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Résumé

La solution rapide et précise de systèmes linéaires creux de grande taille est au coeur de
nombreuses applications numériques issues d’une gamme très large de domaines incluant
la mécanique de structure, la dynamique des fluides, la géophysique, l’imagerie médicale,
la chimie. Parmi les techniques les plus couramment utilisées pour la résolution de tels
problèmes, les méthodes directes, basées sur la factorisation de la matrice du système, sont
généralement appréciées pour leur robustesse numérique et facilité d’utilisation. Cepen-
dant, ces méthodes induisent une complexité, en termes d’opérations et de consommation
de mémoire, très élevée. Les travaux présentés dans cette thèse se concentrent sur l’amélio-
ration de la scalabilité des méthodes creuses directes, définie comme la capacité de traiter
des problèmes de taille de plus en plus importante. Nous introduisons des algorithmes
capables d’atteindre un meilleur degré de parallélisme en réduisant les communications
et synchronisations afin d’améliorer la scalabilité des performances, à savoir, la capacité
de réduire le temps d’exécution lorsque les ressources de calcul disponibles augmentent.
Nous nous intéressons à l’utilisation de nouveaux paradigmes et outils de programma-
tion parallèle permettant une implémentation de ces algorithmes efficace et portable sur
des supercalculateurs hétérogènes. Nous adressons la scalabilité en mémoire à l’aide de
méthodes d’ordonnancement permettant de tirer profit du parallélisme sans augmenter
la consommation de mémoire. Finalement, nous démontrons comment il est possible de
réduire la complexité des méthodes creuses directes, en termes de nombre d’opérations
et taille mémoire, grâce à l’utilisation de techniques d’approximation de rang faible. Les
méthodes présentées, dont l’efficacité a été vérifiée sur des problèmes issus d’applications
réelles, ont été implantées dans les plateformes logicielles MUMPS et qr_mumps distribuées
sous licence libre.

Abstract

The fast and accurate solution of large size sparse systems of linear equations is at the
heart of numerical applications from a very broad range of domains including structural
mechanics, fluid dynamics, geophysics, medical imaging, chemistry. Among the most com-
monly used techniques, direct methods, based on the factorization of the system matrix,
are generally appreciated for their numerical robustness and ease of use. These advan-
tages, however, come at the price of a considerable operations count and memory footprint.
The work presented in this thesis is concerned with improving the scalability of sparse
direct solvers, intended as the ability to solve problems of larger and larger size. More
precisely, our work aims at developing solvers which are scalable in performance, memory
consumption and complexity. We address performance scalability, that is the ability to
reduce the execution time as more computational resources are available, introducing al-
gorithms that improve parallelism by reducing communications and synchronizations. We
discuss the use of novel parallel programming paradigms and tools to achieve their im-
plementation in an efficient and portable way on modern, heterogeneous supercomputers.
We present methods that make sparse direct solvers memory-scalable, that is, capable of
taking advantage of parallelism without increasing the overall memory footprint. Finally
we show how it is possible to use data sparsity to achieve an asymptotic reduction of
the cost of such methods. The presented algorithms have been implemented in the freely
distributed MUMPS and qr_mumps solver packages and their effectiveness assessed on real
life problems from academic and industrial applications.
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Chapter 1

Introduction

We are interested in the solution of a linear system of equations

Ax = b (1.1)

where the A matrix

• has m rows and n columns,

• is of large size, i.e., has millions of rows and/or columns,

• is sparse, i.e., most of its coefficients are structurally equal to zero.

In the case where m = n and A is of full rank (which we will assume in the remainder
of this document, unless explicitly mentioned) Equation (1.1) admits a solution. If the
matrix is overdetermined, i.e., it has more rows than columns, the linear system does not
admit a solution in general because the number of constraints is higher than the number
of degrees of freedom; in this case we rather seek the x vector which minimizes the 2-norm
of the residual r = Ax− b:

min
x
∥Ax− b∥2. (1.2)

Such a problem is called a least-squares problem. If, instead, the matrix is underdeter-
mined, i.e., has more columns than rows, the linear system admits an infinite number of
solutions; in this case we seek the solution x whose norm is minimal:

min ∥x∥2, Ax = b. (1.3)

Such a problem is called a least-norm problem.
One of the most used and well known definitions of a sparse matrix is attributed to

James Wilkinson:

“A sparse matrix is any matrix with enough zeros that it pays to take advantage
of them”.

There are three main ways to take advantage of the fact that a matrix is mostly filled
up with zeros. First of all, the memory needed to store the matrix is less than the memory
needed for a dense matrix of the same size because the zeros need not be stored explicitly.
Second the complexity of most operations on a sparse matrix can be greatly reduced with
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1. Introduction

respect to the same operation on a dense matrix of the same size because most of the
zero coefficients in the original matrix can be skipped during the computation. Finally,
parallelism can be much higher than in the dense case because some operations may affect
distinct subsets of the matrix nonzeros and can thus be applied concurrently.

Methods for solving Equations (1.1) (1.2) and (1.3) can be roughly grouped into two
families: direct and iterative methods. Direct methods proceed by computing a factoriza-
tion of the system matrix A such as the LU , LDLT or QR factorizations; the resulting
factors, which are easy and cheap to invert, are then used to compute the solution of the
problem. On the other hand, iterative methods start from an initial guess solution, x0
say,and iteratively improve it until the desired solution accuracy is achieved or when a
maximum number of iterations is reached, in which case the method has not converged
to a satisfactory solution.

The convergence of an iterative method essentially depends on the numerical proper-
ties of the matrix A, more precisely, on its conditioning which is defined by the matrix
spectrum. Indeed, in some cases the solution of a linear system may require a very high
number of iterations or convergence may not be reached at all. For this reason iterative
solvers are often used in combination with preconditioning techniques. A preconditioner
is usually defined as a matrix M ≈ A−1 which approximates the inverse of A; this is
used to transform the linear system of Equation (1.1) into MAx = Mb1 where the system
matrix MA has a more suitable spectrum which leads to a faster convergence. Although
general purpose preconditioning methods exist such as Incomplete LU (ILU) or Sparse
Approximate Inverse (SPAI), a preconditioner that is effective yet cheap to compute and
apply may be hard to find and may, again, rely on the properties of the input problem.
As a result, iterative methods can hardly be regarded as “black box” solvers. On the
other hand, if the input problem is well conditioned or an appropriate preconditioner is
available, iterative methods can achieve converge very quickly and with little memory
consumption; moreover, iterative methods generally achieve very good scalability on large
scale parallel computing platforms. Despite these good scalability on distributed memory
platforms, iterative methods can only achieve a modest fraction of the peak performance
of modern processing units. This is because of their poor arithmetic intensity (i.e., the
ratio between the number of floating-point operations and the number of memory ac-
cesses) which prevents the efficient use of cache memories; as a result, iterative methods
are memory bound, i.e., run at the speed of the memory system which is commonly much
slower than the processing unit. Moreover, for the same reason, iterative methods can
make very poor use of multicore CPUs or accelerators because in these systems processing
units are attached to a shared memory.

In my work I have been mostly interested in the use of direct solvers. These methods are
generally regarded as very robust tools for the solution of linear systems as they are capable
of computing accurate solutions for a very wide range of problems without the need for the
user to have any knowledge of linear systems solvers. Another case where direct methods
are often employed is where the same matrix has to be solved with multiple right-hand sides
because the matrix factorization, which is the most expensive operation, only has to be
computed once and its result reused for multiple, cheap, solve operations2. Furthermore,
direct methods may have a very broad range of features including the computation of
the Schur complement of a matrix, its determinant or its null-space. Finally, because
they rely on dense matrix operations which have a very high arithmetic intensity, direct

1This is called left preconditioning but other options are possible.
2Note that there exist techniques for making iterative methods more effective in the case of multiple

right-hand sides such as block methods or subspace recycling.
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methods can run very close to the peak performance of modern processing units and can
very effectively take advantage of multicore processors and accelerators. Unfortunately,
these advantages come at the price of a considerable resource consumption both in terms
of memory and time. Moreover, sparse direct solvers usually exhibit a large and irregular
workload which is difficult to distribute on parallel computers; this may severely limit the
scalability, especially on large scale, distributed memory systems.

For the sake of completeness, it is important to mention that, in recent years, hy-
brid solvers have known an increasing popularity thanks to their ability to combine the
strengths of iterative and direct methods. Among these we can mention Domain Decom-
position [7, 62, 83] or block-projection [65] methods. The effectiveness of these methods,
which heavily rely on direct solvers, is still, to some extent, dependent on the numerical
properties of the target problems, though.

This thesis is concerned with the usability of sparse, direct methods for the solution
of very large scale sparse linear systems. As such, it deals with the issues related to their
scalability, in a broad sense:

1. It addresses the performance scalability of sparse direct solvers on modern, heteroge-
neous computing systems. These commonly include many CPU cores and , possibly,
multiple accelerators such as GPUs. This requires algorithms that can achieve high
levels of concurrency in order to feed all the working units. At the same time, it is
important to develop data and workload partitioning schemes, as well as scheduling
policies, which can make the most out of the computing performance available by
taking into account the characteristics of the available processing units. From a
strictly technological point of view, the choice of parallel programming models and
tools plays an important role for achieving high performance and portability. These
issues are the subject of Chapter 3 and are also addressed in Section 5.5.

2. It presents methods that aim at improving the memory scalability of a direct solver
in a parallel setting. In order to achieve parallelism in direct solvers, more data is
produced and processed in order to feed all the available working units. As a result,
when executed in parallel, direct methods consume more memory with respect to a
sequential run. In Chapter 4 we discuss techniques that allow the execution of the
direct method in parallel within a prescribed memory envelope at the price of little
or no loss of concurrency.

3. It investigates methods that improve how the complexity of sparse, direct solvers
scales with the size of the problem. These take advantage of a property which is
commonly referred to as data sparsity through the use of low-rank approximation
techniques that allow for discarding redundant or unimportant data; this results in
faster computations and lower memory consumption with a loss of accuracy which
can be conveniently controlled through a single parameter. This subject is studied
in Chapter 5.

Chapter 2 introduces the basic concepts that are necessary for a good understanding
of the ensuing chapters; it also attempts at providing a concise introduction to dense
and sparse matrix factorization methods and can serve a starting point for students or
researchers who are willing to learn the basis of solving linear systems by means of direct
methods. Chapter 6 draws some conclusions from the this work and presents some future
research developments.

This manuscript describes the research work that I have accomplished since receiving
my PhD degree in 2006.
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1. Introduction

In 2006-2007 I joined the ICL laboratory at the University of Tennessee Knoxville as
a post-doc. During that period I worked on the development of “tiled” algorithms [C13,
B3, C14, J15, C15, J16, J18, J19] that improve the scalability and performance of dense
matrix factorizations by breaking down into multiple steps the operations that are heavy
on communications and, therefore, difficult to parallelize efficiently. During this period I
also worked on the use of mixed-precision iterative refinement techniques [J7, B4, J12, J13,
J18, C18] for the solution of linear systems of equations; under the assumption that the
input problem is not too badly conditioned. These methods perform the most expensive
operations (e.g., the factorization) in lower-precision arithmetic and then selectively use
higher precision to recover the desired accuracy by means of iterative refinement. As
a result, the solution can be achieved with high accuracy at the speed of lower-precision
operations. These techniques can be equally applied to dense and sparse linear systems and
to direct and iterative methods. When applied to dense, direct solvers this performance
benefit comes at the price of an increased memory consumption because, although the
factors are stored in single precision, a double precision copy of the original matrix must
be kept in memory to perform the iterative refinement. On the other hand when applied
to sparse, direct solvers they can also reduce the storage because the size of this extra
copy is negligible compared to the size of the factors which are stored in single precision.
For the sake of conciseness this work is not discussed in this manuscript.

Later, in 2008, I joined the INRIA Graal (currently ROMA) team at the LIP laboratory
of Lyon. Here I got acquainted with sparse direct solvers and worked on the development
of a parallel symbolic analysis which was integrated into the MUMPS solver.

At the end of 2008 I joined the APO team of the IRIT laboratory of Toulouse as a
CNRS Chargé de Recherche (full time researcher). Since then I have devoted most of
my research activity to sparse direct solvers, parallel computing and computational linear
algebra. This thesis is essentially a résumé of the work I achieved during this period.

Most of this work was achieved in the context of four PhDs that I co-supervised:
François-Henry Rouet (INPT-IRIT, 2009-2012) on the memory scalability of sparse direct
solvers, Clément Weisbecker (INPT-IRIT, 2010-2013) and Theo Mary (UPS-IRIT, 2014-
2017) on low-rank approximation techniques and Florent Lopez (UPS-IRIT, 2012-2015)
on parallelism for multicore and heterogeneous systems.

The development of numerical linear algebra software has always been a central part
of my research activity. This is mostly due to the fact that the need for fast, scalable
and, at the same time, reliable solvers is motivated by the ever evolving and increasing
requirements of large-scale numerical simulation applications. Through the development of
production quality software packages it is possible to validate the effectiveness of methods
and algorithms in working conditions that are hard to model theoretically and to assess
their practical interest. Moreover, the free distribution of these packages allows us to
reach out for collaborations with experts of large scale simulation applications, opening up
opportunities for developing more research. I have contributed to the development of the
MUMPS [13] sparse direct solver, and I am the principal developer of the qr_mumps [J10]
one. I have also contributed, to a minor extent, to the PSBLAS [J17] sparse, iterative
solver.

All the achievements of my research activity (including those that are not presented in
this manuscript) result from close collaborations and exchanges with the IRIT-APO team
as well as with other, external, academic and industrial partners: the ROMA, HiePACS
and STORM teams of Inria, Dr Sherry Li’s team at the Lawrence Berkeley National
Laboratory, the ICL laboratory at UTK, Prof Salvatore Filippone at Cranfield University
(formerly at the University of Rome Tor Vergata), the Seiscope consortium, LSTC, EDF
and EMGS.
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Chapter 2

Background

2.1 Dense matrix factorizations

2.1.1 Unsymmetric matrices: the Gaussian Elimination
One very well known method for computing the solution of Equation (1.1) with A being
square (i.e., m = n) and non-symmetric is Gaussian Elimination. Through a number of
convenient linear combinations of the rows of A and b, this method reduces A to an upper-
triangular matrix U such that the solution x of the linear system can be easily computed
through a backward substitution. The Gaussian elimination is equivalent to computing
n− 1 linear transformations L−1

i such that

L−1
n−1...L−1

2 L−1
1 A = U.

Each L−1
i is unit-diagonal and lower-triangular with all the coefficients below the diagonal

equal to zero except for the i-th column and eliminates variable xi from the equations
i + 1...m. Setting L1L2...Ln−1 = L this process yields A = LU which is commonly known
under the name of LU factorization. With few algebraic manipulations and a few “Strokes
of luck” [154] it is possible to show that L is also unit-diagonal and lower-triangular. The
LU factorization can be computed using Algorithm 2.1 where with a

(k)
i,j we denote the

coefficients of the so called trailing submatrix A(k) at step k; this algorithm costs 2/3n3

floating-point operations and may work in-place, i.e., the L and U factors may be stored in
the same memory that originally holds the A matrix (this is possible because the diagonal
of L is unitary and need not be stored).

Note that the loops in Algorithm 2.1 can be nested differently which gives rise to
different variants on the LU factorization. The one in Algorithm 2.1 is the so-called
right-looking variant because at step k of the factorization column k is reduced through
the transformation L−1

k which is also immediately applied to the trailing submatrix at the
right of it. The dual of this approach is the left-looking variant: at step k, all the L−1

k−1...L−1
1

transformations are applied to the k-th column which is then reduced by means of the
L−1

k transformation. Other variants exist such as the Crout one [63]. All these variants
are numerically equivalent but differ in the data access pattern which may result in better
use of the memory hierarchy or better potential for parallelism and vectorization.

Once the L and U factors are computed, the solution x of the linear system can be
computed through the following two operations{

Ly = b
Ux = y

7
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Algorithm 2.1 LU factorization.
1: a

(0)
ij = ai,j for all i, j = 1, ..., n

2: for k = 1, ..., n do
3: for j = k, ..., n do
4: uk,j = a

(k−1)
k,j

5: end for
6: for i = k + 1, ..., m do
7: lik = a

(k−1)
i,k /uk,k

8: for j = k + 1, ..., n do
9: a

(k)
i,j = a

(k−1)
i,j − li,kuk,j

10: end for
11: end for
12: end for

which are called, respectively, forward elimination and backward substitution. These can
be easily and cheaply (n2 flops each) computed with a doubly-nested loop.

2.1.1.1 Accuracy of the Gaussian Elimination and pivoting

When working in finite-precision arithmetic (as it happens on a computer) we may be
concerned about the accuracy of the computed solution x̂ of Equation (1.1) because of the
roundoff errors that occur during the computation. Classic backward error analysis [160]
states that the forward error ∥x− x̂∥/∥x∥ can be bounded by the product of the condition
number and the backward error. The condition number measures how the computed
solution is sensitive to perturbations in the input data and does not depend on the used
method but solely on the input data; for the solution of Equation (1.1) the condition
number is κ(A) = ∥A−1∥ · ∥A∥ (see, for example, the book by Demmel [57] for further
details). The backward error, instead, is a measure of the smallest perturbation of the
input data such that the computed solution is the exact solution of the perturbed problem.
If this quantity is small, the method is deemed backward stable. For the solution of
Equation (1.1), the backward error, is thus defined by the following quantity

βAx=b = min { ϵ : (A + δA)x̂ = b + δb,
∥δA∥ ≤ ϵ∥A∥,
∥δb∥ ≤ ϵ∥b∥}.

A well known result by Rigal and Gaches [138] proves that

βAx=b = ∥r∥
∥A∥∥x̂∥+ ∥b∥

where r = b−Ax̂ is the so-called residual.
If Gaussian Elimination is used, and assuming δb = 0, it is possible to prove that [57]

∥δA∥∞ ≤ 3nu∥L∥∞ · ∥U∥∞,

where u is the unit roundoff, which implies that the Gaussian Elimination is backward
stable if 3nu∥L∥∞ · ∥U∥∞ = O(u)∥A∥∞. This result basically states that we have to keep
the coefficients in L and U low in order to limit the backward error.

Let’s take this example extracted from the book of Golub and Van Loan [86]

Ax =
[

0.001 1.00
1.00 2.00

]
·
[

x1
x2

]
=
[

1.00
3.00

]
= b

8
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to be solved using Gaussian Elimination on a computer using a three decimal digits floating
point representation. The LU factorization yields

L =
[

1.00
1000 1.00

]
U =

[
0.001 1.00

−1000

]

because 2.00− 1000 = −1000 in the three digits representation. As a result

L · U =
[

0.001 1.00
1.00 0.00

]
̸= A

and the computed solution is

x̃ =
[

0.00
1.00

]
̸= true solution =

[
1.002...
0.998...

]

Note that the condition number κ(A) = 5.84 and thus the problem is well-conditioned.
This poor accuracy can be explained observing that the coefficients of L and U have
grown considerably with respect to those of A – a phenomenon that can be measured by
the so-called growth factor

ρ(A) =
|max

i,j,k
a

(k)
i,j |

|max
i,j

ai,j |
.

One way to prevent this excessive growth of the coefficients is a technique called pivoting.
Various flavors of pivoting exist in the literature but they all share the idea of using
permutations in the course of the factorization such that at step k the pivotal coefficient
a

(k−1)
k,k is large enough with respect to the coefficients in the trailing submatrix. The most

commonly used pivoting technique is called partial pivoting and consists in scanning the
k-th column a

(k−1)
i,k for i = k, ..., m looking for the coefficient with the largest absolute

value and then swapping the corresponding row with row k. Because of the division on
line 7 of Algorithm 2.1, partial pivoting ensures that all the coefficients of L are lower
than or equal to one. In this case the bound on the backward error becomes [57]

∥δA∥∞ ≤ 3n3uρ(A)∥A∥∞.

This bound can be overly pessimistic, not only because of the n3 term but also because
it is not possible to compute a tight bound for ρ(A); it can actually be shown that for
some classes of problems the growth factor can be as big as 2n−1. In practice, however,
it is very rare to observe large growth factors and the Gaussian elimination with partial
pivoting can be used with confidence.

As a result, the Gaussian Elimination with partial pivoting is described by a sequence
of linear combinations interleaved with permutations

L−1
n−1Pn−1...L−1

2 P2L−1
1 P1A = U. (2.1)

where each Pi only permutes two rows. Through simple algebraic manipulations this can
be rewritten as

L̃−1
n−1...L̃−1

2 L−1
1 Pn−1...P2P1A = U. (2.2)

9
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where

L̃i = Pn−1...Pi+1LiP
T
i+1...P T

n−1.

We can observe that the only difference between Li and L̃i is in the fact that the
subdiagonal nonzeros in column i are permuted and thus it is still possible to write
L̃−1

n−1...L̃−1
2 L−1

1 = L−1 which yields

PA = LU. (2.3)

Taking pivoting into account, the LU factorization can be rewritten as in Algo-
rithm 2.2. Note that the P matrix is stored implicitly in the p array of integers, whereas
L and U are stored in the memory that originally contained matrix A. This algorithm
performs exactly the same number of operations as Algorithm 2.1 because permutations
only involve memory copies; nonetheless the use of pivoting degrades performance and
limits parallelism. Algorithm 2.2 is implemented in the _getrf21 of the LAPACK [20]
library.

Algorithm 2.2 LU factorization with partial pivoting.
1: for k = 1, ..., n do
2: p(k) = argmax

i=k,...,m
(|ai,k|)

3: swap rows Ak,1:n and Ap(k),1:n
4: Ak+1:m,k = Ak+1:m,k/ak,k

5: Ak+1:m,k+1:n = Ak+1:m,k+1:n −Ak+1:m,k ∗Ak,k+1:n
6: end for

Gaussian Elimination with partial pivoting applied to the matrix of the example above
yields

P =
[

0 1
1 0

]
L =

[
1.00
0.01 1.00

]
U =

[
1.00 2.00

1.00

]

resulting in

P T · L · U =
[

0.01 1.02
1.00 2.00

]
x =

[
1.00
0.996

]

which is a much more accurate solution with respect to the case where pivoting is not
used.

2.1.2 Symmetric matrices: the Cholesky and LDLT factorizations
A matrix is symmetric positive definite if and only if A = AT and xT Ax > 0 for all x ̸= 0.
For such matrices the following proposition can be proved:

Proposition 2.1— A is symmetric positive definite if and only if there is a unique lower
triangular nonsingular matrix L with positive diagonal entries such tat A = LLT .

1The underscore has to be replaced be d, s for computations in real, double and single precision,
respectively, and with z, c for computations in complex, double and single precision, respectively.
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We refer the reader to any classic linear algebra textbook (like the one by Demmel [57]
or Golub and Van Loan [86]) for a proof. The factorization A = LLT is called the Cholesky
factorization and can be computed as in Algorithm 2.3 implemented in the LAPACK
_potf2 routine. This algorithm

• costs n3/3 floating point operations which is half as much as the LU factorization;

• does not require pivoting because it is backward stable due to the positive definite-
ness property;

• represents the cheapest way to verify whether A is positive definite because otherwise
it would break down trying to compute the square root of a negative coefficient or
by making a division by zero.

Algorithm 2.3 Cholesky factorization.
1: for k = 1, ..., n do
2: ai,i = √ai,i

3: for i = k + 1, ..., n do
4: ai,k = ai,k/ak,k

5: for j = k + 1, ..., i do
6: ai,j = ai,j − ai,kaj,k

7: end for
8: end for
9: end for

When the matrix A is indefinite, the Cholesky factorization cannot be used because
it leads to an unstable computation due to an excessive element growth. Obviously, the
partial pivoting technique described above can be used to stabilize (at least in practice)
the method but this would destroy the symmetry and thus preclude the possibility to
achieve the factorization in n3/3 flops. On the other hand, using symmetric permutations
such that PAP T = LLT does not always lead to a stable computation (think of the case
where all the diagonal elements of A are small). For such matrices, the most commonly
used technique consists in using a factorization of the form PAP T = LDLT where L is
lower-triangular and unit-diagonal and D is a block-diagonal matrix with blocks of size
1× 1 or 2× 2. One pivoting technique to compute such a factorization was proposed by
Bunch and Kaufman [44] and, at each step of the factorization, only involves searching in
two columns of the trailing submatrix; this method can be proved to be as stable as the LU
factorization with complete pivoting. The LDLT factorization with the Bunch-Kaufman
pivoting is implemented in the LAPACK _sytf2 routine.

2.1.3 QR factorization
This method decomposes the input matrix A ∈ Rm×n, assumed to be of full rank, into
the product of a square, orthogonal matrix Q ∈ Rm×m and an upper triangular matrix
R ∈ Rn×n.

Theorem 2.1 Björck [36, Theorem 1.3.1].— Let A ∈ Rm×n, m ≥ n. Then there is
an orthogonal matrix Q ∈ Rm×m such that

A = Q

[
R
0

]
, (2.4)
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where R is upper triangular with nonnegative diagonal elements. The decomposi-
tion (2.4) is called the QR decomposition of A, and the matrix R will be called the
R-factor of A.

The columns of the Q matrix can be split in two groups

Q = [Q1Q2] (2.5)

where Q1 ∈ Rm×n is an orthogonal basis for the range of A, R(A) and Q2 ∈ Rm×(m−n)

is an orthogonal basis for the kernel of AT , N (AT ).
The QR decomposition can be used to solve square linear system of equations

Ax = b, with A ∈ Rn×n, (2.6)

as the solution x can be computed through the following three steps
A = QR
z = QT b
x = R−1z

(2.7)

where, first, the QR decomposition is computed (e.g., using one of the methods described
below), an intermediate result is computed trough a simple matrix-vector product and,
finally, solution x is computed through a triangular system solve. As we will explain
the next two sections, the QR decomposition is commonly unattractive in practice for
solving square systems mostly due to its excessive cost when compared to other available
techniques, despite its desirable numerical properties.

The QR decomposition is instead much more commonly used for solving linear systems
where A is overdetemined, i.e. where there are more equations than unknowns. In such
cases, unless the right-hand side b is in the range of A, the system admits no solution;
it is possible, though, to compute a vector x such that Ax is as close as possible to
b, or, equivalently, such that the residual ∥Ax − b∥2 is minimized as in Equation (1.2).
Such a problem is called a least-squares problem and commonly arises in a large variety
of applications such as statistics, photogrammetry, geodetics and signal processing. One
typical example is given by linear regression where a linear model, say f(x, y) = α+βx+γy
has to be fit to a number of observations subject to errors (fi, xi, yi), i = 1, ..., m. This
leads to the overdetermined system


1 x1 y1
1 x2 y2
...

...
...

1 xm ym


 α

β
γ

 =


f1
f2
...

fm

 .

Assuming the QR decomposition of A in Equation (2.4) has been computed and

QT b =
[

QT
1

QT
2

]
b =

[
c
d

]

we have

∥Ax− b∥22 = ∥QT Ax−QT b∥22 = ∥Rx− c∥22 + ∥d∥22. (2.8)
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This quantity is minimized if Rx = c where x can be found with a simple triangular
system solve. This is equivalent to saying that Ax = Q1QT

1 b and thus solving Equa-
tion (1.2) amounts to finding the vector x such that Ax is the orthogonal projection of b
over the range of A, as shown in Figure 2.1. Also note that r = Q2QT

2 b and thus r is the
projection of b on the null space of AT , N (A).

Figure 2.1: Solution of a least-squares problem.

Another commonly used technique for the solution of the least-squares problem is the
Normal Equations method. Because the residual r is in N (AT )

AT (Ax− b) = 0

and, thus, the solution x to Equation (1.2) can be found solving the linear system
AT Ax = AT b. Because AT A is Symmetric Positive Definite (assuming A has full rank),
this can be achieved through the Cholesky factorization. Nonetheless, the method based
on the QR factorization is often preferred because the conditioning of AT A is equal to the
square of the conditioning of A, which may lead to excessive error propagation.

The QR factorization is also commonly used to solve underdetermined systems, i.e.,
with more unknowns than equations, which admit infinite solutions. In such cases the
desired solution is the one with minimum 2-norm:

min∥x∥2, Ax = b. (2.9)

The solution of this problem can be achieved by computing the QR factorization of
AT

[Q1Q2]
[

R
0

]
= AT

where Q1 ∈ Rn×m and Q2 ∈ Rn×(n−m). Then

Ax = RT QT x = [RT 0]
[

z1
z2

]
= b

and the minimum 2-norm solution follows by setting z2 = 0. Note that Q2 is an orthog-
onal basis for N (A) and, thus, the minimum 2-norm solution is computed by removing
for any admissible solution x̃ all of its components in N (A).
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2.1.3.1 Householder QR decomposition

The QR decomposition of a matrix can be computed in different ways; the use of Givens
Rotations [84], Householder reflections [102] or the Gram-Schmidt orthogonalization [142]
are among the most commonly used and best known ones. We will not cover here the use of
Givens Rotations, Gram-Schmidt orthogonalization and their variants and refer, instead,
the reader to classic linear algebra textbooks such as Golub et al. [86] or Björck [36] for an
exhaustive discussion of such methods. We focus, instead, on the QR factorization based
on Householder reflections which has become the most commonly used method especially
because of the availability of algorithms capable of achieving very high performance on
processors equipped with memory hierarchies.

For a given a vector u, a Householder Reflection is defined as

H = I − 2uuT

uT u
(2.10)

and u is commonly referred to as Householder vector. It is easy to verify that H is
symmetric and orthogonal. Because Pu = uuT

uT u
is a projector over the space of u, Hx can

be regarded as the reflection of a vector x on the hyperplane that has normal vector u.
This is depicted in Figure 2.2 (left).

Figure 2.2: Householder reflection

The Householder reflection can be defined in such a way that Hx has all zero coefficients
except the first, which means to say that Hx = ±∥x∥2e1 where e1 is the first unit vector.
This can be achieved if Hx is the reflection of x on the hyperplane that bisects the angle
between x and ±∥x∥2e1, as illustrated in Figure 2.2 (right). This hyperplane is orthogonal
to the difference of these two vectors x∓ ∥x∥2e1 which can thus be used to construct the
vector

u = x∓ ∥x∥2e1. (2.11)

Note that, if, for example, x is close to a multiple of e1, then ∥x∥2 ≈ x(1) which may
lead to a dangerous cancellation in Equation (2.11); to avoid this problem u is commonly
chosen as

u = x + sign(x1)∥x∥2e1. (2.12)
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In practice, it is very convenient to scale u in such a way that its first coefficient is
equal to 1 (more on this will be said later). Assuming v = u/u1, through some simple
manipulations, the Householder transformation H is defined as

H = I − τvvT , where τ = (sign(x1)x1 + ∥x∥2)
∥x∥2

. (2.13)

Note that the matrix H is never explicitly built neither to store, nor to apply the
Householder transformation; the storage is done implicitly by means of v and τ and the
transformation can be applied to an entire matrix A ∈ Rm×n in 4mn flops like this

HA = (I − τvvT )A = A− τv(vT A) (2.14)

The Householder reflection can be computed and applied as described above using,
respectively, the _larfg and _larf routines in the LAPACK[20] library.

A sequence of Householder transformations can be used to zero-out all the coefficients
below the diagonal of a dense matrix to compute its QR factorization:

HnHn−1...H2H1A = R, where HnHn−1...H2H1 = QT .

Each transformation Hk annihilates all the coefficients below the diagonal of column
k and modifies all the coefficients in the trailing submatrix Ak:m,k+1:n. The total cost of
this algorithm is 2n2(m − n/3). The Q matrix is implicitly represented by means of the
vk vectors and the τk coefficients. One extra array has to be allocated to store the τk

coefficients, whereas the vk vectors can be stored inside matrix A in the same memory as
the zeroed-out coefficients; this is possible because the vk have been scaled as described
above and thus the 1 coefficients along the diagonal must not be explicitly stored. The
LAPACK _geqr2 routine implements this method which is reported in Algorithm 2.4. In
this algorithm, line 2 computes the rk,k coefficient equal to ∥Ak:m,k∥2 and the v reflector
and the τ coefficient as in Equations (2.12)(2.13); these are stored, respectively, in ak,k,
Ak+1:m,k (the first coefficient of v being equal to one is not stored explicitly) and tk. This
transformation is then applied to the trailing submatrix through the operation on line 4
where the ak,k coefficient is assumed to be one.

Algorithm 2.4 Householder QR factorization.
1: for k = 1, ..., n do
2: Ak:m,k, tk = house(Ak:m,k)
3: for j = k + 1, ..., n do
4: Ak:m,k+1:n = (I − tkAk:m,kAT

k:m,k)Ak:m,k+1:n
5: end for
6: end for

The following results define the stability of the QR factorization.

Theorem 2.2 Björck [36, Remark 2.4.2].— Let R̄ denote the computed R. It can be
shown that there exists an exactly orthogonal matrix Q̄ (not the computed Q) such that

A + E = Q̄R̄, ∥E∥F ≤ c1u∥A∥F ,

where the error constant c1 = c1(m, n) is a polynomial in m and n, ∥ · ∥F denotes the
Frobenius norm and u the unit roundoff.
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In other words, the Householder QR factorization is normwise backward stable.
The use of a QR factorization by means of a sequence of orthogonal transformations

to solve least-squares problems was introduced by Golub [85]; this method is also proven
to be backward stable:

Theorem 2.3 Björck [36, Remark 2.4.8].— Golub’s method for solving the standard
least squares problem is normwise backward stable. The computed solution x̂ can be shown
to be the exact solution of a slightly perturbed least squares problem

min
x
∥(A + δA)x− (b + δb)∥2,

where the perturbations satisfy the bounds

∥δA∥2 ≤ cun1/2∥A∥2, ∥δb∥2 ≤ cu∥b∥2

and c = (6m− 3n + 41)n.

Despite these very favorable numerical properties, the QR factorization is rarely pre-
ferred to the Gaussian Elimination (or LU factorization) with Partial Pivoting (GEPP)
for the solution of square systems because its cost is twice the cost of GEPP and because
partial pivoting is considered stable in most practical cases.

2.1.4 Blocked variants
The above discussed factorization algorithms, commonly referred to as point factorizations,
are actually never directly used in practice because they can only achieve a modest fraction
of the peak performance of a modern processor. This is due to the fact that most of the
computations, which are done in the application of elementary transformations to the
trailing submatrix as line 5 of Algorithm 2.2, are based on Level-2 (i.e., matrix-vector)
Basic Linear Algebra Subroutines (BLAS) operations and thus limited by the speed of the
memory rather than the speed of the processor. In order to overcome this limitation and
considerably improve the performance of dense matrix factorizations on modern computers
equipped with memory hierarchies, blocking techniques are commonly employed: these
consist in accumulating multiple elementary transformations and applying them at once by
means of Level-3 BLAS operations. The resulting factorization algorithms are commonly
referred to as blocked factorizations.

2.1.4.1 Blocked LU factorization

Assume a square matrix A is partitioned as such

A =
[

A1,1 A1,2
A2,1 A2,2

]

where A1,1 and A2,2 are square submatrices of size b≪ n and n−b, respectively. Executing
the first b iterations of the outer loop in Algorithm 2.2 leads us to the following situation

P1..bA =
[

L1,1 0
L̂2,1 I

] [
U1,1 U1,2

0 Ã2,2

]
(2.15)
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where P1..b = Pb · · ·P1 and Ã2,2 is the so-called Schur complement. Computing the re-
maining n− b iterations amounts to computing Pb+1..n−1Ã2,2 = L2,2U2,2 which yields the
complete LU factorization

PA =
[

L1,1 0
L2,1 L2,2

] [
U1,1 U1,2

0 U2,2

]

where P = Pb+1..n−1P1..b and L2,1 = Pb+1..n−1L̂2,1.
Note that we could get to the same situation as in Equation (2.15) trough the following

steps

P1..b

[
A1,1
A2,1

]
=
[

L1,1
L̂2,1

]
U1,1 (2.16a)

[
Â1,2
Â2,2

]
= P1..b

[
A1,2
A2,2

]
(2.16b)

U1,2 = L−1
1,1Â1,2 (2.16c)

Ã2,2 = Â2,2 − L̂2,1U1,2 (2.16d)

Step (2.16a) is referred to as the panel factorization or panel reduction and can be achieved
running Algorithm 2.2 on [AT

1,1AT
2,1]T , step (2.16b) consists in simple row permutations,

step (2.16c) is a triangular system solve with multiple right-hand sides and, finally,
step (2.16d) is a rank−b update or, simply a matrix-matrix product; these last three
steps are commonly called trailing submatrix update.

The rest of the factorization can be achieved by applying recursively the same par-
titioning and steps on Ã2,2. The main advantage of this approach with respect to the
point LU factorization of Algorithm 2.2 is that, if b≪ n, the vast majority of the floating
operations are done in steps (2.16c)(2.16d) which are Level-3 BLAS matrix-matrix op-
erations; these can run very close to the peak performance of a processor thanks to the
favorable ratio between computations and memory accesses. The blocked LU factorization
is implemented in the _getrf LAPACK routine.

This blocking technique can be applied to the Cholesky factorization in a straight-
forward way and, although more difficult, it can also be applied to the LDLT factoriza-
tion; the Cholesky and LDLT blocked factorizations are implemented, respectively, in the
_potrf and _sytrf LAPACK routines.

2.1.4.2 Blocked QR factorization

Blocking is more complex for the Householder QR factorization because it is not easy to
accumulate elementary transformations. Schreiber et al. [143] proposed a way of accu-
mulating multiple Householder transformations and applying them at once by means of
Level-3 BLAS operations.

Theorem 2.4 Compact WY representation (Adapted form Schreiber et al.
[143]).— Let Q = H1...Hk−1Hk, with Hi ∈ Rm×m an Householder transformation defined
as in Equation (2.13) and k ≤ m. Then, there exist an upper triangular matrix T ∈ Rk×k

and a matrix V ∈ Rm×k such that

Q = I + V TV T .
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Proof. The proof is by induction on k. The case k = 0 is straightforward. Now assume
that a matrix Qk = H1...Hk−1Hk has a compact WY representation Qk = I + VkTkV T

k

and consider

Qk+1 = QkHk+1 = Qk(I − τk+1vk+1vT
k+1).

Then a compact WY representation for Qk+1 is given by Qk+1 = I + Vk+1Tk+1V T
k+1

where

Tk+1 =
[

Tk −τk+1TkV T
k vk+1

0 −τk+1

]
, Vk+1 =

[
Vk vk+1

]
(2.17)

which concludes the proof.

Using this technique, matrix A can be logically split into ⌈n/b⌉ panels (block-columns)
of size b and the QR factorization achieved in the same number of steps where, at step
k, panel k is factorized using the _geqr2 routine, the corresponding T matrix is built,
as in Equation (2.17) using the _larft routine and then the set of b transformations is
applied at once to the trailing submatrix through the _larfb routine. This last oper-
ation/routine is responsible for most of the flops in the QR factorization: because it is
based on matrix-matrix operations it can achieve a considerable fraction of the processor’s
peak performance. This method is implemented in the LAPACK _geqrf routine which
uses an implicitly defined blocking size b and discards the T matrices computed for each
panel. More recently, the _geqrt routine has been introduced in LAPACK which employs
the same algorithm but takes the block size b as an additional argument and returns the
computed T matrices.

2.1.4.3 QR factorization with pivoting

In case the A matrix is rank deficient, the R factor resulting from the QR factorization
will have zeros on the diagonal on those columns that are linearly dependent on previously
eliminated ones. This result, however, cannot be used for solving a linear system because
the triangular system solve involving R will fail with divisions by zero. In such cases, a
QR factorization with column pivoting [45] can be used: at each step k, the column whose
norm is the highest is brought in position k with a column swap. This technique yields
the factorization

QT AΠ =

[ ]
R1,1 R1,2 r

0 R2,2 m− r
r n− r

In exact arithmetic R2,2 = 0 and r is the rank of A; in finite arithmetic R2,2 is considered
to be zero if it is small enough, for example, if its 2-norm or it left-topmost coefficient
(R2,2)1,1 are smaller than a prescribed threshold. Assuming x is split in two parts, x1
containing the first r elements and x2 containing the remaining n− r ones, the solution of
the rank deficient least squares problem can be computed as explained for Equation (2.8)
by setting x2 = 0.

Computing the column-pivoted QR factorization requires the norms of all the columns
in the trailing submatrix at each step. Instead of computing these values at each step, it
is possible to compute them once before the factorization and only update them after each
Householder elimination. Let c be a vector of size n containing the square of the 2-norms

18



2.2. Sparse matrix factorizations

of the column of A, ci = ∥A:,i∥22, and assume one Householder reflection is applied to A
in order to annihilate all the coefficients in the first column except the first. Because this
is a unitary transformation, the c vector can be updated to store the square 2-norms of
the columns of the trailing submatrix A(1) with the simple operation ci = ci − r2

1,i. Note
that, because all the column norms have to be updated at each step, blocking techniques
cannot be used to their full extent and thus, in the column-pivoted QR factorization a
large part of operations is done in Level-2 BLAS routines.

2.2 Sparse matrix factorizations
The factorization of a sparse matrix is considerably more complex than its dense coun-
terpart because special care must be taken to the sparsity structure of the matrix in
order to avoid useless computations on zero coefficients. In this document we will assume
that square matrices are structurally symmetric; this greatly simplifies the handling of
dependencies between computations and implies a number of other favorable structural
properties. Note that, in the case where the structure of the matrix is not symmetric, it
is possible to “symmetrize” it by explicitly storing zero coefficients in order to make sure
that if ai,j if present then also is aj,i. Of course, if the structure of the original matrix is
strongly unsymmetric, many zero coefficients have to be added to the structure in order
to symmetrize it which may result in an excessive memory and computational overhead;
for these cases dedicated unsymmetric factorization methods can be employed and we will
briefly mention them.

2.2.1 The Cholesky multifrontal method
Consider a symmetric, positive definite matrix A with the sparsity structure shown in
Figure 2.3 (left) and suppose we execute Algorithm 2.3 on it. The structure of the resulting
L factor is reported in Figure 2.3 (right). Two interesting observations can be made:

1. Eliminating one variable through one iteration of the outer loop in the Cholesky
algorithm does not necessarily imply updating all the coefficients in the trailing
submatrix. For example, when the first iteration is executed, only the coefficients in
columns 1 (obviously), 4 and 9 are modified; this is because for all the other columns
j, lj,1 is equal to zero and, therefore, the update operation ai,j = ai,j − lj,1li,1 has no
effect.

2. Some of the coefficients that were zero in A have been turned into nonzero by the
factorization; for example when the second iteration of the Cholesky factorization is
executed a4,3 becomes nonzero due to the update a4,3 = a4,3 − l4,2l3,2. As a result
the structure of L + LT is denser than that of A; this phenomenon is referred to as
fill-in. Because of fill-in the cost of a sparse factorization can be very high, both in
terms of memory and time, even for very sparse matrices.

This two properties can be more formally stated by Propositions 2.2 and 2.3.

Proposition 2.2— For j > k the numerical values of column j depend on column k,
denoted k → j, if and only if lj,k ̸= 0.

By saying that column j depends on column k we mean that eliminating variable
k updates the numerical values of column j. This implies that the second term on the
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1 2 3 4 5 6 7 8 9
1 a a a
2 a a a a
3 a a a
4 a a a a
5 a a a
6 a a a
7 a a a a a
8 a a a a
9 a a a a

1 2 3 4 5 6 7 8 9
1 l
2 l
3 l l
4 l l l l
5 l
6 l l
7 l l l l
8 l l l l
9 l l l l l l

Figure 2.3: The structure of a symmetric sparse matrix A and of the associated Cholesky
factor L. The fill-in in L is represented with underlined letters.

right-hand side in line 6 of Algorithm 2.3 is nonzero which is true if and only if lj,k is
nonzero.

Proposition 2.3— Let be i > j > k. If column j and column i depend on k then column
i depends on column j.

Proof. The fact that both columns j and i depend on column k implies that lj,k ̸= 0 and
li,k ̸= 0. Therefore, li,j will be nonzero as a result of the update on line 6 of Algorithm 2.3.

As a consequence of Proposition 2.3 it is easy to see that, a fill-in coefficient li,j is
created if ai,j = 0 and li,k and lj,k are nonzero for some k < i, j.

The canonical tools for formalizing the theory of sparse matrix factorizations and
characterizing the fill-in are graphs: a sparse matrix A can be represented by the graph
G(A) = (V, E) whose vertex set V = {1, 2, ..., n} includes the unknowns of A and edge set
E = {(i, j) ∀ ai,j ̸= 0} includes an edge for each nonzero coefficient of A. In our case, the
symmetry of the matrix implies that if (i, j) is in E then also (j, i) is and therefore we
will only represent one of these edges and the graph will be undirected. The graph G(A)
is also commonly called the adjacency graph of A. Figure 2.4 shows, on the top-left , the
adjacency graph for the matrix in Figure 2.3.

It is possible to use the adjacency graph to model the factorization of a sparse matrix.
Specifically we can build a sequence of graphs G(A) = G0(A),G1(A), ...,Gn−1(A), called
elimination graphs, such that Gk(A) is the adjacency graph of the trailing submatrix after
elimination of variables 1, 2, ..., k. Elimination graph Gk(A) is built from Gk−1(A) by
removing node k as well as all its incident edges and by updating the connectivity of the
remaining nodes. By Proposition 2.3, for any two nodes i and j neighbors of k we have
to add an edge connecting them if it does not exist already; this models the occurrence
of a new fill-in coefficient. In other words, upon elimination of node k, a clique is added
to the graph which includes all the neighbors of k. Algorithm 2.5 shows the elimination
graphs process and Figure 2.4 shows the elimination graphs for the matrix in Figure 2.3.

The elimination graphs process suggests that, if in G(A) there is a path i, k1, k2, ..., kp, j
with ks < min(i, j) ∀s, then li,j must necessarily be nonzero. This is because whenever
one of the ks nodes is eliminated, its two neighbors along the path become connected (if
they weren’t already); therefore, when the last of these ks nodes is eliminated i and j
become connected. This intuition leads to one very well known result by Rose, Tarjan
and Lueker [139]:
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G3(A)
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G4(A)
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G5(A)
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G6(A) 7 8

9

G7(A) 8
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Gf (A)
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4

5

6

7 8

9

Figure 2.4: Adjacency graph (top-left), eliminations graphs and filled graph (bottom-right)
of matrix A in Figure 2.3.

Theorem 2.5 (Rose et al. [139]).— Let i > j. Then li,j ̸= 0 if and only if there exist
a path

j, k1, k2, ..., kp, i

in G(A) such that ks < min(i, j).

although the “if” part of this theorem can easily be understood following the idea
described above, the proof of the “only if” part is more complex and we refer the reader
to the original paper for its description.

Algorithm 2.5 Elimination graphs process.
G0(A)← G(A) = (V, E)
for k = 1, ..., n− 1 do
V ← V − {k}
E ← E − {(k, l) : l ∈ adj(k)} ∪ {(i, j) : i ∈ adj(k) and j ∈ adj(k)}
Gk ← (V, E)

end for

The graph Gf (A) obtained by adding to G(A) all the edges associated with fill-in
coefficients is called filled graph and corresponds to the adjacency graph of L + LT . For
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the matrix in Figure 2.3 the filled graph is reported in the bottom-right of Figure 2.4.
The directed filled graph −→G f (A) is obtained from the filled graph assuming that an edge
(i, j) is directed from i to j if j > i. This graph cannot have cycles, for which reason it is
called a Directed Acyclic Graph (DAG).

Note that −→G f (A) represents the dependencies among the columns of the matrix as
defined in Proposition 2.2 and its transitive closure states whether a variable can be
eliminated before another. Note that, in order to establish a dependency between columns
i and j, we are only interested in knowing whether there exist a path in −→G f (A) connecting
nodes i and j; therefore the directed filled graph can be simplified by keeping the longest
path connecting i and j and discarding all the others. This amounts to computing the
transitive reduction of −→G f (A) which we call T (A). Note that T (A) is equivalent to the
directed graph associated with the matrix obtained by removing from L all the coefficients
below the diagonal except the first which can easily be seen using Proposition 2.3. Assume
that li,k ̸= 0 and lj,k ̸= 0 with i > j > k; because we know that li,j must necessarily be
nonzero, we can suppress li,k because the dependency k → i is indirectly represented by
the chain of dependencies k → j → i. Schreiber [144] shows that, if the matrix A is not
reducible, this graph is an ordered tree with root n (hence the choice of the letter T for
denoting it). T (A) is the most compact way of representing all the column dependencies
in the factorization of a sparse matrix and is commonly referred to as elimination tree.

Definition 2.1 Elimination tree [144].— Let A be a sparse, symmetric positive definite
matrix of size n with Cholesky factor L. The elimination tree is defined to be the structure
with n nodes {1, 2, ..., n} such that the node p is the parent of node j if and only if

p = min{i > j | li,j ̸= 0}.

From this definition and the theory discussed above, the two following theorems can
be derived.

Theorem 2.6 ([144]).— If lj,k ̸= 0 and k < j, then the node k is a descendant of j in
the elimination tree.

Theorem 2.7 ([119]).— If node k is a descendant of node j in the elimination tree, then
the structure of the vector [lj,k, ..., lTn,k] is contained in the structure of [lj,j , ..., lTn,j ].

Based on the theory discussed in the previous section, various sparse matrix factoriza-
tion techniques can be defined. Among the most commonly used ones is the multifrontal
method introduced by Duff et al. [66]. The following discussion of the multifrontal method
is extracted from a 1992 paper by Liu [119].

Let A be a sparse, SPD matrix, L its Cholesky factor and i0, i1, ..., ir be the row-
subscripts of column j of L with i0 = j. We denote with T the associated elimination
tree and with Tj the subtree rooted at node j.

The following two definitions lay the foundations of the multifrontal method.

Definition 2.2 Subtree update matrix [119].— The j-subtree update matrix is

Ūj = −
∑

k∈Tj−{j}


lj,k

li1,k
...

lir,k

 [lj,kli1,k · · · lir,k] .
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Figure 2.5: Adjacency graph (top-left), eliminations graphs and filled graph (bottom-right)
of matrix A in Figure 2.3.

Definition 2.3 Frontal matrix [119].— The jth frontal matrix (or front) Fj for A is
defined to be

Fj =


aj,j aj,i1 · · · aj,ir

ai1,j
... 0

air,j

+ Ūj .

The subtree update matrix contains all the updates related to nodes that are descen-
dants of j in the elimination tree; these are all the updates related to elimination steps
k that modify column j either directly, if lj,k ̸= 0, or indirectly, if lj,k = 0. For this rea-
son, when Fj is computed, its first row and column are said to be fully updated (or fully
summed or fully assembled) in the sense that they have received all the updates related
to previous elimination steps and, therefore, correspond to the row and column j of the
trailing submatrix A(k) at step k of the factorization. As a result, a single elimination
step on Fj generates column j of the factor L:

Fj =


lj,j 0 · · · 0
li1,j
... I

lirj




1 0 · · · 0
0
... Uj

0




lj,j li1,j · · · lir,j

0
... I
0

 (2.18)

where Uj is a Schur complement which is commonly referred to as update matrix (or
contribution block). Note that the first row and column of Fj are full, which necessarily
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implies that Uj is also full; therefore Fj can be conveniently stored as a dense matrix and
the decomposition in Equation (2.18) can be computed with a single iteration of the outer
loop of Algorithm 2.3.

The next theorem follows from the definition of Fj and Equation (2.18).

Theorem 2.8 Liu [119].—

Uj = −
∑
k∈Tj

 li1,k
...

lir,k

 [li1,k · · · lir,k] . (2.19)

Proof. Equation (2.18) can also be written

Fj =


lj,j

li1,j
...

lir,j

 [lj,jli1,j · · · lir,j ] +


0 0 · · · 0
0
... Uj

0


Note that Fj without the first row and column is equal to Ūj without the first row and
column and therefore we can write

−
∑

k∈Tj−{j}

 li1,k
...

lir,k

 [li1,k · · · lir,k] =

 li1,j
...

lir,j

 [li1,j · · · lir,j ] + Uj

which concludes the proof.

One last result is still needed to specify the multifrontal method but this requires the
definition of one more tool.

Consider two matrices R and S with indices, respectively, Ir = {i1, ..., ir} and Is =
{i1, ..., is}; Ir and Is may have a non-empty intersection and their union is It = Ir ∪ Is.
By adding empty rows and columns R ans S can be extended to conform with It. We
define T = R ↕↔ S to be the t × t matrix obtained by summing the extended R ans S
matrices and we refer to the ↕↔ matrix operator as the extend-add operator.

Theorem 2.9 Liu [119].— Let nodes c1, ..., cs be the children of node j in the elimination
tree. Then

Fj =


aj,j aj,i1 · · · aj,ir

ai1,j
... 0

air,j

 ↕↔ Uc1 ↕↔ · · · ↕↔ Ucs . (2.20)

Proof. Because c1, ..., cs are the children of node j, Tj − {j} corresponds to the disjoint
union of all the nodes in Tc1 , ..., Tcs . The result follows from the definition of the subtree
update matrix Ūj and Equation (2.19).

The multifrontal method can finally be defined as in Algorithm 2.6. The first four
steps of this algorithm on the matrix of Figure 2.3 are illustrated in Figure 2.6.

The multifrontal method essentially achieves the factorization of a sparse matrix
through a sequence of operations on relatively small dense matrices, i.e., the frontal ma-
trices. This is an extremely favorable property because computations can be done using
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Algorithm 2.6 The Multifrontal method.
for j = 1, ..., n do
INIT(Fj) : Fj = 0
ASM(Fj , A:,j) : Fj = Fj ↕↔ A:,j
for c = c1...cs, children of j do

ASM(Fj , Uc) : Fj = Fj ↕↔ Uc

end for
FACTO(Fj) :

(Fj):,1 = (Fj):,1/
√

(fj)1,1

Uj = (Fj)2:,2: − (Fj)2:,1(Fj)T
2:,1

end for

F 1 →

1 4 9
1 a
4 a 0
9 a 0 0

1 4 9
1 l
4 l u1
9 l u1 u1

F 2 →

2 3 4 7
2 a
3 a 0
4 a 0 0
7 a 0 0 0

2 3 4 7
2 l
3 l u2
4 l u2 u2
7 l u2 u2 u2

F 3 →

3 4 7 9
3 a+u2
4 u2 u2
7 u2 u2 u2
9 a 0 0 0

3 4 7 9
3 l
4 l u3
7 l u3 u3
9 l u3 u3 u3

F 4 →

4 7 9
4 a+u1+u3
7 u3 u3
9 a+u1+u3 u3 u1+u3

4 7 9
4 l
7 l u4
9 l u4 u4

Assembled fronts Factorized fronts

Figure 2.6: The first four steps of the multifrontal method on the matrix of Figure 2.3.

dense linear algebra kernels which are highly efficient and can benefit from techniques
such as vectorization. The multifrontal method presented above, however, cannot take
advantage of Level-3 BLAS routines because only one elimination step is applied to each
front and thus most of the computations are done at line 9 of Algorithm 2.6 which is a
Level-2 BLAS rank-1 update. This issue can be overcome by leveraging the concept of
supernodes. A supernode is defined as a set of consecutive columns of L which have the
same structure, apart from the related triangular block on the diagonal. Rather than
having a frontal matrix for each one of these columns, they can be assembled and elimi-
nated together in a single front; because these columns have the same structure, this does
not imply any additional fill in or computations. The advantage of using supernodes is
that multiple eliminations can be done on each front and, thus, the blocking techniques
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describes in Section 2.1.4 can be employed; this also has the advantage that the size of
the elimination tree can be considerably reduced leading to more compact data structures
and more efficient handling. Various techniques can be used to detect supernodes but
they are generally referred to as amalgamation since multiple nodes of the elimination
tree are merged together in a single supernode; the resulting amalgamated elimination
tree is commonly referred to as assembly tree. Note that it is also possible to amalgamate
nodes related to columns of L that do not have the same structure; this necessarily implies
additional fill-in but it may be worth paying this extra cost if computations can be sped up
considerably. This is commonly referred to as relaxed amalgamation because it is guided
by a relaxation parameter which defines what amount of extra fill-in is deemed accept-
able. In the matrix of Figure 2.3, for example, nodes 3 and 4 can be amalgamated without
additional fill-in because the corresponding columns have the same structure; nodes 2 can
also be amalgamated to this supernode but with an overhead represented by the fill-in
coefficient l9,2.

2.2.2 The QR multifrontal method
Although the first methods conceived for computing the QR factorization of a sparse
matrix are based on the use of Givens rotations [75], techniques based on Householder
reflections have successively become more popular due to their higher efficiency.

Let A be a sparse matrix of size m×n with m ≥ n and suppose we apply the first step of
a (unblocked) QR factorization to this matrix, that is, we want to compute a Householder
reflection H that annihilates all the nonzero coefficients except one in the first column.
Note that the corresponding Householder reflector, computed as in Equations (2.12)(2.13),
will have the same structure as the first column of A and therefore, when the reflection is
applied to the trailing submatrix, only part of its coefficients will be updated. Specifically,
only coefficients along the rows that have a nonzero in the pivotal column (the first column
in this case) and in the columns that have at least one nonzero in the same position as
the pivotal column. This is formalized in Theorem 2.10; here, and in the remainder of
this section we denote S(x) the structure of a vector, i.e., S(x) = {i|xi ̸= 0}.

Theorem 2.10 George et al. [76].— Consider HA = A − τv(vT A). Then (HA)i,:
where i /∈ S(v) is equal to row i of A. For any row i ∈ S(v), the nonzero pattern of
(HA)i,:, is

S((HA)i,:) =
∪

j∈S(v)
S(Aj,:)

That is, in HA, the nonzero pattern of any modified row i ∈ S(v) is replaced with the set
union of all rows that are modified by the Householder reflection H.

The first step of the Householder QR on a sparse matrix is illustrated in Figure 2.7
where all the coefficients in the first column are annihilated except the first. This oper-
ations updates only rows 1, 6, 10 and 18 and, upon its execution, these rows will have
nonzeros in columns {1, 4, 9} = S(A1,:)∪S(A6,:)∪S(A10,:)∪S(A18,:). Note that we have
the freedom to choose which nonzero coefficient, among those in the pivotal column, to
keep. Actually, any row permutation of A will always lead to the same QR factorization;
the only possible difference may be in intermediate fill-in, depending on how the factor-
ization is computed. On the right part of Figure 2.7 we report the final structure of the
R factor and the V matrix containing the computed Householder reflectors.
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1 2 3 4 5 6 7 8 9
1 a a
2 a a
3 a
4 a a a
5 a
6 a a
7 a
8 a a
9 a a
10 a a
11 a a a
12 a a
13 a a
14 a a
15 a a
16 a a
17 a a
18 a a
19 a

−→

1 2 3 4 5 6 7 8 9
1 r r r
2 a a
3 a
4 a a a
5 a
6 v a a
7 a
8 a a
9 a a
10 v a a
11 a a a
12 a a
13 a a
14 a a
15 a a
16 a a
17 a a
18 v a a
19 a

−→

1 2 3 4 5 6 7 8 9
1 r r r
2 r r r r
3 r
4 v v v v v
5 r r r
6 v v v v
7 r r r
8 v r r
9 v v v v
10 v v v v
11 v v v v
12 r r r
13 r r r r
14 v v v v
15 v v v
16 v r r
17 v v v v v
18 v v v v
19 v v v

Figure 2.7: A sparse, overdetermined matrix on the left side; the nonzero coefficients of the
matrix are denoted with the letter a. In the middle part, the first step of the Householder
QR factorization. This modifies rows 1, 6, 10 and 18. After this step, the computed
coefficients of the R factor and of the V matrix are denoted, respectively, with the letters
rand v; fill-in coefficients are underlined. On the right size, the result of the complete QR
factorization.

Most of the theory behind sparse QR factorizations relies on the so-called Strong Hall
property which we report in Definition 2.4.

Definition 2.4 Strong Hall property [43].— A matrix A of size m × n, n ≥ 2 is
Strong Hall if, for any 1 ≤ k < n, every set of k columns has nonzeros in at least k + 1
different rows.

Note that any matrix that is not strong Hall can be permuted to a block upper trian-
gular form called the Dulmage-Mendelson decomposition (see, for example the book by
Brualdi et al. [42]) with diagonal blocks having this property.

We report below a list of results that lay the foundation of the multifrontal QR method.
For the sake of readability and without loss of generality, we will assume that a

(k−1)
k,k ̸= 0

structurally, that is to say, at elimination step k the diagonal coefficient is structurally
nonzero. Note that whenever this condition does not hold, the matrix A can be permuted
to have a nonzero diagonal if its structural rank (i.e., the maximum rank of all the matrices
with the same sparsity pattern) is full; otherwise explicit zeros can be added to enforce
it. Therefore we will assume that each Householder elimination step annihilates all the
nonzero coefficients in the corresponding column except the diagonal one.

Theorem 2.11— Let A be a Strong Hall matrix. After one Householder elimination
step, the trailing submatrix will also be Strong Hall.

Proof. Assume that there are s nonzeros in the first column of A, i.e., s = |S(A:,1)|. Now
take, in A, any group of k + 1 columns including the first one. Because A is Strong Hall,
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these k +1 columns will have nonzeros in at least k +2 different rows and because the first
column has s nonzeros, the remaining k columns have at least k + 2− s nonzeros in rows
other than S(A:,1). We want to show that upon the elimination of the first column, the
remaining k columns have nonzeros in k + 1 different rows. If these columns do not have
nonzeros in S(A:,1), then they will be unaffected by the Householder elimination and thus
they will keep all of their (at least) k + 1 nonzero rows. If, instead, they have nonzeros
in some rows of S(A:,1), they will certainly lose one nonzero row; however, because of
Theorem 2.10, after the elimination they will have nonzeros in all the remaining s − 1
rows of S(A:,1). Therefore the will have nonzeros in at least (s− 1) + (k + 2− s) = k + 1
row, which concludes the proof.

Theorem 2.12— Let A be a Strong Hall matrix and QR = A its Householder QR
factorization. Then, for k > j, column elimination k depends on column elimination j if
and only if rj,k ̸= 0.

Proof. Suppose one Householder elimination step is applied to A in order to annihilate all
the nonzeros in A:,1 except a1,1. This operation will compute R1,: and V:,1 but, because
of Theorem 2.10, will also update all the coefficients with row index S(A:,1) \ {1} and
column index S(R1,:)\{1}; because A is Strong Hall, |S(A:,1)| > 1 which implies that this
elimination step will update all columns and only those for which r1,k ̸= 0. The result
follows because the trailing submatrix after this elimination step is still Strong Hall as
stated by Theorem 2.11.

Theorem 2.13— Let A be a Strong Hall matrix, QR = A its Householder QR factor-
ization and i > j > k. If column eliminations i and j depend on column elimination k,
the column elimination i depends on column elimination j.

Proof. Because A(k−1) is Strong Hall, upon elimination of column k, the trailing submatrix
A(k) will have nonzeros in columns j and i and rows S(A(k−1)

:,k ) \ {k}. This implies that
upon elimination of column j, rj,i ̸= 0 which concludes the proof.

Note that the R factor of the QR factorization of a matrix A is mathematically equiv-
alent to the Cholesky factor of the normal equations AT A (which exists if A is full-rank)
because AT A = RT QT QR = RT R. This may suggest that the structure of R may be
computed through a symbolic analysis of the Cholesky factorization of AT A, for example,
by using the elimination graphs procedure explained in Section 2.2.1. This unfortunately
does not hold in the general case because in the numerical Cholesky factorization of AT A
cancellations may occur: a nonzero coefficient in the trailing submatrix is turned into zero
in the course of the factorization. Cancellations may be divided in two types: lucky and
essential cancellations. The first type depends on the actual values of the coefficients of
A and, therefore, are impossible to predict just by looking at its structure. The second
type, however, depends solely on the structure of A and will always occur regardless of
the actual numerical values. This is illustrated in Figure 2.8. Consider the sparse matrix
illustrated on the left side of the figure: because A is an upper triangular matrix, its
QR factorization is trivially given by Q = I and R = A and, therefore, R has the same
structure as A as shown in the middle part of the figure. Now, the (i, j) coefficient of
AT A is nonzero if in A there is a row k with ak,i and ak,j nonzero. Therefore, AT A is a
dense matrix with all nonzero coefficients because the first row of A is full; as a result, the
symbolic Cholesky factorization will predict that R is a full, triangular matrix as shown
on the right side of the figure. The numerical Cholesky factorization of AT A, instead, will
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Figure 2.8: A sparse matrix A on the left, the actual R structure in the middle and the
structure of R predicted by the symbolic Cholesky factorization of AT A on the right.

have essential cancellations on all the coefficients that correspond to the zero coefficients
in the upper triangular part of A.

Coleman et al. [50] showed that if A is a Strong Hall matrix, no essential cancellation
occurs in the Cholesky factorization of AT A; as a result, for such class of matrices, the
structure of R can be correctly predicted by the symbolic Cholesky factorization of AT A.
George et al. [75] showed that for matrices not belonging to this category, the actual R
factor will always fit in the structure computed by the symbolic Cholesky factorization of
AT A. Finally, as said above, non Strong Hall matrices can always be permuted to block-
triangular form with diagonal blocks having this property. It is, therefore, safe to assume
that the structure of R can be computed through a symbolic Cholesky factorization of
AT A.

As a consequence of all the results presented above, we can conclude that the most
compact way of representing the dependencies between Householder elimination steps in
the sparse QR factorization of a matrix A is a so-called column elimination tree which
corresponds to the elimination tree for the Cholesky factorization of AT A. The structure
of R and the column elimination tree can be computed without explicitly forming AT A
as shown by Gilbert et al. [80]. Methods have also been proposed in the literature to
compute the structure of the V matrix that holds the Householder reflectors [76, 80].

Based on the results reported above, it is possible to develop the multifrontal QR
factorization: it consists in a traversal of the column elimination tree and, when a node
is visited, a dense frontal matrix is formed through assembly operations that combine
coefficients from A and from the child nodes and it is reduced through a single elimination
step. The assembly and elimination operations are clearly different with respect to the
Cholesky factorization described in the previous section. The assembly of a frontal matrix
Fj is achieved by means of an extend stack operator ↔↔ ; the update matrices (or
contribution blocks) from child nodes are extended to make their column indices conform
to those of the front and are stacked to those rows of A whose first, leftmost nonzero is in
column j, denoted Fj

Fj = AFj ,∗ ↔↔ Uc1 ↔↔ · · · ↔↔ Ucs =



←→
A Fj ,∗
←→
U c1

...
←→
U cs



where by←→X we denoted the column-extended matrix X. As for the elimination step, this
corresponds to one single step of the dense Householder QR factorization of Algorithm 2.4:
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Figure 2.9: Example of multifrontal QR factorization. On the left side the factorized
matrix (the same as in Figure 2.7 with a row permutation). On the upper-right part, the
structure of the resulting R factor. On the right-bottom part the elimination tree; the
dashed boxes show how the nodes are amalgamated into supernodes.

(I − τvjvT
j )Fj =


1 0 · · · 0
0
... Uj

0




rj,j rj,i1 · · · rj,ir

0
... I
0

 .

Note that here, instead of annihilating all the nonzero coefficients in column j except the
diagonal one as assumed above, we are keeping the coefficient in the first row of Fj .

As for the Cholesky case, in practical implementations of the multifrontal QR factoriza-
tion, nodes of the elimination tree are amalgamated to form supernodes. The amalgamated
pivots correspond to rows of R that have the same structure and can be eliminated at once
within the same frontal matrix without producing any additional fill-in in the R factor.
The elimination of amalgamated pivots and the consequent update of the trailing frontal
submatrix can thus be performed by means of efficient Level-3 BLAS routines through the
WY representation [143] described in Section 2.1.4.2. Moreover, amalgamation reduces
the number of assembly operations increasing the computations-to-communications ratio
which results in better performance. Figure 2.9 shows some details of a sparse QR fac-
torization. The factorized matrix is shown on the left part of the figure. Note that this
is the same matrix as in Figure 2.7 where the rows of A are sorted in order of increasing
index of the leftmost nonzero in order to show more clearly the computational pattern
of the method on the input data. On the top-right part of the figure, the structure of
the resulting R factor is shown. The elimination/assembly tree is, instead reported in the
bottom-right part: dashed boxes show how the nodes can be amalgamated into supern-
odes with the corresponding indices denoted by bigger size numbers. The amalgamated
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nodes have the same row structure in R modulo a full, diagonal block. It has to be noted
that in practical implementations the amalgamation procedure is based only on informa-
tion related to the R factor and, as such, it does not take into account fill-in that may
eventually appear in the V matrix. The supernode indices are reported on the left part
of the figure in order to show the pivotal columns eliminated within the corresponding
supernode and on the top-right part to show the rows of R produced by the corresponding
supernode factorization. Note that this matrix is such that the structure of AT A is the
same as the one of the matrix in Figure 2.3 and thus the structure of R is the same as
that of the L factor in Figure 2.5 and the elimination and assembly tree are the same as
those in the same figure.

In order to reduce the operation count of the multifrontal QR factorization, two opti-
mizations are commonly applied:

1. once a frontal matrix is assembled, its rows are sorted in order of increasing index of
the leftmost nonzero. The number of operations can thus be reduced, as well as the
fill-in in the V matrix, by ignoring the zeros in the bottom-left part of the frontal
matrix;

2. the frontal matrix is completely factorized. Despite the fact that more Householder
vectors have to be computed for each frontal matrix, the overall number of floating
point operations is lower since frontal matrices are smaller. This is due to the
fact that contribution blocks resulting from the complete factorization of frontal
matrices are smaller. Note that this implies that contribution blocks are triangular
for overdetermined fronts and trapezoidal for overdetermined ones. This makes the
other optimization above necessary.

Figure 2.10 shows the assembly and factorization operations for the supernodes 1,
2 and 3 in Figure 2.9 when these optimization techniques (referred to as Strategy 3 in
Amestoy et al. [15]) are applied. Note that, because supernodes 1 and 2 are leaves of the
assembly tree, the corresponding assembled frontal matrices only include coefficients from
the matrix A. The contribution blocks resulting from the factorization of supernodes 1
and 2 are appended to the rows of the input A matrix associated with supernode 3 in such
a way that the resulting, assembled, frontal matrix has the staircase structure shown in
Figure 2.10 (bottom).

2.2.3 Additional topics
2.2.3.1 Fill-reducing orderings

In the previous sections we have assumed that all the unknowns of the matrix are elimi-
nated in the natural order but this does not necessarily have to be the case. Eliminating
the unknowns in a different order basically amounts to applying a permutation to the
matrix; this is a row and column permutation for Gaussian Elimination of structure-
symmetric matrix and a column permutation for the QR factorization. This, however,
changes the fill-in and the dependencies among columns; an extreme case is illustrated in
Figure 2.11 where eliminating variables in the natural order implies filling-in the whole
structure whereas using the reverse order does not introduce any fill-in.

The problem of finding a matrix permutation that minimizes the fill-in was proved
to be NP-Complete by Yannakakis [165]. Later, Luce et al. [121] showed that finding a
permutation that minimizes the number of floating point operations is a distinct, NP-hard
problem. In the literature many heuristic techniques have been proposed to tackle these
problems (mostly the first one). These are generally divided into two groups.
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Figure 2.10: The first three steps of the multifrontal QR factorization for the matrix of
Figure 2.7.
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Figure 2.11: Example of matrix permutation. When factorizing the matrix on the left
side, the whole structure is filled, whereas factorizing the permuted matrix on the right
does not introduce any fill-in.

The first group is the one of local methods. The name stems from the fact that
these methods proceed by selecting pivots successively but the selection of each pivot is
based on a limited information which does not allow to foresee what the effects of these
selection will be in the remainder of the process. One such method, probably the most well
known, is the Minimum Degree one. Remember the elimination graphs process described
in Section 2.2.1: when a variable is eliminated, the corresponding node is retired from
the adjacency graph and edges are added to connect its neighbors that weren’t already
connected. These newly added edges model he apparition of fill-in coefficients. Therefore,
one might expect that the fill-in can be reduced by selecting, at each elimination step,
the node whose degree (i.e., number of neighbors) is smallest. This is the idea at the
base of the Minimum Degree method. The Minimum Fill is a similar method where the
selection of the pivots is based on a criterion that more accurately models the amount
of fill-in created by an elimination step. Many variants of the Minimum Degree method
have been proposed in the literature that aim at reducing its execution time or memory
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Figure 2.12: An example of nested dissection on a 5× 5 grid. The topmost separator cuts
the domain horizontally in two halves which are then cut vertically by other separators.
The resulting permuted matrix is shown on the right side.

consumption; Approximated Minimum Degree by Amestoy et al. [11] (AMD) and Multiple
Minimum Degree by Liu [117] (MMD) are among the most commonly known and used.
Also, note that a variant of AMD, called COLAMD, has been developed by Davis et al.
[53] to compute an AMD ordering of AT A without explicitly building it.

The second group is those of the global methods which rely on the knowledge of the
whole adjacency graph to compute a fill-reducing matrix permutation. To this category
belong the well known and widely used nested dissection method which was conceived
by George [74]. This technique is based on the concept of separator: a subset of nodes
such that, if removed, the domain is split in two parts or subdomains. Once a separator is
identified, the matrix is permuted in such a way that all the variables in one subdomain are
eliminated first, all the variables in the other second and all the variables in the separator
are eliminated last. Because all the paths that connect the two resulting subdomains
necessarily include nodes in the separator which are eliminated last, by Theorem 2.5,
there cannot be fill-in in the block that connects the two subdomains. The process is
then applied recursively in the two subdomains. Figure 2.12 shows two steps of nested
dissection on a 5×5 grid and the resulting permuted matrix; the zero blocks that connect
the subdomains are shown by the empty squares. This process produces a separators
tree which can also be used as an assembly tree because all the nodes in a separator are
associated to columns of L that necessarily have the same structure and, therefore, form a
supernode. George [74] showed that, when nested dissection is used, the complexity of the
factorization is of O(N3) and O(N6) for a square and cubic domain of size N , respectively;
the number of nonzeros in the factors are O(N2log(N)) and O(N4), respectively. We
sketch the proof of this result assuming that the input sparse matrix has been permuted
using a nested dissection method with cross-shaped separators, as in George’s paper, shown
in Figure 2.13 for the 2D case. This choice allows for easier computations because the size
of a separator is divided by 2d−1 and the number of nodes multiplied by 2d moving from
one level of the tree to the one below; here d is the dimension of the domain, e.g., 2 for
a bi-dimensional domain (as in Figure 2.13) and 3 for a three-dimensional one. Assembly
operations only account for a low-order term and thus will be ignored below. At each level
ℓ of the separators tree we have (2d)ℓ fronts of order O(( N

2ℓ )d−1), for ℓ ranging from 0 to
L = log2(N). Therefore, the flop complexity C(N) to factorize a sparse matrix of order
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Figure 2.13: On the left, three level of nested dissection with cross-shaped separators on
a 2D square domain. On the right, the corresponding separators/assembly tree.

Nd is

C(N) =
L∑

ℓ=0
(2d)ℓ((N

2ℓ
)d−1)3 = N3d−3 =

{
N3 if d = 2
N6 if d = 3 (2.21)

We similarly compute the factor size complexity:

M(N) =
L∑

ℓ=0
(2d)ℓ((N

2ℓ
)d−1)2 =

{
N2log(N) if d = 2
N4 if d = 3 (2.22)

George et al. [77] showed that the same asymptotic complexity can be achieved using
a QR factorization although experimental results show that this is more expensive than
Cholesky or LU by a rather substantial constant factor.

Global and local methods can be combined to reduce the execution time or improve
the quality of the final ordering; for instance, nested dissection can be applied until a
prescribed subdomain size is reached and then an ordering such as AMD is used locally
on each subdomain. This is the choice of modern ordering tools such as Metis [105] or
Scotch [133] which are probably the most commonly used ordering tools especially on
large size problems.

2.2.3.2 Pivoting

Pivoting in the multifrontal method, or in sparse factorizations in general, is much more
complicated than in dense factorizations. Within a frontal matrix, pivots can only be
selected inside the block of fully summed variables, i.e., the top-left block because the
remaining rows are not fully summed. However, eligible pivots may be unsatisfactory
because too small with respect to other coefficients in the unassembled rows. When this
is the case, the bad pivots can be moved at the end of the fully summed block and their
elimination postponed; if, when they are reached, these pivots are still unsatisfactory, their
elimination can be delayed to the parent node. This technique, commonly referred to as
delayed pivoting, makes the multifrontal method practically stable but may severely harm
performance. It must be noted that, when pivots are delayed, the contribution block of the
front they belong to and the fully-summed block of the parent are augmented by as many
rows and columns as the delayed pivots. This has a twofold effect. First, it adds fill-in
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because the delayed rows and columns have to be padded with zeros in order to conform to
the parent indices and be assembled therein. Second, it changes the computational pattern
of the multifrontal method in a way which is not possible to predict just by looking at
the structure of the problem; this makes it difficult to model the workload and arrange
the computations consequently (see more details in Section 2.2.3.5) and make the use of
dynamic data structures necessary in order to accommodate for the occurrence of delayed
pivots. For this reason the pivot selection criterion is often relaxed by means of a technique
called threshold pivoting: at step k, a pivot is accepted if it satisfies the condition

ak,k ≥ u max
i=k:n

|ai,k|.

This implies that growth in a single step of Gaussian Elimination is limited to 1 + 1/u.
This technique allows for limiting the number of delayed pivots and thus for having a
workload that better matches what can be predicted through a symbolic analysis.

In other practical approaches, pivoting is completely avoided. One such method is the
so called static pivoting [112] where pivot ak,k is replaced with ϵ∥A∥, ϵ being the machine
precision, if it falls below a certain threshold. This corresponds to solving a slightly and
selectively perturbed system. The static pivoting technique is not as robust as the delayed
pivoting technique but works well in many practical cases.

The same issue can be encountered in the multifrontal QR factorization of rank-
deficient matrices. A column-pivoting technique, such as the one discussed in Section 2.1.4.3,
can be applied within a frontal matrix; the pivoting has to be restricted to the fully
summed columns and, if needed, columns whose norm falls below a given threshold can
be postponed to the parent front. Unfortunately, in the multifrontal QR factorization,
pivoting is even more harmful for performance than in Gaussian Elimination because it
can completely destroy the staircase structure of fronts which may result in an excessive
fill-in growth. Pierce et al. [135] proposed a sparse, multifrontal QR method with col-
umn pivoting where deficiencies are identified based on an incremental condition number
estimation.

Heath [98], instead, proposed a method for computing the QR factorization of sparse
matrices which does not require pivoting: when a diagonal coefficient of R falls below a
certain threshold, the whole row of R is zeroed out using Givens rotations. This technique,
originally conceived for a QR factorization based on row-wise Givens rotations, was later
extended to the Householder multifrontal QR method by Davis [55].

Another technique which does not require pivoting is the Tikhonov regularization [152]
which consists in appending a matrix τD, with τ being a scalar and D a diagonal matrix,
to the original matrix A. If τ > 0, the least squares problem is thus transformed in the
full-rank problem

min
x

∥∥∥∥∥
[

A
τD

]
x−

[
b
0

]∥∥∥∥∥
2

= min
x
∥Ax− b∥22 + τ2∥Dx∥22

whose solution can be made close to that of the original rank-deficient problem by conve-
niently choosing τ and D. The regularized problem can be solved by means of a standard
QR factorization although this introduces additional fill-in and computations. For this
reason Avron et al. [27] proposed a technique where rows are appended to regularize only
linearly dependent columns.
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PA = LU A = LLT A = QR A = RT QT Order
Ly = Pb Ly = b y = QT b RT y = b Bottom-up
Ux = y LT x = y Rx = y x = Qy Top-down

Table 2.1: Matrix factorizations with related solve operations and tree traversal order.

2.2.3.3 Unsymmetric methods

In the previous sections and in the rest of this document we have assumed that, for the
sparse Gaussian Elimination, the A matrix is structure-symmetric. Note that, when this
is not the case, the structure of A can be padded with explicit zeros and the symbolic
analysis can be performed on the structure of A + AT . This approach, however, can have
serious limitations on problems that are strongly unsymmetric.

Various approaches have been proposed to comply with unsymmetry.
Gilbert et al. [81] proposed a method where the structure of the factors is characterized

by a couple of DAGs, called elimination DAGs or edags (as opposed to the elimination
tree or etree of the symmetric case) which are obtained from the transitive reductions of
the directed graphs of L and U , −→G (L) and −→G (U) .

In a more recently proposed method, Eisenstat et al. [68] replace these edags with a
tree: j > i is the parent of i if it is the node with smallest index such that there is a path
from i to j in −→G (L) and back from j to i in −→G (U). In a separate paper [69] they describe
methods to compute this tree starting from the structure of A and how it can be used to
compute the structure of the factors.

Amestoy et al. [17] proposed a method which relies on the symbolic analysis of the
A + AT matrix and the associated elimination tree. However, when frontal matrices are
assembled, the method can identify entire zero-rows or zero-columns which result from the
symmetrization of the matrix and skip them both in the front assembly and factorization.

Finally, it must be noted that there is a very close relation between the LU and
QR factorizations. It can be proved (see, for example, the work by Gilbert et al. [79])
that the structure of the R factor and V matrix (holding the Householder reflections)
resulting from the QR factorization of a square matrix A, provide an upper bound for the
U and L factors, respectively. This upper bound can accommodate for any possible row
permutation resulting from pivoting and, for this reason, can be very loose. Nonetheless,
according to this result, it is possible to use a symbolic QR factorization and the resulting
column-elimination tree to arrange the computations and storage in an unsymmetric LU
factorization.

2.2.3.4 Multifrontal solve

Once the matrix factorization has been computed, the factors can be used to solve the
systems against one or more right-hand sides as explained in Section 2.1. In the case
of sparse linear systems, this can be achieved in a multifrontal fashion by traversing the
assembly tree either in a bottom up or a top-down order as described in Table 2.1.

We describe the multifrontal solve for the forward elimination Ly = b; the other
operations proceed in a similar way. Recall that, upon factorization of frontal matrix Fj ,
a set of columns of the L factor is produced

Fj −→
[

Lj,j

Lj+1,j

]
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where Lj,j denotes triangular block associated with the fully summed variables and, with
a slight abuse of notation, Lj+1,j denotes the sub-diagonal rectangular block associated
with the non fully assembled variables. The multifrontal forward elimination proceeds
by assembling, at each node of the tree, a local right-hand side f which we also suppose
logically split in two parts fj and fj+1 conforming with the splitting of L defined above.
The operations done at each node of the tree are

f = bj ↕↔ uc1 ↕↔ · · · ↕↔ ucs ; Lj,jyj = fj ; uj = fj+1 − Lj+1,jyj

where bj and yj denote all the coefficients of the right-hand side b and the solution
y corresponding to the front’s fully summed variables and we assume that node j has
children c1, ..., cs. The first operation assembles the local right-hand side by means of
extend-add operations that combine bj with update vectors resulting from the processing
of the child nodes. The second operation computes yj by means of a triangular system
solve and the third computes the update vector uj through a simple matrix-vector product.
Note that in case of multiple right-hand sides, f , bj and all the update vectors become
matrices with as many columns as the number of right-hand sides but the “extend” part
of the ↕↔ operation only concerns rows.

The first three steps of the multifrontal forward elimination for the matrix of Figure 2.3,
assuming nodes 3 and 4 of the elimination tree have been amalgamated are

f =

 b1
0
0

 −→ y1 = f1/l1,1, u1 =
[
−l4,1y1
−l9,1y1

]

f =


b2
0
0
0

 −→ y2 = f2/l2,2, u2 =

 −l3,1y2
−l4,1y2
−l7,1y2



f =
[

b3
b4

]
↕↔ u1 ↕↔ u2 =


b3 − l3,1y2

b4 − l4,1y1 − l4,1y2
−l7,1y2
−l9,1y1

 −→

[
l3,3
l4,3 l4,4

] [
y3
y4

]
=
[

f3
f4

]
[

u7
u9

]
=
[

f7
f9

]
−
[

l7,3 l7,4
l9,3 l9,4

] [
y3
y4

]

An interesting case is where the right-hand side is sparse. Assume, for example, that all
the entries of the right-hand side are null except one. In this case, the forward elimination
operation need not access the whole L factor but only part of it; specifically it only needs
to do computations related to the nodes of the elimination tree that lie along the path
connecting the node associated with the right-hand side nonzero and the root. This allows
for considerable savings in the forward elimination. Clearly, if the right-hand side contains
multiple nonzeros, then the nodes of the tree concerned by the forward elimination are
given by the merge of the paths related to each one of them. By the same token, if only one
nonzero of the solution vector is needed, the backward substitution only involves nodes
that lie along the path that goes from the root to the node associated with the nonzero
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element of the solution. Note that computing the inverse of a matrix can be achieved by
solving the linear system AM = I where I is the identity matrix and, therefore, M = A−1;
this implies solving the linear systems against many right-hand sides, each having only
one nonzero. Moreover, if only selected entries of the inverse are needed then also the
solution is sparse. Taking advantage of the sparsity of right-hand sides and/or solution
(also for computing selected entries of the inverse) is a subject that has been addressed in
the literature, for example by Slavova [149], Amestoy et al. [14] or Amestoy et al. [18].

2.2.3.5 A three-phases approach

Modern sparse, direct solvers combine all the theory and methods described above. Typ-
ically, they achieve the solution of a sparse linear system in three distinct steps:

1. Analysis. First, a fill-reducing matrix ordering is computed. The structure of the
resulting permuted matrix is then analyzed in order to arrange the computations of
the subsequent Factorization and Solve steps. Namely, a symbolic factorization is
done in order to characterize the structure of the factors (and, consequently, of the
frontal matrices) and compute the elimination and/or assembly trees. This phase
may include computing an estimate of the memory consumption and of the workload
which is of particular importance in a parallel setting where memory and workload
distribution have to be carefully done in order to achieve a good balance. No floating-
point operations are involved in this phase whose complexity and execution time is,
supposedly, much smaller than the two, subsequent steps.

2. Factorization. This is where the actual matrix factorization takes place. In this
document we have focused on the multifrontal method but other approaches exist
such as the left-looking or right-looking supernodal methods (also referred to as
fan-in and fan-out, respectively, especially in a parallel setting).

3. Solve. The solve phase is where the factors are used to solve the linear system
against one or more right-hand sides. Again, in this document we have focused on
the multifrontal solve technique but left or right-looking solve techniques are also
commonly used.

In some applications it is required to solve the same matrix against multiple right-hand
sides which are not all available at the same time. This is, for example, the case of iterative
processes where one right-hand side (or a block of) is computed at each iteration based
on the result of the previous one. In these cases, clearly, the analysis and factorization
steps need be done only once and only the solve operation has to be repeated. Similarly,
because the analysis phase only involves structural computations, if multiple problems
have to be solved where only the coefficients of the matrices differ but not their position,
the analysis operation can be done once for all the problems. This is shown schematically
in the blocks diagram of Figure 2.14.

2.2.3.6 Sparse, direct solver packages

Most of the methods and algorithms described in the upcoming sections have been im-
plemented within the MUMPS [13] and qr_mumps [J2] software packages for the purpose
of evaluating experimentally their effectiveness. Those methods whose implementation
has reached a satisfactory maturity and reliability have also been made freely available
in recent public releases of these packages. Both these solvers rely on the multifrontal
method. The first implements LU and LDLT factorizations, is originally designed for
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Figure 2.14: A block diagram showing the three phases of a typical sparse direct solver.

distributed memory parallel systems but can efficiently handle shared memory or hybrid
ones, uses delayed pivoting which makes it very roust and reliable and provides a very
wide set of features. The qr_mumps package, instead, is based on the QR factorization
and, thus, it aims primarily at linear least-squares problems; it currently runs only on
parallel shared memory systems although a development version that can also use GPUs
exists (presented in Section 3.5).

Many other sparse, direct solvers are available although a comprehensive list is out of
the scope of this document.

Other popular sparse direct solvers relying on the multifrontal method include those
of the HSL collection such as MA41 [12], MA49 [15] or MA86 [101], UMFPACK [54],
SuiteSparseQR [55] and WSMP [90].

Well known packages that, instead, rely on left or right-looking supernodal meth-
ods are SuperLU [113] and its variants SuperLU_MT and SuperLU_DIST designed for
sequential, shared memory and distributed memory systems, respectively, PaStiX [99],
SPOOLES [25], CHOLMOD [48] or PARDISO [141].

2.3 Supercomputer architectures
The world of computing, and particularly the world of High Performance Computing
(HPC), have witnessed a substantial change at the beginning of the last decade as all the
classic techniques used to improve the performance of microprocessors reached the point of
diminishing returns [23]. These techniques, such as deep pipelining, speculative execution
or superscalar execution, were mostly based on the use of Instruction Level Parallelism
(ILP) and required higher and higher clock frequencies to the point where the processors
power consumption, which grows as the cube of the clock frequency, became (or was
about to become) unsustainable. This was not only true for large data or supercomputing
centers but also, and even more so, for portable devices such as laptops, tablets and
smartphones which have recently become very widespread. In order to address this issue,
the microprocessor industry sharply turned towards a new design based on the use of
Thread Level Parallelism (TLP) achieved by accommodating multiple processing units
or cores on the same die. This led to the production of multicore processors that are
nowadays ubiquitous. The main advantage over the previous design principles lies in the
fact that the multicore design does not require an increase in the clock frequency but
only implies an augmentation of the chip capacitance (i.e., the number of transistors) on
which the power consumption only depends linearly. As a result, the multicore technology
not only enables improvement in performance, but also reduces the power consumption:
assuming a single-core processor with frequency f , a dual-core with frequency 0.75 ∗ f is
50% faster and consumes 15% less energy.

Since their introduction, multicore processors have become increasingly popular and
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Figure 2.15: Performance share of multicore processors (on the left) and accelerators (on
the right) in the Top500 list.

can be found, nowadays, in almost any device that requires some computing power. Be-
cause they allow for running multiple processes simultaneously, the introduction of multi-
core in high throughput computing or in desktop computing was transparent and imme-
diately beneficial. In HPC, though, the switch to the multicore technology lead to a sharp
discontinuity with the past as methods and algorithms had to be rethought and codes
rewritten in order to take advantage of the added computing power through the use of
TLP. Nonetheless, multicore processors have quickly become dominant and are currently
used in basically all supercomputers. Figure 2.15 (left) shows the performance share of
multicore processors in the Top5002 list (a list of the 500 most powerful supercomputers
in the world, which is updated twice per year); the figure shows that after their first ap-
pearance in the list (May 2005) multicore has quickly become the predominant technology
in the Top500 list and ramped up to nearly 100% of the share in only 5 years. The figure
also shows that the number of cores per socket has grown steadily over the years: a typical
modern processor features between 8 and 16 cores.

In addition to an ever-increasing number of cores per socket, modern processors rely
more and more on SIMD (Single Instruction Multiple Data) parallelism achieved by means
of vector units. At the beginning of the years 2000, processors were equipped with mod-
erately sized vector extensions such as SSE (Streaming SIMD Extensions, in the Intel
and AMD x86 architecture) or AltiVec (in the IBM POWER architecture). These were
made of a set of 128-wide vector registers that could host two double precision, real co-
efficients (or four single-precision, real ones) and a set of instructions to perform the
same operation on all the coefficients in a vector register at once. In 2011 Intel intro-
duced the AVX (Advanced Vector eXtensions) with their Sandy Bridge family of pro-
cessors which are based on 256-bit vector units. This was later extended by AVX-2.0
which added the Fused Multiply-Add operation. The latest evolution of this trend is the
AVX-512 extensions which brought the length of vector units to 512 bits. As a result, a
modern processor can perform up to 32 double-precision, real operations per clock cycle:

2http://top500.org
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8(# data in a SIMD vector)× 2(FMA)× 2(dual-issue).
All this technological advances have allowed for increasing the peak performance while

keeping under control the power consumption as shown in Figure 2.17 (left) that plots
the evolution over the last few year of the CPU speed over TDP (Thermal Design Power)
ratio (measured in Gflop/s divided by Watts) for some of the Intel flagship processors.
The latest point in the curve is related to the Skyline 8176 processor released in Q3 2017;
this processor has 28 cores clocked at 2.1 GHz with AVX-512 extensions for a massive
peak performance of 1.88 Tflop/s (for double-precision, real computations), has a TDP of
165 W and a memory bandwidth of 119.21 GB/s. As a reference, the first supercomputer
capable of passing the 1 Tflop/s mark (1.3, exactly) was the ASCI Red which was ranked
number one on the Top500 list of June 2000. This computer was equipped with 9298
processors, consumed 850 KW and occupied a surface of 150 m2.

Intel has pushed the envelope of multicore technologies even further with the Xeon Phi
processors. The latest addition to this family is the KNL (Knights Landing) processor.
Although it shares some features with accelerating boards (see below), the KNL has a x86
architecture and therefore can run any application that was developed for conventional
processors, including the operating system, without the need for dedicated programming
languages or paradigms. It can have as many as 72 cores clocked at a relatively low
frequency (1.3 to 1.5 GHz) with AVX-512 extensions and can reach a peak performance
of 3.45 Tflop/s. The bandwidth towards main memory is of 115 GB/s. One distinctive
feature of the KNL is that the cores can be arranged according to different pre-defined
schemes to resemble more or less to a SMP (Symmetric Multi-Processor) or a NUMA
(Non-Uniform Memory Access) system.

Around the same period as the introduction of multicore processors, the use of ac-
celerators or coprocessors started gaining the interest of the HPC community. Although
this idea was not new (for example FPGA boards were previously used as coprocessors),
it was revamped thanks to the possibility of using extremely efficient commodity hard-
ware for accelerating scientific applications. One such example is the Cell processor [100]
produced by the STI consortium (formed by IBM, Toshiba and Sony) from 2005 to 2009.
The Cell was used as an accelerator board on the Roadrunner supercomputer installed
at the Los Alamos National Labrador (USA) which was ranked #1 in the Top500 list of
November 2008. The use of accelerators for HPC scientific computing, however, gained a
very widespread popularity with the advent of General Purpose GPU computing. Specif-
ically designed for image processing operations, Graphical Processing Units (GPUs) offer
a massive computing power which is easily accessible for highly data parallel applications
(image processing often consists in repeating the same operation on a large number of
pixels). This led researchers to think that these devices could be employed to accelerate
scientific computing applications, especially those based on the use of operations with a
very regular behaviour and data access pattern, such as dense linear algebra ones. In the
last few years, GPGPU has become extremely popular in scientific computing and is em-
ployed in a very wide range of applications, not only dense linear algebra. This widespread
use of GPU accelerators was also eased by the fact that GPUs, which were very limited in
computing capabilities and difficult to program, have become, over the years, suited to a
much wider range of applications and much easier to program thanks to the development
of specific high-level programming languages and development kits. Figure 2.15 (right)
shows the performance share of supercomputers equipped with accelerators. Although
some GPU accelerators are also produced by AMD, currently the most widely used ones
are produced by Nvidia. Figure 2.16 shows a block diagram of the architecture of a re-
cent Nvidia GPU device, the P100 of the Tesla family. This board is equipped with 56
Streaming Multiprocessors (SMX), each containing 64 single precision cores and 32 double
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precision ones for a peak performance of 5.3 (10.6) Tflop/s for double (single) precision
computations.

Figure 2.16: Block diagram of the Nvidia Tesla P100 GPU.
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Figure 2.17: Evolution of the ratio between CPU speed (in double-precision Gflop/s)
Thermal Design Power (in W) and memory speed (in GB/s). Data is taken from Intel’s
website.

Although processors performance has continued to increase considerably and steadily
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over the last years, memories have not managed to keep up with these improvements.
This is a long lasting problem, much older than multicore technologies; these, however,
have made it even worse because all the cores of a processor share the same memory
and the same bus to move data in and out of it. Figure 2.17 (right) shows the evolution
of the CPU over memory performance (measured in Gflop/s divided by GB/s) for the
same processors and time frame as for the plot on the left side. In the case of operations
with a high arithmetic intensity, such as Level-3 BLAS operations, this problem can be
circumvented through a careful reuse of data in cache memories but for others (think about
a sparse matrix-vector product which cannot make any use of caches) it makes it impossible
to take advantage of the full potential of modern multicore processors. For this reason,
memory producers have turned their attention towards 3D stacked technologies. Tree-
dimensional integration allows for stacking the memory directly on top of the processor;
as a result the wire delay between the two is considerably reduced which translates into
higher bandwidths and lower latencies. HBM (High Bandwidth Memory) is one among
the various standards that have been proposed for 3D stacked memories. The Tesla P100
board described above is equipped with a local HBM2 (an evolution of the HBM standard)
memory of 16 GB that has a bandwidth of 732 GB/s. The Intel KNL processor is also
equipped with a local 16GB fast MCDRAM (a variant of the HBM standard) memory with
a bandwidth of more then 400 GB/s, as reported by the constructor. Another distinctive
feature of the KNL processor is that this memory can also be configured according to
different schemes: it can be configured as an explicitly addressed memory, in which case
is up to the programmer to move data in and out of it, or as an additional cache level, in
which case its use is completely transparent to the programmer, or as an hybrid of these
two configurations.

Core
40 Gflop/s

Core
 

25 GB/s

Memory
128 GB

CPU
800 Gflop/s

Core
 

Core
 

Core
 

Core
 

Core
40 Gflop/s

Core
 

CPU
800 Gflop/s

Core
 

Core
 

Core
 

Core
 

80 GB/s

Memory
 

Accelerator

Cores
4-5 Tflop/s

Memory
16 GB

500 GB/s

10 GB/s

10 GB/s

Accelerator

Cores
4-5 Tflop/s

Memory
16 GB

500 GB/s

10 GB/s

Node
10-15 TFlop/s

Figure 2.18: Illustration of a typical HPC computing platform architecture.

Figure 2.18 shows a typical configuration of a modern HPC computing platform. This
is formed by multiple (up to thousands) nodes connected through a high-speed network;
each node may include multiple processors, each connected with a NUMAmemory module.
A node may also be equipped with one or more accelerators. Please note that the figure
reports indicative values for performance, bandwidths and memory capacities and do not
refer to any specific device. The figure shows that modern HPC platforms are based
on extremely heterogeneous architectures as they employ processing units with different
performance, memories with different capacities and interconnects with different latencies
and bandwidths. In this context, achieving performance and performance portability is
an extremely challenging task as different applications may benefit differently from all the
involved technologies.

43



2. Background

2.4 Runtime systems and the STF model
In the diverse landscape of supercomputing architectures described above, and because of
the increasing complexity of algorithms for scientific computing, traditional methods for
implementing parallel applications based on a blend of different technologies (for instance,
MPI, OpenMP and CUDA), may fall short in achieving high performance, scalability,
performance portability and code maintainability. As a result, the need has recently
emerged for novel parallel programming models and tools capable of

• addressing in a consistent way the diversity and heterogeneity of modern platforms,

• relieving the programmer from the burden of dealing with the low-level details of
the architecture

• achieving code and performance portability, i.e., making a code portable across a
wide range of architectures (with, possibly, minor modifications) while keeping a
satisfactory level of performance.

Modern runtime systems (or, simply, runtimes) are designed to address this demand.
A runtime is conceived as a software layer that makes an abstraction of the underlying
computing platform by hiding most of the low-level architectural details and provide the
programmer with a unified programming interface, which is portable across a wide range
of architectures, to represent his workload. The runtime is then in charge of deploying
and executing the workload on the computing platform. Generally speaking, the following
four components can be found in a modern runtime system:

1. A programming model. The commonly used approach to program supercomputing
platforms relies on a mixture of different technologies; this can include, for example,
MPI for communications among different nodes, OpenMP for taking advantage of
multicores and CUDA for GPUs. Modern runtimes, instead, provide a programming
model which allows the programmer to express his workload in an abstract way,
independently of the details of the underlying architecture. Obviously, one such
programming model may have more or less expressivity or may be more or less
suited to a specific class of algorithms.

2. A scheduler. When multiple execution units are available, the scheduler is in charge
of deciding when and where a specific task (a unit of work) has to be executed. This
has to account for the different speeds and capabilities of the available working units
as well as their distance in order to cope with data transfers. When possible, the
characteristics of the workload can also be considered such as performance models for
tasks; this information can either be provided by the programmer or automatically
built by the runtime. The set of rules that is used to take this decision is what we call
a scheduling policy. Modern runtime systems usually come with a set of pre-defined
scheduling policies (such as work-stealing [22], Minimum Completion Time [153])
suited for the most common architectures but may also provide the necessary API
for the programmer to implement his own scheduling policy.

3. Drivers. Each of these modules is in charge of triggering the execution of a task
on an execution unit. Therefore, when a new type of execution unit appears, the
runtime developer has to write a new driver to pilot it.
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4. Memory manager. A modern computing platform may have multiple memories
each with its own address space; this is, for example, the case of clusters of nodes
or of systems equipped with GPU boards. Therefore, when the scheduler decides
to execute a task on a unit which is far away from the memory that holds the
corresponding data, this has to be transferred for the task to execute. This is the
role of the memory manager. Varying degrees of optimization can be implemented
in a memory manager. For example, if the same data is only read by multiple tasks
running on units associated with different memories, multiple copies of it may be
generated by the memory manager in order to avoid unnecessary communications;
in this case the memory manager has to handle the coherency among these copies.

In recent years, the use of runtime systems has become increasingly popular. Most of
these runtimes rely on an interface where the workload has to be expressed as a Directed
Acyclic Graph (DAG) where nodes represent tasks and edges the dependencies among
them. The runtime programming model is thus just a mean of expressing this DAG.
Among the most well known and used models provided by recent runtime systems is the
Sequential Task Flow (STF) one. The STF model simply consists of submitting a sequence
of tasks through a non blocking function call that delegates the execution of the task to the
runtime system; this submission describes how the tasks accesses the data, i.e., whether
in read, write mode or both. Upon submission, the runtime system adds the task to the
current DAG along with its dependencies which are automatically computed through data
dependency analysis [10]:

• for all data accessed in read mode: the submitted task will be dependent on all
previously submitted tasks that access the same data in write mode;

• for all data accessed in write mode: the submitted task will be dependent on all
previously submitted tasks that access the same data in read or write mode.

The actual execution of the task is then postponed to the moment when its dependencies
are satisfied. This paradigm is also sometimes referred to as Superscalar since it mimics
the functioning of superscalar processors where instructions are issued sequentially from
a single stream but can actually be executed in a different order and, possibly, in parallel
depending on their mutual dependencies. Figure 2.19 shows a dummy sequential algorithm

1 call f(x,y)
call g(x,u)

3 call h(y,z)

1 call submit(f,x:RW,y:RW)
call submit(g,x:R,u:RW)

3 call submit(h,y:R,z:RW)
call wait_tasks_completion()

f
g

h
Figure 2.19: Pseudo-code for a dummy sequential algorithm (left), corresponding STF
version (center) and subsequent DAG (right).

and its corresponding STF version. Instead of making three function calls (f, g, h),
the equivalent STF submits the three corresponding tasks. The data onto which these
functions operate as well as their access mode (Read, Write or Read/Write) are also
specified. Because task g accesses data x after task f has accessed it in Write mode, the
runtime infers a dependency between tasks f and g. Similarly a dependency is inferred
between tasks f and h due to data y. Figure 2.19 (right) shows the DAG corresponding to
this STF dummy code. In the STF model, one thread is in charge of submitting the tasks;
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we refer to this thread as the master thread. The execution of tasks is instead achieved
by worker threads. The function called at the end of the STF pseudo-code is simply a
barrier that prevents the master thread from continuing until all of the submitted tasks
are executed. Note that, in principle, the master thread can also act as a worker; whether
this is possible or not depends on the design choices of the runtime system developers.

Many runtime systems [26, 28, 108] support the STF paradigm such as OpenMP (since
standard 4.0) which provides the task directive to submit tasks with the depend clause
to declare their data access mode. For the work presented in Chapter 3 we chose to rely
on StarPU [26] as it provides a very wide set of features that allows, most importantly, for
a better control of the tasks scheduling policy and because it supports accelerators and
distributed memory parallelism which will be addressed in future work.

Other popular runtimes, such as Parsec by Bosilca et al. [38], rely on a programming
model called Parametrized Task Graph. In this approach the dataflow and, thus, the DAG,
is described by means of a dedicated language which allows for defining tasks and rules
that are used to pass data from one task to the others. As a consequence, the DAG is
never explicitly and entirely built but progressively unrolled by means of these rules; this
provides a better scalability of the runtime which, however, comes at the cost of a much
higher programming effort.
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Chapter 3

Parallelism and performance
scalability

Sparse computations are well known for being hard to parallelize on shared-memory, mul-
ticore systems. This is due to the fact that the efficiency of many sparse operations, such
as the sparse matrix-vector product, is limited by the speed of the memory system. This
is not the case for the multifrontal method; since computations are performed as opera-
tions on dense matrices, a favorable ratio between memory accesses and computations can
be achieved which reduces the utilization of the memory system and opens opportunities
for multithreaded, parallel execution. Moreover, sparse direct methods lend themselves
naturally to parallelism because they benefit from two sources of concurrency. The first
stems from the matrix sparsity and is commonly referred to as tree parallelism: fronts
lying on distinct branches of the assembly tree are independent and can be processed
concurrently. The second is inherent to the dense linear algebra operations performed on
each frontal matrix and is commonly referred to as node parallelism: if a frontal matrix
is big enough, multiple processes can be used to assemble and factorize it.

The use of both these types of parallelism is essential to achieving good scalability with
parallel implementations of sparse, direct solvers. This is because they are complementary:
at the bottom of the tree, node parallelism is scarce because fronts are small and tree
parallelism is abundant because there are many branches; inversely, at the top of the tree
fronts are large and provide much node parallelism but the tree is narrow.

Let us assume that the execution time of a sparse matrix factorization is proportional
to the number of performed floating point operations. For the case of a problem from a
regular square (2D) or cubic (3D) domain of size N where nested dissection is used, the
sequential execution time is, therefore, O(N3) and O(N6), respectively; this is derived
from the result of Section 2.2.3.1. Note that here, not only we have assumed that the
assemblies account for a lower-order term in the flop count, but also that their execution
time is negligible which is not necessarily the case in practice because these operations are
extremely inefficient and involve many communications and indirect addressing.

For a parallel execution, a lower-bound for the running time can be computed by
modifying Equation (2.21) in order to take node and tree parallelism into account:

T =
L∑

ℓ=0

((
2d
)ℓ
)α
((

N

2ℓ

)d−1
)β

= Nαd−α
L∑

ℓ=0
2βld−αld+αl (3.1)

The α and β exponents define how tree and node parallelism, respectively, affect the
execution time. When tree parallelism is used, the best possible execution time is lower-
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Params 2D 3D
Tseq α = 1, β = 3 N3 N6

Ttree α = 0, β = 3 N3 N6

Tnode
α = 1, β = 1 N2 N3

α = 1, β = 2 N2log(N) N4

Ttree+node
α = 0, β = 1 N N2

α = 0, β = 2 N2 N4

Table 3.1: Execution time lower bounds for the sequential and parallel factorization of
sparse matrices from a square (2D) or cubic (3D) domain of size N .

bounded by the time it takes to traverse the longest branch of the assembly tree. Because
in our case all the branches are equal, this lower-bound is obtained by setting α = 0
which amounts to traversing any branch of the tree. When, instead, node parallelism is
used, each single assembly tree node will be factorized by multiple processes and, thus,
faster. How faster is defined by the value of β and depends on the type of parallel front
factorization method being used: it can easily be proved that the execution time for the
parallel Cholesky factorization of a dense front of size m is Ω(m), whereas for the classical
blocked LU factorization with partial pivoting (see Section 2.1.4.1) or the Householder QR
factorization (see Section 2.1.4.2) is Ω(m2) (more details on this will be provided below).

Table 3.1 reports lower bounds for the execution time of the factorization of sparse
matrices from a square (2D) or cubic (3D) domain of size N derived from Equation (3.1);
these are computed for a sequential execution (α = 1, β = 3) as well as for parallel
executions where only tree (α = 0), only node (β = 1, 2) and both tree and node
parallelism are used. Several interesting observations can be made on these results. First,
tree parallelism alone does not bring any asymptotic improvement to the execution time.
This can be easily understood considering that the sequential execution time in both the
2D and 3D cases is dominated by the time for factorizing the topmost front, where no tree
parallelism is available. For the same reason, node parallelism alone can actually reduce
the execution time by a factor that depends on how parallel the dense front factorization
is (i.e. β = 1 or 2). In the case of Cholesky factorization (β = 1) node parallelism reduces
the relative weight of the topmost nodes by a factor such that adding tree parallelism
on top of it can further reduce the execution time. This also holds for LU with partial
pivoting and QR (β = 2) but only in the 2D case whereas in the 3D case where tree
parallelism does not bring any actual improvement even when node parallelism is used.

In view of the above analysis, it is clear that any improvement on the parallelization of
dense LU and QR factorizations will considerably benefit the scalability of sparse direct
solvers. Section 3.4.1 presents dense LU and QR factorization algorithms whose paral-
lel execution time lower bound is O(m) for a dense matrix of size m. The use of these
techniques, referred to as tiled or Communication Avoiding methods, within sparse direct
solvers is discussed in Section 3.4. This leads to complex parallel algorithms that are hard
to implement in an efficient, scalable and portable way. This is especially the case consid-
ered that modern supercomputing architectures heavily rely on thread-level parallelism to
achieve high performance and scalability; this demands for parallel programming models
that can handle high levels of concurrency in order to feed all the available processing
units. Sections 3.1 and 3.3 discuss the use of task-based parallelism and runtime systems
for achieving efficient parallel implementations of these methods on multicore platforms.
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Section 3.5 discusses how this implementation can be extended to use heterogeneous plat-
forms equipped with GPUs by means of appropriate data and tasks partitioning as well as
scheduling methods. Finally, in Section 3.6 we present a performance analysis approach
for evaluating the efficiency of parallel codes on heterogeneous platforms.

3.1 Task-based multifrontal QR for manycore systems
Because of the heavy use of Thread Level Parallelism, which is at the base of the multicore
technology, and the availability of increasing levels of concurrency, the task-based parallel
programming model has known a renewed popularity. In such a model, a workload is
expressed as a Directed Acyclic Graph (DAG) where nodes represent tasks (i.e., units
of work) and edges the dependencies among them; this representation can be explicit
and thus the DAG is entirely generated and stored in memory or implicit, if possible, by
means of a set of rules that define the tasks and their mutual dependencies. Based on
this representation, an asynchronous execution approach can be employed where a ready
task (i.e., one for which all the dependencies are satisfied) is executed as soon as possible,
depending on the availability of a suitable processing unit. This allows for making a
more effective use of all the available processing units and for easily reacting to dynamic
variations of the workload or inaccuracies of performance models, which are quite likely
given the complex and heterogeneous nature of modern computing platforms.

The classical approach to shared-memory parallelization of QR multifrontal solvers
[15, 55, 126] is based on a complete separation of the two sources of concurrency described
above. A task-based approach is commonly employed to express tree parallelism: the
assembly tree is actually a DAG of tasks, where each task corresponds to the assembly
and factorization of a frontal matrix. Node parallelism, instead, is commonly delegated
to multithreaded BLAS or LAPACK libraries. Although this approach works reasonably
well for a limited number of cores or processors, it suffers scalability problems mostly due
to two factors:

• separation of tree and node parallelism: the degree of concurrency in both types of
parallelism changes during the bottom-up traversal of the tree; fronts are relatively
small at leaf nodes of the assembly tree and grow bigger towards the root node. On
the other hand, tree parallelism provides a high level of concurrency at the bottom of
the tree and only a little at the top part where the tree shrinks towards the root node.
Since the node parallelism is delegated to an external multithreaded BLAS library,
the number of threads dedicated to node parallelism and to tree parallelism has to
be fixed before the execution of the factorization. Thus, a thread configuration that
may be optimal for the bottom part of the tree will result in a poor parallelization
of the top part and vice versa. Although some recent parallel BLAS libraries (for
example, Intel MKL) allow for changing the numbers of threads dynamically at run-
time, it would require an accurate performance modeling and a rigid thread-to-front
mapping in order to keep all the cores working at any time. Relying on some specific
BLAS library could, moreover, limit the portability of the code.

• synchronizations: the assembly of a front is an atomic operation. This inevitably
introduces synchronizations that limit the concurrency level in the multifrontal fac-
torization; most importantly, it is not possible to start working on a front until all
of its children have been fully factorized.

The limitations of the classical approach discussed above can be overcome by employing
a task-based approach for exploiting both tree and node parallelism, which is achieved
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through a fine-grained partitioning of data and operations. A block-column partitioning
of the fronts is applied as shown in Figure 3.1 (left) and five elementary operations defined:

1. activate: the activation of a frontal matrix corresponds to computing its structure
(row/column indices, staircase structure, etc.), allocating its memory, filling it with
zeros and assembling the nonzero coefficients from the corresponding rows of the
input sparse matrix;

2. _geqrt: this operation, also referred to as panel, amounts to computing the QR
factorization of a block-column; Figure 3.1 (middle) shows the data modified when
the panel operation is executed on the first block-column;

3. _gemqrt: this operation, also referred to as update, updates a block-column with
respect to a panel and corresponds to applying to the block-column the Householder
reflectors resulting from the panel reduction; Figure 3.1 (right) shows the coefficients
read and modified when the third block-column is update’d with respect to the first
panel;

4. assemble: for a block-column, assembles the corresponding part of the contribution
block into the parent node (if it exists);

5. deactivate: stores the coefficients of the R and H factors aside and deallocates the
memory needed for the frontal matrix storage;

Block-column partitioning Panel operation Update operation

Figure 3.1: Block-column partitioning of a frontal matrix (left) and panel and update
operations pattern (middle and right, respectively); dark gray coefficients represent data
read by an operation while black coefficients represent written data.

Based on this decomposition, a sequential pseudo-code illustrating the multifrontal
QR factorization is reported in Figure 3.2. This pseudo-code loops over all the fronts
in the elimination tree in a bottom-up order. When a front f is visited, first of all its
structure (rows and columns indices, staircase etc.) is computed and the corresponding
memory allocated by the activate routine which also initializes the front by first filling
it up with zeros and then assembling the nonzero coefficients from the related rows of the
input sparse matrix. Then a loop over all the front children follows where, for each child
c, its columns are assembled into f; note that only those columns that overlap with the
contribution block have to be assembled but we omit this detail for the sake of readability.
The assemble routine assembles one column of c into multiple columns of f depending
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3.1. Task-based multifrontal QR for manycore systems

forall fronts f in topological order
2 ! compute structure , allocate and initialize

call activate(f)
4

forall children c of f
6 forall blockcolumns j=1...n in c

! assemble column j of c into f
8 call assemble(c(j), f)

end do
10 ! Deactivate child

call deactivate(c)
12 end do

14 forall panels k=1...n in f
! panel reduction of column k

16 call _geqrt(f(k))
forall blockcolumns j=k+1...n in f

18 ! update of column j with panel k
call _gemqrt(f(k), f(j))

20 end do
end do

22 end do

Figure 3.2: Pseudo-code for the sequential multifrontal QR factorization with 1D parti-
tioned frontal matrices.

on the c-to-f columns mapping. When all the columns of a child have been assembled,
the child can be freed by means of the deactivate routine. When the front is assembled,
it can be factorized; this is achieved by the the double, nested loop starting at line 14
that uses the _geqrt and _gemqrt routines. Note that, although for these routines we
keep the original LAPACK name, these have been modified to take advantage of the
fronts staircase structure by means of an internal blocking ib, as explained below. Note
that the doubly-nested loop starting at line 14 essentially corresponds to the blocked QR
factorization described in Section 2.1.4.2.

The multifrontal factorization of a sparse matrix can thus be represented as a DAG of
tasks where each task represents the execution of one of the function calls in the pseudo-
code of Figure 3.2. Figure 3.3 shows the DAG associated with the subtree defined by
supernodes one, two and three for the problem in Figure 2.9 for the case where the block-
columns have size one1; the dashed boxes surround all the tasks that are related to a single
front.

The dependencies in the DAG are defined according to the following rules (an example
of each of these rules is presented in Figure 3.3 with labels on the edges):

• d1: no other elementary operation can be executed on a front or on one of its
block-columns until the front is not activated;

• d2: a block column can be updated with respect to a panel only if the corresponding
panel factorization is completed;

1Figure 3.3 actually shows the transitive reduction of the DAG, i.e., the direct dependency between
two nodes is not shown in the case where it can be represented implicitly by a path of length greater than
one connecting them.
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Figure 3.3: The DAG associated with supernodes 1, 2 and 3 of the problem in Figure 2.9;
for the panel, update and assemble operations, the corresponding block-column index is
specified. For this example, the block-column size is chosen to be one.

• d3: the panel operation can be executed on block-column k only if it is up-to-date
with respect to panel k − 1;

• d4: a block-column can be updated with respect to a panel k in its front only if it
is up-to-date with respect to the previous panel k − 1 in the same front;

• d5: a block-column can be assembled into the parent (if it exists) when it is up-
to-date with respect to the last panel factorization to be performed on the front it
belongs to (in this case it is assumed that block-column j is up-to-date with respect
to panel k when the corresponding panel operation is executed);

• d6: no other elementary operation can be executed on a block-column until all the
corresponding portions of the contribution blocks from the child nodes have been
assembled into it, in which case the block-column is said to be assembled;

• d7: since the structure of a frontal matrix depends on the structure of its children,
a front can be activated only if all of its children are already active;

This DAG globally retains the structure of the assembly tree but expresses a higher
degree of concurrency because tasks are defined on a block-column basis instead of a front
basis. Moreover, it implicitly represents both tree and node parallelism which allows for
exploiting both of them in a consistent way. Finally, it removes unnecessary dependencies
making it possible, for example, to start working on the assembled block-columns of a
front even if the rest of the front is not yet assembled and, most importantly, even if the
children of the front have not yet been completely factorized; we refer to this additional
source of concurrency as inter-level parallelism.
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The next two sections discuss two different ways of implementing this task-based par-
allelization approach. In the first case, described in Section 3.2, this is achieved by hand
coding a complex task-queueing system where ready tasks are added through a costly
search along the assembly tree. This tasking mechanism relies on some peculiar prop-
erties of the multifrontal method and, thus, can hardly be used in other applications.
Efficiency is achieved thanks to a number of low-level optimizations that make the code
hard to maintain and extend. In the second case, described in Section 3.3, this is achieved,
in a more modular, efficient and portable way, through the use of a STF runtime system
(see Section 2.4), namely, StarPU.

3.2 A hand coded task-based parallel implementation
In this approach [J10] the scheduling and execution of tasks is implemented through a
hand-coded system of task queues containing executable tasks (i.e., tasks whose depen-
dencies are already satisfied).

Upon execution of the factorization, threads enter in a loop where, at every iteration
a thread:

1. checks whether the number of tasks globally available for execution has fallen below
a certain value (which depends, e.g., on the number of threads) and, if it is the case,
it calls the fill_queues routine, described below, which searches for ready tasks
and pushes them into the queueing system;

2. picks a task. This operation consists in popping a task from the queueing system
and is executed by the pop_task routine;

3. executes the selected task if the previous step has succeeded.

The tasks are pushed into the queueing system by the fill_queues routine. At every
moment, during the factorization there exists a list of active fronts; the fill_queues
routine goes through this list looking for ready tasks on each front. Whenever one such
task is found, it is pushed in the queueing system. If no task is found related to any of
the active fronts, a new ready front (if any) is scheduled for activation; the search for an
activable front follows a postorder traversal of the assembly tree, which provides a good
memory consumption (as explained below) and temporal locality of data. Simultaneous
access to the same front in the fill_queues routine is prevented through the use of locks.

The size of the search space for the fill_queues routine is, thus, proportional to the
number of fronts that are active, at a given moment, during the factorization. The size of
this search space may become excessively large and, consequently, the relative cost of the
fill_queues routine intolerable, in some cases like, for example, when the assembly tree
is very large and/or when it has many nodes of small size. Two techniques are employed
in order to keep the number of active nodes limited during the factorization:

• Logical pruning. Commonly, large assembly trees provide much more tree-level
parallelism than what is really needed. A logical pruning can thus be applied to
simplify the tree: all the subtrees whose relative computational weight is smaller
than a certain threshold are made invisible to the fill_queues routine. When
one of the remaining nodes is activated, all the small subtrees attached to it are
processed sequentially by the same thread that performs the activation. This is a
variant of the Geist-Ng algorithm [73] and, as shown in Figure 3.4, this corresponds
to identifying a layer in the assembly tree such that all the subtrees below it will be
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processed sequentially. This layer has to be as high as possible in order to reduce the
number of potentially active nodes but low enough to provide a sufficient amount
of tree-level parallelism on the top part of the tree. Note that this has the further
advantage of increasing the locality of access to data because the same thread works
on all the nodes within an entire subtree.

Figure 3.4: A graphical representation of how the logical amalgamation and logical pruning
may be applied to an assembly tree.

• Tree reordering. Assuming that the assembly tree is processed sequentially fol-
lowing a postorder traversal, the maximum number of fronts active at any time in
the subtree rooted at node i, Pi is defined as the maximum of two quantities:

1. nci + 1, where nci is the number of children of node i. This is the number of
active nodes at the moment when i is activated;

2. maxj=1,...,nci(j−1+Pj). This quantity captures the maximum number of active
fronts when the children of node i are being processed. In fact, at the moment
when the peak Pj is reached in the subtree rooted at the j-th child, all the
previous j − 1 children of i are still active.

In order to minimize the maximum number of active nodes during the traversal of
the assembly tree it is, thus, necessary to minimize, for each node i, the second
quantity, which is achieved by sorting all of its children j in decreasing order of
Pj [118]. The effect of this reordering on an example tree is illustrated in Figure 3.5.
If the tree is traversed in the order shown in the left part of the figure, P19 = 10 (the
nodes active at the moment when the peak is reached are highlighted with a thick
border); instead, if the tree is reordered as in the right part of the figure following
the method described above P19 is equal to four. Although no guarantee is given
that a postorder is followed in a parallel factorization, this tree reordering technique
still provides excellent results on every problem that has been tested so far. Besides,
by reducing the number of active nodes, this reordering also helps in reducing the
consumed memory although it will not be optimal in this sense as the actual size of
the frontal matrices is not taken into account (the reordering technique for memory
consumption minimization is described in the paper by Guermouche et al. [89] and
Liu [118]).

Both the tree pruning and reordering are executed during the solver’s analysis phase.
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3.2. A hand coded task-based parallel implementation

Figure 3.5: The effect of leaves reordering on the number of active nodes.

In order to achieve better performance and memory consumption, a dedicated task
scheduling policy was implemented that, by deciding how tasks are pushed and popped
to and from the queueing system, defines the behavior of the solver.

This scheduling technique aims at optimizing the reuse of local data in a NUMA
system while still prioritizing tasks that have a high number of outgoing edges (fan-
out). Although the multifrontal method is rich in Level-3 BLAS operations (mostly in the
_gemqrt tasks), there is still a considerable amount of Level-2 BLAS operations (within the
_geqrt tasks) and symbolic or memory ones (the activate, assembly and deactivate
tasks) whose efficiency is limited by the speed of the memory system. As the number
of threads participating in the factorization increases, the relative cost of these memory-
bound operations grows too high and there are fewer opportunities to hide this cost by
overlapping these slow operations with faster ones. In addition, some frontal matrices,
especially at the bottom of the tree, may be too small to achieve the surface-to-volume
effect in Level-3 BLAS operations. Therefore, in order to improve the scalability, it is
important to perform these memory-bound operations as efficiently as possible and this
can be achieved by executing each of them on the core which is closest to the data it
manipulates. The proposed method is based on a concept of ownership of a front: the
thread that performs the activate operation on a front becomes its owner and, therefore,
becomes the privileged thread to perform all the subsequent tasks related to that front.
By using methods like the “first touch rule” (memory is placed on the NUMA node
which generates the first reference) or allocation routines which are specific for NUMA
architectures [40], the memory needed for a front can be allocated in the NUMA node
which is closest to its owner thread. No front-to-thread mapping is performed and thus the
ownership of a front is dynamically set at the moment when the front is activated. Each
thread is associated with a local task queue, filled by the fill_queues routine, which
contains the tasks related to the fronts it owns. The pop_task routine, when executed by
a thread, first tries to pop a ready task from the local queue; in case no task is available
on the local queue, an architecture aware work-stealing technique is employed, i.e., the
thread will try to steal a task from queues associated with threads with which it shares
some level of memory (caches or DRAM module on a NUMA machine) and if still no task
is found it will attempt to steal a task from any other queue. The computer’s architecture
is detected using the hwloc [40] tool.

Although tasks are always popped from the head of each queue, they can be pushed
either on the head or on the tail which allows for prioritizing certain tasks. In our imple-
mentation, the _geqrf operations are always pushed on the head because the correspond-
ing nodes in the execution DAG have higher fan-out and, thus, their execution satisfies
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more dependencies.
Finally, it must be noted that an efficient use of tree-level parallelism makes it hard,

if not impossible, to follow a postorder traversal of the tree which results in an increased
memory consumption with respect to the sequential case [89, 118]. Therefore the pro-
posed scheduling method tries to exploit node-level parallelism as much as possible and
dynamically resorts to tree-level parallelism by activating a new node only when no more
tasks are found on already active fronts. This keeps the tree traversal as close as possible
to the one followed in the sequential execution and avoids the memory consumption to
grow out of control.

3.2.1 Blocking of dense matrix operations
It is obviously desirable to use blocked operations that rely on Level-3 BLAS routines
in order to achieve a better use of the memory hierarchy and, thus, better performance.
The use of blocked operations, however, introduces additional fill-in in the Householder
vectors due to the fact that the staircase structure of the frontal matrices cannot be fully
exploited. It can be safely said that it is always worth paying the extra cost of this
additional fill-in because the overall performance will be drastically improved by the high
efficiency of Level-3 BLAS routines; nonetheless it is important to choose the blocking
value that gives the best compromise between number of operations and efficiency of the
BLAS. This blocking size, which defines the granularity of computations, has to be chosen
with respect to the block-columns size used for partitioning the frontal matrices, which
defines the granularity of parallel tasks.

Figure 3.6: The effect of internal blocking on the generated fill-in. The light gray dots
show the frontal matrix structure if no blocking of operations is applied whereas the dark
gray dots show the additional fill-in introduced by blocked operations.

Figure 3.6 shows as dark gray dots the extra fill-in introduced by the blocking of
operations (denoted as ib for internal blocking) with respect to the partitioning size nb
on an example frontal matrix.

3.2.2 Experimental results
The method discussed in this section was implemented in version 1.0 of the qr_mumps2

(or qrm for the sake of brevity) package, released in November 2012. The code is written
in Fortran2003 and OpenMP is the technology chosen to implement the multithreading.

2http://buttari.perso.enseeiht.fr/qr_mumps
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The experiments were run on a set of fifty matrices from the UF Sparse Matrix Collec-
tion [56]; they were chosen from the complete set of over and under-determined problems
by excluding those that are rank-deficient (because qr_mumps cannot currently handle
them), those that are too small to evaluate the scalability or that are too big for being
factorized on the computer platforms described below. More detailed experiments were
performed on a subset of matrices whose details are reported in Appendix A.1. In the
case of under-determined systems, the transposed matrix is factorized, as it is commonly
done to find the least-norm solution of a problem. All of the results presented below
were produced without storing the H matrix in order to extend the test set to very large
matrices that couldn’t otherwise be factorized on the available computers.

For all the 51 matrices in the test set the blocking values were chosen among three
different combinations, i.e., (nb,ib)=(120, 120), (120, 60) or (60, 60) as those that deliv-
ered the shortest factorization time using all the cores available on the system. All the
experimental results presented in the rest of this section are related to that choice.

3.2.2.1 Understanding the memory utilization

As described above, the scheduling of tasks in qrm is based on a method that aims at
maximizing the locality of data in a NUMA environment. The purpose of this section is
to provide an analysis of the effectiveness of this approach. This analysis was conducted
on the dude system, always using all of the 24 cores available, with the PAPI [128] tool.
Recalling the architectural characteristics of the dude system (see Appendix A.2), the
efficiency of the scheduling technique has been evaluated based on three metrics:

• the completion time;

• the amount of data transferred on the HyperTransport links3;

• the number of conflicts on the DRAM controllers4

Experiments were run on all the matrices in the test set and with three different
settings for the memory policy:

• no locality: this is a code variant where the multiple task queues are replaced with
a single one shared by all threads. Tasks are, thus, pushed and popped from this
queue regardless of their affinity with the data placement in the memory system;

• locality: this corresponds to the scheduling strategy described in Section 3.2, i.e.,
each task is pushed on the queue attached to the thread which owns the related
front;

• round robin: this setting uses the same code variant of the “locality” one but, in
this case, allocated memory pages are interleaved in a round robin fashion over all
the DRAM modules. This is achieved using the numactl [107] tool with the “-i
all” option. Since the code does not control the placement of data in the memory
system, the ownership of fronts does not make sense anymore and, consequently, the
data locality is completely destroyed.

3This quantity was measured as the number of occurrences of the PAPI
HYPERTRANSPORT_LINKx:DATA_DWORD_SENT event (where x is 0, 1, 2, 3 since each processor has 4 Hyper-
Transport links) which counts the number of double-words transferred over the HyperTransport links.

4This quantity was measured as the number of occurrences of the PAPI
DRAM_ACCESSES_PAGE:DCTx_PAGE_CONFLICT event (where x is 0, 1 since each processor has two DRAM
controllers) which counts the number of conflicts occurring on the DRAM controllers.
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Matrix 3 6 7 8 9 10

Time (sec.)
no. loc. 8.97 28.48 53.38 53.07 157.20 371.78

loc. 7.57 25.77 48.43 48.25 143.48 345.75
r. r. 6.54 22.38 28.90 42.50 113.70 328.40

Dwords on HT (×109)
no. loc. 23.59 65.61 81.40 109.45 371.73 803.27

loc. 11.92 47.30 76.94 90.52 259.89 656.50
r. r. 25.00 72.60 86.13 125.66 378.09 869.87

Conflicts on DCT (×109)
no. loc. 0.26 0.68 0.98 1.07 3.29 7.36

loc. 0.29 0.70 0.92 1.21 4.07 8.14
r. r. 0.24 0.52 0.62 0.79 3.17 6.31

Table 3.2: Analysis of the memory usage for the matrix factorization on the dude system
with 24 threads.

Table 3.2 shows the results of these experiments for a subset of the matrices in Ta-
ble A.1. It can be seen that the locality aware scheduling strategy described above provides
better execution times with respect to a naive dynamic scheduling policy: the improve-
ment may be as high as almost 20% (for the EternityII_E matrix) and quite often around
10%. This can be explained by the reduced amount of data transferred over the Hyper-
Transport links as shown in the middle of the table. However, the best execution times
are achieved with the round robin distribution of memory allocations. In this case, the
amount of data transfers is higher than the other two cases since the frontal matrices are
completely scattered over the NUMA nodes; nonetheless, this more even distribution of
data reduces the number of conflicts on the DRAM controllers (see Table 3.2 (bottom))
and provides a better use of the memory bandwidth. This behavior is coherent to what
was observed on the HSL_MA87 [101] code which uses a similar approach for the Cholesky
factorization of sparse linear systems.

The considerable performance improvement resulting from the interleaved memory
allocation suggests that reducing the memory conflicts may be more important than min-
imizing the amount of data transferred over the HyperTransport links. A closer look to
the behavior of matrices e18 and flower_7_4 (columns three and four in Table 3.2) shows,
instead, that both these objectives are very important for the efficiency of the code. The
factorization of these two matrices takes roughly the same time in the “locality” and “no
locality” cases but the memory interleaving provides only a small improvement to the
second matrix due to a bigger increase of the data traffic on the HyperTransport links.

Maximizing the data locality and minimizing the memory conflicts are not conflicting
objectives although it may be rather complicated to achieve both of them at the same time
on a very heterogeneous workload such as a sparse factorization. It has to be noted that
in the proposed locality aware scheduling policy, the placement of data and the ownership
of the associated tasks is defined on a front basis. Because the number of fronts becomes
smaller than the number of working threads when the factorization approaches the root
front, a lot of work stealing and memory contention take place on the top part of the
assembly tree where most of the work is done. Further improvements can be obtained
by defining the data placement and the tasks affinity on a block-column basis; despite
this would make some operations such as the front assembly much more complex, it is

58



3.2. A hand coded task-based parallel implementation

Matrix 0 1 2 4 5 10

none 3.52 385.10 151.40 7.12 9.53 9239.00
reord. 2.89 113.80 140.90 7.01 8.75 1651.00
prune 0.94 17.27 5.52 6.99 9.38 328.50
both 0.84 14.44 5.16 6.83 9.20 326.40

Table 3.3: The effect of tree pruning and tree reordering on the matrix factorization time
on the dude system with 24 threads.

reasonable to expect that it will allow for more evenly and efficiently distributing the data
and thus improving the locality of reference and reduce the memory contention at the
same time.

3.2.2.2 The effect of tree pruning and reordering

The tree reordering and pruning techniques have been evaluated on the test matrices. For
the tree pruning, the initial threshold was set to 0.01 which means that all the subtrees
whose weight is smaller than 1% of the total factorization workload are pruned off. If the
remaining tree does not provide enough tree-level parallelism, the threshold is divided by
2 and a new pruning is done on the original assembly tree. More precisely this procedure
is iterated until the number of leaves in the pruned tree is bigger than twice the number
of working threads. Clearly, the optimal values for both the starting threshold and the
stopping criterion depend on the structure of the tree and, therefore, on the specific input
matrix; the values described above were determined experimentally and were found to
work well on the large set of test matrices previously described.

Table 3.3 shows the experimental results related to a subset of matrices for which
these techniques have proved to be particularly effective. The experiments show that,
when applied separately, these two methods provide considerable benefits in some specific
cases. The tree reordering yields good improvements on very unbalanced and irregular
trees: this is the case of the LargeRegFile and sls matrices. The tree pruning, proved to
be very effective on all the problems but particularly on those with extremely large trees
and extremely small frontal matrices such as the cont11_l and the sls matrices.

It can be observed that the pruning clearly reduces the need for sorting as well as its
effectiveness. Nonetheless on some matrices (see, particularly, the first three columns in
Table 3.3) the best execution time is achieved when both techniques are applied. It is
important to note that the size of the pruned tree increases with the number of working
threads and, therefore, the improvements provided by the sorting, when both techniques
are applied, are likely to be more important for higher degrees of parallelism.

3.2.2.3 Absolute performance and Scaling

The qrm code was compared to the SuiteSparseQR [55] (referred to as spqr) released
by Tim Davis in 2009; this comparison was made on the dude system described in Ap-
pendix A.2. For both packages, the COLAMD matrix permutation was applied in the
analysis phase to reduce the fill-in and equivalent nodes amalgamation methods were
used so that the differences between the produced assembly trees can be considered neg-
ligible. Both packages are based on the same variant of the multifrontal method (that
includes the two optimization techniques discussed in Section 2.2.2) and, thus, the num-
ber of floating point operations done in the factorization and the number of entries in
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Figure 3.7: Time and memory profiles comparing the qrm and spqr factorizations for the
51 test matrices on the dude system.

the resulting factors are comparable. For both codes, runs were executed with numactl
memory interleaving.

Figure 3.7 shows time and memory profiles [61] for both codes using 24 threads. For
any given code, a data point (x, y) on the profile means that the code is no worse than
x times the best of the two codes for y problems. This means that the (1, y) point gives
the number y of problems on which the associated code was found to be the best. The
time profile shows that qrm is faster than spqr on 43 problems out of 51; the remaining
eight problems are very small, i.e., their factorization takes less than one second. On
basically half the problems in the test set qrm was more than twice as fast as spqr. The
memory profile is more difficult to interpret. Because qrm is based on a much more eager
execution model it is reasonable to expect that it consumes more memory. Indeed, our
scheduling method exploits as much as possible the node parallelism and resorts on tree
parallelism, by activating new nodes, only when needed; this keeps the tree traversal close
to the one followed in the sequential case and limits the memory consumption growth
in parallel. Moreover, the tree reordering technique, as explained in the same section,
helps reducing the memory footprint. As a result, qrm achieves, in general, a smaller
memory consumption than spqr on the 51 test matrices as shown in the memory profile
of Figure 3.7. Experimental data show that most of the matrices where qrm has a better
memory consumption are relatively small, which may probably be explained with some
overhead in spqr that becomes negligible for bigger size problems. Note that, in both
codes, the memory footprint is defined as the peak memory consumption reached during
the factorization, including the input matrix and all the allocated memory areas of any
type. On bigger problems, the two codes have a similar memory consumption and no
clear winner can be identified. If the H matrix was kept in memory, which is not the
case for the results reported in Figure 3.7, the difference between the two codes would
be even smaller because the relative weight of the contribution blocks, responsible for the
increased memory consumption in parallel, would be lower.

Table 3.4 shows execution times for some test problems on the dude and vargas
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dude
Matrix 2 3 4 5 6 7 8 9 10 11
th.
1 48.8 88.5 103.2 134.9 392.0 474.5 774.7 1786 3301 5185
2 33.8 49.2 52.2 65.5 209.9 250.3 357.4 961 1802 2770
4 14.8 24.8 26.5 33.4 106.4 126.3 181.6 495 932 1372
6 12.4 17.6 18.4 22.9 71.9 86.6 124.7 341 655 923
12 6.2 9.8 10.4 12.8 37.8 46.2 65.8 181 421 477
18 5.2 7.9 7.7 9.1 27.3 32.9 48.6 132 341 325
24 4.8 6.5 6.8 8.4 22.4 28.9 42.5 114 327 260
su 10.1 13.6 15.1 16.0 17.5 16.4 18.2 15.6 10.0 19.9

vargas
Matrix 2 3 4 5 6 7 8 9 10 11
th.
1 36.2 51.9 60.5 75.2 227.3 290.2 426.1 1156 2142 3121
2 24.5 27.6 32.0 38.6 117.2 151.7 192.9 600 1259 1656
4 10.6 14.0 16.0 19.4 57.1 76.5 98.0 304 672 850
8 5.9 7.3 8.2 9.9 28.6 39.3 49.5 155 348 458
16 3.9 4.1 4.7 5.7 15.4 21.3 27.6 84 197 235
24 4.5 3.1 3.7 4.3 11.3 15.5 22.8 62 183 174
32 6.4 2.6 3.3 4.0 9.5 12.9 18.9 52 182 141
su 5.6 19.9 18.3 18.8 23.9 22.4 22.5 22.2 11.7 22.1

Table 3.4: Factorization times, in seconds, on the dude and vargas systems for qrm.

systems. The reported results show and overall good performance and scalability of the
code with speedups that reach around 20 and 23 for the two machines, respectively. It
must be noted that a lower scaling is reached or smaller problems and on the sls matrix
whose fronts are extremely overdetermined. These classes of problems will be addressed
in the Section 3.4.

3.3 Runtime-based multifrontal QR for manycore systems
The multifrontal QR method described in the previous section fully conforms to task-based
parallel programming paradigm that is supported by some of the most popular, modern
runtime systems. In essence, the actual implementation relies on our own, hand-written
runtime system whose functioning and features are described above. This, however, has a
number of drawbacks and limitations. First of all, this runtime system is deeply embedded
with the multifrontal QR method and far from being usable for other applications. Second,
it has a very limited set of features and, for example, cannot handle systems other simple
multicore nodes. Third, it is inefficient because the search for ready tasks implies searching
in a rather large space (which required the use of techniques such as the tree reordering
described in Section 3.2). It is thus a natural choice to port this method on a proper,
modern runtime in order to take advantage of better efficiency portability and a wider
set of feature. As Explained in Section 2.4, among all the available runtimes, we have
chosen to use StarPU mostly because it relies on the Sequential Task Flow programming
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model, which is extremely convenient for implementing complex algorithms such as the
multifrontal one, and because it has a very wide set of features, some of which we will
describe below.

A first attempt to port the multifrontal QR method of Section 3.1 on StarPU [C3]
was mainly meant to asses the usability of a modern runtime system for implementing a
sparse, direct solver. For this reason we tried to reproduce as accurately as possible the
behavior of the code described in the previous section. This lead to satisfactory results.
Nonetheless, the resulting code had a number of shortcomings [C3], including a rather
intricate tasks submission scheme which did not fully adhere with the STF model; this
prevents the runtime from properly handling the data (which is necessary when multiple
memories are available) because the flow of data between tasks was not correctly expressed.

In the remainder of this section we describe an implementation that is fully compliant
with and takes full advantage of the expressiveness of the STF programming model.

As explained in Section 2.4, parallelizing a code with the STF model is conceptually
as simple as replacing operations (or, function calls) with tasks submissions. This can
easily be achieved by replacing the function calls in Figure 3.2 with the submission of the
corresponding tasks. In our case there is one caveat though: the assembly tasks can only
be submitted after the structure of the current front is computed by the activate. As
a consequence, this routine cannot be made into a task whose execution is deferred but,
instead, has to be executed synchronously by the master thread prior to submitting all
the other tasks related to the corresponding front. It is thus very important to keep this
routine as lightweight as possible in order not to delay the submission of tasks in the main
loop. For this reason the front initialization was moved into a separate init routine and
only the structure computation and the memory allocation were left in the activate one.
This last also registers the data to StarPU; once this is done, StarPU has full control of
the data and the master process can only reference it by means of a handle returned by
StarPU upon registration. The pseudo-code in Figure 3.8 shows the resulting STF parallel
multifrontal QR factorization.

Using the data access modes and the order of task submission, the runtime system
automatically infers dependencies between tasks, which are described in Section 3.1 and
thus builds the DAG.

This code also includes the logical tree pruning optimization described in Section 3.2
but we did not take it into account in the pseudo-code for the sake of readability. Each
leaf-subtree whose weight is smaller than a certain threshold is processed sequentially by a
single task of type do_subtree; clearly, no partitioning is applied to fronts in a sequential
subtree and a standard LAPACK-style factorization (which can take advantage of the
staircase structure) is used on them. This has a threefold advantage. First of all, it
drastically reduces the number of tasks and thus reduces the runtime overhead. Second,
subtree tasks, which are of relatively large size, keep the worker threads busy at the very
beginning of the factorization; this gives the master thread enough time to progress in the
submission of other tasks which reduces the risk of tasks starvation during the execution.
Finally, it improves the efficiency of operations on those parts of the elimination tree that
are mostly populated with small size fronts and, thus, less performance effective.

A minor, but profitable improvement over the original qr_mumps solver presented in
Section 3.1, is the use of a blocked storage format. In the previous version the frontal
matrices are allocated as a whole memory area and therefore the partitioning is logical. In
this implementation, instead, each block column is allocated individually; although this
does not bring any improvement to the performance (because Fortran uses column-major
storage), it saves some memory due to the staircase structure of the fronts, as shown in
Figure 3.16 (left).
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forall fronts f in topological order
2 ! compute structure , allocate memory and register handles

call activate(f)
4

! initialize front
6 call submit(init, f:RW, children(f):R)

8 forall children c of f
forall blockcolumns j=1...n in c

10 ! assemble column j of c into f
call submit(assemble , c(j):R, f:RW|C)

12 end do
! Deactivate child

14 call submit(deactivate , c:RW)
end do

16
forall panels k=1...n in f

18 ! panel reduction of column k
call submit(_geqrt, f(k):RW)

20 forall blockcolumns j=k+1...n in f
! update of column j with panel k

22 call submit(_gemqrt, f(k):R, f(j):RW)
end do

24 end do
end do

26
call wait_tasks_completion()

Figure 3.8: Pseudo-code for the STF-parallel multifrontal QR factorization with 1D par-
titioned frontal matrices.

The resulting implementation, which we refer to as 1D, because of the front partition-
ing into block-columns, was tested on a subset of problems front the SuiteSparse Matrix
Collection [56] listed in Table A.1. Experiments were done on one node of the ada su-
percomputer described in Appendix A.2. In the experiments discussed below, local and
interleaved memory allocation policies were used, respectively, for sequential and parallel
runs through the use of the numactl tool; these are the policies that deliver the best
performance in their respective cases.

The reference sequential execution times are obtained with a purely sequential code
(no potential runtime overhead) with no frontal matrix partitioning which ensures that all
the LAPACK and BLAS routines execute at the maximum possible speed (no granularity
trade-off).

The performance of the presented approach depends on the choice of the values for
a number of different parameters. These are the block-column nb on which depends the
amount of concurrency and the internal block size ib on which depend the efficiency of
elementary BLAS operations and the global amount of flop (this parameter defines how
well the staircase structure of each front is exploited). The choice of these values depends
on a number of factors, such as the number of working threads, the size and structure
of the matrix, the shape of the elimination tree and of frontal matrices and the features
of the underlying architecture. It has to be noted that these parameters may be set to
different values for each frontal matrix; moreover, it would be possible to let the software
automatically choose values for these parameters. Both these tasks are very difficult
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and challenging and have not been investigated yet. Therefore, for our experiments we
performed a large number of runs with varying values for all these parameters, using the
same values for all the fronts in the elimination tree, and selected the best results (shortest
running time) among those. For the sequential runs internal block sizes ib={32, 40, 64,
80, 128} were used for a total of five runs per matrix. For the 1D parallel STF case, the
used values were (nb,ib)={(128,32), (128,64), (128,128), (160,40), (160,80)}
for a total of five runs per matrix.

All of the results presented in this section were produced without storing the factors
in order to extend the tests to the largest matrices in our experimental set that could not
otherwise be factorized (even in sequential) on the target platform. This was achieved by
simply deallocating the tiles containing the factors coefficients at each deactivate task
rather than keeping them in memory. As confirmed by experiments that we do not report
here for the sake of space and readability, this does not have a relevant impact on the
following performance analysis.

Sequential reference Parallel 1D STF

Mat. ib Time (s.) Gflop/s nb ib Time (s.) Gflop/s
12 40 1.00E+02 14.4 128 64 5.337E+00 272.4
13 32 1.73E+02 17.0 128 128 9.809E+00 312.0
14 80 3.40E+02 17.1 128 128 1.922E+01 309.8
15 128 5.76E+02 19.0 128 128 3.116E+01 352.0
16 80 8.71E+02 19.2 128 128 4.646E+01 362.0
17 80 1.18E+03 17.7 128 32 4.945E+01 407.8
18 128 1.58E+03 19.3 128 128 8.383E+01 365.9
19 128 3.25E+03 19.5 128 128 1.501E+02 422.4
20 128 3.99E+03 16.7 128 64 6.432E+02 102.7
21 128 9.93E+03 19.7 128 128 4.402E+02 446.8
22 128 1.13E+04 19.7 128 128 5.207E+02 430.6
23 128 1.37E+04 19.2 128 128 6.233E+02 422.7

Table 3.5: Sequential reference execution time and optimum performance for the STF 1D
factorization on ada (32 cores).

Table 3.5 shows for the STF 1D algorithm the parameter values delivering the shortest
execution time along with the corresponding attained factorization time and Gflop rate.
The Gflop rates reported in the table are related to the operation count achieved with
the internal block size ib. The smaller block-column size of 128 always delivers better
performance because it offers a better compromise between concurrency and efficiency of
BLAS operations, whereas a large internal block size is more desirable because it leads to
better BLAS speed despite a worse exploitation of the fronts staircase structure.

Figure 3.9, generated with the timing data in Table 3.5, shows the speedup achieved
by the 1D parallel code with respect to the sequential one when using all the 32 cores
available on the system. This figure shows that the speedup increases with the problem
size and may be extremely low on some problems such as for matrix #20 whose speedup
is less than 7. Although these results are satisfactory on larger size problems, on smaller
ones and on matrix #20 performance and scalability are relatively poor. This is due to
a lack of concurrency, especially for matrix #20 where most of the flops are done in one
front which has 1.3 M rows and only 7 K columns; the 1D partitioning into block-columns
is clearly not suitable for the case of strongly over-determined frontal matrices. This
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Figure 3.9: Speedup of the STF 1D algorithm with respect to the sequential case on ada
(32 cores).

problem will be addressed in the next section.

3.4 Communication Avoiding QR fronts factorizations
The parallel factorization algorithm presented in the two previous sections relies on the
use of the blocked algorithms presented in Section 2.1.4 combined with a 1D partitioning
of frontal matrices into block-columns. These can be roughly described as a sequence of
panel reduction and trailing submatrix update. The first operation factorizes a panel,
i.e., a block of columns, by means of a point factorization method and thus it is based on
Level-2 BLAS operations; the second applies all the transformations computed in a panel
reduction to the trailing submatrix using Level-3 BLAS operations. In order to maximize
the amount of operations in Level-3 BLAS routines, the size of the panel has to be much
smaller than the size of the matrix; however, for these Level-3 BLAS routines to be efficient,
the size of the panel need not be too small. In these methods, parallelism mostly comes
from the update step which is where most of the floating point operations occur. The panel
step, instead, cannot be efficiently parallelized for two main reasons. First, in the blocked
factorizations described in Section 2.1.4, the work in the panel reduction cannot be shared
without incurring a high amount of communications; note that here by communications we
intend either message exchanges in a distributed memory systems or data transfers from
memory and synchronizations in a shared memory one. In the case of the LU factorization
this is due to partial pivoting which implies a search along a whole column and in the case
of the QR factorization this is due to the norm computation in Equation (2.11) required
to construct the Householder reflection which also requires access to a whole column.
Second, because the panel reduction is made of Level-2 BLAS routines, the cost of the
communications becomes predominant and cannot be hidden behind computations. As
a result, in these blocked factorization, parallelization is achieved mainly through a fork-
join approach where sequential operations (panel reductions) are alternated with parallel
ones (trailing submatrix updates). Lookahead techniques can improve the efficiency by
overlapping panel reductions with updates from previous steps. Nonetheless this approach
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ge(k) = _geqrt (f(k))
gem(k,j) = _gemqrt(f(k), f(j))

Figure 3.10: Task graph for the block-column QR factorization of a dense matrix with
q block columns. Arrows show tasks dependencies; the critical path is shown with thick
solid edges.

presents serious scalability limits especially for overdetermined matrices where the relative
weight of the panel reduction becomes dominant.

Consider a block size b and a dense matrix of size m × n with m = pb and n = qb;
for this matrix, the DAG of the dense QR factorization by block-column in line 14 of
Figure 3.2 is illustrated in Figure 3.10. All the tasks that lie on a given path of this DAG
must be executed sequentially because of the dependencies expressed by the edges of the
path; as a result, the makespan (i.e., the total execution time) cannot be smaller than the
duration of the longest path in the DAG, which we refer to as critical path. Assuming
that the cost of _geqrt and _gemqrt on a block-column of height pb are, respectively,
2(3p− 1)b3/3 and 3(4p− 2)b3/3, the length of the critical path, shown in Figure 3.10 with
thick solid edges, is given by

q−1∑
k=0

(2(3(p− k)− 1) + 3(4(p− k)− 1)) = O(2pq − q2) = O(2mn− n2)

where we have dropped the b3/3 term assuming that b is constant (i.e., independent of the
size of the problem) and b≪ min(m, n). It is thus clear why, as mentioned in Section 3,
for a square frontal matrix of size m, this approach can, at best, reduce the execution
time from O(m3) to O(m2). Remember that the sequential execution time for the QR
factorization is O(2n2(m − n/3)); therefore, this parallelization approach suffers from a
severe lack of concurrency in the case of (strongly) overdetermined matrices because both
the parallel and sequential execution times grow linearly with m for a fixed n. This is
often the case in the multifrontal QR method where fronts commonly have (many) more
rows than columns. In the multifrontal method this problem is mitigated by the fact that
multiple frontal matrices are factorized at the same time. Nonetheless, considering that in
the multifrontal factorization most of the computational weight is related to the topmost
nodes where tree parallelism is scarce, a 1D front factorization approach can still seriously
limit the scalability, as shown in the analysis of Section 3.

The objective of tiled matrix factorizations is to overcome these difficulties by breaking
down the panel reduction and the corresponding updates into fine grained tasks that can
be efficiently parallelized or pipelined. The case of the Cholesky factorization is trivial
and will not be discussed here; we refer the reader to the original paper [J15] on tiled
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factorizations for the details. In the next section we will present the tiled QR and LU
factorizations.

3.4.1 Communication Avoiding dense factorizations

Algorithm 3.1 Tiled QR and LU (with block pairwise pivoting) factorizations.
1: for k = 1, 2..., min(p, q) do
2: _geqrt(Ak,k, Vk,k, Rk,k, Tk,k)
3: for j = k + 1, k + 2, ..., q do
4: _gemqrt(Ak,j , Vk,k, Tk,k, Rk,j)
5: end for
6: for i = k + 1, k + 2, ..., p do
7: _tpqrt(Rk,k, Ai,k, Vi,k, Ti,k)
8: for j = k + 1, k + 2, ..., q do
9: _tpmqrt(Rk,j , Ai,j , Vi,k, Ti,k)

10: end for
11: end for
12: end for

for k = 1, 2..., min(p, q) do
_getrf(Ak,k, Lk,k, Uk,k, Pk,k)
for j = k + 1, k + 2, ..., q do
_gessm(Ak,j , Lk,k, Pk,k, Uk, j)

end for
for i = k + 1, k + 2, ..., p do
_tstrf(Uk,k, Ai,k, Pi,k)
for j = k + 1, k + 2, ..., q do
_ssssm(Uk,j , Ai,j , Li,k, Pi,k)

end for
end for

end for

These methods work by partitioning the input matrix into blocks, or tiles (we will use
the term tile rather than block to avoid confusion with blocked factorization methods);
for the sake of simplicity we assume that these tiles are square (of size b) but they need
not be. At each step of the factorization the diagonal tile is first factorized and then it
is used to annihilate all the subdiagonal tiles one after the other. Algorithm 3.1 shows
these two factorization techniques; here we have assumed that the input matrix A of size
m×n is partitioned into square tiles of size nb such that p = m/b and q = n/b. The used
kernels are:

_geqrt,_getrf : these two kernels perform the QR and LU factorization of a square tile,
respectively:

_geqrt : Ak,k −→ (Vk,k, Rk,k, Tk,k) = QR(Ak,k)
_getrf : Ak,k −→ Lk,k, Uk,k, Pk,k = LU(Ak,k)

They both use an internal blocking for better efficiency. The _geqrt is equivalent to
the LAPACK _geqrf described in Section 2.1.4 except that it does not discard the
computed T matrices but it keeps them for later use in the _gemqrt kernel described
below. The _getrf is the standard blocked LU factorization with partial pivoting
described in Section 2.1.4.

_gemqrt,_gessm : these two kernels apply the transformations computed by the two
corresponding ones above to a square tile:

_gemqrt : Ak,j , Vk,k, Tk,k −→ Rk,j = (I − Vk,kT T
k,kV T

k,k)Ak,j

_gessm : Ak,j , Lk,k, Pk,k −→ Uk,j = L−1
k,kPk,kAk,j
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_tpqrt,_tstrf : these two kernels are used to factorize a matrix formed by a triangular
tile on top of a square one:

_tpqrt :
(

Rk,k

Ai,k

)
−→ (Vi,k, Ti,k, Rk,k) = QR

(
Rk,k

Ai,k

)

_tstrf :
(

Uk,k

Ai,k

)
−→ Uk,k, Li,k, Pi,k = LU

(
Uk,k

Ai,k

)

Both these kernels use an internal blocking; this allows for skipping the zeros below
the diagonal of the top tile. The _tstrf does partial pivoting.

_tpmqrt,_ssssm : these two kernels apply the transformations computed by the two
corresponding ones above to a couple of square tiles:

_tpmqrt :
(

Rk,j

Ai,j

)
, Vi,k, Ti,k −→

(
Rk,j

Ai,j

)
= (I − Vi,kT T

i,kV T
i,k)

(
Rk,j

Ai,j

)

_tpmqrt :
(

Uk,j

Ai,j

)
, Li,k, Pi,k −→

(
Uk,j

Ai,j

)
= L−1

i,k Pi,k

(
Uk,j

Ai,j

)
.

The main advantage of these tiled factorization comes from the fact that the two
problematic operations in the standard, blocked QR and LU factorizations, i.e., the col-
umn norm-2 computation and the pivot search along a column, respectively, are limited
within the diagonal tile (for the _geqrt and _getrf kernels) or within a couple of tiles
(for the _tpqrt and _tstrf kernels). For this reason, these methods are also referred
to as Communication Avoiding [29, 58]. Although this does not have any drawback for
the QR factorization, the pivoting technique used in the tiled LU factorization, called
pairwise block pivoting, is less effective than the partial pivoting used in the standard
blocked LU factorization. This technique can, however, be “stable enough” in many prac-
tical cases [J15]. In both methods, thanks to the use of an internal blocking within each
kernel, the overall cost of the factorization is higher than the classical methods only by a
negligible amount [J15].

Figure 3.11 shows the DAG for the tiled QR factorization of a dense matrix of size
m× n = pb× 4b. For a tile-size b, the cost of the _geqrt, _gemqrt, _tpqrt and _tpmqrt
if of 4, 6, 6 and 12 times b3/3 flops, respectively. The critical path of this DAG and
its length can be computed using the method proposed in the work by Bouwmeester et
al. [39] which deals with a slightly different method where all the sub-diagonal tiles in
a column are triangularized before being annihilated. The critical path for the DAG of
Figure 3.11 is illustrated with thick, solid edges; in the general case of a dense matrix of
size m× n = pb× qb its length can be computed as

4 + _geqrt k = 1
6 + _gemqrt k = 1, j = 2
12(p− 2) + _tpmqrt k = 1, j = 2, i = 2..p− 1
12(q − 1) + _tpmqrt k = 1..q − 1, i = p, j = k + 1
6(q − 1) = _tpqrt k = 2..q, i = p

O(2p + 3q) = O(2m + 3n)

where we reported, on the right, the operations related to each term. This result shows
how, for a square front of size m, tiled algorithms can reduce the lower bound of the
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Figure 3.11: The DAG for the tiled QR factorization of a dense matrix of size m × n =
pb× 4b using Algorithm 3.1. The critical path is illustrated with thick, solid edges.

execution time to O(m) which brings a considerable benefit not only to the scalability of
dense matrix factorizations but also to the scalability of sparse matrix factorizations, as
discussed in Section 3.

It must still be noted, however, that even for these tiled factorizations, the length of
the critical path still grows linearly with the number of rows m as much as the overall
cost (i.e., the sequential execution time). This is due to the fact that all the subdiagonal
tiles in a panel Ak+1,k...Ap,k are annihilated sequentially, i.e., one after the other; as a
result the reduction of a block-column is not parallelizable. The advantage with respect
to the block-column methods comes from a better pipelining between successive stages
of the factorization: in order to begin reducing the k + 1-th column, it is not necessary
to wait that all of its tiles are up to date with respect to stage k but, for example,
operation _geqrt(Ak+1,k+1, Vk+1,k+1, Rk+1,k+1, Tk+1,k+1) can be executed as soon as the
_tpmqrt(Rk,k+1, Ak+1,k+1, Vk+1,k, Tk+1,k) one is done. Although this better pipelining
yields a much higher level of concurrency and a much better scalability for square or
moderately overdetermined matrices, scalability can still be poor in the case of strongly
overdetermined ones. For this reason the tiled QR factorization was later extended to
achieve even better scalability on strongly over-determined matrices [6, 58]. As explained,
in the tiled factorization presented above, at step k the subdiagonal tiles Ai,k, i = k +
1, ..., p are annihilated sequentially. This process can be described as a reduction operation
based on a flat reduction tree, as shown in Figure 3.12 (left). Different reduction trees can
be used to achieve concurrency in the panel reduction. For example, if a binary tree is
used, first all the tiles Ai,k, i = k, ..., p are reduced to a triangle by means of the _qeqrt
kernel then ⌈log2(p− k + 1)⌉ steps follow where the remaining triangular tiles are treated
in couples and, for each couple, one tile is annihilated by means of the other as shown in
Figure 3.12 (middle). This is done using the _tpqrt kernel which limits the computations
only to the nonzero coefficients of both triangles. A binary reduction tree clearly delivers
much higher concurrency that a flat one on strongly overdetermined matrices although it
must be noted that it leads to a worse pipelining of successive factorization stages [39]
and is based on less efficient operations (the triangle-triangle reduction and the associated
updates). As a consequence, hybrid trees are often preferred in practice where the panel
tiles are divided in groups of size bh: within each group a flat tree is used and then
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the remaining triangular tiles (one per group) are reduced using a binary tree as shown
in Figure 3.12 (right). This approach is implemented in the PLASMA [5] library where
multithreading is achieved using the QUARK [166] runtime engine which is based on the
STF programming model.

Figure 3.12: Possible panel reduction trees for the 2D front factorization. On the (left),
the case of a flat tree, i.e., with bh= ∞. In the (middle), the case of a binary tree, i.e.,
with (bh= 1). On the (right) the case of an hybrid tree with bh= 2.

The pipelining between successive stages of the tiled QR and LU factorizations is
rather difficult to achieve and take advantage of in practice with a static execution ap-
proach. In order to make the best use of the available concurrency and maximize the
occupancy of computing resources, the dynamic and asynchronous execution model of
task-based runtime systems is better suited. Figure 3.13 shows the implementation of the
tiled QR factorization of a m × n = pb × qb dense matrix using the STF programming
model; this method uses hybrid panel reduction trees with subdomains of size bh.

Figure 3.14 plots the performance achieved by the block-column and tiled parallel QR
factorization methods using 24 threads on the sirocco system (see Appendix A.2). Each
point of the curves corresponds to the best performance achieved for a matrix size using
different combinations of the b, ib and bh parameters. For the 1D method we tested
b= {32, 64, 128, 256} and ib= min(b, {32, 64, 128, 256}); for the 2D method we tested
b= {128, 256, 512}, ib= {32, 64} (higher values lead to an excessive flops overhead) and
bh= min(m/b, {1, 2, 4, 8, 1620}).

These results demonstrate the superior performance and scalability of the tiled meth-
ods over the block-column ones. This is due to the higher amount of concurrency that
tiled methods can deliver. In the case of square matrices all the best results were achieved
with flat panel reduction trees (i.e. bh=m/b) because this variant produces enough par-
allelism, achieves a good pipelining of successive panels and relies on relatively efficient
kernels. In the case of overdetermined matrices, a hybrid panel reduction tree always leads
to better performance; nonetheless, absolute performance is not on par with the case of
square matrices because when hybrid trees are used, operations are less efficient.

3.4.2 Using Communication Avoiding factorizations within the
multifrontal method

The tiled QR factorization method presented in the previous section, namely the flat/bi-
nary hybrid approach, was integrated in our multifrontal STF parallel code described in
Section 3.3. Lines 17-24 in Figure 3.8 were replaced by the pseudocode in Figure 3.13
which implements the 2D factorization algorithm with hybrid panel reduction tree; this
code had to be adapted in order to ignore the tiles that lie entirely below the staircase
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1 do k=1, q
! for all the block-columns in the front

3 do i = k, p, bh
call submit(_geqrt, f(k,i):RW)

5 do j=k+1, q
call submit(_gemqrt, f(k,i):R, f(i,j):RW)

7 end do
! intra-subdomain flat-tree reduction

9 do l=i+1, min(i+bh-1,p)
call submit(_tpqrt, f(i,k):RW, f(l,k):RW)

11 do j=k+1, q
call submit(_tpmqrt, f(l,k):R, f(i,j):RW, f(l,j):RW)

13 end do
end do

15 end do
do while (bh.le.p-k+1)

17 ! inter-subdomains binary-tree reduction
do i = k, p-bh, 2*bh

19 l = i+bh
if(l.le.p)) then

21 call submit(_tpqrt, f(i,k):RW, f(l,k):RW)
do j=k+1, q

23 call submit(_tpmqrt, f(l,k):R, f(i,j):RW, f(l,j):RW)
end do

25 end if
end do

27 bh = bh*2
end do

29 end do

Figure 3.13: Pseudo-code showing the implementation of the tiled QR.
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Figure 3.14: Performance of the block-column and tiled parallel QR factorizations on
square (left) and overdetermined (right) matrices using 24 threads on the sirocco system.
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structure of the front. The assembly operations have also been parallelized according to
the 2D frontal matrix blocking: lines 9-11 in Figure 3.8 were replaced with a double,
nested loop to span all the tiles lying in the contribution block: each assembly operation
reads one tile of a node c and assembles its coefficients into a subset of the tiles of its
parent f. As a consequence, some tiles of a front can be fully assembled and ready to
be processed before others and before the child nodes are completely factorized. This
finer granularity (with respect to the 1D approach presented in Section 3.1) leads to more
concurrency since a better pipelining between a front and its children is now enabled.

The benefit brought by the use of tiled fronts factorizations to the multifrontal QR
method is depicted in Figure 3.15. This figure shows the maximum achievable speedup,
measured as the ratio between the overall workload cost and the cost of the critical path,
on our experimental test set for four different methods. The first relies on a 1D partitioning
of frontal matrices with no inter-level parallelism; this means that a node is processed only
when all of its children are finished and is equivalent to the approach used in spqr [55] or
MA49 [15]. The second uses a 1D partitioning with inter-level parallelism and corresponds
to the approach used in Sections 3.1 and 3.3. The third and fourth, instead, use the 2D
partitioning with Communication Avoiding fronts factorization described in this section
with and without inter-level parallelism, respectively. Clearly, the concurrency provided
by the 1D methods is unsatisfactory, especially on small size matrices or problems which
include strongly over-determined fronts; this explains the poor performance reported, for
some problems, in Figure 3.9. The 2D methods, instead, provide much more parallelism
and lead to good performance and scalability as shown below.
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Figure 3.15: Maximum degree of concurrency on ada (32 cores) coming from the DAG
with and without inter-level parallelism for both 1D and 2D partitioning.

The development of this version also included a number of other, minor improvements:

• In our implementation tiles do not have to be square but can be rectangular with
more rows than columns. This is only a minor detail from an algorithmic point of
view but, as far as we know, it has never been discussed in the literature and, as
shown by the experimental results below, provides considerable performance benefits
for our case;
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1D Partitioning 2D Partitioning

nb

mb

nb

Figure 3.16: 1D partitioning of a frontal matrix into block-columns (left), 2D partitioning
into tiles (right) with blocked storage.

• As in the 1D case presented in the previous section, block storage is also used in this
case, as shown in Figure 3.16 (right). In addition to the memory savings, which
are the same as in the 1D case, here the block storage also benefits the performance
because of the lower leading dimension of the blocks [J15];

• As for _geqrt and _gemqrt, the _tpqrt and _tpmqrt LAPACK routines were mod-
ified in order to cope as efficiently as possible with the fronts staircase structure by
means of an internal blocking ib.

This parallelization leads to very large DAGs with tasks that are very heterogeneous,
both in nature and granularity; moreover, not only are intra-fronts task dependencies more
complex because of the 2D front factorization, but also inter-fronts task dependencies due
to the parallelization of the assembly operations. The use of an STF-based runtime system
relieves the developer from the burden of explicitly representing the DAG and achieving
the execution of the included tasks on a parallel machine.

The resulting implementation was evaluated and compared to the 1D approach; all
the experiments were run in the same environment and setting as in the previous section.

Table 3.6 shows the parameter values delivering the shortest execution time along
with the corresponding attained factorization time and Gflop/s rate. As explained in
the previous section for the 1D case, the performance of the factorization depends on a
combination of several parameters. For the parallel 2D STF case these parameters are,
the size of the tiles (mb,nb), the type of panel reduction algorithm set by the bh param-
eter described in Section 3.4.1 and the internal block size ib. Since the optimum values
for parameters depends on a large number of factors it is extremely difficult to choose
automatically the best values for every given problems. Moreover we increased the com-
plexity of this problem compared to the 1D case because the number of parameters is
greater for 2D algorithms. Therefore, using the same experimental protocol as for the
previous strategy we performed a large number of runs for each problem with varying
values for all the input parameters, using the same values for all the fronts in the elimi-
nation tree, and selected the best results (shortest running time) among those. We tested
the following values (nb,ib)={(160,32), (160,40), (192, 32), (192,64)}, mb={nb,
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Parallel 2D STF

Mat. mb nb ib bh Time (s.) Gflop/s
12 576 192 32 4 4.303E+00 321.6
13 480 160 40 8 7.217E+00 397.5
14 480 160 40 12 1.426E+01 399.6
15 480 160 40 20 2.427E+01 442.1
16 480 160 32 16 3.781E+01 435.4
17 640 160 40 4 4.784E+01 424.4
18 480 160 40 24 6.922E+01 439.0
19 480 160 32 ∞ 1.408E+02 441.9
20 576 192 32 24 1.728E+02 379.5
21 576 192 32 ∞ 4.286E+02 453.7
22 576 192 64 ∞ 4.807E+02 462.8
23 576 192 64 20 5.642E+02 462.6

Table 3.6: Optimum performance for the STF 2D factorization on ada (32 cores).

nb*2, nb*3, nb*4} and bh={4, 8, 12, 16, 20, 24, ∞} for a total of 112 runs per
matrix (bh = ∞ means that a flat reduction tree was used). Note that compared to the
1D case, concurrency is abundant when using the 2D partitioning. For this reason we
choose bigger values for nb for two reasons: it increases the granularity of tasks in order
to achieve a better BLAS efficiency and it limits the number of tasks in the DAG which
contributes to keeping the runtime overhead small. The internal block size ib, however,
has to be relatively small to keep the flop overhead (see Section 3.4.1) under control.
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Figure 3.17: Speedup of the 1D and 2D algorithms with respect to the sequential case on
ada (32 cores).

The speedup achieved by the STF 2D implementation is shown in Figure 3.17 along
with the speedup obtained with the STF 1D implementation previously presented in
Section 3.3. Results show that the 2D algorithm provides better efficiency on all the tested
matrices especially for the smaller ones and those where frontal matrices are extremely

74



3.5. Multifrontal QR for heterogeneous systems

overdetermined, such as matrix #20, where the 1D method does not provide enough
concurrency (as explained in Section 3.3, in this problem most of the operations are done
on a frontal matrix which has over a million rows and only a few thousands columns).
The average speedup achieved by the 2D code is 23.61 with a standard deviation of 0.53,
reaching a maximum of 24.71 for matrix #17. For the 1D case, instead, the average is
19.04 with a standard deviation of 4.55. In conclusion, the 2D code achieves better and
more consistent scalability over our set of matrices.

3.5 Multifrontal QR for heterogeneous systems
From a technical point of view, porting the StarPU based method described in Sections 3.3
and 3.4 on systems equipped with GPU boards is as simple as providing the StarPU
runtime with a GPU-executable version of the tasks kernels. For example, assuming the
1D approach described in Section 3.3, it would suffice to provide StarPU with a GPU
implementation of the _gemqrt routine, which is where the large majority of the flops is
done, to use the accelerator; such a kernel, for instance, can be found in the MAGMA [5]
library. The runtime will take care of offloading some of these tasks on the GPU board
and move there all the data that are needed for their execution. This, however, does not
necessarily means that the GPU will be used to its full potential. For example, because
of the way they are created and submitted, tasks may be unsuited for the GPU; this may
not only result in a poor acceleration of the tasks, but may actually reduce the overall
performance because of the overhead imposed by data transfers between CPU and GPU
memories. In essence, the runtime provides a mean of using the accelerator but we still
have to make sure that our algorithm complies with its features and capabilities. In
addition, we are not only interested in efficiently using the GPU but we want to take
advantage of all the computing resources of the underlying machine, that is, both the
CPUs and the GPUs whose performance and capabilities are extremely different. We
are thus faced with a problem of heterogeneity. We have formulated this heterogeneity
problem along three main issues:

Granularity : it is well known that GPUs achieve their full speed when the size of
computations is relatively large; we would thus be temped to choose a large grain
partitioning for our data but this could severely reduce concurrency and lead the
CPUs (which may be numerous) to starvation.

Scheduling : at any time during the DAG traversal, multiple tasks may be ready for
execution and multiple processing units may be idle and ready to execute one of
them. Because the tasks may have radically different characteristics and the pro-
cessing units different speeds and capabilities, it is not easy to choose which unit
executes which task.

Communications : data has to be moved back and forth from the main memory to the
GPUs memory which implies an overhead that can heavily harm performance. This
problem can be overcome either by reducing the number and volume of communi-
cations, which can be formulated as a scheduling problem, or by making sure that
these communications are not (or less) harmful, for example by hiding them behind
useful computations.

In the remainder of this section we will discuss methods to address these issues.

75



3. Parallelism and performance scalability

3.5.1 Frontal matrices partitioning schemes

Finding frontal matrix partitioning strategies that allow for an efficient use of both CPU
and GPU resources represents one of the main challenges in implementing a multifrontal
method for GPU-accelerated multicore systems. This results from the fact that GPUs,
which are potentially able to deliver much higher performance than CPUs, require coarse
granularity operations to achieve high performance while a CPU core reaches its peak with
relatively small granularity tasks. The approach presented in Section 3.3, where frontal
matrices are uniformly partitioned into small size block-columns, could be readily ported
to GPU-accelerated platforms by simply providing GPU implementations for the various
tasks to the StarPU runtime system. This, however, would result in an unsatisfactory
performance because, due to the fine granularity of tasks, only a small fraction of the GPU
performance could be used. This front partitioning strategy, which we refer to as fine-
grain partitioning, shown in Figure 3.18(a), is not suited to heterogeneous architectures
despite being able to deliver sufficient concurrency to feed both the CPU cores and the
GPU and reduce idle times on all the resources. A radically different approach is what
we refer to as coarse-grain partitioning (Figure 3.18(b)), where fine-grained panel tasks
are executed on CPU and large-grain (as large as possible) update tasks are performed
on GPU. This corresponds to the method used in the MAGMA package [5] and aims at
obtaining the best acceleration of computationally intensive tasks on the GPU. In order
to keep the GPU constantly busy, static scheduling is used that allows for overlapping
GPU and CPU computations thanks to a depth-1 lookahead technique; this is achieved
by splitting the trailing submatrix update into two separate tasks of, respectively, fine and
coarse granularity. This second approach clearly incurs the opposite problem than the one
we face with the fine-grain partitioning: despite being able to maximize the efficiency of
GPU operations with respect to the problem size, it severely limits the amount of node
parallelism as well as of inter-level parallelism and therefore leads to resource (especially
CPUs) starvation.

Panel

Update

nbcpu
(a) Fine-grain parti-
tioning.

Panel

Update

nbcpu
(b) Coarse-grain parti-
tioning.

nbgpunbcpu
(c) Hierarchical-grain
partitioning.

Figure 3.18: Partitioning schemes.
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1 forall outer panels o_p=1...o_n in f
! partition (outer) block column f(o_p) into

3 ! i_n inner block columns f(o_p,1) .. f(o_p,i_n)
call submit(partition , f(o_p):R, f(o_p,1):W... f(o_p,i_n):W)

5
forall inner panels i_p=1..i_n

7 ! panel reduction of inner block column i_p
call submit(_geqrt, f(i_p):RW)

9 forall inner blockcolumns i_u=i_p+1..i_n in f(o_p)
! update (inner) column in_u with panel i_p

11 call submit(_gemqrt, f(i_p):R, f(i_u):RW)
end do

13
forall outer blockcolumns o_u=o_p+1..o_n

15 ! update outer block column o_u with panel i_p
call submit(_gemqrt, f(i_p):R,f(o_u):RW)

17 end do
end do

19
! unpartition (outer) block column

21 call submit(unpartition , f(o_p,1):R...f(o_p,i_n):R, f(o_p):W)
end do

Figure 3.19: STF code for the hierarchical QR factorization of frontal matrices.

In order to take advantage of the fine and coarse-grain approaches and to overcome
the limitations of both, we developed a hierarchical and dynamic partitioning of fronts
(Figure 3.18(c)) which is similar to the approach proposed by Wu et al. [162] and corre-
sponds to a trade-off between parallelism and GPU kernel efficiency with task granularity
suited for both types of resources. Frontal matrices are first partitioned into coarse grain
block-columns, referred to as outer block-columns, of width nbGPU suitable for GPU com-
putation (this happens at the moment when the front is activated) and then each outer
block-column is dynamically re-partitioned into inner block-columns of width nbCPU ap-
propriate for the CPU only immediately before being factorized. This is achieved through
dedicated partitioning tasks which are subject to dependencies with respect to the other,
previously submitted, tasks that operate on the same data. When these dependencies are
satisfied, StarPU ensures that the block being re-partitioned is in a consistent state, in
case there are multiple copies of it. Furthermore, StarPU ensures that the partitioning is
done in a logical fashion: no actual copy is performed and there is no extra data allocated.
The partitioning is done using two tasks: partition and unpartition. In order to par-
tition a data i represented by the handle f(i) into n pieces, it is necessary to declare
the handles associated with the sub-data f(i,1)..f(i,n). The partition task takes as
input the data to be partitioned with a Read access mode and the resulting sub-data with
a Write. The unpartition tasks take as input the sub-data with a Read access mode
and the original data with a Write access mode. In the STF code, as long as all tasks
working on sub-data are submitted between the partition and unpartition tasks and
no tasks working on the partitioned data are submitted, the data consistency between
data and sub-data is ensured. It should be noted that in order to avoid memory copy,
both partition and unpartition tasks should be executed on the node where the data
is allocated and in this case these tasks are associated with an empty function.

In order to use the hierarchical-grain partitioning in the multifrontal factorization,
the initial STF code corresponding to the QR factorization of a front using a fine-grain
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partitioning (lines 14-21 in Figure 3.8) is turned into the one proposed in Figure 3.19 for
hierarchically partitioned fronts. We define inner and outer tasks depending on whether
these tasks are executed on inner or outer block-columns. In order to ease the under-
standing we use different names for inner and outer updates although both types of tasks
perform exactly the same operation and thus employ the same code.

The work described above has prompted the StarPU developers to implement the dy-
namic partition and unpartition capability in the runtime system. As a result, the StarPU
API now includes the starpu_data_partition_plan, starpu_data_partition_submit
and starpu_data_unpartition_submit which allow for, associating a partitioning scheme
with some data handle and submitting a partition and an unpartition task respectively.

3.5.2 Scheduling strategies
Along with the fronts partitioning strategies discussed in the previous section, task schedul-
ing is a key factor for archiving reasonable performance on heterogeneous systems. One
strategy to schedule the tasks resulting from the partitioning is to statically assign the
coarse granularity tasks to GPUs and fine granularity tasks to CPU cores. This is the strat-
egy adopted in the work by Lacoste [111] where the GPU kernels are statically mapped
onto the devices. However, in our problem, the variety of front shapes and staircase
structures combined with this hierarchical partitioning induces an important workload
heterogeneity, making load balancing extremely hard to anticipate. For this reason, we
chose to rely on a dynamic scheduling strategy.

In the context of a heterogeneous architecture, the scheduler should be able to handle
the workload heterogeneity and distribute the tasks taking into account a number of factors
including resource capabilities or memory transfers while ensuring a good load balance
between the workers. Dynamic scheduling allows for dealing with the complexity of the
workload and limits load imbalance between resources.

Algorithms based on the Heterogeneous Earliest Finish Time (HEFT) scheduling strat-
egy by Topcuouglu et al. [153] represent a commonly used and well known solution to
scheduling task graphs on heterogeneous systems. These methods consist in first ranking
tasks (typically according to their position with respect to the critical path) and then
assigning them to resources using a minimum completion time criterion. Despite the fact
that GPUs can accelerate the execution of most (if not all) tasks, not all tasks are accel-
erated by the same amount, depending on their type (e.g., compute or memory bound,
regular or irregular memory access pattern) or granularity: therefore we say that some
tasks have a better acceleration factor on the GPU than others. The main drawback of
HEFT-like methods lies in the fact that the acceleration factor of tasks is ignored during
the worker selection phase, i.e., these methods do not attempt to schedule a task on the
unit which is best suited for its execution. In addition, the centralized decision during the
worker selection potentially imposes a significant runtime overhead during the execution.
A performance analysis conducted with the so-called dmdas StarPU built-in implementa-
tion of HEFT showed that these drawbacks are too severe for designing a high-performance
multifrontal method.

Instead, we implemented and extended a scheduling technique known as HeteroPrio,
first introduced by Agullo et al. [4] in the context of Fast Multipole Methods (FMM). This
technique is inspired by the observation that a DAG of tasks may be extremely irregular
with some part where concurrency is abundant and others where it is scarce as shown in
Figure 3.20. In the first case we can perform tasks on the units where they are executed
the most effectively without any risk of incurring resource starvation because parallelism
is plentiful. In the second case, however, what counts most is to prioritize tasks which
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lie along the critical path because delaying their execution would result in penalizing
stalls in the execution pipeline. As a result, in the HeteroPrio scheduler the execution is
characterized by two states: a steady-state when the number of tasks is large compared
to the number of resources and a critical-state in the opposite case. The scheduler can
automatically switch from one state to another depending on a configurable criterion which
mostly depends on the amount of ready tasks and of computational resources.

Steady State Critical State Steady State

Figure 3.20: Example of a DAG with a succession of steady and critical states corre-
sponding to rich and poor concurrency regions respectively as defined in the heteroprio
scheduler.

A complex, irregular workload, such as a sparse factorization, is typically a succession
of steady and critical state phases, where the steady-state corresponds to rich concurrency
regions in the DAG whereas the critical-state corresponds to scarce concurrency regions.
During a steady-state phase, tasks are pushed to different scheduling queues depending
on their expected acceleration factor (see Figure 3.21). In our current implementation,
we have defined one scheduling queue per type of tasks (eight in total as listed in col-
umn 1 of Table 3.7). When they pop tasks, CPU and GPU workers poll the scheduling
queues in different orders. The GPU worker first polls scheduling queues corresponding
to coarse-grain tasks such as outer updates (priority 0 on GPU in Table 3.7) because their
acceleration factor is higher. On the contrary, CPU workers first poll scheduling queues of
small granularity such as subtree factorizations or inner panels (as well as tasks perform-
ing symbolic work such as activation that are critical to ensure progress). Consequently,
during a steady-state, workers process tasks that are best suited for their capabilities. The
detailed polling orders are provided in Table 3.7. Furthermore, to ensure fairness in the
progress of the different paths of the elimination tree, tasks within each scheduling queue
are sorted according to the distance (in terms of flop) between the corresponding front
and root node of the elimination tree.

In the original HeteroPrio scheduler [4], the worker selection is performed right before
popping the task in a scheduling queue following the previously presented rules. If data
associated with the task are not present on the memory node corresponding to the selected
worker then the task completion time is increased by the memory transfers. While the
associated penalty is usually limited in the FMM case [4], preliminary experiments (not
reported here for a matter of conciseness) showed that it may be a severe drawback for the
multifrontal method. For the purpose of the present study, we have therefore extended
the original scheduler by adding worker queues (one queue per worker) along with the
scheduling queues as shown in Figure 3.21. When it becomes idle, a worker pops a task
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Figure 3.21: HeteroPrio steady-state policy.

from its worker queue and then fills it up again by picking a new task from the scheduling
queues through the polling procedure described above. The data associated with tasks in
a worker queue can be automatically prefetched on the corresponding memory node while
the corresponding worker is executing other tasks. If the size of the worker queues is too
high, a task may be assigned to a worker much earlier than its actual execution, which
may result in a sub-optimal choice. Therefore, because no additional benefit was observed
beyond this value, we set this size to two in our experiments.

Scheduling queues Steady-state Critical-state
CPU GPU CPU GPU

activate 0 - 0 -
assemble 7 - 5 -
deactivate 1 - 1 -
do_subtree 2 2 2 0
part./unpart. 3 - 3 -
inner_panel 4 - 4 -
inner_update 5 1 6 1
outer_update 6 0 7 2

Table 3.7: Scheduling queues and polling orders in HeteroPrio.

When the number of tasks becomes low (with respect to a fixed threshold which is
set depending on the amount of computational power of the platform), the scheduling
algorithm switches to critical-state. CPU and GPU workers cooperate to process critical
tasks as early as possible in order to produce new ready tasks quickly. For instance,
because outer updates are less likely to be on the critical path, the GPU worker will select
them last in spite of their high acceleration factor. The last two columns of Table 3.7
provide the corresponding polling order. Additionally, in this state, CPU workers are
allowed to select a task only if its expected completion time does not exceed the total
completion time of the tasks remaining in the GPU worker queue. This extra rule prevents
CPU workers from selecting all the few available tasks and leaving the GPU idle whereas
it could have finished processing them all quickly.
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3.5.3 Implementation and experimental results

We implemented the partitioning and scheduling methods described in the previous two
sections within the qr_mumps solver. As explained above, only the _gemqrt (i.e., updates)
and do_subtree tasks can be executed on the GPU. For the first, we used the GPU im-
plementation of the LAPACK _gemqrt routine provided by the MAGMA library; note
that this version does not take into account the staircase structure and, thus, performs
more flops than necessary. For the second, we wrote our own GPU-enable implemen-
tation. This performs a sequential traversal of the associated subtree: frontal matrices
are assembled on the CPU and then are factorized with a dense QR factorization on the
GPU using the same method as in the MAGMA _geqrt routine which we modified to
take advantage of the staircase structure. Note that this hybrid kernel is possible because
in StarPU a GPU worker is associated with a GPU and a CPU core which is meant to
drive it and thus both units can be used by a single task. At first, we only implemented
the 1D partitioning scheme discussed in Section 3.3 because no _tpmqrt GPU routine is
available in MAGMA; results obtained with the use of 2D communication-avoiding front
factorization methods are presented in Section 3.5.4.

Tests were executed for a subset of the matrices of Table A.1 on the sirocco system
which is equipped with two twelve-cores CPUs and 4 Nvidia K40 boards.

For the CPU-only experiments, we used a fine grained decomposition and the param-
eter values used for the experiments were (nb,ib)={(128,64), (128,128), (192,64),
(192,192), (256,64), (256,128), (256,256)}.

For the heterogeneous experiments, we use the hierarchical-grain partitioning pre-
sented in section 3.5.1. The parameters defining a hierarchical block column partitioning
are the size of the outer block column nbgpu and the size of the inner block column nbgpu.
The value ib is fixed such that ib = nbcpu because, as explained above the _gemqrt
operation on the GPU cannot take advantage of the staircase structure and because, as
seen in Section 3.3, this is commonly the choice which yields the best performance. As
for the multicore case, we performed a large set of tests with several combinations for
nbcpu and nbgpu and selected the best results in terms of factorization time. The val-
ues used for the experiments were (nbgpu,nbcpu)={(256,128), (256,256), (384,128),
(384,384), (512,128), (512,256), (512,512) (768,128), (768,256), (768,384),
(896,128), (1024,128), (1024,256), (1024,512) }. The scheduler used for the ex-
periments in an heterogeneous context is HeteroPrio presented in Section 3.5.2.

The performance of the code in the multicore case using a fine-grain partitioning is
reported in Table 3.8 with two configurations: the first using the twelve cores of a E5-
2680 processor and the second using the twenty-four cores of two E5-2680 processors
available on the machine. The table shows the shortest execution time along with the
corresponding Gflop/s rates obtained for the factorization of the tested matrices and the
optimal parameters ib and nb for which this performance was attained.

The performance of the code in the heterogeneous case using a hierarchical partitioning
is reported in Table 3.9 with two configurations: first using the twelve cores of a E5-2680
processor plus one GPU K40M and second using the twenty-four cores of two E5-2680
processors available on the machine plus one GPU K40M. The table shows the shortest
execution time along with the corresponding Gflop/s rates obtained for the factorization
of the tested matrices and the optimal parameters nbgpu and nbcpu for which these perfor-
mance were attained. Note that in the case were nbgpu = nbcpu, then the hierarchical-grain
partitioning is equivalent to the fine-grain partitioning. Our implementation can also take
advantage of multiple GPU streams. On a GPU, a stream is defined as a sequence of com-
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12 CPUs (1×E5-2680) 24 CPUs (2×E5-2680)

Mat. nb ib Time (s.) Gflop/s nb ib Time (s.) Gflop/s
12 192 64 8.892E+00 138.6 128 128 4.922E+00 275.3
13 128 128 1.188E+01 226.7 128 128 8.525E+00 316.0
14 192 192 2.364E+01 221.0 128 128 1.444E+01 351.8
15 128 128 4.151E+01 252.1 128 128 2.468E+01 424.0
16 192 192 5.849E+01 272.3 128 128 3.734E+01 421.0
17 128 64 7.181E+01 271.7 128 64 4.270E+01 457.0
18 128 128 1.104E+02 248.8 128 128 6.209E+01 442.5
19 192 192 2.212E+02 284.0 128 128 1.269E+02 489.3
21 192 192 6.318E+02 294.6 192 192 3.352E+02 555.2

Table 3.8: Optimum performance for the STF fine-grain 1D factorization on sirocco in
homogeneous case with both configurations 12 CPUs (1×E5-2680) and 24 CPUs (2×E5-
2680).

mands that execute in order and is a feature available on relatively recent GPUs 5. The
use of multiple streams allows for the concurrent execution kernels on the device thus
increasing the occupancy of the GPU when executing small grain tasks that are unable
to feed all the available resources. This allows us to use smaller values for the parameters
nbcpu and nbgpu leading to a greater concurrency in the DAG and thus potentially better
performance. Table 3.9 reports the best execution time when using either one, two or four
streams (the corresponding number of streams is reported in column “s”).

The results in Tables 3.83.9 show that the proposed approach can make a good use of
all the available computing resources because a significant speedup is achieved when more
computational resources are available regardless of their type. This leads to a very good
overall performance which reaches almost 800 Gflop/s.

12 CPUs (1×E5-2680) 24 CPUs (2×E5-2680)
+ 1 GPU (1×K40M) + 1 GPU (1×K40M)

Mat. nbgpu nbcpu s Time (s.) Gflop/s nbgpu nbcpu s Time (s.) Gflop/s
12 384 384 1 8.302E+00 214.1 384 384 1 6.960E+00 255.4
13 512 256 4 7.935E+00 368.3 256 256 4 8.117E+00 360.0
14 384 384 4 1.539E+01 365.3 256 256 1 1.404E+01 382.0
15 768 256 4 1.748E+01 616.1 768 128 2 1.839E+01 569.0
16 896 128 2 2.470E+01 636.4 896 128 4 2.558E+01 614.5
17 192 192 1 8.700E+01 246.7 256 256 1 6.797E+01 329.9
18 512 256 4 3.882E+01 710.2 512 256 4 3.838E+01 718.3
19 768 256 4 9.610E+01 661.3 768 384 2 8.142E+01 797.9
21 768 256 2 2.792E+02 671.4 1024 256 1 2.403E+02 780.1

Table 3.9: Optimum performance for the STF hierarchical-grain 1D factorization on
sirocco in heterogeneous case with both configurations 12 CPUs (1×E5-2680) + 1 GPU
(1×K40M) and 24 CPUs (2×E5-2680) + 1 GPU (1×K40M).

5Available on compute capability 2.x and higher devices but exploitable since compute capability 3.5
with the introduction of Hyper-Q technology.

82



3.6. A performance analysis approach for task-based parallelism

3.5.4 Combining communication-avoiding methods and GPUs
The approach described above and that we evaluated on GPU-equipped machines relies
on a 1D frontal matrices partitioning into block-columns. In more recent evolution of the
qr_mumps code we have combined the use of a 2D decomposition with communication-
avoiding front factorizations (as described in Section 3.4 for CPU-only machines) with
the dynamic, hierarchical partitioning and the HeteroPrio scheduling (described in Sec-
tions 3.5.1 and 3.5.2, respectively) in order to achieve higher performance on systems
equipped with multiple GPUs.
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Figure 3.22: Performance achieved by the factorization of matrix #21 on a range of
different machines, both CPU-only or CPU+GPU.

The results obtained with this new code are reported in Figure 3.22 for a single matrix
(i.e., matrix #21) on both CPU-only and CPU+GPU systems. These results show that
the proposed approach is able to achieve good absolute performance and great portability
over a large set of systems. These include “traditional” multicore processors with up to 36
cores, Intel Knights Landing processors with 64 and 68 cores, and a system with 24 cores
plus four Nvidia K40 GPUs. On this last system, when all the four GPUs are used, the
achieved performance is close to 3.2 Tflop/s which is quite remarkable for a sparse linear
algebra code on a single node machine.

3.6 A performance analysis approach for task-based
parallelism

Performance profiling and analysis is one of the cornerstones of High Performance Com-
puting. Nonetheless, it may be a challenging task to achieve, especially in the case of
complex applications or algorithms and large or complex architectures. Therefore, it is no
surprise that performance profiling has been the object of a very vast amount of literature.

In the case of sequential applications, a rather simple but effective approach consists
in computing the efficiency of the code as a ratio of the attained speed and a reference
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performance which depends on the peak capability of the underlying architecture. Because
processing units and memories work at different speeds, this reference performance varies
depending on whether the application is compute bound (i.e., limited by the speed of
the processing unit) or memory bound and to what extent. The Roofline model [161]
is a popular method for computing this performance upper bound as a function of the
arithmetic intensity:

Attainable
Gflop/s = min

{
Peak Floating-point

Performance ,
Peak Memory
Bandwidth × Arithmetic

intensity

}
.

The peak floating-point performance and peak memory bandwidth can be set equal to
the theoretical values of the architecture; these values, however, are commonly unattain-
able and therefore these parameter values are computed using benchmarks like the BLAS
_gemm (matrix-matrix multiply) operation, which is commonly considered as the fastest
compute-bound operation, or the STREAM [127] benchmark, respectively. The roofline
model can also be used for shared-memory, parallel applications but cannot be extended to
the case where accelerators are used or to distributed-memory, parallel codes. Moreover,
its use is difficult in the case of complex applications, such as the multifrontal method,
which include both memory and compute-bound operations whose relative weight varies
depending on the input problem.

The performance of a parallel code, either shared or distributed-memory, on a homo-
geneous platform (i.e., where all the processing units are the same) is commonly assessed
measuring its speedup, i.e., the ratio between the sequential and the parallel execution
times t(1)/t(p), or, equivalently, the parallel efficiency

e(p) = t(1)
t(p)× p

where p is the number of processing units used. The scalability measures the ability of
a parallel code to reduce the execution time as more resources are provided. Amadahl’s
law can be used to define a bound on the achievable speedup (or parallel efficiency or
scaling) of a parallel code but, again, this is very hard to achieve for complex and irregular
applications.

The emerging heterogeneous architectures represent a challenge for the performance
evaluation of parallel algorithms compared to the uni-processor and parallel, homogeneous
environments. Accelerators, not only process data at different speeds compared to the
CPUs but also have different capabilities, i.e., are more or less suited to different types
of operations, and are attached to their own memory which has different latency and
bandwidth than that on the host. The performance analysis of codes that use accelerators
is often limited to measuring the added performance brought by the accelerators, that is,
a simple speed comparison with the CPU-only execution.

Although the above presented techniques can be used to achieve a rough evaluation of
the performance of a parallel code, none of them provides any insight which can guide the
HPC expert in reformulating or improving his algorithms or the programmer in optimizing
his code in order to achieve better performance. Many factors play an important role in
the performance and scalability of a code; among the others, we can mention the cost of
data transfers and synchronizations, the granularity of operations, the properties of the
algorithm and the amount of concurrency it can deliver. A quantitative evaluation of
these factors can be extremely valuable.
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In order to evaluate the effectiveness of the techniques proposed above as well as of the
software that implements them, we developed a novel performance analysis approach [J2,
C4]. First, we introduce a method for computing a relatively tight upper bound for
the performance attainable by the parallel code, which is not merely a sum of the peak
performance of the available processing units; this performance reference is computed
by not only taking into account the features of the underlying architecture, but also
the properties of the implemented algorithm and allows for evaluating the efficiency of a
parallel code. Then we show how it is possible to factorize this efficiency measure into a
product of terms that allow for assessing, singularly, the effect of several factors playing
a role in the performance and scalability of a code. This analysis requires the ability
to retrieve specific information from the execution that are easy to gather when using a
runtime system.

Consider the problem of evaluating the execution of a parallel application on a target
computing environment composed of p heterogeneous processors such as CPUs and GPUs
workers. Critical factors playing a role on parallel executions must be considered to
compute realistic performance bounds and understand to what extent each of these factors
may limit the performance. Idle times and data transfers (communications, in general)
for example represent a major bottleneck for performance of parallel executions. Also we
seek to quantify the cost of the runtime system, if any, compared to the workload in order
to evaluate the effectiveness of these tools and estimate the overhead they induce.

In the proposed performance evaluation approach we perform a detailed analysis of
the execution times by considering the cumulative times spent by all threads in the main
phases of the execution:

• tt(p): The time spent in tasks which represent the workload of the application;

• tr(p): The time spent in the runtime for handling the execution of the application
(in our case, this includes building the DAG and scheduling the tasks);

• tc(p): The time spent performing communications that are not overlapped by com-
putations. This corresponds to the time spent by workers waiting for data to be
transferred on their associated memory node before being able to execute a task;

• ti(p): The idle time spent waiting for dependencies between tasks to be satisfied.

The execution time of the factorization t(p), may be expressed, using these cumulative
times, as follows:

t(p) = tt(p) + tr(p) + tc(p) + ti(p)
p

The efficiency of a parallel code can be defined as

e(p) = tmin(p)
t(p)

where tmin(p) is a lower bound on the execution time with p processes. A possible way
of computing tmin(p) for a task graph is to measure the execution time associated with the
optimal schedule. However, given the complexity of the task scheduling problem in the
general case it is not reasonable to compute this tmin(p) for any input problem. Instead
we choose to use a looser bound that consists in computing the optimal value of tmin(p)
for a relaxed version of the initial scheduling problem built on the following assumptions:
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1. There are no dependencies between tasks which means that we consider an embar-
rassingly parallel problem, i.e., ti(p) = 0;

2. The runtime does not induce any overhead on the execution time, i.e., tr(p) = 0;

3. The cost of all data transfers is equal to zero, i.e., tc(p) = 0;

4. Tasks are moldable meaning that they may be processed by multiple processors.

In order to compute tmin(p) we introduce the following notation: for a set of tasks Ω
running on a set of p resources denoted by R, we define tω

r as the time that resource r
would take to process the entire task ω and αω

r as the share of work in task ω actually
processed by resource r. Then tmin(p) can be computed as the solution of the following
linear program:

Linear Program 1— Minimize T such that, for all r ∈ R and for all ω ∈ Ω:

∑
ω∈Ω

αω
r tω

r = tr ≤ T

|R|∑
r=1

αω
r = 1

where the tω
r can be computed using a performance model. Note that the problem of

finding tmin(p) is equivalent to minimizing the area αω
r tω

r for all ω ∈ Ω and r ∈ R. For this
reason the optimal value tmin(p) is replaced by tarea(p) in the following. We illustrate how
tarea(p) is defined in Figure 3.23 on a simple execution with three resources. On the left
of the figure is represented the trace of the real execution where t(p) is measured. On the
right is represented the optimal schedule for the relaxed version of the original scheduling
problem where tarea(p) is measured.

PU2

PU1

PU0

(a) Actual schedule.

PU2

PU1

PU0
area

(b) Area schedule.

Figure 3.23: Illustration on a simple Gantt chart of a parallel execution with three workers.

Note that parallelism is normally achieved by partitioning operations and data; this
implies a smaller granularity of tasks and thus, likely, a poorer performance of the op-
erations performed by them. Moreover, parallel algorithms often trade floating-point
operations for concurrency and therefore may perform more operations than the corre-
sponding sequential ones (this is, for example, the case of 2D communication avoiding
QR factorizations, as explained in Section 3.4.1). Based on these observations, we can
further refine the efficiency definition above replacing tarea(p) with t̃area(p) computed as
the solution of Linear Program 1 assuming ω ∈ Ω̃, where Ω̃ is the set of tasks of the
sequential algorithm. In other words, in t̃area(p) we assume that there is no performance
loss when working on partitioned data and that the parallel algorithm has the same cost
as the sequential one. Please note that this also models the fact that in some cases data
are inherently of small granularity and, therefore, tasks that work on them have a poor
performance regardless of the partitioning; in the multifrontal method, for example, this
is the case for the small frontal matrices at the bottom of the elimination tree.
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By replacing the term t(p) in the expression of the parallel efficiency using cumulative
times and noting that t̃area

t (p) = p × t̃area(p) from the definition of our lower bound, we
may express the parallel efficiency as

e(p) = t̃area(p)
t(p)

= t̃area(p)× p

tt(p) + tr(p) + tc(p) + ti(p)
= t̃area

t (p)
tt(p) + tr(p) + tc(p) + ti(p)

=

eg

t̃area
t (p)

tarea
t (p)

·

et

tarea
t (p)
tt(p)

·

er

tt(p)
tt(p) + tr(p)

·

ec

tt(p) + tr(p)
tt(p) + tr(p) + tc(p)

·

ep

tt(p) + tr(p) + tc(p)
tt(p) + tr(p) + tc(p) + ti(p)

.

This expression allows us to decompose the parallel efficiency as the product of five
well identified effects:

• eg: the granularity efficiency, which measures how the overall efficiency is reduced
by the data partitioning and the use of parallel algorithms. This loss of efficiency
is mainly due to the fact that because of the partitioning of data into fine grained
blocks, elementary operations do not run at the same speed as in the purely sequen-
tial code and also to the fact that the parallel algorithm may perform more flops
than the sequential one;

• et: the task efficiency, measures how well the assignment of tasks to processing
units matches the tasks properties to the units capabilities as well as the exploitation
of data locality (more details are provided below);

• er: the runtime efficiency, which measures the cost of the runtime system with
respect to the actual work done;

• ec: the communication efficiency, which measures the cost of communications
with respect to the actual work done due to data transfers between workers;

• ep: the pipeline efficiency, which measures how well the tasks have been pipelined.
This includes two effects. First, the quality of the scheduling because if the schedul-
ing policy takes bad decisions (for example, it delays the execution of tasks along
the critical path) many stalls can be introduced in the pipeline. Second, the shape
of the DAG or, more generally, the amount of concurrency it delivers: for example,
in the extreme case where the DAG is a chain of tasks, any scheduling policy will
do as bad because all the workers except one will be idling at any time.

3.6.1 Analysis for homogeneous multicore systems
In the case of an homogeneous architecture such as a multicore system with p cores, the
solution of Linear Program 1 greatly simplifies and can be easily found.

t̃area(p) and tarea(p) do not have to be computed but can be measured by timing,
respectively, the sequential execution of the sequential algorithm and the sequential exe-
cution of the parallel algorithm (with the corresponding data partitioning), that is

t̃area(p) = t̃(1)
p

, tarea(p) = t(1)
p

. (3.2)

Note that in a sequential execution the cost of the communications and of the runtime
as well as the idle times are all identically equal to zero and therefore t(1) = tt(1) and
t̃(1) = t̃t(1).
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Replacing t(p) and tarea(p) in the expression of the parallel efficiency using the cumu-
lative times we obtain:

e(p) = t̃t(1)
tt(p) + tr(p) + ti(p)

=

eg

t̃t(1)
tt(1)

·

et

tt(1)
tt(p)

·

er

tt(p)
tt(p) + tr(p) + tc(p)

·

ep

tt(p) + tr(p)
tt(p) + tr(p) + ti(p)

.

Here we assumed ec = 1 because there are no explicit or measurable data transfers.
These, however, happen implicitly when tasks access data which are remotely located in
the NUMA memory system; this makes the tasks execution time tt(p) increase as the
number of cores p increases. This effect is measured by et.

Figure 3.24 shows the efficiency analysis related to the experimental results presented
in Section 3.3 and 3.4 with the 1D and 2D algorithms, respectively. The 2D approach
obviously have a lower task efficiency because of the smaller granularity of tasks and
because of the extra flops. Note that the 1D code may suffer from a poor cache behavior
in the case of extremely overdetermined frontal matrices because of the extremely tall-and-
skinny shape of block-columns. This explains why the granularity efficiency for the 2D code
on matrix #20 is better than for the 1D code unlike for the other matrices. 2D algorithms,
however, achieve better locality efficiency than 1D most likely due to the 2D partitioning
of frontal matrices into tiles which have a more cache-friendly shape and size than the
extremely tall and skinny block-columns used in the 1D algorithm. The pipeline efficiency
results confirm that the 1D approach produces less concurrency on matrices that are of
relatively small size or on those whose fronts are extremely over-determined (e.g., matrix
#20). Not surprisingly, the 2D code achieves much better pipeline efficiency (i.e., less
idle time) than the 1D code on all matrices: this results from a much higher concurrency,
which is the purpose of the 2D code. As for the runtime efficiency, it is in favor of the 1D
implementation due to a much smaller number of tasks with bigger granularity and simpler
dependencies. However the performance loss induced by the runtime is extremely small in
both cases: less than 2% on average and never higher than 4% for the 2D implementation.

3.6.2 Analysis for heterogeneous systems
Compared to the homogeneous case, computing t̃area(p) and tarea(p) in the context of
heterogeneous systems is more complex because task execution times depend on the type
of resources where they are executed. Therefore we need to solve Linear Program 1
to determine these values. The first step consists in gathering the execution times for
every task on every possible computational unit. Then the linear program is built either
statically if all tasks are known in advance or by registering it during an actual execution
and finally solved using a linear program solver.

The tasks efficiency, in this case, still measures the effect of implicit communications
but also, and more importantly, how well the heterogeneity of the processing units is
exploited. In other words, et measures how well tasks have been mapped to computational
units with respect to the optimal mapping computed by solving the linear program. Note
that this efficiency is not necessarily lower than one and it is closely related to the pipeline
efficiency:

• et < 1: tasks are globally being executed at a lower speed with respect to the optimal.
This may happen because the tasks assigned to the different processing units are not
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of the good type; this is, for example, the case where very small granularity tasks
are executed by GPUs;

• et > 1: note that a particularly naive scheduling policy can map all the tasks to
faster units. This would obviously result in a small cumulative tasks execution
time tt(p) but would inevitably lead to the starvation of the slower units and, as a
consequence, to a poor pipeline efficiency ep.

As a result, the quality of the scheduling policy can be measured by the product of
the tasks and pipeline efficiencies et · ep which is always less than one.

This performance analysis can be used to evaluate the behavior of the code presented
in Section 3.5 and explain the related results. We compute t̃area(p) as an upper bound
on the performance of our application and the efficiency measures eg, et, ep, ec and er to
identify the main factors limiting the performance of the execution with respect to this
upper bound. Technically, t̃area(p) and tarea(p) are computed by running two instances of
the code, respectively, one with coarse grain partitioning and the other with hierarchical
partitioning and solving, in both cases, the Linear Program 1. Note that in order to
generate the linear problem, it is necessary to run the code multiple times so that StarPU
can build accurate performance profiles.

Figure 3.25 shows the efficiency analysis for our code on the test matrices. With a
runtime efficiency er greater than 0.9 for the tested matrices we see that the cost of the
runtime system is negligible compared to the workload. In addition, the runtime overhead
becomes relatively smaller and smaller as the size of the problems increases. These results
also show that our scheduling policy makes a good job in assigning tasks to the units where
they can be executed more efficiently. The task efficiency et, lies between 0.8 and 1.2 for all
tested matrices except for matrix #15, denotes a good balancing of the workload between
the CPUs and the GPU. We observe in our experiments that the task efficiency may be
greater than one as for matrix #15, #16 and #18. As explained above, this is simply
due to the fact that too many tasks are affected to faster units, e.g., GPUs; this implies
starvation of the slower units which translates into a weaker pipeline efficiency, as shown
in Figure 3.25. The most penalizing effect on the global efficiency is the pipeline efficiency
ep. In addition, for all tested matrices except matrix #21 the pipeline efficiency decreases
when the number of cores goes from twelve to twenty-four. This is mainly due to a lack
of concurrency resulting from the choice of partitioning. This choice aims at achieving
the best compromise between the efficiency of kernels and the amount of concurrency;
it must be noted that ep could certainly be improved by using a finer grain partitioning
but this would imply a worse efficiency of the tasks and thus, as a consequence, higher
values for both tt(p) and tarea(p). In addition, smaller matrices do not deliver enough
parallelism to feed all the resources which explains that the pipeline efficiency is greater
on the biggest problems. Similarly to the runtime efficiency, the communication efficiency
is rather good with values greater than 0.85. This shows that the scheduler is capable of
efficiently overlapping task execution with communications thanks to the data prefetching
capability enabled by the use of worker threads. All in all, we can observe that the
parallelization efficiency is satisfactory especially on the biggest problems.
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Figure 3.24: Efficiency measures for the STF 1D and 2D algorithms on ada (32 cores).
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Figure 3.25: Efficiency measures for the STF heterogeneous algorithm on Sirocco with
both configurations 12 CPUs (1×E5-2680) + 1 GPU (1×K40M) and 24 CPUs (2×E5-
2680) + 1 GPU (1×K40M). Note that due to technical issues in StarPU, we are currently
unable to obtain the efficiency measures for matrix # 17.
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Chapter 4

Memory-aware

In this chapter we tackle the problem of memory scalability of a sparse, multifrontal solver.
Frontal matrices are not statically allocated at once before the factorization begins; rather,
each frontal matrix is allocated only when the corresponding node of the elimination tree
is visited. When the processing of a front is finished, only part of this memory can be
freed, i.e., the part containing the contribution block. Therefore, the memory used to
store a frontal matrix can be logically split into two parts:

1. a persistent memory: once the frontal matrix is factorized, this part contains the
factor coefficients and, therefore, once allocated it is never freed, unless in an out-
of-core execution (where factors are written on disk)1;

2. a temporary memory: this part holds the contribution block and is freed once the
coefficients it contains have been assembled into the parent front.

At any time during a sequential multifrontal factorization, we refer to the memory
containing the frontal matrix being processed plus all contribution blocks that are not yet
assembled into their parents as Active Memory.

As a consequence of what said above, the memory footprint of the multifrontal fac-
torization (QR as well as LU or other types) in a sequential execution varies greatly
throughout the factorization. Starting at zero, it grows fast at the beginning as the first
fronts are activated, it then goes up and down as fronts are activated and deactivated
until it reaches a maximum value, which we refer to as the sequential peak, and eventually
goes down towards the end of the factorization to the point where the only thing left in
memory is the factors.

Remember that, as explained in Section 2.2, the elimination or assembly tree has to be
traversed in topological order, i.e., from the bottom up. Yet, many topological orders are
possible for a given tree and each of them will result in a different memory consumption
profile and, ultimately in a different value for the sequential peak. Historically, postorders
have been preferred: a postorder is a topological order where all the nodes in each subtree
are numbered contiguously. This is because, if a topological order is followed in a sequential
execution, the active memory behaves as a stack which is a very desirable property when
dynamic allocation is not available and the storage of data has to be handled manually
within a large, statically declared memory region. With the availability of fast and scalable
dynamic memory allocators, this has become less of an issue; nonetheless, topological order
are still preferred because of the better locality of access to contribution blocks which can
improve the use of cache memories.

1In some other cases the factors can also be discarded as, for example, when the factorization is done
for computing the determinant of the matrix.
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Reducing the memory requirements of the serial multifrontal method (in particular
the active memory) has been extensively studied [88, 109, 116, 118]. Such problems were
originally studied by Sethi et al. [147] for the evaluation of arithmetic expressions whose
computation consists in the traversal of the tree representing them. The objective of
the aforementioned work is to compute these arithmetic expressions using the minimal
number of registers. This problem may be formulated as a tree pebble game which has a
polynomial complexity for tree-shaped graphs [147] and is shown to be NP-hard by Sethi
[146] for general DAGs if nodes cannot be pebbled more than once.

Consider the case where the memory for a frontal matrix is allocated after all its chil-
dren subtrees have been processed (this is referred to as terminal allocation scheme [109])
and no overlap is possible between the memory of a front and of its children. In this
case, the memory-minimizing postorder traversal of the multifrontal tree is given by Liu
[118] which can be explained based on the relation between the tree pebble game and
the memory usage of the multifrontal method. Consider a node i of the tree having nci

children. We note mi the memory needed to store frontal matrix i, cbi the size of its
contribution block. Liu proves that in order to minimize the total storage T or the total
working storage S (i.e., the active memory), for every node i of the tree, its children
have to be sorted in order to minimize the quantity maxi=1,..,nci(xi +

∑i−1
j=1 yj) where xi

represent the memory usage to process node i and ∑i−1
j=1 yj the memory remaining after

processing the first i− 1 nodes. Liu proves [118] that this quantity can be minimized by
ordering the child nodes in descending order of xi−yi. The value associated with “xi” and
“yi” depends on the memory management and assembly scheme as extensively presented
and discussed by L’Excellent [109]. For example, if the objective is to minimize the total
storage T , assuming a classical (i.e., non in-place) assembly is used, then xi = Ti and
yj = cbj + Fj where Ti is the total storage for processing the entire subtree rooted at node
i and Fi is the size of all factors associated with the nodes in the subtree rooted at node
i. If, instead, the objective is to minimize the active memory S, then xi = Si and yj = cbj

were Si is the active storage needed to process the entire subtree rooted at node i.
The optimal memory ordering is obtained using a depth-first traversal on the tree using

the rearranged child sequences, assuming that for a leaf node i Ti = Si = mi. The minimal
memory usage for the sequential traversal of the elimination tree is given by the memory
peak computed at the root node. Figure 4.1 shows an example of how the memory usage
varies during a multifrontal factorization. The table on the right side of the figure shows
the memory consumption for a sequential execution where the tree is traversed in natural
order which is a-b-c-d-e; the corresponding sequential peak is equal to 22 memory units.
If we apply the above algorithm to the case of this figure then we find that the optimal
memory traversal is b-c-d-a-e and the corresponding sequential memory peak is equals to
19 memory units.

Liu [116] observed that the postorder may not give the best memory usage among all
topological orders and proposes an algorithm to find the optimal memory topological order
for a given tree. Motivated by tree structures emerging from the multifrontal factorization,
Jacquelin et al. [103] give an alternative algorithm for computing this memory optimal
topological order. Their experimental findings are that, on trees associated with large
sparse matrices coming from real applications, the optimal traversal is a postorder 95%
of the time. In the worst case, the memory overhead induced by using the best postorder
instead of the best order is 18%. This confirms that using a postorder traversal (in the
serial case) is a reasonable choice, especially since it allows for an efficient stack mechanism.

Other allocation schemes exist and they have different properties with respect to the
memory usage and, in the out-of-core case, disk traffic [8, 88, 109].
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a b c

d

e

(1,4)(1,4)

(8,1)

(3,0)

(2,1)

Task Memory
activate(a) 3
activate(b) 8
activate(c) 13
activate(d) 22

deactivate(b) 18
deactivate(c) 14
activate(e) 17

deactivate(a) 16
deactivate(d) 15

Figure 4.1: The memory consumption (right) for a 5-nodes elimination tree (left) assuming
a sequential traversal in natural order. Next to each node of the tree the two values
corresponding to the factors (permanent) and the contribution block (temporary) sizes in
memory units.

The use of parallelism increases the peak of active memory. Specifically, this is due
to tree parallelism because it implies traversing multiple branches of the elimination tree
concurrently which results in more contribution blocks and fronts being stored in the
global active memory.

The memory-minimization problem, extensively studied in sequential, has received
little attention in the parallel case. In recent work, Eyraud-Dubois et al. [72] show that the
parallel variant of the pebble game is NP-complete and prove that there is no approximation
algorithm that can be designed to tackle the problem. They propose, instead, several
heuristics for scheduling task trees which aim at reducing the memory consumption of a
multifrontal factorization2 in a shared memory, parallel setting. One of these heuristics,
MemBookingInnerFirst is such that the parallel processing of the elimination tree
can be achieved while respecting a prescribed memory bound. This is achieved through a
memory reservation system; roughly speaking, when a tree node is activated not only is the
memory needed for its processing allocated but the memory needed to process its parent
is reserved. This reservation ensures that, when the parent node becomes ready, enough
memory is available to process it; this prevents memory deadlocks (see the next section for
an explanation of this issue). The authors validated experimentally this heuristic, as well
as the others, by simulating a rather simplistic shared memory parallelization scheme.

It must be noted that this problem is quite common in parallel computing whenever
temporary data is generated as a result or the parallel processing. Sid-Lakhdar [148], for
example, deals with memory deadlocks that may occur because of the temporary buffers
used for exchanging messages in distributed memory parallel codes.

We will describe methods for controlling the memory consumption in the multifrontal
factorization first in a shared-memory, parallel setting and then in a distributed-memory
one in Sections 4.1 and 4.2, respectively.

4.1 Memory-aware scheduling in shared-memory systems
Figure 4.2 shows, in the blue curve, the typical memory consumption profile of a sequen-
tial multifrontal factorization; the data in this figure results from the multifrontal QR

2Note that the problem is presented in a much more general form in their paper and not necessarily
related to the multifrontal factorization.
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factorization of matrix #12 from Table A.1. The memory footprint varies considerably
throughout the factorization and presents spikes immediately followed by sharp decreases;
each spike corresponds to the activation of a front whereas the following decrease corre-
sponds to the deactivation of its children once its assembly is completed.
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Figure 4.2: The memory profiles for matrix #12 from Table A.1 for a sequential (in blue)
and 6-threaded parallel QR factorization without memory constraint (in red) and with a
constraint equal to 2.0 times the sequential peak (in green).

As explained above, the memory consumption of the STF parallel code discussed so far
can be considerably higher than the sequential peak (up to 3 times or more). This is due
to the fact that the runtime system tries to execute tasks as soon as they are available and
to the fact that activation tasks are extremely fast and only depend upon each other; as a
result, all the fronts in the elimination tree are almost instantly allocated at the beginning
of the factorization. This behavior, moreover, is totally unpredictable because of the very
dynamic execution model of the runtime system. This is depicted in Figure 4.2 with the
red curve which shows the memory consumption for the case where our runtime based
STF factorization is run with six threads; in this case the memory consumption is roughly
five times higher than the sequential peak. Figure 4.3 shows the memory consumption
of the STF parallel code relative to the sequential code on a number of matrices when
executed on the ada computer using 32 threads. As shown, in several cases the memory
increase can be considerable, especially in the case where the factors are discarded due to
the fact that, in this case, the relative weight of the temporary memory is smaller.

This section proposes a method for limiting the memory consumption of parallel ex-
ecutions of our STF code by forcing it to respect a prescribed memory constraint which
has to be equal to or bigger than the sequential peak. This technique shares commonali-
ties with the MemBookingInnerFirst heuristic proposed by Eyraud-Dubois et al. [72].
On the other hand, whereas Eyraud-Dubois et al. [72] only consider the theoretical prob-
lem, the present study proposes a new and robust algorithm to ensure that the imposed
memory constraint is guaranteed while allowing a maximum amount of concurrency on
shared-memory multicore architectures. In the remainder of this section we assume that
the tree traversal order is fixed and we do not tackle the problem of finding a different
traversal that minimizes the memory footprint.

We rely on the STF model to achieve this objective with a relatively simple algorithm.
In essence, the proposed technique amounts to subordinating the submission of tasks to
the availability of memory. This is done by suspending the execution of the outer loop
in Figure 3.2 if not enough memory is available to activate a new front until the required
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Figure 4.3: Memory consumption of the parallel STF multifrontal QR factorizations with
32 threads relative to the sequential memory peak on the ada computer for matrices in
Table A.1 either discarding or keeping the factors in memory. Matrices #22 and #23
could only be factorized discarding the factors due to limited memory availability on the
machine.

memory amount is freed by already submitted deactivate tasks. Special attention has
to be devoted to avoiding memory deadlocks, though. A memory deadlock may happen
because the execution of a front deactivation task depends (indirectly, through the assem-
bly tasks) on the activation of its parent front; therefore the execution may end up in a
situation where no more fronts can be activated due to the unavailability of memory and
no more deactivation tasks can be executed because they depend on activation tasks that
cannot be submitted. An example of memory deadlock may be shown using Figure 4.1.
Remember that the memory-minimizing traversal for the tree in this figure is b-c-d-a-e,
which leads to a memory consumption of 19 units. Assume a parallel execution with a
memory constraint equal to the sequential peak. If no particular care is taken, nothing
prevents the runtime system from activating nodes a, b and c at once thus consuming 13
memory units; this would result in a deadlock because no other front can be activated nor
deactivated without violating the constraint.

This problem can be addressed by ensuring that the fronts are allocated in exactly
the same order as in a sequential execution: this condition guarantees that, if the tasks
submission is suspended due to low memory, it will be possible to execute the deactivation
tasks to free the memory required to resume the execution. Note that this only imposes
an order in the allocation operations and that all the submitted tasks related to activated
fronts can still be executed in any order provided that their mutual dependencies are
satisfied. This strategy is related to the Banker’s Algorithm proposed by Dijkstra in the
early 60’s [59, 60].

In our implementation this was achieved as shown in Figure 4.4. Before performing a
front activation (line 4), the master thread, in charge of the submission of tasks, checks
if enough memory is available to perform the corresponding allocations (line 2); if this is
the case, the allocation of the frontal matrix (and the other associated data) is performed
within the activate routine. This activation is a very lightweight operation which con-
sists in simple memory bookkeeping (due to the first-touch rule) and therefore does not
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forall fronts f in topological order
2 do while (size(f) > avail_mem) wait

! allocate and initialize front: avail_mem -= size(f)
4 call activate(f)

6 ! initialize the front structure
call submit(init, f:RW, children(f):R)

8
! front assembly

10 forall children c of f
...

12 ! Deactivate child: avail_mem += size(cb(f))
call submit(deactivate , c:RW)

14 end do

16 ! front factorization
...

18
end do

20 call wait_tasks_completion()

Figure 4.4: Pseudo-code showing the implementation of the memory-aware task submis-
sion.

substantially slow down the task submission. The front initialization is done in the init
task (line 7) submitted to the runtime system which can potentially execute it on any
worker thread, as described in Section 3.3. If the memory is not available, the master
thread suspends the submission of tasks until enough memory is freed to continue. In
order not to waste resources, the master thread is actually put to sleep rather than left
sitting on active wait. This was manually implemented through the use of POSIX thread
locks and condition variables: the master thread goes to sleep waiting for a condition
which is signaled by any worker thread that frees memory by executing a deactivate
task. When woken up, the master checks again for the availability of memory. This
work has prompted the StarPU developers to extend the runtime API with routines (the
starpu_memory_allocate/deallocate() and starpu_memory_wait_available()) that
implement this mechanism and easily allow for implementing memory-aware algorithms.

The use of this technique on the case of Figure 4.2, leads to memory profile depicted
by the green curve reported in the figure: the imposed memory constraint equal to twice
the sequential peak is never exceeded whereas the execution time is barely affected. A
more detailed analysis is provided in the experimental section below.

4.1.1 Experimental results

This section describes and analyses experiments that aim at assessing the effectiveness of
the memory aware scheduling presented above. Here we present only results related to an
Out-Of-Core (OOC) QR factorization of matrices from Table A.1 ; in this scenario the
factors are written to disk as they are computed in order to save memory. In this case the
memory consumption is more irregular and more considerably increased by parallelism.
We simulate this scenario by discarding the factors as we did in Sections 3.3 and 3.4;
note that by doing so we are assuming that the overhead of writing data to disk has a
negligible effect on the experimental analysis reported here. We refer the reader to our
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Figure 4.5: Memory-constrained factorization times relative to the unconstrained execu-
tion for the 2D and 1D methods in an OOC execution.

original paper on this subject [J2] or to Florent Lopez’s PhD thesis [120] for results related
to the In-Core case.

These experiments measure the performance of both the 1D and 2D factorization
(with the parameter values in Table 3.5 and Table 3.6) within an imposed memory foot-
print. Experiments were performed using 32 cores with memory constraints equal to
{1.0, 1.2, 1.4, 1.6, 1.8, 2.0} × Sseq where with Sseq we denote the peak of active memory
from a sequential execution. The parameter settings used for these experiments are those
reported in Tables 3.5 and 3.6.

For almost all 1D and 2D tests, a performance as high as the non constrained case
(presented in Sections 3.3 and 3.4) could be achieved with a memory exactly equal to the
sequential peak, which is the lower bound that a parallel execution can achieve. This shows
the extreme efficiency of the memory-aware mechanism for achieving high-performance
within a limited memory footprint. Combined with the 2D numerical scheme, which de-
livers abundant node parallelism, the memory-aware algorithm is thus extremely robust
since it could process all considered matrices at maximum speed with the minimum pos-
sible memory consumption. In a few cases a slight increase (always lower than 20%) in
the factorization time can be observed (especially when the constraint is set equal to the
sequential peak). In only three cases it is possible to observe a smooth decrease of the
factorization time as the constraint on the memory consumption is relaxed: these are the
1D factorization of matrices #12, #14 and #18.
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To explain this extreme efficiency, we performed the following analysis. As explained
in the previous section, prior to activating a front, the master thread checks whether
enough memory is available to achieve this operation. If it is not the case, the master
thread is put to sleep and later woken up as soon as one deactivate task is executed;
at this time the master thread checks again for the availability of memory. The master
thread stays in this loop until enough deactivation tasks have been executed to free up the
memory needed to proceed with the next front activation. Every time the master thread
was suspended or resumed we recorded the time stamp and the number of ready tasks
(i.e., those whose dependencies were all satisfied).
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Figure 4.6: Concurrency under a memory constraint for the Hirlam matrix on ada (32
cores).

Figure 4.6 shows the collected data for matrix #12 with an imposed memory consump-
tion equal to the sequential peak, in the OOC case using both the 1D (left) and 2D (right)
methods. In this figure, each (x, y) point means that at time x the master thread was
suspended or resumed and that, at that time, y tasks where ready for execution or being
executed. The width of each graph shows the execution time of the memory constrained
factorization whereas the vertical dashed line shows the execution time when no limit on
the memory consumption is imposed. The figure leads to the following observations:

• in both the 1D and 2D factorizations, the number of ready tasks falls, at some point,
below the number of available cores (the horizontal, solid line); this lack of tasks is
responsible for a longer execution time with respect to the unconstrained case.

• in the 1D factorization this lack of tasks is more evident; this can be explained
by the fact that the 1D method delivers much lower concurrency than the 2D one
and therefore, suspending the submission of tasks may lead more quickly to thread
starvation. As a result, the difference in the execution times of the constrained and
unconstrained executions is more evident in the 1D factorization.

For all other tests, either the number of tasks is always (much) higher than the number
of workers or the tasks submission is never (or almost never) interrupted due to the lack
of memory; as a result, no relevant performance degradation was observed with respect
to the case where no memory constraint is imposed. This behavior mainly results from
two properties of the multifrontal QR factorization:
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1. the size of the contribution blocks is normally very small compared to the size of
factors, especially in the case where frontal matrices are overdetermined;

2. the size of a front is always greater than or equal to the sum of the sizes of all the
contribution blocks associated with its children (because in the assembly operation,
contribution blocks are not summed to each other but stacked).

As a result, in the sequential multifrontal QR factorization, the memory consumption
grows almost monotonically and in most cases the sequential peak is achieved on the root
node or very close to it. For this reason, when the tasks submission is interrupted in a
memory-constrained execution, a large portion of the elimination tree has already been
submitted and the number of available tasks is considerably larger than the number of
working threads. Other types of multifrontal factorizations (LU , for instance) are likely to
be more sensitive to the memory constraint because they do not possess the two properties
described above. By the same token, it is reasonable to expect that imposing a memory
constraint could more adversely affect performance when larger numbers of threads are
used.

4.2 Memory-aware scheduling and mapping in
distributed-memory systems

In this section we turn our attention to the problem of memory consumption in a distributed-
memory parallel context which is much harder to address with respect to the case of
shared-memory parallelism discussed in the previous section. Obviously, in a distributed-
memory context, minimizing the total memory consumption is desirable but it is also
crucial to maintain a balanced memory usage between the processes, to prevent a process
from running out of memory (assuming that the same amount of main memory is available
on all the processes, which is the most frequent setting).

Minimizing the overall memory consumption in a parallel setting is complicated unless
a schedule with very specific properties is used. In our distributed memory context,
the maximum peak of active memory (over the set of processes) is the target for our
optimization problem. Note that the sum of the peaks of the different processes provides
an upper bound on the total consumption (which might be loose).

For a parallel execution on p processes, we denote by Smax(p) and Savg(p) the maxi-
mum and average peaks of active memory among the p processes, respectively. Savg(p) is
computed as the sum of the p peaks divided by p; with the above observation p · Savg(p)
is an upper bound on the total consumption.

The performance of a parallel algorithm executed on p processes is often assessed using
a notion of efficiency; given the above observations, we consider two kinds of memory
efficiency metrics that depend on p:

• eavg(p) = Sseq

p · Savg(p)
; this metric compares the total memory usage (using an upper

bound, as described above) to that of a sequential execution and is relevant in a
shared-memory context as well as in a distributed-memory one.

• emax(p) = Sseq

p · Smax(p)
; this metric detects that one (or more) process(es) use(s) too

much memory, which is only relevant in a distributed-memory context.
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Assuming pi processes are mapped on the subtree rooted at node i of the tree, a lower
bound on the average storage needed by these processes to process the subtree is defined
as S̄i = Si/pi. This quantity corresponds to the memory consumption per process in the
ideal case where the peak Si is uniformly distributed; as we explain below, this case is very
unlikely in practice, unless very specific mapping schemes are used within the subtree.

Consider the following parallel scheme. The tree is processed following the postorder
used in the sequential case (tree serialization) and each node of the tree is mapped on all
processes; this is what we will refer to as tree serialization mapping. If we assume a perfect
memory balance within each node and within each contribution block, this tree serializa-
tion mapping technique clearly provides a perfect memory scalability (Savg = Smax = S̄i

and eavg(p) = emax(p) = 1). However, it does not take advantage of tree parallelism be-
cause all the branches are serialized. It also leads, by forcing a large number of processes
to be used at each node, to an unnecessary increase in communication (both within nodes
when performing dense partial factorizations, and between nodes when communicating
contribution blocks). Finally, it does not deliver an adequate granularity of operations
within nodes. These drawbacks are likely to induce a significant performance penalty,
as we assess in Section 4.2.3. This is why no solver that we are aware of relies on this
strategy. In practice, minimizing the active memory is not the best formulation of the
problem we want to solve. Instead of minimizing it, we would rather control the active
memory by enforcing a given memory constraint that would be provided by the user or
defined by hardware specifications, as in the approach described in the previous section.
Then, for this memory constraint, we would like to maximize tree parallelism and paral-
lelism granularity, in order to avoid as much as possible the aforementioned drawbacks
related to communication volume and small task granularity; this is exactly the aim of
the mapping technique we describe in Section 4.2.2.

4.2.1 Mapping techniques
Different mapping strategies are commonly used in distributed memory, parallel multi-
frontal codes. The subtree to subcube mapping by Liu, George and Ng [115] and the
proportional mapping by Pothen and Sun [136] are popular strategies and are the basis
for more sophisticated schemes. These are special cases of the wider family of tree parti-
tioning methods where the set of processes mapped on a node of the tree is partitioned into
disjoint subsets and each subset is affected to a child subtree. Tree partitioning mappings
are well appreciated because they help reducing the volume of data transfers thanks to a
good data locality and because they allow for a good use of both tree and node parallelism.
In the proportional mapping method, this recursive splitting of processes sets is guided by
a balancing criterion. This mapping technique consists in a top-down traversal of the tree
where every node is assigned a set of processes. All the processes are assigned to work on
the root node. This is a natural choice since the root node is the last task to be performed
in the factorization. Then, for every node in the tree, the set of processes working at that
node is split among its children, proportionally to the weights (determined according to
a given metric) of the subtrees rooted at these children. Denoting by wi the weight of the
subtree rooted at node i, and by par(i) the parent of node i, the number of processes pi

given to node i is then

pi = wi∑
j; par(j)=par(i)

wj
· ppar(i). (4.1)

This procedure is applied in a recursive fashion to the whole tree, starting from the root r;
the recursion stops when leaf nodes are reached or entire subtrees are mapped onto single
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processes, which happens because the number of nodes in the tree is commonly much larger
than the number of processes. Not considering the case where fractions of processes are
allowed to be mapped on different subtrees (meaning that such a process would work less
than the others on a given subtree, and be assigned less memory), rounding is performed
in (4.1) in order to ensure that:

• pi is an integer for all nodes i; and

• the tree partitioning property holds, i.e., ppar(i) =
∑

j; par(j)=par(i)
pj .

The metric used at each step of the mapping in the original method proposed by Pothen
and Sun is the workload of each subtree; we refer to this case as the workload-based
proportional mapping. Clearly, this criterion can be replaced by another one depending
on the objectives. If one aims to achieve a memory balance rather than a load balance,
a possible heuristic consists in using a memory-based variant; we report on experimental
results using this strategy in the experimental section. Prasanna and Musicus proposed
a scheduling strategy for tree-shaped task graphs when the time for computing a parallel
task (a malleable task) using p processes is exactly L

pα (with 0 < α ⩽ 1) where L is
the length of the task [137]. Beaumont and Guermouche evaluated this approach in the
multifrontal method [30].

An interesting property of the tree partitioning mapping is that the traversal of every
process, i.e., the set of tasks that a process executes and the order in which they are
processed, is deterministic. Indeed, every process is in charge of a sequential subtree and
takes part in the computation of the parallel nodes in the path between that subtree and
the root of the elimination tree; this defines a single possible traversal.

In the remainder, we will thus use the proportional mapping as a representative of
the whole family of tree partitioning mappings; it must be noted, though, that the novel
techniques proposed in Section 4.2.2 are perfectly compatible with any tree partitioning
technique.

Proportional mapping (tree partitioning mappings in general) is not a memory-friendly
strategy. Actually, it is possible to demonstrate that the memory efficiency resulting from
this mapping technique tends to zero as the number of processors goes to infinity as
established by Theorem 4.1.

Theorem 4.1 Sub-optimality of the proportional mapping ([140, Theorem
8.1]).— Let T be an elimination tree corresponding to a nested dissection of a regu-
lar 2D square grid with a nine-point stencil. For a given number of processes p, the
memory efficiency of a strict memory-based proportional mapping of T verifies:

emax(p) = Sseq

p · Smax(p)
⩽ 6.25

29
p−0.2 ≃ 0.22 p−0.2

(for p sufficiently large).

The proof of Theorem 4.1 is very long and tedious and thus we do not report it
for the sake of conciseness; we refer the interested reader to the PhD thesis of Rouet
[140]. Nonetheless, in the next section we show through an example how the proportional
mapping may result in very poor memory scalability.
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4.2.1.1 Memory scalability of proportional mapping: an example

We illustrate the behavior of the proportional mapping on a simple yet realistic elimination
tree. We consider a memory-based proportional mapping strategy, but we could make the
same observations about a workload-based strategy. We consider the tree in Figure 4.7(a),
which is to be mapped on 64 processes. First, these 64 processes are assigned to the root
node l. Then, a first step of memory-based proportional mapping is used to distribute these
64 processes among the four children of l: a, e, f , and k, as illustrated in Figure 4.7(b).
The sequential peaks of active memory of the subtrees rooted at a, e, f , and k are 8 GB,
5 GB, 3 GB and 3 GB, respectively. Therefore, a gets 8

8+5+3+3 · 64 ≈ 27 processes; e

gets 5
8+5+3+3 · 64 ≈ 17 processes and f and k get 3

8+5+3+3 · 64 ≈ 10 processes. At this
stage, we can compute a lower bound of the peak of active memory of every process.
Consider the 27 processes working on the subtree rooted at a. The sequential peak of
active memory of this subtree is 8 GB. Therefore, at best, i.e., assuming a perfect memory
scalability can be attained for this subtree, the maximum peak of active memory among
these 27 processes will be S̄a = 8 GB

27 = 0.296 MB. Similarly, the maximum peaks of
active memory for the processes working on the subtree rooted at e (f and k respectively)
are bounded from below by S̄e = 5GB

17 (S̄f = 3GB
10 and S̄k = 3GB

10 , respectively); ignoring
the rounding applied to obtain integer numbers of processes, all these peaks are the same
(S̄a ≈ S̄e ≈ S̄f ≈ S̄k ≈ 0.3 GB) since we have applied a memory-based proportional
mapping. We can, thus, derive a first lower bound on the memory efficiency for this
problem; since the sequential peak of active memory for the whole tree is 8 GB, the
memory efficiency is bounded as follows:

emax(p) = Sseq

p · Smax(p)
⩽ 8 GB

64 · 0.3
⩽ 0.42

It is fairly easy to see why the efficiency is low. The sequential peaks of the whole tree
and the subtree rooted at a are the same; however, only a small subset of the processes
work on the latter subtree. Therefore, even if a perfect memory scalability is attained on
the subtree rooted at a, the memory usage for the 27 processes working on that subtree
is more than twice what we are targeting (8 GB

27 instead of 8 GB
64 ).

We can refine this upper bound on memory efficiency by looking at the lower levels of
the tree. By considering the grandchildren of the root node, we see in Figure 4.7(c) that
the memory usage Smax(p) is at least max

(
S̄b, S̄c, S̄d, S̄i, S̄j

)
= 0.5 GB, yielding

emax(p) ⩽ Sseq

p · 0.5
= 0.25

We assumed that a perfect memory scalability was reached in the different subtrees
rooted at the grandchildren of the root node, which means that this bound on memory
efficiency is likely to be optimistic. Finally, by considering the lowermost level (see node
h in Figure 4.7(c)), we have e(p) ⩽ 0.125.

4.2.2 Memory-aware mapping algorithms
We demonstrated that a memory-based proportional mapping leads to a low scalability
of the active memory. However this mapping is interesting in terms of performance since
it maximizes tree parallelism and reduces the volume of communication within parallel
nodes and between nodes of the tree. We also introduced a “tree serialization mapping”
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Figure 4.7: An example of memory-based proportional mapping on p = 64 processes. In
(a), we indicate next to each node the sequential peak of active memory Si (in GB) of
the corresponding subtree, and within each node, the size of its contribution block cbi

(in GB). In (b), we indicate within each node the number of processes pi assigned by the
proportional mapping. In (c), we indicate within each node the lower bound S̄i = Si

pi
on

the average storage required per process (in MB).

which consists in a constrained traversal of the tree where all the processes work at ev-
ery node, following a postorder. However, this solution generates prohibitive amounts of
communications, it does not exploit tree parallelism and yields small granularity of com-
putations on nodes at the bottom of the tree. Therefore it is not time efficient; we assess
this in the experimental section. Here, we introduce a “memory-aware mapping” that
hybridizes these two techniques and tries to enforce a given memory constraint (the max-
imum amount of active memory that a process can use). The idea was first presented in
Agullo’s PhD thesis [2] and is described in Section 4.2.2. It consists in a tree serialization
mapping in memory demanding parts of the tree, and a proportional mapping whenever
we can be sure that it will not violate the memory constraint.

We assume that we are given a memory constraint M0 that represents the maximum
amount of active memory that a process is allowed to use. We will also use the notation
Mi, i > 0, to denote the memory constraint for a subtree Ti rooted at i (M0 = Mr in
case r is the root of the entire tree). The memory-aware mapping works as follows. We
assume that the tree has been reordered to reduce the sequential peak of active memory
and that the sequential peaks Si have been computed for every subtree Ti. Then, a top-
down traversal of the tree is performed to compute the mapping. All the processes are
first assigned to the root node r. Then, recursively, once a subtree Tr rooted at r is
mapped on pr processes, its children are mapped as follows. We first check whether a
proportional mapping of the children is feasible by simulating a proportional mapping
and verifying that the memory constraint is respected at every child i. Denote pi the
number of processes that a proportional mapping would assign to child i (Equation 4.1).
For every child i, we check the condition S̄i = Si

pi
⩽ Mr:

• If all child subtrees Ti respect this condition, then the step of proportional mapping is
accepted; the child subtrees will be processed in parallel on the number of processes
provided by the step of proportional mapping. For the subsequent steps of the
mapping procedure, the memory constraint is unchanged: Mi = Mr.

• If at least one of the subtrees does not respect the condition, then the step of pro-
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portional mapping is rejected. All the child subtrees Ti inherit the processes of
their parent (pi = pr) and will be processed one after another during the factor-
ization, following the same order as the one of the sequential execution. In this
case, when a child subtree Ti is processed, the contribution blocks of the previous
siblings j (par(j) = par(i) = r, j < i, assuming the order of the siblings is in agree-
ment with the postorder) are stacked and equally distributed in the memory of the
pj = pi = pr processes. Therefore, for the next steps of the mapping procedure,
the memory constraint is modified in order to take into account these contributions
blocks: Mi = Mr −

∑
par(j)=r,j<i

cbj

pj
(where pj = pi = pr).

At each step of the traversal, the condition S̄i ⩽ Mr means “is it possible to process the
subtree Ti on pi processes, using a memory at most equal to Mi = Mr on each process?”.
Thus, when a step of proportional mapping is accepted, we ensure that every subtree
will respect the memory constraint. In the end, this algorithm yields a hybrid mapping
in-between a proportional mapping and a tree serialization mapping.

We illustrate a few steps of memory-aware mapping in Figure 4.8, using the tree of
Figure 4.7(a) again. The tree is to be mapped on p = 64 processes and we choose a rather
tight memory constraint M0 = 160 MB (i.e., we target emax = 8 GB

64·160 MB = 0.8). First,
the 64 processes are assigned to the root node l; then the four children a, e, f and k of
l are mapped. The first step consists in computing a proportional mapping of the four
child nodes. a is given 27 processes, e is given 17 processes and f and k are given 10
processes each. Then, the memory constraint is checked for the subtrees. At node a, the
sequential peak of active memory is 8 GB; thus S̄a = 8 GB

27 = 296 MB is greater than
M0. Therefore, the subtree rooted at a cannot be processed using 27 processes without
violating the memory constraint. Thus the step of proportional mapping is rejected; the
four child subtrees are mapped on the 64 processes and are serialized (Ta will be processed
first, then Te, and so on). Then the four subtrees are mapped using the same procedure
taking into account the fact that the memory constraint has to updated because of the
stacked contriution blocks. For example consider the mapping of the subtree rooted at
e. Since we have serialized the four child subtrees of l, we have to take into account
that, when processing Te, the contribution block of a is stacked in memory and equally
distributed among the processes. For a given process, the available memory is no longer
Ml = M0 but Me = Ml − 2 GB

64 = 129 MB.
It must be noted that, whenever a proportional mapping step is rejected, even if the

memory constraint is violated on a single subtree, a whole set of siblings is serialized.
This may lead to an excessive loss of tree parallelism. Rather, the set of siblings can
be split into groups; groups are treated sequentially one after the other but within each
group proportional mapping is still possible. This clearly allows for a better compromise
between memory consumption and concurrency. Forming groups, though, is not trivial
and can actually be modeled as a bin-packing problem; heuristics can be used instead.
We call this technique Aggregated Memory Aware Mapping and, for further details, we
refer the reader to our original work [J1] describing this method as well heuristics we
implemented for forming groups; experimental results extracted from this article will be
presented below.

4.2.3 Experiments

We implemented the proposed algorithms within the MUMPS (MUltifrontal Massively
Parallel Solver) software package [13, 16].

106



4.2. Memory-aware scheduling and mapping in distributed-memory systems
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Figure 4.8: Simple example of memory-aware mapping. The tree shown in Figure 4.7(a)
is mapped using the flat memory-aware mapping with M0 = 160 MB. The scheduling
constraints resulting from tree serialization are shown with arrows. The subtree rooted
at a is processed first and is followed by the subtrees rooted at e and f , and the subtree
rooted at k is processed last. Similarly, the subtree rooted at i is mapped using a local
tree serialization mapping.

In this section, we assess different mapping strategies on the set of matrices described in
Table 4.1. The largest problem (Geoazur_192) is processed using 256 MPI processes while
the other matrices are processed using 64 MPI processes. The Geoazur_192 matrix [131]
is unsymmetric and complex and corresponds to a 27-point stencil discretization of a
3D visco-acoustic wave propagation model on a grid of size 192 × 192 × 192. All the
matrices are ordered using MeTiS. The experiments were carried out on the eos system
(see Appendix A.2). For the Geoazur_192 problem, we used 16 nodes of the system, and
we used 4 nodes for the other matrices (i.e., we used 16 MPI processes per node). In
Table 4.1, we present the characteristics of the matrices and also statistics for the amount
of active memory used by the MUMPS solver, version 5.0.0, for the factorization. The
mapping strategy used in MUMPS is described by Amestoy et al. [16]: at the top of the
tree, a relaxed proportional mapping is used whereas on lower layers of the tree, a strategy
that aims at balancing memory requirements and workloads is used. The results reported
in the table show that the memory efficiency of MUMPS, although slightly better than
with a strict proportional mapping, is quite low: emax lies between 0.07 and 0.32 (the
average is 0.19).

First, we assess the behavior of the following strategies for matrix Geoazur_192 in
Table 4.2:

• A plain, memory-based, proportional mapping;

• A flat memory-aware mapping, with different constraints M0;

• An aggregated memory-aware mapping, with different constraints M0;

• A tree serialization mapping on the whole tree, where all processes work at every
node (except in case of frontal matrices with less rows than processes).
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Matrix Order Entries Factors Sseq Smax emax Savg eavg Time Description; origin
name N (×106) (GB) (GB) (MB) (MB) (s)

cage13 445,315 7.5 30.7 21.4 1050 0.32 709 0.47 385.1
Directed weighted
graph; Utrecht
Univ.

pancake2_3 1,004,060 49.1 39.8 10.5 832 0.21 481 0.36 278.0
3D electromag-
netism;
Padova Univ.

as-Skitter 1,696,415 23.9 17.7 3.8 566 0.11 197 0.30 171.1 Internet topology
graph; SNAP

HV15R 2,017,169 283.1 366.4 88.6 10638 0.13 4883 0.28 N/A
CFD, 3D engine
fan;
FLUOREM

MORANSYS1 2,734,008 81.3 63.5 17.9 998 0.28 715 0.39 390.3
Model Order Re-
duction;
CADFEM

meca_raff6 3,269,763 130.2 63.5 6.6 1393 0.07 859 0.12 335.3
Thermo-
mechanical
coupling; EDF

Geoazur_192 7,077,888 189.1 251.9 65.9 1151 0.22 827 0.31 1308.2
3D Geophysics;
Seiscope consor-
tium

Table 4.1: Set of matrices used for the experiments; active memory (Smax and Savg) and
run time for the factorization using MUMPS (with p = 64 except for Geoazur_192 for
which p = 256). For matrices as-Skitter and meca_raff6, symmetric, an LDLt decomposi-
tion is computed; for the other matrices (unsymmetric) an LU decomposition is computed.
Matrices pancake_2 and Geoazur_192 use single precision, complex, arithmetic; the other
matrices use double precision, real, arithmetic.

Mapping M0 Smax (MB) emax Savg (MB) eavg Time (s)
Proportional 4417 0.06 1852 0.14 1465
Memory-aware 1288 940 0.27 672 0.38 1369
Aggregated memory-aware 1288 875 0.29 676 0.38 1381
Memory-aware 644 478 0.54 364 0.71 2061
Aggregated memory-aware 644 399 0.65 390 0.66 1961
Memory-aware 429 453 0.57 294 0.87 2695
Aggregated Memory-aware 429 392 0.66 289 0.89 2301
Memory-aware 322 292 0.88 258 0.99 3141
Aggregated memory-aware 322 279 0.92 258 0.99 2799
Memory-aware 258 259 0.99 258 1.00 3765
Aggregated memory-aware 258 259 0.99 258 1.00 3370
Tree serialization 260 0.99 258 1.00 9070

Table 4.2: Experiments with the Geoazur_192 matrix. For the memory-aware mapping,
the imposed memory bounds of 1288, 644, 429, 322, and 258 MB correspond, respectively,
to a memory efficiency of 0.2, 0.4, 0.6, 0.8 and 1.0.
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As expected, the tree serialization approach delivers a near-perfect memory scalability
(emax = 0.99 and eavg = 1.00). However, the run time is over six times higher than the
one obtained with the plain proportional mapping strategy. This is due to the prohibitive
amount of communications generated by this mapping. For the Geoazur_192 problem,
and using 256 MPI processes, the volume of communication with the tree serialization
mapping is roughly nine times the volume generated by the proportional mapping strategy,
and the number of messages is over 30 times larger than the number of messages with the
default mapping. We also experimented with different numbers of processes and observed
that the performance of the tree serialization strategy degrades significantly when the
number of processes increases, which is due to the large number of messages and the small
granularity of tasks. These observations show that the tree serialization mapping is in
general prohibitive in practice, especially for large number of processes.

For matrix Geoazur_192, we also report results with four values of M0 to illustrate
how the memory-aware algorithm can be used. The four values that we use correspond
to constraining the mapping such that emax ⩾ 0.2, emax ⩾ 0.4, emax ⩾ 0.6, emax ⩾ 0.8,
and emax ≈ 1.00 respectively. Note that value 0.2 is similar to the value of emax obtained
using the default mapping in MUMPS (see Table 4.1), while the others are significantly
higher. Thanks to the memory-aware mapping, the memory constraint is respected and
performance is interesting since the run time remains comparable to our references (pro-
portional mapping and default mapping in MUMPS 5.0.0) which need significantly more
memory. On this matrix, we also observe that the larger the size of the memory is, the
lower the run time is. This makes sense although it is not guaranteed by our memory-
based mapping heuristics. It is also interesting to see that, with M0 = 258 MB, we indeed
reach a near-perfect memory scalability, but with a much better performance than the
one obtained with the tree serialization strategy.

When groups are added to our memory-aware algorithm, we generally observe an
improvement in the run time. This strategy exploits more tree parallelism but enforces the
same memory constraints as the baseline approach. Aggregated memory-aware mapping
is thus the most robust approach and will be used in the rest of this experimental section.

In Table 4.3 we report results on a large class of matrices; we compare a proportional
mapping strategy and the aggregated memory-aware algorithm. We observe that using
a memory-aware strategy that targets emax = 0.8, we are able to decrease the memory
peak by factors between 2.5 (matrix cage13) and 23.8 (matrix meca_raff6). This comes
at the price of a moderate increase in run time for most problems. The worst case is
meca_raff6 for which the increase in run time is about 70%. For matrix cage13, the
memory-aware mapping actually delivers slightly better performance with emax = 0.8
than with both emax = 0.4 and proportional mapping. Although counter-intuitive, it may
happen that smaller task granularities yield better time performance, especially since the
proportional mapping heuristic is designed to balance memory rather than optimize time.
Matrix HV15R is particularly interesting because the factorization cannot complete when
proportional mapping (or the default mapping in MUMPS 5.0.0) is used. Indeed, we use
16 MPI processes per node and the average memory peak (estimated during the analysis
phase) is 23.6 GB per MPI process with the default strategy, while each node of our system
only has 64 GB of memory.

Overall, the memory-aware mapping exhibits very interesting results compared to the
default strategy in MUMPS, since we are able to significantly decrease the memory foot-
print without dramatically decreasing performance. For all matrices, we have decreased
the maximum memory peak by an important factor that is increasing with our target for
memory efficiency emax. The penalty in run time also depends on the target for mem-
ory efficiency and is typically between 40% and 60% on 64 processes with respect to the
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Matrix Mapping Smax emax Savg eavg Time (s)
cage13 PM 912 0.37 737 0.45 406

MA e = 0.4 639 0.52 516 0.66 381
MA e = 0.8 360 0.93 338 0.99 372

pancake2_3 PM 1723 0.10 619 0.27 425
MA e = 0.4 324 0.51 257 0.63 538
MA e = 0.8 177 0.93 176 0.93 560

as-Skitter PM 556 0.11 190 0.31 144
MA e = 0.4 142 0.42 76 0.78 168
MA e = 0.8 72 0.83 61 0.98 232

HV15R PM 23624 0.07 10126 0.15 N/A
MA e = 0.4 2778 0.50 1855 0.75 4718
MA e = 0.8 1407 0.98 1390 0.99 4511

MORANSYS1 PM 1733 0.16 939 0.30 320
MA e = 0.4 695 0.40 477 0.59 392
MA e = 0.8 322 0.87 285 0.98 475

meca_raff6 PM 2951 0.04 1741 0.06 305
MA e = 0.4 226 0.46 128 0.81 433
MA e = 0.8 124 0.84 103 1.00 514

Table 4.3: Comparison of the memory-based proportional mapping with the aggregated
memory-aware algorithm for two target efficiencies.

performance of the proportional mapping strategy. When comparing with the default
mapping used in MUMPS 5.0.0 (Table 4.1), we observe similar results. Although the
mapping strategy of MUMPS typically yields lower memory consumption than a propor-
tional mapping, using a memory-aware algorithm can significantly reduce memory usage,
at the price of a moderate penalty in factorization time.
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Chapter 5

Low-rank approximation
techniques for sparse, direct
solvers

Sparse matrices that we commonly have to deal with only have a few nonzeros per row. For
example, if the matrix results from the discretization of a Partial Differential Equation,
the number and position of the nonzero coefficients is determined by the discretization
mesh. We commonly refer to this property of the matrix as its structural sparsity. In
Section 2.2 we have discussed how, once the elimination order is fixed, also the position
of nonzeros in the factors resulting from a sparse factorization is fully determined; that
is to say that also the factors have a well determined structural sparsity, despite they are
much denser than the factorized matrix because of fill-in. In some cases, however, some
of the information carried by these factors can be considered irrelevant. This may be,
for example, the case in applications where this information has lower magnitude that
the measurement errors of the instruments that were used to generate the input data, or
because only a very approximate factorization is needed to be used as a preconditioner
for an iterative method. We refer to this property as data sparsity. In this chapter we
will discuss how to take advantage of this property to reduce the cost (both in terms of
floating point operations and memory) of sparse factorizations through the use of low-rank
approximation techniques.

5.1 Low-rank approximations

5.1.1 Low-rank matrices

Low-rank approximations techniques rely on the definition of low-rank matrix which is
introduced below.

Definition 5.1 Range and null space of a matrix.— Let A ∈ Rm×n. The range of
A is

range(A) := {Ax ∈ Rm : x ∈ Rn}.

The null space of A is

null(A) := {x ∈ Rn : Ax = 0}.
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Definition 5.2 Rank of a matrix.— Let A ∈ Rm×n. The rank of A is

rank(A) := dim(range(A)).

Note that rank(A) + dim(null(A)) = n. Any matrix A of rank r = rank(A) admits a
factorization of the type

A = XY T , X ∈ Rm×r, Y ∈ Yn×r (5.1)

that is to say, matrix A can be represented in the form of a rank-r product; note that this
representation takes O((m + n)r) memory as opposed to O(mn) for the standard form.
This observation leads to the definition of low-rank matrix

Definition 5.3 Low-rank matrix.— Let A ∈ Rm×n be a matrix of rank r. A is low-rank
if

(m + n)r < mn. (5.2)

With a slight abuse of notation, we will refer to matrices that do not respect Equa-
tion (5.2) as full-rank matrices even though their rank is not actually full (that is r = n).

5.1.2 Basic linear algebra operations on low-rank matrices
Note that Definition 5.3 simply states that a low-rank matrix is one that can be more
conveniently stored in low-rank form (as in Equation (5.1)) rather than in standard (or
full-rank) form; however, the low-rank representation not only allows for reducing the
storage but also the complexity of operations; in the reminder of this section we present
some basic linear algebra operations involving low-rank matrices and the associated cost.

Triangular solve. This operation computes A ← L−1A where L is a full-rank lower-
triangular matrix and A ∈ Rm×n is of rank rA. It can be computed as

A← L−1A = (L−1XA)Y T
A = WY T

A , with W = (L−1XA) ∈ Rm×r.

This costs m2rA floating point operations as opposed to m2n for the case where A is in full-
rank form. The cases where L−1 is multiplied on the right or where an upper-triangular
matrix U is used instead of L can be treated in a similar way.

Matrix sum. This operation computes C = A + B where A, B and C are all in Rm×n

and A = XAY T
A and B = XBY T

B are of rank rA and rB, respectively. This can be
computed as

C = A + B = XAY T
A + XBY T

B = [XAXB] [YAYB]T .

This does not involve any floating point operation but leads to a rank-(rA + rB) represen-
tation for C where rA + rB may be greater that the actual rank of C.

Matrix product This operation computes C = C + AB with A ∈ Rm×k, B ∈ Rk×n

and C ∈ Rm×n. When all the three matrices are full-rank, the cost of this operation is
2mnk. We will examine the following three cases
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• A, B and C are all low-rank of ranks rA, rB and rC , respectively. This is computed
as

XCY T
C ← XCY T

C + XA(Y T
A XB)Y T

B .

The inner product Y T
A XB costs 2krArB flops. The result of this product is a matrix

W of size rA × rB and can then be multiplied either to the right or to the left:

– right: WY T
B costs 2nrArB flops and yields a matrix Z of size rA × n. The

resulting rank-rA matrix XAZ can then be summed with XCY T
C at no cost.

The final cost is thus 2rArB(k +n) and the result is expressed in rank-(rC +rA)
form.

– left: XAW costs 2mrArB flops and yields a matrix Z of size m × rB. The
resulting rank-rB matrix ZY T

B can then be summed with XCY T
C at no cost.

The final cost is thus 2rArB(k+m) and the result is expressed in rank-(rC +rB)
form.

As a result the right or the left case can be more convenient depending on the sign
of (m− n).

• A, B are low-rank of ranks rA and rB , respectively, and C is full-rank. This is similar
to the above case except that the final sum is not free. Before being added to C, the
low-rank matrix resulting from the XA(Y T

A XB)Y T
B product has to be brought back

into full-rank form by means of an outer product operation. This costs 2mnrA or
2mnrB in the right or left cases described above, respectively. Therefore, the choice
between the right or left cases depends on the sign of

(m− n)rArB + mn(rA − rB).

• A, is low-rank of rank rA and B and C are full-rank. This is computed as

C ← C + XA(Y T
A B)

The product W = Y T
A B costs 2rAkn flops. It is then followed by the outer product

C = C + XAW which costs 2mrAn. The total cost is thus 2rAn(m + k). The case
where B is low-rank and A and C full-rank can be treated the same way. Also,
the case where C is low-rank is treated by performing a low-rank sum (at no cost)
without the outer-product.

5.1.3 Numerically low-rank matrices
A matrix A which is not low-rank can be approximated with a low-rank matrix Ã with
controlled accuracy. To see how this is possible, we first have to introduce the singular
value decomposition of a matrix.

Theorem 5.1 Singular value decomposition [86, Theorem 2.4.1].— If A is a real
m× n matrix then there exist orthogonal matrices

U = [u1 · · ·um] ∈ Rm×m and V = [v1 · · · vn] ∈ Rn×n

such that

UT AV = Σ = diag(σ1, · · · , σp) ∈ Rm×n, p = min(m, n),

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.
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The values σ1, · · · , σp are called the singular values of A and UΣV T its singular value
decomposition. The following theorem defines how to compute the best rank-r approxi-
mation of a matrix A.

Theorem 5.2 Best rank-r approximation [67, 95].— Let A be a matrix in Rm×n

and A = UΣV T its singular value decomposition. The minimization problem

min
rank(Ã)≤r

∥A− Ã∥2

is solved by

Ã := UrΣrV T
r , Ur = [u1 · · ·ur] , Vr = [v1 · · · vr] , Σr = diag(σ1, · · · , σr).

The arising error is ∥A− Ã∥2 = σr+1.

Proof. Let Ur+1 = [ur+1 · · ·um], Vr+1 = [vr+1 · · · vn] and Σr+1 = diag(σr+1, · · · , σp).
Then

∥A− Ã∥2 = ∥A− UrΣrV T
r ∥2 = ∥Ur+1Σr+1V T

r+1∥2 = σr+1.

In order to prove that Ã is the best rank-r approximation of A we need to prove that for
any other rank-r approximation of B = XY T of A, the error is higher than σr+1. Because
Y is of rank r, dim(null(Y T )) = n− r; therefore

span(v1, · · · , vr+1) ∩ null(Y T ) ≠ ∅.

That is to say, there exist a linear combination w = γ1v1 + · · · + γr+1vr+1 such that
Y T w = 0. Without loss of generality, we can assume that ∥w∥2 = 1, which implies
γ2

1 + · · ·+ γ2
r+1 = 1. Therefore

∥A−B∥22 ≥ ∥(A−B)w∥22 = ∥Aw∥22 = γ2
1σ2

1 + · · ·+ γ2
r+1σ2

r+1 ≥ σ2
r+1

which concludes the proof.

Theorem 5.2 states that the best rank-r approximation of A is a matrix Ã obtained
by computing the singular value decomposition of A and by dropping all the last p − r
singular values. Note that UrΣrV T

r is a rank-r representation of A; alternatively one can
use UrW T or ZV T

r with W = VrΣr and Z = UrΣr, respectively. In practice, however, it
is more desirable to control the accuracy of the approximation rather than its rank: given
a threshold ε we want to compute the representation of smallest rank with an accuracy
that is better than or equal to ε.

Definition 5.4— Let A be a matrix in Rm×n and ε a prescribed threshold. The ε-rank
of A (also called numerical rank with threshold ε) is

rε = min{rank(B) : ∥A−B∥2 ≤ ε}.

Theorem 5.2 implies that rε is equal to the number of singular values of A that are
greater than ε. The B matrix for which the minimum in Definition 5.4 is achieved is thus

B = UrεΣrεV T
rε

, Urε = [u1 · · ·urε ] , Vrε = [v1 · · · vrε ] , Σrε = diag(σ1, · · · , σrε)
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σ

τ

A|s

Figure 5.1: Clusters, block-cluster and matrix block.

with

σ1 ≥ · · · ≥ σrε > ε ≥ σrε+1 ≥ · · · ≥ σp.

Clearly, if rε fulfills the condition in Equation (5.2), B is a low-rank approximation of A
with accuracy ε. For the sake of readability, we will drop the ε in rε.

The operation of computing a low-rank approximation of a matrix A is referred to
as compression in the remainder of this document. As we have seen above, this can be
achieved by computing a SVD decomposition of A but this implies a cost of O(mn2)
flops, assuming m ≥ n. Other cheaper but less accurate methods exist. One commonly
used technique uses a QR factorization with column pivoting AP = QR, such as the
one described in Section 2.1.4.3. This factorization is stopped at step k if the diagonal
coefficient rk,k of R is smaller than the prescribed threshold ε. The trailing submatrix is
discarded and the partially computed factors Q:,1:k and (RP T )1:k,: are used as a rank-k
approximation of A. Because of the early stoppage, this operation only costs O(mnk)
flops.

Other well known and commonly used methods include randomized sampling [97, 114]
or Adaptive Cross Approximation [32].

5.2 Low-Rank formats
In most practical cases, the matrix A that we have to deal with, not only is of full rank but
its singular values decay so slowly that it is not possible to compute a compact and accurate
low-rank approximation. In some cases, however, it has been shown that conveniently
defined blocks of A or of its Schur complement can be effectively approximated by a low-
rank product [31]. Assume A has row index set I and column index set J . Assume σ ⊂ I
and τ ⊂ J are subsets of I and J ; we refer to them as clusters and to s = σ × τ as a
block-cluster or, simply, block. A matrix block of A is thus defined as the restriction of A
on the index subsets σ and τ : A|s. This notation is illustrated in Figure 5.1. When it is
clear from the context we will use the word block to refer to a block-cluster or a matrix
block.

Different low-rank matrix formats can be used to take advantage of this property which
can be classified based on these three properties:

• block-admissibility condition: a criterion that tells whether a matrix block can be
effectively approximated with a low-rank product;
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• block-partitioning: a method for defining matrix blocks;

• low-rank bases: how matrix blocks should be compressed.

In the following section we will provide some details of these properties and we refer
the reader to the book by Hackbusch [95] for a thorough analysis of the subject.

5.2.1 Block-admissibility condition
A block-admissibility condition states whether a block can be approximated with a low-
rank product or not. In the following, we will assume that each index of I is related to a
point in the domain where the problem is defined. We will denote diam(σ) the diameter of
the subdomain formed by the points associated with σ and dist(σ, τ) the distance between
the two subdomains associated with σ and τ .

One commonly employed condition is the so called strong block-admissibility condition:

s = σ × τ is admissible iff max(diam(σ),diam(τ)) ≤ η dist(σ, τ). (Adms
b)

This formalizes a very simple intuition. A matrix block defines the interaction between
the two subdomains related to σ and τ ; if these are relatively small and far away, their
interaction is weak and the corresponding matrix block has low numerical rank. More or
less admissible blocks can be obtained depending on the value of the scalar η. The choice

η = ηmax = max
dist(σ,τ)>0

max(diam(σ),diam(τ))
dist(σ, τ)

amounts to saying that all non contiguous clusters define an admissible block. This is
referred to as least-restrictive strong block admissibility condition

s = σ × τ is admissible iff dist(σ, τ) > 0. (Admlrs
b )

Finally, we can be even more tolerant and assume that all disjoint clusters define an
admissible block:

s = σ × τ is admissible iff σ ∩ τ = ∅. (Admw
b )

This is called weak admissibility condition.

5.2.2 Block-partitioning
Without loss of generality, we assume that I = J . Here we are interested in finding block-
partitions, of I × I to identify matrix blocks that can be compressed. First, we introduce
the definition of partition of an index set.

Definition 5.5 Partition.— A partition S(I) of an index set I is

1) S(I) = {σ1, · · · , σp}, σi ⊂ I
2) σi ∩ σj = ∅ for i ̸= j

3)
p∪

i=1
σi = I.

This leads to the definition of a block-partition.
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Definition 5.6 Block-partition.— A block-partition S(I × I) is

1) S(I × I) = {s1, · · · , sp}, sk = σi × τj , σi ⊂ I, τj ⊂ I
2) si ∩ sj = ∅ for i ̸= j

3)
p∪

k=1
sk = I × I.

The most commonly used methods to compute a suitable block-clustering rely on the
use of cluster trees and block-cluster trees.

Definition 5.7 Cluster tree.— Given an index set I, a cluster tree T (I) is a tree
structure whose nodes are clusters of I that respect the following conditions:

1) I ∈ T (I) is the root of the tree.
2) σ1 ∪ σ2 = ∅ for σ1, σ2 ∈ ST (I)(τ) and σ1 ̸= σ2

3)
∪

σ∈ST (I)(τ)
σ = τ for all τ ∈ T (I) \ LT (I)

where ST (I)(τ) is the set of child nodes of τ and LT (I) is the set of leaves of the tree.

Note that, by definition, the sons of node τ define a partition of τ and thus, by
recursion, the leaves of the cluster tree define a partition of I. The definition of block-
cluster tree can now be derived.

Definition 5.8 Block-cluster tree.— Le T (I) be a cluster tree for the index set I. A
block-cluster tree T (I × I) is a tree structure whose nodes are block-clusters of I × I that
respect the following conditions:

1) I × I ∈ T (I × I) is the root of the tree.
2) for every non-leaf node s = σ × τ :

ST (I×I)(s) := {σ′ × τ ′ : σ′ ∈ ST (I)(σ), τ ′ ∈ ST (I)(τ)}

Note that ST (I)(σ) = ∅ or ST (I)(τ) = ∅ imply that s is a leaf.

Because of the recursive nature of Definition 5.8, we will refer to matrix block-partitions
obtained through the use of a block-cluster tree as hierarchical.

A much simpler block-partitioning technique, which we refer to as flat, consists in
defining a partition S(I) of the index space I into subsets of (roughly) equal size b; the
block-partition is then obtained as the cross-product of S(I) by itself, i.e., S(I × I) =
S(I)×S(I). Note that a flat block-partition can be thought of resulting from a two-level
block-cluster tree made of a root node I × I with as many sons as ⌈#I/b⌉2 but this is
unnecessarily complex; its simplicity, instead, is one of the properties that make a flat
block-partitioning preferable to a hierarchical one in some situations.

5.2.3 Nested bases
Nested bases are commonly used in combination with hierarchical block-partitionings so
let T (I ×I) be the block-cluster tree resulting from a cluster tree T (I). Nested bases rely
on the following two properties:
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Format Admissibility Partitioning Nested Bases Authors
BS Weak Flat no Cheng et al. [49]
BLR Strong/Weak Flat no Amestoy et al. [J4]
H Strong Hierarchical no Hackbusch [94]
HODLR Weak Hierarchical no Aminfar et al. [19]
H2 Strong Hierarchical yes Börm et al. [37]
HSS Weak Hierarchical yes Chandrasekaran et al. [47]
HBS Weak Hierarchical yes Gillman et al. [82]

Table 5.1: A taxonomy of the most well known low-rank formats.

• The same row-basis Xσ can be used for all blocks A|σ×τ with the same σ, i.e., all the
A|σ×τ with the same σ will have a rank-r approximation of the form XσY T

τi
, i =

1, 2, .... The same holds for the column-basis Yτ .

• Let σ be a node of the cluster tree T (I) and σ′ be its son; assume, also, that
Xσ = range(Xσ) and Xσ′ = range(Xσ′), Then Xσ|σ′ = Xσ′ . This means that the
row-basis of a large block can be defined as a combination of the row-bases of the
smaller blocks associated with the clusters in ST (I)(σ).

These two properties can be used to achieve further reductions in the complexity of
operations and in the storage.

5.2.4 A taxonomy of low-rank formats

Table 5.1 contains a taxonomy of the most commonly used low-rank formats along with
the admissibility condition, partitioning technique and nested bases use they rely on;
references to the authors of these formats are also provided. We discuss the details of two
of them, namely the BLR and H formats, below.

5.2.4.1 The Block Low-Rank format

The Block Low-Rank format, introduced by Amestoy et al. [J4], uses a flat block-partitioning
scheme and, thus, it does not use nested bases. BLR can use either a weak or a strong
admissibility condition.

The construction of a BLR matrix is achieved by simply partitioning the index set
I into parts of a prescribed size b, which induces matrix block-partition illustrated in
Figure 5.2.

Definition 5.9 BLR matrix.— Assuming the unknowns have been partitioned into p
clusters, and that a permutation P has been defined so that permuted variables of a given
cluster are contiguous, a BLR representation Ã of a dense matrix A is of the form:

Ã =


A1,1 Ã1,2 · · · Ã1,p

Ã2,1 · · · · · ·
...

... · · · · · ·
...

Ãp,1 · · · · · · Ap,p
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Subblocks Ai,j = (PAP T )i,j, of size mi,j × ni,j and numerical rank kε
i,j, are approximated

by a low-rank product Ãi,j = Xi,jY T
i,j at accuracy ε, where Xi,j is a mi,j × kε

i,j matrix and
Yi,j is a ni,j × kε

i,j matrix.

I

σ1 σ2 σ3 σ4

I

σ1

σ2

σ3

σ4

I
σ1 σ2 σ3 σ4

Figure 5.2: An example of clustering and its associated flat block-clustering and BLR
representation where we have assumed a weak admissibility condition.

Although either weak or strong admissibility conditions can be used, in order to achieve
a favorable theoretical properties, the block-partition has to respect some constraints;
specifically, we will consider a block-partition BLR-Admissible if the maximum number
of non-admissible blocks in every block-rows or block columns is bounded by a constant
(more on this will be discussed in Section 5.4).

5.2.4.2 The H-matrix format

The H-matrix, introduced by Hackbusch [94], is probably the most well known and widely
used low-rank approximation format. It relies on a hierarchical blocking with a strong
admissibility condition and does not use nested bases. The block-partition is built through
a block-cluster tree starting from the root I×I and applying the recursive process in Def-
inition 5.7: if a block-cluster is admissible then it is kept in the block-partition otherwise
it is replaced by its sons computed as in step 2) of Definition 5.7. The recursion is stopped
when a minimum prescribed block size is reached. The resulting block-partition is called
H-admissible.

Definition 5.10 H-admissible block partition.— A block-partition is H-admissible if
all of its locks are either admissible, according to a strong admissibility condition, or of
size smaller than cmin:

S(I × I) is admissible ⇔ ∀σ × τ ∈ S(I × I), σ × τ is admissible
or min(#σ, #τ) ≤ cmin

Note that replacing the strong admissibility condition with the weak one the HODLR
format is obtained rather than the H-matrix one.
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I × I
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Figure 5.3: An example of block-cluster tree on top (σi × σj has been abbreviated as
i× i) and its associated H-admissible block-partition at the bottom; the white blocks are
admissible whereas the gray ones are non admissible but smaller than cmin.

5.3 BLR multifrontal

It has been shown that, for matrices issued from the discretization of elliptic PDEs, conve-
niently defined off-diagonal blocks of Schur complements can be accurately approximated
with low-rank products [46]. Because fronts are closely related to Schur complements and
because they are dense matrices, any of the low-rank formats discussed above can be used
to compress them in order to reduce the storage and the complexity of the multifrontal
factorization and solve operations. The use of low-rank approximations in direct solvers
for sparse linear systems has received considerable attention in recent years. For example
Wang et al. [158], Xia [163], and Xia et al. [164] or Ghysels et al. [78] have investigated
the use of the HSS format in the multifrontal method, Gillman et al. [82] has studied
the use of the HBS format, Aminfar et al. [19] and Coulier et al. [52] have focused on
the use of HODLR and H2, respectively. Other recent efforts by Pichon et al. [134] have
investigated the use of the HODLR format in a right-looking supernodal solver.

We are interested in the use of the BLR format within a general purpose, algebraic,
parallel multifrontal solver. The main advantage of this format over hierarchical ones
is its simplicity which makes it a better candidate for being used in a context where
the geometry of the problem is not known (and, therefore, a weak admissibility is easier
to check) and where special care must be taken to the efficiency of operations and the
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S1

S1.1

S1.2

S2

S4

S3

S1.1

S2

S3

S1.2

S2

S4

S2

S1

Figure 5.4: Some separators of a 2D regular grid (S1 being the topmost) and the associated
fronts.

possibility to develop and implement scalable parallel algorithms.
In order to integrate the BLR format within a multifrontal solver, three main issues

have to be tackled. First it is necessary to develop a method for computing the block-
partition of all the frontal matrices, second, we must conceive methods for the factoriza-
tions of frontal matrices that can take advantage of the low-rank property and, finally, we
have to take care of how to perform assembly operations.

In the following section we will provide details of how we dealt with these issues. In
Section 5.4 we will present an analysis of the complexity of the BLR-based multifrontal
solver and then, in Section 5.5, we will address aspects related to the efficiency and
scalability of the code in a shared-memory, parallel setting.

5.3.1 Block-partitioning of fronts

Remember, from Section 2.2, that the unknowns associated with a frontal matrix can
be split in two parts. The first contains the so-called fully-summed variables which are
eliminated in that front; the second contains the non fully-summed which are only updated
and which appear as fully-summed variables in an ancestor node of the elimination tree
and as non fully-summed on all the nodes lying along the path that connects the node to
that ancestor. If, for example, the input sparse matrix has been permuted using a nested
dissection method (see Section 2.2.3.1), the fully-summed variables of a front correspond
to a separator whereas the non fully-summed correspond to pieces of other separators
associated with ancestor nodes; this is illustrated in Figure 5.4. For the sake of simplicity,
in the rest of this chapter we will always assume that the matrix was permuted according
to a nested dissection ordering and, thus, that the fully-summed variables of a front are
associated with a separator. Although all the methods and results described below also
apply to the case of other matrix permutations, we observed experimentally that using
nested dissection resulted in the best compromise between reduction of structural fill-in
and improvements of the low-rank approximations.

Therefore, defining a blocking of a frontal matrix implies computing a clustering of
two different index sets, which we will explain in the following two sections.
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5.3.1.1 Clustering of the fully-summed variables

Defining a blocking of the fully-summed part of a frontal matrix (i.e., the left-topmost
submatrix) amounts to clustering the variables of the associated separator. It must be
noted, though, that in a completely algebraic setting, which we assume, the geometry
of the problem is not available and, thus, the admissibility condition cannot be checked.
Grasedyck et al. [87] propose to compute the clustering of variables using the adjacency
graph G(A) of the matrix rather than the geometry of the problem; in this approach,
the admissibility condition can thus be checked using the distance distG and diameter
diamG as defined in standard graph theory. Therefore, a blocking of the fully-summed
part of a frontal matrix is achieved by extracting the subgraph associated with the cor-
responding separator and clustering it. This is guided by a several criteria. First of all,
as explained above, we will use a weak admissibility condition because this is easier to
check when the geometry is not available. Moreover, as mentioned above and explained
in Section 5.4, it is important to minimize the number of neighbors of each cluster, which
can be achieved by defining clusters with a low aspect ratio. Finally, the size of clusters
has to be carefully chosen. In Section 5.4 we will explain why this size has to grow with
the size of the separator; moreover, in practice, we want this size not to be excessively
small because it defines the granularity of computations (and thus the efficiency of Level-3
BLAS operations) nor too big in order to achieve a satisfactory amount of concurrency in
a multithreaded parallelization (see Section 5.5).

Once, for a given separator S, the desirable cluster size is defined, the clustering can
be achieved using on the related subgraph GS a K-Way partitioning method such as those
implemented in the METIS or SCOTCH tools. It must be noted, however, that if nested
dissection was used to permute the matrix in an algebraic setting (e.g., using, again,
METIS or SCOTCH) the separators may be disconnected. Take, as an extreme example,
the square domain depicted in Figure 5.5(a) for which a separator is defined by the nodes
lying on the diagonal; this separator is totally disconnected and, thus, running a graph
partitioning tool on its subgraph GS yields, trivially, clusters of size one, which is clearly
undesirable. Although in reality such an extreme situation would rarely occur, it is quite
commonly the case where a separator is formed by multiple connected components that
are close to each other in the global graph G. This may lead to a sub-optimal clustering
because variables that strongly interact due to their adjacency will end up in different
clusters. In order to overcome this issue, we have developed a method which allows for
reconnecting the disconnected components of the separator subgraph [J4, 159] in a way
that takes into account the geometry and shape of the separator: variables close to each
other in the original graph G have to be close to each other in the reconnected GS in
order to satisfy the admissibility condition. We describe an approach that achieves this
objective by extending the subgraph induced by each separator with a relatively small
number of level sets (a vertex v belongs to the level set Li of S if and only if there exist
s ∈ S such that the distance between v and s is exactly i). The union of these level sets
for i = 1 to p (together with the original nodes of the separator) is called a halo and p its
depth. The graph of the halo will be referred to as GH . Note that GS is included in GH .
The graph partitioning tool is then run on GH and the resulting partitioning projected
back on the original subgraph GS . Figure 5.5 shows how this is done on the example above
using just one level set. For a limited number of level sets, the extended graph preserves
the shape of the separator, keeps the cost of computing the clustering limited and allows
us to compute clusterings that better comply with the strategy presented in the previous
section. In practice, we observed [125, 159] that one or two layers are enough to reconnect
the separator and to obtain good performance (in 2D, one layer is sufficient). However,
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on very complex domains, the optimal value may have to be found experimentally.
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(d) 3-way partitioning of GS

Figure 5.5: Halo-based partitioning of GS with depth 1. GH is partitioned using METIS.

Figures 5.6(a) and 5.6(b) show the result of the graph partitioning tool on the topmost
separator of a cubic 3D domain discretized with a 7-point stencil without and with the
halo, respectively; it is easy to see why the clustering on the right figure better complies
with the weak admissibility condition. Figure 5.7, instead, shows a 3D view of the topmost
separator with the computed clustering. In this figure we can see that the separator itself is
skewed and not just a flat surface as one would obtain with a geometric nested dissection;
nonetheless, the halo method can achieve a clustering which is suited to the BLR format.

(a) Without halo. (b) With halo.

Figure 5.6: The clustering of the top level separator computed with SCOTCH on a 3D
7-points stencil Laplacian problems, with and without the halo method.
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Figure 5.7: BLR clustering of the root separator of a 1283 3D cubic problem.

5.3.1.2 Clustering of the non fully-summed variables

One straightforward approach to clustering the non fully-summed variables amounts to
extracting the associated subgraph, extending it with a halo and partitioning it exactly the
as it is done for the fully-summed ones; we refer to this approach as the explicit clustering.
Although this approach yields good clustering, it can incur excessive cost because each
variable is clustered multiple times, i.e., one for each contribution block it appears in. This
issue can be overcome by observing that, as explained above, the subgraph associated with
the non fully-summed variables of a front is made of pieces of separators that are higher in
the tree. Therefore, clustering all the separators in the tree also induces a clustering of the
contribution blocks; we refer to this approach as inherited clustering since the clustering
of a contribution block is defined by the clustering of separators in ancestor nodes. This
is illustrated in Figure 5.8.

Depending on where the separators intersect, small clusters, on which the compression
cannot provide much memory and operation reduction, may be formed; as a result, the
CB may include blocks which are too small to be effectively compressed and to achieve
a good BLAS efficiency for the related operations. Note that this problem also affects
the blocking of the bottom-left submatrix (i.e., interaction between separator and CB
variables), which we refer to as the L2,1 block, but to a lower extent because the effect is
damped by the good clustering computed for the separator (see Figure 5.9).

To recover BLAS efficiency, a reclustering step can be performed by merging neighbor
clusters together in order to increase the block size, as Figure 5.9(c) shows. Recovering
the low-rank compression is less straightforward. Indeed, it is not guaranteed that two
neighbor blocks in the front correspond to two neighbor clusters in the graph. Constraining
the clustering strategy to obtain this property considerably increases its complexity (by
the addition of notions such as global cluster ordering, recursive ordering as in H-matrices
for instance) with a small payoff since the proportion of small clusters in a front is usually
very small.

It has to be noted that the inherited clustering also provides another convenient prop-
erty: the blocking of a frontal matrix is compatible with the blocking of its parent front.
This translates into the fact that one block of its Schur complement will be assembled
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(a) A nested dissection of the domain where the
variables of each separator have been clustered
with the halo method, i.e. each segment is a
group of variables.

2

1

tiny sub-part

tiny sub-part

tiny sub-part

no sub-part

(b) Zoom on current separator and border. The
separator’s clustering has been computed with
the halo method. The border’s clustering is in-
herited from several separator clusterings. At
some corners, a cluster maybe not be entirely
involved in current front so that tiny clusters
may appear.

Figure 5.8: Inherited clustering where the separators are partitioned with the halo method
and the borders inherit their clustering.

(a) L11 blocking : optimal
blocks because any block in-
terconnects two optimal clus-
ters from the corresponding
original separator clustering

(b) L21 blocking : close to op-
timal block because any block
interconnects at least one op-
timal cluster from the cor-
responding original separator
clustering

1
2

1 2

(c) CB blocking : not always
optimal because a block possibly
interconnects two non-optimal
small clusters from the inherited
clustering of the border. Braces
show a reclustering possibility.

Figure 5.9: Relation between inherited clustering and front blocking. The small clusters
correspond to clusters located in corners in Figure 5.8(b). The large clusters correspond
to optimal clusters which are integrally kept in the current front. Note that not all the
large clusters of Figure 5.8(b) are represented here.

into exactly one block of the parent front because, by construction, a block of a Schur
complement is always included in one single block in the fully-summed part of another
frontal matrix. This considerably eases the assembly of frontal matrices in the case of
fully-structured solvers (more details in the next section).
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5.3.2 Assembly operations

In our approach frontal matrices are always assembled in full-rank (i.e., uncompressed
form) and gradually converted to BLR form in the course of the frontal matrix factoriza-
tion; this is achieved by interleaving factorization operations with compress ones according
to several variants described in Section 5.3.3. Note that full-rank assemblies imply that
if a contribution block has been compressed (it does not have to be the case as explained
in Section 5.3.3) then it has to be decompressed, possibly block by block, prior to being
assembled into the father front. This approach allows for easier and more efficient assem-
bly operations and an easier handling of the pivoting, as explained in the next section,
but may incur in excessive storage requirements as the peak memory consumption may
not be smaller than the size of the largest full-rank front in the assembly tree.

As an alternative, assembly operations can be performed using low-rank blocks which
allows for always storing frontal matrices in compressed form which ultimately results
in a better memory consumption. This yields what is commonly referred to as a fully-
structured solver (see, for example, the work by Xia [163]). As explained in the previous
section, by using an inherited clustering we can ensure that a block of a contribution
block is assembled in only one block of the father front; nonetheless, this block can be of
smaller size of that of the father (see Figure 5.8(b)) and, therefore, it has to be padded
with explicit zeros in order to make its size conform to that of the father block and
make the low-rank sum possible. As a result, the low-rank extend-add operation involves
extra computations which can considerably limit the gains provided by the use of low-
rank approximations as shown by Pichon et al. [134]. This issue can be overcome using
randomization techniques [123] which make low-rank assembly operations easier, as shown
by Martinsson [124], Xia [163] or Ghysels et al. [78].

A further option consists in assembling a frontal matrix in full rank form one block at a
time; once a block is assembled, it is immediately compressed which means that the whole
frontal matrix is compressed prior to its factorization. This allows for achieving the same
memory consumption as a fully-structured solver while taking advantage of the simpler
full-rank assembly operations; the handling of pivoting in the subsequent factorization
may be harder though.

5.3.3 BLR fronts factorization

As explained in the previous section, we assume that a frontal matrix F has been assembled
in full-rank form. We will also assume that it has been partitioned (either logically or
actually) into blocks according to the clustering of the associated index set; Fi,j denotes the
block along block-row i and block-column j whereas F̃i,j denotes its low-rank form. We also
assume that a frontal matrix is of size p = pfs+pnfs blocks where pfs and pnfs are the number
of blocks in the fully-summed and non fully-summed parts, respectively. Algorithm 5.1
describes the LDLT full-rank factorization of a frontal matrix. The Factor+Solve step is
essentially equivalent to the operation in Equation (2.16a) except that it takes advantage
of the symmetry and uses a Bunch-Kaufman type of pivoting in order to preserve it; this
operation is based on Level-2 BLAS operations and thus is not very efficient. Note that, if
pivoting is not done or restricted to the diagonal block, this step can be split into distinct
operations, one that factorizes the diagonal block and others that update the sub-diagonal
blocks by means of triangular solve operations; these last can be done using Level-3 BLAS
routines are, thus, are very efficient.

In order to take advantage of low-rank approximations, the blocks of the frontal matrix
have to be compressed. This does not necessarily have to be done before the factorization
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Algorithm 5.1 Frontal full-rank LDLT (Right-looking) factorization.
1: {Input: a p× p block frontal matrix F ; F = [Fi,j ]i=1:p,j=1:p; p = pfs + pnfs }
2: for k = 1 to pfs do
3: Factor+Solve: Fk:p,k ← Lk:p,kDk,kLT

k,k

4: for i = k + 1 to p do
5: for j = k + 1 to i do
6: Update: Fi,j ← Fi,j − Fi,kFj,k

7: end for
8: end for
9: end for

starts but Compress operations can be interleaved with Factor, Solve and Update ones;
depending on when the compress operations are done, different variants can be defined.
In the following sections we describe some of them but for a complete taxonomy of all the
BLR factorization variants we refer the reader to the PhD thesis of Mary [125].

5.3.3.1 The FSCU and UFSC variants

The objective of this variant, introduced by Amestoy et al. [J4] is to preserve the ability
to perform pivoting as is done in Algorithm 5.1, which implies that the Factor and Solve
operations have to be fused together; therefore, a block cannot be compressed until the
panel it belongs to is reduced. The name FSCU results from the order in which oper-
ations are done, i.e., Factor+Solve, Compress and Update. This variant is illustrated in
Algorithm 5.2. In this variant, the only operation to benefit from the low-rank approxima-
tion is the Update one, while the Factor+Solve is still done in full-rank. It must be noted
that, the C̃

(k)
i,j block is actually full-rank if both Fi,k and Fj,k are and low-rank otherwise.

In the latter case it must be decompressed by means of an outer product operation in
order to be summed to the Fi,j block. This also holds for the other variants presented
below but, as discussed by Mary [125], it is possible to conceive alternatives where the
block being updated is already compressed and thus the outer product (and the associated
cost) unnecessary.

The UFSC variant is the left-looking equivalent of the FSCU one and is presented
in Algorithm 5.3. These two variants are mathematically equivalent but the left-looking
one has a different data access pattern which makes it possible to use the LUAR tech-
nique described in Section 5.3.3.3 and allows for achieving better performance as shown
in Section 5.5.

As explained above, the FSCU variant, as well as the UFSC one, are designed to be
compatible with the Delayed pivoting technique described in Section 2.2.3.2. In these
variants, pivoting is performed in the panel reduction, i.e., the Factor+Solve operation. A
pivot can only be chosen within the diagonal BLR block using a threshold partial pivoting
technique but its quality is checked against all the coefficients in the column. If no more
satisfactory pivots can be found before the panel reduction is finished, the uneliminated
pivots are merged to the following BLR panel, if any, or delayed to the parent front,
as explained in Section 2.2.3.2. This is illustrated in Figure 5.10. A consequence of
postponing rows and columns from one BLR panel to the next is that the defined frontal
matrix blocking is not respected anymore, which may have an impact on the effectiveness
of the low-rank approximations.

A second consequence of postponing pivots is that, within a front, BLR blocks be-
come unaligned with respect to previously eliminated ones. This raises an issue when a
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Algorithm 5.2 Frontal BLR LDLT (Right-looking) factorization: standard FSCU vari-
ant.

1: {Input: a p× p block frontal matrix F ; F = [Fi,j ]i=1:p,j=1:p; p = pfs + pnfs }
2: for k = 1 to pfs do
3: Factor+Solve: Fk:p,k ← Lk:p,kDk,kLT

k,k

4: for i = k + 1 to p do
5: Compress: Fi,k ≈ F̃i,k = Xi,kY T

i,k

6: end for
7: for i = k + 1 to p do
8: for j = k + 1 to i do
9: Update Fi,j :

10: Inner Product: C̃
(k)
i,j ← Xi,k(Y T

i,kDk,kYj,k)XT
j,k

11: Outer Product: C
(k)
i,j ← C̃

(k)
i,j

12: Fi,j ← Fi,j − C
(k)
i,j

13: end for
14: end for
15: end for

Algorithm 5.3 Frontal BLR LDLT (Left-looking) factorization: UFSC variant.
1: {Input: a p× p block frontal matrix F ; F = [Fi,j ]i=1:p,j=1:p; p = pfs + pnfs }
2: for k = 1 to pfs do
3: for i = k to p do
4: for j = 1 to min(k − 1, pfs) do
5: Update: Fi,k :
6: Inner Product: C̃

(j)
i,k ← Xi,j(Y T

i,jDj,jYk,j)XT
k,j

7: Outer Product: C
(j)
i,k ← C̃

(j)
i,k

8: Fi,k ← Fi,k − C
(j)
i,k

9: end for
10: end for
11: Factor+Solve: Fk:p,k ← Lk:p,kDk,kLT

k,k

12: for i = k + 1 to p do
13: Compress: Fi,k ≈ F̃i,k = Xi,kY T

i,k

14: end for
15: end for

LAPACK-style pivoting is used as in Equation (2.2) or Algorithm 2.2 where the swap op-
erations also concern the submatrix left to the panel being factorized. Indeed, this implies
that rows belonging to different compressed blocks may have to be swapped. Mary [125]
proposes two different techniques for dealing with this issue.

5.3.3.2 The UFCS variant with restricted pivoting

For many real-life problems, a practically stable solution can be obtained even if pivoting
is restricted to a smaller area of the current panel, such as the BLR diagonal block,
or completely avoided. Without the need for pivoting the Factor and Solve operations
need not be fused: the Factor operation only reduces the diagonal block (possibly with
pivoting) and is followed by a sequence of Solve operations that concern the subdiagonal
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current
panel

next panel
(size has increased)

CB

Figure 5.10: BLR factorization with numerical pivoting scheme. Postponed pivots after
the elimination of the current panel are in red; they are merged with the next panel, whose
size increases.

blocks. This has a twofold advantage. First the subdiagonal blocks can be compressed
prior to the Solve operations, thereby reducing their cost; second, these can be done using
Level-3 BLAS operations which ultimately results in better performance. Note that this
last advantage also applies to the standard full-rank factorization.

The resulting variant, called UFCS, is illustrated in Algorithm 5.4. In Section 5.4 we
will show that this variant achieves better asymptotic complexity than the ones in the
previous section thanks to the reduced complexity of the Solve operations. In Section 5.5
we will show that this variant can also improve performance thanks to the higher efficiency
of the Level-3 BLAS operations.

It must be noted that, in this variant, more operations (specifically, the Solve ones) are
done in low-rank with respect to the FSCU and UFSC ones. This may lead to an additional
loss of accuracy of the solver, as speculated by Amestoy et al. [J4] and Weisbecker [159].
Our experimental results in Section 5.5 show only a moderate effect on the scaled residual
for a number of real-life problems, though.

Mary [125] proposes a variant, called UCFS, that can perform pivoting even if subdi-
agonal blocks are compressed before the solve operation. He presents experimental results
on a number of real-life problems showing that this variant is comparable to the FSCU
and UFSC ones in terms of stability while achieving the same complexity ah the UFCS
one.

5.3.3.3 LUAR

One of the limiting factors of the previously presented variants is the outer product oper-
ation which is needed to decompress a low-rank update in order to sum it to a full-rank
block. The LUAR (Low-rank Update Accumulation and Recompression) technique allows
for reducing the cost of the outer product and improve its efficiency. By this technique,
which can only be applied to left-looking variants, lines (4-9) of Algorithm 5.3 and lines
(4-9) of Algorithm 5.4 are replaced by Algorithm 5.5

LUAR consists in accumulating the update matrices C̃
(j)
ik together, as shown on line 5

of Algorithm 5.5:

C̃
(acc)
ik := C̃

(acc)
ik + C̃

(j)
ik
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Algorithm 5.4 Frontal BLR LDLT (Left-looking) factorization: UFCS variant.
1: {Input: a p× p block frontal matrix F ; F = [Fi,j ]i=1:p,j=1:p; p = pfs + pnfs }
2: for k = 1 to pfs do
3: for i = k to p do
4: for j = 1 to min(k − 1, pfs) do
5: Update: Fi,k :
6: Inner Product: C̃

(j)
i,k ← Xi,j(Y T

i,jDj,jYk,j)XT
k,j

7: Outer Product: C
(j)
i,k ← C̃

(j)
i,k

8: Fi,k ← Fi,k − C
(j)
i,k

9: end for
10: end for
11: Factor: Fk,k ← Lk,kDk,kLT

k,k

12: for i = k + 1 to p do
13: Compress: Fi,k ≈ F̃i,k = Xi,kY T

i,k

14: end for
15: for i = k + 1 to p do
16: Solve: F̃i,k ← F̃i,kL−T

k,k D−1
k,k = Xi,k(Y T

i,kL−T
k,k D−1

k,k)
17: end for
18: end for

Algorithm 5.5 LUAR-Update step.
1: {Input: a block Fi,k to be updated.}
2: Initialize C̃

(acc)
i,k to zero

3: for j = 1 to min(k − 1, pfs) do
4: Inner Product: C̃

(j)
i,k ← Xi,j(Y T

i,jDj,jYk,j)XT
k,j

5: Accumulate update: C̃
(acc)
i,k ← C̃

(acc)
i,k + C̃

(j)
i,k

6: C̃
(acc)
i,k ← Recompress(C̃(acc)

i,k )
7: end for
8: Outer Product: C

(j)
i,k ← C̃

(j)
i,k

9: Fi,k ← Fi,k − C
(acc)
i,k

Note that in the previous equation, the + sign denotes a low-rank sum operation. Specif-
ically, if we note A = C

(acc)
ik and B = C

(j)
ik , then

B̃ = C̃
(j)
ik = Xij(Y T

ij DjjYjk)XT
jk = XBCBY T

B

with XB = Xij , CB = Y T
ij DjjYkj , and YB = Xkj . Similarly, Ã = C̃

(acc)
ik = XACAY T

A .
Then the low-rank sum operation is defined by:

Ã + B̃ = XACAY T
A + XBCBY T

B = (XA XB)
(

CA

CB

)
(YA YB)T = XSCSY T

S = S̃

where S̃ is a low-rank approximant of S = A + B.
Accumulated updates can, optionally, be recompressed in order to reduce the com-

plexity of the outer product. Many different strategies are possible to recompress the
accumulated updates as discussed by Mary [125] and Anton et al. [21]; in the rest of this
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document and, especially, in the experimental results of Sections 5.4 and 5.5 we will as-
sume that this is achieved by recompressing only the middle block CS (see Figure 5.11) as
this is the strategy that captures most of the recompression potential with an acceptable
overhead:

Ã + B̃ =XSCSY T
S ≈ XSXCS

Y T
CS

Y T
S = X̂SŶ T

S ,

C̃S =XCS
Y T

CS
, X̂S = XSXCS

, ŶS = YSYCS
.

XS

CS

Y T
S

XS

C̃S

Y T
S

XCS

Y T
CS

X̂S

Ŷ T
S

Figure 5.11: Low-rank Updates Accumulation.

LUAR has a twofold advantage. First, it improves the granularity of the outer product
operation, especially in the case where the recompression is not done because, in essence,
multiple outer products are done with a single kernel; this will be discussed and illustrated
by means of experimental results in Section 5.5. Second, when recompression is done, it
reduces the complexity of the outer product operation which yield a reduction of the
overall complexity of the multifrontal factorization; this will be analyzed theoretically in
Section 5.4 and assessed experimentally.

5.3.3.4 Compression of the contribution block

It must be noted that upon completion of Algorithms 5.2, 5.3 and 5.4, the contribu-
tion block is left uncompressed, i.e., in full-rank form. This, however, does not have to
be the case because the contribution block can be compressed exactly the same as the
fully-summed part of a frontal matrix. This can easily be achieved by appending to Al-
gorithms 5.2, 5.3 and 5.4 a doubly-nested loop that sweeps over all the blocks of the BLR
contribution block and compresses them one by one. As explained in Section 5.3.2, com-
pressing the contribution block does not necessarily imply that the assembly operations
are done in low-rank because it can be decompressed (either block-by-block or all at once)
prior to being assembled into the parent front.

Compressing the contribution block has a number of consequences:

1. Unless in a fully-structured factorization variant, the overall number of floating-
point operations is not decreased but, rather, increased. This is because compression
clearly has a cost but, once compressed, the contribution block is not used in other
operations apart from assemblies. If these are done in full-rank, decompression
implies an additional cost; if, instead, they are done in low-rank (as in a fully-
structured solver) the overhead may be even higher due to the padding of BLR
blocks (see Section 5.3.2).

2. Memory consumption is reduced. Although a contribution block is a temporary data
that is discarded after being assembled into the parent front, its storage can consume
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a large amount of memory. Actually, as explained in Chapter 4, the memory used
to store all the contribution blocks – the so called active memory (see Chapter 4
for a more accurate definition) – can represent a large fraction of the total memory
consumption in a sequential execution, can become dominant in a parallel execution
or can even be the totality of the memory consumption in an Out-Of-Core [2] ex-
ecution. Therefore, compressing the contribution block is the only effective way of
reducing the memory footprint of a multifrontal solver.

3. Communications are reduced in a distributed memory, parallel setting. Compress-
ing the fully-summed part reduces the total volume of communications associated
with the factorization of frontal matrices. Assembly operations also involve commu-
nications if a front and its parent are not mapped on the same process. Mary [125]
showed that these communications can become dominant and harm the scalability.
Compressing the contribution block allows for reducing these communications.

4. A for the execution time, this is clearly increased in a serial or shared-memory
parallel execution because of point 1) above but in a distributed-memory parallel
setting it can be decreased because of a lower volume of communications as explained
in the previous point.

In the remainder of this work we will assume that the contribution block is not com-
pressed.

5.3.4 Experimental results on applications
In this section, we evaluate the effectiveness of the BLR approximations on two real-life
applications.

The use of the BLR format through the techniques presented in the previous section
was integrated in the MUMPS [13] parallel, multifrontal solver. Note, however, that low-
rank approximations are not applied to the smallest frontal matrices where the compres-
sion overhead exceeds the actual benefits brought by the LR format. In the BLR-based
version, distributed memory parallelism is achieved as is the standard, full-rank (FR),
MUMPS solver with the exception that messages exchanged during the factorization of
each front are reduced thanks to the low-rank data compression. Note that in the code
used for the experiments reported in this section, the contribution block is not compressed
and, therefore, the volume of messages related to the assembly of fronts is not reduced.
For a thorough discussion of this issue, please refer to Mary’s PhD thesis [125]. As for
shared memory parallelism, the FR MUMPS code heavily relies on multithreaded BLAS
routines; this approach is not suited to the BLR factorization due to the small granularity
of the compressed blocks. Therefore, multithreading is achieved by parallelizing the loops
on lines 4 and 7 of the FSCU factorization in Algorithm 5.2; more details on this will be
provided in Section 5.5.

The BLR factorization variant used for these experiments is the FSCU; the details of
a full-featured, distributed memory parallel implementation of the other variants can be
found in the PhD thesis of Mary [125].

5.3.4.1 3D frequency-domain Full Waveform Inversion

This section discusses the use of a BLR multifrontal solver in 3D seismic modeling by
means of frequency-domain Full Waveform Inversion (FWI) [151]; this evaluation was
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conducted in collaboration with the SEISCOPE consortium1. Although this method is
now routinely used in the oil industry as part of the seismic imaging work-flow, it remains
a computational challenge due to the huge number of full-waveform seismic modelings to
be performed over the iterations of the FWI optimization. In our case, both seismic mod-
eling and FWI are performed in the frequency domain [156]. Solving the time-harmonic
wave equation is a stationary boundary-value problem which requires to solve a large and
sparse complex-valued system of linear equations with multiple right-hand sides per fre-
quency [122]. The sparse right-hand sides of these systems are the seismic sources, the
solutions are monochromatic wavefields and the coefficients of the so-called impedance
matrix depend on the frequency and the subsurface properties we want to image. Process-
ing a large number of right-hand sides leads us naturally toward direct solvers because the
computation of the solutions by forward/backward substitutions is quite efficient once a
LU factorization of the impedance matrix has been performed.

In the following analysis, the subsurface target (the Valhall oil field located in the
North Sea in a shallow water environment) and the dataset are the same as in the work
by Operto et al. [130]. For the details of the 3D visco-acoustic equation, instead, we refer
the reader to the paper by Amestoy et al. [J3] from where this section was extracted. This
leads to the three matrices 5Hz, 7Hz and 10Hz reported in Appendix A.1, Table A.2.
For each of these matrices 4604 right-hand sides were used. The following results were
measured on the licallo machine described in Appendix A.2. For each node we used
two MPI processes, each using ten cores by means of multithreading. For the 5Hz, 7Hz
and 10Hz matrices we used 12, 16 and 32 nodes for a total of 240, 320 and 680 cores,
respectively. Computations are done is single precision, complex arithmetic. A resume of
the experimental setting is provided in Table 5.2.

Freq. (Hz) h(m) Grid dimensions npml #u #n #MPI #th #c #rhs

5 70 66× 130× 230 8 2.9 12 24 10 240 4604
7 50 92× 181× 321 8 7.2 16 32 10 320 4604
10 35 131× 258× 458 4 17.4 34 68 10 680 4604

Table 5.2: North Sea case study. Problem size and computational resources. h(m): grid
interval. npml : number of grid points in absorbing perfectly-matched layers. #u(106):
number of unknowns. #n: number of computer nodes. #MPI: number of MPI process.
#th: number of threads per MPI process. #c: number of cores. #rhs: number of
right-hand sides processed per FWI gradient.

First, we show the nature of the errors introduced in the wavefield solutions by the
BLR approximation. Figure 5.12(a) shows a 5Hz monochromatic common-receiver gather
computed with the FR solver in the FWI models obtained after the inversions. Fig-
ure 5.12(b-d) show the differences between the common-receiver gathers computed with
the FR solver and those computed with the BLR solver using ε = 10−5, ε = 10−4 and
ε = 10−3 (the same subsurface model is used to perform the FR and the BLR simulations).
These differences are shown after multiplication by a factor 10. A direct comparison be-
tween the FR and the BLR solutions along a shot profile intersecting the receiver position
is also shown in Figure 5.12(e-g). Similar figures can be drawn for the 7Hz and 10Hz
problems.

1https://seiscope2.osug.fr
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Table 5.3 reports the ratio between the scaled residual obtained with the BLR and the
full-rank (FR) solver where the scaled residual is given by δ = ∥Ahp̃h−b∥∞

∥Ah∥∞∥p̃h∥∞
and p̃h denotes

the computed solution.
Three conclusions can be drawn for this case study: for the used values of ε the

magnitude of the errors generated by the BLR approximation relative to the reference
full-rank solutions is small. Second, these relative errors mainly concern the amplitude of
the wavefields, not the phase. Third, for a given value of ε, the magnitude of the errors
δBLR/δFR decreases with frequency as shown by the results in Table 5.3. From these
results and from an analysis of the overall FWI ones [J3], it can concluded that a BLR
threshold of 10−3 produces satisfactory results.

F(Hz)/h(m) δ(FR) δ(BLR, ε = 10−5) δ(BLR, ε = 10−4) δ(BLR, ε = 10−3)

5Hz/70m 2.3× 10−7 (1) 4.6× 10−6 (20) 6.7× 10−5 (291) 5.3× 10−4 (2292)
7Hz/50m 7.5× 10−7 (1) 4.6× 10−6 (6) 6.9× 10−5 (92) 7.5× 10−4 (1000)
10Hz/35m 1.3× 10−6 (1) 2.9× 10−6 (2.3) 3.0× 10−5 (23) 4.3× 10−4 (331)

Table 5.3: North Sea case study. Modeling error introduced by BLR for different low-
rank threshold ε and different frequencies F . δ: scaled residuals defined as ∥Ahp̃h−b∥∞

∥Ah∥∞∥p̃h∥∞
,

for b being for one of the RHSs in B. The number between bracket is δBLR/δFR. Note
that, for a given ε, this ratio decreases as frequency increases.

Table 5.4 shows the details of the computational savings provided by te BLR ap-
proximation techniques. Compared to the FR factorization, when the BLR solver (with
ε = 10−3) is used, the number of flops for the factorization (field FLU in the table) de-
creases by a factor 8, 10.7 and 13.3 for the 5Hz, 7Hz and 10Hz frequencies, respectively.
Moreover, the LU factorization time is decreased by a factor 1.9, 2.7 and 2.7 (field TLU

in Table 5.4). The time reduction achieved by the BLR solver tends to increase with the
frequency. The elapsed time to perform the FWI is provided for each grid in Table 5.4.
The entire FWI application takes 49hr, 40hr, 36hr and 37.8hr with the FR solver and the
BLR solver with ε = 10−5, ε = 10−4 and ε = 10−3, respectively.

We conclude from this analysis that, for this case study, the BLR solver with ε = 10−4

provides the best FWI time. At the 7Hz and 10Hz frequencies, the BLR solver with
ε = 10−3 provides the smaller computational cost without impacting the quality of the
FWI results.

It must be noted that the implementation used for these tests does not take advantage
of the BLR format in the solve phase whose computational cost is relatively high due to
the high number of right-hand sides. Mary [125] provides indications of the potential time
reductions that can be achieved with a BLR-based solve operation.

Finally, in Figure 5.13, we provide a strong scalability analysis of both the FR and
BLR factorizations with the FSCU variant. These experiments were run on the eos
supercomputer (see Appendix A.2) which has similar characteristics than the licallo
machine. We use the 10Hz matrix on an increasing number of nodes (from 30, the minimal
number for the problem to fit in-core, to 90, the maximal number available). The number
of threads is fixed to 10 per node. While both FR and BLR scale reasonably well and
the ratio between FR and BLR factorization times is relatively stable, the FR strong
scalability is clearly better than the BLR one. This can be ascribed to a number of issues.
For example, this can be due to the fact that the relative weight of communications is
higher in BLR than in FR; this issue is particularly important in these tests because the
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Figure 5.12: North Sea case study. BLR modeling errors. (a) 5Hz receiver gather (real
part) computed with the FR solver. (b) Difference between the receiver gathers computed
with the BLR (ε = 10−5) and the FR (a) solvers. (c) Same as (b) for ε = 10−4. (d)
Same as (b) for ε = 10−3. Residual wavefields in (b-d) are multiplied by a factor 10 before
plot. The FR wavefield (a) and the residual wavefields after multiplication by a factor 10
(b-d) are plotted with the same amplitude scale defined by a percentage of clip equal to
85 of the FR-wavefield amplitudes (a). (e-g) Direct comparison between the wavefields
computed with the FR solver (dark gray) and the BLR solver (light gray) for ε = 10−5

(e), ε = 10−4 (f), ε = 10−3 (g) along a X profile intersecting the receiver position (dash
line in (a)). The difference is shown by the thin black line. Amplitudes are scaled by a
linear gain with offset.
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F(Hz)/h(m) ε FLU (×1012) TLU (s) TFWI (hr)
FR 66 (1.0) 78 (1.0) 14.0

5Hz/70m 10−5 17 (3.8) 48 (1.6) 12.9
(240 cores) 10−4 12 (5.3) 46 (1.7) 12.7

10−3 8 (8.0) 41 (1.9) 14.0
FR 410 (1.0) 322 (1.0) 14.5

7Hz/50m 10−5 90 (4.5) 157 (2.1) 12.0
(320 cores) 10−4 63 (6.5) 136 (2.4) 9.1

10−3 38 (10.7) 121 (2.7) 9.0
FR 2600 (1.0) 1153 (1.0) 20.7

10Hz/35m 10−5 520 (4.9) 503 (2.3) 14.5
(680 cores) 10−4 340 (7.5) 442 (2.6) 14.2

10−3 190 (13.3) 424 (2.7) 14.8

Table 5.4: North Sea case study. Computational savings provided by the BLR solver
during the factorization step. Factor of improvement due to BLR is indicated between
parenthesis. The elapsed times required to perform the multi-rhs substitution step and
to compute the gradient are also provided. FLU : flops for the LU factorization. TLU (s):
elapsed time for the LU factorization. TFWI : the overall FWI time.

CBs are not compressed and, thus, the volume of messages related to the assembly of front
is not reduced. Moreover, because the BLR compression rate cannot be estimated prior to
the actual factorization, the workload mapping is based of full-rank estimates which can
be very inaccurate and lead to a load imbalance. Mary [125] provides a detailed analysis
of these issues (and more) and proposes methods to overcome them.

Number of MPIs x Number of cores
30x10 45x10 60x10 75x10 90x10

T
im

e 
(s

)

250

500

1000

2000
FR
BLR

(a) Strong scalability figure. Dashed lines represent
ideal scalability.

30 × 10 45 × 10 60 × 10 75 × 10 90 × 10

FR 1257.2 874.8 722.5 667.2 617.0
BLR 366.6 281.5 258.0 242.3 231.2
ratio 3.4 3.1 2.8 2.8 2.7

(b) Associated table.

Figure 5.13: Strong scalability of the FR and BLR factorizations (10Hz matrix).
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5.3.4.2 3D Controlled-source Electromagnetic inversion

Our second application is marine Controlled-Source ElectroMagnetic (CSEM) surveying
which is a widely used method for detecting hydrocarbon reservoirs and other resistive
structures embedded in conductive formations [51, 70, 106]; the analysis reported in this
section was achieved in collaboration with the EMGS company2. The conventional method
uses a high powered electric dipole as a current source, which excites low-frequency (0.1-
10 Hz) EM fields in the surrounding media, and the responses are recorded by electric
and magnetic seabed receivers. In an industrial CSEM survey, data from a few hundred
receivers and thousands of source positions are inverted to produce a 3D distribution of
subsurface resistivity.

In order to invert and interpret the recorded EM fields, a key requirement is to have an
efficient 3D EM modeling algorithm. Common approaches for numerical modeling of the
EM fields include the finite-difference (FD), finite-volume (FV), finite-element (FE) and
integral equation methods. In the frequency domain, these methods reduce the governing
Maxwell equations to a system of linear equations Mx = s for each frequency, where M is
the system matrix defined by the medium properties and grid discretization, x is a vector
of unknown EM fields, and s represents the current source and boundary conditions. For
the FD, FV and FE methods, the system matrix M is sparse, and hence the corresponding
linear system can be efficiently solved using sparse iterative or direct solvers. Note that,
because may sources are used, the M matrix has to be solved against multiple right-hand
sides which, as in the case of the application discussed in the previous section, suggests
that iterative methods may behave well.

In all simulations the system matrix was generated using the finite-difference modeling
code presented by Jaysaval et al. [104]. The simulations were carried out on either the
eos supercomputer or the farad machine (see Appendix A.2).

Two different models were used for this analysis. The first, referred to as H-model is a
simple, synthetic model, whereas the second, referred to as the S-model, is the SEAM (SEG
Advanced Modeling Program) Phase I salt resistivity model representative of the geology
in the Gulf of Mexico. It is a complex 3D earth model designed by the hydrocarbon
exploration community and widely used to test 3D modeling and inversion algorithms.
This lead to the generation of four matrices, namely the H3, H17 (for the H-model)
and S3, S21 (for the S-model) reported in Table A.2. Computations are done in double
precision, complex arithmetic.

For the details of the equations, the discretization approach and the models used in
this study, we refer the reader to the paper by Shantsev et al. [J20], from where this
section was extracted.

First, we investigate the accuracy of the BLR solution xε for different values of ε and
analyze the spatial distribution of the solution error. The error is defined as the relative
difference between the BLR solutions xε and the full-rank solution x :

ξm,i,j,k =

√√√√√ |xε
m,i,j,k − xm,i,j,k|2(

|xε
m,i,j,k|2 + |xm,i,j,k|2

)
/2 + η2

, (5.3)

for m = x, y and z; i ∈ [1; Nx], j ∈ [1; Ny], and k ∈ [1; Nz]. Here, xm,i,j,k represents the
m-component of the electric field at the (i, j, k)-th node of the grid, while η = 10−16 V/m
represents the ambient noise level. Figure 5.14 shows 3D maps of the relative difference
ξx,i,j,k between xε and x for the x-component of the electric field for matrix H3. In all

2http://www.emgs.com/
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maps, the relative error in the air is orders of magnitude larger than in the water or
formation. Fortunately, large errors in the air do not create a problem in most practical
CSEM applications. For marine CSEM inversion one needs very high accuracy for the
computation of the EM fields at the seabed receivers (to compare them to the measured
data), as well as reasonably accurate fields in the whole inversion domain (to compute
the corresponding Jacobians and/or gradients). However, one never inverts for the air
resistivity, hence we can exclude the air from the analysis and focus on the solution errors
only in the water and the earth. One can see from Figure 5.14 that for the smallest low-
rank threshold, ε = 10−10, the relative error ξx,i,j,k in water and formation is negligible
(≈ 10−4), but it increases for larger ε, and for ε = 10−8 and 10−7 reaches 1−2% at depth,
though it remains negligible close to the seabed and at shallow depths. For ε = 10−6

the error exceeds 10% in the deeper part of the model, implying that the BLR solution
xε obtained with ε = 10−6 is of poor quality. At the same time, solutions obtained with
ε ≤ 10−7 are accurate enough and can be considered appropriate for CSEM modeling and
inversion.

Next, we turn our attention to the gains provided by the BLR multifrontal factorization
to the CSEM inversion. We consider the inversion of synthetic CSEM data over the S-
model. We assume that ns = 3300 horizontal electric dipole (HED) sources are used and
nr = 121 receivers are used to record simulated responses and the model is discretized
with grid 181× 160× 237 which results in system matrix S21 with 20.6 million unknowns.
The frequency is 0.25 Hz.

To invert the CSEM responses with the above acquisition parameters, we consider
two inversion schemes: (1) a quasi-Newton inversion scheme and (2) a Gauss-Newton
inversion scheme. An inversion based on the Gauss-Newton scheme converges faster and
is less dependent on the starting model as compared to the quasi-Newton inversion, but
this comes at the cost of increased computational complexity. We refer to Habashy et
al. [92] for a detailed discussion of the theoretical differences between the two inversion
schemes. One key difference is the number of RHSs that needs to be handled at each
inversion iteration. For the quasi-Newton scheme it scales with the number of receivers
nr, while in the Gauss-Newton scheme one should include computations also for all source
shot points ns. In a typical marine CSEM survey one has ns ≫ nr, hence the number
of RHSs required by the Gauss-Newton scheme is much larger than that by the quasi-
Newton scheme. For the chosen example based on the SEAM model, the quasi-Newton
and Gauss-Newton schemes require 968 and 3784 RHSs per inversion iteration for one
frequency, respectively.

In Table 5.5, we report the time for the complete resolution (analysis, factorization, and
forward and backward substitutions for all RHSs) using the FR and BLR solvers on the
eos supercomputer using 90 MPI × 10 threads setting and ParMETIS [105] for ordering.
For comparison, time estimates for an iterative solver are also presented. This iterative
solver was developed following the ideas of Mulder [129]: a complex biconjugate-gradient-
type solver, BICGStab(2) [91, 155] is used in combination with a multigrid preconditioner
and a block Gauss-Seidel type smoother.

The first two rows of Table 5.5 show the result reported in Shantsev et al. [J20], which
were obtained with MUMPS 5.0; in the case of the BLR solver, the factorization is using
the FSCU variant and the solution phase is still performed in FR. While the BLR solver
already showed potential to accelerate the factorization, the overall BLR solver remained
2.5 and 1.5 times slower than the iterative one, using the quasi-Newton and Gauss-Newton
schemes, respectively.

Since then, many improvements have been made to both the FR and BLR solvers.
The last two rows of Table 5.5 show the new results, obtained with the development
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5.3. BLR multifrontal

Figure 5.14: Relative difference between the BLR solution xε for different low-rank thresh-
olds ε, and the FR solution x for a linear system corresponding to matrix H3. For ε = 10−7,
the solution accuracy is acceptable everywhere except in the air layer at the top. The re-
sults are for the x-component of the electric field. The air and PML layers are not to
scale.
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Version Inversion scheme FR solver BLR solver (ε = 10−7) Iterative
(number of RHSs) Ta Tf Ts Ttotal Ta Tf Ts Ttotal solver

Old Quasi-Newton (968) 87 2803 965 3856 103 1113 965 2181 803
Gauss-Newton (3784) 87 2803 3772 6663 103 1113 3772 4988 3141

New Quasi-Newton (968) 87 1254 329 1670 103 232 301 636 803
Gauss-Newton (3784) 87 1254 1287 2628 103 232 1177 1512 3141

Table 5.5: Run times for the FR and BLR direct solvers on the eos supercomputer and
for a multigrid preconditioned iterative solver to perform CSEM simulations. On top,
the old results presented in Shantsev et al. [J20] (based on MUMPS 5.0 and using the
FSCU BLR variant); at the bottom the new ones (MUMPS development version, using
the UFCS+LUAR BLR variant, and a preliminary version of the BLR solution phase).
We consider two different inversion schemes applied to CSEM data over the SEAM model:
a quasi-Newton scheme with 968 RHSs and a Gauss-Newton scheme with 3784 RHSs. The
simulations are carried out for the system matrix S21 using 900 computational cores. For
the direct solvers, Ta is the analysis time, Tf is the factorization time, Ts is the solve
time (for forward-backward substitutions for all RHSs), and Ttotal is the total time, all
measured in seconds.

version of MUMPS. Both the factorization and solution phases of the FR solver have
been accelerated although the solve solve phase is still carried in full-rank; moreover, the
gains due to the BLR solver are higher due to the use of the improved UFCS+LUAR
factorization variant presented in this thesis; a preliminary version of the BLR solution
phase is also used to provide a moderate speedup with respect to the FR solver. With
these improvements, the BLR solver achieves moderate gains with respect to the iterative
solver using the quasi-Newton scheme, and outperforms it by a factor over 2 using the
Gauss-Newton scheme.

These new results show the suitability of BLR solvers for CSEM inversion, as they
start to become more attractive than iterative solvers for 800 or more RHSs.

5.4 Complexity of the BLR multifrontal factorization
In this section we develop a theoretical analysis of the complexity (both in terms of
floating-point operations and size of factors) of dense and sparse matrices based on the
BLR format. This analysis is based on the work by Bebendorf et al. [35] which assumes
the use of the strong admissibility condition. Hackbusch et al. [93], however, show that
using the weak block-admissibility condition instead leads to a smaller constant in the
complexity estimates. The extension to the weak admissibility condition in the BLR case
is out of the scope of our work.

In the following, when referring to the BLR case, we simplify the notation S(I × I)
to S(I), as in most cases we do not need a different partitioning of the row and column
variables.

5.4.1 FE discretization of elliptic PDEs
We consider a Partial Differential Equation of the form:

Lu = f in Ω ⊂ Rd, Ω convex , d ≥ 2 (5.4)
u = g on ∂Ω
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where L is a uniformly elliptic operator in divergence form:

Lu = −div[C∇u + c1u] + c2 · ∇u + c3u

C is a d × d matrix of functions, such that ∀x, C(x) ∈ Rd×d is symmetric positive
definite with entries cij ∈ L∞(Ω). Furthermore, c1(x), c2(x) ∈ Rd and c3(x) ∈ R.

We consider the resolution of problem 5.4 by the Finite Element (FE) method. Let
D = H1

0 (Ω) be the domain of definition of operator L. We consider a FE discretization,
with step size h, that defines the associated approximation of D, the space Dh. Let
n = Nd = dimDh be its dimension and {φi}i∈I the basis functions, with I = [1, n] the
index set. Similarly as in the work of Bebendorf et al. [35], we assume that a quasi-uniform
and shape-regular triangulation is used. We define Xi, the support of φi, and generalize
the definition of support to subdomains:

Xσ =
∪
i∈σ

Xi

We note J the bijection defined by:

J : Rn → Dh

x 7→
∑

i∈I xiφi

To compute an approximated solution of Equation 5.4, we solve the discretized prob-
lem Ax = b where A is the stiffness matrix defined by A = J∗LJ . We assume that this
linear system of equations is solved using the multifrontal method to factorize A. We also
define B = J∗L−1J and M = J∗J . B is the Galerkin discretization of L−1 and M the
mass matrix.

A matrix of the form

S = AΨΨ −AΨΦA−1
ΦΦAΦΨ (5.5)

for some Φ, Ψ ⊂ I such that Φ ∪ Ψ = I is called a Schur complement of A. One of the
main results of Bebendorf [34], Section 3) states that the Schur complements of A can be
approximated if an approximant of the inverse stiffness matrix A−1 is known.

Therefore, we are interested in finding Ã−1, approximant of the inverse stiffness matrix
A−1. The following result from FE theory will be used ([35], Subsection 5.2): the dis-
cretization of the inverse of the operator is approximated by the inverse of the discretized
operator, i.e.,

∥A−1 −M−1BM−1∥2 ≤ O(εh) (5.6)

where εh is the accuracy associated with the step size h of the FE discretization. In the
following, for the sake of simplicity, we assume that the low-rank threshold ε is set to be
equal to εh.

Then, assuming we can find M̃−1 and B̃, approximants of the inverse mass matrix
M−1 and of the B matrix, we have ([35], Subsection 5.3):

M−1BM−1 − M̃−1B̃M̃−1 = (M−1 − M̃−1)BM−1

+ M̃−1(B − B̃)M−1 + M̃−1B̃(M−1 − M̃−1) (5.7)

Thus M−1BM−1 can be approximated by M̃−1B̃M̃−1 and therefore so can A−1.
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5.4.2 From Hierarchical to BLR bounds
The existence of H-matrix approximants of the Schur complements of A has been shown
by Bebendorf et al. [35] and Bebendorf [34]. In this section, we summarize the main ideas
of the proof and give the necessary ingredients to extend it to the BLR case. The reader
can refer to the work by Hackbusch & Bebendorf [33, 34, 35] for the details of the proof
for hierarchical matrices.

5.4.2.1 H-admissibility and properties

We assume that a H-matrix is built as described in Section 5.2.4.2 and, thus, its block-
partition is H-admissible as in Definition 5.10. We note H(S(I × I), r) the set of hierar-
chical matrices such that r is the maximal rank of the blocks defined by the admissible
partition S(I × I). We define the so-called sparsity constant:

csp = max
(

max
i

#{Ij ; Ii×Ij ∈ S(I × I)}, max
j

#{Ii; Ii×Ij ∈ S(I × I)}
)

(5.8)

where #E denotes the cardinality of a set E (we will use this notation from now on).
Thus, the sparsity constant is the maximum number of blocks of a given level in the block
cluster tree that are in the same row or column of the matrix.

Hackbusch & Bebendorf [33, 34, 35] prove that the Schur complements of A possess
H-approximants using 5.6.

They first establish that B and M−1 possess H-approximants ([35], Theorems 3.4 and
4.3). More precisely, they can be approximated with accuracy ε by H-matrices B̃ and
M̃−1 such that

B̃ ∈ H(S(I × I), rG) (5.9)
M̃−1 ∈ H(S(I × I), | log ε|d) (5.10)

where S(I × I) is an H-admissible partition and rG is the rank resulting from the ap-
proximation of the degenerate Green function’s kernel. rG can be shown to be small for
many problem classes [33, 35].

Then, the following H-arithmetics theorem is used.

Theorem 5.3 H-matrix product, Theorem 2.20 in Börm et al. [37].— Let H1
and H2 be two hierarchical matrices of order n, such that H1 ∈ H(S(I × I), r1) and
H2 ∈ H(S(I × I), r2). Then, their product is also a hierarchical matrix and it holds:

H1H2 ∈ H(S(I × I), csp max(r1, r2) log n)

In Theorem 5.3, csp is the sparsity constant, defined by 5.8.
Then, using the fact that rG > | log ε|d [35], and applying 5.6, 5.7, and Theorem 5.3,

it is established ([35], Theorem 5.4) that

Ã−1 ∈ H(S(I × I), rH), with rH = c2
sprG log2 n (5.11)

Furthermore, if an approximant Ã−1 exists, then for any Φ ⊂ I, an approximant of A−1
ΦΦ

must also exist, since AΦΦ is simply the restriction of A to the subdomain XΦ [34].
Thus, using 5.5, in combination to the fact that the stiffness matrix A can also be

approximated by Ã ∈ H(S(I ×I), O(1)), the existence of S̃, H-approximant of any Schur
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complement S of A, is guaranteed by 5.11 and it is shown [34] that the maximal rank of
the blocks of S̃ is rH, i.e.

S̃ ∈ H(S(I × I), rH) (5.12)

Finally, it can be shown that the complexity of factorizing an H-matrix of order m
and of maximal rank r is [35, 94]:

C(m) = O(c2
spr2m log2 m) (5.13)

Equation 5.13 relies on the assumption that the factorization is fully-structured, i.e.
the compressed form Ã of A is available at no cost.

To conclude, in the H case, applying 5.13 to the (dense) factorization of S̃ leads to a
cost which is almost linear when r = O(1) and almost in O(mN2) when r = O(N). As will
be explained in Section 5.4.4, both cases lead to near-linear complexity of the multifrontal
(sparse) factorization [163].

5.4.2.2 Why this result is not suitable to compute a complexity bound for
BLR

One might think that, since BLR is a specific type of H-matrix, the previous result can be
used to derive the complexity of the BLR factorization. However, the bound obtained by
simply applying H-matrix theory to BLR is useless because it is equivalent to bounding all
the ranks kε

ij by the same bound r, the maximal rank. The problem is that this necessarily
implies r = b, because there will always be some blocks of size b such that dist(Xσ, Xτ ) = 0
(i.e., non-admissible blocks, which will be considered full-rank). Thus, the best we can
say about a BLR matrix is that it belongs to H(S(I), b), which is obvious and overly
pessimistic.

In addition, with a BLR partitioning, the sparsity constant csp (defined by 5.8) is not
bounded, as it is equal to p = m/b. Thus, 5.13 leads to a factorization complexity bound
in O((m/b)2b2m log2 m) = O(m3 log2 m), even worse than the full-rank factorization.

5.4.2.3 BLR-admissibility and properties

To compute a meaningful complexity bound for BLR, we divide the BLR blocks into two
groups: the blocks who satisfy the block-admissibility condition (whose rank r can be
bounded by a meaningful bound), and those who do not, which we assume are left in full-
rank form. We show that the number of non-admissible blocks in A can be asymptotically
negligible, provided an appropriate partitioning S(I). This leads us to introduce the
notion of BLR-admissibility of a partition S(I), and we establish for such a partition a
bound on the maximal rank of the admissible blocks.

In the following, we note BA the set of admissible blocks. We also define

Nna = max
σ∈S(I)

#{τ ∈ S(I), σ × τ /∈ BA} (5.14)

the maximum number of non-admissible blocks on any row. Note that, because we have
assumed for simplicity that the row and column partitioning are the same, Nna is also the
maximum number of non-admissible blocks on any column.

We then recast the H-admissibility of a partition to the BLR uniform blocking. We
propose the following BLR-admissibility condition:

S(I) is admissible ⇔ Nna ≤ q (AdmBLR)
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5. Low-rank approximation techniques for sparse, direct solvers

where q is a positive constant. With AdmBLR, we want the number of blocks (on any
row or column) that are not admissible (and thus whose rank is not bounded by r), to be
itself bounded by q.

For example, if the least-restrictive strong block-admissibility condition Admlrs
b is used,

AdmBLR means that a partition is admissible if for any subdomain, its number of neighbors
(i.e. number of subdomains at distance zero) is smaller than q. The BLR-admissibility
condition is illustrated in Figure 5.15, where we have assumed that Admlrs

b is used for
simplicity. In Figure 5.15 (left), the vertical subdomain (in gray) is at distance zero of
O(m/b) blocks and thus Nna is not constant. In Figure 5.15 (right), the maximal number
of blocks at distance zero of any block is at most 9 and thus the partition is BLR-admissible
for q ≥ 9. Note that if a general strong admissibility condition Adms

b is used, the same
reasoning applies, as in Figure 5.15 (right), Nna only depends on η and d, which are both
constant.

We note BLR(S(I), r, q) the set of BLR matrices such that r is the maximal rank of
the admissible blocks defined by the BLR-admissible partition S(I).

b

m

b

m

Figure 5.15: Illustration of the BLR-admissibility condition. On the left an example of
a non-BLR-admissible partition. Here, the gray subdomain has Nna = O(m/b) ̸= O(1)
neighbors. On the right example of a BLR-admissible partition when q ≥ Nna = 9 = O(1),
the maximal number of neighbors of any block.

The following lemma, whose proof is provided by Amestoy et al. [J6], proves that a
BLR-admissible partitioning exist and can be obtained by refining a H-admissible one.

Lemma 5.1— Let S(I ×I) be a given H-partitioning and let S(I) be the corresponding
BLR partitioning obtained by refining the H one. Let us note N

(H)
na and N

(BLR)
na the value of

Nna for the H and BLR partitionings, respectively. Then: (a) Provided b ≥ cmin, it holds
N

(BLR)
na ≤ N

(H)
na ; (b) Under the assumption that S(I × I) is defined by a geometrically

balanced block cluster tree, it holds N
(H)
na = O(1).

In view of this lemma, we assume in the following that the partition S(I) is defined
by a geometrically balanced cluster tree and is thus admissible for q = Nna = O(1).

The next step is to find BLR approximants B̃ and M̃−1 of B and M−1, respectively,
that verify:

B̃ ∈ BLR(S(I), rG, Nna) (5.15)
M̃−1 ∈ BLR(S(I), 0, Nna) (5.16)

The construction of B̃ is the same for a BLR or anH-partitioning, and we can thus rely
on the work of Hackbusch and Bebendorf [35]. The main idea behind this construction

144



5.4. Complexity of the BLR multifrontal factorization

cmin

(a) Example of H-partitioning, with
N

(H)
na = 4 ≤ csp = 6 = O(1). Here, we have

assumed the bottom-left and top-right
blocks are non-admissible for illustrative
purposes.

b

(b) BLR refining of the H-partitioning
5.16(a). csp = O(m/b) is not bounded any-
more but N

(BLR)
na = 3 = O(1) remains con-

stant.

Figure 5.16: Illustration of Lemma 5.1 (proof of the boundedness of Nna).

is to exploit the decay property of Green functions. As shown by Hackbusch and Beben-
dorf ([35], Theorem 3.4), for any admissible block σ× τ ∈ BA, Bσ×τ can be approximated
by a low-rank matrix Bε

σ×τ of numerical rank less than rG.
Therefore, we construct B̃ ∈ BLR(S(I), rG, Nna) as follows

∀σ × τ ∈ S(I), B̃σ×τ =
{

Bε
σ×τ if σ × τ ∈ BA

Bσ×τ otherwise (5.17)

The construction of M̃−1 is also very similar to the one in Hackbusch & Bebendorf [35].
The main idea is that the inverse mass matrix asymptotically tends towards a block-
diagonal matrix. More precisely, it is shown that, for any block σ × τ ∈ S(I)2,

∥M−1
σ×τ∥ ≤ O(

√
#σ#τ c

2d√#σ#τ dist(Xσ ,Xτ ))∥M−1∥

where c < 1 ([35], Lemma 4.2). Therefore, ∥M−1
σ×τ∥ tends towards zero when #σ, #τ

tend towards infinity (which is the case for a non-constant block size b), as long as
dist(Xσ, Xτ ) > 0, i.e., as long as σ × τ ∈ BA.

Therefore, we construct M̃−1 ∈ BLR(S(I), 0, Nna) as follows:

∀σ × τ ∈ S(I), M̃−1
σ×τ =

{
0 if σ × τ ∈ BA

M−1
σ×τ otherwise (5.18)

Note that Equations 5.15 and 5.16 are the BLR equivalents of Equations 5.9 and 5.10,
respectively. It now remains to derive a BLR arithmetic property similar to Theorem 5.3
which is given by Theorem 5.4 (for its proof we refer the reader to the appendix of the
work by Amestoy et al. [J6]).

Theorem 5.4 BLR matrix product.— If A ∈ BLR(S(I), rA, qA) and B ∈ BLR(S(I), rB, qB)
are BLR matrices then their product P = AB is a BLR matrix such that

P ∈ BLR(S(I), rP , qP )

with rP = csp min(rA, rB) + qArB + qBrA and qP = qAqB.
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Note that the sparsity constant csp is not bounded but only appears in the term
csp min(rA, rB) that will disappear when one of rA or rB is zero.

Since A−1 can be approximated by M−1BM−1 (Equation 5.6), applying Theorem 5.4
on Equations 5.15 and 5.16 leads to

Ã−1 ∈ BLR(S(I), N2
narG, N3

na) (5.19)

and from this approximant of A−1 we can derive an approximant of A−1
ΦΦ for any Φ ⊂

I. For any Φ, Ψ ⊂ I, we also have AΦΨ ∈ BLR(S(I), 0, Nna), and therefore applying
Theorem 5.4 on 5.5 and 5.19 implies in turn:

S̃ ∈ BLR(S(I), N4
narG, N5

na) (5.20)

Therefore, there are at most N5
na = O(1) non-admissible blocks that are not considered

low-rank candidates and are left full-rank.
The rest are low-rank and their rank is bounded by N4

narG. In addition to the bound
rG, which is already quite large [33], the constant N4

na can be very large. However, our
bound is extremely pessimistic. In Section 5.4.5, we will experimentally validate that,
in reality, the ranks are much smaller. Similarly, the bound N5

na on the number of non-
admissible blocks is also very pessimistic.

In conclusion, the ranks are bound by O(rG), i.e. the BLR bound only differs from
the hierarchical one by a constant.

In the following, the bound N4
narG will be simply referred to as r.

5.4.3 Complexity of the dense BLR factorization
In this section we compute the complexity of the BLR-based factorization of a dense
matrix. As long as a bound on the ranks holds, similar to the one we have established
in Section 5.4.2, the complexity computations reported in this section hold, and thus, the
following results may be applicable to a broader context than the resolution of discretized
PDEs.

Here we derive bounds for the complexity of the factorization of a dense matrix by
means of the FSCU or UFSC methods (which are equivalent) described in Algorithms 5.2
and 5.3. Although we compute the complexity for the LDLT factorization, note that the
complexity of the BLR factorization is the same in LU or LDLT , up to a constant. Note
also that, in Algorithms 5.2 and 5.3, operations on non-admissible blocks are omitted for
the sake of simplicity (but are taken into account in the complexity computations).

We will extend the computation of the complexity to the sparse multifrontal case in
Section 5.4.4.

First, we compute the complexity of factorizing a dense matrix of order m. The cost of
the main steps Factor, Solve, Compress, Inner and Outer Product necessary to compute
the factorization of a matrix of order m are shown in Table 5.6 (third column) and are
derived from Section 5.1.2. This cost depends on the type (full-rank or low-rank) of
the block(s) on which the operation is performed (second column). Note that the Inner
Product operation can take the form of a product of two low-rank blocks (LR-LR), two
full-rank blocks (FR-FR) or a low-rank block and a full-rank one (LR-FR). We note b the
block size and p = m/b the number of blocks per row and/or column. We assume here
that the cost of compressing an admissible block is O(b2r) which is the case if a truncated
rank-revealing QR factorization is used.

We can then use 5.20 to compute the cost of the factorization: the boundedness of
N5

na = O(1) ensures that only a constant number of blocks on each line are full-rank.
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step type cost number Cstep(b, p) Cstep(m, x)

Factor FR O(b3) O(p) O(pb3) O(m1+2x)
Solve FR-FR O(b3) O(p2) O(p2b3) O(m2+x)
Compress LR O(b2r) O(p2) O(p2b2r) O(m2r)
Inner Prod. LR-LR O(br2) O(p3) O(p3br2) O(m3−2xr2)

LR-FR O(b2r) O(p2) O(p2b2r) O(m2r)
FR-FR O(b3) O(p) O(pb3) O(m1+2x)

Outer Prod. LR O(b2r) O(p3) O(p3b2r) O(m3−xr)

Table 5.6: Main operations for the BLR (FSCU and UFSC variants) factorization of
a dense matrix of order m, with blocks of size b, and low-rank blocks of rank at most
r. We note p = m/b. type: type of the block(s) on which the operation is performed.
cost: cost of performing the operation once. number: number of times the operation is per-
formed. Cstep(b, p): obtained by multiplying the cost and number columns (Equation 5.21).
Cstep(m, x): obtained with the assumption that b = O(mx) (and thus p = O(m1−x)), for
some x ∈ [0, 1].

From that we derive the fourth column of Table 5.6, which counts the number of blocks
on which the step is performed.

The BLR factorization cost of each step is then equal to

Cstep(b, p) = coststep ∗ numberstep (5.21)

and is reported in the fifth column of Table 5.6. Then, we assume the block size b is of
order O(mx), where x is a real value in [0, 1], and thus the number of blocks p per row
and/or column is of order O(m1−x). Then by substituting b and p by their value, we
compute Cstep(m, x) in the last column.

We can then compute the total flop complexity of the dense BLR factorization as the
sum of the cost of all steps:

C(m, x) = O(rm3−x + m2+x) (5.22)

Similarly, the factor size complexity of a dense BLR matrix can be computed as

O(NLR ∗ br + NFR ∗ b2) = O(p2br + N5
napb2) = O(p2br + pb2) (5.23)

where NLR = O(p2) and NFR = O(p) are the number of low-rank and full-rank blocks in
the matrix, respectively. Thus, the factor size complexity is:

M(m, x) = O(rm2−x + m1+x) (5.24)

It then remains to compute the optimal x∗ which minimizes the complexity. We
consider a general rank bound r = O(mα), with α ∈ [0, 1]. Equations (5.22) and (5.24)
become

C(m, x) = O(m3+α−x + m2+x) (5.25)
M(m, x) = O(m2+α−x + m1+x) (5.26)

respectively. Then, the optimal x∗ is given by

x∗ = 1 + α

2
(5.27)

147



5. Low-rank approximation techniques for sparse, direct solvers

which leads to optimal complexities

C(m) = C(m, x∗) = O(m2.5+α/2) = O(m2.5√r), (5.28)
M(m) =M(m, x∗) = O(m1.5+α/2) = O(m1.5√r). (5.29)

It is remarkable that the value of x∗ is the same for both the flop and factor size complex-
ities, i.e. that both complexities are minimized by the same x. This was not guaranteed,
and is a desirable property as we do not need to choose which complexity to minimize at
the expense of the other.

In particular, the case r = O(1) leads to complexities in O(m2.5) for flops and O(m1.5)
for factor size, while the case r = O(

√
m) leads to O(m2.75) for flops and O(m1.75) for

factor size. The link between dense and sparse rank bounds will be made in Section 5.4.4.
Note that the fully-structured BLR factorization (when A is available under com-

pressed form at no cost, i.e. when the Compress step does not need to be performed)
has the same complexity as the non-fully-structured factorization, since the Compress is
asymptotically negligible with respect to the Solve step. This is not the case for hierarchi-
cal formats, where the construction of the compressed matrix, whose cost is in O(m2r) [37],
becomes the bottleneck when it has to be performed.

5.4.4 From dense to sparse BLR complexity
The results derived in the previous section can be readily used to compute the complexity
of a multifrontal factorization based on the use of the BLR format at each front. Here we
rely on the result by George [74] discussed in Section 2.2.3.1. For the sake of readability,
we report it below.

We deal with a sparse matrix resulting from a square (d = 2) or cubic (d = 3) domain
of dimensionN . At each level ℓ of the separators tree, we need to factorize (2d)ℓ fronts
of order O(( N

2ℓ )d−1), for ℓ ranging from 0 to L = log2(N). Therefore, the flop complexity
CMF (N) to factorize a sparse matrix of order Nd is

CMF (N) =
L∑

ℓ=0
Cℓ(N) =

L∑
ℓ=0

(2d)ℓC((N

2ℓ
)d−1), (5.30)

where Cℓ(N) is the cost of factorizing all the fronts on the ℓ-th level, i.e. Cℓ(N) =
(2d)ℓC(mℓ) with mℓ = ( N

2ℓ )d−1. Using the dense complexity Equation 5.28, we compute
and report the value of Cℓ(N) in Table 5.7 (second column). The overall complexity of the
multifrontal factorization is obtained by solving the geometric series in Equation (5.30)
and is reported in Table 5.7 (third column).

Using Equation 5.29, we similarly compute the factor size complexity:

MMF (N) =
L∑

ℓ=0
Mℓ(N) =

L∑
ℓ=0

(2d)ℓM((N

2ℓ
)d−1), (5.31)

and report the results in Table 5.7.

5.4.4.1 Complexity of the BLR variants

In this section we focus on the complexity of the variants described in Section 5.3.3. This
is computed in a very similar way as for the standard version (see Section 5.4.3). We
provide the equivalent of Tables 5.6 and 5.7 for the BLR variants in Tables 5.8 and 5.9,
respectively.
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d Cℓ(N) CMF (N)

2D O(2−(ℓ+α)/2N2.5+α/2) O(N2.5+α/2) = O(N2.5√r)
3D O(2−(2+α)ℓN5+α) O(N5+α) = O(N5√r)

d Mℓ(N) MMF (N)
α = 0 α > 0

2D O(2ℓ(1−α)/2N1.5+α/2) O(N2) O(N2)
3D O(2−αℓN3+α) O(N3 log N) O(N3+α) = O(N3√r)

Table 5.7: Flop and factor size complexity of the BLR (standard UFSC variant) mul-
tifrontal factorization of a sparse matrix of order Nd. d: dimension. Cℓ(N)/Mℓ(N):
flop/factor size complexity at level ℓ in the separator tree, computed using the dense com-
plexity equations 5.28 and 5.29. CMF (N)/MMF (N): total multifrontal flop/factor size
complexity, computed using equations 5.30 and 5.31.

In Table 5.8, we report the cost of each step of the factorization. Using the LUAR
technique implies that the cost of the Outer Product operation is reduced thanks to the
recompression of the accumulated updates; the recompression, however has a cost which
has to be accounted for in the complexity. This is illustrated in Table 5.8 with grayed-out
rows. The UFCS (possibly with LUAR) variant, instead, reduces the complexity further
thanks to the fact that Solve operations are mostly done on low-rank blocks rather than
full-rank ones.

By summing the cost of all steps, we obtain the flop complexity of the dense factor-
ization. In the UFSC+LUAR variant, it is given by:

C(m, x) = O(r2m3−2x + m2+x) (5.32)

Compared to 5.22, the low-rank term of the complexity has thus been reduced from
O(rm3−x) to O(r2m3−2x) thanks to the recompression of the accumulated updates. The
full-rank term O(m2+x) remains the same. By recomputing the value of x∗, we achieve
flop complexity gains: For r = O(mα), C(m) becomes

C(m) = O(m2+(2α+1)/3) = O(m7/3r2/3), (5.33)

which yields in particular O(m7/3) for r = O(1) and O(m8/3) for r = O(
√

m).
In the same way, the flop complexity for the dense factorization with the UFCS+LUAR

variant is given by

C(m, x) = O(r2m3−2x + m1+2x). (5.34)

This time, the full-rank term has been reduced from O(m2+x) to O(m1+2x). By recom-
puting x∗, we achieve further flop complexity gains:

C(m) = O(m2+α) = O(m2r), (5.35)

which yields in particular O(m2) for r = O(1) and O(m2.5) for r = O(
√

m).
Note that for the UFCS+LUAR variant, the Compress step has become asymptotically

dominant and thus the assumption that its cost is O(b2r) is now necessary to obtain the
complexity reported in equation 5.34.

Note that the factor size complexity is not affected by the BLR variant used.
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UFSC+LUAR variant
step type cost number Cstep(b, p) Cstep(m, x)

Factor FR O(b3) O(p) O(pb3) O(m1+2x)
Solve FR-FR O(b3) O(p2) O(p2b3) O(m2+x)
Compress LR O(b2r) O(p2) O(p2b2r) O(m2r)
Inner Prod. LR-LR O(br2) O(p3) O(p3br2) O(m3−2xr2)

LR-FR O(b2r) O(p2) O(p2b2r) O(m2r)
FR-FR O(b3) O(p) O(pb3) O(m1+2x)

Recompress LR O(bpr2) O(p2) O(p3br2) O(m3−2xr2)
Outer Prod. LR O(b2r) O(p2) O(p2b2r) O(m2r)

UFCS+LUAR variant
step type cost number Cstep(b, p) Cstep(m, x)

Factor FR O(b3) O(p) O(pb3) O(m1+2x)
Solve FR-FR O(b3) O(p) O(pb3) O(m1+2x)

LR-FR O(b2r) O(p2) O(p2b2r) O(m2r)
Compress LR O(b2r) O(p2) O(p2b2r) O(m2r)
Inner Product LR-LR O(br2) O(p3) O(p3br2) O(m3−2xr2)

LR-FR O(b2r) O(p2) O(p2b2r) O(m2r)
FR-FR O(b3) O(p) O(pb3) O(m1+2x)

Recompress LR O(bpr2) O(p2) O(p3br2) O(m3−2xr2)
Outer Product LR O(b2r) O(p2) O(p2b2r) O(m2r)

Table 5.8: Main operations for the factorization of a dense matrix of order m, with blocks
of size b, and low-rank blocks of rank at most r. We note p = m/b. type: type of the
block(s) on which the operation is performed. cost: cost of performing the operation once.
number: number of times the operation is performed. Cstep(b, p): obtained by multiplying
the cost and number columns (equation 5.21). Cstep(m, x): obtained with the assumption
that b = O(mx) (and thus p = O(m1−x)), for some x ∈ [0, 1].

The sparse flop complexities are derived from the dense ones in the same way as they
are for the standard FSCU/UFSC variant. The results are reported in Table 5.9.

A summary of the sparse complexities for all BLR variants, as well as the full-rank
and H complexities, is given in Table 5.10 for the cases where r = O(1) and r = O(

√
m).

5.4.5 Experimental results
In this section we compare the experimental complexity of the full-rank solver with each of
the previously presented BLR variants (FSCU/UFSC, UFSC+LUAR, UFCS+LUAR).We
refer the reader to our original paper on the complexity of the BLR factorization [J6] or
to Mary’s PhD thesis[125] for a richer set of experiments that include an analysis of the
influence of the threshold ε and the lock size.

All the experiments in this chapter were performed on the brunch system (see descrip-
tion in Section A.2).

To compute our complexity estimates, we use least-squares estimation to compute the
coefficients {βi}i of a regression function f such that Xfit = f(N, {βi}i) fits the observed
data Xobs. We use the following regression function:

Xfit = eβ∗
1 Nβ∗

2 with β∗
1 , β∗

2 = argmin
β1,β2

∥ log Xobs − β1 − β2 log N∥2. (5.36)
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UFSC+LUAR
d Cℓ(N) CMF (N)

2D O(2−(1+2α)ℓ/3N2+(2α+1)/3) O(N2+(2α+1)/3) = O(N7/3r2/3)
3D O(2−(5+4α)ℓ/3N4+(4α+2)/3) O(N4+(4α+2)/3) = O(N14/3r2/3)

UFCS+LUAR/UCFS+LUAR/CUFS
d Cℓ(N) CMF (N)

α = 0 α > 0

2D O(2−αℓN2+α) O(N2 log N) O(N2+α) = O(N2r)
3D O(2−(1+2α)ℓN4+2α) O(N4+2α) = O(N4r)

Table 5.9: Flop and factor size complexity of the BLR multifrontal factorization of a sparse matrix of
order Nd. d: dimension. Cℓ(N): flop complexity at level ℓ in the separator tree, computed using the
dense complexity equations 5.33 and 5.35 for the UFSC+LUAR and UFCS+LUAR variants, respectively.
CMF(N): total multifrontal flop complexity, computed using equation 5.30.

operations factor size
2D 3D 2D 3D

r = O(1)

BLR UFSC O(n1.25) O(n1.67) O(n) O(n log n)
BLR UFSC+LUAR O(n1.17) O(n1.56) O(n) O(n log n)
BLR UFCS+LUAR O(n log n) O(n1.33) O(n) O(n log n)
H O(n log n) O(n1.33) O(n) O(n)
H (fully-structured) O(n) O(n) O(n) O(n)

r = O(
√

m)

BLR UFSC O(n1.5) O(n1.83) O(n log n) O(n1.17)
BLR UFSC+LUAR O(n1.5) O(n1.78) O(n log n) O(n1.17)
BLR UFCS+LUAR O(n1.5) O(n1.67) O(n log n) O(n1.17)
H O(n1.5) O(n1.67) O(n) O(n)
H (fully-structured) O(n) O(n1.33) O(n) O(n)

Table 5.10: Flop and factor size complexities of the BLR and H multifrontal factorization
of a system of n unknowns, considering the case r = O(1) and r = O(

√
m) = O(Nd−1).

We provide the experimental complexities for two different problems: the Poisson
problem and the Helmholtz problem.

The Poisson problem generates the symmetric positive definite matrix A from a 7-point
finite-difference discretization of equation

∆u = f.

We perform the computations in real double-precision arithmetic. For the Poisson prob-
lem, we will use a low-rank threshold ε = 10−10 with no particular application in mind.

The Helmholtz problem builds the matrix A as the complex-valued unsymmetric
impedance matrix resulting from the finite-difference discretization of the heterogeneous
Helmholtz equation, that is the second-order visco-acoustic time-harmonic wave equation
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for pressure p(
−∆− ω2

v(x)2

)
u(x, ω) = s(x, ω),

where ω is the angular frequency, v(x) is the seismic velocity field, and u(x, ω) is the
time-harmonic wavefield solution to the forcing term s(x, ω). The aim is the modeling
of visco-acoustic wave propagation in a 3D visco-acoustic homogeneous medium (see Sec-
tion 5.3.4.1) parameterized by wavespeed (4000 m/s), density (1 kg/m3), and quality
factor (10000, no attenuation). The matrix A is built for an infinite medium. This implies
that the input grid is augmented with PML absorbing layers. Frequency is fixed and
equal to 4 Hz. The grid interval h is computed such that it corresponds to 4 grid point
per wavelength. Computations are done in complex single-precision arithmetic and the
chosen low-rank threshold is ε = 10−4.

For the Poisson problem, the rank bound is in O(1) [35]. For the Helmholtz problem,
although there is no rigorous proof of it, the rank bound is assumed to be O(N) = O(

√
m)

in the related literature [71, 157, 163]. Thus, we will use the Poisson and Helmholtz
problems to experimentally validate the complexities computed in Table 5.10.

For both Poisson and Helmholtz, in all the following experiments, the backward error
is in good agreement with the low-rank threshold used.

Both the Poisson and Helmholtz problem were discretized using the finite-difference
method rather the finite-elements one, but this is acceptable as both methods are equiv-
alent on equispaced meshes [132].

In Figures 5.17 and 5.18, we compare the flop complexity of the full-rank solver with
each of the BLR variants previously presented (UFSC, UFSC+LUAR, UFCS+LUAR)
for the Poisson problem, and the Helmholtz problem, respectively. The FSCU variant is
equivalent to the UFSC one and, thus, it will not be presented here.

The results show that each new variant improves the complexity. Note that we obtain
the expected quadratic complexity of the full-rank version. Results with both geomet-
ric nested dissection (Figures 5.17(a) and 5.18(a)) and with a purely algebraic ordering
computed by METIS (Figures 5.17(b) and 5.18(b)) are also reported.

We first analyze the results obtained with geometric nested dissection and compare
them with our theoretical results. For Poisson, the standard BLR (UFSC) version achieves
a complexity in O(n1.45). Moreover, the constant in the big O is equal to 2105, which is
quite reasonable, and leads to a substantial improvement of the number of flops performed
with respect to the full-rank version. This confirms that the theoretical rank bounds
(N4

narG) are very pessimistic, as the experimental constants are in fact much smaller.
Further compression in the UFSC+LUAR variant lowers the complexity to O(n1.39), while
the UFCS+LUAR reaches the lowest complexity of the variants, in O(n1.29). Although
the constants increase with the new variants, they also remain relatively small and they
effectively reduce the number of operations with respect to the standard variant, even for
the smaller mesh sizes. The same trend is observed for Helmholtz, with complexities in
O(n1.85) for UFSC, O(n1.79) for UFSC+LUAR, and finally O(n1.74) for UFCS+LUAR.
Thus, the numerical results are in good agreement with the theoretical bounds reported
in Table 5.10.

We also analyze the influence of the ordering on the complexity. We observe that
even though the METIS ordering slightly degrades the complexity, results remain close to
the geometric nested dissection ordering and still in good agreement with the theoretical
bounds. This is a very important property of the BLR factorization as it allows us to
remain in a purely algebraic (black box) framework, an essential property for a general
purpose solver.

152



5.4. Complexity of the BLR multifrontal factorization

Mesh size N

64 96 128 160 192 224 256 320

F
lo

p
c
o
u
n
t

1012

1014

FR

-t: 5n2:02

UFSC

-t: 2105n1:45

UFSC+LUAR

-t: 3626n1:39

UFCS+LUAR

-t: 11405n1:29

(a) Nested Dissection ordering (geometric)

Mesh size N

64 96 128 160 192 224 256 320

F
lo

p
c
o
u
n
t

1012

1014

FR

-t: 3n2:05

UFSC

-t: 1068n1:50

UFSC+LUAR

-t: 2235n1:42

UFCS+LUAR

-t: 6175n1:33

(b) METIS ordering (purely algebraic)

Figure 5.17: Flop complexity of each BLR variant (Poisson, ε = 10−10).
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(b) METIS ordering (purely algebraic)

Figure 5.18: Flop complexity of each BLR variant (Helmholtz, ε = 10−4).

To compute the factor size complexity of the BLR solver, we study the evolution of
the number of entries in the factors, i.e., the compression rate of L and U . Note that the
global compression rate would be even better, because the local matrices that need to be
stored during the multifrontal factorization compress more than the factors.

In Figure 5.19, we plot the factor size complexity using the METIS ordering for both
the Poisson and Helmholtz problems. The different BLR variants do not impact the factor
size complexity. Here again, the results are in good agreement with the bounds computed
in Table 5.10. The complexity is of order O(n1.05 log n) for Poisson and O(n1.26) for
Helmholtz.
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Figure 5.19: Factor size complexity with METIS ordering.

5.5 Performance and scalability
In this section we address the performance of a BLR-based multifrontal solver. Specifically
we will study how the reduction of the complexity of the multifrontal method shown in
the previous section can be converted into an actual reduction of the execution time. We
discuss what are the main limitations of the the basic FSCU variant and show how the
other variants presented in Section 5.3.3 can improve the performance by reducing the
complexity of the factorization as well as by improving the efficiency of operations.

Throughout this section we will provide experimental results on matrix S3 (see Ap-
pendix A.1) from the electromagnetics application described in Section 5.3.4.2 to illustrate
and analyze the behavior of different algorithms. In Section 5.5.4 we will provide exper-
imental results on the complete set of matrices in Table A.2. This includes the matrices
described in Sections 5.3.4.1 and 5.3.4.2; coherently with what illustrated in these sec-
tions, the BLR approximation threshold for these problems was set to 10−3 and 10−7,
respectively. In addition to these, we included matrices from an industrial application
in 3D structural mechanics provided by Électricité De France (EDF); these are the perf*
matrices. EDF has to guarantee the technical and economical control of its means of
production and transportation of electricity. The safety and the availability of the indus-
trial and engineering installations require mechanical studies, which are often based on
numerical simulations. These simulations are carried out using Code Aster3 and require
the solution of sparse linear systems such as the ones used in this paper. A previous
study [159] showed that using BLR with ε = 10−9 leads to an accurate enough solution
for this class of problems.

For all experiments, we have used a right-hand side b such that the solution x is the
vector containing only ones.

The experiments were done on the brunch machine (see Appendix A.2 for the details);
the sustained peak of a core, measured with a dense matrix-matrix product (the BLAS
DGEMM routine) is 47.1 Gflop/s.

Both the nested-dissection matrix reordering and the BLR clustering of the unknowns
3http://www.code-aster.org
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are computed with METIS in a purely algebraic way (i.e., without any knowledge of the
geometry of the problem domain).

5.5.1 Performance analysis of sequential FSCU algorithm
In this section, we analyze the performance of the FSCU algorithm (described in Algo-
rithm 5.2) in a sequential setting. Our analysis underlines several issues, which will be
addressed in subsequent sections.

In Table 5.11, we compare the number of flops and execution time of the sequential
FR and BLR factorizations. While the use of BLR reduces the number of flops by a factor
7.7, the time is only reduced by a factor 3.3. Thus, the potential gain in terms of flops is
not fully translated in terms of time.

FR BLR ratio
flops (×1012) 77.97 10.19 7.7
time (s) 7390.1 2241.9 3.3

Table 5.11: Sequential run (1 thread) on matrix S3.

To understand why, we report in Table 5.12 the time spent in each step of the factor-
ization, in the FR and BLR cases. The relative weight of each step is also provided in
percentage of the total. In addition to the four main steps Factor, Solve, Compress and
Update, we also provide the time spent in parts with low arithmetic intensity (LAI parts).
This includes the time spent in assembly, memory copies and factorization of the fronts
at the bottom of the tree, which are too small to benefit from BLR and are thus treated
in FR.

FR BLR
step flops % time (s) % flops % time (s) %

(×1012) (×1012)
Factor+Solve 1.51 1.9 671.0 9.1 1.51 14.9 671.0 29.9
Update 76.22 97.8 6467.0 87.5 7.85 77.0 1063.7 47.4
Compress 0.00 0.0 0.0 0.0 0.59 5.8 255.1 11.4
LAI parts 0.24 0.3 252.1 3.4 0.24 2.3 252.1 11.2
Total 77.97 100.0 7390.1 100.0 10.19 100.0 2241.9 100.0

Table 5.12: Performance analysis of sequential run of Table 5.11 on matrix S3.

The FR factorization is clearly dominated by the Update, which represents 87.5% of
the total time. In BLR, the Update operations are done exploiting the low-rank property
of the blocks and thus the number of operations performed in the Update is divided by
a factor 9.7. The Factor+Solve and LAI steps remain in FR and thus do not change.
From this result, we can identify three main issues with the performance of the BLR
factorization:

Issue 1 (lower granularity): the flop reduction by a factor 9.7 in the Update is not fully
captured, as its execution time is only reduced by a factor 6.1. This is due to the
lower granularity of the operations involved in low-rank products, which have thus a
lower performance: the speed of the Update step is 47.1 GF/s in FR and 29.5 GF/s
in BLR.
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5. Low-rank approximation techniques for sparse, direct solvers

Issue 2 (higher relative weight of the FR parts): because the Update is reduced in BLR, the
relative weight of the parts that remain FR (Factor, Solve, and LAI parts) increases
from 12.5% to 41.1%. Thus, even if the Update step is further accelerated, we cannot
expect the global reduction to follow as the FR part will become the bottleneck.

Issue 3 (cost of the Compress step): even though the overhead cost of the Compress step is
negligible in terms of flops (5.8% of the total), it is a very slow operation (9.2 GF/s)
and thus represents a non-negligible part of the total time (11.4%).

A visual representation of this analysis is given on Figure 5.20 (compare Figures 5.20(a)
and 5.20(b)).

In the next section, we first extend the BLR factorization to the multithreaded case, for
which previous observations are even more critical. Issues 1 and 2 will then be addressed
by the algorithmic variants of the BLR factorization in Section 5.3.3. Issue 3 is currently
being investigated and we will not address it in this document.
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Figure 5.20: Normalized (FR = 100%) flops and time on matrix S3.

5.5.2 Multithreading the BLR factorization
In this section, we describe basic shared-memory parallelization of the BLR FSCU fac-
torization (Algorithm 5.2) and present a detailed analysis of its behavior. We will then
present techniques that aim at improving the performance in a parallel, shared-memory
setting.

5.5.2.1 Performance analysis of multithreaded FSCU algorithm

Our reference Full-Rank implementation is based on a fork-join approach combining
OpenMP directives with multithreaded BLAS libraries. While this approach can have
limited performance on very small matrices, on the set of problems considered, it achieves
quite satisfactory speedups on 24 threads (around 20 for the largest problems) because
the bottleneck consists of matrix-matrix product operations. This approach will be taken
as a reference for our performance analysis.

In the BLR factorization, the operations have a finer granularity and thus a lower
speed and a lower potential for exploiting efficiently multithreaded BLAS. To overcome
this obstacle, more OpenMP-based multithreading exploiting serial BLAS has been intro-
duced. This allows for a larger granularity of computations per thread than multithreaded
BLAS on low-rank kernels. In our implementation, we simply parallelize the loops of the
Compress and Update operations on different blocks (lines 4, and 7-8) of Algorithm 5.2.
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The Factor+Solve step remains full-rank, as well as the FR factorization of the fronts at
the bottom of the assembly tree.

Because each block has a different rank, the task load of the parallel loops is very
irregular in the BLR case. To account for this irregularity, we use the dynamic OpenMP
schedule (with a chunk size equal to 1), which achieves the best performance.

In Table 5.13, we compare the execution time of the FR and BLR factorization on 24
threads. The multithreaded FR factorization achieves a speedup of 14.5 on 24 threads.
However, the BLR factorization achieves a much lower speedup of 7.3. The gain factor of
BLR with respect to FR is therefore reduced from 3.3 to 1.7.

FR BLR ratio
time (1 thread) 7390.1 2241.9 3.3
time (24 threads) 508.5 306.8 1.7
speedup 14.5 7.3

Table 5.13: Multithreaded run on matrix S3.

The BLR multithreading is thus less efficient than the FR one. To understand why,
we provide in Table 5.14 the time spent in each step for the multithreaded FR and BLR
factorizations. We additionally provide for each step the speedup achieved on 24 threads.

FR BLR
step time % speedup time % speedup
Factor+Solve 38.9 7.7 17.3 38.9 12.7 17.3
Update 361.2 71.0 17.9 121.6 39.6 8.8
Compress 0.0 0.0 37.9 12.4 6.7
LAI parts 108.4 21.3 2.3 108.4 35.3 2.3
Total 508.5 100.0 14.5 306.8 100.0 7.3

Table 5.14: Performance analysis of multithreaded run (24 threads) of Table 5.13 on
matrix S3.

From this analysis, one can identify two additional issues related to the multithreading
of the BLR factorization:

Issue 4 (low arithmetic intensity parts become critical): the LAI parts expectedly achieve
a very low speedup of 2.3. While their relative weight with respect to the total
remains reasonably limited in FR, it becomes quite significant in BLR, with over
35% of time spent in them. Thus, the impact of the poor multithreading of the LAI
parts is higher on the BLR factorization than on the FR one.

Issue 5 (scalability of the BLR Update): not only is the BLR Update less efficient than the
FR one in sequential, it also achieves a lower speedup of 8.8 on 24 threads, compared
to a FR speedup of 17.9. This comes from the fact that the BLR Update, due to
its smaller granularities, is limited by the speed of memory transfers instead of the
CPU peak as in FR. As a consequence, the Outer Product operation runs at the
poor speed of 8.8 GF/s, compared to 35.2 GF/s in FR.

A visual representation of this analysis is given on Figure 5.20 (compare Figures 5.20(b)
and 5.20(c)).
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In the rest of this section, we will revisit our algorithmic choices to address both of
these issues.

5.5.2.2 Exploiting tree-based multithreading

In our standard shared-memory implementation, multithreading is exploited at the node
parallelism level only, i.e. different fronts are not factored concurrently. However, in
multifrontal methods, multithreading may exploit both node and tree parallelism. Such
an approach has been proposed, in the FR context, by L’Excellent et al. [110] and relies
on the idea of separating the fronts by a so-called L0 layer, as illustrated in Figure 5.21.
Each subtree rooted at the L0 layer is treated sequentially by a single thread; therefore,
below the L0 layer pure tree parallelism is exploited by using all the available threads to
process concurrently multiple sequential subtrees. When all the sequential subtrees have
been processed, the approach reverts to pure node parallelism: all the fronts above the L0
layer are processed sequentially (i.e., one after the other) but all the available threads are
used to assemble and factorize each one of them.

thr0 thr1 thr2 thr3

Node
parallelism

Tree
parallelism

L0 layer

thr0-3 thr0-3

thr0-3

Figure 5.21: Illustration with four threads of how both node and tree multithreading can
be exploited.

In Table 5.15, we quantify and analyze the impact of this strategy on the BLR fac-
torization. The majority of the time spent in LAI parts is localized under the L0 layer.
Indeed, all the fronts too small to benefit from BLR are under it; in addition, the time
spent in assembly and memory copies for the fronts under the L0 layer represents 60% of
the total time spent in the assembly and memory copies. Therefore, the LAI parts are
significantly accelerated, by a factor over 2, by exploiting tree multithreading.

In addition, the other steps (the Update and especially the Compress) are also acceler-
ated thanks to the improved multithreading behavior of the relatively smaller BLR fronts
under the L0 layer which do not expose much node parallelism.

Please note that the relative gain due to introducing tree multithreading can be larger
even in FR, for 2D or very small 3D problems, for which the relative weight of the LAI
parts is important. However, for large 3D problems the relative weight of the LAI parts is
limited, and the overall gain in FR remains marginal. In BLR, the weight of the LAI parts
is much more important so that exploiting tree parallelism becomes critical: the overall
gain is significant in BLR. We have thus addressed Issue 4, identified in Subsection 5.5.2.1.

Exploiting tree multithreading is thus very critical in the BLR context. It will be used
for the rest of the experiments for both FR and BLR.
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FR BLR
step time % speedup time % speedup
Factor+Solve 33.2 7.9 20.2 33.2 15.1 20.2
Update 331.7 79.4 19.5 110.2 50.0 9.7
Compress 0.0 0.0 24.1 10.9 10.6
LAI parts 53.0 12.7 4.8 53.0 24.0 4.8
Total 417.9 100.0 17.4 220.5 100.0 10.2

Table 5.15: Execution time of FR and BLR factorizations on matrix S3 on 24 threads,
exploiting both node and tree parallelism.

5.5.2.3 Right-looking vs. Left-looking

Algorithm 5.2 has been presented in its Right-looking (RL) version. In Table 5.16, we
compare it to its Left-looking (LL) equivalent, referred to as UFSC (Algorithm 5.3). The
RL and LL variants perform the same operations but in a different order, which results
in a different memory access pattern [63].

FR BLR
parallelism step RL LL RL LL

1 thread Update 6467.0 6549.8 1063.7 899.1
Total 7390.1 7463.9 2241.9 2074.5

24 threads, Update 331.7 335.6 110.2 66.9
node+tree// Total 417.9 420.6 220.5 174.7

Table 5.16: Execution time of Right- and Left-looking factorizations on matrix S3.

The impact of using a RL or LL factorization is mainly observed on the Update step.
In FR, there is almost no difference between the two, RL being slightly (less than 1%)
faster than LL. In BLR however, the Update is significantly faster in LL than in RL. This
effect is especially clear on 24 threads (40% faster Update, which leads to a global gain of
20%).

We explain this result by a lower volume of memory transfers in LL BLR than RL
BLR. As illustrated in Figure 5.22, during the BLR LDLT factorization of a p× p block
matrix, the Update will require loading the following blocks stored in main memory:

• in RL (Figure 5.22(a)), at each step k, the FR blocks of the trailing sub-matrix are
written and therefore they are loaded many times (at each step of the factorization),
while the LR blocks of the current panel are read once and never loaded again.

• in LL (Figure 5.22(b)), at each step k, the FR blocks of the current panel are
written for the first and last time of the factorization, while the LR blocks of all
the previous panels are read, and therefore they are loaded many times during the
entire factorization.

Thus, while the number of loaded blocks is roughly the same in RL and LL (which
explains the absence of difference between the RL FR and LL FR factorizations), the
difference lies in the fact that the LL BLR factorization tends to load more often LR
blocks and less FR blocks, while the RL one has the opposite behavior. To be precise:
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read once

written at
each step

(a) RL factorization

read at
each step

written once

(b) LL factorization

Figure 5.22: Illustration of the memory access pattern in the RL and LL BLR Update
during step k of the factorization of a matrix of p× p blocks (here, p = 8 and k = 4).

• Under the assumption that one FR block and two LR blocks fit in cache, the LL
BLR factorization loads O(p2) FR blocks and O(p3) LR blocks.

• Under the assumption that one FR block and an entire LR panel fit in cache (which
is a stronger assumption so the number of loaded blocks may in fact be even worse),
the RL BLR factorization loads O(p3) FR blocks and O(p2) LR blocks.

Thus, switching from RL to LL reduces the volume of memory transfers and therefore
accelerates the BLR factorization, which addresses Issue 5, identified in Section 5.5.2.1.

Throughout the rest of this article, the best algorithm is considered: LL for BLR and
RL for FR.

Thanks to both the tree multithreading and the Left-looking BLR factorization, the
factor of gain due to BLR with respect to FR on 24 threads has increased from 1.7
(Table 5.13) to 2.4 (Table 5.16).

Next, we show how the algorithmic variants of the BLR factorization can further
improve its performance.

5.5.3 BLR factorization variants
In this section, we study the UFSC+LUAR and UFCS+LUAR BLR factorization variants.
In Section 5.4, we have proved that they lead to a lower theoretical complexity. In this
section, we quantify the flop reduction achieved by these variants and how well this flop
reduction can be translated into a time reduction. We analyze how they can improve the
efficiency and scalability of the factorization.

5.5.3.1 LUAR: Low-rank Updates Accumulation and Recompression

We begin by the UFSC+LUAR variant, i.e. Algorithm 5.3 with the modified LUAR-
Update of Algorithm 5.5.
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UFSC +LUA +LUAR
average size of Outer Product 16.5 61.0 32.8

flops
(×1012) Outer Product 3.76 3.76 1.59
(×109) Recompress 0.00 0.00 5.39
(×1012) Total 10.19 10.19 8.15

Outer Product 21.4 14.0 6.0
time (s) Recompress 0.0 0.0 1.2

Total 174.7 167.1 160.0
Outer Product 29.3 44.7 44.4

speed (GF/s) Recompress 0.7
Total 9.7 10.2 8.5

Table 5.17: Performance analysis of the UFSC+LUAR factorization on matrix S3 on 24
threads

The LUAR algorithm has two advantages: first, accumulating the update matrices
together leads to higher granularities in the Outer Product step (line 8 of Algorithm 5.5),
which is thus performed more efficiently. This should address Issue 1, identified in Sec-
tion 5.5.1. Second, it allows for additional compression, as explained in Section 5.4.4.1.

In Table 5.17, we analyze the performance of the UFSC+LUAR variant. We separate
the gain due to accumulation (UFSC+LUA, without recompression) and the gain due
to the recompression (UFSC+LUAR). We provide the flops, time and speed of both the
Outer Product (which is the step impacted by this variant) and the total (to show the
global gain). We also provide the average (inner) size of the Outer Product operation,
which corresponds to the rank of C̃

(acc)
ik on line 8 in Algorithm 5.5. It also corresponds to

the number of columns of XS and YS in Figure 5.11.
Thanks to the accumulation, the average size of the Outer Product increases from

16.5 to 61.0. As illustrated by Figure 5.23, this higher granularity improves the speed of
the Outer Product from 29.3 to 44.7 GF/s (compared to a peak of 47.1 GF/s) and thus
accelerates it by 35%. The impact of accumulation on the total time depends on both the
matrix and the computer properties and will be further discussed in Section 5.5.4.

Next, we analyze the gain obtained by recompressing the accumulated low-rank up-
dates (Figure 5.11). While the total flops are reduced by 20%, the execution time is only
accelerated by 5%. This is partly due to the fact that the Outer Product only represents
a small part of the total, but could also come from two other reasons:

• The recompression decreases the average size of the Outer Product back to 32.8. As
illustrated by Figure 5.23, its speed remains at 44.4 GF/s and is thus not significantly
decreased, but it can be the case for other matrices or machines.

• The speed of the Recompress operation itself is 0.7 GF/s, an extremely low value.
Thus, even though the Recompress overhead is negligible in terms of flops, it can
limit the global gain in terms of time. Here, the time overhead is 1.2s for an 8s gain,
i.e. 15% overhead.

5.5.3.2 UFCS algorithm

In all the previous experiments, threshold partial pivoting was performed during the FR
and BLR factorizations, which means the Factor and Solve steps were merged together
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Figure 5.23: Performance benchmark of the Outer Product step on brunch. Please note
that the average sizes (first line) and speed values (eighth line) of Table 5.17 cannot be
directly linked using this figure because the average size would need to be weighted by its
number of flops.

as described in Section 5.3.3.1. For many problems, numerical pivoting can be restricted
to a smaller area of the panel (for example, the diagonal BLR blocks). In this case, the
Solve step can be separated from the Factor step and applied directly on the entire panel,
thus solely relying on BLAS-3 operations.

Furthermore, in BLR, when numerical pivoting is restricted, it is natural and more
efficient to perform the Compress before the Solve (thus leading to the so-called UFCS
factorization). Indeed UFCS makes further use of the low-rank property of the blocks since
the Solve step can then be performed in low-rank as shown at line 16 in Algorithm 5.4.

In Table 5.18, we report the gain achieved by UFCS and its accuracy. We measure
the scaled residual ∥Ax−b∥∞

∥A∥∞∥x∥∞
. We first compare the factorization with either standard or

restricted pivoting. Restricting the pivoting allows the Solve to be performed with more
BLAS-3 and thus the factorization is accelerated. This does not degrade the solution
because on this test matrix restricted pivoting is enough to preserve accuracy. We refer
the reader to the PhD thesis of Theo Mary [125] for a larger set of experiments showing
how the scaled residual is affected by the use of the BLR factorization variants.

standard pivoting restricted pivoting
FR UFSC FR UFSC UFCS

+LUAR +LUAR +LUAR
flops (×1012) 77.97 8.15 77.97 8.15 3.95
time (s) 417.9 160.0 401.3 140.4 110.7
scaled residual 4.5e-16 1.5e-09 5.0e-16 1.9e-09 2.7e-09

Table 5.18: Performance and accuracy of UFSC and UFCS variants on 24 threads on
matrix S3.
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We then compare UFSC and UFCS (with LUAR used in both cases). The flops for the
UFCS factorization are reduced by a factor 2.1 with respect to UFSC. This can at first
be surprising as the Solve step represents less than 20% of the total flops of the UFSC
factorization.

flops (×1012) time (s)
UFSC UFCS UFSC UFCS

Factor+Solve 1.52 0.36 12.4 6.6
Update 5.78 2.93 53.4 34.0
Compress 0.62 0.43 24.1 20.4
LAI parts 0.24 0.24 50.5 49.7
Total 8.15 3.95 140.4 110.7

Table 5.19: Detailed analysis of UFSC and UFCS results of Table 5.18 on matrix S3.

To explain the relatively high gain observed in Table 5.18, we analyze in detail the
difference between UFSC and UFCS in Table 5.19. By performing the Solve in low-
rank, we reduce its number of operations of the Factor+Solve step by a factor 4.2, which
translates to a time reduction of this step by a factor of 1.9. Furthermore, the flops of
the Compress and Update steps are also significantly reduced, leading to a time reduction
of 15% and 35%, respectively. This is because the Compress is performed earlier, which
decreases the ranks of the blocks. On our test problem, the average rank decreases from
21.6 in UFSC to 16.2 in UFCS, leading to a very small relative increase of the scaled
residual. The smaller ranks also lead to a smaller average size of the Outer Product,
which decreases from 32.8 (last column of Table 5.17) to 24.4. This makes the LUAR
variant even more critical when combined with UFCS: with no accumulation, the average
size of the Outer Product in UFCS would be 10.9 (to compare to 16.5 in UFSC, first
column of Table 5.17).

Thanks to both the LUAR and UFCS variants, the factor of gain due to BLR with
respect to FR on 24 threads has increased from 2.4 (Table 5.16) to 3.6 (Table 5.18).

5.5.4 Complete set of results
The results on the matrices coming from the three real-life applications from SEISCOPE,
EMGS and EDF are reported in Table 5.20. We recall that the test matrices are described
and assigned an ID in Table A.2. A richer set of experiments on matrices from the
SuiteSparse Matrix Collection (SSMC) [56] can be found in our report from which this
section is extracted [B1].

We report the flops and time on 24 threads for all variants of the FR and BLR factor-
izations and report the speedup and scaled residual ∥Ax−b∥∞

∥A∥∞∥x∥∞
for the best FR and BLR

variants. The scaled residual in FR is taken as a reference. In BLR, the scaled residual also
depends on the low-rank threshold ε. One can see in Table 5.20 that in BLR the scaled
residual correctly reflects the influence of the low-rank approximations with threshold ε
on the FR precision.

On this set of problems, BLR always reduces the number of operations with respect
to FR by a significant factor. This factor is never fully translated in terms of time, but
the time gains remain important, even for the smaller problems.

Tree parallelism (tree//), the Left-looking factorization (UFSC) and the accumulation
(LUA) always improve the performance of the BLR factorization.
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Even though the recompression (LUAR) is always beneficial in terms of flops, it is
not always the case in terms of time. Especially for the smaller problems, the low speed
of the computations may lead to slowdowns. When LUAR is not beneficial (in terms
of time), the “+UFCS” line in Tables 5.20 corresponds to a UFCS factorization without
Recompression (LUA only).

For most of the problems, the UFCS factorization obtained a scaled residual of the
same order of magnitude as the one obtained by UFSC. This was the case even for some
matrices where pivoting cannot be suppressed, but can be restricted to the diagonal BLR
blocks, such as perf008{d,ar,cr} (matrix ID 8-10). Only for problem perf009ar (matrix ID
11 and 21-22), standard threshold pivoting was needed to preserve accuracy and thus the
restricted pivoting and UFCS results are not available.

We now analyze how these algorithmic variants evolve with the size of the matrix, by
comparing the results on matrices of different sizes from the same problem class, such
as perf008{d,ar,cr} (matrix ID 8-10) or {5,7,10}Hz (matrix ID 1-3). Tree parallelism
becomes slightly less critical as the matrix gets bigger, due to the decreasing weight
of the bottom of the assembly tree. On the contrary, improving the efficiency of the
BLR factorization (UFSC+LUA variant, with reduced memory transfers and increased
granularities) becomes more and more critical (e.g., 16% gain on perf008d compared to
40% gain on perf008cr). Both the gains due to the Recompression (LUAR) and the
Compress before Solve (UFCS) increase with the problem size (e.g., 20% gain on perf008d
compared to 34% gain on perf008cr), which is due to the improved complexity of these
variants (cf. Section 5.4).

We also analyze the parallel efficiency of the FR and BLR factorization by reporting
the speedup on 24 threads. The speedup achieved by the FR factorization is of 17.1 on
average and goes up to 18.8. As for the biggest problems, they would take too long to run
in sequential in FR; this is indicated by a “—” in the corresponding row of Table 5.20.
However, for these problems, we can estimate the speedup assuming they would run at
the same speed as the fastest problem of the same class that can be run in sequential.
Under this assumption (which is conservative because the smaller problems already run
very close to the CPU peak speed), these big problems all achieve a speedup close to or
over 20. Overall, it shows that our parallel FR solver is a good reference to be compared
with.

The speedups achieved in BLR are lower than in FR, but they remain satisfactory,
averaging at 11.7 and reaching up to 13.8, and leading to quite interesting overall time
ratios between the best FR and the best BLR variants. It is worthy to note that bigger
problems do not necessarily lead to better speedups than smaller ones, because they
achieve higher compression and thus lower efficiency.
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Chapter 6

Conclusions and future work

The solution of large scale, sparse linear systems of equations lies at the heart of numerous
applications from science and academia as well as industry. Among the most popular tech-
niques used to solve these problems, sparse direct methods are appreciated for their ease
of use and robustness. These favorable properties come at price of a significant memory
and time consumption. As a consequence, the use of parallel computers is unavoidable.

The work described in this thesis is concerned with the scalability of sparse, direct
solvers where, by scalability, we intend their ability to solve problems of very large size
(currently, up to 107 unknowns) and/or make good use of the computing power and
memory of modern, large-scale, heterogeneous computing platforms.

In Chapter 3 we have addressed the implementation of sparse, direct methods on
modern computing systems. These are typically equipped with multi or manycore pro-
cessors and, possibly, multiple accelerators, such as GPUs. The high number of working
cores and the fact that they all share the same memory demand for the development of
algorithms that can achieve high degrees of concurrency and do not suffer for excessive
synchronization. The tiled (also referred to as communication avoiding) algorithms for
the factorization of dense matrices presented in Section 3.4.1 respond to this necessity.
As discussed in Section 3.4, these methods can effectively be used for the factorization of
frontal matrices within a multifrontal method for the factorization of sparse matrices.

These algorithms have complex data access pattern, especially when used within the
multifrontal method where multiple matrices can be assembled and factorized concur-
rently. Therefore, traditional parallelization techniques such as the fork-join one cannot
take full advantage of the concurrency delivered by tiled or communication avoiding al-
gorithms. For this reason we have investigated the use of a task-based parallel comput-
ing paradigm combined with an asynchronous and fully dynamic execution pattern as
described in Chapter 3. This approach proved to be capable of achieving high perfor-
mance and scalability on shared memory systems with high core counts. This method
was achieved “by hand”, that is, by manually implementing (either using Pthreads or
a minimal subset of the OpenMP standard) our own tasking systems, described in Sec-
tions 3.4.1 and 3.1. Later we have investigated the use of modern runtime engines, such
as StarPU, that rely on task-based parallelism as described in Sections 3.3, 3.4 and 3.5.
Besides being very efficient, these tools provide a very wide set of features like the support
for architectures equipped with accelerators or the possibility to implement and integrate
task scheduling policies.

The achieved results, reported in Chapter 3 allow us to conclude that the use of task-
based parallelism (where possible) combined with the use of modern runtime engines,
delivers code that is capable of achieving high performance and portability on single
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node, manycore systems equipped with multiple GPUs. Whether this approach can de-
liver the same good results on larger scale, distributed memory computers remains to be
investigated and is the subject of ongoing and future research as described below. In
addition, the use of task-based parallel programming models such as the Sequential Task
Flow, eases the development of some algorithms and renders the code easier to develop
and maintain.

Sparse, direct methods are generally very demanding in terms of memory. Addition-
ally, when executed in parallel, their memory consumption can be (much) higher than
in a sequential setting. Consequently, reducing, if possible, and controlling the memory
consumption is extremely important to make these solvers scalable on large size supercom-
puters. In Chapter 4 we have presented techniques for controlling the memory footprint of
a parallel sparse direct method. These basically consist in ensuring that the factorization
is achieved within a prescribed memory envelope which has to be greater than or equal to
the sequential memory consumption. This is achieved by means of careful scheduling or
mapping policies that trade parallelism for memory and therefore the stricter the memory
constraint will be, the higher the factorization execution time. Experimental results show
that the proposed techniques allow for reliably controlling the memory consumption and
for processing problems that would not fit in memory with traditional and commonly
used mapping techniques such as the proportional mapping; the performance penalty is
acceptable and, for some specific problems and settings, very small.

Finally, in Chapter 5 we investigated the use of low-rank approximation techniques
within multifrontal solvers; these allow for reducing asymptotically the complexity (both
in terms of memory and operations) of sparse, direct solvers by giving up some accuracy.
This compromise between cost and accuracy can be safely and reliably chosen through a
threshold that the application expert can set based on her/his needs. We have proposed
a novel low-rank format called Block Low-Rank (BLR); unlike other commonly used low-
rank formats, BLR does not use a hierarchical partitioning of data but, rather, a flat one
which makes it very convenient for integration within a complex, parallel, algebraic multi-
frontal solver. We have discussed the details of the implementation of a BLR multifrontal
solver and presented different factorization variants that aim reducing the cost or im-
proving the performance of operations. We have presented a detailed theoretical analysis
that shows that BLR can actually reduce the complexity of the factorization asymptoti-
cally and make it comparable to that of complex hierarchical formats. We have studied
the parallel implementation of a BLR multifrontal solver on shared memory systems and
presented techniques to improve its performance and scalability. The correctness of all
theoretical results and the effectiveness of all the proposed techniques have been assessed
on real life, large scale problems. The results presented in Chapter 4 lead us to conclude
that the use of low-rank approximation techniques, although not suited for all kinds of
problems, can considerably reduce the complexity of sparse, direct solvers and make them
competitive even on those problems or setting where they are commonly regarded as too
resource consuming. We can, moreover, conclude that, despite its slightly higher asymp-
totic complexity, the BLR format can provide considerable time and memory gains that
are on par with those offered by more complex hierarchical formats [125].

6.1 Future work in sparse direct methods
Although sparse, direct solvers have been the object of a vast research effort, there are
still numerous directions left to explore and new ones will emerge due to the evolution of
supercomputer architectures and of the ever increasing need of applications.
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First of all, it must be noted that the three main contributions presented in this thesis,
i.e., task-based parallelism with runtimes, memory aware scheduling and mapping and the
use of low-rank approximations, were achieved separately. Combining these methods opens
up numerous opportunities for research.

It must be noted that the parallelization of the BLR factorization discussed in Sec-
tion 5.5 essentially relies on a fork-join approach achieved through simple constructs like
OpenMP parallel loops. The BLR format lends itself very naturally to task-based paral-
lelism because of the decomposition into blocks of homogeneous sizes (within each front).
The use of task based parallelism can further improve the performance and scalability of
BLR, multifrontal solvers beyond the already good results presented in Section 5.5. This,
moreover, could ease the porting of BLR solvers onto machines equipped with accelerators.
Besides the technical issues related to implementation on heterogeneous platforms, this
poses a number of algorithmic challenges. As explained in Section 5.5, the performance of
BLR factorization suffers from the smaller granularity of operations with respect to the
full-rank case; if the performance penalty is already considerable on standard multicore
platforms, it can be catastrophic of devices such as GPUs that require operations of larger
granularity in order to achieve a satisfactory performance. One possible way of addressing
this issue is to use batched routines [41, 96] which allow for executing multiple operations
of the same type at once within the same kernel; as a result a higher occupancy of the
GPU is achieved which ultimately leads to higher performance. This, however, necessarily
introduces synchronizations which may harm the scalability of the code. This topic has
been partially investigated by Akbudak et al. [9] and Sergent et al. [145].

The unpredictability of the BLR workload and memory consumption also makes the
development of reliable memory-aware mapping algorithms challenging. First of all, it is
not possible to compute beforehand the sequential peak memory which basically makes the
techniques presented in Chapter 4 unusable without major modifications. Another issue
comes from the fact that the branches of the assembly tree may have different compression
rates which makes it impossible to compute static mappings that achieve a good memory
balance. As a result, it may be necessary to develop (partially) novel dynamic mapping and
scheduling techniques even in distributed memory environments which is rather complex to
achieve or may suffer from an excessive overhead. The implementation of such techniques
may be eased by the use of a task-based parallel programming paradigm and, possibly, a
runtime system.

Performance and scalability on large scale heterogeneous platforms The work
described in Chapter 3, achieved, for the most part, in the context of the SOLHAR project,
targets single node multi or manycore systems possibly equipped with multiple acceler-
ators. Typical supercomputers, however, include many such nodes connected through a
fast network. Achieving high performance and scalability on such architectures through
the use of task-based parallelism and runtime systems is one of the research topics that
we intend to investigate in the forthcoming years. This is, however, a challenging task
that requires to address several issues that include (but are not limited to):

• Dynamic generation or update of the computational workload. In modern, task-
based runtime systems such as StarPU, the DAG of tasks is, often, defined statically.
In a large scale, distributed memory system, the tasks of the DAG, as well as the
related data, are also statically mapped onto the available resources. This static
DAG generation and mapping, which is hard to achieve because of the irregular
nature of the target algorithms and because of the hierarchical and heterogeneous
nature of supercomputers, may lead to scalability issues due to load imbalance. One
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way to address this issue is to dynamically generate the DAG. This allows for an
up-to-date view of the load of the computing system, but may lead to suboptimal
allocation decisions due to the short-sightedness of the scheduler. Alternatively, a
statically generated DAG and its associated mapping can be modified at run-time.
Hybrid options are also possible, where a high-level DAG containing macro-tasks
can be statically generated, whose tasks dynamically generate actual computational
tasks.

• Partitioning of data and workload. Parallelization often implies partitioning data
and operations. Based on how this partitioning is done, more or less concurrency
becomes available, more or less communications are done and different levels of
granularity of operations can be achieved. Because of heterogeneity, uniform par-
titioning schemes may lead to a suboptimal use of available resources. One way to
overcome this issue is to design specific heterogeneous allocation schemes, to merge
resources together into homogeneous groups and assign macro-tasks or sub-DAGs
to each group. Alternatively, the partitioning of data and operations can be done
dynamically.

• DAG generation and pruning. In very large-size problems, the DAG of tasks can be-
come extremely big and costly to handle. However, in a distributed memory context,
each compute node only needs to have a partial view of the entire DAG. In other
words, the DAG can be pruned locally, which was shown in previous work [3] to be
effective for large-scale scalability. How to achieve this efficiently and automatically
remains an open challenge.

• Memory scalability. As explained above, the use of memory aware scheduling
and mapping techniques is necessary when targeting very large scale systems. This
requires the runtimes to provide methods and APIs that allow for reliably controlling
the memory consumption of tasks.

• Scheduling and resource allocation. Static offline allocation and scheduling prob-
lems are known to be computationally hard, and it is extremely difficult to come up
with a model able to estimate communication and computation times and to reflect
co-scheduling and co-allocation effects. On the other hand, purely dynamic runtime
strategies may take inefficient resource allocation decisions and lead to unbalanced
computations, especially in a distributed setting. It is therefore crucial to design
intermediate strategies based on good offline allocation decisions that may be re-
visited with fast runtime corrections, based on possibly partial information on the
state of the platform.

• Communication avoiding algorithms. These algorithms are extremely important to
achieve scalability especially on distributed memory systems. Previous studies on
dense linear algebra methods [64] suggest that hierarchical communication-avoiding
methods can be conceived to better match the hierarchical and heterogeneous nature
of modern supercomputing platforms. These techniques must be extended to the
case of sparse computations or, more generally, to algorithms that have a less regular
communication pattern.
Other techniques, instead, achieve lower communication overhead at the cost of a
higher memory consumption. One such example is the supernodal fan-both method
proposed by Ashcraft [24] which is a variant of the better known fan-in and fan-
out ones. The use of a runtime can allow for developing a general method than
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seamlessly switch between these three variants and that can, moreover, selectively
do so only when more concurrency is needed. Another option is to investigate the
use, within sparse factorizations, of methods that replicate some data in order to
reduce the volume of communications such as the one proposed by Solomonik et al.
[150] for dense matrix factorizations.

Block Low-Rank The use of low-rank approximation within sparse direct solvers is a
relatively new subject and, although some solvers are already routinely used in produc-
tion environments (including MUMPS, which provides the BLR feature since version 5.1
released in February 2017), numerous related research topics are still to be explored.

Among the things that we plan to investigate is the Multilevel BLR. In Section 5.4
we have showed that the BLR format can asymptotically reduce the cost (both in terms
of memory and operations) of dense and sparse factorizations. Although the provided
gain is considerable, the BLR format does not achieve the same asymptotic complexity
as hierarchical ones. It is possible to extend the BLR format with multiple levels. This
basically amounts to having nested BLR representations with a fixed number of levels.
Through this technique it is possible to further reduce the cost of the storage and opera-
tions with respect to the single-level BLR. Although the multilevel BLR format can reach
the same complexity as hierarchical formats with an infinite number of levels, its use is
of great interest in the context of sparse factorizations where linear complexity can be
achieved if the cost of the dense fronts factorizations is O(m1.5) (see Section 5.4.3). This
can be obtained with the Multilevel BLR using only a few levels. This results have been
theoretically assessed in our recent work [B2] but the practical interest of the Multilevel
BLR format still has to be validated.

A better understanding of the accuracy and stability of BLR-based solvers is necessary
to develop methods that are not only faster and with a lower memory consumption but
also reliable and roust from a numerical point of view. We have already started addressing
this topic [159] for the case of the basic FSCU factorization but our analysis has to be
improved and extended to the other variants taking into account different pivoting policies.

Finally, although the advantages of using low-rank compression can be clearly shown
in theory, their practical use opens a number of challenges, especially related to the ef-
ficiency of the implementation, that are hard to address. Scalability in a distributed
memory parallel setting, for example, is difficult to achieve because the workload cannot
be accurately modeled prior to the factorization itself and because the number of opera-
tions is reduced more than the volume of communications. In such a parallel context, we
also plan to achieve the implementation of forward elimination and backward substitution
operation that can make an effective use of the BLR format; this can be difficult to do,
especial in the case of a single right-hand side, because of the unfavorable ratio between
communications and computations.

Rank-deficient QR In numerous applications, especially from mathematical optimiza-
tion problems, it is required to solve least-squares problems with rank deficient matrices.
In such a case, the least-squares problem admits an infinite solutions; among these, the
one of minimum norm is required. When the problem matrix is dense, the canonical
approach relies on the use of a QR factorization wit column pivoting, as explained in
Section 2.1.4.3. Although this technique can also be applied to the sparse QR factoriza-
tion [135], it is very hard to implement in an efficient way and may destroy the staircase
structure of fronts which results in an increased cost. Davis [55] recently adapted to the
case of the Householder multifrontal QR factorization a technique which was originally
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proposed by Heath [98] for sparse QR factorizations based on Givens transformations:
when a diagonal entry of R is found to be lower than a prescribed threshold in the course
of the factorization, the corresponding column is skipped which leads to an R factor which
is not triangular but can be permuted into a trapezoid. This approach, unfortunately is
totally incompatible with the 2D partitioning of fronts into tiles that we rely on (see Sec-
tion 3.4.1). Therefore, we have already started working on a different variant of the Heath
method which achieves the factorization of a rank deficient matrix in two stages. In a first
stage a regular, non rank-revealing, factorization is computed; in a second stage the R
factor is inspected and, for all its diagonal entries smaller than a prescribed threshold, the
corresponding rows are zeroed-out by means of Householder or Givens transformations.
This second stage is achieved in a topological order assembly tree traversal and can, thus,
be pipelined with the previous one which allows for an efficient use of parallelism. This
technique can be possibly numerically improved by means of regularization techniques
such as the Riley-Golub iteration [1] or the one proposed by Avron et al. [27].
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Appendix A

Experimental setup

A.1 Matrices

Tables A.1 and A.2 list the matrices used for the experiments presented in Chapters 3, 4
and 5.

# Mat. name Source m n nz Ordering op. count
(Gflops)

0 image_interp UFMC 240000 120000 711683 COLAMD 30.2
1 LargeRegFile UFMC 2111154 801374 4944201 COLAMD 84.7
2 cont11_l UFMC 1468599 1961395 5382999 COLAMD 184.5
3 EternityII_E UFMC 11077 262144 1572792 COLAMD 544.0
4 degme UFMC 185,501 659415 8127528 COLAMD 591.9
5 cat_ears_4_4 UFMC 19020 44448 132888 COLAMD 716.1
6 Hirlam UFMC 1385270 452200 2713200 COLAMD 2339.9
7 e18 UFMC 24617 38602 156466 COLAMD 3399.5
8 flower_7_4 UFMC 27693 67,593 202218 COLAMD 4261.2
9 Rucci1 UFMC 1977885 109900 7791168 COLAMD 12768.5
10 sls UFMC 1748122 62729 6804304 COLAMD 22716.2
11 TF17 UFMC 38132 48630 586218 COLAMD 38203.1
12 hirlam Hirlam 1385270 452200 2713200 SCOTCH 1384
13 flower_8_4 UFMC 55081 125361 375266 SCOTCH 2851
14 Rucci1 UFMC 1977885 109900 7791168 SCOTCH 5671
15 ch8-8-b3 UFMC 117600 18816 470400 SCOTCH 10709
16 GL7d24 UFMC 21074 105054 593892 SCOTCH 16467
17 neos2 UFMC 132568 134128 685087 SCOTCH 20170
18 spal_004 UFMC 10203 321696 46168124 SCOTCH 30335
19 n4c6-b6 UFMC 104115 51813 728805 SCOTCH 62245
20 sls UFMC 1748122 62729 6804304 SCOTCH 65607
21 TF18 UFMC 95368 123867 1597545 SCOTCH 194472
22 lp_nug30 UFMC 95368 123867 1597545 SCOTCH 221644
23 mk13-b5 UFMC 135135 270270 810810 SCOTCH 259751

Table A.1: Complete set of matrices for the experiments in Chapter 3.
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A. Experimental setup

application matrix ID arith. fact. n nnz flops factor size

seismic modeling
(SEISCOPE)

5Hz 1 c LU 2.9M 70M 69.5 TF 61.4 GB
7Hz 2 c LU 7.2M 177M 471.1 TF 219.6 GB
10Hz 3 c LU 17.2M 446M 2.7 PF 728.1 GB

electromagnetic
modeling
(EMGS)

H3 4 z LDLT 2.9M 37M 57.9 TF 77.5 GB
H17 5 z LDLT 17.4M 226M 2.2 PF 891.1 GB
S3 6 z LDLT 3.3M 43M 78.0 TF 94.6 GB
S21 7 z LDLT 20.6M 266M 3.2 PF 1.1 TB

structural mechanics
(EDF Code_Aster)

perf008d 8 d LDLT 1.9M 81M 101.0 TF 52.6 GB
perf008ar 9 d LDLT 3.9M 159M 377.5 TF 129.8 GB
perf008cr 10 d LDLT 7.9M 321M 1.6 PF 341.1 GB
perf009ar 11 d LDLT 5.4M 209M 23.6 TF 40.5 GB

computational
fluid dynamics

(SSMC)

StocF-1465 12 d LDLT 1.5M 11M 4.7 TF 9.6 GB
atmosmodd 13 d LU 1.3M 9M 13.8 TF 16.7 GB
HV15R 14 d LU 2.0M 283M 1.9 PF 414.1 GB

structural problems
(SSMC)

Serena 15 d LDLT 1.4M 33M 31.6 TF 23.1 GB
Geo_1438 16 d LU 1.4M 32M 39.3 TF 41.6 GB
Cube_Coup_dt0 17 d LDLT 2.2M 65M 98.9 TF 55.0 GB
Queen_4147 18 d LDLT 4.1M 167M 261.1 TF 114.5 GB

DNA electrophoresis
(SSMC)

cage13 19 d LU 0.4M 7M 80.1 TF 35.9 GB
cage14 20 d LU 1.5M 27M 4.1 PF 442.7 GB

optimization (SSMC) nlpkkt80 21 d LDLT 1.1M 15M 15.1 TF 14.4 GB
nlpkkt120 22 d LDLT 3.5M 50M 248.4 TF 86.5 GB

Table A.2: Complete set of matrices for the experiments in Section 5.5 and their Full-Rank
statistics: order (n), number of nonzeros (nnz), number of operations for the factoriza-
tion (flops), memory required to store the factor entries (factor size), and arithmetic
(c=single complex, z=double complex, d=double real).

A.2 Computers
The following list describes the systems used for the experiment presented in Chapters 3,
4 and 5:

• brutus: this system is equipped with two octo-core AMD Opteron 8214 processors
clocked at 2.2 GHz for a total of 16 cores and a peak performance of 70.4 Gflop/s
for real, double precision computations. It has 65 GB of main memory.

• dude: this system is equipped with four hexa-core AMD Istanbul processors clocked
at 2.4 GHz. Each of these CPUs has six cores and is attached to a DRAM module
through two DRAM controllers and the CPUs are connected to each other through
HyperTransport links in a ring layout.

• vargas: this machine is made of IBM Power6 p575 nodes. One node of the Vargas
supercomputer installed at the IDRIS supercomputing institute (grant x2012065063)
is equipped with 16 dual-core Power6 processors clocked at 4.7 GHz. Processors are
grouped in sets of four called MCMs (Multi Chip Module) and each node has four
MCMs for a total of 32 cores. Processors in an MCM are fully connected as well as
MCMs in a node.

• ada: This is an IBM x3750-M4 system installed at the IDRIS supercomputing center
(grant 2014-i2014065063) equipped with four Intel Sandy Bridge E5-4650 (eight
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cores) processors and 128 GB of memory per node. The cores are clocked at 2.7
GHz and are equipped with Intel AVX SIMD units; the peak performance is of
21.6 Gflop/s per core and thus 691.2 Gflop/s per node for real, double precision
computations.

• sirocco: This is a five nodes cluster part of the PlaFRIM center. Each node is
equipped with two Haswell Intel Xeon E5-2680 (twelve cores) processors and 124
GB of memory per node. The cores are clocked at 2.5 GHz and are equipped with
Intel AVX SIMD units. In addition, each node is accelerated with four Nvidia K40M
GPUs; the peak performance is of 40.0 Gflop/s per core, 1.4 Tflop/s per GPU and
thus 6.0 Tflop/s per node for real, double precision computations.

• brunch: a shared-memory machine installed at the LIP laboratory of ENS-Lyon
equipped with 1.5 TB of memory and four Intel 24-cores Broadwell E7-8890v4 pro-
cessors running at a frequency varying between 2.2 and 3.4 GHz, due to the turbo
technology.

• eos: the supercomputer of the Calcul en Midi-Pyrénées (CALMIP) center (grant
P0989, since 2008). Each of its 612 nodes is equipped with 64 GB of memory
and two Intel 10-cores Ivy Bridge processors running at 2.8 GHz. The nodes are
interconnected with an Infiniband FDR network with bandwidth 6.89 GB/s.

• licallo: the supercomputer of the SIGAMM mesocenter in Observatoire de la Côte
d’Azur (OCA). Each of its 102 nodes is equipped with 64 GB of memory and two Intel
10-cores Ivy Bridge processors running at 2.5 GHz. The nodes are interconnected
with Infiniband FDR.

• farad: a shared-memory machine equipped with 264 GB of memory and two Intel
16-cores Sandy Bridge processors running at 2.9 GHz.
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