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Résumé

Cette thése traite de 1’étude et de l'analyse d’un schéma de type Trefftz Galerkin discontinu
(TDG) pour un probléme modéle de transport avec relaxation linéaire. Nous montrons que la
méthode TDG fournie naturellement des discrétisations bien équilibrées et asymptotic-preserving
puisque des solutions exactes, éventuellement non polynomiales, sont utilisées localement dans
les fonctions de base. En particulier, la formulation de la méthode du TDG est donnée dans le
cas général des systémes de Friedrichs. En pratique, une attention particuliére est consacrée a
I’approximation Py de ’équation de transport. Pour ce modéle bidimensionnel, des fonctions
de base polynomiales et exponentielles sont construites et la convergence du schéma est étudiée.
Les exemples numériques sur les modéles P; et P3 montrent que la méthode TDG surpasse
la méthode Galerkin discontinue standard pour certains tests avec termes source raides. En
particulier, la méthode TDG permet d’obtenir des schémas efficaces pour capturer les couches
limites et la limite de diffusion de I’équation de transport.

Mots-clés: Schémas asymptotic-preserving et bien équilibré, Méthode de Trefftz Galerkin dis-
continue, équation de transport, modéles Py, couches limites, limite de diffusion.




Abstract

This thesis deals with the study and analysis of a Trefftz Discontinuous Galerkin (TDG) scheme
for a model problem of transport with linear relaxation. We show that natural well-balanced
and asymptotic-preserving discretization are provided by the TDG method since exact solutions,
possibly non-polynomials, are used locally in the basis functions. In particular, the formulation of
the TDG method for the general case of Friedrichs systems is given. For the practical examples,
a special attention is devoted to the Py approximation of the transport equation. For this
two dimensional model, polynomial and exponential basis functions are constructed and the
convergence of the scheme is studied. Numerical examples on the P, and P3 models show that
the TDG method outperforms the standard discontinuous Galerkin method when considering
stiff coefficients. In particular, the TDG method leads to efficient schemes to capture boundary
layers and the diffusion limit of the transport equation.

Keywords: Asymptotic-preserving and well-balanced schemes, Trefftz discontinuous Galerkin
method, transport equation, Py model, boundary layers, diffusion limit.
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Introduction

This document deals with the study and the analysis of a Trefftz Galerkin discontinuous (TDG)
method applied to transport models.

Transport equations have many practical applications in biology, radiotherapy, radiative transfer
or more generally astrophysics. In this work, we are interested in the transport of particles
such as neutrons or photons. Such physical phenomena often involve absorption and scattering
processes which may lead to complex behaviors where no analytic solutions are known. In these
cases numerical methods are required.

However, the numerical approximation of the transport equation remains challenging because of
the two spatially dependent absorption and scattering coefficients. In highly scattering regimes,
the transport equation has a limit where the behavior of the solution is govern by a diffusion
equation. It is known that naive schemes fail to give a good approximation of the diffusion limit
on coarse meshes. Another potential issue comes from boundary layers which may occur in the
solutions to the transport equation. In both cases, one often needs to consider very fine meshes
to get a correct approximation of the solution which can drastically increase the computational
time.

To address these issues, a possibility is to construct numerical methods which satisfy some
particular properties. On one hand, schemes which preserve exactly stationary solutions are
called well-balanced and they may be very efficient to capture boundary layers. On the other
hand, the so called asymptotic-preserving schemes are able to capture the diffusion limit with
reasonable computational time. Generally speaking, well-balanced and asymptotic-preserving
schemes are two related concepts and it is often desirable to satisfy simultaneously these two
properties.

Objective and main results

The goal of this work is to derive and analyze an asymptotic-preserving and well-balanced scheme
for transport models using Trefftz discontinuous Galerkin (TDG) method. The principle of the
TDG method is to use the standard discontinuous Galerkin (DG) framework but with a change
of basis functions: the basis functions of the TDG scheme are solutions to the equation and
therefore not necessarily polynomials.

Several original results are produced in this document. In particular, the well-balanced property
of the TDG method is given in Proposition 2.13 of Chapter 2. The construction of exponential
and polynomial basis functions for the general two dimensional Py model is given in Theorems
4.25 and 4.34 of Chapter 4. Moreover, a proof of high order convergence of the TDG method
applied to the stationary Py model is given in Theorem 4.75. Finally, the asymptotic-preserving
and well-balanced properties are illustrated through various numerical examples in Chapter 5.

A first article with application to the P; model has been published [BDM18]| and others are in
preparation.
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Plan of the thesis

Chapter 1

In the first chapter the physical and mathematical context is given. In particular, the transport
equation is introduced together with the popular Sy and Py reduced models. Then, the two
notions of asymptotic-preserving and well-balanced schemes are recalled and a definition for two
dimensional well-balanced schemes is proposed. Finally, a brief bibliographical review on Trefftz
method is made with particular interest in the Trefftz discontinuous Galerkin method.

Chapter 2

In Chapter 2, the Trefftz discontinuous Galerkin method is presented in the context of general
Friedrichs systems. The well-balanced property of the scheme is studied and some estimates in
various norms are provided. Such estimates will be useful in Chapter 4 to study the convergence of
the scheme. Note however that the procedure given in this chapter does not cover the construction
of the basis functions which will be treated in Chapters 3 and 4 for some particular transport
models.

Chapter 3

In Chapter 3, the TDG method is applied to the one dimensional P; and Su-Olson model. The
basis functions are constructed for these two systems with the possibility to get high order scheme
in space and time. An asymptotic study of the scheme in the diffusion regime is made for the
one dimensional P; model. Finally, the properties of the TDG method are illustrated with some
numerical examples.

Chapter 4

The Chapter 4 is the central chapter of this document. It deals with the analysis of the TDG
method for the general two dimensional Py model. As a first step, the derivation and some
properties of the Py model are recalled. Then, exponential and polynomial spatial solutions are
constructed together with some time dependent solutions. Finally, high order convergence of the
scheme, in particular through the study of the approximation properties of the basis functions,
is provided for the stationary case.

Chapter 5

In Chapter 5, the TDG method is applied to the two dimensional P, and P; models. In particular,
the basis functions are explicitly calculated for these two models using the results of Chapter 4.
Additionally, numerical results are provided to illustrate some properties such as the convergence,
the well-balanced property (through numerical tests with boundary layers) and the asymptotic
behavior of the scheme.

Chapter 6

The Chapter 6 is an independent part devoted to the study and analysis of an asymptotic-
preserving multidimensional ALE method for a system of two compressible flows coupled with
friction. This chapter, taken from a published article [PLM18|, proposes a multidimensional
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scheme to approximate solutions to a particular kind of bi-fluid system which depends on a fric-
tion parameter. Properties such as conservation, stability, consistency and asymptotic-preserving
(with respect to the friction parameter) are studied. Various numerical results are also provided.






Chapter 1

Physical and mathematical context
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In this Chapter, the physical and mathematical context is given. First, the transport equation is
deduced from the radiative transfer equations and the popular Py and Sy approximations are
presented. Then, the main motivations behind the construction of asymptotic-preserving and
well-balanced schemes are recalled. Finally, a brief bibliographical review on Trefftz methods is
provided with a particular interest in the Trefftz discontinuous Galerkin method.

1-1 The transport equation

The study of the evolution of a population through transport equations has many practical
applications in astrophysics, optics, atmospheric science, population dynamics or, in our case,
radiative transfer. Radiative transfer is the branch of physics describing the transport of energy
by electromagnetic radiation through a material medium. We consider a population of particles
such as photons or neutrons and study how they travel through the material.

In this section, we briefly recall the equations of the radiative transfer [Cha50]. Seven variables
are required to describe the evolution of a particle: one time variable ¢, three space variables
x = (2,9,2)T = (21, 29,23)T € R3, two for the direction & = (21,Q9,Q3)7 € R3 and one for
the frequency v € Ry. The function of distribution of the particles reads f := f(t,x,Q,v). A
useful quantity when studying a population of photons is the radiative intensity

Z(t,x,Q,v) = chvf(t,x, Q,v),

where c is the speed of light and h is the Planck constant. To simplify the model, we consider
physical quantities averaged with respect to the frequency. We define the grey moment as

+oo
Z(t,x, ) := / Z(t,x, 2, v)dv.
0



APPROXIMATE MODELS OF THE TRANSPORT EQUATION

At the local thermal equilibrium the radiative intensity is governed by the Planck function

+o00 V3
B(T(t,x)) = /0 02[2}‘

e%—l]

dv,

where k is the Boltzmann constant. The interaction between the particles and their environment
can be described using three mechanisms:

e The absorption,
e The scattering,
e The emission.

A particle can be absorbed by the material through the absorption coefficient o, (T (t,x)) >
0 and the particles interact with each other through the scattering coefficient o, (T(t,x)) >
0. Finally, the emission of particles depends on the Planck function B and can be written
0q(T(t,x))B(T(t,x)). We can now introduce the grey (i.e. average in frequency) radiative
transfer system

%8,52(15, x, Q) + Q- VIt x, Q) = 00 (x) (B(T(t, x)) — Z(t, x, n))
Foy(x) (% /S (9,9l %, Y)Y — Tt x,9)),

%@Z(T(t,x)) _ i /52 0u(T(t,)) (B(T(1.%)) — Zt.x.9))d2.

where p(Q, ') is an angular distribution function which defines the anisotropy of the scattering
and E(T) is the internal energy density of the material at the temperature 7. For example,
when considering perfect gazes one has

E(T(t,x)) = evT(t,x),

where ¢y is the heat capacity at constant volume of the medium. For simplicity we assume
that the temperature T'(t,x) is given, there is no emission of particles (that is B = 0) and the
scattering is isotropic (that is p(Q2,€)') = 1). The grey radiative transfer equation now reads

%@I(t, x, Q)+ Q- VI(t,x,Q) = —0,(x)Z(t,x, Q) + O’S(X)< <I> (t,x)—ZI(t,x, Q)), (1.1)

where we use the following notation

1
<~>(t,x):4/ sy,
T )52

with S? the unit sphere in R3.

In the following, we may refer to the equation (1.1) as the transport equation. Interesting physical
phenomena depend on the coefficients o, and os. For example, when they vary significantly
boundary layers may occur. Also, in the asymptotic regime ¢ >> 1 and o5 >> 1, the transport
equation (1.1) tends to a diffusion limit (see for example [ABDG15] in french)

1

9 <TI> (t,x)—div<3 V<T> (t,x)) tou<T>(tx)=0.

Os
1-2 Approximate models of the transport equation

In practice, equation (1.1) is difficult to solve numerically because of the large number of variables
(up to three space variables, two for the direction and one time variable). Probabilistic methods
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such has Monte-Carlo schemes can be used directly on the transport equation. However, for
deterministic schemes one often needs to consider approximate models. In the following, we
present two popular approximations to discretize the angular variable in equation (1.1). More
general reviews of approximate models for the transport equation can also be found in [Bru02]
or [Fral2| (in french).

1-2.1 The discrete ordinate method

The discrete ordinates method [Cha50] (or Sy method) assumes that the particles can only travel
through some particular directions. As pointed in [Bru02] this is equivalent to write the density
as a sum of Dirac mass

I(t,x,Q) = Y _Ti(t,x)6(2 — Q).
=1
The transport equation (1.1) then reads
fat (£, %)+ VTt x) = ( a(x)—l—as(x)) (t,x)+04(x Zw] i=1,..,m, (12)

where Z; are the unknown and w; the integration weights. One often choose a symmetric quadra-

ture that is
m m
=1 =1

Moreover, to recover the correct diffusion coefficient one needs to impose [LMMS&7]

1
7Im7

iwiﬂi@)ﬂi = 3

i=1
where I,,, € R™*™ is the identity matrix.

The main advantages of the Sy method is that the system (1.2) is diagonal and the positivity
is preserved for each unknown. However, this system is not invariant under rotation and has a
well-known defect called ray effects. These effects come from the choice of the discrete values €2;
for the directions which are then favored in the numerical simulation [Bru02].

1-2.2 Spherical harmonics approximation

The idea behind the spherical harmonic approximation (or Py model) is to decompose the
solution to (1.1) on the spherical harmonics basis

Z(t,x,82) Z Z Vit (Q)ul(t, ),
k>0 |1|<k

where Y}, ; are the real or complex spherical harmonics. The Py approximation assumes that if
k > N then the moments satisfy uﬁc = 0. Multiplying by Y} ;, integrating over the direction and
using the recursion relations of the spherical harmonics one finally gets a system of the form

3
Opa(t, x) + > Aidyu(t,x) = —Ru(t, x),

i=1
where u(t,x) is the unknown, R is a diagonal positive matrix and the matrices A; have the
following block structure [Her16]

0 A 0 B 0o C
AIZ(AT 0)7 A2:<BT 0)7 A3:<CT 0>



ASYMPTOTIC-PRESERVING AND WELL-BALANCED SCHEMES

A more detailed construction of the Py model and some properties of this system will be given
in Chapter 4.

In particular, a nice property of the Py model is that its solutions are invariant under rotation.
However, a well-known defect of the Py method is that it can lead to negative density when
considering time dependent case |Bru02|. There have been several attempts to address this
problem [BHO1, HM10, MH10, Ols12]. Among them, a popular approach is the so-called filtered
Py (FPy) method [FHK16, MH10, RARO13|.

1-3 Asymptotic-preserving and well-balanced schemes

1-3.1 Asymptotic-preserving schemes

The introduction of a small parameter € in an equation is often a good way to model a particular
physical behavior. For example, the parameter € may represent some scaling of the coefficients
or different time scales of the physical quantities. In practice, the parameter £ may vary in the
domain and it is therefore mandatory to derive a numerical scheme which behaves well whatever
the parameter value is. Naive schemes may fail to capture the limit ¢ — 0 on coarse meshes
typically because the error behaves as O(%). On the contrary, schemes which are able to capture
efficiently the limit ¢ — 0 have been called asymptotic-preserving (AP) schemes.

Definition 1.1 (Asymptotic-preserving schemes). A scheme is said to be asymptotic-preserving
(AP) if its consistency error does not depend on ¢ in the limit € — 0.

AP schemes have been applied to a wide range of kinetic and hyperbolic equations, see, for ex-
ample, the review [Jinl0]. For the transport equation, it is known that under the correct scaling
it tends to a diffusion limit. To capture the diffusion limit with reasonable computational time,
asymptotic-preserving schemes have been introduced [JL91, JL.96] and applied to transport prob-
lems [BT11, BDF15, Fral2, Gos13, GT02, Jin10, RGK12|. Such schemes are usually obtained

with a modification of the fluxes by including a dependence in € in the new fluxes.

A typical example is the hyperbolic heat equation in dimension one

1
Op + —0zv = 0,
€

1 o
Dru+ ~0up = — 2v.
€ €

Here the unknown are (p,v), 05 € RT and 0 < ¢ < 1. In particular, when € — 0 the variable p
follows a diffusion equation (see Chapter 3 for details)

Op — Oy (;axp) —0.

To show why it can be challenging for numerical method to capture the diffusion limit, consider
a standard finite volume scheme written under the form

1 n __
/At /A% T
Wy P, - =0 |
Uj Uj n J+§ J—3 _ —&’U‘

At eAx g2

where At, Az are the time and space step, p; and v; the approximations of p and v in the cell
j. To get the fluxes pjrrand v, 1, a first possible choice is to solve the associated Riemann
2 2
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problem at the interface. One gets after simplification

1
Py =5 (7 + o — o).

<
|

1
?‘Fl = 5(’1}? + U;L+1 +p§L _p.?+1>.
However with this particular choice of fluxes the scheme is not AP.

Proposition 1.2. The consistency error of the scheme (1.3) with the fluzes (1.4) is O(%—G—At).
Therefore the scheme (1.3)-(1.4) is not AP in the limit e — 0.

Proof. See for example [BDF12]. [ |

A possible way to get an AP scheme is to modify the source term in the scheme (1.3)

ntl _on 0" —w
p; — P its  Ti-3
J J 4 2 2 :O,

At eAx

n

and consider the fluxes
n _ 1 n n n n
PjJr% =5 Pj T Pj+1 TV — Vi),
1

(1.6)
n _ n n n n
Uy = oy O+ e ) B,
with a = %. The scheme (1.5)-(1.6) has been proposed by Gosse and Toscani [GT02|. This
scheme is AP.

Proposition 1.3. The consistency error of the scheme (1.5) with the fluzes (1.6) is O(Ax+At).
Therefore the scheme (1.5)-(1.6) is AP in the limit ¢ — 0.

Proof. See [BDF12, GT02|. [ |

We compare the behavior of an AP and a non AP scheme applied to the hyperbolic heat equation
in Figure 1.1. The Figure 1.1 shows that, in the diffusive regime (¢ << 1), naive schemes needs
lots of degrees of freedom to approximate correctly the limit solution. On the contrary, even
with few degrees of freedom, the AP scheme captures the numerical solution very well.

1-3.2 Well-balanced schemes

A concept which is strongly related to the asymptotic-preserving property is the notion of well-
balanced (WB) schemes. The common definition for a well-balanced scheme is a scheme which
preserves stationary solutions to the model. Such schemes are related to AP schemes since the
stationary states can be seen as limit solutions when ¢ >> 1. Well-balanced schemes have been
introduced in [GLI6| and, since then, have been widely used [BPV03, DB16, Gos13, GT02, Jin04,
JTHO09, LeV98, MDBCF16|. They have several advantages:

e they can improve the numerical calculation when considering stiff source terms,
e they increase the accuracy of the scheme around the steady states,

e they can be a good starting point to derive efficient AP schemes.
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100 nodes 50 nodes
1000 nodes
25 5000 nodes

limit solution

limit solution

15 g o

0.5 1

Figure 1.1 — Representation of the variable p of the hyperbolic heat equation when ¢ = 10~3 and
comparison with the limit solution. On the left: numerical solution obtained with
a non-AP scheme. On the right: numerical solution obtained with an AP scheme.

For our applications in particular, we expect well-balanced schemes to be able to capture effi-
ciently boundary layers.

Schemes which are both asymptotic-preserving and well-balanced have been designed and studied
in one dimension [GT02, JTH09|. However, direct extensions in higher dimensions may fail to
capture boundary layers [Tan09]. In general, and except in some particular cases, two dimensional
asymptotic-preserving schemes are not well-balanced. It comes from the particular definition of
a well-balanced scheme in one dimension.

Definition 1.4 (Well-balanced scheme in 1D). A one dimensional scheme is said to be well-
balanced if it preserves all the stationary states.

There is an important difference between the one-dimensional case and higher dimensions. In
one dimension, a scheme is well-balanced if it captures all the stationary states of a hyperbolic
system. This is possible because, in one dimension, the number of linearly independent stationary
solutions is finite.

However, in two dimensions, the space of stationary solutions becomes infinite. It has a huge
impact on what is a well-balanced scheme in space dimensions higher than one. For a two
dimensional well-balanced scheme, one chooses a finite subset of solutions for which the scheme
will be exact.

Definition 1.5 (Well-balanced scheme in 2D). A two dimensional scheme will be said to be
well-balanced for some solutions to the model if it is exact for any linear combinations of these
solutions.

Note that since it could also be a good idea to preserve time dependent states, we do not restrict
the Definition 1.5 to stationary states.

We illustrate why the concept of well-balanced schemes plays an important role in the numerical
approximation of solutions to the transport equation. We consider the P; model in one dimension
which is a very simple approximation of the transport equation (see Chapters 3 and 4 for details).
The Figure 1.2 shows that well-balanced schemes may be very efficient to capture boundary layers
(in this case because the stationary states are exponential solutions) which is not the case for
some other naive schemes.
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Figure 1.2 — Representation of the first variable of the P; model. Comparison between a well-
balanced and a naive scheme for a test case with a boundary layer at x = 0.5.

1-4 Trefftz methods

1-4.1 Trefftz and related methods

The idea of adding information about the solution in the basis functions is known, in some cases,
to greatly improve the quality of the numerical solutions. The so-called enrichment methods
include for example the partition of unity method (PUM) [MB96, BM96, GS00], the General-
ized finite element method (GFEM) [SBC00, SCB00|, and the extended finite element method
(XFEM) [BB99, MDB99|. The enrichment methods are based on a standard polynomial basis
which may come from the finite element method or the discontinuous Galerkin method. The idea
is then to add locally some special basis functions to the approximation space. These special
basis functions may be, for example, solutions or asymptotic solutions to the model. This can
be very useful when considering physical problems which involve discontinuities, singularities or
high gradients. For detailed reviews of these methods, see [AH08, FB10] and reference therein.
In this document, we are interested in the Trefftz discontinuous Galerkin (TDG) method which
uses only solutions to the equation as basis functions.

The name of the Trefftz methods comes from the seminal paper of E. Trefftz which has recently
been translated in English [Mau03|. In his paper, Trefftz proposed the new concept of using trial
functions which satisfy the governing differential equations (for Trefftz it was the 2D Laplace
problem). At the time, the benefits of using such trial functions was to obtained a lower bound of
the error. This lower bound combined with the upper bound given by the Ritz method allowed
Trefftz to give a general bound of the error.

Since then, Trefftz methods gained in popularity and have been applied on various problems. In
particular, Trefftz methods have been widely used for the Helmholtz equation, see for example
the reviews [Luol3, Chapter 3|, [Moill, Chapter 1|, [PvHVD07, HMP16b| and reference therein.
For review of Trefftz methods applied on other type of equations see [KK95, Li08, Qin05, CZ97|.

11
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1-4.2 The Trefftz discontinuous Galerkin method

The discontinuous Galerkin (DG) methods have been introduced by Reed and Hill in 1973 for
solving the steady neutron transport equation [RH73| and the first mathematical analysis was
performed by LeSaint and Raviart in 1974 |[LR74|. Since then, the DG methods have been
successfully applied to a large range of problems, see for example [CKS99, DPE11, HW07| and
reference therein. The DG methods combine feature of the finite element and finite volume
methods. In particular, they depend on a weak formulation of the problem and on the choice
of finite dimensional trial and test spaces of piecewise continuous functions. In the following,
we will call basis functions, the functions which belong to the trial and test spaces. A classical
choice is to consider polynomials basis functions.

In this document, we are interested in the Trefftz discontinuous Galerkin (TDG) method which
combined the discontinuous Galerkin framework with Trefftz’s original idea. This method has
been somehow rediscovered by Cessenat and Despres [CD98| with the ultra weak variational
formulation (UWVF), see also [HMK02, BM08, 1G13, IGD14, IG15b|. Later, it has been noticed
that the UWVF is in fact equivalent to a DG method with a special choice of basis functions
[BMO08, GA07, HMMO7]. Since the basis functions of this formulation were solutions to the
equation, it has taken the name of Trefftz discontinuous Galerkin method. The reformulation of
the UWVF into the DG formalism allows to use all the techniques of analysis developed in the
DG framework. In particular, for the TDG method applied to the Helmholtz equation, it has
been used to study h-convergence [KMPS16|, p-convergence [HMP11| and even hp-convergence
[HMP16a].

TDG methods have their pros and cons.

e Pros:

— Incorporate a priori knowledge in the basis functions which are therefore well adapted
to multiscale problems.

— Often need less degrees of freedom to reach a given accuracy. A typical example is
the 2D version of the P; model in the dominant absorption regime o, > 0 illustrated
in the table below where we compare the number p of basis functions needed to
achieve a given fractional order. The first line is for the TDG method. One gets
prpc = 2(order + 1) which is a rephrasing of the result of Theorem 4.75 given in
Chapter 4 for the case N = 1. The second line is the optimal number of basis
function for a general DG method ppg = 3 (order + 1)(order + 3).

order | 1/2 | 3/2 | 5/2 | 7/2|9/2
PTDG 3 5 7 9 11
DG 3 9 18 | 30 | 45

In particular, the number of basis functions is the same to get order = 1/2 and one
always gets prpc < ppe-
— Is easy to incorporate in DG codes since one only needs to change the basis functions.
e Cons:

— May suffer ill-conditioning due to poor linear independence of the basis functions
[CD98, HMKO02|. For wave problems, some remedies exist in the literature [GHP09).

— The practical calculation of the basis functions adds to the computational burden.
If one can calculate the basis functions analytically, the computational burden is
moderate. If it is not the case, the computational burden is heavier: several options
could be considered such as computing numerically the basis functions or relying on
a general procedure [IGD14, IG15a, IG15b].
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In the following, we briefly recall the idea behind the TDG method. Consider the following
model problem with Dirichlet boundary condition

Lu=0, on €,

(1.7)
U = Ugy, on 0f).

Here, u is the unknown, € is an open bounded set of R? or R3, u,, is the exact solution and £
is a linear differential operator. Typically, one could think of £ as L = A. Moreover, we assume
that 7;, is a mesh of the domain Q and we will denote €, a cell of ;. All these notations will
be made rigorous in the Chapter 2.

The only difference between the DG and the TDG method is the choice of basis functions in the
approximation space Vj. For the DG method, the basis functions are simple polynomials and
the approximation space Vpg reads

Vpa(Th) = {V € H'(T,), vi €P, VO € ‘Z?L}’

where P}, is the polynomials space.

For the TDG method, the basis functions are exact solutions to the equation and the approxi-
mation space reads

Vrpa(Tn) = {V € H'(T,), Lvip=0 VY€ 971}

Now, we assume one can apply the standard discontinuous Galerkin method to the model problem
(1.7) and we denote apg(-,-) and I(-) respectively the bilinear and linear form obtained with the
DG method [DF15, DPE11, HW07], see also Chapter 2.

Definition 1.6. Assume V}(7;,) is a finite subspace of Vpa(7) or Vrpa(7,). The standard
DG/TDG method reads

{ﬁnd uy, € V,(Zy) such that (18)

apc(up, wy) = U(wp), Vwy € Vi(Th),

where apg(+,-) and [(-) are respectively the bilinear and linear form obtained with the DG
method.

Solving the formulation (1.8) is equivalent to find the solution of a linear system. Indeed, since
V}, is finite-dimensional space, there exists functions v;(t,x) such that

Vi, = Span {vl (t, %), ..., vu(t, X)},

for some n € N. The functions v; are called the basis functions. Since u;, € V},, one can write
up =y .~ a;vi, a; € R. Therefore, the formulation (1.8) can be written

find a; € R, 1 =1,...,n, such that

n
CLDG(Z a;ivi,v;) =1U(vj), j=1,..,n.

i=1

Using the linearity of apg(-,-), one gets the following linear system: find a = (aq,...,a,) € R”
such that
Ma = b,

13
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where M = (M;;);';—; € R™™ and b = (b1, oy b))t € R, with

M;; = apa(vi,vj), b =1(vy)

With the standard DG method, the approximation space V}, is typically made of polynomials (for
example one can consider simple monomials such as 1, z,y...). This is not the case anymore for
the TDG method. In the following, we give some examples of subspace V3, when considering the
TDG method. For simplicity, we consider the same basis functions vy, ..., v, k € N, in all the
cells and make a slight abuse of notation by denoting Vj, = Span(vy, ..., vi). The basis functions
have compact support in the cell and the total number of basis functions n is then k multiplied
by the number of cells. The first example that we consider is the Helmholtz equation which was
the model problem used for the UWVF [CD9g|.

Example 1.7. The two dimensional Helmholtz equation reads

Au = —wu,

where w € R. A typical choice for V}, is then

V;, = Span {eiw(dl’x), ey e’w(d’“’x)},

where x = (x,y)T € R%, k € N is the number of basis function and d; € R? are directions on the
unit circle d; = (cos 0;,sin 6;)7. [

For a more transport related model we give the example of the P; model in one dimension.

Example 1.8. The P; model in one dimension reads
Op + Oz = —0qp,
at'U + 8xp = —OtV.

The unknown is u = (p,v)” and 04,05 € R*, 0y = 04 + %. A possible choice for V}, is

Vi = Span{ <_ v Ut) eVoaTt < v Jt) e*m’”}.
V0a V0q
In some regimes, it can be very interesting to consider non polynomial basis functions. When

0q,0¢ >> 1 for example, the two basis functions of V}, are stiff exponential functions and may
therefore be very well adapted to capture boundary layers. ®

However, the basis functions are not always exponentials. Consider for example the hyperbolic
heat equation in two dimensions.

Example 1.9. The hyperbolic heat equation in two dimensions reads

Op +divv =0,
Ov+ Vp=—oyv,

the unknown is u = (p,v)?” € R3 and o, € R*. For simplicity, we consider stationary solutions.
Deriving the second equation and inserting in the first equation, one gets Ap = 0. Therefore, a

possible choice for V}, is
o= (09 (0 )
g pan{ (—vq1 (x) — Vg (x) }

where x = (7,y)T € R%, k € N is the number of basis functions and the functions g;(x) denote
the two dimensional harmonic polynomials. o
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In this chapter, the TDG method for Friedrichs systems with linear relaxation is presented. After
introducing such systems, the standard discontinuous Galerkin method for Friedrichs systems
[DPE11, EG06, MRO05] is recalled. This is particularly useful since the TDG method is simply a
DG method with a special choice of basis functions. The derivation of the TDG method is then
given. Finally, some error estimates are provided and the well-balanced property of the scheme
is deduced from the quasi-optimality result. Note however that this chapter does not cover the
general construction of the basis functions which may be a difficult point. A first look at the
basis functions in some particular cases is given in the previous chapter in Examples 1.7, 1.8 and
1.9.

2-1 Friedrichs systems with linear relaxation

In this section, we present the general systems (2.1) which are considered in this document.

The method is presented in a general framework to consider both stationary and time dependent
problems. Let Qg be a bounded polygonal /polyhedral Lipschitz space domain in R% and consider
a time interval [0,7], T > 0. We denote © = Qg for stationary problems and € = Qg x [0,T]
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for time dependent problems. We consider Friedrichs systems with linear relaxation [Fri5§|

d
;Ai@-u(t,x) = —R(x)u(t,x), in, 21

M™u(t,x) = M~ g(t,x), in 0.
The space variable is x = (21, ...,24) € R? and the time variable is t. The unknown is u € R™.

Moreover the matrices
A; e R™™ R(x) € R™ ™,

are symmetric and we assume R(x) is a non negative matrix, that is
(R(x)v,v) >0, forallveR™ x¢€ RY.

We use the notation 9y = 9;, 9; = 9, for i = 1,...,d. For time dependent problem u = u(¢,x)
and the matrix Ay is a non negative matrix (and often Ay = I,,). For stationary problem
u = u(x) and therefore 9yu = 0. The outward normal unit vector is n(t,x) = (n¢, g, ..., Nay)
for (¢,x) € 9 and of course for stationary problems n; = 0 for all x € 9Q. We set

d
M(n) = Agny + Y Aing,, on 09, (2.2)
=1

Since the matrices A; are symmetric, M is also symmetric and one has the standard decompo-
sition M(n) = M (n) + M~ (n) where M is a non negative matrix and M~ is a non positive
matrix. More precisely denoting A; the eigenvalues of the matrix M associated with the eigen-
vectors r; one can take

M*(n) = Z \rrl. M (n) = Z P (2.3)

Ai>0 A <0

Finally we use the matrix M~ to write the boundary conditions with g € L?(9f) and assume
the problem (2.1) admits a unique solution [EGO06].

2-2 Presentation of the method

2-2.1 Mesh notation and generic discontinuous Galerkin formulation

The partition or mesh of the space domain Q@ = Qg C R? is denoted as 7. It is made of
polyhedral non overlapping subdomains g ,, that is

Th = UTQS,T'

For a space time problem, we first split the time interval into smaller time intervals (t,,tp+1)
with 0 = tg < t; < ... < ty = T. Making an abuse of notation, the mesh of the space-time
domain Q = Qg x [0, 7] C R is still denoted as

{Z;L = Ur,nQS,r X (tna tn+1)-

One must therefore be careful that 7y denotes either a purely spatial mesh for stationary models
or a space-time mesh for time dependent models. Moreover the cells or subdomains will be
referred to with the same notation, that is

Q= QS,T or Q= QS,T X (tnatn—i-l)-

In summary, one can write in both cases 7, = U,{2;, and the context makes these notations non
ambiguous. They are several advantages to consider space-time meshes
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t
T

tn+1

t’fl

Qs

Figure 2.1 — Illustration of the partition 7, for a time dependent problem.

e No distinction is made between stationary and time dependent problems. Therefore, the
formulation and analysis of the method are the same in both cases.

e Time dependent basis functions can be used. This can be particularly useful for Trefftz
methods since it allows to be well-balanced for time dependent solutions.

e With the right choice of flux, the method can be solved iteratively in time (time step after
time step) like any standard scheme.

Finally, note that other kind of space-time meshes could also be considered [FR00, LRv95, MRO5|.

The broken Sobolev space is
HY(T) := {v € L2(Q), vio, € H' (%) ¥ € frh}

In the following we assume u € H'(7;). For convenience, we may rewrite the system (2.1) under
the form Lu = 0 and consider the adjoint operator

L::ZAZOZ‘—FR, L* = —ZA,-&-JrR: —L +2R.

The matrices A; are constant and we assume that the matrix R(x) is constant in each cell.
Multiplying the system (2.1) by v € H'(7;) and integrating on © gives

> /Q viLu, =0, (2.4)
k k

where vi, = viq,, Uy = ujg, . Integrating by parts one gets

L*vi) Tay + / T My, = 0,
X, v s X [ i

where 0y, is the contour of the element 2. Here, we have generalized the notation (2.2) on 09
where n; = (n4, gy, ...,nxd)T is the outward unit normal and My = M(ny) = Aong + >, Ain,.
Denoting ¥; the edge oriented from €2 to €; when k£ # j and X, the edges belonging to
QN O (for simplicity we use the same notation even if there is more than one edge in ;N 052),

17
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one can write

Z/Q Vi) M—FZZ/ (vI Mu) + (vI Mu);

k k j<k ki
Tar+ _ Tar—
+Z/ VkMkuk__Z/ vy M g.
L Y Skk Y Zkk

For u satisfying the equation (2.1), the normal flux is
frj(ug,uj) == Mpu, = —Mjuy;, on Xy;. (2.5)
Note that fi;(ug, u;) + fjr(uj, up) = 0. One has
ZZ/ (v Mu)y, + (vV Mu), —ZZ/ (Vi = V)T oy (g ).
k j<k ki k j<k ki

Because M is symmetric, one can decompose M under the form M = M™ + M~ where M7 is
a non negative matrix and M~ is a non positive matrix, see (2.3). In the following we consider
the upwind flux

i, wy) = Myfug + My,

where My; = Mys, ;- Finally one gets

Z/ ) w35 [ ) T M)

k j<k ki
+Z/ v%M,juk = Z/ v%M,;g.
Y Skk Y Skk
We define the bilinear form apg : H'(7;,) x H'(7;,) — R and the linear form [ : H*(7;,) — R as

apg(u,v) Z/ (L*vg) uk+22/ Muk+Mk, u;)

k j<k Bkj

+ Z/z VfM,juk, u,v e HY(T), (2.7)
kk

(2.6)

—Z/ Vka_g7 v e HY(T,).
L Y Skk

One can rewrite (2.6) as apg(u,v) = I(v), Vv € H'(7,). We can now define the classic
discontinuous Galerkin method for Friedrichs systems with polynomial basis functions [DPE11,
EG06, FR00, MR05|. We define IP’Z the space of polynomials of d variables, of total degree at
most ¢ and the broken polynomial space

PUT;) = {v € L*(%2), vjo, € P4 VY € T} C H'(T,),
Now we can introduce the DG method.

Definition 2.1 (DG method). Assume P,(7;) is a finite subspace of P4(7,). The standard
upwind discontinuous Galerkin method for Friedrichs systems is formulated as follows

{ﬁnd uy, € P,(73,) such that 2.8)

apG(Un, vi) = U(vp), Vvi € Pp(Tp).

Note that, because of the conservation equation (2.5), the exact solution to (2.1) also satisfies

aD(;(u,vh) = l(Vh), VVh S Hl(%) (29)
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2-2.2 Trefftz Discontinuous Galerkin formulation

Since our goal is to use Trefftz method we take discontinuous basis functions which are solutions
o (2.1) in each cell

V(T) = {v € HY(T), Lvi, =0 Yy, € fzz} c HY(T). (2.10)

The space V(7;,) is a genuine subspace of H'(7;) except in the case L = 0. Starting from the
bilinear form ap¢ from (2.7), one notices that the volume term can be written for all functions

in V(7p,) as
e T T T
/ (L*vi) up = / ((—L + 2R)vk) u, = 2/ vi Rug, Yu,veV(T). (2.11)
Qp Qp Qp

One can therefore define a bilinear form ap : V(7;,) x V() — R as

(u,v) Z/VkR“HZZ/ T(M5uy, + Mu)

k i<k

(2.12)
+§/ vi Mitag, u,v e V().
kY 2kk

Of course, one has apg(u,v) = ar(u,v) for all u,v € V(7;,). We give an equivalent formulation
of the bilinear form ap(-,-). Thanks to an integration by part one has for u,v € V(7)

T(u,v)—zk:/gk([,*vk uk—l—ZZ/ (Vi — vj) M uk—i—Mk u;),

k j<k Lk

:Z/Q VgLuk—Z/a Mkuk—l—ZZ/ (Vi — vj) Muk—i-Mk uj).
k k k

k i<k
(2.13)

Since the functions u; € V(7;,) are piecewise homogeneous solutions of the equation, that is
Lu; = 0, one gets

ZZ/ Vk + M, vj)T(uk — uj) — ;/Ekk V%Mlzuk, u,v e V().

k j<k
(2.14)
The relaxation term R completely disappeared in the formulation (2.14). It might seem a paradox
at first sight but it is not because, for a Trefftz method, some information about R is encoded in
the basis functions. Since there is no volume term in the formulation (2.14) compared to (2.12)

it may be easier to implement. The related linear form [ : V(‘7;,) — R is unchanged with respect
0 (2.7), that is I(v) = =), fEkk viM, g forall veV(T).

Definition 2.2 (TDG method). Assume V},(7}) is a finite subspace of V(7). The upwind
Trefftz discontinuous Galerkin method for the model problem (2.1) is formulated as follows

{ﬁnd uy, € Vi (7,) such that (2.15)

aT(uh,vh) = l(Vh), Yvy, € Vh(’Z;L).

Remark 2.3 (Iterative scheme in time). In case of a time dependent problem, even if the classic
upwind discontinuous Galerkin formulation (2.8) and the upwind Trefftz discontinuous Galerkin
formulation (2.15) are posed on the whole space-time domain €2, they still can be decoupled time

19
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step after time step. It comes from the fact that the matrix Ay is non negative and therefore

M~(n)=0ifn=(1,0,...0).
Define af. : V(7;,) x V(7,) — R (related to the general bilinear form (2.14)) and [ : V(7)) = R

as the "space part" of the previous bilinear and linear form

=22 Mg ju Vi + M V)T (uf — uf Z/aszsmankn VI M uf

k ]<k an in

N Z/ M, w,v e V(T),

k"k" 1

1
V ng j/ n -1 — Uﬁ) i v E ‘/<qh)'
Z/@Qgﬂaﬂkn ) M, Z k kn—1Y9k

Ypngn—1
(2.16)
Here the index k™ is a notation for an element of the space-time mesh: it denotes the element with
index k in the spacial mesh at the time step n. We also used the convention ¥;1,0 = 90,1 N (O X
{0}) (i.e. Lpipo is a cell of the spacial mesh at time ¢ = 0) and Xpn1v = Oy N (02 x {T'})
(i.e. Xpn+1pn is a cell of the spacial mesh at the final time). The formulation (2.15) is equivalent
to the series of space problems

find uj, n=1,..., N, such that (2.17)
ar(uy,vy) =1"(vy), Yvi € Vi(Tp). '
The scheme obtained with the formulation (2.17) is implicit. o

Remark 2.4 (Exact integration of the basis functions). In this document, the basis functions
that we consider are products of polynomials and exponentials. To calculate the contributions of
the basis functions in the bilinear and linear form (2.15), one therefore needs to integrate products
of polynomials and exponentials on the edges/faces of the mesh. Even if it is always possible to
use quadrature formulas, it may be desirable to calculate exactly such integrals. We refer the
reader to [Gab09] for a convenient way to integrate products of polynomials and exponentials in
two and three dimensions. In our numerical tests, the integrals will be calculated exactly. ®

Remark 2.5 (Adjoint basis functions). A fully different choice of basis functions is also possible
using the adjoint operator L* instead of L in (2.10). Define V*(T;,) = {v € H'(T,), L*v) =
0V, € T} € HY(7;). With this choice of basis functions one has L*v;, = 0 in (2.7) and we
therefore define aar : V*(Z) x V*(7,) — R as

aar(av) =Y [ o= v Ot + M) 3 [, vEM, (2.18)

k j<k kg Yk

and consider V*(7;) a finite subspace of V*(7},). The upwind adjoint Trefftz discontinuous
Galerkin method for the model problem (2.1) reads

find uy, € Vi (7) such that (2.19)

aar(un, va) =1U(va), Vvi € Vi(Th), .
with [ a linear form as in (2.7). Even if when R = 0 these two approaches coincide, the problems
we are interested in are such that R = RT # 0, so these two methods are different in our case.
The numerical solution is by construction in the space V* # V and it is not clear if a finite
subspace of V* can give a good approximation of V using standard norms. Some numerical
examples are given in appendix C.

Another possibility is to adopt a Petrov-Galerkin approach choosing trial functions in V(7;,) and
test functions in V*(Z;) [Gab06, Gab07]. However, we have tested this approach and noticed
some stability issue for time dependent problems. Therefore these methods will not be studied
further. ®
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2-2.3 Trefftz discontinuous Galerkin formulation for systems with a source
term

In this section, we show how to derive the TDG method for a model problem with a source term.
The only difference with the system (2.1) is the addition of a source term f in the right hand
side

; Aidu = —R(x)u+ f(t,x),  inQ, (220)
]\47'[‘].:]\47g7 ln 89,

where f(t,x) € L?(Q2) is constant in each cell and all the hypothesis made for the model (2.1)
hold.

With the same approximation space V}, as before, the TDG method may give a bad approximation
near the source. If we want the basis functions to "see" the source term f, the approximation
space (2.10) must be changed. We introduce the following space

VE(T) = {v e H(T), ap € R, Lvy = aif, Yy € %} c HY(T;,). (2.21)

To get the new bilinear form ar(-,-) one can use the equality Luy = agf in (2.13). For the linear
form I(-) one needs to add the contribution ), ka vI'f. The bilinear form ar(-,-) and the linear
form [(-) now read

ar(u,v) :Zak /Qk vif — ZZ/& (M vi + M,;;.Vj)T(uk — uj)
k g

k j<k

_Z/ vi Mo, u,veV(T), (2.22)
kY Xkk

Z(V):_Z/ vfM,;ngZ/ vif, ve HY\T).
kY 2kk PRRAY

Definition 2.6. Assume V},(7,) is a finite subspace of Vi{(7;,). The upwind Trefftz discontinuous
Galerkin method for the model problem (2.20) is formulated as follows

find u;, € Vi{(75,) such that
{ n € ViilTh) (2.23)

ar(ap, vi) = U(vy), Vv, € Vi(T),

where ar(-,-) and [(-) are given in (2.22).

In practice, the formulation (2.23) is not so different from the formulation (2.15). Typically, a
possible choice will be first to consider some basis functions which are solutions to the homoge-
neous problem (that is take a = 0 in (2.21)). After that, one could add basis functions which
depend on f. For example, if the matrix R is invertible, one could consider the basis function
R™f (that is take a = 1 in (2.21)). With this procedure, the only difference between the for-
mulations (2.23) and (2.15) is the addition of the one single basis function R~'f. The additional
computational cost of the formulation (2.15) compare to the formulation (2.23) is therefore lim-
ited. Some numerical examples of the TDG method applied to a system with a source term will
be given in Chapter 5.
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2-3 Analysis of the Trefftz Discontinuous Galerkin method

2-3.1 Quasi-optimality

In this section, we study the TDG method applied to the model problem (2.1). In particular, we
show a quasi-optimality bound in mesh-dependent norms. Our analysis follows some results of
[KMPS16| where a special case with R = 0 was studied, see also [FR00, MRO05] for the general
case. We define two semi-norms on H'(7;,)

1 1
e =3 [ wlRu+ 355 [ =) gl =) + 305 [ a6,
k k kj k

k j<k Zkk

la3e =3 /8 M,
k k

(2.24)
with |My;| = | M| = M, ,;'; — M. First, we show that these two semi-norms are in fact norms
on the Trefftz space. We will need the following lemmas.

Lemma 2.7. One has the inequality ||v|pc < C||v|[pe+ for all v € V(Ty), with C = \/g

Proof. Assume v € V(7;,) then Lvy = 0, VQ, € 7. Multiply by Vg and integrate over (i one
has fﬂk vl Lvi, = 0. Integrating by parts one finds

/ (L*Vk)TVk + / viMpvy = 0.
o o0,

Using L* = —L + 2R and Lvi = 0 one gets

1
/ vi Myvy, +2/ viRvy = 0. (2.25)
2 Jaq, O
Therefore one has
1 _ 1
Z/ viRvy, < —3 Z/ v{Mk Vi = §||v||2DG*, (2.26)
S  Jooy

which is a bound for the first term in the definition of the DG norm (2.24). Moreover, because
R is non negative and using (2.25), one also finds fan vIMyvg < 0 that is fan vIM vy <

- . 2 vl M, vy and consequently

/ VI My|vy, < —2/ vi M, vy. (2.27)
8Qk Qk
An elementary inequality gives %fzkj (vi — vj) | M| (vi, — v;) < fEkj VI | Myj|vi + V?|Mkj|Vj
thus
1 1
S35 L e gl vy 35 [ e <Y [ i,
k j<k 2 Xk k 2 I & YO

and therefore using (2.27)

1 1 _
> D / (vVi=v) T | Mg (vie—v)+ > / Vi Mylvy, < =2 / viM v = 2|[v[[he-,
— 2 Js,. 2 Js o0
k <k kj L kk L k

(2.28)
which is a bound for the second and third terms in the definition of the DG norm (2.24).
Finally combining (2.26) and (2.28) with the definition of the DG norm (2.24) one gets ||v||% <
511412
2Vl u
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Lemma 2.8. Assume M € R™*™ s a symmetric matriz. Then one has
2! M?z2 < Cz!'|M|z, Yz ecR™,

where we have used the decomposition of M = M+ M~, M is a non negative matriz, M~ is
a non positive matriz and |M| = M+ — M.

Proof. First, we notice that 2’ |M|z = 2" Mtz —2z" M~z and 2" M?z = 27 (M*)?z+ 2" (M~ )?z.
Let AT be the maximum eigenvalue of M. Denoting \; and r; the eigenvalue and eigenvector of
M* onehas Y, 502" (M1)%z = A} (z,1:)> < AT Y, 50(z,15)? = AT2" M Tz, A similar inequality
applies to the matrix M~ gives finally z/ M2z < p(M)z!|M|z, Vz € R™. This completes the
proof. |

We can now show that the two semi-norms || - ||pg and || - || pg+ are in fact norms on the Trefftz

space V(7).

Proposition 2.9. The semi-norms || - ||pg and || - |pg+ are norms on the Trefftz space V (Iy,)
defined in (2.10).

Proof. Assume u € V(7;,) and ||ul|pg = 0. Since ||u||pg = 0 one has ), Zj<k%f2k,(uk -
J

u;)T|Myi|(ug — u;) = 0 and Lemma 2.8 implies that Mu has vanishing jump across each edge
of 7. Thus u is a solution to the general problem Lu = 0 in Q. Morecover [y, u”|M[u = 0.

Therefore u is solution of
Lu=0, in (),
M ™ u=0, onJf.

We conclude u = 0 in  using the uniqueness of the solution. Thus || - ||pg is a norm on V(7).
Thanks to Lemma 2.7, we also conclude that || - ||[pg+ is also a norm on V(7). This completes
the proof. |

Next, we study the coercivity and the continuity of the bilinear form a(-,-) regarding the norms
I Ipe and || - [[pg--

Proposition 2.10 (Coercivity). For all u € H'(T,) one has apc(u,u) = |[ul|%,. Therefore,
one gets ar(u,u) = |[ul|% for allu € V(T).

Proof. The proof is taken from [MRO5]. Let u,v € H'(7;). The bilinear form (2.7) reads

anc(u,v) Z/ =SS0 R w35 [ v T M)
O i k j<k Ekj
+ Z/ V%M]juk.
kY Ykk
Integrating by part and using My; = —Mj;, one has

apc(u,v) Z/ Vk ZA@ + R) uk+ZZ/ kakjuk—l—v My ju;

k j<k

—l—(vk—vj) (M uk—i—MkJu] —i—Z/ ka uk—kak]uk
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Using M = M + M~ one finds

apg(ua,v) Z/ VkLuk—ZZ/ ki Ve + M, vj) (uk—uj)—zk:/zkkngkuk.

k j<k

Since L = —L* 4+ 2R one gets
apc(u,v) Z/ L*u/z€ + 22/ VgRuk
Q L Qp
—ZZ/ vk—i—M];;vj)T(uk—uj) —Z/ vi M, uy.
Lk Y 2kk

k i<k

Summing the above expression of a(-,-) and the one in (2.7) one gets with v = u the equality
2apc(u,u) = 2||u|%,. Moreover, from (2.11) one deduces apg(u,u) = ar(u,u), Yu € V(7).
This completes the proof. |

Proposition 2.11 (Continuity). The continuity bound ar(u,v) < v2|[ul|pg||v|pg holds for
allu,v e V(I,).

Proof. Using —M] ngv the norm DG* can be recast into the form

Dar = F M ug, +uf Mba - £ My, .
|u|? —ul Uk +u M'Zu . uy M, u (2.29)
3 kk

k j<k

Since |M~| = —M~ and M, M~ are respectively non negative and non positive symmetric
matrices, the bilinear form ap (2.14) can be written as

ortu) VR[S [ (Yt I () + (- i) VA (*5%)
os [ () ()

Using the Cauchy-Schwartz inequality, one sees that the first term of each scalar product is
bounded by ||v||pg+ and the second term by |lu||pg. This completes the proof. [ |

We can now give the following classical quasi-optimality result.

Proposition 2.12 (Quasi-optimality). For any finite dimensional space Vi (1) C V(Ty), the
TDG formulation (2.15) admits a unique solution uy, € V3 (Tp,). Moreover, the quasi-optimality
bound holds

|lu—wllpe < V2 inf |ju—vy|pg,
v €VR(Th)

where u stands for the exact solution to (2.1).

Proof. From Propositions 2.9 and 2.10, one deduces the uniqueness of the discrete solution uy,.
Existence of uy, follows from uniqueness. Moreover Vv, € V3, (7;,) one has

u—up|he = ar(u —up,u—wp) = ar(u — wy,u—vy) < V2|u— | pellu - villpe,

thanks to propositions 2.10 and 2.11, to the consistency equality (2.9) and to (2.15). [ |
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2-3.2 Well-balanced property

Using the quasi-optimality proposition one has the well-balanced property of the scheme in the
sense of the Definition 1.5. Of course, a standard DG scheme has the same quasi-optimality result
but it can be well-balanced only for some particular polynomial functions. On the contrary,
the TDG method can be well-balanced for more general solutions which contain for example
exponential factors as in Example 1.8.

Proposition 2.13 (Well-balanced scheme). The TDG method is well-balanced for its basis func-
tions.

Proof. Assume u is a linear combination of the basis functions in each cell. One can take vy = u
in Proposition 2.12. Therefore one has |[u — uy|[pg = 0. Since u — uy, € V(7;) one concludes
using Proposition 2.9. |

2-3.3 Estimate in standard norms

In the previous section, the error is bounded in terms of DG-norm. It is of course desirable to
have estimates in a more standard norm. In this section, we present some elementary L? lower
bounds of the DG norm which take advantage of the relaxation matrix R and an L? upper bound
of the DG* norm.

Proposition 2.14. Assume € € Ty, Ry, = R(x)|q,, and Vk Ry, is definite positive. One has

1
-1
supge;, [[VRe ||

lullr2() < lullpe, Yue HY(T).

Proof. A basic inequality is v < H\/Rk71||2<vTRkV). Let v € HY(7,). Integrating over Q,

summing over all cells and using the definition of the DG-norm (2.24), one gets the assertion. W

This inequality holds when R is definite positive but degenerates when R — 0. For non stationary
problems, one can give a L? lower bound at the final time that does not depend on R.

Proposition 2.15. Assume Ag is non singular. For time dependent problems one has
Iullr2(0sx () < Cllullpe,  Yu € H'(T).

where the constant C' depends on the eigenvalues of Ag. In particular if Ay = I, then C' = 1.

Proof. Consider n(t,x) on 9Q with n(t,x) = (n¢, Ny, -, 1y ) . = (1,0, ...,0)7 one has [M]((1,0, ...,0)T) =
Agp. Therefore, since Ag is non singular and positive

1 1
Z/ us < CZ/ quouk < CZ/ u£|Mkj|uk, Yu e HY(T7,).
Y Qs x{T} & 2 Qs x{T} X 2 Qs x{T}

The notation Qg x {T'} represents the edges on the top of the space-time mesh and therefore
UpQls i X {T} C UpXgk. One finally has

1
S wzey ) [ ulbmg vee ),
e Y Qs ex{T} 3 2 Skk

and the assertion follows from the definition of the DG-norm. [ ]
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Let us define the semi-norm

n d
uite = [ 33 (02

i=1 j=1
The previous propositions have given lower bounds of the DG norm. The following proposition

gives an upper bound of the DG* norm.

Proposition 2.16. One has
1
ullbg- < O Il (-l + luha), vae H(T), (230
k

where hy, = diam() and the constant C depends on the A;.
More precisely, if one A; is O(%) with respect to €, the constant C' scales like %

Proof. Let u € Ty, one has [[ul[%q. = >, Joa, —u{Mk_juk and therefore

luf3e <Y / u2,

We now use the trace inequality from [DPE11, Lemma 1.49] in each cell Qj on each component
of the vector u

1
1200, < Cllullzzqy (5, Mllzzy +lula,), v B Q).

Summing over all cells one finally gets the estimate (2.30). This completes the proof. ]
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In this chapter, the TDG method is applied to one dimensional transport models. More precisely,
two models are considered

— The first one is the P, model. As a first step, stationary and time dependent solutions are
constructed. Then the asymptotic-preserving property of the scheme is proven by means
of Hilbert expansion. Finally, the convergence and the asymptotic behavior of the TDG
scheme in the diffusive regime are numerically illustrated.

— The second one is the Su-Olson model [SO96]. Compare to the P, model, the particularity
of the Su-Olson model comes from the degenerate matrices Ag and A;. Stationary and time
dependent solutions are constructed and the convergence of the scheme is studied. The
results obtained on the numerical test given in [SO96| are very similar to those obtained
with the standard DG method.

3-1 The P, model

The P} model is a first simple approximation of the transport equation using spherical harmonic
expansion of the solution. An interesting property of the P; model is that, like the transport
equation, it admits a diffusive limit when € — 0. The time dependent version of the P; model
in one dimension reads

C
e0ip + —=0,v = —e0q(x)p,
% o
0w + —=0,p = —or(x)v.

V3
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The unknown is u = (p,v)7, ¢,04,05 € RT, ¢ € R} and
o
Oy = 0% = £0, + —.
€

The reader should be aware that o; depends on £ and behave as % when o5 > 0 and ¢ — O.
When ¢ — 0, the variable p of the system (3.1) follows a diffusion equation.

Proposition 3.1. When & — 0, the variable p and v of (3.1) behave formally as

C2
Oip — Tazzp = —0apD,
Is (3.2)
ce
v=—% o

\/§0’S

Proof. Multiplying the second equation of (3.12) by ¢ and neglecting the term in 2, one gets
v=— \/%‘Eas ,.p- Inserting this expression in the first equation of (3.12) one finds 9;p — 3‘3—28mp =

Ts

—0gp. |

One challenge for numerical methods is to capture the diffusion limit (3.2) on coarse meshes.
The asymptotic behavior when € — 0 of the scheme is studied in section 3-1.2.

3-1.1 Construction of the basis functions for high order time dependent
scheme

In order to use the Trefftz method (2.15), one needs to find solutions to the model (3.1). In
particular, we would like to give a general procedure to increase the number of basis functions
in order to get high order of convergence if needed. In the following, we search for particular

solutions to (3.1) under the form

u(t,x) = q(t,a:)e’\x,

where q(t, x) is a polynomial in space and time, A € R. For simplicity, we consider a polynomial
of degree at most one in space and time. There are other ways to construct time dependent
solutions to the Py model, see Section 4-2.4 for 2D examples. We recast the one dimensional P;
model (3.1) under the form of a Friedrichs system (2.1) with d =1, m = 2. It reads

edu+ A;0zu = —Ru, (3.3)

c (0 1 gog, O
Alvg<1 o)’ R—(o a)'

We can now give some solutions to the one dimensional P; model and use them as basis functions
when o, > 0.

with

Proposition 3.2 (Solution to the P; model when o, > 0). The P; model (3.3) admits the
following four solutions

Vli(l') _ <:F\€<‘(it> e:l:%\/3€0'a0't$’

VQi(t z) = —£(e0q —01) F \/7 @(5% +op)r — 250,04t ot LVETwoe
V304(e0, + 0¢)x £ 2¢0, Gaott

(3.4)
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Proof. We search for particular solutions to (3.3) under the form
u(t,z) = q(z,t)e’, (3.5)
with A € R and where q € R? is a polynomial in = and t. We consider
q(t, =) = qo + qiz + qat. (3.6)

Using (3.5) in (3.3) and dropping the exponential terms, one has [¢0;+ 410, + (A1A+R)|q(z, t) =
0. Extending g one finds

((Al)\ + R)qo + Ajqu + €q2> n <(A1)\ n R)q1>x n ((Al)\ + R)qg)t —o0.

This equality holds for all  and ¢, thus one gets the following system

(Al)\ + R)q2 = Oa
(A1 + R)q; = 0, (3.7)
(A1 + R)qo = —A1d1 — €qa.

Therefore the solutions to (3.3) under the form (3.5) with q given by (3.6) satisfy the system (3.7).
A necessary condition for the system (3.7) to admits a non zero solution is det(4;A + R) = 0.

Since
€0q =)\
A1A+R:<c)\ V3 )
V3 Tt
one deduces

1
A = Et—+/3e0,0¢.
c

We define w a vector which belongs to the kernel of Aj A + R. With A\ = ++/30,0: one notices
ker(A1 X + R) = Span ((F/01,/04)") and one can take

W = (F\/or, vVEaa)".
Using the relations (3.7) one has
q=aw, q=pw, aBeR.
From the last equality of (3.7), one sees that —A1q; — eq2 € Im(A;\ + R) which implies
—A1q1 — eq € ker ((Al)\ + R)T)J‘.
Since the matrices A; and R are symmetric, ker(A;\ + R)T = ker(A;\ + R) = Span(w). A

necessary condition is then w’(—A1q; — q2) = 0 which is equivalent to
2¢ /040
B = e A
V3e(eo, + o)

With o = 0 one finds the solutions vf(m) With o = 1 one gets from the fourth equation of
(3.7)

@ = ( c(—eoq + o) O>T +yw
0 V3eou(eoq +oy)’ ’
with v € R. To sum up, one has the following relations
( _ 20\/@0} + 260’(1\/5 )T
V3e(eoa + o) V3(eou + 1))

T
)

q2

(HF\/CTM/@)

c(—eoq + oy)
V3eoy(eoq + oy

q1

d0

T
),0> + yw.

29
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In the following we take v = 0. The case a = 0 gives the solutions vit(x) With o = 1,
304

multiplying the solutions by %a(e0oq + 0¢) and using u(x,t) = (qo + qiz + qot)eM with
A= :l:%\/ 3c0,0¢, one finds the solutions véc(t, x). This completes the proof. [ |

The solutions (3.4) can be used as basis functions when o, > 0. However, when o, — 0, all these
functions converge toward the same limit and one can no longer use them as basis functions. To
address this problem, we construct some linear combinations of the solutions (3.4) which remain
stable in the case g, — 0. The limit solutions give the basis functions when o, = 0.

Proposition 3.3 (Solution to the P; model when o, = 0). The following functions are solutions
to the P, model when o, =0

1
vittn) = (g).

V3oy
w(t,x):( 1”C>

_30t4.2 _9cy
V3(t’x)_< “2v/3a E)’

2
vi(t,z) = (‘ \/fgt m?;,_ 22\/5%“ - 2\/533) :
) o c

(3.9)

Before proving Proposition 3.3 we begin with the a lemma. To make the solutions more conve-

x

: : _ 1 __ e54e™® __ ef—e”
nient to read, we use the notations z, = ;1/3c0,0¢x and cosh(z) = 55—, sinh(z) = “=—.

Lemma 3.4. The following four functions are linear combinations of the solutions (3.4)
R cosh(zy)
Vil®) = | _ fem sinn(z,) |

a(a) = (F Siﬂ‘“”) ,

— cosh(z;)
_ﬁ%x sinh(z;) — 2¢t cosh(z,) (3.10)
~ t — @
Yl 8) = | oomn sin(z,) + VB cosh(z,) + 2, /Zitsinh(z,) |

— a . Jr a .

Galt.z) = g% sinh(z,) — \/g%m cosh(zy) — 2%,/ Z-tsinh(z) ‘
ﬁf}%x sinh(z;) + 25t cosh(z)

Proof. One defines the following linear combinations of the functions (3.4)

+ +__C 4
17 (t,x) =v3 :ngl.

Then defining the four solutions

1t z) = 2\}5 (vi (t,2) - vi(t,2)) .
Vo(t, ) = 25_\/15 (vi(t,z) +vi(t,x)),
vs(t,z) = 20’i0't (17 (t,2) + 17 (¢, x))
Galt) = 5 (vi (1) — 3 (1,2),

N 204+/€040¢
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one gets the functions (3.10). [ |

We show that these solutions degenerate toward polynomials in the limit case o, — 0 and that
their limit are the functions given in Proposition 3.3.

Proposition 3.5. When o, — 0, (o1 — 2 ), the solutions (3.10) tend to the following functions

—‘/§”fo 2fat 2fx)

30,5 2 + QCt

Proof. One notices that

cosh(z,) — 1, sinh(zr) — ﬁx (3.11)

0q—0 \/EOGLOt 0a—0 C

The limit of v (¢, z), Va(t,z) and v3(t,x) are simply obtained by using the expressions (3.11)
n (3.10). The limit of the second component of v4(¢,x) can be obtained in a similar way. It
remains to study the first component of v4(¢, ). One has

Cc Oy — €0, . o+ €0y _CcOop—E0g V3 3v3e0,04 3 9
EWTW Slnh(Zx) — \/5?% COSh(Zx) —ET(7[E T‘T + O(O'a))
o+ + eog 3eo,01x2 9
— x/§7wa 21+ —5 7 — +olo2));

3V3of 1 1
= —2V3ex + fat (6 — 5):63 + o(0q),

=—2V3ex — \[ ta: + o(04a),

Because —2¢, / Zttsinh(z,) — Q\fo'ttx one gets the expression of the limit of v4(¢, z). This
a oq—0

completes the proof. [ ]

Remark 3.6. Note that the solutions (3.4) used when o, > 0 are only defined in the case ¢ # 0.
However, up to a multiplication by ¢ or ¢? if needed, the solutions (3.9) used when o, = 0 can
also be defined when ¢ = 0. ®

3-1.2 Asymptotic behavior when ¢ << 1

In this section, we study the behavior of the TDG scheme when ¢ — 0. The main result is
Proposition 3.14 which gives the AP property of the scheme for a particular choice of basis
functions. Here we choose to interpret the TDG scheme (2.15) as a finite difference scheme. This
has several advantages

e Under this form one observes that the scheme is new compared to other popular one dimen-
sional asymptotic-preserving and well-balanced finite difference schemes [BDF12, GT02].
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e One can study, at least formally, the asymptotic behavior of a finite difference scheme by
means of Hilbert expansions.

We consider the P model with no absorption

<

V3

e + i(%p = —ﬁv,
€

V3

with € € R}, 05,¢ € RT. We consider the stationary basis functions e; and e from (3.9) defined

in each cell as
_VBos(,
<(1)> it (t,2) € O, ( = (15” f‘fk)), it (t,2) €
epo(t,z) =

0
<0), else, (8)7 else,

where xj, is the abscissa of the center of the cell k.

eop + Oyv =0,

(3.12)

ep1(t,x) =

(3.13)

3-1.2.1 Finite difference scheme

Proposition 3.7. The TDG scheme (2.15) with periodic boundary conditions and the basis
functions (3.13) can be recast as the following finite difference scheme

n+1

Dy, _pz c |: ]n—i—l
€ + - 4+ 2pk — pr—1 + (1 — a)(vpr1 — vie— =0,

At >v3h P41 + 2Pk — Pr—1 + ( )(Vk+1 — Vk—1)

a2 Pt g c
e(1+ —)-k LA {a2v + 2u, + vp_1) + (—v 4+ 2 — v (3.14)
( 3) A7 >3h (Vk41 k4 Uk—1) + (—Up41 k— Vk—1)

n+1 o

0+ Q) prr — )] = =20,

. _ V3osh
with a = T

Remark 3.8. One can interpret the first component of the basis function ey o(t,x) in (3.13) as
a correction compared to the standard finite volume method. Indeed, the standard finite volume
method is equivalent to consider the formulation (2.8) with the two basis functions ex 1 = (1,0)7
and ego = (0,1)T. The scheme is then (3.14) with a = 0. As illustrated in Section 3-1.3.2 this
finite volume scheme is not asymptotic-preserving when ¢ — 0. ®

To get the scheme (3.14) we first recast the model (3.12) into the form of a Friedrichs systems

(2.1) with
1 0 c 0 1 0 0
AO—(O 1)’ Al_x/§e<1 o)’ R—<o )

For the sake of simplicity we assume that o, is constant in the domain and that the step space
h = 41 — xy, is constant for all k. We consider basis functions e;; (3.13) where ¢ is the global
number of the cell and [ the local number of the basis function in the cell i. We denote by x,_ 1
and Tip1 the edges of the spatial cell Qg;, i.e. Qg; = [J:F%JH%] and z; the midpoint. Finally,
we use the notation e}y, ef's when designing the basis functions from the spatial cell Qg; at the
time step n.
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Consider the bilinear and linear forms obtained from the decoupled formulation (2.17)

=2 Z Mign Vi My V) (0 — Z /aszsmamn )" My

_ Z/ k_nkn_lu’,g, u,v e V(L)

k”kn 1
1
Vi) gs — / o, v e V().
Z/anmaﬂkn ) Z St Mynjn-11%
(3.15)
In the following, we explicitly write the equality
ar(u,efy) =1"(ey), 1=1,2, (3.16)

for any time step n and any spatial cell Qg ;. For simplicity, we will consider periodic boundary
conditions, a uniform space step h and a uniform time step At. We introduce some notations.

Definition 3.9. We define Cy, , C’;ﬁzl and CF.,  as

Z 2/ My el)" (uft —uf), (3.17)

Ekn in
’?’ }: Z/ knkn 1uZ 1) (318)
k”k" 1
Z/ M, 1uf. (3.19)
k:"k" 1

Since uy, is a combination of the basis functions in each cell, one can make the following assump-
tion.

Assumption 3.10. We assume that u admits the following decomposition in each cell €

u, = apep1 + Brer2, o, B €R,
or, in an tdentical way, when considering the time step n and the spatial cell Qg ;

ul = af'ely + fely, ol B € R. (3.20)

Before proving Proposition 3.7, we need some lemmas. First, we write the equality (3.16) with
the notations introduced in the Definition 3.9.

Lemma 3.11. Consider the TDG method applied to the model (3.12) with the basis functions
(3.13). The TDG formulation (3.16) with periodic boundary conditions at the time step n in any
spatial cell Qg ; reads

C’_%,il C’?zl—i_CSzl 0,

’ r (3.21)
Crio— CTZ2+CSZQ =0.

Proof. Since we consider periodic boundary conditions, the term |, 905NOn (vk) M,y in the

bilinear form and the term |, 905NI%n (vi)Tgs in the linear form of (3.15) are equal to zero.
Moreover one notices that

- Z Z/ (Mjgnjn Vi — MétzjnV?)T( Z Z/ M. AT (uf - uj).

k j<k Ekﬂ ™ Ekn in
(3.22)
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Therefore one has

ar(u,e;) =Cr, +Cg,y,  Uef) = C;{%
The equality (3.16) gives for [ = 1 and [ = 2 respectively the first and second equations of (3.21).
This completes the proof. |

Now we can study the values of the coefficients Cg;; and Cr ;.

Lemma 3.12. One has

n CAt n n n st n n
Cgi1= 27\/3< —ai g+ 207 — oy + (1= See ——) (B — ifl)) ; (3.23)
and /3 \f
n cAt 3osh n n 3osh
Cgi0 = 2v3 <( ) (Bi1 + 28"+ Bity) + 51
(3.24)

+ (=B + 28 = Biy) + (1 +

Qi1 — O

V30 oy —ar)

Proof. For simplicity, we will use the notation My, = M~((0,£1)T), M{; = M*((0,£1)T) and
()\m l) (MLe] )T ex .m- Since the function e;; is only non-zero in the cell §2; one can write
Cgll from (3.17) as

Cs,ig = /t (* (MZyein)" (w; — wiog)(w;_1) — (My e)" (ui — uz‘+1)($¢+%))- (3.25)

n—1

Using M| = —M;l, the decomposition of u} (3.20) and the fact that the basis (3.13) does not
depend on time, the equality (3.25) reads

Oty =D (0N (1) + B (1) — ol W) (1) = B (M2 (-
a?(/\zl,li)_(xpr%) + 5?()\@211) (z Tipd 1) — 0‘2+1()\§,1i+1>_(33i+§) /81+1()\l z+1)_(%+
For n; = 0, one has

Ty

M) = M0n,) = 5 (fm O) ,
M*(0,n,) = % ( ! ”f) . M7(0,n,) = Qi <_1 ﬁ”j) ,

and one notices that

<_ V3o,

ce

- (2~ i) 1), (3.27)

O340 = 5= (17 Y (=) + (e =) + (V2

Recalling that h = z; il T T for all 7 and inserting (3.27) in (3.26) one finds for [ =1

(@ =)@ - ).

cAt V3ash n
Cis = 5o (— ot a+ 207 = oy + (1= 5203 - A))
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and for [ =2

n cAt \[O—S n \[O—S n n n n \/gUsh n
Chin = 5 75 ((Fgee V(B 2181 )+ 5 BT (=B 4287 =l + (145 ) ey e
This completes the proof. |

Lemma 3.13. One has

C%,Z',l = Eha? (328)
302h?
C’?—',i,Q = €h(1 + 4808252) ZTL (329)
Proof. Since —M,,,,,_1 = €lim, Cp; ; reads
n T — n xi+% n\T.n
Crig = Z Mknkn—luk =€ (ei,l) u; .
knkn 1 331-7%

One notices that fw Z+2 ?,I)Te"2 = 0. Therefore, using the decomposition of u}’ (3.20) one finds
n n IH'% n \T el n
CT,i,l =&y (ei,l) i1 = = cha,

(e i,Q)T €2 = eh(1+ 480252)@ .

n n i+3
Crio = €b; /
xX.

This completes the proof. |

1
-3

We can now find the scheme (3.14) and prove Proposition 3.7.

Proof of Proposition 3.7. Starting from (3.21) one has
Crii— Cc?f,[ +Cg;1=0
Crio— 0%212 +Cg,2=0

We recall the decomposition (3.20) which is u?(z) = alel (z) + Bleia(z) = (pr,o") T (z). In

i i,1
particular, considering the center of the cell one finds o = pi'(x;) and B]' = v}*(z;). Therefore

using (3.23), (3.24), (3.28) and (3.29) in (3.21) and making the simplification o) = p}' and
BI* = v}, one finally gets the scheme (3.14). This completes the proof. |

3-1.2.2 Asymptotic-preserving property

Using Hilbert expansion, we can now formally show that the scheme (3.14) is asymptotic-
preserving.

Proposition 3.14 (Asymptotic-preserving property of the scheme (3.14)). When ¢ — 0 the
scheme (3.14) admits the formal limit
(Ul(c)ﬂ +up)" =0,
(UIiJrl + 20 + Ulil)"“ __c (p2+1 - P21)”+1
4 \/go's 2h ’
@)™ = @) <p2+2 - 2n) +p2_2)n+1 _
At 30, 4h?

(3.30)

35
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with py = (%ngrz + 4;102Jrl + 230p2 +4p) |+ %pgd)/lﬁ a local mean value of pY.

The limit scheme (3.30) is consistent with the limit model (3.2) and therefore the scheme is
asymptotic-preserving.

Proof. For convenience, we divide the two equalities of (3.14) by . Moreover, we adopt the
notations {{f}}k+% = %a [[f]];H% = w and o, f = fn+Alt_f". With these notations the

scheme (3.14) can be written under the form

n+1

dpi+ o [ = s — Wl ) + (- @) (ol — ol )] =0, @31)

\fh
a2

3 )5tvk + —

[ (Hoders +Hode1) + 2008 = (0] 1 = [v];-1)

n+1

+(1+ ([l + Bley)] =0,

We assume that the variables p and v can be written under the form

p= Zpisi, v = Zv’e’

i>0 i>0

\/3 (3.32)

We inject these expressions in (3.31) and (3.32) and expand all coefficients and variables with
\/§osh

respect to €. In particular one needs to expand a with respect to € using the definition a = *52==.

The terms 0(52) n (3.31) and O(E%) in (3.32) are
foli — Ol =0,
folis + Ol =0

These two equations together give

{{v}}g+l =0, Vk. (3.33)
Now, we study the terms in O(2) in (3.31) and in O(%) in (3.32). Using (3.33) one gets

\st

—(Pliyr — Il _s) - ({ohss — ol =0,

\/g(fsh \/>0's

6¢

1y + DIy + (b + {{v}}k D+ =0

5t'Uk

\fh

Therefore, multiplying the first equation by \/5)25 n’

equations one finds

fh(stkar{{v}}HlJr\/jlch _ \[ h[[p]]’“l’%

Adding this equality for k£ and k — 1 and using (3.33) one deduces
2c
1 1 0 0
{{U}}H% + {{U}}k_% = —m(ﬂpﬂﬂé + [[P]]k_%),Wf- (3.34)
Finally, with the terms in O(1) for (3.31) and in O(2) for (3.32)

n+1
Sf |~ ([T~ )+ (B — o) - o oz, —By)| =0,
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\[0-3
2c

302h? c
——9
12¢ %k

2ok +[pLk,y + 1 y) + [05y + B0y — (12, — T2_))

302h? i
(ol + {{v}}i_gi 0.

Dividing the first equation by o, using (3.33), (3.34) and multiplying by the second

2c
V302h

equation, one gets

fobi . - {{v}}i_;r“ »

(— (P2 = Wl s) + oBss - {{v}},ﬁ;> - )

1 c
—) 0 + | —
s Pk \/gash

L [ ‘ (—{{v}},;;+2vi—{{v}},£_;+ﬂpﬂ,ﬁ+;+ﬂpﬂi—;wg;h“'?)

V3ash
¥, + 0¥, ] i
+ 2

Adding and subtracting these two equations one finds

4020 1. o V3h. 4 2c

By + ol + qoth = — -k = Ak = 2o~ o), (339)
and

9 2c 1 4c? V3h 2c 1 1 \ntl
L) +\/§708h[[p]]’“+% 30272" 5th 6 —— b, — \/go_sh(vk_{{v}}k_i_%) - (3.36)

Using (3.35) in k + 1 and subtracting (3.36) to (3.35) one gets

1 0 0 V3h 1 1 2c 1 1yn+1 4c? 0 0
;55t(pk+1 +pg) + Wét(vkﬂ —v) + m(vkﬂ —u)" = 30212 (Vg = Vgg1)-

Adding this equation for k£ and k£ — 1 and using (3.33) one has

80 20 ) + Y By — U~ A (e~ B =0

Summing this equation for k and k + 1 one gets

\f

S

Summing this equation for k£ and k — 1 one finally finds

V3h

1
B+ 4+ 60 4oy o) + S + By — ey — foBly)

(ohis + fokiy —foliny — ol =0

4c
; V3osh
Using (3.34) one deduces
By + (0B y) ~ Wby + (o) =~ ko = 2+ ).

Therefore one finally has

2 20 2
5t(§p2+2 + 4P2+1 + S A+ §P2—2) -

3

n+1
A (Phoa =200+ Pha ) _
30 h? '

This equality is consistent with the first equation of the limit model (3.2). Moreover, the equality
(3.34) is consistent with the second equation of (3.2) and the equality (3.33) with the first
equation of (3.2). This completes the proof. |

003+ )+ G (e~ H )~ (b ) =0
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3-1.3 Numerical results

In the following we use random meshes made of N nodes and constructed as follow: we start
from a uniform mesh and then moved the vertices randomly around their initial position by a
factor of at most 33%.

3-1.3.1 Study of the order

For the time dependent P; model in one dimension (3.1) we consider the case Qg = [0, 1],
c=1,c=3,00=1,0,=1,h =1/N for N = 20,40, 60,80,100, T = 0.024 and dt = T/N.
The exact solution is u., = (e*t, e*Qt) and we set M ~u = M ~u,, on the boundary.

0.1
001 - \
),
N
-
g 0.001 ¢ X E
w T~
\\><\\\\
0.0001 2 pasis —— \\\X\ E
. T~
4 basis —*<— X
order 1 -
order2 ——
le-05
10 100

Figure 3.1 — Study of the L? error on the final time step in logarithmic scale for temporal one
dimensional model. Error with the two stationary basis functions and the four basis
functions. Random meshes.

The functions (3.4) are used as basis functions. We study two cases: a first one with only the
two stationary basis functions v, vf and a second one with four basis functions v, vi", A\ v;’ .
Figure 3.1 shows that the scheme is convergent with the two basis functions vl_,vfr and that
one increases the order by adding the basis functions v, v; . More precisely, order 1 is achieved
with the two basis functions vl_,vfr whereas order 2 is achieved with the four basis functions

- ot v vt
Vi,V],Vy,V5.

3-1.3.2 Asymptotic regime when ¢ << 1

We test the asymptotic behavior of the scheme (3.14) for the P; model (3.12). We have shown
previously that the TDG method leads to a new asymptotic-preserving scheme and we can now
illustrate this property. We consider a case where Qg = [0,1], € = 0.001, 0, = 1, ¢ = /3 and
T = 0.01. For the limit solution, we consider pg the fundamental solution to the heat equation
and the variable vy associated in the limit ¢ — 0

1 —(2—0.5)2

p(](t,.’L') = me4(t+1074), 'U(](t,.'L') = —E@zpo(t,rv).

The limit solution is imposed on the boundary that is M~ (p,v)T = M~ (pg, vo)? .
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We compare the numerical solution with (pg,v9)’. For the TDG method we use the basis

functions (3.13) that is
1 _\/50'5
e (z) = (o) eQ(x)=< : x)

And we compare the result obtained with the DG method which uses the same number of basis
functions. That is the following constant functions

(3.37)

(3.38)

Note that the only difference between the basis functions (3.37) and (3.38) is the first component
of es.

The Figure 3.2 shows that even with few degrees of freedom the limit solution is correctly
approximated by the TDG method with the basis functions (3.37). It illustrates the asymptotic-
preserving property of the scheme. On the contrary, the Figure 3.3 shows that the standard DG
scheme with the two basis functions (3.38) is not AP.

0.015

T T T
20 nodes —+—
limit ——

T T T
20 nodes —+—

limit ——

0.01

0.005 -

-0.005 |

-0.01

-0.015

Figure 3.2 — Numerical solution obtained for the variable p (on the left) and v (on the right)
with the TDG scheme (3.14) with ¢ = 0.001. Random mesh with 20 nodes and
dt = 0.01/20. Good accuracy illustrates the AP properties of the TDG scheme.

3-2 The Su-Olson model

In this section we consider the Su-Olson model [SO96]. Compare to the P; model, the main
difficulties when trying to solve numerically the Su-Olson model come from the degeneracy of
the matrices Ag and A;. Standard well-balanced schemes may give bad approximation for this
kind of models [GT02]. For the TDG method however, this is not a problem as soon as one can
calculate the basis functions.

39
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0.015

T T
100 nodes
1000 nodes
251 5000 nodes 0.01 |
limit
2+ 9 0.005
o 15 > 0
1r 9 -0.005
100 nodes
05 F 4 -0.01 + 1000 nodes
5000 nodes
limit
0 . . . . . . . 0.015 . . . . . . . . .
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Figure 3.3 — Numerical solution obtained for the variable p (on the left) and v (on the right) with
the standard DG method with two constant basis functions and different number of
nodes. Bad accuracy on coarse meshes illustrates that this DG scheme is not AP.

3-2.1 Construction of the basis functions
The Su-Olson model reads [SO96]
1
eOF + §a$F =—(E-9),
1 3 (3.39)
~9,E=-"F
S0.E = —F,
00 =—-(0—-FE),

where the unknown is u = (E, F,0)T € R3 and ¢ € R*. The model (3.39) can be recast under
the form of a Friedrichs system (2.1) with

e 00 0 3 0 1 0 -1
Ap=100 0], 4=[3 00|, R=|0 3 0
00 1 00 0 -1 0 1

Note that both Ag and A; are degenerated matrices in the sense that they admit a row which is
zero.

Proposition 3.15. The following functions are solutions to the system (3.39)

! g L +1
vi(t,x)= (0], wva(t,x)= —% , va(t,x)=1 0 |e < f
1 T —€
x 1+ (3.40)
£ elfet1
vatx)= [ 0 |e = vE(tx) = F 50+ /\)\/@ Y T
—Ex 1

with A € R, A # —1.

Proof. Injecting F' in the first equation we recast the model (3.39) under the form of a second
order system

1
cO,F — §ajE = —(E—-0),
00 =—(0—E).

(3.41)
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We search for solutions under the form

v(t,z) = (Z;Eg) M,

Injecting v in the system (3.39), one finds after removing the exponentials

(s)\ - é@i)vl(x) = —(v1(x) — v2(2)),
Ava(z) = —(v2(2) — v1(2)).

(3.42)

From the second equation one gets

va=v1/(1+X), N#-1 (3.43)
Using this equality in the first equation of (3.42) gives (A — 19%)v1(z) = —Avi(2)/(1+A). That
" ext+e+1

2 —
ozvi(x) = 3\ T

vi(z), A# -1

They are several cases:
e If \=0or e\ +e+1=0 then one has §%v;(z) = 0.
— When A = 0 one finds from (3.43) the equality vq(z) = va(x). Therefore one has the

following solutions
Vit x) = G) L valt,x) = (;) . (3.44)

— When eA+e+1=0one has A\ = —(¢+1)/e. Using (3.43) one finds va(x) = —cv;i(x)
and one gets the following solutions

v3(t,x) = <_1€> e*ilt, vy(t,x) = (_ﬁx) e~ e, (3.45)

o If \ # —1 then, using (3.43), one finds the following solutions

Dteil
Vit z) = <1 + A) MBS (3.46)

1
From the solutions (3.44)-(3.45)-(3.46) to the system (3.41) one deduces solutions to the system
(3.39) using F' = —(2/3)9,E. The proof is complete. [ |

3-2.2 Numerical results

We apply the TDG method on the numerical test given in [SO96]. Consider the domain Qg =
[0,15] and a total of 200 nodes with dt = 7'/100 where T is the final time. We take ¢ = 0.1
and for the boundary condition wjsq(t,z) = (do(z), 0, 0)” where § is the Kronecker symbol. In
the following, we use random meshes constructed as follow: we start from a uniform mesh and
moved the vertices randomly around their initial position by a factor of at most 33%.

For the basis functions, we consider the solutions (3.40) from v; to v4 and take A = — % for

Vgr and v . After multiplying v; and v; by /¢ one gets

VE-VETT |
Vi) = [ -G (VEEF D - (e + 1)) | VD
v )
v (t,x) = %( ele+1)—(e+ 1)) ei\/gtf 3(E+1)"B_

Ve
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At first, we take the 6 basis functions vy, ..., V5+, v; and represent the numerical results obtained
with the TDG method on the left of Figure 3.4 for the final times 7' = 1073,1072,107%, 1, 10.
These results are consistent with those obtained in [SO96].

On the right of Figure 3.4 we compare the DG and TDG method by varying the number of basis
functions. More precisely, we study the following cases

e The DG method with 3 basis functions per cell (constant basis functions only).
e The DG method with 6 basis functions per cell (affine basis functions).

e The TDG method with the 3 basis functions per cell vy, vo and vs.

e The TDG method with the 5 basis functions per cell v, va, va, v;r and vy .

e The TDG method with the 6 basis functions per cell vy, va, vs, vy V;r and vy .

To get the most accurate approximation one needs to take 6 basis functions for the DG and TDG
method. Thus, the TDG and DG method give a similar result on this test. Moreover, note that
we use logarithmic scale and the comparison is therefore not representative of the error.

01| 0.1 |

0.01

0.01

0.001 | 0.001 |

—+— Tend=10

0.0001 | —%— Tend=1

—*— Tend=0.1

—&+— Tend =0.01

—l— Tend =0.001
|

—&— DG 3 basis per cell

0.0001 | —=— DG 6 basis per cell

—+— TDG 3 basis per cell

—>— TDG 5 basis per cell

—k— TDG 6 basis per cell
!

le-05 le-05

L
0.1 0.1 1 10

Figure 3.4 — On the left: representation of the variable E for the TDG method with 6 basis
functions. On the right: comparison between the DG and TDG method at 7' = 1072
for different number of basis functions. Logarithmic scale.
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Analysis of the Trefftz discontinuous
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In this chapter, the TDG method applied to the general Py model is studied and analyzed.
First, the Py model is derived and some of its properties, including the rotational invariance,
are given. Then, polynomial and exponential solutions are constructed. In particular, to deal
with boundary layers, stationary exponential solutions are derived. Finally, the approximation
properties of the stationary solutions and the convergence of the scheme are studied. A nice
property of the TDG method is recovered: the number of additional basis functions to gain one
order from k to k + 1 does not depend on k. Therefore, to get high order schemes the TDG

method uses, at least asymptotically, less basis functions than the standard DG method.
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Q) = (sin ¢ cos 1, sin ¢ sin 1), cos @) T

Qy = (sin ¢ cos ¥, sin ¢ sin 1, — cos ¢)T

Figure 4.1 — Representation of directions €27 and 9. If u is an even function of cos¢ then
u(t7 X, Ql) = u(t,x, 92)

4-1 The Py model

The derivation of our model respect several principles

e Consider the Py model with N odd. Indeed, even if the analysis can be carried out for the
case N even too, the distinction odd/even has to be made in various cases which lengthens
the presentation. In practice, the Py model is rarely applied for even values of N (see for
example [GH16, Section 2| for a discussion on the benefits of considering N odd) and it is
therefore natural to consider only the case N odd in our analysis.

e Use the block structure given in [Her16|. This will be useful to simplify the structure, study
some properties and calculate solutions to the model.

e Consider the two dimensional Py model. In two dimensions, the size of the system is
reduced with two assumptions

(i) The solution does not depends on the variable z that is 0,u = 0.

(ii) The solution u is an even function of cos¢. This is equivalent to assume that the
solution is symmetric with respect to the plan zy see Figure 4.1. In three dimensions,
it can be interpreted as pure reflective conditions at the boundaries of the domain.

e Consider the Py model in the plan zy. The plan xz may also be a possible choice [BHO1,
BDF15], however the rotation matrix associated with the spherical harmonics is more
difficult to calculate in the plan xz [BFB97, IR96, PH07|. In practice, the rotation matrix
will be useful to

(i) Deduce two dimensional special solutions from the one dimensional case using the
rotational invariance of the Py model.

(ii) Simplify the calculation of the matrices M(n), M (n), M~ (n) for the numerical
simulations, see Remark 4.14 below.

Such configurations are studied in the literature but the notations or the symmetry assumptions
vary from one author to another. In the following, the presentation is unified.
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4-1.1 Derivation from the transport equation

Let ¢ € [0,27) and ¢ € [0, 7) be the polar and azimutal angles on the sphere, so that in Cartesian
coordinate with usual notations

Q= (Q1,0,03)7 = (sin ¢ cos 1, sin ¢ sin 1, cos p)T € R3.

To be consistent with the standard notation of the spherical harmonics, the uppercase letter Yz,
is used to denoted the real spherical harmonics. We make a slight abuse of notation by denoting
indifferently

Vi () := Vi (4, 0) :R2 =R, |I|<k<N, kleN.

The construction and properties of the spherical harmonics are detailed in Appendix A. We recall
that the transport equation reads

OI(t,x, Q) + Q- VI(t,x, Q) = — (Ua(x) + Js(x)>I(t, X, Q) +oy(x) <I>(tx),  (4.1)

where 7 is the radiative intensity average in frequency, ¢ the time variable, x the space variable,
Q the direction and we use the notation

1
<> (t,x) ::4/ sy,
™ .Js2

where S? is the unit sphere in R?. The absorption and the scattering coefficients are denoted
respectively
0q(x) > 0 and o4(x) > 0.

We introduce some notations and adopt the presentation from [GH16] but with the spherical
harmonics vector arranged as in [Her16]. In the following, we denote m3” the number of un-
known, m3P the number of even moments and m>” the number of odd moments for the three
dimensional Py model. That is
1 1
m?P = m3P 4+ m3P = (N +1)2, m?P = SNV +1), m3P = (N + (N +2).

For any integer 0 < k < N we define y;(€2) the vectorial function whose components are the
2k + 1 real valued spherical harmonics of order k. Moreover we denote y.(€2) the vectorial
function made of the so-called even moments (ka(Q))O<2k<N and y,(£2) the vectorial function

made of the so-called odd moments (y2k+1(ﬂ))0<2k+1<1\/' That is

T okl
yi(Q) = (Ykﬁk(ﬂ);Ykﬁqul(Q),---,Yk,kfl(ﬂ)yyk,k(ﬂn € R,

45

ye(©) = (V5.5 (@), yh () €™ y,(@) = (). ¥5 (@), b)) e mr,

Finally, we define y(€2) the vectorial function made of y.(£2), y,(€2) and arranged as follow
T 3D
y(@) = (y/(@),yT(@) er™”.

We generalize this decomposition for any vector v € R™" . We set

L —k —k+1 k—1 _ k\T 2k+1
v = (v, v " o )t ER , (42)
. T . T T T m3P (T T T\Tmpm3P ’
Ve = (Vg,Vy,..., Vy_1)” ER™e | v,i=(v],vg,..,vy) R™

and denote v as in
v=wlvHT erm, (4.3)
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Now we introduce the decomposition of the function Z(t,x, ) on the spherical harmonics basis

Z(t,x,92) = ZZYM Yk (t, ).

k>0 1<k

The spherical harmonic approximation of (4.1) considers the truncated series Zy defined as

N
In(t,x,Q):=y u(t,x) :Zy Jug(t,z) = ZZY’” uktm)
=0

k=0 |1|<k

where the unknown of the Py model is u € R™” . With the approximation Z = Ty the equation
(4.1) reads

3
y(Q)dpu(t, x) + Z QiyT (Q)0,u(t,x) = ( — (o0 + Us)yT(Q)u(t, X)+ 05 <yl () > )u(t, X).
i=1
Multiplying by y(€2) and integrating over the sphere gives

3
<y(Qy (@) > ou(t,x) + > < Uy(Q)y"(2) > dy,u(t,x) = "
=1 .

(— (00 +05) <y(Q)yT(Q) > +o, < y(2) ><y'(Q) > >u(t,x).

From the orthogonal properties of the spherical harmonics one has < y(Q)y’ (£2) >= I,,3p and
<y(92) >< y'(Q) >= ejel with e; = (1,0,...,0)T € R™*”  Therefore one gets the system

3
O+ Adpu=-Ru, (4.5)
i=1
Where 3D 3D 3D
uc R™ ) ﬂl,ﬂQaKGRm e
The matrices 4; are defined as
4 =< Qiy(Q)y" () > (4.6)

and can be computed using the recursion relations (A.4) to expand ;y(€2) in terms of spherical
harmonics. As pointed in [Her16| the matrix 4;, 4 and 43 have the following block structure

0 A4 0 B 0 C
R AR L A

where 4, B, C € R xm? are rectangular matrices. The matrix & is a diagonal matrix
K = diag(aaa Oqa + Osy---30q + US)'

In the following we may use the notation oy := o, + 0.

4-1.2 Properties

In this section, we derive some properties in three dimensions of the Py model based on the
results given in [GH16]. We use the matrix representations of the rotation operators in the basis
of spherical harmonics [BFB97, DX13, PHO7]

3D 3D

U(e, B,7y) € R™ , (4.8)
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where «, 8 and v denotes rotation around the axes O., O, and O, respectively. The matrix
U(a, B,7) is a block matrix for the vectors y ()

u(av 57 7) = dlag (AO(a7 Bv 7)7 AQ(a7 Ba 7)7 Ame (O[, ﬂa 7)7 A1(04’ ﬂa 7)7 ceey Amo (Oé, ﬂv 7)) .
The matrices Ay, reads [PHO7|
Ag(a, B,7) = Wh() D(B) Wi () € RAFFIHFL, (4.9)

Here D, € R2EH1x2k+1 §5 5 d-Wigner matrix and the matrix %}, has non-zero elements only on
its diagonal and anti-diagonal

cos ko sin ko
cos 2« sin 2«
COS & sin «v
Wi (a) = O 1 O € R2K+H1x2k+1
—sin« Cos &
— sin 2« cos 2«
—sin ka cos ko

(4.10)
To simplify the matrix U we may consider a rotation 6 in the plan xy only and denote

3D v 3D

Uy := U(0,0,0) € R™

Using the expression of the block rotations (4.9), the structure of the matrix Uy can be written
as

Uy = diag (WH(0), Wo(0), .. Wi, (6), WA(0), ... Wi, (6)),
where the blocks W), (6) are given by (4.10).

The matrix U represents the orthogonal transformations on y(€2). That is for an orthogonal
matrix Q € R3*3 one has

y(QQ) = U, B,7)y(€2), (4.11)

where a, 3 and « are the angles of the rotation associated with the matrix @ in R3.

Example 4.1 (The P; model in 3D). For the three dimensional P; model m3P = 4. The
matrices 4y, Ao, A3, R and Uy are

000 1 0100 0010
110000 111000 110000
ﬂ1ﬁ0000’ﬂ2ﬁ0000’ﬂ351000’
1000 0000 0000

6 0 0 0 1 0 0 0

10 o 0 O 10 cosf@ 0O sinf

R 000 0] ®=lo 0o 1 o0

0O 0 0 oy 0 —sinf 0 cosf

47
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Invertibility of 447, BT and CCT. The first result of this section is about the eigenvalues
and eigenvectors of the matrices 447, BBT and CCT in terms of the eigenvalues and eigenvectors
of the matrices 4y, 4o and A3. The eigenvalues of 447 and BB” play an important role in the
analysis of the TDG scheme. In particular the invertibility of 447 will be used to study the
convergence.

Proposition 4.2 (Invertibility of 447, BB" and CCT). The symmetric matriz AAT is invertible
and all its eigenvalues are strictly positive. A similar result holds for the matrices BBT and CC”.

To prove Proposition 4.2 we need the some technical Lemmas.

Lemma 4.3. Let Q € R3? be an orthogonal matriz, assume v,v, € R? satisfy v, = Qv and
define the two matrices

3D 3D

M =< Ty Q)yT(Q) > R™"*™™” £ =< TQ)y(Q)yT(Q) >e R ™

Then one has
M* - u(OQB?’Y)MUT(a?/B?W)’

where «, B and v are the angles of the rotation associated with the matriz Q in R3.

Proof. The proof is taken from [GH16|. With the change of variable ' = Q€ and the fact that
@ is an orthogonal matrix one gets

< (L Qy(Q)y" () >=< (1, Q)y(QQ)y" (@) > .
With v, = Qv one finds

< @/ QyQy" () >=< (" Q)y(QQ)y" (QQ) > .

Using (4.11) completes the proof. [ |

From Lemma 4.3 one immediately deduces the following corollary on the eigenstructure of the
matrices 4;.

Corollary 4.4. The eigenvalues of the matrices Ay, A> and As are the same and their eigen-
vectors differ by a unitary transformation.

Proof. The proof is taken from [GH16]. One uses Lemma 4.3 with v, v, aligned with one of the
three Cartesian axes (that is vTQ = Q; and V*TQ =Q;, 1 <14,5 <3). One concludes with the
definition of the matrices 4; (4.6). [ |

Finally we will use the following lemma which give some structure on the kernel of the matrices

4.

Lemma 4.5. Let N be odd, v = (ve,vo)T € R™" where v, v, are as in decomposition (4.3)
and assume Asv = 0. Then one has ve = 0. A similar result holds for the matrices A1 and As.

Proof. The proof is based on [GH16, Theorem 3|. First, assume Asv = 0. Since N is odd and
using [GH16, Theorem 3] one has v}, = 0 for |I| < 2k < N. From the definition (4.2) of v, one
gets v, = 0 and this give the result for 4s.

From Corollary 4.4, the eigenvectors of the matrices 4; differ by the transformation U (4.8)
which is block diagonal considering the components vi. Using the definition (4.2) of v, one
deduces the result for the matrices 4; and 4. [ ]
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We can now prove Proposition 4.2.

Proof of Proposition 4.2. We give the proof for the matrix 447, the proof for the matrices BBT
and CCT is similar. Consider v?, i = 1, ..., m3” the eigenvectors of the matrix 4; associated with
the eigenvalues );. We use the decomposition (4.3) to denote vi = (vi,vi)T with vi € R™".
Because 4 is symmetric, there exists m3P eigenvectors v? such that the vectors vi form a basis
of R™me” Up to a reordering, one can assume that the vectors vi, i = 1,..., ng form a basis of
R™”. That is

3D

dim (Span {vi, Ve }) =m3P. (4.12)

Since 4;v! = \;v’ and from the block structure (4.7) of the matrix 4; one gets

avt =\
o (4.13)
A" vy = NV,
Multiplying the second equation by A4 and using the first equation gives
447V = NIV (4.14)

From (4.12)-(4.14) one deduces that the vectors vi, i = 1,...,m3P are all the eigenvectors of the

matrix AAT € Rme”xme” and are associated with the eigenvalues A\?.

Now if \; = 0 it implies from Lemma 4.5 that vi = 0. From (4.12) this is not possible and one
deduces \; # 0 for i = 1,...,m3P. Therefore, the matrix 447 admits no zero eigenvalue and the
proof is complete. |

Eigenvectors of 447 with a non zero first component. A special attention is devoted
to the eigenvectors of 447 with a non zero first component. The following proposition will be
useful later in the proof of Proposition 4.23.

Proposition 4.6 (Eigenvectors of 447 with a non zero first component). The eigenvectors of
44" with a non zero first component are associated with distinct eigenvalues.

To prove Proposition 4.6 we will need the following lemma which is taken from [GH16|. To

avoid confusion between the Py model and the Legendre polynomials we denote in the following
lemma Qj, the Legendre Polynomial of degree k. Moreover we denote 67% the Kronecker symbol.

Lemma 4.7. The eigenvalues of Az are the roots of the polynomial 03(¢|j|)QN+1 for|j| < N. More
precisely, if X is a oot of 89(3‘]‘)62]\/“, then for any fized ¢, the vector v with components

vy = ¥} (cos™' (1), )87,
s an eigenvector of As associated with .
Proof. The proof is given in [GH16, Lemma 2]. [ |

The following lemma is also useful.

Lemma 4.8. Assume X is an eigenvalue of Ay associated with the eigenvector vi = (ve,v,)T.
Then —\ is an eigenvalue of Ay associated with the eigenvector vo = (—Ve, Vo)l

Proof. This is a direct consequence of the block structure of the matrix 4; (4.7). [ |
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We can now give the proof of Proposition 4.6.

Proof of Proposition 4.6. We proceed in three steps

1. First, we show that the eigenvectors of 4; with a non zero first component are associated
with distinct eigenvalues. Indeed, from Lemma 4.7, one deduces that the eigenvectors of
A3 associated with a non zero first component (that is v # 0) are roots of the Legendre
polynomial Qn+1 and therefore distinct. One concludes with Corollary 4.4 that the re-
sult holds for the matrix 4; since the eigenvectors of the matrices 4; differ by a unitary
transformation which is block diagonal for the first component v{).

2. Then, we show that the eigenvectors and eigenvalues of 447 can be deduced from the
eigenvectors and eigenvalues of 4;. To do so, we proceed as in the proof of Proposition
4.2. We consider vi = (vi,vi)T i = 1,...,m3P which are the eigenvectors of 4; such
that the v¢, i = 1,...,m3P, form a basis of Rme”. Up to a reordering, one can denote
viii=1,...k, k <mP all the eigenvectors with a non zero first component and \; the

eigenvalues associated. From the equality (4.14), the eigenvalues of 447 associated with

an eigenvector with a non zero first component are \?, ..., )\%.
3. Finally, we show that these eigenvalues are distinct that is \; # £\; for [ # j and [,j < k.

— From the first item, the eigenvalues associated with a non zero first component are
distinct that is \; # A;.

— Now assume \; = —\;. In particular, \; and \; are two eigenvalues of A4;. From
Lemma 4.8 the vector w = (—v. vl)7 is an eigenvector of 4; with a non zero first
component associated with the eigenvalue —\;. But since the \; are distinct, the
eigenvector v; is the only eigenvector of A4; with a non zero first component associated
with the eigenvalue —);. One deduces v/ = w = (—v. ,v!)”. Therefore vl = —v!

. .. . . ; . 3D
which is impossible because the eigenvectors v’ form a basis of R .

One finally deduces that the eigenvalues )\%, o )\z are all distinct. The proof is complete.

Rotational relations in 3D. The following proposition establishes a relation between the
matrices 4y, Ay and Uy. Later in this chapter, we will use this relation to show the rotational
invariance of the solutions to the Py model in two dimensions.

Proposition 4.9 (Rotational relations in 3D). The matrices A1 and As satisfy the relation

Ay = Uy(Ay cosh — Ay sin@)ﬂg, Ay = Uy( Ay sin 0 + 4y cosH)‘Zlg.

Proof. The general proof is based on Lemma 4.3. Let Qg be the rotation matrix of angle 6 in
the plan xy
cosf) —sinf 0
Qo= |sind cos® 0] eR3>3,
0 0 1

and assume v, v, € R3 satisfy
V. = Qov € R®. (4.15)

One can define the two matrices

M =< (TQ)y(Q)yT(Q) > R 0, =< T Q)y(Q)yT () >€ R™*xm*”,
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From Lemma 4.3 one has
M, = UM U} .

Using the definition (4.6) of the matrices 4; and taking v, = (1,0,0)”, v = (cosf, —sin 8, 0)”
immediately give
A = Uy(A cosh — Ay sin ) ‘ZIHT.

For the second equality consider v, = (0,1,0)7, v = (sin#, cos#,0)” and one gets
Ay = Uy( A sin b + Ay cos 0) ‘ZJQT.

This completes the proof. |

4-1.3 Derivation and properties in the two dimensional case
4-1.3.1 Derivation from 3D principles

The goal in this section is to derive the Py model in two dimensions from the three dimensional
case. More precisely, in two dimensions the Py model can be decoupled in two systems: the
unknowns u}* such that k£ +m is odd and the unknowns u;" such that k& + m is even. Making
the assumption that the function u is an even function of cos ¢, one can remove the unknown
such that k + m is odd. This simplifies the matrices 4; and Ay and one gets the Py model in
two dimensions.

.. . 3D .
Definition 4.10. Consider u € R™, u = (ug, us, ..., uy, us, ...)" as in (4.2) where u; refers to
the moments u; = (ul_l, ul_lH, e uf_l, uf)T We introduce a second even/odd decomposition to

derive the two dimensional Py model and define the spaces
Se={ueR™” b =0, Vktlodd}, S,={ueR™" ul =0, Vk+leven}.

Moreover we set
m := dim S.

One notices that R™"” = Se © S,. An important property in the two dimensional case is that
the matrices 4; and Ay preserve the two spaces S, and S,.

Proposition 4.11. The space S (resp. S,) is invariant under the application of the matrices
lel and /(Zlg
ﬂlSe C Se, JZIQS@ C Se, 521150 C SO, ﬂQSO C So.

Proof. This is a direct consequence of the relations (A.4) given in Appendix A and the definition
;=< Qiyy! >. ]

We use this property to show that, in 2 dimensions, the Py model can be decoupled in two
systems with independent solutions u. € S, and u, € S,. We make the assumption that the
function u is an even function of cos¢. From the definition of the spherical harmonics (A.3),
this is equivalent to take ufﬁ = 01if k 4+ odd. Therefore, we are interested in the solution u € S,
and we consider a system of dimension m.

Definition 4.12. Let v; € RmSD, i =1,...,m be the canonical basis of S in R™” and w; € R™,
j =1,...,m the canonical basis of R”. We define the matrix P € R™*m*” guch that

m
3D
pP= g wivl € RmmT

=1
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and the matrices A1, Ao, R, Uy are defined as

Ay = Pa PT e R™™, Ay = P2, PT € R™X™,

_ T mxm _ T mxm (416)
R=PRP eR , Upg=PUyP" €R .

The matrices Ay, As, R and Uy are simply the matrices 4;, 4>, R and Uy where the columns
and rows corresponding to components vi such that k + [ is odd have been removed. Therefore
the matrices Ay, As, R have the same block structure as in (4.7).

Example 4.13 (The P; model in 2D). For the P, model m = 3. The matrix P reads

1 0 00
P=101 0 0],
0 0 01
and the matrices A1, Az, R and Uy are
0 0 1 010
A = 00 0], Ao=—|1 0 0},
1 00 \/§ 0 00

1
f
cos 0 sin 0
O ot —sinf cosf

4-1.3.2 The two dimensional case

We can now give the Py model in two dimensions. Since N is odd one has
1 1 9 1
:i(N+1)(N+2)7 me:Z(N+1> ’ mO:Z(N+1)(N+3)’

where m is the total size of the system, m. is the number of even moments and m, is the number
of odd moments. The two dimensional Py model reads

(Aoat + A, + A20y>u(t, x) = —Ru(t, ), (4.17)

where x = (z,y)”, u € R™, Ay, Ay, R € R™* ™. Since we have adopted the order given in [Her16]
the matrices A; and Ay have the block structure

0 A 0 B
AO = €Im € Rmxm, Al =cC <AT 0> € Rmxm’ AQ =C (BT 0> € Rmxm’ (418)
where I, € R™*™ ig the identity matrix, A, B € R™*™e are rectangular matrices and we have
introduced the coefficients
ceRy, eeR}.

In particular, when e — 0, the Py model admits a diffusion limit [Her16|. To get the same block
structure for the matrix R as in (4.18), we may write

_ Rl 0 mxm
R_<0 R2>€IR{ , (4.19)
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where R; and Ry are both diagonal matrices
Ry := diag(eoq, 01, ...,01) € RT™*™e Ry := 0y, € RMXMe,
with I,,,, the identity matrix of R™*" and
O = 0} 1= €0q + %, 04,05 € Ry

The rotation matrix Uy given in (4.16) reads

VQ@ 0 ) mxm
Up = e R 4.20
o ( 0 Vagqq (4.20)

where Vag, Vopy1 denotes respectively the rotation on the even and odd spherical harmonics

W() Wl
Wa O W3 O
V29 — . c Rmexme7 ‘/*'29+1 — . c Rmoxmo.
0 0
WN—l WN
(4.21)

Each diagonal block Wo; is the rotation matrix for the spherical harmonics of order 2[. Therefore
it reads

Wy =
cos 2160 sin 210
cos2(l —1)6 O sin2(l —1)6
cos 260 sin 260
0 1 0 c RUADX (1)
—sin 260 cos 260
—sin2(l —1)0 0 cos2(l —1)6
—sin 2160 cos 210

(4.22)
Similarly, each diagonal block Wy 14 is the rotation matrix for the spherical harmonics of order
2041

sin(2] 4+ 1)6
cos(2l — 1)6 O sin(20 — 1)6

O cosf  sinf O e RUADX(+1)

—sinf cosf

—sin(20 — 1)8 O cos(20 — 1)6
—sin(20 + 1)0 cos(20 + 1)0
(4.23)

Remark 4.14 (Determination of the matrices M and M~ (2.3) with the rotation matrix).
The rotation matrix Uy can be used to calculate the matrices M (n), M*(n), M~ (n). We recall
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the decomposition M(n) = MT(n) + M~ (n) where M(n) = Ain, + Asny, n = (ng,n,)7. In
the following, we will use the decomposition

= > Arx], M (n)=> Arx],  [M|(n):=) A/, (4.24)

Ai>0 Ai<0 i

where r; are the eigenvector of the matrix M associated with the eigenvalue \;.

The eigenvalues and eigenvectors of the matrix M are therefore required to determinate the
matrices M and M~ but, for large values of N, they can be challenging to calculate. Instead,
one can use the eigenvalues and eigenvectors of the matrix A;.

Indeed, since n = (ng,,ny) is the outward normal of a given edge, one can write n = (cos 8, sin 6)
with @ € [0,27]. Therefore, another way to write the matrix M is M = A;j cos @ + Az sinf. From
the Proposition 4.18 one gets

M(n) =UL, AUy (4.25)

where U_g is given by the five equalities from (4.20) to (4.23). In particular, one deduces from
(4.25) that r; is an eigenvector of M associated with the eigenvalue )\; if and only if UQT r; is
an eigenvector of Ay associated with the eigenvalue \;. The eigenvalues of A; are roots of the
Legendre polynomials (and their derivatives) and their eigenvectors are known up to a rotation
with the matrix U(a, §,v) [GH16]. o

4-1.3.3 Properties

In this section, we derive some properties of the Py model in two dimensions. Later in this
chapter, such properties will be used to construct the basis functions and study the convergence
of the scheme. In particular, the Propositions 4.2 and 4.9 are adapted to the two dimensional
case.

Technical lemmas. We begin with two technical lemmas.

Lemma 4.15. One has PPT = I,,, where I,,, € R™*™ s the identity matriz of R™*™. Moreover
one has PTP = I. where I, € R xm?P e the projection on Se orthogonal at S, that is
I.u. = ue, I.u, =0 for allu. € S, u, € 5,.

Proof. From the Definition 4.12 one has PTP = Z W1V V]W But since v; is the canonical

basis of Se, one finds vI'v; = 0 if i # j and vlv; = 1. Therefore PTP = 3" w;w! and
because w; is the canonical basis of R™ one gets PTP = I,,,.

In the same way, PPT = Zi’j viWiTijjT =5 le = J.,. From the definition of I, =
2211 vivlT, one deduces I.u. = u., I.u, = 0 for all u. € Se, u, € S,. This completes the
proof. |

Lemma 4.16. Assumer € S, one has

Air=X X <& A;Pr=)\Pr.

Proof. A direct consequence of Proposition 4.11 is that the eigenvectors of 4; and A4s can be
chosen such that they belong to S, or S,. Assume r € S, and 4;r = Ar. Using PP = I, one
has 4; PT Pr = Ar and therefore multiplying by P gives A Pr = APr. Respectively, if Ajr = Ar
then by definition P4, PTr = \r and therefore 4; PTr = APTr. [ |
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Invertibility of AA” and BB”. We can now give the equivalence of Proposition 4.2 in two
dimensions. The invertibility of the matrices AA”T and BB” will be particularly useful when
studying the convergence of the TDG method.

Proposition 4.17 (Invertibility of AA” and BBT). The symmetric matrices AAT and BBT
are invertible and all their eigenvalues are strictly positive. Moreover all the eigenvectors and
eigenvalues of the matriz AAT and BBT can be deduced from the eigenvalues and eigenvectors
of the matrices A1 and Ay respectively.

Proof. The proof is the same as for the Proposition 4.2. Indeed, from Lemma 4.16 any eigenvalue
of A; is also an eigenvalue of the matrix 4; and if r is an eigenvector to 4; then Pr is an
eigenvector to A;. Therefore all eigenvalues and eigenvectors of A; can be deduced from the
eigenvalues and eigenvectors of 4;.

Moreover, the Lemma 4.5 can be easily derived in two dimensions considering the decomposition
v = (Ve, Vo) € R™ v, € R™ v, € R™e. Therefore, the two dimensional version of the proof of
Proposition 4.2 give the invertibility of AA” and BBT. |

Rotational invariance. We give the two dimensional equivalence of Proposition 4.9 and then
use it to show the rotational invariance of the Py model.

Proposition 4.18 (Rotational relations in 2D). One has the relations

A1 = Uy(Aj cos — Ay sin H)U(;‘F, Ag = Uy(A;sinf + As cos G)UQT.

Proof. We give the proof for Aj, the proof for Ay is similar. Let v € R™ and consider u =
PTv € S,. From Proposition 4.9 one has

A1u = Uy(A; cos — Ay sin 0) ‘ZlgTu.
Because PT P = I, one gets
Ayu = UgPT (P4, PT cos @ — PAy PT sin ) PUS .
Multiplying by P on the left and using u = PTv give
PA, Py = PUyPT (P4, P cos — PA,PT sin0)PUl PTv.

That is
A1v = Uy(Aq cos — Ay sin 9)U9TV,

where we used Ug = PUyPT. |
We use Proposition 4.18 to show that the solutions are invariant under rotation.

Proposition 4.19 (Rotational invariance of the two dimensional Py model). The 2D system
(4.17) is invariant under rotation. More precisely, if u(t,x,y) is solution to (4.17) then the
function Ugu(t,z cos@ + ysinf, —xsinf + ycosh), 6 € [0,27), is also solution to (4.17).

Proof. Let u(t,z,y) satisfy

(Jmat + A0y + Asdy + R)u(t, z,y) = 0. (4.26)
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We consider the following rotation

2’ = xcosf —ysind,

y = xsind + ycosd.

Using the chain rule formula on the system (4.26) one gets

(Im0t+A1 (cos 80, +sin 00, )+ Aa(— sin 00,/ +cos Hﬁy/)+R) u(t, 2’ cos 0+y sin 0, —a’ sin 0+’ cos §) = 0.

Setting v = Upu and multiplying the equality by Uy one has

Uy (Im8t + (Ajcos — Aysin )0y + (Aysinf + Ay cos )0, + R)

Ufv(t,z' cosf + ¢ sinf, —z’sinf + 3/ cos 0) = 0.

The matrix Uy is block diagonal for the moments u; = (u,;k, e u,;k) For k = 0, the first moment
of the vector u is ugp = (uJ) and therefore the first row and column of Uy write respectively
(1,0,...,0) and (1,0, ...,0)”. One deduces Ugele{UéF =ejel, where e; = (1,...,0)T € R™. Since

the matrix R reads R = o1, — %ele{, one has

UsRU} = R.
Using Corollary 4.18 one finally gets
(Im&g + A0y + A20y + R)v(t, 2’ cosf + o' sinf, —z' sinf + 3/ cos @) = 0.

Therefore v(t, 2’ cosf +y'sin 0, —x'sin 6 + 3’ cos ) = Upu(t, 2’ cos 0 + ' sin 0, —2’ sin 6 + v/ cos 0)
is solution to (4.17). [ |

Eigenvalues and eigenvectors of (AA”T)"'R;. Exponential solutions to the Py model re-
quire to study the eigenvalues and eigenvectors of the matrix (AAT)"'R; € R™e*™e. In the
following, we may take for simplicity € = 1 but the proofs are the same for e € R’. First, one
can study the sign of the eigenvalues of (AAT)"'R;.

Proposition 4.20 (Eigenvalues of (AAT)71 Ry in the general case o, > 0). The eigenvalues
of the matriz (AAT)"1Ry are strictly positive when o4 > 0 and non negative when oq = 0.

Proof. Assume o, > 0 and let u € R™¢. Since o, > 0, the matrix Ry := diag(c,, 04+ 05, ..., 00+
0s) is invertible and one has

W(A4T)  Ru = (VR ) (447) R = 0T VR (A4 R,

with § = v/Riu. The eigenvalues of the matrices vR;  (AAT)"1y/Ry and (AAT)~! are the
same and therefore one deduces from Proposition 4.17 that the matrix \/Rifl(AAT)_I\/Ril
is positive. That is u? (AAT)"'Ryu > 0 if u # 0 and one concludes that the eigenvalues
of (AAT)™1R; are strictly positive when o, > 0. By continuity that the eigenvalues are non
negative when o, = 0. ]

An important property is the degeneracy of one eigenvalue when o, — 0. In terms of the
exponential solutions, this results in the degeneracy of the exponentials associated with this
eigenvalue.
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Proposition 4.21 (Eigenvalues of (AAT)~! Ry in the degenerative case o, — 0). Assume s > 0.

There s exactly one eigenvalue 1 such that p —>0 0.
Tq—

Proof. To show the result, we consider the degenerate case 0, = 0. It is clear from the definition of
Ry := diag(0,4,04+0s, ..., 04+05) and o5 > 0 that dim(ker R;) = 1. Since dim(ker(AAT)~1) =0
one finds

dim (ker(AAT)_1R1> = 1.

From Proposition 4.20, all the eigenvalues are strictly positive when o, > 0. Therefore there is
exactly one eigenvalue which degenerate to 0 when o, — 0. The proof is complete. |

The fact that the eigenvectors of the matrix (AAT)~'R; form a basis of R™¢ is required when
studying the approximation properties of the solutions to the Py model. Moreover, it allows to
count the number of distinct couple of eigenvalue/eigenvector of the matrix (AA”)~1 Ry and give
the total number of stationary exponential solutions in 1D (see the proof of Theorem 4.25).

Proposition 4.22 (Eigenvectors of (AAT)"' Ry when o, > 0). Assume o, > 0. The eigenvectors
of (AAT)"IRy € R™eX™Me from a basis of R™. Therefore, there exists m, distinct couple of
eigenvalue/eigenvector of the matriz (AAT) 1 Ry.
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Proof. Let u be an eigenvector of (AAT)~! Ry associated with the eigenvalue X that is (AAT) "' Rju =

Au. One has R (AAT)"1\/Riu = \u, with u = v/Rju. Since the matrix (4AAT)~! is sym-
metric, the matrix \/Rl(AAT)_l Ry is also symmetric. Because o, > 0, the matrix /R is
invertible and one concludes that the eigenvectors of (AAT)"'R; € R™eX™e from a basis of
R™e. [ |

For the same reason (approximation properties of the basis functions), one needs to prove that
the eigenvectors of (AAT)~'R; from a basis of R™e, this time when o, = 0.

Proposition 4.23 (Eigenvectors of (AAT)~!R; in the degenerate case o, = 0). Assume o, = 0.
The eigenvectors of (AAT)"LRy form a basis of R™e.

Proof. To prove the proposition a distinction must be made between the eigenvectors with a
first component equal to zero and the other eigenvectors. We denote m; € N the number of
eigenvectors of the matrix (AAT)~! with a first component equal to zero and ms € N the
number of eigenvectors of (AAT)~! with a non zero first component. Since the matrix (AAT)™!
is symmetric one has

Me = M1 + Ma.

e First we consider the eigenvectors of (AAT)~'R; with a first component equal to zero.
From the definition of R; with o, = 0 one has

R; = diag(0, 05, ..., 05).

One deduces that each eigenvectors of (AAT)~! with a first component equal to zero is
also an eigenvector of (AAT)™1R;. Therefore, the matrix (AAT)~!R; admits m; linearly
independent eigenvectors w; with a first component equal to zero

W1, W2, .o, Win,
We denote p; the eigenvalues associated with the eigenvectors w;

Mla"'nu;lh pSmI
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e Now we consider z; the eigenvectors of (AAT)~!R; with a non zero first component and
their associated eigenvalues )\;. The Remark 4.26 below shows that the A; are the roots of
the function

7

Adi—as’

FO) =1+ 0, < (ufe))?

i=1
where e; = (1,0, ...,0)T, u; are the eigenvectors of AAT (or equally of (AAT)~!) with a
first component not equal to zero and d; > 0 are the associated eigenvalues. The derivative

of f reads
ma To \2
/ A) = — s dz (uz el)
') g ; (Ad; — 04)?

Therefore, the function f admits my poles located at A = %* and is monotone between
these poles. From Proposition 4.6 the eigenvalues of A4; associated with an eigenvector
with a non zero first component are distinct. From Lemma 4.16, one deduces that this is
also the case for the matrix A;. Therefore the d; are distinct and one finds there are mo
distinct roots A; of f which satisfy

Os

0_/\1<—< < Ay < —.
dpm,

. (4.27)

Since all these eigenvalues are distinct, there exists mgy linearly independent eigenvectors
z; with non zero first component

21,22, ...,Zyp,.

In summary, the matrix (AAT)"!R; admits m; linearly independent eigenvectors wi, ..., Wy,
associated with eigenvalues p; and mg linearly independent eigenvectors zj, ..., z,,, associated
with distinct eigenvalues A;. It is important to notice that the eigenvectors w; have their first
component equal to zero while the eigenvectors z; have a non zero first component.

We use the following notation to denote all the eigenvectors of (AAT)"1R;
V1 =Wl .y, Viny = Wiy, Ving 41 = Z1, o Ving+ms = Zmsy- (4.28)
We also denote «; the eigenvalues associated to these eigenvectors
Q1 = U1y ey Qp = fhp, Qi1 = A1y o -Opimy = Ay

Note that there are mj + mo eigenvectors v; but only p + me < my + mo eigenvalues p; since
multiple eigenvectors can be associated to the same eigenvalue. Finally, we define F(«;) the set
of eigenvectors in the list (4.28) associated to the eigenvalue «;

E(ag) = {vy in the list (4.28) / (AAT) " vy, = agvi }.

We want to show that the total number of eigenvalues «;, counting multiplicities, is m1 + mo.
That is
card E(q;) = dim <Span E(o@), 1 <i<p+mo. (4.29)

Let i € N, 1 <14 < p+mg and consider the eigenvalue ;. Up to a renumbering of the vectors v;,
we can denote vy, ..., vg, k = card E(q;) € N*, the eigenvectors associated with the eigenvalue
«;. Assume

k
> a;v;=0, a;eR. (4.30)
j=1

Proving (4.29) is equivalent to prove a; = 0 for all j =1, ..., k. There are two possibilities
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1. All the eigenvectors vy, ..., vi have their first component equal to zero. Then, the vectors
V1,..., Vi are taken from the eigenvectors w; of the matrix (AA”)~!. Therefore, using
(4.30) and the symmetry of (AAT)~!, one concludes a; = 0 for all i = 1, ..., k.

2. All the eigenvectors v, ..., vy have not their first component equal to zero. Then, there
is exactly one eigenvector with a non zero first component. Indeed, the eigenvectors with
a non zero first component are the vectors z; and from (4.27) they are associated with
distinct eigenvalues A;. Therefore, up to a renumbering of the vectors w; and z; one can

write
k

a1z, + E a;W; = 0.
Jj=2

Since z; is the only vectors with it first component not equal to zero one has a; = 0. And
because the w; are the eigenvectors of the matrix (AA”)~! one finally deduces ag = ... =
ap = 0.

Therefore, the total number of eigenvalues «;, counting multiplicities, is m, = my + ms. One
concludes that the eigenvectors associated form a basis of R™¢ and the proof is complete. |

Finally let M € R™¢X™e be the matrix made of the eigenvectors of (AAT)~'R; when o, = 0.
When studying the approximation properties of the basis functions, we will use the following
matrix J.

Definition 4.24. We denote J € R™e~1Xme~1 the matrix obtained when removing the row and
column of the matrix M associated to the zero eigenvalue.

In particular, Proposition 4.23 implies that the matrix J is invertible.

4-2 Special solutions

To apply the TDG method to a Py model written as in (4.17), one needs to construct the basis
functions i.e. to find solutions to the system. It has strong reminiscence to case solutions [Cas60|
to the transport equation [Gosl3, BA69, BA70]. The Theorem 4.25 shows how to construct
exponential solutions when o, > 0 which can be used as basis functions. It is interesting to
consider such exponential solutions for at least two reasons

(i) They fondamentally differ from the polynomial basis functions used with the standard DG
method. Therefore, the TDG method applies with these exponential functions may have
different (and new) properties compare to the DG method.

(ii) Due to the well-balanced property, the exponential solutions may lead to very efficient
schemes to capture boundary layers.

However one realizes that, even if it is possible to use these exponentials when o, = 0, some of
them will degenerate toward constant solutions when o, — 0. Therefore, one will "loose" (in a
sense) some basis functions when o, — 0. To fix this issue, the Theorems 4.29 and 4.34 show how
to obtain polynomial solutions from the degenerative exponentials. In practice, when applying
the TDG method, the degenerative exponentials will be replaced by the polynomial solutions in
the limit o, — 0. Additionally, some time dependent solutions are also constructed in Section
4-2.4.

In this section and the next one, some analysis will be based on the simplification of the Taylor
expansion for solutions to a given system of equations. Using simplified Taylor expansion has
several advantages

59



60

SPECIAL SOLUTIONS

e We use it to show the degeneracy of the exponential solutions toward polynomials when
0, — 0 (Theorem 4.34). This a good characteristic from a numerical point of view since
one can expect that the scheme recovers the same kind of properties when using these two
different types of solutions as basis functions.

e We use it to construct the polynomial solutions with simple recurrence formulas (Theorem
4.34). This is of course very important for practical applications of the TDG method.

e Additionally, we will also use a simplified Taylor expansion when studying the approxi-
mation properties of the basis functions in Section 4-3. This is not the only possibility
[CD98, IG15a, IGD14] but it has the advantage of giving a natural framework to work
with (the study of the matrix SF in Section 4-3.2).

4-2.1 Exponential solutions

The main result of this subsection is the Theorem 4.25 which shows how to construct exponential
solutions to the Py model.

Theorem 4.25. Let o; > 0 and w1, ..., Wy, € R be the eigenvectors of the matriz (AAT) 1Ry
associated with the eigenvalues i, ..., im, . Let xi = — %ATwi e R™e, 7z, = (wl,x!)T e R™

and dy = (cos Oy, sin ;)" € R2. Then the following exponential functions
(vi)r(x) = ngzie%\/”t“idgx, i=1,..,me, (4.31)

are solutions to the Py model (4.17). Moreover, the functions (4.31) are the only solutions to
the Py model under the form zeMdiX) N e R z ¢ R™.

Proof. We start searching for solutions under the form
V(x) = zeMix e R™, (4.32)

with dj = (cosf,sin )T, A € R and z € R™. Using Proposition 4.19 the function v(z,y) =
U_p, V(z cos 0, —ysin b, x sin 0, 4y cos 0),) is also a solution to the Py model. This solution can
be written under the form

v(z,y) = ze’ € R™, (4.33)

z € R™. Inserting (4.33) in the Py model (4.17) gives after removing the exponentials A1z =
—Rz. Due to the matrix R on the right hand side, this eigenvalue problem is different from the
one already encountered in the previous section. We use the decomposition

z=(wl,x1)T €eR™, weR™, xecRM.

Using the particular form of the matrix A; and R in (4.18)-(4.19), one has

AcAx = —Riw,
{ x ! (4.34)

MeATw = —Rox.
Multiplying the second equation by AcA and then using the first equation on the right hand
side with R;l = J%Imo gives N2c?AATw = o,Riw. From Proposition 4.17 the matrix AA” is
invertible therefore one can write
A2¢?

Ot

(AATY 'Ryw = w. (4.35)
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If w € R™e is an eigenvector of the matrix (AAT)~1 Ry associated with the eigenvalue u (p > 0

:l:—vgct“ —V?“, the case

from Proposition 4.20), one can take A\ = . First we consider the case \ =

A=Yk

¥ will be discuss later. The second equation in (4.34) gives

X = —4 /ﬂATW € R™e.
Ot

One concludes that the one dimensional function v(x) = ze e VT i5 solution to the Py model.
Applying a rotation as in Proposition 4.19 gives the solutions (4.31). Moreover, considering
A= —@ is equivalent to take —dj in (4.31). We conclude that all the solutions under the
form (4.32) are given by (4.31). Finally, from Proposition 4.22 there exists m. distinct pair
(i, w;) solution of the eigen problem associated with the matrix (AAT)~!R;. This completes
the proof. |

Remark 4.26 (Secular equation). Exponential solutions require the eigenvalues and eigenvectors
of the matrix (AAT)~'R;. In practice, it can be difficult to solve directly the eigenvalue problem
(4.35) associated with the matrix (AAT)~!R; for large values of N. Here we give an alternative
method based on the eigenvalues and eigenvectors of the matrix AAT. They can be simpler to
calculate since one can deduced them from the eigenstructure of the matrices 4; (Proposition
4.17). For example, the eigenvalues are roots of the Legendre polynomials (and their derivatives)
and one way to obtain the eigenvectors of 4; is to apply a rotation to the eigenvectors of the
matrix 4s [GH16, Lemma 2.

We proceed in two steps. At first, since Ry = I,,, 0; — Z2ejel, some eigenvalues and eigenvec-
1) e & 1>

tors of (AAT)"'R; can be deduced from the eigenvalues and eigenvectors of (AAT)~!. More
precisely, assume w; is an eigenvector of (AAT)~! associated with the eigenvalue );. Using
R, = diag(og, 04, ...,04), one deduces that, if the first component of w; is null, then w; is an
eigenvector of (AAT)~'R; associated with the eigenvalue oy );.

Then, to get the other eigenvalues and eigenvectors, we use a so-called secular equation [And96,
JL91]. Assume w is an eigenvector of the matrix (AAT)~!R; associated with the eigenvalue A
and that the first component of w is not zero. From the equality (AAT)"!Ryw = Aw one finds

Riw = AAT \w

Diagonalizing the matrix AA” = PDPT and using Ry := I, 0¢ — %ele{, e; = (1,0,..,007 ¢
R™e_ one gets
ADw = (Imeat — %VVT>V~V,
€

where v = PTe; and w = PTw. One has
(1L, = AD) W = ZvvT,
5

and one gets

W= (Imeat . /\D)_l%vaVN\r. (4.36)
Multiplying by v on both sides give
viw =vT (Imeat — /\D) _1%VVTW.
Because vI' = el P and w = PTw one has vI'w = el'w and vI'w # 0 since we assume that the

T

first component of w is non zero. One can therefore remove v* w on both sides of the equality.

One gets the secular equation

1= 2T (1,00 — AD)"'v.
g
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Setting f(A\) =1+ ZvT(AD — I;,,04) v, the secular equation reads

f) =o.

Therefore one needs is equivalent to find the roots of f. Denoting D = diag(d; > 0, ..., d,,, > 0),
the function f can be written

and

Therefore, the function f is a monotone decreasing function which admits pole located at o /d;
if d; is an eigenvalue of (AAT) ™! associated with an eigenvector with a non zero first component.
See Figure 4.2 for the example of the function f in the case of the P3 model.

Moreover, from (4.36) and denoting C' = vI'w # 0 one has

- —lgg
W= C(Imgat - AD) Isy.
13

Therefore, once one has the eigenvalue A, one can deduce the eigenvector w associated.
15+ 15?

10F 1o

| L’\ 5} L
e —————— R L P R | L
10 w 10 20 30 |10 \ 10 20 30
_5}

-10f -10f

-15L -15L

Figure 4.2 — Representation of the function f for the P3 model. On the left o, = 05 = 1, on the
right o, =0, 05 = 1.

Example 4.27 (Secular equation for the P; model). For the P; model, one deduces from the
matrices given in Example 4.13 that AAT = % This matrix admits one eigenvalue d; = %

associated with the eigenvector w1 = 1. Therefore the function f reads

=1+ o

This function admits one roots A1. Using oy = €0, + %=, one finds A\; = 3e0,. One can check
that \; is indeed the eigenvalue of the matrix (AAT)"!R; = 3co,. o

4-2.2 Polynomial solutions (only when o, = 0) with Birkhoff and Abu-Shumays
method’s

In the previous section, we have constructed exponential solutions when o, > 0. If all these solu-
tions can be used when o, > 0, some of them degenerate toward constant solutions when o, — 0.
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It is therefore required to construct new solutions which will be used in the basis functions to
replaced the degenerative exponential when o, = 0. In the following, we construct polynomial
solutions to the Py model in the degenerate case o, = 0 from solutions to the transport equation.
However, although this procedure is quiet straightforward, it does not mathematically justify the
replacement of degenerative exponentials by polynomials in the basis functions. This issue will
be addressed in Section 4-2.3.

In this section, we use the solutions to the transport equation given by Birkhoff and Abu-
Shumays [BA69|. Some notations are taken from Section 4-1.1. Since we are interested in the
two dimensional Py model, we search for solutions which do not depend on the variable z. In
the following we assume ¢(z,y) is a harmonic polynomial

Ag(z,y) =0.
And for | € N we define the following polynomial functions
l
N k
l . - )
fq(xayvﬂ) T ;} ( O ) (Q V) Q(zay)

Note that for all [ € N the function fé is a polynomial function of degree deg(q) where we have

denoted deg(q) the degree of the polynomial ¢. From the definition of f. one has fg e9(a) _

féieg(Q)—H for all [ € N. The functions fgeg(q) are solutions to the transport equation (4.1), see
[BAGI.

Proposition 4.28 (Polynomial solutions to the transport equation [BA69|). Assume o, = 0.
Then the function fgeg(Q) (x,y,8) is solution to the transport equation.

To construct solutions to the Py model we consider the truncated functions fév . Note that fév
is only an approximation of fqdeg(q) if N < deg(q) and fév = fgeg(q) if N > deg(q).

Theorem 4.29 (Polynomial solutions to the Py model). Assume o, = 0. The function
D
fn(2,y) =< y(@)fN (2,y,Q) > R™",

1s solution to the Py model. This function is a polynomial vector with respect to x,y.

The proofs of these two results are based on the following lemmas. For the Proposition 4.28, the
proof given in [BA69| is more general and works in any dimensions. We give here a more direct
(but less general) proof.

Lemma 4.30. One has

sin ¢
2

<Q-V)kq(x,y):< )k<6_ik¢(az—|—i8y)k—|—eik¢(6m—i3y)k>q(x,y), ifk>1. (4.37)

Proof. Indeed since 9,q = 0 one has

(Q : V> q(z,y) =sin ¢(cos Y0y + sin 1/@;) q(z,y),

A
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Therefore

. k
k S k . . —i(k— . _
(2-9) aten) =(220)" 32 e (0, — i, e EPY (0, 1 i0, ) Tae.y).

2/ &

. k
sin ¢\ * 2ok} ' -
:( 2 ) ;Cﬁe(p (8, — 10y)P (0 + i0y) " Pq(z, y).

But since ¢(z,y) is harmonic one has
(0 —i0y) (07 + 10y)q(x,y) = 0.

Therefore, all the terms in the sum vanish except the first and the last. One finally finds the
equalities (4.37). (]

Lemma 4.31. One has

(Q : V)fé(a;,y, Q) :as< — fé(m,y,ﬂ)—i— < fé(ac,y, Q) > )

+ (i)l (Sin¢)l+1 (70 (0, +i0,) ! + (D, — i0,) 1 )a(x, ).

o 2

Proof. From the definition of the function fé(a:, y, ) one has

(n V)fl z,y, io(") ( )qu(w,y)-

That is
(Q - V)fé(x,y, Q) = osq(x,y) szl:< ) ( )kQ(ﬂc,y) + (;)l@ - V>l+1Q($’y)-
k=0 s
One concludes with Lemma, 4.30. [ |

We can now prove Proposition 4.28 and Theorem 4.29.

Proof of Proposition 4.28. Since q(x,y) has degree deg(q) one has
(efi(deg(qﬂl)w(ax + iay)deg(q)ﬂ + ¢/ldeg(D+ v (g iay)deg(q)ﬂ)q(x’ y) = 0.
Therefore using Lemma 4.31 one gets
(2 9) £299) (@,y, ) = o (= £ (@,y, Q)+ < f9 (2, 2) > ),

which is the stationary version of the transport equation (4.1) when o, = 0. |

Proof of Theorem 4.29. From Lemma 4.30, the definition of fév and the definition of the spherical
harmonics (A.3), one concludes that the function fév (z,y, Q) can be decomposed on the spherical
harmonics of degree less than N. Therefore one can write
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From Lemma 4.31 one has
(2-9) ¥ (@, @) =ou (= £V (@0, 9+ < [ (09, 92) > )

. <;1>N<sin¢>zv+1(e,i(NH)w(am 1 i0,)NH 4 N (g, _z'ay)NH)q(x,y).

Os 2

Multiplying by y(€2), integrating on the sphere and using

/0% e™dy =0, ifk+#0,
yields
<y(@)(2:V) N (@09, 9Q) >= 0y (- <y (@,9,9) > + < y(Q) >< [V (@,9,9) > ).
Using the decomposition (4.38) one gets

<y(@)(2V)y" (@fv(a,y) >= 0. < V@Y (Dtx(z.y) > + < y(@) >< ¥ (Qtw(z.1) > ).

That is
3
> < Uy(Q)y" () > Oy, fn(w,y) = Us<— <y(Qy" (Q) >+ <y(Q) ><y"(Q) > )fN(x,y),
i=1
which is the stationary version of the Py model (4.4) when o, = 0. [

Remark 4.32. If N > deg(q), the solution fg 99 of the transport equation can be completely

reconstructed from the solution fy of the Py model. Therefore, the polynomial solutions f;l e9(a)

of the transport equation are, in a sense, preserved by the Py model when N > deg(q). o

4-2.3 Link between exponential and polynomial solutions

In the previous section, we have constructed polynomial solutions to the Py model to replace the
degenerative exponentials when o, = 0. However, even if the procedure used is quiet straight-
forward, it does not mathematically justify the replacement of the degenerative exponentials
with polynomials in the basis functions. The goal of this section, which is independent from the
previous one, is to

e Show the degeneracy of exponentials constructed in section 4-2.1 toward polynomial solu-
tions when o, — 0.

e Show that those polynomial solutions can be constructed using recurrence formulas. One
advantage of this procedure is that the formulas are explicit while the solutions given
in Theorem 4.29 of the previous section necessitate to integrate spherical harmonics and
therefore require adapted formulas.

For the P} model, the solutions given in this section coincide with the polynomial solutions given
in the previous section. We conjecture that this is also the case for the Py~1 model, see Remark
4.50.

The main result is the Theorem 4.34. As a first step we give some definitions. Let n € N,
%0 = (z0,70)" € Q and consider
Ci K
—(z — 20)P(y — yo)" P, if 0 <p<k,
2P(x) = o )’(y = yo)
0, otherwise.

(4.39)
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Given some matrix M € R™*™2 we define the matrix M‘j e RmMmxm2 1 < 4 < k < m; which
k

is the restriction of M beetween the rows j and k

mi,1 e M1 e 0
m2,1 T m2,mq mji1 o Mygmg
M = : : , Mlj = : : . (4.40)
Mmy—1,1 - Mmq—1,msz mk,l e mk,mg
Mmy,1 T Mmy,ma 0

If £ < j we set by convention M, i= 0. Now we recursively define some coefficients.
k

Definition 4.33. Consider an integer n > 0. The matrices F}(x), G} (x),T%(x) € R™*™ are
defined in the range 0 < p < k < n + 1 with two recursions. The first recursion reads:

e by convention set ', " = FZ'H =0,T?, =0, Vp,k
e fork=0tok=n+1,do
e forp=0top=k,do
Th(x) = Vh () I = TR R AL =T Ry Ay (4.41)
The second recursion reads:
e by convention set G | (x) = GE_,(x) =0, G ' (x) = G}.*(x) =0, Vp, k
e for k=ntok=0,do
o forp=0top==k, do
FP(x) =T (x) + N’GY_,(x), (4.42)

G (x) == FE(x) — G *(x), (4.43)

Theorem 4.34 (Polynomial solutions to the Py model.). Consider the exponential solutions
giwen in Theorem 4.25 associated with the eigenvalue p; which satisfies ; %0 0. There exits
Ta—

linear combinations of these solutions which degenerate toward polynomial solutions when o, — 0.
These polynomial solutions are given by the first column of the matrices G’,g(x) and Gi_l(x).

The matrices GF(x) and Ggfl(x) can be recursively calculated and we give here the example of
the P; model.

Example 4.35 (Application to the P; model). Consider the two dimensional P; model. To
recover the standard notations we switch here the axis x and y compare to Example 4.13. One

has
. (010 . (001 o, 0 0 00 0
Ai=—1[1 0 0 Ay=—(0 0 0 R=[0 o 0 R;'=10 L o0
y ’ ’ 12, gt
V3 000 V3 \4 0 0 0 0 oy 0 =
with o} :=co, + % The first matrices Gllz and Giil reads
1 00 y 00 z 00
Gix)=({0 1 0], Gx) = 0 y 0], Gix)= ~75e T 0],
001 ~7se 0 0 0 =
Ty 0 0 (2% —y?) 1 0 0
Gyx)= |- 2 0|, Gix)=| —= 36—y 0 :
1
7 0wy Y 0 3(@° —y?)

and one can check that their first column is indeed solution to the P; model when o, =0. @
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The proof of Theorem 4.34 is decomposed in two steps. At first, we study in Section 4-2.3.1 the
degenerative exponentials of a simplified second order equation and introduce some useful tools.
Using this framework, we then prove the Theorem 4.34 in Section 4-2.3.2.

4-2.3.1 A simplified second order equation

In this section, we treat the simpler case of a second order equation. The results obtained in this
section will then be generalized to prove Theorem 4.34. More precisely, Propositions 4.37, 4.38,
4.40 and the definition (4.54) of the matrix S, will be needed in Section 4-2.3.2.

The goal here is to find linear combinations of functions of the form e<(diX) which degener-
ate toward polynomial functions when w — 0. The degeneracy of exponential solutions to the
Helmholtz equation has already been studied in [GHP09|. However, since our goal is to gener-
alize the proof for the two dimensional Py system, we consider here a different approach. The
procedure is based on a simplification of the Taylor expansion for the solutions to the second

order equation.

Property of the solutions to a second order equation. Let u € H'(Q). We consider the
following auxiliary second order equation

Au(x) = wu(x), (4.44)

with w € R which may take positive or negative values. At first, our goal is to write a simplified
Taylor expansion for regular solutions to this equation. Every function u(x) € C"*1(Q) can be
written under the form of a usual Taylor expansion which comes from [Fle77, Page 94|

n+1

ZZ’yk )ALLK Pu(xq) +Z%+1 )RR Pu(x,), (4.45)

k=0 p=0

where ’Yﬁ(x) is given by (4.39), x; = ('TSays)Tv x5 = (1—8)z0+ sz, ys = (1= 8)yo + sy, s € [0,1].
In our analysis, we need intermediate quantities named of and j}.

Definition 4.36. Consider an integer n > 0. The functions o} (x) and S} (x) are defined in the
range 0 < p < k < n by a decreasing recursion from k = n to k = 0. The recursion reads:

e by convention set 57, (x) = 8 ,(x) =0, Bt (x) = B 2(x) =0, Yp, k.
e fork=ntok=0,do

e forp=0top=k,do
o (%) := 7 (%) + w4 (x), (4.46)

BE(x) == af(x) - B *(x), (4.47)

Since 87, ,(x) = BL.,(x) = 0, thus of_;(x) = +F_,(x), ah(x) = 7h(x). Also because ;% =
6k = 0 the equality (4.47) implies

Br(x) = af(x), BE(x)=aj(x), 0<k<n. (4.48)

In the case w # 0, the functions of (x) and B} (x) are polynomials of degree n if both n and k
are even or odd and n — 1 otherwise. If w = 0, the functions of (x) and 3} (x) are polynomials
of degree k for 0 < k < n. Note that in order to use simple notation, we do not explicitly write
the dependence of these functions in n and xg.
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Proposition 4.37 (Simplified Taylor expansion). Assume u(x) € C"*1(Q) is solution to (4.44).
Then the double sum Taylor expansion in (4.45) can be recast as a simple sum with only zero or
first order derivatives with respect to y

u(x) = B (x)ulxo +Z EASSE
n+1

+ Z%H—l

where xs = (z5,ys)?, x5 = (1 — 8)xg + sz and ys = (1 — 8)yo + sy, s € [0,1].

u(xo) + B ()95 yu(xo)|
(4.49)

8”6"“ Pu(xs), Vx€Q,

By symmetry, a similar result holds with high order derivative with respect to y and only zero
and first order derivatives with respect to x. Even if the rigorous proof of Proposition 4.37 is a
little technical, the idea behind is actually very simple. Indeed, since w is solution to (4.44) one
can use the equality 8§u = (w — 9?)u to recursively eliminate the derivatives of . A graphical
illustration of the procedure is provided in Figure 4.3. The proof of Proposition 4.37 is postponed
in Appendix B.

We show that in the case w = 0 the coefficients BF(x) and ﬂllj*l
We define the harmonic polynomials as follow

(x) are harmonic polynomials.

(& = 20) + iy — y0))",

(4.50)
Consider the two following two vectorial functions B3(x), q(x) € R?"*! where 8(x) is the vectorial
function made of the coefficients B,]:_ (x) and BF and q(x) is the vectorial function made of the
harmonic polynomials g;(x)

a(0) = (0109. () 2 B0 = (860, B0 81 (). 1 (). B16))

000 =1, anx) = TR —a0) +ily ~ ), aa(x) = =S

(4.51)

Proposition 4.38 (Limit of the coefficients ¥ (x) and Blljfl
The coefficients ﬁllj and ﬂ]’:*l

(x)). Assume w =0 and 0 < k <n.
are harmonic polynomials when w = 0. More precisely, one has

B(x) = ax). (452)

Proof. The proof is postponed in Appendix B. |

Limit for linear combinations of exponential functions. We consider v; solutions to the
second order equation (4.44) and assume Q € R? is a compact set. More precisely, we consider
the following exponential functions centered in xg € R?

Veldix=xo) = ;=1 9op+1. (4.53)

We define S, :=

vi(x) =e
Since we are interested in the regime w — 0, we will assume w < 1.

St varvanss € REVFIXEH guch that

for I € N*.

v1(xo) v2(X0) Van41(X0)
0zv1(X0) Ozv2(x0) Ozv2n+1(X0)
(9y1}1 (Xo) 8yv2 (Xo) ayv2n+1(X0)
31 (%0) 93v2(x0) 9zvan+1(%o0)
SW(XO) = SU11U2»---7’U2n+1 (XO) = 8183/111 (Xo) 8zayU2(X0) axé?yvgnﬂ(xo)
97 v1(x0) 95 v2(x0) Iy van+1(xX0)
951 0yv1(x0) 951 Oyva(x0) 919y van41(x0)

(4.54)
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Figure 4.3 — Illustration of the recursive procedure to get the simplified Taylor expansion (4.49).

Proposition 4.39. Let v(x) = (v1(X), ..., v2n11(x))T € R2FL with v;(x) € C?"1(Q) solution
to (4.44). The vectorial function v(x) satisfies the following Taylor expansion

v(x) = S7(x0)B(x) + £(x),
with €(x) = (1), s €201 ()7, &%) = S RO vy (x, 0% (%),

Proof. The proof follows from Proposition 4.37 and the definition of the matrix S, (xo). |

With the exponentials (4.53) the matrix S, (x0) reads

1 1 1
Vw cos(6r) Vw cos(62) Vw cos(b2,41)
Vwsin(6y) Vwsin(60) Vwsin(62p41)
St = Su(x0) = : : :
Vw'" cos™(6) Vw'" cos™(6) V" cos™(0a41)

Vw'sin(0) cos™1(01)  w"sin(f2) cos™1(6) ... w"sin(fz,11)cos™ H(O2,11)
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For simplicity, we remove the dependence in xg of the matrix S,,.
Proposition 4.40. The matriz S := S,—1 s invertible.
Proof. This is a particular case of Proposition 4.58 with N = 1. ]

We now define sy, j = (Suw)k.,j, Grj = (S),;} and notice

2n+1 . HJ . .
(Swal)lJ = Z Sl,kakd = \/&LEJ(SU = {\/(; j if i = J for 1 S l,j S 2n + 1. (455)
0 else
k=1

Therefore setting

2n+1J
b

D, = diag(wtéj,wL%J,...,wL 2 (4.56)

one can write the matrix S;7 as

ST =pjts T (4.57)

Now we have introduced the main objects needed to study degenerative exponentials to the Py
model. To give the general idea we study the degenerative exponentials to the second order
equation as a first step.

Definition 4.41. We define c(x) € R?"*! such that

c(x) = S, v(x). (4.58)
with v(x) = (v1(X), ..., von+1(x)) € R2"* 1 and v;(x) given in (4.53).
The vector ¢(x) degenerates toward harmonic polynomials.

Proposition 4.42 (Second order equation: degeneration of exponential solutions toward poly-
nomials). Consider the functions (4.58). Each component of the vector c(x) is solution to (4.44).
Moreover one has

c(x) = alx)

Proof. The components of the vector ¢ are linear combination of the functions v; which are
solutions to (4.44) and are therefore also solution to (4.44). Since the functions v; are solutions
to the second order equation (4.44), one can use Proposition 4.39 on the vector v and writes

v(x) = 5;8(x) + £(x).
with E(X) = (gl(x)v e £2n+l(x)) and /62n+1(x) = (ﬁg(x)v /8(1)(X)7 ﬁ%(x)v ) Bg_l(x)v BQ(X)) Since

) is bounded and from the definition of the functions v; one has

n+1
&i(x) = D RO Pu;(x,)7E 4 (x) = V' E(x),

p=0

where &(x) is bounded uniformly in x and w when w — 0. Using £€(x) = (£1(x), ..., Eans1(x))T
one gets 1~

v(x) = STB(x) + V" E(x).
Therefore, the vector ¢ can be written under the form

elx) = 557 (SEBG) + V") ).
= B(x) + Vo' DS S TE(x),
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where we have used the equality (4.57) in the second term on the right hand side of the last
equality. From the definition (4.56) of D,, one gets /"' D! =, 0. Therefore one finally finds
w—>

Using Proposition 4.38 completes the proof. |

4-2.3.2 Proof of Theorem 4.34

Now we generalize the results given in the previous section to a class of system which includes
the Pyn model

(Aﬁx + A2ay) u(x) = —Ru(x), (4.59)

where u € R™, Ay, Ay, R € R™ and the matrix R := R, depends on some coefficient w. The
only assumption we make on the system (4.59) is the following.

Assumption 4.43. There exists uy(x) € R™ solution to the system (4.59) which satisfies

uy(x) =zeMX A - 0, (4.60)

w—0
with
T
d:=d() := (cos@,sin@) eR? z:=z(0,w)#0eR™ X:=\w)eR.

Moreover, there exists a matriz denoted R|;1 such that

m

R;'Rz =123, YzeR™ VweR", (4.61)
where we used the notation (4.40) for the vector z2 .

From Proposition 4.21 and the definition of the matrix R := diag(eoy, oy, ..., 0¢), the Py model
satisfies the Assumption 4.43 when o; > 0 and with w = 0,. We can now prove the degeneracy
of the exponentials solutions (4.60) toward polynomials as we did for the second order equation
in the previous section. We start with a technical lemma.

Lemma 4.44. Rescaling the vector z = (21, ...,zm)T in (4.60) if needed, one can take z; = 1
with all the other components satisfying z; —>0 0,2<j<m.
w—

Proof. From the definition of the function (4.60) one gets uy(x) =, 2 Therefore from (4.59),
w—

the definition of the matrix R;' (4.61) and because uy(x) is constant in the limit w — 0 one has

‘ 2
m

2 = R‘El(fh@m + A28y>u)\(x) = 0 (4.62)
m w—0

But since z # 0, and considering the correct scaling of the function, there exists at least one

component z; # 0 such that z; does not depend on w and all other components z;, i # j are

bounded when w — 0. One deduces from (4.62) that it can’t be any components between 2 and

m therefore j = 1 and one can take z; = 1 considering the correct scaling. |

In the following we take z; = 1 and use the matrices I} and G} from the Definition 4.33. We
make a first simplification on the Taylor expansion of solutions to (4.59).
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Proposition 4.45 (A first simplification of the Taylor expansion). Let u(x) € C"2(Q) be a
solution to (4.59). The beginning of the Taylor expansion on the vectorial function u(x) can be
recast as a Taylor expansion on the vectorial function llH(XQ)

ZZF x) Ry upr (%) + €(x),
k=0 p=0
n+1 n+2

Zrnﬂ )OROI P (x) +nyn+2 )1 0RO 2 Pu(x,),

(4.63)

where xs = (z5,ys)?, x5 = (1 — 8)xg + sz and ys = (1 — 8)yo + sy, s € [0,1].

The proof which is purely technical is postponed in Appendix B.

Now we make a second simplification and remove some derivatives in the Taylor expansion. This
is the same idea we used for the second order equation in Proposition 4.37.

Proposition 4.46 (A second simplification of the Taylor expansion). Assume uy(x) is solution
o (4.59) and can be written under the form (4.60). Then the double sum Taylor expansion in
(4.63) can be recast as a simple sum with only zero or first order derivatives with respect to y

U)\(X) = GO uAll X[) + Z |: 8 u)\‘1(X0) + Gk 1( )35_131411)\\}@0)] +£)\(X)a
k=1

where €(x) is as in Proposition 4.45 replacing u(x) with uy(x).

Proof. Since the solution is under the form (4.60), its first component follows the second order
equation (4.44) with w = A2. Therefore, each component of the vector uy1(x) follows also the

equation (4.44) with w = A2, Using the Taylor expansion (4.63) one can proceed as in Proposition
4.37 replacing the coefficients ~} (x) and 3% (x) with the matrices I} (x) and G} (x) respectively.
This completes the proof. |

We consider now 2n + 1 functions under the form (4.60) centered in xg
vi(x) = 2 M X0 =1 2n 1,
with d; #d; if i # j and A — 0.
w—0

We define the following functions.

Definition 4.47. Let (G%).1(x) € R™ be the first column of the matrix G} (x). We denote
B(x), V(x) the matrices

B = ((E8).100, (G160, (G 1), () (), (€ a(x)) € RHH<m,
V() = (Vi) Vo (x)) € B,
Finally, we define C/(x) the matrix
C(x) = Sy V(x) € R#Hxm, (4.64)

where Sy2 =S, is defined in (4.54).
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One can write a simplify Taylor expansion of the matrix V(x).

Proposition 4.48. The matriz V(x) admits the following Taylor expansion
V(x) = S5 B(x) + E(x),
with Z(x) € R Z(x) 1= (€ (), s £y (%))

Proof. This is a consequence of Proposition 4.46. Indeed, each vector v; can be written under
the form

vi(x) = GY(x)vip (xo +Z (GEx)Ev;s (x0) + GET ()25 Dy vy (x0) | + ().

Using Gi(x)vip( x) = v} (x)(G).1(x) (where v} (x) is the first component of the vector v;), the
definition of the matrix S, (4.54) and Z(x) = (£1(x), ...., €2n41(x))T completes the proof. [ |

And we can now give the main result of this section.

Proof of Theorem 4.34. From Proposition 4.48 one has
V(x) = S B(x) + E(x),

Since (2 is bounded, from the definition of the functions v; and because each component of the
vectors &; is at least a derivative of order n + 1 of v;, one has &;(x) = A"*T1¢;(x) where &;(x) is
bounded uniformly in x and A when A — 0. The equality now reads

V(x) = SLB(x) + A" E(x).

Therefore the matrix C'(x) can be written under the form

C(x) = S (s;B(x) v MHE(X)),
= B(x) + A" D) STE(x),

where we have used the equality (4.57) in the second term on the right hand side of the last
equality. From the definition of Dy2 (4.56) one gets /\”“DE1 e 0. Therefore one finally finds
w—>

C(x) — B(x). (4.65)

w—0
Finally, the rows of the matrix C(x) are linear combinations of the rows of the matrix V' which
are solutions to (4.59). Therefore, each row of C is also solution to (4.59). Therefore, from
(4.65), each row of the matrix B(x) is a limit of a solution and one deduces that the rows of
B(x) are also solutions to (4.59) when w = 0 and the proof is complete. [ |

The rows of the matrix B(x) are actually the first column of the matrices G (x) and Gz_l(x).
Therefore, to get polynomial solutions to the system (4.59) in the case w = 0, one just has to
study the matrices G¥(x) and Gllz_l(x). One deduces the following corollary.

Corollary 4.49 (Polynomial solutions to the Py model in the case o, = 0). The first column
of G¥(x) and Gﬁ_l(x) are polynomial solutions to the Py model when o, = 0. Moreover their
first component are the harmonics polynomials of degree k (4.50) while all their other components
have degree strictly inferior to k.
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Proof. Since the Py model satisfies Assumption 4.43 (with w = o,) one deduces that the first
column of G¥(x) and G§~!(x) are polynomial solutions to the Py model when o, = 0.

We are interested in the case 0, = 0 and therefore we take A\ = 0 in the formulas (4.41)-(4.42)-
(4.43). Since the first row of the matrix R‘gl is zero, the first component of the first column of
G¥(x) and szl (x) is construct in the same way as the coefficients 8F (x) and ﬁ,ljfl(x) respectively
in (4.46)-(4.47) (with w = 0). From Proposition 4.38, one deduces that the first component of
the first column of G¥(x) and Glg_l(x) is the harmonic polynomial given by (4.50). For the
other components of the first column of G¥(x) and G’,z_l(x), the contribution of polynomials are
only made through the matrices Fi:i(x) and T}, (x) which are at most of degree k — 1. This
completes the proof. |

Remark 4.50. From Corollary 4.49, the first component of the polynomial solutions to the Py
model derived in this section is a harmonic polynomial. This was also the case for the polynomial
solutions obtained with Birkhoff and Abu-Shumays method’s in Section 4-2.2. For the P; model,
it is enough to conclude that these solutions are the same. Indeed from the structure of the P;
model

\}g <8xu2(x) + 8yU3(x)) = —oqu1(x),
\}gaxul(x) = —opua(x),

1
—38 u1(x) = —orug(x),

(V37

one deduces that if u; = 0 then uy = uz = 0.

We conjecture that the polynomial solutions obtained in this section and the previous one are
also the same for the Py~ model. [

4-2.4 Time dependent solutions

In this section, we give some possible ways to get time dependent solutions to the Py model.
These solutions will be used as basis functions for the TDG method in Chapter 5. As we will
see, although such basis functions are very effective to reduce the diffusion, they might also
deteriorate the condition number of the mass matrix.

e A first possibility is to consider solutions to the Py model (4.17) which depend only on
the time variable. One gets

edwu(t) = —Ru(t).

Since R is a diagonal matrix, R = diag(eoy, o¢, ..., 0¢), one immediately gets the following
solutions

vi(t) =ere %t vo(t) =ege =t ., v(t) =eme 7Y, (4.66)
where the functions e; represent the canonical basis of R™. One can use the solutions v;
as basis functions. Note however that

vi(t) — ey.
0qa—0
The function e is a stationary solution and may be already in the approximation space
if one uses time dependent and stationary basis functions. Therefore, one will "loose" a
basis function when o, — 0. This can be seen as a defect for this special choice of basis
functions.
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e A second possibility is to consider one dimensional solution under the form
v(t,z) = q(t, z)eM,

where q(t,x) € R™ is polynomial vector in = ant ¢. A concrete example is given in Section
3-1.1 of Chapter 3 for the case of the P; model. Then one can use the rotational invariance
of the Py model and gets the following solutions

v(t,x) = Upq(t, x cos O + ysin §)e(# cos0ysind) (4.67)
Another possibility is to search directly for two dimensional solutions under the form
v(t,x) = p(t, X)e)‘(gcCOS Otysing) (4.68)

where p(t,x) € R™ is polynomial vector in x, y ant t. Note that the functions obtained
with (4.68) may differ from the functions (4.67). A complete example is given in Chapter
5 for the P; model.

e A third possibility is to consider time dependent solutions under the form
vt x) = g(x)e, (4.69)

with @ € R. One can inject this solution in the Py model (4.17). One gets after removing
the exponentials

(Al&c + A0, + (R + 5alm)) g(x) = 0,

where I, is the identity matrix of R”*"™. The function g(x) is very similar to the stationary
solutions already calculated in Sections 4-2.1 and 4-2.3. The matrix R is just replaced by
the matrix R := R + ealy,. Note that the solutions (4.66) are included in the solutions
(4.69). For simplicity, we will make the distinction and therefore assume g(x) is a non
constant vectorial function.

For example, if one takes o such that o, + ea > 0, then g(x) is one of the exponential
solutions (4.31). In particular, if & > 0, the functions (4.69) naturally degenerate toward
non trivial time dependent solutions when o, — 0. This is one advantage of the functions
(4.69) compare to the stationary solutions or the other time dependent solutions.

4-3 Convergence of the scheme

In this section, we study the h-convergence of the TDG method applied to the stationary Py
model. To do so, we start from Chapter 2 where the DG formulation of the method has been used
to derive some estimations in various norms. To prove the convergence of the scheme, it remains
to study the approximation properties of the basis functions. Usually, when considering the
standard DG method, the approximation properties of simple monomials (such as 1, z, y...) can
be easily studied since they appear in the Taylor expansion of every regular functions. This is not
the case anymore when considering the TDG method with other kind of basis functions. Can one
approximate stationary solutions to the Py model at any order using the exponential functions
of Theorem 4.25 and the special polynomial functions of Theorem 4.34 as basis functions? The
answer is yes as we will see in the rest of this section. More precisely, we proceed in four steps

1. First, we show that is is enough to study the approximation properties of the m, first
components of the basis functions and that these components are solutions to a second
order system (Propositions 4.51 and 4.52).

2. After that, we simplify the Taylor expansion of solutions to such second order system
(Proposition 4.54).
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3. Then, we use this simplified Taylor expansion to show that, studying the approximation
properties of stationary solutions is in fact equivalent to study the rank of a particular
matrix (Proposition 4.55).

4. Finally, we study the rank of this matrix when considering the exponential and polynomial
solutions (Propositions 4.58 for the case o, > 0 and 4.69 for the case o, = 0).

Using this procedure and the estimates of Chapter 2, the Theorem 4.75 finally gives a convergence
result in L2 norm. Note however that this estimate may not be optimal when N > 1 (in the sense
that the basis functions which give the convergence are not known) as suggested by Remark 4.76.
Since it is already complicated enough to study the standard case, we do not consider asymptotic
regimes in this section and take

e=1 c=1

Moreover for © a generic open set we study the convergence of the scheme using the following
norms

n k m
lullwnoe@) = Y Y sup |059, Pu(x)|, and [[ullwno) = D llujllwn=(o). (4.70)
k=0 p—0 X€© j=1
By convention we set || - [[@) = | - [lwo.(0). Finally we consider
oy > 0,

since when o, = 0, + 05 = 0 the relaxation term vanishes (R = 0) which is of less interest for
our applications.

4-3.1 A simplified Taylor expansion
In the following 2 is a bounded domain of R?. First, we explain why it is enough to study the

approximation properties of the m, first components of the basis functions. It comes from the
block structure of the Py model.

Proposition 4.51 (u, controls u). Assume oy > 0 and u(x) = (ul'(x),ul'(x))T € R™, u.(x) €

R™e u,(x) € R™ is a stationary solution to the Py model (4.17). One has
ullzee(e) < C (el o) + 1000 () + 10,0l 2o )- (4.71)
Proof. Since u(x) is a stationary solution to (4.17) one has
(A13x + Agay) u(x) = —Ru(x).
Using the block structure (4.18)-(4.19) of the system (4.17) one gets

(Aax + Bay) (%) = —Riug(x),

(4.72)
(AT(?m + BT8y> u.(x) = —Rau,(x).
Since o; > 0 the matrix Rs is invertible and therefore

[uollioe @) < C (10l o) + 19yt 1e(en)-

Because u = (ue,u,)?, one deduces the inequality (4.71). [ |
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The function u.(x) is solution to a second order system.

Proposition 4.52 (Second order system). Under the asserts of Proposition 4.51 and if u is

reqular enough so that Oyyu(x) = Oyzu(x), then u.(x) is solution to the following second order
system
(AATam + (ABT + BAT)o,, + BBTayy) (%) = 0y Ry (x). (4.73)
Moreover
Dyytie(x) = (BBT)—l( — AAT9,, — (ABT + BAT)d,, + JtRl) . (x). (4.74)

Proof. Since oy > 0, the matrix Ry is invertible and Ry ' = U%Imo. Therefore, the system (4.73)
is obtained from (4.72) after eliminating u,. The equality (4.74) is given by the invertibility of
the matrix BBT from Proposition 4.17. The proof is complete. |

Now we study some properties of solution to the second order system (4.73). We recall that every
vectorial function w(x) € C"*1(Q) can be written under the form of a usual Taylor expansion
which is a generalization of the scalar case [Fle77, Page 94]

n+1

ZZapak Pw (x0)7F (x) + Zapanﬂ Pw (%) 7P 41 (%), (4.75)

k=0 p=0

where 7 (x) € R is given by (4.39) and x, = (2s,ys)”, x5 = (1—8)zo+sz and ys = (1—)yo+ sy,

€ [0,1]. There is of course a double sum in the Taylor expansion but, for Trefftz methods, it
is possible to reduce the complexity using the fact that u.(x) is a solution to the system (4.73).
This is classical [CD98, HMP16a, KMPS16| see also [IGD14, 1G15a, IG15b| with a different
approach to the coefficients reduction procedure. In our analysis, we use a simplification of the
Taylor expansion and need the following intermediate quantities.

Definition 4.53. Consider an integer n > 0. The matrices
p EX e p 6>< e
K e RmMexMe [ € RMexMe,

are defined in the range 0 < p < k < n by a decreasing recursion from £ = n to k = 0. The
recursion writes:

e by convention set LP ,(x) = L? ,(x) =0, LY (x) = L.%(x) =0, Vp, k
e for k=ntok=0,do
e forp=0top=k, do
KP(x) 1= 1L(x) + ot LYo (x)(BBT) 'Ry, (4.76)
e forp=0top=k—1,do
LP(x) := KP(x) — ¥ (x)(BBT)"Y(ABT + BAT) — LP?(x)(BBT) "t AAT, (4.77)
and

Li(x) = Kf(x) — LF2(x)(BBT)~tAAT, (4.78)

Since L? | (x) = L?, ,(x) = 0, thus K?_,(x) = ~»_,(x), Kl,(x) = 7 (x). Also because L? =

L' =0, the equalities (4.77) and (4.78) imply
L)=K) Li=K{ 0<k<n. (4.79)

To study the approximation properties of the basis functions, we use a simplified Taylor expansion
for the solutions u.(x) to the second order system (4.73).
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Proposition 4.54 (A simplification of the Taylor expansion). Assume u.(x) € C"t1(Q) is
solution to (4.73). Then, the double sum Taylor expansion in (4.75) can be recast as a simple
sum with only zero or first order derivatives with respect to y

ue(x) = Ly(x)ue(x0) + Z [Lk )Oku,(x0) + Lk Lix )8’;_18yue(x0)}

n+1 (480)

+ Zynﬂ )OO Py, (x,), Vx € Q,

where xs = (z5,ys)?, xs = (1 — 8)wg + sx and ys = (1 — 8)yo + sy, s € [0,1].

The proof of Proposition 4.54 is actually very similar to the proof of Proposition 4.37 which
was given in the context of a second order equation. The idea is the same: use the equality
(4.74) to recursively eliminate the derivatives of y. We recommend the reader to understand
the Proposition 4.37 first since Proposition 4.54 presents no additional difficulties. The proof is
postponed in Appendix B.

4-3.2 Approximation properties of the basis functions

Let v;(x) € R™<, i € N, be solutions to the second order system (4.73). To study their approxi-
mation properties, the simplify Taylor expansion (4.80) suggests to study the matrix Slk defines
as

v1(x0) va(X0) e Vim, (Xo0)
92 v1(Xo) Oxva(x0) -+ OxVim.(X0)
dyv1(x0) Oyva(x0) -+ OyVim.(Xo)
Oz V1 (XO) OraV2 (XO) T aﬂmvlme (XO) m.xlm
SEe0) = | B.0,vi(x0)  Bebyvalxo) o Dy, (xo) | ERITITI (481)
dvi(x0) Pva(xo) o+ OV, (x0)
Oty vi(xe) O Oyva(xo) - 95 '0yVim, (%0

where xg € R?, k,l € N. Using the matrix Slk one can study the approximation properties of the
functions v;.

Proposition 4.55 (Approximation properties of the basis functions). Let vi(x), va(x), ..., Vim, (X) €

WL () and u.(x) € WETL2(Q) be solutions to the second order system (4.73). Assume
rank SF(xg) > (2k + 1)me. (4.82)

Then there exists real numbers a = (a1, ag, ..., aym,)? € R and a constant C' > 0 such that

Ime
H Zazvl —u, L) < Chk+1||ue]|wk+1,oo(m, h = diam(£2).
and l
HV(ZaiVZ u ) ’L oy = < Ch* e llpyrr100 () h = diam(9Q2).
i=1
Proof. Let

T
b= (uT(XO), dzuf (x0), yul (xq), ..., Ohul (xo), aj;—layueT(xo)) e RGFFIme — (4.83)
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Because the solutions v;(x), 1 < i <[ and u.(x) are in W*T1°(Q), one can write them under
the form (4.80). Consider the solution of the linear system

SF(xg)a=b, aecRM, (4.84)

which exists because rank(SF(xg)) > (2k + 1)m.. The functions v;(x) and u.(x) both satisfy
the expansion (4.80). It implies

Ime k+1 Ime
Z a;vi(x) — ue(x Z’ka 8p8k+1 Pyv(xs Z a;vi(X) — Ue(X). (4.85)
i=1

Since ¥ 41 is a difference between x and xq to the power k + 1, one immediately gets

Ime

Hg a;Vi — Ue

Lo (@) < CH ™ vllwen oy -

Additionally, the triangular inequality yields [[v|[yr11,.00(q,) < SO @) (Vi lypra, () Hlluellpriioeq))
where the coefficients a; are bounded by |[ue/|yyri1, oo(q) @S & consequence of (4. 84) with the
definitions (4.81)-(4.83). Moreover, the basis functions v;(x) are bounded by a constant. So
HVHW;CH,OO(QJ_) <C ||ueHW,,L+1,OO(Qj) up to the redefinition of the constant and one gets the first
inequality. The second inequality follows from (4.85). This completes the proof. |

If the previous proposition study the approximation properties of the basis functions, it does
not say anything about the linear independence of these functions. One can study the linear
independence of the basis functions thanks to the matrix S§k+1 € REE+1)mex(2k+1)me

Proposition 4.56 (Linear independence of the basis functions). Consider (2k + 1)me basis
functions v; solutions to the second order system (4.73) and assume the matriz S§k+1 associated
1s invertible. Then the solutions v; are linearly independent.

Proof. Assume
(2k+1)me

Z a;V; = 0,

=1

for a; € R, i = 1,...,(2k + 1)m,. The vector 0 is also a solution to the second order system
(4.73). Therefore, one can proceed as in the proof of the previous proposition with u, = 0. In
particular, the equality (4.84) reads

S5.41(%0)a = 0.

From the invertibility of the matrix Sé“k 41, one finds a = 0 and therefore the basis functions v;
are linearly independent. |

In the following, we focus on the criterion (4.82). Note however that the invertibility of the
matrix S§k 41 with 2k + 1 directions is proved in Propositions 4.58 and 4.69 for the particular
case N = 1. See also the Corollaries 4.68 and 4.71 for the general case.
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4-3.2.1 Verification of the criterion (4.82) when o, >0

In this section we study the approximation properties of the exponential solutions (4.31). We
define Z;(x) € R™e*™e the block matrix made of the m, first components of the functions (4.31).
That is each column of the matrix Z; reads

(Zi(x)> = Vag,weNiX) g RMe =1 m,, (4.86)
.7]

where the notation (Z;).; denotes the column j of the matrix Z;. The other notations come
from (4.31): the vectors w; € R™« are the eigenvectors of the matrix (AAT) 'Ry, \; = L /oypi;
(11; are the eigenvalues of the matrix (AAT)"1Ry) and Vay, € R™e*™e is the rotation matrix for
the even moments (4.21)-(4.22). In the following we consider a matrix S% made of the blocks Z;.

For simplicity, we consider centered exponentials in xg and drop the dependence of S}C in xg.

In the following lemma we consider [ blocks Z; which is equivalent to consider the exponential
solutions (4.31) with [ directions. Of course we assume

91‘759]‘, fOI“Z;léj

Lemma 4.57. Consider the matriz SllC obtained with the columns of Z; (4.86). With [ blocks Z;,
the matriz S, (4.81) reads

H, H, e H,
cos01H1D cosO,HoD cos 6, H; D
sin 91H1D sin 92H2D ce sin QZHID
. cos? 0, H, D? cos? 0y Hy D? e cos? 0, H;D?
SI = | cosb sin 6 H,D? cosbysinfpHyD* -+ cosbsingH,D* |- (4.87)
cos® 6, Hy D* cos” 0 Hy DF . e cos® 6, H, D"
cos* 10, sinf HyD*  cosF=10ysinyHoDF -+ cosk—1 6, sin 6, H; DF
where
H; = Vag,H € R™e*™e D = diag(Ai, ..., A, ) € R, (4.88)

and H € R™*™e js the matriz of the eigenvectors of (AAT) 1 R;.

Proof. This is equivalent to consider the matrix S! (4.81) with

V(i—D)me+j(X) = (Zi(x)).j, i=1,..,01, j=1,...,me.

One concludes with the definition of the column (Zi (x)) in (4.86). [ |

To satisfy Proposition 4.55, one must have rank SF(xg) > (2k + 1)m, which implies [ > 2k +
1. Ideally, one would like to prove rank S§k+1 = (2k + 1)m,, i.e. that the matrix S§k+1 €
R(Zk+Dmex(2k+1)me s inyertible. However this may be difficult to show (see Remark 4.67) and
we will instead focus on the matrix Sg(k-s—N)—l'

Proposition 4.58 (Criterion (4.82) when o, > 0). The matriz (4.87) with | = 2(k+ N) —1
satisfies rank Sé“(k+N)_1 = (2k + 1)me,.
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The proof of Proposition 4.58 requires to study roots of polynomials on circles. To do so, we
introduce some notations and give some technical results.

Technical material

e In the following items [, k € N. The space of polynomials of degree k with value in R! is

Pllz,y] == {q fa(zy) =Y miga'y’, forallz,y, ni;€ Rl}
i<k
by convention Py[z,y] := Pz, y).
e The space of polynomial matrices of degree k with value in R is
P, y] = {L / L= (lij)ij<i € PY'a,yl, L(z,y) € RM}-
e The space of polynomials of total degree k and affine in y with value in R’ is

Pila,y] = {g / g € Pllz,y), Olg = 0}-

By convention B[z, y] := P}z, y].

e The space of polynomial matrices of degree k and affine in y with value in R/ is
Py = {L ) L= (ig)ije € By, Liz,y) e R¥Y.
One important lemma about the space Py[z,y] is the following.

Lemma 4.59 (Roots on circle in Pg[z,y]). Assume X > 0 and g € Pylx,y] admits 2k + 1 roots
on the circle of radius A\. One has
g=0.

Proof. They are several ways to show that a non zero polynomial in P [z, y] has a limited number
of roots on a circle. In the following we use the Bézout’s theorem. The equation for the circle of
radius A reads

2 4y? = A2 =0. (4.89)

The circle equation (4.89) is absolutely irreducible (if it wasn’t, it would be the union of two
lines which is impossible). Therefore, the only way for (4.89) and the equation g = 0 to admit
a common component is to write g under the form g(x,y) = (2? + y?> — A\2)g(z,y) which is
impossible because g € Pi[z, y].

Therefore, the circle equation (4.89) and the equation g = 0 with g € Pi[z,y] are projective
curves of degrees 2 and k respectively with no common components. From the Bézout’s theorem
(see [CLOO0S, Page 430] for example), they admit at most 2k common roots. This completes the
proof. |

Now we can introduce the following notations
e The circle of radius A; > 0 is
Gi={(@y) [ 2+ = N}
e For g,q € P, we denote the equality of two polynomials in ; as

9=cq < gx,y)—plx,y)=0, forall (z,y)e .
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The following lemma will be useful when considering polynomials in Pj.

Lemma 4.60. Assume g € Py. There exists a unique ¢ € Py such that
9g=c¢ q-

Proof. First we prove the existence. Indeed, for g € P, one can use the equality 3% = )\% — 22 to
remove the term depending on y with a power strictly greater than one. One gets a polynomial
q in P, which satisfy g =, q.

Now we prove the uniqueness. Assume qi,¢2 € P, and g1 =¢, ¢2. Then the polynomial ¢; — ¢o
admits an infinite number of roots on the circle ;. From Lemma 4.59 one deduces g1 — g2 = 0.
The proof is complete. |

e Assume g € Pz, y]. We define the function h¢, as

hCi Pk[$7y] _>£Pk[$7y]a hCZ(g) =¢ 9

From Lemma 4.60 The function h¢, is well defined.

Moreover h¢,(ag1+892) =¢; ahc;(91)+Bhc; (92) with he, (agi+Bg2), ahe, (91)+Bhe,(g2) €
Pi. One concludes using Lemma 4.60 that the function h, is linear

hCi(agl + 692) = ahCi(gl) + 6hC¢(g2)7 g1,92 € Pk[xay]v CY,,B eR.

e Assume g = (g1, ..., gm.)” € P;"*[z,y]. We define the function h, (with no index) as

T
he Ple.yl — eyl he(®) = (ha(91), e, (9m.)) -

The function h, is also linear
he(agr + Bg2) = ahe(g1) + Bhe(g2), 81,82 € B[z, y], o, BER.
Example 4.61. We give a practical example of the functions h., and he. Let
g1 =1+22+y+3y* € Py, ],
g2 =2 +y° +y* € Pifa,y).
Using the equality y? = )\5 — 22 for j = 1,2, one eliminates 32, y* and gets
he(91) = 1+ 30 + 22 — 32% + y € Py[z,y),
he(92) = A3 + A3 — 20327 + 2 € Bz, y).

Now assume m, = 2 and consider the following polynomial
91 1422+ y + 3y° 2
= = € Pilz,yl.
g (92) ( 22 + y? + 17,y

One has

. hCl(gl) - 1+3)\%+2x—3x2+y 2
hC(g) - <hC2(92) - )\% + )\421 _ 2)\ng —|—£U4 € fP4 [:‘Cay]

e Assume r = /22 4+ y? € RT, 6 € [0,27[. The matrix Ly(r,6) written in Polar coordinate
is defined as
Ly(r,0) = TN HTVL € Rmexme, (4.90)
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where H € R™e*™e is the matrix of the eigenvectors of (AAT) 1 R;.

Example 4.62. For the P3; model the matrix V54 reads

1 0 0 0

Vo — 0 cos20 0 —sin26

“1o o 1 o |’
0 sin20 0 cos26
and using (z,y) = (rcosf,rsinf) one has
?+y2 0 0 0
0 2% —y? 0 —2z
2 _ ) ) 4x4
r°Vog = 0 0 2?2 0 € Pz, y).
0 2xy 0 x? — 9

In particular, the matrix Ly given in (4.90) is a polynomial matrix of degree 2 for the case
N = 3. This result can be generalize for the Py model as stated by the following lemma. ®

Lemma 4.63. The coefficients of the matriz Ly are polynomials of degree N — 1, that is

Ly € Pyei™ez,y].

Proof. Indeed the unitary matrix Vag in (4.21) depends only on even angles 216 with 21 < N — 1.
Therefore, the coefficients of the matrix £y _1 read

rN"leos 200 = PN 17202 05210 or N lsin 200 = rV 12020 g5 216,
Since N is odd, N — 1 — 2[ is even and therefore

PN-1-20 (22 + y2)(N7172l)/2

)

is a polynomial of degree N — 1 — 2[. Moreover developing cos 216, sin 216 in terms of cosf, sin 6
and using x = rcosf, y = rsinf, one deduces that 72 cos 216 and 7% sin21f are polynomials
of degree 2I. Note that the coefficients of the polynomials 7V =172t 72l cos216 and % sin 216
do not depend on 6. Therefore, each coefficient of the matrix Ly is a polynomial of degree
N —1—-20+ 2l =N —1 and the coefficients of this polynomial do not depend on 6. |

The following lemma will be useful.

Lemma 4.64. Assume q € Pj[x,y], g € P"[x,y]. Then one has
helag) = he(Qhe(e)).

where Q = diag (h¢, (q), -, he,,, (9)) € P2,y

Proof. Consider the vectors r := ho(qg) € fP,?j:j, s = hC(QhC(g)> € fl’,?j:j. We denote r =

(r1y s rm ), 8 = (51,0, 8m.)7, € = (91,..,9m.)". From the definition of r and s one gets
ri = he(q9i), si = he, <hC,-(Q)hCi (gl)) From the definition of h¢, one finds 7, =¢, s, 1 <@ < me.
Since r;,5; € Py, one concludes 7; = s; with Lemma 4.60. Therefore r = s and the proof is
complete. |
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In the next lemma, we study the particular structure of the polynomial h(Lyg) for g €
P, [x,y]. More precisely, we study the decomposition of ho(Lyg) in two terms: a term which
depends only on g(x,y) and a term which depends on zg(z,y).

Lemma 4.65. Assume g € P"*[x,y]. One has the equality

he(Ln(@,ygle,y)) = H (DN Mg(,y) + he @V (2. y)g(@.y)) ), for allz.y,

where M € R™e*™Me 4s o diagonal matriz with each diagonal element equal to 1 or —1, D is
defined in (4.88) and V € Py1™¢[z,y] is a polynomial matriz.

Proof. We recall the formulas
cos 2k = R(cos O + isin )%, sin 2k0 = I(cos O + isin §)?F.
Since N is odd one deduces
Nl eos 2k0 = (= 1)FyN T+ awi (z,y), Y lsin2k0 = zws(z, y),

where wy,we € Py_1[x,y|. From (4.21) the matrix V59 has only coefficients of the form cos 2k6
on its diagonal and coefficients of the form or sin 2k6 on its anti diagonal. Therefore

N Wog = MyN Tt 4 2W (2, y),

where M € R™e*™e ig a diagonal matrix with each diagonal element equal to 1 or —1 and
W e Pgei™[x,y] is a polynomial matrix. One deduces that the matrix Ly (4.90) can be
written

Ly(z,y)=HT (MyN_1 + xW(:c,y)), for all x,y.

Therefore, since the function h, is linear one gets
he(Ln(e ye,y)) = B Mhe(yVg(z.y)) + H he(:W (2, 9)g(e,y) ), for all z,y.
(4.91)

We are interested in the terms which depend on z only through the polynomial g(x, y). Therefore,
we focus on the first term e (y" ~'g(z,y)). Using Lemma 4.64 one has

hCl (yN_l) O

hc(yN’lg(x,y)) = hc( hc(g(a?yy))) (4.92)

0 | hewm, (N1

N—-1

With the equality y¥ ! = (A7 —2?)"2 , g € 2" and the linearity of k¢, one finds

hCi(yN_l) = >‘£Vil + hCi <:L'{Dz($a y)>’ hC(g) =8, (4'93)

where w; € Pn_1[z,y] are polynomials. Therefore, using (4.93) in (4.92) and the linearity of h,
one gets

he (nylg(az, y)) = DNflg(x, y)+ he (Q:W(x, y)g(z, y)), for all z,y. (4.94)

where D = diag(\q, ..., Am,) and W € Pyei™e [z, y] is a polynomial matrix. Using (4.94) in
(4.91) to replace the first term yields

he(L(z,y)g(e.y)) = BT (MDY 'g(z,y) + he(aV (2. y)g(e,y) ), for all 2.y,

where V=W + W € Pyei™e [z, y]. The proof is complete. [ ]
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The idea behind Lemma 4.65 is that the polynomial h-(Lyg) can be written as a term which
depends only on g(z,y) and a term which depends on zg(z,y). That is

he(Lu(w,y)g(z.y)) = Kg(@.y) + he(aV (@, y)g(.9) )

with a matrix K invertible. This particular structure combines with the invertibility of the
matrix K play an important role in the following Lemma.

Lemma 4.66. Assume k,j € N, g€ 9"[x,y], V € ijgxme [z,y] and the matriz K € R™Me*Me
1s tnvertible. Let

q(z,y) = Kg(x,y) + h¢ (arV(a;, y)g(x,y)), for all z,y. (4.95)

Then one has
q=0 & g=0.

Proof. The case g =0 = q = 0 is straightforward.

We prove the other case by contradiction. If V' = 0 one immediately deduces the result so we
take V' # 0. Assume q = 0 and g # 0. We write g(z,y) as a polynomial in x with coefficients

depending on y
k

g(zr,y) = Zai(y)azi, for all z,y. (4.96)
=0

We write h, (:UV(:B, y)g(z, y)) in the same way

k
he(aV (@ yg@,y) = Y Bily)a’, forallz,y. (4.97)
1=0

Since g # 0 there exists a,b € N such that

a = min ¢, b= mini.
a;7#0 Bi#0
For a given coefficient, the function he @ P*[z,y] — P**[z,y] do not decrease the power in x
(it can only decrease the power in y). Therefore, using the definition of the coefficients a; and
Bi in (4.96) and (4.97) one deduces
b>a.

Now we consider the coefficients associated only with the power 2 in (4.95). Using q = 0 one
gets
Ko, =0.

Since the matrix K is invertible this is a contradiction with the assumption a, # 0. The proof
is complete. |

Proof of Proposition 4.58.

Proof of Proposition 4.58. To denote the transpose matrix of Slk, we will use the notation Slk’T =
(SF)T. The goal is to show that

dim(ker Sy vy 1) =0.
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Because of the rank-nullity theorem this implies rankS 5 = (2k + 1)m, and one will

l<:+N)
conclude

rank Sg(k-s—N)—l = (2k + 1)m,

From the definition (4.87) of the matrix SF one deduces that the matrix Sk, € Rimex(Zk+1)me

2(k:+N) 1
reads
kT
So(ktN)—1
HT cos 0y DHY e sin @ cos" ' 9, DFHT
HT cos 0o DHY e sin 63 cost =1 Gy DF HT
T HHT
Hygyny—1 €080a0einy)—1 DHyp jy—y -+ sinogeyn)— 1 cost™ 92(k+N) | D H(k+N) 1
Let

T ..T

_ T T 2k+1
u= (u17u27"'?u2k+1) ER( ym

°, uiERme,

and assume

ue kerS (k+N) 1-
The equality S (k Ny U= 0 gives
k k—1
Z cos' GiDlHiugl_H + sin 6; Z cos' HiDl'HHZ-uZ(H_l) =0,
=0 =0

fori=1,...,2(k + N) — 1. Multiplying by DV~ one gets

k—1
Zcos 0; DN Hiug g + Zsm@ cos! 6; D' H; Up(41) = 0, (4.98)
=0 =0

fori=1,...,2(k+ N) — 1. The equalities (4.98) can be interpreted as the equations of the roots
of some polynomials. Indeed let

g € P [x,yl,
e = (4.99)
g(z,y) = Z$lu2l+1 =+ nyluwH), for all z, vy,
1=0 1=0

where uy, ..., g1 € R™e satisfy (4.98). We define the polynomial vector f as
f:=Lnge Py lv,yl, (4.100)

where Ly is defined in (4.90) and we recall that from Lemma 4.63 one has Ly € Py ™[z, y]. We
denote f = (f1, ..., fm.)” and claim that the equations (4.98) give some roots of the components
fi. Consider the point (z,y) = (Aj cos6;, Ajsiné;) one has

k-1
f(z,y) —Zw Ly(z,y)ugier +y Y 2 Ly (z,y)usijp),
1=0 1=0

k
f(Xjcosb;, \jsinb;) = Z )\é cos' 0; L (N cos b, \jsin0;)ug 41
1=0
k—1
+ Z )\;H sin 6; cos' 0; L (\j cos b;, \j sin Gi)uz(lﬂ),
1=0
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Figure 4.4 — Representation of the roots of the components f;. Here we consider N = 3, k =1

and directions with angles 277rj, 7=0,...,6.

From (4.88) one has H! = H TV2£i and therefore

LN(AJ’ cos 0;, )\j sin (91) = /\é-V_IHZ-T. (4.101)

Using (4.101) to reformulate the matrix Ly (A; cos;, Ajsinf;) one gets

k k—1
f()\j COS 01‘, )‘j sin 91) = Z COSZ Qi)\é%NilHiTUQH_l -+ Z sin 91 COSl ei)\é'JrNHiTu%_H'
=0 =0

Using the definition of the matrix D in (4.88), one deduces that f;(\;cos6;, Ajsinf;) and the
component j on the left hand side of (4.98) coincident. Therefore

fj()\j COS@Z‘,)\J' Sin@i) =0, 1<:1<L 2(/6'4- N) -1, 1 <5 < me. (4.102)

The equality (4.102) can be reformulate as follow: each component f; of the polynomial vector
f admits 2(k + N) — 1 distinct roots on the circle of radius A; see Figure 4.4 for an example in
the case N = 3. We denote

fo:=he(f) € By [z, y)
From (4.102) each component f¢; € Pyyn_1[x,y| of fr admits 2k + N — 1 roots on the circle of
radius Aj. Using Lemma 4.59 one deduces

fr=0.
Now we want to prove that it implies g = 0. From Lemma 4.65 one has
fo(x,y) = HT (MDN_lg(m, y) + hc(mV(x, y)g(z, y))), for all x,y.
Since the matrix H” is invertible from Proposition 4.22, one deduces

MDN g, ) + he (2V (2,9)g(x,5)) =0, for all z,y.
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Using Lemma 4.66 with the invertibility of the matrix M DY ~! one finally finds

g=0.
Since the coefficients of the polynomial g are made of the components u, one gets u = 0 and
therefore dim (ker Sg(ﬂr N)il) = 0. This completes the proof. [ |

Remark 4.67 (Invertibility of the matrix Sé“k +1)- The beginning of the proof of Proposition 4.58
is also true when studying the matrix Sgk 41- However, with the matrix S§k 41 €ach component
fi will only have 2k + 1 roots on the circle of radius \;. Therefore, one can not used (at least
directly) the Bézout’s theorem. Some more advanced tools in algebraic geometry may be needed
to prove that the matrix Sgk 41 18, or is not, invertible [CLOOS]. o

Given 2k + 1 directions and the solutions (4.31) it is therefore not clear how to prove the invert-
ibility of the matrix Sgk 41 (4.87). However, we can give a weaker result.

Corollary 4.68. Assume o, > 0 and consider the solutions (4.31) with 2(k+ N) — 1 directions
for a total of (2(k + N) — 1)m, solutions. Among these (2(k + N) — 1)m, functions there exists
(2k + 1)m, functions such that the matriz S§k+1 (4.81) is invertible.

Proof. The proof is straightforward. From Proposition 4.58 one has rank Sé“(k FN)-1 = (2k+1)m.
and therefore, one can extract (2k + 1)m, columns from the matrix Sg(k +N)—1 Such that the

associated matrix S§k+1 satisfies rank S§k+1 = (2k + 1)m,. Since S§k+1 € RGk+l)mex(2kt+1)me
this matrix is invertible. The proof is complete. |

The main defect of Corollary 4.68 is that we do not know which basis functions give the invert-
ibility of the matrix Sé“k 41

4-3.2.2 Verification of the criterion (4.82) when o, =0

In this section, we study the approximation properties of the exponential solutions (4.31) com-
bined with the polynomial solutions constructed in Section 4-2.3 when o, = 0. From Proposition
4.21, there exists a unique \; such that A\; — 0 when o, — 0. For convenience, we take j = 1 and
therefore one has Ay — 0 when o, — 0. Since we show in Section 4-2.3 that the degenerative ex-
ponentials tend toward a family of polynomials when o, — 0, we simply replace the degenerative
exponentials with the polynomial solutions. Therefore we now consider the following matrices

Z;
(Zi(x)> = pilx) € R™, (Zi(x)> = Vo weN@X) e RMe =2 m,,  (4.103)
o, L2V

with \; # 0 and p;(x) € R™¢ represents the m, first components of the polynomials given by
the Theorem 4.34 of Section 4-2.3. The matrix Slk of the non degenerative exponential solutions
with [ directions and the first [ polynomial solutions is

P1(%o0) Hy e Pi(X0) H
0:P1(X0) cos H1D e 0:P1(x0) cos O H, D
Oyp1(x0) sin 61 H1D e Oypi(x0) sin 0, H; D
. 02p1(x0) cos? 01 H, D? e 02pi(x0) cos? 0, H;D?
Sy (x0) == 0.0yP1(X0) cosOysin0 HiD? -+ 0,0,pi(x0) cos 0; sin 6, H; D?
Okp1(x0) cos® 6, H, D* e ok py(x0) cos® 6, H,DF+N
OF=10,p1(x0) cos*1Oysin0 HD* .- 0k"19,p;(x0) cos* 10, sin6 H,D*

(4.104)
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Since we remove the degenerative exponentials (that is the eigenvalue which degenerate to zero)
in the definitions of the matrices D and H;, one has

D = diag()\g, ceey /\me) c R(mEfl)X(mefl)’
and

hT
H= <J) e Rmex(me=1), (4.105)

Where the matrix J € R™e~1Xme=1 ig the same matrix as in Definition 4.24. Therefore, the
vector h € R™e~! is simply the vector of the first component of the eigenvectors of the matrix
(AAT)~1 Ry associated with a non zero eigenvalue. We recall that Proposition 4.23 implies that
the matrix J is invertible. The matrices H; and Ly are defined in the same way as in (4.88) and
(4.90) respectively. Therefore

H; e Rmex(me=l) - f e PRe Xmelz, ).
The results given in the previous section holds when o, = 0.

Proposition 4.69 (Criterion (4.82) when o, = 0). The matriz (4.104) with | = 2(k+ N) — 1
satisfies rank Sg(k-l-N)—l = (2k + 1)m,

We will use the following lemma.

Lemma 4.70. We denote ¢;(x) the harmonic polynomials (4.50). For n > 1 one has

Daan(x) =1, 0y goa(x) = 0, 957 0yqon(x) =0, foralll €N,
and

9y 0ygant1(x) =1, 07 gani1(x) =0, 9 0yqanta(x) =0,  foralll € N.
Proof. One has (z +iy)" = >_0_ CR(i)" PaPy" P, thus
IR(x +iy)" =nl, ATHR@ +iy)" =0, YR +iy)" =0, forallleN,

and
IO, (x +iy)" = Cl(n— 1), MS(z+iy)" =0, 9T, (x+iy)" =0, foralllecN.

One concludes with the definition of the harmonic polynomials (4.50). [
We can now prove Proposition 4.69.

Proof of Proposition 4.69. We start by proceeding as in the proof of Proposition 4.58. The
k, ) k T .
matrix Sy S(k+N)— (52(k+N)—1) reads

Sy -1(%0) =

P (o) 0zp1 (x0) S 0y~ 0ypi (x0)
HT cos 0y DH{ e sin @y cos" ' 9, DFHT
P3 (o) 0zp3 (x0) S 0y~ 0ypj (%0)
HT cos 0o DHT e sin 0y cos" L 9o DF HT
T T k—1
pg(k+N)_1(X0) axpg(k+N)_1(X0) T o aypz(k+N) (XO)

1"-[2T(k+]\,)_1 60892(k+N),1DHg(k+N)_1 81n92(k+N) 1cos 02(k+N) 1D H(k+N)
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We assume

k,T
u € ker S2(k+N)71’

and use the following notations

— (T T T \T 2k+1)m
u=(uy,uy,..., Uy ) e RZk+H)me

4.106
u; = ’UZ',WZ‘)T € Rme, v; ER, w; € Rmeil. ( )
We define the matrix §; € R(me=DEE+N)=1)x(2k+1)me 59
HT cos 0y DH{ e sin 0 cos* 1 9y DFHT
HT cosa DHT e sin 0 cos* 1 9o DK HT
S1 = : .
T T : k=1 g kT
Hygoiny—1 €080 ny—1DHy ny oy -+ sinbageyn)—q cos O+ n) 1 D Hy ey N)—1

and the matrix S, € R2KEHN)—1x(2k+1)me o9

(%0) d:p1 (x0) o 9510, p] (x0)
(x0) d:p3 (x0) pee 95~ 10,p3 (%o)

p

T'(x
T
Py (X

P3(esn)—1(%0)  OePhiny—1(X0) -+ O OyPyp s )1 (X0)

Note that

SSEZ+N),1U =0 = Su=0 and Su=0.

As a first step, we study the equality S;u = 0 and proceed as in the proof of Proposition 4.58.
We define the polynomial vector g as

g € B[z, y],
k k—1
g(z,y) = Z$lu2l+1 + yleug(l_,_l), for all z,y,
=0 =0

and the polynomial vector f as
f:=Lyge Pﬁ'ﬁil[w,y].

As in the proof of Proposition 4.58, one can show that each component f; of the polynomial
vector f admits 2(k + N) — 1 distinct roots on the circle of radius Aj;1. Therefore denoting

fo = he(f) € Byt [, y).

One concludes using Lemma 4.59 that
fr=0.

And with the same reasoning as in the proof of Proposition 4.58 one can write
fo(z,y) =H" (MDN‘lg(w,y) + he(2V(z,y)g(z, y))) =0, forallz,y. (4.107)
This is where the similarities with the previous proof end. Indeed since HT € R™e~1X™Me gpe

can not invert the matrix HZ as before.

Now, we use the equality Sou = 0. We recall that the harmonic polynomial g; is the first
component of the polynomial vector p; and from Corollary 4.49 the other components have a
degree strictly less than ¢;. Therefore using Lemma 4.70 one can write

I'pan(x) = (1,0,...,0)7, 9 Hpy, (x) = (0,...,0)T, 979, pan(x) = (0, ...,0)T,
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for all [ € N and
10,201 (%) = (1,0, 07, 02y (%) = (0,00, 9 0,poni1(x) = (0,...,0)7,
for all [ € N. This implies that the matrix So can be written
(1,0,...,0)" 0
S ) . : (4.108)

where (1,0, ...,0)T € R™«.

To show u = 0 we proceed by recurrence. First we show u; = 0. We recall u; := (vy, Wl)T and
proceed in two steps

e Since Sou = 0 one immediately deduces from the particular structure (4.108) of the matrix
So that
V1 = 0.

e Now we consider the coefficients which do not depend on z in (4.107). One gets
HTMDN-! (ul + yug) =0, forallz,y.
In particular, one has
H'MDY 'y, = 0.
Since v; = 0 one finds using the particular structure (4.105) of the matrix H
JTMDN"'wy = 0.

Since the matrix J is invertible, the matrix J7 D2M is also invertible and one deduces w; = 0.
One finds u; = 0.

Now assume there exists j > 2 such that
u; =0, foralli<j.

Our goal is to show that u; = 0. We proceed in two steps

e Since u; = 0 for all ¢ < j and using the particular structure (4.108) of the matrix S, the
equality Sou = 0 yields
v = 0.

e We denote j =2n+ 1 if j is odd and j = 2(n + 1) if j is even. Since u; = 0 for all i < j,
all the coefficients of g(x,¥) associated with a power * with k < n are equals to zero.
Therefore using the same idea as in the proof of Lemma 4.66, the equality (4.107) implies

H'MDN 'ujz™ =0, forallz,y, ifj=2n+1, (4.109)
or
HTMDN_lujy:B” =0, foralzy, ifj=2(n+1), (4.110)

We can now conclude. Using (4.109)-(4.110) and the decomposition (4.105) of the matrix H
with v; = 0 gives
JTMDN'w; = 0.

Since the matrix J is invertible, the matrix J7 M DY~ is also invertible and one deduces w; = 0.
Finally one gets u; = 0. Repeating recursively this process from j = 2 to j = 2(k+ N) —1 yields
u = 0. One concludes as in the proof of Proposition 4.58. The proof is complete. |
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We can give a result similar to Corollary 4.68.

Corollary 4.71. Consider the solutions (4.31) with 2(k+N)—1 directions where the degenerative
exponentials have been replaced by the polynomial solutions from Theorem /.34 for a total of
(2(k + N) — 1)me solutions. Among these (2(k + N) — 1)m. functions there exists (2k + 1)m.
functions such that the matrix S§k+1 (4.81) is invertible.

Proof. The proof is the same as in Corollary 4.68. |

Again, the main defect of this corollary is that we do not know which basis functions give the
invertibility of the matrix Sgk i1

4-3.3 High order convergence for the stationary case

The main results of this section are the Theorem 4.75 which study the convergence of the TDG
method applied to the Py model when o, > 0 and the Theorem 4.80 for the P; model when
o, = 0.

We consider a series of mesh 7", n € N. For a polygonal cell Q7 € T, we define ki the size
of its larger edge and p} the radius of the larger inner circle include in £2;. We assume that the
sequence of meshes is refined, that is
h" :=maxh] — 0,
7 n—oo
and the mesh is quasi uniform, that is there exists a constant C' € R™ such that
n
J
max — < C. 4.111
gn Py ( )
To keep the notations simple we remove the index n in the following. We also assume in the rest
of this section that the coefficients o, and o4 are bounded: there exists C' € RT such that

0, <C, o0s<C,

and we recall that
e=1 c=1
For convenience k € N is fixed. The following proposition generalizes on the variable u the

estimates given in Proposition 4.55 (which were given for the variable u.) with a loss of one
degree of convergence.

Proposition 4.72. Letk € N, Q; € T, xo € Q; andu = (ul ,ul)T € WkHLoo(Q;) be a solution
to the stationary Py model. Consider the basis functions (4.31) with 2(k + N) —1 directions for
a total of [2(k+ N) — 1Jme functions (if o, = 0 the degenerative exponentials are replaced by the
polynomial solutions from Theorem 4.34). Among these [2(k + N) — 1lm, functions there exists
(2k + 1)me solutions denoted V1,...,V(op41ym, € WhtLeo(Q) and a = (al,...,a(2k+1)me)T €
REk+H)me sych that
(2k+1)me
S ] 2

and
YN,
k—1
[P(30 avi =), < Wl

where C'is a constant which does not depend on €;.
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Proof. We denote
(2k+1)me

VARS E a;v; —u,

i=1

and use the decomposition z = (z!,z1)”. By definition z is solution to the Py model. Corollary

4.68 if o, > 0, Corollary 4.71 if 0, = 0 combined with Proposition 4.55 give an error estimate in
hE+L for z,. Using Proposition 4.51 one can control z with z., 9,2z, and 0yz.. One deduces the
first inequality and the second inequality immediately follows. The proof is complete. |

In the following we consider the functions vy, ..., V(og41)m, from Proposition 4.72 as basis func-
tions in all the cells and denote

Vi, := Span {Vl, - v(2k+1)me},

Note that the Proposition 4.56 combined with Corollaries 4.68-4.71 give the linear independence
of the functions v;. We can now give an approximation result in terms of the || - || pg+ norm.

Proposition 4.73. Under the assumptions of Proposition 4.72, there exists vy, € Vi, such that
I = villpg- < CR* 2 |[ullyre oo gy,
with h = maxq. eq, hj, hj = diam(§2;) and C a constant independent of h.
Proof. From Proposition 4.72 one deduces that there exist vj, € V}, such that V(;
2 2421112
lu—vilBag,) < CH 2l e )
2 2k (]441(2
[(u— Vh)’l,ﬂj < Chj HunkH,oo(Qj)a
therefore

1
1w = Vil g2y (510 = Vall 2oy + 100 = vidlie, ) < CRF* i, ¥
J

Summing over all €); and using that for a regular mesh of size h, the total number of elements
is bounded by C/h? one has

1 —
Dl = vallzzay (-1 = villagay) + 1 = valig, ) < CF e o)
- J
J

One concludes using Proposition 2.16. |

Combining the previous proposition with the results of Section 2-3 one can now give an estimation
of the error in DG norm.

Proposition 4.74. Consider the TDG method (2.15) under the assumptions of Proposition 4.72.
One has
lu = wnlpe < CHF12[lu]lyprsr g,

with h = maxq, cq, hj, h;j = diam(8;), where uy, stands for the solution to the TDG method.

Proof. We use Proposition 4.73 and conclude with the quasi-optimality result from Proposition
2.12. -

One can now easily study the convergence in quadratic norm.
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4-3.3.1 The Py model when o, >0

Theorem 4.75 (Convergence of the TDG method for the Py model). Assume o, > 0, the
hypothesis of Proposition 4.7/ are satisfied and consider 2(k + N) — 1 directions for a total of
(2(k + N) — 1)me functions. Among these (2(k + N) — 1)m, functions there exists (2k + 1)m,
basis functions such that

[u—upllr2(0) < Chkil/QHU-”WkHvOO(Q): (4.112)

with h = maxq,eq;, hj, hj = diam(§2;) and where uy, stands for the solution to the TDG method.

Proof. Since o, > 0, the matrix R is positive definite and one can give an L? lower bound of the
DG norm with Proposition 2.14. One concludes with Proposition 4.74. |

Remark 4.76. The Theorem 4.75 shows a remarkable property of the TDG method: the number
of additional basis functions to gain one order of convergence from k to k + 1 does not depend
on k. This is not the case for the standard DG method where the number of additional basis
functions increases with k.

For the P, model in particular, the Theorem 4.75 gives a convergence result with 2k-+1 directions.

Corollary 4.77. The TDG method applied to the stationary Py model with 2k + 1 directions
satisfies the estimation (4.112) of Theorem 4.75.

Ideally, one would like the same convergence estimate using 2k + 1 directions for the general Py
model. Since there are m. solutions per directions, such convergence result would use (2k+1)m,
functions.

Although Theorem 4.75 gives a convergence result with (2k + 1)m, basis functions, the main
issue is that such basis functions may not be known when N > 1. Indeed for N > 1, the Theorem
4.75 only assures that the basis functions which give the convergence of the TDG method can
be taken from 2(k + N) — 1 directions. We conjecture that the estimate (4.112) holds for N > 1
when considering 2k+1 directions. This is equivalent to prove that the matrix Sgk 41 is invertible,
see Remark 4.67. In the numerical tests, we will use 2k + 1 directions.

It is interesting to compare the convergence estimate given by Theorem 4.75 with the standard
convergence estimate obtained with the DG method. We compare the number of basis functions
needed to achieve a given fractional order for the TDG method (denoted prpg) and for the
general DG method (denoted ppa).

For the P; model, m. = 1 and one has (see Table 4.1)

1
prpc = 2(order + 1), ppg = g(order + 5)(order + g)

In particular the number of basis functions is the same to get order 1/2 and one always gets
PTDG < PDG -

order | 1/2 [ 3/2 | 5/2 | 7/2|9/2
prpG | 3 ) 7 9 11
poc | 3 9 | 18 | 30 | 45

Table 4.1 — P; model. Comparison of the number of basis functions needed to achieve a given
order for the TDG method (denoted prpg) and the DG method (denoted ppg).
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For the P3 model, m, = 4 and one has (see Table 4.2)

1 3
prpg = 8(order + 1), ppg = 5(order + 5)(order + 5)

Except for the order 1/2, one always get prpc < ppa-

order | 1/2 [ 3/25/2 [ 7/2]9/2
proG | 12 | 20 | 28 | 36 | 44
ppc | 10 | 30 | 60 | 100 | 150

Table 4.2 — P; model. Comparison of the number of basis functions needed to achieve a given
order for the TDG method (denoted prpg) and the DG method (denoted ppg).

4-3.3.2 The P, model when o, =0

For the P; model, one can derive a convergence estimate in L? norm of the TDG scheme for the
dominant scattering regime (o5 > 0, 0, = 0) with a loss of convergence of a half degree compare
to Theorem 4.75. The main difficulty when studying the convergence of the scheme with o, = 0
is that the matrix R is not strictly positive anymore which results in a loss of control on the first
variable u;. For the TDG scheme applied to the P, model, one can recover some control on wu
using the particular structure of the system and the fact that the TDG method uses solutions to
the equation as basis functions. We recall that, with e = ¢ = 1, the stationary two dimensional
P; model reads

\}g <OmuQ(x) + 8yu?,(x)> = —oqu(x),
\}g(?mul(x) = —opua(x), (4.113)
\}gaym(X) = —oyu3(x),

where u = (u1,u2,u3)” € R? is the unknown and we switch the axis  and y to recover the usual
notations. For a solution u = (uq,ug, U3)T to the P; model one deduces from the structure of
(4.113) the following inequalities

|0,u1(x)] < Clua(x)], [9yui(x)] < Cluz(x)], C = V3o (4.114)

These inequalities can be used to control w; with us and us. Additionally, we need the general-
ization of the Poincaré inequality to discontinuous functions.

Lemma 4.78. Assume w € H*(T},). One has

1
ol ey < € (100132 + 10y l3aiqy + 3 D D Mewllam,,) + D Iwlas,,) )
k j<k k

with h = maxq, cq, hi, by = diam(Sy,), where [w] denotes the jump of the function across a face
and where C is a constant independent of h.

Proof. We use the mesh quasi uniformity (4.111) and the proof given in [Bre03] (see also [Arn82]
for a weaker result). [ |

The following lemma give a control of the L? norm in term of the DG norm.
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Lemma 4.79. Assume w = (w1, ws,w3)’ € V(T;,) and 0, + o5 > 0. One has

Wl 2@ < ~llwl
2 e )
rxe) < =lwloe
with h = maxq, cq, hi, hi = diam(Qy) and where the constant C' is independent of h.
Proof. Using the definition of the DG norm (2.24) with o, + 05 > 0 one gets
[w2ll720) < Cliwllba,  llwslZ2q) < Clwlhe: (4.115)

It remains to show [Jw1l12(q) < %HWHDG'. For the P; model the matrix |M| reads

1 0 0
IM|=10 n2 ngn,|. (4.116)
0 ngny ni

Since w € V(T3,) and o, + 05 > 0, the L? generalization of the inequality (4.114) yields
||8xw1||%2(9) < C’ngH%Z(Q) and ||8yw1||%2(m = CngH%Q(Q), C # 0. Therefore, from the in-
equality (4.115), the definition (4.116) of the matrix |M| and the definition of the DG norm
(2.24) one deduces

10zt 32y + 1851130y + 3 S Mlwnd oy + S ot oy < Cliwlibe:
k i<k k

One concludes using V(7;,) € H'(7;,) and Lemma 4.78. [ |
We can now give a convergence result in L? norm when o, = 0.

Theorem 4.80 (Convergence in the general regime: o,+05 > 0). Assume o,+05 > 0. Consider
the stationary two dimensional P model with the assumptions of Proposition 4.7/ and 2k + 1
basis functions. One has the h-convergence estimate

[u— w2 < Chk_lHUHWkJrLoo(Q),

where u stands for the exact solution and uy, for the approximate solution calculated by the TDG
method.

Proof. The case o, > 0 is already treated in Theorem 4.75. To treat the remaining case o, = 0
one can combine Lemma 4.79 and Propositions 4.74. The guaranteed order of convergence is the
worst case, that is &k — 1. This completes the proof. |

Remark 4.81 (Case ¢ — 0T). It would be of course desirable to get uniform estimate in the
case € — 0. The Theorem 4.80 in particular could be very helpful since the cases € — 0% and
o4, — 0 are closely related. However dependence in € arises through the basis functions v; and
the solution u and this dependence must therefore be carefully studied when using the results
of the previous sections. Whereas it is possible to easily study this limit regime for the basis
functions v;, it is much harder for the solution u mostly because boundary layers may occur
depending on the boundary values. We note that initial boundary layers can also arise for time
dependent problems. These theoretical issues are left for future research. ®
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In this chapter, the application of the TDG method to the two dimensional P; and P3 models
is detailed. In particular, the results of Chapter 4 are used to give explicitly the basis functions
which can then be used for numerical applications. Additionally, two dimensional numerical
results are presented to illustrate some properties including the convergence of the method, its
ability to capture boundary layers and the asymptotic behavior of the scheme in the diffusive
regime.

5-1 General form of the Py model
From the first section of Chapter 4, we recall that the Py model can be written under the general
form (4.17)-(4.18), that is

(dmat + A0, + A26y> u(t,x) = —Ru(t,x), (5.1)

with u € R™. The matrices A; and Ay have the following block structure [Her16]

0 A mxm 0 B mxm
Al:c(AT 0>ERX s A2:C<BT O)ERX s (52)
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where A, B € R™e*™e are rectangular matrices and R is a diagonal matrix which might be

written under the form
_ Rl 0 mxm
R = < 0 R2> eR , (5.3)

where Ry € R™Me*™e R, € R™Me*™Mo gre diagonal matrices. Moreover we have introduced the
parameters
ceRT, eecR}.

The parameter ¢ is used to study the diffusive regime of the Py model since its first variable
admits a diffusion limit when € — 0. The parameter ¢ will be considered as a scaling constant.

5-2 The P, model

In this section, we derive stationary and time dependent solutions to the P; model. For the two
dimensional P; model, one has m = 3, m, = 1, m, = 2 and the matrices read

A:(% 0), B:(O %) Ry = 04, R2:<Cg i), (5.4)

where
£ Os
Op =0y :=€0q+ —.
€

Remark 5.1. To recover the usual notations used when studying the P, model, the axis x and
y have been switched compare to the P, model given in Chapter 4. The inversion of the axis
doesn’t change anything except that one now has to consider the transpose of the rotation matrix
Uy. Therefore, the new rotation matrix reads

N 1 0 0
Uy=Ul'=10 cosf —sinf|. (5.5)
0 sinf cos6

5-2.1 Special stationary solutions

We calculate stationary solutions to the P; model derived in Chapter 4. We start with the
exponential solutions when o, > 0.

Proposition 5.2 (Solutions to the P, model when o, > 0). Take dy = (cosf,sinf;)T € R2.
The following functions are solution to the P; model

_ \/07 L /3eoq0:dTx
Vi = (-ﬁdk e R (5.6)

where oy = €04 + %=

Proof. We use the Theorem 4.25. From the definition of the matrices A and R; (5.4) associated
with the P; model, one has (AAT)*IRl = 3e0,. This matrix has one eigenvalue p; = 3eo,
associated with the eigenvector wi = 1. Taking the notations from Theorem 4.25, one has
z1 = (1,—,/%% 0)T. Using the definition (5.5) of the rotation matrix Uy and multiplying the

Ot

solution by /o give the functions (5.6). The proof is complete. [ |
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Now, we give the polynomial solutions when o, = 0.

Proposition 5.3 (Polynomial solutions to the P; model when o, = 0). Assume o, = 0. We
denote qi(x), k € N, the scaled harmonic polynomials in two dimensions

1 1
n =1, qu=R((x—z0)+i(y—10))s orr1 = S((x—w0)+i(y—10))*, forl €N". (5.7)

{! k!

The following functions are solutions to the P model

%Qk
= e , 5.8
Vi (_\/quk> ( )

Proof. Let vi, = (v1, v, v3)T. The solutions to the P; model when o, = 0 are given by Theorem
4.34. More precisely, from Corollary 4.49, one gets that the first component vy is equal to the
harmonic polynomial g. Using the definition (5.4) of the matrices A, B and R associated with

the P; model one gets
c

V3 V3

Using oy = 2= completes the proof. |

aﬂ}l = —O0V2, (9y1}1 — —O0Vs3.

5-2.2 Time dependent solutions

We derive here some special time dependent solutions to the P; model. For other examples of time
dependent solutions which can be easily constructed or deduced from the stationary solutions
(5.6)-(5.7), see Section 4-2.4 of Chapter 4. In this section, the solutions that we consider are
product of time dependent polynomials and stationary exponentials.

Proposition 5.4 (Time dependent solutions when o, > 0). The following functions are solutions
to the two dimensional P; model

—2ce\/040¢ cos Oy, — \/3eo(e0q + 01)x — 20, /Tq010¢ cos Oyt ) .
w1 k(t,x) = | ev/E(eoa + 01) + e/30401(c04 + 0¢) €08 O + 2¢\/ET401 cos? Ot | eV 3eoaordy x|
eV/3040((e04 + 01) sin Oy + 2¢/20,0¢ cos O, sin Ot

—2ce\/040¢sin O, — /3eoi(e0q + 01)y — 2¢,/T40¢0¢ Sin Oyt s -
wo i (t,x) = eV/3040¢(e04 + 0¢) cos Oy + 2¢1/€0 4,04 cos O sin Ot et V3oaod]
c\/E(eoq + 01) + e3/3040t(c04 + 01) sin Oy + 2c\/E0,0 sin? Ot

(5.9)
with dj, = (cos O, sin ;)7
Proof. We start searching for solutions under the form
u(t,x) = q(t, x)e’\dzx, (5.10)
where q(¢,x) can be written
a(t,x) = qo + a1z + g2y + qst. (5.11)

Using (5.10) in (5.1) and dropping the exponential terms, one has

(5@ + A8, + Asdy + (A1 A cos Oy + Axsin Oy + R))q(t, x) = 0.

99
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Extending q one finds
()\(Al cos O, + Az sinfy) + R) <QO +qiz + qoy + Q3t> + A1q1 + A2qz +eq3 = 0.

This equality holds for all x, y and t, thus one gets the following system

<)\(A1 cos 0, + As sin Hk) + R) qz =0,
()\(Al cos Oy, + Agsinby) + )qg =0,
(5.12)
()\(Al cos Oy + Agsinfy) + )ql =0,
()\(Al cos 0y + Ao sin 9k> -+ )qo = —Aiq1 — A2q2 — £q3.

Therefore, the solutions to (5.1) under the form (5.10) with q given by (5.11) satisfy the system
(5.12). One notices from the rotational relations of the Py model (see for example Remark 4.14)
that UfekAlU,gk = Aj cos O + Ao sin . Using U,gkRUfgk = R and UeTk = U_g,, one finds

A(Arcosty + Agsindy) + R =UT,, (M1 + U RUT, YU, = Uy, (A1 + R) UG (5.13)

And one gets
ker (A(A1 cos 6 + Ay sin0) + R) = Up, (ker M + R). (5.14)

Therefore, a necessary condition for the system (5.12) to admits a non zero solution is det ()\A1 +
R) = 0. This has already been studied in the one dimensional case (see the proof of Proposition
3.2) and one finds

1
A = Et—+/3e0,0%.
c

In the following, we take A = 1,/3c0,0 and study ker (A(A4; cos 6+ Az sin )+ R). From (5.14)
this is equivalent to study the kernel of AA; + R and then apply the rotation Up,. The study of
the kernel of A1\ + R has already been done in the one dimensional case and one gets

ker(A1) + R) = Span ((—\/a, N O)T).
Setting w € ker AA; + R one finds
Span (ngw) = Span ((—\/07, V€T cos Oy, \/e0, Sin Hk)T> = ker ()\(Al cos Oy + Az sinfy) + R).
Using the relations (5.12) one gets

q1 = aUkaa q2 = ,BngW, qs = ’YUekwa 04,57")/ eR.

From the last equality of (5.12), one sees that —A;q; —Asqa—eqs € Im ()\(Al cos O+ Ag sin 0 )+
R). It implies

1
—A1q1 — A2qs — eqs € ker (()\(Al cos Oy + Agsinfy,) + R)T)
Since the matrices A1, Ao and R are symmetric, ker (/\(A1 cos 0.+ As sin Qk)+R)T = ker ()\(Al cos 0+

Ag sin 0y) —I—R) = Span(Up, w). A necessary condition is then (U@kW)T(—Alql —Asq2 —sqg) =0
which is equivalent to

2¢4/0,0¢ (a cos 0 + Bsin 9k> = \/g(eaa + 0¢)7.

In the following, we consider two choices
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o a=+/30¢(0q+0¢), B=0,v=2/0,0(cos b,
e =0, 5 =+30(04+ 0t), ¥ =2,/040¢sin .
With the first choice one gets from the fourth equation of (5.12)

a=+/3eot(eo, + 1), B=0, 7 =2c/0,0¢cosby,
T
qo = ( — 2ce\/040¢ cos Oy, c\/e(eoy + 0y), 0) + 5U9kWT, 0 €R.

and with the second choice one gets

a=0, B=+3ecoi(ecog+0t), v=2c\/0,0¢8n0y,

T
qo = ( — 2ce\/T40¢sin by, 0, c\/e(eo, + O't)> + 5U9kwT, 6 € R.

Setting § = 0 and using u(t,x) = (qo + q12 + q2y + qgt)e)‘d;‘:x, one finds the solutions wy (t, x)

for the first case and wy (¢, x) for the second case. This completes the proof. |

Remark 5.5 (Two dimensional time dependent solutions using the rotational invariance). It
is also possible to derive two dimensional time dependent solutions from the one dimensional
solutions given in Proposition 3.2. We recall that the matrices A; in one and two dimensions
read

010
A%D:G é) AP =110 0],
0 00
where AP and A?P denote respectively the matrices A; in one and two dimensions. Therefore,
to get a solution to the two dimensional P; model, one can take a solution to the one dimensional
P; model for the first two components and a third component which is zero. Using the time
dependent solution given in the Proposition 3.2 of Chapter 3, one deduces that a solution to the
two dimensional P; model is

—S(e0a —01) — w/@(eaa +oy)x — 250,04t
v(t,x) = V304(604 + 01)T + 2c0, /T2
0

e%\/&eaaat:c

One can now use Proposition 4.19 and apply a rotation to this solution with the rotation matrix
(5.5). This gives the following solutions

$(or —€0a) — \/%(eaa + 0¢)(cos Opw + sin Ory) — 2S0,04t

1.3 » a7
Wkt x) = V304(e04 + 1) cos O (cos Oz + sin Oy) + 2c/ %o, cos Oyt eeVFETodix
V304(e0, + o) sin Oy (cos Oz + sin Oy) + 20\/%7% sin 0yt
(5.15)

with dz = (cosfy,sinf;)?. However, the solutions (5.15) can be directly deduced from the
solutions (5.6) and (5.9). Indeed one notices

\/Oaq ( . ot + €0,
t,x) = Y% (cosh t, 0 ¢, ) gt T =% :
w3 (t, %) o cos 0wy (t,x) + sin O wo i (£, %) | + ¢ " vi(x)
Therefore it is enough to consider only the solutions (5.6)-(5.9). o

From the solutions (5.9), one can derive time-dependent polynomial solutions when o, = 0.
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Proposition 5.6 (Time dependent polynomial solutions when o, = 0). The following functions
are solutions to the two dimensional P model when o, = 0

\f026 \Fatac — —c 201t0,
vi(x) = f00t+\f00t$3 + [37532 qk(x),
Vecorxdy + 3\[ 3t8$y
(5.16)
—%\@028 \Faty— fc atta
va(x) = VEcoyd + 32=COny (),
Vecor + \ecoydy + 3%/5031583

where qi(x) is a harmonic polynomial.

Proof. Consider 21 + 1 functions under the form

fr(x) = eeV3eoamdix 1 9] 41,

One notices

%\/ 3e040¢ cos Oy fr.(x) = Oy fr(X), %\/35%03 sin O, fr.(x) = 0y fi(x) (5.17)

From Chapter 4 Section 4-2.3 (see also [GHP09]), there exists a;; € R, 1 < i,5 < 2[4+ 1 such
that
2+1

D anifk(®) = gi(x), 1<j<2A+1,

Oq—>

We would like to use the same linear combinations and pass to the limit in (5.17). Of course, it
requires to prove
2k+1 2k+1

lim ( > ansefil x)) = 0, ( lim Y ac,filx). (5.18)
k=1

For the simplicity and the brevity of the proof, we use the relations (5.18) without proving them
and check a posteriori that the functions obtained are solutions to the P; model. We consider
the solutions (5.9) and use the equalities (5.17) to replace cos, and sin @y by d, and 9,. One

gets
-2 \[023 V3eoi(eoq + o1 \/%CQJttﬁm
w1 k(LX) = \fC(sanrat) +fc(6aa—|—at):p(‘) + 52102 e tVETTAlx

Vece(eog + op)xdy + 3\/0 300y

\[\[028 \Fat(aaa—i-at)y }CQUttay
vt = | 7 Valeo ot ity | vl
Vece(eog + ov) + \ec(eog + o1)ydy + 3\[ 3t82

Assuming the relations (5.18) are true, one finds the functions (5.16) in the limit o, — 0. One can
check that these functions are solutions to the P; model when o, = 0. The proof is complete. W
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5-3 The P; model

In this section, we derive stationary solutions to the P3 model. For the P3 model one has m = 10,
me = 4, my, = 6 and the matrices read

1 1
0 7 0 0 0 0 7 0 0 0 0 0
1 3 1 1 1 3
A | yia —vm 00 s 0w P 0 TUm vVu
- 1 6 ) - 1 6
0 - 0 0 J& o0 —E 0 0 /& o0 0
1 1 3 1 /3 1
eg, 0 0 O
0 ot 0 0 .
Rl — 0 0 oy O ) RQ — Utlmo)
0O 0 0 o
(5.19)

where I,,,, is the identity matrix of R™o*",

We calculate the stationary solutions derived in Chapter 4 for the particular case of the P3 model.
We start with the exponential solutions when o, > 0.

Proposition 5.7 (Stationary solutions when o, > 0). Take dj, = (cosf,sinf)T € R2. The
following functions are solutions to the Py model

0 0
—/30 cos 26, V2 sin 26,
0 V6
/30 sin 26, V2 cos 26,
1 /1,47
viG= | VB | Windi g 2|0 eyt
V/15 cos 36, —1/3sin 30,
— cos O, —V/5sin by,
sin 0 —v/'5 cos O,
—+1/15sin 36, —v/3 cos 30,
VoL o+ 4\\/?'0_
14v1s” 6\/%01581n29k
£1/T;04 510 20}, N
76\/5%0'11 - V3
£4/010, cos 20, V0104 €08 20y
——L v 7tsinb, | . o T _63\0[\6/5U+7—7 sin O, 1 oT AT
v3(x) = ov2 + ezvi\/%dkxv Va(X) = | Yt cosh ezv+\/%dkx’
~eoal T cos 0}, 63073 k
— 33T 0av” sin 30, — 2:/[;—1%U+ sin 30y,
@Uavi sin b, %O’av—’_ sin 0,
3R 0av cos 0y, Zy%aawcos@k
—=——0g,v" cos 30
2v21° @ k —72\\/[;—10av+ cos 30y,

(5.20)
with oy = €0q + % and where we use the following notations k = \/6058202 + ldeo,04 + 2450,52,
vE = \/555% + 350, + V56K, 7T = V/Beo, + 35V 6o, £ Bk, pT = (vi)2 — 110e0,.
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Proof. With the definitions (5.19) of the matrices A and Ry, one finds that the matrix (AAT) 'R,
admits the following eigenvalues
Uf)z = (U+)2

8 MRy

- 0¢, M2 = 7Ut7 U3 =

#1:3

and the following eigenvectors

0 0 —11v5e0,+7V501+K —11v5e0,—7V501+kK
14y/3c0, 14y/3c0,
Wi = 1 W9 = 0 W3 = 0 Wy = 0
0 ’ \/g ’ _% ’ _%
0 1 1 1

Then, it is just the application of the Theorem 4.34 using the Definition 4.20 of the rotation
matrix Uy, . After easy simplifications, and considering the correct scaling, one finds the functions
(5.20). The proof is complete. [ |

Now we give some polynomial solutions when o, = 0.

Proposition 5.8 (Polynomial solutions when o, = 0). The polynomial solutions to the P model
when g4, = 0 are given by the Theorem 4.34 and can be recursively calculate with the formulas
(4.41)-(4.42)-(4.43). For example the first five polynomial solutions read

1 oT oty
0 0 0
0 0 0
0 0 0
0 0 %
i) = vex) =] _c [, v(x)= Va3,
3 0
0 0 0
0 0 0
0 0 0
0 0 0
(5.21)
oy sot(z? —y?)
2¢2 0
V15
0 0
2¢2
0 V15
_oic, aicy
vi(x) = (\f/fé . vi(x) = \{gc
— Y IV
0 0
0 0
0 0
0 0

Proof. We apply the Theorem 4.34 and use the recurrence formulas (4.41)-(4.42)-(4.43). Rescal-
ing the functions if needed give the solutions (5.21). The proof is complete. |

Remark 5.9. The solutions (5.21) which are calculated with the recurrence formulas from
Theorem 4.34 are the same than the solutions obtained using Birkhoff and Abu-Shumays method
in Section 4-2.2 with ¢ = 1, z,y, zy and z? — 3> ®
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Remark 5.10 (Time dependent solutions). As we will see in the numerical tests, time dependent
basis functions may deteriorate the condition number of the mass matrix when they are used
together with stationary basis functions. In particular it seems difficult to perform realistic two
dimensional numerical tests for the P; model with time dependent basis functions under the
form

v(t,x) = q(t, x)eMTeosdtysing), (5.22)

Therefore, we do not try to construct the solutions (5.22) for the P3 model since such basis
functions probably require a good preconditioner to be used in our tests.

Note however that we will be able to use the exponential in time solutions constructed in Section
4-2.4 of Chapter 4. ®

5-4 Numerical results

The goal of this section is to validate on numerical examples some properties such has the
convergence, the ability to capture boundary layers and the asymptotic-preserving (AP) property
of the scheme. The tests will be perform in two dimensions for stationary and time dependent
problems. Moreover, meshes made of random quads are using. A random quad mesh is made of
N x N quads, N € N*, where the vertices are randomly moved around their initial position by
a factor of at most 33%.

In the following, we may identify the number and the type of the stationary basis functions
used in the TDG scheme by their directions. To remove all ambiguity, we make the following
comments

— For the stationary P; model, the functions (5.6) admit one solution per direction. Therefore,
when we say we consider the P; model with n directions, it means that the TDG method is
applied with n basis functions. On the contrary, for the stationary P; model the functions
(5.20) admit 4 solutions per direction. Therefore, when we say we consider the P; model
with n directions, it means that the TDG method is applied with 4n basis functions.

— When o0, = 0 the polynomial solutions (5.8)-(5.21) do not strictly speaking dependent on
a direction. For simplicity, we may still speak about direction to describe the number of
basis functions used in our scheme. For the P; model, n directions will simply mean the
first n polynomial solutions (5.8). For the P3 model, n directions will mean 3n exponential
basis functions and the first n polynomial solutions (5.21).

More precisely, we consider the following possible choices. With 3 basis functions per cell, we
consider the following equi-distributed directions

2 2 4 4
d; = (1,007, dy = (cos —W,sin—w)T, d; = (cos—ﬁ,sin—w)T (5.23)
3 3 3 3
With 4 basis functions per cell, we consider the following equi-distributed directions
d; = (1,007, dy=(0,1)7, dz=(-1,0", ds=(0,-1)T. (5.24)
With 5 basis functions per cell, we consider the following equi-distributed directions
2 2 4 4
d; = (1,007, dy = (cos —W,sin—ﬂ)T, ds = (Cos—ﬂ,sin—ﬂ)T,
o0 o0 (5.25)

), ds = (cos8—ﬂ,sin8—ﬂ)T

dy = (0086—7T,s.ir16—7r . .

) )
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Remark 5.11 (Normalized exponentials). For some numerical tests, the basis functions of the

TDG method can be written
z e)‘de.

In particular, if A >> 1 the basis functions are stiff exponentials. To keep the calculation of
the integrals bounded, the exponentials are normalized in each cell. That is, we consider basis
functions under the form

T(x—
Ze)\d (x xo)’

where xq is the node of the cell where the function X takes its maximum value. [

5-4.1 Convergence with absorption

Consider the stationary P; model in two dimensions. Let x = (z,y)7,Q = [0,1]?, ¢ = 1,¢ =
V3,0, = 1,0, = 1. The exact solution we consider here is

Uy (X) = (cos(y)e\/gx, —(v/3/2) cos(y)e\/gx,O.S sin(y)e‘/gx)T.

We assume M ~u = M~ ug, is imposed on the boundary and consider n € N basis functions (5.6)
define as

ek(x) = (\@7 dk)e\/ﬁ(de)? k= ]-7 ey T2

with di = (Cos(ek),sin(ek))T, Op =2(k — 1) /n.

Results obtained with 3,5 and 7 basis functions are displayed on the left of Figure 5.1. As stated
in Theorem 4.75 for the particular case N = 1, one only needs two additional basis functions to
increase the order by a factor 1. Note however that the orders obtained here are slightly better
than those predicted in Theorem 4.75: with 3, 5 and 7 basis functions, one gets respectively
order 0.8, 1.5 and 2.5.

0.1 01

0.01 0.01

0.001

~ 0.001 |
-
8
0.0001 ¢ w 0.0001 ¢
3 basis —+— 3 basis —+—
1e-05 L 5 basis —x<— 1e-05 L 5 basis —<—
7 basis —*— 7 basis —*—
order 0.8 —— order 0.5 ——
1le-06 | ~o 1 1le-06 |
order 1.5 x order 1.5 ¢
order25 —— order25 ——
le-07 L le-07 L
1 10 100 1 10 100
N N

Figure 5.1 — P; model. Case o, = 1 on the left and o, = 0 on the right. L? error in logarithmic
scale of the TDG method for the stationary two dimensional P; model. Random
meshes.
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5-4.2 Convergence without absorption

Consider the stationary P; model in two dimensions with the same parameters as before but
without absorption: x = (z,4)7,Q =[0,1]%,e = 1,¢ = V3,0, = 0,0, = 1. The exact solution is

Ue,(X) = (Cos(y)ex, —cos(y)e”, sin(y)ex>T.

Again, M~u = M~ u,, is imposed on the boundary. We consider the polynomial basis functions
(5.8).

Results obtained with 3,5 and 7 basis are displayed on the right of Figure 5.1. The orders are
very close to those obtained in the case o, > 0 (left of the Figure 5.1) and therefore better, by a
factor 1/2, than those predict by Theorem 4.80. With 3, 5 and 7 basis functions, one respectively
gets order 0.5, 1.5 and 2.5.

5-4.3 A first asymptotic study when ¢ << 1

We study here the asymptotic behavior of the TDG method when € — 0. More precisely, we
consider the test case from [BDFL16] for the time dependent P; model. Let x = (z,y)”, Qg =
[0,1)2, T = 0.036, 0, = 0,05 = 1,c = 1, and consider the solution

52 IS
p():f—f—iatfa VOZ—*Vf,
O o

with
ft,x) = a(t) cos(2mx) cos(2my),

and where «(t) is defined as

_ )\2 A1t >\1 Aot
a(t)—)\2_)\16 )\2_/\16 ,

o5 (/1 - 53272 4 1) oo (/1 - 5322~ 1)
)\ - 2 )\ = — s .
! 22 r 2 2e2
Onme can check that (pg,vo)? is indeed a solution to the P, model when o, = 0, see [BDFL16]
for details. An exact relation is enforced between € and the space step h = % The relation

between € and h reads

11
e = 0.01(40R)", for 7 € {0, 75 1,2}.
The error between the exact solution and the numerical solution is computed numerically in
function of A for the different values of 7. The result is displayed in Figure 5.2 when using the
TDG method with the first 3 stationary polynomial basis functions (5.8) and d¢ = 0.36h2. One
observes the convergence of the solution even for small values of ¢.

5-4.4 A second asymptotic study when ¢ << 1

We study a second numerical example when ¢ << 1. We consider the spatial domain Qg =
[0,1] x [0,1] and the final time T = 0.01. We take o, = 0, 05 = 1/3 and ¢ = 1073. In
this regime, the first variable of the Py model follows a diffusion equation [Her16, Theorem 1].
Therefore, we compare our numerical solution with the two dimensional fundamental solution of
the heat equation centered in (0.5,0.5)7

1 _ (=0.5)%4(y—0.5)?

txX)= —— at+10-h) 5.26
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0.01
N
)
S
i
tau=0 —+—
0.0001
tau=0.25 —x—
tau=0.5 —%—
tau=1 ——
tau=2 —l—
orderl ——
le-05 5
10 100

Figure 5.2 — P; model. Study of the L? error for the test case 5-4.3 at the final time in loga-
rithmic scale. TDG method with 3 basis functions and € = 0.01(40h)".

On the boundary of the domain we impose M ~u with

u(t,x) = (p(t, x),0, ..., 0>T.

The P; model.

For the P; model, we compare the results obtained with the DG and TDG method on a 80 x 80
mesh with dt = T'/80. More precisely, we consider the two following cases

e The DG method with constant basis functions only (= finite volume) for a total of 3 basis
functions per cell.

e The DG method with affine basis functions (that is 1, z,y) for a total of 9 basis functions
per cell.

e The TDG method with the first three polynomial basis functions (5.8) for a total of 3 basis
functions per cell.

The limit solution (5.26), calculated on a 80 x 80 mesh, and the first variable of the numerical
solution is represented in Figure 5.3. Figure 5.3 illustrates that the DG method with only
constant basis function is too diffusive. On the contrary, one recovers a good approximation for
the TDG method with the same number of basis functions. This illustrates the AP property of
the TDG scheme on the P; model. To recover a good accuracy, another possibility is to increase
the number of basis functions of the DG method and consider a total of 9 basis functions. In
such case, the diffusion limit is indeed recovered but at the cost of considering three time more
basis functions than the TDG scheme.

An other interesting question is whether the special choice of basis functions for the TDG method
has an effect on the condition number of the mass matrix. In Figure 5.4, an estimation of the
condition number with different values of ¢ is given for the two following cases
e The DG method with affine basis functions (that is 1, x,y) for a total of 9 basis functions
per cell.
e The TDG method with the first three polynomial basis functions (5.8) if o, = 0 or the 3
directions (5.25) if o, > 0 for a total of three basis functions per cell in both cases.
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P 3
3353605 2.02 403 605 8,0656+00 2556603 043 0.8 128 1.710e+00
\|HIIHIH I|JIIIJIII1|

" ' —

P P
446505 1.98 3.96 5.95 7.929e+00 4.433e-05 1.98 3.96 5.95 7.929e+00
HIHIIH|HIIHIH[ |JII|JIIH|

M, MI LILLLLLL

Figure 5.3 — P, model. Representation of the first variable when € = 1072 for the test case
5-4.4. Top left: limit solution. Top right: DG scheme with 3 basis functions per
cell. Bottom left: DG scheme with 9 basis functions per cell. Bottom right: TDG
scheme with only 3 basis functions per cell. Good behavior of the numerical solution
illustrates the AP property.

The condition number is calculated on a 10 x 10 mesh using the singular values of the matrix.
On the left of Figure 5.4, the value o, = 0 is taken and therefore only polynomial solutions are
used in the basis functions. As one might have expected, the condition number of the TDG
method is not greater than the condition number of the DG method in this case. On the right
of Figure 5.4, the same test case but with o, = 1 is considered. This time one sees that the
value of the condition number is greater for the TDG method compare to the DG method. This
is probably because, when o, = 1, the following exponentials are used in the basis functions of
the TDG method (with a rescaling by /e compare to the solutions given in (5.6))

Veio, + o, o \/Os ;
Vi(x) = | —e\/Tq cos O, | eV3oaEoatTdix 0 | ev3oaosdix, (5.27)
. e—0
—&4/0g4 sin 6y, 0
Note that, since the P; model is a very simple approximation of the transport equation, no
boundary layers exist for this model when ¢ — 0. Consequently, the exponentials (5.27) are
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not stiff when ¢ — 0. However, when ¢ — 0, the vector in front of the exponentials in (5.27)
tends toward the same limit for all the solutions vj. This may explain why such basis functions
deteriorate the condition number in such limit case.

1le+06

10000

T
DG —+—

TDG —X%—

100000 ¢

1000 ¢
10000

100 ¢ 1000

100 ¢

Condition number estimation
Condition number estimation

10 ¢
10 ¢

. . 1 I . . . L
0.001 0.01 0.1 1 le-06 le-05 0.0001 0.001 0.01 0.1 1
epsilon epsilon

1 1 1
1le-06 1le-05 0.0001

Figure 5.4 — P; model. Comparison of the condition number between the TDG and the DG
method. On the left o, = 0 (polynomial basis functions used in the TDG method)
and o, = 1 on the right (exponential basis functions used in the TDG method).

The P; model.

For the P3; model we also compare the results obtained with the DG and TDG method on a
80 x 80 mesh with dt = T/80. More precisely, we consider the two following cases

e The DG method with constant basis functions only (= finite volume) for a total of 10 basis
functions per cell.

e The DG method with affine basis function (that is 1, z,y) for a total of 30 basis functions
per cell.

e The TDG method with the basis functions (5.20)-(5.21) depending on the 3 directions
(5.23) for a total of 12 basis functions per cell.

Note that, unlike the P; model, the TDG method applied to the Ps model uses exponential and
polynomial basis functions. The limit solution, which is the same as before, and the first variable
of the numerical solution are represented in Figure 5.3. As for the P; model, Figure 5.5 illustrates
that the DG method with only constant basis function is too diffusive. On the contrary, one
recovers a good approximation with the TDG method. This illustrates the AP property of the
TDG scheme on the P3 model. As for the P; model, the DG scheme with affine basis functions
recovers the correct diffusion limit but with the disadvantage of using approximately three time
more basis functions than the TDG scheme.

5-4.5 Boundary layers

In this test, a two dimensional test with discontinuous coefficients is studied. The domain is
Q) = [0,1]? and we define ; (resp. o) as Q1 = [0.35,0.65]? (resp. Q2 = Q\ Q). We take € = 1,
c=1 and

0a=2x1g,(x), 0s=2x1q,(x)+10° x 1g,(x).

The absorption coefficient has compact support in €2 while the scattering coefficient is discon-
tinuous and takes a high value in ;. Even if we consider random meshes, the interface between
Q1 and s is a straight line. The geometry and parameters of this test are represented in Figure
5.6.
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3 P
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Figure 5.5 — P3 model. Representation of the first variable when ¢ = 1073 for the test case
5-4.4. Top left: limit solution. Top right: DG scheme with 10 basis functions
per cell. Bottom left: DG scheme with 30 basis functions per cell. Bottom right:
TDG scheme with only 12 basis functions per cell. Good behavior of the numerical

solution illustrates the AP property.

5-4.5.1 Trefftz discontinuous Galerkin method

The P; model.

For the TDG method, one must choose the directions of the basis functions in 1 since o, > 0.
As we will see, the choice of directions at the interface plays an important role to correctly
capture the boundary layers. In particular, it seems essential to locally get the one dimensional
direction perpendicular to the interface associated with the boundary layer. Therefore, we make
the special choice of directions (5.24) at the interface in ;. Such directions are well adapted
if one considers the one dimensional problem at the interface. A graphical illustration of the
adaptive directions at the interface is provided on the right of Figure 5.6.

To show why it can be challenging for standard schemes to capture boundary layers, we compare
the TDG method with the standard DG method on a coarse 20 x 20 mesh. More precisely, we
consider the following cases

e The DG method with constant basis functions only (= finite volume) for a total of 3 basis
functions per cell.
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Periodic

Qs
0,=0
s = 2

O
u=(1,0,0)" 04 =2
os = 10°

Interface

Periodic Interface

Figure 5.6 — On the left: Domain and boundary condition for the two dimensional boundary
layers test. On the right: representation of adaptive directions at the interface.
In this example: the 3 equi-distributed directions (5.23) in each cell except at the
interface where the directions are locally adapted into (5.24).

e The DG method with affine basis functions (that is 1, x, y) for a total of 9 basis functions
per cell.

e The TDG method with the exponential and polynomial basis functions (5.6)-(5.8) depend-
ing on the 3 directions (5.23), for a total of 3 basis functions per cell, and on the 4 directions
(5.24) at the interface.

e The TDG method with the the exponential and polynomial basis functions (5.6)-(5.8)
depending on the 5 directions (5.25), for a total of 5 basis functions per cell, and on the 4
directions (5.24) at the interface.

The reference solution represented in Figure 5.7 is calculated on a 200 x 200 mesh with the TDG
method using 5 basis functions per cell except at the interface where the four adaptive directions
(5.24) are used.

In Figure 5.7, we represent the first variable. One observes that the boundary layer is not
correctly captured by the DG scheme. The approximation given by the TDG scheme seems
more accurate.

In Figure 5.8, we take a one dimensional cut at y = 0.5 to compare more precisely the numerical
results. The graphic on the left shows that, with less basis functions, the TDG method gives a
better approximation than the DG method. Our interpretation is that it is because the boundary
layer is correctly captured by TDG but poorly captured by DG. This will be confirmed by the
enrichment approach of Section 5-4.5.2.

The graphic on the right of Figure 5.8 illustrates why it is very important to use the directions
(5.24) at the interface to obtain a satisfactory discretization of the boundary layer on a coarse
meshes. We consider the TDG method with 5 basis functions per cell and compare two cases

e In the first one, the directions are (5.25) in all cells of ;.

e In the second one, the directions are (5.25) except at the interface where the directions
(5.24) are used.

The graphic shows that the TDG method gives a non correct approximation with only the
directions (5.25). However, if one locally adapts the directions at the interface, the TDG method
recovers a very good accuracy. Once again, our interpretation is that it is because the boundary
layer is correctly captured with these parameters.
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Figure 5.7 — P; model. Representation of the first variable for the test case 5-4.5. Top left:
reference solution. Top center: DG scheme with 3 basis functions per cell. Top
right: DG scheme with 9 basis functions per cell. Bottom left: TDG scheme with 3
basis functions per cell. Bottom right: TDG scheme with 5 basis functions per cell.
For the TDG scheme, the directions at the interface in €2 are locally adapted into
the 4 directions (5.24).

As we have seen in Figure 5.4, one possible drawback of the Trefftz method is the deterioration of
the condition number. This is particularly true here since stiff exponentials are used in the basis
functions. The Figure 5.9 compares the condition number obtained with the Trefftz method with
and without preconditioning where the preconditioner considered here is a simple one diagonal
on the left and on the right. The Figure 5.9 shows that the condition number is significantly
improved by using this simple preconditioner. Therefore, studying efficient preconditioner in the
case of the Trefftz method can be an interesting perspective for future research.

The P; model.

For this particular numerical test, there is no visible difference between the solutions to the P;
and P3 models. However, since the basis functions differ from the P; to the P3 models, it is still
interesting to perform the boundary layer test on the P3 model.

The reference solution is calculated on a 200 x 200 random mesh with the 3 directions (5.23)
and adaptive directions (5.24) at the interface. We do not calculate the reference solution with 5
basis functions per cell, as we did for the P; model, due to some conditioning issue. We compare
the following cases on a coarse 20 x 20 mesh
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Figure 5.8 — P; model. One dimensional representation of the variable p at y = 0.5 for the
test case 5-4.5. Left: comparison between the DG method with 3 basis/cell, the
DG method with 9 basis/cell, the TDG method with 3 basis/cell and the TDG
method with 5 basis/cell. In both cases for the TDG method, the directions at the
interface in €y are locally adapted into the 4 directions (5.24). Right: comparison
between the TDG method with directions (5.25) only and the TDG method where
the directions at the interface in ; are locally adapted into the 4 directions (5.24).
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Figure 5.9 — P; model. Comparison of the condition number between the TDG method with
no preconditioner and the TDG method with one simple preconditioner diagonal on
the left and on the right.

e The DG method with constant basis functions only (= finite volume) for a total of 10 basis
functions per cell.

e The DG method with affine basis functions (that is 1, z, y) for a total of 30 basis functions
per cell.

e The TDG method with the basis functions (5.20)-(5.21) depending on the 3 directions
(5.23), for a total of 12 basis functions per cell, and on the 4 directions (5.24) at the
interface.
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e The TDG method with the basis functions (5.20)-(5.21) depending on the 5 directions
(5.25), for a total of 20 basis functions per cell, and the 4 directions (5.24) at the interface.

The results given in Figure 5.10 are very similar to the P; case. One notices a better approxima-
tion of the solution for the TDG method with less degrees of freedom compared to the standard
DG scheme.

2.174003 8725601 1.06101 7.963e-01 6777602 068 8398001
HlJIII|IHHIIIIM WIIIIIH‘HIIIHHW Mlllllllllillll
-7.237e-14 873101 -4917e-13 8.620e-01
JIIIIH‘HIIIIIH H Hi IIIIHJ[IIIIIHH

Figure 5.10 — P3 model. Representation of the first variable for the test case 5-4.5. Top left:
reference solution. Top center: DG scheme with 10 basis functions per cell. Top
right: DG scheme with 30 basis functions per cell. Bottom left: TDG scheme with
12 basis functions per cell. Bottom right: TDG scheme with 20 basis functions per
cell. For the TDG scheme, the directions at the interface are locally adapted into
the 4 directions (5.24).

5-4.5.2 Enriched discontinuous Galerkin method

Numerical tests with boundary layers are well adapted to consider enrichment strategy. We
consider the enriched discontinuous Galerkin method which consists to start from a standard
DG basis and add locally (i.e. in the boundary layer) some exponential solutions. In this
example, we apply the enrichment strategy to the stationary two dimensional P; model.

In the previous examples, the directions were adapted without assuming any a priori physical
knowledge of the solution. Indeed, the directions (5.24) were chosen such that they could capture
increasing or decreasing boundary layers at the interface. But it is also possible to use the physical
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knowledge of the user and consider only one or two directions in the boundary layer. Here for
example, one can assume that the local variation of the boundary layer is known to reduce the
number of basis functions added. More precisely

e For the left interface (x = 0.35, 0.35 < y < 0.65), the boundary layer is a decreasing
function with respect to x so we add the direction d = (—1,0)7.

e For the right interface (x = 0.65, 0.35 < y < 0.65), the boundary layer is an increasing
function with respect to = so we add the direction d = (1,0)7".

e For the bottom interface (y = 0.35, 0.35 < = < 0.65), the boundary layer is a decreasing
function with respect to 3 so we add the direction d = (0, —1)7".

e For the top interface (y = 0.65, 0.35 < z < 0.65), the boundary layer is an increasing
function with respect to y so we add the direction d = (0,1)7.

Note that we add at most one basis function in the cells except at the corners of 21 where we
add two basis functions. For a graphical illustration of the procedure, see Figure 5.11.

Interface

Interface

Figure 5.11 — Representation of the enrichment strategy. In this example, basis functions cor-
responding to the discontinuous Galerkin method are used in all the cells. In
the boundary layer one or two exponential solutions (5.6) are locally added. The
arrows represent the directions of these solutions.

3 P

P
-2.016e-03 021 063 8.443e-01 1.279¢01 0.32 048 065 7.740e-01 -1.787e-11 021 063 8.456e01
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0.42 0.42
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Figure 5.12 — P; model. On the left: reference solution. Center: DG method with 3 basis
functions per cell. On the right: DG method with 3 basis functions per cell where
some exponential solutions are locally added in the boundary layer.
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In Figure 5.12, we compare the two following cases on a coarse 20 x 20 mesh
e DG scheme with constant basis functions only for a total of three basis functions per cell.

e Same DG scheme (constant basis functions) except at the interface where we locally add
one or two exponential solutions as describe above.

The reference solution is the same we used before for the P, model. One sees that the approxi-
mation is much better for the enriched method.

5-4.6 A lattice problem

5-4.6.1 Comparison between the TDG and DG method

Figure 5.13 — Domain for the lattice problem 5-4.6.

We consider a lattice problem [BDF15, Bru02, Her16, SFL11]. The spatial domain Qg = [0, 7] x
[0, 7] is represented in Figure 5.13 and we take 7" = 3.2. The white area is a purely scattering
region while the striped and black areas are purely absorbing regions. Additionally, the black
region contain a source of particles. More precisely, let 2. be the union of the eleven striped
squares and the black square in Figure 5.13, then one has

) S
, os(x) else.

oq(x) =10 os(x) =0, ifxeQ,,
0 =1,
Note that for some authors o, = 0, o5 = 1, in the central region [Bru02, Her16| while other
authors take o, = 10, 05 = 0 [BDF15, SFL11]. These two choices give similar numerical results
and we consider here the second option. We recall that Friedrichs systems with a source term
read

(at 4 A9, + Agay) u(t,x) = — Ru(t,x) + £(x). (5.28)

In this example, the source f(x) € R™ is contained in the black region

f(x) = 04(x) X €1, if x € [3,4]%,
07

f(x) else,

where e; = (1,0,...,0)7 € R™. For the basis functions which depend on the source of particles,
we use the methodology described in Section 2-2.3 of Chapter 2. That is, we add the basis
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function vy = R7f in the central region

vi(x) =ey, if x € [3,4]?,
vi(x) =0, else.

We consider vacuum boundaries, that is we impose u = 0 at the boundaries of the domain.

Finally, we consider the possibility of using the time exponential solutions (4.69) in the TDG
scheme.

The P; model.

The numerical results obtained for the P; model are displayed in Figure 5.14. The reference
solution is computed with the DG method with affine basis functions for a total of 9 basis
functions per cell on a 280 x 280 random mesh with dt = 0.01. We compare the DG and TDG
methods on a 140 x 140 mesh with dt = 0.02. We consider the following cases

e The DG method with constant basis functions only for a total of 3 basis functions per cell.

e The DG method with affine basis functions (that is 1, x, y) for a total of 9 basis functions
per cell.

e The TDG method with the basis functions (5.6)-(5.8) depending on the 5 directions (5.25),
for a total of 5 basis functions per cell (plus one in the black region).

e The TDG method with the basis functions (5.6)-(5.8) depending on the 5 directions (5.25)
and the time dependent solutions (4.69), for a total of 8 basis functions per cell (plus one
in the black region).

Figure 5.14 shows that the DG method with only constant basis functions is too diffusive. How-
ever, if one increases the number of basis functions and considers affine basis functions, the DG
method recovers a very good accuracy. From Figure 5.14, one also notices that the TDG method
with 5 directions and only stationary basis functions seems too diffusive. Adding the time de-
pendent basis functions (4.69) to the TDG method allow to recover a good accuracy similar to
the affine DG method.

The P; model.

The comments are very similar for the P3 model. Figure 5.15 represents the numerical results
obtained for the Ps model. The reference solution is computed with the DG method with affine
basis functions for a total of 30 basis functions per cell on a 280 x 280 random mesh with
dt = 0.01. We compare the DG and TDG methods on a 140 x 140 mesh with dt = 0.02. More
precisely, we consider the following cases
e The DG method with constant basis functions only for a total of 10 basis functions per
cell.
e The DG method with affine basis functions (that is 1, x, y) for a total of 30 basis functions
per cell.
e The TDG method with the basis functions (5.20)-(5.21) depending on the 3 directions
(5.23), for a total of 12 basis functions per cell (plus one in the black region).
e The TDG method with the basis functions (5.20)-(5.21) depending on the 3 directions
(5.23) and the time dependent solutions (4.69), for a total of 22 basis functions per cell
(plus one in the black region).
As for the P; model, Figure 5.15 illustrates that the DG method recovers a good accuracy when
using affine basis functions. For the TDG method, considering only 3 stationary basis functions
seems too diffusive. Nevertheless, if one adds the time dependent basis functions (4.69), the
TDG method recovers a good accuracy similar to the affine DG method.

In particular, a benefit of the TDG method compared to the standard DG method is that it
uses less basis functions to recover a good approximation of the numerical solution. However,
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Figure 5.14 — P; model. Representation of the first variable for the test case 5-4.6. Top left:
reference solution. Top center: DG scheme with 3 basis functions per cell. Top
right: DG scheme with 9 basis functions per cell. Bottom left: TDG scheme with
about 5 stationary basis functions per cell. Bottom right: TDG scheme with about
8 basis functions per cell (stationary and time dependent). Logarithmic scale.

as we will see in the next section, the TDG method may suffer from conditioning issue when
considering stationary and time dependent basis functions on fine meshes.

Finally note that, both for the P; and P3; model, the numerical results are similar to those
obtained in [Bru02, BDF15].

5-4.6.2 The TDG method with other time dependent basis functions

In this section, we study the TDG method applied to the P model with others time dependent
basis functions. We consider the stationary basis functions (5.20)-(5.21) and the time dependent
basis functions (5.9)-(5.16), (4.66), (4.69). For the basis functions (4.69) we make the arbitrary
choice a = gy which gives

( ( O‘t(l + 6) ) 6% 3E(O'a+0't)0't(1+5)de+o'tt, (529)

\/ € 0'a+O't d

with d = (cos ,sin#)”T € R2. More precisely, we consider the following cases

119



120

NUMERICAL RESULTS

1000007 les  les 0.1 1.000e4 100607 leb  les 01 1.000e4 1000007 les  le5

01
lllq IHHHII| HHIIHI| l HII‘ HHIIHI| \IIHIIH| I Ill| IIIIIIII] IIIIIlIIl IM

100207 les  les 0.1 1.000e4 1000207 les  le5 0.1 1.000e4
MII‘ HHIIHI| HIHI]M J IM[ JIIHIIM IHHIIH] I

Figure 5.15 — P3 model. Representation of the first variable for the test case 5-4.6. Top left:
reference solution. Top center: DG scheme with 10 basis functions per cell. Top
right: DG scheme with 30 basis functions per cell. Bottom left: TDG scheme with
about 12 stationary basis functions per cell. Bottom right: TDG scheme with
about 22 basis functions per cell (stationary and time dependent). Logarithmic
scale.

e Case 1. The stationary basis functions (5.6)-(5.8) only with the 3 directions (5.23) for a
total of about 3 basis functions per cell.

e Case 2. The stationary basis functions (5.6)-(5.8) with the 3 directions (5.23) and the
time dependent solutions (4.66) for a total of about 6 basis functions per cell.

e Case 3. The stationary basis functions (5.6)-(5.8) and the time dependent solutions (5.9)-
(5.16) with the 3 directions (5.23) for a total of about 9 basis functions per cell.

e Case 4. The stationary basis functions (5.6)-(5.8) and the time-dependent solutions (5.29)
with the 3 directions (5.23) for a total of about 6 basis functions per cell.

e Case 5. The stationary basis functions (5.6)-(5.8) and the time-dependent solutions (5.29)
with the 4 directions (5.24) for a total of about 8 basis functions per cell.

Remark 5.12 (Case 3: polynomial solutions when o, = 0). When considering the Case 3,
one has 9 exponential basis functions when o, > 0. However, when o, = 0 the basis functions
became polynomials. It is not clear how to choose those polynomials since both the stationary
and time dependent exponentials may degenerate to the same solutions (at least if we follow the
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procedure given in the proof of Proposition 5.6). We make the following arbitrary choice and
consider a total of 7 polynomial basis functions

1 Zx Ty
vi(x)=[0], wvalx)= —% , vi(x)=1 0 |,
0 0 —%
—%\/562 —V3eo?a? — \/%6201575 —%ﬁcQ —V/3eo?y? — \/%czatt
vy(t,x) = 2\/ecox , vs(t,x) = 0 ’
0 2\/ecorx
—%ﬁcgy —V3eo?x?y — \/%czatty —%\@c% —V3eolxy? — \/%020,515:6
vg(t,x) = 2\/5200,51'% ; . vr(t,x) = Veeo? + 3%/50315
Vecox® + 572C t 2\/ecory

Here the functions vi(x), ve(x) and v3(x) can be seen as the limit of the three stationary basis
functions (5.6). The time dependent polynomials are taken from (5.16) to assure that all the

components have a dependence in time in at least one basis functions. ®
1e+07
1e+06 | 1
c
g
£ 100000 | 1
3 Casel —+—
L Case2 —x—
€ 10000 | 1
5 Case 3 —K—
c
s Case4 —H—
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c
jo)
o
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10 :
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Figure 5.16 — Estimation of the condition number for the cases 1 to 4. Logarithmic scale.

In Figure 5.16, we compare an estimation of the condition number for the cases 1 to 4 on random
meshes. The estimation is provided using the AztecOO package of the Trilinos library [HBH'03].
Figure 5.16 illustrates that adding time dependent basis functions deteriorate the conditioning
of the mass matrix. One notices that the temporal exponentials (4.66) (Case 2) are the time
dependent functions which give the better (or the least bad) result in term of the condition
number.

In Figure 5.17, we compare the cases 1 to 5 on a 70 x 70 mesh. To prevent the condition
number from growing too fast, we consider a mesh which is not random. One sees that all the
time dependent basis functions reduce the diffusion. Compared to Case 2, one notices that the
diffusion is lower for cases 3 to 5 but some oscillations appear. For the basis functions (5.29)
(Cases 4 and 5), the choice of directions seems important. Indeed, with only the 3 directions
(5.23) (Case 4), the numerical solution is highly asymmetric. Considering the 4 directions (5.24)
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Figure 5.17 — P; model. Representation of the first variable for the test case 5-4.6. Cases 1 to
5. The cases are numbered from from left to right and top to bottom (top left:
Case 1, top center: Case 2...). Logarithmic scale.

(Case 5), fix this issue. Note that Case 3 also considers the 3 directions (5.23) without getting
the asymmetric result of Case 4.



Chapter 6

An asymptotic preserving
multidimensional ALE method for a
system of two compressible flows
coupled with friction

This chapter is taken from a published article [PLM18].
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1 CEA, DAM, DIF, F-91297 Arpajon, France
2 Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France

Abstract. We present a multidimensional asymptotic preserving scheme for the approximation
of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled
with a friction term. The asymptotic preserving property is mandatory for this kind of model, to
derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is).
The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach.
This imposes a multidimensional definition and analysis of the scheme.

Keywords: Compressible gas dynamics, multi-fluid, finite volumes, unstructured meshes, asymp-
totic preserving, arbitrary-Lagrangian-Eulerian (ALE)

6-1 Introduction

A multifluid model is a model for a fluid mixture for which each fluid is described by its own
full set of variables (for instance density, velocity and energy). The model is generally closed
in a way that defines interactions between the constituents, depending on the involved physics.
These models are widely used in different communities. One very popular model of this kind
is the Baer-Nunziato model [BN86] for deflagration-to-detonation transition of reactive flows.
Many numerical methods to approximate this model have been designed, we refer to a few of
them [SA99, CGHS02, CHSN13, AD14, ACCG14]. Scannapieco and Cheng [SC02| also derive
similar kind of model for turbulent flows and apply it to describe a mixing zone driven by
Rayleigh-Taylor or Richtmyer-Meshkov instabilities [CS05]. Such kind of model is also used
in plasma physics to account for plasmas collision or Non-Local-Thermodynamic-Equilibrium
(NLTE) Ion-Electron interactions [DMP98, Sen14|. Although all the analysis done in this paper
can be applied to any of the former models, we are in particular interested in the latter applica-
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tion. In this context, multifluid models are a good approximation, in particular to account for
the collision of two ion populations, each of them being at LTE. However, to our knowledge, these
models are never used for plasma collisions. The reason for this is stated by R. Sentis in [Sen14]:
“The [...] system may be quite difficult to solve in two- or three-dimensional geometry, especially
in the case when the friction coefficient [...] is large [...]” Consequently, a simplified model is
in general prefered, in which the velocity gap between the two fluids is modelled by a diffusion
process on the concentrations. Unfortunately, it implies empirical closures and exhibits bad
behaviour at high temperatures (when the coupling between the ion populations is weak).

In the following, we explain why the classical schemes for the multifluid system fail to capture
the strong coupling limit. It is in fact inherent to this kind of model and relies to the asymptotic
preserving (AP) property [Gosl13, GT02, Jinl0, JLI91| in the high friction regime or infinite
friction regime. In the former regime, the fluids interpenetration follows a diffusion law. In
the latter one, the mixture evolves as a single fluid, see (6.4)—(6.5). If no attention is paid
to these regimes, the scheme will fail to capture it at a reasonnable calculation cost. Some
authors [CDW99, CDV07, Ena07] propose an asymptotic discretization for the system (6.1) in
1D in the Eulerian frame — multidimensional calculations being achieved by means of directional
splitting —, but no asymptotic preserving scheme has been yet published for 2D unstructured
meshes for this model. A similar ALE formalism is used to treat multifluid interaction in [CS12].
Authors use the Compatible Hydro scheme [CBS98| and do not analyze the asymptotic preserving
property since they mainly focus on the physics of the coupling.

In this paper, we propose a multidimensional scheme to approximate solutions of this kind of
model, written in (6.1), which captures accurately the asymptotic regime. We want our scheme to
be able to deal with Arbitrary-Lagrange-Euler (ALE) frame and unstructured meshes in order
to properly handle highly deformed calculation domains. Even for simpler models, only few
unstructured asymptotic preserving schemes have been developed (refer for instance to Berthon
and Turpault [BT11] and Franck et al. [BDF12, Fral2|). The scheme we propose in Section 6-4
has connections with [Fral4, FM16], where an Euler with friction system is studied in the limit
of high friction for long time, providing a different kind of scaling. So, the proposed scheme is
not a direct extension of [Fral4| to the bi-fluid case. The scheme presented in this work is split
into two steps. In the first step we solve two Euler systems of equations coupled by friction.
Since each fluid has its own velocity, the Lagrangian mesh of each fluid will evolve separately
during this step. Then, in the second step, the conservative variables vector of each of the fluids
will be projected onto a common mesh (not necessarily identical to the initial mesh).

In the Section 6-2 of this paper, we recall the properties of the model we consider, that are
conservation, hyperbolicity, and asymptotic limit model. In Section 6-3, we recall the basis of
the solver (Glace [CDDL09| or Eucclhyd [MABOOT7]) used to compute the Lagrangian step. The
Section 6-4 describes the Lagrangian step of the proposed scheme. It is demonstrated that the
scheme preserves the properties of conservation, stability and consistency with respect to the
continuous model for all regimes (independently of the value of the friction parameter). Then
in Section 6-5, our ALE strategy is described. Finally, Section 6-6 is devoted to numerical
experiments on several problems (Sod shock tube, triple point and Rayleigh-Taylor). Some
comparisons with a non-AP scheme are provided.

6-2 A two fluids model with friction

Let us consider a mixture of two fluids f; and fo. In the following, we will denote by “multi-
fluid model”, a model for which each fluid o € {f1, fo} is represented by its own set of variables:
(p*,u®, E%). Conversely, we will refer as “mono-fluid model”, a model describing a mixture where
mean quantities are considered (p,u, E), each fluid position being precised by an additional
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equation on the concentration (e.g. x := ﬁ).

In this part, we present a simplified version of Scannapieco-Cheng’s model where the interaction
between the two constituents reduces to a friction term. In semi-Lagrangian coordinates, for
each fluid o € {f1, fo} (B denoting the other fluid), the model reads

p* Dyt =V -u”,
p*Diu® = —Vp“* — vpéu®, (6.1)
p*DYE® = =V - (p*u®) — vpdu® - 1,

where p®*, u® and E® respectively denote the mass density, the velocity and the total energy
density of fluid a. Also, 7® = -t denotes the specific volume. The pressure p® satisfies the
equation of state p* := p*(p®,e®), where e®, the internal energy density, is defined by e® :=
B> — %||uO‘H2. The total density p and the mean velocity U are defined as p := p® + p® and
pu = p®u® + puf. The term du® is the velocity difference, the 6(-)® operator being defined by
5 = —5¢% = ¢® — ¢P. Finally, v is the friction parameter. Also, remark that the Lagrangian
derivative Dy* := 0y +u® - V, is obviously not the same for each fluid.

The entropy n® defined by Gibbs formula T%dn® = de™ + p“dr® satisfies the following entropy
inequality
«

T*Din* > I/T—ﬁéuo‘ -6u® > 0. (6.2)
T

Prior to establishing a numerical scheme that discretizes this set of six equations, we recall some
properties of the model itself.

Property 1 (Conservation). The model (6.1) is conservative in volume and mass for each fluid.
Also, it is conservative in the sum of momenta and in the sum of the total energies of the two

fluids.

Proof. Conservation of mass and volume is obvious since the first equation of (6.1) is the conti-
nuity equation written for each fluid.

Conservation of momenta sum and total energies sum require more cautiousness, since Lagrangian
derivative are not the same for each fluid. To establish them one rewrites (6.1) in an Eulerian
framework.

Developing Lagrangian derivatives Df'¢ = 0y + u® - V¢ and using the identity 9 (p®7®) = 0
elementary calculations can rewrite (6.1) as
Ohp* + V- (p*u®) =0,
O (p*u®) + V- (p*u® @ u®) + Vp* + vpéu® = 0, (6.3)
O(p*EY) + V- (p“E*u®) + V- (p®u®) + vpou® -u = 0.

Summing the two later equations over « gives a system of the conservative form 9,;U+V-F(U) =

0, where
U= pru® + pfu’
= paEa + pBEﬁ ’
and
pu) = (PP e ut el o+ (4 pY) ]
—\ p*Eu® + pPEPUP + pru® + pPuf ’
where I is the identity matrix of R?*2. [ |

Property 2 (Hyperbolicity). The model (6.1) is hyperbolic.
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Proof. Since (6.1) is made of two Euler systems only coupled with source terms, it is hyperbolic.

|
Asymptotic model. When v — +o0, (6.1) behaves as the following five equations model
pDiu = -V (p* +p), (6.4)
while, for each fluid o € {f1, fa}, B denoting the other one, one has
pDyr® =V - u,
0°D,E® = —p:u Y (pa +pﬂ) ~ POV -, (6.5)

where u is the same velocity for both fluids, and thus the Lagrangian derivative is also the same.
Formal derivation (established in [Ena07]). Let € = v~! so that (6.1) rewrites
p* DT =V - u?,
p*Dfu® = —Vp® — %péu% (6.6)
p*DYE® = =V - (p*u®) — %péua ‘.

We will now study its limit while ¢ — 07 focusing first on the momentum equations since the
friction term’s goal is to impose that du® 0.

Developing the Lagrangian derivatives and dividing each momentum equation by p® > 0, one
has

@ 1
o + (Vu®)u® = —VZ; — f%duo‘.
p €p
Since fluid 3 satisfies the same equation and recalling that 6¢® = —6¢% = ¢* — ¢?, one gets
Vp\* 1 p2
O (6u®) + 6 ((Vu)u)® = -4 () — =Adu®, where \ = —.
) (u®) + 8 (Vu) w) S o

We now perform an Hilbert expansion for all variables in the equation, that is ¢ = ¢°+ep!+O0(€?).

One has
,0 0 Vp\*° of(1lc ao a1 15 a0
O (0u*”) + 6 ((Vu)u)™” = =4 " - A E&u P4 our ) — A 6ut + Ofe). (6.7)

Multiplying this equation by € one has A°6u®? = O(e), which gives ju®® = 0 when ¢ — 0 since
A > 0.

So, when € — 0, formula (6.7) recasts

o 1 Vp OC,O
su®t = U <> . (6.8)

Now, we perform an Hilbert expansion for the whole system (6.6), neglecting the non negative
powers of e. Choosing « € {f1, f2}, B being the other one, it reads

pa,OD?TQ,O =V - uoz,O’
pa,ODtaua,O — _ vpa,o o pO <15ua,0 + 5ua,1> . pléuoz,o7
€

poz,ODtanc,O =_V. (pa,Oua,U) . /)0 <15ua,0 . ﬁa,O + 6ua,1 . ﬁa,O + 5ua,0 . ua,l)
€

_ pléua,o . ﬁoz,O.
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Since we just established du®? = 0, one has u’ = @ = u®? = u??. Also, since Dio =
Oy +u*? . Ve + O(e), Lagrangian derivatives are the same when ¢ — 0, so that using (6.8) the
system simplifies to
poz,ODtTa,O v uO,
Vp

1 a,0
p** D’ = — Vp*0 + poﬁé (P) ;

1 a,0
poc,ODtEOé,O =——_V- (poc,()u()) + IOOF(S <vp> . uO‘
p

a,0
Recalling A\ = pé’;ﬁ and developing (%) , momentum equation satisfies

@,0,8,0 /1 7pa0  ypB0
pa,thuoz_vpa,0+P 4 ( p p >’

,00 poz,O pB,O
a,0

__ P —V <pa,0 _|_pﬂ,0> '
p

Proceeding the same way with total energy equation, one gets

pa,Opﬁ,O Vpoz,O vp,B,U 0
0 a0 B0 ) U
P pe PP

pa,ODtEOL,O —_V. (pa,OUO) +

pcx,O

=-5; (vpa,o i Vpﬁ,o) a® — pOV . 0,

Remark 1. Defining F := w and T := p~', it is easy to check that if (p*, pP,u, E*, E?)
is a solution of the asymptotic model (6.4)-(6.5), one has

pDyT =V - u,
pDyu = —V (pa +p5) :
pDiE = -V - ((p"‘ +p5) u) .
One recognizes Euler equations for the mizture. The mizing pressure follows Dalton’s law as one

could have expected since we consider here non-reactive gases.

However, notice that unless each fluid follows a barotropic equation of state (p* = p“(p®)),
equation (6.5) must be solved to determine e®.

6-2.0.0.1 Next-order Hilbert expansion and effect on the concentrations The next
order of the Hilbert expansion is interesting to enlighten some peculiar behaviour of the solution
in the case of large but finite friction coefficient: 1 << v < 400. To this end, let us consider the
first equation of the system (6.3). It equivalently recasts into

Bp™ + V- (p°(@+ (1 — x)ou®) =0, (6.9)

where y := % denotes the mass concentration of fluid «.

Expanding this equation to the first-order gives same result as before, since 1’ = u

su®Y = 0.

0 and

Peforming now a second-order Hilbert expansion of this equation and keeping the first two terms,
we infer
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atpa,o,l 1V (paﬁ)o,l = ¢V - (pa,O,l (1 _ XO,l) (511&’1) + 0(62), (610)

where ¢%! := ¢ + ep!.

Injecting the value of Su®?! given by equation (6.8) into this expression, and using A = L

- x(1-x)’
we obtain:

a,0

Cancelling the indices, and recasting this equation into a semi-Lagragian form, we obtain the
following law for p®

p*Dir* =V -u+ p%v : (p“x(l - x)% <vf> ) +0(e?), (6.12)

where DY stands for the Lagrangian derivative at the velocity u. Note that, in this form, the
equation on p® exhibits a diffusive behaviour (in particular if we consider barotrope equation of

— [0
state p = p(p)). From the previous expression, using pD/*(1) = V - u and expanding § (%) ,

we obtain an equation on the concentration c
Dix ="V (x(1= ) (1= 0V = xVP7) ) + 0() (6.13)

This equation accounts for the diffusive regime of the concentration in the limit v >> 1. To
convince the reader, let us take the same simple equation of state for both fluid: p = Kp, with
K € R™*. We obtain then the following form for (6.13)

Dfx = gv (xX(1 = )KVY) + 0(é2), (6.14)

which together with the equations on p, pu, and pE = p®E* + pP EB verified by construction by
our model, gives the basic form of well-known simplified models (refer for instance to the model
E2M, Page 210 of [Senl4]). This analysis justifies, that we require our scheme to be able to
reproduce this behaviour. An easy way to check that in Lagrangian schemes is to calculate the
relative evolution of the specific volumes in the fluids a and S, since it must satisfy the following
equation for v >> 1

p* DT — pPDP7P = —ev . ((1 —X)Vp® — prﬁ) : (6.15)

In the analysis of the discrete version of the scheme, we verify that the scheme is consistent with

the discrete version of .

ju=- <(1 —X)Vp® — vaﬂ> . (6.16)

6-3 Cell-centered schemes

We recall briefly the multidimensional finite volume schemes [Maz07, DM05, MABOOQ7], since
it is the basis of this work. For convenience, we use the notations defined in [CDDL09|. In the
following, for all cell j, and for any quantity ¢, one defines its mean value ¢; := v% f] ¢, where
Vi = f] 1 is the cell volume. Also, let us denote the cell’s mass as m; := f] p = p;Vj, which is
constant in time in semi-Lagrangian coordinates (dym; = 0).
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r+1

Figure 6.1 — Illustration of C;, and N;T vectors at vertex r for a polygonal cell j.

We consider first-order schemes, so that one has the following relations

d d
— [ 1 =mjd — [ p;=0
dt /-~ "N dt/j’oj ’
d d
% /jpjuj = mjdtuj, % /jijj = mjthj.

Let 7. denote the set of cells connected to node r and let ®; the set of nodes of cell j. Also, let
us introduce Cj, := Vi V;, the gradient of the volume of the polygonal cell j, according to the
position of one of its vertices r. In dimension d, one has the relation V; = é ZTGR;‘ Cjr - x,. So
in cartesian coordinates, since the volume of a cell is independent of its position, one has

Vi€, > Cj=0. (6.17)
reR;

For more properties of Cj, vectors, one may refer to [CDDL09|. The cell-centered schemes we
consider in this paper have the following structure: for any cell j of the mesh one has

mjdtTj = E er - Up,

rER;
dtmj :0,
mjdtuj = — Z Fjr; (618)
reR;
mjthj = — Z Fjr Uy,
reR;

where the fluxes u, and F;, are defined for any node r

Vi€ g, Fjr = erpj - Ajr(uT - uj)a (6'19)
and Y Fj; =0. (6.20)
j€s,

On one hand, relation (6.19) is the matrix form of the acoustic Riemann solver (see for in-
stance [KIu08, Maill|), while on the other hand (6.20) imposes conservation.

In the following to simplify notations, we omit sets ®; and 7, when there is no confusion.

— If Aj = pjcjcﬁ%ﬁ‘j”, then (6.18)—(6.20) defines the Glace scheme [DM05, CDDL09].
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+ _ 1 1 - _ 1 1 -
— Let er = —5(Xr41—%;)" and er = —5(xp—%,-1)". If Ay := pjc; < INT] + N

the scheme (6.18)—(6.20) is Eucclhyd [MABOO7, Maill|. One has th + N3, = Gy, see
Figure 6.1.

N}, @N}, Nj?@Nﬁ)
)

These schemes are conservative in volume, mass, momentum and total energy. One easily shows
that they are entropy stable. These results can be found in [DM05, MABOO07, CDDL09, Maill],
for instance. Also, a consistency result has been established in [Des10b|. Both schemes are very
close to each other, Glace scheme is considered more precise and Eucclhyd more stable.

6-4 Asymptotic Preserving scheme in semi-Lagrangian coordi-
nates

Let us first introduce the following notations. We set p& := #L] > jeg, Pj and pp = pi! —i—pr Also,

P?u?”rpfuf pru J+p§ g
“+pr p?‘+pr
that satisfy ZTQ% i» = VjI. Matrices Aa are the standard “hydro-matrices” as defined in

Section 6-3.

we set U, := and uj, 1= . Bj, are symmetric and positive definite matrices

Remark 2. One can choose Bj, := V.1, where Vj, is the volume of the subcell associated to
vertex r of cell j. Another obvious choice could be for instance Bj, := #1% ViI.

Remark 3. Following [BDF12/, one could also choose Bj, := Cj, ® (x, — x;). However if in
that case one could hope to push that analysis further in terms of diffusion limit, since Bj, =
Cjr ® (x, —X;j) are not positive, one could not show anymore the entropy stability of the scheme.
We have run the tests of Section 6-6 with this choice without noticing large differences.

Observe that simple calculations allow to write

p, = ppud — pPsu®  and prljr = pruj — pf&u})‘. (6.21)

6-4.1 Reference scheme

Let us first introduce the following scheme that will be used as a reference scheme to illustrate
the advantages of our AP scheme — described by (6.24)-(6.26).

For each fluid o € {f1, f2}, one writes

dtm? = O,
m§drft = Cjy - uf,
r
m?‘dtu;" = — Z F?r — Z VprBjrfsu?, (622)
T r

mid,E; == FS.-ul = > vpuj, Bjouf,
T T
where U, and p, are defined as in Section 6-4.2 and the fluxes are given by
F}. = Cjpf — Aj.(uy —uf)

J

Z A ui ZAJT u; + Z Cjrpf- (6:23)
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It can be showed that this scheme is entropic, conservative in volume and mass for each fluid
and in the sum of momenta and total energies. Also, the scheme is weakly consistent with (6.1).
However, this scheme does not a priori preserve the asymptotic, see 6.D for some details.

6-4.2 Continuous in time semi-discrete scheme

We shall now present a multidimensional finite volume scheme written in semi-Lagrangian coor-
dinates that preserves the asymptotic.

This scheme will be the Lagrangian step of our ALE method. In this step, each fluid is associated
to its own mesh. If the meshes may evolve differently, we assume that they coincide at the
begining of the Lagrangian step. The rezoning/remapping procedure that is detailed in Section 6-
5 is used to ensure that the meshes will coincide for the next Lagrangian step.

We first focus on the semi-discrete continuous in time scheme. Most of the properties of the
scheme are proved using this simpler formulation without any lost of generality. In Paragraph 6-
4.3, we describe the fully discrete scheme. It is analysed in the remaining of this section.

Let o € {f1, fo} denote one of the two fluids and 8 the other one, we define the scheme

a a _ B
mSdT; —g Cjr - uy,

dtm‘;‘ _0,

m§diuf = Z | Z vprBjrouj, (6.24)
T T
midEj = — Z Fj. -uy — Z vp,L Bjroud + Z I/prﬁ;fprBjr((Suf‘ — 6uj),
T T T
where the fluxes are given by

Fj. = Cjpj — Aj.(u; —uf) —vp,Bjduy, and (6.25)
Z F% = 0. (6.26)

Injecting (6.25) in (6.24), and using (6.21), one gets the alternative form

a a_§ : L@
m]dtT] — qun ur,

dtm 0
m; dtu ZA Ql ‘|‘1/Z,0r jr ug_éu?)> (6 27)
m?th;?‘ Z erp] uy + Z uO‘TAO‘ o )+ v Z pB 5u°‘TB rouy

- I/Zp'B 5u°‘TB (duy —duf) + VZPT uj Bj.(du® — duy).

This form enlightens the fact that knowing the fluxes (ug, u? ) at any vertex r is enough to define

the scheme. We shall now show that these nodal velocities are well defined.

Injecting (6.25) in (6.26) allows to calculate (u®,u?). Obviously, as soon as v # 0, both nodal
velocities are coupled at vertex r. Omitting boundary conditions for the sake of simplicity, each
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vertex of the mesh (u?, u? ) is the unique solution of the following linear system:

S (A e () - e ).
, —vprBjy AjT—FVpTBjr u, - A u; + Cjp;

g Jr =g

Az:z b,,‘::

Proof. Since matrices A§, and Bj, are symmetric, A} is also symmetric. To prove that (u, u’ ) is

unique, it remains to show that it is positive definite. Elementary calculations give, ¥(v®, v” ) €
R? x R?,

(v V) Ay (v v =T 37, v 4 vAT ZA?T vP
J J

+ (v —vhHT Z vpeBjr | (v —vP),
J

which is strictly positive if (v, v?) # (0, 0) since matrices > Aj. and Y, vp,Bj, are positive
definite. [

The scheme being well-defined, we now establish its properties.

6-4.2.1 Nodal velocities a prior: estimates

Here, we establish estimates for the nodal velocities with regard to the frictionless case. These are
actually some instantaneous stability results with regard to the mono-fluid schemes [CDDL09,
MABOO7], i.e. velocity fluxes are controled by the frictionless ones.

Property 3 (A priori estimates). For each fluid o € {f1, fa}, let ur"” denote the nodal velocities
at vertexr. Let AY := Zj AS,. and B, = Zj Bj,. Let B denote the other fluid, then one has the
following relations, Vv > 0

uff’”TAffuff’” + uf’”TAfuf”’ < uff’OTA?uff’O + uf’OTAfuf’O, (6.28)
T 1
(uﬁ"” — uf’”) B, (uﬁ"” — uf’”) < —Vp (uﬁ"OTA;f‘uff’O + uf’OTAfuf’O) , (6.29)
T
T T
and (u?’” — uf”’) B, (u?’” — uf”’) < (uﬁ"o — uf’()) B, (uff’o — uf’o) . (6.30)
Proof. See 6-2.1 Page 149. |

Let us comment on these estimates. The estimate (6.28) is a stability result. It shows that the
nodal velocity ||(ur"”, uE’”)HAQ is bounded by |(u2?, uf’o)HAg independently of v. It shows that
friction nodal velocities are stable with regard to the classic frictionless case for a given state.

The second estimate (6.29) shows that the nodal velocity difference ||[dus” || 5, is at most O(v~1/2)
according to H(uff’o,u?’O)HAg. In 6.C, we show numerically that one can obtain O(v~!) and
that (6.29) may not be optimal.

The last inequality (6.30) states that the nodal velocity difference is bounded by the frictionless
case independently of v in the || - ||, norm, which is purely geometric.
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6-4.2.2 Conservativity
Property 4 (Conservation). The scheme defined by (6.24)-(6.26) ensures conservation of mass

and volume for each fluid o or B. It also ensures that the sum of the fluids’ momenta and total
energies are conserved.

Proof. See 6-2.2 Page 151. [ |

6-4.2.3 Stability

Before announcing this result, we recall that the fully discrete scheme’s stability is presented
bellow (see Paragraph 6-4.3).

Property 5 (Entropy). The first-order continuous in time scheme defined by (6.24)-(6.26)
satisfies the following entropy inequality VYo € { f1, fa}

1 1
m$ T dng > 3 Zl/pf 5u$‘TBjT(5uf + 3 Zl/pf 5u§‘TBjr6u§‘ > 0.
T '

This inequality is consistent with (6.2).

Proof. See 6-2.3 Page 151. |

6-4.2.4 Asymptotic preserving

We now establish the main result of this paper. It consists in stating that when the friction
parameter v tends to infinity, the scheme (6.24)—(6.26) behaves asymptotically as a scheme that
is consistent with the asymptotic model (6.4)-(6.5).

To this end, we first compute the asymptotic scheme by means of Hilbert expansions, then we
show its consistency with the asymptotic model. This later result relies strongly on B. Després’s
work [Des10b].

Asymptotic scheme. IfVa € {f1, fo}, Vj, (p§,uf, ES') are constant cell data, then the scheme (6.24)~
(6.26), behaves asymptotically as

(m§ +m{)dyu; = ZF ZF]T, (6.31)

4V =m§der® =Y Cjy - uy, (6.32)
T
dtm? = 0,
pO‘p’B AN\
mid B = Z Cjrpf - uy + ZuTAa —u;) — Jpjf > uls <pfj> (ur — u;),
T
(6.33)
where u; = uj = u?, and where nodal velocities u, = uf = u? satisfy

FS, + ) = Cyr (5 +0)) = (A% +45,) (ur — w),
and ) F$. =0. (6.34)
J
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Formal derivation. See 6-2.4 Page 152. |

In order to establish that the scheme is asymptotic preserving, it remains to show that the limit
scheme (6.31)—(6.34) is consistent with the asymptotic model (6.4)—(6.5).

Before establishing this result, we recall the fundamental result by B. Després [Des10b], that we
adapt to the present context.

apo Bph
Property 6 (B. Després). Let mj :=m$ +m§, pj = p§ +p§, T = ,0; and E; %.
J

Then, the monofluid (Glace or Eucclhyd) scheme defined for a mizture

dtmj = O,

m]'dtTj = Z er Uy,

T
mjdtuj = — Z Fjra
T
mjthj = — Z Fj,« - Up,
where  Fj, = Cjp(pf + ) — (A5, + AL ) (u, — ),
and Z (AG, + AT Jup = > (A5, + Afu; + Y Cr(0 + 7)),
J J

1s weakly consistent with the following system of equations

pDiyr =V - u,

pDru = =V (p* +p),

pDiE = =V - (p* + p°)u.
Proof. The proof can be found in [Des10b]. [ |

Remark 4. In order to establish the following Property 7, we kept intentionally AJO-‘T and p§

for both fluids in the fluzes expressions. Actually, to retrieve the result in [Des10b], one has to

define sumply the mizture pressure p; := p§ -l—pj and Ajr = Aj + A’B which is actually the

monofluid Aj. matriz defined by the mizture sound speed: pjc; = pjci + pf ]'B

Property 7. The limit scheme (6.31)-(6.34) is weakly consistent with the asymptotic model (6.4)—-

(6.5).
Proof. See 6-2.5 Page 154. [ |

We now study the diffusive regime. According to equation (6.B.11) page 153, one gets the
following identity for (5u?"1 — su?
A9\
Zé ( pjir> (u? — u ﬁ Zp —suth). (6.35)
. j

p]pj T

As explained previously, it has been proven in [Des10b], that the left hand side of (6.35) fulfills
the following weak consistence relation

ZT: ( )a (u) —uf) = 5<Vpp>a1§zj(x). (6.36)
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On the other hand, ), Bj,¢, acts as an averaging operator over the cell j, and
L3 B —but) = V5 (5uj1 ~Su “1]) (6.37)
pJ p] T p] pj
For smooth enough solution, equations (6.36) and (6.37) suggest that
a,l al o
ou;™ —oup” & A Lo, 0, (6.38)
~ 5 (1 =x)Vp™ = x V).
Comparing this last equation with (6.16) and since
ZC]T ( al —5ua 1) = _ZCJT (511;3(71,
T
= —€ Z Cj - ouy,
T
we find an expression weakly consistent with (6.15) for the evolution of the difference of the
specific volumes of the two fluids.
6-4.3 Discrete scheme
We now describe the fully discrete scheme. One defines the following scheme for each fluid a €
{f1, f2}, B denoting the other one,
7.om—l—l a
mg Z cr. - ul", (6.39)
uan—i—l ua”
m;"J— Z F¢ Z vp, Bj, 5uo‘"+1 (6.40)
Ean+1 Ean
g = YR gt s+ Yot B (u - ),
(6.41)
where the fluxes are computed explicitly as
Fi" = Chpf" — A" (ul™ —u§™) — vp, Bj.oul™, (6.42)
and Z AZ ™ + Z vpy Bj,.6uy" = Z AZMad" + Z Cpi". (6.43)

To complete the scheme definition, observe that we introduced the following mean velocities

B ﬁn+1
. P an+1+ u” uan BT . .
afl.=0 by and u; % which rewrite
ir pan+ol P10}
—n+1 n om—l—l BN e an+l n— (AL B¢ an
pr Jr = pruy — Pr 511]- and prur = POy — Py 5u7‘ : (644)

Similarly to the semi-discrete case, for convenience, we substitute the flux expression into mo-
mentum and total energy balance equations and use (6.44)

uan+1 ué”n

m;”— Z A% )+ v Z prB(Sul™ — sus" ), (6.45)



ASYMPTOTIC PRESERVING SCHEME IN SEMI-LAGRANGIAN
136 COORDINATES

Ean+1 Ean
_ § : n ., an om § : anT Ocn uén an
m] - A, ____ — - erp] + u A r - uj )

+v Z " 6u0‘"TB" oud" + v Z pru o‘"“ BY, (dup™ — 6u§-""+1)
—v Z " 5u§m+1TB;‘T (bug™ — 5u§‘"+1) . (6.46)

One should have noticed that cell velocities uj are solved implicitly. Since 5u§m+1 are used to

compute total energy variation, one has to compute it first. The local linear system associated
antl yelocities is given by equations (6.40)

with uj
m§ + Aty vp'B —AtY vp'B u;?‘”H [ miuit = ALY FL
—-Aty . Vp”B" m +AtY . Vp”B” u?nﬂ B mf pn_ Aty F '

It is easy to check that this linear system is symetric and positive definite if B, matrices are
symetric and positive.

6-4.4 Stability of the discrete scheme

In this section we establish that the scheme is stable for arbitrary equations of state: there exists
At > 0 such that for each fluid « € {f1, fo}, Tjo‘”H > 0, 6?‘”“ > e(T = 0) and 77;?‘”+1 > ;"
For the sake of simplicity, and without loss of generality, we will consider in the following the
case e?‘”“ > 0.

Actually, we will provide explicit timesteps for the positivity of density and internal energy, but
we will only show that the increasing physical entropy timestep will be greater that the one of the
mono-fluid case for given velocity fluxes, for which we established Property 3. The main reason
is that there only exists existence results for entropy stability for cell-centered semi-Lagrangian
schemes (even in 1D), see [Des01, Gal03].

6-4.4.1 Positivity of density

Since p = p(p, e) one has to ensure that density cannot be made negative.

Property 8 (Positivity of density). Assuming that Vo € {f1, f2}, Vj € M, p}" > 0. Denoting
C*" the set of compressive cells for each fluid o, C*™ := {j eM/>, Cl -ul" < O}, there
exists AtP > 0 such that,

jOé'fL
B Zr C;LT up” '
Then, the scheme (6.39)—(6.43) defined by At € |0, AtP] ensures that
Vo € {f1, o}, VieM, pi"t>o0.

Va € {fl)fZ}) vj € CONL’ AtP <

Observe that, as expected, only compressive cells (j € C*") can lead to negative densities, so in
the case of non-compressive flows, At” may be arbitrarly large. Also, in the case of trianglular
meshes, this constrain implies that no cell will tangle during the timestep.

Proof. Obviously, this is equivalent to show that TO‘"‘H = ﬁTl‘“ > 0. According to (6.39), one
j

has
7_jan+1 an + =Y Z C
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So, one has the following alternative:
— if j ¢ C*" that is 3, C% - u™ > 0, then VAt > 0 one has TJ»O‘”H > 0,

o

— elseif j € C*", one has ) C7.-u™ <0, then VAL < T?R#W, one has 7'3‘?‘”+1 > 0.

Since % > 0, the existence of such a At > 0 is obvious.
T Tgr T

6-4.4.2 Positivity of internal energy

First, as a primary result, we give internal energy variation for fluid « € {f1, f2}, 5 denoting the
other one.

Lemma 1. After one time step of scheme (6.39)-(6.43), internal energy is updated as

At
Gt = e 2 [Z<u?"—uf">TA‘”< 5 Zp?"c%“f”]
J T
At
+ Vm !Z ,OB 6uomTBn 5uan + Zprn 6uom+1 Bn (6 ]oerl o (511?”)]
J

2
2
t 5 (,,Z pp BR(Jug™ T — 5ug")> . (6.47)

Proof. See 6-2.6 Page 155. |

2
AtZ an an an
ey (ZAjr (uf" —uy )>

J T

Actually, (6.47) can be rewritten as

At
e;m-i—l _ eh?m-l-l + v— [Z p,B 5uomTBn 5uom + Zpb’ Su om+1 Bn (5 an+1 5u7onm)]

m;
2
M(VZ;)"B” ug" ! (5uff")> . (6.48)

denotes the obtained internal energy without friction: i.e. substituting nodal
into the classic mono-fluid scheme. The remaining terms can be viewed as the
heating due to the friction.

where ehO‘"H

VGlOCltleb ul”

Corollary 1 (Page 151) allows to give a lower bound to e;‘"“

an+1 an+1 At
j 2 ehj + l/mq
J

1 n T 1 n 1T 1
e 5 Z Py ou™ Bioup" 4 3 Z pl" oug™ e BY gugnt
T

2
(VZp”B” O‘"+1 5u7°f")> , (6.49)

an+tl , since friction terms are positive.

which implies e antl

>€h

Property 9 (Positivity of internal energy). Assuming that Voo € {f1, fo}, Vj € M, €™ > 0,
there exists At > 0 such that the scheme (6.39)-(6.43) ensures that

VAL €]0, At[Va € {f1, f2}, Vi€ M, 5" >0.
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Proof. The proof is obvious since e]‘?‘”+1 > eh?‘”+1 and since e;ﬁ-‘"“(At} is a polynomial of de-

gree 2 satisfying eha”“(O) = e7" > 0. At® is nothing but the smallest root of these polynomials
for each cell of each fluid. |

6-4.4.3 Entropy stability for general equations of state

In the previous paragraph, we provided explicitly a choice of At > 0 that ensures positivity of
internal energy and density for the proposed scheme, but this is not sufficient for stability. In
this section, we give an existence result of a strictly positive timestep At that ensures production
of physical entropy for arbitrary physical equations of state.

Property 10 (Entropy). Let U := (T, uT,E)T and let n the entropy. There exists At" > 0 ,
such that Vo, 5 € {f1, fa}, a # B, if the pressure law p® : (p,e) — p“(p,e) is a differentiable
function, then the scheme (6.39)—(6.43) defined by At = At" ensures that,

1. the scheme is entropy stable:
vjieM, (U =0 (UF7),

2. and Vj € M, one has the following alternative. If Vr € R;, Cl.-uy™ = CJ - uj" and
oud™ — 5u§‘"+1 =0, then

an+1 an
(U™ ) — (U5

9" m§ A7 > v Z o2 6u‘mTB” Jur™ + O(At),
else ( e
77 Ujan Ua'rl B T
3" mg A7 >v Z Py ouy™" BY Sup™.
Proof. See 6-2.7 Page 156. [ |
Remark 5. Let us comment point 2 of Property 1 0 Actually, this is a consistency result with
regard to (6.2). In the first case (if Vr € 17(; .- = CJ,-uj" and 5ua” - 5u°‘”+1 =0), the
scheme gives following values ,00””rl =p", O‘”“ uJ " and ea"+1 2ty Z pr (5u0‘"TB” oud’™.

In this case, the scheme acts simply as a ﬁrst order ODE SOl’U@T’. Smce then dn = de and since
n is strictly conver, a time integration error is to be expected.

To sum up, we proved that the proposed scheme is stable, meaning that there exists 0 < At <
min(At?, At¢, At") such that the scheme is entropy stable and preserves positivity of density and
internal energy. Moreover, it is consistent with (6.2).

6-4.4.4 A lower bound to At®?

As stated before, to prove that the scheme is asymptotic preserving, it remains to show that
limy, 1o At®Y # 0. Even if we will not provide here an explicit value, we will give a lower
bound independent of v.

T
Property 11. Vj € M, let (T}l,u?T,Ej”) denotes the initial state of fluid o € {f1, fa}.
Let {u,}rcg;, be an arbitrary set of nodal velocities (or velocity fluzes). Then, if Vv > 0,
(T]l-"nH e'{’nJrl) denotes the thermodynamic state obtained by scheme (6.39)-(6.41), one has

777
vn+1 vn+l O,n+1  0On+1
77(7-] ,6]- ) 2”(7-] ,6]- )7



AN ASYMPTOTIC PRESERVING MULTIDIMENSIONAL ALE METHOD FOR
A SYSTEM OF TWO COMPRESSIBLE FLOWS COUPLED WITH FRICTION

where n = n(7,e) is the physical entropy expressed according to the independent variables T
and e.

Proof. Gibbs formula reads V. .n = T( ) where T := T'(1,e) is a positive function. So, for any
7, n(7,-) is an increasing function.
Since (6.39) is independent of v and according to (6.49), one has
V{u,}rex,, Vv >0, VAt T]'-j’nJrl = T]Q’nH and e?’nJFl > 6?’““»
S0

J ] J ’]

v{uT}TEKjJ Vv > O, VAL n (el.”n'H 7—’,’7""‘1) > (GQ’H—H 0n+1)
|

Property 11 establishes that, for an arbitrary set of nodal velocities {ur}reg@, the maximum
timestep required for the scheme to be stable is greater for any v > 0 than for v = 0. We recall
that for the asymptotic scheme (6.31)—(6.34), the nodal velocity is solution of

I L M R A D 3L A CE)]
- j

J

One recognizes the solution of the nodal solver in the monofluid case with a Dalton mixture law.
So, the timestep lim,_, 1o At®" is lower bounded independently of v.

6-4.4.5 On the importance of the implicit velocities in (6.39)—(6.41)

Using the notations defined in Section 6-4.3, let us consider the fully explicit scheme that consists
in replacing momentum and total energy updates in (6.39)—(6.43) by their explicit counterparts

uan—i—l ua”
m?‘J— Z F Z vp, Bj.0uj",
Ean+1 Ean
gy = S e W B S gl B (G ).
Using this scheme, one easﬂy checks that internal energy variation reads
an+l _ an At an an\T pan/ . .an anon an
¢ o | (" = u) A (uf ij Cj - up
J r
At
+tv— [Z " 6u‘mTB” Jud™ + Z " 5u°‘"TB” (0uj” (5u7°fn)]
J
At? ’
n n n n n
— 5w > ALt =) + v Y pr By (0ust = sul) |
J T r
That is

At
6?n+1 _ eh?erl tr— [Z pﬁ 5uomTBn 5uom + Zpﬁ 5uanTBn (5 ?n _ 5u7on¢n)]

J

t2 n n an an an an an
(1/5 pr B ( —u) ))(g A" (i —uy ))
ATtQ ’
_qu2< § an(5 om_(s om)> ’

J r
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an+1
J
a negative factor of 2, in the explicit case, VAt > 0 for large values of v, one can have e?”“ <

eh?”ﬂ. So even if a similar result to Property 10 can be established (existence of an entropy
stable timestep), one cannot prove an equivalent of Property 11. If cell velocities are explicit,

one eventually gets lim At®= lim At" =0 for a given set of nodal velocities {u, },cx; -
v——40o0 v—+00

where e, still denotes the obtained internal energy without friction. The later term being

6-5 ALE scheme

The semi-Lagrangian scheme presented in this paper is defined assuming that both fluids meshes
are identical at the begining of the timestep. One understands easily that this is of huge help in
the construction of an asymptotic preserving scheme. One could imagine a purely Lagrangian
approach, but even dealing with a non-AP approach seems very difficult since one would have
to consider meshes intersections and complex geometrical calculations.

Thus, the algorithm we propose in this paper consists in ensuring that for each timestep both
fluids meshes coincide. To do so an ALE formulation is mandatory.

L
InAmy

t=t" t = t"*! Lagrangian t =t"t1 ALE

Figure 6.2 — Left: at time ¢ = ", both fluids share the same mesh. Middle: at the end of the
Lagrangian phase, one gets two different meshes, one for each fluid. Right: meshes
are displaced so that they coincide. Solution is remapped and a new timestep can
be performed.

Figure 6.2 depicts the general ALE case. Our ALE method is a Lagrange-rezoning-advection
procedure which ensures that the solution is defined at time t"*! on a unique mesh.

— At time ¢" solutions are discretized on the meshes My = M

— In a first step (Lagrangian phase), each mesh evolves in a different way 9(/[07*1 =+ 9[/[[;”1.
Each mesh being defined by gt x + Atuy™.

— Then the meshes are smoothed in a way to obtain new meshes such that M+ = Mé‘“.

+

For each fluid «, it allows to define an arbitrary velocity vy "1 guch that x = il

Aty& L

— Finally, for both fluids, the numerical solution is computed on the common mesh by remap-
ping the conservative variables (p®, p*u®, paEa)T at velocity —v;' ’"H, with a second-order

accurate scheme. One can then compute another timestep.

In the test problems we have experienced three ALE strategies. First strategy consists in

remapping both fluids on the inital grid for each time step n. Consequently Vo € {1,2}, vy ol
n_go,ntl
%. Second strategy consists in considering that one fluid is Lagrangian (for instance

fluid 1) and to remap the second fluid on the first fluid grid at each time step. In this case,
~1,n+1 ~2n+l1
vi"™ =0 and vZ"T = *r——7r——. Third strategy consists in performing an iteration

of barycentric smoother to one of the mesh (for instance 9V[1"+1) at the end of each Lagrangian
step, then consider this new mesh as the initial common mesh for the following step, and finally
deducing the advection velocities for both fluids. The algorithm involved in the projection step
is classical and aims at solving the equation 0y = 0, V¢ on the whole domain €2, from step n to
n+ 1. The point of view we choose in this work is called "sweeping” in the literature [Ben92|. It
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consists in considering this step as a transport problem from the domain Q" to the domain Q"*1.
The algorithm we use for this step is consistent with the previous equation, conservative for the
variables p%, p?, p*u?, pPu?, p*E* and pPEP, and preserves the local maximum principle.In
consequence, the properties of the Lagrangian step remain valid for the global algorithm. Even
if the problem is formulated as an advection step, we insist on the fact that the aim is only
to project the solutions from one grid to another one, and no physics is involved. However, in
practice, the remapping could artificially increase the gap between the velocities of both fluids.
This is why we perform most of the test problems with the three strategies to evaluate this effect.
We found this impact negligible, and then we consider that the Asymptotic Preserving behaviour
is not affected by the remapping step, for these ALE strategies.

6-6 Numerical tests

6-6.1 Reference scheme

Let us recall that the reference scheme (6.22)—(6.23) is entropic, conservative in volume and
mass for each fluid and in the sum of momenta and total energies. Also, the scheme is weakly
consistent with (6.1). One can moreover show that its associated discrete in time scheme, where
only u; terms are implicit, is stable in the same way as scheme (6.39)—(6.43).

However, this scheme does not a prior: preserve the asymptotic. For these reasons this scheme
is a very good candidate for the comparisons we perform in this section.

6-6.2 Test conditions

In all the followmg tests, we choose Af, = pfcf >, (Eucclhyd scheme) and Bj, = Vj, I,

HNZ H
with Vj, = #R; Vj. Also, for each test one chooses v* = =~8 =14.

Results are compared with the non-AP scheme (6.22)—(6.23). Also for the 2D tests, we compare
our results (v >> 1) to the mono-fluid case, where mass fraction paprﬁ is treated as a passive

scalar.

As it is often the case for multi-velocity models [SA99], the scheme is only defined in regions
where both fluids are present. Thus in regions where a fluid should be absent, one keeps a
neglectable amount of it. In the tests, we use the ratio ¢ = 1073 to define the negligible amount
of fluid at initial time. Lower values such as 107% can lead to instabilities of the scheme since
the thermodynamic initial state is very challenging.

6-6.3 Sod shock tube

This test is taken from [Ena07]. The computational domain we consider is Q :=]0, 1[x]0, 0. 1[
Initial data is given as U := (p,u,p)”, so that one defines U* := (1,0,1)”, U := (0.125,0,0.1)”
and U® := (¢,0,¢)T. For both fluids 1n1t1al states are then

U® =15,05(U" = U%) + 1jg51(U° and  UP = 1y905U° + 1jg51((U = U?),

where 1o denotes the characteritic function of the set O and where we take ¢ = 1073.

On Figure 6.3, we compare the solution at time ¢t = 0.14 obtained by the proposed scheme (6.39)—
(6.43) to the reference scheme (6.22)—(6.23) in the case ¥ = 1000. One plots the density sum:
p® + pP. The grid is 20023 cells and the solution is compared to a reference solution obtained
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Figure 6.3 — v = 1000. Top: density p® + p? profile. Bottom: internal energy %.
AP-scheme (left) gives a much better solution than the non-AP scheme (right).

using a 10* x 3 grid. The simulation is Lagrangian: the left fluid imposes the mesh to the right
one.

The same test is performed for a friction parameter ¥ = 10%. The density sum is presented on
Figure 6.4 at time ¢t = 0.14.

One retrieves the results presented in [Ena07]|, even if the scheme does not degenerate in 1D to
the scheme proposed in [Ena07].

6-6.4 Triple-point problem

The triple-point problem is a standard benchmark [Lou05|. It is a multidimensional Riemann
problem whose data are close to the Sod shock tube. The self-similarity of the problem yields an
infinitely rolling vortex, the quantity of the details generated by the secondary Kelvin-Helmoltz
instabilities depends only on the numerical dissipation of the scheme. Figure 6.5 depictes the
initial geometry and the initial three states.

Let us define p* = 1, p!' = 0.125, p» = 1 and p' = 0.1. Also, Q; =]0, 1[x]0, 3], Q2 =]1,7[x]0, 1.5]
and Q3 =]1,7[x]1.5,3[. This allows to define the initial states of both fluids:

pl —¢ € pl—¢ I
U® =1q, 0 +1g,00, [ O and UP =1g, 0 +1q, 0 +1q,
pl —€ € pL —€ pl —€

Symmetry boundary conditions are set at each straight boundary of the computational domain.

€
0
€
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Figure 6.4 — v = 10%. Top: density p® + p® profile. Bottom: internal energy %. AP-
scheme (left) gives a much better solution than the non-AP scheme (right). The

expected solution is close to the classical mono-fluid case.

The ALE strategy we use for this test consists in a barycentric smoother for the grid of the
fluid a and then to impose xP = x<.

We run the test on a 91 x 40 grid. Choosing the friction parameter v = 10%, we compare the
obtained result to the solution of the mono-fluid solver and to the non-AP scheme, see Figure 6.6.
For the comparison, we plot the mass fraction in each case: ap: 5. One notices the nice agreement
of the solution for the proposed scheme with regard to the mono-fluid case, even for this small
amount of cells, whereas the non-AP scheme is not even able to compute the large structures of
the flow at this grid resolution.

Then we study the effect of the friction parameter. Figure 6.7 presents the obtained solutions,
on a finer 210 x 90 grid, for v € {10,100, 10%}.

php! L5

Figure 6.5 — Geometry, pressures and densities for the triple-point problem at time ¢ = 0.
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Figure 6.6 — 91 x 40 mesh. Mass fraction of fluid « at time t = 5. Left: mono-fluid solution.
Right: bi-fluid solution with v = 10°. Bottom: bi-fluid solution with non-AP
scheme with v = 106.

6-6.5 A Rayleigh Taylor instability

For this test, we modify the scheme in order to incorporate the gravity treatment. Obviously, we
use a well-balanced approach [CL95] to take this term into account. For this modified scheme,
the properties we established for (6.39)—(6.44) remain true. We did not take the gravity term
into account in Section 6-4 to avoid a more complex presentation, since there is no additional
difficulties to overcome.

The interface perturbation is defined by the function f(y) = 0.05cos(87y) and centered at
x = 0.35 in the computational domain € =]0,0.7[x]0,0.25[. Thus, two regions are defined:
Qo ={(z,y) € Q/x <035+ f(y)} and Qg = Q\ Q.

Initially, velocities are set to 0 in €2, and densities are defined as

p* =10,(0.8 —¢) + 1g,e, and P’ =1qg.¢+ 10,(0.25 —¢).

Choosing the gravity acceleration as g = 9.8 e,, we define the pressure in the whole domain at
a quasi-equilibrium state (omitting the y dependancy), that is

p(x) :/Oz (ﬂ“+pﬁ)g-ex.

Again, symmetry boundary conditions are imposed all over 0€). We represent the mass fraction
of fluid « that is paprB. We use the same ALFE strategy as in the previous test: a barycentric

remapping is performed on the mesh of fluid a and we set Mé‘“ = M+ to allow the calculation
of timestep n + 1.

At first, we validate the approach by comparing the obtained result to the mono-fluid scheme.
The results are presented on Figure 6.9, one observes again a very good agreement even on a
112 x 40 coarse grid. As expected, the non-AP scheme clearly shows lack of convergence.

Finally, we study the influence of the friction parameter v for successive values of 100, 1000 and
10%. A slightly finer grid (224 x 80) is used for it.
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Figure 6.7 — 210 x 90 mesh. Time t = 5. Mass fraction of fluid a. Effect of the friction parameter
v. Left: v = 10. Right: v = 100. Bottom: v = 10°.

0.01

—>

Q4 Qs 0.25

0.7

Figure 6.8 — Rayleigh-Taylor test initial geometry. Fluid a being heavier than fluid g, instability
will grow.

6-7 Conclusion

In this paper, we presented a multi-dimensionnal asymptotic preserving scheme to solve a bi-fluid
model defined as a set of two Euler systems coupled with a friction term. The originality of the
approach is that the scheme is ALE: the only constrain being that meshes must coincide at the
begining of each timestep.

The scheme is conservative and weakly-consistent by construction. Moreover, we showed that
it is at least as stable as the underlying hydro-scheme in the sense that the timestep required
to increase entropy does not tend to zero when friction increases. We showed consistency of
the limit scheme (v — 400) to the limit model. So, we proved that the scheme is asymptotic
preserving. On the way we proved some stability results with regard to the fluxes u,, which
give some bounds independently of v (Property 3), and complete the numerical analysis of the
scheme.

The numerical results show that the scheme behaves as expected and appears to be a good
candidate to study interpenetration mixing [SC02]|, which is the goal of this work. Actually, all
the results ! can be established with a varying positive friction v. In the paper we kept v constant

1. If friction parameter depends on the cell data (v = v;), Property 3 takes a slightly different form.
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Figure 6.9 — 112 x 40 mesh. Mass fraction of fluid a. Time ¢ = 0.7s. Top: mono-fluid solution.
Middle: bi-fluid solution with v = 105. Bottom: bi-fluid solution with non-AP
scheme with v = 106.

for the sake of simplicity. The numerical analysis and tests are performed in 2D, however the
analysis in 3D is completely unchanged.

On the numerical point of view, a second-order accurate version of the scheme would be of
interest. However, this is not an easy task for two main reasons. First, on the theoretical point
of view, establishing properly the asymptotic preserving property would be challenging. Second,
using a Runge-Kutta-like approach to get second-order accuracy in time would probably impose
to incorporate the remeshing into the time integration or to consider a one-step approach.

Another extension is to introduce more physics in the model. The friction coupling is a very sim-
ple approach, one could use more appropriate closures based on the presented work. For instance
see [SC02| in which this kind of model is used to accounts for eddy diffusivity, or [BDDM11]
where Lorentz forces are taken into account in a ion-electron mixture.
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Figure 6.10 — 224 x 80 mesh. Time ¢t = 0.7. Mass fraction of fluid a. Influence of the friction
parameter. Top: v = 100. Middle: v = 1000. Bottom: v = 10°.
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Appendices

Appendix 6.A Asymptotic Preserving scheme in dimension one

We give in this section the one dimensional version of the scheme proposed in Section 6-4. The
derivation is similar in many aspects with the work of Enaux [Ena07|, and we invite the reader
to refer to this work for more details.

For the 1D-version of the scheme, we propose some modifications of the notations, in order to
mimic the usual 1D framework of Riemann solvers. Instead of noting r the nodes of the cells,
we use j — 1/2 and j + 1/2, to design respectively the left-sided and right-sided nodes of the
cell j. We also use the standard notations p* and w* for the Riemann pressure and velocity.
With these notations, in 1D, the 2D vectors Cj;, reduce to —1in j —1/2 and 1 in j + 1/2. The
2x2 AJO-‘T and Bj, matrices reduce respectively to the scalars p§cs and Axj/2. In this framework
the scheme (6.39)-(6.41) becomes

an—‘rl _ Fan
a ] ] % ok
My Ay Y2 T Yimrye (6.A.1)
uqn+1 — uon v
J J _ QL% QL% n—‘,—l
m]aT = (pj+1/2 - pj—1/2> - 5(/’?—1/2 + 01 2) A oug" T, (6.A.2)
+1
anqm - qum o % ok o,k ax
m; At Pii1/2%ip172 — Pjo12%i 12

V rY: K rY: b
- (s1jo W00 o + P Ty o805, ) A

4 — % — %
+ 9 (p?+1/2u?,j+1/25uj+1/2 + p?fl/Zuzjflﬂéuj—l/?) Ax?
2

v T —n 7 —nNn an n
5 (P + 02T ) B Aa (6.A.3)

We emphasis that the discretization of the source terms in Eq. (6.A.3) is more complex than the
one in [Ena07] p.128. We found it necessary for our multi-D proofs, in particular the entropy
and AP behaviour. However, if we consider only the barotropic case (no energy equation and
p§(p§)) we recover the same discretization of the conservations laws as in [Ena07| pp114-121
except for the definition of the mean velocity (called w7, | /o in this work and @ in [Ena07]) which
is slightly different.

The associated Riemann solver in 1D reads:

14
% _moan ang akn an 7 n n S, 0%
Pil1/e = Pj p;c; <uj+1/2 uj+1/2) ijH/QAx] Uz Yy o0 (6.A.4)
% _an a,n _o,m Q,x,m a,n V n n Q%
and pj+1/2 =Djt1 + pj+1cj+1(uj+1/2 — Ui ) - §pj+1/2Aa;j+15uj+1/2. (6A5)

This solver is very similar to those proposed by Enaux [Ena07|. It combines the acoustic Godunov
approximation to the usual trick of getting well-balanced scheme by incorporating the source
terms into the solver. There are different ways to incorporate the source terms into the solver, the
more grounded theoretically being described in [Gos13, DB16], leading to the above expression.
In 1D and in the barotropic approximation, both conservation laws discretization and Riemann
solver are very close to those in [Ena07], and all the proofs (including asymptotic behaviour) are
the same.

Using the framework of well-balanced schemes leads however to a different discretization of the
source terms (also different from what is proposed in [Ena07]). Then the system (6.A.1)-(6.A.3)
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reads
an+1 Tan
J J ok Q%
m]aT =y UG g (6.A.6)
uqn+1 uem v
J i _ * * % ntl * ntl

mj Al == (p?+1/2 _p?71/2> - 5(9?—1/25“?71/2 + :0?+1/25“?+1/2 )JAzy,

(6.A.7)
aE;?ln_H _E;?l” _ o,k a,k ax L ax
m; At =7 Pjr12Y12 T Pim1j2%io1y2
v a7 ) a7 ) n
-3 (p;?+1/2 u?+1/25uj+1/2 + P12 u;-‘_l/Qéu?_*l/Q) Az (6.A.8)
The multi-D counterpart for this scheme should be (following |Fral2|)
Tan-l—l Oc
mg-L——I Z C} - ux™, (6.A.9)
uom-i—l ua”
m;’]— Z F Z vpy Bj.oup", (6.A.10)
T
Ean-l—l Ean

g S = St w B (6.A11)

However, we were not able to prove the asymptotic preserving property for this scheme. More-
over, applying it to the test problem 6-6.3, we found that the scheme (6.A.9)—(6.A.11) produce
oscillations on du; which are not observed with the scheme (6.39)-(6.41) proposed in this work.

0.012

0.01

0.008

0.006 [

0.004

0.002

-0.002

0 0.1 02 03 0.4 05 0.6 0.7 0.8 09 1

Figure 6.11 — “Sod shock tube”. v = 10°. Comparison of the du; obtained for the AP
scheme (6.39)—(6.43) (blue) and for the well-balanced scheme (6.A.9)—(6.A.11) (red)
at time t = 1.4 for a 200 x 3 grid.

Appendix 6.B Technical proofs

6-2.1 Proof of Property 3

Proof. Yv >0, (up” uf ") is the unique solution of

AR ’!‘BT - rBr ’?‘CW . C; T
r Ve 3 vp uﬁy =b,, with b, := Z J p]
—vp, By Ay +vp, B, u,’ Z erpJ



150

TECHNICAL PROOFS

So, since b, is independent of v, one has

Vv >0, (Ag +vpr ) uy = A%, (6.B.1)

A* 0 B, -B u?
0._ T I T T [ 2 T
A= < 0 AP ) . Ay = ( B, B, ) and u; = ( e > .

Multiplying on the left by u? yields u%? A%u¥ + vp,u?TA,u? = u? A%, Since B, is a positive
matrix A, is also positive, and since vp, > 0, one gets

where

vr >0, u/TA%Y <u?T A%

Finally, A being symmetric and positive definite, the simple following Youngs inequality,

1 1 o7
vT 0,0 VT 7O, v 0T 40,0
u, Au, < 5 Ur ATuT—F%ur Au,

allows to prove (6.28).
The proof of (6.29) follows the same way. Multiplying (6.B.1) on the left by u¥, one has

V>0, vp,utTAu? +utT A% = utT AN,

Then, using the same Youngs inequality, one gets after a few arrangements

1 1 o1
Yo >0, vpullAub + iuﬁTAgu;f < §u2 A,

which yields to (6.29) since A is positive.

The third inequality is a bit more difficult to establish. Let us introduce the quadratic form
Jv = %VT (A? + l/prAr) v — b, - v. So, since u is the unique solution of the linear system, one
has

Vv >0,vv, Jg < J7.

0

In the particular case v = u,.

; one gets Jy, < Jl’;g. It is then easy to check that

1 o1 v T
b= 5ul (AY+vpeAn)ul by ul = S + ;)Tug Al
So, one has established a first inequality
vy < 3% + Vg’" u?” A, (6.B.2)

0

v
u;’

Similarly, since u? is the unique solution of the linear system in the case v = 0, one has J?lo <J
which can be written as

0 Vpr T

This actually gives a lower bound to Jﬁ: which combined with its upper bound (6.B.2) yields

v T
o+ it A < 00 + gTuS Al

2

Since vp, is positive, elementary calculations allow to write (6.30). [ |
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6-2.2 Proof of Property 4 (Conservation)

Proof. Conservations of mass and volume for each fluid are obvious since the associated bal-
ance equations are unchanged with regard to the mono-fluid schemes (see for instance [DMO05,

CDDL09, MABOO7, Maill]).

Summing momenta equations in (6.24) for both fluids gives
medpu® +mjdu] = =Y "F% —N"F) =" vp, By (6uf + 6u).
T r T
Recalling that by definition, d¢* + 5¢)J§ = 0, one has
m§dpag + mfdtuf = — Z Fj. — Z Ffr.
T r

The conservativity proof is ended in a standard way. One now sums these equations over the
cells which gives

pIUTTAED SUTAEED 3D DTS 3) DS
J J

J reR; J TER;

that we rewrite

Z m§diaf + Z m?dtu? = Z Z Fj. — Z Z FJ@T'
j J

eI LNVISV2

This proves that momenta sum is conserved using (6.26) and recalling that cell masses are
Lagrangian.

Conservation of total energies sum is obtained in the exact same way. |
6-2.3 Proof of Property 5 (Entropy)

Let us establish a simple technical Lemma that will be useful in the following and to demonstrate
Property 5.

Lemma 2. Let M denote a symmetric matriz of R¥¢, then

1 1 1
vw,weRY vIiMv-wlMv-—w)= §VTMV+ §WTMW + i(w —v)TM(w —v).

Proof. Let &€ := vl Mv — wl' M (v — w). Obviously, one has
E=vIMv+wMw—wlMv.

Since M is symmetric, one has —2w! Mv = (v — w)T M(v — w) — v Mv — w! Mw. Injecting
this equality in the expression of £ ends the demonstration. |

Corollary 1. Let M denote a symmetric and positive matriz of R4*?, then
1 1
vw,weRY vIiMv-wlMv-—w)> §VTMV + QWTMW.

Proof. This is a direct consequence of Lemma 2, since M is a positive matrix. |

We can now give the proof of Property 5.
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Proof of Property 5. Gibbs formula reads T'dn = de + pdr, so that one has
T3 dmS = deef + pfdi}',
which rewrites also
mi T dn; = m§di B — uf - m§dpaf + pimGdyy.
Using (6.27), one gets
m$ T dinf = Z Cjrpj -u; + ZuaTAO‘ iy )+ Z/Zpﬁ 5u°‘TB rou

—VZp’B (5u°‘TB — 6uj) —i—uZpr uj Bj.(su® — 6uj)

uj - (Z AZ (0 —uf) + v Y peBjy (Jul — 5u§‘)> +> 0 Cjp - ulps,

which simplifies as

m§ T dn; = Z(u —uj )TAC“ (uy—u} +V2p55u°‘TB]r6u —yZpﬁéuaTB u; —ouy).

T

Since Bj, matrices are symmetric and positive, one can apply Corollary 1 to obtain
mSTds > (uf —uf)" A% (u) — uf) + ,,Z ploue” B oud + VZ plous” B 6us.
T
Matrix A?‘T being positive, one finally has
m; T dns > 71/ Z p55uaTB ouy + 1/ Z pﬁcsuaTB duf,
which is positive. |

6-2.4 Formal derivation of the asymptotic scheme

Formal derivation. Let a € {f1, f2}, B denoting the other fluid. Let us introduce € := v~!. One
rewrites (6.27) as

medy Z Cj, - u?, (6.B.3)
dtmjo‘ —0,
1
mSdpu = Z A, (u = uf) - Z prBjr(5u — sul), (6.B.4)

« (6% « Oé Oz o ]‘ (0% (0%
m§d B = Z Cjrpj - uy + Z ue” AS —uj) + - Z P2 (6u)T B;,6ul
+ = Z prus” — plous™) B, (Sud — su?), (6.B.5)

and

ZAJT us +Z —peBjrou; ZAJT uf +chrpj. (6.B.6)
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Following the analysis of the asymptotic model, we perform an Hilbert expansion.

The first information one gets is from equation (6.B.6) which reads
Z A?T’,Ouff 04 Z pr]réua 04 2 pr]réua 1y Z pTBJTcSuO‘ 0

ZAaO aOTLZC]rp] )

j J
So that multiplying this equation by € leads to pQ(Zj Bjr)éuff’o = 0. That is
su’ =0, (6.B.7)

since j Bj, is symmetric positive definite and p, = P2 + O(€) > 0 so that p? > 0 when ¢ — 0.
One gets volume conservation equation (6.32).

Now, the momentum equation (6.B.4) is considered, using (6.B.7), one has
mjo-‘dtu?’o = ZAO‘O( o0 _ aU ZpOB 6u°‘0
T
- Z piBjr(Su?O - Z prjr((sujo‘[’l - 611?’1) + 0(6),
T T

which gives

ju’ = 0. (6.B.8)

Using, (6.B.8) and (6.B.7), one defines u? u?o u]@’o and u? ;= uy"” = =ul?.

So, Hilbert expansions of equations (6.B.3), (6.B.4) and (6.B.5) simplify as
mSdyr? = Z Cjr - ul,
adtu = Z AP (u? — u Z prBijr( — duh), (6.B.9)
70 I’ 70
M = = 3O — AT )

+Zp2 0T g (5u! — Jush). (6.B.10)

Our aim is now to evaluate the term > o0 ]O‘O

tum equation (6.B.9) by p§ (> 0), which gives

1 1 -
Bjr(du;” —duj). To do so, we divide momen-

detug— EA u? —u ZpTBJT —fut).

The same relation can be written for fluid 8. The difference of these two equations reads, recalling
that d¢® = —6¢5,

_ Aj
0_;6<0J

(0%
‘T> (u? —uj - B Zp — duh). (6.B.11)
pj pj T

Injecting this relation in (6.B.10) gives the limit scheme total energy balance equation (6.33). The
momentum equation (6.31) is obtained in the same way or by simply summing equations (6.B.9)
for both fluids a and £. [ |
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6-2.5 Proof or Property 7 (Limit scheme consitency)

Proof. Consistency for volume, mass and momentum is a direct consequence of Property 6, it
remains to show the consistency for total energy.
We rewrite equation (6.5) using a more convenient form

*DE* = -V - (p* + p° v . ﬁva o
P Dy (P> +p")u+p U+p (P*+7p")-u

As a starting point we recall (6.34) for fluid «

pap’B A . o
S = =37 Copf e S ey = B Sl () (),
that we rewrite

modES = — Zc (0 + 1)) ur—i-Zu (A% + A7) (u, — u))

a B
S S g - S (B

Simple algebraic manipulations on the later term allow to write

mod, S = — Zc 05 +p7) uﬁzu (A5, + AJ) (ur — )

p
+ Z ijj@ Uy — Z(ur - uj>TA§r(u7" - uj) - ijju? Z <A?r + Afr) (uT - uj)'

r

— According to Property 6 the term

( ZC pj+pj ur+Zu A‘HLAB)( uj)>,

is weakly consistent with (—V - (p® + p”)u) ‘xj

— Also since V%(Zr C; - u,) is weakly consistent with V - u,

L s 8

v (pj Zr:Cj'ur> ~ (p V'u)
— Now, since ). C;, = 0, one has

=S F =) (A% + AL ) (u, — ),

so that Property 6 implies that

8
L LAY r’ .

J

Xj

Xj
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To conclude, it remains to prove for the remaining term

‘2 (— > (=) AT (u, - Uj)> ~ 0.

Let ¢ denote its limit:

We have shown

g s P’ p
P ES =~ (—V-(p"‘—i—p Ju+ p V-u+?V(pa+p )-u) +¢*.
Xj
Since the same result holds for fluid g, simple calculations lead to
S ES + pldE) = pjdiEj ~ (=V - (p* + p° @4 ¢f
pj by + pjaky = pjd ki = (P* +p")u +¢*+¢7

X;
According to Property 6

)
Xj

pidiE; ~ (—V (™ + pﬁ)u)

so that ¢® 4 ¢# =~ 0.
Actually, one has

1 1 X
Vj <Z(ur B uj)TAfT(ur o uj)) + ?J (Z(ur - llj)TAjr(u - llj)) — 0,
since A;'»‘T and AfT are positive matrices, one has finally

1 6
Vj (Z(UT - uj)TAjr(uT - uj)> — 0 and

T

S =

(Z(UT - uj)TAé?r(uT - uj)) — 0,

T

which ends the proof. [ ]

6-2.6 Proof of Lemma 1 (Internal energy variation)

Proof. Rewriting eo‘”Jrl %Hu?‘”“”z + EJC»”"‘+1 and using (6.46), one gets after a few arrange-
ments
+1 +1
i *H A

At
+ e?n _ W (Zp]ancqjm an + Z uomTAa n .n u?m)>

J r

+ - {Z " (5u°‘"TB" dut™ — Z " 5u7‘3‘"+1TB;-LT (6up™ — 5ujo-‘”+1)
T

+3 o wi Y BE (Suln — 5u;m+1)} . (6.B.12)
T
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As a first step one estimates kinetic energy variation
an uqurl

1 u;
AR = g - g = B

which rewrites using (6.45)

g = (a7 2 [t S0 )]
J T

At
ZA?Tn(u?m o om +yzpan om—i—l (5ugm)] ’
r

o
m;

that is

~AX; = (Zuj TAJ»T (uj"™ — —I-Z/Zu Tor Bj,.(0u] 1 sud ))

J T
2
At2 a n/._an om "B n an+1 an
J T

So, one has

m] r

e;m—i—l om+ ﬁ {Z(ujom _ugn)TAa n( an _ Zpomcn . om

2
At
3W<Z%””—WWWZWW )
T

J

At
3T anT pn an 3T an+1T on an+1 an
+VW [E Py oup™ Bioun™ + E 7 Bj,.(0uj] —du; )]

J

+ V* Zpr ‘n o oerl)TBn ((5 Jan+1 - (Sllffn),

which using (6.43) is nothing but (6.47). [ |

6-2.7 Proof of Property 10 (Entropy)
Proof. Let U = (7', u’, E)T and let n be the entropy of the fluid. Gibbs formula reads T'dn =

de + pdr. Following [Maz07, Des10a], we estimate the entropy change, by means of a third-order
Taylor expansion, due to the proposed scheme:

an an an an 877
(U™ —n(Ue™) = (U™ — et

1 UOML+1 chn T 62 Uan+1 UOH’L O UanJrl Uan 3
+5 U =0 WUM(J' = U+ O(U7" = U")°) -
i
One has A | yan = chlm (p;?m, —uj”, 1)T and the variable change V = (p, —u,n)T reads
j

Uoerl Uom T 6277 UanJrl Uan _ Van+1 Van T 6277 Van+1 Vom

O =0 g, G U = =V el (T SV
j j

+0 ((qun—l—l _ Ujan>3) ’
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where, see [Des01, Maz07]| for instance,

—2
o ) ((pc)?m) 0 0
2 = T an 0 1 0

Let Oy := (UO‘"“'1 UJ‘?‘”)T g—Z‘UM, using (6.39), (6.45) and (6.46), one gets

;
O = Ti” Al { Q"Zc
—ug"” (Z AT (0™ —u§™) + VZ PR By (ul" — 5u7"+1)>
- Z Cyp§" - u" + Z ua”TAa " (up” — ug™)
- VZ i 5u°‘”TB" sug™ — yz pf" sut T B (Sul™ — sug™t)
which simplifies as T
O1 = Tin Aj {Z(u?” —uf") AR (" — uf”)
+ uzpﬁ suf™ BI sut” — yzpﬂ sue™ 1 B (sug 5ua”+1)}
Tin At { Zpr om+1 )TBn (6u® 5uan+1)}_

Now using Lemma 2, one gets

1 At
O, = Tan { Zpﬁ 5uanTBn 5uom+ VZIOT Su an+1 Bn 5uom+1}

1 At n an an . an an an n an
+T]‘."”W{Z(ug - U )TA]'#( - +VZP’" dup™ — ouj +1) B; (5 — duj +1)}

J T
Tin At { ZPT an+1 )TBn (5 5uan+1)} .

Observe that later term is second-order in time, so one retrieves as expected the entropy pro-
duction of the continuous in time scheme established in Property 5 page 133.

One now focuses on the second-order term of the entropy variation
T 9%n

. 1 an+1 an an+1 an
Oz = 5 (Vi = V™) 2 (Vi = Vi),

an
Vi

which rewrites

LT ((m)‘*") ~ o A
05 = ~(AD) j AW, with AW = ( J J ) .
) -

an+1 an
0 u;p oy
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One has to estimate po‘”Jrl p§". Assuming that the equation of state p : (7,e) — p(7,e) is
regular enough, one has

Ip op
p;xn—l-l p(;zn — ( ]qn—&-l _ qun) a | + (G?TH-I _ 6?”) % + O(AtQ)

jn

Jn

Using (6.39) and (6.47) and keeping only first-order terms, one has

pan+1_p@n:At< ) op
J J
? or in
{ ( an _ om)TAa n( an _ Zpomcn _uom>
J gr = Hr
+u pr Su omTBn 6uom + prn 5u]q¢n+1TB;@T(5u?¢n+l - 511?”))
r

0
vy (Z pr 'n _ om-i—l)TBn (5 an+1 511?”))} %

Then, using (6.45), one gets

an | OP
(e )2,
+ (Z(ujom _ u;}n)TAoa n( an __ Zpomcn . om

+v Z 2" 5u°‘”TB" oul" +v Z " 6u‘m+l Bj,.(0u antl _ suom)

2
| } ((pe)g™) ™
m
2
+ {Z A — ™)+ v 3 B (u 5u;m“>}

r

+ 0(At?).

jn

1 At?

Oy = — a5 a2
17" 2mg

an an n an an 0
+VZP7~ T +1)TB (5 i 5ur )) 87];

+ O(At?).

Finally, putting all the pieces together, one has

(U™ = n(UF™)

1 At
o { b o T S }

J r
1 At At
— ——(b At?

J m]

with @ > 0 and b > 0.

Thus it remains to study the positiveness of a — —(b+ ¢) + O(At?). There are two possibilities.

6-2.7.0.1 Case a >0 In that case, there obviously exists At > 0 such that

n n(UJ{ln+1) B n(U]Om 15 nT n 16 n+1T n+1
7" m§ A7 > VZp du,™ By oup™ + I/Zp duf Bj.ouj
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6-2.7.0.2 Case a=0 If a =0, one has

Z(u?‘” - u?‘")TA;‘r’,n( ul”" — )+ v Z py (dul™ — 5u§‘n+1) B, (6ug 5uo‘”+1) 0.

r

Since Aa’n and BY, are positive matrices, all the terms in the sum are zeros. Let us first focus

an an

on (uf —uj ruj ) = 0 terms. Two cases occur. In case of Eucclhyd scheme, A;)-;ln

is positive definite so that one has u™ = uj". For Glace scheme

an)TA%n(uan
T

" A ) = (5w w0
1€ |
So, for both schemes, one has C7, - up™ = C7_ - uj" and A;‘;"(uff” —uj") = 0. Recalling that

>~ C7. =0, one also has 3 pi"C7 - up™ = 0.
T
One now analyzes (5u,°f" — 5u§‘”+1) B} <5u7‘3‘” — 5u§‘”+1> = 0. Since Bj;. are positive definite,
this implies Ju®" — (5u§‘”+1 =0.
Finally, if @ = 0, one has

_— an(U]anrl) (Uan
i M Al

_ VZIOB 5uanTBn 5uan

((pe)3™) 2 + O(AL).

2 2
(VZPrn 5uanTB”6 "‘") gﬁ ‘
in

Before enunciating the result, one should remark that in the general case, one has

§(UF™) — (U™ = <<a fa) = S+ o<At2>> ,

i j

with @ > 0, a, > 0 and b > 0. Again, one has two alternatives a + a, > 0 or a + a, = 0.
In the first case, there exists At such that n(UJ‘?‘”“) n(Us™) > 0. In the second case, one
has a = a, = 0 so as previously, a = 0 = C}, -up" = C} - u", A7"(u}" —ug™) = 0
and dJul” — 5u?”+1 = 0. Also, since a,, = 0 and since B” is pOblthE deﬁmte one has ju?”" = 0.
Therefore the scheme (6.39)—(6.41) gives Uo‘”+1 ugn and finally one has VAt > 0, n(Uo‘”“)

n(U"). [ ]

Appendix 6.C Asymptotic behaviour of ju’”

In this section we discuss the asymptotic behavior suggested by inequality (6.29) established in
Property 3:

T 1
(up i) B (up =) < g (0T AR T AT0).
T

As a first remark, it is obvious that this inequality is not optimal: for instance, since the schemes
are Galilean invariant, the right hand side could be replaced by

. 1 a,0 T go(y,05,0 8,0 T AB (150
it o (=) TAR (0 —v) () ) AT )

but this is not a major issue since we are discussing the asymptotic behavior of duy"”
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ASYMPTOTIC BEHAVIOUR OF THE REFERENCE SCHEME
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Figure 6.12 — ||6u;”"”|| according to v. One observes a O(v~!) behavior.

We test numerically the behavior of ||du;"”|p, using the following test. The domain is Q =
10,1[%]0,0.1]. For both fluids, we set the initial condition p = 1 and p = 1 and 7 = 1.4. Initial

velocities are (:l:% sin(7mx), O)T so that du (%,y) = 1. We use a 200 x 3 mesh and compute du,

value at some node such that x = % for values of v in {10,102,...,10%}.

Figure 6.12 shows a first-order convergence to 0, while (6.29) implies O(v~'/2). From this obser-
vation, we made other tests and we always observed O(v~1!). If this does not prove that (6.29)
is not optimal, it might indicate that it could be improved. However, improving (6.29) does not
seem to be easy. Moreover, the aim of Property 3 is to provide a priori estimates that proves
some stability of u;"” according to v. In that view, (6.29) is satisfactory.

Appendix 6.D Asymptotic behaviour of the reference scheme

We shall discuss here properties of the scheme (6.22)—(6.23). Actually, conservation, consistency
and entropy stability are obtained exactly as for the AP scheme (6.24)—(6.26).

Following the formal derivation of Paragraph 6-4.2.4, we perform an Hilbert expansion of the
scheme variables with regard to e = v~

One rewrites (6.22)—(6.23) as

midyr = Z Cjr - u’ 4 0(e), (6.D.1)
O‘altuo‘ 0= Z F¢ Z pYBjy (5ua 0 Z P2 Bj, (5ua '+ 0(e), (6.D.2)

mod B0 = ZF 4~ ZPT ), Bgr5u0‘0+zpr W, Bjrou! +0(e),  (6.0.3)

ZF“O = O(e (6.D.5)
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It comes from 6.D.2 that the limit € — 0 gives 5u]0-"0 = 0 so that one sets u? = u?’o = uf 0 ﬁ?r
One gets from (6.D.2) that for each fluid a,
1 0 1 1
Jor Jor
The difference of both equalities yields
1 o 1 1, 1 1
O (da))” = =5 > F+ Z B0 = g DA Bidul + —5 3 B, 0u),
T mj r j r mj r
which rewrites, since §¢® = —§¢®
At S 00856 a,l__LZFa ZFB’
me m/B PrBjr uj - me Jr ’
J j r J r

Thus recalling that p; = p§ + p? ,

B o
> onByoug = Lo s, (6.D.6)
Pj = Pj =
So, summing (6.D.2) for both fluids, one gets
(m +m/] ) duf = — Z (FJO-;;O — F]@;O) :
T

Injecting (6.D.6) into (6.D.3) and considering the limit e — 0, yields

B a
& I
G =S et = D S g Y
P; . P; -
Then one can write the limit scheme
mgdyr? :Zer u?, (6.D.7)
(m +m; ) diuj = Z (F?‘T — FfT) , (6.D.8)
.
midES =~ F, -ul — pijuj Y FG o+ —u] Z F, (6.D.9)
T T
with
Fj,. = Cjpj — Aj.(uy —u; ), and (6.D.10)
ZF” = 0. (6.D.11)

On one hand, for each fluid «, one recognizes the classical fluxes definition (6.19)—(6.20) or the
frictionless case (monofluid). So, according to B. Després [DeslOb|, for each fluid one has the
following consistency results

1
Vzcjr-u;f‘zv-uo‘,
J oy

1
v 2K
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On the other hand, solving (6.D.10)-(6.D.11), one obtains the nodal velocity for each fluid

u? =AY CupT + ) Ay |, with AY =) AT
J J J
which allows to compute the difference of the nodal velocities of both fluids
_ —1 _ -1
= 4TS Cot - AP G 4 A Ay - 4TS A,
J J J J

Unlike the AP scheme case, one has this time du® # 0 for a given grid, which is not uniformly
consistent with the equation (6.16). This result implies that the scheme does not respect the
diffusion regime corresponding to (6.15). It can be easily checked in writing the semi-discrete
evolution of the specific volume difference between the fluids

m& i’ — mldyr)* =3 Cjp - 5ulC + O(e). (6.D.12)
T

The right hand side of this equation should be O(e) as for the AP scheme, but is O(1) in this
case. It explains the over-diffusive behaviour of this scheme when v >> 1.



Conclusions and perspectives

Conclusions

In this document, the Trefftz discontinuous Galerkin (TDG) method applied to transport models
has been studied and analyzed. In particular, a special attention has been devoted to the
Py reduced model of the transport equation. The transport equation is challenging to solve
numerically because it may involve, among other, a diffusion limit and boundary layers. The
goal of this work was to obtained asymptotic preserving and well-balanced schemes to capture
both of these phenomena with reasonable computational time. This document has shown that
the TDG method naturally leads to well-balanced and asymptotic preserving schemes.

In particular, the well-balanced property of the scheme has been established in Chapter 2 together
with the TDG formulation for general Friedrichs systems.

Additionally, an asymptotic study of the method has been performed in the Chapter 3 for the P;
model in 1D. Taking advantage of the one dimensional framework, it has been shown that the
TDG method recovers the diffusion limit at least for a particular choice of basis functions. Then,
the convergence of the scheme and the asymptotic preserving property have been numerically
confirmed.

In Chapter 4, the TDG method has been studied and analyzed in the general case of the two
dimensional Py model. After recalling the derivation of the Py model, some of its properties
were given. Concerning the TDG method, two important results were provided in this chapter

(i) Construction of the basis functions. Stationary and time dependent basis functions have
been constructed. In particular, polynomial and exponential stationary solutions have been
derived. Due to the well-balanced property, the exponential solutions lead to very efficient
schemes to capture boundary layers as illustrated later in Chapter 5.

(ii) High order convergence of the scheme. High order convergence has been proven in the
stationary case, mainly through the study of the approximation properties of the basis
functions. Even if this approximation result may not be optimal for the case N > 1,
a well known advantage of the TDG method has been recovered: to obtain high order
convergence, the TDG method uses (at least asymptotically) less basis functions than the
standard DG method. The example given in Table 4.1 is a good illustration of this property
for the case N = 1.

Finally, numerical results for the two dimensional P; and P3 models were provided in Chapter
5. The asymptotic preserving property of the TDG method has been illustrated both for the Py
and Ps models. Moreover, it has been shown that the TDG method outperforms the standard
DG method for some numerical tests with boundary layers, using less degrees of freedom for a
better accuracy. The main drawback of the TDG method is that it may lead to ill-conditioning
systems when considering too many basis functions per cell or in some asymptotic regimes. Such
behaviors have also been numerically illustrated in Chapter 5.
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Perspectives

A first perspective is to develop good preconditioners to deal with the ill-conditioning systems of
the TDG method. This could be particularly useful when considering, for example, stationary
and time dependent basis functions.

It could also be interesting to extend the TDG method to the discrete ordinate method (Sy
model) which is the other popular approximation of the transport equation. Since the Sy model
can be written under the form of a Friedrichs system, the general formulation given in Chapter
2 can be used. It remains to construct the basis functions.

Another possibility would be to applied the TDG method directly to the transport equation
using, for example, Case’s and Birkhoff’s solutions [BA69, BA70, Cas60].

The formulation of the TDG method given in Chapter 2 can be easily generalized to the three
dimensional case. The only additional difficulty concerns the construction of the basis functions.
For the Py model, the basis functions can be constructed as in Chapter 4, starting from a one
dimensional solution and then applying a rotation. Note however that the three dimensional
rotation is not as simple as in the two dimensional case [BFB97, IR96, PHO7|. Note also that
the choice of directions may be tricky since it is not possible to get equi-distributed directions
on the sphere.

Finally, an interesting perspective concerns the extension of the TDG method to non linear
models. Of course this brings new difficulties, such as the construction of the basis functions or
the discretization of the non linearity.
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Appendix A

Spherical harmonics

We recall some definitions and properties of the spherical harmonics and adopt the presentation
given in |[Her16].

A.1 Legendre functions

The spherical harmonics are based on the Legendre functions P,i which read

1 dk+l

s (1= 1) (e*=1F), 1>0,
B ok | dpktl

The Legendre polynomials satisfy the orthogonal relations

1/1P0d =49 1/1PlPld _ 1 om
27116:“_1@7 271kmlu’_(a§€)2ka

where aﬁc is the normalization factor

= sy

They also satisfy the following recursion relations which are fundamentals to derive the Py model

1 1 1
\/1_:“2Pl;n:2k+1 Pknri —Pé’f{),
NI e —(k—m+1)(k—m+2)P,§1;1+(k+m—1)(k+m)P,gﬁ;1),
PP = s (e = m+ P + (b m) P ).

A.2 Spherical harmonics

The complex valued spherical harmonics read

Yi(,0) = Yi(Q) == (-1)'aq Pi(cos 9)e™, || <k, (A.2)
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The real valued spherical harmonics Y}, ; are defined from the complex valued spherical harmonics
ka as follow:

Y31 (Q) = YH(Q) = al P (cos ¢), [=0,

1y _
Vi () = (\/15) (VHQ) + YHRQ)) = a},v2 cos(Iy)) Pl (cos ¢), 0<l<k, (A.3)
Vil (92) = \if( YHQ) - V() = o/ V2sin(i|) P (cos ¢),  —k<i<0.

In particular, the real valued spherical harmonics satisfy the relations
L / Yy dipdp = 6960 L / Vit Ymndipdp = 567
47 S2 ’ ’ 47 S2 ’ ’

Moreover, they also satisfy the following recursion relations

singcostYim =" (AL Yrr1,me1 — B Ye—i,mt1) — (O Yt 1,m—1 — D' Ye—1,m—1),
singsinYym = 0" (AR Yer1,—m—1 — B Ye—1,—m—1) + 0" (Cr"Yig1,—m+1 — Dy Yi—1,—m+1),

COs ¢Yk,m = E]ZnYkJrl,m + Fk,mkal,ma
(A.4)

where all the coefficients are given in Table A.1 and by

g JEEmA DEEm ) [(k—m = Dk —m)
ko Ck+1)(2k+3) PV @Ck-1)2k+1)
om (k—m+1)(k—m+2) m [ (k+m—1)(k+m)
k= 2k+1)2k+3) T\ @k-1)@2k+1)
)(
)

m JE=m+1)(k+m+1) m | (E=m)(k+m)
Ei _\/ o F _\/(Qk—l)(2k+1)'

2k + 1)(2k + 3)

m<-1 m=-1 m=0 m=1 m>1
1 V2 1 1
em 2 0 5 2 2
1 1 V2 1
"3 —2 0 7 2
m _1 _V2 V2 1 1
n 2 2 2 2 2
1 1 1
o 3 —3 0 0 2

Table A.1 — Coefficients of the equations (A.4)
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Technical results for the Py model

In this appendix, we give some technical proofs from Chapter 4.

B.1 Polynomial solutions for a simplified second order equation

B.1.1 Proof of Proposition 4.37
In this section, we prove Proposition 4.37. We recall that Proposition 4.37 reads

Proposition. Assumeu € C"1(Q) is solution to (4.44). Then, the double sum Taylor expansion
in (4.45) can be recast as a simple sum with only zero or first order derivatives with respect to
y. Therefore (4.45) can be written

u(x) = B (x)u(xo) + Z |8 (x)0%u(x0) + B ()05 9yu(x0)|
- (B.1)
+ Z Vh o (x GPG”'H Pu(xs), VxeQ,

where X5 = (z5,Ys)", s = (1 — 8)x0 + sz and ys = (1 — 8)yo + sy.

We will need the following lemma.

Lemma B.1. Assume hypotheses of Proposition 4.37 are satisfied. Then for all0 <[ <mn —2
one has the identity

142
P (%) 920L P u(x0) —i—Zozl o (X)OROLTEPu(xg) =

MN

e (B.2)
of (x)9P0LPu(xo0) + B3 (x) 0L 2u(xo) + Bil, (%)L 0 u(xo).
p=0
Proof. Let e N, 0<1<n-—2. Forly € Z, -1 <[y <1—1, we define the function
l 1+2
Z o (x)OROL Pu(xo) + Y AW (X)L Pulxo) + Y af,,(x)R0LTEPu(xq)
p=l1+1 p=l1+3 (B.3)

+ Bfi?(x>6il“6é‘hu<><o) + AL (oA u(xo),
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EQUATION
where we use the convention Zb =0 for a,b € Z and b < a. First, we show f(l;) = f(l1 +1)
for -1 <y <[l —1. Because u is solutlon to the equation (B.2) one notices

B GO T o) = (= oA T Wl (0 O Julx). (BA)

Now we consider the definition of the function f (B.3) and we study the difference f(I1+1)—f(1).
After easy simplifications on the elements which appear both in f(l;) and f(l; + 1) one finds

£l +1) = £01) =af T (03191 u(xg) — 51 (090 (o)
_ 0451;53( )6561-1-30;41—1”()(0) +ﬁll+3(X)ail—i_g@é_ll_lu(xo)

142
A1 () 9l +1 Al 11
— G5 ()80, u(xo).

Using the equality (B.4) to reformulate the fifth term in the right hand side, one gets

fli+1) = f(l) :a§1+1( )all-l—lai—ll—lu(x()) _ ’YlllJrl(X)8;1+101l/_l1_1u(X0)
— a5 ()0 TR0l u(xo) + B5 ()L TPl u(xo)

B o) (A0 — Wil O (o).

Ordering the terms with respect to the derivatives gives

Flla+1) = (1) =(af 7 (0 = A () = wBlLE () O A (o)

+ (= alit00 + Bl (0 + 1560 )2 900 ().

Using the definitions (4.46) and (4.47) one finds ah“( ) — 'yll“Ll( ) — wﬁllr;l( ) = 0 and

Bll_fg?’( )— aéfgz)’( )—i—ﬁll_fgl(x) = 0. Therefore, one has f(l;+1)— f(l1) =0forall -1 <y <[-1.

One deduces f(—1) = f(I) which can be written
+2

l
Z’y )OO Pu(xg) + Zal” )OROLT2Pu(x0) + BYyo(%)05 2 u(x0) + Blyo(x) 0204 u(x0) =
p=0

l
Za )OROLPu(x0) + BiTa (x)05 u(x0) + B1 715 (x)95™ 9y u(xq).

p=
Noticing from (4.79) that af,,(x) = 8, 5(x) and o7, ,(x) = f},4(x), one incorporates the two
corresponding terms in the second sum so one finds the equality (B.2). It ends the proof. |

We can now prove the Proposition 4.37.

Proof of Proposition 4.37. We start from the Taylor expansion (4.45). From the equation (4.46)

one deduces ah(x) = vh(x) and of _;(x) =+F_,(x). Therefore

n—2 k

u(x) =3
k=0
n-l—l

+Z P (x)920;, Pu(xo) —i—Z’yn_H (9p8”+1 Pu(xs).
=0

p=0

'yg(x)@g@f_pu (x0 —I—Zan 1(x)080,~ =Py (x0)
0
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One can recursively use the equality (B.2) from | = n — 2 to [ = 0. More precisely, rearranging
the first sum one has

n—=3 k n—1
ZZ'yk apak Pu(xo) + Zaﬁ_l(x)agag—l—pu(xo)
k=0 p=0 p=0

n n+1
Zvn 2 (X)ROP>Pu(x0) + Y _ ah (x)0Dy Pu(xq) +Z%+1 )PPy (x,).
p=0

One can reformulate the terms between parenthesis using (B.2) with the index correspondance
n — 2 =1{. One finds

n—3 k n—1 n—2
u(x) = 3 W0, ulxo) + 3 an 1 (x)9505 ™ Pulxo) + 3 af_a(x)050; 7 Pu(xo)
k=0 p=0 p=0 =0
n+1
[Bn( ) (X0)+6n 1( )8” 18’U,X0 +27n+1 apan-&-l pu( )
p=0

(B.5)

And one can now recursively repeat this simple operation using the equality (B.2) for [ = n — 3,

, to I = 0. One finally gets the formula (B.5) where the first line is written for n = 2, the
term [-] becomes a sum and the last term remains unchanged

1
u(x) =0+ Z a’f(x)@ﬁ@l}*pu(xo) + af (x)u(x0)

p=0
n n+1
+ Z {B,@(X)@iu(xo) +ﬁ’]§7 (x)ok~ 18 u(xo } + Z%ﬂrl 3P8”+1 Pu(xs).
k=2 p=0
That is
u(x) =ap(x)u(xo) + ai (x)dzu(x0) + af (x)dyu(xo)
n n+1
+ 37 [BEIDutx0) + BE )05 Oyulxo)] + D RO Tl (xJulx,).
k=2 p=0

Noticing from (4.79) af(x) = BJ(x), af(x) = BY(x), al(x) = Bi(x) one finds the expression
(B.1). The proof is complete. n

B.1.2 Proof of Proposition 4.38

In this section, we prove Proposition 4.38. We recall that Proposition 4.38 reads

Proposition (Limit of the coefficients 8f(x) and 8y *(x)). Assume w =0 and 0 < k <n. The
coefficients 6’; and Bl,:_l are harmonic polynomials when w = 0. More precisely one has

B(x) — a(x).

w—0

Proof. One has

((90 —x0) +i(y — Yo ) ch itz — 20)* ! (y — o).

171
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Therefore

8Cé((ﬂc—ﬂﬂo)JrZ Y=Y > ch =D — 20)  (y — o)™,
LQJ
k p)
S((Qj — xO) + z(y — y0)> = Z C’,’jfﬂ*l(—l)l(x B $0)k_2l_1(y . y0)2l+1‘

=0

That is from the definition of the coeflicients 'yi

%((x —x0) +i(y — yo))k = k! Z(*l)l%ﬁﬁl,
% L5521
S((@—a0) +ily—po)) =k D (~1)H

=0

When w = 0 one has o, =~%. Therefore, from the recurrence formula (4.47) one deduces

o) = (- 20) ity —10)) s B0 = 53(@ ) iy —w) s 0<h<n

This completes the proof. |

B.2 Polynomial solutions to the Py model

B.2.1 Proof of Proposition 4.45

In this section, we prove Proposition 4.45. We recall that Proposition 4.45 reads

Proposition (A first simplification of the Taylor expansion). Let u(x) € C""2(Q) be a solution
0 (4.59). The beginning of the Taylor expansion on the vectorial function u(x) can be recast as
a Taylor expansion on the vectorial function uH(xo)

ZZFQ )Ly Pupr (%) + €(x),
k=0 p=0
n+1 n+2

Zrnﬂ )0Ra, T Pu(xq +Z’yn+2 ) Im 020y 2 Pu(x,),

where x5 = (zs,Ys)!, s = (1 — 8)xo + 52 and ys = (1 — 8)yo + sY.

Proof. For l € Z, —1 <1 < n we define the function

l k +1
F) = Th(x)80; Pup (x0) + Y T7, (%)% Pu(x)
k=0 p=0 =0
n+1p k ’ (B.6)
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where we use the convention Z;Za =0 for a,b € Z and b < a. First we show f(l) = f(l+1) for
—1 <1< n—1. Because u is solution to (4.59) and from the definition of the matrix R;;' one

‘ m

has

wg (x0) = — R’ (Alax + Agay)u(xo).
Therefore
I+1 1

me )OROLHPupa (o) me RO P RE (A10, + A2d), (o),

l+2 I+1
ZFlJrl 8p8l+2 pR|21A1u XO Z Fl+1 8p8l+2 pR‘QlAgu(XQ).

And therefore since I‘,:l = FIEH =0

+1 42
Zrl ()PP (xg) = Z(rﬁf( )R Ay + 7, (x )R@nlAg)aga;“*pu(xO). (B.7)
p=0

Now, we consider the definition of the function f (B.6) and we study the difference f(I+1)— f(I).
After easy simplifications on the elements which appear both in f(I) and f(I 4 1) one finds

I+1 1+2 I+1
fl+1) ZFlJrl 8p8l+1 pu‘l X +ZF1+2 3pal+2 Pu(x ZFZJA apal+1 ~Pu(xg)
+2

— Z 7f+2(x)lm6£8i+2_pu(xo).

Regrouping the terms one gets

I+1 +2
fl+1)— Zrlﬂ apal—H p(u\ Xo)—u(xo )"‘Z( Lra(¥) =19 (3) 1. )agaé—l—?—pu(x())_

That is using u;z = u — up1 and the definition of the coefficients 'Y (4.41)

+1 +2
F4+1)— Zrl ' (x)0ROL T Py (xo)—i—Z( o) (x X) R, AT (x )R@nlAQ)aga;“*pu(xo).
p=0

Using (B.7) one finally finds f(I + 1) — f(I) = 0 for all =1 <[ < n — 1. Therefore, one gets
f(=1) = f(n). That is using I') = 7§ and the definition (B.6) of the function f

n+l k n+1
DY AR ) 0805 Pu(x ZZF X) R0y Pap (x0)+ > Th. (x)080, M Pu(xo). (B.8)
k=0 p=0 k=0 p=0 p=0

We consider now the Taylor expansion of the function u(x)

n+l k n+2
ZZW ) 8p8k Pu(xg —I—Z%LJFQ ) m 8p8”+2 Pu(xs).
k=0 p=0

Using (B.8) one finally gets

n+1 n+2
Z Z TR ()R~ Pup (x0)+ Y Th 4 ()80, Pu(xo)+ D iy o(x) [m 020y, 2 Pu(xy).
k=0 p=0 p=0 =0

This completes the proof. |
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B.3 Convergence of the scheme

B.3.1 Proof of Proposition 4.54

In this section, we prove Proposition 4.54. We recall that Proposition 4.54 reads

Proposition. Assume u.(x) € C"T1(Q) is solution to (4.73). Then, the double sum Taylor
expansion (4.75) can be recast as a simple sum with only zero or first order derivatives with
respect to y

ue(x) = LY(x)ue(xo +Z [Lk yoku, (xo) + L (x )ajjflayue(xo)}
n+1 (B.Q)
+ 27n+1 8p8"+1 Puc(xs), Vx e,

where X5 = (25,Ys)T, s = (1 — 8)x0 + sz and ys = (1 — 8)yo + sy.

Lemma B.2. Assume hypotheses of Proposition 4.54 are satisfied. Then for all0 <[ <mn —2
one has the identity

! 1+2
27 apal Pue(xg —I—Z lpo(X 8p8l+2 Pug(xg) =

= (B.10)

> KP(x)020, Pue(xo) + L3058 ue(xo) + Lyt (x)05 9,uc(xo).

=0
Proof. Let e N, 0< 1 <n-—2. Forly € Z, -1 <[y <1 -1, we define the function
! 142
ZKP 87’81 Pu(xg) + Z ylp(x)aga; Pu,(xq) Z Lio(x 81’8”2 Pu,(xo)
p=l1+1 p=l1+3

(K;g% ) = Ll (x)(BBT) "1 (AAT) )02l u,(x0) + L5 ()0 104w (o),
(B.11)

where we use the convention Zg:a =0 for a,b € Z and b < a. First, we show f(l;) = f(l1 + 1)
for —1 <I; <1 —1. Because u, is solution to the equation (4.73), it statisfies (4.74) and one
notices

Ly (x)0 ol M (x0) =LiS () (BBT) ™ AAT gl oot

T Ty Al1+2 al—1 Ii+1 ql—11—1 (B.12)
— (ABT + BAT)9b 20l 4 oy R 0h ok h )ue(xo).

Now, we consider the definition of the function f (B.11) and we study the difference f(l; +1) —
f(l1). After simplifications on the elements which appear both in f(I1) and f(I; + 1), one finds

P 1) = (1) =KD ()0 1051 g (xg) — (00810 g (o)

_Kl1+3( )8l1+361_l1_1ue(x0)

+2
+ (KL (00) — Lt () (BBT) 1 AAT ) 990,70 e x0)

1+2 1+2 142

— L (x)ob ok, (xo).

n <Lll+2( ) — [KhE2(x) — I (x )(BBT)—IAAT])831814-28?5—11“6()(0)
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Simplifying the term Kll_li_gg(x)@iﬁ?’%—ll_lue(xo) and using the equality (B.12) to reformulate

the last term in the right hand side one gets
Fli+1) = f(l) =K )01 ag (x0) — 4 (%) 10l ae (o)

— (LS ) (BBT) 7 (AAT)) 020l e o)

+ <Lll+2(x) _ [K11+2(X) _ Ll1

142 142 Lo (x)(B BT)_IAAT]) 920, ue(xo)

~ L5 ) (BBT) T~ (ABT + BAT)oh 20"

— AAT a3l atRlaQHa;—ll—l)ue(xo).

Simplifying the term (Lﬁﬂ:;l (x)(BBT)_l(AAT)> 6i1+3('3§_l1_1u6(xo) and ordering the terms with

respect to the derivatives gives
flli+1) = f(l) = (K;1+1(x) — it (x) - atLﬁfgl(x)(BBT)*lRQ8;1“8511*1%()(0)

+ (L5 O(BET) (AB” + BAT) + Ll

— (K1 (0) = L, () (BBT) AT ) 0 20 . (x0):
Using the Definition (4.76), one finds Kll1+1(x) - Vll”Ll(x) - JtLﬁrgl(x)(BBT)_lRl = 0. With
the Definition (4.77) one gets (since I} < I) Lf?f(x) = Klll;f(x) — Léfgl(x)(BBT)*l(ABT +

BAT) — L;:_z(x)(BBT)_lAAT. Therefore, one has f(l; +1) — f(l1) =0forall -1 <3 <1—1.
One deduces f(—1) = f(I) which can be written

l 42
D AP (x)OROLPuc(x0) + > KP5(x)080L T Pue(x0) + L o(x) 0 ue(xo)
p=2

+ (Kla(x) = Ly ()(BBT) 1 (AAT) ) 0,04 ue (xo) =

+2

175

l
> KP()080) Puc(x0) + (K300 = Lo () (BBT) ™ (AAT) ) 0k Puc(x0) + LA ()05 Dy (o).
p=0

(B.13)
By definition Ll_+12 = 0 and one notices from (4.79) that K, ,(x) = L?, ,(x). One can therefore
incorporate the two terms K 10+2 and K ll+2 in the second sum on the left hand side of (B.13).

Moreover from (4.78), one has L;Ig = K;IQQ(X) - L§+2(x)(BBT)_1AAT. Using this equality on

the right hand side of (B.13) completes the proof. [ |
We can now give the proof of Proposition 4.54.

Proof of Proposition 4.54. We start from the Taylor expansion (4.75). From the Definition (4.76)
one has K} (x) =44 (x) and K?_|(x) =~"_,(x). Therefore

n—1

n—2 k n—1
w(x) =Y > AR(x)OR0F Puc(xo) + Y KB (x)080; " Pu.(x0)
k=0 p=0 p=0

n+1

+ Y KRR Pue(x0) + Y v ()50 Pue(xs).
p=0 p=0
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One can recursively use the equality (B.10) from | = n — 2 to [ = 0. More precisely, rearranging
the first sum one has

n—3 k

) =D > AR x) e (xo) Z D ()R Pu,(xo)

k=0 p=0
n+1

Z'Yn 5(x) 0208~ 2Py, (x0) ZKP )AL Pu,(xo) "’Z’Ynﬂ 3pan+1 Puy(x,).

One can reformulate the terms between parenthesis using (B.10) with the index correspondence
Il =n — 2. One finds

n—3 k n—2
u.(x) :ZZWZ(X)agag_pue x) + Z 1 (x)020) ™ Pue(x0) + Z 5 (x) 020> Pu,(xo)
k=0 p=0 p=0
n+1
- [LZ(X)E);‘uE(XO) + L H(%)9" 1, u.(x0) ] + Z%Hrl VORI Puc(x,).
p=0

(B.14)

And one can now recursively repeat this simple operation using the equality (B.10) for [ = n—3,

, to I = 0. One finally gets the formula (B.14) where the first line is written for n = 2, the
term [-] becomes a sum and the last term remains unchanged

1
uc(x) =0+ Z Kf(x)@ﬁ@;_pue(xo) + K(())(X)ue(xo)

p=0
n n+1
+ 37 [Lh ook (x0) + LE ()05 O (x0)| + D0 A0 (00205 P (x,).
k=2 p=0
That is
u, (%) =K0(x)uc(xo) + K71 (x)druc(x0) + K7 (x)dyuc(xo)
n+1
n Z [Lk )k u, (xo) +L],§’1(x)al;_16yue(xo)} + 3R (x)ue ().
p=0

Noticing from (4.79) K§(x) = LJ(x), K)(x) = LY(x), K{(x) = L}(x), one finds the expression
(4.80). This completes the proof. [ |



Appendix C

Discontinuous Galerkin method using
adjoint solutions as basis functions

In the beginning of this work, adjoint solutions to the model were used as basis functions. The
idea was to easily adapt the ultra weak formalism [CD98]| to transport problemsCC. However, as
this document has made clear, it is much more efficient to use direct solutions to the problem.
We give here some numerical examples which were performed with adjoint basis functions. The
adjoint P; model reads

C
£Op + —=,0 = 04 (2)p,
v 1)
€0 + —=0yp = oy(x)0,

V3

C.1 Asymptotic study in one dimension

As in section 3-1.2, one can study the asymptotic behavior of the scheme for the one dimensional
hyperbolic heat equation. We consider the following two adjoint solutions

V3o
ep1(t,z) = (é) . epa(t,r) = (i(xl - xk)) ’ (C.2)

where x is the abscissa of the center of the cell k. Instead of using direct solutions to the P;
model, one can use the adjoint solutions (C.2). One gets the following finite difference scheme

(P -, e |
€ + — +2pk — pr—1 + (14 a)(vpp1 —vp_1)]" Tt =0,

Az 2\/§h[ Pr+1+ 2pk — pre—1 + (1 + @) (k41 — vp—1))]

2 ,ntl n

a® v —v c C.3)

e(l+—)-& E a® (V1 + 20 + Vb-1) + (— Vg1 + 20 — U (
( 3) A7 Qﬁh[(kﬂ k4 Uk—1) + (—Uk41 k— Uk—1)
o
(1= a)(Pr+ —pr)]"T = —§UZ+17
with a = % This scheme is very similar to the scheme (3.14) and can be obtained from

(3.14) simply by replacing the coefficient a by its inverse. Using Hilbert expansion, one can show
that this scheme is asymptotic preserving when € — 0 for some average values for the variable p.

Proposition C.1. Using Hilbert expansion in the limit ¢ — 0, the scheme (C.3) admits the
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following limits Vk

(U2+1 + Ug)m—l =0,
v/i-f—l + 21}11 + 'Uli—l )nJrl — c (pg—‘rl B pg—l )n+1
4 V30 2h 7 (C.4)
_ . n+1
()" = (@)" B A [(Plis = 200+ 1) —0
At 30, 4h? ’

with 132 a mean value ofpg define as ﬁg = (%p2+2 + 4ngrl + %pg + 4;02_1 + %pg_Q)/lﬁ.

Comparing with the model limit (3.2), the scheme is asymptotic preserving for the variable p but
not for the variable v. Actually, the variable v in the limit scheme is consistent with the opposite
of the model limit. This is confirmed by the numerical test from section 3-1.3.2 in Figure C.1.

T T T 0.015 T T T
20 nodes —+— 20 nodes —+—

limit —— limit
0.01

0.005

-0.005 |

-0.01

-0.015

. . . . . . . . .
01 02 03 04 05 06 07 08 09 1

Figure C.1 — Numerical solution obtained for the variable p (on the left) and v (on the right)
with the numerical scheme (C.3) with ¢ = 0.001. Random mesh with 20 nodes and
dt = 0.01/20. Good accuracy illustrate the AP properties of the scheme for the
first variable.

C.2 Order study in one and two dimensions

Consider the time dependent P; model in one dimension (3.1). To apply the adjoint method,
one first needs to find solutions to the adjoint model (C.1).

Proposition C.2. Assume ¢ # 0,0, # 0. The adjoint the one dimensional Py model (C.1)
admits the following four solutions

+ ++/0t 1 040
o ()

vf(t, z) = —S(eoq —0y) £ \/7 @(50(1 +oy)r + 250,04t FLV3eoaoir
—V304(e04 + 0¢)x F 2c04+ /Tt

£

(C.5)

For the two dimensional P, model one can also construct adjoint solutions.
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Proposition C.3. Assume dy = (cos(¢y),sin(éx))T € R?, ¢ # 0. The functions

Vi = <—\/€O'adi

VOt > 6—%\/3saaatd?x,

(C.6)

are solutions of the adjoint model associated to the two dimensional P; system with constant

coefficients o4, 0.

We can now reproduce the test cases from sections 3-1.3.1 and 5-4.1 using respectively the adjoint
solutions (C.5) and (C.6) as basis functions. The Figures C.2 and C.3 show that, with adjoint
basis functions, one can not increase the order of the method for the standard L? norm.

—+-

0.1
0.01
N
-
S
]
0.001
2 basis —+—
4 basis —4&—
order 1
0.0001
10

Figure C.2 — Numerical test from section 3-1.3.1. Study of the L? error in logarithmic scale using
adjoint solution as basis functions for temporal one dimensional model.

10

Error L2

0.1 ¢

3 basis —+—
5 basis —X—
7 basis —4&—
order1. ——

100

Figure C.3 — Numerical test from section 5-4.1. Study of the L? error in logarithmic scale using
adjoint solution as basis functions for stationary two dimensional model.
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