
HAL Id: tel-01918263
https://hal.science/tel-01918263v1

Submitted on 10 Nov 2018 (v1), last revised 22 Jan 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fully Homomorphic Encryption for Machine Learning
Michele Minelli

To cite this version:
Michele Minelli. Fully Homomorphic Encryption for Machine Learning. Computer Science [cs]. PSL
University, 2018. English. �NNT : �. �tel-01918263v1�

https://hal.science/tel-01918263v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres
PSL Research University

Préparée à l’École normale supérieure

Fully Homomorphic Encryption
for Machine Learning

École doctorale n◦386
Sciences Mathématiques de Paris Centre

Spécialité Informatique

Soutenue par
Michele MINELLI
le 26 octobre 2018

Dirigée par
Michel FERREIRA ABDALLA
Hoeteck WEE

ÉCOLE NORMALE

S U P É R I E U R E

RESEARCH UNIVERSITY PARIS

COMPOSITION DU JURY

M. FERREIRA ABDALLA Michel
CNRS, École normale supérieure
Directeur de thèse

M. WEE Hoeteck
CNRS, École normale supérieure
Directeur de thèse

M. CORON Jean-Sébastien
Université du Luxembourg
Rapporteur

M. FOUQUE Pierre-Alain
Université de Rennes 1
Rapporteur

M. LYUBASHEVSKY Vadim
IBM Research - Zurich
Examinateur

Mme. NAYA-PLASENCIA María
INRIA
Examinatrice – Présidente du jury

M. PAILLIER Pascal
CryptoExperts
Examinateur

Fully Homomorphic Encryption
for Machine Learning

Michele MINELLI

Supervisors: Michel FERREIRA ABDALLA and Hoeteck WEE

To Marta and Bianca,
for being the best family one could hope for.
And to Amata,
for making my life wonderful every day.

Abstract
Fully homomorphic encryption enables computation on encrypted data without leaking

any information about the underlying data. In short, a party can encrypt some input data,
while another party, that does not have access to the decryption key, can blindly perform
some computation on this encrypted input. The final result is also encrypted, and it can be
recovered only by the party that possesses the secret key.
In this thesis, we present new techniques/designs for FHE that are motivated by appli-

cations to machine learning, with a particular attention to the problem of homomorphic
inference, i.e., the evaluation of already trained cognitive models on encrypted data.
First, we propose a novel FHE scheme that is tailored to evaluating neural networks on

encrypted inputs. Our scheme achieves complexity that is essentially independent of the
number of layers in the network, whereas the efficiency of previously proposed schemes
strongly depends on the topology of the network.
Second, we present a new technique for achieving circuit privacy for FHE. This allows us

to hide the computation that is performed on the encrypted data, as is necessary to protect
proprietary machine learning algorithms. Our mechanism incurs very small computational
overhead while keeping the same security parameters.
Together, these results strengthen the foundations of efficient FHE for machine learning,

and pave the way towards practical privacy-preserving deep learning.
Finally, we present and implement a protocol based on homomorphic encryption for the

problem of private information retrieval, i.e., the scenario where a party wants to query a
database held by another party without revealing the query itself.

— v —

Résumé
Le chiffrement totalement homomorphe permet d’effectuer des calculs sur des données

chiffrées sans fuite d’information sur celles-ci. Pour résumer, un utilisateur peut chiffrer des
données, tandis qu’un serveur, qui n’a pas accès à la clé de déchiffrement, peut appliquer à
l’aveugle un algorithme sur ces entrées. Le résultat final est lui aussi chiffré, et il ne peut
être lu que par l’utilisateur qui possède la clé secrète.
Dans cette thèse, nous présentons des nouvelles techniques et constructions pour le chiffre-

ment totalement homomorphe qui sont motivées par des applications en apprentissage au-
tomatique, en portant une attention particulière au problème de l’inférence homomorphe,
c’est-à-dire l’évaluation de modèles cognitifs déjà entrainé sur des données chiffrées.
Premièrement, nous proposons un nouveau schéma de chiffrement totalement homomorphe

adapté à l’évaluation de réseaux de neurones artificiels sur des données chiffrées. Notre
schéma atteint une complexité qui est essentiellement indépendante du nombre de couches
dans le réseau, alors que l’efficacité des schéma proposés précédemment dépend fortement
de la topologie du réseau.
Ensuite, nous présentons une nouvelle technique pour préserver la confidentialité du circuit

pour le chiffrement totalement homomorphe. Ceci permet de cacher l’algorithme qui a été
exécuté sur les données chiffrées, comme nécessaire pour protéger les modèles propriétaires
d’apprentissage automatique. Notre mécanisme rajoute un coût supplémentaire très faible
pour un niveau de sécurité égal. Ensemble, ces résultats renforcent les fondations du chiffre-
ment totalement homomorphe efficace pour l’apprentissage automatique, et représentent un
pas en avant vers l’apprentissage profond pratique préservant la confidentialité.
Enfin, nous présentons et implémentons un protocole basé sur le chiffrement totalement

homomorphe pour le problème de recherche d’information confidentielle, c’est-à-dire un scé-
nario où un utilisateur envoie une requête à une base de donnée tenue par un serveur sans
révéler cette requête.

— vii —

Acknowledgments
I’m not the smartest fellow in the world, but I can sure pick smart colleagues.

– Franklin D. Roosevelt

First of all, I would like to thank Michel Abdalla and Hoeteck Wee. Not only did they
supervise this thesis and help me with research topics, but they also provided guidance and
help throughout these years, and I greatly appreciate them as researchers and as persons.
They form a fantastic pair of supervisors and I feel privileged for having the chance of working
with them. In particular, I would like to thank Michel for recruiting me and for all the help
he gave me when I moved to Paris, for giving always careful and measured suggestions, and
for patiently guiding me towards this goal. And I want to thank Hoeteck for his volcanic
enthusiasm, his astonishing dedication, and his relentless strive for perfection, for always
pushing me during this thesis, and for asking a lot, but never too much.

A sincere acknowledgment to Jean-Sébastien Coron and Pierre-Alain Fouque for accepting
to review this thesis. I am aware that it involves a lot of work, and I am grateful for their
availability.
I would also like to thank Vadim Lyubashevsky, María Naya-Plasencia, and Pascal Paillier

for accepting to be on my Ph.D. committee: having them in my jury is undoubtedly a
privilege.

I want to thank David Pointcheval and all the members of the ENS Crypto team, for the
interesting and insightful discussions about cryptography, research, and science in general,
for the passionate discussions on how not to cook pasta (in the microwave, because that
is morally wrong), and on how not to have pizza (with pineapple. No pineapple on the
pizza. Ever.), but most of all for creating a wonderful and friendly environment, where I
have always felt welcome and part of an amazing group. Being part of such a team, full
of brilliant scientists, has been a true privilege for me and a way to constantly learn and
improve myself. A very particular acknowledgment to Florian and Rafaël for enriching my
French vocabulary... Too bad that most of the expressions you taught me cannot be repeated
in public! :)
I would like to sincerely thank all my coauthors: Florian Bourse, Rafaël Del Pino, Louis

Goubin, Matthias Minihold, Anca Nitulescu, Michele Orrù, Pascal Paillier, and Hoeteck
Wee. I learned a lot from all of you and I feel lucky for the chance of working together with
you.
I am deeply thankful to Pascal Paillier, Louis Goubin, and all the guys at CryptoExperts

for welcoming me during my internship and giving me the possibility to work on interesting
and challenging research topics. I spent a lot of time with Pascal and I consider it a great
privilege: he is a truly brilliant guy, and I have always been impressed by his excitement and
his dedication to his projects, by the number of things he is able to manage in parallel, by
his endless curiosity, and by the fact that he always finds time to discuss and work together,

— ix —

x Acknowledgments

despite being always tremendously busy. It is something that I have never taken for granted
and that I am very grateful for.

I want to thank all the administrative staff of the DI and all the members of the SPI, for
providing help with day-to-day problems, organization, and for making my experience easy
and always enjoyable.
Over the course of these years, I have attended numerous “lattice and crypto meetings”,

often organized by ENS Lyon, and I want to thank Fabien Laguillaumie, Benoît Libert,
Damien Stehlé, and all the crypto team there for always warm welcomes, insightful discus-
sions, and tasty beers.
During my Ph.D., I have been lucky to be a fellow of the ECRYPT-NET project. It

provided excellent conditions to carry out my research activities and gave me the opportunity
to attend several interesting events about diverse aspects of cryptography and research. I
would like to thank Saartje and all the administrative people who coordinated this project
and made everything possible. Also, I would like to thank my “fellow fellows” scattered
across Europe for the time we spent together.

I am sincerely thankful to all my friends in Italy, with whom I managed to keep in contact
despite the geographical distance. More in general, I would like to humbly thank all those
who loved me and helped me along the way. Some of them have contributed by teaching me
notions and helping with my studies and my culture. Some others have helped me grow and
become an adult, which can be far more important. I owe them a lot, and to all of them
goes my deepest gratitude.

I simply cannot find the words to thank my family the way I should. My mother Marta and
my grandmother Bianca have been a constant source of inspiration for me. They have always
been there, through good and bad times, and I am absolutely sure I would have achieved
nothing without them and the wonderful family they gave me. They made sacrifices for me,
encouraged me to pursue my goals, helped me when I needed it, and stayed close to me even
when my behavior or my temperament did not make it particularly easy. And even though
my grandmother left us several years ago, I have always felt her presence, her support and
her guidance, and I hope she is looking down at me with pride. Also, a heartfelt thank you
to my uncle Beppe and my aunt Betti, for always being there in their discrete-but-present
way.
In most of the manuscripts I have read, this section ends with some words about the

author’s significant other, and this will not be an exception. I want to express my deepest
gratitude to my wonderful girlfriend Amata for being an extraordinary person, and for
supporting me in her own very personal and absolutely marvelous way. You were and are
always there, and this means everything to me. I am incredibly lucky to have you by my
side, and now that this chapter of my life is reaching its conclusion, I am looking forward to
the next one. And I cannot wait to write it together with you.

Contents

Abstract v

Résumé vii

Acknowledgments ix

1 Introduction 1
1.1 Computation outsourcing . 4

1.1.1 Homomorphic encryption . 4
1.2 FHE in the user-server scenario . 6
1.3 User and server: different problems for different players 7

1.3.1 The user’s point of view . 7
1.3.2 The server’s point of view . 8

1.4 Our results . 8
1.4.1 A new framework for homomorphic evaluation of neural networks . . . 8
1.4.2 A new technique for circuit privacy . 9
1.4.3 A protocol for private information retrieval 9

1.5 Other contributions . 10
1.6 Organization of the manuscript . 10

Personal Publications . 11

2 Preliminaries 13
2.1 Notation and preliminaries . 14

2.1.1 Mathematical notation . 14
2.1.2 Algorithms . 15
2.1.3 Provable security . 15

2.2 Cryptographic primitives . 16
2.3 Lattices . 17

2.3.1 Basic definitions . 17
2.3.2 Computational problems . 18
2.3.3 Worst-case hardness . 19
2.3.4 Gaussians . 19
2.3.5 Short integer solution (SIS) . 20
2.3.6 Learning with errors (LWE) . 20

2.4 Complexity assumptions . 22

3 Fully homomorphic encryption 25
3.1 Introduction . 26
3.2 Homomorphic encryption scheme . 27
3.3 Bootstrapping and key-switching . 28

— xi —

xii Contents

3.4 Three generations of FHE . 30
3.4.1 First generation FHE . 30
3.4.2 Second generation FHE . 31
3.4.3 Third generation FHE . 33
3.4.4 Message packing . 37

3.5 Advanced constructions . 37
3.6 Libraries and practical implementations . 38
3.7 FHE constructions from non-lattice assumptions 39

4 Homomorphic evaluation of deep neural networks 41
4.1 Introduction to the problem . 42
4.2 Refresher on neural networks . 43

4.2.1 Basic definitions . 43
4.2.2 Neural networks’ layers . 44
4.2.3 Activation functions . 45
4.2.4 Perceptrons, multilayer perceptrons, and deep NNs 46
4.2.5 Training and evaluating neural networks 47
4.2.6 MNIST: a typical dataset for NNs . 50

4.3 State of the art for privacy-preserving predictions 51
4.4 TFHE: a framework for efficient bootstrapping 52

4.4.1 LWE over the torus and related constructions 52
4.4.2 External product and bootstrapping procedure 54

4.5 Our contributions . 54
4.5.1 Definition of a discretized neural network 55
4.5.2 Simple conversion from a traditional NN to a DiNN 56
4.5.3 Homomorphic evaluation of a DiNN 56
4.5.4 Refinements of TFHE . 59
4.5.5 Experimental results . 63
4.5.6 Comparison with Cryptonets [DGL+16] 69

5 Circuit privacy for homomorphic computations 71
5.1 Introduction . 72

5.1.1 Our results . 73
5.1.2 Technical overview . 74

5.2 Additional preliminaries . 76
5.2.1 Randomized G−1 (·) algorithm . 76
5.2.2 Probability results . 77
5.2.3 Results on lattices and Gaussian distributions 77
5.2.4 Entropy and leftover hash lemma . 77
5.2.5 Permutation branching programs . 78

5.3 Core randomization lemma . 78
5.3.1 Proof of randomization lemma . 79
5.3.2 Rerandomizing LWE samples . 81

5.4 Our scheme: circuit-private homomorphic evaluation for GSW 82
5.4.1 Rerandomizing and scaling GSW ciphertexts 82
5.4.2 Circuit privacy: definition and main theorem 83
5.4.3 Modified Eval algorithm for the GSW encryption scheme 84

Contents xiii

5.4.4 Setting the parameters . 89
5.4.5 Extension to arbitrary moduli and trapdoor matrices 90

5.5 Discussions . 91

6 Private information retrieval through homomorphic encryption 93
6.1 Introduction . 94

6.1.1 Private information retrieval . 97
6.1.2 Oblivious transfer . 97
6.1.3 Our contributions . 97

6.2 Our protocol . 98
6.3 The DGHV encryption scheme and its extension 104
6.4 Implementing our protocol . 106

6.4.1 How to choose the random polynomials for conjunction queries 108
6.4.2 Handling the “false positives” . 111
6.4.3 Concrete parameters and benchmarks 111

6.5 Discussions . 113

7 Conclusions and open questions 115
7.1 Conclusions . 116
7.2 Open questions . 116

7.2.1 Homomorphic evaluation of neural networks 116
7.2.2 Circuit privacy . 117
7.2.3 Private information retrieval . 117

Notation 119

Abbreviations 121

List of Illustrations 123
Figures . 123
Tables . 123

Bibliography 125

Ch
ap

te
r1

Chapter 1
Introduction

In this chapter, we introduce the topic of this thesis in the area of cryptography. First
of all, we motivate the interest for cryptography, we give some historical facts about this
science, and we introduce the main points of this thesis. Finally, we present the organization
of this manuscript.

Contents
1.1 Computation outsourcing . 4

1.1.1 Homomorphic encryption . 4
1.2 FHE in the user-server scenario . 6
1.3 User and server: different problems for different players 7

1.3.1 The user’s point of view . 7
1.3.2 The server’s point of view . 8

1.4 Our results . 8
1.4.1 A new framework for homomorphic evaluation of neural networks . . . 8
1.4.2 A new technique for circuit privacy 9
1.4.3 A protocol for private information retrieval 9

1.5 Other contributions . 10
1.6 Organization of the manuscript . 10

Personal Publications . 11

— 1 —

2 Chapter 1 Introduction

Cryptography is usually perceived as a tool of war, involved in military operations or
intelligence activities. From a long time ago, when it was used by Roman generals to
securely send orders to the legions on the field, to the Second World War, with the Nazis
using the famous Enigma machine to keep the Allied from understanding the content of
their communications, to our days, when it is used to protect military secrets from being
intercepted by spies or enemy states, or to communicate with James-Bond-like characters
deployed on the field. Although this romantic aura surrounding cryptography has many
elements of truth, this is far from being the entire picture. Cryptography is also used
by common people, to carry out daily tasks that require some attention to concepts like
privacy, integrity, and reliability. For example, almost everybody sends text messages or
pictures from their phones. Despite the fact that cryptography is often used transparently
in these cases (i.e., the users do not realize messages are encrypted/decrypted), nowadays it is
normally the case that content travels through the internet in an encrypted version, so that a
potential eavesdropper would gain no information from intercepting the message. Although
some people would argue that this is paranoid, since their messages are not sensitive at
all and they have nothing to hide1, this is clearly not the case when it comes to sensitive
applications like home banking. Even in this case, cryptography allows people to carry out
daily life operations without the risk of information being stolen or falling in the hands of
malicious criminals. Finally, cryptography is a tool that, in many cases, literally saves lives:
it is used by whistle-blowers or activists to conceal their communications from repressive
governments or organizations, thus protecting their physical safety.
More in general, the traditional goal of cryptography is to allow two parties to communi-

cate over an insecure channel, in a way that preserves the confidentiality of the communica-
tion, and prevents anyone else from eavesdropping on the messages that are being exchanged.
Historically, we usually refer to these parties as Alice and Bob, while the third party, referred
to as the adversary, is usually called Eve.

What Alice and Bob would use is an encryption scheme, which intuitively is a protocol
designed to allow for this protected communication, and consists of two procedures called
encryption and decryption. Assuming Alice wants to send a message to Bob, she first applies
the encryption procedure to the message, then sends the result to Bob who will apply the
decryption procedure and recover the original message. This means that what passes through
the insecure channel (and is thus potentially known to the adversary) is only the encryption
of the message, called ciphertext. We are then in a situation where both Bob and the
adversary know the ciphertext, so it must be the case that Bob knows something that the
adversary does not, otherwise the adversary could simply proceed in the same way as Bob
and recover the message. This extra piece of information is called the secret key. We can
then assume that encryption and decryption are public procedures, and that the secret key
is fed to them along with the message (for the encryption procedure) or the ciphertext (for
the decryption), in order to obtain the expected result. We also assume that this secret key
is shared between Alice and Bob. This corresponds to the case of private-key encryption,
also referred to as symmetric encryption.
At this point, the reasonable question to ask is about the security of this encryption

scheme: what does the adversary learn from seeing the ciphertext going through the com-

1This way of thinking is widely regarded as dangerous in the crypto community, as it leads to an oversim-
plification of the very complex problem of “right to privacy”. Also, it is safe to assume that everyone has
something they are embarrassed, ashamed, or frightened of. And that everyone has secrets.

Ch
ap

te
r1

3

munication channel? Ideally, we would like to answer “nothing”, meaning that the ciphertext
contains absolutely no information on the message. This notion is called information theo-
retic or perfect security, and can be achieved by a trivial scheme, known as one-time pad.

We now give an intuitive toy example of this scheme. Let us consider the case where Alice
wants to send the message “iloveyou” to Bob, and let us assume that they had previously
agree upon the secret key “4,7,2,9,5,8,7,1”. They can then proceed as follows: for each
character of the original message, they “shift” it by a number of spots which is given by the
corresponding entry in the secret key (wrapping around when necessary, i.e., X → Y → Z
→ A → . . .). Alice then does the following:

Encryption:

i l o v e y o u
+ + + + + + + +
4 7 2 9 5 8 7 1
m s q e j g v v

The message that is sent is then “msqejgvv”. Upon receiving it, Bob performs the inverse
operation:

Decryption:

m s q e j g v v
− − − − − − − −
4 7 2 9 5 8 7 1
i l o v e y o u

This way of encrypting and decrypting things is perfectly secure, meaning that a party
that does not have the secret key learns no information about the message (apart from its
length). In fact, let us say that the adversary sees the ciphertext “msqejgvv”. This could
also correspond to the message “ihateyou” (under the key “4,11,16,11,5,8,7,1”), or “ihavenot”
(under the key “4,11,16,9,5,19,7,2”), or “abcdefgh” (under the key “12,17,14,1,5,1,15,14”).
In a nutshell, this ciphertext could represent any 8-character message, and is thus completely
hiding what Alice wanted to communicate to Bob.

One could then think that this is everything we need from cryptography: we have a way
to achieve perfect security, and this is sufficient. However, this is far from being the case.
In fact, it is easy to see that in the previous example, the key had to be at least as long
as the message it was intended to hide. Also these keys cannot be used more than once2,
otherwise some dangerous attacks arise, that can compromise the security of the scheme.
This means that Alice and Bob must be able to share a huge amount of secret bits, which
quickly becomes impractical, or are limited to communicating short messages. Also, they
have to agree on the secret key before communicating, either by meeting in person or in
another way: this only adds to the impracticality of this system.

With the breakthrough discoveries of key exchange in 1976 by Diffie and Hellman [DH76],
public-key encryption (also known as asymmetric encryption), and digital signatures in 1978
by Rivest, Shamir and Adleman [RSA78], the scope of cryptology broadened considerably.
In public-key cryptography, each party has a pair of keys: a public one and a private (or
secret) one. The public one can be published, e.g., on the Internet, and allows anyone to
encrypt a message, that can only be decrypted with the corresponding private key. In order
to explain this concept, a famous analogy is often used: the public key corresponds to an
open lock, whereas the private key corresponds to the lock’s key. Publishing the public key

2Hence, the name “one-time pad”.

4 Chapter 1 Introduction

is equivalent to making the open lock available; then anyone can write a message, put it in a
box, and close the box with the provided lock. The sealed box is then sent to the recipient,
who can open it with the appropriate key.

1.1 Computation outsourcing
A moment’s thought reveals that there is a fundamental limit in the concept of encryption
as it was presented. In fact, once something is encrypted, it can only be stored in order to be
kept safe and retrieved at a later time, or it can be sent to someone who has the possibility
(i.e., a suitable secret) to decrypt it and recover it. This means that the encrypted version of
the data is completely useless to any party that does not hold the secret piece of information
to decrypt it. On the bright side, this means that no unauthorized party can access the
encrypted information; on the not-so-bright side, it also means that no party can perform
operations on the encrypted data. The reason why we would like such a thing to be possible
lies in the concept of computation outsourcing, i.e., when a party receives some input data
x, performs some computation on it, and returns the result.
Nowadays, everybody owns or produces enormous quantities of data, whether it be pic-

tures, documents, bills, records, etc., and a big part of the users’ activities are concentrated
on small devices, with limited storage and limited computational capacities. This is one of
the reasons why Cloud computing has gained a lot of momentum over the last years and is
becoming a key paradigm in the way we interact with our data. In a nutshell, the model
encompasses a user with limited capabilities and a powerful remote server (the Cloud), that
has massive storage devices and powerful computing resources as its disposal. The idea is
that the user uploads its data to the Cloud and then asks the Cloud to perform some task
and return the result.
The issue with this model is clearly data privacy. In fact, the remote server is usually

untrusted, meaning that it is run by a party that we do not know or control in any way,
and whose honesty we cannot trust. The problem becomes even more evident if the date we
are talking about consists of highly private and sensitive information like medical records,
bank statements, personal communications, etc. This situation introduces a conflict: we can
either take advantage of the Cloud computing paradigm, but we have to allow the Cloud
to know our personal information, or we have to give up the potential of Cloud computing
and perform all the computations locally, on trusted machines. For years, researchers have
been trying to devise a way to reconcile the desire for data privacy and that for computation
outsourcing, in order to obtain privacy-preserving computation outsourcing.

1.1.1 Homomorphic encryption
This part is a very general overview on the topic. These concepts are expanded, together
with a more technical presentation, in Chapter 3.
A homomorphic encryption scheme is an encryption scheme that admits some kind of

computations on encrypted data. In particular, given an input x encrypted as Enc (x), it
should be possible to publicly compute Enc (f(x)) for a function f taken from some class of
functions. The key point here is “publicly”, meaning that carrying out this computation has
to be possible without having access to any secret information.
For a first trivial example, consider the following scenario: let us say that an encryption

schemes consists of taking a message and adding a secret number S to it. Then an encryption

Ch
ap

te
r1

1.1 Computation outsourcing 5

of m1 will be c1 = m1 + S, while an encryption of m2 will be c2 = m2 + S. Then, any party
that receives these two encryptions, can sum them together and obtain c′ = m1 +m2 + 2S,
without knowing either m1, m2, or S. A party that knows S and receives the result c′ can
simply subtract 2S (or take the result modulo S, if some other conditions hold) and recover
m1 + m2. The final result is that the operation of adding two numbers has been delegated
to another party, without this party knowing the operands or the result.

The “scheme” used in this toy example is obviously insecure, but it turns out that many
widely-used encryption schemes already have some homomorphic properties. For example,
let us consider the famous RSA cryptosystem [RSA78], in which an encryption of a message
m is me mod N , where e is a public exponent and N is a public modulus. It is easy to see
that, given two ciphertexts c1 = me

1 mod N and c2 = me
2 mod N that encrypt messages

m1 and m2, we can multiply them together and obtain c′ = (m1m2)e mod N , which is
an encryption of m1m2. This means that we can homomorphically multiply the messages,
meaning that we can take two ciphertexts, perform only public operations on them, and
obtain an encryption of the product of whatever was encrypted in the ciphertexts, without
knowing any message or any secret key. For this reason we say that the RSA cryptosystem
is multiplicatively homomorphic. Another example is the well known El Gamal encryption
scheme [ElG84], which is also multiplicatively homomorphic. Notice that, for these schemes,
we do not know how to perform an homomorphic addition, which amounts to computing a
ciphertext that decrypts to the sum of the two original plaintexts.
Instead let us consider the famous Paillier cryptosystem [Pai99], based on the decisional

composite residuosity assumption. In this scheme, an encryption of a message m is of the
form c = gm · rn mod n2, where g and n are public and r is random. In this case, a party
that is given two ciphertexts c1, c2 encrypting messages m1,m2, can compute c′ = c1 · c2 =
gm1+m2 · (r1 r2)n mod n2, which is a Paillier encryption of m1 + m2. This means that we
can homomorphically sum two ciphertexts and produce an encryption of the two original
messages, without knowing them or any secret piece of information. We then say that the
Paillier cryptosystem is additively homomorphic. Notice, however, that in this case we do
not know how to homomorphically multiply two ciphertexts.
We call partially homomorphic encryption schemes those schemes that support either ad-

dition or multiplication, but not both. Schemes that are both additively and multiplicatively
homomorphic are harder to come by. An example of such scheme is the DGHV encryption
scheme [DGHV10], which will be described in details later in the manuscript (cf. Chapter 6).
In most of these encryption schemes, a “noise” term is added during the encryption for secu-
rity purposes. This noise (sometimes called “error”) grows when performing homomorphic
additions and multiplications, and must remain below a certain threshold in order for the ci-
phertext to be correctly decryptable. In the majority of the homomorphic schemes known so
far, the way noise grows with multiplication is more severe than in the case of addition. For
this reason, the most important metric when quantifying the hardness of homomorphically
evaluating a circuit is its multiplicative depth.

Another important definition is that of somewhat homomorphic encryption (SHE) schemes.
We use this term to refer to encryption schemes that can evaluate a certain number of opera-
tions on encrypted inputs, but for which proceeding further would result in losing decryption
correctness, meaning that the result will not decrypt to what is expected. Every encryption
scheme is instantiated with some parameters, e.g., the size of the primes which are used,
the size of the secret key, etc. We say that a homomorphic encryption scheme is leveled if,
for any multiplicative depth L fixed a priori, it is possible to find a set of parameters such

6 Chapter 1 Introduction

that the encryption scheme instantiated with those parameters is able to homomorphically
evaluate any circuit of depth L. It is easy to see that this is a stronger notion than that of
somewhat homomorphic encryption scheme.
However, the main obstacle that researchers faced for more than 30 years (since the sug-

gestion of [RAD78]) was the following: in any case, the number of operations that can be
evaluated is bounded. At some point, the noise level will become too large and it will be
impossible to proceed without losing correctness. The goal of constructing a fully homo-
morphic encryption (FHE) scheme, i.e., a scheme that can homomorphically evaluate an
unbounded number of operations, remained a dream for a long time, and some famous re-
searchers claimed it was never going to be reached. The turning point came in 2009 with
the breakthrough by Craig Gentry, then a Ph.D. student at Stanford under the supervision
of Dan Boneh. In his dissertation [Gen09a], Gentry put forward the first plausible construc-
tion for an FHE scheme based on the hardness of some lattice problems, and that of the
approximate GCD problem (cf. Chapter 2 for the details). This breakthrough had the effect
of reigniting FHE as a topic of research, and since then many important results followed.
Although the techniques improved greatly, and the schemes became simpler and more ef-
ficient, the original blueprint presented in Gentry’s thesis continues to underlie all known
FHE constructions.
The key idea that was proposed in Gentry’s work is that of bootstrapping. By this term,

we denote the process of refreshing a ciphertext in order to produce a new ciphertext that
encrypts the same message, but with a lower level of noise so that more homomorphic
operations can be evaluated on it. This operation is at the very core of any FHE schemes
known to date, and consists of homomorphically evaluating the decryption circuit of the
scheme. Roughly speaking, it is like decrypting the ciphertext with the secret key, and
then re-encrypting the message, with the difference that the secret key is not known and it
is replaced by an encryption of the secret key, called the bootstrapping key. This requires
an additional hardness assumption, called circular security assumption, meaning that we
must assume it is safe to publish an encryption of the secret key under itself. Although
this assumption is still not well studied and understood, and it is sometimes regarded with
suspicion, no attacks that exploit this extra piece of information have been proposed.

1.2 FHE in the user-server scenario
Fully homomorphic encryption has huge consequences in the world of delegated computa-
tions, as it essentially enables a user to safely hand all of its (encrypted) data to an untrusted
remote party, and let it process the information, with the guarantee that the remote party
will learn neither the input nor the output of the computation. Practical consequences are
fairly easy to see; we present here some simple use cases:

• Emails could be stored encrypted, so that the email provider does not know the content
of the messages. Also emails could be searchable, without the provider knowing what
a user is looking for.

• Pictures could be uploaded to websites offering image processing capabilities, without
the site learning the content of the original picture or that of the final picture.

• Medical data could be safely shared in order to extract statistics or make predictions
on one’s health condition, without revealing any sensitive information. For example,

Ch
ap

te
r1

1.3 User and server: different problems for different players 7

in the case of estimating the cost of a life insurance, this could be done by running an
algorithm on encrypted data (the applicant’s personal information), and returning an
encrypted answer (the predicted cost of the insurance policy).

• One could even go so far as to imagining a completely homomorphic search engine,
that can process encrypted search queries and return an encrypted list of matches.

The list of potential examples is unsurprisingly long, and the consequences of an introduction
of FHE on a large scale would be very serious, with a strong enhancement of user’s privacy.

However, it might be worth pointing out something which might not be obvious at a
first glance at the subject. While FHE certainly helps protecting user’s privacy against
a curious server, the fact that the server is no longer able to collect users’ data would
necessarily produce a change in the business plan of numerous internet companies. These
enterprises normally provide services for free, in exchange for the possibility to harvest
people’s information in order to create tailored advertisement campaigns, extract statistics,
. . . 3 And while someone might argue that this is wrong on a moral ground and that anything
that brings this to a stop is welcome, it is also true that companies need revenues for their
survival. Preventing companies from generating profits from users’ data would likely force
them to adopt different strategies, such as that of making people pay for services that are
normally expected to be free (rather, paid for through personal data), like email addresses,
storage space, . . . This means that, just like any major technology, FHE has potentially
serious and life-changing consequences, that have to be evaluated carefully, on the basis of
the specific application, the privacy requirements, the costs, etc.
What currently keeps FHE from becoming a widespread tool is essentially efficiency. As

we said before, all the solutions we know of for achieving the ability to perform unbounded
computations are based on the operation of bootstrapping. Although this procedure has
been improved and refined over the years, it remains costly and can considerably limit the
efficiency of the scheme. A more viable alternative is that of relying on custom-made SHE
instantiations, tailored to the specific application that is targeted. This solution is certainly
less flexible, as it has to be adapted on a case-by-case basis, but offers the advantage that no
bootstrapping is required. For real-world applications, SHE is usually the chosen approach,
and more and more examples of practically efficient SHE are surfacing regularly.

1.3 User and server: different problems for different players

Since the user-server scenario is a world with two players, it is expectable that each of them
has a different perspective, different security requirements, and different goals. We analyze
them in the following.

1.3.1 The user’s point of view

The user is mainly interested in having the privacy of his input data guaranteed by a strong
encryption scheme, but is also concerned by the workload he faces in order to encrypt
the input and decrypt the output. Another important point regards the communication
complexity, or bandwidth usage: the user would like to minimize the amount of data he

3As the saying goes, “If you do not pay for the product, then you are the product”.

8 Chapter 1 Introduction

has to send to or download from the Cloud, which implies making ciphertexts as small as
possible.

An emerging and fast-growing application that lies within the boundaries of Cloud com-
puting is that of machine-learning-as-a-service (MLaaS), where a user submits data to a
remote server, that applies a previously-trained predictive model (e.g., a neural network) to
the data. The challenge, in this scenario, is usually represented by the complexity of the
computations involved in the homomorphic evaluation of the predictive model, especially
in the case of deep learning, where the depth of the circuit can be particularly large. For
this kind of applications, the main goal is then to improve the efficiency in order to produce
accurate results in a fast and reliable way.

1.3.2 The server’s point of view

Although the previous part was mainly devoted to the user’s needs and how to protect
his input data, there can be security requirements from the server’s side as well. In fact,
a server might provide some data processing capabilities based on proprietary algorithms,
that represent a key company asset and constitute sensitive intellectual property. A typical
requirement is then that of circuit privacy [SYY99; IP07], meaning that the result returned
by the server to the user at the end of the computation should leak no information on the
algorithm (or circuit) that was applied to the encrypted inputs. In fact, it turns out that the
noise term that is added for security purposes and that we mentioned before, not only grows
with homomorphic operations, but changes in a way that somehow reflects (or depends on)
the operations that are performed. Therefore, the noise contained in the final ciphertext
that the user receives can leak information about how the result was produced, therefore
jeopardizing the privacy of the algorithm. Instead, we would like the final result to contain
no information at all on the computation, and we model this requirement as follows: let x
be an input, encrypted as Enc (x), and let f be a function. Homomorphically evaluating
f on Enc (x) means performing a certain number of homomorphic operations in order to
produce a ciphertext that decrypts to f(x). The intuitive goal of circuit privacy is then for
the outcome to “look like” a somewhat fresh encryption of f(x), which in turn guarantees
that the result contains no information on f . The rough idea is that we want to keep the
correct result, i.e., f(x), while removing all the information on f .

1.4 Our results
In this manuscript we propose contributions that improve the previous state of the art on
both ends of the user-server use case.

1.4.1 A new framework for homomorphic evaluation of neural networks

With respect to the user’s point of view, we propose a new framework for efficiently evaluating
discretized neural networks on encrypted data. In this framework, the user encrypts his input
data under a lattice-based encryption scheme, and sends the encrypted data to the other
party. This party is able to homomorphically evaluate a neural network of arbitrary depth
on the input, and finally returns the encrypted result. The substantial difference between
our work [BMMP18] and previous works is that the instantiation of the encryption schemes,
i.e., the parameters that define the scheme, does not have to depend on the network that

Ch
ap

te
r1

1.4 Our results 9

has to be evaluated. In previous works, the chosen approach was to tailor a somewhat
homomorphic encryption scheme to a specific network, with parameters that were good
enough for that application. The problem is that this solution is (1) not flexible, and (2)
not suited for evaluating deep neural network, that would force to take extremely large
and cumbersome parameters for correctness to hold, thus making the scheme completely
inefficient and impractical.

On the other hand, our framework heavily relies on a recent and efficient implementation
of the bootstrapping operation, through which we can refresh ciphertexts after the evalu-
ation of each layer of the neural network. In turn, this allows us to “keep going with the
computations”, meaning that there is no a priori bound on the number of layers that can be
evaluated. The disadvantage of this approach is that, in order to make our neural networks
“FHE-friendly”, we have to impose some limitations, namely the inputs and some internal
values (weights and biases) have to be discretized. However, we note that this simplified
model of neural networks has already been studied in the literature, and is known to achieve
near-state-of-the-art performance.

1.4.2 A new technique for circuit privacy

With respect to the server’s point of view, in [BPMW16] we propose a conceptually different
approach to the problem of circuit privacy that, unlike previous works, is not based on
annihilating the noise term by adding another large noise term to it (this technique is called
noise flooding), or by using bootstrapping in order to “wash away” any trace of the previous
computations. Instead, we directly analyze the distribution of the noise term and we show a
way of removing the information on the circuit from the ciphertext in a simple and efficient
way. In particular, we target the GSW FHE encryption scheme for branching program
evaluation, and we introduce a modification that achieves circuit privacy essentially without
worsening the overall efficiency of the scheme.
This work also gives better insights into the algebraic structure and the noise distribution

in the GSW scheme, and provide new tools for analyzing noise randomization that could be
of independent interest.
The fundamental downside of our approach is that it is fundamentally limited to the GSW

encryption scheme, while it is not clear how to apply our techniques to other FHE schemes.
In fact, although GSW is quite ubiquitous in the FHE world and it represents the most
recent and asymptotically best instantiation of FHE, other schemes can be preferable and
more efficient for specific applications.
Another limiting problem is that our technique only works in the honest-but-curious ad-

versary model, i.e., we have to assume the adversary follows the protocol and play by the
rules, but tries to extract as much information as it can from what it sees. This is opposed
to the malicious adversary model, where the adversary can do whatever it wants and deviate
in any way from the prescribed execution, including submitting malformed inputs. In the
latter case, our technique breaks, as it relies on well-formed input ciphertexts.

1.4.3 A protocol for private information retrieval

Another contribution of this work is given by [BBB+17] and regards privacy-preserving
interactions with a database held by another party. In particular, we devise a protocol for
private information retrieval, meaning that a party A can query a database held by a party B,

10 Chapter 1 Introduction

without B learning what A is looking for. We also show that, under appropriate conditions
and with some formalization caveats, our protocol also achieves the property that A learns
nothing more from the database than the records that match the query, thus achieving a
stronger notion known as oblivious transfer. We also propose a C++ implementation of the
protocol that shows the practicality of our approach.

1.5 Other contributions
Apart from input data privacy, Cloud computing introduces another crucial challenge: can
we trust the computation done by the Cloud? Can we be sure that the result is indeed
the correct one and not some random or forged value? Outsourcing computations is clearly
useless without a certain level of confidence in the correctness of the result, which is why we
would like the Cloud to be able to “convince us” that the result is indeed valid, but without
having to re-run the entire computation step by step.

In zero-knowledge (ZK) proofs (introduced in [GMR89]), a powerful prover can prove
to a weaker verifier that a particular statement is true, without revealing why this is the
case. More formally, given an NP language L with corresponding witness relation R, the
prover will know a witness w that demonstrates the truth of a certain statement x ∈ L.
With a zero-knowledge proof, the prover will be able to convince the verifier that the state-
ment is indeed true, without revealing any information on the witness w. Non-interactive
zero-knowledge proofs [BFM88] and succinct ZK arguments [Kil92; Mic94] were introduced
shortly thereafter, but remained of mainly theoretical interest until more recently, when sev-
eral breakthroughs have shown that these proofs can be used in practical applications (see
e.g., Pinocchio [PHGR13]).

A particularly interesting concept is that of SNARK, i.e., succinct non-interactive ar-
gument of knowledge. By this term, we denote a proof system which is non-interactive
(it does not require multiple rounds of communication), complete (all correctly generated
proofs are accepted), succinct (the size of the proof is linear in the security parameter), and
knowledge-sound (for any prover able to produce a valid proof, there is an algorithm capable
of extracting a witness for the statement). Recently, in two companion papers [BISW17;
BISW18], Boneh et al. provided the first designated-verifier SNARKs construction based on
lattice assumptions.

In [GMNO18] we build zero knowledge SNARKs (succinct non-interactive arguments of
knowledge) from lattice assumptions for square span programs (SSPs), which are a way
to characterize NP introduced in [DFGK14]. Compared with previous works, our result
achieves zero-knowledge, relies on weaker assumptions, and is simpler and more efficient.
Also, for a reasonable set of parameters, we achieve post-quantum security. In contrast, the
size of our proofs is considerably larger than in previous works. Moreover, our construction
is designated-verifier, meaning that the verification procedure requires access to some secret
piece of information, as opposed to publicly verifiable, where the verification procedure can
be run based solely on public information.

1.6 Organization of the manuscript
This manuscript is organized as follows: Chapter 2 introduces the notation used in the
manuscript, and gives some definitions and some general notions; Chapter 3 presents fully

Ch
ap

te
r1

1.6 Organization of the manuscript 11

homomorphic encryption in details, and constitutes a sort of survey on the area; Chapter 4
addresses the problem of homomorphic evaluation of deep neural networks, and presents
an efficient framework that allows one to evaluate an already-trained predictive model on
encrypted inputs; Chapter 5 considers the other side of the coin for outsourced computa-
tions, and examines the problem of circuit privacy, resulting in a new and more efficient
way of avoiding undesired leakages from the result of homomorphic computations; Chap-
ter 6 presents the design and the concrete implementation of a protocol based on FHE for
private information retrieval; finally, Chapter 7 draws some conclusions and outlines several
questions that remain open and that can be the topic for extending the research presented
in this manuscript.

Personal Publications
[BPMW16] Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. “FHE

Circuit Privacy Almost for Free”. In: CRYPTO 2016, Part II. Ed. by Matthew
Robshaw and Jonathan Katz. Vol. 9815. LNCS. Springer, Heidelberg, Aug.
2016, pp. 62–89. doi: 10.1007/978-3-662-53008-5_3 (cit. on p. 9).

[BBB+17] Anthony Barnett, Charlotte Bonte, Carl Bootland, Joppe W. Bos, Wouter
Castryck, Anamaria Costache, Louis Goubin, Ilia Iliashenko, Tancrède Lep-
oint, Michele Minelli, Pascal Paillier, Nigel P. Smart, Frederik Vercauteren,
Srinivas Vivek, and Adrian Waller. Processing Encrypted Data Using Homo-
morphic Encryption. Workshop on Data Mining with Secure Computation,
SODA project. 2017 (cit. on p. 9).

[BMMP18] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast
Homomorphic Evaluation of Deep Discretized Neural Networks. CRYPTO
2018. https://eprint.iacr.org/2017/1114. 2018 (cit. on p. 8).

[GMNO18] Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù. Lattice-
Based zk-SNARKs from Square Span Programs. ACM CCS 2018. https://
eprint.iacr.org/2018/275. 2018 (cit. on p. 10).

https://doi.org/10.1007/978-3-662-53008-5_3
https://eprint.iacr.org/2017/1114
https://eprint.iacr.org/2018/275
https://eprint.iacr.org/2018/275

Ch
ap

te
r2

Chapter 2
Preliminaries

In this chapter, we introduce the notation used in this manuscript, and give some defini-
tions and notions.
We begin with standard notation, then we give basic definitions about cryptographic

primitives and introduce the concept of provable security. After this, we give an introduction
to lattices, and we present some background notions that will be useful in the rest of the
manuscript, including the LWE problem and a brief overview on Gaussian distributions and
some of their properties. Finally, we conclude with hardness assumptions that will be used
throughout this work.
These preliminaries are inspired and adapted from several PhD theses’ preliminaries, such

as the ones by Florian Bourse [Bou17], Pierrick Méaux [Méa17], Alain Passelègue [Pas16],
Geoffroy Couteau [Cou17], and Fabrice Ben Hamouda–Guichoux [Ben16]. The part on
lattices is heavily inspired by Chris Peikert’s survey on the area [Pei15a].

Contents
2.1 Notation and preliminaries . 14

2.1.1 Mathematical notation . 14
2.1.2 Algorithms . 15
2.1.3 Provable security . 15

2.2 Cryptographic primitives . 16
2.3 Lattices . 17

2.3.1 Basic definitions . 17
2.3.2 Computational problems . 18
2.3.3 Worst-case hardness . 19
2.3.4 Gaussians . 19
2.3.5 Short integer solution (SIS) . 20
2.3.6 Learning with errors (LWE) . 20

2.4 Complexity assumptions . 22

— 13 —

14 Chapter 2 Preliminaries

2.1 Notation and preliminaries
The notation used in this work is rather standard in cryptography and computer science:
we explicitly define it here for completeness and to make this manuscript self-contained.

2.1.1 Mathematical notation
2.1.1.1 Sets, rings, integers

We denote the set of integers by Z, the set of non-negative integers by N, the set of reals by
R and the set of integers modulo some q by Zq. We use T to indicate R/Z, i.e., the torus of
real numbers modulo 1. We denote by {0, 1}n a bitstring of length n; sometimes we use B
for {0, 1}. For any ring R, we use R [X] for polynomials in the variable X with coefficients
in R. We use RN [X] to denote R [X] /

(
XN + 1

)
, and ZN [X] to denote Z [X] /

(
XN + 1

)
,

and we write their quotient as TN [X] = RN [X] /ZN [X], i.e., the ring of polynomials in X
quotiented by

(
XN + 1

)
, with real coefficients modulo 1.

For two integers a, b such that a < b, we write {a, . . . , b} to denote the set of integers
between a and b (a and b included). If a = 1, then we use [b] for {1, . . . , b}. For a finite set
S, we denote its cardinality by |S|.
For x ∈ Z, x mod q denotes the remainder of the Euclidean division of x by q. For y ∈ R,
|y| denotes its absolute value and log y its logarithm in basis 2, dye is the smallest integer z
such that y ≤ z, byc is the biggest integer z such that z ≤ y, and bye is the closest integer
to y, with ties broken upward.

2.1.1.2 Vectors and matrices

Vectors are denoted by lower-case bold letters, like v, and are always columns. We indicate
a vector v’s i-th entry by vi (not in bold). We use vᵀ for the transpose of a vector v, which
is then a row. For a vector v, we define the Lp norm as

‖v‖p =
(

n∑
i=1
|vi|p

)1/p

,

and for p = ∞, we define ‖v‖∞ = maxi |vi|. When we omit the subscript and simply write
‖v‖, we refer to the L2 norm of the vector v. Given two vectors of the same length a,b ∈ Rn,
we use either 〈a,b〉 or a · b to denote their inner (or dot) product ∑i∈[n] ai bi.
Matrices are denoted by upper-case bold letters, like A, and we use Aᵀ for the transpose of

the matrix A. When a square matrix is invertible, we denote by A−1 its inverse. Sometimes
we consider a n ×m matrix as the ordered sequence of its columns: in this case we write
A = (a1, . . . ,am). We will also use 0 for either the zero-vector or the zero-matrix (it will be
clear from the context), and In for the n× n identity matrix.
For a d1-dimensional vector a and a d2-dimensional vector b, we write (a‖b) to denote

the (d1 + d2)-dimensional vector obtained by concatenating a and b. We will use a similar
notation for concatenating matrices with matrices or matrices with vectors.

2.1.1.3 Distributions and probabilities

Given a set S, we write x←$S to indicate that x is sampled uniformly at random from
S (independently of everything else). Similarly, if D is a probability distribution, then we

Ch
ap

te
r2

2.1 Notation and preliminaries 15

write x ← D to denote that x is sampled according to D. We write Pr[X = x] to indicate
the probability of a random variable X taking the value x. Given two distributions X,Y
over a finite or countable domain D, their statistical distance is defined as ∆ (X,Y) =
1
2
∑
v∈D |X(v)− Y (v)|. When it is clear from the context, we sometimes write “random” for

“uniformly at random”.

2.1.1.4 Asymptotic behaviors

When f and g are two functions N → R, we write f = O(g) to indicate that there exist a
constant c and an integer n0 ∈ N such that for any integer n ≥ n0, |f(n)| ≤ c · |g(n)|. We
say that a function ε : N→ [0, 1] is negligible (or 1− ε is overwhelming) if, for any constant
c ∈ N, there exists η0 ∈ N such that for any η ≥ η0, ε ≤ 1

ηc .

2.1.2 Algorithms

For simplicity, unless otherwise stated, we consider all the algorithms as probabilistic Turing
machines. This means that we implicitly assume that they can use an additional tape
containing random bits (also referred to as random coins). In the rest of this thesis, we use
the term “PPT algorithm” for “Probabilistic Polynomial-Time algorithm”, and we say an
algorithm is efficient if it is a PPT algorithm. For an algorithm A, we write y ← A(x) to
denote the fact that we run A on input x with fresh random coins and we obtain an output
y. In case A is a deterministic algorithm, we will instead write y = A(x).

2.1.3 Provable security

Almost any problem can be solved if enough computational power or enough time is available,
e.g., by enumerating and trying every possible solution until finding the right one (this
approach is known as brute-force attack). With this in mind, the goal of provable security is
then to assess the amount of effort required to solve a certain problem (i.e., break a certain
system). A cryptosystem is deemed “secure” if breaking it would require an unreasonable
effort (with regards to computations, elapsed time, data storage, . . .) from a reasonable
attacker. The choice of what is reasonable depends on the security model (e.g., what kind
of adversary we are considering), and on the security guarantees that we require1. These
considerations are numerically represented by a security parameter, that we denote with κ: a
cryptosystem provides κ bits of security if it requires 2κ elementary operations to be broken.
Although usually omitted in order to ease notation, all the integers, vectors, and matrices
that we define will implicitly be a function of κ. However, sometimes we explicitly write
that an algorithm (e.g., Setup) takes 1κ as an argument. The reason for doing this is that we
want the algorithm to run in a time that is polynomial in κ, so its input must have size κ.
The adversaries we consider in this work are PPT algorithms and we denote an adversary’s
advantage when attacking a scheme, a protocol, or a generic construction, by Adv.

1For example, spending a year to decrypt a friend’s message could be pointless, but spending a year to
decipher a valuable industrial or military secret might be perfectly acceptable.

16 Chapter 2 Preliminaries

2.2 Cryptographic primitives
In this part we give a basic introduction to secret-key and public-key encryption schemes,
outline some generic algorithms and provide some definitions related to the security of en-
cryption schemes.

Definition 2.2.1 (Secret-key encryption scheme). A secret-key encryption scheme consists
of the following algorithms:

• KeyGen (1κ) 7→ (k, pp): on input the security parameter κ, outputs the key k and some
public parameters pp;

• Encrypt (k,m) 7→ c: on input the key k and a message m, outputs a ciphertext c;

• Decrypt (k, c) 7→ m: on input the key k and a ciphertext c, outputs a message m.

While in a secret-key encryption scheme the same key is used both for encrypting and
decrypting, in a public-key encryption scheme there are two separate keys, a public and a
private (or secret) one, which are used for encrypting and decrypting, respectively.

Definition 2.2.2 (Public-key encryption scheme). A public-key encryption scheme consists
of the following algorithms:

• KeyGen (1κ) 7→ (pk, sk, pp): on input the security parameter κ, outputs the public key
pk, the secret key sk, and some public parameters pp;

• Encrypt (pk,m) 7→ c: on input the public key pk and a message m, outputs a ciphertext
c;

• Decrypt (sk, c) 7→ m: on input the secret key sk and a ciphertext c, outputs a message
m.

We now give a standard definition of security for an encryption scheme, namely that of
indistinguishability under chosen-plaintext attacks (IND-CPA).

Definition 2.2.3 (Indistinguishability under chosen-plaintext attacks). For a public-key
encryption scheme E, we define IND-CPA security via the game depicted in Figure 2.1. Let

AdvIND-CPA
A (κ) =

∣∣∣∣Pr[IND-CPAE,κ]− 1
2

∣∣∣∣
be the advantage of an adversary A when playing the game IND-CPAE,κ. We say that E is
IND-CPA secure if, for any PPT adversary A, it holds that AdvIND-CPA

A (κ) = negl(κ).

Ch
ap

te
r2

2.3 Lattices 17

Game IND-CPAE,κ
(pk, sk, pp)← KeyGen (1κ)
(m0,m1)← A (1κ, pk, pp)
b←$ {0, 1}
c← E .Encrypt (pk,mb)
b′ ← A (1κ, pk, pp, c)
return b′ = b

Figure 2.1: Game for IND-CPA security.

2.3 Lattices
In this part we present some basic definitions about lattices and we recall several fundamental
computational problems.

2.3.1 Basic definitions
Definition 2.3.1 (Lattice). An n-dimensional lattice Λ is a discrete additive subgroup of
Rn. For an integer k < n and a rank k matrix B ∈ Rn×k, Λ (B) =

{
Bx ∈ Rn | x ∈ Zk

}
is

the lattice generated by the columns of B. The columns of B form a basis of the lattice.
In this work, we are only interested in full-rank lattices, i.e., those for which k = n

Remark 2.3.2. A lattice basis B is never unique: for any unimodular matrix U ∈ Zn×n
(i.e., such that det (U) = ±1), the matrix B ·U is also a basis of Λ (B). In Figure 2.2 we
show a two-dimensional lattice with two different bases.

Definition 2.3.3 (Minimum distance). The minimum distance of a lattice Λ is the length
of a shortest nonzero lattice vector:

λ1 (Λ) := min
0 6=v∈Λ

‖v‖

Definition 2.3.4 (Successive minima). Given a lattice Λ, its i-th successive minimum λi (Λ)
is the smallest positive ` ∈ R such that Λ has i linearly independent vectors of norm at most
`.
Definition 2.3.5 (Fundamental parallelepiped). For any lattice basis B, we define

P (B) = {Bx : x ∈ Rn, 0 ≤ xi < 1 ∀i}
Definition 2.3.6 (Determinant of a lattice). Let Λ (B) be a lattice with rank n. We define
the determinant of Λ, denoted as det (Λ), as the n-dimensional volume of its fundamental
parallelepiped P (B). In symbols, we can write this as det (Λ) :=

√
det (BᵀB).

Definition 2.3.7 (Dual and orthogonal lattice). The dual of a lattice Λ ⊂ Rn is defined as

Λ∗ := {v : 〈v,Λ〉 ⊆ Z} ,
i.e., the set of points whose inner products with the vectors in Λ are all integers. It is easy
to verify that the dual of a lattice is still a lattice. Given a rank k matrix B ∈ Rn×k, we
define the q-ary orthogonal of a lattice Λ as

Λ⊥q (B) := {v ∈ Zn : Bᵀv = 0 mod q} .

18 Chapter 2 Preliminaries

O

b′1

b′2

b1

b2

Figure 2.2: A two-dimensional lattice with two different bases.

2.3.2 Computational problems

In this part we recall several classical computational problems on lattices.

Definition 2.3.8 (Shortest Vector Problem (SVP)). Given an arbitrary basis B of some
lattice Λ = Λ (B), find a shortest2 nonzero lattice vector, i.e., a vector v ∈ Λ such that
‖v‖ = λ1 (Λ).

In the following, we present several approximation problems, parameterized by an approx-
imation factor γ ≥ 1, usually taken as a function of the lattice dimension n, i.e., γ = γ (n).

Definition 2.3.9 (Approximate Shortest Vector Problem (SVPγ)). Given an arbitrary basis
B of a lattice Λ = Λ (B), find a nonzero vector v ∈ Λ such that ‖v‖ ≤ γ · λ1 (Λ).

Definition 2.3.10 (Decisional Approximate SVP (GapSVPγ)). Given an arbitrary basis B
of a lattice Λ = Λ (B), where λ1 (Λ) ≤ 1 or λ1 (Λ) > γ, determine which is the case.

Definition 2.3.11 (Approximate Shortest Independent Vector Problem (SIVPγ)). Given an
arbitrary basis B of an n-dimensional lattice Λ = Λ (B), output a set S = {v1, . . . ,vn} ⊂ Λ
of n linearly independent lattice vectors such that ‖vi‖ ≤ γ · λi (Λ) for all i ∈ [n].

Definition 2.3.12 (Approximate Closest Vector Problem (CVPγ)). Given an arbitrary basis
B of an n-dimensional lattice Λ = Λ (B) and a target vector t ∈ Rn, find a vector v ∈ Λ
such that 0 < ‖v− t‖ ≤ γ · D (t,Λ) = γ · infx∈Λ ‖x− t‖.

Definition 2.3.13 (Approximate Bounded Distance Decoding Problem (BDDγ)). Given an
arbitrary basis B of an n-dimensional lattice Λ = Λ (B) and a target vector t ∈ Rn such that
D (t,Λ) ≤ γ−1 · λ1 (Λ), find a vector v ∈ Λ such that ‖v− t‖ = D (t,Λ).

2Note that we do not ask for “the shortest”, as a shortest vector is never unique. For a vector v that satisfies
the condition, the lattice vector −v does as well.

Ch
ap

te
r2

2.3 Lattices 19

2.3.3 Worst-case hardness
For a problem to be useful in cryptography, we require it to be hard on average, i.e., a
random instance of this problem should be hard to solve. Instead, a more common definition
of hardness is related to the worst case, i.e., a problem is hard if some instances of this
problem are hard to solve. In [Ajt96], Ajtai gave a connection between these two situations
and proved that there are cryptographically useful problems that are hard on average, as long
as certain lattice problems are hard in the worst case. This essentially makes implementing
cryptosystems considerably easier, as one can just pick a random instance of the problem
and be reasonably sure that this instance is hard. On the other hand, this does not happen
with many number theory problems, where implementing requires checking that a specific
instance of the problem is hard to break.

2.3.4 Gaussians
In this part, we introduce some notions about discrete Gaussian distributions that we will
use throughout this work.

Definition 2.3.14 (Gaussian function and discrete distribution). For any α > 0 the spher-
ical Gaussian function with parameter α (omitted if 1) is defined as

ρα (x) := exp
(−π ‖x‖

α2

)
for any x ∈ Rn. Given a lattice Λ ⊆ Rn, a parameter r ∈ R, and a vector c ∈ Rn, the
spherical Gaussian distribution with parameter r and support Λ + c is defined as

DΛ+c,r (x) := ρr (x)
ρr (Λ + c) , ∀x ∈ Λ + c

where ρr (Λ + c) denotes
∑

v∈Λ+c ρr (v).

Remark 2.3.15. Note that ρr (x) = ρ
(
r−1x

)
.

Definition 2.3.16 (Sub-Gaussian distribution). A distribution D is sub-Gaussian with pa-
rameter α if there exists M > 0 such that for all x ∈ Rn,

D (x) ≤M · ρα (x) .

We now report a very well known result about additivity of Gaussian distributions.

Lemma 2.3.17 (Pythagorean additivity of Gaussians). Let D1 and D2 be Gaussian distri-
butions with parameters σ1 and σ2, respectively. Then D+, obtained by sampling D1 and D2

and summing the results, is a Gaussian with parameter
√
σ2

1 + σ2
2.

Another important quantity for a lattice Λ is its smoothing parameter. Roughly speaking,
this can be seen as the minimum amount of Gaussian “blur” required to “smooth out” all
the discrete structure of Λ. We now give a more formal definition.

Definition 2.3.18 (Smoothing parameter [MR04]). For a lattice Λ ⊆ Rn and a positive real
ε > 0, the smoothing parameter ηε (Λ) is the smallest real r > 0 such that ρ1/r (Λ∗ \ {0}) ≤ ε,
where Λ∗ is defined as per Definition 2.3.7.

20 Chapter 2 Preliminaries

2.3.5 Short integer solution (SIS)
The short integer solution problem was first introduced in the work by Ajtai [Ajt96], and
has served as the foundation for one-way functions, collision-resistant hash functions, and
other primitives.
Definition 2.3.19 (The SIS problem). The short integer solution problem is parametrized
by four integers: the lattice dimension n, the number of samples m, the modulus q, and the
constraint β.
Given m uniformly random vectors ai ∈ Znq , forming the columns of a matrix A ∈ Zn×mq ,

find a nonzero integer vector z ∈ Zm of norm ‖z‖ ≤ β such that

Az =
∑
i

aizi = 0 ∈ Znq .

Note that it must be β < q, otherwise the vector (q, 0, . . . , 0) ∈ Znq would always be a valid
solution. On the other hand, β must be large enough that a solution is guaranteed to exist.
For example, let m = n log q. Then, β ≥ √m is enough to have this guarantee. In fact, there
are more than qn vectors in {0, 1}m, so there must be two distinct vectors x,x′ ∈ {0, 1}m
such that Ax = Ax′. In turn, this means that A (x− x′) = 0 ∈ Znq . The conclusion is that
the vector y = x − x′ ∈ {−1, 0, 1}m is a solution of norm at most

√
m = β. By the same

argument, we can also conclude that the function
fA : {0, 1}m → Znq
fA (x) := Ax =

∑
i

aixi ∈ Znq

is collision-resistant, assuming the hardness of the corresponding SIS problem. The reason
is immediately clear: finding a collision means finding two distinct vectors x,x′ ∈ {0, 1}m
such that Ax = Ax′, but this immediately yields the solution x− x′ to the SIS problem for
the matrix A.

2.3.6 Learning with errors (LWE)
The learning with errors (LWE) problem was introduced by Regev in [Reg05], and has be-
come one of the most known problems in lattice-based cryptography. It has been used to
construct several cryptosystems, and it is believed to be hard even for quantum comput-
ers. This problem comes in two flavors, search and decision: we present them both in the
following.

LWE is parameterized by two positive integers, n and q, and an error distribution χ over
Z, usually a discrete Gaussian of width αq, 0 < α < 1.
Definition 2.3.20 (LWE distribution). Given a secret vector s ∈ Znq , the LWE distribu-
tion lwes,χ over Znq × Zq is sampled by picking a←$ Znq , an error e ← χ, and returning
(a, b = 〈s,a〉+ e).
We now present the two versions of the LWE problem.

Definition 2.3.21 (Search-LWE slwen,q,χ,m). Givenm independent samples (ai, bi)← lwes,χ,
for a fixed s←$ Znq , find s.
Definition 2.3.22 (Decisional-LWE dlwen,q,χ,m). Given m independent samples (ai, bi) ∈
Znq × Zq, where every sample is either distributed according to lwes,χ for some fixed s ∈ Znq
or uniformly random in Znq × Zq, distinguish which is the case.

Ch
ap

te
r2

2.3 Lattices 21

2.3.6.1 Ring LWE

A version of the LWE problem over rings was introduced in [SSTX09; LPR10]. We give here
the definition without fractional ideals.

Definition 2.3.23 (Ring-LWE distribution). Let R be a polynomial ring such that R =
Z [X] /f (X), with f some cyclotomic polynomial of degree n. Also, let q ≥ 2 be an integer
modulus, and let Rq = R/qR be the quotient ring. Finally, let χ be an error distribution
over R. For a fixed secret s ∈ Rq, the ring-LWE distribution ring-lwes,χ is sampled by taking
a←$Rq, e ← χ, and outputting (a, b = s · a+ e). All the computations are, as usual, done
modulo q.

Analogously to what was done for LWE, we now present the two versions of the ring-LWE
problem.

Definition 2.3.24 (Search ring-LWE). Given m independent samples (a, b) ← ring-lwes,χ,
for a fixed s←$R, find s.

Definition 2.3.25 (Decisional ring-LWE). Given m independent samples (a, b) ∈ R × R,
where every sample is either distributed according to rlwes,χ for some fixed s ∈ R or uni-
formly random in R×R, distinguish which is the case.

The advantage of using ring-LWE instead of plain LWE is compactness and efficiency.
In fact, in the case of ring-LWE, each sample gives a n-dimensional pseudorandom ring
element b ∈ R, instead of just a pseudorandom scalar b ∈ Zq. We can thus say that a
single ring-LWE sample with a ∈ R takes the place of n LWE samples with vectors ai ∈ Znq .
Moreover, thanks to techniques like FFT, the multiplication between ring elements can
be performed in quasi-linear time. The essential drawback of ring-LWE is its conjectured
hardness, which is not as well-established as for LWE. We will not give details about this,
but refer the interested reader to specialized literature (e.g., [APS15; BF17]). However,
results on ring-LWE hardness are not conclusive and the question stands wide open, with
some prominent figures in the community like Dan Bernstein notoriously expressing concerns
(see e.g., [Ber14]), and other famous researchers like Chris Peikert, Damien Stehlé, Vadim
Lyubashevsky, and Léo Ducas usually more skeptical and less convinced that disastrous
attacks really exist3. In the past, this topic has even generated heated discussions (cf. e.g.,
[BPL+15; BPDS16]), showing that the questions related to ideal lattice cryptography and
its security are very important ones and need more attentive investigation.

2.3.6.2 Link between LWE and lattice-based problems

We now clarify the link between LWE and the lattice problems presented in Section 2.3.2.
Let A←$ Zn×mq , and let Λ be the following lattice

Λ = Λ (A) :=
{

Aᵀv : v ∈ Znq
}

+ qZm

This is anm-dimensional q-ary lattice, since Aᵀ hasm rows and the lattice is defined modulo
the integer q.

3For example, in [Pei15b], Chris Peikert wrote “Healthy skepticism is always warranted (especially in cryp-
tography), but based on these new developments, I don’t believe our level of skepticism should rise much
from where it was before.”

22 Chapter 2 Preliminaries

Let s←$ Znq , let χ be an LWE error distribution, e← χm, and b = Aᵀs + e ∈ Zmq . Now it
is easy to see that, for sufficiently small error terms, the vector b is rather close to a specific
vector (or point) of the lattice Λ, namely Aᵀs, whereas a random vector u←$ Zmq will be far
from Λ with high probability. We can then conclude that solving search-LWE amounts to
solving an average instance of the BDD problem on the lattice Λ. In fact, once the vector
Aᵀs ∈ Λ has been found, s can be trivially recovered, e.g., by Gaussian elimination.

2.4 Complexity assumptions

In this subsection, we list the complexity assumptions we rely on in this manuscript.

Assumption 2.4.1 (Hardness of lattice problems). It is hard to solve the lattice problems
presented in Section 2.3.2.

This assumption simply says that the lattice problems presented in Section 2.3.2, despite
having been studied intensively over the years, are intractable, except for very large ap-
proximation factors γ. We currently know of some polynomial-time algorithms, like the
famous LLL algorithm by Lenstra, Lenstra, and Lovász [LLL82], that obtain only slightly
subexponential approximation factors γ (n) = 2Θ(n log logn/ logn) for all the problems stated
in Section 2.3.2. When requiring polynomial (meaning poly(n)) or better factors γ, the
algorithms we currently know either require superexponential 2Θ(n logn) time or exponential
2Θ(n) time and space. Between these two extremes, there are intermediate solutions that
achieve γ = 2k approximations factors in 2Θ̃(n/k) time [Sch87].

Interestingly, this is also the state of the art for quantum algorithms, although some
constant factors might be smaller. In a nutshell, quantum attacks on lattice problems do not
achieve anything beyond generic quantum speedups, which justifies the following assumption.

Assumption 2.4.2 (Quantum hardness of lattice problems). It is hard to solve the problems
presented in Section 2.3.2, even with a quantum computer.

Most of the constructions presented in this manuscript will be based on the decisional
LWE (dlwe) problem. In [Reg05], Regev proved the following theorem on the hardness of
dlwe:

Theorem 2.4.3 (Hardness of dlwe). For any m = poly(n), any modulus q ≤ 2poly(n), and
any (discretized) Gaussian error distribution χ of parameter αq ≥ 2

√
n (where 0 < α < 1),

solving the dlwen,q,χ,m problem is at least as hard as quantumly solving GapSVPγ and SIVPγ
on arbitrary n-dimensional lattices, for some γ = Õ (n/a).

This justifies the following assumption:

Assumption 2.4.4 (dlwe). For a correct choice of parameters, it is hard to break the dlwe
problem defined in Definition 2.3.22.

Finally, we will use an assumption on the so-called approximate GCD problem: we now
present the problem and the related assumption. The approximate-GCD problem (AGCD)
was introduced in 2001 by Howgrave-Graham [How01] and is parametrized by integers
γ, η, ρ ∈ N.

Ch
ap

te
r2

2.4 Complexity assumptions 23

Definition 2.4.5 (Approximate GCD distribution). The AGCD distribution agcdρ (p, q0)
for a given η-bit integer p and a q0←$ [0, 2γ/p) is the set of integers xi = p · qi + ri, where
qi←$ [0, q0) and ri←$ [0, 2ρ).

Definition 2.4.6 (Approximate GCD problem). For a η-bit integer p and a uniformly
chosen q0←$ [0, 2γ/p), given polynomially many samples from agcdρ (p, q0), find p.

Assumption 2.4.7 (Hardness of the approximate GCD problem). For appropriately set
parameters γ, η, ρ ∈ N, it is hard to break the AGCD problem of Definition 2.4.6.

For a review on several kind of attacks to this problem, we refer the reader to, e.g., [How01;
CH11; CMNT11; CNT12; CN12].

Ch
ap

te
r3

Chapter 3
Fully homomorphic encryption

In this chapter we present fully homomorphic encryption in details, recalling its history
from the first plausible construction, through successive improvements, to today’s “almost
practical” instantiations. We also go through several homomorphic cryptosystems that have
been proposed, analyzing their pros and cons, in hope to give a sort of “bird’s eye view” on
this field. Some of the contents about this part are inspired by the PhD thesis of Tancrède
Lepoint [Lep14]. We will conclude this chapter with a part on implementation, reviewing
some libraries that have been developed over the years, and assessing their performances,
their potential, and their limitations.
The idea is for this chapter to be of independent interest as a sort of survey on FHE.

Contents
3.1 Introduction . 26
3.2 Homomorphic encryption scheme . 27
3.3 Bootstrapping and key-switching . 28
3.4 Three generations of FHE . 30

3.4.1 First generation FHE . 30
3.4.2 Second generation FHE . 31
3.4.3 Third generation FHE . 33
3.4.4 Message packing . 37

3.5 Advanced constructions . 37
3.6 Libraries and practical implementations 38
3.7 FHE constructions from non-lattice assumptions 39

— 25 —

26 Chapter 3 Fully homomorphic encryption

3.1 Introduction

Homomorphic encryption is a kind of encryption that allows one to perform operations on
ciphertexts based solely on publicly available information, and in particular without having
access to any secret key. The reason why it is called “homomorphic” is that, roughly speak-
ing, there exists a correspondence between the space of the messages and the space of the
ciphertexts, in such a way that operations performed on ciphertexts are somehow reflected
in operations on the messages they encrypt. For example, an additively homomorphic en-
cryption scheme allows anyone to take a ciphertext c1 encrypting a message m1, a ciphertext
c2 encrypting a message m2, and produce a ciphertext c+ that decrypts to m1 +m2. Analo-
gously, a multiplicatively homomorphic encryption scheme allows one to produce a ciphertext
c× that decrypts to m1 ·m2. And this is possible without having access to either m1 or m2
or any secret information. We say that an encryption scheme is partially homomorphic
if it supports only some operations, but not others: for example, a scheme could support
homomorphic addition but not multiplication.
In most of the homomorphic encryption schemes known to date, an error term is injected

during the encryption procedure for security purposes. The reason is that these encryption
schemes rely on the hardness of solving “noisy” problems, i.e., problems where the relations
are not exact, but are perturbed by a moderate quantity of error. Combining multiple
ciphertexts through homomorphic operations has the side effect of combining the noises
as well, thus increasing the magnitude of the error in the resulting encryption. When the
error grows beyond a certain threshold, correctness is lost, meaning that the decryption
procedure will not return the expected result. We say that an encryption scheme is somewhat
homomorphic if it can evaluate a certain number of homomorphic operations, before the error
grows too much to maintain the correctness of the evaluation.
When practically instantiating an encryption scheme, one of the most delicate steps is

that of choosing parameters. This usually requires finding a sensible trade-off between
security and efficiency, and remains one of the potentially weak points for theoretically
secure schemes. This is also the case for homomorphic encryption schemes, but in this case
the problem of finding parameters is even more important. In fact, parameters like the size
of the modulus or the standard deviation of noise terms define the threshold below which the
noise must remain in order to guarantee a correct decryption. By doing so, these parameters
control how many homomorphic operations can be carried out. We say that an encryption
scheme is leveled homomorphic if, for any multiplicative depth L fixed a priori, we can find
a set of parameters such that the encryption scheme instantiated with these parameters can
evaluate any circuit with multiplicative depth equal to L. We stress that, in this setting, the
bound on the number of operations has to be known at setup time, i.e., when setting the
parameters. This means that the scheme will tend to be tailored for a specific application,
rather than being a generic tool for evaluating any function.
On the other hand, a fully homomorphic encryption (FHE) scheme is a homomorphic

scheme that allows for the evaluation of arbitrarily complex computations over encrypted
data. The problem of designing such scheme was suggested by Rivest, Adleman and Der-
touzos in 1978 [RAD78] but, despite moderate progress [GM82; Pai99; BGN05; IP07], it
remained the “Holy Grail of cryptography” (cit. [Mic10]) until the breakthrough result of
Gentry in 2009 [Gen09b]. In the case of FHE, there is no need to set an a priori bound on
the number of homomorphic operations, thus making the scheme more flexible. In contrast,
FHE schemes tend to be considerably less efficient than leveled ones, which, for specific ap-

Ch
ap

te
r3

3.2 Homomorphic encryption scheme 27

plications, can be noticeably faster and, as a consequence, more appealing. In a nutshell, the
matter boils down to a trade-off between flexibility on one side and efficiency/optimization
on the other side.

Finally, we note that it is not rare to see in the literature leveled homomorphic encryption
being called somewhat homomorphic encryption. Although the meaning is usually clear from
the context, a somewhat homomorphic encryption scheme denotes a scheme with limited
homomorphic properties, for example one that can only evaluate additions or multiplications.

Over the years, homomorphic encryption has been a very active field for research, and
this has led to a long list of works and improvements, (e.g., [DGHV10; SS10; SV10; BV11a;
BV11b; BGV12; GHS12; GSW13; BV14; AP14]). This comprised both theoretical works
that put forth new ideas and constructions, and implementation works that optimized ex-
isting constructions with the goal of achieving the best possible efficiency.
The FHE constructions that we know of can roughly be divided into three groups, usually

referred to as generations. “first generation” FHE usually denotes the one stemming directly
from Gentry’s seminal work [Gen09b] and based on ideal lattices and the approximate GCD
problem; “second generation” usually indicates constructions proposed in a sequence of works
by Brakerski and Vaikuntanathan [BV11a; BV11b] and based on the LWE problem; “third
generation” usually denotes the GSW FHE scheme by Gentry, Sahai, and Waters [GSW13]
and subsequent works (e.g., [AP14; HAO15]).
In the following, we review all three generations and try to explain the main ideas behind

them and the principal changes and improvements when moving from one generation to
another. Before doing so, we give some definitions and a high-level introduction to a key
technique called bootstrapping, that remains at the very core of all currently known FHE
schemes.

3.2 Homomorphic encryption scheme
A homomorphic (secret-key) encryption scheme E with message spaceM is composed of the
following algorithms:

E .KGen (1κ)→ (sk, evk) : given the security parameter, output a secret key sk and an eval-
uation key evk.

E .Enc (sk, µ)→ c : given the secret key sk and a message µ ∈M, output a ciphertext c.

E .Dec (sk, c)→ µ : given the secret key sk and a ciphertext c, output a message µ ∈M.

E .Eval (evk, f, c1, . . . , c`) : given the evaluation key evk, a function f : M` → M and ci-
phertexts c1, . . . , c`, apply the function f on ciphertexts ci and output a ciphertext
cf .

We now give a fundamental definition for any FHE scheme, i.e., evaluation correctness.

Definition 3.2.1 (Evaluation correctness). We say that the E .Eval algorithm correctly eval-
uates all functions in F if, for any function f ∈ F : M` → M and respective inputs
x1, . . . , x`, it holds that

Pr[E .Dec (sk, E .Eval (evk, f, c1, . . . , c`)) 6= f (x1, . . . , x`)] = negl(κ) ,

where sk← E .KGen (1κ), and ci ← E .Enc (sk, xi) , ∀i ∈ [`].

28 Chapter 3 Fully homomorphic encryption

3.3 Bootstrapping and key-switching
Every FHE construction that we know of is based on “noisy” encryption, i.e., each ciphertext
contains a certain amount of noise (or error) that is vital for the security of the scheme.
Whenever performing homomorphic operations on ciphertexts, the noise term contained in
the output ciphertext is larger than those in the input ciphertexts, as a result of some sort
of interaction that happens during the homomorphic computation. We can then say that
homomorphic operations make the error grow1. We encounter problems when the noise grows
beyond a certain threshold and makes the ciphertext “too noisy” to be correctly decrypted.
This means that decrypting the ciphertext will produce a message which is different from
the expected one; one can think of the noise becoming so large that it changes the value of
the message.
A trivial solution is that, for a specific circuit that has to be homomorphically evaluated,

one can choose the parameters of the encryption scheme so that this threshold is high
enough to carry out all the computations that are needed. However, this bound has to be
known in advance, before setting the parameters and instantiating the encryption scheme.
Since homomorphic operations increase the noise in the ciphertexts, it is impossible to carry
out an unbounded number of homomorphic operations without reaching the threshold and,
therefore, loosing correctness. This remained a key obstacle on the path to FHE, until
Gentry’s original work [Gen09b] proposed a beautiful idea called bootstrapping.
Given a ciphertext c that encrypts a message m and that contains a large (but still within

the threshold) noise e, if we had the correct secret key we could simply decrypt c, recover m,
pick a smaller error e′ and re-encrypt m with this noise. In other words, if we had the secret
key we could refresh a ciphertext by decreasing the noise it contains: this would open the
way to unbounded computations. In fact, it would be sufficient to perform homomorphic
operations and refresh the ciphertexts before loosing correctness. However, as previously
stated, the goal with FHE is to publicly perform operations on encrypted data, i.e., without
having access to private information, namely the secret key.
The key intuition for this bootstrapping procedure is to perform this decrypt-and-encrypt

procedure homomorphically! In formulas, what we want to achieve is this

c′ = Enc (Dec (sk, c)) , (3.1)

i.e., produce a fresh ciphertext c′ that encrypts the same message as c, but with smaller
noise. When moving to homomorphic operations, let us consider the following:

c′ = Enc
(

Dec
(

sk , c
))
, (3.2)

where boxed terms are encrypted. Equation (3.2) can be seen as being the encrypted “equiv-
alent” of Equation (3.1), where all the inputs and the outputs are encrypted. Two things
are immediately noticeable: (1) this procedure requires an encryption of the secret key sk,
and (2) the final result is not a fresh encryption c′, but an encryption of an encryption,
i.e., we added a layer of encryption. The second issue is due to the fact that the procedure
outlined in Equation (3.2) was purposely inaccurate, and only meant to give an intuition.
What happens in reality is that the ciphertext c is hardwired in the decryption circuit, so

1The way, i.e., the amount by which, the noise grows depends on the specific encryption scheme and also
on which operation is homomorphically performed.

Ch
ap

te
r3

3.3 Bootstrapping and key-switching 29

that the encryption of the secret key is the only input. The final output is then a ciphertext,
without any additional layer of encryption, as was the case for Equation (3.1). In formulas,

c′ = Decc
(

sk
)

(3.3)

In conclusion, what we need is for the encryption scheme to be able to homomorphically
evaluate its decryption function.
As far as the encryption of the secret key is concerned, this term is usually referred to as

bootstrapping key (bk), and it appears to be necessary for the bootstrapping to work. The
question is then the following:

Under which key should the secret key be encrypted?

There are two possibilities:

1. The secret key sk is encrypted under itself, i.e., bk = Enc (sk, sk);

2. The secret key sk is encrypted under another key sk′, i.e., bk = Enc
(
sk′, sk

)
.

The first alternative leads to the situation where the refreshed ciphertext c′ is encrypted
under the same key as the original ciphertext c. This is advantageous because the secret key
remains the same and there is no collection of keys to handle (see, e.g., [BGV12, Section 5.5]).
However, following this alternative forces to make the so-called circular security assumption.

Assumption 3.3.1 (Circular security (informal)). It is safe to publish an encryption of the
secret key sk under itself.

For a more formal statement of this assumption, consider the following: let E be a ho-
momorphic encryption scheme, and let AdvIND-CPA

A (x) be the advantage that the adversary
A running on input x has when trying to break the semantic security of E (see Figure 2.1
for the depiction of the IND-CPA game). Then the circular security assumption can be
formulated as follows:

Assumption 3.3.2 (Circular security). For any PPT adversary A,∣∣∣AdvIND-CPA
A (1κ, bk)− AdvIND-CPA

A (1κ)
∣∣∣ = negl(κ) ,

where bk is a bootstrapping key for the scheme E.

It is currently unknown whether we can prove that revealing such an encryption is secure
but, although this assumption is sometimes regarded with suspicion, no concrete attacks
have ever been shown.

Instead, the second alternative (i.e., encrypting the secret key under a different key) leads
to the situation where the refreshed ciphertext c′ is encrypted under a different secret key
and, for this reason, this procedure is also referred to as key switching. It has the advantage
of not requiring any circular security assumption, but it does require handling several keys
and, above all, agreeing on these keys beforehand. Moreover, a fundamental limitation of
this approach is about the number of operations that can be performed, that depends on the
number of keys that were agreed upon in advance. In fact, if there are N keys available, it is
clear that it will be possible to do at most N bootstrapping operations: this means that the

30 Chapter 3 Fully homomorphic encryption

scheme will not be fully homomorphic but will achieve only a leveled homomorphism. Also,
note that switching to any previously-used key, e.g., sk1 → sk2 → · · · → skN → sk1, anyway
requires assuming circular security. The conclusion is that, as of today, the instantiation of a
fully-fledged FHE scheme does require the circular security assumption. Any other approach
will only achieve limited homomorphic properties, that will allow for the evaluation of a
bounded circuit.
Finally, a note on efficiency: bootstrapping is a complex procedure, that involves the

homomorphic computation of a somewhat intricate function. For this reason, it is not very
efficient and remains one of the major bottlenecks in FHE implementations. Over the years,
several works aimed at optimizing bootstrapping, both from the point of view of the running
time and from that of when to perform this operation during the evaluation of a circuit (e.g.,
see [AP13; AP14; DM15; CGGI16b; CGGI17; ZYL+17; BLMZ17]).

We now present a basic version of a well-known encryption scheme based on the LWE
assumption, usually referred to as the Regev encryption scheme [Reg05]. The ideas that this
construction is based on will be re-used several times in this manuscript.

Construction 3.3.3 (Regev’s symmetric encryption scheme). This encryption scheme oper-
ates on bits, i.e., the message space isM = {0, 1}. It is composed of the following algorithms:

KGen (1κ)→ (sk, pp) : given the security parameter in unary, choose an integer n = n (κ),
a modulus q = q (κ), an error distribution χ = χ (κ), and output a secret key sk←$ Znq
and public parameters pp = (n, q, χ). In the following, pp is an implicit argument to
all the algorithms.

Enc (sk,m ∈M)→ c : given the secret key sk and a message m, sample a←$ Znq , e ← χ,
and return c =

(
a, b = 〈sk,a〉+ e+m q

2
) ∈ Zn+1

q .

Dec (sk, c)→ m′ : given the secret key sk and a ciphertext c = (a, b) ∈ Zn+1
q , compute b −

〈sk,a〉 and return m′ = 0 if this quantity is closer to 0 than to q
2 . Otherwise return 1.

Correctness and security of Construction 3.3.3 are straightforward: correctness holds as
long as |e| < q

4 , whereas security comes directly from the LWE assumption. In particular,
the term 〈sk,a〉+ e plays the role of a random mask for the message m.

Remark 3.3.4 (Extending the message space). Construction 3.3.3 can be trivially extended
toM = Zp, for q > p ∈ N. It is sufficient to multiply m by q

p instead of q2 during encryption,
and round appropriately during decryption. Naturally, this implies a different condition on
the error for correctness to hold: in this case, it is necessary that |e| < q

2p .

3.4 Three generations of FHE
After giving these introductory notions on FHE and a basic construction, we finally turn to
analyzing the different generations of fully homomorphic encryptions.

3.4.1 First generation FHE
The first generation of FHE is that which stems directly from Gentry’s seminal work (mainly
his STOC paper [Gen09b] and his Ph.D. thesis [Gen09a]), and it was the first concrete

Ch
ap

te
r3

3.4 Three generations of FHE 31

proposal for an encryption schemes that allows for unbounded computation on encrypted
data. We now give a brief and high-level presentation of this construction, and we refer the
reader to the cited material and to [GH10] for more details. This scheme is a public-key
encryption scheme à la [GGH97] over ideal lattices in a polynomial ring R. In the ring R,
two ideals I and J are chosen: the public key is a “bad basis” of the ideal lattice J , whereas
the private key is a “good basis” of this ideal. Then, a single bit plaintext is embedded
in R/I and added to an error term sampled from I. The sum is then reduced using the
public key (i.e., the public basis of J), thus obtaining the ciphertext. This way, the message
part and the error part are separated, which will be extremely important for homomorphic
operations. If the error term is small enough, then the secret basis of J allows one to separate
the fractional part of the ciphertext, thus recovering the plaintext and the error. On the
other hand, if the error is too large, then this separation cannot be performed and the
message is lost. The homomorphic operations are straightforward: homomorphic addition
amounts to adding the two ciphertexts, whereas homomorphic multiplication amounts to
multiplying the two ciphertexts. In the case of homomorphic addition, it is easy to see that,
in the two ciphertexts, the message part and the error part can be treated separately. In
the case of homomorphic product, the mixed terms are still in the ideal I, which means that
they end up being part of the error of the output ciphertext. Naturally, all these operations
yield correct results only if the final error is still small enough to allow for decryption. In
particular, with this scheme, the noise is roughly doubled in case of an addition and squared
in case of a multiplication.

This work also introduced the concept of squashing the decryption circuit. Roughly speak-
ing, the decryption function of the scheme was not simple enough to allow for a sufficient
reduction of the noise in the bootstrapped ciphertexts. For this reason, this decryption
function is replaced by a simpler one, under an additional security assumption, namely that
the sparse subset sum problem (SSSS) is hard. The goal of subsequent works then became
instantiating FHE from encryption schemes with simpler decryption circuits, in order to
avoid this additional step and the need for additional assumptions.

3.4.2 Second generation FHE

Second generation FHE is mainly due to the works of Brakerski and Vaikuntanathan (BV)
[BV11a; BV11b; BGV12], who constructed FHE based on standard assumptions supported
by worst-case hardness, namely LWE (cf. Assumption 2.4.4). The original BV supports a
message spaceM = {0, 1}, but can be easily extended to Zp for a sufficiently small integer
p. It allows one to perform homomorphic additions and multiplications modulo two: it is
easy to see that this is sufficient for building FHE, as a composition of these two operations
is enough to evaluate any boolean circuit. We now present in details a public-key version of
the BV scheme.

Construction 3.4.1 (BV encryption scheme). This is a public-key encryption scheme that
operates on bits, i.e., the message space is M = {0, 1}. Note that all the computations are
done modulo q. It is composed of the following algorithms:

KGen (1κ)→ (sk, pk, pp) : given the security parameter in unary, choose integers n = n (κ),
m = m (κ), a modulus q = q (κ), and an error distribution χ = χ (κ) over the integers.
Sample a vector s←$ Znq , and a matrix A←$ Zm×nq . Output a secret key sk = s, and

32 Chapter 3 Fully homomorphic encryption

a public key pk = (−A,b = As + 2e), where e← χm. Also, output public parameters
pp = (n,m, q), which are implicitly given as inputs to all the algorithms.

Enc (pk, µ ∈M)→ c : given a public key pk = (−A,b) and a message µ, sample r←$ {0, 1}m
and return c = (c1, c2) = (−Aᵀr,bᵀr + µ).

Dec (sk, c)→ µ′ : given a secret key sk and a ciphertext c = (c1, c2) ∈ Zn+1
q , compute

c2 + 〈sk, c1〉 = sᵀAᵀr + 2eᵀr + µ− sᵀAᵀr = 2eᵀr + µ.

Return the parity of this result, i.e., return (2eᵀr + µ) mod 2.

It is easy to see that the scheme is correct as long as 2eᵀr < q
4 . We now detail how to per-

form homomorphic operations, namely additions and multiplications, with this encryption
scheme.

Homomorphic addition. The homomorphic addition is trivial: let E be an instantiation
of Construction 3.4.1, and let (sk, pk)← E .KGen (1κ). Let c1 = (c11, c12)← Enc (pk, µ1) and
c2 = (c21, c22)← Enc (pk, µ2), for messages µ1, µ2 ∈ {0, 1}. Then c+ = (c11 + c21, c12 + c22)
is an encryption of µ1 + µ2 mod 2, as long as the error remains small enough.
In fact, the decryption of c+ can be written as

c12 + c22 + 〈sk, c11〉+ 〈sk, c21〉 = · · · = 2eᵀ (r1 + r2) + (µ1 + µ2) ,

where ri is the random binary vector used for encrypting µi. Again, the decryption will be
successful if 2eᵀ (r1 + r2) < q

4 .
We can immediately notice that performing an homomorphic addition increases the noise

level in the output ciphertext: for this reason, the number of additions that can be evaluated
is bounded a priori by the choice of the parameters for the scheme.

Homomorphic multiplication. The homomorphic multiplication is considerably trickier.
First of all, we can notice that the decryption procedure can be written as a single inner
product: for a secret vector s and a ciphertext c = (c1, c2), let ŝ := (s‖1) and ĉ := (c1‖c2).
Then decrypting amounts to computing 〈ŝ, ĉ〉 and reducing modulo 2.
Next we recall the tensor (or Kronecker) product between two vectors v,w ∈ Znq :

v⊗w = (vi · wj)i,j ∈ Zn
2
q .

We also recall the mixed-product property of the tensor product: for appropriately sized
vectors a,b, c,d,

〈a ⊗ b, c⊗ d〉 = 〈a, c〉 · 〈b,d〉.

Then, it is immediate to see that the tensor product of two ciphertexts is an encryption of
the product of the messages, under a different key (namely, the tensor product of the secret
key with itself). In formulas:

〈ŝ⊗ ŝ, ĉ1 ⊗ ĉ2〉 = 〈ŝ, ĉ1〉 · 〈ŝ, ĉ2〉 = (2 (•) + µ1) · (2 (•) + µ2) = 2 (•) + (µ1 · µ2) ,

where we use the symbol • to hide terms that we do not care about. In the end, the message
part, i.e., the part which is not multiplied by 2, is (µ1 · µ2) as desired.

Ch
ap

te
r3

3.4 Three generations of FHE 33

Once again, performing an homomorphic multiplication increases the noise level in the
output ciphertext, so the number of multiplications that can be evaluated is bounded a
priori by the choice of the parameters for the scheme.

However, the biggest problem with homomorphic multiplication is that, because of the
tensor product, the size of the ciphertexts grows exponentially in the number of operations.
This clearly impacts efficiency, as well as composability, meaning that the output ciphertexts
are not in the same space as the input ones. In order to solve this issue, Brakerski and
Vaikuntanathan [BV11a] propose a dimension reduction technique, which can be seen as an
example of key switching; in the literature, this procedure is also referred to as relinearization.
In a nutshell, by publishing an encryption of several terms in the original secret key ŝ under a
different secret key t̂, they are able to re-linearize the ciphertext, going back from a quadratic
size (roughly n2/2) to the original n+ 1.

Modulus switching. As we presented in the preceding part, second generation FHE
ciphertexts are vectors in Zq, where q is some modulus. These ciphertexts contain a certain
amount of noise for security purposes, and remain decryptable as long as the magnitude
of this noise is below q/4. We also saw that homomorphic operations increase the noise
level contained in ciphertexts; in particular, homomorphic addition roughly doubles the
noise, while homomorphic multiplication roughly squares it. Let us say that the initial noise
magnitude was B: after evaluating L multiplications, it will grow to B2L . In turn, this
means that a very large modulus q ≈ B2L is required for correct decryption, thus affecting
both efficiency (larger parameters mean the scheme is less efficient) and security (which is
determined by the modulus-to-noise ratio). A substantial improvement came from [BGV12],
where they proposed a modulus switching technique for better management of the noise
growth. It essentially consists in scaling down the ciphertext after every multiplication by a
certain scaling factor K. This means that the modulus goes from q to q/K, while the noise
goes from B to B/K. Indeed, the ratio between modulus and noise remains the same, but
this technique is helpful for choosing better parameters. In fact, let us consider a scaling
factor K = B. After a multiplication, the noise becomes roughly B2, but gets scaled back
down to B, together with the modulus, which becomes q/B. After L multiplications, the
modulus will become q/BL, while the error will always be B. In conclusion, the condition
to have decryption correctness is that the noise must be smaller than the modulus divided
by 4. In this case, this means that it is sufficient to take q ≈ BL+1, which is considerably
better than having to take q ≈ B2L as before.

However, even if using the techniques described above helps with improving the capabilities
of the scheme, homomorphic operations still increase the noise level. For this reason, the
number of operations that can be evaluated remains bounded: constructing an FHE scheme
(i.e., having the possibility of evaluating an unbounded number of operations) still requires
using bootstrapping (cf. Section 3.3).

3.4.3 Third generation FHE

By “third generation FHE” we refer to a line of work initiated by Gentry, Sahai, and Waters
(GSW) [GSW13], and prosecuted by several other works (e.g., [AP14; HAO15; KGV14]).
These schemes are based on the so-called approximate eigenvector problem, and their main
advantage is that they do not require any key switching for homomorphic multiplication.
We now show a construction inspired by [GSW13], following the presentation of [AP14].

34 Chapter 3 Fully homomorphic encryption

Gadget matrix and (randomized) binary decomposition. The first ingredient for
this construction is the so-called gadget matrix, already introduced in [MP12]. Let q be a
modulus, such that ` = dlog qe; then the matrix is defined as G = gᵀ ⊗ In ∈ Zn×n`q , where
g =

(
1, 2, 4, . . . , 2`−1

)
is the vector of the powers of 2. The matrix G is thus a block-diagonal

matrix:

G =

1 2 · · · 2`−1 0 0 · · · 0 · · · 0 0 0 0
0 0 · · · 0 1 2 · · · 2`−1 · · · 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0 · · · 1 2 · · · 2`−1

 .

The cryptosystem. We now describe the GSW encryption scheme according to the pre-
sentation in [AP14]. In particular, we will focus on a secret-key version of the scheme, with
message spaceM = Zq. The scheme is composed of the following algorithms:

KGen (1κ)→ (sk, pp) : choose an integer n = n (κ), a modulus q = q (κ), and let ` = dlog qe,
and m = n`. Sample a secret vector s←$ Zn−1

q and output the secret key sk = ŝ :=
(s‖1), and public parameters pp = (n, q). As usual, pp will be an implicit argument to
all the algorithms.

Enc (sk, µ ∈M)→ C : given a secret key sk and a message µ, sample a random matrix
A←$ Z(n−1)×m

q , an error vector e← χm for some error distribution χ, and output

C =
(
−A

sᵀA + eᵀ

)
+ µG ∈ Zn×mq .

Dec (sk,C)→ µ′ : given a secret key sk and a ciphertext C, compute

skᵀC = ŝᵀ
((

−A
sᵀA + eᵀ

)
+ µG

)
= eᵀ + µ ŝᵀG,

and return µ′, the closest integer to ŝᵀG.

Condition for correct decryption. In order for the decryption procedure to return the
correct value, it is necessary that the error is small enough, so that it does not perturb the
final result. In particular, it is easy to imagine the space Zq divided into several segments,
with each one corresponding to a possible plaintext value. The absolute value of the error
will then have to be smaller than half the width of each segment. In conclusion, it must hold
that

‖e‖∞ <
q

2 |M| .

Notice that forM = {0, 1}, we recover the well-known condition ‖e‖∞ < q
4 .

Extension to public-key setting. It is easy to turn the secret-key encryption scheme
presented above into a public-key one. The main idea is that the LWE matrix that plays the
role of the mask will be the public key; for encrypting, one will first re-randomize this public
key by multiplying it by a random matrix with small entries, and then proceed as before.
The decryption will work exactly like in the secret-key case. We now give the details of the
public-key version of the GSW cryptosystem.

Ch
ap

te
r3

3.4 Three generations of FHE 35

KGen (1κ)→ (sk, pk, pp) : choose an integer n = n (κ), a modulus q = q (κ), and let ` =
dlog qe, and m = n`. Sample a secret vector s←$ Zn−1

q , a matrix A←$ Z(n−1)×m
q ,

an error vector e ← χm for some error distribution χ, and output the secret key

sk = ŝ := (s‖1), the public key pk =
(
−A

sᵀA + eᵀ

)
, and public parameters pp = (n, q).

As usual, pp will be an implicit argument to all the algorithms.

Enc (pk, µ ∈M)→ C : given a public key pk and a message µ, sample a random matrix
R←$ {0, 1}m×m, and output

C =
(
−A

sᵀA + eᵀ

)
R + µG ∈ Zn×mq .

Dec (sk,C)→ µ′ : given a secret key sk and a ciphertext C, compute

skᵀC = ŝᵀ
((

−A
sᵀA + eᵀ

)
R + µG

)
= eᵀR + µ ŝᵀG,

and return µ′, the closest integer to ŝᵀG.

We now turn to homomorphic operations. In particular, we will describe how to perform
addition and multiplication with encrypted inputs, which allow for the evaluation of any
function.
Homomorphic addition. The homomorphic addition is trivial: given a ciphertext C1
that encrypts a message µ1, and a ciphertext C2 that encrypts a message µ2, the ciphertext
C+ := C1 +C2 is an encryption of µ1 +µ2 (provided that the errors in the input ciphertexts
are not too big). In fact,

ŝᵀC+ = ŝᵀ (C1 + C2) = (eᵀ1 + eᵀ2) + (µ1 + µ2) ŝᵀG,

and one can recover µ1 + µ2 by rounding as before.

Noise growth formula for homomorphic addition. Although it is immediate, we report
here for completeness the noise growth formula for the homomorphic addition of two GSW
ciphertexts: given a common secret key sk, and two GSW ciphertexts C1,C2 ∈ Zn×mq , such
that Ci is an encryption under sk of a message µi with error vector ei, the error vector
contained in C+ := C1 + C2 is

eout = e1 + e2.

This means that, for the GSW cryptosystem, the error in homomorphic additions is additive.
The G−1 (·) algorithm. Before describing the homomorphic multiplication, we introduce
a key part of this construction, which is the G−1 (·) algorithm. Let ` := dlog qe, then
G−1 (·) : Znq → {0, 1}n` is a deterministic algorithm defined as follows:

G−1 (x) = y ⇐⇒ Gy = x, ∀x ∈ Znq .

In a nutshell, G−1 (x) is simply the binary decomposition of x. In the literature, there exists
also a randomized version of this algorithm, which will be extremely important in Chapter 5

36 Chapter 3 Fully homomorphic encryption

and will be introduced there. A key feature of the G−1 (·) algorithm is that its output is a
vector with small entries, whether they be binary or slightly larger (as will be the case in
Chapter 5).
Note that, given a matrix M ∈ Zr×cq , when we write N = G−1 (M) ∈ {0, 1}r`×c, we

mean that the G−1 (·) algorithm is applied independently to all the columns of M, and the
resulting vectors are the columns of N.
Homomorphic multiplication. The homomorphic multiplication is, once again, the tricky

part. Given a ciphertext C1 =
(
−A1

sᵀA1 + eᵀ1

)
+ µ1G that encrypts a message µ1, and a

ciphertext C2 =
(
−A2

sᵀA2 + eᵀ2

)
+ µ2G that encrypts a message µ2, then

C× = C1 ·G−1 (C2) (3.4)

is an encryption of µ1 · µ2. Verifying this fact is straightforward:

C1 ·G−1 (C2) =
(

−A1G−1 (C2)
sᵀA1G−1 (C2) + eᵀ1G−1 (C2)

)
+ µ1

(
−A2

sᵀA2 + eᵀ2

)
+ µ1µ2G

This can be rewritten as

C1 ·G−1 (C2) =
(

−A∗
sᵀA∗ + e∗ᵀ

)
+ µ1µ2G,

where A∗ = A1G−1 (C2) +µ1A2, and e∗ᵀ = eᵀ1G−1 (C2) +µ1eᵀ2. It is trivial to see that this
decrypts to µ1µ2, as long as the new error is small enough.

Noise growth formula for homomorphic multiplication. We report here the analytical
noise growth formula for a GSWmultiplication: given a common secret key sk, and two GSW
ciphertexts C1,C2 ∈ Zn×mq , such that Ci is an encryption under sk of a message µi with
error vector ei, the error vector contained in C1 ·G−1 (C2) is

eout = e1G−1 (C2) + µ1e2. (3.5)

Remark 3.4.2. An important feature of this encryption scheme is the fact that its noise
growth for homomorphic multiplication is asymmetric, i.e., it depends on the order of the
operands. In fact, the second noise vector is multiplied as it is by the first message, while
the first noise vector is multiplied by the second ciphertext, but after applying the G−1 (·)
operation, which ensures the output is small. With this in mind, one can notice that also
C2 · G−1 (C1) leads to a result which is similar to Equation (3.4), but with a different
output noise. The choice of the order of the operands then depends on which of the two
ciphertexts has the highest noise, i.e., which one is “fresher”. Taking the noise growth formula
of Equation (3.5) into account, it is usually convenient to apply the G−1 (·) operation to the
one that contains more noise.

Remark 3.4.3. Looking once again at the noise growth formula in Equation (3.5), it is easy
to see why this encryption scheme is not very well suited for large message spaces. In fact,
the term µ1e2 can be very large if µ1 is in a large domain. Therefore, it is not uncommon
to see the GSW encryption scheme used only for messages in {0, 1} or {−1, 0, 1}.

Ch
ap

te
r3

3.5 Advanced constructions 37

3.4.4 Message packing

One of the most evident downsides of the GSW encryption scheme is its expansion factor
when encrypting, meaning the ratio between the size of a ciphertext and the size of the
plaintext. For example, with reasonable parameters, this problem can be as bad as requiring
almost 1 Gbit to encrypt a single bit2! A work by Hiromasa et al. [HAO15] exploits the
redundancy in the ciphertexts, and manages to amortize the size of an encryption by packing
several messages in the same ciphertext. In particular, r plaintexts can be encrypted in a
matrix of size (r + n)×(r + n) log q, which takes (r + n)2 log2 q bits of storage. This is a clear
improvement on naively encrypting r plaintexts separately, which would take r ·n2 log2 q bits
of storage.

3.5 Advanced constructions

Although FHE has gained momentum only recently (the first construction having been
proposed in 2009), a lot of research effort has been put on this topic, because of its novelty,
the number of open questions, the vast number of results that can be achieved through
FHE, and the important consequences that practical instantiations would have on people’s
lives. Apart from “basic” FHE schemes, where the operations are encryption, decryption,
and circuit evaluation, some more advanced constructions have been proposed. Analyzing
each of them in detail would require far too much space, and it is beyond the scope of this
chapter. However, we quickly and informally introduce some interesting topics that FHE
has been applied to, and we refer the interested reader to the referenced material for more
details.

Threshold FHE A threshold FHE scheme withN parties is essentially an FHE scheme where
key generation and decryption are no longer algorithms but N -party protocols. The
basic idea is that, at the beginning, the parties engage in a multi-party computation
(MPC) protocol that produces a common public key pk, a common evaluation key
evk, and gives each party Pi a share ski of the secret key sk. Then, each party can
encrypt its input xi under the common pk, and all the parties can independently and
homomorphically evaluate a function f on these ciphertext3. Finally the parties engage
in another MPC protocol where each party participates with his share of the secret
key ski and in the end receives the result µ = f (x1, . . . , xN). For more details on the
topic, we refer the reader to e.g., [AJL+12; JRS17].

Multi-key FHE This primitive was introduced in [LTV12], with improved constructions later
given e.g., in [CM15; MW16]. The basic idea is essentially to enable homomorphic
computations over data encrypted under different keys. More in details, each party
individually encrypts its input under its key, then broadcasts the ciphertext. Next,
all the parties can homomorphically compute a multi-key encryption of the output,
that, however, cannot be decrypted under any of the secret keys. Finally, the parties
broadcast a partial decryption of the output obtained with their secret keys; these
partial decryptions can be combined together in order to recover the output itself.

2Let n = 450 and q = 264. Then a ciphertext is a matrix with nm = n · n log q elements in Zq, which take
n · n log q · log q bits of space. With the given numbers, this amounts to 0.772 Gbit.

3This computation can even be delegated to another party, e.g., the Cloud.

38 Chapter 3 Fully homomorphic encryption

Fully homomorphic signatures The basic idea of this primitive, proposed by Gorbunov et
al. in [GVW15] is as follows. A signer signs some initial data x under its public key,
and produces a signature σx. Then, an untrusted party that only knows the public
key, x, and σx (but not the secret signing key), can apply an arbitrary function f to
x, and compute a corresponding signature σf(x) for the value f (x). Finally, a verifier
that is given the public key, f , f (x), and σf(x) (but not x), can verify that f (x) is
indeed the output of f applied to the input x that was signed at the beginning.

3.6 Libraries and practical implementations

Beside theoretical research, the field of homomorphic encryption has been strongly active
with respect to implementation efforts. In fact, given the strongly applied nature of this sort
of constructions, it is appropriate that the development of new mathematical techniques
and theoretical breakthrough proceeds hand in hand with top quality implementation. On
one hand, this contributes to assessing where we actually stand and how far the goal of
practically usable homomorphic encryption is. On the other hand, this also helps pinpointing
the limitations and the main difficulties still remaining, therefore suggesting to researchers
and theoreticians where to concentrate their efforts.
Although several implementations have been released over the years by numerous authors,

via means like GitHub, we will consider only a few of them, in order to give a broad idea on
the current state of the art on this matter. For more information about efforts to standardize
and implement FHE, we refer the reader to [org].
In particular, in this section, we will focus on HElib [HS14a; HS14b; HS15], SEAL

[CHH+16], and TFHE [CGGI16b; CGGI17; CGGI16a].

HElib. This library, authored mainly by Shai Halevi and Victor Shoup, implements the
BGV scheme [BGV12] (which can be put in the category of “2nd generation FHE”) and it is
one of the most widely used libraries in applications. It allows for packing of ciphertexts and
SIMD computations, amortizing the cost for certain tasks. It is able to perform additions
and multiplications in an efficient way, but the bootstrapping operation is significantly slow.
In practice, this library is often used as a somewhat homomorphic encryption scheme. One
of the drawbacks of this library regards the parameter selection, which remains a compli-
cated and error-prone operation. In fact, in [HS15, Appendix A], the authors note that
“The BGV implementation in HElib relies on a myriad of parameters, some of which are
heuristically chosen, and so it takes some experimentation to set them all so as to get a
working implementation with good performance”.

SEAL. This library is written in C++11 and implements the FV encryption scheme [FV12].
It should be noted that this scheme is already implemented in [BEHZ16; Lep16], both of
which use the ideal lattice library NFLlib [MBG+16]. Unlike in HElib, with the SEAL
library it is considerably easier to set good parameters for the performance and the security
of the implemented scheme.

TFHE. This library implements a generalized version of the GSW encryption scheme
[GSW13; AP14], and thus belongs to the category of “3rd generation FHE”. The library
features a very efficient operation bootstrapping, with timings that are in the order of frac-
tions of a second on average machines. As a downside, this bootstrapping operation has
to be applied after computing every gate of the circuit. When used for realizing an FHE

Ch
ap

te
r3

3.7 FHE constructions from non-lattice assumptions 39

scheme, this library is more efficient than HElib. However, for simple tasks requiring small
computational depth, HElib used as a somewhat homomorphic encryption scheme will gen-
erally perform better. Moreover, TFHE is currently not capable of amortizing large SIMD
computations as well as HElib does. However, it should be noted that the code of TFHE
is still largely under development, and more features (e.g., multithreading) are likely to be
added soon. TFHE will be at the core of our construction in Chapter 4. Therefore, it will
be analyzed more in details there.

3.7 FHE constructions from non-lattice assumptions
For completeness, we also mention that there are other constructions of fully homomorphic
encryption schemes which are not based on lattice assumptions. This line of work is usu-
ally referred to as FHE over the integers. Notably, this is the case for the DGHV scheme
[DGHV10; CMNT11; CCK+13; NK15], which relies on the assumed hardness of the approx-
imate GCD problem (cf. Definition 2.4.6). The DGHV scheme is central in the constructions
presented in Chapter 6, so we refer the reader to this chapter for its presentation and the
details on this instantiation of FHE.

Ch
ap

te
r4

Chapter 4
Homomorphic evaluation of deep
neural networks

In this chapter we address the challenge of homomorphically and efficiently evaluating a
(deep) neural network. First, we give an introduction to the problem and some potential
applications; then, we provide some necessary background notions on neural networks and
we review the current state of the art for privacy-preserving evaluation of these models. We
then move on to presenting a fast framework for FHE and bootstrapping by Chillotti et
al. [CGGI16b; CGGI17], which will be central in our constructions. Finally, we present
our contributions, explain in details our framework FHE-DiNN, and give some encouraging
experimental results obtained on a typical dataset.

Contents
4.1 Introduction to the problem . 42
4.2 Refresher on neural networks . 43

4.2.1 Basic definitions . 43
4.2.2 Neural networks’ layers . 44
4.2.3 Activation functions . 45
4.2.4 Perceptrons, multilayer perceptrons, and deep NNs 46
4.2.5 Training and evaluating neural networks 47
4.2.6 MNIST: a typical dataset for NNs 50

4.3 State of the art for privacy-preserving predictions 51
4.4 TFHE: a framework for efficient bootstrapping 52

4.4.1 LWE over the torus and related constructions 52
4.4.2 External product and bootstrapping procedure 54

4.5 Our contributions . 54
4.5.1 Definition of a discretized neural network 55
4.5.2 Simple conversion from a traditional NN to a DiNN 56
4.5.3 Homomorphic evaluation of a DiNN 56
4.5.4 Refinements of TFHE . 59
4.5.5 Experimental results . 63
4.5.6 Comparison with Cryptonets [DGL+16] 69

— 41 —

42 Chapter 4 Homomorphic evaluation of deep neural networks

4.1 Introduction to the problem

Machine Learning As a Service (MLAS) refers to a cluster of applications where a remote
entity provides a service that can be accessed through the Internet and that takes advantage
of some machine learning algorithm to provide a result to the users’ queries. This type of
applications is becoming more and more popular because of its versatility and the impressive
performance (e.g., better-than-human accuracies) that can be achieved.

A typical use-case involves a user (client) and a remote service (server), with the client
uploading some data to the server, which runs some predictive model on it and returns
some answer to the client. For a more concrete example, let us consider the following
situation: Alice is a user who would like to assess her medical condition through an online
diagnosis service1. In order to do so, she connects to a remote server, that we will call
RemoteDoc, uploads her medical data and fills in some form where she answers several
questions about her lifestyle and her habits. Then, RemoteDoc processes this information
and, based on an archive of past diagnosis that was used for training some predictive model,
returns an evaluation on Alice’s situation. Optionally, RemoteDoc charges Alice with a fee
for using the service. It is easy to see that this model of interaction might have tremendous
consequences on Alice’s privacy: the data she submits is likely to contain extremely sensitive
information, that she does not want to disclose. Note that here we are not concerned about
an external intruder, since we can safely assume that the channel through which Alice and
RemoteDoc communicate is secure (e.g., via HTTPS); in this case, the problem is represented
by disclosing private information to RemoteDoc itself. In this situation, there seems to be
an unsolvable conflict: on one hand, Alice wants to keep her medical information private,
while on the other hand she wants to obtain a reliable diagnosis, that necessarily has to be
based on true data and honest answers.
Of course, a trivial solution would be that of evaluating RemoteDoc’s predictive model

locally on Alice’s machine. We assume this is either infeasible (because of high computa-
tional or storage requirements) or forbidden (because the model is considered as sensitive
intellectual property, or because the remote server wants to charge the user with a fee per
every request) and we focus on the situation where the evaluation has to take place remotely,
i.e., on RemoteDoc’s side.

Homomorphic encryption offers an elegant way to solve this apparent paradox, by allowing
Alice to submit encrypted data which is then blindly processed by RemoteDoc; the encrypted
result (i.e., the encrypted diagnosis) is then sent back to Alice, who proceeds to decrypting
and recovering the result. This way, the evaluation takes place on the server side and still
RemoteDoc learns nothing on Alice’s medical data, since all it sees is encryptions produced
with a secret key that never leaves Alice’s controlled domain. Another bonus of using
homomorphic encryption is that it achieves non-interactivity: Alice submits an input and
later receives an output, without the need for any additional communications between her
and the remote party.

The “predictive models” we are referring to are often neural networks, which are trained
on pairs consisting of some input and the expected output, and then evaluated on some fresh
input (i.e., an input that has possibly never been seen before) to obtain a predicted output.

1We are not suggesting this is a good practice or an advisable/reliable way to obtain a medical evaluation.
This is just an example to show some privacy-related implications of using web services.

Ch
ap

te
r4

4.2 Refresher on neural networks 43

We are then interested in designing an efficient framework for evaluating arbitrarily com-
plex neural networks over encrypted data.

4.2 Refresher on neural networks

Neural networks are the second best way of doing just about anything.

– John Denker

In this section we give some necessary background notions on neural networks.

4.2.1 Basic definitions

Giving a proper, formal definition of a neural network is not an easy task and the literature
contains several attempts at doing so. For example, we can consider the following:

Definition 4.2.1 (Artificial neural network). An artificial neural network (ANN, or simply
NN) is a computing system that attempts to identify underlying relationships in a set of data,
by mimicking the way a biological brain works. It is composed of a population of (artificial)
neurons arranged in layers that process information (inputs, which can be seen as stimuli)
coming from the external world.

We now proceed to giving a necessary mathematical background on NNs, and how they
are trained and evaluated.

Computation performed by a neuron. Each neuron of which a NN is composed accepts
nI real-valued inputs x = (x1, . . . , xnI) ∈ RnI and performs the following two computations:

1. It computes a value y = ∑nI
i=1wixi + β ∈ R, which is a weighted sum of the inputs

with real values called weights (wi is the weight associated to the input xi), and β ∈ R,
which is referred to as the bias of the neuron;

2. It applies a non-linear function f , called the activation function, and returns f (y).

A neuron’s output can conveniently be written as f (〈w,x〉) = ∑nI
i=0wixi if one ex-

tends the inputs and the neuron’s weight vectors by setting w = (β,w1, . . . , wnI) and
x = (1, x1, . . . , xnI). In the following, we will use W` = (w`,1, . . . ,w`,n2) to denote the
n1× n2 matrix composed of all the weights associated to the connections that go from layer
` − 1 (containing n1 neurons) to layer ` (containing n2 neurons). The vectors w`,i’s will
contain the weights associated to the i-th neuron of the `-th layer. When computing the
output given by the network when presented with an input pattern x, we will usually write
N (x).

Neural networks could in principle be recurrent systems (see, e.g., [Hop88; Jor89; Elm90]),
as opposed to the purely feed-forward ones, where each neuron is evaluated only once. In
this work, we consider only feed-forward networks, as they are more widely used, easier to
understand, and simpler to evaluate homomorphically.

44 Chapter 4 Homomorphic evaluation of deep neural networks

Figure 4.1: Example of convolution between an input I and a kernel K.

4.2.2 Neural networks’ layers

The neurons of a NN are organized in successive layers, which are categorized according to
their activation function. Neurons of one layer are connected to the neurons of the next
layer by paths that are associated to weights. An input layer composed of the network’s
inputs, as well as an output layer made of the network’s output values, are also added to
the network. Internal layers are called hidden, since they are not directly accessible from
the external world. Neural networks are usually composed of layers of various types. The
“fusion” of diverse building blocks helps unlocking the full potential of neural networks, while
keeping their size reasonable. We now provide a short description of the most widely used
layer types:

Fully connected layer: in this kind of layer, every neuron takes all incoming signals as in-
puts.

Convolutional layer: this layer’s learnable parameters consist of (a set of) small filters, called
kernels, which are nothing more than a small matrix of values. The layer’s output is
then computed by “sliding” these matrices along the layer’s input and computing the
dot product between the input and the kernel. In Figure 4.1 we show an example of this
computation. Note that this kind of layer can reduce the size of the data, depending
on how the borders are handled (e.g., one could cut them, or pad them with zeros, or
adopt other strategies).

Max pooling layer: this layer has no learnable parameters. Given a window of size d1 × d2,
one simply slides the window along the layer’s input and takes as output the maximum
among the d1 · d2 input values. Note that this kind of layers reduces the size of the
data, since it maps d1 · d2 values to just one.

Mean pooling layer: this layer is similar to the max pooling one, except that it takes the
average of the values instead of their max. Just like the previous kind of layer, it
reduces the size of the data.

Ch
ap

te
r4

4.2 Refresher on neural networks 45

4.2.3 Activation functions

A key ingredient for the construction of an effective neural network is the choice of a neuron’s
activation function. This essentially determines how the neuron reacts to the inputs and what
kind of information it forwards to the following layers. Roughly speaking, it serves as a mean
to highlight some characteristics of the data over some others: for example, we might be
interested in just separating positive values from negative ones (sign function), or we might
want to give importance to whether the value’s magnitude exceeds a certain threshold or
not (function with a saturation point), and so forth. Several activation functions have been
studied and used in the literature: we now list some of them and try to briefly outline some
of their features.

Step: for any input x ∈ R, this function is 0 if x < 0 and +1 if x ≥ 0. It only discrimi-
nates between positive and negative values, completely disregarding their magnitudes.
It presents an inherent problem, which is the fact that its derivative is zero almost
everywhere. The reason why this represents a problem will be clear in Section 4.2.5,
when we will outline a classical method for training a neural network.

Sign: for any input x ∈ R, this function is −1 if x < 0 and +1 if x ≥ 0. It is very similar to
the step function, with the exception that negative values here do give a contribution,
which is the opposite of that given by positive values. Like the previous one, its
derivative is zero almost everywhere.

Sigmoid (or logistic): for any input x ∈ R, this function is defined as

f(x) = 1
1 + e−x

= ex

ex + 1 .

It is continuous, bounded in the range (0, 1), differentiable, and has a non-negative
derivative at each point. This function can be seen as a continuous approximation of
the step function.

Hyperbolic tangent: for any input x ∈ R, this function is defined as

f(x) = tanh(x) = ex − e−x
ex + e−x

= e2x − 1
e2x + 1 .

It is continuous, bounded in the range (−1, 1), differentiable, and has a non-negative
derivative at each point. This function can be seen as a continuous approximation of
the sign function.

Arctangent: for any input x ∈ R, this function is defined as f(x) = arctan(x). It is contin-
uous, bounded in the range

(−π
2 ,

π
2
)
, differentiable, and has a non-negative derivative

at each point. This function can be seen as a scaled continuous approximation of the
step function.

Square: for any input x ∈ R, this function is defined as f(x) = x2. Although less common
than other functions, it has been employed, e.g., in [DGL+16]. It is continuous, non-
negative, differentiable, and even (i.e., f(−x) = f(x)∀x ∈ R). This function ignores
the sign of the input and only considers its magnitude.

46 Chapter 4 Homomorphic evaluation of deep neural networks

(a) sigmoid (x) (b) arctan (x) (c) tanh (x) (d) x2 (e) ReLU (x)

Figure 4.2: Some possible activation functions for a neuron.

Rectifier: for any input x ∈ R, this function is defined as f(x) = ReLU(x) = max (0, x). It
has recently become one of the most widely used activation functions in the machine
learning community (e.g., [NH10; MHN13; ZRM+13]). It has the characteristic of
propagating positive values untouched, while completely disregarding negative ones.
An important thing to remember when using this function (and especially when imple-
menting neural networks in software) is that it is unbounded, thus applying it multiple
times without any form of rescaling or data normalization can quickly increase the
values and produce overflows.

Softmax: this is a special kind of activation function since, unlike the previous ones, it is not
defined on a single value but on a vector of values. It can be seen as a generalization
of the logistic function, and it maps a vector x ∈ Rd to a vector softmax (x) ∈ (0, 1)d,
such that its values add up to 1. Formally, given a vector x = (x1, . . . , xd) ∈ Rd, this
function is defined as

softmax (x)i = exi∑d
j=1 e

xj
.

softmax is often used in multiclass classification problems, i.e., when the goal is to
classify input patterns into one of NC classes (with NC ≥ 3), and has the effect of con-
verting “scores” into probabilities, while having no effect on the ordering of the values.
Also, given the presence of the exponential function, it has the effect of “spreading”
the outputs, by assigning high probabilities to the heaviest values and separating them
from the others. Given these features, it is mostly used for the output layer of a neural
network, when the goal is to output the probability that the pattern belongs to class
Ci, for i ∈ [NC].

Some commonly used activation functions are plotted in Figure 4.2.

4.2.4 Perceptrons, multilayer perceptrons, and deep NNs

Historically, one of the first results towards building neural networks was the perceptron,
introduced by Frank Rosenblatt [Ros57]. A perceptron is essentially a neural network com-
posed solely of an input layer and an output layer, i.e., without any hidden layer. Rosenblatt
proved that a perceptron converges to the correct solution in a finite number of steps, pro-
vided that a correct solution exists. However, the perceptron model is greatly limited by
the fact that it can learn only linearly separable functions so, for example, it can learn the

Ch
ap

te
r4

4.2 Refresher on neural networks 47

AND and the OR function, but not the XOR. Also, this limitation makes it useless for
classification problems with three or more classes.

Decisive progress in the field of machine learning was made with the introduction of
the multilayer perceptron, i.e., a neural network with at least one hidden layer. A famous
result, known as the universal approximation theorem (see, e.g., [Cyb89; Hor91]), states the
following:

Theorem 4.2.2 (Universal approximation theorem (informal)). A neural network with a
single hidden layer that contains a finite amount of neurons can approximate any continuous
function.

It is then clear that neural networks have a huge potential, but this theorem does not
specify precisely how many neurons there must be in the single hidden layer of the network.
It turns out that, for complex function, this quantity can grow exponentially and quickly
make the problem of training and evaluating the model infeasible.
Deep neural networks. A way to solve this issue is represented by deep neural networks
(deep NNs), i.e., neural networks that comprise several hidden layers stacked one on top of
the other (for a visual example, see Figure 4.3). These layers of non-linearities allow the
network to extract increasingly complex features of the input patterns and can lead to a
better ability to generalize (i.e., to learn the underlying structures and relationships in the
dataset), especially in the case of more complex tasks.
The term “deep learning” was introduced to the machine learning community in 1986, and

to artificial neural networks in 2000, but it was only starting from 2006 that, mainly thanks
to the works of Hinton and Salakhutdinov (e.g., [HS06]), this area became a prominent field
of research. More specifically, Salakhutdinov (advised by Hinton) has the merit of shifting
the computationally intense process of training a deep network from a CPU to a GPU,
thus taking advantage of the large number of cores available on these boards and, in turn,
fostering the development of specifically designed hardware for machine learning. From that
moment, deep learning has been applied with impressive results to a vast number of problems:
from speech recognition (e.g., [HDY+12; Rav17; ZPB+17]), to image classification (see e.g.,
[LBBH98; Kag]), from adding colors to black & white images (e.g., [Avn16]), to even creating
new astonishing works of art (e.g., [MOT15a; MOT15b]). The potential of deep learning
is considered enormous, and new applications surface regularly, with active research still
happening in the field.

4.2.5 Training and evaluating neural networks

In this section we give an overview of the algorithms for training and evaluating a neural
network, i.e., we explain how to construct a model from a training set and later evaluate its
performance on a test set.

The way a neural networks extracts (or approximates) the underlying relationships in a
set of data is by learning. This means that the network is presented with several examples,
i.e., several input patterns and the corresponding expected outputs, and learns a mapping
from the input space to the output space. It is worth noting that this goes well beyond
the simple storage and successive retrieval of information. In other words, the networks
does not (or, at least, should not) learn the example “by heart”, but it should be able to
generalize, i.e., extract general relationships that pertain to the data and not to the specific

48 Chapter 4 Homomorphic evaluation of deep neural networks

...... ...

d

.

Figure 4.3: A generic feed-forward neural network of arbitrary depth d: one input layer,
followed by d hidden layers of variable size, and one output layer.

examples. In fact, once trained, the network should be able to give correct answers even
when presented with input patterns that were not used during the training phase. It is simple
to see an analogy with the way a human brains evolves during the course of a person’s life:
through examples and by experiencing different situations, it learns how to behave and how
to respond to new stimuli.

For a neural network, we can distinguish between supervised and unsupervised learning:
in the first case, the network is given a set of pairs composed of an input and an expected
output, whereas in the second case, the network is only given input patterns and has to
organize itself in order to infer a function that describes hidden structures in the data. In
this work, we will focus exclusively on supervised learning.

Error (or cost) function. Given a neural network, we can define a function L (ŷ, y) that
measures some notion of error between the expected output ŷ and the actual network’s
output y. This function is sometimes referred to as the cost function or the loss function.
Choosing an appropriate loss function is extremely important, as this defines the quantity
that the training phase will try to minimize. We now present some typical loss functions
that can be used when training a neural network; in the following, N indicates the number
of training samples, i.e., the number of pairs (input, expectedOutput) in the training set.

L1: this is one of the simplest loss functions, and it simply measures how far the predicted
value is from the correct one:

L1 (ŷ, y) =
N∑
i=1
|ŷi − yi|

L2: similar to the previous one, but this time the differences are squared:

L2 (ŷ, y) =
N∑
i=1

(ŷi − yi)2

Ch
ap

te
r4

4.2 Refresher on neural networks 49

Mean Squared Error (MSE): similar to the previous one, but this time the value is averaged
on the training set:

MSE (ŷ, y) = 1
N

N∑
i=1

(ŷi − yi)2

0/1-loss: this function gives a simple hit-or-miss measurement of the loss:

L (ŷi, yi) =
{

0, yi = ŷi

1, yi 6= ŷi
∀i ∈ [N]

Cross-entropy (or log loss): this is one of the most well known and widely used cost func-
tions in the machine learning field. It measures the performance of a classification
model whose output is a probability value between 0 and 1.

L (ŷ, y) = −
N∑
i=1

ŷi log (yi)

Once an appropriate loss function has been chosen (perhaps through trial-and-error), it is
possible to proceed with the real training. Here is an high-level overview of the procedure:

1. Present an input pattern x to the network;

2. Calculate the network output y = N (x) by feeding x forward and performing all the
computations until the output layer;

3. Compute the loss L (ŷ, y);

4. Modify the weights of the network in order to reduce the error;

5. Repeat for all the samples in the training set.

Clearly, Item 4 is the key one, and the obvious question is how to modify the network
parameters in order to reduce the loss. Roughly speaking, the answer is that the weights have
to be moved in the direction opposed to that of the gradient of the loss function, calculated
with respect to the weights. In fact, the final goal is to find a set of weights that minimize
the loss. In Algorithm 1 we show a basic and unoptimized version of the gradient descent
algorithm. It is easy to see that this procedure is rather inefficient: in fact, it needs to
process all the N training samples before updating the weights; in other words, the weights
are updated only M times, where M is the number of iterations of the algorithm, usually
called epochs.
An alternative approach is that of updating the weights after each training sample. This

technique goes by the name of stochastic gradient descent (SGD) and it is a method for
approximating the “true” gradient by the gradient at a single training sample. This way, the
weights are updated in a “less precise”, heuristic way, but more frequently. This method is
also used for the so-called online learning, i.e., when new training samples keep coming in,
and they are used to continuously “update” the network.
A trade-off between these extremes is the batched gradient descent: in this case, the

training set is divided into a number of batches (the size of which becomes a parameter
for the training), and the weights are updated after processing each batch. This method

50 Chapter 4 Homomorphic evaluation of deep neural networks

offers a good compromise between the accuracy of the gradient computation and the speed
of convergence of the procedure, making it widely used for training neural networks.

Several optimizations are possible: learning rate decay, weight regularization, data normal-
ization, SGD with momentum, These enhancements are extremely useful for training
effective networks and can often improve the results dramatically. For an exhaustive review
on this topic, we refer the interested reader to one of the many resources available in the
machine learning literature.

Algorithm 1 Gradient descent
Input: a neural network N with d hidden layers, a loss function L, training samples
(xi, ŷi) for i ∈ [N], a prescribed number of iterations M , a learning rate ε ∈ R
Output: a trained neural network N ∗

1: for all epoch ∈ [M] do
2: for all i ∈ [N] do
3: compute yi = N (xi) by feeding x forward through the network
4: compute the loss L (ŷi, yi)
5: update ∆Wd+1 = ∆Wd+1 + ∂L (ŷi, yi)

∂Wd+1
, i.e., the gradient of the loss w.r.t. the

weights that connect the last hidden layer to the output layer
6: for ` = d, d− 1, . . . , 1 do
7: update ∆W` = ∆W` + ∂L (ŷi, yi)

∂W`
via the chain rule for derivatives

8: end for
9: end for

10: for j = 1, . . . , d+ 1 do
11: update the weights by setting Wj = Wj − ε ·

∆Wj

N
12: end for
13: end for

4.2.6 MNIST: a typical dataset for NNs

A classical problem for neural networks is that of image classification, i.e., classifying images
based on what they depict. In particular, a well studied problem in the machine learning
literature is that of digit recognition. The MNIST (Modified National Institute of Standards
and Technology) dataset contains images representing digits that have been handwritten by
more than 500 different writers, and is commonly used as a benchmark for machine learning
systems [LBBH98]. It contains 60000 training images (i.e., used for building, or training,
the model) and 10000 testing images (i.e., used for evaluating the model’s performance). In
Figure 4.4 we show, as an example, some of the images that compose the MNIST dataset.
The format of the images is 28 × 28 and the value of each pixel represents an 8-bit level
of gray. Moreover, each image is labeled with the digit is depicts; this serves both during
the training phase for “telling the network” which is the expected output, and during the
testing phase for verifying if the classification was correct or not. A typical neural network
for the MNIST dataset has 28 · 28 = 784 input nodes (one per pixel), an arbitrary number
of hidden layers, each of which is composed of an arbitrary number of neurons, and finally

Ch
ap

te
r4

4.3 State of the art for privacy-preserving predictions 51

Figure 4.4: Some images from the MNIST dataset

an output layer composed of 10 neurons (one per possible digit or class). The output values
can be interpreted as scores2 given by the network, with the predicted class being the one
associated to the highest score.

Over the years, the MNIST dataset has been a typical benchmark for classifiers, and many
approaches have been applied: linear classifiers, principal component analysis, support vector
machines, neural networks, convolutional neural networks, etc. For a more complete review
of these approaches, we refer the reader to, e.g., [LBBH98]. Neural networks are known to
perform well on this dataset. For example, [LBBH98] proposes different architectures for
neural networks and obtains more than 97% of correct classifications. More recent works
even surpassed 99% of accuracy [CMS12]. For a nice overview on the results obtained on
this dataset and on the techniques that were used, we refer the reader to [LCB98].

4.3 State of the art for privacy-preserving predictions
We now turn to the problem of homomorphically making predictions on input data. In a
nutshell, given a model N , the goal is to take an encryption of an input pattern Enc (x) and
return an encrypted answer c such that Dec (c) = N (x), i.e., the evaluation of the model N
on the input x.

This problem has already been addressed in the past, mainly via multiparty computation
(MPC), Yao’s garbled circuits [Yao86], and homomorphic encryption (see, e.g., [BPTG15],
SecureML[MZ17], PICS [MRSV17], MiniONN [LJLA17], DeepSecure [RRK17], Gazelle [JVC18]).
In the case of MPC, a possible architecture is the following: a party A holds the input data
x, a party B holds the trained model N , and they engage in a protocol that, through several
round of interactions, allows A to obtain N (x). The main drawback of this approach is
essentially that it requires interactivity between the parties, meaning that there are sev-
eral points in time where the client A is involved in the protocol, as opposed to a simpler
case where A sends the input and later receives the output. Even though practical perfor-
mances of MPC-based solutions have largely surpassed those of FHE-based solutions, they

2Or probabilities, if the softmax function is applied.

52 Chapter 4 Homomorphic evaluation of deep neural networks

incur issues like network latencies and high bandwidth usage. Because of these downsides,
FHE-based solutions appear more scalable for real-life applications, even though MPC-based
solutions might be faster for specific instantiations.

As far as FHE-based solutions are concerned, Cryptonets [DGL+16] was the first initia-
tive to address the challenge of achieving blind, non-interactive classification. The main
idea consists in applying a leveled somewhat homomorphic encryption scheme such as BGV
[BGV12] to the network inputs and propagating the signals across the network homomorphi-
cally, thereby consuming levels of homomorphic evaluation whenever non-linearities are met.
We remind the reader that, in neural networks, non-linearities come from activation func-
tions which are usually picked from a small set of non-linear functions of reference (logistic
sigmoid, hyperbolic tangent, . . .) chosen for their mathematical convenience. To optimally
accommodate the underlying SHE scheme, Cryptonets replace their standard activation by
the (depth 1) square function, which only consumes one level of homomorphic multiplication
but does not resemble the typical sigmoidal shape. A number of subsequent works have fol-
lowed the same approach and improved it, typically by adopting higher degree polynomials
as activation functions for more training stability [ZYC16], or by renormalizing weighted
sums prior to applying the approximate function, so that its degree can be kept as low
as possible [CWM+17]. Practical experiments have shown that training can accommodate
approximated activations and generate NNs with very good accuracy.
However, this approach suffers from an inherent limitation: the homomorphic computa-

tion, local to a single neuron, depends on the total number of levels required to implement
the network, which is itself roughly proportional to the number of its activated layers. There-
fore, the overall performance of the homomorphic classification heavily depends on the total
multiplicative depth of the circuit and rapidly becomes prohibitive as the number of layers
increases. This approach does not scale well and is not adapted to deep neural networks,
that can contain tens, hundreds or sometimes thousands of layers [HZRS15; ZK16].

4.4 TFHE: a framework for efficient bootstrapping
In 2016, Chillotti et al. proposed a framework [CGGI16b] (later refined in [CGGI17]) that
improved dramatically the performances of FHE and, particularly, those of the bootstrapping
operation. These works propose an alternative – although equivalent to the traditional one3

– representation of the LWE problem (cf. Section 2.3.6) over the torus (i.e., the reals modulo
1) and feature an improved bootstrapping procedure that is considerably more efficient than
the previous state of the art. In the following, we review some of the contributions introduced
by these works, that will be of key importance for our constructions. For all the details, we
refer the reader to [CGGI16b; CGGI17].

4.4.1 LWE over the torus and related constructions
In this section we present the formulation of the LWE problem over the torus, and we
introduce related constructions that will be used in the rest of this chapter.
LWE over the torus. First, we provide a definition of the LWE problem [Reg05] over the
torus T = R/Z.

3If the framework is implemented with precision of ϕ bits, then switching from one representation to the
other is just a matter of multiplying or dividing by 2ϕ and rounding.

Ch
ap

te
r4

4.4 TFHE: a framework for efficient bootstrapping 53

Definition 4.4.1 (LWE over the torus). Let n be a positive integer and χ be a probability
distribution over R for the noise. For any vector s ∈ {0, 1}n, the LWE distribution lwes,χ
over Tn×T is sampled by picking a←$ Tn, an error e← χ, and returning (a, b = 〈s,a〉+ e).
Then the LWE assumption states that, for some fixed s ∈ {0, 1}n, it is hard to distinguish
between (a, b)← lwes,χ and (u, v) ←$ Tn+1.

From now on, when mentioning the LWE problem, we will refer to this formulation over
the torus.
TLWE. TLWE is a generalization of LWE and Ring-LWE [LPR10].

Definition 4.4.2 (TLWE). Let k ≥ 1 be an integer, N be a power of 2 and χ be an error
distribution over RN [X]. A TLWE secret key s̄ ∈ BN [X]k is a vector of k polynomials
over ZN [X] with binary coefficients. The TLWE distribution tlwes̄,χ is sampled by picking
a←$ TN [X]k, an error e ← χ, and returning (a, b = s̄ · a + e). Given a message encoded
as a polynomial µ ∈ TN [X], a fresh TLWE encryption of µ under the key s̄ is obtained by
taking (a, b) + (0, µ), where (a, b)← tlwes̄,χ, and 0 is a vector of k zero-polynomials.

Remark 4.4.3. Notice that if N is large and k = 1, then TLWE becomes Ring-LWE with
binary secret, whereas if N = 1 and k is large, then TLWE becomes the standard LWE
problem with binary secret.

With this definition, one can define the search and the decision versions of the TLWE
problem, analogously to what was done for LWE in Definitions 2.3.21 and 2.3.22.
TGSW. TGSW is a generalized version of the GSW FHE scheme [GSW13; AP14] (cf.
Section 3.4.3). It can roughly be seen as the matrix version of the TLWE scheme, just
like GSW can be seen the matrix-equivalent of LWE. A key difference is in the gadget
decomposition, which in TGSW is approximated, whereas in the classical GSW cryptosystem
this operation is exact.

Definition 4.4.4 (Approximate gadget decomposition [CGGI16b, Definition 3.7]). Let H ∈
TN [X](k+1)`×(k+1) be as in Equation (4.1). We say that DecH,β,ε (v) is a decomposition
algorithm on the gadget H with quality β and precision ε if and only if for any TLWE
sample v ∈ TN [X]k+1, it publicly and efficiently outputs a small vector u ∈ R(k+1)` such
that ‖u‖∞ ≤ β and ‖u ·H− v‖∞ ≤ ε. Furthermore, the expectation of u ·H− v must be 0
when v is uniformly distributed in TN [X]k+1.

H =

1/Bg · · · 0
...

1/B`
g · · · 0

...
0 · · · 1/Bg
...
0 · · · 1/B`

g

∈ TN [X](k+1)`×(k+1) . (4.1)

Definition 4.4.5 (TGSW [CGGI16b, Definition 3.9]). Let ` and k ≥ 1 be two integers, α ≥ 0
be a noise parameter, H the gadget defined in Equation (4.1), and let s ∈ BN [X]k be a TLWE

54 Chapter 4 Homomorphic evaluation of deep neural networks

key. We say that C ∈ T [X](k+1)`×(k+1) is a fresh TGSW sample of a polynomial µ ∈ R/H⊥
with noise parameter α if and only if C = Z+µH, where each row of Z ∈ TN [X](k+1)`×(k+1)

is a TLWE encryption of the zero polynomial with Gaussian noise parameter α.

From a TLWE encryption c̄ of a polynomial µ ∈ TN [X] under a TLWE key s̄ we can
extract a LWE encryption c′ = Extract (c̄) of the constant term of µ under an extracted key
s′ = ExtractKey (s̄). For the details of the algorithms Extract and ExtractKey, we refer the
reader to [CGGI16b, Definition 4.1].

4.4.2 External product and bootstrapping procedure
The core idea for the efficiency of the new bootstrapping procedure is the so-called external
product �, that performs the following mapping:

� : TGSW× TLWE→ TLWE.

Roughly speaking, the external product of a TGSW encryption of a polynomial µ1 ∈ TN [X]
and a TLWE encryption of a polynomial µ2 ∈ TN [X] is a TLWE encryption of (µ1 · µ2) ∈
TN [X].

Now the bootstrapping procedure of an n-LWE sample (here, n denotes the dimension)
consists of the following three functions:

BlindRotate: TGSWn × TLWE × n-LWE → TLWE
On input TGSW encryptions of (si)i∈[n], a (possibly noiseless) TLWE encryption of
testVector and an n-LWE sample (a, b), computes a TLWE encryption ofXφ· testVector,
where φ = b− 〈s,a〉;

Extract: TLWE → N -LWE
On input a TLWE encryption of polynomial µ ∈ TN [X], computes an N -LWE en-
cryption of the constant term µ(0);

KeySwitch: n-LWEN × N -LWE → n-LWE
On input n-LWE encryptions of (s′i)i∈[N], and an N -LWE sample (a, b) computes an
n-LWE encryption of b− 〈s′,a〉.

Then we can define a function Bootstrap (·, ·, ·) that takes as input a bootstrapping key bk,
a keyswitching key ksk, and a ciphertext and outputs a new ciphertext. Roughly speaking,

Bootstrap = KeySwitch ◦ Extract ◦ BlindRotate.

We note that BlindRotate works on LWE samples with values in [2N] instead of T, thus
the first step is to map T to [2N] by multiplying and rounding.

4.5 Our contributions
In this section we present our contributions for privacy-preserving evaluation of neural net-
works.

Ch
ap

te
r4

4.5 Our contributions 55

As already stated, the biggest limitation of using a somewhat homomorphic encryption
scheme and then evaluating non-linear activation functions is that the overall efficiency of the
scheme depends on the total multiplicative depth that is needed to evaluate the entire neural
network. This way, choosing the parameters for the scheme quickly becomes prohibitive as
the depth of the network increases.
Instead, we propose a scale-invariant approach to the problem, i.e., each neuron’s output

is refreshed through bootstrapping, resulting in that arbitrarily deep networks can be ho-
momorphically evaluated. Of course, the entire homomorphic evaluation of the network will
still take time proportional to the number of its neurons or, if parallelism is involved, to the
number of its layers. However, evaluating one neuron is now essentially independent of the
dimensions of the network: it just relies on system-wide parameters.

We start by proposing a new model of neural network, which is designed to be FHE-
friendly, and we explain the procedure to homomorphically evaluate it on encrypted inputs;
finally, we present some improvements on the TFHE framework and show experimental
results obtained on the MNIST dataset.

4.5.1 Definition of a discretized neural network

First of all, we recall that state-of-the-art fully homomorphic encryption schemes cannot
support operations over real messages. Traditional neural networks have real-valued weights,
and this incompatibility motivates investigating alternative architectures.

Definition 4.5.1. A Discretized Neural Network (DiNN) is a feed-forward artificial neural
network whose inputs are integer values in {−I, . . . , I} and whose weights are integer values
in {−W, . . . ,W}, for some I,W ∈ N. For every neuron of the network, the activation
function maps the inner product between the incoming inputs vector and the corresponding
weights to integer values in {−I, . . . , I}.

In particular, for a first attempt we chose {−1, 1} as the input space and sign (·) as the
activation function for the hidden layers:

sign (x) =
{
−1, x < 0,
+1, x ≥ 0.

(4.2)

These choices are inspired by the fact that the model was designed with the idea of performing
homomorphic evaluations over encrypted input. As a consequence, we wanted the message
space to be as small as possible, which, in turn, would allow us to increase the efficiency of
the overall evaluation.
We also note that using an activation function whose output is in the same range as the

network’s input allows us to maintain the same semantics across different layers. In our case,
what enters a neuron is always a weighted sum of values in {−1, 1}. In order to make the
evaluation of the network compatible with FHE schemes, discretizing the input space is not
sufficient: we also need to have discrete values for the weights of the network4.

4As all the computations are done over the torus (i.e., modulo 1), scaling a ciphertext by any integer factor
preserves the relations that make the decryption correct. However, this does not hold for non-integer
factors.

56 Chapter 4 Homomorphic evaluation of deep neural networks

4.5.2 Simple conversion from a traditional NN to a DiNN
In this subsection we show a very simple method to convert an already-trained canonical
neural network (i.e., with real weights) into a DiNN. This method is not guaranteed to
be the best way to obtain such a conversion; it indeed introduces a visible loss in the
classification accuracy and would probably be best used as a first step in the conversion
procedure. However, we remind the reader that this work is aimed at the homomorphic
evaluation of a network, thus we decided not to put too much effort in the construction of a
sophisticated cleartext model. This procedure allows us to obtain a network which respects
our constraints and that can be evaluated over encrypted inputs, so it is sufficient for our
purposes.

It turns out that the only thing that we need to do is discretizing the weights and biases
of the network. To this purpose, we define the function

processWeight (w, τ) = τ ·
⌊
w

τ

⌉
(4.3)

where τ ∈ N is a parameter that controls the precision of the discretization. In the
following, we implicitly take all the weights as discretized after being processed through
the formula in Equation (4.3). After fixing a value τ , the network obtained by applying
processWeight (·, τ) to all the weights and biases is a DiNN. The parameter τ has to be chosen
carefully, since it defines the message space that our encryption scheme must support. Thus,
we want the bound on 〈w,x〉 to be small for all neurons, where w and x are the discretized
weights and the inputs associated to the neuron, respectively. In Figure 4.5, we show the
evaluation of a single neuron: we first compute 〈w,x〉, which we refer to as a multisum, and
then apply the sign function to the result.

x1

x2

...
...

w1

w2
yΣ

Figure 4.5: Evaluation of a single neuron. The output value is y = sign (〈w,x〉), where
wi are the discretized weights associated to the incoming wires and xi are the
corresponding input values.

4.5.3 Homomorphic evaluation of a DiNN
We now give a high level description of our procedure to homomorphically evaluate a DiNN,
called FHE-DiNN. We basically need two ingredients: we need to be able to compute the
multisum between the encrypted inputs and the weights and we need to homomorphically
extract the sign of the result. In order to maintain the scalability of our scheme across the
layers of a given DiNN, we perform a bootstrapping operation for every neuron in hidden
layers. This ensures that the ciphertext encrypting the sign of the result after applying one
layer of the DiNN can be used for further computations without an initially fixed limit on

Ch
ap

te
r4

4.5 Our contributions 57

the number of layers that the network can contain. Hence we can choose parameters that
are independent of the number of layers and evaluate arbitrarily deep neural networks.

4.5.3.1 Evaluating the multisum

In our framework, the weights of the network are available in clear, so we can evaluate the
multisum just by using homomorphic additions. The only things that need our attention are
the message space of our encryption scheme, which has to be large enough to accommodate
for all possible values of the multisums, and the noise level that might grow too much and
lead to incorrect results.
Extending the message space. In order for our FHE scheme to be able to correctly
evaluate the multisum, we need all the possible values of the multisum to be inside our
message space. To this end, we extend our LWE encryption scheme as follows. This idea
was already used in previous works such as [PW08; KTX08; ABDP15; ALS16].

Construction 4.5.2 (Extended LWE-based private-key encryption scheme). Let B be a
positive integer and let m ∈ [−B,B] be a message. Then we split the torus into 2B + 1
slices, one for each possible message, and we encrypt and decrypt as follows:

Setup (κ): for a security parameter κ, fix n = n (κ) , σ = σ (κ); return s←$ Tn

Enc (s,m): return (a, b), with a←$ Tn and b = 〈s,a〉+ e+ m
2B+1 , where e← χσ

Dec (s, (a, b)): return b(b− 〈s,a〉) · (2B + 1)e

An input message is mapped to the center of its corresponding torus slice by scaling it by
1/ (2B + 1) during encryption, and decoded by scaling it by 2B + 1 during decryption.
Correctness of homomorphically evaluating the multisum. Note that ciphertexts can
be homomorphically added and scaled by a known integer constant: for any two messages
m1,m2 ∈ [−B,B], any secret key s, any c1 = (a1, b1) ← Enc (s,m1), c2 = (a2, b2) ←
Enc (s,m2), and constant w ∈ Z, we have that

Dec (s, c1 + w · c2) = Dec (s, (a1 + w · a2, b1 + w · b2)) = m1 + w ·m2

as long as (1) m1 + w ·m2 ∈ [−B,B], and (2) the noise did not grow too much.
The first condition is easily met by choosing B ≥ ‖w‖1 for all weight vectors w in the

network (e.g., we can take the max).
Fixing the noise. Increasing the message space has an impact on the choice of parameters.
Evaluating the multisum with a given weight vector w means that, if the standard deviation
of the initial noise is σ, then the standard deviation of the output noise can be as high as
‖w‖2 · σ (see Lemma 2.3.17), which in turn means that our initial standard deviation must
be smaller than the one in [CGGI16b] by a factor maxw ‖w‖2. Moreover, for correctness to
hold, we need the noise to remain smaller than half a slice of the torus. As we are splitting
the torus into 2B+1 slices rather than 2, we need to further decrease the noise by a factor B.
Special attention must be paid to security: taking a smaller noise might in fact compromise
the security of the scheme. In order to mitigate this problem, we can increase the dimension
of the LWE problem n, but this in turn induces more noise overhead in the bootstrapping
procedure due to rounding errors.

58 Chapter 4 Homomorphic evaluation of deep neural networks

-4

-3 -2
-1

0

1
23

4

+1

−1

Figure 4.6: On the left, we show the first step of the bootstrapping, which consists in mapping
the torus (the continuous circle) to the wheel (the 2N ticks on it) by rounding
to the closest tick. Each slice corresponds to one of the possible results of the
multisum operation. On the right we show the final result of the bootstrapping:
each tick of the top part of the wheel is mapped to its sign which is +1 and each
tick of the bottom part to −1. This can roughly be seen as embedding the wheel
back to the torus.

4.5.3.2 Homomorphic computation of the sign function

We take advantage of the flexibility of the bootstrapping technique introduced by Chillotti
et al. [CGGI16b] in order to perform the sign extraction and the bootstrapping at the same
time. Concretely, in the call to BlindRotate, we change the value of testVector to

−1
2B + 1

N−1∑
i=0

Xi.

Then, if the value of the phase b − 〈s,a〉 is between 1 and N (positive), the output will be
an encryption of 1, otherwise if it is between N + 1 and 2N (negative), the output will be
an encryption of −1.

In order to give more intuition, we present an illustration of the bootstrapping technique
in Figure 4.6. The first step of the bootstrapping basically consists in mapping the torus T
to an object that we will refer to as the wheel. This wheel is split into 2N “ticks” that are
associated to the possible values that are encrypted in the bootstrapped ciphertext. The
bootstrapping procedure then consists in choosing a value for each tick, rotating the wheel
by b − 〈s,a〉 ticks counter-clockwise, and picking the value of the rightmost tick. We note
that the values on the wheel are encoded in the testVector variable, which contains values for
the ticks on the top part of the wheel. The bottom values are then fixed by the anticyclic
property of TN [X] (the value at tick N + i is minus the value at tick i).
From now on, we say that a bootstrapping is correct if, given a valid encryption of a

message µ, its output is a valid encryption of sign (µ) with overwhelming probability.

4.5.3.3 Scale-invariance

If the parameters are set correctly then, by using the two operations described above, we
can homomorphically evaluate neural networks of any depth. In particular, the choice of
parameters is independent of the depth of the neural network. This result cannot be achieved
with previous techniques relying on somewhat homomorphic evaluations of the network. In

Ch
ap

te
r4

4.5 Our contributions 59

fact, they have to choose parameters that accommodate for the whole computation, whereas
our method only requires the parameters to accommodate for the evaluation of a single
neuron. The rest of the computation follows by induction. More precisely, our choice of
parameters only depends on bounds on the norms (‖·‖1 and ‖·‖2) of the input weights of a
neuron. In the following, we denote these bounds by M1 and M2, respectively.

We say that the homomorphic evaluation of the neural network is correct if the decryp-
tions of its output scores are equal to the scores given by its evaluation in the clear with
overwhelming probability. Then, the scale-invariance is formally defined by the following
theorem:

Theorem 4.5.3 (Scale-invariance of our homomorphic evaluation). For any DiNN of any
depth, any correctly generated bootstrapping key bk and keyswitching key ksk, and any ci-
phertext c, let σ be a Gaussian parameter such that the noise of Bootstrap (bk, ksk, c) is
sub-Gaussian with parameter σ. Then, if the bootstrapping is correct on input ciphertexts
with sub-Gaussian noise of parameter σ

M2
and message space larger than 2M1 + 1, the result

of the homomorphic evaluation of the DiNN is correct.

Proof. The proof is a simple induction on the structure of the neural network. First, the
correctness of the evaluation of the first layer is implied by the choice of parameters for the
encryption5.

If the evaluation is correct for all neurons of the `-th layer, then the correctness for all
neurons of the (` + 1)-th layer follows from the two observations made in the previous
subsections:

• The result of the homomorphic evaluation of the multisum is a valid encryption of the
multisum;

• The result of the bootstrapping is a valid encryption of the sign of the multisum.

The first fact is implied by the choice of the message space, since the multisum value is
contained in [−M1,M1]. The second one comes directly from the correctness of the boot-
strapping, because the homomorphic computation of the multisum on ciphertexts with sub-
Gaussian noise of parameter σ yields a ciphertext with sub-Gaussian noise of parameter at
most σM2 (cf. Theorem 2.3.17).
Then, the correctness of the encryption scheme ensures that the final ciphertexts are valid

encryptions of the scores.

4.5.4 Refinements of TFHE
In this section, we present several improvements that helped us achieving better efficiency
for the actual FHE-DiNN implementation. These various techniques can without any doubt
be applied in other FHE-based applications.

4.5.4.1 Reducing bandwidth usage

One of the drawbacks of our evaluation process is that encrypting individual values for each
input neuron yields a very large ciphertext, which is inconvenient from a user perspective, as
a high bandwidth requirement is the direct consequence. In order to mitigate this issue, we

5If it is not, we can bootstrap all input ciphertexts in order to ensure this holds.

60 Chapter 4 Homomorphic evaluation of deep neural networks

“pack” multiple values into one ciphertext. We use the standard technique of encrypting a
polynomial (using the TLWE scheme instead of LWE) whose coefficients correspond to the
different values we want to encrypt:

ct = TLWE.Encrypt
(∑

i

xiX
i

)
,

where the xi’s represent the values of the input neurons to be encrypted6. This packing
technique is what made Ring-LWE an attractive variant to the standard LWE problem, as
was already presented in [LPR10], and is widely used in FHE applications to amortize the
cost of operations [HS14a; HS15].
Then, we observe that for each neuron in the first hidden layer, we can compute the

multisum with coefficients wi by scaling the input TLWE ciphertext by a factor∑
i

wiX
−i.

Indeed, it is easy to verify that the constant term of
(∑

i xiX
i
) · (∑iwiX

−i) is ∑iwixi,
and we can obtain an LWE encryption of this value by invoking Extract.

Remark 4.5.4. We note that this computation is actually equivalent to doing the multisum
directly on LWE ciphertexts, so the resulting noise growth of this approach is exactly the
same as before. We end up saving bandwidth usage (by a factor up to N , the degree of
the polynomials) basically for free. Furthermore, as the weights of the neural network never
change, we can precompute and store the FFT representation of the polynomials

∑
wiX

−i,
thus saving time during the online classification.

In a nutshell, we reduce the size of the ciphertexts for N elements from N LWE ciphertexts
to 1 TLWE ciphertext. In terms of numbers of elements in T, the cost dropped from N(n+1)
to N(k + 1).

We remark that the resulting ciphertext is an LWE ciphertext in dimension N , and not
the original n, thus requiring key-switching to become a legitimate ciphertext. However, this
is not a problem thanks to the trick presented in the following subsection.

4.5.4.2 Moving KeySwitch around

The main goal of key-switching here is to reduce the LWE dimension. The benefits in
memory usage and efficiency of this reduction are extremely important, since the size of
the bootstrapping key, the final noise level, and the number of external products (the most
costly operation) all depend linearly on this parameter. However, we noticed that reducing
this dimension in the beginning of the bootstrapping procedure instead of the end gave much
better results, hence the new bootstrapping function:

Bootstrap = Extract ◦ BlindRotate ◦ KeySwitch.

The intuition is that, with this technique, the noise produced by KeySwitch will not be
multiplied by ‖w‖2 when performing the computation of the multisum, but will only be

6If the number of input neurons is bigger than the maximal degree of the polynomials N , we can pack the
ciphertext by groups of N , compute partial multisums with our technique, and aggregate them afterwards

Ch
ap

te
r4

4.5 Our contributions 61

added at the end. Basically, we moved the noise of the output ciphertext produced by
KeySwitch to an overhead noise.

Doing this, we reverse the usage of the two underlying LWE schemes: everything is now
done on high dimensional N -LWE, whereas the low dimensional n-LWE scheme is only used
during the bootstrapping operation. Since the noise in the key-switching key is not used
for any computation anymore, we can allow it to be bigger, thus reducing the dimension we
need for the same security to hold and, in turn, gaining in time per bootstrapping.
The only downside is that working with higher dimensionalN -LWE samples means slightly

more memory usage for the server, bigger output ciphertext7, and slightly slower addition of
ciphertexts. However, as this operation is instantaneous when compared to other operations
such as bootstrapping, this is not an issue.

4.5.4.3 Dynamically changing the message space

In Section 4.5.3, we showed how to evaluate the whole neural network by induction, using
a message space of 2B + 1 slices, where B is a bound on the values of the multisums across
the whole evaluation. However, in order to be able to reduce the probability of errors along
the way, we are able to use different message spaces for each layer of the DiNN, and adapt
the number of slots to the values given by the local computations, depending on the values
of the weights w. In order to do so, we change the value of testVector to

−1
2B` + 1

N−1∑
i=0

Xi,

where B` is now indexed by the current layer `, and is a bound on the values of the multisums
for the next layer ` + 1. The point of this manoeuvre is that if the number of slots is
smaller, the slices are bigger, and the noise would have to be bigger in order to change the
plaintext message. This trick might seem superfluous, because it decreases a probability
that is already negligible. However sometimes, in practical scenarios, the correctness of the
scheme is relaxed, and this trick allows us to obtain results closer to the expected values
without costing any extra computation or storage.

4.5.4.4 Alternative BlindRotate implementations

Following the technique of [ZYL+17], we try to gain efficiency in the bootstrapping by
reducing the number of external products that we have to compute. In order to do so, they
slightly unfold the loop computing X〈s,a〉 in the BlindRotate algorithm. They group the
terms of the sum two by two, using the following formula for each of the new terms:

Xas+a′s′ = ss′Xa+a′ + s(1− s′)Xa + (1− s)s′Xa′ + (1− s)(1− s′).

In order to compute this new function, they change the bootstrapping key to contain en-
cryptions of the values ss′, s(1 − s′), (1 − s)s′, and (1 − s)(1 − s′), thus expanding the size
of the bootstrapping key by a factor 2. Using this idea, they cut the number of iterations
of the loop by half, thus computing only half the amount of external products, which is
the most costly operation of the bootstrapping. However, by doing so, they introduce the

7This can be circumvented by applying one last round of KeySwitch at the end of the protocol, if needed.

62 Chapter 4 Homomorphic evaluation of deep neural networks

Algorithm 2 Alternative BlindRotate algorithm.
Input: an n-LWE ciphertext (a, b) with coefficients in Z2N , a (possibly noiseless)
TLWE encryption C of testVector, the bootstrapping key bk such that for all i in [n/2],
bk3i, bk3i+1, and bk3i+2 are respectively TGSW encryptions of s2is2i+1, s2i(1 − s2i+1),
and s2i+1(1− s2i)
Output: a TLWE encryption of Xb−〈s,a〉 · testVector

1: ACC ← Xb ·C
2: for i = 1 . . . n/2 do
3: ACC ← ((Xa2i+a2i+1 − 1)bk3i + (Xa2i − 1)bk3i+1 + (Xa2i+1 − 1)bk3i+2)�ACC
4: end for
5: return ACC

computation of 4 scalings of TGSW ciphertexts (which are matrices) by constant polyno-
mials, and 3 TGSW additions, when TFHE’s BlindRotate only needed 1 scaling of a TLWE
ciphertext, and 1 TLWE addition. Another benefit is that the homomorphic computation
of 〈s,a〉 induces rounding errors on only n/2 terms instead of n. The noise of the output
ciphertext is also different. On the bright side, the technique of [ZYL+17] reduces the noise
induced by the precision errors during the gadget decomposition by a factor 2. On the other
hand, it increases the noise coming from the bootstrapping key by a factor 2.
In this work, we suggest to use another formula in order to compute each term of the

slightly unfolded sum. Observing that ss′+ s(1− s′) + (1− s)s′+ (1− s)(1− s′) = 1, we can
save 1 element in the bootstrapping key:

Xas+a′s′ = ss′(Xa+a′ − 1) + s(1− s′)(Xa − 1) + (1− s)s′(Xa′ − 1) + 1.

The resulting BlindRotate algorithm is described in Algorithm 2. Having a 1 in the decom-
position is a valuable advantage, because it means that we can move it out of the external
product and instead add the previous value of the accumulator to the result. Thus, efficiency-
wise, we halved the number of external products at the cost of only 3 scalings of TGSW
ciphertexts by constant polynomials, 2 TGSW additions, and 1 TLWE addition. We note
that while multiplying naively by a monomial might be faster than multiplying by a degree
2 polynomial, the implementation pre-computes and stores the FFT representation of the
bootstrapping keys in order to speed up polynomial multiplication. Thus, multiplying by
a polynomial of any degree has the same cost. The size of the bootstrapping key is now
3/2 times larger than the size of the one in TFHE, which is a compromise between the two
previous methods. As in [ZYL+17], the noise induced by precision errors and roundings is
halved compared to TFHE. On the other hand, now we increase the noise coming from the
bootstrapping key by a factor 3 instead. However, we note that it is possible to reduce this
noise without impacting efficiency by reducing the noise in the bootstrapping key, trading
off security (depending on what the bottleneck for security of the scheme is, this could come
for free), whereas in order to reduce the noise induced by the precision errors, efficiency will
be impacted. We recapitulate these numbers in Table 4.1.
We note that this idea could be generalized to unfoldings consisting of more than two

terms, yielding more possible trade-offs, but we did not explore further because of the dis-
suasive exponential growth in the number of operands in the general formula.

Ch
ap

te
r4

4.5 Our contributions 63

TFHE ZYLZD17 FHE-DiNN

Efficiency
External products n n/2 n/2

Scaled TGSW add. 0 4 3

Scaled TLWE add. 1 0 1

Noise overhead δ δ/2 δ/2
Out
noise
(average)

roundings n(1 + kN)ε2 n
2 (1 + kN)ε2 n

2 (1 + kN)ε2

from BK n(k + 1)`Nβ2σ2
bk 2n(k + 1)`Nβ2σ2

bk 3n(k + 1)`Nβ2σ2
bk

Out
noise
(worst)

roundings n(1 + kN)ε n
2 (1 + kN)ε n

2 (1 + kN)ε

from BK n(k + 1)`NβAbk 2n(k + 1)`NβAbk 3n(k + 1)`NβAbk
Storage TGSW in the BK n 2n 3n/2

Table 4.1: Comparison of the three alternative BlindRotate algorithms. n denotes the LWE
dimension after keyswitching; δ refers to the noise introduced by rounding the
LWE samples into [2N] before we can BlindRotate; N is the degree of the
polynomials in the TLWE scheme; k is the dimension of the TLWE cipher-
texts; ε is the precision (1/2β)`/2 of the gadget matrix (tensor product be-
tween the identity Idk+1 and the powers of 1/2β arranged as `-dimensional vector
(1/2β, . . . , (1/2β)`)); σbk is the standard deviation of the noise of the TGSW
encryptions in the bootstrapping key, and Abk is a bound on this noise. These
values were derived using the theorems for noise analysis in [CGGI17]

4.5.5 Experimental results

We implemented the proposed approach to test its accuracy and efficiency. This section
is divided into two main parts: the first one describes the training of the neural network
over data in the clear and the second one details the results obtained when evaluating the
network over encrypted inputs.

4.5.5.1 Pre-processing the MNIST database

In order to respect the constraint of having inputs in {−1, 1}, we binarized all the images
with a threshold value equal to 128: any pixel whose value is smaller than the threshold
is mapped to −1; the others are mapped to +1. This actually reduces the amount of
information available, as each 8-bit grayscale value is clamped to a single bit, and one could
wonder if this could impact the accuracy of the classification. Although this is possible, a
quick visual inspection of the result shows that the digits depicted in the images are still
clearly recognizable.

4.5.5.2 Building a DiNN from data in the clear

In order to train the neural network, we first chose its topology, i.e., the number of hidden
layers and neurons per hidden layer. We experimented with several values, always keeping in
mind that a smaller number of neurons per layer is preferable: having more neurons means

64 Chapter 4 Homomorphic evaluation of deep neural networks

that the value of the multisum will be potentially higher, thus requiring a larger message
space in the homomorphic evaluation, which in turn forces to choose bigger parameters for
the scheme. After some tries, we decided to show the feasibility of our approach through
the homomorphic evaluation of two neural networks. Both have 784 neurons in the input
layer (one per pixel), a single hidden layer, and an output layer composed of 10 neurons (one
per class). The difference between the two models is the size of the hidden layer: the first
network has 30 neurons, while the second has 100.

In order to build a DiNN, we use the simple approach described in Section 4.5.2: we
(1) train a traditional neural network (i.e., with real weights and biases), and then we (2)
discretize all the values by applying the function in Equation (4.3). For step (1) we take
advantage of the library keras [Cho+15] with Tensorflow [MAP+15], which offers a simple and
highly customizable framework for defining, training and evaluating even complex models
of neural networks. Through a fairly simple Python script and in little time, we are able
to define and train our models as desired. Given its similarity with (a scaled and shifted
version of) the sign function, as an activation function we used the version of hard_sigmoid
defined in Tensorflow and whose formula is in Equation (4.4).

hard_sigmoid (x) =

0, x < −2.5
0.2x+ 0.5, −2.5 ≤ x ≤ 2.5
1, x > 2.5

(4.4)

The reason behind this choice is that we know we will substitute this activation function
with the true sign (x). Thus, using a function which is already similar to it helps reducing
the errors introduced by this switch.

Once we obtain the trained model, we proceed to choose a value τ ∈ N and discretize the
weights and the biases of the network, as per Equation (4.3), thus finally obtaining a DiNN
that we can later evaluate over encrypted inputs. The choice of τ is an important part of the
process: on one hand, picking a very small value will give little resolution to the network8,
potentially degrading the accuracy largely; on the other hand, picking a very large value will
minimize the loss in accuracy but increase the message space that we will need to support
for homomorphic evaluation, thus forcing us to choose larger parameters and making the
overall evaluation less efficient. Also, note that it is possible to choose different values of
the parameter τ for different layers of the network. Although there might be better choices,
we did not invest too much efforts in optimizing the cleartext model and simply chose the
value τ = 10 for both layers of each model. Finally, we switched all the activation functions
from hard_sigmoid (·) to sign (·). In order to assess the results of the training and how the
accuracy varies because of these changes, in Table 4.2 we report the accuracies obtained on
the MNIST test set. Note that these values are referred to the evaluation over cleartext
inputs.

4.5.5.3 Classifying encrypted inputs

Implementing the homomorphic evaluation of the neural network over encrypted input was
more than a mere coding exercise, but allowed us to discover several interesting properties
of our DiNNs.

8This means that the number of values that the weights will be able to take will be fairly limited.

Ch
ap

te
r4

4.5 Our contributions 65

Original NN DiNN + hard_sigmoid DiNN + sign
30 neurons 94.76 % 93.76 % (−1 %) 93.55 % (−1.21 %)
100 neurons 96.75 % 96.62 % (−0.13 %) 96.43 % (−0.32 %)

Table 4.2: Accuracy obtained when evaluating the models in the clear on the MNIST test set.
The first value refers to the evaluation of the model as output by the training; the
second refers to the model where all the values for weights and biases have been
discretized; the third refers to the same model, but with sign (·) as the activation
function for all the neurons in the hidden layer.

Ciphertext Dimension α Estimated security
input 1024 2−30 > 150 bits
keyswitching key 450 2−17 > 80 bits
bootstrapping
key

1024 2−36 > 100 bits

Table 4.3: The security parameters we use for the different kinds of ciphertexts. The esti-
mated security has been extracted from the plot in [CGGI16b] and later verified
with the estimator from Albrecht et al. [APS15].

The starting point was the TFHE library by Chillotti et al., which is freely available on
GitHub [CGGI16a] and which was used to efficiently perform the bootstrapping operation.
The library takes advantage of FFT processors for fast polynomial multiplication and, al-
though not parallelized, achieves excellent timing results. We extended the code to apply
this fast bootstrapping procedure to our use case.
Parameters. We now present our setting of the parameters, following the notation of
[CGGI16b], to which we refer the reader for extra details. In Table 4.3 we highlight the main
security parameters regarding our ciphertexts, together with an estimate of the security level
that this setting achieves. Other additional parameters, related to the various operations we
need to perform, are the following:

• Degree of the polynomials in the ring: N = 1024;

• Dimension of the TLWE problem: k = 1;

• Basis for the decomposition of TGSW ciphertexts: Bg = 1024;

• Length of the decomposition of TGSW ciphertexts: ` = 3;

• Basis for the decomposition during key switching: 8;

• Length of the decomposition during key switching: t = 5;

With this choice of parameters, we achieve a minimum security level of 80 bits and a
single bootstrapping operation takes roughly 15 ms on a single core of an Intel Core i7-
4720HQ CPU @ 2.60GHz. Also, we note that by exploiting the packing technique presented

66 Chapter 4 Homomorphic evaluation of deep neural networks

FHE-DiNN 30 FHE-DiNN 100
maxw ‖w‖1 theor. exp. maxw ‖w‖1 theor. exp.

1st layer 2338 4676 2500 1372 2744 1800
2nd layer 399 798 800 488 976 1000

Table 4.4: Message space: theoretically required values and how we set them in our experi-
ments with FHE-DiNN.

in Section 4.5.4.1, we save a factor 172 in the size of the input ciphertext: instead of having
784 · (450 + 1) torus elements (corresponding to a 450-LWE ciphertext for each of the 784
pixels in an image), we now have only 2 · 1024 torus elements (corresponding to the two
polynomials that form a TLWE sample).
Finally, we calculated the maximum value of the norms of the weight vectors associated to

each neuron, both for the first and the second layer. These values, which can be computed
at setup time (since the weights are available in the clear), define the theoretical bounds on
the message space that our scheme should be able to support. In practice, we evaluated the
actual values of the multisums on the training set, and took a message space slightly larger9

than what we computed. We note that with this method, it is possible that some input
could make the multisum go out of bounds, but this was not observed when evaluating the
network on the test set. Moreover, this allows us to take a considerably smaller message
space in some cases, and thus reduce the probability of errors. In Table 4.4 we report the
theoretical message space we would need to support and the message space we actually used
for our implementation.
In order to pinpoint our noise parameters, we also calculated the maximum L2-norms of the

weight vectors in each layer: for the network with 30 hidden neurons, we have maxw ‖w‖2 ≈
119 for the first layer and ≈ 85 for the second layer; for the network with 100 hidden neurons,
we have maxw ‖w‖2 ≈ 69 for the first layer and ≈ 60 for the second layer.
Evaluation. Our homomorphic evaluation follows the outline presented in
Figure 4.7 in order to classify an encrypted image,

1. Encrypt the image as a TLWE ciphertext;

2. Multiply the TLWE ciphertext by the polynomial which encodes the weights associated
to the hidden layer. This operation takes advantage of FFT for speeding up the
calculations;

3. From each of the so-computed ciphertexts, extract a 1024-LWE ciphertext, which
encrypts the constant term of the result;

4. Perform a key switching in order to move from a 1024-LWE ciphertext to a 450-LWE
one;

5. Bootstrap to decrease the noise level. By setting the testVector, this operation also
applies the sign function and changes the message space of our encryption scheme for
free.

9As we do not achieve perfect correctness with our parameters, the message can be shifted. This fact has
to be taken into account when choosing the number of slots.

Ch
ap

te
r4

4.5 Our contributions 67

1 TLWE 30 TLWE

30 N -LWE

30 n-LWE

30 N -LWE

10 N -LWE10 scores7

Enc(∑i piX
i) ·∑iwiX

−i

Extract

Key Switching

Sign Bootstrapping

weighted sumsDecargmax

User Server

Figure 4.7: Refined homomorphic evaluation of a 784:30:10 neural network with activation
function sign. The whole image (784 pixels) is packed into 1 TLWE ciphertext
to minimize bandwidth usage. After evaluation, the user recovers 10 ciphertexts
corresponding to the scores assigned by the network to each digit.

Accur. Disag. Wrong BS Disag. (wrong BS) Time
30 or 93.71% 273 (105–121) 3383/300000 196/273 0.515 s
30 un 93.46% 270 (119–110) 2912/300000 164/270 0.491 s
100 or 96.26% 127 (61–44) 9088/1000000 105/127 1.679 s
100 un 96.35% 150 (66–58) 7452/1000000 99/150 1.64 s

Table 4.5: Results of homomorphic evaluation of two DiNNs on the full test set. The second
column gives the number of disagreements (images classified differently) between
the evaluation in the clear and the homomorphic one; the numbers in parentheses
give the disagreements in favor of the cleartext evaluation and those in favor of
the homomorphic evaluation, respectively. The third column gives the number of
wrong bootstrapping, i.e., when the sign is flipped. The fourth value gives the
number of disagreements in which at least one bootstrapping was wrong. Finally,
the last column gives the time required to classify a single image.

6. Perform the multisum of the resulting ciphertext and the weights leading to the output
layer, through the technique showed in Section 4.5.3.110

7. Return the 10 ciphertexts corresponding to the 10 scores assigned by the neural net-
work. These ciphertext can be decrypted and the argmax can be computed to obtain
the classification given by the network.

In Table 4.5 we present the complete results of our experiments, both when using the
original BlindRotate algorithm from [CGGI16b] (denoted by or) and when using the modified
algorithm presented in Section 4.5.4.4 (denoted by un, unfolded).

The homomorphic evaluation of the network on the entire test set was compared to its
classification in the clear and we observed the following facts:

10Note that we do not apply any activation function to the output neurons: we are only interested in being
able to retrieve the scores and sorting them to recover the classification given by the network.

68 Chapter 4 Homomorphic evaluation of deep neural networks

Remark 4.5.5. The accuracy achieved when classifying encrypted images is close to that
obtained when classifying images in the clear.

In the case of the network with 30 hidden neurons, we obtain a classification accuracy
of 93.55% in the clear (cf. Table 4.2) and of 93.71% homomorphically. In the case of the
network with 100 hidden neurons, we have 96.43% accuracy in the clear and 96.35% on
encrypted inputs. These gaps are explained by the following observations.

Remark 4.5.6. During the evaluation, some signs are flipped during the bootstrapping but
this does not significantly harm the accuracy of the network.

We use aggressive internal parameters (e.g., N and, in general, all the parameters that
control the precision) for the homomorphic evaluation, knowing that this could sometimes
lead the bootstrapping procedure to return an incorrect result when extracting the sign of a
message. In fact, we conjectured that the neural network would be resilient to perturbations
and experimental results proved that this is indeed the case: when running our experiment
over the full test set, we noticed that the number of wrong bootstrappings is 3383 (respec-
tively, 9088) but this did not change the outcome of the classification in more than 196
(respectively, 105) cases (cf. Table 4.5).

Remark 4.5.7. The classification of an encrypted image might disagree with the classi-
fication of the same image in the clear but this does not significantly worsen the overall
accuracy.

This is a property that we expected during the implementation phase and our intuition to
explain this fact is the following: the network is assigning 10 scores to each image, one per
digit, and when two scores are close (i.e., the network is hesitating between two classes), it
can happen that the classification in the clear is correct and the one over the encrypted image
is wrong. But the opposite can also be true, thus leading to classifying correctly an encrypted
sample that was misclassified in the clear. We experimentally verified that disagreements
between the evaluations do not automatically imply that the homomorphic classification is
worse than the one in the clear: out of 273 (respectively, 127) disagreements, the classification
in the clear was correct 105 (respectively, 61) times, against 121 (respectively, 44) times in
favor of the homomorphic one11 (cf. Table 4.5).

Remark 4.5.8. Using the modified version of the BlindRotate algorithm presented in Sec-
tion 4.5.4.4 decreases the number of wrong bootstrappings.

Before stating some open problems, we conclude with the following note: using a bigger
neural network generally leads to a better classification accuracy, at the cost of performing
more calculations and, above all, more bootstrapping operations. However, the evaluation
time will always grow linearly with the number of neurons. Although it is true that evalu-
ating a bigger network is computationally more expensive, we stress that the bootstrapping
operations are independent of each other and can thus be performed in parallel. Ideally,
parallelizing the execution across a number of cores equal to the number of neurons in a
layer (30 or 100 in our work) would result in that the evaluation of the layer would take
roughly the time of a bootstrapping (i.e., around 15 ms).
11In the remaining cases, the classifications were different but they were both wrong.

Ch
ap

te
r4

4.5 Our contributions 69

Future directions and open problems. This work opens a number of possibilities and,
thus, raises several interesting open problems. The first one is about the construction of our
DiNNs. In this work, we did not pay too much attention to this step and, as a consequence,
we considerably worsened the accuracy when moving from a canonical neural network to a
DiNN. In order to improve the classification given by these discretized networks, it would
be interesting to train a DiNN, rather than simply discretizing an already-trained model.
Using discrete values and the sign function for the activation makes some calculations (e.g.,
some derivatives) impossible. Techniques to overcome these limitations have already been
proposed in the literature (e.g., [CB16]) and they can be applied to our DiNNs as well. Also,
another potentially interesting approach would be mixing these two ways of constructing
a DiNN, for example by first discretizing a given model and then training the resulting
network to refine it. Another natural question is whether we can batch several bootstrappings
together, in order to improve the overall efficiency of the evaluation. Moreover, the speed
of the evaluation would benefit from taking advantage of multi-core processing units, like
GPUs.
Most interestingly, our FHE-DiNN framework is flexible and can be adapted to more generic

cognitive architectures: we leave this as an interesting open problem. In particular, excellent
results have been obtained by using Convolutional Neural Networks (see e.g., [LBBH98]),
and we believe that trying to apply FHE-DiNN to these models would be an interesting line
of research. Achieving this goal would require extending the current capabilities of FHE. For
example, we would need to be able to homomorphically evaluate the max function, which
is required to construct the widely-used max pooling layers. To the best of our knowledge,
a technique for an efficient homomorphic evaluation of the max function is currently not
known. Finally, the methodology presented in this work is by no means limited to image
recognition, but can be applied to other machine learning problems as well.

4.5.6 Comparison with Cryptonets [DGL+16]
We now give a complete comparison between our framework FHE-DiNN and Cryptonets,
with respect to communication complexity (i.e., size of ciphertexts), classification accuracy,
and timings.
In Cryptonets, propagated signals are reals properly encoded into compatible plaintexts

and a single encrypted input (i.e., an image pixel) takes 2 · 382 · 8192 bits (= 766 kB).
Therefore, an entire image takes 28 · 28 · 766 kB ≈ 586MB. However, with the same storage
requirements, Cryptonets can batch 8192 images together, so that the amortized size of an
encrypted image is reduced to 73.3 kB. In the case of FHE-DiNN, we are able to exploit
the batching technique on a single image, resulting in that each encrypted image takes
≈ 8.2 kB. In the case of Cryptonets, the complete homomorphic evaluation of the network
takes 570 seconds, whereas in our case it takes 0.49 s (or 1.6 s in the case of a slightly
larger network). However, it should be noted that (a) the networks that we use for our
experiments are considerably smaller than that used in Cryptonets, so we also compare the
time-per-neuron and, in this case, our solution is faster by roughly a factor 36; moreover
(b) once again Cryptonets support image batching, so 8192 images can be classified in 570
seconds, resulting in only 0.07 s per image. Cryptonets’ ability to batch images together
can be useful in some applications where the same user wants to classify a large number
of samples together. In the simplest case where the user only wants a single image to be
classified, this feature does not help.

70 Chapter 4 Homomorphic evaluation of deep neural networks

Neurons Size of ct. Accuracy Time enc Time eval Time dec
Cryptonets 945 586 MB 98.95% 122 s 570 s 5 s
Cryptonets? 945 73.3 kB 98.95% 0.015 s 0.07 s 0.0006 s
FHE-DiNN 30 30 ≈ 8.2 kB 93.71% 0.000168 s 0.49 s 0.0000106 s

FHE-DiNN 100 100 ≈ 8.2 kB 96.35% 0.000168 s 1.65 s 0.0000106 s

Table 4.6: Comparison with Cryptonets and its amortized version (denoted by Cryptonets?).
FHE-DiNN 30 and FHE-DiNN 100 refer to neural networks with one hidden layer
composed of 30 and 100 neurons, respectively.

Regarding classification accuracy, the NN used by Cryptonets achieves 98.95 % of correctly
classified samples, when evaluated on the MNIST dataset. In our case, a loss of accuracy
occurs due to the preliminary simplification of the MNIST images, and especially because of
the discretization of the network. We stress however that our prime goal was not accuracy
but to achieve a qualitatively better homomorphic evaluation at the neuron level.
Finally, we also achieve scale-invariance, meaning that we can keep on computing over the

encrypted outputs of our network, whereas Cryptonets are bounded by the initial choice of
parameters. In Table 4.6 we present a detailed comparison with Cryptonets.

Ch
ap

te
r5

Chapter 5
Circuit privacy for homomorphic
computations

In the context of secure computation outsourcing, protecting the input data is only one
side of the coin. On the other side, it might be that the party that performs the computation
wants to keep the circuit it evaluates (i.e., the algorithm) private. In fact, it turns out that,
without appropriate countermeasures, the output of an homomorphic computation can leak
information on the computation itself, thus potentially compromising the privacy of an
algorithm which could be a sensitive intellectual property. In this chapter of the manuscript,
we address the problem of “circuit privacy”, and we show how to efficiently eliminate this
leakage, thus providing a way for a party to perform a homomorphic computation without
revealing more than its result and some generic side information.

Contents
5.1 Introduction . 72

5.1.1 Our results . 73
5.1.2 Technical overview . 74

5.2 Additional preliminaries . 76
5.2.1 Randomized G−1 (·) algorithm . 76
5.2.2 Probability results . 77
5.2.3 Results on lattices and Gaussian distributions 77
5.2.4 Entropy and leftover hash lemma 77
5.2.5 Permutation branching programs 78

5.3 Core randomization lemma . 78
5.3.1 Proof of randomization lemma . 79
5.3.2 Rerandomizing LWE samples . 81

5.4 Our scheme: circuit-private homomorphic evaluation for GSW . . 82
5.4.1 Rerandomizing and scaling GSW ciphertexts 82
5.4.2 Circuit privacy: definition and main theorem 83
5.4.3 Modified Eval algorithm for the GSW encryption scheme 84
5.4.4 Setting the parameters . 89
5.4.5 Extension to arbitrary moduli and trapdoor matrices 90

5.5 Discussions . 91

— 71 —

72 Chapter 5 Circuit privacy for homomorphic computations

5.1 Introduction
As presented in Chapter 3, a fully homomorphic encryption (FHE) scheme is an encryption
scheme which supports computation on encrypted data: given a ciphertext that encrypts
some data µ, one can compute a ciphertext that encrypts f(µ) for any efficiently computable
function f , without ever needing to decrypt the data or know the decryption key. FHE has
numerous theoretical and practical applications, the canonical one being to the problem of
outsourcing computation to a remote server without compromising one’s privacy. In 2009,
Gentry put forth the first candidate construction of FHE based on ideal lattices [Gen09b].
Since then, substantial progress has been made [DGHV10; SS10; SV10; BV11a; BV11b;
BGV12; GHS12; GSW13; BV14; AP14], offering various improvements in conceptual and
technical simplicity, efficiency, security guarantees, assumptions, etc; in particular, Gentry,
Sahai and Waters presented a very simple FHE (hereafter called the GSW cryptosystem)
based on the standard learning with errors (LWE) assumption.
Circuit privacy. An additional requirement in many FHE applications is that the evaluated
ciphertext should also hide the function f , apart from what is inevitably leaked through the
outcome of the computation f(µ); we refer to this requirement as circuit privacy [SYY99;
IP07]. In the context of outsourcing computation, a server may wish to hide its propri-
etary algorithm from the client, while in the context of homomorphic evaluation of neural
networks, a company might want to protect the “internal details” of the cognitive model,
such as its topology, the weights, . . . In fact, training an effective neural network is usually
a complex and time-consuming procedure, where considerable effort is invested to achieve
small improvements that make one’s product better than those of the competitors. In these
situations, protecting the privacy of these trade secrets becomes of vital importance for the
profitability of the product. Circuit privacy is also a requirement when we use FHE for
low-communication secure two-party computation. In all existing FHE schemes, there is a
“noise” term in the ciphertext, which is necessary for security. The noise grows and changes
as a result of performing homomorphic operations and, in particular, could leak information
about the function f . The main challenge for achieving FHE circuit privacy lies precisely in
avoiding the leakage from the noise term in the evaluated ciphertext.
Prior works. Prior works achieve circuit privacy by essentially canceling out the noise term
in the evaluated ciphertext. There are two main approaches for achieving this. The first is
“noise flooding” introduced in Gentry’s thesis, where we add a much larger noise at the end of
the computation; in particular, the noise that is added needs to be super-polynomially larger
than the noise that accumulates amidst homomorphic operations, which in turn requires that
we start with a super-polynomial modulus-to-noise ratio1. This is a fairly mild assumption
for the early constructions of FHE schemes, which required a quasi-polynomial modulus-
to-noise ratio just to support homomorphic operations for circuits in NC1 (i.e., circuits of
logarithmic depth). The second is to decrypt and re-encrypt the evaluated ciphertext, also
known as bootstrapping in the FHE literature. This can be achieved securely without having
to know the secret key in the clear in one of two ways: (i) with the use of garbled circuits
[OPP14; GHV10], and (ii) via homomorphic evaluation of the decryption circuit given an
encryption of the secret key under itself [DS16], which requires the additional assumption of
circular security (cf. Assumption 3.3.1).

1Recall that LWE hardness depends on the modulus-to-noise ratio: the smaller the ratio, the harder the
problem.

Ch
ap

te
r5

5.1 Introduction 73

Both of the prior approaches have some theoretical and practical draw-backs, if we con-
sider FHE for NC1 circuits (the rest of the discussion also applies to leveled FHE for general
circuits). First, recall that we now have FHE for NC1 circuits under the LWE assump-
tion with a polynomial modulus-to-noise ratio [BV14; AP14], and we would ideally like
to achieve circuit privacy under the same assumption. Relying on noise flooding for circuit
privacy would require quantitatively stronger assumptions with a super-polynomial modulus-
to-noise ratio, which in turn impacts practical efficiency due to the use of larger parameters.
Similarly, the use of bootstrapping for circuit privacy can also be computationally expen-
sive (indeed, the bootstrapping operation is the computational bottleneck in existing FHE
schemes, cf. [DM15; HS15]). Moreover, realizing bootstrapping via an encryption of the
secret key requires an additional circular security assumption (cf. Assumption 3.3.1), which
could in turn also entail the use of larger parameters in order to account for potential weak-
nesses introduced by circular security. Realizing bootstrapping via garbled circuits avoids
the additional assumption, but is theoretically and practically unsatisfying as it requires
encoding the algebraic structure in existing FHEs as boolean computation, and sacrifices
the multi-hop property in that we can no longer perform further homomorphic computation
on the evaluated ciphertexts.

5.1.1 Our results
Our main result is a circuit-private FHE for NC1 circuits – and a circuit-private leveled FHE
for general circuits – under the LWE assumption with a polynomial modulus-to-noise ratio,
and whose efficiency essentially matches that of existing variants of the GSW cryptosystem
in [BV14; AP14]; in other words, we avoid noise flooding or bootstrapping and obtain circuit
privacy almost for free.
We obtain our main result via a conceptually different approach from prior works: in-

stead of canceling out the noise term in the evaluated ciphertext, we directly analyze the
distribution of the noise term (prior works on FHE merely gave a bound on the noise term).
Concretely, we show that adding a small noise in each step of homomorphic evaluation in
the GSW cryptosystem already hides the computation itself which yields circuit privacy.
Along the way, we gain better insights into the algebraic structure and the noise distribution
in GSW scheme and provide new tools for analyzing noise randomization which we believe
could be of independent interest.
As an immediate corollary, we obtain a two-party protocol for secure function evaluation

where Alice holds x, Bob holds a branching program f , and we want Alice to learn f(x)
while protecting the privacy of x and f to the largest extent possible, that is, Bob learns
nothing about x and Alice learns nothing about f (apart from a bound on the size of f). Our
protocol achieves semi-honest security under the standard LWE assumption with polynomial
hardness, and where the total communication complexity and Alice’s computation are poly-
logarithmic in the size of f .

The core of our analysis is a variant of the Gaussian leftover hash lemma [AGHS13; AR13]:
given a “small” vector e and any vector v, we have

eᵀ ·G−1
rand (v) + y ≈s e′

where
• G−1

rand (v) outputs a random short vector x satisfying Gx = v mod q according to a
discrete Gaussian with parameter r = Õ (1);

74 Chapter 5 Circuit privacy for homomorphic computations

plaintext vout = vx = xv1 + (1− x)v0

[GSW13; BV14] Vout = C ·G−1
det (V1) + (G−C) ·G−1

det (V0)

[AP14] Vout = C ·G−1
rand (V1) + (G−C) ·G−1

rand (V0)

[this work] Vout = C ·G−1
rand (V1) + (G−C) ·G−1

rand (V0) +

 0

yᵀ

Table 5.1: The first row of the table shows the plaintext computation that happens at each

step of the evaluation of a branching program (cf. Section 5.4.3.1). The next
three rows describe how this computation is carried out homomorphically on
ciphertexts V0,V1,C corresponding to encryptions of the input bits v0, v1, x.
In the [GSW13; BV14] FHE schemes, homomorphic evaluation is deterministic,
whereas in [AP14] and this work, homomorphic evaluation is randomized. In
particular, our construction introduces an additional small Gaussian shift on top
of [AP14].

• both y and e′ are drawn from discrete Gaussians with parameter O(r · ‖e‖) (the norm
of e′ will be slightly larger than that of y).

We stress that the distribution of e′ is independent of v and that the norm of y, e′ are
polynomially related to that of ‖e‖. Indeed, a similar statement is true via noise flooding,
where we pick y, e′ to have norm super-polynomially larger than that of ‖e‖. Using this
leftover hash lemma to hide the argument of G−1

rand (·) is new to this work and will be crucial
in proving circuit privacy. In Table 5.1 we show a comparison with previous works on how
to perform a step of computation for branching program evaluation.

5.1.2 Technical overview

We proceed with a technical overview of our construction. We build up to our main con-
struction in three steps.

Generating fresh LWE samples. How do we generate a fresh LWE sample from a large
but bounded number of samples? That is, we need to randomize (A, sᵀA + eᵀ). The first
idea, going back to [Reg05; GPV08; ACPS09] is to choose x according to a discrete Gaussian
with parameter r = Õ (1) and a small “smoothing” noise y from a discrete Gaussian with
parameter O(r · ‖e‖) and output

Ax, (sᵀA + eᵀ)x + y

The vector Ax is statistically close to uniform (by leftover hash lemma), and the error
eᵀx + y in the resulting sample is statistically close to a discrete Gaussian with parameter
O(r · ‖e‖). We stress that the norm of y is polynomially related to that of e, which is better
than naive noise flooding. One draw-back compared to noise flooding is that the error in the
new sample leaks ‖e‖. In the case of generating fresh LWE samples, we just need to repeat
the process to generate many more samples than what we started out with.

Ch
ap

te
r5

5.1 Introduction 75

Randomizing GSW ciphertexts. Next, we note that the above idea can also be used to
randomize GSW ciphertexts. Recall that a GSW encryption of a message µ is of the form

C =
(

A
sᵀA + eᵀ

)
+ µG ∈ Zn×(n log q)

q

where s ∈ Znq is the secret key and G is the “powers of 2” gadget matrix. We can randomize
C to be a fresh encryption of µ by computing

C ·G−1
rand (G) +

(
0
yᵀ

)

where G−1
rand (G) is chosen according to a discrete Gaussian of parameter r satisfying G ·

G−1
rand (G) = G and y is again a small smoothing noise vector. Here, we need an extension of

the previous lemma showing that each coordinate in eᵀ ·G−1
rand (G) + yᵀ is statistically close

to a discrete Gaussian; this in turn follows from an extension of the previous lemma where
the vector x is drawn from discrete Gaussian over the coset of a lattice (cf. Lemma 5.3.3).
And again, the norm of y is polynomially related to that in e, which is better than naive
noise flooding.
Scaling GSW ciphertexts. More interesting, given a constant a ∈ {0, 1}, we can scale a
GSW encryption of µ to obtain a fresh encryption of a · µ while revealing no information
about a beyond what is leaked in a · µ. In particular, if µ = 0, then the resulting ciphertext
should completely hide a. To achieve this, we simply proceed as before, except we use
G−1

rand (a ·G) so that G ·G−1
rand (a ·G) = a ·G. Here, we crucially rely on the fact that the

error eᵀ ·G−1
rand (a ·G) + yᵀ in the resulting ciphertext is independent of a.

Circuit-private homomorphic evaluation. The preceding construction extends to the
setting where we are given a GSW encryption C′ of a instead of a itself, so that we output

C ·G−1
rand

(
C′
)

+
(

0
yᵀ

)
.

We can handle homomorphic encryption as in GSW; this then readily extends to a circuit-
private homomorphic evaluation for branching programs, following [BV14; AP14].
Branching programs are a relatively powerful representation model. In particular, any

logarithmic space or NC1 computation can be carried out by a family of polynomial-size
branching programs. Branching programs can also directly capture several representation
models often used in practice such as decision trees, OBDDs, and deterministic finite au-
tomaton.
The key insight from Brakerski and Vaikuntanathan [BV14] is that when homomorphically

evaluating a branching program, we will only need to perform homomorphic additions along
with homomorphic multiplications of ciphertexts Vj ,Ci where Vj is the encryption of an
intermediate computation and Ci is an encryption of the input variable xi. To obtain
decryption correctness with polynomial noise growth, they computed the product as

Ci ·G−1
det(Vj),

where G−1
det (·) is the deterministic binary decomposition, cleverly exploiting the asymmetric

noise growth in GSW ciphertexts and the fact that the noise in Ci is smaller than that in

76 Chapter 5 Circuit privacy for homomorphic computations

Vj . To obtain circuit privacy, we will compute the product as

Ci ·G−1
rand (Vj) +

(
0
yᵀj

)
.

Note that we made two modifications:
• First, we switched to a randomized G−1

rand (·). The use of a randomized G−1
rand (·) for

homomorphic evaluation was first introduced in [AP14], but for the very different
purpose of a mild improvement in the noise growth (i.e., efficiency); here, we crucially
exploit randomization for privacy.

• Next, we introduced an additional Gaussian shift yᵀj .

Interestingly, it turns out that computing the product as Ci · G−1
rand (Vj) instead of Vj ·

G−1
rand (Ci) is useful not only for polynomial noise growth, but also useful for circuit privacy.

Roughly speaking, the former hides which Vj is used, which corresponds to hiding the
intermediate states that lead to the final output state, which in turn hides the branching
program.
We highlight a subtlety in the analysis: Vj could in principle encode information about

Ci, if the variable xi has been read prior to reaching the intermediate state encoded in
Vj , whereas to apply our randomization lemma, we crucially rely on independence between
Ci and Vj . The analysis proceeds by a careful induction argument showing that Vj looks
like a fresh GSW ciphertext independent of input ciphertexts C1, . . . ,C` apart from some
dependencies on the norm of the noise terms in the input ciphertexts (see Lemma 5.4.7
for a precise statement). These dependencies mean that homomorphic evaluation leaks the
number of times each variable appears in the branching program, but that can be easily
fixed by padding the branching program.

5.2 Additional preliminaries
In this section we give some additional notions that are needed to properly understand the
following. These preliminaries are local to this part.

5.2.1 Randomized G−1 (·) algorithm
First of all, we introduce a randomized version of the G−1 (·) algorithm already mentioned
in Section 3.4.3. This algorithm and its properties will be fundamental for our construction.
Definition 5.2.1 (The G−1

rand (·) algorithm, adapted from [MP12],[AP14, Claim 3.1]). There
is a randomized, efficiently computable function G−1

rand (·) : Znq → Zm, where m = n dlog qe
such that x← G−1

rand (v) is drawn from a distribution close to a Gaussian with parameter r =
Õ (1) conditioned on Gx = v mod q, i.e., G−1

rand (v) outputs a sample from the distribution
DΛ⊥q +G−1

det(v),r where G−1
det (·) denotes (deterministic) bit decomposition. We will also write

X← G−1
rand (M) to denote that the columns of the matrix X ∈ Zm×p are obtained by applying

the algorithm separately to each column of a matrix M ∈ Zn×pq .
In particular, using the exact sampler in [BLP+13, Section 5] (which is a variant of the

algorithm presented in [GPV08]), G−1
rand (v) outputs a sample from the discrete Gaussian

DΛ⊥q +G−1
det(v),r.

Ch
ap

te
r5

5.2 Additional preliminaries 77

5.2.2 Probability results
We will also need the following probability results.

Lemma 5.2.2 (Simplified version of [Pei10, Theorem 3.1]). Let ε > 0, r1, r2 > 0 be two
Gaussian parameters, and Λ ⊆ Zm be a lattice. If r1r2√

r2
1+r2

2
≥ ηε (Λ), then

∆
(
y1 + y2,y′

) ≤ 8ε,

where y1 ← DΛ,r1, y2 ← DΛ,r2, and y′ ← DΛ,
√
r2

1+r2
2
.

Lemma 5.2.3 ([AP14, Lemma 2.1]). There exists a universal constant C > 0, such that

Pr
[‖x‖ > Cr

√
m
] ≤ 2−Ω(m),

where x← DZm,r.

5.2.3 Results on lattices and Gaussian distributions
Finally, we recall some additional results.

Lemma 5.2.4 ([MR07, Lemma 3.3]). Let Λ be any rank-m lattice and ε be any positive real.
Then

ηε (Λ) ≤ λm (Λ) ·
√

ln (2m (1 + 1/ε))
π

,

where λm (Λ) is the m-th successive minimum of the lattice Λ (cf. Definition 2.3.4).

Lemma 5.2.5 ([GPV08, Corollary 2.8]). Let Λ ⊆ Zm be a lattice, 0 < ε < 1, r > 0. For
any vector c ∈ Rm, if r ≥ ηε (Λ), then we have

ρr (Λ + c) ∈
[1− ε

1 + ε
, 1
]
· ρr (Λ) .

Lemma 5.2.6 ([Reg05, Claim 3.8]). Let Λ ⊆ Zm be any lattice, c ∈ Rm, ε > 0 and
r ≥ ηε(Λ). Then

ρr (Λ + c) ∈ rm

det (Λ) (1± ε) .

5.2.4 Entropy and leftover hash lemma
Here, we recall the definition of min-entropy and a version of the leftover hash lemma.

Definition 5.2.7 (Min-entropy). The min-entropy of a random variable X is defined as

H∞ (X) := − log
(
max
x

Pr[X = x]
)
.

Next, we state here a simplified version of the leftover hash lemma (originally introduced
by Impagliazzo et al. [ILL89]), which is sufficient for our use.

Lemma 5.2.8 (Leftover hash lemma [DRS04]). Let e be any random variable over Zmq and
f : Zmq → Zkq . Then

∆ ((Xe,X, f (e)) , (r,X, f (e))) ≤
√
qn+k · 2−H∞(e).

78 Chapter 5 Circuit privacy for homomorphic computations

5.2.5 Permutation branching programs
Here we recall the definition of a permutation branching program, that we also call simply
branching program, and sometimes abbreviate as BP.

Definition 5.2.9 (Permutation branching program). A permutation branching program Π
of length L and width W with input space {0, 1}` is a sequence of L tuples of the form
(var (t) , πt,0, πt,1), where

• var : [L]→ [`] is a function that associates the t-th tuple with an input bit xvar(t)

• πt,0, πt,1 : [W]→ [W] are permutations that dictate the t-th step of the computation.

On input (x1, . . . , x`), Π outputs 1 iff

πL,xvar(L)(· · · (π1,xvar(1)(1)) · · ·) = 1.

Following [BV14; IP07], we will evaluate Π recursively as follows. We associate each
t ∈ [L] with the characteristic vector vt ∈ {0, 1}W of the current “state”, starting with
v0 = (1, 0, . . . , 0). We can then compute the w-th entry of vt (denoted by vt [w]): for all
t ∈ [L], w ∈ [W],

vt [w] = vt−1
[
π−1
t,xvar(t)

(w)
]

= xvar(t) · vt−1
[
π−1
t,1 (w)

]
+
(
1− xvar(t)

)
· vt−1

[
π−1
t,0 (w)

]
. (5.1)

5.3 Core randomization lemma
We are now ready to state and prove our main randomization lemma for LWE samples. Note
that in the remainder of this chapter, we set q to be a power of 2, and m = n log q. We
discuss the use of a q which is not a power of 2 in Section 5.4.5.

Lemma 5.3.1 (Core randomization lemma). Let ε, ε′ > 0, r > ηε
(
Λ⊥q (Gᵀ)

)
be a Gaussian

parameter. For any e ∈ Zmq , v ∈ Znq , if

r ≥ max

4
(
(1− ε) (2ε′)2)− 1

m ,
√

5(1 + ‖e‖)
√

ln (2m (1 + 1/ε))
π

 ,
then

∆
(
(A,Ax, eᵀx + y) ,

(
A,u, e′

))
< ε′ + 2ε

where x← G−1
rand (v), A←$ Z(n−1)×m

q , u←$ Zn−1
q , y ← DZ,r and e′ ← DZ,r

√
1+‖e‖2.

Asymptotically, r = Θ̃ (‖e‖√κ) is enough to obtain negligible statistical distance.

Remark 5.3.2 (on the necessity of randomization). We note here that the use of random-
ization in G−1

rand (·) and the shift are both necessary.
First, the shift is necessary for both distributions to have the same support. For exam-

ple, eᵀG−1
rand ((1, 0, . . . , 0)) and eᵀG−1

rand (0) might lie in two different cosets of the lattice
eᵀΛ⊥q (Gᵀ), depending on the value of e: if the first coordinate of e is odd and all the others
are even, then eᵀG−1

rand ((1, 0, . . . , 0)) will be odd, while eᵀG−1
rand (0) will be even, for an even

q. The shift by a Gaussian over Z ensures that the support of the two distributions is Z.

Ch
ap

te
r5

5.3 Core randomization lemma 79

Proving that eᵀΛ⊥q (Gᵀ) = Z with overwhelming probability over the choice of e is still an
open question that would remove the necessity of the shift, thus proving circuit privacy for
standard GSW only using randomized G−1

rand (·).
Finally, the randomization of G−1

rand (·) is necessary for both distributions to have the same
center. Using the same example, eᵀG−1

det ((1, 0, . . . , 0)) + y and eᵀG−1
det (0) + y would be two

Gaussians, centered respectively on e1 (the first coordinate of e) and on 0. Instead, using
the randomized algorithm G−1

rand (·), the center of both distributions will be 0.

5.3.1 Proof of randomization lemma

We first prove that given e, the new error term eᵀx +y is indeed a Gaussian with parameter
r
√

1 + ‖e‖2. This proof is inspired by [AR13], which in turn is an improvement of [AGHS13],
but it is different in two aspects: on one hand, in [AR13] the proof is done for the specific
case where x is drawn from a Gaussian over a coset of Zm; on the other hand, they consider
the more general case of an ellipsoidal Gaussian distribution.

Lemma 5.3.3 (adapted from [AR13, Lemma 3.3]). Let ε, r > 0. For any e ∈ Zm, c ∈ Rm,
if r ≥

√
5(1 + ‖e‖) ·

√
ln(2m(1+1/ε))

π , then

∆
(
eᵀx + y, e′

)
< 2ε

where x← DΛ⊥q (Gᵀ)+c,r, y ← DZ,r, and e′ ← DZ,r
√

1+‖e‖2.

Asymptotically, r = Θ̃(‖e‖√κ) is enough to obtain negligible statistical distance. We
stress that the distribution of e′ does not depend on the coset c.

Proof. Let ê = (e, 1) ∈ Zm+1, ĉ = (c, 0) ∈ Zm+1 and Λ̂ = Λ⊥q (Gᵀ) × Z. We want to show
that

∆
(
êᵀDΛ̂+ĉ,r,DZ,‖ê‖r

)
≤ 2ε

The support of êᵀDΛ̂+ĉ,r is êᵀΛ̂ + êᵀĉ = eᵀΛ⊥q (Gᵀ) + Z + eᵀc = Z. Fix some z ∈ Z. The
probability mass assigned to z by êᵀDΛ̂+ĉ,r is proportional to ρr(Lz), where

Lz =
{

v ∈ Λ̂ + ĉ : êᵀv = z
}

We define the lattice L =
{

v ∈ Λ̂ : êᵀv = 0
}
; note that Lz = L + wz for any wz ∈ Lz.

Let uz = z

‖ê‖2
r
ê, then uz is clearly proportional to ê. Observe that uz is orthogonal

to r−1Lz − uz, indeed for any t ∈ r−1Lz we have êᵀ (t− uz) = 0. From this we have
ρ (t) = ρ (uz) · ρ (t− uz), and by summing for t ∈ r−1Lz:

ρ(r−1Lz) = ρ (uz) · ρ
(
r−1Lz − uz

)
Observe that we have r−1Lz −uz = r−1(L− c′) for some c′ in the vector span of the lattice
L (because Lz − ruz = L + wz − ruz and êᵀ (wz − ruz) = 0). Thus using Lemmas 5.2.5

80 Chapter 5 Circuit privacy for homomorphic computations

and 5.3.4 with r ≥
√

5 (1 + ‖e‖) ·
√

ln(2m(1+1/ε))
π ≥ ηε(L), we obtain

ρ(r−1Lz) = ρ(uz) · ρr(L − c′)

∈
[1− ε

1 + ε
, 1
]
· ρr(L) · ρ(uz)

=
[1− ε

1 + ε
, 1
]
· ρr(L) · ρ

(
z

‖ê‖2 r
ê
)

=
[1− ε

1 + ε
, 1
]
· ρr(L) · ρ‖ê‖r(z)

This implies that the statistical distance between êᵀDΛ̂+ĉ,r and DZ,‖ê‖r is at most 1− 1−ε
1+ε ≤

2ε.

In order to conclude the previous proof, we now give a bound on the smoothing parameter
of the lattice L.

Lemma 5.3.4. Let ε > 0. For any e ∈ Zm, let L be as defined in Lemma 5.3.3. Then we
have:

ηε(L) ≤
√

5(1 + ‖e‖) ·
√

ln (2m (1 + 1/ε))
π

Proof. We use Lemma 5.2.4 to bound the smoothing parameter of L. Since Λ̂ = Λ⊥q (Gᵀ)×Z
is of dimension m + 1 and L is the sublattice of Λ̂ made of the vectors that are orthogonal
to e, we have that L is of dimension m. We thus exhibit m independent short vectors of L
to obtain an upper bound on λm (L). We first define the matrix

B =

2
−1 . . .

.
−1 2

 ∈ Z(log q)×(log q)

and remark that it is a basis for the lattice Λ⊥q (gᵀ). The lattice Λ̂ is then generated by the
columns of the matrix:

B = (b1 | . . . | bm+1) =
(

In ⊗B 0
0ᵀ 1

)
∈ Z(m+1)×(m+1)

For k ≤ m let uk = bk −bm+1 · êᵀbk, since êᵀbm+1 = 1 we directly have êᵀuk = 0 and thus
uk ∈ L. The vectors u1, . . . ,um are linearly independent since span (u1, . . . ,um,bm+1) =
span (b1, . . . ,bm,bm+1) = Rm+1 (which comes from the fact that B is a basis of an (m+ 1)-
dimensional lattice). We now bound the norm of uk:

‖uk‖ ≤ ‖bk‖+ ‖bm+1‖ ‖e‖ ‖bk‖
=
√

5(1 + ‖e‖)

Note that |êᵀbk| ≤ ‖e‖ ‖bk‖ since the last coefficient of bk is 0. Finally we obtain λm(L) ≤
maxk≤m ‖uk‖ ≤

√
5(1 + ‖e‖) and the result.

Ch
ap

te
r5

5.3 Core randomization lemma 81

The final proof of Lemma 5.3.1 will necessitate a call to the leftover hash lemma, so before
continuing we analyze the min-entropy of x← DΛ⊥q (Gᵀ)+c,r.

Lemma 5.3.5. Let ε > 0, r ≥ ηε
(
Λ⊥q (Gᵀ)

)
. For any c ∈ Rm, we have

H∞
(
DΛ⊥q (Gᵀ)+c,r

)
≥ log (1− ε) +m log (r)−m

Proof. For any v ∈ Λ⊥q (Gᵀ) + c

DΛ⊥q (Gᵀ)+c,r(v) ≤ DΛ⊥q (Gᵀ)+c,r(v0), for v0 the point of Λ⊥q (Gᵀ) + c closest to 0

= ρr(v0)
ρr(Λ⊥q (Gᵀ) + c)

≤ 1
ρr(Λ⊥q (Gᵀ) + c) , since ρr(v0) < 1

≤ (1− ε) rm

det
(
Λ⊥q (Gᵀ)

) , by Lemma 5.2.6 since r ≥ ηε
(
Λ⊥q (Gᵀ)

)

The lattice Λ⊥q (Gᵀ) is generated by the basis In ⊗ B, with B defined as above, which has
determinant

(
2log q

)n
= 2m. The result follows:

H∞
(
DΛ⊥q (Gᵀ)+c,r

)
≥ log (1− ε) +m log (r)−m

We are now ready to prove Lemma 5.3.1.

Proof. The proof is done in two steps. First, by Lemma 5.3.5, we know that x has min
entropy at least log(1− ε) +m log(r)−m ≥ (n+ 1) log(q)− 2 log(ε′)− 2. Moreover, eᵀx + y
is in Zq. Applying the leftover hash lemma (Lemma 5.2.8), we obtain

∆ ((A,Ax, eᵀx + y) , (A,u, eᵀx + y)) < ε′

where u←$ Zn−1
q . Now, using Lemma 5.3.3, we know that

∆
(
eᵀx + y, e′

)
< 2ε

Summing the two statistical distances concludes the proof.

5.3.2 Rerandomizing LWE samples
We finally describe a simple application of Lemma 5.3.1. Generating fresh LWE samples
for a fixed secret s from a bounded number of samples is very useful, for example to build
a public key encryption scheme from a symmetric one. It has already been shown in the
succession of papers [Reg05; GPV08; ACPS09] that multiplying a matrix of m LWE samples
(A, sᵀA+eᵀ) by a discrete Gaussian x← DZm,r and adding another Gaussian term y ← DZ,r
to the error part yields a fresh LWE sample (a′, sᵀa′ + e′) with a somewhat larger Gaussian
noise e′. Here we have shown that picking x according to a discrete Gaussian distribution

82 Chapter 5 Circuit privacy for homomorphic computations

over a coset c of Λ⊥q (Gᵀ) is enough for this rerandomization process. Moreover, we show
that the distribution of the final error is independent of the coset c, which will come in
handy for hiding homomorphic evaluations. We note that this could be extended to any
other lattice with a small public basis (cf. Section 5.4.5), but we mainly focus on Λ⊥q (Gᵀ)
because this is sufficient for our use.

5.4 Our scheme: circuit-private homomorphic evaluation for GSW

In this section, we prove that a slight modification of the GSW encryption scheme is enough
to guarantee circuit privacy, i.e., that an evaluation of any branching program does not
reveal anything more than the result of the computation and the length of the branching
program, as long as the secret key holder is honest.

5.4.1 Rerandomizing and scaling GSW ciphertexts

First, we show how we can rerandomize and scale a GSW ciphertext. In the following we
write Encγ (sk, µ) to denote that, when calling the encryption algorithm, the error is sampled
from a discrete Gaussian distribution with parameter γ. We let α be the parameter of fresh
ciphertexts, and implicitly use Enc (sk, µ) to denote Encα (sk, µ). Recall from Section 3.4.3
that the form of a GSW ciphertext is

C =
(
−A

sᵀA + eᵀ

)
+ µG.

Using the rerandomization of LWE samples presented in Section 5.3.2, it is possible to
generate a fresh encryption of 0 by computing C ·G−1

rand (V), where C is an encryption of 0
and V is any matrix in Zn×mq .

Lemma 5.4.1. Let r > 0. For any V ∈ Zn×mq , if r = Ω
(
α
√
κm logm

)
, with α being the

Gaussian parameter of fresh encryptions, then

(
C ·G−1

rand (V) +
(

0
yᵀ

)
,C
)
≈s

(
C′,C

)

where C =
(
−A

sᵀA + eᵀ

)
← Enc (sk, 0), C′ ← Encγ (sk, 0), with γ = r

√
1 + ‖e‖2.

Proof. Fix v ∈ Zmq and e such that ‖e‖ ≤ Cα
√
m, where C is as in Lemma 5.2.3. Then by

applying Lemma 5.3.1 with r = Ω
(
α
√
κm logm

)
and ε′ = ε = 2−κ we have

∆
(
(A,Ax, eᵀx + y) ,

(
A,u, e′

))
< 3 · 2−κ

where A←$ Z(n−1)×m
q , x ← G−1

rand (v) and y ← DZ,r. From this we obtain that for e ←

Ch
ap

te
r5

5.4 Our scheme: circuit-private homomorphic evaluation for GSW 83

DZm,α:

∆
(
(A, e,Ax, eᵀx + y) ,

(
A, e,u, e′

))
=

∑
w∈Zm

∆
(
(A,Ax,wᵀx + y) ,

(
A,u, w′

)) · Pr [e = w]

≤
∑

‖w‖<Cα
√
m

3 · 2−κ Pr [e = w] +
∑

‖w‖≥Cα
√
m

Pr [e = w]

≤ 3 · 2−κ + Pr
[‖e‖ ≥ Cα√m]

≤ 3 · 2−κ + 2−Ω(κ)

In the left operand of the third equation we bound the statistical distance by 3 · 2−κ and
in the right operand we bound it by 1. To obtain the last inequality we use Lemma 5.2.3
and have Pr [‖e‖ > Cα

√
m] ≤ 2−Ω(m) ≤ 2−Ω(κ) since m ≥ κ. By rewriting this distance we

have for any v ∈ Zmq (
C ·G−1

rand (v) +
(

0
y

)
,C
)
≈s

((
−u

sᵀu + e′

)
,C
)

By writing V = (v1 | . . . | vm) and y = (y1, . . . , ym), we have

C ·G−1
rand (V) +

(
0
yᵀ

)
=
(

C ·G−1
rand (v1) +

(
0
y1

)
| . . . | C ·G−1

rand (vm) +
(

0
ym

))

We define the distributions (Di)0≤i≤m in which the first i columns of C ·G−1
rand (V) +

(
0
yᵀ

)

are replaced with “fresh”
(
−u

sᵀu + e′

)
and we obtain through a hybrid argument that

∆
((

C ·G−1
rand (V) +

(
0
yᵀ

)
,C
)
,

((
−A′

sᵀA′ + e′ᵀ

)
,C
))
≤ m(3 · 2−κ + 2−Ω(κ))

As a direct corollary we remark that the scaling of a GSW encryption C of µ by a bit a,

defined as C ·G−1
rand (a ·G) +

(
0
yᵀ

)
, where y ← DZm,r, does not depend on a, but only on

aµ.

5.4.2 Circuit privacy: definition and main theorem

We now state our definition of circuit privacy, similar to [IP07, Definition 7], which is stronger
than the one given in [Gen09a, Definition 2.1.6] in the sense that it is simulation based, but
weaker in the sense that we leak information about the length of the branching program.

Definition 5.4.2 (Simulation-based circuit privacy). We say that a homomorphic encryp-
tion scheme E is circuit private if there exists a PPT algorithm Sim such that for any branch-
ing program Π of length L = poly(κ) on ` variables, any x1, . . . , x` ∈ {0, 1}, the following

84 Chapter 5 Circuit privacy for homomorphic computations

holds:

(E .Eval (evk,Π, (C1, . . . ,C`)) ,C1, . . . ,C`, 1κ, sk)

≈s
(

Sim
(
1κ,Π (x1, . . . , x`) , 1L, (C1, . . . ,C`)

)
,C1, . . . ,C`, 1κ, sk

)
where sk← E .Setup (1κ), Ci ← E .Enc (sk, xi) for i ∈ [`].

We can now state our main theorem:

Theorem 5.4.3 (Main theorem). There exists a fully homomorphic encryption scheme for
branching programs that is circuit private and whose security is based on the LWE assumption
with polynomial noise-to-modulus ratio.

Remark 5.4.4. The aforementioned scheme is also multi-hop (see definition in [GHV10])
for branching programs, as long as the noise does not grow beyond q/4. This means that the
output of an evaluation can be used as input for further computation, while the property of
circuit privacy is maintained for every hop. More in detail, the evaluation can be carried
out by multiple parties and any subset of these parties is not able to gain information about
the branching program applied by an evaluator which is not in the subset, beside its length,
input and output, even given access to the secret key.

5.4.3 Modified Eval algorithm for the GSW encryption scheme
5.4.3.1 Homomorphic evaluation for branching programs

Here we present our Eval (Π, (C1, . . . ,C`)) algorithm (note that it does not require any
evaluation key), which homomorphically evaluates a branching program Π over ciphertexts
C1, . . . ,C`. The first state vector is encrypted without noise: the initial encrypted state
vector is V0 = (G,0, . . . ,0), i.e. V0[1] = G and V0[w] = 0, for 2 ≤ w ≤ W . Note that
G and 0 are noiseless encryptions of 1 and 0, respectively. The encrypted state vector is
then computed at each step by homomorphically applying Equation (5.1) and adding a noise
term: for t ∈ [L] and w ∈ [W]

Vt [w]← Cvar(t)·G−1
rand

(
Vt−1

[
π−1
t,1 (w)

])
+
(
G−Cvar(t)

)
·G−1

rand

(
Vt−1

[
π−1
t,0 (w)

])
+
(

0
yᵀt,w

)
(5.2)

where yt,w ← DZm,r
√

2. The output of the evaluation algorithm is VL[0] ∈ Zn×mq .

Remark 5.4.5 (Comparison with [BV14; AP14]. Cf. also Table 5.1). The differences
between our homomorphic evaluation procedure and the previous ones are as follows:

• We added an additional Gaussian noise to the computation, as captured in the boxed
term;

• [BV14] uses the deterministic G−1
det (·) whereas [AP14] introduced the randomized G−1

rand (·)
for efficiency. Here, we crucially exploit the randomized G−1

rand (·) for privacy.

Simulator. Towards proving circuit privacy, we need to specify a simulator Sim. We first
describe a simulator that is given access to the number of times each variable is used and

Ch
ap

te
r5

5.4 Our scheme: circuit-private homomorphic evaluation for GSW 85

prove that its output distribution is statistically close to the result of Eval (Lemma 5.4.8).
We can then pad the branching program so that each variable is used the same number of
times. Given the security parameter κ, the length L of the branching program Π, the number
of times τi that Π uses the i-th variable, the final value xf of the evaluation of Π on input
(x1, . . . , x`), the ciphertexts Ci encrypting xi for i ∈ [`], Sim mimics the way error grows
in the states of Eval by doing τi dummy steps of computation with the i-th variable. This
gives a new encryption Âf of 0 with the same noise distribution as the ciphertext output
by the Eval procedure. Sim then adds the message part xf to this ciphertext and outputs
Cf = Âf + xfG.

In other words,

Sim (1κ, xf , (1τ1 , . . . , 1τ`) , (C1, . . . ,C`))←
∑̀
i=1

τi∑
t=1

(
Ci·
(
G−1

rand (0)−G−1
rand (0)

)
+
(

0
yᵀt

))
+xfG

where yt ← DZm,r
√

2 for t ∈ [L].
We note that the sum of 2τi samples G−1

rand (0) can be sampled at once using the G−1
rand (·)

algorithm with a larger parameter r
√

2τi, and the sum of τi samples from DZm,r
√

2 is close
to a sample from DZm,r

√
2τi .

5.4.3.2 Proof of circuit privacy

We proceed to establish circuit privacy in two steps. We first analyze how the ciphertext
distribution changes in a single transition, and then proceed by induction to reason about
homomorphic evaluation of the entire branching program.

Step 1. We begin with the following lemma, which is useful for analyzing the output of
Equation (5.2). Roughly speaking, this lemma says that if at step t, the state vector consists
of fresh GSW encryptions with some noise parameter ζ, then at step t+ 1, the state vector
is statistically close to fresh GSW encryptions with a somewhat larger noise which depends
on the error in the input ciphertext and on ζ.

Lemma 5.4.6. For any x, v0, v1 ∈ {0, 1} and sk =
(
−s, 1

)
← KGen (1κ), the following

holds: (
C ·G−1

rand (V1) + (G−C) ·G−1
rand (V0) +

(
0
yᵀ

)
,C
)
≈s

(
V′x,C

)

where Vb ← Encγ (sk, vb) for b ∈ {0, 1}, C =
(

A
sᵀA + eᵀ

)
+xG← Enc (sk, x), y← DZm,r

√
2

and V′x ← Encζ (sk, vx), with ζ =
√
γ2 + 2r2

(
1 + ‖e‖2

)
.

Proof. We begin with a simple identity which is useful in the remainder of the proof:

C ·G−1
rand (V1) + (G−C) ·G−1

rand (V0) = Â ·
(
G−1

rand (V1)−G−1
rand (V0)

)
+ Vx

where Â =
(

A
sᵀA + eᵀ

)
and V0,V1,C are as defined in the statement of the Lemma.

86 Chapter 5 Circuit privacy for homomorphic computations

Showing this identity is correct just requires performing the calculations:

C ·G−1
rand (V1) + (G−C) ·G−1

rand (V0)

=
(
Â + xG

)
·G−1

rand (V1) +
(
(1− x) G− Â

)
·G−1

rand (V0)

= Â ·
(
G−1

rand (V1)−G−1
rand (V0)

)
+ xV1 + (1− x) V0

= Â ·
(
G−1

rand (V1)−G−1
rand (V0)

)
+ Vx

Then we observe that by applying Lemma 5.2.2 we have(
0
yᵀ

)
≈s

(
0
yᵀ1

)
−
(

0
yᵀ0

)

where yb ← DZm,r, b ∈ {0, 1}. Lemma 5.4.1 also gives(
Â ·G−1

rand (Vb) +
(

0
yᵀb

)
,C
)
≈s (Cb,C)

where Cb ← Encζ′(sk, 0), for b ∈ {0, 1}, with ζ ′ = r
√

1 + ‖e‖2. We now have(
C ·G−1

rand (V1) + (G−C) ·G−1
rand (V0) +

(
0
yᵀ

)
,C
)
≈s (C1 −C0 + Vx,C)

By additivity of variance on independent variables, we obtain that C1 −C0 + Vx = V′x
looks like a fresh encryption of 0− 0 + vx = vx with parameter

√
γ2 + 2r2(1 + ‖e‖2).

Step 2. We now prove that, at each step of the evaluation, each entry of the encrypted
state Vt looks like a fresh GSW encryption of the corresponding entry of the state vt, even
given the GSW encryptions of the input bits, except for a small correlation in the noise.

Lemma 5.4.7 (Distribution of the result of Eval). For any branching program Π of length
L on ` variables, we define τt,i to be the number of times the i-th variable has been used after
t steps of the evaluation, i.e., τt,i =

∣∣var−1 (i) ∩ [t]
∣∣, for i in [`] and t ∈ [L].

For any x1, . . . , x` ∈ {0, 1}, any sk =
(
−s, 1

)
← KGen (1κ), at each step t ∈ [L], for all

indexes w ∈ [W], the following holds:(
Vt [w] , (Ci)i∈[`]

)
≈s

(
C′t,w, (Ci)i∈[`]

)
where Ci =

(
Ai

sᵀAi + eᵀi

)
+ xiG ← Enc (sk, xi) for i ∈ [`], C′t,w ← Encrt (sk,vt [w]) for

(t, w) ∈ [L]× [W] and rt = r

√
2∑`

i=1 τt,i
(
1 + ‖ei‖2

)
.

Proof. We prove this lemma by induction on t ∈ [L]. At step t > 1, for index w ∈ [W] we
use a series of hybrid distributions Ht,w,k for 0 ≤ k ≤ 2 to prove that

(
Vt [w] , (Ci)i∈[`]

)
≈s(

C′t,w, (Ci)i∈[`]

)
. In particular Ht,w,0 =

(
Vt [w] , (Ci)i∈[`]

)
, and Ht,w,2 =

(
C′t,w, (Ci)i∈[`]

)
.

Ch
ap

te
r5

5.4 Our scheme: circuit-private homomorphic evaluation for GSW 87

Hybrid Ht,w,0. Let wb = π−1
t,b (w) for b ∈ {0, 1}. We write wβ to denote wxvar(t) , i.e. w0 or

w1, depending on the value of the variable which is used at time t.

Ht,w,0 =
(
Vt [w] , (Ci)i∈[`]

)
=
(

Cvar(t) ·G−1
rand (Vt−1 [w1]) +

(
G−Cvar(t)

)
·G−1

rand (Vt−1 [w0]) +
(

0
yᵀt,w

)
, (Ci)i∈[`]

)

where Ci ← Enc (sk, xi) and yt,w ← DZm,r
√

2.
Hybrid Ht,w,1. We set

Ht,w,1 =
(

Cvar(t) ·G−1
rand

(
C′t−1,w1

)
+
(
G−Cvar(t)

)
·G−1

rand

(
C′t−1,w0

)
+
(

0
yᵀt,w

)
, (Ci)i∈[`]

)
where Ci ← Enc (sk, xi), yt,w ← DZm,r

√
2 and C′t−1,wb ← Encrt−1(sk,vt−1[wb]) for b ∈ {0, 1}.

By induction hypothesis we have Ht−1,wb,0 ≈s Ht−1,wb,2 for b ∈ {0, 1}, i.e.,(
Vt−1 [wb] , (Ci)i∈[`]

)
≈s

(
C′t−1,wb , (Ci)i∈[`]

)
where Ci ← Enc (sk, xi) and C′t−1,wb ← Encrt−1(sk,vt−1[wb]) for b ∈ {0, 1}.
We use the fact that applying a function to two distributions does not increase their statistical
distance to obtain Ht,w,0 ≈s Ht,w,1.
Hybrid Ht,w,2. Let

Ht,w,2 =
(
C′, (Ci)i∈[`]

)
with Ci ← Enc (sk, xi), C′ ← Encζ (sk,vt−1 [wβ]) and ζ =

√
r2
t−1 + 2r2

(
1 +

∥∥∥evar(t)
∥∥∥2
)
.

By Lemma 5.4.6 we have:(
Cvar(t) ·G−1

rand

(
C′t−1,w1

)
+
(
G−Cvar(t)

)
·G−1

rand

(
C′t−1,w0

)
+
(

0
yᵀt,w

)
, (Ci)i∈[`]

)
≈s

(
C′, (Ci)i∈[`]

)
where Ci ← Enc (sk, xi), yt,w ← DZm,r

√
2, C′t−1,wb ← Encrt−1 (sk,vt−1 [wb]) for b ∈ {0, 1} and

C′ ← Encζ (sk,vt−1 [wβ]). Note that vt−1[wβ] = vt[w] and rt =
√
r2
t−1 + 2r2

(
1 +

∥∥∥evar(t)
∥∥∥2
)

=

ζ from which we have that C′ and C′t,w are identically distributed, and directly Ht,w,1 ≈s
Ht,w,2.
We note that this recursive formula does not apply to step t = 0, we thus use t = 1, w ∈ [W]

as the base case. We only describe the steps that differ from the case t > 1.
Hybrid H1,w,1. We have G−1

rand (V0 [wb]) = G−1
rand (v0 [wb] ·G) for b ∈ {0, 1}. Notice that

we now have exactly H1,w,1 = H1,w,0.
Hybrids H1,w,2. The proof for H1,w,1 ≈s H1,w,2 is identical to the one of Lemma 5.4.6
except for the fact that the ciphertext Vx from the proof is now of the form v0 [wβ] G. The
resulting ciphertext C′1,w is now only the sum of two encryptions of 0 and v0 [wβ] and has a

Gaussian parameter r
√

2
(

1 +
∥∥∥evar(1)

∥∥∥2
)

= r1. This implies H1,w,1 ≈s H1,w,2.

88 Chapter 5 Circuit privacy for homomorphic computations

We now proceed to proving circuit privacy. We will first prove the following lemma, which
states that the Eval algorithm presented in Section 5.4.3.1 only leaks the final result of the
evaluation and the number of times each variable is used.

Lemma 5.4.8. Let E be the GSW scheme defined in Section 3.4.3 with evaluation defined
as in this section, and Sim be the corresponding simulator. Then for any branching program
Π of length L = poly(κ) on ` variables, such that the i-th variable is used τi times, and any
x1, . . . , x` ∈ {0, 1}, the following holds:

(E .Eval (Π, (C1, . . . ,C`)) ,C1, . . . ,C`, 1κ, sk)

≈s
(

Sim
(
1κ,Π (x1, . . . , x`) , (1τ1 , . . . , 1τ`), (C1, . . . ,C`)

)
,C1, . . . ,C`, 1κ, sk

)
where sk← E .KGen (1κ), Ci ← E .Enc (sk, xi) for i in [`].

Proof. As shown in Lemma 5.4.7, the final result of the homomorphic evaluation of the
branching program Π is of the form

VL [0] ≈s
(

A
sᵀA + fᵀ

)
+ xfG

where A←$ Z(n−1)×m
q , f ← DZm,rL and rL = r

√
2∑`

i=1
(
1 + ‖ei‖2

)
τi.

Now we prove that the output of Sim is statistically close to the same distribution. This
proof follows from the fact that scaling GSW ciphertexts yields a result which is independent
of the argument of G−1

rand (·). Let Ai,t,A′i,t←$ Z(n−1)×m
q , fi,f , f ′i,t ← DZm,r

√
1+‖ei‖

, then the
joint distribution of the output of Sim and ciphertexts (Ci)i∈[`] is

(
S, (Ci)i∈[`]

)
=

(∑`
i=1 Ci

∑τi
t=1

(
G−1

rand (0)−G−1
rand (0)

)
+
(

0
yᵀt

)
+ xfG, (Ci)i∈[`]

)

≈s
(∑`

i=1
∑τi
t=1

(
Ai,t

sᵀAi,t + fi,t

)
+
(

A′i,t
sᵀA′i,t + f ′i,t

)
, (Ci)i∈[`]

)
by Lemma 5.3.1

≈s
((

A
sᵀA + fᵀ

)
, (Ci)i∈[`]

)
by Lemma 5.2.2 and summing uniform variables.

The result is the same as the joint distribution of the output of Eval and ciphertexts
(Ci)i∈[`], thus concluding the proof.

We are now ready to prove Theorem 5.4.3.

Main theorem. Theorem 5.4.3 follows from Lemma 5.4.8 by tweaking the Eval algorithm of
E : it is sufficient that this algorithm pads the branching program Π so that each variable is
used L times. This padding is done by using the identity permutation for all steps after the
L-th. After this proof, we discuss more efficient ways to pad branching program evaluations.
It is easy to see that this step is enough to reach the desired circuit privacy property: the
only information leaked besides the final result is τi = L.

Ch
ap

te
r5

5.4 Our scheme: circuit-private homomorphic evaluation for GSW 89

Padding branching program evaluations. In order to pad a branching program Π that
uses the i-th variable τi times to one that uses the i-th variable L times, we add L − τi
steps, using the identity permutation at each one of these. Given VL [0] the final result of
the computation, this padding corresponds to steps t ∈ [L+ 1, 2L− τi] defined as follows:

Vt [0]← Vt−1 [0] + Ci

(
G−1

rand (Vt−1 [0])−G−1
rand (Vt−1 [0])

)
+
(

0
yᵀt,0

)

Using the same proof as Lemma 5.4.8 the final output will be

V2L−τi [0]← VL [0] + Ci

2L−τi−1∑
t=L

(
G−1

rand (Vt [0])−G−1
rand (Vt [0])

)
+
(

0
yᵀt,0

)

≈s VL [0] + Ci

2L−τi−1∑
t=L

(
G−1

rand (0)−G−1
rand (0)

)
+
(

0
yᵀt,0

)

Observe that by using Lemma 5.2.2 we have that

2L−τi−1∑
t=L

(
G−1

rand (0)−G−1
rand (0)

)
≈s DΛ⊥q (Gᵀ),rf

2L−τi−1∑
t=L

(
0

yᵀt,0

)
≈s DZm,rf

Where rf = r
√

2 (L− τi). We can thus do all the steps at once by outputting VL [0] + Ci ·

X +
(

0
yᵀf

)
, where X← DmΛ⊥q (Gᵀ),rf and yf ← DZm,rf . We note that X can be sampled using

the G−1
rand (·) algorithm with parameter rf instead of r.

5.4.4 Setting the parameters
In this section we show that, for appropriate values of the parameters, the output of the
homomorphic evaluation VL[0] decrypts to Π (x1, . . . , x`) with overwhelming probability and
guarantees circuit privacy.
We first recall the bounds on the parameters needed for both correctness and privacy. Let

n = Θ (κ), q = poly(n), m = n log q, α be the Gaussian parameter of fresh encryptions, r
be the parameter of G−1

rand (·). Let B = Θ (α
√
m) be a bound on the norm of the error in

fresh encryptions (using a tail cutting argument we can show that B = Cα
√
m is sufficient

to have a bound with overwhelming probability), Lmax = poly(n) be a bound on the size of
the branching programs we consider and `max = poly(n) an upper bound on their number
of variables. Let ε = O(2−κ) and ε′ = O(2−κ).

We have the following constraints:

• α = Ω (
√
m) for the hardness of lwen−1,q,DZ,α

• r ≥
√

5 ln(2m(1+1/ε))
π for the correctness of G−1

rand (·) sampling

• r ≥ 4
(
(1− ε) (2ε′)2

)− 1
m for the leftover hash lemma

90 Chapter 5 Circuit privacy for homomorphic computations

• r ≥
√

5 (1 +B)
√

ln(2m(1+1/ε))
π for Lemma 5.3.4

• q = Ω
(√

mrα (mLmax `max)1/2
)
for the correctness of decryption

We can thus set the parameters as follows:

• n = Θ(κ),

• Lmax = poly(n),

• `max = poly(n),

• α = Θ(
√
n),

• r = Θ̃ (n),

• q = Θ̃
(
n5/2 · Lmax · `max

)
, a power of 2.

Note that the ciphertext size grows with logLmax. Correctness follows directly.

Lemma 5.4.9 (Correctness). For any branching program Π of length L on ` variables, any
x1, . . . , x` ∈ {0, 1}, the result of the homomorphic evaluation Cf = Eval (Π, (C1, . . . ,C`))
decrypts to Π (x1, . . . , x`) with overwhelming probability, where Ci ← Enc (sk, xi) for i ∈ [`]
and sk← KGen (1κ).

Proof. Lemma 5.4.7 shows that the noise distribution of the output Cf of Eval has param-

eter rf = r

√
2∑`

i=1 τi
(
1 + ‖ei‖2

)
, that is r

√
2L∑`

i=1
(
1 + ‖ei‖2

)
because of the padding

we applied to Π. We have rf ≤ r
√

2L` (1 + C2α2m) with C the universal constant defined
in Lemma 5.2.3. Using the bounds Lmax and `max we have rL = Õ

(
rα (mLmax `max)1/2

)
.

Finally, by a tail cutting argument, q = Θ̃ (rL
√
n) = Θ̃

(
n5/2Lmax`max

)
is enough for de-

cryption to be correct with overwhelming probability.

5.4.5 Extension to arbitrary moduli and trapdoor matrices
In this paragraph we show how to instantiate our proofs in a more generic setting.

Our GSW ciphertext rerandomization can be straightforwardly adapted to any matrix H
and modulus q, as long as the lattice Λ⊥q (Hᵀ) has a small public basis, i.e., a small public
trapdoor. Observe that the conditions needed to apply GSW ciphertext rerandomization
are given in Lemma 5.3.4, which bounds the smoothing parameter of the lattice

L =
{

v ∈ Λ⊥q (Hᵀ)× Z : êᵀv = 0
}

and in Lemma 5.3.5 which gives the min-entropy of a Gaussian over Λ⊥q (Hᵀ).
Let β ≥ ‖ti‖, where T = {t1, . . . , tm} is the public trapdoor of H (i.e., T is a small basis

of Λ⊥q (Hᵀ)), we show that the previous two lemmas can be proven for H and the parameter
r only grows by a factor β.

First, observe that Lemma 5.3.4 aims to find m small independent vectors in L. By
noticing that

L =
{

(v,−vᵀe) : v ∈ Λ⊥q (Hᵀ)
}

Ch
ap

te
r5

5.5 Discussions 91

we can exhibit m small vectors ui = (ti,−tᵀi e) , i ∈ [m] which are of norm

‖ui‖ ≤ ‖ti‖ (1 + ‖e‖) ≤ β (1 + ‖e‖)

This bound is the one we obtain in Lemma 5.3.4 for Λ⊥q (Gᵀ) where ‖T‖ =
√

5.
Second, we show that the bound on the min-entropy of Lemma 5.3.5 can be expressed as

a function of β, by simply using the fact that det (T) ≤ ‖T‖m = βm. From this we have the
following bound on the min-entropy:

H∞
(
DΛ⊥q (Hᵀ)+c,r

)
≥ log (1− ε) +m log (r)−m log (β)

This bound is slightly worse than the one we obtain in Lemma 5.3.5 for G (where we had 2
instead of β). However this is not a problem as it is a weaker bound than the one obtained
in Lemma 5.3.4.

By using these two lemmas we can rerandomize GSW ciphertexts and ensure circuit pri-
vacy for arbitrary modulus q, and any matrix H with public trapdoor by setting the Gaussian
parameter of H−1 (·) to r = Θ̃ (βn).

5.5 Discussions
We conclude with some considerations and a critical analysis of the results presented in this
part of the manuscript. Finally we state some open problems and outline possible directions
for future research.

A draw-back of our approach is that it is specific to the GSW cryptosystem and variants
there-of, whereas previous approaches based on noise flooding and bootstrapping are fairly
generic. Nonetheless, we stress that the GSW cryptosystem turns out to be ubiquitous in
many applications outside of FHE, including attribute-based encryption and fully homomor-
phic signatures [BGG+14; GVW15]. Another issue is that we need to pad the branching
program so that each variable appears the same number of times, thus decreasing the ef-
ficiency of the evaluation for no real reason. However, one can argue that the impact on
efficiency is fairly limited, especially in comparison with generic homomorphic operations.
We are optimistic that the additional insights we gained into the noise distributions of GSW
ciphertexts will find applications outside of FHE.
Open problems. We conclude with several open problems pertaining to FHE circuit
privacy. The first is to achieve circuit privacy against malicious adversaries [OPP14]: namely,
the result of a homomorphic evaluation should leak no information about the circuit f , even
if the input ciphertexts are maliciously generated. Our analysis breaks down in this setting as
it crucially uses fresh uniform randomness in the input ciphertexts for left-over hash lemma,
and the fact that the noise in the input ciphertexts are small (but does not need to be
discrete Gaussian). Another goal is to achieve circuit-private CCA1-secure FHE [LMSV12];
here, the technique that [DS16] uses to achieve circuit privacy cannot obtain such a result
since giving out an encryption of the secret key violates CCA1-security. A third major open
problem is to extend the techniques in this work to other FHE schemes, such as those in
[BV11a; DM15; HS15].

Ch
ap

te
r6

Chapter 6
Private information retrieval through
homomorphic encryption

In this chapter we present an implementation of homomorphic encryption, applied to the
problem of private information retrieval (PIR). In particular, we will design and implement a
protocol that allows a client to query a remote database held by a server, with the guarantees
that the server does not learn the query. Also, the client learns nothing more than the answer
to its request (or the fact that the request has no answer at all). This last remark seems
to imply that our protocol actually achieves the security requirements of oblivious transfer,
but we will discuss this matter in the following.
The implementation of the protocol will not use instantiations of homomorphic encryp-

tion from lattice assumptions, but the so-called homomorphic encryption over the inte-
gers, stemming from the assumed hardness of the approximate GCD problem (cf. Defini-
tion 2.4.6). Specifically, our encryption scheme will be a symmetric version of that presented
in [DGHV10], extended to support a message space larger than just {0, 1}.
This work was done within a European project, and it aimed at showing that homomorphic

encryption can be practical for some use-cases.

Contents
6.1 Introduction . 94

6.1.1 Private information retrieval . 97
6.1.2 Oblivious transfer . 97
6.1.3 Our contributions . 97

6.2 Our protocol . 98
6.3 The DGHV encryption scheme and its extension 104
6.4 Implementing our protocol . 106

6.4.1 How to choose the random polynomials for conjunction queries 108
6.4.2 Handling the “false positives” . 111
6.4.3 Concrete parameters and benchmarks 111

6.5 Discussions . 113

— 93 —

94 Chapter 6 Private information retrieval through homomorphic encryption

6.1 Introduction

The unstoppable diffusion of new technologies has undeniably changed many aspects of our
lives, both in the positive and in the negative. Cryptography in particular can be seen as
a double-edged tool: on one hand, it offers effective ways of protecting one’s privacy from
malicious eavesdroppers, whereas on the other hand, it can help shielding criminals from law
enforcement agencies, by making their communications secure and untraceable.

Organized crime (OC) is becoming increasingly diverse in its methods, group structures
and impact on society. A new criminal landscape is emerging, marked increasingly by highly
mobile and flexible groups operating in multiple jurisdictions and criminal sectors. Internet
and mobile technologies have emerged as key facilitators for organized crime, because of the
possibility that they offer to communicate in a rapid, efficient, and covert way, thus allow-
ing members of criminal organizations to exchange messages without meeting in person and
without incurring the risk of being intercepted. Internet essentially underpins criminal activ-
ities like high-tech cybercrime, payment card fraud, audio and visual piracy, drug smuggling,
THB (trafficking in human beings), facilitation of illegal immigration, supply of counterfeit
commodities, and many other illicit activities.
Especially after the 9/11 terrorist attacks, the old-fashioned manual work of analyzing

links between actors and putting them in a graph was no longer suited to the amount of
data that had to be processed. A need for more sophisticated techniques to navigate large
datasets emerged, and a key role in this sense is played by social network analysis (SNA).
This kind of techniques aims at extracting information about social structures through the
use of network and graph theories. Concretely, it means that law enforcement agencies have
the possibility to collect data about private individuals, analyze the relationships that link
them, and investigate their social behavior in order to establish if they pose any threat to the
society. In fact, although electronic communications have made organized crime activities
less visible to authorities targeting criminal assets, the increasing usage of the Internet and
of mobile communications offers new opportunities to investigators to detect signals and
to pre-empt organized crime activities, as well as to co-operate effectively and efficiently.
For example, new technologies can be used for scanning “weak OC signals”, in order to
search, fuse, and interpret data collected from several diverse sources. These sources typi-
cally include databases of call detail records of many (potentially all) telephone companies
in a country, databases of financial transactions (banks, credit cards, etc.), databases of
vehicle registrations (linking car plates to the vehicle’s owner), databases of biometric fea-
tures (DNA, fingerprints, etc.), and national databases that contain many details about each
citizen (like date and place of birth, job, annual income, etc.).
However, while carrying out their duty, police forces have to comply with the law, and

democratic systems protect the rights of citizens, the privacy of their personal data, and
that of their communications. Wide-range scanning for weak organized crime signals is
typically incompatible with the legal constraints, because it would unduly give power to the
executive arm and thereby limit personal freedom. This kind of aggressive behavior from
national agencies has already been reported, e.g., by the famous revelations made by former
CIA employee and NSA contractor Edward Snowden [Gre13], who exposed pervasive mass
surveillance programs. These revelations led to thorough discussions on investigation policies
and, to some extent, to their revision. Generally speaking, currently standing laws prescribe
that interference with the right to privacy and to the protection of personal data should
be necessary and proportionate to the legitimate goal they are aimed at, and not excessive,

Ch
ap

te
r6

6.1 Introduction 95

arbitrary, or discriminatory. Also, it is worth noting that failing to comply with laws and
regulations would expose police forces to legal sanctions and public protests, but could also
have the disastrous side effect of totally invalidating legal cases against OC members, who
are known to benefit from top-quality legal assistance.

Extensive surveillance: an example from the news. As an example of how extensive
investigations can lead to issues with freedom and privacy, let us consider the following case,
which happened in the United States [And10]. Between 2009 and 2010, 16 robberies were
carried out in rural locations of Arizona by two men, known as “the High Country bandits”.
Although bank surveillance footage was available to investigators, this proved to be of little
use, since both men were using jackets, ski masks, and gloves. After bringing the FBI into
the case, the investigators found a witness who said that he had noticed a suspicious man
hanging out by the bank a couple of hours before the robbery, while talking on a cell phone.
The FBI then asked a judge to approve a full cell tower dump, which is a procedure in
which wireless operators turn over the records of every cell phone that registered with a
particular tower at a particular time. This procedure was approved and executed for the
four most rural locations where robberies had taken place, in order to minimize the number
of extraneous telephone numbers that would show up in the tower dumps. It should be
noticed at this point that tower dumps are obtained without a warrant: they use a “court
order”, which still implies some judicial supervision, but to a much lesser extent than an
ordinary warrant (there is no need for a “probable cause”). This implies that the government
could potentially access location information for a vast number of people, without having any
warrant. In particular, during the investigations on the robberies, the FBI received more
than 150 000 telephone numbers from these tower dumps. Intersecting the records that
had been registered in the locations of the robberies gave one specific phone number that,
through more interaction with a judge, finally gave a name. Subsequent investigations led
to the capture of both perpetrators, thus solving the crime. Although the conclusion of the
investigation was positive, this story leads to some privacy-related questions. In fact, several
judges (e.g., [Ows13]) state that these tower dumps are to be considered “searches” under the
Fourth Amendment, and thus require a full warrant backed by evidence of “probable cause”.
Also, the Supreme Court has ruled [Uni12] that warrantless GPS tracking of a suspect is
not allowed. In the case of tower dumps, it is true that they do not provide the precision
of GPS tracking, but it is equally true that they compromise the privacy of many people,
and not just one. Furthermore, those whose records are collected in the process are never
notified of the fact.
From this story, it is clear that there is a potential conflict between the need to conduct

thorough investigations and data privacy rules, also because the rules and their interpretation
are not always clear and agreed upon. Such data privacy rules are even more stringent when
it comes to the collaboration between investigators from different agencies and countries,
because of organizational issues, bureaucratic hurdles, differences in legislations, different
political views of the respective governments, There is then a conflict between safety
and privacy, and the fundamental paradox that arises from this picture is that protecting
some rights (privacy) makes it more difficult to protect other rights (security).

Use-case: cross-border cooperation between law-enforcement agencies. A typical
case of how privacy related regulations can get in the way of police investigations is rep-
resented by cross-border collaboration between law enforcement agencies, i.e., a situation
where two agencies, based in two different countries, want to exchange information, or to

96 Chapter 6 Private information retrieval through homomorphic encryption

make the information they possess available to partner agencies. Note that here we are not
concerned with how a certain set of records was obtained; in this use case we focus on how
these records can be shared while respecting the citizens’ privacy to the greatest possible
extent. This use case is already regulated by a EU framework that was introduced in 2008
by EU Council Decision 2008/615/JHA [08a] and EU Council Decision 2008/616/JHA [08b],
which applied the previously established Prüm Convention [Uni05] to all the member states.
These decisions describe a framework in which member states can grant one another access
rights to their automated DNA analysis files, automated dactyloscopic identification systems
or vehicle registration data via a two-step process: the first step is a hit/no-hit system, that
returns whether the query has a match in the target database (and whose result should be
available in less than 15 minutes); in case of a positive answer, the second step is a request
for specific personal data related to the result of the query.
The framework currently in place still presents issues regarding the protection of citizens’

privacy; for example, the country that hosts the database receives queries in the clear. This
amounts to knowing what the other country is looking for, which, in some cases, might
be undesirable. Also, the cryptographic standards which are used (AES 256, RSA 1024,
SHA1) are not sufficiently adequate and do not take into account the most recent develop-
ments in research, as far as constructions and cryptanalysis are concerned. Moreover, at the
time the decisions were produced, several cryptographic primitives like Fully Homomorphic
Encryption (FHE) were not known to exist, so the results that can be achieved now are
largely more sophisticated than what was imaginable in 2008. Thanks to the new possibili-
ties opened by progresses in cryptographic research, the privacy model can be considerably
strengthened, in order to achieve a framework that allows for the exchange of information
without compromising the citizens’ right to privacy.
Problem statement and overview of the results. We now proceed to outlining the
problem we consider and the goals we want to achieve. As in [CLT11], we assume a party,
say France (FR), wants to query a database held by another party, say Germany (DE), on a
certain input XYZ; furthermore, we assume that both countries recognize the authority of
a trusted party, say a Judge (JU). The basic property that we want to achieve is that DE
should not learn FR’s query, i.e., XYZ. The solution that we propose actually achieves more
than this, namely

• FR learns no more than whether there is a hit/no-hit on the data XYZ and, if authorized
by JU, which records match XYZ;

• DE does not learn anything (not even XYZ), but the possible data it would be legally
obliged to provide after a successful match;

• JU learns the query XYZ but not the associated data (i.e., to whom the profile corre-
sponds, etc.), even if he allows the query.

As already stated, the hit/no-hit part should complete in less than 15 minutes. The rest
of the protocol is not strictly time-bounded by any regulation, and this kind of application
is usually not time-critical. Nevertheless, we consider that the protocol should complete in a
reasonable amount of time, in order to provide necessary information in a timely and usable
manner.
We now introduce two fundamental cryptographical primitives, called Private information

retrieval and Oblivious transfer, which are tightly linked to the problem at hand.

Ch
ap

te
r6

6.1 Introduction 97

6.1.1 Private information retrieval

In cryptography, a private information retrieval (PIR) protocol is a protocol that allows a
user to retrieve an item from a database hosted on a server, without revealing to the server
which item is retrieved.

It is trivial to notice that there is an immediate protocol that provides perfect security for
the user: the server simply sends the entire database to the user, who is then able to read the
information it needs. Obviously, this reveals nothing about the user’s query, since nothing
is submitted to the server. However, it is clear that this kind of protocol is likely to be
totally impractical for any realistic use-case because of the communication costs. The goal
then becomes to design a protocol with a lower communication complexity; in this sense,
[DMO00] defines as non-trivial any protocol whose communication complexity is less than
the size of the entire database. The problem of PIR was introduced by Chor et al. in 1995
[CGKS95] in the information-theoretic setting, and by Kushilevitz and Ostrovsky in 1997
[KO97] in the computational setting. Several protocol were presented in subsequent works,
e.g., [Ste98; Cha04; Lip04].
Note, however, that PIR protocols do not ensure server security, meaning that the user

can retrieve more than what it queries for. This enhanced security guarantee is captured by
the definition of oblivious transfer, which is presented next.

6.1.2 Oblivious transfer

In private information retrieval protocols, the security requirement is that the server should
not learn the user’s query. However, nothing is said about what the user is allowed to learn,
which could be more than what he queries for. In fact, in the most trivial protocol where
the entire database is sent from the server to the user, it is clear that the user can learn all
the records. Instead, oblivious transfer (OT) introduces a new security requirement. Let us
consider the case where a server is holding a database with records x1, x2, . . . , xn and a user
wants to learn xi for some i. At the end of the OT protocol, the server should not learn
i, whereas the user should not learn xj for any j 6= i. This is called 1-out-of-n oblivious
transfer, the simplest case being n = 2, i.e., the server has a database with two records
and the user obliviously obtains one of the two. An important result by Crepeau [Cré88]
showed that 1-out-of-2 OT and 1-out-of-n OT are equivalent. In the literature, several OT
protocols have been presented, culminating in a very simple and efficient proposal by Chou
and Orlandi [CO15], based on the hardness of the well-established DDH assumption [Bon98].

6.1.3 Our contributions

In this part of the manuscript, we present a protocol that allows a user to retrieve a record
from a database held by a server, without revealing which record has been queried. Fur-
thermore, the user learns only the record (or records, in case of multiple matches), that
corresponds to its query. This means that our protocol respects the security requirements of
oblivious transfer. However, the specific application for which the protocol is designed takes
into account that the user can submit several queries (provided they are authorized by the
trusted party, referred to as “the Judge”). This means that, through several executions, the
querying party can learn up to the entire database. For this reason, we can say that this
is an oblivious transfer protocol if a single execution is considered, whereas the definition is
not clear in case of multiple executions. In any case, the protocol always achieves the PIR

98 Chapter 6 Private information retrieval through homomorphic encryption

(0)
one-tim

e
setup

(1) compute search token

(2) hit / no-hit
(3

)
ob

ta
in

ju
dg

e’
s

sig
na

tu
re

(4) obtain information

Figure 6.1: Outline of the steps of the ADOC protocol.

requirement, meaning that the server never learns the user’s query. This protocol is inspired
by [BGH+13].

The basic principle of this use case consists in using homomorphic encryption (HE) to
encrypt databases, while enabling data aggregation in the Cloud (for authorized users).
Figure 6.1 gives a high-level intuition on the steps of the protocol.

6.2 Our protocol
We now describe our protocol for private information retrieval. Initially, all the operations
will be described at a high level; then we will provide implementation details regarding each
one of them.

In our protocol, we consider three actors: the querying party (France, or FR), the re-
sponding party (Germany, or DE), and the trusted party (Judge, or JU). We assume that
the database held by DE is structured as follows: each record is composed of a unique ID
(w.l.o.g., we can assume it is numerical), and by a number of fields corresponding to some
features (e.g., the person’s name, surname, car plate, phone number, address, ...). The
protocol then goes through a one-time setup phase as follows:

1. As a first step of the protocol, DE generates the inverted database, which is a dataset
where each occurrence of each feature is associated to all the IDs that match. For
example, consider the toy-example of database in Table 6.1; then the inverted database
will look like that presented in Table 6.2.

2. DE encrypts the inverted database under some secret key sk which is never revealed

Ch
ap

te
r6

6.2 Our protocol 99

ID Name Surname
1 John Doe
2 Marc Smith
3 John Smith

Table 6.1: Toy-example of database.

Feature ID
Name=John 1, 3
Name=Marc 2
Surname=Doe 1
Surname=Smith 2, 3

Table 6.2: Inverted database corresponding to the toy example in Table 6.1.

to any other party. In particular, the part “Feature=...” is converted into a search
token via a pseudo-random function (PRF), whereas the IDs are considered as roots
of a polynomial p(x), which is subsequently encrypted coefficient by coefficient. For
example, an entry in the encrypted inverted database might look like

(PRFkDE (“DNAD19S433 = 7.8”) , EnckDE (I))

where I is the set of indices in the database of the individuals for which the DNA
marker D19S433 is equal to 7.8, encrypted with a key kDE only known to DE.
The so-computed encrypted inverted database can then be safely published onto the
Cloud and made accessible to anyone. The underlying assumption is that it reveals no
information to anyone who does not hold the secret key or does not interact “properly”
with DE to obtain the disclosure of relevant information.

These steps have to be performed at the beginning of the protocol (setup time), and every
time the database needs to be updated. Note that, in this latter case, it is possible to update
only parts of the encrypted inverted database, thus saving bandwidth.
After the setup has been completed, FR (i.e., the querying party) can interact with the

other actors of the protocol in order to obtain an answer to a certain query. The steps are
different for different types of queries. In details, we consider three possible requests, called
simple query (FR wants all the records that match a certain condition ξ), disjunction query
(all the records that match at least one of two conditions, i.e., ξ1∨ξ2), and conjunction query
(all the records that match simultaneously two conditions, i.e., ξ1 ∧ ξ2). We now describe
the steps of the protocol for each of these cases.

Simple query. In the case of a simple query, the protocol proceeds as follows:

3. FR and DE engage in a simple sub-protocol that allows them to obliviously compute
the search token Θ corresponding to FR’s query ξ. This means that, on private inputs
ξ for FR and sk for DE, FR will be able to compute a search token which is a function
of ξ and sk, without learning anything on sk, and without revealing anything on ξ.

100 Chapter 6 Private information retrieval through homomorphic encryption

Referring to the example presented before, FR and DE can obliviously compute

PRFkDE (“DNAD19S433 = 7.8”)

4. After obtaining the search token Θ, FR can check whether there is a match for it
in the inverted database, which is publicly available. Notice that this will give FR
no information on the records that match (if any), because the inverted database is
encrypted. If there is no match, the protocol terminates.

5. After verifying that there is a match, FR sends relevant information to the the trusted
party JU. This will include the query itself and the search token, together with some
supporting evidence that demonstrates why the query is legal and should be allowed.

6. The trusted JU verifies that the supporting material is indeed acceptable from a legal
point of view and, if satisfied, fetches from the inverted database the encrypted poly-
nomial corresponding to the search token, signs it with his secret key, and hands it
back to FR. Again, with reference to the example shown before, JU will send(

EnckDE (I) , SigkJU (EnckDE (I))
)
,

where kJU is JU’s secret key.

7. FR forwards this signed encrypted polynomial to DE.

8. DE verifies JU’s signature and, if everything is correct, decrypts the polynomial, cal-
culates its roots (i.e., the IDs), and sends to FR the information on those records.

These steps are summarized and depicted in Figure 6.2.
An attentive reader might have noticed that there is a simple cheating strategy for FR:

when interacting with JU, it could present a legally valid query, together with a random
search token. This way, the trusted JU might be tricked into authorizing something different
from what it thinks. In reality, it will be clear in the section about implementing the protocol
that JU has an easy way of verifying that the search token indeed corresponds to the query,
thus preventing this kind of attack.

Disjunction query. In the case of a disjunction query with conditions ξ1 and ξ2, the
protocol proceeds as follows:

3. FR and DE repeat twice the simple sub-protocol for oblivious computation of search
tokens. At the end of this phase, FR will have search tokens Θ1 and Θ2, corresponding
to conditions ξ1 and ξ2.

4. After obtaining the tokens, FR checks in the inverted database. If neither of the tokens
gives a match, then the protocol terminates, because the union of the two results is
guaranteed to be empty.

5. After verifying that there is a match, FR sends relevant information to JU. This will
include both queries and both search tokens, together with material to support the
case.

Ch
ap

te
r6

6.2 Our protocol 101

Simple query

France Germany Judge
r←$Z?N
y := H (ξ) · re

y

z := yd

z

st := z · r−1

check_match (st)
ξ, st, supporting material

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

verify & sign
Σ := signed enc. of polynomial corresponding to st
←−−−

Σ

verify & find roots

disclose information

Figure 6.2: Protocol for the case of a simple query.

6. JU verifies the supporting material and proceeds if it is satisfied. If this is the case,
JU fetches the two encrypted polynomials p1(x) and p2(x) corresponding to search
tokens Θ1 and Θ2, homomorphically multiplies them together, and signs the resulting
encryption of the polynomial p1(x) · p2(x). Notice that the roots of p1(x) · p2(x) will
be the union of the roots of p1(x) and p2(x). Finally, JU hands the signed polynomial
back to FR.

7. FR forwards this signed encrypted polynomial to DE.

8. DE verifies JU’s signature and, if everything is correct, decrypts the polynomial, cal-
culates its roots (i.e., the IDs), and sends to FR the information on those records.

These steps are presented in Figure 6.3.
In order for these steps to go through, the encryption scheme used for implementing the

protocol must support at least one homomorphic multiplication.

Conjunction query. This is the most problematic case, because it turns out that FR is not
able to verify on its own whether there is a match for conditions ξ1∧ξ2. In fact, verifying that
there is a match for each of the two conditions is necessary but not sufficient to guarantee
that the intersection of the results is non-empty. In order to solve this issue, we have to
complicate the protocol and introduce one more round of interaction between FR and DE.
The steps are as follows:

3. FR and DE repeat twice the simple sub-protocol for oblivious computation of search

102 Chapter 6 Private information retrieval through homomorphic encryption

Disjunction query

France Germany Judge
r1, r2←$Z?N
y1 := H (ξ1) · re1
y2 := H (ξ2) · re2

y1, y2

z1 := yd1

z2 := yd2

z1, z2

st1 := z1 · r−1
1

st2 := z2 · r−1
2

check_match (st1)
check_match (st2)

ξ1, ξ2, st1, st2, supporting material
−−−→

verify & sign
Σ := signed enc. of polynomial

←−−−

Σ

verify & find roots

disclose information

Figure 6.3: Protocol for the case of a disjunction query.

tokens. At the end of this phase, FR will have search tokens Θ1 and Θ2, corresponding
to conditions ξ1 and ξ2.

4. After obtaining the tokens, FR checks in the inverted database. If at least one the
tokens gives no match, then the protocol terminates, because the intersection of the
two results is guaranteed to be empty. If this is not the case, then it is possible that
the intersection is non-empty.

5. FR and DE engage in a sub-protocol to verify whether the intersection is non-empty.
First, FR picks two random (not encrypted) polynomials r1(x) and r2(x), under some
conditions that will be explained in the part regarding the implementation. Then, it
homomorphically computes the polynomial q(x) := p1(x) · r1(x) + p2(x) · r2(x). Notice
that (a) the polynomial q(x) is computed from both encrypted and not encrypted
polynomials, but the result is an encrypted polynomial, and (b) the set of roots of
q(x) is at least composed of the intersection of those of p1(x) and p2(x), but could
potentially be larger. In fact, for example it might happen that r1(x) and r2(x) have a
root in common, which is not a root of either p1(x) or p2(x): if this happens, then this
operation has introduced a spurious root, that needs to be handled with great care.
The reason is that introducing such a root amounts to adding an unrelated ID to the

Ch
ap

te
r6

6.2 Our protocol 103

list of results, thus creating a false positive. Also, it can happen that a spurious root
is introduced even if there is no common root among the polynomials. We address the
issue and propose a solution in Section 6.4.2. Finally, FR sends q(x) to DE.

6. DE decrypts q(x) with its secret key, computes its roots and sends 1 to FR if there is
at least one root (cf. Sections 6.4.1 and 6.4.2 for more details); otherwise DE sends 0.

7. If FR receives 0, then the protocol terminates, as the intersection is empty. If this is
not the case, FR sends relevant information to JU. This will include both queries and
both search tokens, together with material to support the case.

8. JU verifies the supporting material and proceeds if it is satisfied. If this is the case,
JU fetches the two encrypted polynomials p1(x) and p2(x) corresponding to search
tokens Θ1 and Θ2, then picks fresh random polynomials r′1(x) and r′2(x), computes
q′(x) := p1(x) · r′1(x) + p2(x) · r′2(x), signs it, and hands it back to FR.

9. FR forwards this signed encrypted polynomial to DE.

10. DE verifies JU’s signature and, if everything is correct, decrypts the polynomial, cal-
culates its roots (i.e., the IDs), and sends to FR the information on those records.

These steps are presented in Figure 6.4.
Since the polynomials r1(x) and r2(x) need not be encrypted, a linearly homomorphic

encryption scheme is sufficient for these steps to go through.

In conclusion, we need an encryption scheme that can encrypt integers modulo some prime
q and can support at least one homomorphic multiplication between ciphertexts. Also, there
is no need for a public-key encryption scheme, as the polynomials will be encrypted under
DE’s secret key. In the following, we present the DGHV encryption scheme [DGHV10], that
we extend and use to instantiate our protocol.

104 Chapter 6 Private information retrieval through homomorphic encryption

Conjunction query

France Germany Judge
r1, r2←$Z?N
y1 := H (ξ1) · re1
y2 := H (ξ2) · re2

y1, y2

z1 := yd1

z2 := yd2

z1, z2

st1 := z1 · r−1
1

st2 := z2 · r−1
2

check_match (st1)
check_match (st2)
p? := conjunction(st1, st2)

p?

decrypt & check roots

hit/no-hit

ξ1, ξ2, st1, st2, supporting material
−−−→

verify & sign
Σ := signed enc. of polynomial

←−−−

Σ

verify & find roots

disclose information

Figure 6.4: Protocol for the case of a conjunction query.

6.3 The DGHV encryption scheme and its extension
Here we present a basic secret-key version of the DGHV encryption scheme with message
space M = {0, 1} (as given in [DGHV10]), and we show how it can be simply extended
to support a larger message space. We remind the reader that we are not interested in
building a fully homomorphic encryption scheme, so we will not focus on the bootstrapping
procedure.

For a security parameter κ, the encryption scheme is parametrized by integers η =
η (κ) , γ = γ (κ) , ρ = ρ (κ). The scheme is then composed of the following algorithms:

KGen (1κ)→ (sk, x0) : generate a random prime p of size η bits. Generate a random prime
s0 of size γ − η bits, and let x0 = s0p be a public parameter. Return sk = p and x0.

Enc (sk, µ ∈ {0, 1})→ c : generate a random positive integer s of γ−η bits, a random integer
r in (−2ρ, 2ρ), and output the ciphertext

c = ps+ 2r + µ.

Ch
ap

te
r6

6.3 The DGHV encryption scheme and its extension 105

Dec (sk, c)→ µ : output µ = (c mod p) mod 2.

For the choice of parameters, [DGHV10] suggests the following:

• ρ = ω (log κ) to protect against brute-force attacks on the noise;

• η ≥ ρ · Θ
(
κ · log2 κ

)
in order to support homomorphisms for deep enough circuits to

evaluate the squashed decryption circuit;

• γ = ω
(
η2 · log κ

)
to thwart various lattice-based attacks on the underlying approximate

GCD problem.

Extending the message space. It turns out that extending the message space to Zq
for some integer q, is immediate1. It is sufficient to change the encryption and decryption
algorithms as follows:

Enc (sk, µ ∈ Zq)→ c : generate a random positive integer s of γ − η bits, a random integer
r in (−2ρ, 2ρ), and output the ciphertext

c = ps+ qr + µ.

Dec (sk, c)→ µ : output µ = (c mod p) mod q.

In order to ensure correct decryption, we need qr < p. This essentially guarantees that
the term qr remains untouched after the reduction modulo p. If this condition does not
hold, we can write qr = kp + t, with k ≥ 1 and t < p. The ciphertext can then be written
as c = (s+ k) p + t + µ. When reducing modulo p, we are left with t + µ, which is not
guaranteed to be congruent to µ modulo q.
We now analyze how to perform homomorphic operations on DGHV ciphertexts. In this

part, the role of the term x0 output by the KGen procedure will finally become clear. Let
(sk, x0)← KGen (1κ).
Homomorphic addition. Given two messages µ1, µ2 ∈ Zq, and two DGHV ciphertexts
c1, c2 such that ci ← Enc (sk, µi), the ciphertext c+ := (c1 + c2) mod x0 is a DGHV cipher-
text of µ1 + µ2.
Showing that this is the case just requires performing the calculations:

c+ mod x0 = ps1 + qr1 + µ1 + ps2 + qr2 + µ2 mod s0p

= p (s1 + s2) + (r1 + r2) q + (µ1 + µ2) mod s0p

= p [(s1 + s2) mod s0] + (r1 + r2) q + µ1 + µ2.

It then follows that (
c+ mod p

)
mod q = µ1 + µ2,

provided that (r1 + r2) q < p.
Homomorphic multiplication. Unlike most lattice-based homomorphic schemes, in DGHV
the multiplication follows the same procedure as the addition. Given two messages µ1, µ2 ∈

1It should be noted, however, that a way to perform the bootstrapping operation and, thus, turn the DGHV
into an FHE scheme is known only for q = 2.

106 Chapter 6 Private information retrieval through homomorphic encryption

Zq, and two DGHV ciphertexts c1, c2 such that ci ← Enc (sk, µi), the ciphertext c× := (c1 · c2)
mod x0 is a DGHV ciphertext of µ1 · µ2.

Once again, showing that this holds is rather easy:

c× mod x0 = p (s1s2p+ s1µ2 + s2µ1 + s1r2q + s2r1q)
+ q (r1r2q + r1µ2 + r2µ1) + µ1µ2 mod s0p

= p [(s1s2p+ s1µ2 + s2µ1 + s1r2q + s2r1q) mod s0] + q (. . .) + µ1µ2.

It then follows that (
c× mod p

)
mod q = µ1µ2,

provided that r1r2q2 < p.

Remark 6.3.1 (On reduction modulo x0 (cf.[DGHV10, Section 3.3.2])). Note that reducing
modulo x0 is not necessary for correctness or security to hold. This operation is merely
useful for efficiency, i.e., for reducing the size of the ciphertext. In the original paper, the
authors remark that publishing an exact multiple of the secret p makes the approximate GCD
problem “clearly easier”. However, they also note that no attack is known to work for this
“easier case” and not for the general one.

6.4 Implementing our protocol
The components that had to be developed in order to fully implement the protocol are:

• An instantiation of the DGHV encryption scheme for encrypting and decrypting inte-
gers, and for performing the required homomorphic operations on ciphertexts;

• A hash function, that will be used for the part related to search token computation
and signatures;

• A sub-protocol for oblivious computation of the search tokens that, starting from FR’s
and DE’s private inputs (i.e., the query ξ and the secret exponent d, respectively),
allows FR to compute the search token without revealing anything on ξ, and without
learning anything on d;

• A signature scheme for JU to sign encrypted polynomials and other parties to verify
the signatures;

• A way to allow all the actors to communicate with each other.

As a coding language, we chose C++, in order to benefit from both the speed that is usually
associated to C implementations, and from higher level constructs that are usually linked to
object-oriented languages.
Since the DGHV encryption scheme requires handling large integers, we implemented it

from scratch by taking advantage of GMP (the GNU multiple precision arithmetic library)
[Gt12]. This library also provides several remarkably useful features, such as the generation
of (probably) prime numbers through the Miller-Rabin primality test, the computation of
the modular inverse of an integer, etc.
For the hash function component, we exploited the library Crypto++ [DP18] which, among

others, contains an implementation of the hash functions SHA-2 and SHA-3. Particular

Ch
ap

te
r6

6.4 Implementing our protocol 107

attention should be given to how we hash strings and polynomials, keeping in mind that the
result must be numerical, in order for the protocol to go through. For the string case, we
proceed as follows: through the functions provided by Crypto++, we calculate the hash of a
string as a raw sequence of bytes. Then, via a simple C++ function, we convert this byte
sequence to hexadecimal form, and we use the resulting string to initialize an integer in base
16. The result is then mpz_class(hash::sha3_256(myString), 16), where mpz_class is
the type that GMP associates with integers of arbitrary size. Providing a sensible and secure
hash of an encrypted polynomial can result in a tricky task. For example, one could provide
a separate hash for each encrypted coefficient. Although very simple, this approach leads to
an immediate attack: if the encrypted coefficients are hashed and signed one by one, a simple
shuffle will result in a validly signed encrypted polynomial, which is different from the initial
one. This amounts to forging a signed encrypted polynomial. An alternative approach would
be that of simply concatenating all the encrypted coefficients (which, as DGHV ciphertexts,
are simple integers) into a single string and hash it. The drawback of this approach is that,
in case of very long polynomials, this string can exceed the maximum string length permitted
by the C++ standard. Also, the string would have to be stored in the RAM memory, thus
consuming a considerable amount of resources. A viable approach seems the following: hash
the first coefficient, concatenate the second coefficient, hash the result, concatenate the third
coefficient, hash the result, and so on. Although there is apparently no clear reason not to
follow this way, we decided to take full advantage of the interface provided by Crypto++

to do the following: given an encrypted polynomial, described as a sequence of encrypted
coefficients, we construct a “SHA object”, which is updated with all the coefficients one by
one. In the end, when all the encrypted coefficients have been processed, we produce the
final digest as a raw sequence of bytes. Then, analogously to what described before, we
convert it to an hexadecimal string, and we use the result to initialize an integer in base 16.
For search token calculations, as in [CLT11], we use RSA decryption algorithm as a PRF.

Given a string ξ and a hash function H, the search token associated to ξ will be (H (ξ))d
mod N , where d is the secret RSA exponent and N is the RSA modulus. In Figure 6.5 we
show a simple protocol between Alice (that holds ξ) and Bob (that holds d), that allows
Alice to recover (H (ξ))d mod N without learning anything about d and without revealing
anything about ξ. We naturally assume that the public RSA exponent e and the RSA
modulus N are known to Alice (and to everybody else).

As a signing mechanism, we employ RSA signatures: we then assume JU is equipped with
a private key (i.e., a secret exponent), whereas its public key (i.e., a public exponent) is
known to all the parties. Then, signing any message m simply consists in taking the hash of
m and raising it to the secret exponent. Verification is as immediate as raising this signature
to JU’s public exponent and checking that the result corresponds to the hash of the message
m.

In order to provide the actors with a way to communicate with each other, we implemented
a series of simple web servers, that listen for requests and serve them accordingly. For
the demo that we coded and successfully demonstrated during several review meetings,
everything was running locally on a simple laptop computer. However, the modular structure
of the application makes it easy to deploy its different components to remote hosting services.
The structure of the system is the following:

• A web server for the party that own the database (DE). This server will expose a
service that receives requests and performs several actions, like raising the input to the

108 Chapter 6 Private information retrieval through homomorphic encryption

secret exponent d, or verifying signatures and disclosing information.

• A browser application for the party that wants to execute a query (FR). This applica-
tion will take some input (e.g., through a keyboard), and perform all the operations
that the querying party has to go through during the protocol (blinding the query,
unblinding the answer for calculating the search token, calculating the conjunction of
two polynomials, submitting requests to the trusted party, . . .). This component will
also take care of rendering the information that is received from the party that owns
the database, i.e., it will provide a visual representation of the records that match the
query.

• A web server for the trusted party (JU). This server will expose a service that receives
queries from the querying party and, after verifying that the case has valid legal grounds
(this part is obviously omitted), proceeds with signing encrypted polynomials and sends
back the result to the querying party. This signed material will allow for the disclosure
of relevant information.

• A web server for the encrypted inverted database. This server is actually performing
no “active operation”. Everything it does is exposing a list of encrypted records in the
form of

searchToken, encCoeff0, encCoeff1, . . .

In the demo, this component was not properly implemented: the encrypted inverted
database simply resides on the local machine.

For setting up and running web servers, we used Flask [10], a Python framework that allows
one to simply set up a web server that listens on a predefined port and, upon receiving
requests, runs a Python script in order to serve them. The basic architectural concept is
that the C++ executable provides all the functions that are necessary to all the parties to
engage in the protocol, and the Python scripts interface with this executable (e.g., by passing
command line arguments) to perform the actions that are required. Messages between the
parties are encoded in JSON format, which makes it easy to serialize and deserialize any kind
of object, in several coding languages. For this part, we used “JSON for modern C++” [Loh13]
which, through a single header file, provides all the functions that are needed to serialize and
deserialize objects in a fast and simple way. In order to mimic the communication process,
i.e., sending and receiving files containing messages, JSON files were placed in specific folders
that acted like communication channels between the parties. Naturally, this means that a
real deployment of the protocol should take into account elements like network latency and
failures. However, given the current state of the art for internet connections (e.g., extremely
fast connections through optical fiber), we do not expect this to be a major hurdle. Finally,
in Figures 6.6 to 6.8 we present screenshots of the web interface we developed, that show
the perspective of the querying party, the trusted party, and the responding party, during
the execution of a disjunctive query.

6.4.1 How to choose the random polynomials for conjunction queries

When performing a conjunctive search query ξ1 ∧ ξ2, the protocol requires choosing two
random polynomials r1(x), r2(x), and then computing p′(x) := p1(x) · r1(x) + p2(x) · r2(x),
where p1(x), p2(x) are the polynomials whose roots are the indices that match queries ξ1, ξ2.

Ch
ap

te
r6

6.4 Implementing our protocol 109

Search token computation

Alice Bob
r←$Z∗N
y := H (ξ) · re mod N

y

z := yd mod N

z

st = z · r−1 mod N

Figure 6.5: Protocol for oblivious computation of a search token.

Figure 6.6: Screenshot of the querying party when performing a disjunctive query.

110 Chapter 6 Private information retrieval through homomorphic encryption

Figure 6.7: Screenshot of the trusted party (Judge) when processing a disjunctive query.

Figure 6.8: Screenshot of the responding party when disclosing the information after a dis-
junctive query.

Ch
ap

te
r6

6.4 Implementing our protocol 111

The random polynomials ri(x) are chosen such that their degrees respect deg (r1 (x)) =
deg (p2 (x)) − 1 and deg (r2 (x)) = deg (p1 (x)) − 1. This ensures that p′(x) is distributed
uniformly among all the polynomials of the same degree, as per [BGH+13, Lemma 2 and
Corollary 3]. Another important observation is about the roots of these random polynomials.
In order to decrease the probabilities of having spurious roots (cf. Section 6.4.2), we define
a set of “good roots” G and a set of “fake roots” F . We assume that the description of
these sets is public, meaning that any party can distinguish if a root belongs to G or to F .
Good roots are those that correspond to indices which appear in the database, whereas fake
roots do not. When choosing the random polynomials, we will take them so that their roots
are in F . Any potential collision between the roots will introduce an additional root in the
polynomial p′(x), but will be automatically ignored because it belongs to F . However, it
turns out this is not enough to prevent false positives.

6.4.2 Handling the “false positives”
As already mentioned in Sections 6.2 and 6.4.1, the way we handle conjunction queries might
introduce spurious roots. In details, let p1(x) and p2(x) be two polynomials whose roots are
the elements of the set I1 and I2, respectively. Then, if we pick two random polynomials
r1(x) and r2(x), we have that the set of roots of p′(x) := p1(x) · r1(x) + p2(x) · r2(x) is at
least I1 ∩ I2. This is obvious for the following reason: ∀y ∈ I1 ∩ I2, we have

q(y) = p1(y) · r1(y) + p2(y) · r2(y) = 0 · r1(y) + 0 · r2(y) = 0.

Moreover, following an analogous reasoning, let R1,R2 be the set of roots of random poly-
nomials r1(x), r2(x), respectively. It is obvious that any root that belongs to R1 ∩ R2 will
also be a root of p′(x). However, as already mentioned in Section 6.4.1, this will not be a
problem since R1 ⊆ F and R2 ⊆ F , meaning that this kind of root will be rejected because
it belongs to the set of “fake roots”.
However, it can also happen that there exists a y such that p′(y) = 0, y ∈ G, y /∈ I1 ∩ I2.

This means that the root is accepted as corresponding to a record in the database (because
it belongs to G), but it represents a false positive, because it does not belong to I1 ∩ I2.
Avoiding this situation is extremely important, since allowing this would be the equivalent of
“framing an innocent”. In order to prevent this from happening, we chose to do the following:
we repeat the entire procedure several times and, in the end, we take the intersection of the
results. This means that we fix a parameter N_REPS and then we pick random polynomials(

r
(1)
1 (x), r(1)

2 (x)
)
,
(
r

(2)
1 (x), r(2)

2 (x)
)
, . . . ,

(
r

(N_REPS)
1 (x), r(N_REPS)

2 (x)
)
,

compute
p′(1)(x), p′(2)(x), . . . , p′(N_REPS)(x)

as shown before, and then take the intersection of their roots (that belong to the set of good
roots G). It is easy to see that the probability of introducing spurious roots decreases rapidly
as N_REPS increases. In the implementation, we take N_REPS = 3.

6.4.3 Concrete parameters and benchmarks
We now give the concrete parameters used in the implementation, and an analysis of the
communication complexity of the protocol. The timings clearly depend on the environment

112 Chapter 6 Private information retrieval through homomorphic encryption

in which the protocol is deployed, i.e., on the distance between the parties, and especially
on the speed of the network. Beyond the notation already used in this chapter, we also
denote by N the number of records in the database, by ν the number of features per record
(e.g., DNA markers, fingerprint details, car plate numbers, . . .), by n the number of records
associated to each tag (in the inverted database), by k the number of linear combinations
used for conjunctive queries (previously called N_REPS), and by f the maximum probability
of false positives that we are willing to tolerate.
The parameters must satisfy the following relationships:

• q ≥ N
f1/k (see [BGH+13, Lemma 1])

• ρ = 2κ, to prevent the improved gcd attack by Chen and Nguyen [CN12], which has
complexity O

(
2ρ/2

)
• η > 2ρ+ 2 log q, to ensure correct decryption after a single multiplication

• γ = η2ω (log κ), to prevent the orthogonal lattice attack. To be conservative, one can
take γ = 8η2

In the implementation, we choose the following settings:

• N = 104

• f = 2−32 ≈ 10−9.63

• κ = 128

This leads to the following choice of parameters:

• k = 3

• q ≈ 107.21

• ρ = 256

• η = 560

• γ = 2508800

In the polynomials representing the list of indices, each (encrypted) coefficient is approx-
imately 2508800 bit long. Since JSON encodes all the values as text characters (using base
10 representation), the size of each encrypted coefficient is approximately 755 KBytes.
Assuming each record in the database has ν features, the total size of the inverted database

is thus

N · ν
(

1 + 1
naverage

)
· (size of enc. coefficient) ≈ 7.55 · ν

(
1 + 1

naverage

)
GBytes,

where naverage is the average number of records associated to a tag.

Ch
ap

te
r6

6.5 Discussions 113

Total bandwidth
Simple query ≈ 1510 d KB

Conjunction query ≈ 6795 (d1 + d2) KB
Disjunction query ≈ 1510 (d1 + d2) KB

Table 6.3: Communication complexity of our PIR protocol.

6.4.3.1 Bandwidth requirements

Given the description of the protocol presented above, it is now easy to compute the com-
munication complexity of the protocol, for each possible type of query.

Simple query
3 · 2048 bits + 2 · ((755 d) KB + 2048 bits)

where d = n+ 1 is the degree of the polynomial associated to the search token.

Conjunctive query

4·2048 bits+3 (755 (d1 + d2) KB)+1 bit+4096 bits+2 (3 · 755 (d1 + d2) KB + 2048 bits)

where d1 = n1 + 1, d2 = n2 + 1 are the decrees of the polynomials associated to the
search tokens.

Disjunctive query

4 · 2048 bits + 4096 bits + 2 (755 (d1 + d2) KB + 2048 bits)

where d1 = n1 + 1, d2 = n2 + 1 are the decrees of the polynomials associated to the
search tokens.

The final results are presented in Table 6.3.

6.5 Discussions
The protocol we presented improves on the protocol currently in place for cross-border co-
operation between law enforcement agencies, since it preserves the privacy of the querying
party’s request. However, our protocol still presents issues and missing features, that we
address in the following.

First of all, giving the querying party the ability of knowing whether the intersection is
empty or not without the trusted party’s authorization, is potentially dangerous because
it might cause unwanted leakages. The idea behind this was to limit the need for trusted
party’s involvement in the protocol to the actual information disclosure moment, in order
to limit the workload of the “Judge”. A possible fix for this potential issue is that of not
allowing any decryption on the responding partner’s side without a trusted signature. This
would mean that the querying partner has first to obtain a “preliminary authorization” for
knowing whether the intersection is empty or not, and then a “final authorization” to ob-
tain the database records, in case the intersection is non-empty. These modifications clearly

114 Chapter 6 Private information retrieval through homomorphic encryption

depend on the legal constraints that one wants to enforce. An alternative solution is that
of discarding the step that aims at computing whether there is a match, and execute the
protocol until the end in any case. There is, of course, a trade-off: on one hand, this lim-
its the workload of the Judge to having to compute just one signature, and it also solves
the problem of the leakage that we described above; on the other hand, this might lead to
performing “useless” computations, that would have been avoided, had the querying party
known that the intersection is empty.

Another potential flaw in the protocol that we presented is that, after computing the
search token, the querying partner is able to determine how many matches there are just by
looking at the encrypted inverted database. In fact, it is sufficient to count the number of
(encrypted) coefficients to determine the degree of the polynomial and, thus, the number of
roots, i.e., the number of record IDs. This clearly does not reveal anything on the records
themselves, but for some reasons one might want to avoid leaking this piece of information.
In order to achieve this goal, the simplest strategy appears that of padding the degree of the
polynomials by adding roots in F to the real IDs. This way, we can enforce the constraint
that all the polynomials have the same degree, thus leaking no information about the number
or real database records.

Finally, one might want to combine more than two queries, in any potential way. For
example, given requests ξ1, ξ2, ξ3, one might want to obtain the records that match ξ1∧ξ2∧ξ3,
or (ξ1 ∨ ξ2) ∧ ξ3. This is clearly possible by executing several times the protocol that we
presented, but intermediate queries might not be allowed by the trusted Judge. For example,
in order to obtain the records that match (ξ1 ∨ ξ2) ∧ ξ3, one might execute the protocol to
obtain the matches for (ξ1 ∨ ξ2), then execute it again to obtain the records that match ξ3,
and then manually compute the intersection. However, this reveals more than computing
the final result directly, and this might break some constraints. The solution is to tweak
the choice of parameters so that more homomorphic operations are allowed (for example,
in order to support more multiplications). If one wants to enable an unbounded number of
unions and intersections, then bootstrapping appears to be necessary.

Ch
ap

te
r7

Chapter 7
Conclusions and open questions

In this chapter we summarize the contributions presented in this manuscript, we draw
some conclusions, and we outline some questions that remain open. We also try to put the
contributions in perspective and to analyze their impact on the field of cryptology.

Contents
7.1 Conclusions . 116
7.2 Open questions . 116

7.2.1 Homomorphic evaluation of neural networks 116
7.2.2 Circuit privacy . 117
7.2.3 Private information retrieval . 117

— 115 —

116 Chapter 7 Conclusions and open questions

7.1 Conclusions
If introduced on a large scale and in real-world scenarios, fully homomorphic encryption
(FHE) would have enormous consequences for people’s privacy, allowing them to use remote
services hosted on untrusted servers, without disclosing personal information. As of today,
the main obstacle towards this goal is efficiency: existing solutions provide all the neces-
sary features, but they remain generally cumbersome when trying to achieve full-fledged
FHE, that allows for unbounded computations. A more viable alternative is instantiating
application-specific somewhat homomorphic encryption (SHE) schemes, that do not rely on
bootstrapping, and that allow for the computations required by that particular application.
Naturally, this depends on the application itself, and on how complex the computational
tasks are.

In this manuscript, we first surveyed the area of FHE (cf. Chapter 3), and then we
presented some works aimed at improving FHE both from a theoretical and a practical
point of view.
In Chapter 4, we presented a new framework for evaluating a neural network on encrypted

inputs, thus making sure that the user’s data is not accessible to the server, while still allow-
ing the user to obtain predictions based on previously-trained and remotely-held cognitive
models.
In Chapter 5, we focused on the problem of circuit privacy. We improved on previous works

from the point of view of simplicity and efficiency, in order to provide servers with an easy
way to ensure that the results of homomorphic computations do not leak information about
the algorithm that has been applied. This is particularly interesting from the viewpoint
of a company, wanting to provide users with data processing services, without revealing
potentially critical and proprietary algorithms. The result that we obtain, with some caveats,
is that the final result of the computation looks (almost) like a fresh ciphertext of the result,
thus making sure that no information on how this result was derived (i.e., the algorithm) is
contained therein.
Finally, in Chapter 6, we presented and implemented a protocol for private information

retrieval. The project’s goals are mainly to (1) improve upon the protocol currently in place
at European level for cross-border cooperation between law enforcement agencies, and (2)
to demonstrate that homomorphic encryption can be practical for certain applications. In
this work, we do not take advantage of homomorphic encryption schemes stemming from the
assumed hardness of lattice problems, but we focus on a different class of schemes, arising
from the assumed hardness of the approximate GCD problem (cf. Definition 2.4.6).

7.2 Open questions
Given the double nature (both theoretical and practical) of the works proposed, there are a
number of questions that remain open, and that can serve as guidelines for future research.
Some of these questions were already mentioned in the related chapters of this manuscript:
we report them here for better clarity.

7.2.1 Homomorphic evaluation of neural networks
Question 7.1. In the framework that we proposed, called FHE-DiNN, we are able to ho-
momorphically evaluate a neural network only after a severe simplification of the model.

Ch
ap

te
r7

7.2 Open questions 117

Namely, we have to discretize the inputs, the weights and biases. Moreover, we are limited
to considering the sign as an activation function. Although it has been shown in the literature
that this is already enough to achieve near state-of-the-art results, this is indeed an important
limitation. The natural question is then whether we can avoid some (potentially all) of these
constraints, towards the goal of homomorphically evaluating any neural network, with real
inputs, reals weights and biases, and any activation function.

Question 7.2. As a complement (or an alternative) to the previous question, from a practical
point of view, can we design an automated “compiler” that, given as input an already trained
neural network, returns a neural network that can be evaluated on encrypted inputs? That is,
designing a complete ecosystem of softwares that takes care of all the steps of the interaction:
encrypting the inputs (on the user’s side), evaluating the network (on the server’s side), and
then decrypting the results (back on the user’s side).

Question 7.3. In the approach that we proposed, we apply the bootstrapping function af-
ter processing every neuron. Since this operation is heavy and time-consuming, is there a
way to reduce the number of bootstrappings needed to evaluate an entire network? Also, an-
other strong optimization regards parallelization: all the bootstrappings are independent, so
we could take advantage of powerful GPUs in order to perform several of these operations
together, thus saving in execution time.

Question 7.4. Another open question regarding bootstrapping is the following: can we batch
several of these operations together, so that the cost for bootstrapping N neurons is less than
N times the cost of a single bootstrapping?

7.2.2 Circuit privacy

Question 7.5. The first open question that comes to mind is whether (and how) our tech-
nique based on a Gaussian leftover hash lemma can be extended to FHE schemes other than
GSW. For example, the so-called second generation FHE is usually more efficient for spe-
cific applications: can our approach be extended to such schemes? More importantly, can we
blend the results on homomorphic evaluation of deep neural networks presented in Chapter 4
together with the technique for circuit privacy showed in Chapter 5?

Question 7.6. The threat model that we consider in our work is that of a honest-but-curious
adversary. Can we extend our technique to be secure against malicious adversaries, that
can deviate from the prescribed protocol, send malformed inputs, . . . ? There appear to be
essentially two roads to this goal: we can either (1) have a way to prove or to check that the
input values are well formed, and reject them if they are not, or (2) enhance our technique
so that the result leaks no information on the computation, regardless of the input that has
been submitted.

Question 7.7. Can we achieve CCA1-secure FHE? We note that this is not possible for
those approaches that rely on bootstrapping, since publishing the bootstrapping key violates
the CCA1 security requirements.

7.2.3 Private information retrieval

Question 7.8. What exactly are the legal constraints that the protocol has to satisfy?

118 Chapter 7 Conclusions and open questions

Given the goal of the project, i.e., to improve upon the way information is currently
exchanged between law enforcement agencies across borders, it is important to pinpoint
exactly the legal constraints. For example, is it acceptable to be able to check whether the
intersection of two queries is empty or not, without the trusted party’s authorization? As
it was underlined in Chapter 6, there is a trade-off between how strict the security model
is, and how heavy the workload for the trusted party is. Defining this and other constraints
can help understand how the protocol should behave.

Question 7.9. Would the protocol be more efficient if implemented with another homomor-
phic encryption scheme?

The implementation that we realized was based on the DGHV encryption scheme [DGHV10],
but there are plenty of other possibilities, like lattice-based encryption schemes that rely on
the LWE assumption (cf. Assumption 2.4.4).

— 119 —

120 Notation

Notation
General mathematical notation
:= “Is defined as”
N The set of natural numbers
Z The set of integer numbers
Zq The set of integer numbers modulo q
R The set of real numbers
T The torus, i.e., the set of integers modulo 1
log Base-2 logarithm
v A (column) vector
vᵀ A transposed vector (i.e., a row vector)
A A matrix
R A ring
R [X] The set of polynomials in X with coefficients in R
〈·, ·〉 The inner product
|S| The size (or cardinality) of a set S
dye The smallest integer z such that z ≥ y
byc The biggest integer z such that z ≤ y
bye The closest integer to y, with ties broken upward
‖·‖p,∞ Norms
x←$S x is sampled uniformly at random from S
∆ (X,Y) The statistical distance between X and Y
N A neural network
O(·) , Õ (·) ,Θ (·) , ω (·) Asymptotic notation
Pr [E] The probability of the event E
H∞ (X) The min entropy of X
General cryptographic notation
κ The security parameter
c≈ Computationally indistinguishable
≈s Statistically indistinguishable
H A hash function
D A discrete Gaussian
pk A public key
sk A secret key
evk An evaluation key
ksk A key-switching key
bk A bootstrapping key
Notation specific to Chapter 5
G The gadget matrix
G−1

det (·) Bit decomposition
G−1 (·) Randomized bit decomposition
ρ The Gaussian function
Λ A lattice
λi (Λ) The i-th minimum of Λ
det (Λ) The determinant of Λ
ηε (Λ) The smoothing parameter of Λ

Abbreviations

FHE Fully Homomorphic Encryption

SHE Somewhat Homomorphic Encryption

IND-CPA Indistinguishability under Chosen Plaintext Attack

SVP Shortest Vector Problem

SIVP Shortest Independent Vector Problem

CVP Closest Vector Problem

BDD Bounded Distance Decoding

LWE Learning With Errors

SIS Short Integer Solution

GCD Greatest Common Divisor

NN Neural Network

MNIST Modified National Institute of Standards and Technology

TFHE Torus FHE

TLWE Torus LWE

TGSW Torus GSW

DiNN Discretized Neural Network

OC Organized Crime

— 121 —

List of Illustrations

Figures
2.1 Game for IND-CPA security. 17
2.2 A two-dimensional lattice with two different bases. 18

4.1 Example of convolution between an input I and a kernel K. 44
4.2 Some possible activation functions for a neuron. 46
4.3 A generic feed-forward neural network of arbitrary depth d. 48
4.4 Some images from the MNIST dataset . 51
4.5 Evaluation of a single neuron. 56
4.6 Visual representation of the bootstrapping technique. 58
4.7 Refined homomorphic evaluation of a 784:30:10 neural network. 67

6.1 Outline of the steps of the ADOC protocol. 98
6.2 Protocol for the case of a simple query. 101
6.3 Protocol for the case of a disjunction query. 102
6.4 Protocol for the case of a conjunction query. 104
6.5 Protocol for oblivious computation of a search token. 109
6.6 Screenshot of the querying party when performing a disjunctive query. 109
6.7 Screenshot of the trusted party (Judge) when processing a disjunctive query. 110
6.8 Screenshot of the responding party when disclosing the information after a

disjunctive query. 110

Tables
4.1 Comparison of the three alternative BlindRotate algorithms. 63
4.2 Accuracy obtained when evaluating the models in the clear on the MNIST

test set. 65
4.3 The security parameters we use for the different kinds of ciphertexts. 65
4.4 Message space: theoretically required values and how we set them in our

experiments with FHE-DiNN. 66
4.5 Results of homomorphic evaluation of two DiNNs on the full test set. 67
4.6 Comparison with Cryptonets and its amortized version (denoted by Cryptonets?). 70

5.1 Comparison of different techniques for evaluating a branching program. . . . 74

6.1 Toy-example of database. 99
6.2 Inverted database corresponding to the toy example in Table 6.1. 99
6.3 Communication complexity of our PIR protocol. 113

— 123 —

Bibliography
[08a] Council Decision 2008/615/JHA of 23 June 2008 on the stepping up of cross-

border cooperation, particularly in combating terrorism and cross-border crime.
http : / / eur - lex . europa . eu / legal - content / EN / TXT / ?uri = celex :
32008D0615. 2008 (cit. on p. 96).

[08b] Council Decision 2008/616/JHA of 23 June 2008 on the implementation of
Decision 2008/615/JHA on the stepping up of cross-border cooperation, par-
ticularly in combating terrorism and cross-border crime. http://eur-lex.
europa.eu/legal-content/EN/TXT/?uri=celex:32008D0616. 2008 (cit. on
p. 96).

[10] Flask (a Python microframework): web development, one drop at a time. http:
//flask.pocoo.org/. 2010 (cit. on p. 108).

[ABDP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. “Sim-
ple Functional Encryption Schemes for Inner Products”. In: PKC 2015. Ed. by
Jonathan Katz. Vol. 9020. LNCS. Springer, Heidelberg, Mar. 2015, pp. 733–
751. doi: 10.1007/978-3-662-46447-2_33 (cit. on p. 57).

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. “Fast Cryp-
tographic Primitives and Circular-Secure Encryption Based on Hard Learning
Problems”. In: CRYPTO 2009. Ed. by Shai Halevi. Vol. 5677. LNCS. Springer,
Heidelberg, Aug. 2009, pp. 595–618 (cit. on pp. 74, 81).

[AGHS13] Shweta Agrawal, Craig Gentry, Shai Halevi, and Amit Sahai. “Discrete Gaus-
sian Leftover Hash Lemma over Infinite Domains”. In: ASIACRYPT 2013,
Part I. Ed. by Kazue Sako and Palash Sarkar. Vol. 8269. LNCS. Springer, Hei-
delberg, Dec. 2013, pp. 97–116. doi: 10.1007/978-3-642-42033-7_6 (cit. on
pp. 73, 79).

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. “Multiparty Computation with Low Com-
munication, Computation and Interaction via Threshold FHE”. In: EURO-
CRYPT 2012. Ed. by David Pointcheval and Thomas Johansson. Vol. 7237.
LNCS. Springer, Heidelberg, Apr. 2012, pp. 483–501 (cit. on p. 37).

[Ajt96] Miklós Ajtai. “Generating Hard Instances of Lattice Problems (Extended Ab-
stract)”. In: 28th ACM STOC. ACM Press, May 1996, pp. 99–108 (cit. on
pp. 19, 20).

[ALS16] Shweta Agrawal, Benoît Libert, and Damien Stehlé. “Fully Secure Func-
tional Encryption for Inner Products, from Standard Assumptions”. In:
CRYPTO 2016, Part III. Ed. by Matthew Robshaw and Jonathan Katz.
Vol. 9816. LNCS. Springer, Heidelberg, Aug. 2016, pp. 333–362. doi: 10.1007/
978-3-662-53015-3_12 (cit. on p. 57).

— 125 —

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32008D0615
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32008D0615
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32008D0616
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32008D0616
http://flask.pocoo.org/
http://flask.pocoo.org/
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-642-42033-7_6
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12

126 Bibliography

[And10] Nate Anderson. How “cell tower dumps” caught the High Country Bandits
— and why it matters. Ars Technica. https://arstechnica.com/tech-
policy/2013/08/how- cell- tower- dumps- caught- the- high- country-
bandits-and-why-it-matters/. 2010 (cit. on p. 95).

[AP13] Jacob Alperin-Sheriff and Chris Peikert. “Practical Bootstrapping in Quasilin-
ear Time”. In: CRYPTO 2013, Part I. Ed. by Ran Canetti and Juan A. Garay.
Vol. 8042. LNCS. Springer, Heidelberg, Aug. 2013, pp. 1–20. doi: 10.1007/
978-3-642-40041-4_1 (cit. on p. 30).

[AP14] Jacob Alperin-Sheriff and Chris Peikert. “Faster Bootstrapping with Polyno-
mial Error”. In: CRYPTO 2014, Part I. Ed. by Juan A. Garay and Rosario
Gennaro. Vol. 8616. LNCS. Springer, Heidelberg, Aug. 2014, pp. 297–314. doi:
10.1007/978-3-662-44371-2_17 (cit. on pp. 27, 30, 33, 34, 38, 53, 72–77,
84).

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On The Concrete Hardness
Of Learning With Errors. Cryptology ePrint Archive, Report 2015/046. http:
//eprint.iacr.org/2015/046. 2015 (cit. on pp. 21, 65).

[AR13] Divesh Aggarwal and Oded Regev. “A Note on Discrete Gaussian Combi-
nations of Lattice Vectors”. In: CoRR abs/1308.2405 (2013). url: http://
arxiv.org/abs/1308.2405 (cit. on pp. 73, 79).

[Avn16] Amir Avni. Two Weeks of Colorizebot - Conclusions and Statistics. http :
/ / whatimade . today / two - weeks - of - colorizebot - conclusions - and -
statistics/. 2016 (cit. on p. 47).

[BBB+17] Anthony Barnett, Charlotte Bonte, Carl Bootland, Joppe W. Bos, Wouter
Castryck, Anamaria Costache, Louis Goubin, Ilia Iliashenko, Tancrède Lep-
oint, Michele Minelli, Pascal Paillier, Nigel P. Smart, Frederik Vercauteren,
Srinivas Vivek, and Adrian Waller. Processing Encrypted Data Using Homo-
morphic Encryption. Workshop on Data Mining with Secure Computation,
SODA project. 2017 (cit. on p. 9).

[BEHZ16] Jean-Claude Bajard, Julien Eynard, Anwar Hasan, and Vincent Zucca. A Full
RNS Variant of FV like Somewhat Homomorphic Encryption Schemes. Cryp-
tology ePrint Archive, Report 2016/510. http://eprint.iacr.org/2016/
510. 2016 (cit. on p. 38).

[Ben16] Fabrice Ben Hamouda–Guichoux. “Diverse modules and zero-knowledge”. The-
ses. PSL Research University, July 2016. url: https : / / tel . archives -
ouvertes.fr/tel-01492851 (cit. on p. 13).

[Ber14] Daniel J. Bernstein. A subfield-logarithm attack against ideal lattices. Blog post.
http://blog.cr.yp.to/20140213-ideal.html. 2014 (cit. on p. 21).

[BF17] Guillaume Bonnoron and Caroline Fontaine. “A Note on Ring-LWE Security
in the Case of Fully Homomorphic Encryption”. In: INDOCRYPT 2017. Ed.
by Arpita Patra and Nigel P. Smart. Vol. 10698. LNCS. Springer, Heidelberg,
Dec. 2017, pp. 27–43 (cit. on p. 21).

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. “Non-Interactive Zero-
Knowledge and Its Applications (Extended Abstract)”. In: 20th ACM STOC.
ACM Press, May 1988, pp. 103–112 (cit. on p. 10).

https://arstechnica.com/tech-policy/2013/08/how-cell-tower-dumps-caught-the-high-country-bandits-and-why-it-matters/
https://arstechnica.com/tech-policy/2013/08/how-cell-tower-dumps-caught-the-high-country-bandits-and-why-it-matters/
https://arstechnica.com/tech-policy/2013/08/how-cell-tower-dumps-caught-the-high-country-bandits-and-why-it-matters/
https://doi.org/10.1007/978-3-642-40041-4_1
https://doi.org/10.1007/978-3-642-40041-4_1
https://doi.org/10.1007/978-3-662-44371-2_17
http://eprint.iacr.org/2015/046
http://eprint.iacr.org/2015/046
http://arxiv.org/abs/1308.2405
http://arxiv.org/abs/1308.2405
http://whatimade.today/two-weeks-of-colorizebot-conclusions-and-statistics/
http://whatimade.today/two-weeks-of-colorizebot-conclusions-and-statistics/
http://whatimade.today/two-weeks-of-colorizebot-conclusions-and-statistics/
http://eprint.iacr.org/2016/510
http://eprint.iacr.org/2016/510
https://tel.archives-ouvertes.fr/tel-01492851
https://tel.archives-ouvertes.fr/tel-01492851
http://blog.cr.yp.to/20140213-ideal.html

127

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. “Fully
Key-Homomorphic Encryption, Arithmetic Circuit ABE and Compact Gar-
bled Circuits”. In: EUROCRYPT 2014. Ed. by Phong Q. Nguyen and Elisa-
beth Oswald. Vol. 8441. LNCS. Springer, Heidelberg, May 2014, pp. 533–556.
doi: 10.1007/978-3-642-55220-5_30 (cit. on p. 91).

[BGH+13] Dan Boneh, Craig Gentry, Shai Halevi, Frank Wang, and David J. Wu. “Pri-
vate Database Queries Using Somewhat Homomorphic Encryption”. In: ACNS
13. Ed. by Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel,
and Reihaneh Safavi-Naini. Vol. 7954. LNCS. Springer, Heidelberg, June 2013,
pp. 102–118. doi: 10.1007/978-3-642-38980-1_7 (cit. on pp. 98, 111, 112).

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. “Evaluating 2-DNF Formulas on
Ciphertexts”. In: TCC 2005. Ed. by Joe Kilian. Vol. 3378. LNCS. Springer,
Heidelberg, Feb. 2005, pp. 325–341 (cit. on p. 26).

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) fully
homomorphic encryption without bootstrapping”. In: ITCS 2012. Ed. by Shafi
Goldwasser. ACM, Jan. 2012, pp. 309–325 (cit. on pp. 27, 29, 31, 33, 38, 52,
72).

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. “Lattice-Based
SNARGs and Their Application to More Efficient Obfuscation”. In: EURO-
CRYPT 2017, Part III. Ed. by Jean-Sébastien Coron and Jesper Buus Nielsen.
Vol. 10212. LNCS. Springer, Heidelberg, Apr. 2017, pp. 247–277 (cit. on p. 10).

[BISW18] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. “Quasi-Optimal
SNARGs via Linear Multi-Prover Interactive Proofs”. In: EUROCRYPT 2018,
Part III. Ed. by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10822. LNCS.
Springer, Heidelberg, Apr. 2018, pp. 222–255. doi: 10.1007/978- 3- 319-
78372-7_8 (cit. on p. 10).

[BLMZ17] Fabrice Benhamouda, Tancrède Lepoint, Claire Mathieu, and Hang Zhou. “Op-
timization of Bootstrapping in Circuits”. In: 28th SODA. Ed. by Philip N.
Klein. ACM-SIAM, Jan. 2017, pp. 2423–2433 (cit. on p. 30).

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. “Classical hardness of learning with errors”. In: 45th ACM STOC. Ed.
by Dan Boneh, Tim Roughgarden, and Joan Feigenbaum. ACM Press, June
2013, pp. 575–584 (cit. on p. 76).

[BMMP18] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast
Homomorphic Evaluation of Deep Discretized Neural Networks. CRYPTO
2018. https://eprint.iacr.org/2017/1114. 2018 (cit. on p. 8).

[Bon98] Dan Boneh. “The decision Diffie-Hellman problem”. In: Third Algorith-
mic Number Theory Symposium (ANTS). Vol. 1423. LNCS. Invited paper.
Springer, Heidelberg, 1998 (cit. on p. 97).

[Bou17] Florian Bourse. “Functional Encryption for Inner-Product Evaluations”. The-
ses. Université de recherche Paris Sciences et Lettres, Dec. 2017. url: https:
//hal.archives-ouvertes.fr/tel-01665276 (cit. on p. 13).

https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-38980-1_7
https://doi.org/10.1007/978-3-319-78372-7_8
https://doi.org/10.1007/978-3-319-78372-7_8
https://eprint.iacr.org/2017/1114
https://hal.archives-ouvertes.fr/tel-01665276
https://hal.archives-ouvertes.fr/tel-01665276

128 Bibliography

[BPDS16] Daniel J. Bernstein, Chris Peikert, Léo Ducas, and Damien Stehlé. Ideal-SVP
attacks? Discussion on Google Groups. https://groups.google.com/forum/
#!topic/cryptanalytic-algorithms/y-wAnhmGsIo. 2016 (cit. on p. 21).

[BPL+15] Daniel J. Bernstein, Chris Peikert, Vadim Lyubashevsky, Thomas Wunderer,
and Jean-François Biasse. Soliloquy. Discussion on Google Groups. https :
/ / groups . google . com / forum / # ! topic / cryptanalytic - algorithms /
GdVfp5Kbdb8. 2015 (cit. on p. 21).

[BPMW16] Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. “FHE
Circuit Privacy Almost for Free”. In: CRYPTO 2016, Part II. Ed. by Matthew
Robshaw and Jonathan Katz. Vol. 9815. LNCS. Springer, Heidelberg, Aug.
2016, pp. 62–89. doi: 10.1007/978-3-662-53008-5_3 (cit. on p. 9).

[BPTG15] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. “Machine
Learning Classification over Encrypted Data”. In: NDSS 2015. The Internet
Society, Feb. 2015 (cit. on p. 51).

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. “Efficient Fully Homomorphic
Encryption from (Standard) LWE”. In: 52nd FOCS. Ed. by Rafail Ostrovsky.
IEEE Computer Society Press, Oct. 2011, pp. 97–106 (cit. on pp. 27, 31, 33,
72, 91).

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. “Fully Homomorphic Encryp-
tion from Ring-LWE and Security for Key Dependent Messages”. In:
CRYPTO 2011. Ed. by Phillip Rogaway. Vol. 6841. LNCS. Springer, Heidel-
berg, Aug. 2011, pp. 505–524 (cit. on pp. 27, 31, 72).

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. “Lattice-based FHE as secure as
PKE”. In: ITCS 2014. Ed. by Moni Naor. ACM, Jan. 2014, pp. 1–12 (cit. on
pp. 27, 72–75, 78, 84).

[CB16] Matthieu Courbariaux and Yoshua Bengio. “BinaryNet: Training Deep Neural
Networks with Weights and Activations Constrained to +1 or -1”. In: CoRR
abs/1602.02830 (2016). url: http://arxiv.org/abs/1602.02830 (cit. on
p. 69).

[CCK+13] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tan-
crède Lepoint, Mehdi Tibouchi, and Aaram Yun. “Batch Fully Homomorphic
Encryption over the Integers”. In: EUROCRYPT 2013. Ed. by Thomas Jo-
hansson and Phong Q. Nguyen. Vol. 7881. LNCS. Springer, Heidelberg, May
2013, pp. 315–335. doi: 10.1007/978-3-642-38348-9_20 (cit. on p. 39).

[CGGI16a] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast Fully
Homomorphic Encryption Library over the Torus. https://github.com/
tfhe/tfhe. 2016 (cit. on pp. 38, 65).

[CGGI16b] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
“Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Sec-
onds”. In: ASIACRYPT 2016, Part I. Ed. by Jung Hee Cheon and Tsuyoshi
Takagi. Vol. 10031. LNCS. Springer, Heidelberg, Dec. 2016, pp. 3–33. doi:
10.1007/978-3-662-53887-6_1 (cit. on pp. 30, 38, 41, 52–54, 57, 58, 65, 67).

https://groups.google.com/forum/#!topic/cryptanalytic-algorithms/y-wAnhmGsIo
https://groups.google.com/forum/#!topic/cryptanalytic-algorithms/y-wAnhmGsIo
https://groups.google.com/forum/#!topic/cryptanalytic-algorithms/GdVfp5Kbdb8
https://groups.google.com/forum/#!topic/cryptanalytic-algorithms/GdVfp5Kbdb8
https://groups.google.com/forum/#!topic/cryptanalytic-algorithms/GdVfp5Kbdb8
https://doi.org/10.1007/978-3-662-53008-5_3
http://arxiv.org/abs/1602.02830
https://doi.org/10.1007/978-3-642-38348-9_20
https://github.com/tfhe/tfhe
https://github.com/tfhe/tfhe
https://doi.org/10.1007/978-3-662-53887-6_1

129

[CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
“Faster Packed Homomorphic Operations and Efficient Circuit Bootstrap-
ping for TFHE”. In: ASIACRYPT 2017, Part I. Ed. by Tsuyoshi Takagi and
Thomas Peyrin. Vol. 10624. LNCS. Springer, Heidelberg, Dec. 2017, pp. 377–
408 (cit. on pp. 30, 38, 41, 52, 63).

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. “Private
Information Retrieval”. In: 36th FOCS. IEEE Computer Society Press, Oct.
1995, pp. 41–50 (cit. on p. 97).

[CH11] Henry Cohn and Nadia Heninger. Approximate common divisors via lattices.
Cryptology ePrint Archive, Report 2011/437. http://eprint.iacr.org/
2011/437. 2011 (cit. on p. 23).

[Cha04] Yan-Cheng Chang. “Single Database Private Information Retrieval with Log-
arithmic Communication”. In: ACISP 04. Ed. by Huaxiong Wang, Josef
Pieprzyk, and Vijay Varadharajan. Vol. 3108. LNCS. Springer, Heidelberg,
July 2004, pp. 50–61. doi: 10.1007/978-3-540-27800-9_5 (cit. on p. 97).

[CHH+16] Hao Chen, Kyoohyung Han, Zhicong Huang, Amir Jalali, and Kim Laine. Sim-
ple Encrypted Arithmetic Library (SEAL) v2.3.0. https://www.microsoft.
com/en-us/research/project/simple-encrypted-arithmetic-library/.
2016 (cit. on p. 38).

[Cho+15] François Chollet et al. Keras. https://github.com/keras-team/keras. 2015
(cit. on p. 64).

[CLT11] Emiliano De Cristofaro, Yanbin Lu, and Gene Tsudik. “Efficient Techniques
for Privacy-Preserving Sharing of Sensitive Information”. In: Trust and Trust-
worthy Computing - 4th International Conference, TRUST 2011, Pittsburgh,
PA, USA, June 22-24, 2011. Proceedings. Ed. by Jonathan M. McCune, Boris
Balacheff, Adrian Perrig, Ahmad-Reza Sadeghi, M. Angela Sasse, and Yolanta
Beres. Vol. 6740. Lecture Notes in Computer Science. Springer, 2011, pp. 239–
253. doi: 10.1007/978-3-642-21599-5_18. url: http://dx.doi.org/10.
1007/978-3-642-21599-5_18 (cit. on pp. 96, 107).

[CM15] Michael Clear and Ciaran McGoldrick. “Multi-identity and Multi-key Leveled
FHE from Learning with Errors”. In: CRYPTO 2015, Part II. Ed. by Rosario
Gennaro and Matthew J. B. Robshaw. Vol. 9216. LNCS. Springer, Heidelberg,
Aug. 2015, pp. 630–656. doi: 10.1007/978-3-662-48000-7_31 (cit. on p. 37).

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi.
“Fully Homomorphic Encryption over the Integers with Shorter Public Keys”.
In: CRYPTO 2011. Ed. by Phillip Rogaway. Vol. 6841. LNCS. Springer, Hei-
delberg, Aug. 2011, pp. 487–504 (cit. on pp. 23, 39).

[CMS12] D. Cireşan, U. Meier, and J. Schmidhuber. “Multi-column Deep Neural Net-
works for Image Classification”. In: ArXiv e-prints (Feb. 2012). arXiv: 1202.
2745 [cs.CV] (cit. on p. 51).

http://eprint.iacr.org/2011/437
http://eprint.iacr.org/2011/437
https://doi.org/10.1007/978-3-540-27800-9_5
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
https://github.com/keras-team/keras
https://doi.org/10.1007/978-3-642-21599-5_18
http://dx.doi.org/10.1007/978-3-642-21599-5_18
http://dx.doi.org/10.1007/978-3-642-21599-5_18
https://doi.org/10.1007/978-3-662-48000-7_31
https://arxiv.org/abs/1202.2745
https://arxiv.org/abs/1202.2745

130 Bibliography

[CN12] Yuanmi Chen and Phong Q. Nguyen. “Faster Algorithms for Approximate
Common Divisors: Breaking Fully-Homomorphic-Encryption Challenges over
the Integers”. In: EUROCRYPT 2012. Ed. by David Pointcheval and Thomas
Johansson. Vol. 7237. LNCS. Springer, Heidelberg, Apr. 2012, pp. 502–519
(cit. on pp. 23, 112).

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. “Public Key
Compression and Modulus Switching for Fully Homomorphic Encryption over
the Integers”. In: EUROCRYPT 2012. Ed. by David Pointcheval and Thomas
Johansson. Vol. 7237. LNCS. Springer, Heidelberg, Apr. 2012, pp. 446–464
(cit. on p. 23).

[CO15] Tung Chou and Claudio Orlandi. “The Simplest Protocol for Oblivious
Transfer”. In: LATINCRYPT 2015. Ed. by Kristin E. Lauter and Fran-
cisco Rodríguez-Henríquez. Vol. 9230. LNCS. Springer, Heidelberg, Aug. 2015,
pp. 40–58. doi: 10.1007/978-3-319-22174-8_3 (cit. on p. 97).

[Cou17] Geoffroy Couteau. “Zero-Knowledge Proofs for Secure Computation”. Theses.
PSL research University, Nov. 2017. url: https://hal.inria.fr/tel-
01668125 (cit. on p. 13).

[Cré88] Claude Crépeau. “Equivalence Between Two Flavours of Oblivious Transfers”.
In: CRYPTO’87. Ed. by Carl Pomerance. Vol. 293. LNCS. Springer, Heidel-
berg, Aug. 1988, pp. 350–354 (cit. on p. 97).

[CWM+17] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel,
and Emmanuel Prouff. “Privacy-Preserving Classification on Deep Neural Net-
work”. In: IACR Cryptology ePrint Archive 2017 (2017), p. 35 (cit. on p. 52).

[Cyb89] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In:
Mathematics of Control, Signals and Systems 2.4 (Dec. 1989), pp. 303–314.
issn: 1435-568X. doi: 10.1007/BF02551274. url: https://doi.org/10.
1007/BF02551274 (cit. on p. 47).

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. “Square
Span Programs with Applications to Succinct NIZK Arguments”. In: ASI-
ACRYPT 2014, Part I. Ed. by Palash Sarkar and Tetsu Iwata. Vol. 8873.
LNCS. Springer, Heidelberg, Dec. 2014, pp. 532–550. doi: 10.1007/978-3-
662-45611-8_28 (cit. on p. 10).

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. “Fully
Homomorphic Encryption over the Integers”. In: EUROCRYPT 2010. Ed. by
Henri Gilbert. Vol. 6110. LNCS. Springer, Heidelberg, May 2010, pp. 24–43
(cit. on pp. 5, 27, 39, 72, 93, 103–106, 118).

[DGL+16] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael
Naehrig, and John Wernsing. CryptoNets: Applying Neural Networks to En-
crypted Data with High Throughput and Accuracy. Tech. rep. Feb. 2016.
url: https : / / www . microsoft . com / en - us / research / publication /
cryptonets - applying - neural - networks - to - encrypted - data - with -
high-throughput-and-accuracy/ (cit. on pp. 45, 52, 69).

https://doi.org/10.1007/978-3-319-22174-8_3
https://hal.inria.fr/tel-01668125
https://hal.inria.fr/tel-01668125
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-662-45611-8_28
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/

131

[DH76] Whitfield Diffie and Martin E. Hellman. “New Directions in Cryptography”.
In: IEEE Transactions on Information Theory 22.6 (1976), pp. 644–654 (cit.
on p. 3).

[DM15] Léo Ducas and Daniele Micciancio. “FHEW: Bootstrapping Homomorphic En-
cryption in Less Than a Second”. In: EUROCRYPT 2015, Part I. Ed. by Elis-
abeth Oswald and Marc Fischlin. Vol. 9056. LNCS. Springer, Heidelberg, Apr.
2015, pp. 617–640. doi: 10.1007/978-3-662-46800-5_24 (cit. on pp. 30, 73,
91).

[DMO00] Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky. “Single Database
Private Information Retrieval Implies Oblivious Transfer”. In: EURO-
CRYPT 2000. Ed. by Bart Preneel. Vol. 1807. LNCS. Springer, Heidelberg,
May 2000, pp. 122–138 (cit. on p. 97).

[DP18] Wei Dai and Crypto++ Project. Crypto++ Library 7.0. https : / / www .
cryptopp.com/. 2018 (cit. on p. 106).

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. “Fuzzy Extractors: How to
Generate Strong Keys from Biometrics and Other Noisy Data”. In: EURO-
CRYPT 2004. Ed. by Christian Cachin and Jan Camenisch. Vol. 3027. LNCS.
Springer, Heidelberg, May 2004, pp. 523–540 (cit. on p. 77).

[DS16] Léo Ducas and Damien Stehlé. “Sanitization of FHE Ciphertexts”. In: EU-
ROCRYPT 2016, Part I. Ed. by Marc Fischlin and Jean-Sébastien Coron.
Vol. 9665. LNCS. Springer, Heidelberg, May 2016, pp. 294–310. doi: 10.1007/
978-3-662-49890-3_12 (cit. on pp. 72, 91).

[ElG84] Taher ElGamal. “A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms”. In: CRYPTO’84. Ed. by G. R. Blakley and David
Chaum. Vol. 196. LNCS. Springer, Heidelberg, Aug. 1984, pp. 10–18 (cit. on
p. 5).

[Elm90] Jeffrey L. Elman. “Finding Structure in Time”. In: Cognitive Science 14.2
(1990), pp. 179–211. doi: 10.1207/s15516709cog1402_1. url: https://
onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1 (cit. on
p. 43).

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomor-
phic Encryption. Cryptology ePrint Archive, Report 2012/144. http : / /
eprint.iacr.org/2012/144. 2012 (cit. on p. 38).

[Gen09a] Craig Gentry. “A fully homomorphic encryption scheme”. crypto.stanford.
edu/craig. PhD thesis. Stanford University, 2009 (cit. on pp. 6, 30, 83).

[Gen09b] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: 41st
ACM STOC. Ed. by Michael Mitzenmacher. ACM Press, May 2009, pp. 169–
178 (cit. on pp. 26–28, 30, 72).

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. “Public-Key Cryptosys-
tems from Lattice Reduction Problems”. In: CRYPTO’97. Ed. by Burton S.
Kaliski Jr. Vol. 1294. LNCS. Springer, Heidelberg, Aug. 1997, pp. 112–131 (cit.
on p. 31).

https://doi.org/10.1007/978-3-662-46800-5_24
https://www.cryptopp.com/
https://www.cryptopp.com/
https://doi.org/10.1007/978-3-662-49890-3_12
https://doi.org/10.1007/978-3-662-49890-3_12
https://doi.org/10.1207/s15516709cog1402_1
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144
crypto.stanford.edu/craig
crypto.stanford.edu/craig

132 Bibliography

[GH10] Craig Gentry and Shai Halevi. Implementing Gentry’s Fully-Homomorphic
Encryption Scheme. Cryptology ePrint Archive, Report 2010/520. http://
eprint.iacr.org/2010/520. 2010 (cit. on p. 31).

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. “Homomorphic Evaluation of
the AES Circuit”. In: CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and Ran
Canetti. Vol. 7417. LNCS. Springer, Heidelberg, Aug. 2012, pp. 850–867 (cit.
on pp. 27, 72).

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. “i-Hop Homomorphic
Encryption and Rerandomizable Yao Circuits”. In: CRYPTO 2010. Ed. by Tal
Rabin. Vol. 6223. LNCS. Springer, Heidelberg, Aug. 2010, pp. 155–172 (cit. on
pp. 72, 84).

[GM82] Shafi Goldwasser and Silvio Micali. “Probabilistic Encryption and How to Play
Mental Poker Keeping Secret All Partial Information”. In: 14th ACM STOC.
ACM Press, May 1982, pp. 365–377 (cit. on p. 26).

[GMNO18] Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù. Lattice-
Based zk-SNARKs from Square Span Programs. ACM CCS 2018. https://
eprint.iacr.org/2018/275. 2018 (cit. on p. 10).

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knowledge Com-
plexity of Interactive Proof Systems”. In: SIAM Journal on Computing 18.1
(1989), pp. 186–208 (cit. on p. 10).

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors for hard
lattices and new cryptographic constructions”. In: 40th ACM STOC. Ed. by
Richard E. Ladner and Cynthia Dwork. ACM Press, May 2008, pp. 197–206
(cit. on pp. 74, 76, 77, 81).

[Gre13] Glenn Greenwald. NSA collecting phone records of millions of Verizon cus-
tomers daily. The Guardian. https://www.theguardian.com/world/2013/
jun/06/nsa-phone-records-verizon-court-order. 2013 (cit. on p. 94).

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. “Homomorphic Encryption
from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based”. In: CRYPTO 2013, Part I. Ed. by Ran Canetti and Juan
A. Garay. Vol. 8042. LNCS. Springer, Heidelberg, Aug. 2013, pp. 75–92. doi:
10.1007/978-3-642-40041-4_5 (cit. on pp. 27, 33, 38, 53, 72, 74).

[Gt12] Torbjörn Granlund and the GMP development team. GNU MP: The GNU
Multiple Precision Arithmetic Library. 5.0.5. http://gmplib.org/. 2012 (cit.
on p. 106).

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. “Leveled Fully
Homomorphic Signatures from Standard Lattices”. In: 47th ACM STOC. Ed.
by Rocco A. Servedio and Ronitt Rubinfeld. ACM Press, June 2015, pp. 469–
477 (cit. on pp. 38, 91).

[HAO15] Ryo Hiromasa, Masayuki Abe, and Tatsuaki Okamoto. “Packing Messages and
Optimizing Bootstrapping in GSW-FHE”. In: PKC 2015. Ed. by Jonathan
Katz. Vol. 9020. LNCS. Springer, Heidelberg, Mar. 2015, pp. 699–715. doi:
10.1007/978-3-662-46447-2_31 (cit. on pp. 27, 33, 37).

http://eprint.iacr.org/2010/520
http://eprint.iacr.org/2010/520
https://eprint.iacr.org/2018/275
https://eprint.iacr.org/2018/275
https://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order
https://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order
https://doi.org/10.1007/978-3-642-40041-4_5
http://gmplib.org/
https://doi.org/10.1007/978-3-662-46447-2_31

133

[HDY+12] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury. “Deep Neural
Networks for Acoustic Modeling in Speech Recognition: The Shared Views
of Four Research Groups”. In: IEEE Signal Processing Magazine 29.6 (Nov.
2012), pp. 82–97. issn: 1053-5888. doi: 10.1109/MSP.2012.2205597 (cit. on
p. 47).

[Hop88] J. J. Hopfield. “Neurocomputing: Foundations of Research”. In: ed. by James
A. Anderson and Edward Rosenfeld. Cambridge, MA, USA: MIT Press, 1988.
Chap. Neural Networks and Physical Systems with Emergent Collective Com-
putational Abilities, pp. 457–464. isbn: 0-262-01097-6. url: http://dl.acm.
org/citation.cfm?id=65669.104422 (cit. on p. 43).

[Hor91] Kurt Hornik. “Approximation Capabilities of Multilayer Feedforward Net-
works”. In: Neural Netw. 4.2 (Mar. 1991), pp. 251–257. issn: 0893-6080. doi:
10.1016/0893-6080(91)90009-T. url: http://dx.doi.org/10.1016/0893-
6080(91)90009-T (cit. on p. 47).

[How01] Nick Howgrave-Graham. “Approximate Integer Common Divisors”. In: Cryp-
tography and Lattices. Ed. by Joseph H. Silverman. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001, pp. 51–66. isbn: 978-3-540-44670-5 (cit. on pp. 22, 23).

[HS06] Geoffrey Hinton and Ruslan Salakhutdinov. “Reducing the Dimensionality of
Data with Neural Networks”. In: Science 313.5786 (2006), pp. 504–507 (cit. on
p. 47).

[HS14a] Shai Halevi and Victor Shoup. “Algorithms in HElib”. In: CRYPTO 2014,
Part I. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8616. LNCS. Springer,
Heidelberg, Aug. 2014, pp. 554–571. doi: 10.1007/978-3-662-44371-2_31
(cit. on pp. 38, 60).

[HS14b] Shai Halevi and Victor Shoup. HElib - An implementation of homomorphic
encryption. https://github.com/shaih/HElib. 2014 (cit. on p. 38).

[HS15] Shai Halevi and Victor Shoup. “Bootstrapping for HElib”. In: EURO-
CRYPT 2015, Part I. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056.
LNCS. Springer, Heidelberg, Apr. 2015, pp. 641–670. doi: 10.1007/978-3-
662-46800-5_25 (cit. on pp. 38, 60, 73, 91).

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual
Learning for Image Recognition”. In: CoRR abs/1512.03385 (2015). url: http:
//arxiv.org/abs/1512.03385 (cit. on p. 52).

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. “Pseudo-random
Generation from one-way functions (Extended Abstracts)”. In: 21st ACM
STOC. ACM Press, May 1989, pp. 12–24 (cit. on p. 77).

[IP07] Yuval Ishai and Anat Paskin. “Evaluating Branching Programs on Encrypted
Data”. In: TCC 2007. Ed. by Salil P. Vadhan. Vol. 4392. LNCS. Springer,
Heidelberg, Feb. 2007, pp. 575–594 (cit. on pp. 8, 26, 72, 78, 83).

[Jor89] Michael I. Jordan. “Serial Order: A Parallel, Distributed Processing Ap-
proach”. In: Advances in Connectionist Theory: Speech. Ed. by Jeffrey L. El-
man and David E. Rumelhart. Hillsdale, NJ: Erlbaum, 1989 (cit. on p. 43).

https://doi.org/10.1109/MSP.2012.2205597
http://dl.acm.org/citation.cfm?id=65669.104422
http://dl.acm.org/citation.cfm?id=65669.104422
https://doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1007/978-3-662-44371-2_31
https://github.com/shaih/HElib
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-662-46800-5_25
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

134 Bibliography

[JRS17] Aayush Jain, Peter M. R. Rasmussen, and Amit Sahai. Threshold Fully Ho-
momorphic Encryption. Cryptology ePrint Archive, Report 2017/257. http:
//eprint.iacr.org/2017/257. 2017 (cit. on p. 37).

[JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
“Gazelle: A Low Latency Framework for Secure Neural Network Inference”.
In: CoRR abs/1801.05507 (2018). arXiv: 1801.05507. url: http://arxiv.
org/abs/1801.05507 (cit. on p. 51).

[Kag] Kaggle. Digit recognizer. https://www.kaggle.com/c/digit-recognizer
(cit. on p. 47).

[KGV14] Alhassan Khedr, Glenn Gulak, and Vinod Vaikuntanathan. SHIELD: Scal-
able Homomorphic Implementation of Encrypted Data-Classifiers. Cryptology
ePrint Archive, Report 2014/838. http://eprint.iacr.org/2014/838. 2014
(cit. on p. 33).

[Kil92] Joe Kilian. “A Note on Efficient Zero-Knowledge Proofs and Arguments (Ex-
tended Abstract)”. In: 24th ACM STOC. ACM Press, May 1992, pp. 723–732
(cit. on p. 10).

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. “Replication is NOT Needed: SINGLE
Database, Computationally-Private Information Retrieval”. In: 38th FOCS.
IEEE Computer Society Press, Oct. 1997, pp. 364–373 (cit. on p. 97).

[KTX08] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. “Concurrently Se-
cure Identification Schemes Based on the Worst-Case Hardness of Lattice
Problems”. In: ASIACRYPT 2008. Ed. by Josef Pieprzyk. Vol. 5350. LNCS.
Springer, Heidelberg, Dec. 2008, pp. 372–389 (cit. on p. 57).

[LBBH98] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-Based Learning
Applied to Document Recognition”. In: Proceedings of the IEEE 86.11 (Nov.
1998), pp. 2278–2324 (cit. on pp. 47, 50, 51, 69).

[LCB98] Y. LeCun, C. Cortes, and C.J.C. Burges. THE MNIST DATABASE of hand-
written digits. http://yann.lecun.com/exdb/mnist/. 1998 (cit. on p. 51).

[Lep14] Tancrède Lepoint. “Design and Implementation of Lattice-Based Cryptogra-
phy”. Theses. Ecole Normale Supérieure de Paris - ENS Paris, June 2014. url:
https://tel.archives-ouvertes.fr/tel-01069864 (cit. on p. 25).

[Lep16] T. Lepoint. FV-NFLlib. GitHub repository. https : / / github . com /
CryptoExperts/FV-NFLlib. 2016 (cit. on p. 38).

[Lip04] Helger Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communi-
cation. Cryptology ePrint Archive, Report 2004/063. http://eprint.iacr.
org/2004/063. 2004 (cit. on p. 97).

[LJLA17] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. “Oblivious Neural Network
Predictions via MiniONN Transformations”. In: ACM CCS 17. Ed. by Bhavani
M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu. ACM Press,
Oct. 2017, pp. 619–631 (cit. on p. 51).

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. “Factoring polynomials with
rational coefficients”. In: MATH. ANN 261 (1982), pp. 515–534 (cit. on p. 22).

http://eprint.iacr.org/2017/257
http://eprint.iacr.org/2017/257
https://arxiv.org/abs/1801.05507
http://arxiv.org/abs/1801.05507
http://arxiv.org/abs/1801.05507
https://www.kaggle.com/c/digit-recognizer
http://eprint.iacr.org/2014/838
http://yann.lecun.com/exdb/mnist/
https://tel.archives-ouvertes.fr/tel-01069864
https://github.com/CryptoExperts/FV-NFLlib
https://github.com/CryptoExperts/FV-NFLlib
http://eprint.iacr.org/2004/063
http://eprint.iacr.org/2004/063

135

[LMSV12] Jake Loftus, Alexander May, Nigel P. Smart, and Frederik Vercauteren. “On
CCA-Secure Somewhat Homomorphic Encryption”. In: SAC 2011. Ed. by Ali
Miri and Serge Vaudenay. Vol. 7118. LNCS. Springer, Heidelberg, Aug. 2012,
pp. 55–72 (cit. on p. 91).

[Loh13] Niels Lohmann. JSON for modern C++. https://github.com/nlohmann/
json. 2013 (cit. on p. 108).

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal Lattices
and Learning with Errors over Rings”. In: EUROCRYPT 2010. Ed. by Henri
Gilbert. Vol. 6110. LNCS. Springer, Heidelberg, May 2010, pp. 1–23 (cit. on
pp. 21, 53, 60).

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. “On-the-fly
multiparty computation on the cloud via multikey fully homomorphic encryp-
tion”. In: 44th ACM STOC. Ed. by Howard J. Karloff and Toniann Pitassi.
ACM Press, May 2012, pp. 1219–1234 (cit. on p. 37).

[MAP+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. url: https:
//www.tensorflow.org/ (cit. on p. 64).

[MBG+16] Carlos Aguilar Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-
Olivier Killijian, and Tancrède Lepoint. “NFLlib: NTT-Based Fast Lattice Li-
brary”. In: CT-RSA 2016. Ed. by Kazue Sako. Vol. 9610. LNCS. Springer,
Heidelberg, Feb. 2016, pp. 341–356. doi: 10.1007/978-3-319-29485-8_20
(cit. on p. 38).

[Méa17] Pierrick Méaux. “Hybrid fully homomorphic framework”. Theses. Université de
recherche Paris Sciences et Lettres, Dec. 2017. url: https://hal.archives-
ouvertes.fr/tel-01665358 (cit. on p. 13).

[MHN13] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. “Rectifier nonlinearities
improve neural network acoustic models”. In: in ICML Workshop on Deep
Learning for Audio, Speech and Language Processing. 2013 (cit. on p. 46).

[Mic10] Daniele Micciancio. “A first glimpse of cryptography’s Holy Grail”. In: Com-
mun. ACM 53.3 (2010), p. 96. doi: 10.1145/1666420.1666445. url: http:
//doi.acm.org/10.1145/1666420.1666445 (cit. on p. 26).

[Mic94] Silvio Micali. “CS Proofs (Extended Abstracts)”. In: 35th FOCS. IEEE Com-
puter Society Press, Nov. 1994, pp. 436–453 (cit. on p. 10).

https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1007/978-3-319-29485-8_20
https://hal.archives-ouvertes.fr/tel-01665358
https://hal.archives-ouvertes.fr/tel-01665358
https://doi.org/10.1145/1666420.1666445
http://doi.acm.org/10.1145/1666420.1666445
http://doi.acm.org/10.1145/1666420.1666445

136 Bibliography

[MOT15a] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. DeepDream - A
code example for visualizing Neural Networks. https : / / ai . googleblog .
com/2015/07/deepdream-code-example-for-visualizing.html. Google
Research. 2015 (cit. on p. 47).

[MOT15b] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Go-
ing Deeper into Neural Networks. https://ai.googleblog.com/2015/06/
inceptionism- going- deeper- into- neural.html. Google Research. 2015
(cit. on p. 47).

[MP12] Daniele Micciancio and Chris Peikert. “Trapdoors for Lattices: Simpler,
Tighter, Faster, Smaller”. In: EUROCRYPT 2012. Ed. by David Pointcheval
and Thomas Johansson. Vol. 7237. LNCS. Springer, Heidelberg, Apr. 2012,
pp. 700–718 (cit. on pp. 34, 76).

[MR04] Daniele Micciancio and Oded Regev. “Worst-Case to Average-Case Reductions
Based on Gaussian Measures”. In: 45th FOCS. IEEE Computer Society Press,
Oct. 2004, pp. 372–381 (cit. on p. 19).

[MR07] Daniele Micciancio and Oded Regev. “Worst-Case to Average-Case Reductions
Based on Gaussian Measures”. In: SIAM J. Comput. 37.1 (Apr. 2007), pp. 267–
302. issn: 0097-5397. doi: 10.1137/S0097539705447360. url: http://dx.
doi.org/10.1137/S0097539705447360 (cit. on p. 77).

[MRSV17] Eleftheria Makri, Dragos Rotaru, Nigel P. Smart, and Frederik Vercauteren.
PICS: Private Image Classification with SVM. Cryptology ePrint Archive, Re-
port 2017/1190. https://eprint.iacr.org/2017/1190. 2017 (cit. on p. 51).

[MW16] Pratyay Mukherjee and Daniel Wichs. “Two Round Multiparty Computation
via Multi-key FHE”. In: EUROCRYPT 2016, Part II. Ed. by Marc Fischlin
and Jean-Sébastien Coron. Vol. 9666. LNCS. Springer, Heidelberg, May 2016,
pp. 735–763. doi: 10.1007/978-3-662-49896-5_26 (cit. on p. 37).

[MZ17] Payman Mohassel and Yupeng Zhang. “SecureML: A System for Scalable
Privacy-Preserving Machine Learning”. In: 2017 IEEE Symposium on Secu-
rity and Privacy. IEEE Computer Society Press, May 2017, pp. 19–38 (cit. on
p. 51).

[NH10] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted
Boltzmann Machines”. In: Proceedings of the 27th International Conference
on International Conference on Machine Learning. ICML’10. Haifa, Israel:
Omnipress, 2010, pp. 807–814. isbn: 978-1-60558-907-7. url: http://dl.
acm.org/citation.cfm?id=3104322.3104425 (cit. on p. 46).

[NK15] Koji Nuida and Kaoru Kurosawa. “(Batch) Fully Homomorphic Encryption
over Integers for Non-Binary Message Spaces”. In: EUROCRYPT 2015, Part I.
Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056. LNCS. Springer, Hei-
delberg, Apr. 2015, pp. 537–555. doi: 10.1007/978- 3- 662- 46800- 5_21
(cit. on p. 39).

[OPP14] Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky.
“Maliciously Circuit-Private FHE”. In: CRYPTO 2014, Part I. Ed. by Juan
A. Garay and Rosario Gennaro. Vol. 8616. LNCS. Springer, Heidelberg, Aug.
2014, pp. 536–553. doi: 10.1007/978-3-662-44371-2_30 (cit. on pp. 72, 91).

https://ai.googleblog.com/2015/07/deepdream-code-example-for-visualizing.html
https://ai.googleblog.com/2015/07/deepdream-code-example-for-visualizing.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://doi.org/10.1137/S0097539705447360
http://dx.doi.org/10.1137/S0097539705447360
http://dx.doi.org/10.1137/S0097539705447360
https://eprint.iacr.org/2017/1190
https://doi.org/10.1007/978-3-662-49896-5_26
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://dl.acm.org/citation.cfm?id=3104322.3104425
https://doi.org/10.1007/978-3-662-46800-5_21
https://doi.org/10.1007/978-3-662-44371-2_30

137

[org] Various organizations. Homomorphic Encryption Standardization - An Open
Industry / Government / Academic Consortium to Advance Secure Computa-
tion. http://homomorphicencryption.org/introduction/ (cit. on p. 38).

[Ows13] Brian Owsley. The Fourth Amendment Implications of the Government’s Use
of Cell Tower Dumps in its Electronic Surveillance. University of Pennsylvania
Journal of Constitutional Law, Vol. 16, 2013. 2013 (cit. on p. 95).

[Pai99] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes”. In: EUROCRYPT’99. Ed. by Jacques Stern. Vol. 1592. LNCS.
Springer, Heidelberg, May 1999, pp. 223–238 (cit. on pp. 5, 26).

[Pas16] Alain Passelègue. “Algebraic Frameworks for Pseudorandom Functions”. The-
ses. PSL Research University, Dec. 2016. url: https://hal.inria.fr/tel-
01422093 (cit. on p. 13).

[Pei10] Chris Peikert. “An Efficient and Parallel Gaussian Sampler for Lattices”. In:
CRYPTO 2010. Ed. by Tal Rabin. Vol. 6223. LNCS. Springer, Heidelberg,
Aug. 2010, pp. 80–97 (cit. on p. 77).

[Pei15a] Chris Peikert. A Decade of Lattice Cryptography. Cryptology ePrint Archive,
Report 2015/939. http://eprint.iacr.org/2015/939. 2015 (cit. on p. 13).

[Pei15b] Chris Peikert.What does GCHQ’s “cautionary tale” mean for lattice cryptogra-
phy? Blog post. https://web.eecs.umich.edu/~cpeikert/soliloquy.html.
2015 (cit. on p. 21).

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. “Pinocchio:
Nearly Practical Verifiable Computation”. In: 2013 IEEE Symposium on Se-
curity and Privacy. IEEE Computer Society Press, May 2013, pp. 238–252
(cit. on p. 10).

[PW08] Chris Peikert and Brent Waters. “Lossy trapdoor functions and their applica-
tions”. In: 40th ACM STOC. Ed. by Richard E. Ladner and Cynthia Dwork.
ACM Press, May 2008, pp. 187–196 (cit. on p. 57).

[RAD78] R. L. Rivest, L. Adleman, and M. L. Dertouzos. “On Data Banks and Privacy
Homomorphisms”. In: Foundations of Secure Computation, Academia Press
(1978), pp. 169–179 (cit. on pp. 6, 26).

[Rav17] Mirco Ravanelli. “Deep Learning for Distant Speech Recognition”. In: CoRR
abs/1712.06086 (2017). arXiv: 1712.06086. url: http://arxiv.org/abs/
1712.06086 (cit. on p. 47).

[Reg05] Oded Regev. “On lattices, learning with errors, random linear codes, and cryp-
tography”. In: 37th ACM STOC. Ed. by Harold N. Gabow and Ronald Fagin.
ACM Press, May 2005, pp. 84–93 (cit. on pp. 20, 22, 30, 52, 74, 77, 81).

[Ros57] F. Rosenblatt. The Perceptron, a Perceiving and Recognizing Automaton
Project Para. Report: Cornell Aeronautical Laboratory. Cornell Aeronauti-
cal Laboratory, 1957. url: https://books.google.fr/books?id=P%5C_
XGPgAACAAJ (cit. on p. 46).

[RRK17] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. DeepSecure:
Scalable Provably-Secure Deep Learning. Cryptology ePrint Archive, Report
2017/502. http://eprint.iacr.org/2017/502. 2017 (cit. on p. 51).

http://homomorphicencryption.org/introduction/
https://hal.inria.fr/tel-01422093
https://hal.inria.fr/tel-01422093
http://eprint.iacr.org/2015/939
https://web.eecs.umich.edu/~cpeikert/soliloquy.html
https://arxiv.org/abs/1712.06086
http://arxiv.org/abs/1712.06086
http://arxiv.org/abs/1712.06086
https://books.google.fr/books?id=P%5C_XGPgAACAAJ
https://books.google.fr/books?id=P%5C_XGPgAACAAJ
http://eprint.iacr.org/2017/502

138 Bibliography

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method for Ob-
taining Digital Signature and Public-Key Cryptosystems”. In: Communica-
tions of the Association for Computing Machinery 21.2 (1978), pp. 120–126
(cit. on pp. 3, 5).

[Sch87] C.P. Schnorr. “A hierarchy of polynomial time lattice basis reduction algo-
rithms”. In: Theoretical Computer Science 53.2 (1987), pp. 201–224. issn: 0304-
3975. doi: https://doi.org/10.1016/0304-3975(87)90064-8. url: http:
//www.sciencedirect.com/science/article/pii/0304397587900648 (cit.
on p. 22).

[SS10] Damien Stehlé and Ron Steinfeld. “Faster Fully Homomorphic Encryption”.
In: ASIACRYPT 2010. Ed. by Masayuki Abe. Vol. 6477. LNCS. Springer,
Heidelberg, Dec. 2010, pp. 377–394 (cit. on pp. 27, 72).

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. “Efficient
Public Key Encryption Based on Ideal Lattices”. In: ASIACRYPT 2009. Ed.
by Mitsuru Matsui. Vol. 5912. LNCS. Springer, Heidelberg, Dec. 2009, pp. 617–
635 (cit. on p. 21).

[Ste98] Julien P. Stern. “A New Efficient All-Or-Nothing Disclosure of Secrets Pro-
tocol”. In: ASIACRYPT’98. Ed. by Kazuo Ohta and Dingyi Pei. Vol. 1514.
LNCS. Springer, Heidelberg, Oct. 1998, pp. 357–371 (cit. on p. 97).

[SV10] Nigel P. Smart and Frederik Vercauteren. “Fully Homomorphic Encryption
with Relatively Small Key and Ciphertext Sizes”. In: PKC 2010. Ed. by Phong
Q. Nguyen and David Pointcheval. Vol. 6056. LNCS. Springer, Heidelberg, May
2010, pp. 420–443 (cit. on pp. 27, 72).

[SYY99] Tomas Sander, Adam Young, and Moti Yung. “Non-Interactive CryptoCom-
puting For NC1”. In: 40th FOCS. IEEE Computer Society Press, Oct. 1999,
pp. 554–567 (cit. on pp. 8, 72).

[Uni05] European Union. Prüm Convention. http://register.consilium.europa.
eu/doc/srv?l=EN&f=ST%2010900%202005%20INIT. 2005 (cit. on p. 96).

[Uni12] Supreme Court of the United States. United States v. Jones. https://www.
supremecourt.gov/opinions/11pdf/10-1259.pdf. 2012 (cit. on p. 95).

[Yao86] Andrew Chi-Chih Yao. “How to Generate and Exchange Secrets (Extended
Abstract)”. In: 27th FOCS. IEEE Computer Society Press, Oct. 1986, pp. 162–
167 (cit. on p. 51).

[ZK16] Sergey Zagoruyko and Nikos Komodakis. “Wide Residual Networks”. In: CoRR
abs/1605.07146 (2016). url: http://arxiv.org/abs/1605.07146 (cit. on
p. 52).

[ZPB+17] Ying Zhang, Mohammad Pezeshki, Philemon Brakel, Saizheng Zhang, César
Laurent, Yoshua Bengio, and Aaron C. Courville. “Towards End-to-End
Speech Recognition with Deep Convolutional Neural Networks”. In: CoRR
abs/1701.02720 (2017). arXiv: 1701.02720. url: http://arxiv.org/abs/
1701.02720 (cit. on p. 47).

https://doi.org/https://doi.org/10.1016/0304-3975(87)90064-8
http://www.sciencedirect.com/science/article/pii/0304397587900648
http://www.sciencedirect.com/science/article/pii/0304397587900648
http://register.consilium.europa.eu/doc/srv?l=EN&f=ST%2010900%202005%20INIT
http://register.consilium.europa.eu/doc/srv?l=EN&f=ST%2010900%202005%20INIT
https://www.supremecourt.gov/opinions/11pdf/10-1259.pdf
https://www.supremecourt.gov/opinions/11pdf/10-1259.pdf
http://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1701.02720
http://arxiv.org/abs/1701.02720
http://arxiv.org/abs/1701.02720

139

[ZRM+13] M.D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q.V. Le, P. Nguyen,
A. Senior, V. Vanhoucke, J. Dean, and G.E. Hinton. “On Rectified Linear
Units For Speech Processing”. In: 38th International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Vancouver, 2013 (cit. on p. 46).

[ZYC16] Qingchen Zhang, Laurence T. Yang, and Zhikui Chen. “Privacy Preserving
Deep Computation Model on Cloud for Big Data Feature Learning”. In: IEEE
Transactions on Computers 65.5 (2016), pp. 1351–1362. issn: 0018-9340. doi:
doi.ieeecomputersociety.org/10.1109/TC.2015.2470255 (cit. on p. 52).

[ZYL+17] TanPing ZHOU, XiaoYuan YANG, LongFei LIU, Wei ZHANG, and Yi-
Tao DING. Faster Bootstrapping with Multiple Addends. Cryptology ePrint
Archive, Report 2017/735. http://eprint.iacr.org/2017/735. 2017 (cit.
on pp. 30, 61, 62).

https://doi.org/doi.ieeecomputersociety.org/10.1109/TC.2015.2470255
http://eprint.iacr.org/2017/735

Résumé
Le chiffrement totalement homomorphe permet
d’effectuer des calculs sur des données chiffrées sans
fuite d’information sur celles-ci. Pour résumer, un
utilisateur peut chiffrer des données, tandis qu’un
serveur, qui n’a pas accès à la clé de déchiffrement,
peut appliquer à l’aveugle un algorithme sur ces en-
trées. Le résultat final est lui aussi chiffré, et il ne
peut être lu que par l’utilisateur qui possède la clé
secrète.

Dans cette thèse, nous présentons des nouvelles tech-
niques et constructions pour le chiffrement totalement
homomorphe qui sont motivées par des applications
en apprentissage automatique, en portant une atten-
tion particulière au problème de l’inférence homomor-
phe, c’est-à-dire l’évaluation de modèles cognitifs déjà
entrainé sur des données chiffrées.

Premièrement, nous proposons un nouveau schéma
de chiffrement totalement homomorphe adapté à
l’évaluation de réseaux de neurones artificiels sur des
données chiffrées. Notre schéma atteint une complex-
ité qui est essentiellement indépendante du nombre
de couches dans le réseau, alors que l’efficacité des
schéma proposés précédemment dépend fortement de
la topologie du réseau.

Ensuite, nous présentons une nouvelle technique pour
préserver la confidentialité du circuit pour le chiffre-
ment totalement homomorphe. Ceci permet de cacher
l’algorithme qui a été exécuté sur les données chiffrées,
comme nécessaire pour protéger les modèles proprié-
taires d’apprentissage automatique. Notre mécanisme
rajoute un coût supplémentaire très faible pour un
niveau de sécurité égal. Ensemble, ces résultats ren-
forcent les fondations du chiffrement totalement ho-
momorphe efficace pour l’apprentissage automatique,
et représentent un pas en avant vers l’apprentissage
profond pratique préservant la confidentialité.

Enfin, nous présentons et implémentons un protocole
basé sur le chiffrement totalement homomorphe pour
le problème de recherche d’information confidentielle,
c’est-à-dire un scénario où un utilisateur envoie une
requête à une base de donnée tenue par un serveur
sans révéler cette requête.

Mots Clés
chiffrement à base de réseaux euclidiens, chiffrement
totalement homomorphe, informatique en nuage, ap-
prentissage automatique, confidentialité du circuit,
recherche d’information confidentielle.

Abstract
Fully homomorphic encryption enables computation
on encrypted data without leaking any information
about the underlying data. In short, a party can en-
crypt some input data, while another party, that does
not have access to the decryption key, can blindly per-
form some computation on this encrypted input. The
final result is also encrypted, and it can be recovered
only by the party that possesses the secret key.

In this thesis, we present new techniques/designs for
FHE that are motivated by applications to machine
learning, with a particular attention to the problem of
homomorphic inference, i.e., the evaluation of already
trained cognitive models on encrypted data.

First, we propose a novel FHE scheme that is tailored
to evaluating neural networks on encrypted inputs.
Our scheme achieves complexity that is essentially
independent of the number of layers in the network,
whereas the efficiency of previously proposed schemes
strongly depends on the topology of the network.

Second, we present a new technique for achieving cir-
cuit privacy for FHE. This allows us to hide the com-
putation that is performed on the encrypted data, as
is necessary to protect proprietary machine learning
algorithms. Our mechanism incurs very small com-
putational overhead while keeping the same security
parameters.

Together, these results strengthen the foundations of
efficient FHE for machine learning, and pave the way
towards practical privacy-preserving deep learning.

Finally, we present and implement a protocol based
on homomorphic encryption for the problem of private
information retrieval, i.e., the scenario where a party
wants to query a database held by another party with-
out revealing the query itself.

Keywords
lattice based cryptography, fully homomorphic en-
cryption, cloud computing, machine learning, circuit
privacy, private information retrieval.

	Abstract
	Résumé
	Acknowledgments
	Introduction
	Computation outsourcing
	Homomorphic encryption

	FHE in the user-server scenario
	User and server: different problems for different players
	The user's point of view
	The server's point of view

	Our results
	A new framework for homomorphic evaluation of neural networks
	A new technique for circuit privacy
	A protocol for private information retrieval

	Other contributions
	Organization of the manuscript
	Personal Publications

	Preliminaries
	Notation and preliminaries
	Mathematical notation
	Sets, rings, integers
	Vectors and matrices
	Distributions and probabilities
	Asymptotic behaviors

	Algorithms
	Provable security

	Cryptographic primitives
	Lattices
	Basic definitions
	Computational problems
	Worst-case hardness
	Gaussians
	Short integer solution (SIS)
	Learning with errors (LWE)
	Ring LWE
	Link between LWE and lattice-based problems

	Complexity assumptions

	Fully homomorphic encryption
	Introduction
	Homomorphic encryption scheme
	Bootstrapping and key-switching
	Three generations of FHE
	First generation FHE
	Second generation FHE
	Third generation FHE
	Message packing

	Advanced constructions
	Libraries and practical implementations
	FHE constructions from non-lattice assumptions

	Homomorphic evaluation of deep neural networks
	Introduction to the problem
	Refresher on neural networks
	Basic definitions
	Neural networks' layers
	Activation functions
	Perceptrons, multilayer perceptrons, and deep NNs
	Training and evaluating neural networks
	MNIST: a typical dataset for NNs

	State of the art for privacy-preserving predictions
	TFHE: a framework for efficient bootstrapping
	LWE over the torus and related constructions
	External product and bootstrapping procedure

	Our contributions
	Definition of a discretized neural network
	Simple conversion from a traditional NN to a DiNN
	Homomorphic evaluation of a DiNN
	Evaluating the multisum
	Homomorphic computation of the sign function
	Scale-invariance

	Refinements of TFHE
	Reducing bandwidth usage
	Moving KeySwitch around
	Dynamically changing the message space
	Alternative BlindRotate implementations

	Experimental results
	Pre-processing the MNIST database
	Building a DiNN from data in the clear
	Classifying encrypted inputs

	Comparison with Cryptonets cryptonets

	Circuit privacy for homomorphic computations
	Introduction
	Our results
	Technical overview

	Additional preliminaries
	Randomized G-1() algorithm
	Probability results
	Results on lattices and Gaussian distributions
	Entropy and leftover hash lemma
	Permutation branching programs

	Core randomization lemma
	Proof of randomization lemma
	Rerandomizing LWE samples

	Our scheme: circuit-private homomorphic evaluation for GSW
	Rerandomizing and scaling GSW ciphertexts
	Circuit privacy: definition and main theorem
	Modified Eval algorithm for the GSW encryption scheme
	Homomorphic evaluation for branching programs
	Proof of circuit privacy

	Setting the parameters
	Extension to arbitrary moduli and trapdoor matrices

	Discussions

	Private information retrieval through homomorphic encryption
	Introduction
	Private information retrieval
	Oblivious transfer
	Our contributions

	Our protocol
	The DGHV encryption scheme and its extension
	Implementing our protocol
	How to choose the random polynomials for conjunction queries
	Handling the ``false positives''
	Concrete parameters and benchmarks
	Bandwidth requirements

	Discussions

	Conclusions and open questions
	Conclusions
	Open questions
	Homomorphic evaluation of neural networks
	Circuit privacy
	Private information retrieval

	Notation
	Abbreviations
	List of Illustrations
	Figures
	Tables

	Bibliography

