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Résumé

Cette thèse traite de l’étude et de l’analyse d’un schéma de type Trefftz Galerkin discontinu
(TDG) pour un problème modèle de transport avec relaxation linéaire. Nous montrons que la
méthode TDG fournie naturellement des discrétisations bien équilibrées et asymptotic-preserving
puisque des solutions exactes, éventuellement non polynomiales, sont utilisées localement dans
les fonctions de base. En particulier, la formulation de la méthode du TDG est donnée dans le
cas général des systèmes de Friedrichs. En pratique, une attention particulière est consacrée à
l’approximation PN de l’équation de transport. Pour ce modèle bidimensionnel, des fonctions
de base polynomiales et exponentielles sont construites et la convergence du schéma est étudiée.
Les exemples numériques sur les modèles P1 et P3 montrent que la méthode TDG surpasse
la méthode Galerkin discontinue standard pour certains tests avec termes source raides. En
particulier, la méthode TDG permet d’obtenir des schémas efficaces pour capturer les couches
limites et la limite de diffusion de l’équation de transport.

Mots-clés: Schémas asymptotic-preserving et bien équilibré, Méthode de Trefftz Galerkin dis-
continue, équation de transport, modèles PN , couches limites, limite de diffusion.
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Abstract

This thesis deals with the study and analysis of a Trefftz Discontinuous Galerkin (TDG) scheme
for a model problem of transport with linear relaxation. We show that natural well-balanced
and asymptotic-preserving discretization are provided by the TDG method since exact solutions,
possibly non-polynomials, are used locally in the basis functions. In particular, the formulation of
the TDG method for the general case of Friedrichs systems is given. For the practical examples,
a special attention is devoted to the PN approximation of the transport equation. For this
two dimensional model, polynomial and exponential basis functions are constructed and the
convergence of the scheme is studied. Numerical examples on the P1 and P3 models show that
the TDG method outperforms the standard discontinuous Galerkin method when considering
stiff coefficients. In particular, the TDG method leads to efficient schemes to capture boundary
layers and the diffusion limit of the transport equation.

Keywords: Asymptotic-preserving and well-balanced schemes, Trefftz discontinuous Galerkin
method, transport equation, PN model, boundary layers, diffusion limit.
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Introduction

This document deals with the study and the analysis of a Trefftz Galerkin discontinuous (TDG)
method applied to transport models.

Transport equations have many practical applications in biology, radiotherapy, radiative transfer
or more generally astrophysics. In this work, we are interested in the transport of particles
such as neutrons or photons. Such physical phenomena often involve absorption and scattering
processes which may lead to complex behaviors where no analytic solutions are known. In these
cases numerical methods are required.

However, the numerical approximation of the transport equation remains challenging because of
the two spatially dependent absorption and scattering coefficients. In highly scattering regimes,
the transport equation has a limit where the behavior of the solution is govern by a diffusion
equation. It is known that naive schemes fail to give a good approximation of the diffusion limit
on coarse meshes. Another potential issue comes from boundary layers which may occur in the
solutions to the transport equation. In both cases, one often needs to consider very fine meshes
to get a correct approximation of the solution which can drastically increase the computational
time.

To address these issues, a possibility is to construct numerical methods which satisfy some
particular properties. On one hand, schemes which preserve exactly stationary solutions are
called well-balanced and they may be very efficient to capture boundary layers. On the other
hand, the so called asymptotic-preserving schemes are able to capture the diffusion limit with
reasonable computational time. Generally speaking, well-balanced and asymptotic-preserving
schemes are two related concepts and it is often desirable to satisfy simultaneously these two
properties.

Objective and main results

The goal of this work is to derive and analyze an asymptotic-preserving and well-balanced scheme
for transport models using Trefftz discontinuous Galerkin (TDG) method. The principle of the
TDG method is to use the standard discontinuous Galerkin (DG) framework but with a change
of basis functions: the basis functions of the TDG scheme are solutions to the equation and
therefore not necessarily polynomials.

Several original results are produced in this document. In particular, the well-balanced property
of the TDG method is given in Proposition 2.13 of Chapter 2. The construction of exponential
and polynomial basis functions for the general two dimensional PN model is given in Theorems
4.25 and 4.34 of Chapter 4. Moreover, a proof of high order convergence of the TDG method
applied to the stationary PN model is given in Theorem 4.75. Finally, the asymptotic-preserving
and well-balanced properties are illustrated through various numerical examples in Chapter 5.

A first article with application to the P1 model has been published [BDM18] and others are in
preparation.



2 INTRODUCTION

Plan of the thesis

Chapter 1

In the first chapter the physical and mathematical context is given. In particular, the transport
equation is introduced together with the popular SN and PN reduced models. Then, the two
notions of asymptotic-preserving and well-balanced schemes are recalled and a definition for two
dimensional well-balanced schemes is proposed. Finally, a brief bibliographical review on Trefftz
method is made with particular interest in the Trefftz discontinuous Galerkin method.

Chapter 2

In Chapter 2, the Trefftz discontinuous Galerkin method is presented in the context of general
Friedrichs systems. The well-balanced property of the scheme is studied and some estimates in
various norms are provided. Such estimates will be useful in Chapter 4 to study the convergence of
the scheme. Note however that the procedure given in this chapter does not cover the construction
of the basis functions which will be treated in Chapters 3 and 4 for some particular transport
models.

Chapter 3

In Chapter 3, the TDG method is applied to the one dimensional P1 and Su-Olson model. The
basis functions are constructed for these two systems with the possibility to get high order scheme
in space and time. An asymptotic study of the scheme in the diffusion regime is made for the
one dimensional P1 model. Finally, the properties of the TDG method are illustrated with some
numerical examples.

Chapter 4

The Chapter 4 is the central chapter of this document. It deals with the analysis of the TDG
method for the general two dimensional PN model. As a first step, the derivation and some
properties of the PN model are recalled. Then, exponential and polynomial spatial solutions are
constructed together with some time dependent solutions. Finally, high order convergence of the
scheme, in particular through the study of the approximation properties of the basis functions,
is provided for the stationary case.

Chapter 5

In Chapter 5, the TDG method is applied to the two dimensional P1 and P3 models. In particular,
the basis functions are explicitly calculated for these two models using the results of Chapter 4.
Additionally, numerical results are provided to illustrate some properties such as the convergence,
the well-balanced property (through numerical tests with boundary layers) and the asymptotic
behavior of the scheme.

Chapter 6

The Chapter 6 is an independent part devoted to the study and analysis of an asymptotic-
preserving multidimensional ALE method for a system of two compressible flows coupled with
friction. This chapter, taken from a published article [PLM18], proposes a multidimensional
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scheme to approximate solutions to a particular kind of bi-fluid system which depends on a fric-
tion parameter. Properties such as conservation, stability, consistency and asymptotic-preserving
(with respect to the friction parameter) are studied. Various numerical results are also provided.





Chapter 1

Physical and mathematical context

Contents
1-1 The transport equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1-2 Approximate models of the transport equation . . . . . . . . . . . . . . . . . 6

1-2.1 The discrete ordinate method . . . . . . . . . . . . . . . . . . . . . . 7
1-2.2 Spherical harmonics approximation . . . . . . . . . . . . . . . . . . . 7

1-3 Asymptotic-preserving and well-balanced schemes . . . . . . . . . . . . . . . 8
1-3.1 Asymptotic-preserving schemes . . . . . . . . . . . . . . . . . . . . . 8
1-3.2 Well-balanced schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1-4 Trefftz methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1-4.1 Trefftz and related methods . . . . . . . . . . . . . . . . . . . . . . . 11
1-4.2 The Trefftz discontinuous Galerkin method . . . . . . . . . . . . . . . 12

In this Chapter, the physical and mathematical context is given. First, the transport equation is
deduced from the radiative transfer equations and the popular PN and SN approximations are
presented. Then, the main motivations behind the construction of asymptotic-preserving and
well-balanced schemes are recalled. Finally, a brief bibliographical review on Trefftz methods is
provided with a particular interest in the Trefftz discontinuous Galerkin method.

1-1 The transport equation

The study of the evolution of a population through transport equations has many practical
applications in astrophysics, optics, atmospheric science, population dynamics or, in our case,
radiative transfer. Radiative transfer is the branch of physics describing the transport of energy
by electromagnetic radiation through a material medium. We consider a population of particles
such as photons or neutrons and study how they travel through the material.

In this section, we briefly recall the equations of the radiative transfer [Cha50]. Seven variables
are required to describe the evolution of a particle: one time variable t, three space variables
x = (x, y, z)T = (x1, x2, x3)T ∈ R3, two for the direction Ω = (Ω1,Ω2,Ω3)T ∈ R3 and one for
the frequency ν ∈ R+. The function of distribution of the particles reads f := f(t,x,Ω, ν). A
useful quantity when studying a population of photons is the radiative intensity

I(t,x,Ω, ν) := chνf(t,x,Ω, ν),

where c is the speed of light and h is the Planck constant. To simplify the model, we consider
physical quantities averaged with respect to the frequency. We define the grey moment as

I(t,x,Ω) :=

∫ +∞

0
I(t,x,Ω, ν)dν.



6 APPROXIMATE MODELS OF THE TRANSPORT EQUATION

At the local thermal equilibrium the radiative intensity is governed by the Planck function

B
(
T (t,x)

)
=

∫ +∞

0

2hν3

c2[e
hν
kT − 1]

dν,

where k is the Boltzmann constant. The interaction between the particles and their environment
can be described using three mechanisms:
• The absorption,
• The scattering,
• The emission.

A particle can be absorbed by the material through the absorption coefficient σa
(
T (t,x)

)
≥

0 and the particles interact with each other through the scattering coefficient σs
(
T (t,x)

)
≥

0. Finally, the emission of particles depends on the Planck function B and can be written
σa
(
T (t,x)

)
B
(
T (t,x)

)
. We can now introduce the grey (i.e. average in frequency) radiative

transfer system

1

c
∂tI(t,x,Ω) + Ω · ∇I(t,x,Ω) = σa(x)

(
B
(
T (t,x)

)
− I(t,x,Ω)

)
+σs(x)

( 1

4π

∫
S2

p(Ω,Ω′)I(t,x,Ω′)dΩ′ − I(t,x,Ω)
)
,

1

c
∂tE

(
T (t,x)

)
=

1

4π

∫
S2

σa
(
T (t,x)

)(
B
(
T (t,x)

)
− I(t,x,Ω)

)
dΩ,

where p(Ω,Ω′) is an angular distribution function which defines the anisotropy of the scattering
and E(T ) is the internal energy density of the material at the temperature T . For example,
when considering perfect gazes one has

E
(
T (t,x)

)
= cV T (t,x),

where cV is the heat capacity at constant volume of the medium. For simplicity we assume
that the temperature T (t,x) is given, there is no emission of particles (that is B = 0) and the
scattering is isotropic (that is p(Ω,Ω′) = 1). The grey radiative transfer equation now reads

1

c
∂tI(t,x,Ω) + Ω · ∇I(t,x,Ω) = −σa(x)I(t,x,Ω) + σs(x)

(
< I > (t,x)− I(t,x,Ω)

)
, (1.1)

where we use the following notation

< · > (t,x) =
1

4π

∫
S2

dΩ,

with S2 the unit sphere in R3.

In the following, we may refer to the equation (1.1) as the transport equation. Interesting physical
phenomena depend on the coefficients σa and σs. For example, when they vary significantly
boundary layers may occur. Also, in the asymptotic regime t >> 1 and σs >> 1, the transport
equation (1.1) tends to a diffusion limit (see for example [ABDG15] in french)

∂t < I > (t,x)− div
( 1

3σs
∇ < I > (t,x)

)
+ σa < I > (t,x) = 0.

1-2 Approximate models of the transport equation

In practice, equation (1.1) is difficult to solve numerically because of the large number of variables
(up to three space variables, two for the direction and one time variable). Probabilistic methods
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such has Monte-Carlo schemes can be used directly on the transport equation. However, for
deterministic schemes one often needs to consider approximate models. In the following, we
present two popular approximations to discretize the angular variable in equation (1.1). More
general reviews of approximate models for the transport equation can also be found in [Bru02]
or [Fra12] (in french).

1-2.1 The discrete ordinate method

The discrete ordinates method [Cha50] (or SN method) assumes that the particles can only travel
through some particular directions. As pointed in [Bru02] this is equivalent to write the density
as a sum of Dirac mass

I(t,x,Ω) =
m∑
i=1

Ii(t,x)δ(Ω−Ωi).

The transport equation (1.1) then reads

1

c
∂tIi(t,x)+Ωi·∇Ii(t,x) = −

(
σa(x)+σs(x)

)
Ii(t,x)+σs(x)

m∑
j=1

wjIj(t,x), i = 1, ...,m, (1.2)

where Ii are the unknown and wi the integration weights. One often choose a symmetric quadra-
ture that is

m∑
i=1

wi = 1,

m∑
i=1

wiΩi = 0.

Moreover, to recover the correct diffusion coefficient one needs to impose [LMM87]
m∑
i=1

wiΩi ⊗Ωi =
1

3
Im,

where Im ∈ Rm×m is the identity matrix.

The main advantages of the SN method is that the system (1.2) is diagonal and the positivity
is preserved for each unknown. However, this system is not invariant under rotation and has a
well-known defect called ray effects. These effects come from the choice of the discrete values Ωi

for the directions which are then favored in the numerical simulation [Bru02].

1-2.2 Spherical harmonics approximation

The idea behind the spherical harmonic approximation (or PN model) is to decompose the
solution to (1.1) on the spherical harmonics basis

I(t,x,Ω) =
∑
k≥0

∑
|l|≤k

Yk,l(Ω)ulk(t, x),

where Yk,l are the real or complex spherical harmonics. The PN approximation assumes that if
k > N then the moments satisfy ulk = 0. Multiplying by Yk,l, integrating over the direction and
using the recursion relations of the spherical harmonics one finally gets a system of the form

∂tu(t,x) +

3∑
i=1

Ai∂xiu(t,x) = −Ru(t,x),

where u(t,x) is the unknown, R is a diagonal positive matrix and the matrices Ai have the
following block structure [Her16]

A1 =

(
0 A
AT 0

)
, A2 =

(
0 B
BT 0

)
, A3 =

(
0 C
CT 0

)
.
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A more detailed construction of the PN model and some properties of this system will be given
in Chapter 4.

In particular, a nice property of the PN model is that its solutions are invariant under rotation.
However, a well-known defect of the PN method is that it can lead to negative density when
considering time dependent case [Bru02]. There have been several attempts to address this
problem [BH01, HM10, MH10, Ols12]. Among them, a popular approach is the so-called filtered
PN (FPN ) method [FHK16, MH10, RARO13].

1-3 Asymptotic-preserving and well-balanced schemes

1-3.1 Asymptotic-preserving schemes

The introduction of a small parameter ε in an equation is often a good way to model a particular
physical behavior. For example, the parameter ε may represent some scaling of the coefficients
or different time scales of the physical quantities. In practice, the parameter ε may vary in the
domain and it is therefore mandatory to derive a numerical scheme which behaves well whatever
the parameter value is. Naive schemes may fail to capture the limit ε → 0 on coarse meshes
typically because the error behaves as O(∆x

ε ). On the contrary, schemes which are able to capture
efficiently the limit ε→ 0 have been called asymptotic-preserving (AP) schemes.

Definition 1.1 (Asymptotic-preserving schemes). A scheme is said to be asymptotic-preserving
(AP) if its consistency error does not depend on ε in the limit ε→ 0.

AP schemes have been applied to a wide range of kinetic and hyperbolic equations, see, for ex-
ample, the review [Jin10]. For the transport equation, it is known that under the correct scaling
it tends to a diffusion limit. To capture the diffusion limit with reasonable computational time,
asymptotic-preserving schemes have been introduced [JL91, JL96] and applied to transport prob-
lems [BT11, BDF15, Fra12, Gos13, GT02, Jin10, RGK12]. Such schemes are usually obtained
with a modification of the fluxes by including a dependence in ε in the new fluxes.

A typical example is the hyperbolic heat equation in dimension one
∂tp+

1

ε
∂xv = 0,

∂tu+
1

ε
∂xp = −σs

ε2
v.

Here the unknown are (p, v), σs ∈ R+ and 0 < ε ≤ 1. In particular, when ε → 0 the variable p
follows a diffusion equation (see Chapter 3 for details)

∂tp− ∂x
( 1

σs
∂xp
)

= 0.

To show why it can be challenging for numerical method to capture the diffusion limit, consider
a standard finite volume scheme written under the form

pn+1
j − pnj

∆t
+
vn
j+ 1

2

− vn
j− 1

2

ε∆x
= 0,

vn+1
j − vnj

∆t
+
pn
j+ 1

2

− pn
j− 1

2

ε∆x
= −σs

ε2
vj ,

, j = 0, ..., N, (1.3)

where ∆t, ∆x are the time and space step, pj and vj the approximations of p and v in the cell
j. To get the fluxes pj± 1

2
and vj± 1

2
, a first possible choice is to solve the associated Riemann
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problem at the interface. One gets after simplification
pn
j+ 1

2

=
1

2

(
pnj + pnj+1 + vnj − vnj+1

)
,

vn
j+ 1

2

=
1

2

(
vnj + vnj+1 + pnj − pnj+1

)
.

(1.4)

However with this particular choice of fluxes the scheme is not AP.

Proposition 1.2. The consistency error of the scheme (1.3) with the fluxes (1.4) is O(∆x
ε +∆t).

Therefore the scheme (1.3)-(1.4) is not AP in the limit ε→ 0.

Proof. See for example [BDF12]. �

A possible way to get an AP scheme is to modify the source term in the scheme (1.3)
pn+1
j − pnj

∆t
+
vn
j+ 1

2

− vn
j− 1

2

ε∆x
= 0,

vn+1
j − vnj

∆t
+
pn
j+ 1

2

− pn
j− 1

2

ε∆x
= − σs

2ε2

(
vj+ 1

2
+ vj− 1

2

)
,

(1.5)

and consider the fluxes 
pn
j+ 1

2

=
1

2

(
pnj + pnj+1 + vnj − vnj+1

)
,

vn
j+ 1

2

=
1

2(1 + a)

(
vnj + vnj+1 + pnj − pnj+1

)
,

(1.6)

with a = σs∆
2ε . The scheme (1.5)-(1.6) has been proposed by Gosse and Toscani [GT02]. This

scheme is AP.

Proposition 1.3. The consistency error of the scheme (1.5) with the fluxes (1.6) is O(∆x+∆t).
Therefore the scheme (1.5)-(1.6) is AP in the limit ε→ 0.

Proof. See [BDF12, GT02]. �

We compare the behavior of an AP and a non AP scheme applied to the hyperbolic heat equation
in Figure 1.1. The Figure 1.1 shows that, in the diffusive regime (ε << 1), naive schemes needs
lots of degrees of freedom to approximate correctly the limit solution. On the contrary, even
with few degrees of freedom, the AP scheme captures the numerical solution very well.

1-3.2 Well-balanced schemes

A concept which is strongly related to the asymptotic-preserving property is the notion of well-
balanced (WB) schemes. The common definition for a well-balanced scheme is a scheme which
preserves stationary solutions to the model. Such schemes are related to AP schemes since the
stationary states can be seen as limit solutions when t >> 1. Well-balanced schemes have been
introduced in [GL96] and, since then, have been widely used [BPV03, DB16, Gos13, GT02, Jin04,
JTH09, LeV98, MDBCF16]. They have several advantages:

• they can improve the numerical calculation when considering stiff source terms,

• they increase the accuracy of the scheme around the steady states,

• they can be a good starting point to derive efficient AP schemes.
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Figure 1.1 – Representation of the variable p of the hyperbolic heat equation when ε = 10−3 and
comparison with the limit solution. On the left: numerical solution obtained with
a non-AP scheme. On the right: numerical solution obtained with an AP scheme.

For our applications in particular, we expect well-balanced schemes to be able to capture effi-
ciently boundary layers.

Schemes which are both asymptotic-preserving and well-balanced have been designed and studied
in one dimension [GT02, JTH09]. However, direct extensions in higher dimensions may fail to
capture boundary layers [Tan09]. In general, and except in some particular cases, two dimensional
asymptotic-preserving schemes are not well-balanced. It comes from the particular definition of
a well-balanced scheme in one dimension.

Definition 1.4 (Well-balanced scheme in 1D). A one dimensional scheme is said to be well-
balanced if it preserves all the stationary states.

There is an important difference between the one-dimensional case and higher dimensions. In
one dimension, a scheme is well-balanced if it captures all the stationary states of a hyperbolic
system. This is possible because, in one dimension, the number of linearly independent stationary
solutions is finite.

However, in two dimensions, the space of stationary solutions becomes infinite. It has a huge
impact on what is a well-balanced scheme in space dimensions higher than one. For a two
dimensional well-balanced scheme, one chooses a finite subset of solutions for which the scheme
will be exact.

Definition 1.5 (Well-balanced scheme in 2D). A two dimensional scheme will be said to be
well-balanced for some solutions to the model if it is exact for any linear combinations of these
solutions.

Note that since it could also be a good idea to preserve time dependent states, we do not restrict
the Definition 1.5 to stationary states.

We illustrate why the concept of well-balanced schemes plays an important role in the numerical
approximation of solutions to the transport equation. We consider the P1 model in one dimension
which is a very simple approximation of the transport equation (see Chapters 3 and 4 for details).
The Figure 1.2 shows that well-balanced schemes may be very efficient to capture boundary layers
(in this case because the stationary states are exponential solutions) which is not the case for
some other naive schemes.
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Figure 1.2 – Representation of the first variable of the P1 model. Comparison between a well-
balanced and a naive scheme for a test case with a boundary layer at x = 0.5.

1-4 Trefftz methods

1-4.1 Trefftz and related methods

The idea of adding information about the solution in the basis functions is known, in some cases,
to greatly improve the quality of the numerical solutions. The so-called enrichment methods
include for example the partition of unity method (PUM) [MB96, BM96, GS00], the General-
ized finite element method (GFEM) [SBC00, SCB00], and the extended finite element method
(XFEM) [BB99, MDB99]. The enrichment methods are based on a standard polynomial basis
which may come from the finite element method or the discontinuous Galerkin method. The idea
is then to add locally some special basis functions to the approximation space. These special
basis functions may be, for example, solutions or asymptotic solutions to the model. This can
be very useful when considering physical problems which involve discontinuities, singularities or
high gradients. For detailed reviews of these methods, see [AH08, FB10] and reference therein.
In this document, we are interested in the Trefftz discontinuous Galerkin (TDG) method which
uses only solutions to the equation as basis functions.

The name of the Trefftz methods comes from the seminal paper of E. Trefftz which has recently
been translated in English [Mau03]. In his paper, Trefftz proposed the new concept of using trial
functions which satisfy the governing differential equations (for Trefftz it was the 2D Laplace
problem). At the time, the benefits of using such trial functions was to obtained a lower bound of
the error. This lower bound combined with the upper bound given by the Ritz method allowed
Trefftz to give a general bound of the error.

Since then, Trefftz methods gained in popularity and have been applied on various problems. In
particular, Trefftz methods have been widely used for the Helmholtz equation, see for example
the reviews [Luo13, Chapter 3], [Moi11, Chapter 1], [PvHVD07, HMP16b] and reference therein.
For review of Trefftz methods applied on other type of equations see [KK95, Li08, Qin05, CZ97].
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1-4.2 The Trefftz discontinuous Galerkin method

The discontinuous Galerkin (DG) methods have been introduced by Reed and Hill in 1973 for
solving the steady neutron transport equation [RH73] and the first mathematical analysis was
performed by LeSaint and Raviart in 1974 [LR74]. Since then, the DG methods have been
successfully applied to a large range of problems, see for example [CKS99, DPE11, HW07] and
reference therein. The DG methods combine feature of the finite element and finite volume
methods. In particular, they depend on a weak formulation of the problem and on the choice
of finite dimensional trial and test spaces of piecewise continuous functions. In the following,
we will call basis functions, the functions which belong to the trial and test spaces. A classical
choice is to consider polynomials basis functions.

In this document, we are interested in the Trefftz discontinuous Galerkin (TDG) method which
combined the discontinuous Galerkin framework with Trefftz’s original idea. This method has
been somehow rediscovered by Cessenat and Despres [CD98] with the ultra weak variational
formulation (UWVF), see also [HMK02, BM08, IG13, IGD14, IG15b]. Later, it has been noticed
that the UWVF is in fact equivalent to a DG method with a special choice of basis functions
[BM08, GA07, HMM07]. Since the basis functions of this formulation were solutions to the
equation, it has taken the name of Trefftz discontinuous Galerkin method. The reformulation of
the UWVF into the DG formalism allows to use all the techniques of analysis developed in the
DG framework. In particular, for the TDG method applied to the Helmholtz equation, it has
been used to study h-convergence [KMPS16], p-convergence [HMP11] and even hp-convergence
[HMP16a].

TDG methods have their pros and cons.

• Pros:

— Incorporate a priori knowledge in the basis functions which are therefore well adapted
to multiscale problems.

— Often need less degrees of freedom to reach a given accuracy. A typical example is
the 2D version of the P1 model in the dominant absorption regime σa > 0 illustrated
in the table below where we compare the number p of basis functions needed to
achieve a given fractional order. The first line is for the TDG method. One gets
pTDG = 2(order + 1) which is a rephrasing of the result of Theorem 4.75 given in
Chapter 4 for the case N = 1. The second line is the optimal number of basis
function for a general DG method pDG = 3

2(order + 1
2)(order + 3

2).

order 1/2 3/2 5/2 7/2 9/2

pTDG 3 5 7 9 11
pDG 3 9 18 30 45

In particular, the number of basis functions is the same to get order = 1/2 and one
always gets pTDG ≤ pDG.

— Is easy to incorporate in DG codes since one only needs to change the basis functions.

• Cons:

— May suffer ill-conditioning due to poor linear independence of the basis functions
[CD98, HMK02]. For wave problems, some remedies exist in the literature [GHP09].

— The practical calculation of the basis functions adds to the computational burden.
If one can calculate the basis functions analytically, the computational burden is
moderate. If it is not the case, the computational burden is heavier: several options
could be considered such as computing numerically the basis functions or relying on
a general procedure [IGD14, IG15a, IG15b].
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In the following, we briefly recall the idea behind the TDG method. Consider the following
model problem with Dirichlet boundary condition

Lu = 0, on Ω,

u = uex, on ∂Ω.
(1.7)

Here, u is the unknown, Ω is an open bounded set of R2 or R3, uex is the exact solution and L
is a linear differential operator. Typically, one could think of L as L = ∆. Moreover, we assume
that Th is a mesh of the domain Ω and we will denote Ωk a cell of Th. All these notations will
be made rigorous in the Chapter 2.

The only difference between the DG and the TDG method is the choice of basis functions in the
approximation space Vh. For the DG method, the basis functions are simple polynomials and
the approximation space VDG reads

VDG(Th) =
{

v ∈ H1(Th), vk ∈ Ph ∀Ωk ∈ Th
}
,

where Ph is the polynomials space.

For the TDG method, the basis functions are exact solutions to the equation and the approxi-
mation space reads

VTDG(Th) =
{

v ∈ H1(Th), Lvk = 0 ∀Ωk ∈ Th
}
.

Now, we assume one can apply the standard discontinuous Galerkin method to the model problem
(1.7) and we denote aDG(·, ·) and l(·) respectively the bilinear and linear form obtained with the
DG method [DF15, DPE11, HW07], see also Chapter 2.

Definition 1.6. Assume Vh(Th) is a finite subspace of VDG(Th) or VTDG(Th). The standard
DG/TDG method reads {

find uh ∈ Vh(Th) such that
aDG(uh,wh) = l(wh), ∀wh ∈ Vh(Th),

(1.8)

where aDG(·, ·) and l(·) are respectively the bilinear and linear form obtained with the DG
method.

Solving the formulation (1.8) is equivalent to find the solution of a linear system. Indeed, since
Vh is finite-dimensional space, there exists functions vi(t,x) such that

Vh = Span
{

v1(t,x), ...,vn(t,x)
}
,

for some n ∈ N. The functions vi are called the basis functions. Since uh ∈ Vh, one can write
uh =

∑n
i=1 aivi, ai ∈ R. Therefore, the formulation (1.8) can be written

find ai ∈ R, i = 1, ..., n, such that

aDG(

n∑
i=1

aivi,vj) = l(vj), j = 1, ..., n.

Using the linearity of aDG(·, ·), one gets the following linear system: find a = (a1, ..., an) ∈ Rn
such that

Ma = b,
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where M = (Mij)
n
i,j=1 ∈ Rn×n and b = (b1, ..., bn)T ∈ Rn, with

Mij = aDG(vi,vj), bi = l(vi).

With the standard DG method, the approximation space Vh is typically made of polynomials (for
example one can consider simple monomials such as 1, x, y...). This is not the case anymore for
the TDG method. In the following, we give some examples of subspace Vh when considering the
TDG method. For simplicity, we consider the same basis functions v1, ...,vk, k ∈ N, in all the
cells and make a slight abuse of notation by denoting Vh = Span(v1, ...,vk). The basis functions
have compact support in the cell and the total number of basis functions n is then k multiplied
by the number of cells. The first example that we consider is the Helmholtz equation which was
the model problem used for the UWVF [CD98].

Example 1.7. The two dimensional Helmholtz equation reads

∆u = −ω2u,

where ω ∈ R. A typical choice for Vh is then

Vh = Span
{
eiω(d1,x), ..., eiω(dk,x)

}
,

where x = (x, y)T ∈ R2, k ∈ N is the number of basis function and di ∈ R2 are directions on the
unit circle di = (cos θi, sin θi)

T . •
For a more transport related model we give the example of the P1 model in one dimension.

Example 1.8. The P1 model in one dimension reads{
∂tp+ ∂xv = −σap,
∂tv + ∂xp = −σtv.

The unknown is u = (p, v)T and σa, σs ∈ R+, σt = σa + σs
ε2
. A possible choice for Vh is

Vh = Span
{(−√σt√

σa

)
e
√
σaσtx,

(√
σt√
σa

)
e−
√
σaσtx

}
.

In some regimes, it can be very interesting to consider non polynomial basis functions. When
σaσt >> 1 for example, the two basis functions of Vh are stiff exponential functions and may
therefore be very well adapted to capture boundary layers. •
However, the basis functions are not always exponentials. Consider for example the hyperbolic
heat equation in two dimensions.

Example 1.9. The hyperbolic heat equation in two dimensions reads{
∂tp+ div v = 0,

∂tv +∇p = −σsv,

the unknown is u = (p,v)T ∈ R3 and σs ∈ R+. For simplicity, we consider stationary solutions.
Deriving the second equation and inserting in the first equation, one gets ∆p = 0. Therefore, a
possible choice for Vh is

Vh = Span
{( σsq1(x)
−∇q1(x)

)
, ...,

(
σsqk(x)
−∇qk(x)

)}
,

where x = (x, y)T ∈ R2, k ∈ N is the number of basis functions and the functions qi(x) denote
the two dimensional harmonic polynomials. •
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Trefftz discontinuous Galerkin method
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In this chapter, the TDG method for Friedrichs systems with linear relaxation is presented. After
introducing such systems, the standard discontinuous Galerkin method for Friedrichs systems
[DPE11, EG06, MR05] is recalled. This is particularly useful since the TDG method is simply a
DG method with a special choice of basis functions. The derivation of the TDG method is then
given. Finally, some error estimates are provided and the well-balanced property of the scheme
is deduced from the quasi-optimality result. Note however that this chapter does not cover the
general construction of the basis functions which may be a difficult point. A first look at the
basis functions in some particular cases is given in the previous chapter in Examples 1.7, 1.8 and
1.9.

2-1 Friedrichs systems with linear relaxation

In this section, we present the general systems (2.1) which are considered in this document.

The method is presented in a general framework to consider both stationary and time dependent
problems. Let ΩS be a bounded polygonal/polyhedral Lipschitz space domain in Rd and consider
a time interval [0, T ], T > 0. We denote Ω = ΩS for stationary problems and Ω = ΩS × [0, T ]
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for time dependent problems. We consider Friedrichs systems with linear relaxation [Fri58]
d∑
i=0

Ai∂iu(t,x) = −R(x)u(t,x), in Ω,

M−u(t,x) = M−g(t,x), in ∂Ω.

(2.1)

The space variable is x = (x1, ..., xd) ∈ Rd and the time variable is t. The unknown is u ∈ Rm.
Moreover the matrices

Ai ∈ Rm×m, R(x) ∈ Rm×m,

are symmetric and we assume R(x) is a non negative matrix, that is

(R(x)v,v) ≥ 0, for all v ∈ Rm, x ∈ Rd.

We use the notation ∂0 = ∂t, ∂i = ∂xi for i = 1, ..., d. For time dependent problem u = u(t,x)
and the matrix A0 is a non negative matrix (and often A0 = Im). For stationary problem
u = u(x) and therefore ∂tu = 0. The outward normal unit vector is n(t,x) = (nt, nx1 , ..., nxd)
for (t,x) ∈ ∂Ω and of course for stationary problems nt = 0 for all x ∈ ∂Ω. We set

M(n) = A0nt +
d∑
i=1

Ainxi , on ∂Ω. (2.2)

Since the matrices Ai are symmetric, M is also symmetric and one has the standard decompo-
sition M(n) = M+(n) +M−(n) where M+ is a non negative matrix and M− is a non positive
matrix. More precisely denoting λi the eigenvalues of the matrix M associated with the eigen-
vectors ri one can take

M+(n) =
∑
λi>0

λirir
T
i , M−(n) =

∑
λi<0

λirir
T
i . (2.3)

Finally we use the matrix M− to write the boundary conditions with g ∈ L2(∂Ω) and assume
the problem (2.1) admits a unique solution [EG06].

2-2 Presentation of the method

2-2.1 Mesh notation and generic discontinuous Galerkin formulation

The partition or mesh of the space domain Ω = ΩS ⊂ Rd is denoted as Th. It is made of
polyhedral non overlapping subdomains ΩS,r, that is

Th = ∪rΩS,r.

For a space time problem, we first split the time interval into smaller time intervals (tn, tn+1)
with 0 = t0 < t1 < ... < tN = T. Making an abuse of notation, the mesh of the space-time
domain Ω = ΩS × [0, T ] ⊂ Rd+1 is still denoted as

Th = ∪r,nΩS,r × (tn, tn+1).

One must therefore be careful that Th denotes either a purely spatial mesh for stationary models
or a space-time mesh for time dependent models. Moreover the cells or subdomains will be
referred to with the same notation, that is

Ωk = ΩS,r or Ωk = ΩS,r × (tn, tn+1).

In summary, one can write in both cases Th = ∪kΩk and the context makes these notations non
ambiguous. They are several advantages to consider space-time meshes
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Figure 2.1 – Illustration of the partition Th for a time dependent problem.

• No distinction is made between stationary and time dependent problems. Therefore, the
formulation and analysis of the method are the same in both cases.

• Time dependent basis functions can be used. This can be particularly useful for Trefftz
methods since it allows to be well-balanced for time dependent solutions.

• With the right choice of flux, the method can be solved iteratively in time (time step after
time step) like any standard scheme.

Finally, note that other kind of space-time meshes could also be considered [FR00, LRv95, MR05].

The broken Sobolev space is

H1(Th) :=
{

v ∈ L2(Ω), v|Ωk ∈ H
1(Ωk) ∀Ωk ∈ Th

}
.

In the following we assume u ∈ H1(Th). For convenience, we may rewrite the system (2.1) under
the form Lu = 0 and consider the adjoint operator

L :=
∑
i

Ai∂i +R, L∗ := −
∑
i

Ai∂i +R = −L+ 2R.

The matrices Ai are constant and we assume that the matrix R(x) is constant in each cell.
Multiplying the system (2.1) by v ∈ H1(Th) and integrating on Ω gives

∑
k

∫
Ωk

vTk Luk = 0, (2.4)

where vk = v|Ωk , uk = u|Ωk . Integrating by parts one gets

∑
k

∫
Ωk

(
L∗vk

)T
uk +

∑
k

∫
∂Ωk

vTkMkuk = 0,

where ∂Ωk is the contour of the element Ωk. Here, we have generalized the notation (2.2) on ∂Ωk

where nk = (nt, nx1 , ..., nxd)
T is the outward unit normal and Mk = M(nk) = A0nt +

∑
iAini.

Denoting Σkj the edge oriented from Ωk to Ωj when k 6= j and Σkk the edges belonging to
Ωk∩∂Ω (for simplicity we use the same notation even if there is more than one edge in Ωk∩∂Ω),
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one can write ∑
k

∫
Ωk

(
L∗vk

)T
uk +

∑
k

∑
j<k

∫
Σkj

(vTMu)k + (vTMu)j

+
∑
k

∫
Σkk

vTkM
+
k uk = −

∑
k

∫
Σkk

vTkM
−
k g.

For u satisfying the equation (2.1), the normal flux is

fkj(uk,uj) := Mkuk = −Mjuj , on Σkj . (2.5)

Note that fkj(uk,uj) + fjk(uj ,uk) = 0. One has∑
k

∑
j<k

∫
Σkj

(vTMu)k + (vTMu)j =
∑
k

∑
j<k

∫
Σkj

(vk − vj)
T fkj(uk,uj).

Because M is symmetric, one can decompose M under the form M = M+ +M− where M+ is
a non negative matrix and M− is a non positive matrix, see (2.3). In the following we consider
the upwind flux

fkj(uk,uj) = M+
kjuk +M−kjuj ,

where Mkj = Mk|Σkj . Finally one gets∑
k

∫
Ωk

(
L∗vk

)T
uk +

∑
k

∑
j<k

∫
Σkj

(vk − vj)
T (M+

kjuk +M−kjuj)

+
∑
k

∫
Σkk

vTkM
+
k uk = −

∑
k

∫
Σkk

vTkM
−
k g.

(2.6)

We define the bilinear form aDG : H1(Th)×H1(Th)→ R and the linear form l : H1(Th)→ R as

aDG(u,v) =
∑
k

∫
Ωk

(L∗vk)
Tuk +

∑
k

∑
j<k

∫
Σkj

(vk − vj)
T (M+

kjuk +M−kjuj)

+
∑
k

∫
Σkk

vTkM
+
k uk, u,v ∈ H1(Th),

l(v) =−
∑
k

∫
Σkk

vTkM
−
k g, v ∈ H1(Th).

(2.7)

One can rewrite (2.6) as aDG(u,v) = l(v), ∀v ∈ H1(Th). We can now define the classic
discontinuous Galerkin method for Friedrichs systems with polynomial basis functions [DPE11,
EG06, FR00, MR05]. We define Pdq the space of polynomials of d variables, of total degree at
most q and the broken polynomial space

Pdq(Th) :=
{

v ∈ L2(Ω),v|Ωk ∈ Pdq ∀Ωk ∈ Th
}
⊂ H1(Th).

Now we can introduce the DG method.

Definition 2.1 (DG method). Assume Ph(Th) is a finite subspace of Pdq(Th). The standard
upwind discontinuous Galerkin method for Friedrichs systems is formulated as follows{

find uh ∈ Ph(Th) such that
aDG(uh,vh) = l(vh), ∀vh ∈ Ph(Th).

(2.8)

Note that, because of the conservation equation (2.5), the exact solution to (2.1) also satisfies

aDG(u,vh) = l(vh), ∀vh ∈ H1(Th). (2.9)
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2-2.2 Trefftz Discontinuous Galerkin formulation

Since our goal is to use Trefftz method we take discontinuous basis functions which are solutions
to (2.1) in each cell

V (Th) =
{

v ∈ H1(Th), Lvk = 0 ∀Ωk ∈ Th
}
⊂ H1(Th). (2.10)

The space V (Th) is a genuine subspace of H1(Th) except in the case L = 0. Starting from the
bilinear form aDG from (2.7), one notices that the volume term can be written for all functions
in V (Th) as∫

Ωk

(
L∗vk

)T
uk =

∫
Ωk

(
(−L+ 2R)vk

)T
uk = 2

∫
Ωk

vTkRuk, ∀u,v ∈ V (Th). (2.11)

One can therefore define a bilinear form aT : V (Th)× V (Th)→ R as

aT (u,v) =
∑
k

2

∫
Ωk

vTkRuk +
∑
k

∑
j<k

∫
Σkj

(vk − vj)
T (M+

kjuk +M−kjuj)

+
∑
k

∫
Σkk

vTkM
+
k uk, u,v ∈ V (Th).

(2.12)

Of course, one has aDG(u,v) = aT (u,v) for all u,v ∈ V (Th). We give an equivalent formulation
of the bilinear form aT (·, ·). Thanks to an integration by part one has for u,v ∈ V (Th)

aT (u,v) =
∑
k

∫
Ωk

(L∗vk)
Tuk +

∑
k

∑
j<k

∫
Σkj

(vk − vj)
T (M+

kjuk +M−kjuj),

=
∑
k

∫
Ωk

vTk Luk −
∑
k

∫
∂Ωk

vTkMkuk +
∑
k

∑
j<k

∫
Σkj

(vk − vj)
T (M+

kjuk +M−kjuj).

(2.13)

Since the functions uk ∈ V (Th) are piecewise homogeneous solutions of the equation, that is
Luk = 0, one gets

aT (u,v) = −
∑
k

∑
j<k

∫
Σkj

(M−kjvk +M+
kjvj)

T (uk − uj)−
∑
k

∫
Σkk

vTkM
−
k uk, u,v ∈ V (Th).

(2.14)
The relaxation term R completely disappeared in the formulation (2.14). It might seem a paradox
at first sight but it is not because, for a Trefftz method, some information about R is encoded in
the basis functions. Since there is no volume term in the formulation (2.14) compared to (2.12)
it may be easier to implement. The related linear form l : V (Th)→ R is unchanged with respect
to (2.7), that is l(v) = −

∑
k

∫
Σkk

vTkM
−
k g for all v ∈ V (Th).

Definition 2.2 (TDG method). Assume Vh(Th) is a finite subspace of V (Th). The upwind
Trefftz discontinuous Galerkin method for the model problem (2.1) is formulated as follows{

find uh ∈ Vh(Th) such that
aT (uh,vh) = l(vh), ∀vh ∈ Vh(Th).

(2.15)

Remark 2.3 (Iterative scheme in time). In case of a time dependent problem, even if the classic
upwind discontinuous Galerkin formulation (2.8) and the upwind Trefftz discontinuous Galerkin
formulation (2.15) are posed on the whole space-time domain Ω, they still can be decoupled time
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step after time step. It comes from the fact that the matrix A0 is non negative and therefore
M−(n) = 0 if n = (1, 0, ..., 0).

Define anT : V (Th)×V (Th)→ R (related to the general bilinear form (2.14)) and ln : V (Th)→ R
as the "space part" of the previous bilinear and linear form

anT (u,v) =−
∑
k

∑
j<k

∫
Σknjn

(M−knjnvnk +M+
knjnvnj )T (unk − unj )−

∑
k

∫
∂ΩS∩∂Ωkn

(vnk )TM−knunk

−
∑
k

∫
Σknkn−1

(vnk )TM−
knkn−1u

n
k , u,v ∈ V (Th),

ln(v) =−
∑
k

∫
∂ΩS∩∂Ωkn

(vnk )TM−kng −
∑
k

∫
Σknkn−1

(vnk )TM−
knkn−1u

n−1
k , v ∈ V (Th).

(2.16)
Here the index kn is a notation for an element of the space-time mesh: it denotes the element with
index k in the spacial mesh at the time step n. We also used the convention Σk1k0 = ∂Ωk1∩(∂Ω×
{0}) (i.e. Σk1k0 is a cell of the spacial mesh at time t = 0) and ΣkN+1kN = ∂ΩkN ∩ (∂Ω× {T})
(i.e. ΣkN+1kN is a cell of the spacial mesh at the final time). The formulation (2.15) is equivalent
to the series of space problems{

find unh, n = 1, ..., N, such that
anT (unh,v

n
h) = ln(vnh), ∀vnh ∈ Vh(Th).

(2.17)

The scheme obtained with the formulation (2.17) is implicit. •
Remark 2.4 (Exact integration of the basis functions). In this document, the basis functions
that we consider are products of polynomials and exponentials. To calculate the contributions of
the basis functions in the bilinear and linear form (2.15), one therefore needs to integrate products
of polynomials and exponentials on the edges/faces of the mesh. Even if it is always possible to
use quadrature formulas, it may be desirable to calculate exactly such integrals. We refer the
reader to [Gab09] for a convenient way to integrate products of polynomials and exponentials in
two and three dimensions. In our numerical tests, the integrals will be calculated exactly. •
Remark 2.5 (Adjoint basis functions). A fully different choice of basis functions is also possible
using the adjoint operator L∗ instead of L in (2.10). Define V ∗(Th) = {v ∈ H1(Th), L∗vk =
0 ∀Ωk ∈ Th} ⊂ H1(Th). With this choice of basis functions one has L∗vk = 0 in (2.7) and we
therefore define aAT : V ∗(Th)× V ∗(Th)→ R as

aAT (u,v) =
∑
k

∑
j<k

∫
Σkj

(vk − vj)
T (M+

kjuk +M−kjuj) +
∑
k

∫
Σkk

vTkM
+
k uk, (2.18)

and consider V ∗h (Th) a finite subspace of V ∗(Th). The upwind adjoint Trefftz discontinuous
Galerkin method for the model problem (2.1) reads{

find uh ∈ V ∗h (Th) such that
aAT (uh,vh) = l(vh), ∀vh ∈ V ∗h (Th),

(2.19)

with l a linear form as in (2.7). Even if when R = 0 these two approaches coincide, the problems
we are interested in are such that R = RT 6= 0, so these two methods are different in our case.
The numerical solution is by construction in the space V ∗ 6= V and it is not clear if a finite
subspace of V ∗ can give a good approximation of V using standard norms. Some numerical
examples are given in appendix C.

Another possibility is to adopt a Petrov-Galerkin approach choosing trial functions in V (Th) and
test functions in V ∗(Th) [Gab06, Gab07]. However, we have tested this approach and noticed
some stability issue for time dependent problems. Therefore these methods will not be studied
further. •
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2-2.3 Trefftz discontinuous Galerkin formulation for systems with a source
term

In this section, we show how to derive the TDG method for a model problem with a source term.
The only difference with the system (2.1) is the addition of a source term f in the right hand
side 

d∑
i=0

Ai∂iu = −R(x)u + f(t,x), in Ω,

M−u = M−g, in ∂Ω,

(2.20)

where f(t,x) ∈ L2(Ω) is constant in each cell and all the hypothesis made for the model (2.1)
hold.

With the same approximation space Vh as before, the TDGmethod may give a bad approximation
near the source. If we want the basis functions to "see" the source term f , the approximation
space (2.10) must be changed. We introduce the following space

V f
h (Th) =

{
v ∈ H1(Th), αk ∈ R, Lvk = αkf , ∀Ωk ∈ Th

}
⊂ H1(Th). (2.21)

To get the new bilinear form aT (·, ·) one can use the equality Luk = αkf in (2.13). For the linear
form l(·) one needs to add the contribution

∑
k

∫
Ωk

vTk f . The bilinear form aT (·, ·) and the linear
form l(·) now read

aT (u,v) =
∑
k

αk

∫
Ωk

vTk f −
∑
k

∑
j<k

∫
Σkj

(M−kjvk +M+
kjvj)

T (uk − uj)

−
∑
k

∫
Σkk

vTkM
−
k uk, u,v ∈ V (Th),

l(v) =−
∑
k

∫
Σkk

vTkM
−
k g +

∑
k

∫
Ωk

vTk f , v ∈ H1(Th).

(2.22)

Definition 2.6. Assume Vh(Th) is a finite subspace of V f
h (Th). The upwind Trefftz discontinuous

Galerkin method for the model problem (2.20) is formulated as follows

{
find uh ∈ V f

h (Th) such that

aT (uh,vh) = l(vh), ∀vh ∈ V f
h (Th),

(2.23)

where aT (·, ·) and l(·) are given in (2.22).

In practice, the formulation (2.23) is not so different from the formulation (2.15). Typically, a
possible choice will be first to consider some basis functions which are solutions to the homoge-
neous problem (that is take α = 0 in (2.21)). After that, one could add basis functions which
depend on f . For example, if the matrix R is invertible, one could consider the basis function
R−1f (that is take α = 1 in (2.21)). With this procedure, the only difference between the for-
mulations (2.23) and (2.15) is the addition of the one single basis function R−1f . The additional
computational cost of the formulation (2.15) compare to the formulation (2.23) is therefore lim-
ited. Some numerical examples of the TDG method applied to a system with a source term will
be given in Chapter 5.



22 ANALYSIS OF THE TREFFTZ DISCONTINUOUS GALERKIN METHOD

2-3 Analysis of the Trefftz Discontinuous Galerkin method

2-3.1 Quasi-optimality

In this section, we study the TDG method applied to the model problem (2.1). In particular, we
show a quasi-optimality bound in mesh-dependent norms. Our analysis follows some results of
[KMPS16] where a special case with R = 0 was studied, see also [FR00, MR05] for the general
case. We define two semi-norms on H1(Th)

‖u‖2DG =
∑
k

∫
Ωk

uTkRuk +
∑
k

∑
j<k

1

2

∫
Σkj

(uk − uj)
T |Mkj |(uk − uj) +

∑
k

1

2

∫
Σkk

uTk |Mk|uk,

‖u‖2DG∗ =
∑
k

∫
∂Ωk

−uTkM
−
k uk,

(2.24)
with |Mkj | = |Mjk| = M+

kj −M
−
kj . First, we show that these two semi-norms are in fact norms

on the Trefftz space. We will need the following lemmas.

Lemma 2.7. One has the inequality ‖v‖DG ≤ C‖v‖DG∗ for all v ∈ V (Th), with C =
√

5
2 .

Proof. Assume v ∈ V (Th) then Lvk = 0, ∀Ωk ∈ Th. Multiply by vTk and integrate over Ωk one
has

∫
Ωk

vTk Lvk = 0. Integrating by parts one finds∫
Ωk

(L∗vk)
Tvk +

∫
∂Ωk

vkMkvk = 0.

Using L∗ = −L+ 2R and Lvk = 0 one gets

1

2

∫
∂Ωk

vTkMkvk + 2

∫
Ωk

vTkRvk = 0. (2.25)

Therefore one has ∑
k

∫
Ωk

vTkRvk ≤ −
1

2

∑
k

∫
∂Ωk

vTkM
−
k vk =

1

2
‖v‖2DG∗ , (2.26)

which is a bound for the first term in the definition of the DG norm (2.24). Moreover, because
R is non negative and using (2.25), one also finds

∫
∂Ωk

vTkMkvk ≤ 0 that is
∫
∂Ωk

vTkM
+
k vk ≤

−
∫
∂Ωk

vTkM
−
k vk and consequently∫

∂Ωk

vTk |Mk|vk ≤ −2

∫
∂Ωk

vTkM
−
k vk. (2.27)

An elementary inequality gives 1
2

∫
Σkj

(vk − vj)
T |Mkj |(vk − vj) ≤

∫
Σkj

vTk |Mkj |vk + vTj |Mkj |vj
thus ∑

k

∑
j<k

1

2

∫
Σkj

(vk − vj)
T |Mkj |(vk − vj) +

∑
k

1

2

∫
Σkk

vTk |Mk|vk ≤
∑
k

∫
∂Ωk

vTk |Mk|vk,

and therefore using (2.27)∑
k

∑
j<k

1

2

∫
Σkj

(vk−vj)
T |Mkj |(vk−vj)+

∑
k

1

2

∫
Σkk

vTk |Mk|vk ≤ −2
∑
k

∫
∂Ωk

vkM
−
k vk = 2‖v‖2DG∗ ,

(2.28)
which is a bound for the second and third terms in the definition of the DG norm (2.24).
Finally combining (2.26) and (2.28) with the definition of the DG norm (2.24) one gets ‖v‖2DG ≤
5
2‖v‖

2
DG∗ . �
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Lemma 2.8. Assume M ∈ Rm×m is a symmetric matrix. Then one has

zTM2z ≤ CzT |M |z, ∀z ∈ Rm,

where we have used the decomposition of M = M+ +M−, M+ is a non negative matrix, M− is
a non positive matrix and |M | = M+ −M−.

Proof. First, we notice that zT |M |z = zTM+z−zTM−z and zTM2z = zT (M+)2z+zT (M−)2z.

Let λ+ be the maximum eigenvalue ofM+. Denoting λi and ri the eigenvalue and eigenvector of
M+ one has

∑
λi≥0 zT (M+)2z = λ2

i (z, ri)
2 ≤ λ+

∑
λi≥0(z, ri)

2 = λ+zTM+z. A similar inequality
applies to the matrix M− gives finally zTM2z ≤ ρ(M)zT |M |z, ∀z ∈ Rm. This completes the
proof. �

We can now show that the two semi-norms ‖ · ‖DG and ‖ · ‖DG∗ are in fact norms on the Trefftz
space V (Th).

Proposition 2.9. The semi-norms ‖ · ‖DG and ‖ · ‖DG∗ are norms on the Trefftz space V (Th)
defined in (2.10).

Proof. Assume u ∈ V (Th) and ‖u‖DG = 0. Since ‖u‖DG = 0 one has
∑

k

∑
j<k

1
2

∫
Σkj

(uk −
uj)

T |Mkj |(uk − uj) = 0 and Lemma 2.8 implies that Mu has vanishing jump across each edge
of Th. Thus u is a solution to the general problem Lu = 0 in Ω. Moreover

∫
∂Ω uT |M |u = 0.

Therefore u is solution of {
Lu = 0, in Ω,

M−u = 0, on ∂Ω.

We conclude u = 0 in Ω using the uniqueness of the solution. Thus ‖ · ‖DG is a norm on V (Th).
Thanks to Lemma 2.7, we also conclude that ‖ · ‖DG∗ is also a norm on V (Th). This completes
the proof. �

Next, we study the coercivity and the continuity of the bilinear form a(·, ·) regarding the norms
‖ · ‖DG and ‖ · ‖DG∗ .

Proposition 2.10 (Coercivity). For all u ∈ H1(Th) one has aDG(u,u) = ‖u‖2DG. Therefore,
one gets aT (u,u) = ‖u‖2DG for all u ∈ V (Th).

Proof. The proof is taken from [MR05]. Let u,v ∈ H1(Th). The bilinear form (2.7) reads

aDG(u,v) =
∑
k

∫
Ωk

(
[−
∑
i

Ai∂i +R]vk
)T

uk +
∑
k

∑
j<k

∫
Σkj

(vk − vj)
T (M+

kjuk +M−kjuj)

+
∑
k

∫
Σkk

vTkM
+
k uk.

Integrating by part and using Mkj = −Mjk one has

aDG(u,v) =
∑
k

∫
Ωk

vTk (
∑
i

Ai∂i +R)uk +
∑
k

∑
j<k

∫
Σkj

−vTkMkjuk + vTj Mkjuj

+ (vk − vj)
T (M+

kjuk +M−kjuj) +
∑
k

∫
Σkk

vTkM
+
k uk − vTkMkjuk.
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Using M = M+ +M− one finds

aDG(u,v) =
∑
k

∫
Ωk

vTk Luk −
∑
k

∑
j<k

∫
Σkj

(M−kjvk +M+
kjvj)

T (uk − uj)−
∑
k

∫
Σkk

vTkM
−
k uk.

Since L = −L∗ + 2R one gets

aDG(u,v) =−
∑
k

∫
Ωk

vTk L
∗uk +

∑
k

2

∫
Ωk

vTkRuk

−
∑
k

∑
j<k

∫
Σkj

(M−kjvk +M+
kjvj)

T (uk − uj)−
∑
k

∫
Σkk

vTkM
−
k uk.

Summing the above expression of a(·, ·) and the one in (2.7) one gets with v = u the equality
2aDG(u,u) = 2‖u‖2DG. Moreover, from (2.11) one deduces aDG(u,u) = aT (u,u), ∀u ∈ V (Th).
This completes the proof. �

Proposition 2.11 (Continuity). The continuity bound aT (u,v) ≤
√

2‖u‖DG‖v‖DG∗ holds for
all u,v ∈ V (Th).

Proof. Using −M−jk = M+
kj , the norm DG∗ can be recast into the form

‖u‖2DG∗ =
∑
k

∑
j<k

∫
Σkj

−uTkM
−
kjuk + uTj M

+
kjuj −

∑
k

∫
Σkk

uTkM
−
k uk. (2.29)

Since |M−| = −M− and M+,M− are respectively non negative and non positive symmetric
matrices, the bilinear form aT (2.14) can be written as

aT (u,v) =
√

2
[∑

k

∑
j<k

∫
Σkj

(√
|M−kj |vk

)T√
|M−kj |

(uk − uj√
2

)
+
(
−
√
M+
kjvj

)T√
M+
kj

(uk − uj√
2

)
+
∑
k

∫
Σkk

(√
|M−k |vk

)T(√
|M−k |

uk√
2

)]
.

Using the Cauchy-Schwartz inequality, one sees that the first term of each scalar product is
bounded by ‖v‖DG∗ and the second term by ‖u‖DG. This completes the proof. �

We can now give the following classical quasi-optimality result.

Proposition 2.12 (Quasi-optimality). For any finite dimensional space Vh(Th) ⊂ V (Th), the
TDG formulation (2.15) admits a unique solution uh ∈ Vh(Th). Moreover, the quasi-optimality
bound holds

‖u− uh‖DG ≤
√

2 inf
vh∈Vh(Th)

‖u− vh‖DG∗ ,

where u stands for the exact solution to (2.1).

Proof. From Propositions 2.9 and 2.10, one deduces the uniqueness of the discrete solution uh.
Existence of uh follows from uniqueness. Moreover ∀vh ∈ Vh(Th) one has

‖u− uh‖2DG = aT (u− uh,u− uh) = aT (u− uh,u− vh) ≤
√

2‖u− uh‖DG‖u− vh‖DG∗ ,

thanks to propositions 2.10 and 2.11, to the consistency equality (2.9) and to (2.15). �
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2-3.2 Well-balanced property

Using the quasi-optimality proposition one has the well-balanced property of the scheme in the
sense of the Definition 1.5. Of course, a standard DG scheme has the same quasi-optimality result
but it can be well-balanced only for some particular polynomial functions. On the contrary,
the TDG method can be well-balanced for more general solutions which contain for example
exponential factors as in Example 1.8.

Proposition 2.13 (Well-balanced scheme). The TDG method is well-balanced for its basis func-
tions.

Proof. Assume u is a linear combination of the basis functions in each cell. One can take vh = u
in Proposition 2.12. Therefore one has ‖u − uh‖DG = 0. Since u − uh ∈ V (Th) one concludes
using Proposition 2.9. �

2-3.3 Estimate in standard norms

In the previous section, the error is bounded in terms of DG-norm. It is of course desirable to
have estimates in a more standard norm. In this section, we present some elementary L2 lower
bounds of the DG norm which take advantage of the relaxation matrix R and an L2 upper bound
of the DG∗ norm.

Proposition 2.14. Assume Ωk ∈ Th, Rk = R(x)|Ωk , and ∀k Rk is definite positive. One has

1

supk∈Th ‖
√
Rk
−1‖2

‖u‖L2(Ω) ≤ ‖u‖DG, ∀u ∈ H1(Th).

Proof. A basic inequality is v2 ≤ ‖
√
Rk
−1‖2

(
vTRkv

)
. Let v ∈ H1(Th). Integrating over Ωk,

summing over all cells and using the definition of the DG-norm (2.24), one gets the assertion. �

This inequality holds when R is definite positive but degenerates when R→ 0. For non stationary
problems, one can give a L2 lower bound at the final time that does not depend on R.

Proposition 2.15. Assume A0 is non singular. For time dependent problems one has

‖u‖L2(ΩS×{T}) ≤ C‖u‖DG, ∀u ∈ H1(Th).

where the constant C depends on the eigenvalues of A0. In particular if A0 = Im then C = 1.

Proof. Consider n(t,x) on ∂Ω with n(t,x) = (nt, nx1 , ..., nxd)
T = (1, 0, ..., 0)T one has |M |((1, 0, ..., 0)T ) =

A0. Therefore, since A0 is non singular and positive∑
k

∫
ΩS,k×{T}

u2
k ≤ C

∑
k

1

2

∫
ΩS,k×{T}

uTkA0uk ≤ C
∑
k

1

2

∫
ΩS,k×{T}

uTk |Mkj |uk, ∀u ∈ H1(Th).

The notation ΩS,k × {T} represents the edges on the top of the space-time mesh and therefore
∪kΩS,k × {T} ⊂ ∪kΣkk. One finally has∑

k

∫
ΩS,k×{T}

u2
k ≤ C

∑
k

1

2

∫
Σkk

uTk |Mkj |uk, ∀u ∈ H1(Th),

and the assertion follows from the definition of the DG-norm. �
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Let us define the semi-norm

|u|21,Ω :=

∫
Ω

n∑
i=1

d∑
j=1

(∂jui)
2.

The previous propositions have given lower bounds of the DG norm. The following proposition
gives an upper bound of the DG∗ norm.

Proposition 2.16. One has

‖u‖2DG∗ ≤ C
∑
k

‖u‖L2(Ωk)

( 1

hk
‖u‖L2(Ωk) + |u|1,Ωk

)
, ∀u ∈ H1(Th), (2.30)

where hk = diam(Ωk) and the constant C depends on the Ai.

More precisely, if one Ai is O(1
ε ) with respect to ε, the constant C scales like 1

ε .

Proof. Let u ∈ Th one has ‖u‖2DG∗ =
∑

k

∫
∂Ωk
−uTkM

−
kjuk and therefore

‖u‖2DG∗ ≤ C
∑
k

∫
∂Ωk

u2
k.

We now use the trace inequality from [DPE11, Lemma 1.49] in each cell Ωk on each component
of the vector u

‖u‖2L2(∂Ωk) ≤ C‖u‖L2(Ωk)

( 1

hk
‖u‖L2(Ωk) + |u|1,Ωk

)
, ∀u ∈ H1(Ωk).

Summing over all cells one finally gets the estimate (2.30). This completes the proof. �
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In this chapter, the TDG method is applied to one dimensional transport models. More precisely,
two models are considered

— The first one is the P1 model. As a first step, stationary and time dependent solutions are
constructed. Then the asymptotic-preserving property of the scheme is proven by means
of Hilbert expansion. Finally, the convergence and the asymptotic behavior of the TDG
scheme in the diffusive regime are numerically illustrated.

— The second one is the Su-Olson model [SO96]. Compare to the P1 model, the particularity
of the Su-Olson model comes from the degenerate matrices A0 and A1. Stationary and time
dependent solutions are constructed and the convergence of the scheme is studied. The
results obtained on the numerical test given in [SO96] are very similar to those obtained
with the standard DG method.

3-1 The P1 model

The P1 model is a first simple approximation of the transport equation using spherical harmonic
expansion of the solution. An interesting property of the P1 model is that, like the transport
equation, it admits a diffusive limit when ε → 0. The time dependent version of the P1 model
in one dimension reads 

ε∂tp+
c√
3
∂xv = −εσa(x)p,

ε∂tv +
c√
3
∂xp = −σt(x)v.

(3.1)
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The unknown is u = (p, v)T , c, σa, σs ∈ R+, ε ∈ R+
∗ and

σt := σεt := εσa +
σs
ε
.

The reader should be aware that σt depends on ε and behave as 1
ε when σs > 0 and ε → 0.

When ε→ 0, the variable p of the system (3.1) follows a diffusion equation.

Proposition 3.1. When ε→ 0, the variable p and v of (3.1) behave formally as∣∣∣∣∣∣∣∣
∂tp−

c2

3σs
∂xxp = −σap,

v = − cε√
3σs

∂xp.
(3.2)

Proof. Multiplying the second equation of (3.12) by ε and neglecting the term in ε2, one gets
v = − cε√

3σs
∂xp. Inserting this expression in the first equation of (3.12) one finds ∂tp− c2

3σs
∂xxp =

−σap. �

One challenge for numerical methods is to capture the diffusion limit (3.2) on coarse meshes.
The asymptotic behavior when ε→ 0 of the scheme is studied in section 3-1.2.

3-1.1 Construction of the basis functions for high order time dependent
scheme

In order to use the Trefftz method (2.15), one needs to find solutions to the model (3.1). In
particular, we would like to give a general procedure to increase the number of basis functions
in order to get high order of convergence if needed. In the following, we search for particular
solutions to (3.1) under the form

u(t, x) = q(t, x)eλx,

where q(t, x) is a polynomial in space and time, λ ∈ R. For simplicity, we consider a polynomial
of degree at most one in space and time. There are other ways to construct time dependent
solutions to the PN model, see Section 4-2.4 for 2D examples. We recast the one dimensional P1

model (3.1) under the form of a Friedrichs system (2.1) with d = 1, m = 2. It reads

ε∂tu +A1∂xu = −Ru, (3.3)

with

A1 =
c√
3

(
0 1
1 0

)
, R =

(
εσa 0
0 σt

)
.

We can now give some solutions to the one dimensional P1 model and use them as basis functions
when σa > 0.

Proposition 3.2 (Solution to the P1 model when σa > 0). The P1 model (3.3) admits the
following four solutions

v±1 (x) =

(
∓√σt√
εσa

)
e±

1
c

√
3εσaσtx,

v±2 (t, x) =

(
− c
ε(εσa − σt)∓

√
3σaσt
ε (εσa + σt)x− 2 cεσaσtt√

3σa(εσa + σt)x± 2cσa
√

σaσt
ε t

)
e±

1
c

√
3εσaσtx.

(3.4)
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Proof. We search for particular solutions to (3.3) under the form

u(t, x) = q(x, t)eλx, (3.5)

with λ ∈ R and where q ∈ R2 is a polynomial in x and t. We consider

q(t, x) = q0 + q1x+ q2t. (3.6)

Using (3.5) in (3.3) and dropping the exponential terms, one has [ε∂t+A1∂x+(A1λ+R)]q(x, t) =
0. Extending q one finds(

(A1λ+R)q0 +A1q1 + εq2

)
+
(

(A1λ+R)q1

)
x+

(
(A1λ+R)q2

)
t = 0.

This equality holds for all x and t, thus one gets the following system
(A1λ+R)q2 = 0,

(A1λ+R)q1 = 0,

(A1λ+R)q0 = −A1q1 − εq2.

(3.7)

Therefore the solutions to (3.3) under the form (3.5) with q given by (3.6) satisfy the system (3.7).
A necessary condition for the system (3.7) to admits a non zero solution is det(A1λ + R) = 0.
Since

A1λ+R =

(
εσa

c√
3
λ

c√
3
λ σt

)
,

one deduces
λ = ±1

c

√
3εσaσt.

We define w a vector which belongs to the kernel of A1λ + R. With λ = ±
√

3σaσt one notices
ker(A1λ+R) = Span

(
(∓√σt,

√
σa)

T
)
and one can take

w = (∓
√
σt,
√
εσa)

T .

Using the relations (3.7) one has

q1 = αw, q2 = βw, α, β ∈ R.

From the last equality of (3.7), one sees that −A1q1 − εq2 ∈ Im(A1λ+R) which implies

−A1q1 − εq2 ∈ ker
(
(A1λ+R)T

)⊥
.

Since the matrices A1 and R are symmetric, ker(A1λ + R)T = ker(A1λ + R) = Span(w). A
necessary condition is then wT (−A1q1 − q2) = 0 which is equivalent to

β = ±
2c
√
σaσt√

3ε(εσa + σt)
α.

With α = 0 one finds the solutions v±1 (x). With α = 1 one gets from the fourth equation of
(3.7)

q0 =

(
c(−εσa + σt)√
3εσa(εσa + σt)

, 0

)T
+ γw,

with γ ∈ R. To sum up, one has the following relations∣∣∣∣∣∣∣∣∣∣∣∣∣

q2 =
(
−

2c
√
σaσt√

3ε(εσa + σt)
,±

2cσa
√
σt√

3(εσa + σt)

)T
,

q1 =
(
∓
√
σt,
√
εσa

)T
,

q0 =

(
c(−εσa + σt)√
3εσa(εσa + σt)

, 0

)T
+ γw.

(3.8)
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In the following we take γ = 0. The case α = 0 gives the solutions v±1 (x). With α = 1,

multiplying the solutions by
√

3σa
ε (εσa + σt) and using u(x, t) = (q0 + q1x + q2t)e

λx with
λ = ±1

c

√
3εσaσt, one finds the solutions v±2 (t, x). This completes the proof. �

The solutions (3.4) can be used as basis functions when σa > 0. However, when σa → 0, all these
functions converge toward the same limit and one can no longer use them as basis functions. To
address this problem, we construct some linear combinations of the solutions (3.4) which remain
stable in the case σa → 0. The limit solutions give the basis functions when σa = 0.

Proposition 3.3 (Solution to the P1 model when σa = 0). The following functions are solutions
to the P1 model when σa = 0

v1(t, x) =

(
1
0

)
,

v2(t, x) =

(√
3σt
c x
−1

)
,

v3(t, x) =

(
−3σt

c x
2 − 2 cε t

2
√

3x

)
,

v4(t, x) =

(
−
√

3σ2
t

c2
x3 − 2

√
3σt
ε xt− 2

√
3x

3σt
c x

2 + 2 cε t

)
.

(3.9)

Before proving Proposition 3.3 we begin with the a lemma. To make the solutions more conve-
nient to read, we use the notations zx = 1

c

√
3εσaσtx and cosh(x) = ex+e−x

2 , sinh(x) = ex−e−x
2 .

Lemma 3.4. The following four functions are linear combinations of the solutions (3.4)

ṽ1(x) =

(
cosh(zx)

−
√

εσa
σt

sinh(zx)

)
,

ṽ2(x) =

(√
σt
εσa

sinh(zx)

− cosh(zx)

)
,

ṽ3(t, x) =

(
−
√

3σt+εσa√
εσaσt

x sinh(zx)− 2 cε t cosh(zx)

c σt−εσa
σt
√
εσaσt

sinh(zx) +
√

3σt+εσaσt
x cosh(zx) + 2c

√
σa
εσt
t sinh(zx)

)
,

ṽ4(t, x) =

(
c
ε

σt−εσa
σa
√
εσaσt

sinh(zx)−
√

3σt+εσaεσa
x cosh(zx)− 2 cε

√
σt
εσa

t sinh(zx)
√

3σt+εσa√
εσaσt

x sinh(zx) + 2 cε t cosh(zx)

)
.

(3.10)

Proof. One defines the following linear combinations of the functions (3.4)

l±1 (t, x) = v±2 ∓
c

ε
v±1 .

Then defining the four solutions

ṽ1(t, x) =
1

2
√
σt

(
v−1 (t, x)− v+

1 (t, x)
)
.

ṽ2(t, x) =
−1

2ε
√
σa

(
v+

1 (t, x) + v−1 (t, x)
)
,

ṽ3(t, x) =
1

2σaσt

(
l+1 (t, x) + l−1 (t, x)

)
,

ṽ4(t, x) =
1

2σa
√
εσaσt

(
v+

2 (t, x)− v−2 (t, x)
)
,
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one gets the functions (3.10). �

We show that these solutions degenerate toward polynomials in the limit case σa → 0 and that
their limit are the functions given in Proposition 3.3.

Proposition 3.5. When σa → 0, (σt → σs
ε2
), the solutions (3.10) tend to the following functions

ṽ1(t, x) →
σa→0

(
1
0

)
,

ṽ2(t, x) →
σa→0

(√
3σt
c x
−1

)
,

ṽ3(t, x) →
σa→0

(
−3σt

c x
2 − 2 cε t

2
√

3x

)
,

ṽ4(t, x) →
σa→0

(
−
√

3σ2
t

c2
x3 − 2

√
3σt
ε xt− 2

√
3x

3σt
c x

2 + 2 cε t

)
.

Proof. One notices that

cosh(zx) →
σa→0

1,
sinh(zx)
√
εσaσt

→
σa→0

√
3

c
x. (3.11)

The limit of ṽ1(t, x), ṽ2(t, x) and ṽ3(t, x) are simply obtained by using the expressions (3.11)
in (3.10). The limit of the second component of ṽ4(t, x) can be obtained in a similar way. It
remains to study the first component of ṽ4(t, x). One has

c

ε

σt − εσa
σa
√
εσaσt

sinh(zx)−
√

3
σt + εσa
εσa

x cosh(zx) =
c

ε

σt − εσa
σa

(

√
3

c
x+

3
√

3εσaσt
3!c3

x3 + o(σ2
a))

−
√

3
σt + εσa
εσa

x(1 +
3εσaσtx

2

2!c2
+ o(σ2

a)),

=− 2
√

3εx+
3
√

3σ2
t

c2
(
1

6
− 1

2
)x3 + o(σa),

=− 2
√

3εx−
√

3σ2
t

c2
x3 + o(σa),

Because −2 cε

√
σt
εσa

t sinh(zx) →
σa→0

−2
√

3
ε σttx, one gets the expression of the limit of ṽ4(t, x). This

completes the proof. �

Remark 3.6. Note that the solutions (3.4) used when σa > 0 are only defined in the case c 6= 0.
However, up to a multiplication by c or c2 if needed, the solutions (3.9) used when σa = 0 can
also be defined when c = 0. •
3-1.2 Asymptotic behavior when ε << 1

In this section, we study the behavior of the TDG scheme when ε → 0. The main result is
Proposition 3.14 which gives the AP property of the scheme for a particular choice of basis
functions. Here we choose to interpret the TDG scheme (2.15) as a finite difference scheme. This
has several advantages

• Under this form one observes that the scheme is new compared to other popular one dimen-
sional asymptotic-preserving and well-balanced finite difference schemes [BDF12, GT02].
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• One can study, at least formally, the asymptotic behavior of a finite difference scheme by
means of Hilbert expansions.

We consider the P1 model with no absorption
ε∂tp+

c√
3
∂xv = 0,

ε∂tv +
c√
3
∂xp = −σs

ε
v,

(3.12)

with ε ∈ R+
∗ , σs, c ∈ R+. We consider the stationary basis functions e1 and e2 from (3.9) defined

in each cell as

ek,1(t, x) =


(

1
0

)
, if (t, x) ∈ Ωk,(

0
0

)
, else,

ek,2(t, x) =



(
−
√

3σs
cε (x− xk)

1

)
, if (t, x) ∈ Ωk,(

0
0

)
, else,

(3.13)
where xk is the abscissa of the center of the cell k.

3-1.2.1 Finite difference scheme

Proposition 3.7. The TDG scheme (2.15) with periodic boundary conditions and the basis
functions (3.13) can be recast as the following finite difference scheme

ε
pn+1
k − pnk

∆t
+

c

2
√

3h

[
− pk+1 + 2pk − pk−1 + (1− a)(vk+1 − vk−1)

]n+1
= 0,

ε(1 +
a2

3
)
vn+1
k − vnk

∆t
+

c

2
√

3h

[
a2(vk+1 + 2vk + vk−1) + (−vk+1 + 2vk − vk−1)

+(1 + a)(pk+1 − pk−1)
]n+1

= −σs
ε
vn+1
k ,

(3.14)

with a =
√

3σsh
2cε .

Remark 3.8. One can interpret the first component of the basis function ek,2(t, x) in (3.13) as
a correction compared to the standard finite volume method. Indeed, the standard finite volume
method is equivalent to consider the formulation (2.8) with the two basis functions ek,1 = (1, 0)T

and ek,2 = (0, 1)T . The scheme is then (3.14) with a = 0. As illustrated in Section 3-1.3.2 this
finite volume scheme is not asymptotic-preserving when ε→ 0. •
To get the scheme (3.14) we first recast the model (3.12) into the form of a Friedrichs systems
(2.1) with

A0 =

(
1 0
0 1

)
, A1 =

c√
3ε

(
0 1
1 0

)
, R =

(
0 0
0 −σs

ε2

)
.

For the sake of simplicity we assume that σs is constant in the domain and that the step space
h = xk+1 − xk is constant for all k. We consider basis functions ei,l (3.13) where i is the global
number of the cell and l the local number of the basis function in the cell i. We denote by xi− 1

2

and xi+ 1
2
the edges of the spatial cell ΩS,i, i.e. ΩS,i = [xi− 1

2
, xi+ 1

2
] and xi the midpoint. Finally,

we use the notation eni,1, e
n
i,2 when designing the basis functions from the spatial cell ΩS,i at the

time step n.
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Consider the bilinear and linear forms obtained from the decoupled formulation (2.17)

anT (u,v) =−
∑
k

∑
j<k

∫
Σknjn

(M−knjnvnk +M+
knjnvnj )T (unk − unj )−

∑
k

∫
∂ΩS∩∂Ωkn

(vnk )TM−knunk

−
∑
k

∫
Σknkn−1

(vnk )TM−
knkn−1u

n
k , u,v ∈ V (Th),

ln(v) =−
∑
k

∫
∂ΩS∩∂Ωkn

(vnk )TgS −
∑
k

∫
Σknkn−1

(vnk )TM−
knkn−1u

n−1
k , v ∈ V (Th).

(3.15)
In the following, we explicitly write the equality

anT (u, enl,i) = ln(enl,i), l = 1, 2, (3.16)

for any time step n and any spatial cell ΩS,i. For simplicity, we will consider periodic boundary
conditions, a uniform space step h and a uniform time step ∆t. We introduce some notations.

Definition 3.9. We define CnS,i,l, C
n−1
T,i,l and C

n
T,i,l as

CnS,i,l = −
∑
k

∑
j

∫
Σknjn

(M−knjneni,l)
T (unk − unj ), (3.17)

Cn−1
T,i,l = −

∑
k

∫
Σknkn−1

(eni,l)
TM−

knkn−1u
n−1
k , (3.18)

CnT,i,l = −
∑
k

∫
Σknkn−1

(eni,l)
TM−

knkn−1u
n
k . (3.19)

Since uk is a combination of the basis functions in each cell, one can make the following assump-
tion.

Assumption 3.10. We assume that uk admits the following decomposition in each cell Ωk

uk = αkek,1 + βkek,2, αk, βk ∈ R,

or, in an identical way, when considering the time step n and the spatial cell ΩS,i

uni = αni e
n
i,1 + βni eni,2, αni , β

n
i ∈ R. (3.20)

Before proving Proposition 3.7, we need some lemmas. First, we write the equality (3.16) with
the notations introduced in the Definition 3.9.

Lemma 3.11. Consider the TDG method applied to the model (3.12) with the basis functions
(3.13). The TDG formulation (3.16) with periodic boundary conditions at the time step n in any
spatial cell ΩS,i reads

CnT,i,1 − Cn−1
T,i,1 + CnS,i,1 = 0,

CnT,i,2 − Cn−1
T,i,2 + CnS,i,2 = 0.

(3.21)

Proof. Since we consider periodic boundary conditions, the term
∫
∂ΩS∩∂Ωkn

(vnk )TM−knunk in the
bilinear form and the term

∫
∂ΩS∩∂Ωkn

(vnk )TgS in the linear form of (3.15) are equal to zero.
Moreover one notices that

−
∑
k

∑
j<k

∫
Σknjn

(M−knjnvnk −M+
knjnvnj )T (unk − unj ) = −

∑
k

∑
j

∫
Σknjn

(M−knjnvnk )T (unk − unj ).

(3.22)
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Therefore one has
aT (u, enl,i) = CnT,i,l + CnS,i,l, l(enl,i) = Cn−1

T,i,l .

The equality (3.16) gives for l = 1 and l = 2 respectively the first and second equations of (3.21).
This completes the proof. �

Now we can study the values of the coefficients CS,i,l and CT,i,l.

Lemma 3.12. One has

CnS,i,1 =
c∆t

2
√

3

(
− αni−1 + 2αni − αni+1 + (1−

√
3σsh

2cε
)(βni+1 − βni−1)

)n
, (3.23)

and

CnS,i,2 =
c∆t

2
√

3

(
(

√
3σsh

2cε
)2(βni+1 + 2βni + βni−1) +

√
3σsh

2cε
βni

+ (−βni−1 + 2βni − βni+1) + (1 +

√
3σsh

2cε
)(αni+1 − αni−1)

)n
.

(3.24)

Proof. For simplicity, we will use the notation M−±1 = M−((0,±1)T ), M+
±1 = M+((0,±1)T ) and

(λm,lk,j )± = (M+
±1ej,l)

Tek,m. Since the function ei,l is only non-zero in the cell Ωi one can write
CS,i,l from (3.17) as

CS,i,l =

∫ tn

tn−1

(
− (M−−1ei,l)

T (ui − ui−1)(xi− 1
2
)− (M−1 ei,l)

T (ui − ui+1)(xi+ 1
2
)
)
. (3.25)

Using M−±1 = −M+
∓1, the decomposition of uni (3.20) and the fact that the basis (3.13) does not

depend on time, the equality (3.25) reads

CnS,i,l =∆t
(
αni (λ1l

i,i)
+(xi− 1

2
) + βi(λ

2l
i,i)

+(xi− 1
2
)− αni−1(λl1i,i−1)+(xi− 1

2
)− βni−1(λl2i,i−1)+(xi− 1

2
)

+ αni (λ1l
i,i)
−(xi+ 1

2
) + βni (λ2l

i,i)
+(xi+ 1

2
)− αni+1(λl1i,i+1)−(xi+ 1

2
)− βni+1(λl2i,i+1)−(xi+ 1

2
)
)n
.

(3.26)
For nt = 0, one has

M(n) = M(0, nx) =
c√
3

(
0 nx
nx 0

)
,

M+(0, nx) =
c

2
√

3

(
1 nx
nx 1

)
, M−(0, nx) =

c

2
√

3

(
−1 nx
nx −1

)
,

and one notices that

(λ11
ji )
±(x) =

c

2
√

3
,

(λ12
ji )
±(x) =

c

2
√

3

(
−
√

3σs
cε

(x− xi)± 1
)
,

(λ22
ji )
±(x) =

c

2
√

3

(
1∓
√

3σs
cε

(
(x− xi) + (x− xj)

)
+ (

√
3σs
cε

)2(x− xi)(x− xj)
)
.

(3.27)

Recalling that h = xi+ 1
2
− xi− 1

2
for all i and inserting (3.27) in (3.26) one finds for l = 1

CnS,i,1 =
c∆t

2
√

3

(
− αni−1 + 2αni − αni+1 + (1−

√
3σsh

2cε
)(βni+1 − βni−1)

)n
,
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and for l = 2

CnS,i,2 =
c∆t

2
√

3

(
(

√
3σsh

2cε
)2(βni+1+2βni +βni−1)+

√
3σsh

2cε
βni +(−βni−1+2βni −βni+1)+(1+

√
3σsh

2cε
)(αni+1−αni−1)

)n
.

This completes the proof. �

Lemma 3.13. One has

CnT,i,1 = εhαni (3.28)

CnT,i,2 = εh(1 +
3σ2

sh
2

48c2ε2
)βni . (3.29)

Proof. Since −M−
knkn−1 = εIm, C

n
T,i,l reads

CnT,i,l = −
∑
k

∫
Σknkn−1

(eni,l)
TM−

knkn−1u
n
k = ε

∫ x
i+1

2

x
i− 1

2

(eni,l)
Tuni .

One notices that
∫ xi+1

2
x
i− 1

2

(eni,1)Teni,2 = 0. Therefore, using the decomposition of uni (3.20) one finds

CnT,i,1 = εαni

∫ x
i+1

2

x
i− 1

2

(eni,1)Teni,1 = εhαni ,

CnT,i,2 = εβni

∫ x
i+1

2

x
i− 1

2

(eni,2)Teni,2 = εh(1 +
3σ2

sh
2

48c2ε2
)βni .

This completes the proof. �

We can now find the scheme (3.14) and prove Proposition 3.7.

Proof of Proposition 3.7. Starting from (3.21) one has

CnT,i,1 − Cn−1
T,i,1 + CnS,i,1 = 0,

CnT,i,2 − Cn−1
T,i,2 + CnS,i,2 = 0.

We recall the decomposition (3.20) which is uni (x) = αni e
n
i,1(x) + βni ei,2(x) = (pni , v

n
i )T (x). In

particular, considering the center of the cell one finds αni = pni (xi) and βni = vni (xi). Therefore
using (3.23), (3.24), (3.28) and (3.29) in (3.21) and making the simplification αni = pni and
βni = vni , one finally gets the scheme (3.14). This completes the proof. �

3-1.2.2 Asymptotic-preserving property

Using Hilbert expansion, we can now formally show that the scheme (3.14) is asymptotic-
preserving.

Proposition 3.14 (Asymptotic-preserving property of the scheme (3.14)). When ε → 0 the
scheme (3.14) admits the formal limit∣∣∣∣∣∣∣∣∣∣∣

(v0
k+1 + v0

k)
n+1 = 0,(v1

k+1 + 2v1
k + v1

k−1

4

)n+1
= − c√

3σs

(p0
k+1 − p0

k−1

2h

)n+1
,

(p̄0
k)
n+1 − (p̄0

k)
n

∆t
− c2

3σs

(p0
k+2 − 2p0

k + p0
k−2

4h2

)n+1
= 0,

(3.30)
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with p̄0
k = (2

3p
0
k+2 + 4p0

k+1 + 20
3 p

0
k + 4p0

k−1 + 2
3p

0
k−2)/16 a local mean value of p0

k.

The limit scheme (3.30) is consistent with the limit model (3.2) and therefore the scheme is
asymptotic-preserving.

Proof. For convenience, we divide the two equalities of (3.14) by ε. Moreover, we adopt the
notations {{f}}k+ 1

2
=

fk+1+fk
2 , [[f ]]k+ 1

2
=

fk+1−fk
2 and δtf = fn+1−fn

∆t . With these notations the
scheme (3.14) can be written under the form

δtpk +
c√
3εh

[
− ([[p]]k+ 1

2
− [[p]]k− 1

2
) + (1− a)({{v}}k+ 1

2
− {{v}}k− 1

2
)
]n+1

= 0, (3.31)

(1 +
a2

3
)δtvk +

c√
3εh

[
a2({{v}}k+ 1

2
+ {{v}}k− 1

2
) + 2avk − ([[v]]k+ 1

2
− [[v]]k− 1

2
)

+(1 + a)([[p]]k+ 1
2

+ [[p]]k− 1
2
)
]n+1

= 0.

(3.32)

We assume that the variables p and v can be written under the form

p =
∑
i≥0

piεi, v =
∑
i≥0

viεi.

We inject these expressions in (3.31) and (3.32) and expand all coefficients and variables with
respect to ε. In particular one needs to expand a with respect to ε using the definition a =

√
3σsh
2cε .

The terms O( 1
ε2

) in (3.31) and O( 1
ε3

) in (3.32) are

{{v}}0
k+ 1

2

− {{v}}0
k− 1

2

= 0,

{{v}}0
k+ 1

2

+ {{v}}0
k− 1

2

= 0.

These two equations together give
{{v}}0

k+ 1
2

= 0, ∀k. (3.33)

Now, we study the terms in O(1
ε ) in (3.31) and in O( 1

ε2
) in (3.32). Using (3.33) one gets

−([[p]]0
k+ 1

2

− [[p]]0
k− 1

2

)−
√

3σsh

2c
({{v}}1

k+ 1
2

− {{v}}1
k− 1

2

) = 0,

√
3σsh

6c
δtv

0
k +

c√
3h

[
[[p]]0

k+ 1
2

+ [[p]]0
k− 1

2

+

√
3σsh

2c
({{v}}1

k+ 1
2

+ {{v}}1
k− 1

2

) + 2v0
k

]
= 0.

Therefore, multiplying the first equation by 2c√
3σsh

, the second by 2
σs

and subtracting these two
equations one finds

√
3h

3c
δtv

0
k + {{v}}1

k+ 1
2

+
4c√
3σsh

v0
k = − 2c√

3σsh
[[p]]0

k+ 1
2

, ∀k.

Adding this equality for k and k − 1 and using (3.33) one deduces

{{v}}1
k+ 1

2

+ {{v}}1
k− 1

2

= − 2c√
3σsh

([[p]]0
k+ 1

2

+ [[p]]0
k− 1

2

),∀k. (3.34)

Finally, with the terms in O(1) for (3.31) and in O(1
ε ) for (3.32)

δtp
0
k +

c√
3h

[
− ([[p]]1

k+ 1
2

− [[p]]1
k− 1

2

) + ({{v}}1
k+ 1

2

−{{v}}1
k− 1

2

)−
√

3σsh

2c
({{v}}2

k+ 1
2

−{{v}}2
k− 1

2

)

]n+1

= 0,
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3σ2
sh

2

12c2
δtv

1
k +

c√
3h

[√
3σsh

2c
(2v1

k + [[p]]1
k+ 1

2

+ [[p]]1
k− 1

2

) + [[p]]0
k+ 1

2

+ [[p]]0
k− 1

2

− ([[v]]0
k+ 1

2

− [[v]]0
k− 1

2

)

+
3σ2

sh
2

4c2
({{v}}2

k+ 1
2

+ {{v}}2
k− 1

2

)

]n+1

= 0.

Dividing the first equation by σs, using (3.33), (3.34) and multiplying by 2c√
3σ2
sh

the second
equation, one gets

1

σs
δtp

0
k +

[
c√

3σsh

(
− ([[p]]1

k+ 1
2

− [[p]]1
k− 1

2

) + {{v}}1
k+ 1

2

−{{v}}1
k− 1

2

)
−
{{v}}2

k+ 1
2

− {{v}}2
k− 1

2

2

]n+1

= 0,

√
3h

6c
δtv

1
k +

[
c√

3σsh

(
− {{v}}1

k+ 1
2

+ 2v1
k − {{v}}1k− 1

2

+ [[p]]1
k+ 1

2

+ [[p]]1
k− 1

2

+
4c√
3σsh

v0
k

)

+
{{v}}2

k+ 1
2

+ {{v}}2
k− 1

2

2

]n+1

= 0.

Adding and subtracting these two equations one finds

{{v}}2
k− 1

2

+
2c√
3σsh

[[p]]1
k− 1

2

+
4c2

3σ2
sh

2
v0
k = − 1

σs
δtp

0
k −
√

3h

6c
δtv

1
k −

2c√
3σsh

(v1
k −{{v}}1k− 1

2

)n+1, (3.35)

and

{{v}}2
k+ 1

2

+
2c√
3σsh

[[p]]1
k+ 1

2

+
4c2

3σ2
sh

2
v0
k =

1

σs
δtp

0
k −
√

3h

6c
δtv

1
k −

2c√
3σsh

(v1
k − {{v}}1k+ 1

2

)n+1. (3.36)

Using (3.35) in k + 1 and subtracting (3.36) to (3.35) one gets

1

σs
δt(p

0
k+1 + p0

k) +

√
3h

6c
δt(v

1
k+1 − v1

k) +
2c√
3hσs

(v1
k+1 − v1

k)
n+1 =

4c2

3σ2
sh

2
(v0
k − v0

k+1).

Adding this equation for k and k − 1 and using (3.33) one has

1

σs
δt(p

0
k+1 +2p0

k+p0
k−1)+

√
3h

3c
δt({{v}}1k+ 1

2

−{{v}}1
k− 1

2

)− 4c√
3σsh

({{v}}1
k+ 1

2

−{{v}}1
k− 1

2

)n+1 = 0.

Summing this equation for k and k + 1 one gets

1

σs
δt(p

0
k+2+3p0

k+1+3p0
k+p

0
k−1)+

√
3h

3c
δt({{v}}1k+ 3

2

−{{v}}1
k− 1

2

)− 4c√
3σsh

({{v}}1
k+ 3

2

−{{v}}1
k− 1

2

)n+1 = 0.

Summing this equation for k and k − 1 one finally finds

1

σs
δt(p

0
k+2 + 4p0

k+1 + 6p0
k + 4p0

k−1 + p0
k−2) +

√
3h

3c
δt({{v}}1k+ 3

2

+ {{v}}1
k+ 1

2

− {{v}}1
k− 1

2

− {{v}}1
k− 3

2

)

− 4c√
3σsh

({{v}}1
k+ 3

2

+ {{v}}1
k+ 1

2

− {{v}}1
k− 1

2

− {{v}}1
k− 3

2

)n+1 = 0.

Using (3.34) one deduces

({{v}}1
k+ 3

2

+ {{v}}1
k+ 1

2

)− ({{v}}1
k− 1

2

+ {{v}}1
k− 3

2

) = − c√
3σsh

(p0
k+2 − 2pk + p0

k−2).

Therefore one finally has

δt(
2

3
p0
k+2 + 4p0

k+1 +
20

3
p0
k + 4p0

k−1 +
2

3
p0
k−2)− 4c2

3σs

(
p0
k+2 − 2p0

k + p0
k−2

h2

)n+1

= 0.

This equality is consistent with the first equation of the limit model (3.2). Moreover, the equality
(3.34) is consistent with the second equation of (3.2) and the equality (3.33) with the first
equation of (3.2). This completes the proof. �
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3-1.3 Numerical results

In the following we use random meshes made of N nodes and constructed as follow: we start
from a uniform mesh and then moved the vertices randomly around their initial position by a
factor of at most 33%.

3-1.3.1 Study of the order

For the time dependent P1 model in one dimension (3.1) we consider the case ΩS = [0, 1],
ε = 1, c =

√
3, σa = 1, σs = 1, h = 1/N for N = 20, 40, 60, 80, 100, T = 0.024 and dt = T/N .

The exact solution is uex = (e−t, e−2t) and we set M−u = M−uex on the boundary.
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Figure 3.1 – Study of the L2 error on the final time step in logarithmic scale for temporal one
dimensional model. Error with the two stationary basis functions and the four basis
functions. Random meshes.

The functions (3.4) are used as basis functions. We study two cases: a first one with only the
two stationary basis functions v−1 ,v

+
1 and a second one with four basis functions v−1 ,v

+
1 ,v

−
2 ,v

+
2 .

Figure 3.1 shows that the scheme is convergent with the two basis functions v−1 ,v
+
1 and that

one increases the order by adding the basis functions v−2 ,v
+
2 . More precisely, order 1 is achieved

with the two basis functions v−1 ,v
+
1 whereas order 2 is achieved with the four basis functions

v−1 ,v
+
1 ,v

−
2 ,v

+
2 .

3-1.3.2 Asymptotic regime when ε << 1

We test the asymptotic behavior of the scheme (3.14) for the P1 model (3.12). We have shown
previously that the TDG method leads to a new asymptotic-preserving scheme and we can now
illustrate this property. We consider a case where ΩS = [0, 1], ε = 0.001, σs = 1, c =

√
3 and

T = 0.01. For the limit solution, we consider p0 the fundamental solution to the heat equation
and the variable v0 associated in the limit ε→ 0

p0(t, x) =
1

2
√
π(t+ 10−4)

e
−(x−0.5)2

4(t+10−4) , v0(t, x) = −ε∂xp0(t, x).

The limit solution is imposed on the boundary that is M−(p, v)T = M−(p0, v0)T .
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We compare the numerical solution with (p0, v0)T . For the TDG method we use the basis
functions (3.13) that is

e1(x) =

(
1
0

)
, e2(x) =

(
−
√

3σs
ε x
1

)
. (3.37)

And we compare the result obtained with the DG method which uses the same number of basis
functions. That is the following constant functions

e1(x) =

(
1
0

)
, e2(x) =

(
0
1

)
. (3.38)

Note that the only difference between the basis functions (3.37) and (3.38) is the first component
of e2.

The Figure 3.2 shows that even with few degrees of freedom the limit solution is correctly
approximated by the TDG method with the basis functions (3.37). It illustrates the asymptotic-
preserving property of the scheme. On the contrary, the Figure 3.3 shows that the standard DG
scheme with the two basis functions (3.38) is not AP.
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Figure 3.2 – Numerical solution obtained for the variable p (on the left) and v (on the right)
with the TDG scheme (3.14) with ε = 0.001. Random mesh with 20 nodes and
dt = 0.01/20. Good accuracy illustrates the AP properties of the TDG scheme.

3-2 The Su-Olson model

In this section we consider the Su-Olson model [SO96]. Compare to the P1 model, the main
difficulties when trying to solve numerically the Su-Olson model come from the degeneracy of
the matrices A0 and A1. Standard well-balanced schemes may give bad approximation for this
kind of models [GT02]. For the TDG method however, this is not a problem as soon as one can
calculate the basis functions.
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Figure 3.3 – Numerical solution obtained for the variable p (on the left) and v (on the right) with
the standard DG method with two constant basis functions and different number of
nodes. Bad accuracy on coarse meshes illustrates that this DG scheme is not AP.

3-2.1 Construction of the basis functions

The Su-Olson model reads [SO96]
ε∂tE +

1

2
∂xF = −(E − θ),

1

2
∂xE = −3

4
F,

∂tθ = −(θ − E),

(3.39)

where the unknown is u = (E,F, θ)T ∈ R3 and ε ∈ R+. The model (3.39) can be recast under
the form of a Friedrichs system (2.1) with

A0 =

ε 0 0
0 0 0
0 0 1

 , A1 =

0 1
2 0

1
2 0 0
0 0 0

 , R =

 1 0 −1
0 3

4 0
−1 0 1

 .

Note that both A0 and A1 are degenerated matrices in the sense that they admit a row which is
zero.

Proposition 3.15. The following functions are solutions to the system (3.39)

v1(t,x) =

1
0
1

 , v2(t,x) =

 x
−2

3
x

 , v3(t,x) =

 1
0
−ε

 e−
ε+1
ε
t,

v4(t,x) =

 x
0
−εx

 e−
ε+1
ε
t, v±5 (t,x) =

 1 + λ

∓ 2√
3
(1 + λ)

√
λ ελ+ε+1

1+λ

1

 e
λt±

√
3λ ελ+ε+1

1+λ
x
,

(3.40)

with λ ∈ R, λ 6= −1.

Proof. Injecting F in the first equation we recast the model (3.39) under the form of a second
order system

ε∂tE −
1

3
∂2
xE = −(E − θ),

∂tθ = −(θ − E).
(3.41)
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We search for solutions under the form

v(t, x) =

(
v1(x)
v2(x)

)
eλt.

Injecting v in the system (3.39), one finds after removing the exponentials(
ελ− 1

3
∂2
x

)
v1(x) = −(v1(x)− v2(x)),

λv2(x) = −(v2(x)− v1(x)).
(3.42)

From the second equation one gets

v2 = v1/(1 + λ), λ 6= −1. (3.43)

Using this equality in the first equation of (3.42) gives (ελ− 1
3∂

2
x)v1(x) = −λv1(x)/(1+λ). That

is
∂2
xv1(x) = 3λ

ελ+ ε+ 1

1 + λ
v1(x), λ 6= −1.

They are several cases:
• If λ = 0 or ελ+ ε+ 1 = 0 then one has ∂2

xv1(x) = 0.
— When λ = 0 one finds from (3.43) the equality v1(x) = v2(x). Therefore one has the

following solutions

v1(t,x) =

(
1
1

)
, v2(t,x) =

(
x
x

)
. (3.44)

— When ελ+ ε+ 1 = 0 one has λ = −(ε+ 1)/ε. Using (3.43) one finds v2(x) = −εv1(x)
and one gets the following solutions

v3(t,x) =

(
1
−ε

)
e−

ε+1
ε
t, v4(t,x) =

(
x
−εx

)
e−

ε+1
ε
t. (3.45)

• If λ 6= −1 then, using (3.43), one finds the following solutions

v4(t, x) =

(
1 + λ

1

)
e
λt±

√
3λ ελ+ε+1

1+λ
x
. (3.46)

From the solutions (3.44)-(3.45)-(3.46) to the system (3.41) one deduces solutions to the system
(3.39) using F = −(2/3)∂xE. The proof is complete. �

3-2.2 Numerical results

We apply the TDG method on the numerical test given in [SO96]. Consider the domain ΩS =
[0, 15] and a total of 200 nodes with dt = T/100 where T is the final time. We take ε = 0.1
and for the boundary condition u|∂Ω(t, x) = (δ0(x), 0, 0)T where δ is the Kronecker symbol. In
the following, we use random meshes constructed as follow: we start from a uniform mesh and
moved the vertices randomly around their initial position by a factor of at most 33%.

For the basis functions, we consider the solutions (3.40) from v1 to v4 and take λ = −
√

ε+1
ε for

v+
5 and v−5 . After multiplying v+

5 and v−5 by
√
ε one gets

v+
5 (t, x) =


√
ε−
√
ε+ 1

− 2√
3

(√
ε(ε+ 1)− (ε+ 1)

)
√
ε

 e
−
√
ε+1
ε
t+
√

3(ε+1)x
,

v−5 (t, x) =


√
ε−
√
ε+ 1

2√
3

(√
ε(ε+ 1)− (ε+ 1)

)
√
ε

 e
−
√
ε+1
ε
t−
√

3(ε+1)x
.

(3.47)
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At first, we take the 6 basis functions v1, ...,v
+
5 ,v

−
5 and represent the numerical results obtained

with the TDG method on the left of Figure 3.4 for the final times T = 10−3, 10−2, 10−1, 1, 10.
These results are consistent with those obtained in [SO96].

On the right of Figure 3.4 we compare the DG and TDG method by varying the number of basis
functions. More precisely, we study the following cases

• The DG method with 3 basis functions per cell (constant basis functions only).

• The DG method with 6 basis functions per cell (affine basis functions).

• The TDG method with the 3 basis functions per cell v1, v2 and v3.

• The TDG method with the 5 basis functions per cell v1, v2, v3, v+
5 and v−5 .

• The TDG method with the 6 basis functions per cell v1, v2, v3, v4 v+
5 and v−5 .

To get the most accurate approximation one needs to take 6 basis functions for the DG and TDG
method. Thus, the TDG and DG method give a similar result on this test. Moreover, note that
we use logarithmic scale and the comparison is therefore not representative of the error.
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In this chapter, the TDG method applied to the general PN model is studied and analyzed.
First, the PN model is derived and some of its properties, including the rotational invariance,
are given. Then, polynomial and exponential solutions are constructed. In particular, to deal
with boundary layers, stationary exponential solutions are derived. Finally, the approximation
properties of the stationary solutions and the convergence of the scheme are studied. A nice
property of the TDG method is recovered: the number of additional basis functions to gain one
order from k to k + 1 does not depend on k. Therefore, to get high order schemes the TDG
method uses, at least asymptotically, less basis functions than the standard DG method.
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x

y

z

Ω1 = (sinφ cosψ, sinφ sinψ, cosφ)T

Ω2 = (sinφ cosψ, sinφ sinψ,− cosφ)T

ψ

φ

Figure 4.1 – Representation of directions Ω1 and Ω2. If u is an even function of cosφ then
u(t,x,Ω1) = u(t,x,Ω2).

4-1 The PN model

The derivation of our model respect several principles

• Consider the PN model with N odd. Indeed, even if the analysis can be carried out for the
case N even too, the distinction odd/even has to be made in various cases which lengthens
the presentation. In practice, the PN model is rarely applied for even values of N (see for
example [GH16, Section 2] for a discussion on the benefits of considering N odd) and it is
therefore natural to consider only the case N odd in our analysis.

• Use the block structure given in [Her16]. This will be useful to simplify the structure, study
some properties and calculate solutions to the model.

• Consider the two dimensional PN model. In two dimensions, the size of the system is
reduced with two assumptions

(i) The solution does not depends on the variable z that is ∂zu = 0.

(ii) The solution u is an even function of cosφ. This is equivalent to assume that the
solution is symmetric with respect to the plan xy see Figure 4.1. In three dimensions,
it can be interpreted as pure reflective conditions at the boundaries of the domain.

• Consider the PN model in the plan xy. The plan xz may also be a possible choice [BH01,
BDF15], however the rotation matrix associated with the spherical harmonics is more
difficult to calculate in the plan xz [BFB97, IR96, PH07]. In practice, the rotation matrix
will be useful to

(i) Deduce two dimensional special solutions from the one dimensional case using the
rotational invariance of the PN model.

(ii) Simplify the calculation of the matrices M(n), M+(n), M−(n) for the numerical
simulations, see Remark 4.14 below.

Such configurations are studied in the literature but the notations or the symmetry assumptions
vary from one author to another. In the following, the presentation is unified.
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4-1.1 Derivation from the transport equation

Let ψ ∈ [0, 2π) and φ ∈ [0, π) be the polar and azimutal angles on the sphere, so that in Cartesian
coordinate with usual notations

Ω := (Ω1,Ω2,Ω3)T = (sinφ cosψ, sinφ sinψ, cosφ)T ∈ R3.

To be consistent with the standard notation of the spherical harmonics, the uppercase letter Yk,l
is used to denoted the real spherical harmonics. We make a slight abuse of notation by denoting
indifferently

Yk,l(Ω) := Yk,l(ψ, φ) : R2 → R, |l| ≤ k ≤ N, k, l ∈ N.

The construction and properties of the spherical harmonics are detailed in Appendix A. We recall
that the transport equation reads

∂tI(t,x,Ω) + Ω · ∇I(t,x,Ω) = −
(
σa(x) + σs(x)

)
I(t,x,Ω) + σs(x) < I > (t,x), (4.1)

where I is the radiative intensity average in frequency, t the time variable, x the space variable,
Ω the direction and we use the notation

< · > (t,x) :=
1

4π

∫
S2

dΩ,

where S2 is the unit sphere in R3. The absorption and the scattering coefficients are denoted
respectively

σa(x) ≥ 0 and σs(x) ≥ 0.

We introduce some notations and adopt the presentation from [GH16] but with the spherical
harmonics vector arranged as in [Her16]. In the following, we denote m3D the number of un-
known, m3D

e the number of even moments and m3D
o the number of odd moments for the three

dimensional PN model. That is

m3D := m3D
e +m3D

o = (N + 1)2, m3D
e :=

1

2
N(N + 1), m3D

o :=
1

2
(N + 1)(N + 2).

For any integer 0 ≤ k ≤ N we define yk(Ω) the vectorial function whose components are the
2k + 1 real valued spherical harmonics of order k. Moreover we denote ye(Ω) the vectorial
function made of the so-called even moments

(
y2k(Ω)

)
0≤2k≤N and yo(Ω) the vectorial function

made of the so-called odd moments
(
y2k+1(Ω)

)
0≤2k+1≤N . That is

yk(Ω) :=
(
Yk,−k(Ω), Yk,−k+1(Ω), ..., Yk,k−1(Ω), Yk,k(Ω)

)T
∈ R2k+1,

ye(Ω) :=
(
yT0 (Ω),yT2 (Ω), ...,yTN−1(Ω)

)T
∈ Rm

3D
e , yo(Ω) :=

(
yT1 (Ω),yT3 (Ω), ...,yTN (Ω)

)T
∈ Rm

3D
o ,

Finally, we define y(Ω) the vectorial function made of ye(Ω), yo(Ω) and arranged as follow

y(Ω) =
(
yTe (Ω),yTo (Ω)

)T
∈ Rm

3D
.

We generalize this decomposition for any vector v ∈ Rm3D . We set

vk := (v−kk , v−k+1
k , ..., vk−1

k , vkk)T ∈ R2k+1,

ve := (vT0 ,v
T
2 , ...,v

T
N−1)T ∈ Rm

3D
e , vo := (vT1 ,v

T
3 , ...,v

T
N )TRm

3D
o ,

(4.2)

and denote v as
v = (vTe ,v

T
o )T ∈ Rm

3D
. (4.3)



46 THE PN MODEL

Now we introduce the decomposition of the function I(t,x,Ω) on the spherical harmonics basis

I(t,x,Ω) =
∑
k≥0

∑
|l|≤k

Yk,l(Ω)ulk(t, x).

The spherical harmonic approximation of (4.1) considers the truncated series IN defined as

IN (t,x,Ω) := yT (Ω)u(t,x) =
N∑
k=0

yTk (Ω)uk(t, x) =
N∑
k=0

∑
|l|≤k

Yk,l(Ω)ulk(t, x),

where the unknown of the PN model is u ∈ Rm3D . With the approximation I = IN the equation
(4.1) reads

yT (Ω)∂tu(t,x) +
3∑
i=1

Ωiy
T (Ω)∂xiu(t,x) =

(
−
(
σa + σs

)
yT (Ω)u(t,x) + σs < yT (Ω) >

)
u(t,x).

Multiplying by y(Ω) and integrating over the sphere gives

< y(Ω)yT (Ω) > ∂tu(t,x) +

3∑
i=1

< Ωiy(Ω)yT (Ω) > ∂xiu(t,x) =(
−
(
σa + σs

)
< y(Ω)yT (Ω) > +σs < y(Ω) >< yT (Ω) >

)
u(t,x).

(4.4)

From the orthogonal properties of the spherical harmonics one has < y(Ω)yT (Ω) >= Im3D and
< y(Ω) >< yT (Ω) >= e1e

T
1 with e1 = (1, 0, ..., 0)T ∈ Rm3D . Therefore one gets the system

∂tu +

3∑
i=1

Ai∂xiu = −R u, (4.5)

where
u ∈ Rm

3D
, A1,A2,R ∈ Rm

3D×m3D
.

The matrices Ai are defined as
Ai =< Ωiy(Ω)yT (Ω) > (4.6)

and can be computed using the recursion relations (A.4) to expand Ωiy(Ω) in terms of spherical
harmonics. As pointed in [Her16] the matrix A1, A2 and A3 have the following block structure

A1 =

(
0 A

AT 0

)
, A2 =

(
0 B

BT 0

)
, A3 =

(
0 C

CT 0

)
, (4.7)

where A , B, C ∈ Rm3D
e ×m3D

o are rectangular matrices. The matrix R is a diagonal matrix

R = diag(σa, σa + σs, ..., σa + σs).

In the following we may use the notation σt := σa + σs.

4-1.2 Properties

In this section, we derive some properties in three dimensions of the PN model based on the
results given in [GH16]. We use the matrix representations of the rotation operators in the basis
of spherical harmonics [BFB97, DX13, PH07]

U(α, β, γ) ∈ Rm
3D×m3D

, (4.8)
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where α, β and γ denotes rotation around the axes Oz, Oy and Oz respectively. The matrix
U(α, β, γ) is a block matrix for the vectors yk(Ω)

U(α, β, γ) = diag
(

∆0(α, β, γ),∆2(α, β, γ), ...∆me(α, β, γ),∆1(α, β, γ), ...,∆mo(α, β, γ)
)
.

The matrices ∆k reads [PH07]

∆k(α, β, γ) = Wk(α)Dk(β)Wk(γ) ∈ R2k+1×2k+1. (4.9)

Here Dk ∈ R2k+1×2k+1 is a d-Wigner matrix and the matrix Wk has non-zero elements only on
its diagonal and anti-diagonal

Wk(α) =



cos kα sin kα
. . . 0 . .

.

cos 2α sin 2α
cosα sinα

0 1 0
− sinα cosα

− sin 2α cos 2α

. .
. 0 . . .

− sin kα cos kα


∈ R2k+1×2k+1.

(4.10)
To simplify the matrix U we may consider a rotation θ in the plan xy only and denote

Uθ := U(0, 0, θ) ∈ Rm
3D×m3D

.

Using the expression of the block rotations (4.9), the structure of the matrix Uθ can be written
as

Uθ = diag
(

W0(θ),W2(θ), ...Wme(θ),W1(θ), ...,Wmo(θ)
)
,

where the blocks Wk(θ) are given by (4.10).

The matrix U represents the orthogonal transformations on y(Ω). That is for an orthogonal
matrix Q ∈ R3×3 one has

y(QΩ) = U(α, β, γ)y(Ω), (4.11)

where α, β and γ are the angles of the rotation associated with the matrix Q in R3.

Example 4.1 (The P1 model in 3D). For the three dimensional P1 model m3D = 4. The
matrices A1, A2, A3, R and Uθ are

A1 =
1√
3


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 , A2 =
1√
3


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , A3 =
1√
3


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ,

R =


σa 0 0 0
0 σt 0 0
0 0 σt 0
0 0 0 σt

 , Uθ =


1 0 0 0
0 cos θ 0 sin θ
0 0 1 0
0 − sin θ 0 cos θ

 .

•
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Invertibility of AAT , BBT and CCT . The first result of this section is about the eigenvalues
and eigenvectors of the matrices AAT , BBT and CCT in terms of the eigenvalues and eigenvectors
of the matrices A1, A2 and A3. The eigenvalues of AAT and BBT play an important role in the
analysis of the TDG scheme. In particular the invertibility of AAT will be used to study the
convergence.

Proposition 4.2 (Invertibility of AAT , BBT and CCT ). The symmetric matrix AAT is invertible
and all its eigenvalues are strictly positive. A similar result holds for the matrices BBT and CCT .

To prove Proposition 4.2 we need the some technical Lemmas.

Lemma 4.3. Let Q ∈ R3 be an orthogonal matrix, assume ν,ν∗ ∈ R3 satisfy ν∗ = Qν and
define the two matrices

M :=< (νTΩ)y(Ω)yT (Ω) >∈ Rm
3D×m3D

, M∗ :=< (νT∗ Ω)y(Ω)yT (Ω) >∈ Rm
3D×m3D

.

Then one has
M∗ = U(α, β, γ)MUT (α, β, γ),

where α, β and γ are the angles of the rotation associated with the matrix Q in R3.

Proof. The proof is taken from [GH16]. With the change of variable Ω′ = QΩ and the fact that
Q is an orthogonal matrix one gets

< (νT∗ Ω)y(Ω)yT (Ω) >=< (νT∗ QΩ)y(QΩ)yT (QΩ) > .

With ν∗ = Qν one finds

< (νT∗ Ω)y(Ω)yT (Ω) >=< (νTΩ)y(QΩ)yT (QΩ) > .

Using (4.11) completes the proof. �

From Lemma 4.3 one immediately deduces the following corollary on the eigenstructure of the
matrices Ai.

Corollary 4.4. The eigenvalues of the matrices A1, A2 and A3 are the same and their eigen-
vectors differ by a unitary transformation.

Proof. The proof is taken from [GH16]. One uses Lemma 4.3 with ν, ν∗ aligned with one of the
three Cartesian axes (that is νTΩ = Ωi and νT∗ Ω = Ωj , 1 ≤ i, j ≤ 3). One concludes with the
definition of the matrices Ai (4.6). �

Finally we will use the following lemma which give some structure on the kernel of the matrices
Ai.

Lemma 4.5. Let N be odd, v = (ve,vo)
T ∈ Rm3D where ve, vo are as in decomposition (4.3)

and assume A3v = 0. Then one has ve = 0. A similar result holds for the matrices A1 and A2.

Proof. The proof is based on [GH16, Theorem 3]. First, assume A3v = 0. Since N is odd and
using [GH16, Theorem 3] one has vl2k = 0 for |l| ≤ 2k ≤ N . From the definition (4.2) of ve one
gets ve = 0 and this give the result for A3.

From Corollary 4.4, the eigenvectors of the matrices Ai differ by the transformation U (4.8)
which is block diagonal considering the components vk. Using the definition (4.2) of ve one
deduces the result for the matrices A1 and A2. �
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We can now prove Proposition 4.2.

Proof of Proposition 4.2. We give the proof for the matrix AAT , the proof for the matrices BBT

and CCT is similar. Consider vi, i = 1, ...,m3D the eigenvectors of the matrix A1 associated with
the eigenvalues λi. We use the decomposition (4.3) to denote vi = (vie,v

i
o)
T with vie ∈ Rm3D

e .
Because A1 is symmetric, there exists m3D

e eigenvectors vi such that the vectors vie form a basis
of Rm3D

e . Up to a reordering, one can assume that the vectors vie, i = 1, ...,m3D
e form a basis of

Rm3D
e . That is

dim
(

Span
{

v1
e , ...,v

m3D
e

e

})
= m3D

e . (4.12)

Since A1v
i = λiv

i and from the block structure (4.7) of the matrix A1 one gets{
Avio = λiv

i
e

ATvie = λiv
i
o.

(4.13)

Multiplying the second equation by A and using the first equation gives

AATvie = λ2
iv

i
e. (4.14)

From (4.12)-(4.14) one deduces that the vectors vie, i = 1, ...,m3D
e are all the eigenvectors of the

matrix AAT ∈ Rm3D
e ×m3D

e and are associated with the eigenvalues λ2
i .

Now if λi = 0 it implies from Lemma 4.5 that vie = 0. From (4.12) this is not possible and one
deduces λi 6= 0 for i = 1, ...,m3D

e . Therefore, the matrix AAT admits no zero eigenvalue and the
proof is complete. �

Eigenvectors of AAT with a non zero first component. A special attention is devoted
to the eigenvectors of AAT with a non zero first component. The following proposition will be
useful later in the proof of Proposition 4.23.

Proposition 4.6 (Eigenvectors of AAT with a non zero first component). The eigenvectors of
AAT with a non zero first component are associated with distinct eigenvalues.

To prove Proposition 4.6 we will need the following lemma which is taken from [GH16]. To
avoid confusion between the PN model and the Legendre polynomials we denote in the following
lemma Qk the Legendre Polynomial of degree k. Moreover we denote δjk the Kronecker symbol.

Lemma 4.7. The eigenvalues of A3 are the roots of the polynomial ∂(|j|)
x QN+1 for |j| ≤ N . More

precisely, if λ is a root of ∂(|j|)
x QN+1, then for any fixed φ, the vector v with components

vlk = Y j
l (cos−1(λ), φ)δjk,

is an eigenvector of A3 associated with λ.

Proof. The proof is given in [GH16, Lemma 2]. �

The following lemma is also useful.

Lemma 4.8. Assume λ is an eigenvalue of A1 associated with the eigenvector v1 = (ve,vo)
T .

Then −λ is an eigenvalue of A1 associated with the eigenvector v2 = (−ve,vo)
T

Proof. This is a direct consequence of the block structure of the matrix A1 (4.7). �
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We can now give the proof of Proposition 4.6.

Proof of Proposition 4.6. We proceed in three steps

1. First, we show that the eigenvectors of A1 with a non zero first component are associated
with distinct eigenvalues. Indeed, from Lemma 4.7, one deduces that the eigenvectors of
A3 associated with a non zero first component (that is v0

0 6= 0) are roots of the Legendre
polynomial QN+1 and therefore distinct. One concludes with Corollary 4.4 that the re-
sult holds for the matrix A1 since the eigenvectors of the matrices Ai differ by a unitary
transformation which is block diagonal for the first component v0

0.

2. Then, we show that the eigenvectors and eigenvalues of AAT can be deduced from the
eigenvectors and eigenvalues of A1. To do so, we proceed as in the proof of Proposition
4.2. We consider vi = (vie,v

i
o)
T , i = 1, ...,m3D

e which are the eigenvectors of A1 such
that the vie, i = 1, ...,m3D

e , form a basis of Rm3D
e . Up to a reordering, one can denote

vi, i = 1, ..., k, k ≤ m3D
e , all the eigenvectors with a non zero first component and λi the

eigenvalues associated. From the equality (4.14), the eigenvalues of AAT associated with
an eigenvector with a non zero first component are λ2

1, ..., λ
2
k.

3. Finally, we show that these eigenvalues are distinct that is λl 6= ±λj for l 6= j and l, j ≤ k.
— From the first item, the eigenvalues associated with a non zero first component are

distinct that is λl 6= λj .

— Now assume λl = −λj . In particular, λl and λj are two eigenvalues of A1. From
Lemma 4.8 the vector w = (−vle,v

l
o)
T is an eigenvector of A1 with a non zero first

component associated with the eigenvalue −λl. But since the λi are distinct, the
eigenvector vj is the only eigenvector of A1 with a non zero first component associated
with the eigenvalue −λl. One deduces vj = w = (−vle,v

l
o)
T . Therefore vje = −vle

which is impossible because the eigenvectors vie form a basis of Rm3D
e .

One finally deduces that the eigenvalues λ2
1, ..., λ

2
k are all distinct. The proof is complete.

�

Rotational relations in 3D. The following proposition establishes a relation between the
matrices A1, A2 and Uθ. Later in this chapter, we will use this relation to show the rotational
invariance of the solutions to the PN model in two dimensions.

Proposition 4.9 (Rotational relations in 3D). The matrices A1 and A2 satisfy the relation

A1 = Uθ(A1 cos θ − A2 sin θ)UT
θ , A2 = Uθ(A1 sin θ + A2 cos θ)UT

θ .

Proof. The general proof is based on Lemma 4.3. Let Qθ be the rotation matrix of angle θ in
the plan xy

Qθ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ∈ R3×3,

and assume ν,ν∗ ∈ R3 satisfy
ν∗ = Qθν ∈ R3. (4.15)

One can define the two matrices

M :=< (νTΩ)y(Ω)yT (Ω) >∈ Rm
3D×m3D

, M∗ :=< (νT∗ Ω)y(Ω)yT (Ω) >∈ Rm
3D×m3D

.
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From Lemma 4.3 one has
M∗ = UθMUT

θ .

Using the definition (4.6) of the matrices Ai and taking ν∗ = (1, 0, 0)T , ν = (cos θ,− sin θ, 0)T

immediately give
A1 = Uθ(A1 cos θ − A2 sin θ)UT

θ .

For the second equality consider ν∗ = (0, 1, 0)T , ν = (sin θ, cos θ, 0)T and one gets

A2 = Uθ(A1 sin θ + A2 cos θ)UT
θ .

This completes the proof. �

4-1.3 Derivation and properties in the two dimensional case

4-1.3.1 Derivation from 3D principles

The goal in this section is to derive the PN model in two dimensions from the three dimensional
case. More precisely, in two dimensions the PN model can be decoupled in two systems: the
unknowns umk such that k + m is odd and the unknowns umk such that k + m is even. Making
the assumption that the function u is an even function of cosφ, one can remove the unknown
such that k + m is odd. This simplifies the matrices A1 and A2 and one gets the PN model in
two dimensions.

Definition 4.10. Consider u ∈ Rm3D , u = (u0,u2, ...,u1,u3, ...)
T as in (4.2) where ul refers to

the moments ul = (u−ll , u
−l+1
l , ..., ul−1

l , ull)
T . We introduce a second even/odd decomposition to

derive the two dimensional PN model and define the spaces

Se = {u ∈ Rm
3D
, ulk = 0, ∀ k+l odd}, So = {u ∈ Rm

3D
, ulk = 0, ∀ k+l even}.

Moreover we set
m := dimSe.

One notices that Rm3D
= Se ⊕ So. An important property in the two dimensional case is that

the matrices A1 and A2 preserve the two spaces Se and So.

Proposition 4.11. The space Se (resp. So) is invariant under the application of the matrices
A1 and A2

A1Se ⊂ Se, A2Se ⊂ Se, A1So ⊂ So, A2So ⊂ So.

Proof. This is a direct consequence of the relations (A.4) given in Appendix A and the definition
Ai :=< ΩiyyT >. �

We use this property to show that, in 2 dimensions, the PN model can be decoupled in two
systems with independent solutions ue ∈ Se and uo ∈ So. We make the assumption that the
function u is an even function of cosφ. From the definition of the spherical harmonics (A.3),
this is equivalent to take ulk = 0 if k+ l odd. Therefore, we are interested in the solution u ∈ Se
and we consider a system of dimension m.

Definition 4.12. Let vi ∈ Rm3D , i = 1, ...,m be the canonical basis of Se in Rm3D and wj ∈ Rm,
j = 1, ...,m the canonical basis of Rm. We define the matrix P ∈ Rm×m3D such that

P =
m∑
i=1

wiv
T
i ∈ Rm×m

3D
,
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and the matrices A1, A2, R, Uθ are defined as

A1 = PA1P
T ∈ Rm×m, A2 = PA2P

T ∈ Rm×m,
R = PR P T ∈ Rm×m, Uθ = PUθP

T ∈ Rm×m.
(4.16)

The matrices A1, A2, R and Uθ are simply the matrices A1, A2, R and Uθ where the columns
and rows corresponding to components vlk such that k + l is odd have been removed. Therefore
the matrices A1, A2, R have the same block structure as in (4.7).

Example 4.13 (The P1 model in 2D). For the P1 model m = 3. The matrix P reads

P =

1 0 0 0
0 1 0 0
0 0 0 1

 ,

and the matrices A1, A2, R and Uθ are

A1 =
1√
3

0 0 1
0 0 0
1 0 0

 , A2 =
1√
3

0 1 0
1 0 0
0 0 0

 ,

R =

σa 0 0
0 σt 0
0 0 σt

 , Uθ =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 .

•
4-1.3.2 The two dimensional case

We can now give the PN model in two dimensions. Since N is odd one has

m =
1

2
(N + 1)(N + 2), me =

1

4
(N + 1)2, mo =

1

4
(N + 1)(N + 3),

where m is the total size of the system, me is the number of even moments and mo is the number
of odd moments. The two dimensional PN model reads(

A0∂t +A1∂x +A2∂y

)
u(t,x) = −Ru(t,x), (4.17)

where x = (x, y)T , u ∈ Rm, A1, A2, R ∈ Rm×m. Since we have adopted the order given in [Her16]
the matrices A1 and A2 have the block structure

A0 = εIm ∈ Rm×m, A1 = c

(
0 A
AT 0

)
∈ Rm×m, A2 = c

(
0 B
BT 0

)
∈ Rm×m, (4.18)

where Im ∈ Rm×m is the identity matrix, A, B ∈ Rme×mo are rectangular matrices and we have
introduced the coefficients

c ∈ R+, ε ∈ R∗+.

In particular, when ε→ 0, the PN model admits a diffusion limit [Her16]. To get the same block
structure for the matrix R as in (4.18), we may write

R =

(
R1 0
0 R2

)
∈ Rm×m, (4.19)



ANALYSIS OF THE TREFFTZ DISCONTINUOUS GALERKIN METHOD FOR
THE PN MODEL 53

where R1 and R2 are both diagonal matrices

R1 := diag(εσa, σt, ..., σt) ∈ Rme×me , R2 := σtImo ∈ Rmo×mo .

with Imo the identity matrix of Rmo×mo and

σt := σεt := εσa +
σs
ε
, σa, σs ∈ R+.

The rotation matrix Uθ given in (4.16) reads

Uθ =

(
V2θ 0
0 V2θ+1

)
∈ Rm×m, (4.20)

where V2θ, V2θ+1 denotes respectively the rotation on the even and odd spherical harmonics

V2θ =


W0

W2
0

0
. . .

WN−1

 ∈ Rme×me , V2θ+1 =


W1

W3
0

0
. . .

WN

 ∈ Rmo×mo .

(4.21)
Each diagonal blockW2l is the rotation matrix for the spherical harmonics of order 2l. Therefore
it reads

W2l =

cos 2lθ sin 2lθ
cos 2(l − 1)θ 0 sin 2(l − 1)θ

. . . . .
.

cos 2θ sin 2θ
0 1 0

− sin 2θ cos 2θ

. .
. . . .

− sin 2(l − 1)θ 0 cos 2(l − 1)θ
− sin 2lθ cos 2lθ


∈ R(l+1)×(l+1).

(4.22)
Similarly, each diagonal block W2l+1 is the rotation matrix for the spherical harmonics of order
2l + 1

W2l+1 =

cos(2l + 1)θ sin(2l + 1)θ
cos(2l − 1)θ 0 sin(2l − 1)θ

. . . . .
.

0 cos θ sin θ 0
− sin θ cos θ

. .
. . . .

− sin(2l − 1)θ 0 cos(2l − 1)θ
− sin(2l + 1)θ cos(2l + 1)θ


∈ R(l+1)×(l+1).

(4.23)

Remark 4.14 (Determination of the matrices M+ and M− (2.3) with the rotation matrix).
The rotation matrix Uθ can be used to calculate the matrices M(n), M+(n), M−(n). We recall



54 THE PN MODEL

the decomposition M(n) = M+(n) + M−(n) where M(n) = A1nx + A2ny, n = (nx, ny)
T . In

the following, we will use the decomposition

M+(n) =
∑
λi>0

λirir
T
i , M−(n) =

∑
λi<0

λirir
T
i , |M |(n) :=

∑
i

|λi|rirTi , (4.24)

where ri are the eigenvector of the matrix M associated with the eigenvalue λi.

The eigenvalues and eigenvectors of the matrix M are therefore required to determinate the
matrices M+ and M− but, for large values of N , they can be challenging to calculate. Instead,
one can use the eigenvalues and eigenvectors of the matrix A1.

Indeed, since n = (nx, ny) is the outward normal of a given edge, one can write n = (cos θ, sin θ)
with θ ∈ [0, 2π[. Therefore, another way to write the matrix M is M = A1 cos θ+A2 sin θ. From
the Proposition 4.18 one gets

M(n) = UT−θA1U−θ (4.25)

where U−θ is given by the five equalities from (4.20) to (4.23). In particular, one deduces from
(4.25) that ri is an eigenvector of M associated with the eigenvalue λi if and only if UTθ ri is
an eigenvector of A1 associated with the eigenvalue λi. The eigenvalues of A1 are roots of the
Legendre polynomials (and their derivatives) and their eigenvectors are known up to a rotation
with the matrix U(α, β, γ) [GH16]. •

4-1.3.3 Properties

In this section, we derive some properties of the PN model in two dimensions. Later in this
chapter, such properties will be used to construct the basis functions and study the convergence
of the scheme. In particular, the Propositions 4.2 and 4.9 are adapted to the two dimensional
case.

Technical lemmas. We begin with two technical lemmas.

Lemma 4.15. One has PP T = Im where Im ∈ Rm×m is the identity matrix of Rm×m. Moreover
one has P TP = Ie where Ie ∈ Rm3D×m3D is the projection on Se orthogonal at So that is
Ieue = ue, Ieuo = 0 for all ue ∈ Se, uo ∈ So.

Proof. From the Definition 4.12 one has P TP =
∑

i,j wiv
T
i vjw

T
j . But since vi is the canonical

basis of Se, one finds vTi vj = 0 if i 6= j and vTi vi = 1. Therefore P TP =
∑m

i=1 wiw
T
i and

because wi is the canonical basis of Rm one gets P TP = Im.

In the same way, PP T =
∑

i,j viw
T
i wjv

T
j =

∑m
i=1 viv

T
i := Ie. From the definition of Ie =∑m

i=1 viv
T
i , one deduces Ieue = ue, Ieuo = 0 for all ue ∈ Se, uo ∈ So. This completes the

proof. �

Lemma 4.16. Assume r ∈ Se one has

A1r = λr ⇔ A1Pr = λPr.

Proof. A direct consequence of Proposition 4.11 is that the eigenvectors of A1 and A2 can be
chosen such that they belong to Se or So. Assume r ∈ Se and A1r = λr. Using P TP = Ie one
has A1P

TPr = λr and therefore multiplying by P gives A1Pr = λPr. Respectively, if A1r = λr
then by definition PA1P

T r = λr and therefore A1P
T r = λP T r. �
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Invertibility of AAT and BBT . We can now give the equivalence of Proposition 4.2 in two
dimensions. The invertibility of the matrices AAT and BBT will be particularly useful when
studying the convergence of the TDG method.

Proposition 4.17 (Invertibility of AAT and BBT ). The symmetric matrices AAT and BBT

are invertible and all their eigenvalues are strictly positive. Moreover all the eigenvectors and
eigenvalues of the matrix AAT and BBT can be deduced from the eigenvalues and eigenvectors
of the matrices A1 and A2 respectively.

Proof. The proof is the same as for the Proposition 4.2. Indeed, from Lemma 4.16 any eigenvalue
of A1 is also an eigenvalue of the matrix A1 and if r is an eigenvector to A1 then Pr is an
eigenvector to A1. Therefore all eigenvalues and eigenvectors of A1 can be deduced from the
eigenvalues and eigenvectors of A1.

Moreover, the Lemma 4.5 can be easily derived in two dimensions considering the decomposition
v = (ve,vo) ∈ Rm, ve ∈ Rme , vo ∈ Rmo . Therefore, the two dimensional version of the proof of
Proposition 4.2 give the invertibility of AAT and BBT . �

Rotational invariance. We give the two dimensional equivalence of Proposition 4.9 and then
use it to show the rotational invariance of the PN model.

Proposition 4.18 (Rotational relations in 2D). One has the relations

A1 = Uθ(A1 cos θ −A2 sin θ)UTθ , A2 = Uθ(A1 sin θ +A2 cos θ)UTθ .

Proof. We give the proof for A1, the proof for A2 is similar. Let v ∈ Rm and consider u =
P Tv ∈ Se. From Proposition 4.9 one has

A1u = Uθ(A1 cos θ − A2 sin θ)UT
θ u.

Because P TP = Ie one gets

A1u = UθP
T (PA1P

T cos θ − PA2P
T sin θ)PUT

θ u.

Multiplying by P on the left and using u = P Tv give

PA1P
Tv = PUθP

T (PA1P
T cos θ − PA2P

T sin θ)PUT
θ P

Tv.

That is
A1v = Uθ(A1 cos θ −A2 sin θ)UTθ v,

where we used Uθ = PUθP
T . �

We use Proposition 4.18 to show that the solutions are invariant under rotation.

Proposition 4.19 (Rotational invariance of the two dimensional PN model). The 2D system
(4.17) is invariant under rotation. More precisely, if u(t, x, y) is solution to (4.17) then the
function Uθu(t, x cos θ + y sin θ,−x sin θ + y cos θ), θ ∈ [0, 2π), is also solution to (4.17).

Proof. Let u(t, x, y) satisfy(
Im∂t +A1∂x +A2∂y +R

)
u(t, x, y) = 0. (4.26)
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We consider the following rotation

x′ = x cos θ − y sin θ,

y′ = x sin θ + y cos θ.

Using the chain rule formula on the system (4.26) one gets(
Im∂t+A1(cos θ∂x′+sin θ∂y′)+A2(− sin θ∂x′+cos θ∂y′)+R

)
u(t, x′ cos θ+y′ sin θ,−x′ sin θ+y′ cos θ) = 0.

Setting v = Uθu and multiplying the equality by Uθ one has

Uθ

(
Im∂t + (A1 cos θ −A2 sin θ)∂x′ + (A1 sin θ +A2 cos θ)∂y′ +R

)
UTθ v(t, x′ cos θ + y′ sin θ,−x′ sin θ + y′ cos θ) = 0.

The matrix Uθ is block diagonal for the moments uk = (u−kk , ..., u−kk ). For k = 0, the first moment
of the vector u is u0 = (u0

0) and therefore the first row and column of Uθ write respectively
(1, 0, ..., 0) and (1, 0, ..., 0)T . One deduces Uθe1e

T
1 U

T
θ = e1e

T
1 , where e1 = (1, ..., 0)T ∈ Rm. Since

the matrix R reads R = σtIm − σs
ε e1e

T
1 , one has

UθRU
T
θ = R.

Using Corollary 4.18 one finally gets(
Im∂t +A1∂x′ +A2∂y′ +R

)
v(t, x′ cos θ + y′ sin θ,−x′ sin θ + y′ cos θ) = 0.

Therefore v(t, x′ cos θ+ y′ sin θ,−x′ sin θ+ y′ cos θ) = Uθu(t, x′ cos θ+ y′ sin θ,−x′ sin θ+ y′ cos θ)
is solution to (4.17). �

Eigenvalues and eigenvectors of (AAT )−1R1. Exponential solutions to the PN model re-
quire to study the eigenvalues and eigenvectors of the matrix (AAT )−1R1 ∈ Rme×me . In the
following, we may take for simplicity ε = 1 but the proofs are the same for ε ∈ R∗+. First, one
can study the sign of the eigenvalues of (AAT )−1R1.

Proposition 4.20 (Eigenvalues of (AAT )−1R1 in the general case σa ≥ 0). The eigenvalues µi
of the matrix (AAT )−1R1 are strictly positive when σa > 0 and non negative when σa = 0.

Proof. Assume σa > 0 and let u ∈ Rme . Since σa > 0, the matrix R1 := diag(σa, σa+σs, ..., σa+
σs) is invertible and one has

uT (AAT )−1R1u =
(√

R1
−1

ũ
)T

(AAT )−1
√
R1ũ = ũT

√
R1
−1

(AAT )−1
√
R1ũ,

with ũ =
√
R1u. The eigenvalues of the matrices

√
R1
−1

(AAT )−1
√
R1 and (AAT )−1 are the

same and therefore one deduces from Proposition 4.17 that the matrix
√
R1
−1

(AAT )−1
√
R1

is positive. That is uT (AAT )−1R1u > 0 if u 6= 0 and one concludes that the eigenvalues
of (AAT )−1R1 are strictly positive when σa > 0. By continuity that the eigenvalues are non
negative when σa = 0. �

An important property is the degeneracy of one eigenvalue when σa → 0. In terms of the
exponential solutions, this results in the degeneracy of the exponentials associated with this
eigenvalue.
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Proposition 4.21 (Eigenvalues of (AAT )−1R1 in the degenerative case σa → 0). Assume σs > 0.
There is exactly one eigenvalue µ1 such that µ1 →

σa→0
0.

Proof. To show the result, we consider the degenerate case σa = 0. It is clear from the definition of
R1 := diag(σa, σa+σs, ..., σa+σs) and σs > 0 that dim(kerR1) = 1. Since dim(ker(AAT )−1) = 0
one finds

dim
(

ker(AAT )−1R1

)
= 1.

From Proposition 4.20, all the eigenvalues are strictly positive when σa > 0. Therefore there is
exactly one eigenvalue which degenerate to 0 when σa → 0. The proof is complete. �

The fact that the eigenvectors of the matrix (AAT )−1R1 form a basis of Rme is required when
studying the approximation properties of the solutions to the PN model. Moreover, it allows to
count the number of distinct couple of eigenvalue/eigenvector of the matrix (AAT )−1R1 and give
the total number of stationary exponential solutions in 1D (see the proof of Theorem 4.25).

Proposition 4.22 (Eigenvectors of (AAT )−1R1 when σa > 0). Assume σa > 0. The eigenvectors
of (AAT )−1R1 ∈ Rme×me from a basis of Rme . Therefore, there exists me distinct couple of
eigenvalue/eigenvector of the matrix (AAT )−1R1.

Proof. Let u be an eigenvector of (AAT )−1R1 associated with the eigenvalue λ that is (AAT )−1R1u =
λu. One has

√
R1(AAT )−1

√
R1ũ = λũ, with ũ =

√
R1u. Since the matrix (AAT )−1 is sym-

metric, the matrix
√
R1(AAT )−1

√
R1 is also symmetric. Because σa > 0, the matrix

√
R1 is

invertible and one concludes that the eigenvectors of (AAT )−1R1 ∈ Rme×me from a basis of
Rme . �

For the same reason (approximation properties of the basis functions), one needs to prove that
the eigenvectors of (AAT )−1R1 from a basis of Rme , this time when σa = 0.

Proposition 4.23 (Eigenvectors of (AAT )−1R1 in the degenerate case σa = 0). Assume σa = 0.
The eigenvectors of (AAT )−1R1 form a basis of Rme.

Proof. To prove the proposition a distinction must be made between the eigenvectors with a
first component equal to zero and the other eigenvectors. We denote m1 ∈ N the number of
eigenvectors of the matrix (AAT )−1 with a first component equal to zero and m2 ∈ N the
number of eigenvectors of (AAT )−1 with a non zero first component. Since the matrix (AAT )−1

is symmetric one has
me = m1 +m2.

• First we consider the eigenvectors of (AAT )−1R1 with a first component equal to zero.
From the definition of R1 with σa = 0 one has

R1 = diag(0, σs, ..., σs).

One deduces that each eigenvectors of (AAT )−1 with a first component equal to zero is
also an eigenvector of (AAT )−1R1. Therefore, the matrix (AAT )−1R1 admits m1 linearly
independent eigenvectors wi with a first component equal to zero

w1,w2, ...,wm1 .

We denote µi the eigenvalues associated with the eigenvectors wi

µ1, ..., µp, p ≤ m1.
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• Now we consider zi the eigenvectors of (AAT )−1R1 with a non zero first component and
their associated eigenvalues λi. The Remark 4.26 below shows that the λi are the roots of
the function

f(λ) = 1 + σs

m2∑
i=1

(uTi e1)2

λdi − σs
,

where e1 = (1, 0, ..., 0)T , ui are the eigenvectors of AAT (or equally of (AAT )−1) with a
first component not equal to zero and di > 0 are the associated eigenvalues. The derivative
of f reads

f ′(λ) = −σs
m2∑
i=1

di
(uTi e1)2

(λdi − σs)2
.

Therefore, the function f admits m2 poles located at λ = σs
di

and is monotone between
these poles. From Proposition 4.6 the eigenvalues of A1 associated with an eigenvector
with a non zero first component are distinct. From Lemma 4.16, one deduces that this is
also the case for the matrix A1. Therefore the di are distinct and one finds there are m2

distinct roots λi of f which satisfy

0 = λ1 <
σs
d1

< ... < λm2 <
σs
dm2

. (4.27)

Since all these eigenvalues are distinct, there exists m2 linearly independent eigenvectors
zi with non zero first component

z1, z2, ..., zm2 .

In summary, the matrix (AAT )−1R1 admits m1 linearly independent eigenvectors w1, ...,wm1

associated with eigenvalues µi and m2 linearly independent eigenvectors z1, ..., zm2 associated
with distinct eigenvalues λi. It is important to notice that the eigenvectors wi have their first
component equal to zero while the eigenvectors zi have a non zero first component.

We use the following notation to denote all the eigenvectors of (AAT )−1R1

v1 = w1, ...,vm1 = wm1 ,vm1+1 = z1, ...,vm1+m2 = zm2 . (4.28)

We also denote αi the eigenvalues associated to these eigenvectors

α1 = µ1, ..., αp = µp, αp+1 = λ1, ...αp+m2 = λm2 .

Note that there are m1 + m2 eigenvectors vi but only p + m2 ≤ m1 + m2 eigenvalues µi since
multiple eigenvectors can be associated to the same eigenvalue. Finally, we define E(αi) the set
of eigenvectors in the list (4.28) associated to the eigenvalue αi

E(αi) =
{

vk in the list (4.28) / (AAT )−1R1vk = αivk

}
.

We want to show that the total number of eigenvalues αi, counting multiplicities, is m1 + m2.
That is

cardE(αi) = dim
(

SpanE(αi)
)
, 1 ≤ i ≤ p+m2. (4.29)

Let i ∈ N, 1 ≤ i ≤ p+m2 and consider the eigenvalue αi. Up to a renumbering of the vectors vj ,
we can denote v1, ...,vk, k = cardE(αi) ∈ N∗, the eigenvectors associated with the eigenvalue
αi. Assume

k∑
j=1

ajvj = 0, aj ∈ R. (4.30)

Proving (4.29) is equivalent to prove aj = 0 for all j = 1, ..., k. There are two possibilities
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1. All the eigenvectors v1, ...,vk have their first component equal to zero. Then, the vectors
v1, ...,vk are taken from the eigenvectors wi of the matrix (AAT )−1. Therefore, using
(4.30) and the symmetry of (AAT )−1, one concludes ai = 0 for all i = 1, ..., k.

2. All the eigenvectors v1, ...,vk have not their first component equal to zero. Then, there
is exactly one eigenvector with a non zero first component. Indeed, the eigenvectors with
a non zero first component are the vectors zi and from (4.27) they are associated with
distinct eigenvalues λi. Therefore, up to a renumbering of the vectors wi and zi one can
write

a1z1 +
k∑
j=2

ajwj = 0.

Since z1 is the only vectors with it first component not equal to zero one has a1 = 0. And
because the wi are the eigenvectors of the matrix (AAT )−1, one finally deduces a2 = ... =
ak = 0.

Therefore, the total number of eigenvalues αi, counting multiplicities, is me = m1 + m2. One
concludes that the eigenvectors associated form a basis of Rme and the proof is complete. �

Finally let M ∈ Rme×me be the matrix made of the eigenvectors of (AAT )−1R1 when σa = 0.
When studying the approximation properties of the basis functions, we will use the following
matrix J .

Definition 4.24. We denote J ∈ Rme−1×me−1 the matrix obtained when removing the row and
column of the matrix M associated to the zero eigenvalue.

In particular, Proposition 4.23 implies that the matrix J is invertible.

4-2 Special solutions

To apply the TDG method to a PN model written as in (4.17), one needs to construct the basis
functions i.e. to find solutions to the system. It has strong reminiscence to case solutions [Cas60]
to the transport equation [Gos13, BA69, BA70]. The Theorem 4.25 shows how to construct
exponential solutions when σa ≥ 0 which can be used as basis functions. It is interesting to
consider such exponential solutions for at least two reasons

(i) They fondamentally differ from the polynomial basis functions used with the standard DG
method. Therefore, the TDG method applies with these exponential functions may have
different (and new) properties compare to the DG method.

(ii) Due to the well-balanced property, the exponential solutions may lead to very efficient
schemes to capture boundary layers.

However one realizes that, even if it is possible to use these exponentials when σa = 0, some of
them will degenerate toward constant solutions when σa → 0. Therefore, one will "loose" (in a
sense) some basis functions when σa → 0. To fix this issue, the Theorems 4.29 and 4.34 show how
to obtain polynomial solutions from the degenerative exponentials. In practice, when applying
the TDG method, the degenerative exponentials will be replaced by the polynomial solutions in
the limit σa → 0. Additionally, some time dependent solutions are also constructed in Section
4-2.4.

In this section and the next one, some analysis will be based on the simplification of the Taylor
expansion for solutions to a given system of equations. Using simplified Taylor expansion has
several advantages
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• We use it to show the degeneracy of the exponential solutions toward polynomials when
σa → 0 (Theorem 4.34). This a good characteristic from a numerical point of view since
one can expect that the scheme recovers the same kind of properties when using these two
different types of solutions as basis functions.

• We use it to construct the polynomial solutions with simple recurrence formulas (Theorem
4.34). This is of course very important for practical applications of the TDG method.

• Additionally, we will also use a simplified Taylor expansion when studying the approxi-
mation properties of the basis functions in Section 4-3. This is not the only possibility
[CD98, IG15a, IGD14] but it has the advantage of giving a natural framework to work
with (the study of the matrix Skl in Section 4-3.2).

4-2.1 Exponential solutions

The main result of this subsection is the Theorem 4.25 which shows how to construct exponential
solutions to the PN model.

Theorem 4.25. Let σt > 0 and w1, ...,wme ∈ Rme be the eigenvectors of the matrix (AAT )−1R1

associated with the eigenvalues µ1, ..., µme. Let χi = −
√

µi
σt
ATwi ∈ Rmo , zi = (wT

i ,χ
T
i )T ∈ Rm

and dk = (cos θk, sin θk)
T ∈ R2. Then the following exponential functions

(vi)k(x) = Uθkzie
1
c

√
σtµid

T
k x, i = 1, ...,me, (4.31)

are solutions to the PN model (4.17). Moreover, the functions (4.31) are the only solutions to
the PN model under the form zeλ(dk,x), λ ∈ R, z ∈ Rm.

Proof. We start searching for solutions under the form

ṽ(x) = z̃eλdTk x ∈ Rm, (4.32)

with dk = (cos θk, sin θk)
T , λ ∈ R and z̃ ∈ Rm. Using Proposition 4.19 the function v(x, y) =

U−θk ṽ(x cos θk− y sin θk, x sin θk + y cos θk) is also a solution to the PN model. This solution can
be written under the form

v(x, y) = zeλx ∈ Rm, (4.33)

z ∈ Rm. Inserting (4.33) in the PN model (4.17) gives after removing the exponentials λA1z =
−Rz. Due to the matrix R on the right hand side, this eigenvalue problem is different from the
one already encountered in the previous section. We use the decomposition

z = (wT ,χT )T ∈ Rm, w ∈ Rme , χ ∈ Rmo .

Using the particular form of the matrix A1 and R in (4.18)-(4.19), one has{
λcAχ = −R1w,

λcATw = −R2χ.
(4.34)

Multiplying the second equation by λcA and then using the first equation on the right hand
side with R−1

2 = 1
σt
Imo gives λ2c2AATw = σtR1w. From Proposition 4.17 the matrix AAT is

invertible therefore one can write

(AAT )−1R1w =
λ2c2

σt
w. (4.35)
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If w ∈ Rme is an eigenvector of the matrix (AAT )−1R1 associated with the eigenvalue µ (µ ≥ 0

from Proposition 4.20), one can take λ = ±
√
σtµ
c . First we consider the case λ =

√
σtµ
c , the case

λ = −
√
σtµ
c will be discuss later. The second equation in (4.34) gives

χ = −
√
µ

σt
ATw ∈ Rmo .

One concludes that the one dimensional function v(x) = ze
1
c

√
σtµx is solution to the PN model.

Applying a rotation as in Proposition 4.19 gives the solutions (4.31). Moreover, considering
λ = −

√
σtµ
c is equivalent to take −dk in (4.31). We conclude that all the solutions under the

form (4.32) are given by (4.31). Finally, from Proposition 4.22 there exists me distinct pair
(µi,wi) solution of the eigen problem associated with the matrix (AAT )−1R1. This completes
the proof. �

Remark 4.26 (Secular equation). Exponential solutions require the eigenvalues and eigenvectors
of the matrix (AAT )−1R1. In practice, it can be difficult to solve directly the eigenvalue problem
(4.35) associated with the matrix (AAT )−1R1 for large values of N . Here we give an alternative
method based on the eigenvalues and eigenvectors of the matrix AAT . They can be simpler to
calculate since one can deduced them from the eigenstructure of the matrices A1 (Proposition
4.17). For example, the eigenvalues are roots of the Legendre polynomials (and their derivatives)
and one way to obtain the eigenvectors of A1 is to apply a rotation to the eigenvectors of the
matrix A3 [GH16, Lemma 2].

We proceed in two steps. At first, since R1 = Imeσt − σs
ε e1e

T
1 , some eigenvalues and eigenvec-

tors of (AAT )−1R1 can be deduced from the eigenvalues and eigenvectors of (AAT )−1. More
precisely, assume wi is an eigenvector of (AAT )−1 associated with the eigenvalue λi. Using
R1 = diag(σa, σt, ..., σt), one deduces that, if the first component of wi is null, then wi is an
eigenvector of (AAT )−1R1 associated with the eigenvalue σtλi.

Then, to get the other eigenvalues and eigenvectors, we use a so-called secular equation [And96,
JL91]. Assume w is an eigenvector of the matrix (AAT )−1R1 associated with the eigenvalue λ
and that the first component of w is not zero. From the equality (AAT )−1R1w = λw one finds

R1w = AATλw

Diagonalizing the matrix AAT = PDP T and using R1 := Imeσt − σs
ε e1e

T
1 , e1 = (1, 0, ..., 0)T ∈

Rme , one gets
λDw̃ =

(
Imeσt −

σs
ε

vvT
)
w̃,

where v = P Te1 and w̃ = P Tw. One has(
σtIme − λD

)
w̃ =

σs
ε

vvT w̃,

and one gets

w̃ =
(
Imeσt − λD

)−1σs
ε

vvT w̃. (4.36)

Multiplying by vT on both sides give

vT w̃ = vT
(
Imeσt − λD

)−1σs
ε

vvT w̃.

Because vT = eT1 P and w̃ = P Tw one has vT w̃ = eT1 w and vT w̃ 6= 0 since we assume that the
first component of w is non zero. One can therefore remove vT w̃ on both sides of the equality.
One gets the secular equation

1 =
σs
ε

vT (Imeσt − λD)−1v.
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Setting f(λ) = 1 + σs
ε vT (λD − Imeσt)−1v, the secular equation reads

f(λ) = 0.

Therefore one needs is equivalent to find the roots of f . Denoting D = diag(d1 > 0, ..., dme > 0),
the function f can be written

f(λ) = 1 +
σs
ε

∑
i

v2
i

λdi − σt
,

and

f ′(λ) = −σs
ε

∑
i

di
v2
i

(λdi − σt)2
.

Therefore, the function f is a monotone decreasing function which admits pole located at σt/di
if di is an eigenvalue of (AAT )−1 associated with an eigenvector with a non zero first component.
See Figure 4.2 for the example of the function f in the case of the P3 model.

Moreover, from (4.36) and denoting C = vT w̃ 6= 0 one has

w̃ = C
(
Imeσt − λD

)−1σs
ε

v.

Therefore, once one has the eigenvalue λ, one can deduce the eigenvector w associated.
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Figure 4.2 – Representation of the function f for the P3 model. On the left σa = σs = 1, on the
right σa = 0, σs = 1.

•
Example 4.27 (Secular equation for the P1 model). For the P1 model, one deduces from the
matrices given in Example 4.13 that AAT = 1

3 . This matrix admits one eigenvalue d1 = 1
3

associated with the eigenvector w1 = 1. Therefore the function f reads

f(λ) = 1 +
σs

ε(λd1 − σt)
.

This function admits one roots λ1. Using σt = εσa + σs
ε , one finds λ1 = 3εσa. One can check

that λ1 is indeed the eigenvalue of the matrix (AAT )−1R1 = 3εσa. •
4-2.2 Polynomial solutions (only when σa = 0) with Birkhoff and Abu-Shumays

method’s

In the previous section, we have constructed exponential solutions when σa ≥ 0. If all these solu-
tions can be used when σa > 0, some of them degenerate toward constant solutions when σa → 0.



ANALYSIS OF THE TREFFTZ DISCONTINUOUS GALERKIN METHOD FOR
THE PN MODEL 63

It is therefore required to construct new solutions which will be used in the basis functions to
replaced the degenerative exponential when σa = 0. In the following, we construct polynomial
solutions to the PN model in the degenerate case σa = 0 from solutions to the transport equation.
However, although this procedure is quiet straightforward, it does not mathematically justify the
replacement of degenerative exponentials by polynomials in the basis functions. This issue will
be addressed in Section 4-2.3.

In this section, we use the solutions to the transport equation given by Birkhoff and Abu-
Shumays [BA69]. Some notations are taken from Section 4-1.1. Since we are interested in the
two dimensional PN model, we search for solutions which do not depend on the variable z. In
the following we assume q(x, y) is a harmonic polynomial

∆q(x, y) = 0.

And for l ∈ N we define the following polynomial functions

f lq(x, y,Ω) :=

l∑
k=0

(−1

σs

)k(
Ω · ∇

)k
q(x, y).

Note that for all l ∈ N the function f lq is a polynomial function of degree deg(q) where we have
denoted deg(q) the degree of the polynomial q. From the definition of f lq one has fdeg(q)q =

f
deg(q)+l
q for all l ∈ N. The functions fdeg(q)q are solutions to the transport equation (4.1), see
[BA69].

Proposition 4.28 (Polynomial solutions to the transport equation [BA69]). Assume σa = 0.
Then the function fdeg(q)q (x, y,Ω) is solution to the transport equation.

To construct solutions to the PN model we consider the truncated functions fNq . Note that fNq
is only an approximation of fdeg(q)q if N < deg(q) and fNq = f

deg(q)
q if N ≥ deg(q).

Theorem 4.29 (Polynomial solutions to the PN model). Assume σa = 0. The function

fN (x, y) =< y(Ω)fNq (x, y,Ω) >∈ Rm
3D
,

is solution to the PN model. This function is a polynomial vector with respect to x, y.

The proofs of these two results are based on the following lemmas. For the Proposition 4.28, the
proof given in [BA69] is more general and works in any dimensions. We give here a more direct
(but less general) proof.

Lemma 4.30. One has(
Ω · ∇

)k
q(x, y) =

(sinφ

2

)k(
e−ikψ(∂x + i∂y)

k + eikψ(∂x − i∂y)k
)
q(x, y), if k ≥ 1. (4.37)

Proof. Indeed since ∂zq = 0 one has(
Ω · ∇

)
q(x, y) = sinφ

(
cosψ∂x + sinψ∂y

)
q(x, y),

=
sinφ

2

(
eiψ(∂x − i∂y) + e−iψ(∂x + i∂y)

)
q(x, y).
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Therefore

(
Ω · ∇

)k
q(x, y) =

(sinφ

2

)k k∑
p=0

Cpke
ipψ(∂x − i∂y)pe−i(k−p)ψ(∂x + i∂y)

k−pq(x, y),

=
(sinφ

2

)k k∑
p=0

Cpke
i(2p−k)ψ(∂x − i∂y)p(∂x + i∂y)

k−pq(x, y).

But since q(x, y) is harmonic one has

(∂x − i∂y)(∂x + i∂y)q(x, y) = 0.

Therefore, all the terms in the sum vanish except the first and the last. One finally finds the
equalities (4.37). �

Lemma 4.31. One has(
Ω · ∇

)
f lq(x, y,Ω) =σs

(
− f lq(x, y,Ω)+ < f lq(x, y,Ω) >

)
+
(−1

σs

)l(sinφ

2

)l+1(
e−i(l+1)ψ(∂x + i∂y)

l+1 + ei(l+1)ψ(∂x − i∂y)l+1
)
q(x, y).

Proof. From the definition of the function f lq(x, y,Ω) one has

(
Ω · ∇

)
f lq(x, y,Ω) =

l∑
k=0

(−1

σs

)k(
Ω · ∇

)k+1
q(x, y).

That is

(
Ω · ∇

)
f lq(x, y,Ω) = σsq(x, y)− σs

l∑
k=0

(−1

σs

)k(
Ω · ∇

)k
q(x, y) +

(−1

σs

)l(
Ω · ∇

)l+1
q(x, y).

One concludes with Lemma 4.30. �

We can now prove Proposition 4.28 and Theorem 4.29.

Proof of Proposition 4.28. Since q(x, y) has degree deg(q) one has(
e−i(deg(q)+1)ψ(∂x + i∂y)

deg(q)+1 + ei(deg(q)+1)ψ(∂x − i∂y)deg(q)+1
)
q(x, y) = 0.

Therefore using Lemma 4.31 one gets(
Ω · ∇

)
fdeg(q)q (x, y,Ω) = σs

(
− fdeg(q)q (x, y,Ω)+ < fdeg(q)q (x, y,Ω) >

)
,

which is the stationary version of the transport equation (4.1) when σa = 0. �

Proof of Theorem 4.29. From Lemma 4.30, the definition of fNq and the definition of the spherical
harmonics (A.3), one concludes that the function fNq (x, y,Ω) can be decomposed on the spherical
harmonics of degree less than N . Therefore one can write

fNq (x, y,Ω) = yT (Ω)fN (x, y). (4.38)
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From Lemma 4.31 one has(
Ω · ∇

)
fNq (x, y,Ω) =σs

(
− fNq (x, y,Ω)+ < fNq (x, y,Ω) >

)
+
(−1

σs

)N(sinφ

2

)N+1(
e−i(N+1)ψ(∂x + i∂y)

N+1 + ei(N+1)ψ(∂x − i∂y)N+1
)
q(x, y).

Multiplying by y(Ω), integrating on the sphere and using∫ 2π

0
eikψdψ = 0, if k 6= 0,

yields

< y(Ω)
(
Ω · ∇

)
fNq (x, y,Ω) >= σs

(
− < y(Ω)fNq (x, y,Ω) > + < y(Ω) >< fNq (x, y,Ω) >

)
.

Using the decomposition (4.38) one gets

< y(Ω)
(
Ω·∇

)
yT (Ω)fN (x, y) >= σs

(
− < y(Ω)yT (Ω)fN (x, y) > + < y(Ω) >< yT (Ω)fN (x, y) >

)
.

That is
3∑
i=1

< Ωiy(Ω)yT (Ω) > ∂xifN (x, y) = σs

(
− < y(Ω)yT (Ω) > + < y(Ω) >< yT (Ω) >

)
fN (x, y),

which is the stationary version of the PN model (4.4) when σa = 0. �

Remark 4.32. If N ≥ deg(q), the solution fdeg(q)q of the transport equation can be completely
reconstructed from the solution fN of the PN model. Therefore, the polynomial solutions fdeg(q)q

of the transport equation are, in a sense, preserved by the PN model when N ≥ deg(q). •
4-2.3 Link between exponential and polynomial solutions

In the previous section, we have constructed polynomial solutions to the PN model to replace the
degenerative exponentials when σa = 0. However, even if the procedure used is quiet straight-
forward, it does not mathematically justify the replacement of the degenerative exponentials
with polynomials in the basis functions. The goal of this section, which is independent from the
previous one, is to
• Show the degeneracy of exponentials constructed in section 4-2.1 toward polynomial solu-

tions when σa → 0.

• Show that those polynomial solutions can be constructed using recurrence formulas. One
advantage of this procedure is that the formulas are explicit while the solutions given
in Theorem 4.29 of the previous section necessitate to integrate spherical harmonics and
therefore require adapted formulas.

For the P1 model, the solutions given in this section coincide with the polynomial solutions given
in the previous section. We conjecture that this is also the case for the PN>1 model, see Remark
4.50.

The main result is the Theorem 4.34. As a first step we give some definitions. Let n ∈ N,
x0 = (x0, y0)T ∈ Ω and consider

γpk(x) :=


Cpk
k!

(x− x0)p(y − y0)k−p, if 0 ≤ p ≤ k,

0, otherwise.
(4.39)
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Given some matrix M ∈ Rm1×m2 , we define the matrix M|jk
∈ Rm1×m2 , 1 ≤ j ≤ k ≤ m1 which

is the restriction of M beetween the rows j and k

M =


m1,1 · · · m1,m2

m2,1 · · · m2,m2

...
...

mm1−1,1 · · · mm1−1,m2

mm1,1 · · · mm1,m2

 , M|jk
=


0

mj,1 · · · mj,m2

...
...

mk,1 · · · mk,m2

0

 . (4.40)

If k < j we set by convention M|jk
= 0. Now we recursively define some coefficients.

Definition 4.33. Consider an integer n ≥ 0. The matrices F pk (x), Gpk(x),Γpk(x) ∈ Rm×m are
defined in the range 0 ≤ p ≤ k ≤ n+ 1 with two recursions. The first recursion reads:
• by convention set Γ−1

k = Γk+1
k = 0, Γp−1 = 0, ∀p, k

• for k = 0 to k = n+ 1, do
• for p = 0 to p = k, do

Γpk(x) := γpk(x)Im − Γp−1
k−1R

−1
|2m
A1 − Γpk−1R

−1
|2m
A2 (4.41)

The second recursion reads:
• by convention set Gpn+1(x) = Gpn+2(x) = 0, G−1

k (x) = G−2
k (x) = 0, ∀p, k

• for k = n to k = 0, do
• for p = 0 to p = k, do

F pk (x) := Γpk(x) + λ2Gpk+2(x), (4.42)

Gpk(x) := F pk (x)−Gp−2
k (x), (4.43)

Theorem 4.34 (Polynomial solutions to the PN model.). Consider the exponential solutions
given in Theorem 4.25 associated with the eigenvalue µi which satisfies µi →

σa→0
0. There exits

linear combinations of these solutions which degenerate toward polynomial solutions when σa → 0.
These polynomial solutions are given by the first column of the matrices Gkk(x) and Gk−1

k (x).

The matrices Gkk(x) and Gk−1
k (x) can be recursively calculated and we give here the example of

the P1 model.

Example 4.35 (Application to the P1 model). Consider the two dimensional P1 model. To
recover the standard notations we switch here the axis x and y compare to Example 4.13. One
has

A1 =
c√
3

0 1 0
1 0 0
0 0 0

 , A2 =
c√
3

0 0 1
0 0 0
1 0 0

 , R =

εσa 0 0
0 σt 0
0 0 σt

 , R−1
|2m

=

0 0 0
0 1

σt
0

0 0 1
σt

 ,

with σt := εσa + σs
ε . The first matrices Gkk and Gk−1

k reads

G0
0(x) =

1 0 0
0 1 0
0 0 1

 , G0
1(x) =

 y 0 0
0 y 0

− c√
3σt

0 y

 , G1
1(x) =

 x 0 0
− c√

3σt
x 0

0 0 x

 ,

G1
2(x) =

 xy 0 0
− c√

3σt
y xy 0

− c√
3σt
x 0 xy

 , G2
2(x) =


1
2(x2 − y2) 0 0
− c√

3σt
x 1

2(x2 − y2) 0
c√
3σt
y 0 1

2(x2 − y2)

 ,

and one can check that their first column is indeed solution to the P1 model when σa = 0. •
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The proof of Theorem 4.34 is decomposed in two steps. At first, we study in Section 4-2.3.1 the
degenerative exponentials of a simplified second order equation and introduce some useful tools.
Using this framework, we then prove the Theorem 4.34 in Section 4-2.3.2.

4-2.3.1 A simplified second order equation

In this section, we treat the simpler case of a second order equation. The results obtained in this
section will then be generalized to prove Theorem 4.34. More precisely, Propositions 4.37, 4.38,
4.40 and the definition (4.54) of the matrix Sω will be needed in Section 4-2.3.2.

The goal here is to find linear combinations of functions of the form eω(di,x) which degener-
ate toward polynomial functions when ω → 0. The degeneracy of exponential solutions to the
Helmholtz equation has already been studied in [GHP09]. However, since our goal is to gener-
alize the proof for the two dimensional PN system, we consider here a different approach. The
procedure is based on a simplification of the Taylor expansion for the solutions to the second
order equation.

Property of the solutions to a second order equation. Let u ∈ H1(Ω). We consider the
following auxiliary second order equation

∆u(x) = ωu(x), (4.44)

with ω ∈ R which may take positive or negative values. At first, our goal is to write a simplified
Taylor expansion for regular solutions to this equation. Every function u(x) ∈ Cn+1(Ω) can be
written under the form of a usual Taylor expansion which comes from [Fle77, Page 94]

u(x) =
n∑
k=0

k∑
p=0

γpk(x)∂px∂
k−p
y u(x0) +

n+1∑
p=0

γpn+1(x)∂px∂
n+1−p
y u(xs), (4.45)

where γpk(x) is given by (4.39), xs = (xs, ys)
T , xs = (1− s)x0 + sx, ys = (1− s)y0 + sy, s ∈ [0, 1].

In our analysis, we need intermediate quantities named αpk and βpk .

Definition 4.36. Consider an integer n ≥ 0. The functions αpk(x) and βpk(x) are defined in the
range 0 ≤ p ≤ k ≤ n by a decreasing recursion from k = n to k = 0. The recursion reads:

• by convention set βpn+1(x) = βpn+2(x) = 0, β−1
k (x) = β−2

k (x) = 0, ∀p, k.
• for k = n to k = 0, do

• for p = 0 to p = k, do
αpk(x) := γpk(x) + ωβpk+2(x), (4.46)

βpk(x) := αpk(x)− βp−2
k (x), (4.47)

Since βpn+1(x) = βpn+2(x) = 0, thus αpn−1(x) = γpn−1(x), αpn(x) = γpn(x). Also because β−2
k =

β−1
k = 0 the equality (4.47) implies

β0
k(x) = α0

k(x), β1
k(x) = α1

k(x), 0 ≤ k ≤ n. (4.48)

In the case ω 6= 0, the functions αpk(x) and βpk(x) are polynomials of degree n if both n and k
are even or odd and n − 1 otherwise. If ω = 0, the functions αpk(x) and βpk(x) are polynomials
of degree k for 0 ≤ k ≤ n. Note that in order to use simple notation, we do not explicitly write
the dependence of these functions in n and x0.
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Proposition 4.37 (Simplified Taylor expansion). Assume u(x) ∈ Cn+1(Ω) is solution to (4.44).
Then the double sum Taylor expansion in (4.45) can be recast as a simple sum with only zero or
first order derivatives with respect to y

u(x) = β0
0(x)u(x0) +

n∑
k=1

[
βkk (x)∂kxu(x0) + βk−1

k (x)∂k−1
x ∂yu(x0)

]
+
n+1∑
p=0

γpn+1(x)∂px∂
n+1−p
y u(xs), ∀x ∈ Ω,

(4.49)

where xs = (xs, ys)
T , xs = (1− s)x0 + sx and ys = (1− s)y0 + sy, s ∈ [0, 1].

By symmetry, a similar result holds with high order derivative with respect to y and only zero
and first order derivatives with respect to x. Even if the rigorous proof of Proposition 4.37 is a
little technical, the idea behind is actually very simple. Indeed, since u is solution to (4.44) one
can use the equality ∂2

yu = (ω − ∂2
x)u to recursively eliminate the derivatives of y. A graphical

illustration of the procedure is provided in Figure 4.3. The proof of Proposition 4.37 is postponed
in Appendix B.

We show that in the case ω = 0 the coefficients βkk (x) and βk−1
k (x) are harmonic polynomials.

We define the harmonic polynomials as follow

q1(x) = 1, q2k(x) =
1

k!
<((x− x0) + i(y − y0))k, q2l+1(x) =

1

k!
=((x− x0) + i(y − y0))k, for l ∈ N∗.

(4.50)
Consider the two following two vectorial functions β(x),q(x) ∈ R2n+1 where β(x) is the vectorial
function made of the coefficients βk−1

k (x) and βkk and q(x) is the vectorial function made of the
harmonic polynomials qi(x)

q(x) =
(
q1(x), ..., q2n+1(x)

)T
, β(x) =

(
β0

0(x), β0
1(x), β1

1(x), ..., βn−1
n (x), βnn(x)

)T
. (4.51)

Proposition 4.38 (Limit of the coefficients βkk (x) and βk−1
k (x)). Assume ω = 0 and 0 ≤ k ≤ n.

The coefficients βkk and βk−1
k are harmonic polynomials when ω = 0. More precisely, one has

β(x) →
ω→0

q(x). (4.52)

Proof. The proof is postponed in Appendix B. �

Limit for linear combinations of exponential functions. We consider vi solutions to the
second order equation (4.44) and assume Ω ∈ R2 is a compact set. More precisely, we consider
the following exponential functions centered in x0 ∈ R2

vi(x) = e
√
ω(di,x−x0), i = 1, ..., 2n+ 1. (4.53)

Since we are interested in the regime ω → 0, we will assume ω ≤ 1. We define Sω :=
Sv1,v2,...,v2n+1 ∈ R2n+1×2n+1 such that

Sω(x0) := Sv1,v2,...,v2n+1(x0) :=



v1(x0) v2(x0) ... v2n+1(x0)
∂xv1(x0) ∂xv2(x0) ... ∂xv2n+1(x0)
∂yv1(x0) ∂yv2(x0) ... ∂yv2n+1(x0)
∂2
xv1(x0) ∂2

xv2(x0) ... ∂2
xv2n+1(x0)

∂x∂yv1(x0) ∂x∂yv2(x0) ... ∂x∂yv2n+1(x0)
...

... ...
...

∂nxv1(x0) ∂nxv2(x0) ... ∂nxv2n+1(x0)
∂n−1
x ∂yv1(x0) ∂n−1

x ∂yv2(x0) ... ∂n−1
x ∂yv2n+1(x0)


.

(4.54)
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Figure 4.3 – Illustration of the recursive procedure to get the simplified Taylor expansion (4.49).

Proposition 4.39. Let v(x) = (v1(x), ..., v2n+1(x))T ∈ R2n+1 with vi(x) ∈ C2n+1(Ω) solution
to (4.44). The vectorial function v(x) satisfies the following Taylor expansion

v(x) = STω (x0)β(x) + ξ(x),

with ξ(x) = (ξ1(x), ..., ξ2n+1(x))T , ξi(x) =
∑n+1

p=0 ∂
p
x∂

n+1−p
y vi(xs)γ

p
n+1(x).

Proof. The proof follows from Proposition 4.37 and the definition of the matrix Sω(x0). �

With the exponentials (4.53) the matrix Sω(x0) reads

Sω := Sω(x0) =



1 1 ... 1√
ω cos(θ1)

√
ω cos(θ2) ...

√
ω cos(θ2n+1)√

ω sin(θ1)
√
ω sin(θ2) ...

√
ω sin(θ2n+1)

...
... ...

...√
ω
n

cosn(θ1)
√
ω
n

cosn(θ2) ...
√
ω
n

cosn(θ2n+1)√
ω
n

sin(θ1) cosn−1(θ1)
√
ω
n

sin(θ2) cosn−1(θ2) ...
√
ω
n

sin(θ2n+1) cosn−1(θ2n+1)


.
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For simplicity, we remove the dependence in x0 of the matrix Sω.

Proposition 4.40. The matrix S := Sω=1 is invertible.

Proof. This is a particular case of Proposition 4.58 with N = 1. �

We now define sk,j = (Sω)k,j , ak,j = (S)−1
k,j and notice

(SωS
−1)l,j =

2n+1∑
k=1

sl,kak,j =
√
ω
b l
2
c
δlj =

{√
ω
b l
2
c if l = j

0 else
for 1 ≤ l, j ≤ 2n+ 1. (4.55)

Therefore setting
Dω := diag(ωb

1
2
c, ωb

2
2
c, ..., ωb

2n+1
2
c), (4.56)

one can write the matrix S−Tω as
S−Tω = D−1

ω S−T . (4.57)

Now we have introduced the main objects needed to study degenerative exponentials to the PN
model. To give the general idea we study the degenerative exponentials to the second order
equation as a first step.

Definition 4.41. We define c(x) ∈ R2n+1 such that

c(x) = S−Tω v(x). (4.58)

with v(x) = (v1(x), ..., v2n+1(x)) ∈ R2n+1 and vi(x) given in (4.53).

The vector c(x) degenerates toward harmonic polynomials.

Proposition 4.42 (Second order equation: degeneration of exponential solutions toward poly-
nomials). Consider the functions (4.58). Each component of the vector c(x) is solution to (4.44).
Moreover one has

c(x) →
ω→0

q(x).

Proof. The components of the vector c are linear combination of the functions vi which are
solutions to (4.44) and are therefore also solution to (4.44). Since the functions vi are solutions
to the second order equation (4.44), one can use Proposition 4.39 on the vector v and writes

v(x) = STωβ(x) + ξ(x).

with ξ(x) = (ξ1(x), ..., ξ2n+1(x)) and β2n+1(x) = (β0
0(x), β0

1(x), β1
1(x), ..., βn−1

n (x), βnn(x)). Since
Ω is bounded and from the definition of the functions vi one has

ξi(x) =
n+1∑
p=0

∂px∂
n+1−p
y vi(xs)γ

p
n+1(x) =

√
ω
n+1

ξ̃i(x),

where ξ̃i(x) is bounded uniformly in x and ω when ω → 0. Using ξ̃(x) = (ξ̃1(x), ..., ξ̃2n+1(x))T

one gets
v(x) = STωβ(x) +

√
ω
n+1
ξ̃(x).

Therefore, the vector c can be written under the form

c(x) = S−Tω

(
STωβ(x) +

√
ω
n+1
ξ̃(x)

)
,

= β(x) +
√
ω
n+1

D−1
ω S−T ξ̃(x),
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where we have used the equality (4.57) in the second term on the right hand side of the last
equality. From the definition (4.56) of Dω one gets

√
ω
n+1

D−1
ω →

ω→0
0. Therefore one finally finds

c(x) →
ω→0

β(x).

Using Proposition 4.38 completes the proof. �

4-2.3.2 Proof of Theorem 4.34

Now we generalize the results given in the previous section to a class of system which includes
the PN model (

A1∂x +A2∂y

)
u(x) = −Ru(x), (4.59)

where u ∈ Rm, A1, A2, R ∈ Rm and the matrix R := Rω depends on some coefficient ω. The
only assumption we make on the system (4.59) is the following.

Assumption 4.43. There exists uλ(x) ∈ Rm solution to the system (4.59) which satisfies

uλ(x) = zeλ(d,x), λ →
ω→0

0, (4.60)

with
d := d(θ) :=

(
cos θ, sin θ

)T
∈ R2, z := z(θ, ω) 6= 0 ∈ Rm, λ := λ(ω) ∈ R.

Moreover, there exists a matrix denoted R−1
|2m

such that

R−1
|2m
Rz = z|2m , ∀z ∈ Rm, ∀ω ∈ R+, (4.61)

where we used the notation (4.40) for the vector z|2m .

From Proposition 4.21 and the definition of the matrix R := diag(εσa, σt, ..., σt), the PN model
satisfies the Assumption 4.43 when σt > 0 and with ω = σa. We can now prove the degeneracy
of the exponentials solutions (4.60) toward polynomials as we did for the second order equation
in the previous section. We start with a technical lemma.

Lemma 4.44. Rescaling the vector z = (z1, ..., zm)T in (4.60) if needed, one can take z1 = 1
with all the other components satisfying zj →

ω→0
0, 2 ≤ j ≤ m.

Proof. From the definition of the function (4.60) one gets uλ(x) →
ω→0

z. Therefore from (4.59),

the definition of the matrix R−1
|2m

(4.61) and because uλ(x) is constant in the limit ω → 0 one has

z|2m = R−1
|2m

(
A1∂x +A2∂y

)
uλ(x) →

ω→0
0. (4.62)

But since z 6= 0, and considering the correct scaling of the function, there exists at least one
component zj 6= 0 such that zj does not depend on ω and all other components zi, i 6= j are
bounded when ω → 0. One deduces from (4.62) that it can’t be any components between 2 and
m therefore j = 1 and one can take z1 = 1 considering the correct scaling. �

In the following we take z1 = 1 and use the matrices Γpk and Gpk from the Definition 4.33. We
make a first simplification on the Taylor expansion of solutions to (4.59).
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Proposition 4.45 (A first simplification of the Taylor expansion). Let u(x) ∈ Cn+2(Ω) be a
solution to (4.59). The beginning of the Taylor expansion on the vectorial function u(x) can be
recast as a Taylor expansion on the vectorial function u|11(x0)

u(x) =

n∑
k=0

k∑
p=0

Γpk(x)∂px∂
k−p
y u|11(x0) + ξ(x),

ξ(x) =

n+1∑
p=0

Γpn+1(x)∂px∂
n+1−p
y u(x0) +

n+2∑
p=0

γpn+2(x)Im∂
p
x∂

n+2−p
y u(xs),

(4.63)

where xs = (xs, ys)
T , xs = (1− s)x0 + sx and ys = (1− s)y0 + sy, s ∈ [0, 1].

The proof which is purely technical is postponed in Appendix B.

Now we make a second simplification and remove some derivatives in the Taylor expansion. This
is the same idea we used for the second order equation in Proposition 4.37.

Proposition 4.46 (A second simplification of the Taylor expansion). Assume uλ(x) is solution
to (4.59) and can be written under the form (4.60). Then the double sum Taylor expansion in
(4.63) can be recast as a simple sum with only zero or first order derivatives with respect to y

uλ(x) = G0
0(x)uλ|11(x0) +

n∑
k=1

[
Gkk(x)∂kxuλ|11(x0) +Gk−1

k (x)∂k−1
x ∂yuλ|11(x0)

]
+ ξλ(x),

where ξλ(x) is as in Proposition 4.45 replacing u(x) with uλ(x).

Proof. Since the solution is under the form (4.60), its first component follows the second order
equation (4.44) with ω = λ2. Therefore, each component of the vector uλ|11(x) follows also the
equation (4.44) with ω = λ2. Using the Taylor expansion (4.63) one can proceed as in Proposition
4.37 replacing the coefficients γpk(x) and βpk(x) with the matrices Γpk(x) and Gpk(x) respectively.
This completes the proof. �

We consider now 2n+ 1 functions under the form (4.60) centered in x0

vi(x) = zie
λdTi (x−x0), i = 1, ..., 2n+ 1,

with di 6= dj if i 6= j and λ →
ω→0

0.

We define the following functions.

Definition 4.47. Let (Gpk).,1(x) ∈ Rm be the first column of the matrix Gpk(x). We denote
B(x), V (x) the matrices

B(x) :=
(

(G0
0).,1(x), (G0

1).,1(x), (G1
1).,1(x), ..., (Gn−1

n ).,1(x), (Gnn).,1(x)
)T
∈ R2n+1×m,

V (x) :=
(
v1(x), ...,v2n+1(x)

)T
∈ R2n+1×m.

Finally, we define C(x) the matrix

C(x) = S−T
λ2
V (x) ∈ R2n+1×m, (4.64)

where Sλ2 = Sω is defined in (4.54).
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One can write a simplify Taylor expansion of the matrix V (x).

Proposition 4.48. The matrix V (x) admits the following Taylor expansion

V (x) = STλ2B(x) + Ξ(x),

with Ξ(x) ∈ R2n+1×m, Ξ(x) := (ξ1(x), ...., ξ2n+1(x))T .

Proof. This is a consequence of Proposition 4.46. Indeed, each vector vi can be written under
the form

vi(x) = G0
0(x)vi|11(x0) +

n∑
k=1

[
Gkk(x)∂kxvi|11(x0) +Gk−1

k (x)∂k−1
x ∂yvi|11(x0)

]
+ ξi(x).

Using Gpk(x)vi|11(x) = v1
i (x)(Gpk).,1(x) (where v1

i (x) is the first component of the vector vi), the
definition of the matrix Sω (4.54) and Ξ(x) = (ξ1(x), ...., ξ2n+1(x))T completes the proof. �

And we can now give the main result of this section.

Proof of Theorem 4.34. From Proposition 4.48 one has

V (x) = STλ2B(x) + Ξ(x),

Since Ω is bounded, from the definition of the functions vi and because each component of the
vectors ξi is at least a derivative of order n+ 1 of vi, one has ξi(x) = λn+1ξ̃i(x) where ξ̃i(x) is
bounded uniformly in x and λ when λ→ 0. The equality now reads

V (x) = STλ2B(x) + λn+1Ξ̃(x).

Therefore the matrix C(x) can be written under the form

C(x) = S−T
λ2

(
STλ2B(x) + λn+1Ξ̃(x)

)
,

= B(x) + λn+1D−1
λ2
S−T Ξ̃(x),

where we have used the equality (4.57) in the second term on the right hand side of the last
equality. From the definition of Dλ2 (4.56) one gets λn+1D−1

λ2
→
ω→0

0. Therefore one finally finds

C(x) →
ω→0

B(x). (4.65)

Finally, the rows of the matrix C(x) are linear combinations of the rows of the matrix V which
are solutions to (4.59). Therefore, each row of C is also solution to (4.59). Therefore, from
(4.65), each row of the matrix B(x) is a limit of a solution and one deduces that the rows of
B(x) are also solutions to (4.59) when ω = 0 and the proof is complete. �

The rows of the matrix B(x) are actually the first column of the matrices Gkk(x) and Gk−1
k (x).

Therefore, to get polynomial solutions to the system (4.59) in the case ω = 0, one just has to
study the matrices Gkk(x) and Gk−1

k (x). One deduces the following corollary.

Corollary 4.49 (Polynomial solutions to the PN model in the case σa = 0). The first column
of Gkk(x) and Gk−1

k (x) are polynomial solutions to the PN model when σa = 0. Moreover their
first component are the harmonics polynomials of degree k (4.50) while all their other components
have degree strictly inferior to k.
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Proof. Since the PN model satisfies Assumption 4.43 (with ω = σa) one deduces that the first
column of Gkk(x) and Gk−1

k (x) are polynomial solutions to the PN model when σa = 0.

We are interested in the case σa = 0 and therefore we take λ = 0 in the formulas (4.41)-(4.42)-
(4.43). Since the first row of the matrix R−1

|2m
is zero, the first component of the first column of

Gkk(x) andGk−1
k (x) is construct in the same way as the coefficients βkk (x) and βk−1

k (x) respectively
in (4.46)-(4.47) (with ω = 0). From Proposition 4.38, one deduces that the first component of
the first column of Gkk(x) and Gk−1

k (x) is the harmonic polynomial given by (4.50). For the
other components of the first column of Gkk(x) and Gk−1

k (x), the contribution of polynomials are
only made through the matrices Γp−1

k−1(x) and Γpk−1(x) which are at most of degree k − 1. This
completes the proof. �

Remark 4.50. From Corollary 4.49, the first component of the polynomial solutions to the PN
model derived in this section is a harmonic polynomial. This was also the case for the polynomial
solutions obtained with Birkhoff and Abu-Shumays method’s in Section 4-2.2. For the P1 model,
it is enough to conclude that these solutions are the same. Indeed from the structure of the P1

model 

1√
3

(
∂xu2(x) + ∂yu3(x)

)
= −σau1(x),

1√
3
∂xu1(x) = −σtu2(x),

1√
3
∂yu1(x) = −σtu3(x),

one deduces that if u1 = 0 then u2 = u3 = 0.

We conjecture that the polynomial solutions obtained in this section and the previous one are
also the same for the PN>1 model. •

4-2.4 Time dependent solutions

In this section, we give some possible ways to get time dependent solutions to the PN model.
These solutions will be used as basis functions for the TDG method in Chapter 5. As we will
see, although such basis functions are very effective to reduce the diffusion, they might also
deteriorate the condition number of the mass matrix.

• A first possibility is to consider solutions to the PN model (4.17) which depend only on
the time variable. One gets

ε∂tu(t) = −Ru(t).

Since R is a diagonal matrix, R = diag(εσa, σt, ..., σt), one immediately gets the following
solutions

v1(t) = e1e
−σat, v2(t) = e2e

−σt
ε
t, ... , vm(t) = eme

−σt
ε
t, (4.66)

where the functions ei represent the canonical basis of Rm. One can use the solutions vi
as basis functions. Note however that

v1(t) →
σa→0

e1.

The function e1 is a stationary solution and may be already in the approximation space
if one uses time dependent and stationary basis functions. Therefore, one will "loose" a
basis function when σa → 0. This can be seen as a defect for this special choice of basis
functions.
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• A second possibility is to consider one dimensional solution under the form

v(t, x) = q(t, x)eλx,

where q(t, x) ∈ Rm is polynomial vector in x ant t. A concrete example is given in Section
3-1.1 of Chapter 3 for the case of the P1 model. Then one can use the rotational invariance
of the PN model and gets the following solutions

v(t,x) = Uθq(t, x cos θ + y sin θ)eλ(x cos θ+y sin θ). (4.67)

Another possibility is to search directly for two dimensional solutions under the form

v(t,x) = p(t,x)eλ(x cos θ+y sin θ), (4.68)

where p(t,x) ∈ Rm is polynomial vector in x, y ant t. Note that the functions obtained
with (4.68) may differ from the functions (4.67). A complete example is given in Chapter
5 for the P1 model.
• A third possibility is to consider time dependent solutions under the form

v(t,x) = g(x)eαt, (4.69)

with α ∈ R. One can inject this solution in the PN model (4.17). One gets after removing
the exponentials (

A1∂x +A2∂y + (R+ εαIm)
)
g(x) = 0,

where Im is the identity matrix of Rm×m. The function g(x) is very similar to the stationary
solutions already calculated in Sections 4-2.1 and 4-2.3. The matrix R is just replaced by
the matrix R̃ := R + εαIm. Note that the solutions (4.66) are included in the solutions
(4.69). For simplicity, we will make the distinction and therefore assume g(x) is a non
constant vectorial function.
For example, if one takes α such that σa + εα > 0, then g(x) is one of the exponential
solutions (4.31). In particular, if α > 0, the functions (4.69) naturally degenerate toward
non trivial time dependent solutions when σa → 0. This is one advantage of the functions
(4.69) compare to the stationary solutions or the other time dependent solutions.

4-3 Convergence of the scheme

In this section, we study the h-convergence of the TDG method applied to the stationary PN
model. To do so, we start from Chapter 2 where the DG formulation of the method has been used
to derive some estimations in various norms. To prove the convergence of the scheme, it remains
to study the approximation properties of the basis functions. Usually, when considering the
standard DG method, the approximation properties of simple monomials (such as 1, x, y...) can
be easily studied since they appear in the Taylor expansion of every regular functions. This is not
the case anymore when considering the TDG method with other kind of basis functions. Can one
approximate stationary solutions to the PN model at any order using the exponential functions
of Theorem 4.25 and the special polynomial functions of Theorem 4.34 as basis functions? The
answer is yes as we will see in the rest of this section. More precisely, we proceed in four steps

1. First, we show that is is enough to study the approximation properties of the me first
components of the basis functions and that these components are solutions to a second
order system (Propositions 4.51 and 4.52).

2. After that, we simplify the Taylor expansion of solutions to such second order system
(Proposition 4.54).
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3. Then, we use this simplified Taylor expansion to show that, studying the approximation
properties of stationary solutions is in fact equivalent to study the rank of a particular
matrix (Proposition 4.55).

4. Finally, we study the rank of this matrix when considering the exponential and polynomial
solutions (Propositions 4.58 for the case σa > 0 and 4.69 for the case σa = 0).

Using this procedure and the estimates of Chapter 2, the Theorem 4.75 finally gives a convergence
result in L2 norm. Note however that this estimate may not be optimal when N > 1 (in the sense
that the basis functions which give the convergence are not known) as suggested by Remark 4.76.
Since it is already complicated enough to study the standard case, we do not consider asymptotic
regimes in this section and take

ε = 1, c = 1.

Moreover for Θ a generic open set we study the convergence of the scheme using the following
norms

‖u‖Wn,∞(Θ) =
n∑
k=0

k∑
p=0

sup
x∈Θ
|∂px∂k−py u(x)|, and ‖u‖Wn,∞(Θ) =

m∑
j=1

‖uj‖Wn,∞(Θ). (4.70)

By convention we set ‖ · ‖L∞(Θ) = ‖ · ‖W 0,∞(Θ). Finally we consider

σt > 0,

since when σt = σa + σs = 0 the relaxation term vanishes (R = 0) which is of less interest for
our applications.

4-3.1 A simplified Taylor expansion

In the following Ω is a bounded domain of R2. First, we explain why it is enough to study the
approximation properties of the me first components of the basis functions. It comes from the
block structure of the PN model.

Proposition 4.51 (ue controls u). Assume σt > 0 and u(x) = (uTe (x),uTo (x))T ∈ Rm, ue(x) ∈
Rme, uo(x) ∈ Rmo is a stationary solution to the PN model (4.17). One has

‖u‖L∞(Ω) ≤ C
(
‖ue‖L∞(Ω) + ‖∂xue‖L∞(Ω) + ‖∂yue‖L∞(Ω)

)
. (4.71)

Proof. Since u(x) is a stationary solution to (4.17) one has(
A1∂x +A2∂y

)
u(x) = −Ru(x).

Using the block structure (4.18)-(4.19) of the system (4.17) one gets
(
A∂x +B∂y

)
uo(x) = −R1ue(x),(

AT∂x +BT∂y

)
ue(x) = −R2uo(x).

(4.72)

Since σt > 0 the matrix R2 is invertible and therefore

‖uo‖L∞(Ω) ≤ C
(
‖∂xue‖L∞(Ω) + ‖∂yue‖L∞(Ω)

)
.

Because u = (ue,uo)
T , one deduces the inequality (4.71). �
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The function ue(x) is solution to a second order system.

Proposition 4.52 (Second order system). Under the asserts of Proposition 4.51 and if u is
regular enough so that ∂xyu(x) = ∂yxu(x), then ue(x) is solution to the following second order
system (

AAT∂xx + (ABT +BAT )∂xy +BBT∂yy

)
ue(x) = σtR1ue(x). (4.73)

Moreover

∂yyue(x) = (BBT )−1
(
−AAT∂xx − (ABT +BAT )∂xy + σtR1

)
ue(x). (4.74)

Proof. Since σt > 0, the matrix R2 is invertible and R−1
2 = 1

σt
Imo . Therefore, the system (4.73)

is obtained from (4.72) after eliminating uo. The equality (4.74) is given by the invertibility of
the matrix BBT from Proposition 4.17. The proof is complete. �

Now we study some properties of solution to the second order system (4.73). We recall that every
vectorial function w(x) ∈ Cn+1(Ω) can be written under the form of a usual Taylor expansion
which is a generalization of the scalar case [Fle77, Page 94]

w(x) =

n∑
k=0

k∑
p=0

∂px∂
k−p
y w(x0)γpk(x) +

n+1∑
p=0

∂px∂
n+1−p
y w(xs)γ

p
n+1(x), (4.75)

where γpk(x) ∈ R is given by (4.39) and xs = (xs, ys)
T , xs = (1−s)x0 +sx and ys = (1−s)y0 +sy,

s ∈ [0, 1]. There is of course a double sum in the Taylor expansion but, for Trefftz methods, it
is possible to reduce the complexity using the fact that ue(x) is a solution to the system (4.73).
This is classical [CD98, HMP16a, KMPS16] see also [IGD14, IG15a, IG15b] with a different
approach to the coefficients reduction procedure. In our analysis, we use a simplification of the
Taylor expansion and need the following intermediate quantities.

Definition 4.53. Consider an integer n ≥ 0. The matrices

Kp
k ∈ Rme×me , Lpk ∈ Rme×me ,

are defined in the range 0 ≤ p ≤ k ≤ n by a decreasing recursion from k = n to k = 0. The
recursion writes:
• by convention set Lpn+1(x) = Lpn+2(x) = 0, L−1

k (x) = L−2
k (x) = 0, ∀p, k

• for k = n to k = 0, do
• for p = 0 to p = k, do

Kp
k(x) := γpk(x) + σtL

p
k+2(x)(BBT )−1R1, (4.76)

• for p = 0 to p = k − 1, do

Lpk(x) := Kp
k(x)− Lp−1

k (x)(BBT )−1(ABT +BAT )− Lp−2
k (x)(BBT )−1AAT , (4.77)

and
Lkk(x) := Kk

k (x)− Lk−2
k (x)(BBT )−1AAT , (4.78)

Since Lpn+1(x) = Lpn+2(x) = 0, thus Kp
n−1(x) = γpn−1(x), Kp

n(x) = γpn(x). Also because L−2
k =

L−1
k = 0, the equalities (4.77) and (4.78) imply

L0
k = K0

k , L1
1 = K1

1 , 0 ≤ k ≤ n. (4.79)

To study the approximation properties of the basis functions, we use a simplified Taylor expansion
for the solutions ue(x) to the second order system (4.73).
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Proposition 4.54 (A simplification of the Taylor expansion). Assume ue(x) ∈ Cn+1(Ω) is
solution to (4.73). Then, the double sum Taylor expansion in (4.75) can be recast as a simple
sum with only zero or first order derivatives with respect to y

ue(x) = L0
0(x)ue(x0) +

n∑
k=1

[
Lkk(x)∂kxue(x0) + Lk−1

k (x)∂k−1
x ∂yue(x0)

]
+

n+1∑
p=0

γpn+1(x)∂px∂
n+1−p
y ue(xs), ∀x ∈ Ω,

(4.80)

where xs = (xs, ys)
T , xs = (1− s)x0 + sx and ys = (1− s)y0 + sy, s ∈ [0, 1].

The proof of Proposition 4.54 is actually very similar to the proof of Proposition 4.37 which
was given in the context of a second order equation. The idea is the same: use the equality
(4.74) to recursively eliminate the derivatives of y. We recommend the reader to understand
the Proposition 4.37 first since Proposition 4.54 presents no additional difficulties. The proof is
postponed in Appendix B.

4-3.2 Approximation properties of the basis functions

Let vi(x) ∈ Rme , i ∈ N, be solutions to the second order system (4.73). To study their approxi-
mation properties, the simplify Taylor expansion (4.80) suggests to study the matrix Skl defines
as

Skl (x0) :=



v1(x0) v2(x0) · · · vlme(x0)
∂xv1(x0) ∂xv2(x0) · · · ∂xvlme(x0)
∂yv1(x0) ∂yv2(x0) · · · ∂yvlme(x0)
∂xxv1(x0) ∂xxv2(x0) · · · ∂xxvlme(x0)
∂x∂yv1(x0) ∂x∂yv2(x0) · · · ∂x∂yvlme(x0)

...
...

...
...

∂kxv1(x0) ∂kxv2(x0) · · · ∂kxvlme(x0)
∂k−1
x ∂yv1(x0) ∂k−1

x ∂yv2(x0) · · · ∂k−1
x ∂yvlme(x0)


∈ R(2k+1)me×lme , (4.81)

where x0 ∈ R2, k, l ∈ N. Using the matrix Skl one can study the approximation properties of the
functions vi.

Proposition 4.55 (Approximation properties of the basis functions). Let v1(x),v2(x), ...,vlme(x) ∈
W k+1,∞(Ω) and ue(x) ∈W k+1,∞(Ω) be solutions to the second order system (4.73). Assume

rankSkl (x0) ≥ (2k + 1)me. (4.82)

Then there exists real numbers a = (a1, a2, ..., alme)
T ∈ Rlme and a constant C > 0 such that∥∥∥ lme∑

i=1

aivi − ue

∥∥∥
L∞(Ω)

≤ Chk+1‖ue‖Wk+1,∞(Ω), h = diam(Ω).

and ∥∥∥∇( lme∑
i=1

aivi − ue

)∥∥∥
L∞(Ω)

≤ Chk‖ue‖Wk+1,∞(Ω), h = diam(Ω).

Proof. Let

b =
(
uTe (x0), ∂xu

T
e (x0), ∂yu

T
e (x0), ..., ∂kxu

T
e (x0), ∂k−1

x ∂yu
T
e (x0)

)T
∈ R(2k+1)me . (4.83)
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Because the solutions vi(x), 1 ≤ i ≤ l and ue(x) are in W k+1,∞(Ω), one can write them under
the form (4.80). Consider the solution of the linear system

Skl (x0)a = b, a ∈ Rlme , (4.84)

which exists because rank(Skl (x0)) ≥ (2k + 1)me. The functions vi(x) and ue(x) both satisfy
the expansion (4.80). It implies

lme∑
i=1

aivi(x)− ue(x) =
k+1∑
p=0

γpk+1(x)∂px∂
k+1−p
y v(xs), v(x) =

lme∑
i=1

aivi(x)− ue(x). (4.85)

Since γpn+1 is a difference between x and x0 to the power k + 1, one immediately gets

∥∥∥ lme∑
i=1

aivi − ue

∥∥∥
L∞(Ωj)

≤ Chk+1 ‖v‖Wk+1(Ωj)
.

Additionally, the triangular inequality yields ‖v‖Wk+1,∞(Ωj)
≤
∑lme

i=1 |ai| ‖vi‖Wk+1,∞(Ωj)
+‖ue‖Wk+1,∞(Ωj)

where the coefficients ai are bounded by ‖ue‖Wk+1,∞(Ωj)
as a consequence of (4.84) with the

definitions (4.81)-(4.83). Moreover, the basis functions vi(x) are bounded by a constant. So
‖v‖Wk+1,∞(Ωj)

≤ C ‖ue‖Wn+1,∞(Ωj)
up to the redefinition of the constant and one gets the first

inequality. The second inequality follows from (4.85). This completes the proof. �

If the previous proposition study the approximation properties of the basis functions, it does
not say anything about the linear independence of these functions. One can study the linear
independence of the basis functions thanks to the matrix Sk2k+1 ∈ R(2k+1)me×(2k+1)me .

Proposition 4.56 (Linear independence of the basis functions). Consider (2k + 1)me basis
functions vi solutions to the second order system (4.73) and assume the matrix Sk2k+1 associated
is invertible. Then the solutions vi are linearly independent.

Proof. Assume
(2k+1)me∑

i=1

aivi = 0,

for ai ∈ R, i = 1, ..., (2k + 1)me. The vector 0 is also a solution to the second order system
(4.73). Therefore, one can proceed as in the proof of the previous proposition with ue = 0. In
particular, the equality (4.84) reads

Sk2k+1(x0)a = 0.

From the invertibility of the matrix Sk2k+1, one finds a = 0 and therefore the basis functions vi
are linearly independent. �

In the following, we focus on the criterion (4.82). Note however that the invertibility of the
matrix Sk2k+1 with 2k + 1 directions is proved in Propositions 4.58 and 4.69 for the particular
case N = 1. See also the Corollaries 4.68 and 4.71 for the general case.
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4-3.2.1 Verification of the criterion (4.82) when σa > 0

In this section we study the approximation properties of the exponential solutions (4.31). We
define Zi(x) ∈ Rme×me the block matrix made of the me first components of the functions (4.31).
That is each column of the matrix Zi reads(

Zi(x)
)
•,j

= V2θiwje
λj(di,x) ∈ Rme , j = 1, ...,me, (4.86)

where the notation (Zi)•,j denotes the column j of the matrix Zi. The other notations come
from (4.31): the vectors wj ∈ Rme are the eigenvectors of the matrix (AAT )−1R1, λj = 1

c

√
σtµj

(µj are the eigenvalues of the matrix (AAT )−1R1) and V2θi ∈ Rme×me is the rotation matrix for
the even moments (4.21)-(4.22). In the following we consider a matrix Slk made of the blocks Zi.
For simplicity, we consider centered exponentials in x0 and drop the dependence of Slk in x0.

In the following lemma we consider l blocks Zi which is equivalent to consider the exponential
solutions (4.31) with l directions. Of course we assume

θi 6= θj , for i 6= j.

Lemma 4.57. Consider the matrix Slk obtained with the columns of Zi (4.86). With l blocks Zi,
the matrix Slk (4.81) reads

Skl :=



H1 H2 · · · Hl

cos θ1H1D cos θ2H2D · · · cos θlHlD
sin θ1H1D sin θ2H2D · · · sin θlHlD

cos2 θ1H1D
2 cos2 θ2H2D

2 · · · cos2 θlHlD
2

cos θ1 sin θ1H1D
2 cos θ2 sin θ2H2D

2 · · · cos θl sin θlHlD
2

...
... · · ·

...
cosk θ1H1D

k cosk θ2H2D
k · · · cosk θlHlD

k

cosk−1 θ1 sin θ1H1D
k cosk−1 θ2 sin θ2H2D

k · · · cosk−1 θl sin θlHlD
k


, (4.87)

where
Hi = V2θiH ∈ Rme×me , D = diag(λ1, ..., λme) ∈ Rme×me , (4.88)

and H ∈ Rme×me is the matrix of the eigenvectors of (AAT )−1R1.

Proof. This is equivalent to consider the matrix Slk (4.81) with

v(i−1)me+j(x) =
(
Zi(x)

)
•,j
, i = 1, ..., l, j = 1, ...,me.

One concludes with the definition of the column
(
Zi(x)

)
•,j

in (4.86). �

To satisfy Proposition 4.55, one must have rankSkl (x0) ≥ (2k + 1)me which implies l ≥ 2k +
1. Ideally, one would like to prove rankSk2k+1 = (2k + 1)me, i.e. that the matrix Sk2k+1 ∈
R(2k+1)me×(2k+1)me is invertible. However this may be difficult to show (see Remark 4.67) and
we will instead focus on the matrix Sk2(k+N)−1.

Proposition 4.58 (Criterion (4.82) when σa > 0). The matrix (4.87) with l = 2(k + N) − 1
satisfies rankSk2(k+N)−1 = (2k + 1)me.
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The proof of Proposition 4.58 requires to study roots of polynomials on circles. To do so, we
introduce some notations and give some technical results.

Technical material

• In the following items l, k ∈ N. The space of polynomials of degree k with value in Rl is

P lk[x, y] :=
{

q / q(x, y) =
∑
i+j≤k

ηi,jx
iyj , for all x, y, ηi,j ∈ Rl

}
,

by convention Pk[x, y] := P 1
k [x, y].

• The space of polynomial matrices of degree k with value in Rl×l is

P l×lk [x, y] :=
{
L / L = (li,j)i,j≤l ∈ P l×lk [x, y], L(x, y) ∈ Rl×l

}
.

• The space of polynomials of total degree k and affine in y with value in Rl is

P l
k[x, y] :=

{
g / g ∈ P lk[x, y], ∂2

yg = 0
}
.

By convention Pk[x, y] := P 1
k [x, y].

• The space of polynomial matrices of degree k and affine in y with value in Rl×l is

P l×l
k [x, y] :=

{
L / L = (li,j)i,j≤l ∈ P l×l

k [x, y], L(x, y) ∈ Rl×l
}
.

One important lemma about the space Pk[x, y] is the following.

Lemma 4.59 (Roots on circle in Pk[x, y]). Assume λ > 0 and g ∈ Pk[x, y] admits 2k + 1 roots
on the circle of radius λ. One has

g = 0.

Proof. They are several ways to show that a non zero polynomial in Pk[x, y] has a limited number
of roots on a circle. In the following we use the Bézout’s theorem. The equation for the circle of
radius λ reads

x2 + y2 − λ2 = 0. (4.89)

The circle equation (4.89) is absolutely irreducible (if it wasn’t, it would be the union of two
lines which is impossible). Therefore, the only way for (4.89) and the equation g = 0 to admit
a common component is to write g under the form g(x, y) = (x2 + y2 − λ2)g̃(x, y) which is
impossible because g ∈ Pk[x, y].

Therefore, the circle equation (4.89) and the equation g = 0 with g ∈ Pk[x, y] are projective
curves of degrees 2 and k respectively with no common components. From the Bézout’s theorem
(see [CLO08, Page 430] for example), they admit at most 2k common roots. This completes the
proof. �

Now we can introduce the following notations

• The circle of radius λi > 0 is

Ci :=
{

(x, y) / x2 + y2 = λ2
i

}
.

• For g, q ∈ Pk we denote the equality of two polynomials in Ci as

g ≡Ci q ⇔ g(x, y)− p(x, y) = 0, for all (x, y) ∈ Ci.
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The following lemma will be useful when considering polynomials in Pk.

Lemma 4.60. Assume g ∈ Pk. There exists a unique q ∈ Pk such that

g ≡Ci q.

Proof. First we prove the existence. Indeed, for g ∈ Pk one can use the equality y2 = λ2
i − x2 to

remove the term depending on y with a power strictly greater than one. One gets a polynomial
q in Pk which satisfy g ≡Ci q.

Now we prove the uniqueness. Assume q1, q2 ∈ Pk and q1 ≡Ci q2. Then the polynomial q1 − q2

admits an infinite number of roots on the circle Ci. From Lemma 4.59 one deduces q1 − q2 = 0.
The proof is complete. �

• Assume g ∈ Pk[x, y]. We define the function hCi as

hCi : Pk[x, y]→ Pk[x, y], hCi(g) ≡Ci g.

From Lemma 4.60 The function hCi is well defined.
Moreover hCi(αg1+βg2) ≡Ci αhCi(g1)+βhCi(g2) with hCi(αg1+βg2), αhCi(g1)+βhCi(g2) ∈
Pk. One concludes using Lemma 4.60 that the function hCi is linear

hCi(αg1 + βg2) = αhCi(g1) + βhCi(g2), g1, g2 ∈ Pk[x, y], α, β ∈ R.

• Assume g = (g1, ..., gme)
T ∈ Pmek [x, y]. We define the function hC (with no index) as

hC : Pmek [x, y]→ Pme
k [x, y], hC (g) =

(
hC1(g1), ..., hCme (gme)

)T
.

The function hC is also linear

hC (αg1 + βg2) = αhC (g1) + βhC (g2), g1,g2 ∈ Pmek [x, y], α, β ∈ R.

Example 4.61. We give a practical example of the functions hCi and hC . Let

g1 = 1 + 2x+ y + 3y2 ∈ P4[x, y],

g2 = x2 + y2 + y4 ∈ P4[x, y].

Using the equality y2 = λ2
j − x2 for j = 1, 2, one eliminates y2, y4 and gets

hC1(g1) = 1 + 3λ2
1 + 2x− 3x2 + y ∈ P4[x, y],

hC2(g2) = λ2
2 + λ4

2 − 2λ2
2x

2 + x4 ∈ P4[x, y].

Now assume me = 2 and consider the following polynomial

g =

(
g1

g2

)
=

(
1 + 2x+ y + 3y2

x2 + y2 + y4

)
∈ P 2

4 [x, y].

One has

hC (g) =

(
hC1(g1)
hC2(g2)

)
=

(
1 + 3λ2

1 + 2x− 3x2 + y
λ2

2 + λ4
2 − 2λ2

2x
2 + x4

)
∈ P 2

4 [x, y].

•
• Assume r =

√
x2 + y2 ∈ R+, θ ∈ [0, 2π[. The matrix LN (r, θ) written in Polar coordinate

is defined as
LN (r, θ) := rN−1HTV T

2θ ∈ Rme×me , (4.90)
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where H ∈ Rme×me is the matrix of the eigenvectors of (AAT )−1R1.

Example 4.62. For the P3 model the matrix V2θ reads

V2θ =


1 0 0 0
0 cos 2θ 0 − sin 2θ
0 0 1 0
0 sin 2θ 0 cos 2θ

 ,

and using (x, y) = (r cos θ, r sin θ) one has

r2V2θ =


x2 + y2 0 0 0

0 x2 − y2 0 −2xy
0 0 x2 + y2 0
0 2xy 0 x2 − y2

 ∈ P 4×4
2 [x, y].

In particular, the matrix LN given in (4.90) is a polynomial matrix of degree 2 for the case
N = 3. This result can be generalize for the PN model as stated by the following lemma. •
Lemma 4.63. The coefficients of the matrix LN are polynomials of degree N − 1, that is

LN ∈ Pme×meN−1 [x, y].

Proof. Indeed the unitary matrix V2θ in (4.21) depends only on even angles 2lθ with 2l ≤ N − 1.
Therefore, the coefficients of the matrix LN−1 read

rN−1 cos 2lθ = rN−1−2lr2l cos 2lθ or rN−1 sin 2lθ = rN−1−2lr2l sin 2lθ.

Since N is odd, N − 1− 2l is even and therefore

rN−1−2l := (x2 + y2)(N−1−2l)/2,

is a polynomial of degree N − 1− 2l. Moreover developing cos 2lθ, sin 2lθ in terms of cos θ, sin θ
and using x = r cos θ, y = r sin θ, one deduces that r2l cos 2lθ and r2l sin 2lθ are polynomials
of degree 2l. Note that the coefficients of the polynomials rN−1−2l, r2l cos 2lθ and r2l sin 2lθ
do not depend on θ. Therefore, each coefficient of the matrix LN is a polynomial of degree
N − 1− 2l + 2l = N − 1 and the coefficients of this polynomial do not depend on θ. �

The following lemma will be useful.

Lemma 4.64. Assume q ∈ Pj [x, y], g ∈ Pmek [x, y]. Then one has

hC (qg) = hC

(
QhC (g)

)
,

where Q = diag
(
hC1(q), ..., hCme (q)

)
∈ Pme×me

j [x, y].

Proof. Consider the vectors r := hC (qg) ∈ Pme
k+j , s := hC

(
QhC (g)

)
∈ Pme

k+j . We denote r =

(r1, ..., rme)
T , s = (s1, ..., sme)

T , g = (g1, ..., gme)
T . From the definition of r and s one gets

ri = hCi(qgi), si = hCi

(
hCi(q)hCi(gi)

)
. From the definition of hCi one finds ri ≡Ci si, 1 ≤ i ≤ me.

Since ri, si ∈ Pk+j , one concludes ri = si with Lemma 4.60. Therefore r = s and the proof is
complete. �
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In the next lemma, we study the particular structure of the polynomial hC (LNg) for g ∈
Pme
k [x, y]. More precisely, we study the decomposition of hC (LNg) in two terms: a term which

depends only on g(x, y) and a term which depends on xg(x, y).

Lemma 4.65. Assume g ∈ Pme
k [x, y]. One has the equality

hC

(
LN (x, y)g(x, y)

)
= HT

(
DN−1Mg(x, y) + hC

(
xV (x, y)g(x, y)

))
, for all x, y,

where M ∈ Rme×me is a diagonal matrix with each diagonal element equal to 1 or −1, D is
defined in (4.88) and V ∈ Pme×meN−1 [x, y] is a polynomial matrix.

Proof. We recall the formulas

cos 2kθ = <(cos θ + i sin θ)2k, sin 2kθ = =(cos θ + i sin θ)2k.

Since N is odd one deduces

rN−1 cos 2kθ = (−1)kyN−1 + xw1(x, y), rN−1 sin 2kθ = xw2(x, y),

where w1, w2 ∈ PN−1[x, y]. From (4.21) the matrix V2θ has only coefficients of the form cos 2kθ
on its diagonal and coefficients of the form or sin 2kθ on its anti diagonal. Therefore

rN−1V2θ = MyN−1 + xW (x, y),

where M ∈ Rme×me is a diagonal matrix with each diagonal element equal to 1 or −1 and
W ∈ Pme×meN−1 [x, y] is a polynomial matrix. One deduces that the matrix LN (4.90) can be
written

LN (x, y) = HT
(
MyN−1 + xW (x, y)

)
, for all x, y.

Therefore, since the function hC is linear one gets

hC

(
LN (x, y)g(x, y)

)
= HTMhC

(
yN−1g(x, y)

)
+HThC

(
xW (x, y)g(x, y)

)
, for all x, y.

(4.91)
We are interested in the terms which depend on x only through the polynomial g(x, y). Therefore,
we focus on the first term hC

(
yN−1g(x, y)

)
. Using Lemma 4.64 one has

hC

(
yN−1g(x, y)

)
= hC

(hC1(yN−1) 0
. . .

0 hCme (yN−1)

hC (g(x, y))
)
. (4.92)

With the equality yN−1 = (λ2
i − x2)

N−1
2 , g ∈ Pme

k and the linearity of hCi one finds

hCi(y
N−1) = λN−1

i + hCi

(
xw̃i(x, y)

)
, hC (g) = g, (4.93)

where w̃i ∈ PN−1[x, y] are polynomials. Therefore, using (4.93) in (4.92) and the linearity of hC
one gets

hC

(
yN−1g(x, y)

)
= DN−1g(x, y) + hC

(
xW̃ (x, y)g(x, y)

)
, for all x, y. (4.94)

where D = diag(λ1, ..., λme) and W̃ ∈ Pme×meN−1 [x, y] is a polynomial matrix. Using (4.94) in
(4.91) to replace the first term yields

hC

(
LN (x, y)g(x, y)

)
= HT

(
MDN−1g(x, y) + hC

(
xV (x, y)g(x, y)

))
, for all x, y,

where V = W + W̃ ∈ Pme×meN−1 [x, y]. The proof is complete. �
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The idea behind Lemma 4.65 is that the polynomial hC (LNg) can be written as a term which
depends only on g(x, y) and a term which depends on xg(x, y). That is

hC

(
LN (x, y)g(x, y)

)
= Kg(x, y) + hC

(
xV (x, y)g(x, y)

)
,

with a matrix K invertible. This particular structure combines with the invertibility of the
matrix K play an important role in the following Lemma.

Lemma 4.66. Assume k, j ∈ N, g ∈ Pme
k [x, y], V ∈ Pme×mej [x, y] and the matrix K ∈ Rme×me

is invertible. Let

q(x, y) = Kg(x, y) + hC

(
xV (x, y)g(x, y)

)
, for all x, y. (4.95)

Then one has
q = 0 ⇔ g = 0.

Proof. The case g = 0⇒ q = 0 is straightforward.

We prove the other case by contradiction. If V = 0 one immediately deduces the result so we
take V 6= 0. Assume q = 0 and g 6= 0. We write g(x, y) as a polynomial in x with coefficients
depending on y

g(x, y) =
k∑
i=0

αi(y)xi, for all x, y. (4.96)

We write hC

(
xV (x, y)g(x, y)

)
in the same way

hC

(
xV (x, y)g(x, y)

)
=

k∑
i=0

βi(y)xi, for all x, y. (4.97)

Since g 6= 0 there exists a, b ∈ N such that

a = min
αi 6=0

i, b = min
βi 6=0

i.

For a given coefficient, the function hC : Pmek [x, y] → Pme
k [x, y] do not decrease the power in x

(it can only decrease the power in y). Therefore, using the definition of the coefficients αi and
βi in (4.96) and (4.97) one deduces

b > a.

Now we consider the coefficients associated only with the power xa in (4.95). Using q = 0 one
gets

Kαa = 0.

Since the matrix K is invertible this is a contradiction with the assumption αa 6= 0. The proof
is complete. �

Proof of Proposition 4.58.

Proof of Proposition 4.58. To denote the transpose matrix of Skl , we will use the notation S
k,T
l :=

(Skl )T . The goal is to show that

dim(kerSk,T2(k+N)−1) = 0.
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Because of the rank-nullity theorem this implies rankSk,T2(k+N)−1 = (2k + 1)me and one will
conclude

rankSk2(k+N)−1 = (2k + 1)me.

From the definition (4.87) of the matrix Skl one deduces that the matrix Sk,T2(k+N)−1 ∈ Rlme×(2k+1)me

reads

Sk,T2(k+N)−1 =
HT

1 cos θ1DH
T
1 · · · sin θ1 cosk−1 θ1D

kHT
1

HT
2 cos θ2DH

T
2 · · · sin θ2 cosk−1 θ2D

kHT
2

...
... · · ·

...
HT

2(k+N)−1 cos θ2(k+N)−1DH
T
2(k+N)−1 · · · sin θ2(k+N)−1 cosk−1 θ2(k+N)−1D

kHT
2(k+N)−1

 .

Let
u = (uT1 ,u

T
2 , ...,u

T
2k+1)T ∈ R(2k+1)me , ui ∈ Rme ,

and assume
u ∈ kerSk,T2(k+N)−1.

The equality Sk,T2(k+N)−1u = 0 gives

k∑
l=0

cosl θiD
lHiu2l+1 + sin θi

k−1∑
l=0

cosl θiD
l+1Hiu2(l+1) = 0,

for i = 1, ..., 2(k +N)− 1. Multiplying by DN−1 one gets

k∑
l=0

cosl θiD
l+N−1Hiu2l+1 +

k−1∑
l=0

sin θi cosl θiD
l+NHiu2(l+1) = 0, (4.98)

for i = 1, ..., 2(k+N)− 1. The equalities (4.98) can be interpreted as the equations of the roots
of some polynomials. Indeed let

g ∈ Pme
k [x, y],

g(x, y) :=
k∑
l=0

xlu2l+1 + y
k−1∑
l=0

xlu2(l+1), for all x, y,
(4.99)

where u1, ...,u2k+1 ∈ Rme satisfy (4.98). We define the polynomial vector f as

f := LNg ∈ Pmek+N−1[x, y], (4.100)

where LN is defined in (4.90) and we recall that from Lemma 4.63 one has LN ∈ Pme×meN−1 [x, y]. We
denote f = (f1, ..., fme)

T and claim that the equations (4.98) give some roots of the components
fi. Consider the point (x, y) = (λj cos θi, λj sin θi) one has

f(x, y) =

k∑
l=0

xlLN (x, y)u2j+1 + y
k−1∑
l=0

xlLN (x, y)u2(j+1),

f(λj cos θi, λj sin θi) =
k∑
l=0

λlj cosl θiLN (λj cos θi, λj sin θi)u2l+1

+
k−1∑
l=0

λl+1
j sin θi cosl θiLN (λj cos θi, λj sin θi)u2(l+1),
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Figure 4.4 – Representation of the roots of the components fi. Here we consider N = 3, k = 1
and directions with angles 2πj

7 , j = 0, ..., 6.

From (4.88) one has HT
i = HTV T

2θi
and therefore

LN (λj cos θi, λj sin θi) = λN−1
j HT

i . (4.101)

Using (4.101) to reformulate the matrix LN (λj cos θi, λj sin θi) one gets

f(λj cos θi, λj sin θi) =
k∑
l=0

cosl θiλ
l+N−1
j HT

i u2l+1 +
k−1∑
l=0

sin θi cosl θiλ
l+N
j HT

i u2l+1.

Using the definition of the matrix D in (4.88), one deduces that fj(λj cos θi, λj sin θi) and the
component j on the left hand side of (4.98) coincident. Therefore

fj(λj cos θi, λj sin θi) = 0, 1 ≤ i ≤ 2(k +N)− 1, 1 ≤ j ≤ me. (4.102)

The equality (4.102) can be reformulate as follow: each component fj of the polynomial vector
f admits 2(k +N)− 1 distinct roots on the circle of radius λj see Figure 4.4 for an example in
the case N = 3. We denote

fC := hC (f) ∈ Pme
k+N−1[x, y].

From (4.102) each component fC ,j ∈ Pk+N−1[x, y] of fC admits 2k+N − 1 roots on the circle of
radius λj . Using Lemma 4.59 one deduces

fC = 0.

Now we want to prove that it implies g = 0. From Lemma 4.65 one has

fC (x, y) = HT
(
MDN−1g(x, y) + hC

(
xV (x, y)g(x, y)

))
, for all x, y.

Since the matrix HT is invertible from Proposition 4.22, one deduces

MDN−1g(x, y) + hC

(
xV (x, y)g(x, y)

)
= 0, for all x, y.
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Using Lemma 4.66 with the invertibility of the matrix MDN−1 one finally finds

g = 0.

Since the coefficients of the polynomial g are made of the components u, one gets u = 0 and
therefore dim(kerSk,T2(k+N)−1) = 0. This completes the proof. �

Remark 4.67 (Invertibility of the matrix Sk2k+1). The beginning of the proof of Proposition 4.58
is also true when studying the matrix Sk2k+1. However, with the matrix Sk2k+1 each component
fi will only have 2k + 1 roots on the circle of radius λi. Therefore, one can not used (at least
directly) the Bézout’s theorem. Some more advanced tools in algebraic geometry may be needed
to prove that the matrix Sk2k+1 is, or is not, invertible [CLO08]. •
Given 2k+ 1 directions and the solutions (4.31) it is therefore not clear how to prove the invert-
ibility of the matrix Sk2k+1 (4.87). However, we can give a weaker result.

Corollary 4.68. Assume σa > 0 and consider the solutions (4.31) with 2(k+N)− 1 directions
for a total of (2(k +N)− 1)me solutions. Among these (2(k +N)− 1)me functions there exists
(2k + 1)me functions such that the matrix Sk2k+1 (4.81) is invertible.

Proof. The proof is straightforward. From Proposition 4.58 one has rankSk2(k+N)−1 = (2k+1)me

and therefore, one can extract (2k + 1)me columns from the matrix Sk2(k+N)−1 such that the
associated matrix Sk2k+1 satisfies rankSk2k+1 = (2k + 1)me. Since Sk2k+1 ∈ R(2k+1)me×(2k+1)me ,
this matrix is invertible. The proof is complete. �

The main defect of Corollary 4.68 is that we do not know which basis functions give the invert-
ibility of the matrix Sk2k+1.

4-3.2.2 Verification of the criterion (4.82) when σa = 0

In this section, we study the approximation properties of the exponential solutions (4.31) com-
bined with the polynomial solutions constructed in Section 4-2.3 when σa = 0. From Proposition
4.21, there exists a unique λj such that λj → 0 when σa → 0. For convenience, we take j = 1 and
therefore one has λ1 → 0 when σa → 0. Since we show in Section 4-2.3 that the degenerative ex-
ponentials tend toward a family of polynomials when σa → 0, we simply replace the degenerative
exponentials with the polynomial solutions. Therefore we now consider the following matrices
Zi (

Zi(x)
)
•,1

= pi(x) ∈ Rme ,
(
Zi(x)

)
•,j

= V2θiwje
λj(di,x) ∈ Rme , j = 2, ...,me, (4.103)

with λj 6= 0 and pi(x) ∈ Rme represents the me first components of the polynomials given by
the Theorem 4.34 of Section 4-2.3. The matrix Skl of the non degenerative exponential solutions
with l directions and the first l polynomial solutions is

Skl (x0) :=



p1(x0) H1 · · · pl(x0) Hl

∂xp1(x0) cos θ1H1D · · · ∂xpl(x0) cos θlHlD
∂yp1(x0) sin θ1H1D · · · ∂ypl(x0) sin θlHlD
∂2
xp1(x0) cos2 θ1H1D

2 · · · ∂2
xpl(x0) cos2 θlHlD

2

∂x∂yp1(x0) cos θ1 sin θ1H1D
2 · · · ∂x∂ypl(x0) cos θl sin θlHlD

2

...
... · · ·

...
...

∂kxp1(x0) cosk θ1H1D
k · · · ∂kxpl(x0) cosk θlHlD

k+N

∂k−1
x ∂yp1(x0) cosk−1 θ1 sin θ1H1D

k · · · ∂k−1
x ∂ypl(x0) cosk−1 θl sin θlHlD

k


.

(4.104)
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Since we remove the degenerative exponentials (that is the eigenvalue which degenerate to zero)
in the definitions of the matrices D and Hi, one has

D = diag(λ2, ..., λme) ∈ R(me−1)×(me−1),

and

H =

(
hT

J

)
∈ Rme×(me−1). (4.105)

Where the matrix J ∈ Rme−1×me−1 is the same matrix as in Definition 4.24. Therefore, the
vector h ∈ Rme−1 is simply the vector of the first component of the eigenvectors of the matrix
(AAT )−1R1 associated with a non zero eigenvalue. We recall that Proposition 4.23 implies that
the matrix J is invertible. The matrices Hi and LN are defined in the same way as in (4.88) and
(4.90) respectively. Therefore

Hi ∈ Rme×(me−1), LN ∈ Pme−1×me
N−1 [x, y].

The results given in the previous section holds when σa = 0.

Proposition 4.69 (Criterion (4.82) when σa = 0). The matrix (4.104) with l = 2(k + N) − 1
satisfies rankSk2(k+N)−1 = (2k + 1)me.

We will use the following lemma.

Lemma 4.70. We denote qi(x) the harmonic polynomials (4.50). For n ≥ 1 one has

∂nx q2n(x) = 1, ∂n+1+l
x q2n(x) = 0, ∂n−1+l

x ∂yq2n(x) = 0, for all l ∈ N,

and

∂n−1
x ∂yq2n+1(x) = 1, ∂n+l

x q2n+1(x) = 0, ∂n+l
x ∂yq2n+1(x) = 0, for all l ∈ N.

Proof. One has (x+ iy)n =
∑n

p=0C
p
n(i)n−pxpyn−p, thus

∂nx<(x+ iy)n = n!, ∂n+1+l
x <(x+ iy)n = 0, ∂n−1+l

x ∂y<(x+ iy)n = 0, for all l ∈ N,

and

∂n−1
x ∂y=(x+ iy)n = C1

n(n− 1)!, ∂n+l
x =(x+ iy)n = 0, ∂n+l

x ∂y=(x+ iy)n = 0, for all l ∈ N.

One concludes with the definition of the harmonic polynomials (4.50). �

We can now prove Proposition 4.69.

Proof of Proposition 4.69. We start by proceeding as in the proof of Proposition 4.58. The
matrix Sk,T2(k+N)−1 := (Sk2(k+N)−1)T reads

Sk,T2(k+N)−1(x0) =

pT1 (x0) ∂xp
T
1 (x0) · · · ∂k−1

x ∂yp
T
1 (x0)

HT
1 cos θ1DH

T
1 · · · sin θ1 cosk−1 θ1D

kHT
1

pT2 (x0) ∂xp
T
2 (x0) · · · ∂k−1

x ∂yp
T
2 (x0)

HT
2 cos θ2DH

T
2 · · · sin θ2 cosk−1 θ2D

kHT
2

...
... · · ·

...
pT2(k+N)−1(x0) ∂xp

T
2(k+N)−1(x0) · · · ∂k−1

x ∂yp
T
2(k+N)−1(x0)

HT
2(k+N)−1 cos θ2(k+N)−1DH

T
2(k+N)−1 · · · sin θ2(k+N)−1 cosk−1 θ2(k+N)−1D

kHT
2(k+N)−1


.
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We assume
u ∈ kerSk,T2(k+N)−1,

and use the following notations

u = (uT1 ,u
T
2 , ...,u

T
2k+1)T ∈ R(2k+1)me ,

ui = (vi,wi)
T ∈ Rme , vi ∈ R, wi ∈ Rme−1.

(4.106)

We define the matrix S1 ∈ R(me−1)(2(k+N)−1)×(2k+1)me as

S1 =


HT

1 cos θ1DH
T
1 · · · sin θ1 cosk−1 θ1D

kHT
1

HT
2 cos θ2DH

T
2 · · · sin θ2 cosk−1 θ2D

kHT
2

...
... · · ·

...
HT

2(k+N)−1 cos θ2(k+N)−1DH
T
2(k+N)−1 · · · sin θ2(k+N)−1 cosk−1 θ2(k+N)−1D

kHT
2(k+N)−1

 ,

and the matrix S2 ∈ R2(k+N)−1×(2k+1)me as

S2 =


pT1 (x0) ∂xp

T
1 (x0) · · · ∂k−1

x ∂yp
T
1 (x0)

pT2 (x0) ∂xp
T
2 (x0) · · · ∂k−1

x ∂yp
T
2 (x0)

...
... · · ·

...
pT2(k+N)−1(x0) ∂xp

T
2(k+N)−1(x0) · · · ∂k−1

x ∂yp
T
2(k+N)−1(x0)

 .

Note that
Sk,T2(k+N)−1u = 0 ⇒ S1u = 0 and S2u = 0.

As a first step, we study the equality S1u = 0 and proceed as in the proof of Proposition 4.58.
We define the polynomial vector g as

g ∈ Pme
k [x, y],

g(x, y) :=
k∑
l=0

xlu2l+1 + y
k−1∑
l=0

xlu2(l+1), for all x, y,

and the polynomial vector f as

f := LNg ∈ Pme−1
k+N−1[x, y].

As in the proof of Proposition 4.58, one can show that each component fj of the polynomial
vector f admits 2(k +N)− 1 distinct roots on the circle of radius λj+1. Therefore denoting

fC := hC (f) ∈ Pme−1
k+N−1[x, y].

One concludes using Lemma 4.59 that
fC = 0.

And with the same reasoning as in the proof of Proposition 4.58 one can write

fC (x, y) = HT
(
MDN−1g(x, y) + hC

(
xV (x, y)g(x, y)

))
= 0, for all x, y. (4.107)

This is where the similarities with the previous proof end. Indeed since HT ∈ Rme−1×me one
can not invert the matrix HT as before.

Now, we use the equality S2u = 0. We recall that the harmonic polynomial qi is the first
component of the polynomial vector pi and from Corollary 4.49 the other components have a
degree strictly less than qi. Therefore using Lemma 4.70 one can write

∂nxp2n(x) = (1, 0, ..., 0)T , ∂n+1+l
x p2n(x) = (0, ..., 0)T , ∂n−1+l

x ∂yp2n(x) = (0, ..., 0)T ,



ANALYSIS OF THE TREFFTZ DISCONTINUOUS GALERKIN METHOD FOR
THE PN MODEL 91

for all l ∈ N and

∂n−1
x ∂yp2n+1(x) = (1, 0, ..., 0)T , ∂n+l

x p2n+1(x) = (0, ..., 0)T , ∂n+l
x ∂yp2n+1(x) = (0, ..., 0)T ,

for all l ∈ N. This implies that the matrix S2 can be written

S2 =


(1, 0, ..., 0)T 0

(1, 0, ..., 0)T

. . .

* (1, 0, ..., 0)T

 , (4.108)

where (1, 0, ..., 0)T ∈ Rme .

To show u = 0 we proceed by recurrence. First we show u1 = 0. We recall u1 := (v1,w1)T and
proceed in two steps
• Since S2u = 0 one immediately deduces from the particular structure (4.108) of the matrix

S2 that
v1 = 0.

• Now we consider the coefficients which do not depend on x in (4.107). One gets

HTMDN−1
(
u1 + yu2

)
= 0, for all x, y.

In particular, one has
HTMDN−1u1 = 0.

Since v1 = 0 one finds using the particular structure (4.105) of the matrix H

JTMDN−1w1 = 0.

Since the matrix J is invertible, the matrix JTD2M is also invertible and one deduces w1 = 0.
One finds u1 = 0.

Now assume there exists j ≥ 2 such that

ui = 0, for all i < j.

Our goal is to show that uj = 0. We proceed in two steps
• Since ui = 0 for all i < j and using the particular structure (4.108) of the matrix S2, the

equality S2u = 0 yields
vj = 0.

• We denote j = 2n+ 1 if j is odd and j = 2(n+ 1) if j is even. Since ui = 0 for all i < j,
all the coefficients of g(x, y) associated with a power xk with k < n are equals to zero.
Therefore using the same idea as in the proof of Lemma 4.66, the equality (4.107) implies

HTMDN−1ujx
n = 0, for all x, y, if j = 2n+ 1, (4.109)

or
HTMDN−1ujyx

n = 0, for all x, y, if j = 2(n+ 1), (4.110)

We can now conclude. Using (4.109)-(4.110) and the decomposition (4.105) of the matrix H
with vj = 0 gives

JTMDN−1wj = 0.

Since the matrix J is invertible, the matrix JTMDN−1 is also invertible and one deduces wj = 0.
Finally one gets uj = 0. Repeating recursively this process from j = 2 to j = 2(k+N)−1 yields
u = 0. One concludes as in the proof of Proposition 4.58. The proof is complete. �
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We can give a result similar to Corollary 4.68.

Corollary 4.71. Consider the solutions (4.31) with 2(k+N)−1 directions where the degenerative
exponentials have been replaced by the polynomial solutions from Theorem 4.34 for a total of
(2(k + N) − 1)me solutions. Among these (2(k + N) − 1)me functions there exists (2k + 1)me

functions such that the matrix Sk2k+1 (4.81) is invertible.

Proof. The proof is the same as in Corollary 4.68. �

Again, the main defect of this corollary is that we do not know which basis functions give the
invertibility of the matrix Sk2k+1.

4-3.3 High order convergence for the stationary case

The main results of this section are the Theorem 4.75 which study the convergence of the TDG
method applied to the PN model when σa > 0 and the Theorem 4.80 for the P1 model when
σa = 0.

We consider a series of mesh T n
h , n ∈ N. For a polygonal cell Ωn

j ∈ T n
h , we define hnj the size

of its larger edge and ρnj the radius of the larger inner circle include in Ωj . We assume that the
sequence of meshes is refined, that is

hn := max
j
hnj →n→∞ 0,

and the mesh is quasi uniform, that is there exists a constant C ∈ R+ such that

max
j,n

hnj
ρnj
≤ C. (4.111)

To keep the notations simple we remove the index n in the following. We also assume in the rest
of this section that the coefficients σa and σs are bounded: there exists C ∈ R+ such that

σa ≤ C, σs ≤ C,

and we recall that
ε = 1, c = 1.

For convenience k ∈ N is fixed. The following proposition generalizes on the variable u the
estimates given in Proposition 4.55 (which were given for the variable ue) with a loss of one
degree of convergence.

Proposition 4.72. Let k ∈ N, Ωj ∈ Th, x0 ∈ Ωj and u = (uTe ,u
T
o )T ∈W k+1,∞(Ωj) be a solution

to the stationary PN model. Consider the basis functions (4.31) with 2(k+N)− 1 directions for
a total of [2(k+N)− 1]me functions (if σa = 0 the degenerative exponentials are replaced by the
polynomial solutions from Theorem 4.34). Among these [2(k +N)− 1]me functions there exists
(2k + 1)me solutions denoted v1, ...,v(2k+1)me ∈ W k+1,∞(Ωj) and a = (a1, ..., a(2k+1)me)

T ∈
R(2k+1)me such that ∥∥∥ (2k+1)me∑

i=1

aivi − u
∥∥∥
L∞(Ωj)

≤ Chk‖u‖Wk+1,∞(Ωj),

and ∥∥∥∇( νNme∑
i=1

aivi − u
)∥∥∥

L∞(Ωj)
≤ Chk−1‖u‖Wk+1,∞(Ωj),

where C is a constant which does not depend on Ωj.
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Proof. We denote

z =

(2k+1)me∑
i=1

aivi − u,

and use the decomposition z = (zTe , z
T
o )T . By definition z is solution to the PN model. Corollary

4.68 if σa > 0, Corollary 4.71 if σa = 0 combined with Proposition 4.55 give an error estimate in
hk+1 for ze. Using Proposition 4.51 one can control z with ze, ∂xze and ∂yze. One deduces the
first inequality and the second inequality immediately follows. The proof is complete. �

In the following we consider the functions v1, ...,v(2k+1)me from Proposition 4.72 as basis func-
tions in all the cells and denote

Vh := Span
{

v1, ...,v(2k+1)me

}
,

Note that the Proposition 4.56 combined with Corollaries 4.68-4.71 give the linear independence
of the functions vi. We can now give an approximation result in terms of the ‖ · ‖DG∗ norm.

Proposition 4.73. Under the assumptions of Proposition 4.72, there exists vh ∈ Vh such that

‖u− vh‖DG∗ ≤ Chk−1/2‖u‖Wk+1,∞(Ω),

with h = maxΩj∈Th hj, hj = diam(Ωj) and C a constant independent of h.

Proof. From Proposition 4.72 one deduces that there exist vh ∈ Vh such that ∀Ωj

‖u− vh‖2L2(Ωj)
≤ Ch2k+2

j ‖u‖2Wk+1,∞(Ωj)
,

|(u− vh)|21,Ωj ≤ Ch
2k
j ‖u‖2Wk+1,∞(Ωj)

,

therefore

‖u− vh‖L2(Ωj)

( 1

hj
‖u− vh‖L2(Ωj) + |(u− vh)|1,Ωj

)
≤ Ch2k+1

j ‖u‖2Wk+1,∞(Ωj)
, ∀Ωj .

Summing over all Ωj and using that for a regular mesh of size h, the total number of elements
is bounded by C/h2 one has∑

j

‖u− vh‖L2(Ωj)

( 1

hj
‖u− vh‖L2(Ωj) + |(u− vh)|1,Ωj

)
≤ Ch2k−1‖u‖2Wk+1,∞(Ω).

One concludes using Proposition 2.16. �

Combining the previous proposition with the results of Section 2-3 one can now give an estimation
of the error in DG norm.

Proposition 4.74. Consider the TDG method (2.15) under the assumptions of Proposition 4.72.
One has

‖u− uh‖DG ≤ Chk−1/2‖u‖Wk+1,∞(Ω),

with h = maxΩj∈Th hj, hj = diam(Ωj), where uh stands for the solution to the TDG method.

Proof. We use Proposition 4.73 and conclude with the quasi-optimality result from Proposition
2.12. �

One can now easily study the convergence in quadratic norm.
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4-3.3.1 The PN model when σa > 0

Theorem 4.75 (Convergence of the TDG method for the PN model). Assume σa > 0, the
hypothesis of Proposition 4.74 are satisfied and consider 2(k + N) − 1 directions for a total of
(2(k + N) − 1)me functions. Among these (2(k + N) − 1)me functions there exists (2k + 1)me

basis functions such that

‖u− uh‖L2(Ω) ≤ Chk−1/2‖u‖Wk+1,∞(Ω), (4.112)

with h = maxΩj∈Th hj, hj = diam(Ωj) and where uh stands for the solution to the TDG method.

Proof. Since σa > 0, the matrix R is positive definite and one can give an L2 lower bound of the
DG norm with Proposition 2.14. One concludes with Proposition 4.74. �

Remark 4.76. The Theorem 4.75 shows a remarkable property of the TDG method: the number
of additional basis functions to gain one order of convergence from k to k + 1 does not depend
on k. This is not the case for the standard DG method where the number of additional basis
functions increases with k.

For the P1 model in particular, the Theorem 4.75 gives a convergence result with 2k+1 directions.

Corollary 4.77. The TDG method applied to the stationary P1 model with 2k + 1 directions
satisfies the estimation (4.112) of Theorem 4.75.

Ideally, one would like the same convergence estimate using 2k+ 1 directions for the general PN
model. Since there are me solutions per directions, such convergence result would use (2k+1)me

functions.

Although Theorem 4.75 gives a convergence result with (2k + 1)me basis functions, the main
issue is that such basis functions may not be known when N > 1. Indeed for N > 1, the Theorem
4.75 only assures that the basis functions which give the convergence of the TDG method can
be taken from 2(k+N)− 1 directions. We conjecture that the estimate (4.112) holds for N > 1
when considering 2k+1 directions. This is equivalent to prove that the matrix Sk2k+1 is invertible,
see Remark 4.67. In the numerical tests, we will use 2k + 1 directions.

It is interesting to compare the convergence estimate given by Theorem 4.75 with the standard
convergence estimate obtained with the DG method. We compare the number of basis functions
needed to achieve a given fractional order for the TDG method (denoted pTDG) and for the
general DG method (denoted pDG).

For the P1 model, me = 1 and one has (see Table 4.1)

pTDG = 2(order + 1), pDG =
3

2
(order +

1

2
)(order +

3

2
).

In particular the number of basis functions is the same to get order 1/2 and one always gets
pTDG ≤ pDG .

order 1/2 3/2 5/2 7/2 9/2

pTDG 3 5 7 9 11
pDG 3 9 18 30 45

Table 4.1 – P1 model. Comparison of the number of basis functions needed to achieve a given
order for the TDG method (denoted pTDG) and the DG method (denoted pDG).
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For the P3 model, me = 4 and one has (see Table 4.2)

pTDG = 8(order + 1), pDG = 5(order +
1

2
)(order +

3

2
).

Except for the order 1/2, one always get pTDG ≤ pDG.

order 1/2 3/2 5/2 7/2 9/2

pTDG 12 20 28 36 44
pDG 10 30 60 100 150

Table 4.2 – P3 model. Comparison of the number of basis functions needed to achieve a given
order for the TDG method (denoted pTDG) and the DG method (denoted pDG).

•
4-3.3.2 The P1 model when σa = 0

For the P1 model, one can derive a convergence estimate in L2 norm of the TDG scheme for the
dominant scattering regime (σs > 0, σa = 0) with a loss of convergence of a half degree compare
to Theorem 4.75. The main difficulty when studying the convergence of the scheme with σa = 0
is that the matrix R is not strictly positive anymore which results in a loss of control on the first
variable u1. For the TDG scheme applied to the P1 model, one can recover some control on u1

using the particular structure of the system and the fact that the TDG method uses solutions to
the equation as basis functions. We recall that, with ε = c = 1, the stationary two dimensional
P1 model reads 

1√
3

(
∂xu2(x) + ∂yu3(x)

)
= −σau1(x),

1√
3
∂xu1(x) = −σtu2(x),

1√
3
∂yu1(x) = −σtu3(x),

(4.113)

where u = (u1, u2, u3)T ∈ R3 is the unknown and we switch the axis x and y to recover the usual
notations. For a solution u = (u1, u2, u3)T to the P1 model one deduces from the structure of
(4.113) the following inequalities

|∂xu1(x)| ≤ C|u2(x)|, |∂yu1(x)| ≤ C|u3(x)|, C =
√

3σt. (4.114)

These inequalities can be used to control u1 with u2 and u3. Additionally, we need the general-
ization of the Poincaré inequality to discontinuous functions.

Lemma 4.78. Assume w ∈ H1(Th). One has

‖w‖2L2(Ω) ≤ C
(
‖∂xw‖2L2(Ω) + ‖∂yw‖2L2(Ω) +

1

h

∑
k

∑
j<k

‖[[w]]‖2L2(Σkj)
+
∑
k

‖w‖2L2(Σkk)

)
,

with h = maxΩk∈Th hk, hk = diam(Ωk), where [[w]] denotes the jump of the function across a face
and where C is a constant independent of h.

Proof. We use the mesh quasi uniformity (4.111) and the proof given in [Bre03] (see also [Arn82]
for a weaker result). �

The following lemma give a control of the L2 norm in term of the DG norm.
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Lemma 4.79. Assume w = (w1, w2, w3)T ∈ V (Th) and σa + σs > 0. One has

‖w‖L2(Ω) ≤
C√
h
‖w‖DG,

with h = maxΩk∈Th hk, hk = diam(Ωk) and where the constant C is independent of h.

Proof. Using the definition of the DG norm (2.24) with σa + σs > 0 one gets

‖w2‖2L2(Ω) ≤ C‖w‖
2
DG, ‖w3‖2L2(Ω) ≤ C‖w‖

2
DG. (4.115)

It remains to show ‖w1‖L2(Ω) ≤ C√
h
‖w‖DG. For the P1 model the matrix |M | reads

|M | =

1 0 0
0 n2

x nxny
0 nxny n2

y

 . (4.116)

Since w ∈ V (Th) and σa + σs > 0, the L2 generalization of the inequality (4.114) yields
‖∂xw1‖2L2(Ω) ≤ C‖w2‖2L2(Ω) and ‖∂yw1‖2L2(Ω) = C‖w3‖2L2(Ω), C 6= 0. Therefore, from the in-
equality (4.115), the definition (4.116) of the matrix |M | and the definition of the DG norm
(2.24) one deduces

‖∂xw1‖2L2(Ω) + ‖∂yw1‖2L2(Ω) +
∑
k

∑
j<k

‖[[w1]]‖2L2(Σkj)
+
∑
k

‖w1‖2L2(Σkk) ≤ C‖w‖
2
DG.

One concludes using V (Th) ⊂ H1(Th) and Lemma 4.78. �

We can now give a convergence result in L2 norm when σa = 0.

Theorem 4.80 (Convergence in the general regime: σa+σs > 0). Assume σa+σs > 0. Consider
the stationary two dimensional P1 model with the assumptions of Proposition 4.74 and 2k + 1
basis functions. One has the h-convergence estimate

‖u− uh‖L2(Ω) ≤ Chk−1‖u‖Wk+1,∞(Ω),

where u stands for the exact solution and uh for the approximate solution calculated by the TDG
method.

Proof. The case σa > 0 is already treated in Theorem 4.75. To treat the remaining case σa = 0
one can combine Lemma 4.79 and Propositions 4.74. The guaranteed order of convergence is the
worst case, that is k − 1. This completes the proof. �

Remark 4.81 (Case ε → 0+). It would be of course desirable to get uniform estimate in the
case ε→ 0+. The Theorem 4.80 in particular could be very helpful since the cases ε→ 0+ and
σa → 0 are closely related. However dependence in ε arises through the basis functions vi and
the solution u and this dependence must therefore be carefully studied when using the results
of the previous sections. Whereas it is possible to easily study this limit regime for the basis
functions vi, it is much harder for the solution u mostly because boundary layers may occur
depending on the boundary values. We note that initial boundary layers can also arise for time
dependent problems. These theoretical issues are left for future research. •
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In this chapter, the application of the TDG method to the two dimensional P1 and P3 models
is detailed. In particular, the results of Chapter 4 are used to give explicitly the basis functions
which can then be used for numerical applications. Additionally, two dimensional numerical
results are presented to illustrate some properties including the convergence of the method, its
ability to capture boundary layers and the asymptotic behavior of the scheme in the diffusive
regime.

5-1 General form of the PN model

From the first section of Chapter 4, we recall that the PN model can be written under the general
form (4.17)-(4.18), that is(

εIm∂t +A1∂x +A2∂y

)
u(t,x) = −Ru(t,x), (5.1)

with u ∈ Rm. The matrices A1 and A2 have the following block structure [Her16]

A1 = c

(
0 A
AT 0

)
∈ Rm×m, A2 = c

(
0 B
BT 0

)
∈ Rm×m, (5.2)
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where A, B ∈ Rme×mo are rectangular matrices and R is a diagonal matrix which might be
written under the form

R =

(
R1 0
0 R2

)
∈ Rm×m, (5.3)

where R1 ∈ Rme×me , R2 ∈ Rmo×mo are diagonal matrices. Moreover we have introduced the
parameters

c ∈ R+, ε ∈ R+
∗ .

The parameter ε is used to study the diffusive regime of the PN model since its first variable
admits a diffusion limit when ε→ 0. The parameter c will be considered as a scaling constant.

5-2 The P1 model

In this section, we derive stationary and time dependent solutions to the P1 model. For the two
dimensional P1 model, one has m = 3, me = 1, mo = 2 and the matrices read

A =
(

1√
3

0
)
, B =

(
0 1√

3

)
, R1 = εσa, R2 =

(
σt 0
0 σt

)
, (5.4)

where
σt := σεt := εσa +

σs
ε
.

Remark 5.1. To recover the usual notations used when studying the P1 model, the axis x and
y have been switched compare to the P1 model given in Chapter 4. The inversion of the axis
doesn’t change anything except that one now has to consider the transpose of the rotation matrix
Uθ. Therefore, the new rotation matrix reads

Ũθ = UTθ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 . (5.5)

•
5-2.1 Special stationary solutions

We calculate stationary solutions to the P1 model derived in Chapter 4. We start with the
exponential solutions when σa > 0.

Proposition 5.2 (Solutions to the P1 model when σa > 0). Take dk = (cos θk, sin θk)
T ∈ R2.

The following functions are solution to the P1 model

vk =

( √
σt

−√εσadk

)
e

1
c

√
3εσaσtdTk x, (5.6)

where σt = εσa + σs
ε .

Proof. We use the Theorem 4.25. From the definition of the matrices A and R1 (5.4) associated
with the P1 model, one has (AAT )−1R1 = 3εσa. This matrix has one eigenvalue µ1 = 3εσa
associated with the eigenvector w1 = 1. Taking the notations from Theorem 4.25, one has
z1 = (1,−

√
εσa
σt
, 0)T . Using the definition (5.5) of the rotation matrix Uθ and multiplying the

solution by
√
σt give the functions (5.6). The proof is complete. �
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Now, we give the polynomial solutions when σa = 0.

Proposition 5.3 (Polynomial solutions to the P1 model when σa = 0). Assume σa = 0. We
denote qk(x), k ∈ N, the scaled harmonic polynomials in two dimensions

q1 = 1, q2l =
1

l!
<((x−x0)+i(y−y0))l, q2l+1 =

1

k!
=((x−x0)+i(y−y0))k, for l ∈ N∗. (5.7)

The following functions are solutions to the P1 model

vk =

(
σs
ε qk

− c√
3
∇qk

)
. (5.8)

Proof. Let vk = (v1, v2, v3)T . The solutions to the P1 model when σa = 0 are given by Theorem
4.34. More precisely, from Corollary 4.49, one gets that the first component v1 is equal to the
harmonic polynomial qk. Using the definition (5.4) of the matrices A, B and R associated with
the P1 model one gets

c√
3
∂xv1 = −σtv2,

c√
3
∂yv1 = −σtv3.

Using σt = σs
ε completes the proof. �

5-2.2 Time dependent solutions

We derive here some special time dependent solutions to the P1 model. For other examples of time
dependent solutions which can be easily constructed or deduced from the stationary solutions
(5.6)-(5.7), see Section 4-2.4 of Chapter 4. In this section, the solutions that we consider are
product of time dependent polynomials and stationary exponentials.

Proposition 5.4 (Time dependent solutions when σa > 0). The following functions are solutions
to the two dimensional P1 model

w1,k(t,x) =

 −2cε
√
σaσt cos θk −

√
3εσt(εσa + σt)x− 2c

√
σaσtσt cos θkt

c
√
ε(εσa + σt) + ε

√
3σaσt(εσa + σt) cos θkx+ 2c

√
εσaσt cos2 θkt

ε
√

3σaσt(εσa + σt) sin θkx+ 2c
√
εσaσt cos θk sin θkt

 e
1
c

√
3εσaσtdTk x,

w2,k(t,x) =

 −2cε
√
σaσt sin θk −

√
3εσt(εσa + σt)y − 2c

√
σaσtσt sin θkt

ε
√

3σaσt(εσa + σt) cos θky + 2c
√
εσaσt cos θk sin θkt

c
√
ε(εσa + σt) + ε

√
3σaσt(εσa + σt) sin θky + 2c

√
εσaσt sin2 θkt

 e
1
c

√
3εσaσtdTk x,

(5.9)
with dk = (cos θk, sin θk)

T .

Proof. We start searching for solutions under the form

u(t,x) = q(t,x)eλdTk x, (5.10)

where q(t,x) can be written

q(t,x) = q0 + q1x+ q2y + q3t. (5.11)

Using (5.10) in (5.1) and dropping the exponential terms, one has(
ε∂t +A1∂x +A2∂y + (A1λ cos θk +A2λ sin θk +R)

)
q(t,x) = 0.
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Extending q one finds(
λ(A1 cos θk +A2 sin θk) +R

)(
q0 + q1x+ q2y + q3t

)
+A1q1 +A2q2 + εq3 = 0.

This equality holds for all x, y and t, thus one gets the following system

(
λ(A1 cos θk +A2 sin θk) +R

)
q3 = 0,(

λ(A1 cos θk +A2 sin θk) +R
)
q2 = 0,(

λ(A1 cos θk +A2 sin θk) +R
)
q1 = 0,(

λ(A1 cos θk +A2 sin θk) +R
)
q0 = −A1q1 −A2q2 − εq3.

(5.12)

Therefore, the solutions to (5.1) under the form (5.10) with q given by (5.11) satisfy the system
(5.12). One notices from the rotational relations of the PN model (see for example Remark 4.14)
that UT−θkA1U−θk = A1 cos θk +A2 sin θk. Using U−θkRU

T
−θk = R and UTθk = U−θk , one finds

λ
(
A1 cos θk +A2 sin θk

)
+R = UT−θk

(
λA1 + U−θkRU

T
−θk

)
U−θk = Uθk

(
λA1 +R

)
UTθk . (5.13)

And one gets
ker
(
λ(A1 cos θk +A2 sin θk) +R

)
= Uθk

(
kerλA1 +R

)
. (5.14)

Therefore, a necessary condition for the system (5.12) to admits a non zero solution is det
(
λA1 +

R
)

= 0. This has already been studied in the one dimensional case (see the proof of Proposition
3.2) and one finds

λ = ±1

c

√
3εσaσt.

In the following, we take λ = 1
c

√
3εσaσt and study ker

(
λ(A1 cos θk+A2 sin θk)+R

)
. From (5.14)

this is equivalent to study the kernel of λA1 +R and then apply the rotation Uθk . The study of
the kernel of A1λ+R has already been done in the one dimensional case and one gets

ker(A1λ+R) = Span
(

(−
√
σt,
√
εσa, 0)T

)
.

Setting w ∈ kerλA1 +R one finds

Span
(
Uθkw

)
= Span

(
(−
√
σt,
√
εσa cos θk,

√
εσa sin θk)

T
)

= ker
(
λ(A1 cos θk +A2 sin θk) +R

)
.

Using the relations (5.12) one gets

q1 = αUθkw, q2 = βUθkw, q3 = γUθkw, α, β, γ ∈ R.

From the last equality of (5.12), one sees that −A1q1−A2q2−εq3 ∈ Im
(
λ(A1 cos θk+A2 sin θk)+

R
)
. It implies

−A1q1 −A2q2 − εq3 ∈ ker
(

(λ(A1 cos θk +A2 sin θk) +R)T
)⊥

Since the matricesA1, A2 andR are symmetric, ker
(
λ(A1 cos θk+A2 sin θk)+R

)T
= ker

(
λ(A1 cos θk+

A2 sin θk)+R
)

= Span(Uθkw). A necessary condition is then
(
Uθkw

)T (−A1q1−A2q2−εq3

)
= 0

which is equivalent to

2c
√
σaσt

(
α cos θk + β sin θk

)
=
√

3ε(εσa + σt)γ.

In the following, we consider two choices
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• α =
√

3σt(σa + σt), β = 0, γ = 2
√
σaσt cos θk,

• α = 0, β =
√

3σt(σa + σt), γ = 2
√
σaσt sin θk.

With the first choice one gets from the fourth equation of (5.12)

α =
√

3εσt(εσa + σt), β = 0, γ = 2c
√
σaσt cos θk,

q0 =
(
− 2cε

√
σaσt cos θk, c

√
ε(εσa + σt), 0

)T
+ δUθkw

T , δ ∈ R.

and with the second choice one gets

α = 0, β =
√

3εσt(εσa + σt), γ = 2c
√
σaσt sin θk,

q0 =
(
− 2cε

√
σaσt sin θk, 0, c

√
ε(εσa + σt)

)T
+ δUθkw

T , δ ∈ R.

Setting δ = 0 and using u(t,x) = (q0 + q1x+ q2y+ q3t)e
λdTk x, one finds the solutions w1,k(t,x)

for the first case and w2,k(t,x) for the second case. This completes the proof. �

Remark 5.5 (Two dimensional time dependent solutions using the rotational invariance). It
is also possible to derive two dimensional time dependent solutions from the one dimensional
solutions given in Proposition 3.2. We recall that the matrices A1 in one and two dimensions
read

A1D
1 =

(
0 1
1 0

)
, A2D

1 =

0 1 0
1 0 0
0 0 0

 ,

where A1D
1 and A2D

1 denote respectively the matrices A1 in one and two dimensions. Therefore,
to get a solution to the two dimensional P1 model, one can take a solution to the one dimensional
P1 model for the first two components and a third component which is zero. Using the time
dependent solution given in the Proposition 3.2 of Chapter 3, one deduces that a solution to the
two dimensional P1 model is

v(t,x) =

− c
ε(εσa − σt)−

√
3σaσt
ε (εσa + σt)x− 2 cεσaσtt√

3σa(εσa + σt)x+ 2cσa
√

σaσt
ε t

0

 e
1
c

√
3εσaσtx.

One can now use Proposition 4.19 and apply a rotation to this solution with the rotation matrix
(5.5). This gives the following solutions

w3,k(t,x) =

 c
ε(σt − εσa)−

√
3σaσt
ε (εσa + σt)(cos θkx+ sin θky)− 2 cεσaσtt√

3σa(εσa + σt) cos θk(cos θkx+ sin θky) + 2c
√

σaσt
ε σa cos θkt√

3σa(εσa + σt) sin θk(cos θkx+ sin θky) + 2c
√

σaσt
ε σa sin θkt

 e
1
c

√
3εσaσtdTk x,

(5.15)
with dk = (cos θk, sin θk)

T . However, the solutions (5.15) can be directly deduced from the
solutions (5.6) and (5.9). Indeed one notices

w3,k(t,x) =

√
σa

ε
√
σt

(
cos θkw1,k(t,x) + sin θkw2,k(t,x)

)
+ c

σt + εσa
ε
√
σt

vk(x).

Therefore it is enough to consider only the solutions (5.6)-(5.9). •
From the solutions (5.9), one can derive time-dependent polynomial solutions when σa = 0.
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Proposition 5.6 (Time dependent polynomial solutions when σa = 0). The following functions
are solutions to the two dimensional P1 model when σa = 0

v1(x) =

−
2√
3

√
εc2∂x −

√
3εσ2

t x− 2√
3ε
c2σtt∂x√

εcσt +
√
εcσtx∂x + 2

3
√
ε
c3t∂2

x√
εcσtx∂y + 2

3
√
ε
c3t∂xy

 qk(x),

v2(x) =

−
2√
3

√
εc2∂y −

√
3εσ2

t y − 2√
3ε
c2σtt∂y√

εcσty∂x + 2
3
√
ε
c3t∂xy√

εcσt +
√
εcσty∂y + 2

3
√
ε
c3t∂2

y

 qk(x),

(5.16)

where qk(x) is a harmonic polynomial.

Proof. Consider 2l + 1 functions under the form

fk(x) = e
1
c

√
3εσaσtdTk x, i = 1, ..., 2l + 1.

One notices

1

c

√
3εσaσt cos θkfk(x) = ∂xfk(x),

1

c

√
3εσaσt sin θkfk(x) = ∂yfk(x) (5.17)

From Chapter 4 Section 4-2.3 (see also [GHP09]), there exists ai,j ∈ R, 1 ≤ i, j ≤ 2l + 1 such
that

2l+1∑
k=1

ak,jfk(x) →
σa→0

qj(x), 1 ≤ j ≤ 2l + 1.

We would like to use the same linear combinations and pass to the limit in (5.17). Of course, it
requires to prove

lim
σa→0

( 2k+1∑
k=1

ak,j∂xfk(x)
)

= ∂x

(
lim
σa→0

2k+1∑
k=1

ak,jfk(x)
)
. (5.18)

For the simplicity and the brevity of the proof, we use the relations (5.18) without proving them
and check a posteriori that the functions obtained are solutions to the P1 model. We consider
the solutions (5.9) and use the equalities (5.17) to replace cos θk and sin θk by ∂x and ∂y. One
gets

w1,k(t,x) =

−
2√
3

√
εc2∂x −

√
3εσt(εσa + σt)x− 2√

3ε
c2σtt∂x√

εc(εσa + σt) +
√
εc(εσa + σt)x∂x + 2

3
√
ε
c3t∂2

x√
εc(εσa + σt)x∂y + 2

3
√
ε
c3t∂xy

 e
1
c

√
3εσaσtdTk x,

w2,k(t,x) =

−
2√
3

√
εc2∂y −

√
3εσt(εσa + σt)y − 2√

3ε
c2σtt∂y√

εc(εσa + σt)y∂x + 2
3
√
ε
c3t∂xy√

εc(εσa + σt) +
√
εc(εσa + σt)y∂y + 2

3
√
ε
c3t∂2

y

 e
1
c

√
3εσaσtdTk x.

Assuming the relations (5.18) are true, one finds the functions (5.16) in the limit σa → 0. One can
check that these functions are solutions to the P1 model when σa = 0. The proof is complete. �
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5-3 The P3 model

In this section, we derive stationary solutions to the P3 model. For the P3 model one has m = 10,
me = 4, mo = 6 and the matrices read

A =


0 1√

3
0 0 0 0

1√
5

0
√

3
14 − 1√

70
0 0

0 − 1√
15

0 0
√

6
35 0

0 1√
5

0 0 − 1√
70

√
3
14

 , B =


1√
3

0 0 0 0 0

0 1√
5

0 0 − 1√
70
−
√

3
14

− 1√
15

0 0
√

6
35 0 0

− 1√
5

0
√

3
14

1√
70

0 0

 ,

R1 =


εσa 0 0 0
0 σt 0 0
0 0 σt 0
0 0 0 σt

 , R2 = σtImo ,

(5.19)
where Imo is the identity matrix of Rmo×mo .

We calculate the stationary solutions derived in Chapter 4 for the particular case of the P3 model.
We start with the exponential solutions when σa > 0.

Proposition 5.7 (Stationary solutions when σa > 0). Take dk = (cos θk, sin θk)
T ∈ R2. The

following functions are solutions to the P3 model

v1(x) =



0

−
√

30 cos 2θk
0√

30 sin 2θk√
14 cos θk

−
√

14 sin θk√
15 cos 3θk
− cos θk
sin θk

−
√

15 sin 3θk


e

1
c

√
7
3
σtdTk x

, v2(x) =



0√
2 sin 2θk√

6√
2 cos 2θk

0
0

−
√

3 sin 3θk
−
√

5 sin θk
−
√

5 cos θk
−
√

3 cos 3θk


e

1
c

√
7σtdTk x,

v3(x) =



√
σt

14
√

15
ρ+

ε
√
σtσa sin 2θk

− ε
√
σtσa√

3

ε
√
σtσa cos 2θk

− 1
630
√

2
υ−τ+ sin θk

− 1
630
√

2
υ−τ+ cos θk

− ε
2
√

21
σaυ

− sin 3θk
ε

2
√

35
σaυ

− sin θk
ε

2
√

35
σaυ

− cos θk

− ε
2
√

21
σaυ

− cos 3θk



e
1
c
υ−
√

σt
18

dTk x, v4(x) =



√
σt

14
√

15
ρ−

ε
√
σtσa sin 2θk

− ε
√
σtσa√

3√
σtσa cos 2θk

−
√
ε

630
√

2
υ+τ− sin θk

−
√
ε

630
√

2
υ+τ− cos θk

−
√
ε

2
√

21
σaυ

+ sin 3θk√
ε

2
√

35
σaυ

+ sin θk√
ε

2
√

35
σaυ

+ cos θk

−
√
ε

2
√

21
σaυ

+ cos 3θk



e
1
c
υ+
√

σt
18

dTk x,

(5.20)
with σt = εσa + σs

ε and where we use the following notations κ =
√

605ε2σ2
a + 14εσaσt + 245σ2

t ,
υ± =

√
55εσa + 35σt ±

√
5κ, τ± =

√
5εσa + 35

√
5σt ± 5κ, ρ± = (υ±)2 − 110εσa.
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Proof. With the definitions (5.19) of the matrices A andR1, one finds that the matrix (AAT )−1R1

admits the following eigenvalues

µ1 =
7

3
σt, µ2 = 7σt, µ3 =

(υ−)2

18
, µ4 =

(υ+)2

18
,

and the following eigenvectors

w1 =


0
1
0
0

 , w2 =


0
0√
3

1

 , w3 =


−11
√

5εσa+7
√

5σt+κ
14
√

3εσa
0
− 1√

3

1

 , w4 =


−11
√

5εσa−7
√

5σt+κ
14
√

3εσa
0
− 1√

3

1

 .

Then, it is just the application of the Theorem 4.34 using the Definition 4.20 of the rotation
matrix Uθk . After easy simplifications, and considering the correct scaling, one finds the functions
(5.20). The proof is complete. �

Now we give some polynomial solutions when σa = 0.

Proposition 5.8 (Polynomial solutions when σa = 0). The polynomial solutions to the P3 model
when σa = 0 are given by the Theorem 4.34 and can be recursively calculate with the formulas
(4.41)-(4.42)-(4.43). For example the first five polynomial solutions read

v1(x) =



1
0
0
0
0
0
0
0
0
0


, v2(x) =



σtx
0
0
0
0
− c√

3

0
0
0
0


, v3(x) =



σty
0
0
0
− c√

3

0
0
0
0
0


,

v4(x) =



σ2
t xy
2c2√

15

0
0

−σtc√
3
x

−σtc√
3
y

0
0
0
0


, v5(x) =



1
2σ

2
t (x

2 − y2)
0
0

2c2√
15

σtc√
3
y

−σtc√
3
x

0
0
0
0



(5.21)

Proof. We apply the Theorem 4.34 and use the recurrence formulas (4.41)-(4.42)-(4.43). Rescal-
ing the functions if needed give the solutions (5.21). The proof is complete. �

Remark 5.9. The solutions (5.21) which are calculated with the recurrence formulas from
Theorem 4.34 are the same than the solutions obtained using Birkhoff and Abu-Shumays method
in Section 4-2.2 with q = 1, x, y, xy and x2 − y2. •
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Remark 5.10 (Time dependent solutions). As we will see in the numerical tests, time dependent
basis functions may deteriorate the condition number of the mass matrix when they are used
together with stationary basis functions. In particular it seems difficult to perform realistic two
dimensional numerical tests for the P1 model with time dependent basis functions under the
form

v(t,x) = q(t,x)eλ(x cos θ+y sin θ). (5.22)

Therefore, we do not try to construct the solutions (5.22) for the P3 model since such basis
functions probably require a good preconditioner to be used in our tests.

Note however that we will be able to use the exponential in time solutions constructed in Section
4-2.4 of Chapter 4. •

5-4 Numerical results

The goal of this section is to validate on numerical examples some properties such has the
convergence, the ability to capture boundary layers and the asymptotic-preserving (AP) property
of the scheme. The tests will be perform in two dimensions for stationary and time dependent
problems. Moreover, meshes made of random quads are using. A random quad mesh is made of
N ×N quads, N ∈ N∗, where the vertices are randomly moved around their initial position by
a factor of at most 33%.

In the following, we may identify the number and the type of the stationary basis functions
used in the TDG scheme by their directions. To remove all ambiguity, we make the following
comments

— For the stationary P1 model, the functions (5.6) admit one solution per direction. Therefore,
when we say we consider the P1 model with n directions, it means that the TDG method is
applied with n basis functions. On the contrary, for the stationary P3 model the functions
(5.20) admit 4 solutions per direction. Therefore, when we say we consider the P3 model
with n directions, it means that the TDG method is applied with 4n basis functions.

— When σa = 0 the polynomial solutions (5.8)-(5.21) do not strictly speaking dependent on
a direction. For simplicity, we may still speak about direction to describe the number of
basis functions used in our scheme. For the P1 model, n directions will simply mean the
first n polynomial solutions (5.8). For the P3 model, n directions will mean 3n exponential
basis functions and the first n polynomial solutions (5.21).

More precisely, we consider the following possible choices. With 3 basis functions per cell, we
consider the following equi-distributed directions

d1 = (1, 0)T , d2 = (cos
2π

3
, sin

2π

3
)T , d3 = (cos

4π

3
, sin

4π

3
)T . (5.23)

With 4 basis functions per cell, we consider the following equi-distributed directions

d1 = (1, 0)T , d2 = (0, 1)T , d3 = (−1, 0)T , d4 = (0,−1)T . (5.24)

With 5 basis functions per cell, we consider the following equi-distributed directions

d1 = (1, 0)T , d2 = (cos
2π

5
, sin

2π

5
)T , d3 = (cos

4π

5
, sin

4π

5
)T ,

d4 = (cos
6π

5
, sin

6π

5
)T , d5 = (cos

8π

5
, sin

8π

5
)T .

(5.25)
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Remark 5.11 (Normalized exponentials). For some numerical tests, the basis functions of the
TDG method can be written

zeλdTx.

In particular, if λ >> 1 the basis functions are stiff exponentials. To keep the calculation of
the integrals bounded, the exponentials are normalized in each cell. That is, we consider basis
functions under the form

zeλdT (x−x0),

where x0 is the node of the cell where the function eλdTx takes its maximum value. •

5-4.1 Convergence with absorption

Consider the stationary P1 model in two dimensions. Let x = (x, y)T ,Ω = [0, 1]2, ε = 1, c =√
3, σa = 1, σs = 1. The exact solution we consider here is

uex(x) =
(

cos(y)e
√

3x,−(
√

3/2) cos(y)e
√

3x, 0.5 sin(y)e
√

3x
)T
.

We assumeM−u = M−uex is imposed on the boundary and consider n ∈ N basis functions (5.6)
define as

ek(x) = (
√

2,dk)e
√

2(dk,x), k = 1, ..., n,

with dk =
(

cos(θk), sin(θk)
)T
, θk = 2(k − 1)π/n.

Results obtained with 3, 5 and 7 basis functions are displayed on the left of Figure 5.1. As stated
in Theorem 4.75 for the particular case N = 1, one only needs two additional basis functions to
increase the order by a factor 1. Note however that the orders obtained here are slightly better
than those predicted in Theorem 4.75: with 3, 5 and 7 basis functions, one gets respectively
order 0.8, 1.5 and 2.5.
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Figure 5.1 – P1 model. Case σa = 1 on the left and σa = 0 on the right. L2 error in logarithmic
scale of the TDG method for the stationary two dimensional P1 model. Random
meshes.
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5-4.2 Convergence without absorption

Consider the stationary P1 model in two dimensions with the same parameters as before but
without absorption: x = (x, y)T ,Ω = [0, 1]2, ε = 1, c =

√
3, σa = 0, σs = 1. The exact solution is

uex(x) =
(

cos(y)ex,− cos(y)ex, sin(y)ex
)T
.

Again, M−u = M−uex is imposed on the boundary. We consider the polynomial basis functions
(5.8).

Results obtained with 3, 5 and 7 basis are displayed on the right of Figure 5.1. The orders are
very close to those obtained in the case σa > 0 (left of the Figure 5.1) and therefore better, by a
factor 1/2, than those predict by Theorem 4.80. With 3, 5 and 7 basis functions, one respectively
gets order 0.5, 1.5 and 2.5.

5-4.3 A first asymptotic study when ε << 1

We study here the asymptotic behavior of the TDG method when ε → 0. More precisely, we
consider the test case from [BDFL16] for the time dependent P1 model. Let x = (x, y)T ,ΩS =
[0, 1]2, T = 0.036, σa = 0, σs = 1, c = 1, and consider the solution

p0 = f +
ε2

σs
∂tf, v0 = − ε

σs
∇f,

with
f(t,x) = α(t) cos(2πx) cos(2πy),

and where α(t) is defined as

α(t) =
λ2

λ2 − λ1
eλ1t − λ1

λ2 − λ1
eλ2t,

λ1 = −
σs

(√
1− ε2

σ2
s
32π2 + 1

)
2ε2

, λ2 = −
σs

(√
1− ε2

σ2
s
32π2 − 1

)
2ε2

.

One can check that (p0,v0)T is indeed a solution to the P1 model when σa = 0, see [BDFL16]
for details. An exact relation is enforced between ε and the space step h = 1

N . The relation
between ε and h reads

ε = 0.01(40h)τ , for τ ∈
{

0,
1

4
,
1

2
, 1, 2

}
.

The error between the exact solution and the numerical solution is computed numerically in
function of h for the different values of τ . The result is displayed in Figure 5.2 when using the
TDG method with the first 3 stationary polynomial basis functions (5.8) and dt = 0.36h2. One
observes the convergence of the solution even for small values of ε.

5-4.4 A second asymptotic study when ε << 1

We study a second numerical example when ε << 1. We consider the spatial domain ΩS =
[0, 1] × [0, 1] and the final time T = 0.01. We take σa = 0, σs = 1/3 and ε = 10−3. In
this regime, the first variable of the PN model follows a diffusion equation [Her16, Theorem 1].
Therefore, we compare our numerical solution with the two dimensional fundamental solution of
the heat equation centered in (0.5, 0.5)T

p(t,x) =
1

4π(t+ 10−4)
e
− (x−0.5)2+(y−0.5)2

4(t+10−4) . (5.26)
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Figure 5.2 – P1 model. Study of the L2 error for the test case 5-4.3 at the final time in loga-
rithmic scale. TDG method with 3 basis functions and ε = 0.01(40h)τ .

On the boundary of the domain we impose M−u with

u(t,x) =
(
p(t,x), 0, ..., 0

)T
.

The P1 model.

For the P1 model, we compare the results obtained with the DG and TDG method on a 80× 80
mesh with dt = T/80. More precisely, we consider the two following cases
• The DG method with constant basis functions only (= finite volume) for a total of 3 basis

functions per cell.
• The DG method with affine basis functions (that is 1, x, y) for a total of 9 basis functions

per cell.
• The TDG method with the first three polynomial basis functions (5.8) for a total of 3 basis

functions per cell.
The limit solution (5.26), calculated on a 80 × 80 mesh, and the first variable of the numerical
solution is represented in Figure 5.3. Figure 5.3 illustrates that the DG method with only
constant basis function is too diffusive. On the contrary, one recovers a good approximation for
the TDG method with the same number of basis functions. This illustrates the AP property of
the TDG scheme on the P1 model. To recover a good accuracy, another possibility is to increase
the number of basis functions of the DG method and consider a total of 9 basis functions. In
such case, the diffusion limit is indeed recovered but at the cost of considering three time more
basis functions than the TDG scheme.

An other interesting question is whether the special choice of basis functions for the TDG method
has an effect on the condition number of the mass matrix. In Figure 5.4, an estimation of the
condition number with different values of ε is given for the two following cases
• The DG method with affine basis functions (that is 1, x, y) for a total of 9 basis functions

per cell.
• The TDG method with the first three polynomial basis functions (5.8) if σa = 0 or the 3

directions (5.25) if σa > 0 for a total of three basis functions per cell in both cases.
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Figure 5.3 – P1 model. Representation of the first variable when ε = 10−3 for the test case
5-4.4. Top left: limit solution. Top right: DG scheme with 3 basis functions per
cell. Bottom left: DG scheme with 9 basis functions per cell. Bottom right: TDG
scheme with only 3 basis functions per cell. Good behavior of the numerical solution
illustrates the AP property.

The condition number is calculated on a 10 × 10 mesh using the singular values of the matrix.
On the left of Figure 5.4, the value σa = 0 is taken and therefore only polynomial solutions are
used in the basis functions. As one might have expected, the condition number of the TDG
method is not greater than the condition number of the DG method in this case. On the right
of Figure 5.4, the same test case but with σa = 1 is considered. This time one sees that the
value of the condition number is greater for the TDG method compare to the DG method. This
is probably because, when σa = 1, the following exponentials are used in the basis functions of
the TDG method (with a rescaling by

√
ε compare to the solutions given in (5.6))

vk(x) =

 √ε2σa + σs
−ε√σa cos θk
−ε√σa sin θk

 e
√

3εσa(εσa+σs
ε

)dTk x →
ε→0

√σs0
0

 e
√

3σaσsdTk x. (5.27)

Note that, since the P1 model is a very simple approximation of the transport equation, no
boundary layers exist for this model when ε → 0. Consequently, the exponentials (5.27) are
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not stiff when ε → 0. However, when ε → 0, the vector in front of the exponentials in (5.27)
tends toward the same limit for all the solutions vk. This may explain why such basis functions
deteriorate the condition number in such limit case.
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Figure 5.4 – P1 model. Comparison of the condition number between the TDG and the DG
method. On the left σa = 0 (polynomial basis functions used in the TDG method)
and σa = 1 on the right (exponential basis functions used in the TDG method).

The P3 model.

For the P3 model we also compare the results obtained with the DG and TDG method on a
80× 80 mesh with dt = T/80. More precisely, we consider the two following cases
• The DG method with constant basis functions only (= finite volume) for a total of 10 basis

functions per cell.
• The DG method with affine basis function (that is 1, x, y) for a total of 30 basis functions

per cell.
• The TDG method with the basis functions (5.20)-(5.21) depending on the 3 directions

(5.23) for a total of 12 basis functions per cell.
Note that, unlike the P1 model, the TDG method applied to the P3 model uses exponential and
polynomial basis functions. The limit solution, which is the same as before, and the first variable
of the numerical solution are represented in Figure 5.3. As for the P1 model, Figure 5.5 illustrates
that the DG method with only constant basis function is too diffusive. On the contrary, one
recovers a good approximation with the TDG method. This illustrates the AP property of the
TDG scheme on the P3 model. As for the P1 model, the DG scheme with affine basis functions
recovers the correct diffusion limit but with the disadvantage of using approximately three time
more basis functions than the TDG scheme.

5-4.5 Boundary layers

In this test, a two dimensional test with discontinuous coefficients is studied. The domain is
Ω = [0, 1]2 and we define Ω1 (resp. Ω2) as Ω1 = [0.35, 0.65]2 (resp. Ω2 = Ω \Ω1). We take ε = 1,
c = 1 and

σa = 2× 1Ω1(x), σs = 2× 1Ω2(x) + 105 × 1Ω1(x).

The absorption coefficient has compact support in Ω1 while the scattering coefficient is discon-
tinuous and takes a high value in Ω1. Even if we consider random meshes, the interface between
Ω1 and Ω2 is a straight line. The geometry and parameters of this test are represented in Figure
5.6.
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Figure 5.5 – P3 model. Representation of the first variable when ε = 10−3 for the test case
5-4.4. Top left: limit solution. Top right: DG scheme with 10 basis functions
per cell. Bottom left: DG scheme with 30 basis functions per cell. Bottom right:
TDG scheme with only 12 basis functions per cell. Good behavior of the numerical
solution illustrates the AP property.

5-4.5.1 Trefftz discontinuous Galerkin method

The P1 model.

For the TDG method, one must choose the directions of the basis functions in Ω1 since σa > 0.
As we will see, the choice of directions at the interface plays an important role to correctly
capture the boundary layers. In particular, it seems essential to locally get the one dimensional
direction perpendicular to the interface associated with the boundary layer. Therefore, we make
the special choice of directions (5.24) at the interface in Ω1. Such directions are well adapted
if one considers the one dimensional problem at the interface. A graphical illustration of the
adaptive directions at the interface is provided on the right of Figure 5.6.

To show why it can be challenging for standard schemes to capture boundary layers, we compare
the TDG method with the standard DG method on a coarse 20 × 20 mesh. More precisely, we
consider the following cases

• The DG method with constant basis functions only (= finite volume) for a total of 3 basis
functions per cell.
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Figure 5.6 – On the left: Domain and boundary condition for the two dimensional boundary
layers test. On the right: representation of adaptive directions at the interface.
In this example: the 3 equi-distributed directions (5.23) in each cell except at the
interface where the directions are locally adapted into (5.24).

• The DG method with affine basis functions (that is 1, x, y) for a total of 9 basis functions
per cell.

• The TDG method with the exponential and polynomial basis functions (5.6)-(5.8) depend-
ing on the 3 directions (5.23), for a total of 3 basis functions per cell, and on the 4 directions
(5.24) at the interface.

• The TDG method with the the exponential and polynomial basis functions (5.6)-(5.8)
depending on the 5 directions (5.25), for a total of 5 basis functions per cell, and on the 4
directions (5.24) at the interface.

The reference solution represented in Figure 5.7 is calculated on a 200×200 mesh with the TDG
method using 5 basis functions per cell except at the interface where the four adaptive directions
(5.24) are used.

In Figure 5.7, we represent the first variable. One observes that the boundary layer is not
correctly captured by the DG scheme. The approximation given by the TDG scheme seems
more accurate.

In Figure 5.8, we take a one dimensional cut at y = 0.5 to compare more precisely the numerical
results. The graphic on the left shows that, with less basis functions, the TDG method gives a
better approximation than the DG method. Our interpretation is that it is because the boundary
layer is correctly captured by TDG but poorly captured by DG. This will be confirmed by the
enrichment approach of Section 5-4.5.2.

The graphic on the right of Figure 5.8 illustrates why it is very important to use the directions
(5.24) at the interface to obtain a satisfactory discretization of the boundary layer on a coarse
meshes. We consider the TDG method with 5 basis functions per cell and compare two cases

• In the first one, the directions are (5.25) in all cells of Ω1.

• In the second one, the directions are (5.25) except at the interface where the directions
(5.24) are used.

The graphic shows that the TDG method gives a non correct approximation with only the
directions (5.25). However, if one locally adapts the directions at the interface, the TDG method
recovers a very good accuracy. Once again, our interpretation is that it is because the boundary
layer is correctly captured with these parameters.
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Figure 5.7 – P1 model. Representation of the first variable for the test case 5-4.5. Top left:
reference solution. Top center: DG scheme with 3 basis functions per cell. Top
right: DG scheme with 9 basis functions per cell. Bottom left: TDG scheme with 3
basis functions per cell. Bottom right: TDG scheme with 5 basis functions per cell.
For the TDG scheme, the directions at the interface in Ω1 are locally adapted into
the 4 directions (5.24).

As we have seen in Figure 5.4, one possible drawback of the Trefftz method is the deterioration of
the condition number. This is particularly true here since stiff exponentials are used in the basis
functions. The Figure 5.9 compares the condition number obtained with the Trefftz method with
and without preconditioning where the preconditioner considered here is a simple one diagonal
on the left and on the right. The Figure 5.9 shows that the condition number is significantly
improved by using this simple preconditioner. Therefore, studying efficient preconditioner in the
case of the Trefftz method can be an interesting perspective for future research.

The P3 model.

For this particular numerical test, there is no visible difference between the solutions to the P1

and P3 models. However, since the basis functions differ from the P1 to the P3 models, it is still
interesting to perform the boundary layer test on the P3 model.

The reference solution is calculated on a 200 × 200 random mesh with the 3 directions (5.23)
and adaptive directions (5.24) at the interface. We do not calculate the reference solution with 5
basis functions per cell, as we did for the P1 model, due to some conditioning issue. We compare
the following cases on a coarse 20× 20 mesh
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Figure 5.8 – P1 model. One dimensional representation of the variable p at y = 0.5 for the
test case 5-4.5. Left: comparison between the DG method with 3 basis/cell, the
DG method with 9 basis/cell, the TDG method with 3 basis/cell and the TDG
method with 5 basis/cell. In both cases for the TDG method, the directions at the
interface in Ω1 are locally adapted into the 4 directions (5.24). Right: comparison
between the TDG method with directions (5.25) only and the TDG method where
the directions at the interface in Ω1 are locally adapted into the 4 directions (5.24).
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Figure 5.9 – P1 model. Comparison of the condition number between the TDG method with
no preconditioner and the TDG method with one simple preconditioner diagonal on
the left and on the right.

• The DG method with constant basis functions only (= finite volume) for a total of 10 basis
functions per cell.

• The DG method with affine basis functions (that is 1, x, y) for a total of 30 basis functions
per cell.

• The TDG method with the basis functions (5.20)-(5.21) depending on the 3 directions
(5.23), for a total of 12 basis functions per cell, and on the 4 directions (5.24) at the
interface.
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• The TDG method with the basis functions (5.20)-(5.21) depending on the 5 directions
(5.25), for a total of 20 basis functions per cell, and the 4 directions (5.24) at the interface.

The results given in Figure 5.10 are very similar to the P1 case. One notices a better approxima-
tion of the solution for the TDG method with less degrees of freedom compared to the standard
DG scheme.

Figure 5.10 – P3 model. Representation of the first variable for the test case 5-4.5. Top left:
reference solution. Top center: DG scheme with 10 basis functions per cell. Top
right: DG scheme with 30 basis functions per cell. Bottom left: TDG scheme with
12 basis functions per cell. Bottom right: TDG scheme with 20 basis functions per
cell. For the TDG scheme, the directions at the interface are locally adapted into
the 4 directions (5.24).

5-4.5.2 Enriched discontinuous Galerkin method

Numerical tests with boundary layers are well adapted to consider enrichment strategy. We
consider the enriched discontinuous Galerkin method which consists to start from a standard
DG basis and add locally (i.e. in the boundary layer) some exponential solutions. In this
example, we apply the enrichment strategy to the stationary two dimensional P1 model.

In the previous examples, the directions were adapted without assuming any a priori physical
knowledge of the solution. Indeed, the directions (5.24) were chosen such that they could capture
increasing or decreasing boundary layers at the interface. But it is also possible to use the physical



116 NUMERICAL RESULTS

knowledge of the user and consider only one or two directions in the boundary layer. Here for
example, one can assume that the local variation of the boundary layer is known to reduce the
number of basis functions added. More precisely

• For the left interface (x = 0.35, 0.35 ≤ y ≤ 0.65), the boundary layer is a decreasing
function with respect to x so we add the direction d = (−1, 0)T .

• For the right interface (x = 0.65, 0.35 ≤ y ≤ 0.65), the boundary layer is an increasing
function with respect to x so we add the direction d = (1, 0)T .

• For the bottom interface (y = 0.35, 0.35 ≤ x ≤ 0.65), the boundary layer is a decreasing
function with respect to y so we add the direction d = (0,−1)T .

• For the top interface (y = 0.65, 0.35 ≤ x ≤ 0.65), the boundary layer is an increasing
function with respect to y so we add the direction d = (0, 1)T .

Note that we add at most one basis function in the cells except at the corners of Ω1 where we
add two basis functions. For a graphical illustration of the procedure, see Figure 5.11.
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Figure 5.11 – Representation of the enrichment strategy. In this example, basis functions cor-
responding to the discontinuous Galerkin method are used in all the cells. In
the boundary layer one or two exponential solutions (5.6) are locally added. The
arrows represent the directions of these solutions.

Figure 5.12 – P1 model. On the left: reference solution. Center: DG method with 3 basis
functions per cell. On the right: DG method with 3 basis functions per cell where
some exponential solutions are locally added in the boundary layer.
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In Figure 5.12, we compare the two following cases on a coarse 20× 20 mesh

• DG scheme with constant basis functions only for a total of three basis functions per cell.

• Same DG scheme (constant basis functions) except at the interface where we locally add
one or two exponential solutions as describe above.

The reference solution is the same we used before for the P1 model. One sees that the approxi-
mation is much better for the enriched method.

5-4.6 A lattice problem

5-4.6.1 Comparison between the TDG and DG method

Figure 5.13 – Domain for the lattice problem 5-4.6.

We consider a lattice problem [BDF15, Bru02, Her16, SFL11]. The spatial domain ΩS = [0, 7]×
[0, 7] is represented in Figure 5.13 and we take T = 3.2. The white area is a purely scattering
region while the striped and black areas are purely absorbing regions. Additionally, the black
region contain a source of particles. More precisely, let Ωc be the union of the eleven striped
squares and the black square in Figure 5.13, then one has{

σa(x) = 10, σs(x) = 0, if x ∈ Ωc,

σa(x) = 0, σs(x) = 1, else.

Note that for some authors σa = 0, σs = 1, in the central region [Bru02, Her16] while other
authors take σa = 10, σs = 0 [BDF15, SFL11]. These two choices give similar numerical results
and we consider here the second option. We recall that Friedrichs systems with a source term
read (

∂t +A1∂x +A2∂y

)
u(t,x) = −Ru(t,x) + f(x). (5.28)

In this example, the source f(x) ∈ Rm is contained in the black region{
f(x) = σa(x)× e1, if x ∈ [3, 4]2,

f(x) = 0, else,

where e1 = (1, 0, ..., 0)T ∈ Rm. For the basis functions which depend on the source of particles,
we use the methodology described in Section 2-2.3 of Chapter 2. That is, we add the basis
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function vf = R−1f in the central region{
vf (x) = e1, if x ∈ [3, 4]2,

vf (x) = 0, else.

We consider vacuum boundaries, that is we impose u = 0 at the boundaries of the domain.

Finally, we consider the possibility of using the time exponential solutions (4.69) in the TDG
scheme.

The P1 model.

The numerical results obtained for the P1 model are displayed in Figure 5.14. The reference
solution is computed with the DG method with affine basis functions for a total of 9 basis
functions per cell on a 280 × 280 random mesh with dt = 0.01. We compare the DG and TDG
methods on a 140× 140 mesh with dt = 0.02. We consider the following cases
• The DG method with constant basis functions only for a total of 3 basis functions per cell.
• The DG method with affine basis functions (that is 1, x, y) for a total of 9 basis functions

per cell.
• The TDG method with the basis functions (5.6)-(5.8) depending on the 5 directions (5.25),

for a total of 5 basis functions per cell (plus one in the black region).
• The TDG method with the basis functions (5.6)-(5.8) depending on the 5 directions (5.25)

and the time dependent solutions (4.69), for a total of 8 basis functions per cell (plus one
in the black region).

Figure 5.14 shows that the DG method with only constant basis functions is too diffusive. How-
ever, if one increases the number of basis functions and considers affine basis functions, the DG
method recovers a very good accuracy. From Figure 5.14, one also notices that the TDG method
with 5 directions and only stationary basis functions seems too diffusive. Adding the time de-
pendent basis functions (4.69) to the TDG method allow to recover a good accuracy similar to
the affine DG method.

The P3 model.

The comments are very similar for the P3 model. Figure 5.15 represents the numerical results
obtained for the P3 model. The reference solution is computed with the DG method with affine
basis functions for a total of 30 basis functions per cell on a 280 × 280 random mesh with
dt = 0.01. We compare the DG and TDG methods on a 140 × 140 mesh with dt = 0.02. More
precisely, we consider the following cases
• The DG method with constant basis functions only for a total of 10 basis functions per

cell.
• The DG method with affine basis functions (that is 1, x, y) for a total of 30 basis functions

per cell.
• The TDG method with the basis functions (5.20)-(5.21) depending on the 3 directions

(5.23), for a total of 12 basis functions per cell (plus one in the black region).
• The TDG method with the basis functions (5.20)-(5.21) depending on the 3 directions

(5.23) and the time dependent solutions (4.69), for a total of 22 basis functions per cell
(plus one in the black region).

As for the P1 model, Figure 5.15 illustrates that the DG method recovers a good accuracy when
using affine basis functions. For the TDG method, considering only 3 stationary basis functions
seems too diffusive. Nevertheless, if one adds the time dependent basis functions (4.69), the
TDG method recovers a good accuracy similar to the affine DG method.

In particular, a benefit of the TDG method compared to the standard DG method is that it
uses less basis functions to recover a good approximation of the numerical solution. However,
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Figure 5.14 – P1 model. Representation of the first variable for the test case 5-4.6. Top left:
reference solution. Top center: DG scheme with 3 basis functions per cell. Top
right: DG scheme with 9 basis functions per cell. Bottom left: TDG scheme with
about 5 stationary basis functions per cell. Bottom right: TDG scheme with about
8 basis functions per cell (stationary and time dependent). Logarithmic scale.

as we will see in the next section, the TDG method may suffer from conditioning issue when
considering stationary and time dependent basis functions on fine meshes.

Finally note that, both for the P1 and P3 model, the numerical results are similar to those
obtained in [Bru02, BDF15].

5-4.6.2 The TDG method with other time dependent basis functions

In this section, we study the TDG method applied to the P1 model with others time dependent
basis functions. We consider the stationary basis functions (5.20)-(5.21) and the time dependent
basis functions (5.9)-(5.16), (4.66), (4.69). For the basis functions (4.69) we make the arbitrary
choice α = σt which gives

v(t,x) =

( √
σt(1 + ε)

−
√
ε(σa + σt)d

)
e

1
c

√
3ε(σa+σt)σt(1+ε)dTx+σtt, (5.29)

with d = (cos θ, sin θ)T ∈ R2. More precisely, we consider the following cases
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Figure 5.15 – P3 model. Representation of the first variable for the test case 5-4.6. Top left:
reference solution. Top center: DG scheme with 10 basis functions per cell. Top
right: DG scheme with 30 basis functions per cell. Bottom left: TDG scheme with
about 12 stationary basis functions per cell. Bottom right: TDG scheme with
about 22 basis functions per cell (stationary and time dependent). Logarithmic
scale.

• Case 1. The stationary basis functions (5.6)-(5.8) only with the 3 directions (5.23) for a
total of about 3 basis functions per cell.

• Case 2. The stationary basis functions (5.6)-(5.8) with the 3 directions (5.23) and the
time dependent solutions (4.66) for a total of about 6 basis functions per cell.

• Case 3. The stationary basis functions (5.6)-(5.8) and the time dependent solutions (5.9)-
(5.16) with the 3 directions (5.23) for a total of about 9 basis functions per cell.

• Case 4. The stationary basis functions (5.6)-(5.8) and the time-dependent solutions (5.29)
with the 3 directions (5.23) for a total of about 6 basis functions per cell.

• Case 5. The stationary basis functions (5.6)-(5.8) and the time-dependent solutions (5.29)
with the 4 directions (5.24) for a total of about 8 basis functions per cell.

Remark 5.12 (Case 3: polynomial solutions when σa = 0). When considering the Case 3,
one has 9 exponential basis functions when σa > 0. However, when σa = 0 the basis functions
became polynomials. It is not clear how to choose those polynomials since both the stationary
and time dependent exponentials may degenerate to the same solutions (at least if we follow the
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procedure given in the proof of Proposition 5.6). We make the following arbitrary choice and
consider a total of 7 polynomial basis functions

v1(x) =

1
0
0

 , v2(x) =

 σs
ε x
− c√

3

0

 , v3(x) =

 σs
ε y
0
− c√

3

 ,

v4(t,x) =

− 2√
3

√
εc2 −

√
3εσ2

t x
2 − 2√

3ε
c2σtt

2
√
εcσtx
0

 , v5(t,x) =

− 2√
3

√
εc2 −

√
3εσ2

t y
2 − 2√

3ε
c2σtt

0
2
√
εcσtx

 ,

v6(t,x) =

−
2√
3

√
εc2y −

√
3εσ2

t x
2y − 2√

3ε
c2σtty

2
√
εcσtxy√

εcσtx
2 + 2

3
√
ε
c3t

 , v7(t,x) =

−
2√
3

√
εc2x−

√
3εσ2

t xy
2 − 2√

3ε
c2σttx√

εcσty
2 + 2

3
√
ε
c3t

2
√
εcσtxy

 .

Here the functions v1(x),v2(x) and v3(x) can be seen as the limit of the three stationary basis
functions (5.6). The time dependent polynomials are taken from (5.16) to assure that all the
components have a dependence in time in at least one basis functions. •
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Figure 5.16 – Estimation of the condition number for the cases 1 to 4. Logarithmic scale.

In Figure 5.16, we compare an estimation of the condition number for the cases 1 to 4 on random
meshes. The estimation is provided using the AztecOO package of the Trilinos library [HBH+03].
Figure 5.16 illustrates that adding time dependent basis functions deteriorate the conditioning
of the mass matrix. One notices that the temporal exponentials (4.66) (Case 2) are the time
dependent functions which give the better (or the least bad) result in term of the condition
number.

In Figure 5.17, we compare the cases 1 to 5 on a 70 × 70 mesh. To prevent the condition
number from growing too fast, we consider a mesh which is not random. One sees that all the
time dependent basis functions reduce the diffusion. Compared to Case 2, one notices that the
diffusion is lower for cases 3 to 5 but some oscillations appear. For the basis functions (5.29)
(Cases 4 and 5), the choice of directions seems important. Indeed, with only the 3 directions
(5.23) (Case 4), the numerical solution is highly asymmetric. Considering the 4 directions (5.24)
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Figure 5.17 – P1 model. Representation of the first variable for the test case 5-4.6. Cases 1 to
5. The cases are numbered from from left to right and top to bottom (top left:
Case 1, top center: Case 2...). Logarithmic scale.

(Case 5), fix this issue. Note that Case 3 also considers the 3 directions (5.23) without getting
the asymmetric result of Case 4.



Chapter 6

An asymptotic preserving
multidimensional ALE method for a
system of two compressible flows
coupled with friction

This chapter is taken from a published article [PLM18].
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Abstract. We present a multidimensional asymptotic preserving scheme for the approximation
of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled
with a friction term. The asymptotic preserving property is mandatory for this kind of model, to
derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is).
The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach.
This imposes a multidimensional definition and analysis of the scheme.

Keywords: Compressible gas dynamics, multi-fluid, finite volumes, unstructured meshes, asymp-
totic preserving, arbitrary-Lagrangian-Eulerian (ALE)

6-1 Introduction

A multifluid model is a model for a fluid mixture for which each fluid is described by its own
full set of variables (for instance density, velocity and energy). The model is generally closed
in a way that defines interactions between the constituents, depending on the involved physics.
These models are widely used in different communities. One very popular model of this kind
is the Baer-Nunziato model [BN86] for deflagration-to-detonation transition of reactive flows.
Many numerical methods to approximate this model have been designed, we refer to a few of
them [SA99, CGHS02, CHSN13, AD14, ACCG14]. Scannapieco and Cheng [SC02] also derive
similar kind of model for turbulent flows and apply it to describe a mixing zone driven by
Rayleigh-Taylor or Richtmyer-Meshkov instabilities [CS05]. Such kind of model is also used
in plasma physics to account for plasmas collision or Non-Local-Thermodynamic-Equilibrium
(NLTE) Ion-Electron interactions [DMP98, Sen14]. Although all the analysis done in this paper
can be applied to any of the former models, we are in particular interested in the latter applica-
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tion. In this context, multifluid models are a good approximation, in particular to account for
the collision of two ion populations, each of them being at LTE. However, to our knowledge, these
models are never used for plasma collisions. The reason for this is stated by R. Sentis in [Sen14]:
“The [...] system may be quite difficult to solve in two- or three-dimensional geometry, especially
in the case when the friction coefficient [...] is large [...].” Consequently, a simplified model is
in general prefered, in which the velocity gap between the two fluids is modelled by a diffusion
process on the concentrations. Unfortunately, it implies empirical closures and exhibits bad
behaviour at high temperatures (when the coupling between the ion populations is weak).

In the following, we explain why the classical schemes for the multifluid system fail to capture
the strong coupling limit. It is in fact inherent to this kind of model and relies to the asymptotic
preserving (AP) property [Gos13, GT02, Jin10, JL91] in the high friction regime or infinite
friction regime. In the former regime, the fluids interpenetration follows a diffusion law. In
the latter one, the mixture evolves as a single fluid, see (6.4)–(6.5). If no attention is paid
to these regimes, the scheme will fail to capture it at a reasonnable calculation cost. Some
authors [CDW99, CDV07, Ena07] propose an asymptotic discretization for the system (6.1) in
1D in the Eulerian frame — multidimensional calculations being achieved by means of directional
splitting —, but no asymptotic preserving scheme has been yet published for 2D unstructured
meshes for this model. A similar ALE formalism is used to treat multifluid interaction in [CS12].
Authors use the Compatible Hydro scheme [CBS98] and do not analyze the asymptotic preserving
property since they mainly focus on the physics of the coupling.

In this paper, we propose a multidimensional scheme to approximate solutions of this kind of
model, written in (6.1), which captures accurately the asymptotic regime. We want our scheme to
be able to deal with Arbitrary-Lagrange-Euler (ALE) frame and unstructured meshes in order
to properly handle highly deformed calculation domains. Even for simpler models, only few
unstructured asymptotic preserving schemes have been developed (refer for instance to Berthon
and Turpault [BT11] and Franck et al. [BDF12, Fra12]). The scheme we propose in Section 6-4
has connections with [Fra14, FM16], where an Euler with friction system is studied in the limit
of high friction for long time, providing a different kind of scaling. So, the proposed scheme is
not a direct extension of [Fra14] to the bi-fluid case. The scheme presented in this work is split
into two steps. In the first step we solve two Euler systems of equations coupled by friction.
Since each fluid has its own velocity, the Lagrangian mesh of each fluid will evolve separately
during this step. Then, in the second step, the conservative variables vector of each of the fluids
will be projected onto a common mesh (not necessarily identical to the initial mesh).

In the Section 6-2 of this paper, we recall the properties of the model we consider, that are
conservation, hyperbolicity, and asymptotic limit model. In Section 6-3, we recall the basis of
the solver (Glace [CDDL09] or Eucclhyd [MABO07]) used to compute the Lagrangian step. The
Section 6-4 describes the Lagrangian step of the proposed scheme. It is demonstrated that the
scheme preserves the properties of conservation, stability and consistency with respect to the
continuous model for all regimes (independently of the value of the friction parameter). Then
in Section 6-5, our ALE strategy is described. Finally, Section 6-6 is devoted to numerical
experiments on several problems (Sod shock tube, triple point and Rayleigh-Taylor). Some
comparisons with a non-AP scheme are provided.

6-2 A two fluids model with friction

Let us consider a mixture of two fluids f1 and f2. In the following, we will denote by “multi-
fluid model”, a model for which each fluid α ∈ {f1, f2} is represented by its own set of variables:
(ρα,uα, Eα). Conversely, we will refer as “mono-fluid model”, a model describing a mixture where
mean quantities are considered (ρ,u, E), each fluid position being precised by an additional
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equation on the concentration (e.g. χ := ρα

ρα+ρβ
).

In this part, we present a simplified version of Scannapieco-Cheng’s model where the interaction
between the two constituents reduces to a friction term. In semi-Lagrangian coordinates, for
each fluid α ∈ {f1, f2} (β denoting the other fluid), the model reads

ραDα
t τ

α = ∇ · uα,
ραDα

t uα = −∇pα − νρδuα,
ραDα

t E
α = −∇ · (pαuα)− νρδuα · u,

(6.1)

where ρα,uα and Eα respectively denote the mass density, the velocity and the total energy
density of fluid α. Also, τα = 1

ρα denotes the specific volume. The pressure pα satisfies the
equation of state pα := pα(ρα, eα), where eα, the internal energy density, is defined by eα :=
Eα − 1

2‖u
α‖2. The total density ρ and the mean velocity u are defined as ρ := ρα + ρβ and

ρu := ραuα + ρβuβ . The term δuα is the velocity difference, the δ(·)α operator being defined by
δφα = −δφβ = φα − φβ . Finally, ν is the friction parameter. Also, remark that the Lagrangian
derivative Dα

t := ∂t + uα · ∇, is obviously not the same for each fluid.

The entropy ηα defined by Gibbs formula Tαdηα = deα + pαdτα satisfies the following entropy
inequality

TαDα
t η

α ≥ ν τ
α

τβ
δuα · δuα ≥ 0. (6.2)

Prior to establishing a numerical scheme that discretizes this set of six equations, we recall some
properties of the model itself.

Property 1 (Conservation). The model (6.1) is conservative in volume and mass for each fluid.
Also, it is conservative in the sum of momenta and in the sum of the total energies of the two
fluids.

Proof. Conservation of mass and volume is obvious since the first equation of (6.1) is the conti-
nuity equation written for each fluid.

Conservation of momenta sum and total energies sum require more cautiousness, since Lagrangian
derivative are not the same for each fluid. To establish them one rewrites (6.1) in an Eulerian
framework.

Developing Lagrangian derivatives Dα
t φ = ∂tφ + uα · ∇φ and using the identity ∂t(ρατα) = 0

elementary calculations can rewrite (6.1) as

∂tρ
α +∇ · (ραuα) = 0,

∂t(ρ
αuα) +∇ · (ραuα ⊗ uα) +∇pα + νρδuα = 0,

∂t(ρ
αEα) +∇ · (ραEαuα) +∇ · (pαuα) + νρδuα · u = 0.

(6.3)

Summing the two later equations over α gives a system of the conservative form ∂tU+∇·F (U) =
0, where

U =

(
ραuα + ρβuβ

ραEα + ρβEβ

)
,

and

F (U) =

(
ραuα ⊗ uα + ρβuβ ⊗ uβ +

(
pα + pβ

)
I

ραEαuα + ρβEβuβ + pαuα + pβuβ

)
,

where I is the identity matrix of R2×2. �

Property 2 (Hyperbolicity). The model (6.1) is hyperbolic.
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Proof. Since (6.1) is made of two Euler systems only coupled with source terms, it is hyperbolic.
�

Asymptotic model. When ν → +∞, (6.1) behaves as the following five equations model

ρDtu = −∇
(
pα + pβ

)
, (6.4)

while, for each fluid α ∈ {f1, f2}, β denoting the other one, one has

ραDtτ
α = ∇ · u,

ραDtE
α = −ρ

α

ρ
u · ∇

(
pα + pβ

)
− pα∇ · u, (6.5)

where u is the same velocity for both fluids, and thus the Lagrangian derivative is also the same.

Formal derivation (established in [Ena07]). Let ε = ν−1 so that (6.1) rewrites

ραDα
t τ

α = ∇ · uα,

ραDα
t uα = −∇pα − 1

ε
ρδuα,

ραDα
t E

α = −∇ · (pαuα)− 1

ε
ρδuα · u.

(6.6)

We will now study its limit while ε → 0+ focusing first on the momentum equations since the
friction term’s goal is to impose that δu0 ε→0−→ 0.

Developing the Lagrangian derivatives and dividing each momentum equation by ρα > 0, one
has

∂tu
α + (∇uα) uα = −∇p

α

ρα
− 1

ε

ρ

ρα
δuα.

Since fluid β satisfies the same equation and recalling that δφα = −δφβ = φα − φβ , one gets

∂t (δuα) + δ ((∇u) u)α = −δ
(
∇p
ρ

)α
− 1

ε
λδuα, where λ =

ρ2

ραρβ
.

We now perform an Hilbert expansion for all variables in the equation, that is φ = φ0+εφ1+O(ε2).
One has

∂t(δu
α,0) + δ ((∇u)u)α,0 = −δ

(
∇p
ρ

)α,0
− λ0

(
1

ε
δuα,0 + δuα,1

)
− λ1δuα,0 + O(ε). (6.7)

Multiplying this equation by ε one has λ0δuα,0 = O(ε), which gives δuα,0 = 0 when ε→ 0 since
λ > 0.

So, when ε→ 0, formula (6.7) recasts

δuα,1 = − 1

λ0
δ

(
∇p
ρ

)α,0
. (6.8)

Now, we perform an Hilbert expansion for the whole system (6.6), neglecting the non negative
powers of ε. Choosing α ∈ {f1, f2}, β being the other one, it reads

ρα,0Dα
t τ

α,0 =∇ · uα,0,

ρα,0Dα
t uα,0 =−∇pα,0 − ρ0

(
1

ε
δuα,0 + δuα,1

)
− ρ1δuα,0,

ρα,0Dα
t E

α,0 =−∇ ·
(
pα,0uα,0

)
− ρ0

(
1

ε
δuα,0 · uα,0 + δuα,1 · uα,0 + δuα,0 · uα,1

)
− ρ1δuα,0 · uα,0.
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Since we just established δuα,0 = 0, one has u0 = u0 = uα,0 = uβ,0. Also, since Dα
t φ =

∂tφ+ uα,0 · ∇φ+ O(ε), Lagrangian derivatives are the same when ε→ 0, so that using (6.8) the
system simplifies to

ρα,0Dtτ
α,0 =∇ · u0,

ρα,0Dtu
0 =−∇pα,0 + ρ0 1

λ0
δ

(
∇p
ρ

)α,0
,

ρα,0DtE
α,0 =−∇ ·

(
pα,0u0

)
+ ρ0 1

λ0
δ

(
∇p
ρ

)α,0
· u0.

Recalling λ = ρ2

ραρβ
and developing δ

(
∇p
ρ

)α,0
, momentum equation satisfies

ρα,0Dtu
0 =−∇pα,0 +

ρα,0ρβ,0

ρ0

(
∇pα,0

ρα,0
− ∇p

β,0

ρβ,0

)
,

=− ρα,0

ρ0
∇
(
pα,0 + pβ,0

)
.

Proceeding the same way with total energy equation, one gets

ρα,0DtE
α,0 =−∇ ·

(
pα,0u0

)
+
ρα,0ρβ,0

ρ0

(
∇pα,0

ρα,0
− ∇p

β,0

ρβ,0

)
· u0,

=− ρα,0

ρ0

(
∇pα,0 +∇pβ,0

)
· u0 − pα,0∇ · u0,

�

Remark 1. Defining E := ραEα+ρβEβ

ρ and τ := ρ−1, it is easy to check that if (ρα, ρβ,u, Eα, Eβ)
is a solution of the asymptotic model (6.4)–(6.5), one has

ρDtτ = ∇ · u,

ρDtu = −∇
(
pα + pβ

)
,

ρDtE = −∇ ·
((
pα + pβ

)
u
)
.

One recognizes Euler equations for the mixture. The mixing pressure follows Dalton’s law as one
could have expected since we consider here non-reactive gases.

However, notice that unless each fluid follows a barotropic equation of state (pα = pα(ρα)),
equation (6.5) must be solved to determine eα.

6-2.0.0.1 Next-order Hilbert expansion and effect on the concentrations The next
order of the Hilbert expansion is interesting to enlighten some peculiar behaviour of the solution
in the case of large but finite friction coefficient: 1 << ν < +∞. To this end, let us consider the
first equation of the system (6.3). It equivalently recasts into

∂tρ
α +∇ · (ρα(u + (1− χ)δuα) = 0, (6.9)

where χ := ρα

ρ denotes the mass concentration of fluid α.

Expanding this equation to the first-order gives same result as before, since u0 = uα,0 and
δuα,0 = 0.

Peforming now a second-order Hilbert expansion of this equation and keeping the first two terms,
we infer
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∂tρ
α,0,1 +∇ · (ραu)0,1 = −ε∇ ·

(
ρα,0,1

(
1− χ0,1

)
δuα,1

)
+ O(ε2), (6.10)

where φ0,1 := φ0 + εφ1.

Injecting the value of δuα,1 given by equation (6.8) into this expression, and using λ = 1
χ(1−χ) ,

we obtain:

∂tρ
α,0,1 +∇ · (ραu)0,1 = ε∇ ·

(
ρα,0,1χ0,1

(
1− χ0,1

)2
δ

(
∇p
ρ

)α,0)
+ O(ε2). (6.11)

Cancelling the indices, and recasting this equation into a semi-Lagragian form, we obtain the
following law for ρα

ραDu
t τ

α = ∇ · u +
ε

ρα
∇ ·
(
ραχ(1− χ)2δ

(
∇p
ρ

)α)
+ O(ε2), (6.12)

where Du
t stands for the Lagrangian derivative at the velocity u. Note that, in this form, the

equation on ρα exhibits a diffusive behaviour (in particular if we consider barotrope equation of
state p = p(ρ)). From the previous expression, using ρDu

t (τ) = ∇ · u and expanding δ
(
∇p
ρ

)α
,

we obtain an equation on the concentration c

Du
t χ =

ε

ρ
∇ ·
(
χ(1− χ)

(
(1− χ)∇pα − χ∇pβ

))
+ O(ε2). (6.13)

This equation accounts for the diffusive regime of the concentration in the limit ν >> 1. To
convince the reader, let us take the same simple equation of state for both fluid: p = Kρ, with
K ∈ R+∗. We obtain then the following form for (6.13)

Du
t χ =

ε

ρ
∇ · (χ(1− χ)K∇χ) + O(ε2), (6.14)

which together with the equations on ρ, ρu, and ρE = ραEα+ρβEβ , verified by construction by
our model, gives the basic form of well-known simplified models (refer for instance to the model
E2M , Page 210 of [Sen14]). This analysis justifies, that we require our scheme to be able to
reproduce this behaviour. An easy way to check that in Lagrangian schemes is to calculate the
relative evolution of the specific volumes in the fluids α and β, since it must satisfy the following
equation for ν >> 1

ραDα
t τ

α − ρβDβ
t τ

β = −ε∇ ·
(

(1− χ)∇pα − χ∇pβ
)
. (6.15)

In the analysis of the discrete version of the scheme, we verify that the scheme is consistent with
the discrete version of

δu = − ε
ρ

(
(1− χ)∇pα − χ∇pβ

)
. (6.16)

6-3 Cell-centered schemes

We recall briefly the multidimensional finite volume schemes [Maz07, DM05, MABO07], since
it is the basis of this work. For convenience, we use the notations defined in [CDDL09]. In the
following, for all cell j, and for any quantity φ, one defines its mean value φj := 1

Vj

∫
j φ, where

Vj :=
∫
j 1 is the cell volume. Also, let us denote the cell’s mass as mj :=

∫
j ρ = ρjVj , which is

constant in time in semi-Lagrangian coordinates (dtmj = 0).
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x
y

j

r + 1

r

r − 1

Cjr

N−jr

N+
jr

Figure 6.1 – Illustration of Cjr and Ni
jr vectors at vertex r for a polygonal cell j.

We consider first-order schemes, so that one has the following relations

d

dt

∫
j

1 = mjdtτj ,
d

dt

∫
j
ρj = 0,

d

dt

∫
j
ρjuj = mjdtuj ,

d

dt

∫
j
ρjEj = mjdtEj .

Let Jr denote the set of cells connected to node r and let Rj the set of nodes of cell j. Also, let
us introduce Cjr := ∇xrVj , the gradient of the volume of the polygonal cell j, according to the
position of one of its vertices r. In dimension d, one has the relation Vj = 1

d

∑
r∈Rj Cjr · xr. So

in cartesian coordinates, since the volume of a cell is independent of its position, one has

∀j ∈ J ,
∑
r∈Rj

Cjr = 0. (6.17)

For more properties of Cjr vectors, one may refer to [CDDL09]. The cell-centered schemes we
consider in this paper have the following structure: for any cell j of the mesh one has

mjdtτj =
∑
r∈Rj

Cjr · ur,

dtmj =0,

mjdtuj =−
∑
r∈Rj

Fjr,

mjdtEj =−
∑
r∈Rj

Fjr · ur,

(6.18)

where the fluxes ur and Fjr are defined for any node r

∀j ∈ Jr, Fjr = Cjrpj −Ajr(ur − uj), (6.19)

and
∑
j∈Jr

Fjr = 0. (6.20)

On one hand, relation (6.19) is the matrix form of the acoustic Riemann solver (see for in-
stance [Klu08, Mai11]), while on the other hand (6.20) imposes conservation.

In the following to simplify notations, we omit sets Rj and Jr when there is no confusion.

— If Ajr := ρjcj
Cjr⊗Cjr

‖Cjr‖ , then (6.18)–(6.20) defines the Glace scheme [DM05, CDDL09].
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— Let N+
jr = −1

2(xr+1−xr)
⊥ and N−jr = −1

2(xr−xr−1)⊥. IfAjr := ρjcj

(
N+
jr⊗N+

jr

‖N+
jr‖

+
N−jr⊗N−jr
‖N−jr‖

)
,

the scheme (6.18)–(6.20) is Eucclhyd [MABO07, Mai11]. One has N+
jr + N−jr = Cjr, see

Figure 6.1.

These schemes are conservative in volume, mass, momentum and total energy. One easily shows
that they are entropy stable. These results can be found in [DM05, MABO07, CDDL09, Mai11],
for instance. Also, a consistency result has been established in [Des10b]. Both schemes are very
close to each other, Glace scheme is considered more precise and Eucclhyd more stable.

6-4 Asymptotic Preserving scheme in semi-Lagrangian coordi-
nates

Let us first introduce the following notations. We set ραr := 1
#Jr

∑
j∈Jr ρ

α
j and ρr := ραr +ρβr . Also,

we set ur := ραr uαr +ρβruβr

ραr +ρβr
and ujr :=

ραr uαj +ρβruβj

ραr +ρβr
. Bjr are symmetric and positive definite matrices

that satisfy
∑

r∈Rj Bjr = VjI. Matrices Aαjr are the standard “hydro-matrices” as defined in
Section 6-3.

Remark 2. One can choose Bjr := VjrI, where Vjr is the volume of the subcell associated to
vertex r of cell j. Another obvious choice could be for instance Bjr := 1

#Rj VjI.

Remark 3. Following [BDF12], one could also choose Bjr := Cjr ⊗ (xr − xj). However if in
that case one could hope to push that analysis further in terms of diffusion limit, since Bjr :=
Cjr⊗ (xr−xj) are not positive, one could not show anymore the entropy stability of the scheme.
We have run the tests of Section 6-6 with this choice without noticing large differences.

Observe that simple calculations allow to write

ρrur = ρru
α
r − ρβr δuαr and ρrujr = ρru

α
j − ρβr δuαj . (6.21)

6-4.1 Reference scheme

Let us first introduce the following scheme that will be used as a reference scheme to illustrate
the advantages of our AP scheme — described by (6.24)–(6.26).

For each fluid α ∈ {f1, f2}, one writes

dtm
α
j = 0,

mα
j dtτ

α
j =

∑
r

Cjr · uαr ,

mα
j dtu

α
j = −

∑
r

Fα
jr −

∑
r

νρrBjrδu
α
j ,

mα
j dtE

α
j = −

∑
r

Fα
jr · uαr −

∑
r

νρru
T
jrBjrδu

α
j ,

(6.22)

where ujr and ρr are defined as in Section 6-4.2 and the fluxes are given by

Fα
jr = Cjrp

α
j −Aαjr(uαr − uαj )∑

j

Aαjru
α
r =

∑
j

Aαjru
α
j +

∑
j

Cjrp
α
j .

(6.23)



AN ASYMPTOTIC PRESERVING MULTIDIMENSIONAL ALE METHOD FOR
A SYSTEM OF TWO COMPRESSIBLE FLOWS COUPLED WITH FRICTION 131

It can be showed that this scheme is entropic, conservative in volume and mass for each fluid
and in the sum of momenta and total energies. Also, the scheme is weakly consistent with (6.1).
However, this scheme does not a priori preserve the asymptotic, see 6.D for some details.

6-4.2 Continuous in time semi-discrete scheme

We shall now present a multidimensional finite volume scheme written in semi-Lagrangian coor-
dinates that preserves the asymptotic.

This scheme will be the Lagrangian step of our ALE method. In this step, each fluid is associated
to its own mesh. If the meshes may evolve differently, we assume that they coincide at the
begining of the Lagrangian step. The rezoning/remapping procedure that is detailed in Section 6-
5 is used to ensure that the meshes will coincide for the next Lagrangian step.

We first focus on the semi-discrete continuous in time scheme. Most of the properties of the
scheme are proved using this simpler formulation without any lost of generality. In Paragraph 6-
4.3, we describe the fully discrete scheme. It is analysed in the remaining of this section.

Let α ∈ {f1, f2} denote one of the two fluids and β the other one, we define the scheme

mα
j dtτ

α
j =

∑
r

Cjr · uαr ,

dtm
α
j =0,

mα
j dtu

α
j =−

∑
r

Fα
jr −

∑
r

νρrBjrδu
α
j ,

mα
j dtE

α
j =−

∑
r

Fα
jr · uαr −

∑
r

νρru
T
r Bjrδu

α
r +

∑
r

νρru
T
jrBjr(δu

α
r − δuαj ),

(6.24)

where the fluxes are given by

Fα
jr = Cjrp

α
j −Aαjr(uαr − uαj )− νρrBjrδuαr , and (6.25)∑

j

Fα
jr = 0. (6.26)

Injecting (6.25) in (6.24), and using (6.21), one gets the alternative form

mα
j dtτ

α
j =

∑
r

Cjr · uαr ,

dtm
α
j =0,

mα
j dtu

α
j =

∑
r

Aαjr(u
α
r − uαj ) + ν

∑
r

ρrBjr
(
δuαr − δuαj

)
,

mα
j dtE

α
j =−

∑
r

Cjrp
α
j · uαr +

∑
r

uαr
TAαjr(u

α
r − uαj ) + ν

∑
r

ρβr δu
α
r
TBjrδu

α
r

− ν
∑
r

ρβr δu
α
j
TBjr(δu

α
r − δuαj ) + ν

∑
r

ρr uαj
TBjr(δu

α
r − δuαj ).

(6.27)

This form enlightens the fact that knowing the fluxes (uαr ,u
β
r ) at any vertex r is enough to define

the scheme. We shall now show that these nodal velocities are well defined.

Injecting (6.25) in (6.26) allows to calculate (uαr ,u
β
r ). Obviously, as soon as ν 6= 0, both nodal

velocities are coupled at vertex r. Omitting boundary conditions for the sake of simplicity, each
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vertex of the mesh (uαr ,u
β
r ) is the unique solution of the following linear system:

∑
j

(
Aαjr + νρrBjr −νρrBjr
−νρrBjr Aβjr + νρrBjr

)
︸ ︷︷ ︸

Aνr :=

(
uαr
uβr

)
=
∑
j

(
Aαjru

α
j + Cjrp

α
j

Aβjru
β
j + Cjrp

β
j

)
︸ ︷︷ ︸

br:=

.

Proof. Since matrices Aαjr and Bjr are symmetric, Aνr is also symmetric. To prove that (uαr ,u
β
r ) is

unique, it remains to show that it is positive definite. Elementary calculations give, ∀(vα,vβ) ∈
R2 × R2,

(vα,vβ)TAνr (vα,vβ) =vαT

∑
j

Aαjr

vα + vβ
T

∑
j

Aβjr

vβ

+ (vα − vβ)T

∑
j

νρrBjr

 (vα − vβ),

which is strictly positive if (vα,vβ) 6= (0,0) since matrices
∑

j A
α
jr and

∑
j νρrBjr are positive

definite. �

The scheme being well-defined, we now establish its properties.

6-4.2.1 Nodal velocities a priori estimates

Here, we establish estimates for the nodal velocities with regard to the frictionless case. These are
actually some instantaneous stability results with regard to the mono-fluid schemes [CDDL09,
MABO07], i.e. velocity fluxes are controled by the frictionless ones.

Property 3 (A priori estimates). For each fluid α ∈ {f1, f2}, let uα,νr denote the nodal velocities
at vertex r. Let Aαr :=

∑
j A

α
jr and Br :=

∑
j Bjr. Let β denote the other fluid, then one has the

following relations, ∀ν ≥ 0

uα,νr
TAαr uα,νr + uβ,νr

T
Aβru

β,ν
r ≤ uα,0r

T
Aαr uα,0r + uβ,0r

T
Aβru

β,0
r , (6.28)(

uα,νr − uβ,νr

)T
Br

(
uα,νr − uβ,νr

)
≤ 1

2νρr

(
uα,0r

T
Aαr uα,0r + uβ,0r

T
Aβru

β,0
r

)
, (6.29)

and
(
uα,νr − uβ,νr

)T
Br

(
uα,νr − uβ,νr

)
≤
(
uα,0r − uβ,0r

)T
Br

(
uα,0r − uβ,0r

)
. (6.30)

Proof. See 6-2.1 Page 149. �

Let us comment on these estimates. The estimate (6.28) is a stability result. It shows that the
nodal velocity ‖(uα,νr ,uβ,νr )‖A0

r
is bounded by ‖(uα,0r ,uβ,0r )‖A0

r
independently of ν. It shows that

friction nodal velocities are stable with regard to the classic frictionless case for a given state.

The second estimate (6.29) shows that the nodal velocity difference ‖δuα,νr ‖Br is at most O(ν−1/2)

according to ‖(uα,0r ,uβ,0r )‖A0
r
. In 6.C, we show numerically that one can obtain O(ν−1) and

that (6.29) may not be optimal.

The last inequality (6.30) states that the nodal velocity difference is bounded by the frictionless
case independently of ν in the ‖ · ‖Br norm, which is purely geometric.
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6-4.2.2 Conservativity

Property 4 (Conservation). The scheme defined by (6.24)–(6.26) ensures conservation of mass
and volume for each fluid α or β. It also ensures that the sum of the fluids’ momenta and total
energies are conserved.

Proof. See 6-2.2 Page 151. �

6-4.2.3 Stability

Before announcing this result, we recall that the fully discrete scheme’s stability is presented
bellow (see Paragraph 6-4.3).

Property 5 (Entropy). The first-order continuous in time scheme defined by (6.24)–(6.26)
satisfies the following entropy inequality ∀α ∈ {f1, f2}

mα
j T

α
j dtη

α
j ≥

1

2

∑
r

νρβr δu
α
r
TBjrδu

β
r +

1

2

∑
r

νρβr δu
α
j
TBjrδu

α
j ≥ 0.

This inequality is consistent with (6.2).

Proof. See 6-2.3 Page 151. �

6-4.2.4 Asymptotic preserving

We now establish the main result of this paper. It consists in stating that when the friction
parameter ν tends to infinity, the scheme (6.24)–(6.26) behaves asymptotically as a scheme that
is consistent with the asymptotic model (6.4)–(6.5).

To this end, we first compute the asymptotic scheme by means of Hilbert expansions, then we
show its consistency with the asymptotic model. This later result relies strongly on B. Després’s
work [Des10b].

Asymptotic scheme. If ∀α ∈ {f1, f2}, ∀j, (ραj ,u
α
j , E

α
j ) are constant cell data, then the scheme (6.24)–

(6.26), behaves asymptotically as

(mα
j +mβ

j )dtuj = −
∑
r

Fα
jr −

∑
r

Fβ
jr, (6.31)

dtVj = mα
j dtτ

α
j =

∑
r

Cjr · ur, (6.32)

dtm
α
j = 0,

mα
j dtE

α
j = −

∑
r

Cjrp
α
j · ur +

∑
r

uTr A
α
jr(ur − uj)−

ραj ρ
β
j

ρj

∑
r

uTj δ

(
Ajr
ρj

)α
(ur − uj),

(6.33)

where uj = uαj = uβj , and where nodal velocities ur = uαr = uβr satisfy

Fα
jr + Fβ

jr = Cjr

(
pαj + pβj

)
−
(
Aαjr +Aβjr

)
(ur − uj),

and
∑
j

Fα
jr = 0. (6.34)
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Formal derivation. See 6-2.4 Page 152. �

In order to establish that the scheme is asymptotic preserving, it remains to show that the limit
scheme (6.31)–(6.34) is consistent with the asymptotic model (6.4)–(6.5).

Before establishing this result, we recall the fundamental result by B. Després [Des10b], that we
adapt to the present context.

Property 6 (B. Després). Let mj := mα
j +mβ

j , ρj := ραj + ρβj , τj = ρ−1
j and Ej :=

ραj E
α
j +ρβj E

β
j

ρj
.

Then, the monofluid (Glace or Eucclhyd) scheme defined for a mixture

dtmj = 0,

mjdtτj =
∑
r

Cjr · ur,

mjdtuj = −
∑
r

Fjr,

mjdtEj = −
∑
r

Fjr · ur,

where Fjr = Cjr(p
α
j + pβj )− (Aαjr +Aβjr)(ur − uj),

and
∑
j

(Aαjr +Aβjr)ur =
∑
j

(Aαjr +Aβjr)uj +
∑
j

Cjr(p
α
j + pβj ),

is weakly consistent with the following system of equations

ρDtτ = ∇ · u,
ρDtu = −∇(pα + pβ),

ρDtE = −∇ · (pα + pβ)u.

Proof. The proof can be found in [Des10b]. �

Remark 4. In order to establish the following Property 7, we kept intentionally Aαjr and pαj
for both fluids in the fluxes expressions. Actually, to retrieve the result in [Des10b], one has to
define simply the mixture pressure pj := pαj + pβj and Ajr := Aαjr + Aβjr which is actually the
monofluid Ajr matrix defined by the mixture sound speed: ρjcj := ραj c

α
j + ρβj c

β
j .

Property 7. The limit scheme (6.31)–(6.34) is weakly consistent with the asymptotic model (6.4)–
(6.5).

Proof. See 6-2.5 Page 154. �

We now study the diffusive regime. According to equation (6.B.11) page 153, one gets the
following identity for δuα,1j − δu

α,1
r

∑
r

δ

(
A0
jr

ρj

)α
(u0

r − u0
j ) =

ρj

ραj ρ
β
j

∑
r

ρ0
rBjr(δu

α,1
j − δu

α,1
r ). (6.35)

As explained previously, it has been proven in [Des10b], that the left hand side of (6.35) fulfills
the following weak consistence relation

1

Vj

∑
r

δ

(
A0
jr

ρj

)α
(u0

r − u0
j ) ≈ δ

(
∇p
ρ

)α
1Ωj(x). (6.36)
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On the other hand,
∑

r Bjrφr acts as an averaging operator over the cell j, and

ρj

ραj ρ
β
j

∑
r

ρ0
rBjr(δu

α,1
j − δu

α,1
r ) ≈ Vj

ρj

ραj ρ
β
j

ρr
0
j

(
δuα,1j − δu

α,1
r j

)
. (6.37)

For smooth enough solution, equations (6.36) and (6.37) suggest that

δuα,1j − δu
α,1
r ≈ ραρβ

ρ2
δ
(
∇p
ρ

)α
1Ωj(x),

≈ 1
ρ

(
(1− χ)∇pα − χ∇pβ

)
.

(6.38)

Comparing this last equation with (6.16) and since∑
r

Cjr ·
(
δuα,1j − δu

α,1
r

)
= −

∑
r

Cjr · δuα,1r ,

= −ε
∑
r

Cjr · δuαr ,

we find an expression weakly consistent with (6.15) for the evolution of the difference of the
specific volumes of the two fluids.

6-4.3 Discrete scheme

We now describe the fully discrete scheme. One defines the following scheme for each fluid α ∈
{f1, f2}, β denoting the other one,

mα
j

ταj
n+1 − ταj n

∆t
=
∑
r

Cn
jr · uαr

n, (6.39)

mα
j

uαj
n+1 − uαj

n

∆t
=−

∑
r

Fα,n
jr −

∑
r

νρnrB
n
jrδu

α
j
n+1, (6.40)

mα
j

Eαj
n+1 − Eαj n

∆t
=−

∑
r

Fα,n
jr · u

α
r
n −

∑
r

νρnr unr
TBn

jrδu
α
r
n +

∑
r

νρnr un+1
jr

T
Bn
jr

(
δuαr

n − δuαj
n+1
)
,

(6.41)

where the fluxes are computed explicitly as

Fα,n
jr = Cn

jrp
α
j
n −Aα,njr (uαr

n − uαj
n)− νρnrBn

jrδu
α
r
n, (6.42)

and
∑
j

Aα,njr uαr
n +

∑
j

νρnrB
n
jrδu

α
r
n =

∑
j

Aα,njr uαj
n +

∑
j

Cn
jrp

α
j
n. (6.43)

To complete the scheme definition, observe that we introduced the following mean velocities

un+1
jr :=

ραr
nuαj

n+1+ρβr
n
uβj

n+1

ραr
n+ρβr

n and unr := ραr
nuαr

n+ρβr
n
uβr

n

ραr
n+ρβr

n , which rewrite

ρnru
n+1
jr = ρnru

α
j
n+1 − ρβr

n
δuαj

n+1 and ρnru
n
r = ρnru

α
r
n − ρβr

n
δuαr

n. (6.44)

Similarly to the semi-discrete case, for convenience, we substitute the flux expression into mo-
mentum and total energy balance equations and use (6.44)

mα
j

uαj
n+1 − uαj

n

∆t
=
∑
r

Aα,njr (uαr
n − uαj

n) + ν
∑
r

ρnrB
n
jr(δu

α
r
n − δuαj

n+1), (6.45)
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mα
j

Eαj
n+1 − Eαj n

∆t
= −

∑
r

Cn
jrp

α
j
n · uαr

n +
∑
r

uαr
nTAα,njr (uαr

n − uαj
n)

+ ν
∑
r

ρβr
n
δuαr

nTBn
jrδu

α
r
n + ν

∑
r

ρnr uαj
n+1TBn

jr

(
δuαr

n − δuαj
n+1
)

− ν
∑
r

ρβr
n
δuαj

n+1TBn
jr

(
δuαr

n − δuαj
n+1
)
. (6.46)

One should have noticed that cell velocities uαj are solved implicitly. Since δuαj
n+1 are used to

compute total energy variation, one has to compute it first. The local linear system associated
with uαj

n+1 velocities is given by equations (6.40)(
mα
j + ∆t

∑
r νρ

n
rB

n
jr −∆t

∑
r νρ

n
rB

n
jr

−∆t
∑

r νρ
n
rB

n
jr mβ

j + ∆t
∑

r νρ
n
rB

n
jr

)(
uαj

n+1

uβj
n+1

)
=

(
mα
j uαj

n −∆t
∑

r Fα,n
jr

mβ
j u

β
j

n
−∆t

∑
r Fβ,n

jr

)
.

It is easy to check that this linear system is symetric and positive definite if Bn
jr matrices are

symetric and positive.

6-4.4 Stability of the discrete scheme

In this section we establish that the scheme is stable for arbitrary equations of state: there exists
∆t > 0 such that for each fluid α ∈ {f1, f2}, ταj n+1 > 0, eαj

n+1 > e(T = 0) and ηαj
n+1 ≥ ηαj

n.
For the sake of simplicity, and without loss of generality, we will consider in the following the
case eαj

n+1 > 0.

Actually, we will provide explicit timesteps for the positivity of density and internal energy, but
we will only show that the increasing physical entropy timestep will be greater that the one of the
mono-fluid case for given velocity fluxes, for which we established Property 3. The main reason
is that there only exists existence results for entropy stability for cell-centered semi-Lagrangian
schemes (even in 1D), see [Des01, Gal03].

6-4.4.1 Positivity of density

Since p = p(ρ, e) one has to ensure that density cannot be made negative.

Property 8 (Positivity of density). Assuming that ∀α ∈ {f1, f2}, ∀j ∈ M , ραj
n > 0. Denoting

Cαn the set of compressive cells for each fluid α, Cαn :=
{
j ∈M /

∑
r Cn

jr · uαr n < 0
}
, there

exists ∆tρ > 0 such that,

∀α ∈ {f1, f2}, ∀j ∈ Cαn, ∆tρ <
V α
j
n

−
∑

r Cn
jr · uαr n

.

Then, the scheme (6.39)–(6.43) defined by ∆t ∈ ]0,∆tρ] ensures that

∀α ∈ {f1, f2}, ∀j ∈M , ραj
n+1 > 0.

Observe that, as expected, only compressive cells (j ∈ Cαn) can lead to negative densities, so in
the case of non-compressive flows, ∆tρ may be arbitrarly large. Also, in the case of trianglular
meshes, this constrain implies that no cell will tangle during the timestep.

Proof. Obviously, this is equivalent to show that ταj
n+1 = 1

ραj
n+1 > 0. According to (6.39), one

has
ταj

n+1 = ταj
n +

∆t

mα
j

∑
r

Cn
jr · uαr

n.
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So, one has the following alternative:
— if j 6∈ Cαn that is

∑
r Cn

jr · uαr n ≥ 0, then ∀∆t > 0 one has ταj
n+1 > 0,

— else if j ∈ Cαn, one has
∑

r Cn
jr ·uαr n < 0, then ∀∆t < ταj

n mαj
−

∑
r Cn

jr·uαr n
, one has ταj

n+1 > 0.

Since
mαj

−
∑
r Cn

jr·uαr n
> 0, the existence of such a ∆t > 0 is obvious.

�

6-4.4.2 Positivity of internal energy

First, as a primary result, we give internal energy variation for fluid α ∈ {f1, f2}, β denoting the
other one.

Lemma 1. After one time step of scheme (6.39)–(6.43), internal energy is updated as

eαj
n+1 = eαj

n +
∆t

mα
j

[∑
r

(uαj
n − uαr

n)TAαjr
n(uαj

n − uαr
n)−

∑
r

pαj
nCn

jr · uαr
n

]

+ ν
∆t

mα
j

[∑
r

ρβr
n
δuαr

nTBn
jrδu

α
r
n +

∑
r

ρβr
n
δuαj

n+1TBn
jr(δu

α
j
n+1 − δuαr

n)

]

− ∆t2

2mα
j

2

(∑
r

Aαjr
n(uαj

n − uαr
n)

)2

+
∆t2

2mα
j

2

(
ν
∑
r

ρnrB
n
jr(δu

α
j
n+1 − δuαr

n)

)2

. (6.47)

Proof. See 6-2.6 Page 155. �

Actually, (6.47) can be rewritten as

eαj
n+1 = eh

α
j
n+1 + ν

∆t

mα
j

[∑
r

ρβr
n
δuαr

nTBn
jrδu

α
r
n +

∑
r

ρβr
n
δuαj

n+1TBn
jr(δu

α
j
n+1 − δuαr

n)

]

+
∆t2

2mα
j

2

(
ν
∑
r

ρnrB
n
jr(δu

α
j
n+1 − δuαr

n)

)2

, (6.48)

where ehαj
n+1 denotes the obtained internal energy without friction: i.e. substituting nodal

velocities uαr
n into the classic mono-fluid scheme. The remaining terms can be viewed as the

heating due to the friction.

Corollary 1 (Page 151) allows to give a lower bound to eαj
n+1

eαj
n+1 ≥ ehαj

n+1 + ν
∆t

mα
j

[
1

2

∑
r

ρβr
n
δuαr

nTBn
jrδu

α
r
n +

1

2

∑
r

ρβr
n
δuαj

n+1TBn
jrδu

α
j
n+1

]

+
∆t2

2mα
j

2

(
ν
∑
r

ρnrB
n
jr(δu

α
j
n+1 − δuαr

n)

)2

, (6.49)

which implies eαj
n+1 ≥ ehαj n+1, since friction terms are positive.

Property 9 (Positivity of internal energy). Assuming that ∀α ∈ {f1, f2}, ∀j ∈ M , eαj
n > 0,

there exists ∆te > 0 such that the scheme (6.39)–(6.43) ensures that

∀∆t ∈]0,∆te[, ∀α ∈ {f1, f2}, ∀j ∈M , eαj
n+1 > 0.
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Proof. The proof is obvious since eαj
n+1 ≥ eh

α
j
n+1 and since ehαj

n+1(∆t) is a polynomial of de-
gree 2 satisfying ehαj

n+1(0) = eαj
n > 0. ∆te is nothing but the smallest root of these polynomials

for each cell of each fluid. �

6-4.4.3 Entropy stability for general equations of state

In the previous paragraph, we provided explicitly a choice of ∆t > 0 that ensures positivity of
internal energy and density for the proposed scheme, but this is not sufficient for stability. In
this section, we give an existence result of a strictly positive timestep ∆t that ensures production
of physical entropy for arbitrary physical equations of state.

Property 10 (Entropy). Let U :=
(
τ,uT , E

)T and let η the entropy. There exists ∆tη > 0 ,
such that ∀α, β ∈ {f1, f2}, α 6= β, if the pressure law pα : (ρ, e) → pα(ρ, e) is a differentiable
function, then the scheme (6.39)–(6.43) defined by ∆t = ∆tη ensures that,

1. the scheme is entropy stable:

∀j ∈M , η
(
Uαj

n+1
)
≥ η

(
Uαj

n
)
,

2. and ∀j ∈ M , one has the following alternative. If ∀r ∈ Rj , Cn
jr · uαr n = Cn

jr · uαj n and
δuαr

n − δuαj
n+1 = 0, then

Tαj
nmα

j

η(Uαj
n+1)− η(Uαj

n)

∆t
≥ ν

∑
r

ρβr δu
α
r
nTBn

jrδu
α
r
n + O(∆t),

else

Tαj
nmα

j

η(Uαj
n+1)− η(Uαj

n)

∆t
≥ ν

∑
r

ρβr δu
α
r
nTBn

jrδu
α
r
n.

Proof. See 6-2.7 Page 156. �

Remark 5. Let us comment point 2 of Property 10. Actually, this is a consistency result with
regard to (6.2). In the first case (if ∀r ∈ Rj , Cn

jr ·uαr n = Cn
jr ·uαj n and δuαr

n− δuαj
n+1 = 0), the

scheme gives following values ραj
n+1 = ραj

n, uαj
n+1 = uαj

n and eαj
n+1 = eαj

n+ ∆t
mαj
ν
∑

r ρ
β
r
n
δuαr

nTBn
jrδu

α
r
n.

In this case, the scheme acts simply as a first-order ODE solver. Since then dη = de and since
η is strictly convex, a time integration error is to be expected.

To sum up, we proved that the proposed scheme is stable, meaning that there exists 0 < ∆t ≤
min(∆tρ,∆te,∆tη) such that the scheme is entropy stable and preserves positivity of density and
internal energy. Moreover, it is consistent with (6.2).

6-4.4.4 A lower bound to ∆tα,ν

As stated before, to prove that the scheme is asymptotic preserving, it remains to show that
limν→+∞∆tα,ν 6= 0. Even if we will not provide here an explicit value, we will give a lower
bound independent of ν.

Property 11. ∀j ∈ M , let
(
τnj ,u

n
j
T , Enj

)T
denotes the initial state of fluid α ∈ {f1, f2}.

Let {ur}r∈Rj , be an arbitrary set of nodal velocities (or velocity fluxes). Then, if ∀ν ≥ 0,(
τν,n+1
j , eν,n+1

j

)
denotes the thermodynamic state obtained by scheme (6.39)–(6.41), one has

η
(
τν,n+1
j , eν,n+1

j

)
≥ η

(
τ0,n+1
j , e0,n+1

j

)
,
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where η := η(τ, e) is the physical entropy expressed according to the independent variables τ
and e.

Proof. Gibbs formula reads ∇τ,eη = 1
T

(
p
1

)
, where T := T (τ, e) is a positive function. So, for any

τ , η(τ, ·) is an increasing function.

Since (6.39) is independent of ν and according to (6.49), one has

∀{ur}r∈Rj , ∀ν ≥ 0, ∀∆t τν,n+1
j = τ0,n+1

j and eν,n+1
j ≥ e0,n+1

j ,

so
∀{ur}r∈Rj , ∀ν ≥ 0, ∀∆t η

(
eν,n+1
j , τν,n+1

j

)
≥ η

(
e0,n+1
j , τ0,n+1

j

)
.

�

Property 11 establishes that, for an arbitrary set of nodal velocities {ur}r∈Rj , the maximum
timestep required for the scheme to be stable is greater for any ν ≥ 0 than for ν = 0. We recall
that for the asymptotic scheme (6.31)–(6.34), the nodal velocity is solution of∑

j

Aαjr +Aβjr

ur =
∑
j

(
Aαjr +Aβjr

)
uj +

∑
j

Cjr

(
pαj + pβj

)
.

One recognizes the solution of the nodal solver in the monofluid case with a Dalton mixture law.
So, the timestep limν→+∞∆tα,ν is lower bounded independently of ν.

6-4.4.5 On the importance of the implicit velocities in (6.39)–(6.41)

Using the notations defined in Section 6-4.3, let us consider the fully explicit scheme that consists
in replacing momentum and total energy updates in (6.39)–(6.43) by their explicit counterparts

mα
j

uαj
n+1 − uαj

n

∆t
=−

∑
r

Fα,n
jr −

∑
r

νρnrB
n
jrδu

α
j
n,

mα
j

Eαj
n+1 − Eαj n

∆t
=−

∑
r

Fα,n
jr · u

α
r
n −

∑
r

νρnr unr
TBn

jrδu
α
r
n +

∑
r

νρnr unjr
TBn

jr

(
δuαr

n − δuαj
n
)
.

Using this scheme, one easily checks that internal energy variation reads

eαj
n+1 = eαj

n +
∆t

mα
j

[∑
r

(uαj
n − uαr

n)TAαjr
n(uαj

n − uαr
n)−

∑
r

pαj
nCn

jr · uαr
n

]

+ ν
∆t

mα
j

[∑
r

ρβr
n
δuαr

nTBn
jrδu

α
r
n +

∑
r

ρβr
n
δuαj

nTBn
jr(δu

α
j
n − δuαr

n)

]

− ∆t2

2mα
j

2

(∑
r

Aαjr
n(uαj

n − uαr
n) + ν

∑
r

ρnrB
n
jr(δu

α
j
n − δuαr

n)

)2

.

That is

eαj
n+1 = eh

α
j
n+1 + ν

∆t

mα
j

[∑
r

ρβr
n
δuαr
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·
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where ehαj
n+1 still denotes the obtained internal energy without friction. The later term being

a negative factor of ν2, in the explicit case, ∀∆t > 0 for large values of ν, one can have eαj
n+1 <

eh
α
j
n+1. So even if a similar result to Property 10 can be established (existence of an entropy

stable timestep), one cannot prove an equivalent of Property 11. If cell velocities are explicit,
one eventually gets lim

ν→+∞
∆te = lim

ν→+∞
∆tη = 0 for a given set of nodal velocities {ur}r∈Rj .

6-5 ALE scheme

The semi-Lagrangian scheme presented in this paper is defined assuming that both fluids meshes
are identical at the begining of the timestep. One understands easily that this is of huge help in
the construction of an asymptotic preserving scheme. One could imagine a purely Lagrangian
approach, but even dealing with a non-AP approach seems very difficult since one would have
to consider meshes intersections and complex geometrical calculations.

Thus, the algorithm we propose in this paper consists in ensuring that for each timestep both
fluids meshes coincide. To do so an ALE formulation is mandatory.

t = tn t = tn+1, Lagrangian t = tn+1, ALE

Figure 6.2 – Left: at time t = tn, both fluids share the same mesh. Middle: at the end of the
Lagrangian phase, one gets two different meshes, one for each fluid. Right: meshes
are displaced so that they coincide. Solution is remapped and a new timestep can
be performed.

Figure 6.2 depicts the general ALE case. Our ALE method is a Lagrange-rezoning-advection
procedure which ensures that the solution is defined at time tn+1 on a unique mesh.

— At time tn solutions are discretized on the meshes M n
α = M n

β

— In a first step (Lagrangian phase), each mesh evolves in a different way M̃ n+1
α 6= M̃ n+1

β .
Each mesh being defined by x̃α,n+1

r = xnr + ∆tuα,nr .
— Then the meshes are smoothed in a way to obtain new meshes such that M n+1

α ≡ M n+1
β .

For each fluid α, it allows to define an arbitrary velocity vα,n+1
r such that xn+1

r = x̃α,n+1
r +

∆tvα,n+1
r .

— Finally, for both fluids, the numerical solution is computed on the common mesh by remap-
ping the conservative variables (ρα, ραuα, ραEα)T at velocity −vα,n+1

r , with a second-order
accurate scheme. One can then compute another timestep.

In the test problems we have experienced three ALE strategies. First strategy consists in
remapping both fluids on the inital grid for each time step n. Consequently ∀α ∈ {1, 2}, vα,n+1

r =
xnr−x̃α,n+1

r

∆t . Second strategy consists in considering that one fluid is Lagrangian (for instance
fluid 1) and to remap the second fluid on the first fluid grid at each time step. In this case,
v1,n+1
r = 0 and v2,n+1

r = x̃1,n+1
r −x̃2,n+1

r
∆t . Third strategy consists in performing an iteration

of barycentric smoother to one of the mesh (for instance M̃ n+1
1 ) at the end of each Lagrangian

step, then consider this new mesh as the initial common mesh for the following step, and finally
deducing the advection velocities for both fluids. The algorithm involved in the projection step
is classical and aims at solving the equation ∂tϕ = 0, ∀ϕ on the whole domain Ω, from step n to
n+ 1. The point of view we choose in this work is called ”sweeping” in the literature [Ben92]. It
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consists in considering this step as a transport problem from the domain Ωn to the domain Ωn+1.
The algorithm we use for this step is consistent with the previous equation, conservative for the
variables ρα, ρβ , ραuα, ρβuβ , ραEα and ρβEβ , and preserves the local maximum principle.In
consequence, the properties of the Lagrangian step remain valid for the global algorithm. Even
if the problem is formulated as an advection step, we insist on the fact that the aim is only
to project the solutions from one grid to another one, and no physics is involved. However, in
practice, the remapping could artificially increase the gap between the velocities of both fluids.
This is why we perform most of the test problems with the three strategies to evaluate this effect.
We found this impact negligible, and then we consider that the Asymptotic Preserving behaviour
is not affected by the remapping step, for these ALE strategies.

6-6 Numerical tests

6-6.1 Reference scheme

Let us recall that the reference scheme (6.22)–(6.23) is entropic, conservative in volume and
mass for each fluid and in the sum of momenta and total energies. Also, the scheme is weakly
consistent with (6.1). One can moreover show that its associated discrete in time scheme, where
only uj terms are implicit, is stable in the same way as scheme (6.39)–(6.43).

However, this scheme does not a priori preserve the asymptotic. For these reasons this scheme
is a very good candidate for the comparisons we perform in this section.

6-6.2 Test conditions

In all the following tests, we choose Aαjr = ραj c
α
j

∑
i

N i
jr⊗N i

jr

‖N i
jr‖

(Eucclhyd scheme) and Bjr = VjrI2,

with Vjr = 1
#Rj Vj . Also, for each test one chooses γα = γβ = 1.4.

Results are compared with the non-AP scheme (6.22)–(6.23). Also for the 2D tests, we compare
our results (ν >> 1) to the mono-fluid case, where mass fraction ρα

ρα+ρβ
is treated as a passive

scalar.

As it is often the case for multi-velocity models [SA99], the scheme is only defined in regions
where both fluids are present. Thus in regions where a fluid should be absent, one keeps a
neglectable amount of it. In the tests, we use the ratio ε = 10−3 to define the negligible amount
of fluid at initial time. Lower values such as 10−6 can lead to instabilities of the scheme since
the thermodynamic initial state is very challenging.

6-6.3 Sod shock tube

This test is taken from [Ena07]. The computational domain we consider is Ω :=]0, 1[×]0, 0.1[.
Initial data is given as U := (ρ,u, p)T , so that one defines UL := (1,0, 1)T , UR := (0.125,0, 0.1)T

and U ε := (ε,0, ε)T . For both fluids initial states are then

Uα = 1]0,0.5[(U
L − U ε) + 1]0.5,1[U

ε and Uβ = 1]0,0.5[U
ε + 1]0.5,1[(U

R − U ε),

where 1O denotes the characteritic function of the set O and where we take ε = 10−3.

On Figure 6.3, we compare the solution at time t = 0.14 obtained by the proposed scheme (6.39)–
(6.43) to the reference scheme (6.22)–(6.23) in the case ν = 1000. One plots the density sum:
ρα + ρβ . The grid is 200x3 cells and the solution is compared to a reference solution obtained
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Figure 6.3 – ν = 1000. Top: density ρα + ρβ profile. Bottom: internal energy ραεα+ρβεβ

ρα+ρβ
.

AP-scheme (left) gives a much better solution than the non-AP scheme (right).

using a 104 × 3 grid. The simulation is Lagrangian: the left fluid imposes the mesh to the right
one.

The same test is performed for a friction parameter ν = 106. The density sum is presented on
Figure 6.4 at time t = 0.14.

One retrieves the results presented in [Ena07], even if the scheme does not degenerate in 1D to
the scheme proposed in [Ena07].

6-6.4 Triple-point problem

The triple-point problem is a standard benchmark [Lou05]. It is a multidimensional Riemann
problem whose data are close to the Sod shock tube. The self-similarity of the problem yields an
infinitely rolling vortex, the quantity of the details generated by the secondary Kelvin-Helmoltz
instabilities depends only on the numerical dissipation of the scheme. Figure 6.5 depictes the
initial geometry and the initial three states.

Let us define ρL = 1, ρl = 0.125, pL = 1 and pl = 0.1. Also, Ω1 =]0, 1[×]0, 3[, Ω2 =]1, 7[×]0, 1.5[
and Ω3 =]1, 7[×]1.5, 3[. This allows to define the initial states of both fluids:

Uα = 1Ω2

 ρL − ε
0

pl − ε

+1Ω1∪Ω3

 ε
0
ε

 and Uβ = 1Ω1

 ρL − ε
0

pL − ε

+1Ω3

 ρl − ε
0

pl − ε

+1Ω2

 ε
0
ε

 .

Symmetry boundary conditions are set at each straight boundary of the computational domain.
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Figure 6.4 – ν = 106. Top: density ρα + ρβ profile. Bottom: internal energy ραεα+ρβεβ

ρα+ρβ
. AP-

scheme (left) gives a much better solution than the non-AP scheme (right). The
expected solution is close to the classical mono-fluid case.

The ALE strategy we use for this test consists in a barycentric smoother for the grid of the
fluid α and then to impose xβr = xαr .

We run the test on a 91 × 40 grid. Choosing the friction parameter ν = 106, we compare the
obtained result to the solution of the mono-fluid solver and to the non-AP scheme, see Figure 6.6.
For the comparison, we plot the mass fraction in each case: ρα

ρα+ρβ
. One notices the nice agreement

of the solution for the proposed scheme with regard to the mono-fluid case, even for this small
amount of cells, whereas the non-AP scheme is not even able to compute the large structures of
the flow at this grid resolution.

Then we study the effect of the friction parameter. Figure 6.7 presents the obtained solutions,
on a finer 210× 90 grid, for ν ∈ {10, 100, 106}.

3

1 6

1.5

ρL,pL

ρL,pl

ρl,pl

Figure 6.5 – Geometry, pressures and densities for the triple-point problem at time t = 0.
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Figure 6.6 – 91 × 40 mesh. Mass fraction of fluid α at time t = 5. Left: mono-fluid solution.
Right: bi-fluid solution with ν = 106. Bottom: bi-fluid solution with non-AP
scheme with ν = 106.

6-6.5 A Rayleigh Taylor instability

For this test, we modify the scheme in order to incorporate the gravity treatment. Obviously, we
use a well-balanced approach [CL95] to take this term into account. For this modified scheme,
the properties we established for (6.39)–(6.44) remain true. We did not take the gravity term
into account in Section 6-4 to avoid a more complex presentation, since there is no additional
difficulties to overcome.

The interface perturbation is defined by the function f(y) = 0.05 cos(8πy) and centered at
x = 0.35 in the computational domain Ω =]0, 0.7[×]0, 0.25[. Thus, two regions are defined:
Ωα = {(x, y) ∈ Ω/x < 0.35 + f(y)} and Ωβ = Ω \ Ωα.

Initially, velocities are set to 0 in Ω, and densities are defined as

ρα = 1Ωα(0.8− ε) + 1Ωβ
ε, and ρβ = 1Ωαε+ 1Ωβ

(0.25− ε).

Choosing the gravity acceleration as g = 9.8 ex, we define the pressure in the whole domain at
a quasi-equilibrium state (omitting the y dependancy), that is

p(x) =

∫ x

0

(
ρα + ρβ

)
g · ex.

Again, symmetry boundary conditions are imposed all over ∂Ω. We represent the mass fraction
of fluid α that is ρα

ρα+ρβ
. We use the same ALE strategy as in the previous test: a barycentric

remapping is performed on the mesh of fluid α and we set M n+1
β = M n+1

α to allow the calculation
of timestep n+ 1.

At first, we validate the approach by comparing the obtained result to the mono-fluid scheme.
The results are presented on Figure 6.9, one observes again a very good agreement even on a
112× 40 coarse grid. As expected, the non-AP scheme clearly shows lack of convergence.

Finally, we study the influence of the friction parameter ν for successive values of 100, 1000 and
106. A slightly finer grid (224× 80) is used for it.
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Figure 6.7 – 210×90 mesh. Time t = 5. Mass fraction of fluid α. Effect of the friction parameter
ν. Left: ν = 10. Right: ν = 100. Bottom: ν = 106.

0.7

0.25

0.01

Ωα Ωβ
g

Figure 6.8 – Rayleigh-Taylor test initial geometry. Fluid α being heavier than fluid β, instability
will grow.

6-7 Conclusion

In this paper, we presented a multi-dimensionnal asymptotic preserving scheme to solve a bi-fluid
model defined as a set of two Euler systems coupled with a friction term. The originality of the
approach is that the scheme is ALE: the only constrain being that meshes must coincide at the
begining of each timestep.

The scheme is conservative and weakly-consistent by construction. Moreover, we showed that
it is at least as stable as the underlying hydro-scheme in the sense that the timestep required
to increase entropy does not tend to zero when friction increases. We showed consistency of
the limit scheme (ν → +∞) to the limit model. So, we proved that the scheme is asymptotic
preserving. On the way we proved some stability results with regard to the fluxes ur, which
give some bounds independently of ν (Property 3), and complete the numerical analysis of the
scheme.

The numerical results show that the scheme behaves as expected and appears to be a good
candidate to study interpenetration mixing [SC02], which is the goal of this work. Actually, all
the results 1 can be established with a varying positive friction ν. In the paper we kept ν constant

1. If friction parameter depends on the cell data (ν = νj), Property 3 takes a slightly different form.
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Figure 6.9 – 112× 40 mesh. Mass fraction of fluid α. Time t = 0.7s. Top: mono-fluid solution.
Middle: bi-fluid solution with ν = 106. Bottom: bi-fluid solution with non-AP
scheme with ν = 106.

for the sake of simplicity. The numerical analysis and tests are performed in 2D, however the
analysis in 3D is completely unchanged.

On the numerical point of view, a second-order accurate version of the scheme would be of
interest. However, this is not an easy task for two main reasons. First, on the theoretical point
of view, establishing properly the asymptotic preserving property would be challenging. Second,
using a Runge-Kutta-like approach to get second-order accuracy in time would probably impose
to incorporate the remeshing into the time integration or to consider a one-step approach.

Another extension is to introduce more physics in the model. The friction coupling is a very sim-
ple approach, one could use more appropriate closures based on the presented work. For instance
see [SC02] in which this kind of model is used to accounts for eddy diffusivity, or [BDDM11]
where Lorentz forces are taken into account in a ion-electron mixture.
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Figure 6.10 – 224 × 80 mesh. Time t = 0.7. Mass fraction of fluid α. Influence of the friction
parameter. Top: ν = 100. Middle: ν = 1000. Bottom: ν = 106.
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Appendices

Appendix 6.A Asymptotic Preserving scheme in dimension one

We give in this section the one dimensional version of the scheme proposed in Section 6-4. The
derivation is similar in many aspects with the work of Enaux [Ena07], and we invite the reader
to refer to this work for more details.

For the 1D-version of the scheme, we propose some modifications of the notations, in order to
mimic the usual 1D framework of Riemann solvers. Instead of noting r the nodes of the cells,
we use j − 1/2 and j + 1/2, to design respectively the left-sided and right-sided nodes of the
cell j. We also use the standard notations p? and u? for the Riemann pressure and velocity.
With these notations, in 1D, the 2D vectors Cjr reduce to −1 in j − 1/2 and 1 in j + 1/2. The
2×2 Aαjr and Bjr matrices reduce respectively to the scalars ραj c

α
j and ∆xj/2. In this framework

the scheme (6.39)-(6.41) becomes

mα
j

ταj
n+1 − ταj n

∆t
=uα,?j+1/2 − u

α,?
j−1/2, (6.A.1)

mα
j

uαj
n+1 − uαj n

∆t
=−

(
pα,?j+1/2 − p

α,?
j−1/2

)
− ν

2
(ρnj−1/2 + ρnj+1/2)∆xnj δu

α
j
n+1, (6.A.2)

mα
j

Eαj
n+1 − Eαj n

∆t
=−

(
pα,?j+1/2u

α,?
j+1/2 − p

α,?
j−1/2u

α,?
j−1/2

)
− ν

2

(
ρnj+1/2 u

n
j+1/2δu

α,?
j+1/2 + ρnj−1/2 u

n
j−1/2δu

α,?
j−1/2

)
∆xnj

+
ν

2

(
ρnj+1/2u

n
j,j+1/2δu

α,?
j+1/2 + ρnj−1/2u

n
j,j−1/2δu

α,?
j−1/2

)
∆xnj

− ν

2

(
ρnj+1/2u

n
j,j+1/2 + ρnj−1/2u

n
j,j−1/2

)
δuαj

n+1∆xnj . (6.A.3)

We emphasis that the discretization of the source terms in Eq. (6.A.3) is more complex than the
one in [Ena07] p.128. We found it necessary for our multi-D proofs, in particular the entropy
and AP behaviour. However, if we consider only the barotropic case (no energy equation and
pαj (ραj )) we recover the same discretization of the conservations laws as in [Ena07] pp114–121
except for the definition of the mean velocity (called unj+1/2 in this work and ũ in [Ena07]) which
is slightly different.

The associated Riemann solver in 1D reads:

pα,?j+1/2 = pα,nj − ρα,nj cα,nj (uα,?,nj+1/2 − u
α,n
j+1/2)− ν

2
ρnj+1/2∆xnj δu

α,?
j+1/2, (6.A.4)

and pα,?j+1/2 = pα,nj+1 + ρα,nj+1c
α,n
j+1(uα,?,nj+1/2 − u

α,n
j+1)− ν

2
ρnj+1/2∆xnj+1δu

α,?
j+1/2. (6.A.5)

This solver is very similar to those proposed by Enaux [Ena07]. It combines the acoustic Godunov
approximation to the usual trick of getting well-balanced scheme by incorporating the source
terms into the solver. There are different ways to incorporate the source terms into the solver, the
more grounded theoretically being described in [Gos13, DB16], leading to the above expression.
In 1D and in the barotropic approximation, both conservation laws discretization and Riemann
solver are very close to those in [Ena07], and all the proofs (including asymptotic behaviour) are
the same.

Using the framework of well-balanced schemes leads however to a different discretization of the
source terms (also different from what is proposed in [Ena07]). Then the system (6.A.1)-(6.A.3)
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reads

mα
j

ταj
n+1 − ταj n

∆t
=uα,?j+1/2 − u

α,?
j−1/2, (6.A.6)

mα
j

uαj
n+1 − uαj n

∆t
=−

(
pα,?j+1/2 − p

α,?
j−1/2

)
− ν

2
(ρnj−1/2δu

α,?
j−1/2

n+1
+ ρnj+1/2δu

α,?
j+1/2

n+1
)∆xnj ,

(6.A.7)

mα
j

Eαj
n+1 − Eαj n

∆t
=−

(
pα,?j+1/2u

α,?
j+1/2 − p

α,?
j−1/2u

α,?
j−1/2

)
− ν

2

(
ρnj+1/2 u

n
j+1/2δu

α,?
j+1/2 + ρnj−1/2 u

n
j−1/2δu

α,?
j−1/2

)
∆xnj . (6.A.8)

The multi-D counterpart for this scheme should be (following [Fra12])

mα
j

ταj
n+1 − ταj n

∆t
=
∑
r

Cn
jr · uαr

n, (6.A.9)

mα
j

uαj
n+1 − uαj

n

∆t
=−

∑
r

Fα,n
jr −

∑
r

νρnrB
n
jrδu

α
r
n, (6.A.10)

mα
j

Eαj
n+1 − Eαj n

∆t
=−

∑
r

Fα,n
jr · u

α
r
n −

∑
r

νρnr unr
TBn

jrδu
α
r
n. (6.A.11)

However, we were not able to prove the asymptotic preserving property for this scheme. More-
over, applying it to the test problem 6-6.3, we found that the scheme (6.A.9)–(6.A.11) produce
oscillations on δuj which are not observed with the scheme (6.39)–(6.41) proposed in this work.

Figure 6.11 – “Sod shock tube”. ν = 106. Comparison of the δuj obtained for the AP
scheme (6.39)–(6.43) (blue) and for the well-balanced scheme (6.A.9)–(6.A.11) (red)
at time t = 1.4 for a 200× 3 grid.

Appendix 6.B Technical proofs

6-2.1 Proof of Property 3

Proof. ∀ν ≥ 0, (uα,νr ,uβ,νr ) is the unique solution of(
Aαr + νρrBr −νρrBr
−νρrBr Aβr + νρrBr

)(
uα,νr
uβ,νr

)
= br, with br :=

( ∑
j Cjrp

α
j∑

j Cjrp
β
j

)
.
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So, since br is independent of ν, one has

∀ν ≥ 0,
(
A0
r + νρr∆r

)
uνr = A0

ru
0
r , (6.B.1)

where

A0
r :=

(
Aαr 0

0 Aβr

)
, ∆r :=

(
Br −Br
−Br Br

)
and uνr :=

(
uα,νr
uβ,νr

)
.

Multiplying on the left by uνr yields uνr
TA0

ru
ν
r + νρru

ν
r
T∆ru

ν
r = uνr

TA0
ru

0
r . Since Br is a positive

matrix ∆r is also positive, and since νρr ≥ 0, one gets

∀ν ≥ 0, uνr
TA0

ru
ν
r ≤ uνr

TA0
ru

0
r .

Finally, A0
r being symmetric and positive definite, the simple following Youngs inequality,

uνr
TA0

ru
0
r ≤

1

2
uνr

TA0
ru

ν
r +

1

2
u0
r
TA0

ru
0
r ,

allows to prove (6.28).

The proof of (6.29) follows the same way. Multiplying (6.B.1) on the left by uνr , one has

∀ν ≥ 0, νρru
ν
r
T∆ru

ν
r + uνr

TA0
ru

ν
r = uνr

TA0
ru

0
r .

Then, using the same Youngs inequality, one gets after a few arrangements

∀ν ≥ 0, νρru
ν
r
T∆ru

ν
r +

1

2
uνr

TA0
ru

ν
r ≤

1

2
u0
r
TA0

ru
0
r ,

which yields to (6.29) since A0
r is positive.

The third inequality is a bit more difficult to establish. Let us introduce the quadratic form
Jνv := 1

2vT
(
A0
r + νρr∆r

)
v− br · v. So, since uνr is the unique solution of the linear system, one

has
∀ν ≥ 0, ∀v, Jνuνr ≤ Jνv.

In the particular case v = u0
r , one gets Jνuνr ≤ Jνu0

r
. It is then easy to check that

Jνu0
r

=
1

2
u0
r
T (A0

r + νρr∆r

)
u0
r − br · u0

r = J0
u0
r

+
νρr
2

u0
r
T

∆ru
0
r .

So, one has established a first inequality

Jνuνr ≤ J0
u0
r

+
νρr
2

u0
r
T

∆ru
0
r . (6.B.2)

Similarly, since u0
r is the unique solution of the linear system in the case ν = 0, one has J0

u0
r
≤ J0

uνr
,

which can be written as
J0
u0
r
≤ Jνuνr −

νρr
2

uνr
T∆ru

ν
r .

This actually gives a lower bound to Jνuνr which combined with its upper bound (6.B.2) yields

J0
u0
r

+
νρr
2

uνr
T∆ru

ν
r ≤ J0

u0
r

+
νρr
2

u0
r
T

∆ru
0
r .

Since νρr is positive, elementary calculations allow to write (6.30). �



AN ASYMPTOTIC PRESERVING MULTIDIMENSIONAL ALE METHOD FOR
A SYSTEM OF TWO COMPRESSIBLE FLOWS COUPLED WITH FRICTION 151

6-2.2 Proof of Property 4 (Conservation)

Proof. Conservations of mass and volume for each fluid are obvious since the associated bal-
ance equations are unchanged with regard to the mono-fluid schemes (see for instance [DM05,
CDDL09, MABO07, Mai11]).

Summing momenta equations in (6.24) for both fluids gives

mα
j dtu

α
j +mβ

j dtu
β
j = −

∑
r

Fα
jr −

∑
r

Fβ
jr −

∑
r

νρrBjr(δu
α
j + δuβj ).

Recalling that by definition, δφα + δφβj = 0, one has

mα
j dtu

α
j +mβ

j dtu
β
j = −

∑
r

Fα
jr −

∑
r

Fβ
jr.

The conservativity proof is ended in a standard way. One now sums these equations over the
cells which gives ∑

j

mα
j dtu

α
j +

∑
j

mβ
j dtu

β
j = −

∑
j

∑
r∈Rj

Fα
jr −

∑
j

∑
r∈Rj

Fβ
jr,

that we rewrite ∑
j

mα
j dtu

α
j +

∑
j

mβ
j dtu

β
j = −

∑
r

∑
j∈Jr

Fα
jr −

∑
r

∑
j∈Jr

Fβ
jr.

This proves that momenta sum is conserved using (6.26) and recalling that cell masses are
Lagrangian.

Conservation of total energies sum is obtained in the exact same way. �

6-2.3 Proof of Property 5 (Entropy)

Let us establish a simple technical Lemma that will be useful in the following and to demonstrate
Property 5.

Lemma 2. Let M denote a symmetric matrix of Rd×d, then

∀v,w ∈ Rd, vTMv −wTM(v −w) =
1

2
vTMv +

1

2
wTMw +

1

2
(w − v)TM(w − v).

Proof. Let ξ := vTMv −wTM(v −w). Obviously, one has

ξ = vTMv + wTMw −wTMv.

Since M is symmetric, one has −2wTMv = (v −w)TM(v −w)− vTMv −wTMw. Injecting
this equality in the expression of ξ ends the demonstration. �

Corollary 1. Let M denote a symmetric and positive matrix of Rd×d, then

∀v,w ∈ Rd, vTMv −wTM(v −w) ≥ 1

2
vTMv +

1

2
wTMw.

Proof. This is a direct consequence of Lemma 2, since M is a positive matrix. �

We can now give the proof of Property 5.



152 TECHNICAL PROOFS

Proof of Property 5. Gibbs formula reads Tdη = de+ pdτ , so that one has

Tαj dtη
α
j = dte

α
j + pαj dtτ

α
j ,

which rewrites also

mα
j T

α
j dtη

α
j = mα

j dtE
α
j − uαj ·mα

j dtu
α
j + pαjm

α
j dtτ

α
j .

Using (6.27), one gets

mα
j T

α
j dtη

α
j = −

∑
r

Cjrp
α
j · uαr +

∑
r

uαr
TAαjr(u

α
r − uαj ) + ν

∑
r

ρβr δu
α
r
TBjrδu

α
r

− ν
∑
r

ρβr δu
α
j
TBjr(δu

α
r − δuαj ) + ν

∑
r

ρr uαj
TBjr(δu

α
r − δuαj )

+ uαj ·

(∑
r

Aαjr(u
α
r − uαj ) + ν

∑
r

ρrBjr
(
δuαr − δuαj

))
+
∑
r

Cjr · uαr pαj ,

which simplifies as

mα
j T

α
j dtη

α
j =

∑
r

(uαr−uαj )TAαjr(u
α
r−uαj )+ν

∑
r

ρβr δu
α
r
TBjrδu

α
r−ν

∑
r

ρβr δu
α
j
TBjr(δu

α
r−δuαj ).

Since Bjr matrices are symmetric and positive, one can apply Corollary 1 to obtain

mα
j T

α
j dtη

α
j ≥

∑
r

(uαr − uαj )TAαjr(u
α
r − uαj ) +

1

2
ν
∑
r

ρβr δu
α
r
TBjrδu

α
r +

1

2
ν
∑
r

ρβr δu
α
j
TBjrδu

α
j .

Matrix Aαjr being positive, one finally has

mα
j T

α
j dtη

α
j ≥

1

2
ν
∑
r

ρβr δu
α
r
TBjrδu

α
r +

1

2
ν
∑
r

ρβr δu
α
j
TBjrδu

α
j ,

which is positive. �

6-2.4 Formal derivation of the asymptotic scheme

Formal derivation. Let α ∈ {f1, f2}, β denoting the other fluid. Let us introduce ε := ν−1. One
rewrites (6.27) as

mα
j dtτ

α
j =

∑
r

Cjr · uαr , (6.B.3)

dtm
α
j =0,

mα
j dtu

α
j =

∑
r

Aαjr(u
α
r − uαj )− 1

ε

∑
r

ρrBjr(δu
α
j − δuαr ), (6.B.4)

mα
j dtE

α
j = −

∑
r

Cjrp
α
j · uαr +

∑
r

uαr
T Aαjr(u

α
r − uαj ) +

1

ε

∑
r

ρβr (δuαr )TBjrδu
α
r

+
1

ε

∑
r

(ρru
α
j
T − ρβr δuαj

T )Bjr(δu
α
r − δuαj ), (6.B.5)

and ∑
j

Aαjru
α
r +

∑
j

1

ε
ρrBjrδu

α
r =

∑
j

Aαjru
α
j +

∑
j

Cjrp
α
j . (6.B.6)
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Following the analysis of the asymptotic model, we perform an Hilbert expansion.

The first information one gets is from equation (6.B.6) which reads

∑
j

Aα,0jr uα,0r +
∑
j

1

ε
ρ0
rBjrδu

α,0
r +

∑
j

ρ0
rBjrδu

α,1
r +

∑
j

ρ1
rBjrδu

α,0
r

=
∑
j

Aα,0jr uα,0j +
∑
j

Cjrp
α,0
j + O(ε).

So that multiplying this equation by ε leads to ρ0
r(
∑

j Bjr)δu
α,0
r = 0. That is

δuα,0r = 0, (6.B.7)

since
∑

j Bjr is symmetric positive definite and ρr = ρ0
r + O(ε) > 0 so that ρ0

r > 0 when ε→ 0.
One gets volume conservation equation (6.32).

Now, the momentum equation (6.B.4) is considered, using (6.B.7), one has

mα
j dtu

α,0
j =

∑
r

Aα,0jr (uα,0r − uα,0j )− 1

ε

∑
r

ρ0
rBjrδu

α,0
j

−
∑
r

ρ1
rBjrδu

α,0
j −

∑
r

ρ0
rBjr(δu

α,1
j − δu

α,1
r ) + O(ε),

which gives
δuα,0j = 0. (6.B.8)

Using, (6.B.8) and (6.B.7), one defines u0
j := uα,0j = uβ,0j and u0

r := uα,0r = uβ,0r .

So, Hilbert expansions of equations (6.B.3), (6.B.4) and (6.B.5) simplify as

mα
j dtτ

α,0
j =

∑
r

Cjr · u0
r ,

mα
j dtu

0
j =

∑
r

Aα,0jr (u0
r − u0

j )−
∑
r

ρ0
rBjr(δu

α,1
j − δu

α,1
r ), (6.B.9)

mα
j dtE

α,0
j = −

∑
r

(Cjrp
α,0
j −A

α,0
jr (u0

r − u0
j )) · u0

r

+
∑
r

ρ0
ru

α,0
j

T
Bjr(δu

α,1
r − δu

α,1
j ). (6.B.10)

Our aim is now to evaluate the term
∑

r ρ
0
ru

α,0
j

T
Bjr(δu

α,1
r − δuα,1j ). To do so, we divide momen-

tum equation (6.B.9) by ραj (> 0), which gives

Vjdtu
0
j =

1

ραj

∑
r

Aα,0jr (u0
r − u0

j )−
∑
r

ρ0
r

ραj
Bjr(δu

α,1
j − δu

α,1
r ).

The same relation can be written for fluid β. The difference of these two equations reads, recalling
that δφα = −δφβ ,

0 =
∑
r

δ

(
A0
jr

ρj

)α
(u0

r − u0
j )−

ρj

ραj ρ
β
j

∑
r

ρ0
rBjr(δu

α,1
j − δu

α,1
r ). (6.B.11)

Injecting this relation in (6.B.10) gives the limit scheme total energy balance equation (6.33). The
momentum equation (6.31) is obtained in the same way or by simply summing equations (6.B.9)
for both fluids α and β. �
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6-2.5 Proof or Property 7 (Limit scheme consitency)

Proof. Consistency for volume, mass and momentum is a direct consequence of Property 6, it
remains to show the consistency for total energy.

We rewrite equation (6.5) using a more convenient form

ραDtE
α = −∇ · (pα + pβ)u + pβ∇ · u +

ρβ

ρ
∇(pα + pβ) · u.

As a starting point we recall (6.34) for fluid α

mα
j dtE

α
j = −

∑
r

Cjp
α
j · ur +

∑
r

uTr A
α
jr(ur − uj)−

ραj ρ
β
j

ρj

∑
r

uTj δ

(
Ajr
ρj

)α
(ur − uj),

that we rewrite

mα
j dtE

α
j = −

∑
r

Cj(p
α
j + pβj ) · ur +

∑
r

uTr (Aαjr +Aβjr)(ur − uj)

+
∑
r

Cjp
β
j · ur −

∑
r

uTr A
β
jr(ur − uj)−

ραj ρ
β
j

ρj

∑
r

uTj

(
Aαjr
ραj
−
Aβjr

ρβj

)
(ur − uj).

Simple algebraic manipulations on the later term allow to write

mα
j dtE

α
j = −

∑
r

Cj(p
α
j + pβj ) · ur +

∑
r

uTr (Aαjr +Aβjr)(ur − uj)

+
∑
r

Cjp
β
j · ur −

∑
r

(ur − uj)
TAβjr(ur − uj)−

ρβj
ρj

uTj
∑
r

(
Aαjr +Aβjr

)
(ur − uj).

— According to Property 6 the term

1

Vj

(
−
∑
r

Cj(p
α
j + pβj ) · ur +

∑
r

uTr (Aαjr +Aβjr)(ur − uj)

)
,

is weakly consistent with
(
−∇ · (pα + pβ)u

)∣∣
xj
.

— Also since 1
Vj

(
∑

r Cj · ur) is weakly consistent with ∇ · u,

1

Vj

(
pβj
∑
r

Cj · ur

)
≈
(
pβ∇ · u

)∣∣∣
xj
.

— Now, since
∑

r Cjr = 0, one has

−
∑
r

Fjr =
∑
r

(Aαjr +Aβjr)(ur − uj),

so that Property 6 implies that

1

Vj

(
−
ρβj
ρj

uTj
∑
r

(
Aαjr +Aβjr

)
(ur − uj)

)
≈
(
ρβ

ρ
∇(pα + pβ) · u

)∣∣∣∣
xj

.
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To conclude, it remains to prove for the remaining term

1

Vj

(
−
∑
r

(ur − uj)
TAβjr(ur − uj)

)
≈ 0.

Let ζα denote its limit:

1

Vj

(
−
∑
r

(ur − uj)
TAβjr(ur − uj)

)
−→
Vj→0

ζα.

We have shown

ραj dtE
α
j ≈

(
−∇ · (pα + pβ)u + pβ∇ · u +

ρβ

ρ
∇(pα + pβ) · u

)∣∣∣∣
xj

+ ζα.

Since the same result holds for fluid β, simple calculations lead to

ραj dtE
α
j + ρβj dtE

β
j = ρjdtEj ≈

(
−∇ · (pα + pβ)u

)∣∣∣
xj

+ ζα + ζβ.

According to Property 6
ρjdtEj ≈

(
−∇ · (pα + pβ)u

)∣∣∣
xj
,

so that ζα + ζβ ≈ 0.

Actually, one has

1

Vj

(∑
r

(ur − uj)
TAβjr(ur − uj)

)
+

1

Vj

(∑
r

(ur − uj)
TAαjr(ur − uj)

)
→ 0,

since Aαjr and Aβjr are positive matrices, one has finally

1

Vj

(∑
r

(ur − uj)
TAαjr(ur − uj)

)
→ 0 and

1

Vj

(∑
r

(ur − uj)
TAβjr(ur − uj)

)
→ 0,

which ends the proof. �

6-2.6 Proof of Lemma 1 (Internal energy variation)

Proof. Rewriting eαj
n+1 = −1

2‖u
α
j
n+1‖2 +Eαj

n+1 and using (6.46), one gets after a few arrange-
ments

eαj
n+1 =

1

2

∥∥uαj n∥∥2 − 1

2

∥∥uαj n+1
∥∥2

+ eαj
n − ∆t

mα
j

(∑
r

pαj
nCn

jr · uαr
n +

∑
r

uαr
nTAαjr

n(uαj
n − uαr

n)

)

+ ν
∆t

mα
j

{∑
r

ρβr
n
δuαr

nTBn
jrδu

α
r
n −

∑
r

ρβr
n
δuαr

n+1TBn
jr

(
δuαr

n − δuαj
n+1
)

+
∑
r

ρnr un+1
j

T
Bn
jr

(
δuαr

n − δuαj
n+1
)}

. (6.B.12)
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As a first step one estimates kinetic energy variation

−∆K α
j :=

1

2
‖uαj

n‖2 − 1

2
‖uαj

n+1‖2 =
uαj

n + uαj
n+1

2
·
(
uαj

n − uαj
n+1
)
,

which rewrites using (6.45)

−∆K α
j =

(
uαj

n − ∆t

2mα
j

[∑
r

Aαjr
n(uαj

n − uαr
n) + ν

∑
r

ρnrB
n
jr(δu

α
j
n+1 − δuαr

n)

])

· ∆t

mα
j

[∑
r

Aαjr
n(uαj

n − uαr
n) + ν

∑
r

ρnrB
n
jr(δu

α
j
n+1 − δuαr

n)

]
,

that is

−∆K α
j =

∆t

mα
j

(∑
r

uαj
nTAαjr

n(uαj
n − uαr

n) + ν
∑
r

uαj
nTρnrB

n
jr(δu

α
j
n+1 − δuαr

n)

)

− ∆t2

2mα
j

2

(∑
r

Aαjr
n(uαj

n − uαr
n) + ν

∑
r

ρnrB
n
jr(δu

α
j
n+1 − δuαr

n)

)2

.

So, one has

eαj
n+1 = eαj

n +
∆t

mα
j

{∑
r

(uαj
n − uαr

n)TAαjr
n(uαj

n − uαr
n)−

∑
r

pαj
nCn

jr · uαr
n

− ∆t

2mα
j

(∑
r

Aαjr
n(uαj

n − uαr
n) + ν

∑
r

ρnrB
n
jr(δu

α
j
n+1 − δuαr

n)

)2


+ ν
∆t

mα
j

[∑
r

ρβr
n
δuαr

nTBn
jrδu

α
r
n +

∑
r

ρβr
n
δuαj

n+1TBn
jr(δu

α
j
n+1 − δuαr

n)

]

+ ν
∆t

mα
j

∑
r

ρnr (uαj
n − uαj

n+1)TBn
jr(δu

α
j
n+1 − δuαr

n),

which using (6.43) is nothing but (6.47). �

6-2.7 Proof of Property 10 (Entropy)

Proof. Let U =
(
τ,uT , E

)T and let η be the entropy of the fluid. Gibbs formula reads Tdη =
de+ pdτ . Following [Maz07, Des10a], we estimate the entropy change, by means of a third-order
Taylor expansion, due to the proposed scheme:

η(Uαj
n+1)− η(Uαj

n) = (Uαj
n+1 − Uαj

n)T
∂η

∂U

∣∣∣∣
Uαj

n

+
1

2
(Uαj

n+1 − Uαj
n)T

∂2η

∂U2

∣∣∣∣
Uαj

n

(Uαj
n+1 − Uαj

n) + O
(
(Uαj

n+1 − Uαj
n)3
)
.

One has ∂η
∂U

∣∣∣
Uαj

n
= 1

Tαj
n (pαj

n,−uαj
n, 1)T and the variable change V = (p,−u, η)T reads

(Uαj
n+1 − Uαj

n)T
∂2η

∂U2

∣∣∣∣
Uαj

n

(Uαj
n+1 − Uαj

n) = (V α
j
n+1 − V α

j
n)T

∂2η

∂V 2

∣∣∣∣
V αj

n

(V α
j
n+1 − V α

j
n)

+ O
(
(Uαj

n+1 − Uαj
n)3
)
,
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where, see [Des01, Maz07] for instance,

∂2η

∂V 2

∣∣∣∣
V αj

n

= − 1

Tαj
n


(

(ρc)αj
n
)−2

0 0

0 1 0
0 0 0

 .

Let O1 := (Uαj
n+1 − Uαj n)T ∂η

∂U

∣∣∣
Uαj

n
, using (6.39), (6.45) and (6.46), one gets

O1 =
1

Tαj
n

∆t

mα
j

{
pαj

n
∑
r

Cn
jr · uαr

n

− uαj
nT

(∑
r

Aα,njr (uαr
n − uαj

n) + ν
∑
r

ρnrB
n
jr(δu

α
r
n − δuαj

n+1)

)
−
∑
r

Cn
jrp

α
j
n · uαr

n +
∑
r

uαr
nTAα,njr (uαr

n − uαj
n)

+ ν
∑
r

ρβr
n
δuαr

nTBn
jrδu

α
r
n − ν

∑
r

ρβr
n
δuαr

n+1TBn
jr

(
δuαr

n − δuαj
n+1
)

+ν
∑
r

ρnr uαj
n+1TBn

jr

(
δuαr

n − δuαj
n+1
)}

,

which simplifies as

O1 =
1

Tαj
n

∆t

mα
j

{∑
r

(uαr
n − uαj

n)TAα,njr (uαr
n − uαj

n)

+ ν
∑
r

ρβr
n
δuαr

nTBn
jrδu

α
r
n − ν

∑
r

ρβr
n
δuαr

n+1TBn
jr

(
δuαr

n − δuαj
n+1
)}

+
1

Tαj
n

∆t

mα
j

{
ν
∑
r

ρnr (uαj
n+1 − uαj

n)TBn
jr

(
δuαr

n − δuαj
n+1
)}

.

Now using Lemma 2, one gets

O1 =
1

Tαj
n

∆t

mα
j

{
1

2
ν
∑
r

ρβr δu
α
r
nTBn

jrδu
α
r
n +

1

2
ν
∑
r

ρβr δu
α
j
n+1TBn

jrδu
α
j
n+1

}

+
1

Tαj
n

∆t

mα
j

{∑
r

(uαr
n − uαj

n)TAα,njr (uαr
n − uαj

n) + ν
∑
r

ρβr
n (

δuαr
n − δuαj

n+1
)T
Bn
jr

(
δuαr

n − δuαj
n+1
)}

+
1

Tαj
n

∆t

mα
j

{
ν
∑
r

ρnr (uαj
n+1 − uαj

n)TBn
jr

(
δuαr

n − δuαj
n+1
)}

.

Observe that later term is second-order in time, so one retrieves as expected the entropy pro-
duction of the continuous in time scheme established in Property 5 page 133.

One now focuses on the second-order term of the entropy variation

O2 :=
1

2
(V α
j
n+1 − V α

j
n)T

∂2η

∂V 2

∣∣∣∣
V αj

n

(V α
j
n+1 − V α

j
n),

which rewrites

O2 =
1

2
(∆Ψ)T

( (
(ρc)αj

n
)−2

0

0 1

)
∆Ψ, with ∆Ψ =

(
pαj

n+1 − pαj n
−uαj

n+1 + uαj
n

)
.
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One has to estimate pαj
n+1 − pαj n. Assuming that the equation of state p : (τ, e) → p(τ, e) is

regular enough, one has

pαj
n+1 − pαj

n = (ταj
n+1 − ταj

n)
∂p

∂τ

∣∣∣∣
jn

+ (eαj
n+1 − eαj

n)
∂p

∂e

∣∣∣∣
jn

+ O(∆t2).

Using (6.39) and (6.47) and keeping only first-order terms, one has

pαj
n+1 − pαj

n =
∆t

mα
j

(∑
r

Cn
jr · uαr

n

)
∂p

∂τ

∣∣∣∣
jn

+
∆t

mα
j

{(∑
r

(uαj
n − uαr

n)TAαjr
n(uαj

n − uαr
n)−

∑
r

pαj
nCn

jr · uαr
n

)

+ ν

(∑
r

ρβr
n
δuαr

nTBn
jrδu

α
r
n +

∑
r

ρβr
n
δuαj

n+1TBn
jr(δu

α
j
n+1 − δuαr

n)

)

+ν

(∑
r

ρnr (uαj
n − uαj

n+1)TBn
jr(δu

α
j
n+1 − δuαr

n)

)}
∂p

∂e

∣∣∣∣
jn

+ O(∆t2).

Then, using (6.45), one gets

O2 = − 1

Tαj
n

∆t2

2mα
j

2

[{(∑
r

Cn
jr · uαr

n

)
∂p

∂τ

∣∣∣∣
jn

+

(∑
r

(uαj
n − uαr

n)TAαjr
n(uαj

n − uαr
n)−

∑
r

pαj
nCn

jr · uαr
n

+ ν
∑
r

ρβr
n
δuαr

nTBn
jrδu

α
r
n + ν

∑
r

ρβr
n
δuαj

n+1TBn
jr(δu

α
j
n+1 − δuαr

n)

+ν
∑
r

ρnr (uαj
n − uαj

n+1)TBn
jr(δu

α
j
n+1 − δuαr

n)

)
∂p

∂e

∣∣∣∣
jn

}2 (
(ρc)αj

n)−2

+

{∑
r

Aα,njr (uαr
n − uαj

n) + ν
∑
r

ρnrB
n
jr(δu

α
r
n − δuαj

n+1)

}2 ]
+ O(∆t3).

Finally, putting all the pieces together, one has

η(Uαj
n+1)− η(Uαj

n)

=
1

Tαj
n

∆t

mα
j

{
1

2
ν
∑
r

ρβr δu
α
r
nTBn

jrδu
α
r
n +

1

2
ν
∑
r

ρβr δu
α
j
n+1TBn

jrδu
α
j
n+1

}

+
1

Tαj
n

∆t

mα
j

(
a− ∆t

mα
j

(b+ c) + O(∆t2)

)
,

with a ≥ 0 and b ≥ 0.

Thus it remains to study the positiveness of a− ∆t
mαj

(b+ c) + O(∆t2). There are two possibilities.

6-2.7.0.1 Case a > 0 In that case, there obviously exists ∆t > 0 such that

Tαj
nmα

j

η(Uαj
n+1)− η(Uαj

n)

∆t
≥ 1

2
ν
∑
r

ρβr δu
α
r
nTBn

jrδu
α
r
n +

1

2
ν
∑
r

ρβr δu
α
j
n+1TBn

jrδu
α
j
n+1.
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6-2.7.0.2 Case a = 0 If a = 0, one has∑
r

(uαr
n − uαj

n)TAα,njr (uαr
n − uαj

n) + ν
∑
r

ρβr
n (

δuαr
n − δuαj

n+1
)T
Bn
jr

(
δuαr

n − δuαj
n+1
)

= 0.

Since Aα,njr and Bn
jr are positive matrices, all the terms in the sum are zeros. Let us first focus

on (uαr
n−uαj

n)TAα,njr (uαr
n−uαj

n) = 0 terms. Two cases occur. In case of Eucclhyd scheme, Aα,njr
is positive definite so that one has uαr

n = uαj
n. For Glace scheme

(uαr
n − uαj

n)TAα,njr (uαr
n − uαj

n) =
(ρc)αj

n

‖Cn
jr‖

∥∥Cn
jr · (uαr

n − uαj
n)
∥∥2

= 0.

So, for both schemes, one has Cn
jr · uαr n = Cn

jr · uαj n and Aα,njr (uαr
n − uαj

n) = 0. Recalling that∑
r Cn

jr = 0, one also has
∑

r p
α
j
nCn

jr · uαr n = 0.

One now analyzes
(
δuαr

n − δuαj
n+1
)T

Bn
jr

(
δuαr

n − δuαj
n+1
)

= 0. Since Bn
jr are positive definite,

this implies δuαr
n − δuαj

n+1 = 0.

Finally, if a = 0, one has

Tαj
nmα

j

η(Uαj
n+1)− η(Uαj

n)

∆t
= ν

∑
r

ρβr δu
α
r
nTBn

jrδu
α
r
n

− ∆t

2mα
j

(
ν
∑
r

ρβr
n
δuαr

nTBn
jrδu

α
r
n

)2
∂p

∂e

∣∣∣∣2
jn

(
(ρc)αj

n)−2
+ O(∆t2).

Before enunciating the result, one should remark that in the general case, one has

η(Uαj
n+1)− η(Uαj

n) =
1

Tαj
n

∆t

mα
j

(
(a+ aν)− ∆t

mα
j

(b+ c) + O(∆t2)

)
,

with a ≥ 0, aν ≥ 0 and b ≥ 0. Again, one has two alternatives a + aν > 0 or a + aν = 0.
In the first case, there exists ∆t such that η(Uαj

n+1) − η(Uαj
n) > 0. In the second case, one

has a = aν = 0 so as previously, a = 0 =⇒ Cn
jr · uαr n = Cn

jr · uαj n, A
α,n
jr (uαr

n − uαj
n) = 0

and δuαr
n − δuαj

n+1 = 0. Also, since aν = 0 and since Bn
jr is positive definite one has δuαr

n = 0.
Therefore the scheme (6.39)–(6.41) gives Uαj

n+1 = Uαj
n and finally one has ∀∆t > 0, η(Uαj

n+1) =
η(Uαj

n). �

Appendix 6.C Asymptotic behaviour of δuα,νr

In this section we discuss the asymptotic behavior suggested by inequality (6.29) established in
Property 3:(

uα,νr − uβ,νr

)T
Br

(
uα,νr − uβ,νr

)
≤ 1

2νρr

(
uα,0r

T
Aαr uα,0r + uβ,0r

T
Aβru

β,0
r

)
.

As a first remark, it is obvious that this inequality is not optimal: for instance, since the schemes
are Galilean invariant, the right hand side could be replaced by

inf
v∈Rd

1

2νρr

(
(uα,0r − v)TAαr (uα,0r − v) + (uβ,0r − v)TAβr (uβ,0r − v)

)
,

but this is not a major issue since we are discussing the asymptotic behavior of δuα,νr .
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Figure 6.12 – ‖δuα,νr ‖ according to ν. One observes a O(ν−1) behavior.

We test numerically the behavior of ‖δuα,νr ‖Br using the following test. The domain is Ω =
]0, 1[×]0, 0.1[. For both fluids, we set the initial condition ρ = 1 and p = 1 and γ = 1.4. Initial
velocities are

(
±1

2 sin(πx), 0
)T so that δu

(
1
2 , y
)

= 1. We use a 200 × 3 mesh and compute δur
value at some node such that x = 1

2 for values of ν in {10, 102, ..., 108}.

Figure 6.12 shows a first-order convergence to 0, while (6.29) implies O(ν−1/2). From this obser-
vation, we made other tests and we always observed O(ν−1). If this does not prove that (6.29)
is not optimal, it might indicate that it could be improved. However, improving (6.29) does not
seem to be easy. Moreover, the aim of Property 3 is to provide a priori estimates that proves
some stability of uα,νr according to ν. In that view, (6.29) is satisfactory.

Appendix 6.D Asymptotic behaviour of the reference scheme

We shall discuss here properties of the scheme (6.22)–(6.23). Actually, conservation, consistency
and entropy stability are obtained exactly as for the AP scheme (6.24)–(6.26).

Following the formal derivation of Paragraph 6-4.2.4, we perform an Hilbert expansion of the
scheme variables with regard to ε = ν−1.

One rewrites (6.22)–(6.23) as

mα
j dtτ

α,0
j =

∑
r

Cjr · uα,0r + O(ε), (6.D.1)

mα
j dtu

α,0
j =−

∑
r

Fα,0
jr −

1

ε

∑
r

ρ0
rBjrδu

α,0
j −

∑
r

ρ0
rBjrδu

α,1
j + O(ε), (6.D.2)

mα
j dtE

α,0
j =−

∑
r

Fα,0
jr · u

α,0
r +

1

ε

∑
r

ρ0
ru

0
jr
T
Bjrδu

α,0
j +

∑
r

ρ0
ru

0
jr
T
Bjrδu

α,1 + O(ε), (6.D.3)

with

Fα,0
jr = Cjrp

α,0
j −A

α,0
jr (uα,0r − uα,0j ) + O(ε), and (6.D.4)∑

j

Fα,0
jr = O(ε). (6.D.5)
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It comes from 6.D.2 that the limit ε→ 0 gives δuα,0j = 0 so that one sets u0
j := uα,0j = uβ,0j = u0

jr.
One gets from (6.D.2) that for each fluid α,

dtu
0
j = − 1

mα
j

∑
r

Fα,0
jr −

1

mα
j

∑
r

ρ0
rBjrδu

α,1
j .

The difference of both equalities yields

δ
(
dtu

0
j

)α︸ ︷︷ ︸
0

= − 1

mα
j

∑
r

Fα,0
jr +

1

mβ
j

∑
r

Fβ,0
jr −

1

mα
j

∑
r

ρ0
rBjrδu

α,1
j +

1

mβ
j

∑
r

ρ0
rBjrδu

β,1
j ,

which rewrites, since δφβ = −δφα(
1

mα
j

+
1

mβ
j

)∑
r

ρ0
rBjrδu

α,1
j = − 1

mα
j

∑
r

Fα,0
jr +

1

mβ
j

∑
r

Fβ,0
jr .

Thus recalling that ρj = ραj + ρβj ,∑
r

ρ0
rBjrδu

α,1
j = −

ρβj
ρj

∑
r

Fα,0
jr +

ραj
ρj

∑
r

Fβ,0
jr . (6.D.6)

So, summing (6.D.2) for both fluids, one gets(
mα
j +mβ

j

)
dtu

0
j = −

∑
r

(
Fα,0
jr − Fβ,0

jr

)
.

Injecting (6.D.6) into (6.D.3) and considering the limit ε→ 0, yields

mα
j dtE

α,0
j = −

∑
r

Fα,0
jr · u

α,0
r −

ρβj
ρj

u0
j ·
∑
r

Fα,0
jr +

ραj
ρj

u0
j ·
∑
r

Fβ,0
jr .

Then one can write the limit scheme

mα
j dtτ

α
j =

∑
r

Cjr · uαr , (6.D.7)(
mα
j +mβ

j

)
dtuj =−

∑
r

(
Fα
jr − Fβ

jr

)
, (6.D.8)

mα
j dtE

α
j =−

∑
r

Fα
jr · uαr −

ρβj
ρj

uj ·
∑
r

Fα
jr +

ραj
ρj

uj ·
∑
r

Fβ
jr, (6.D.9)

with

Fα
jr = Cjrp

α
j −Aαjr(uαr − uj), and (6.D.10)∑

j

Fα
jr = 0. (6.D.11)

On one hand, for each fluid α, one recognizes the classical fluxes definition (6.19)–(6.20) or the
frictionless case (monofluid). So, according to B. Després [Des10b], for each fluid one has the
following consistency results

1

Vj

∑
r

Cjr · uαr ≈ ∇ · uα,

1

Vj

∑
r

Fα
jr ≈ ∇pα.
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On the other hand, solving (6.D.10)–(6.D.11), one obtains the nodal velocity for each fluid

uαr = Aαr
−1

∑
j

Cjrp
α
j +

∑
j

Aαjruj

 , with Aαr :=
∑
j

Aαjr,

which allows to compute the difference of the nodal velocities of both fluids

δuαr = Aαr
−1
∑
j

Cjrp
α
j −Aβr

−1∑
j

Cjrp
β
j +Aαr

−1
∑
j

Aαjruj −Aβr
−1∑

j

Aβjruj .

Unlike the AP scheme case, one has this time δuαr 6= 0 for a given grid, which is not uniformly
consistent with the equation (6.16). This result implies that the scheme does not respect the
diffusion regime corresponding to (6.15). It can be easily checked in writing the semi-discrete
evolution of the specific volume difference between the fluids

mα
j dtτ

α,0
j −mα

j dtτ
β,0
j =

∑
r

Cjr · δuα,0r + O(ε). (6.D.12)

The right hand side of this equation should be O(ε) as for the AP scheme, but is O(1) in this
case. It explains the over-diffusive behaviour of this scheme when ν >> 1.



Conclusions and perspectives

Conclusions

In this document, the Trefftz discontinuous Galerkin (TDG) method applied to transport models
has been studied and analyzed. In particular, a special attention has been devoted to the
PN reduced model of the transport equation. The transport equation is challenging to solve
numerically because it may involve, among other, a diffusion limit and boundary layers. The
goal of this work was to obtained asymptotic preserving and well-balanced schemes to capture
both of these phenomena with reasonable computational time. This document has shown that
the TDG method naturally leads to well-balanced and asymptotic preserving schemes.

In particular, the well-balanced property of the scheme has been established in Chapter 2 together
with the TDG formulation for general Friedrichs systems.

Additionally, an asymptotic study of the method has been performed in the Chapter 3 for the P1

model in 1D. Taking advantage of the one dimensional framework, it has been shown that the
TDG method recovers the diffusion limit at least for a particular choice of basis functions. Then,
the convergence of the scheme and the asymptotic preserving property have been numerically
confirmed.

In Chapter 4, the TDG method has been studied and analyzed in the general case of the two
dimensional PN model. After recalling the derivation of the PN model, some of its properties
were given. Concerning the TDG method, two important results were provided in this chapter

(i) Construction of the basis functions. Stationary and time dependent basis functions have
been constructed. In particular, polynomial and exponential stationary solutions have been
derived. Due to the well-balanced property, the exponential solutions lead to very efficient
schemes to capture boundary layers as illustrated later in Chapter 5.

(ii) High order convergence of the scheme. High order convergence has been proven in the
stationary case, mainly through the study of the approximation properties of the basis
functions. Even if this approximation result may not be optimal for the case N > 1,
a well known advantage of the TDG method has been recovered: to obtain high order
convergence, the TDG method uses (at least asymptotically) less basis functions than the
standard DG method. The example given in Table 4.1 is a good illustration of this property
for the case N = 1.

Finally, numerical results for the two dimensional P1 and P3 models were provided in Chapter
5. The asymptotic preserving property of the TDG method has been illustrated both for the P1

and P3 models. Moreover, it has been shown that the TDG method outperforms the standard
DG method for some numerical tests with boundary layers, using less degrees of freedom for a
better accuracy. The main drawback of the TDG method is that it may lead to ill-conditioning
systems when considering too many basis functions per cell or in some asymptotic regimes. Such
behaviors have also been numerically illustrated in Chapter 5.
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Perspectives

A first perspective is to develop good preconditioners to deal with the ill-conditioning systems of
the TDG method. This could be particularly useful when considering, for example, stationary
and time dependent basis functions.

It could also be interesting to extend the TDG method to the discrete ordinate method (SN
model) which is the other popular approximation of the transport equation. Since the SN model
can be written under the form of a Friedrichs system, the general formulation given in Chapter
2 can be used. It remains to construct the basis functions.

Another possibility would be to applied the TDG method directly to the transport equation
using, for example, Case’s and Birkhoff’s solutions [BA69, BA70, Cas60].

The formulation of the TDG method given in Chapter 2 can be easily generalized to the three
dimensional case. The only additional difficulty concerns the construction of the basis functions.
For the PN model, the basis functions can be constructed as in Chapter 4, starting from a one
dimensional solution and then applying a rotation. Note however that the three dimensional
rotation is not as simple as in the two dimensional case [BFB97, IR96, PH07]. Note also that
the choice of directions may be tricky since it is not possible to get equi-distributed directions
on the sphere.

Finally, an interesting perspective concerns the extension of the TDG method to non linear
models. Of course this brings new difficulties, such as the construction of the basis functions or
the discretization of the non linearity.
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Appendix A

Spherical harmonics

We recall some definitions and properties of the spherical harmonics and adopt the presentation
given in [Her16].

A.1 Legendre functions

The spherical harmonics are based on the Legendre functions P lk which read

P lk(µ) =


1

2kk!
(1− µ2)l/2

dk+l

dµk+l
((µ2 − 1)k), l ≥ 0,

(−1)l
(k + l)!

(k − l)!
P−lk (µ), l < 0.

(A.1)

The Legendre polynomials satisfy the orthogonal relations

1

2

∫ 1

−1
P 0
k dµ = δ0

k,
1

2

∫ 1

−1
P lkP

l
mdµ =

1

(alk)
2
δmk ,

where alk is the normalization factor

alk =

√
(2k + 1)

(k − l)!
(k + l)!

.

They also satisfy the following recursion relations which are fundamentals to derive the PN model
√

1− µ2Pmk = 1
2k+1

(
Pm+1
k+1 − P

m+1
k−1

)
,√

1− µ2Pmk = 1
2k+1

(
− (k −m+ 1)(k −m+ 2)Pm−1

k+1 + (k +m− 1)(k +m)Pm−1
k−1

)
,

µPmk = 1
2k+1

(
(k −m+ 1)Pmk+1 + (k +m)Pmk−1

)
.

A.2 Spherical harmonics

The complex valued spherical harmonics read

Y l
k(ψ, φ) := Y l

k(Ω) := (−1)lalkP
l
k(cosφ)eilψ, |l| ≤ k, (A.2)
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The real valued spherical harmonics Yk,l are defined from the complex valued spherical harmonics
Y l
k as follow:

Yk,l(Ω) = Y l
k(Ω) = alkP

l
k(cosφ), l = 0,

Yk,l(Ω) =
(−1)l√

2

(
Y l
k(Ω) + Ȳ l

k(Ω)
)

= alk
√

2 cos(lψ)P lk(cosφ), 0 < l ≤ k,

Yk,l(Ω) =
i√
2

(
Y l
k(Ω)− Ȳ l

k(Ω)
)

= a
|l|
k

√
2 sin(|l|ψ)P

|l|
k (cosφ), −k ≤ l < 0.

(A.3)

In particular, the real valued spherical harmonics satisfy the relations

1

4π

∫
S2

Yk,ldψdµ = δ0
kδ

0
l ,

1

4π

∫
S2

Yk,lYm,ndψdµ = δmk δ
n
l .

Moreover, they also satisfy the following recursion relations
sinφ cosψYk,m = εm(Amk Yk+1,m+1 −Bm

k Yk−1,m+1)− ζm(Cmk Yk+1,m−1 −Dm
k Yk−1,m−1),

sinφ sinψYk,m = ηm(Amk Yk+1,−m−1 −Bm
k Yk−1,−m−1) + φm(Cmk Yk+1,−m+1 −Dm

k Yk−1,−m+1),

cosφYk,m = Emk Yk+1,m + Fk,mYk−1,m,
(A.4)

where all the coefficients are given in Table A.1 and by

Amk =

√
(k +m+ 1)(k +m+ 2)

(2k + 1)(2k + 3)
, Bm

k =

√
(k −m− 1)(k −m)

(2k − 1)(2k + 1)
,

Cmk =

√
(k −m+ 1)(k −m+ 2)

(2k + 1)(2k + 3)
, Dm

k =

√
(k +m− 1)(k +m)

(2k − 1)(2k + 1)
,

Emk =

√
(k −m+ 1)(k +m+ 1)

(2k + 1)(2k + 3)
, Fmk =

√
(k −m)(k +m)

(2k − 1)(2k + 1)
.

m < −1 m = −1 m = 0 m = 1 m > 1

εm −1
2 0

√
2

2
1
2

1
2

ζm −1
2 −1

2 0
√

2
2

1
2

ηm −1
2 −

√
2

2

√
2

2
1
2

1
2

φm −1
2 −1

2 0 0 1
2

Table A.1 – Coefficients of the equations (A.4)



Appendix B

Technical results for the PN model

In this appendix, we give some technical proofs from Chapter 4.

B.1 Polynomial solutions for a simplified second order equation

B.1.1 Proof of Proposition 4.37

In this section, we prove Proposition 4.37. We recall that Proposition 4.37 reads

Proposition. Assume u ∈ Cn+1(Ω) is solution to (4.44). Then, the double sum Taylor expansion
in (4.45) can be recast as a simple sum with only zero or first order derivatives with respect to
y. Therefore (4.45) can be written

u(x) = β0
0(x)u(x0) +

n∑
k=1

[
βkk (x)∂kxu(x0) + βk−1

k (x)∂k−1
x ∂yu(x0)

]
+
n+1∑
p=0

γpn+1(x)∂px∂
n+1−p
y u(xs), ∀x ∈ Ω,

(B.1)

where xs = (xs, ys)
T , xs = (1− s)x0 + sx and ys = (1− s)y0 + sy.

We will need the following lemma.

Lemma B.1. Assume hypotheses of Proposition 4.37 are satisfied. Then for all 0 ≤ l ≤ n − 2
one has the identity

l∑
p=0

γpl (x)∂px∂
l−p
y u(x0) +

l+2∑
p=0

αpl+2(x)∂px∂
l+2−p
y u(x0) =

l∑
p=0

αpl (x)∂px∂
l−p
y u(x0) + βl+2

l+2(x)∂l+2
x u(x0) + βl+1

l+2(x)∂l+1
x ∂yu(x0).

(B.2)

Proof. Let l ∈ N, 0 ≤ l ≤ n− 2. For l1 ∈ Z, −1 ≤ l1 ≤ l − 1, we define the function

f(l1) =

l1∑
p=0

αpl (x)∂px∂
l−p
y u(x0) +

l∑
p=l1+1

γpl (x)∂px∂
l−p
y u(x0) +

l+2∑
p=l1+3

αpl+2(x)∂px∂
l+2−p
y u(x0)

+ βl1+2
l+2 (x)∂l1+2

x ∂l−l1y u(x0) + βl1+1
l+2 (x)∂l1+1

x ∂l+1−l1
y u(x0),

(B.3)
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where we use the convention
∑b

p=a = 0 for a, b ∈ Z and b < a. First, we show f(l1) = f(l1 + 1)
for −1 ≤ l1 ≤ l − 1. Because u is solution to the equation (B.2) one notices

βl1+1
l+2 (x)∂l1+1

x ∂l+1−l1
y u(x0) =

(
− ∂l1+3

x ∂l−l1−1
y + ωβl1+1

l+2 (x)∂l1+1
x ∂l−l1−1

y

)
u(x0). (B.4)

Now we consider the definition of the function f (B.3) and we study the difference f(l1+1)−f(l1).
After easy simplifications on the elements which appear both in f(l1) and f(l1 + 1) one finds

f(l1 + 1)− f(l1) =αl1+1
l (x)∂l1+1

x ∂l−l1−1
y u(x0)− γl1+1

l (x)∂l1+1
x ∂l−l1−1

y u(x0)

− αl1+3
l+2 (x)∂l1+3

x ∂l−l1−1
y u(x0) + βl1+3

l+2 (x)∂l1+3
x ∂l−l1−1

y u(x0)

− βl1+1
l+2 (x)∂l1+1

x ∂l+1−l1
y u(x0).

Using the equality (B.4) to reformulate the fifth term in the right hand side, one gets

f(l1 + 1)− f(l1) =αl1+1
l (x)∂l1+1

x ∂l−l1−1
y u(x0)− γl1+1

l (x)∂l1+1
x ∂l−l1−1

y u(x0)

− αl1+3
l+2 (x)∂l1+3

x ∂l−l1−1
y u(x0) + βl1+3

l+2 (x)∂l1+3
x ∂l−l1−1

y u(x0)

+ βl1+1
l+2 (x)

(
∂l1+3
x ∂l−l1−1

y − ω∂l1+1
x ∂l−l1−1

y

)
u(x0).

Ordering the terms with respect to the derivatives gives

f(l1 + 1)− f(l1) =
(
αl1+1
l (x)− γl1+1

l (x)− ωβl1+1
l+2 (x)

)
∂l1+1
x ∂l−l1−1

y u(x0)

+
(
− αl1+3

l+2 (x) + βl1+1
l+2 (x) + βl1+3

l+2 (x)
)
∂l1+3
x ∂l−l1−1

y u(x0).

Using the definitions (4.46) and (4.47) one finds αl1+1
l (x) − γl1+1

l (x) − ωβl1+1
l+2 (x) = 0 and

βl1+3
l+2 (x)−αl1+3

l+2 (x)+βl1+1
l+2 (x) = 0. Therefore, one has f(l1+1)−f(l1) = 0 for all −1 ≤ l1 ≤ l−1.

One deduces f(−1) = f(l) which can be written

l∑
p=0

γpl (x)∂px∂
l−p
y u(x0) +

l+2∑
p=2

αpl+2(x)∂px∂
l+2−p
y u(x0) + β0

l+2(x)∂l+2
y u(x0) + β1

l+2(x)∂x∂
l+1
y u(x0) =

l∑
p=0

αpl (x)∂px∂
l−p
y u(x0) + βl+2

l+2(x)∂l+2
x u(x0) + βl+1

l+2(x)∂l+1
x ∂yu(x0).

Noticing from (4.79) that α0
l+2(x) = β0

l+2(x) and α1
l+2(x) = β1

l+2(x), one incorporates the two
corresponding terms in the second sum so one finds the equality (B.2). It ends the proof. �

We can now prove the Proposition 4.37.

Proof of Proposition 4.37. We start from the Taylor expansion (4.45). From the equation (4.46)
one deduces αpn(x) = γpn(x) and αpn−1(x) = γpn−1(x). Therefore

u(x) =

n−2∑
k=0

k∑
p=0

γpk(x)∂px∂
k−p
y u(x0) +

n−1∑
p=0

αpn−1(x)∂px∂
n−1−p
y u(x0)

+

n∑
p=0

αpn(x)∂px∂
n−p
y u(x0) +

n+1∑
p=0

γpn+1(x)∂px∂
n+1−p
y u(xs).
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One can recursively use the equality (B.2) from l = n− 2 to l = 0. More precisely, rearranging
the first sum one has

u(x) =
n−3∑
k=0

k∑
p=0

γpk(x)∂px∂
k−p
y u(x0) +

n−1∑
p=0

αpn−1(x)∂px∂
n−1−p
y u(x0)

+

n−2∑
p=0

γpn−2(x)∂px∂
n−2−p
y u(x0) +

n∑
p=0

αpn(x)∂px∂
n−p
y u(x0)

+
n+1∑
p=0

γpn+1(x)∂px∂
n+1−p
y u(xs).

One can reformulate the terms between parenthesis using (B.2) with the index correspondance
n− 2 = l. One finds

u(x) =

n−3∑
k=0

k∑
p=0

γpk(x)∂px∂
k−p
y u(x0) +

n−1∑
p=0

αpn−1(x)∂px∂
n−1−p
y u(x0) +

n−2∑
p=0

αpn−2(x)∂px∂
n−2−p
y u(x0)

+
[
βnn(x)∂nxu(x0) + βn−1

n (x)∂n−1
x ∂yu(x0)

]
+

n+1∑
p=0

γpn+1(x)∂px∂
n+1−p
y u(xs).

(B.5)
And one can now recursively repeat this simple operation using the equality (B.2) for l = n− 3,
. . . , to l = 0. One finally gets the formula (B.5) where the first line is written for n = 2, the
term [·] becomes a sum and the last term remains unchanged

u(x) =0 +
1∑
p=0

αp1(x)∂px∂
1−p
y u(x0) + α0

0(x)u(x0)

+
n∑
k=2

[
βkk (x)∂kxu(x0) + βk−1

k (x)∂k−1
x ∂yu(x0)

]
+
n+1∑
p=0

γpn+1(x)∂px∂
n+1−p
y u(xs).

That is

u(x) =α0
0(x)u(x0) + α1

1(x)∂xu(x0) + α0
1(x)∂yu(x0)

+

n∑
k=2

[
βkk (x)∂kxu(x0) + βk−1

k (x)∂k−1
x ∂yu(x0)

]
+

n+1∑
p=0

∂px∂
n+1−p
y γpn+1(x)u(xs).

Noticing from (4.79) α0
0(x) = β0

0(x), α0
1(x) = β0

1(x), α1
1(x) = β1

1(x) one finds the expression
(B.1). The proof is complete. �

B.1.2 Proof of Proposition 4.38

In this section, we prove Proposition 4.38. We recall that Proposition 4.38 reads

Proposition (Limit of the coefficients βkk (x) and βk−1
k (x)). Assume ω = 0 and 0 ≤ k ≤ n. The

coefficients βkk and βk−1
k are harmonic polynomials when ω = 0. More precisely one has

β(x) →
ω→0

q(x).

Proof. One has

(
(x− x0) + i(y − y0)

)k
=

k∑
l=0

Ck−lk il(x− x0)k−l(y − y0)l.
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Therefore

<
(

(x− x0) + i(y − y0)
)k

=

b k
2
c∑

l=0

Ck−2l
k (−1)l(x− x0)k−2l(y − y0)2l,

=
(

(x− x0) + i(y − y0)
)k

=

b k−1
2
c∑

l=0

Ck−2l−1
k (−1)l(x− x0)k−2l−1(y − y0)2l+1.

That is from the definition of the coefficients γpk

<
(

(x− x0) + i(y − y0)
)k

= k!

b k
2
c∑

l=0

(−1)lγk−2l
k ,

=
(

(x− x0) + i(y − y0)
)k

= k!

b k−1
2
c∑

l=0

(−1)lγk−2l−1
k .

When ω = 0 one has αpk = γpk . Therefore, from the recurrence formula (4.47) one deduces

βkk (x) =
1

k!
<
(

(x− x0) + i(y − y0)
)k
, βk−1

k (x) =
1

k!
=
(

(x− x0) + i(y − y0)
)k
, 0 ≤ k ≤ n.

This completes the proof. �

B.2 Polynomial solutions to the PN model

B.2.1 Proof of Proposition 4.45

In this section, we prove Proposition 4.45. We recall that Proposition 4.45 reads

Proposition (A first simplification of the Taylor expansion). Let u(x) ∈ Cn+2(Ω) be a solution
to (4.59). The beginning of the Taylor expansion on the vectorial function u(x) can be recast as
a Taylor expansion on the vectorial function u|11(x0)

u(x) =

n∑
k=0

k∑
p=0

Γpk(x)∂px∂
k−p
y u|11(x0) + ξ(x),

ξ(x) =

n+1∑
p=0

Γpn+1(x)∂px∂
n+1−p
y u(x0) +

n+2∑
p=0

γpn+2(x)Im∂
p
x∂

n+2−p
y u(xs),

where xs = (xs, ys)
T , xs = (1− s)x0 + sx and ys = (1− s)y0 + sy.

Proof. For l ∈ Z, −1 ≤ l ≤ n we define the function

f(l) =

l∑
k=0

k∑
p=0

Γpk(x)∂px∂
k−p
y u|11(x0) +

l+1∑
p=0

Γpl+1(x)∂px∂
l+1−p
y u(x0)

+
n+1∑
k=l+2

k∑
p=0

γpk(x)Im∂
p
x∂

k−p
y u(x0),

(B.6)
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where we use the convention
∑b

p=a = 0 for a, b ∈ Z and b < a. First we show f(l) = f(l+ 1) for
−1 ≤ l ≤ n − 1. Because u is solution to (4.59) and from the definition of the matrix R−1

|2m
one

has
u|2m(x0) = −R−1

|2m

(
A1∂x +A2∂y

)
u(x0).

Therefore
l+1∑
p=0

Γpl+1(x)∂px∂
l+1−p
y u|2m(x0) = −

l+1∑
p=0

Γpl+1(x)∂px∂
l+1−p
y R−1

|2m

(
A1∂x +A2∂y

)
u(x0),

= −
l+2∑
p=1

Γp−1
l+1 (x)∂px∂

l+2−p
y R−1

|2m
A1u(x0)−

l+1∑
p=0

Γpl+1(x)∂px∂
l+2−p
y R−1

|2m
A2u(x0).

And therefore since Γ−1
k = Γk+1

k = 0

l+1∑
p=0

Γpl+1(x)∂px∂
l+1−p
y u|2m(x0) = −

l+2∑
p=0

(
Γp−1
l+1 (x)R−1

|2m
A1 + Γpl+1(x)R−1

|2m
A2

)
∂px∂

l+2−p
y u(x0). (B.7)

Now, we consider the definition of the function f (B.6) and we study the difference f(l+1)−f(l).
After easy simplifications on the elements which appear both in f(l) and f(l + 1) one finds

f(l + 1)− f(l) =

l+1∑
p=0

Γpl+1(x)∂px∂
l+1−p
y u|11(x0) +

l+2∑
p=0

Γpl+2(x)∂px∂
l+2−p
y u(x0)−

l+1∑
p=0

Γpl+1(x)∂px∂
l+1−p
y u(x0)

−
l+2∑
p=0

γpl+2(x)Im∂
p
x∂

l+2−p
y u(x0).

Regrouping the terms one gets

f(l+1)−f(l) =

l+1∑
p=0

Γpl+1(x)∂px∂
l+1−p
y

(
u|11(x0)−u(x0)

)
+

l+2∑
p=0

(
Γpl+2(x)−γpl+2(x)Im

)
∂px∂

l+2−p
y u(x0).

That is using u|2m = u− u|11 and the definition of the coefficients Γpk (4.41)

f(l+1)−f(l) = −
l+1∑
p=0

Γpl+1(x)∂px∂
l+1−p
y u|2m(x0)+

l+2∑
p=0

(
−Γp−1

l+1 (x)R−1
|2m
A1−Γpl+1(x)R−1

|2m
A2

)
∂px∂

l+2−p
y u(x0).

Using (B.7) one finally finds f(l + 1) − f(l) = 0 for all −1 ≤ l ≤ n − 1. Therefore, one gets
f(−1) = f(n). That is using Γ0

0 = γ0
0 and the definition (B.6) of the function f

n+1∑
k=0

k∑
p=0

γpk(x)Im∂
p
x∂

k−p
y u(x0) =

n∑
k=0

k∑
p=0

Γpk(x)∂px∂
k−p
y u|11(x0)+

n+1∑
p=0

Γpn+1(x)∂px∂
l+1−p
y u(x0). (B.8)

We consider now the Taylor expansion of the function u(x)

u(x) =
n+1∑
k=0

k∑
p=0

γpk(x)Im∂
p
x∂

k−p
y u(x0) +

n+2∑
p=0

γpn+2(x)Im∂
p
x∂

n+2−p
y u(xs).

Using (B.8) one finally gets

u(x) =

n∑
k=0

k∑
p=0

Γpk(x)∂px∂
k−p
y u|11(x0)+

n+1∑
p=0

Γpn+1(x)∂px∂
l+1−p
y u(x0)+

n+2∑
p=0

γpn+2(x)Im∂
p
x∂

n+2−p
y u(xs).

This completes the proof. �
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B.3 Convergence of the scheme

B.3.1 Proof of Proposition 4.54

In this section, we prove Proposition 4.54. We recall that Proposition 4.54 reads

Proposition. Assume ue(x) ∈ Cn+1(Ω) is solution to (4.73). Then, the double sum Taylor
expansion (4.75) can be recast as a simple sum with only zero or first order derivatives with
respect to y

ue(x) = L0
0(x)ue(x0) +

n∑
k=1

[
Lkk(x)∂kxue(x0) + Lk−1

k (x)∂k−1
x ∂yue(x0)

]
+

n+1∑
p=0

γpn+1(x)∂px∂
n+1−p
y ue(xs), ∀x ∈ Ω,

(B.9)

where xs = (xs, ys)
T , xs = (1− s)x0 + sx and ys = (1− s)y0 + sy.

Lemma B.2. Assume hypotheses of Proposition 4.54 are satisfied. Then for all 0 ≤ l ≤ n − 2
one has the identity

l∑
p=0

γpl (x)∂px∂
l−p
y ue(x0) +

l+2∑
p=0

Kp
l+2(x)∂px∂

l+2−p
y ue(x0) =

l∑
p=0

Kp
l (x)∂px∂

l−p
y ue(x0) + Ll+2

l+2∂
l+2
x ue(x0) + Ll+1

l+2(x)∂l+1
x ∂yue(x0).

(B.10)

Proof. Let l ∈ N, 0 ≤ l ≤ n− 2. For l1 ∈ Z, −1 ≤ l1 ≤ l − 1, we define the function

f(l1) =

l1∑
p=0

Kp
l (x)∂px∂

l−p
y ue(x0) +

l∑
p=l1+1

γpl (x)∂px∂
l−p
y ue(x0) +

l+2∑
p=l1+3

Kp
l+2(x)∂px∂

l+2−p
y ue(x0)

+
(
K l1+2
l+2 (x)− Ll1l+2(x)(BBT )−1(AAT )

)
∂l1+2
x ∂l−l1y ue(x0) + Ll1+1

l+2 (x)∂l1+1
x ∂l+1−l1

y ue(x0),

(B.11)
where we use the convention

∑b
p=a = 0 for a, b ∈ Z and b < a. First, we show f(l1) = f(l1 + 1)

for −1 ≤ l1 ≤ l − 1. Because ue is solution to the equation (4.73), it statisfies (4.74) and one
notices

Ll1+1
l+2 (x)∂l1+1

x ∂l+1−l1
y ue(x0) =Ll1+1

l+2 (x)(BBT )−1
(
−AAT∂l1+3

x ∂l−l1−1
y

− (ABT +BAT )∂l1+2
x ∂l−l1y + σtR1∂

l1+1
x ∂l−l1−1

y

)
ue(x0).

(B.12)

Now, we consider the definition of the function f (B.11) and we study the difference f(l1 + 1)−
f(l1). After simplifications on the elements which appear both in f(l1) and f(l1 + 1), one finds

f(l1 + 1)− f(l1) =K l1+1
l (x)∂l1+1

x ∂l−l1−1
y ue(x0)− γl1+1

l (x)∂l1+1
x ∂l−l1−1

y ue(x0)

−K l1+3
l+2 (x)∂l1+3

x ∂l−l1−1
y ue(x0)

+
(
K l1+3
l+2 (x)− Ll1+1

l+2 (x)(BBT )−1AAT
)
∂l1+3
x ∂l−l1−1

y ue(x0)

+
(
Ll1+2
l+2 (x)− [K l1+2

l+2 (x)− Ll1l+2(x)(BBT )−1AAT ]
)
∂l1+2
x ∂l−l1y ue(x0)

− Ll1+1
l+2 (x)∂l1+1

x ∂l+1−l1
y ue(x0).
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Simplifying the term K l1+3
l+2 (x)∂l1+3

x ∂l−l1−1
y ue(x0) and using the equality (B.12) to reformulate

the last term in the right hand side one gets

f(l1 + 1)− f(l1) =K l1+1
l (x)∂l1+1

x ∂l−l1−1
y ue(x0)− γl1+1

l (x)∂l1+1
x ∂l−l1−1

y ue(x0)

−
(
Ll1+1
l+2 (x)(BBT )−1(AAT )

)
∂l1+3
x ∂l−l1−1

y ue(x0)

+
(
Ll1+2
l+2 (x)− [K l1+2

l+2 (x)− Ll1l+2(x)(BBT )−1AAT ]
)
∂l1+2
x ∂l−l1y ue(x0)

− Ll1+1
l+2 (x)(BBT )−1

(
− (ABT +BAT )∂l1+2

x ∂l−l1y

−AAT∂l1+3
x ∂l−l1−1

y + σtR1∂
l1+1
x ∂l−l1−1

y

)
ue(x0).

Simplifying the term
(
Ll1+1
l+2 (x)(BBT )−1(AAT )

)
∂l1+3
x ∂l−l1−1

y ue(x0) and ordering the terms with
respect to the derivatives gives

f(l1 + 1)− f(l1) =
(
K l1+1
l (x)− γl1+1

l (x)− σtLl1+1
l+2 (x)(BBT )−1R1

)
∂l1+1
x ∂l−l1−1

y ue(x0)

+
(
Ll1+1
l+2 (x)(BBT )−1(ABT +BAT ) + Ll1+2

l+2

− [K l1+2
l+2 (x)− Ll1l+2(x)(BBT )−1AAT ]

)
∂l1+2
x ∂l−l1y ue(x0).

Using the Definition (4.76), one finds K l1+1
l (x) − γl1+1

l (x) − σtLl1+1
l+2 (x)(BBT )−1R1 = 0. With

the Definition (4.77) one gets (since l1 < l) Ll1+2
l+2 (x) := K l1+2

l+2 (x) − Ll1+1
l+2 (x)(BBT )−1(ABT +

BAT )− Ll1l+2(x)(BBT )−1AAT . Therefore, one has f(l1 + 1)− f(l1) = 0 for all −1 ≤ l1 ≤ l − 1.
One deduces f(−1) = f(l) which can be written

l∑
p=0

γpl (x)∂px∂
l−p
y ue(x0) +

l+2∑
p=2

Kp
l+2(x)∂px∂

l+2−p
y ue(x0) + L0

l+2(x)∂l+2
y ue(x0)

+
(
K1
l+2(x)− L−1

l+2(x)(BBT )−1(AAT )
)
∂x∂

l+1
y ue(x0) =

l∑
p=0

Kp
l (x)∂px∂

l−p
y ue(x0) +

(
K l+2
l+2 (x)− Lll+2(x)(BBT )−1(AAT )

)
∂l+2
x ue(x0) + Ll+1

l+2(x)∂l+1
x ∂yue(x0).

(B.13)
By definition L−1

l+2 = 0 and one notices from (4.79) that K0
l+2(x) = L0

l+2(x). One can therefore
incorporate the two terms K0

l+2 and K1
l+2 in the second sum on the left hand side of (B.13).

Moreover from (4.78), one has Ll+2
l+2 = K l+2

l+2 (x)− Lll+2(x)(BBT )−1AAT . Using this equality on
the right hand side of (B.13) completes the proof. �

We can now give the proof of Proposition 4.54.

Proof of Proposition 4.54. We start from the Taylor expansion (4.75). From the Definition (4.76)
one has Kp

n(x) = γpn(x) and Kp
n−1(x) = γpn−1(x). Therefore

ue(x) =

n−2∑
k=0

k∑
p=0

γpk(x)∂px∂
k−p
y ue(x0) +

n−1∑
p=0

Kp
n−1(x)∂px∂

n−1−p
y ue(x0)

+
n∑
p=0

Kp
n(x)∂px∂

n−p
y ue(x0) +

n+1∑
p=0

γpn+1(x)∂px∂
n+1−p
y ue(xs).
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One can recursively use the equality (B.10) from l = n− 2 to l = 0. More precisely, rearranging
the first sum one has

ue(x) =

n−3∑
k=0

k∑
p=0

γpk(x)∂px∂
k−p
y ue(x0) +

n−1∑
p=0

Kp
n−1(x)∂px∂

n−1−p
y ue(x0)

+

n−2∑
p=0

γpn−2(x)∂px∂
n−2−p
y ue(x0) +

n∑
p=0

Kp
n(x)∂px∂

n−p
y ue(x0)

+

n+1∑
p=0

γpn+1(x)∂px∂
n+1−p
y ue(xs).

One can reformulate the terms between parenthesis using (B.10) with the index correspondence
l = n− 2. One finds

ue(x) =

n−3∑
k=0

k∑
p=0

γpk(x)∂px∂
k−p
y ue(x0) +

n−1∑
p=0

Kp
n−1(x)∂px∂

n−1−p
y ue(x0) +

n−2∑
p=0

Kp
n−2(x)∂px∂

n−2−p
y ue(x0)

+
[
Lnn(x)∂nxue(x0) + Ln−1

n (x)∂n−1
x ∂yue(x0)

]
+

n+1∑
p=0

γpn+1(x)∂px∂
n+1−p
y ue(xs).

(B.14)
And one can now recursively repeat this simple operation using the equality (B.10) for l = n−3,
. . . , to l = 0. One finally gets the formula (B.14) where the first line is written for n = 2, the
term [·] becomes a sum and the last term remains unchanged

ue(x) =0 +

1∑
p=0

Kp
1 (x)∂px∂

1−p
y ue(x0) +K0

0 (x)ue(x0)

+

n∑
k=2

[
Lkk(x)∂kxue(x0) + Lk−1

k (x)∂k−1
x ∂yue(x0)

]
+
n+1∑
p=0

γpn+1(x)∂px∂
n+1−p
y ue(xs).

That is

ue(x) =K0
0 (x)ue(x0) +K1

1 (x)∂xue(x0) +K0
1 (x)∂yue(x0)

+
n∑
k=2

[
Lkk(x)∂kxue(x0) + Lk−1

k (x)∂k−1
x ∂yue(x0)

]
+
n+1∑
p=0

∂px∂
n+1−p
y γpn+1(x)ue(xs).

Noticing from (4.79) K0
0 (x) = L0

0(x), K0
1 (x) = L0

1(x), K1
1 (x) = L1

1(x), one finds the expression
(4.80). This completes the proof. �



Appendix C

Discontinuous Galerkin method using
adjoint solutions as basis functions

In the beginning of this work, adjoint solutions to the model were used as basis functions. The
idea was to easily adapt the ultra weak formalism [CD98] to transport problemsCC. However, as
this document has made clear, it is much more efficient to use direct solutions to the problem.
We give here some numerical examples which were performed with adjoint basis functions. The
adjoint P1 model reads 

ε∂tp+
c√
3
∂xv = εσa(x)p,

ε∂tv +
c√
3
∂xp = σt(x)v,

(C.1)

C.1 Asymptotic study in one dimension

As in section 3-1.2, one can study the asymptotic behavior of the scheme for the one dimensional
hyperbolic heat equation. We consider the following two adjoint solutions

ek,1(t, x) =

(
1
0

)
, ek,2(t, x) =

(√
3σs
cε (x− xk)

1

)
, (C.2)

where xk is the abscissa of the center of the cell k. Instead of using direct solutions to the P1

model, one can use the adjoint solutions (C.2). One gets the following finite difference scheme

ε
pn+1
k − pnk

∆t
+

c

2
√

3h
[−pk+1 + 2pk − pk−1 + (1 + a)(vk+1 − vk−1)]n+1 = 0,

ε(1 +
a2

3
)
vn+1
k − vnk

∆t
+

c

2
√

3h

[
a2(vk+1 + 2vk + vk−1) + (−vk+1 + 2vk − vk−1)

+(1− a)(pk+1 − pk−1)]n+1 = −σs
ε
vn+1
k ,

(C.3)

with a =
√

3σs∆x
2cε . This scheme is very similar to the scheme (3.14) and can be obtained from

(3.14) simply by replacing the coefficient a by its inverse. Using Hilbert expansion, one can show
that this scheme is asymptotic preserving when ε→ 0 for some average values for the variable p.

Proposition C.1. Using Hilbert expansion in the limit ε → 0, the scheme (C.3) admits the
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following limits ∀k ∣∣∣∣∣∣∣∣∣∣∣∣∣

(v0
k+1 + v0

k)
n+1 = 0,

(
v1
k+1 + 2v1

k + v1
k−1

4
)n+1 =

c√
3σs

(
p0
k+1 − p0

k−1

2h
)n+1,

(p̄0
k)
n+1 − (p̄0

k)
n

∆t
− c2

3σs

(
p0
k+2 − 2p0

k + p0
k−2

4h2

)n+1

= 0,

(C.4)

with p̄0
k a mean value of p0

k define as p̄0
k = (2

3p
0
k+2 + 4p0

k+1 + 20
3 p

0
k + 4p0

k−1 + 2
3p

0
k−2)/16.

Comparing with the model limit (3.2), the scheme is asymptotic preserving for the variable p but
not for the variable v. Actually, the variable v in the limit scheme is consistent with the opposite
of the model limit. This is confirmed by the numerical test from section 3-1.3.2 in Figure C.1.
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Figure C.1 – Numerical solution obtained for the variable p (on the left) and v (on the right)
with the numerical scheme (C.3) with ε = 0.001. Random mesh with 20 nodes and
dt = 0.01/20. Good accuracy illustrate the AP properties of the scheme for the
first variable.

C.2 Order study in one and two dimensions

Consider the time dependent P1 model in one dimension (3.1). To apply the adjoint method,
one first needs to find solutions to the adjoint model (C.1).

Proposition C.2. Assume c 6= 0, σa 6= 0. The adjoint the one dimensional P1 model (C.1)
admits the following four solutions

v±1 (x) =

(
∓√σt√
εσa

)
e∓

1
c

√
3εσaσtx,

v±2 (t, x) =

(
− c
ε(εσa − σt)±

√
3σaσt
ε (εσa + σt)x+ 2 cεσaσtt

−
√

3σa(εσa + σt)x∓ 2cσa
√

σaσt
ε t

)
e∓

1
c

√
3εσaσtx.

(C.5)

For the two dimensional P1 model one can also construct adjoint solutions.
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Proposition C.3. Assume dk = (cos(φk), sin(φk))
T ∈ R2, c 6= 0. The functions

vi =

( √
σt

−√εσadi

)
e−

1
c

√
3εσaσtdTi x, (C.6)

are solutions of the adjoint model associated to the two dimensional P1 system with constant
coefficients σa, σT .

We can now reproduce the test cases from sections 3-1.3.1 and 5-4.1 using respectively the adjoint
solutions (C.5) and (C.6) as basis functions. The Figures C.2 and C.3 show that, with adjoint
basis functions, one can not increase the order of the method for the standard L2 norm.
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Figure C.2 – Numerical test from section 3-1.3.1. Study of the L2 error in logarithmic scale using
adjoint solution as basis functions for temporal one dimensional model.
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Figure C.3 – Numerical test from section 5-4.1. Study of the L2 error in logarithmic scale using
adjoint solution as basis functions for stationary two dimensional model.
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