
HAL Id: tel-01908642
https://hal.science/tel-01908642v2

Submitted on 8 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling Preferences for Ambiguous Utterance
Interpretations

Mehdi Mirzapour

To cite this version:
Mehdi Mirzapour. Modeling Preferences for Ambiguous Utterance Interpretations. Other [cs.OH].
Université Montpellier, 2018. English. �NNT : 2018MONTS094�. �tel-01908642v2�

https://hal.science/tel-01908642v2
https://hal.archives-ouvertes.fr

THÈSE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITÉ DE MONTPELLIER

En Informatique
École doctorale Information, Structures et Systèmes

Unité de recherche LIRMM

Présentée par Mehdi MIRZAPOUR
Le 28 septembre 2018

Sous la direction de Pr. Christian RETORÉ
et Dr. Jean-Philippe PROST

 Devant le jury composé de

Pr Veronica DAHL, Professeur, Université de Simon Fraser

Pr Christophe FOUQUERÉ, Professeur, Université Paris 13, LIPN

Dr Maxime AMBLARD, MCF HDR, Université de Lorraine LORIA

Dr Philippe BLACHE, Directeur de Recherche, CNRS LPL

Pr Violaine PRINCE, Professeur, Université de Montpellier LIRMM

Dr Jean-Philippe PROST, MCF, Université de Montpellier LIRMM

Pr Christian RETORÉ, Professeur, Université de Montpellier LIRMM

Rapporteur

Rapporteur

Examinateur

Examinateur

Examinateur

Co-directeur

Directeur

Modeling Preferences for
Ambiguous Utterance Interpretat ions

iii

Declaration of Authorship
I, Mehdi MIRZAPOUR, declare that this thesis titled, “Modeling Preferences for Am-
biguous Utterance Interpretations” and the work presented in it are my own. I con-
firm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

“Like a sword, a word can wound or kill, but as long as one does not touch the blade, the
sword is no more than a smooth piece of metal. Someone who knows the qualities of a sword
does not play with it, and someone who knows the nature of words does not play with them.”

Miyamoto Musashi

vii

UNIVERSITY OF MONTPELLIER

Abstract
Computer Science

LIRMM

Doctor of Philosophy

Modeling Preferences for Ambiguous Utterance Interpretations

by Mehdi MIRZAPOUR

The problem of automatic logical meaning representation for ambiguous natural
language utterances has been the subject of interest among the researchers in the do-
main of computational and logical semantics. Ambiguity in natural language may
be caused in lexical/syntactical/semantical level of the meaning construction or it
may be caused by other factors such as ungrammaticality and lack of the context
in which the sentence is actually uttered. The traditional Montagovian framework
and the family of its modern extensions have tried to capture this phenomenon by
providing some models that enable the automatic generation of logical formulas as
the meaning representation. However, there is a line of research which is not pro-
foundly investigated yet: to rank the interpretations of ambiguous utterances based
on the real preferences of the language users. This gap suggests a new direction for
study which is partially carried out in this dissertation by modeling meaning prefer-
ences in alignment with some of the well-studied human preferential performance
theories available in the linguistics and psycholinguistics literature.

In order to fulfill this goal, we suggest to use/extend Categorial Grammars for
our syntactical analysis and Categorial Proof Nets as our syntactic parse. We also
use Montagovian Generative Lexicon for deriving multi-sorted logical formula as
our semantical meaning representation. This would pave the way for our five-fold
contributions, namely, (i) ranking the multiple-quantifier scoping by means of un-
derspecified Hilbert’s epsilon operator and categorial proof nets; (ii) modeling the
semantic gradience in sentences that have implicit coercions in their meanings. We
use a framework called Montagovian Generative Lexicon. Our task is introduc-
ing a procedure for incorporating types and coercions using crowd-sourced lexi-
cal data that is gathered by a serious game called JeuxDeMots; (iii) introducing a
new locality-based referent-sensitive metrics for measuring linguistic complexity by
means of Categorial Proof Nets; (iv) introducing algorithms for sentence comple-
tions with different linguistically motivated metrics to select the best candidates; (v)
and finally integration of different computational metrics for ranking preferences in
order to make them a unique model.

ix

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisors Christian
Retoré and Jean-Philippe Prost for being willing to take me as a student and also
for their continuous and extraordinary support of my Ph.D study, for their patience,
motivation, and immense knowledge. I will be forever grateful for their help.

Besides my advisors, I would like to appreciate Philippe Blache and Richard
Moot for their kind support and the time that they spent to discuss novel ideas.
I am profoundly influenced by their research style and wise approaches. My sincere
thanks also go to Violaine Prince, Mathieu Lafourcade, Bruno Mery, Davide Catta
and Alain Joubert who provided patiently discussions and hints during my research
in TEXTE group. I would like to express my gratitude for Jan van Eijck and Christina
Unger for introducing their invaluable book entitled Computational Semantics with
Functional Programming which inspired me to enter to the field of Computational Se-
mantics.

I would like to thank my Ph.D. committee members Maxime Amblard, Philippe
Blache, Veronica Dahl, Christophe Fourqueré and Violaine Prince for their insight-
ful comments and constructive ideas which deserve further attention for my future
research and also my internal supervision committee Madalina Croitoru, David De-
lahaye and I2S doctoral school responsible Marianne Huchard. I appreciate very
supportive and professional administration members of our lab Elisabeth Greverie,
Cecile Lukasik, Guylaine Martinoty and Nicolas Serrurier. I thank my fellow lab-
mates Jimmy Benoits, Davide Catta, Maxime Chapuis, Nadia Clairet, Kévin Cousot,
Lionel Ramadier and Noémie-Fleur Sandillon-Rezer for their stimulating discus-
sions. Also, I thank my ex-supervisors Gholamreza Zakiani and Fereshteh Nabati
for paving the way for my Ph.D.with providing support and encouragement for the
continuation of my study before and after starting my PhD. I am grateful to Ferey-
doon Fazilat for enlightening the first glance of logical study. I am also grateful to
Gyula Klima for sharing his insightful ideas on logic, language and semantics and
also for his kind support of my Ph.D. applications.

I would also like to thank the following people for their support, ideas and lec-
tures that have influenced me: Ali-Akbar Ahmadi Aframjani, Fabio Alves, Lasha
Abzianidze, Jean-Yves Béziau, Patrick Blackburn, Johan Bos, Adrian Brasoveanu,
Michael Carl, John Corcoran, Stergios Chatzikyriakidis, Robin Cooper, Alexander
Dikovsky, Jakub Dotlačil, George Englebretsen, Edward Gibson, Jean-Yves Girard,
Philippe De Groote, Hans Götzsche, Mohammad-Ali Hojati, Rodrigo Guerizoli,
Herman Hendriks, Mark Johnson, Joachim Lambek, Anaïs Lefeuvre, Victoria Lei,
Defeng Li, Roussanka Loukanova, Zhaohui Luo, Laura Kallmeyer, Vedat Kamer,
Ron Kaplan, Amirouche Moktefi, Friederike Moltmann, Glyn Morrill, Larry Moss,
Reinhard Muskens, Lotfollah Nabavi, Katashi Nagao, Petya Osenova, Moham-
madreza A. Oskoei, Terence Parsons, Wiebke Petersen, James Pustejovsky, Aarne
Ranta, Stephen Read, Mehrnoosh Sadrzadeh, Moritz Schaeffer, Jeremy Seligman,
Kiril Simov, Mark Steedman, Jakub Szymanik, Simon Thompson, Erik Thomsen,
Şafak Ural, Shravan Vasishth and Yorick Wilks.

Last but not the least, I would like to thank my wife Fatemeh, my children Iliya
and Mélodie, my parents, my sisters and my friends for supporting me spiritually
throughout writing this thesis.

x

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1

2 Background Knowledge 5

2.1 Lambek Calculus . 5
2.2 Categorial Proof Nets . 6
2.3 Montagovian Generative Lexicon . 13
2.4 JeuxdeMots : A Lexical-Semantic Network 17

3 Modeling Meanings Preferences I:

Ranking Quantifier Scoping 21

3.1 Introduction . 21
3.2 Gibson’s Incomplete Dependency Theory 22
3.3 Incomplete Dependency Complexity Profiling, and its limitations . . 23

3.3.1 Formal Definitions and Example 23
3.3.2 Objection I: A Minor Problem . 25
3.3.3 Objection II: A Major Problem . 26

3.4 Hilbert’s Epsilon, Reordering Cost and Proof-nets: A New Model . . 33
3.4.1 In situ (=Overbinding) Quantification 33
3.4.2 Quantifiers Order Measurement 34
3.4.3 Examples . 35

3.5 Limitations . 36
3.6 Conclusion and Possible Extensions . 36

4 Modeling Meanings Preferences II:

Lexical Meaning and Semantic Gradience 37

4.1 Introduction . 37
4.2 The Lexicon Requirements . 38
4.3 Lexical Data Crowd-Sourced from Serious Games 40

4.3.1 Lexemes, Sorts and Sub-Types . 41
4.3.2 Lexical Transformations . 42
4.3.3 Adapting the Argument . 42

Argument-driven transformations 43
Predicate-driven transformations 43

4.3.4 Adapting the Predicate . 44
4.3.5 Constraints and Relaxation . 44

4.4 Integrating and Ranking Transformations 44
4.4.1 Adding Collected Transformations to the Lexicon 44
4.4.2 Scoring Interpretations . 45
4.4.3 Correcting the Lexicon using Different Sources 46

xii

4.5 Preference Mechanism for Quantifying Semantic Gradience 46
4.5.1 Preference-as-procedure v.s. Preference-as-restriction 46
4.5.2 Case Study . 47

The Straightforward Case . 47
Lexicon Organization in MGL and Meaning Representation . . 48
Collecting Coercions . 48
The Non-Human Case . 49
Limits of MGL . 50
A Direct Solution . 50

4.6 Conclusion and Future Works . 51

5 Modeling Meanings Preferences III:

Categorial Proof Nets and Linguistic Complexity 53

5.1 Introduction . 53
5.2 Gibson’s Theories on Linguistic Complexity 55

5.2.1 Incomplete Dependency Theory 55
5.2.2 Dependency Locality Theory . 56

5.3 Incomplete Dependency-Based Complexity Profiling and its Limitation 56
5.3.1 Formal Definitions and Example 56
5.3.2 Limitation . 57

5.4 A New Proposal: Distance Locality-Based Complexity Profiling 60
5.5 Evaluation of the New Proposal against other Linguistic Phenomena 61
5.6 Limitations . 68
5.7 Conclusion and Possible Extensions . 75

6 Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations 79

6.1 Introduction . 79
6.2 Sentence Completion: Algorithm A . 81

6.2.1 Definitions . 81
6.2.2 Unification Technique of RG Algorithm 83
6.2.3 AB grammars, Unification, and Dynamic Programming 85
6.2.4 Algorithm A . 87
6.2.5 Limitations of Algorithm A . 87

6.3 Sentence Completion: Algorithm B . 88
6.3.1 Syntax and Semantics of Constraint Handling Rules 88
6.3.2 Converting AB Grammar to CFG in Chomsky Normal Form . 89
6.3.3 Algorithm B: Syntax of the Constraint Rules 89
6.3.4 Algorithm B: Semantics of the Constraint Rules 92
6.3.5 Properties of the Algorithm B . 95
6.3.6 Limitations of Algorithm B . 96

6.4 Ranking Interpretations by Means of Categorial Proof Nets 96
6.4.1 Quantifying Preferences with Distance-based Theories 97
6.4.2 Quantifying Preferences with Activation Theory 100

Definitions of the Activation-based Measuring 101
6.4.3 Quantifying Preferences with Satisfaction Ratio 104

Definitions of the Satisfaction Ratio 107
6.5 Conclusion and Future Works . 107

xiii

7 Putting It All Together: Preference over Linguistics Preferences 115

7.1 Introduction . 115
7.2 Complexity Metrics: Summaries . 115

7.2.1 Quantifiers Order Measurement 115
7.2.2 Incomplete Dependency Theory 116
7.2.3 Dependency Locality Theory . 116
7.2.4 Activation Theory . 117
7.2.5 Satisfaction Ratio . 118

7.3 Integration of Linguistic Difficulty Metrics 118
7.3.1 Integrating Dependency Locality and Incomplete Dependency

Theories . 118
7.3.2 Integrating Incomplete Dependency and Activation Theories . 119
7.3.3 Integration of the Satisfaction Ratio 123

7.4 Preference over Linguistic Preferences: A General Scheme 123
7.5 Some Examples . 124
7.6 Limitations . 126
7.7 Conclusion . 127

8 Conclusion 129

8.1 Summaries . 130
8.2 Future Works . 130

8.2.1 Ontological-based Modeling of the Quantifier Scoping Prefer-
ence . 130

8.2.2 Annotated Data-set for Language Meaning Preferences 132
8.2.3 Integrating Multiple Coercions in Montagovian Generative

Lexicon . 132
8.2.4 New Metrics for Linguistic Meaning Complexity 132
8.2.5 Enhancing Sentence Completion Algorithms 132

A Mathematical Proofs of the Properties of Algorithm B 135

A.1 Proof of the Property (A) . 135
A.2 Proof of the Property (B) . 136
A.3 Proof of the Property (C) . 137
A.4 Proof of the Property (D) . 137
A.5 Proof of the Property (E) . 138
A.6 Proof of the Property (F) . 138
A.7 Proof of the Property (G) . 139
A.8 Proof of the Property (H) . 139
A.9 Proof of the Property (I) . 140
A.10 Proof of the Property (J) . 142

B Detailed Calculations of the Linguistic Complexity Metrics 145

B.1 Examples Related to the Chapter 3 . 145
B.2 Examples Related to the Chapter 5 . 145
B.3 Examples Related to the Chapter 6 . 147
B.4 Examples Related to the Chapter 7 . 147

C Published Work 149

C.1 PhD Publications . 149
C.2 Other Publications . 150

Bibliography 153

xv

List of Figures

2.1 Local Trees of the Polar Category Formulas 7
2.2 The polar categorial tree of ((np/S)/(np/S))⊥ 8
2.3 The categorial proof-net analysis for the example "Every barber

shaves himself." . 9
2.4 The categorial proof-net analysis with labels for the example "Every

barber shaves himself." . 11
2.5 Polymorphic conjunction: P(f (x))&Q(g(x)) with x ∶ ξ, f ∶ ξ → α,

g ∶ ξ → β. 15
2.6 A part of the JDM network (taken form [LJ15]). 18
2.7 Screen-shot of an ongoing game with the target verb fromage (cheese)

(taken form [Cha+17a]). 19
2.8 Screen-shot of the game result with the target noun fromage (taken

from [Cha+17a]). 20

3.1 Proof net analyses for 3.3a (left hand) and 3.3b (right hand) with the
relevant profiles. 24

3.2 Proof net analyses for reading (a) of the example 3.4a. 27
3.3 Proof net analyses for reading (b) of the example 3.4b. 28
3.4 Proof net analyses for reading (c) of the example 3.4c. 29
3.5 Proof net analyses for reading (d) of the example 3.4d. 30
3.6 Proof net analyses for reading (e) of the example 3.4e. 31
3.7 Proof net analyses for 3.6a (left hand) and 3.6b (right hand) with the

relevant profiles. 32
3.8 New procedure for the example 3.6 . 35

4.1 Obtaining Coercions: General Scheme, Query Code and Outcome Ta-
ble for Example (a) . 49

4.2 Obtaining Coercions: General Scheme, Query Code and Outcome Ta-
ble for Example (b) . 51

5.1 IDT-based Complexity Profiles for 5.3a and 5.3b. 57
5.2 Proof net analyses for 5.3a (subject-extracted relative clause). 58
5.3 Proof net analyses for 5.3b (object-extracted relative clause). 59
5.4 Accumulative DLT-based Complexity Profiles for 5.3a and 5.3b. 61
5.5 Proof net analysis for the example 5.4a. 62
5.6 Accumulative DLT-based Complexity Profiles for 5.4a and 5.4b. 62
5.7 Proof net analysis for the example 5.4b. 63
5.8 Accumulative DLT-based Complexity Profiles for 5.5a and 5.5b 64
5.10 Proof net analyses for 5.5a located in top (first attempt reading) and

5.5b in bottom (full garden path sentence). 65
5.11 Proof net analyses for 5.6a (object relativization). 66
5.12 Proof net analyses for 5.6b (subject relativization). 67
5.9 Accumulative DLT-based Complexity Profiles for 5.6a and 5.6b 68
5.13 Proof net analyses for 5.7 with highest adverbal attachments. 69

xvi

5.14 Proof net analyses for 5.7 with middle adverbal attachments. 70
5.15 Proof net analyses for 5.7 with lowest adverbal attachments. 71
5.16 Accumulative DLT-based complexity profiles for three readings of 5.7 71
5.17 Proof net analyses for 5.8 with sensical (left) and nonsensical (right)

interpretations. 72
5.18 Accumulative DLT-based complexity profiles for two readings of 5.8 . 72
5.19 Proof net analyses for 5.9a . 73
5.20 Proof net analyses for 5.9b . 74
5.21 Accumulative DLT-based complexity profiles for 5.9a and 5.9b 74

6.1 Possible structural trees of a sequence w1w2w3 82
6.2 Three possible structural trees for the example 6.2 84
6.3 Proof net analyses for 6.6a and 6.6b. 99
6.4 Proof net analysis for 6.7a. 102
6.5 Proof net analysis for 6.7b. 103
6.6 Proof net analysis for 6.7b with the weights. 105
6.7 Proof net analysis for 6.9a with the (violation) weights. 108
6.8 Proof net analysis for 6.9b with the (violation) weights. The violation

weights with the light-colored axioms have the value ’1’; the rest, i.e.
the dark-colored axioms have the value ’0’ 109

6.9 Proof net analysis for 6.9c with the (violation) weights. The violation
weights with the light-colored axioms have the value ’1’; the rest, i.e.
the dark-colored axioms have the value ’0’ 110

6.10 Proof net analysis for 6.9d with the (violation) weights. The violation
weights with the light-colored axioms have the value ’1’; the rest, i.e.
the dark-colored axioms have the value ’0’ 111

6.11 Proof net analysis for 6.9e with the (violation) weights. The violation
weights with the light-colored axioms have the value ’1’; the rest, i.e.
the dark-colored axioms have the value ’0’. 112

7.1 Proof net analysis for 7.1a. 120
7.2 Proof net analysis for 7.1b. 121
7.3 The General Scheme for Integrating the Rankings. 122

8.1 Summary of the problems and the relevant solutions. 131

xvii

List of Tables

2.1 Sequent calculus rules for LC . 6

6.1 Unification of variable categories and fixed (learned) categories 82
6.2 Unification of variable types and learned types 84
6.3 Step (1) of parsing with unification for the example 6.3 85
6.4 Step (2) of parsing with unification for the example 6.3 85
6.5 Step (3) of parsing with unification for the example 6.3 86
6.6 Last step of parsing with unification for the example 6.3 86
6.7 Parsing with unification for the example 6.6 97
6.8 Parsing with unification for the example 6.6 98
6.9 Calculation of the incomplete dependency number for 6.6a and 6.6b. . 98
6.10 Calculation of the dependency locality number for 6.6a and 6.6b. . . . 98
6.11 Calculation of the incomplete dependency number for 6.7a and 6.7b. . 101
6.12 Calculation of the dependency locality number for 6.7a and 6.7b. . . . 101
6.13 Calculation of the activation-based complexity measurement for 6.7a

and 6.7b. 104

7.1 Calculation of the incomplete dependency number for 7.1a and 7.1b. . 119
7.2 Calculation of the dependency locality number for 7.1a and 7.1b. . . . 119

B.1 Calculation of the incomplete dependency number for 3.3a and 3.3b. . 145
B.2 Calculation of the incomplete dependency number for 3.6a and 3.6b. . 145
B.3 Calculation of the incomplete dependency number for 5.3a and 5.3b. . 145
B.4 Calculation of the dependency locality number for 5.3a and 5.3b. . . . 145
B.5 Calculation of the dependency locality number for 5.4a and 5.4b. . . . 146
B.6 Calculation of the dependency locality number for 5.5a and 5.5b. . . . 146
B.7 Calculation of the dependency locality number for 5.6a and 5.6b. . . . 146
B.8 Calculation of the dependency locality number for the readings of 5.7. 146
B.9 Calculation of the dependency locality number for the readings of 5.8. 146
B.10 Calculation of the dependency locality number for 5.9a and 5.9b. . . . 146
B.11 Calculation of the incomplete dependency number for 6.6a and 6.6b. . 147
B.12 Calculation of the dependency locality number for 6.6a and 6.6b. . . . 147
B.13 Calculation of the incomplete dependency number for 6.7a and 6.7b. . 147
B.14 Calculation of the dependency locality number for 6.7a and 6.7b. . . . 147
B.15 Calculation of the activation-based complexity measurement for 6.7a

and 6.7b. 147
B.16 Calculation of the incomplete dependency number for 7.1a and 7.1b. . 147
B.17 Calculation of the dependency locality number for 7.1a and 7.1b. . . . 148

xix

List of Abbreviations

CG Categorial Grammar
CHR Constraint Handling Rules
CPN Categorial Proof Net
DLT Distance Locality Theory
GSC Gentzen Sequent Calculus
GWAP Games With A Purpose
IDT Incomplete Dependency Theory
JDM Jeux De Mots
LC Lambek Calculus
MGL Montagovian Generative Lexicon
MLL Multiplicative Linear Logic
PG Property Grammar

xxi

To Miyamoto Musashi (1584-1645)

1

Chapter 1

Introduction

To know ten thousand things, know
one well.

Miyamoto Musashi

Ambiguity is an important linguistic phenomenon which demands a compu-
tational treatment in almost all of the subfields of natural language processing,
such as Information Retrieval, Sentiment Analysis, Machine Translation, Question-
Answering and Natural Language Understanding. The ambiguity may be caused in
lexical/ syntactical/ semantical level of meaning construction or it may be caused
by other factors such as ungrammaticality or the absence of the context in which the
sentence is actually uttered.

In computational formal semantics, the problem of automatic meaning repre-
sentation for ambiguous natural language utterances has been extensively studied.
More specifically, in Montagovian-style formal semantic frameworks one would be
able to derive meanings from a given ambiguous text in a systematic and straight-
forward approach.

A natural, and yet plausible question that can be raised in the computational
formal semantic field is that how different possible meaning representations of a
written or spoken utterance might be quantitatively ranked in alignment with the
well-studied human preferential performance theories.

This question is not just interesting from a computational linguistic or computa-
tional psycholinguistic perspective. It is important due to this fact that some compu-
tational frameworks over-generate meaning structures and this necessarily suggests
a ranking mechanism to rule out some of them. Even if a computational framework
properly generates meanings for ambiguous utterances, ranking them as close as
possible to the human performance phenomena would be an interesting task. This
would provide a quantitative account in favor of introducing new metrics for the fu-
ture studies in humanizing the natural language understating, i.e. making machines
that understand natural language similar to humans. Those machines are supposed
to obtain the meaning of linguistically ambiguous utterances in a way that makes
the communication between human and machines smoothly. Obviously, the prob-
lem of the misunderstanding between machines and humans would increase when
no human-like computational ranking is available.

The main question of this dissertation is how to fill the mentioned gap by pro-
viding meaning preferential models for ambiguous utterances in alignment with
some of the well-studied human preferential performance theories available in the
linguistics and psycholinguistics literature. There are more specific questions which

2 Chapter 1. Introduction

are clustered around the main general question, such as: How can the problem of the
ranking multiple-quantifier sentence be efficiently addressed? How can we have the
preferential models for those human preferences which are constrained by the lexical
data? How can we use human knowledge in lexical-semantic networks to address
the previous question? What is a suitable and proper representation of the sentence
meaning? How would these meaning representations pave the way to adopt the
modern computational psycholinguistic theories into our ranking algorithms? How
can we rank ambiguous incomplete sentences? How can potential interpretations for
incomplete sentences quantitatively be ranked as close as possible to human prefer-
ences?

Although, our research objectives cover the linguistic phenomena which, in prin-
ciple, is tied up with the ambiguity problem, we will go beyond the classical prob-
lem of ranking the ambiguous utterances, and we discover novel solutions for other
linguistic phenomena such as quantifier scoping, the gradient of semanticality, em-
bedded pronouns, garden pathing, unacceptability of center embedded, preference
for lower attachment and passive paraphrases acceptability. In order to fulfill this,
we use Categorial Grammars for our syntactical analysis and Categorial Proof Nets
as our syntactic parse. We also use Montagovian Generative Lexicon for deriv-
ing multi-sorted logical formula as our semantical meaning representation. Thanks
to the Curry–Howard isomorphism and the semantic readings on proof nets, the
syntax-semantics interface will be quite straightforward. It is worth mentioning
that the meaning can be represented as multi-sorted higher-order logical formulas.
Also, it is straightforwardly possible to reify the higher-order logical meaning repre-
sentations in alignment with the event semantics in Davidsonian [Dav67] and neo-
Davidsonian proposals [Res67; Par90].

Our hypothesis is that by applying the above methodology we can quantitatively
model a number of linguistic performance phenomena. Our computational model
supports the human performances that are experimentally verified by modern psy-
cholinguistic theories.

This work is organized as follows:

In chapter 2, we provide an overview of the background knowledge that one
needs to understand this dissertation. It starts with Lambek Calculus as our syntac-
tic analysis with the essential definitions and exploring Lambek Sequent Calculus.
Then, we highlight the problem of spurious ambiguity that exist in the sequent cal-
culus. After that, we explain how Categorial Proof Nets can overcome the spurious
ambiguity problem. We also go through all the needed definitions, technicalities
and examples that is needed to grasp categorial proof-net and the semantic readings
of it. Then, we explicate Montagovian Generative Lexicon and its lexicon organi-
zation. We discuss how representing meaning as multi-sorts higher order logic can
help us to capture coercion and co-prediction in the language. We end up this chap-
ter with introducing JeuxdeMots, a French lexical-semantic network. The relevant
graph structures and the validation process would be generally overviewed.

In chapter 3, we focus on the problem of ranking the valid logical meanings of
a given multiple-quantifier sentence only by considering the syntactic quantifier or-
der. We first report some deficiencies that exist in an existing state-of-the-art tech-
nique (for solving the problem of quantifier scope ranking) known as Incomplete
Dependency-based Complexity Profiling [Mor00]. One of the main problem with

Chapter 1. Introduction 3

this approach is that it does not properly support the ranking problem in some of the
sentences such as sentence-modifier adverbials, nested sentences and direct speech.
We try to fix this problem by defining a new metric which is inspired by Hilbert’s
epsilon and introducing the notion of the reordering cost. We will see how this gives
a correct account in favour of the problematic cases.

In chapter 4, we focus on the semantic gradiences that potentially happens in
sentences that have implicit coercions in their linguistic meaning. The aim of this
study is to find an automatic treatment for this kind of semantic preferences and to
capture it in our modeling. In order to perform such a task we need to have a rich
lexical information. Frameworks based on Generative Lexicon theories [Pus91] such
as Motagovian Generative Lexicon [Ret14], can have a rich logical representation
using a Montague-like compositional process. A crucial problem for these systems
is then to have sufficient lexical resources (as a rich lexicon incorporating types and
coercions) to function. Our main task in this chapter is introducing a procedure
which can build such a lexicon for the Montagovian Generative Lexicon. We will
do this task by using crowd-sourced lexical data that is gathered by a serious game
which is called JeuxDeMots. The frequencies of the lexical occurrences— which is
automatically gathered by the game players— would play a key role in our ranking
mechanism. Our strategy, following [FW83], would be based on a mechanism called
preference-as-procedure. We practice such a strategy for automatic treatment of se-
mantic gradience in our computational modeling.

In chapter 5, we provide a quantitative computational account of why such a sen-
tence has a harder parse than some other sentence, or that one analysis of a sentence
is simpler than another one. We take for granted the Gibson’s results on human pro-
cessing complexity. Gibson first studied the notion of the nesting linguistic difficulty
[Gib91] through the maximal number of incomplete syntactic dependencies that the
processor has to keep track of during the course of processing a sentence. We re-
fer to this theory as Incomplete Dependence Theory (IDT) as coined by Gibson. IDT
had some limitations for the referent-sensitive linguistic phenomena, which justified
the later introduction of the Syntactic Prediction Locality Theory [Gib98]. A vari-
ant of this theory, namely Dependency Locality Theory (DLT), was introduced later
[Gib00] to overcome the limitations of IDT against the new linguistic performance
phenomena. In the original works, both IDT and DLT use properties of linguis-
tic representations provided in Government-Binding Theory [Cho82]. We provide
a new metric which uses (Lambek) Categorial Proof Nets. In particular, we cor-
rectly model Gibson’s account in his Dependency Locality Theory. The proposed
metric correctly predicts some performance phenomena such as structures with em-
bedded pronouns, garden pathing, unacceptability of center embedded, preference
for lower attachment and passive paraphrases acceptability. Our proposal extends
existing distance-based proposals on Categorial Proof Nets for complexity measure-
ment while it opens the door to include semantic complexity, because of the syntax-
semantics interface in categorial grammars. The purpose of developing our com-
putational psycholinguistic model is not solely limited to measuring linguistic com-
plexity.

In chapter 6, we work on incomplete utterances with missing categories. In the
first place, we introduce two algorithms for resolving incomplete utterances. The
first algorithm is based on AB grammars, Chart-based Dynamic Programming and
learning Rigid AB grammars with a limited scope of only one missing category
which have O(n4) time complexity (n is the number of the words in a sentece). The

4 Chapter 1. Introduction

second algorithm employs Constraint Handling Rules which deals with k > 1 miss-
ing categories which enable us to find more than one missing categories at cost of
the exponential complexity. In the second place, we introduce measurements on the
fixed categorial proof nets motivated by Gibson’s distance-based theories, Violation
Ratio factor and Activation Theory.

In chapter 7, we focus on the problem of integration different computational met-
rics for ranking preferences in order to make them a unique model. We see this prob-
lem similar, to some extent, to the problem of aggregation of the preferences. In other
words, we provide a procedure to make preference over different linguistic prefer-
ences introduced throughout this dissertation. We mainly use the lexicographical
ordering for aggregating the different preferences. We see this computational pro-
cedure with a number of running examples. In chapter 8 we draw conclusions and
discuss avenues for further works.

A quick survey on the Ph.D. published papers is available in the appendix C.

5

Chapter 2

Background Knowledge

You should not have any special
fondness for a particular [tool], or
anything else, for that matter. Too
much is the same as not enough.
Without imitating anyone else, you
should have as much [tools] as suits
you.

Miyamoto Musashi

In this chapter, we introduce the background knowledge that is assumed one
would need to understand this dissertation.1 The underlying concepts and the no-
tations within each exploited framework are described. This should not prevent the
non-familiar readers to consult the relevant references in each section for detailed
information since this chapter is not meant to explicate briefly each framework in a
lengthy manner.2

2.1 Lambek Calculus

Lambek calculus(LC) is introduced for the first time by Lambek in his seminal paper
[Lam58]. The motivation behind this system is to provide a resource-boundedness
logic in favor of syntactical parsing under the slogan ’parsing as a deduction’. We
provide an overview of the existing material [MR12b] on Lambek Calculus.

Definition 2.1. The category formulas (Lp) are freely generated from a set of usual
syntactical primitive types P = {S, np, n, pp,⋯} by directional divisions, namely the
binary infix connectives / (over), / (under) and ● (product) as follows:

Lp ∶∶= P ∣ (Lp/Lp) ∣ (Lp/Lp) ∣ (Lp ● Lp)

Note that A/B and B/A have also some intuitive interpretations. An expression
of type A/B (resp. B/A) when it looks for an expression of type A on its left (resp.
right) forms a compound expression of type B. An expression of type A followed by
an expression B is of type A ●B, and the product is related to / and / by the following
relations:

A/(B/X) = (B ● A)/X (X/A)/B = X/(B ● A)

1We assume that the readers have some familiarity with the Typed Lambda Calculus and Intu-
itionistic Propositional Calculus. Interested readers can consult [HS80; GTL89] for more details on the
subject.

2The main material for writing the subsections 2.1-2.3 are [MR12a; Ret14].

6 Chapter 2. Background Knowledge

Definition 2.2. A sequent, Γ ⊢ A, comprises formula A as succedent and Γ a se-
quence of finite formulas as antecedent. The table 2.1 shows the rules of LC which
is provided in Gentzen Sequence Calculus in which A, B and C are formulas, while
Γ, Γ

′

and ∆ are sequences which each contains finite formulas:

Γ, B, Γ
′

⊢ C ∆ ⊢ A

Γ, ∆, A/B, Γ
′

⊢ C
/h A, Γ ⊢ C

Γ ⊢ A/C
/i Γ ≠ ǫ

Γ, B, Γ
′

⊢ C ∆ ⊢ A

Γ, B/A, ∆, Γ
′

⊢ C
/h Γ, A ⊢ C

Γ ⊢ C/A
/i Γ ≠ ǫ

Γ, A, B, Γ
′

⊢ C

Γ, A ● B, Γ
′

⊢ C
●h ∆ ⊢ A Γ ⊢ B

∆, Γ ⊢ A ● B
●i

Γ ⊢ A ∆1, A, ∆2 ⊢ B

∆1, Γ, ∆2 ⊢ B
cut

A ⊢ A
axiom

TABLE 2.1: Sequent calculus rules for LC

We can define a lexicon, that is a function Lex which maps words to finite sets of
types. A sequence of words w1,⋯, wn is of type u whenever there exists for each wi

a type ti in Lex(wi) such that there exists a proof for sequent t1,⋯, tn ⊢ u by applica-
tions of the introduced rules for LC.

Example 2.1. Having the lexicon John:np, loves:(np/S)/np and Mary:np, we can
prove that the expression John loves Mary is a sentence of type S. To prove this, we
need to prove that the sequence of the assigned formulas are of type S, namely the
sequent np, (np/S)/np, np ⊢ S is provable. Here is the straightforward proof:

S ⊢ S
axiom

np ⊢ np axiom

np, np/S ⊢ S
/h

np ⊢ np axiom

np, (np/S)/np, np ⊢ S
/h

Example 2.2. The following two proofs are related to the sequent A/B, B/C ⊢ A/C.
As one can observe, there are two equivalent derivations which differ only in the
applications of the irrelevant rule ordering. This phenomenon–called spurious
ambiguity–needs a treatment which will be described in the next section.

C ⊢ C B ⊢ B
B, B/C ⊢ C

/h
A ⊢ A

A, A/B, B/C ⊢ C
/h

A/B, B/C ⊢ A/C
/i

B ⊢ B A ⊢ A
A, A/B ⊢ B

/h
C ⊢ C

A, A/B, B/C ⊢ C
/h

A/B, B/C ⊢ A/C
/i

2.2 Categorial Proof Nets

In the previous section, we showed that the Gentzen Sequence Calculus has the
problem of the spurious ambiguity. One way to overcome this problem is to use the
proof net as a vehicle for our logical derivations. Proof nets are the structures that
were originally introduced by Girard for linear logic [Gir87]. We use some of the
existing adoptions of Girard’s system made in favor of Lambek categorial grammar

2.2. Categorial Proof Nets 7

[MR12b, Chap 6]. The outcome is quite satisfying since we can end up with a logic-
based formalism that can linguistically be interpreted as parse structures.

In order to relate the categorial formula (Lp) to linear logic formula, we need to
introduce negation denoted by (⋯)! (the orthogonal of ⋯) and two linear logic con-
nectives, namely multiplicative conjunction denoted by ⊗ and multiplicative dis-
junction denoted by `. Now we can translate Lp to the linear logic formulas by the
following definitions and equivalences:

Definition of / and /: A/B ≡ A⊥℘B B/A ≡ B` A⊥

De Morgan equivalences (A⊥)⊥ ≡ A (A` B)⊥ ≡ B⊥⊗ A⊥ (A⊗ B)⊥ ≡ B⊥` A⊥

Definition 2.3. A polar category formula is a Lambek categorial type labeled with
positive (○) or negative (●) polarity recursively definable as follows:

L○ ∶∶= P ∣ (L●` L○) ∣ (L○` L●) ∣ (L○ ⊗ L○)
L● ∶∶= P! ∣ (L○ ⊗ L●) ∣ (L○ ⊗ L●) ∣ (L●` L●)

The above formulation allows ⊗ of positive formulas and ` of negative formu-
las, this would allow us to have ⊗ in addition to the / and / symbols in categories.
Combining heterogeneous polarities guarantees that a positive formula is a category
and that a negative formula is the negation of a category.

Definition 2.4. Based on the previous inductive definitions, we can have an easy
decision procedure to check whether a formula F is in L○ or L●:

⊗ ● ○

● undefined ●

○ ● ○

` ● ○

● ● ○

○ ○ undefined

Example 2.3. a ` a has no polarity; a⊥ ` b is positive and it is a/b while b⊥ ⊗ a is
negative and it is the negation of a/b.

Definition 2.5. A polar category formula tree is a binary ordered tree in which the
leaves are labeled with polar atoms and each local tree is one of the following logical
links:

8 Chapter 2. Background Knowledge

FIGURE 2.1: Local Trees of the Polar Category Formulas

Example 2.4. The figure 2.2 illustrates the polar category formula tree of the formula
((np/S)/(np/S))⊥ which is the negation of the (np/S)/(np/S). This specific category
is a kind of categorial formula that represents auxiliary verbs in the linguistics.

FIGURE 2.2: The polar categorial tree of ((np/S)/(np/S))⊥

Definition 2.6. A proof frame is a finite sequence of polar category formula trees
with one positive polarity corresponding to the unique succedent of sequent.

Definition 2.7. A proof structure is a proof frame with axiom linking which cor-
responds to the axiom rule in the sequence calculus. Axioms are a set of pairwise
disjoint edges connecting a leaf z to a leaf z⊥, in such a way that every leaf is incident
to some axiom link.

Definition 2.8. A proof net is a proof structure satisfying the following conditions: 3

Acyclicity: every cycle contains the two edges of the same ℘ branching.

Enumerate: there is a path not involving the two edges of the same ℘ branch-
ing between any two vertices.

Intuitionism: every conclusion can be assigned some polarity.

Non commutativity: the axioms do not cross (are well bracketed).

Example 2.5. The figure 2.3 shows the categorial analysis of the sentence Every barber
shaves himself. For each word a proper category from the lexicon is assigned. We
re-analyze this syntactic analysis in the next example in order to get the semantic
meaning represented as a logical formula.

It has been known for many years that categorial parse structures, i.e. proof
in some substructural logic, are better described as proof nets [Roo91; Ret96;
Moo02; MR12a]. Indeed, categorial grammars following the parsing-as-deduction
paradigm, an analysis of a c phrase w1, , . . . , wn is a proof of c under the hypotheses
c1, ..., cn where ci is a possible category for the word wi; and proofs in those systems
are better denoted by graphs called proof nets. The reason is that different proofs
in the Lambek calculus may represent the same syntactic structure (constituents and
dependencies), but these essentially similar sequent calculus proofs correspond to a
unique proof net.

3This list is redundant: for instance intuitionism plus acyclicity implies connectedness.

2.2. Categorial Proof Nets 9

FIGURE 2.3: The categorial proof-net analysis for the example "Every
barber shaves himself."

10 Chapter 2. Background Knowledge

Proof-nets have an important advantage over other representations of catego-
rial analyses: they avoid the phenomenon known as spurious ambiguities, that is
when different parse structures correspond to the same syntactic structure (same
constituent and dependencies). Indeed proofs (parse structures) with unessential
differences are mapped to the same proof net. A (normal) deduction of c1, ..., cn ⊢ c
(i.e. a syntactic analysis of a sequence of words as a constituent of category c) maps
to a (normal) proof net with conclusions (cn)

⊥, ..., (c1)
⊥, c [Roo91; Roo92; MR12a].

Conversely, every normal proof net corresponds to at least one normal sequent cal-
culus proof [Ret96; MR12a].

Definition 2.9. The semantics associated with a categorial proof net (the proof as a
lambda term under the Curry-Howard correspondence) can be gained by associat-
ing a distinct index with each par-node and traveling as follows [DGR96]:

• Enter the proof net by going up at the unique output root.

• Follow the path specified by the output polarities until an axiom-link is even-
tually reached; this path, which is ascending, is made of par-links that corre-
spond to successive lambda-abstractions.

• Cross the axiom-link following the output-input direction.

• Follow the path specified by the input polarities; this path, which is descend-
ing, is made of tensor-links that correspond to successive applications; it ends
either on some input conclusion of the proof-net, or on the input premise of
some par-link; in both cases, the end of the path coincides with the head-
variable of the corresponding lambda-term; in the first case (input conclusion)
this head-variable is free; in the second case (premise of a par-link) this head-
variable is bound to the lambda corresponding to the par-link.

• In order to get all the arguments to which the head-variable is applied, start
again the same sort of traversal from every output premise of the tensor-links
that have been encountered during the descending phase described in the pre-
vious section.

Example 2.6. Figure 2.4 shows the same proof-net illustrated in 2.3 for the sentence
Every barbers shave himself. The only difference is the labels that are sketched in the
figure in order to show each single step for deriving the semantic reading of the
proof net as described in the definition 2.9. Here are the details:

T1 = T2T3

T2 = every(barber)

T3 = λx1.T4

T4 = T5x1

T5 = himsel f (T6)

T6 = λx2.T7

T7 = λx3.T8

T8 = T9(x3)

T9 = shave(x2)

2.2. Categorial Proof Nets 11

FIGURE 2.4: The categorial proof-net analysis with labels for the ex-
ample "Every barber shaves himself."

12 Chapter 2. Background Knowledge

By some straightforward substitutions, we would have the following syntactic
analysis which is of type S:

T1 = (every(barber))(λx1.(himsel f (λx3.λx2.(shave x2)x3))x1)

Definition 2.10. We can define a morphism from syntactic types in Lambek Calculus
(such as np, n and S) to semantic types: these semantic types are formulae defined
from two types e (entities) and t (truth values or propositions) with the intuitionistic
implication→ as their only connective:

types ∶∶= e ∣ t ∣ (types → types)

Now, we can define a morphism from syntactic types to semantic types4:

(Syntactic type)∗= Semantic type Description

S∗ t a sentence is a proposition
np∗ e a noun phrase is an entity
n∗ e → t a noun is a subset of the set of entities

(a / b)∗= (b / a)∗ a∗ → b∗ extends (_)∗ to all syntactic types

Example 2.7. A common noun like barber or an intransitive verb like sneeze have the
type e → t (the set of entities which are barber or who sneeze) a transitive verb like
shave is a two place predicate of type e → e → t (the pairs of entities such that the first
one takes the second one) etc.

Example 2.8. Now, we can substitute the syntactic analysis that we gained in the
example, i.e. T1, with the following semantic counterparts and perform the alpha
and beta conversion to gain the logical formula in a Montague-like approach:

syntactic type u

word semantic type u∗

semantics: λ-term of type u∗

(S/(np/S))/n
every (e → t)→ ((e → t)→ t)

λPe→tλQe→t(∀(e→t)→t(λxe(⇒t→(t→t) (Px)(Qx))))

n
barber e → t

λxe(barbere→tx)

n
shaves e → (e → t)

λxeλye((shavese→(e→t)x)y)

((np/S)/np)/(np/S)
himself e → (e → t)

λPe→(e→t)λxe((Px)x)

Now we start to substitute the semantic lambda-terms with the variables in the
T1, step by step and perform the beta-conversion:

T1 = (every(barber))(λx1.(himsel f (λx3.λx2.(shave x2)x3))x1)

4Logical constants for the usual logical operations such as disjunction (∨) conjunction (∧) and im-
plication (→) have the semantic type t → (t → t). The logical quantifiers such as ∀ and ∃ have the
semantic type (e → t)→ t

2.3. Montagovian Generative Lexicon 13

↓ β

every(barber) = λQe→t(∀(e→t)→t(λxe(⇒t→(t→t) (barbere→tx)(Qx))))

↓ β

λx1.(himsel f (λx3.λx2.(shave x2)x3))x1) = λx1.((shavex1)x1)

Thus, finally we get:
↓ β

∀(e→t)→t(λxe(⇒t→(t→t) (barbere→tx)((shavee→(e→t)x)x)))

That can be re-written in an untyped and uncurrying form as below:

∀x(barber(x)⇒ shave(x, x))

2.3 Montagovian Generative Lexicon

Montagovian Generative Lexicon(=MGL) [Ret14] is a framework designed for com-
puting the semantics of natural language sentences, expressed in many-sorted
higher-order logic. The base types practiced in Montagovian-tradition (e and t) have
fine-grained treatment in MGL since it has integrated many sorted types; and as a
result, meaning are represented as many-sorted logic. This kind of representation
provides a way to perform the restriction of selection. This framework is able to in-
tegrate a proper treatment of lexical phenomena into a Montagovian compositional
semantics, like the (im)possible arguments of a predicate, and the adaptation of a
word meaning to some contexts. MGL, uses many-sorted higher-order predicate
calculus for semantic representation. It can be reified in first-order logic as well. For
having sorts MGL uses classifiers in the language, this gives sorts a linguistically
and cognitively motivated basis [MR13]; we have shown in detail how basic types
and coerced terms can be gained by a serious game called JeuxDeMots as we will see
in chapter 4. For meaning assembly, the second order λ-calculus (Girard system F)
is used in order to factor operations that apply uniformly to a family of types.

There are many other good features in MGL such as ontological sub-typing that
we have not provided detailed study here. We only focus on the main features of
MGL and we will describe some technical parts of the framework such as coercions
in the section 4 when we want to deal with the semantic gradience problem, and
we discuss on Hilbert-epsilon operators in the chapter 3 when we want to deal with
quantifier scoping and underspecification problems.

Many-sorted formulas in system F MGL uses a large number of base types and
compound types. Though, it looks almost necessary to define operations over a fam-
ily of similar terms with different types. This brings some flexibility in the typing
and let us have terms that act upon families of terms and types. This is the philos-
ophy behind using Girard’s system F as the type system [Gir11]. System F involves
quantified types whose terms can be specialized to any type. MGL can be written
as ΛTyn since it extends Tyn of Muskens [Mus90] with the second order operator and
the corresponding quantified Π types.

The types of ΛTyn are defined as follows:

14 Chapter 2. Background Knowledge

• Constant types ei and t are (base) types.

• Type variables α, β, . . . are types.

• Whenever T and α respectively are a type and a type-variable, the expression
Πα.T is a type. The type variable may or may not occur in the type T.

• Whenever T1 and T2 are types, T1 → T2 is a type as well.

The terms of ΛTyn , which encode proofs of quantified propositional intuitionistic
logic, are defined as follows:

• A variable of type T i.e. x ∶ T or xT is a term, and there are countably many
variables of each type.

• In each type, there can be a countable set of constants of this type, and a con-
stant of type T is a term of type T. Such constants are needed for logical oper-
ations and for the logical language (predicates, individuals, etc.).

• (f t) is a term of type U whenever t ∶ T and f ∶ T → U.

• λxT.t is a term of type T → U whenever x ∶ T and t ∶ U.

• t{U} is a term of type T[U/α]whenever t ∶ Λα.T and U is a type.

• Λα.t is a term of type Πα.T whenever α is a type variable and t ∶ T is a term
without any free occurrence of the type variable α in the type of a free variable
of t.

The reduction of the terms in system F or its specialized version ΛTyn is defined
by the two following reduction schemes that resemble each other:

• (λxφ.t)uφ reduces to t[u/x] (usual β reduction).

• (Λα.t){U} reduces to t[U/α] (remember that α and U are types)

Girard has shown [Gir11] reduction is strongly normalizing and confluent every
term of every type admits a unique normal form which is reached no matter how
one proceeds. The normal forms, which can be asked to be η-long without loss of
generality, can be characterized as follows:

Proposition (i): A normal Λ-term N of system F, β normal and η long to be pre-
cise, has the following structure:

Example 2.9. This example illustrates how system F factors uniform behaviors.
Given types α, β, two predicates Pα→t, Pβ→t, over entities of respective kinds α and
β, for any ξ with two morphisms from ξ to α and β (see Figure 2.5), F contains a
term that can coordinate the properties P ,Q of (the two images of) an entity of type
ξ, every time we are in a situation to do so – i.e. when the lexicon provides the
morphisms.

2.3. Montagovian Generative Lexicon 15

Definition 2.11. Polymorphic AND is defined as follow:

&Π
= Λα.Λβ.λPα→t.λQβ→t.Λξ.λxξ .λ f ξ→α.λgξ→β.(&t→t→t(P(f x))(Q(gx))).

Such a term is straightforwardly implemented in Haskell along the lines of Van
Eijck and Unger [VEU10]:

FIGURE 2.5: Polymorphic conjunction: P(f (x))&Q(g(x)) with x ∶ ξ,
f ∶ ξ → α, g ∶ ξ → β.

andPOLY :: (a -> Bool) -> (b -> Bool) -> c -> (c -> a) -> (c -> b) -> Bool

andPOLY = p q x f g -> p (f x) && q (g x)

This can give an explanation for a “book” to be “heavy” as a “physical object”,
and to be at the same time “interesting” as an “informational content”. The rigid use
of possible transformations, as we define, would stop the over-generating artificial
expressions.

The notion of coercion

Coercion (or transformation) is a key concept in MGL. It is a semantic notion
which is rather intuitive. Each predicate contains— in its argument structure— the
number and type of arguments needed. If each argument is present with the correct
type, then a λ−term is formed by application, like in classical Montague semantics.
In addition, the theory licenses certain cases of application (f α→γxβ) with α ≠ β via
various type coercions. If β < α, i.e. β is a subtype of α, then the application is valid
and is called a subtype coercion. If α and β are disjunct, then, there are two general
strategies: argument-driven coercion or predicate-driven coercion. In argument-
driven coercion the type mismatch can be treated by introducing a coerced term
gβ→α as in f α→γ(gβ→αxβ) ∶ γ. In predicate-driven coercion the type mismatch can be
treated by introducing a coerced term h(α→γ)→(β→γ) as in ((h(α→γ)→(β→γ) f α→γ)xβ) ∶ γ.
More detailed information with relative examples can be found in the subsections
4.3.2 and 4.3.3.

16 Chapter 2. Background Knowledge

Organization of the lexicon

In MGL, the lexicon associates each word w with a principal λ − term [w] which
basically is the Montague term discussed earlier, except that the types appearing in
[w] belong to a much richer type system. This would enable us to impose some se-
lectional restriction. In addition to this principal term, there can be optional λ− term
also called modifiers or transformations to allow, in some cases, compositions that
were initially ruled out by selectional restriction.

There are two ways to solve a type of conflict using those modifiers. Flexible
modifiers can be used without any restriction. Rigid modifiers turn the type into
another one which is incompatible with other types or senses. This is the case for
identity, which is always a licit modifier, is also specified to be flexible or rigid. In
the later rigid case, it means that the original sense is incompatible with any other
sense, although two other senses may be compatible. Consequently, every modifier,
i.e. optional λ − term is declared, in the lexicon, to be either a rigid modifier, noted
(r) or a flexible one, noted (f).

As we will see, this setup in our lexicon would lead to manage the copredications
in the linguistics this would offer a better control of incorrect and correct copredica-
tions. One can think that some meaning transfer differs although the words have the
same type. An example for this case in French is provided by the words classe and
promotion, which both refer to groups of pupils. The first word classe (English: class)
can be coerced into the room where the pupils are taught, (the classroom), while the
second, promotion (English: class or promotion) cannot. Consequently, we, in gen-
eral, prefer word-driven coercions, i.e. modifiers that are anchored in a word.

Example 2.10. Considering the following lexicon (taken from [Ret14]):

word principal λ − term optional λ − term rigid/flexible

book B̂ ∶ e → t IdB ∶ B → B (F)
b1 ∶ B → φ (F)
b2 ∶ B → I (F)

town T̂ ∶ e → t IdT ∶ T → T (F)
t1 ∶ T → F (R)
t2 ∶ T → P (F)
t3 ∶ T → Pl (F)

Liverpool LplT IdT ∶ T → T (F)
t1 ∶ T → F (R)
t2 ∶ T → P (F)
t3 ∶ T → Pl (F)

spread out spreat_out ∶ Pl → t

voted voted ∶ P → t

won won ∶ F → t
where the base types are defined as follows:

B book T town
φ physical objects Pl place
I information P people

F football team

We can analyze the following examples (taken from [Ret14]):

2.10a. Liverpool is spread out.

2.4. JeuxdeMots : A Lexical-Semantic Network 17

2.10b. Liverpool voted.

2.10c. Liverpool won.

2.10d. Liverpool is spread out and voted (last Sunday).

2.10e. ? Liverpool voted and won (last Sunday).

• The example 2.10a leads to a type mismatch spread_outPl→tLplT, since “spread
out” applies to “places” (type Pl) and not to “towns” as “Liverpool”. It is
solved using the optional term tT→Pl

3 provided by the entry for “Liverpool”,
which turns a town (T) into a place (Pl) spread_outPl→t(tT→Pl

3 LplT) – a single
optional term is used, the (F)/(R) difference is useless.

• The example 2.10b if treated as the previous one, using the appropriate op-
tional terms would lead to votedP→t(tT→P

2 LplT).

• The example 2.10c if treated as the previous one, using the appropriate op-
tional terms would lead to wonF→t(tT→F

1 LplT).

• The example 2.10d the fact that “Liverpool” is “spread out” is derived as pre-
viously, and the fact that “Liverpool voted” is obtained from the transforma-
tion of the town into people, who can vote. The two can be conjoined by
the polymorphic “and” defined above as the term &Π because these trans-
formations are flexible: one can use one and the other. We can make this pre-
cise using only the rules of second order typed lambda calculus. The syntax
yields the predicate (&Π(spreat_out)Pl→tvotedP→t) and consequently the type
variables should be instantiated by α ∶= Pl and β ∶= P and the exact term is
&Π{Pl}{P}spreat_outPl→tvotedP→t which reduces to:

Λξ.λxξ .λ f ξ→α.λgξ→β.(&t→t→t(spread_out(f x))(voted(gx))).
Syntax says that this term is applied to “Liverpool”. Consequently, the instan-
tiation ξ ∶= T happens and the term corresponding to the sentence is, after some
reduction steps, λ f T→Pl .λgT→P.(&t→t→t(spread_out(f LplT))(voted(g LplT))).
Fortunately the optional λ − terms t2 ∶ T → P and t3 ∶ T → Pl are provided by
the lexicon, and they can both be used, since none of them is rigid. Thus we
obtain, as expected (&t→t→t(spread_out(tT→Pl

3 LplT))(voted(tT→P
2 LplT))).

• The example 2.10e is rejected as expected. Indeed, the transformation of the
town into a football club prevents any other transformation (even the identity)
to be used in the polymorphic “and” that we defined above. We obtain the
same term as above, with won instead of spread_out. The corresponding term
is: λ f T→Pl .λgT→P.(&t→t→t(spread_out(f LplT))(voted(g LplT))) and the lexi-
con provides the two morphisms that would solve the type conflict, but the
one turning the Town into its football club is rigid, i.e. we can solely use this
one. Consequently, the sentence is semantically invalid.

2.4 JeuxdeMots : A Lexical-Semantic Network

JeuxdeMots5 (=JDM) is a lexical semantic network that is built by means of online
games, so-called Games With A Purpose (=GWAP), launched from 2007 [Laf07]. It
is a large graph-based network, in constant evolution, containing more than 310,000

5http://www.jeuxdemots.org

18 Chapter 2. Background Knowledge

terms connected by more than 6.5 million relations. We have explained some tech-
nical aspect of this network in alignment with the problem of semantic gradience in
the chapter 4. In this section, we only introduce the main features of the JDM.

Structure of the Lexical Network

The structure of the lexical network used in JDM is composed of nodes and links
between the nodes, as it was initially introduced at the end of 1960s [CQ69] used in
the small worlds [GDV08], and recently clarified in some studies [Pol06]. A node of
the network refers to a term, usually in its lemma form. The links between nodes
are typed and are interpreted as a possible relation holding between the two terms.
Some of these relations correspond to lexical functions, some of which have been
made explicit [MCP+95]. JeuxDeMots is intended for ordinary users and no special
linguistics knowledge of the users is required.

Definition 2.12. A lexical network is a graph structure composed of nodes (vertices)
and links:

• A node is a 3-tuple : <name, type, weight>

• A link is a 4-tuple : <start-node, type, end-node, weight>

The name is a string denoting the term. The node type is an encoding referring
to the information of the node. For instance a node can be a term or a Part of Speech.
The link type refer to the relation considered. A node weight is interpreted as a
value referring to the frequency of usage of the term. The relation weight, similarly,
refers to the strength of the relation. The following figure shows an example of the
organization of the nodes and their relations.

FIGURE 2.6: A part of the JDM network (taken form [LJ15]).

2.4. JeuxdeMots : A Lexical-Semantic Network 19

Definition 2.13. The link types are divided into following predetermined list of the
categories:

• Lexical relations: such as synonymy, antonymy, expression, lexical family
These types of relations are about vocabulary.

• Ontological relations: such as generic (hyperonymy), specific (hyponymy),
part of (meronymy), whole of (holonymy).

• Associative relations: such as free association, associated feeling, subjective
and global knowledge.

• Predicative relations: such as typical agent and typical patient. They are about
types of relation associated with a verb and the values of its arguments (in a
very wide sense) similar to (not identical) to semantic roles.

Validation of the relations in JeuxdeMots

The quality and consistency of the relations are essential for a lexical network. Due
to this fact, the validation of the relations which are anonymously given by a player
is made also anonymously by other players. A relation is considered valid if it is
given by at least one pair of players. A game happens between two players. A first
player, let’s say player A, begins a game with prompting an instruction with a term T
randomly picked from the database. The player A has then a limited time to answer
which answer is applicable to the term T. The number of propositions which he can
make is limited to letting the player not just type anything as fast as possible, but
to have to choose the proper one. The same term with the same instruction is later
proposed to another player B; the process is then identical. To increase the playful
aspect, for any common answer in the propositions of both players, they receive a
given number of points. At the end of a game, propositions made by the two players
are shown, as well as the intersection between these terms and the number of points
they win.

FIGURE 2.7: Screen-shot of an ongoing game with the target verb
fromage (cheese) (taken form [Cha+17a]).

20 Chapter 2. Background Knowledge

FIGURE 2.8: Screen-shot of the game result with the target noun fro-
mage (taken from [Cha+17a]).

Figure 2.7 shows a screen-shot of the user interface while figure 2.8 shows a pos-
sible end of the game with the rewards. The figure illustrates answers of both players
and the relevant scores.

21

Chapter 3

Modeling Meanings Preferences I:
Ranking Quantifier Scoping

3.1 Introduction 1

In this section, we start our preferential modeling on a particular linguistic phe-
nomenon which is known as quantifier scoping.2 The focus is more on the question of
how to rank the valid logical meanings of a given multiple-quantifier sentence only
by considering the syntactic quantifier order. Thus, we do not take into account the
other possible factors such as common sense and lexical knowledge, and we only
work on different semantic ambiguities resulted from the quantifiers scoping in the
logical formula as our meaning representations.

The problem of quantifier scope ambiguity has first appeared in [Cho65] in the
following classical examples:

Example 3.1.

3.1a. Everyone in the room knows at least two languages.
∀x(Person(x) ∧ In_the_Room(x) → ∃y ∃z(Lang(y) ∧ Lang(z) ∧ y ≠ z ∧ Know(x, y) ∧
Know(x, z))

3.1b. At least two languages are known by everyone in the room.
∃y ∃z(Lang(y) ∧ Lang(z) ∧ y ≠ z ∧∀x(Person(x) ∧ In_the_Room(x) → (Know(x, y) ∧
Know(x, z)))

Chomsky argues that the order of "quantifiers" in surface structures plays a role
in semantic interpretation. As it can be observed in the relevant logical formula of
the examples 3.1a and 3.1b are not synonymous. We can give 3.1a the reading where
each person may speak a different two languages and 3.1b the reading where the
same two languages are spoken by everyone. These two readings differ only in the
scopes of the quantifiers. In 3.1a, the existential quantifier is inside the scope of the
universal quantifier. Thus 3.1a could be true in a room where everyone spoke differ-
ent languages and 3.1b would be false in that room since the existential quantifier is
outside the scope of the universal quantifier. Although, 3.1b would only be true in a
room where everyone speaks the same two languages.

VanLehn [Van78] argues that the most accessible scoped reading for sentences
with n quantifiers Q1 to Qn is the one where the scopes are in order of mention,

1The material in this chapter is derived in large part from [CM17] which is the author’s common
work with Davide Catta. The research in subsections 3.2, 3.3, partially 3.4.2, 3.5 and 3.6 are done by
the author himself.

2For a historical survey on this topic see chapter "The Natural History of Scope" in [Ste12].

22
Chapter 3. Modeling Meanings Preferences I:

Ranking Quantifier Scoping

with Q1 widest and Qn narrowest. The main factor that may override this prefer-
ence is common-sense knowledge and this is something that we will not consider
in our modeling in this chapter. The quantifier scope problem is not to describe all
the factors which give these sentences their meanings. Because some of those factors
involve discourse context and pragmatic knowledge and there is no precise formal-
ization to capture those aspects.

Since sentences with quantifier scope ambiguities often have two (or more)
non-equivalent semantic readings, capturing these phenomena with some plausible
ranking techniques can potentially be useful for natural language inference systems.
It is worth mentioning that different readings allow different inference paths and as
it is shown in some studies that ([DGrt]) we can trace back the root cause of some
invalid inferences in the misinterpretation of quantifiers as when occurs in quantifier
scoping phase. Moreover, this kind of study is potentially suitable to be applied in
some projects that gain meaning representations in logical forms from natural lan-
guage texts by applying the Montagovian-style frameworks. One example of such
project is e-fran AREN (ARgumentation Et Numerique) for the automated analy-
sis of online debates by high-school pupils. The syntactic formalism that is used in
the project is categorial grammars which are suitable for deriving meanings as the
logical formulas. Grail [Moo17; Moo12], an automated theorem prover is used for
parsing. It relies on a chart-based system close to categorial natural deduction which
can rather smoothly be transformed to proof-nets.3

The problem of ranking the possible readings can be tackled if we employ the
existing state-of-the-art techniques that use proof-nets for measuring the complexity
of meaning representation [Mor00; Joh98]. We are specifically interested in Incom-
plete Dependency Complexity Profiling introduced in [Mor00], but as we will see
adopting this technique to our problem is not as straightforward as it seems. Our
goal in this chapter is to fix these issues and extend Incomplete Dependency Com-
plexity Profiling technique for the representing and ranking semantic ambiguities.4

The rest of the chapter is organized as follows: section 3.2 summarizes Gibson’s
ideas on modeling the linguistic complexity of human sentence comprehension,
namely IDT. In section 3.3, we recall the success and two limitations of IDT-based
complexity profiling. In section 3.4, we define our new metric inspired by Hilbert’s
epsilon and reordering cost. We show how it fixes some problems in previous work
and how it gives a correct account of new phenomena. In section 3.5, we discuss
some limitations that our approach has. In the last section, we conclude and we ex-
plain possible future works.

3.2 Gibson’s Incomplete Dependency Theory

Incomplete dependency theory is based on the idea of missing incomplete depen-
dency. This hypothesis can be explained during the incremental processing of a

3 Two important features of the AREN project: (i) since the data are provided in written language by
the high-school pupils, we do not need to model intonation and prosody as a cue for disambiguation.
(ii) there are, on average, 20 words in each sentence with almost two hundred category types, and
the replies of the users happen with some delays. This restriction makes our solution scalable for this
specific project that does not demand any big data analysis. Hence, it does not raise the issues of
real-time processing and complexity.

4We will see in the chapter 6, how the introduced technique here can be combined with other ap-
proaches in linguistic complexity such as Distance Locality Complexity Profiling.

3.3. Incomplete Dependency Complexity Profiling, and its limitations 23

sentence when a new word attaches to the current linguistic structure. The main
parameter in IDT is the number of incomplete dependencies from the new word to
the existing structure. This gives an explanation for the increasing complexity of the
examples 3.2a-3.2c. In 3.2a, the reporter has one incomplete dependency; in 3.2b, the
senator has three incomplete dependencies; in 3.2c John has five incomplete depen-
dencies at the point of processing. For the sake of space, we only explain the most
complex case, i.e. 3.2a in which the incomplete dependencies at the moment of pro-
cessing John are: (i) the NP the reporter is dependent on a verb to follow it; (ii) the
NP the senator is dependent on a different verb to follow; and (iii) the pronoun who
(before the senator) is dependent on a verb to follow; (iv) the NP John is dependent on
another verb to follow; and (v) the pronoun who (before John) is dependent on a verb
to follow. These are five unsaturated or incomplete or unresolved dependencies.
IDT in its original form suggests calculating the maximum number of incomplete
dependencies of the words in a sentence. One can observe that the complexity is
proportional to the number of incomplete dependencies.5

Example 3.2.

3.2a. The reporter disliked the editor.

3.2b. The reporter [who the senator attacked] disliked the editor.

3.2c. The reporter [who the senator [who John met] attacked] disliked the editor].

3.3 Incomplete Dependency Complexity Profiling, and its

limitations

An IDT-based proposal for measuring the linguistic complexity [Mor00] is based on
the categorial proof nets. The general idea is simple: to re-interpret the axiom links
as dependencies and to calculate the incomplete dependencies during the incremen-
tal processing by counting the incomplete axiom links for each word in a given sen-
tence. This is almost the same as Gibson’s idea in his IDT, except for the fact that he
uses some principle of Chomsky Government-Binding theory [Cho82] instead of the
categorial proof nets. The notion of counting incomplete dependency for each node,
called complexity profiling, is more effective in terms of prediction than approaches
that only measure a maximum number of the incomplete dependencies or the max-
imum cuts [Joh98].

3.3.1 Formal Definitions and Example

We can rewrite IDT-based complexity profiling [Mor00] by the following definitions:

Definition 3.1. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. Let Ci0 be one
of the Ci (i ∈ [1, n]). The incomplete dependency number of Ci0 in π, written as
IDπ(Ci0), is the count of axioms c − c′ in π such that c ∈ (Ci0−m ∪ S) (m ≥ 0) and
c′ ∈ Ci0+n+1 (n ≥ 0).

5We have calculated the linguistic complexity of the examples in this section in the chapter 5. To
avoid unnecessary repetition, the detailed calculations of these specific examples are dropped in this
section. The readers can refer to the chapter 5 and appendix B.

24
Chapter 3. Modeling Meanings Preferences I:

Ranking Quantifier Scoping

Definition 3.2. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. We de-
fine the IDT-based linguistic complexity of π, written fidt(π) by fidt(π) = (1 +

∑
n
i=1 IDπ(ci))

−1.

Definition 3.3. Given two syntactic analyses πi and πj, not necessarily of the same
words and categories, we say that πi is IDT-preferred to πj whenever fidt(πi) >
fidt(πj).

FIGURE 3.1: Proof net analyses for 3.3a (left hand) and 3.3b (right
hand) with the relevant profiles.

We can show the two relevant proof nets in the figure 3.1 for the examples 3.3a
and 3.3b. As it can be seen, the total sum of the complexity for 3.3b is greater than
3.3a, thus, it can predict correctly the preference of 3.3a over 3.3b which is what we
expect. 6

Example 3.3. Everyone repairs something.

3.3a. ∀x∃yRepair(x, y)

3.3b. ∃y∀xRepair(x, y)

6The readers who want to get more details on the calculation of the measurements can take a look
at the relevant tables in appendix B which covers all the examples in this chapter.

3.3. Incomplete Dependency Complexity Profiling, and its limitations 25

As we can observe, the measurement uses syntactic analysis represented in the
proof-net structure and gains the complexity profile by counting the number of un-
resolved dependencies of each word. This measurement is supposed to represent,
in a numerical way, the course of memory load in optimal incremental processing;
in other words, the metric of complexity profiles is motivated computationally as
a measure of the incremental load on working memory of processing (unresolved)
dependencies.

There are two general objections against the IDT-based complexity profiling ap-
proach; specifically, when it deals with the quantifier scope problem:

3.3.2 Objection I: A Minor Problem

The first objection, which is a minor problem, comes back to the choice of Lambek
categorial grammar which simply can not derive all valid semantic readings. We
address this objection in the section 3.4.2 by providing a complexity measuring tech-
nique that works only on the valid readings, and not over-generated readings that
exists in the storage-based techniques [Coo83], [Kel88].

Example 3.4. Every researcher of a company saw a sample.

3.4a. ∀x(Res(x)∧∃y(Com(y)∧ o f (x, y))→ ∃z(Sam(z)∧ Saw(x, z)))

3.4b. ∃z(Sam(z)∧∀x(Res(x)∧∃y(Com(y)∧ o f (x, y)→ Saw(x, z)))

3.4c. ∃y(Com(y)∧∀x(Res(x)∧ o f (x, y)→ ∃z(Sam(z)∧ Saw(x, z)))

3.4d. ∃y(Com(y)∧∃z(Sam(z)∧∀x(Res(x)∧ o f (x, y))→ Saw(x, z)))

3.4e. ∃z(Sam(z)∧∃y(Com(y)∧∀x(Res(x)∧ o f (x, y))→ Saw(x, z)))

3.4f. ?? ∀x(Res(x)∧∃z(Sam(z)∧ o f (x, y))→ ∃y(Com(y)∧ Saw(x, z)))

One natural reaction to this problem is choosing proof-nets for Multiplicative
Linear Logic(=MLL) instead of exploiting Lambek categorial proof-nets. We can con-
sider the example 3.4 (taken from [HS87] with slight modification). Figures 3.2-3.6
show the categorial proof nets for all five valid readings. Some of them are con-
structed in the Multiplicative Linear Logic framework. Precisely speaking, proof
nets for 3.4a and 3.4b which are illustrated in the figures 3.2 and 3.3, respectively
are in Lambek categorial proof nets while the other three, namely 3.4-3.6 can only
be constructed in the MLL proof-nets. With the following lexicon, and using the se-
mantic reading that was introduced in the definition 2.9, we can gain all five valid
logical formulas:

26
Chapter 3. Modeling Meanings Preferences I:

Ranking Quantifier Scoping

syntactic type u

word semantic type u∗

semantics: λ-term of type u∗

(S/(np/S))/n
every (e → t)→ ((e → t)→ t)

λPe→tλQe→t(∀(e→t)→t(λxe(⇒t→(t→t) (Px)(Qx))))

((S/np)/S)/n
a (e → t)→ ((e → t)→ t)

λPe→tλQe→t(∀(e→t)→t(λxe(∧t→(t→t)(Px)(Qx))))

n
researcher e → t

λxe(Rese→tx)

n
company e → t

λxe(Come→tx)

n
sample e → t

λxe(Same→tx)

n
saw e → (e → t)

λxeλye((Sawe→(e→t)x)y)

(n/n)/(S/(np/S))
of ((e → t)→ t)→ (e → t)→ (e → t)

λP(e→t)→tλQe→tλxe(∧t→(t→t)(Qx)(P(λye(o f e→(e→t)x)y)))

Moreover, the only invalid reading, i.e. 3.4f, should be ruled out. It reads the
sentence 3.4 as "expressing that for each representative there was a group of samples
which he saw, and furthermore, for each sample he saw, there was a company he
was a representative of" [HS87]. Thought, choosing MLL over Lambek would solve
the problem for many cases, we have chosen to work on other existing algorithms
for generating valid scoped quantifier readings, we will see this in great details in
3.4.2.

Now, it is time to look at a more important problem that IDT-based complexity
profiling has.

3.3.3 Objection II: A Major Problem

The second objection, which is more important than the first one, is that IDT-based
complexity profiling simply fails in some examples such as utterances that have
sentence-modifier adverbials, nested sentences or direct speech. We can consider
the following sentences:

Example 3.5. "Someone loves everyone", said John.

3.3. Incomplete Dependency Complexity Profiling, and its limitations 27

FIGURE 3.2: Proof net analyses for reading (a) of the example 3.4a.

28
Chapter 3. Modeling Meanings Preferences I:

Ranking Quantifier Scoping

FIGURE 3.3: Proof net analyses for reading (b) of the example 3.4b.

3.3. Incomplete Dependency Complexity Profiling, and its limitations 29

FIGURE 3.4: Proof net analyses for reading (c) of the example 3.4c.

30
Chapter 3. Modeling Meanings Preferences I:

Ranking Quantifier Scoping

FIGURE 3.5: Proof net analyses for reading (d) of the example 3.4d.

3.3. Incomplete Dependency Complexity Profiling, and its limitations 31

FIGURE 3.6: Proof net analyses for reading (e) of the example 3.4e.

32
Chapter 3. Modeling Meanings Preferences I:

Ranking Quantifier Scoping

Example 3.6. Everyone repairs something expertly.7

3.6a. exp(∀y∃xRepair(x, y))

3.6b. exp(∃y∀xRepair(x, y))

FIGURE 3.7: Proof net analyses for 3.6a (left hand) and 3.6b (right
hand) with the relevant profiles.

Figure 3.7 illustrates two corresponding proof nets and complexity profiles for
the example 3.6 8. As it is shown, the IDT-based complexity profiling technique for
choosing the left-to-right preference fails, since the reading 3.6a which is supposed
to have lower complexity is predicted wrongly. This objection which shows that
IDT-based complexity profiling is context sensitive and it would naturally lead us to
demand a new proposal for multiple-quantifier sentences.

7 Thanks to one of the reviewers of our paper [CM17] that pointed up the distinction between VP-
oriented adjunct and Clause-oriented adjunct as it is indicated in [HP+02, p.575-578]. Examples such
as someone loves everyone, unfortunately belongs to a clause-oriented adjunct category. In this kind of
examples, end positions for adverbs are strongly disfavoured unless there is a prosodic detachment.
Our example in the paper is a kind of VP-oriented adjuncts and it prefers end position where prosodic
detachment is not normal. Taken this grammatical note into account, we can stress that our example is
correct without the need to use a comma before the adverb expertly.

8The proof net for the example 3.5 is not illustrated in this chapter. As it may be observed, it can be
gained straightforwardly.

3.4. Hilbert’s Epsilon, Reordering Cost and Proof-nets: A New Model 33

3.4 Hilbert’s Epsilon, Reordering Cost and Proof-nets: A

New Model

Although it is true that IDT-based complexity profiling fails in some cases related
to the scoped readings, it is also true that it works rather well for other syntactic
phenomena9. Considering this fact, our strategy is to keep IDT-based complexity
profiling unchanged for those phenomena that work well and add a new procedure
just for evaluating the complexity of quantification. We will see how we can filter
out the complexity which can be raised by quantifiers. Formally, given two syntactic
structures S1, S2 for a given sentence, the complexity can be evaluated in the follow-
ing way:

C(S1) > C(S2) ⇐⇒ (a1, b1) > (a2, b2)

where a1, a2 are the results of Morrill’s criteria on S1 and S2, and b1 and b2 are the
results of our proposal regarding quantifier order measurement (given in section
3.2). Notice that we are using lexicographical order, namely, (a1, b1) > (a2, b2) iff
(a1 > a2) or (a1 = a2 and b1 > b2). Broadly speaking, we will take the following steps:

1. Using in situ quantifier type assignment for construction of the categorial
proof-nets in order to filter out the quantifier effects in complexity profiling
phase. (Described in sub-section 3.1)

2. Measuring syntactic complexity profiles for the previous step.

3. Measuring quantifier distance for different valid readings. (Described in sub-
section 3.2)

4. Introducing the preference relations from the last two steps.

3.4.1 In situ (=Overbinding) Quantification

Hilbert’s ǫ-calculus ([Hil22]) is receiving a renewed interest. In particular, the appli-
cation of ǫ-calculus to linguistics is becoming appreciated10. Our strategy for neu-
tralizing quantifier effects in our complexity measurement on syntactic proof-nets
can take place by exploiting Hilbert’s ǫ-calculus in our semantic recipes.

In Hilbert’s epsilon aside from the usual terms of first-order logic, we have the
ǫ and τ terms. In particular if A is a formula and x is a variable then ǫx A and τx A
are terms where all the occurrences of x in A are bound by ǫ and τ, respectively.
What is interesting about these terms is that they express existential and universal
quantification. In particular, ǫx A is the generic existential element and τx A is the
generic universal element. The proper type for ǫ and τ is (e → t) → e. If we want
to translate the sentence All men are brave, using the τ-binder, we can rewrite it as
brave(τxman(x)). An ǫ expression can take scope over the entire sentence even if its
occurrence is nested in the parsed tree.

We can observe that the formula ate(ǫλy.(pizza y), τλx.(child x)) is a proper
translation for the sentence Every children ate a pizza in Hilbert epsilon fashion. This

9We will see briefly in the chapter 5 which linguistic phenomena can be supported by IDT-based
approach and what should we do for covering more linguistic phenomena that IDT-based approach
cannot support.

10For an introductory explanation on Hilbert epsilon see [CPR17] and [Ret14, p.218-221].

34
Chapter 3. Modeling Meanings Preferences I:

Ranking Quantifier Scoping

formula does not correspond to any usual logical formula and it is very similar to
underspecified representation. This underspecified representation which properly
corresponds to syntax tree can help us to filter out the effect of quantifiers for the sen-
tences in the complexity measurement phase of the categorial proof-nets. We do not
have to perform the quantifier type raising in the syntactic phase in order to properly
represent quantification. So, we can keep the syntactic type of quantifiers as being
np/n. As discussed, typed Hilbert’s epsilon [Ret14, p.218-221] suggests some prop-
erties that does not exist in other underspecified representations ([Cop+05], [Coo83]
and [Ste99]). The first projection, namely a in our complexity pair representation
(a, b), can be introduced by the following procedure:

1. Define np/n syntactic categories to all determiners and quantifiers in our lexi-
con.

2. Define proper Hilbert epsilon semantical representation for the quantifiers in
our lexical recipes.

3. Construct the categorial proof-nets for the sentence with the categorial assign-
ments in our lexicon and plug the lexical recipes into each word.

4. Calculate the complexity measurement profiles of all the valid constructed cat-
egorial proof-nets gained in the previous step. This is the first projection of the
pairs in our preference semantic model.

3.4.2 Quantifiers Order Measurement

Now, we can introduce the second projection, namely b, in our complexity pair rep-
resentation (a, b):

1. Given the logical formula which corresponds to the left-to-right reading of the
sentence; add an index from 1 to n to each quantifier from left to right obtaining
Q1, Q2 . . . , Qn−1, QnF call this formula Φ.

2. By the procedure introduced in [HS87, p.49-53], derive all the valid quantifier
(scope) readings of the sentence.

3. Let ξ1, . . . , ξm be rewritten formulas obtained from the previous step.

4. Calculate for each ξi the penalty of quantifiers re-ordering as

fqr(ξi) =
1

∑
n
j=1 ∣ j − Pos(Qj, ξi) ∣ +1

in which Pos(Qj, ξi) is the occurrence position of the quantifier Qj in ξi counted

from left to right and incremented from number one.11

5. Now, we have the preference measurement on the quantifier ordering of all
valid logical readings as fqr(ξ1), . . . , fqr(ξm).

11For development of the penalty function, we were inspired by preference calculation process based
on the semantic distance in [Nag94].

3.4. Hilbert’s Epsilon, Reordering Cost and Proof-nets: A New Model 35

3.4.3 Examples

FIGURE 3.8: New procedure for the example 3.6

Let us re-calculate the complexity profile of the example 3.6 with our new proposal.
By the procedure provided in 3.4.1, we can have the proof-net as it is shown in the
figure 3.8. By assigning the semantic recipes and having the associated λ-term to the
proof-net we will have the unspecified semantic representation that naturally corre-
sponds to the linguistic syntactic structure12.

As the effect of quantifiers is neutralized we can see that the first projection of
our pair is fixed by the number 7. So, we can calculate the second projection namely
the score for each reading using the procedure in 3.4.2, thus we have:

Reading 3.6a is
1

(∣ 1− 1 ∣ + ∣ 2− 2 ∣)+ 1
= 1

Reading 3.6b is
1

(∣ 1− 2 ∣ + ∣ 2− 1 ∣)+ 1
=

1

3

Thus, we have (0.13, 1) > (0.13, 0.3), and this shows that reading 3.6a is preferred
to reading 3.6b.

We can also perform the same procedure for the readings of the example 3.4:

Reading 3.4a is
1

(∣ 1− 1 ∣ + ∣ 2− 2 ∣ + ∣ 3− 3 ∣)+ 1
= 1

Reading 3.4b is
1

(∣ 1− 3 ∣ + ∣ 2− 1 ∣ + ∣ 3− 2 ∣)+ 1
=

1

5

Reading 3.4c is
1

(∣ 1− 2 ∣ + ∣ 2− 1 ∣ + ∣ 3− 3 ∣)+ 1
=

1

3

Reading 3.4d is
1

(∣ 1− 2 ∣ + ∣ 2− 3 ∣ + ∣ 3− 1 ∣)+ 1
=

1

5

Reading 3.4e is
1

(∣ 1− 3 ∣ + ∣ 2− 2 ∣ + ∣ 3− 1 ∣)+ 1
=

1

5

12An anonymous reviewer has pointed out an objection: our proposed epsilon-style representation is
not generally valid because of the equivalence τxPx ≡ ǫx¬Px, and the fact that the epsilon is intuitively
interpreted as a choice function. This will affect us when non-P (¬P) is chosen by the choice function.
This objection will not cause any problem for our proposal since, firstly, the equivalence is not valid in
intuitionistic logic; secondly, even if we use classical epsilon-calculus, it is debatable that ǫ − terms can
be interpreted as choice functions. In fact, choice functions are only defined on non-empty domains. If
we consider a domain of interpretation, where each element is in P, we can not interpret ǫ as a choice
function given that there is no non-empty subset of ¬P where the choice function can be defined. To our
knowledge, there is no completely satisfactory model of the epsilon-calculus aside from the indexed
version as in [Lei17].

36
Chapter 3. Modeling Meanings Preferences I:

Ranking Quantifier Scoping

One can observe that 3.4a is preferred over 3.4c, and 3.4c is preferred over 3.4b,
3.4d and 3.4e.

All in all, the new proposal truly predicts the quantifier left-to-right scoping
while the IDT-based complexity profiling could not do so.

3.5 Limitations

There are two limitations against our new proposal:

The first important limitation is that in our semantic preference modeling our
modeling on the quantifiers order— which is based on the surface syntax —does
not always give us the exact human preference interpretation. For example, the log-
ical formula represented in the 3.7a is not the meaning that is really preferred by
the human, although, the existential quantifier has the wider scope. The preferred
meaning is 3.7b since our common sense knowledge tells us that each door-step of a
museum needs a unique guard. This is a linguistic phenomenon that is really hard
to be computationally modeled and we should admit that have no solution for the
time being for this kind of the problems.

Example 3.7. A guard stands in front of each museum door-step.

3.7a. ∃x(Guard(x)∧∀y(Museum_Door_Step(y)→ Stand_In_Front_O f (x, z))

3.7b. ∀y(Museum_Door_Step(y)→ ∃x(Guard(x)∧ Stand_In_Front_O f (x, z)))

The second limitation is that we do not have any psycholinguistic evidence for
the preference of 3.4c over 3.4b, 3.4d and 3.4e as it is illustrated in the example 3.4.
We consider this a purely linguistic issue and for the time being, we are not aware
of any theory for addressing this issue. Consequently, we can not be sure to what
extent such kind of the preferences are plausible in terms of the human performance.

3.6 Conclusion and Possible Extensions

We have reported some problems in the IDT-based complexity profiling approach
for measuring quantifier scoping preferences. We did that by introducing some lin-
guistic phenomenon that can not be supported by IDT-based complexity profiling.
We showed how exploiting Hilbert epsilon can neutralize the quantifier effect and
let us introduce a new procedure for measuring the complexity of quantifier scop-
ing. We can extend our on-going project in the following directions: (i) ideally, there
should be a data-set annotated for human-preferred readings of various naturally
occurring utterances. In the absence of this, we are going to create a test suite illus-
trating the various phenomena that interact with quantifier scope preferences, and
then to evaluate and extend it with the proposed method over that test-suite. This
experiment would pave the way for the extension of our model by integrating other
aspects such as common-sense knowledge and lexical semantics. (ii) we can exploit
Montagovian Generative Lexicon framework [Ret14] that uses multi-sorted logical
formulas. This choice would let us apply semantic distance approaches [Nag94] by
using lexico-semantic networks such as Jeux-De-Mot [Laf07; Cha+15].

37

Chapter 4

Modeling Meanings Preferences II:
Lexical Meaning and Semantic
Gradience

4.1 Introduction 1

There are some studies [Pro10] that work on the robust computational model that
accords with intermediate levels of acceptability in human syntactical judgments
or what is technically called as the modeling human assessments of syntactic gradi-
ence[Pro08]. In this chapter, we will focus on more complex linguistic gradients
which go far beyond the syntactic level of sentence comprehension. We will work
on the semantic gradiences that sometimes happen in sentences due to the implicit
coercions in the linguistic meaning. This linguistic phenomenon can be illustrated
by the following examples introduced in the Generative Lexicon framework [Pus91;
Pus95]:

Example 4.1.

4.1a. Mary began the book.

4.1b. ?John began the dictionary.

4.1c. ??Mary began the mountain.

Example 4.2.

4.2a. Une femme a fini le livre de Villani. (A woman finished Villani’s book.)

4.2b. ?Une chèvre a fini le livre de Villani. (?A goat finished Villani’s book.)

Examples (4.1a-4.1c), taken from [Pus95] with slight modification, shows the de-
grees of semanticality in rather significant ways. As stated in [Pus91; Pus95] the
sentence in (4.1a) admits of two strong interpretations, i.e. doing what one normally
does to a book as a reader, reading; and doing what one normally does to a book as
a writer, writing. There might be other possibilities for interpreting (4.1a) but this
does not effect acceptance of (4.1a) in human comprehension performance. Example
(4.1b) is less acceptable comparing to (4.1a). This is basically because no one is in-
terested in reading a dictionary in a sense that people read a book. Of course, there
are some exceptions such as Malcolm X in prison, but in this case, the dictionary is
a form of narrative. The human acceptance of example (4.1c) is really low since the
sentence has no meaning without providing the context. These examples show a

1The material in this chapter is derived in large part from [Laf+p2] which is the author’s common
work with Mathieu Lafourcade, Bruno Mery, Richard Moot, and Christian Retoré. The research in the
section 4.5 which focuses on preference mechanism and some case studies are done by the author.

38
Chapter 4. Modeling Meanings Preferences II:

Lexical Meaning and Semantic Gradience

gradience of acceptability by human performance. Examples (4.2a-4.2b) shows the
same phenomena in the French language. As one may guess, the meaning of (4.2a)
is more acceptable comparing to (4.1a). Although two examples are syntactically
well-formed, we can see a gradience of acceptability in these kinds of sentences. An
interesting question is that how we can treat computationally this kind of semantic
preferences in our model.

In order to be able to perform such a task, we need to have a rich lexical in-
formation to compute the meaning of utterances such as (4.2a-4.2b). Frameworks
based on Generative Lexicon theories [Pus95], such as Montagovian Generative Lex-
icon [Ret14], can have a rich logical representation using a Montague-like composi-
tional process.2 In these approaches, the natural language utterance is analysed in
its syntax and semantics layers as in classical compositional Montague grammar,
producing a logical form; typing the terms with a rich system of sorts intended to
capture restrictions of selection, using a semantic lexicon, produces some typing

mismatches whenever polysemous terms are linguistically coerced to one of their
facets. We will see in great details all these concepts.

A crucial issue for these systems is then to have sufficient lexical resources (as
a rich lexicon incorporating types and coercions) to function. Our main task in this
chapter is how to build such a lexicon for the Montagovian Generative Lexicon.
We will do this task by using crowd-sourced lexical data that is gathered by a seri-
ous game which is called JeuxDeMots. The frequencies of the lexical occurrences—
which is automatically gathered by the game players— would play a key role in
our ranking mechanism. The whole preference outcome, following [FW83], would
be based on a mechanism called preference-as-procedure with four-folded compo-
nents, namely production, scoring, comparison, and selection.

The rest of the chapter is organized as follows: section 4.2 provides an overview
of the lexicon requirement. We will explain why this is an important concern in favor
of semantic gradience modeling. In section 4.3, the mechanism of gaining the lexical
data from crowd-sourced serious games is briefly explained. This includes different
aspects such as the lexemes, sorts, sub-types and coercions. Moreover, the method-
ology of the lexical transformations in a lexical-semantic network is explicated. In
section 4.4, the integration process and ranking the transformation by means JDM is
explained. In section 4.5, we describe two kinds of the preference modelings which
is followed by a case study gained from the actual data in the JeuxDeMots. In the last
section, we conclude and we explain possible future works.

4.2 The Lexicon Requirements

The semantic analysis of natural language is a process that should produce a com-
plete and structural meaning representation of a given text (such as a logical formula
or a Discourse Representation Structure) that makes explicit the entities referenced
in the text as well as their relationships. This is used for word sense disambiguation,
resolution of co-references, natural language inference and other complex tasks.

Rich lexical information is required to compute the meaning of utterances such
as I am going to the bank, as bank is ambiguous between a geographic feature and a

2The methodology that we will describe is applicable to the other frameworks such as [Ash11],
[Bek14], [Coo07] and [Luo11].

4.2. The Lexicon Requirements 39

service building. Frameworks based on theories such as [Cru86] and [Pus95], includ-
ing [Ash11], [Bek14], [Coo07], [Luo11] and [Ret14] are able to obtain a rich logical
representation using a Montague-like compositional process that correctly interprets
sentences such as I am going to the bank; they blocked my account. They not only inter-
pret the types of the lexemes involved as indicating that bank is a service building,
but also that they is a reference to a financial institution that is introduced in the first
part of the sentence, and then coerced to a relevant human agent in the second.

Such frameworks require a rich corpus of lexical resources incorporating some
degree of world knowledge encoded as complex types and lexical coercions; sev-
eral of these frameworks benefit from software implementations, such as [CL14]
and [Mer17]. In these approaches, the natural language utterance is analysed in
its syntax and semantics layers as in classical compositional Montague grammar,
producing a logical form; typing the terms with a rich system of sorts intended to
capture restrictions of selection, using a semantic lexicon, produces some typing

mismatches whenever polysemous terms are linguistically coerced to one of their
facets.

In the framework we have proposed, the Montagovian Generative Lexicon (MGL),
detailed in [Ret14], this is characterised by a mismatched application, such as a
functional predicate P requiring an argument of type B being applied to an argument
a of type A: (PB→t aA). This is resolved using a lexical transformation that serves
as the representation of the linguistic coercion taking place, and which should be
provided by either P or a. There are two possibilities: adapting the argument with a
transformation f A→B

1 , the application becoming (P (f1 a)), and adapting the predicate

with a transformation f
(B→t)→(A→t)
2 , the application becoming ((f2 P) a). Depend-

ing on the transformations that are provided by the functional terms P and a, one or
the other adaptation occurs. The phrase the dinner was delicious but took a long time
(adapted from a canonical example, see e.g. [Ash11]) can schematically be repre-
sented as

(and (λx.delicious x) (λx.long x)) dinner)

Within a many-sorted system, take a long time is restricted to events (entities of
sort evt, or a subtype thereof), delicious is restricted to food (entities of sort F), and
at least a transformation is needed in order to predicate on the two facets of dinner.
MGL resolves this by having dinner as a term of type evt → t, possessing a transfor-

mation f
(evt→t)→(F→t)
c which is a function mapping the dinner event to the food that

was served at the dinner in question.

A crucial issue for these systems is then to have sufficient lexical resources (as a
rich lexicon incorporating types and coercions) to function. In order to be successful,
MGL and other type-theoretic logical frameworks for lexical semantics require:

For the Syntax-Semantics Analysis: A suitable syntax-semantics analyzer which is
able to provide a sufficiently structured output for a Montague-style analysis.
MGL can make use of Grail (presented in [Moo17]) easily, yielding λ-DRT-
based outputs based on Type-Logical Grammars. Grail operates on extensive,
corpora-driven grammars for French.

A System of Sorts: Each word (lexeme) should be associated to a typed term in a
type theory (or typed λ-calculus) where types are functionally and inductively

40
Chapter 4. Modeling Meanings Preferences II:

Lexical Meaning and Semantic Gradience

built from base types. Some theories use common name as base types, as dis-
cussed in [Luo12]. In our approach, the functional base types correspond to
lexical sorts that capture the semantic notion of restrictions of selection. In this
chapter, we use the word sort when referring to the lexical notion, and base
type for the technical, λ-calculus notion necessary for computation. While the
exact definition and scope of these lexical sorts is debated, this can be decided
arbitrarily, as long as they provide a starting point that can be enriched and
refined if untreated restrictions of selection become apparent; in this chapter,
we use sorts defined by the semantic features of our resources, as discussed in
Section 4.3.1.

A Set of Lexical Coercions: The core of MGL-based lexical semantics is the set of
lexical transformations (corresponding to the linguistic coercions available for
each lexeme), that allows co-composition to occur. Transformations might also
be constrained in their use (some may be incompatible with others), and be
dependent on (or made easier by) a specific context. The difficulties in building
a wide-coverage lexical database for MGL lies in the acquisition of all such
relevant transformations for all lexemes.

To sum up, MGL needs lexical entries in a format such as the following:

Lexeme Logical Term Type Comments

dinner (λx.dinner x) evt → t As in Montague se-
mantics, nouns are
predicates; evt is for
events, t for propositions

with dinner fc (evt → t)→ (F → t) Transformation to
“food that was served
at dinner” (type F → t,
base type F for the
foodstuff sort)

to take a long time (λx.long x) evt → t Predicate of events
to be delicious (λx.delicious x) F → t Predicate of food

(MGL encompasses higher-order composition mechanisms that will allow operators
such as the and and to compute the correct predications.). The main goal of this chap-
ter is to show how we can obtain the lexical transformations (such as fc above) for our
lexical entries.

4.3 Lexical Data Crowd-Sourced from Serious Games

While lexical networks have been developed for a long time (WordNet, defined in
[Mil95], being the reference for English), there have been several recent efforts to
build collaborative, crowd-sourced resources that can reflect the current uses and
relations of words by language speakers. One approach, given in [Cha+13], is to en-
gage as many people as possible in a “serious” game (or, more accurately, a “game
with a purpose”) in order to identify and co-validate lexical and relational informa-
tion by having different competent speakers of the language competing to identify
lexical meaning and relations between words.

These games include JeuxDeMots, described in [Laf07], which provides a lexical
network that comprises more than 200 million relations between words (as strings

4.3. Lexical Data Crowd-Sourced from Serious Games 41

of characters). JeuxDeMots is actively developed and has proven remarkably robust.
One advantage of this network over expert-produced and corpus-based resources is
that a large amount of world knowledge has been added by the players: facts such as
restrictions of selection (as in cats can meow) or ontological inclusion (as in armchairs
are chairs) are explicitly produced by human players, while they are hard to get from
other sources because of their “trivial” nature.

Another advantage of JDM is that it provides weights based on the frequency
of words and phrases which is obtained from the available data played by users.
Generally, there are two kinds of weights provided as negative and positive inte-
gers. The positive weights show the degree of confidence in a relation, while the
negative weights, in contrast, indicate the degree of opposition between the nodes.
For instance, Autruche (ostrich) and déplacement aérien (flight) have a relation called
r-agent-1 with a negative weight of value -65 in the JeuxDeMots database.This nega-
tive relation is gained by the users and emphasize on this fact that ostrich can not fly.

This network can be used as a relevant source of lexical data for type-theoretic
frameworks, as discussed in [Cha+17a] for Modern Type Theories. While that pub-
lication has demonstrated the capacity in which the types for each lexeme can be ex-
tracted and derived (an MGL-compatible lexicon with a different set of lexical sorts
can easily be produced), we want to focus on the extraction of the lexical transforma-
tions from such lexical networks.

We will be using the lexical network created by JeuxDeMots , amended by several
related open, contributive resources to make a complete resource known as Rezo,
together with Grail as a syntax-semantics analyzer, and MGL for lexical semantics.
This forms a complete, coherent treatment process for French text.

4.3.1 Lexemes, Sorts and Sub-Types

JeuxDeMots and many other lexical networks operate upon character strings, while
MGL differentiates between contrastively ambiguous homonyms. Words such as bank
are considered as having (at least) two different entries in the Generative Lexicon
tradition: one of the sorts Financial Institution and the other of sort Geographical Fea-
ture, that happen to have the same string representation. In JeuxDeMots where the
character string is the basic unit, there are two ways to detect contrastive ambiguity:
Semantic Features and Refinements. A Semantic Feature is similar to a sort in the lexicon
(and a base functional type), as it reflects a broad category of things that the character
string can denote; there might be several of such features associated to each string.
Refinements are single-meaning facets for this string that have been crowd-sourced
for the express purpose of resolving the contrastive ambiguity.

For example, in French, un bar is ambiguous and can denote at least three differ-
ent things:

• a place where drinks are served (as in the English “bar”, roughly synonymous
with “public house” and “café”, polysemous via metonymy with the furniture
item sharing this name and function);

• a kind of fish (in English, “sea bass”);

• and a pressure unit (1 bar = 100kPa).

42
Chapter 4. Modeling Meanings Preferences II:

Lexical Meaning and Semantic Gradience

This is denoted in the data from JeuxDeMots as having different refinements, as
well as having several semantic features, including some that are incompatible with
each other (here, “bar” has “location”, “ artifact” and “living being” as features). Ex-
tracting the initial information from JeuxDeMots is straightforward. Common nouns
are logical predicates P(_) of some type τ → t, with τ a sort, subtype of entities evt.
The initial sort is given as a salient semantic feature in JeuxDeMots.

These initial sorts can be refined later as needed for selection restrictions, which
are also included in the lexical network. The network details possible patients and
agents of predicates, for example. If the crowd-sourced data indicate that several
incompatible semantic features are available for a single word, it simply means that
we will have several distinct entries for several different lexemes that have the same
string representation.

The typing for word taking nouns as arguments (such as adjectives, verbs. . .)
are derived from a similar process and has been thoroughly explored in [Cha+17a].
Specific sorts are added as has been proposed for MGL in [MMR15a] : specific sorts
can be introduced for nouns denoting groups of a given sort (such as committee being a
predicate that denotes a group of people, gP) and massive entities such as water being
a mass physical noun, of sort mϕ). Several “operational” terms, such as the polymor-
phic conjunction and and determiners derived from Hilbert operators (discussed in
[MMR15b]), are added by hand.

We can also derive a sub-typing mechanism. However, as discussed in [MR15],
MGL restricts this mechanism (as well as the strict notion of “coercion among types”)
to ontological inclusions. In the system of sorts, this ontological hierarchy can be de-
tected in data given from JeuxDeMots as denoting hyperonymy quite easily (such rela-
tions are pervasive in lexical networks). No other type-driven coercions are included
in the system, contrary to other approaches — we think that this is a sensible restric-
tion.

4.3.2 Lexical Transformations

From the definitions of the MGL system that have been presented before, the way to
determine the lexical transformations never has been explicitly mentioned. By play-
ing JeuxDeMots, players effectively create a database of coercions between words

that we need to process according to the lexical entries and their typings.

As explained before, there are two ways to resolve a type mismatch in an appli-
cation such as (PB→t aA): adapting either the functional argument or the predicate.

4.3.3 Adapting the Argument

The most common adaptation is done on the argument, using a relevant transfor-
mation f A→B, yielding the correctly-typed (P (f a)). There are two origins possible
for the transformation f : the transformation f is either provided by the lexical entry
associated with the argument term a itself, or by lexical entry associated with the
predicate term P.

4.3. Lexical Data Crowd-Sourced from Serious Games 43

Argument-driven transformations

Argument-driven transformations are extracted directly from entries revealing sev-
eral meanings, that will be constrained by predication. For example, the expression
a book is itself polysemous; an applied predicate such as read, finish, or pack will have
strong typing constraints that will select one or several meanings (we will elabo-
rate on this canonical example in Generative Lexicon framework. In MGL, the lex-
eme book (understood as the common noun associated to a literary concept versus
the calendar-related verb) will have a single sort, R for readable object and be typed
R → t. The same lexeme will be associated to several transformations:

f
(R→t)→(ϕ→t)
object that will be used in heavy book, f

(R→t)→(evt→t)
read and f

(R→t)→(evt→t)
write used

in to finish a book, f
(R→t)→(P→t)
author used in a monarchist book.

In all of these cases, the transformation is part of the lexical entry for the argument
and constrained by the typing of the predicate: pro-monarchy applies to people (and is
associated to the agentive quale in GL tradition) and is of type P → t, to read is of type
R → t, to finish of type evt → t (both are associated to the telic quale), and to pack of
type ϕ → t (associated to the physical facet of the complex object book).

In order to infer these transformations from lexical networks such as JeuxDeMots,
we list the various possible target types for the predicates that are listed as common
patients for this word. Then, for each target type, we select the compatible associ-
ations listed for the word, and generate a lexical transformation associated to this
word, of a given typing, labeled with the association that is given in the lexical net-
work. We retain the weight (frequency) of the association in order to filter out the
more dubious transformation at a later stage (this is also used to rank the preferred
interpretations if several are available).

For this example, listing all strings associated with livre (book; there are more
than 3000 associations in the network, weighted and labelled), we will scan for
nouns denoting humans and obtain auteur (author) and écrivain (writer), both with
very strong relative weights; for action verbs denoting non-instantaneous events (that
can said to begin or end) and obtain lire (to read) and écrire (to write), with a much
stronger relative weight for the former. This process is detailed in Section 4.5.2. Even
if some associations provided by the players in the network are dubious, filtering by
type and syntactic properties yield exactly what is needed for the lexicon.

Predicate-driven transformations

Predicate-driven transformations are not (all) to be found in lexical networks or
crowd-sourced data, as they characterize a predication made “in the spur of the
moment”. For example, the predicate to read is associated to a transformation

f
(ϕ→t)→(R→t)
written that allows sentence such as I read the wall to be felicitous (and simply

supposes that there is something written on said wall). Of predicate-driven trans-
formations, some will be derived from lexical data (grinding is a common example,
whenever food is associated to a word denoting a living being); others will need to be
generated whenever the predication occurs, and be invalidated or not. The dynamic
aspect of the crowd-sourced lexical network will integrate additional transforma-
tions as they are deemed pertinent, or fashionable, by its community; this is a strong
argument in favor of such resources.

44
Chapter 4. Modeling Meanings Preferences II:

Lexical Meaning and Semantic Gradience

4.3.4 Adapting the Predicate

Transformations that change the type of a predicate are less common in MGL mech-
anisms. They are either provided by adverbs or other modifiers to a predicate, or
intrinsic to the predicate. The former will be changing the target typing of a predi-
cate. Examples of the latter include the polysemy of readings between collective and
distributive among plural predicates detailed in [MMR15a]; these should be added
manually for the lexicon.

4.3.5 Constraints and Relaxation

Transformations are associated to compatibility constraints that can be defined either
as logical operators or as arbitrary functions that filter the possible combinations of
transformations; these are intended to suppress or signal hazardous co-predications.
Our interpretation of such phenomena is the following:

• predicate-modifying transformations are cumulative, as in we all lifted the pianos,
working in pairs (our account will provide a predicate coercion, further con-
strained to a covering reading by the complement);

• argument-driven transformations are compatible with each other and not con-
strained, and give rise to felicitous co-predications such as the dinner was delicious
but took a long time and heavy yet interesting book;

• predicate-driven transformations are exclusive: only one of them can be used on
a given entity, exclusive of any other transformations and of the original term;
this can be seen when making infelicitous predications such as *fast and delicious
salmon or *Liverpool won the match and voted Remain.

As suggested by several studies including [Ret14], the latter constraint can be
relaxed. Lexical predicate-driven transformations such as grinding (that we can get
from crowd-sourced data) are compatible with other meanings, as long as there is a
syntactic break between the two predications (as in that salmon was fast; it is delicious).
There are ways to relax the constraints of application of non-lexicalised predicate-
driven transformations as well, but these are syntax-, discourse- or pragmatic- de-
pendent.

Detecting and validating constraints on co-predication, beyond the simple claim
above, can also be a crowd-sourced task. JeuxDeMots itself is not suitable for this;
however, a recent effort, Ambiguss (available at https://ambiguss.calyxe.fr/ and
discussed in [LB17]) is a good blueprint for crowd-sourced co-predication valida-
tion. Ambiguss is a database of sentences containing ambiguous (polysemous) terms
that ask players to compete in determining the possible readings for those terms in
context, and thus will be able to detect whenever co-predications are accepted or re-
jected when enough data will have been crowd-sourced. Such resources would also
be useful for the evaluation of the performance of MGL on word-sense disambigua-
tion tasks.

4.4 Integrating and Ranking Transformations

4.4.1 Adding Collected Transformations to the Lexicon

The semantic lexicon in MGL associates a set of lexical transformations (as optional λ-
terms) to each lexeme. When the pertinent data has been collected from JeuxDeMots,

4.4. Integrating and Ranking Transformations 45

the coercion is transcribed as a transformation with a functional type A → τ where
A is the type of the source lexeme and τ is the expected typing, predicted during the
collection process. The target concept serves as the name of the transformation. This
data can be directly input and used in our prototype implementation of MGL given
in [Mer17] (as the only necessary data are a source type, a target type and a name),
and is added to the list of transformations of the current lexeme.

4.4.2 Scoring Interpretations

Compositional Lexical Semantics can produce the precise meaning of a polysemous
term in context. However, there are cases where the immediate context is not suffi-
cient to totally determine the sense used for a word, and a composed phrase can still
be ambiguous: in the example above, finir un livre, the entity livre (book) is coerced
to an event with a duration, but there are many suitable lexicalised events that can
be used, and thus many lexical transformations that have a correct typing that can
be used to resolve the type mismatch. MGL usually resolves this by producing sev-

eral interpretations: one interpretation (a well-typed logical formula with a suitable
transformation placed whenever necessary) per available coercion. The production
of MGL is thus not a single logical representation, but a collection of representa-

tions.

Associating a preference score to different possible interpretations given by a
compositional formalism is not so common (although this practice is pervasive in
statistical or machine learning approaches to word-sense disambiguation); the more
convincing works on this matter are mostly derived from Preference Semantics de-
scribed, e. g., in [FW83]. An interesting extension is [Nag94], giving an implementa-
tion of the constraint-based preference scoring.

In order to provide a preference ranking, we exploit a strong advantage of ex-
tracting coercions from crowd-sourced data: the most common preferred coercions
associated to a lexeme will be clearly represented in the lexical network (because
JeuxDeMots counts the number of times each fact has been contributed or validated).
Using the relative weights of different coercions, MGL will then be able to asso-
ciate a relative score (similar to a probability measure) to each logical representation
produced, allowing to rank the interpretations (while still being able to generate all
possible meanings).
Our proposal for producing this score consists in a simple procedure. In order to
analyze and rank interpretations for finir un livre (finish a book) :

1. Starting from textual data syntactically analysed using Categorial Grammars,
we obtain a full logical representation, the terms of which are typed us-
ing a many-sorted semantic lexicon (in which event sorts DurableEvent and
AtomicEvent are differentiated), we first identify the adaptation taking place in

applications with type mismatches such as (finishDurableEvent a_bookReadable).

2. The lexicon then uses data available from JeuxDeMots in order to build the set

of possible coercions: taking all relations to the argument first livre (book),
we select the ones with compatible types with the typing of the predicate:
verbs denoting a non-instant action. In this example, there are only lire (680)
and écrire (210) in the first two hundred relations.

46
Chapter 4. Modeling Meanings Preferences II:

Lexical Meaning and Semantic Gradience

3. Finally, normalizing to a probability-like measure, this yields a score between

1 and 0 for several interpretations ranked by order of probability. In this ex-
ample, this means a score of 0.764 for lire and 0.236 for écrire.

4. This is validated by the crowd-sourced glosses for the complete phrasal ex-
pression that appears in that same order above.

In the case where no suitable coercion is given by the argument, a predicate-
driven transformation can be used, as discussed in Section 4.3.3. Lexical transforma-
tions provided by the (functional) argument are always more specific and preferred
to generic, predicate-driven transformations; thus the latter only occurs when there
is no other choice, and there is only one interpretation (hence this case does not need
any preference score).

Specific contexts can provide coercions that are not scored by this procedure, or
that have different preferences. For instance, different contexts of enunciation will
change the order of preferences in finish a book, for instance placing writing before
reading in the context of the Paris Book Fair, or adding new possible coercions in
contexts such as a bookbinding workshop.

4.4.3 Correcting the Lexicon using Different Sources

JeuxDeMots is a strong and rich resource for French as it is, encompassing at the mo-
ment more than 200 million relations between more than 2.7 million terms (words,
names, and phrases). However, one of its more interesting characteristics for our
purpose is that it is a living resource, constantly updated by crowd-sourcing (there
are several players logged in and actively contributing at all times) and experts (se-
lected members of the team constantly correct, update and add linguistic data and
world knowledge). This means that after acquiring the initial lexicon used for a
MGL system by converting relevant data from JeuxDeMots as outlined above, the
same source can be used in order to continuously update and correct our lexicon.
The presence of phrases in data from JeuxDeMots can also be used to evaluate and
validate our compositional system. We can, for instance, derive the type and trans-
formations for the lexical entry of finir (to finish), do the same thing for livre (book),
and conclude from a MGL composition the meaning of finir un livre (finish a book:
what is finished is the event of reading or writing a book); this is validated by the as-
sociated meanings of finir un livre that appears as a phrasal expression in JeuxDeMots.

This process can be systematized and automated, as JeuxDeMots can be enriched
by asking the players the meaning of an expression that has not yet been analyzed
(within reasonable limits). The meaning of words in context, as predicted by our
compositional system, can also be checked by the players of the serious game Am-
biguss. Thus, the evaluation of our system, as well as its correction and continuous
improvement can be crowd-sourced.

4.5 Preference Mechanism for Quantifying Semantic Gradi-

ence

4.5.1 Preference-as-procedure v.s. Preference-as-restriction

Some studies, the same as ours, use multiple-stages for making the final prefer-
ences [FW83]. In this study, the preference is viewed as a procedure for assigning
scores to competing for alternative representations and choosing the best one. This

4.5. Preference Mechanism for Quantifying Semantic Gradience 47

is far beyond the naive practice of preference in semantic that simply uses the strat-
egy of preferences-as-restriction. Now, we will consider the four key elements of
preference-as-procedure as introduced in [FW83]:

1. Production: it produces all sentence readings whether or not they contain pref-
erence violations;

2. Scoring: readings are scored according to how many preference satisfactions
they contain;

3. Comparison: whether or not an individual reading is accepted depends on a
comparison with other readings;

4. Selection: the best reading (that is, the one with the most preference satisfac-
tion) is taken, even if it contains preference violations

The way we adopt the above general criteria is as follows: in the production
phase we make a query on the relations in the lexicon which represents the coercions
we need; in the scoring phase we have the queries sorted by the weights in the
relations, and finally, we select the top-ranked readings. We see now briefly this
general idea in a running example.

4.5.2 Case Study

We will concentrate on some examples in order to demonstrate how the ideas that
are described in previous sections can actually be achieved using JeuxDeMots by
illustrating the translation procedure from JeuxDeMots to proper meaning represen-
tations in Montagovian Generative Lexicon (MGL) framework. The case study orig-
inates from the example in the influential book Generative Lexicon. Several publica-
tions, starting with [Las95], have remarked that to finish a book can be predicted to
have different meanings depending on its subject (agent). An account of this phe-
nomenon proposed in [IL15] is that meaning is constructed in three phases:

1. lexical meaning is extracted from the words involved;

2. compositional meaning is created by the combination of predicate and object,
with different interpretations occurring and the most ranked being reading;

3. contextual (world-knowledge) meaning is combined by meaning associated
with the subject and the interpretations can be re-ordered or filtered out.

We will attempt to provide an adequate prediction using the resources at our dis-
posal, with the idea that the necessary pragmatic information or world knowledge
is encoded in the lexicon (and is present in JeuxDeMots as well).

The Straightforward Case

Let us consider the phrase To finish a book in a situation where we have Claire, a re-
searcher, reading a book by Villani:

Example 4.3. Claire a fini le livre de Villani. (Claire finished Villani’s book.)

In order to analyse such a sentence, we search for a more generic phrase in
JeuxDeMots: (a) la femme a fini un livre (the woman finished a book) for (4.3). Lex-
ical coercions to actions such as reading or writing are excepted from JeuxDeMots.
Moreover, JeuxDeMots also gives us the built-in weights relation that results in the
expected ranking on the obtained lexical coercions.

48
Chapter 4. Modeling Meanings Preferences II:

Lexical Meaning and Semantic Gradience

Lexicon Organization in MGL and Meaning Representation

A detailed explanation on lexicon organisation in MGL is available in [Ret14, Sec
2.4]. In summary, the lexicon in MGL associates to each word w a principal λ-term
which is Montague term with a much richer typed system and optional λ-terms
known as modifiers or transformations modelling lexical coercions. The following sam-
ple lexicon is designed for the example (a):

Lexeme Main λ-term Optional λ-terms

livre (obj) bookR→t f
(R→t)→(evt→t)
read

f
(R→t)→(evt→t)
write

femme womanP→t

fini finishα→(evt→t)

The sorts used here are as follows: P for Person, R for Readable, and evt for Event.
Skipping unnecessary details on quantifiers and syntax, we can represent two pos-
sible meanings for (a) as

((finishα→(evt→t) (the woman)P) (a (f
(R→t)→(evt→t)
read bookR→t))evt) and

((finishα→(evt→t) (the woman)P) (a (f
(R→t)→(evt→t)
write bookR→t))evt).

Collecting Coercions

The relations gained from the game players in JeuxDeMots can technically be repre-
sented in different structures. The two kinds of data representation that are imple-
mented and available are relational and graph-based databases. A simple query on
an SQL system or on Cypher, the graph query language, on the JeuxDeMots graph-
based database can fulfill our demand. We can also use Datalog which is a declara-
tive database query language (basically Prolog with only constants and variables, i..e
without terms, but with a proper negation). Although all of the options are techni-
cally available, we illustrate the process using a simple PHP-like query syntax which
has actually been experimented.

As for example (a), what we want to do is basically to find the coercions lire (read)
and écrire (write) for a sentence with the object livre (book) and the subject of sort
Person. As illustrated in Fig. 4.1, we can find all the nodes with relation r_associated
to the node livre. Two filters are then applied. The first one rules out the candidates
that do not have the syntactic property of being a verb; to do so in JeuxDeMots we
use r_pos relation that targets the node Ver:Inf. The second rules out the verbs that
cannot have an agent of sort Human; to do so we use r_agent relation that targets the
node femme (woman). We sort in descending order the final table with the built-in
weight property of r_associated relation that exists in JeuxDeMots.

4.5. Preference Mechanism for Quantifying Semantic Gradience 49
FIGURE 4.1: Obtaining Coercions: General Scheme, Query Code and

Outcome Table for Example (a)

The Non-Human Case

Regarding the extraction of the coercions from JeuxDeMots, we can see that the in-
put of a query involves more than two words. For instance, considering the meaning
of “dévorer un livre” (idiomatic French, to devour a book that can be used to denote
binge-reading); in JeuxDeMots a relation between one of the meanings of “dévorer”
and one of the meanings of “livre" depends on a third ingredient, namely the agent
of “dévorer". Assuming that Blanche is Claire’s pet goat, contrast the following:

Example 4.4.

4.4a. Claire a dévoré le livre de Villani. (Claire devoured Villani’s book.)

4.4b. Blanche a dévoré le livre de Villani. (Blanche devoured Villani’s book.)

4.4c. Claire a permis à Blanche de finir le livre de Villani. (Claire allowed Blanche to
finish Villani’s book.)

4.4d. Claire a promis à Blanche de finir le livre de Villani. (Claire promised Blanche
to finish Villani’s book.)

Observe that the last two examples with control verbs require a syntactic com-
putation to determine the agent/subject of the action that is performed on the book.
A further limit is that there are no sorts, types or sets in JeuxDeMots. If one is asked
what a goat can eat, it is unlikely that a player answers a book. The answer: besides,
grass, bushes, flowers, branches, leaves etc. a more generic answer would be “any
object that is small and not too hard", but there is no single word corresponding to
this class, while players answer words.

50
Chapter 4. Modeling Meanings Preferences II:

Lexical Meaning and Semantic Gradience

For this particular case, the fact that a goat may eat a book is, actually, included in
JeuxDeMots. Some players included and validated the fact that a goat may eat paper
and books being made of paper (this is indicated in the entry for book as a constitutive
coercion), they can be eaten by goats. In this case, there even is also a direct fact that
goats can eat books, but with a much weaker confidence.

Limits of MGL

In MGL as it stands now, coercions are attached to one word – except ontological
inclusions which are encoded via sub-typing – but the actual coercion used to fix
a type mismatch could be the combination of several coercions provided by all the
words in the expressions. As observed above a coercion may be triggered by several
words, and maybe the result of a sequence of relations. How can this be stored in
MGL, in such a way that the general compositional mechanism of MGL produces
the wanted readings and discards the unwanted ones? How can this be performed
without trying all possible combinations of coercions, i. e., without going beyond
reasonable time complexity limits?

A solution is to split the coercion into two (or more), each part being associated
with each lexeme, the composition giving the complete result.

In that case, a type mismatch PA→τ(uB) may be solved by first using a coercion
f B→X attached to u and a coercion gX→A attached to P.

In all the above examples, there is a coercion from books to their physical facet.
Having a goat as an agent will provide the verb to eat (which normally has an agent
of sort Animal and a patient of sort Food) with a coercion from Food to physical ob-
jects, representing the ingestion of these objects and the world knowledge “fact” that
“goats will eat (mostly) anything”. That way, the goat Blanche may well eat Villani’s
book.

A Direct Solution

We expand our sample lexicon to this:

Lexeme Syntax Constraint Main λ-term Optional λ-terms

livre (obj) subj∶ P bookR→t f
(R→t)→(evt→t)
read

f
(R→t)→(evt→t)
write

livre (obj) subj∶ A bookR→t f
(R→t)→(evt→t)
eat

chèvre goatA→t

femme womanP→t

fini finishα→(evt→t)

The syntactic constraint column extends the standard MGL lexicon in order to
capture meanings that depend on the object and subject in a given sentence. In our
case, having a subject of the sort either Animal or Person can significantly change
the meaning and it obviously needs a different kind of coercions in the meaning
representation layer. Considering the example:

Example 4.5. Blanche a fini le livre de Villani. (Blanche finished Villani’s book.)

We adapt this to a more generic sentence, (b) la chèvre a fini un livre
(the goat finished a book) for (4.5), and the single reading for (b) should be

4.6. Conclusion and Future Works 51

((f inishα→(evt→t) (the goat)A) (a (f
(R→t)→(evt→t)
eat bookR→t))evt).

We want to find the coercion manger (eat) for a sentence with the object livre
(book), the subject being the word chèvre (goat). As illustrated in Fig. 4.2, we can
find all the nodes with relation r_patient to the node livre. As before, two filters are
applied, selecting for verbs that can have chèvre as agent; we could then sort by
weight if there were more than a single result.

FIGURE 4.2: Obtaining Coercions: General Scheme, Query Code and
Outcome Table for Example (b)

This is direct relation extracted from JeuxDeMots; its confidence degree is light,
and this is to be expected. In future work, we would like to acquire the coercion us-
ing “paper” as an intermediate step by searching for possible sequences (of limited
length). Thus, we can use JeuxDeMots to derive the coercions that we need incorpo-
rate into the MGL lexicon.

4.6 Conclusion and Future Works

The Grail syntax-semantics analyzer, together with the type-theoretic account of lex-
ical polysemy provided by MGL and based on compositional semantics and the
ΛTYn many-sorted logic, forms a computational system that is well-suited to lexical
and semantic data crowd-sourced using JeuxDeMots. They can provide a complete
chain of analysis that can process different complex linguistic phenomena for the
French language. Grail has long been used in different versions, and has access to a
large-covering French corpora-driven Type-Logical Grammar; JeuxDeMots provides
access to a mature lexical network of words, phrases, and relations that is continu-
ously updated, with publicly available and queryable data; we also have previously
demonstrated the pertinence and computational applications of MGL. We have pre-
sented a process and experimental data that shows that this treatment chain works,

52
Chapter 4. Modeling Meanings Preferences II:

Lexical Meaning and Semantic Gradience

and can be automated. Thus, this system can be evaluated, corrected and updated
in a semi-automated fashion using similar crowd-sourced data.

What remains to be done is mostly a work of integration of these various com-
ponents. The possibility of modifying the existing MGL framework for allowing
multi-part coercions to be added, as a composition of transformations licensed from
different lexemes, should be examined in detail, as well as the implications of this
modification to the time complexity of the computation, and the expressive power
of the resulting formalism.

53

Chapter 5

Modeling Meanings Preferences
III:
Categorial Proof Nets and
Linguistic Complexity

All things entail rising and falling
timing.

Miyamoto Musashi

5.1 Introduction 1

Linguistics and especially generative grammar à la Chomsky makes a distinction
between competence and performance in the human processing of natural language
[Cho65]. The competence is, roughly speaking, our ideal ability without the time
and resource constraints to parse a sentence, i.e. to decide that it is grammatical or
not. Competence is formally described by a formal grammar. The performance is
how we actually parse a sentence; whether we succeed in achieving that by consum-
ing some resources such as timing and memory; and how much the sentence resists
to our attempt to analyze it. Computing the space and time algorithmic complexity
is a fake solution because no one knows the algorithm being used by the human if
it depends on the individual and on the kind of conversation. Even if it were so,
nothing guarantees that space and time algorithmic complexity matches the degree
of difficulty we experience when processing sentences. In this chapter, we try to
provide a formal and computable account of the results of psycholinguistics experi-
ences regarding linguistic complexity. We focus on syntactic complexity as studied
in a number of linguistic processing phenomena such as garden paths, unaccept-
ability of center embedding, preference for lower attachment, passive paraphrases
acceptability and structures with embedded pronouns. The connection of our study
in this chapter to the preference modeling is straightforward: The less complex lin-
guistic structures are the more preferred ones from the point of view of linguistic
human performance.

Regarding the psycholinguistics aspects, we mainly follow the studies by Gibson
of linguistic complexity of human parsing. Gibson studied the notion of the nesting

1The material in this chapter is derived in large part from [MPR18] which is the author’s common
work with Jean-Philippe Prost and Christian Retoré.

54
Chapter 5. Modeling Meanings Preferences III:

Categorial Proof Nets and Linguistic Complexity

linguistic difficulty [Gib91] in the examples 5.1a-5.1b. Gibson provided a computa-
tional psycholinguistic model that can predict that 5.1b is more complex than 5.1a.
This came through with counting the maximal number of incomplete syntactic de-
pendencies that the processor has to keep track of during the course of processing
a sentence [described in the sec 5.2.1]. We refer to this theory as Incomplete Depen-
dence Theory (IDT) as coined by Gibson.

Example 5.1.

5.1a. The reporter [who the senator attacked] disliked the editor.

5.1b. The reporter [who the senator [who John met] attacked] disliked the editor].

5.1c. The reporter [who the senator [who I met] attacked] disliked the editor].

IDT had some limitations for the referent-sensitive linguistic phenomena. To take
an example, we can take a look at 5.1c which is similar to 5.1b except a replacement
of the noun phrase John with the pronoun I. According to the discourse-based in-
tegration cost hypothesis, referents for the first-person pronoun I is already present
in the current discourse, so, integrating across them consumes fewer cognitive re-
sources than integrating across the new discourse referents John. This problem jus-
tified the later introduction of the Syntactic Prediction Locality Theory [Gib98]. A
variant of this theory, namely Dependency Locality Theory (DLT), was introduced
later by Gibson [Gib00] to overcome the limitations of IDT against the new linguis-
tic performance phenomena [described in the sec 5.2.2]. In the original works, both
IDT and DLT use properties of linguistic representations provided in Government-
Binding Theory [Cho82].

On the formal side, in order to compute the complexity of a sentence — in a way
that is inspired by Gibson’s Distance Locality Theory — we use Lambek Catego-
rial Grammar [Lam58] by means of proof nets construction [MR12b, Chap 6]. Proof
nets were originally introduced by Girard [Gir87] as the mathematical structures of
proof in linear logic. Categorial proof nets are to categorial grammar what parse
trees are to phrase structure grammar. This kind of approach was initiated by John-
son [Joh98], who defines a measure of the instantaneous complexity when moving
from a word to the next one (in particular for center embedded relative clauses) in a
way that matches Gibson’s and Thomas’ analysis [GT96]. To define the complexity
of a sentence, Johnson considers the maximum complexity between the words in a
given sentence. This approach was refined by Morrill [Mor00], who re-interprets ax-
iom links in categorial proof nets as incomplete (or unresolved) dependencies (sect
5.3). We rename this technique as IDT-based complexity profiling since it clearly inher-
its many aspects of Gibson’s IDT, plus the new notion of profiling that exists in some
psycholinguistic theories. This technique is quite successful at predicting linguistic
performance phenomena such as garden paths, unacceptability of center embed-
ding, preference for lower attachment and heavy noun phrase shift. Nevertheless,
there is some predictive limitation for referent-sensitive phenomena such as struc-
tures with embedded pronouns. Our strategy to overcome this issue is to apply DLT
instead of IDT on proof nets constructions which would lead to the introduction of
DLT-based complexity profiling. We will show how this reformulation can improve the
predictive power of the existing models in favor of the referent-sensitive linguistic
phenomena.

The purpose of developing our computational psycholinguistic is not solely lim-
ited to measuring linguistic complexity. It is potentially applicable to some specific

5.2. Gibson’s Theories on Linguistic Complexity 55

tasks in the domain of the formal compositional semantics as we highlighted in the
chapter 1. For instance, ranking different possible readings of a given ambiguous
utterance, or more generally translating natural language sentences into weighted
logical formulas.

The rest of the chapter is organized as follows: section 5.2 summarizes Gib-
son’s ideas on modeling the linguistic complexity of human sentence comprehen-
sion, namely IDT and DLT. In section 5.3, we recall the success and limitation of
IDT-based complexity profiling. In section 5.4, we define our DLT-inspired measure,
we show how it fixes some problems in previous work and how it gives a correct
account of those phenomena. In section 5.5, we provide more linguistic evidence to
support our claim in favor of DLT-based complexity profiling over IDT-based ap-
proach. Section 5.6 explains some limitations that our approach potentially has. In
the last section, we conclude and we explain possible future works. In particular, we
compare the categorial grammar with other formalisms in terms of their usefulness
for measuring linguistic complexity.

5.2 Gibson’s Theories on Linguistic Complexity

We provide a very quick review of Gibson’s IDT and DLT in order to make the read-
ers familiar with their underlying concepts.2 The question of how to automatically
compute linguistic complexity based on both theories with categorial proof nets will
be covered in sections 5.3 and 5.4.

5.2.1 Incomplete Dependency Theory

Incomplete dependency theory is based on the idea of missing incomplete depen-
dency. The main parameter in IDT is the number of incomplete dependencies from
the new word to the existing structure. The main parameter in IDT is the number of
incomplete dependencies from the new word to the existing structure. This gives an
explanation for the increasing complexity of the examples 5.1a-5.1c (repeated here as
5.2a-5.2c) which have nested relative clauses. In 5.2a, the reporter has one incomplete
dependency; in 5.2b, the senator has three incomplete dependencies; in 5.2c John has
five incomplete dependencies at the point of processing. For the sake of space, we
only explain the most complex case, i.e. 5.2c in which the incomplete dependencies
at the moment of processing John are: (i) the NP the reporter is dependent on a verb
to follow it; (ii) the NP the senator is dependent on a different verb to follow; and (iii)
the pronoun who (before the senator) is dependent on a verb to follow; (iv) the NP
John is dependent on another verb to follow; and (v) the pronoun who (before John)
is dependent on a verb to follow. These are five unsaturated or incomplete or un-
resolved dependencies. IDT in its original form suggests calculating the maximum
number of incomplete dependencies of the words in a sentence. One can observe
that the complexity is proportional to the number of incomplete dependencies.

Example 5.2.

5.2a. The reporter disliked the editor.

2We have explained IDT in the chapter 3. Nevertheless, for the convenience of readers, a quick
review is provided.

56
Chapter 5. Modeling Meanings Preferences III:

Categorial Proof Nets and Linguistic Complexity

5.2b. The reporter [who the senator attacked] disliked the editor.

5.2c. The reporter [who the senator [who John met] attacked] disliked the editor].

5.2d. The reporter [who the senator [who I met] attacked] disliked the editor].

5.2.2 Dependency Locality Theory

Dependency Locality Theory is a distance-based referent-sensitive linguistic com-
plexity measurement put forward by Gibson to supersede IDT due to its predictive
limitations. DLT posits two integration and storage costs. In this chapter, we have
only focused on the integration cost. The complexity, interpreted as the locality-
based cost of integration of two elements, depends on the intervened new discourse-
referents. By performing a measurement on these referents, we can predict new lin-
guistic phenomena, such as structures with embedded pronouns, illustrated in ex-
ample 5.2d. The empirical experiences [WG99] support the acceptability of 5.2d over
5.2c. According to the discourse-based DLT structural integration cost hypothesis,
referents for the first-person pronoun I is already present in the current discourse, so,
integrating across them consumes fewer cognitive resources than integrating across
the new discourse referents John. By means of just two aspects of DLT, namely the
structural integration and the discourse processing cost we would be capable to pre-
dict a number of linguistic phenomena as we will see in details with a number of
examples.

5.3 Incomplete Dependency-Based Complexity Profiling and

its Limitation

An IDT-based proposal for measuring the linguistic complexity [Mor00] is based on
the categorial proof nets. The general idea is simple: to re-interpret the axiom links
as dependencies and to calculate the incomplete dependencies during the incremen-
tal processing by counting the incomplete axiom links for each word in a given sen-
tence. This is almost the same as Gibson’s idea in his IDT, except for the fact that he
uses some principle of Chomsky Government-Binding theory [Cho82] instead of the
categorial proof nets. The notion of counting incomplete dependency for each node,
called complexity profiling, is more effective in terms of prediction than approaches
that only measures the maximum number of the incomplete dependencies or the
maximum cuts [Joh98].

5.3.1 Formal Definitions and Example

We can rewrite IDT-based complexity profiling [Mor00] by the following definitions:

Definition 5.1. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. Let Ci0 be one
of the Ci (i ∈ [1, n]). The incomplete dependency number of Ci0 in π, written as
IDπ(Ci0), is the count of axioms c − c′ in π such that c ∈ (Ci0−m ∪ S) (m ≥ 0) and
c′ ∈ Ci0+n+1 (n ≥ 0).

Definition 5.2. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. We de-
fine the IDT-based linguistic complexity of π, written fidt(π) by fidt(π) = (1 +

5.3. Incomplete Dependency-Based Complexity Profiling and its Limitation 57

∑
n
i=1 IDπ(ci))

−1.

Definition 5.3. Given two syntactic analyses πi and πj, not necessarily of the same
words and categories, we say that πi is IDT-preferred to πj whenever fidt(πi) >
fidt(πj).

Example 5.3. We can show the two relevant proof nets for the example with subject-
extracted relative clause, i.e. 5.3a in the figure 5.2; and the other example with
subject-extracted relative clause, i.e. 5.3b in the figure 5.3. The relevant complex-
ity profiles for 5.3a and 5.3b are illustrated in figure 5.1. As it can be seen, the total
sum of the complexity for 5.3b is greater than 5.3a, thus, it can predict correctly the
preference of 5.3a over 5.3b which is supported by measuring reading time experi-
ments [GK98]. 3

5.3a. The reporter who sent the photographer to the editor hoped for a good story.

5.3b. The reporter who the photographer sent to the editor hoped for a good story.

FIGURE 5.1: IDT-based Complexity Profiles for 5.3a and 5.3b.

5.3.2 Limitation

Obviously, the IDT-based account does not use DLT as its underlying theory. Not
surprisingly, the linguistic phenomena that can only be supported by DLT would
not be supported by IDT-based complexity profiling. Figures 5.5 and 5.7 shows this
failure by constructing proof nets for 5.2c and 5.2d, respectively. As one may notice,
the corresponding proof nets for the examples 5.2c and 5.2d are almost the same.4

Consequently, IDT-based complexity profiling cannot discriminate both examples,
i.e. it generates the same number for both sentences in contrast to the experiments
[WG99]. This shows the importance of introducing DLT-based complexity profiling
for proof nets in order to make more predictive coverage as we will do so.

3The readers who want to get more details on the calculation of the measurements can take a look
at the relevant tables in appendix B which covers all the examples in this chapter.

4Following Lambek [Lam58], we have assigned the category S/(np/S) to pronoun I. Note that even
assigning np, which is not a type-shifted category, would not change our numeric analysis at all.

58
Chapter 5. Modeling Meanings Preferences III:

Categorial Proof Nets and Linguistic Complexity

FIGURE 5.2: Proof net analyses for 5.3a (subject-extracted relative
clause).

5.4. A New Proposal: Distance Locality-Based Complexity Profiling 59

FIGURE 5.3: Proof net analyses for 5.3b (object-extracted relative
clause).

60
Chapter 5. Modeling Meanings Preferences III:

Categorial Proof Nets and Linguistic Complexity

5.4 A New Proposal: Distance Locality-Based Complexity

Profiling

As we discussed, IDT-based complexity profiling is a distance-based measurement.
However, it is not a referent-sensitive criterion and due to this fact, it cannot support
some of the linguistic phenomena such as structures with embedded pronouns. One
plausible strategy to overcome this lack is introducing DLT-based complexity profil-
ing. This will allow us to have a referent-sensitive measurement. In this section, we
provide the precise definitions of our DLT-based proposal on the basis of the catego-
rial proof nets. Here they are:

Definition 5.4. A word w is said to be a discourse referent whenever it is a proper
noun, common noun or verb.

Definition 5.5. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. Let c − c′ be an
axiom in π such that c ∈ Ci and c′ ∈ Cj (i, j ∈ [1, n]). We define the length of axiom
c − c′ as the integer i + 1− j.

Definition 5.6. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. Let Ci0 be one
of the Ci, and let consider axioms c − c′ with c in Ci0 and c′ in some Ci0−k. Let us
consider the largest k for which such an axiom exists — this is the longest axiom
starting from Ci0 with the previous definition. The dependency locality number of
Ci0 in π, written as DLπ(Ci0), is the number of discourse referent words between
wi0 ∶ Ci0 and wi0−k ∶ Ci0−k. The bound words, i.e. wi0 ∶ Ci0 and wi0−k ∶ Ci0−k should
also be counted. Alternatively, it may be viewed as k + 1 minus the number of non-
discourse references among those k + 1 words.

Definition 5.7. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. We de-
fine the DLT-based linguistic complexity of π, written fdlt(π) by fdlt(π) = (1 +

∑
n
i=1 DLπ(ci))

−1.

Definition 5.8. Given two syntactic analyses πi and πj, not necessarily of the same
words and categories, we say that πi is DLT-preferred to πj whenever fdlt(πi) >
fdlt(πj).

Example 5.4. We apply our new metric on examples 5.1b and 5.1c; repeated here as
5.4a and 5.4b.

5.4a. The reporter [who the senator [who John met] attacked] disliked the editor].

5.4b. The reporter [who the senator [who I met] attacked] disliked the editor].

Figure 5.5 and 5.7 shows the relevant proof net for 5.4a and 5.4b, respectively.
The proof nets for both examples are the same except a difference in one of the lexi-
cons in each example, i.e. John and I. Figure 5.6 shows the accumulative chart-based

5.5. Evaluation of the New Proposal against other Linguistic Phenomena 61

representation of our measurement for each example. The axis Y shows the accumu-
lative sum of dependency locality function applied to each category in axis X. The
quick analysis of the profiles shows the total complexity numbers 14 and 11 for 5.4a
and 5.4b, respectively. This correctly predicts the preference of example 5.4b over
5.4a which was not possible in the IDT-based approaches. The measurement for de-
pendency locality number is quite straightforward. As an example, we calculate the
dependency locality number for the word attacked in figure 5.7 for 5.4b. We can find
the longest axiom link starting from attacked and ended to its uppermost category,
namely, who. Then, we count the number of discourse referents intervened in the
axiom link, which is actually three; namely, attacked, met and senator.

5.5 Evaluation of the New Proposal against other Linguistic

Phenomena

We can evaluate our proposal for measuring the linguistic complexity against other
linguistic phenomena. As we will see, the new metric supports both referent-
sensitive and some of the non-referent-sensitive phenomena5. We start with subjec-
t/object extracted relative clause in the examples 5.3a and 5.3b. The figures 5.2 and
5.3 illustrate the proof net analyses for 5.3a and 5.3b, respectively. We can now com-
pare the complexities of 5.3a and 5.3b. The accumulative complexity chart is illus-
trated in Figure 5.4. The analysis of the profiles shows the total complexity numbers
7 and 8 for 5.3a and 5.3b, respectively. The interpretation of these numbers is that
subject-extracted relative clause is less complex compared to the object-extracted
relative clause. These measurements account for reading-time effects as performed
with the actual reading times for participants in a self-paced reading experiment
[GK98].

FIGURE 5.4: Accumulative DLT-based Complexity Profiles for 5.3a
and 5.3b.

The Garden pathing [Bev70] is illustrated by the following examples:

Example 5.5.

5.5a. The horse raced past the barn.

5We have not covered the problem of the ranking valid semantic meanings of a given multiple-
quantifier sentence in this study. [For more details see section 5.6.]

62
Chapter 5. Modeling Meanings Preferences III:

Categorial Proof Nets and Linguistic Complexity

FIGURE 5.5: Proof net analysis for the example 5.4a.

FIGURE 5.6: Accumulative DLT-based Complexity Profiles for 5.4a
and 5.4b.

5.5. Evaluation of the New Proposal against other Linguistic Phenomena 63

FIGURE 5.7: Proof net analysis for the example 5.4b.

64
Chapter 5. Modeling Meanings Preferences III:

Categorial Proof Nets and Linguistic Complexity

5.5b. ?The horse raced past the barn fell.

Although 5.5b is grammatical it is perceived ungrammatical due to strong ten-
dency to interpret the initial segments as in 5.5a. The sentence 5.5b leads the reader
toward a seemingly familiar meaning, namely 5.5a, that is actually not the one in-
tended. This often requires re-reading so that the meaning may be fully grasped af-
ter careful parsing. The difficulty in correctly parsing the sentence 5.5b results from
the fact that race can be interpreted transitively or intransitively. The figure 5.10 il-
lustrates the proof net analyses for 5.5a and 5.5b. Figure 5.8 shows the complexity
profiles in which the total complexity numbers are 2 and 7 for 5.5a and 5.5b, respec-
tively. This correctly predicts the high level of complexity in 5.5b and the preferred
reading of 5.5a comparing to 5.5b as it happens in the real sentence comprehension.

FIGURE 5.8: Accumulative DLT-based Complexity Profiles for 5.5a
and 5.5b

The unacceptability of center embedding phenomena is illustrated by the ex-
amples 5.6a and 5.6b. The example 5.6a shows object relativization which exhibits
deterioration in acceptability while the sentence 5.6b exhibits little variation in ac-
ceptability since it carries subject relativization [Cho14, Chap. 1]. This linguistic
phenomenon can be captured in our model. The figures 5.11 and 5.12 illustrates the
proof net analyses for 5.6a and 5.6b, respectively. Figure 5.9 shows the complexity
profiles in which the total complexity numbers are 14 and 10 for 5.6a and 5.6b, re-
spectively. Our proposal correctly predicts the complexity of 5.6a over 5.6b.

Example 5.6.

5.6a. ?The cheese that the rat that the cat saw ate stank.

5.6b. The dog that chased the cat that saw the rat barked.

5.5. Evaluation of the New Proposal against other Linguistic Phenomena 65

FIGURE 5.10: Proof net analyses for 5.5a located in top (first attempt
reading) and 5.5b in bottom (full garden path sentence).

66
Chapter 5. Modeling Meanings Preferences III:

Categorial Proof Nets and Linguistic Complexity

FIGURE 5.11: Proof net analyses for 5.6a (object relativization).

5.5. Evaluation of the New Proposal against other Linguistic Phenomena 67

FIGURE 5.12: Proof net analyses for 5.6b (subject relativization).

68
Chapter 5. Modeling Meanings Preferences III:

Categorial Proof Nets and Linguistic Complexity

FIGURE 5.12: Accumulative DLT-based Complexity Profiles for 5.6a
and 5.6b

Examples 5.7 and 5.8 carry different readings due to the syntactical ambiguity
that exists in each of them. As for the example 5.7, the preference is for the lowest at-
tachment [Kim73]. The three profiles in figures 5.13, 5.14 and 5.15 show the highest,
middle and lowest attachment of the adverb today to the verbs said, believes and fell,
respectively. As it is illustrated in the figure 5.9, our model can predict the preference
of the 5.7a over 5.7b, and 5.7b over 5.7c. In other words, the lower attachment of the
adverb, the higher the preference [Kim73].

Example 5.7. Joe said that Marthus believes that Ingrid fell today.

Example 5.8. The book that shocked Mary’s title.

As for the example 5.8, two proof nets in the figure 5.17 show the lowest and
highest attachment of the phrase ’s title to the sentence the book that shocked Mary. As
it is illustrated in the figure 5.18, our model can predict the preference of the right
interpretation in the figure 5.17 over the left one, despite the fact that the right one is
non-sensical [Mor00].

The last linguistic performance phenomena that we want to discuss is Passive
Paraphrases Acceptability [Mor00] illustrated by examples 5.9a and 5.9b. Notice
that the DLT-based complexity profile of the 5.9a is lower even though the number
of the sentences and the axiom links are more comparing to 5.9b. The real preference
is on the syntactic forms in which 5.9a is preferred to 5.9b. The relevant proof nets
and the accumulated complexity profiles are illustrated in the figures 5.19-5.20 and
5.21, respectively.

Example 5.9.

5.9a. Ingrid was astonished that Jack was surprised that two plus two equals four.

5.9b. ?That that two plus two equals four surprised Jack astonished Ingrid.

5.6 Limitations

As we saw, our DLT-based complexity profiling is quite successful in predicting
some linguistic performance phenomena. We also show that the referent-sensitive
phenomenon cannot be treated by IDT-based approach while our approach could
do so. Nevertheless, there are two limitations in our approach as well. The first one

5.6. Limitations 69

FIGURE 5.13: Proof net analyses for 5.7 with highest adverbal attach-
ments.

70
Chapter 5. Modeling Meanings Preferences III:

Categorial Proof Nets and Linguistic Complexity

FIGURE 5.14: Proof net analyses for 5.7 with middle adverbal attach-
ments.

5.6. Limitations 71

FIGURE 5.15: Proof net analyses for 5.7 with lowest adverbal attach-
ments.

FIGURE 5.16: Accumulative DLT-based complexity profiles for three
readings of 5.7

72
Chapter 5. Modeling Meanings Preferences III:

Categorial Proof Nets and Linguistic Complexity

FIGURE 5.17: Proof net analyses for 5.8 with sensical (left) and non-
sensical (right) interpretations.

FIGURE 5.18: Accumulative DLT-based complexity profiles for two
readings of 5.8

5.6. Limitations 73

FIGURE 5.19: Proof net analyses for 5.9a .

74
Chapter 5. Modeling Meanings Preferences III:

Categorial Proof Nets and Linguistic Complexity

FIGURE 5.20: Proof net analyses for 5.9b .

FIGURE 5.21: Accumulative DLT-based complexity profiles for 5.9a
and 5.9b

5.7. Conclusion and Possible Extensions 75

is the problem of ranking valid semantic meanings of a given multiple-quantifier
sentence which cannot be supported by our proposal. We studied in the chapter 3
the same problem in the IDT-based approach when dealing with some type of the
expressions such as sentence-modifier adverbials and nested sentences. Our experi-
ment shows that the same limitations hold in our DLT-based approach. Thus, both
IDT-based and DLT-based complexity profiling cannot correctly predict ranking the
quantifier scoping problem. Hopefully, this can be treated with the hybrid models
(discussed in the chapter 3) in which Hilbert’s epsilon and tau [Hil22; CPR17] are
exploited in order to neutralize the quantifier effect, and after that, the complexity
is measured based on the penalty of the quantifiers re-ordering. This treatment for
DLT-based approach will be briefly introduced in the chapter 7.

The second drawback of the DLT-based motivated approaches is that they are
not applicable cross-linguistically for human parsing processes. One study [Vas+05]
has shown the failure of DLT-based approaches in modeling some human perfor-
mances in the Hindi language. DLT uses the distance hypothesis: the increasing
distance between dependents and heads results in increased processing difficulty.
This hypothesis is not a universal linguistic feature as it is claimed [Vas+05]. This
cross-linguistically problem in DLT-based approaches, has motivated the activation-
based models [LV05] which are formalized in computational form in the Adaptive
Control of Thought-Rational (ACT-R) architecture [And+04]. This theory construes
parsing as an efficient series of the guided memory retrievals and not parsing as
proof net construction in a way we have practiced in this chapter. Nevertheless,
activation-based approaches cannot properly treat the structures with embedded
pronouns [LV05]. Moreover, it has no systematical approach for deriving automat-
ically meaning representations in logical formulas as one is generally capable to do
so in the Categorical Grammar frameworks and specifically in our proposed DLT-
based complexity profiling.

5.7 Conclusion and Possible Extensions

In this chapter, we explored how our DLT-based complexity profiling on proof nets
can successfully support a number of linguistic processing phenomena such as struc-
tures with embedded pronouns, garden paths, unacceptability of center embedding,
preference for lower attachment, and passive paraphrases acceptability. Our pro-
posal gets closer to the modern psycholinguistic theories while it adds the good
features of Categorial Grammars such as the deep semantic analysis. We have also
shown that IDT-based method could not support referent-sensitive linguistic perfor-
mance phenomena. This was one of the main reasons for introducing the DLT-based
complexity profiling technique within the framework of Lambek calculus.

It is worth mentioning that Gibson’s DLT-based complexity can be applied to
other grammatical formalisms such as Property Grammar [Bla16], Pregroup Gram-
mar [Lam97] and Categorial Dependency Grammar (CDG) [Dik04]. To the best of
our knowledge, Property Grammar is the only case in which both DLT-based and
IDT-based approaches [Bla11b; Bla11a] are practiced, although they are not eval-
uated for all the available linguistic performance phenomena. Property Grammar
has the advantage of its robustness when dealing with non-canonical sentences
[PS01]. Meanwhile, it has no straightforward syntax-semantic interface. As for Pre-
group Grammar, there is a study [Sad08] for the IDT-based approach for linguistic
complexity and no DLT-based application yet. It is technically possible to apply

76
Chapter 5. Modeling Meanings Preferences III:

Categorial Proof Nets and Linguistic Complexity

DLT-based measurement to Pregroup Grammar, nevertheless, we preferred to work
with categorial proof nets, since it has a straightforward syntactic-semantic interface,
learnability property from positive sentences [BP90; Kan98] and wide coverage syn-
tax/semantic parsing [Moo10], which Pregroup Grammar lacks. CDG discriminates
very clearly between local and distant word driven dependencies. Local dependen-
cies are defined in terms of classical categorial grammar terms, while the distant de-
pendencies are defined in term of polarized valencies. Technically, it is quite possible
to have both the IDT-based and DLT-based complexity measurements on a fragment
of CDG that deals with local dependency. However, the main interest of CDG—
which is incorporating the non-projective fragment of natural language— cannot be
applied in the distance-based proposal. This is a serious lack of the application of
proof nets in CDG. Nevertheless, we do not consider all the mentioned problems in
Property Grammar, Pregroup Grammar and CDG as something intractable, we con-
sider them as open questions that can be explored. This obviously goes far beyond
our current research and demands new research.

There are three straightforward extensions for our study and research, that are
already investigated in this dissertation:

- We can bridge our model with existing study [CM17] to overcome the prob-
lem of ranking quantifier scoping, which our proposal already has. As we
discussed, we can exploit Hilbert’s epsilon and tau operators [Hil22; CPR17]
for neutralizing the quantifier effect and making possible the complexity mea-
surement by the penalty cost of the quantifiers re-ordering. We will see the
details of this method in the chapter 6.

- Another important direction is to take into account not only the axioms of the
proof-nets but also the logical structure, i.e., par-links, tensor-links and the
correctness criterion. This is important indeed because this structure is needed
to compute the logical form (semantics) from the syntactic structure given by
proof nets. For instance, nesting Lambek slashes (that are linear implications,
and therefore par-links in the proof net) corresponds to higher order semantic
constructions (e.g. predicates of predicates) and consequently this nesting of
par-links increases the complexity of the syntactic and semantic human pro-
cessing.

- It is possible to combine our method with the researches in other directions.
One potential candidate is the task of sentence correction/completion in Lam-
bek Calculus [Mir] and also in natural language processing in general. Given
an incomplete utterance, we might have different potential proof nets either
over-generated by a framework or properly generated. The sub-task of rank-
ing these candidates is aligned with our research. We will investigate this ap-
proach in the chapters 6 and 7.

There are more general ideas, not so far from our current study, that can be con-
sidered for our future research. One possible direction is to take into account other
possible factors in linguistic preferences such as common sense and lexical knowl-
edge. This is important since these factors override the preferences in some cases
and affect the complexity. For this purpose, we can exploit Montagovian Genera-
tive Lexicon (MGL) framework [Ret14] that uses multi-sorted logical formulas. This
choice would let us apply semantic distance approaches [Nag94] or exploit weighted
relations [Laf+p2] provided in lexical semantic networks such as JeuxDeMots (JDM)
[Laf07; Cha+15]. With these approaches, we can create and enrich wide-coverage,

5.7. Conclusion and Possible Extensions 77

weighted, lexical resources such as the crowd-sourced JDM in order to infer linguis-
tic features. Another worthwhile direction of study would be to create a dataset an-
notated for human-preferred readings of various natural utterances. Consequently,
we could have more experimental data in order to evaluate/extend our new propos-
als over the test-suite. This experiment would let us integrate other aspects such as
lexical semantics to our model easily with the online evaluation.

79

Chapter 6

Modeling Meanings Preferences
IV:
Ranking Incomplete Sentence
Interpretations

6.1 Introduction 1

As we discussed, an utterance may yield several readings either from ambiguities
(lexical, syntactical and semantical) or from syntactic incompleteness. The incom-
plete utterances can be linguistically considered as a type of non-canonical utter-
ances [PS01] and they can be caused by different reasons such as missing categories,
extra categories, swap categories, misused categories, or any possible combination
of mentioned reasons. The focus in this chapter is only on incomplete utterances
with missing categories. To make our research problem clear we should emphasize
that by the missing category one can generally suppose two things: a missed word
in an incomplete sentence or an unknown word in a sentence with no proper cat-
egory assignment. In this section, we especially deal with the problem of missing
categories for some missing words in an incomplete sentence. Moreover, we assume
that the position of the word in the sentence is unknown.2

Analysis of incomplete utterances has been the subject of study in rule-based,
data-driven and statistical approaches in computational linguistics [Lea+10]. The
scope of automatic error detection/fixation and robust parsing is so wide and differ-
ent mechanisms are introduced by researchers such as3: over-generating and rank-
ing parse trees [DM93], imposing ranking constraints on grammatical rule [Mel89],
introducing “mal-rules” [SM98], relaxing constraints in feature unification [VC95],
modeling grammar as model-theoretic constraints [Bla00a; DB04a; Pro10], and fi-
nally, sub-tree parse fitting for non-parsable utterances. [Jen+83]. All the mentioned
approaches have their own advantages and address the same issue that we have de-
fined. However, the formalisms that are introduced in them is not the same as what
is used in this section.

1The material in the section 6.2 of this chapter is derived in large part from [Mir] which is the
author’s work. The rest is the author’s work which is not published yet.

2We should re-emphasize that we model only a special class of the non-canonical sentences which
are sentences with missing categories. This means that the order of the words in the sentence is ade-
quate, but, some words are missing and we need them to complete the meaning of the sentence. Thus,
we will not take into account other problems such as extra categories or misused categories or even
other aspects of non-canonical sentences which cover the language use or pragmatic.

3See [Lea+10, Chapter 1] for detailed descriptions.

80
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations

Basic Categorial Grammars or AB grammars is a formalism which is used in this
research. It is a family of the categorial grammars. This choice is based on the re-
quirement to bridge the incomplete utterances with semantical readings. There are a
number of reasons to explain why categorial grammars are suitable for our specific
research topic and this was discussed in the previous chapters, to sum up: Firstly,
categorial grammars have a very nice correspondence with semantics and they are
very suitable for syntactic-semantic interface modeling; they can represent semantic
ambiguities such as quantifier scope and negation [MR12b, Chapter 3] which does
not exist in shallow approaches; secondly, they enjoy learnability property from pos-
itive sentences which converge after learning a fixed number of sentences by using
unification techniques [BP90; Kan98]; thirdly, by applying a left-to-right incremen-
tal procedure and proof net construction for categorial grammar we can correctly
predict a wide variety of human performance phenomena as we discussed in the
chapter 5; finally, there is a wide-coverage syntactic and semantic parsing for French
language, named Grail, that allows researchers to design and experiment with multi-
modal categorial grammars which include AB grammars as well. [Moo10]. Grail is a
modern, flexible and robust parser/automated theorem prover that has around 900
different category types for French language and works efficiently with the news-
paper articles. Categorial grammar is extracted semi-automatically from the Paris 7
tree-bank and its semantic lexicon maps combinations of words, part-of-speech tags,
and formulas to Discourse Representation Structures [KR93].4

The main task we are pursuing is to find the potential candidates for completing
the sentence using categorial grammars. Also, we would like to introduce different
psycholinguistic measurements for categorial proof nets in order to quantify the hu-
man performance phenomena. We will show why modeling these ranking is not as
straightforward as it may be seen.

In the first place, we introduce two algorithms for resolving incomplete utter-
ances: (i) the first algorithm is based on using AB grammars as the basis of our
syntactic formalism on the one hand, and adopting the notion of unification that
exists in RG algorithm (learning Rigid AB grammars) [BP90; Bus87] plus some dy-
namic programming technique on the other hand. This approach, to the best of our
knowledge, is a new research technique that can efficiently deal with incomplete
utterances with missing categories while benefiting from the good properties in cat-
egorial grammars. As we will see, the time complexity for the algorithm that we use
to find one missing category with n number of words is O(n4). (ii) the second algo-
rithm employs Constraint Handling Rules (=CHR) which ends up with some poten-
tial candidate(s) for correcting the utterances. In the second place, we introduce new
measurement on categorial proof nets such as Satisfaction Ratio and Activation Theory,
and we will also review Gibson’s distance-based approaches which we introduced
in the chapters 3 and 5.

The rest of the chapter is organized as follows: section 6.2 explains an algorithm
with O(n4) time complexity for finding a missing category in an incomplete utter-
ance by using unification technique as when learning categorial grammars, and dy-
namic programming as in Cocke–Younger–Kasami algorithm. In section 6.3, we
explain another algorithm which can find more than one missing categories in an

4As for the behaviour of the Grail parser on the sentences containing an unknown word we should
say that the wide-coverage version of the Grail parser uses a probabilistic model to propose one or
more of the contextually most likely options. It is worth mentioning that our proposal can be used for
finding missed words; although it can be adopted for finding categories for unknown words as well.

6.2. Sentence Completion: Algorithm A 81

incomplete sentence. Though, we have this at the cost of having an exponential time
complexity. We will see some of the good properties of this algorithm. In section 6.4,
we define new metrics for the possible candidates of a given incomplete sentence
which are motivated from Satisfaction Ratio and Activation Theory. In the last section,
we conclude and we explain possible future works.

6.2 Sentence Completion: Algorithm A

This section introduces an efficient algorithm with O(n4) time complexity for
finding a missing category in an incomplete utterance by using unification tech-
nique as when learning categorial grammars, and dynamic programming as in
Cocke–Younger–Kasami algorithm. Using syntax/semantic interface of categorial
grammar, this work can be used for deriving possible semantic readings of an in-
complete utterance. We will illustrate the problem with some running examples.

6.2.1 Definitions

In this subsection, some essential notions are discussed very quickly. We need these
notions and definitions for understanding the underlying technique that is used in
our algorithm.

Definition 6.1. Categories:

Taking Lambek’s notation [Lam58], categories in AB grammars can be written as
follows [MR12b, Chapter 1]:

L ∶∶= P ∣ (L/L) ∣ (L/L)

where P is the set of primitive category (such as np and S) while B/A and A/B
can be interpreted as the functors that take B as their arguments on its left and right-
hand side respectively; in the all mentioned cases, the result would be A. A function
Lex is a lexicon which maps words to a finite set of categories. An expression, that
is a sequence of words or terminals w1,⋯, wn is of category u whenever there exists
for each wi a category ui in Lex(wi) such that u1⋯un → u with the left or right elimi-
nation rule patterns, namely (A/B)B → A and B(B/A)→ A.

It is worth mentioning that variable categories are also used such as x1, x2,⋯, xn

(or y1, y2,⋯, yn) in addition to above fixed category–or what can be properly named
fixed learned categories with syntactic labels– for our future purposes in unification
phase. See following example a lexicon and the related process which ends up to S:

Example 6.1. Lexicon:

Jean : np aime: (np/S)/np Marie: np
Jean aime Marie&⇒ np, (np/S)/np, np&⇒ np, (np/S)&⇒ S

Definition 6.2. Structural trees with variable categories:

It is basically a tree-structured proof representation with variable categories in-
stead of having fixed categories. The only exception is fixed category S in the root

82
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations

of the tree which is naturally expected. Arguments will have unique variable while
the functors would get the argument category as its sub-formula in the right or left
side. All the possible structural trees of a sequence with 3 words are represented in
the figure 6.1. For convenient, when we use the term structural tree we mean the
structural tree with variable categories.

It can be easily noticed that the number of possible trees for a sequence of string
with n length would be catalan(n− 1)∗ 2n−1 in which catalan(n− 1) is the number of
possible binary trees and 2n−1 is the number of possible operations for / and / over
each binary sub-trees.5 In the case of a sentence with 3 unspecific words, the number
of all possible structural trees is 8 (= catalan(3 − 1) ∗ 22) as it can be observed in the
figure 6.1.

/
S

(I)

/
S/x1

(S/x1)/x2

w1

x2

w2

x1

w3

/
S

(II)

/
y1

y2

w1

y2/y1

w2

y1/S

w3

/
S

(III)

/
S/z1

z2

w1

z2/(S/z1)

w2

z1

w3

/
S

(IV)

/
t1

t1/t2

w1

t2

w2

t1/S

w3

/
S

(V)

S/m1

w1

/
m1

m1/m2

w2

m2

w3

/
S

(VI)

o1

w1

/
o1/S

o2

w2

o2/(o1/S)

w3

/
S

(VII)

S/v1

w1

/
v1

v2

w2

v2/v1

w3

/
S

(VIII)

w1

w1

/
w1/S

(w1/S)/w2

w2

w2

w3

FIGURE 6.1: Possible structural trees of a sequence w1w2w3

Words Fixed learned categories I II III IV V VI VII VIII

Jean np (S/x1)/x2 y2 z2 t1/t2 S/m1 o1 S/v1 w1

aime (np/S)/np x2 y2/y1 z2/(S/z1) t2 m1/m2 o2 v2 (w1/S)/w2

Marie np x1 y1/S z1 t1/S m2 o2/(o1/S) v2/v1 w2

TABLE 6.1: Unification of variable categories and fixed (learned) cat-
egories

Definition 6.3. Pattern matching:

Let t be a category which consists of at least one variable category and possibly
some fixed ones, and let L be a set of fixed categories, we say t is matchable with set
L, if there exist a substitution of t which is a category in L or a sub-category in L. For

5The Catalan(n) is given in terms of binomial coefficients by following formula:

Cn =
1

n+1(
2n
n) =

(2n)!
(n+1)! n!

=

n
∏
k=2

n+k
k for n ≥ 0.

6.2. Sentence Completion: Algorithm A 83

instance, if we define L = {np, S, S/(np/S)} and t = np/x1, then, since the substitu-
tion x1 ∶= S exists and np/S is a sub-category of S/(np/S) in L, we can say that t is
matchable with L6.

Definition 6.4. Derivation of variable categories:

Let X, Y and Z be categories with at least one primitive variable and A/B7 a
category with no primitive variable category (=fixed category). We can define, the
derived result of X and A/B as Y[X ∶= Y/(A/B)]; and the derived result of A/B and
X as Y[X ∶= (A/B)/Y] or A[X ∶= B]8; and finally the derived results of X and Y as
Z[Y ∶= (X/Z)] or Z[X ∶= (Z/Y)]. The notation t ∶= t

′

means substitution of t with t
′

.

Table 6.1 illustrates fixed learned categories (the second column from left), and
eight columns showing the variable categories (labeled from I to VIII) which are the
yields of derivation trees in the figure 6.1. We want to find one column, let say n
(between I to VIII), such that every line k of the fixed learned categories unifies with
the k line of the n column. It can be clearly observed that there is only one column
(among eight possible cases) which is unifiable with the fixed learned categories and
it is (VIII). By simple substitution we can observe that w1 = np, w2 = np, and since
(w1/S)/w2 matches with (np/S)/np. One can observe how the rest seven cases fail
in the unification phase. So, we can claim that structural tree (VIII) is unifiable with
the lexicon and more important, the substitutions of w1 = np and w2 = np in the
structural tree (VIII) yield its final derived tree.

It is worth mentioning that the technique described above can distinguish the
same word used with different categories, and we will also see how the technique
we propose can potentially be generalized to k valued AB grammars in the con-
clusion section. Having these basic notations will allow us to start describing our
techniques for dealing with uncompleted utterances.

6.2.2 Unification Technique of RG Algorithm

The unification technique which is used here is introduced for the first time in learn-
ing rigid AB grammars algorithm [BP90] and it has been re-studied and extended by
some researchers as well [Kan98; Bon00; BR14]. We are using almost the same tech-
nique, but with a new purpose which is dealing with incomplete utterances with
one missing category that to our knowledge is a new field to experience. Since we
have explained the essential notions, we just focus on some examples to highlight
the mechanism of unification in this section.

Let us consider the following lexicon which is adapted for our illustration pur-
pose, and it is assumed that the lexicon is already learned from the positive sentences
in corpus9. Now, we consider the following examples where a category is missing.

6As might be noted, pattern matching here is very similar to unification. We have adopted this no-
tation to make distinction between unification of two categories, and one category with some external
references.

7Notice that the same procedure with slight modification can be straightforwardly formulated for
the fixed category A/B.

8This new possible combination is introduced for the first time in this dissertation and it was absent
in the original paper [Mir].

9See [MR12b, Section 1.6.3] for technical details of learning AB rigid grammar; although, this is not
essential for grasping the content of this section.

84
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations

One missing determiner in the example 6.2 and one missing preposition in the ex-
ample 6.3:

Lexicon:
le , la : np/n dans : (s/s)/np poisson , mer: n nage : np/S vite : (np/S)/(np/S)

Example 6.2. * Poisson nage vite.

Example 6.3. * Le poisson nage vite la mer.

Let us start with the example 6.2. As it is illustrated in the figure 6.2 we have
illustrated only three cases. (Just note that without knowing the categories of words
there would be 160 (= catalan(3) ∗ 23 ∗ (3+ 1)) possible functor-argument tree struc-
tures that can be associated to the example 6.2. We can unify the gained variable
categories associated with the words in our structural trees with the one we have in
our lexicon (figure 6.2).

S

(A)

x2

x2/x1

?

x1

poisson

x2/S

x3

nage

x3/(x2/S)

vite

S

(B)

y2

y1

poisson

y1/y2

?

y2/S

y3

nage

y3/(y2/S)

vite

S

(C)

S/z2

(S/z2)/z1

?

z1

poisson

z2

z2/z3

nage

z3

vite

FIGURE 6.2: Three possible structural trees for the example 6.2

Words Learned categories A B C

poisson n x1 y1 z1

nage np/S x3 y3 z2/z3

vite (np/S)/(np/S) x3/(x2/S) y3/(y2/S) z3

? – x2/x1 y1/y2 (S/z2)/z1

TABLE 6.2: Unification of variable types and learned types

We can observe that structural tree (A) is unifiable and the solutions are as fol-
lows: x1 = n, x2 = np and x3 = np/S; while the missed category can be gained by
substitution of all occurrences of xi in variable category x2/x1 by its relevant fixed
category which yields np/n in our case. The suggested category with unification
technique on this tree can only be licensed if it exists in our lexicon (or some valid
external lexicon) which is the case. Notice that np/n corresponds to determiner cat-
egory.

Structural tree (B) is unifiable as well, and the unification technique yields n/np
as a potential solution for the missing category with the same analysis. Since this
solution does not exist in our lexicon it cannot be accepted. Structural tree (C) is not
unifiable and it is rejected without further analysis. We can analyze the example 6.3
with the same technique. The problem is a large number of the possible combina-
tions of its structural tree. We will see a treatment for this issue in the next section.

6.2. Sentence Completion: Algorithm A 85

6.2.3 AB grammars, Unification, and Dynamic Programming

As we saw in the previous section, for (unknown) n sequence of words the pos-
sible structural trees are (= catalan(n − 1) ∗ 2n−1) and also the number of positions
for a missing category is n + 1.10 The final number of different combinations of a
n sequence of words with one missing category is = catalan(n) ∗ 2n ∗ (n + 1) which
grows faster than exponential rate [Knu73]. Actually, we do not need to explore all
the possible structural trees since we know that some of our categories are fixed. In
this section, we illustrate how the problem in the example 6.3 can be tackled with
dynamic bottom-up parsing.

The idea behind our solution is to try all the (n+1) positions for the missing cate-
gory and avoiding searching all the possible structural trees by early pattern match-
ing and unification technique of RG algorithm using a modified version of CYK dy-
namic programming technique 11. With this strategy we can save each step results
for making decision as we go further. As we will see, this leads us to an efficient
computational complexity of O(n4) with n number of words. The table 6.3 is one of
the possible cases (out of eight) for parsing the example 6.3 assuming that x1 (=miss-
ing category) is between ’vite’ and ’la’. We start parsing step-by-step to illustrate
how it works. 12

1 np/n n np/S (np/S)/(np/S) x1 np/n n

Le poisson nage vite ? la mer

1 2 3 4 5 6 7

TABLE 6.3: Step (1) of parsing with unification for the example 6.3

The table 6.3 shows the initial phase of parsing, in which the fixed rigid learned
categories are assigned plus x1, a variable category, which is supposed to be speci-
fied.13

2 np – np/S ? x2[x1 ∶= ((np/S)/(np/S))/x2] ? x3[x1 ∶= x3/(np/n)] np

1 np/n n np/S (np/S)/(np/S) x1 np/n n

Le poisson nage vite ? la mer

1 2 3 4 5 6 7

TABLE 6.4: Step (2) of parsing with unification for the example 6.3

The table 6.4 shows step 2, i.e. all possible derivations of two sequential cate-
gories. Since, we have the variable categories, we can have the flexibility of working
with unification technique. For example, variables x2 and x3 would be a possible
derivation if x1 be substituted with x3/(np/n) and ((np/S)/(np/S))/x2 respectively.

10 For n number of words with one missing category, we will have n − 1 potential solutions between
the words, one in the beginning and another one in the end.

11See appendix for the pseudo-code of the algorithm
12 We have used bottom-up representation which is not very intuitive. This choice is made since it is

in alignment with chart representation in dynamic programming.
13Note that, in principle, we should assume all the possible positions of the unknown missing word

which is 7 in this case. We have shown only one of the cases that leads to a solution. Although, our
proposed algorithm would consider all the cases.

86
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations

Notice that we have included the question mark(=?) in the cells of x2 and x3 to
signify that we have not performed the pattern matching yet. Our algorithm bene-
fits from early pattern matching of variable categories with the lexicon or any exter-
nal reference that provides categories14. Note that all the possible substitutions for
x1, namely ((np/S)/(np/S))/x2 and x3/(np/n) fail in pattern matching phase; since,
there is no fixed type category (and even none subcategory) in our lexicon that can
be matched with them. Early matching is an efficient technique since it prevents un-
necessary computation. As depicted in step (3) in table 6.5 all possibilities for x1 (in
row 2) are ruled out.

3 S – ? x3[x1 ∶= (np/S)/x3] – x2[x1 ∶= x2/np]

2 np – np/S – – np

1 np/n n np/S (np/S)/(np/S) x1 np/n n

Le poisson nage vite ? la mer

1 2 3 4 5 6 7

TABLE 6.5: Step (3) of parsing with unification for the example 6.3

Again, we will follow the same procedure that we practiced for step 3 in table 6.5.
In this step, all the possible derivations of three possible sequential categories are
shown in each cell. The variable category (np/S)/x5 does not match with any fixed
category in our lexicon, so, it will be ruled out. Although, x6/np matches with some
categories in our lexicon so we will keep it as we go to the next step. We will con-
tinue the same procedure until we will reach to step 7 which is the last one. Table 6.6
shows the last step.

7
x5[x3 ∶= x5/np]
x4[x2 ∶= S/x4]

6 – –

5 x3[x1 ∶= S/x3] – –

4 S – – –

3 S – – – x2[x1 ∶= x2/np]

2 np – np/S – – np

1 np/n n np/S (np/S)/(np/S) x1 np/n n

Le poisson nage vite ? la mer

1 2 3 4 5 6 7

TABLE 6.6: Last step of parsing with unification for the example 6.3

In table 6.6, all the early pattern matching is finished, and we should perform the
unification. We can find two following results:

• In row 7, what we expect to see is S, so, x5 = S. By substitution we have
x3 = S/np, so, x1 = S/(S/np), since, this category does not exist in our lexicon it
is ruled out.

• The same as above, in row 7, what we expect to see is S. By substitution we
have x4 = S/S, so, x1 = (S/S)/np, since, this category exists in our lexicon it
accepted as a potential answer, and this is what we were initially looking for, a
determiner.

14Until now, Moot’s Grail [Moo10] provides around 900 categories for the French language. This can
be used for pattern-matching in this phase as the external reference.

6.2. Sentence Completion: Algorithm A 87

In this section, we informally analyzed how our modification to CYK algorithm
can be useful in finding a missing category using early pattern matching and unifi-
cation in learning RG algorithm.

6.2.4 Algorithm A

This subsection illustrates the algorithm with O(n4) time complexity. This algo-
rithm, as we stated before, is designed for finding a missing category in an incom-
plete utterance by using unification technique as when learning categorial gram-
mars, and dynamic programming as in Cocke–Younger–Kasami algorithm.

input : An array ’words’ and an array ’lexlist’ of the categories
output: An array [(pos,cat)] of the pairs indicating position and categories of

the missing words

result← [];
n← length(words);
for t ← 1 to n + 1 do

k← 1;
ylist← null;
n_words = insert(words, x[k], t);
// initializes the first row;
for r ← 1 to n + 1 do

p [1, r, 1] = lex(n_words[r], null, null)
end

for i ← 2 to n + 1 do

for j ← 1 to n − i + 2 do

for m ← 1 to i − 1 do

// performs early pattern matching and unification;
xlist = uni f y(p[m, j, 1], p[i −m, j +m, 1], lexlist, k) ;
if xlist != fail then

ylist = ylist + xlist ;
assign(p[i, j], xlist) ;
else p[i,j,1]=null

end

end

end

end

// substitutes the variables with its content;
for v ← k to 1 step − 1 do

t2← snd(ylist(v));
t3← trd(ylist(v));
if is_fixed(t3) then

substitute_all(ylist, t2, t3)
end

end

// selects all the appropriate candidates for missing categories;
for w ← 1 to len(ylist) do

t2← snd(ylist(v));
t3← trd(ylist(v));
if (is_fixed(t3) and t2=x[1] and is_in_lexicon(lexlist,t3)) then

result = result + [(t, t3)]
end

end

return (result)
end

Algorithm 1: An algorithm for finding one missing

6.2.5 Limitations of Algorithm A

One of the obvious limitations in our algorithm is that it only works with one miss-
ing category with O(n4) time complexity. Finding k fixed number of the missing cat-
egories within n words might suggest O(n3+k) time complexity. But, this is not the

88
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations

whole story, since the k number of missing words would bring the space complexity
and it grows with Catalan(k) rate which is even faster than exponential rate. All in
all, we should say, our solution for k fixed number of the missing category would
have a plausible time complexity but not a good space complexity as k increases.

6.3 Sentence Completion: Algorithm B

The algorithm that we introduce in this section is a procedure for resolving missing
categories in a given ungrammatical utterance along with suggesting some fixations.
We will show how Constraint Handling Rules [Frü95; Frü98] can be suitably ex-
ploited for this purpose. The main theme in this section is to provide mathematical
proof to show that our algorithm works computationally efficient. The study aims
to be an extension for finding more than one missing category in an incomplete sen-
tence at the cost of increasing the complexity of time to an exponential rate.

6.3.1 Syntax and Semantics of Constraint Handling Rules

Constraint Handling Rules (=CHR) is a declarative constraint logic programming
language. It is a rule-based language that works with constraints. The concrete
syntax of CHR depends on the language in which CHR is embedded. Since Prolog
has been acted as the host language in the most known implementations, we have
adopted the Prolog terminologies in describing and representing the concrete syntax
of CHR. So, we can represent constraint in CHR as terms in Prolog. Prolog’s terms
are of four types: atoms, numbers, variables, and complex terms (or structures).
Complex terms are built out of a functor followed by a sequence of arguments. So,
we can understand a constraint in CHR as a form of an atom or a predicate with
some arguments.

CHR consists of guarded rules that manipulate the query(goal). Goals can be
stated in Prolog as the multi-sets of constraints separated by the comma. The con-
straints in a goal are processed from left to right. We call an active constraint a
constraint that is under checking process for applicability of the rules. We say a rule
is fired if its heads matches and its guards are successfully checked. Based on the
kind of rule (as described below) different strategies can be followed, such as: keep-
ing constraints in the constraint store(=data structure for CHR), removing it, etc.

Having these basic notions, we can take a look at CHR rules. They are catego-
rized into three types. As follows, syntax and semantic of three types of CHR rules
will be described:

Simplification Rules

head1, . . . , headn ⇐⇒ guard1, . . . , guardm∣ body1, . . . , bodyk

If a query matches with the heads of a simplification rule, and the guards hold
too, then, simplification rules fire, and as the consequence of that it rewrite the
head1, . . . , headn into the body1, . . . , bodym.

Propagation Rules

head1, . . . , headn &⇒ guard1, . . . , guardm∣ body1, . . . , bodyk

6.3. Sentence Completion: Algorithm B 89

For a propagation rule to fire, the query must match with the heads, and the guards
must hold true. Rules add the constraints in the body to the constraint store, without
removing the heads.

Simpagation Rules

head1, . . . , headℓ / headℓ+1, . . . , headn ⇐⇒ guard1, . . . , guardm∣ body1, . . . , bodyk

For a simpagation rule to fire, the query must match all the rules with the heads, and
the guards must hold true. The ℓ constraints before the / are kept, as a in a propaga-
tion rule; the remaining n − ℓ constraints are removed.

6.3.2 Converting AB Grammar to CFG in Chomsky Normal Form

Before moving on, we introduce a very straightforward procedure for converting
our syntactic analysis in AB Grammar form to Context Free Grammar in Chom-
sky Normal Form. This conversion is essential since our CHR rules work in CFG
format. The following proposition shows the strong equivalence between the two
formalisms and also provides a procedure for converting AB Grammar to CFG in
Chomsky Normal Form. [MR12b, P.8]:

Proposition: Every AB grammar is strongly equivalent to a CFG in Chomsky
normal form.

Proof. Let G be the CFG defined by:

• Terminals T are the words of the AB grammar.

• Non Terminals NT are all the subtypes of the types appearing in the lexicon of
the AB grammar— a type is considered to be a subtype of itself.

• The production rules are of two kinds:

– X → a whenever X ∈ Lex(a)

– X → (X/Z)Z and X → Z(Z/X) for all X, Z ∈ NT —keep in mind that from the
CFG viewpoint (Z/X) and (X/Z) are both non terminal symbols.

This defines a CFG because the lexicon is finite, so there are only finitely many
subtypes of types in the lexicon, hence finitely many production rules. The deriva-
tion trees in both formalisms are isomorphic.

6.3.3 Algorithm B: Syntax of the Constraint Rules

In this section, a high-level informal description of the algorithm for finding the
missing syntactic categories of an ungrammatical utterance is described. We will
describe eventually some formal aspects of the algorithm with its properties and
mathematical proofs.

Let G′ be an AB Grammar, and let G be a CFG in Chomsky Normal Form which
is transformed from G′ by the procedure described in 6.3.2, and let u be a sequence
of syntactical non-terminal as input, and u⃗ = [A1, . . . , An] be the multiplicity vector
of u which is gained by counting the number of each category in u. Let c(A1, . . . , An)

90
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations

be a constraint–in CHR sense– that is built from u⃗ by copying u⃗ elements as the argu-
ments of predicate c. Any CHR program works with some rules which are stated in
the knowledge-base. We will build these rules from a G by the following procedure;
as it is indicated we have two type of descending rules and three types of ascending
rules.

CFG Rule Corresponding CHR Rule Rule Type

Ai → Ai Aj or c(A1, . . . , An)⇒ Aj > 0 , S ≥ 1 ∣
Descending (I)

Ai → Aj Ai Aj = Aj − 1 , c(A1, . . . , An).

Ai → Ai Ai
c(A1, . . . , An)⇒ Ai > 0 , S ≥ 1 ∣

Descending (II)
Ai = Ai − 1 , c(A1, . . . , An).

Ai → Aj Ak

c(A1, . . . , An)⇒ Aj > 0 ∨ Ak > 0 ∣

Ascending (I)
Aj = Aj − 1, Ak = Ak − 1,

Ai = Ai + 1 , c(A1, . . . , An).

Ai → Aj Aj
c(A1, . . . , An)⇒ Aj > 0 ∣ Aj = Aj − 2,

Ascending (II)
Ai = Ai + 1 , c(A1, . . . , An).

Ai → Ai Aj or c(A1, . . . , An)⇒ Aj > 0 , S = 0 ∣
Ascending (III)Ai → Aj Ai Aj = Aj − 1, Ai = Ai + 1,

c(A1, . . . , An), e(0, . . . , 0,−1Ai , 0, . . . , 0).

Ai → a Not Applicable Not Applicable

The ascending rules of type (III) generate new extra predicate which is called e in
the body of CHR rule. All of the arguments of e is zero except the ith component of e
which is ’-1’. In order to avoid the unwanted complexity which is naturally forced by
introducing this kind of extra CHR constraint(=predicate), we need to collect them
through simple merging operation techniques. This is the simple philosophy behind
introducing a new general type of rules that called collective. As we will see intro-
ducing collective rules will have no significant mathematical value for us, and it can
be considered just as a computational trick to make things mathematically simple.
(Recall that we need to provide mathematical proofs to show that our algorithm be-
have computationally well)

Name CHR Rule Type

General Rule
c(A1, . . . , An), e(B1, . . . , Bn)⇔ S ≥ 1 ∣

CollectiveCi = Ai + Bi (f or 1 ≤ i ≤ n),
c(C1, . . . , Cn).

To put things in the big picture, we can restate that, we have u as our goal, and
we have a number of CHR(G) rules built from G. We expect to have a sequence of
rules applications that will terminate. (or we can say in CHR sense that no rule will
be fired). After termination, we have a vector (or a constraint in CHR sense) that is
our solution. In other words, if the final constraint ends up with (1S, 0, . . . , 0) it indi-
cates to no missing categories; if it ends up with categories with negative numbers
it indicates the number of missing categories and categories with a positive number
indicates extra ones.

We have not yet discussed how the parsed trees can be gained as the side-effect

6.3. Sentence Completion: Algorithm B 91

of running CHR(G) rules. As we will see, properties (I) and (J) and their relevant
proofs provide a precise procedure for such a phenomenon. For now, we just pro-
vide two examples to see how CHR(G) rules can work in real running examples.

Case Study:

Here, the print-out of two queries and their results is illustrated. It is a Pro-
log/CHR implementation of some toy examples with a given following CFG15 with
relative clauses. The first example is a grammatical sentence while the second one is
ungrammatical.

CNF:
np→ pn.
np→ det,cn.
np’→ rc, vp.
np→ np, np’.
vp→ v[iv].
vp→ v[tv], np.
s→ np, vp.

Example 6.4. A magician who helped a girl laughs.

Input: [det, cn, rc, v(tv), det, cn, v(iv)].

Goal: c[(cn,2), (det,2), (pn,0), (rc,1), (v(iv),1), (v(tv),1), (np,0), (np’,0), (vp,0), (s,0)]

Chain of Rules Application:

c[(cn,1), (det,1), (pn,0), (rc,1), (v(iv),1), (v(tv),1), (np,1), (np’,0), (vp,0), (s,0),Ascending]

*Remark: det and cn are decreased by 1 and np is increased by 1.

c[(cn,0), (det,0), (pn,0), (rc,1), (v(iv),1), (v(tv),1), (np,2), (np’,0), (vp,0), (s,0),Ascending]

*Remark: det and cn are decreased by 1 and np is increased by 1.

c[(cn,0), (det,0), (pn,0), (rc,1), (v(iv),0), (v(tv),1), (np,2), (np’,0), (vp,1), (s,0),Ascending]

*Remark: v(iv) is decreased by 1 and vp is increased by 1.

c[(cn,0), (det,0), (pn,0), (rc,1), (v(iv),0), (v(tv),0), (np,1), (np’,0), (vp,2), (s,0),Ascending]

*Remark: v(tv) and np are decreased by 1 and vp is increased by 1.

c[(cn,0), (det,0), (pn,0), (rc,1), (v(iv),0), (v(tv),0), (np,0), (np’,0), (vp,1), (s,1),Ascending]

*Remark: np and v are decreased by 1 and S is increased by 1.

c[(cn,0), (det,0), (pn,0), (rc,0), (v(iv),0), (v(tv),0), (np,0), (np’,1), (vp,0), (s,1),Ascending]

*Remark: rc, vp are decreased by 1 and np′ is increased by 1.

c[(cn,0), (det,0), (pn,0), (rc,0), (v(iv),0), (v(tv),0), (np,0), (np’,0), (vp,0), (s,1),Descending]

*Remark: np′ is decreased by 1.

We can recognize the pattern (1s, 0, . . . , 0) terminated with the last constraint. This

15Notice that in order to increase the readability of rules the occurrence number of each category is
followed together with the label of its category in (Cat, #Cat) format.

92
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations

indicates to a corrected grammatical sentence.

Example 6.5. *A girl helped the child admires the magician.

Before going through this example we should keep in mind the two plausible
candidates as follows:

S1: A girl [who] helped the child admires the magician.
S2: A girl helped the child [who] admires the magician.

Now, we can take a look to the result of the algorithm.

Input: [det, cn, v(tv), det, cn, v(tv), det, cn].
Goal: c[(cn,3), (det,3), (pn,0), (rc,0), (v(iv),0), (v(tv),2), (np,0), (vp,0), (s,0)]

Chain of Rules Application:

c[(cn,2), (det,2), (pn,0), (rc,0), (v(iv),0), (v(tv),2), (np,1), (np’,0), (vp,0), (s,0),Ascending]

*Remark: det and cn are decreased by 1 and np is increased by 1.

c[(cn,1), (det,1), (pn,0), (rc,0), (v(iv),0), (v(tv),2), (np,2), (np’,0), (vp,0), (s,0),Ascending]

*Remark: det and cn are decreased by 1 and np is increased by 1.

c[(cn,0), (det,0), (pn,0), (rc,0), (v(iv),0), (v(tv),2), (np,3), (np’,0), (vp,0), (s,0),Ascending]

*Remark: det and cn are decreased by 1 and np is increased by 1.

c[(cn,0), (det,0), (pn,0), (rc,0), (v(iv),0), (v(tv),1), (np,2), (np’,0), (vp,1), (s,0),Ascending]

*Remark: v(tv) and np are decreased by 1 and vp is increased by 1.

c[(cn,0), (det,0), (pn,0), (rc,0), (v(iv),0), (v(tv),0), (np,1), (np’,0), (vp,2), (s,0),Ascending]

*Remark: v(tv) and np are decreased by 1 and vp is increased by 1.

c[(cn,0), (det,0), (pn,0), (rc,0), (v(iv),0), (v(tv),0), (np,0), (np’,0), (vp,1), (s,1),Ascending]

*Remark: np and vp are decreased by 1 and S is increased by 1.

c[(cn,0), (det,0), (pn,0), (rc,-1), (v(iv),0), (v(tv),0), (np,0), (np’,1), (vp,0), (s,1),Ascending]

*Remark: rc and vp are decreased by 1 and np′ is increased by 1.

c[(cn,0), (det,0), (pn,0), (rc,-1), (v(iv),0), (v(tv),0), (np,0), (np’,0), (vp,0), (s,1),Descending]

*Remark: np′ is decreased by 1.

We can see that relative clause number is ’-1’. As explained, this indicates a miss-
ing category of type relative clause. The question of how to put this missing category
in two possible places in the sentence is addressed in the property (I) and (J) of the
algorithm which is described in the appendix A.

6.3.4 Algorithm B: Semantics of the Constraint Rules

Let NT = {A1, . . . , An} be a set of non-terminals, in which, n is the size of NT.
Given a sequence u of NT∗, let us call the multiplicity vector of u the vector
u⃗ = (NoA1(u), . . . , NoAn(u)), where NoAi(u), is the number of occurrence of the

6.3. Sentence Completion: Algorithm B 93

non-terminal Ai in u.

Let G′ be an AB Grammar, and let G be a CFG in Chomsky Normal Form which
is transformed from G′ by the procedure described in 6.3.2. Now, let us define
CHR(G), a specific CHR program, consisting of a sequence of CHR re-write rules
built from G and u. Here are the meta-rules for turning production rules of G into
CHR re-write rules.

CFG Rule Meaning of Corresponding CHR Rule Rule Name

Ai → Ai Aj or If (πj(w⃗) > 0 and S ≥ 1)
Descending (I)

Ai → Aj Ai then decrease_by_one(w⃗, j).

Ai → Ai Ai
If (πi(w⃗) > 0 and S ≥ 1)

Descending (II)
decrease_by_one(w⃗, i).

Ai → Aj Ak

If (πj(w⃗) > 0 or πk(w⃗ > 0))

Ascending (I)
then increase_by_one(w⃗, i),
decrease_by_one(w⃗, j) and

decrease_by_one(w⃗, k).

Ai → Aj Aj

If (πj(w⃗) > 0) then
Ascending (II)increase_by_one(w⃗, i)

decrease_by_two(w⃗, j)

Ai → Ai Aj or If (πj(w⃗) > 0 and S = 1)
Ascending (III)

Ai → Aj Ai then increase_by_one(w⃗, i).
Ai → Aj Ai then decrease_by_one(w⃗, j).

Ai → a Not Applicable Not Applicable

Where i, j and k are assumed to be distinct; πi(w⃗) is the value of ith component
of w⃗; and increase_by_one(w⃗, i) increases by one the value of ith component of w⃗.
Before moving on, we adopts following definitions which we will extensively use in
our mathematical proofs in the appendix A:

Definition 6.5. Conversion:

A multiplicity vector u⃗ converts to v⃗ (u⃗ → v⃗), under a given CHR(G), if there ex-
ists a CHR rule such that the head of rule matches with u⃗ and also the guard of rule
holds. As the result of that, the CHR rule will fire, and v⃗ would be gained. We can
see this process as a simple replacement between two vectors by an instruction that
is coded in a CHR rule.

Definition 6.6. Reduction:

A given multiplicity vector u⃗ reduces to v⃗ when there is a sequence of conver-
sions from u⃗ to v⃗–under a given CHR(G)– that is a sequence u⃗ = t0, t1, . . . , tn = v⃗. We
write u⃗ ↝ v⃗ for u⃗ reduces to u⃗.

Definition 6.7. Saturation:

A multiplicity vector v⃗ with no possible conversion, under a given CHR(G), is
called saturated.

Definition 6.8. Candidate:

A multiplicity vector v⃗ is called a candidate, if the number of occurrence of start-
ing symbol S is greater than or equal to 1.

94
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations

Definition 6.9. Degree of multiplicity vector:

The number(=degree) of a multiplicity vector v⃗ is the sum of all its positive ar-
guments without counting the occurrence of start symbol (S). We write d(v⃗) for the
degree of multiplicity vector v⃗ which is obviously greater or equal to zero.

Definition 6.10. Reachability:

In a given CFG G, a non-terminal X is reachable to Y in h steps, if and only if:
∃u1,⋯, uh, ∈ NT∗ ∃α, β ∈ NT∗: Y = u0 ⇒ u1 ⇒ ⋯⇒ uh = αXβ.

Definition 6.11. Proper CFG:

A context-free grammar is said to be proper [Hop79; Nij80], if it has:

• no unreachable symbols: ∀X ∈ NT ∃α, β ∈ (NT ∪ T)∗ ∶ S
∗

⇒αXβ

• no unproductive symbols: ∀X ∈ NT ∃w ∈ T∗ ∶ X
∗

⇒w

• no e-productions: ¬∃X ∈ NT ∶ (X, ε) ∈ R

• no cycles: ¬∃X ∈ NT ∶ X
+

⇒X

We assume that all CFGs in our research are proper CFG, even when it is not explic-
itly declared.

Definition 6.12. Proper CHR:

A set of CHR rewrite rules is said to be proper, if it is prioritized in the following
order, namely, written in our knowledge-base from top to bottom:

• Collective Rule

• Descending Rules of Type I

• Descending Rules of Type II

• Ascending Rules of Type I

• Ascending Rules of Type II

• Ascending Rules of Type III

All the rules of the same type which is mentioned above should be internally
prioritized in terms of reachability number of the non-terminals in L.H.S of the cor-
responding CFG rule to the start symbol S, namely, all rules should be sorted from
high reachability numbers (of L.H.S non-terminals to start symbol S) to the low num-
bers appearing respectively in knowledge-base in top to bottom order. Again, here,
we assume that all CHRs in our research are proper CHR, even when it is not explic-
itly declared.

6.3. Sentence Completion: Algorithm B 95

6.3.5 Properties of the Algorithm B

The algorithm that we have provided has the following good properties. The math-
ematical proofs for each of the properties here are provided in the appendix A.

Property (A)

For every h, for every partial derivation tree t with height h, yield w and root r of
grammar G, such that, each leave label is of NT, there exists a sequence of CHR rules
that yields (1r, 0, . . . , 0) starting from w⃗.

Property (B)

For every partial derivation tree t with yield w and root r of grammar G, such that,
each leave label is of NT, there exists a sequence of CHR rules that yields (1r, 0, . . . , 0)
starting from w⃗.

Property (C)

For every sequence w of NT∗ produced by grammar G from r, there exists a se-
quence of CHR rules that yields (1r, 0, . . . , 0) starting from w⃗.

Property (D)

(A) If a multiplicity vector t⃗i converts to a vector ⃗ti+1 under only the descending rules
of a given CHR(G), then, d(⃗ti+1) < d(t⃗i).

(B) If a multiplicity vector t⃗i converts to a vector ⃗ti+1 under only the ascending
rules of a given CHR(G), then, d(⃗ti+1) ≤ d(t⃗i).

Property (E)

A multiplicity vector u⃗ with zero degree has no applicable CHR rule.

Corollary: A reduction from a multiplicity vector u⃗ to a vector v⃗ with zero degree is
terminated, since, v⃗ can not be converted to any vector.

Property (F)

For every h ≥ 1, for every non-terminal x with positive number of occurrences in u⃗,
and being reachable to a category y in h steps in a given proper CFG, G, there exists
a sequence of reduction u⃗ = th, th−1, . . . , t0 = v⃗ with length h, under a CHR(G), such
that, the number of y in v⃗ is increased by one.

Property (G)

There is a reduction sequence from any multiplicity vector u⃗ to a candidate vector v⃗
under a CHR(G) with G as proper CFG while d(v⃗) < d(u⃗).

Property (H)

For every h, under a proper CHR(G) and proper G, all possible sequence of reduc-
tions of u⃗ of degree h = d(u⃗) terminate.

Property (I)

If u⃗ ↝ t⃗h (u⃗ = t0, t1, . . . , th), and c1, . . . , ch be the sequence of CHR(G) rules such that
(for i = 0, 1, . . . , h − 1) ti+1 be conversion of ti under ci+1 CHR(G) rule, then:

(A) There exists a procedure on the basis of the sequence c1, . . . , ch for building
corrected parsed tree(s) of u.

96
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations

(B) The elements in multiplicity vector th suggests the number of missing cate-
gories if it is negative; not-yet-used categories if be positive; and finally, zero indi-
cates no-suggestion-so-far.

Property (J)

If u⃗ ↝ t⃗h (u⃗ = t0, t1, . . . , th = v⃗), and v⃗ be a saturated candidate and c1, . . . , ch be the se-
quence of CHR(G) rules such that (for i = 0, 1, . . . , h− 1) ti+1 be conversion of ti under
ci+1 CHR(G) rule, then:

(A) There exists a procedure on the basis of the sequence c1, . . . , ch for building
corrected parsed tree(s) of u.

(B) The elements in multiplicity vector th suggests the number of missing cat-
egories if it is negative; extra categories if it is positive; and finally, zero indicates
no-suggestion.

6.3.6 Limitations of Algorithm B

We have verified our algorithm for subjective/objective relative clauses by imple-
menting it with some toy examples in Prolog/CHR programming languages. The
implementation shows some good properties such as terminations and soundness
of the solutions for this particular test. However, we should admit that our algo-
rithm is not good in terms of its time complexity. The problem of finding n number
of missing categories by using our algorithm would have some solutions at the cost
of facing the exponential complexity. This basically happens due to this fact that we
should search all the possible search spaces for finding the solutions that suggest the
lesser number of missing words. Thus, our solution does not have the property of a
wide-coverage applicability.

6.4 Ranking Interpretations by Means of Categorial Proof

Nets

As discussed in the introduction, one of the main reason for choosing Categorial
Grammars is its excellent syntax-semantic interface. With the procedures described
in the chapter 2 we can gain the possible interpretations of incomplete sentences by
constructing different categorial proof nets and reading off the semantic readings as-
sociated with them. Now, we should look for a computational model to rank these
possible readings for an incomplete sentence, and of course, we would like to sup-
port our rankings in accordance to the psycholinguistic theories on the human lin-
guistic performances. A naive attempt would be to adopt theories introduced in the
chapters 3 and 5, namely Incomplete Dependency Theory and Dependency Locality
Theory on the categorial proof nets. This would be in general a good start point,
although, as we will see, is not efficient for some of the linguistic phenomena. In the
remaining part of this chapter, after integration of our algorithms with the IDT-based
and DLT-based complexity profiling, we will focus on two new things: (i) compu-
tational modeling for syntactic grammaticality judgment limited to the sentences
with missing categories. (ii) we will also investigate activation-based linguistic pref-
erences, and our new approach to model this phenomenon by means of categorial
proof nets.

6.4. Ranking Interpretations by Means of Categorial Proof Nets 97

6.4.1 Quantifying Preferences with Distance-based Theories

Now, we want to see how the outcome of our algorithms as the potential interpre-
tations can be ranked in alignment with the IDT-based and DLT-based complexity
profiling. Let us consider the following example as our toy example 16:

Example 6.6. *Every child fell cried.

6.6a. Every child fell [and] cried.
∀x(Child(x)→ Fell(x)∧Cried(x))

6.6b. Every child [who] fell cried.
∀x(Child(x)∧ Fell(x)→ Cried(x))

As one can observe, there are two candidates for fixing 6.6. The first one is to
use a conjunction and between two verbs as in the 6.6a and the second one is to use
a subjective relative pronoun who to fix the sentence as it is shown in 6.6b. The two
candidates do not have the same meaning at all. As in the 6.6a, we can not imagine
a child who cried and did not fall. However, in 6.6b, we can imagine a child who is
crying and she has not fallen, namely, crying for other reasons than falling.

In the first place, we will show how to fix the incomplete sentence 6.6 by per-
forming the algorithm (a) with the following lexicon: (we will see that the expected
results would be easily gained)

Lexicon:
Every : np/n child : n fell: np/S cried: np/S who: (n/n)/(np/S)

and: (np/S)/((np/S)/(np/S))

The tables 6.7 and 6.8 illustrates how the algorithm (a) can detect the two possi-
ble places and two different categories relevant to the places for the completion of
the sentence 6.6. We can find two following results by looking at the table 6.7:

• In row 5, what we expect to see is S, so, x5 = S. By substitution we have
x2 = (np/S)/(np/S), so, x1 = (np/S)/((np/S)/(np/S)).

• With the same procedure as above and starting from x6 = S, we can gain x1 =

((np/S)/(np/S))/(np/S)

Both categories in general scheme can be rewritten as X/(X/X) and (X/X)/X
which corresponds with the conjunction and as we expected.

5 x5[x4 ∶= np/x5] , x6[x5 ∶= np/x6]

4 – –

3 S – x4[x2 ∶= x4/(np/S)] , x5[x3 ∶= (np/S)/x5]

2 np – x2[x1 ∶= (np/S)/x2] x3[x1 ∶= x3/(np/S)]

1 np/n n np/S x1 np/S

Every child fell ? cried

1 2 3 4 5

TABLE 6.7: Parsing with unification for the example 6.6

16As we will see, this approach has it own limitation and we need better solutions. See sub-section
6.4.2 for more details

98
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations
5 S

4 np[x4 ∶= n] –

3 – x4[x3 ∶= n/x4] –

2 np x2[x1 ∶= n/x2] x3[x1 ∶= x3/(np/S)] –

1 np/n n x1 np/S np/S

Every child ? fell cried

1 2 3 4 5

TABLE 6.8: Parsing with unification for the example 6.6

In the table 6.8, we can also observe that x4 = n. By substitution we have
x3 = (n/n), so, x1 = (n/n)/(np/S). This would suggest the subjective relative clause
who as it exists in our lexicon.

Now, it is time to measure the preferences for the two readings by applying the
IDT-based and DLT-based complexity profiling technique that we introduced in the
chapters 3 and 5. Considering the figure 6.3 which illustrates the relevant categorial
proof nets for 6.6a and 6.6b, we can gain the linguistic complexities in the tables 6.9
and 6.10. Both IDT-based and DLT-based approaches show that 6.6b is more com-
plex than 6.6a. Thus, we can truly express that based on both theories, 6.6a would be
preferred over 6.6b. We do not have any psycholinguistic evidence for supporting
this prediction for the time being. Different readers of this dissertation may prefer
one of the readings and we do not want to deny this fact. However, we believe that
6.6b is a general claim while the 6.6b is a more specific claim and it needs a context
to be preferred.

6.6a
Every child fell and cried

3 2 4 2 0

6.6b
Every child who fell cried

3 4 4 2 0

TABLE 6.9: Calculation of the incomplete dependency number for
6.6a and 6.6b.

6.6a
Every child fell and cried

0 0 0 1 1

6.6b
Every child who fell cried

0 0 1 1 3

TABLE 6.10: Calculation of the dependency locality number for 6.6a
and 6.6b.

We need to highlight two important things: firstly, both IDT-based and DLT-
based complexity profiling techniques predict the preference of one specific meaning
over the other one. Secondly, even if some future experimental studies support this
prediction, this kind of preference modeling definitely fails if we take into account
other well-studied performance phenomena such as activation theory (discussed in
the next section). As we stated in the introduction, this evidently shows that non-
canonical sentences are way more complex than what we expect, and we need a
special kind of treatment for each case in order to capture them in our preferential
semantic modeling.

6.4. Ranking Interpretations by Means of Categorial Proof Nets 99

FIGURE 6.3: Proof net analyses for 6.6a and 6.6b.

100
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations

6.4.2 Quantifying Preferences with Activation Theory

In the previous subsection, we took into account some psycholinguistic distance-
based theories such as IDT and DLT for measuring the linguistic complexity of the
(possible) interpretations of the incomplete sentences. We investigated some exam-
ples regarding the self-center-embedding constructions in the chapter 5. The main
interest in these examples is that they would inspire modeling the short-term or
working memory. Broadly speaking, a category, let say X, would be temporarily
stored in working memory until another category such as X/S necessitates the re-
trieval of the X for the further integration process. We saw, in great details, how
DLT and IDT might be helpful in this regard.

In this section we concentrate on the examples that counterbalance these theo-
ries. Incomplete sentences such as 6.7a and 6.7b (taken from [Bla11a; Bla11b]) can
reflect this serious lacking.

Example 6.7.

6.7a. *The rat the cat saw died.

6.7b. *The rat the cat briefly saw died.

Experiment shows the preference of 6.7b over 6.7a [Vas+05]. The difficulty that
a human performer faces in comprehending 6.7b is lesser comparing to 6.7a , even
though, it is lengthier comparing to 6.7a.

The psycholinguistic theory that is responsible for explaining this phenomenon
is the activation theory [Vas+05; LV05] which is formalized in computational form in
the Adaptive Control of Thought-Rational (ACT-R) architecture [And+04]. This the-
ory construes parsing as an efficient series of the guided memory retrievals. We can
broadly understand this phenomenon by explaining the step-by-step human sen-
tence processing in our example. In 6.7a, after processing the first NP1, namely the
rat, a VP1 is expected. Again, after processing the second NP2, namely the cat, an-
other VP2 is expected. These VP1 and VP2 which are constructed on the fly, have a
base-level activation that decays as the time passes. Since no adverb is intervened
between NP2 and VP2, the VP2 (saw) would be integrated into the structure which
is built incrementally till now. This integration is not straightforward because the
reader should spend more time to examine different possibilities which would end
up to the connection NP1, VP1 and NP2, VP2. This would suggest that the expres-
sion the cat saw should be connected to NP1 with a proper relative clause. Finally, the
expression the rat [that] the cat saw would be built. In this scenario, the total retrieval
of NP1 and NP2 demands more time to what we will explain regarding 6.7b. We
assume this retrieval time t. In the case 6.7b, the adverb briefly intervenes. A part
of the adverb processing involves retrieving the newly created VP1. This retrieval
occurs faster in time t′ < t. This gives an explanation why 6.7b is processed faster
than 6.7a.

Now, let us see what happens if we want to apply the previous metrics, i.e. IDT-
based and DLT-based complexity profilings. Firstly, we should apply one of the
algorithm (a) or (b) to find the missing category in both sentences.17 Our general
linguistic knowledge suggests to add a word with a relative clause category be-
tween the rat and the cat. As we expect, our algorithm can correctly find the category

17We have not illustrated the relevant charting parse, since, it is a straightforward case and we have
explained in lengthy details three similar examples in this chapter.

6.4. Ranking Interpretations by Means of Categorial Proof Nets 101

((n/n)/(np/S)) as well.

The tables 6.11 and 6.12 show that both IDT-based and DLT-based complexity
profilings fails in prediction this phenomenon. As one can observe, the complexity
of 6.7b is higher than 6.7a. We described why this is evidently wrong on the basis of
the activation theory.

6.6a
The rat that the cat saw died

3 4 4 6 5 2 0

6.6b
The rat that the cat briefly saw died

3 4 4 6 5 5 2 0

TABLE 6.11: Calculation of the incomplete dependency number for
6.7a and 6.7b.

6.6a
The rat that the cat saw died

0 0 1 0 0 2 4

6.6b
The rat that the cat briefly saw died

0 0 1 0 0 1 2 4

TABLE 6.12: Calculation of the dependency locality number for 6.7a
and 6.7b.

Now, we have to do something to integrate this new phenomenon into our model
in a consistent way. For sure, we are not going to use the activation-based mod-
els [LV05] which use Adaptive Control of Thought-Rational (ACT-R) architecture
[And+04]. The reason for this strategy is that this framework does not provide the
logical formula that we need for representing the natural language meaning.

For modeling activation theory, we will be able to proceed to so some extent if
we model the conditions that trigger the activation phenomenon. With this strategy
this is quite possible, and yet plausible, to use the proof nets. In other words, we find
the typical linguistic expressions that cause activation. Using categorial grammars
aligns with our general strategy as we sketched out in the introduction.

Some studies [Bla11b; Bla11a; Hal01] suggest a good direction for integration
activation theory into IDT-based complexity profiling. Based on these studies, struc-
tures with more properties— satisfied early in the sentence— are preferred. This is
regularly the case with pre-modifiers that always activate the head. This would help
us to trigger our model for measuring this phenomenon. We reduce the effect of the
activation from our IDT-based complexity profiling as we will see in the following
definitions. We will implement a simple idea: the activator (the adverb for instance

in 6.7b) and activated (the VP for instance in 6.7b) words reduce the cognitive-

effort for sentence comprehension, since they are more predictable in the context,

and the human performance would need less cognitive-effort to do so. Let us see
how this works in the following definitions:

Definitions of the Activation-based Measuring

Definition 6.13. A word w is said to be an activator word when it is a pre-modifier
that activates the head phrase in an expression. The mentioned head is said to be the

102
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations

FIGURE 6.4: Proof net analysis for 6.7a.

6.4. Ranking Interpretations by Means of Categorial Proof Nets 103

FIGURE 6.5: Proof net analysis for 6.7b.

104
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations

activated word.

Definition 6.14. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. Let c − c′ be an
axiom in π such that c ∈ Ci and c′ ∈ Cj (i, j ∈ [1, n]). We define the activation weight of
the axiom c − c′ as 0 if wi ∶ Ci or wj ∶ Cj is an activator or activated word. Otherwise,
the activation weight of the axiom c − c′ is 1.

Definition 6.15. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. Let Ci0 be one of
the Ci (i ∈ [1, n]). The activation number of Ci0 in π, written as ANπ(Ci0), is the
sum of axioms activation weights c − c′ in π such that c ∈ (Ci0−m ∪ S) (m ≥ 0) and
c′ ∈ Ci0+n+1 (n ≥ 0).

Definition 6.16. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. We define
the Activation-based linguistic complexity of π, written fidat(π) by fidat(π) = (1 +

∑
n
i=1 ANπ(ci))

−1.

Definition 6.17. Given two syntactic analyses πi and πj, not necessarily of the
same words and categories, we say that πi is Activation-preferred to πj whenever
fidat(πi) > fidat(πj).

6.6a
The rat that the cat saw died

3 4 4 6 5 2 0

6.6b
The rat that the cat briefly saw died

3 4 2 3 2 2 2 0

TABLE 6.13: Calculation of the activation-based complexity measure-
ment for 6.7a and 6.7b.

Example: We can observe that the new metric works well in table 6.13. The total
sum of the activation numbers for 6.6b is 18, while the total sum of the activation
numbers for 6.6a is 24. This shows that 6.6b is less complex compared to 6.6a which
predicts correctly the human performance. The relevant proof nets (figure 6.6) is re-
drawn with colorful annotation of the weights. Axioms with the weight 1 are bold
in order to be distinguished easily from the axioms with the weight 0.

6.4.3 Quantifying Preferences with Satisfaction Ratio

We have focused on a narrow class of non-canonical utterances [PS01] which is in-
complete sentences with some missing categories. Some studies [DPD09; Pro10;
BP08; BP14], model the notion of the syntactic gradience. We can show this no-
tion in the example 6.8 (taken from [DPD09]) which shows different sentences or-
dered by decreasing grammatical acceptability. Each given judgment corresponds
to a percentage which estimates the acceptability compared with the reference sen-
tence, namely 6.8a.

6.4. Ranking Interpretations by Means of Categorial Proof Nets 105

FIGURE 6.6: Proof net analysis for 6.7b with the weights.

106
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations

Example 6.8.

6.8a. The employees have sent a very complete report to their employer. [100%]

6.8b. The employees have sent very complete report to their employer. [92.5%]

6.8c. The employees have sent a very complete report to. [67.5%]

6.8d. The employees a very complete report to their employer. [32.5%]

6.8e. The employees a very complete report. [5%]

The issue of modeling natural judgments of acceptability may be addressed by
the five postulates (see references as they are reported in the [DPD09]) outlined be-
low:

Postulate 1 (Failure Cumulativity): Gradience is impacted by by the number of
constraints it violates.

Postulate 2 (Success Cumulativity): Gradience is impacted by the number of
constraints it satisfies.

Postulate 3 (Constraint Weighting): Acceptability is impacted to a different ex-
tent according to which constraint is satisfied or violated.

Postulate 4 (Constructional complexity): Acceptability is impacted by the the
complexity of the constituent structure.

Postulate 5 (Propagation): Acceptability is propagated through the dominance
relationships; that is, an utterance’s acceptability depends on its nested constituents’
acceptability.

Before turning into the problem, we broadly provide a comparative review of the
above postulates. An interesting question (aligned with the aims of this dissertation)
is how one may apply those criteria on the categorial proof nets instead of other for-
malisms (such as Property Grammars[Bla00b; Bla00a]) which exist in the literature
for modeling the grammaticality judgment. Let us start with the postulates (1)-(3).
Since we are using categorial proof nets for our syntactic representation, the only
way to use these criteria is to re-interpret the axioms link in the proof nets as con-
straints. This idea is not misleading at all. Axiom-links make a sort of constraints
between the atomic categories in the words. But what about the violated/satisfied
constraints? Our suggestion is to re-interpret the axiom links that are connected to
the missing words as violated constraints and the axiom-links that are connected to
available words as successful constraints. This assumption regardless of its predic-
tive power (as we will see) can be supported by the fact that missing categories are
a kind of violation in the syntactic representation while the existing order (by the
assumption of in the problem we have stated) is in the grammatical order. Postulate
(4) has been heavily studied in chapters 3 and 5. But, it is not suitable for the prob-
lem that now we are dealing with in this chapter. Postulate (5) is not investigated
yet in this research, even though, capturing it to the categorial proof nets does not
seem to be a straightforward case.

6.5. Conclusion and Future Works 107

Definitions of the Satisfaction Ratio

Definition 6.18. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. Let c − c′ be an
axiom in π such that c ∈ Ci and c′ ∈ Cj (i, j ∈ [1, n]). We define the violation weight

of the axiom c − c′ as 1 if wi ∶ Ci or wj ∶ Cj is a missing word which is suggested (by
an external algorithm/source) to complete the sentence. Otherwise, the violation

weight of the axiom c − c′ is 0.

Definition 6.19. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. The violation
ratio of π, written as fvr(π), is the number of the all axiom-links minus the sum of
the violation weights in π divided by the number of the axiom-links.

Definition 6.20. Given two syntactic analyses πi and πj, not necessarily of the same
words and categories, we say that πi is SR-preferred to πj whenever fsr(πi) > fsr(πj).

Example 6.9.

6.9a. The employees have sent a very complete report to their employer. [100%]

6.9b. The employees have sent very complete report to their employer. [77%]

6.9c. The employees have sent a very complete report to. [70%]

6.9d. The employees a very complete report to their employer. [64%]

6.9e. The employees a very complete report. [35%]

Now we can apply the Satisfaction ratio function to the examples 6.8a-6.8e
rewritten here as 6.9a-6.9e with the new ratio in percentage. All the proof nets rel-
evant to the examples are illustrated in the figures 6.7-6.11. As we can observe our
definition correctly predicts the incremental syntactic acceptance that is gained in
[DPD09]. Here are the detailed calculations for each example:

Satisfaction Ratio for 6.9a is
17− 0

17
= 100%

Satisfaction Ratio for 6.9b is
17− 4

17
= 77%

Satisfaction Ratio for 6.9c is
17− 5

17
= 70%

Satisfaction Ratio for 6.9d is
17− 6

17
= 64%

Satisfaction Ratio for 6.9e is
17− 11

17
= 35%

6.5 Conclusion and Future Works

We explained two algorithms: the first algorithm focused on the problem of finding
one missing category in an incomplete utterance with O(n4) time complexity. We
may have following extensions to the first algorithm:

The first extension is moving to non-rigid categories, namely fixed number of
several categories assigned to each single word– instead of rigid ones. Since our ap-
proach benefits from chart parsing, this is, in principle, tractable. However, it will

108
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations

FIGURE 6.7: Proof net analysis for 6.9a with the (violation) weights.

6.5. Conclusion and Future Works 109

FIGURE 6.8: Proof net analysis for 6.9b with the (violation) weights.
The violation weights with the light-colored axioms have the value

’1’; the rest, i.e. the dark-colored axioms have the value ’0’ .

110
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations

FIGURE 6.9: Proof net analysis for 6.9c with the (violation) weights.
The violation weights with the light-colored axioms have the value

’1’; the rest, i.e. the dark-colored axioms have the value ’0’ .

6.5. Conclusion and Future Works 111

FIGURE 6.10: Proof net analysis for 6.9d with the (violation) weights.
The violation weights with the light-colored axioms have the value

’1’; the rest, i.e. the dark-colored axioms have the value ’0’ .

112
Chapter 6. Modeling Meanings Preferences IV:

Ranking Incomplete Sentence Interpretations

FIGURE 6.11: Proof net analysis for 6.9e with the (violation) weights.
The violation weights with the light-colored axioms have the value

’1’; the rest, i.e. the dark-colored axioms have the value ’0’.

6.5. Conclusion and Future Works 113

increase our computational complexity as it is expected. We can reduce our search
space when we have lexical ambiguities (several categories for each word of the in-
put sentence) by adopting super-tagging technique [BJ11]. The one which is very
suitable for our purpose is Moot’s super-tagger [Moo15] which is implemented in
the wide-coverage version of the Grail parser.

The second extension is to focus on several numbers of missing categories, in-
stead of just one. One of the possibilities would be using Jenson’s approach [Jen+83]
to build possible structural sub-trees of an incomplete utterance to find a limited
number of suggestion for the position of missing categories. Also, for finding the
exact missing words we can use some studies that bridge JDM with linguistic con-
straints [PL11]. Further study is required for more clarification.

The third extension is to tackle other classes of incomplete utterances such as
extra categories, misused categories, swap categories or any possible combinations.
The main problem with this approach is the need of having a computational mecha-
nism to know what is the exact problem of a sentence before solving it. For instance,
if we know that in a given utterance, we have the fixed numbers of missing words,
extra words, and swap categories, then we can tackle the problem more efficiently
with a different module that we might build.

The fourth extension is working on other families of categorial grammars such as
Lambek’s Calculus [Lam58] or some restricted version of Partial Proof Trees [JK97]
for categorial grammar. The main problem –that the author is still dealing with– is
that partial proof trees need to be restricted in order to work with Lambek’s calculus.
Moreover, designing a computationally decidable system with efficient complexity
for incomplete utterances is still an on-going research. Generally speaking, this line
of research can possibly be helpful in the domain of incoherence discourses. For
instance, writing-assistant systems with questionnaires, for some specific targeted
users such as patients suffering from specific mental disorders.

Our second algorithm benefits from Constraint Handling Rules and also the
structured objects instead of strings, which has a lower generative capacity. The
algorithm suggests generation trees as the solution of a given ungrammatical ut-
terance. The outcome of our algorithm provides constructions that are lacking in
other string-oriented error detecting approaches. CHRs can be easily implemented
by available CHR features which exist widely in the mainstream programming lan-
guages. The algorithm introduced here can be extended and adapted to tackle other
missing categories (for instance missing determiners and quantifiers); distinguish-
ing and fixing misused words; acquiring more complex grammars. Interesting stud-
ies that are not yet properly integrated to our current approach [DB04b; DB05; AD16;
DM12] can be beneficial for our future expansion.

Finally, we introduced two new metrics of the linguistic complexity for the dif-
ferent candidates that our algorithms can produce from a given incomplete sentence.
Since we use categorial grammar as our syntactic analysis and categorial proof nets
as our parsing, it was possible to introduce Activation Theory and Satisfaction Ratio
for measuring the linguistic preferences in non-canonical utterances. This bridging
between linguistic theories and the categorial proof nets would be integrated into
our final model as we will discover in the next chapter.

115

Chapter 7

Putting It All Together: Preference
over Linguistics Preferences

You must understand there is more
than one path to the top of the
mountain.

Miyamoto Musashi

7.1 Introduction

Our computational preferential modeling for natural language meanings has been
explicated in the chapters 3-6. Now, we have to consider the problem of the inte-
gration of the suggested metrics and measurements in order to make them a unique
model that can handle different problems instead of having different solutions of
the different island of sub-problems. After all, this aggregation of the preferences can
truly be considered as another problem of preference modeling. In a meta-theoretical
sense, it is a meta-preference modeling over some available object-preference mea-
surements by means of the categorial proof nets. In other words, we assume that
the human choice is not just the result of preferences but it is a preference over other
linguistic preferences.

The rest of the chapter is organized as follows: section 7.2 provides an overview
of the preferential metrics that we have introduced in this dissertation. Section 7.3
introduces some procedures for integrating the linguistic difficulty metrics. In the
section 7.4, we provide a general scheme that we need to make the final preference
over different linguistic preferences. Section 7.5 provide some examples, to illus-
trate how our integrated procedure really works. We count the deficiencies of our
proposal in the section 7.6, and in the last section, we conclude and we explain pos-
sible future works.

7.2 Complexity Metrics: Summaries

In this section, we summarize some of the computational preferential metrics that
has been explicated in the chapters 3-6.

7.2.1 Quantifiers Order Measurement

We can gain quantifiers order measurement as follows:

116 Chapter 7. Putting It All Together: Preference over Linguistics Preferences

1. Given the logical formula which corresponds to the left-to-right reading of the
sentence; add an index from 1 to n to each quantifier from left to right obtaining
Q1, Q2 . . . , Qn−1, QnF call this formula Φ.

2. By the procedure introduced in [HS87, p.49-53], derive all the valid quantifier
(scope) readings of the sentence.

3. Let ξ1, . . . , ξm be rewritten formulas obtained from the previous step.1

4. Calculate for each ξi the penalty of quantifiers re-ordering as

fqr(ξi) =
1

∑
n
j=1 ∣ j − Pos(Qj, ξi) ∣ +1

in which Pos(Qj, ξi) is the occurrence position of the quantifier Qj in ξi counted
from left to right and incremented from number one.

7.2.2 Incomplete Dependency Theory

We can rewrite IDT-based complexity profiling [Mor00] by the following definitions:

Definition 7.1. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. Let Ci0 be one
of the Ci (i ∈ [1, n]). The incomplete dependency number of Ci0 in π, written as
IDπ(Ci0), is the count of axioms c − c′ in π such that c ∈ (Ci0−m ∪ S) (m ≥ 0) and
c′ ∈ Ci0+n+1 (n ≥ 0).

Definition 7.2. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. We de-
fine the IDT-based linguistic complexity of π, written fidt(π) by fidt(π) = (1 +

∑
n
i=1 IDπ(Ci))

−1.

Definition 7.3. Given two syntactic analyses πi and πj, not necessarily of the same
words and categories, we say that πi is IDT-preferred to πj whenever fidt(πi) >
fidt(πj).

7.2.3 Dependency Locality Theory

Here are the relevant definitions of the DLT-based proposal on the basis of the cate-
gorial proof nets:

Definition 7.4. A word w is said to be a discourse referent whenever it is a proper
noun, common noun or verb.

1As we discussed in 3.3.2, we can also gain the valid quantifier scope readings from semantic read-
ings of the proof-nets (for Multiplicative Linear Logic). In this case we would have ξ1, . . . , ξm which
corresponds to their relevant syntactical proof-nets as π1, . . . , πm. Since, Multiplicative Linear Logic
provability is NP-complete, we have not proposed this solution as the proper treatment. Further in-
vestigation is required.

7.2. Complexity Metrics: Summaries 117

Definition 7.5. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. Let c − c′ be an
axiom in π such that c ∈ Ci and c′ ∈ Cj (i, j ∈ [1, n]). We define the length of axiom
c − c′ as the integer i + 1− j.

Definition 7.6. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. Let Ci0 be one
of the Ci, and let consider axioms c − c′ with c in Ci0 and c′ in some Ci0−k. Let us
consider the largest k for which such an axiom exists — this is the longest axiom
starting from Ci0 with the previous definition. The dependency locality number of
Ci0 in π, written as DLπ(Ci0), is the number of discourse referent words between
wi0 ∶ Ci0 and wi0−k ∶ Ci0−k. The bound words, i.e. wi0 ∶ Ci0 and wi0−k ∶ Ci0−k should
also be counted. Alternatively, it may be viewed as k + 1 minus the number of non-
discourse references among those k + 1 words.

Definition 7.7. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. We de-
fine the DLT-based linguistic complexity of π, written fdlt(π) by fdlt(π) = (1 +

∑
n
i=1 DLπ(Ci))

−1.

Definition 7.8. Given two syntactic analyses πi and πj, not necessarily of the same
words and categories, we say that πi is DLT-preferred to πj whenever fdlt(πi) >
fdlt(πj).

7.2.4 Activation Theory

Definition 7.9. A word w is said to be an activator word when it is a pre-modifier
that activates the head phrase in an expression. The mentioned head is said to be the
activated word.

Definition 7.10. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. Let c − c′ be an
axiom in π such that c ∈ Ci and c′ ∈ Cj (i, j ∈ [1, n]). We define the activation weight of
the axiom c − c′ as 0 if wi ∶ Ci or wj ∶ Cj is an activator or activated word. Otherwise,
the activation weight of the axiom c − c′ is 1.

Definition 7.11. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. Let Ci0 be one of
the Ci (i ∈ [1, n]). The activation number of Ci0 in π, written as ANπ(Ci0), is the
sum of axioms activation weights c − c′ in π such that c ∈ (Ci0−m ∪ S) (m ≥ 0) and
c′ ∈ Ci0+n+1 (n ≥ 0).

Definition 7.12. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. We define
the Activation-based linguistic complexity of π, written fidat(π) by fidat(π) = (1 +

∑
n
i=1 ANπ(Ci))

−1.

118 Chapter 7. Putting It All Together: Preference over Linguistics Preferences

Definition 7.13. Given two syntactic analyses πi and πj, not necessarily of the
same words and categories, we say that πi is Activation-preferred to πj whenever
fidat(πi) > fidat(πj).

7.2.5 Satisfaction Ratio

Definition 7.14. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. Let c − c′ be an
axiom in π such that c ∈ Ci and c′ ∈ Cj (i, j ∈ [1, n]). We define the violation weight

of the axiom c − c′ as 1 if wi ∶ Ci or wj ∶ Cj is a missing word which is suggested (by
an external algorithm/source) to complete the sentence. Otherwise, the violation

weight of the axiom c − c′ is 0.

Definition 7.15. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S. The Satisfaction
ratio of π, written as fvr(π), is the number of the all axiom-links minus the sum of
the violation weights in π divided by the number of the axiom-links.

Definition 7.16. Given two syntactic analyses πi and πj, not necessarily of the same
words and categories, we say that πi is SR-preferred to πj whenever fsr(πi) > fsr(πj).

7.3 Integration of Linguistic Difficulty Metrics

We study some general strategies to integrate different linguistic complexity metrics
that we have introduced up to now.

7.3.1 Integrating Dependency Locality and Incomplete Dependency The-
ories

Can DLT-based complexity profiling supersede the IDT-based complexity profiling?
This question is crucial at this stage. The answer to this question is unfortunately
No. We have to explain why, and also we should investigate new ways to overcome
this problem. In the section 5 we showed that DLT-based complexity profiling can
predict both referent-sensitive and some of the non-referent-sensitive phenomena.
To count them, we can highlight structures with embedded pronouns as the referent-
sensitive phenomenon, and garden paths, unacceptability of center embedding, preference
for lower attachment, and passive paraphrases acceptability as the non-referent-sensitive
phenomena. We will introduce one linguistic phenomenon that DLT-based complex-
ity profiling can not support while IDT-based complexity profiling can do so, and it
is Heavy Noun Phrase Shift [Mor00] as in the following example:

Example 7.1.

7.1a. John gave Bill the painting that Mary hated.

7.1b. John gave the painting that Mary hated to Bill.

The preference in these kinds of the sentences is not in different possible ambigu-
ous readings, since the expressions are synonymous which holds semantics constant.
The real preference is on the syntactic forms in which 7.1a is preferred to 7.1b. As

7.3. Integration of Linguistic Difficulty Metrics 119

we can observe in the table 7.1, the IDT-based complexity for 7.1b is more complex
than 7.1a while, in contrary, in the table 7.2, this is reversed. This shows the failure
of DLT-based complexity profiling for Heavy Noun Phrase Shift.

7.1a
John gave Bill the painting that Mary hated

2 2 1 1 2 2 3 0

7.1b
John gave the painting that Mary hated to Bill

2 2 2 3 3 4 1 1 0

TABLE 7.1: Calculation of the incomplete dependency number for
7.1a and 7.1b.

7.1a
John gave Bill the painting that Mary hated

0 2 0 0 0 1 0 2

7.1b
John gave the painting that Mary hated to Bill

0 2 0 0 1 0 2 0 0

TABLE 7.2: Calculation of the dependency locality number for 7.1a
and 7.1b.

The above problem can be overcome if we apply the following procedure for
measuring a combined IDT/DLT-based complexity profiling:

Definition 7.17. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn

— that is a categorial proof net with conclusions (Cn)
⊥, ..., (C1)

⊥, S— such that the
syntactic categories of the subjective pronouns, objective pronouns, reflexive pro-
nouns and possessive pronoun are assigned as np. We can calculate the com-
bined IDT/DLT-based complexity measurement of the π as the lexicographic orders
(fidt(π), fdlt(π)).

We should notice that the type assignment are not for deriving the logical for-
mula. It is for measuring the syntactic linguistic complexity measurement. The nor-
mal type shifted assignments are needed to get the logical formula. We will explore
some examples in section 7.5 to investigate how this procedure really works on the
real examples.

Definition 7.18. Let π1 and π2 be two syntactic analyses of s1 and s2, respectively
which are not necessarily of the same words and categories. The s1 is IDT/DLT-
preferred over s2 if (fidt(π1), fdlt(π1)) > (fidt(π2), fdlt(π2)).

7.3.2 Integrating Incomplete Dependency and Activation Theories

Can Activation-based complexity profiling supersede the IDT-based complexity pro-
filing? The answer to this question is Yes. The definition of Activation-based com-
plexity is designed in a way that IDT-based complexity profiling can be considered
as a specific case of it. The proof is straightforward if we assign 1 as the activation
weight to all the axiom links in a categorial proof nets, we can easily observe that it
would be changed to the IDT-based complexity profiling measurement.

120 Chapter 7. Putting It All Together: Preference over Linguistics Preferences

FIGURE 7.1: Proof net analysis for 7.1a.

7.3. Integration of Linguistic Difficulty Metrics 121

FIGURE 7.2: Proof net analysis for 7.1b.

122 Chapter 7. Putting It All Together: Preference over Linguistics Preferences

FIGURE 7.3: The General Scheme for Integrating the Rankings.

7.4. Preference over Linguistic Preferences: A General Scheme 123

7.3.3 Integration of the Satisfaction Ratio

We do not need to design any integration procedure for the Satisfaction Ratio. This is
due to this fact that Satisfaction Ratio is a specific task which is measuring some in-
complete sentences with missing categories (interpreted as violation of grammatical
rules) based on referencing a complete sentence.

7.4 Preference over Linguistic Preferences: A General

Scheme

After understanding the philosophy behind the integration of difficulty measure-
ments in the previous section, we can get back to the general scheme. Figure 7.3
shows the general scheme that we have to provide as a unique model for quanti-
fying the final preference over the linguistic preferences introduced throughout the
chapters. We also investigate our procedure by exploring some examples in the next
section.

Definition 7.19. Let π be a a syntactic analysis of w1,⋯, wn with categories C1, . . . , Cn,
that is a categorial proof net with conclusions (Cn)

⊥, ..., (C1)
⊥, S, such that:

i) the syntactic categories of the subjective pronouns, objective pronouns, reflex-
ive pronouns and possessive pronoun are assigned as np;

ii) the syntactic categories of the quantifiers, determiners and possessive adjec-
tives are assigned as np/n;

and let Π = {π1,⋯, πn} be the set of all possible categorial proof-net analyses, af-
ter assigning proper type-shifted categories (such as determiners, quantifiers and
subjective/objective pronouns,...), then we can have the following calculations:

1. Calculate the DLT-based complexity measurement of the π as fdlt(π).

2. Calculate the IDT/Activation-based complexity measurement of the π as
fidat(π).

3. Calculate the IDT/Activation/DLT-based combined complexity measurement
of the π as the lexicographic orders (fidat(π), fdlt(π)).

4. Calculate the Weighted Coercion by generating the set of compound orders for
each coercion weight fci

[see the procedure in 4.5.2] as ((fidat(π), fdlt(π)), fci
).2

5. Calculate the Quantifiers Re-order Measurement by generating the set of
compound orders for each quantifier scope reading as ξi ∈ [[Π]] as
(((fidat(π), fdlt(π)), fci

), fqr(ξi)).

Definition 7.20. Let π1 and π2 be two syntactic analyses of s1 and s2, respec-
tively which are not necessarily of the same words and categories and fulfill the
conditions (i) and (ii) of the previous definition. Let ξ1 and ξ2 be two quanti-
fier scope readings, and fc1

and fc2 two coercion weights of s1 and s2, respec-
tively. The s1 is overall-preferred over s2 if (((fidat(π1), fdlt(π1)), fc1

), fqr(ξ1)) >
(((fidat(π2), fdlt(π2)), fc2), fqr(ξ2))

2As we saw in 4.5.2, we are restricted to just one set of coercion wights for each sentence in this dis-
sertation. Although, this simple assumption works in this practice, it is simply far from real situation
in the natural language. This shortcoming is considered as a future study case and deserve further
investigation.

124 Chapter 7. Putting It All Together: Preference over Linguistics Preferences

7.5 Some Examples

In this section, we examine the procedures 7.19 and 7.20 over different examples in-
troduced up to now. Our target is to show that the unified model can preserve the
same preferences that are linguistically expected. We repeat the examples for conve-
nience, but, we just refer to the available calculations throughout chapters.

We start with the example 7.1a and 7.1b repeated here as 7.2a and 7.2b, respec-
tively.

Example 7.2.

7.2a. John gave Bill the painting that Mary hated.

7.2b. John gave the painting that Mary hated to Bill.

Figures 7.1 and 7.2 show the syntactic categorial proof nets for the exam-
ples 7.2a and 7.2b which we label as π1 and π2, respectively. As we can ob-
serve (fidat(π1), fdlt(π1)) = (0.07, 0.17) and (fidat(π2), fdlt(π2)) = (0.05, 0.17). Thus,
(fidat(π1), fdlt(π1)) > (fidat(π2), fdlt(π2))which correctly predicts the syntactic pref-
erence of 7.2a over 7.2b. Notice that we have no quantifier and determiner, and this
would not change the overall preference.

The next example is 3.4 repeated here as 7.3.

Example 7.3. Every researcher of a company saw a sample.

7.3a. ∀x(Res(x)∧∃y(Com(y)∧ o f (x, y))→ ∃z(Sam(z)∧ Saw(x, z)))

7.3b. ∃z(Sam(z)∧∀x(Res(x)∧∃y(Com(y)∧ o f (x, y)→ Saw(x, z)))

7.3c. ∃y(Com(y)∧∀x(Res(x)∧ o f (x, y)→ ∃z(Sam(z)∧ Saw(x, z)))

7.3d. ∃y(Com(y)∧∃z(Sam(z)∧∀x(Res(x)∧ o f (x, y))→ Saw(x, z)))

7.3e. ∃z(Sam(z)∧∃y(Com(y)∧∀x(Res(x)∧ o f (x, y))→ Saw(x, z)))

7.3f. ?? ∀x(Res(x)∧∃z(Sam(z)∧ o f (x, y))→ ∃y(Com(y)∧ Saw(x, z)))

Figures 3.2-3.6 show the syntactic categorial proof nets for the meaning represen-
tation of the examples 7.3a-7.3e which we label as π1-π5, respectively. Assigning the
np/n to the quantifiers and determiners would give us the same syntactic analyses
for all the readings as below:

(fidat(π1), fdlt(π1)) = (0.05, 0.17)

(fidat(π2), fdlt(π2)) = (0.05, 0.17)

(fidat(π3), fdlt(π3)) = (0.05, 0.17)

(fidat(π4), fdlt(π4)) = (0.05, 0.17)

(fidat(π5), fdlt(π5)) = (0.05, 0.17)

After calculation of the quantifier ordering cost, we would have:

((fidat(π1), fdlt(π1), fqr(π1)) = ((0.05, 0.17), 1)

((fidat(π2), fdlt(π2), fqr(π2)) = ((0.05, 0.17), 0.2)

7.5. Some Examples 125

((fidat(π3), fdlt(π3), fqr(π3)) = ((0.05, 0.17), 0.33)

((fidat(π4), fdlt(π4), fqr(π4)) = ((0.05, 0.17), 0.2)

((fidat(π5), fdlt(π5), fqr(π5)) = ((0.05, 0.17), 0.2)

The above complex lexicographical orders predict exactly what we discussed in
the section 3. Notice that the effect of weighted coercions that we do not have it in
this example is constant and it would not change the final result of the preference.
The next example is 3.6 repeated here as 7.4.

Example 7.4. Everyone repairs something expertly.

7.4a. exp(∀x∃yRepair(x, y))

7.4b. exp(∃y∀xRepair(x, y))

Figures 3.7 shows two syntactic categorial proof nets for the meaning represen-
tation of the examples 7.4a and 7.4b which we label as π1 and π2, respectively. As-
signing the np/n to the quantifiers and determiners would give us the same syntactic
analyses for all the readings as below:

(fidat(π1), fdlt(π1)) = (0.13, 0.33),

(fidat(π2), fdlt(π2)) = (0.13, 0.33)

After calculation of the quantifier ordering cost, we would have:

((fidat(π1), fdlt(π1), fqr(π1)) = ((0.13, 0.33), 1)

((fidat(π2), fdlt(π2), fqr(π2)) = ((0.13, 0.33), 0.33)

The above complex lexicographical orders correctly predict the preference 7.4a
over 7.4a. The next examples are 4.2a and 4.2b repeated here as 7.5a and 7.5b, re-
spectively.

Example 7.5.

7.5a. A woman finished Villani’s book.

7.5b. ?A goat finished Villani’s book.

Assigning the np/n to the determiner would give us the same syntactic analyses
for the examples 7.5a and 7.5b which we label as π1 and π2, respectively:

(fidat(π1), fdlt(π1)) = (0.10, 0.33)

(fidat(π2), fdlt(π2)) = (0.10, 0.33)

The calculation of the quantifier effect would not make any preference as it can be
observed in the final orders:

fqr(π1) = fqr(π2) = 1

The calculation of the weighted coercion (see detailed discussion in 4.5.2) would
finally provide the final preferences as below:

(((fidat(π1), fdlt(π1)), f
reading
c), fqr(π1)) = (((0.10, 0.33), 680), 1)

126 Chapter 7. Putting It All Together: Preference over Linguistics Preferences

(((fidat(π1), fdlt(π1)), f
writing
c), fqr(π1)) = (((0.10, 0.33), 210), 1)

(((fidat(π2), fdlt(π2)), f
eating
c), fqr(π2)) = (((0.10, 0.33), 30), 1)

As we can observe the reading A woman finished (reading) Villani’s book is preferred
over A woman finished (writing) Villani’s book. Also, the reading A goat finished (eating)
Villani’s book has less confident weight comparing to the first two readings, and this
is exactly what we expect (see detailed discussion in 4.5.2).

The next examples are 5.1b and 5.1c repeated here as 7.6a and 7.6b, respectively.

Example 7.6.

7.6a. The reporter [who the senator [who John met] attacked] disliked the editor].

7.6b. The reporter [who the senator [who I met] attacked] disliked the editor].

Figures 5.5 and 5.7 show the syntactic categorial proof nets for the exam-
ples 7.6a and 7.6b which we label as π1 and π2, respectively. As we can ob-
serve (fidat(π1), fdlt(π1)) = (0.02, 0.07) and (fidat(π2), fdlt(π2)) = (0.02, 0.08). Thus,
(fidat(π2), fdlt(π2)) > (fidat(π1), fdlt(π1))which correctly predicts the syntactic pref-
erence of 7.6b over 7.6a. Notice that we have an equal constant quantifier and deter-
miner effect, and this would not change the overall preference.

The last examples are 6.7a and 6.7b repeated here as 7.7a and 7.7b, respectively.

Example 7.7.

7.7a. *The rat the cat saw died.

7.7b. *The rat the cat briefly saw died.

Figures 6.4 and 6.6 show the syntactic categorial proof nets for the exam-
ples 7.7a and 7.7b which we label as π1 and π2, respectively. As we can ob-
serve (fidat(π1), fdlt(π1)) = (0.04, 0.11) and (fidat(π2), fdlt(π2)) = (0.05, 0.11). Thus,
(fidat(π2), fdlt(π2)) > (fidat(π1), fdlt(π1))which correctly predicts the syntactic pref-
erence of 7.6b over 7.6a. Notice that we have an equal constant quantifier and deter-
miner effect, and this would not change the overall preference.

7.6 Limitations

There are two limitations with respect to our proposal for aggregating the linguistic
preferences. The first limitation is that our integrated model assumes that some fac-
tors are constant when we measure a specific linguistic phenomenon—as we saw in
the examples of this chapter. Even if we change all the factors at the same time (with
some kind of modeling) we would lack some linguistic/psycholinguistic theories to
support our proposal. Our simple strategy of using compound lexicographical order
seems good for modeling the psycholinguistic theories introduced up to now, but, it
is not powerful enough for real-life complicated situations.

The second limitation is more general than the first one and it is the lack of a data-
set for human language preferences. Ideally, one would have a data-set annotated
for human-preferred readings of various naturally occurring utterances and then
evaluate the proposed method to see how it would work over that data-set. This
seems as a separate project that would be more interesting if it could be merged with

7.7. Conclusion 127

the natural language inference data-sets [Cha+17b]. For instance to evaluate those
natural language inferences that are dependent on the meaning preferences. This is
investigated in some studies and seems like an important task in natural language
processing and computational linguistics[DGrt].

7.7 Conclusion

We discussed the problem of aggregation of the linguistic preferences. We tried
to capture this notion by a procedure that uses the lexicographical orders of the
linguistic/psycho-linguistic metrics. We first studied how the integration can be
possible for the pairs of metrics and we eventually built the mentioned procedure.
In the previous section, we suggested building a data-set for human language pref-
erences and we discussed very generally how this idea would help to evaluate the
natural language inferences that are dependent on the meaning preferences. This
obviously goes beyond this research and demands new line of surveys as our future
studies.

129

Chapter 8

Conclusion

A man cannot understand the art he is
studying if he only looks for the end
result without taking the time to delve
deeply into the reasoning of the study.

Miyamoto Musashi

In this work, we have addressed (part of) the problem concerned with a human-
like ranking of the meaning interpretations of ambiguous natural language utter-
ances. The type of the sentences that we worked on includes canonical sentences
and also the sentences with only missing categories as one potential type of the
non-canonical utterances. In order to fulfill this goal, we suggested to use/ex-
tend Categorial Grammars for our syntactical analysis and Categorial Proof Nets
as our syntactic parse. We also used Montagovian Generative Lexicon for deriving
multi-sorted logical formula as our semantical meaning representation. This sim-
ple strategy let us apply different linguistic/psycholinguistic metrics quite easily in
the syntactic, lexical and semantic layers—as we did by introducing different proce-
dures/algorithms.

Our contributions are five-folded:

• The first contribution is regarding ranking the multiple-quantifier scoping
problem. We introduced a new metric for quantifier reordering cost which
is inspired by underspecified Hilbert’s epsilon operator.

• The second contribution is on modeling the semantic gradience in sentences
that have implicit coercions in their meanings. In order to perform such a task,
we suggested to use a framework called Montagovian Generative Lexicon. We
introduced a lexicon building procedure that incorporates types and coercions
using crowd-sourced lexical data gathered by a serious game called JeuxDe-
Mots.

• The third contribution provides a new locality-based referent-sensitive met-
ric for measuring linguistic complexity by means of Categorial Proof Nets.
The proposed metric correctly predicts some performance phenomena such
as structures with embedded pronouns, garden pathing, unacceptability of
center embedding, preference for lower attachment and passive paraphrases
acceptability.

• The fourth contribution focus on incomplete utterances with missing cate-
gories. In the first place, we introduce two algorithms for resolving incom-
plete utterances. The first algorithm is based on AB grammars, Chart-based
Dynamic Programming and learning Rigid AB grammars while the second

130 Chapter 8. Conclusion

one employs Constraint Handling Rules which deals with k > 1 missing cate-
gories. Then, we introduced measurements on the fixed categorial proof nets
motivated by Gibson’s distance-based theories, Violation Ratio factor and Ac-
tivation Theory.

• The last contribution focus on the problem of integrating different computa-
tional metrics for ranking preferences with a unique model. We see this prob-
lem similar, to some extent, to the problem of aggregation of the preferences.

8.1 Summaries

Figure 8.1 shows the problems and the relevant solutions that we have investigated
in this dissertation. As it is illustrated, there are generally six different problems that
we tried to solve in different chapters. What follows is a quick summary of the prob-
lems:

1. For the problem of the ranking quantifier scopes we suggested the procedure
3.4.2 in the chapter 3.

2. For the problem of the syntactic gradience we suggested the procedure 6.4.3 in
the chapter 6.

3. For the problem of the semantic gradience we suggested the procedure 4.4 in
the chapter 4.

4. For the problem of the linguistic complexity we suggested the definitions 5.4
and 6.4 in the chapters 5 and 6.

5. For the problem of the sentence completion we suggested two algorithms 6.2
and 6.3 in the chapter 6.

6. For the problem of the reference over linguistic preferences we suggested the
procedure 7.4 in the chapter 7.

8.2 Future Works

We have following extensions and future works that seems to be interesting research
directions:

8.2.1 Ontological-based Modeling of the Quantifier Scoping Preference

As we explicated in the chapter 3, our modeling on the quantifiers order— which is
based on the surface syntax —does not always give us the exact human preference
interpretation, and it may be superseded by the lexical or world knowledge. As
in the example 8.1, the logical formula represented in the 8.1a is not the meaning
preferred by the human, although, the existential quantifier has the wider scope.
The preferred meaning is 8.1b, since our common sense knowledge tells us that each
door-step of a museum needs a unique guard. This is a linguistic phenomenon that
is really hard to be computationally modeled.

Example 8.1. A guard stands in front of each museum door-step.

8.1a. ∃x(Guard(x)∧∀y(Museum_Door_Step(y)→ Stand_In_Front_O f (x, z))

8.2. Future Works 131

FIGURE 8.1: Summary of the problems and the relevant solutions.

132 Chapter 8. Conclusion

8.1b. ∀y(Museum_Door_Step(y)→ ∃x(Guard(x)∧ Stand_In_Front_O f (x, z)))

To overcome this problem we suggest to use the ontology-based interpretation
of natural language[CUM14]. This would let us preserve good logical properties of
our representation while permits us to have real-world knowledge to be integrated
to our knowledge-based reasoning.

8.2.2 Annotated Data-set for Language Meaning Preferences

We discussed a serious limitation in the chapters 3 and 7 which exists in our rather
young field of research, i.e. modeling/generating weighted logical formula. It is the
lack of a data-set for human language preferences. Ideally, one would have a data-set
annotated for human-preferred readings of various naturally occurring utterances
and then evaluate the proposed method to see how it would work over that data-set.
This seems as a separate project that would be more interesting if it could be merged
with the natural language inference data-sets [Cha+17b]. For instance to evaluate
those natural language inferences that are dependent on the meaning preferences.
This is investigated in some studies [Pat16; KPP14] and seems like an important
task in natural language processing and computational linguistics[DGrt].

8.2.3 Integrating Multiple Coercions in Montagovian Generative Lexicon

We discussed briefly in the chapter 4, a complete step-by-step procedure for ana-
lyzing the multi-sorted logical formulas from the sentence and its relation with the
linguistic notion of semantic gradience. What remained as a future work is the inte-
gration of the various components by modifying the existing Montagovian Genera-
tive Lexicon framework for allowing multi-part coercions to be added, as a compo-
sition of transformations licensed from different lexemes. This should be examined
in detail, as well as the implications of this modification to the time complexity of
the computation, and the expressive power of the resulting formalism.

8.2.4 New Metrics for Linguistic Meaning Complexity

We introduced new metrics on syntactic linguistic complexity. This happened
mainly by means of categorial proof nets. Nevertheless, we have not done any kind
of studies on the complexity of the logical formulas as the object of meaning com-
plexity at all. For instance, we can take the logical structure, i.e., par-links, tensor-
links and the correctness criterion. This is important indeed because this structure
is needed to compute the logical form (semantics) from the syntactic structure given
by proof nets. For instance, nesting Lambek slashes (that are linear implications,
and therefore par-links in the proof net) corresponds to higher order semantic con-
structions (e.g. predicates of predicates) and consequently this nesting of par-links
increases the complexity of the syntactic and semantic human processing. We can
also get inspired by other researches [Szy16] that uses other structures instead of
the categorial proof nets. This study explores the semantic complexity of natural
language and extends semantic theory with computational and cognitive aspects by
combining linguistics and logic with computations and cognition.

8.2.5 Enhancing Sentence Completion Algorithms

We introduced two algorithms in the chapter 6. There are some techniques that
might be useful for extension of the algorithms. We can reduce our search space
when we have lexical ambiguities (several categories for each word of the input

8.2. Future Works 133

sentence) by adopting super-tagging technique [BJ11]. The one which is very suit-
able for our purpose is Moot’s super-tagger [Moo15] which is implemented in the
wide-coverage version of the Grail parser. The other extension is to focus on several
numbers of missing categories, instead of just one. One of the possible approaches
would be using Jenson’s approach [Jen+83] to build possible structural sub-trees of
an incomplete utterance to find a limited number of suggestion for the position of
missing categories. Another extension is to tackle other classes of incomplete utter-
ances such as extra categories, misused categories, swap categories or any possible
combinations.

135

Appendix A

Mathematical Proofs of the
Properties of Algorithm B

This appendix provides the detailed mathematical proofs of the properties of algo-
rithm B which is described in the chapter 6.

A.1 Proof of the Property (A)

Property (A): For every h, for every partial derivation tree t with height h, yield w
and root r of grammar G, such that, each leave label is of NT, there exists a sequence
of CHR rules that yields (1r, 0, . . . , 0) starting from w⃗.

Proof:

We define P(h) := for every partial derivation tree t with height h, yield w and root r of
grammar G, such that, each leave label is of NT, there exists a sequence of CHR rules that
yields (1r, 0, . . . , 0) starting from w⃗. We prove (A) by strong induction on h. Recall that
the grammar is assumed to be in CNF.

I. Base Case: It should be shown that P(0) holds, i.e. for every partial derivation
tree t of height zero, yield w and root r, there exists a sequence of CHR rules that
yields (1r, 0, . . . , 0) starting from w⃗. Since, the derivation tree has height zero, so,
there is only one leaf-node in the tree ,namely, r, so an empty sequence of CHR rules
yields (1r, 0, . . . , 0), and this proves P(0). Therefore, the base case holds.

II. Induction step: Assuming P(i) is true for all i ≤ K, it should be shown that
P(K + 1) is true:

Let t be a partial derivation (binary) tree with height K + 1, yield w and root r. Let
t1 and t2 be two subtrees of t connecting to left and right sides of r such that r1 and
r2 (=roots of t1 and t2 respectively) are children of r. So, based on the definition we
have:

height(t) = max(height(t1), height(t2))+ 1

So, we can conclude:

max(height(t1), height(t2)) = K

This shows that t has two partial derivation subtrees where one of them is of height
K and the other of height K

′

≤ K. Since both the K and K
′

are less or equal to K, based
on the assumption of induction step, we can conclude that for t1 and t2 there exists
sequences of CHR rules that yields (1r1 , 0, . . . , 0) and (1r2 , 0, . . . , 0) respectively.(*)

136 Appendix A. Mathematical Proofs of the Properties of Algorithm B

Let p be a production rule such that L.H.S. is r and R.H.S are the children of r in
t, since all of the productions are assumed to be in CNF, we have four possible forms
for p as follow: (Assuming X,Y and Z are distinct):

(i) The form of p is r → r1r2: Based on the definition, we can turn this rule into a
CHR rule that decreases the number of r1 and r2 by one, and increases the number
of r by one, so, the final status applying the CHR rules would be (1r, 0, . . . , 0).

(ii) The form of p is r → r1r1: Based on the definition, we can turn this rule into a
CHR rule that decreases the number of r1 by two, and increases the number of r, so,
the final status applying the CHR rules would be (1r, 0, . . . , 0).

(iii) The form of p is r → rr1(or r → r1r): Based on the definition, we can turn this
rule into a CHR rule that decreases the number of r1 by one, performs nothing to the
number of r, so, the final status applying the CHR rules would be (1r, 0, . . . , 0).

(iv) The form of p is r → rr: Based on the definition, we can turn this rule into a
CHR rule that only decreases the number of X by one, so, the final status applying
the CHR rules would be (1r, 0, . . . , 0).

The above analyses of all possible productions shows the existence of CHR rules
that ends up to (1r, 0, . . . , 0). (**)

Having (*) and (**) we can conclude that for every partial derivation tree t of height
K+1, yield w and root r, there exists a sequence of CHR rules that yields (1r, 0, . . . , 0)
starting from w⃗. So Induction step, i.e., ∀i ≤ K P(i) => P(K + 1) holds.

III. Conclusion: Based on (I) and (II), and the principle of strong induction we can
conclude that ∀h ≥ 0 P(h) holds, i.e., for every h, for every partial derivation tree t
with height h, yield w and root r of grammar G, such that, each leave label is of NT,
there exists a sequence of CHR rules that yields (1r, 0, . . . , 0) starting from w⃗.

A.2 Proof of the Property (B)

Property (B): For every partial derivation tree t with yield w and root r of grammar
G, such that, each leave label is of NT, there exists a sequence of CHR rules that
yields (1r, 0, . . . , 0) starting from w⃗.

Proof:

If we assume (A) and (A)⇒(B) then, the proof of (B) would be straightforward: By
one application of modus ponens we can conclude (B). But, firstly, we need to prove
the very assumptions that we have used in the general scheme.

Proof of (A)⇒ (B)

Let t1 be a derivation tree, let h1 be the height of t1, yield w and root r such that each
leave label is from NT, because of (A) there exist a sequence of CHR rules that yields
(1r, 0, . . . , 0) starting from w⃗, therefore, statement(B) holds, and it can be concluded
that (A)⇒ (B).

A.3. Proof of the Property (C) 137

A.3 Proof of the Property (C)

Property (C): For every sequence w of NT∗ produced by grammar G from r, there
exists a sequence of CHR rules that yields (1r, 0, . . . , 0) starting from w⃗.

Proof:

If we assume (B) and (B)⇒(C); then, the proof of (C) would be straightforward: By
one application of modus ponens we can conclude (C). But, firstly, we need to prove
the very assumptions that we have used in the general scheme.

Proof of (B)⇒ (C)

Let w be a sequence of NT∗ produced by G, there is a derivation tree t with root r
for w. Since, the yield of t is w then each leave label is from NT. Based on (B) there
exist a sequence of CHR rules that yields (1r, 0, . . . , 0) starting from w⃗, therefore, (C)
holds, and it can be concluded that (B)⇒ (C).

A.4 Proof of the Property (D)

Property (D): (A) If a multiplicity vector t⃗i converts to a vector ⃗ti+1 under only the
descending rules of a given CHR(G), then, d(⃗ti+1) < d(t⃗i).

(B) If a multiplicity vector t⃗i converts to a vector ⃗ti+1 under only the ascending rules
of a given CHR(G), then, d(⃗ti+1) ≤ d(t⃗i).

Proof:

(A) If a multiplicity vector t⃗i converts to a vector ⃗ti+1 under only the descending
rules of a given CHR(G), then, there are two possibilities for CFG rules (introduced
in section 3.2):

(i) Ai → Ai Aj: In this case the number of Aj, which is definitely positive, will be

decreased by one from t⃗i.

(ii) Ai → Ai Ai: In this case the number of Ai, which is definitely positive, will be
decreased by one from t⃗i.

From the above cases, we can conclude that d(⃗ti+1) = d(t⃗i)− 1 or d(⃗ti+1) < d(t⃗i).

(B) If a multiplicity vector t⃗i converts to a vector ⃗ti+1 under only the ascending rules
of a given CHR(G), then, there are three possibilities for CFG rules (introduced in
section 3.2):

(i) Ai → Aj Ak: In this case the number of both Aj and Ak, which one of them is
definitely positive, will be decreased by one, and Ai will be decreased by one, if
both Aj and Ak be positive the d(⃗ti+1) = d(t⃗i)− 1, and if only one of them be positive,

there will be no change, i.e. d(⃗ti+1) = d(t⃗i).

(ii) Ai → Aj Aj: In this case the number of Aj, which is definitely positive, will be
decreased by two, and Ai will be increased by one, then, if Aj be bigger than one,

then, d(⃗ti+1) = d(t⃗i)− 1, and if the number of Aj be equal to one, then, d(⃗ti+1) = d(t⃗i).

138 Appendix A. Mathematical Proofs of the Properties of Algorithm B

(iii) Ai → Ai Aj: In this case the number of Aj, which is definitely positive, will

be decreased by one from t⃗i, and the number of Ai will be increased by one, thus,
d(⃗ti+1) = d(t⃗i).

From the above cases, we can conclude that d(⃗ti+1) ≤ d(t⃗i).

A.5 Proof of the Property (E)

Property (E): A multiplicity vector u⃗ with zero degree has no applicable CHR rule.

Corollary: A reduction from a multiplicity vector u⃗ to a vector v⃗ with zero degree is
terminated, since, v⃗ cannot be converted to any vector.

Proof:

Proof by contradiction. We assume there is a rule that can be applied. Thus, it shows
that some nonterminals are positive, and this contradicts our assumption that u⃗ has
no non-terminals with the positive occurrence.

A.6 Proof of the Property (F)

Property (F): For every h ≥ 1, for every non-terminal x with positive number of oc-
currences in u⃗, and being reachable to a category y in h steps in a given proper CFG,
G, there exists a sequence of reduction u⃗ = th, th−1, . . . , t0 = v⃗ with length h, under a
CHR(G), such that, the number of y in v⃗ is increased by one.

Proof:

We prove (F) by strong induction on h. We can assume (F) as P(h). Recall that the
grammar is assumed to be in CNF.

I. Base Case: It should be shown that P(1) holds, i.e., for every non-terminal x with
positive number of occurrences in u⃗, and being reachable to a category y in one step
in a given proper CFG, G, there exists a sequence of reduction u⃗(= t1)⇒ (t0 =)v⃗ with
length one, under a CHR(G), such that, the number of y in v⃗ is increased by one.

Let X be a non-terminal and reachable to Y in one step, namely, Y ⇒ αX (or
Y⇒ Xβ) and the number of occurrence of X is more than one, thus, the correspond-
ing CHR rule (for Y ⇒ αX or Y ⇒ Xβ) increases the number of Y by one, so P(1)
holds. This shows that the base case holds.

II. Induction step: Assuming P(i) is true for all i ≤ K, it should be shown that
P(K + 1) is true:

Let u⃗(= tK+1) be a vector, and let X be a non-terminal with positive number of
occurrences in u⃗, and being reachable to a category Y in K + 1 steps in a given proper
CFG, G. So, there is an X′ such that X is reachable to X′ in one step while X′ is
reachable to Y in K steps. So, there exists a CFG rule in the form of either X′ ⇒ αX
or X′ ⇒ Xβ, so, let tK+1 be the result of corresponding CHR rule after applying to
tK, namely tK+1 → tK. (*) We can consider that the occurrence number of X′ would
be increased to one in tK.

A.7. Proof of the Property (G) 139

Based on inductive assumption, if X′ be reachable to Y in K step with positive num-
ber of occurrence, then, there would exist a sequence of reduction tK, tK−1, . . . , t0 with
length K, under a CHR(G), such that the number of Y in t0 is increased by one.(**)

From (*) and (**) we can conclude:
There is a sequence u⃗(= tK+1), tK, tK−1, . . . , t0(= v⃗)with length K + 1, under a CHR(G),
such that the number of Y in v⃗ is increased by one. This proves P(K+1), thus, induc-
tion step, i.e., ∀i ≤ K P(i) => P(K + 1) holds.

III. Conclusion: Based on (I) and (II), and the principle of strong induction we can
conclude that ∀h ≥ 1 P(h) holds, i.e., property (F) holds.

A.7 Proof of the Property (G)

Property (G): There is a reduction sequence from any multiplicity vector u⃗ to a can-
didate vector v⃗ under a CHR(G) with G as proper CFG while d(v⃗) < d(u⃗).

Proof:

(G) is a corollary of (F):

Let X be a non-terminal with positive number of occurrences in u⃗, and being reach-
able to a category S in h steps in a given proper CFG, G, then, based on (F), there
exists a sequence of reduction u⃗ = th, th−1, . . . , t0 = v⃗ with length h, under a CHR(G),
such that, the number of S in v⃗ is one. This proves that vector v⃗ is a candidate. Thus,
there is a reduction sequence from any multiplicity vector u⃗ to a candidate vector v⃗.

Based on (D), d(⃗th−1) ≤ d(h⃗), so, d(t⃗1) ≤ d(h⃗) and d(t⃗0) < d(t⃗1) (because the number
of S would not be counted in d(t⃗0)). We can conclude that d(t⃗0) < d(h⃗) or d(v⃗) < d(u⃗).

A.8 Proof of the Property (H)

Property (H): For every h, under a proper CHR(G) and proper G, all possible se-
quence of reductions of u⃗ of degree h = d(u⃗) terminate.

We prove (H) by strong induction on h.

I. Base Case: It should be shown that H(0) holds, i.e., all possible sequence of re-
ductions for u⃗ of degree zero, under a proper CHR(G) and proper G, terminate. This
is obvious, since, based on (E), any vector with degree zero has no applicable rule,
and this means termination. Thus, the base case holds.

II. Induction step: Assuming H(i) is true for all i ≤ K, it should be shown that
H(K + 1) is true:

Let u⃗ be a vector with degree k + 1, the are two possibilities:

(i) The occurrence number of S in u⃗ is zero: Since grammar G is proper, and based
on (G), we have u⃗ ↝ v⃗ such that v⃗ is a candidate and d(v⃗) < k+ 1. Based on inductive
assumption, v⃗ terminates, so, we can conclude that u⃗ terminates.

140 Appendix A. Mathematical Proofs of the Properties of Algorithm B

(ii) The occurrence number of S in u⃗ is positive:

Either a descending rule or an ascending rules can be applied to u⃗. If it is a descend-
ing rule, namely u⃗ → u⃗′, based on (D), d(u⃗′) < k + 1. Based on inductive assumption,
u⃗′ terminates, so, we can conclude that u⃗ terminates. If it is an ascending rule, the
case is exactly as (i) above, and it terminates.

This proves H(k+1), thus, induction step, i.e., ∀i ≤ K H(i) => H(k + 1) holds.

III. Conclusion: Based on (I) and (II), and the principle of strong induction we can
conclude that ∀h ≥ 0 H(h) holds, i.e., property (H) holds.

A.9 Proof of the Property (I)

Property (I): If u⃗ ↝ t⃗h (u⃗ = t0, t1, . . . , th), and c1, . . . , ch be the sequence of CHR(G)
rules such that (for i = 0, 1, . . . , h − 1) ti+1 be conversion of ti under ci+1 CHR(G) rule,
then:

(A) There exists a procedure on the basis of the sequence c1, . . . , ch for building
corrected parsed tree(s) of u.

(B) The elements in multiplicity vector th suggests the number of missing cate-
gories if it be negative; not-yet-used categories if be positive; and finally, zero indi-
cates no-suggestion-so-far.

Proof:

We prove (I) by strong induction on h. Recall that the grammar is assumed to be in
CNF.

I. Base Case: It should be shown that I(0) holds, since there is an empty sequence
from v⃗, and there is nothing to do, thus, the base case holds.

II. Induction step: Assuming I(i) is true for all i ≤ K, it should be shown that I(k+1)
is true:

Let u⃗ ↝ ⃗tk+1 (u⃗ = t0, t1, . . . , , tk, tk+1) and c1, . . . , ck, ck+1 be the sequence of CHR(G)
rules such that (for i = 0, 1, . . . , k) ti+1 be conversion of ti under ci+1 CHR(G) rule.
CHR rule ck+1, which corresponds to a CFG rule rk+1, converts tk to tk+1. We can
consider the following cases for rk+1 and in each case we show that (A) and (B) hold:

Ascending Rules of Type I:
(A) Build a new tree t by adjoining an existing tree t1 with S as its root and Ai as
its non-substitution node; and, t2 as auxiliary tree, i.e. Ai → Ai Aj (or Ai → Aj Ai),
in which Aj in R.H.S is the foot node. t is obtained from adjoining t2 to t1 at non-
substitution node Ai.

(B) The number of Ai is not changed since one Ai is used in L.H.S of rk+1 (indi-
cates increasing by one) and one new rule is added in R.H.S (indicates decreasing by
one). The number of Aj should be reduced by one, since Aj is used in R.H.S of rk+1.
We can see that the rule rk+1 truly keeps track of the number of the resources.

A.9. Proof of the Property (I) 141

Note: More technical detail on tree adjoining techniques is available on TAG (=Tree
Adjoining Grammar) literature. See [JS97; JS91, p.3].

Ascending Rules of Type II:
(A) Build a new tree t by adjoining an existing tree t1 with S as its root and Ai as its
non-substitution node; and t2 as auxiliary tree, i.e. Ai → Ai Ai in which the first Ai in
R.H.S of rule is the foot node. t is obtained from adjoining t2 to t1 at non-substitution
node Ai.

(B) Ai is used in L.H.S of rk+1 (indicates increasing by one) and two new non-
terminals is added in R.H.S (indicates decreasing by two). Thus, the number of
Ai should be reduced by one. We can see that the rule rk+1 truly keeps track of the
number of the resources.

Descending Rules of Type I:
(A) Build a new tree t by substitution of the existing trees (with roots of types Aj and
Ak) with non-terminal nodes in R.H.S of rule Ai → Ai Aj. In the end, t would have
Ai as its root and substituted trees as its siblings.

(B) Ai is used in L.H.S of rk+1 (indicates increasing by one) and Aj and Ak is used
in L.H.S of rk+1 (indicates increasing by one for each of them). We can see that the
rule rk+1 truly keeps track of the number of the resources. If we use a non-terminal
which does not have positive number then the number of occurrences might be neg-
ative which indicates missing non-terminals or something that is borrowed in order
to complete the utterance.

Descending Rules of Type II:
(A) Build a new tree t by substitution of two existing trees (with roots of type Aj)
with non-terminal nodes in R.H.S of rule Ai → Aj Aj. In the end, t would have Ai as
its root and substituted trees as its siblings.

(B) Ai is used in L.H.S of rk+1 (indicates increasing by one) and Aj is used two times
in L.H.S of rk+1 (indicates increasing by two). We can see that the rule rk+1 truly
keeps track of the number of the resources. If we use a non-terminal which does not
have a positive number then the number of occurrences might be negative which
indicates missing non-terminals or something that is borrowed in order to complete
the utterance.

Descending Rules of Type III:
(A) Build a new tree t by substitution of existing tree (with root of type Aj) with
non-terminal node Aj in R.H.S of rule Ai → Ai Aj. In the end, t would have Ai as its
root and Aj and substituted tree as its siblings.

(B) The number of Ai is not changed since one Ai is used in L.H.S of rk+1 (indi-
cates increasing by one) and one new constraint is added with -1 for Ai (indicates
decreasing by one). The number of Aj should be reduced by one since Aj is used
in R.H.S of rk+1. We can see that the rule rk+1 truly keeps track of the number of the
resources.

By considering all the possible cases above, we can conclude that, induction step
holds, i.e., ∀i ≤ k I(i) => I(k + 1) holds.

142 Appendix A. Mathematical Proofs of the Properties of Algorithm B

III. Conclusion: Based on (I) and (II), and the principle of strong induction we can
conclude that ∀h ≥ 0 I(h) holds, i.e., property (I) holds.

A.10 Proof of the Property (J)

Property (J): If u⃗ ↝ t⃗h (u⃗ = t0, t1, . . . , th = v⃗), and v⃗ be a saturated candidate and
c1, . . . , ch be the sequence of CHR(G) rules such that (for i = 0, 1, . . . , h− 1) ti+1 be con-
version of ti under ci+1 CHR(G) rule, then:

(A) There exists a procedure on the basis of the sequence c1, . . . , ch for building
corrected parsed tree(s) of u.

(B) The elements in multiplicity vector th suggests the number of missing cat-
egories if it be negative;extra categories if it be positive; and finally, zero indicates
no-suggestion.

Proof:

The proof can be straightforwardly gained by using the property (I) and an extra
assumption that v⃗ is saturated candidate.

Example for the Property (J)

As mentioned, the procedure can be used as CHR rules for step-by-step genera-
tion of parsed trees. The yields of the parsed trees are the solution(s) as for incom-
plete sentences. We would work on the example 6.5 introduced in the chapter 6. For
the convenience, it is repeated again.

Example A.1. *A girl helped the child admires the magician.

c[(cn,2), (det,2), (pn,0), (rc,0), (v(iv),0), (v(tv),2), (np,1), (np’,0), (vp,0), (s,0),Ascending]

np

t1

det n

c[(cn,1), (det,1), (pn,0), (rc,0), (v(iv),0), (v(tv),2), (np,2), (np’,0), (vp,0), (s,0),Ascending]

np

t2

det n

c[(cn,0), (det,0), (pn,0), (rc,0), (v(iv),0), (v(tv),2), (np,3), (np’,0), (vp,0), (s,0),Ascending]

A.10. Proof of the Property (J) 143

np

t3

det n

c[(cn,0), (det,0), (pn,0), (rc,0), (v(iv),0), (v(tv),1), (np,2), (np’,0), (vp,1), (s,0),Ascending]

vp

t1

v(tv)

np

det n

c[(cn,0), (det,0), (pn,0), (rc,0), (v(iv),0), (v(tv),0), (np,1), (np’,0), (vp,2), (s,0),Ascending]

vp

t2

v(tv)

np

det n

c[(cn,0), (det,0), (pn,0), (rc,0), (v(iv),0), (v(tv),0), (np,0), (np’,0), (vp,1), (s,1),Ascending]

S

t2 + t3

np

det n

vp

v(tv)

np

det n

c[(cn,0), (det,0), (pn,0), (rc,-1), (v(iv),0), (v(tv),0), (np,0), (np’,1), (vp,0), (s,1),Ascending]

np′

t1

rc

np

det n

144 Appendix A. Mathematical Proofs of the Properties of Algorithm B

c[(cn,0), (det,0), (pn,0), (rc,-1), (v(iv),0), (v(tv),0), (np,0), (np’,0), (vp,0), (s,1),Descending]

S

T1 = t1 + t2 + t3

np

det n

vp

v(tv)

np

np

det n

np′

rc

np

det n

S

T2 = t1 + t2 + t3

np

np

det n

np′

rc

np

det n

vp

v(tv)

np

det n

We can observe that we have two trees, i.e. T1 and T2, in the end. This basically
happened since we had two candidates np in the last constraint, thus, we have two
possible updates. Now, let us write the yields of these trees once again here:

Solution (i): Yield of the tree T1:
det,cn,v(tv),det,cn,rc,v(tv),det,cn

Solution (ii): Yield of the tree T2:
det,cn,rc,v(tv),det,cn,v(tv),det,cn

We can see that our algorithm gives only two suggestions, namely, adding a
relative clause to two different positions of the sentence. The solutions (i) and (ii)
matches with our expectation:

Solution (i): A girl helped the child [who] admires the magician.
Solution (ii): A girl [who] helped the child admires the magician.

Our solution for fixation has its own drawbacks. This is discussed to some extent
in the section 6.3.6.

145

Appendix B

Detailed Calculations of the
Linguistic Complexity Metrics

This appendix provides the detailed calculations of different linguistic complexity
metrics in different chapters of the dissertations. Recall that IDπ(x) and DLπ(x)
are incomplete dependency number and dependency locality number, respectively.
Also, AccSum(x) indicates to the accumulative sum of the numbers.

B.1 Examples Related to the Chapter 3

3.3a
x Everyone repairs something

ID(x) 2 3 0

3.3b
y Everyone repairs something

ID(y) 4 3 0

TABLE B.1: Calculation of the incomplete dependency number for
3.3a and 3.3b.

3.6a
x Everyone repairs something expertly

ID(x) 4 5 2 0

3.6b
y Everyone repairs something expertly

ID(y) 4 3 2 0

TABLE B.2: Calculation of the incomplete dependency number for
3.6a and 3.6b.

B.2 Examples Related to the Chapter 5

5.3a
x The reporter who sent the photographer to the editor hoped for a good story

ID(x) 3 4 4 4 4 3 3 3 2 1 1 1 1 0

5.3b
y The reporter who the photographer sent to the editor hoped for a good story

ID(y) 3 4 4 6 5 3 3 3 2 1 1 1 1 0

TABLE B.3: Calculation of the incomplete dependency number for
5.3a and 5.3b.

5.3a
x The reporter who sent the photographer to the editor hoped for a good story

ID(x) 0 0 1 1 0 0 0 0 0 5 0 0 0 0
AccSum(x) 0 0 1 2 2 2 2 2 2 7 7 7 7 7

5.3b
y The reporter who the photographer sent to the editor hoped for a good story

ID(y) 0 0 1 0 0 2 0 0 0 5 0 0 0 0
AccSum(y) 0 0 1 1 1 3 3 3 3 8 8 8 8 8

TABLE B.4: Calculation of the dependency locality number for 5.3a
and 5.3b.

146 Appendix B. Detailed Calculations of the Linguistic Complexity Metrics

5.4a
x The reporter who the senator who John met attacked disliked the editor

DL(x) 0 0 1 0 0 1 0 2 4 6 0 0
AccSum(x) 0 0 1 1 1 2 2 4 8 14 14 14

5.4b
y The reporter who the senator who I met attacked disliked the editor

DL(y) 0 0 1 0 0 1 0 1 3 5 0 0
AccSum(y) 0 0 1 1 1 2 2 3 6 11 11 11

TABLE B.5: Calculation of the dependency locality number for 5.4a
and 5.4b.

5.5a
x The horse raced past the barn

DL(x) 0 0 0 2 0 0 0
AccSum(x) 0 0 0 2 2 2 2

5.5b
y The horse raced past the barn fell

DL(y) 0 0 2 1 0 0 4
AccSum(y) 0 0 2 3 3 3 7

TABLE B.6: Calculation of the dependency locality number for 5.5a
and 5.5b.

5.6a
x The cheese that the rat that the cat saw ate stank

DL(x) 0 0 1 0 0 1 0 0 2 4 6
AccSum(x) 0 0 1 1 1 2 2 2 4 8 14

5.6b
y The dog that chased the cat that saw the rat barked

DL(y) 0 0 1 1 0 0 1 1 0 0 6
AccSum(y) 0 0 1 2 2 2 3 4 4 4 10

TABLE B.7: Calculation of the dependency locality number for 5.6a
and 5.6b.

5.7a
x Joe said that Marthus believes that Ingrid fell today

DL(x) 0 2 0 0 2 0 0 0 2
AccSum(x) 0 2 2 2 4 4 4 4 6

5.7b
y Joe said that Marthus believes that Ingrid fell today

DL(y) 0 2 0 0 0 0 0 2 4
AccSum(y) 0 2 2 2 2 2 2 4 8

5.7c
z Joe said that Marthus believes that Ingrid fell today

DL(z) 0 0 0 0 2 0 0 2 6
AccSum(z) 0 0 0 0 2 2 2 4 10

TABLE B.8: Calculation of the dependency locality number for the
readings of 5.7.

5.8a
x The book that shocked Mary ’s title

DL(x) 0 0 1 1 0 3 0
AccSum(x) 0 0 1 2 2 5 5

5.8b
y The book that shocked Mary ’s title

DL(y) 0 0 1 1 0 1 0
AccSum(y) 0 0 1 2 2 3 3

TABLE B.9: Calculation of the dependency locality number for the
readings of 5.8.

5.9a
x Ingrid was astonished that Jack was surprised that two plus two equals four

DL(x) 0 2 2 0 0 2 2 0 0 1 0 3 0
AccSum(x) 0 2 4 4 4 6 8 8 8 9 9 12 12

5.9b
y That that two plus two equals four surprised Jack astonished Ingrid

DL(y) 0 0 0 1 0 2 0 5 0 7 0
AccSum(y) 0 0 0 1 1 3 3 8 8 15 15

TABLE B.10: Calculation of the dependency locality number for 5.9a
and 5.9b.

B.3. Examples Related to the Chapter 6 147

B.3 Examples Related to the Chapter 6

6.6a
x Every child fell and cried

ID(x) 3 2 4 2 0

6.6b
y Every child who fell cried

ID(y) 3 4 4 2 0

TABLE B.11: Calculation of the incomplete dependency number for
6.6a and 6.6b.

6.6a
x Every child fell and cried

DL(x) 0 0 0 1 1
AccSum(x) 0 0 0 1 2

6.6b
y Every child who fell cried

DL(y) 0 0 1 1 3
AccSum(y) 0 0 1 2 5

TABLE B.12: Calculation of the dependency locality number for 6.6a
and 6.6b.

6.6a
The rat that the cat saw died

3 4 4 6 5 2 0

6.6b
The rat that the cat briefly saw died

3 4 4 6 5 5 2 0

TABLE B.13: Calculation of the incomplete dependency number for
6.7a and 6.7b.

6.6a
The rat that the cat saw died

0 0 1 0 0 2 4

6.6b
The rat that the cat briefly saw died

0 0 1 0 0 1 2 4

TABLE B.14: Calculation of the dependency locality number for 6.7a
and 6.7b.

6.6a
The rat that the cat saw died

3 4 4 6 5 2 0

6.6b
The rat that the cat briefly saw died

3 4 2 3 2 2 2 0

TABLE B.15: Calculation of the activation-based complexity measure-
ment for 6.7a and 6.7b.

B.4 Examples Related to the Chapter 7

7.1a
John gave Bill the painting that Mary hated

2 2 1 1 2 2 3 0

7.1b
John gave the painting that Mary hated to Bill

2 2 2 3 3 4 1 1 0

TABLE B.16: Calculation of the incomplete dependency number for
7.1a and 7.1b.

148 Appendix B. Detailed Calculations of the Linguistic Complexity Metrics

7.1a
John gave Bill the painting that Mary hated

0 2 0 0 0 1 0 2

7.1b
John gave the painting that Mary hated to Bill

0 2 0 0 1 0 2 0 0

TABLE B.17: Calculation of the dependency locality number for 7.1a
and 7.1b.

149

Appendix C

Published Work

This appendix provides the Ph.D. publications of the author and a quick review of
their content. The core parts of the material describing preference modeling are the
following references:

C.1 PhD Publications

The first published paper regarding the sentence completion (Algorithm A in chap-
ter 6) was in TALN-Recital-2017:

- Mehdi Mirzapour, "Finding Missing Categories in Incomplete Utterances." In
24e Conférence sur le Traitement Automatique des Langues Naturelles (TAL),
p. 149, 2017, Orléans, France.

The core parts of the material describing ranking quantifier scoping problem
(chapter 3) was published in CONLI-2017 in this paper:

- Davide Catta, Mehdi Mirzapour, "Quantifier Scoping and Semantic Prefer-
ences." In 1st conference for Computing Natural Language Inference held by
Centre for Linguistic Theory and Studies in Probability (joint with 12th Inter-
national Conference on Computational Semantics), 2017, Montpellier, France.

The description of the collecting crowd-Sourced lexical coercions for composi-
tional semantic (chapter 4) was first published in the LENLS-2017 and it was selected
to be published in the Springer LNCS series in the post-proceeding volume:

- Mathieu Lafourcade, Bruno Mery, Mehdi Mirzapour, Richard Moot and Chris-
tian Retoré "Collecting Crowd-Sourced Lexical Coercions for Compositional
Semantic Analysis" in Arai, S., Kojima, K., Mineshima, K., Bekki, D., Satoh, K.,
Ohta, Y. (Eds.) New Frontiers in Artificial Intelligence Springer LNCS 2018.

- Mathieu Lafourcade, Bruno Mery, Mehdi Mirzapour, Richard Moot and Chris-
tian Retoré, "Collecting Weighted Coercions from Crowd-Sourced Lexical Data
for Compositional Semantic Analysis", Logic and Engineering of Natural Lan-
guage Semantics 14 (LENLS 14), 2017, Tokyo, Japan.

The following paper published in LACompLing-2018 was the basis of the mate-
rial in Chapter 5:

- Mehdi Mirzapour, Jean-Philippe Prost, Christian Retoré Categorial "Proof Nets
and Dependency Locality: A New Metric for Linguistic Complexity" LACom-
pLing 2018: Logic Algorithms in Computational Linguistics, Stockholm, Au-
gust 28-31 2018.

150 Appendix C. Published Work

C.2 Other Publications

A paper on diagrammatic logic published in Diagram-2018:

- Mehdi Mirzapour, Christian Retoré "Venn Diagram and Evaluation of Syllo-
gisms with Negative Terms: A New Algorithm" in Chapman, P., Stapleton,
G., Moktefi, A., Perez-Kriz, S., Bellucci, F. (Eds.) Diagrammatic Representation
and Inference 10th International Conference, Diagrams 2018, Edinburgh, UK,
June 18-22, 2018, LNCS / LNAI 10871, 2018.

- Abstract: This paper provides a quantitative computational account of why
such a sentence has a harder parse than some other sentence, or that one anal-
ysis of a sentence is simpler than another one. We take for granted the Gib-
son’s results on human processing complexity, and we provide a new metric
which uses (Lambek) Categorial Proof Nets. In particular, we correctly model
Gibson’s account in his Dependency Locality Theory. The proposed metric
correctly predicts some performance phenomena such as structures with em-
bedded pronouns, garden pathing, unacceptability of center embedded, pref-
erence for lower attachment and passive paraphrases acceptability. Our pro-
posal extends existing distance-based proposals on Categorial Proof Nets for
complexity measurement while it opens the door to include semantic complex-
ity, because of the syntax-semantics interface in categorial grammars.

Two papers on classical logic and sophistical refutation/semantics (written in
Persian) are published in Logical Study Journal:

- Mahin Bagheri, Mehdi Mirzapour and Gholamreza Zakiani, "Medieval Sup-
position Theory: The Implicit Semantic of Aristotle’s Sophistical Refutations",
Logical Study, IHCS , Volume 9, Number 1, Spring 2018.

- Abstract: Supposition theory is one of the important logical semantic theories
which is put forward by medieval logicians in their logical texts and commen-
taries under the discussion topic "Properties of Terms". Since this theory has
important consequences in logic, philosophy and theology, we will investigate
its conceptual and historical origin. We claim that there is a significant (histor-
ical and conceptual) bound between the medieval theory of supposition and
Aristotle’s theory of fallacies as he has stated in his treatise “sophistical refu-
tations”. The case-by-base study of Aristotle’s fallacy in comparison to the
semantical analysis of medieval logicians support the idea that supposition
theory is the implicit semantic of Aristotle’s “sophistical refutations” which
has been reinterpreted as an explicit and dependent field of study by medieval
logicians, and also it has been extended throughout the late medieval ages due
to different semantical problems.

- Mohammad Hafi, Mahin Bagheri, Mehdi Mirzapour and Golamreza Zakiani,
"The Groundability of Four Figures of Aristotelian’s Syllogism" , Logical Study,
IHCS , Volume 9, Number 2, Autumn 2018.

- Abstract: The purpose of this research is to provide a new concept in Aris-
totelian categorical syllogism which is called groundability. A valid mood
is called groundable if one would derive all the 24 valid moods in the
Aristotelian’s syllogism by assuming only the valid mood and applying a
chain of the following rules: simple conversion, reduction-ad-absurdum, sub-
alternation, obversion and quantification negation. In this paper, we will prove
that only the fifteen valid moods have the groundability property. Because

C.2. Other Publications 151

Aristotle proves all the valid moods of other figures based on the four moods
in the first figure, he considers these moods of the first figure as moods having
the groundability property. We show that the groundability is not restricted to
the first valid moods of the first figure–they are fifteen moods as stated. Thus, it
can be shown that Aristotle’s purpose from the self-evidence of the first figure
is not the groundability of the four moods in the first. This important logical
result in Aristotle’s system is gained through the introducing the concept of
the groundability of the moods in syllogism. We show that unlike the com-
mon view in the Aristotelian tradition, it is not the case that the groundability
of the first figure must be the basis for explaining of being self-evidence of the
four moods of the first figure. Regardless of what lies behind the evidence of
the first figure valid moods, this paper will eliminate one of the options which
is somehow a common wrong interpretation for answering the problem.

153

Bibliography

[AD16] Ife Adebara and Veronica Dahl. “Grammar Induction as Automated
Transformation between Constraint Solving Models of Language.” In:
KnowProS@ IJCAI. 2016.

[And+04] John R Anderson et al. “An integrated theory of the mind.” In: Psycho-
logical review 111.4 (2004), p. 1036.

[Ash11] Nicholas Asher. Lexical Meaning in Context: A Web of Words. Cambridge
University Press, Mar. 2011.

[Bek14] Daisuke Bekki. “Dependent Type Semantics: An Introduction”. In:
Logic and Interactive RAtionality (LIRa) Yearbook 2012. Ed. by Zoé
Christoff et al. Vol. I. University of Amsterdam, 2014, pp. 277–300.

[Bev70] Thomas G Bever. “The cognitive basis for linguistic structures”. In: Cog-
nition and the development of language (1970).

[BJ11] Srinivas Bangalore and Aravind Joshi. Supertagging: Using Complex Lex-
ical Descriptions in Natural Language Processing. MIT Press, 2011.

[Bla00a] Philippe Blache. “Constraints, linguistic theories, and natural language
processing”. In: International Conference on Natural Language Processing.
Springer. 2000, pp. 221–232.

[Bla00b] Philippe Blache. “Property grammars: A solution for parsing with con-
straints”. In: 6th Int. Wks. on Parsing Technologies (2000), pp. 295–296.

[Bla11a] Philippe Blache. “A computational model for linguistic complexity.” In:
Proceedings of the first International Conference on Linguistics, Biology and
Computer Science. 2011.

[Bla11b] Philippe Blache. “Evaluating language complexity in context: New pa-
rameters for a constraint-based model”. In: CSLP-11, Workshop on Con-
straint Solving and Language Processing. 2011.

[Bla16] Philippe Blache. “Representing syntax by means of properties: a formal
framework for descriptive approaches”. In: Journal of Language Mod-
elling 4.2 (2016), pp. 183–224.

[Bon00] Roberto Bonato. “Uno studio sull’apprendibilità delle grammatiche di
Lambek rigide—a study on learnability for rigid Lambek grammars”.
PhD thesis. Tesi di Laurea & Mémoire de DEA, Università di Verona &
Université Rennes 1, 2000.

[BP08] Philippe Blache and Jean-Philippe Prost. “A Quantification Model
of Grammaticality”. In: Proceedings of the Fifth International Work-
shop on Constraints and Language Processing (CSLP2008). to appear in
Studies in Computational Intelligence, Springer. 2008. URL: publis/
blacheProst08-cslp.pdf.

[BP14] Philippe Blache and Jean-Philippe Prost. “Constraints and Language”.
In: ed. by Philippe Blache et al. Cambridge Scholars Publishing, 2014.
Chap. Model-Theoretic Syntax: Property Grammars, Status and Direc-
tions, pp. 37–59.

154 BIBLIOGRAPHY

[BP90] Wojciech Buszkowski and Gerald Penn. “Categorial grammars deter-
mined from linguistic data by unification”. In: Studia Logica 49.4 (1990),
pp. 431–454.

[BR14] Roberto Bonato and Christian Retoré. “Learning Lambek grammars
from proof frames”. In: Categories and Types in Logic, Language, and
Physics. Springer, 2014, pp. 108–135.

[Bus87] Wojciech Buszkowski. “Discovery procedures for categorial gram-
mars”. In: Categories, Polymorphism and Unification (1987), pp. 35–64.

[Cha+13] Jon Chamberlain et al. “Using Games to Create Language Resources:
Successes and Limitations of the Approach”. In: The People’s Web Meets
NLP: Collaboratively Constructed Language Resources. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 3–44. ISBN: 978-3-642-35085-6.
DOI: 10.1007/978-3-642-35085-6_1. URL: https://doi.org/10.
1007/978-3-642-35085-6_1.

[Cha+15] Stergios Chatzikyriakidis et al. “Type Theories and Lexical Networks:
Using Serious Games as the Basis for Multi-Sorted Typed Systems”.
In: ESSLLI: European Summer School in Logic, Language and Information.
2015.

[Cha+17a] S. Chatzikyriakidis et al. “Modern Type Theories and Lexical Net-
works: Using Serious Games as the Basis for Multi-Sorted Typed Sys-
tems”. In: Journal of Language Modelling (2017).

[Cha+17b] Stergios Chatzikyriakidis et al. “An overview of Natural Language In-
ference Data Collection: The way forward?” In: Proceedings of the Com-
puting Natural Language Inference Workshop. 2017.

[Cho14] Noam Chomsky. Aspects of the Theory of Syntax. Vol. 11. MIT press, 2014.

[Cho65] Noam Chomsky. Aspects of the Theory of Syntax. Cambridge: MIT Press,
1965.

[Cho82] Noam Chomsky. Some concepts and consequences of the theory of govern-
ment and binding. Vol. 6. MIT press, 1982.

[CL14] Stergios Chatzikyriakidis and Zhaohui Luo. “Natural Language Infer-
ence in Coq”. In: J. of Logic, Lang. and Inf. 23.4 (Dec. 2014), pp. 441–
480. ISSN: 0925-8531. DOI: 10.1007/s10849-014-9208-x. URL: http:
//dx.doi.org/10.1007/s10849-014-9208-x.

[CM17] Davide Catta and Mehdi Mirzapour. “Quantifier Scoping and Semantic
Preferences”. In: Proceedings of the Computing Natural Language Inference
Workshop. 2017.

[Coo07] Robin Cooper. “Copredication, dynamic generalized quantification
and lexical innovation by coercion”. In: Fourth International Workshop
on Generative Approaches to the Lexicon. 2007.

[Coo83] Robin Cooper. “Quantification and Syntactic Theory, Reidel, Dor-
drecht”. In: CooperQuantification and Syntactic Theory1983 (1983).

[Cop+05] Ann Copestake et al. “Minimal recursion semantics: An introduction”.
In: Research on Language and Computation 3.2-3 (2005), pp. 281–332.

[CPR17] Stergios Chatzikyriakidis, Fabio Pasquali, and Christian Retoré. “From
Logical and Linguistic Generics to Hilbert’s tau and epsilon Quan-
tifiers”. In: IfCoLog Journal of Logics and their Applications 4.2 (2017),
pp. 231–255.

BIBLIOGRAPHY 155

[CQ69] Allan M Collins and M Ross Quillian. “Retrieval time from seman-
tic memory”. In: Journal of verbal learning and verbal behavior 8.2 (1969),
pp. 240–247.

[Cru86] D. A. Cruse. Lexical Semantics. New York: Cambridge, 1986.

[CUM14] Philipp Cimiano, Christina Unger, and John McCrae. “Ontology-based
interpretation of natural language”. In: Synthesis Lectures on Human
Language Technologies 7.2 (2014), pp. 1–178.

[Dav67] Donald Davidson. “The logical form of action sentences”. In: (1967).

[DB04a] Verónica Dahl and Philippe Blache. “Directly executable constraint
based grammars”. In: Proc. Journees Francophones de Programmation en
Logique avec Contraintes, Angers, France. 2004, pp. 149–166.

[DB04b] Verónica Dahl and Philippe Blache. Implantation des grammaires de pro-
priétés en CHR. JFPLC-04, 2004.

[DB05] Veronica Dahl and Philippe Blache. “Extracting selected phrases
through constraint satisfaction”. In: Proceedings of Constraint Solving and
Language Processing (CSLP). Springer. 2005, pp. 3–17.

[DGR96] Philippe De Groote and Christian Retoré. “On the semantic readings of
proof-nets”. In: Formal grammar 1996. FoLLI. 1996, pp. 57–70.

[DGrt] Viviane Durand-Guerrier. Négation et quantification dans la classe de
mathématiques. Forthcoming.

[Dik04] Alexander Dikovsky. “Dependencies as categories”. In: Proceedings of
the Workshop on Recent Advances in Dependency Grammar. Ed. by D.
Duchier G-J. Kruiff. 2004.

[DM12] Veronica Dahl and J Emilio Miralles. “Womb grammars: Constraint
solving for grammar induction”. In: Proceedings of the 9th Workshop on
Constraint Handling Rules. vol. Technical report CW. Vol. 624. 2012, pp. 32–
40.

[DM93] Luca Dini and Giovanni Malnati. “Weak constraints and preference
rules”. In: Studies in Machine Translation and Natural Language Process-
ing (1993), pp. 75–90.

[DPD09] Denys Duchier, Jean-Philippe Prost, and Thi-Bich-Hanh Dao. “A
Model-Theoretic Framework for Grammaticality Judgements”. In:
Proceedings of FG’09. Vol. 5591. Springer, 2009. URL: publis /

DuchierProstDao09-FG09-MTSjudgements.pdf.

[Frü95] Thom Frühwirth. “Constraint handling rules”. In: Constraint program-
ming: Basics and trends. Springer, 1995, pp. 90–107.

[Frü98] Thom Frühwirth. “Theory and practice of constraint handling rules”.
In: The Journal of Logic Programming 37.1-3 (1998), pp. 95–138.

[FW83] Dan Fass and Yorick Wilks. “Preference Semantics, Ill-formedness, and
Metaphor”. In: Comput. Linguist. 9.3-4 (July 1983), pp. 178–187. ISSN:
0891-2017. URL: http://dl.acm.org/citation.cfm?id=1334.980082.

[GDV08] Bruno Gaume, Karine Duvignau, and Martine Vanhove. “Semantic as-
sociations and confluences in paradigmatic networks”. In: From Poly-
semy to Semantic Change Towards a typology of lexical semantic associations,
John Benjamins (2008), pp. 233–264.

[Gib00] Edward Gibson. “The dependency locality theory: A distance-based
theory of linguistic complexity”. In: Image, language, brain (2000),
pp. 95–126.

156 BIBLIOGRAPHY

[Gib91] Edward Albert Fletcher Gibson. “A computational theory of human
linguistic processing: Memory limitations and processing breakdown”.
PhD thesis. Carnegie Mellon University Pittsburgh, PA, 1991.

[Gib98] Edward Gibson. “Linguistic complexity: Locality of syntactic depen-
dencies”. In: Cognition 68.1 (1998), pp. 1–76.

[Gir11] Jean-Yves Girard. The Blind Spot: lectures on logic. European Mathemat-
ical Society, 2011.

[Gir87] Jean-Yves Girard. “Theoretical computer science”. In: Linear logic.
Vol. 50. 1987, pp. 1–102.

[GK98] E Gibson and K Ko. “An integration-based theory of computational re-
sources in sentence comprehension”. In: Fourth Architectures and Mecha-
nisms in Language Processing Conference, University of Freiburg, Germany.
1998.

[GT96] Edwared Gibson and James Thomas. “The processing complexity of
English center-embedded and self-embedded structures”. In: The pro-
ceedings of the North-Eastern Linguistic Society 1996. Ed. by University of
Massachusetts. 1996.

[GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types. Vol. 7.
Cambridge University Press Cambridge, 1989.

[Hal01] John Hale. “A probabilistic Earley parser as a psycholinguistic model”.
In: Proceedings of the second meeting of the North American Chapter of the
Association for Computational Linguistics on Language technologies. Asso-
ciation for Computational Linguistics. 2001, pp. 1–8.

[Hil22] David Hilbert. “Die logischen grundlagen der mathematik”. In: Mathe-
matische Annalen 88.1 (1922), pp. 151–165.

[Hop79] John E Hopcroft. Introduction to Automata Theory, Languages and Compu-
tation: For VTU, 3/e. Pearson Education India, 1979.

[HP+02] Rodney Huddleston, Geoffrey K Pullum, et al. “The cambridge gram-
mar of english”. In: Language. Cambridge: Cambridge University Press
(2002), pp. 1–23.

[HS80] J Roger Hindley and Jonathan P Seldin. To HB Curry: essays on combi-
natory logic, lambda calculus, and formalism. Vol. 479490. Academic press
London, 1980.

[HS87] Jerry R Hobbs and Stuart M Shieber. “An algorithm for generating
quantifier scopings”. In: Computational Linguistics 13.1-2 (1987), pp. 47–
63.

[IL15] Seohyun Im and Chungmin Lee. “A Developed Analysis of Type Co-
ercion Using Asher’s TCL and Conventionality”. In: Extended abstracts
of the ESSLLI 2015 workshop TYTLES: Types Theory and Lexical Semantics.
Ed. by Robin Cooper and Christian Retoré. Aug. 2015, pp. 91–99. URL:
https://hal.archives-ouvertes.fr/hal-01584832.

[Jen+83] Karen Jensen et al. “Parse fitting and prose fixing: getting a hold on
ill-formedness”. In: Computational Linguistics 9.3-4 (1983), pp. 147–160.

[JK97] Aravind K Joshi and Seth Kulick. “Partial proof trees as building blocks
for a categorial grammar”. In: Linguistics and Philosophy 20.6 (1997),
pp. 637–667.

BIBLIOGRAPHY 157

[Joh98] Mark E. Johnson. “Proof Nets and the Complexity of Processing
Center-Embedded Constructions”. In: Special Issue on Recent Advances
in Logical and Algebraic Approaches to Grammar. Ed. by C. Retoré.
Vol. 7(4). Journal of Logic Language and Information. Kluwer, 1998,
pp. 433–447.

[JS91] Aravind K Joshi and Yves Schabes. “Tree-adjoining grammars and lex-
icalized grammars”. In: Technical Reports (CIS) (1991), p. 445.

[JS97] Aravind K Joshi and Yves Schabes. “Tree-adjoining grammars”. In:
Handbook of formal languages. Springer, 1997, pp. 69–123.

[Kan98] Makoto Kanazawa. Learnable Classes of Categorial Grammars. ERIC, 1998.

[Kel88] William R Keller. “Nested cooper storage: The proper treatment of
quantification in ordinary noun phrases”. In: Natural language parsing
and linguistic theories. Springer, 1988, pp. 432–447.

[Kim73] John Kimball. “Seven principles of surface structure parsing in natural
language”. In: Cognition 2.1 (1973), pp. 15–47.

[Knu73] Donald E. Knuth. The Art of Computer Programming, VoL 1: Fundamental
Algorithms. 1973.

[KPP14] Souhila Kaci, Namrata Patel, and Violaine Prince. “From NL preference
expressions to comparative preference statements: A preliminary study
in eliciting preferences for customised decision support”. In: Tools with
Artificial Intelligence (ICTAI), 2014 IEEE 26th International Conference on.
IEEE. 2014, pp. 591–598.

[KR93] Hans Kamp and Uwe Reyle. “From Discourse to Logic; Introduction to
the Modeltheoretic Semantics of natural language”. In: (1993).

[Laf+p2] Mathieu Lafourcade et al. “Collecting Weighted Coercions from
Crowd-Sourced Lexical Data for Compositional Semantic Analysis”.
In: New Frontiers in Artificial Intelligence (JSAI-isAI 2017 Workshops, JU-
RISIN, SKL, AI-Biz, LENLS, AAA, SCIDOCA, kNeXI, Revised Selected Pa-
pers). Ed. by Sachiyo Arai et al. Springer, TBP2018.

[Laf07] Mathieu Lafourcade. “Making people play for Lexical Acquisition with
the JeuxDeMots prototype”. In: SNLP’07: 7th International Symposium
on Natural Language Processing. Pattaya, Chonburi, Thailand, Dec. 2007,
p. 7. URL: https://hal-lirmm.ccsd.cnrs.fr/lirmm-00200883.

[Lam58] Joachim Lambek. “The mathematics of sentence structure”. In: The
American Mathematical Monthly 65.3 (1958), pp. 154–170.

[Lam97] Joachim Lambek. “Type grammar revisited”. In: International Conference
on Logical Aspects of Computational Linguistics. Springer. 1997, pp. 1–27.

[Las95] Alex Lascarides. “The Pragmatics of Word Meaning”. In: Proceedings
of the AAAI Spring Symposium Series: Representation and Acquisition of
Lexical Knowledge: Polysemy, Ambiguity and Generativity. 1995, pp. 75–
80.

[LB17] Mathieu Lafourcade and Nathalie Le Brun. “Ambiguss, a game for
building a Sense Annotated Corpus for French”. In: 12th International
Conference on Computational Semantics, Montpellier. 2017.

[Lea+10] Claudia Leacock et al. “Automated grammatical error detection for lan-
guage learners”. In: Synthesis lectures on human language technologies 3.1
(2010), pp. 1–134.

158 BIBLIOGRAPHY

[Lei17] Hans Leiß. “On Equality of Contexts and Completeness of the Indexed
epsilon-Calculus”. In: IfCoLog Journal of Logics and their Applications 4.2
(2017), pp. 347–366.

[LJ15] Mathieu Lafourcade and Alain Joubert. “TOTAKI: a help for lexical ac-
cess on the TOT problem”. In: Language Production, Cognition, and the
Lexicon. Springer, 2015, pp. 95–112.

[Luo11] Zhaohui Luo. “Contextual analysis of word meanings in type-
theoretical semantics”. In: LACL’11 Proceedings of the 6th international
conference on Logical aspects of computational linguistics. Springer-Verlag
Berlin, 2011.

[Luo12] Zhaohui Luo. “Common Nouns as Types”. English. In: Logical As-
pects of Computational Linguistics. Ed. by Denis Béchet and Alexan-
der Dikovsky. Vol. 7351. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, pp. 173–185. ISBN: 978-3-642-31261-8.

[LV05] Richard L Lewis and Shravan Vasishth. “An activation-based model of
sentence processing as skilled memory retrieval”. In: Cognitive science
29.3 (2005), pp. 375–419.

[MCP+95] Igor Mel, André Clas, Alain Polguère, et al. “Introduction à la lexicolo-
gie explicative et combinatoire”. In: (1995).

[Mel89] Chris S Mellish. “Some chart-based techniques for parsing ill-formed
input”. In: Proceedings of the 27th annual meeting on Association for Com-
putational Linguistics. Association for Computational Linguistics. 1989,
pp. 102–109.

[Mer17] Bruno Mery. “Challenges in the Computational Implementation of
Montagovian Lexical Semantics”. In: New Frontiers in Artificial Intelli-
gence: JSAI-isAI 2016 Workshops, LENLS, HAT-MASH, AI-Biz, JURISIN
and SKL, Kanagawa, Japan, November 14-16, 2016, Revised Selected Papers.
Ed. by Setsuya Kurahashi et al. Cham: Springer International Publish-
ing, 2017, pp. 90–107. ISBN: 978-3-319-61572-1.

[Mil95] George A. Miller. “WordNet: A Lexical Database for English”. In: Com-
mun. ACM 38.11 (Nov. 1995), pp. 39–41. ISSN: 0001-0782. DOI: 10.1145/
219717.219748. URL: http://doi.acm.org/10.1145/219717.219748.

[Mir] Mehdi Mirzapour. “Finding Missing Categories in Incomplete Utter-
ances”. In: 24e Conférence sur le Traitement Automatique des Langues Na-
turelles (TALN), p. 149.

[MMR15a] Bruno Mery, Richard Moot, and Christian Retoré. “Computing the Se-
mantics of Plurals and Massive Entities using Many-Sorted Types”. In:
New Frontiers in Artificial Intelligence JSAI-isAI 2014 Workshops, LENLS,
JURISIN, and GABA, Kanagawa, Japan, October 27-28, 2014, Revised Se-
lected Papers. Ed. by Tsuyoshi Murata, Koji Mineshima, and Daisuke
Bekki. Vol. 9067. Lecture Notes in Artificial Intelligence. Springer-
Verlag Berlin Heidelberg, 2015, p. 357. DOI: 10.1007/978- 3- 662-
48119-6. URL: https://hal.inria.fr/hal-01214435.

[MMR15b] Bruno Mery, Richard Moot, and Christian Retoré. “Typed Hilbert Op-
erators for the Lexical Semantics of Singular and Plural Determiner
Phrases”. In: Epsilon 2015 – Hilbert’s Epsilon and Tau in Logic, Informatics
and Linguistics. Montpellier, France, June 2015.

[Moo02] Richard Moot. “Proof nets for linguistic analysis”. PhD thesis. UIL-
OTS, Universiteit Utrecht, 2002.

BIBLIOGRAPHY 159

[Moo10] Richard Moot. “Wide-Coverage French Syntax and Semantics using
Grail”. In: Proceedings of Traitement Automatique des Langues Naturelles
(TALN). System Demo. Montreal, 2010.

[Moo12] Richard Moot. “Wide-Coverage Semantics for Spatio-Temporal Rea-
soning”. In: Traitement Automatique des Languages 53.2 (2012), pp. 115–
142.

[Moo15] Richard Moot. “A Type-logical Treebank for French”. In: Journal of Lan-
guage Modelling 3.1 (2015), pp. 229–264.

[Moo17] Richard Moot. “The Grail Theorem Prover: Type Theory for Syntax and
Semantics”. In: Modern Perspectives in Type-Theoretical Semantics. Ed. by
Stergios Chatzikyriakidis and Zhaohui Luo. Cham: Springer Interna-
tional Publishing, 2017, pp. 247–277. ISBN: 978-3-319-50422-3. DOI: 10.
1007/978-3-319-50422-3_10. URL: https://doi.org/10.1007/978-
3-319-50422-3_10.

[Mor00] Glyn Morrill. “Incremental processing and acceptability”. In: Computa-
tional linguistics 26.3 (2000), pp. 319–338.

[MPR18] Mehdi Mirzapour, Jean-Philippe Prost, and Christian Retoré. “Catego-
rial Proof Nets and Dependency Locality: A New Metric for Linguis-
tic Complexity”. In: Logic and Algorithms in Computational Linguistics.
Stockholm University. 2018.

[MR12a] Richard Moot and Christian Retoré. The logic of categorial grammars:
a deductive account of natural language syntax and semantics. Anglais.
Vol. 6850. LNCS. Springer, 2012. URL: http://www.springer.com/
computer/theoretical+computer+science/book/978-3-642-31554-

1.

[MR12b] Richard Moot and Christian Retoré. The logic of categorial grammars:
a deductive account of natural language syntax and semantics. Vol. 6850.
Springer, 2012.

[MR13] Bruno Mery and Christian Retoré. “Semantic types, lexical sorts and
classifiers”. In: arXiv preprint arXiv:1312.3168 (2013).

[MR15] Bruno Mery and Christian Retoré. “Are books events ? Ontological In-
clusions as Coercive Sub-Typing, Lexical Transfers as Entailment”. In:
LENLS ’12, in jSAI 2015. Kanagawa, Japan, Nov. 2015.

[Mus90] Reinhard Muskens. “Anaphora and the logic of change”. In: European
Workshop on Logics in Artificial Intelligence. Springer. 1990, pp. 412–427.

[Nag94] Katashi Nagao. “A preferential constraint satisfaction technique for
natural language analysis”. In: IEICE TRANSACTIONS on Information
and Systems 77.2 (1994), pp. 161–170.

[Nij80] Anton Nijholt. Context-free grammars: covers, normal forms, and parsing.
93. Springer Science & Business Media, 1980.

[Par90] Terence Parsons. Events in the Semantics of English. Vol. 5. Cambridge,
Ma: MIT Press, 1990.

[Pat16] Namrata Patel. “Preference Handling in Decision-Making Problems”.
PhD thesis. Université de Montpellier, 2016.

160 BIBLIOGRAPHY

[PL11] Jean-Philippe Prost and Mathieu Lafourcade. “Pairing Model-Theoretic
Syntax and Semantic Network for Writing Assistance”. In: Proceedings
of the 6th International Workshop on Constraints and Language Processing
(CSLP@Context’11). 2011. URL: publis/prostLafourcade2011- cslp.
pdf.

[Pol06] Alain Polguère. “Structural properties of lexical systems: Monolingual
and multilingual perspectives”. In: Proceedings of the Workshop on Mul-
tilingual Language Resources and Interoperability. Association for Compu-
tational Linguistics. 2006, pp. 50–59.

[Pro08] Jean-Philippe Prost. “Modelling Syntactic Gradience with Loose
Constraint-based Parsing”. alternative url: http://hdl.handle.net/1959.14/28841.
PhD thesis. Macquarie University, Sydney, Australia, and Universitï¿½
de Provence, Aix-en-Provence, France (cotutelle), 2008. URL: http://
tel.archives-ouvertes.fr/tel-00352828/fr/.

[Pro10] Jean-Philippe Prost. Graded Grammaticality: a Computational Framework.
in press. LAP Lambert Academic Publishing, 2010.

[PS01] Geoffrey K Pullum and Barbara C Scholz. “On the distinction between
model-theoretic and generative-enumerative syntactic frameworks”.
In: International Conference on Logical Aspects of Computational Linguis-
tics. Springer. 2001, pp. 17–43.

[Pus91] James Pustejovsky. “The generative lexicon”. In: Computational linguis-
tics 17.4 (1991), pp. 409–441.

[Pus95] James Pustejovsky. The Generative Lexicon. MIT Press, 1995.

[Res67] Nicholas Rescher. The logic of decision and action. University of Pitts-
burgh Pre, 1967.

[Ret14] Christian Retoré. “The Montagovian Generative Lexicon Lambda Ty_n:
a Type Theoretical Framework for Natural Language Semantics”. In:
19th International Conference on Types for Proofs and Programs (TYPES
2013). Vol. 26. Leibniz International Proceedings in Informatics (LIPIcs).
Germany: Schloss Dagstuhl, 2014, pp. 202–229. ISBN: 978-3-939897-72-
9.

[Ret96] Christian Retoré. “Calcul de Lambek et logique linéaire”. In: Traitement
Automatique des Langues 37.2 (1996), pp. 39–70.

[Roo91] Dirk Roorda. “Resource logic: proof theoretical investigations”. PhD
thesis. FWI, Universiteit van Amsterdam, 1991.

[Roo92] Dirk Roorda. “Proof nets for Lambek calculus”. In: Logic and Computa-
tion 2.2 (1992), pp. 211–233.

[Sad08] Mehrnoosh Sadrzadeh. “Pregroup Analysis of Persian Sentences”. In:
Recent Computational Algebraic Approaches to Morphology and Syntax,
Polimetrica, Milan, 2008. Ed. by C Casadio and J Lambek. 2008.

[SM98] David Schneider and Kathleen F McCoy. “Recognizing syntactic errors
in the writing of second language learners”. In: Proceedings of the 17th in-
ternational conference on Computational linguistics-Volume 2. Association
for Computational Linguistics. 1998, pp. 1198–1204.

[Ste12] Mark Steedman. Taking scope: The natural semantics of quantifiers. MIT
Press, 2012.

BIBLIOGRAPHY 161

[Ste99] Mark Steedman. “Alternating quantifier scope in CCG”. In: Proceedings
of the 37th annual meeting of the Association for Computational Linguistics
on Computational Linguistics. Association for Computational Linguis-
tics. 1999, pp. 301–308.

[Szy16] Jakub Szymanik. Quantifiers and cognition: Logical and computational per-
spectives. Vol. 96. Springer, 2016.

[Van78] Kurt VanLehn. “Determining the Scope of English Quantifiers”. AI-
TR-483, Artificial Intelligence Laboratory. MA thesis. Cambridge, MA:
MIT, 1978.

[Vas+05] Shravan Vasishth et al. “Quantifying Processing Difficulty in Human
Language Processing”. In: In Rama Kant Agnihotri and Tista Bagchi
(2005).

[VC95] Carl Vogel and Robin Cooper. “Robust chart parsing with mildly in-
consistent feature structures”. In: Nonclassical feature systems 10 (1995),
pp. 197–216.

[VEU10] Jan Van Eijck and Christina Unger. Computational semantics with func-
tional programming. Cambridge University Press, 2010.

[WG99] Tessa Warren and Edward Gibson. “The effects of discourse status on
intuitive complexity: Implications for quantifying distance in a locality-
based theory of linguistic complexity”. In: Poster presented at the Twelfth
CUNY Sentence Processing Conference, New York. 1999.

