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Particle Image Velocimetry (PIV) is one of the reference experimental methods for the study of complex flows. In the last decades, the range of cases where PIV has been used has increased, for instance due to the continuous improvement of high frame-rate measurement apparatus and processing methods. Still, PIV, either planar of tomographic, suffers from a set of limitations. Spatial and temporal resolutions may not be sufficient, bias and noise levels may be too high. The goal of the present thesis was to use and develop methods to overcome such limitations using physical-based modeling. In this regard, three different approaches have been explored, each offering a different trade-off in ease of use, accuracy and computational cost.

The first approach aims at improving velocity and acceleration estimation in the context of Time-Resolved PIV (TRPIV). A novel algorithm has been developed: the Lucas-Kanade Fluid Trajectories (LKFT, Yegavian et al. 2016). This algorithm extends the two frame techniques to short image sequences assuming smooth polynomial trajectories for the flow. The method has been assessed on both synthetic and experimental test cases, where significant noise reduction and lower spatial filtering compared to two frame processing have been observed.

), relies on the Parabolized Stability Equations (PSE). This technique is of great interest as the input measurements, the mean-flow and one or several point-wise unsteady velocity informations are often easy to obtain with classical experimental arrangements. Experimental validation showed the accuracy of the method to recover the unsteady dynamics and a high robustness to the experimental parameters.

At last, the third method relies on the full unsteady incompressible Navier-Stokes equations to improve PIV measurement sequences. An unsteady velocity field strictly respecting the governing equations and as close as possible to the PIV measurement is searched for. This approach, using a variational data-assimilation framework, has also been applied to synthetic and experimental configurations. The method has proven capable to overcome the limits of PIV, justifying the associated high computational cost. Spatial and temporal super-resolution have been achieved as well as the ability for extrapolation with the recovery of the flow outside of the measurement domain.

Résumé

La Vélocimétrie par Images de Particules (PIV) est une méthode de mesure expérimentale de référence pour l'étude des écoulements complexes. Au cours des dernières décennies, l'amélioration continue des matériels de mesure et des approches numériques de traitement a permis d'élargir significativement les champs d'application et la justesse des mesures. Toutefois, la PIV, qu'elle soit plane ou tomographique, souffre toujours d'un certain nombre de limites; limites de résolution spatiale et temporelle, mais aussi de niveau de biais et bruit, par exemple. L'objectif de cette thèse a été le développement et l'utilisation de méthodes pour surmonter les principales limites de la PIV en imposant des contraintes physiques aux écoulements. A ce titre, trois axes de recherche ont été explorés, chacun présentant des compromis différents dans les cas d'utilisation, le coût de calcul et la qualité de reconstruction de l'écoulement.

La première approche abordée vise à améliorer l'estimation de la vitesse et accélération pour la PIV Résolue en Temps (TRPIV). Un nouvel algorithme a été développé, Lucas-Kanade Fluid Trajectories (LKFT, Yegavian et al. 2016), étendant les approches deux images à de courtes séquences (de l'ordre d'une dizaine) en supposant des trajectoires fluides polynomiales. Cette méthode a été éprouvée sur des cas synthétiques et expérimentaux, permettant notamment une réduction significative du bruit et du filtrage spatial des petites échelles par rapport aux méthodes à deux images classiques.

Les travaux menés sur le deuxième axe visent à reconstituer le champ de vitesse instationnaire d'un écoulement à partir du champ de vitesse PIV moyen et d'une ou plusieurs mesures de vitesse locales instationnaires. Cette reconstruction proposée par [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF], s'appuie sur les équations de stabilité parabolisées (PSE). Cette méthode présente des intérêts certains, en effet, la quantité reconstruite est difficilement mesurable alors que le champ de vitesse moyen ainsi qu'une ou plusieurs mesures instationnaires locales peuvent être obtenues avec des méthodes de mesure classiques. Une validation sur un écoulement de jet rond a été menée, démontrant la justesse de l'approche pour la reconstruction de la dynamique instationnaire. L'approche se montre aussi robuste vis-à-vis des conditions expérimentales.

Enfin, les travaux menés sur le troisième axe concernent le traitement de séquences d'images en utilisant les équations de Navier-Stokes incompressibles et instationnaires régissant le comportement des fluides. L'objectif de cette approche est la recherche d'un champ de vitesse instationnaire respectant strictement les équations du fluide tout en minimisant l'écart avec la mesure PIV. Cette approche, éprouvée sur données synthétiques et expérimentales, s'avère particulièrement adaptée à surmonter les limites de la PIV. Super-résolution spatiale et temporelle sont observées avec une grande robustesse et flexibilité aux données assimilées, justifiant un coût de calcul important. On note aussi une capacité d'extrapolation, la reconstruction de l'écoulement étant possible même à l'extérieur de la zone de mesure.

Chapter 1 -Introduction

Particle-based velocity measurement for fluid mechanics

A correct understanding of fluids mechanics is critical in designing efficient means of transportation and energy production, predicting the weather and grasping biological processes. One of the crucial step for this understanding is gathering accurate information measuring the fluid behavior. Over the years, many schemes have been developed for this purpose in the field of experimental fluids mechanics. The choice of a measurement method depends on the application, the type of fluid, the type of flow, the quantity to be measured, and the expected accuracy.

Fluids of great interest such as air or water are, in most cases, transparent to light. Thus, motion in such fluids is not visible, hence the idea of adding small tracers in the medium for quantitative measurement. If the tracers remain passive, measuring the particle displacement can yield the fluid velocity. These velocimetry methods can be classified in two groups: pointwise or field measurement. Laser Doppler velocimetry (LDV) or laser Doppler anemometry is the most commonly used approach to measure velocity at a single position in space using particles tracers. LDV relies on the time signal of light intensity reflected by particles passing through a spatial interference fringe. This interference fringe pattern is created with two coherent and monochromatic laser sources collimated at the position of measurement [START_REF] Durst | Principles and practice of laser-doppler anemometry[END_REF]. In the realm of point-wise particle-based measurement, mention should also be made of Laser-Two-Focus (L2F) Velocimetry. This method estimates the fluid velocity by comparing the particles time of flight between two focused parallel laser beams [START_REF] Tropea | Springer handbook of experimental fluid mechanics[END_REF].

Introduction

In the last decades, thanks to the progress of higher bandwidth digital cameras and higher power lasers, measuring the velocity over a whole spatial field has been made possible. Major methods relying on digital cameras include Doppler Global Velocimetry (DGV), Particle Tracking Velocimetry (PTV) and Particle Image Velocimetry (PIV). DGV [START_REF] Meyers | Doppler global velocimetry: a new way to look at velocity[END_REF] is based on the monochromatic illumination by a laser sheet of a the seeded flow. The velocity is estimated exploiting the Doppler effect, where the measured particle velocity is related to the reflected light frequency. PIV, and to a much lesser extent PTV, are the subject of this thesis and thus will be detailed below.

Basics of Particle Image Velocimetry

In this section, planar Particle Image Velocimetry will be introduced. First the experimental setup of the method will be presented, then some mention will be made of the required data processing. The limits of standard PIV as well as some of the principal ways to overcome them using a model will be presented.

The focus of this thesis relates to innovative ways to improve PIV with physical-based modeling. The methods employed and developed have been, as a first step, applied on planar two-component (2D2C) PIV. In this way, parametric studies can be easily pursed. As such, the followings sections concentrate more on 2D2C PIV than either particle tracking methods (PTV) or tomographic PIV, extension of planar PIV to tridimensional volumes. However the methods used or developed in this thesis should be applicable to tomoPIV and PTV. PTV and TomoPIV will be mentioned briefly and in regards to their distinctive features with 2D2C PIV.

Experimental setup

The experimental setup of two-frame planar PIV and PTV is almost the same. As shown in figure 1.1 [START_REF] Raffel | Particle image velocimetry: a practical guide[END_REF], in a wind tunnel configuration, the flow to be measured is seeded with particles. A thin laser sheet is projected on this flow. The illuminated particles are then captured at time t and t ′ by an single imaging apparatus. Numerical processing of images at both times yield an estimation of the velocity in the plane of the light sheet. The difference in the experimental setup between planar PIV and PTV only lies in the seeding density, the amount of tracers introduced in the flow. The experimental setup of a PIV system typically consists of several subsystems. In most applications tracer particles have to be added to the flow. These particles have to be illuminated in a plane of the flow at least twice within a short time interval. The light scattered by the particles has to be recorded either on a single frame or on a sequence of frames. The displacement of the particle images between the light pulses has to be determined through evaluation of the PIV recordings. In order to be able to handle the great amount of data which can be collected employing the PIV technique, sophisticated post-processing is required.

Basics of Particle Image Velocimetry

Figure 1.4 briefly sketches a typical setup for PIV recording in a wind tunnel. Small tracer particles are added to the flow. A plane (light sheet) within the flow is illuminated twice by means of a laser (the time delay between pulses depending on the mean flow velocity and the magnification at imaging). It is assumed that the tracer particles move with local flow velocity between the two illuminations. The light scattered by the tracer particles is recorded via a high quality lens either on a single frame (e.g. on a high-resolution digital or film camera) or on two separate frames on special cross-correlation digital cameras. After development the photo-graphical PIV recording is digitized by means of a scanner. The output of the digital sensor is transferred to the memory of a computer directly.

For evaluation the digital PIV recording is divided in small subareas called "interrogation areas". The local displacement vector for the images of the tracer particles of the first and second illumination is determined for each in-Fig. 1.1 Experimental arrangement for two-component planar Particle Image Velocimetry in a wind tunnel, illustration from [START_REF] Raffel | Particle image velocimetry: a practical guide[END_REF] For the above setup to yield accurate results after processing, each component must be carefully arranged. Namely, the seeding used for the flow must respect a few conditions to be usable. With both planar PIV and PTV, the tracers must be big enough and reflective enough to be visible on the images. They must also be small enough to behave as a passive tracers, and, for instance, not be affected by either velocity gradients or buoyancy effects. The density of particles on the images is also a critical parameter for accurate measurement. This quantity is quantified by the number of particles per pixels or ppp. The lighting apparatus is responsible for the illumination of the seeded part of the flow to be measured. It is composed of a light source and some optics in charge of creating and accurately positioning the thin light-sheet. The light source is most often a laser with the ability to produce two very short (≈ 10ns) light pulses at time t and t ′ . A cylinder sheet generator lens is fitted to transform the beam that comes from the light source into a thin light sheet. The width of this sheet is typically of the order of a millimeter. The particle images are often acquired with a specialized camera, with high sensibility monochrome sensors arrays, and the ability to capture two images in a short time. This camera is fitted with a large aperture lens to maximize the amount of captured light at the cost of smaller particles Point spread function (PSF).

Planar PIV may estimate two or three velocity components (in the case of stereo PIV) in a bidimensional domain (2D). Tomographic methods estimate three velocity components (3C) in a tridimensional domain (3D). Tomographic techniques [START_REF] Elsinga | Tomographic particle image velocimetry[END_REF]Scarano, Introduction 2013) differ from planar approaches in their experiment setup. As with planar estimation, a laser is used to light-up the volume to be measured, but the laser sheet is wider in order to capture the dynamic along the third dimension. Multiple cameras are needed (typically 4), and these are aimed at the flow from different angles. To ensure that the camera focus plane is coincident with the light sheet, Scheimpflug lens mount may be employed in such cases.

Image processing

In this section, a brief overview of the most typical processing used to evaluate the displacement from the images at time t and t ′ is presented. Many different approaches have been proposed by the community, to accurately estimate the velocity for image pairs. The goal here is to convey an intuitive understanding of the principal approaches and highlight their main characteristics, as such details relevant to the present thesis will be mentioned in the related chapter.

The underlying hypothesis of displacement estimation from seeded flows is the image intensity conservation for all spatial positions k in the two light intensity images I and I ′ at time t and t ′ :

I(k) ≈ I ′ (k -u(k))
(1.1)

The single equation above has two unknowns for the bidimensional displacement field u(k).

To find u and solve this equation, additional assumptions are needed. In most cases pertaining to flow estimation, some degree of spatial smoothness is assumed. This spatial smoothness gives rise to two classes of algorithm: the so called local and global approaches. To find the displacement u(k), local approaches rely on smoothness over a spatial interrogation window w(k) in the vicinity of the position k as illustrated in figure 1.2. 

Basics of Particle Image Velocimetry

Within local approaches, two groups of methods can be distinguished. Both are correlationbased but one maximizes the cross-correlation (CC) while the other minimizes a sum of square differences (SSD) and relies on the framework by [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF]. With I(m) and I ′ (mu(k)) the light intensity at the pixel position m on I and mu(k) on I ′ respectively, the displacement u(k) is found by maximizing CC or minimizing SSD defined as:

CC (u(k)) = m∈w(k) I(m) I ′ (m -u(k)), (1.2) SSD (u(k)) = m∈w(k) I(m) -I ′ (m -u(k)) 2 .
Minimization of the SSD is carried out using an iterative gradient-based approach, while u(k) maximizing CC is often found by explicitly searching for the maximum of the correlation function.

Cross-correlation maximization approaches are the most commonly used by the community while SSD-based are the one that will be used in the present thesis. Reaching State-of-the-art performance and accuracy requires further refinement such as iterative windows deformation [START_REF] Scarano | Iterative image deformation methods in piv[END_REF], predictor and corrector filtering [START_REF] Schrijer | Effect of predictor-corrector filtering on the stability and spatial resolution of iterative PIV interrogation[END_REF] and adaptive interrogation windows size [START_REF] Wieneke | Adaptive piv with variable interrogation window size and shape[END_REF].

Where local methods assume smoothness in an interrogation window, global methods as suggested by the name, ensure global properties using penalization (see [START_REF] Heitz | Dynamic consistent correlation-variational approach for robust optical flow estimation[END_REF] for a detailed overview). This penalization, can range from imposing a simple smoothing term [START_REF] Horn | Determining optical flow[END_REF] to more advanced techniques ensuring physical constraints to the estimated velocity field [START_REF] Héas | Bayesian estimation of turbulent motion[END_REF][START_REF] Ruhnau | Optical stokes flow estimation: an imaging-based control approach[END_REF]. In practice, local approaches are often chosen for their computational performance and robustness. On the other hand, global approaches tend to be favored for their accuracy and resolution.

Noise, resolution and accuracy

Planar PIV still suffers from a set of limitations, especially when applied to complex turbulent flows. Some of these limitations and how they have been addressed by the community will now be detailed. Limitations of tomographic approaches and PTV techniques, when relevant, will also be considered here.

As mentioned in the previous sections, PIV estimates the average motion of a pattern of particles contained in an interrogation window (IW), and may thus filter out scales smaller Introduction than the IW size. The obtained filtered estimation may also be characterized by a higher level of noise, as shown by [START_REF] Westerweel | On velocity gradients in piv interrogation[END_REF]. Illustrating the filtering effect, figure 1.3 shows the PIV spatial response to a sinusoidal motion [START_REF] Schrijer | Effect of predictor-corrector filtering on the stability and spatial resolution of iterative PIV interrogation[END_REF]. The processing used in this case is iterative cross-correlation-based PIV with image deformation and predictor filtering. I * is the window size normalized by the sinusoidal wavelength and U/U 0 represents the ratio between the estimated (U ) and the actual (U 0 ) maximal displacement amplitude.

Here the filter chosen has been selected to offer a good trade-off between resolution and robustness. For values of I * < 0.4, barely any amplitude modulation is observed, i.e. spatial scales twice larger than the interrogation window width are well resolved. For I * smaller than 0.4, larger and larger modulation is observed, until I * greater than 1 where the smallest spatial scales are completely filtered out.

Fig. 1.3 Spatial frequency response of PIV iterative windows deformation, with predictor filter after 10 iterations. I * is the normalized windows size and U/U 0 the normalized displacement amplitude. Illustration from [START_REF] Schrijer | Effect of predictor-corrector filtering on the stability and spatial resolution of iterative PIV interrogation[END_REF].

As such, in two-frame PIV, the spatial resolution is limited by the interrogation windows size. This may suggest that very small interrogations windows are always preferable, but this is not the case, as small IWs increase the sensitivity to image noise. Indeed, the number of tracers inside a single interrogation window must be high enough. In this way, these tracers form a distinguishable pattern in both PIV frames and the displacement between the two frames is unambiguous. These constraints on light intensity and interrogation windows size can notably limit the spatial resolution in air flows with high frame rate where the light reflected by particles and the laser pulse intensity are low. This also applies in regions where seeding is too scarce (e.g. vortices and recirculation regions), or for estimating boundary layer flows, where light reflections on the walls are often unavoidable. Planar PIV and even more so tomographic PIV may often be limited by optical access for laser sheet and cameras, Because standard PIV processing cannot estimate velocity where there are no lit-up particles, for both planar and tomographic approaches, a trade-off between spatial resolution and noise emerges; an improvement in one property tends to worsen the other. The comparison between 2D and 3D approaches is also characterized by this trade-off: volumetric techniques provide more information than planar ones, but they suffer from additional sources of errors, the so-called ghost particles appearing during the tomographic reconstruction. These ghosts, arising when particles are too numerous to be uniquely identified, set an upper bound on the seeding density [START_REF] Elsinga | Tomographic particle image velocimetry[END_REF][START_REF] Elsinga | On the velocity of ghost particles and the bias errors in tomographic-PIV[END_REF][START_REF] Kähler | Main results of the 4th international PIV challenge[END_REF]. With limited seeding density, smallest scales of the flow may not be resolved, hence reducing the spatial resolution. On the other hand, 2D PIV allows denser seeding and a higher resolution, but it is restricted to planar flow.

Considering now the temporal resolution, technological advances in the repetition rate of lasers and cameras have made time-resolved estimation possible in applications at moderate velocities, for which the highest flow frequencies remain moderate and compatible with the hardware optics. Once again, comparing low and high frame rates, a trade-off also exists between temporal resolution and signal-to-noise ratio or bias : low frame rate hardware allows high pulse energies, therefore smaller aperture and larger particle images, while high frame rate lasers produce less energy per pulse. For example, figure 1.5 shows the energy per pulse as a function of the frequency for a Litron LDY303 laser. In this figure, the energy is inversely proportional to the frequency, i.e. E ∝ 1/f . As the light diffused by the particles is reduced with higher frequencies, an accurate measurement calls for an increase in light sensitivity of the imaging apparatus. This higher sensitivity if often achieved using larger Introduction apertures and camera with larger pixel sensors. But, a large aperture and large pixels result in smaller particle Point Spread Function (PSF), introducing peak-locking and reducing spatial resolution. Beside, while very high frequencies are achievable on short burst using highly specialized hardware [START_REF] Murphy | Piv space-time resolution of flow behind blast waves[END_REF], reachable frequencies often remain lower than the flow highest frequencies in a large range of high velocity applications. In this context, a number of recent studies have aimed at alleviating some of these limitations. For this purpose, the next section will focus on how various degrees of modeling in the processing of experimental data can be introduced.

Introducing a model

Being an active research subject, the literature on the improvement of PIV using a model is vast. As such, a subset of references providing a general understanding of the subject will be mentioned. Also, whether an improvement to PIV relies on a model or not is tricky to define. Indeed, the separation between what is or not a model is blurry.

In time-resolved PIV for instance, new approaches for flow estimation have been proposed, assuming that fluid trajectories have a polynomial behavior in time if considering short enough image sequences [START_REF] Lynch | A high-order time-accurate interrogation method for time-resolved PIV[END_REF][START_REF] Jeon | Fluid trajectory evaluation based on an ensembleaveraged cross-correlation in time-resolved PIV[END_REF]. Such methods reduce peak-locking and noise, and increase spatial resolution by working with smaller interrogation windows. More specific to volumetric applications, the exploitation of temporal context and joint processing of longer image sequences has also greatly improved 3D flow estimation.

Introduction

Present work & outline

The focus of this thesis is to use modeling to improve PIV within the context presented above. Three different types of modeling applicable to various experimental configurations are employed. Each of these modeling is the subject of a single chapter. Those chapters start with preliminary remarks acknowledging my contribution to the subject and the associated peer-reviewed communications, either published, in revision, or close to submission. Chapters are ordered according to how restrictive the underlying model is, from the simplest one to a more general approach.

Chapter two is devoted to proposing an advanced approach in the aim of overcoming bias and resolution issues in time-resolved PIV, as mentioned above. In this regard a new algorithm developed during this thesis, the Lucas-Kanade Fluid Trajectories (LKFT) is introduced. This algorithm estimates particles pattern trajectories over a short sequence of images (typically of the order of five to ten). Assuming temporal coherency between images of the sequence, this approach models trajectories as polynomial parametric functions. Such a polynomial modeling was also used in the same context by [START_REF] Lynch | A high-order time-accurate interrogation method for time-resolved PIV[END_REF] and [START_REF] Jeon | Fluid trajectory evaluation based on an ensembleaveraged cross-correlation in time-resolved PIV[END_REF]. However, while these authors used a classical correlation based framework, LKFT is a generalization of the two-frames estimation as proposed by [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF], and therefore strongly differs in terms of optimization strategy. The method is first described, applied to synthetic cases, then assessed on an experimental round air jet.

The third chapter addresses the reconstruction of dense time-resolved flow fields when timeresolved PIV is not available. The approach, proposed by [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF] is here applied in an experimental context. It uses a model based on stability analysis about a mean flow. The reconstruction takes as input a PIV mean flow and one or more time-resolved point-wise measurements. Keeping in mind the method classification proposed in the previous section, we note that this reconstruction techniques does not rely on a optimization process.

The work presented was done in collaboration with the first author of the previously mentioned article. In this chapter, the method will be described and applied to the same experimental air jet used to assessed LKFT.

The fourth chapter is focused on a more general approach to overcome the limits of PIV. data assimilation of PIV using the full unsteady incompressible bidimensional Navier-Stokes equations is carried by means of adjoint-based optimization. The approach retained is inspired by the work of [START_REF] Gronskis | Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[END_REF]. The focus here is to further asses its capabilities in various measurement situations. After a description of the method and the implementation details introduced during this thesis, the capability of the approach is assessed. This assessment will concentrate on the robustness and flexibility of the method with respect to 1.4 Present work & outline 11 the input PIV measurements. Ability for super-resolution and spatial extrapolation will be evaluated on the synthetic flow past a backward-facing step and an experimental planar air jet.

Finally in charter five, conclusion and further-work are discussed.
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Time-resolved PIV (TR-PIV) has become an essential tool for turbulent flow investigation, as it opens the way to Lagrangian trajectory analysis, characterization of temporal scales and spatio-temporal correlations, and is one of the building blocks of pressure measurement by PIV. Compared to low frame rate hardware, high repetition lasers have however less energy per pulse, and high speed camera CMOS sensors usually exhibit larger pixel sizes and are more sensitive to noise, thereby enhancing the risks of overall bias and noise in the estimated velocities. In an effort to alleviate these drawbacks and improve the measurement quality, several recent research works have considered extending the number of images included in the PIV interrogation, and accounting for the temporal coherence of the flows by introducing a priori for the temporal evolution of trajectories. Among these, the Fluid Trajectory We here introduce a new method for high-order trajectory evaluation in TR-PIV, also assuming a polynomial a priori in time. We formulate an objective that averages the correlation over a combination of several frames pairs in the sequence, comparable to FTEE. However, similar to the approach of [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF], we adopt a Lucas-Kanade (LK) framework in which the trajectories are found as the minimizer of a least squares functional. In this context, enhancing traditional PIV to polynomial trajectory estimation is done in a very simple way, so that the usual and already existing algorithmic steps involved in the practical computation (such as image deformation, and coarse-to-fine multi-resolution), can be used straightforwardly, to yield the so-called Lucas-Kanade Fluid Trajectories (LKFT). Besides, as shown by [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF] these approaches can heavily reduce processing time thanks to their highly parallel nature, that makes them ideally suited for GPU computing. This can be a significant advantage as processing is more intensive for the present time-resolved methods than for traditional two-frame PIV.

Our goal in this chapter is to introduce the working principle of this new method and to assess critically its performances and the gains brought over two-frame interrogation, in various situations known to be critical for the latter in a time-resolved context. This is done in four steps. Section 2.2 first presents the theoretical foundations of the method. In section 2.3, a first assessment on synthetic data is introduced, to investigate the behavior of LKFT in the presence of peak-locking. Tests are performed on one of the configurations considered by [START_REF] Jeon | Fluid trajectory evaluation based on an ensembleaveraged cross-correlation in time-resolved PIV[END_REF], in order to provide a comparison with FTC and FTEE on that point. Robustness to noise is then assessed in section 2.4, on case B of the third international PIV challenge [START_REF] Stanislas | Main results of the third international PIV challenge[END_REF]. In section 2.5, LKFT is compared to two-frame PIV on experimental high-speed PIV images, pertaining to the near field of a round air jet flow. Finally, in section 2.6, one of the limits of the LKFT will be investigated on synthetic particles images.

Principle

15

Principle

Global objective

As depicted in figure 2.1, we consider a sequence of 2N + 1 images, at times t = [-N, -N + 1, ..., N -1, N ]. For simplicity we assume that the temporal interval between subsequent images is unity, and take the central instant as the zero reference. One is interested in estimating the trajectory over these instants of the fluid parcel located in the vicinity of pixel k at time 0. Each of the positions of this parcel during the motion, with reference to the central position at t = 0, are denoted as u(k, n) and depicted by the blue arrows in figure 2.1.

Similarly to FTC [START_REF] Lynch | A high-order time-accurate interrogation method for time-resolved PIV[END_REF] or FTEE [START_REF] Jeon | Fluid trajectory evaluation based on an ensembleaveraged cross-correlation in time-resolved PIV[END_REF], we model the trajectory by a polynomial function of order P , i.e.

u(k, n) = P p=1 a (k,p) n p .
(2.1)

The vector coefficients a (k,p) at orders p = [1...P ] are thus the quantities to be estimated.

pixel k. u ( k , 1 ) u (k , 2) u(k , 3) u ( k , -1 ) u (k , -2 ) u(k , -3) 0 1 2 3 -1 -2 -3 u ( k , 1 )
P o ly n o m ia l tr a je ct o ry F l u i d t r a j e c t o r y Fig. 2.1 Trajectory of the fluid located at pixel k in frame n = 0, over 2N + 1 time instants, exemplified here with N = 3 (dotted line). Blue vectors identify the elementary displacements involved in the time-resolved estimation of Lucas-Kanade Fluid Trajectories (LKFT). All of these are relative to the central position.

Similarly to approaches proposed for two-components PIV [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF], we here rely on a Lucas-Kanade framework. In two-frame PIV, taking the examples of frames 0 and 1, estimation of u(k, 1) is performed by minimising a functional built as a sum of squared differences (SSD),

m w(m -k) I 0 (m) -I 1 (m + u(k, 1)) 2 (2.2)
Lucas-Kanade Fluid Trajectories for time-resolved PIV for a forward scheme (first-order in time), and

m w(m -k) I 0 m - u(k, 1/2) 2 -I 1 m + u(k, 1/2) 2 2 (2.3)
for a symmetrical scheme. The latter scheme is of second-order in time and thus evaluates the displacement halfway between times 0 and 1, u(k, 1/2). In these expressions, which are the building objective of FOLKI-PIV [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF], I n (m) denotes the intensity of pixel m in the image at time n, and w is the support of the interrogation window (IW) located around pixel k. As pointed out in [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF], a strong formal similarity exists between finding the displacement as the minimum of such SSDs, and finding it by traditional cross-correlation maximization, as the latter is in fact embedded within the SSD. Further details will be presented in section 2.3.3.

Estimating the polynomial trajectory ranging from instant -N to N in this least-squares framework can be formulated by simply adding into the functional SSDs built from instant pairs. As pointed out by [START_REF] Jeon | Fluid trajectory evaluation based on an ensembleaveraged cross-correlation in time-resolved PIV[END_REF], who reviewed and compared approaches relying on different combinations of the correlation pairs (e.g., sliding average [START_REF] Meinhart | A PIV algorithm for estimating time-averaged velocity fields[END_REF][START_REF] Scarano | Time-resolved analysis of circular and chevron jets transition by tomo-PIV[END_REF] or pyramid correlation (Sciacchitano et al., 2012b)), the choice of which pairs to consider can have an impact on the reduction in bias and random error finally obtained. In the present study, as FTC and FTEE, we consider every pair involving the central time instant t = 0 (see figure 2.2), with an equal weight for all pairs, i.e. (2.5) Solving for this objective then yields the Lucas-Kanade Fluid Trajectories (LKFT). Note that, in the present framework, it would be straightforward to consider other combinations, such as sliding average, or even a combination of sliding average and the present criterion. However, similar to the results of [START_REF] Jeon | Fluid trajectory evaluation based on an ensembleaveraged cross-correlation in time-resolved PIV[END_REF], our tests so far have shown that criterion (2.4) is the most effective in bias and noise alleviation.

I 0 I +1 I +2 I +3 (I +N ) I -1 I -2 I -3 (I -N )

Iterative algorithm

In practice, LKFT's global objective (2.5) is minimized iteratively, within a predictor-corrector scheme. Due to the formal similarity between the time-resolved objective (2.5) and the twoframe objectives (2.2) or (2.3), the same strategies as for two-frame PIV [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF] can be extended directly. Contrary to equivalently advanced approaches such as FTC or FTEE, no dedicated new algorithmic component has to be introduced, existing functionals and equations simply have to be completed. As a consequence, we hereafter only present the main result of the iterative algorithm, and refer the reader to [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF] and appendix A for further details. Assuming a known predictor field u 0 (k, n) = P p=1 a (k,p) 0 n p , we look for an update δu(k, n) = P p=1 δa (k,p) n p . We inject the decomposition u(k, n) = u 0 (k, n) + δu(k, n) in expressions (2.4-2.5) and perform a Taylor expansion around u 0 (k, n) for each intensity I n with n ̸ = 0. Using approximation

u 0 (k, n) ≈ u 0 (m, n), one gets, m w(m -k) N n=-N,n̸ =0 I u 0 n (m) + ∇I u 0 n (m) t   P p=1 δa (k,p) n p   -I 0 (m) 2 .
(2.6)

In this expression, I u 0 n (m) = I n (m + u 0 (m, n)) represents the image at time n deformed by the current predictor u 0 (m, n), and ∇I u 0 n (m) the associated spatial gradient. Minimization of (2.6) using the Gauss-Newton algorithm boils down to the inversion of a 2P × 2P linear system for each predictor iteration and pixel k,

H(k)δa(k) = c(k).
(2.7)

With, δa(k) = δa (k,1) x , • • • , δa (k,P ) x , δa (k,1) y , • • • , δa (k,P ) y t
, vector of unknown coefficients along both directions. H(k) and c(k) are defined as follows,

H(k) = m w(m -k) D(m) t D(m) .
(2.8) and,

c(k) = m w(m -k) D(m) t ϵ(m) .
(2.9) D(m) and ϵ(m), introduced in expressions (2.8-2.9) are respectively matrix of size 2N × 2P and vector of size 2N ,

D(m) = D -x D -y D +x D +y ; ϵ(m) = ϵ - ϵ + . (2.10) With, ξ = ±1, ω ∈ {x, y}, 1 ≤ n ≤ N and 1 ≤ p ≤ P , D ξω (m) n,p = (ξn) p ∇ ω I u 0 n (m) ; ϵ ξ (m) n = I 0 (m) -I u 0 n (m).
(2.11)

As indicated by notations I u 0 n and ∇I u 0 n , this iterative algorithm relies on image deformation (as shown in figure 2.2) using the predictor estimate, as traditionally done in PIV. To ensure its convergence, as proposed for instance by [START_REF] Schrijer | Effect of predictor-corrector filtering on the stability and spatial resolution of iterative PIV interrogation[END_REF], we apply a filter on the predictor field at each iteration, before deformation and resolution of the linear systems. In the current implementation the corrector filter is w, the interrogation window weighting function.

Gauss-Newton (GN) iterations require that the amplitude of the correction remains small for convergence to be ensured. In order to maintain this behaviour and tend toward the desired solution, and similar to [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF], we rely on a multi-resolution framework. Starting from each of the raw images, we build a Burt pyramid as shown in figure 2.3, in which climbing up a level amounts to dividing each dimension of the image by 2. In this process, displacement in the images are also divided by 2. Convergence of the GN iterations is then ensured by considering enough pyramid levels for the estimated displacement to be close enough to zero (say, 2 -3 pixels maximum), and thus starting at the top pyramid level with a uniformly zero value for the predictor. In this time-resolved context, where the objective criterion may include correlations between quite remote time instants, thus having an important displacement between them, it is expected that a more important number of levels will be necessary compared to two-frame estimation. However, this will not add much to the computational burden, as the computational cost per level of the pyramid reduces quickly as one climbs up its stairs. Fig. 2.3 Principle of the multi-resolution pyramid, here for a total of J = 3 levels. Level j = 0 corresponds to the raw, acquired image. The sketch also exemplifies the definition of an interrogation window centered around pixel k.

Remarks

Compared to direct correlation maximization (be it using FFT or not), the Lucas-Kanade framework comes with several specificities which are important to bear in mind, as they can help understand the differences between LKFT and other methods such as FTEE, and also the potential of LKFT for GPU acceleration.

Comparison with other time-resolved methods

In terms of optimization objective, LKFT and FTEE are similar as they consider the same image pairs, and the polynomial dependence in time is assumed a priori to solving for that objective (contrary to FTC). Besides, using a proper local image normalization, as mentioned in [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF], one can show that SSD minimization can be nearly mathematically equivalent to correlation maximization. Therefore, one may expect comparable performances between LKFT and FTEE in terms of peak accuracy, that is, displacement values found should be close in cases where both methods choose the same peak as their optimum. Close but not identical, as several algorithmic choices still remain different in that part, e.g. peak finding by Gaussian fit for FTEE vs. by Newton method for LKFT, interpolation for image deformation by a sinc kernel for FTEE vs. by cubic B-Splines for LKFT, and local image normalization schemes inside the interrogation windows, being done in an approximate way in LKFT similar to FOLKI-PIV [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF]. Comparison on peak accuracy will be analyzed in more detail in section 2.3.

On the other hand, strong differences can be expected between LKFT and FTEE in terms of peak finding by the optimization process, i.e. in terms of robustness to noise. Indeed, optimization strategies are totally specific to each algorithm: they stem from the different mathematical nature of the respective objectives, leading to different iterative schemes. Differences in robustness to noise between LK methods and direct correlation algorithms have already been assessed for two-frame plane PIV [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF], and 3D PIV [START_REF] Cheminet | Accuracy assessment of a Lucas-Kanade based correlation method for 3D PIV[END_REF], with improvements obtained by LK methods. In the present case, robustness to noise of LKFT will be assessed in section 2.4 on synthetic images, and 2.5 on experimental images.

Potential for GPU acceleration

Another advantage of extending the LK framework to time-resolved PIV with LKFT is to maintain a massively parallel algorithm structure so as to strongly benefit from GPU (Graphics Processing Unit) acceleration, as was the case with FOLKI-PIV in the two-frame context [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF]. This can be an important advantage of the method since the number of operations is substantially increased compared to two-frame processing. Such an implementation will be done as the direct next step of this work, the present version being coded to run on CPU for evaluation purposes. We here justify why it should also have a high computational efficiency.

Firstly, inversion of the system on a(k) at each iteration and pixel k in expression (2.7) relies on a series of operations well suited for modern GPUs, according to criteria detailed in NVIDIA (2013) and NVIDIA (2012), similar to that performed by FOLKI-PIV. The core operations of LKFT are all per pixels: linear system inversion (2.7), matrix-vector and matrix-matrix multiplication (2.8-2.9), all of small dimension; separable convolution for the application of the interrogation window kernel w(m -k); stencil-based operations for the computation of spatial derivatives ∇ ω , and interpolation for image deformation in (2.11). Such operations, which are per pixel and on a bi-dimensional grid, are SIMD (Single Instruction Multiple Data) compatible, with the possibility of maintaining coalescing memory accesses (a group of GPU threads accessing neighbouring memory blocks, which yields the fastest operating times). This allows for an efficient use of the wide memory bus and memory bandwidth of GPUs, as well as of their numerous SIMD floating point units. Operations on small stencils can also make use of the very fast, manually managed cache of modern architectures. Besides, as the linear systems to invert are small, the number of floating point operations per memory access is high, and this is also beneficial as GPUs tends to have a very high number of floating point units with respect to memory bandwidth. Finally, interpolation for image deformation can be efficiently implemented using the specific texture memory zones of the GPU, which is especially dedicated for that purpose.

Peak-locking tests

Test method

In addition to estimating whole trajectories within one common evaluation, the interest of time-resolved approaches such as FTC [START_REF] Lynch | A high-order time-accurate interrogation method for time-resolved PIV[END_REF], FTEE [START_REF] Jeon | Fluid trajectory evaluation based on an ensembleaveraged cross-correlation in time-resolved PIV[END_REF] and LKFT is also that considering several sets of correlations or SSDs over a time-sequence will help to decrease the bias and random error of elementary displacements (i.e., for instance, the displacement between instants 0 and 1, or that corresponding to instant 0 in a symmetrical view), especially in situations prone to peak-locking, which often arise in a time-resolved context due to the large pixel size of the cameras. To assess the performance of LKFT in that matter and allow comparison on that point with FTC and FTEE, we will present here results on synthetic datasets considering translating motions, with the exact same image characteristics as in Jeon et al, which we briefly recall below. 500 × 500, 8-bit images are generated with a seeding density set to ppp = 0.1, allowing to consider interrogation windows of 15 × 15 pixels with Gaussian weighting (with a standard deviation of 3.5 pixel). In all cases, 5 pyramid levels have been considered. Note that this number includes the lowest level, that of the raw images. Although this setting was necessary only for the longest sequences, it was maintained throughout, as the computational time was determined mostly by the lowest level. The particle Point Spread Function (PSF) in the images has been chosen, as traditionally, as an integrated Gaussian, here with σ P SF ≈ 0.35 (particle diameter of roughly 1.4 pixel). This diameter is purposely below the acknowledged optimum of 2-3 pixels [START_REF] Raffel | Particle image velocimetry: a practical guide[END_REF], in order to include a degree of peak-locking. Image sequences have been generated by considering, for each set, a fixed horizontal displacement u of value comprised between 0 and 1 pixel. This interval has been sampled by generating 21 sequences, i.e. one sequence every 0.05 pixel. Restricting to this interval is sufficient, as all the schemes under investigation are periodic with respect to u, with a period equal to 1 (see, for instance, [START_REF] Astarita | Analysis of interpolation schemes for image deformation methods in PIV[END_REF]. Indeed, they involve combinations of forward interrogations, whose period is 1.

Interpolator choice

In image deformation PIV, it is known that the choice of the interpolation kernel for image deformation can have a strong influence on the final bias and random error, especially when peak-locking is suspected [START_REF] Astarita | Analysis of interpolation schemes for image deformation methods in PIV[END_REF]. Both [START_REF] Lynch | A high-order time-accurate interrogation method for time-resolved PIV[END_REF] and [START_REF] Jeon | Fluid trajectory evaluation based on an ensembleaveraged cross-correlation in time-resolved PIV[END_REF] chose a sinc interpolator implemented by using the FFT shift theorem, over an 8 × 8 pixel stencil (hereafter referred to as FFT interpolator), as it has been found by [START_REF] Astarita | Analysis of interpolation schemes for image deformation methods in PIV[END_REF] to yield an overall optimal performance. However, such a scheme is also computationally intensive. To maintain computational efficiency when coded on GPU, our LK methods usually rely on a specific implementation of cubic B-splines interpolation [START_REF] Champagnat | Efficient cubic B-spline image interpolation on a GPU[END_REF]. We therefore also retained this scheme for the current version of LKFT, and further justify this choice here in terms of accuracy, by comparing the bias β and random error σ are for two-frame estimation with FOLKI-PIV, using both the FFT and B-Spline schemes. Figures (2.4) and (2.5) show results obtained for two-frame interrogation with the forward interrogation scheme (equation 2.2), which is that appearing in LKFT's objective. For the present particle diameter (d τ = 1.4 pixel), the B-Spline interpolator is observed to perform better on the whole displacement range. Indeed, maximum values for β in absolute value are of the order of 0.023 and 0.004 for the FFT and B-Spline interpolators, respectively, i.e. a very strong reduction in bias is achieved. The maximum random errors are roughly 0.053 and 0.047, respectively. Compared to FFT, B-Spline thus achieves a reduction of roughly 83% in bias and 10% in random error. This result is counter-intuitive, since, as mentioned above, FFT interpolation is known to be among the most accurate schemes for small particles while cubic B-Spline, though accurate as well, is rather chosen as a good trade-off between accuracy and computational complexity. As the latter view arose from tests performed by [START_REF] Astarita | Analysis of interpolation schemes for image deformation methods in PIV[END_REF] with symmetrical deformation schemes, we think that a possible explanation for our present observation should be sought in the behavior of the forward scheme. Assessing this hypothesis in more detail should deserve further study and is left to future developments for conciseness. 

Results

Given this choice for the interpolator, which will hold in all the sequel of this chapter, a sequence of 2N +1 images labeled from -N to N is now considered to assess the time-resolved estimation of LKFT (equation 2.5). On this sequence, Figures 2.6 and 2.7 show results of bias and random error for velocity u, and of random error for material acceleration Du/Dt. Coefficient a 1 (resp. 2a 2 ) of polynomial decomposition (2.1) is used for quantities pertaining to u (resp. Du/Dt), and polynomial of degrees P = 2 and P = 4 are considered. As expected, and consistent with the results obtained with FTC and FTEE, one observes that for a fixed polynomial order P , increasing the time sequence gradually decreases both the bias and random error, down to virtually vanishing values for large enough sequences. In the present situation affected by peak-locking, this amounts to increase the number of randomly located, too narrowly sampled particles, and thereby progressively tend towards statistical convergence to the true displacement. Logically, for a fixed sequence length, estimating trajectories with a higher polynomial order P comes with both increased bias and random error. Now comparing the accuracy of LKFT with that of FTC and FTEE at given P and N (i.e. comparing figures 2.6 and 2.7 with figures 11 and 12 of [START_REF] Jeon | Fluid trajectory evaluation based on an ensembleaveraged cross-correlation in time-resolved PIV[END_REF] study, the following observations can be done. Firstly, bias levels with LKFT are systematically lower than that of FTEE, this point being very probably a consequence of the cubic B-Spline interpolation, since the gains observed are of the same order of magnitude as what was observed in our interpolation scheme comparison in two-frame estimation, in figures 2.4 and 2.5. On the other hand, LKFT obtains higher random error levels than FTEE (but lower than FTC), both on the velocity and the acceleration. In practical situations with peak-locking, both bias and random error will add up to build the total error δ (which verifies δ 2 = β 2 + σ 2 ), and thus will not be distinguishable any more. Considering now this quantity, and for the velocity, one interestingly observes very close values of the total error for both LKFT and FTEE: picking some sample values close to the maximal errors, one observes for instance that δ LKF T ≈ δ F T EE = 0.013 for P = 2, N = 2, u = 0.15; and δ LKF T ≈ δ F T EE = 0.008 for P = 4, N = 7, u = 0.1. On these tests, LKFT thus appears as an alternative to FTEE. 

Robustness to noise evaluation

In addition to peak-locking due to large camera pixel sizes, time-resolved datasets are often characterized by rather low signal-to-noise ratios (SNR), as illumination sources have less energy than their low repetition rate counterparts. It is thus interesting to quantify to what extent more advanced approaches than two-frame correlation can help mitigate the effects of noise, and maintain accurate estimations. To investigate this question, we consider here case B of the third international PIV challenge [START_REF] Stanislas | Main results of the third international PIV challenge[END_REF], which is a synthetic dataset built from a DNS of a laminar separation bubble. 120 images (1440 × 688 pixels) equidistant in time are available. The displacement field is characterized by a large dynamic velocity range, of roughly 50, and the SNR is progressively decreased during the time sequence, by decreasing the mean particle intensity, so that 6 different plateau values are considered (value 1 for images from 1 to 20, value 2 from 21 to 40, and so forth). Seeding density is set so that 25 tracer particles on average are in an IW of 32 × 32 pixels. As using this size of IW was also part of the challenge rules, we adopted it in the analysis, with top-hat windows. Figure 2.10 (bottom right) reproduces the field of product F I F O F ∆ for image 110, which quantifies the combined effect of loss of particles at the image edges, loss of particles due to out-of-plane motions, and the disturbing effect of gradients inside the IWs. It varies between a minimum value of 0.56, close to (x, y) ≈ (1100, 490) and nearly 1.0, inside the laminar separation bubble. At this time instants, these disturbances come in addition to the already low SNR due to a particle intensity level close to background noise.

The ground truth displacements are available for time instants / image numbers 10, 30, 50, 70, 90 and 110, i.e. one field per value of the SNR. Figure 2.8 compares the RMS errors on the horizontal component u obtained at these instants with the symmetrical two-frame estimator, and with LKFT estimation, respectively with P = 2, N = 2 (T = 5) and P = 3, N = 7 (T = 15). In the two-frame case, since estimation is symmetrical, the processed images were taken one instant before and after the time under consideration, i.e. images 9 and 11 for time 10, for instance. This is consistent with the instructions given to the challenge participants. A first remarkable result is that for the most favourable values of the SNR (images 10 and 30), switching from two-frame to time resolved estimation already decreases the RMS error, possibly to very low levels. For image 10, this error is equal to 0.011 for two-frame correlation, 0.0071 for LKFT with P = 2 and N = 2, and 0.0067 for LKFT with P = 3 and N = 7. Consistently with the degradation of the SNR, the RMS error increases systematically with the image number, though with a different magnitude depending on the method. While the increase for two-frame estimation seems to be the most gradual, LKFT estimations keep an RMS error inferior to or equal to 0.01 pixel up to image 70, whereas that of the two-frame estimation for this image is roughly equal to 0.019. In the worst case scenario (image 110), respective values for two-frame estimation, LKFT with P = 2 and N = 2, and LKFT with P = 3 and N = 7, are respectively 0.078, 0.045, and 0.032. In the highest order polynomial estimation shown here, the error has thus been reduced by roughly 60%. Horizontal displacement fields obtained for time 110 are represented together with the ground truth in figure 2.9. The corresponding error fields are shown in figure 2.10. Consistently with the above results, the displacement field obtained by the two-frame symmetrical estimation exhibits much more noise as the time-resolved fields, which appear more regular, especially for higher polynomial order and longer sequences (P = 3, N = 7). Focusing on the errors in figure 2.10, it is interesting to note that for this low SNR case, the patches of maximum error (in absolute value) are spread all over the displacement field, and seem not to depend on the local value of F I F O F ∆ . In the LKFT error fields on the contrary, a clearer dependence is seen, since high or low value patches are mostly concentrated in the vicinity of the zone with minimal F I F O F ∆ . For P = 3, N = 7, estimation error almost even restricts to this zone only. This is not surprising, since here a low value of F I F O F ∆ corresponds to both significant loss of particles due to out-of-plane motion, and strong gradients. For long time sequences as considered here, the effect of these disturbances will add up, explaining the possible higher sensitivity of LKFT to them, than the two-frame estimation. In particular, correlating the central and the extremal images might induce large noise, due to an important number of particle loss (F O ), and to the fact that polynomial estimation might become too simple for the structure of the spatial gradients, and smooth them (F ∆ ). [START_REF] Stanislas | Main results of the third international PIV challenge[END_REF]. Note the difference in axis scales between this figure and the others.
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These local patches of errors, and the probable reason for their existence, raise the question of the optimal choice of P and N for a given flow, which remains a delicate question for such Lucas-Kanade Fluid Trajectories for time-resolved PIV approaches. Presently, it is mostly settled using physical considerations (as will also be done in the experiments of section 2.5). Furthermore, it also raises the question of extending the approach to enable a local choice of these parameters, depending on the flow zone, since here the choice for P and N was successful except for localized regions. This is very probably a promising path for future works, as during the PIV Challenge, LaVision (LAVIS) achieved even higher error reductions than LKFT with P = 3, N = 7 for images 90 and 110 (but with larger error levels for the other images) using such a local optimization but different correlation pairs [START_REF] Stanislas | Main results of the third international PIV challenge[END_REF]. Finding and assessing a strategy for applying such an idea to LKFT will thus be considered in upcoming work.

As a final illustration of the gain in accuracy and regularity brought by LKFT in this case with low SNR, we plot in figure 2.11 sample trajectories for the lowest SNR values, for points A, B and C which are identified in figure 2.10 (top left and bottom left). A and B correspond to points where time-resolved estimation manages to reduce the random error, while C is located within the remaining patch of error, close to the zone of minimum F I F O F ∆ . For each estimator, we consider the largest time sequence possible, i.e. for which all images belong to the same set of SNR. This is the reason why interruptions are visible around image numbers 80 and 100. While at point C, Lucas-Kanade Fluid Trajectories are not able to reduce the discrepancy with respect to the ground truth (identified by black diamonds, and available at times 70, 90 and 110 only), probably due to the inadequacy of N and P there, in points A and B, as expected, they exhibit far less noisy, and much more accurate results, especially for P = 3, N = 7. 

Experimental results on a round jet

Setup description and processing parameters

We now present the behavior of LKFT on a time-resolved PIV experiment on the near field of a low Reynolds number round air jet, as shown in figure 2.12a. The nozzle exit diameter is D ref = 12 mm, the jet velocity at the center of the exit plane U ref = 3.96 m/s and the corresponding Reynolds number is thus

Re D = U ref D ref /ν air ≈ 3300 at T ≈ 15 • C.
We use a Litron LDY303HE laser and standard light sheet optics to generate a 2mm thick laser sheet, traversing the jet in a longitudinal plane (see figure 2.12a). The laser frequency is 5 kHz per cavity or 10 kHz total, for an energy of 5 mJ per pulse. The time separation between Lucas-Kanade Fluid Trajectories for time-resolved PIV two subsequent images is thus 100 µs. A Phantom V710 camera is used (CMOS sensor with 20 µm pixels), at a resolution of 1008 × 704 pixels. We use a f = 200 mm focal length lens, set at an aperture of f /4. Seeding is achieved using two different materials, DEHS in the jet itself, and glycol-based artificial fog for the ambient air of the experimentation room, and a same density is targeted in both regions. Due to the large size of the experimentation room, and the fact that the laser sheet is thin, the seeding density is rather low, estimated to approximately 0.05 particles per pixel (ppp). Whereas it would be detrimental on a physical point of view, this low seeding is on the contrary advantageous for the purpose of algorithm comparison, as it will diminish the number of particles in the interrogation windows and thus lower the interrogation SNR. Therefore, gains in robustness to noise should be easier to single out. The size of the particle point spread function (PSF), estimated using autocorrelation and Gaussian fitting, leads to a value for the standard deviation of the Gaussian of σ ≈ 0.15 pixel, i.e. a particle diameter less than 1 pixel both in the jet and in the ambient air. Such a thin PSF is expected, both due to the choice of the aperture and to the pixel size of the high-speed camera. We thus also expect a quite heavy degree of peak-locking in the results, here also done on purpose in order to highlight the gains brought by LKFT. Figure 2.12b shows a sample of corresponding image quality. Before assessing the performance of LKFT, the physics of the jet near-field has been qualified using classical two-frame estimation with FOLKI-PIV [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF]. The unsteady behaviour of the jet can be qualitatively observed both in figures 2.14(a) and 2.15(a), where we see typical oscillations in the shear layer due to the Kelvin-Helmholtz [START_REF] Gutmark | Preferred modes and the spreading rates of jets[END_REF]. At later stages of the jet development, as classically observed, spectra appear as more broadband, and with maxima for lower values of the Strouhal number, consistent with the saturation of instabilities, Kelvin-Helmholtz vortex development and pairing. At (x/D, y/D) = (0.0, 3.0) for instance, spectra exhibit a broad peak centered around St D ≈ 0.4.

In our comparative analysis between two-frame estimation and LKFT, we processed image pairs or sequences with the same common settings. We used Gaussian interrogation windows of 19 × 19 pixels with 4 pixels standard deviation, cubic B-spline interpolation for image deformation, set the pyramid level number to J = 4, and the number of iterations high enough to ensure algorithms convergence. Similarly to PIV Challenge 2005 case B in section 2.4, when seeking the displacement at instant i, we processed images at instants i -1 and i + 1 Lucas-Kanade Fluid Trajectories for time-resolved PIV with FOLKI-PIV in a symmetrical mode on one hand, and an image sequence ranging from i -N to i + N with LKFT on the other hand. Concerning the latter, we will show results corresponding to two settings: linear estimation on a short sequence (P = 1 and N = 2, 5 frames total), and third-order estimation on a longer sequence (P = 3 and N = 5, 11 frames total).

Instantaneous spatial fields

Focusing first on the displacements, we plot respectively the streamwise and cross-stream components for a given snapshot for all estimations, in figures 2.14 and 2.15. Displacements are expressed in pixel, as we also intend to consider the degree of peak-locking depending on the algorithm. As a first remark, one can observe that the global physical trends of the jet are retrieved in all estimations, i.e., the presence of streamwise oscillations in the jet column, synchronized with the presence of spanwise vortices in the shear layer region, of increasing amplitude with y/D ref .

However, the two-frame estimation exhibits much more small-scale spurious perturbations than that of LKFT. This is visible in the whole field, both in the zone at rest outside the jet, and in the jet itself. Note that the quite high degree of noise in the two-frame estimation stems here from the rather low seeding density, and also probably to the presence of peak-locking; the latter point will be confirmed and considered in more detail below. LKFT is thus successful in reducing these perturbations, and one can observe that this is not a consequence of over-smoothing, as the extremal values of the displacements are very similar in all results. The choices for P and N done in the tuning of LKFT therefore seem to be consistent with the flow physics.

Secondly, we observe only very slight differences between results obtained with the two LKFT settings, P = 1 and N = 2, and P = 3 and N = 5. From the results of the previous sections, this can be understood due to the opposed effects of the polynomial order and sequence size: increasing P leads to more noise at given N on one hand, and increasing N at given P reduces noise on the other hand. It seems that here, increasing both parameters simultaneously leads to canceling out both effects. An interesting conclusion of this is also that, even with a low-order estimation in time (here linear, as in two-frame estimation), LKFT with 5 images already manages to significantly reduce spatial errors. In order to better discriminate between bias and random errors in the above results, we now estimate the corresponding amount of peak-locking by considering displacement histograms for the streamwise component, plotted in figure 2.16. The global shape of all histograms is directly linked to the jet structure: zero or close to zero displacement corresponds to the zone at rest, while values around 7 pixels are the displacements inside the jet core, at the lowest values of y/D ref . The shear layers, in which the velocity gradually increases between both these limits and exhibits unsteady vortical structures, is thinner and thus the corresponding zone of the histograms has a lower population. The effect of the small size of the PSF, σ = 0.15 px, appears here clearly on the two-frame estimation, which exhibits peaks for all integral values of the displacement. Peak-locking is especially spectacular for intermediate values from 2 to 5 pixels, i.e. in the shear layer, where they clearly stand out from the global level. With LKFT, these peaks are strongly reduced already with P = 1 and N = 2, and even more with P = 3 and N = 5. Consistently with the analysis of section 2.3.3, peak-locking is thus strongly reduced by increasing the number of correlations in the estimation. As a last illustration of possible gains on snapshot analysis, we show in figure 2.17 the instantaneous vorticity maps corresponding to the above results. Vorticity is here estimated using a centered finite-different second-order scheme, with a spatial step 2 ∆x of 8 pixels. Consistently with the gains observed on the displacement components, one logically observes that vortical structures arising from the shear layer instability can be captured with much less noise with LKFT than two-frame estimation, still with no visible filtering of the smallest spatial scales. 0.17, 3.50) in the jet core). The position of these points is depicted in figure 2.14. For simplicity, we only retain the higherorder estimation for LKFT, i.e. P = 3 and N = 5. At both locations, we observe that the time evolution of displacement is much more regular with LKFT than with two-frame estimation, so that the typical frequencies of vortex shedding and jet instability appear in a very clear way and are only moderately affected by high frequency noise. We finally observe that a high-order estimation on a longer time sequence also enables to successfully estimate the material acceleration, which is nearly impossible with two-frame estimation. Figure 2.19 shows results for the streamwise component, obtained with both FOLKI-PIV and LKFT set with P = 3 and N = 5. For the two-frame estimation, a centered second-order scheme has been used for time derivation. Whereas in two-frame estimation, typically expected structures are nearly indiscernible from small-scale spurious noise, they are retrieved by LKFT, and much less noise is present in the low acceleration zones (jet core for the lower values of y/D ref , exterior of the jet).

Time evolution and material acceleration

Limits of LKFT

LKFT relies on the assumption that fluids trajectories are per pixel polynomial parametric functions of time. The jet trajectory field, being experimental data, is obviously not perfectly polynomial in time. As such, LKFT appears rather robust when the polynomial assumption does not hold. In this section we will analyze the behavior of LKFT when this assumption is even farther from being satisfied. For ease of study, synthetic images will be considered as A constant displacement in space and non-polynomial displacement in time is applied on the particles as shown in figure 2.21. On this figure is represented the trajectory of all the particles with a continuous line, we can already see that this displacement is not akin to a low-order polynomial parametric function. Also represented is a second order (P = 2) least-square fit of the trajectory with a dashed line. This least square fit and its associated polynomial coefficients is the best polynomial approximation of this non-polynomial trajectory, we now call these coefficients a 
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LKFT is now applied on the above mentioned sequence of 9 images, with P = 2 making sure that the number of GN iterations and Burt pyramid levels is high enough. Gaussian interrogation windows of width 25px and σ = 6px are selected. In figure 2.22 are shown error map between the polynomial coefficients a (k,1) and a (k,1) (introduced in equation (2.1)) estimated with LKFT and the least square coefficients, a (k,1) fit and a (k,2) fit . On both plots of this figure, the x component is represented. Those coefficients are only shown for 100 × 100px at the center of the images as border effects are not of interest here.

On this figure, a systematic bias is observed for both components, ≈ -0.1px/step for the first order (figure 2.22(a)) and ≈ 0.1px/step 2 for the second order (figure 2.22(b)). Beside this systematic bias, high irregularities in space are also observed, despite large interrogation windows (σ = 6px), a high seeding density (ppp = 0.3) and large particles (σ part = 0.75px). Thus, when used on clearly non-polynomial trajectories, LKFT may exhibit both biais and noise.

x (px) 

(k,1) -a (k,1) fit ; (b) second order coefficient, a (k,2) -a (k,2) fit .
The errors observed above led us to investigate the shape of the cost-function optimized by LKFT. More precisely, the least-square coefficients mentioned above are taken as predictors such that u

0 (k, n) = 2 p=1 a (k,p)
fit n p . We now remind the reader of the cost function optimized by LKFT in equation (2.6),

m w(m -k) N n=-N,n̸ =0 I u 0 n (m) + ∇I u 0 n (m) t   P p=1 δa (k,p) n p   -I 0 (m) 2 .
(2.12)
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Lucas-Kanade Fluid Trajectories for time-resolved PIV Knowing the predictor, this cost can be express as a function of,

δa(k) = δa (k,1)
x , δa (k,2) x , δa (k,1) y , δa (k,2) y t .

(2.13)

The cost in equation (2.6) is represented as a function of δa . The cost shown is the sum of cost for k such that 50px ≤ k x , k y ≤ 150px. On both contour plots, the cost is also normalized by its maximum value and a B-Spline interpolator is chosen.

For both polynomial orders, the cost-function has more than one local minima, this may explain the spatial irregularities observed in figure 2.22 as different pixels may converge to different local minima. Also, none of those local minima are at (0, 0), given that the predictor is the least square fit of the true trajectory, it is no surprise that a constant error is also observe in figure 2.22. As to why the cost-function presents multiple minima, we propose the following hypothesis: The cost of LKFT is a sum of square differences and each of those differences is parabolic only in the vicinity of its minimum i.e. less than 2 pixels. Hence, more than one minima may appear if the true trajectory and its polynomial fit are farther apart than 2 pixels, which append to be the case here (see figure 2.21). 

δa (k,1) x δa (k,1) y -2 0 2 -2 0 2 δa (k,2) x δa (k,

Conclusion

In this chapter, a new scheme for polynomial estimation of fluid trajectories, the Lucas-Kanade Fluid Trajectory (LKFT) estimation, has been introduced. It consists in a natural extension of the two-frame PIV objective underlying FOLKI-PIV [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF], where the time polynomial decomposition is embedded within a sum of squared differences, linking several image pairs in the time sequence. The choice of the image pairs is identical to that of FTC [START_REF] Lynch | A high-order time-accurate interrogation method for time-resolved PIV[END_REF] and FTEE [START_REF] Jeon | Fluid trajectory evaluation based on an ensembleaveraged cross-correlation in time-resolved PIV[END_REF]. Synthetic tests on images exhibiting peak-locking confirm the efficiency of LKFT to reduce both bias and random errors, with remaining levels of total error comparable to that of FTEE. Results on case B of the third PIV challenge confirm its ability to compensate for low SNR in the images, with a maximum reduction of RMS error of nearly 60%. The performance of LKFT has been compared to that of two-frame estimation on experimental images acquired in the longitudinal plane of a low Reynolds number axisymmetric jet, using a high frame rate laser and camera. Image quality has been chosen purposely low, with a low seeding density and small particle image diameters, to mimic typical difficulties in actual PIV and TR-PIV. The ability of LKFT to strongly reduce peak-locking, spatial and temporal noise has also been confirmed, on the displacement components themselves, as well as on spatial or temporal derivatives, such as instantaneous fields of vorticity and material acceleration. Finally, LKFT has been applied on deliberately non polynomial in time, synthetic particles images. On this dataset, a limit of the approach was identified, where the optimized cost-function may not be convex increasing both bias and noise.

The results shown in this chapter rely on the availability of costly hardware for time-resolved PIV. We present hereafter a method that is much less demanding on hardware resources: standard two-frame PIV and a few time resolved point-wise measurements.

Further work and perspectives will be discussed in the last chapter of this thesis.

Chapter 3 -Time-resolved reconstruction from mean flow stability analysis

The work presented in this chapter is under review for publication to the Journal of Fluid Mechanics under the name "Time-resolved reconstruction of a round jet from point-wise measurements and mean flow stability analysis". My contribution to the present work was in processing the experimental data and collaborating to the last section dedicated to the robustness of the method. Redaction, implementation and application of the method presented this chapter was done by Samir Beneddine (ONERA/DAFE) and under the supervision of Denis Sipp (ONERA/DAFE) and Benjamin Leclaire (ONERA/DAFE).

Introduction

Up to this point, only particles-imaging-based measurements have been mentioned, but other methods for the study of physical mechanisms, such as hot wire probes or microphones, are able to give an accurate point-wise time-resolved characterization of a given physical quantity of a flow. When the need for flow characterization goes beyond a single point, it is possible to use arrays of sensors, but this presents limitations toward the spatial extent and resolution of the characterization, and may be too intrusive to get a global flow field measurement. Alternatively, a single sensor may be displaced to a large number of locations, yielding an arbitrarily dense set of measurements, which are however uncorrelated due to their non-simultaneity. Time-resolved reconstruction from mean flow stability analysis TR-PIV, as mentioned in the previous chapter is designed to provide such a simultaneous, time-resolved velocity measurement. But due to technical constraints related to illumination with high frame rate lasers and camera imaging, the technique is characterized by a trade-off between accuracy and temporal resolution. Often, high frame rate systems cannot characterize frequencies over 10 kHz and exhibit lower signal-to-noise ratio. They also require the use of advance processing as introduced in the previous chapter. Besides, it is worthwhile noticing that the highest measurable frequency remains one or two orders of magnitude lower than that of a hot-wire probe for instance, which can make a difference in the context of high-speed flows.

In view of these limitations, it appears that reconstructing the time-resolved flow field based on quantities measurable by point-wise sensors and/or traditional, low frame rate PIV are of great interest. Several reconstruction techniques exist to rebuild global information from point-wise measurements, and among them, the stochastic estimation (SE) is one of the most widely used in fluid mechanics. Initially introduced by [START_REF] Adrian | Conditional eddies in isotropic turbulence[END_REF] as a way to extricate the coherent structures in a turbulent flow, this technique has been extensively used to get the instantaneous least-mean-square error estimate of the velocity at various locations, with the sole information of the velocity at a few other points (see for instance [START_REF] Adrian | Conditional eddies in isotropic turbulence[END_REF][START_REF] Cole | Applications of stochastic estimation in the axisymmetric sudden expansion[END_REF][START_REF] Guezennec | Stochastic estimation of coherent structures in turbulent boundary layers[END_REF][START_REF] Stokes | Multi-point measurement techniques used in the study of separated flows[END_REF][START_REF] Tung | Higher-order estimates of conditional eddies in isotropic turbulence[END_REF]. This requires to have access to simultaneous unsteady measurements at points of interest. The method may also yield the estimation of the pressure, but requires the use of a higher-order SE model than for the velocity estimation (see [START_REF] Hudy | Stochastic estimation of a separated-flow field using wall-pressure-array measurements[END_REF][START_REF] Murray | Estimation of the flowfield from surface pressure measurements in an open cavity[END_REF][START_REF] Naguib | Stochastic estimation and flow sources associated with surface pressure events in a turbulent boundary layer[END_REF], for which the linear SE (LSE) gives satisfactory results.

The SE as well as any global estimation technique based on local measurements naturally relies on a certain degree of spatial correlation in the flow field and the existence of coherent structures. It is now generally admitted that even fully-turbulent flows present such structures, which has been recently addressed by [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF] from a stability point of view. They showed that such structures relate to resolvent modes about the time-averaged flow field (mean flow). Prior to their work, the literature about linear mean flow stability analysis already presented several examples which revealed a strong link between the mean flow and the fully non-linear dynamics of a flow (see for instance [START_REF] Barkley | Linear analysis of the cylinder wake mean flow[END_REF][START_REF] Ehrenstein | On two-dimensional temporal modes in spatially evolving open flows: the flat-plate boundary layer[END_REF][START_REF] Gudmundsson | Instability wave models for the near-field fluctuations of turbulent jets[END_REF][START_REF] Pier | On the frequency selection of finite-amplitude vortex shedding in the cylinder wake[END_REF]. Based on that, [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF] have shown that it is possible to estimate the frequency spectrum at any point of a flow from the knowledge of the mean flow and a few point-wise measurements. The analysis was based on a rank-one approximation of the resolvent. They also showed that cheaper techniques such as a PSE analysis may be used to approximate the dominant resolvent mode. Their results have been validated in the case of a high Reynolds number backward-facing step using a 3-D unsteady simulation. A similar work has been conducted by Gòmez et al. (2016a), who built a reduced-order model of a three-dimensional lid-driven cavity at Re = 1200, based on resolvent modes. Their model yielded a flow reconstruction that accurately compared with direct numerical simulation (DNS) results. Alike [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF], their input data were the mean flow and a few local unsteady measurements. More recently, Gòmez et al. (2016b) used the same model to estimate aerodynamic forces from point-wise data, and they once again successfully compared their results to DNS. However, while all these articles claim that the use of this model in an experimentation context would be of great interest as an alternative to TR-PIV, the literature is currently lacking of any experimental paper on this subject.

The purpose of this chapter is to use a similar resolvent-based approach in an experimental context, to rebuild the time-resolved velocity and pressure fluctuation fields in a case where TR-PIV results would not be available. More specifically, we aim at rebuilding the flow field of a round jet at Reynolds number Re = 3300, from the sole knowledge of the mean flow (which can be measured for instance by classical non-time-resolved PIV or by a large number of point-wise probings) and a few local unsteady measurements. Note that our goal is to reconstruct the field and not to build a model to predict the dynamics of the jet. This puts the present study in stark contrast with estimation techniques such as that of Guzmán Iñigo et al. ( 2014), who were able to predict the linear dynamics of a flow from local measurements. The main difference with the present approach is that their prediction relies on a learning of the dynamics that requires the prior knowledge of the time-resolved flow field. In our case, it is the spatially correlated behaviour of the jet that allows a global estimation from a local measurement, which explains why we do not need any prior learning of the dynamics. This chapter is divided in four main sections. The first part details the reconstruction procedure ( §2). The second part is dedicated to a physical description of the jet, through the analysis of TR-PIV measurements, which will be considered as the reference to assess the performance of the approach ( §3). We then apply the procedure to rebuild the time-resolved flow field of the jet from only the mean flow and a single point-wise measurement ( §4). Finally, in §5, we focus on the robustness of the method and present some general guidelines to get a robust reconstruction in an experimental context.

Reconstruction procedure

The unsteady velocity field U (x, t) of a flow can be equivalently represented in the frequency domain by its Fourier modes Û (x, ω). For any given frequency ω, [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF] demonstrated that the Fourier mode of a flow is proportional to the dominant resolvent mode about the mean flow, given that the resolvent operator displays one dominant singular value.

From a physical point of view, they showed that the dominant singular value condition may be related to the existence of a strong instability mechanism. In the case of the present jet flow, the proportionality between Fourier and dominant resolvent mode occurs for all energetic frequencies (see section 3.4.1), because the global dynamics of the jet is driven by the Kelvin-Helmholtz instability mechanism. This proportionality may be formalised, for instance in an axisymmetric framework and for the axial velocity component u x , as

ûx (ω, x, r) ≈ Λ(ω)ũ ω x (x, r), (3.1)
with ûx the Fourier transform of the measured axial velocity, ũω

x the axial velocity component of the dominant resolvent mode at the frequency ω and Λ an unknown complex-valued function of ω, that we will refer to as the amplitude function. By assuming the knowledge of ûx at a given point (x 0 , r 0 ), we get an evaluation of Λ as

Λ(ω) = ûx (ω, x 0 , r 0 )/ũ ω x (x 0 , r 0 ), (3.2)
yielding the prediction of ûx at any point of the domain (with equation (3.1)). Note that Λ may only be computed if both the resolvent mode and ûx are known at the point (x 0 , r 0 ), which implies that this input points is within the domain where resolvent modes can be computed (i.e. where the mean flow is known). Moreover, Λ can only be correctly defined for frequencies where ûx and ũx are indeed proportional, which is supposed to only occur for frequencies dominated by an instability mechanism (see [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF]). Typically, this will hold for frequencies linked to coherent structures, but not for the high frequency uncorrelated motion that may exist in turbulent flows. For these high frequencies, Λ can be assumed equal to zero, which yields a filtered reconstruction. Alternatively, as explained by [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF], it is possible to build a similar model that involves not only the dominant resolvent mode, but also lower-rank modes, in order to reconstruct the spectrum on a broader frequency range. In our case, due to the moderate value of the Reynolds number, we do not have any energetic high-frequency behaviour, therefore we will not explore this possibility.

In practice, the computation of the singular vectors of the resolvent operator requires the knowledge of the mean flow over a wide region to correctly account for boundary conditions. Alternatively, for weakly non-parallel flows, one may use parabolised stability equation (PSE) analyses to get the dominant resolvent modes (see [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF]. This method, detailed [START_REF] Beneddine | Characterization of unsteady flow behavior by linear stability analysis[END_REF], does not require the definition of any streamwise boundary condition. It is therefore well-suited in situations where the mean flow is measured over a relatively narrow region. Moreover, such method presents a very low computational cost and does not require any advanced numerical algorithm. This motivated the use of PSE for the reconstruction presented here. The final procedure that we followed is graphically illustrated in figure 3.1.

The previous explanations arbitrarily focus on the axial velocity for the description of the procedure. But the same relations hold for other flow quantities, and as shown by [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF], the resulting Λ would not depend on which quantity is used. We could therefore use another velocity component, the pressure, or any other quantity that is linearly dependent on these variables (such as the wall shear stress) to compute Λ, and this Λ may then be used to reconstruct all the flow quantities. This aspect is demonstrated in the case of the round jet studied here, in section 3.4.2 where both the radial velocity and the pressure fluctuation field are reconstructed from the sole knowledge of the axial velocity at one point.

Note that in a practical application, the unsteady signal at the input point is a discrete signal sampled in time. A Fast Fourier transform (FFT) gives its Fourier transform for a set of discrete values ω i that depends on the sampling and duration of the signal. Resolvent modes can be computed for every ω i , but even if the model could accurately reconstruct all frequencies, it is likely that a large number of them would have a very weak contribution to the dynamics (for instance the very low or very high frequencies). To spare non-useful computations, the function Λ may be computed solely over the range of energetic frequencies, and assumed equal to zero elsewhere. This would have no significant consequence on the final reconstruction since it does not filter energetic frequencies. Velocities are made non-dimensional using the jet exit velocity. The point-wise measurement and mean flow used in the reconstruction will be extracted or computed from the classical processing, therefore hereafter referred to as 'reconstruction set'. The LKFT processing will be considered as the objective to attain, i.e. the 'reference set'.

Characterization of the application case

Experimental set-up and data processing

The experimental configuration studied in this chapter corresponds to that of section 2.5, where more details are provided. Unless specified, every parameter has been kept the same.

The flow of interest is a round air jet at Reynolds number Re ≈ 3300. On the streamwise plane (x, y) in figure 4.17a, 10000 snapshots have been taken at a frequency of 10 kHz (corresponding to 30 snapshots per non-dimensional time unit). The snapshots have been processed using the FOLKI-PIV software, based on a classical two-frame estimation technique [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF]. We used Gaussian interrogation windows of 19×19 pixels (corresponding to a size of 0.09×0.09 in non-dimensional units) with a standard deviation σ = 4 pixels. Given the seeding density of our set-up (approximately 0.05 particle per pixel), the choice of this interrogation window size yields a good trade-off between noise and spatial resolution, in particular for the computation of the mean flow required for our reconstruction technique. This is further discussed in section 3.5.3. Note that such a seeding density is however low for planar PIV, and thus yields noisy instantaneous velocity fields with the classical two-frame approach. However, we have shown that an accurate estimation may be obtained in these conditions when using the Lucas Kanade Fluid Trajectory (LKFT) algorithm described in chapter 2. Figure 3.2 compares a snapshot obtained with the two approaches, and the noise appears indeed strongly reduced when using this alternative PIV processing. We therefore have two sets of velocity estimations for the present study. The two-frame noisy fields were used for the reconstruction procedure, both for the computation of the mean flow (figure 3.3) and for extracting the local input signal necessary for the reconstruction (figure 3.4). On the other hand, the LKFT snapshots have been used as a comparison to evaluate the quality of the reconstruction. In the following, we will refer to these sets of snapshots as the reconstruction set and the reference set, respectively. Using such a reconstruction set shows that the procedure is rather robust even in sub-optimal experimental conditions. Moreover, to our knowledge, the experimental studies based on stability theory seldom use raw PIV results. For instance, the PSE analysis performed by [START_REF] Gudmundsson | Instability wave models for the near-field fluctuations of turbulent jets[END_REF] uses a mean flow computed from a Gaussian fitting of PIV measurements. As demonstrated in the next sections, the present approach may be successfully used without any fitting of the data acquired from classical measurement techniques, standard algorithms and a rather poor experimental set-up.

Time-resolved reconstruction from mean flow stability analysis Fig. 3.5 Instantaneous fluctuation field about the mean flow for an arbitrary time t = 50 of (a) the streamwise velocity and (b) the cross-stream velocity (reference set). The streamwise velocity is symmetric w.r.t. x = 0 while the cross-stream velocity is anti-symmetric, as expected from a round jet, known to be dominated by axisymmetric fluctuations.

Spatial structure of the jet

The global dynamics of round jets is known to be dominated by fluctuation modes of azimuthal wavenumbers m = 0 and m = 1, the m = 0 mode being dominant where the shear layer thickness is small with respect to the diameter (see for instance Davoust et al. 2012a). In the present chapter, the investigated jet is measured rather near to the nozzle exit, and θ, the shear layer thickness is around 0.023 near the nozzle, explaining the apparent axisymmetry of the fluctuations that can be clearly observed in the PIV snapshots (symmetric streamwise velocity field and antisymmetric cross-stream velocity field, see figure 3.5). Consequently, for the reconstruction procedure used in the rest of the study, we consider an axisymmetric framework, which has been validated a posteriori by the agreement between the PIV results and the axisymmetric PSE analysis (section 3.4.1).

The axisymmetric assumption requires to post-process the PIV velocity fields in order to accurately determine the streamwise direction and the location of the symmetry axis of the jet.

For the snapshots acquisition, we considered that the laser sheet was perfectly aligned with the jet axis (no misalignment in the spanwise direction z). Then the camera was carefully oriented to be approximately aligned with this axis. The small remaining misalignment has been corrected by computing, for each streamwise location y 0 , the centre x c (y 0 ) of the corresponding mean streamwise velocity profile v(x, y 0 ) defined as The streamwise direction has been computed by linear regression over the computed points x c , and finally, the velocity components have been corrected with respect to this new orientation.

x c (y 0 ) = min x 1 0 (u(x + x, y 0 ) -u(x -x, y 0 )) 2 dx, ( 3 
The origin of the new system of coordinates is chosen at the center of the nozzle exit. Figure 3.3 presents the mean streamwise velocity field in this new frame of reference. Note that since the new fields are slightly rotated with respect to the original PIV snapshots, the discrete velocity values have been evaluated on a new grid centred around the axis of the jet, using a third-order spline interpolation. The new grid covers the domain (-1 ≤ x ≤ 1,0.5 ≤ y ≤ 2.75) and contains 225 × 200 points in the streamwise and cross-stream direction, respectively.

Time-resolved flow field reconstruction from the mean flow and one point-wise unsteady measurement

Prediction of the Fourier modes from the mean flow

In this section, we aim at predicting for any arbitrary frequency ω 0 the spatial structure of the velocity Fourier mode Û (x, ω 0 ) from the sole knowledge of the mean flow, computed by time-averaging the reconstruction set of PIV snapshots. As explained in section 3.2, this may be achieved by computing the dominant resolvent modes with a PSE analysis, by following the procedure detailed in [START_REF] Beneddine | Characterization of unsteady flow behavior by linear stability analysis[END_REF]. Note that the PSE analysis has been performed in an axisymmetric framework, using the axisymmetric mean flow defined by the upper half of the complete two-dimensional PIV mean flow (see figure 3.3). In the following, we therefore switch from Cartesian coordinates (x, y) to cylindrical coordinates (x, r), where x is now the streamwise direction. The radial and axial velocity, denoted as u r and u x , are taken equal to the streamwise velocity component u and the cross-stream velocity component v of the upper half of the PIV domain, respectively.

One may alternatively use the lower half of the domain (but u r has to be taken equal to -u), but in our case, this second choice led to similar results, and therefore is not presented here.

Note that in such an axisymmetric configuration, it is also possible to use both the upper and lower part of the domain, which virtually gives twice as many snapshots to produce a mean flow that would be better converged. This may be useful when the number of available snapshots is rather low, but this was not the case for the present study, explaining why we did not use such processing.

The Fourier modes have been computed by an FFT of the reference set of PIV snapshots. For the sake of comparison, the modulus of every mode has been normalized such that its maximum is 1, and the phases such that they are equal to zero at an arbitrary location x = 2.25, r = 0.3. These figures illustrate for the two velocity components, and for two different characteristic frequencies of the flow, that, as claimed in section 3.2, the dominant resolvent mode is approximately proportional to the Fourier mode (their modulus is approximately equal up to a multiplicative constant and their phase, up to an additive constant). However this agreement strongly deteriorates in low-energy parts of the flow. This is particularly striking in figure 3.9 for instance. We see that close to r = 0, as well as for x < 1.7, the two fields present a strong discrepancy. While it is known that the dominant modes may not reproduce well the actual dynamics in the low-energy parts of the flow (see [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF], here the discrepancy could also be attributed to the difficulty of measuring a signal with such a low fluctuating energy. Fluctuations in these regions are instead dominated by measurement noise, which does not allow any relevant comparison. Similar overall agreement has been found for all the other investigated frequencies, both for the axial and radial velocity components. This agreement justifies a posteriori the validity of the axisymmetric hypothesis. The PSE analysis also yields the prediction of the pressure modes, for which we do not have any experimental comparison. Figure 3.10 presents the real part of the pressure mode for the Kelvin-Helmholtz frequency St = 0.76 and the sub-harmonic St = 0.38, where one can see alternated positive and negative pressure regions along the shear layer, as classically observed in shear layers. We also observe that the downstream structure that appears in figure 3.10(b) is approximately twice as large as the structures of figure 3.10(a), consistently with the assumption that frequency St = 0.38 is related to downstream vortex pairing.

Time-resolved reconstruction of the snapshots

Following the procedure of section 3.2, we have computed the amplitude function Λ using the axial velocity u x at x 0 = 2.5, r 0 = 0.4 (the input signal can be seen figure in 3.4). This choice of input point is discussed in more detail in section 3.5.1. The choice of the axial velocity as the input quantity was arbitrary; using the radial velocity led to similar results (not presented here). The snapshots are finally reconstructed by performing an inverse FFT at every spatial point. The Λ function has been computed for 0.2 < St < 1.4, which contains most of the energy of the flow, see figure 2.13, following relation (3.2). Outside of this range, we set Λ = 0, which filters the low-energy part of the spectra. In this frequency range, we computed 400 resolvent modes. This number stems from the frequency resolution of the FFT of the input signal, a mode being computed for every frequency within the range considered. Note that the final reconstructed set of snapshots has therefore the same time-sampling and duration as the input signal used for the computation of Λ.

The reconstructed snapshots display a good agreement with the reference set, as can be seen in figure 3.11, which compares an axial velocity snapshot with the reference PIV field. The size and the location of energetic structures are well reconstructed. The agreement is also good in lesser-energy locations. This can be seen in figure 3.12, which compares the temporal evolution of the axial velocity from the reconstruction and the reference set at the point (x = 2.0, r = 0). The oscillations of both signals are well in phase, and their amplitude is very close. Note that the comparison cannot be made in very low-energy parts of the flow, such as the near-axis and most upstream zones in figure 3.9. This stems from the fact that the reference set is not accurate in such regions (the signal-to-noise ratio is low) and the model is not designed to reconstruct low energy behaviour anyway (see [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF]).

In order to provide a more quantitative comparison, we introduce an instantaneous global measure of the error, denoted as e(t), defined as:

e(t) = 1 N p Np i=1 u i x (t) -u i x,0 (t) 2 , (3.4)
with N p the number of discrete points where the velocity is known, u i x and u i x,0 the i-th discrete streamwise velocity value of the reconstructed field and of the reference field, respectively. This quantity corresponds to the root mean square over the whole domain of the velocity error, expressed in non-dimensional unit. One should note that both the reconstruction errors and the PIV measurement errors contribute to the value of e(t), therefore it would not be zero even in the case of a perfect reconstruction. Figure 3.13 shows the temporal evolution of this error, and we see that the discrepancy between the reference and the reconstruction does not vary much with time (around 0.04), ensuring that the global quality of the reconstruction is approximately constant over the full time range considered.

As explained in section 3.2, the amplitude function Λ computed from only one flow variable (here the axial velocity) yields the reconstruction of all other fluctuating quantities (pressure and radial component of velocity). Figure 3.14 compares a reconstructed radial velocity snapshot with the corresponding reference field, and the agreement is once again favourable. Figure 3.15 shows the temporal evolution of e, and the level of error is again rather steady over time, with values close to that of the axial velocity (approximately 0.03). For the pressure reconstruction, we do not have experimental results to serve as reference, but the accurate reconstruction of the radial velocity is a strong argument in favour of the quality of the pressure reconstruction. Indeed, nothing distinguishes these two variables in our approach. Moreover, the resulting pressure fluctuation field p ′ (x, r) is reminiscent of what is expected in such a jet (see figure 3.16(a)), with alternated positive and negative pressure regions that grow in size and amplitude when moving downstream.

Another remarkable feature of the reconstructed fields is their smoothness, that makes them easily differentiable. This is of high importance for the computation of derived quantities such as the vorticity, which is sometimes difficult to accurately compute from PIV measurements, especially in a time-resolved context where the fields display a stronger noise. As an illustration, figure 3.17 compares a vorticity snapshot computed from the PSE reconstruction, the reference PIV set and the reconstruction PIV set. The fields have been obtained from differentiation of the velocity snapshots, based on second-order centred finite differences, with a stencil length equal to 0.08 (twice the length of the interrogation window used for the PIV estimation). The reconstructed vorticity compares very favourably with the reference. The vorticity directly derived from the PIV reconstruction set illustrates the kind of results that are obtained from PIV when the level of noise is too high. This strongly deteriorates the estimation of the derivatives, while the same level of noise in the input data for the PSE reconstruction has no similar impact on the reconstructed field. Note that the vorticity is one among many other derived quantities that may be determined from the present reconstruction. For instance, figure 3.16(b) shows the mean square pressure fluctuation field p ′2 , and any mean square fluctuation or Reynolds stress term could be similarly computed, and exploited for further physical analysis.

Robustness of the reconstruction method

Influence of the choice of input point

The reconstruction model of this work is based on that of [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF], who explained that the point used for the computation of the function Λ should be in a high-energy region of the flow to yield an accurate reconstruction. This requirement stems from the fact that the dominant resolvent modes reproduce accurately the Fourier modes in these regions, but they explained that there is no guarantee that this agreement would be as good in low-energy regions. This is confirmed in our case, and it can be seen in figures 3.6 to 3.9, where we see that the strongest discrepancy between dominant resolvent modes and Fourier modes appears in low-energy regions. But as mentioned in section 3.4.1, in our case, this could be attributed to a poor signal-to-noise ratio in low-energy regions of the flow, a common problem in experimental studies. This issue can be clearly seen in figures 3.7(a) and Time-resolved reconstruction from mean flow stability analysis 3.9(a) for instance, where the non-energetic upstream part of the domain is strongly noised, yielding to a significant discrepancy with the dominant resolvent fields.

To assess the sensitivity of the results with respect to the input point, we have considered seven additional points along the shear layer for the determination of Λ (in total, four points above the shear layer, four points below, see figure 3.18 for the position of the points). The reconstruction is based on the streamwise component of the velocity only, as was done in section 3.4.2. For each of these points, we have computed the global error E defined as

E = (1/T max ) Tmax 0 e(t)dt (3.5)
with T max = 333 the duration of the TR-PIV acquisition, and e the instantaneous error (see equation (3.4)). The resulting values can be seen in table 3.1, and we observe two clear tendencies: the points located downstream yield a smaller error than the ones located upstream, and the points above the shear layer display a larger error than the ones below. This is fully consistent with the findings of [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF] who explained that input points located in high-energy regions yields smaller error. Indeed, here the downstream region contains more energy than the upstream one, where the Kelvin-Helmholtz instability has not fully developed yet. Also, concerning the axial velocity, the region inside the jet has been found more energetic than the region outside. This can be observed for instance in figure 3.6 for St = 0.76.

For a given flow configuration, the location of high energy region may usually be determined by a prior physical knowledge of the qualitative dynamics of the flow. It may therefore be easy to predict good locations for the input sensor in most situations. However, it is likely that the flow dynamics would involve several characteristic frequencies, or even a range of frequencies, and that these frequencies would be related to different locations of the flow. In such a case, it is not possible to find a single location that would be energetic for all these frequencies. As explained by [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF], this may be treated by considering n points for the determination of Λ, leading to an overdetermined set of n equations {Λ(ω) = ûx (ω, x k , r k )/ũ ω x (x k , r k ), 1 ≤ k ≤ n} that may be solved by least squares. The resulting Λ would be weakly impacted by low-energy points, such that for every frequency, only high-energy points would contribute to its value. The reconstruction would also be likely to be more accurate because it would be based on more input data. Finally, multiplying the number of input points may be useful when there is not any prior knowledge of the energetic regions, or when this knowledge is not accurate enough, since only one of the sensor needs to be well-positioned.

We have tested this approach by considering the best and worst points together (A and H, see table 3.1). The result, close to that obtained with A only, shows that the reconstruction is not degraded by the poorly chosen point H. Therefore, in an experimental context, an accurate prediction would be achieved by using several point-wise measurements as long as at least one of them is located in a high-energy part of the flow for each frequency of interest. We also tested the four points above the shear layer (E to H) together, as well as all points together, and table 3.1 shows that when Λ is based on a set of points, the results appear always more accurate than the single-point reconstruction based on the best point of the set. This is of high importance in an experimental context, when using a sensor at some specific high-energy points may be too intrusive (for example at points A to D). This gives more flexibility to the method, since lower-energy points might also be used, as long as they are sufficiently numerous. In particular, one may position a rather large number of sensors downstream from the region of interest and get a satisfactory reconstruction, even if this region is not the most energetic one.

Impacts of an inaccurate knowledge of the input sensor position

The present procedure aims at being used with unsteady data obtained from point-wise sensors. However, in practice, the spatial positions of these sensors can be subject to some uncertainties. In this section, the impact of such an inaccurate knowledge of the input sensor position on the quality of the unsteady reconstruction is studied by considering an input sensor positioned at (x 0 + δx, r 0 + δr), but which would be erroneously assumed to be located at (x 0 , r 0 ). In the procedure, this amounts to select a different input signal than that of figure 3.4, such that the computed amplitude function is no longer defined by equation (3.2), but becomes equal to the following biased amplitude function

Λ b = ûx (ω, x 0 + δx, r 0 + δr) ũω x (x 0 , r 0 ) . (3.6)
For the reconstruction, we found that such a misplacement mainly results in a streamwise translation of the structures of the fields, and to a lesser extent, to a moderate change in their overall amplitude and shape. This overall effect on the reconstruction can be seen in figure 3.19 for δx = δr = 0.05, δx = δr = 0.1 and δx = δr = -0.2 (Λ is computed from the axial velocity and (x 0 , r 0 ) = (2.5, 0.4)). In physical units, this corresponds respectively to misplacements of 0.85, 1.7 and 3.4 mm, i.e. from realistic up to over-estimated experimental positioning errors. When compared with an unbiased reference snapshot (figure 3.19(a)), these biased snapshots seems to all present a phase shift. Beside this dephasing, the resulting field displays the expected physical features (alternated positive and negative structures along the shear layer that grow in size and amplitude in the streamwise direction). This demonstrates that despite a possibly significant misplacement, the reconstruction does not degenerate but rather keeps a certain physical relevancy. This may be explained by the fact that here we consider flows displaying coherent structures, which present by definition a strong spatial correlation. Therefore, the energy content of the frequency spectrum will not suddenly change by considering a point slightly misplaced (the spectrum will display a similar shape with the same dominant frequencies). The phase of the spectrum may however change significantly, which explains why the main observable effect of a misplacement is a dephasing of the fields.

Despite this weak overall impact on the physical features of the reconstruction, it may still be interesting to minimize the sensitivity with respect to misplacements by a relevant choice of input data. To address this issue, let us decompose the biased amplitude function Λ b as with δ ûx = ûx (ω, x 0 + δx, r 0 + δr) -ûx (ω, x 0 , r 0 ). For the reconstruction to be weakly impacted by the misplacement of the sensor, δΛ has to be small with respect to Λ, which would ensure that each Fourier mode is rebuilt with a good accuracy. The spurious effect of the misplacement may therefore be evaluated by the ratio b = |δΛ/Λ| = |δ ûx /û x |. Finally, using the proportionality between the Fourier modes and the dominant resolvent modes yields the following expression of b

Λ b = Λ + δΛ, ( 3 
b = ũω x (x 0 + δx, r 0 + δr) -ũω x (x 0 , r 0 ) ũω x (x 0 , r 0 ) . (3.9)
This expression only involves the dominant resolvent modes, and may therefore be computed by only knowing the mean flow. Assuming that the misplacement (δx, δr) is small, b may be linearised as: b = |b x (ω, x 0 , r 0 )δx + b r (ω, x 0 , r 0 )δr|, (3.10) Time-resolved reconstruction from mean flow stability analysis with b x and b r respectively the axial and radial sensitivity coefficient defined as

b x = ∂ x ũω x /ũ ω x , b r = ∂ r ũω x /ũ ω x . (3.11)
Small values of |b x | and |b r | correspond to a low sensitivity with respect to misplacements of the sensors, but the reciprocal is not true, as b may be small even for large values of |b x | and |b r | (errors along x and r may compensate each other). In addition, the value of this coefficient does not give any indication regarding the type of effect of a misplacement, which could be a simple phase shift (as evidenced in figure 3.19), or a more significant distortion of the fields. Therefore, this coefficient only gives qualitative guidelines to minimize the impact of misplacements.

First, it should be noted that these coefficients depend on the input physical quantity considered: here b x and b r are defined from u x , but using for instance the radial velocity u r as input data for the reconstruction yields b x = ∂ x ũω r /ũ ω r and b r = ∂ r ũω r /ũ ω r . Consequently, the sensitivity with respect to misplacements may be reduced by considering an input physical quantity whose Fourier modes do not present strong spatial gradients. In the case of the jet, while the axial velocity modes display some abrupt variations across the shear layer, as it may be seen for instance in figure 3.7, the radial velocity or pressure modes do not display such high-gradient regions (see figures 3.8 and 3.10). The reconstruction may be more robust if based on a local record of one of these two quantities, especially if the sensors are designed to be near the shear layer. Equations (3.10;3.11) give also insight about the best locations for the input sensors. Due to the division by the local amplitude of the resolvent modes in equation (3.11), b x and b r are expected to be small in high-energy regions, as long as the local spatial gradients do not become too strong. Moreover, the spatial gradients are expected to be rather small in the direct neighbourhood of a local energy maxima. Figure 3.20 compares the quantity |b x | + |b r | (computed from the radial velocity modes) and |ũ ω r | for St = 0.76, and we see that high-energy regions are indeed rather weakly sensitive. While the considerations related to the sensors misplacements completely differ from that of section 3.5.1, we are here led to a similar conclusion: the input sensors should be preferably positioned in energetic regions.

Finally, this rather good correspondence between high-energy and low-sensitivity points is interesting if multiple input points are considered for the computation of Λ. The procedure that is used for the determination of Λ is then based on a least squares minimisation that rules out the low-energy points, for each single frequency of the reconstruction (see section 3.5.1). It is therefore expected to also rule out the high-sensitivity points, which increases the overall robustness of the method. 

Sensitivity with respect to the mean flow measurements

The PIV measurements need to be accurate enough to yield a proper mean flow. In addition to the experimental conditions, the key parameter that influences the quality of the PIV velocity estimation is the size of the interrogation window: a large interrogation window contains more particles, which reduces the measurement noise, but it tends to smooth down the spatial gradients of the flow.

In the previous sections, we have used a mean flow that yields an accurate reconstruction, confirming a posteriori that the choice of the size of the interrogation windows was appropriate (see section 3.3.1). Choosing a smaller window increases the level of noise, but this does not have any significant impact on the final mean flow, as long as the number of snapshots used for the time-averaging is high enough for convergence to be reached. However, taking an overly large interrogation window yields a mean flow that displays inaccurate, biased spatial gradients. This may be observed in figure 3.21, which compares the original mean flow (mean flow A) with a new mean flow (mean flow B), obtained with interrogation windows twice as large in each direction (Gaussian window, 37×37 pixels, σ = 8). The overall effect of this enlargement is an under-estimation of the spatial derivatives of the mean flow. For St = 0.38 (the dominant frequency in the downstream zone of the flow), the dominant resolvent modes computed from mean flow A or B have been found hardly distinguishable. However, as we go to higher frequencies, an increasingly strong discrepancy appears when considering one mean flow or another. This discrepancy is therefore particularly important for high frequencies, as it can be seen for instance in figure 3.22: for the Kelvin-Helmholtz frequency St = 0.76, the mode computed from mean flow B is abnormally energetic in the upstream region of the jet. The impact on the final reconstruction may be observed in figure 3.23 (reconstruction Fig. 3.21 Comparison between mean flow A (continuous line) and mean flow B (dashed line), the latter corresponding to a PIV processing with a larger interrogation window. Figures (a) and (b) respectively display u x and ∂u x /∂r at x = 2, where u x is the mean axial velocity. based on the axial velocity at (x = 2.5,r = 0.4)): while the large low-frequency structures are correctly reconstructed downstream, some spurious high-frequency structures appear upstream of the flow.

These results show that the quality of the reconstruction is conditioned by the accuracy of the mean flow measurement, and one crucial aspect is the correct evaluation of the spatial gradients of the mean flow. In our case, it is found that when these gradients are erroneously evaluated, the final reconstruction presents abnormal levels of energy for high-frequency structures only. Note that this kind of preoccupation mainly concerns configurations where the seeding density would be particularly low, or where some parts of the flow contain really few particles. These two situations would be the only ones justifying the use of windows so large that it would have a significant impact on the PSE analysis. 

Conclusion

This study shows that, in the case of a round jet at Re = 3300, the sole knowledge of the mean flow and the unsteady behaviour of one velocity component at a given point is enough to yield a reconstruction of all the variables of the flow field, including the pressure fluctuations. The reconstruction procedure is based on the work of [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF], and relies on the ability of a PSE analysis on the mean flow to yield the dominant resolvent modes, which gives an approximation of the spatial structure of the Fourier modes of the flow. Such an analysis is computationally low-demanding and easy to implement. It is also particularly well adapted to the study of experimental configurations since it can be used even when the mean flow is known on a rather small region.

The reconstruction quality is conditioned by the choice of the input measurement location: for the reconstruction to be accurate, it has to be located in a rather energetic area of the flow. Moreover, high-energy locations are likely to be robust with respect to a small misplacement of the sensors (but in our case the overall effect of a misplacement was rather limited). In some situations, determining a priori these optimal locations may be difficult. Hopefully, as demonstrated in the last section of the chapter, this issue may be solved by increasing the number of inputs: the reconstruction technique is then more robust and accurate even if the sensors are not optimally positioned. This gives more flexibility for the location of the inputs. For instance, with enough sensors, one may avoid intrusive regions, and place all the inputs downstream of the flow. The accuracy of the reconstruction is also naturally related to the quality of the mean flow measurement. But the present study proves that a sufficiently accurate mean flow may be obtained from classical two-frame PIV even in the case of difficult experimental conditions (e.g., here, with a low seeding density). The noise present in the PIV snapshots should not impact the reconstruction, since it cancels out in the mean flow as

Introduction

We briefly remind the reader of some limits of Particle Image Velocimetry introduced in the first chapter. In many experimental configurations, resolution is still often bounded by hardware characteristics. The finite number of pixel on a sensor limits the range of measurable spatial scales and the maximum repetition rate of high-speed lasers and cameras limits the range of measurable temporal scales. More generally, irrespective of the flow, practical considerations may often lead to non negligible noise on the images, e.g. due to lack of seeding, spurious reflections, low scattering of the particles.

To overcome some of those limits, we adopt, in this chapter the framework of adjoint-based data assimilation proposed by [START_REF] Gronskis | Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[END_REF]. In this framework, a unsteady velocity and pressure field is search for. This field is as close as possible to the input PIV measurements sequence and respect the discretized Navier-Stokes equations. To reconstruct such a field, its initial and unsteady boundary conditions are optimized. This constrained optimization problem is solved by successive resolution of the direct and adjoint governing equations.

Though it may be computationally demanding, the framework proposed by [START_REF] Gronskis | Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[END_REF] is very generic and flexible, as it can be adapted to work with other data than PIV, and using different numerical models. For instance, the measurement could consist of PTV vectors, of point-wise velocities from hot-wire probes, or of wall pressure measurements. On the numerical side, compressible instead of incompressible flow equations could be considered (see [START_REF] Lemke | Adjoint based pressure determination from piv-data-validation with synthetic piv measurements[END_REF], as well as unsteady equations including turbulence modeling (e.g. Large-Eddy Simulation (LES) with a sub-grid model). Besides, the approach is not restricted by the measurement sequence length, nor by the geometrical configuration.

The purpose of the present chapter is thus to further assess the potential of this promising variational data assimilation framework to overcome various limitations of PIV presented above. The dedicated implementation of the adjoint-based optimization will be described. In particular, one of the present specificities is that, contrary to [START_REF] Gronskis | Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[END_REF] who assimilated the flow vorticity, we here consider the velocity vectors directly. We then provide a quantitative assessment of the method's performance in increasing the flow spatial and temporal resolution, in achieving spatial extrapolation in zones where no measurement is available, and denoising. To do so, we consider two bidimensional configurations, the synthetic flow past a backward facing step (BFS), and an experimental planar air jet, both at Reynolds numbers of the order of 1000. A secondary objective of this chapter is also, on those two configurations, to assess the ability of the approach to recover realistic inflow boundary conditions.

Both configurations are 2D, this allows to easily perform parametric studies, and explore a broader range of configurations. Besides, though 3D configurations will raise specific questions pertaining to numerical optimization and parallelization, we expect that a large part of the behavior observed in 2D can be generalized in 3D.

The chapter is structured as follows. Firstly, we describe the overall method, the present implementation choices and some numerical information in section 4.2. In section 4.3, we then assess the method on a synthetic BFS flow. In this test case, we focus on the analysis of the spatial and temporal structure of the results, and the robustness of the method to possibly scarce measurement spatial sampling. We also investigate the ability of the method to recover the flow outside of the measurement domain, i.e. to recover the boundary layer flow in near-wall regions. Section 4.4 then considers an experimental planar air jet. In this case, the spatial and temporal structure of the assimilated field will also be studied, and the effect of the measurement temporal and spatial resolutions will be investigated. Finally, a synthesis and some conclusions will be proposed in section 4.5.

Optimization and implementation choices

This section recalls the global assimilation framework as proposed by [START_REF] Gronskis | Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[END_REF], and describes the specific formulation and implementation choices that we did in the present study. It is intended to stay at a quite general description level. Further details on the numerical implementation and optimization are provided in appendix B.

Method Overview

While flows can be studied separately either via experimental measurements, or by choosing and solving a numerical model for their behavior, variational data assimilation aims at finding the numerical solution to the model, that is the closest possible to a set of already available measurements, sometimes referred to as observations (Le [START_REF] Dimet | Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects[END_REF]. Supposing that K measurement realizations in time are available, yielding a set of measurement data m k , 0 ≤ k < K, such an objective is achieved by stating that the numerical solution u should be the minimizer of a cost functional J , defined as

J = K-1 k=0 ||H(u k ) -m k || 2 , (4.1)
i.e. the value u k of the numerical solution u at each measurement instant k should be as close as possible to the measurements m k themselves, in the least-squares sense. In this expression, H, called the measurement operator, allows to sample the numerical solution at the space points of the measurements, and may also integrate known biases contained in the measurements, but which could not be removed in the data m k . As stated in the introduction, such a framework is very generic and flexible. Indeed, it allows to consider any type of measurements (e.g., sparse point-wise data, regular vector grids, regularly or irregularly sampled in time), provided that the corresponding measurement operator reflects the measurement process accurately enough. Also, any model for u can be chosen as soon as it may yield a numerical solution for the considered flow. As stated in the introduction, [START_REF] Gronskis | Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[END_REF] applied such a variational approach using a sequence of instantaneous snapshots obtained from planar PIV as measurements, and the unsteady incompressible Navier-Stokes equations as model. They considered twodimensional flow and expressed the functional (4.1) using its vorticity. In the present chapter, as sketched in figure 4.1, we also apply use assimilation on PIV snapshots sampled regularly in time every ∆t m . We denote the measurement domain Ω m . Note that, contrary to [START_REF] Gronskis | Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[END_REF], we consider directly the velocity vector as the data (m k ) instead of the vorticity. As depicted in figure 4.1(b), we account for the major characteristics of PIV vector fields: vectors lay on a regular grid (red dots) and each correspond to the weighted displacement average within an interrogation window. Here, we suppose that Gaussian IWs are used, and we account for the corresponding spatial filtering it induces, in case spatial structures of sizes smaller than the IWs are present in the flow. The measurement operator H indeed consists of a smoothing by a Gaussian of the same width σ as used in the PIV IWs, followed by a decimation that allows to retain only vectors at the nodes of the considered grid. Further details on the implementation of H in the present context are given in appendix B.1.
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Contrary to the spatial framework, we suppose, as is most often the case in experiments, that the PIV process does not exhibit any time averaging effects, that is, the time interval between two images in a pair is much smaller than any time scale of the flow. Thus, for each measurement instant 0 ≤ k < K, u k simply reads

u k = u(x, k ∆t m ) (4.2)
While minimizing the above cost function J , the numerical field u(x, t), defined for the same time horizon as the measurements and on a larger domain Ω, as depicted in figure 4.1(b), is 4.2 Optimization and implementation choices 73 required to respect the incompressible Navier-Stokes equations

∂ t u + (u • ∇)u + ∇p -Re -1 ∆u = 0 , ∇ • u = 0. (4.3)
where p denotes in fact the ratio between pressure and density, for conciseness. Minimization of J (u) while respecting equations (4.3) leads to a constrained optimization problem, solved, in a similar way as [START_REF] Gronskis | Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[END_REF], by taking as control variables the initial and unsteady boundary conditions for u,

u(x, t = 0) = u 0 (x) , u(x ∈ ∂Ω, t) = u c (x ∈ ∂Ω, t). (4.4)
Boundary conditions for u are applied on the contour ∂Ω of the numerical domain Ω, as illustrated in figure 4.1(b). To find the optimal values of u 0 and u c of the problem, a Lagrangian approach is used. This approach yields the gradients of equation ( 4.1) with respect to the control variables by solving the direct and adjoint Navier-Stokes equations.

Those gradients are then fed to a non-linear optimizer until convergence to a minima. Note that, in addition to the formulation on velocity instead of vorticity, another difference between the present approach and the work of [START_REF] Gronskis | Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[END_REF] lies here in the choice of additional constraints that are required to perform the constrained minimization. Whereas [START_REF] Gronskis | Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[END_REF] include penalization terms on the control variables in their functional (Tikhonov regularization), we stick to definition (4.1) but instead, express the boundary conditions on a reduced-order basis. This will be explained in more detail in section 4.2.3.

Also, it should be emphasized here that another characteristics of this method is that, when successfully applied to experimental data, it straightforwardly yields the flow unsteady pressure field, without any further assumption. In particular, contrary to most of the current approaches aiming at determining pressure from PIV (see [START_REF] Van Oudheusden | Piv-based pressure measurement[END_REF], for a review), but certainly at the cost of a higher computational effort, it does not require any (approximate) boundary condition pertaining on pressure, and provides this quantity with a temporal super-resolution compared to the measurements.

The remaining parts of this section are devoted to numerical informations, both on the discretization of the direct and adjoint Navier-Stokes equations, and on the optimization process. In order to be enforced, the continuous incompressible Navier-Stokes equation ( 4.3) have to be discretized both in space and time. Notations used for this process are illustrated in figure 4.2 and from now on, u will refer to the discrete field called 'numerical flow' or 'reconstructed flow'. Time is regularly discretized with a fixed step denoted ∆t. As seen in Figure 4.2(a), this numerical time step is smaller than the experimental time step ∆t m , since we are interested in performing in particular temporal super-resolution of the PIV data, as these often cannot resolve all flow temporal scales. For convenience and to avoid interpolations, the numerical time step is chosen so that ∆t m is a multiple of ∆t. To identify and distinguish between the numerical (n) and experimental (k) time instants, we respectively identify them with a subscript and a superscript, i.e.:

Discretization of the unsteady Navier-Stokes equations

Ω ∂Ω x c Ω m IW (b) (a)
u n = u(n∆t) , u k = u(k∆t m ) (4.5)
As the experiment and simulation consider the same time horizon T , the simulation is thus formed of N time instants, such that T = (N -1)∆t = (K -1)∆t m .

The Navier-Stokes equations are discretized in time using the following first-order linearized implicit scheme. The time-derivative is approximated with a first-order backward differential formula. The pressure and velocity diffusion terms are fully implicit, i.e. discretized at time n + 1. The convection term is discretized as (u n • ∇)u n+1 , where a first-order extrapolation of the convective field is used (u n ), while the convected field is discretized at time n + 1. Such a linear implicit discretization of the convective terms allows to overcome numerical stability issues and strong restrictions of the numerical time step required when using semi-implicit discretization in high Reynolds number [START_REF] Elman | Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics[END_REF].

The spatial discretization is based on a finite element method and a continuous Galerkin formulation of the equations. The velocity and pressure fields are projected on quadratic and linear basis functions, respectively. These basis functions are defined on an mesh which discretizes domain Ω with triangles, as illustrated in figure 4.2(b). To improve the spatial resolution of the PIV data, the size of triangles should be smaller than the spacing of the PIV vector grid, and ideally adapted locally to the flow smallest scales. To allow the possibility to perform extrapolation, the spatial extent of Ω is taken larger than the measurement domain Ω m .

At each iteration n + 1, the unknown velocity u n+1 and pressure p n+1 vectors are obtained by solving an Oseen problem, which is formally written as

L(u n ) u n+1 p n+1 = f (u n ) 0 (4.6)
The Oseen operator L, which is linear, depends on the velocity field u n at the previous iteration. This problem is solved using an algebraic splitting method (see [START_REF] Saleri | Pressure correction algebraic splitting methods for the incompressible Navier-Stokes equations[END_REF]. The definition of L and right-hand side term f (u n ) are detailed in Appendix B.2.1.

To solve problem (4.6), the following (Dirichlet) boundary conditions for the velocity field are used:

u n=0 = u 0 , u(x c ) n = u c,n , (4.7)
where u 0 is a discrete initial velocity field and u c,n accounts for the unsteady velocity field at mesh points x c of the outer boundary ∂Ω. In the data assimilation algorithm, u 0 and u c,n are the discrete control variables used to minimize the functional J (equation 4.1).

Adjoint-based minimization

We now detail how we obtain the initial u 0 and boundary u c,n fields that minimize functional J (4.1) under the constraint that the reconstructed field u satisfies at each iteration n the discrete equation (4.6) with boundary conditions (4.7).

Gradient of the functional

Meshes used in the present study represent each of the control variables u 0 and u c,n on a number of degrees of freedom (dof) of typical order 10 5 , therefore excluding "naive" approaches for determining the gradient of J , such as finite-differences. Instead, as also used by [START_REF] Gronskis | Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[END_REF] a Lagrangian strategy is better suited here. It involves the so-called adjoint variables (or Lagrange multipliers) on velocity, u † n , and on pressure, p † n . For 0 < n < N -2, u † n and p † n are solutions of the following adjoint equations and associated final conditions,

L(u n-1 ) t u † n-1 p † n-1 = f † (u n+1 , u † n ) 0 + h n 0 ; L(u N -2 ) t u † N -2 p † N -2 = h N -1 0 (4.8)
In these expressions, the Oseen operator L is identical to that introduced in section 4.2.2. Adjoint variables u † n and p † n propagate the forcing h n backwards in time, from n = N -2 to n = 0. This spatial forcing is linked to the residual at instant k between the numerical simulation and the measurements, and reads,

h n = 2 κ n,k H t H u k -m k .
(4.9)

The Dirac comb κ n,k is equal to 1 if a measurement is available at time n∆t (i.e. k∆t m = n∆t) and 0 otherwise. H is the discretization of the measurement operator H. In equation 4.8, the right hand side term f † (u n+1 , u † n ) includes contributions from f introduced in equation (4.6) and the convective part of L. For simplicity, operator f † is further defined in appendix B.2.2, and the main aspects pertaining to the derivation of the adjoint equation discussed in appendix B.3. The gradient of cost function J can then be written as a function of the adjoint variables,

∇ u 0 J = h 0 -f † (u 1 , u † 0 ) t (4.10) ∇ uc,n J = R t c u † n-1 t ,
where R c is a restriction operator from the finite-element nodal space to the boundary space.

The gradient of J with respect to the initial condition u 0 , and the boundary conditions u c can thus be computed in a single forward integration of the direct equation (4.6) and adjoint equation (4.8). The expression and implementation of the gradients has been validated using second-order finite differences and symbolic differentiation. A pseudo-Newton optimization algorithm, the L-BFGS method [START_REF] Liu | On the limited memory bfgs method for large scale optimization[END_REF] suitable for large scale problems is then employed to perform the minimization with these gradients. In the sequel, and when necessary only (otherwise it will be dropped for clarity), we will call i the optimization iteration number, and denote it with a bracketed superscript, i.e. (u

(i) 0 u (i) c
) are the control variable at iteration i.

Initialization

The iterative algorithm used to optimize the Lagrangian cost function requires initial values of the control variables, (u

(0) 0 , u (0) c
). These quantities are obtained using the PIV fields m k . Initial condition u (0) 0 is found by spatial interpolation inside the measurement domain and constant extrapolation of m 0 outside of the measurement domain. If walls are included in the domain, due to the associated no-slip boundary conditions, linear interpolation is used outside of the measurement domain instead of constant extrapolation. A similar approach is used for u (0) c , with linear interpolation in time between the measurements (m k ) 0≤k<K-1 , linear interpolation in space in the measurement domain and constant extrapolation outside.

Parameter space reduction & regularization

u c = C O S ,O T × u p ; ∆ uc J = C O S ,O T × ∆ up J ,
where u c gather here u c,n for all 1 ≤ n < N -1. 2D Chebychev polynomials have been chosen in the present study because they provide a smooth function space and the evaluation matrices C O S ,O T are known to be well conditioned. In practice, the spatial and temporal orders of the polynomials, O S and O T , are chosen small enough to prevent overfitting in the form of high frequency spurious oscillations at the boundary conditions. O S and O T must also be high enough to avoid underfitting which arises when the function space is not rich enough to allow complex inflows in time and space. Nonetheless, we found that the sensibility of the reconstruction to the choice of the the polynomials order is quite low.

Numerical test case: flow past a backward facing step

As a first test case of the method capabilities, we now consider synthetically generated measurement data, obtained from the numerical simulation of the flow past a backward facing step (BFS). After a validation, we will assess the robustness to spatial sampling, and the ability to extrapolate the reconstruction outside of the measurement domain. In view of our present objectives, the flow past a BFS has the interest of being confined, which will allow to simulate extrapolation in near-wall regions, often difficult to measure with PIV, and also to exhibit a variety of spatial and temporal flow scales. Indeed, it is well known to be convectively unstable, and thus a noise amplifier, i.e. it may amplify upstream perturbations in a range of frequencies [START_REF] Blackburn | Convective instability and transient growth in flow over a backward-facing step[END_REF][START_REF] Marquet | Amplifier and resonator dynamics of a low-reynolds-number recirculation bubble in a global framework[END_REF]. We consider the geometry presented in figure 4.3. The simulation is performed here at a Reynolds number Re = U 0 h/ν = 1000, where U 0 is the centreline velocity of the Poiseuille flow profile imposed at the inlet, and h is the step height. In what follows, all quantities are made non-dimensional with these two scales. As traditionally in such numerical simulations, a forcing has to be imposed to trigger the convective instabilities. It is introduced here as a cross-stream blowing and suction centered around (x = -1, y = 0) with a width in the x direction of 0.30 (position is identified in red in the figure), with a maximal amplitude of 0.02 and a white noise time spectrum. In order to provide interesting dynamics for the approach to be tested on, we focus on the transient regime, i.e. we consider a flow evolution starting 75 dimensionless time scales after the activation of the forcing. A detailed investigation of the influence of the spatial mesh refinement and simulation time step on the numerical solution has been carried out to ensure that the presented results are independent of these numerical parameters. This flow will logically be the reference to retrieve, and thus referred to as such hereafter and in the figure labels.

Flow description

The velocity and vorticity fields of an exemplary snapshot are displayed in figure 4.4, for x < 20. Upstream to the step and forcing region, the Poiseuille flow is independent of time. Downstream of the step, counter-rotating vortical structures are formed in the up and down shear layers. As they are convected downstream, these structures spatially grow and eventually reach the size of the downstream channel height. In figure 4.5 the cross-stream component of the velocity over 60 time scales is plotted over time at the position a, identified in figure 4.3. A rich, non-periodic behavior is observed. The cross stream velocity shown in figure 4.4 and 4.5 exhibits its largest values downstream of the step, close to the location a. Thus the unsteady dynamics is strong in this region and the data assimilation will be performed here, as detailed in the next paragraph. 

PIV and assimilation setup

To mimic an experimental situation, we first generate synthetically an unsteady velocity field that could be typical of what PIV would yield if the flow presented above were measured in a wind or water tunnel. The domain of this so-called 'synthetic PIV' or 'synthetic measurement', Ω m , is always placed between x = 10 and x = 20 as shown in figure 4.3, where the fluctuation amplitude is large, as mentioned in the previous paragraph. The upper and lower boundary of the measurement domain are located at y = 0.7 and y = -0.7, corresponding to an aspect ratio of 7.1. As the maximum velocity of the flow is of roughly 0.5 in this part of the channel, this means that unsteady flow structures typically need ≈ 14 time scales to get across the domain. To reproduce the spatial filtering and sampling properties of PIV, we build the synthetic PIV data by applying a Gaussian smoothing on the velocity fields, which mimics Gaussian interrogation windows (IW). Unless otherwise specified, we choose the standard deviation of this Gaussian to be σ = 0.1, and, as traditionally in PIV, the vector grid spacing as ∆x m = 2σ. A white noise in both time and space is added on the generated snapshots, with a different amplitude depending on the test case. Figure 4.6 shows a measurement snapshot generated at the same time instants as in figure 4.4, with σ = 0.1, ∆x m = 2σ and a noise amplitude of ±0.15. Note that a band of height 3σ in the upper and lower near-wall regions is excluded, as no full IW can be defined there. In figure 4.7, red lines and dots correspond, respectively, to the boundaries of the measurement domain Ω m and to the synthetic PIV vector grid; the size of the IW is also represented. The measurement domain, span from y = -3.3 to y = 3.3 and x < 9. The assimilation domain Ω (gray), is chosen to completely encompass Ω m . It extends until the upper and lower walls of the channel, where no-slip boundary conditions are applied. To prevent any confinement effects, this domain is 60 long along x and 50 wide, along y and the nozzle itself is 10 long from x = -10 to x = 0. At the outlet boundary, on the right (x = 60), a classical outflow boundary condition is imposed, which consists in setting the normal shear stress to zero. To ensure numerical stability while maintaining accuracy, dissipative terms are placed in the vicinity of the assimilation domain contour. In those regions, finite elements are stretched and the viscosity is increased. At the inlet boundary, the unsteady velocity, u c (x c , t), is used as a control variable for the data assimilation method. The reconstructed flow field in Ω, u(x, t), is also controlled by its initial condition u 0 (x).

Validation case

As a first validation case, a straightforward set of parameters is chosen for the synthetic measurements. i.e. no noise, and a measurement time step ∆t m = 1, small compared to the flow structure time scales. Also, we consider a long sequence of K = 50 snapshots, thus the measurement time horizon is (K -1)∆t m = 49. This high-fidelity measurement is then fed to the iterative optimizer. The time step of the direct numerical simulation is chosen so as to maintain a CF L < 0.45. With the meshes used in the assimilation, both components of the velocity and the pressure amount for 111527 degrees of freedom (dof).

After 150 iterations, the cost function J as been reduced from 3.77 10 -3 to 3.08 10 -4 as shown in figure 4.8. J is scaled by the number of measurement points in space and in time, thus √ J is equal to the RMS velocity error between the measurement and the reconstructed flow u. In the present case, at convergence, this error is 1.7%. Likewise, the normalized gradient of the cost function with respect to the control variables ||∇J || = ||∇J (u

(i) 0 , u (i) c )||/||∇J (u (0) 0 , u (0)
c )|| has been reduced from 1 to 10 -2 . The extent of the reduction from the first to the last optimizer iteration is not necessarily related to the accuracy of the reconstructed field. But it does mean that the optimizer, using the gradient derived from the adjoint Navier-Stokes equation, is able to find a minimum for J , possibly a local one. It can be seen that the cost function does not decrease much after 100 iterations, which is common for most of the calculations shown in this chapter. Therefore, unless otherwise specified, all results hereafter will be presented after 100 iterations. As the approach requires successive resolutions of the direct and adjoint Navier-Stokes equations, some effort has been done to reduce the computational burden. The time spent on the optimizer itself and the computation of the cost function and forcing h n (see equation 4.9) are negligible, irregardless of the configuration. The vast majority of the time is spent solving Navier-Stokes equations. For the current case, with a CF L < 0.45, 2891 time iterations are required to cover the duration of the measurement time horizon. Each direct and adjoint time iteration is 0.044s and 0.082s, respectively, which amounts to 3.94 × 10 -7 s/dof/iter and 7.35×10 -7 s/dof/iter. Thus each gradient evaluation is 6min long. To achieve this performance on unstructured meshes, both Navier-Stokes equations are solved on a multi-core architecture using methods described in part 4.2.2, appendix B.2.1 and appendix B.2.3. Strong and weak scaling analysis have been pursed, showing close to linear scaling with random access memory bandwidth (RAM) for more than 20000 dof per core, and no improvement for less than 10000 dof per core. In the present configuration, 12 cores were used. Note that solving the equation on the adjoint variable u † (equation (4.8)) requires the knowledge of the velocity u at all time iteration. To alleviate the memory burden associated with saving all those snapshots, u is stored locally on each core.

The reconstructed velocity field u is compared to the reference simulation and the current high quality measurement in figure 4.9 at times t = 20 and t = 41. With low spatial filtering and no noise, the synthetic measurement appears, as expected, very close to the reference DNS. The reconstructed field at convergence is also very close to the reference simulation, validating the approach implementation. Likewise, in figure 4.10, synthetic measurement and reconstructed field are compared to the reference simulation over time at position (x = 15, y = 0) (identified in figure 4.9(a). The effect of the spatial filtering in the measurement is more pronounced on this time plot, visible by the undershooting of the red dots versus the reference. Similar to the snapshot results in figure 4.9, the reconstructed flow is again very close to the reference, with no sign left of this undershoot. However close to t = 0 in figure 4.10, on the streamwise component of the velocity, a high discrepancy is observed between the reconstructed field and the reference. This 'warm-up' delay before which u can catch up with the reference is often observed, and will be briefly discussed in section 4.3.5. As mentioned in section 4.2.3, we use a parameter space reduction to represent the optimized unsteady upstream boundary condition u c (x, t), here polynomials of order 15 in time and 7 in space. As a final remark pertaining to validation, and to illustrate the necessity of this choice, figure 4.11 shows the result of an identical flow reconstruction as in figure 4.10, however without any basis restriction for u c (x, t). Spurious spikes in the time evolution are clearly visible at the measurement instants for the streamwise velocity component; this is a typical case of overfitting. The phenomenon tends to worsen in more challenging configurations (not shown here for conciseness), i.e. with less measurements in either time and space, or more noise. However we do note that overfitting is not observed on the cross-stream component of the velocity. 

Robustness to coarse spatial sampling

In this part, we assess the robustness of the method to coarse spatial sampling, by gradually reducing the vector grid resolution ∆x m of the synthetic measurement, while keeping the interrogation window size at σ = 0.1. Consequently, the amount of data used in the assimilation will also decrease. The temporal parameters of the measurement are not changed compared to the validation case above. As gathered in table 4.1, ∆x m is varied between 0.2 (which was the value used in the previous section) and 0.75, corresponding to a total number of grid points, N m , varying between 350 and 28. Note that, as the channel height is equal to 2, the number of points in the y direction, N m,y varies from 7 for the denser case, down to only 2 for the coarser case. 4.1 Parameters used for measurement spacing variation. N m denotes the total number of grid points, and N m,y the number of points in the y direction.

For each value of ∆x m , a synthetic measurement is created and fed to the optimizer. Figure 4.12 shows, for ∆x m = 0.65, the reconstructed field in green, the reference DNS in dashed black and the synthetic measurement in red. These quantities are evaluated over the horizontal line at the center line of the channel (x = [10,19], y = 0), identified in figure 4.9(c). Firstly, independently from the fact that the PIV vector grid is coarser than in the previous section, this figure provides an illustration of the effect of the spatial filtering caused by the interrogation window size, still equal to σ = 0.1 as above. This is particularly striking on the streamwise component, where several local maxima and minima in the x direction are no longer visible on the measurement, which is systematically below the reference. Note that this difference between the two components can be explained by the particular flow structure: as can be observed in figure 4.4, spatial gradients are much more important for the streamwise than for the cross-stream component, hence the difference in sensitivity to spatial filtering. Considering now the reconstruction, one observes that in spite of a number of grid vectors more than 7 times less important than in the previous sections, and only 3 points in the y direction, the optimization process still allows to truthfully reconstruct nearly all flow scales. More quantitatively, the error of the reconstructed field and of the measurement compared to the reference are shown in figure 4.13 as a function of the number of measurement positions N m , for both velocity components. This error is computed in the rectangular domain (x = [11, 18], y = [-0.5, 0.5]), identified in figure 4.9(d), which is contained inside the measurement domain. This choice was made in order to distinguish between the ability of reconstructing within the measurement zone, and the extrapolation to inaccessible zones, which will be assessed in the next section. Also, the time horizon considered to compute this error was chosen to start at t = 15, in order not to be polluted by the 'warm-up' period. As expected, due to undersampling, the measurement error increases dramatically as the number of measurement positions decreases. On the other hand, the error of the assimilation is remarkably robust to the reduction in measurements points. N m < 28 was in fact found to correspond to the lower limit in this case: the optimization could not be done, as the initialization of the control variables was too poor to allow convergence of the Navier-Stokes direct solver. 

Spatial extrapolation capability

As in all previous sections, the measurement domain has been included inside the assimilation domain, some first preliminary insights on the ability of the method to extrapolate to regions where measurement is inaccessible have already been presented. In this section, we pursue this analysis more in depth, by considering a much thinner measurement zone in the y direction, i.e. ranging from the center line y = 0 up to y = 0.7, as illustrated in figure 4.14(a) and (b). To add in complexity, a white noise of amplitude (±0.15) is here added to the measurements, and their temporal sampling is reduced such that K = 20 and ∆t m = 3. As described in section 4.2.3, initialization of the control variables is done using linear interpolation outside of the measurement domain, using the no-slip boundary condition at the top and bottom and the available measurements.

Figure 4.14 compares snapshots of cross-stream measurement, reconstructed and reference velocities at times t = 18 and t = 39. As expected, the measurement is noisy and its domain appears very reduced in space. However, remarkably, it gathers enough information for the optimization algorithm to yield a reconstruction very close to the reference. Some discrepancies are observed close to the inflow boundary, around x = 10, with more complex structures in the reconstruction. The robust character of the reconstruction with a spatially reduced measurement is also observed in figure 4.15, where both components of the velocity are plotted over time. The position of interest is point A, located at (x, y) = (17.0, 0.1) and identified in figure 4.14(a). The lower temporal resolution and added noise in the measurement can be clearly observed. The reconstructed field accurately tracks the reference after a 'warm-up' delay of around 15 time scales. The exact cause of this delay is not known and out of the scope of this chapter, it should be the subject of further studies. Still, we hypothesize that convergence to a local minima is this main reason for this phenomena. This is supported by the control variables initialization and optimizer choice having a large effect on the delay length and flow structures during the delay. Coming back to the time-plot, as point A is located within the measurement domain, such an accurate recovery could to some extent be expected. Now looking at point B on the other hand (figure 4.16), which lies far outside of the measurement domain, at (x, y) = (15.0, -0.7), the strong ability of the method to perform extrapolation even with highly noisy data is confirmed, as the reference appears to be accurately recovered on the reconstructed field. 

Experimental test case: planar jet flow

In the previous section, the robustness of the method to the number of spatial measurement points and spatial extrapolation as been shown. The approach will now be used on experimental data to investigate further robustness to the spatial and temporal resolution of the measurement.

Experimental setup and flow characterization

Time-resolved planar PIV on a low Reynolds number planar air jet is considered as shown in figure 4.17a. The nozzle exit is rectangular. Its width, along the y direction, L ref = 4mm, will be taken as reference length. The nozzle is 60mm long, hence an aspect ratio of 15, in order to ensure a quasi-2D behavior close to the exit. In a time-resolved configuration, such a small PSF leading to peak-locking can be expected due to the large sensor pixels size and the chosen aperture (f/4).

10000 images have been acquired, corresponding to a total time of 1s, i.e. 1000 dimensionless times, with T ref = L ref /U ref = 1 ms. These images will first be used to characterize the flow dynamics using the two-frame PIV software FOLKI-PIV [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF].

Gaussian interrogation windows are used with standard deviation σ = 10px. In figure 4.19, mean and rms streamwise velocity profiles along (Oy) are plotted at 3 streamwise locations, x = 1.5, x = 4.3 and x = 7.7, using the frame of reference defined in figure 4.17a. As we progress downstream, the mean velocity profile gets smoother and wider, as expected. The rms velocity exhibits two peaks corresponding to the shear layers. The amplitude of those peaks increases with x and they get further apart as the spatial size of the unsteady structures increases. 2010) observed a symmetric behavior while we did not. This could be explained by the difference of shear layer thickness of the upstream boundary condition between the two studies. Indeed, their upstream profile is akin to a top-hat while the current profile is more Gaussian-like. This is reminiscent of the round jet case where non-symmetric modes are dominant with thicker shear layer (Davoust et al., 2012b). Because of the noise amplifier behavior of such configurations, the different dynamics between the two jets may also be explained by external noise.

Assimilation setup

The assimilation setup will now be described. From the 10000 images mentioned previously, two velocity datasets are created: a 'reference' dataset and an input 'measurement' dataset.

Compared to the synthetic case, the true velocity field is unknown here. As such, the reference dataset is based on experimental data, but optimized for accuracy. It uses the full temporal resolution of the image sequence processed with LKFT [START_REF] Yegavian | Lucas-kanade fluid trajectories for time-resolved piv[END_REF], described in chapter 2. The measurement dataset is akin to standard two frame PIV and is obtained by sub-sampling in time the acquired image sequence. It is not necessarily time-resolved and it is processed using the algorithm FOLKI-PIV [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF] on image pairs. This data will be improved upon using assimilation.

For both datasets, Gaussian interrogation windows are used with σ = 3px, i.e. a small window size, which LKFT is able handle but leads to a noisy estimation with FOLKI-PIV. LKFT, the algorithm used to produce the reference dataset, requires the choice of an image sequence length and a polynomial order, as such, 9 images per sequence and second order polynomials are used. Data assimilation will now be used on the measurement dataset and compared to the reference. As mentioned in section 4.2, the unsteady incompressible bidimensional Navier-Stokes equations are used as a model. As such, data that does not respect the model, i.e. where the flow is clearly dominated by tridimensional dynamics, should not be used in the assimilation. The transition form a bidimensional to a tridimensional flow can, for instance, be estimated using the divergence operator in the (x, y) plane. Figure 4.22(a) represents this quantity using the instantaneous reference velocity, estimated by LKFT. Based on this divergence criterion, the flow exhibits a clear 3D behavior for x > 9. Likewise in figure 4.22(b), the z component of the vorticity is displayed for the same instant, for x > 10, the alternating vortical structures disappear. As a result the adjoint-based data assimilation will only be pursed using measurement for x < 9. Knowing the length of the measurement domain, a data assimilation setup is defined. As illustrated in figure 4.23, the numerical unsteady field u(x, t) and its initial condition u 0 (x) are defined in the gray area (Ω). The assimilation domain extends across 6 dimensionless lengths upstream of the nozzle exit, and 20 dimensionless lengths downstream. This domain is also 20 dimensionless lengths wide. The unsteady inflow boundary condition u c (x c , t) is placed at the nozzle exit. All other boundary conditions are no-slip except for the downstream boundary, where an outflow condition is imposed.

As mentioned in section 4.2.3, we use temporal and spatial Chebychev polynomial functions for the unsteady inflow boundary conditions at the jet intel. The order in time and space of those functions are O T = 15 O S = 7 respectively. The measurement dataset is characterized by the number of measurements in time K, the measurement step ∆t m , the size of the PIV interrogation windows used in FOLKI-PIV, σ and the PIV vector grid spacing, ∆x m . The jet inflow and initial conditions will be tuned to decrease the difference between the PIV and the reconstructed field, in order to achieve denoising, time and space super-resolution as described in section 4. 

Validation case

In this section, the behavior of the approach is assessed on experimental data using the setup described previously. As for the BFS, a quite well-resolved measurement in time and space is first assimilated. We will focus on the convergence properties of the assimilation when using experimental data. Then the robustness to time and space measurement sub-sampling and peak-locking of the reconstructed field will be assessed.

Convergence properties A sequence of K = 31 measurement instants will be used with ∆t m = 0.5, for a time horizon of (K -1)×∆t m = 15. On the synthetic case, noiseless PIV was used for the validation, as we are working with experimental data, this is not possible here. Still, interrogation windows with σ = 3px are used. From this measurement, a simulation time step ∆t = 0.05 is chosen to ensure a CFL number smaller than 0.5. The simulation mesh with 186675 degrees on freedom is refined in the vicinity of the nozzle to ensure an accurate discretization of the shear layer spatial gradients. The control variables of u(x, t) are initialized as described in section 4.2.3. Using those parameters, u c (x c , t) and u 0 (x) are optimized until convergence of J as shown in figure 4.24. J goes from 0.0024 to 0.0011 while the gradient is reduced by approximately 2 orders of magnitude. This behavior is different from the synthetic case (figure 4.8) where the reduction of J is more pronounced. Many reasons may explain this behavior including the initialization of the control variables, of the models errors (which will be discussed in more details after). Reconstructed fields Now looking at the assimilated field, u is compared to the measurement and reference datasets in figure 4.25 at time t = 7.5 and t = 9.5. The cross-stream component of the velocity is displayed. In each subplot, the jet nozzle is represented on the left for x ≤ 0. The raw measurement is noisy while the reconstructed field is not. u appears to accurately recover the high amplitude oscillations near x = 8 when compared to the reference. Around x = 3.5, the amplitude of the reconstructed field seems however higher than the reference. Now looking at figure 4.26, the same quantities are compared over time at position (x = 8.1, y = 0.0) identified by a white dot in figure 4.25(b). The measurement is well-resolved in time. Because of the noise, it is slightly different from the reference measurement. The overall shape of u is close to the reference, but the reconstruction is not as accurate as what was observed on the synthetic case (figure 4.10).

Given the high quality of the measurement, we may expect an almost perfect recovery of the reference. But some discrepancy was observed as exemplified in the time plot. Pinpointing the exact reasons for those differences is no easy task, a few hypothesis are proposed. As we are using gradient descent, the optimizer may be stuck in a local minima. Also, despite a careful selection of 2D measurements, small tridimensional effect may have a strong repercussion on the dynamics. 

Reconstructed inflow

We now focus on the reconstructed flow in the nozzle exit plane, where the true inflow is unknown, as PIV has not been performed there. In figure 4.27, the estimated inflow profile statistics at x = 0 are shown. As the duration of the assimilation is rather short, t = 15 dimensionless times, those statistics are not converged. Still, consistent behavior is observed between figures 4.27 and 4.19. In both figures, the root-mean-square of the fluctuating velocity has two peaks of amplitude close to 0.07, with a minimum at y = 0 around 0.04. Due to turbulent diffusion, the profiles at x = 1.5 are wider and smoother than the reconstructed inflow. These results in particular confirm that some turbulence is already present at the nozzle exit, probably due to the roughness of the 3D printed nozzle. This can be one of the reasons of the discrepancies observed with the jet studied in [START_REF] Suzuki | Instability waves in a low-Reynolds-number planar jet investigated with hybrid simulation combining particle tracking velocimetry and direct numerical simulation[END_REF], mentioned in section 4.4. 

Peak-locking

The particle point spread function (PSF) on the images is small, as described in section 4.4.1. This is often the case with high repetition rate PIV where big camera sensor pixels are required for sensitivity in low light conditions. In such conditions, peak-locking is observed, which is a well-known bias where the estimated velocity vectors are attracted to integer values of displacement in pixels [START_REF] Raffel | Particle image velocimetry: a practical guide[END_REF]. This bias is illustrated in figure 4.28, which shows histograms of the streamwise velocity as a function of the displacement in pixel. Values around u = 0px correspond to the external ambient flow, which is mostly still, while values around u = 6.4 pixels correspond to the jet potential core. For the two-frame PIV or measurement dataset (figure 4.28(a)), there are peaks at every integer displacement which are spurious. The reference, obtained with LKFT (figure 4.28(c)), is not as much subject to peak-locking, as already observed in chapter 2. The reconstructed field (figure 4.28(b)) does not exhibit peak-locking, despite using a peak-locked measurements as input. Data assimilation thus appears successful in alleviating the peak-locking bias, as it has no reason to correspond to a solution of the Navier-Stokes equations. 

Temporal super-resolution

In this section, we now consider a much coarser measurement and begin to investigate the robustness of the approach to the temporal sub-sampling of the measurement. Every parameter will be kept the same as in the validation case above, including the duration of the measurement sequence (15 dimensionless times). The number of measurement instants is varied from K = 13, to K = 2 as shown in table 4.2 (in the reference case, one had K = 31). K 13 10 9 7 6 4 3 2 ∆t m 1.2 1.6 1.8 2.5 3.0 5.0 7.5 15.0 Table 4.2 Parameters used for the variation of the measurement dataset time sampling.

In figure 4.29, the reconstructed field corresponding to K = 2 is shown. Both components of the velocity are represented at position x = 8.1 and y = 0.0 over time, position identified in figure 4.25 by a white dot. We can see that despite using a sequence of only two measurements the time structure of the reference is well recovered in the reconstructed field. Besides, the quality of the reconstruction is very close to that obtained with K = 31, also represented here, showing that the assimilation only needs very few temporal information to be accurate. [START_REF] Schneiders | Time-supersampling of 3d-PIV measurements with vortex-in-cell simulation[END_REF] observed a similar behavior with their approach. Also, the error of the reconstruction being constant despite a sharp reduction of the number of measurement instants further supports that model errors should be responsible for the remaining discrepancies between the reconstruction and the reference. In figure 4.30, the error between the reconstructed field and the reference is compared to the error between the measurement and the reference. The reconstructed field u, the measurement and the reference are all discretized differently in time and space, making this error evaluation not straightforward. u is interpolated linearly in time and space, for the measurement, linear interpolation in time is used. This way, each quantity is evaluated at the same position and time. The error is computed using root-mean-square in all time and space for each velocity components. Despite the noise, the error of the measurement remains low and constant for values of K larger than 10 and rises sharply for values smaller than 10. This value appears to be a threshold above which a simple linear interpolation in time is sufficient. Below this value interpolation errors become more and more significant. This is consistent with the highest characteristic frequency of the jet at Strouhal 0.168. The associated maximum time lag for resolving this frequency is ∆t m ≈ 3, that corresponds to K = 6 according to table 4.2. Note that in figure 4.30, the slope of the error is in fact maximal for K lower than 6.

On this same figure, we observe that the error of the measurement is lower than that of the reconstructed field for K > 6. This means that in this case, data assimilation worsen the flow evaluation. Once again, we hypothesise that this is due to model errors, as mentioned in section 4.4.3. 

Spatial super-resolution

The goal in this section is now the assessment the ability of the method to recover spatial flow structures smoothed by the PIV interrogation window.

The low Reynolds number jet studied here does not exhibit small spatial scales. As such, to effectively filter those scales, interrogation windows of radius up to 100px would be required required (In higher Reynolds number experiments, flow structures tend to be filtered even with small IWs). But such large IWs are not suitable for current PIV softwares. We will therefore artificially create PIV velocity fields that emulate interrogation windows that do not resolve the smaller spatial scales.

To do so, we exploit the fact that two successive Gaussian filtering of width σ and σ cor are equivalent to a single filter with σ ef f = σ 2 + σ 2 cor . Large interrogation windows are thus emulated using velocity fields estimated with FOLKI-PIV and σ = 5. Those fields are then Gaussian filtered with σ cor to obtain the effective σ ef f . A fixed distance between measurement of ∆x m = 20px is chosen. The measurement time step is ∆t m = 1.6 and K = 2, i.e. only two measurement instants are considered. σ ef f is varied from 7.5 to 30; since ∆x m is fixed, the number of measurements does not change. 4.32 shows the RMS error between the reference and both the measurement and the reconstructed field. These RMS errors are plotted with respect to the effective interrogation window size σ ef f . For all values of σ ef f , the ability of the approach to recover spatial scales 4.5 Conclusions 101 permits error reduction as the RMS error is systematically lowered, possibly by a factor as high as 2.5. 

Conclusions

Variational PIV data assimilation has been performed using the unsteady incompressible bidimensional Navier-Stokes equations as underlying model. The approach, proposed by [START_REF] Gronskis | Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[END_REF], reconstructs an unsteady velocity field as close as possible to PIV while respecting the discrete equations. This reconstructed field is found by optimizing initial and unsteady boundary conditions using gradient descent, those gradients are obtained by resolution of the direct and adjoint governing equations. This method was applied on both synthetic and experimental configurations. On the synthetic bidimensional flow past a backward facing step, robustness to measurement spatial sampling and data reduction was shown. This behavior is consistent to what Schneiders and[START_REF] Schneiders | Dense velocity reconstruction from tomographic PTV with material derivatives[END_REF][START_REF] Gesemann | From noisy particle tracks to velocity, acceleration and pressure fields using B-splines and penalties[END_REF] observed, temporal information can be used to increase spatial resolution. Also on the backward-facing step, spatial extrapolation was shown with accurate flow reconstruction between the PIV measurement domain and a wall. This is in line with the work on gappy PIV of Sciacchitano et al. (2012a) and goes somewhat further as the extrapolation is also robust to noise and PIV spatio-temporal resolution. On an experimental low Reynolds number planar jet, robustness to temporal sampling was shown with an increase in temporal resolution, this behavior akin to the observations of [START_REF] Scarano | An advection-based model to increase the temporal resolution of PIV time series[END_REF] and [START_REF] Schneiders | Time-supersampling of 3d-PIV measurements with vortex-in-cell simulation[END_REF]. Also on this experimental configuration the approach was able to recover spatial scales smaller than the PIV interrogation windows. In essence, the method proposed by [START_REF] Gronskis | Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[END_REF] appears thus very versatile in improving PIV resolution and accuracy as it successfully faces various types of measurement inaccuracies and limits. same combination of image pairs as existing approaches such as FTEE [START_REF] Jeon | Fluid trajectory evaluation based on an ensembleaveraged cross-correlation in time-resolved PIV[END_REF] and FTC [START_REF] Lynch | A high-order time-accurate interrogation method for time-resolved PIV[END_REF] but with a Lucas-Kanade paradigm, as the name implies. With this paradigm, the developed algorithm appears as a generalization of the existing two-frame approach FOLKI-PIV [START_REF] Champagnat | Fast and accurate PIV computation using highly parallel iterative correlation maximization[END_REF]. As with FOLKI-PIV, LKFT is well suited for parallel computing. A comparison with FTEE on elementary test cases showed that LKFT achieves state-of-the-art accuracy in terms of bias and random error in situations of peak-locking. On synthetic test cases from the third PIV challenge [START_REF] Stanislas | Main results of the third international PIV challenge[END_REF], error reduction up to 60% was observed with respect to two-frame approaches. LKFT was also applied on a low Reynolds number air jet, where strong noise reduction and lower peak-locking compared to two frame evaluation was observed.

Because of the polynomial trajectories hypothesis, the instantaneous material acceleration is also estimated by LKFT. On the studied air jet, this acceleration obtained with LKFT exhibits much less noise than that derived from two-frame PIV. Still, due to its simple model, LKFT may not always achieve a high accuracy, if the polynomial trajectories approximation is not valid. Indeed in the final part of chapter two, it has been observed that LKFT may feature biased estimates if the true fluid trajectories deviate from the best polynomial trajectories by more than about two pixels. This is somewhat expected as the chosen underlying model is rather coarse.

Dominant resolvent mode

The high frame-rate experimental setups required by LKFT and other time-resolved approaches may no be available or relevant in high velocity cases. On the other hand, low frame-rate lasers tend to have higher energy, be cheaper and more reliable. For this reason, non time-resolved PIV can yield high accuracy mean flows, hence the focus of the third chapter on using a low order model to reconstruct the time-resolved dynamics from a PIV mean flow. This model was proposed by [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF], who showed that PSE analysis of the mean flow can provide, under certain conditions, the dominant resolvent modes, which gives an approximation of the spatial structure of the Fourier modes of the flow. The recovered Fourier modes can then be combined to high frequency point-wise measurements such as hot-wire and wall pressure sensors to recover the full unsteady flow dynamics. This method is also characterized by its low computational cost. It was applied on the same low Reynolds number air jet used to assess LKFT performances, the knowledge of the PIV mean flow and a single time resolved point-wise measurement was indeed enough to recover the full unsteady dynamics for both velocity and pressure fluctuations. The robustness of the method with respect to experimental conditions was assessed, showing that the reconstruction accuracy can be improved by placing the point-wise measurement sensors in energetic areas 5.1 Summary 105 of the flow. Also in such regions, a small misplacement of the sensor was shown to have little effect on the quality of the reconstruction. In regard to the ease of use of the method in an experimental context, the last section of this chapter presents how this reconstruction method is made more robust and accurate with the use of more than one sensor even placed in lower energy regions. This is of great interest, as an array of point-wise sensors, located far enough downstream, can be less intrusive than a single sensor placed in an energetic region. A last topic was devoted to the interaction of the spatial scales of the mean flow and the temporal scales reconstruction. It was found that larger PIV interrogation windows, which tend to filter-out spatial derivatives, adversely affect estimation, with the emergence of spurious high-frequency structures.

Navier-Stokes equations

The low-order model used in the third chapter appears very efficient and accurate in recovering the unsteady dynamics. The condition for validity for this model, discussed by [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF], may however not be fulfilled. The reconstruction procedure, while robust to errors in the input measurements, is not flexible to the type of measurement i.e. a well resolved in space, non-gappy mean flow and a well resolved in time measurement inside the mean flow are required. As such, the fourth chapter focused on attempting to overcome the resolution, biais and noise limits of PIV using the full unsteady incompressible Navier-Stokes equation as a model, and offering more flexibility with regards to the input measurements. Following the approach proposed by [START_REF] Gronskis | Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[END_REF], variational PIV data assimilation was used. This aims at reconstructing, an unsteady pressure and velocity field respecting the motion equations and as close as possible to an unresolved/gappy/biased PIV measurement sequence. This numerical field is obtained by finding optimal values for the initial and unsteady boundary conditions of the flow, considered as control variables of the problem. The optimization is carried out using gradient descent, the gradient being provided by the resolution of the direct and adjoint governing equations. This method was implemented to be easily used on distributed architectures to alleviate its heavy computational burden. It was applied on bidimensional configurations in order to allow parametric studies: a synthetic flow past a backward-facing step and an experimental low Reynolds number planar air jet. On the first synthetic configuration, the ability of the method to reconstruct a reference flow was found to depend on the quality of the input measurement. The robustness to sparse in space measurements and the ability to recover the flow outside of the PIV domain was assessed. This capability for spatial extrapolation is promising for the study of near-wall flow regions where PIV is often hard to use. On the low Reynolds number planar jet, recovery and dealiasing of subsampled and unresolved temporal scales is shown, the behavior observed is akin to [START_REF] Scarano | An advection-based model to increase the temporal resolution of PIV time series[END_REF] and [START_REF] Schneiders | Time-supersampling of 3d-PIV measurements with vortex-in-cell simulation[END_REF]. Also on this experimental configuration, the approach was able to recover spatial scales smaller than the PIV interrogation windows. In essence, the method proposed by [START_REF] Gronskis | Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[END_REF] proved very versatile in improving PIV resolution and accuracy, and reducing both noise and bias. Consistently with its high efficiency, this approach is demanding in terms of computational cost.

Perspectives & future work

In this section, possible tracks for further work will be discussed. As the main subjects of this thesis are independent, perspectives for each of those three will first be presented. Some general outlook will then be considered.

Polynomial trajectories

With regard to LKFT, a possible track for future works is the still open question of finding the optimal values for the polynomial degree and image sequence length, depending on the flow physics, as they may have a significant impact on the final gain in accuracy. In that respect, it seems most likely that this choice should be done locally, per pixel, as complex flows often embed zones with different spatial and temporal characteristics. Furthermore, the smooth fields provided by LKFT may allow for accurate spatial derivatives evaluation required for pressure determination.

There is also interest in porting LKFT to tomographic estimation. The approach, well suited for GPU-based computing, may shine in such 3D cases, where the great number of voxels induces long computation times. The ability of LKFT to yield smooth velocity fields with small interrogation windows even with low seeding density may be advantageous for tomographic processing. Indeed, current two-frame tomoPIV requires large interrogation volumes due to the low seeding density.

Dominant resolvent mode

The reconstruction technique based on the PSE analysis proved very successful on the low Reynolds number air jet. Considered future work on this subject may focus either on the theoretical aspect of the model or further experimental development. Regarding the 5.2 Perspectives & future work 107 model, we refer the reader to [START_REF] Beneddine | Characterization of unsteady flow behavior by linear stability analysis[END_REF] where these aspects are discussed in details. Experimental developments will be mentioned here. This reconstruction method is here used on two-dimensional data, but in the case where one would be able to produce a three-dimensional mean flow measurement, then the exact same procedure, based on 3D-PSE (see for instance [START_REF] Theofilis | Global linear instability[END_REF], may be used to rebuild a full three-dimensional time-resolved flow field. This could be of high interest since the methods to measure a flow field in a volume still often remain more difficult to apply in a time-resolved context due to low light intensity.

Applying the method to better suited data may also yield interesting result. For example, the work by [START_REF] Kähler | On the uncertainty of digital piv and ptv near walls[END_REF] showed advantageous alternative to PIV such as single-pixel ensemble-correlation [START_REF] Westerweel | Single-pixel resolution ensemble correlation for micro-piv applications[END_REF] in the context of mean flow for wall-bounded configuration. Also, particles-based and hot-wire measurements are often not usable at the same time, indeed hot-wire probes cannot handle impact from particles. Therefore some thought should given to the behavior of the reconstruction when the mean flow and the point-wise measurement are not performed simultaneously to ensure reproducibility.

The PSE-based reconstruction recover the pressure fluctuation and the unsteady velocity accurately and smoothly. From these quantities, the full unsteady pressure field could be derived. The present method may thus be a new tools in the very active area of research that is pressure from PIV [START_REF] Blinde | Comparative assessment of piv-based pressure evaluation techniques applied to a transonic base flow[END_REF][START_REF] Van Oudheusden | Piv-based pressure measurement[END_REF].

Navier-Stokes equations

Variational data assimilation, as used in the fourth chapter, did prove flexible with respect to the input measurement and capable to successfully overcome various limits of PIV. However, this versatility comes at a high computational cost. Indeed, successive direct numerical simulations of the studied unsteady flow are required. This cost may however be lessened using the properties of the method: an accurate reconstruction is possible without simulating the whole wind tunnel. For example, the reconstruction domain could only be a small area of interest.

Even for intermediate Reynolds numbers, Direct Numerical Simulation is not realistic. As such, alternative model may be considered. For example, Large Eddy Simulation or URANS may be used as the underlying model. Those methods however do require some sort of choice such as the type turbulence modeling and optimization for the subgrid-scales parameters.

  Fig. 1.4. Experimental arrangement for particle image velocimetry in a wind tunnel.

  Fig. 1.2 Two particle images at time t and t ′ with interrogation window W .
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 2 Fig. 11 Shadow region generated above the airfoil leading edge due to refraction

Fig. 1 . 5

 15 Fig. 1.5 Energy per pulse in mJ with respect to f the repetition rate in Hz, Litron LDY303

Fig. 2

 2 Fig. 2.2 Estimated displacement of the pixel in green in the reference image (I 0 ) and associated interrogation windows deformation with N = 2.

Fig. 2

 2 Fig. 2.5 Evolution of bias and random error with displacement, two-frame estimation with forward scheme, B-Spline interpolator.

Fig. 2 . 7

 27 Fig. 2.7 Evolution of bias and random error with displacement of LKFT for various image sequence sizes, P = 4.

  Fig. 2.8 RMS Error on the horizontal displacement u for the time sequence of PIV Challenge 2005 case B (Stanislas et al., 2008) for various estimators.

Fig. 2

 2 Fig. 2.9 Snapshots of horizontal displacement u (in pixel), PIV Challenge 2005 case B. Ground truth (top left), two-frame symmetrical estimation (top right), LKFT estimation with polynomial order P = 2 and N = 2 (bottom left), and P = 3 and N = 7 (bottom right).

Fig. 2 .

 2 Fig. 2.10 Error snapshots on the horizontal displacement u (in pixel), PIV Challenge 2005 case B. Two-frame symmetrical estimation (top left), LKFT estimation with polynomial order P = 2 and N = 2 (top right), P = 3 and N = 7 (bottom right), and iso-contour ofF I F O F ∆ product, from[START_REF] Stanislas | Main results of the third international PIV challenge[END_REF]. Note the difference in axis scales between this figure and the others.

Fig. 2 .

 2 Fig. 2.11 Time evolution of displacement u at three selected points A, B and C (locations depicted in figure 2.10) for two-frame symmetrical estimation, LKFT estimation with P = 2, N = 2, and LKFT estimation with P = 3, N = 7, together with the available ground truth values, for PIV Challenge 2005 case B.

  Fig. 2.12 (a) Picture of the experimental set-up, displaying the round jet, the high-speed laser and camera. In the laser sheet plane, the streamwise direction is denoted y, and the cross-stream direction, x, (b) Particles image sample, showing a low seeding density and small PSF

Fig

  Fig. 2.13 Frequency spectrum of the streamwise velocity at (a) x = 0.5, y = 1.0 and (b) x = 0.0, y = 3, computed with FOLKI-PIV. The upstream spectrum (a) displays a clear peak at St = 0.76, linked to the Kelvin-Helmholtz mechanism, while further downstream, (b) displays a broader spectrum center around St = 0.38. This latter frequency is related to downstream vortex pairing.

Fig. 2 .Fig. 2 .

 22 Fig. 2.14 Instantaneous displacement (in pixel), streamwise component. (a) Two-frame symmetrical estimation, (b) LKFT with P = 1 and N = 2, (c) LKFT with P = 3 and N = 5.

Fig. 2 .

 2 Fig. 2.16 Histogram of streamwise displacement (in pixel) on a single snapshot. (a) Two-frame symmetrical estimation, (b) LKFT with P = 1 and N = 2, (c) LKFT with P = 3 and N = 5.

Fig

  Fig. 2.17 Instaneous vorticity, in pixel/pixel. (a) Two-frame symmetrical estimation, (b) LKFT with P = 1 and N = 2, (c) LKFT with N = 5 and P = 3.

Fig

  Fig. 2.18 Displacement (in pixel) over time at positions defined in figure 2.14. (a) Streamwise component at position p 0 within the shear layer, (b) Cross-stream component at position p 1 , in the jet core.

Fig. 2 .

 2 Fig. 2.19 Instantaneous material acceleration (pixel per frame), streamwise component, centered second-order. (a) Two-frame symmetrical estimation, (b) LKFT with P = 3 and N = 5.

  Fig. 2.20 Synthetic particles image, ppp = 0.3, σ part = 0.75px and 200 × 200px.

Fig. 2 .

 2 Fig. 2.21 Trajectories of the particles.

  Fig. 2.22 Differences between the polynomial coefficients estimated with LKFT, N = 4 and P = 2 and the coefficient from a least square fit of the trajectory in figure2.21, component along x: (a) first order coefficient error, a (k,1) -a

  figure 2.23(a). Likewise, this same cost is represented as function of δa figure 2.23(b)

Fig. 2 .

 2 Fig. 2.23 Contour plot of the normalized cost-function minimized by LKFT (2.6), for pixels k : 50px ≤ k x , k y ≤ 150px, normalized: (a) cost as a function of δa (k,1) x and δa (k,1) y ; (b) cost as a function of δa (k,2) x and δa (k,2) y

  Fig. 3.1 Graphical illustration of the reconstruction procedure.

Fig. 3 . 2

 32 Fig. 3.2 Comparison between the instantaneous streamwise velocity field at t = 50 obtained from (a): classical two-frame processing and (b): the LKFT algorithm. Velocities are made non-dimensional using the jet exit velocity. The point-wise measurement and mean flow used in the reconstruction will be extracted or computed from the classical processing, therefore hereafter referred to as 'reconstruction set'. The LKFT processing will be considered as the objective to attain, i.e. the 'reference set'.

Fig. 3 . 3

 33 Fig.3.3 Mean streamwise velocity field, computed from the reconstruction set of snapshots. Point A (x 0 = 0.4, y 0 = 2.5) corresponds to the location where the unsteady signal used for the reconstruction has been extracted (also extracted from the reconstruction set). The nozzle position (schematically represented on the left of the figure) has been used to set the origin of the reference frame.

Fig. 3 . 4

 34 Fig. 3.4 Streamwise velocity at point A (x 0 = 0.4, y 0 = 2.5) vs. time, extracted from the reconstruction set. The reconstruction presented in section 3.4.2 has been done solely based on this signal and the mean flow shown in Figure 3.3.

  Fig. 3.6 Comparison of the normalized modulus of the axial velocity of (a): the Fourier mode computed by an FFT of the reference TR-PIV measurements and (b): the dominant resolvent mode computed from the experimental mean flowonly (St = 0.76). Figures (c), (d) compare profiles from the Fourier mode (dashed line) and the dominant resolvent mode (continuous red line), extracted at r = 0.4 and x = 2.0, respectively.

Fig. 3 . 7

 37 Fig. 3.7 Comparison of the normalized phase of the axial velocity of (a): the Fourier mode computed by an FFT of the TR-PIV measurements and (b): the dominant resolvent mode computed from the experimental mean flow only (St = 0.76). Figures (c), (d) compare profiles from the Fourier mode (dashed line) and the dominant resolvent mode (continuous red line), extracted at r = 0.4 and x = 2, respectively. The phase profiles have been unwrapped.

  Fig. 3.8 Comparison of the normalized modulus of the radial velocity of (a): the Fourier mode computed by an FFT of the TR-PIV measurements and (b): the dominant resolvent mode computed from the experimental mean flow (St = 0.38). Figures (c), (d) compare profiles from the Fourier mode (dashed line) and the dominant resolvent mode (continuous red line), extracted at r = 0.5 and x = 2.5, respectively.

Fig. 3 . 9

 39 Fig. 3.9 Comparison of the normalized phase of the radial velocity of (a): the Fourier mode computed by an FFT of the reference TR-PIV measurements and (b): the dominant resolvent mode computed from the experimental mean flow (St = 0.38). Figures(c), (d) compare profiles from the Fourier mode (dashed line) and the dominant resolvent mode (continuous red line), extracted at r = 0.5 and x = 2.5, respectively. The phase profiles have been unwrapped.

Fig. 3 .

 3 Fig. 3.11 Comparison of the axial velocity of (a): the reconstructed field and (b):the TR-PIV field (reference set) at t = 75.

Fig. 3 .

 3 Fig.3.13 Time evolution of the global axial velocity error (continuous line) for an arbitrary temporal range 50 < t < 100. The dashed line represents the mean error over the full time range (0 < t < 333), which is approximately equal to 0.038.

Fig. 3 .

 3 Fig. 3.15 Time evolution of the global radial velocity error (continuous line) for an arbitrary temporal range 50 < t < 100. The dashed line represents the mean error over the full time range (0 < t < 333), which is approximately equal to 0.031.

Fig. 3 .

 3 Fig. 3.16 (a): Reconstructed pressure fluctuation field at t = 75, (b): mean square pressure fluctuation field p ′2 .

3. 5

 5 Fig. 3.17 Comparison of the azimuthal vorticity at t = 75, computed from (a):the PSE-based reconstructed field, (b): the reference PIV set and (c): the reconstruction PIV set.

Fig. 3 .

 3 Fig. 3.18 Definition of the eight points considered to study the influence of the input point location on the accuracy of the reconstruction. A is the original point considered in section 3.4.2.

  Fig. 3.19 Comparison of the streamwise velocity of (a): the unbiased reconstructed field (no misplacement of the input sensor), (b): biased reconstructed field with δx = δr = 0.05, (c): biased reconstructed field with δx = δr = 0.1, (d): biased reconstructed field with δx = δr = -0.2, for t = 10 and (x 0 , r 0 ) = (2.5, 0.4). The reconstruction is performed using the axial velocity component.

Fig. 3 .

 3 Fig. 3.20 (a): sensitivity map with respect to misplacements of the input sensors, for the radial velocity u r used an an input (the quantity displayed is |b x | + |b r |), (b): radial velocity modulus of the normalised dominant resolvent mode. For both figures, St = 0.76. The figures show a relative correspondence between low-sensitivity and high-energy regions.

Fig. 3 .

 3 Fig. 3.22 Comparison between the normalised modulus of the dominant resolvent mode (radial velocity) at St = 0.76 computed from (a): mean flow A (reference mean flow) and (b): mean flow B (larger interrogation window in the PIV processing).

Fig. 3 .

 3 Fig. 3.23 Comparison between a reconstructed radial velocity snapshot computed from (a): mean flow A (reference mean flow) and (b): mean flow B (larger interrogation window in the PIV processing).

Fig. 4

 4 Fig. 4.1 Setup for adjoint-based data assimilation. (a) Temporal setup: K is the number of measurement instants, separated by measurement time step ∆t m ; (b) Spatial setup: IW denotes a PIV interrogation window (using a Gaussian weighting function) defined around a final vector of the grid, and Ω m is the measurement domain; Ω and ∂Ω respectively denote the numerical domain and its contour.

  Fig. 4.2 Setup for adjoint-based data assimilation, now including the numerical discretization (see figure 4.1 for definition of measurement quantities). (a) Temporal setup: N is the number of simulation time steps, separated by numerical time step ∆t; (b) Spatial setup: Ω now refers to the finite element reconstruction domain, and x c points on its contour ∂Ω.

  Fig. 4.3 Backward facing step simulation setup. Lengths are made non-dimensional using the step height, and velocities using the centreline velocity of the Poiseuille inflow.

Fig. 4

 4 Fig. 4.4 Backward facing step flow structures: (a) streamwise velocity; (b) cross-stream velocity; (c) vorticity.

Fig. 4 . 6

 46 Fig. 4.6 Example of measurement snapshots, same instant as figure 4.4:(a) streamwise velocity; (b) cross-stream velocity, with σ = 0.1, ∆x m = 2σ and a noise amplitude of ±0.15. Near-wall regions in the upper and lower gray bands are excluded as no full interrogation window (IW) can be defined there (see also figure 4.7).
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 48 Fig. 4.8 Convergence of the optimization as a function of i, optimizer iteration number: (a) cost function; (b) normalized gradient.

Fig. 4

 4 Fig. 4.9 Instantaneous cross-stream velocity at time t = 20 and t = 41: (a)(b) synthetic measurement (here with no noise); (c)(d) reconstructed field; (e)(f) reference simulation.

Fig. 4 .

 4 Fig. 4.10 Velocity over time at point (x = 15.0, y = 0.0): (a) streamwise component; (b) cross-stream component. The black vertical lines identify instants shown in figure 4.9.

Fig. 4 .

 4 Fig. 4.11 Velocity over time at point (x = 15.0, y = 0.0) in a situation of overfitting, i.e. without restricting the unsteady inflow boundary condition u c (x, t) to a poynomial basis. (a) Streamwise component; (b) cross-stream component.

Fig. 4 .

 4 Fig. 4.12 Velocity over line (x = [10, 19], y = 0), identified in figure 4.9(c), at time t = 25, for a grid spacing ∆x m = 0.65 (total number of measurement points N m = 48). (a) Streamwise component; (b) cross-stream component.

Fig. 4 .

 4 Fig. 4.13 Spatial RMS error in the domain (x = [11, 18], y = [-0.5, 0.5]), identified in figure 4.9(d), over all measurement instants, as a function of the number of measurement positions N m . (a) Streamwise component; (b) cross-stream component.

Fig. 4 .

 4 Fig. 4.14 Instantaneous cross-stream velocity at times t = 18 and t = 39: (a)(b) synthetic measurement, no measurements in gray areas; (c)(d) reconstructed flow; (e)(f) reference simulation.

Fig. 4 .

 4 Fig. 4.15 Velocity over time at point A, (x, y) = (17.0, 0.1), lying inside the measurement domain: (a) streamwise component; (b) cross-stream component. The black vertical lines identify instants shown in figure 4.14.

Fig. 4 .

 4 Fig. 4.16 Velocity over time at point B, (x, y) = (15.0, -0.7), lying outside of the measurement domain: (a) streamwise component; (b) cross-stream component. The vertical lines identify instants shown in figure 4.14.

Fig

  Fig. 4.17 (a) Planar jet experimental setup with high-speed PIV laser and camera, no ambient seeding; (b) Sample image with dense jet seeding and very little ambient seeding, this image has been edited to enhance contrast.

  Fig. 4.18 Velocity snapshot estimated with FOLKI-PIV, σ = 10px: (a) streamwise component; (b) cross-stream component.

Fig. 4 .

 4 Fig. 4.19 Streamwise velocity profiles along (Oy) at different locations: (a) mean; (b) rms.

  Fig. 4.21 'Reference' velocity snapshot, estimated with LKFT (chapter 2), 9 images per sequence and Gaussian windows with σ = 3px: (a) streamwise component; (b) cross-stream component.

Fig. 4 .

 4 Fig. 4.22 Derivatives of the instantaneous flow field estimated with LKFT: (a) 2D divergence; (b) vorticity.

  Fig. 4.23 Spatial setup for adjoint-based data assimilation on the 2D planar jet. m k are PIV snapshots in the measurement domain Ω m . The reconstructed field u(x, t) is defined in the assimilation domain Ω and controlled by its initial conditions u 0 (x) and unsteady boundary conditions at the nozzle exit, u c (x c , t).

Fig. 4 .

 4 Fig. 4.24 Convergence of the optimization as a function of i, optimizer iteration number: (a) Cost function; (b) normalized gradient.

Fig. 4 .

 4 Fig. 4.25 Dimensionless instantaneous cross-stream velocity at time t = 7.5 and t = 10.5: (a)(d) measurement; (b)(e) reconstructed field; (c)(f) reference.

Fig. 4 .

 4 Fig. 4.27 Reconstructed inflow statistics, streamwise velocity: (a) mean velocity profile; (b) rms profile.

Fig. 4 .

 4 Fig. 4.28 Histogram of streamwise displacement (in pixel): (a) measurement; (b) assimilated field; (c) reference measurement.

Fig. 4 .

 4 Fig. 4.29 Dimensionless velocity over time at point, x = 8.1 and y = 0.0, reconstruction for different time sampling of the measurement dataset, K = 2 and K = 31: (a) streamwise component; (b) cross-stream component.

Fig. 4 .

 4 Fig. 4.30 RMS error with respect to the reference, as a function of the temporal sampling parameterized by K: (a) streamwise component; (b) cross-stream component.

Figure 4 .

 4 Figure 4.31 shows the reconstructed field at convergence for σ ef f = 30 and t = 1. The reconstructed field and the measurement are interpolated on the reference spatial grid as in the previous section. In figure 4.31(a), the three streamwise velocities are plotted along line x = 8. In figure 4.31(b), the three cross-stream velocities are plotted along the line y = 0.7, inside the shear layer. The assimilation process appears able to recover spatial scales smoothed by the measurement, for example in figure 4.31(b), 3 local minima are present on the reference. Those extrema are not resolved by the measurement but recovered by the reconstruction. Likewise, in figure 4.31(a) the undershoot near y = -1.5 is also recovered.

Fig. 4 .

 4 Fig. 4.31 Dimensionless velocities, at t = 1, for PIV spatial filtering characterized by σ ef f = 30: (a) streamwise component, along line x = 8; (b) cross-stream component, along line y = 0.7, inside the shear layer.

Figure

  Figure4.32 shows the RMS error between the reference and both the measurement and the reconstructed field. These RMS errors are plotted with respect to the effective interrogation window size σ ef f . For all values of σ ef f , the ability of the approach to recover spatial scales

Fig. 4 .

 4 Fig. 4.32 RMS error with respect to the reference as a function of the PIV spatial filtering characterized by σ ef f : (a) streamwise component; (b) cross-stream component.

  

  Lucas-Kanade Fluid Trajectories for time-resolved PIV Correlation(FTC, Lynch and Scarano 2013) and Fluid Trajectory Evaluation using Ensemble averaged cross-correlation (FTEE,[START_REF] Jeon | Fluid trajectory evaluation based on an ensembleaveraged cross-correlation in time-resolved PIV[END_REF]) have shown successful reductions in bias and random error by considering a polynomial time evolution. In practice, building these algorithms requires additional processing steps, such as corrector rotation for FTC, and V-cycle convergence method for FTEE.

  Comparison of the global error for different input point/set of points.

	.2.			
	Point(s) error E	x	r
	A	0.038 2.5 0.4
	B	0.047	2 0.4
	C	0.062 1.5 0.4
	D	0.092	1 0.4
	E	0.059 2.5 0.6
	F	0.061	2 0.6
	G	0.069 1.5 0.6
	H	0.117	1 0.6
	A and H	0.037	-	-
	E to H	0.046	-	-
	All points	0.035	-	-
	Table 3.1			

  It is made of unpolished 3D printed Acrylonitrile Butadiene Styrene (ABS). The chosen reference velocity is U ref = 4m.s -1 , the centerline velocity at the nozzle exit. The Reynolds number of the flow is thus Re = U ref L ref /ν air ≈ 1100 at T ≈ 15 • C. The jet is measured with 2D/2C time-resolved PIV with a laser sheet in the (Oxy) plane, as shown in figure 4.17a. The laser sheet is generated from a Litron LDY303HE, is 2mm wide, and pulsed at a frequency of 5KHz per cavity, or 10KHz total.The energy per pulse is 5mJ. Images are acquired with a high speed Phantom V710 camera at a resolution of 1008 × 704 pixels. The camera sensor pixels are 20µm wide and a 200mm lens is used. Image magnification is such that the dimensionless length L ref corresponds to 71.12px. Seeding in the jet is made of Di-Ethyl-Hexyl-Sebacat (DEHS) droplets, and Glycol-based artificial fog is used for the ambient seeding. The particle point spread function (PSF) in the images is σ ≈ 0.13px as estimated using autocorrelation and Gaussian fitting.
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Adjoint-based PIV data assimilation: extrapolation, super-resolution and denoising Further work and perspectives will be discussed in the last chapter of this thesis.

Further work and perspectives will be discussed in the last chapter of this thesis.

Chapter 4 -Adjoint-based PIV data assimilation: extrapolation, super-resolution and denoising

The work presented in this chapter is under consideration for publication in Experiments in Fluids. Some results have already been published in conference proceedings of the 11th International symposium on Particle Image Velocimetry under the name "Performance assessment of PIV super-resolution with adjoint-based data assimilation", see Yegavian et al. (2015). The method presented here was implemented and tested under the supervision of Benjamin Leclaire (ONERA/DAFE) and Frederic Champagnat (ONERA/DTIM). The experiments where pursed in collaboration with Cédric Illoul (ONERA/DAFE) and Gilles Losfeld (ONERA/DAFE).

Time-resolved reconstruction from mean flow stability analysis soon as enough snapshots have been acquired and convergence is achieved. Standard PIV parameters yield, in our case, a good reconstruction, and the main precaution that emerged concerns the interrogation window used for the PIV processing, as it may lead to bias present in the mean flow. If it is excessively large, then the final mean flow may present erroneous spatial derivatives, which had in our reconstruction an impact on high-frequency structures.

Nonetheless, there may be cases where the current approach cannot be applied; the underlying model may not be appropriate or the mean-flow challenging to measure in some region such as close to walls. In such cases, we may benefit from a more accurate modeling of the fluids motion and more flexibility with regards to the input measurements. This will be the subject of the next chapter on adjoint-based data-assimilation.

Chapter 5 -Conclusions and perspectives

Summary

The goal of this thesis was to propose approaches to overcome some of the limits of Particle Image Velocimetry using physical-based modeling. In this regard, three independent solutions have been explored. One chapter is dedicated to each solution of increasing model accuracy and complexity.

The first solution assumed polynomial trajectories in time for the flow in order to process jointly particles images sequences. The two following approaches do not directly process particles images and can be rather seen as post-processing methods. First, a low-order model based on the most unstable resolvent mode was considered [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF]. This work was done in collaboration with the first author of the previously mentioned article. My personal contribution to this part was the processing of the experimental data and the section dedicated to the robustness to experimental parameters. At last, for the second post-processing method, the full incompressible Navier-Stokes equation were adopted as the underlying model within a variational data assimilation framework.

Polynomial trajectories

A new algorithm for accurate velocity and acceleration estimation in the context of timeresolved PIV was developed, the Lucas-Kanade Fluid Trajectories (LKFT). This algorithm uses short image sequences obtained with high frame rate lasers and cameras. LKFT uses the

Conclusions and perspectives

As a first step, the discrete bidimensional Navier-Stokes equations were used to reconstruct a flow which exhibit weakly tridimensional dynamics, therefore sensitivity to this inadequacy (i.e. model error) was observed. As such, future work should also focus on assimilation with the tridimensional direct and adjoint Navier-Stokes equations. In such tridimensional cases, reducing the computational cost is even more critical, and comes with challenges highlighted for instance by [START_REF] Robinson | Image data assimilation with fluid dynamics models: Application to 3D flow reconstruction[END_REF].

The variational approach and its cost-function may also be expended with additional data, such as wall pressure sensors, non-intrusive and widely used in industrial configurations. Whereas the current approach is a post-processing of the PIV velocity estimation, a direct use of particle images [START_REF] Heitz | Variational fluid flow measurements from image sequences: synopsis and perspectives[END_REF] may also be of interest to increase robustness.

Concluding remarks

Both in the literature and within the three presented methods, a trend seems to appear; measurement accuracy is improved by integrating the processing steps together. For example, with FTEE and LKFT, integrating the polynomial assumption a priori is more accurate than FTC which integrates the assumption a posteriori. Likewise, [START_REF] Lynch | An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV[END_REF] and [START_REF] Schanz | Shake-the-box: Lagrangian particle tracking at high particle image densities[END_REF], using their motion assumption inside the reconstruction process, can far exceed the performance of two frame estimation (in low velocity cases where timeresolved measurement is possible). This accuracy improvement due to the integration of the processing steps should be central in further studies. We also note a difference between the PSE-based and the adjoint-based reconstruction. The PSE-based reconstruction integrates the point-wise measurement a posteriori while the Navier-Stokes adjoint optimization integrates measurements a priori.

In light of the above point, we may want to apply a cost-function-based approach (chapter 4) with the low-order PSE model (chapter 3). The cost-function to minimize would still be the quadratic difference to a set of measurements. But the control variables of this problem would be both the mean flow and the amplitude function (chapter 3). Deriving the gradient of the cost-function under the constraint of the PSE-model would require the adjoint PSE [START_REF] Dobrinsky | Adjoint parabolized stability equations for receptivity prediction[END_REF]. Such an technique may combine the strength and overcome the weakness of both approaches: flow reconstruction with flexibility and robustness to the input measurements, allowing spatial extrapolation like in the variational approach and a reasonable computational cost for all Reynolds numbers as with the PSE-based method. The model considered here would be physics-based and may be advantageous compared to data-based model [START_REF] Romain | Bayesian inference applied to spatio-temporal reconstruction of flows around a NACA0012 airfoil[END_REF], due to the limited amount of experimental data required.

Chapter A -Derivation of LKFT

In this appendix some detail will be given on the derivation of LKFT. As mentioned in equation (2.6), the cost function to minimize is:

With, I u 0 n (m) = I n (m + u 0 (m, n)) the image at time n deformed by the current predictor u 0 (m, n), and ∇I u 0 n (m) the associated spatial gradient. And, δa(k) vector of unknown coefficients along both directions,

We remind the definition of D(m) and ϵ(m) introduced in equation (2.10),

From these definition, the cost (A.1) now reads,

Derivation of LKFT

Minimizing the above cost J for δa(k) is equivalent to solving,

And,

Thus,

Reminding H(k) and c(k),defined in equations (2.8) and (2.9) respectively,

We can indeed see that, minimization of J using a Gauss-Newton algorithm boils down to the inversion the following 2P × 2P linear system for each predictor iteration and pixel k,

Chapter B -Implementation details for adjoint-based data assimilation

B.1 The measurement operator H

Since the estimated velocity field u n is composed of finite-element fields over a unstructured triangular mesh, convolution is a non-trivial operation. We use here a method to construct H, discretization of H well suited in the context of partial differential equations (PDE). The linear operator H is split in two, the convolution W and decimation D such that,

We assume that Gaussian interrogation windows of width σ were used for the PIV process that we want to model the bias off. We known that convolution by a Gaussian kernel is a fundamental solution of the unsteady heat equation. The function

Implementation details for adjoint-based data assimilation By choosing t = .5σ 2 we can express the smoothing of u by ω as the solution of a PDE. This is very favorable, solving PDE is well tailored to the present study, the unsteady heat equation is indeed a part of the Navier-Stokes equations. In practice we solve equation (B.3) using a implicit Euler scheme in time for j = [0, • • • , j max ] on the same mesh the Navier-Stokes equations are solved on. As for D, the spatial decimation operator, it can be easily built using interpolation by the basis function on the same discretization as the Navier-Stokes equations.

B.2 Discretization of direct and adjoint Navier-Stokes equations

This appendix presents the discrete equations for the direct (B.2.1) and adjoint (B.2.2) Navier-Stokes problem. The algebraic method and parallel implementation used for solving the linear equations at each iteration are detailed in appendix B.2.3 while the method used to derive the adjoint equations is described in appendix B.3.

B.2.1 Discrete Navier-Stokes equations

The spatio-temporal discretization of the non-linear Navier-Stokes equations yields the (linear) Oseen problem, for 0 < n < N -2,

where the Oseen operator L(u n ) is defined as,

The matrices B and B t are the discrete divergence and gradient operators, respectively. The operator A(u n ) reads,

with M the velocity mass matrix and D the discrete diffusion operator. The last term accounts for the discretization of the convection term and is written here in the space of finite-element quadrature points. The vector u q n = I q u n represents the velocity field in the space of quadrature points unlike the vector u n , which represents the velocity field in the B.2 Discretization of direct and adjoint Navier-Stokes equations 119 space of nodal points. I q is the (rectangular) interpolation matrix and D q is the spatial derivatives matrix in the quadrature space of quadrature points. diag(a) denotes the diagonal matrix whose diagonal is the vector a. Finally, the rectangular matrix W t q is the interpolation matrix including the quadrature weight. The right-hand side term in (B.4) writes

where R c is a restriction operator from the nodal space to the boundary space.

B.2.2 Discrete adjoint Navier-Stokes equations

We write here the operators for the discretization of the adjoint Navier-Stokes equations and the gradients of the cost-function, given in equations (4.8) and (4.10). The adjoint equation reads,

Where the Oseen operator L(u n-1 ) is defined in equation (B.5) in the appendix above. f † (u n+1 , u † n ) in the right-hand side of the adjoint equation writes,

The definition of W q , I q and D q are given in appendix B.2.1 and some detail on the derivation of the adjoint equation are given in appendix B.3.

B.2.3 Numerical resolution of the Oseen problems

The Oseen problem (B.4) is solved using an algebraic splitting method [START_REF] Saleri | Pressure correction algebraic splitting methods for the incompressible Navier-Stokes equations[END_REF]. It is based on the following approximation of the block LU decomposition of the operator L

where the lower L and upper Ũ triangular matrices are given by,

Implementation details for adjoint-based data assimilation

The resolution of the Oseen problem is thus achieved by successively solving the following three steps,

In the first step a), an approximation of the velocity field u * n+1 is obtained by solving an Helmholtz-like problem for each velocity component. In the two-dimensional problem considered in the present paper, two Helmholtz-like problems are solved. Such resolution is based on a parallel preconditioned GMRES solver. The preconditionner is a distributed additive Schwarz solver with overlapping sub-domains. The local solver used in each subdomains is an incomplete LU factorization implemented in the PETSc toolkit [START_REF] Balay | Efficient management of parallelism in object oriented numerical software libraries[END_REF]. In the second step b), the pressure field is obtained by solving a Poisson-like problem. The matrix B M -1 B t is indeed spectrally equivalent to (and replaced by) a Laplacian matrix written in the pressure space. A parallel Conjugate Gradient (CG) algorithm preconditioned with an algebraic multigrid method implemented the Hypre library [START_REF] Falgout | hypre: A library of high performance preconditioners[END_REF] is used to solve this problem in a parallel setting. Finally, the third step c) corrects the velocity field by projecting the approximated velocity field on the divergence free space. It requires the inversion of the velocity mass-matrix M.

The above resolution of the Navier-Stokes equations has been implemented using the domain specific language Freefem++ [START_REF] Hecht | New development in freefem++[END_REF] designed to solve partial differential equations and bindings from FreeFem++ to PETSc are described in [START_REF] Jolivet | Scalable domain decomposition preconditioners for heterogeneous elliptic problems[END_REF] and [START_REF] Dolean | An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation[END_REF].

B.3 Derivation of the discrete adjoint equations in time and space

In this section, how to derive the discrete adjoint equation (B.8) will be introduced. The goal here is to convey an intuitive understanding, therefor some equation terms are omitted for the sake of clarity.

The method of Lagrange multipliers is used to find the minima of J (4.1) subject to the discrete Navier-Stokes equations (B.4). We introduce L, Lagrange function; u † n and p † n , B.3 Derivation of the discrete adjoint equations in time and space 121 adjoint velocity and pressure respectively. L writes,

with b.c. terms related to the boundary conditions. Vanishing the Frechet derivative of the Lagrangian functional with respect to the pressure variable p i (0

The adjoint velocity fields u † i are thus divergent-free. Let us now examine the Frechet derivative of L with respect to the velocity fields u i (0 < i < N -2). It writes, omitting the terms related to J ,

The last term in the above equation needs to be further detailed. First, it writes,

where we recall that I q is the interpolation matrix from the nodal space to the quadrature space, W q is the same interpolation matrix including the quadrature weight and D q is the derivative matrix in the quadrature space. Moreover, for any vectors a and b, the following relation holds diag(a)b = diag(b)a. Therefore the above relation can be rewritten,

and the last term in the relation (B.15) now reads,

And the adjoint equations, for (0 < i < N -2) reads, including the term pertaining to J introduced in equation (4.9),

Including the divergence-free property established above, for 0 < i < N -2,

We recover here the adjoint equation (B.8) and (B.8).

Model-based approaches for flow estimation using particle image velocimetry

Particle Image Velocimetry (PIV) is one of the reference experimental methods for the study of complex flows. In the last decades, the range of cases where PIV has been used has increased, for instance due to the continuous improvement of high frame-rate measurement apparatus and processing methods. Still, PIV, either planar of tomographic, suffers from a set of limitations. Spatial and temporal resolutions may not be sufficient, bias and noise levels may be too high. The goal of the present thesis was to use and develop methods to overcome such limitations using physical-based modeling. In this regard, three different approaches have been explored, each offering a different trade-off in ease of use, accuracy and computational cost.

The first approach aims at improving velocity and acceleration estimation in the context of Time-Resolved PIV (TRPIV). A novel algorithm has been developed: the Lucas-Kanade Fluid Trajectories (LKFT, [START_REF] Yegavian | Lucas-kanade fluid trajectories for time-resolved piv[END_REF]. This algorithm extends the two frame techniques to short image sequences assuming smooth polynomial trajectories for the flow. The method has been assessed on both synthetic and experimental test cases, where significant noise reduction and lower spatial filtering compared to two frame processing have been observed.

In a second part of the work, an approach to reconstruct the unsteady flow velocity field from the sole knowledge of the PIV mean flow and one or more unsteady point-wise measurements has been assessed and used on a round jet flow. This method, introduced by [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF], relies on the Parabolized Stability Equations (PSE). This technique is of great interest as the input measurements, the mean-flow and one or several point-wise unsteady velocity informations are often easy to obtain with classical experimental arrangements. Experimental validation showed the accuracy of the method to recover the unsteady dynamics and a high robustness to the experimental parameters.

At last, the third method relies on the full unsteady incompressible Navier-Stokes equations to improve PIV measurement sequences. An unsteady velocity field strictly respecting the governing equations and as close as possible to the PIV measurement is searched for. This approach, using a variational data-assimilation framework, has also been applied to synthetic and experimental configurations. The method has proven capable to overcome the limits of PIV, justifying the associated high computational cost. Spatial and temporal super-resolution have been achieved as well as the ability for extrapolation with the recovery of the flow outside of the measurement domain. 2016), s'appuie sur les équations de stabilité parabolisées (PSE). Cette méthode présente des intérêts certains, en effet, la quantité reconstruite est difficilement mesurable alors que le champ de vitesse moyen ainsi qu'une ou plusieurs mesures instationnaires locales peuvent être obtenues avec des méthodes de mesure classiques. Une validation sur un écoulement de jet rond a été menée, démontrant la justesse de l'approche pour la reconstruction de la dynamique instationnaire. L'approche se montre aussi robuste vis-à-vis des conditions expérimentales.

Enfin, les travaux menés sur le troisième axe concernent le traitement de séquences d'images en utilisant les équations de Navier-Stokes incompressibles et instationnaires régissant le comportement des fluides. L'objectif de cette approche est la recherche d'un champ de vitesse instationnaire respectant strictement les équations du fluide tout en minimisant l'écart avec la mesure PIV. Cette approche, éprouvée sur données synthétiques et expérimentales, s'avère particulièrement adaptée à surmonter les limites de la PIV. Super-résolution spatiale et temporelle sont observées avec une grande robustesse et flexibilité aux données assimilées, justifiant un coût de calcul important. On note aussi une capacité d'extrapolation, la reconstruction de l'écoulement étant possible même à l'extérieur de la zone de mesure. 
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