory , or GPT , the input, t, is unidimensional, while the output, ξ, may be
multidimensional. The variable dependencies for terms, K(tλ), K∗(t, tλ), and K∗∗(t) have been omitted
from (5.12) for clarity. The velocity and acceleration terms, ξ̇µ(t) and ξ̈µ(t), are calculated using the
finite difference method.

ξ̇µ(k) =
ξµ(k)− ξµ(k − 1)

h
, (5.13)

and

ξ̈µ(k) =
ξ̇µ(k)− ξ̇µ(k − 1)

h
. (5.14)

In (5.13) and (5.14), h is the control period. To ensure that the velocity goes to zero and smooth out the
start and stop of the motion, two “clamping” waypoints can be added to the movement at the beginning
and end of the GPT.

Selection of the kernel meta-parameters, σk and lk, plays a crucial role in the form of the GPT
generated by (5.12). One option is to hand tune the parameters to attain various smoothnesses and
maximum variance properties. For instance, a larger value of lk generates smoother GPT profiles, but
less variation in variance between waypoints, and the maximum covariance, σk, only affects the variance
term, ξ2

σ, and not ξµ. As such, it may be useful to employ different lk for the calculation of the mean and
variance of the GPT. However, such tuning may render the GP stochastically invalid, i.e. there is no real
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correlation with the provided training data, Λ and tλ. Another option is to find the meta-parameters
through maximum likelihood estimation or maximum a posteriori estimation.

Using these simple equations, a stochastic trajectory generator can be produced which provides a
mean trajectory of task references and variances associated with them. Because GPTs provide both
mean and variance values for each DoF of a task trajectory based on only a set of waypoints, there is
now a way to both parameterize the policy and its variance.

Figure 5.3 – An example of a 3D task trajectory with variance. This figure shows how variance can be
computed given a Gaussian Process Trajectory, or GPT, then mapped to the weights of the individual
DoF of the task.

Stochastic Policies with GPTs

Task trajectories parameterized by GPTs possess both mean trajectory values, ξµ(t), and spatial variances
associated with those means, ξσ2(t), at each time, t. In robotics, this variance information can be used
for purposes such as, bounding a stochastic search space as shown by [Kang and Park, 2014], calculating
task gains as demonstrated by [Buchli et al., 2011], [Calinon and Li, 2012], and [Kormushev et al., 2010],
or blending tasks [Paraschos et al., 2013]. To exploit this variance within the policy, one restriction must
be made on the underlying controller — it must use weighted prioritization (see Sec. 2.4.2)2. In [Lober
et al., 2015] it is shown that the task trajectory variance can be used to infer the relative importance of
the tasks at each time step. This constrains the model-free formulation, but opens up the possibility of
using stochastic policies, π(a(k)|s(k)).

High variance values indicate low imperative for following the trajectory precisely, while low values
express the opposite. It is shown that this information can be exploited to guide the modulation of
task weights in the controller, rendering the tasks more robust to incompatibilities and infeasibilities.
This so-called variance modulated prioritization, is accomplished using a simple linear map between task
trajectory variance and task weight, or priority,

wi(t) =
1− ξσ2(t)

β
, (5.15)

where, wi(t) is the weight vector for task f task at time t, and 1 is a vector of ones with the same
dimension as ξσ2 . When the variance of the movement, ξσ2(t), is high, its value is close to 1 and the
weight/importance of the task diminishes. As ξσ2(t) approaches 0, the importance of the task increases
towards its maximum. The factor β allows one to scale the overall importance of the task relative to the
other tasks, while still maintaining variability. A β > 1 means the variable weight task is less important
than the other tasks, while β < 1 the inverse. This is useful when combining uncritical tasks with

2An alternative approach, which has been explored by Buchli et al. [2011] and Calinon et al. [2014], uses the task variance
for state-feedback gain scheduling. This approach would not place any restriction on the type of whole-body controller used.
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safety-critical tasks such as balancing; however, it does not guarantee that the safety-critical task will go
unperturbed.

In practice, if the variance is too close to 1.0, the weight of the task becomes infinitesimal and the
controller no longer executes it. In order to avoid such behavior, the maximum ξσ2(t) can be bounded
at a value just less than 1.0 (e.g., 0.99 is used here). Figure 5.3 shows an example of a 3-dimensional
Cartesian trajectory generated by a GPT, with the evolution of the mapped weights.

If the tasks are all compatible and feasible, the weight of the tasks does not matter and the mean
trajectory given by ξµ(t), for all the tasks will be executed. However, if this is not the case, then
incompatibilities and infeasibilities will cause the task to deviate from ξµ(t). The amount of deviation
depends on the variance, ξσ2(t), at the instant of incompatibility/infeasibility. The result is a policy which
depends not only on the parameters θ but also on the incompatibilities and infeasibilities generated by
θ. As a result, for the same policy parameters, the policy may produce different actions depending on
the existence and timing of task incompatibilities and infeasibilities. Thus the term, stochastic policy.

Time-Optimal Trajectories

As is the case with GPTs, determining the waypoint time steps, tλ, is not always straightforward and
greatly affects the dynamics of the trajectory. Even through the use of conservative heuristics as in
Sec. 5.3.2, the resulting motion may contain infeasible accelerations and decelerations. Consequently, a
trajectory generator is required for cases where only Λ and maximum velocity and acceleration limits
are given for the task. In the work of [Kunz and Stilman, 2012], a Time-Optimal Trajectory , or TOT ,
generator, which only requires waypoints and limits on the velocity and acceleration, is presented. The
resulting TOT consists of straight line paths between waypoints, with circular blends. The time law
determined by the algorithm provides the fastest trajectory through the waypoints which respects the
velocity and acceleration limits. Thus the TOT duration, tnλ , depends on the velocity and acceleration
limits imposed on the movement. For the policy parameterization, the waypoint times, tλ are no longer
variables which can be manipulated. Therefore, only the waypoints which are deemed “adjustable” are
included in the policy parameters,

θi =




λ1

λ2

...
λnλ


 . (5.16)

5.4 Policy Rollouts
Given a parameterized policy, πθ, the objective is to determine the evolution of the states and actions.
The policy is therefore rolled-out, meaning that the task-set is executed on the robot, either in simulation
or reality, and the state and action data are recorded,

{S,A} = rollout(πθ), (5.17)

where S and A are the sets of the states and actions over the entire rollout. This implies that the full
control architecture described by the parameterized policy, as shown in Fig. 5.2, is employed until the
task execution is complete, meaning that the execution must occur in a finite amount of time and should
be finished in the duration, tπ, dictated by the policy πθ. This duration, tπ, can be based on the largest
task trajectory duration, or dictated by some other high-level means such as the time when a motion is
completed. In the later case, it is possible that πθ will result in a failure (falling for instance) and the
overall motion will never be completed. The policy rollouts are therefore assigned a maximum execution
time, tmax

π > tπ, to allow for possible delays in the task execution but to avoid recording failed rollouts
indefinitely. Here, we arbitrarily select,

tmax
π = 1.5tπ. (5.18)
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5.5 Task Compatibility and Feasibility Cost Functions
In MFPS, the cost function tells an outside observer, or oracle, how to interpret the result of an action
given a set of states, i.e. the policy’s performance. The objective here is to develop cost functions
which allow the incompatibility and/or infeasibility of the tasks, to be measured. Moving to a model-free
approach means that task compatibility and feasibility should no longer be calculated using model-based
metrics, but measured using rollout data. Ultimately, we are concerned with minimizing the side-effects of
task incompatibilities and infeasibilities, which have a negative impact on the whole-body motion. With
this in mind, three cost functions are developed, which capture the key side-effects to be measured. These
cost functions are derived from performance measures, which are commonly used in optimal control, and
calculated a posteriori on the rollout data determined in (5.17).

5.5.1 Tracking Cost
Using the state information S, one can determine how each task evolved over the course of a single rollout.
For any task, the best case scenario is that its objective function is perfectly minimized and therefore zero.
This would indicate that the robot perfectly follows the task reference. Thus, any error in the position
tracking reflects an imperfect optimization of the task error and consequently a task incompatibility or
infeasibility. Using this concept, a Tracking (T) Cost is defined as,

jT =

N∑

k=0

‖ε(k)‖22, (5.19)

where ε(k), is the task position tracking error at time k, and is summed over the total number of time
steps, N . The actual total duration of the rollout is defined as tend

π = Nh, where h is the control sampling
period, and tπ ≤ tend

π ≤ tmax
π . Although (5.19) is applied to acceleration tasks, tracking error can be

computed for wrench and torque tasks as well.
If a task error is perfectly minimized by the controller, then the tracking error is zero, meaning that

the robot perfectly executes πθ. This would indicate perfect compatibility and feasibility. However, if
(5.19) is greater than zero, which is likely, then some incompatibilities and/or infeasibilities are affecting
the task performance. In (5.19), only one task is presented. If multiple tasks are active simultaneously,
then this cost can be calculated for each, i.e. jTi ∀i ∈ 1, 2, . . . , ntask.

5.5.2 Goal Cost
While the tracking cost in (5.19), measures how well each task performed on a whole, it does not indicate
directly if each task attains its goal reference value. This goal reference comes from the task trajectory
and is generally the last waypoint or reference position in the trajectory. We make the assumption that
the ultimate objective of any point-to-point trajectory is to reach its goal reference. This assumption is
based on the idea that any non-cyclic trajectory is designed to move the robot from one point to another
on a specific path. In some cases, only the path matters and the goal is simply part of it, e.g. welding.
In the majority of other cases, the goal is the only state that matters and must be attained, e.g. reaching
for an object.

The criteria for whether or not a task has “attained" its goal reference or not are somewhat vague, as
precision requirements vary on a task by task basis. Therefore, a continuous cost is developed to attribute
increasing costs the further the task is from its goal reference. Thus a Goal (G) Cost is developed as,

jG =

N∑

k=0

kh

tnλ
‖εgoal(k)‖22. (5.20)

The error term, εgoal(k), is the difference between the current task position and its last waypoint λnλ at
the kth time step. In lieu of a final waypoint, for trajectories based on DMPs for example (see Sec. 5.3.1),
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the final position reference from the task trajectory can be used. The error is multiplied by a penalizing
factor kh

tnλ
, which increases linearly from 0.0 with time. Again, tnλ is the final waypoint time step, or the

expected task trajectory duration. If a task does not have a tnλ because its references are static (e.g. a
set point), then the rollout duration, tend

π , can be used instead of tnλ . This means that the distance to
the goal waypoint becomes more important as time elapses. For kh < tnλ , the error is discounted by a
factor < 1.0, while for kh ≥ tnλ the error is increased by a factor ≥ 1.0. Thus as the execution of the
task, exceeds its planned duration, tnλ , the goal error is increased.

The goal cost described by (5.20) can only be zero if the start and goal states are the same, i.e. the
task should not move. Under these circumstances, it may be possible to obtain “perfect” task performance
in the sense that there is zero goal cost. This would also indicate perfect task compatibility and feasibility.
However, for tasks where the start and goal states are not the same, this goal is unattainable because for
k > 1 the error value will be non-zero, and since this value accumulates, the goal cost will never be zero
for the rollout. Nevertheless, if a task does reach its goal, the cost will go to zero at that particular time
step, and the sum will not increase. Such behavior would indicate that the goal has been attained. On
the other hand, if the goal is never attained, then the cost will continue to grow over the course of the
rollout.

5.5.3 Energy Cost
In optimal control, one key performance criterion is the energy optimality of a particular control policy.
Since many policies may successfully accomplish a particular objective, the issue then becomes determin-
ing which does it most efficiently. Given the redundancy of humanoid robots, it is possible that many
whole-body motions exist for the same set of tasks to be performed. Out of these possibilities, one can
determine the most energetically optimal motion by minimizing the actions, a (i.e. the control inputs, τ )
using an Energy (E) Cost ,

jE =

N∑

k=0

‖τ (k)‖22. (5.21)

In terms of task compatibility and feasibility, measuring (5.21) alone does not provide much useful
information on the task performance. However, between two policy rollouts, if one compares their energy
costs and sees a dramatic (> ×2) increase in energy usage, then it is highly likely that the motion has
failed or the task(s) are incompatible and/or infeasible. This can be deduced based on two observations.
Firstly, failures typically cause instabilities in the controller or the dynamics and these will most often
saturate the actuators as the controller attempts to return the robot to a dynamically stable state.
Secondly, when tasks are incompatible and/or infeasible, they generally accumulate large errors at the
servoing level and these large errors generate large reference terms, which in turn cause the controller
to use large torques to compensate. The energy cost is therefore a useful policy comparison measure
between two or more rollouts.

5.6 Combining Cost Functions
Having developed three cost functions which capture various aspects of task performance, and therefore,
task compatibility and feasibility, it remains to be seen how they should be applied. Both the goal and
tracking costs are specific to individual tasks and indicate how well tasks achieved their objectives. The
energy cost, on the other hand, is a global indicator. How these are combined depends on the problem
at hand and the tasks which are being executed.

5.6.1 Task Performance Cost
Both the tracking and goal costs provide different pieces of information about the effects of incompat-
ibilities and infeasibilities on a single task. The tracking cost from (5.19) shows how well the task was
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executed on a whole, without regards for which portions of the task trajectory were more successfully
tracked than others. The goal cost from (5.20) focuses on the how well the primary objective of the task,
i.e. attain the goal task state, was achieved, it does not however, indicate how well the task followed its
trajectory. To determine the overall performance of a single task given its rollout data, the tracking and
goal costs must be combined,

jTP
i = jTi + jGi , (5.22)

to produce a Task Performance (TP) Cost . This cost is a measure of how poorly a single task is performed.
If the cost is near zero, then the performance is near perfect, if the cost is large, then the performance is
lackluster. With (5.22), one can evaluate the effects of incompatibility and infeasibility on a single task.
To measure the cumulative performance degradation of the tasks, the individual jTP

i can be summed,

jTP =

ntask∑

i=1

wij
TP
i , (5.23)

where wi is the task weight if this information is available or applicable3, otherwise, wi = 1.0. The Total
Task Performance Cost , jTP, shows how well the overall task set performed as a weighted sum of the
individual task performance costs. In (5.23), all the tasks are used in the computation of jTP, however,
a subset of the tasks can also be used.

5.6.2 Total Performance Cost

Determining the total Performance (P) Cost of a policy, πθ, is then accomplished by summing the total
task performance cost, (5.23), and the energy cost, (5.21),

jP =
jTP + ϕjE

tend
π

, (5.24)

where jP is the performance cost, and ϕ is an energy scaling factor. The scaling term, ϕ is necessary
because torque vector norms are typically numerically large compared to error norms at the task level.
If not scaled, jE would dominate any jTP. Because policies may differ in durations, and jTP and jE

are integrated over these durations, the sum of these two costs is averaged by the total duration of the
rollout, tend

π .

Scaling The Performance Cost Over Rollouts

The performance cost, (5.24), of the policy, πθ, provides an estimate of how well the whole-body behavior
was accomplished and therefore a quantitative view of the incompatibility or infeasibility of the task set.
However, this scalar estimate has no absolute significance on its own. There is no threshold value for
determining analytically if πθ was successful in a high-level sense. Given this ambiguity, each policy must
be evaluated relative to the original policy in order to see if any improvement in performance has been
made. Taking the jP0 to be the performance cost of the original policy, πθ0

, all πθi are scaled using jP0 ,

ĵPi =
jPi
jP0

, (5.25)

where i indicates the rollout number. This means that the initial, πθ0
, has a feasibility cost equal to 1.0

and any πθi which produces a ĵPi < 1.0 represents an improvement in task performance, and vice versa
for ĵPi > 1.0.

3If hierarchies are used, then one can choose to approximate the levels with weights, or not weight the sum of (5.22) at
all.
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5.7 Task Compatibility and Feasibility Maximization (TCFM)

With the model-free formulation, task parameterizations, and performance cost functions, we can now
develop a MFPS algorithm for optimizing policy parameters to minimize the performance cost(s). By
minimizing these costs, the compatibility and/or feasibility of the task(s) should be maximized.

θi=0

Cost Function

RolloutUpdate Strategy

ρ(θi)

Convergence
Criteria

ρ(θ∗)

{S,A}i
θi

ji

θi+1
πθi

θ∗ πθ∗

T
C
F
M

Figure 5.4 – A depiction of the TCFM policy search cycle. The critical components in this cycle are
the cost function, update strategy, and policy parameterization scheme. This cycle is described in Algo-
rithm 3.

Starting from the initial i = 0 policy parameters, θi=0, the policy, πθi is generated using the param-
eterized function, ρ(θi). Again, ρ(θi) is composed of the various task trajectory generators, and θi are
their “adjustable” parameters, which may affect one or more task trajectories. The generated policy πθi ,
is then rolled out and this produces the state and action data, {S,A}. Given this data, a performance
cost is calculated to evaluate the policy. The result is a scalar cost, ji. Using ji and θi, an update strat-
egy then predicts the next policy parameters, θi+1, to test, which should minimize the policy cost. This
process is known as episodic learning and is iterated until the update strategy converges, or a maximum
number of iterations is exceeded.

Here, an effort is made to not explicitly give the type of cost function or update strategy used within
the MFPS to show that these two components can be defined on a case to case basis. The result is
a vector of optimal policy parameters, θ∗, used to generate an optimized policy, π∗θ, which minimizes
the cost, and therefore maximizes task compatibility and/or feasibility. This Task Compatibility and
Feasibility Maximization, or TCFM, algorithm is depicted in Fig. 5.4 and detailed in Algorithm 3. Three
components remain to be determined, the cost function, the policy parameters, and the update strategy.

In this work, the concern is ensuring that tasks being executed on a whole-body controller are compat-
ible with one another, and feasible according to the system constraints. Thus, either jTP or jP are used
as the TCFM cost function. Of course, given the general nature of MFPS any other cost function could
be used, such as distance walked, or height jumped, if the objective was different. The policy parameters
which are used to modify the policies, also require close consideration. The challenge of determining
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Algorithm 3 TCFM- Policy Search
1: Given initial policy parameters: θi=0.
2: do
3: πθi = ρ(θi) . generate policy from parameters
4: {S,A}i = rollout(πθi) . rollout the policy
5: ji = cost ({S,A}i) . calculate the cost function
6: θi+1 = update strategy (ji,θi) . determine new parameters to test
7: while not converged or i < max iterations . evaluate convergence criteria
8: return θ∗ . return incumbent solution
9: π∗θ = ρ(θ∗) . generate optimized policy

which parameters have a consequential impact on the policy, and therefore the whole-body motion, is
explored in the following section. Similarly, the update strategy has only sets of parameters and their
associated costs to work with and must use only this information to determine the next θi+1 to test.
Doing this efficiently depends heavily on how the update strategy explores the parameter space. Update
strategies are examined in Sec. 5.7.2.

5.7.1 Determining Policy Parameters

The first step of TCFM, is to determine which policy parameters, θ, can be modified, i.e. the “adjustable”
parameters. For example, task trajectories are often parameterized by only starting and goal positions.
Starting positions cannot be changed, because they are dictated by the current robot state. This leaves
only the goal positions to be changed; however, goal positions generally represent the ultimate objective
of the task, i.e. the reason the task exists is to move the robot to this particular goal position. According
to this logic4, the goal positions should not be modified either, leaving no policy parameters, with which
the policy can be modified to decrease the performance cost. In such cases, one must determine a new
parameterization for the task trajectories, which maintains the constraints of the starting and goal task
states, but introduces “adjustable” parameters, which can be exploited to change the policy πθ. From
this, there are two possible manners to proceed:

1. Use learning from demonstration to model the trajectory as a DMP, and use the DMP parameters
to modify πθ. See Sec. 5.3.1.

2. Use the start and goal waypoints gleaned from the original task trajectories and select other inter-
mediate waypoints from these trajectories as “adjustable” waypoints, then use GPT, TOT, or any
other parameterized trajectory generator, to reparameterize the task trajectories. See Sec. 5.3.2
and Sec. 5.3.2.

With these two methods of adding “adjustable” parameters, any set of task trajectories can be reparam-
eterized. If the policy is being created from scratch, meaning that the task trajectory generators need
to be selected, then it is simple enough to choose extra modifiable parameters from the very beginning.
The challenge then is determining which tasks to use for modifying πθ.

The choice of which task parameters to optimize with TCFM is one of primordial importance, and
unfortunately without a definitive answer. Ideally, all tasks would be parameterized to provide parameters
with which to adjust πθ, but practically speaking this introduces too many parameters, with too little
impact on the performance. Despite this conundrum, one can nevertheless proceed fairly easily, by
allowing any principal tasks to be modified. If the task set has one specific purpose, such as a reach, then
another smart choice would be to simply modify the reaching task, leaving all others the same.

4There are cases where the goal position is unimportant or unspecified, namely rhythmic motions. We constrain the
scope of this work to only look at point-to-point motions.
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5.7.2 Update Strategy

The update strategy in TCFM is the component which determines the next policy parameters, θi+1, to
test given a history of parameters and their costs,

〈Θ, j〉 =

〈



θ>1
θ>2
...
θ>i


 ,




j1
j2
...
ji




〉
. (5.26)

Using this data, the update strategy searches the parameter space to determine the θi+1, which best
minimizes the cost. The choice of update strategy for the MFPS is a critical design decision and must be
based on the application. Regardless of the update strategy, there are some common criteria, which must
be met before selecting an update strategy. First and foremost, the relationship between the optimization
variable, θ, and its cost, j, is non-convex and likely discontinuous. This is due to the complexity of the
policy itself, which contains the task servoing and whole-body control layers of the control architecture.
In addition to the policy complexity, each rollout consists of a full task set execution and therefore an
integration of the non-linear rigid body dynamics, or transition dynamics, of the system with potentially
changing contacts. This results in a mapping between θ and j that is not bijective and cannot be
properly described by a differentiable function. Accordingly, any update strategy which is selected must
not depend on analytical cost function gradients. This limits the available update strategy choices to
derivative-free methods.

In addition to the mathematical complexity of the parameter to cost mapping, a serious practical
consideration in update strategy choice is the number of rollouts needed for the update strategy to
converge. This is called the sample efficiency of the update strategy and is an important topic in
robotics, because executing a rollout (evaluating policy parameters) requires either numerical integration
of complex dynamics, or an actual execution of the tasks on a real robot. Performing rollouts in simulation
can be time consuming for complex robots and scenarios, but performing rollouts on real robots can be
dangerous. This is especially true when the robot is a humanoid and can lose balance. Thus, it behooves
the MFPS designer to choose the most sample efficient update strategy available. Consequently, update
strategies such as random search, which are sample inefficient, but simple to implement, are incompatible
with real robotics applications. With these constraints, two categories of update strategies are explored.

Stochastic Optimization

Stochastic optimization is a set of optimization methods which model the underlying parameter, θ, to cost,
j, mapping as a stochastic process where, θ is treated as a random variable with a mean and covariance.
As parameter and cost data, 〈Θ, j〉, are accumulated, the mean and covariance of θ are updated. It is
this update that varies between methods and determines the sample efficiency of stochastic optimization
techniques. The update of the θ mean and covariance is one of the most critical aspects of stochastic
optimization and a number of methods exist to this end. Parameter updates are generally accomplished
with either gradient estimation or probability weighted averaging [Stulp and Sigaud, 2012]. In this work,
two update methods are explored.

PIBB The first, is known as Policy Improvement though Black-Box optimization algorithm, or PIBB

[Stulp and Sigaud, 2013; Munzer et al., 2014]. In PIBB, the probability, pi, given to a particular sample,
θi, is calculated as,

pi = exp

(
−η ji −min(j)

max(j)−min(j)

)
, (5.27)



5.7. TASK COMPATIBILITY AND FEASIBILITY MAXIMIZATION (TCFM) 99

where η is an eliteness parameter which governs the trade-off between exploration and exploitation. Using
these probabilities, the θ mean update is calculated as,

θi+1 = p>Θ, (5.28)

where Θ is the concatenation of the tested parameters (candidate solutions), as shown in (5.26), and p
is the vector of their probabilities.

CMA-ES The second, more well known, method, known as Covariance Matrix Adaptation - Evolu-
tionary Strategy , or CMA-ES, is developed by [Hansen, 2006], and similarly uses techniques tantamount
to natural gradient descent. CMA-ES updates the mean and covariance of the parameter distribution to
maximize the likelihood of 〈Θ, j〉. Additionally, the path taken in the parameter space by the direction
changes of the covariance matrix is guided by a genetic algorithm, hence the Evolution Strategy. The
CMA-ES update process is depicted in Fig. 5.5.

Figure 5.5 – A graphical representation of the CMA-ES policy update process. Here, the distribution of
the parameter and cost data is used to randomly sample the solution space and the results are used to
update the distribution in the direction of the natural gradient. Courtesy of https://en.wikipedia.
org/wiki/CMA-ES.

Despite being more sample efficient than random methods, stochastic optimization techniques still
generally require many rollouts to converge to an optimum. Furthermore, the optima found are typically
local and within the vicinity (in parameter space) of the original parameters. Therefore stochastic op-
timization cannot ensure global optimality, but the local optima that are found are generally robust to
perturbation [Uryasev and Pardalos, 2013]. As an alternative to stochastic optimization, more sample
efficient, but complex update strategies can be used.

Bayesian Optimization

In humanoid robotics, rollouts are time consuming and dangerous, and consequently, sample efficiency
is of the highest importance in TCFM. If the selected policy parameterizations are reasonably small in
dimension (i.e. dim(θ) ≤ 10), then highly efficient update strategies such as Bayesian Optimization, or
BO, can be used. BO derives its sample efficiency from explicitly modeling the latent parameter to cost
mapping using a Gaussian Processes (GP), and then using this model, or surrogate function, to explore
the parameter space. The actual minimization is performed on an acquisition function which combines

https://en.wikipedia.org/wiki/CMA-ES
https://en.wikipedia.org/wiki/CMA-ES
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the cost means and variances provided by the GP to balance exploitation with exploration [Brochu et al.,
2010]. Supplemental details on BO can be found Sec. A.6 of the Appendix.

Because the GP is computationally simple to evaluate (if the problem size is small), fast but sample
inefficient methods can be employed to minimize the acquisition function. Similarly to [Cox and John,
1992], a Lower Confidence Bounds (LCB) acquisition function is used because we are concerned with
minimization,

LCB(θ̂,θ, j) = ĵµ −
√
υĵσ2 , (5.29)

where ĵµ and ĵσ2 are the predicted cost mean and variance according to the surrogate function, and the
term υ is calculated using a variant of the no-regret formulation developed in [Srinivas et al., 2010],

υ = 2 log
(

0.3i
5
2π2
)
, (5.30)

where, i, is the rollout number. The acquisition function can be minimized using any non-linear non-
convex routines. Here, direct search and CMA-ES are used.

If the parameter search space is bounded then BO can provide a global optimum (using direct search
methods), assuming the GP provides a sufficiently detailed model of the latent cost function. The incum-
bent solution is taken as the best parameter and cost observation from the rollouts, 〈θ∗, j∗〉; therefore,
the optimization does not depend on the sequence in which the rollouts are performed. One drawback to
BO is that it does not guarantee convergence in most cases; however, the following criterion can be used
for any generic optimization problem and is exploited here,

‖θnew − θbest‖2 ≤ γ, (5.31)

where θbest are the best observed policy parameters with the lowest cost and γ is a meta-parameter which
dictates the minimum threshold for convergence.

5.8 Conclusions
Using the MFPS formalism, a generic algorithm for maximizing task compatibility and feasibility has
been developed. Three components present critical design choices for the algorithm. The first is the
policy parameterization. How the policies are parameterized depends somewhat on the context of the
whole-body motion, but regardless, this choice directly impacts how a change in the policy parameters, θ,
affects the whole-body motion. This has a strong influence on the policy search, and leads to the second
design choice: the update strategy. Ultimately, the goal is to find optimal policies in the fewest number
of trials, but there is a trade-off between expressive and complex parameterizations, and the number of
rollouts needed to learn policies. Thus, the selected update strategy depends largely on the number of
policy parameters. This is explored in the following chapters.

Finally, the cost function must be chosen. The cost functions developed in this chapter, allow various
aspects of task compatibility and feasibility to be measured indirectly by quantifying their side-effects.
These costs are generic to any task-based controller and can be mixed together to assess the performance
of one or more tasks, or the whole-body motion. A summary of the cost functions can be found in
Sec. A.3 in the Appendix. If the proposed cost functions are effective measures of the performance of the
whole-body motion, then the TCFM algorithm can be tested to determine if by minimizing these costs,
the task compatibility and feasibility can be maximized. It now remains to prove that these costs do in
fact quantify task compatibility and feasibility. To do so, the model-based metrics are first validated in
Chapter 6 and these are in turn used to validate the model-free costs in Chapter 7.
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Chapter 6

Evaluation of Model-Based Metrics

It remains to be seen if model-based task compatibility and feasibility metrics de-
veloped in Chapters 3 and 4 are useful for real problems. To evaluate this, a simple
6 DoF manipulator, using the same whole-body control architecture described in
Chapter 2, is put into controlled task compatibility and feasibility scenarios. Knowing
ahead of time that the tasks in these scenarios are either infeasible or incompatible
allows us to appraise the ability of the metrics to usefully describe the phenom-
ena. Through three experiments, a subset of the metrics are singled out as useful
indicators of task compatibility and feasibility.

6.1 General Experimental Setup

code

In the following sections, a series of experiments are presented which serve as benchmarks for the task
compatibility and feasibility metrics, developed in Chapters 3 and 4. The first experiment explores the
task compatibility metrics. Tasks which are designed to be maximally compatible and incompatible are
used as controls to determine if the metrics accurately indicate compatibility. In the second experiment,
task feasibility is explored. Similarly to the task compatibility tests, tasks which are known to be feasible
and infeasible are applied to the whole-body controller and the metrics are evaluated. Finally, a more
realistic experiment is studied, where the tasks go from being both compatible and feasible to being
incompatible and infeasible, then back to being compatible and feasible, allowing the temporal nature
of both task compatibility and feasibility to be explored. The metrics are evaluated on their ability to
both quantitatively and qualitatively summarize the compatibility and feasibility of the tasks. For all
experiments, the whole-body control problem (and numerical integration) is computed every 10ms and
the task compatibility and feasibility metrics are computed every 100ms. Computation of all metrics
takes approximately 2 seconds in Matlab® using a computer with an Intel® 2.4Ghz Core i7 processor
and 32Gb of RAM.

For the experiments, a simplified model of the PUMA 560 robot provided by the Robotics Toolbox for
Matlab from [Corke, 2011] is used. The PUMA 560 is a 6-DoF robot. The torque limits of the actuators
are as follows:

τ1 = ±100 Nm τ2 = ±80 Nm τ3 = ±60 Nm τ4 = ±40 Nm τ5 = ±20 Nm τ6 = ±10 Nm. (6.1)

The lower and upper joint limits, in addition to some specific configurations used in the proceeding tests
are provided by Table 6.1. The term qN is the nominal posture for starting the robot, qV is the vertical
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posture which puts each articulation in the middle of its joint range defined by [qmin, qmax], and qIF
is an infeasible joint posture which is qmin − 10◦. The qV posture does not solicit the actuators and
theoretically requires zero torque to maintain.

(in degrees) q1 q2 q3 q4 q5 q6

qmin −160 −45 −225 −170 −100 −266
qmax 160 225 45 170 100 266

qN 135 45 −180 0 45 0
qV 0 90 −90 0 0 0
qIF −170 −55 −235 −180 −110 −276

Table 6.1 – The joint position limits and some specific configurations of the PUMA 560 robot simulation
used here. The variable qN is the nominal posture for starting the robot, qV is the vertical posture which
puts each articulation in the middle of its joint range defined by qmin and qmax, and qIF is an infeasible
joint posture which is qmin − 10◦.

6.2 Experimental Setup: Task Compatibility

In this first set of tests, the goal is to understand which task compatibility metrics best identify and
quantify the compatibility of the task set. To study these concepts, a series of multi-task scenarios
are developed, which simulate various compatibility issues. By design, the tasks are either compatible or
incompatible, and the values provided by the metrics are interpreted. For the following task compatibility
studies, three different acceleration tasks are used. The first is an end-effector (EE) position task (f ξ̈EE),
the second is an elbow position task (f ξ̈EL), and the third is a joint position, or postural, task (f ν̇JP). The
elbow and EE tasks constrain 3 DoF and the postural task constrains 6 DoF. Accordingly, there is no
kinematic redundancy left in the robot with the application of these tasks. However, the same cannot
be said for redundancy in χ ∈ Rn which contains ν̇ ∈ R6 and τ ∈ R6, therefore, n = 12. There are no
external contacts and thus no external wrenches, eω, in χ. A regularization term on χ is also used with
w0 = 1e− 5. The task parameters are provided in Table 6.2.

Table 6.2 – Task set for the task compatibility experiments. Kd = 2
√
Kp for all tasks.

Task Type DoF/Link Dimension Weight w Gain Kp

Cartesian EE 3 1.0 10

Cartesian Elbow 3 1.0 10

Joint Position All DoF 6 0.0001 10

To study the effects of task compatibility, three cases are explored:

1. Compatible Tasks

Given the initial starting posture (see Fig. 6.1a), each task state is determined and used as the task
references values in the PD task servoing described by (2.52). This means that the tasks should keep
the robot in its starting posture. Furthermore, because the task references are determined from
task states, which are compatible by virtue of the fact that the robot is already in that posture,
the tasks should be maximally compatible. This scenario therefore represents a control for the
compatibility metrics. Any estimate of compatibility should indicate that it is at a maximum.
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2. Incompatible Tasks
In this case, the elbow and EE task references are set apart such that it is kinematically impossible
for the robot to achieve both reference positions simultaneously. However, both the elbow and
the EE tasks can be reached (kinematically feasible) when executed individually. In Fig. 6.1b
the two reference task positions are indicated by the red and blue spheres for the elbow and EE
tasks, respectively. These references are maximally incompatible from a kinematic standpoint. The
postural task reference is set to the starting posture, qN .

3. Incompatible Tasks Following Trajectories
In this final case, the same positions from case 2 are used, but instead of directly setting them as the
reference values used in (2.52), they are used to generate straight line minimum jerk trajectories from
the starting elbow and EE task positions to these desired positions. These trajectories are shown
by the lines in Fig. 6.1c. Knowing that the final desired positions are incompatible, an evolution in
the task compatibility should be observed as the tasks become more and more incompatible.

For each of the three cases, the robot starts its motion in the qN posture and the movement is executed
for 4 seconds.

(a) Case 1 (b) Case 2 (c) Case 3

Figure 6.1 – The three task compatibility cases. The desired positions for the EE and elbow tasks are
shown by the blue and red spheres respectively. For case 1, the starting positions are the same as the
goal positions so they are not shown. For case 3, trajectories are used and shown by the blue and red
lines.

6.3 Results: Task Compatibility
In this section, each of the three compatibility cases are assessed using the various task compatibility crite-
ria developed in this work. First, the strict compatibility conditions are examined, then the compatibility
metrics are computed and evaluated.

6.3.1 Strict Compatibility
To begin, the most restrictive qualification of strict compatibility is examined. Only case 1 should adhere
to the definition of strict compatibility provided in Sec. 3.38. According to this definition, tasks are
strictly compatible when rank(Ẽ) = rank([Ẽ|f̃ ]). Therefore if,

rank([Ẽ|f̃ ])− rank(Ẽ) > 0, (6.2)

then the set of tasks is not strictly compatible. Again, Ẽ and f̃ are defined in (4.11). Plotting (6.2) for
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(a)

(b) (c)

Figure 6.2 – (a) rank difference for the linear system
of equations defined by the task objective functions.
Only cases 1 and 3 are initially strictly compatible,
but both loose strict compatibility after the first few
time steps do to changes in the desired accelerations.
(b) desired acceleration norms for each task for each
case. (c) zoom on the desired acceleration norms for
task in case 1.

the three cases, Fig. 6.2a is obtained. At the
very first time step both cases 1 and 3 follow to
the notion of strict compatibility with rank(Ẽ) =
rank([Ẽ|f̃ ]) (= 7) < n (= 12). However, strict
compatibility is lost after the first time steps be-
cause the desired task accelerations change the
task objective functions.

Loss of Strict Compatibility

In Fig. 6.2b, the norms of the desired acceleration
vectors for each task and for each case are plotted.
It can be seen for case 2 that the initial desired
accelerations start at non-zero values for the el-
bow and EE tasks and quickly rise to a non-zero
value for the postural task. This explains why,
for case 2, strict compatibility is lost at the first
time step. Cases 1 and 3, however, start with zero
desired acceleration for all tasks but slowly the de-
sired accelerations begin to change. In case 3, this
is due to the elbow and EE trajectories moving
the robot towards incompatible positions, while in
case 1, this is due to a settling of the controller
equilibrium.

Controller Settling To be specific, any incom-
patibility between the objective functions will re-
sult in residual errors for each of the objective
functions. These errors are then amplified by the
task servoing gains. For case 1, this can be seen
in the zoom in Fig. 6.2c, where the first second of
accelerations are depicted. This causes the con-
troller to seek a compromise between the task ob-
jectives based on their priorities and objective er-
rors. Thus, the settling of the controller as the
desired accelerations approach their equilibrium
values asymptotically. This settling also indicates
that the tasks are no longer strictly compatible.
The question then is whether it is the changes in
desired acceleration that cause the loss of strict
compatibility or the loss of strict compatibility
that causes the changes in acceleration?

6.3.2 Compatibility Metrics
Having seen the sensitivity of the strict compatibility criterion, we now proceed with the task compatibility
metrics.

Nuclear Norm Ratio

The first metric to be observed using these three test cases is the Nuclear norm Ratio, κNR. In Fig. 6.3,
κNR is plotted for each case using the Ẽ and f̃ formulations from (4.11). According to the κNR values,
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Figure 6.3 – Nuclear norm ratios κNR and κNR
A calcu-

lated for each case using the standard task-only for-
mulation (see (4.11)) and the augmented equations
of motion formulation (see (4.13)), respectively.

case 1 maintains maximum compatibility through-
out the motion execution. Case 2 on the other
hand, has lower κNR values than case 1, indicating
that its tasks are less compatible. Finally, the κNR

values for case 3 evolve from perfectly compatible
at the outset, to the same incompatibility as in
case 2. This matches the controller response shown
in Fig. 6.2b, and closely mimics the expected be-
havior of the three cases. Thus, the κNR metric
seems to provide a clear indication of the compati-
bility, or lack thereof, in the task set. While useful,
it does not tell us why strict compatibility is lost
even for case 1.

Augmented Nuclear Norm Ratio

If the tasks in case 1 are perfectly compatible ac-
cording to κNR, then strict compatibility should
be maintained. To understand this discrepancy,
one must understand how compatible the tasks
are with the system dynamics. At the bottom of
Fig. 6.3, κNR

A is plotted for each case using the aug-
mented ẼA and f̃A formulations from (4.12), which incorporate the equations of motion as well. Looking
at these graphs, dramatically different evolutions of the task compatibility across the cases are observed.
No longer is case 1 maximally compatible, but rather, only slightly more compatible than case 2. Case
3 fluctuates greatly with the progression of the trajectory and eventually settles near the compatibility
measured for case 2. These measures help understand why even seemingly perfectly compatible tasks, as
in case 1, may not be compatible with the system dynamics. Because the tasks are not fully compatible
with the dynamics, the equality constraints imposed by the equations of motion produce a controller
optimum which does not fully satisfy all three task objective functions. Therefore, we can conclude that
it is a lack of compatibility between the tasks and the dynamics which causes strict compatibility to be
lost and starts the settling behavior.

Optimum Distance

Figure 6.4a shows the Optimum Distance, κOD, metric for the three cases. The top 3 graphs show the
κOD
i for each task and the bottom graph shows their sum. Looking at case 1, we can see that the metrics

measure nearly zero for all three tasks. This makes sense given that the tasks are designed to keep the
robot exactly where it starts, and the χ∗i needed to do so is roughly the same for all of the tasks. For the
elbow task, the κOD

EL in cases 2 and 3 reach large values which saturate the sum of the metrics, κOD. This
occurs because the elbow task optimum1, χ∗EL, distances itself (in a Euclidean sense) from χ∗ in the first
time steps for cases 1 and 2. This can be seen in Fig 6.5 where the norm of χ∗EL is plotted. This simply
indicates that the elbow task optimum has changed but does not prove that the prioritized optimum, χ∗,
has not changed. To ensure that the growth of the κOD metric is indeed caused solely by change in χ∗EL,
the norm of χ∗ is also plotted in Fig. 6.5. Looking at the variations in ‖χ∗‖ it is clear that χ∗ moves
very little compared to χ∗EL, and the increase in κOD is due only to the change in χ∗EL.

1See Sec. 4.2.2 for task, prioritized, and controller optimum definitions.
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(a) κOD (b) κOC (c) κED

Figure 6.4 – Computation of the task compatibility metrics for the three compatibility cases studied here.
(a) shows the Optimum Distance (OD) metric. (b) shows the Optimum Cost (OC) metric. (c) shows the
Ellipsoid Distance (ED) metric.

Optimum Cost

Figure 6.5 – These figures show the variations of
the optimal values for the elbow position task,
χ∗EL, and the prioritized optimum, χ∗, for all
three cases and demonstrate that the displace-
ment of χ∗EL modifies the κOD metrics shown in
Fig. 6.4a, not the changes in χ∗.

Despite the drastic change in χ∗EL, what is interesting
is that a similar drastic increase is not observed in the
Optimum Cost metrics, κOC. In Fig. 6.4b, the cost
metrics for each task as well as their sum are plotted for
the three cases. Given the evolution of κOD

EL one would
expect to see very large cost increases for the elbow
task in cases 2 and 3; however, the rise in κOC

EL is not
comparable with that of κOD

EL . Therefore, even though
χ∗ and χ∗EL are far in a Euclidean sense, χ∗ does a
reasonable job of minimizing f ξ̈EL. To understand why
this occurs, χ∗EL and χ∗ are mapped into the objective
space of f ξ̈EL and the norm their difference,

‖EELχ
∗
EL − EELχ

∗‖ = 5.46, (6.3)

shows that the two solutions are not as discordant as
would be expected from observing the κOD metric data.
This happens because the null spaces of the task op-
tima are not well captured by distance metrics because
defining an optimum inherently requires that all dimen-
sions of χ be specified. In Euclidean space, these values,
which have no impact on the task objective functions,
contribute to the norms.
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Ellipsoid Distance

Given the distance of χ∗EL from the other task optima, the compatibility ellipsoid is likewise highly skewed
and the Ellipsoid Distance metrics, κED, are therefore not very instructive. Looking at Fig. 6.4c, all of
the κED metric evaluations for the different tasks in cases 2 and 3 show what should be interpreted as
incompatibility. However, looking at Fig. 6.6, it is clear that these large metric values are due to the
displacement of the compatibility ellipsoid center, cκ, with respect to the prioritized optimum, χ∗. The
ellipsoid center is displaced as a result of the displacement of χ∗EL in cases 2 and 3. Case 1 does not
exhibit these behaviors because its elbow task does not change.

Ellipsoid Volume

Figure 6.6 – Shows the distance between the
compatibility ellipsoid center and the priori-
tized optimum and the Ellipsoid Volume (EV)
compatibility metrics. The computation of the
compatibility ellipsoid is highly sensitive to the
sparsity of this problem.

Unfortunately, by observing the κEV metrics for each
case in Fig. 6.6, it is clear that something is not correct
with the compatibility ellipsoid calculations. In theory,
the volumes of the compatibility ellipsoids should be
greater for the incompatible cases, than that of the com-
patible case; however, the contrary is presented. This
is due to the sparsity of the problem.

In case 1, the three task optima are nearly identi-
cal and the compatibility ellipsoid problem is trying to
fit a 12-dimensional ellipsoid to 3 closely spaced points.
After a few iterations, the SDP solver ascertains that
the problem is unbounded and stops. This results in a
well centered ellipsoid, but with radii that do not tightly
fit the task optima. In cases 2 and 3, the solver never
converges on a solution, as a result of the sparsity of
the given problem, and returns the last best approxi-
mation of the compatibility ellipsoid. The result in this
case is a highly skewed (long in one dimension) ellipsoid
which, again, poorly fits the task optima. Interestingly,
because case 1 is unbounded, the solver returns an ellip-
soid which is much larger in volume than the ellipsoids
calculated in cases 2 and 3. This occurs because one of
the radii of the case 1 compatibility ellipsoid explodes
numerically in the unbounded direction. The fluctua-
tions in κEV for case 1 are the result of numerical insta-
bilities in the SDP problem due to the ill-conditioning
of Bκ.
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6.4 Experimental Setup: Task Feasibility

For these tests, the goal is to understand which task feasibility metrics best identify and quantify the
feasibility of a single task. To do so, the same three basic scenarios from the task compatibility study
in Sec. 6.2 are used: when the task is completely feasible, completely infeasible, and goes from feasible
to infeasible via a trajectory. For the following, only a joint position, or postural, task (f ν̇JP) is used. A
regularization term (see (4.1)) on χ is also used with w0 = 1e − 5. The task and constraint parameters
are provided in Tables 6.3 and 6.4.

Table 6.3 – Task set for the task feasibility experiments. Kd = 2
√
Kp for all tasks.

Task Type DoF/Link Dimension Weight w Gain Kp

Joint Position All DoF 6 1 10

Table 6.4 – Constraints for task feasibility experiments.

Constraint Type DoF/Link Dimension

Joint Limit All DoF 6× 2

Torque Limit All DoF 6× 2

To study the effects of task feasibility, three cases are explored. For each of the three cases, the robot
starts its motion in the qV posture and the movement is executed for 5 seconds.

1. Feasible Task

In this case, the postural task is set to track its initial posture, qV , (see Fig. 6.7a), i.e. not move.
Given that the posture held is qV , the robot should be in a state which needs zero torque and is
farthest from the joint position limits. This scenario therefore represents a control for the feasibility
metrics, and any estimate of feasibility should indicate that it is at a maximum.

2. Infeasible Task

In this case, the postural task reference is set immediately to qIF = qmin − 10◦. This reference is
outside of the joint position range and should therefore violate the joint position limit constraints.
In Fig. 6.7b, this is depicted by the overlay of the initial posture, qV, and the final posture where
the robot stops as it tries to attain qIF.

3. Infeasible Task Following a Trajectory

In this final case, the same posture reference from case 2 is used but instead of directly setting it
as the reference values used in (2.52), it is used to generate a minimum jerk trajectory from the
starting qV posture to the desired infeasible posture, qIF , as shown in Fig. 6.7c. Knowing that the
final desired posture is incompatible, an evolution in the task feasibility should be observed as the
task becomes increasingly infeasible.



6.5. RESULTS: TASK FEASIBILITY 111

(a) Case 1 (b) Case 2 (c) Case 3

Figure 6.7 – The robot motions for the three task feasibility cases. In case 1, the robot maintains its
initial feasible posture. In case 2, the reference posture is set immediately to qIF, an infeasible posture,
and the robot moves quickly to the reference. In case 3, a joint-space task trajectory is used to move the
robot more gradually to qIF.

6.5 Results: Task Feasibility

In this section the feasibility test cases are analyzed using the task feasibility metrics. Using these results,
we are able to determine which metrics are useful for whole-body control problems.

6.5.1 Feasibility Metrics

To demonstrate the evolution of the overall movements, the joint torques and positions for each case are
presented in Fig. 6.8. In case 1, the robot should not move from qV . This can be confirmed by looking
at the joint position evolution and seeing that there are no variations in joint position. Additionally, no
torque is needed to maintain qV and this is clear from the joint torque evolution.

In case 2, the task reference is immediately set to qIF and this causes the robot to move rapidly
towards its lower articular limits. Once the limits are hit, as indicated by the position graphs, the robot
stops moving. This stop necessitates a sharp peak in torque which can be seen as the spikes on the
torque curves. Similar results are found for case 3, but the joint-space task trajectory used to guide the
movement causes the robot to reach its limits more slowly. Again, torque spikes at the joint limits can
be observed.

Optima Distance

The exploration of the various task feasibility metrics is started by first looking at the Optima Distance
(OD) feasibility metric, φOD. Since only one task is being executed, φOD

JP = φOD. At the top of Fig. 6.9a,
the evolution of φOD is presented. The postural task optimum for case 1 is almost perfectly centered in
the feasibility ellipsoid. This makes sense given that the task was designed to maintain the system at a
state where χ is farthest from all limits. This point corresponds roughly to the center of the feasibility
ellipsoid. Looking at case 2, because the initial task reference is set to qIF at the beginning of the control
horizon, its φOD curve actually starts at a non-zero value. This value continues to grow until it saturates
at the moment of hitting the lower joint limits. For case 3, φOD shows similar behavior, but grows more
gradually than the φOD of case 2 because of the task trajectory. Once the robot hits the joint limits, φOD
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Figure 6.8 – Evolution of the joint torques and positions for each of the three feasibility case studies. The
upper and lower bounds are indicated by the darkened black horizontal lines near the y-axis upper and
lower limits on each graph.

for case 3 also saturates. The overall behaviors of the curves match what is expected given the design of
the tasks, but their values are not easily interpreted in and of themselves.

(a) (b)

Figure 6.9 – (a) Optima Distance, φOD, and Ellipsoid Distance, φED, metrics for cases 1-3 of the task
feasibility experiment. Because there is only one task in this experiment, φOD = φED. (b) Ellipsoid
Evaluation metric, φEE, with and without scaling for cases 1-3 of the task feasibility experiment. The
black horizontal line on the upper graph indicates the value of 1.0.
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Ellipsoid Distance

Looking now at the Ellipsoid Distance (ED) metrics, φED, at the bottom of Fig. 6.9a, it can be seen that
it is exactly equal to the φOD metrics. This is because there is only one task in the controller and the
compatibility ellipsoid is simply a point at χ∗JP, thus φ

OD
JP = φOD = φED

JP = φED.

Ellipsoid Evaluation

The Ellipsoid Evaluation (EE) metrics, φEE, are presented in Fig. 6.9b. In the upper graph, the conser-
vative φEE formulation from (3.70) is shown, and in the lower graph, the less conservative scaled version
from (3.72) is shown. Again, because there is only one task, φEE

JP = φEE = φEE∗ .

Figure 6.10 – Torque limit lower
bound inequality constraint on
the q2 articulation for case 2.

For case 1, φEE remains very close to zero, which indicates that it is
well inside the feasibility ellipsoid, and near the center. This confirms
that the postural task is maximally feasible. For case 2, the value of
φEE starts at approximately 4.0, which indicates that the task optimum
is likely infeasible. As the robot moves towards qIF , the value dips into
the feasible φEE < 1 region, but then returns to being infeasible, i.e.
φEE > 1.

This dip can be understood by looking at Fig. 6.10, where the torque
lower limit constraint equation for joint 2 is plotted. At the beginning
of the movement, there is a large error between the current and desired
postures and this generates a χ∗JP with a joint torque which exceeds
the lower torque limit for joint 2. Where the constraints would be
violated because Gχ∗JP > h, the Gχ∗JP line is darkened. As the robot
moves towards the desired infeasible posture, the error is reduced and
thus the optimal torque from χ∗JP reduces as well. This causes χ∗JP to
temporarily move towards the feasibility ellipsoid, and thus the short-
lived increase in task feasibility.

For case 2, as the robot moves towards qIF , the φEE values quickly increase again and saturate at
the joint limits. When the robot hits its limits the task reference values stop changing, and this causes
the saturation. In case 3, we observe a similar trend towards infeasibility, which comes as no surprise,
but this time the φEE values begin near zero as with case 1. The φEE curve for case 3 does not saturate
like case 2, because the joint-space task trajectory continues to change the task reference values, despite
the robot being stopped by its joint limits.

Scaled Ellipsoid Evaluation

At the bottom of Fig. 6.9b, the scaled feasibility ellipsoid is used to calculate φEE. The overall behaviors
of the curves remain unchanged; however, their φEE values are smaller and indicate that the tasks remain
feasible for all cases. This is known to be false and stems from the fact that the ellipsoid is scaled with the
dimension, n, of the problem in order to ensure that it encloses the polyhedron defined by the inequality
constraints. Accordingly, the ellipsoid overly approximates the feasible region of solutions and wrongly
indicates that the task optima are feasible. To confirm that the task becomes infeasible, the 6 inequality
constraints, which govern the lower joint position limits, are evaluated at the prioritized optimum and
plotted for case 3 in Fig. 6.11. This shows that the task is infeasible and these constraints are violated by
the task optimum, i.e. in the active set. Knowing that the task is infeasible, yet the scaled φEE metric
indicates otherwise, this metric may be unsuited for humanoids where n can be much larger.
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Figure 6.11 – The evolution of the inequality constraints for the lower joint position limits for case 3,
evaluated at the prioritized optimum, χ∗. The Gχ∗ line is darkened where the prioritized optimum would
violate the constraint. A violation indicates that the prioritized optimum is infeasible and thus activates
certain constraints in the QP.

Ellipsoid Volume

Figure 6.12 – (top) the Ellipsoid Volume
metric, φEV for the task feasibility experi-
ment. (middle) the norm of the feasibility
ellipsoid center. (bottom) the norm of the
postural task optimum.

Finally looking at the φEV metric in Fig. 6.12, one can ob-
serve an interesting phenomenon: for all three cases, the vol-
umes of the feasibility ellipsoid remain constant. The values
of φEV are expectedly large; however, being in the range of a
300 octillions2, may cause reason for doubting the utility of
such a measure. Nevertheless, the problem explored here is
not highly constrained and may not be the best case study
for this particular metric.

In the middle of Fig. 6.12, the norm of the feasibility el-
lipsoid center for each case are plotted. At the bottom of
Fig. 6.12, the norm of the χ∗JP for each case are plotted.
Looking at these two plots for cases 2 and 3 reveals that
the ellipsoid centers are moving great distances, while the
task optima are moving much less comparatively. There-
fore, more so than measure how far the task optima distance
themselves from the constraints, the ellipsoid based metrics
are measuring how far the constraints are moving from the
optima. While purely semantic in nature, these metrics show
that the infeasibility has more to do with the variation in the
inequality constraint matrix, G, than in the task objective
functions. That being said, the constraint equations depend
on the dynamics of the robot, which are governed by the
physics of the motion produced by the tasks and the environ-
mental interactions. Finally, given that the ellipsoid volume
does not change (its radii remain constant) but the center
moves, we can observe that the feasibility ellipsoid translates
in the space of χ as the constraints change.

2One octillion = 1× 1027
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6.6 Experimental Setup:
Temporal Task Compatibility and Feasibility

In this experiment, a more realistic task compatibility and feasibility scenario is investigated. Using
the same tasks from Sec. 6.2, as shown in Table 6.2 and the constraints given in Table 6.5, a single
example is explored where the elbow and EE tasks are guided by minimum jerk trajectories to two
kinematically feasible and compatible goal positions. Figure 6.13 shows a time-lapse of the resulting
motion. These trajectories follow straight paths from the starting task positions to the goal positions,
and during portions of the trajectory, are kinematically incompatible. The postural task maintains its
original reference throughout the motion. Further complicating the scenario, the tasks should drive some
of the articulations to their position limits. This set of tasks and trajectories should then start as being
both compatible and feasible, become incompatible and infeasible, and finish by being both compatible
and feasible again.

Table 6.5 – Constraints for the temporal task compatibility and feasibility experiments.

Constraint Type DoF/Link Dimension

Joint Limit All DoF 6× 2

Torque Limit All DoF 6× 2

(a) 0.0s (b) 1.0s (c) 2.0s

(d) 4.0s (e) 6.0s (f) 8.0s

Figure 6.13 – Time-lapse of the motion used to explore the temporality of task compatibility and feasi-
bility.
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6.7 Results: Temporal Task Compatibility and Feasibility

Figure 6.14 – Task reference and real position val-
ues throughout the movement. As can be seen, the
trajectory tracking suffers in the middle of the move-
ment, which indicates some decrease in task compat-
ibility/feasibility.

An approximate understanding of the compatibil-
ity of the tasks can be observed by looking at their
real and reference position values throughout the
movement in Fig. 6.14. From these graphs, it can
be seen that the poor trajectory tracking at the
beginning of the motion causes a large overshoot
at around 2 seconds. This can also be seen in
Fig. 6.13c. If the tasks were perfectly compati-
ble/feasible, then there would be no tracking er-
rors, because each task objective function would
be perfectly optimized. The overshoot then indi-
cates that the task compatibility and/or feasibility
is reduced in the middle of the motion and then
increases at the end. This is by design of course.

To determine whether the overshoot is the re-
sult of task incompatibility and/or task infeasibil-
ity, the joint position and torque evolutions are
plotted in Fig. 6.15. Here, the joint torques re-
main well within their bounds; however, the joint
positions hit their lower limits. Specifically, q1 hits
its lower limit between 2 and 4 seconds into the
motion, while q3 hits its lower limit only briefly
between 1 and 1.5 seconds. The fact that the
joints hit their constraints indicates that there is
assuredly an infeasibility in the task set between
the moments of 2 and 4 seconds. However, this
does not negate the existence of incompatibilities
between the tasks.

Figure 6.15 – The evolution of the joint torques and positions for the temporal example. During the
movement, q1 and q3 hit their lower position limits, thus indicating an infeasibility.
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6.7.1 Compatibility Metrics

To begin the analysis of the example problem, first the compatibility metrics are computed. For the sake
of clarity, the ellipsoid based metrics which are found to be numerically sensitive in the task compatibility
experiment (see Sec. 6.2), are omitted from the analyses.

Nuclear Norm Ratio

Figure 6.16 – Top: κNR calculated using
the standard task-only formulation (see
(4.11)). Bottom: κNR

A calculated using the
augmented equations of motion formula-
tion (see (4.12)).

In Fig. 6.16 the Nuclear norm Ratio, both standard and aug-
mented, are presented. Looking first at the standard for-
mulation of κNR at the top of Fig. 6.16, the curve indicates
exactly what is expected from the movement, based on the
trajectory design. Initially, the tasks start out as completely
compatible with κNR = 1 and in the middle of the movement
the compatibility decreases. This can be seen to correspond
to the poor trajectory tracking presented in Fig. 6.14. In-
terestingly, between 3.0 and 4.5 seconds, the compatibility
increases, and then from 4.5 to 5 seconds decreases again.
These periods correspond to the first overshoot recovery.
Accumulated tracking errors generate high desired acceler-
ations, which cause the robot to aggressively servo the EE
and elbow goal positions, resulting in a second overshoot (see
Fig. 6.13e), and then finally convergence. The κNR values do
not return to 1 in this case because the postural task refer-
ences remain at qN and to satisfy the more heavily weighted
EE and elbow tasks, the posture must be different from qN ,
thus inducing an incompatibility with the postural task.

Augmented Nuclear Norm Ratio

Figure 6.17 – The desired acceleration
norms for each task.

At the bottom of Fig. 6.16, the augmented κNR
A metric is pre-

sented, and paints a different picture from the one presented
using the standard metric. Here, the compatibility starts rel-
atively low, peaks at around 1 second and then again between
5 and 6 seconds. These peaks in κNR

A correspond to the accel-
erations during the overshoots. Looking at the desired task
acceleration norms for the three tasks in Fig. 6.17, one can-
not see any clear correlation between the magnitude of the
desired acceleration vectors of the tasks and the phases of
compatibility and incompatibility according to the κNR

A val-
ues. This suggests that factors, other than those measured
by the metrics here, may have an impact on the compatibility
of the tasks with the dynamics.

Optimum Distance

Looking now at the κOD metrics in Fig. 6.18a, we see the
same displacement of the elbow task optimum as in the in-
compatible cases studied in Sec. 6.2. The values of κOD

EE and
κOD

JP reflect the expected evolution of their compatibility with the prioritized optimum — i.e. both tasks
are initially compatible and become incompatible in the middle of the motion. The EE task, however,



118 CHAPTER 6. EVALUATION OF MODEL-BASED METRICS

returns to being highly compatible with χ∗, while the postural task remains largely incompatible with
χ∗.

In Fig. 6.18b, the Euclidean distance between χ∗ and the ellipsoid center, cκ, and the norm of χ∗
are plotted. Here, it can be seen that χ∗EL changes greatly, and while there is some fluctuation in χ∗,
it is orders of magnitude smaller than that of χ∗EL. This again results in a skewing of the compatibility
ellipsoid and a displacement of its center. Given the poorly conditioned nature of the compatibility
ellipsoid, further ellipsoid based compatibility metrics are ignored here because the analyses are identical
to those from Sec. 6.2.

(a) (b) (c)

Figure 6.18 – (a) Optimum Distance metrics, κOD, for the temporal example. (b) (top) the Euclidean
distance between χ∗ and the ellipsoid center, cκ, and (bottom) the norm of χ∗. (c) Optimum Cost
metrics, κOC.

Optimum Cost

Ignoring the ellipsoid based metrics leaves the κOC compatibility metrics, which are plotted in Fig. 6.18c.
Looking at the curves for κOC

EE , κOC
EL , and κOC

JP , it is easy to interpret the evolution of the individual task
compatibilities with the ensemble. This is synthesized nicely in the sum of their measures, κOC. The
motion starts by being compatible, becomes incompatible, and ends by being compatible. A pleasant
artifact of summing the κOC task metrics is that the weighting of the postural task comes into account,
and even though it is mostly incompatible with the prioritized optimum, it does not greatly affect the
global compatibility of the task set.
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6.7.2 Feasibility Metrics

With the task compatibility metrics analyzed, we move on to the task feasibility metrics.

Optima Distance

(a)

(b)

Figure 6.19 – (a) Optima Distance metric,
φOD, and (b) Ellipsoid Distance metric,
φED, for the temporal experiment.

Similarly to the κOD metrics, the elbow task dominates the
φOD metric, because it distances itself greatly from its initial
optimum at the start of the movement. In Fig. 6.19a, the
component φOD values are plotted for each task, along with
their sum. Because of the magnitude of φOD

EL , most of the
information from the other two tasks, in the middle of the
motion, is lost in the sum φOD metric. However, near the
end of the motion their contribution to φOD becomes more
prominent. Globally speaking, φOD

EE , φOD
EL , and φOD

JP all tend
to values which indicate increasing infeasibility as they get
further from the feasibility ellipsoid center over the course of
the movement. This goes contrary to what is expected given
that the robot does attain its desired goal positions.

Ellipsoid Distance

Looking at the ellipsoid center distances, φED indicates the
same progression, but with less noise from the elbow task.
The Fig. 6.19b, shows a rise in infeasibility over the course
of the movement with a few intermittent peaks, which corre-
spond to the rapidly changing elbow task optima.

Ellipsoid Evaluation

The same behavior can be observed in the φEE and φEE∗

metrics in Fig. 6.20a. The chart of φEE values at the top
of Fig. 6.20a has been zoomed in to ignore the outlying φEE

EL
values.

All of the φEE metrics indicate that the tasks become
infeasible at the end of the motion, counter to what is ex-
pected. Looking at the lower position bounds, plotted at the
top of Fig. 6.20b, the only moment where the prioritized opti-
mum violates a constraint is at approximately 0.6 seconds on
joint 3 (q3). At the end of the motion, all of the constraints
are respected.

At the bottom of Fig. 6.20b, the distance between the
prioritized optimum, χ∗, and the controller optimum, χ̃∗ is
plotted. Zero distance indicates that the prioritized optimum
is completely feasible with the given constraints. Any positive distance indicates that the prioritized op-
timum lies outside of the feasible set and cannot be perfectly attained. This only occurs at approximately
0.6 seconds, which corroborates the information gleaned from graph of the q3 lower bounds inequality.
For the rest of the motion, there is zero distance between the controller and prioritized optima.

This indicates that the prioritized optimum is feasible during these control instances. Therefore, it is
clear that the feasibility ellipsoid poorly approximates the constraint polyhedron near the region of χ∗,
and that this region must be near a vertex. This is supported by the fact that the robot is close to its
first and third joint position limits at the end of the motion as shown in Fig. 6.15.
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(a) (b)

Figure 6.20 – (a) shows the Ellipsoid Evaluation metrics for each of the tasks (top) and for the prioritized
optimum, χ∗, (bottom). The dashed horizontal black line indicates a value of 1.0. (b) shows the evolution
of the inequality constraints for the lower joint position limit of articulation q3 at χ∗ (top), and the
distance between the prioritized optimum and the controller optimum, χ̃∗ (bottom). Zero distance
indicates that the prioritized optimum is completely feasible with the given constraints. Any positive
distance indicates that the prioritized optimum lies outside of the feasible set and cannot be perfectly
attained.

6.8 Conclusions
From the various compatibility and feasibility case studies in this chapter, we can draw some conclusions
about the utility of the different metrics and measures.

6.8.1 Compatibility Metrics
In terms of task compatibility, the first conclusion to be drawn is that the compatibility ellipsoid may
be numerically ill-conditioned because the problem is unbounded. In practical terms, since there are so
few optima and so many dimensions, even for this 6-DoF robot, it is unlikely that an SDP algorithm will
find an ellipsoid which accurately approximates the set. For this reason, the ellipsoid based metrics, κED

and κEV, cannot be reliably used for robotic control problems.
Given the large variations of the elbow task optimum (one of the factors in the ill-conditioning of the

objective ellipsoid) the κOD metric must also be used carefully. If only the sum of the κOD
i measures is

looked at, and one of the task κOD
i is orders of magnitude larger than the others, then their information

is lost in summing with the former. The individual κOD
i do provide some helpful insight as to how the

task compatibility evolves, but are mostly qualitative.
The κNR and κNR

A metrics, prove highly useful in both qualifying and quantifying the task compat-
ibility. Using the standard κNR formulation, the overall compatibility of the task sets in the examples
is easily interpreted. However, the augmented formula shows that despite being compatible with one
another, the tasks are generally incompatible with the system dynamics. This discrepancy between κNR

and κNR
A merits a more in depth analysis, but suffice it to say that the dynamic compatibility of the tasks

is more complex an issue than anticipated.
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The κOC metric also nicely summarizes the overall task compatibility through the cost associated
with the movement. By looking directly at the objective function outputs, one can derive quite easily,
how well or poorly the tasks are being optimized and this translates itself into good or bad task reference
tracking.

6.8.2 Feasibility Metrics
For the same issues of numerical sensitivity, certain task feasibility metrics are shown to be of little
qualitative or quantitative value. The elbow task, in the applicable studies, tends to saturate the φOD

metric and cover up any useful data from the other task metrics. The same is true for the φED metric
since the elbow task causes a displacement of the compatibility ellipsoid center and therefore saturates
this metric as well. Likewise, the φEV metric is shown to be useless in evaluating task feasibility.

For the φEE metrics, since each task is looked at individually, one can derive some useful analyses if
the range of values observed stays around 1.0, and the outliers are ignored. The φEE∗ synthesizes the
feasibility information and filters out the outlying noise in a compact measure of overall task feasibility.
While shown to be overly conservative, φEE∗ gives a good idea, quantitatively, of how feasible the task
set is. Qualitatively, it provides a useful description of the evolution of the task feasibility, and even if it
is conservative, it does indicate when constraints are being approached. This can also be confirmed by
looking at the constraint equation evolutions, as there are only 24 for this problem. For high dimensional
problems (e.g. humanoids), however, analyzing the constraint equations directly is cumbersome and
φEE∗ is a compact alternative. Measuring the distance between χ∗ and χ̃∗, is also helpful in determining
if constraints are activated by the prioritized optimum, but does not show the evolution of the task
feasibility.

6.8.3 Accounting for Null Spaces
From these results, it is clear that ignoring the null spaces of the task objective functions in the calculation
of the distance metrics is a poor choice. Tasks, like the elbow task, can move to solution spaces far away
from the other tasks because of their null spaces and the minimum norm characteristics of the least squares
solution. To account for this, only the column space projection of the vectors should be compared in the
distance calculations. For example, for φOD

i , the following could be used,

φOD
i =

∥∥PCi cφ − χ∗i
∥∥

2
(6.4)

where PCi = Ei(E
>
i Ei)

−1E>i . (6.5)

Here, PCi is the column space projector of the ith task. While this is a promising solution for improving
certain metrics, it is left for future work.

6.8.4 Most Useful Metrics
In summary, the task compatibility metrics to be retained from these experiments are, the Nuclear norm
and Augmented Nuclear norm Ratios, κNR and κNR

A , as well as the Optimum Cost metric, κOC, and its
components κOC

i . The task feasibility metrics to be retained are, the Ellipsoid Evaluation metrics, φEE and
φEE∗ . Using these measures any task and constraint set can be effectively analyzed for compatibility and
feasibility. With these tools, we now determine if the model-free TCFM method described in Chapter 5 is
capable of improving task compatibility and feasibility without ever directly measuring these phenomena.
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Chapter 7

Proof of TCFM Concept

The goal of these experiments is to show that model-free TCFM can truly maxi-
mize task compatibility and feasibility. To do so, the example control problem from
Chapter 6 is reformulated in the model-free fashion. Comparison of the model-free
costs and the model-based metrics shows that the costs do indeed capture the ef-
fects of task incompatibility and infeasibility. From here, the TCFM algorithm is used
to optimize the task trajectories. Analysis of the optimized motion using the model-
based metrics shows that TCFM can maximize task compatibility and feasibility and
produce motions which better match their expected behavior.

7.1 Experimental Setup:
Model-Free Costs vs. Model-Based Metrics

code

In this first experiment, the goal is to compare the model-free costs, developed in Chapter 5, with the
model-based metrics from Chapter 4. This is done to validate that the model-free cost functions do
indeed capture the side-effects of task incompatibility and infeasibility.

In this example, the robot being used is once again the PUMA 560, and the details of the simulation
can be obtained from Sec. 6.6. No interactions are possible between the robot and its surroundings,
save for the simulated gravitational forces. As a reminder the task set consists of an end-effector (EE)
position task (f ξ̈EE), an elbow position task (f ξ̈EL), and a joint position, or postural, task (f ν̇JP). The task
and constraint parameters are provided in Tables 7.1 and 7.2.

Table 7.1 – Task set. Kd = 2
√
Kp for all tasks.

Task Type DoF/Link Dimension Weight w Gain Kp

Cartesian EE 3 1.0 10

Cartesian Elbow 3 1.0 10

Joint Position All DoF 6 0.0001 10
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Table 7.2 – Constraints.

Constraint Type DoF/Link Dimension

Joint Limit All DoF 6× 2

Torque Limit All DoF 6× 2

Again, the elbow and EE tasks are guided by minimum jerk trajectories to two goal positions, while
the postural task maintains its original reference throughout the motion. The trajectory generators in
this example are then based on analytical minimum jerk parameterizations for the elbow and EE tasks,
and a set point for the postural task. Each of these trajectory generators takes the initial position of
the task and the goal position of the task as input parameters. For the minimum jerk trajectories, the
maximum velocity of the trajectory must also be specified, and in this example, it is fixed at 0.2ms−1.

Two cases are explored to evaluate the cost functions presented in Sec. 5.6. For each case, the goal
positions of the tasks, which are the policy parameters, θ, dictate the resulting task trajectories and
consequently the policy, πθ(k). Therefore, by changing the goal positions, the policy is changed.

In the first case, the same goal positions used from the original example in Sec. 6.6 are used. The EE
and elbow goal positions are kinematically compatible; however, the straight paths of the trajectory, are
kinematically incompatible during portions of the movement. This set of tasks and trajectories should
then start as being both compatible and feasible, become incompatible and infeasible, and finish by being
both compatible and feasible again. Figure 6.13 in Chapter 6 shows a time-lapse of the resulting motion
for case 1.

In the second case, the goal positions for the elbow and EE tasks from case 1 are translated to
two kinematically incompatible positions. This set of tasks and trajectories should start as being both
compatible and feasible and then become increasingly incompatible and infeasible. Figure 7.1 shows a
time-lapse of the resulting motion for case 2.

(a) 0.0s (b) 1.0s (c) 2.0s

(d) 4.0s (e) 6.0s (f) 8.0s

Figure 7.1 – Time-lapse of the motion produced by the case 2 policy.
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For both cases, the policy duration, tπ, is set to 8.0 seconds to ensure that the primary EE and elbow
tasks have sufficient time to complete. The trajectory durations for each task are presented in Table 7.3.
Using these values, the policies are rolled out and their performances are evaluated.

case tEE
nλ

tEL
nλ

tJP
nλ

1 5.8 3.1 8

2 7.4 4.4 8

Table 7.3 – Task trajectory durations in seconds for cases 1 and 2.

7.2 Results: Model-Free Costs vs. Model-Based Metrics

Figure 7.2 – Real and reference values for the EE and el-
bow task trajectories for the case 1 and case 2 rollouts.
The case 1 trajectories are in green and the case 2 tra-
jectories are in dashed red. The reference positions are
indicated by the lighter lines and the real positions by the
darker lines.

Before evaluating the costs, we first analyze
the policy rollouts by looking at the trajec-
tory tracking performance for both cases in
Fig. 7.2. Here, the reference, denoted “ref”,
and real, denoted “real”, positions of the EE
and elbow tasks are plotted for both case 1
and 2. The case 1 trajectories are in green
and the case 2 trajectories are in dashed red.
The reference positions are indicated by the
lighter lines and the real positions by the
darker lines.

Because case 1 is the same as the scenario
from Sec. 6.6, the analyses on the evolution
of the two tasks over the rollout remain the
same. To briefly reiterate, at the beginning
of the movement, the tasks poorly track their
references, which are incompatible, and this
causes the robot to overshoot its goal posi-
tion. The robot then oscillates to the goal
positions of the EE and elbow task, where
tracking error is minimal, but well after the
tnλ for both tasks, which are indicated on the
x-axes. The case 1 policy parameters pro-
duce tasks which start compatible and feasi-
ble, become incompatible and infeasible and
end compatible and feasible. This means that
the performance cost, jP, for case 1 should go
from low to high to low.

For case 2, the initial behavior of the tasks
is quite similar to that of case 1 where the
tasks overshoot the goal positions in the early phase of the movement due to error build up and the
joint limit infeasibilities (see Fig. 6.15). However, the end of the rollout shows that the trajectories never
attain their goal positions, which are incompatible by design. Based on this behavior, one would expect a
higher performance cost for case 2. Furthermore, the evolution of the performance cost for case 2 should
reflect the increasing infeasibility and incompatibility generated by the policy.
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Figure 7.3 – Time evolution of the tracking, jTP
i (k), goal, jTP

i (k), and task performance, jTP
i (k), costs for

each task in the example problem from Sec. 6.6. The costs are calculated as the area under the curves,
but looking at their evolution allows the task performance to be analyzed.

7.2.1 Model-Free Cost Analysis
To confirm these expected performances, jP must be calculated for each case, and in order to do that,
the individual task performance costs, jTP

i , from (5.22), must be evaluated. To calculate each jTP
i the

tracking, jTi , and goal, jGi , costs for each task are first calculated.

case 1 case 2

task jTi jGi jTP
i jTi jGi jTP

i

f ξ̈EE 239.91 23.09 263.00 322.03 53.31 375.34

f ξ̈EL 23.72 17.67 41.39 124.14 126.80 250.94

f ν̇JP 4887.06 2646.09 7533.15 5147.61 2815.04 7962.65

Table 7.4 – The sums of the tracking, goal and task performance costs for cases 1 and 2.

Tracking and Goal Costs In Fig. 7.3, jTi (k), jGi (k), and jTP
i (k) for the end-effector (EE), elbow

(EL), and joint position (JP), tasks are plotted. Case 1 results are indicated by the solid green lines, and
case 2 results, by the dashed red lines. Here, the costs are plotted as calculated at each time step, i.e.,

jTi (k) = ‖ε(k)‖22, jGi (k) =
kh

tnλ
‖εgoal(k)‖22, and jTP

i (k) = jTi (k) + jGi (k). (7.1)

Their sum is then the area under the curves, and these sums are provided by Table 7.4. Looking at their
time evolution allows the task performance to be analyzed, and consequently the analysis of the effects
of task incompatibility and infeasibility.
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Figure 7.4 – Evolution of the to-
tal task performance cost, jTP(k)
(top), energy cost, jE(k) (middle),
and total performance cost, jP(k)
(bottom), for cases 1 and 2.

Looking at jTi (k) and jGi (k) for case 1, the EE and EL costs
indicate that the tasks are performed well initially, poorly during
the first 5 seconds, then well at the end of the rollout. For the
JP task, however, the performance continues to degrade over the
course of the rollout. These results corroborate the expected EE
and EL task behaviors. Similarly, the case 2 results follow what
is expected from the design of the problem. The jTi (k) and jGi (k)
costs are low initially but progressively increase during the roll-
out. For both cases 1 and 2, the JP task costs increase over the
movement due to the choice of goal position. Looking at jTP

i (k)
for each task, it can be observed that the tracking costs tend to
dominate due to the initial overshoot in both cases. With each
jTP
i (k) calculated, the total task performance cost, jTP can be
evaluated.

Task Performance Cost At the top of Fig. 7.4, jTP(k) for
both cases is plotted. Again, the evolution of jTP(k) is plotted
over time with,

jTP(k) =

ntask∑

i=1

wij
TP
i (k), (7.2)

where ntask is the number of tasks, 3 in this case, and wi are the
task weights. The expected behaviors in task performance can be
observed for both cases. Despite the larger performance costs from
the JP task, its small weight minimizes its impact on jTP, which
is largely dominated by the performance cost of the EE task, jTP

EE .

Energy Cost Next the energy cost at each time step,

jE(k) = ‖τ (k)‖22, (7.3)

is determined for both cases. The energy costs are plotted in the
middle of Fig. 7.4. Both cases produce roughly identical torque profiles and therefore the energy costs
are nearly the same. A peak in jE(k) at the outset of the movement corresponds to the initial overshoot
for both cases. As shown in the figure, jE(k), is orders of magnitude larger than jTP and this must be
taken into consideration for the selection of ϕ in (5.21). For this example, ϕ = 1e− 4 is chosen.

Performance Cost Finally, with jE and jTP, the performance cost, jP, is computed using (5.24). The
evolution of,

jP(k) =
jTP(k) + ϕjE(k)

tend
π

, (7.4)

for cases 1 and 2 is presented in Fig. 7.4. With the given ϕ, jP(k) is guided mostly by jTP(k) with
the exception of an initial peak. Nevertheless the overall curves for both cases reflect the expected
performance profiles based on the design of the tasks and the trajectories observed. Both cases start
with a small jP(k), and then see a sharp increase due to overshooting the task goal positions. For case
1, jP(k) returns to a low value, near its starting jP(k), as the tasks converge successfully to their goal
positions. On the other hand, case 2 shows a decreasing jP(k) as the overshoot is corrected but never
gets back to its initial jP(k) value, as is expected with the incompatible goals.
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7.2.2 Comparing to Model-Based Metrics

Figure 7.5 – Model-based task com-
patibility and feasibility metrics from
Chapter 3.

We now compare the model-free costs with model-based metrics.
In Fig. 7.5, two task compatibility metrics, κNR and κNR

A , and one
task feasibility metric, φEE∗ , are plotted for both cases. Looking at
the first compatibility metric, κNR in Fig. 7.5, it can be seen that
the tasks produced by the case 1 policy are more compatible over
the course of the movement than those of case 2. What is more,
the case 1 κNR values move back to a value near 1.0, indicating
a return to compatibility, which coincides with attainment of the
goal positions; however, the case 2 values remain low, indicating
that the tasks never become compatible, which is a consequence of
the chosen policy parameters for case 2. Similarly the κNR

A metrics
in Fig. 7.5, show that the case 1 policy produces tasks which are
more compatible with the dynamics than the case 2 policy, albeit
the difference is less flagrant than that of the κNR metric.

The feasibility metric, φEE∗ in Fig. 7.5, shows that both policies
produce prioritized optima, χ∗, (see Sec. 4.2.2) which are dynam-
ically infeasible according to the feasibility ellipsoid. However, as
explained in Sec. 6.6, the feasibility ellipsoid poorly approximates
the constraint set near χ∗ in this example because it lies near the
vertex of two constraint sets. Knowing that these tasks are there-
fore feasible, despite the φEE∗ measures, one can conclude that the
performance cost is high for case 2 because the task objectives are
incompatible, which is the design of the scenario.

Combining all of the information gleaned from the metrics, it is
fairly clear, without even observing the rollout, that the policy in case 1 produces better task compatibility
than that of case 2. This confirms the analyses of the model-free performance cost, which is determined
without the complex computations and model understanding needed by the model-based metrics. The
model-based metrics do, however, provide more insight into the reason why the performance cost is higher
for the case 2 policy.

7.3 Experimental Setup: TCFM Validation

With the model-free cost functions validated, we now apply the TCFM algorithm to case 1. For this
experiment, the goal is to use TCFM to modify the EE and elbow trajectories to maximize task compati-
bility and feasibility as well as attain their original goal positions. For clarity, the task set and constraints
for this experiment are shown in Tables 7.5 and 7.6.

Table 7.5 – Task set for the TCFM proof of concept problem. Kd = 2
√
Kp for all tasks.

Task Type DoF/Link Dimension Weight w Gain Kp

Joint Position All DoF 6 0.0001 10

Cartesian EE 3 1.0 10

Cartesian Elbow 3 1.0 10
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Table 7.6 – Constraints for the TCFM proof of concept problem.

Constraint Type DoF/Link Dimension

Joint Limit All DoF 6× 2

Torque Limit All DoF 6× 2

For case 1, the policy parameterization, ρ(θ), is initially composed of the two minimum jerk trajectory
generators and a joint position set point. Since their starting positions are constant, the policy parameter
vector consists of the goal positions of the tasks,

θ =



λgoal

EE
λgoal

EL
λgoal

JP


 . (7.5)

This gives the policy structure depicted visually in Fig. 7.6.
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Figure 7.6 – The model-free policy and its parameterization for the example problem studied here. This
figure is adapted from Fig. 5.2

In this experiment, we are interested in maximizing the compatibility and feasibility of these tasks
and to do so we focus on the EE and elbow tasks. These principal tasks are highlighted in Table 7.5.
Because the objective is for the tasks to attain their goal positions, θ, as defined by (7.5), should not be
modified. “Adjustable” parameters must therefore be introduced to these tasks in order to modify them.

7.3.1 Reparameterizing the Tasks

In order to have some free parameters with which to modify the task trajectories, the EE and elbow tasks
are reparameterized by sampling the trajectories at their start, middle, and end times. The start and
end samples contain the start and goal positions and times, respectively, and the middle sample is the
new “adjustable” parameter. From these samples, the tasks are reparameterized by the new waypoints,
Λ, and time vectors, tλ, which consist of,

Λ =
[
λstart λmiddle λgoal

]
(7.6)

tλ =
[
tstart tmiddle tgoal

]
. (7.7)
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Figure 7.7 – Example of the
reparameterized task. This
graph shows the x dimension of
the EE task trajectory.

From these new waypoints and times, the task trajectories are recon-
structed using clamped splines. This process is depicted for the x-axis
of the EE task in Fig. 7.7. Thus, the trajectory generators are now
clamped splines and the new parameterized policy function, ρ(θ), is
depicted in Fig. 7.8. The policy parameter vector is then composed of
the EE and elbow middle waypoints,

θi=0 =

[
θEE
θEL

]
=

[
λmiddle

EE
λmiddle

EL

]
, (7.8)

and no longer the joint position task waypoints. For clarity, however,
the joint position task parameters, θJP, are shown in Fig. 7.8 to indicate
that they are still part of the policy but since they remain constant they
are no longer part of the policy parameterization, θ. Given the initial
policy task trajectories, and following this reparameterization proce-
dure, produces the following parameter vector for the original policy,

θi=0 =
[
−0.013 −0.195 −0.014
︸ ︷︷ ︸

θ>EE

0.167 −0.131 0.291
︸ ︷︷ ︸

θ>EL

]> . (7.9)

The TCFM algorithm is then parameterized by θ from (7.9), and generated by the clamped spline
generators.
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Figure 7.8 – The reparameterized policy function uses clamped splines to generate the trajectory and
allows “adjustable” parameters (waypoints) to be added to the EE and elbow tasks. These parameters
permit TCFM to optimize the tasks. The joint position task parameters, θJP, are shown to indicate that
they are remain a part of the policy but since they are constant they are no longer part of the policy
parameterization, θ.
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7.3.2 TCFM Cost Function and Update Strategy
With these parameters, the performance cost, jP, is used as the TCFM cost function and computed as,

ji = cost ({S,A}i) = jP =
jTP + ϕjE

tend
π

=

(
jTP
EE + jTP

EL + jTP
JP
)

+ ϕjE

tend
π

, (7.10)

with ϕ = 1e − 4 as in the previous experiment, and tend
π = 8.0s, the rollout duration. Therefore, all

of the tasks are used in the calculation of ji, even though only the EE and elbow tasks are used in its
parameterization. The cost of the original policy, j0 = jP0 , is used as the scaling factor in (5.25), for the
TCFM rollouts.

The update strategy used for the TCFM is CMA-ES. The initial optimization variable variance, which
is required by CMA-ES to generate a first estimate of the covariance matrix, is set using,

σθ = 2var(θi=0), (7.11)

and the CMA-ES function tolerance for convergence is set arbitrarily to 0.001.

7.4 Results: TCFM Validation
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Figure 7.9 – Time-lapse of the original and TCFM optimized policies. As can be seen from the images,
the optimized policy better tracks its reference trajectories (the blue and red lines) than the original
policy and arrives at its goal positions in 6 seconds rather than the original 8 seconds.

Figure 7.9 shows a time-lapse of the original policy, and the optimized policy found used TCFM. The
optimized policy parameters are,

θ∗ =
[
−0.412 −0.260 0.134
︸ ︷︷ ︸

θ>EE

0.175 −0.258 0.460
︸ ︷︷ ︸

θ>EL

]> . (7.12)

These parameters are found after 104 rollouts.
The first thing to notice is that the optimized policy never shows any unstable or undesirable behav-

ior like the original policy, which initially overshoots the goal positions. In fact, the optimized policy
seems to track the reference task trajectories (indicated by the red and blue lines) well throughout the
motion. Unlike the original policy, this smooth and stable tracking allows the robot to reach its goal
positions (indicated by the red and blue spheres) in 6 seconds, which corresponds to the expected policy
duration. The original policy takes the full rollout duration, 8 seconds, to reach the goal positions.
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Figure 7.10 – Real and reference values for the EE and
elbow task trajectories for the original and optimized poli-
cies. The original task trajectories are in green and the
optimized task trajectories are in dashed blue. The ref-
erence positions are indicated by the lighter lines and the
real positions by the darker lines.

7.4.1 Trajectory Tracking

To begin the validation of TCFM, the trajec-
tories of the original and optimized policies
are examined. The real, denoted “real”, tra-
jectories from the motion execution are the
dark lines and their reference, denoted “ref”,
trajectories are the lighter lines of the same
color and style. The original policy is the
same from case 1 in Sec. 7.1. Its task trajec-
tories are indicated by the green lines. The
optimized policy task trajectories are indi-
cated by the dashed blue lines.

Looking at Fig. 7.10, it is clear that
the optimized trajectories are tracked with
higher accuracy than the original trajecto-
ries. The exception to this for both the orig-
inal and optimal trajectories is the y-axis
tracking. For this particular movement, it
is in the y-axis that the tasks are least com-
patible because in the middle of the motion
the y distance between the reference trajec-
tories for the EE and elbow tasks is smaller
than the elbow to EE link length of the robot.
Nevertheless, the tracking is much improved
with the optimized policy, and this can be
confirmed by evaluating the various model-
free cost functions.

Figure 7.11 – Time evolution of the tracking, jTP
i (k), goal, jTP

i (k), and task performance, jTP
i (k), costs

for each task in the example problem from Sec. 6.6 is used. The costs are calculated as the area under
the curves, but looking at their evolution allows the task performance to be analyzed.
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7.4.2 Cost Analysis

Figure 7.12 – Evolution of the to-
tal task performance cost, jTP(k)
(top), energy cost, jE(k) (middle),
and total performance cost, jP(k)
(bottom), for original and optimized
policies.

Looking now at the various model-free tracking, goal, and task
performance costs, for each of the tasks, it is clear that the tracking
is dramatically improved by the optimized policy. In Fig. 7.11, it
can be seen that all of the component task performance costs are
improved by the optimized policy. With the exception of the joint
position task, the tracking costs are essentially null. Likewise, the
goal costs are diminished across the board. This produces task
performance costs which are significantly smaller than those of
the original policy.

In Fig. 7.12, the total task performance, energy, and total per-
formance costs, are plotted for both the original and optimized
policies. It is clear from these graphs that the optimized pol-
icy improves task performance, reduces energy consumption, and
therefore improves the overall motion performance. The result is
a set of tasks which are executed as they are planned and a motion
which displays behavior which matches what would be expected
from the task design.

Cost Curves

Looking at the cost curves for the TCFM in Fig. 7.13, shows how
the algorithm gradually reduces the performance cost. On the left
is the performance cost curve, and on the right are its component
costs curves plotted separately. Using the policy parameterization
and CMA-ES parameters described here, the TCFM algorithm is
not sample efficient at all, but it does minimize the performance
cost and produces policies which better match the initial planned
intent of the tasks.

Figure 7.13 – (left) scaled performance cost curve for the TCFM in the proof of concept example. (right)
the same curve but plotted by its component scaled costs.

Initially the goal and tracking costs (i.e. the task performance costs) account for the majority of the
total performance cost. As the TCFM algorithm updates the policies, the task performance costs are
diminished and the energy costs start to account for the majority of the total performance costs. Near
the end of the optimization the algorithm is searching for policies which minimize the energy more so
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than the task performance costs because they account for less than 50% of the total performance cost.
Despite its sample inefficiency, the TCFM algorithm effectively minimizes the total performance cost of
the policy, but it remains to be seen if this truly has an impact on the task compatibility and feasibility.

7.4.3 Comparaison with Model-Based Metrics

Figure 7.14 – Model-based task com-
patibility and feasibility metrics from
the original and optimized policies.

Looking at the model-based task compatibility and feasi-
bility metrics in Fig. 7.14, the standard, κNR (top), and
augmented, κNR

A (middle), Nuclear norm Ratios are plotted
along with the Ellipsoid Evaluation metric, φEE∗ (bottom).

Again, the closer κNR is to 1.0, the more compatible the tasks
are, and this holds for κNR

A as well. Here, we can clearly see that
the optimized policy increases the κNR and κNR

A values throughout
the movement. Both the original and optimized policies finish with
the same κNR and κNR

A values because they finish in the same state,
but the optimized policy increases the compatibility throughout
the movement.

Looking at feasibility, the φEE∗ values tell us how far the pri-
oritized optimum, χ∗, is outside the feasibility ellipsoid. Any
value greater than 1.0 indicates that χ∗ is outside of the feasi-
bility ellipsoid. However, for this example we know this to be
overly conservative (see Sec. 6.7.2). Nevertheless, it is clear that
the optimized policy, although shown as infeasible according to
this metric, is more feasible than the original policy throughout
the motion. This is further supported by Fig. 7.15, where the
distance between the prioritized optimum, and the controller op-
timum, χ̃∗, for the original and optimized policies is plotted. This
graph shows where the prioritized optimum violates the inequality
constraints, and is therefore infeasible. While both policies have
brief moments of infeasibility in the beginning of the movement,
the optimized policy remains closer to the feasible set and is there-
fore more feasible in this moment than the original policy when it
violates the inequality constraints.

7.5 Conclusions

Figure 7.15 – Distance between the
prioritized optimum, χ∗, and the
controller optimum, χ̃∗, for the origi-
nal and optimized policies. Any non-
zero distance means the prioritized
optimum violates the inequality con-
straints.

From these tests, we can confirm that by minimizing the per-
formance cost of a motion the task compatibility and feasibil-
ity is maximized. While this implementation is sample ineffi-
cient, TCFM is proven to produce compatible and feasible mo-
tions according to the model-based metrics designed to measure
these specific phenomena. This means that the TCFM algorithm
can iteratively improve control policies to achieve desirable overall
behaviors which better match the original intent of the planned
movement. Now that TCFM has been validated to maximize task
compatibility and feasibility, we apply it to a complex humanoid.



Chapter 8

Demonstrating TCFM on Complex
Problems

These experiments demonstrate the ability of TCFM to solve complex task incom-
patibilities and infeasibilities on a humanoid robot through a series of simulated
scenarios. Here, Dynamic Movement Primitives (DMPs) are used for policy param-
eterization and Policy Improvement though Black-Box optimization (PIBB) is used
as the TCFM update strategy. Two task trajectories are optimized simultaneously
to maximize task compatibility and feasibility. The results show that the TCFM al-
gorithm can successfully maximize task compatibility and feasibility on a humanoid
in simulation. However, the chosen parameterization and update strategy require
many rollouts to learn an optimal policy.

8.1 Experimental Setup

For each test case studied, a simulation of the iCub humanoid robot is used. In these cases, three
principal tasks are specified. The first is a standing task which maintains the CoM at a specific position
at all times. This task is designed to keep the iCub from falling over, but since the CoM state is not
servoed by a balancing controller (e.g. ZMP), it provides little guarantee that the robot will not lose
balance. The other two tasks are reaching tasks associated with reference frames in the palms of the
iCub’s left and right hands. These are the tasks which are used to generate the different test cases, and
consequently whose parameters are optimized in the TCFM. All three tasks have equal priorities, 1.0, in
the whole-body controller. Additionally, a low-weight joint position task for all the DoF is used.

The iCub is simulated to be standing on a hard flat surface, and contact constraint sets at the feet
are used to model this interaction in the whole-body controller. These constraints are modeled as friction
contact points at the four corners of each foot. Each contact introduces 3 equality and 3 inequality
constraints (see Sec. 2.3.4), so the dimension for a single contact constraint is 6 and there are 4 contacts
per foot. Tables 8.1 and 8.2 list these tasks and constraints as well as their parameters. The hand tasks
are initially provided as straight line minimum jerk trajectories from the hands’ starting positions to
two goal points, indicated by the red and green spheres, for the right and left hands respectively. These
spheres can be seen in Fig. 8.1. The joint position task uses the initial posture as its set point.

Here, the hand tasks are those of critical importance to the designed whole-body behaviors. All of the
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Table 8.1 – Task set for test cases 1 and 2 of TCFM with DMPs and PIBB. Kd = 2
√
Kp for all tasks.

Task Type DoF/Link Dimension Weight w Gain Kp

Joint Position All DoF 25 10−5 5

Cartesian CoM 3 1 1.0

Cartesian Right Hand 3 1.0 70

Cartesian Left Hand 3 1.0 70

Table 8.2 – Constraints for test cases 1 and 2 of TCFM with DMPs and PIBB.

Constraint Type DoF/Link Dimension

Joint Limit All DoF 25× 2

Torque Limit All DoF 25× 2

Contact Set Left Foot 6× 4

Contact Set Right Foot 6× 4

co
ns
tr
ai
ne
d

co
nfi

gu
ra
ti
on

(a) (b) (c) (d)

w
or
ks
pa

ce
vi
ol
at
io
n

(e) (f) (g) (h)

Figure 8.1 – (a) - (d) show the constrained configuration scenario and (e) - (h) show the workspace
violation scenario. (a) & (e) starting positions. (b) & (f) left hand + standing tasks end configurations.
(c) & (g) right hand + standing tasks end configurations. (d) & (h) end configurations of left hand,
right hand and standing task combinations where the robot cannot attain both goal positions (spheres)
simultaneously.

other tasks exist to make sure these reaches are accomplished. Accordingly, only the hand task parameters
are used in the policy parameterization of these experiments, and all of the other task parameters are
considered fixed. Given these straight line minimum jerk trajectories, the first step in the TCFM is
the parametrization of the original tasks by DMPs. The original tasks considered in this study are all
operational-space tasks, but it is possible to parameterize joint-space tasks with DMPs. The forcing
terms of each DMP are trained to approximate each task through Locally Weighted Regression (LWR)
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and provide parameterized models of the task DoF. The forcing term slopes and offsets, a, b, for both
the left and right hand DMPs, are used as the policy parameters,

θi =

[
θleft
θright

]
. (8.1)

These parameters, θi, are then used to generate the policy πθi by integrating the DMP trajectory
generators in ρ(θi) to get the task reference values. Each DMP forcing term consists of 8 kernels and
therefore 8 slopes and offsets thus making θi ∈ R32. This πθi is then rolled out in simulation using the
XDE physics simulator and environment described by [Merlhiot et al., 2012; Sovannara, 2013]. With the
state and action data, ({S,A}i), from the rollout, the cost function is calculated. Here the cost function
is only the task performance cost, jTP, for the left and right hand tasks,

ji = cost ({S,A}i) =
jTP
left + jTP

right

tend
π

, (8.2)

where jTP
left and jTP

right are determined using (5.22) from Sec. 5.6.1. With ji = jTP
i calculated for the

hand tasks, the PIBB update strategy is used to determine the next θi+1 to execute. The PIBB update
requires a batch of parameter and cost samples to choose the next optimal parameters to test. In these
experiments, one update of PIBB corresponds to 15 rollouts. The TCFM is iterated until a convergence
criterion is met or a maximum number of 300 rollouts is exceeded.

8.1.1 Test Case 1: Constrained Configuration
The first test case in this experiment is designed such that the iCub is forced into a constrained con-
figuration, as shown in Fig. 8.1d, which prevents either of the hand tasks from being accomplished, i.e.
reaching their goal positions. The iCub starts in the posture shown in Fig. 8.1a, and the hand reaching
goals are shown by the red and green spheres. Each of these goals is individually attainable, as shown in
Fig. 8.1b and Fig. 8.1c. However, when both tasks are executed simultaneously, the trajectories to their
goals force the robot into the constrained posture shown by Fig. 8.1d. The durations of the hand task
trajectories are both equal to 4.0 seconds. The objective of this test case is to see if TCFM can find task
parameters, which allow the robot to attain its hand goal positions by improving the task compatibility
and feasibility, through modification of the left and right hand trajectories.

8.1.2 Test Case 2: Workspace Violation
In this second test case, the hand goal positions are outside of the iCub’s workspace and therefore the
robot can never maintain both goals simultaneously. If both tasks end at the same time, then modification
of the DMP trajectories will not render the combination fully compatible because their attractor points
are incompatible. Here, one must consider the time component of the reaching problem to find an
appropriate solution, i.e. both tasks must be modified and done in some sequence, in order for the robot
to meet its objectives. Therefore, the two hand trajectories have different durations, with the right hand
trajectory being shorter than the left hand trajectory, 3.0 and 4.0 seconds respectively. To examine the
effectiveness of the TCFM in cases where task sequencing is a factor, two examples are studied:

1. Without Task Deactivation: The task goal positions are maintained as attractor points even
after the end of the duration of the task, therefore the task remains activated.

2. With Task Deactivation: Once a hand task has reached the end of its duration and its goal
position, within some small margin of error, the task is deactivated (i.e. its QP weight set to zero)
and no longer influences the resolution of the whole-body control problem.

The objective of this test case is to demonstrate how time can be exploited within TCFM to find solutions
to task incompatibilities, as well as how higher-level concepts like task deactivation can affect the policy
rollouts.
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8.2 Results

video
In this section the results for the experimental procedure developed in Sec. 8.1 are presented. The
results for the first test case, which explores incompatibilities which lead to a constrained configuration,
are presented initially, followed by the results of the second case which looks at a workspace violation
scenario.

8.2.1 Test Case 1: Constrained Configuration
When either the right or left hand task is combined with the standing task, the combination is compatible
and the reach can be completed; see 8.1b and 8.1c. However, the combination of both left and right hand
reaches, along with the standing task, generates an incompatible set of task objectives, 8.1d. This
incompatibility is due to the fact that each hand task generates opposing commands for the torso roll
and yaw as seen in Fig. 8.2. The result of these conflicts, shown in Fig. 8.1d, is that the hand tasks never

Figure 8.2 – Evolution of torso DoFs during the execution of the left hand + standing and right hand +
standing combinations.

achieve their final goal positions and poorly track their reference trajectories. Applying the TCFM to the
constrained configuration case results in optimized tasks which reduce the task performance cost from
(8.2), and attain the final goal positions for the hand tasks. The evolution of the cost curve for the test
cases is presented in Fig. 8.3 and a time-lapse of the movement generated by the optimized tasks is shown
in Fig. 8.4. Because the goal positions for the hands are kinematically compatible, i.e. the robot can
attain this configuration, the problem is in the way the robot gets to these positions. From the time-lapse
shown in Fig. 8.4, the optimized DMPs cause the robot to not follow straight paths to the goal points,
but rather to rock the robot torso into a posture which allows the goal positions to be reached.

8.2.2 Test Case 2: Workspace Violation
In Fig. 8.1f and Fig. 8.1g it can be seen that, when either the left or the right hand tasks are executed
with the standing task, the combinations are feasible. However, in Fig. 8.1h the combination of all three
tasks generates workspace incompatibilities caused by the fact that the robot’s workspace is not large
enough to accommodate both trajectories. This is illustrated in Fig. 8.5, where the distance between the
tasks at each instant in time while they are active is plotted for the original and optimized sets of tasks.
At approximately 2.1 seconds, the distance between the original tasks begins to exceed the maximum
workspace of the iCub, and generates task incompatibilities. Since neither of the tasks reaches its goal,

https://youtu.be/eu-esq_U-Fw
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Figure 8.3 – Cost curves for the TCFM optimizations for both test cases. Note that each update cor-
responds to 15 policy rollouts. For all cases, the TCFM, using DMPs and PIBB, is stopped after 300
rollouts, because the update policy convergence criterion is never attained.

(a) 0.0s (b) 1.5s (c) 2.3s (d) 4.0s

Figure 8.4 – Optimized task combinations found with TCFM. (a) - (d) show a time-lapse of the optimized
tasks for test case 1 from Sec.8.1.1.

they cannot be deactivated and whole-body control alone cannot accomplish this task combination. In
the following sections, the results of TCFM both without and with task deactivation are presented.
Time-lapses of the optimized motions both with and without task deactivation are shown in Fig. 8.6.

Without Task Deactivation

The set of tasks optimized by the TCFM without task deactivation modifies the hand trajectories to
respect the workspace limit for as long as possible, and manages to attain the right hand task goal
position. Unfortunately, because the right hand task is not deactivated, its goal position remains as a
system attractor, and the robot is forced to violate the workspace limit. The overall result of this solution
is a set of tasks which reduces the task performance cost (see Fig. 8.3), but cannot attain all of the desired
goal positions.
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Figure 8.5 – A plot of the distances between the hand task trajectories for each instant in time when they
are simultaneously active. The optimized DMPs without task deactivation delay this incompatibility,
and the optimized DMPs with task deactivation remove it.

(a) 0.0s (b) 1.7s (c) 2.8s (d) 4.0s

(e) 0.0s (f) 1.7s (g) 2.8s (h) 4.0s

Figure 8.6 – Optimized task combinations found with TCFM. (a) - (h) show two time-lapses of the the
optimized tasks for test case 2 described in Sec. 8.1.2. (a) - (d) show the solution found without task
deactivation and (e) - (h) show the solution found with task deactivation.

With Task Deactivation

When the tasks are optimized in the TCFM with task deactivation, the overall task performance cost is
reduced as shown in Fig. 8.3, and the hand tasks each attain their goal positions as shown in Figs. 8.6g
and 8.6h. This is possible because once the right hand goal position is attained, that task is deactivated
and no longer contributes to the task performance cost of the execution. This is reflected in Fig. 8.5,
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where the distance between task curve terminates at 3.0 seconds, when the right hand task is completed.

8.3 Conclusions
These experiments demonstrate that TCFM can effectively optimize incompatible and infeasible tasks on
a complex platform, i.e. the iCub humanoid robot. Its major drawback however, is sample inefficiency.
Each update of PIBB (in this implementation) requires 15 policy rollouts, and convergence based on
minimum solution differences is not achieved after 300 rollouts for all cases.

This is the result of two main causes. Firstly, the policy parameterization, θ ∈ R32. This is a large
space which needs lots of data to explore. Secondly, as a consequence of the point attractor nature of
DMPs, the parameters near the end of the movement must be much larger in magnitude to compensate
for the attenuating effects of the goal attractor term. These terms are designed to ensure convergence
but they create a parameter vector with wildly different scales of values as for the kernels closest to the
beginning of the movement to those near the end. This results in a parameter space with cost gradients
which are highly biased in the directions of the end kernel parameters, but these parameters have the
least effect on the overall movement. The end result is a very inefficient learning process.

Finally, although it cannot be observed in the time-lapses, the resulting behaviors after TCFM seem
to spend a lot of time making motions which do not help in the overall whole-body performance. The
video shows this in more detail. This is due to the fact that only the task performance cost was used. No
terms penalize energy expenditure. So, despite having shown the ability to correct task incompatibilities
and infeasibilities, TCFM needs to be refined in the following ways:

1. A more efficient policy parameterization which only uses pertinent task parameters for the TCFM.

2. A more efficient update strategy to make better updates with less data, i.e. fewer rollouts.

3. Integration of an energy cost term to guide the search towards efficient behaviors.
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Chapter 9

Improving Sample Efficiency

In the experiments performed in Chapter 8, it is observed that TCFM has the poten-
tial to resolve task incompatibilities and infeasibilities on humanoid robots. Unfor-
tunately, the chosen Dynamic Movement Primitive (DMP) parameterization in as-
sociation with the Policy Improvement though Black-Box optimization (PIBB) update
strategy requires a large number of rollouts to achieve optimal task trajectories.
This is unacceptable for real robots. To resolve this problem, Gaussian Process
Trajectories (GPTs) are explored as a more compact and expressive policy pa-
rameterization, and Bayesian Optimization (BO) as a more sample efficient TCFM
update strategy. This chapter is divided into two parts. In the first, we look at the
effects of using GPTs to generate the task trajectories in a purely reactive setting.
The objective is to understand if stochastic policies provide any benefit in terms of
task compatibility and feasibility improvement by simply allowing the controller more
flexibility in its prioritization scheme. These effects are studied on the same exam-
ples presented in Chapter 8, and a new example which brings balancing into play.
Having understood the effects of the new policy parameterization on the overall
execution, it is then used within the TCFM algorithm, with BO as the update strat-
egy. In this second part, external perturbations and model perturbations are used
to show how a variety of complex factors can degrade the overall behavior of the
robot. By optimizing the performance cost, the robot can correct for these factors.
These perturbations are created to simulate incompatibilities and infeasibilities in
a visual and demonstrative way. Through two scenarios, it is shown that TCFM
can efficiently maximize task compatibility and feasibility. The effect of deterministic
and stochastic policies on TCFM is explored and robustness issues are brought to
light.

9.1 Experimental Setup: GPTs as a Policy Parameterization
In this experiment, three simulated scenarios are presented to highlight some common issues encountered
when combining multiple incompatible tasks. The first two are similar to those explored in Chapter 8,
and the third looks at equilibrium related incompatibilities and infeasibilities.

The iCub humanoid robot is once again simulated in the XDE physics environment [Merlhiot et al.,
2012; Sovannara, 2013]. Task completion is characterized as the proximity of the hand task frames to
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their respective goal locations within a margin of 3.0 cm. More precise margins can be applied without
loss of generality. The policies are rolled out using both deterministic, a(k) = πθ(s(k)) (see Sec. 5.2.3),
and stochastic policies, πθ(a(k)|s(k)) (see Sec. 5.3.2). To simplify the discussion, deterministic policies
are referred to as static, and stochastic policies are referred to as variable. This is because both policies
use the same weighted priority QP controller described in Chapter 2, and the deterministic policies do
not change the controller weights over the course of the movement, while the stochastic policies do vary
the weights as described in Sec. 5.3.2.

9.1.1 Test Case 1: Constrained Configuration

In this first test case, three principle tasks are combined which lead the to the robot being forced into
a constrained configuration. Such configurations commonly occur on highly redundant systems when
multiple tasks require the same DoF. In humanoids, this often occurs due to solicitation of the torso
DoF. The first standing task maintains the robot’s Center of Mass (CoM) at a constant position with
a static weight of 1.0. The joint position, torso orientation, and head orientation tasks are used to
keep the robot in an upright posture and avoid unactuated articulations. The two variable weight tasks
are associated with the left and right hands, specifically the center of the base of the palms, thus it
is these tasks which have GPT. These tasks are defined by trajectories passing through waypoints at
the beginning, middle and end of the movements. The task objectives are for them to attain the final
waypoints, or goal positions, while passing through the other waypoints. The left and right hand tasks
last 6.4s and 6.1s respectively, and are executed with β = 1.0 (see (5.15)). Tables 9.1 and 9.2 list these
tasks and constraints as well as their parameters.

Table 9.1 – Task set for test cases 1 of the GPTs as a policy parameterization experiment. Kd = 2
√
Kp

for all tasks.

Task Type DoF/Link Dimension Weight w Gain Kp

Joint Position All DoF 25 10−5 9

Cartesian CoM 3 1 36

Orientation Torso 2 0.001 16

Orientation Head 2 0.1 16

Cartesian Right Hand 3 1.0 40

Cartesian Left Hand 3 1.0 40

Table 9.2 – Constraints for test cases 1 of the GPTs as a policy parameterization experiment

Constraint Type DoF/Link Dimension

Joint Limit All DoF 25× 2

Torque Limit All DoF 25× 2

Contact Set Left Foot 6× 4

Contact Set Right Foot 6× 4
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9.1.2 Test Case 2: Workspace Violation

The second test case combines the same tasks and constraints described in the first test case in Sec. 9.2.1.
However, this time the hand trajectory goal positions are further apart than the maximum workspace
of the robot (in this standing configuration). This scenario is designed to represent a typical workspace
conflict during picking procedures. The trajectories pass through waypoints at the beginning, middle and
end of the movements. The left and right hand tasks trajectory durations are 6.3s and 6.2s respectively,
and are executed with β = 1.0. When one of the hands attains its goal position, that is, within 3.0cm of
the final waypoint, that task is deactivated (i.e. the object has been picked). Task deactivation means
that it no longer contributes to the control solution, or equivalently, that its weight is set to 0.0.

9.1.3 Test Case 3: Balance Perturbation

In this third test case, the objective is to create a task which is dynamically incompatible with bipedal
equilibrium. Equilibrium is managed by trying to keep the CoM position over the center of the Polygon
of Support (PoS), which is defined by the convex hull of foot contact sets. The right hand follows a
sweeping trajectory from the hand’s starting waypoint to its end waypoint - no intermediary waypoints
are considered. The right hand task is managed by a GPT. Tables 9.3 and 9.4 list these tasks and
constraints as well as their parameters. The right hand task trajectory duration is 8.6s and is executed
with β = 10.0.

Table 9.3 – Task set for test cases 3 of the GPTs as a policy parameterization experiment. Kd = 2
√
Kp

for all tasks.

Task Type DoF/Link Dimension Weight w Gain Kp

Joint Position All DoF 25 10−5 9

Cartesian CoM 3 1 36

Cartesian CoM 3 1 50

Orientation Torso 2 0.001 16

Orientation Head 2 0.1 16

Cartesian Right Hand 3 1.0 40

Table 9.4 – Constraints for test cases 3 of the GPTs as a policy parameterization experiment

Constraint Type DoF/Link Dimension

Joint Limit All DoF 25× 2

Torque Limit All DoF 25× 2

Contact Set Left Foot 6× 4

Contact Set Right Foot 6× 4

9.2 Results: GPTs as a Policy Parameterization video

In this section we provide the results of the scenario simulations described in Sec. 9.1.

https://youtu.be/rnSLrY-zwLc
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9.2.1 Test Case 1: Constrained Configuration

(a) static

(b) variable (c)

Figure 9.1 – The constrained configuration scenario. (a) and (b) show the task combination results using
static and variable weights respectively. (c) plots provide the simultaneous evolution of various task
parameters.

When the two hand tasks are combined with static weights, we can see in Fig. 9.1a that the left
hand task achieves its goal location, contrary to the right hand task. This occurs because individually,
the hand tasks require the torso to rotate left and right; therefore, when they are combined this DoF is
constrained between the two. The arm DoF attempt to compensate for this reduction in redundancy by
moving to their limits, and forcing the robot into a constrained configuration. This is shown in the left
arm DoF plots in Fig. 9.1c. Consequently, the right hand task is no longer feasible and incurs high task
errors at both the middle and goal waypoints due to its combination with the left hand task. This can
be observed in the task error plot of Fig. 9.1c. The waypoints along the trajectory are indicated by the
peaks in the task weight curves in Fig. 9.1c.

In Fig. 9.1b, the robot has successfully accomplished its tasks through the use of variable weights.
By looking at the left arm DoF plots in Fig. 9.1c, we can see that the right hand task weight increases
approximately 0.25s prior to the left hand weight, forcing the controller to prioritize its execution and
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causing the left arm elbow pitch, shoulder pitch and shoulder roll to deviate. These deviations pull the
left arm DoF away from their limit values, freeing these articulations for the left hand movement when
its weight increases.

9.2.2 Test Case 2: Workspace Violation

(a) static

(b) variable (c)

Figure 9.2 – The constrained configuration scenario. (a) and (b) show the task combination results using
static and variable weights respectively. (c) plots provide the simultaneous evolution of various task
parameters.

Figure 9.2a shows the static execution of the two hand tasks and although the hands seem to reach
their goal positions, close inspection of the distance to goal plot in 9.2c shows that they never attain the
3.0cm error threshold limit. As a result, they rest in a local minimum between their two objectives.

When variable weights are applied to the simultaneous execution of the two hand tasks, the robot
achieves its right hand goal first, thereby deactivating the right hand task, and then proceeds to finish
the left hand task; this is shown in Fig. 9.2b. The instants that the hand tasks are deactivated can be
seen in the task error and distance to goal plots, and are indicated by circular markers.
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In both the right and left hand movements, the y-axis component develops large errors near the goal
locations. The errors are roughly equivalent (see Fig. 9.2c static task error plot) and therefore whichever
task has the largest weight (in the y-direction) dominates in the whole-body controller output — the right
hand task in this case (see Fig. 9.2c hand task weight plots). Once the right hand task is deactivated, all
incompatibilities are removed and the left hand task is able to recuperate its accumulated error and be
deactivated as well.

9.2.3 Test Case 3: Balance Perturbation

0.0− 4.0s

(a) static

0.0− 9.0s

(b) variable (c)

Figure 9.3 – The constrained configuration scenario. (a) and (b) show the task combination results using
static and variable weights respectively. (c) plots provide the simultaneous evolution of various task
parameters.

Figures 9.3a and 9.3b show the balance perturbation results. Using static weights for the right hand
task results in a loss of balance and ultimately a failure for both tasks; this can be seen in Fig. 9.3a. We
can confirm this loss of balance by observing that the Center of Pressure (CoP) moves outside of the
PoS in Fig. 9.3c. Despite the CoM task being ten times more important than the right hand task, the
motion fails because the accumulated error at the apex of the sweeping movement generates large enough
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accelerations in the y-direction to perturb the balance.
In the variable weight case, we can see in Fig. 9.3b that the robot successfully attains the goal position

of the hand task while remaining balanced. The task error plot shows that the right hand task incurs a
large amount of error as in the static case, but because this occurs during a period of high variance, this
error only partially perturbs the CoM task. The CoM task is deviated somewhat from its goal location
in order to compensate for some of the right hand error, but the CoP remains safely within the PoS as
shown in Fig. 9.3c.

9.2.4 Conclusions: Effect of GPTs as a Policy Parameterization

From the experiments presented here it is clear that stochastic policies have the potential to improve
the robustness of tasks to incompatibilities and infeasibilities, by allowing the controller to allocate
resources as necessary depending on the variance of the task trajectories. The results here show that
the stochastic policies can reactively get out of constrained configurations, solve workspace conflicts,
and avoid balancing incompatibilities. Nevertheless, all of this success hinges on the synchronization of
the points of high trajectory variance and high incompatibility and infeasibility. Taking the balancing
perturbation scenario for instance, if a waypoint had been placed near the apex of the reaching trajectory
then the variance of the right hand task would have gone to near zero, and its weight would have increased
to its maximum value. This would have caused the robot to lose balance. Thus, despite their simplicity
and interesting properties, stochastic policies are not a panacea for task compatibility and feasibility
improvement, because it is clear where they will not work. Therefore, there remains a need for TCFM.
On this note, the next section explores how GPTs can be integrated into the TCFM algorithm and used
as a compact policy parameterization, which allows the use of a BO update strategy.

9.3 Experimental Setup: TCFM using GPTs and BO

code

In this experiment, the GPT policy parameterization is used within the TCFM algorithm in concordance
with BO as a update strategy to see if sample efficient TCFM is achievable and therefore feasible for real
robots. Two test scenarios are explored to study the efficacy of these changes to the TCFM algorithm.
For each scenario the TCFM algorithm is run with and without use of the task variance, i.e. stochastic
policies.

Here, all simulations are executed in the Gazebo [Koenig and Howard, 2004] environment using the
ODE physics engine and a real-time clock. The first test case provides a demonstration of how to use
GPTs to parameterize tasks and add “adjustable” parameters (waypoints in this case) which can be used
by TCFM to minimize the cost function. In doing so, we observe that a repeated external perturbation,
which is used as facsimile for a time-varying Cartesian infeasibility, can be accounted and compensated
for. In the second, more complex, test case, a set of dynamically incompatible tasks, actuator limits,
and environmental interactions generate a complicated set of task incompatibilities and infeasibilities,
which degrade the robot’s ability to perform its desired tasks. In both tests, the use of environmental
information is explicitly prevented, and only the right hand task is used in the policy parameterization.
Here, the total performance cost, jP, is used as the cost function,

ji = cost ({S,A}i) = jP. (9.1)

Since only the right hand task is used in the policy parameterization, the performance cost consists of,

jP =
jTP
right + ϕjE

tend
π

, (9.2)

with ϕ = max (‖τ (k)‖2)
−1, the maximum torque norm from the original policy, as the energy scaling

factor.

https://github.com/rlober/humanoids-2016
https://github.com/rlober/humanoids-2016
https://github.com/rlober/humanoids-2016
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9.3.1 Test Case 1: Operational-Space Infeasibilities
In this toy example, the goal is to illustrate the key components of the task parameterization with
GPTs and the usage of BO as a TCFM update strategy. The basic idea of the scenario is to simulate
a complicated time-varying infeasibility in the operational-space and use this to provoke infeasibilities
in the prescribed tasks. To accomplish this, a physical obstacle is inserted into the path of a right
hand reaching task at a specific time. Through the use of an obstacle to introduce task infeasibilities,
the TCFM scenario can be closely controlled and studied. Real time-varying constraints for humanoid
robots, such as joint position constraints, are difficult to clearly analyze and control. Using an obstacle
on the other hand, allows us to isolate the task infeasibility to a known and constant source. To further
control the situation, the root link of the robot is fixed to isolate task disturbances to the presence of the
obstacle and remove any possible issues due to maintaining balance. The only tasks active in the test
scenario are full and partial posture (joint position) tasks, and a right hand position task. The full-body
and torso posture tasks are used to keep the robot in an upright posture and avoid unactuated limbs.
Only the right hand reaching task is of interest in this study and is therefore the focus of test case 1.
These tasks and their parameters are presented in Table 9.5.

Table 9.5 – Task set for test case 1 of TCFM with GPTs and BO. Kd = 2
√
Kp for all tasks.

Task Type DoF/Link Dimension Weight w Gain Kp

Joint Position All DoF 25 10−5 5

Joint Position Torso DoF 3 10−3 30

Cartesian Right Hand 3 1.0 20

The robot is given a trajectory for its right hand Cartesian task from the hand’s starting position to
a point 25cm above it with the following waypoints,

Λ =
[
zstart zgoal

]
(9.3)

tλ =
[
tstart tgoal

]
(9.4)

where zstart = 0.0m, zgoal = 0.25m, tstart = 0.0s, and tgoal = 2.5s. The x and y axes of the task frame
are constrained to force the robot to move in a straight line along the z-axis preventing the robot from
moving around the obstacle. The robot must optimize the right hand Cartesian task to avoid an obstacle
(compensate for a task incompatibility), of which it has no knowledge or perception. Because the right
hand task waypoints cannot be modified, an additional “adjustable” waypoint is inserted into (9.3),

Λ =
[
0.0 z′ 0.25

]
(9.5)

tλ =
[
0.0 t′ 2.5

]
. (9.6)

Here, t′ is taken as the median time of the task trajectory, 1.25s, and z′ = ξ(t′) = 0.12m. This waypoint
is then used as the initial policy parameters,

θi=0 =

[
z′

t′

]
=

[
0.12
1.25

]
. (9.7)

The policy parameters, θ ∈ R2, so the surrogate function mean within the BO may be visualized. The
rollout is terminated if the hand has reached its goal location to within 3.0cm or the policy rollout has
exceeded 10.0s in total duration. The selected BO bounds are the minimum and maximum waypoint, Λ,
and waypoint times, tλ, [

0.0
0.1

]
≤ θ ≤

[
0.25
2.4

]
, (9.8)
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with a small margin of difference in the t′ bounds to avoid having two simultaneous waypoints. At exactly
1.0s, the obstacle is inserted into the path of the robot’s hand trajectory at z = 0.12m; however, this
information is not used in any way during the task optimization. This obstacle is a 1.0cm thick flat plate
(see Fig. 9.4).

9.3.2 Test Case 2: Moving a Heavy Weight
The aim of this simulation is to show how TCFM can compensate for a complex combination of task
incompatibilities and infeasibilities, which impair the overall behavior of the robot. In this example, the
robot is standing on a flat surface and maintaining balance, while trying to move a 1.0kg cube with its
right arm from its starting point to a target location on a flat table. The feet are not fixed to the ground.
The cube is affixed to the right hand and its mass is greater than the maximum effective payload of
the iCub’s right arm, which is approximately 0.5kg when fully extended. An orientation task is used to
maintain the cube’s bottom surface parallel to the table top. Balance is achieved through a CoM position
task, the objective of which is to maintain the CoM’s ground projection in the center of the PoS. A torso
Cartesian task along with a full-body posture task keep the robot upright. These tasks and constraints
along with their parameters are presented in Tables 9.6 and 9.7.

Table 9.6 – Task set for test case 2 of TCFM with GPTs and BO. Kd = 2
√
Kp for all tasks.

Task Type DoF/Link Dimension Weight w Gain Kp

Joint Position All DoF 25 10−5 5

Cartesian CoM 3 1.0 50.0

Cartesian Torso 3 10−4 1.0

Orientation Right Hand 3 1.0 80

Cartesian Right Hand 3 0.05 70

Table 9.7 – Constraints for test case 2 of TCFM with GPTs and BO.

Constraint Type DoF/Link Dimension

Joint Limit All DoF 25× 2

Torque Limit All DoF 25× 2

Contact Set Left Foot 6× 4

Contact Set Right Foot 6× 4

The right hand trajectory consists of three waypoints, at the start, middle, and goal of the movement,

Λ =
[
λstart λmid λgoal

]
(9.9)

tλ =
[
tstart tmid tgoal

]
. (9.10)

The middle waypoint, λmid, which is deemed “adjustable”, is chosen halfway between λstart and λgoal
and 5.0cm above the table to avoid dragging the cube. The waypoint, λmid, and its time, tmid, are
selected as the initial policy parameters,

θi=0 =

[
λmid
tmid

]
. (9.11)
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Therefore, θ ∈ R4. In this simulation, the optimization bounds are restricted to a hyperrectangle centered
at θi=0. The bounds are given by,

θi=0 ±




0.05
0.05
0.02
1.0


 . (9.12)

We restrict the search space in this example to try to prevent the robot from exploring movements which
would cause it to fall. Task execution is terminated if the cube has reached its goal location to within
3.0cm or the movement has exceeded tmax

π = 15.0s in total duration. Qualitatively, the principle sources
of task incompatibility and infeasibility are the heavy payload, which the actuators of the right arm are
incapable of correctly supporting, and the incompatibility between the right hand task and the overall
balance of the robot.

9.4 Results: TCFM using GPTs and BOvideo

This section presents the results for the test simulations described in Sec. 9.3. For both tests, the time of
an optimization iteration is equal to the time it takes to complete an execution, which is limited in both
simulations to 10s and 15s respectively, plus the time it takes to compute the BO update, which never
exceeds 1.0s. The BO update occurs in parallel to the task executions and takes less time to compute
than the simulation does to reset for another rollout.

(a) starting position (b) original task (c) optimized task

Figure 9.4 – This figure shows the original and optimized policies for the “Operational-Space Infeasibilities”
test case detailed in Sec. 9.3.1. (a) shows the initial starting posture. In (b) it can be seen that the robot
is blocked by the yellow obstacle introduced at 1.0s. TCFM generates a trajectory which causes greater
acceleration at the beginning of the movement, moving the right arm above the obstacle before it arrives
(c). This allows the robot to reach its goal, indicated by the red sphere.

9.4.1 Test Case 1: Operational-Space Infeasibilities
In Fig. 9.4, the main results of the simulation are presented. Figures 9.4b and 9.5b show that the original
task execution fails due to the yellow obstacle impeding the movement of the hand. Applying TCFM
to this problem both with and without stochastic policies results in an optimized right hand task which
achieves its goal position and avoids the obstacle as shown in Fig. 9.4c. The solutions found using static
and variable weights are identical as can be seen in Fig. 9.5a and Fig. 9.5b, but TCFM obtains the
solution in only 7 rollouts using variable weights, while it takes 12 rollouts using static weights. This can

https://youtu.be/fHnjFHtJsEg
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(a) static (b) variable

(c) static (d) variable

Figure 9.5 – (a) and (b) Plots of the z component of the original and optimized hand trajectories, using
static and variable weights respectively. The notation •∗ indicates an optimal value, or a value associated
with the optimized policy. (c) and (d) a plot of the surrogate function cost mean, ĵPµ , of the BO update
strategy within the TCFM, using static and variable weights respectively. These figures show the learned
performance cost landscape of the obstacle avoidance simulation, after convergence of TCFM. The task
rollouts, or cost function samples, are plotted by the green dots. The blue dot represents the optimal
variables found for this simulation. Using these values for the task’s optimization waypoint, the obstacle
is successfully avoided, i.e. the effects of the task incompatibilities and infeasibilities are removed.

be confirmed in Fig. 9.5c and Fig. 9.5d where the BO surrogate function means, ĵPµ , are plotted for the
static and variable optimizations. Here, we observe that the cost landscape generated by this disturbance
scenario is most elevated after the obstacle insertion time and below the z-height of the obstacle. This
is logical because any waypoint in this region of the search space would result in a failure to reach the
goal. Each sample of the real cost function is indicated by a green dot, and represents a task execution.
The blue dot shows the optimal value found by BO with high confidence and corresponds to the optimal
waypoint shown in Fig. 9.5c and Fig. 9.5b.

The optimized right hand task trajectories shown in Fig. 9.5a and Fig.9.5b move the hand quickly
enough to avoid the obstacle and attain its goal. One of the key things to note is that the optimal
waypoint found for this task actually generates a trajectory outside of the robot’s workspace. This has
the effect of creating strong accelerations in the beginning of the movement allowing the robot to avoid
the obstacle. Normally such a trajectory would generate dangerous movements, but the whole-body
controller does not execute the infeasible portions of the trajectory because they violate the control
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constraints and are incompatible with the other tasks. This can be seen in Fig. 9.5a and Fig.9.5b where
the real task trajectory, z∗real, only partially follows the reference, z∗µ. This is interesting because the
optimized trajectory is more counterintuitive than the original trajectory, yet it is an effective solution
to this problem. When stochastic policies are used, the tracking of the right hand task trajectory is
somewhat smoother than that of the deterministic policy tracking. This occurs because the weight of
the right hand task diminishes between the middle and goal waypoints and allows the controller in the
stochastic policy to diminish the high desired accelerations of the task. This phenomenon allows the
controller to “filter” overly aggressive trajectories which may be close to optimal but ultimately fail.
When static weights are used, the controller attempts to track the aggressive desired accelerations and
this leads to unstable behaviors which fail to reach the goal point, thus applying a high cost to nearly
optimal policy parameters. This can be seen in the relatively flat cost landscape around the optimal
parameters in Fig. 9.5c.

9.4.2 Test Case 2: Moving a Heavy Weight

(a) starting position (b) original task (c) optimized task

(d) distance to goal

Figure 9.6 – This figure shows the original and optimized tasks for the “Moving a Heavy Weight" simu-
lation detailed in Sec. 9.3.2. (a) shows the initial starting posture. In (c), it can be seen that the robot
comes up just short of its goal location. By optimizing the middle waypoint of the task, the robot is
able to accelerate more at the beginning of the movement, building up sufficient inertia to reach its goal
within the acceptable error, as demonstrated by (d).

In Fig. 9.6, the original and optimized task executions for this example are shown. Although the
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differences are imperceptible in these still frames, the robot manages to attain the desired weight target
to within 3.0cm of error, as shown by Fig. 9.6d. As with the first test case, the optimal behavior found
with and without stochastic policies is the same. However, this time the TCFM finds an optimal set of
policy parameters in the same number of rollouts: 11 in this test case. After 11 rollouts, the robot learns
how to accomplish its objectives by placing the middle waypoint closer to the goal and sooner in the
trajectory resulting in a task trajectory with higher initial accelerations. These accelerations increase the
task error term and consequently the optimal torques needed to accomplish it. This causes the whole-
body controller to preferentially accomplish the hand task and deviate the CoM task. Task equilibrium
is reestablished at the end of the hand movement when the velocities and accelerations go to zero. This
solution is quite intuitive to anyone who has moved a heavy object; however, it would be difficult to plan
such a dynamic movement, without incorporating complex and contextually specific model information
into the planning algorithm.

(a) static (b) variable

Figure 9.7 – Evolution of the performance cost in percentage using static, (a), and variable, (b) weights
(deterministic and stochastic policies). Each rollout cost is broken up into the component tracking, jT,
goal, jG, and energy, jE, costs.

Looking at Fig. 9.7, the cost evolution for the TCFM using static and variable weights it presented.
The scaled performance cost ĵP (see Sec. 5.6.2) for each rollout is presented as a percentage,

ĵPr =
jPr
jP0
× 100, (9.13)

to facilitate the analysis of the evolution. Firstly, it can be seen that the goal and energy costs dominate,
the scaled performance cost, ĵP, for this particular scenario, which is due to the explosion of these terms
when the robot falls and becomes unstable. The successful behaviors can be seen to have nearly zero goal
cost and because virtually every other tested set of parameters results in a fall, the BO update strategy
converges quickly to the same optimal parameters using static and variable weights.

9.4.3 Conclusions: TCFM using GPTs and BO
These experiments demonstrate that by using a more compact policy parameterization, GPTs, and a more
efficient update strategy, BO, TCFM is able to account and compensate for complex task incompatibilities
and infeasibilities in very few rollouts. Being efficient in the number of rollouts needed to perform TCFM
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is crucial to its applicability because it means it can be implemented on real-world systems. This is
key to the utility of TCFM because a large part of task incompatibility and infeasibility stems from
un-modeled perturbations which occur only in the real world. As such, this implementation of TCFM
could be used to measure and correct these effects. Here, we use contrived scenarios to simulate such
un-modeled perturbations or modeling errors, but they are a proof of concept of the capabilities of the
method.

In Fig. 9.8, we show the number of iterations necessary to optimize the incompatible and infeasible
right hand tasks with static and variable weights. In the obstacle avoidance scenario, we see a marked
gain in convergence speed when using variance modulated weighting. On the contrary we see no difference
for the scenario where the iCub must move a heavy load. These results can be attributed to the search
bounds used for the two examples (see (9.8) and (9.12)).

Figure 9.8 – A comparison of the TCFM
with deterministic and stochastic policies
(static and variable weights).

In the simple obstacle avoidance case, the search bounds
allow for movements which generate high accelerations. This
is primarily due to the temporal dimension of the search.
When two waypoints are temporally close, but spatially dis-
tant, the resulting trajectory will produce large accelerations.
As such, during the variance modulated weight trials, the tra-
jectories which cause the posture tasks to deviate wildly, are
partially suppressed during periods of high variance. This
effectively ignores the useless components of the trajectory
while benefiting from those which improve its compatibility
cost. In the static weight case, the trajectories are followed
strictly and this produces highly energetic and dangerous
movements in many cases. For second simulation scenario,
the optimization bounds are far more restricted in order to
prevent dangerous exploration, which essentially nullifies the
benefits of variance modulated weighting. From the two test
scenarios, using stochastic policies instead of deterministic
policies, seems to have a beneficial effect on the sample effi-
ciency of TCFM. However, this exploration does not provide
enough data to draw any statistically significant conclusions
about whether or not stochastic policies truly improve sam-
ple efficiency. Also, without experimenting on a real robot,
there is no way of knowing if stochastic policies are even stable. These matters require further testing
and development, because as shown with the test cases from Sec. 9.1, GPTs seem very promising for
reactively improving task compatibility and feasibility.

One downside to GPTs is that you must specify the time of the waypoints, which is not always easy,
and it can generate trajectories which actually violate the BO bounds, as shown by Fig. 9.5b. While this
can have some interesting benefits, for the most part when bounds are specified, it is smart to respect
them. Furthermore, because BO uses GPs to model the latent cost function, the size of the surrogate
grows rapidly with the number of parameters and rollouts. A naive1 implementation of BO suffers from
the curse of dimensionality, and beyond ten optimization variables, modern computers quickly run out
of memory. Therefore, what remains to be seen is:

1. Can a simpler more robust policy parameterization be used, which generates trajectories within
bounding constraints?

1The most basic implementation of BO requires that the search space be discretized, which causes the memory require-
ments to grow exponentially due to the curse of dimensionality. This makes BO a global optimization method but is not
effective for problems with more than ten dimensions. Most modern implementations use local stochastic or gradient update
strategies seeded throughout the search space to more efficiently handle large problems. These remove any assurance of
global optimality but pay off in terms of practicality.
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2. How well do less efficient update strategies like CMA-ES perform with these low-dimensional policy
parameterizations, and how does it compare with BO?
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Chapter 10

Robust and Sample Efficient TCFM
for Real Robots

In Chapter 9, it is shown that TCFM can efficiently optimize whole-body behaviors
by using Gaussian Process Trajectories (GPTs) for the policy parameterization as
well as Bayesian Optimization (BO) as the update strategy. While this is a first
step towards real world implementation, GPTs require that the trajectory waypoint
times be specified a priori. While not overly constraining, this is practically difficult
for many tasks where acceleration and velocity constraints need to be respected.
Furthermore, GPTs may not respect the optimization bounds of TCFM. In an effort
to determine a more compact and robust policy parameterization, Time-Optimal
Trajectories (TOT) are used here for task trajectory generation. TOTs require only
waypoints and maximum velocity and acceleration limits to generate a time-optimal
trajectory. Additionally, these TOTs generate paths which go from waypoint to way-
point in a straight line and blend those segments with circles, ensuring that the
path is bounded by the waypoints, thus respecting the TCFM bounds. Because the
parameterization is compact, it remains to be determined if stochastic optimization
update strategies can efficiently optimize the parameters. Therefore, a comparison
of TCFM using CMA-ES and BO as update strategies is made. This is important
because stochastic optimization update strategies are generally more efficient than
BO update strategies in high dimensional problems, and if TCFM is to be extended
to optimize many tasks in the same behavior, then the parameter space will grow
beyond what BO can effectively handle. The robustness of TCFM is tested on 100
random reaching trials, and the power of TCFM is demonstrated on the complex
sitting to standing trials. TCFM is shown to successfully generate policies which
reach previously unreachable targets, and stand up without losing balance. The
genericity of TCFM is demonstrated by changing the underlying whole-body control
hierarchy in the policy. In both simulation and on a real iCub, TCFM is shown to
efficiently and robustly maximize task compatibility and feasibility.

159
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10.1 Experimental Setup

code

.
In the following test cases, we look at the impact of CoM tasks on the performance of the whole-body

behaviors. CoM tasks are crucial to humanoid robotics because they allow balance to be achieved both
statically and dynamically. They are commonly the most important task in a set and also the reason why
other tasks may never be completed. Throughout the following examples, only the CoM task trajectory is
optimized in TCFM. The bounds applied in TCFM ensure that the CoM position respects static stability
constraints, i.e. its ground projection stays within the PoS. This precludes the need for applying similar
whole-body controller inequality constraints on the CoM position.

The first test case explores basic reaching movements under bipedal equilibrium, and serves as a
benchmark for TCFM with TOTs and CMA-ES/BO. It provides useful statistics to analyze the method
and the CMA-ES and BO update strategies used in the TCFM. The rest of the test cases present a more
dynamically complex scenario in which the robot starts from a seated position and must transition to
standing. Here, we look at the difficulties of contact transitioning and dynamic equilibrium. In both
experiments, balance is achieved by keeping the robot’s CoM position over its PoS.

For both the reaching and standing scenarios, the CoM task trajectory parameters are optimized to
improve the performance cost, jP. Box constraints for the optimization can be applied in both BO and
CMA-ES and are set here using static stability constraints, i.e. the projection of the CoM must remain
inside the PoS. The z bounds are chosen as 0.3m ≤ z ≤ 0.52m, which are the heights of the CoM when
the robot is squatting and when it is upright with its arms stretched upwards, respectively. The bounding
boxes for both experiments are shown in Figs. 10.1a and 10.1b. In all of the test cases presented here,
Gazebo is used as the simulation environment with the ODE physics engine.

(a) reaching (b) standing

Figure 10.1 – Figures (a) and (b) show the policy parameter, θ, bounding boxes used by the TCFM
update strategies for the reaching and standing scenarios, respectively.

10.1.1 Test Case 1: Reaching

The task set and constraints used in this test case are presented in Tables 10.1 and 10.2. The head orien-
tation task, which is used in the previous experiments, is removed here because it is redundant with the
postural task for all the DoF. The objective of this test case it to demonstrate the flexibility of the proposed
TCFM, as well as to glean useful statistics about the two proposed update strategies, BO and CMA-ES.

https://github.com/rlober/task-optim
https://github.com/rlober/task-optim
https://github.com/rlober/task-optim
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Table 10.1 – Task set for test case 1 of TCFM with TOTs and CMA-ES/BO. Kd = 2
√
Kp for all tasks.

Task Type DoF/Link Dimension Weight w Gain Kp

Joint Position All DoF 25 10−5 1

Cartesian Torso 3 0.05 1.0

Cartesian Right Hand 3 0.001 40

Cartesian Left Hand 3 0.0001 40

Cartesian CoM 3 1.0 50.0

Table 10.2 – Constraints for test case 1 of TCFM with TOTs and CMA-ES/BO.

Constraint Type DoF/Link Dimension

Joint Limit All DoF 25× 2

Torque Limit All DoF 25× 2

Contact Set Left Foot 6× 4

Contact Set Right Foot 6× 4

To accomplish this, 100 reach targets are randomly generated around the simulated robot, see Fig. 10.2.
For each target, a straight line trajectory is generated for the right hand task between its starting position

Figure 10.2 – Random reaching targets used
to provide a statistical analysis of TCFM. The
target spheres are color coded to indicate their
test case, with green meaning reachable, orange
meaning possibly reachable, and red meaning
unreachable.

and the position of the target. The CoM task trajectory
is generated between two waypoints,

ΛCoM =
[
λstart λgoal

]
, (10.1)

where λstart is the initial CoM position, and λgoal is the
desired goal CoM position, which is initially chosen to
be the center of the PoS at the current CoM z height
— i.e. to stand still. In this test case, the goal way-
point, λgoal, is used as the policy parameters which is
optimized by TCFM.

θi=0 =
[
λgoal

]
. (10.2)

The cost function is again the performance cost, jP,

ji = cost ({S,A}i) = jP, (10.3)

and is computed using only the right hand and CoM
tasks,

jP =
(jTP

right + jTP
CoM) + ϕjE

tend
π

, (10.4)

and ϕ = max (‖τ (k)‖2)
−1, the maximum torque norm

from the original policy.
The objective of the experiment is to attain the reach target and a target is considered attained

when the right hand task frame is within 3.0cm of it. The rollout is stopped if the target is attained or
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if a time limit, tmax
π , is exceeded. For each reach target, the TCFM is performed using both BO and

CMA-ES as update strategies. The target is then classified into one of three cases. If the robot attains
the target with the original policy, the target is considered reachable. If it is unable to attain the target
with the original policy, but attains the target with the optimized policy, then the target is possibly
reachable. Finally, if the reach target is unattainable with either the original or optimized policies, then
it is considered unreachable. Using one of the results from the possibly reachable cases, the original and
optimized policies are executed on the real iCub to see if the behaviors produced by TCFM are viable
on real systems.

10.1.2 Test Case 2: Standing

Table 10.3 – Task set for test case 2 of TCFM with TOTs and CMA-ES/BO. Kd = 2
√
Kp for all tasks.

Task Type DoF/Link Dimension Weight w Gain Kp

Joint Position All DoF 25 10−4 5

Orientation Torso 3 0.002 10.0

Cartesian Right Hand 3 0.001 20.0

Cartesian Left Hand 3 0.001 20.0

Cartesian CoM 3 1.0 60.0

Table 10.4 – Constraints for test case 2 of TCFM with TOTs and CMA-ES/BO.

Constraint Type DoF/Link Dimension

Joint Limit All DoF 25× 2

Torque Limit All DoF 25× 2

Contact Set Left Foot 6× 4

Contact Set Right Foot 6× 4

Contact Set Left Upper Leg 6× 2

Contact Set Right Upper Leg 6× 2

In this experiment, the robot is seated on a stationary bench and the objective is to stand up. This
simple, yet dynamically complex whole-body behavior presents a significant challenge for TCFM because
the difference between standing and falling, success or failure, is exceedingly small. To get the robot to
stand up from a seated position, the following task set and constraints, presented in Tables 10.3 and 10.4,
are used. The bench contacts, at the Left and Right Upper Legs, are 22cm from the ground and on the
back of the iCub’s upper thigh links. In this case the only primary task is the CoM task, and its TOT
is parameterized by three waypoints,

ΛCoM =
[
λstart λmiddle λgoal

]
, (10.5)

where λstart and λgoal have the same meaning as in (10.1) and λmiddle is a middle waypoint between the
start and goal CoM positions. Here, λgoal is picked as a nominal standing CoM position near the middle
of the PoS in x and y and at approximately 0.5m from the ground, and λmiddle is picked as a point
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halfway between λstart and λgoal. In this test case, the middle waypoint, λmiddle, is used as the policy
parameters in the TCFM,

θi=0 =
[
λmiddle

]
. (10.6)

The performance cost, jP, is computed using only the CoM task,

jP = jE + jTP
CoM. (10.7)

Both CMA-ES and BO are used as update strategies within the TCFM for this test case.
In order to stand, the Left and Right Upper Leg contacts used in the whole-body controller must be

deactivated or the robot will never be able to get up. Thus, the bench contacts are deactivated arbitrarily
at 2.0 seconds. The rollout is executed until the CoM task has attained λgoal to within 3.0cm of error or
some time limit, tmax

π , has been exceeded.

10.1.3 Test Case 3: Standing with Help
Using the same experimental setup described by test case 2, an external support is simulated, in a simple
and naive way, as an external force applied at each forearm of the robot throughout the overall movement.
This supporting force is designed to mimic a person helping the robot to stand up, which can be regarded
as a dynamic perturbation when not accounted for in the whole-body controller model. The magnitude of
the force at each forearm is chosen small: Fsupport = 5.23 N pointing 45◦ upward and front in the sagittal
plane of the robot. This force corresponds to the minimum required assistive force for the original policy
to produce a successful standing motion. This experiment is designed to show how TCFM responds to
changes in the underlying dynamics of the policies. Only BO is employed as a update strategy in this
test case.

10.1.4 Test Case 4: Standing with a Different Whole-Body Controller
The objective here is to determine if TCFM is truly generic and controller agnostic. To accomplish this,
the whole-body controller within the policy is changed. The whole-body controller used in this test case
is a momentum-based hierarchical controller developed in [Pucci et al., 2016; Nava et al., 2016], which
has momentum tracking and joint impedance tasks — the most important of which is the former. For
the momentum task, the desired value is entirely determined by the desired CoM acceleration, ẍdes

CoM,
and is provided by a feedforward Proportional-Integral (PI) servoing controller,

ẍdes
CoM = ẍref

CoM −Kp(ẋCoM − ẋref
CoM)−Ki

∫ t

t=0

(xCoM − xref
CoM)dt, (10.8)

where Kp and Ki are the proportional and integral gain matrices respectively. The CoM reference values,
xref

CoM, ẋref
CoM, and ẍref

CoM are provided by the CoM TOT. The choice of a feedforward PI servoing controller
is imposed by the new control architecture.

The task set is then composed as shown by Table 10.5 and the constraints are shown in Table 10.6.

Table 10.5 – Task set for test case 4 of TCFM with TOTs and CMA-ES/BO. Levels are indicated in
ascending order of importance.

Task Type DoF/Link Dimension Level Gain Kp/Kd

Joint Impedance All DoF 25 0 9/6

Momentum CoM 3 1 20.0/ -
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Table 10.6 – Constraints for test case 4 of TCFM with TOTs and CMA-ES/BO.

Constraint Type DoF/Link Dimension

Joint Limit All DoF 25× 2

Torque Limit All DoF 25× 2

Contact Set Left Foot 6× 2

Contact Set Right Foot 6× 2

Contact Set Left Upper Leg 6× 2

Contact Set Right Upper Leg 6× 2

For this whole-body control architecture, a finite-state-machine (FSM) composed of two states, coordi-
nates the standing motion in the controller. The initial posture is chosen to ensure that the ground-plane
(x-y) projection of starting CoM position is within the PoS defined by the bench and ground contact
locations. In the “Sit” state, the robot is seated on the bench, and the two contacts at the left and right
upper legs are controlled to keep the equilibrium. The toes are in contact with the ground. When a
resultant ground reaction force greater than 150N is detected, the FSM switches to the “Stand” state,
moving the bench contacts to the left and right heels in the whole-body controller.

As with test case 2 from Sec. 10.2.2 the middle waypoint of the CoM TOT is used as the policy
parameters,

θi=0 =
[
λmiddle

]
, (10.9)

and the performance cost, jP, is computed using only the CoM task,

jP = jE + jTP
CoM. (10.10)

The rollouts are first carried out in simulation using Gazebo as the simulation environment with the
ODE physics engine.

Bootstrapped and Non-Bootstrapped Rollouts on the Real iCub

TCFM is iterated until the convergence criterion detailed in Sec. 5.7.2 is satisfied or a maximum number
of rollouts is exceeded. In this study, γ = 1.0cm, (see (5.31)) and the maximum number of rollouts is 30
in simulation and 10 on the real robot. The optimal policy parameters, θ∗, are then used to generate π∗θ
which is rolled out on the real iCub. This rollout is used to demonstrate that TCFM can be performed
in simulation and produce compatible and feasible behaviors on the real robot.

With the π∗θ from simulation as a starting point, the TCFM is continued by performing rollouts on
the real iCub. For these rollouts we look at two cases. In the first, the BO surrogate function training
is bootstrapped with training data from the simulated rollouts and further trained on data from the real
rollouts. In the second non-bootstrapped case, the surrogate function is trained only using the real rollout
data. For both cases, the π∗θ from the simulation rollouts is used as the initial policy for the real rollouts,
warm-starting the TCFM. To limit the number of falls on the real robot, the BO search space bounds
are restricted to a 10cm cube around the initial θ∗, for the real rollouts. Ten rollouts are performed for
both cases. Only BO is employed as a update strategy in this test case.
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10.2 Results

videoreachable

(a) (b)

(c)

possibly reachable

(d) (e)

(f)

unreachable

(g) (h)

(i)

Figure 10.3 – Results of 100 reaching experiments used to study the task compatibility optimization
method. An average example is presented for the three possible reach cases. In the reachable case,
(a) & (b), both the original and optimized policies attain the reach target. In the possibly reachable
case, (d) & (e), the original policy does not attain the target but the optimized policy does. Finally
in the unreachable case, (g) & (h), neither policy attains the target, but the optimized policy reduces
the target error. For each case, the scaled cost means and standard deviations are plotted for both the
BO and CMA-ES update strategies. Any scaled cost lower than 1.0 is an improvement (the 1.0 line
is indicated by a dashed grey lines). For all three cases the scaled performance cost ĵP

∗
is always less

than or equal to 1.0. This indicates that the optimized policies will always be as good if not better than
the original policies. In the reachable case, (c), little improvement is seen because the tasks are already
compatible. For the possibly reachable and unreachable cases, (f) and (i), the compatibility is improved
by reducing the tracking and goal costs at the expense of increased energy usage. For each of the cases,
BO outperformed CMA-ES in number of rollouts for convergence on average, but was less consistent
across-the-board.

In this section, the results for the reaching and standing experiments are presented. To better under-
stand the scenarios, results and analyses, it is strongly recommended to watch the video.

https://youtu.be/2ee0StbMG4M
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10.2.1 Test Case 1: Reaching

(a) original (b) optimized

Figure 10.4 – Original and optimized reaching behav-
iors executed on an iCub robot. These preliminary
results show that the behaviors produced by TCFM
are viable on real platforms.

In Fig. 10.3, representative examples of the three
reach cases are shown. For each, the scaled cost
means and optimization iteration means are com-
puted. The scaled performance cost, ĵP

∗
, and the

component scaled costs, ĵE
∗
, ĵG

∗
, and ĵT

∗
, are

calculated by dividing the optimized costs by the
original costs. Rather than presenting the scaled
task performance cost, ĵTP∗ , the scale component
goal and tracking costs are broken out,

jT
∗

= jT
∗

right + jT
∗

CoM (10.11)

jG
∗

= jG
∗

right + jG
∗

CoM, (10.12)

to better analyze their effects on TCFM.
In the reachable case, Figs. 10.3a, 10.3b and

10.3c, we can see that the original task trajectories
go unmodified because they are already compati-
ble and feasible. In a few cases, CMA-ES is able to
improve slightly on the performance cost, by find-
ing faster ways to reach the same target, which can
be interpreted by the decreased goal and tracking
costs and increased energy costs. We start to see

performance cost improvements between 30%-50% in the possibly reachable case, Figs. 10.3d, 10.3e and
10.3f, where both update strategies quickly converge on solutions which reduce the tracking and goal
errors, allowing the robot to attain the target. These improvements require increased energy usage to
move the CoM, but the resulting successful reach finishes more quickly, amortizing the impact of the
increased energy cost. In the unreachable case, Figs. 10.3g, 10.3h and 10.3i, we see cost improvements
similar to those in the possibly reachable case, even though the targets are physically unattainable.

For all three cases, BO and CMA-ES show similar performance in terms of cost reduction. In terms
of convergence, BO tends to find an optimum in approximately half the number of rollouts needed by
CMA-ES, however, it is less consistent, i.e. has higher variance in the results, than CMA-ES across all
cases.

To validate if the whole-body behavior optimized by TCFM is viable on a real system, a possibly
reachable case is selected at random and executed on the real iCub. In Fig. 10.4, the original, Fig. 10.4a,
and optimized, Fig. 10.4b, policy rollouts are shown. The right hand reaching target is superimposed on
the images. It can be seen that the optimized policy gets the hand inside of the target zone thanks to
the bending of the knees caused by the optimized CoM task trajectory.

10.2.2 Test Case 2: Standing

In Fig. 10.5, we see the evolution of the CoM for the original and optimized policies. The whole-body
motion produced by the original policy, Fig. 10.5a, is unstable and causes the robot to loose balance.
The optimized policy, on the other hand, produces a stable sit-to-stand transition as shown in Fig. 10.5b.
In Fig. 10.5c we observe that, at the moment the bench contacts are deactivated in the controller (the
dashed vertical red line), the original motion immediately tends to lift the CoM upwards, despite an
inappropriate x-location of the CoM (not close enough to the foot PoS). This infeasible CoM trajectory
does not respect the dynamic balancing conditions (see [Perrin et al., 2015]) and causes the robot to
fall. A detailed analysis of the loss of balance is beyond the scope of this study. The optimized policy
moves the CoM more aggressively in the forward direction as well as lowering it prior to the contact
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deactivation instant. The resulting CoM trajectory is balance consistent, thus leading to a successful
sit-to-stand transition.

2.0s 2.5s 3.0s

(a) original

2.0s 4.0s 5.0s

(b) optimized

(c)

Figure 10.5 – Original and optimized CoM reference trajectories and their resultant whole-body motions.
The original policy produces an unstable standing motion causing the robot to lose balance. The opti-
mized policy, however, produces a successful sit-to-stand transition. The right hip is translucent in (b)
to make the reference trajectory visible. (c) evolution of the CoM for the original and optimized policies.
The original CoM curves are cut off after 2.7 seconds when the robot loses balance. The red dashed line
indicates the moment when the bench contacts are deactivated in the whole-body controller.

10.2.3 Test Case 3: Standing with Help

The resulting CoM trajectories for the standing scenario with and without external support are pre-
sented in Fig. 10.6. The optimized, Fig. 10.6b, original with force, Fig. 10.6c, and optimized with force,
Fig. 10.6d, policies all produce successful standing motions, but despite the original policy with force
being successful, the TCFM still improves the performance cost by modifying the CoM trajectory to
better exploit the supporting force. The results in terms of performance cost optimization are presented
in Fig. 10.6e. As intuitively expected, the use of an external supporting force together with an optimized
policy yields the best results in terms of tracking and whole-body energy expenditure. The main difference
between the optimized policy without external support and the optimized policy with external support
lies in the energetic expenditure and time needed to reach a standing posture. This is also illustrated in
Fig. 10.6f where the time needed to reach the CoM height zCoM = 0.5m is more than 1.5 times larger
(measured from the instant where bench contact constraints are no longer enforced) in the case where no
external support is present.
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original

(a)

optimized

(b)

original w/ force

(c)

optimized w/ force

(d)

(e) (f)

Figure 10.6 – Original and optimized CoM reference trajectories with and without support. (a) The
original policy produces an unstable standing behavior causing the robot to lose balance. The optimized
without support, (b), original policy with support, (c), and externally supported, (d), cases produce
successful sit-to-stand transitions. (e) The costs presented here corresponds to the three following cases:
optimized policy without external support, original policy with external support and optimized policy
with external support. Each cost is presented as a ratio of the original cost (no optimization, no external
support). As intuitively expected, the use of an external supporting force together with an optimized
policy yields the best results in terms of tracking and whole-body energy expenditure. (f) Evolution of
the CoM for the original and optimized policies, with and without support. The original CoM curves
without support are cut off after 2.7 seconds when the robot loses balance. The red dashed line indicates
the moment when the bench contacts are deactivated in the whole-body controller.

10.2.4 Test Case 4: Standing with a Different Whole-Body Controller video

In Fig. 10.7, we see the evolution of the CoM for the original policy, B 0, and the policies optimized in
simulation, B 25, the bootstrapped case, B 33, and the non-bootstrapped case, NB 2. The bootstrapped
rollouts are denoted, “B #”, and the non-bootstrapped rollouts are denoted, “NB #”. The initial straight
line CoM trajectory produces an unstable policy, which causes the robot to loose balance. The failing
(i.e. falling) rollouts are indicated by the hatched red backgrounds in Figs. 10.8a and 10.8b. Because the

https://youtu.be/abSmIhr83LM
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Figure 10.7 – Evolution of the CoM trajectories of
the original and optimized policies. “B” indicates the
bootstrapped case, and “NB” the non-bootstrapped
case. B 0 is the original policy executed in simula-
tion. The solid lines are the reference values gener-
ated by πθ and the lighter dashed lines are the real
measured values. The original, B 0, real lines are cut
off after 2.5s when the robot falls. The noisy B 0
force profile is omitted from the force plot, to not
obfuscate the other force profiles.

initial policy fails, the measured CoM position
values for B 0 are not shown after 2.5 seconds
due to noise, and the Fz values are omitted com-
pletely for clarity. After 24 rollouts in simulation
(see Fig. 10.8a), the TCFM converges to a policy
which produces a successful sit-to-stand transition
in both simulation and on the real robot. This pol-
icy comes from the rollout 21 in simulation, and
is used as the policy for the initial real rollouts
in both the bootstrapped and non-bootstrapped
cases, B 25 and NB 0 respectively. This is con-
firmed by the real and reference CoM trajectories
for B 25 in Fig. 10.7. Had the motion failed, the
real values would not have tracked the reference
values as is the case for B 0.

Looking at the z-axis and Fz plots in Fig. 10.7,
we see that the optimal strategy, found in B 21, is
to move the CoM downwards initially to increase
the ground reaction force, and shift the robot’s
weight to the feet. This shift must come early in
the execution of the policy in order to achieve a
contact switch in the FSM, and thus allow the
CoM to continue tracking the trajectory refer-
ences. When this policy is executed on the real
robot in B 25 and NB 0, the results are successful,
but higher ĵP

∗
, than predicted by simulation, are

observed for both cases. These discrepancies come
as no surprise, but indicate that some unpredicted
factors come into play on the real robot and must
therefore be accounted for.

Looking at NB 2 and NB 3, we have an exam-
ple of an optimal policy and a costly policy which
produces a fall. In these two rollouts, the policy
parameters being tested are,

θ∗ = θ2 =




0.12
−0.124
0.115


 , (10.13)

and

θ3 =




0.12
−0.02
0.115


 , (10.14)

respectively. These parameters differ by only 10cm
in the y-axis, which is not much, and in theory
should not affect a sagittal plane motion. How-

ever, this subtle change in the trajectory makes the difference between optimality and catastrophic
failure. We can see in the y-axis plot of Fig. 10.7 that the optimal policies found both with and without
bootstrapping possess this y-axis motion, contrary to the policy optimized in simulation, and clearly at-
tempt to compensate for un-modeled phenomenon present in the real system. Given the sensitive nature
of the sit-to-stand motion, hand-tuning the trajectory parameters would be a difficult chore even for an
expert.
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(a) bootstrapped (b) non-bootstrapped

(c) 0.0s (d) 8.0s (e) 6.0s

Figure 10.8 – (a) performance cost percentages (bootstrapped case) from the rollouts in both simulation
and on the real robot. The rollouts which produced a failure (falling) are indicated by the red hatched
backgrounds. The optimal (best observed costs) policy parameters, θ∗, are indicated for both real rollout
cases. (b) costs for the non-bootstrapped case. The optimal policy found in the simulated rollouts
comes from B 21 and is indicated by the yellow star. B 25 and NB 0, i.e the first real rollouts for the
bootstapped and non-bootstrapped cases, use the B 21 policy and are also indicated by yellow stars.
B 33 is the optimal policy found during the real bootstrapped rollouts. NB 2 is the optimal policy found
during the real non-bootstrapped rollouts. (c) initial posture of the iCub robot. (d) and (e) final standing
postures of the optimized motions for the bootstrapped and non-bootstrapped cases respectively.

Figures 10.8a and 10.8b show the component costs for each rollout with and without bootstrapping.
The percentage improvement, ĵPi × 100, of each cost shows how PS improves the motion with respect to
the initial policy. The overall evolution of the total performance costs shows the almost binary nature
of the sit-to-stand scenario — either the robot stands or it falls. Given this, and the nature of the BO
used here, we do not observe smooth convergence. Furthermore, in both the bootstrapped and non-
bootstrapped cases the convergence criterion from (5.31) is not attained. Nevertheless, the initial policies
are improved using TCFM. The majority of this improvement is due to a decrease in energy consumption.
The energy savings come primarily from the large sagittally actuated pitch joints, and most notably that
of the torso pitch. In Fig. 10.9, we see the torques from B 25 and B 33. Both policies produce a successful
sit-to-stand motion, but the optimized policy solicits this actuator less than the initial policy and reaps
large gains in the energy cost. As expected, the rollouts without bootstrapping show more aggressive
exploration, with two policy failures at NB 3 and NB 8, than the rollouts with bootstrapping. This comes
from the higher variance associated with the un-explored regions of the policy parameter search space.



10.3. CONCLUSIONS 171

Figure 10.9 – Evolution of the torso pitch
joint torques for the rollouts 25 and 33 in
the bootstrapped case.

This aggressive exploration, however, leads to an optimized
motion which moves faster from the starting seated posture
(see Fig. 10.8c) to a standing posture, as shown by the tra-
jectory in Fig. 10.7, allowing it to spend less time in configu-
rations which require large torques, than the solution found
using bootstrapping. The decreased goal costs come from the
fact that the robot is already standing after only 6.0s (see
Fig. 10.8e) rather than 8.0s as is the case with the less ag-
gressive policy found by the bootstrapped optimization (see
Fig. 10.8d). Around the solution space of feasible sit-to-stand
policie parameters, the tracking cost has little impact on the
total cost, but becomes more prominent when the policy fails.

10.3 Conclusions
The test cases presented here show that TCFM is capable
of efficiently producing successful whole-body behaviors on
real systems by maximizing the compatibility and feasibility
of the tasks. This is shown for a two common whole-body
scenarios, reaching while balancing and standing up from sit-
ting, and tested on two different whole-body control architec-
tures. Through simulated and real-world experiments TCFM
is clearly capable of resolving task incompatibilities and in-
feasibilities by accounting for and correcting un-modeled perturbations and modeling errors. TOTs are
shown to be a robust alternative to GPTs as policy parameterizations, and require less prior task-related
knowledge to implement. Using the compact parameterization afforded by TOTs, BO is shown to be
more sample efficient than CMA-ES as an update strategy. This comes as no surprise for the relatively
low-dimensional problems explored here, but remains to be tested for larger more complicated cases.
While this formulation of TCFM with TOTs and BO, is an important first step towards bridging the
gap between high-level planning and low-level control, there is still much work to be done to refine these
techniques.
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Chapter 11

Conclusions and Perspectives

Robots often perform unexpectedly when executing multiple simultaneous tasks,
and the result is generally undesirable. Being able to automatically improve task
execution based on trial-and-error is a key missing component in modern control
architectures. Through a series of experiments, we have shown that TCFM is ca-
pable of maximizing task compatibility and feasibility on real humanoids, and thus
fulfilling the role of this component. Nevertheless, a number of hurdles and limita-
tions remain before this solution can be said to be truly autonomous and efficient.
In this chapter, we discuss these limitations, some perspective solutions, and future
work for improving on the methods developed here. We close this dissertation with
some concluding remarks about the main takeaway messages from this work.

11.1 Is There Still a Problem with Robots?

As stated in the introduction of this study, the basic problem with complex robots is that when they
perform multiple simultaneous tasks the resulting overall motion is typically not what was expected.
This happens for many reasons, but it is primarily because the tasks are incompatible with one another
and/or infeasible given the problem constraints. These incompatible and infeasible tasks are an artifact
of nature of the control architecture used for modern whole-body control, and ultimately what is missing
is the ability to automatically modify the tasks to account for the task servoing and whole-body controller
layers (along with all of their parameters), and the modeling errors only observed at runtime on the real
robot. We denoted this missing component Task Compatibility and Feasibility Maximization (TCFM),
and it is depicted again here in Fig. 11.1.

Understanding Task Compatibility and Feasibility The goal of this dissertation was to construct
the TCFM loop. To do so, the first step was to understand what it really means for tasks to be compatible
and feasible. Therefore, using concepts of multi-objective optimization, a series of metrics were developed
to measure the compatibility and feasibility of objective functions in Chapter 3. In Chapter 4, these
metrics were applied to the whole-body control problem and notions of the evolution of task compatibility
and feasibility were evoked. In Chapter 6, a series of known task incompatibilities and infeasibilities were
used to test the metrics one by one, and it was found that only a few are actually useful for robotics.
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Figure 11.1 – The task compatibility and feasibility maximization loop proposed in this dissertation is
designed to correct incompatible and infeasible tasks produced by this modern control architectures. This
loop is one of trial-and-error learning, thus, the control frequency is replaced by the number of rollouts.

A Model-Based Solution Using the basic ideas gleaned from these metrics, we developed a whole-
body Non-linear Model Predictive Control (NMPC) problem which could theoretically optimize tasks to
render them both compatible and feasible while respecting their initial goals. It was quickly apparent,
however, that this problem is likely intractable, even if only solved over a short preview horizon. Be-
yond the computational complexity, the issue of correcting for modeling errors goes unresolved with this
technique.

A Model-Free Solution Given the difficulties posed by the model-based approach to task compati-
bility and feasibility maximization, in Chapter 5 Model-Free Policy Search (MFPS) was adopted. Here,
the task servoing and whole-body control layers are treated as generic control policies, which are pa-
rameterized by the task trajectory parameters (e.g. waypoints). These parameters are then used to
modify the policy in order to minimize a performance cost. The performance cost captures the side-
effects (performance degradation) of task incompatibilities and infeasibilities. The result is the TCFM
policy-search algorithm which combines model-free learning techniques with model-based control. With
the same scenarios used to test the model-based metrics, in Chapter 7, it was shown that the model-free
cost and TCFM are successful in both measuring and correcting the performance degradation due to
incompatibility and infeasibility.

Validating on a Humanoid Having proven the concept of TCFM, the algorithm was tested on a
simulation of the humanoid robot, iCub, performing multiple reaching tasks in Chapter 8. The re-
sults showed that the TCFM algorithm can work on a complex humanoid problem. Unfortunately, the
high-dimensional Dynamic Movement Primitive (DMP) parameterization in association with the sample
inefficient stochastic optimization update strategy, Policy Improvement though Black-Box optimization
(PIBB), used by the algorithm, require too many rollouts to be practical for real robots.

Improving the Algorithm In Chapter 9, the custom designed Gaussian Process Trajectory (GPT)
parameterization was used with the Bayesian Optimization (BO) update strategy. The GPTs were shown
to improve the robustness of tasks to temporary incompatibilities and infeasibilities, and their combination
with BO showed marked improvement in the sample efficiency of TCFM, even for dynamically complex
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motions. However, GPTs required the waypoint times to be specified a priori and showed some undesirable
numerical instabilities.

Proving it Works on a Real Robot To resolve these issues, in Chapter 10, Time-Optimal Trajecto-
ries (TOTs) were used as policy parameterizations, which only require waypoints and maximum velocities
and accelerations. Using both CMA-ES and BO, it was shown that the new parameterization maintained
sample efficiency and improved numerical robustness. The CMA-ES and BO update strategies were
compared, and BO was shown to be nearly twice as sample efficient as CMA-ES, but less consistent in
the number of rollouts needed for convergence. The TCFM algorithm was then tested using a different
underlying control architecture, proving that TCFM is generic to the whole-body controller being used.
Finally, it was shown that TCFM is robust and efficient enough to perform rollouts on a real robot and
compensate for un-modeled real-world effects.

Problem Solved? So the question is, do robots still have a problem? Validating TCFM in both
simulation and reality shows that the method is capable of “automatically” improving task trajectories
to be more compatible and feasible, resulting behaviors being performed as expected. Therefore, while
robots might start with incompatible and infeasible tasks, we now have ways to analyze and efficiently
fix this problem. However, a number of limitations must be addressed before we can safely say that task
compatibility and feasibility is no longer a problem for robots.

11.2 Limitations and Perspectives

In this section we discuss the limitations of the methods developed in this dissertation, and provide a few
perspectives on potential solutions.

11.2.1 Evaluating the Metrics on a Humanoid

The model-based task compatibility and feasibility metrics were developed a posteriori in order to pro-
vide an alternative analytical quantification to the model-free TCFM costs. Unfortunately, there was
insufficient time to explore the properties of these metrics on a humanoid problem. While the metrics
were thoroughly tested on a 6 DoF manipulator in Chapter 6, it remains to be seen how well they can
measure task compatibility and feasibility on a high-DoF system, like a humanoid. Most likely, the task
compatibility measures which worked well for the manipulator would also work well for a higher dimen-
sional system, but the calculation of the feasibility ellipsoid may be somewhat more complex given the
number of inequality constraints. Furthermore, it is unclear how these metrics will behave with changing
contacts. It is probable that the feasibility ellipsoid would change discretely given the addition or removal
of contact constraints. Understanding and analyzing these metrics on a humanoid problem is important
step in further understanding of the fundamental problem of task compatibility and feasibility.

11.2.2 Discrepancies Between κNR and κNR
A

In Chapter 6, we saw that the nuclear norm ratio metric, κNR, for task compatibility closely resembles
what is intuitively expected of the compatibility between the tasks given the experimental setup. For
instance, in Sec. 6.3.2, three tasks, which should have been perfectly compatible, were indicated as such
by the κNR metric. However, the augmented formulation, κNR

A , which includes the equations of motion,
indicated that the tasks are much less compatible than one would expect. This same result occurred in
Sections 6.7.1, 7.2.2, and 7.4.3, where tasks, which should have been compatible, were indicated as mostly
incompatible by κNR

A .
This is interesting because it raises two questions. The first question we must ask is, does it make

sense to measure κNR at all? If an equality constraint, such as the equations of motion, is used in the
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whole-body controller then the tasks are forced to respect it. So, what does it mean to examine task
compatibility without this constraint? Even more frustrating is the fact that the κNR seems to closely
match what is expected in terms of task compatibility. Therefore, despite being theoretically useless, the
κNR metric may be the most practical and intuitive task compatibility metric.

The second question is, why does κNR
A tell us that the tasks are incompatible with the dynamics,

when they seem to be executed perfectly? In Chapter 6, we used this phenomenon to justify the whole-
body controller “settling”, where the task objective functions achieve equilibrium in the multi-objective
optimization. If the tasks are somewhat incompatible with the equality constraints, then the equality
constrained, prioritized optimum, χ∗, is different from the optimum found without the equality constraint.
This means that the task objective functions are not perfectly optimized and will have a non-zero error,
which is amplified by the task servoing layer creating new desired accelerations for the tasks. This
continues until the objective functions all counter balance each other given their task servoing gains and
their priorities. The result is the “settling” effect.

While the κNR
A values can help explain the settling of the whole-body controller, it is still unclear

why seemingly compatible tasks are incompatible with the dynamics. Furthermore, the only observable
pattern from the κNR

A metric is that compatibility, according to κNR
A , rises while the robot is moving. One

possibility to solve this discrepancy would be to project the objectives into the equality constraints (the
so-called reduced formalism [Salini, 2012]) and then compute only κNR. However, this technique may not
work if a floating base and contacts are involved. Our conclusion then is that κNR

A merits deeper testing
and analysis, because it seems to reveal aspects of task compatibility which have yet to be properly
understood.

11.2.3 Postural Tasks are Probably a Bad Idea

Postural tasks are to redundant robotics, what the appendix is to the human body: a vestigial component
which over time can cause problems. This may be a bit of an overstatement, but postural tasks are so
common in robotics because they solve a lot of initial problems. They keep joints from moving randomly
when they are redundant, and they keep the robot away from its joint limits. However, since they do not
evolve with the motion, they tend to accumulate error and even though they are typically low priority
tasks, they can impinge on other tasks given sufficient error and task servoing gains. Furthermore, from
the compatibility analysis it is clear that the only task impeding the task set from attaining perfect
compatibility (according to the κNR metric) is the postural task — and it is not even important. One
solution for this might be to use a different error function for servoing the postural tasks like the ε-
insensitive error function,

fε(q) =

{
0 if |q| ≤ ε
|q| − ε else

. (11.1)

Thus applying zero error while the joints are in the middle of their range, and linearly increasing error as
they approach their limits. Of course, this adds one more variable, ε, which must be tuned, and tuning
is never ideal.

Another alternative, would be to learn the optimal posture for a given set of operational-space tasks.
Using the operational-space task references as inputs and their resulting postures as outputs, a model
could be learned to modify the postural references to be maximally compatible with the operational-space
references.

11.2.4 Automating Task Parameterization

One of the key hinderances towards full automation of the TCFM algorithm is the selection of the
task parameters which can be used to modify the policies. In all of the experiments, the tasks which
are modified are selected by hand and their parameterization has to be custom designed to allow for
“adjustable” parameters. In Chapter 8, DMPs are used to “automatically” parameterize the tasks but the
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number of kernel functions needs to be hand tuned in practical applications. This need to hand-select
the policy parameters for TCFM is a key limitation and one which needs to be resolved.

One promising route to handle this is to use non-parametric function approximators to find the
minimum number of parameters to accurately reconstruct initial task trajectories and do this for all
tasks. TCFM could then be carried out on all tasks simultaneously, or at least those with a priority
above a certain threshold. However, this would increase the dimension of the problem and hurt the
sample efficiency of learning.

11.2.5 More Dimensions & Longer Problems

One of the main advantages of the TCFM approach is that fewer policy parameters are needed and
more sample efficient update strategies can be used. In some ways, however, this is also a disadvantage.
While TCFM is able to produce dynamically compatible and feasible whole-body motions with very
few variables, it is unclear how far this can be pushed to longer and more complex motions. Most
importantly, walking requires the robot to move around and the time and distance scales of walking may
pose a challenge to maintaining the efficiency of TCFM. Simply adding more task trajectory waypoints
to produce longer motions is the obvious solution, but the increase in dimensionality could render BO
sample and data inefficient. The alternative then is to use stochastic optimization, but these strategies
are sample inefficient.

One potential solution is to use step-based learning, rather than episodic learning. In step-based
learning, the policies are updated at each time step rather than after the whole rollout [Deisenroth et al.,
2013]. Since the full policy horizon is not used, step-based learning can sometimes produce myopic
policies, but the length of these policies has less of an impact on the computational complexity. Using
step-based learning could allow TCFM to be applied to long horizon problems, like walking, but it is not
evident how this could be implemented.

11.2.6 Better Update Strategies

While BO is a useful and sample efficient update strategy, it is not without its problems. First and
foremost is the fact that it is not efficient for problems with more than 10 dimensions. Every new sample
increases the computational complexity, firstly by a factor of O(n3) for the inversion of K in (A.14),
then linearly, O(n), with the number of samples for each evaluation of the acquisition function. All this
means is that optimization with BO becomes harder and harder as the size of the problem and number
of samples are increased.

In addition to scaling issues, BO tends to aggressively explore the parameter space in the early rollouts
and this can lead to slow convergence if there are local minima near the bounds. Depending on the chosen
kernel function for the Gaussian Process (GP) used in BO, the initial search generally tests the parameter
extrema because they have the highest variance. For the standing cases in Chapter 10, the difference
between optimal and failing policy parameters is very small. When the failing parameters are tested in
the initial rollouts, the GP, being undersupplied with data, associates a high cost to the parameter space
around this failure. This causes the BO to explore the rest of the parameter space, until it has enough
data to indicate a minimum near the initial failure. The result of this is a decrease in sample efficiency.

This brings us to the third weak point of BO, the meta-parameter selection process. BO is only as
good as its surrogate GP function and if the kernel functions and their parameters are chosen poorly,
then the latent cost function approximation may be inadequate. From the experiences in this work, the
biggest issue is a lack of resolution around local optima. It is our experience that attaining consistent
convergence with BO requires a certain degree of smoothness in the GP kernel meta-parameters and this
leads to a smoothing of local optima, which hinders the ability of BO to locally improve solutions. This
means that TCFM could be missing out on potential optima.

Improving on these points is a research domain in itself. However, a few points which are specific to
TCFM could be immediately addressed. Firstly, starting BO with a single parameter-cost datum can lead
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to poor convergence properties. If the rollouts are being performed in simulation, then a good idea would
be to randomly sample solutions around the initial policy parameters (à la CMA-ES) and, in parallel,
roll the parameters out and evaluate their costs. This would bootstrap the surrogate function with more
data and avoid the aforementioned convergence issues. Parallelizing simulations would also accelerate
stochastic optimization techniques, such as CMA-ES, and this could be advantageous if the parameter
dimension is too large for BO. Finally, when rolling out on the real robot, it is not easy to specify “safe”
parameter bounds for TCFM. If rollouts are first performed in simulation and then on the real robot, as
in Chapter 10, a simpler (and possibly wiser) idea is to search locally around the initial solution found by
TCFM in simulation. This could be done with CMA-ES. The variance of the parameters, given by the
BO surrogate function, could be used as the diagonal of the initial CMA-ES covariance matrix. The real
rollouts would then be an unbounded local search around these parameters for incremental improvements.
This would alleviate the fine tuning needed to find “safe” bounds.

11.2.7 Is Episodic Learning Closing the Loop?
At the outset of this study, it was stated that this TCFM layer should close the loop between motion
execution and task trajectory planning. While this is true, it is a bit of a misnomer given that TCFM
is based on episodic, or trial-and-error, learning. This means that the whole motion must be rolled out
before any improvement can be seen, and, depending on the update strategy, there are no guarantees
that the next rollout will be better. So, although we have linked the whole-body motion execution with
the optimization of the task trajectories, we have not closed the loop in the classical control sense.

Additionally, there are two modes of operation for TCFM: rolling out in simulation and on the real
robot. As shown throughout the experiments, performing TCFM in simulation can produce motions
which are more compatible and feasible. Simulation-based TCFM can then be considered a form of
open-loop planning, or filtering for the task planning layer, and the time it takes to optimize the tasks
can be computed as, rollout time× no. rollouts. For example, the standing test case from Sec. 10.2.4 we
have, ∼ 10 sec

rollout × 25rollouts ' 250sec. By improving on the speed of the rollout simulations, the time
needed to optimize the tasks can be reduced, and ideally this time would be as small as possible.

Performing TCFM on the real robot can account for phenomena which were not simulated and correct
for modeling errors. In this case, the loop between task execution and task definition is closed in the sense
that real output data is used as feedback to modify the inputs. However, because an entire rollout is
needed, there is no notion of control loop frequency. It is therefore more pertinent to discuss the number
of rollouts needed to optimize the tasks, rather than the control frequency of the optimization, because
this is a learning loop and not a control loop. Since learning requires some amount of exploration, i.e.
testing suboptimal control laws, and control loops are designed to tend asymptotically towards stable
optima, we are inclined to say that episodic learning is not equivalent to a control loop. Nevertheless,
episodic learning provides a powerful alternative to scenarios where developing an optimal control law is
prohibitive.

11.3 Future Work
Having looked at some of the various questions and limitations of this work, we now explore where to go
next.

11.3.1 Implement the NMPC Problem
Despite its complexity, the NMPC problem developed to maximize task compatibility and feasibility could
eventually be tractable given the advances in NMPC techniques in recent years [Koenemann et al., 2015].
Implementation details of this problem remain to be fleshed out, but an analytical alternative to TCFM,
or in addition to TCFM, would be a powerful tool in solving task incompatibilities and infeasibilities. In
theory, it could be used in the place of doing TCFM in simulation as the filter for the task trajectory
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planning. Of course, the issues associated with modeling errors would still be a problem, so developing
the NMPC problem is not a silver bullet for maximizing task compatibility and feasibility. Thus, keeping
the layer of TCFM for trial-and-error learning on the real robot could provide a complete solution.

11.3.2 TCFM Using Model-Based Metrics as the Cost Functions

Rather than use the model-free cost functions developed in Chapter 5, an interesting avenue would be to
use the model-based metrics as cost functions for the TCFM. There would be two primary advantages
to this approach. The first is that the MFPS would be optimizing the task compatibility and feasibility
directly, rather than indirectly through measuring its side-effects. This could improve on the speed of
convergence and the quality of the resulting solutions. The second advantage is that the metrics could be
used as an automated way of determining when a task needs to be optimized. If the compatibility of a
task with the other tasks, or the feasibility of a task with the constraints set, exceeds a certain threshold,
then this task could be parameterized and its metric minimized using MFPS. However, it is not entirely
clear which thresholds would be best suited to this. The downsides to using the model-based metrics are
that a greater understanding of the underlying whole-body control architecture is needed, and that the
metrics are not as trivial to calculate as the model-free costs.

11.3.3 Reusing Surrogate Models Across Scenarios

The main factor in the sample efficiency of BO is that the search is guided by the surrogate function which
is learned as new samples are obtained. The more samples, the better the surrogate function describes
the latent cost function. The question then, is what to do with the surrogate when the TCFM is finished?
In this work, the surrogate was used to bootstrap the TCFM rollouts on the real robot, but more can
be done. Specifically, it would be interesting to investigate how to reuse these surrogate functions across
task sets and learn a global model of task compatibility and feasibility. Doing this efficiently however, is
not immediately obvious. Should the parameters from each task be included in the GP model? If so, then
the dimension of the GP may make it unusable. If surrogate functions are learned for each specific task
scenario, then they must be combined in some meaningful way. One option could be to learn a repertoire
of surrogate functions and reuse them based on contextual information. The problem then becomes how
to parameterize the context.

11.3.4 A Deep Model of Task Compatibility and Feasibility

Although we started this study essentially saying end-to-end learning would not work on real systems,
we do recognize the power of deep models. In this regard, one exciting perspective for task compatibility
and feasibility would be to record the states of key parts of the robot, i.e. the CoM, hands, feet, and
robot state, and the corresponding model-based task compatibility and feasibility metrics at every time
step. Using this data a deep model could be learned over a horizon of time steps with the states as inputs
and the metrics as outputs. Assuming the model can accurately learn this relationship, then is could be
used to optimize the tasks which manage these states to improve task compatibility and feasibility. We
assume that deep models would be necessary because of the size of the input space and the complexity
of the underlying mapping from task trajectories to execution. This model would improve over time and
could be used when the predictions are sufficiently close to the measured metrics.

11.4 Closing Remarks

We began this work with the simple objective of trying to understand why robots do not do what is
asked of them. By digging into this question, we realized that when robots do not perform as expected,
it is simply because what is being asked of them is not possible. Thus, we set out to develop the tools
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techniques, and understanding, necessary to handle these situations. From this, three main contributions
were presented:

1. We formally posed the problem of task compatibility and feasibility.

2. We determined model-based and model-free ways of measuring these phenomena.

3. We developed a MFPS algorithm which exploits model-based whole-body control to efficiently
maximize task compatibility and feasibility.

Understanding the issue of task compatibility and feasibility is a key hurdle in the race to more robust
and capable control architectures. There was a time when robots were mechanically unequipped for the
problems they were made for, but this is no longer the case. Modern humanoids are capable of handling
much more than modern control can throw at them and this is a shortcoming which must be compensated.
Part of this problem is the issue of task compatibility and feasibility. We are limited in how well we can
plan multiple tasks and these limitations are propagated through the control architecture. Try as we
might to compensate for this poor planning, better task servoing, tuning gains, priorities, etc. the root
of the problem lies in the definitions of the tasks themselves. But rather than lump this burden on to
high-level planning, robots should have the tools to automatically convert poorly planned tasks into tasks
which they can achieve. Whether this is done using model-based, model-free, or a combination of the
two, only time will tell, but in this work we show that it can be done, and done in a way which is practical
for real robots. We believe that keeping this practicality in mind is important because problems typically
arise when moving from simulation to reality.

To conclude this dissertation, we leave the reader with a three take home messages.

I The need for prioritization in multi-task control is a direct indicator that something is wrong. Tasks
which are compatible and feasible do not need priorities. Why should we expect the robot to execute
its motion if it is mathematically impossible? We do not mean to say that prioritization is useless,
only that it is a sign of our inability to properly plan tasks.

II Adding layers of learning to modern whole-body controllers has the potential to solve hard prob-
lems. By exploiting whole-body control architectures, rather than ignoring them, learning can be
abstracted to a few task related variables. These small dimensional spaces mean that real robots
can learn useful control policies without the need for thousands of rollouts. If we are to learn on
real platforms, then this is critical.

III Finally, the main takeaway from this work is that understanding and resolving task incompatibility
and infeasibility is the next step towards higher-levels of learning and reasoning. Closing loops in
control is the only way to safely move outwards towards more complex control objectives, and as of
now the loop between motion execution and task planning is open. We have made progress towards
closing it, but much work remains to be done before we are confident that when we ask a robot to
do something, it really does it.
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Appendix A

Appendix

A.1 Task and Constraint Formula References

task type mathematical formulae eq. reference

operational-space
acceleration

f ξ̈i =
∥∥∥Ji(q)ν̇ + J̇i(q,ν)ν − ξ̈des

i

∥∥∥
2

2
=
∥∥∥Eξ̈χ− f ξ̈

∥∥∥
2

2

Eξ̈ =
[
Ji(q) 0

]

f ξ̈ = ξ̈
des
i − J̇i(q,ν)ν

(2.11) (2.15)
(2.13) (2.14)

joint-space acceler-
ation

f ν̇i =
∥∥∥ν̇ − ν̇des

i

∥∥∥
2

2
=
∥∥Eν̇χ− f ν̇

∥∥2

2

Eν̇ =
[
I 0

]

f ν̇ = ν̇des
i

(2.16) (2.19)
(2.17) (2.18)

wrench
fωi =

∥∥eωi − eωdes
i

∥∥2

2
= ‖Eωχ− fω‖22

Eω =
[
0 Sωi

]

fω = eωdes
i

(2.21) (2.26)
(2.23) (2.24)

torque
fτ =

∥∥τ − τ des∥∥2

2
= ‖Eτχ− fτ‖22

Eτ =
[
0 S> 0

]

fτ = τ des

(2.28) (2.32)
(2.30) (2.31)

Table A.1 – A summary of the different task formulations for the whole-body controller. The original
equation references for each task are indicated in the “reference” column.
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constraint type mathematical formulae eq. reference

equations of motion

M(q)ν̇ + C(q,ν)ν + g(q)︸ ︷︷ ︸
n(q,ν)

= S>τ + eJ>(q)eω

[
−M(q) S> eJ>(q)

]
︸ ︷︷ ︸

Ad

χ = n(q,ν)︸ ︷︷ ︸
bd

(2.6) (2.33)

torque limits

τmin ≤ τ ≤ τmax[
0 S> 0
0 −S> 0

]

︸ ︷︷ ︸
Gτ

χ ≤
[
τmax
−τmin

]

︸ ︷︷ ︸
hτ

(2.34) (2.35)

joint position limits

qmin ≤ q ≤ qmax[
I 0
−I 0

]

︸ ︷︷ ︸
Gq

χ ≤ 2

h2

[
qmax − (q + hν)
− [qmin − (q + hν)]

]

︸ ︷︷ ︸
hq

(2.36) (2.41)

joint velocity limits

νmin ≤ ν ≤ νmax[
I 0
−I 0

]

︸ ︷︷ ︸
Gν

χ ≤ 1

h

[
νmax − ν
− (νmin − ν)

]

︸ ︷︷ ︸
hν

(2.37) (2.42)

joint acceleration
limits

ν̇min ≤ ν̇ ≤ ν̇max[
I 0
−I 0

]

︸ ︷︷ ︸
Gν̇

χ ≤
[
ν̇max
−ν̇min

]

︸ ︷︷ ︸
hν̇

(2.38) (2.43)

friction contacts

FJi(q)ν̇ + F J̇i(q,ν)ν = 0
FCi

Fωi ≤ 0[
FJi(q) 0

]
︸ ︷︷ ︸

Aω

χ = −F J̇i(q,ν)ν︸ ︷︷ ︸
bω[

0 FCiS
F
i

]
︸ ︷︷ ︸

Gω

χ ≤ 0︸︷︷︸
hω

(2.44) (2.45)
(2.47) (2.48)

Table A.2 – A summary of the different constraint formulations for the whole-body controller. The
original equation references for each constraint are indicated in the “reference” column.
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A.2 Objective Compatibility and Feasibility Metric References

symbol mathematical formula description

κNR ‖Ẽ‖∗
‖[Ẽ|f̃ ]‖∗

Nuclear norm Ratio (NR): The ratio of the nuclear norms
of the linear algebraic system created by the objective func-
tions.

κOD ∑no
i=1 κ

OD
i =

∑no
i=1 ‖x∗ − x∗i ‖2

Optimum Distance (OD): The sum of the distances between
each of the individual objective optima and x∗.

κOC ∑no
i=1 κ

OC
i =

∑no
i=1 wifi(x

∗)
Optimum Cost (OC): The sum of the costs of each objective
function evaluated at x∗.

κEV det(Bκ) =
∏n
i=1 σi

Ellipsoid Volume (EV): The volume of the compatibility
ellipsoid, as calculated by the determinant of its B matrix,
or equivalently, the product of its eigenvalue scale factors,
σi ∈ i . . . n.

κED ∑no
i=1 κ

ED
i =

∑no
i=1 ‖cκ − x∗i ‖2

Ellipsoid Distance (ED): The sum of the distances of the in-
dividual objective optima to the center of the compatibility
ellipsoid.

Table A.3 – Objective compatibility metric summary. The variable no is the number of objective func-
tions, n the dimension of the optimization variable, x, cκ the compatibility ellipsoid center, Bκ, the
compatibility ellipsoid matrix, and x∗ is the overall global unconstrained problem optimum.

symbol mathematical formula description

φOD ∑no
i=1 φ

OD
i =

∑no
i=1 ‖cφ − x∗i ‖2

Optima Distance (OD): The sum of the dis-
tances between each of feasibility ellipsoid cen-
ter cφ.

φED ‖cκ − cφ‖2
Ellipsoid Distance (ED): The distance be-
tween the compatibility and feasibility ellip-
soid centers.

φEE ∑no
i=1 φ

EE
i =

∑no
i=1 (x∗i − cφ)

>
P−1
φ (x∗i − cφ)

Ellipsoid Evaluation (EE): Sum of the results
of the feasibility ellipsoid inequality equation,
(3.63), at each x∗i .

φEE∗ (x∗ − cφ)
>
P−1
φ (x∗ − cφ)

Ellipsoid Evaluation (EE∗): Result of the fea-
sibility ellipsoid inequality equation, (3.63), at
each x∗.

φEV det(Bφ) =
∏nc
i=1 σi

Ellipsoid Volume (EV): The volume of the fea-
sibility ellipsoid, as calculated by the determi-
nant of its B matrix, or equivalently, the prod-
uct of its eigenvalue scale factors, σi ∈ i . . . nc.

Table A.4 – Objective feasibility metric summary. The variable no is the number of objective functions,
nc is the number of constraint equations, n the dimension of the optimization variable, x, cκ and cφ, the
compatibility and feasibility ellipsoid centers, Pφ and Bφ, the feasibility ellipsoid matrices, and x∗ is the
overall global unconstrained problem optimum.
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A.3 Model-Free Task Compatibility and Feasibility Cost Func-
tion References

symbol mathematical formula description

jT
N∑

k=0

‖ε(k)‖22
Tracking Cost (T): Measures the tracking er-
ror, in a Euclidean sense, of the position of a
task over the entire policy rollout.

jG
N∑

k=0

kh

tnλ
‖εgoal(k)‖22

Goal Cost (G): Measures a task’s distance to
its goal position, in a Euclidean sense, over the
entire policy rollout.

jE
N∑

k=0

‖τ (k)‖22
Energy Cost (E): Measures the magnitude of
the control input necessary to execute the pol-
icy.

jTP
ntask∑

i=1

wij
TP
i =

ntask∑

i=1

wi
(
jTi + jGi

)
Task Performance Cost (TP): The combina-
tion of the tracking and goal costs of each
task, accumulated in a summation weighted
by their priorities.

jP jTP+βjE

tend
π

Performance Cost (P): Overall measure of the
performance of a policy, which encompasses
all effects of task incompatibilities and infea-
sibilities.

Table A.5 – A summary of the various cost functions used to evaluate policies. These functions are
designed to capture various aspects of whole-body control performance degradation resulting from task
incompatibilities and infeasibilities. The term k indicates the control time step, and N the total number
of time steps. The actual total duration of the rollout is defined as tend

π = Nh, where h is the control
sampling period. The term ε(k) is the task position tracking error at time k, and εgoal(k), is the difference
between the current task position and its last waypoint λnλ at the kth time step.
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A.4 Dynamic Movement Primitives
Dynamic Movement Primitives, or DMPs, are constructed through the combination of one or more
dynamic systems and a non-linear forcing term which allows their passage through space and time to be
arbitrarily regulated. Following [Kulvicius et al., 2012] and using the same scheme described by [Stulp,
2014], the following DMP formulation is used in this work,




ẏ
ż
ẏγ

ẋ
v̇




=




z/τ
((K(yγ − y)−Dz) + v · f(x,θ))/τ

−αγ(γ − yγ)
1/τ

−αvv(1− v/vmax)




(a)
(b)
(c)
(d)
(e)

. (A.1)

The basic building block of this DMP is the spring-damper dynamic system, shown in lines (a) and
(b), in which [ yT , ẏT ]T is the state of the system, and ÿ = ż/τ is the system output. The vector y
typically contains the position and possibly orientation for some frame of reference. The terms K and
D represent the stiffness and damping coefficients respectively, and are generally set for critical damping
with D = 2

√
K. The attractor, or goal term, γ, forces the system to converge to a specific point, and τ

is proportional to the duration of the movement the DMP is approximating. Finally, the forcing term,
f , parameterizes the system’s evolution from start to finish and is an open-loop controller which is a
function of its parameters, θ, and an auxiliary dynamic system, x.

To make sure the open-loop forcing term degrades to zero near γ, the sigmoid function gating system,
shown in line (e), is used to regulate f where, αv and vmax, are factors which regulate the decay rate and
time of the system. The state x is governed by the phase system1, in line (d), which mimics the passage
of time. The exponential goal system, in line (c), is also added to prevent high initial accelerations, and
causes the virtual goal, yγ , to decay exponentially towards the true goal point, γ.

The output of this DMP is a set of rates of change for the system states, which provide a trajectory
controller in the DMP’s parameter space. The reader is directed to [Kulvicius et al., 2012; Ijspeert et al.,
2013] and [Stulp, 2014] for a more in depth discussion of each of these systems.

The forcing term, f , is formulated as a non-linearly weighted combination of linear basis functions
which allows it to approximate non-linear functions using regression techniques (see [Sigaud et al., 2011]
for details),

f(x,θ) =
∑

i

ψi(x)(aix+ bi). (A.2)

Here the affine basis function aix+ bi is weighted by a non-linear Gaussian,

ψi(x) = exp

(
− 1

2σ2
i

(x− ci)2

)
. (A.3)

In total, the forcing term is parametrized by four values: the affine slopes and offsets, a and b, as well as
the Gaussian centers and widths, c and σ2,

θ =




a
b
c
σ2


 . (A.4)

These parameters can be adjusted to approximate any demonstrated or simulated trajectory via Linearly
Weighted Regression (LWR) developed by [Schaal and Atkeson, 1998], or some variant of this technique
such as those shown by [Munzer et al., 2014].

1This system is referred to as the “canonical” system by [Ijspeert et al., 2013].
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A.5 Gaussian Process
Gaussian Process, or GPs, are widely used in machine learning for modeling complex data sets [Rasmussen
and Williams, 2006]. They belong to the family of kernel based supervised learning techniques and are
used to stochastically model relationships between a vector of inputs, a, and their outputs, b, by defining
a distribution over mean, m(â,a) and covariance, k(â,a), functions. In the following demonstration, the
inputs and outputs of the GP are unidimensional.

b̂ = f(â) where f ∼ GP(m(â,a), k(â,a)) . (A.5)

In (A.5), f is the function to be approximated and is distributed as a GP over the mean and covariance
functions. The term â indicates an unobserved input, while a and b are the observed training data.
Henceforth, the hat symbol, •̂, is used to indicate and unobserved, or unmeasured, variable. The choice
of m(â,a) and k(â,a) depends on the problem at hand, and a number of options exist [Rasmussen and
Williams, 2006]. In this work we use a zero mean function,

m(â,a) = 0 , (A.6)

and the squared exponential covariance kernel function,

k(â, ai) = σk exp

[−(â− ai)2

2l2k

]
. (A.7)

Typically one kernel is centered on each input datum, but a subset may also be used. The variable
σk is the maximum allowable covariance. The term lk is the length parameter, which influences how
much adjacent kernel centers, ai, influence one another. These terms, known as meta-parameters, play
an integral role in the resulting GP model. They can be hand-selected based on prior model knowledge,
optimized over the training data, or calculated through heuristics, as is done here. To simplify we use
the notation,

f ∼ GP(0, k(â,a)) = GP(â,a, b) . (A.8)

The GP represents our prior knowledge of f . By assuming that the posterior probability of b̂, given â
and the training data, is distributed as a zero mean Gaussian with noise, the joint distribution of the
prior and posterior can be expressed as,

[
b

b̂

]
∼ N

([
0
0

]
,

[
K K∗
K∗ K∗∗

])
. (A.9)

For [a1, a2, . . . an] ∈ a, the terms, K(a), K∗(â,a) and K∗∗(â), are calculated as follows,

K(a) =




k(a1, a1) k(a1, a2) · · · k(a1, an)
k(a2, a1) k(a2, a2) · · · k(a2, an)

...
...

. . .
...

k(an, a1) k(an, a2) · · · k(an, an)


 , (A.10)

K∗(â,a) =
[
k(â, a1) k(â, a2) · · · k(â, an)

]
(A.11)

and
K∗∗(â) = k(â, â) . (A.12)

The dependencies of these terms are omitted in (A.9) to condense the notation. From (A.9), based on
[Rasmussen and Williams, 2006] (p.200), the conditional distribution can be written as,

P (b̂ | â,a, b) ∼ N (b̂µ, b̂σ2) , (A.13)
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where, [
b̂µ(â)

b̂σ2(â)

]
=

[
K∗K−1bT

K∗∗ −K∗K−1KT
∗

]
= GP(â,a, b) . (A.14)

Variables b̂µ(â) and b̂σ2(â) are the estimated sample mean and variance of b̂. Evaluating (A.14) is
commonly referred to as GP regression.
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A.6 Bayesian Optimization
BO is a non-linear and non-convex optimization technique, popular in fields where evaluating a cost
function is burdensome, as in robotics. As with any optimization, the goal of BO is to minimize a cost
function, f ,

ω∗ = argmin
ω

f(ω) , (A.15)

with optimization variables, ω. Unlike other optimization techniques, rather than randomly sample the
cost function to estimate gradient information, BO constructs a global model of the cost function based on
the observed samples

[
ω1,ω2, . . .ωn

]
∈ Ω and their corresponding costs,

[
j1, j2, . . . jn

]
∈ j. This model,

commonly referred to as the surrogate function, is then used to determine the next set of parameters to
test, which both minimize the estimated cost and improve the model accuracy.

The tool used to build this model is known as a Gaussian process (GP). For an unobserved optimization
variable set, ω̂, it tells us their predicted cost mean, ĵµ and variance, ĵσ2

2.
[
ĵµ
ĵσ2

]
=

[
K∗K−1j>

K∗∗ −K∗K−1K>∗

]
= GP(ω̂,Ω, j) . (A.16)

In (A.16), the K matrices are determined by evaluating a mean and covariance function over the
training and unobserved data. Here we use the zero mean and squared exponential covariance kernel
functions [Rasmussen and Williams, 2006]. The term K is the projection of each training datum, ωi, into
the kernel space, K∗ is the projection of ω̂ into the kernel space, and K∗∗ is the projection of ω̂ into a
kernel defined by itself. Evaluating (A.16) is commonly referred to as GP regression and implementation
details can be found in [Rasmussen and Williams, 2006].

Given the surrogate function, the next step in BO is to determine the optimal set of parameters,
ω̂∗, to sample on the next evaluation of the cost function. To do so, the exploitation and exploration of
the surrogate function must be balanced. Simply choosing the minimum predicted value may leave us
in a local minimum, and areas of high variance should be explored to improve the surrogate’s accuracy.
An acquisition function is therefore used to balance the exploration and exploitation of the knowledge
about the cost function [Brochu et al., 2010]. It is a function of the estimated cost means and variances,
facq(ĵµ, ĵσ2). The terms ĵµ and ĵσ2 are determined by evaluating the GP surrogate function over the
entire input space, Ω̂, [

ĵµ
ĵσ2

]
= GP(Ω̂,Ω, j) . (A.17)

To obtain Ω̂, the search space must be bounded and discretized. This means that the search space grows
as mn, where m is the number of increments between bounds, and n is the dimension of ω ∈ Rn×1. This
is the principal limitation of BO. Recently, a method for circumventing this limitation has been proposed
in [Snoek et al., 2015], but is not used in this work.

Minimizing facq w.r.t. ω, we find the next best set of optimization variables to test, ω̂∗, which balance
the exploration and exploitation of f ,

ω̂∗ = argmin
ω

facq(ĵµ, ĵσ2) . (A.18)

The real cost function of our problem is sampled by evaluating the optimal variable set, ω̂∗. In
robotics, this corresponds to executing the task(s) and calculating their cost. Given this new data, ω∗,
and its cost, j∗, the surrogate is updated3. The update consists simply of concatenating the new data
to the old data and reevaluating (A.16). The optimization concludes when some problem-dependent
convergence criterion is met.

2Henceforth, the hat symbol, •̂, is used to indicate and unobserved, or unmeasured, variable.
3Note the omission of the hat symbol, •̂, indicating that ω∗ and j∗ have been observed.
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