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Chapter 1

Introduction

J'ai pas mérité de jouer du rock'n'roll. Mes ghettos, mes idées ne sont pas homo-

logués. J'ai pas le bon blouson, j'ai pas les bonnes bottes. Et en haut de mon bras

je n'ai rien fait tatouer. J'ai donné aux curés du sauvetage collectif. J'ai joué

les mêmes notes, swingué les mêmes ri�s. Peu à peu j'ai compris les données du

débat. Que rien ne bouge et l'égalité par le bas. Et tant pis si la foule gronde.

Si je tourne pas dans la ronde. Papa quand je serai grand, je sais ce que je veux

faire : je veux être minoritaire.

� Jean-Jacques Goldman, Minoritaire

My research activity deals with the mechanical modeling and numerical simulation
of elastic slender structures, in particular �bers, modelled as thin elastic rods, but
also surfaces in some more recent work, elaborating on models for thin elastic plates

or developable shells. I've also got interested in the capture of dry frictional contact

among such thin structures, as well as within granular �ows. All these dynamical
systems are useful to model a large range of physical phenomena at di�erent scales,
from twisted DNA to the mechanics of twining plants, sand, human hair, and cloth
(see Figure 1.1). Target applications encompass visual e�ects for the feature �lm
industry, as well as virtual prototyping for various domains such as cosmetology
(hair), virtual try on (hair and cloth), or risk management (granular materials).

Figure 1.1 � Our main simulation results: from the numerical modeling of thin elastic rods

and shells (top) to the coupling of rigid bodies, rods and shells for capturing the dynamics

of complex macroscopic phenomena involving dry frictional contact (bottom).
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1.1 Simulating visually rich phenomena

Deformable slender structures such as hair �bers, cloth, ribbons, paper, cables, tree
branches or leaves, are ubiquitous around us. It is actually striking to note that
such thin structures represent most of the deformable objects composing our direct
environment, but also a wide range of physical, biological or manufactured phenom-
ena occurring at very di�erent scales, from macromolecules and carbon nanotubes
at nanoscale to galactic �laments at the universe scale (see Figure 1.2).

At the macroscopic scale (and even smaller scales), slender structures often fea-
ture an intricate natural shape, ranging from straight to curly. For small strains,
their deformation is mostly elastic (with a preference for bending and twisting when
no overly constrained), yet generating large displacements due to geometric non-
linearities, and instabilities such as buckling. The diversity and complexity of the
resulting shapes and motions greatly contributes to the visual richness of the real
world.

When multiple thin structures are coupled together with contact and friction,
which is the predominant interaction mode at the macroscopic scale, the range of
emerging phenomena is even more exacerbated, giving rise to stick-slip dynamical
instabilities, entangling, or spontaneous collective behavior. Human hair, which is
typically composed of 150,000 thin �bers, beautifully depicts such complex mechan-
ical behaviors when �uttering in the wind.

Figure 1.2 � Top: Slender structures such as hair, cables, plants, or cloth are widespread

at the macroscopic scale, where their interactions are dominated by dry frictional contact.

Bottom: it is interesting to observe that slender structures also appear at extreme scales,

such as supercoiled DNA (left) and carbon nanotubes (middle) when zooming in some

biological and manufactured matter, or even galactic �laments (right) when zooming out

up to the universe scale. Image credits: (c) S. Paris, T. Judd, 2007, (d) J. Bahnson's group,

(e) L. Qu, U. Dayton, 2008, (f) A. Pontzen, F. Governato, 2014.
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Many physicists and mathematicians have strived for centuries to understand
the principles governing those complex mechanical phenomena, providing a number
of continuous models for slender structures, granular matter, and frictional contact.
In the XXth century, industrial applications such as process automatization and
new ways of transportation have boosted the �elds of Mechanical Engineering and
Computer-Aided Design, where material strength, reliability of mechanisms, and
safety, standed for the main priorities. Instead, large displacements of structures,
buckling, tearing, or entanglement, and even dynamics, were long considered as un-
desirable behaviors, thus restraining the search for corresponding numerical models.
In contrast, Computer Graphics, which has emerged in the 60's with the advent of
modern computers, was eager to capture such peculiar phenomena, with the sole
aim to produce spectacular images and create astonishing stories.

At the origin, Computer Graphics thus drastically departed from other scienti�c
�elds. Everyday-life phenomena such as cloth buckling, paper tearing, or hair �ut-
tering in the wind, mostly ignored by other scientists at that time, became actual
topics of interest, involving a large set of new research directions to be explored,
both in terms of modelling and simulation.

Since a few decades, a new generation of physicists became interested again in
the understanding of such visually fascinating phenomena, and started investigating
the tight links between geometry and elasticity1. Common objects such as folded
or torn paper, twined plants, coiled honey threads, or human hair [Ben Amar and
Pomeau, 1997; Goriely and Neukirch, 2006; Brun et al., 2012; Goldstein et al., 2012]
have thus regained some popularity among the community in Nonlinear Physics2.
Yet, while the phenomena of interest have become remarkably close to those of
Computer Graphics, the goals and employed methodologies still di�er substantially
from one community to the other, as explained in next section.

In parallel, the engineering industry has recently shown some new and growing
interest into the modeling of dynamic phenomena prone to large displacements,
contact and friction. For instance, the cosmetology industry is more and more
interested in understanding the nonlinear deformation of hair and skin, with the help
of simulation. Likewise, auto and aircraft manufacturers are facing new challenges
involving buckling or entanglement of thin structures such as carbon or optical �bers;
they clearly lack predictive, robust and e�cient numerical tools for simulating and
optimizing their new manufacturing processes.

1In France this new trend was particularly stimulated by the work of Yves Pomeau, who con-

vinced many young scientists to study the nonlinear physics of common objects such as paper,

plants, or hair [ESPCI, 2016].
2It is however amusing to observe that research in these areas is quite successful in obtaining

the IGNobel prize [Audoly and Neukirch, 2005; Goldstein et al., 2012], thus still being considered

as an exotic research topic by physicists.
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1.2 Computer Graphics as my home community

Computer Graphics is a very particular domain. From outside, one may hardly
understand what this community is about if one does not know that it represents,
above all, the gathering of people from various career paths (artists, industrials,
scientists) who share a common passion for pictural arts and somehow an aesthetic
vision of the world. Most people I have met in Computer Graphics, even among sci-
entists and industrials, do have an accute sense for artistic creativity, many of them
being keen on drawing (like myself), on the making of movies and video games, or
on any other creative activity. By construction, the scienti�c community in Com-
puter Graphics is thus tightly linked to the digital entertainment industry, which
encompasses all activities related to the making of animation feature �lms, special
e�ects, and video games. It is noteworthy that a large number of researchers who
are active in the �eld are employed by private companies such as Autodesk, Disney
Research, Pixar, Weta Digital, Microsoft Research, Adobe, etc. The most presti-
gious (and selective, see Figure 1.3) conference of the �eld, ACM Siggraph, gathers
every year tens thousands experts and practitioners including research scientists,
engineers, and artists, fostering an extraordinary mixing between academia, private
research centers and studios, and engineering and arts schools.

Figure 1.3 � The famous Siggraph bar. Nobody knows exactly where it stands, but

everyone knows you should go over it to have your paper accepted. Be aware that after a

�rst success, you will get addicted to it.

Creating and directing visual digital worlds The primary and historic goal
of Computer Graphics is to digitize the world into synthetic images targeted for a
human audience. Computer Graphics thus has the ambition to represent visually
all the phenomena we may perceive through our eyes, at all relevant scales. The
dream application should allow a user to navigate in real-time within an in�nite
virtual space, being able for instance to look up at the clouds swirling in a stormy
sky, then viewing down a forest canopy shaking under the wind, next zooming into
the details of the undulating tree branches and distinguishing every �uttering leaf,
even this small iridescent beetle climbing onto that hairy leaf... As if this were not
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enough, the user may also interact with this virtual world as intuitively as possible,
for example by grasping a wreath of �owers out of the prairie, creating a new river
down the hills or changing the shape of the mountains, the shininess of the ocean,
or the course of the wind, just at her will.

From other scienti�c �elds, such an ambition of creating and directing an entire
digital world similar to the real one, with all possible levels of details, may look
quite adventurous and even untenable. Indeed, the usual scienti�c methodology is
�rst to study simpli�ed and re�ned phenomena, at a speci�c space and time scale,
before daring to tackle more complex scenarios possibly integrating multiple bodies
or multiple scales. The apparent audacity of Computer Graphics may however be
explained by the fact that its goals, and thus its evaluation criteria, are drastically
di�erent from those of usual scienti�c �elds. Unlike physics or biology, the goal here
is not to explain observed phenomena, but to reproduce them on an array of pixels, as
faithfully as possible. Unlike computational mechanics, the goal is not to compute
accurate internal stresses inside a structure to anticipate rupture and strengthen
the material at the right locations, the goal is to compute visible quantities such as
deformation or velocity �elds at the outer surface of the body, at a good resolution
and free of any visual artifact; the goal is not to predict �nely the parts of the
building that will be destroyed by a �re starting at a certain point, the goal is to
create �ames that will blu� the audience and let them believe3 they are surrounded
by �re; �nally, the goal is not to characterize the exact shape and magnitude of a
perfectly round drop of water falling into a perfectly �at basin; the goal is to provide
the user with intuitive tools to create the drop animation that will best serve the
underlying storytelling and convey the right emotions, or say otherwise, that will
satisfy the eye of the art director4.

Having said that, creating outstanding visual e�ects still demands powerful com-
putational models which cannot be built by hand, and instead need to be autom-
atized. Following physical principles is an excellent way to achieve this. This is
particularly true in the sub-�eld of Computer Animation, which deals with the rep-
resentation of moving phenomena.

3The Computer Graphics community often uses the term �plausibility� to justify that its models

are intended for human eyes which should be the sole judges of their validity. However I do not

like this term which is often misused and may serve as a pretence to escape from validation, should

it be physical, perceptual, or anything else (validation is a vast but still immature research topic

in Computer Animation). I will thus attempt to de�ne my own evaluation criteria in Section 1.3,

and will avoid using the term �plausibility� in this document. I however acknowledge the need for

more and better validation of my own work, which I aim at developing in future work.
4In some situations, strictly simulating the known equations of physics may not be e�ective in

conveying the right emotions, even if the underlying model is realistic: the audience may simply

neither be convinced nor impressed by the simulated phenomenon! In many cases, a beauti�cation

or magni�cation of the phenomenon is thus desired, in a way comparable to the exaggerated

deformed balls drawn by cartoonists to mimick expressive rebound [Williams, 2009]. In the same

way expressive rendering has emerged in the 90's, expressive animation has recently gained some

interest. Providing user control over a physics-based simulation through inverse design, as we do

in the third part of this memoir (see Chapter 4), is one research direction among others of this

emerging sub�eld.
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Physics-based animation More speci�cally, in the case of a dynamical scene
involving passive objects such as hair, cloth, �uids, etc., physics-based simulation

has proven over the years to be a method of choice for synthesizing resulting visual
e�ects. Unlike phenomenological methods which develop descriptive models for re-
producing a given emerging phenomenon, physics-based methods provide generative
models which explicitly integrate the physical causes of the phenomenon. From a
set of initial conditions as well as a few physical parameters (e.g., the mass, sti�ness,
natural shape), a physics-based simulator may generate not just a single e�ect, but a
wide range of emerging phenomena revealing the whole complexity of the underlying
physics.

My research work precisely lies within physics-based animation. The goal in our
sub-community is to design numerical models which can reproduce convincingly very
complex scenes, such as detailed breaking waves, a full garment folding on a walking
character, or a full head of hair suddenly shaking. Although huge progress has been
achieved in visual e�ects since the 90's, leading today to entirely synthetic animated
outdoor scenes in most adventure movies, a large number of scenarios, such as the
ones mentioned just above, still resists automatic digitization and requires many
hours of manual work in production studios to be properly animated. Challenging
scenarios typically involve a large number of degrees of freedom, strongly nonlinear
dynamics, and many constraints � in particular, contacts and friction. All these
features are very di�cult to capture numerically. A supplementary obstacle may be
the lack of relevant (continuous) physical models in some cases. For instance, while
the theory of Kirchho� for thin elastic rods �ts in well with our needs for modeling
a bending rope or a tree branch at the right (human) scale, to the best of our
knowledge there does not exist an integrated, continuummodel for representing a full
bulk of very thin �bers, like hair. Physical modeling thus represents an important,
pluridisciplinary and long-term challenge for bridging the gap between, on the one
hand, available representations of a certain class of phenomena, and on the other
hand, the will to capture more complex ones, at the right scales.

In the following I explain the methodology and guidelines I have set up for
tackling some of the challenges listed above, in the particular cases of elastic slender
objects (�bers, cloth) and divided materials (granular and �brous media).

1.3 Methodology and guidelines

When designing a physics-based simulator for computer graphics, I have inevitably
in mind the four following criteria:

Realism: Ingredients which are necessary to capture relevant visual e�ects should
be identi�ed, incorporated in the model and translated numerically with as few
quality loss as possible, at the right resolution, and without visual artifacts.

Robustness: The simulator should converge properly for a relevant range of pa-
rameters. This is all the more challenging as we are interested in objects prone
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to large displacements, and subject to a potentially huge number of frictional
contact constraints, which causes standard simulators to break down.

E�ciency: The simulator should be fast enough for allowing complex scenes to be
simulated in reasonable timings on a standard PC (in our case, a few days of
computation for a given scene is an upper-bound).

Control: The simulator should provide the user with some handles to control the
shape and motion of the object in an intuitive way, without having to tweak
manually a signi�cant number of meaningless parameters.

Unlike the common belief according to which favoring one of these criteria is
necessarily done at the price of sacri�cing others, I am striving to develop compact

numerical models satisfying all four criteria at the same time.

Building dedicated models To achieve this, the streamline idea is to identify
speci�c emerging phenomena to simulate, and then build dedicated numerical mod-
els taking advantage of an upfront reduced mathematical formulation. For instance,
instead of treating �bers and cloth as generic 3D continuum elastic models with a
potentially small thickness (modeled with an ε parameter), one may directly con-
sider equations for thin elastic rods, plates and shells, where reduction is undertaken
upstream. Such dedicated models just retain the right ingredients one wishes to cap-
ture, without having to care about numerical issues inherent to the degeneracy of
the model when ε becomes smaller and smaller. Similarly, so far we have consid-
ered only inextensible models for thin elastic rods (namely, the Kirchho� theory for
thin elastic rods), because when bending and twisting deformations are the main
focus of interest, stretching and shearing then become irrelevant deformation modes,
as proven by a simple scaling argument [Audoly and Pomeau, 2010, Section 3.7].
Finally, for modeling frictional contact as e�ectively as possible, we have been con-
sidering macroscopic models which directly cope with the emerging rigidity and
nonsmoothness of contact and friction, instead of using locally compliant models
which get sti�er and sti�er when approaching the right scale.

Targeting the full modeling pipeline Of course, on the down side, such a strat-
egy requires that many di�erent �elds � theory for thin elastic rods and shells, non-
smooth contact mechanics, etc. � be investigated in deep, before tackling merely
numerical problems, which themselves involve other scienti�c �elds such as numeri-
cal analysis, optimization, and algorithmic. However, to design e�ective simulators,
I believe it is essential to master the full modeling pipeline, from mathematical mod-
els to numerical schemes, including algorithmic choices and implementation issues.
From a personal point of view, I am also eager to investigate and learn new insights
from all these di�erent scienti�c �elds (despite sometimes a certain frustration due
to some obvious lack of time). Besides, at the scale of a person or a small group, I
can testify it is quite satisfactory to build prototypes which are entirely home-made,
and thus completely under control.
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Developing cutting-edge, but large usage codes Finally, one may argue that
the bene�t of dealing with generic models is to build some generic code, which can
deal with (almost) any problem, while dedicated models are limited to very speci�c
codes, and thus to narrow applications. In the context of my research work, I
partially disagree with this argument, for two reasons. First, a generic code may
probably deal with many di�erent situations (e.g., a thin rod but also a thick rod,
elastic bodies but also �uids, etc.), yet instead of treating optimally one of the
possible scenarios (w.r.t. the criteria de�ned above), it is likely to do a rather poor
job for all of them. Second, we have noticed, interestingly, that even though we
have modeled each one of our phenomena speci�cally, core portions of our codes
show up some common features. For instance, it is striking to note that it is exactly
the same nonsmooth solver, originally published in the context of dynamic hair
simulation [Daviet et al., 2011], which has served to resolve our hair inverse design
problem [Derouet-Jourdan et al., 2013a], and which has then been leveraged to
simulate granular �ows modelled as a continuum [Daviet and Bertails-Descoubes,
2016b,a]. The emergence of common canonical problems has thus allowed us to
concentrate our e�orts on their e�cient implementation.

Aiming at a pluridisciplinary research Although my research has been pri-
marily driven and motivated by Computer Graphics applications, which are the
most inspiring to me, the methods that we have employed to address related sci-
enti�c problems largely go beyond the sole �eld of Computer Graphics, sometimes
addressing questions of interest for other communities.

For one thing, as commonly done in Computer Animation, we have frequently
borrowed tools and concepts from more fundamental �elds such as optimization,
geometry and mechanics. In the study of slender elastic structures, the originality
of our approaches stemmed from the use of Cosserat elastic theories � barely known
in Computer Graphics before the 2000's and likewise barely popular in Mechanical
Engineering, and which I started to familiarize with during my PhD thesis. In the
�eld of contact mechanics, some new lightnings could be brought by using the point
of view of nonsmooth optimization � which I bene�ted from due to my immersion
within the BiPop team since 2007.

Besides, we have from time to time tackled scienti�c issues which surpass the
sole �eld of Computer Graphics. We have gradually realized that publishing some
speci�c technical contributions to graphics may leave them buried under the ap-
plication (the �nal application being necessarily put forward in a graphics paper),
whereas they could, in some cases, be relevant to other �elds and bene�t from a
more careful evaluation from experts outside graphics. In recent years, we have thus
strived to better identify the nature of our contributions and attempted to conduct
a more diversi�ed publication policy. One consequence is that we have started to
publish some of our work in other relevant �elds such as Computer Geometric De-
sign, Multibody System Dynamics, or Non-Newtonian Fluid Mechanics. Likewise,
we have started to participate in conferences and scienti�c events held on various
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domains, in particular in Physics and Mechanical Engineering. In parallel, we are
considering diverse applications of our work, encompassing not only special e�ects
for the movie industry and feature �lm animation, but also virtual prototyping
for the engineering industry (past collaborations with L'Oréal Research, starting
collaboration with Safran).

1.4 Structure of this document

The �rst part of this document provides a summary of the three main topics of re-
search I have been investigating since 2007 (date of my arrival at Inria as a �Chargée
de recherche�), and is organized according to three dedicated chapters:

1. Modeling of dynamic �bers (Chapter 2) In this �rst research axis, we
introduce a family of high-order, reduced models for discretizing the Kirchho� equa-
tions for thin elastic rods in both a faithful and robust way [Bertails et al., 2006;
Bertails, 2009; Bertails-Descoubes, 2012; Casati and Bertails-Descoubes, 2013]. Such
models are particularly well-suited for simulating inextensible �bers subject to bend-
ing and twisting, and featuring an arbitrary curly intrinsic geometry. We have
recently started to extend such discrete5 schemes to the numerical modeling of in-
extensible developable shells [Blumentals et al., 2016a].

2. Modeling of frictional contact (Chapter 3) A second research axis deals
with the modeling of contact and Coulomb friction for slender structures and gran-
ular �ows within the nonsmooth contact dynamics framework. Beyond some recent
analytical study of the problem of existence and uniqueness of solutions to the con-
tinuous contact problem [Blumentals et al., 2016b], we have designed some numerical
solvers to resolve the discrete contact problem in a both robust and e�cient way.
Such algorithms were leveraged for robustly handling thousands packed �bers at
reasonable frame rates [Daviet et al., 2011], and more recently adapted to the simu-
lation of frictional contact in cloth [Daviet et al., 2015], as well as the exact solving
of the Drucker-Prager law for granular materials [Daviet and Bertails-Descoubes,
2016b,a].

3. Inverse static design of �bers (Chapter 4) A last research axis, which will
be the main starting point of my future work, is dedicated to �nding new insights into
the inverse modeling of static �bers [Derouet-Jourdan et al., 2010, 2011, 2013b,a].
This work consisted in taking an arbitrary curve geometry as input and inferring
corresponding geometric and physical parameters of the simulator such that the
input geometry corresponds to a stable con�guration at equilibrium.

5In the whole document, the term �discrete� refers to �nite-dimensional models in space (which

are subsequently discretized in time). Our contributions mostly deal with this spatial reduction of

the Kirchho� equations, yet with some implications on the full space-time discretization scheme.
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Finally, I present in Chapter 5 my research program for the �ve upcoming
years, focussing on the inverse modeling of slender structures subject to

contact and friction, before concluding this memoir.
The list of my publications is given here. Besides, the reference implementations

accompanying our research papers are distributed, according to a dual license policy,
at http://www.inrialpes.fr/bipop/people/bertails/Papiers/Code/index.html.

http://www.inrialpes.fr/bipop/people/bertails/publis.html
http://www.inrialpes.fr/bipop/people/bertails/Papiers/Code/index.html
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Long and thin deformable structures, called in turn strands, �laments, threads,
or �bers � and we shall use the latter name in this memoir1 � , are well-spread
in plants (foliage, stems), animals (hair, coral) and human-made objects (ropes,
cables). Due to their smooth curved shape and complex way of deforming, charac-
terized by many instabilities, �bers largely participate to the world's visual richness
and aesthetics.

A large body of our research was devoted to the design of numerical models
for simulating the dynamics of �bers, the so-called super-helix and super-clothoid

models. The goal was to discretize in space and time the continuous mechanical
equations for inextensible thin elastic rods, namely the Kirchho� equations, which
take the form of second order partial di�erential equations subject to boundary
conditions. Noting that curvatures and twist play a major role both in the geo-
metric and dynamic description of this model, we have come up with a spatial rod
discretization based on elements that are polynomial in such quantities.

Summary of contributions Our �rst scheme, the super-helix model, devel-
oped during my PhD thesis with Basile Audoly, relied on piecewise uniform cur-
vatures [Bertails et al., 2006]. One major advantage of such curvature-based for-
mulations is that the kinematics of the discretized rod remains, by construction,

1More exactly, the term �ber will be retained to name our phenomenon of interest, while the

term thin elastic rod will be used to designate the mathematical model we use to represent �bers.
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perfectly inextensible. Such intrinsic inextensibility thus removes the burden of
adding subsequent (sti�) inextensibility contraints when solving the dynamics. The
price to pay, however, is that the geometry of the rod is not readily available but
has to be computed iteratively from the curvatures. Moreover, the inertia matrix of
such systems turns out to be dense, leading to a N2 complexity when solving them
at each time step, where N is a number of elements.

A �rst strategy to resolve the latter issue consisted in exploring higher-order spa-
tial discretizations, namely piecewise linear curvatures [Bertails-Descoubes, 2012;
Casati and Bertails-Descoubes, 2013], giving rise to the so-called super-clothoid

model, so as to reduce the number N of elements needed for a given spatial ac-
curacy. However, we were faced with the loss of a closed-form kinematics compared
to the piecewise uniform case. Our main contribution was to devise an accurate
integration scheme, based on power series expansion, which proved to be orders of
magnitude faster compared to classical integration methods [Casati and Bertails-
Descoubes, 2013].

A second strategy was to propose a linear, recursive time-integration scheme for
super-helices [Bertails, 2009], inspired by the Featherstone linear-time algorithm for
articulated chains of rigid bodies [Featherstone, 1983]. This approach allowed us to
simulate long Kirchho� rods made of hundreds elements at a much cheaper cost,
and was also leveraged to design tree-like structures of rods in a very simple way.

Organization of the chapter Section 2.1 introduces prior work regarding the
modeling and simulation of dynamic �bers, and motivates our choice for reduced,
curvature-based discrete models. Section 2.2 brie�y recalls equations for a Kirchho�
rod, with a particular stress on the structure of the kinematic problem known as
the Darboux problem. Section 2.3 introduces the reduction of Kirchho� equations
to �nite spatial dimension, and provides two di�erent spatial schemes relying on
a piecewise constant and piecewise linear shape function for the curvature, respec-
tively. Section 2.4 gives the main ideas of our recursive integration algorithm, which
may not only apply to the super-helix model, but to curvature-based discrete models
of any order. Finally, Section 2.5 concludes this part and gives some insights into a
possible extension of our work to the dynamic of surfaces.

2.1 Prior art and choice for reduced models

The scienti�c study of �bers has a long history in various �elds, tracing back to
the �rst continuous mechanics theories a few centuries ago to their further analy-
sis in physics and mathematics, and their recent numerical treatment in Mechanical
Engineering and Computer Graphics. Motivation originates from a number of appli-
cations ranging from the understanding of DNA supercoiling [Benham and Mielke,
2005] and climbing plants [Goriely and Neukirch, 2006] to the simulation of subma-
rine cables [Goyal et al., 2008], surgery threads and needles [Pai, 2002; Chentanez
et al., 2009], or hair [Ward et al., 2007].
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Figure 2.1 � Many physical �bers exhibit a smooth curled geometry with linear-like cur-

vature pro�le, which is captured and deformed accurately thanks to our super-clothoid

model [Casati and Bertails-Descoubes, 2013]. From left to right and top to bottom, three

examples of real �bers whose shapes are synthesized and virtually deformed in real-time

using a very low number of 3D clothoidal elements: a vine tendril (4 elements), a hair

ringlet (2 elements), and a curled paper ribbon (1 single element with an exaggerated �at

cross-section). Left photograph courtesy of Jon Sullivan, pdphoto.org.

Theories for thin elastic rods Various theories were proposed in mechanics to
model the equilibria and the dynamics of �bers, depending on the type of defor-
mation considered. Our goal here is to capture the geometric richness of typical
�ber deformations such as waving hair, coiling cables, curled ribbons or twining
plants. These phenomena are largely nonlinear, dominated by bending and twisting

elastic deformations, while stretching and shearing can be neglected. To account
for this regime properly, we consider inextensible �bers with a vanishing rotation
inertia, neglect shearing, and assume moment strains to remain small � making
use of an elastic constitutive model � while large displacements, at the origin of
the desired geometric nonlinearities, are allowed. The model is thus strictly subject
to �nite2 rotations about the cross-section axes (bending) and about the tangent of
the centerline (twisting). The corresponding governing equations � a set of par-
tial di�erential equations together with boundary conditions � were �rst developed
by Kirchho� and Clebsch in their theory of thin elastic rods under �nite displace-
ments [Dill, 1992]. Within a more general framework on shells, rods and points, the
Cosserat brothers [1909] later on proposed a clever mathematical representation of
the rod geometry, relying on a space curve (the centerline) together with a material

frame attached to the rod cross-section and continuously rotating along the center-
line about the so-called Darboux rotation vector. A modern description of these
theories can be found in [Antman, 1995; Audoly and Pomeau, 2010]. Pai [2002] was
the �rst to introduce them to the Computer Graphics community.

2As opposed to in�nitesimal.
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Discretizing material rods In Mechanical Engineering, both �nite di�erences

and �nite elements approaches were developed to discretize material rods in space
and time. Though �nite di�erences schemes have in principle the advantage of be-
ing easy to set up, properly accounting for the rod boundary conditions (typically, a
clamped rod with the other end free) generally requires the use of a shooting strategy,
which implies the solving of multiple nonlinear problems. Moreover, the sti� na-
ture of the Kirchho� equations, stemming from the presence of fourth-order spatial
derivatives, imposes the use of overly small steps in time and space, or sophisticated
implicit integrators [Goyal et al., 2008]. In contrast, a �nite elements strategy allows
one to single out spatial terms from time-evolving quantities, and provides a vast
choice of elements to approximate them together with the boundary conditions. A
popular method is the so-called geometrically exact beam approach [Reissner, 1973;
Simo and Vu-Quoc, 1986], which derives an exact weak formulation for a generalized
Kirchho� rod with stretching and shearing, and �nally discretizes the displacement
and rotation �elds with interpolating shape functions. One important issue of this
approach, which spurred many subsequent works in the �nite elements community,
deals with the proper interpolation of rotations for preserving objectivity, i.e., in-
variance of the strain measures under rigid motion [Cris�eld and Jeleni¢, 1998].
Moreover, regarding our speci�c needs here, this method is not directly applicable
to the handling of inextensible and unshearable rods.

In Computer Graphics, �nite di�erences schemes initially proposed by Pai [2002]
to solve the statics of Kirchho� rods were subsequently superseded with more ro-
bust schemes so as to deal with the full dynamic case. Reduced -coordinates models,
based on a minimal parametrization of the system, were proposed to account for
the exact kinematics of the rod, and especially to preserve inextensibility: this was
the case for the articulated rigid body approach [Hadap and Magnenat-Thalmann,
2001; Hadap, 2006], parameterized by angular joints, and then by our super-models
(detailed hereafter), parameterized by curvatures and twist. In contrast, further
work focused on nodal models in order to get an explicit, point based representation
of the centerline leading to a sparse mass matrix, at the price of adding external
constraints to preserve the true kinematics. In the CoRde model [Spillmann and
Teschner, 2007], both positions and orientations are considered as degrees of free-
dom. The Lagrange equations of motion are written for discrete approximations
of kinetic and potential energies � including a stretch term � and orientations
are coupled back to the centerline through soft constraints. Relying on the Bishop
frame, Bergou et al. [2008] use a curve-angle parameterization to reduce the number
of redundant parameters and guarantee that the orientation frame naturally re-
mains adapted to the centerline. Discrete equations of motion are then established
by leveraging principles from discrete di�erential geometry. Due to the choice of a
nodal parameterization, inextensibility however needs to be explicitly enforced, e.g.,
through a fast projection scheme [Bergou et al., 2008] or a sti� stretch term [Bergou
et al., 2010]. Finally, to ensure proper stability at an acceptable computational
cost, an implicit scheme based on Newton's method is advocated to discretize the
nonlinear sti� bending and stretching forces [Bergou et al., 2010].
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Reduced Lagrangian dynamics One advantage of reduced dynamics is that,
by directly considering moment strains as actual degrees of freedom (i.e., material
curvatures and twist instead of positions), the rod kinematics is exactly preserved,
without redundancy and without adding any further constraint. Models parame-
terized by curvatures3 also bene�t from an inexpensive implicit handling of bend-
ing forces, as those forces are linear in curvature. Finally, while multiple collision
tricks � such as the position alteration technique [Bara� and Witkin, 1998] � were
speci�cally developed for nodal models in Computer Graphics, more sophisticated,
constraint-based frictional contact solvers naturally cope with reduced Lagrangian
models (see Chapter 3) without having to worry about getting intermingled with
external kinematic constraints.

2.2 Kirchho� equations for thin elastic rods

Notation In what follows, s denotes the space variable and t the time variable.
Space derivatives are represented by the prime symbol, so that a′(s, t) = ∂a

∂s and
time derivatives by the dot symbol, so that ȧ(s, t) = ∂a

∂t . For the sake of clarity, we
may omit the time variable when describing the geometry of the rod. The special
orthogonal group of dimension 3, denoted SO(3), collects �nite rotations of R3

(represented as direct orthogonal matrices) and is a non commutative Lie group.

We consider an inextensible and unshearable material rod of length L, repre-
sented by a centerline r(s) together with a material frame R(s), both parameterized
by arc length s ∈ [0, L]. At location s, the vector r(s) ∈ R3 gives the 3D position of
the centerline and the rotation matrix R(s) ∈ SO(3) encodes the (unitary) tangent
vector4 n0(s) = r′(s) as well as the two normal vectors n1(s) and n2(s) attached to
the cross-section of the rod.

s = 0

s = L

n0(s)n1(s)
n2(s)

r(s)

For simplicity, we assume that the rod is clamped at s = 0, and that its clamped
position r(0) = rcl and orientation R(0) = Rcl are given. We also assume that the
end s = L is free, that is, its position or velocity is not prescribed kinematically.
Note that these two assumptions hold in most real �bers we wish to model, e.g.,
plants and hair. Otherwise, any of them could easily be dropped out; the former,
by releasing rcl and Rcl as degrees of freedom; the latter, by adding some constraint
at the s = L end.

3In this document we often use the shortcut curvatures to refer to material twist and curvatures.
4The material frame R(s) is said to be adapted to the curve r(s).
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Kinematics From s = 0 to s = L, the material frame R(s) continuously evolves
along the centerline r(s) through in�nitesimal rotations about the so-called Darboux

vector Ω(s) which represents the instantaneous space rotation vector of the rod. This
space evolution mathematically writes

R′(s) = [Ω(s)]×R(s), (2.1)

where [u]× denotes the skew symmetric matrix corresponding to the vector cross
product operator, i.e., [u]×v = u × v. It is noteworthy that the local coordinates
of Ω in the material frame represent the material twist κ0 and material curvatures

κ1 and κ2 of the rod, i.e., Ω(s) = R(s)κ(s), where κ(s) = [κ0(s), κ1(s), κ2(s)] is
called the material curvature vector (or simply curvature vector) in the remainder of
the document. By further using properties of rotation matrices, one can reformulate
Equation (2.1) as

R′(s) = R(s) [κ(s)]× . (2.2)

Finally, by compacting the centerline and the material frame into one single
variable F(s) = {r(s);R(s)} and assuming κ(s) is �xed, the full kinematics of the
rod can be formulated as an explicit5 linear �rst-order Cauchy-Lipschitz problem,
referred to as the Darboux problem (see, e.g., [Ivanova, 2000]),{

F ′(s) =
{
n0(s) ; R(s) [κ(s)]×

}
with F(0) = {rcl ; Rcl} as initial conditions,

(2.3)

which admits a unique solution. Note that the ambient space is not a vector space
but rather a nonlinear di�erentiable manifold, since the kinematic relationship for
the material frame operates onto the non commutative Lie group SO(3). Due to
non commutativity, the solution has no formal expression in the general case.

Dynamics Let ρ be the volumetric mass of the rod and S the surface area of
its cross-section. We assume the rod is subject to external forces such as gravity
or contact forces. Expressing the balance of linear and angular momentums on
an in�nitesimal portion of the rod and neglecting inertial momentum due to the
vanishing cross-section leads to the following dynamic equations for a Kirchho� rod,

{
T′(s) + p(s) = ρSr̈(s)

M′(s) + n0(s)×T(s) = 0

(2.4a)

(2.4b)

where p is the the sum of external forces distributed per unit length (for instance,
in the case of gravity, p = −ρSgez) and T(s) and M(s)) are the internal force
and moment respectively, transmitted from the free part of the rod through its
cross-section at s.

5Coe�cient of the highest derivative is 1.
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Elastic constitutive law Dynamic equations are completed with a constitutive
law that expresses the ability of the rod to bend and twist elastically,

M(s) = K3 (κ(s)− κ̄(s)) in the local basis R(s), (2.5)

where K3 = diag3 (K0,K1,K2) is a diagonal 3× 3 matrix collecting the twisting and
bending sti�nesses K0, K1, and K2 respectively, and where κ̄(s) ∈ R3 collects the
intrinsic twist and curvatures of the rod, used to model natural curliness (i.e., the
shape the rod would have in the absence of external forces). As we are modeling a
homogeneous material, both the linear mass density ρS and the sti�ness matrix K3

are assumed to be constant with respect to space and time6. In contrast, the intrinsic
curvature vector κ̄(s) may vary spatially to account for a wide range of natural
shapes.

Boundary conditions As mentioned ealier, we consider the rod to be clamped
at end s = 0 and free at the other end s = L. Corresponding boundary conditions
read 

r(0) = rcl Enforced clamped position (2.6a)

R(0) = Rcl Enforced clamped frame (2.6b)

T(L) = 0 No external force at free end (2.6c)

M(L) = 0 No external torque at free end (2.6d)

Numerical model Equations (2.3�2.5) together with the boundary conditions (2.6)
at s = 0 and s = L form a nonlinear and sti� boundary value problem, which has no
explicit solution is the general case and is known to be di�cult to solve numerically.

2.3 Discrete curvature-based models

Realizing that curvature plays a key role in both the kinematics and the dynamics
of the rod, an interesting idea consists in approximating the curvature vector with
a simple, polynomial expression that is function of s. The coe�cients of the poly-
nomial are then taken as primary variables of the discrete model. One immediate
consequence is that bending forces, which are linear in curvature, become linear in
the discrete variables. Being sti� in nature, those forces can thus be treated im-
plicitly in a straightforward manner, without having to solve a nonlinear problem.
Furthermore, the kinematic (Darboux) problem becomes numerically tractable, and
even solvable with a closed-form solution in the piecewise constant case.

6This assumption is debatable in some cases, like for instance vegetal stems for which it has

been shown that the sti�ness may vary spatially during the plant growing process [Beusmans and

Silk, 1988]. Note however that such an assumption is not mandatory for building our discrete rod

models in Section 2.3. Yet, it will be leveraged by our inversion process presented in Chapter 4.
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Discrete kinematics In the following, we shall denote by q ∈ Rm our state
variable collecting the discrete curvatures and twists7, and q̄ the vector of same size
storing the discrete intrinsic curvatures and twists. For now, we assume that the
centerline of the rod r can be computed as a function of s, q, rcl and Rcl, by solving
the Darboux problem (2.3) with an accurate numerical method. The latter point is
speci�cally addressed in Sections 2.3.1 and 2.3.2 in the case of the super-helix and
the super-clothoid model, respectively. Formally di�erentiating the centerline twice
with respect to time leads to the following expression for acceleration,

r̈(s, t) = r̈∗(s, t) + q̇(t)
∂2r

∂q2
(s, t)q̇(t) +

∂r

∂q
(s, t)q̈(t), (2.7)

where r̈∗(s, t) is the acceleration generated by the clamping motion, which can be
dropped when the clamped end is static. Expression (2.7) puts in evidence the linear
dependence of the centerline acceleration r̈ with respect to the generalized acceler-
ation q̈, a property that will be leveraged when designing a linear-time integration
scheme in Section 2.4.

Discrete dynamics Discrete equations of motion result from a weak formula-
tion of the strong Kirchho� equations (2.4), where the trial functions are deduced
from the constrained, piecewise polynomial kinematics. Consider an in�nitesimal
virtual displacement δq of our discrete degrees of freedom. This translates into a
perturbation δκ(s) in the curvatures and twist function, which causes an in�nitesi-
mal rotation of the material frame about a virtual rotation vector δθ(s), such that
δR(s) = [δθ(s)]×R(s), as well as an in�nitesimal displacement δr(s) of the cen-
terline. Applying the principle of virtual work [Reissner, 1973] while considering
an inextensible rod as well as the boundary conditions (2.6), leads to the following
weak formulation, ∫ L

0

(
M′(s) + n0(s)×T(s)

)
· δθ(s) ds = 0,

whereT(s) =
∫ L
s (p(s′)− ρSr̈(s′)) ds′. Integrating by parts and noting that δκ(s) =

δθ′(s) and [δθ(s)]× n0(s) = (δr)′(s), we get∫ L

0
M(s) · δκ(s) ds+

∫ L

0
p(s) · δr(s) ds = ρS

∫ L

0
r̈(s) · δr(s) ds.

Finally, relating perturbed quantities to the virtual displacement δq and using the
kinematic equation (2.7) yields the discrete dynamic equations

M(q)q̈ + K (q − q̄) + G(q) + A(q, q̇) = 0 (2.8)

7Discrete curvature and twists q corresponds to per-element curvatures and twist for the super-

helix model, and per-joint curvatures and twist for the super-clothoid model.
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where

M(q) = ρS

∫ L

0

(
∂r

∂q

)>
∂r

∂q
ds

G(q) = − ρS

∫ L

0

(
∂r

∂q

)>
g ds

A(q, q̇) = ρS

∫ L

0

(
∂r

∂q

)> (
q̇
∂2r

∂q2
q̇ + r̈∗

)
ds,

(2.9)

and where the sti�ness matrix K is a constant function linear in K3, with a pattern
depending on the order of discretization (see Sections 2.3.1 and 2.3.2).

The main challenge consists in evaluating vectors G and A and matrix M in a
both accurate and fast way. Sections 2.3.1 and 2.3.2 propose two di�erent spatial
discretizations � one piecewise constant and one piecewise linear with respect to s
� and show how each of them addresses this problem.

Semi-implicit time-integration Finally, once the discrete dynamic equation (2.8)
is assembled, we may use a semi-implicit Euler scheme to �nd q at next time step,
by simply taking linear terms as implicit and others as explicit, i.e., such that the
time-discrete dynamic equation reads

M(qt)q̈t+1 + K
(
qt+1 − q̄

)
+ G(qt) + A(qt, q̇t) = 0. (2.10)

As the elastic term of the dynamics appears to be the sti�er term of the equation,
this cheap integration scheme proves su�cient to guarantee a good stability of the
algorithm in most situations, even those involving some strong motion of the rod.

2.3.1 Piecewise uniform curvature: the super-helix model

The super-helix element We discretize the rod into N elements with arc lengths
at joints denoted by si, i ∈ {0..N}. On each element Ei between two successive
joints si and si+1, the curvature vector κ(s) is assumed to be constant with respect
to arc length s, i.e.,

κ(s) = κi ∀s ∈ [si, si+1].

The generalized coordinate vector q of the system thus collects the 3N curva-
tures and twist values κi,j with j ∈ {0..3}. The sti�ness matrix is simply de�ned
as

K =



`0 K3 0 · · · 0

0 `1 K3
. . .

...

0
. . . . . . 0

...
. . . `N−1 K3 0

0 · · · 0 `N−1 K3


= K3 ⊗ diagN (`) , (2.11)

where ` = (`0, · · · , `N−1)
>
is the vector of lengths, diagN (`) is the diagonal matrix

of the lengths of size N , and ⊗ is the tensor (or Kronecker) product.
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Closed-form kinematics As the curvature function κ(s) is constant on each el-
ement Ei, it can be shown that the Darboux vector Ω(s) is constant too on each
element, and that the Darboux problem (2.3) has an explicit solution on each ele-
ment Ei, given by

R(s) = R(si) exp
(
s [κi]×

)
and r(s) = r(si)+

∫ si+1

si

R(s) ex with ex = [1 0 0]
>
,

which can be computed in closed-form, i.e., using only basic and cheap unitary
operations. In our case, the above expressions can be evaluated using only cosine
and sine functions, and it is noteworthy that the centerline r(s) takes the form of
a perfect circular helix on each element Ei. Starting integration at s = 0 with
clamping conditions (2.6a � 2.6b) and then using continuity conditions for R(s)

and r(s) at each joint si, we can integrate the full kinematics of the rod from
s = 0 to s = L. The super-helix model then features a C1-smooth piecewise helical

centerline, and all the terms of the kinematics (material frame, centerline, but also
deformation gradients), and �nally all the terms of the dynamics (2.8)), can be
computed in closed-form8.

Limitations A discrete rod with piecewise constant curvature may still represent
a rather rough approximation of the continuous case, with an improper degree of
continuity at the joints (see Figure 2.2). Instead of using an excessively re�ned
primitive, one may think it would be worth designing a richer, higher-order element
with linear curvatures, that would better stick to the actual curvature pro�le of real
�bers and guarantee visually pleasing smoothness (i.e., at least C2-continuity) of
the centerline at any resolution. One becomes unfortunately faced with the loss of
a formal expression for the kinematics. Yet, observing that the Darboux problem
still possesses a lot of structure, we show in the following that such a space clothoid

element can be conveniently derived. The key is to introduce a fast and accurate
integration scheme based on an adaptive power series summation algorithm. This
numerical algorithm is then used as a formal computation tool to evaluate the spatial
terms of the dynamics at a high precision.

2.3.2 Piecewise linear curvature: the super-clothoid model

In the piecewise linear case, where each element takes the form of a so-called 3D

clothoid9, we were able to build an accurate integration scheme which proved to be

8Computing each term of the dynamics (2.8) amounts to evaluating the integral over [0, L] of

cosine and sine functions, and products of cosine and sine functions.
9A clothoid or Euler spiral is a planar curve characterized by a linear curvature w.r.t. the arc

length. By extension to 3D, the term 3D Euler spiral was coined by Harary and Tal [2012] to name

a space curve characterized by linearly geometric curvature and torsion. In our case we rather use

the term space clothoid to name the centerline of a rod characterized by linear material curvatures

and twist. The centerline of our rod element is actually more general than the so-called 3D Euler

spiral, the entire class of so-called 3D Euler spirals being obtained by cancelling the �rst material

curvature. Note that this di�erence will be discussed again in Chapter 4.
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(a) super-helix (b) super-clothoid

Figure 2.2 � Comparison of fairness (or smoothness) between (a) the super-helix model

and (b) the super-clothoid model. Whereas joints between elements are particularly visible

for the super-helix model (5 elements here), the super-clothoid model generates a smooth,

visually pleasing shape even at a very coarse resolution (2 elements here).

orders of magnitude faster compared to classical integration methods [Casati and
Bertails-Descoubes, 2013]. The key of our approach was to leverage the form of
the solution as a power series expansion, while avoiding the pitfall of catastrophic
cancellation through an adaptive integration strategy. With this tool in hand, we
were able to demonstrate that the super-clothoid model could capture intricate
shapes both robustly and e�ciently, with better spatial accuracy and geometric
fairness compared to state-of-the-art methods (see Figure 2.1).

The super-clothoid element As before we discretize the rod into N elements.
However, now the discrete curvature variables κ̂i are located at joints si, and the
curvature vector q collects 3 (N + 1) degrees of freedom. On each element Ei of
length `i, the curvature vector κ(s) is assumed to vary linearly with arc length s,
so that its expression reads

κ(s) =

(
1− s− si

`i

)
κ̂i +

s− si
`i

κ̂i+1 ∀s ∈ [si, si+1].

The sti�ness matrix is not diagonal anymore but becomes tridiagonal,

K =



`0
3 K3

`0
6 K3 0 · · · 0

`0
6 K3

`0+`1
3 K3

. . . . . .
...

0
. . . . . . . . . 0

...
. . . . . . `N−2+`N−1

3 K3
`N−1

6 K3

0 · · · 0
`N−1

6 K3
`N−1

3 K3


= K3 ⊗ tridiagN (`) ,

(2.12)
where tridiagN (`) is a tridiagonal matrix of sizeN linearly depending on the lengths.
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Kinematic integration using power series expansion We �rst focus on a
single element with index i = 0. When the curvature vector is polynomial of degree
≥ 1, the key idea is to formulate the solution of the Darboux problem (2.3) as
a power series expansion (PSE). Indeed, invoking Cauchy's theorem on analytic
solutions of linear ODEs with analytic coe�cients (see, e.g., [Poole, 1936, �2]), we
deduce that the solution F of (2.3) is C∞ and admits a power series expansion

F(s) =

{ ∞∑
n=0

rns
n;

∞∑
n=0

Rnsn
}

on R. In our particular case where the curvature is

a polynomial of degree 1 (space clothoid element), the general term of the series{
r̃n(s) = rn s

n; R̃n(s) = Rn sn
}
is recursively de�ned as



R̃0 = Rcl

R̃1(s) = s R̃0 [κ̂0]× (2.13a)

R̃n+2(s) =
s

n+ 2

(
R̃n+1(s) [κ̂0]× + s R̃n(s) [γ]×

)
∀n ∈ N

r̃0 = rcl

r̃n+1 =
s

n+ 1
R̃n ex ∀n ∈ N, (2.13b)

where `0 is the length of the element, κ̂0 and κ̂1 are its initial and �nal curva-
tures respectively, and γ is the curvature slope, γ = κ̂1−κ̂0

`0
. Note that according

to (2.13b), computing the centerline follows from that of the material frame, the
latter involving the recursive sequence (2.13a) of second order.

Furthermore, one important property of the above power series expansion is that
only the very �rst terms of the series are relevant, the following ones rapidly decreas-
ing in norm and falling below machine precision. This means that the solution F
can be evaluated accurately through a truncated series containing a small number
of terms (in practice, around 100 terms). This nice property is due to the simple
structure of our kinematic problem (2.3), which formulates as an explicit linear ODE
with polynomial coe�cients. In this case indeed, we can prove that the general term
of the series decreases super-linearly to zero as n tends to in�nity [Neher, 1999].

Catastrophic cancellation issue Unfortunately, when numerically evaluating
the sum of the relevant terms in �nite precision, one is inevitably faced with round-
o� issues leading to huge approximation errors. Consider expression (1 + y) − y

which should be equal to 1 whatever the value of y. In �oating-point arithmetic,
this equality only holds if y is close enough to 1. In double precision for example,
take y = 1016 and compute the expression above. The numerical result is 0.0,
yielding a relative error of 100%. This error is the consequence of �rst, an absorption

phenomenon when computing the sum 1+1016, which, due to machine over�ow when
aligning mantissa, is approximated to 1016. Then, a cancellation phenomenon when
subtracting 1016. Such unfortunate combination of absorption and cancellation leads
to erroneous results and for this reason is called catastrophic cancellation. Details
on �oating-point arithmetic can be found in, e.g., [Goldberg, 1991].
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(a)

(b)
(c)

Figure 2.3 � 2.3a: Dramatic loss of precision when naively summing power series of the

kinematics. 2.3b: In contrast, our piecewise summation algorithm guarantees high precision

of the summation. 2.3c: A long and highly curved space clothoid integrated with our

piecewise computation method, using 109 subdivisions.

In our case, catastrophic cancellation problems precisely occur when naively
computing the sum of our power series

∑
R̃n(s) for a long and/or curly rod (see

Figure 2.3a). To explain this phenomenon, we have plotted in Figure 2.4 (in blue)
the norm of the general term R̃n(s) as a function of n, for di�erent values of s. The
resulting �hillock�-like pro�le implies that when computing the sum of the series, one
actually adds very small values together with very large ones in norm, the widest
range being obtained when getting to the top of the hillock. Note that the larger
s, the higher the top of the hillock. More precisely, we have shown in [Casati and
Bertails-Descoubes, 2013] that the top of the hillock H(s) grows quasi-exponentially
with the increasing function λ(s) de�ned as

λ(s) = 2s(‖κ̂0‖∞ + s ‖γ‖∞).

Moreover, looking back at Recursion (2.13a), one notes that entries of the matrices to
be added are of alternating sign, due to the product with skew symmetric matrices.
This results in cancellation when computing the sum. All this combined together,
it is then not surprising that we are faced with a catastrophic cancellation issue
when λ(s) (and thus s) becomes too large. As λ(s) increases with s as well as
with intrinsic curvatures, we now understand why numerical issues show up for a
long and/or curly rod. Luckily enough, as shown in the following, we can avoid
catastrophic cancellation by devising an adaptive summation algorithm.

Fast and Precise Power Series Summation To avoid catastrophic cancella-
tion, a natural idea consists in upper-bounding x by a value M depending on the
machine precision, so that the top of the hillock remains within the range where
additions between two numbers can be safely performed, i.e., with no absorption of
their leading digit. More precisely, if the machine has precision 10−d (d = 7 for a
�oating number encoded on 32 bits, d = 16 on 64 bits), then the top of the hillock
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Figure 2.4 � Hillock-like pro�le of the general term R̃n(s) in norm. In blue: Evolution of∥∥∥R̃n(s)
∥∥∥
∞

function of n (at �xed s), in log scale. As expected [Neher, 1999], the decreasing

towards 0 appears to be super-linear. In red: Evolution, function of s, of the upper-bound

H(s), in log scale. Note that the plot of this upper-bound visually matches the maximum

function maxn

∥∥∥R̃n(s)
∥∥∥
∞
, meaning that the top of the hillock grows quasi-exponentially

with s.

should be bounded by 10
d
2 so as to be able to safely cover additions on the range

[10−
d
2 , 10

d
2 ]. We have proved that a su�cient upper-bound for M is

M 6 max
{
n ∈ N s.t. (n+ 1)n 6 10

d
2n!
}
. (2.14)

One obtains M 6 19 for d = 16. In practice, we set M to 10 to maintain good
precision across summation. This choice allowed us to reach high precision for all
the summations we have computed.

Adaptive piecewise summation Our full summation method then relies on an
automatic subdivision of the integration domain into subintervals, on which inte-
gration can be safely performed. More precisely, our adaptive summation algo-
rithm consists in splitting the evaluation domain [0, `0] into p adaptive subintervals
[0, σ1], [σ1, σ2], · · · [σp−1, `0] such that σi+1 = σi + smax(σi), where smax(σi) is pro-
vided by this upper-bound function,

smax(σ) =


√
‖κ(σ)‖2∞+2M‖γ‖∞−‖κ(σ)‖∞

2‖γ‖∞
if γ 6= 0

M
2‖κ(σ)‖∞

else if κ(σ) 6= 0

+∞ otherwise.

(2.15)
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On each subinterval, summation is thus guaranteed to be performed with good
accuracy (see an illustration in Figure 2.5).

[0, σ1]
[σ1, σ2]

[σ2, `]

Figure 2.5 � Our piecewise summation algorithm applied to the rod's kinematics,
for one clothoidal element. The length of each subinterval which guarantees a safe
evaluation of the geometry is automatically provided by our method.

We show in [Casati and Bertails-Descoubes, 2013] than our adaptive piecewise
summation algorithm reaches a good precision (up to the machine precision) orders
of magnitude faster compared to classical integration schemes such as Euler or Runge
Kutta of order 2 and 4.

Finally, using continuity conditions at joints, the kinematics of the full rod can
be accurately integrated from s = 0 to s = L.

Propagation to the terms of the dynamics To compute all the terms of
the discrete dynamic equation (2.8), we need to perform several operations on our
kinematic terms, such as linear combination, scalar product, di�erentiation with
respect to q, or integration with respect to s. All these operations are actually easy
to perform using power series expansion; furthermore, we show that our precision
guarantee resists all these operations, thus providing us with a fast and accurate
method for computing all the terms of the dynamics.

Model comparison We have compared the super-clothoid model against the
super-helix model and the discrete elastic rod model [Bergou et al., 2008], by per-
forming a simple dynamic experiment: a naturally curly rod unfolds and falls under
gravity. At high resolution, we have �rst observed that the three models converge
towards exactly the same equilibrium. Then we have measured, for each model,
the spatial accuracy reached at equilibrium, function of the resolution used; and
similarly, the computational time made to reproduce the full dynamic experiment,
function of the resolution. Results are compiled and cross-viewed in Figure 2.6. They
show that for curly con�gurations, the two super-models provide a better trade-o�
in terms of accuracy/e�ciency compared to the discrete elastic rod model. For high
accuracy ranges, the super-clothoid model also o�ers a better alternative compared
to the super-helix model. Moreover, as mentioned before, the great advantage of
the super-clothoid model is to yield a visually pleasing, C2-smooth geometry, at any
resolution.
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Figure 2.6 � Comparisons between the super-clothoid model (SSC ), the super-helix model

(SH ), and the discrete elastic rod model (DER), in terms of accuracy and e�ciency.

2.4 Linear-time integration of the dynamics

One major advantage of the aforementioned curvature-based formulations is that the
kinematics of the discretized rod remains, by construction, perfectly inextensible.
Such intrinsic inextensibility thus removes the burden of adding subsequent (sti�)
inextensibility contraints when solving the dynamics. The price to pay, however,
is that the geometry of the rod is not readily available but has to be computed
iteratively from the curvatures. Moreover, the inertia matrix of such systems turns
out to be dense, leading to a N2 complexity when solving them at each time step,
where N is a number of elements. Exploring high-order discrete models such as the
clothoidal element helped us reduce the number of elements required for a given
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precision; however, for a very long rod requiring high spatial precision, the N2

computation would remain a bottleneck.
One strategy to deal with the latter issue was to propose a linear, recursive

scheme for curvature-based discrete models, inspired by the Featherstone algorithm
for articulated chains of rigid bodies [Featherstone, 1983]. We have investigated such
a linear strategy in [Bertails, 2009] in the case of a super-helix, but our algorithm
could be similarly applied to higher-order discrete models such as the super-clothoid
model. Below we explain the general principle of the method.

2.4.1 Recursive integration scheme

Non-local dynamics We consider again the time-and-space discrete dynamic
equations (2.10) for a super-model, which are recalled here, with the two unknowns
(implicit variables) marked at time t+ 1,

M(q)q̈t+1︸ ︷︷ ︸
non−local

+K
(
qt+1 − q̄

)︸ ︷︷ ︸
local

+G(q) + A(q, q̇) = 0. (2.16)

Let Ei be the ith element of the rod. While the ith block of the elastic term is local
to the element and only depends on the ith block of generalized coordinates qi, the
block of the inertial term depends on all generalized accelerations q̈, as M(q) is
obviously dense from its expression in (2.9), knowing that the term ∂r

∂q evaluated at
s ∈ Ei depends on all previous coordinates qj,j≤i due to the recursive kinematics of
super-models.

Building local dynamic equations from tip to root The key of our approach,
detailed in [Bertails, 2009], is to show that Equation (2.16) can be rewritten locally

on each element Ei as

Ki (qi − q̄i) = Ai q̈i + Ri r̈i(0) + Ci θ̈θθi(0) + bi, (2.17)

where r̈i(0) and θ̈θθi(0) are the linear and angular accelerations of the �rst end of
element Ei, respectively, and the 3 × 3 matrices Ai, Ri and Ci are called cumulate

inertias, and the vector bi cumulate force of the rod.
As in [Featherstone, 1983], the cumulate inertias and the cumulate force of the

rod can be computed recursively from the free end (i = N − 1) to the clamped
end (i = 0) of the rod. This can be proved by induction, using the kinematic
property (2.7) according to which the linear (and also angular) acceleration of the
rod is linear w.r.t. the generalized acceleration q̈.

Recursive solving from root to tip Finally, once each local dynamic equa-
tion (2.17) is built, one may simply integrate the dynamics recursively from root to
tip, using continuity conditions at the joints between elements.
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2.4.2 Comparison with the composite approach

The recursive approach presented above brings several advantages compared to the
so-called composite approach detailed in Section 2.3, in which full terms of the
dynamics are assembled.

First, we have observed a computational gain of about ×20 for rods made of
more than 20 elements. In practice, this allowed us to simulate very long rods in
real-time (see Figure 2.7(a)). Then, by simply adapting boundary conditions at
the joints between elements, we were able to extend the recursive approach quite
straightforwardly to the handling of tree-like structures (see Figure 2.7(b)). Note
that tree-like structures would have been much less trivial to model using the com-
posite approach.

On the downside, the recursive approach may require a smaller timestep to be
stable. This is due to the explicit computation of q̈i in the �rst pass of our algorithm,
which makes it slightly less stable than the composite method for an equivalent time
step. In the case of articulated rigid bodies, the explicit solving of Featherstone's
algorithm was pointed out by Hadap [2003] who proposed an interesting framework
for enforcing an implicit solving [Hadap, 2006]. Note however that in our case, the
di�erence in stability between the two methods keeps on being small.

Finally, we shall not use the recursive formalism of super-models in the next
chapter, which is dedicated to the introduction of frictional contact for which com-
posite models are better suited for. However, we believe that the recursive model
would be particularly useful for modeling botanical or biological structures. In
the latter case, a promising extension would be to design an adaptive scheme as
in [Redon et al., 2005], by relying upon Featherstone's divide-and-conquer algo-
rithm [Featherstone, 1999a,b]. So far, to the best of our knowledge, such adaptive
algorithms were leveraged for articulated rigid bodies only. Adaptive super-models
could be very useful for manipulating in real-time long and complex biological �l-
aments (e.g., macro-molecules) prone to bending and twisting, by automatically
tuning their number of active degrees of freedom.

(a) (b)

Figure 2.7 � (a) Interactive manipulation of a long super-helix made of 30 helical elements.

(b) Interactive animation of a weeping willow swept by wind, represented as a tree-like

structure of super-helices (composed of 242 helical elements) with various sti�ness values.
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2.5 Conclusion: Towards a curvature-based shell model

We have investigated new discrete models for solving the Kirchho� dynamic equa-
tions for thin elastic rods. All our models share a curvature-based spatial discretiza-
tion, allowing them to capture inextensibility of the rod intrinsically, without the
need for adding any kinematic constraint. Moreover, elastic forces boil down to
linear terms in the dynamic equations, making them well-suited for implicit integra-
tion. We shall furthermore show in Chapter 4 that this property will be leveraged
for solving inverse design problems.

Interestingly, our discretization methodology can be interpreted from two di�er-
ent points-of-view. From the �nite-elements point-of-view, our strain-based discrete
schemes can be seen as discontinuous Galerkin methods of zero and �rst orders.
From the multibody system dynamics point-of-view, our discrete models can be
interpreted as deformable Lagrangian systems in �nite dimension, for which a dedi-
cated community has started to grow recently [Sugiyama et al., 2013]. We note that
adopting the multibody system dynamics point-of-view helped us formulate a linear-
time integration scheme, which had only be investigated in the case of multibody
rigid bodies dynamics so far.

Towards a curvature-based shell model Recently, we have started to inves-
tigate similar high-order modeling strategies for surfaces, in particular for the case
of inextensible and developable shells. In [Blumentals et al., 2016a] we have built
an inextensible shell patch by taking as degrees of freedom the curvatures of its
mid-surface, expressed in the local frame. As in the super-helix model, we show
that when taking curvatures uniform over the element, each term of the equations
of motion may be computed in closed-form; besides, the geometry of the element
corresponds to a cylinder patch at each time step (see Figure 2.8). Compared to
the 1D (rod) case however, some di�culties arise in the 2D (plate/shell) case, where
compatibility conditions are to be treated carefully. Moreover, the question of as-
sembling such shell patches to build a full inextensible and developable shell model
remains an open problem.

(a) (b) (c) (d)

Figure 2.8 � (a) Cylindrical geometry of our shell patch with uniform material curvatures.

(b-d) Dynamical oscillations of our inextensible shell patch clamped at bottom right corner

and subject to gravity, with an initially curved intrinsic shape.
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The second core topic of my research activity deals with the modeling and sim-
ulation of dry (Coulomb) frictional contact within (potentially large) collections of
thin structures, such as rigid grains, thin elastic rods or plates/shells. Target appli-
cations include the simulation of �brous and granular materials (such as human hair
and sand, respectively), and more recently, cloth. For all these dynamical systems,
dry frictional contact plays a major role in their visual appearance (see Figure 3.1).

Summary of contributions Our initial motivation for conducting research in
frictional contact algorithms was to improve the realism of hair simulations, where
self-interactions were simply neglected in the worse case [Anjyo et al., 1992], and
regularized in the best case [McAdams et al., 2009], yielding an overly smooth ap-
pearance of hair. We have started our study by modeling hair as a collection of
individual thin elastic rods interacting through contact and friction � a method
known as the discrete element method. However, instead of using common com-
pliant and regularized models for contact and friction, we have followed the non-

smooth contact dynamics approach developed by Moreau and Jean a few decades
ago [Moreau, 1988; Moreau and Jean, 1996; Jean, 1999], in which emerging e�ects of
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(a) real sand pile (b) simulated sand pile

(c) real hair (d) simulated hair

Figure 3.1 � Taking into account dry frictional contact is of utmost importance for cap-

turing signi�cant visual features such as a stable sand pile or complex hair patterns.

contact and solid friction are integrated at the macroscopic scale within a rigid and
nonsmooth law. In this framework, the discrete frictional contact problem (named
hereafter DFCP) possesses various possible formulations, from the root-�nding of
complementarity merit functions to a sequence of parameterized convex problems.
We have �rst studied the numerical counter-parts for each main formulation and
evaluated how each of them performs in terms of e�ciency, robustness, and scala-
bility [Bertails-Descoubes et al., 2011]. Facing robustness and scalability issues when
using state-of-the-arts approaches, we have then designed a new frictional contact
solver by coupling an iterative Gauss-Seidel strategy together with an extremely ro-
bust one-contact solver relying upon a hybrid local solver [Daviet et al., 2011]. This
new solver proved to converge well in scenarios involving thousands �bers subject to
tens thousands frictional contact points, and thus allowed us to enhance consider-
ably the realism of hair simulations (see Figure 3.8). Recently, we have adapted this
solver for coping with frictional contact in cloth modeled as a nodal system [Daviet
et al., 2015] (see Figure 3.9).

In parallel to our work on the discrete element modeling of �ber assemblies,
we have started to investigate continuum modeling strategies so as to scale up
simulations to hundreds thousands �bers � the actual order of magnitude of a
full head of hair. Faced with the glaring lack of macroscopic models for dry �-
brous materials in the literature, we have started this long-term investigation by
considering the simpler case of granular matter, where each element is not a de-
formable �ber but a rigid and isotropic grain. We have modeled a large assembly of
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grains as a dilatable viscoplastic �uid combined with a Drucker-Prager yield crite-
rion (which stands for a generalization of the Coulomb friction law to a continuum)
and a unilateral compressibility constraint, �rst in the dense regime [Daviet and
Bertails-Descoubes, 2016b], then accounting for a varying volume fraction [Daviet
and Bertails-Descoubes, 2016a]. Thanks to a semi-implicit time-stepping scheme
and a careful spatial discretization of our rheology, we were able to preserve at each
time step the exact coupling between normal and tangential stresses, in a stable
way. This contrasts with previous approaches that either regularize or linearize the
yield criterion for implicit integration, leading to arti�cial sliding motion or visible
grid artifacts [Chambon et al., 2011; Narain et al., 2010]. Remarkably, our discrete
problem turned out to be very similar to the discrete frictional contact problem
(DFCP) that we had formerly encountered when dealing with discrete element
modeling, which allowed us to leverage again our robust nonsmooth solver [Daviet
et al., 2011]. Our method was qualitatively validated by successfully capturing typ-
ical macroscopic features of some classical experiments, such as the discharge of a
silo or the collapse of a granular column.

Organization of the chapter Section 3.1 motivates our choice for modeling fric-
tional contact using rigid and nonsmooth frictional contact laws, in the context of
both multibody and continuum dynamics. Section 3.2 �rst formulates the discrete
element problem where a large number of deformable structures are interacting
through non-penetration constraints combined with the nonsmooth Coulomb fric-
tion law, then spells out the speci�city of our resulting discrete problem (DFCP),
and discusses robust and e�cient numerical solutions for solving it. Following a
similar outline, Section 3.3 presents the nonsmooth Drucker-Prager law for pressure-
dependent yield-stress �uids, combined with a non-compressibility condition, and
provides insights into the semi-implicit discretization of the full dynamical problem,
which turns out to share a structure similar to that of our DFCP.

3.1 Prior art and choice for nonsmooth models

Most popular approaches in Computer Graphics and Mechanical Engineering con-
sist in assuming that the objects in contact are locally compliant, allowing them
to slightly penetrate each other. This is the principle of penalty-based methods

(or molecular dynamics), which consists in adding mutual repulsive forces of the
form k f(δ), where δ is the penetration depth detected at current time step [Cundall,
1971; Moore and Wilhelms, 1988]. Though simple to implement and computation-
ally e�cient, the penalty-based method often fails to prevent excessive penetration
of the contacting objects, which may prove fatal in the case of thin objects as those
may just end up traversing each other (see Figure 3.2(a)). One solution might be to
set the sti�ness factor k to a large enough value, however this causes the introduc-
tion of parasitical high frequencies and calls for very small integration steps [Bara�,
1989]. Penalty-based approaches are thus generally not satisfying for ensuring ro-
bust contact handling.
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(a) Knot tying (b) Plectoneme

Figure 3.2 � Simulation of complex geometrical con�gurations involving self-contact, such

as a knot (a) and a plectoneme (b). With a classical penalty-based method, tying the knot

causes the contact to break, whereas contact resists arbitrarily large user forces when using

an implicit constraint-based method, without having to tune an extra sti�ness parameter.

In the same vein, the friction law between solid objects, or within a yield-stress
�uid (used to model foam, sand, or cement, which, unlike water, cannot �ow beyond
a certain threshold), is commonly modeled using a regularized friction law (some-
times even with simple viscous forces), for the sake of simplicity and numerical
tractability (see e.g., [Spillmann and Teschner, 2008; Frigaard and Nouar, 2005]).
Such a model cannot capture the threshold e�ect that characterizes friction between
contacting solids or within a yield-stress �uid. The nonsmooth transition between
sticking and sliding is however responsible for signi�cant visual features, such as the
complex patterns resting on the outer surface of hair, the stable formation of sand
piles, or typical stick-slip instabilities occurring during motion (see Figure 3.1).

After having employed such regularized strategies during my PhD, the search for
a realistic, robust and stable frictional contact method encouraged me to depart from
those, and instead to focus on rigid contact models coupled to the exact nonsmooth
Coulomb law for friction (and respectively, to the exact nonsmooth Drucker-Prager
law in the case of a �uid), which better integrate the e�ects of frictional contact at
the macroscopic scale. Those modeling choices are summarized in Figure 3.3.

For stability and consistency purposes, nonsmooth models require implicit in-
tegration schemes1 when being simulated numerically. Resulting discrete problems
then take the form of algebraic equations subject to complementarity set-valued

constraints, which are better understood and manipulated using convex analysis
tools, the latter having been mainly developed in the early 60's by Jean-Jacques
Moreau and R. Tyrrel Rockafellar. Such nonsmooth methods being disregarded in

1This means that at each time step, contact forces r (and the stress tensor σ respectively) are

unknowns of the problem, together with the relative velocities u of the problem (and the strain

rate tensor ε̇ respectively).
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h(q)

rN

(a) Compliant contact model

h(q)

rN

(b) Rigid contact model

uT

rT

(c) Viscous friction model

uT

rT

(d) Dry friction model

ε̇T

σT

(e) Newtonian �uid (e.g., water)

ε̇T

σT

(f) Yield-stress �uid (e.g., foam)

Figure 3.3 � Summary of our nonsmooth modeling choices for dealing with frictional

contact (right column), and comparison with their most simple regularized counterparts

(left column). Notation: h(q) is the gap function between the two contacting objects, rN
and rT are the normal and tangential components of the contact force, respectively, uT is

the tangential component of the relative velocity between the two contacting objects, σT

the tangential stress tensor of the continuum, and ε̇T the strain rate tensor.

most Computer Graphics groups2 a decade ago (in favor of regularized or explicit

2It is interesting however to note that nonsmooth contact mechanics have been introduced in

Computer Graphics by David Bara� as soon as in the late 80's [Bara�, 1989, 1991, 1993, 1994].

But it has not been followed up by the community at that time, then considerably losing ground on

the Mechanical Engineering community in this area. In Computer Graphics, nonsmooth mechanics

has slowly regained popularity in the context of rigid body dynamics, notably with the work of

Kauman and colleagues [2005; 2008].
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methods), their assessment was my main motivation for integrating in 2007 the In-
ria project-team BiPop, specialized in the implicit treatment of frictional contact
within the nonsmooth mechanics framework [Acary and Brogliato, 2008].

3.2 Nonsmooth contact dynamics for thin elastic objects

In this section we present a discrete element model for an assembly of thin elastic
objects (typically, �bers), where frictional contacts are modeled and time-discretized
using the nonsmooth contact dynamics framework [Moreau and Jean, 1996]. The
resulting Discrete Frictional Contact Problem (DFCP) is speci�cally solved for
by a new robust and scalable solver in the case of a large assembly of rods (≈
2000) modeled as super-helices [Bertails et al., 2006], and for which state-of-the-art
nonsmooth solvers were shown to fail. We have also started to adapt our solver to
the interaction handling between large nodal systems and rigid bodies, such as a
full garment worn by a walking character.

3.2.1 Adding unilateral contact with Coulomb friction

As individual components, we consider discrete Lagrangian systems; that is, spa-
tially discretized systems whose kinematics is fully described by the choice of a �nite
set of reduced (or generalized) coordinates, without the need for adding any con-
straint. This is typically the case of the discrete curvature-based models derived for
inextensible rods in Chapter 2, but also of the nodal systems classically used for
modelling extensible plates and shells in Computer Graphics [Bara� and Witkin,
1998; Grinspun et al., 2003].

Contact-free dynamics Let q ∈ Rm be the m generalized coordinates of such a
spatially discrete system and v = dq

dt its generalized velocities. Equations of motion
simply read as an ODE,

M(t, q)
dv
dt

= f(t, q,v), (3.1)

where the inertia matrixM(t, q) is symmetric positive de�nite, and the generalized
force f collects all forces applying onto the system, including internal elastic forces,
nonlinear inertial forces, and external forces such as gravity or air friction.

Now, when considering multiple such systems simultaneously by concatenating
their respective contributions, the structure of Equation (3.1) is globally preserved.
If we look more into details � this will be relevant when designing solving algorithms
in Section 3.2.4 � we note that the inertia matrixM naturally becomes sparse-block
as several individual components are added. In the remainder of the text, we shall
equally refer to Equation (3.1) for the unconstrained dynamics of an individual
or multiple components, keeping in mind the sparse pattern of M in the case of
multiple components.
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Local contact basis When coupling one or various components together with
contact and friction (including contact with an external object, mutual contacts
between components, and self-contact), we make several important simplifying as-
sumptions. First, we only consider a �nite set of contact points. Such a simpli�cation
is debatable, as it is well-known that some contacting con�gurations, for instance
a plectoneme (see Figure 3.2(b)) may exhibit a continuous line of contact beyond
a certain number of applied turns, a so-called supercoiled con�guration [Neukirch,
2004]. However, concentrating contact forces into an adequate3 set of points often
proves su�cient to avoid penetration and capture the Coulomb friction law, while
considerably simplifying the numerical settings. We further assume that one con-
tact always occurs between exactly two bodies, and that the surface of contacting
objects is su�ciently smooth so that we can de�ne a tangent surface S and a contact
normal e, from which we build a local basis (see Figure 3.4). We can then express
in this basis the relative velocity u between the two bodies, and the force r at the
contact point applying from one body to the other.

Figure 3.4 � Local contact basis, with normal and tangent subspaces.

Non-penetration conditions The �rst law that we wish to enforce is a strict

non-penetration constraint between the two objects. Let h(q) be the gap function
between the two bodies, which corresponds to a signed distance function. We assume
impacts to be purely inelastic (that is, kinetic energy instantaneoulsy dissipates
when the two objects collide), and thus enforce a vanishing post-impact normal
relative velocity uN(t+). When the two objects are in contact at time t (i.e., such
that h(q) = 0), some velocity-level condition, named Signorini condition, can be
formulated to express the non-penetration constraint at time t>0,

0 ≤ uN ⊥ rN ≥ 0, (3.2)

where the x ⊥ y notation means that the two scalar variables x and y should be
orthogonal, i.e., x y = 0 (more generally, in Rd, x ⊥ y means x>y = 0).

The complementarity condition (3.2) means that either the contact ceases (uN >
0) and necessarily the normal contact force vanishes (rN = 0), or the contact persists
(uN = 0) and necessarily the normal contact force, if not vanishing, becomes (or
remains) active (rN > 0) to prevent penetration.

3The set of contact points is determined on the �y using a collision detection process.
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Dry (solid) friction law The dry friction law, often attributed to Coulomb [1781]
(but which a number of other authors have contributed to, such as de Vinci, Amon-
tons, and Euler), results from the macroscopic observation that the normal compo-
nent rN and the tangential component rT of a contact force r between two solids
satisfy the following law,{

‖rT‖ ≤ µSrN if uT = 0 (static regime)

‖rT‖ = µDrN if uT 6= 0 (dynamic regime),
(3.3)

where µS and µD are the static and dynamic friction coe�cients, respectively. Al-
though it has been observed that µS is generally slightly higher than µD, we shall
assume in the following, for the sake of simplicity, that they are equal and correspond
to the same parameter µ. The value of µ shall depend on the characteristics of the
contacting surfaces (from µi = 0 for perfect contact without friction to µi = µmax

for rough surfaces).
One may observe that the Coulomb law is a threshold model, since the tangential

contact force should reach a certain magnitude before the objects are able to slide
on top of each other. Moreover, this magnitude directly depends on the normal
contact force, meaning that a heavy object requires some higher pulling force to be
dragged on a surface compared to a light object. This normal-dependent threshold,
which is key to realism4, is also responsible for the fact that Coulomb's law does not
�t in with the so-called associated rules or generalized standard materials [De Saxcé
and Feng, 1998], which are easier to manipulate formally and to handle numerically.
As a practical consequence, it will not be possible to view the Coulomb friction
constraint as the optimality condition of a convex minimization problem (see 3.2.3).
A full discussion about the inclusion of Coulomb's law in the family of implicit
standard materials (non-associated �ow rules) is provided in [Daviet, 2016].

The full Signorini-Coulomb disjunctive law Combining non-penetration con-
straint (3.2) together with Coulomb friction (3.3) is commonly referred to as the
Signorini-Coulomb law. It can be written in a compact and disjunctive manner, as

• Taking-o� case: r = 0 and uN ≥ 0

• Sticking case: r ∈ Kµ and u = 0

• Sliding case: r ∈ ∂Kµ, uN = 0 and ∃α ∈ R∗+, uT = −αrT ,

where Kµ is the second-order cone (SOC), de�ned in dimension d as

Kµ :=
{
x = [xN,xT] ∈ R× Rd−1, µxN ≥ ‖xT‖

}
,

4Indeed, imagine a stack of �ber layers, or a sand pile under gravitational �eld. If the friction

threshold is constant, sliding will occur at any arbitrary depth of the pile, leading to an unrealistic

avalanching behavior. In contrast, if the threshold is correctly set proportional to the normal force,

the top surface will be, as expected, more prone to sliding avalanches compared to deeper layers.
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with xN the (scalar) normal component of x ∈ Rd, and xT its tangential component.

The Signorini-Coulomb law, illustrated in Figure 3.5, can be interpreted as fol-
lows: if the �rst case, the normal relative velocity is nonnegative and the contact
breaks (taking-o� case). Then, in the case when the two bodies are in resting con-
tact, either they are sticking to each other and the contact force can lie anywhere
in Kµ, or they are sliding with respect to each other, then the contact force must
belong to the boundary of Kµ and the tangent force must be collinear to the rel-
ative velocity with the opposite direction (according to the �maximum dissipation
principle� [Moreau, 1988]).

(a) Taking-o� (b) Sticking (c) Sliding

Figure 3.5 � Illustration in 3D of the three cases of the Signorini-Coulomb law.

This disjunctive formulation is intuitive, but not very practical because of its
combinatorial nature (there are 3n cases to check, if the system contains n contacts).
In Section 3.2.3, we give equivalent formulations of Signorini-Coulomb's law which
prove to be more tractable numerically in the general case.

In the remainder of this document we shall denote by Cµ the set of vectors (r,u)

in Rd × Rd satisfying Signorini-Coulomb's law.

3.2.2 The Discrete Frictional Contact Problem (DFCP)

We now assume that our system (3.1) is subject to n frictional contacts, supposed
to be purely inelastic. To simplify notation, the n relative velocities ui and contact
forces ri are collected into u and r, respectively. We de�ne H(q) := ∂u

∂v (q) the
deformation gradient matrix5 of dimension (nd,m) relating the relative spatial ve-
locities at contact points u to the generalized velocities v. Let uf be the value of u
when v = 0, which can be non-zero in the case of forced motion6. The nonsmooth

5For a super-model, the deformation gradient matrix readsH(q, s) = ∂r
∂q

(s) and can be evaluated

e�ciently at any contact point s = sc, either formally (super-helix) or using adaptive power series

summation (super-clothoid). For a nodal system, the gradient deformation matrix simply consists

of identity blocks.
6Unlike nodal systems where uf = 0, for a super-model this term may be nonzero when the

clamped end is moving; in that case an extra velocity ṙ∗(s), independent of v = q̇, shows up, and

we have for each contact block uf = ṙ∗(sc), where sc is the location of contact.
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system including contact forces r can be written as


M(q)dv

dt = f(t, q,v) +H(q)>r

u = H(q)v + uf(t, q)

∀i = 1 . . . n, (ri,ui) ∈ Cµi .
(3.4)

The notation dv
dt is actually misused as the inclusion of contacts implies that we

might observe jumps in the generalized velocities v. To circumvent this di�culty,
we follow Moreau's time-stepping scheme and integrate the equations over an ar-
bitrary timestep δt [Moreau, 1988; Acary and Brogliato, 2008]. We thus get a
formulation over mechanical impulses instead of forces, and a velocity jump instead
of an acceleration.

Let us set r :=
∫
δt r dt, and let v and u be the discrete approximations of

the generalized velocity and of the relative velocity, respectively, at the end of the
timestep. The constraint-free dynamics (3.1) is discretized using a θ-scheme and
can be written at a given timestep as Mv = f . We further assume that H(q) and
uf(t, q) are almost constant during the timestep, and approximate them with H

and uf, respectively. The discretized velocity/impulse formulation of (3.4), with
unknowns (v,u, r), then reads


Mv − f = H>r

u = Hv + uf

∀i = 1 . . . n,
(
ri,ui

)
∈ Cµi .

(3.5)

Problem (3.5), referred to as the one-step problem in [Cadoux, 2009], is the core
problem we wish to solve in this chapter. In the remainder of this document, we shall
call it Discrete Frictional Contact Problem (DFCP). Note that we may eliminate v
in (3.5) by introducing the Delassus operator W := HM−1H> and by setting
b := uf + HM−1f , and �nally obtain the following reduced DFCP,{

Wr + b = u

∀i = 1 . . . n,
(
ri,ui

)
∈ Cµi ,

(3.6)

which may again be compacted as a force (or impulse) based problem,

∀i = 1 . . . n,
(
ri, (Wr)i + bi

)
∈ Cµi . (3.7)

There is a number of di�culties when attempting to solve the DFCP:

• First, the inclusion of (ri,ui) in the set Cµi makes the problem nonconvex

and nonsmooth. Standard convex optimization algorithms, which have well-
established convergence guarantees, can thus not be applied to our problem,
and speci�c algorithms need to be developed.
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• Then, the DFCP may not always possess a solution7. One typical example
is the (discrete) Painlevé paradox8, described for instance in [Bara�, 1991;
Cadoux, 2009]. Yet, in our case where we wish to simulate objects that are
not overly constrained (avoiding, e.g., the scenario of a hand strongly com-
pressing a hair wisp), our problem is likely to possess a solution most of the
time [Cadoux, 2009]. When designing a splitting solving method however, the
non-existence issue may show up again for each subproblem. Thus, robust
schemes, able to �nd an approximate solution in the absence of a theoretical
one, have to be designed.

• Finally, our scenarios may rapidly involve thousands or even tens thousands
of contacts, making the problem very large in size. Solving algorithms should
thus be able to scale up well with the size of the problem, that is, maintain
good convergence properties at acceptable timings. Typically, in our scenarios
where the time step might be as small as 1 ms, we aim at solving the DFCP
in a few seconds up to a few minutes, in order to keep a reasonable (i.e., about
one hour-long) frame rate.

To face up all these challenges at the same time, we have been opting for a
practical study, where we have been �rst testing a wide range of nonsmooth solvers,
and then designing new ones targeted at the scenario to be simulated. The result
of our study is not a mathematical analysis of a given algorithm with some proof of
convergence9. Instead, for each scenario of interest (hair, cloth), we have been char-
acterizing the main features of the resulting DFCP and we have built a dedicated

method or heuristics, leading to some fast and robust solver.

3.2.3 Multiple equivalent formulations of Signorini-Coulomb

We have �rst been extensively playing with the many di�erent equivalent formu-
lations of the Signorini-Coulomb law, each one of them leading to various solving
strategies. An extensive study of these di�erent strategies is proposed in Gilles
Daviet's PhD thesis [Daviet, 2016]. Here we only mention the formulations and
methods we have been frequently making use in our di�erent applications, or com-
paring against.

7Non-existence typically occurs when rankH < nd, in which case W is not necessarily strongly

positive-de�nite [Cadoux, 2009]. Moreover, if theDFCP admits a solution, it might not be unique.

In this chapter, where we wish to solve the direct problem (i.e., to retrieve generalized positions and

velocities from the dynamic equations, a set of parameters, and initial conditions), we will not care

too much about non-uniqueness of the solution. However, this will become an actual concern when

attempting to solve the inverse problem and to identify parameters, as discussed in Chapter 4.
8Note that the Painlevé paradox, as well as more general cases of nonexistence of solution,

do not only occur in the discrete settings, but also in the time-continuous problem of Lagrangian

systems subject to frictional contact. This was our very objet of study in [Blumentals et al., 2016b].
9In the last decades there has been many attempts to solve the DFCP, but the literature still

remains very sparse when dealing with convergence guarantees [Acary and Brogliato, 2008]
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Linearized friction cone One popular approach, which is actually not equivalent
to the Signorini-Coulomb law but stands for a linear approximation of it, consists in
approaching the second-order cone Kµ with a convex polyhedron (a faceted cone).
This approach, initially proposed by Klarbring [1987], has been widely used in Me-
chanics, Robotics and Computer Graphics [Stewart and Trinkle, 1996; Miller and
Christensen, 2003; Erleben, 2007; Kaufman et al., 2008; Otaduy et al., 2009], as
it advantageously yields a Linear Complementarity Problem10 (LCP), for which
many solvers have been proposed in the literature. While this approximate formula-
tion captures both dynamic and static friction regimes properly, it introduces some
anisotropy in the sliding direction (see Figure 3.6) unless a high number of facets
is used [Acary and Brogliato, 2008, Sec. 13.3.7]. A trade-o� thus has to be made
between accuracy and computational cost. In our applications we have not found
this approach to be more e�cient compared to an exact treatment of the friction
cone, even with a low number of facets, and thus have rapidly discarded it. All the
formulations presented in the sequel consider the exact Coulomb cone Kµ.

(a) (b)

Figure 3.6 � Exact vs. approximate model for Coulomb friction. (a) Periodic orbit of

the free end of a rod resting on top of a rotating sphere. Frictional contact is simulated

using our eight di�erent solvers. Solvers that model exact Coulomb friction all reach the

same orbit, no matter the choice of the error function. Other models (dashed lines) reach

completely di�erent ones. (b) Visual comparison of a full hair simulation with exact (left)

and linearized (right) Coulomb friction, for equal computation time. With exact Coulomb

friction, spontaneous hair clumping emerges in a more visible way.

Disjunctive formulation We have already mentioned that solving the disjunc-
tive Signorini-Coulomb formulation by enumerating each case is intractable for an
arbitrary number of contacts n. However, when n = 1 (and we shall see the inter-
est of considering the one-contact problem when dealing with splitting algorithms),
then an exact algorithm can be designed [Bonnefon and Daviet, 2011]. Actually,
the only di�cult case is the sliding case, which requires computing the roots of a
quartic polynomial. This analytic one-contact solver has the advantage of providing
a certi�cate of (non)-existence of solutions, and when a solution exists, to give its
value down to the machine precision.

10A Linear Complementarity Problem (LCP) reads 0 ≤ x ⊥ y ≥ 0 with y = Ax+ b.



3.2. Nonsmooth contact dynamics for thin elastic objects 43

Complementarity formulation The Signorini-Coulomb law implies that ri lies
inside the cone Kµi and ui in the half-space R+ × Rd−1. Actually, this can be
expressed as a cone complementarity problem by mapping this half-space to the
dual cone of Kµi , which is K 1

µi

(see Figure 3.7, (a) and (b)). Such a change of

variables has been described by De Saxcé and Feng [1998],

ũi := ui + µi ‖uiT‖ e, (3.8)

and leads to the following expression of the Coulomb law,(
ri,ui

)
∈ Cµi ⇐⇒ K 1

µi

3 ũi ⊥ ri ∈ Kµi . (3.9)

Note that for frictionless contacts (µi = 0), the complementarity problem (3.9)
simply boils down to an LCP on the normal parts of ui and ri.

The interpretation of the Signorini-Coulomb law as a complementarity condition
on dual cones (3.9) is at the origin of a myriad of other equivalent formulations, each
one of them giving rise to di�erent solving algorithms. In the following, we shall
focus on two new formulations inspired by (3.9): the so-called De Saxcé functional
formulation, and Cadoux's �xed-point algorithm.

Figure 3.7 � Changes of variables applied onto (a) the relative velocity u and the contact

force r, in order to exhibit (b) the complementarity of ũ and r proposed by De Saxcé and

Feng [1998].

Functional formulation It is often practical to express the Signorini-Coulomb
law as a root-�nding problem, i.e., in the form

(ri,ui) ∈ Cµi ⇐⇒ f(ri,ui) = 0, (3.10)

where f is a nonsmooth merit function from Rd × Rd to Rd.
One classical example of such a nonsmooth function was notably provided by

Alart and Curnier [1991], and de�ned as

fAC : Rd × Rd −→ Rd

(ri,ui) 7−→
(

ΠR+

(
riN − ξNuiN

)
− riN

ΠBd−1(µrN)

(
riT − ξTuiT

)
− riT

)
,
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where ΠC is the orthogonal projection operator on the convex space C, ξT and ξN
are positive real numbers, and Bd−1 (a) ⊂ Rd−1 is the ball of radius a ≥ 0 centered
at the origin.

As suggested above, another well-known function satisfying (3.10) may be de-
rived based upon De Saxcé and Feng's change of variable (3.8), by using the projec-
tion theorem (see, e.g., [Hiriart-Urruty and Lemaréchal, 2001, Proposition A.5.3.3]),

fDS : Rd × Rd −→ Rd
(ri,ui) 7−→ ΠKµi

(
ri − ξũi

)
− ri,

where ξ is a positive real number.
Functional formulations may be solved for by using a generalized Newton method,

in which the usual gradient is replaced with a generalized gradient at non-di�erentiable
points [Qi and Sun, 1993].

In our work [Daviet et al., 2011], summarized in Section 3.2.4, we have been
deriving yet another merit function, using the equivalence between a Second-Order
Cone Complementarity Problem (SOCCP) and a modi�ed Fischer-Burmeister11

functional formulation [Fukushima et al., 2002]. Due to better smoothness properties
compared to the two other formulations above, this modi�ed Fischer-Burmeister
formulation proves in practice easier to solve using a generalized Newton solver,
compared to the two formulations above.

However, in all cases, when attempting to solve our largeDFCP using any of the
functional method in a global way (that is, solving all the contacts simultaneously),
our solver always failed to scale up to more than one hundred contacting �bers. More
precisely we have found on our range of problems that the convergence success of
the generalized Newton method was directly related to the conditioning number
ν = nd

m [Bertails-Descoubes et al., 2011]. For ν < 1 (loosely connected �bers), the
method would converge properly. However, for ν ≥ 1 (tight �ber packing, i.e., our
typical scenario of interest), convergence would be very slow and eventually the
method would fail to converge. For this reason we have thus changed strategies and
instead used a splitting method, where contacts are solved one by one in an iterative
fashion (see 3.2.4).

Still, one advantage of functional formulations is that they give a natural stop-
ping criterion for any iterative method attempting to solve the reducedDFCP (3.7).
Indeed, the norm 1

2‖Φ(r)‖2 where Φ(r) is the Rdn-value function such that Φi(r) =

f(ri, (Wr)i +bi), gives the global error of the iterative method. In our splitting al-
gorithm, we have evaluated the error provided by the global Alart-Curnier function
for stopping iterations of our algorithm (see Section 3.2.4).

Fixed-point sequence of convex optimization problems Another class of
methods attempts to formulate the DFCP as a sequence of convex optimization

11For complementarity problems in R, a well-known merit function is the so-called Fischer-

Burmeister function de�ned as fFB(x, y) =
√
x2 + y2 − x− y. One may easily check that 0 ≤ x ⊥

y ≥ 0⇐⇒ fFB(x, y) = 0. Fukushima [2002] has extended this formulation to second-order conical

complementarity constraints.
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problems [Haslinger, 1983; Cadoux, 2009]. In particular, Florent Cadoux has shown
in his PhD thesis [Cadoux, 2009; Acary et al., 2011] that solving the DFCP is
equivalent to performing a �xed point loop on either a primal (i.e., velocity-based)
or dual (i.e., impulse-based) convex optimization problem.

Let us give some insights to this interesting method. Starting from De Saxé and
Feng's change of variable (3.8) and concatenating it for every contact, one gets

ũ := u + Es ∈ L∗,

where s = [‖uT‖1, . . . , ‖uT‖n]> = [‖ũT‖1, . . . , ‖ũT‖n]>, E = blockdiag(µi ei), and
L∗ =

∏
iK∗µi . The DFCP (3.5) then reads

Mv − f = H>r (a)

ũ = Hv + uf + Es (b)

L∗ 3 ũ ⊥ r ∈ L (c)

s = [‖ũT‖1, . . . , ‖ũT‖n]>. (d)

The key of the Cadoux approach is to note that if s is �xed, then (a), (b), and (c)
are exactly the optimality conditions of a convex optimization problem subject to
conical constraints, which can be equivalently formulated in a primal form,{

min 1
2v
>Mv − f> v (quadratic, strict. convex)

Hv + uf + Es ∈ L∗ (conical contraints)
(3.11)

or in a dual form,
min 1

2r
>Wr + b> r (quadratic, convex)

r ∈ L (conical constraints)
W = HM−1 H>

b = HM−1 f + uf + Es

(3.12)

Finally, the full DFCP can be solved thanks to a global �xed-point loop,

F (s) = s with F i(s) := ‖uiT(s)‖, (3.13)

where at each iteration, ui(s) is computed by solving either the primal problem (3.11),
or the dual problem (3.12).

From this algorithm, it becomes now clear that the DFCP cannot be simply
cast into a convex optimization problem. Interestingly, previous approaches which
have approximated the DFCP with a convex optimization problem [Anitescu, 2005;
Mazhar et al., 2015] can be interpreted as a single �xed-point iteration of the pro-
cedure above. One shortcoming inherent to this approximation is that the relative
velocity u, which should be tangent to the contacting surface when contact is ac-
tive, is biased by the adding of a non-zero normal component, which in practice may
cause arti�cial jumps of sliding objects during simulation.

We have been testing the two variants of Cadoux's method on our large �ber
problems, using di�erent solvers. For instance, we have experimented solving the
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dual problem with either a projected gradient method, or interior points. Solving
the primal problem with interior points actually gave better results of convergence,
due to the strongly convex objective in this case. However, although the latter
variant turned out to perform better compared to global functional formulations, it
did not allow us to handle more than a few hundreds contacting rods: beyond, the
solver would fail to converge in a reasonable amount of time.

Splitting (Gauss-Seidel) formulation Instead of solving the DFCP globally,
one may instead solve for each contact problem sequentially, and then iterate on the
full set of contacts until convergence is reached. Such a sequential splitting approach,
often called �Gauss-Seidel� due to its resemblance with the Gauss-Seidel algorithm
to solve linear systems, is actually classically used for simulating large granular
assemblies [Dubois and Jean, 2006], due to its scalability properties. Convergence
to the solution at a high precision is however known to be slow in practice [Acary
and Brogliato, 2008]. This was however not a problem in our case, where we only
request to solver to converge to an acceptable precision, without the need to get
beyond visual perception.

When adopting the Gauss-Seidel strategy, one is then left with the choice for
the local solver. The key insight we have learnt from our multiple tests is that
failing to solve one single contact properly may often cause the global loop to fail
and introduce instabilities in the �ber dynamics, ultimately leading to a simulation
crash. We have thus strived to build a local solver as robust as possible, by devising
a hybrid strategy.

3.2.4 A local hybrid solving strategy

Large �ber assemblies Facing robustness and scalability issues when using state-
of-the-arts approaches, we have designed a new frictional contact solver by coupling
an iterative Gauss-Seidel strategy together with an extremely robust one-contact
solver [Daviet et al., 2011]. The local solver combines two di�erent methods for solv-
ing the 1-contact problem in contact force variables: on the one hand, it primarily
relies upon the root �nding of the modi�ed Fischer-Burmeister function [Fukushima
et al., 2002], thanks to a nonsmooth Newton method; on the other hand, in the rare
case when the previous method fails to converge, the solver automatically switches
to the more expensive but analytical solver which is garanteed to �nd the solution
to the 1-contact problem when it exists [Bonnefon and Daviet, 2011]. The latter
solver, called in 1% of the cases, thus acts as a failsafe of the method.

Our global solver proved to converge well in scenarios involving thousands �bers
subject to tens thousands frictional contact points, and thus allowed us to enhance
considerably the realism of hair simulations. Since then, our method has been
leveraged by academia and the special e�ects industry for simulating hair and fur
realistically [Kaufman et al., 2014]. In particular, our method has been used in
production by Weta Digital, the leading company in special e�ects, and our accom-
panying software has been licensed to L'Oréal Research and AGT Digital. We have
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also recently adapted our solver for coping with frictional contact in cloth modeled
as a nodal system [Daviet et al., 2015], as explained below.

Figure 3.8 � Comparison of the hair collective behavior between (top) real hair motion

sequences and (bottom) our corresponding simulations, based on large assemblies of (up

to 2,000) individual �bers with massive self-contacts and Coulomb friction. Our model

retains typical emerging e�ects such as transient coherent motions or stick-slip instabilities,

at competitive timings (typically, a few seconds per time step, with dt = 1ms).

Cloth: towards a dedicated nodal solver In the �ber assembly case, the
matrix M is block-diagonal, so that the Delassus operator can be computed in
an e�cient way by leveraging sparse-block computations [Daviet et al., 2011]. This
justi�es solving the reducedDFCP (3.6), where primary unknowns are forces r. For
cloth however, where primal variables (nodal velocities of the cloth mesh) are all
interconnected via elasticity through implicit forces, the method developed above is
computationally ine�cient. Indeed, the matrixM (only block-sparse, but not block-
diagonal) is costly to invert for large systems and its inverse is dense. However, we
may leverage the fact that generalized velocities of the system are 3D velocities, and
slightly adapt the previous solver so as to recover e�ciency.

We assume body-cloth contacts occur at cloth vertices only, i.e., each contact
involves only one vertex. A key observation is that each nonzero block of J related
to a vertex i is simply a rotation matrix Ei, corresponding to the local contact basis
for the vertex i. Our idea is then to build the square block-diagonal matrix G with
Gi,i equal to Ei if i is in contact, and to the 3 × 3 identity matrix otherwise. G

can thus be inverted trivially as G−1 = GT. Augmenting u and r so that their size
matches that of v, we can write (3.5) as

GMGTu−Gf = r

v = GTu(
ui, ri

)
∈ Cµi if i in contact and ri = 0 otherwise.

(3.14)

Denoting Ŵ = GMGT and b̂ = Gf , we obtain a system that is very close to the
reduced DFCP (3.6), except that u and r have reversed roles. To retrieve symmetry,
we apply De Saxcé's change of variable (3.8) ũi := ui+si(u) so that ũi is orthogonal
to ri. For a �xed value of s, we identify (3.14) as the KKT conditions of the convex
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quadratic optimization problem [Cadoux, 2009; Acary et al., 2011]

minũ
1
2(ũ)TŴũ + (b̂− Ŵs)Tũ

ũi ∈ K 1
µi

if i in contact,

which can be solved using our hybrid solver, since this time ũ plays the exact same
role as r (replacing Kµi with K 1

µi

). Following [Cadoux, 2009], we compute the

solution of the full problem (3.5) by iteratively updating s using the �xed point
algorithm (3.13). Unlike the Delassus operator W, our new operator Ŵ is easy to
assemble and sparse. Solving our primal problem (3.14) thus turns out to be orders
of magnitude faster compared to the reduced DFCP. We are currently trying to
extend this simple method for dealing with cloth self-contact.

Figure 3.9 � Our body-cloth contact solver captures exact Coulomb friction both e�ciently

and robustly. On this dress example featuring 6000 cloth vertices and 1000 contact points

on average, our solver converges at each time step (dt = 1ms) in a few hundred milliseconds..

3.3 Continuum modeling of granular materials

In this section we drastically change models for representing a collection of inter-
acting objects. Instead of modeling individual objects explicitly as in Section 3.2,
we adopt a continuum viewpoint where a fragment of this continuum represents an
homogenized sample of individual elements. Such an approach is desirable when
aiming at modeling hundreds thousands or even billions interacting elements, which
would be intractable using a discrete element method as before12. However, to the
best of our knowledge, continuum viewpoints are not well-developed enough for tak-
ing into account individual elements with complex geometries � such as long and
thin deformable �bers. To start with a continuum viewpoint, we have thus restricted
ourselves to a simpler, yet widely studied material: granular matter.

3.3.1 Discrete vs. continuum models for granular matter

Granular materials (see, e.g., [Andreotti et al., 2011] for a comprehensive descrip-
tion) commonly refer to a large collection of small solid grains larger than 100 µm

12Note that another strategy to scale things up would be to take a look at high performance

computation. However the solver we have designed in Section 3.2 is inherently sequential, and a

completely new parallel algorithm would then have to be designed from scratch, requiring some

speci�c expertise in parallel design. Motivated by physical insights instead, we have rather chosen,

at least for now, to investigate the building of new, macroscopic physics-based models.
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in size � which typically distinguishes them from powders, made of much smaller
grains. Considering this limit size, grain-grain interactions in granulars are mainly
dictated by contact and dry friction, while air-grain interactions can be neglected.
Cohesion between grains may furthermore be considered, typically in the case of
wet materials.

Due to their discrete nature at macroscopic scale, granular materials are highly
dissipative systems which exhibit various physical states, ranging from �liquid�
(when the material continuously �ows) to �solid� (when the material rigidi�es due
to internal friction and undergoes plastic deformations), or even �gaseous� (when
grains are dispersed in air and interact mainly through impacts). Such a rich vi-
sual behavior, very distinctive from that of Newtonian �uids (e.g., water), explains
why simulating granular matter has, beyond classical applications in Physics and
Mechanical Engineering, gained increased attention in Computer Graphics for a few
decades [Zhu and Bridson, 2005; Alduán et al., 2009; Narain et al., 2010].

However, unlike Newtonian �uids or elastic materials for which robust physi-
cal models have been developed in the last centuries, granular matter still resists
some comprehensive physical understanding: no universal equation exists yet for
describing the collective behavior of such a peculiar material.

As a result, various methods have been developed for studying and simulat-
ing granular materials, following two main strategies. On the one hand, many
approaches naturally rely upon a discrete model, where grains are represented in-
dividually as rigid bodies and grain-grain interactions are accounted for using a
frictional contact model [Moreau, 1994]. Because they explicitly model the mate-
rial at the grain scale, those methods are able to capture the di�erent states of the
granular matter and their transitions quite accurately. However, considering that
a simple teaspoon of sugar already consists of around 105 grains, one may easily
imagine that such approaches rapidly su�er from scalability issues.

On the other hand, continuum-based methods, where granular matter is modeled
as a viscoplastic �uid, have started to be investigated for a few decades. Though less
accurate than discrete models, such methods have nevertheless demonstrated some
good qualitative agreement with real scenarios in plastic and dense �owing regimes.
In particular, a popular constitutive law is the µ(I) rheology [Jop et al., 2006],
relying upon a pressure-dependent yielding model � referred to as the Drucker-

Prager yield criterion (detailed below) � with a non-constant friction coe�cient.
For the sake of tractability, existing numerical models however make some important
simpli�cations, for instance assuming an incompressible �ow, a uniform density, or a
regularized or linearized Drucker-Prager yield criterion. Such approximations often
result in a considerable loss of realism, for instance preventing a heap of sand from
stabilizing after �owing, or introducing some arti�cial anisotropy in the �ow.

Our main objective towards this work was to treat the Drucker-Prager rheology
numerically with as little as possible downgrade. Typically, we addressed the non-
smooth rheology directly with no regularization and no linearization, and relaxed
the incompressibility condition to incorporate a more realistic, unilateral compress-
ibility condition. Altogether, these new settings allowed us to improve substantially
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the quality of simulations of large granular �ows, while keeping reasonable compu-
tational timings.

Caveat Our work on the continuum modeling of granulars with a nonsmooth rhe-
ology is recent, and was the core contribution of Gilles Daviet's PhD thesis [Daviet,
2016]. Here we only sketch the main ideas of our method, without going deeply in
technical details. The interested reader may �nd all technical issues in our publica-
tions [Daviet and Bertails-Descoubes, 2016b,a].

Notation We consider an Eulerian �uid representing a granular medium. We use
standard tensor notation for manipulating scalar and vector �eld associated to this
continuum. Let Sd be the space of symmetric d×d tensors (represented as matrices
of dimension d), where d is the space dimension (d = 2 or d = 3). For σ ∈ Sd, we
denote by Trσ its trace (normal part) and by Devσ its deviatoric (tangential) part,
Devσ = σ− 1

3 TrσI, where I is the identity tensor. We use the norm | · | associated
to the scalar product < σ, τ >= σ:τ

2 = 1
2

∑
τijσij . Note that | · | amounts to the

Frobenius norm scaled by 1√
2
. The gradient of a scalar �eld φ and of a vector �eld v

are written as ∇φ (vector) and ∇v (matrix), respectively, and the divergence of a
vector v �eld as ∇·v (scalar). Given a vector �eld v, let D(v) := 1

2(∇v+(∇v)T) be
the symmetric part of its gradient and W(v) := 1

2(∇v− (∇v)T) its skew-symmetric
part. Finally, u denotes the velocity �eld of the grains, and we use the shorter
notation ε̇ := D(u) for the so-called strain rate tensor. Note that Tr ε̇ = ∇ · u.

3.3.2 Macroscopic yield criteria

Continuous models for granular materials are derived upon macroscopic yield crite-

ria, i.e., inequalities that should be satis�ed by the principal stresses � the eigenval-
ues of the stress tensor σ � for the material to remain stable. The most well-known
is the Mohr-Coulomb criterion. For cohesionless 3D materials such as dry sand, and
with σ3 ≤ σ2 ≤ σ1 the principal stresses, it states

σ1 − σ3 ≤ sinϕ (σ1 + σ3) ,

where ϕ is the so-called friction angle, which corresponds to the inclination of a
stable heap of the granular material under gravity.

In the space of principal stresses, the Mohr-Coulomb criterion de�nes a cone with
hexagonal basis, which is numerically unwieldy. It is thus often discarded in favor
of the Drucker-Prager yield criterion on the second invariant J2 = 1

2 Tr(Devσ)2 of
the deviatoric stress tensor, which in 3D reads√

J2 ≤ −µ̂
σ1 + σ2 + σ3

3
where J2 =

1

6

∑
i 6=j

(σi − σj)2. (3.15)

This criterion de�nes a second-order cone in the space of principal stresses, and µ̂
is called the friction coe�cient. Note that in 2D, the Mohr-Coulomb and Drucker-
Prager criteria are equivalent.
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3.3.3 Nonsmooth rheology DP(µ)

The particularity of our �uid is to be non-Newtonian: our rheology relies upon a vis-
coplastic constitutive law combining the Drucker-Prager yielding criterion together
with an unilateral incompressibility constraint.

As done usually, we decompose the solid phase stress tensor as σg := ηε̇ + σc,
where the �rst part corresponds to a standard Newtonian viscosity (dissipative term
due to random collisions in the �owing material), and σc is the additional stress due
to the Coulomb interactions between individual grains.

Drucker-Prager rheology The contact normal stress is p = −1
d Trσc, such that

σc = Devσc−pI. The second stress invariant can be computed through the identity
J2 = 1

2 Tr(Devσc
2) = |Devσc|2. The Drucker-Prager yield criterion (3.15) therefore

boils down to |Devσc| ≤ µ̂p.
Moreover, the maximum dissipation principle states that in the yielded regime,

friction should be saturated and the frictional stress tensor should be colinear to the
deviatoric part of the strain rate. The deviatoric part of σc should thus satisfy one
of the two regimes, Devσc = (µ̂p)

Dev ε̇

|Dev ε̇|
if Dev ε̇ 6= 0 (yielded)

|Devσc| ≤ µ̂p if Dev ε̇ = 0 (unyielded).
(3.16)

Unilateral compressibility constraint Most continuum-based models for gran-
ulars consider the �uid to be perfectly incompressible. In contrast, we want to take
into account the typically asymmetric yielding behavior of granulars by allowing the
�uid to expand as much as desired, while strictly preventing compaction.

With a dense �ow hypothesis, the unilateral compressibility constraint can be
expressed simply as ∇ ·u ≥ 0. We set the pressure p to enforce this inequality, i.e.,{

p ≥ 0 if ∇ · u = 0

p = 0 if ∇ · u > 0

or, using an equivalent complementarity notation,

0 ≤ p ⊥ ∇ · u ≥ 0. (3.17)

In our results, we have shown that relaxing the common incompressibility as-
sumption ∇ · u = 0 prevents the arising of an ill-de�ned rheology in some typical
scenarios such as the �ow in the wake of an obstacle. For instance, in [Chauchat and
Médale, 2014], where incompressibility is enforced, a negative pressure is observed
behind the obstacle, which is outside the domain of validity of the well-accepted
µ(I) rheology [Jop et al., 2006]. In contrast, our method guarantees that the pres-
sure remains non-negative (see Figure 3.10). Moreover our complementarity con-
straint (3.17) naturally �ts in with our numerical framework, without adding any
computational cumbersomeness.
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Solution set DP(µ) Our full rheology (3.16 � 3.17) can be compactly rewritten
as 

Devσc = − µ̂
d

Tr(σc)
Dev(ε̇)

|Dev(ε̇)|
if Dev ε̇ 6= 0

|Dev(σc)| ≤
µ̂

d
Tr(σc) if Dev ε̇ = 0

0 ≤ 1

d
Tr(σc) ⊥ Tr(ε̇) ≥ 0,

(3.18)

which is reminiscent of the Signorini-Coulomb law derived in Section 3.2.1, with ε̇
playing the role of the relative velocity u, and σc playing the role of the contact
force r. More precisely, by leveraging the following isomorphism converting the
vector space to the space of symmetric tensors Sd,

χ : R× RT′ → Sd

(a; b, c) 7→
(
b c

c −b

)
+ a I if d = 2

(a; b, c, d, e, f) 7→

 b− c√
3

d e

d −b− c√
3

f

e f 2c√
3


+

√
2√
3
a I if d = 3,

we can prove that our rheology is similar to the Signorini-Coulomb law, albeit ex-
pressed in higher dimension (in dimension 3 for the 2D case, and in dimension 6 for
the 3D case) [Daviet and Bertails-Descoubes, 2016b].

Discretization After discretizing the full dynamic equations of our �uid using
�nite elements, together with an implicit discretization of the rheology (3.18), we
build a discrete system which shares the exact same structure as our DFCP intro-
duced in Section 3.2.2, though with higher dimension. We can thus leverage exactly
the same tools as before: in particular, we use our e�cient Gauss-Seidel solver fea-
turing a modi�ed Fischer-Burmeister (extended to higher dimensions) zero-�nding
solver as the local solver. Note however that the original enumerative solver was
speci�cally designed for 3D, and cannot be trivially extended to higher dimensions.

Some results We consider a gravity-induced 2D granular medium inside a narrow
channel (of width L), �owing around a cylinder of diameter D = L

4 , with no-slip
boundary conditions on the sides of the channel and on the cylinder. Figure 3.10
collects plots of the velocity and stress �elds across the domain (with gravity directed
from left to right). The pressure �eld is of special interest as it features a few notable
phenomena:
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Figure 3.10 � Simulation of a granular �ow with our nonsmooth numerical method, with

µ̂ = 0.3. The velocity and stress �elds are shown in the case where the granular �ows from

left to right in a narrow channel, around a cylindrical obstacle.

• First, it validates the bene�t of allowing dilation of the �ow, as the pressure
in the wake (right part) of the obstacle is indeed zero, and does not become
strictly negative as in [Chauchat and Médale, 2014];

• The zone of highest pressure is not located at the very front of the obstacle.
Instead, we observe the formation of a high-pressure arch above this point;

• Above this arch, there exists a region where the pressure is lower than further
upstream; moreover the transition between these two zones is very abrupt,
as shown by the absence of two isosurfaces on the �gure. Note that this
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phenomenon disappears when considering free-slip boundary conditions for
the channel walls.

3.3.4 Extension to a varying volume fraction

Our previous model does not consider a volume fraction �eld. Instead, the �uid is
considered to be dense � that is, already at its maximal volume fraction φmax �
everywhere inside the simulation domain. The material is theoretically allowed to di-
late, but not to compress, through the complementarity condition 0 ≤ ∇·u ⊥ p ≥ 0.
However, in this model, the use of a �xed domain precludes an actual dilatation of
the material through time. More fundamentally, even if the volume fraction �eld
were somehow tracked through time (e.g., with particles), the ∇ · u ≥ 0 condition
would still prevent the material from recompacting after dilatating. We thus fol-
low Narain and colleagues [2010] to account for a non-constant volume fraction φ,
and instead enforce the complementarity condition

0 ≤ φmax − φ ⊥ p ≥ 0. (3.19)

where φmax ≤ 1 is the maximum packing fraction for the material, beyond which
grains cannot be compacted anymore. For monodisperse spherical grains, φmax
usually lies in the 0.55�0.65 range. We used φmax = 0.6 in all our simulations.

Considering this non-constant volume fraction φ, we rederived in [Daviet and
Bertails-Descoubes, 2016a] the dynamics of our �uid together with the new Drucker-
Prager condition. Using a semi-implicit time integration scheme together with a
Material Point Method for spatial discretization, our �nal problem boiled down,
again, to a discrete problem with a similar structure compared to our initial DFCP.
This nice property allowed us to simulate free-�owing sand in several minutes per
frame only (see Figure 3.11).

3.4 Conclusion: Towards a continuum-based model for

�brous materials

In this chapter we have motivated our choice for nonsmooth frictional contact laws,
in order to capture the typical emerging e�ects due to contact and friction between
solids. We have also presented a range of di�erent formulations of the Signorini-
Coulomb law, and presented two examples (hair and cloth) for which we adapt
these formulations and design speci�c solvers, both robust and e�cient. Finally,
we have provided a few insights to our recent work on the continuum modeling of
granular materials, which again leverage the nonsmooth solver we have developed
in the context of discrete element modeling, albeit in higher dimension.

Towards a continuum-based model for �brous materials Though we have
recently made progress on the continuum formulation and solving of granular ma-
terials, we are still far from a continuum description of a macroscopic dry �brous
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Figure 3.11 � A steel ball impacts a granular bed with varying volume fraction. Unlike

previous approaches, our fully resolved (non-linearized) Drucker-Prager rheology allows us

to retrieve a perfectly round crater. Observe also the solid, liquid and gaseous phases of

the granular �ow that are retrieved by our model.

medium such as hair. One key ingredient that we have not been considering in our
previous models is the in�uence of air inside divided materials. Typically, air plays
a considerable role in hair motion. To advance in that direction, we have started to
look at a diphasic �uid representation of granular matter, where a Newtonian �uid
and the solid phase are fully coupled, while the nonsmooth Drucker-Prager rheology
for the solid phase is enforced implicitly [Daviet and Bertails-Descoubes, 2017]. This
�rst approach could be a starting point for modeling immersed granulars in a liquid,
or ash clouds, for instance.

There still remains a long way to go for taking into account long �bers instead
of isotropic grains in the solid phase. Coupling �ber elasticity with our current
formulation is clearly an open and challenging problem that we would like to deal
with in the future.
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In a third part of our work, we have considered some new challenges regarding
inverse static design. Indeed, while current simulators may succeed in reaching a
good level of realism, they remain di�cult to control in order to achieve a precise
artistic goal or, more generally, to match a target observation. More precisely, to
generate some desirable shapes and motions, one should be able to feed a simulator
with the �right� parameters. Finding such parameters remains a very di�cult task,
which is often performed through a tedious trial and error process. To make this
task fully automatic, we have started looking at inverse solutions in the case where
a static shape is provided as input: the inverse model should be able to interpret
automatically this shape as a stable equilibrium1 of the simulator, under gravity
and other external forces such as contact and friction.

1In all this document, equilibrium refers to the static equilibrium of the structure, meaning that

the sum of forces and the sum of torques applying onto the object vanish.
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Summary of contributions In the case of an isolated �ber, we have shown
that inverting any of our super-model [Bertails et al., 2006; Casati and Bertails-
Descoubes, 2013] boils down to two decoupled problems that are both easy to
solve [Derouet-Jourdan et al., 2010, 2011; Bertails-Descoubes, 2012]: �rst, an equi-
librium condition which appears to be linear in the intrinsic shape of the �ber,
thanks to the curvature-based parameterization of our �ber models; second, a su�-
cient stability condition that can be simply set by �xing a lower-bound for the ratio
of sti�ness over mass. Actually, the only remaining di�culty is to solve a merely
geometric �tting problem � converting a curve as a piecewise helix or clothoid.
In the case of helical �tting, we have already brought some e�cient and robust
solutions [Derouet-Jourdan et al., 2010, 2013b].

In the presence of contact and friction, Coulomb sticking constraints have to be
considered, which makes the overall inverse problem nonsmooth and ill-posed. We
have shown that assuming known mass and sti�ness and a simpli�ed inverse model,
it is possible to recover a reasonable intrinsic shape as well as frictional contact forces
at play, both of them satisfying exactly static equilibrium [Derouet-Jourdan et al.,
2013a]. This work allowed us, for the �rst time, to animate a few hair geometries
stemming from recent hair captures, such as the one depicted in Figure 4.3(a).

Finally, we are currently looking at the inverse problem in the continuous case,
that is on the strong form of the Kirchho� static equations [Bertails-Descoubes,
2017]. This ongoing work allows us to better characterize the space of solutions of
the inverse problem in the case of an isolated �ber, through a generic curve-angle
parameterization of the rod. This also allows us to understand how discrete models
may automatically select a subspace of solutions, by imposing a certain form for the
material frame of the rod. Such insights give us the hope to reach in the near future
some actual identi�cation process, i.e., a clear selection of a solution among the set
of potential solutions.

Organization of the chapter Section 4.1 speci�es our motivation for tackling the
inverse design problem, and discards the generic nonlinear optimization approach in
favor of a more e�ective approach dedicated to Kirchho� rods. Sections 4.2 tackles
the discrete inverse design problem relying upon super-models, in the case of an
isolated �ber under gravity only. Then Section 4.3 takes a look at the more complex
case of a �ber assembly subject to gravity and frictional contact. Finally, Section 4.4
elaborates on the problem of retrieving material curvatures from a merely geometric
curve, �rst in the continuous case, then in the discrete case.

4.1 Inverse design problem: motivation and goal

Originally, our motivation stemmed out from a collaboration in 2007 with a French
animation studio, Néomis Animation, who had a 3D movie project involving a num-
ber of characters with fancy hairstyles to be animated. An original sketch of such
a hairstyle is depicted in Figure 4.1. Beyond their aesthetic appeal, these drawings
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Figure 4.1 � Stylized hand-drawn hairstyle. The personality of the character is largely

determined by the shape of her hair, hence such geometric features should be preserved

during animation. Image courtesy of Néomis Animation Studio � Jeroen Dejonckheere.

actually suggested a very interesting scienti�c problem to me: how to let the artist
be completely free to design the hair shape she/he desires, and to have the hair
simulator comply with this input shape and predict its motion?

Obviously, the artist would draw hair as perceived within a physical world, that
is, under external forces such as gravity and contacts. Moreover, at the character
design stage, it is very likely that the drawn hairstyles intend to correspond to a
hair con�guration at stable equilibrium. However, such a shape is not readily usable
by a physics-based simulator, which in contrast requires, among its parameters, the
intrinsic shape2 of the object to be simulated, that is the shape it would have in the

absence of external forces (see Figure 4.2).
More generally, the intended hair design may come from various processes, rang-

ing from artistic hairstyling to automatic hair capture. In all cases, one is left with,
on the one hand, an observed3 (or target) shape qobs which integrates the e�ect of
all surrounding forces, and on the other hand, a simulator which has to be fed with
the right parameters, in particular q̄, so as to match the input shape qobs at stable
equilibrium.

To simulate an elastic object from such a target shape qobs, a naïve though
common practice so far in Computer Graphics was to use qobs as the intrinsic shape
of the object, that is, to set q̄ = qobs. However, when launching the simulator, the
object would sag under gravity, thus losing the initial shape and ruining the design

2Recall that the intrinsic shape of a Kirchho� rod was given in Chapter 2 by the intrinsic

curvature function κ̄(s); in our �nite-dimension Lagrangian settings, it corresponds to the vector q̄.
3In practice, our input data take the form of geometric curves in the case of rods, and surfaces

in the case of plates/shells. Such primitives are represented with a �nite number of degrees of

freedom (for instance an ordered sequence of points, a spline, a triangulated mesh, etc.).
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(a) Initialization with the intrinsic shape (b) Simulated static shape

Figure 4.2 � Classical initialization of a physics-based simulator. The initial con�guration

q(t = 0) is set to a trivial intrinsic shape q̄ � here, a set of straight rods (a). Then, after

feeding the simulator with other parameters (such as the mass and sti�ness of each rod), a

static shape qeq can be computed under gravity and frictional contacts (b).

work made by the artist, or the 3D geometry patiently reconstructed from real hair
capture (see Figure 4.3).

Inverse design problem To address this problem e�ectively, an inverse modeling
process4 thus has to be investigated. The inverse model should be able to interpret
automatically the target shape qobs as a stable equilibrium of the simulator, under
gravity and other external forces such as contact and friction.

As described in Section 2.2, the Kirchho� rod model possesses two kinds of pa-
rameters. On the one hand, its intrinsic curvature κ̄, discretized as vector q̄, and
which may vary spatially along the centerline. On the other hand, its material
parameters, composed of the linear mass density ρS and the bending/twisting sti�-
nesses of the rod K3 = diag3 (K0,K1,K2); material parameters are assumed to be
constant with respect to space and time.

A generic and standard way to model our inverse problem is through least squares
minimization [Kern, 2002]. That is, given the input con�guration qobs, one seeks to
solve the following constrained minimization problem,

min
(q,q̄)

F (q,q̄)∈K

1

2
‖q − qobs‖2, (4.1)

4In Mechanical Engineering, inverse problems are usually split in two categories [Beck and

Woodbury, 1998]: (a) inverse design problems, where material parameters are known and one is

looking for the intrinsic shape of the object, and (b) inverse measurement problems, where material

properties are searched for. Our goal here is clearly to solve for an inverse design problem, but in

the medium term, we would also like to extract some information about the material properties,

from the input shape.
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(a) Observed shape qobs (b) Sagged shape qeq under gravity

Figure 4.3 � When setting the intrinsic shape of the hair to the observed shape qobs (a),

the simulator yields a new equilibrium con�guration (b) which can be far from the observed

shape. Acquired geometry (a) is data courtesy of Hao Li and colleagues.

where the constraint F (q, q̄) ∈ K expresses a generalized (stable) equilibrium con-
dition, possibly incorporating frictional contact forces when the set K is not reduced
to {0}. The above formulation is nonlinear, and even nonsmooth in the presence of
frictional forces: it is thus challenging to solve. We have recently attemped to solve
this problem in the case of nodal models for cloth using the adjoint method, and
have reported our results in the research report [Casati et al., 2016]. In particular,
we have shown how to extend the adjoint method � classically used in the context
of bilateral constraints � to deal with frictional contact constraints (see details in
the PhD thesis of R. Casati [Casati, 2015]). Though promising, such a method is,
even in the contactless case, prone to convergence issues inherent to nonlinear opti-
mization, and much work still remains to be done to improve the robustness of our
inverse process.

Inspecting Kirchho� equations as well as our discrete curvature-based models
(described in Chapter 2), we have fortunately noted that a much more e�ective
inverse model could be built, which avoids nonlinear optimization. Result is not
only the design of a simple, fast and robust inversion process, but also a better
characterization of the whole space of solutions, which opens the way for a reliable
parameter identi�cation process in the short term.

4.2 Case of an isolated �ber

Let us consider a discrete curvature-based model (�super-model�) clamped at one
end, and subject to gravity only (see Figure 4.4(b)). We assume the con�guration q
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to be given as input, and we are looking for the parameters q̄ (intrinsic shape), ρS
(linear mass density and K3 = diag3 (K0,K1,K2) (bending and twisting sti�nesses)
so that q corresponds to a stable equilibrium of the super-model.

(a) User curve editing (b) Piecewise arc conversion (c) Static inversion and animation

Figure 4.4 � Example of �ber design session. The user �rst carves the tail of the cat

geometrically as she desires (a), then converts this curve into a piecewise helical arc curve (b)

using our �oating tangent algorithm (see Section 4.2.4), and �nally automatically computes

the parameters of a super-helix so that its centerline matches the input curve at stable

equilibrium under gravity (c).

4.2.1 Necessary and su�cient condition for equilibrium

Let us �rst write down the equilibrium equation. From Equation (2.8), dropping
all time-dependent terms and making parameter dependence explicit with brackets
yields

K[K3] (q − q̄) + G[ρS](q) = 0, (4.2)

where

K[K3] = K3 ⊗ LN and G[ρS](q) = −ρS
∫ L

0

(
∂r

∂q

)>
g ds︸ ︷︷ ︸

G(q)

,

where LN is a symmetric positive-de�nite matrix of size N , which only depends on
the length ` = {`0, . . . , `N−1} of the rod elements. For a super-helix, LN is simply
diagonal (see Expression (2.11)), whereas for a super-clothoid, LN is tridiagonal (see
Expression (2.12)).

Note that if Ep(q) is the potential energy of the rod, Equation (4.2) is equivalent
to writing

∇Ep [q̄,K3,ρS](q) = 0,

meaning that we are looking for the parameters q̄, K3 and ρS so that q is a critical
point of energy of the rod.

Assuming the material parameters ρS and K3 to be constant, Equilibrium (4.2)
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is exactly satis�ed for a unique family of solutions,

q̄ = q + K−1
[K3]G[ρS](q)

= q −
(
ρS diag3

(
K−1

0 ,K−1
1 ,K−1

2

)
⊗ L−1

N

)
G(q) (4.3)

using inverse of Kronecker product [Prasolov, 1994, Section 27.4],

where K0,K1,K2 and ρS can span the entire positive space.
In practice, solving (4.3) amounts to choosing a positive set of parameters

{K0,K1,K2, ρS}, and then computing q̄ by solving a full rank linear system of
∼ 3N equations, which turns out to be diagonal in the case of super-helices, and
tridiagonal in the case of super-clothoids. The number of elements N being generally
low (≤ 20), the latter problem is thus extremely fast to solve.

4.2.2 Su�cient condition for stability

Evaluating the stability of the equilibrium requires the computation of the Hessian
matrix∇2Ep of potential energy. The equilibrium will be stable if∇2Ep is a positive-
de�nite matrix, i.e., if all its eigenvalues are positive.

Di�erentiating the left-hand member of Equation (4.2) gives the expression for
the Hessian of potential energy,

∇2Ep [K3,ρS] = K3 ⊗ LN + ρS S(q), (4.4)

where S is a real symmetric matrix of size 3N which (nonlinearly) depends on the
input con�guration q, but remains independent of our unknown parameters. Note
that ∇2Ep(q) thus only depends on the material parameters K3 and ρS, in a linearly
way, while dependence w.r.t. the intrinsic shape q̄ has vanished.

Using Expression (4.4), we can �nd a su�cient condition for the Hessian ∇2Ep
to be positive-de�nite. Indeed, Horn's theorem [Fulton, 2000] implies that the mini-
mum eigen value of a sum of real symmetric matrices is greater than or equal to the
sum of the eigen values that are minimum for each matrix. Let λm, µm(q), τm be the
minimum eigen values of ∇2Ep, S, and LN , respectively. Let K = min{K0,K1,K2}.
From [Prasolov, 1994, Section 27.4], we deduce that the minimum eigen value of the
Kronecker product K3⊗LN is the product of minimum eigen values K τm. Applying
Horn's theorem then gives

λm ≥ K τm + ρS µm(q) (4.5)

with K > 0 and τm > 0. Inequality (4.5) provides a lower bound for the smallest
eigenvalue of ∇2Ep. It thus yields a su�cient condition on K3 and ρS for guaran-
teeing that all the eigenvalues of ∇2Ep are positive,

K
ρS

> −µ
m(q)

τm
. (4.6)
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Recall that the two eigen values µm(q) and τm can be directly computed from
the input con�guration q and the element lengths `, using standard eigen value
extraction algorithms5.

According to Inequality (4.6), by either increasing K or decreasing ρS, the sta-
bility of the rest shape under gravity can thus always be guaranteed, whatever the
input con�guration q. This is actually in line with intuition. Imagine an input �ber
oriented downwards. To be stable, this con�guration will not require a high sti�ness
since it is already pointing towards a direction that is preferred by gravity. Now, if
the �ber is oriented upwards, a large sti�ness (or equivalently, a small mass) will be
required to guarantee that the �ber can stably holds in this position and will not
bend downwards. This is quite similar to applying gel on hair �bers so that they
comply to some arbitrary desired shapes, even if those are in strong contradiction
with gravity forces.

4.2.3 Inverse design algorithm

Computing the parameters of the super-model so as to match an arbitrary con�g-
uration q at stable equilibrium is thus elementary in the case where only gravity
is involved. The user may �rst set the sti�ness K and the linear mass density ρS
so that their ratio lies in the authorized halfspace given by (4.6), then compute the
intrinsic curvature q̄ satisfying equilibrium by solving the system of equations (4.3).
If unhappy with the motion of the �ber which looks to sti� or too soft, she can
modify the sti�ness, check that stability is still guaranteed (if not, automatically
retrieve the minimum sti�ness satisfying stability), and �nally recompute the in-
trinsic curvature yielding equilibrium. This simple design process is summarized in
Figure 4.5, and an example of interactive design session is illustrated in Figure 4.4.
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Figure 4.5 � Our inverse design process for an isolated �ber.

Note that our stability criterion (4.6) only provides a su�cient condition for sta-

5In the case of a super-helix, the minimum eigen value τm boils down to the minimum length

of elements, mini{`i}.
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bility, meaning that equilibrium may still be stable when decreasing sti�ness beyond
the suggested lower bound. In practice however, we have noticed that violating this
condition always causes equilibrium to become unstable. This gives us the hope
to establish in the short term a necessary condition for stability, useful this time
not just for designing stable rods matching an input curve, but for characterizing
precisely the range of potential sti�ness and mass parameters from a real observed
rod under gravity (see Conclusion of this chapter).

4.2.4 From an arbitrary curve to a discrete material con�guration

So far we have considered that a discrete material con�guration q was provided as
input. However, this is not exact. The true input data is an arbitrary curve Γ(s),
represented with a �nite number of degrees of freedom, for instance as a spline
(see Figure 4.4(a)). Two steps then need to be completed for reconstructing an
admissible material con�guration q, before performing inverse statics.

The �rst step is to convert the arbitrary input curve into a kinematically admis-

sible centerline r(s) for a super-model, that is, into a C1-smooth piecewise helical
curve if dealing with the super-helix model, or a C1-smooth piecewise clothoidal6

curve if dealing with the super-clothoid model.
Once a piecewise arc curve r(s) has been reconstructed, a second step consists in

reconstructing admissible material curvatures and twist q for the discrete rod, which
is equivalent to reconstructing a kinematically admissible material frame R(s) for
the rod. To anticipate on the following, we have shown that the only admissible
material frame for a super-helix consists in building a continuous frame which shares,
on each element, the same Darboux vector as the Frenet frame. We defer the
corresponding proof to Section 4.4 where the general question of retrieving a material
frame from a curve will be deeply examined, from the continuous (Kirchho�) case
to the discrete case. Here, we focus only on the �rst step, that is on the geometric
problem aiming at converting an arbitrary curve into a piecewise arc curve.

Piecewise helical �tting In our work we have tackled the �rst step mentioned
above in 3D in the case where the target super-model is a super-helix7. That is, we
have addressed the geometric problem of converting an arbitrary input curve into a
C1-smooth piecewise helix.

6In 3D, the notion of a �clothoidal� curve is not clear given our de�nition of a space clothoid

element in Chapter 2. Indeed, unlike what happens in the piecewise uniform curvature case (super-

helix), assuming that the material curvatures and twist are piecewise linear does not imply that

the geometric (or Frenet) curvature and torsion of the centerline are piecewise linear (the reader

may take a look at Equations (4.16) to get convinced about it). As noted already in Chapter 2,

the shape of the centerline of the super-clothoid model is thus more general than the so-called 3D

Euler spiral [Harary and Tal, 2012].
7In 2D, approximation algorithms are much simpler to design due to the absence of torsion. Our

3D �oating tangent algorithm directly translates to the 2D problem consisting in �tting a curve to

a smooth piecewise circular curve [Derouet-Jourdan et al., 2010]. Moreover, e�cient methods for

�tting a 2D curve to a smooth piecewise clothoid curve have been designed, for instance [McCrae

and Singh, 2008] that we leverage in [Bertails-Descoubes, 2012].
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In a nutshell, our algorithm consists in segmenting the input rod into N pieces
of equal length, and approximating each curve segment with a helix under the con-
straint that two neighboring helical segments should have a C1-smooth connection,
i.e., tangents should remain continuous at the junction. To achieve this, we enforce
tangents at junction points to match initial tangents, but since having both tan-
gents and positions �xed may not be compatible with an interpolating helix, we
relax the initial positions of the junction points, and minimize the error between
admissible and initial positions. The key of our approach relies upon the following
theorem [Ghosh, 2010; Derouet-Jourdan et al., 2013b],

Theorem 4.1. Given two points p0 and p1 such that p0 6= p1 and two tangents

t0 and t1 such that t1 6= ±t0, there exists a unique short helix starting at p0 with

tangent t0 and ending at p1 with tangent t1 if and only if

〈p1 − p0 , t1 − t0〉 = 0, (4.7)

which allows us to formulate admissible positions recursively as a simple linear
function of the input tangents. Our algorithm, coined ��oating tangents algorithm�,
then simply amounts to solving a full-rank linear system of size N ; this obviously
proves order of magnitude faster compared to a nonlinear least-squares optimization
method (see Figure 4.7)

Theorem 4.1, illustrated in Figure 4.6, was �rst stated in Ghosh's PhD the-
sis [Ghosh, 2010], but proof was incomplete. We have completed the missing parts
in [Derouet-Jourdan et al., 2013b], especially thanks to the PhD work of Alexan-
dre Derouet-Jourdan [Derouet-Jourdan, 2013]. Note that the proof of existence is
constructive, and provides an e�cient algorithm for building the unique short helix
once Condition (4.7) is satis�ed.

4.3 Case of a �ber assembly subject to frictional contact

While inverse design of an isolated �ber is interesting from a theoretical point of
view, and may even apply to a few examples such as the tail of an animal or a plant
stem, in practice most useful scenarios involve interactions with other objects, and
typically contact and friction forces.

We have thus started to investigate the inverse design problem for a �ber subject
not only to gravity but also to frictional contact forces. More speci�cally, we have
considered a �ber assembly subject to external contacts (with a body) as well as
�ber-�ber contacts, in the presence of Coulomb friction. A typical example of such a
system is a head of hair, usually modelled in Computer Graphics with a few hundreds
to thousands thin elastic rods. With the recent advance in 3D hair reconstruction
from real hair photographs, many geometric datasets, composed of 3D curves which
resemble real hair shapes, are nowadays available (see Figure 4.8(a)).
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Figure 4.6 � In red, the unique short helix that interpolates p0 and p1 with tangents t0
and t1 when Equation (4.7) is satis�ed. The helix is said to be short if ϕ∗ ≤ 2π.

(a) Input curves (b) Least squares method (c) Our algorithm

Figure 4.7 � Comparison of helical approximations (withN = 15 elements) on a input curve

dataset (a), between least-squares optimization (b) and our �oating tangents algorithm (c).

Our method proves not only more accurate, but also faster (10× on this example) than

least-squares optimization.



68 Chapter 4. From geometry to mechanics: Inverse design of �bers

(a) (b) (c)

Figure 4.8 � Real curly wig (a) reconstructed in 3D by Luo et al. [2013], inverted by our

method in [Derouet-Jourdan et al., 2013a] and physically animated (b) and trimmed (c).

4.3.1 Underdetermined conditions for equilibrium

Let us consider a dynamic system composed of a set of NF �bers discretized as
super-models. Let q be the vector containing the m generalized coordinates of the
full system. We assume the system to be subject to n frictional contacts, which may
occur between a �ber and an external rigid object, or between two di�erent �bers,
or within a single �ber.

Using notations of Chapter 3, our previous equilibrium equation (4.2) gets trans-
formed into the constrained problem{

K
[K1

3,K2
3,...,K

NF
3 ]

(q − q̄) + G[ρS1,ρS2,...,ρSNF ](q) = H(q)>r

∀i = 1 . . . n, ri ∈ Kµi ,
(4.8)

meaning that elastic and gravitational forces should balance contact forces, and all
contacts should be in sticking mode (no sliding velocity), and thus each local contact
force ri should belong to the interior of the Coulomb friction cone Kµi .

Compared to Section 4.2, new parameters enter the game: the n friction coe�-
cients µi corresponding to the n contacts. Material parameters (sti�ness and linear
mass density) are also augmented with the number of �bers, and likewise the intrin-
sic curvature vector q̄, which is of same size as q. Finally, as in the direct problem,
the n contact forces ri collected in vector r are part of the unknowns.

To simplify the problem, we have so far only considered q̄ and r as unknowns.
All the NF material parameters Kj

3 and ρSj as well as the n friction coe�cients µi
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are thus assumed to be �xed in advance by the user (and explicit dependence to
those denoted by brackets will be omitted from now on). Our problem amounts
to searching for intrinsic shapes q̄ and contact forces r which are compatible with
Equilibrium (4.8),{

q̄ = q + K−1
(
G(q)−H(q)>r

)
r ∈ Kµ with Kµ = Kµ1 ×Kµ2 × . . .×Kµn .

(4.9)

One immediate observation is that Problem (4.9) is underdetermined, as any
valid choice for r leads to a mathematically valid solution for q̄ (but not the reverse).
In particular, it is possible to choose r = 0, meaning that contact forces are inactive;
one is then left with the same solution for q̄ as in the isolated case treated in
Section 4.2. However, this choice may be fairly unrealistic in many situations, as
illustrated in Figure 4.9, where it is perceptible that contact de�nitely plays a role
in the observed con�guration.

Figure 4.9 � Two examples of input con�gurations q that should, intuitively, be accounted

for by contact forces and not just by the intrinsic shape q̄ of the rods.

4.3.2 A simple heuristics for a well-posed problem

Our idea to better pose the inverse problem (4.9) is to prevent the intrinsic shape q̄
from taking any fancy value, and instead to restrict its value to be close to a good
�guess� q̄0. For instance, in Figure 4.9, it is unrealistic to think that the sudden
curvature deviation of the curves is due to a brutal change in the intrinsic shape q̄,
especially if we have in mind representing natural �bers (hair, plant stem) which
are rather homogeneous; instead, a more realistic assumption is to consider that q̄
is probably vanishing, and thus, that the resulting curved shape is mainly explained
by contact itself.

More generally, we may formalize our problem as �nding the contact forces r
which minimize the drift between an admissible intrinsic shape q̄, which satis�es
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Equilibrium (4.9), and an initial guess q̄0. More precisely, our new problem reads

min
r

1

2
‖

q̄︷ ︸︸ ︷
q −K−1

(
H(q)>r −G(q)

)
−q̄‖2 + γ‖r‖2

s.t. r ∈ Kµ,

(4.10)

where we have introduced a regularization term γ‖r‖2 for preventing contact forces
to reach overly big values.

Problem (4.10) may be put under the canonical form

min
r

1

2
r>Wrrr + b>r

s.t. r ∈ int(Kµ),
(4.11)

withW = H(q)K−2H(q)>+γI and b = −H(q)K−2
(
G(q)(q) + K(q − q̄0)

)
, where I

is the identity matrix. Note that the objective function f(r) = 1
2r
>Wr + r>b is

quadratic, and has to be minimized under second-order conic constraints: our prob-
lem is a second-order cone quadratic program (SOCQP), and belongs to the family
of the so-called quadratically constrained quadratic programs (QCQP) [Boyd and
Vandenberghe, 2004]. Since W is symmetric positive-de�nite (de�niteness comes
from the regularization term), our problem is strictly convex and admits a unique
solution r. Re�ning our inverse model by taking a priori information on the param-
eters we wish to retrieve has thus allowed us, unsurprisingly, to transform the initial
underdetermined problem (4.9) into the well-posed convex problem (4.11).

Choosing a good guess For now we have assumed the intrinsic curliness of a
given hairstyle could be guessed easily. If one adopts the simplistic assumption that
the �ber grows regularly with a uniform intrinsic shape, it is indeed possible to
retrieve this value approximately. Boundary conditions for thin elastic rods subject
to gravity tell us that at the free end of hair �bers, the actual curvature equals the
intrinsic curvature (see Equations (2.6d) and (2.5)). Provided no contact substan-
tially deforms the tip of the �ber, one may thus simply measure the actual curvature
at the tip to get a good estimation of the intrinsic curvature.

However, real �bers seldom feature a purely uniform intrinsic shape, which is in
reality modulated by small defects due to a non-perfect growth process or history
involving irreversible (plastic) changes. When dealing with input data coming from
real hair captures, we found out that taking as an estimation the full actual con�g-
uration q yielded better results than taking a uniform intrinsic curvature matching
q at the tip only. Looking back at our minimization problem (4.10), this choice can
be interpreted mechanically. Taking q̄0 = q means that we are searching for contact
forces that guarantee an exact equilibrium state for hair while minimizing hair inter-
nal elastic energy. This implies that, as far as possible, we rely on the contact forces
to compensate for gravity. Of course, as the number of contact points is arbitrar-
ily sparse and as the contact forces are bounded and constrained to belong to the
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friction cone, contact is unlikely to support any arbitrary input shape on its own.
In the (common) case where contacts are not su�cient to compensate for gravity,
then the elastic energy becomes active and also contributes to the equilibrium.

E�cient solving The optimality conditions of our SOCQP (4.11) are equivalent
to the following complementarity condition,

∀i = 1 . . . n, K 1
µ
3 (∇f(r))i ⊥ ri ∈ Kµi . (4.12)

Interestingly, this condition is mathematically similar to the complementarity con-
dition (3.9) of the dynamic case, except that the dynamic variable ũi has been
replaced with (∇f(r))i, i.e., the ith 3 × 1 block of the gradient. Now, our solver
derived in [Daviet et al., 2011] was designed to solve exactly this kind of conic
complementarity, i.e., problems which can be formulated as

∀i = 1 . . . n, K 1

µi
3 (Wrrr + c)i ⊥ rrri ∈ Kµi ,

where W is a symmetric positive (semi-)de�nite matrix of size (3n, 3n), and c a
vector of size 3n. In the direct (dynamic) case, W was identi�ed to the sparse
(discrete) Delassus operator HM−1H> [Daviet et al., 2011]. In our static inversion
problem, W is identi�ed to ourW matrix, which is sparse, symmetric and positive-
de�nite.

We can thus apply our DFCP's Gauss-Seidel solver straightforwardly to solve
our inverse problem (4.12), and thus our initial SOCQP (4.11). Unlike the dynamic
problem (3.5), our inverse problem (4.12) is convex. It is thus likely to be easier
to solve. In practice, simply using the primary Fischer-Burmeister solver (with no
fail-safe) proved to converge well for all the problems we have tested.

4.4 From a geometric curve to a material curve

One important problem that we have put under the carpet so far is the following:
Given a piecewise helical (or clothoidal) curve, how is it possible to reconstruct the
material frame R(s) � or equivalently, the material curvatures and twist q � of
the corresponding super-model? This question is indeed fundamental, because it
raises the issue of transforming a merely geometric curve, i.e., our input curve, into
a material curve, i.e., the geometry of a (discrete) Kirchho� rod, composed of a
centerline r(s) and of a material frame R(s). While the input curve only carries
geometric information, the material rod carries some mechanical information, such
as how matter deforms along the centerline.

To investigate this question, we shall �rst have a look at the continuous picture,
taking as input a general curve Γ(s) with no prescribed shape. We shall establish
the necessary and su�cient conditions enforced by the (strong) Kirchho� equations
on the framing of Γ(s), both in the direct case (i.e., when the intrinsic curvature
κ̄(s) is known), and in the inverse case (i.e., when the κ̄(s) is not known and looked
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for to guarantee the equilibrium of the rod). Then we shall examine the special case
of our super-models, as well as that of other discrete models of the literature, in
particular the discrete elastic rod model [Bergou et al., 2008, 2010].

Note that this section partly covers unpublished material [Bertails-Descoubes,
2017], and we present here only the main conclusions of our study. Since the defense
of this habilitation, more results on the inverse design problem have been obtained
and published in [Bertails-Descoubes et al., 2018].

4.4.1 From a geometric curve to a material curve

Let Γ(s) be a C2-smooth curve8 of length L parameterized by its arclength s ∈ [0, L].
The idea is to equip Γ(s), which is a merely geometric curve, with a material frame
R(s) = (n0(s),n1(s),n2(s)), supposed to be orthonormal and adapted to the curve
Γ(s), i.e., such that n0(s) = Γ′(s) and the two other axes n1 and n2 lie in the normal
plane P⊥(s) of the curve (see Figure 4.10(a)).

(a) Adapted frame to Γ(s) (b) Reference frame

Figure 4.10 � Framing an arbitrary curve Γ(s) with an adapted frame R(s), parameterized

by the angle θ with respect to a reference frame Rref(s).

Then, we shall further assume that R(s) is C1-smooth and that the frame R(s)

is transported along the curve Γ(s) through in�nitesimal rotation about a Darboux
vector ΩΩΩ(s), just similarly as in Section 2.2 of Chapter 2. This mathematically reads

R′(s) = [ΩΩΩ(s)]×R(s)

= R(s) [κ(s)]×,

8At this stage, required degree of smoothness varies upon the reference frame that will be chosen

in the curve-angle parameterization (see Section 4.4.2). If the Frenet frame is chosen, C3-continuity

is required to de�ne torsion as a continuous function of s (provided curvature does not vanish),

allowing us to interpret the Frenet frame as a C1-smooth material frame.
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where κ(s) = {κ0(s), κ1(s), κ2(s)} is the material curvature vector, which collects
the local coordinates (the so-called material twist and curvatures) of the Darboux
vector in the material frame R(s).

Note that at this stage, we have already converted our input curve Γ(s) into a
material curve {r(s);R(s)} with only material twist and curvatures as degrees of
freedom. This however does not mean it is an acceptable frame for a Kirchho� rod,
as Kirchho� equations impose further assumptions about the material frame. We
shall now examine such conditions, in two di�erent settings:

Direct case: We shall study the law R(s) should obey when Γ(s) corresponds to
the centerline of a Kirchho� rod, with all parameters �xed;

Inverse static case: We shall study the law the intrinsic curvatures κ̄(s) should
obey when Γ(s) corresponds to the centerline of a Kirchho� rod at equilibrium.

4.4.2 Curve-angle parameterization

Let us �rst reduce the dimension of our problem, by observing thatR(s) can only ro-
tate about the tangent vector n0(s), since it should remain orthonormal and adapted
to Γ(s). This degree of freedom can be parameterized by an angle θ(s) represent-
ing the rotation angle about n0(s) between a reference material frame Rref(s), also
orthonormal and adapted to Γ(s), and our material frame R(s). The relationship
between R(s) and Rref(s) is illustrated in Figure 4.10(b), and mathematically reads

R(s) = Rref(s)Rθ(s), (4.13)

where Rθ(s) =

 1 0 0

0 cos θ(s) − sin θ(s)

0 sin θ(s) cos θ(s)

 is the rotation matrix of axis ex and

angle θ, which represents the change of basis matrix from Rref(s) to R(s).
We further suppose that the reference frame Rref(s) can be fully determined by

the curve Γ(s): this is typically the case for the Frenet frame and the Bishop frame9,
which are explicitly taken as examples of reference frames hereafter.

Finally, we assume the reference frame to be su�ciently smooth for being inter-
preted as a material frame transported along the curve Γ(s) through in�nitesimal
rotation about a Darboux vector ΩΩΩref(s), similarly to R(s). This allows us to de�ne
a reference material curvature κκκref(s), which gives the coordinates of ΩΩΩref(s) in the
local frame Rref(s).

After a few derivations, we can express our (unknown) curvature vector κ func-
tion of the (known) curvature κκκref, as

κ(s) = R−θ(s)
(
κκκref(s) + θ′(s)ex

)
, (4.14)

9Note that unlike the Frenet frame which is uniquely determined by the curve (provided some

extra regularity assumptions for Γ(s) are met, as mentioned earlier), the Bishop frame is not unique

but determined by the curve up to a rigid rotation: the initial frame at s = 0 may be arbitrarily

chosen.
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which can be expanded into
κ0(s) = κref0 (s) + θ′(s)

κ1(s) = cos θ(s)κref1 (s) + sin θ(s)κref2 (s)

κ2(s) = − sin θ(s)κref1 (s) + cos θ(s)κref2 (s).

(4.15a)

(4.15b)

(4.15c)

Examples of reference frames The Frenet frame is a possible reference frame,
which admits the Darboux vector ΩΩΩref(s) = τg(s)n

f
0(s) + κg(s)n

f
2(s) and the ma-

terial curvature vector κκκref(s) = (τg(s), 0, κg(s)), with nf2(s) the binormal of the
curve Γ(s), and κg(s) and τg(s) the geometric curvature and torsion, respectively.
From (4.15) we retrieve the equations

κ0(s) = τg(s) + θ′(s)

κ1(s) = sin θ(s)κg(s)

κ2(s) = cos θ(s)κg(s).

(4.16a)

(4.16b)

(4.16c)

which were already derived directly in [Love, 1927, Section 253].
Another popular reference frame is the Bishop frame, which has the particularity

to have a vanishing material twist. It has for Darboux vector ΩΩΩref(s) = κg(s)n
f
2(s)

and for material curvature vector κκκref(s) = (0, κb1(s), κb2(s)) with κb1(s) and κb2(s)

two functions satisfying
(
κb1(s)

)2
+
(
κb2(s)

)2
= κ2

g(s).
When Rref(s) is the Bishop frame, System (4.15) boils down to

κ0(s) = θ′(s)

κ1(s) = cos θ(s)κb1(s) + sin θ(s)κb2(s)

κ2(s) = − sin θ(s)κb1(s) + cos θ(s)κb2(s).

(4.17a)

(4.17b)

(4.17c)

In particular, we �nd that the material twist κ0(s) of the material frame R(s)

is given by the derivative of the angle θ(s). This nice property made the curve-
angle (Γ, θ) parametrization of a material rod from the Bishop frame particularly
appealing [Langer and Singer, 1996] and is now preferred by many authors to the
classical Euler angles parametrization. This reduced curve-angle parametrization
was in particular leveraged in Computer Graphics for designing the so-called discrete
elastic rod model, for which primary variables are discrete node positions of the
centerline [Bergou et al., 2008].

4.4.3 Direct problem: framing a Kirchho� rod

Let us now state the condition on R(s) guaranteeing it is a suitable frame for a
Kirchho� rod whose centerline exactly coincides with Γ(s). As before, we assume
the Kirchho� rod to be clamped at s = 0, and free at s = L. We also suppose that
all its parameters κ̄(s), K, and ρS are known, and that the rod is only subject to
a known external force such as gravity. Then from the curve Γ(s), it is possible
to recover an admissible material frame (and thus admissible material twist and
curvatures) for the corresponding Kirchho� rod, according to the following property,
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Property 4.1. {Γ(s),R(s)} is an admissible Kirchho� rod con�guration, i.e., it is

compatible with dynamic Kirchho� equations, if and only if one of the two equivalent

conditions is satis�ed,

(i) θ(s) is solution of the axial projection of the angular momentum equation,

M′(s) · n0(s) = 0 (4.18)

subject to the boundary conditions (2.6b�2.6d), meaning that θ(s) is solution of the

second-order di�erential equation

θ′′(s)+A(s) cos2 θ(s)+B(s) cos θ(s) sin θ(s)+C(s) cos θ(s)+D(s) sin θ(s)+E(s) = 0

with

A(s) = 2 (K2 −K1)κref
1 (s)κref

2 (s)

B(s) = (K2 −K1) ((κref
2 (s))2 − (κref

1 (s))2)

C(s) = K1κ
ref
2 (s)κ̄1(s)−K2κ

ref
1 (s)κ̄2(s)

D(s) = −
(
K1κ

ref
1 (s)κ̄1(s) +K2κ

ref
2 (s)κ̄2(s)

)
E(s) = − (K2 −K1)κref

1 (s)κref
2 (s) +K0

(
(κref

0 )′(s)− κ̄′0(s)
)
,

subject to the boundary conditions (2.6).

(ii) θ(s) is a stationary point of the potential elastic energy of the rod,

Eel =

∫ L

0
(κ(s)− κ̄(s))>K3 (κ(s)− κ̄(s)) ds. (4.19)

Moreover, in the particular case of an isotropic rod (K1 = K2) with vanishing

intrinsic curvatures and twist, then the material frame is necessarily the Bishop

frame.

Proof. We only sketch here the main lines of the proof. Conditions on the material
frame are given by the Kirchho� angular momentum equation (2.4b), which can be
expressed in the local frame R(s) as

[κ(s)]×K3 (κ(s)− κ̄(s)) + K3

(
κ′(s)− κ̄′(s)

)
+ ex ×Tloc(s) = 0 (4.20)

Projecting (4.20) onto each vector of R(s) leads to
κ1 κ2 (K2 −K1) +K1 κ2 κ̄1 −K2 κ1 κ̄2 +K0

(
κ′0 − κ̄′0

)
= 0

κ0 κ2 (K0 −K2) +K2 κ0 κ̄2 −K0 κ2 κ̄0 +K1

(
κ′1 − κ̄′1

)
− Tloc,2 = 0

κ0 κ1 (K1 −K0) +K0 κ1 κ̄0 −K1 κ0 κ̄1 +K2

(
κ′2 − κ̄′2

)
+ Tloc,1 = 0

(4.21a)

(4.21b)

(4.21c)

Equation (4.21a) represents the axial projection of the Kirchho� angular momentum
conservation (4.18) expressed in the material frame. Note that this equation is
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independent of the tension T(s), and thus of the acceleration of the centerline. It
can actually be reformulated function of the single angular variable θ(s), all other
quantities depending only of the centerline r(s) (thus being known). This can be
simply achieved by replacing the curvatures with their angle parameterization given
by formulas (4.15), leading to the second-order nonlinear di�erential equation (4.1)
with boundary conditions (2.6) for θ(s).

Then, we consider the total potential energy of the rod and examine how it
gets perturbed as the material frame is perturbed through an in�nitesimal rotation
δϕ(s) about the tangent vector to the centerline Γ(s). The di�erence with the
general analysis in [Audoly and Pomeau, 2010, Section 3.6] is that we restrict here
δϕ(s) to be a cross-sectional perturbation, as the tangent vector of the material
frame should not be perturbed since the centerline is �xed. Thus, δϕ(s) may be
written as δϕ(s) = δθ(s)n0(s), which represents an in�nitesimal rotation of angle
δθ(s) about the tangent vector n0(s). One may then show that for a rod with free
end, the perturbed potential energy boils down to the perturbed potential elastic
energy, and also that it vanishes for any small perturbation δϕ(s) if and only if
Equation (4.18) subject to the boundary conditions (2.6b�2.6d) is satis�ed.

Finally, by choosing the reference frame to be the Bishop frame, one may easily
show that when K1 = K2 and κ̄ = 0, then Equation (4.1) boils down to θ′(s) = 0,
meaning that the unique set of admissible material frames is given by the Bishop
frame.

This quasistatic frame property, and in particular the interpretation of the ma-
terial frame as a minimizer of potential elastic energy, has already been leveraged in
[Bergou et al., 2008] for building the discrete elastic rod model (see Section 4.4.5).
To our knowledge, the optimality condition (4.1) has however not been explicitly
derived before, furthermore with respect to a generic angular function θ(s).

Note that a material frame retrieved by Property 4.1 may be that of a Kirchho�
rod under motion, i.e., with a non-vanishing linear acceleration. Moreover, if the
potential elastic energy of the rod is non convex, there may exist several admissible
material frames, yielding di�erent dynamical states for the rod. However, the con-
stant feature is that whatever the dynamic state of the rod is, the material frame
always obeys a quasistatic equation, due to the Kirchho� assumption neglecting
torsional inertia. Finally, it is interesting to note that Equation (4.1) takes some fa-
miliar forms in special cases. For instance, when the rod is isotropic with a piecewise
helical centerline and uniform intrinsic curvatures and twist κ̄, then θ(s) satis�es
the equation of the Euler elastica. We shall further study these special cases in
future work.

4.4.4 Inverse static design problem

We now assume that the intrinsic curvatures and twist κ̄(s) are unknown too (other
parameters K and ρS being still �xed). From the input curve Γ(s), we aim at
�nding conditions on κ̄(s) and the material frame R(s) so that Γ(s) coincides with
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the centerline of a Kirchho� rod at equilibrium under gravity, framed by R(s). We
have the following property, which, to the best of our knowledge, has not been
formulated before,

Property 4.2. For any choice of function θ(s) (i.e., any choice of the material

frame R(s)), Kirchho�'s equilibrium equations are satis�ed if and only if κ̄(s) sat-

is�es the explicit linear ODE of �rst order,

κ̄′(s) + K−1
3 [κ(s)]×K3 κ̄(s) = κ′(s) + K−1

3 b(s), (4.22)

with

b(s) =

 κ1(s)κ2(s) (K2 −K1)

κ0(s)κ2(s) (K0 −K2)− Tloc,2

κ0(s)κ1(s) (K1 −K0) + Tloc,1

 ,
where κ(s) is a function of θ(s) given by (4.14), κ(s) = R−θ(s)

(
κκκref(s) + θ′(s)ex

)
and the tension T(s) = R(s)Tloc(s) satis�es the linear momentum equation (2.4a)

at equilibrium,

T′(s)− ρSgez = 0, i.e., T (s) = −
∫ L

s
ρSgez = ρSg(s− L) ez.

Moreover, we have the boundary condition

κ̄(L) = κ(L). (4.23)

Equations (4.24) and (4.23) form a Cauchy problem, which admits a unique solution.

Proof. Proof follows from Equations (4.21), which are reorganized function of the
new unknown κ̄(s) = {κ̄0(s), κ̄1(s), κ̄2(s)} as

−K3 κ̄
′(s) +A(s) κ̄(s) = −K3 κ

′(s)− b(s), (4.24)

with

A(s) =

 0 K1 κ2(s) −K2 κ1(s)

−K0 κ2(s) 0 K2κ0(s)

K0 κ1(s) −K1 κ0(s) 0

 = −[κ(s)]×K3,

and then multiplied by −K−1
3 and simpli�ed.

The above property allows us to characterize the set of solutions κ̄(s): it is the
set of (unique) solutions to the Cauchy problem (4.24 � 4.23) parameterized by the
function θ(s). At this stage however, one may feel that it is not possible to identify
the intrinsic shape of the rod from the sole data of a curve Γ(s). But actually, after
the defense of this habilitation, we have proved that although the set of admissible
natural curvatures κ̄(s) is in�nite, the intrinsic shape of the curve Γ̄(s) is unique, and
can be computed easily, starting from any framing of the input curve Γ(s) [Bertails-
Descoubes et al., 2018].
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4.4.5 Discrete picture

Having in mind the continuous picture for framing a Kirchho� rod, it is now interest-
ing to get back to discrete Kirchho� models. We especially study the framing of two
models built upon very di�erent concepts: the discrete elastic rod model [Bergou
et al., 2008, 2010], and the super-helix model.

Framing a discrete elastic rod The quasistatic frame property 4.1 was a core
motivation for building the discrete elastic rod model [Bergou et al., 2008]. In this
model, discrete positions on the centerline are the main degrees of freedom of the
dynamics, and discrete angles θi, determining the material frame from the Bishop
frame, are computed at each time step so as to minimize the potential elastic energy
of the rod. Note that in [Bergou et al., 2010], the θi may be free degrees of free-
dom in the case where torsional inertia is considered. In that case the quasistatic
frame property is satis�ed at equilibrium only (in the limit of a vanishing torsional
inertia, the property is fully recovered). For the discrete elastic rod model, Prop-
erty 4.1 is thus satis�ed by construction, at any resolution. Moreover, as predicted
by Property 4.2, an input curve might be arbitrarily framed, and a set of intrinsic
curvatures (that should all be equivalent, given our latest results [Bertails-Descoubes
et al., 2018]), can be found to satisfy the equilibrium of the corresponding rod.

Framing a super-helix In contrast, the super-helix relies on a strong assumption
regarding the shape of its elements, as it imposes a piecewise uniform shape function
for the material curvatures and twist. This assumption has a strong impact on the
shape of the material frame. Indeed, from (4.16) we get that on each element, θ(s)
should be a uniform function, and as a consequence τg(s) and κg(s) should also be
uniform. We then retrieve the fact that a super-helix element represents a circular
helix (since its Frenet curvature and torsion are uniform), plus the fact that the angle
between the material frame and the Frenet frame is uniform. The latter condition
implies that the two Darboux vectors are equal (but not the frames), that is,

ΩΩΩSH(s) = ΩΩΩf (s) ∀s ∈ [0, L]. (4.25)

We note that the θ(s) = Cte condition breaks the continuous law (4.1) written
in the case of a helical centerline. The super-helix model thus does not satisfy
the quasistatic frame condition exactly, but only at the limit when the number of
elements tends to in�nity.

When dealing with inverse design, once a piecewise helix has been reconstructed
by some geometric approximation (see Section 4.2.4), then no much choice is left
for the material frame: it may start arbitrarily, but then should be transported
on each element like the Frenet frame, while remaining continuous at joints (thus
shifting from the Frenet frame at each joint). Interestingly, the choice of an arbitrary
shape function for the material strains thus acts as a selecting process for the set
of admissible material frames. It would be interesting to investigate the case of
super-clothoids, which in turn impose a piecewise linear shape function for material
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strains. Such an assumption is often compatible with real �bers for which the
growing process remains quite smooth, and would thus pre-�lter admissible material
frames in a more realistic way.

4.5 Conclusion: Towards non-invasive identi�cation

In this chapter we have introduced the inverse static design problem for �bers, and
have proposed a full pipeline for �nding some solutions in the case of the super-
helix model, possibly subject to frictional contact. We have also brought some new
insights on the full space of solutions, both in the discrete and continuous settings.

Since our �rst work on �ber inverse design [Derouet-Jourdan et al., 2010], many
other authors in Computer Graphics got interested in the problem, usually for more
general deformable objects discretized with low-order �nite elements [Twigg and
Ka£i¢-Alesi¢, 2011; Skouras et al., 2012; Zhao and Barbi£, 2013; Chen et al., 2014;
Pérez et al., 2015]. This growing interest has been especially boosted by the advent
of additive fabrication, making it possible to fabricate the models with the predicted
properties, and then check for their validity in practice.

However, the latter methods, heavily relying upon nonlinear optimization, are
meant to converge to one particular solution of the inverse problem. As we have
shown here, there can be many ways to explain a given static con�guration. In con-
trast to concurrent methods, we would like to better characterize the exact space of
solutions of the problem, in order to understand the precise mechanical information
which can be extracted from the geometry of objects. Such a �non-blind� methodol-
ogy has already proven useful for computing solutions to the inverse design problem
e�ciently, without having to resort to nonlinear optimization. In the longer run, it
would also serve to control the exact amount of input information needed (e.g., a
minimal number of poses) for dealing with an accurate identi�cation process. This
dream for designing a merely non-invasive identi�cation pipeline, that is, recovering
all physical parameters of an object from the observation of its shape only, is the
very topic of my research program, which is provided in next chapter.





Chapter 5

Research Perspectives: From

Geometry to Mechanics

With the considerable advance of automatic image-based capture in Computer
Vision and Computer Graphics these latest years, it becomes now a�ordable to
acquire quickly and precisely the full 3D geometry of many mechanical objects
featuring intricate shapes. Yet, while more and more geometrical data get collected
and shared among the communities, there are currently very few studies about how
to infer the underlying mechanical properties of the captured objects merely from
their geometrical con�gurations.

An important challenge consists in developing a non-invasive method for infer-
ring the mechanical properties of complex objects from a minimal set of geometrical
poses, in order to predict their dynamics. In contrast to classical inverse recon-
struction methods, my research project is built upon the claim that 1/ the mere
geometrical shape of physical objects reveals a lot about their underlying mechani-
cal properties and 2/ this property can be fully leveraged for a wide range of objects
featuring rich geometrical con�gurations, such as slender structures subject to con-
tact and friction (e.g., folded cloth or twined �laments).

To achieve this goal, we shall develop an original inverse modeling strategy
based upon a/ the design of reduced and high-order discrete models for slender
mechanical structures including rods, plates and shells, b/ a compact and well-
posed mathematical formulation of our nonsmooth inverse problems, both in the
static and dynamic cases, c/ the design of robust and e�cient numerical tools for
solving such complex problems, and d/ a thorough experimental validation of our
methods relying on the most recent capturing tools.

In addition to signi�cant advances in fast image-based measurement of diverse
mechanical materials stemming from physics, biology, or manufacturing, this re-
search is expected in the long run to ease considerably the design of physically
realistic virtual worlds, as well as to boost the creation of dynamic human doubles.

5.1 From geometry to mechanics, a broken pipe

A profusion of shapes acquired from physical objects With the consider-
able advance of automatic image-based capture in Computer Vision and Computer
Graphics these latest years, it becomes now a�ordable to acquire quickly and pre-
cisely the full 3D geometry of many mechanical objects featuring intricate shapes
such as cloth and skin [Miguel et al., 2012], or even hair �bers [Luo et al., 2013].
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(a) (b) (c) (d)

Figure 5.1 � Recent acquisition technologies make it now a�ordable to reconstruct
the 3D geometry of many complex objects featuring intricate shapes, such as
(a) cloth [Bradley et al., 2008], (b) skin [Beeler et al., 2011], (c) hair [Luo et al.,
2013], and (d) trees [Livny et al., 2010]. However, the consistent connection of such a
geometrical description to the mechanical characterization of the underlying object
remains an open issue.

Acquisition technologies range from expensive structured light or laser scans to new
cheap devices such as depth cameras [Chang et al., 2012] which are often su�cient
for capturing a static pose precisely.

Yet, while more and more geometrical data is collected and shared among the
communities, there is currently very little study about how to infer the underlying
mechanical properties of the captured objects merely from their geometrical con�g-
urations. One can however suspect that the pure static shape of a physical object
may already give some insights about the constitutive material of the object and
the interplaying contacts: from the folding patterns of a tablecloth or a curtain, the
human eye may perceive whether the fabric is made of rough cotton or silk, and iden-
tify zones of contacts. One may then have the dream that feeding a well-designed
physics-based simulator with such easy-available initial data could help predict the
deformations or even the dynamics of the physical objects of interest.

Material tests for measuring physical parameters In parallel, contactless
measurement methods, which reconstruct full-displacement �elds based on cam-
era capture and digital image correlation, have recently gained much interest in
Experimental Mechanics [Avril et al., 2008]. Indeed, unlike sensor-based capture,
image-based capture does not interfere with the displacement �eld being measured.
Combined with FEM-based inverse modeling, contactless measurement methods al-
low for a complete parameter identi�cation of complex materials. They however
request that a number of speci�c material tests (e.g., tensile and shear tests) be
performed, which may often require some expensive material and time-costly mea-
surement protocols, and sometimes may even be impracticable when objects are not
directly manipulable. Moreover, although some recent developments in Computer
Graphics have extended the range of studies from small to moderate 3D deforma-
tions [Miguel et al., 2012] and partly lightened the necessary amount of control in
the experimental setup [Wang et al., 2011; Miguel et al., 2013], such methods remain
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limited to the study of contact-free objects.
In contrast, using geometrical acquisitions of a minimum number of uncontrolled

static poses would release the burden of material testing and provide a breakthrough
in the non-invasive and fast measurement of many mechanical features including rest
con�guration, material parameters, self-contacting forces, and friction coe�cients at
contact.

Inaccurate reconstruction of motion Besides, while geometry acquisition from
a static pose has become a mature technology, a current major challenge in Com-
puter Graphics and Vision deals with the accurate reconstruction of motion. More
precisely, the non-rigid shape registration, which aims at �nding consistent cor-
respondences between successive acquisitions of the moving object and resolving
ambiguities or occlusions, is still an active area of research [Chang et al., 2012].
Physical predictions of the motion of the physical object could be of great help
to resolve such inconsistencies. Conversely, the recovery of accurate dynamic geo-
metrical poses would enrich mechanical interpretation and greatly help re�ne the
identi�cation of all physical parameters at work.

Giving a physical meaning to mere geometrical data would not only serve as

an innovative parameters measurement method, but also as a powerful strategy to

convert a purely descriptive approach into a generative one, able to predict an in�nite

number of new and rich dynamic scenarios.

Some sparse connection tentatives A few works have attempted to identify
the physical parameters of slender objects such as �bers, cloth or skin, from an ar-
bitrary shape at static equilibrium [Bhat et al., 2003; Twigg and Ka£i¢-Alesi¢, 2011;
Bickel et al., 2012]. However, because these approaches rely upon nodal mechanical
models whose rest shape has to conform to some constraints (e.g., spring rest length
should be nonnegative), they cannot guarantee that a static equilibrium con�gura-
tion will match the input shape exactly. Moreover, as the functions to minimize are
non convex and of large size, the cost of problem solving tends to get prohibitive,
precluding an accurate treatment of contact and friction. Finally, such a straight
numerical treatment provides only a single solution to the (under-determined) in-
verse problem and does not give insights about the general structure of the subspace
of solutions.

Even sparser, inverse dynamic studies greatly su�er from the limited quality of
the 3D reconstruction of moving geometry. To complete the geometrical reconstruc-
tion consistently, physically-guided approaches have started to be explored. So far
however, they have only proven to be successful in the case of smooth dynamic sys-
tems such as Newtonian �uids [Wang et al., 2009]. Recently, Bouman et al. [2013]
have proposed to skip the 3D reconstruction step and to use instead statistics char-
acterizing temporal textures in order to predict the material properties of fabric
from gentle motion. However, their method is not tailored for making a perfect
match between the real phenomenon and a (predictive) physic-based model of it,
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nor for retrieving contact forces and friction coe�cients at play.
To the best of my knowledge, our preliminary work on the inversion of �ber

assemblies was the �rst to take into account the presence of dry frictional contact for
(static) inversion [Derouet-Jourdan et al., 2013a]. We however made some important
assumptions, such as the a priori knowledge of the material parameters and an a

priori warm start estimation of the rest shape.

5.2 Interpreting geometry as a mechanical state

The key challenge of my research project is the automatic connection between the
geometrical shape of physical objects and their underlying mechanical properties.
More precisely, I intend to focus this study on complex deformable objects featur-
ing detailed geometrical con�gurations. Typical objects of interest include slender
deformable structures such as rods, plates and shells, all of them being widespread
in our environment, from the macroscopic scale (e.g., tree branches and leaves,
hair, cloth, skin, paper) to nanoscopic and molecular scales (e.g., carbon nanotubes,
DNA). Such structures, which are prone to strongly nonlinear behaviors as well as
to possibly prominent self-contacting causing knots, plectonemes, or folds, exhibit
very rich geometrical con�gurations.

My claim in this research project, supported by the preliminary results we have
gained on hair �bers after years of research, is that these complex geometrical fea-
tures reveal a lot about the underlying mechanical structures.

5.3 Scienti�c problems

To be able to extract such mechanical properties from a minimum set of geometrical
shapes, my goal is to develop speci�c e�ective computational models addressing four
major scienti�c problems:

SP1: Design of well-suited discrete models for slender structures I believe
that the quality of the upstream, reference physics-based model is essential to the ef-
fective connection between geometry and mechanics. Typically, such a model should
properly account for the nonlinearities due to large displacements of the structures.
It should also be parameterized and discretized in such a way that inversion gets
simpli�ed mathematically, possibly avoiding the huge cost of large and nonconvex
optimization. In that sense, unlike concurrent methods which impose inverse meth-
ods to be compatible with a generic physics-based model, I instead advocate the
design of speci�c physics-based models which are tailored for the inversion process.

More precisely, from our experience on �ber modeling, I believe that reduced

Lagrangian models, based on a minimal set of coordinates and physical parameters
(as opposed to maximal coordinates models such as mass-springs), are particularly
well-suited for inversion and physical interpretation of geometrical data. Further-
more, choosing a high-order coordinate system (e.g., curvatures instead of angles)
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allows for a precise handling of curved boundaries and contact geometry, as well as
the simpli�cation of constitutive laws (which are transformed into a linear equation
in the case of rods).

SP2: Static inversion of physical objects from geometrical poses I believe
that pure static inversion may by itself reveal many insights regarding a range
of parameters such as the undeformed con�guration of the object, some material
parameters or contact forces.

The typical settings that I will consider will be composed of, on the one hand, a
reference mechanical model of the object of interest (SP1), and on the other hand
a single or a series of complete geometrical poses corresponding each to a static

equilibrium under gravitational load. The core challenge will consist in analysing
theoretically the amount of information that can be gained from one or several
geometrical poses, and to understand how the fundamental under-determinacy of
the inverse problem can be reduced, for each unknown quantity (parameter or force)
at play. Both the equilibrium condition and the stability criterion of the equilibrium
will be leveraged towards this goal.

SP3: Dynamic inversion of physical objects from geometrical poses To
re�ne the solution subspaces searched for in SP2 and estimate dynamic parameters
(e.g., damping coe�cients), a dynamic inversion process accounting for the motion
of the object of interest is necessary.

In contrast to the static case SP2 where we can a�ord to rely on exact geo-
metrical poses, our analysis in the dynamic case will have to take into account the
imperfect quality of input data with possible missing parts or outliers. One interest-
ing challenge will be to combine our physics-based model from SP1 together with
the acquisition process in order to re�ne both the parameter estimation and the
geometrical acquisition.

SP4: Experimental validation with respect to real data The goal will be
to confront the theories developed in SP2 and SP3 to real experiments. Com-
pared to the statics, the dynamic case will be particularly involving as it will be
highly dependent on the quality of input data as well as the accuracy of the motion
predicted by the physics-based model designed in SP1. Such experiments will not
only serve to re�ne the models developed in SP1, SP2 and SP3, but will also be
used to improve the 3D geometrical acquisition of moving objects. Besides, once
validation will be performed, we shall work on the setting up of new non-invasive

measurement protocols to acquire physical parameters of slender structures from a
minimal amount of geometrical con�gurations.
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5.4 Expected Impact

Converting geometry into physics promises a considerable amount of scienti�c im-
pact and potential applications for a number of �elds ranging from Computer Graph-
ics to Physics and Biology. Thanks to the funding of this research project from the
European Research Council (grant started in September 2015), I intend to create
and lead a group internationally active on this pluridisciplinary topic.

Scienti�c impact Fundamentally, this research project may considerably enhance
our understanding of how geometry is tightly linked to mechanics. From the mere
observation of shapes through imaging, it will allow scientists to better identify and
even predict the physical behavior of many physical and biological slender structures
ranging from soft tissues to DNA. Regarding Computer Science, our project may
signi�cantly contribute to pave the way for robust 3D dynamic reconstruction of
geometry for slender structures, a longstanding challenge in Computer Vision.

Applications of the future In the long run, I expect this project to contribute to
new performant and non-invasive measurement systems for capturing automatically
the physical properties of slender structures, from a few samples geometry only.
Beyond huge applications in the measurement of human features such as hair, skin,
cloth and even internal thin organs from 3D capture, one interesting application
would be the automatic retrieval of physical objects properties from 2D images such
as photographs or even paintings. Furthermore, the ability to predict the motion
of objects from a mere static geometry is highly desirable not only in the artistic
design of dynamic scenes for movies or games, but also in the dynamic virtual try-on
industry of garments and hairstyles. Ultimately, our contributions could serve for
the fast, image-based creation of complete dynamic digital human doubles, desirable
not only for the virtual acting in movies but also for patient-speci�c surgery.
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Conclusion

Now listen to the rule of the last inch. The realm of the last inch. The job is

almost �nished, the goal almost attained, everything possible seems to have been

achieved, every di�culty overcome - and yet the quality is just not there. The

work needs more �nish, perhaps further research. In that moment of weariness

and self-satisfaction, the temptation is greatest to give up, not to strive for the

peak of quality. That's the realm of the last inch - here, the work is very, very

complex, but it's also particularly valuable because it's done with the most perfect

means. The rule of the last inch is simply this - not to leave it undone. And not

to put it o� - because otherwise your mind loses touch with that realm. And not

to mind how much time you spend on it, because the aim is not to �nish the job

quickly, but to reach perfection.

� Alexander Solzhenitsyn, The First Circle

In this memoir we have presented our main ideas for designing realistic, robust
and computationally e�cient models for thin deformable objects and divided ma-
terials prone to frictional contact. The general philosophy we are tending to adopt
is a pluridisciplinary approach, driven by applications but also inspired by theoret-
ical concepts. To build a consistent and e�ective model, we strive to master the
full modeling pipeline, from the continuous physical model to its discretization and
implementation. From this transverse viewpoint, which led us to meet di�erent sci-
enti�c communities, we retain a number of clues and preferred paths for advancing
our research work; these are listed below.

Upfront modeling Throughout this long-term work on the numerical modeling
of �bers and frictional contact, we have learnt that systematically concentrating
the e�orts on the upstream modeling and formulation of problems often pays o�:
even for very complex problems, the resulting numerics may be greatly simpli�ed
and thus solved more easily and robustly. Keeping in mind this key lesson, we are
starting to investigate the case of 2D slender structures (plates and shells), for which
many exciting challenges remain open, regarding both direct and inverse modeling.

Small data for big understanding1 My current research trajectory is clearly
an attempt to build stronger connections with physics and physicists, with the
aim to better understand and master the macroscopic modeling of complex natural
phenomena; indeed, there is still a huge gap between our actual need for relevant
macroscopic models, and the set of available models of the literature. However, in
a time where big data is considerably expanding and seems to prevail over standard

1First coined by Pascal Barla while talking together at Siggraph 2016.
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modeling techniques, one may argue that such a tentative, de�nitely upstreams, is
vain. Indeed, big data analysis spreads the word that models may not need to be
designed by humans anymore, but rather spontaneously emerge from the automatic
analysis and learning of terabytes of collected data, performed by supercomputers.

Yet, in this deep change of modeling strategies where statistical and computa-
tional approaches may want to take the lead, I believe that the physical modeling
point of view is more than ever desirable. First of all, the human mind feels like
understanding the world, and not just reproducing it blindly. Then, the idea of
feeding computers with unlimited and inexpensive data is probably illusory, and
unsustainable in certain �elds like human biology where medical imaging cannot be
overused on a given patient. In contrast, I believe that compact models, able to
give some physical meaning and to provide some predictive tools from a minimal
amount of input data, are still extremely valuable. They should also complement
nicely statistical approaches which treat huge amounts of data, by providing them
with some useful hints for interpreting classi�ed objects.

Physics and Computer Science: a promising alliance? Finally, as pointed
out in the introduction of this document, there are some striking common points
between Nonlinear Physics and Computer Graphics, as some phenomena of interest
are becoming more and more similar. Links between the two �elds are however
quite loose, with only a handful of experts in the world working at the frontier be-
tween the two �elds. Such a disconnection can be explained by higher education,
which usually clearly separates Physics (and Mechanics) from Computer Science,
the latter being more willingly attached to Applied Mathematics. In France, such a
segmentation is clear at university or in engineering schools: computer scientists will
not tackle Natural Sciences during their study, and physicists will probably learn
that Computer Science is just a programming tool, readily accessible through black
boxes such as Mathematica or Abaqus. In research labs, this segmentation persists,
although more and more e�orts are made to establish connections between digital
science and other �elds. For instance, the last decades have seen the emergence
of Computational Biology, an actual pluridisciplinary �eld where biologists, mathe-
maticians and computer scientists have indeed combined their expertise to advance
a modern vision of biology.

At my (much humbler) scale, I believe valuable connections could be established
between Physics of Nonlinear Elasticity and Computer Animation, where scientists
share the common goal to model complex and integrated mechanical phenomena
at the macroscopic scale. Indeed, while computer scientists are eager to learn and
understand new physical models, physicists get more and more interested in the
numerical tools, in which they perceive not only a means to con�rm predictions
afterwards, but also a support for testing hypothesis and for getting insights into
the search for analytic solutions, starting at the modeling stage. However, they may
be limited by a blind usage of numerical black boxes, which may not be dedicated to
their speci�c needs. According to me, promoting a science of modeling in numerical

physics would thus be a promising and rich avenue for our two research �elds.
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Figure 6.1 � My daily activity, a constant search for the right balance. Between mechanics

and graphics, between theory and applications, between paper work and programming, be-

tween supervision and learning, between publication and industrial transfer... and between

work and private life.
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Numerical Modeling of elastic slender structures
subject to contact and friction:

From dynamic simulation to inverse static design

Abstract: Slender structures (�laments or surfaces) are ubiquitous around us.
It is actually striking to note that such thin structures represent most of the de-
formable objects composing our direct environment, stemming either from natural
biological phenomena � plant stems and leaves, �ower petals, hair, skin � or man-
ufactural processes � cables, ribbons, paper, cloth. When multiple thin structures
are coupled together with contact and friction, the range of emerging phenomena is
even more exacerbated, giving rise to stick-slip dynamical instabilities, entangling,
or spontaneous collective behavior.

This memoir presents an overview of our work on the simulation of slender elastic
structures and entangled materials, such as hair, with a speci�c interest for virtual
prototyping and computer graphics applications.
I �rst introduce a family of high-order, reduced models for discretizing Kirchho�'s
equations for thin elastic rods in a both faithful and robust way. Such models are
particularly well-suited for simulating inextensible �bers subject to bending and
twisting, and featuring an arbitrary curly resting geometry. Then I show how such
models can be coupled to frictional contact using the nonsmooth contact dynamics
framework, and I present a hybrid iterative solver suitable for robustly handling
thousands packed �bers at reasonable frame rates. A �rst continuum-based ap-
proach. Finally, I give some insights into the inverse modeling of �bers, consisting
in taking an arbitrary curve geometry as input and inferring corresponding geometric
and physical parameters of the simulator such that the input geometry corresponds
to a stable con�guration at equilibrium.

Keywords: Thin elastic rods, frictional contact, numerical simulation, direct
and inverse modeling





Modélisation numérique de structures élancées
en présence de contact frottant :

De la simulation dynamique à la conception statique inverse

Résumé : Les structures élancées (objets �liformes ou surfaciques), font partie
intégrante de notre environnement quotidien : les exemples biologiques naturels �
branches d'arbre, feuilles, pétales, cheveux, peau � rivalisent en nombre avec les ob-
jets issus de l'industrie � câbles, rubans, papier, vêtements. La diversité des formes
et la non-linéarité des déformations de ces structures procurent une grande richesse
visuelle, qui est davantage exacerbée lorsque des contacts et du frottement entrent en
jeu, donnant lieu à des phénomènes d'instabilité de type glissement-adhérence, des
comportements collectifs spontanés, ou de l'emmêlement. Synthétiser de manière
réaliste la forme et le mouvement de ces phénomènes à l'échelle macroscopique in-
téresse grandement l'industrie du cinéma d'animation et des e�ets spéciaux, mais
aussi, et de plus en plus, des secteurs industriels plus traditionnels en ingénierie
mécanique, soucieux de ra�ner et d'optimiser leurs procédés de conception et de
fabrication grâce au prototypage virtuel.

Ce mémoire présente une synthèse de dix années de recherche visant à capturer
quelques-uns de ces phénomènes mécaniques complexes de manière à la fois réal-
iste, robuste, et e�cace en temps de calcul. J'introduis tout d'abord une famille de
modèles réduits et de haut degré en espace permettant de discrétiser les équations
de Kirchho� pour les tiges élastiques minces. Ces modèles sont particulièrement
adaptés à la simulation de �laments capables de se �échir et de se tordre tout en
restant parfaitement inextensibles. Après l'évocation de perspectives d'extension au
cas surfacique, je montre comment ces structures minces peuvent être couplées en-
tre elles via du contact et du frottement solide, en m'appuyant sur des principes de
mécanique non-régulière. En particulier, j'introduis un solveur numérique hybride
capable de résoudre e�cacement le problème de contact frottant discret, pour des
dizaines de milliers de contacts. Ce modèle numérique nous a notamment permis de
simuler la dynamique de milliers de �bres enchevêtrées, et de commencer à envisager
la simulation dynamique de vêtements. Nous avons également pu étendre la portée
de notre approche à la résolution du mouvement de millions de grains en contact
frottant, modélisés comme un écoulement �uide dont la loi de comportement (loi
de Drucker-Prager), est non-régulière. Finalement, j'évoque nos travaux en concep-
tion statique inverse de �bres, consistant à inférer les paramètres physiques de nos
modèles à partir de la seule observation de leur forme sous gravité et éventuellement
en présence de contact frottant. Au-delà de la perspective d'améliorer le contrôle
utilisateur d'une simulation physique dans un contexte de création artistique, ces
recherches laissent espérer à long terme la conception de protocoles d'identi�cation
paramétrique non-invasifs pour les structures élancées en contact frottant.
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