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Introduction

After the impressive progresses in computational power made in the last two decades, it
might be thought that there is nothing that escapes to the limits of computability. We
live in a time in which incredibly realistic animations and astonishing visual effects can be
produced using computers but we are still not able to simulate —in the engineering sense
of the word— many apparently banal physical phenomena. Of course, there is huge gulf
between mimicking reality and truly simulating it. Limitations come not only from physics
but also from applied mathematics and even from computational sciences. Computational
Mechanics is a discipline placed somewhere in between these three branches of science whose
goal is to conceive computational methods to solve real engineering problems.

The engineers’ wish of simulating the more and more complex problems scales expo-
nentially so as the computational power does. But it has to be emphasized that it is not
just because the computational power increases that we are able to simulate more realistic
problems. And this is specially true when considering physical models which are naturally
multidimensional such as those describing kinetics of complex materials, competition in bio-
logical systems, social dynamics and economics systems, among many others. In those cases,
realistic is a synonym of multidimensional. Multidimensional models are also encountered
in the context of both stochastic and parametric partial differential equations (PDE), the
last of which is of great interest for the manufacturing industry, as parametric PDE are
related to very general tasks such as design, optimization or inverse analysis. Solving mul-
tidimensional models of any nature implies many challenges, the most basic involving the
curse of dimensionality concept. First coined by Richard E. Bellman in [20], the curse of
dimensionality refers to the exponential growth of the computational complexity of problems
defined in many dimensions.

It is worth to emphasize that the difficulty regarding multidimensional models does not
necessarily concern the solvability of the equations. Indeed, in many cases there are well-
established methods allowing for the resolution of such models in small dimension, but these
methods fail in addressing multidimensional models because they were not designed to face
this context. It is the aim of engineers not only to create comprehensive and realistic models
but to be able to compute them, and regarding multidimensional models this implies creat-
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Introduction

ing appropriate computational methods paying special attention to data representation and
algorithmic complexity with regard to the available computational ressources. During last
years, several methods have been proposed to address multidimensional models efficiently.
Among them, this thesis is particularly concerned with the Proper Generalized Decompo-
sition (PGD) method, which is based on separated data representations. Although several
important developments have been recently made in this area, the separated formulation of
problems, which is a critical requirement for the efficiency of PGD, remains challenging in
many cases. These work proposes new advanced techniques allowing for the separated prob-
lem formulation of transient problems involving wave-like excitations and nonlinear models.

The contents are structured as follows. In Chapter 1 we provide a comprehensive review
on the use of separated representations as a means to understand the strengths, but also the
current limitations, of the PGD method. A variety of topics ranging from Computational
Mechanics to Applied mathematics are covered. Chapter 2 proposes an efficient formulation
of structural dynamics problems in the frequency domain. In Chapter 3, the frequency-
domain approach is further developed so as to overcome the non-separability in the space-
time domain of wave-like excitations. The problem formulation is then naturally separated.
Besides, the reciprocity principle can be proven thanks to the symmetrization introduced by
the frequency-based formulation, yielding a direct application for the real-time monitoring
of processes. Finally, an innovative, general purpose method to compute the separated
representations of multivariate functions is presented in Chapter 4. Among its applications,
we refer to both model coefficients and operators separability in nonlinear problems, which
are required conditions in order to formulate a separated representation of the problem.

2



Chapter 1

State of the art in separated
representations

This chapter provides a comprehensive review on the use of separated representations as a
means to understand the strengths, but also the current limitations, of Proper Generalized
Decomposition. To this end, a variety of topics concerning different scientific communi-
ties are covered here. They range from Model Order Reduction, which is a discipline of
Computational Mechanics, to Low-rank Tensor Approximations, which is closer to Applied
Mathematics. Although these communities wish to attain basically the same objectives,
they provide different approaches to problems that are essentially equivalent. Hence, the
goal is not only to present both approaches but to elucidate the links between them.

Separated representations are most naturally introduced in the context of tensor product
spaces, but they can also be regarded as a tool for reducing the computational complexity
through Model Order Reduction methods, or as a manner of compressing tensors via low-
rank decompositions. Our exposition, however, does not seek to be exhaustive. The topics
are chosen according to the matter of concern of this work, and thus Proper Generalized
Decomposition is highly privileged.

A final idea that we would like to support in this chapter is that of Proper Generalized
Decomposition being placed at the interface between Model Order Reduction and Low-rank
Tensor Approximations.

Contents
1.1 The parametrized problem as an illustrative example . . . . . 5

1.1.1 The Model Reduction and Low-rank approaches . . . . . . . . . 5
1.1.2 Methods to reduce the computational complexity . . . . . . . . . 8
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1.1. The parametrized problem as an illustrative example

1.1 The parametrized problem as an illustrative exam-
ple

If we had to state in few words what is the aim of people working in Model Order Reduction
(MOR) [13, 22, 38] methods and Low-rank approximation methods [62, 80], it could be
expressed as the wish of computing arbitrarily precise approximations of the solution of
a problem while the computational complexity is reduced. Both communities share many
aspects but still they are different. In this section we shall compare both approaches and
we will try to elucidate the links between them.

We shall begin the exposition by considering a parametrized problem to which MOR
methods wish to be applied. Let us introduce a generic parametrized problem using the
usual setting and notation of computational mechanics: find u ∈ Vs, some appropriate
approximation space, such that

a(u,w;µ) = l(w), (1.1)

for every w ∈ Vs and some µ ∈ Iµ. Bilinear and linear forms are denoted by a( · , · ) :
Vs × Vs → K and l( · ) : Vs → K, respectively. The parametric dependence is denoted inside
the bilinear form after the semicolon. For the sake of concretion, throughout this section we
shall only consider approximation spaces of finite dimension, such as finite element spaces.
Therefore we can think of u being an approximation of the true solution, although no distinct
notation is used.

The interest of solving parametrized problems does not need much motivation. Just
consider that Eq. (1.1), also referred as high-fidelity or full model in this context, governs the
behaviour (mechanical, thermal...) of some part, and suppose that it wants to be optimized
with respect to a parameter (material, geometry...). A first possible approach is to implement
appropriate numerical methods, and perform as many direct solves of the full model as
demanded by the optimization algorithm. Each request from the optimization algorithm
is also called an instance. Since the optimization algorithm will generally need several
iterations to attain a satisfactory result, this brute-force approach may be computationally
too expensive for complex models, or when real-time constraints apply.

1.1.1 The Model Reduction and Low-rank approaches

MOR methods are designed to face this multi-query, or multi-instance, context in a smarter
way. They are formulated with the main objective of reducing the computational complexity
of some model, usually expressed in terms of partial differential equations (PDE). They are
particularly useful when the model has to be solved repeatedly to get some quantities of
interest (QoI), such as in design, optimization and control [40]. MOR methods are classically
grouped as follows:

5
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A posteriori methods. The reduced model is built after (hence, a posteriori) some inspec-
tion of the solution has been performed. That inspection usually consists in perform-
ing direct solves of the full model. We shall briefly present the main ideas behind two
representative techniques of this category: Proper Orthogonal Decomposition (POD)
[75, 90] and Reduced Basis Method (RBM) [50, 94].

A priori methods. They are based on some hypothesis that allow constructing the reduced
model with no inspection of the solution (i.e. with no direct solve of the full model).
The Proper Generalized Decomposition (PGD) [7] can be assigned to this category.

In next lines, however, we move slightly away from these classic definitions. To our
discussion, it is more useful to regard MOR methods according to whether they define an
underlying approximation of the solution or not. This can be illustrated more clearly by
means of the parametrized problem presented previously: while the goal of some methods
is limited to reduce the computational complexity of solving an instance, others wish to
reduce the computational complexity associated to solve for every possible instance. The
first case only needs to compute a reduced basis of small dimension. The second case needs
of introducing an underlying approximation in the parametric domain.

A posteriori methods can be often identified with those that do not define an approx-
imation in the parametric domain. POD, for instance, gathers some data from which a
reduced basis is built, but the approximation itself is not explicitly provided. However, it is
possible to think of other a posteriori formulations that do define an approximation in the
parametric domain, such as Sparse Grids [31, 104] or Kernel Methods [134, 135]. Contrary
to POD, they predefine the reduced basis and then they try to fit the coefficients to get an
approximation in the solution in the parametric domain. The fitting needs of performing
some direct solves of the full model, and this is why they are a posteriori methods. Finally,
a priori methods always define an approximation in the parametric domain, but they do not
predefine neither the reduced basis nor the coefficients. In fact, a priori methods require a
reformulation of the problem in order to consider the parameter as a new coordinate [112].
The computational domain increases its dimensionality since the parameter is now at the
same level than space, or time in transient models. Suitable techniques, such as separated
representations, are needed to manage efficiently this growth of dimensionality.

MOR methods achieve the complexity reduction — and thus, the speed-up of simulations
— in two different manners:

• By splitting the computational effort in offline and online phases. This is normally
the case of those methods that do not define an approximation in the parametric
domain: the approximation basis is computed in the offline phase, while the weights
are computed at each instance by solving a small system of equations.

• By putting the whole computational effort in the offline phase. This category refers to
those methods that define an approximation in the parametric domain, disregarding
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they are a priori or a posteriori: at each instance, the solution is directly available
because the whole work has been carried out offline.

Note that the classification based on the approximation is not banal at all because it is
precisely the existence of such approximation what determines how the complexity reduction
is expected to be attained. Besides, it shall be shown that it allows establishing a direct link
between both MOR and Low-rank approximations communities through a priori methods.

Low-rank tensor approximations are originated from the wish of computing an approx-
imation of the solution in the parametric domain. In such sense, they are absolutely com-
parable to a priori methods. The approximation is formulated in terms of tensor product
spaces [64], which are introduced in §1.1.3. For the time being, let us simply assume that
the solution of the parametrized problem defined in Eq. (1.1) is sought in a tensor prod-
uct space. It will be shown that an algebraic problem whose solution is a two-dimensional
tensor, is obtained by applying standard techniques such as the Galerkin method1 [71]. It
is well-known that any matrix —equivalently, two-dimensional tensor— can be decomposed
into a rank representation by the Singular Value Decomposition. The rank representation
can be seen as a compressed version of the matrix and hence the question is how to compute
it implicitly, that is, directly in the compressed format. Low-rank tensor Approximations
are an attempt to generalize rank representations to tensors in dimensions higher than two.
Separated representations appear in this context as a manner to compress tensors and the
Proper Generalized Decomposition as the algorithm to compute the tensor directly in com-
pressed format.

From the above discussion, an evident parallelism between a priori MOR methods —
PGD in particular— and Low-rank Tensor Approximations can be drawn. The following
two interpretations of PGD yield:

• A method to compute Low-rank tensor approximations from the solution of an alge-
braic tensor problem. In such sense, PGD is an algebraic solver.

• An a priori MOR method to compute a reduced basis that solves some PDE. In such
sense, PGD is a differential solver.

Although the interpretation as differential solver is probably the classical one, both are
valid and from a practical point of view, equivalent. In §1.1.3.3 we will introduce the PGD
as a differential solver that seeks the solution of the parametrized problem in a subset of
the approximation space, previously introduced in §1.1.3.1. The author considers, however,
that the interpretation as algebraic solver is particularly fruitful and thus it is privileged in
subsequent sections. We refer to §1.4 for a complete exposition.

1Assume for simplicity that the bilinear form has good properties: bounded, continuous, symmetric and
elliptic.
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1.1.2 Methods to reduce the computational complexity

In this section, we shall review briefly two important methods among those that only seek
reducing the computational complexity of solving an instance of the parametric problem.

1.1.2.1 Proper Orthogonal Decomposition

POD is possibly one of the pioneering and most popular MOR methods. The literature
and the number of applications is extensive: heat transfer simulation [24], liquid crystalline
polymers [10], Navier-Stokes flows [32], real-time simulation of non-linear tissues [102, 103]
or chemistry [109], among others. Without going into much details, the main idea is to take
advantage of the data already computed —previous instances of the full model— to reduce
the computational complexity of subsequent solves of the parametrized equation. Therefore
we introduce here the idea of sampling of the parametric domain as the collection of points
—also called snapshots— at which the full model has been previously solved. POD extracts
a reduced basis (also called singular vectors, principal components) from that data. In other
words: POD seeks a subspace Spod := span{ψ1≤i≤M} ⊂ Vs on which data can be still well
represented, that is:

u(µ) =
M∑
i=1

αi(µ)ψi. (1.2)

Eq. (1.2) constitutes indeed a first definition of what we understand by separated repre-
sentations, since the coefficients αi depend on the parameter and the basis functions on the
space coordinates. We expect that

dim(Spod) = M � dim(Vs).

The reduced problem is usually formed by Galerkin projection of the full one onto the
computed subspace. In practice, the dimension of the subspace can be chosen according to
predefined truncation error, that can be easily computed, see §1.3.1. However, it is worth to
remark that the truncation error expresses the amount of data that cannot be represented
onto the computed subspace, and it should not be confused with the error of a reduced
solution with respect to a full one for a new parameter value. This latter error cannot be
assessed so easily without coming back to the full model [105].

It is worth to mention that there exist some variants that suggest interpolating between
reduced solutions [12, 68]. That is, given Spod and the coefficients αi(µ1) and αi(µ2) as-
sociated to parameter value µ1 and µ2, respectively, the coefficients associated to some
µ ∈ [µ1, µ2] could be found by interpolating between αi(µ1) and αi(µ2). This constitutes
a manner of constructing an a posteriori approximation in the parametric domain without
truly solving the parametrized problem. This approach can only be used if the solution
varies smoothly in the parametric domain.
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1.1.2.2 Reduced Basis Method

The Reduced Basis Method (RBM) operates quite similarly to POD but defines a strategy to
sample the parametric domain wisely [93]. Although different RBM approaches are possible,
the greedy one is probably the most attractive. It consists in expanding the reduced basis
by adding one term at a time. Hence, suppose that the reduced basis already contains M
functions, i.e. dim(Srbm) = M . If the error indicator computed at the so-called train points
is not satisfied, the basis is expanded by adding one term. A new snapshot is computed where
the error indicator is maximized. This snapshot is usually orthogonalized with respect to the
elements of the reduced basis using a Gram-Schmidt procedure and then incorporated to it.
This is the offline part of the work. Once it is done, if we wish to compute the solution for
a new parameter value, a reduced problem of size dim(Srbm) must be solved. The reduced
problem is generally formed by Galerkin projection as well. The latter constitutes the online
part of the work. The computational cost is thus reduced, as it was in POD, but in this case
the outputs of the reduced system are guaranteed thanks to the error estimate [111].

Although RBM can be considered an improvement of POD, it does not provide an ap-
proximation of the solution in the parametric space; it provides a reduced basis able to rep-
resent the solution for any parameter value in the parametric domain with a controlled error
level. This results in a very practical, non-intrusive approach, at least for single-parameter
problems. However, neither brute-force, POD nor RBM approaches permit computing an
approximation of the solution in the parametric domain.

1.1.3 Methods based on defining an approximation

In this section, tensor product spaces are introduced as the foundations of both a priori
MOR methods —PGD in particular— and Low-rank tensor approximations. Tensor Product
Spaces are nothing but an appropriate framework to formalize the approximation in the
parametric domain. Furthermore, the separated representations and tensor product spaces
are closely related. PGD interpreted as a differential solver will be presented afterwards
using the Tensor Product Spaces framework.

Since introducing Low-rank tensor approximations here would take much place, this task
is left to a subsequent Section, see §1.3.

1.1.3.1 Introducing tensor product spaces

Computing an approximation of the solution in the parametric domain requires reformulating
the variational problem defined in Eq. (1.1). We first introduce an approximation space on
the parametric domain, denoted by Vµ, which may be a finite element space or the space
of polynomials of degree dim(Vµ)− 1, for instance. The new problem is written as follows:

9
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find u ∈ V := Vs ⊗ Vµ, a tensor product space, such that

a(u,w) = l(w), (1.3)

for every w ∈ V . The parametric dependence is omitted in Eq. (1.3) because in this case we
are defining an approximation that covers also the parametric domain. Or in other words,
the parameter is regarded as a new coordinate just as space and time are. It is not the aim
of this work to provide an exhaustive mathematical introduction to tensor product spaces
because it is outside the scope of this work. If Vs := span{v1≤i≤N

s } and Vµ := span{v1≤i≤M
µ },

the tensor product space of these spaces is defined as

V := span{vis vjµ, for 1 ≤ i ≤ N and 1 ≤ j ≤M}.

An element of V writes as follows:

u =
N∑
i=1

M∑
j=1

uij v
i
sv
j
µ, (1.4)

where uij defines the entries of a two-dimensional tensor, denoted by U ∈ KN×M .

Example 1.1 (Finite element spaces built from tensor product spaces). To keep in mind a
practical idea of these concepts, let us highlight that two and three-dimensional finite element
spaces [19, 71] can be built from the tensor product space of one-dimensional finite element spaces.
For instance, the bilinear quadrangular element of 4 nodes is introduced from

P1(ξ) = span{1, ξ} and P1(η) = span{1, η},

whose tensor product space is:

P1,1(ξ, η) = span{1, ξ, η, ξη}.

In the reference configuration with ξ, η ∈ [−1, 1]× [−1, 1], the shape functions are obtained with
the following four possible coefficient combinations 1/4 (1, α1, α2, α3), being α1, α2 = ±1 and
α3 = sign(α1) sign(α2). Of course, there exist many finite element formulations in which some
elements of the basis are subtracted on purpose, for many different reasons that are not being
discussed here. The solution is sought then in a subspace of the tensor product space. The only
difference between Eq. (1.4) and finite element formulations is that a linear indexation is usually
preferred,

u =
NM∑
i=1

uiN
i,

and thus ui defines a vector that is in fact the vectorization of the tensor already defined, i.e.

u = vect(U) ∈ KNM×1. Additionally, basis functions are usually identified with N i, the shape

functions.

Eq. (1.4) defines a separated representation in a general sense: the solution is written
as a sum of products of functions of each individual coordinate. In this framework, it is
possible to compute truly an approximation of the solution in the parametric space.
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1.1.3.2 Galerkin formulation and structure of the problem

In next lines an algebraic problem with tensor structure is obtained by applying the Galerkin
method. First note that Eq. (1.3) is equivalent to solve [116]:

〈A(u), w〉 = 〈b, w〉, (1.5)

where 〈 · , · 〉 denotes an inner product on V , A is a linear operator defined by A : V → V

and b is an element of V . Using a Galerkin approach, that is, w is approximated in the
same tensor product space as the solution, the left and and right-hand sides of Eq. (1.5) are
rewritten as follows:

〈A(u), w〉 =
N∑
i=1

M∑
j=1

N∑
k=1

M∑
l=1

uij〈A(visvjµ), vks vlµ〉wkl,

〈b, w〉 =
N∑
i=1

M∑
j=1

N∑
k=1

M∑
l=1

bij〈visvjµ, vks vlµ〉wkl.

(1.6)

Eq. (1.6) is conceptually very simple, although quite tedious to manipulate. Therefore, it is
worth to spend some lines to illustrate it with an example.

Example 1.2 (Structure of the problem with a laplacian operator). Consider that A is the
laplacian operator and the parameter µ is the diffusivity coefficient. Therefore A( · ) = µ∆( · ).
Then, for 1 ≤ i, k ≤ N and 1 ≤ j, l ≤M we have

〈A(visv
j
µ), vks vlµ〉 = 〈∆vis, vks 〉s〈µv

j
µ, v

l
µ〉µ  Ks ⊗Dµ,

〈visv
j
µ, v

k
s v
l
µ〉 = 〈vis, vks 〉s〈v

j
µ, v

l
µ〉µ  Ms ⊗Mµ,

(1.7)

where Ks, Ms are the diffusion (laplacian-like) matrix and the mass matrix in the physical

domain, respectively. Dµ, Mµ are a sort of weighted mass matrix and the mass matrix itself in

the parametric domain, respectively. We denote by “⊗” the Kronecker product.

Notice that it is possible to write Eq. (1.7) thanks to the following facts:

• The operator A is linear and admits a separated representation, also called an affine
decomposition is some contexts. In the case of the laplacian operator it is trivial. In
general, for linear problems this requirement is not difficult to satisfy.

• The inner product in tensor product spaces has the following property: for u = usuµ

and v = vsvµ, we have 〈u, v〉 = 〈us, vs〉s〈uµ, vµ〉µ, where 〈 · , · 〉s and 〈 · , · 〉µ are inner
products on Vs and Vµ, respectively. The norm inherits the same property.

Introducing the discrete matrix operators that we have just presented, Eq. (1.5) can be
written now in algebraic form as follows:

wHAu = wHf , (1.8)
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where w and u are vectorizations of their corresponding tensors and wH denotes the
conjugate-transpose of w. In example with the laplacian operator, we have A = Ks ⊗Dµ

and f = (M s ⊗Mµ)b, where b is a vectorization of its corresponding tensor.
Let us emphasize that Eq. (1.8) has been obtained in the framework of tensor product

spaces using completely standard methods, exactly the same one would use to formulate
a finite element problem. However, computing an approximation such as the one defined
in this section has a price, which is increasing the dimensionality. Where we only had the
physical dimension, i.e. the physical space, the parameter has been added as an additional
coordinate. The size of the algebraic system to be solved is considerably increased. It will
be shown in §1.2 that when formulating multiparametrized or multidimensional problems in
tensor product spaces the computational complexity scales exponentially with the number
of dimensions. In consequence, obtaining an explicit solution becomes quickly unfeasible.
Appropriate techniques like separated representations are therefore needed.

1.1.3.3 Proper Generalized Decomposition as a differential solver

In this Section, we take advantage of tensor product spaces already presented in §1.1.3.1 to
introduce the Proper Generalized Decomposition [7] as a differential solver in the context of
a priori MOR methods. In this way, the idea of PGD being at the interface between MOR
and Low-rank Tensor Approximations is clearly supported. Furthermore, we refer to §1.4.2
for PGD regarded as an algebraic solver in the context of Low-rank tensor approximations.

PGD is here regarded as a solver that builds a reduced basis progressively by splitting the
parametrized problem into two lower-dimensional problems: one defined in the physical space
and another one defined on the parametric domain. If those lower-dimensional problems
had analytical solution, one would not need to introduce approximation spaces of any kind.
That is why we say that PGD can be interpreted as a model-reduction differential solver.
Of course, analytical solutions are rare and in practice the low-dimensional problems will be
solved by introducing classic approximation spaces such as finite elements.

Let us consider functional spaces Vs and Vµ that fulfill the requirements of Eq. (1.3),
including the boundary conditions2, and let V := Vs ⊗Vµ be the tensor product space built
from them. Consider R pairs of functions (urs, urµ) ∈ Vs × Vµ such that the solution of Eq.
(1.3) can be well approximated as follows:

u ≈
R∑
r=1

ursu
r
µ. (1.9)

Eq. (1.9) is called a separated representation of order R, because it is a sum of function
products of space and parameter. The objective of PGD is to compute the function pairs

2For the Laplacian problem considered in §1.1.3.2, Vµ can be identified with the space of square-integrable
functions L2(Iµ) and Vs can be identified with the space of square integrable functions whose first (weak)
derivative is also square integrable, H1(Is). Here Is denotes the physical domain.
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(urs, urµ), also called space and parameter modes, respectively. Observe that this can be
recast into the notation already introduced in §1.1.3.1 by considering the following finite
dimensional approximation spaces defined from the modes:

Vs := span
{
vrs = urs

‖urs‖
, 1 ≤ r ≤ R

}
and Vµ := span

{
vrµ =

urµ
‖urµ‖

, 1 ≤ r ≤ R
}
,

both of dimension R. Think of vrs and vrµ being globally supported functions. A tensor
product space can be built from these spaces as V := Vs⊗Vµ ⊂ V. Let us introduce a subset
of that tensor product space:

SR :=
{
v ∈ V : v =

R∑
r=1

ur v
r
sv
r
µ, with vrs ∈ Vs, vrµ ∈ Vµ and ur ∈ K

}
.

We denote by u(R) an element of SR, also called a rank-R separated representation by reasons
that will be clearer in §1.3. From Eq. (1.9), the approximation u ≈ u(R) belongs to that
subset.

PGD allows building SR progressively: S1, S2, . . ., each one of them defined from SR =
SR−1 + S1, for R ≥ 2. Therefore, the successive approximation spaces are nested, i.e.
SR−1 ⊂ SR. This is made by seeking a pair (us, uµ) ∈ Vs × Vµ. When it is available, Vs
and Vµ are updated by normalizing us and uµ, respectively. The new approximation will be
defined from

u(R+1) = u(R) + usuµ ⇔ u(R+1) =
R+1∑
r=1

ur v
r
sv
r
µ.

The algorithm to compute those pairs will be detailed later. At this point, two questions
arise:

• First is about the convergence of u(R) towards u as R → +∞. For an important
class of problems, convergence can be proven [52]. In many other cases, even though
convergence is not proven, the method has been successfully applied. See §1.5 for a
short review on the applications.

• Second is about the optimality of such approximation. That is, assuming that a PGD
decomposition u(R) has been computed, is it the most compact one? Although it
can be proven that PGD generalizes POD in some cases [52, 106], and therefore, it is
optimal in the same sense as POD, in general the optimality problem is ill-posed and
there is not an answer to it [47]. See §1.3.3.1 for more details.

The question on convergence yields a parallelism with classic numerical methods. In the
same spirit as h-adaptivity is defined in the context of mesh-based approximations, or p-
adaptivity for high-order methods, a sort of rank adaptivity —r-adaptivity— may require
increasing the approximation rank to improve the solution.
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The PGD is adaptive in such sense. In order to present the PGD algorithm, let us
assume that we have already built SR, i.e. u(R) is known, and we want to compute a couple
(us, uµ) ∈ Vs × Vµ such that:

a(usuµ, w) = r(u(R), w), (1.10)

for every w ∈ V. We denote by r( · , · ) the residual, defined as

r(u(R), w) := l(w)− a(u(R), w).

Observe that computing both us and uµ is a nonlinear problem. Let us assume by now
that the problem to be solved is elliptic. Then, Eq. (1.10) can be turned into an equivalent
nonlinear optimization problem:

min
us,uµ

J (us, uµ) := 1
2a(usuµ, usuµ)− r(u(R), usuµ).

The stationarity conditions of the functional can be found by means of calculus of variations.
Consider the following arbitrary variations: us+ξws and uµ+ηwµ. Substituting and taking
derivatives with respect to ξ and η:

a(usuµ, wsuµ) = r(u(R), wsuµ), ∀ws ∈ Vs, (1.11a)

a(usuµ, uswµ) = r(u(R), uswµ), ∀wµ ∈ Vµ. (1.11b)

The stationarity conditions can be expressed in a single equation as follows: find (us, uµ) ∈
Vs × Vµ such that

a(usuµ, wsuµ + uswµ) = r(u(R), wsuµ + uswµ), ∀(ws, wµ) ∈ Vs × Vµ. (1.12)

Eq. (1.12) can be interpreted as a Galerkin formulation which imposes the cancellation (i.e.
orthogonality) of the residual simultaneously with respect to Vs⊗{uµ} and {us}⊗Vµ [106].
Depending on the type of problem, alternative formulations may be more convenient, see
§1.4.3.

Eq. (1.11) suggests applying an fixed-point algorithm to solve the nonlinear optimization
problem. The fixed-point is as follows:

1. Assume uµ is known, then update us from Eq. (1.11a).

2. From us just computed, update uµ by solving Eq. (1.11b).

3. Go back to the first step.

Let us introduce the linear operator A : V → V such that a(u,w) = 〈A(u), w〉, being 〈 · , · 〉
the inner product on V. We also introduce b ∈ V such that l(w) = 〈b, w〉. The following two
crucial hypothesis are needed:
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Hypothesis 1.1 (Affine decomposition of the operator). Given usuµ ∈ V, the operator admits
an affine decomposition of order T :

A(usuµ) =
T∑
t=1

Ats(us)Atµ(uµ),

with Ats : Vs → Vs and Atµ : Vµ → Vµ, for 1 ≤ t ≤ T .

Hypothesis 1.2 (Separated representation of the right-hand side). The right-hand side admits
a separated representation of order J :

b =
J∑
j=1

bjs b
j
µ,

with bjs ∈ Vs and bjµ ∈ Vµ, for 1 ≤ j ≤ J .

These two hypothesis motivate most of works concerned with PGD, and in particular,
this thesis. Considering the last two hypothesis, the left and right-hand sides of Eq. (1.10)
can be rewritten as

a(usuµ, w) =
T∑
t=1
〈Ats(us)Atµ(uµ), w〉 and

r(u(R), w) =
J∑
j=1
〈bjsbjµ, w〉 −

T∑
t=1

R∑
r=1
〈Ats(urs)Atµ(urµ), w〉,

(1.13)

respectively, where w is either w = wsuµ, which corresponds to Eq. (1.11a), or w = uswµ,
which corresponds to Eq. (1.11b). Recalling the separation property of the inner product
in tensor product spaces3 we get the following problem: find (us, uµ) ∈ Vs × Vµ such that

〈Ãs(us), ws〉s = 〈r̃s, ws〉s (1.14a)

〈Ãµ(uµ), wµ〉µ = 〈r̃µ, wµ〉µ, (1.14b)

for every (ws, wµ) ∈ Vs × Vµ. The following notation has been introduced:

Ãs(us) =
T∑
t=1

αtµA
t
s(us), r̃s =

J∑
j=1

βjµ b
j
s −

T∑
t=1

R∑
r=1

γtrµ Ats(urs),

Ãµ(uµ) =
T∑
t=1

αtsA
t
µ(uµ), r̃µ =

J∑
j=1

βjs b
j
µ −

T∑
t=1

R∑
r=1

γtrs Atµ(urµ),

where the following scalars have been used:

αtτ = 〈Atτ (uτ ), uτ 〉τ , βjτ = 〈bjτ , uτ 〉τ , and γtrτ = 〈Atτ (urτ ), uτ 〉τ , (1.15)
3〈usuµ, vsvµ〉 = 〈us, vs〉s〈uµ, vµ〉µ, with 〈 · , · 〉s and 〈 · , · 〉µ inner products in Vs and Vµ, respectively.
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with τ ≡ s, µ. Observe that Eq. (1.14) involves the solution of two lower-dimensional
problems: the first of them, Eq. (1.14a), is defined on the space domain while the second
problem, Eq. (1.14b), is defined on the parametric domain. Both problems are coupled by
some scalars defined in Eq. (1.15).

Example 1.3 (Structure of lower-dimensional problems with a laplacian operator). In this exam-
ple we illustrate Eq. (1.14) when a laplacian operator A( · ) = µ∆( · ) is of interest. Additionally,
we assume that bs = f and bµ = 1. First we note that given v, As(v) = ∆v and Aµ(v) = µv.
Therefore:

αµ 〈∆us, ws〉s = βµ 〈f, ws〉s −
R∑
r=1

γrµ 〈∆urs, ws〉s, ∀ws ∈ Vs

αs 〈µuµ, wµ〉µ = βs 〈1, wµ〉µ −
R∑
r=1

γrs 〈µurµ, wµ〉µ ∀wµ ∈ Vµ,

which may be rewritten in strong form as follows:

αµ ∆us = βµ f −
R∑
r=1

γrµ ∆urs

αs µuµ = βs −
R∑
r=1

γrs µu
r
µ.

A laplacian equation has been obtained to compute the space function us, while the parameter

function uµ can be computed by solving an algebraic equation whose cost is negligible. The

laplacian equation can be solved applying standard numerical techniques: finite differences, finite

elements, or others.

A fruitful observation can be made from the previous example. PGD defines two ap-
proximation levels:

• First approximation level is that of building approximation spaces Vs and Vµ such that
the solution is sought in a subset of V.

• Second approximation level may not be needed if the exact solution of the lower-
dimensional problems is known. Otherwise, us and uµ can only be computed by
introducing additional approximation spaces such as finite elements, for instance. Dis-
crete operators (i.e. matrices) associated to this approximation level are exactly the
same obtained in §1.1.3.2: Ks, M s, Dµ and Mµ.

With the last observation, we reach the parallelism between Low-rank tensor approximations
and a priori MOR through PGD: both approaches yield the same problem although the
arguments are different.

The fixed-point algorithm for solving Eq. (1.14) is said to be converged either when a
maximum number of iterations is attained or a stationary point is reached. We evaluate the
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following criterion:

‖(vsvµ)k − (vsvµ)k−1‖ < ε1,

where ‖ · ‖ := 〈 · , · 〉1/2 denotes the norm on V. It states that the fixed-point iterations are
stopped if the difference between two successive iterations k and k − 1 is smaller than ε1.
Recall that vs and vµ are the normalized version of us and uµ, respectively. The separated
representation is said to be converged if, after computing a reduced basis of size R, the
residual compared to the right-hand side has been reduced by some factor ε2:

r(u(R), u(R)) < ε2 l(u(R)).

1.2 Multiparametrized and multidimensional problems

Multiparametrized problems are the direct extension of parametrized problems already in-
troduced in §1.1: rather than models with a single parameter, real problems found in design,
optimization and control in many areas of engineering depend on many parameters [40, 63].

Multidimensional models, most commonly found in physics, are of very different nature.
They describe the kinetics of complex materials [26], competition in biological systems [5],
social dynamics and economics systems, among many others; see [21, 125]. These models
are conceived from their origin as multidimensional. Lagrangian mechanics, for instance,
is a classical example of multidimensional model which reformulates Newtonian mechanics
into a new space of generalized coordinates, one of them per degree of freedom.

Although both multiparametrized and multidimensional models are defined in higher-
dimensional domains, MOR methods cannot always be applied in the same manner. MOR
methods whose only aim is to reduce the computational complexity, presented in §1.1.2,
can be applied to multiparametrized problems but not to multidimensional problems in the
manner they are defined here. Instead, tensor product spaces and a priori MOR meth-
ods, presented in §1.1.3, provide an unified framework to treat both multiparametrized and
multidimensional problems [112].

1.2.1 Complexity reduction of multiparametrized problems

In this section, we shall only consider the complexity reduction of multiparametrized prob-
lems by Reduced Basis Method, although POD could also be applied [63]. The RBM pro-
cedure can be extended for higher dimensions with almost no modifications. The reduced
basis is constructed by sampling the parametric space Iµ ⊂ RD, now higher-dimensional,
for some parameter combinations chosen with an appropriate error estimator. Once the
reduced basis is large enough to represent the solution according to a prescribed error level,
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the solution is expressed in terms of such basis as:

u(µ) =
M∑
i=1

αi(µ)ψi, (1.16)

where ψi are the basis functions, αi are the coefficients to be computed online and µ ∈ Iµ.
Note that:

• The cardinal of the set of train points, defined in §1.1.2, grows exponentially with the
number of dimensions. This means that the number of direct —full— solves grows
accordingly. The offline cost to be paid to build the reduced basis may become rapidly
unaffordable.

• The dimension of the reduced basis might grow also rapidly as it must capture the
variations of the solution over the whole multiparametric domain. Recall that the
dimension of the reduced basis is directly related to the computational cost of the
online part in the RBM context.

Despite these potential weaknesses, RBM has been successfully applied to reduce the com-
putational complexity of more complex problems than any other MOR technique, including
Navier-Stokes equations [120, 130]. However, multidimensional models (in the sense they
are described in this section) cannot be treated easily by RBM nor, in most of cases, by any
a posteriori MOR method. This is because they are designed to reduce the computational
complexity, not to solve the multidimensional model. Recall that solving a multidimensional
model means computing an approximation of the solution on the higher-dimensional domain
in which it is defined.

1.2.2 A unified framework for multiparametrized and multidimen-
sional problems

Parameters are considered as new coordinates of the model, and thus, multiparametrized
models become indistinguishable from multidimensional models. From now on we shall refer
to multidimensional models disregarding they are multiparametrized or not.

We proceed merely as in §1.1.3. Let us consider an open bounded domain I ⊂ RD formed
from the cartesian product of lower dimensional domains (one-dimensional without loss of
generality), that is I := I1×· · ·× ID. In order to compute an approximation of the solution,
let us introduce approximation spaces of finite dimension defined on each one-dimensional
domain, Vd(Id) := span{v1≤id≤Nd

d }, for 1 ≤ d ≤ D. We denote by Nd their dimension. The
tensor product space is built from the approximation spaces as V :=

⊗D
d=1 Vd. Any u ∈ V

writes as:

u =
N1∑
i1=1
· · ·

ND∑
iD=1

ui1···iD v
i1
1 ⊗ · · · ⊗ v

iD
D , (1.17)
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where the entries ui1···iD define a tensor U ∈ KN , being N := N1 × · · · × ND. Recall that
the inner product on such space enjoys the following separation property:

Given u =
D⊗
d=1

ud and v =
D⊗
d=1

vd, 〈u, v〉 =
D∏
d=1
〈ud, vd〉d, (1.18)

which is of course inherited by the norm. Eq. (1.5) defines the problem to be solved and,
since it remains unchanged for the multidimensional case, we do not rewrite it. Using a
Galerkin approach and the separability of the operator as we did in §1.1.3.2, the problem
can be turned into an algebraic, formally equivalent to Eq. (1.8), but defined in dimension
D:

Au = f . (1.19)

If the operator can be written in separated representation using T terms, the algebraic
operator can be written as follows:

A =
T∑
t=1
⊗Dd=1A

t
d, (1.20)

where matrices At
d are operators on the d-th one-dimensional domain.

Example 1.4 (D-dimensional laplacian operator). The laplacian operator in D-dimension is
trivially written in separated form with D terms:

∆ :=
D∑
j=1

∂2

∂x2
j

.

By considering for instance finite element spaces in each dimension, the matrix operator defined
in Eq. (1.20) takes the following form:

Aj
d

=
{
Md if d 6= j

Kd if d = j
,

whereMd and Kd denote the mass and diffusion (laplacian-like) matrices in dimension d, respec-

tively.

In §1.1.3.2, it was observed that the computational complexity of a direct solve of Eq.
(1.8) —which only involved the space and one parameter— was considerably increased. In
general, for a D-dimensional problem such as Eq. (1.19), the computational complexity
becomes rapidly unaffordable.

PGD could be extended to multidimensional problems with little conceptual effort. How-
ever, we prefer to present PGD for multidimensional problems in the context of implicit
Low-rank tensor approximations in §1.4.2, simply because it has been shown in §1.1.3.3 that
it is equivalent to see PGD as a differential or as an algebraic solver.
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1.2.3 The curse of dimensionality

Up to this point we have not paid much attention the computational aspects associated to
computing an approximation of the solution in higher-dimensional domains. Eq. (1.17) de-
fines a D-dimensional tensor. Therefore, a system of equations with |N | =

∏D
d=1Nd ∼ ND4

unknowns must be solved to compute an approximation of the solution. This complexity is
comparable to the brute-force approach and thus, unaffordable. This is known as the curse
of dimensionality [20]. Since the number of unknowns scales exponentially with the number
of dimensions, reducing the computational complexity becomes compulsory.

Still, let us assume that we are able to solve multidimensional models at an affordable
computational cost. Several observations would follow: first is that the higher dimensional
domain could be explored almost for free; we only need to particularize the solution at
the desired coordinates or parameter values. Second is that the multidimensional model
has to be solved only once and then stored and used; this defines the concept of Compu-
tational Vademecums [40]. Third is that, as a consequence, many multi-query or real-time
applications would benefit from a great speed-up.

In summary, one would like to keep the aforementioned benefits but reducing the com-
putational complexity at the same time. Two crucial questions must be answered to make
it possible:

1. Assume that we are able to compute the tensor defined in Eq. (1.17). An explicit
storage of such tensor is obviously expensive. As an example, let N = 10 be the size
of the approximation basis in every dimension and D = 10, the number of dimen-
sions. An explicit storage of such tensor in double-precision data type requires roughly
75 GBytes. Therefore, is it possible to store it more efficiently, using a sort of com-
pression? This is directly linked to the study of tensor formats and low-rank tensor
representations in §1.3.

2. Is there an algorithm capable of computing such tensor directly in the compressed
format? And more specifically, does it operate at a computational cost which does
not scale exponentially with the number of dimensions? This question —partially
answered in §1.1.3.3 for the space-parameter case— introduces the discussion on the
PGD method as an algebraic solver in §1.4.2.

Separated representations provide an answer to these questions, although they are not the
only alternative. Separated representations have been partially introduced in this section:
Eq. (1.2) in the context of POD for single parameter problem; Eq. (1.16) in the context
of RBM for multiparametrized problems; or Eq. (1.4) in the context of tensor product
spaces, as the most general definition of separated representation. In next sections, separated
representations are regarded in the context of Low-rank tensor approximations.

4| · | denotes the cardinal of a set.
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1.3 Tensor representations and low-rank approximations
Low-rank tensor approximations constitute a family of increasingly popular techniques due to
its generality and success in many fields in science and engineering; see [62] for an extensive
list of applications. Although in this work tensors are mainly regarded as elements in a
tensor product space, in general there is no need of this functional framework to study their
representation. One may simply introduce tensors in the sense of multidimensional arrays
coming from the discretization of some multivariate function. Therefore, let us consider
some tensor in higher dimension and assume that we have enough computational ressources
to manipulate it. It is to be highlighted that, in practice, this is not the case: tensors are
the solution of some equation and therefore we only have an implicit representation.

There are two questions that we would like to address in this section:

• The first one has already been formulated in §1.2.3 and concerns the existence a “com-
pressed” format for tensors. The answer is of course positive, and three different
formats are introduced in §1.3.3.

• The second one concerns the concept of optimality of such compressed format. It
must be pointed out that in computational mechanics we are not truly interested in
computing the best (roughly, the most compressed) representation of a tensor, which
might require many computational ressources. Instead, we prefer computing a less
compressed tensor but at a lower computational cost. If the compressed version is still
too heavy for the targeted application, we may want to compress it further. For this
reason, we shall provide a brief compilation of results on optimality in §1.3.4.

Before considering tensor of any dimension, let us introduce briefly the paradigmatic two-
dimensional case.

1.3.1 Rank representation of matrices: the Singular Value Decom-
position

Just as Singular Value Decomposition (SVD) allows finding a compressed representation of
a matrix, we would like to know if the same is generalizable for higher dimensions. Consider
a matrix U ∈ KN1×N2 . There exist a factorization such that

U = LDSH ,

L ∈ KN1×N1 , D ∈ RN1×N2
+ and S ∈ KN2×N2 .

where L and S contain the left and right singular vectors by columns, respectively. They
form orthogonal basis. Matrix D is pseudo-diagonal (see Fig. 1.1) with non-negative entries
(σ1, . . . , σM ) ordered decreasingly. Those entries are called singular values. Since the row
and column ranks of a matrix coincide, which is not the case in higher dimensions, the rank
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Figure 1.1: Pseudo-diagonal matrices: N1 > N2 (left) and N1 < N2 (right)

R is such that R ≤M = min(N1, N2). Equivalently, there are are R ≤M non-zero singular
values. Introducing

L̃ = LD1/2 ∈ KN1×R and S̃ = SD1/2 ∈ KN2×R,

the left and right singular vectors associated to zero singular vectors are eliminated. This
yields a rank representation of the matrix:

U = L̃S̃
H =

R∑
r=1

l̃
r ⊗ s̃r, (1.21)

where l̃r and s̃r are the r-th columns of L̃ and S̃, respectively. The amount of information
to be stored is reduced from N1N2 to (N1 + N2)R. By choosing R∗ < R the matrix can
be further compressed at the cost of introducing some approximation error that can be
easily evaluated thanks to the optimality of SVD5 [64]. Such approximation, computed by
truncation of the expansion, is called a low-rank approximation.

1.3.2 Preliminaries and notation

The extension of the concepts presented in §1.3.1 to higher dimensions is not immediate; it
requires further conceptual developments and the notation is also quite technical. To keep
the exposition of the different tensor representations as clear as possible, let us introduce in
this section some notation, definitions and very basic operations on tensors. Of course we
do not mean to provide a complete collection of them but only those strictly needed for the
subsequent discussion. For a more exhaustive compilation, see [77] or [80]. Let us denote by

U ∈ KN

a D-dimensional tensor with N1, . . . , ND entries per dimension, that we assume known.
Recall that N = N1 × . . . × ND. A tensor entry is denoted by ui1,...,iD , with 1 ≤ id ≤ Nd

for 1 ≤ d ≤ D. Then we define:
5Optimality in the sense that ∀R∗ ≤ R, the first R∗ left and right singular vectors provide the best

possible rank-R∗ approximation of the matrix.
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Diagonal tensors. A tensor is diagonal if ui1,...,iD 6= 0 only if i1 = i2 = . . . = iD. Moreover,
it is superdiagonal if N1 = . . . = ND.

Rank-one tensors. A tensor is rank one if it can be written as u1 ⊗ u2 ⊗ · · · ⊗ uD, with
ud ∈ KNd vectors for 1 ≤ d ≤ D.

Fiber. A d-fiber is the vector obtained by fixing every dimension except d. By convention,
fibers are oriented as columns.

Matricization. A d-matricization, denoted by U (d), arranges every d-fiber as columns of
a matrix. Therefore,

U (d) ∈ KNd×µ with µ =
D∏

k=1,k 6=d
Nk.

This definition can be generalized by considering a tuple of dimensions t ⊂ {1, . . . , D}
instead of a single dimension d. If for instance t = {1, 2}, the matricization is then
obtained by arranging the fibers of every dimension contained in t as columns in a
matrix U (t) ∈ KN1N2×µt , with µt =

∏d
k=1,k/∈tNk.

Tensor d-product. The tensor d-product defines a change of basis in the case when the
tensor defines a multilinear operator. A new tensor Y is obtained from the old one U by
the linear applicationA ∈ KN∗

d×Nd to each d-fiber. If we consider the d-matricization of
the tensor, the operation can be expressed as Y (d) = AU (d). Avoiding matricizations,
the operation is denoted as Y = U×dA, whose size in dimension d is now N∗d instead
of Nd.

Multilinear multiplication. Consider matrices Ad ∈ KN∗
d×Nd for 1 ≤ d ≤ D. The

multilinear multiplication is obtained from the tensor d-product as

Y = U×1 A1 · · · ×D AD,

whose size is now N∗1 × · · · ×N∗D.

1.3.3 Some tensor representations of interest

In this section we introduce three different kinds of tensor representations: Canonical6

[33, 66], Tucker [127] and Hierarchical Tucker representations [65], although other tensor
representations exist. We refer to [80] and [62] for recent and complete reviews on tensor
representations. We pay particular attention to the computational complexity associated to
each one of these tensor formats.

6Called CP in some communities. CP stands for CANDECOMP/PARAFAC (CANonical DECOMPosi-
tion/PARAllel FACtors)

23



Chapter 1. State of the art in separated representations

1.3.3.1 Canonical representation

The canonical representation [33, 66] is an intuitive extension to the higher-dimensional
case of the matrix representation introduced in Eq. (1.21). Therefore the canonical rank is
defined analogously as the smallest R such that

U = U(R) :=
R∑
r=1

ur1 ⊗ · · · ⊗ urD, (1.22)

the sum of R rank-one tensors. Eq. (1.22) also defines the canonical representation of a
tensor. We will show in §1.3.3.2 that the canonical rank is not a proper definition of tensor
rank. To facilitate the exposition of the other tensor sets in next sections, let us define a
matrix Ud ∈ KNd×R that contains all vectors urd corresponding to dimension d. If they
are are normalized, the weight of each rank-one tensor in the tensor representation can be
represented by a vector λ ∈ RR so that

U and CR(U) := Jλ;U1, . . . ,UDK (1.23)

are equivalent representations of the same data but with different computational complexity.
The operator J · K denotes the compressed representation to be stored in practice. It is to
highlight that in canonical format the tensor is approximated using only (N1 + . . .+ND)R
data, which for small R is much less than

∏D
d=1ND, corresponding to a full representation.

The complexity is therefore on the order of O(DNR + R), provided that a uniform grid is
chosen, i.e. N1 = . . . = ND = N . Therefore the complexity of a tensor in Canonical format
scales linearly with the number of dimensions instead of exponentially.

However, the main concern with canonical representation is that given a tensor, it is
extremely hard to find out its rank, as we will show in §1.3.4. Therefore, although it is
obvious that every tensor has a canonical representation, it may be as complex as the full
representation7, although this is not what is experienced most of practical applications with
PGD method, that implements the canonical representation. In next sections we present
other formats that generalize the canonical one and allow an extension of SVD for higher
dimensions.

1.3.3.2 Tucker representation

Consider Eq. (1.22) and Eq. (1.23). Let us highlight that:

• The r-th column of Ud is only combined with the r-th column of the other matrices
Uk, with k 6= d.

7Worst case consists in considering the Euclidean canonical basis in each dimension and taking every
possible combination.
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• All matrices Ud have the same number of columns, that is, a generalization of the
equivalence of row and column ranks for matrices.

It can be therefore shown intuitively that the canonical format can be generalized by permut-
ing columns: the r1-th column of U1 could multiply the r2-th column of U2 and the r3-th
column of U3... and so on, with 1 ≤ r1, r2 . . . ≤ R. More compactly, rank-one tensors may
not share the same superscript: ur1

1 ⊗u
r2
2 · · ·⊗u

rD
D . Furthermore, one could also wonder why

each dimension should have the same rank R; this hypothesis is clearly unnecessary and may
be removed by letting each dimension to have its own rank Rd. Hence, 1 ≤ rd ≤ Rd ≤ Nd

for 1 ≤ d ≤ D, which states that of course the rank in each dimension cannot be bigger than
number of entries.

With all these ingredients, the Tucker representation [127] can be readily introduced as
follows:

U = U(R) :=
R1∑
r1=1
· · ·

RD∑
rD=1

ur1
1 ⊗ · · · ⊗ u

rD
D , (1.24)

where urdd ∈ KNd is the rd-th principal component or singular vector8 in dimension d.
Scalars Rd are called the d-rank of the tensor. They define the tensor rank, sometimes
called multi-rank, denoted by

RT := (R1, . . . , RD).

If vectors urdd are normalized and stored as columns in matrices Ud ∈ KNd×Rd , the weight
of each rank-one tensor formed from the (r1, . . . , rD) indices can be represented as the core
tensor, denoted by K ∈ RR1×···×Rd . The entries of the core tensor are also called singular
values. Therefore:

U and TR(U) := JK;U1, . . . ,UDK (1.25)

are equivalent representations of the same data but with different computational complexity.
The Tucker representation is a compressed version of the original tensor if the following
condition is satisfied:

∏D
d=1Rd <

∏D
d=1Nd. Compared to the Canonical representation,

the Tucker’s one is quite expensive as the complexity of the approximation is in the order
of O(RD +DNR), under the following simplification assumptions: same number of entries
N per dimension; and same d-rank in every dimension. Therefore, in some sense Tucker
representations suffer from the curse of rank due to the need of storing the core tensor,
whose size scales exponentially with the number of dimensions.

It is worth to highlight that Tucker representation generalizes the Canonical representa-
tion; indeed, if the core tensor is taken superdiagonal (§1.3.2 for its definition), the Tucker
representation reduces to the Canonical one. Tucker representation allows introducing a
generalization of the SVD —called the High-Order SVD (HOSVD) [46]— that yields quasi-
optimal approximations of the tensor. This will be discussed in §1.3.4. Finally, it is worth

8It is called like that because Tucker format is closely related to a generalization of the SVD, see §1.3.4.1.
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to remark that Tucker representation is analogous to tensor product spaces: it suffices to
introduce Euclidean vector spaces of dimension Rd that span the approximation space Vd of
dimension Nd.

1.3.3.3 Hierarchical Tucker representation

Hierarchical Tucker (HT) representations [65] are an attempt to keep the generality of the
Tucker representation but reducing at the same time its complexity, which was greatly
affected by the size of the core tensor. In Chapter 4, we shall refer to this kind of repre-
sentation. HT is based on the idea of recursively splitting the dimensions. This makes the
exposition quite technical. Consider a binary tree T constructed by recursive splitting of
{1, 2, . . . , D}. Fig. 1.2 shows two examples of this binary tree in the case of four and five
dimensions. The points where a branch splits into two other branches are called nodes. We

Figure 1.2: Examples of the binary tree T for D = 4 (left) and D = 5 (right)

associate each node with t, a subset of {1, 2, . . . , d}. The collection of all these subsets is T .
The subset t is formed from the union of two subsets from an inferior level, i.e. t = tr ∪ ts,
such that tr ∩ ts = ∅. In consequence, T is built in such a way that enjoys of the property
of nestedness.

Let us consider some t ∈ T (i.e. some node of the tree) and its corresponding matriciza-
tion, that is the matrix U (t) (see §1.3.2 for details on notation). That matrix might not be of
full rank, i.e. Rt ≤ µt, being µt the number of columns of the matricization. Let us denote
by U t the matrix whose columns span the image of the matricization. It has, of course,
Rt columns. Recall that t is formed from the union of tr and ts. Again, we may consider
matricizations U (tr) and U (ts), and their corresponding rank matrices U tr and U ts . Their
respective column ranks are denoted by

Rtr ≤ µtr and Rts ≤ µts .

It can be proven [61] that there exist a matrix Bt ∈ KRtrRts×Rt that allows passing from a
lower level (tr,ts) in the network to the upper level (t) through the following expression:

U t = (U tl ⊗U ts)Bt. (1.26)

Eq. (1.26) has important practical implications. Using recursivity, it is clear that for any
configuration of the network T , matrices U t only need to be stored on the final nodes —
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also called leaf nodes— because any other level can be reached by applying successively the
transformation defined by Eq. (1.26). To do so, matrices Bt must be stored at each node
except the leaf ones. Therefore:

U and HR(U) := JBt,UdK , (1.27)

∀t ∈ T \ {1, . . . , D} and 1 ≤ d ≤ D,

are equivalent representations of the same data but with different computational complexity.
HT representation also defines its own rank, called the HT-rank, which is formed by the tuple
RH := (Rt)t∈T , with Rt the column rank of the matricization at node t, as it has already
been defined.

Since matrices Ud only need to be stored in the leaf nodes and matrices Bt are stored in
all nodes but the leaf ones, the computational complexity is in the order of O(DR3 +DNR),
which clearly improves Tucker’s complexity. That estimation is done assuming that the rank
at each node is R and for all dimensions the number of nodes is N . However, operating with
HT tensors is not always straightforward. For instance, the complexity of the inner product
between tensors in HT format is in the order of O(DNR2 +DR4).

1.3.4 Explicit algorithms to compute Low-rank Tensor Approxima-
tions

The best tensor representation of a given tensor is the solution of the following problem:

S?R(U) := arg min
V∈SR

‖U−V‖ ,

where ‖ · ‖ denotes the analogous for tensors of the Frobenius norm form matrices. By SR,
we denote either

• The set of tensors with canonical rank bounded RC ≤ R, denoted by CR. Observe
that it could also be denoted as CR with R = (R,R, . . .), since the canonical rank is a
particular case of the tensor rank in which every d-rank is equal.

• The set of tensors with tensor rank bounded RT ≤ R, denoted by TR.

• The set of tensors with HT rank bounded RH ≤ R, denoted by HR.

It can be proved that the canonical set is in general not closed, with the following exceptions:
the set of elementary tensors of rank one, C1, and the two-dimensional case for any rank
—matrices—, which in general renders the problem of optimality ill posed [47]. There exist
no algorithm to determine the canonical rank of a tensor; in fact, it is a NP-hard problem
[67]. Moreover, the rank of a real-valued tensor may be actually different over R and C; see
[80] for an example of a tensor of rank two over the field of complex numbers and three over
the field of real numbers.
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All these reasons make that, although it is of course possible to compute canonical
representations of a tensor, the problem of finding the best possible canonical representation
is not considered in general. In addition, the truncation error associated to consider R∗ ≤ R
modes cannot be evaluated straightforwardly.

1.3.4.1 High-Order Singular Value Decomposition

Given a tensor it is easy to find its Tucker representation by means of the High-Order
Singular Value Decomposition (HOSVD). The HOSVD algorithm [46] computes for each
dimension the SVD of U (d), the matricization along that dimension. If the column rank
of this matricization is Rd, we only need to keep the leading Rd left singular vectors. The
singular vectors are stored in matricesUd, already defined in §1.3.3.2. Once this orthonormal
matrices have already been computed by successive SVD in each dimension, the core tensor
can be obtained as:

K = U×1 U
H
1 · · · ×D U

H
D .

See §1.3.2 for the definition of the multilinear product. Contrary to the canonical tensor
set, the Tucker tensor set is closed. Taking advantage of the closedness, it turns out that
HOSVD provides quasi-optimal representations. Truncation can be used to further compress
the data by keeping a number of leading left singular vectors R∗d ≤ Rd, for each dimension.
The error associated to that truncation can be assessed as follows:

‖U− TR∗(U)‖ ≤

√√√√ D∑
d=1

Rd∑
id=R∗

d
+1
σ2
id
≤
√
D T ?R(U),

where σid are the entries of the core tensor discarded by effect of truncation.

1.3.4.2 Hierarchical Singular Value Decomposition

Given a tensor, a Tucker representation can be computed by means of the hierarchical
singular value decomposition of tensors (HSVD) [61]. Since presenting the algorithm for
arbitrary dimensions is quite technical, we will illustrate it by means of an example.
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Example 1.5 (Illustrating the HSVD algorithm). We develop here the algorithm for a very
simple case with a double objective:

• First, to illustrate the definition of HT tensors previously given.

• Second, to show practically the way matrices Bt are computed.

Hence, let us consider leaf nodes tr = {1} and ts = {2} such that the upper level of the tree is
given by t = tr ∪ ts = {1, 2}. Let us apply SVD to the matricizations U (tr) and U (ts) to compute
their left singular values, respectively. However, it can be noticed that instead of performing
two matricizations and two SVD, it is possible perform only one SVD to obtain both sets of left
singular vectors:

U (r) = UrU
H
s , equivalently U (s) = UsU

H
r ,

with Ur ∈ KNr×Rr , Us ∈ KNs×Rs .

In our example, this is obvious because it is a two-dimensional case and indeed both Rr and Rs
will be the same. This operation can be repeated until the leaf nodes are reached. Observe that
if we define the transfer matrix

Bt = (UHs ⊗UHr )U t,

then U t can be recovered from
U t = (Ur ⊗Us)Bt, (1.28)

because of the orthogonality of every matrix U t∈T , except for the root node, that is t =

{1, 2, . . . , D}, which corresponds to the original tensor.

The HT set of tensors is closed and HT representations computed using the HTSVD
algorithm enjoy from quasi-optimality, as shown in Eq. (1.29). Truncation can be performed
by keeping R∗t < Rt left singular vectors at each node t ∈ T . In that case, the error can
be evaluated from the singular values associated to the discarded left singular vectors when
performing the SVD of each matricization, as shown in the previous example.

‖U−HR∗(U)‖ ≤

√√√√∑
t∈T

Rt∑
it=R∗

t+1
σ2
it
≤
√

2D − 3H?R(U), (1.29)

1.3.4.3 Summary of tensor decomposition properties

In this section we summarize the most important properties of each one of the tensor repre-
sentations considered in this work. As it can be seen in Table 1.1, the canonical format has
a big advantage regarding its complexity; it is the format that a priori offer the potential
compression of the original tensor. However, since the canonical rank of a tensor is very
hard to compute —unless it is already given in canonial format, of course— there exist no
methods that guarantee a quasi-best approximation. On the contrary, Tucker and Hierar-
chical Tucker representations allow computing quasi-best approximations using SVD-based
algorithms.

It is worth to emphasize that the algorithms presented in §1.3.4.1 and §1.3.4.2 can be
applied to a tensor that is known explicitly, which is not the usual case. More commonly,
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Canonical Tucker Hierarchical

Complexity O(ndr) O(ndr + rd) O(ndr + dr3)

Closedness No Yes Yes

Quasi-best approx. No Yes Yes

Best approx. No Exist (NP hard) Exist (NP hard)

Table 1.1: Summary of properties of tensor representations

the tensor is given implicitly as the solution of some linear system of equations, as shown in
Eq. (1.8). In §1.4.2 we address this kind of problems.

1.4 Implicit algorithms to compute low-rank tensor ap-
proximations

In §1.1, MOR methods where categorized depending on whether they define an approxima-
tion of the solution or not in the multidimensional domain. These approximations introduce
essential differences that lead to a formulation in tensor product spaces. In §1.2.3, we showed
that direct schemes are precluded to compute tensor approximations due to the curse of di-
mensionality. It was therefore concluded that tensors must be computed and manipulated
in compressed formats. Such formats have been studied in §1.3 as well as some compression
algorithms that operate on explicit tensors. In computational mechanics, however, tensors
are given implicitly as the solution of some algebraic problem, e.g. a linear system, that may
be written in the following equivalent forms:{

A(U) = F

A : KN → KN and U,F ∈ KN
⇔

{
Au = f

A ∈ K|N |×|N| and u,f ∈ K|N |.
(1.30)

Therefore we are interested in algorithms that allow computing a low-rank approximation
of the solution by constraining the tensor to belong to some tensor set defined in §1.3.3.

1.4.1 A general overview on optimization-based algorithms

Many algorithms are available to treat this kind of problems. The list includes classic
iterative methods for solving linear systems (e.g. conjugate gradient like methods) combined
with truncation in any of the low-rank tensor representations, optimization-based algorithms,
and many others. We refer to [62] and the references therein for a complete list of them.
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1.4. Implicit algorithms to compute low-rank tensor approximations

Optimization-based algorithms turn Eq. (1.30) into an optimization problem. As objec-
tive function one might choose:

• The norm of the error: ‖u−A−1f‖, which is not useful at all from the point of view
of optimization as it involves the direct solve of the system of equations.

• The norm of the residual: ‖f −Au‖.

• The energy norm of the error, defined as follows:

|||u−A−1b|||2 := 〈A(u−A−1b),u−A−1b〉.

The operator A must define a norm, i.e. it must be hermitian positive definite.

Throughout this section, we use the Euclidean inner product and norm, that is:

〈u,v〉 = vHu and ‖u‖ = 〈u,u〉1/2.

Observe that
|||u−A−1b|||2 = 〈Au,u〉 − 2〈b,u〉+ 〈A−1b, b〉,

and therefore the optimization problem may be set in terms of a functional which is cheap
to compute —recall the separation property of the inner product in spaces with tensor
structure—:

min
u∈vect(S)

J (u) := 1
2 〈Au,u〉 − 〈f ,u〉. (1.31)

In Eq. (1.31) we have constrained the solution to belong to a certain tensor subset such as the
ones defined in §1.3.4. If the operator was not self-adjoint, the optimization problem would
be obtained by minimizing the norm of the residual [25, 52, 106]. The resulting constrained
optimization is nonlinear and non-convex in general [53, 62], even if the quadratic form
associated to the original problem was strictly convex.

1.4.2 Proper Generalized Decomposition as an algebraic solver

In §1.1.3.3, PGD was introduced as a differential solver for a parametrized problem in the
context of a priori model reduction. In this section, PGD is regarded as a method that allows
constructing a Low-rank tensor approximation —recall that both regards are equivalent—.
It uses the following principal ingredients:

• The tensor is sought in canonical format, already introduced in §1.3.3.1.

• Instead of predefining the rank approximation and then apply optimization techniques,
the solution is built up from successive rank-one corrections. The convergence is driven
by some measure of the residual.
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• Each rank-one correction requires solving a nonlinear optimization problem. The al-
ternating direction method is classically applied to solve it.

For the sake of simplicity, we only consider here hermitian positive-definite problems. Non-
hermitian (i.e. non-symmetric) problems are considered in §1.4.3. Therefore, assume that
after R successive corrections of the solution, a rank-R approximation has already been
computed. As it is written in canonical format, we have:

u(R) =
R∑
r=1

ur with ur =
D⊗
d=1

urd for 1 ≤ r ≤ R. (1.32)

Suppose that we want to compute a rank-one correction denoted by u, that is

u(R+1) = u(R) + u,

with u ∈ vect(C1) ⇔ u = u1 ⊗ · · · ⊗ uD,

such that
Au ≈ f −Au(R). (1.33)

Just as shown in Eq. (1.31), the correction can be determined by turning Eq. (1.33) into
the following nonlinear optimization problem [7, 53]:

min
u∈vect(C1)

1
2 〈Au,u〉+ 1

2 〈Au
(R),u〉 − 〈f ,u〉, (1.34)

which is solved in practice applying the alternating directions algorithm, although of course
any other nonlinear optimization method would be valid. Let us define the residual after R
corrections and suppose that it can be written as a rank-S tensor, with S ≥ R in principle.
We denote the residual by

r(S) := f −Au(R).

Let us suppose that the operator possesses a rank-T separated form as shown in Eq. (1.20).
Using the definition of the residual, the functional to be minimized is defined as follows:

J (u) := 1
2

T∑
t=1
〈Atu,u〉 −

S∑
s=1
〈rs,u〉

where matrices At ∈ C1(K|N |×|N|) are rank-one. By the separation property of the scalar
product, see Eq. (1.18), we have:

J (u) = 1
2

T∑
t=1

D∏
d=1
〈At

dud,ud〉 −
S∑
s=1

D∏
d=1
〈rsd,ud〉.

The alternating directions algorithm optimizes one direction at a time. Assume ud known
for 1 ≤ d ≤ D, d 6= k. Consequently, every scalar product can be explicitly computed except
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for d = k, which results in:

J (uk) = 1
2

T∑
t=1

αt〈At
kuk,uk〉 −

S∑
s=1

βs〈rsk,uk〉,

with the following scalars

αt =
D∏

d=1,d6=k
〈At

dud,ud〉, 1 ≤ k ≤ T and βs =
D∏

d=1,d 6=k
〈rsd,ud〉, 1 ≤ s ≤ S. (1.35)

Therefore, for each direction 1 ≤ k ≤ D, the mode uk is optimized by solving a minimization
problem. Calculus of variations allows us writing the equivalent problem:

min
uk∈KNk

J (uk) ⇔ Find uk ∈ KNk : 〈Ãkuk,w〉 = 〈r̃k,w〉, ∀w ∈ KNk , (1.36)

which imposes the cancellation of the projection of the residual for every w. In such sense,
this is a Galerkin formulation of the PGD. We have used the following notation:

Ãk :=
T∑
t=1

αtA
t
k and r̃k :=

S∑
s=1

βsr
s
k. (1.37)

We refer to an iteration of the alternating directions method as the updating and nor-
malization of every dimension 1 ≤ k ≤ D, and we denote it as u(i), the i-th iteration. No
distinct notation is used for normalized modes for the sake of simplicity. The alternating
directions algorithm is said to be converged either when a maximum number of iterations is
attained or a stationary point is reached, that is,

‖u(i) − u(i−1)‖ < ε1. (1.38)

The low-rank approximation is said to be converged when after computing R corrections,
the norm of the residual compared to the right-hand side (that is, the residual with R = 0)
has been reduced by some factor ε2:

‖f −Au(R)‖ < ε2 ‖f‖. (1.39)

Residual-based error estimates are also available in [4, 87].
It is to be highlighted that the PGD algorithm is able to build a canonical low-rank

approximation by solving a series of low-dimensional problems. The potential bottleneck is
therefore in the alternating directions method: if it requires many iterations to converge,
the efficiency is deteriorated because several linear systems have to be solved. In multi-
parametrized problems, this is of special importance since the number of degrees of freedom
associated to the discretization of the physical space is generally much bigger than the num-
ber of DOFs used in the other (parametric) dimensions. Therefore the computational cost
is driven by the linear systems that must be solved to update the space dimension. In prac-
tice, some authors [106] suggest to cut off the alternating iterations (three or four maximum)
arguing that it is not worth spending much iterations to optimize a single correction that
possibly will be improved by the subsequent correction anyway.
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Algorithm 1 Rank-one corrections PGD
Require: u(R) . Rank-R approximation
1: Initialize u
2: for i = 1 to I do . Alternating directions loop
3: Set uold = u

4: for k = 1 to D do . Loop every dimension
5: Update uk
6: end for
7: Check u− uold . Convergence Eq. (1.38)
8: end for
9: return u . Rank-one correction

1.4.3 Alternative formulations of Proper Generalized Decomposi-
tion

Algorithm 1 is a simple and computationally very attractive formulation of PGD. Under
some circumstances it can be proven that it constitutes a generalization of POD [106]. In
particular, for two-dimensional problems and hermitian positive-definite operators, the rank-
one corrections converge towards the POD decomposition. For the general case, however,
PGD is not guaranteed to be optimal is such sense. Several alternative formulations have
been proposed with the objective of obtaining more compact representations.

1.4.3.1 Optimal Galerkin formulation

At iteration R, rather than computing a rank-one correction we prefer computing a full
rank-R canonical approximation [106]. Under the same assumptions made in §1.4.2, the
optimization problem may be written now as

min
u∈vect(CR)

J (u) := 1
2 〈Au,u〉 − 〈f ,u〉,

equivalently,

min
ur∈vect(C1), 1≤r≤R

J (u1, . . . ,uR) = 1
2

R∑
r=1

R∑
s=1
〈Aus,ur〉 −

R∑
r=1
〈f ,ur〉, (1.40)

that may be solved applying the alternating directions algorithm. Assume urd known for
1 ≤ d ≤ D, d 6= k, and 1 ≤ r ≤ R. The only unknowns of the functional are the R modes
in dimension k, since every scalar product can be explicitly computed except for dimension
k. Therefore, we do not aim at optimizing a single mode per dimension but every mode per
dimension at the same time:

min
urk∈K

Nk , 1≤r≤R
J (u1

k, . . . ,u
R
k ). (1.41)
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Eq. (1.41) can be solved in a standard manner by applying calculus of variations. The
resulting linear system is coupled of size NkR. Then, the algebraic problem can be written
as follows:

Find Uk := ⊗Rr=1u
r
k ∈ KNkR : 〈B̃kUk,W 〉 = 〈F̃ k,W 〉, ∀W ∈ KNkR, (1.42)

where operator B̃k and vector F̃ k are obtained from Eq. (1.41). We omit here their
derivation which is not difficult but quite tedious. It is to remark that Eq. (1.42) ensures
the cancellation of the projection of the residual simultaneously for everyW . In such sense,
this is a optimal Galerkin formulation of the PGD.

This constitutes the first computational disadvantage of this formulation: instead of
solving problems of size Nk in each dimension, we must solve much bigger problems. The
second disadvantage is that many of them must be solved. To see this, let us suppose S
such that the PGD expansion u(R) is converged if and only if R ≥ S. See Eq. (1.39) for the
definition of convergence. Since S is not known a priori, we must compute (in principle) the
rank-one, rank-two, rank-three... approximations until the rank-S is reached.

Algorithm 2 Optimal Galerkin PGD
1: for r = 1 to R do
2: Initialize u(r) . Initialize a rank-r approximation
3: for i = 1 to I do
4: Set u(r)

old = u(r)

5: for k = 1 to D do
6: Update u1

k, . . . ,u
r
k . Update every mode in current direction

7: end for
8: Check u(r) − u(r)

old
9: end for
10: Check ‖u(r)‖ < ε2 ‖u(0)‖ . Convergence Eq. (1.39)
11: end for
12: return u(S) . Rank-(S ≤ R) decomposition

1.4.3.2 Rank-one corrections with update

We have just shown that the optimal Galerkin formulation of PGD is computationally very
expensive, specially for multiparametrized problems in which the space dimension involves
large scale (2D or 3D) problems whose number of unknowns is much bigger than the number
of unknowns related to the parametric dimensions. In such cases, a mixed formulation of
Algorithm 1 and Algorithm 2 may be convenient [106]. Assume that we have just computed
the R-th rank-one correction. Equivalently, we dispose of a rank-R approximation. Before
computing a new rank-one correction, we may optimize every mode per dimension as in Eq.
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(1.41), except the space dimension because it is too expensive. At convergence, we replace
the previous R modes by the optimized ones.

Algorithm 3 Rank-one with update PGD
Require: u(R)

1: for i = 1 to I do
2: Set urk,old = urk for 2 ≤ k ≤ D and 1 ≤ r ≤ R
3: for k = 2 to D do . Assuming k = 1 is space dimension
4: Update u1

k, . . . ,u
r
k . Eq. (1.41)

5: end for
6: Check alternating directions convergence
7: end for
8: Call Rank-one PGD(u(R)) . New rank-one correction with Algorithm 1

1.4.3.3 Galerkin least-square formulation

Every PGD formulation considered until now is based on the hypothesis of the operator
being hermitian positive-definite, that is, the operator defines an energy norm. Minimizing
the error with respect to this energy norm allowed turning the linear system into a convex
optimization problem whose solution was sought in the low-rank canonical tensor subset.
The last constraint made the minimization problem to be not convex anymore. When the
operator is not self-adjoint, i.e. it does not define a norm, the only possibility is to minimize
the norm of the residual.

‖f −Au‖2 = 〈Au,Au〉 − 2〈f ,Au〉+ 〈f ,f〉.

This yields the following optimization problem:

min
u∈vect(S)

1
2 〈Au,Au〉 − 〈f ,Au〉,

which is equivalent to minimize the energy norm of the error for the normal equation:
AHAu = AHf . The optimization problem becomes analogous to Eq. (1.34) or to Eq.
(1.40), depending on whether the rank-one corrections or the optimal Galerkin formulations
want to be applied. If for instance, we choose the rank-one corrections formulation, the
minimization problem after a rank-R decomposition has been computed is as follows:

min
u∈vect(C1)

J (u) := 1
2 〈Au,Au〉 − 〈r

(S),Au〉.

Making use of the definition of the residual given in §1.4.2 and assuming that the operator
is rank-T —see Eq. (1.20)—, observe that the functional to be optimized can be rewritten
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as:

J (u) = 1
2

T∑
p=1

T∑
t=1
〈Atu,Apu〉 −

T∑
p=1

S∑
s=1
〈rs,Apu〉.

This optimization problem may be solved using the alternating directions algorithm, as usual
in the PGD context. In fact, Algorithm 1 can be used with no particular modifications, and
therefore the development made in §1.4.2 is not repeated here. An equation analogous to
Eq. (1.36) is obtained:

Find uk ∈ KNk : 〈Ãkw, Ãkuk〉 = 〈r̃k, Ãkw〉, ∀w ∈ KNk . (1.43)

It must be noticed that in this case the orthogonality of the projection of the residual is
imposed with respect to Ãkw, for every w ∈ KNk . Several remarks about the performance
of this algorithm are in order:

• It can be proved that the convergence of this formulation measured in residual norm
is monotonic.

• In spite of this, several authors including the one who writes this thesis [15, 29, 106]
have experienced that the convergence rate measured by the norm of the true error is
in fact very poor:

‖f −Au(R)‖ � ‖u(R) −A−1f‖.

If the low-rank approximation is built from rank-one corrections, poor convergence
rates yield the necessity of computing artificially high-rank representations to attain a
certain precision.

• The computational cost is highly increased. If the operator was rank-T , the least-
square formulation leads automatically to a rank-T 2 operator.

• The normal operators are full (as opposed to sparse) and their condition number is
seriously increased.

The aforementioned disadvantages motivate the introduction of alternative techniques to
solve non-adjoint problems.

1.4.3.4 Minimax Proper Generalized Decomposition

In previous sections, we have emphasized the fact of the orthogonality of the residual being
imposed in a Galerkin sense. As an alternative to the least-squares Galerkin formulation to
treat non self-adjoint problems, the Minimax PGD imposes the orthogonality of the residual
with respect to the solution of some auxiliary problem that will be introduced later. This
can be interpreted as a Petrov-Galerkin formulation of the PGD.
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Suppose that a rank-one correction wants to be computed. Therefore, using barely the
same notation as in the previous sections, we introduce the following functional:

J (u,w) := 1
2 〈u,u〉 − 〈Au,w〉+ 〈r(S),w〉,

and we define the following optimization minimax problem:

max
w∈vect(C1)

min
u∈vect(C1)

J (u,w).

The stationarity conditions of the functional are found by calculus of variations. Let us
denote such variations as w+ ξw̃ and u+ ηũ. The stationarity conditions of the functional
are:

∂J
∂ξ

∣∣∣∣
ξ,η=0

= 〈r(S), w̃〉 − 〈Au, w̃〉 = 0, ∀w̃ ∈ vect(C1), (1.44a)

∂J
∂η

∣∣∣∣
ξ,η=0

= 〈ũ,u〉 − 〈Aũ,w〉 ≡ 〈u, ũ〉 − 〈AHw, ũ〉 = 0, ∀ũ ∈ vect(C1). (1.44b)

Eq. (1.44a) states that the orthogonality of the residual is imposed with respect to, in
principle, every w̃. However we shall constrain it to be the solution of Eq. (1.44b), denoted
by w, and thus it can be interpreted as a Lagrange multiplier. Therefore, we can reformulate
the problem as follows:

Find u,w ∈ vect(C1) that solve :


〈Au,w〉 = 〈r(S),w〉

and

〈AHw, ũ〉 = 〈u, ũ〉, ∀ũ ∈ vect(C1).

(1.45)

Recall that our interest in writing the problem in optimization form is due to we do not
want to solve Eq. (1.45) directly because it is too expensive: |vect(C1)| = N . Optimization
algorithms, such as alternating directions allow solving the problem with much less compu-
tational effort. We shall spend next lines to recast the Minimax problem already defined
into the alternating directions methodology. Since the objective is to optimize one direction
at a time, let us assume that

u = ⊗Dd=1ud and w = ⊗Dd=1wd

are known except uk and wk, for some 1 ≤ k ≤ D. Thanks to the separation property of
the scalar product, every inner product in the functional J (u,w) can be computed except
those related to dimension k. Therefore, the optimization problem is reduced to:

max
wk∈KNk

min
uk∈KNk

J (uk,wk).
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The pair (uk,wk) can be updated from solving the projected version of Eq. (1.45), which
can be written as follows:

Find uk,wk ∈ KNk that solve :


〈Ãkuk,wk〉 = 〈r̃k,wk〉

and

〈ÃH

k wk, ũ〉 = 〈uk, ũ〉, ∀ũ ∈ KNk ,

(1.46)

where Ãk and r̃k are computed as shown in Eq. (1.37), but with a different definition of
scalars αt and βs, see Eq. (1.35). These coefficients are redefined as follows:

αt =
D∏

d=1,d 6=k
〈At

dud,wd〉, 1 ≤ k ≤ T and βs =
D∏

d=1,d6=k
〈rsd,wd〉, 1 ≤ s ≤ S,

where we wish to recall that T and S are the rank of the operator and rank of the residual,
respectively. See §1.4.2 for more details.

Although the Minimax algorithm has been developed here for the rank-one corrections
case, it would take not much conceptual effort to introduce a Optimal Petrov-Galerkin PGD
in which, for each direction, every mode is updated at the same time, as we did in §1.4.3.1.

Algorithm 4 Rank-one corrections Minimax PGD
Require: u(R) . Rank-R approximation
1: Initialize u and w
2: for i = 1 to I do
3: Set uold = u and wold = w

4: for k = 1 to D do
5: Update uk and wk . Use Eq. (1.46)
6: end for
7: Check u− uold and w −wold . Eq. (1.38) applies for w also
8: end for
9: return u . Rank-one correction

1.5 Current limitations of Proper Generalized Decom-
position

Although PGD has been successfully applied to a considerably wide variety of problems in
several fields of physics and engineering, there are still several issues that have not been
completely solved yet. Among the applications, we can cite the Fokker-Planck equation
[7], rheology and complex flows [1, 8, 9], multiscale models and homogeneization [36, 37],
optimization of thermal problems [39, 113], real-time simulation of soft tissues with surgical
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applications [59, 114], Dynamic Data-Driven Application Systems (DDDAS) [57, 96], solid
mechanics [11, 27, 28, 60], parametrized geometries [6] or the Chemical Master Equation
[34].

This section is an attempt to provide a critical review on PGD as a means to establish
what are the current major limitations of this method. Of course, limitations should be
also understood as challenges that partially motivate this work and future research. Among
them, nonlinear problems are briefly considered here for the first time in this work. Nonlin-
ear problems are difficult and in general they cannot be treated in an uniform manner: each
nonlinear problem requires its own appropriate numerical techniques. In spite of that, non-
linear problems treated in the PGD framework share some difficulties concerning separability
that motivate the Chapter 4.

1.5.1 Solution separability and compactness of separated represen-
tations

The solution of a certain problem formulated in tensor product spaces is said to be separable
if it can be approximated with arbitrary precision using low-rank separated representations.
On the contrary case, the solution is said to be bad-separable, or simply non-separable by
abuse of language. Roughly, the rank of the separated representation must fulfill the follow-
ing requirement to achieve some compression of data:

R ≤

⌊∏D
d=1Nd∑D
d=1Nd

⌋
,

where b · c denotes the floor function. If not, the separated representation would be nearly
as expensive as the explicit one.

In two dimensions, SVD can be used to determine whether a separated representation
can be further compressed or not, and thus reveal some kind of suboptimality. However,
in some cases not even SVD is much effective and relatively high-rank representations are
obtained. This has been observed in scattering Helmholtz problems which yield a complex
behaviour due to its multiscale nature and need of very fine discretizations to capture all wave
propagation details [97]. Such cases are characterized by a sort of intrinsic non-separability
against which, to the author’s knowledge, there are not much remedies.

In higher dimensions, determining the canonical rank of a tensor is a NP-hard problem
and therefore not much can be said in general about separability9. Is it the solution really
non-separable or is it the algorithm (PGD or another one) which is the source of inefficiency?
An attempt to measure somehow if a rank-R separated representation u(R) could be further
compressed is to apply a PGD projection step. Projection can be formulated the same as

9Observe that a tensor solution of a problem admits a Tucker or Hierarchical Tucker representation
(hopefully of low rank), but nothing can be said about the rank of the equivalent canonical representation.
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classical PGD: rank-one corrections computed by means of an alternating directions algo-
rithm. To keep coherence with §1.4, the PGD projection can be formulated in terms of an
optimization problem as follows:

min
v∈vect(C1)

J (v) := 1
2 〈v,v〉 − 〈u

(R) − v(S),v〉,

where v is a rank-one correction and v(S) is a rank-S compacted separated representation.
If at convergence (evaluated from the norm of the residual), the rank is R∗ < R, it probably
means that there is some kind of inefficiency on the formulation of the problem. This is
classically found in two contexts:

• When alternating directions iterations are cut-off prematurely, the resulting separated
representation may eventually be further compressed.

• When non self-adjoint problems are of interest, any PGD formulation (Galerkin, Min-
imal Residual, Petrov-Galerkin...) leads in general to separated representations that
are clearly sub-optimal and can be compacted using the PGD projection.

• When coupling PGD and some nonlinear iterative scheme, the rank of the separated
representation may be driven by the convergence of the nonlinear scheme. Up to
this point, nonlinear problems have been completely ignored but when limitations of
PGD are to be considered, nonlinear problems cannot be omitted. Here we analyse
briefly some difficulties associated to nonlinear problems, which are further developed
in Chapter 4.

If R∗ = R, it cannot be claimed that the original separated representation was optimal
but, at least, it can be said that it was the best separated representation attainable by
a rank-one PGD constructor. It is worth to remark that the notion of best attainable
separated representation refers to the algorithm used to compute the PGD projection. That
is, projection could be formulated analogously to an Optimal Galerkin PGD. Therefore, a
separated representation may be the best one with respect to the rank-one PGD but not
with respect to Optimal Galerkin PGD. Nevertheless, it remains as an useful measure to
evaluate the performance of the algorithm.

1.5.2 Algorithmic inefficiencies and computational aspects

The compactness of the solution and the computational cost are in general mutually ex-
clusive concepts. A compromise must be found depending on the available ressources and
the application requirements. Regarding the classic rank-one PGD, the following principal
sources of computational inefficiency are found:
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• Slow convergence, or even divergence, of the Alternating Directions algorithm due to
a bad definition of the optimization problem. This is classically observed when rank-
one Galerkin corrections are applied to non self-adjoint problems. The optimization
problem is not well defined and therefore there is no guarantee about the convergence
of the alternating iterations.

• Slow convergence of the Alternating Directions algorithm due to bad conditioning of
the operators. Iterative methods are sensitive to the condition number and alternating
directions is not an exception. This is classically observed in Minimal Residual Galerkin
formulations [15, 16].

• Slow convergence of the Alternating Directions algorithm in dimensions higher than
two. When the algorithm alternates between the solution of several low-dimensional
problems, how many extra iterations are needed to converge? To the author’s knowl-
edge, there are not much results on this issue.

• Heavy iterations due to separated representations of rank unnecessarily high. Observe
that if the operator is rank-T , each rank-one correction makes the right-hand side to
increase its rank by T . This implies that at each alternating iteration and for each
dimension, the number of integrals to be computed increases by T . To give an order of
magnitude, a three-dimensional damped structural dynamics problem such as the one
addressed in Chapter 2 leads to T ≈ 40. This serves to show that achieving compact
representations is not only important in terms of storage requirements but also from
a computational point of view.

1.5.3 Affine decomposition of the operator and problem data sep-
arability

In §1.1.3.3, two hypothesis were made about the existence of both an affine decomposition
—equivalently, separated representation— of the operator and the separated representation
of the right-hand side. They are of crucial importance because only under these hypoth-
esis the problem has canonical tensor structure. Recall that PGD takes advantage of the
tensor structure to split the high-dimensional problem into a series of low-dimensional prob-
lems. Low-dimensional problems are only coupled through coefficients computed from inner
products —i.e. integrals— in low-dimensions. If the hypothesis are not fulfilled, the inner
product separation property is useless and computing the coupling coefficients requires per-
forming integrals in D−1 dimensional domains, which ruins the computational performance
of PGD.

Fortunately, it is not difficult in general to find an affine decomposition of a linear dif-
ferential operator. There are however at least two exceptions:
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• The coefficients of the PDE depend on the coordinates of the problem and they cannot
be trivially expressed in separated representation. This can be clearly illustrated by
means of [97], which considers a wave propagation problem. The objective is therefore
to compute a separated representation including the physical coordinates —space—
and both the wave number and the angle of incidence. However, the coefficients of
the Helmholtz equation depend on the space and the wave number and the right-hand
side depends on space, the wave number and the angle of incidence. This dependence
is such that it is not obvious to derive a separated representation in terms of those
coordinates. A possible approach consists in performing a previous PGD projection
step to separate the aforementioned quantities, see §1.5.1. Projection is made only
once.

• There is a nonlinear term in the PDE. It may be a nonlinear coefficient, such as a
diffusion coefficient depending on temperature, or a nonlinear differential operator by
itself. Very much like in the previous item, PGD needs the nonlinear term to be written
in the same separated format as the solution. Note that, disregarding the particular
nonlinear scheme chosen, at some point of the implementation the nonlinear term
will need to be evaluated at the previous iterate of the solution (thus known). The
question is how to evaluate the nonlinear term in separated form. Observe that even if
the previous iterate is known in separated form, the nonlinear term cannot be written
in separated format trivially. PGD projection at each nonlinear iteration, although
feasible, destroys the computational performance. Other alternatives must therefore
be sought. We refer to Chapter 4 for more details.

By problem data separability we mean that the right-hand side of the equation, the
boundary conditions or any other quantity has to be rewritten as a separated representation.
Depending on their nature, it may be easy or not. Let us illustrate it by means of a 1D
domain in which the transient heat equation wants to be solved, and a right-hand side
represented by a wave f(x−ct) that travels at speed c. Suppose that a space-time separated
representation wants to be computed. Observe that in the space-time domain, the wave
does not admit a separated representation. Therefore, a PGD projection is not an efficient
solution for this kind of problems and new strategies are needed.

1.6 Scope of the thesis
Among the three general topics of research identified in §1.5 (solution compactness, algorith-
mic performances and data separability), this work is mainly concerned by those considered
in §1.5.3. The aim of this thesis is therefore to introduce some non-conventional strategies
to address the problem data separability.

In particular, we present the following three main contributions:
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• We introduce space-frequency separated representations for transient problems in Chap-
ter 2 (structural dynamics) and Chapter 3 (heat transfer). To this end, the equations
are solved in the frequency domain by considering the frequency as an extra coordi-
nate. This allows defining a sort of Generalized Transfer Functions (GTF) that encode
the response of the system in a frequency band. Since any input signal (excitation)
can be Fourier transformed under rather weak conditions, the response of the system
can be recovered from the GTF by simple superposition.

• In Chapter 3 we present a technique that allows overcoming the separability issues due
to external moving excitations. We show that the transient heat equation becomes
symmetric although still non-hermitian in the frequency domain. The symmetry is
exploited to prove that the Reciprocity Principle applies, yielding a method that allows
monitoring system’s behaviour in real time. In this way, the intrinsic non-separability
of a traveling excitation wave along the boundary is solved.

• In Chapter 4 we introduce an a priori Empirical Interpolation technique for the sepa-
rability of arbitrary multivariate functions.

44



Chapter 2

Space-frequency separated
representations in structural
dynamics

This chapter is concerned with the solution of structural dynamics equations. The technique
here presented is closely related to Harmonic Analysis, and therefore it is only concerned with
the long-term forced response. PGD is used to compute space-frequency separated represen-
tations by considering the frequency as an extra coordinate. This formulation constitutes
an alternative to classical methods such as Modal Analysis and it is specially advantageous
when parametrized structural dynamics equations are of interest. In such case, there is no
need to solve the parametrized eigenvalue problem, the space-time solution can be recovered
with a Fourier inverse transform, the PGD solution is valid for any forcing term that can be
written as a combination of the considered frequencies and, finally, the solution is available
for any value of the parameter.
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2.1. An overview on classic structural dynamics

2.1 An overview on classic structural dynamics
The frequency formulation of structural dynamics is a powerful approach to study the re-
sponse of structural systems when initial conditions can be neglected; that is, far enough
from the initial transient response. This framework, which was integrated into the finite
element framework from the very beginning, has been, and still is, extensively used. It is
well described in most textbooks, some of them linked to many generations of scientists and
engineers [19, 41, 71, 137]. This approach is even now an active research area because several
challenges are still open.

The application of space-frequency separated representations was considered in [17, 48,
81, 82, 84, 86, 117, 118, 119] for the so-called: variational theory of complex rays. Obviously,
there have been many attempts considering such descriptions within the model reduction
framework; we refer to [68] and the references therein.

Since structural dynamics have been studied in many scientific articles and textbooks,
some of them mentioned above, it is not the aim of the author to provide an exhaustive
literature review. We simply consider the matrix differential equations of motion,

Mü(t) +Cu̇(t) +Ku(t) = f(t), (2.1)

disregarding the physical system (discretized continuous or intrinsically discrete) they rep-
resent. To set the notation, let M,C,K ∈ RN×N be the mass, damping and stiffness
matrices, respectively, while f(t) ∈ RN is the generalized force vector and u(t) ∈ RN is
generalized displacement vector. The time interval in which the motion of the structure is
of interest is denoted by It = [0, T ]. Appropriate initial and boundary conditions must be
provided.

Eq. (2.1) may represent, for instance, the Finite Element (FE) discretization of a linear
viscoelastic continuum solid that occupies the open bounded domain I ⊂ Rd≤3. In that
case, the generalized forces are the static equivalent nodal forces, while the generalized
displacements are simply the nodal displacements. For plate and beam shaped solids, it may
be appropriate to introduce some kinematic assumptions that allow deriving classic plate
and beam theories from the continuum model. In that case, the generalized force vector
includes resultant forces and moments, while the generalized displacement vector contains
displacements and rotations. However, Eq. (2.1) remains formally unchanged, even if the
system is purely discrete, i.e. there is no notion of continuum, like in a mass-spring-damper
network.

2.1.1 Proportional and non proportional damping

Although the equations of motion remain invariable for the aforementioned cases, their
physical meaning can be of a very different nature. In solid mechanics, the damping term
usually comes from the constitutive relation and represents the internal friction due to the
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viscous behaviour of the material. However, in structural mechanics it may be of interest
to introduce a structural damping [137], independent to that coming from the material
constitutive relation. This kind of damping can be introduced to model either a mechanical
device (e.g. automotive applications, seismic vibration control) or some diffuse damping
effects due to contacts between structural parts. In the first case, it should be possible
to characterize the behaviour of the dispositive. In the second case, empirical approaches
are traditionally used. Among them, proportional damping [126] supposes that damping is
a linear combination of the mass and stiffness matrices. This is equivalent to assume that
damping is distributed over the structure in the same way as the mass and stiffness matrices.
The combination coefficients are to be determined experimentally.

Proportional damping is indeed a mathematical artifice that provides great advantages
in the context of Modal Analysis, since Eq. (2.1) becomes diagonal when it is projected onto
the subspace formed by the eigenvectors. In other words, the N -size system is transformed
into N uncoupled ODEs. Eigenvectors are computed by solving the undamped Generalized
Eigenvalue Problem (GEP), i.e. C ≡ 0 and f(t) ≡ 0 in Eq. (2.1). However, assuming
a proportional damping is quite restrictive and may yield to unsatisfactory results. An
accurate consideration of damping, disregarding its material, mechanical or diffuse nature,
needs of considering more general models, not necessarily proportional. In that case, two
options are possible:

1. The problem can still be projected onto the eigenvectors subspace but, since the damp-
ing matrix does not necessarily satisfy any orthogonality condition with respect to
them, the problem does not transform into diagonal. Hence, the computational cost
of solving the projected or the original ODE system is roughly the same, unless the
eigenbasis is reduced by truncation.

2. Alternatively, the eigenvectors can be computed from the unforced damped equations,
i.e. f(t) ≡ 0 in Eq. (2.1), to decouple the ODE system and use Modal Analysis
efficiently. Unfortunately this is not a GEP anymore but a Quadratic Eigenvalue
Problem (QEP) instead [126]. QEP is a particular type of nonlinear eigenvalue problem
considerably harder to solve. The second order ODE system of size N ×N needs to be
reformulated into a 2N × 2N first order system, and therefore the computational cost
scales accordingly. The projected system is diagonal of size 2N , unless it is truncated.

In consequence, Modal Analysis, which is very attractive when proportionally damped struc-
tures are of interest, becomes less efficient when non-proportionally damped structures are
considered.
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2.1.2 Parallelism between Modal Analysis and Model Order Re-
duction

Structural dynamics is a pioneering field in which these techniques were early applied. In
fact, there is a strong parallelism between Modal Analysis and Model Order Reduction
(MOR). Let us recall briefly that the objective of most of a posteriori MOR techniques is
to build a reduced model from the full one, which in our case corresponds to Eq. (2.1). The
reduced model is constructed by performing a (Galerkin) projection of the full model onto
a subspace previously constructed from several solves of the full model. The reduction in
complexity depends on the dimension of the subspace. In general, truncation is needed to
achieve such reduction in complexity. Many works applying MOR to structural dynamics
have have already been published, see [55, 69, 79, 133] for instance. As it can be appreciated,
Modal Analysis performs very much in the same way, with two significative differences. First
is that the subspace is built from the eigenvectors instead of from snapshots. And second
is that the computational complexity is reduced without introducing any error, provided
that the conditions that make the projected system to be diagonal are respected and all
eigenvectors are kept. Apart from these two precisions, a posteriori MOR techniques and
Modal Analysis share many features.

2.1.3 Parametrized structural dynamics equations

Let us consider now a parametrized structural dynamics model. For some value of the
parameter in the interval of interest, µ ∈ Iµ, we write:

Mü(t) +C(µ)u̇(t) +Ku(t) = f(t), (2.2)

where the parametric dependence has been assigned only to the damping operator without
loss of generality. If Modal Analysis wants to be applied properly to solve Eq. (2.2), each
time the parameter changes, a nonlinear (quadratic) eigenvalue problem must be solved to
find the eigenvectors. The reader will understand at this point why parametric problems, and
specially parametric non-proportionally damped problems, are computationally expensive to
solve using Modal Analysis. It is worth to recall that, of course, it is always possible to solve
Eq. (2.1) using a time-integration scheme. This procedure, although conceptually simple,
is computationally expensive for systems involving a large number of degrees of freedom.
Besides, it does not provide any insight into the resonant behaviour of the system.

The interest of solving parametric problems does not need much motivation. Consider a
part or structure that wants to be optimized with respect to its dynamical behaviour. An
optimization algorithm could be coupled to a structural dynamics model to predict the be-
haviour of the system each time one parameter changes. Thus, many solves of the equations
of motion are required. This multi-query context constitutes a prototypical application of
MOR techniques. The procedure proposed in [115] is as follows: first, the QEP is repeatedly
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solved for a parameter sampling µ1, . . . , µs ∈ Iµ. The eigenvectors of all these problems
are collected in a big matrix. By means of a Singular Value Decomposition (SVD), the left
singular vectors associated to the largest singular values are kept and used as a subspace in
which the reduced model can be projected. Although the left singular vectors are orthogonal
each other, they are no longer eigenvectors, so that the reduced system is not diagonal.

Most of the references on MOR given so far concern a posteriori techniques, i.e. the
reduced model can only be built after several solves of the full model. However it has been
shown in the Chapter 1 that a priori methods, such as the one this work is concerned with,
allow computing a reduced approximation with no information in advance. In this Chapter,
we propose a technique based on the Proper Generalized Decomposition (PGD) to compute
space-frequency separated representations, see §2.4.

2.2 Approaches based on Modal Analysis
In this section we shall review in detail different approaches based on Modal Analysis for
both damped and non-proportionally damped problems.

2.2.1 Free and forced responses of undamped and proportionally
damped problems

Consider the unforced, undamped equations of motion, i.e. C ≡ 0 and f(t) ≡ 0 in Eq.
(2.1). The general solution of such homogeneous second order ODE can be written as a
linear combination of eigenvectors of a Generalized Eigenvalue Problem (GEP) defined in
Eq. (2.4):

u(t) = E exp (iΛt)α, (2.3)

with E = [e1e2 · · · eN ] ∈ RN×N , Λ = diag(λ1, . . . , λn) ∈ RN×N and α ∈ RN ,

where e1≤i≤N are the eigenvectors, λ1≤i≤N are the eigenvalues and α is a vector of arbitrary
constants. The eigenvectors and the eigenvalues are real-valued under rather weak conditions
(symmetry, positive definiteness) for mass and stiffness matrices, coming for instance from
a FE discretization. The imaginary unit is denoted by “i” (no italic type), and should not
be confused with index “i” (italic type). Replacing the general solution gives place to the
following Generalized Eigenvalue Problem (GEP):

KE = MEΛ2. (2.4)

If the eigenvectors are normalized with respect to the mass matrix, then the following prop-
erties of orthogonality apply:

ETME = I and ETKE = Λ2. (2.5)
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Now, if forced equations of motion want to be solved using modal superposition, we
require the solution to live in a subset of the eigenspace, i.e.

∀t ∈ It : u(t) ∈ Em := span{e1≤i≤m≤N} ⊂ EN ⇔ u(t) = Eα(t) ∈ EN .

Performing a Galerkin projection and recalling the orthogonality conditions stated in Eq.
(2.5), the reduced model is obtained:

α̈(t) + Λ2α(t) = β(t), (2.6)

where ∀t ∈ It : β(t) = ETf(t) is the projection of the generalized force vector on Em. If
m < N , then u(t) can only be approximated since some components of the forcing term
may not be well captured, introducing a truncation error. In return, the computationally is
further reduced as less equations have to be solved. It is worth to recall at this point that
MOR techniques such as POD or Reduced Basis achieve a reduction of the computational
complexity precisely thanks to truncation by properly choosing a subspace of smaller dimen-
sion. Eq. (2.6) can be solved inexpensively by direct time integration since it is diagonal.
If a proportional damping is used, it is possible to keep the same procedure and, at the
end, the projected equations are still diagonal. Consider one particular type of proportional
damping —see [126] for more general options—, the Rayleigh damping [41, 136]:

C = aM + bK,

where coefficients a and b usually are to be determined experimentally. Then, the reduced
model system writes:

α̈(t) + (aI + bΛ2)α̇(t) + Λ2α(t) = β(t).

For the more general case in which damping is not proportional, orthogonality of the
eigenvectors, computed from Eq. (2.4), with respect to the damping matrix does not hold.
This means that when projecting, the problem does not become diagonal and therefore the
computational cost is roughly the same as if the equations were directly time-integrated.

2.2.2 Free and forced response of non proportionally damped prob-
lems

In order to decouple the equations of motion in presence of a non proportional damping, it
is necessary to solve a Quadratic Eigenvalue Problem (QEP) [126]. This is an important
class of nonlinear eigenvalue problems. In the most general case, the QEP consists in finding
eigenvalues λ, right eigenvectors er and left eigenvectors el satisfying

A(λ)er = 0 and eHl A(λ) = 0,

with A(λ) = λ2M + λC +K.
(2.7)
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The symbol “•H” stands for the complex conjugate transpose, or Hermitian transpose.
The QEP has 2N eigenvalues and up to 2N right eigenvectors and 2N left eigenvectors.
It is worth to recall that if there are more than N eigenvectors, they do not form a linear
independent set. For real-valued matrices M , C and K, the following simplifications hold:

1. The eigenvalues are real or come in pairs (λ, λ̄). The symbol “•̄” stands for the complex
conjugate.

2. If er is a right eigenvector of λ, then ēr is also a right eigenvector of λ̄.

Additionally, if matrices are symmetric, the left and right sets of eigenvectors coincide.
Although for most structural applications the matrices are symmetric positive (semi) definite,
we are not taking this into account in order to keep the exposition as general as possible.
For further details on QEP, see [126].

Consider the unforced, damped equations of motion, i.e. f(t) ≡ 0 in Eq. (2.1). This
clearly defines a QEP. Several methods are available to solve this class of problem. One
option, possibly the easiest, is to rewrite the homogenous second order ODE system as a
first order system of 2N equations:

P v̇(t) +Qv(t) = 0,

with P =

−I 0

0 M

 , Q =

 0 I

K C

 , and v(t) =

u(t)

u̇(t)

 . (2.8)

The general solution of a first order ODE system such as Eq. (2.8) can be written as a
linear combination eigenvectors coming from a GEP defined in Eq. (2.9):

v(t) = V exp (Σt)α,

with V = [v1v2 . . .v2N ] ∈ C2N×2N , Σ = diag(σ1, σ2, . . . , σ2N ) ∈ C2N×2N and α ∈ R2N .

On substitution, a GEP such as Eq. (2.4), of twice the size of the original problem is
obtained:

QV = PV Σ. (2.9)

Both eigenvectors and eigenvalues are complex-valued since matrices P and Q are not sym-
metric. The eigenvectors are orthogonal with respect to those matrices, and if they are
normalized with respect to P , then we can write:

V TPV = I and V TQV = Σ. (2.10)

Now, if forced equations of motion want to be solved using modal superposition, we
proceed very much as discussed in Section 2.2.1, i.e.
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1. Write the solution, at each time, as a linear combination of eigenvectors:

∀t ∈ It : v(t) = V α(t). (2.11)

2. Perform Galerkin projection to obtain a decoupled system of equations (recall orthog-
onality conditions stated in Eq. (2.10)):

α̇(t) + Σα(t) = γ(t), with γ(t) = V T

 0

f(t)

 (2.12)

3. Solve Eq. (2.12) inexpensively by direct time integration, since it is diagonal. However,
it must be noticed that 2N equations instead of N are to be solved in this case.
Fortunately, in practice the dynamic response is dominated by few eigenvalues near to
the real axis and therefore it is not needed to keep all the eigenvectors.

Finally, the solution u(t) can be recovered from v(t) as follows:

u(t) = [I 0]V α(t). (2.13)

Remark 2.1 (Stability considerations). From the analysis of the eigenvalues of the QEP problem

we can deduce the stability of the system. Hence, it is said to be stable if the real part of

every eigenvalue is negative, i.e. Re(σi) < 0. By stable, we mean that every solution decreases

exponentially to zero as t → ∞. If every eigenvalue Re(σi) ≤ 0 and those which Re(σi) = 0 are

semi-simple (complex-conjugated pairs), the system is said to be weakly stable in the sense that

every solution is bounded as t → ∞. Of course, the semi-simple pairs real part equal to zero

correspond to harmonic oscillations.

In conclusion, it has been shown that:

1. Modal Analysis is computationally efficient, as it allows transforming the ODE system
into diagonal, thus uncoupled, equations.

2. It provides highly valuable information on the model stability.

With some remarks to be taken into account when non proportionally damped systems are
considered.

2.2.3 Damped parametric problems

Consider now a parametric model such as the one introduced in Eq. (2.2). Solving such
dynamic model means finding the dynamic response for each µ ∈ Iµ, that is u(t, µ). Modal
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Analysis can be used, of course, to solve this problem for each value of the parameter. To
this end, Eq. (2.8) is rewritten taking into account the parametric dependence:

P v̇(t) +Q(µ)v(t) = 0, (2.14)

where Q(µ) depends on the parameter via the damping matrix (recall Eq. (2.2)). Therefore
for each value of the parameter we will have a different set of eigenvectors, V (µ). The
solution is sought as:

v(t, µ) = V (µ)α(t). (2.15)

Hence, the question is how to compute V (µ) not for a particular parameter value as
explained in Section 2.2.2, but for all of them. Afterwards, α(t) could be readily computed
by integrating a diagonal system of equations.

In what follows, we are exploring the possibility of applying Model Order Reduction
(MOR) techniques to compute an approximation of V (µ), not necessarily the eigenbasis. A
first approach based on POD is presented in [115]. It proceeds as follows:

1. Choose a sampling P = {µ1, . . . , µs} ⊂ Iµ.

2. Compute V (µ1), . . . ,V (µs) as explained in Section 2.2.2 and collect them in the sam-
pling matrix Ṽ ∈ C2N×ms, assuming m ≤ 2N eigenvectors are kept for each sample.

3. Compute the left X ∈ C2N×` and right W ∈ Cms×` singular vectors of the sampling
matrix by performing a Singular Value Decomposition (SVD), such that Ṽ = XWH .
Of course, ` ≤ min(2N,ms), and in case of strict inequality, a POD truncation error
is introduced.

Observe that any column of the sampling matrix can be written as a linear combination of
left singular vectors, i.e.

ṽi = Xψ with ψ = wH
i ,

where ṽi is the i-th column of Ṽ and wi is the i-th row of W . Equivalently, each set
of eigenvectors k ≤ s, associated to the parameter value µk, can be written as a linear
combination of the left singular vectors:

V (µk) = Ṽ
ξ1≤i≤ξ2 = XΨ with Ψ = WH

ξ1≤i≤ξ2
,

with ξ1 = m(k− 1) + 1 and ξ2 = mk. Therefore we can require V (µ) to live in the subspace
generated by the left singular vectors:

∀µ ∈ Iµ : V (µ) ∈ S` := span{x1≤i≤`} ⇔ V (µ) = XΨ(µ). (2.16)

It is worth to remark that Ψ(µ) represents some linear combination coefficients that depend
on the parameter; they are not the right singular vectors unless µ ∈ P. Inserting Eq. (2.16)
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into (2.15), we see that the solution can be written as a linear combination of the left singular
vectors through some coefficients depending on the parameter and some others depending
on time:

v(t, µ) = XΨ(µ)α(t), (2.17)

where Ψ ∈ C`×m and α ∈ Rm×1. Displacements can be recovered as shown in Eq. (2.13).
Observe that normally ` > m and therefore Ψ can also be seen as a change to a smaller
basis. The usual practice consists in omitting such change of basis; therefore the solution is
expressed as v(t, µ) = Xζ(t, µ). On projection,

XTPXζ̇(t, µ) +XTQ(µ)Xζ(t, µ) = XTg(t), (2.18)

where g(t) = [0 f(t)]T . Performing the usual time integration, coefficients ζ(t, µ) can be
computed.

However, the Eq. (2.18) is not, in general, diagonal and therefore the great advantage
of Modal Analysis is lost. Still if ` � 2n, the computational complexity is reduced with
respect to integrating directly the original system of equations. In exchange, the price to be
paid is:

1. Perform a sampling of the parametric space, i.e. solve a QEP for each sampling value
of the parameter.

2. Compute the SVD of a full, potentially large matrix.

The latter operations are neither computationally nor conceptually simple. Besides, one
might wonder how the procedure could be extended when not one but several parameters
are of interest.

In Section 2.4, we present a simpler method that aims at solving parametric problems
using a different MOR technique, the PGD. In addition, it allows solving multi-parametric
problems naturally, as PGD was conceived to this purpose.

2.3 Approaches based on Harmonic Analysis
Fourier’s theory has been largely studied and successfully applied to a wide number of
applications in physics and engineering. Among them, Harmonic Analysis is the technique
resulting of applying Fourier’s theory to obtain the forced dynamic response of a structure.
Hence, unforced problems are left aside in this section. Furthermore, we shall consider a
general damping that may be proportional or not.

2.3.1 Forced response of generally damped problems

Consider that our dynamic system is submitted to some dynamic action represented by
the generalized force vector, f(t). Under rather weak conditions, it is possible to obtain a
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frequency representation, f̂(ω), of the generalized force vector via the direct Fourier Trans-
form. And vice versa, from the frequency representation it is possible to recover the time
representation of the generalized force vector via the inverse Fourier Transform. The pair of
direct/inverse transforms is defined as follows:

f̂(ω) =
∫ +∞

−∞
f(t) exp (−iωt) dt and f(t) = 1

2π

∫ +∞

−∞
f̂(ω) exp (iωt) dω.

Quantities defined in the frequency domain are denoted by a hat, “ ·̂ ”. Analogously, we may
also consider the frequency representation of the generalized displacement vector, û(ω), that
may be computed from

A(ω)û(ω) = f̂(ω), with A(ω) = −ω2M + iωC +K. (2.19)

Notice that Eq. (2.19) is obtained by taking the Fourier transform over Eq. (2.1). Matrix
A(ω) has already been defined in Eq. (2.7); here we simply make λ = iω. It can be seen that
the dynamic response depends parametrically on ω. This parametric dependence is intrinsic
to Harmonic Analysis and renders it very unattractive when compared to Modal Analysis or
even Direct Integration. In practice, Harmonic Analysis is only used to compute the response
against rather simple —with few frequencies— periodic forcing terms. If arbitrary (non-
periodic) forcing terms are interest, a continuous frequency spectrum should be considered.
Although conceptually possible, from a computational point of view this implies solving Eq.
(2.19) for each frequency.

Remark 2.2 (Frequency-dependent damping). In some fields of engineering, such as in soil

mechanics or rheology of suspensions, equations are transformed into the frequency domain by first

assuming a linear damping (or viscous) coefficient. Then, when it is observed that the damping

behaviour cannot be fitted using that simple model, frequency-dependent damping coefficients are

considered. As discussed in [45], this is of course wrong because the time domain model, obtained

by performing the inverse Fourier transform of the modified equations, does not respect causality.

In spite of that, a nonlinear dependence on frequency of the damping coefficient results in a model

that remain linear in the frequency domain, where frequency is only a parameter, or as it will be

explained later, a coordinate in the PGD framework. Fractional calculus has been suggested to

avoid this incoherent, frequency-dependent modeling of the viscous behaviour [2, 74, 78].

Let us examine in detail the number of solves solves of Eq. (2.19) to be done in practice.
Suppose that f(t) is sampled at a sampling frequency ft = 1/∆t Hz in It = [0, T ]. One may
be interested in keeping the same time resolution provided by a certain integration scheme1.
In that case, the sampling frequency may be that corresponding to the time step of the
integration scheme. The Fourier transform of the sampled forcing term provides, at most,

1Recall that time increment is, in general, subjected to stability/accuracy restrictions so that there is a
critical time step, ∆tcrit, that should not be exceeded.
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a maximum frequency which is, by the Nyquist-Shannon theorem [122], half the sampling
frequency: fmax = 1/2ft. Therefore, if the forcing term is sampled at a frequency ft =
(2Nω − 1)/T , the forcing term may be written as the linear combination of Nω harmonics,

f(t) = F̂ exp (iΩt), (2.20)

with F̂ ∈ CN×Nω and Ω = diag(ω1, . . . , ωNω ), (2.21)

which implies by linearity that Eq. (2.19) must be solved Nω times. Displacements can be
written as a linear combination of Nω harmonics:

u(t) = Û exp (iΩt) with Û = [û1 · · · ûNω ] ∈ CN×Nω , (2.22)

where the displacement amplitude vectors û1≤i≤Nω are computed from Eq. (2.19) for ω =
ω1≤i≤Nω and f̂ = f̂

1≤i≤Nω , the columns of F̂ . Equivalently, Eq. (2.22) may be substituted
in Eq. (2.1), and recalling the orthonormality of the Fourier basis, it is easy to see that the
problems associated to each frequency can be solved independently. At this point, it can be
clearly seen that unless the forcing term is formed of very few frequencies, Eq. (2.19) has to
be solved many times.

Remark 2.3 (Scalar modulation of the generalized force vector). Sometimes there exist a scalar
function g(t) that for every t ∈ It scales the loads applied on the structure by the same factor.
Hence, the generalized force vector can be written in this particular case as f(t) = fs g(t), being
fs the force amplitude distribution on the structure. Eq. (2.20) can be rewritten as follows:

f(t) = fs (exp (iωt) α̂) , (2.23)

with fs ∈ RN , ω = (ω1, . . . , ωNω )T and α̂ ∈ CNω ,

where α are the coefficients of the discrete Fourier transform of g(t). Observe that displacements
can be recovered as explained in Eq. (2.22) provided that each harmonic is affected by its own
weight:

A(ωi)ûi = fs 1 ≤ i ≤ Nω , then u(t) = Û exp (iΩt) α̂.

In consequence, there is no need of recomputing ûi when the scaling function g(t) changes; the

only operation to be performed is to recombine the columns of Û with the new Fourier coefficients.

This provides a great numerical advantage which will be exploited in the numerical examples.

2.3.2 Forced response of damped parametric problems

It has been shown in Section 2.3.1 that Harmonic Analysis is intrinsically parametric on
the frequency. If an additional parametric dependence wants to be considered as we did in
Section 2.2.3, Eq. (2.19) turns into

A(ω, µ)û(ω, µ) = f̂(ω), with A(ω, µ) = −ω2M + iωC(µ) +K, (2.24)
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which is doubly parametrized. Let us assume that, as before, the solution is written as a
linear combination of Nω harmonics. However, now there is a parameter dependence to be
taken into account:

u(t) = Û(µ) exp (iΩt). (2.25)

Hence, even in the case in which instead of a continuous spectrum only Nω frequencies
are considered, each time the parameter changes, a total of Nω, N -sized, complex-valued
problems must be solved. Recall that a Fourier inverse transform must be performed as
well afterwards to recover the time response. POD approaches analogous to the one briefly
introduced in Section 2.2.3 are, of course, possible. However, the same disadvantages apply.

2.4 Space-frequency separated representations
This section is concerned with the solution of parametrized structural dynamics models
applying the PGD method. The technique here presented is closely related to Harmonic
Analysis. It has been shown in §2.3 that Harmonic Analysis introduces a intrinsic parametric
dependence on the frequency. However, with the PGD it is possible to obtain quite efficiently
the generalized displacements —in the frequency space, thus harmonic amplitudes— for any
forcing frequency, and eventually, any parameter value inside predefined ranges. This is
achieved by computing space-frequency separated representations. Since the technique here
presented is frequency-based, it is only concerned with the long-term forced response.

In exchange, we shall show that the following advantages apply:

1. There is no need to solve the unforced (eigenvalue) parametrized problem.

2. The space-time solution can be recovered with a simple Fourier inverse transform.
There is no need of performing a time integration.

3. The PGD solution is valid not only for one particular forcing term but for any forcing
term that can be written as a combination of the considered frequencies (linearity).

4. The solution is available for any value of the parameter.

As it has been shown in Chapter 1, by separated representation we understand that the
solution can be written as sum of few terms —low-rank— of separated functions, that is,
each one of a different coordinate. This assumption is, in fact, quite natural in structural
dynamics. Consider for instance Eq. (2.15) found in the context of Modal Analysis. It is
clearly a time-parameter separated representation. Or Eq. (2.17) that results from com-
bining Modal Analysis and POD, which separates explicitly space, time and parameter. In
Harmonic Analysis, space-frequency or space-frequency-parameter also appear quite natu-
rally in Eq. (2.22) and Eq. (2.25), respectively. The aforementioned equations share the
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same difficulty, which is the lack of an efficient treatment of their parametric nature. In
Section 2.4.1, we introduce an appropriate framework to treat parametric problems.

2.4.1 A framework for parametric problems: PGD tensor approxi-
mations

The technique proposed in this work is built upon Harmonic Analysis and allows computing
the complex displacement amplitude vector in a frequency band for any value of the parame-
ter in a certain range. Frequency and parameter are also seen as coordinates of the problem,
and thus the dimensionality is increased. The computational domain includes not only the
physical coordinates, i.e. the structure, but also the frequency Iω and parameter ranges Iµ.
Suppose that they are discretized using Nω and Nµ nodes, respectively. Rather than using
a brute force approach, that would imply the resolution of Nω × Nµ direct problems, it is
preferable to formulate the problem in tensor spaces because:

1. A brute-force approach lacks of the concept of approximation, as it provides the so-
lution at some points but there is no information about what happens in between.
Methods formulated in tensor spaces, like PGD, provide an approximation of the so-
lution on the parametric space.

2. Tensor methods are in general designed to solve high dimensional problems. They
become computationally cheaper that brute-force approaches as the dimension of the
parametric space increases.

Complex displacements belong to a tensor space V = Vs ⊗ Vω ⊗ Vµ, where in fact Vs ≡ CN ,
the Euclidean space of dimension N , since equations of motion have been considered in a
discrete matrix form throughout all this work. Recall that N is the number of degrees of
freedom of the structure. Equivalently, we are stating that each component of the complex
displacement vector belongs to Vω ⊗ Vµ. To keep coherence with the discrete formulation,
let us consider that Vω := span{v1≤iω≤Nω

ω } and Vµ := span{v1≤iµ≤Nµ
µ } are approximation

spaces of finite dimension, such as finite element spaces for instance. Therefore,

Vω ⊗ Vµ = span{viωω ⊗ viµµ ; 1 ≤ iω ≤ Nω, 1 ≤ iµ ≤ Nµ}.

Each component of the displacement vector can be written in the following form:

ûis(ω, µ) ∈ Vω ⊗ Vµ ⇔ ûis(ω, µ) =
Nω∑
iω=1

Nµ∑
iµ=1

uiω,iµ v
iω
ω ⊗ viµµ , 1 ≤ is ≤ N,

where ûis is the is-th component of the generalized displacement vector. In order to ease the
exposition, let us denote Vs := span{v1≤is≤N

s } the canonical basis in CN . Then, abusing of
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notation:

û(ω, µ) ∈ V ⇔ û(ω, µ) =
N∑
is

Nω∑
iω

Nµ∑
iµ

uis,iω,iµ v
is
s ⊗ viωω ⊗ viµµ , (2.26)

where the coefficient defines the (is, iω, iµ)-th entry of the displacement tensor û ∈ CN ⊗
CNω⊗CNµ , which is still denoted in the same manner for the sake of simplicity. Observe that
Eq. (2.26) defines an approximation of the displacements in the parametric space, provided
that we are able to compute the tensor û. In Section 2.4.2, we show how PGD can be used
to obtain such approximation.

2.4.2 PGD algorithm to solve the parametric problem

Let us consider the weighted residual form of Eq. (2.24), extended to the parametric space.
Using a Galerkin approach, the problem is formulated as follows: find û ∈ V such that∫

Iω

∫
Iµ

ŵHAû− ŵH f̂ dω dµ = 0, ∀ŵ ∈ V. (2.27)

Matrix A = −ω2M+ iωC(µ)+K depends parametrically on the pulsation and the parame-
ter. In general, it is not difficult to find an affine decomposition of the damping matrix. Let
us assume without loss of generality the simplest affine decomposition, that is C(µ) ≡ µC.
Since a Galerkin approach has been used, ŵ(ω, µ) is expressed on the same tensor basis as
Eq. (2.26). Substituting both û(ω, µ) and ŵ(ω, µ) into Eq. (2.27) and integrating we arrive
to the following algebraic tensor system:

Aû = f̂ , with û ∈ CN ⊗ CNω ⊗ CNµ , (2.28)

where A is a tensor operator with three modes defined as follows:

A = −M ⊗Bω ⊗Mµ + iC ⊗Dω ⊗Dµ +K ⊗Mω ⊗Mµ.

See Appendix A for details on the definition of these operators. It is important to observe
that A is not self-adjoint and therefore this will influence the choice of the PGD algorithm,
among those discussed in §1.4.2 and §1.4.3. We discuss these aspects in together with the
numerical examples in §2.5.

The solution of Eq. (2.28) is too hard to use a direct solver and needs to be approximated.
The PGD method assumes the displacement tensor can be well approximated in the subset
of tensors that can be written as a sum of rank-one tensors:

û ≈ û(M) =
M∑
m=1

ûm, (2.29)

with ûm = ums ⊗ umω ⊗ umµ and ums ∈ CN , umω ∈ CNω , umµ ∈ CNµ for 1 ≤ m ≤M.
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We denote by û(M) a rank-M approximation of the solution and by ûm the m-th rank-one
tensor of the approximation. Vectors ums , umω and umµ are also called space, pulsation and
parameter modes, respectively. A Greedy approach is used to correct the approximation
successively by adding a rank-one tensor at a time. After computing M terms, the residual
is defined as:

rM = f −
M∑
m=1

Aûm,

and the new term, still denoted by û, is computed from

Aû = rM . (2.30)

Eq. (2.30) defines a nonlinear problem that is generally solved by implementing an Alter-
nating Directions algorithm. We stop adding terms when the norm of the residual is small
enough, or when some error estimator is satisfied, see references [4, 87]. It is worth to re-
call that at convergence, an approximation of the displacements for every frequency in a
frequency band and every parameter value inside a range will be available. This approxima-
tion will be referred as the Generalized Transfer Function (GTF).

2.4.3 Using the GTF to compute the dynamic response

In this Section we show how the GTF can be used to compute the forced dynamic response
due to some loading applied on the structure. It will be shown that exploring the parametric
space only requires an inexpensive post-processing. Let us assume that the GTF has already
been computed, and suppose that we are interested in recovering the dynamic response of
the degree of freedom i?s, for a certain value of the parameter µ ∈ Iµ. Assume without loss
of generality that the index associated to the parameter value is i?µ ∈ [1, Nµ].

Remark 2.4 (Intermediate values of the parameter). The approximation can be evaluated at

any intermediate value thanks to the underlaying approximation (finite elements, for instance)

defined in Eq. (2.26).

Assume that convergence of the PGD solution was reached inM terms, that is a rank-M
separated representation. First step consists in particularizing the GTF at indices i?s and i?µ
(index iω is set free):

û? = û
(M)
i?s , · ,i?µ =

M∑
m=1

ûmi?s û
m
i?µ
ûmω . (2.31)

Vector û? ∈ CNω contains the complex displacement amplitudes associated to each pulsation.
Notice that Eq. (2.31) simply expresses the linear combination of the pulsation modes. The
dynamic response can be recovered by taking the Fourier inverse transform, or equivalently,
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from Eq. (2.22):

u?(t) =
Nω∑
iω=1

û?iω exp (iωiω t). (2.32)

From a computational point of view, the inverse Fast Fourier transform (IFFT) can be used
[44]. If the response corresponding to a new parameter value wants to be computed, Eq.
(2.31) must be particularized again and Eq. (2.32) must be recomputed. However, it is worth
to emphasize that both equations are inexpensive. The present approach is therefore ideally
suited for a multi-query context in which the dynamical behaviour has to be optimized with
respect to some parameter.

Consider the particular case in which the load is scaled in time, as explained in §2.3.1.
Observe that the GTF is even more general: it is valid not only for any frequency and
parameter value but also for any scaling function. The dynamic response can be recovered
as follows:

u?(t) =
Nω∑
iω=1

α̂iω û
?
iω exp (iωiω t), (2.33)

where α̂iω is the iω-th entry of vector α̂, already defined in §2.3.1.
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Remark 2.5 (Continuous frequency approach). To keep coherence with the rest of the Chapter,
this Section has been presented using a discrete approach. This is also coherent with the numerical
implementation of the method here presented. The frequency band has been discretized and
therefore instead of Fourier direct/inverse transforms, we work with Fourier discrete direct/inverse
transforms. However, the continuous formulation reveals some details that might go unnoticed
with the discrete formulation. Consider the dynamics of a solid occupying a region of the space
I ⊂ Rd≤3. The continuous equivalent of the displacement tensor, that is, the multivariate function
û(x, ω, µ). For some position x? ∈ I and parameter µ? ∈ Iµ of interest, we can particularize to
extract the complex displacement amplitudes: û?(ω) = û(x?, ω, µ?). The time evolution can be
recovered by performing a Fourier inverse transform:

u?(t) =
1

2π

∫ +∞

−∞
û?(ω) exp (iωt) dω.

If the scalar modulation of the force vector applies —see §2.3.1— let ĝ(ω) be the Fourier transform
of the scaling function g(t). To recover the dynamic response in the time domain:

û?(t) = F−1 [û?(ω) ĝ(ω)] =
∫ t

0
u?(t− τ) g(τ) dτ, (2.34)

which is the convolution of the particularization of the GTF and the scaling function. This result
is of great interest for real-time applications because:

1. In such applications, the scaling function is not a priori given; it is sampled online and we
need to output the dynamic response up to the current time. Eq. (2.34) perfectly fits with
this approach.

2. It reflects causality: the response at time t only depends on what has already happened.

3. From a computational point of view, rather than transforming the scaling function and
then recover the response by an inverse transform, it is preferable to inverse once the GTF
and perform its convolution with the scaling function in the time domain.

4. It is rather inexpensive to compute, and therefore the dynamic response can be outputted
at high refresh rates, that are hardly attainable by other methods when non-proportionally
damped or parametric problems are of interest.

2.4.4 Reduced Basis approach to recover the transient regime

The frequency approach presented here is only concerned with the long-term forced response
and consequently, it does not depend on the initial conditions of the structure. If one is
interested in evaluating the transient regime, it is always possible to derive a Reduced Basis
approach from the Generalized Transfer Function computed with the PGD.

A reduced basis can be formed by keeping the only the real part of the GTF space modes:

V := real{Û s} with Û s := [u1
s u

2
s · · · uMs ].

This basis is well-suited for any parameter value µ ∈ Iµ simply by the definition of the
GTF. The transient solution is sought by requiring the solution to live in the linear space
generated by these reduced basis at any time and and for any parameter value:

∀t ∈ It and ∀µ ∈ Iµ : u(t, µ) ∈ VM := span{v1≤m≤M} ⇔ u(t, µ) = V α(t, µ).
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Coefficients α are computed by Galerkin projection of the full system onto the subspace VM .
This yields a reduced system which must be solved online, as it is standard in a Reduced
Basis approach. Of course, to be efficient, the Galerkin projection must be computed only
once which in practice requires that we are able to find an affine decomposition of the
damping matrix. This requirement is completely standard in the Reduced Basis community,
and it is also shared by the PGD method, as expressed in Hypothesis 1.1.

2.5 Numerical examples
To illustrate the technique proposed in this Chapter, we consider different examples. We
restrict ourselves to solid dynamics and therefore the mass, damping and stiffness matrices
come from the FE discretization of a solid I ⊂ Rd≤3. In consequence, the equation of
equilibrium of momentum is solved

ρü(t)−∇ ·σ(t) = 0,

with a Kelvin-Voigt model, defined by:

σ = D : (ε+ µε̇),

where D is the linear elasticity strain tensor. In consequence, the structural damping comes
from the material viscous behaviour. To quantify the amount of damping present in the
system, we introduce the damping factor ξ, that for a Kelvin-Voigt model is expressed as
follows [129]:

ξ = 1
2µω0, with ω0 =

√
λ0, (2.35)

being λ0 is the smallest eigenvalue that results from solving the Generalized Eigenvalue
Problem defined in Section 2.2.1. For ξ = 0% there is no damping, i.e. a pure elastodynamics
behaviour is considered, whereas ξ = 100% means that all vibration modes are damped out.

Reference solutions are in all cases computed using a classic Newmark method [101] using
parameters β = 1 and γ = 0.5. Note that other methods such as those introduced in [70, 72]
might be also used.

Three numerical examples are designed to illustrate the performance of the technique:

1. A simple one-dimensional example by means of which the validity of a space-frequency
GTF for different loadings is demonstrated. We also show the importance of the
amount of damping present in the structure.

2. A two-dimensional example using a space-frequency GTF.

3. A two-dimensional example with non-proportional damping using a space-frequency-
parameter GTF.
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2.5.1 Dynamic response of a rod

Let us start with a very simple example. Consider a rod of unitary length and linear elastic
behaviour with mass density ρ = 1 kg/m3 and Young modulus 104 Pa. The left end of the
rod is clamped and a dynamic load is applied on its right end. It can be easily computed
(even analytically) that the first natural frequency is located at 25 Hz. A damping factor of
10% is chosen in this example.

A uniform spatial discretization is used with 25 linear two-node elements of size 0.04m.
The time step used for the reference solution is ∆t = 10−4s. To recover the same time
resolution, a maximum frequency of fmax = 5 · 103Hz needs to be considered. Therefore,
the space-frequency separated representation is computed in Iω = 2π [0, 5 · 103]s−1. The
frequency domain is discretized using a mesh which consists of 2500 C0-continuous linear
elements.

Once the transfer function is available, we compute the response for different randomly
generated forces. These forces are generated by setting some random points in the time
domain and then fitting a cubic spline. Fig. 2.1a shows six different excitations and Fig.
2.1b their corresponding frequency spectrum up to 50Hz. Despite the excitations look very
different, they are all described with low-frequency harmonics which means that, in fact, a
narrower frequency band could be considered to compute the frequency function.

Fig. 2.1c shows a very good matching between the reference solution (red solid line) and
the solution recovered after the online step (blue markers).

The damping ratio has a key influence on the accuracy of the technique. As explained
before, the rod has a natural frequency at 25Hz, which is inside the frequency band for
which the transfer function is computed. It is worth to point out that the computation of
the transfer function is only possible if some amount of damping is present in the system.
Considering no damping at all, i.e. ξ = 0, is equivalent to try to solve a singular equation,
which is of course not possible using PGD nor any other resolution technique. The influence
of the damping ratio is studied in Fig. 2.3. To this end, we apply a triangular load during
0.1s and we observe the response of the system until 0.5s; see Fig. 2.2. We see that the
solution deteriorates as the damping ratio tends to zero, see Fig. 2.3a. Apart from this fact,
the expected behaviour is observed. For small amounts of damping the rod keeps oscillating
after the excitation has vanished (underdamped behaviour). When the damping is increased,
the oscillations decay more rapidly and, finally, for ξ = 100% we observe a critically damped
behaviour, that is, the smallest amount of damping for which system does not oscillate.

2.5.2 Dynamic response of a two-dimensional plate

Consider a two-dimensional I = [−0.5, 0]× [0.5, 0.5]m2 plate whose bottom side is clamped
and submitted to a point-load applied on the middle point of the top side. In consequence,
the point where the load applies is xF = (0, 0.5)m. This arrangement is shown in Fig. Fig.
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(a) Force amplitudes (b) Frequency spectrum (c) Midway node displ.

Figure 2.1: Dynamic response at the mid-side node for several randomly generated exci-
tations. Comparison between the reference solution (red solid line) and the PGD solution
(blue markers).
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Figure 2.2: Triangular excitation used to study the influence of the damping ratio.
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Figure 2.3: Mid-side response for different damping ratios. Comparison between the refer-
ence solution (red solid line) and the PGD solution (blue markers).
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(a) Geometry (b) Load amplitude, g(t)

Figure 2.4: Dynamics of a 2D plate: geometry, loading amplitude and comparison nodes

2.4a. The nodes where the solution will be compared to the reference are highlighted in
red. Table 2.1 shows their numbering and location. The amplitude of the point load is

Node Numbering Point (x,y)

25 (−0.50, 0.25)

1300 (−0.25, 0.25)

2575 (0.00, 0.25)

Table 2.1: Location of the comparison nodes

modulated by a triangular function whose evolution is shown in Fig. 2.4b and its peak value
is 30N.

A structured mesh made of four-node quadrilaterals is used for the plate, containing 5000
elements and 10100 degrees of freedom. The characteristic mesh size is H = 0.014m. A unit
mass density is considered, ρ = 1kg/m3, whereas the Young modulus is E = 102Pa and the
Poisson’s coefficient is ν = 1/3. The speed of sound in a plate made of such material is:

c =

√
E

ρ
= 10m/s.

We select a time step ∆t = 10−3s = 0.71 × H/c. In consequence, the elastic waves travel
each time step a distance which is less (about 70%) than the characteristic element size.
The damping coefficient is set to µ = 10−2s, which using Eq. (2.35), yields a damping ratio
of ξ = 8.1%.

To recover the same time resolution, a maximum frequency of fmax = 5 · 102Hz needs
to be considered. Therefore, the space-frequency separated representation is computed in
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Figure 2.5: GTF convergence: residual reduction convergence of the GTF computation.

Iω = 2π [0, 5 · 102]s−1. The frequency domain is discretized using the same number of two-
node elements than in §2.5.1, that is 2500 C0-continuous linear elements.

Once the problem parametrization has been established and detailed, we shall first ana-
lyze the results referred to the space-frequency GTF computation, and then we analyze the
post-processing part in which the time response is recovered. In spite that the structural
dynamics operator in the frequency domain is not self-adjoint, a standard PGD algorithm
succeeded to converge to a predefined tolerance of 5 · 10−8. Recall that the convergence is
measured as the residual reduction in Euclidean norm. Fig. 2.5 shows the convergence as
a function of the rank of the separated representation. An exponential but non-monotonic
convergence can be observed. In particular, it can be observed that the fourth mode in-
creases the residual instead of reducing it. The PGD computation converged with M = 38
terms, which is the rank of the final separated representation. The total complexity of the
space-frequency solution is roughly Ns×Nω ≈ 25 · 106 complex unknowns. The PGD repre-
sentation of the solution takes M × (Ns +Nω) ≈ 5 · 105, which is more than 50 times more
efficient than the explicit representation. Fig. 2.6 and Fig. 2.7 show the real and imaginary
part of the space modes, respectively. In particular, the 1st, 2nd, 3rd, 10th, 20th and 38th
(the last mode) are depicted. In general it can be seen that the modes capture progressively
the main features of the solution. Last modes tend to capture small features to correct
locally the solution where is needed. Space modes are not normalized and therefore it is
interesting to look at magnitude, which progressively decreases. This qualitative observation
can be better appreciated by looking at Fig. 2.8. It shows the 1st, 2nd, 3rd, 10th, 20th and
38th frequency modes; the real part is depicted in blue while the imaginary part is depicted
in red. Frequency modes are shown normalized. The y-axis is set in logarithmic scale so
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Figure 2.6: GTF calculation: real part of the space modes.

as to better appreciate their shape. As it has been pointed out before, the more modes are
added to the solution, the sharper they become.

Once the results of the GTF have been shown and analyzed, we shall study the results
obtained after post-processing it to recover the time response. To this end, we perform the
convolution of the GTF with the loading amplitude function g(t), as explained in Remark
2.5. The displacement magnitude obtained in such manner is compared to the reference
solution in Fig. 2.9a at the comparison nodes, defined in Fig. 2.4a. Observe that the
degrees of freedom associated to these particular nodes can be isolated from the GTF and
convolved with the loading amplitude; that is, we do not need to operate with the whole
system of equations to get the time response at some region, as we do in other methods. Of
course, the velocities and the accelerations may be recovered from the displacement field.
Although any differentiation technique could be used, here we apply the Newmark scheme,
the same used to compute the reference solution. The Newmark method requires operating
with the all degrees of freedom, which in practice may not be the best option. Still we
proceed in such manner make a fair comparison of the results.

It has to be highlighted that a very good agreement between the reference and PGD
solutions is obtained, even for the recovered velocities and accelerations.
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Figure 2.7: GTF calculation: imaginary part of the space modes.

(a) u1
ω (b) u2

ω (c) u3
ω

(d) u10
ω (e) u20

ω (f) u38
ω

Figure 2.8: GTF calculation: real (blue) and imaginary (red) parts of the frequency modes.
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(a) Displacement Magnitude

(b) Velocity Magnitude

(c) Acceleration Magnitude

Figure 2.9: Comparison of displacements, velocities and accelerations at the comparison
nodes, defined in Fig. 2.4a. Green is node 25, red is node 1300 and blue is node 2575; solid
line corresponds to the reference solution while dotted line corresponds to the PGD solution.
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2.5.3 Parametric dynamic response of a damper

In this section, we consider a damper clamped on the left-hand side and submitted to
a pressure load of 0.10m length applied on the right-hand side on a segment defined by
ΓF = (1.00, 0.15)× (1.00, 0.25)m. The structure is non-proportionally damped. The central
part of the damper is made of a material with damping coefficient µD whereas in the two
extremes damping is µM = 10−2s. This arrangement is shown in Fig. Fig. 2.10a. A
space-frequency-parameter GTF wants to be computed to analyze the influence of µD ∈
Iµ := [µ0, µf ] = [8.04, 80.40] 10−2s. If the whole piece was made of a material with damping
coefficient equal to µ0, the damping ratio would be ξ0 = 10%; with µf , the damping ratio
would be ξ0 = 100%. Since the damping zone occupies an area with is less than a third of
the total, the effective damping ratio is smaller.

The load is scaled by a triangular modulation function defined in Fig. 2.10b. The time
period of interest reaches now 500ms.

(a) Geometry (b) Load amplitude, g(t)

Figure 2.10: Dynamics of a damper: geometry, loading amplitude and damping distribution

An unstructured mesh made of three-node triangles is used for the damper. A total
of 2258 elements are used which yields 4212 degrees of freedom. The characteristic mesh
size is H = 0.012m. The same mass density, Young modulus and Poisson’s coefficient as in
§2.5.2 are considered. In consequence, the speed of sound is 10m/s. We select a time step
∆t = 10−3s = 0.82×H/c. In consequence, the elastic waves travel each time step a distance
which is about the 80% of the characteristic element size. The mesh is shown in Fig. 2.11a.

To recover the same time resolution, a maximum frequency of fmax = 5 · 102Hz needs
to be considered. Therefore, the space-frequency separated representation is computed in
Iω = 2π [0, 5 · 102]s−1. The frequency domain is discretized using the same number of two-
node elements than in §2.5.2, that is 2500 C0-continuous linear elements. The parameter
domain, Iµ, is discretized with the same kind of mesh. A total of 100 elements were used.

Once the problem setting has been presented, we shall first analyze the results referred
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(a) Computational mesh (b) GTF convergence

Figure 2.11: Dynamics of a damper: computational mesh and GTF convergence.

to the computation of the space-frequency-parameter separated representation, and then we
analyze the post-processing part in which the time response is recovered. As in §2.5.2, a
standard PGD algorithm is applied to compute such separated representation. It succeeded
to converge to a predefined tolerance of 5 · 10−7 —that is an order of magnitude less than
in the previous example— and considerable difficulties were encountered. Fig. 2.5 shows
the residual reduction as a function of the rank of the separated representation. The first
issue to be remarked is that the convergence is not exponential anymore. This is because the
problem now is three-dimensional instead of two-dimensional. Convergence is not monotonic,
the same as in the previous example. The PGD computation was stopped with M = 200
terms, which is relatively high.The total complexity of the space-frequency solution is roughly
Ns×Nω ×Nµ ≈ 1.1 · 109 complex unknowns. The PGD representation of the solution takes
M×(Ns+Nω+Nµ) ≈ 1.4 · 106, which is more than 780 times more efficient than the explicit
representation.

Fig. 2.12 and Fig. 2.13 show the real and imaginary part of the space modes, respectively.
In particular, the 1st, 10th, 20th, 50th, 100th and 150th are depicted. Fig. 2.14 and Fig.
2.15 show the frequency and parameter modes, respectively. In both cases, the real part is
depicted in blue while the imaginary part is depicted in red. The y-axis is set in logarithmic
scale so as to better appreciate their shape.

The dynamic time response is recovered from the GTF, particularized for the desired
value of µD, by performing a simple post-processing. Displacements, velocities and acceler-
ations are compared to the reference solution in Fig. 2.16. Both velocities and accelerations
are recovered from displacements using a Newmark scheme, as explained in the previous
example. The comparison is made at two nodes: node 237, located at mid height on the
left-hand side of the damper, and node 1413, located at the center of the damper. Both
nodes are depicted in Fig. 2.10a. In each case, the reference and PGD solutions are depicted
in solid and dotted line, respectively. The GTF is particularized for two different values
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Figure 2.12: GTF calculation: real part of the space modes.
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Figure 2.13: GTF calculation: real part of the space modes.

76



2.5. Numerical examples
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Figure 2.14: GTF calculation: real (blue) and imaginary (red) parts of the frequency modes.
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(a) u1
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Figure 2.15: GTF calculation: real (blue) and imaginary (red) parts of the damping modes.
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of damping: µD = 8.04 · 10−2s, which corresponds to blue curves, and µD = 40.20 · 10−2s,
which corresponds to red curves. Recall that µD is the damping coefficient of the material
placed on the central part of the damper. It can be observed that bigger damping coefficients
produce less displacement as well as a delay on the response. Fig. 2.16 demonstrates a good
agreement between the reference and the PGD solution.

2.6 Nonlinear harmonic structural dynamics
The application of the frequency approach to solve nonlinear structural dynamics problems
is, in general, quite complicated. Let us assume a nonlinear mechanical behaviour of the
material such that the stiffness of the structure depends on the generalized displacement
vector:

Mü(t) +Cu̇(t) + fm[u](t) = f(t), (2.36)

where fm ∈ RN represents the vector of generalized internal, or mechanical, forces. Its
nonlinear dependence on the generalized displacement vector is denoted in brackets. If Eq.
(2.36) wants to be solved in the frequency domain, using the Fourier transform we obtain:

− ω2Mû(ω) + iωCû(ω) + f̂m[u](ω) = f̂(ω), (2.37)

which of course precludes the use of harmonic superposition. In addition, the nonlinearity
generates an energy exchange between the different harmonics which makes the problem
to be coupled, that is, we cannot solve each harmonic amplitude independently. This is
a very well-known issue which is classically addressed by coming back by evaluating the
nonlinear term in the time domain rather than in the frequency domain. Of course, it has to
be Fourier transformed to come back to the frequency domain. Numerically, this approach
is not straightforward because the nonlinear term tends to transfer energy to the higher
frequencies and thus, a wider frequency band has to be considered. Otherwise, aliasing may
be experienced due to the high-frequency energetic content neglected, introducing numerical
pollution in the low-frequencies. Anti-aliasing filters could of course be applied.

The fact of the nonlinear term introducing a coupling between the harmonics can be
simply illustrated as follows. Consider a Newton linearization of the nonlinear problem:

Mü(t) +Cu̇(t) +KT [u](t)u(t) = f(t), (2.38)

where KT [u](t) denotes the tangent stiffness matrix. Since it depends on the generalized
displacement vector, the stiffness matrix is time-dependent. Recall that the following prop-
erty of the Fourier transform: given two functions f(t) and g(t) that fulfill the requirements
to be Fourier transformed, the transform of their product in the time domain becomes the
convolution product of the transformed functions in the frequency domain. That is:

F [f(t) g(t)] = f̂(ω) ∗ ĝ(ω) =
∫ +∞

−∞
f̂(ω − ν)g(ν) dν.
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(a) Displacement Magnitude Node 1413 (b) Displacement Magnitude Node 237

(c) Velocity Magnitude Node 1413 (d) Velocity Magnitude Node 237

(e) Acceleration Magnitude Node 1413 (f) Acceleration Magnitude Node 237

Figure 2.16: Comparison of displacements, velocities and accelerations at the nodes 1413
(left) and 237 (right), for two different values of the parameter, µD = 8.04 · 10−2s (red curves)
and µD = 40.20 · 10−2s (blue curves). Solid line corresponds to the reference solution while
dotted line corresponds to the PGD solution.
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Using this property, Eq. (2.38) becomes:

−ω2Mû(ω) + iωCû(ω) +
∫ +∞

−∞
KT (ω − ν)û(ν) dν = f̂(ω),

which is clearly coupling every possible frequency. This fact, along with the impossibility
of applying superposition, explain the fact that in this work we have not considered an
extension of our frequency-based approach to nonlinear problems.

Remark 2.6 (A special type of nonlinearity). In some fields of engineering, such as in soil

mechanics [30], a special kind of nonlinear formulation is used. It has been observed experimentally

that when applying a harmonic excitation the soil response is still in the same frequency, but it

cannot be accurately described using a linear model. In fact, superposition principle does not hold,

i.e. the response to series of harmonics is not the superposition of the responses to each one of

them. Models in which the nonlinearity only applies in the frequency domain are commonly used

in the soil mechanics field. In consequence, the effect of the nonlinear behaviour is to modulate

the amplitude of each harmonic. This approach, even if it is formally arguable, provides consistent

results with regard to the experimental observations. PGD can be applied to solve this kind of

nonlinear problem very efficiently. For instance, if the constitutive nonlinear behaviour makes

both the shear modulus of the soil and its damping factor depend on the displacement amplitude

[73, 100], a GTF in which both parameters are included as coordinates might be computed.

From such GTF, a fast nonlinear solver can be built because each nonlinear iteration yields only

particularizations of the GTF, which are costless. See [56] for further details on this approach.
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Chapter 3

A frequency-based approach to
overcome non-separability of
moving thermal loads

Moving excitations can be thought as waves and therefore they are intrinsically non-separable
in space and time. The classic PGD approach to transient problems, which consists in com-
puting space-time separated representations, is highly penalized in this case simply due to
the computational cost of integrating the right-hand side of the equation. In this Chapter,
we present a frequency-based formulation that allows overcoming the aforementioned separa-
bility issues. This technique inherits many aspects from the frequency approach introduced
in Chapter 2 and takes advantage of some additional properties that were not explored there.
We focus on the transient heat equation, although the technique here presented could be
applied to other problems, including structural dynamics.

The reciprocity principle will be proven thanks to the symmetrization introduced by the
frequency formulation. This property yields a direct application for the real-time monitoring
of thermal processes.
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3.1. Monitoring thermal processes

3.1 Monitoring thermal processes

Many thermal manufacturing processes require monitoring temperature and, moreover, be-
ing able to determine from these measurements if the process is running as designed. Typ-
ically these measurements are provided by some sensors (e.g. thermocouples) strategically
placed. Consider, for instance, an industrial thermal process involving an external excitation,
a heat source, moving on the surface of the considered part. This is typical of composite
manufacturing processes. Today it is still a challenge to post-process these temperature
measurements to monitor in real-time the correct evolution of the thermal process, or to
control the heat source, or to identify defects, material properties or power oscillations,
among others.

Real-time simulation-based control of thermal processes is a big challenge because high-
fidelity numerical simulations are costly and cannot be used, in general, for real-time decision
making. Very often, processes are monitored or controlled with a few measurements at some
specific points. Thus, the strategy presented here is centered on fast evaluation of the
response only where it is needed.

3.1.1 Time and frequency approaches for the heat equation

Representations in the frequency domain are appealing for analyzing responses of structures
subjected to dynamic excitations, as it has been shown in Chapter 2. However, it is important
to note that in spite of the large amount of scientific contributions using a frequency domain
description in solid dynamics, this approach is not standard for thermal models subjected to
dynamical forced thermal loads. Indeed, frequency domain approaches for thermal studies
are scarce [54, 99, 110, 121, 123]. This is, of course, because time domain approximations
of thermal models have been proven to be, in general, both efficient and robust. Moreover,
a posteriori model order reduction has been successfully applied in this setting [23, 39, 57,
58, 95, 108, 113, 131]. Regarding a priori model reduction, PGD has also been successfully
applied in several works to thermal problems formulated in the time domain; see [113] for
instance.

However, time domain approximations cannot be applied so efficiently when travelling
excitations are to be taken into account. Prulière et al. used in [113] a SVD to compute
a space-time separated representation of the excitation. In order to keep a moderate com-
putational cost, this approach required computing the SVD of a coarse description of the
excitation, i.e. using a coarse mesh. Then, the space-time separated representation was
projected back in a finer mesh, the one used to approximate the solution. Using 15 terms,
the space-time separated representation of the excitation was approximated with an error
of 0.03%. The error of the temperature field was in the order of 1%, which was accurate
enough for the engineering purposes described that work.

An alternative approach was proposed in [39]. It consisted in adopting an Eulerian
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approach in which the reference system was kept fixed to the thermal load and, therefore,
the material moved at (constant) speed in the opposite sense. Two main hypothesis were
made: the thermal load has to move at constant speed and the influence of the boundary
conditions can be neglected. For those applications in which such hypothesis are acceptable,
the Eulerian approach is simple and very effective. A final objection concerns the difficulty
of considering both complex geometries and online corrections of the thermal load such as
power oscillations or corrections of the orientation.

3.1.2 A new frequency-based PGD approach

The strategy that we propose in this Chapter revolves on the reciprocity principle [91] exten-
sively used in mechanics, dynamics, electromagnetic or wave scattering problems. Note that,
in general, this principle is not applicable for the heat equation because of the lack of sym-
metry introduced by the first time-derivative. This work proposes to adopt the reciprocity
principle also to the heat equation. For this, the heat equation is recast in the frequency
domain.

PGD combined with the reciprocity principle yield a fast strategy for real-time evaluation
of the temperature at a specific point of a thermal system due to an arbitrary transient
heat source travelling along a Neumann or Robin boundary. The strategy is this based on
an offline and online phase. In the offline phase, PGD pre-computes a transfer function
that encloses the output response of the system. This is achieved by solving the frequency-
domain heat equation very much as shown in Chapter 2). This transfer function is computed
offline and only once. The response at the monitoring point can be recovered performing a
computationally inexpensive post-processing step. This last step can be performed online
because it involves only a convolution between the generalized transfer function and a given
arbitrary external thermal excitation. As it will be shown, the online approximation is so
fast that it can be used for control purposes in real-time and on deployed devices.

The approach here presented has been published in [3], from where this Chapter is mostly
withdrawn.

3.2 Monitoring temperature at a surface point

This section analyzes the representation of temperature at an arbitrary point of the boundary
under an arbitrary transient external excitation, for instance, a travelling external heat
source such as a moving laser. More specifically, the representation of the solution at the
point of interest is first studied by means of a Green’s function in the space-time domain.
Then the applicability of the reciprocity principle for the transient heat equation with a
forced excitation is discussed both in time and frequency domain. The use of reciprocity
(only valid in the frequency domain) allows determining a representation of temperature at
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the desired point for any arbitrary external heat source.

3.2.1 Model problem in the space-time domain

Formally, the problem under consideration is described as follows. Given a time interval
I :=]0, T [ (T can be taken arbitrarily large) and a body Ω ⊂ Rd, d ≤ 3, whose boundary ∂Ω
is partitioned into Dirichlet, ΓD, and Robin/Neumann, ΓN , frontiers such that ∂Ω = ΓD∪ΓN
and ΓD ∩ ΓN = ∅; temperature evolution u(x, t), for x ∈ Ω and t ∈ I, is described by the
transient heat equation:



ρcp∂tu−∇ ·K∇u = 0 in Ω× I,

u = uD on ΓD × I,

n ·K∇u = −`(u− uext) + q on ΓN × I,

u = u0 on Ω× {0},

(3.1)

where ρ is density (kg/m3), cp is specific heat capacity (J/(kg K)), K is the thermal conduc-
tivity matrix (W/(m K)), ` is the heat transfer coefficient (W/(m2 K)), uext is the external
temperature (K), n is the exterior unit normal to ΓN (dimensionless) and q = q(x, t), for
(x, t) ∈ ΓN × I, is the inflow forcing excitation (W/m2). The international system of units
of measurement is also employed for length (m) and time (s).

As noted in the introduction, q is typically the heat flux imposed by a laser. The objective
here is to determine a (fast) computable representation of the temperature at an arbitrary
boundary point x0 ∈ ΓN and at any instant t0, with 0 < t0 < T .

Since the problem is linear, Eq. (3.1) is further simplified. Thermal diffusivity (thermal
conductivity divided by density and specific heat capacity) can be considered the only ma-
terial constant in the partial differential equation. Moreover, the increment of temperature
with respect to the external one, i.e. (u−uext), can be defined as the unknown of the problem
(in practice, impose uext = 0).

Finally, for the clarity of the presentation, the model problem studied is further simpli-
fied. However, these simplifications (considering unitary values of the coefficients) do not
compromise the validity of the following developments.

More precisely, the following assumptions are used to define the model problem: ho-
mogeneous Dirichlet boundary conditions, canonical dimensionless form with an isotropic
homogeneous material, and no convective heat exchanges. Note however, that these simpli-
fications, are only done to simplify the presentation and do not hinder the application of
the proposed methodology to real problems described by Eq. (3.1) as it will be shown in
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Section 3.5. Under these assumptions, Eq. (3.1) becomes

∂tu−∇2u = 0 in Ω× I,

u = 0 on ΓD × I,

n · ∇u = q on ΓN × I,

u = u0 on Ω× {0}.

(3.2)

3.2.2 Green’s function and reciprocity in the space-time domain

The objective is to obtain the solution at an arbitrary point and time, (x0, t0). Ideally the
desired value u(x0, t0) could be readily evaluated if the adjoint Green’s function were known.
The adjoint Green’s function is the solution of

∂tG+∇2G = 0 in Ω×]0, t0[,

G = 0 on ΓD×]0, t0[,

n · ∇G = δ(x− x0)δ(t− t0) on ΓN×]0, t0[,

G = 0 on Ω× [t0, T [,

(3.3)

where the notation of G(x, t;x0, t0) clearly identifies the parametric dependence on (x0, t0).
The representation of the desired temperature is then

u(x0, t0) =
∫

ΓN

∫ t0

0
G(x, t;x0, t0) q(x, t)dtdΓ +

∫
Ω
u0(x)G(x, 0;x0, t0)dΩ.

See Appendix B for a detailed presentation. However, in general, the computation of the
Green’s function is by no means a trivial task, for instance when confronted to an arbitrary
domain or inhomogeneous material properties. Consequently, this approach is not used in
practice.

An alternative is to use the reciprocity property [14, 91, 128]. However, it is also well-
known that it is not applicable to the heat equation because the operator is not self-adjoint.
In order to recall this, the variational problem equivalent to Eq. (3.2) is presented: find
u ∈ S such that

B(u, v) = L(q; v) ∀v ∈ V, (3.4)

with the appropriate spaces introducing the required regularity in space and time [107, 124]

V :=
{
v : v( · , t) ∈ H1(Ω), v(x, · ) ∈ L2(I), v = 0 on ΓD × I

}
∩
{
v : v( · , t) ∈ H−1(Ω), v(x, · ) ∈ H1(I)

}
,

S :=
{
v : v ∈ V, v(x, 0) = u0

}
,

and

B(u, v) =
∫

Ω

∫
I

v ∂tu dtdΩ +
∫

Ω

∫
I

∇u · ∇v dtdΩ, L(q; v) =
∫

ΓN

∫
I

qv dtdΓ.
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3.2. Monitoring temperature at a surface point

Given two excitations q1 and q2, the corresponding solutions of Eq. (3.4) are denoted u1

and u2, respectively. Since both u1 and u2 belong to S ⊂ V the following expressions are
also verified:

B(u1, u2) = L(q1;u2) and B(u2, u1) = L(q2;u1). (3.5)

However, the bilinear form is non-symmetric because of the time derivative, i.e. B(u, v) 6=
B(v, u). Thus, subtracting both expressions in Eq. (3.5), standard reciprocity is not satisfied
because the left hand side terms do not cancel out. In conclusion,

L(q1;u2) 6= L(q2;u1).

Therefore, in the space-time domain a Green’s function approach or a reciprocity property
cannot be used in practice to determine temperature at a surface point and instance, say
(x0, t0) ∈ ΓN × I.

3.2.3 Space-frequency problem for an arbitrary excitation

Another alternative for studying this forced excitation problem is to consider harmonic
analysis. In order to work in the frequency domain the Fourier transform and its inverse are
used, namely

v̂(x, ω) = F [v] =
∫ +∞

−∞
v(x, t) e−iωtdt (3.6a)

and

v(x, t) = F−1[v̂] = 1
2π

∫ +∞

−∞
v̂(x, ω) eiωtdω. (3.6b)

Remark 3.1 (Fourier transform properties). Fourier transforms have been largely studied and

they hold a large number of properties (viz. linearity, translation, etc). In what follows it is

important to recall that, in general, v̂ ∈ C; but, for an even function in time ve, i.e. ve(x,−t) =

ve(x, t), F [ve] = v̂e ∈ R; whereas, for an odd function in time vo, i.e. vo(x,−t) = −vo(x, t), F [vo]

is imaginary, i.e. F [vo] ∈ iR. For an odd function in time vo, v̂o is redefined as the imaginary

part of F [vo]. Thus, F [vo] = iv̂o with v̂o ∈ R.

Applying the Fourier transform to Eq. (3.2), it becomes
iωû−∇2û = 0 in Ω,

û = 0 on ΓD,

n · ∇û = q̂ on ΓN .

(3.7)
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Remark 3.2 (Long-term forced solution). Note that the harmonic solution is only concerned

with the long-term forced solution and consequently it does not depend on the initial condition.

Standard approaches should be used for evaluating the transient regime, which, in practice, decays

rapidly to the obtained long-term solution.

The variational form associated to the strong form problem described in Eq. (3.7) reads:
find û ∈ H1

ΓD :=
{
v ∈ H1(Ω) : v = 0 on ΓD

}
such that(

∇û,∇v̂
)

+ iω
(
û, v̂
)

=
〈
q̂, v̂
〉
∀v̂ ∈ H1

ΓD , (3.8)

where (
û, v̂
)

=
∫

Ω
û v̂∗dΩ ,

(
∇û,∇v̂

)
=
∫

Ω
∇û · ∇v̂∗dΩ and

〈
û, v̂
〉

=
∫

ΓN
û v̂∗dΓ (3.9)

denote, respectively, the L2 scalar product of functions û and v̂ and gradients in Ω and its
traces over ΓN . Note also, that v̂∗ indicates the complex conjugate of v̂, since both û and v̂
are, in general, in C.

It is important to observe that Eq. (3.8) is non-Hermitian but it is symmetric, the later
property proves sufficient and also crucial for reciprocity.

3.2.4 Arbitrary excitation implies solving two problems with real
excitation

Given any arbitrary excitation, q(x, t), it can always be decomposed in the sum of an even
and odd function, namely

q(x, t) = qe(x, t) + qo(x, t) = 1
2
(
q(x, t) + q(x,−t)

)
+ 1

2
(
q(x, t)− q(x,−t)

)
.

Recalling the Fourier transform properties: F [q] = q̂ = F [qe] + F [qo] = q̂e + iq̂o with
q̂e(x, ω) ∈ R and q̂o(x, ω) ∈ R. Moreover, it is important to notice that, the decomposition
of q(x, t) in the sum of an even and odd excitation produces two identical problems with
a real excitation whose solutions are the real and the imaginary part of the solution of Eq.
(3.7). More precisely, because of the linearity of Eq. (3.7) and Remark 3.3, the solution û
of Eq. (3.7) can be decomposed as û = ûe + iûo, with ûe and ûo solutions of

iωûe −∇2ûe = 0 in Ω,

ûe = 0 on ΓD,

n · ∇ûe = q̂e on ΓN ,

and


iωûo −∇2ûo = 0 in Ω,

ûo = 0 on ΓD,

n · ∇ûo = q̂o on ΓN .

(3.10)

Then, the original solution in the time domain can be recovered by means of the inverse
Fourier transform, namely u = F−1[û] = F−1[ûe] + F−1[iûo] = ue + uo.
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3.2. Monitoring temperature at a surface point

In summary, it is possible to find the solution of Eq. (3.7) —or Eq. (3.8)— for any
arbitrary excitation q̂ solving twice the same problem but with different real excitations, one
corresponding to q̂e(x, ω) and the other to q̂o(x, ω).

Remark 3.3 (Imaginary excitation). Suppose u is solution of the following problem
iωu−∇2u = 0 in Ω,

u = 0 on ΓD,

n ·∇u = q on ΓN .

Then, v = iu is solution of 
iωv −∇2v = 0 in Ω,

v = 0 on ΓD,

n ·∇v = iq on ΓN .

Hint: replace u = −iv in the first problem and obtain the second one. Obviously, this follows

directly from linearity but it is explicitly recalled for didactic purposes.

3.2.5 Reciprocity in space-frequency holds for a real excitation

Given two real harmonic excitations q̂1 and q̂2, the corresponding solutions of Eq. (3.8) are
denoted by û1 and û2, respectively. Then, since both solutions belong to H1

ΓD , the following
expressions hold:

(
∇û1,∇û2

)
+ iω

(
û1, û2

)
=
〈
q̂1, û2

〉
, (3.11a)(

∇û2,∇û1
)

+ iω
(
û2, û1

)
=
〈
q̂2, û1

〉
. (3.11b)

Substracting Eq. (3.11b) from Eq. (3.11a) gives

(
∇û1,∇û2

)
−
(
∇û2,∇û1

)
+ iω

[(
û1, û2

)
−
(
û2, û1

)]
=
〈
q̂1, û2

〉
−
〈
q̂2, û1

〉
, (3.12)

which clearly shows that reciprocity is satisfied in the frequency domain, namely

〈
q̂1, û2

〉
=
〈
q̂2, û1

〉
, (3.13)

if the following conditions hold

(
∇û1,∇û2

)
=
(
∇û2,∇û1

)
and

(
û1, û2

)
=
(
û2, û1

)
. (3.14)

This is precisely the case when q̂1 and q̂2 are real. See Appendix C for a detailed proof of
Eq. (3.13).
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Remark 3.4 (Reciprocity with convective heat flux). In the general case when convective heat
fluxes are considered, see Eq. (3.1), reciprocity also holds. Linearity is exploited solving for
(u− uext) instead of the original temperature u. Accordingly, Eq. (3.11) are modified as follows:(

∇û1,∇û2
)

+ iω
(
û1, û2

)
+
〈
`û1, û2

〉
=
〈
q̂1, û2

〉
,(

∇û2,∇û1
)

+ iω
(
û2, û1

)
+
〈
`û2, û1

〉
=
〈
q̂2, û1

〉
.

Subtracting both equations shows that reciprocity also holds for convective heat because the

same conditions described by Eq. (3.14) are obtained. Note that if Eq. (3.14) are verified then

symmetry also hold for the traces, i.e.
〈
û1, û2

〉
=
〈
û2, û1

〉
.

3.2.6 Using reciprocity to monitor temperature

Recall that the final objective is to monitor temperature at a given point for an arbitrary
external excitation, i.e. evaluate u(x0, t0) for (x0, t0) ∈ ΓN × I. For this purpose, it is
necessary to determine û(x0, ω) for an arbitrary external excitation, q̂, in the space-frequency
domain. The conclusion of Section 3.2.4 is that two problems, which are shown in strong
form by Eq. (3.10), with real excitations q̂e and q̂o, such that q̂ = q̂e + iq̂o, must be solved
to find û(x0, ω) = ûe(x0, ω) + iûo(x0, ω).

Suppose, that for each frequency, ω ∈ R, one could also determine the corresponding
solution ĥ(x, ω;x0) under a Dirac flux imposed at the monitoring point x0, δ(x − x0),
namely 

iωĥ−∇2ĥ = 0 in Ω,

ĥ = 0 on ΓD,

n · ∇ĥ = δ(x− x0) on ΓN .

(3.15)

Since all excitations are real, reciprocity, see Eq. (3.13), holds and consequently〈
δ(x− x0), ûe

〉
=
〈
q̂e, ĥ

〉
and

〈
δ(x− x0), ûo

〉
=
〈
q̂o, ĥ

〉
,

that is,

ûe(x0, ω) =
〈
ĥ( · , ω;x0), q̂e( · , ω)

〉
and ûo(x0, ω) =

〈
ĥ( · , ω;x0), q̂o( · , ω)

〉
.

This implies, see Remark 3.5, that

û(x0, ω) =
∫

ΓN
ĥ(x, ω;x0) q̂(x, ω) dΓ. (3.16)

Once temperature is monitored at the desired point in the space-frequency domain, the
inverse Fourier transform is employed to obtain the desired final representation of tempera-
ture in the space-time domain:

u(x0, t) = F−1[û(x0, ω)
]

=
∫

ΓN
F−1[ĥ(x, ω;x0) q̂(x, ω)

]
dΓ.
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3.2. Monitoring temperature at a surface point

This expression can be further simplified using the convolution theorem [49, 76], recall

F−1[ĥ(x, ω;x0) q̂(x, ω)
]

=
∫ t

0
h(x, τ ;x0) q(x, t− τ)dτ,

where
h(x, τ ;x0) = F−1[ĥ](x, τ ;x0) = 1

2π

∫ +∞

−∞
ĥ(x, ω;x0) eiωtdω. (3.17)

Thus, the representation of the temperature at the desired point x0 ∈ ΓN is

u(x0, t) =
∫

ΓN

∫ t

0

(
1

2π

∫ +∞

−∞
ĥ(x, ω;x0) eiωtdω

)
q(x, t− τ) dτdΓ,

which can be written in a more compact form and for any instance t0 ∈ I =]0, T [ as

u(x0, t0) =
∫ t0

0

〈
h( · , τ ;x0), q( · , t0 − τ)

〉
dτ. (3.18)

Recall that q ∈ R.
This is a compact and useful expression, it only requires knowledge of the external

imposed excitation q up to the desired monitored instant t0 (causality). Moreover, and
this is a major point and advantage, Eq. (3.18) does not reflect the decomposition of the
excitation in even and odd contributions. Thus, if the transfer function, h(x, τ ;x0), is
known, Eq. (3.18) can be applied directly for any arbitrary excitation q(x, t).

However this expression also presents a major drawback: the inverse Fourier transform of
ĥ, solution of Eq. (3.15), must be known. This implies solving Eq. (3.15) for every frequency
ω in the range needed by the arbitrary excitation. Thus, in general, the representation Eq.
(3.18) cannot be used in practice.

The next section circumvents this drawback and proposes a methodology to obtain an
expression for the generalized transfer function ĥ, solution of Eq. (3.15), for the all range
of realistic frequencies. This expression can then be substituted in Eq. (3.18) to determine
the desired temperature. Moreover, Eq. (3.18) can be evaluated in real-time.

Remark 3.5 (Reconstruction of solution). To determine Eq. (3.16) it is important to recall that
q̂e and q̂o are real. Thus, the scalar products on ΓN ,

û(x0, ω) = ûe(x0, ω) + iûo(x0, ω) =
〈
ĥ( · , ω;x0), q̂e( · , ω)

〉
+ i
〈
ĥ( · , ω;x0), q̂o( · , ω)

〉
,

can be rewritten as

û(x0, ω) =
∫

ΓN

ĥ(x, ω;x0) q̂e(x, ω) dΓ + i

∫
ΓN

ĥ(x, ω;x0) q̂o(x, ω) dΓ

=
∫

ΓN

ĥ(x, ω;x0)
(
q̂e(x, ω) + iq̂o(x, ω)

)
dΓ =

∫
ΓN

ĥ(x, ω;x0) q̂(x, ω) dΓ,

and do not present any complex conjugate. In fact, it is important to note that

û(x0, ω) =
∫

ΓN

ĥ(x, ω;x0) q̂(x, ω) dΓ =
〈
ĥ( · , ω;x0), q̂∗( · , ω)

〉
6=
〈
ĥ( · , ω;x0), q̂( · , ω)

〉
.
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Remark 3.6 (Inverse Fourier Transform of the generalized transfer function). The inverse

fourier transform of the generalized transfer function, ĥ(x, ω;x0), see Eq. (3.17) is computed

using the FFT algorithm. Only periodic signals with a finite number of harmonics can be exactly

represented with the discrete Fourier transform, and thus non-periodic signals involving a contin-

uous spectrum of frequencies can only be approximated. The range of frequencies included in the

generalized transfer function must be chosen accordingly.

Remark 3.7 (Convective heat flux). In the general case described in Eq. (3.1), when convective
fluxes are present, the generalized transfer function problem originally described by Eq. (3.15) is
modified. As noted in Remark 3.4, reciprocity also holds when convective fluxes are considered.
Thus, the generalized transfer function must have on the Neumann boundary the convective heat
flux, namely 

iωĥ−∇2ĥ = 0 in Ω,

ĥ = 0 on ΓD,

n ·∇ĥ = −`ĥ+ δ(x− x0) on ΓN .

Following the procedure described previously, Eq. (3.16) and Eq. (3.18) also hold.

3.3 Computing the generalized transfer function

This section is aimed at computing a generalized transfer function, ĥ(x, ω;x0), for a desired
and predefined range of frequencies, Iω. This transfer function needs to be computed only
once, and preferably offline. Since it is determined in the frequency domain, its inverse
Fourier transform is later evaluated in order to use Eq. (3.18) as a simple and inexpensive
post-process of any given excitation q(x, t).

As it has been shown in Chapter 1, major contribution of the PGD approach is to view
frequency, ω, as a new coordinate [40]. Thus, instead of solving Eq. (3.15) for each frequency,
the objective is to solve, only once, a more general problem with ω as an extra coordinate,
namely find ĥ(x, ω;x0) satisfying

iωĥ−∇2ĥ = 0 in Ω× Iω,

ĥ = 0 on ΓD × Iω,

n · ∇ĥ = δ(x− x0) on ΓN × Iω,

(3.19)

where Iω is the predefined range of variation of ω. The weak problem equivalent to Eq.
(3.19) is obtained using a weighted residual argument, namely, find ĥ for all v̂ in the selected
appropriate functional space such that

A(ĥ, v̂) = L(v̂) (3.20a)
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with

A(ĥ, v̂) :=
∫
Iω

(
∇ĥ,∇v̂

)
dω +

∫
Iω

iω
(
ĥ, v̂
)
dω (3.20b)

L(v̂) :=
∫
Iω

v̂∗(x0, ω)dω. (3.20c)

Note that formally, the required functional spaces must account for the singularity of the
Dirac flux. Nevertheless, in practice, the Dirac delta is mollified and this allows to use the
standard finite element functional setup.

The PGD approach assumes that the solution of Eq. (3.20), ĥ(x, ω;x0), can be approx-
imated by a rank-n separable function, ĥn(x, ω;x0), namely,

ĥ(x, ω;x0) ≈ ĥn(x, ω;x0) =
n∑
s=1

Xs(x)W s(ω) = ĥn−1(x, ω;x0) +Xn(x)Wn(ω), (3.21)

where Xs ∈ H1
ΓD and W s ∈ L2(Iω) for s = 1, . . . , n. Recall that these functions give values

in C.
A standard rank-one corrections (Greedy) PGD algorithm [88] is used to construct this

approximation, that is, to determine the unknown functions Xs and W s in Eq. (3.21). The
sequence is stopped with an appropriate error estimator [4, 87, 98]. Since each new term
implies the computation of a product of unknown functions, Xn andWn, a nonlinear scheme
must be designed. The standard choice is the alternating directions algorithm because it has
proven robust in former works [38, 40, 106]. To simplify notation each iterate approximating
Xn and Wn is denoted by R and S. Hence, the nonlinear problem to solve for each new
term of ĥn(x, ω;x0) is obtained substituting Eq. (3.21) in Eq. (3.20a), in order to compute
R and S (iterates of Xn and Wn) such that

A(RS, v̂) = L(v̂)−A(ĥn−1, v̂) (3.22)

with trial functions on the tangent manifold

v̂ = v̂R(x)S(ω) +R(x) v̂S(ω) ∀v̂R ∈ H1
ΓD and ∀v̂S ∈ L2(Iω).

The alternating direction scheme, detailed below, consists in, for instance, updating the
space function R from a given S assumed known, and then compute S from the just updated
function R. This iteration continues until reaching convergence of both R and S. That is,
the two stages for each iteration are:

1. Find R ∈ H1
ΓD (S assumed known) such that

A(RS, v̂R S) = L(v̂R S)−A(ĥn−1, v̂R S) ∀v̂R ∈ H1
ΓD . (3.23a)

2. Find S ∈ L2(Iω) (R assumed known) such that

A(RS,R v̂S) = L(R v̂S)−A(ĥn−1, R v̂S) ∀v̂S ∈ L2(Iω). (3.23b)

Then at convergence, Xn and Wn are updated by R and S.
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3.3.1 Updating the space function

For each new term in the series defined by Eq. (3.21) and each iteration described by Eq.
(3.23), Eq. (3.23a) must be solved. Taking advantage of the separated structure of the
solution and also of A( · , · ), see Eq. (3.20b), Eq. (3.23a) can be rewritten as, find R ∈ H1

ΓD
for all v̂R ∈ H1

ΓD (S assumed known) such that

αS
(
∇R,∇v̂R

)
+ iβS

(
R, v̂R

)
= γS v̂∗R(x0)−

n−1∑
s=1

αSs
(
∇Xs,∇v̂R

)
+ iβSs

(
Xs, v̂R

)
, (3.24)

where the coefficients, which must be computed for each instance of S, are defined as

αS =
(
S, S

)
Iω
, βS =

(
ω S, S

)
Iω
, γS =

(
1, S

)
Iω
,

αSs =
(
W s, S

)
Iω
, and βSs =

(
ωW s, S

)
Iω
.

Recall that
(
· , ·
)
Iω

denotes the L2 scalar product of complex functions in Iω.
After the corresponding discretization of the spatial domain with a standard combination

of piecewise linear shape functions, the system of linear equations induced by Eq. (3.24)
presents a conductivity and a mass matrix. These matrices are computed only once because
they are constant for each iteration and for each term. Moreover, it is important to note
that they are symmetric but non-Hermitian, which will preclude, for instance, Cholesky or
conjugate gradient schemes.

3.3.2 Updating the frequency function

Similarly, the second stage, described by Eq. (3.23b), can also be rewritten using the sep-
arated structure of the solution and also of A( · , · ) as, find S ∈ L2(Iω) for all v̂S ∈ L2(Iω)
(R assumed known from the previous stage) such that

αR
(
S, v̂S

)
Iω

+ iβR
(
ω S, v̂S

)
Iω

= γR
(
1, v̂S

)
Iω
−
n−1∑
s=1

αRs
(
W s, v̂S

)
Iω

+ iβRs
(
ωW s, v̂S

)
Iω
, (3.25)

where the coefficients, which must be computed for each instance of R, are defined as L2

products over the spatial domain,

αR =
(
∇R,∇R

)
, βR =

(
R,R

)
, γR = R∗(x0),

αRs =
(
∇Xs,∇R

)
, and βRs =

(
Xs, R

)
.

The lack of derivatives with respect to ω in Eq. (3.19) induces an point-wise algebraic
equation for S. Piecewise discontinuous approximations of S will induce uncoupled scalar
equations. Whereas continuous approximations over the one-dimensional range of frequen-
cies lead to a symmetric but non-Hermitian matrix on the left-hand-side of Eq. (3.25), as
in the previous case.
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3.4 Extension to multi-parametric and inverse problems
The approach presented here has a potentiality that exceeds real-time monitoring of temper-
ature at a given location and can also be used for other thermal studies such as optimization,
inverse analysis, nondestructive testing, etc. Here, two simple extensions are presented.

3.4.1 Multi-parametric models

As a simple demonstrator, thermal conductivity is chosen as an extra parameter. The un-
derlying idea, already exploited in [40, 112], is to solve multi-parametric models capitalizing
the advantages of the PGD framework. A multi-parametric model is an extension of the
procedure detailed in the previous section. Besides frequency as an extra-coordinate the
generalized transfer function can encompass other parameters as extra coordinates. For in-
stance, parameters characterizing the geometry, the constitutive behavior or the boundary
conditions could be incorporated. The PGD methodology allows to compute efficiently a
multi-parametric solution defined in a high-dimensional space (spatial coordinates, frequency
and other parameters). Multi-parametric models are of great interest in science and engi-
neering because they make possible real-time simulation, optimization and inverse analysis,
as illustrated in [6, 40].

For instance, the thermal example that motivates this work can also be posed as an
inverse analysis to find the actual conductivity of a certain material from the temperature
provided by a thermocouple placed at location x0. Then, independently of the inverse
identification method used, it is obvious that fast identification procedures can be envisaged
if an approximation of temperature at the monitoring point x0 for any instance t can be
computed in real-time for any conductivity k, i.e. u(x0, t, k).

This approach can also be used for nondestructive testing. The monitored temperature
being different from the computed one (obtained with the undamaged material parameters)
triggers the inverse analysis to determine the “damaged” material parameter, which can be
solved readily because a generalized solution for any material parameter is available.

The inverse problem is not solved in detail at this point because it is outside the scope
of this work. Nevertheless, here, the generalized solution for any conductivity is provided.
Once this solution is known, any standard inverse algorithm could be implemented. The key
point is to determine the generalized transfer function, ĥ, for any value of the conductivity
k ∈ Ik, where Ik is the desired range of conductivities. Eq. (3.19) is now rewritten with
the new parameter, conductivity, considered as an extra-coordinate. Thus the new problem
consist in finding ĥ(x, ω, k;x0) that satisfies

iωĥ−∇ · (k∇ĥ) = 0 in Ω× Iω × Ik,

ĥ = 0 on ΓD × Iω × Ik,

n · k∇ĥ = δ(x− x0) on ΓN × Iω × Ik.
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The PGD approach must now determine an approximation ĥn(x, ω, k;x0) to the solution of
the previous problem, namely

ĥ(x, ω, k;x0) ≈ ĥn(x, ω, k;x0) =
n∑
s=1

Xs(x)W s(ω)Ks(k),

where extra separated functions must be determined; more precisely, those directly linked
to conductivity, namely Ks(k) for s = 1, . . . , n. The same greedy approach described earlier
can be applied with now an extra stage in the nonlinear solve to determine each Ks(k).
Once the multi-parametric solution has been computed, it can be postprocessed in the same
way explained in Section 3.2.6 in order to recover the solution at x0 and any time t. The
objective is that temperature at the monitoring point x0 for any instance t can be computed
in real-time for any conductivity k; that is, Eq. (3.18) is extended to approximate u(x0, t, k),
namely

u(x0, t, k) = F−1[û](x0, t, k) =
∫ t

0

〈
h( · , τ, k;x0), q( · , t0 − τ)

〉
dτ, (3.26)

where h = F−1[ĥ].
As noted earlier, the crucial point is to determine a reasonable approximation of the

generalized transfer function ĥ(x, ω, k;x0). The example presented in Section 3.5 is proposed
to demonstrate that such an approximation can be evaluated.

3.4.2 Inverse problem: an amplitude time-modulated calibration of
excitation

This inverse problem considers that the amplitude of the power given by a laser varies with
time because of uncontrolled power supply and has to be calibrated. Suppose an excitation
defined by α(t)q(x, t) where, as assumed in previous sections, q(x, t) is given (and, thus,
known) while its amplitude, which varies with time α(t) is not know. Temperature at the
monitoring point x0 for any instance t is obtained following the procedure described in
Section 3.2.4 for this new excitation, Eq. (3.18) becomes

u(x0, t) =
∫ t

0
α(t0 − τ)

∫
ΓN

h(x, τ ;x0) q(x, t− τ) dΓdτ.

Then, given a discretization of the unknown function α(t), for instance

α(t) =
nfit∑
j=1

αjNj(t), (3.27)

where Nj(t) are known interpolation functions, the coefficients α ∈ Rnfit can be determined
by a least-squares technique. This implies solving the normal equations Aα = b.
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Given the series of instants {t1, t2, . . . , tm} (with m ≥ nfit) at which temperature is going
to be measured, the matrix of the normal equations is determined once and for all, during
the offline phase, as

A = [aij ] =
[ m∑
r=1

ψi(tr)ψj(tr)
]

with
ψi(tr) =

∫ tr

0
Ni(tr − τ)

∫
ΓN

h(x, τ ;x0) q(x, tr − τ) dΓdτ.

Then, the measured values of temperature, umeas(x0, tr), at x0 and for the series of
instants {t1, t2, . . . , tm} allow to compute, in the online phase, the independent term

b = [bi] =
[ m∑
r=1

ψi(tr)umeas(x0, tr)
]
.

Finally the normal equations Aα = b are solved.

3.5 Numerical examples

3.5.1 Single-ply composite cylinder: verification of the proposed
methodology

Aiming to demonstrate the ability of the proposed method to monitor transient models, a
2D problem, which involves a heat flux moving over the outer boundary of a cylinder, is pro-
posed. The outer boundary is also subjected to heat convection while the other boundaries
are adiabatic. Fig. 3.1 depicts the problem statement. The initial boundary value problem
is described as 

ρcp∂tu−∇ · k∇u = 0 in Ω× I,

n · k∇u = −`(u− uext) + q on ΓOut × I,

n · k∇u = 0 on ∂Ω/ΓOut × I,

u = u0 on Ω× {0},

(3.28)

where ρ = 1kg/m3 is density, cp = 1J/(kg K) is specific heat capacity, k = 1 W/(m
K) is isotropic thermal conductivity and ` = 1W/(m2 K) is the heat transfer coefficient,
uext = 298K is the external temperature, ΓOut is the outer boundary where the laser impacts
and with a radius of 1.0m,

q(ξ, t) = 500 exp
(
−50(2ξ − πt)2)W/m2 (3.29)

is the inflow forcing excitation, and ξ is the local tangent coordinate along ΓOut. The tem-
perature is measured (i.e. the point where temperature is monitored) at the middle point of
the inner boundary. Finally, the thickness of the single-ply is 0.05m.
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X

Y

Z

Laser Trajectory

R = 1.00

t = 0.05

Measure point

Figure 3.1: Single-ply composite cylinder: problem statement.

The range of frequencies considered is f ∈ [−250, 250] Hz or, in terms of the angular
frequency used in all previous sections, ω ∈ Iω := [−500π, 500π]. Such a large interval of
frequencies has been chosen in order to be able to make a fair comparison with a reference
solution. The time-step of a signal and the maximum frequency that can be computed from
it are related by the Nyquist-Shannon theorem [122] as follows:

fmax = 1/2∆t. (3.30)

The finite element (FE) reference solution is obtained with a standard time-marching Crank-
Nicolson scheme whose time-step is chosen for accuracy considerations. In practice, a time-
step of 2ms is accurate enough, and thus the maximum frequency to be considered is 250
Hz. With that frequency, the time signal recovered after performing the inverse Fourier
transform has the same time-step as the FE reference solution.

The range [−250, 250] Hz is clearly an overkill because the frequency range of the imposed
heat flux q is in [−20, 20] Hz. This later range is determined because a Fourier transform of
the heat flux seen by a point on ΓOut reveals that harmonics of frequency greater than 20
Hz transfer a negligible amount of energy to the system.

Moreover, note that for a particular negative frequency, the transfer function must be
the complex conjugate of its symmetric (positive) counterpart. This is also a consequence
of the Nyquist-Shannon theorem. Here negative frequencies are also computed to verify
numerically that the PGD method reproduces a symmetric real part and an anti-symmetric
imaginary part.
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Figure 3.2: Single-ply composite cylinder: convergence of the generalized frequency transfer
function.

As discussed in Section 3.3 and depicted in Eq. (3.21), PGD is used to determine an
approximation, say ĥn, of the transfer function, ĥ, solution of Eq. (3.19). In fact, Fig. 3.2
shows the relative residue of Eq. (3.20) as the number of modes n increases. The normalized
residue is computed using the L2 norm of the discrete residue normalized by the norm of
the right-hand-side of Eq. (3.20a).

For demonstration purposes tolerances are taken small, beyond engineering accuracy.
However, 19 terms induce negligible (below 10−8!) normalized relative residues. The average
number of fixed-point iterations is 25 (same tolerance of 10−8). Since 19 terms are necessary
to reduce the residual norm below 10−8, the total amount of FE solves in the offline stage
is around 475.

Note that spatial modes and frequency modes are localized. Fig. 3.3 and Fig. 3.4 show
respectively the first three spatial and frequency modes. These modes are X1, W 1, X2,
W 2, X3 and W 3. Since all of them are complex, the real part and the imaginary part
are depicted. As expected, the real part of the frequency modes is symmetric, while the
imaginary part is anti-symmetric.

Notice that a uniform spatial discretization is used with 770 bilinear quadrilateral ele-
ments of size 0.01m. This implies 930 nodes with scalar complex unknowns. A non-uniform
discretization is used for frequency because it varies more rapidly near the origin. The mesh
consists of 500 C0-continuous linear elements refined around the zero-frequency using a cubic
polynomial ω3 for the element length. Since frequency modes do not involve any derivative
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Figure 3.3: Single-ply composite cylinder: first 3 PGD spatial modes real (left) and imagi-
nary (right).
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Figure 3.4: Single-ply composite cylinder: first 3 PGD frequency modes.
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Figure 3.5: Single-ply composite cylinder: difference between PGD and FE solutions, real
(left) and imaginary (right) parts, for frequencies 0 Hz (top) and 250 Hz (bottom).

their corresponding algebraic equation can be solved point-wise. However, a FE discretiza-
tion is introduced to approximate the frequency separated functions in a least-squares sense.

To further verify that the PGD approximation of the generalized transfer function ĥn

is reasonable, it is evaluated at the extreme frequencies 0 and 250 Hz and then compared
with a direct FE resolution of Eq. (3.15) for those precise frequencies. Fig. 3.5 depicts
the difference between both approximations. The generalized solution gives approximations
very close to those obtained with an FE computation, errors are always below 10−5.

Finally, once ĥn is determined and its inverse Fourier transform computed, hn = F−1[ĥn],
Eq. (3.18) is used to determine the temperature at the desired monitoring point x0 for a
given excitation. The evaluation of the PGD approximation and its inverse Fourier transform
is performed only once for any excitation, it is the offline phase. The actual application of
the convolution, see Eq. (3.18), for any excitation in order to determine the temperature at
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Figure 3.6: Single-ply composite cylinder: comparison of the temperature evolution at point
x0 for a moving heat flux on the outer boundary for the proposed PGD-based solution
(discontinuous blue) and the standard FE (solid red).

the monitored point is the online or post-process phase. Here this is done for the imposed
external flux q(ξ, t), see Eq. (3.29), in the time interval t ∈ [0, 1] seconds, which is the
window of interest. The convolution integral is discretized in time using the time-step that
comes naturally from the greatest frequency considered in the generalized transfer function.
This follows the previous discussion on the use of the Nyquist-Shannon theorem [122].

The evolution with time of the temperature at x0 is shown in Fig. 3.6. The reference
solution (solid red line) is computed with FE and a Crank-Nicolson time-marching scheme.
This scheme uses a ratio ∆t/∆x2 = 20 which has errors below 0.4 10−4 compared with
a reference solution using ∆t/∆x2 = 1/2 to ensure an accurate transient response. Note
that each time-step requires the resolution of a system of equations whose dimension is
determined by the FE mesh used.

It is clear from this figure that the proposed method produces an accurate response.
However, it is more important to note that the online phase for PGD-based approximation
of temperature, which is determined at 500 instants (equispaced by 2ms), requires with
MATLABr on a laptop 0.34s, which is almost a third of the physical time 1s. This confirms
that given the generalized transfer function hn and an imposed heat flux q(ξ, t) along the
outer boundary, the temperature at a point x0 can be evaluated in real-time (actually faster
than real-time!). Note that this is 35 times faster than the full FE solution, which needs of
around 12 seconds to be computed with a standard commercial code.
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Figure 3.7: Multi-ply composite cylinder: convergence of the generalized frequency transfer
function.

3.5.2 Multi-ply composite cylinder: response verification and im-
perfection influence

An imperfection is introduced in the previously studied problem. That is, the same ge-
ometry, see Fig. 3.1, and the same equations, see Eq. (3.28), with the same parameters
are considered. However, now a zero thickness imperfection of a prescribed length is intro-
duced in the middle of the ply just between the inner boundary and the outer boundary and
centered at the measuring point. This imperfection models a possible delamination of the
composite and it is modeled as a perfect adiabatic boundary. Obviously this imperfection
affects convergence but not drastically, see Fig. 3.7 for a delamination length of 0.2m. Its
influence is more clear when plotting modes of the generalized transfer function. In fact,
the same comparison shown earlier (that is, the difference between a PGD approximation
of the generalized transfer function ĥn and the direct FE) is shown in Fig. 3.8 for the
extreme frequencies 0 and 250 Hz. Recall that computations are still done for the whole
range [−250, 250] Hz to further verify the symmetric nature of the solution. Again errors
are always below 10−5.

As discussed at the end of Section 3.2.3, the generalized transfer function Eq. (3.8) is
non-Hermitian but it is symmetric. The later property proves sufficient for reciprocity, but
it is well known that there is no proof of monotonic convergence for the PGD method when
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Figure 3.8: Multi-ply composite cylinder: difference between PGD and FE solutions, real
(left) and imaginary (right) parts, for frequencies 0 Hz (top) and 250 Hz (bottom).
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Figure 3.9: Multi-ply composite cylinder: comparison of the temperature evolution at point
x0 for the proposed PGD-based solution (discontinuous) and the standard FE (solid) for
different defect lengths.

confronted to non-Hermitian operators. Thus, the convergence shown in Fig. 3.7 shows a
slight increase of the residual norm for the last computed terms.

The influence of the imperfection is even more clear when plotting temperature evolution
at the measuring point. Fig. 3.9 shows three cases with their corresponding (expensive)
comparison with FE, the no defect case, same curves shown in Fig. 3.6, and two defects,
one of length 0.1m, the other with length 0.2m. Since the computer cost of the reference FE
solution is similar to the one of the previous section, its overhead with respect to the prosed
method is also of the same magnitude. The number of terms used in the PGD expansion is
21 and 25 for the short and long imperfection, respectively, recall that 19 were used with no
imperfection. Thus, the imperfection does not increase the number of terms dramatically.

This methodology clearly shows that, in real-time, defects can be detected as the differ-
ence between measured and computed temperature values. Moreover, it further opens the
possibility to determine the defect nature from its thermal signature.

3.5.3 Multi-parametric extension

As presented in Section 3.4.1 this PGD-based approach presented here has a potentiality that
exceeds real-time monitoring of temperature at a given location. More precisely, thermal
conductivity, k, can be chosen as an extra parameter. The generalized transfer function
is now parametric in k and consequently, temperature at the monitoring point x0 for any
instance t can be computed in real-time for any conductivity k, i.e. u(x0, t, k), see Eq. (3.26).

108



3.5. Numerical examples

The single-ply example presented and discussed in Section 3.5.1 is further generalized for
any conductivity k ∈ [1, 20]W/(m K). In this section, the range of frequencies is up to 60
Hz instead of 250 Hz because there is no need to use the same time-step as the FE reference
solution. In any case, the range of frequencies is taken such that the proper symmetries are
recovered in the computed solution. This is clearly seen in the modes shown in Fig. 3.10
and Fig. 3.11.

This problem however is much more challenging because there is an extra parameter.
But more important, these difficulties are relevant because variations in thermal conductiv-
ity introduce major changes in the real behavior of the thermal field. This is clearly observed
in the modes associated to conductivity in Fig. 3.11. Note the large variations introduced
close to the lower bound of the thermal range, recall k ∈ [1, 20]W/(m K). That is, for low
conductivities solutions must localize close to the heat source. This has a clear influence in
the convergence process of PGD, see Fig. 3.12. Although convergence to engineering pre-
cision (0.5 10−2) is obtained with 14 modes, the rate of convergence is slower compared to
space-frequency separated representations computed in the previous cases. Moreover, if fur-
ther precision is required (beyond engineering accuracy), the algorithm fails to converge due
to the non-Hermitian character of the operator. See [15] for further details and strategies to
overcome this issue. Moreover, regarding the fixed-point convergence of the multi-parametric
problem (i.e. convergence of each greedy algorithm), the average number of iterations per
mode is now increased to 59. Consequently, a total of 826 FE solves are done during the
offline phase to compute the necessary 14 terms of the PGD expansion. Note, that a brute
force approach sampling (no functional approximation) of the generalized transfer function
at the 121 frequency and 77 conductivity nodes would imply 9317 FE solves. The cost of the
brute force computation of the transfer functions depends on the fidelity of the discretization
of the frequency and conductivity spaces. Whereas, the cost of the computation of the PGD
expansion (and the number of terms in the expansion) is largely independent of the fidelity
of the discretization of the frequency and conductivity spaces, assuming the discretization
is sufficiently fine.

Nevertheless, the PGD-based scheme converges globally although its local behavior, pre-
cisely for low conductivity, shows less precision compared to larger values of k. This is better
appreciated in the temperature evolution at the measuring point. Fig. 3.13 shows this evo-
lution for several values of the conductivity with their corresponding (expensive) comparison
with FE. Results are in very good agreement with the reference FE solution and precision
increases as k increases.

Since the largest frequency considered for the evaluation of the generalized transfer func-
tion is 60Hz, the response at the measuring point x0 is recovered with a time-step of 8ms,
recall Eq. (3.30). Consequently, the computational time needed for the online phase is
faster than in previous examples, only 0.09 seconds. Whereas, the FE reference solution is
computed with the same time-marching scheme described in previous sections (∆t = 2ms)
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Figure 3.10: Single-ply multi-parametric composite cylinder: first 3 PGD spatial modes real
(left) and imaginary (right).
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Figure 3.11: Single-ply multi-parametric composite cylinder: first 3 PGD frequency (left)
and thermal conductivity (right) modes.
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Figure 3.12: Multi-parametric convergence of the generalized frequency transfer function.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
300

350

400

450

500

550

time (sec)

te
m

p
 (

K
)

 

 

k =1.00

k =3.00

k =5.00

k =7.25

k =13.50

k =20.00

Figure 3.13: Multi-parametric comparison of the temperature evolution at point x0 for
the proposed PGD-based solution (discontinuous) and the standard FE (solid) for thermal
conductivities.
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because this implies that 20 ≤ k∆t/∆x2 ≤ 400. Therefore, both solutions are not strictly
comparable. The computational time associated to the FE solution remains unchanged
(around 12 seconds) and the online stage of the proposed approach is now 133 times faster
than the FE one.

This example clearly demonstrates the applicability of this approach to inverse problems
where the measured temperature can be used to determine thermal conductivity.

3.5.4 Amplitude identification

This example shows the applicability of the proposed approach for the model case of iden-
tification discussed in Section 3.4.2. First, some measured temperature is needed, that is,
umeas(x0, tr) for r = 1, . . . ,m. In this case, the “measured” temperature is synthetically
generated at m = 501 instances (∆t = 2ms) with an inflow forcing excitation equal to the
one defined in Eq. (3.29) whose amplitude is modulated by [1 + cos(2πt)]/2. That is, a FE
code with a Crank-Nicolson time-marching scheme is used to generate the temperature data
at the monitoring point under an external heat source

q(ξ, t) = 250[1 + cos(2πt)] exp
(
−50(2ξ − πt)2)W/m2

.

Second, this data is used to determine the laser input amplitude following the procedure
described in Section 3.4.2. The amplitude of the excitation is assumed not known and it is
approximated following a piecewise linear approximation with nfit = 50 (i.e. a uniform mesh
of 51 nodes each 20ms), see Eq. (3.27). Fig. 3.14 shows the synthetically generated tem-
perature at the monitoring point (left) and a comparison (right) between the approximated
nodal values (blue markers) and the reference amplitude (solid red line). The coincidence is
remarkable.
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Figure 3.14: Amplitude identification: synthetically generated temperature measurements
(left) used to calibrate the amplitude of the heat source (right), calibrated values (blue
markers) and reference solution (solid red line).
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Chapter 4

An a priori Empirical
Interpolation Method

A primary requirement of the Proper Generalized Decomposition (PGD) algorithm to be
efficient consists in being able to write the problem data in the canonical tensor represen-
tation. When this representation is not trivial, there exist several approaches to compute
it. Among them, we can distinguish between projection, series expansion and interpolation-
based methods.

In this Chapter, we explore these alternatives and specially their application to nonlinear
problems solved in the PGD framework. A new interpolation-based method is introduced:
the A priori Empirical Interpolation Method (AEIM). We shall pay special attention to
nonlinear problems as they always introduce The AEIM is inspired from the Empirical
Interpolation Method (EIM)[18, 35] in what concerns the election of the interpolation points,
but unlike it, the interpolation basis is not known beforehand. The method presented here
is a priori in such sense: it is able to choose both —and simultaneously— the interpolation
basis and the interpolation points so as to minimize the distance between the multivariate
function and its separated representation.
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4.1 Nonlinear problems in the PGD framework

Many models encountered in physics and engineering are nonlinear and, ideally, one would
like to be able to solve multidimensional models reducing its computational complexity and
thus speeding-up simulations in the same manner as achieved for linear models. Unfortu-
nately this is not possible today mainly due to the separability issues introduced by nonlinear
equations.

As it has been shown in Chapter 1, the Proper Generalized Decomposition (PGD) is a
multilinear solver —differential or algebraic, depending on the interpretation—. Therefore,
when nonlinear problems are to be solved, the classic approach consists in coupling PGD with
a nonlinear method: fixed-point, Newton, Large Time Increment method (LATIN) [83, 85]
or Asymptotic Numerical Method (ANM) [42, 43], just to cite some of the possibilities that
have already been tested in former works.

Nonlinear problems are in general difficult and they cannot be treated in an uniform
manner: each nonlinear problem requires its own appropriate numerical techniques. In
spite of that, nonlinear problems addressed in the PGD framework share some primary
difficulties concerning both the separability of both coefficients and operators; see §1.5.3 for
an introductory discussion. This Chapter is concerned with these primary difficulties. They
appear disregarding the nonlinear method chosen when at some point of the implementation
the nonlinear term needs to be evaluated at the previous iterate of the solution (thus known).
The question is therefore how to evaluate the nonlinear term in separated form. Observe
that even if the previous iterate is known in separated form, the nonlinear term cannot be
written in separated format trivially.

Therefore, it is important to emphasize that we are not discussing the convenience of
choosing a nonlinear method or another but the different methods to evaluate the nonlinear
term in separated form.

4.1.1 Illustrating the separated representation of the operator

We shall first consider a linear equation that will be then turned into a nonlinear one to
illustrate the difficulties that arise when one tries to set the problem in the usual PGD
separated tensor structure. Recall that PGD takes advantage of this structure to split
the high-dimensional problem into a series of low-dimensional problems. Low-dimensional
problems are only coupled through coefficients computed from inner products in low dimen-
sions. When nonlinear problems are considered, the inner product separation property —see
§1.1.3.3— is of no help and computing the coupling coefficients requires performing integrals
in high-dimensional domains, which destroys the computational performance of PGD.
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4.1.1.1 Linear diffusion problem

Let I := I1 × · · · × ID be a multidimensional domain and x := (x1, . . . , xD) ∈ I, a point
in it. Consider the variational form of the Laplace equation: find u ∈ V(I), an appropriate
function space, such that

〈k∇u,∇w〉 = 0 ∀w ∈ V(I),

with appropriate boundary conditions and k being a linear, homogeneous and isotropic
diffusion coefficient. Observe that:

〈k∇u,∇w〉 =
D∑
d=1
〈k∂xdu, ∂xdw〉, (4.1)

where ∂xd stands for ∂/∂xd. Proceeding very much as in §1.1.3.2, we introduce finite di-
mensional approximation spaces Vd := span{v1≤i≤Nd

d }, for 1 ≤ d ≤ D, from which a tensor
product space V := ⊗Dd=1Vd can be built. We denote by Nd the dimension of Vd. Using the
Galerkin method, both u and w belong to V . Taking the d-th term of Eq. (4.1) to simplify
the notation, it can be written as:

〈k∂xdu, ∂xdw〉 =
N1∑

i1,j1=1
· · ·

ND∑
iD,jD=1

〈k∂xd
D⊗
d=1

vid , ∂xd

D⊗
d=1

vjd〉ui1,...iDwj1,...jD ,

where Nd is the dimension of the approximation space in dimension d. Given id, jd for
1 ≤ d ≤ D, the inner product in the last expression can be rewritten as follows:

〈k∂xd
D⊗
d=1

vid , ∂xd

D⊗
d=1

vjd〉 = 〈kvi1 , vj1〉1 · · · 〈∂xdvid , ∂xdvjd〉d · · · 〈viD , vjD 〉D, (4.2)

where we have applied the separation property of the inner product, see Eq. (1.18). It
is worth to recall that 〈 · , · 〉d denotes a scalar product in Vd. Eq. (4.2) clearly defines
mass matrices for each dimension except the d-th one, where a diffusion matrix is found.
The diffusivity parameter has been assigned to the first scalar product by convention. In
algebraic form, the problem to be solved is: find u ∈ R|N | such that

wTAu = wT b ∀w ∈ R|N |,

with

A =
D∑
t=1
⊗Dd=1A

t
d, and At

d =
{
Md if d 6= t

Kd if d = t
, (4.3)

We have denoted N := N1×· · ·×ND, the total dimension of the tensor product space V ,
and | · | the cardinal of the set. Besides,Md andKd are the mass and the diffusion matrices
in dimension d, respectively. Notice that the Laplacian operator with a linear, homogeneous
and isotropic diffusion coefficient provides naturally a separated tensor structure as a rank-D
operator.
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4.1.1.2 Nonlinear diffusion problem

Let us consider now the same problem but with a nonlinear diffusivity parameter, denoted by
k[u]. Although it is not the aim of this chapter to analyze the different linearization schemes
that might be applied to solve such nonlinear problem —see §4.1.2 for a short review—, let
us consider for the sake of simplicity and without loss of generality that after ` nonlinear
iterations we have computed an approximation of the solution, denoted by u`. Assume that
a rank-R separated representation of such approximation is known; it is denoted by u(R)

` .
Even in such favorable case, observe that k` := k[u`] ∈ R|N | is extremely easy to evaluate
but impossible to handle in practice because |N | is potentially too big. Or equivalently, k` is
a tensor whose only known representation is the “explicit” one. Of course, one would like to
have a lighter representation such as the canonical or the hierarchical Tucker, for instance,
as it has been shown in §1.3.3.

Besides, the lack of tensor structure of the diffusion coefficient implies that the operator
A ∈ R|N |×|N| cannot be written, in principle, in a tensor separated structure similar to that
shown in Eq. (4.3). To make it possible, one must compute a tensor representation of k`,
which in the PGD framework means computing a canonical representation:

k` ≈ k(M)
` :=

M∑
m=1

km, with km := ⊗Dd=1k
m
d , (4.4)

that for small M is a much less expensive representation of k`. It will be shown in next
lines that Eq. (4.4) yields a separated tensor representation of the operator. To ease the
exposition, let us consider a functional representation of Eq. (4.4) instead of the tensorial
one, since both are equivalent:

k` ≈ k(M)
` :=

M∑
m=1

km, with km :=
D∏
d=1

kmd .

Then, the “nonlinear” counterpart of Eq. (4.1) can be written as follows:

〈k∇u,∇w〉 =
D∑
d=1

M∑
m=1
〈km∂xdu, ∂xdw〉.

After introducing the approximation spaces as in Eq. (4.2), the inner products to be com-
puted in order to obtain the entries of the operator can be written in the following separated
form:

〈km∂xd
D⊗
d=1

vid , ∂xd

D⊗
d=1

vjd〉 = 〈km1 vi1 , vj1〉1 · · · 〈kmd ∂xdvid , ∂xdvjd〉d · · · 〈kmD viD , vjD 〉D. (4.5)

It is important to emphasize that in Eq. (4.5) it has been possible to make use of the
separation property of the inner product thanks to the separated structure of each term of
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the rank-M decomposition, km. This yields a rank-(D × T ) operator defined as follows:

A =
D∑
t=1

M∑
m=1
⊗Dd=1A

t,m
d , and At,m

d =
{
Mm

d if d 6= t

Km
d if d = t

,

where matrices Mm
d and Km

d are obtained by computing1 and assembling2 the following
inner products:

〈kmd vid , vjd〉d  Mm
d and 〈kmd ∂xdvid , ∂xdvjd〉d  Km

d .

Remark 4.1 (Nonlinear operators). In this section, we have illustrated the non-separability of

operator due to the presence of a nonlinear diffusion coefficient. However, the same kind of issue

would have been found if nonlinear differential operators were considered. In what follows, and

for the sake of simplicity, only non-separable and nonlinear coefficients shall be considered.

4.1.2 Linearization schemes and their coupling with PGD

As mentioned in §4.1, nonlinear problems are classically treated in the PGD framework by
coupling a linearization scheme and the PGD solver. To ease the exposition, let us set the
nonlinear problem to be solved in the following abstract algebraic form: find u ∈ R|N | such
that

〈A(u),w〉 = 〈b,w〉 ∀w ∈ R|N |.

Here 〈 · , · 〉 is simply the Euclidean scalar product. Among the most classic linearization
schemes, one can cite the following:

Fixed-point linearization. It can be used if the operator can be expressed as the sum of
a linear and nonlinear part, that is A(u) = Alu+An(u). In such case, if at iteration
` an approximation u` has been computed, u`+1 can be computed by solving

〈Alu`+1,w〉 = 〈b,w〉 − 〈An(u`),w〉

with the PGD method, which means that u`+1 is built from rank-one corrections us-
ing an alternating directions algorithm. This approach implies that at each nonlinear
iteration, a full PGD problem has to be solved. Besides, the evaluation of is poten-
tially very expensive unless a separated tensor representation is found, as it has been
discussed in §4.1.1.2.

1In practice, it is done by choosing an integration rule such as the Gauss quadrature. Let us remark that
functions kmd can be readily evaluated at the quadrature points.

2Since the notation is quite cumbersome, it is worth to clarify that here assembling means to loop over
every id, jd.
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Incremental fixed-point linearization. In this case, the ` + 1 iterate is computed by
updating u` as follows: u`+1 = u` + u, where u is the incremental correction. It is
computed by solving

〈Alu,w〉 = 〈b,w〉 − 〈Alu`,w〉 − 〈An(u`),w〉

Intermediate PGD projections —see §1.5.1 for the definition of PGD projection—
may be convenient to control the rank of the solution. Otherwise, it is expected to
grow rapidly due to the incremental formulation which does not restart the separated
representation from one nonlinear iteration to another, as in the previous case, but
reuses the last iterate. The rank of the correction may be set free, that is, the PGD
algorithm computes as much modes as needed to solve the linearized equation. In other
cases, the rank of the correction might be predefined. However, this last option is likely
to diverge in many cases since u`+1 does not satisfy the linearized equation. Whatever
is the rank of the correction, if a standard PGD algorithm is used to computed, it will
be built from successive rank-one corrections.

Newton methods. As in the previous case, the ` + 1 iterate of the solution is sought as
u`+1 = u` + u, and the correction is computed from:

〈J ` u,w〉 = 〈b,w〉 − 〈A(u`),w〉, (4.6)

where J ` denotes the jacobian matrix at the ` iterate. Of course, quasi-Newton meth-
ods in which the jacobian is not updated every nonlinear iteration are possible. Newton
methods are described in many textbooks such as in [137] for finite element applica-
tions. In the PGD context, Newton methods pose several computational difficulties.
The first concerns the evaluation of the right-hand side of Eq. (4.6), which in fact
represents the weak form of the residual at the `-th iteration. As discussed before,
its evaluation is potentially very expensive unless a separated tensor representation is
found. Furthermore, since the Newton method requires not only evaluating the resid-
ual but also computing the jacobian, the same kind of issue is encountered again when
one attempts to compute numerically the jacobian.

Asymptotic Numerical Method (ANM). Let us assume again that the operator can
be expressed as the sum of a linear and nonlinear part. Then we introduce a loading
parameter λ such that

〈Alu,w〉 = 〈b,w〉 − 〈λAn(u),w〉. (4.7)

Observe that for λ = 0 the linear problem whose solution is denoted by u0 is obtained
whereas the solution of the nonlinear problem, the one we are really interested in, is
obtained for λ = 1. The ANM defines an asymptotic expansion for both the unknown
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and the loading parameter in terms of the expansion parameter, denoted here by α,
as follows:

u = u0 + αu1 + α2u2 + . . .

λ = λ0 + αλ1 + α2λ2 + . . .
(4.8)

If the nonlinear term has polynomial structure, then it can be expressed easily as an
asymptotic expansion whose coefficients can be recursively identified. Consider the
following example to illustrate the procedure:

Example 4.1 (Illustrating ANM procedure). Let us assume for the sake of simplicity that
An(u) = u2. Then from Eq. (4.8) the nonlinear term can also be expressed as the following
asymptotic expansion:

An(u) = q0 + αq1 + α2q2 + . . . with qp = 2u0up +
p−1∑
i=1

ui up−i, p = 1, 2, . . . .

This gives the following linear equation to be solved for each order p ≥ 1:

〈Alup,w〉+ 〈2λu0up,w〉 = −
p∑
i=1

〈λuiup−i),w〉.

Once the solution, the loading parameter and the nonlinear term have been expressed
in terms of the expansion parameter, they can be plugged into Eq. (4.7). Then,
the different powers of α must be identified yielding a sequence of linear problems
to compute the expansion coefficients up, where p is the asymptotic expansion order.
PGD is used to compute a separated tensor approximation of up. Two advantages
of this method are to be highlighted. First is that the operator remains unchanged
during the iterations and does not need to be recomputed, unlike Newton method.
This can be observed in the previous example: at any order p ≥ 1, the operator to be
assembled only has to take into account 2u0 into account, which the solution of the
linear problem. The second advantage is that the right-hand side, at each order, can
be computed from the lower order coefficients.

Two disadvantages must also be mentioned. First is that the rank of the right-hand
side is expected to grow rapidly with the order of the expansion. Observe again the
expression of qp in the previous example: it involves the multiplication of expansion
coefficients which have separated structure because they have been computed using the
PGD. Intermediate PGD projections could be used to control the rank growth. The
second disadvantage concerns the stability of the method. Asymptotic are convergent
inside its convergence disc and need to coupled with continuation strategies [89].

Finally, other strategies —although not covered here— could be also envisaged. Among
them, we highlight LATIN strategies, considered in [83, 85], or Sparse Grids, considered in
[31].
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Remark 4.2 (Solution’s rank as a function of the linearization scheme and PGD coupling). A

very important issue when solving nonlinear problems in the PGD framework is how to couple the

linearization scheme and the Greedy enrichment of the PGD solution. It has been observed that

in many cases, the rank of the solution is subsidiary of the nonlinear iterative scheme. That is, the

separated representation accumulates modes during intermediate stages of the nonlinear process

which are not necessarily relevant in the final converged solution. In consequence, separated

representations of rank unnecessarily high are obtained. PGD projection can be used to obtain

a more compact separated representation of the final solution. However, a bigger computational

cost has to be paid during the problem resolution. The investigation of the different coupling

alternatives is an open issue not covered in this work.

4.2 Separability of multivariate functions

In what follows, we are simply supposing that we are given a multivariate function, which is
admitted known and easy to evaluate, and we shall assume that a separated representation
of such function wants to be computed. The multivariate function may represent:

• A coefficient which depends on the separated coordinates, but whose separated repre-
sentation in terms of these coordinates is not known.

• A solution-dependent (i.e. nonlinear) coefficient in a partial differential equation.

• A nonlinear differential operator.

Let us emphasize that if given a multivariate function, we are able to:

• first, provide its separated representation,

• and second, compute such separated representation at a cost roughly independent on
its dimension,

then it is possible to write a separated formulation of the problem adapted to the computa-
tional requirements of the PGD. Therefore, given a multivariate function f : I ⊂ RD → K,
either real or complex-valued, the objective is to find a rank-M approximation:

f ≈ f (M) :=
M∑
m=1

ψm1 · · · ψmD . (4.9)

It is important to notice that we are not truly interested in finding the best possible sep-
arated representation, which is a very hard problem out of the scope of this thesis and
ill-posed in general for the canonical formats; our main concern is to be able to compute
such approximation with low computational expenses.
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A tensor formulation of the problem is of course possible and equivalent to the func-
tional version given before. One may simply introduce a discrete version of the multivariate
function which constitutes a tensor in the sense of multidimensional array. Therefore, let us
consider a regular cloud of pointsMN , with N = (N1, . . . , ND) nodes per direction. Then,
we denote by f ∈ K|N | the explicit representation of the tensor version of the multivariate
function f . We seek a canonical tensor representation such that:

f ≈ f (M) :=
M∑
m=1

ψm1 ⊗ · · · ⊗ψ
m
D . (4.10)

In what follows, we shall make no particular distinction in the use of either Eq. (4.9) or
Eq. (4.10). The functional or the tensor version will be chosen depending on the aspects
that want to be highlighted.

4.3 State of the art on separated representations of mul-
tivariate functions

Several strategies are possible to compute a separated representation such as the one shown
in Eq. (4.9). They can be classified in three main categories: projection-based methods and
interpolation-based methods.

4.3.1 Projection-based methods

Projection-based methods are formulated so as to minimize the error between f and its
low-rank representation f∗, defined by:

e = ‖f∗ − f‖2, (4.11)

where ‖ · ‖ denotes the Euclidean norm. Other particular norms are analyzed below. A first
class of algorithms has been studied in §1.3.4, where explicit algorithms to compute low-
rank tensor approximations where presented. In particular, the High-Order Singular Value
Decomposition (HOSVD) and the Hierarchical Singular Value Decomposition (HSVD) were
analyzed. Both are based on performing matricizations —that is, reshaping the tensor—
and performing successively the SVD of such matricizations in order to find the dominant
singular vectors. Their principal limitation is that explicit manipulation on the full tensor
have to be performed, which in higher dimensions is not possible.

These algorithms provide Tucker and Hierarchical tensor representations, respectively.
Both representations provide a separated tensor representation of the original tensor. Al-
though this representation does not coincide with the canonical one, it is possible to take
advantage of it in the PGD framework to formulate the problem with the desired separated
structure.
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The PGD projection algorithm, which has already been discussed in §1.5.1, is an alter-
native. It simply solves Eq. (4.11) using the PGD algorithm, as explained in §1.4.2. The
operator to be used in this case is the identity. It provides a canonical tensor structure, but
unlike the previous methods, in the general case, it does not enjoy from any quasi-optimality
condition. The PGD projection also requires the explicit manipulation of the full tensor.
From a computational point of view, this means that the separation property of the in-
ner product cannot be used and therefore, the coefficients that couple the low-dimensional
problems can only be computed by computing inner products in dimension D − 1.

Since solving Eq. (4.11) using an Euclidean norm is very expensive, other alternatives
inspired from gappy methods are possible [51, 132]. They are based on the use of the so-
called gappy norms to reconstruct corrupted data or incomplete fields. Let f be the true
field and f∗ the reconstructed one. The idea is to minimize the error defined by

e = ‖f∗ − f‖2g := ‖P T (f∗ − f)‖2, (4.12)

where P is a extractor matrix whose singleton columns at the known, i.e. non corrupted,
entries. In such manner, the error is measured with respect to the reliable data. This
method has been tested for instance in the context of a posteriori, POD-based model order
reduction. In this approach, f∗ is assumed to live in a POD reduced basis. The combination
coefficients are found precisely solving the minimization problem defined in Eq. (4.12), using
the gappy norm.

Hence the question is how to use this approach in the context of a priori tensor approxi-
mations. Of course, we are not interested in reconstructing data but in taking advantage of
the gappy norm to reduce the computational complexity of computing the approximation.
The idea is therefore to exploit the gappy norm in order to compute an approximation by
evaluating only some points. This is an appealing alternative that, even if it is not covered
in this work, it might be interesting to explore in future research. Two questions remain
open:

• First is the election of the approximation basis. In the a posteriori context, a POD or
RBM basis can be chosen, but in the PGD context the election of the approximation
basis is not trivial. Of course, the approximation basis should be chosen with canonical
tensor structure.

• Second is how to choose the gappy points, that is, how to perform the sampling. Is
there any particularly efficient strategy?

4.3.2 Interpolation-based methods

Interpolation-based methods aim at computing an approximation of the multivariate func-
tion by performing evaluations only at the interpolation points. In such sense, they are in the
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same spirit that gappy methods. Two ingredients are needed to perform an interpolation:
the interpolation basis and the interpolation points. Let us assume that the interpolation
basis is given by a set of functions {ψ1≤m≤M}. The multivariate function is approximated
in terms of such basis as:

f ≈ f∗ :=
M∑
m=1

αm ψ
m.

Coefficients αm are chosen such as to enforce that the approximation matches the function
at the interpolation points, i.e. f(xm) = f∗(xm) for 1 ≤ m ≤ M . With that condition,
a linear square system of size M has to be solved to compute the coefficients. Of course,
the system has to be invertible, which requires that the set of functions that constitute
the interpolation basis must be linearly independent and the interpolation points must be
different.

4.3.2.1 The Empirical Interpolation Method

The Empirical Interpolation method (EIM) [18, 35] is probably the most popular interpola-
tion based technique in the MOR community, specially in both the POD and Reduced Basis
framework. Recall that these communities perform a posteriori model reduction. In gen-
eral, they use Galerkin projection to obtain the reduced system. However, when nonlinear
problems are faced, the nonlinear term has to be evaluated repeatedly during the resolution
and projected each time, which implies that the computational complexity still depends
on the dimension of the full model. EIM is used in this context to avoid projection-based
techniques. The interpolation basis is obtained by computing several snapshots not only
of the solution, but also of the nonlinear term (that is, the multivariate function). If these
snapshots are sufficiently representative, the interpolation basis is expected to represent well
the nonlinear term. Being answered the question of how to choose the interpolation basis,
we shall now focus on the interpolation points. In the EIM context, they are chosen using
the Magic Points algorithm.

4.3.2.2 Magic Points

Assume the interpolation basis is ordered in descend order, which is easy if it comes from
a POD. The Magic Points [92] associated to that basis are defined progressively as follows.
The first interpolation point is set where the first basis function attains its maximum, in
absolute value; that is:

x1 = arg max
x∈I

|ψ1|.

Assume that we have already computed the first k interpolation points. Recall that a total
of M points have to be computed, being M the size of the interpolation basis. The basic
idea to choose the (k+ 1)-th point, associated to ψk+1, is to try to describe this interpolator
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with the k previous basis functions and then locate the point where the discrepancy is the
biggest. Therefore, the following square system

k∑
m=1

αm ψ
m(xj) = ψk+1(xj), 1 ≤ j ≤ k ⇒

α = Ψ−1ψ,

Ψ ∈ Kk×k and α,ψ ∈ Kk,

allows computing coefficients αm such as the basis function ψk+1 is interpolated using the k
previous basis functions and their corresponding interpolation points: {ψj ,xj}1≤j≤k. Then,
we define the residual of the approximation as:

r := ψk+1 − ψ∗, with ψ∗ :=
k∑
j=1

αj ψ
j ,

where ψ∗ is defined from the coefficients previously computed and expresses an approxima-
tion of ψk+1. The interpolation point is chosen at the point that maximizes the absolute
value of the residual:

xk+1 = arg max
x∈I

|r|.

Once the set of interpolation points is computed from the interpolation basis, the nonlin-
ear term —or in general, the multivariate function— can be approximated readily by solving
a small system of equations:

M∑
m=1

αm ψ
m(xj) = f(xj), 1 ≤ j ≤M ⇒

α = Ψ−1f ,

Ψ ∈ KM×M and α,f ∈ KM .

4.3.2.3 Extension to the a priori and multidimensional framework

Interpolated-based algorithms are very attractive as they offer an effective way to approx-
imate multivariate functions by paying a relatively low computational cost. However, the
EIM’s formulation is clearly adapted to the a posteriori model reduction framework and its
extension to the a priori framework is not straightforward. The following questions arise:

• How do we choose the interpolation basis? In the EIM procedure described before it
is obtained by computing snapshots of the function, which of couse cannot be done in
the a priori setting. Besides, for problems defined in several dimensions, snapshots are
an explicit tensor representation that might not be possible to handle.

• How do we provide tensor structure to the interpolation basis? Of course, in the PGD
framework we need the basis to possess a separated tensor structure and therefore this
is another requirement to impose to the interpolation basis.

• Assuming the interpolation basis is known and has separated tensor structure. How
do we apply the Magic Points algorithm in multidimensional problems? It is not
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straightforward to find the maximum absolute value of a multidimensional residual,
even if it has separated tensor structure. A full inspection of the residual is, in general,
prohibitive.

A first approach which answered the two first questions but not the third was considered
in [40]. It consisted in using as interpolation basis the modes of the solution. A rather
simple nonlinear problem was solved using this technique, but several issues were noticed.
First was that the nonlinear term was not accurately captured. An second was that the
number of modes was relatively high since we were forcing the algorithm to add modes just
to have enough functions to capture the nonlinear term. This reveals that the choice of the
interpolation basis is far from optimality.

4.4 A new algorithm: a priori Empirical Interpolation
In this section a new computational strategy to compute separated representations of mul-
tivariate functions is presented. It is inspired from the Empirical Interpolation Method
proposed, and it can be seen as its extension the a priori multidimensional framework. The
main features of the method are the following:

• It provides the interpolation basis with canonical tensor structure as well as the inter-
polation points.

• The interpolation basis is constructed progressively using a greedy algorithm.

• Both interpolation basis and interpolation points are computed simultaneously using
an alternating directions algorithm which implements a cheap search strategy to find
the point where the residual of the approximation is maximum.

• This algorithm only requires performing function evaluations and it reduced signifi-
cantly the computational cost associated to projection-based algorithms.

4.4.1 Illustrating the algorithm with a two dimensional problem

In order to facilitate the exposition, let us consider a two dimensional problem. The objective
is to approximate the multivariate function by interpolation using a separated interpolation
basis:

f(x, y) ≈ f (M)(x, y) :=
M∑
m=1

αm ψ
m(x, y) with ψm(x, y) = ψmx (x)ψmy (y),

where the coefficients αm are computed solving the following linear system —assuming that
the interpolation points (xj , yj) are already known—:

f(xj , yj) =
M∑
m=1

αm ψ
m
x (xj)ψmy (yj), 1 ≤ j ≤M.
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Let us define the residual of the approximation associated to a rank-M separated represen-
tation of the multivariate function as follows:

rM (x, y) := f(x, y)− f (M)(x, y). (4.13)

The residual will be zero at the interpolation points, but we do not have much information
about the error elsewhere since we cannot afford exploring the full space in the general
multidimensional case. In practice, the true error depends on the goodness of the basis
functions ψjx and ψjy. To illustrate this fact, observe that if the interpolation functions are
taken as a Kronecker delta centered on the interpolation points,

ψjx = δ(x− xj) and ψjy = δ(y − yj), 1 ≤ j ≤M,

the residual will be satisfied at the interpolation points but the approximation will be com-
pletely wrong elsewhere. On the other extreme, we could compute well-suited functions
ψx and ψy using the POD or solving an approximation problem with the PGD —that is,
using projection-based techniques—, but these options are computationally unaffordable, as
it has been shown in §4.3.1. In the middle of these two extreme options, there are plenty of
possibilities. The question is therefore how to choose well-adapted basis functions avoiding
the curse of dimensionality associated to projection-based techniques.

Suppose that M = 0, i.e. no term has been computed yet. For the time being, let us
assume that the first interpolation point (x1, y1) is known. We want to find ψ1

x and ψ1
y

such that the residual is minimized. In such sense, this constitutes a greedy approach. A
good compromise between accuracy and computational cost is to take ψ1

x as the restriction
of the multivariate function on ( · , y1). Analogously, ψ1

y is taken as the restriction of the
multivariate function on (x1, · ). In other words, the first basis function is restriction of the
multivariate function on the cross centered on (x1, y1):

ψ1 := ψ1
x ψ

1
y with

{
ψ1
x = r0(x, y1) = f(x, y1),

ψ1
y = r0(x1, y) = f(x1, y),

where r0 is the residual defined according to Eq. (4.13). Observe that the basis has separated
structure by construction. Up to this point, we have a manner to compute the basis functions
but they depend on the election of the interpolation point. That is, a different interpolation
point leads to different basis functions. Therefore here we propose to perform an alternating
directions algorithm whose outputs are simultaneoulsy both the interpolation point and the
basis function. It proceeds as follows:

1. We initialize the algorithm by choosing y1 randomly. This allows computing ψ1
x as

explained before. Then inspired from the Magic Points algorithm, we seek the point
where the ψ1

x is maximized and we normalize:

x1 = arg max
x∈Ix

|ψ1
x|, then ψ1

x = ψ1
x

‖ψ1
x‖∞

.

129



Chapter 4. An a priori Empirical Interpolation Method

Of course, ‖ψ1
x‖∞ = ψ1

x(x1). We use the same notation for both normalized and
non-normalized versions of the functions in order to keep the exposition as clear as
possible.

2. From x1 just updated, we are able to compute ψ1
y as explained before. Again, fol-

lowing the Magic Points spirit, y1 initially assumed random can be updated and then
normalized as follows:

y1 = arg max
y∈Iy

(ψ1
y), then ψ1

y =
ψ1
y

‖ψ1
y‖∞

.

Observe that:
‖ψ1

y‖∞ = ‖ψ1
x‖∞ = ‖ψ1‖∞.

The algorithm continues until the interpolation point (and so, the basis function) does
not change anymore. In our experiences, this algorithm converges very quickly, normally 3
to 5 iterations, although a dependence on the dimension of the problem has been observed,
meaning that more alternating iterations are needed to converge in higher dimensional prob-
lems.

Once the alternating directions algorithm converges, the rank-one approximation is writ-
ten as:

f ≈ f (1) = α1 ψ
1
x ψ

1
y.

The coefficient α1 is computed so as to make the approximation f (1) pass through f(x1, y1).
Of course, the rank-one approximation is not expected to be good enough and therefore
a second term may be added. The alternating directions algorithm is again applied. The
function ψ2 = ψ2

xψ
2
y is built from the restriction of the residual r1 on the cross centered on

(x2, y2): {
ψ2
x = r1(x, y2) = f(x, y2)− f (1)(x, y2),

ψ2
y = r1(x2, y) = f(x2, y)− f (1)(x2, y).

where r1 denotes the residual as defined in Eq. (4.13). The process continues exactly in
the same way for the subsequent terms. In order to stop the greedy algorithm the following
error indicator can be used:

eM := ‖f(xM+1, yM+1)− f (M)(xM+1, yM+1)‖∞. (4.14)

This criterion requires convergence on the (M + 1)-th interpolation point.

4.4.2 Numerical example: two-dimensional Rosenbrock function

In order to illustrate the performance of the algorithm, we choose the Rosenbrock function
whose separated representation is assumed to be ignored. For the general multidimensional
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case, it is defined as follows:

f(x1, . . . , xD) =
D−1∑
i=1

(1− xi)2 + 100(xi+1 − x2
i )2, (4.15)

in a domain I = [−1, 1]D. A uniform node distribution made of Nd = 51 nodes in every
direction is used. The objective is to find a separated representation of the two dimensional
version of this function starting with no a priori inspection of it. We initialize the alternating
directions algorithm with a randomly chosen point. After two iterations, a first interpolation
point is found:

(x1, y1) = (−1,−1).

Figure 4.1a shows the initial residual, which of course coincides with the function itself. The
interpolation point found by the algorithm is depicted in green. It is to be highlighted that
the algorithm succeeds in finding the maximum of the residual. In black, we highlight the
cross that serves to compute the basis function. A new interpolation point is initialized
randomly and after four iterations, a second interpolation point is found:

(x2, y2) = (0, 1).

Figure 4.1b shows the residual after the first mode has been computed, and we see again that
the algorithm succeeds in placing the interpolation point at the maximum of the residual.
Figure 4.1c provides exactly the same information but for the third residual —after a rank-
two separated representations has been computed—.
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Figure 4.1: Two-dimensional Rosenbrock function. Residuals, modes and interpolation
points.

In this simple case, the algorithm performed optimally in the sense that a rank-three
separated representation is found —see Eq. (4.15)—. However, after computing the third
mode we do not know if the separation has converged or not, as the residual cannot be
explicitly evaluated. Therefore, we compute a fourth interpolation point in order to be able
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to evaluate Eq. (4.14). If it is below a fixed tolerance, the algorithm is stopped. In this
example, ε = 10−8. In all our tests, this procedure appears to be very robust. Therefore, in
general, we always need to compute an extra term to estimate the error.

Figure 4.2a and Figure 4.2b show the exact Rosenbrock function and the absolute error
of the computed approximation, respectively.
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Figure 4.2: Two-dimensional Rosenbrock function. Error of the computed approximation.

Figure 4.3a shows the evolution of the stop criterion. We see that after computing the
third mode the error drops to a negligible level, and therefore the function can be written in
three terms. Figure 4.3b shows the number of iterations to convergence in the alternating
directions loop.
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Figure 4.3: Two-dimensional Rosenbrock function. Convergence analysis.

To illustrate the greedy algorithm used to compute the separated representation, we show

132



4.4. A new algorithm: a priori Empirical Interpolation

in Figure 4.4 how the separation is progressively enriched with, one, two and finally three
modes.
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Figure 4.4: Two-dimensional Rosenbrock function. Greedy enrichment of the solution.

Finally, Figure 4.5 shows the normalized modes. Observe that they are normalized with
respect to their maximum absolute value.
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Figure 4.5: Two-dimensional Rosenbrock function. Computed modes ψx (left) and ψy

(right).

4.4.3 Generalization to the multidimensional case

In the general multidimensional case the a priori Empirical Interpolation algorithm is for-
mulated as follows. The objective is to compute a rank-M separated approximation:

f(x) ≈ f (M)(x) :=
M∑
m=1

αm ψ
m(x) with ψm(x) =

D∏
d=1

ψmd (xd),
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where the coefficients αm are computed solving the following linear system —assuming that
the interpolation points {x1≤m≤M} are already known—:

f(xj) =
M∑
m=1

αm ψ
m(xj), 1 ≤ j ≤M. (4.16)

The residual of the rank-M separated representation of the multivariate function is defined
as follows:

rM (x) := f(x)− f (M)(x). (4.17)

With these ingredients, the Algorithm 5 generalizes the method already introduced in
§4.4.1 to the multidimensional case.

Algorithm 5 A priori Empirical Interpolation
Require: Multivariate function f(x)
1: while (m ≤Mmax & eM > ε) do . Greedy enrichment loop
2: Initialize int. point x̂
3: for i = 1 to Imax do . Alternating directions loop
4: Set x̂old = x̂

5: for d = 1 to D do . Loop for every dimension
6: Update ψd = rM (x̂1, . . . , · , . . . , x̂D) . Separated basis function
7: Update x̂d = arg maxxd∈Id |ψd| . Interpolation point
8: Normalize ψd
9: end for
10: Check if x̂ = x̂old . Stagnation criterion
11: end for
12: Set ψm =

∏D
d=1 ψd

13: Compute coefficients αm from Eq. (4.16)
14: Compute error estimate eM with Eq. (4.17)
15: end while
16: return f (M) . Rank-M approximation

4.5 Numerical examples

In this section we provide separability results on the three and four-dimensional versions of
the Rosenbrock functions, defined in Eq. (4.15). These examples are of academic interest
as they allow illustrating the performance of the algorithm. More challenging results shall
be considered in future research.
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Figure 4.6: Three-dimensional Rosenbrock function. Computed modes ψ1 (left), ψ2 (center)
and ψ3 (right).

4.5.1 Three-dimensional Rosenbrock function

One of the principal observations when switching from two to three dimension is that, very
much like PGD in higher dimensions, the algorithm here proposed is no longer optimal in
the sense that it does not provide necessarily the most compact expansion. This is of course
inherited from the alternating directions algorithm proposed to find the interpolation point.
Although this is an unwanted behaviour of the algorithm, computing modes is very cheap
and the computational time is not significantly affected. Besides, it is possible to combine
this algorithm with a PGD projection —which is now very cheap because it is applied on a
separated representation— to recompress the expansion. This is considered in §4.5.2

The separated representation of the three-dimensional Rosenbrock function converged
with 9 modes (the tenth was negligible). Fig. 4.6 shows the computed modes in each
direction.

Fig. 4.7a shows the convergence of the algorithm while Fig. 4.7b shows that the number
of iterations inside the alternating directions algorithm remains very low.

We may define an efficiency ratio of the algorithm as follows:

η = 1−
Nit ×

∑D
d=1Nd∏D

d=1Nd
, (4.18)

being Nit the number of fixed-point iterations and Nd the number of nodes in the dimension
d. This ratio measures the number of function evaluations made with the proposed algorithm
versus a full evaluation. Of course, the closer to 1, the better performs the algorithm. In this
example, a ratio η = 0.9712 is obtained which means that the function has been separated
by performing less than 3% evaluations of the total data.
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Figure 4.7: Three-dimensional Rosenbrock function. Convergence analysis.

4.5.2 Four-dimensional Rosenbrock function

Finally, we consider the four-dimensional Rosenbrock function. Fig. 4.8 shows the computed
modes in each direction.

Fig. 4.9a and Fig. 4.9b illustrate the convergence process and the number of iterations
inside the alternating directions algorithm, respectively. The latter remains very low as in
the previous examples. The convergence is still exponential in this problem.

As suggested in §4.5.1, a PGD projection step can be used in order to reduce the rank of
the separated representation. Fig. 4.10 shows the effect of applying a final compression step
for different error levels required to the algorithm. For instance, if the required error level
is set to 10−6, a total of 108 terms are computed while only 69 are kept after performing a
PGD projection.

It is to be remarked the particular behaviour of compression, that produces more compact
expansions for higher precision levels. This is explained by the need of the PGD algorithm of
knowing a true approximation of the function to be able to find its separated representation.
Of course, it could also be possible to apply intermediate PGD projection steps. For an error
level of 10−8, the efficiency parameter, defined in Eq. (4.18), is η = 0.9856, which means
that the separated representation is computed by evaluating less than 2% of the total data.
The computational time to compute 144 terms using a MATLABr implementation is in the
order of 10sec.
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Figure 4.8: Four-dimensional Rosenbrock function. First five computed modes ψd, d =
1, . . . , 4.
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Figure 4.9: Four-dimensional Rosenbrock function. Convergence analysis.
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Figure 4.10: Four-dimensional Rosenbrock function. Effect of a final PGD projection.
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In Chapter 1 we made en exhaustive review on the use of separated representations that
comprised not only the Proper Generalized Decomposition (PGD) framework but other
Model Order Reduction methods and Low-rank Tensor Approximation techniques. To the
author’s belief, the following conclusions hold:

• Both Model Order Reduction and Low-rank Tensor Approximations have reached in
last years a significant maturity in their respective branches of science. Many funda-
mental advances have been achieved in last fifteen years: high-order and hierarchical
singular value decompositions of tensors in 2000 [46] and 2010 [61], respectively, or
the foundation of both Reduced Basis Methods in 2001 [111] and Proper Generalized
Decomposition in 2007 [7], just to cite some examples. At the same time, a huge num-
ber of applications in many fields of science have demonstrated the interest of these
techniques.

• Today, separated representations are probably the best alternative to push forward the
current computability limits with regard to multidimensional problems. Disregarding
how big the computational power will be in the future, it seems that there is no
definitive solution to the curse of dimensionality. In consequence, we will need of
either model reduction or low-rank methods as long as engineering needs of solving
multidimensional models.

• In spite of the previous paragraphs, many challenges are of course still open. In the
particular case of PGD, they can be summarized as follows. On one hand, there
is a need of appropriate formulations and algorithms to ensure the separability and
compactness of the solution of non-self adjoint and nonlinear problems. On the other
hand, there is a need of formulating PGD problems —specially transient and nonlinear
problems— in separated representation as a basic requirement for the computational
performance of the PGD.

In Chapter 2, we introduced frequency-based formulations for the solution of parametrized
structural dynamics equations. The following conclusions can be drawn:
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• The need of solving parametrized eigenvalue problems, as required by Modal Analysis,
or expensive direct time integrations, are completely avoided.

• An offline/online approach allowed recovering the space-time solution from a precom-
puted Generalized Transfer Function (GTF) and the applied excitation by performing
a simple Fourier inverse transform. In addition, real-time applications can be readily
envisaged thanks to the application of the convolution theorem.

• The GTF is valid not only for one particular forcing term but for any forcing term
that can be written as a combination of the considered frequencies (linearity). This
fact, along with the parametric nature of the approach, makes of the GTF a strong
tool for the solution of parametrized structural dynamics equations.

• Two limitations of this approach are identified. The first concerns the transient re-
sponse due to initial conditions, which is in principle lost using a frequency approach.
A remedy could be to use the space modes of the GTF to implement a Reduced Basis
approach. However, this approach should be further investigated to assess its per-
formance. The second limitation concerns nonlinear problems, which are in general
precluded. However, nonlinearities that only apply on the harmonic amplitude, can
be efficiently assessed with this method, as shown by C. Germoso in [56].

The frequency approach presented in Chapter 2 is further developed in Chapter 3 taking
advantage of some additional properties not exploited there. This following conclusions can
be drawn:

• The frequency formulation allows overcoming the separability issues associated to mov-
ing excitations, which can be thought as waves and therefore they are intrinsically
non-separable in space and time.

• The reciprocity principle is proven thanks to the symmetrization introduced by the
frequency formulation. This property yields a direct application for the real-time
monitoring of thermal processes.

• An offline/online approach allowed recovering the space-time solution of a thermal
problem from a precomputed Generalized Transfer Function (GTF) and the applied
excitation by performing a simple Fourier inverse transform. Real-time applications
are demonstrated in several examples making use of the convolution theorem.

• The potentiality and the accuracy of the approach are demonstrated with applications
in defect detection, multi-parametric evaluation and inverse calibration of processes.

• The same two limitations identified for the frequency-approach presented in Chapter
2, as well as the described remedies, apply in this case.

140



Conclusion

Chapter 4 provides a more general regard on the separated problem formulation. A
general-purpose method to compute separated representations of multivariate functions is
presented. The following conclusions and perspectives apply:

• The interest of interpolation-based techniques as a tool to encompass the computa-
tional complexity associated to projection-based techniques is demonstrated.

• An innovative extension of the Empirical Interpolation Method adapted to the a priori
model reduction framework is proposed. Its interest and potentiality in the separated
formulation of nonlinear problems in the PGD framework are justified.

• Promising results and convergence analysis are presented in moderate dimension prob-
lems, in which the technique seems both computationally efficient and robust.

• These performances should be confirmed by solving more challenging problems, and
specially, nonlinear problems. This constitutes a work in progress.
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Appendix A

Algebraic form of the structural
dynamics (x, ω, µ)-operator

In order to obtain the tensor operator used to solve the tensor problem Eq. (2.28), let us
consider the left-hand side of Eq. (2.27). Inserting into that equation both û and ŵ, defined
in Eq. (2.26) (Galerkin approach), we get:

∫
Iω

∫
Iµ

N∑
is,js

Nω∑
iω,jω

Nµ∑
iµ,jµ

w̄is,iω,iµv
iω
ω ⊗ viµµ ⊗

[
(viss )H Avjss

]
⊗ vjωω ⊗ vjµµ ujs,jω,jµ dω dµ.

Substituting A and grouping the terms conveniently:

N∑
is,js

Nω∑
iω,jω

Nµ∑
iµ,jµ

w̄is,iω,iµ

(
−(viss )HMvjss ⊗

∫
Iω

viωω v
jω
ω ω

2 dω ⊗
∫
Iµ

viµµ v
jµ
µ dµ+ . . .

. . .+ i(viss )HCvjss ⊗
∫
Iω

viωω v
jω
ω ω dω ⊗

∫
Iµ

viµµ v
jµ
µ µdµ+ . . .

. . .+ (viss )HKvjss ⊗
∫
Iω

viωω v
jω
ω dω ⊗

∫
Iµ

viµµ v
jµ
µ dµ

)
ujs,jω,jµ .

(A.1)

Since vectors v1≤i≤N
s have been defined in Section 1.1.3 as the canonical basis in CN , we

have:
(viss )HMvjss = misjs , (viss )HCvjss = cisjs and (viss )HKvjss = kisjs ,

being misjs , cisjs and kisjs the (is, js)-th entries of the mass, damping and stiffness matrices,
respectively. Eq. (A.1) allows defining the operator:

A = −M ⊗Bω ⊗Mµ + iC ⊗Dω ⊗Dµ +K ⊗Mω ⊗Mµ,
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where matrices Mω, Bω, Dω ∈ RNω×Nω and Mµ,Dµ ∈ RNµ×Nµ are defined respectively
by their entries as follows:

(mω)iωjω =
∫
Iω

viωω vjωω dω,

(bω)iωjω =
∫
Iω

ω2 viωω vjωω dω,

(dω)iωjω =
∫
Iω

ω viωω vjωω dω with 1 ≤ iω, jω ≤ Nω,

and

(mµ)iµjµ =
∫
Iµ

viµµ vjµµ dµ,

(dµ)iµjµ =
∫
Iµ

µ viµµ vjµµ dµ, with 1 ≤ iµ, jµ ≤ Nµ.
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Green’s function problem for a
parabolic operator

Although what follows is well known it is not standard to write the Green’s function prob-
lem associated to the homogenous heat equation with homogeneous Dirichlet and non-
homogeneous Neumann boundary conditions. The adjoint Green’s function problem as-
sociated to (3.2) is detailed in (3.3) where its last equation, namely G = 0 on Ω × [t0, T [,
corresponds to the causality condition. Green’s identity can be written as∫

Ω

∫ t0

0

[
G(∇2u− ∂tu)− u(∇2G+ ∂tG)

]
dtdΩ

=
∫
∂Ω

∫ t0

0

[
G(n · ∇)u− u(n · ∇)G

]
dtdΓ +

∫
Ω

[
uG|t=0 − uG|t=t0

]
dΩ. (B.1)

Consequently, using (3.2) and (3.3) in the previous identity (B.1), a representation for
u(x0, t0) with (x0, t0) ∈ ΓN×]0, T [ is obtained, namely

u(x0, t0) =
∫

ΓN

∫ t0

0
G(x, t;x0, t0) q(x, t)dtdΓ +

∫
Ω
u0(x)G(x, 0;x0, t0)dΩ, (B.2)

where now it can be clearly identified that the causality condition implies that the solution
at time t0 cannot depend on any of its values at later times. Recall T can be arbitrarily
large.
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Appendix C

Reciprocity proof in the
frequency domain for even and
odd real excitations

This appendix is aimed to prove the reciprocity principle, recall (3.13)〈
q̂1, û2

〉
=
〈
q̂2, û1

〉
, (C.1)

when both q̂1 and q̂2 are real. As discussed in Section 3.2.5, reciprocity, holds if the two
conditions stated in equation (3.14) are verified, namely(

∇û1,∇û2
)

=
(
∇û2,∇û1

)
and

(
û1, û2

)
=
(
û2, û1

)
.

Recalling that
(
· , ·
)
is the L2 scalar product of complex functions in Ω, see (3.9), these

conditions are equivalent to

=
[(
∇û1,∇û2

)]
= 0 and =

[(
û1, û2

)]
= 0.

Since û1 and û2 give values in C, one can define the real functions a1, b1, a2 and b2 such
that û1 = a1 + ib1 and û2 = a2 + ib2, and the previous expressions are equivalent to(

∇a1,∇b2
)

=
(
∇b1,∇a2

)
(C.2a)(

a1, b2
)

=
(
b1, a2

)
. (C.2b)

Recall also that û1 and û2 are the corresponding solutions of the weak problem (3.8) for
the two excitations q̂1 and q̂2 and for any imposed frequency ω. By definition, ai and bi for
i = 1, 2 also belong to space of trial and test functions, namely H1

ΓD . Thus, equation (3.8)
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for the pair {û1, q̂1} can be particularized as follows:(
∇û1,∇a2

)
+ iω

(
û1, a2

)
=
〈
q̂1, a2

〉
,(

∇û1,∇b2
)

+ iω
(
û1, b2

)
=
〈
q̂1, b2

〉
,

(C.3)

and likewise for {û2, q̂2} (
∇û2,∇a1

)
+ iω

(
û2, a1

)
=
〈
q̂2, a1

〉
,(

∇û2,∇b1
)

+ iω
(
û2, b1

)
=
〈
q̂2, b1

〉
.

(C.4)

Recall the splitting of û1 into real and imaginary parts, û1 = a1 + ib1, to also split
equations (C.3) into real and imaginary parts as(

∇a1,∇a2
)
− ω

(
b1, a2

)
=
〈
q̂1, a2

〉
, (C.5a)(

∇b1,∇a2
)

+ ω
(
a1, a2

)
= 0, (C.5b)(

∇a1,∇b2
)
− ω

(
b1, b2

)
=
〈
q̂1, b2

〉
, (C.5c)(

∇b1,∇b2
)

+ ω
(
a1, b2

)
= 0, (C.5d)

where the hypothesis that both q̂1(x, ω) and q̂2(x, ω) belong to R is used.
Likewise, for û2 = a2 + ib2 each equation in (C.4) is split into real and imaginary parts

as (
∇a2,∇a1

)
− ω

(
b2, a1

)
=
〈
q̂2, a1

〉
(C.6a)(

∇b2,∇a1
)

+ ω
(
a2, a1

)
= 0 (C.6b)(

∇a2,∇b1
)
− ω

(
b2, b1

)
=
〈
q̂2, b1

〉
(C.6c)(

∇b2,∇b1
)

+ ω
(
a2, b1

)
= 0 (C.6d)

Recall now that the L2 scalar product is symmetric for any pair of real functions, more
specifically

(
u, v
)

=
(
v, u
)
for all u and v ∈ R. Then subtract (C.6b) from (C.5b), and (C.6d)

from (C.5d) to obtain the desired conditions (C.2). Thus if (C.2) are verified, then (3.14)
also holds and reciprocity is demonstrated. Note that these results hold for any ω.

To further close these appendix, note that the other equations not used up to now also
produce the same results. After subtracting (C.6a) from (C.5a) and (C.6c) from (C.5c), the
following equations are obtained:

ω
[(
b2, a1

)
−
(
b1, a2

)]
=
〈
q̂1, a2

〉
−
〈
q̂2, a1

〉
,(

∇a1,∇b2
)
−
(
∇a2,∇b1

)
=
〈
q̂1, b2

〉
−
〈
q̂2, b1

〉
.

However, both left-hand-sides in the previous equations are zero because they correspond to
(C.2), which was just proven, and these equations become〈

q̂1, a2
〉

=
〈
q̂2, a1

〉
and

〈
q̂1, b2

〉
=
〈
q̂2, b1

〉
,

which corresponds to split (C.1) into real and imaginary parts using the definitions splitting
of û1 = a1 + ib1 and û2 = a2 + ib2.
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Résumé 
Les%travaux%présentés%s'inscrivent%dans%le%cadre%de%la%
méthode%«%Proper%Generalized%Decomposition%»%(PGD)%
pour%la%résolution%numérique%d'équations%différentielles%
aux%dérivées%partielles.%La%performance%numérique%de%la%
PGD%est%basée%sur%l'hypothèse%d'existence%d'une%
représentation%séparée%de%rang%faible%de%la%solution,%mais%
aussi%des%données%du%problème.%Cette%thèse%s'intéresse%
à%la%formulation%séparée%de%ces%dernières.%La%démarche%
mise%en%œuvre%examine%deux%approches%différentes.%La%
première%consiste%à%chercher%une%reformulation%
permettant%de%s'affranchir%du%calcul%de%la%représentation%
séparée.%Le%recours%à%une%approche%fréquentielle%permet%
de%passer%outre%la%non%séparabilité%dans%le%domaine%
spatioJtemporel%des%excitations%de%type%«%propagation%
d'ondes%».%L'efficacité%de%cette%approche%est%démontrée%
au%travers%de%problèmes%linéaires%transitoires%de%
dynamique%des%structures%ainsi%que%de%transfert%
thermique.%De%plus,%le%passage%dans%le%domaine%
fréquentiel%donnant%un%caractère%symétrique%aux%
équations%nous%permet%de%prouver%le%principe%de%
réciprocité.%Ce%principe%est%mis%à%profit%pour%développer%
un%outil%tempsJréel%de%surveillance%de%procédés.%La%
seconde%approche%examinée%consiste%à%développer%une%
méthode%numérique%innovante%pour%calculer%la%
représentation%séparée%de%fonctions%à%plusieurs%
variables.%La%stratégie%choisie%est%basée%sur%une%
technique%d'interpolation%qui%permet%de%réduire%la%
complexité%numérique%associée%aux%techniques%de%
projection%traditionnelles.%La%performance%numérique%de%
cette%méthode%est%démontrée%au%travers%de%son%
application%à%des%coefficients%non%séparés%et%non%
linéaires.  
 
Mots!clés!
Représentations!séparées,!PGD,!réduction!de!
modèles,!approximation!tensorielle!de!rang!faible,!
approche!fréquentielle,!méthode!d’interpolation!
empirique,!principe!de!réciprocité. 

Abstract 
This%work%fits%within%the%Proper%Generalized%
Decomposition%(PGD)%framework%for%the%numerical%
solution%of%multidimensional%partial%differential%
equations.%The%computational%performance%of%the%PGD%
relies%on%the%assumption%that%not%only%the%solution%but%
also%the%problem%data%admit%a%lowJrank%separated%
representation.%This%work%is%concerned%with%the%
separated%formulation%of%the%problem%data.%The%solution%
to%these%separability%issues%is%sought%in%two%ways.%The%
first%strategy%consists%in%looking%for%an%efficient%
formulation%such%as%to%encompass%the%need%of%
computing%the%separated%representation.%This%is%
achieved%by%means%of%a%frequencyJbased%approach%
which%allows%overcoming%the%nonJseparability%in%the%
spaceJtime%domain%of%waveJlike%excitations.%The%
efficiency%of%the%approach%is%demonstrated%in%both%
transient%linear%structural%dynamics%and%heat%transfer%
problems.%Besides,%the%reciprocity%principle%can%be%
proven%thanks%to%the%symmetrization%introduced%by%the%
frequencyJbased%formulation,%yielding%a%direct%
application%for%the%realJtime%monitoring%of%processes.%
The%second%strategy%devises%an%innovative%method%to%
compute%the%separated%representation%of%multivariate%
functions.%An%a%priori%interpolationJbased%approach%is%
designed%in%order%to%effectively%reduce%the%
computational%complexity%associated%to%traditional%
projectionJbased%methods.%The%performance%of%this%
method%is%demonstrated%with%application%to%nonJ
separated%and%nonlinear%coefficients.  
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