
HAL Id: tel-01896272
https://hal.science/tel-01896272

Submitted on 16 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reacting and Adapting to the Environment
Aymeric Blot

To cite this version:
Aymeric Blot. Reacting and Adapting to the Environment: Designing Autonomous Methods for
Multi-Objective Combinatorial Optimisation. Operations Research [math.OC]. Université de Lille;
CRIStAL UMR 9189, 2018. English. �NNT : �. �tel-01896272�

https://hal.science/tel-01896272
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE LILLE – CRIStAL

ÉCOLE DOCTORALE SCIENCES POUR L’INGÉNIEUR

REACTING AND ADAPTING TO THE ENVIRONMENT

Designing Autonomous Methods
for Multi-Objective Combinatorial Optimisation

RÉAGIR ET S’ADAPTER À SON ENVIRONNEMENT

Concevoir des méthodes autonomes
pour l’optimisation combinatoire à plusieurs objectifs

BLOT Aymeric

Thèse préparée et soutenue publiquement le 21 septembre 2018,
en vue de l’obtention du grade de Docteur en Informatique.

Jury:

Mr. BATTITI Roberto University of Trento Referee
Mr. DE CAUSMACKER Patrick KU Leuven Examiner
Mr. HOOS H. Holger Leiden University Examiner
Mrs. JOURDAN Laetitia University of Lille Supervisor
Mrs. KESSACI Marie-Éléonore University of Lille Co-adviser
Mr. MATHIEU Philippe University of Lille Examiner
Mr. SAUBION Frédéric University of Angers Referee
Mr. STÜTZLE Thomas Université Libre de Bruxelles Examiner

Centre de Recherche en Informatique, Signal et Automatique de Lille
Université Lille 1 – Bâtiment M3 extension – Avenue Carl Gauss

59655 Villeneuve d’Ascq Cedex FRANCE

Acknowledgements

First of all I would like to thank the jury members and especially Laetitia Jourdan
and Marie-Éléonore Kessaci, that supported me during the last three years on
an every-day basis. Laetitia, I am very grateful for everything you have done
since I met you for the first time six years ago, in particular for the many re-
search opportunities in Lille but also in Nagano and in Vancouver. Marie-Éléonore,
you taught me perseverance and thoroughness; without your advising this thesis
would definitively not have happened. Many thanks to Patrick de Causmaecker,
Philippe Mathieu, and Thomas Stützle for accepting to be part of my jury, and to
Roberto Battiti and Frederic Saubion for also reporting on my manuscript; I am
honoured for the interest you gave to my work.

I would like to thank my coauthors Patrick de Causmaecker, Holger H. Hoos,
Manuel López-Ibáñez, and Heike Trautmann, for the work we carried out together
during this thesis. Our discussions have brought so much and pushed this thesis
much further than I could have done by myself. I also want to thank Hernán
Aguirre and Kiyoshi Tanaka: I only stayed in Nagano three months but I will never
forget them; they confirmed my passion for research and changed my life forever.
どうもありがとうございました。

Generally speaking, thank you everyone from the ORKAD team, the former
DOLPHIN team, and my colleagues from INRIA and the CRIStAL laboratory. I
will also always keep very good memories from the years I spent at the ENS
Rennes: they brought me my passion for computer science and research, and I
could not have dreamt for a better formation.

I cannot thank enough the friends I made along the way, in Orsay, in Rennes,
and in Lille. Thank you Grégoire, Thomas, Hugo, Nicolas, Lauriane, Mathieu,
Lucien, Maxence, and Léonard; I was not always easy to put up with, but you
supported me and I would not be where I stand today without you.

Finally, I am grateful to my family. To my parents, for their constant support
during the last 26 years; and to my brother and sister and their companions for
giving me three wonderful nieces.

i

ii Acknowledgements

Contents

General Introduction 1
Motivations . 1
Outline . 3

I Multi-objective Optimisation and Algorithm Design 7

1 Multi-objective Metaheuristics 9
1.1 Multi-objective Combinatorial Optimisation 9

1.1.1 Introduction . 9
1.1.2 Definition . 10
1.1.3 Solution Comparison . 10
1.1.4 Multi-objective Metaheuristics 12

1.2 Performance Assessment . 14
1.2.1 Overview . 14
1.2.2 Hypervolume . 15
1.2.3 ∆ Spread . 16

1.3 Permutation Problems . 17
1.3.1 Permutation Flow Shop Scheduling Problem 17
1.3.2 Travelling Salesman Problem 19
1.3.3 Quadratic Assignment Problem 21

2 Automatic Algorithm Design 23
2.1 Preliminaries . 24
2.2 Overview . 25

2.2.1 Algorithm Selection . 26
2.2.2 Algorithm Configuration / Parameter Tuning 27
2.2.3 Parameter Control . 29
2.2.4 Hyper-heuristics . 30
2.2.5 Other Fields and Taxonomies 31
2.2.6 Multi-objective Automatic Design 32

iii

iv Contents

2.3 Overall Automatic Design Taxonomy Proposition 32
2.3.1 Temporal Viewpoint . 32
2.3.2 Structural Viewpoint . 33
2.3.3 Overview . 35
2.3.4 Additional Complexity Viewpoint 37

II Multi-objective Local Search 39

3 Unified MOLS Structure 41
3.1 Preliminaries . 41

3.1.1 Definitions . 41
3.1.2 Historical Development . 43
3.1.3 Condensed Literature Summary 49
3.1.4 Analysis and Discussion . 51

3.2 MOLS Strategies . 52
3.2.1 Set of Potential Pareto Optimal Solutions (Archive) 52
3.2.2 Set of Current Solutions (Memory) 53
3.2.3 Exploration Strategies . 53
3.2.4 Selection Strategies . 56
3.2.5 Termination Criteria . 56

3.3 Escaping Local Optima . 56
3.4 MOLS Unification Proposition . 57

3.4.1 Main Loop . 57
3.4.2 Local Search Exploration . 58
3.4.3 Iterated Local Search Algorithm 59

3.5 Literature Instantiation . 59

4 MOLS Instantiations 63
4.1 Static MOLS Algorithm . 64

4.1.1 Algorithm . 64
4.1.2 Configuration Space . 66

4.2 Control Mechanisms Integration . 68
4.2.1 Parameter Analysis . 68
4.2.2 Knowledge Exploitation . 69
4.2.3 Knowledge Extraction . 69
4.2.4 Knowledge Modelling . 70
4.2.5 Decisional Schedule . 70

4.3 Adaptive MOLS Algorithm . 72
4.3.1 Algorithm . 72

Contents v

4.3.2 Related adaptive MOLS Algorithms 72
4.4 Configuration Scheduling . 74

4.4.1 Proposition . 75
4.4.2 Definitions . 75
4.4.3 Related Approaches . 76

4.5 AMH: Adaptive MetaHeuristics . 77
4.5.1 Motivation . 77
4.5.2 Philosophy . 78
4.5.3 Design and Implementation . 79
4.5.4 Execution Flow Examples . 80

4.6 Perspectives . 80

III Automatic Offline Design 85

5 MO-ParamILS 87
5.1 Multi-objective Automatic Configuration 87

5.1.1 Definition . 87
5.1.2 Use Cases . 88

5.2 Single-objective ParamILS . 89
5.2.1 Core Algorithm . 89
5.2.2 BasicILS, FocusedILS . 93
5.2.3 Adaptive Capping Strategies 94
5.2.4 Configuration Protocol . 96

5.3 Multi-objective ParamILS . 97
5.3.1 Motivations . 97
5.3.2 Core Algorithm . 98
5.3.3 Configuration Protocol . 102

5.4 Hybrid Multi-Objective Approaches 102
5.4.1 Single Performance Indicator 102
5.4.2 Aggregation of Multiple Performance Indicators 103

5.5 Framework Evaluation . 103
5.5.1 Experimental Protocol . 104
5.5.2 Results . 106

5.6 Perspectives . 111

6 MOLS Configuration 113
6.1 Exhaustive Analysis . 114

6.1.1 Experimental Protocol . 114
6.1.2 Parameter Distribution Analysis 117

vi Contents

6.1.3 Optimal Configurations . 117
6.1.4 Discussions . 119

6.2 AAC Approaches Analysis . 122
6.2.1 Experimental Protocol . 122
6.2.2 Small Configuration Space Results 124
6.2.3 Large Configuration Space Results 128
6.2.4 Discussions . 130

6.3 Analysis of Objective Correlation . 131
6.3.1 Experimental Protocol . 131
6.3.2 Optimised Configurations . 133
6.3.3 Discussions . 138

6.4 Perspectives . 144

IV Automatic Online Design 147

7 MOLS Control 149
7.1 Adaptive MOLS Algorithm . 150

7.1.1 Adaptive Algorithm . 150
7.1.2 Generic Online Mechanisms . 151

7.2 Experimental Protocol . 156
7.3 Experimental Results . 157

7.3.1 3-arm Results . 158
7.3.2 2-arm Results . 158
7.3.3 Long Term Learning Results 159

7.4 Discussions . 159
7.5 Perspectives . 161

8 MOLS Configuration Scheduling 163
8.1 MOLS Configurations . 164
8.2 Experimental Protocol . 165
8.3 Experimental Results . 166

8.3.1 Exhaustive Enumeration . 167
8.3.2 K = 2 Configuration Schedules 169
8.3.3 K = 3 Configuration Schedules 172

8.4 Discussions . 174
8.5 Perspectives . 177

Contents vii

General Conclusion 179
Contribution Summary . 179
Future Research . 182

Publications 185

Bibliography 187

viii Contents

List of Figures

1.1 Normalised unary hypervolume indicator 16
1.2 Normalised ∆ and ∆ ′ spread indicators 16
1.3 Example of PFSP schedule . 18
1.4 Common PFSP schedule operations 19
1.5 Example of TSP tour . 20
1.6 Example of 2-opt recombination . 21
1.7 Examples of QAP pairings . 22

2.1 Eiben et al. (1999) parameter setting taxonomy 25
2.2 Algorithm selection general workflow 27
2.3 Algorithm configuration general workflow 28
2.4 Algorithm design overview . 35

3.1 Objective space with and without taking into account surrounding
solutions . 55

4.1 Inner MOLS loop . 66
4.2 Outer MOLS loop . 66
4.3 Control integration in the inner MOLS loop 71
4.4 Control integration in the outer MOLS loop 72
4.5 Examples of two configuration schedules 76
4.6 Execution flow of an iterated MOLS algorithm 78
4.7 Execution flow of an adaptive algorithm using multiple paths 81
4.8 Execution flow of an adaptive algorithm using reconstruction 82
4.9 MOLS schedule . 82

5.1 Final fronts on the Regions200 – CPLEX (cutoff) scenario 107
5.2 Final fronts on the Regions200 – CPLEX (running time) scenario . . . 107
5.3 Final fronts on the CORLAT – CPLEX (cutoff) scenario 108
5.4 Final fronts on the CORLAT – CPLEX (running time) scenario 108
5.5 Final fronts on the QUEENS – CLASP scenario 109

ix

x List of Figures

6.1 Exhaustive analysis parameter distribution on test instances 118
6.2 Experiments on the small configuration space – PFSP scenarios . . . 126
6.3 Experiments on the small configuration space – TSP scenarios 127
6.4 Experiments on the large configuration space 129

8.1 The seven types of schedules used in the experiments 165
8.2 Initial search space and optimal configurations (K = 1) 167
8.3 Final optimised configuration schedules (K = 2) 170
8.4 Final optimised configuration schedules (K = 3) 172
8.5 Final comparison . 176

List of Tables

3.1 Condensed literature summary . 50
3.2 Condensed literature instantiation (LS Procedure) 61
3.3 Condensed literature instantiation (EXPLORE Procedure) 62

4.1 Considered parameter space . 67

5.1 Configuration scenarios . 104
5.2 Target algorithm parameters (with number of possible values) 105
5.3 Hypervolume (top) and ε indicator values (bottom) for final test

fronts. 106
5.4 Average percentages of timeouts for final CPLEX configurations . . . 109

6.1 Small version of the MOLS configuration space 115
6.2 PFSP (optimal configurations) . 120
6.3 TSP (optimal configurations) . 121
6.4 Large version of the MOLS configuration space 123
6.5 AAC Experimental Protocol . 124
6.6 Indicator bounds used in the HV+∆ ′ approach 125
6.7 Number of configurations after training, validation and testing . . . 130
6.8 PFSP 50 jobs 20 machines (optimised configurations) 134
6.8 PFSP 50 jobs 20 machines (optimised configurations, continued) 135
6.9 PFSP 100 jobs 20 machines (optimised configurations) 136
6.9 PFSP 100 jobs 20 machines (optimised configurations, continued) 137
6.10 TSP 50 cities (optimised configurations) 139
6.11 TSP 100 cities (optimised configurations) 140
6.12 QAP 50 facilities (optimised configurations) 141
6.13 QAP 100 facilities (optimised configurations) 142
6.14 AAC performance: number of final configurations and objective

ranges . 143
6.14 AAC performance: number of final configurations and objective

ranges (continued) . 144

xi

xii List of Tables

7.1 Experiments summary . 157
7.2 3-arm ranking . 158
7.3 2-arm ranking . 159
7.4 Long-time learning ranking . 160
7.5 Complete ranking . 160

8.1 Investigated MOLS configuration space 164
8.2 Training computational time . 166
8.3 Optimal configurations (K = 1) . 168
8.4 Optimal configurations (K = 1) . 169
8.5 Final optimised configuration schedules (K = 2; PFSP 20 jobs) 170
8.6 Final optimised configuration schedules (K = 2; PFSP 50 jobs) 171
8.7 Final optimised configuration schedules (K = 3; PFSP 20 jobs) 173
8.7 Final optimised configuration schedules (K = 3; PFSP 20 jobs; con-

tinued) . 174
8.8 Final optimised configuration schedules (K = 3; PFSP 50 jobs) 175

List of Algorithms

3.1 Procedure LS(memory, archive) . 57
3.2 Procedure EXPLORE(current, ref, archive) 58
3.3 Procedure ITER(archive) . 59

4.1 Static Iterated Multi-Objective Local Search 65
4.2 Adaptive Iterated Multi-Objective Local Search 73
4.3 Inner Multi-Objective Local Search (mols) 74

5.1 Single-objective ParamILS . 90
5.2 Procedure localsearch(config) . 91
5.3 Procedure compare(config, challenger) 93
5.4 Procedure update(config, reference) . 93
5.5 Procedure update(config, reference) . 95
5.6 Procedure intensify(config) . 96
5.7 Multi-objective ParamILS . 99
5.8 Procedure localSearch(init_arch) . 100
5.9 Function archive(arch, challenger) . 101

xiii

xiv List of Algorithms

General Introduction

The journey of a thousand miles begins with
a single step.

Lao-Tzu

This thesis lays on the intersections between multi-objective combinatorial op-
timisation, local search algorithms, and automatic algorithm design. It was car-
ried out in the ORKAD1 team, that focuses on combining combinatorial optimisa-
tion and data mining to solve optimisation problems. Before its creation in 2017
as an independent research team in the CRIStAL2 laboratory, the ORKAD team
was a research group associated to the DOLPHIN3 joint project team, collabor-
ation between the CRIStAL laboratory and the Inria Lille-Nord Europe research
institute.

Motivations

Optimisation problems are ubiquitous. Numerous real-world problems, such as
planning schedules, building financial portfolios, routing vehicles, or predicting
future patients at risk in healthcare, can be formulated by determining the best
solution among a very large number of possible ones. For many optimisation
problems, while evaluating the quality of a single solution is usually fairly easy
and quick, solving them to optimality is much more computationally expensive as
their difficulty increases at least exponentially with the size of the problem. The
question of whether of not these problems, called NP-hard, can theoretically be
solved efficiently is at the core of one of the major unsolved problem of computer
science: the P versus NP problem.

In order to obtain good solutions for NP-hard problems that would be too large
to be solved to optimality in reasonable time, or in general for any large-scale op-

1Operational Research, Knowledge And Data
2Centre de Recherche en Informatique, Signal et Automatique de Lille (UMR CNRS 9189)
3Discrete multiobjective Optimization for Large-scale Problems with Hybrid dIstributed techNiques

1

2 General Introduction

timisation problem, approximation algorithms such as metaheuristics have been
proposed and are usually preferred. Local search algorithms are metaheuristics
that focus on the structure of the problem to solve, in order to benefit from the rela-
tion between similar solutions and progressively and iteratively approach optimal
solutions. They have been shown to be very efficient, either used as self-contained
algorithms or hybridised into more complex metaheuristics.

Along with the other metaheuristics, local search algorithms are very generic
approaches that can be applied to many combinatorial optimisation problems as
long as few assumptions over the problem modelling are respected, such as a fi-
nite or at least countable number of solutions. However, it is to be expected that
no single algorithm can perform the best on every problem, so metaheuristics usu-
ally involves many possible variants, using many alternative strategies, to improve
performance on specific problems structures. Given a specific problem, automat-
ically determining which of the many variants of the algorithm will be the most
efficient, or, more broadly, automatically designing the optimal algorithm that use
the most efficient strategies, is a recent but thriving research field.

Finally, optimisation problems as well as automatic design problems can in-
volve more than a single criteria to optimise. If as single quality is to be maximised,
or a single cost is to be minimised, the resolution process usually results in a single
final optimal solution. However, considering multiple objectives usually involves
a much richer context in which many incomparable compromise solutions are to
be sought. If classical multi-objective optimisation problems are increasingly stud-
ied and understood, multi-objective concepts for algorithm design problems have
only been considered recently.

Based on these observations, we investigate in this thesis the different inter-
sections between combinatorial optimisation, local search algorithms, and auto-
matic algorithm design, in the context of multi-objective optimisation. In par-
ticular, our focus is divided in one hand on multi-objective automatic algorithm
design, i.e., the automatic design of algorithms relatively to multiple perform-
ance metrics, and on the other hand on the automatic design of multi-objective
algorithms, using multi-objective local search algorithms. Finally, we investigate
two aspects of adaptation using automatic algorithm design: first with a predictive
viewpoint, where algorithms are configured with regard to performance on learn-
ing instances, and with an complementary adaptive viewpoint, where algorithms
autonomously react during their execution to the instance being solved.

Outline 3

Outline

Following this general introduction, this thesis is organised in four successive
parts, starting from general notions about multi-objective optimisation and present-
ing the state of the art of automatic algorithm design, then focusing on multi-
objective local search (MOLS) algorithms, before focusing on automatically design-
ing MOLS algorithms using offline algorithm design, and finally discussing two
possible online extensions.

Part I: Multi-objective Optimisation and Algorithm Design
First, Part I lays the foundations of this thesis down, and presents the research

fields of both combinatorial optimisation and algorithm design.

Chapter 1 details the multi-objective context that we use in this thesis. We give
the general definitions and notions of multi-objective combinatorial optimisa-
tion, we discuss the performance assessment of multi-objective algorithms,
and we present the three combinatorial problems that will be tackled in the
experiments of Part III and Part IV.

Chapter 2 presents the research field of automatic algorithm design (AAD) with
a proposition of a new taxonomy. We first introduce the foundations of our
proposition, then we give a detailed overview of the existing related research
fields and state of the art methods. Finally we present and motivate our tax-
onomy proposition by discussing existing works according to several general
viewpoints: a temporal viewpoint: “when does the automatic design take place?”,
a structural viewpoint: “how much of the algorithmic design can be modified?”,
and finally a complementary complexity viewpoint, related to the available
knowledge sources.

Part II: Multi-objective Local Search
Next, Part II focuses on the class of algorithms studied in this thesis, the multi-

objective local search (MOLS) algorithms.

Chapter 3 provides a technical and historical background on MOLS algorithms.
We first present their specific notions and philosophy, and conduct a chronolo-
gical survey of the use of local search techniques in multi-objective algorithms.
Then, we discuss the local search strategies found in the literature, and finally
we propose a new unification of MOLS algorithms and detail how the major
literature algorithms are instantiated.

Chapter 4 details the specific implementations of the MOLS algorithms that will
be used in the following chapters, based on the unified structure presented in

4 General Introduction

Chapter 3. We first present a classical MOLS algorithm that exposes many
parameters in order to automatically configure it in Chapter 6. Then, we
discuss how we can involve generic mechanisms to dynamically control the
value of some parameters of MOLS algorithms during their execution, and
present the adaptive MOLS algorithm that is considered in Chapter 7. Fi-
nally, we present the notion of configuration scheduling that is investigated in
Chapter 8.

Part III: Automatic Offline Design
Then, Part III investigates offline AAD approaches, and more specifically multi-

objective algorithm configuration, when the algorithm configuration is optimised
before its execution.

Chapter 5 introduces MO-ParamILS, a multi-objective automatic configuration
framework based on MOLS techniques, as a dedicated approach for multi-
objective configuration scenarios. First we formally define multi-objective
algorithm configuration and detail some use cases. Then, we present Para-
mILS, a prominent and well-known single-objective algorithm configurator
based on a single-objective local search, before proposing MO-ParamILS, that
we based on a MOLS algorithm. Finally, we study the performance of the
multiple variants of MO-ParamILS against approaches directly using Para-
mILS only on various use cases, to show the worth of using multi-objective
approaches against classical single-objective approaches.

Chapter 6 deals with the automatic design of MOLS algorithms. In the course
of three successive studies, the use of a multi-objective configurator is com-
pared against the use a single-objective configurator. Three configuration ap-
proaches are compared: first a classical baseline of optimising the convergence
of the MOLS algorithms, then an aggregated approach focusing on conver-
gence while taking into account the distribution of solutions, and finally the
simultaneous optimisation of both convergence and distribution independ-
ently. The first study provides comprehensive preliminary results on classical
problems by limiting itself to a small subset of possible MOLS configurations.
The second study provides conclusive results by tackling a much larger pool
of configuration. Finally the third study validates our observations by tack-
ing artificially constructed scenarios on which the correlation between object-
ives is controlled. To ensure fair comparisons, the multi-objective and single-
objective approaches used are based on ParamILS and MO-ParamILS, as they
are based on the same principles.

Outline 5

Part IV: Automatic Online Design
Last, Part IV discusses two extensions of MOLS automatic design, involving

online elements, i.e., when modifications of the MOLS configuration occur during
the execution.

Chapter 7 uses notions of parameter control to delay the prediction of the optimal
configuration. Instead of only using the prediction resulting from the offline
configuration process, we investigate how MOLS algorithms can benefit from
generic control mechanisms by using multiple efficient strategies. Following
the discussion of Chapter 4, we first survey some of the generic control mech-
anisms that can easily be integrated in our adaptive MOLS structure, before
discussing the actual performance of the simplest of them.

Chapter 8 extends the configuration process investigated in Chapter 6 by consid-
ering schedules of configurations, rather than using a unique configuration
during the entire execution. Following the discussion of Chapter 4, we invest-
igate the automatic configuration of schedules dividing the execution between
two and three different strategies.

6 General Introduction

If you can’t criticise, you can’t optimise.

Harry Potter and the Methods of Rationality
Eliezer Yudkowsky

Part I

Multi-objective Optimisation and
Algorithm Design

7

Chapter 1

Multi-objective Metaheuristics

In the beginning there was nothing, which
exploded.

Lords and Ladies.
Terry Pratchet

In this chapter, we present multi-objective optimisation, its necessary defini-
tions and notions, then give a short overview of multi-objective metaheuristics.
We also present the performance indicators and the permutations problems that
we will use in the following chapters.

1.1 Multi-objective Combinatorial Optimisation

1.1.1 Introduction

Optimisation problems arise in many fields of mathematics, computer science and
engineering. They deal with finding the best solutions from all possible solutions.
Optimisation problems comprise continuous optimisation problems, in which solu-
tions are described using decision variables taking uncountable values, and discrete
optimisation problem, in which all these variables necessarily take specific and
countable values. In this thesis, we consider combinatorial optimisation problems:
discrete optimisation problems in which the number of solutions is finite, although
in practice often too high to be exhaustively enumerated in a reasonable computa-
tion time.

If possible solutions can naturally be ranked using a single scalar metric, such
as for example a cost to minimise, or a reward to maximise, then the optimisation
problem is denoted as single-objective. On the contrary, if the goal is to find the

9

10 Chapter 1. Multi-objective Metaheuristics

solutions simultaneously optimising several metrics, then the problem is denoted
as a multi-objective (or multi-criteria) optimisation problem. In that case, it usually
involves a trade-off between multiple conflicting objectives.

1.1.2 Definition

In multi-objective optimisation (MOO), a set D of solutions is investigated regard-
ing multiple criteria characterising their quality. A MOO problem (MOOP) in-
volves optimising simultaneously a vector of n (n ⩾ 2) distinct functions F(x) =

(f1(x), f2(x), . . . , fn(x)) over the set D, and can be formulated following Equation 1.1,
where x = (x1, x2, . . . , xm) is a vector of decision variables.

(MOOP)

{
optimise F(x) = (f1(x), f2(x), . . . , fn(x))

subject to x ∈ D
(1.1)

The set D is also called the search space. Its image through F is called the objective
space. A function fk is either called a criterion, an objective function, or simply an
objective.

In multi-objective combinatorial optimisation (MOCO) problems, the set D of
solutions is finite and the domains of the decisions variables of x are all discrete.
Each function fk can be assumed without loss of generality to be minimised, as
maximising or mixed MOO problems can be easily mapped to analogous minim-
ising MOO problems using opposite functions f ′i(x) = −fi(x).

In the following sections and chapters, unless specified otherwise, every cri-
terion will be supposed to be minimised.

1.1.3 Solution Comparison

The two main approaches used to deal with MOO problems are either to use an a
priori approach, if preferences over the different objectives are known (e.g., scalar-
ising the vector F(x) to a single objective f(x)), or to use an a posteriori approach,
optimising each objective simultaneously. There are also interactive approaches in
which the preferences of a decision maker are taken in account during the op-
timisation process, but they are much less used due to the heavy cost of constant
human interaction.

In the following, we present first the Pareto dominance, then some of its many
a priori alternatives.

1.1. Multi-objective Combinatorial Optimisation 11

Pareto Dominance

A posteriori approaches are based on the concept of Pareto dominance, used to cap-
ture trade-offs between the criteria fk. Pareto dominance (or Pareto efficiency) is ori-
ginally an economical notion proposed by Pareto (1896), which has then be broadly
applied in many contexts beyond economics such as mathematics, engineering, or
life sciences.

A solution s1 is said to dominate a solution s2 (denoted as s1 ≻ s2) if, and only if,
(i) s1 is better than or equal to s2 according to all criteria, and (ii) there is at least
one criterion according to which s1 is strictly better than s2 (Equation 1.2, when
every criterion is to be minimised).

s1 ≻ s2⇐⇒

{
∀ k ∈ {1, . . . ,n}, fk(s1) ⩽ fk(s2), and
∃ k ∈ {1, . . . ,n}, fk(s1) < fk(s2)

(1.2)

The Pareto dominance does not imply a complete order on the set of all possible
solutions. If neither s1 ≻ s2 nor s2 ≻ s1, then the solutions s1 and s2 are said
incomparable. A set S of solutions in which there are no s1, s2 ∈ S such that s1 ≻ s2 is
called a Pareto set or a Pareto front. The goal when solving a MOOP is to determine
the best Pareto set, i.e., the set S⋆ ⊂ D such that there is no s ′ ∈ D that dominates
any of the s ∈ S⋆; this set is referred to as the Pareto optimal set.

Weighted linear scalarisation

The most simple way to aggregate all criteria into a single function is to use a
weighted sum of the different objectives. Given W = (w1,w2, . . . ,wn) a weight
vector of n coefficients, the goal is to optimise a scalar function f(x) instead of
optimising the vector F(x) (Equation 1.3).

f(x) =

n∑
k=1

wkfk(x) with
n∑

k=1

wk = 1 (1.3)

Using this approach, optimising a weighted sum of multiple objectives corres-
ponds to searching for an optimal solution for a given MOOP in a specific direction
in objective space. It is known that under certain circumstances (namely, when the
Pareto optimal front S⋆ is not convex) some optimal solutions cannot be obtained in
this manner. In such cases, Pareto-based multi-objective optimisation algorithms
are usually preferred.

12 Chapter 1. Multi-objective Metaheuristics

Weighted Chebyshev norm

Instead of minimising a linear aggregation of the different objective, the weighted
Chebyshev norm associates the quality of a solution x to the worse of its compon-
ent fk(x), using the distance to a given reference point z (Equation 1.4).

f(x) = max
1⩽k⩽n

wk · |fk(x) − fk(z)| with
n∑

k=1

wk = 1 (1.4)

While this approach pressures the algorithm to optimise each objective simul-
taneously, it consequently makes it impossible to find the extreme solutions of the
Pareto set.

Lexicographical ordering

If the objective functions fk can be ordered according to their order of importance,
a lexicographical ordering can also replace the Pareto dominance (Equation 1.5).

s1 ≻ s2⇐⇒ ∃ k ∈ {1, . . . ,n},

{
∀ i ∈ {1, . . . ,k}, fi(s1) = fi(s2), and
fk(s1) < fk(s2)

(1.5)

Multi-objective indicators

Finally, in addition to using the Pareto dominance, it is possible to use binary
quality indicators, such as for example hypervolume (Zitzler and Thiele, 1999),
to compare solutions to either other single solutions or to whole fronts of solu-
tions. This approach has been successfully applied to many algorithms, leading
to the indicator-based algorithm family including, not exhaustively, the indicator-
based evolutionary algorithm (IBEA, Zitzler and Künzli, 2004), the indicator-based
multi-objective local search algorithm (IBMOLS, Basseur and Burke, 2007), and the
indicator-based ant colony optimisation algorithm (IBACO, Mansour and Alaya,
2015).

1.1.4 Multi-objective Metaheuristics

Metaheuristics are high-level algorithms designed to quickly find good solutions
for a large range of optimisation problems too difficult for exact algorithms. In-
deed, many combinatorial optimisation problems are NP-hard with an number
of possible solutions growing exponentially, therefore requiring approximation
mechanisms in order to obtain high-quality solutions in a reasonable amount of
time. However, approximation algorithms do not guaranty the optimality of the

1.1. Multi-objective Combinatorial Optimisation 13

final solutions. Exact algorithms can nevertheless be used to get optimal solutions,
either on small instances or sub-problems, or after reduction of the problem size.

Metaheuristics can be classified into nature-inspired and local search algorithms.
While the former generally involve evolution, culture, or group characteristics to
simultaneously evolve multiple solutions together, the latter focus more on intensi-
fying individual solutions by intensifying the search on similar solutions. In the
following, we present some of the more common multi-objective metaheuristics.

Nature-inspired Algorithms

Nature-inspired algorithms, or bio-inspired algorithms, are generally inspired by
biological processes, and based on abstract concepts such as evolution, environ-
mental pressure, and natural selection (survival of the fittest), as well as on con-
crete observations such as animal behaviour modelling. The most well known
include evolutionary algorithms (EA’s) such as the genetic algorithm (GA, Hol-
land, 1992), swarm algorithms such as the particle swarm optimisation algorithm
(PSO, Kennedy and Eberhart, 1995) and ant colony optimisation algorithms (ACO,
Dorigo et al., 1996).

As for multi-objective nature-inspired algorithms, the most popular are nowa-
days recent variants based on the MOEA/D (Zhang and Li, 2007), a multi-objective
EA based on decomposition; NSGA-II (Deb et al., 2000, 2002), a non-dominated
sorting GA; SPEA2 (Zitzler and Thiele, 1999; Zitzler et al., 2001), a strength Pareto
EA; and IBEA (Zitzler and Künzli, 2004), an indicator-based EA. The reader is re-
ferred to Coello et al. (2007) or Deb (2001) for more in-depth presentations of many
multi-objective population-based and evolutionary algorithms.

We note in particular the existence of the MOACO framework (López-Ibáñez
and Stützle, 2010a,b), which specifically provides a general multi-objective ant
colony optimisation framework to use with automatic design tools. It is able to in-
stantiate most of the multi-objective ACO algorithms from the literature and many
combinations of components yet never investigated.

Local Search Algorithms

Local search (LS) algorithms exploit the structure of the search space to iteratively
find better and better solutions. They are based on the idea that small modifica-
tions in the representation of a solution may lead to either a small improvement
or a small deterioration of its initial quality, leading to the notion of neighbourhood,
that gives a structure to the search space by connecting close solutions. This notion
is often called the proximate optimality principle (e.g., Glover and Laguna, 1997).

14 Chapter 1. Multi-objective Metaheuristics

LS algorithms are originally very efficient metaheuristics designed for single-
objective problems (Hoos and Stützle, 2004). They have been adapted for multi-
objective problems in various ways, either directly extended from well-known and
established single-objective algorithms (e.g., Serafini, 1994; Ulungu et al., 1995;
Czyzak and Jaszkiewicz, 1996; Hansen, 1997), or hybridised with and within evol-
utionary algorithms (e.g., Ishibuchi and Murata, 1996; Knowles and Corne, 1999;
Talbi et al., 2001).

A detailed chronological overview of multi-objective local search algorithms
will be given in Chapter 3.

1.2 Performance Assessment

The use of Pareto-based multi-objective algorithms leads to fronts of final solu-
tions. In order to compare the performance of such algorithms, it is then necessary
to be able to quantify the quality of Pareto sets.

1.2.1 Overview

Several characteristics of Pareto sets can be measured. Through the use of the
many performance indicators proposed in the literature (Knowles and Corne, 2002;
Okabe et al., 2003), three main properties of Pareto can be assessed: accuracy, di-
versity, and cardinality.

Accuracy: the front of solutions is close to the theoretical Pareto optimal front,
either by volume or distance.

Diversity: the solutions of the front are either well-distributed or well-spread.
Cardinality: the front contains a large number of high-quality solutions.

According to a recent survey (Riquelme et al., 2015), the most commonly used
performance indicators in the literature are the following.

Hypervolume (HV): (accuracy, diversity) based on the volume of the search space
that contains dominated solutions (Zitzler and Thiele, 1999);

Generational distance (GD): (accuracy) based on the distance of the solutions of
the front to the solutions of a reference front (van Veldhuizen and Lamont,
2000);

Epsilon family (ε): (all) based on the minimum factor ε (additive or multiplicat-
ive) by which the front is worse than a reference front regarding all objectives
(Zitzler et al., 2003);

1.2. Performance Assessment 15

Inverted generational distance (IGD): (accuracy, diversity) similar to GD, based
on the distance of the solutions of a reference front to the solutions of the given
front (Coello and Cortés, 2005);

Spread (∆): (diversity) based on the distribution and spread achieved among the
solutions (Deb et al., 2002);

Two set coverage (C): (all) based on the fraction of solutions of the front domin-
ated by at least one solution of a reference front (Zitzler and Thiele, 1998).

It was shown that it is generally not possible to aggregate all of these properties
into a single indicator; it is thus recommended to consider multiple performance
indicators, preferably ones that complement each other, in order to assess the effi-
ciency multi-objective optimisation algorithms fairly (Zitzler et al., 2003). In prac-
tice, the hypervolume indicator (Zitzler and Thiele, 1999) is by far the indicator the
most commonly used in the multi-objective literature, while the other indicators
are much less used.

Finally, multi-objective performance indicators are either binary metrics, that
compare two different sets of solutions (e.g., one set of solution with a reference
set or a reference point), or unary metrics, that are able to give independent quality
assessment.

In the following, we present in more detail the hypervolume indicator and the
∆ spread indicator, that will be used in the experiments of this thesis. These two
specific indicators have been chosen first because they are unary performance in-
dicators, a restriction of the current automatic algorithm configurators; they are
also well known and used in the literature, and the spread enable to more expli-
citly consider diversity, as hypervolume is first and foremost an indicator focused
on accuracy.

1.2.2 Hypervolume

Hypervolume (HV) is a performance indicator proposed by Zitzler and Thiele
(1999); the idea is to compute the volume of dominated space in objective space.
Assuming normalised objective values in [0, 1], the unary hypervolume measures
the volume between a given Pareto set of solutions and the point (1, 1), as pictured
on Figure 1.1.

Hypervolume needs to be maximised, with a normalised minimal value of 0
when the front is reduced to the point (1, 1) and an optimal value of 1 when the
front is reduced to the point (0, 0). In the later chapters, in order to facilitate ana-
lysis, we use a minimising variant of hypervolume instead, computed as 1 − HV .

16 Chapter 1. Multi-objective Metaheuristics

f2

f1
+
(0, 0)

+
(1, 1)

f2

f1
+
(0, 0)

+
(1, 1)

Figure 1.1 – Normalised unary hypervolume indicator (left: HV ; right: 1 −HV)

This variant can be seen as the indicator aiming to minimise the volume of non-
dominating space, in contrast to the hypervolume which aims to maximise the
volume of dominating space.

Finally, while primarily being an accuracy performance indicator, hypervolume
also captures information about the diversity of the front of solutions, which is one
of the reasons making the popularity of hypervolume.

1.2.3 ∆ Spread

As a complementary indicator, we use a variant of spread to capture the distri-
butional properties of the Pareto set. Figure 1.2 shows two sets of solutions: one
well-distributed (squares) and the other unbalanced (circles).

f2

f1
+
(0, 0)

+
(1, 0)

+
(1, 1)

+
(0, 1)

f2

f1
+
(0, 0)

+
(1, 0)

+
(1, 1)

+
(0, 1)

Figure 1.2 – Normalised (left) ∆ and (right) ∆ ′ spread indicators

1.3. Permutation Problems 17

The ∆ spread indicator (Deb et al., 2002) is defined by Equation 1.6 for a given
Pareto set S, ordered regarding the first criterion, where df and dl are the Euc-
lidean distances between the extreme positions (1, 0) and (0, 1), respectively, and
the boundary solutions of S, and d̄ denotes the average over the Euclidean dis-
tances di for i ∈ [1, |S|− 1] between adjacent solutions on the ordered set S.

∆ :=
df + dl +

∑|S|−1
i=1 |di − d̄|

df + dl + (|S|− 1) · d̄
, (1.6)

This indicator is to be minimised; it takes small values for large Pareto sets
with evenly distributed solutions, and values close to 1 for Pareto sets with few or
unevenly distributed solutions.

In practice the distances between the extreme solutions of the set S of the points
(1, 0) and (0, 1) are much bigger than the distances between consecutive solutions
of S. This is especially true if the reference points of the normalisation are taken
conservatively, which is the case in the current context of algorithm configuration
where the normalisation needs to be fixed before the execution of the algorithm.

In consequence, we use the following variant instead, denoted as ∆ ′, and defined
simply by Equation 1.7, where the two distances df and dl to the reference points
(1, 0) and (0, 1) have been removed, thus removing spread information and mak-
ing this variant a solely distance-based distribution performance indicator.

∆ ′ :=

∑|S|−1
i=1 |di − d̄|

(|S|− 1) · d̄
, (1.7)

This indicator keeps the property of ∆ of having values independent to the prob-
lem instance being solved.

1.3 Permutation Problems

In this section, three permutation problems are presented; they will then be used
in the following chapters. All three problems share the same solution representa-
tion (or genotype), a fixed-size permutation, which enables the analysis of the same
algorithm and strategies on very diverse situations, as each problem lead to very
different solution models (or phenotypes) and objectives.

1.3.1 Permutation Flow Shop Scheduling Problem

The permutation flow shop scheduling problem (PFSP) is a classical combinatorial
optimisation problem, and one of the best-known problems in the scheduling liter-
ature since it models several typical problems in manufacturing. It involves a set of

18 Chapter 1. Multi-objective Metaheuristics

n jobs {J1, . . . , Jn} that need to be scheduled on a set of m machines {M1, . . . ,Mm}.
Each job Jk need to be processed sequentially on each of the m machines, with
fixed processing times (pk,1, . . . ,pk,m). Finally, machines are critical resources that
can only process a single job at a time. For the permutation flow shop scheduling
problem, each machine process the jobs in the same order, so that a solution may
be represented by a permutation of size n. The completion times Ci,j for each job
on each machine for a given permutation π = (π1, . . . ,πn) are computed using
Equation 1.8 to Equation 1.11.

Cπ1,1 := pπ1,1 (1.8)

Cπ1,j := Cπ1,j−1 + pπ1,j ∀j ∈ {2, . . . ,m} (1.9)

Cπi,1 := Cπi−1,1 + pπi,1 ∀i ∈ {2, . . . ,n} (1.10)

Cπi,j := max(Cπi−1,j, Cπi,j−1) + pπi,1 ∀i ∈ {2, . . . ,n} ∀j ∈ {2, . . . ,m} (1.11)

The completion time Ck of a job Jk is then simply its completion time on the
last machine Ck,m. An illustration of a small permutation flow shop instance (n =

3 jobs, m = 4 machines) is given in Figure 1.3. It features examples of waiting
time, e.g., on machine M2 as job J1 is still being processed on machine M1, and an
example of idle time for job J2 on machine M3 as the processing of job J1 is not yet
completed. The corresponding completions times of the three jobs J1, J2 and J3 are
21, 23 and 11, respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

M1 Jπ1 = J3 Jπ2 = J1 Jπ3 = J2

M2 J3 J1 J2

M3 J3 J1 J2

M4 J3 J1 J2

Figure 1.3 – Example of PFSP schedule for n = 3 jobs, m = 4 machines, and
π = (3, 1, 2)

The most common objective to minimise on flow shop scheduling problem is
the makespan (i.e., the total completion time of the schedule Cπn,m, here 23 in
Figure 1.3). Other classical objectives include the total flow time (i.e., the sum of
completion times, and consequently their average), or when due dates are intro-
duced, the maximum or total tardiness (Lawler et al., 1993). Weighted variants
of these objectives are also common (Dubois-Lacoste et al., 2011b). In the fol-
lowing, we will study two bi-objective PFSP, with first a classical combination of

1.3. Permutation Problems 19

makespan and total flow time (Dubois-Lacoste et al., 2011c; Bezerra et al., 2014).
Because the makespan and total flow time objective are quite correlated, we will
also study a second bi-objective PFSP, obtained by considering a combination of
two makespan objectives computed with hand-tuned correlated processing times
(Kessaci-Marmion et al., 2017).

The classical literature PFSP instances are given by Taillard (1993). They are
randomly generated with independent processing times following the uniform
distribution U[1; 99]. There are 110 Taillard’s instances, with number of jobs n ∈
{20, 50, 100, 200, 500} and number of machines m ∈ {5, 10, 20}, 10 instances being
available for each valid combination (n,m).

Classical PFSP neighbourhoods include the exchange neighbourhood, where
the positions of two jobs are exchanged, and the insertion neighbourhood, where
one job is reinserted at another position in the permutation. It was shown that for
multi-objective local search algorithms the hybrid neighbourhood defined as the
union of the exchange and insertion neighbourhoods lead to better performance
than considering a single neighbourhood (Dubois-Lacoste et al., 2015). Other com-
mon operations on schedules include the adjacent swap, special case of exchange
when the two jobs are necessary adjacent – thus highly reducing the computational
cost but also the interest of such an operation – or the block-move, generalisation of
both the insertion and the adjacent swap when the positions of two adjacent subsets
of jobs are exchanged. Block-moves are less commonly used as they induce much
bigger neighbourhoods. These operations are illustrated in Figure 1.4 starting from
an ordered permutation.

J1 J2 J4 J5 J7 J8J6 J3

(a) Exchange (J6 with J3)

J1 J2 J7 J8J3 J4 J5J6

(b) Insertion (J6 before J3)

J1 J2 J3 J4 J7 J8J6 J5

(c) Adjacent swap (J6 with J5)

J1 J2 J8J6 J7 J3 J4 J5

(d) Block-move ({J6, J7} with {J3, J4, J5})

Figure 1.4 – Common PFSP schedule operations on an ordered permutation

1.3.2 Travelling Salesman Problem

The travelling salesman problem (TSP) is one of the most widely studied com-
binatorial optimisation problems, optimising the tour of an hypothetical salesman

20 Chapter 1. Multi-objective Metaheuristics

needing to visit once each of the n cities of a given set {C1,C2, . . . ,Cn}. The TSP
can be defined by a complete weighted graph G whose n nodes represent the cit-
ies, while edges corresponds to direct paths between cities. In the symmetric TSP,
this graph is undirected, and edge weights correspond to distances between cities.
Given a TSP instance G, the goal is to determine a tour passing through every city
exactly once, such that the total distance travelled is minimised, i.e., a minimum-
weight Hamiltonian cycle in G. This cycle corresponds to a permutation of the n

cities. There is no real meaning of the “beginning” or “direction” of the tour – e.g.,
for an instance with 4 cities the solutions (1, 2, 3, 4) and (2, 1, 4, 3) both map to the
same tour – so permutations may need to be normalised (e.g., requiring to begin
the tour with C1 and to visit C2 before C3) so that each possible tour has a unique
representation. An illustration is given in Figure 1.5 for a small instance of n = 8
cities.

C1

C2

C3 C4

C5

C6

C7C8

Figure 1.5 – Example of TSP tour for n = 8 cities and π = (1, 2, 3, 8, 7, 5, 6, 4)

Multi-objective TSP instances can easily be obtained by considering either cor-
related additional costs, such as distance and travel time, or simply multiple in-
dependent uncorrelated costs. A benchmark set of Euclidean instances (available
online1) has been widely used in the literature to assess the performance of bi-
objective TSP algorithms. These instances were constructed by combining two
independently generated distance matrices, the two objectives being therefore un-
correlated. In addition to these instances, we will also consider variably correlated
instances, by first generating a set of cities, then duplicating it and slightly mov-
ing each city, to obtain two correlated matrices of Euclidean distances (Kessaci-
Marmion et al., 2017).

A classical neighbourhood for the travelling salesman problem is the 2-opt (or
pairwise exchange) neighbourhood, where two tours are neighbours if, and only if,
one can be obtained from the other by removing two non-adjacent edges recon-
necting the resulting tour fragments by two other edges. It has the visual property

1https://eden.dei.uc.pt/~paquete/tsp/#Exp2

https://eden.dei.uc.pt/~paquete/tsp/#Exp2

1.3. Permutation Problems 21

of repairing routes that cross themselves. An illustration is given by Figure 1.6, in
which edges (C1,C4) and (C3,C8) are removed and reinserted, reordering the tour
of cities {C1,C2,C3} to remove the crossing. Note that the 2-opt method is a special
case of the more general k-opt method (or Lin–Kernighan method, Kernighan and
Lin (1970); Lin and Kernighan (1973)), but that using k > 2 usually leads to a much
bigger neighbourhood size and thus far higher computational cost. The permuta-
tion neighbourhoods (e.g., exchange, insertion; see Figure 1.4) can also be used on
the TSP, albeit much less used and efficient than the k-opt methods.

C1

C2

C3 C4

C5

C6

C7C8

C1

C2

C3 C4

C5

C6

C7C8

Figure 1.6 – Example of 2-opt recombination (left: removal; right: reinsertion)

1.3.3 Quadratic Assignment Problem

The quadratic assignment problem (QAP) involves assigning a set of n facilities
{F1, F2, . . . , Fn} to a set of n given locations {L1,L2, . . . ,Ln}, minimising a cost func-
tion that depends both on the distance between locations and the flow between the
facilities assigned to these locations. A solution is a permutation π = (π1, . . . ,πn),
where each location Lk is associated to the facility Fπk

. The objective is then to
minimise the cost C associated to the solution, defined by Equation 1.12 for a given
permutation π, with wi,j the flow between facilities Fi and Fj, and di,j the distance
between locations Li and Lj.

C :=

n∑
i=1

n∑
j=1

wi,jdπi,πj
(1.12)

Figure 1.7 shows two solutions of a small QAP instance (n = 8), in which for
clarity most of the flow is supposed equal to 0 and is not represented (otherwise
the graph would necessarily be complete). This figure highlights that the locations
are fixed, the permutation only changing the mapping according to which facilities
are associated to locations.

Similarly to the TSP, multi-objective QAP instances can be obtained by con-
sidering either correlated additional costs or multiple independent uncorrelated

22 Chapter 1. Multi-objective Metaheuristics

L1 F1

L2 F2

L3 F3 L4F4

L5F5

L6F6

L7F7L8 F8

L1 F1

L2 F2

L3 F3 L4F7

L5F5

L6F6

L7F4L8 F8

Figure 1.7 – Examples of QAP pairings for n = 8 locations (thus facilities); left:
π = (1, 2, 3, 4, 5, 6, 7, 8); right: π = (1, 2, 3, 7, 5, 6, 4, 8)

costs. To our present knowledge, there are publicly available multi-objective QAP
instance generators (Knowles and Corne, 2003) but no widely recognised multi-
objective QAP benchmarks in the literature. To obtain bi-objective instances, we
consider two correlated flow matrices, both tied to a single distance matrix. As for
both previous problems, it enables for the correlation between the two objectives
to be manually adjusted (Kessaci-Marmion et al., 2017).

The neighbourhood commonly used on QAP is the exchange neighbourhood
(see Figure 1.4). Indeed, while other neighbourhood such as insertions or k-opt
operations can be used, they have here no real meaning as positions in the per-
mutation are not related in any way to an ordering of the facilities, but solely their
mapping to the different locations, which stay fixed.

Chapter 2

Automatic Algorithm Design

If I have seen further it is by standing on the
shoulders of Giants.

Isaac Newton

In this chapter, we present the research field of automatic algorithm design (AAD).
After some necessary preliminary definitions, we give an overview of the different
research fields of the literature, such as automatic algorithm control, algorithm
selection, hyper-heuristics, and state of the art methods that are related to AAD.
Then, we propose and discuss a new taxonomy of AAD to better group under a
single label these research fields.

In the process of solving problems and obtaining solutions, one generally needs
to go through many analysis, decisional and computational steps, steps that may
be automatised with the use of algorithms. The usual procedure is to: (i) formally
define the problem to solve, (ii) either choose an existing algorithm or design a new
specific one to solve the problem, (iii) run the algorithm on the particular input of
interest, to finally (iv) obtain relevant solutions. These steps describe an algorithm,
for the theoretical higher-order “problem solving” problem. More particularly, the
second step is related to answering the question “which algorithm should I use to
solve my problem”, which can also be better worded as “what is the best algorithm
to solve this problem”. While these questions are generally left to human expertise,
they can be tackled automatically, through what we call automatic algorithm design.

23

24 Chapter 2. Automatic Algorithm Design

2.1 Preliminaries

In order to better contextualise the automatic algorithm design research field and
better compare the different algorithm design approaches, we first give the neces-
sary definitions and notions regarding to algorithms and design choices.

Problem: a description, semantic, and formal definition of the problem and the
possible solutions (e.g., the travelling salesman problem (TSP)).

(Problem) instance: the particular data, relative to a given problem, over which
an algorithm is used to obtain final solutions (e.g., the graph of distances cor-
responding to a list of cities for the TSP).

(Problem) instance class: a subset of problem instances sharing common charac-
teristics (e.g., instances of the same size, sharing a similar structure, or origin-
ating from the same source).

(Problem) instance feature: a measurable property or characteristic of the instance.
Note that selection or extraction of instance features are in themselves very
hard machine learning problems.

Algorithm: a complete and unambiguous description of how to obtain solutions
for a given problem instance; in the following, we also identify an algorithm
to the decisional schedule it induces.

Parameter: a decision point in an algorithm reflecting a design choice.
Parameter value: the value associated to a given parameter.
Parameterised algorithm: an algorithm exposing design choices as parameters; a

set of default parameter values is usually available.
(Algorithm) configuration: the set of parameter values necessary to run a para-

meterised algorithm, by specifying a setting to each of its parameters.

Virtually all algorithms are based on a succession of design choices that enables
them to successfully run and achieve results. If some of these design choices may
be left to the user discretion in the form of parameters, most of them are static-
ally defined in the algorithm following early decisions of the algorithm designer.
Each of these design choices ultimately heavily impact the performance of the al-
gorithm. Nowadays the tendency is hopefully to propose frameworks more open
in their design. Indeed, with more available parameters, they can potentially reach
far better performance if adequately configured. Eventually, almost every design
choice could potentially (and probably should) be automatically optimised (Hoos,
2012).

Parameters are usually classified into three categories:

2.2. Overview 25

Categorical parameters, which have a finite number of unordered discrete values,
often used to select between alternatives mechanisms (e.g., to select a specific
strategy, or to enable or disable a mechanism);

Integer parameters, which have discrete and ordered domains (e.g., to specify a
number of iterations or the size of a set of solutions); and

Continuous parameters, that take numerical values on a continuous scale (e.g., to
set a probability or percentage threshold).

The distinction between structural parameters (i.e., categorical parameters, or
integer parameter with high impact on the comportment of the algorithm) and
behavioural parameters (i.e., other integer and continuous parameters) is also com-
mon, under many different appellations: qualitative/quantitative, symbolic/numeric,
categorical/numerical, component/parameter, nominal/ordinal, or categorical/ordered (see
Eiben and Smit, 2012). In addition, some conditional parameters may only be used
depending on the setting of other parameters, and some combinations of para-
meters may be forbidden when they are known to lead to incorrect or undesirable
algorithmic behaviour.

2.2 Overview

Offline approaches are usually opposed to online approaches (Hamadi et al., 2012),
following the taxonomy of Eiben et al. (1999) of parameter setting (Figure 2.1), which
divides parameter tuning approaches, which aim to find good values for the para-
meters before the run of the algorithm, and parameter control approaches, which start
the run with initial parameter values that are then controlled and adapted during
the run.

Parameter Setting

Parameter Tuning Parameter Control

Deterministic
Adaptive

Self-adaptive

before the run during the run

Figure 2.1 – Eiben et al. (1999) parameter setting taxonomy

26 Chapter 2. Automatic Algorithm Design

Offline approaches (parameter setting) focus on getting the best possible al-
gorithm prior of its actual use on the input data; once the algorithm is fixed it
runs following its specification. They can therefore be seen as prediction-based ap-
proaches. Conversely, online approaches (parameter control) do not predict the
best possible algorithm but rather focus on optimising its configuration during
its execution. In other words, online approaches try to adapt the schedule of de-
cisional and computational steps of the algorithm using its impact on the input
data, while offline approaches try to predict the entire fixed schedule. Of course,
if this theoretically leads to much more efficient algorithms, general automatic ad-
aption in algorithms is orders of magnitude more complex than just optimising
over all possible static algorithms. This distinction between offline and online ap-
proaches deeply shaped the research on automatic algorithm design.

Finally, to quote Karafotias et al. (2015) on the tuning and control of evolution-
ary algorithms: ‘From a practical perspective, tuning is an absolute ‘must’ [. . .]
Meanwhile, parameter control is more of a neat-to-have than a need-to-have. ’

In the following, we present and discuss many of the research fields related to
AAD, and how they differ between each others. While fields such as algorithm
configuration and parameter control directly falls under Eiben taxonomy, we ob-
serve than many others such as algorithm selection or hyper-heuristics also closely
relates to the same problematic: automatically devising better algorithms for given
problems.

2.2.1 Algorithm Selection

Algorithm selection focuses on understanding the relation between algorithm per-
formance and problem instance features. The basis is that, for a given set of prob-
lem instance classes, there is a corresponding set of complementary algorithms
that can be used to improve overall performance.

Formally (Rice, 1976), the algorithm selection problem consists in, given a port-
folio P of algorithms A ∈ P, a set of instances I, and a cost metric o : P × I → R,
optimising a mapping s : I → P across all instances of i ∈ I, as given in Equa-
tion 2.1.

⎧⎨⎩ optimise
∑
i∈I

o(s(i), i)

subject to s : I→ P
(2.1)

Because this problem optimises the performance on each instance of the set in-
dependently, algorithm selection is also sometimes called per-instance algorithm

2.2. Overview 27

selection. A simplified general workflow of algorithm selection is given in Fig-
ure 2.2., in which a selection tool construct the final mapping by iteratively provid-
ing an algorithm A and an instance i to a runner, whose role is to simply returns
the subsequent performance.

Selection tool
Portfolio P

Instance set I

Runner

Mapping I→ P

instance i ∈ I,
algorithm A ∈ P

performance o(A, i)

Figure 2.2 – Algorithm selection general workflow

Some of the most prominent algorithm selection tools include SATzilla (Xu
et al., 2008), ISAC (Kadioglu et al., 2010), 3S (Kadioglu et al., 2011) and CSHC
(Malitsky et al., 2013). A recent extensive survey on algorithm selection for com-
binatorial search problem can by found in Kotthoff (2016), which also keeps an up
to date online literature summary on algorithm selection literature1.

One extension of the traditional per-instance algorithm selection problem is per-
instance algorithm scheduling, that associates to each instance not a single algorithm
anymore, but a schedule of different algorithms. This extension allows to increase
robustness, in particular regarding instances for which multiple algorithms might
perform well. The algorithm schedules can be optimised globally for all instances
(Hoos et al., 2015), determined for each instance relatively to algorithm perform-
ance on similar instances (Amadini et al., 2014), or used statically as a pre-solving
mechanism before traditional algorithm selection (Kadioglu et al., 2010, 2011; Hoos
et al., 2014). These approaches have been shown to be very efficient and to achieve
strong performance on many algorithm selection scenarios (Lindauer et al., 2016).

2.2.2 Algorithm Configuration / Parameter Tuning

Algorithm configuration (or parameter tuning) focuses on getting the best per-
formance of a given algorithm on a given distribution of instances, through modi-
fications of its parameters. The algorithm being optimised is called the target al-
gorithm, while the algorithm optimising the parameters of the target algorithm is

1https://larskotthoff.github.io/assurvey/

https://larskotthoff.github.io/assurvey/

28 Chapter 2. Automatic Algorithm Design

called the configurator. It can be seen as the automatic process to find the best “de-
fault” parameters for a given algorithm on a given instance class. As algorithm
selection, algorithm configuration is an offline process. In the machine learning
community, this problematic is also referred to as hyperparameter optimisation (e.g.,
Bergstra and Bengio, 2012).

Formally, the algorithm configuration problem consists in, given a paramet-
erised target algorithm A, the space Θ of configurations of A, a distribution of
instances D, a cost metric o : Θ × D → R, and a statistical population parameter
E, optimising the aggregated performance of the target algorithm A across all in-
stances i ∈ D, as given in Equation 2.2 (in which Aθ denotes the algorithm ob-
tained by associating the configuration θ to the target algorithm A).

{
optimise E[o(Aθ, i), i ∈ D]

subject to θ ∈ Θ
(2.2)

Algorithm configuration supposes that the limit implied by Equation 2.2 exists
and is finite. In practice, a machine learning approach is taken, by considering
a finite set of training instance I instead, and validating the performance of the
final configuration on a separate set of instances. The most commonly used stat-
istical population parameter is the simple average of the performance of the target
algorithm. A simplified general workflow of algorithm configuration is given in
Figure 2.3.

ConfiguratorConfiguration space Θ

Instance set I

Target Algorithm

Best configuration

instance i ∈ I,
configuration θ ∈ Θ

performance o(θ, i)

Figure 2.3 – Algorithm configuration general workflow

While in practice the terms algorithm configuration and parameter tuning have
been in the past commonly used interchangeably, more recently the former is pre-
ferred when the parameter space mostly contains categorical parameters and the
latter when it mostly contains numerical parameters.

Many different types of automatic configuration tools can be found in the lit-
erature. For example, irace (López-Ibáñez et al., 2016), one of the most popular
configurator, uses statistical racing (Birattari et al., 2002; Balaprakash et al., 2007)

2.2. Overview 29

to find efficient configurations while discarding the one statistically outperformed.
CALIBRA (Adenso-Díaz and Laguna, 2006), as well as ParamILS (Hutter et al.,
2007, 2009), are based on iterative search. SPO (Bartz-Beielstein et al., 2005), or
SMAC (Hutter et al., 2011), are other examples of configurators that build and
refine a model for the parameter values (see also Bartz-Beielstein and Markon,
2004). Finally, GGA++ (Ansótegui et al., 2015) is a model-based configurator based
on GGA (Ansótegui et al., 2009), an anterior configurator itself based on genetic
algorithms.

2.2.3 Parameter Control

Parameter control focuses on adapting the parameter values of the running al-
gorithms during its execution, rather than only using initial values that would
otherwise stay fixed during its whole run. It is based on the observation that there
is no reason for a specific parameter value to be and stay optimal the entire execu-
tion of the algorithmic process.

The classical taxonomy of parameter control algorithms is given by Eiben et al.
(1999, 2007), and categorises three types of algorithms in which adaptation takes
place: deterministic, adaptive, and self-adaptive algorithms. While it originally
only applies on evolutionary algorithms, it is now used much more broadly.

Deterministic algorithms: parameters values are altered using deterministic rules.
In other words, the adaptation is independent of some feedback from the
search process, and only uses predetermined schedules (e.g., based on the
number of iteration, or the running time elapsed).

Adaptive algorithms: parameters values are altered using some form of feedback
from the search process. Decisions may involve credit assignment based on
the performance linked to the parameter values.
An additional subdivision of adaptive algorithms into functionally-dependant
algorithms and self-adjusting algorithms can also be found, based on whether
the parameter values can be decided looking at the current state of the al-
gorithm only, or if they depend on the success of previous iterations (Doerr
and Doerr, 2015).

Self-adaptive algorithms: parameters values are encoded into solution genotypes
and evolved naturally during the search process.

Recent and extensive surveys on parameter control in evolutionary algorithms
can be found in Karafotias et al. (2015); di Tollo et al. (2015); Aleti and Moser (2016).
While many methods have been proposed in the literature, most of them are tied

30 Chapter 2. Automatic Algorithm Design

to specific algorithms (e.g., evolutionary algorithms) or specific parameters of spe-
cific algorithms (e.g., controlling the population size of an evolutionary algorithm).
In this thesis, we are interested in generic, parameter independent, adaptive con-
trol mechanisms, among which four types, increasingly sophisticated, of generic
methods can be distinguished.

Formula and rules: albeit typically strongly tied to specific contexts, formula and
rules can in practice be devised regardless of the specific parameter or al-
gorithm. Rules can be based on time, number of iterations, or any feedback
from the search; they may be based on theoretical results or on intuition; they
can have absolute effects (i.e., using specific values) or relative effects (i.e.,
modifying the parameter with regard to its current value (e.g., the 1/5th rule;
Schumer and Steiglitz, 1968).

Probability-based decisions: using feedback from the search, it becomes possible
to associate to each parameter value a reward. Mechanisms such that the prob-
abilistic rule-driven adaptive model of Wong et al. (2003), probability match-
ing (Thierens, 2005), and adaptive pursuit (Thierens, 2005) all base their de-
cisions on probabilities computed from search feedback.

Multi-armed bandits: similarly to probability-based decisions mechanisms, multi-
armed bandit approaches can be used to take decisions by considering each
parameter value as a distinct arm, thus transforming the problem into a known
probability theory one. The dynamic multi-armed bandit of Costa et al. (2008);
Maturana et al. (2009) and the adaptive range parameter selection mechan-
ism of Aleti and Moser (2011) are examples of such multi-armed bandits al-
gorithms applied to automatic algorithm design.

Reinforcement learning: finally, reinforcement learning (Sutton and Barto, 1998)
can also be used by superimposing an additional layer of states in order for the
decisions to better take into account the environment (e.g., Eiben et al., 2006),
again enabling the use of known machine learning mechanisms.

Generic online mechanisms will be detailed in more depth in Chapter 4.

2.2.4 Hyper-heuristics

The term hyperheuristic originates from Cowling et al. (2000) in which it is used
to describe ‘heuristics to choose heuristics’. Burke et al. (2010) (see also Burke
et al., 2013) proposed a much broader taxonomy for hyper-heuristic approaches,
founded on two dimensions: the source of feedback during learning and the nature
of the heuristic search space, detailed hereafter.

2.2. Overview 31

Offline learning: knowledge is gathered from a set of training instances, and hope-
fully generalises to unseen instances.

Online learning: learning is done while the algorithm is solving one particular
instance of the problem.

No learning.

Heuristic selection: methodologies for choosing or selecting existing heuristics.
Heuristic generation: methodologies for generating new heuristics from compon-

ents of existing heuristics.

Burke et al. (2010) also follow Hoos and Stützle (2004) to refine this second
dimension according to the search paradigm of the hyper-heuristic and whether it
uses either a constructive or a perturbative search process.

Construction heuristics: the search process considers complete candidate solu-
tions and alters them by modifying one or more of their components.

Perturbation heuristics: the search process considers incomplete candidate solu-
tions, in which one or more components are missing, and iteratively extends
them.

2.2.5 Other Fields and Taxonomies

Other research fields are also related to AAD, while others taxonomies have already
been proposed.

Battiti et al. (2008) proposed definitions of both reactive search and intelligent op-
timisation. While the latter broadly corresponds to applications of machine learn-
ing strategies in heuristics, the former focuses on integration of machine learning
techniques in local search heuristics for solving complex optimisation problems.

Autonomous search systems (Hamadi et al., 2012) already encompass most of
the others research fields and taxonomies. Most importantly, they generalise the
online–offline distinctions of Eiben et al. (1999) to fields outside parameter control.
The taxonomy focuses around building singular monolithic systems, able without
outside expert knowledge to find solutions to any problem, internally using one
or many algorithm design tools and techniques. In other words, an autonom-
ous search system is an easy-to-use interface for end-users, that aims to minimise
technical interaction and knowledge by internally automatising configuration and
solving processes.

Finally, genetic programming and genetic improvement are related research fields
that apply traditional optimisation techniques (e.g., genetic algorithms) to software

32 Chapter 2. Automatic Algorithm Design

engineering problems in order to improve existing software (Langdon, 2015; Petke
et al., 2017). Examples of goals include optimising performance (e.g., quality, run-
ning time, memory or energy consumption), but also fixing program behaviour.

2.2.6 Multi-objective Automatic Design

All of the notions presented before were originally proposed as single-objective
tools, to optimise the performance of single-objective algorithms. In order to apply
such tools to multi-objective algorithms, one would need to use a single perform-
ance indicator, such as the hypervolume resulting of the final set of solutions (e.g.,
Dubois-Lacoste et al., 2011a).

However, the last few years have seen the development of many different tools
either based on multi-objective optimisation or specifically designed for multi-
objective optimisation. Among others, we can cite MOSAP (Horn et al., 2016),
a multi-objective algorithm selection framework, S-Race and SPRINT-Race (Zhang
et al., 2015, 2016, 2018), extending statistical racing for model selection according
to multiple criteria, and MO-ParamILS (Blot et al., 2016), a multi-objective con-
figurator for multi-objective configuration we proposed. MO-ParamILS will be
presented and studied in depth in Chapter 5.

2.3 Overall Automatic Design Taxonomy Proposition

In this section, we propose a new taxonomy of automatic algorithm design. It
follows and expends the temporal viewpoint already present in the Hamadi et al.
(2012) taxonomy, while proposing a second, transverse, viewpoint based on the
algorithmic structure of the elements being optimised. An important motive for
this taxonomy is to propose a taxonomy for researchers focused on the design tools
and techniques themselves, as autonomous search systems focus more to giving an
autonomous black-box to non-technical end-users.

2.3.1 Temporal Viewpoint

The first point of view of our taxonomy is based on when are applied the algorithm
design tools. Eiben et al. (1999), then Hamadi et al. (2012), separate tools that are
applied before and after the first actual computational step on the given problem
instance. Tools that are used to choose an algorithm and its parameters are classi-
fied as offline tools, while techniques used to adapt the algorithm or its strategies
during the execution are classified as online techniques.

2.3. Overall Automatic Design Taxonomy Proposition 33

We propose to distinguish three phases in this timeline, rather than only two.
First, we have tools that only require a description of the problems and the classes
of instances that will be tackled, such as the learning process of algorithm selection
and parameter tuning. More precisely, they do not require to know the specific in-
stance that will be solved in the future, and they are used to obtain generalisations
and to give predictions. We say that they only use problem features.

Then, we have tools or recommendations that use the specific features of the
instance to solve. For example, the application of the mapping found using al-
gorithm selection, or more generally the choice of parameter values following the
algorithm designer recommendations (e.g., parameters with recommended values
depending of the instance size). We say that they use a priori features.

Finally, following Eiben et al. (1999), the last phase begins when the first com-
putational step starts the search. Search features, directly linked to the algorithm
progression and the solutions considered, are then available to be used.

One of the advantages of separating the online phase into two distinct phases
is first to better compare algorithm configuration to algorithm selection, as it splits
the latter into two parts the machine learning first, then the application of the
resulting mapping. Furthermore, it also enables to better include recommenda-
tions and rules based on manual preliminary experiments or simply intuition, that
wouldn’t otherwise be considered as not suitable as generic design tools.

2.3.2 Structural Viewpoint

The second point of view of our taxonomy is based on what is manipulated by
the algorithm design tools, and more precisely how much of the solving process
can be modified. On the one hand, parameter tuning mostly deals with numerical
parameters, for which it is usually expected to imply very small and controlled
variations in performance. Indeed, categorical parameters usually lead to much
more stronger variation in performance. On the other hand, when selecting dif-
ferent algorithms, they can possibly be based on entirely different techniques and
induce completely different performance profiles (which is incidentally the main
motivation of algorithm selection).

These differences in expectation explain why some similar research fields were
developed based on different assumptions and leading to very distinct principles.
For example, why algorithm selection require problem features to compute a map-
ping of which algorithm is better on which type of instances, or why some efficient
parameter tuning techniques can use local search techniques. However, both ends
of the spectrum ultimately deal with the same problem of how to obtain what is

34 Chapter 2. Automatic Algorithm Design

predicted to be the best algorithm to use on a given instance.

Indeed, parameter tuning, algorithm configuration, and algorithm selection
can all be generalised into a broader problem, given in Equation 2.3, in which D is
a distribution of instances, A is the algorithm space (e.g., obtained by a description
of a given algorithm parameters values, or given by a portfolio), E is a statistical
population parameter, and o is the (possibly multivariate) cost metric (o : A→ Rn,
with n ⩾ 1).

{
optimise E[o(s(i), i), i ∈ D]

subject to s : D→ A
(2.3)

Equation 2.2 (parameter tuning; algorithm configuration) is a specialisation of
Equation 2.3 when the mapping is supposed to be constant (i.e., a single configured
algorithm Aθ is sufficient to achieve optimal performance over the distribution D

of instances). To our present knowledge, most parameter tuning and algorithm
configuration scenarios either suppose that the distribution of instances is homo-
geneous to a single class of instances, or nevertheless aim for a single “general”
configuration. Similarly, Equation 2.1 (algorithm selection) is a specialisation of
Equation 2.3 when the distribution of instances is reduced to a simple set of in-
stances. In both cases, either all instances are supposed to be part of a single in-
stance class, or each individual instance is optimised separately; the task of figur-
ing out the instances classes is left to the expert knowledge of the end-user. Tools
able to simultaneously both analyse the distribution to determine instances classes
and optimise a mapping over these classes are, to the best of our knowledge, yet
to be proposed.

Equation 2.3 can in theory be further refined into Equation 2.4 by considering
that (i) the algorithm output itself is to be minimised, without the need of an ad-
ditional cost metric (i.e., to optimise directly a(i) instead of o(a, i), with a ∈ A

an algorithm) and that (ii) there is no need to explicitly first select an algorithm to
then apply it on the instance (i.e., optimising f(i) = s(i)(i)).

{
optimise E[f(i), i ∈ D]

subject to f : D→ Rn
(2.4)

This definition is closer to the idea of autonomous search systems proposed in
Hamadi et al. (2012) as it see the entire problem as a black-box system and does
not expose the underlying selected algorithm to the end-user.

2.3. Overall Automatic Design Taxonomy Proposition 35

Tuning Configuration Mapping

Setting Selection

Control Scheduling

Algorithmic viewpoint

parameters components algorithms

Te
m

po
ra

lv
ie

w
po

in
t problem

features

a priori
features

search
features

Figure 2.4 – Algorithm design overview

This viewpoint can rightfully be seen as more or less artificial. Indeed, to give
some examples: a tool designed to deal with categorical parameters can be ap-
plied on continuous parameters after discretisation; very different algorithms can
be seen as a single algorithm with a main, rather drastic, categorical parameter;
and categorical parameters can be arbitrarily ordered and seen as integer paramet-
ers. However, it can be expected that in these cases the overall performance of the
algorithm design tool will be worse than if the more suitable tool was used instead.

Under certain circumstances these different approaches can be used simultan-
eously and achieve even increased performance: e.g., the AutoFolio (Lindauer
et al., 2015) selection tool relying on the automatic configurator SMAC (Hutter
et al., 2011) to seed the portfolio of claspfolio 2 (Hoos et al., 2014), or Auto-WEKA
(Thornton et al., 2013; Kotthoff et al., 2017) simultaneously selecting the WEKA2

learning algorithm and optimising its parameters.

2.3.3 Overview

Figure 2.4 illustrates our taxonomy proposition and describes several sub-problems
of the algorithm design problem, clarified hereafter.

First, we describe the offline sub-problems, that correspond to both problem
and a priori features.

Tuning: the algorithm is already known, but it needs to be adapted for the given

2https://www.cs.waikato.ac.nz/ml/weka/

https://www.cs.waikato.ac.nz/ml/weka/

36 Chapter 2. Automatic Algorithm Design

instance class of interest. Most parameters are either continuous or behavi-
oural. Performance is usually predictable between similar configurations.

Configuration: the chosen algorithm has multiple available strategies or heurist-
ics, that need to be set before the execution. Configuration includes categorical
parameters that makes predictions less relevant, as a single parameter change
can lead to very different (even possibly improper and unfeasible) algorithm
behaviour and performance. Tuning may also be necessary, either during or
after configuration.

Mapping: the algorithm is yet to be chosen, usually because not enough inform-
ation on the future instances is known and they may be different enough to
warrant having to study instances classes and to map each of them to an op-
timal algorithm. Evidently, configuration and tuning may also be necessary.

These three sub-problems all aim to predict what will be the best algorithm on
the possible future problem instances. They should all be seen as machine learning
process, with training data on past or artificial instances and testing generalisation
on distinct unseen instances.

Setting: now that the instance of interest is known, the different parameters can be
set using either the recommended configuration, basic rules (e.g., parameter
values based on the instance size, or the presence or absence of some features),
or obviously using the prediction resulting of specific tuning and configura-
tion.

Selection: likewise, either following a choice based on literature recommendation
or a previously obtained mapping, the algorithm and its parameters is chosen
for execution.

As mentioned before, these distinctions are mainly there to easily include manual
design processes that result of standard algorithm development or preliminary
analyses. The only difference between setting and selection is that in latter also se-
lects the algorithm, while it is already known in the former. This also enables us to
keep the term selection, as mapping was preferred to designates the learning phase
of algorithm selection.

Then, we describe the online sub-problems which can also use search features.

Control: starting from their initial values, continuous parameters can now be ad-
apted during the execution of the algorithm, to better match their values with
regard of the particular search context encountered. Specific control mechan-
isms can also handle generic categorical parameters, strategies, and heuristics

2.3. Overall Automatic Design Taxonomy Proposition 37

It enables many possible improvements, such as for example combining the
strength of multiple strategies, delaying the strategy choice to after the start
of the resolution.

Scheduling: the solving process can use different strategies at different moments
of the search. Multiple distinct algorithms can now be used sequentially on
the instance in order to multiply the chances of using one able very well ad-
apted to quickly solve the instance, with the drawback of generally not being
able to efficiently use the knowledge collecting a previous algorithm.

Note that if online mechanisms are not taken into account during the prelimin-
ary design phases, it is likely that the parameter values obtained are only optimal
in average during the run, and not specifically optimal as initial parameter values
for the online adaptation.

2.3.4 Additional Complexity Viewpoint

Our taxonomy proposition presented in Figure 2.4 does not include the classical
parameter control taxonomy of algorithms proposed by Eiben et al. (1999). In-
stead, we propose the following definitions to update the original one and com-
plement our taxonomy while also matching the learning categorisation of Burke
et al. (2010).

Static algorithms: the description of the algorithm is not altered during the exe-
cution; every parameter that would was been considered for tuning or config-
uration has a fixed, final, value.

Dynamic algorithms: parameter values can change, but only according to ran-
dom, predictive, and deterministic events, such as elapsed running time or
number of iterations.

Adaptive algorithms: the algorithm can use explicit feedback from the search pro-
cess to modify itself through control mechanisms, such as machine learning or
credit assignment procedures.

The main differences between this taxonomy and the one of Eiben et al. (1999)
are as follow. First, we include static algorithms into the taxonomy. Then, we
use the term “deterministic algorithm” instead of “dynamic algorithm”; Eiben et al.
(1999) already raised concerns that “the term ’deterministic’ control might not be
the most appropriate” and mentioned “’fixed’ parameter control” as a possible
preferred alternative. The adaptive definition is directly taken from the original
one. Finally, as for now the self-adaptive distinction does not really seems to
have meaning outside the scope of evolutionary algorithms and is therefore not
included.

38 Chapter 2. Automatic Algorithm Design

Finally, these three categories of algorithms directly correspond to the three
categories of the learning dimension in Burke et al. (2010): static algorithms use no
learning, dynamic algorithms use offline learning (i.e., knowledge from previous
instances), and adaptive algorithms use online learning (i.e., knowledge from the
current instance).

Equipped with his five senses, man explores
the universe around him and calls the
adventure Science.

Edwin Hubble

Part II

Multi-objective Local Search

39

Chapter 3

Unified MOLS Structure

Everything must be made as simple as
possible. But not simpler.

Albert Einstein

In this chapter, we investigate multi-objective local search (MOLS) techniques
in the literature.

We first give a detailed overview of local search techniques in multi-objective
metaheuristics, following their historical development. Then, we survey and dis-
cuss the different MOLS strategies. Finally, we propose a unification of MOLS
techniques into a general framework.

This chapter provides the necessary materials that are used in Chapter 4 to
instantiate the different MOLS algorithms used in the following chapters: the static
MOLS algorithm of Chapter 6, the adaptive MOLS algorithm of Chapter 7, and
finally the MOLS configuration schedules of Chapter 8.

This chapter contributions are closely linked to the following publication:

• Blot, A., Kessaci, M., and Jourdan, L. (2018b). Survey and unification of local
search techniques in metaheuristics for multi-objective combinatorial op-
timisation. Journal of Heuristics.

3.1 Preliminaries

3.1.1 Definitions

In this thesis, we focus on multi-objective combinatorial optimisation problems in
which the search space is a finite set of solutions. These problems are generally NP-

41

42 Chapter 3. Unified MOLS Structure

hard, making exhaustive numeration of the search space is generally not feasible
for large instances.

For solving such problems, approximation algorithms that exploit the structure
of the search space to iteratively find better and better solutions are used, such as
local search algorithms. The idea behind local search algorithms is that small modi-
fications in the representation of a solution may lead to either a small improvement
or a small deterioration of its initial quality. The notion of neighbourhood is defined
from this idea. A neighbourhood operator is a function that modifies part of a given
solution that produces a new solution called a neighbour. The set of neighbours
that can be generated from a given solution x defines the neighbourhood N(x) of
x. This concept of neighbourhood gives a structure to the search space by connect-
ing close solutions.

Several definitions result from this concept. When the neighbourhood N(x) of
a solution x contains no improving neighbour, x then constitutes a local optimum.
Note that a solution x can be a local optimum for a neighbourhood N1 without
being a local optimum for another neighbourhood N2. Furthermore, there is no
guarantee for a local optimum to be a global optimum, and it is generally not one.
On the contrary, a global optimum is always a local optimum regardless of the
neighbourhood considered since it is of the best possible quality.

Local search algorithms iteratively use neighbourhood operators to reach better
and better solutions. Unfortunately, local optima are fundamentally detrimental to
local search algorithms as there is usually no means to distinguish between local
and global optima. Thus, to continue the search after having converged to a local
optima, researchers have proposed multiple techniques, including either perform-
ing multiple random moves over the search space called kicks (e.g., Iterated Local
Search, Lourenço et al. (2010)), accepting to move temporarily to worse solutions
(e.g., Simulated Annealing, Kirkpatrick et al. (1983), doing a Tabu Search, Glover
(1989); Glover and Laguna (1997)) or switching between several neighbourhood
structures (e.g., variable neighbourhood search, Mladenović and Hansen (1997)).

In a multi-objective combinatorial optimisation context, this notion is extended
by defining Pareto local optima (PLO) as the solutions whose neighbourhood con-
tains no dominating neighbour, i.e., the solutions whose every neighbour is either
dominated or incomparable. Likewise, there is no guarantee for a PLO to be a
Pareto optimum, although Pareto optima are always PLO regardless of the neigh-
bourhood considered. Furthermore, many, if not all, of the above techniques used
to escape local optima in a single-objective context have been extended to multi-
objective ones to deal with PLO.

3.1. Preliminaries 43

3.1.2 Historical Development

Historically, local search algorithms have been initially designed to solve single-
objective combinatorial optimisation problems and thus are themselves single-
objective algorithms (Hoos and Stützle, 2004). Multi-objective local search (MOLS)
algorithms are used on the same combinatorial problems, e.g., multi-objective trav-
elling salesman problems, multi-objective scheduling problems (Jaszkiewicz, 2002;
Basseur and Burke, 2007; Liefooghe et al., 2012; Dubois-Lacoste et al., 2015), and
bioinformatics problems (Abbasi et al., 2015). The majority of the literature works
focuses on bi-objective and tri-objective problems, while very fewer works tackle
more than three objectives simultaneously. This is due to the nature of the induced
search space; indeed, in these many-objective problems (Ishibuchi et al., 2008) solu-
tions are much more often incomparable to each others, thus majorly hindering
the neighbourhood exploration of MOLS algorithms.

The development of MOLS algorithms simultaneously occurred following two
different directions. On the one hand, they were directly extended from some of
the well-known and established single-objective algorithms (e.g., Serafini, 1994;
Ulungu et al., 1995; Czyzak and Jaszkiewicz, 1996; Hansen, 1997). On the other
hand, they were also either integrated into evolutionary algorithms as inner com-
ponents or used as post-processing algorithms (e.g., Ishibuchi and Murata, 1996;
Knowles and Corne, 1999; Talbi et al., 2001). Nowadays, the prominent MOLS al-
gorithms in the literature have grown into the PLS algorithms, which are derived
from the second type of MOLS algorithms.

In the following, we detail chronologically the development of these two al-
gorithmic families before summarising their common characteristics.

Extensions of Single-objective Algorithms

Since local search algorithms have been originally designed for single-objective op-
timisation, they are single-trajectory algorithms, meaning that they follow a single
solution: the current solution. Unsurprisingly, the first MOLS algorithms were ex-
tensions of these single-objective local search algorithms.

Simulated Annealing (SA) (Kirkpatrick et al., 1983) is a local search procedure
that optimises a single solution, using a decreasing parameter, the temperature, to
slowly converge to the global optimal solution. Serafini (1994) and Ulungu et al.
(1995, 1999) have independently proposed the same algorithm, Multi-Objective
Simulated Annealing (MOSA). Like in the original single-objective algorithm, a
single current solution is considered and moved through the search space, while

44 Chapter 3. Unified MOLS Structure

a subsidiary set is used to store the potential Pareto optimal solutions. The cur-
rent solution is updated by evaluating a single random neighbour and poten-
tially accepting it with regard to rules based on probabilities, which are themselves
based on whether the neighbour dominates, is dominated by or is incomparable to
the current solution, and on weighted projections of the fitness function. Czyzak
and Jaszkiewicz (1996, 1998) proposed the Pareto Simulated Annealing (PSA), in
which, rather than a single current solution, a set of current solutions is used to
converge into multiple optima at the same time. The diversity of having mul-
tiple current solutions is also used to guide the parallel searches in diverse dir-
ections. Engrand (1998) and then Suppapitnarm and Parks (1999) proposed other
MOSA variants, in which the current solution is periodically replaced by one of the
archived solutions (SMOSA). Other variants also include the Pareto Archived Sim-
ulated Annealing (PASA) by Suresh and Mohanasundaram (2004), the Archived
Multi-Objective Simulated Annealing (AMOSA) by Bandyopadhyay et al. (2008)
and those based on both Pareto dominance (PDMOSA) and weights (WMOSA)
proposed in literature reviews by Suman (2003); Suman and Kumar (2006).

Tabu Search (TS) (Glover, 1989; Glover and Laguna, 1997) is a local search al-
gorithm that uses an auxiliary set of solutions, the tabu list, to guide the search and
escape local optima by preventing a backward move on the search space by banning
the acceptance of neighbours too similar to recent considered solutions. In a TS
local search, when a solution is explored, each of the solution’s neighbours is eval-
uated and the best non-tabu one is selected to replace the current solution, even if
it has a worse quality. The first multi-objective algorithm based on TS is the Multi-
Objective Tabu Search (MOTS) proposed by Hansen (1997). It uses a set of current
solutions and independently explores their neighbourhoods using an aggregation
of the multiple objectives. After a given number of iterations, a drift strategy is
applied: the set of solutions is updated by replacing one of the solutions by an-
other one, both uniformly selected at random in it, to explore the whole front and
not merely to focus on one part of the objective space. Other TS algorithms have
been proposed, such as the one by Baykasoglu et al. (1999), which is based on a
local search with an intensification memory to restart from when no more improv-
ing move is available, or the two algorithms proposed by Jaeggi et al. (2004, 2008),
based on the Hooke and Jeeves move (MOTS) and path-relinking (PRMOTS), re-
spectively. Multi-objective variants of scatter search using TS and path-relinking
have also been proposed (Beausoleil, 2001; Molina et al., 2007).

Greedy Randomised Adaptive Search Procedure for Maximum Independent
Set (GRASP) is a procedure originally presented by Feo et al. (1994) for single-
objective optimisation problems. It has been extended by Vianna and Arroyo
(2004) for multi-objective optimisation problems (GRASP-MULTI). Both algorithms

3.1. Preliminaries 45

are multi-start metaheuristics that alternate two phases, the first being the con-
struction of an initial solution, and the second being the iterative improvement
of that solution through a local search procedure; the best overall solution (or set
of solutions, for the multi-objective version) is then returned. The local search
procedure simply replaces the current solution by any improving neighbour until
there is no more improving neighbour. In the case of the multi-objective version,
the different local search iterations use different aggregation weights and a list of
all potential Pareto optimal solutions is automatically kept up to date. An extens-
ive survey of multi-objective GRASP can be found in Martí et al. (2015), in which
the authors propose a multi-objective GRAPS with path-relinking.

Lastly, Variable Neighbourhood Search (VNS) (Mladenović and Hansen, 1997)
is a local search algorithm that solves the local optima problem by simply consider-
ing multiple other neighbourhoods. Indeed, a PLO regarding a given neighbour-
hood may have dominating neighbours regarding other neighbourhoods. Geiger
(2008) proposed the Multi-Objective Variable Neighbourhood Search (MOVNS)
based on PLST (Talbi et al., 2001) and the VNS methodology. Like in PLS, an
archive is used to store all potential Pareto optimal solutions. In every iteration,
both a solution and a neighbourhood, if they have not been explored yet, are selec-
ted uniformly at random, and then the solution is entirely explored and the Pareto
set is updated using all the neighbours. Arroyo et al. (2011) proposed an interest-
ing alternative to the MOVNS algorithm by adding a shaking mechanism: instead
of generating the neighbourhood of a solution of the Pareto set, their algorithm
generates the neighbourhood of a neighbour of the solution of the Pareto set.

In Evolutionary Algorithms

In addition to the single-objective local search algorithms, the development of
MOLS algorithms also occurred at the same time jointly with the multi-objective
evolutionary algorithms.

Evolutionary Algorithms (EAs) constitute a class of metaheuristics based on
the iterative improvement of a set of solutions (namely, the population), which is
often used to tackle multi-objective optimisation problems. EAs usually iterate
both crossover and mutation techniques to improve the population. There are two
types of hybridisation of multi-objective EAs with local search mechanisms. The
first type integrates the local search inside the EA, either complementing or re-
placing the mutation, by using a local search on every solution of the population
at each iteration. The local search is then generally a single-objective algorithm,
based on an aggregation of the different objectives. The second type uses a MOLS

46 Chapter 3. Unified MOLS Structure

as a post-processing procedure at the end of the EA.

Ishibuchi and Murata (1996, 1998) first proposed the Multi-Objective Genetic
Local Search (MOGLS), which hybridises a genetic algorithm with a single-objective
local search by performing a local search on every solution generated at every it-
eration. During the local search, at most k neighbours of the current solution are
produced and any improving neighbour is accepted. The crossover and the muta-
tion strategies generate new solutions where the local search is applied using a
new aggregation, i.e., the weights are randomly chosen. A cellular variant, called
C-MOGLS, was proposed by Murata et al. (2000), which divides solutions into cells
associated with weight vectors to guide the selection and local search procedures
of the MOGLS. Jaszkiewicz (2002) proposed another Genetic Local Search (GLS)
where the main differences are the way the solutions are selected for recombination
and the local search aggregation, which uses a weight vector selected at random
from a set of possible weight vectors. Knowles and Corne (1999, 2000a) proposed
the Pareto Archived Evolutionary Strategy (PAES), an EA without crossover that
only relies on local search techniques. PAES was presented as “the simplest non-
trivial approach to a multi-objective local search procedure”, and three versions
were introduced. All versions maintain a single current solution to be explored,
while the population takes the role of a Pareto set. In the simple (1+1)-PAES, the
current solution is explored by generating a single neighbour. The neighbour re-
places the current solution either if it dominates the latter or if it is in a less crowded
region of the population. The population itself is updated in such a way that any
dominated solution is discarded and the solutions of less crowded spaces replace
the solutions of more crowded spaces. The (1+λ)-PAES variant generates λ neigh-
bours of the current solution at every iteration, which are all considered for up-
dating the population and replacing the current solution. The (µ+λ)-PAES variant
replaces the current solution with a list of µ current solutions, one of which is
explored, selected using a binary tournament. Knowles and Corne (2000b) also
proposed the memetic-PAES (M-PAES), a variant periodically employing a cros-
sover.

Talbi et al. (2001) also proposed a genetic algorithm hybridised with a MOLS
procedure. The execution of the algorithm is divided into two separate steps, be-
ginning with the execution of a genetic algorithm. Once the genetic algorithm
finishes, every solution of the final population is then explored by generating and
archiving every possible non-dominated neighbour, a procedure that is then iter-
ated until the end of the algorithm. This second step of the algorithms is sometimes
referred to as PLS-2 due to its similarities to the Pareto local search algorithms (see
the following). To avoid confusions due to the numbering, we will refer to it as
PLST instead.

3.1. Preliminaries 47

Similarly, Moslehi and Mahnam (2011) proposed a hybridisation of a multi-
objective particle swarm optimisation algorithm with a single-objective local search
procedure (MOPSO+LS).

Pareto Local Search Algorithms

Following the steps of algorithms such as PAES (Knowles and Corne, 1999) and
PLST (Talbi et al., 2001), which are based on Pareto dominance and use the popu-
lation of the EA as a Pareto set, many more algorithms solely based on local search
techniques have been designed that are not simple extensions of known single-
objective local search algorithms. These simple extensions can still be seen as either
single-trajectory algorithms or multiple-trajectory algorithms, as multiple solutions
are simultaneously iteratively improved. On the contrary, the notion of trajectory
is more blurred in the following algorithms, which are based more on improving
iteratively the full archive (originally the evolutionary population) than on focus-
ing on single solutions.

Paquete et al. (2004) and Angel et al. (2004) simultaneously proposed the first
standalone local search algorithms: the Pareto Local Search (PLS) and the Bi-criteria
Local Search (BLS). Both algorithms are very similar and are both known as the ori-
ginal PLS algorithm. Unlike in the previous EAs, in PLS algorithms, a population is
called an archive and always consists of a Pareto set. At every iteration of the PLS
algorithm, a single solution not yet considered is taken from the archive to explore
its neighbourhood and all of its neighbours are used to update the archive.

Aguirre and Tanaka (2005) proposed the multiple multi-objective random bit
climbers (moRBC) algorithm, which also follows a local search scheme. At each
iteration, all the possible moves of the neighbourhood are generated. They are all
successively applied to the current solution, which can be immediately replaced
when a dominating neighbour is found. These authors proposed multiple ver-
sions of moRBC wherein incomparable neighbours may be accepted and a separ-
ate archive may be used for crowding or restarting purposes.

Using the idea of employing a separate standalone procedure to generate the
initial solutions of the local search, Paquete and Stützle (2003) proposed the Two-
Phase Local Search procedure (TPLS) for bi-objective optimisation problems. First,
an initial solution is generated (originally, using a local search), considering the
first objective only. Then, a local search is performed, starting from the resulting
solution, but using an aggregation of the objectives slightly more oriented towards
the second objective. This step is then repeated until the final local search con-
siders the second objective only. Many variants of the TPLS procedure have been
proposed, among which is the 2-Phase Pareto Local Search (2PPLS) procedure by

48 Chapter 3. Unified MOLS Structure

Lust and Teghem (2010), which hybridises the first step by constructing potentially
extreme supported efficient solutions as the initial set of a PLS algorithm and an adapt-
ive version of TPLS, likewise hybridised with a PLS algorithm, by Dubois-Lacoste
et al. (2011b).

Instead of using the Pareto dominance or an aggregation-based comparison,
the Indicator-Based Multi-Objective Local Search (IBMOLS) (Basseur and Burke,
2007; Basseur et al., 2012) accepts neighbours that are better than any solution of
the population, by using a binary multi-objective indicator, such as the hyper-
volume indicator (Zitzler and Thiele, 1999). The population size of IBMOLS is
fixed, the worse solution being replaced as soon as a new neighbour is accepted.
The authors also proposed an iterative version of IBMOLS, in which the new initial
Pareto set is obtained by applying random noise to a given number of solutions of
the Pareto set. If the Pareto set is not big enough, additional solutions randomly
generated are considered.

Drugan and Thierens (2012) proposed a multi-restart version of PLS with the
Iterated PLS (IPLS). IPLS follows the PLST algorithm, but associates with every
solution a Boolean flag that is turned off after the solution neighbourhood is ex-
plored. When all solutions are flagged, the search first restarts from a new solution
that is randomly generated. After a given number of PLS runs, instead of consider-
ing a new solution, IPLS uniformly selects at random a solution from the archive,
applies a mutation and restarts from the resulting solution.

Two separate generalisations of the PLS algorithms have since been independ-
ently proposed: the Dominance-based Multi-objective Local Search (DMLS) of Lie-
fooghe et al. (2012) and the Stochastic Pareto Local Search (SPLS) of Drugan and
Thierens (2012). The DMLS generalisation uses an archive of solutions and in-
cludes multiple strategies related to the selection of solutions to explore and to the
exploration of the neighbourhood. DMLS(α·β) denotes that the DMLS uses the se-
lection strategy α (with α ∈ {1, ⋆} for the selection of a single random solution and
all solutions, respectively) and the exploration strategy β (with β ∈ {1, 1 ̸≺, 1≻, ⋆}
for the acceptance of a single neighbour at random, a single non-dominated neigh-
bour at random, a single dominating neighbour at random and all neighbours, re-
spectively). The SPLS generalisation also uses an archive of solutions from which
at each iteration a solution is selected uniformly to be explored. Similarly, multiple
exploration strategies are discussed. Furthermore, like in IPLS, a Boolean flag is
associated with each solution to avoid exploring it multiple times and to enable
faster termination and restarts when the exploration is not performed exhaust-
ively. Indeed, the aforementioned authors also proposed a more generic process
to restart PLS algorithms, together with a hybrid genetic PLS algorithm. Moalic
et al. (2013) also proposed the Fast Local Search (FLS), which behaves like SPLS

3.1. Preliminaries 49

in that the exploration of a solution neighbourhood stops as soon as a neighbour
not dominated by the archive is found. Tricoire (2012) also proposed the multi-
directional local search (MDLS), loosely based on PLS, in which at every iteration
a solution from the archive is taken at starting point of a subsidiary local search,
before merging the resulting archives by filtering dominating solutions.

The anytime behaviour of PLS algorithms has been investigated by Dubois-
Lacoste et al. (2012); Dubois-Lacoste et al. (2015), who proposed variants that op-
timise not just the quality of the final archive only, but also the quality of interme-
diate archives. They proposed the optimistic hypervolume improvement (OHVI),
an alternative mechanism for selecting the solution of the archive whose neigh-
bourhood will be explored, and, more importantly, they showed that changing the
exploration strategy during the search could improve the performance of the PLS
algorithm.

Finally, Inja et al. (2014) proposed the Queued Pareto Local Search (QPLS), an-
other restart scheme using a queue to avoid premature convergence. Starting from
the initial solutions, QPLS recursively explores every solution of the queue by us-
ing dominating neighbours to finally obtain a single final solution. If this final
solution is not dominated by the archive, it is merged and k incomparable neigh-
bours are added to the queue. The authors also proposed the Genetic Queued
Pareto Local Search (GQPLS), which hybridises genetic algorithm techniques to
update the queue.

3.1.3 Condensed Literature Summary

All of the MOLS algorithms outlined above share a common structure, in which
a Pareto set of solution is iteratively improved by considering either a solution
or a set of solutions as current, which is then explored to merge some or all of
their neighbouring solutions to the Pareto set. Table 3.1 summarises the main local
search algorithms in the literature, according to the five following local search at-
tributes.

Current solutions: A single current solution or a current set of multiple solutions
is used by the local search.

Archive: The local search keeps track of a separate current set, or the current solu-
tions can be directly selected from the archive.

Neighbourhood exploration: A single neighbour, the full neighbourhood or only
a subset of the neighbourhood (if a stopping criterion is used) is evaluated.

Acceptance criterion: Incomparable and dominated neighbour may be accepted
and returned after the neighbourhood exploration, either as the stopping cri-
terion of the exploration or in addition to the final neighbour.

50 Chapter 3. Unified MOLS Structure

Table 3.1 – Condensed literature summary

“X”: the algorithm possesses the given characteristic
“C”: the algorithm may be configured to possess the given characteristic

Current Archive Neighbours Acceptance Quality Reference
Criterion

Algorithm Si
ng

le
cu

rr
en

ts
ol

ut
io

n

M
ul

ti
pl

e
cu

rr
en

ts
ol

ut
io

ns

Se
pa

ra
te

ar
ch

iv
e

an
d

cu
rr

en
ts

ol
ut

io
n

C
ur

re
nt

so
lu

ti
on

(s
)f

ro
m

th
e

ar
ch

iv
e

Si
ng

le
ne

ig
hb

ou
r

ex
pl

or
ed

Pa
rt

ia
ln

ei
gh

bo
ur

ho
od

ex
pl

or
at

io
n

Fu
ll

ne
ig

hb
ou

rh
oo

d
ex

pl
or

at
io

n

A
cc

ep
ti

fi
nc

om
pa

ra
bl

e

A
cc

ep
ti

fd
om

in
at

ed

A
gg

re
ga

ti
on

Pa
re

to
do

m
in

an
ce

C
om

pa
re

to
cu

rr
en

ts
ol

ut
io

n

C
om

pa
re

to
Pa

re
to

se
t

MOSA X X X X X X X
PSA X X X X X X X
MOTS X X X X X X X
MOVNS X X X X X X
MOGLS X X X X X X
PAES X C X C C X X X
PLST X X X X X X
PLS X X X X X X
moRBC X X X X C X X
IBMOLS X X X X X X
DMLS C C X C C C C X C C
SPLS X X C C C C X C C
FLS X X X X X X

MOSA (Serafini, 1994; Ulungu et al., 1995); PSA (Czyzak and Jaszkiewicz, 1996);
MOTS (Hansen, 1997); MOVNS (Geiger, 2008); MOGLS (Ishibuchi and Murata,
1996); PAES (Knowles and Corne, 1999, 2000a); PLST (Talbi et al., 2001); PLS
(Paquete et al., 2004; Angel et al., 2004); moRBC (Aguirre and Tanaka, 2005); IB-
MOLS (Basseur and Burke, 2007); DMLS (Liefooghe et al., 2012); SPLS (Drugan
and Thierens, 2012); FLS (Moalic et al., 2013)

3.1. Preliminaries 51

Quality: The comparison of the quality of two neighbours is done by considering
either an aggregation or the Pareto dominance.

Reference: During the neighbourhood exploration, neighbours are compared either
to the current solution or to other solutions such as the full Pareto set.

In Table 3.1, an “X” means that the algorithm possesses the corresponding
characteristic, possibly depending of the context during the resolution (e.g., SA
algorithm accepting dominated solutions by means of the temperature), whereas
a “C” means that the characteristic is only present in some particular variant of
the algorithm (e.g., the DMLS structure is able to instantiate many different local
search algorithms).

3.1.4 Analysis and Discussion

Table 3.1 shows a trend between the two algorithmic families of the MOLS al-
gorithms, where extensions of single-objective local search algorithms generally
separate the archive and the current solutions and use aggregations, and the fam-
ily of the PLS algorithms, which generally directly select the current solutions from
the archive and use Pareto dominance.

One of the apparent weakness of MOLS algorithms relates to the possible num-
ber of solutions included in the archive and thus the size and shape of the optimal
Pareto front. Indeed, if a MOLS algorithm does not use any mechanism to bound
the size of its archive, exploration of too many solutions (and furthermore ex-
haustive neighbourhood explorations) can become prohibitively computationally
expensive slowing the convergence of the algorithm to a halting point (Liefooghe
et al., 2012). MOLS are similarly much weakened when using too large neighbour-
hood, especially when explorations are performed exhaustively. Another current
weakness of MOLS algorithms is that there is usually no explicit handling of the in-
tensification/diversification trade-off. If some works focus on preserving diversity
at the cost of some convergence speed (Blot et al., 2015), in most of the MOLS al-
gorithms only intensification is rewarded and diversification is delegated as a side-
effect of the archiving process. Furthermore, some variants of MOLS algorithms
may require long computational time to reach high-quality approximations of the
Pareto fronts and result on poor solutions if stopped early. Anytime mechanisms
for MOLS algorithms have been proposed to deal with this particular limitation
(Dubois-Lacoste et al., 2015).

The two DMLS and SPLS generalisations can be configured to instantiate a
large range of PLS strategies, but are not compatible with many extensions of
single-objective strategies (and do not claim to be). The first fundamental limit-
ation is that these generalisations do not use an explicit set of current solutions

52 Chapter 3. Unified MOLS Structure

that is conveyed through the iterations of the local search, but instead select new
current solutions from the archive every iteration. This also implies that the cur-
rent solutions are always non-dominated. They can, through the use of an activa-
tion/deactivation scheme, emulate to some extent some trajectory-based strategies
by keeping track of the selection of the previous iteration, but without the flexib-
ility of keeping a separate set of current solutions, which allows, for example, to
easily perform explorations outside their current archive (e.g., to explore domin-
ated neighbours or when the algorithm allows some deterioration of the current
solutions). The second main limitation is that the use of an archive as the main set
of solutions leads to the use of the Pareto dominance (or a weakened version) for
quality comparison, which leaves out the use of scalar-based comparisons in the
exploration procedure.

To overcome these limitations, to allow more flexibility and to incorporate more
diverse strategies, we propose a new MOLS generalisation, which is detailed in
the following sections. Its main characteristics are the use of two explicit sets of
solutions (namely, the set of current solutions and the archive), the separation of
acceptance and stopping criteria in the exploration strategy, the possibility of using
a simple set and not a Pareto set for the set of current solutions, the possibility of
using scalar-based acceptance criteria and, finally, the use of an explicit reference
during neighbourhood comparisons.

3.2 MOLS Strategies

In this section, we describe different sets and strategies of the MOLS algorithms
through examples from the literature review of the previous section. They are the
basic components of our unification of MOLS that will be presented in Section 3.4.

3.2.1 Set of Potential Pareto Optimal Solutions (Archive)

The archive is the Pareto set at the core of all MOLS algorithms. It holds poten-
tial Pareto optimal solutions, i.e., solutions not yet dominated by any other found
solutions. This is the set of solutions finally returned by the procedure.

Depending on the problem considered, the size of the archive can become very
large. Unless this size is kept unbounded, a mechanism such as a diversity cri-
terion (e.g., crowding, relaxed dominance) or a basic filtering mechanism may be
used to remove the less important potential Pareto optimal solutions once a given
size is reached (Liefooghe et al., 2012).

3.2. MOLS Strategies 53

3.2.2 Set of Current Solutions (Memory)

In addition to the archive, the current set, a second set of solutions, is used to keep
all the solutions whose neighbourhood may be explored. These solutions are taken
either from the archive or from previous iterations and may possibly be dominated
by some solutions of the archive. To avoid using the same term (i.e., current) for
both the current set and the current solutions it contains, we propose to call this
set memory.

We identify three categories of strategies concerning the usage of the memory.
First, as a direct extension of the single-objective local search algorithms, the mem-
ory can contain a single current solution (e.g., MOSA algorithm (Ulungu et al.,
1999)). Iteration after iteration, the current solution is explored, potentially re-
placed by one of its neighbours, while the archive is automatically updated. If the
current solution appears to be a PLO, a restart can then be performed from one of
the other potential Pareto optimal solutions. However, considering a single cur-
rent solution means focusing on a single trajectory in the search space, whereas
the multi-objective setting requires optimising the whole Pareto front. Thus, the
second category of strategies includes algorithms that keep a set of multiple current
solutions and explores it sequentially, with the direct consequence of an improved
diversity since each of the separate trajectories can then focus on the subset of the
Pareto front (e.g., PSA (Czyzak and Jaszkiewicz, 1998), MOTS algorithms (Hansen,
1997)). Finally, the third category includes algorithms that do not keep track of the
trajectory, but rather directly select and explore solutions from the archive (e.g.,
PAES (Knowles and Corne, 1999), PLS (Paquete et al., 2004), DMLS algorithms
(Liefooghe et al., 2012)).

Note that, like in the archive, the size of the memory may become very large,
and, therefore, the same bounding mechanisms may be used. However, as such
mechanisms were proposed for algorithms in which the memory and the archive
were joined, it may be advantageous to bound only the memory and keep the
archive unbounded.

We may envision a new exploration strategy where multiple solutions could
be explored at the same time by combining their neighbourhoods. In that case,
without loss of generality, the current object would be itself a set of solutions and
the memory would be a set of sets of solutions.

3.2.3 Exploration Strategies

The exploration of the current solution consists in the construction of its neigh-
bourhood, i.e., the generation of its neighbours.

54 Chapter 3. Unified MOLS Structure

Like in the single-objective case, two types of exploration strategy are distin-
guished: the best improvement strategy and the first improvement strategy. The best
strategies compare every neighbour to the current solution or to the reference so
that only the best non-dominated neighbours are accepted. On the contrary, the
first strategies generate neighbours one by one and stop when a given stopping
criterion is reached. Of course, the latter strategies are not limited to stopping after
a single accepted neighbour. In both the best and the first strategies, the exploration
procedure generates some neighbours, accepting some of them, and then returns
the set of accepted neighbours. For each of these neighbours, three questions arise:
(i) Should it be included into the archive? (ii) Should it replace the current solu-
tion? (iii) Should the exploration continue or stop in regard to its quality?

The quality of a neighbour can be a function of either the current solution or
a part or the totality of the archive. Figure 3.1 shows how the objective space is
divided into dominating solutions (a), incomparable solutions (b) and dominated
(c) solutions, regarding (left) a single solution x and (right) multiple solutions x,
u, v and w. Solutions in the (c) space are dominated by the current solutions and
are generally ignored, whereas exploration strategies usually consider solutions in
the (a) or (a+b) spaces. Considering the neighbouring solutions enables to make
better-informed decisions, e.g., distinguishing between the (α), (β), and (γ) spaces;
the main drawback, however, is the added cost (e.g., computational time) of an
overall more expensive exploration procedure. An alternative to using the Pareto
dominance criterion is to aggregate the objectives, to obtain a scalar value sub-
sequently used to either rank neighbours or compute probabilities. The weights of
the aggregation can be either globally set, associated with the current solution or
updated automatically in regard to the state of the archive.

The archive (the set of potential Pareto optimal solutions) can be updated dir-
ectly either during the exploration of a current solution or after the exploration
of all current solutions has been performed. In the direct update, the explora-
tions of the remaining current solutions may be impacted, i.e., the reference set
is modified on the fly. Similarly, the memory (the set of current solutions) can be
updated during the exploration to replace the current explored solutions (e.g., in
trajectory-based local search algorithms (Serafini, 1994; Ulungu et al., 1995; Czyzak
and Jaszkiewicz, 1996; Hansen, 1997)) or to include promising new neighbours dir-
ectly (Blot et al., 2015). If the memory contains multiple solutions, they are all ex-
plored before the search continues unless an early stopping criterion is met. Note
that, if multiple solutions are explored and either the memory or the archive is up-
dated during the exploration, the order in which the solutions of the memory are
explored can strongly impact the performance.

3.2. MOLS Strategies 55

f2

f1

x

a

b

b

c

f2

f1

u

v

x

w
a

c
α

α

γ

γ

β

β

β

β

β

Figure 3.1 – Objective space around x, without (left) and with (right) taking into
account surrounding solutions u, v and w

(a), (b) and (c): objective space partitions in which the solution respectively dom-
inates, is incomparable with and is dominated by the solution x.
(α), (β) and (γ): subdivisions of the (b) objective space partition in which the solu-
tion respectively dominates, is incomparable with and is dominated by the solu-
tion u, v or w.

56 Chapter 3. Unified MOLS Structure

3.2.4 Selection Strategies

After the exploration step has been completed, the solutions of the memory will
have been explored and the archive will have been updated with the accepted
neighbours. The memory has to be updated for the next iteration. Generally, the
solutions are taken from the archive (e.g., randomly, with regard to a crowding or
sharing property (Deb, 2001), to an individual contribution (Dubois-Lacoste et al.,
2012) or to the order of insertion in the archive (Blot et al., 2017a)). However, in
trajectory-based local search algorithms, the memory is unchanged since it has
been updated during the previous exploration step.

3.2.5 Termination Criteria

The local search has a natural termination criterion, which is reached when the
memory becomes empty, meaning that no more solution is to be explored. Such an
event generally means that every solution of the archive is a PLO. This situation
also arises when the algorithm intentionally removes partially explored solutions
from the memory, for example, to force a quick convergence or ensure diversifica-
tion. Other commonly used termination criteria include the whole computational
time; the total number of iterations, explorations or evaluations; and the number
of successive iterations without improvement.

3.3 Escaping Local Optima

In single-objective optimisation, local search algorithms are generally trapped in
local optima. However, various mechanisms (e.g., SA, TS) can be used to converge
further towards a global optimum. Likewise, the basic instantiations of the pro-
cedures detailed in this paper will generally be trapped in sets of PLO. Likewise,
the same various mechanisms can be and have been adapted for MOLS procedures
to converge further towards the set of Pareto optima.

First, a temperature can be used to compute the probabilities of accepting neigh-
bours of lesser quality (Serafini, 1994; Ulungu et al., 1995; Czyzak and Jaszkiewicz,
1996). This temperature can be either a global parameter of the local search or a
specific temperature that can be associated with each and every solution of the
memory when the local search follows a set of solutions of fixed size. The Tabu
paradigm can also be used to drive the search out of the PLO (Hansen, 1997). Sim-
ilarly, a global tabu list or a set of tabu list can be used for each followed solution.
Finally, it is possible to use an iterated local search scheme (Drugan and Thier-
ens, 2012) to stop the local search early, before reaching a true set of PLO. In this

3.4. MOLS Unification Proposition 57

Procedure 3.1: LS(memory, archive)
Input: memory, a set of solutions to generate neighbourhoods
Input: archive, a Pareto set of solutions
Output: the updated archive set

until local search stopping condition is met
or memory = ∅ do
candidates← ∅;
until iteration stopping condition is met

or every current ∈ memory has been considered do
let current ∈ memory;
ref← REFERENCE(current, memory, archive,
candidates);
accepted← EXPLORE(current, ref, archive);
memory← UPDATE(memory, current, accepted);
candidates← candidates ∪ accepted;

archive← COMBINE(archive, candidates);
memory← SELECT(memory, archive, candidates);

return archive;

case, a convergence condition is defined as, for example, a threshold in the con-
vergence rate or a stagnation criterion. The search can then restart either from the
new solutions selected uniformly in the search space or from the solutions in the
close neighbourhood of the current or the best solutions, using a kick. In the single-
objective case, a kick consists in taking a solution, either the current one or the best
one, and performing a given number of random moves over the search space. In
the multi-objective case, some solutions are selected (either a single one, a fixed
number or a ratio of solutions, or all of them) from the memory or the archive; a
single-objective kick is performed on each of them, and the resulting solutions are
included in a new Pareto set, and then the algorithm restarts from it.

3.4 MOLS Unification Proposition

3.4.1 Main Loop

Procedure 3.1 (LS) describes the main loop of the local search. This procedure takes
an initial current set and an archive as input and returns the updated archive. It
consists in iterating three steps (the names in parentheses are the names of the

58 Chapter 3. Unified MOLS Structure

Procedure 3.2: EXPLORE(current, ref, archive)
Input: current, a solution to generate the neighbourhood
Input: ref, a set of solutions to compare neighbours with
Input: archive, a Pareto set of solutions
Output: accepted, the set of accepted solutions
Side effect: modifies the archive set

accepted← ∅;
until exploration stopping condition is met

or every neighbour ∈ N(current) has been considered do
let neighbour ∈ N(current);
accepted← ACCEPT(accepted, neighbour, ref);
current, ref, archive← UPDATE(ref, accepted, current,
archive, neighbour);

return accepted;

sub-procedures described as they appear in Procedure 3.1).

1. First, the solutions of the memory are explored one by one: for each, a refer-
ence is chosen to compare the neighbours with (REFERENCE), then some or
all of the neighbours are accepted as candidates (EXPLORE), and, finally, the
memory may be updated with the neighbours (UPDATE).

2. When all the current solutions have been explored, or when an early stop-
ping condition is met, all accepted neighbours are used to update the archive
(COMBINE). Note that it is possible to update the archive during the explor-
ation, in which case the COMBINE procedure can still be used to bound its
size.

3. Finally, the memory is set up with the new solutions to explore.

These three steps are iterated until the memory is empty or as soon as a given
stopping condition is met.

3.4.2 Local Search Exploration

The exploration mechanism (EXPLORE) is described in Procedure 3.2. This pro-
cedure handles how neighbouring solutions are generated and accepted, and how
the reference set is updated. It takes as input a solution to explore, which is used to
generate the neighbourhood; a reference set to compare the neighbours with; and
the archive of the local search. It returns a set of accepted neighbours of the input
solution and possibly modifies the archive as a side effect.

3.5. Literature Instantiation 59

Procedure 3.3: ITER(archive)
Input: archive, a Pareto set of solutions
Output: the updated archive∗ set

archive← LS(archive);
archive∗← archive;
until global stopping condition is met do

memory, archive← PERTURB(archive, archive∗);
archive← LS(memory, archive);
archive∗← COMBINE(archive, archive∗);

return archive∗;

The neighbours of the current solution are generated one by one, and for each
new neighbour, the set of accepted neighbours is updated (ACCEPT). To imple-
ment some local search algorithms from the literature, it is possible to immediately
update the current solution, the reference set and the archive (UPDATE). Neigh-
bours are generated until every possible neighbour of the current solution has been
generated or as soon as a given stopping condition is met.

3.4.3 Iterated Local Search Algorithm

The local search of Procedure 3.1 (LS) can eventually stop because either the archive
contains only PLO or an early stopping condition has been met. One of the possible
mechanisms to iterate the local search (LS) and continue the search is described in
Procedure 3.3 (ITER). It follows the iterated local search (ILS) scheme (Lourenço
et al., 2003; Drugan and Thierens, 2010, 2012) where the final archive given by the
local search is slightly modified and given again as input to the local search pro-
cedure.

First, the local search is performed once, which sets up archive∗, the Pareto
set that contains the overall best non-dominated solutions across local search iter-
ations. Then, until the global stopping condition is met, new initial memory and
archive are generated (PERTURB), subsequent local search are performed and the
two archives are combined to update archive∗ (COMBINE).

3.5 Literature Instantiation

Following the unification presented in Section 3.4, Table 3.2 and Table 3.3 detail
how the main literature algorithms are instantiated in Procedure 3.1 and Proced-

60 Chapter 3. Unified MOLS Structure

ure 3.2, respectively, of our structure. In Table 3.2, k designates a constant of the
algorithm set beforehand. In Table 3.3, the “∗” symbol means that the memory size
is variable.

Table 3.2 shows that many of the MOLS algorithms in the literature use the
current solution as a reference. However, recent studies increasingly encourage
the use of the archive as a reference since it leads to improved results (Blot et al.,
2017a,c). The recombination column highlights that the recombination only makes
sense when the exploration step returns a new Pareto archive; for trajectory-based
local search algorithms, such a step is directly performed during the exploration,
when a neighbour replaces the current solution in the memory. Not mentioned
here is the possible bounding of the archive size, which is also performed on some
problems after Pareto filtering (e.g., Liefooghe et al., 2012). The selection column
mainly differentiates between trajectory-based algorithms, for which such a step
is likewise irrelevant, and algorithms that do not use a memory mechanism but
recreate the set of new solutions every iteration.

Lastly, Table 3.3 shows that, if the first MOLS algorithms predominantly accep-
ted improving neighbours, newer MOLS algorithms have shown that considering
incomparable neighbours leads to improved results.

3.5. Literature Instantiation 61

Ta
bl

e
3.

2
–

C
on

de
ns

ed
lit

er
at

ur
e

in
st

an
ti

at
io

n
(L

S
Pr

oc
ed

ur
e)

im
p.

:i
m

pr
ov

in
g

(i
m

pl
ie

s
un

de
rl

yi
ng

sc
al

ar
is

at
io

n)
do

m
.:

do
m

in
at

in
g

nd
om

.:
no

n-
do

m
in

at
ed

(e
it

he
r

do
m

in
at

in
g

or
in

co
m

pa
ra

bl
e)

A
lg

or
it

hm
R

EF
ER

EN
C

E
U

PD
A

TE
C

O
M

BI
N

E
SE

LE
C

T
M

is
ce

lla
ne

ou
s

M
O

SA
cu

rr
en

ts
ol

ut
io

n
re

pl
ac

e
if

im
p.

ir
re

le
va

nt
do

no
th

in
g

PS
A

cu
rr

en
ts

ol
ut

io
n

re
pl

ac
e

if
im

p.
ir

re
le

va
nt

do
no

th
in

g
M

O
TS

ir
re

le
va

nt
al

w
ay

s
re

pl
ac

e
ir

re
le

va
nt

dr
if

ti
fl

on
g

en
ou

gh
M

O
V

N
S

ir
re

le
va

nt
re

m
ov

e
cu

rr
en

ti
ff

ul
ly

ex
pl

or
ed

;
ad

d
nd

om
.n

ei
gh

bo
ur

s;
fil

te
r

Pa
re

to
do

m
in

an
ce

al
ls

ol
ut

io
ns

M
O

G
LS

cu
rr

en
ts

ol
ut

io
n

re
pl

ac
e

if
im

p.
Pa

re
to

do
m

in
an

ce
do

no
th

in
g

st
op

af
te

r
a

gi
ve

n
nu

m
be

r
of

ex
pl

or
at

io
ns

w
it

ho
ut

im
-

pr
ov

em
en

t
(1

+
1)

-P
A

ES
cu

rr
en

ts
ol

ut
io

n
re

pl
ac

e
if

do
m

.o
r

le
ss

cr
ow

de
d

Pa
re

to
do

m
in

an
ce

do
no

th
in

g
(1

+
λ
)-

PA
ES

cu
rr

en
ts

ol
ut

io
n

re
pl

ac
e

if
do

m
.o

r
le

ss
cr

ow
de

d
Pa

re
to

do
m

in
an

ce
do

no
th

in
g

(µ
+
λ
)-

PA
ES

cu
rr

en
ts

ol
ut

io
n

re
pl

ac
e

if
do

m
.o

r
le

ss
cr

ow
de

d
Pa

re
to

do
m

in
an

ce
do

no
th

in
g

re
fe

re
nc

e
ch

os
en

vi
a

bi
na

ry
to

ur
na

m
en

t
PL

ST
ar

ch
iv

e
do

no
th

in
g

Pa
re

to
do

m
in

an
ce

al
ls

ol
ut

io
ns

PL
S

ir
re

le
va

nt
re

pl
ac

e
if

do
m

.
Pa

re
to

do
m

in
an

ce
si

ng
le

un
ex

pl
or

ed
m

oR
BC

cu
rr

en
ts

ol
ut

io
n

re
pl

ac
e

if
im

p.
ir

re
le

va
nt

ir
re

le
va

nt
re

st
ar

to
n

lo
ca

lo
pt

im
a

IB
M

O
LS

m
em

or
y

do
no

th
in

g
ir

re
le

va
nt

al
ls

ol
ut

io
ns

D
M

LS
(1
·)

cu
rr

en
ts

ol
ut

io
n

do
no

th
in

g
Pa

re
to

do
m

in
an

ce
si

ng
le

un
ex

pl
or

ed
D

M
LS

(⋆
·)

cu
rr

en
ts

ol
ut

io
n

do
no

th
in

g
Pa

re
to

do
m

in
an

ce
al

ls
ol

ut
io

ns
SP

LS
cu

rr
en

ts
ol

ut
io

n
do

no
th

in
g

Pa
re

to
do

m
in

an
ce

si
ng

le
no

n-
fla

gg
ed

FL
S

cu
rr

en
ts

ol
ut

io
n

al
w

ay
s

re
pl

ac
e;

fil
te

r
Pa

re
to

do
m

in
an

ce
do

no
th

in
g

M
O

SA
(S

er
afi

ni
,1

99
4;

U
lu

ng
u

et
al

.,
19

95
);

PS
A

(C
zy

za
k

an
d

Ja
sz

ki
ew

ic
z,

19
96

);
M

O
TS

(H
an

se
n,

19
97

);
M

O
V

N
S

(G
ei

ge
r,

20
08

);
M

O
G

LS
(I

sh
ib

uc
hi

an
d

M
ur

at
a,

19
96

);
PA

ES
(K

no
w

le
s

an
d

C
or

ne
,1

99
9,

20
00

a)
;P

LS
T

(T
al

bi
et

al
.,

20
01

);
PL

S
(P

aq
ue

te
et

al
.,

20
04

;A
ng

el
et

al
.,

20
04

);
m

oR
BC

(A
gu

ir
re

an
d

Ta
na

ka
,2

00
5)

;I
BM

O
LS

(B
as

se
ur

an
d

Bu
rk

e,
20

07
);

D
M

LS
(L

ie
fo

og
he

et
al

.,
20

12
);

SP
LS

(D
ru

ga
n

an
d

Th
ie

re
ns

,2
01

2)
;F

LS
(M

oa
lic

et
al

.,
20

13
)

62 Chapter 3. Unified MOLS Structure
Table

3.3
–

C
ondensed

literature
instantiation

(EX
PLO

R
E

Procedure)

im
p.:im

proving
(im

plies
underlying

scalarisation)
dom

.:dom
inating

ndom
.:non-dom

inated
(either

dom
inating

or
incom

parable)

M
em

ory
size:1:single

solution;
k:constant;∗:variable;other:other

constant

A
lgorithm

M
em

ory
size

A
C

C
EPT

U
PD

A
TE

M
iscellaneous

M
O

SA
1

ifim
p.

update
both

PSA
∗

ifim
p.

update
both

M
O

T
S

∗
bestnon-tabu

neighbour
update

both
M

O
V

N
S

1
ifndom

.
irrelevant

use
an

unexplored
neighbourhood

M
O

G
LS

∗
firstim

p.
do

nothing
stop

after
firstim

p.neighbour
or

k
neighbours

(1
+

1
)-PA

ES
1

ifdom
.or

less
crow

ded
do

nothing
stop

after
1

neighbour
(1

+
λ
)-PA

ES
1

ifdom
.or

less
crow

ded
do

nothing
stop

after
λ

neighbours
(µ

+
λ
)-PA

ES
µ

ifdom
.or

less
crow

ded
do

nothing
stop

after
λ

neighbours
PLST

∗
ifndom

.
do

nothing
PLS

1
ifndom

.
do

nothing
m

oR
BC

(1
+

1
)

1
ifdom

.
replace

r
e
f

ifaccepted
neighbours

generated
using

the
currentreference

m
oR

BC
(1

+
1
) ∗

1
ifndom

.
replace

r
e
f

ifaccepted
neighbours

generated
using

the
currentreference

m
oR

BC
(1

+
1
)
A

1
ifdom

.or
less

crow
ded

ndom
.

replace
r
e
f

ifaccepted
neighbours

generated
using

the
currentreference

IBM
O

LS
∗

ifnotw
orstw

.r.t.the
indicator

rem
ove

w
orstfrom

r
e
f

D
M

LS
(·1

)
k

ifdom
.or

ndom
.

do
nothing

stop
after

1
neighbour

D
M

LS
(·1

̸≺
)

k
ifdom

.or
ndom

.
stop

after
1

ndom
.

D
M

LS
(·1

≻
)

k
ifdom

.or
ndom

.
do

nothing
stop

after
1

dom
.

D
M

LS
(·⋆

)
k

ifdom
.or

ndom
.

do
nothing

SPLS
1

ifdom
.or

ndom
.

do
nothing

FLS
∗

ifndom
.

do
nothing

stop
after

firstndom
.neighbour

M
O

SA
(Serafini,1994;U

lungu
etal.,1995);PSA

(C
zyzak

and
Jaszkiew

icz,1996);M
O

TS
(H

ansen,1997);M
O

V
N

S
(G

eiger,2008);M
O

G
LS

(Ishibuchi
and

M
urata,1996);PA

ES
(K

now
les

and
C

orne,1999,2000a);PLST
(Talbietal.,2001);PLS

(Paquete
etal.,2004;A

ngeletal.,2004);m
oR

BC
(A

guirre
and

Tanaka,2005);IBM
O

LS
(Basseur

and
Burke,2007);D

M
LS

(Liefooghe
etal.,2012);SPLS

(D
rugan

and
Thierens,2012);FLS

(M
oalic

etal.,2013)

Chapter 4

MOLS Instantiations

A computer program can modify itself but it
cannot violate its own instructions – it can at
best change some parts of itself by *obeying*
its own instructions.

Gödel, Escher, Bach: An Eternal Golden Braid
Douglas Hofstadter

In this chapter, following the discussions of Chapter 3, we discuss the specific
multi-objective local search (MOLS) algorithms that will be used for experiments
in Chapter 6, Chapter 7, and Chapter 8, together with their implementation.

First, we describe a highly configurable MOLS algorithm, resulting from the
unification proposition of Chapter 3. We discuss its possible parameters and con-
figuration space. This MOLS algorithm is thoroughly analysed in Chapter 6, and
serves as basis for all MOLS algorithms used in this thesis.

This first MOLS algorithm is static: once set, its parameters are used during the
entire execution and cannot be changed. In order to study MOLS algorithms in
which the value of the parameters are adapted during its execution, we then dis-
cuss the steps necessary to obtain an adaptive MOLS algorithm. We also examine
the most impactful parameter of the static MOLS algorithm, and discuss how gen-
eric control mechanisms can be integrated. The resulting adaptive MOLS algorithm
is analysed in Chapter 7.

Then, we discuss the possibility of considering schedules of MOLS configura-
tions, as an intermediary proposition between offline and online design of MOLS
algorithms. Parameters values and strategies can change during the execution of
the MOLS algorithm, but only according to a static schedule. These schedules of
MOLS configurations are investigated in Chapter 8.

63

64 Chapter 4. MOLS Instantiations

Finally, we present AMH (Adaptive MetaHeuristics), the C++ framework in
which all the instantiations presented in this chapter have been implemented. It
was designed according to the experimental needs of the following chapters, in or-
der to facilitate the automatic construction, control, and integration into automatic
design tools.

While the publications regarding the different MOLS instantiations are described
in the chapters in which they are respectively studied, the AMH framework is spe-
cifically linked to the following publication:

• Blot, A., Kessaci-Marmion, M., and Jourdan, L. (2017b). AMH: a new frame-
work to design adaptive metaheuristics. In 12th Metaheuristics International
Conference, MIC 2017. Proceedings, pages 586–588.

4.1 Static MOLS Algorithm

Chapter 3 proposed a unification of MOLS strategies into a general framework. In
this section, we describe the specific instantiation that will be used in Chapter 6
together with the parameters that comprise its configuration space.

4.1.1 Algorithm

Algorithm 4.1 describes a basic static MOLS algorithm. It is based on an iterated
local search (see Procedure 3.3) and the DMLS algorithm of Liefooghe et al. (2012).
The inner MOLS loop iterates three successive steps: the selection step in which
some solutions of the current set are selected, the exploration step in which the
neighbourhood of every selected solution is investigated, and the archive step in
which the resulting neighbours are merged into the current set of solutions. The
outer MOLS loop simply performs a perturbation of the current archive, calls the
inner MOLS loop on the perturbed set of solution, merges the resulting set with
the current archive, and iterates until the global termination criterion is met.

This instantiation differs from the unification of Chapter 3 by the set of strategies
we choose to focus on. In particular, it only features dominance-based strategies,
while strategies based on aggregation are not taken into account. Other differences
include a selection step before the exploration step, at the beginning of the main
loop, rather than at its end, a complete exploration of every solution selected, and
an explicit combination mechanisms that first remove dominated solutions before
bounding the size of the archive. Finally, as in the DMLS algorithm, the “mem-

4.1. Static MOLS Algorithm 65

Algorithm 4.1: Static Iterated Multi-Objective Local Search
Input: archive, a Pareto set of solutions
Output: the updated archive set

current← archive;
/* Inner MOLS loop */

until inner termination criterion is met do
/* Selection */

memory← SELECT(current);
/* Exploration */

candidates← ∅;
for solution ∈ memory do

ref← REFERENCE (solution, current);
accepted← EXPLORE(solution, ref);
candidates← candidates ∪ accepted;

/* Archive */

current← bound (pareto (current ∪ candidates));

archive← pareto (archive ∪ current);
/* Outer MOLS loop (ILS) */

until termination criterion is met do
/* Perturbation */

current← PERTURB (archive);
/* Inner MOLS loop, again */

until inner termination criterion is met do
/* Selection */

memory← SELECT(current);
/* Exploration */

candidates← ∅;
for solution ∈ memory do

ref← REFERENCE (solution, current);
accepted← EXPLORE(solution, ref);
candidates← candidates ∪ accepted;

/* Archive */

current← bound (pareto (current ∪ candidates));

archive← pareto (archive ∪ current);

return archive;

66 Chapter 4. MOLS Instantiations

ory” is not updated during the exploration, as it is discarded at the end of every
iteration.

Finally, Figure 4.1 and Figure 4.2 illustrate the inner and outer loops of the MOLS
algorithm and the chronological succession of the MOLS and the ILS iterations.

time

S. E. A. S. E. A. S.

MOLS iteration

.

Figure 4.1 – Inner MOLS loop (labels: “S.”: selection, “E.”: exploration, “A.”:
archive)

time

P. LS A. P. LS A. P.

ILS iteration

.

Figure 4.2 – Outer MOLS loop (labels: “P.”: perturbation, “LS”: local search, “A.”:
archive)

4.1.2 Configuration Space

The complete configuration space of Algorithm 4.1 considered in this thesis is sum-
marised in Table 4.1. It features five main categorical parameters, that are tied to
the different choices of strategies of the MOLS algorithm, and five integer para-
meters, that each enable fine tuning of one strategy.

We shortly describe hereafter the meaning of every parameter and every para-
meter value. They are discussed more deeply in Chapter 3.

select-strat: the selection strategy: with the value all, every solution of the
archive will be explored; otherwise, with either of the values rand, newest,
or oldest, only some solutions, respectively uniformly chosen at random
from the archive, or chosen within the latest or oldest solutions included in
the archive will be explored.

select-size: the (strictly positive) number of solution selected from the archive.

4.1. Static MOLS Algorithm 67

Table 4.1 – Considered parameter space

Phase Parameter Parameter values

Selection select-strat {all, rand, newest, oldest}
Selection select-size N+

Exploration explor-strat {all, all-imp, imp, imp-ndom, ndom}
Exploration explor-ref {sol, arch}
Exploration explor-size N+

Archive bound-strat {unbounded, rand, replace}
Archive bound-size N+

Perturbation perturb-strat {kick, kick-all, restart}
Perturbation perturb-size N+

Perturbation perturb-strength N+

explor-strat: the exploration strategy: with the values all or all-imp, every
neighbour is evaluated and the non-dominated and dominating neighbours,
respectively, are returned; with the values imp, imp-ndom, or ndom, the neigh-
bours are iteratively evaluated until a sufficient number of dominating, dom-
inating and non-dominated neighbours, respectively, are found and returned.
Finally, with the value imp-ndom, the non-dominated neighbours does not
contribute to the number of neighbours selected but are also returned.

explor-ref: the reference of the exploration, either the current explored solution
(with the value sol), or the current archive (with the value arch).

explor-size: the number of neighbours selected in the imp, imp-ndom, and
ndom exploration strategies.

bound-strat: the bounding strategy after Pareto dominance. With the value
unbounded, it returns the current archive. With the value rand, solutions
chosen uniformly at random are discarded from the archive as long as the size
of the archive is too large; with the value replace, it uses the DMLS strategy
of removing newly accepted solutions if they did not replaced at least one
solution of the archive.

bound-size: the maximum number of solution in the archive above which the
bounding strategy will apply.

perturb-strat: the perturbation strategy: with the value kick, some solu-
tions of the archive will be selected uniformly at random and then iteratively
replaced by one of their neighbours; with the value kick-all, the kick

strategy applies for every solution of the archive; with the value restart,
some solution of the search space, selected uniformly at random, will be con-

68 Chapter 4. MOLS Instantiations

sidered instead.
perturb-size: the number of solutions considered in the kick and restart

strategies.
perturb-strength: the number of kick iterations in the kick and kick-all

strategies.

4.2 Control Mechanisms Integration

The philosophy of integrating online mechanisms in static algorithms is to make
the most of multiple strategies, mechanisms, or parameter values, during a single
execution of the algorithm, whereas the static algorithm would only have used a
single one.

In this section, we discuss how to integrate generic control mechanisms into
the static MOLS algorithm introduced in the previous section. This discussion
is divided into five successive steps, each answering a different question of the
integration process:

Parameter analysis: what alternative strategies can be used?
Knowledge exploitation: how to use knowledge to select the strategy to use?
Knowledge extraction: what information from the search process can be used?
Knowledge modelling: how to store extracted knowledge?
Decisional schedule: when and how frequently extract and use knowledge?

Similar discussions are for example described in Karafotias et al. (2012) as first
considering the parameters (“what is to be controlled”), then a set of observables
(“what evidence is used”), and the algorithm making decisions (“how the control is
performed”); or in di Tollo et al. (2015) as the following steps: aggregation criteria
computation, reward computation, credit assignment, and operator selection.

4.2.1 Parameter Analysis

The parameters of our static MOLS algorithm, described in Table 4.1, are either
categorical and numerical parameters. For each phase of the MOLS algorithm, the
categorical parameters defines the strategy that will be applied, while the numer-
ical parameters are used to further fine-tune the behaviour of the algorithm and
are common to all strategies.

In order to use a control mechanism, a choice of which parameter will be con-
trolled is necessary. Several possibilities naturally arise. First, the control mech-
anism can be limited to a single parameter of the MOLS algorithm, either a cat-
egorical or a numerical one, while all the other parameters values are fixed during

4.2. Control Mechanisms Integration 69

the run. The control mechanisms could also deal with multiple parameters, either
independently or through the use of combinations of parameter values. Finally,
multiple control mechanisms could theoretically be used independently on mul-
tiple parameters. To keep the our adaptive MOLS algorithm simple and to ensure
its viability we will use standard literature control mechanisms and focus on con-
trolling a single parameter.

The most impactful phase of the static MOLS algorithm is without doubt the
exploration phase, that exposes up to nine possible exploration strategies (with the
combination of the explor-strat and explor-ref parameters). We choose to
focus on the strategy categorical parameter, rather than on the fine-tuning numer-
ical parameter, as we expect its control to have a more significant impact of the
performance of the MOLS algorithm.

4.2.2 Knowledge Exploitation

From the choice of the selected parameters to be controlled follows the choice of the
control mechanism itself. While a large number of possible control mechanism can
be found in the literature (see Chapter 2), the majority of them are fundamentally
tied to a given algorithm or a given parameter, and cannot simply be extended to
other algorithms.

However, as we focus on a single, categorical, parameter, a class of generic
control parameters including probability based mechanisms, multi-armed bandits,
and also reinforcement learning can still conveniently be applied. An overview of
these generic control mechanisms will be given in the following section.

4.2.3 Knowledge Extraction

The two main types of algorithm in which parameter control is used are determ-
inistic and adaptive algorithms, that differ in their use of feedback from the search
process (see Chapter 2). While control mechanisms in deterministic algorithm only
use predictable feedback such as elapsed time or number of iterations, control
mechanisms of adaptive algorithms requires feedback that is based on the search
process itself, the current instance and the solutions evaluated so far. This feed-
back is essential to fuel the decisions that enable the control mechanism to select
efficient strategies during the search. Hence follows the following crucial question:
what information from the search process can be used as feedback?

Knowledge that can be assessed or computed during the execution of the al-
gorithm is called an observable. A possible set of simple observable would for ex-

70 Chapter 4. MOLS Instantiations

ample for evolutionary algorithms be genotypic diversity, phenotopic diversity,
fitness standard deviation, fitness improvement, or also stagnation counters (Kara-
fotias et al., 2014).

For our adaptive MOLS algorithm, we choose to use the fitness improvement
as observable, computed through the mean of the hypervolume (see Chapter 1).
While hypervolume is a by itself a very good and widespread multi-objective ac-
curacy performance indicator, and incidentally one of the two quality indicators
that will be used in the following chapters, it was shown to be a efficient measure
to feed control mechanisms in multi-objective optimisation (Moffaert et al., 2013).

To motivate our choice of hypervolume as feedback, preliminary observations
on other possible observables have been conducted, namely based on direct object-
ive values, number, distribution of solutions in the archive, and distance between
successive and extreme solutions. None of these investigated observables was
deemed a reasonable alternative to the use of hypervolume as feedback to the con-
trol mechanism.

4.2.4 Knowledge Modelling

Having chosen the hypervolume as feedback for the control mechanism, the second
question to answer is how to store the extracted knowledge.

As a result of the well-separated and categorical nature of the MOLS explora-
tion strategy parameter, that we choose to focus on, and the ensuing simple control
mechanisms, we decided to model each possible exploration strategy by an indi-
vidual arm, and to associate to every arm a single value associated to the predicted
feedback of the arm.

Note that the use of reinforcement learning control mechanisms would require
to also model the possible states of the search and then to associate a single pre-
diction value to every combination of an arm and a possible state. Furthermore,
some other control mechanisms not considered in the experiments could possibly
require to have access to a more detailed version of the whole history of feedback,
rather than a single aggregated value, e.g., to use a sliding window of the history
(Maturana et al., 2009).

4.2.5 Decisional Schedule

Most importantly, after the questions of what strategies can be used, how to select
them dynamically, what knowledge can be used to that end, and finally how to store
said knowledge, comes the final, central, question of when to take decisions.

4.2. Control Mechanisms Integration 71

Of course, extracting knowledge, store it, and use it to drive a control mech-
anism has an inherent cost that slows down the algorithm, compared to the static
version that always use the same statically determined configuration and set of
strategies. However, this cost is necessary to accurately use the best strategies
on every instance rather than only relying the a static offline prediction made
for all instances. It is nevertheless important to not impair computation time too
much in favour of the additional learning overhead. Additionally, while some
strategies may require some time before reaching their peak efficiency, the know-
ledge sources may also require sufficient time between extractions for the feedback
to be relevant and useful.

In our MOLS algorithm (Algorithm 4.1), there are at least two meaningful places
where a control mechanism could be integrated. First, it could be placed inside the
inner loop of the MOLS, meaning that it would take the decision of which explor-
ation mechanism to use before its actual application at the beginning of the MOLS
iteration, and could gather the feedback of its performance at the end of the itera-
tion. This possibility is illustrated in Figure 4.3.

time

C. S. E. A. F. C. S. E.

MOLS iteration

.

Figure 4.3 – Control integration in the inner MOLS loop (labels: “C.”: control, “S.”:
selection, “E.”: exploration, “A.”: archive, “F.”: feedback)

This would probably be the most natural approach, if not for the following
issues. First, not all explorations use the same computation time, as exhaustive
explorations are naturally much more time-consuming that partial explorations.
This could however be alleviated by scaling the following feedback value using the
elapsed computation time. On the other hand, a second problem is that if a single
exploration is ineffective, the feedback associated to that exploration strategy will
instantaneously be affected negatively. To easily allow more time for the explora-
tion strategy to be effective, the selection and feedback steps of Figure 4.3 could be
performed once every k MOLS iterations, where k is an additional parameter that
should be determined experimentally. However, the third problem, which is that
our MOLS algorithm is based on an iterated local search algorithm, and as such
occasionally performs perturbations, after which the previous feedback may not
relevant to chose the exploration strategy.

72 Chapter 4. MOLS Instantiations

In view of these problems, a second possibility was considered instead, illus-
trated in Figure 4.4. This time, the control mechanism is placed inside the outer
loop of the MOLS instead, i.e., in the ILS loop. Decisions about which explora-
tion to use are then taken before the call the the inner MOLS procedure, that then
use the same exploration until it finishes, and the feedback is computed after the
archive resulting of the MOLS procedure is merged into the final archive.

time

C. P. LS A. F. C. P. LS

ILS iteration

.

Figure 4.4 – Control integration in the outer MOLS loop (labels: “C.”: control, “P.”:
perturbation, “LS”: local search, “A.”: archive, “F.”: feedback)

4.3 Adaptive MOLS Algorithm

Having discussed in the previous section the integration into Algorithm 4.1 of con-
trol mechanisms, we present in this section the adaptive MOLS algorithm that will
be used in Chapter 7 along with the generic control mechanisms that could be
integrated into it.

4.3.1 Algorithm

Algorithm 4.2 describes the resulting adaptive MOLS algorithm used in this thesis.
It is based on Algorithm 4.1 and adds the necessary structure to control the explor-
ation strategy of the iterated inner MOLS (Algorithm 4.3). All other strategies are
fixed since they were shown to be less impactful MOLS components on the PFSP
(see Chapter 6).

Note that both the static Algorithm 4.1 and the adaptive Algorithm 4.2 become
strictly identical when the INIT_ARM and CONTROL_ARM procedures always
returns the same exploration procedure.

4.3.2 Related adaptive MOLS Algorithms

Other adaptive versions of MOLS algorithms have already been proposed. The
most related to our adaptive algorithm is the Pareto Autonomous Local Search
presented in Veerapen and Saubion (2011), in which several possible exploration

4.3. Adaptive MOLS Algorithm 73

Algorithm 4.2: Adaptive Iterated Multi-Objective Local Search
Input: archive, a Pareto set of solutions
Output: the updated archive set

current← archive;
/* Initialise all rewards */

INIT_REWARDS ();
/* Select initial exploration strategy */

exploration← INIT_ARM ();
/* Apply the MOLS algorithm */

current←MOLS (current, exploration);
/* Merge resulting archive and update rewards */

tmp← pareto (archive ∪ current);
UPDATE_REWARDS (exploration, current, tmp);
archive← tmp;
until termination criterion is met do

/* Select exploration strategy */

exploration← CONTROL_ARM ();
/* Perturbation */

current← PERTURB (archive);
/* Apply the MOLS algorithm */

current←MOLS (current, exploration);
/* Merge resulting archive and update rewards */

tmp← pareto (archive ∪ current);
UPDATE_REWARDS (exploration, current, tmp);
archive← tmp;

return archive;

74 Chapter 4. MOLS Instantiations

Algorithm 4.3: Inner Multi-Objective Local Search (mols)
Input: A set of solutions, an exploration strategy
Output: A set of solutions

archive← initial set of solutions;
until termination criterion is met do

/* Select a random solution */

selected← select_1_rand (archive);
/* Apply the given exploration strategy */

reference← archive;
accepted← exploration_strat (current, reference);
/* Update archive with accepted neighbours */

archive← bounded_pareto (archive, accepted);

return archive;

strategies are controlled on two permutation problems, the QAP and the TSP, using
a probability matching control mechanism. The main differences follow.

First, they focus controlling operators on solutions, directly in the MOLS itera-
tion loop, and the MOLS is not iterated. On the contrary, we focus on improving
the entire set of solutions, and the control is performed outside the MOLS iteration
loop. Then, they use both the the relative change in quality (of a solution), and dis-
tance between the solutions, while we only use the relative change in hypervolume
to capture both aspect of quality and diversity. Finally, they use a sliding window
mechanism, when we will prefer in the experiments a more simple reinforcement
learning mechanism (see Equation 7.5).

4.4 Configuration Scheduling

In the previous sections, we presented the instantiations of two MOLS algorithms:
a static one (Algorithm 4.1), in which the parameters values are fixed before the
search, and an adaptive one (Algorithm 4.2), in which a control mechanism modi-
fies the exploration strategy during the search.

In this section, we propose a hybrid approach, that enables both the modifica-
tion of parameter values during the search and the use of offline parameter config-
uration.

4.4. Configuration Scheduling 75

4.4.1 Proposition

Parameter configuration deals with a single target algorithm and its configuration
space; its goal is to predict the configurations of the search space that are optimal
on a given distribution of possible instances. Once a seemingly optimal config-
uration is found, selected, and finally used on an instance, this configuration is
obviously used for the entirety of the run of the target algorithm. Automatic para-
meter configuration of MOLS algorithms is tackled in depth in Chapter 6.

On the other hand, parameter control enables to start the run from an initial
configuration (possibly given by an automatic configurator) and to progressively
adapt the configuration of the running algorithm to better fit the instance and ul-
timately use parameter values that are optimal for the given instance, rather than
optimal for the entire possible distribution of instance. However, adaptation time
is usually rather limited, restraining control to very few parameters and parameter
values. Additionally, the optimal configuration may also depend of the state of the
search, making strategies stronger in the initialisation phase or on the contrary bet-
ter fitted for the final steps of the algorithm. Automatic parameter configuration
of MOLS algorithms is tackled in Chapter 7.

Our proposition is to consider schedules of configurations. Instead of consid-
ering a single configuration for the entire run of the algorithm, or trying to con-
trolling parameter values automatically, we will use a static timed sequence of
multiple configurations. There are two major benefits of manipulating a static
time-based sequence of configurations are. It uses no feedback from the search
process, making it a deterministic parameter control approach (see Chapter 2) and
avoiding to implement an online reward-based decision mechanism. It also en-
ables the use of classical AAC tools with no restrictions on the number of paramet-
ers of being modified during the execution: indeed online mechanisms generally
control very few parameters simultaneously, usually a single one and very rarely
more than two at the same time.

4.4.2 Definitions

Given a configurable algorithm A and it associated configuration space Θ, let us
first denote by Aθ,T the algorithm obtained that use the specific configuration
θ ∈ Θ for a given time budget T . Then, let us define, given a maximal sched-
ule length K ⩾ 1, k ∈ {1, . . . ,K} configurations (θ1, θ2, . . . , θk) ∈ Θk of A, and k time
budgets (T1, T2, . . . , Tk), the dynamic algorithm framework F(θi)k,(Ti)k obtained by
sequentially applying in sequence every configuration θi using the respective time
budget Ti, i.e., (Aθ1,T1 ,Aθ2,T2 , . . . ,Aθk,Tk

). The total time budget of the dynamic al-
gorithm framework is then T =

∑k
i=1 Ti. Note that algorithm A is not restarted

76 Chapter 4. MOLS Instantiations

t = 0 t = T
time

θ ′
1 θ ′

2 θ ′
3 θ ′

4

θ1 θ2 θ3

T ′
1 T ′

2 T ′
3 T ′

4

T1 T2 T3

F ′

F

Figure 4.5 – Examples of two configuration schedules F and F ′

when the configuration is modified: at time t = Ti the run seamlessly continues by
switching from the configuration θi to configuration θi+1, in an online way.

The configuration space of the resulting framework is directly function of Θ, the
configuration space of the original configurable algorithm. Indeed, if every pos-
sible parameter can be modified during the run, the resulting configuration space
is directly related to the Cartesian product Θk. This exponential growth implies
that considering both a long schedule length k and a large associated configura-
tion space Θ is not recommended.

Two examples of dynamic algorithm frameworks F and F ′ are given in Fig-
ure 4.5. While the framework F uses k = 3 configurations to divide the total time
budget into three interval of equal length, the framework F ′ use k = 4 configura-
tions, using in quick succession two configurations in the beginning of the run and
then using for more time the two other configurations as the search progresses.

4.4.3 Related Approaches

In addition to being related to parameter control or hyper-heuristics, as it enables
modifications in the algorithm configuration during its execution, this approach
of scheduling configurations is also similar in design to per-instance algorithm
scheduling (see Chapter 2, e.g., Amadini et al., 2014; Hoos et al., 2015; Lindauer
et al., 2016). There are however major differences. First, per-instance algorithm
scheduling is related to algorithm selection, and deals with a portfolio of distinct,
hopefully complementary algorithms. Configuration scheduling is more related
to parameter configuration, as it deals with a single algorithm and its configur-
ation space. Then, in per-instance algorithm scheduling the search is restarted
every times to algorithm changes, while in our configuration scheduling approach
simply continues the search with the updated configuration as in parameter con-
trol. Finally, the goal of per-instance algorithm scheduling is robustness: for every

4.5. AMH: Adaptive MetaHeuristics 77

instance at least one of the algorithm of the schedule has to be efficient on the in-
stance. The goal of configuration scheduling is in the contrary control, to improve
the performance compared to using a single configuration for the entire run.

4.5 AMH: Adaptive MetaHeuristics

Algorithm 4.1, together with the other MOLS implementations of this chapter, has
been implemented in C++ in AMH (Adaptive MetaHeuristics), a framework spe-
cifically designed during this thesis.

This framework enables the automatic construction of algorithms, given a func-
tional description of their components, adapting their structures to the parameter
values given at the beginning of their execution. For the need of the other MOLS
instantiations, this C++ framework has also been designed to enable the seamless
redesign of the algorithm structures during their executions.

4.5.1 Motivation

This framework was designed according to the experimental needs of the follow-
ing chapters, in order to facilitate the automatic construction, control, and integra-
tion into automatic design tools. Indeed, the experiments of the following chapters
have strong, different, requirements, that may be difficult to achieve using frame-
works that are not dedicated to automatic algorithm design.

First, automatic configurators require an easy command line interface to provide
a parameter value to each parameter of the target algorithm. The target algorithm
should be able to easily use this description of the parameter values to construct
the correct algorithm to subsequently execute it. If automatically using numerical
values from the command line may be easy, automatically construct the flow of
the algorithm with regard to design choices only available only at runtime may
not be straightforward. On the other hand, hyper-heuristics and parameter con-
trol techniques, as well as our scheduling approach, require a flexible structure in
which every parameter, every strategy or the algorithm itself may be modified and
adapted during its execution.

ParadisEO 1 (C++) and jMetal 2 (java) are both well-known frameworks of the
literature. They are dedicated to the design of metaheuristics and provide many
tools to algorithm designers to write static metaheuristics and algorithms. They
can easily accommodate the use of automatic algorithm configuration tools and

1http://paradiseo.gforge.inria.fr/
2https://jmetal.github.io/jMetal/

http://paradiseo.gforge.inria.fr/
https://jmetal.github.io/jMetal/

78 Chapter 4. MOLS Instantiations

Initialisation

Inner MOLS

Stop?

Perturbation

Inner MOLS

Combination

no

yes

Figure 4.6 – Execution flow of an iterated MOLS algorithm

use parameters to configure the metaheuristic at runtime. However, their have
not been designed to take into account the possibility to fully modify an algorithm
during its execution, which, even if possible, remains very difficult and left as
exercise to the algorithm designer.

4.5.2 Philosophy

Metaheuristic can very often be viewed as a succession of individual steps, such
as for example for our MOLS algorithm the selection, exploration and archive
steps. Therefore, we can associate a metaheuristic to its specific flow of execu-
tion. This flow can be as simple as linear, can involve Boolean branching (e.g., to
create loops), and involve routines using other flows of execution. In the case of
adaptive algorithms, this flow can be temporally or definitely rewritten.

Figure 4.6 illustrates the execution flow of an the iterated MOLS algorithm of
Algorithm 4.1. Every component of the execution flow, and therefore of the al-
gorithm, can be seen as a function taking as input and output a set of solutions.
Any coherent part of the algorithm: a single component, a sequence of compon-
ents, as well as the entire loop, or the entire algorithm, can ultimately be seen as
such a function. As example, the Inner MOLS component actually represent a sim-
ilar loop-based execution flow.

4.5. AMH: Adaptive MetaHeuristics 79

Numerical parameter usually does not interfere or influence the execution flow
of the algorithm. On the other hand, categorical parameters such as strategy ones
directly determine the execution flow. For a static metaheuristic, the construction
of the execution flow is done before the run and not modified during the execution,
whereas the execution flow of an adaptive metaheuristics may be fully modified.

AMH is designed to automatically construct the execution flow before the exe-
cution and of control it during the execution of the metaheuristic. The graph rep-
resenting the structure of the execution flow, with all its components and branch-
ing, can easily be instantiated using parameters provided as input of the algorithm,
thus facilitating algorithm configuration. This structure being manually managed
and traversed, rather than irredeemably compiled, it becomes possible to modify
it during its own execution, allowing a natural control over its components, and
more generally speaking, allowing its adaptation.

4.5.3 Design and Implementation

The AMH framework is implemented in C++. It handles the execution flow of a
given algorithm by encapsulating algorithmic operations into components and de-
scribing their temporal interactions. All algorithms implemented in AMH inherit
from a base function class – a single class representing a function – i.e., a delimited
part of the execution having defined input and output types, which are specified
at compile-time using templates. Moreover, AMH also provides a large range of
execution flow primitives such as conditions and loops, in order to easily connect all
parts of an implemented algorithm.

The core design of AMH is to only focus on the flow of execution, and not on the
solving methods. Indeed, the algorithm designer may provide any solution rep-
resentations and solving mechanisms, as long as they are can represent types and
functions. The types of every input and output, (i.e., usually solution represent-
ations) are used in template at compile-time, thus validating the correction of the
final execution flow using the C++ compiler. Solving mechanisms need to be en-
capsulated, either as static classes inheriting from the base AMH function class, or
dynamically as native C++ functions. In particular, it means that existing C++ al-
gorithm implementations (e.g., metaheuristics implemented under ParadisEO) can
benefit from AMH just by defining atomic components and encapsulating them.
Finally, an expected consequence of such a functional approach is that hybridisa-
tion of algorithms using the same solution representation is immediate.

80 Chapter 4. MOLS Instantiations

4.5.4 Execution Flow Examples

In the following, we present three examples of execution flows, using the MOLS
algorithms of the following chapters.

First, Figure 4.7 illustrates the execution flow of the dynamic Algorithm 4.2 in-
vestigated in Chapter 7, while focusing on the facility to create “complex” execu-
tion flows. It integrate control and feedback components that share the information
of the rewards associated to each execution path. The path to chosen regarding the
choice made during the control step.

Then, Figure 4.8 also illustrates the execution flow of the dynamic Algorithm 4.2,
but highlighting another feature of AMH: during the control step the execution
flow is updated by detaching one of the component (the MOLS step of the previ-
ous iteration) and replacing it by a new one, dynamically constructed.

Finally, Figure 4.9 highlights how easily a schedule of MOLS algorithm can
be constructed, simply by chaining different components constructed using the
different configurations of the schedule.

4.6 Perspectives

In this chapter, we presented and discussed three different instantiations of MOLS
algorithms: a highly parameterised static MOLS algorithm, an adaptive MOLS al-
gorithm that enable the integration of generic parameter control mechanisms, and
finally schedules of MOLS algorithms; together with the framework we designed
to implement them.

In the following, we detail two perspectives related to these implementations.

More complete static MOLS algorithm. Many of the strategies that have been
presented in Chapter 3 have not yet been integrated in the search space of the
algorithms described in Chapter 4, and could enrich the Table 4.1 with many new
original combinations of strategies.

In particular, all the considered strategies are based on Pareto dominance, while
the aggregation-based strategies have been set aside. The selection and bounding
strategies have also been restricted to very simple mechanisms, while other, more
complex and time consuming, could also have been included (e.g., strategies based
on the distribution of the solutions in the archive). Furthermore, fine-tuning para-
meters such as select-size, explor-size, and perturb-size have been
used as absolute values, while alternative parameters considering percentages of

4.6. Perspectives 81

Initialisation

Inner MOLS

Feedback

Stop?

Control

Perturbation

Path?

MOLSBMOLSA MOLSCMOLSA MOLSB MOLSC

Combination

Feedback

no

yes

Figure 4.7 – Execution flow of an adaptive algorithm using multiple paths

82 Chapter 4. MOLS Instantiations

Initialisation

Inner MOLS

Feedback

Stop?

Control

Perturbation

Inner MOLS

Combination

Feedback

no

yes

Figure 4.8 – Execution flow of an adaptive algorithm using reconstruction

MOLS1

MOLS2

MOLS3

Figure 4.9 – MOLS schedule

4.6. Perspectives 83

the current size of the archive or the size of the neighbourhood have not been in-
vestigated. Finally, complex exploration stopping criteria, such as limiting the size
of the explored neighbourhood or using hybrid conditions on neighbours also not
have been investigated.

Other decisional schedules. In Chapter 4, we only considered very basic de-
cisional schedules, in which the decisions are decided, and the reward are updated,
every iteration, or after a set number of iterations.

More complex decisional schedules can also be considered, and involve for ex-
ample multiple learning and exploitation phases, that alternate periods specifically
dedicated to update the predicted quality of every strategies, and periods that only
use the resulting predicted best strategies.

84 Chapter 4. MOLS Instantiations

Design is not just what it looks like and feels
like. Design is how it works.

Steve Jobs

Part III

Automatic Offline Design

85

Chapter 5

MO-ParamILS

Study the past if you would define the
future.

Confucius

In this chapter, we introduce MO-ParamILS, a multi-objective automatic al-
gorithm configurator. First, we discuss the motivations of multi-objective auto-
matic configuration. Then, we present ParamILS, a prominent single-objective al-
gorithm configurator. After discussing the possible uses of ParamILS in a multi-
objective context, we present MO-ParamILS, our extension of ParamILS specific-
ally designed for multi-objective configuration. Finally, we validate our multi-
objective framework on multiple configuration scenarios.

This chapter contributions are closely linked to the following publication:

• Blot, A., Hoos, H. H., Jourdan, L., Kessaci-Marmion, M., and Trautmann, H.
(2016). MO-ParamILS: A multi-objective automatic algorithm configuration
framework. In Festa, P., Sellmann, M., and Vanschoren, J., editors (2016).
Learning and Intelligent Optimization – 10th International Conference, LION 10.
Revised Selected Papers, volume 10079 of Lecture Notes in Computer Science, pages
32–47. Springer.

5.1 Multi-objective Automatic Configuration

5.1.1 Definition

Multi-objective automatic algorithm configuration (MO-AAC) naturally arises when
the performance of an algorithm is not or can not be summed up into a single value
such as running time or solution quality.

87

88 Chapter 5. MO-ParamILS

Formally, a multi-objective configuration problem consists in a direct extension
of the single-objective configuration problem (Equation 2.2) when the original per-
formance indicator is a vector of performance indicators. Using the notations of
Chapter 2, given a parameterised target algorithm A, the space Θ of configura-
tions of A, a distribution of instances D, and a statistical population parameter E,
with Aθ denoting the association of the parameterised algorithm A with the con-
figuration θ, Equation 2.2 becomes Equation 5.1 when the original performance
indicator o : Θ × C → R becomes O : Θ × C → Rn, i.e., a vector of n performance
indicators O(A, i) = (o1(A, i),o2(A, i), . . . ,on(A, i)).

{
optimise E[O(Aθ, i), i ∈ D]

subject to θ ∈ Θ
(5.1)

As in Equation 2.2, the supposition is made that the limit implied by Equa-
tion 5.1 exists and is finite. Therefore, every component of the cost vector can be
optimised independently in a multi-objective fashion as the problem becomes a
standard multi-objective optimisation problem (Equation 5.2).

{
optimise (E[o1(Aθ, i), i ∈ D], . . . ,E[on(Aθ, i), i ∈ D])

subject to θ ∈ Θ
(5.2)

Note that we will prefer to use the term performance indicator rather than the
previously used term cost metric as it does not strictly relate to the mathematical
definition of a metric. We will nevertheless continue to suppose that every indic-
ator is a cost to be minimised.

As mentioned in Chapter 2, note that in practice, automatic configuration deals
with a finite set of training instances rather than a distribution of instances, mean-
ing that the quality E[O(Aθ, i), i ∈ D] of a configuration θ over the entire distri-
bution D will be approximated rather than really computed. We denote by level of
detail of a configuration the number of instances on which the configuration was
evaluated. It is of course supposed that the set of training instances is sufficiently
large and representative of the underlying distribution so that the approximated
quality is reliable when the level of detail is high enough.

5.1.2 Use Cases

Single-objective automatic algorithm configuration (SO-AAC) optimises the qual-
ity of a given target algorithm according to a single performance indicator. There
are two main use cases: either the end-user has a fixed budget of computation time

5.2. Single-objective ParamILS 89

and is interested in having the best solution quality, or a given solution quality is
targeted and the running time to achieve it is optimised instead.

Use cases of MO-AAC are more diverse. The most straightforward use case
is the simultaneous optimisation of both the running time and the solution qual-
ity of the target algorithm. That is, the end user is interested by both achieving
the best solution quality and achieving it in the shortest amount of time. Auxili-
ary indicators such as the memory or energy consumption can also be considered
in addition to other performance indicators. While the performance of multi-
objective algorithms may be assessed using a single multi-objective indicator, with
MO-AAC several multi-objective indicators can be used simultaneously, enabling
multi-objective target algorithms to be configured according to multiple, comple-
mentary, indicators, instead of having to rely on a single one. Finally, any number
of performance indicators may be optimised simultaneously without the need to
aggregate them.

5.2 Single-objective ParamILS

ParamILS is an automatic configurator proposed by Hutter et al. (2007, 2009).
While it was presented in the primary context of optimising the running time of
the target algorithm, we present it here in the more general case of optimising an
unknown performance indicator.

5.2.1 Core Algorithm

The core algorithm of ParamILS is given by Algorithm 5.1. It is based on an it-
erated local search (Lourenço et al., 2003; Hoos and Stützle, 2004), in which the
best solution is iteratively improved by mean of both local search and perturba-
tion mechanisms. Three parameters are exposed: the number r of initial random
configurations, a restart probability prestart, and the number s of random search
steps performed in each perturbation phase.

ParamILS starts by considering r random configurations, in order to compare
the initial (usually default) configuration to a few others to make sure of its rel-
evance. Then, it applies a local search procedure (see Procedure 5.2), which is
based on the one-exchange neighbourhood, i.e., modifying a single parameter value
at a time. A tabu mechanism is also used to ensure that the configurator is never
stuck. Between iterations, there is a prestart chance to restart the search from a new
configuration, chosen uniformly at random from the search space. Otherwise, a
perturbation of s random steps is performed.

90 Chapter 5. MO-ParamILS

Algorithm 5.1: Single-objective ParamILS
Exposed parameters: r, prestart and s

Input: Initial configuration
Output: The incumbent, i.e., the overall best configuration found
Side effect: Updates the cache and the incumbent

/* Initialisation */

current_config← initial configuration;
for i← 1 . . . r do

tmp← random configuration;
update(tmp, current_config);
current_config←compare(current_config, tmp);

/* Iterated local search */

until termination criterion is met do
/* Perturbation */

if first iteration then
tmp← current_config;

else
with probability prestart then // Restart

/* incumbent is not forgotten */

current_config← random configuration;
tmp← current_config;

otherwise // Random walk

tmp← current_config;
for i← 1 . . . s do

tmp← random neighbour of tmp;

/* Local search */

tmp← local_search(tmp);
current_config← compare(current_config, tmp);

return incumbent;

5.2. Single-objective ParamILS 91

Procedure 5.2: localsearch(config)
Input: Initial configuration
Output: The best configuration found
Side effect: Updates the cache and the incumbent

current_config← initial configuration;
tabu_set← {current_config};
repeat

foreach neighbour ∈ randomised neighbourhood of current_config
do

if neighbour ∈ tabu_set then
next ;

else
tabu_set← tabu_set ∪ {neighbour};

update(neighbour, current);
if compare(current, neighbour) = neighbour then

current_config← neighbour;
break ;

until every neighbour of current_config is tabu;
return current_config;

92 Chapter 5. MO-ParamILS

Two essential elements of ParamILS are missing from Algorithm 5.1: the hand-
ling of both the global cache of runs and the incumbent. Indeed, due to the usually
very high cost of evaluating configurations of the given target algorithm, ParamILS
maintains a global cache of the results of all target algorithms performed during
the search, thus avoiding to repeat superfluous costly algorithm runs.

The incumbent is the best configuration that was found by ParamILS, which
is here handled completely implicitly. Both the incumbent and its quality are up-
dated automatically every time a configuration is evaluated. Finally, the incum-
bent is not reset when the current configuration of the iterated local search is re-
started.

The auxiliary functions used in Algorithm 5.1 and Procedure 5.2 are described
hereafter.

update(config, reference) enforces that the configuration config can be
compared to the configuration reference. This function is specified accord-
ing the particular version of ParamILS used: BasicILS or FocusedILS.

compare(config, challenger) compares a current configuration config to
another configuration challenger and returns the new current configura-
tion, i.e., the later one if it deemed more promising or the former one other-
wise. In the current ParamILS implementation, the challenger is accepted if
its level of detail is at least equal, and if it has a better or equal quality (Pro-
cedure 5.3).

detail(config) returns on how many instances the configuration config has
been run, according to the global cache. The instances being always con-
sidered incrementally, this number is sufficient to know on which instances
the configuration has been evaluated.

quality(config, insts) returns the mean quality resulting of the runs of the
configuration config on the instances insts.

There are two versions of ParamILS, that differ on how the procedure update
is handled. While BasicILS uses a fixed set of instances to evaluate the perform-
ance of every configuration, FocusedILS uses a variable set of instances, perform-
ing less runs on configurations of poorer quality to focus on the most promising
ones. These two versions are detailed in the following. A presentation of capping
mechanisms, able to further improve the performance of ParamILS, immediately
follows.

5.2. Single-objective ParamILS 93

Procedure 5.3: compare(config, challenger)
Input: Configurations config and challenger

Output: A configuration

if detail(challenger) < detail(config) then
return config;

insts← the detail(config) first instances;
if quality(challenger, insts) ⩽ quality(config, insts)

then
return challenger;

else
return config;

Procedure 5.4: update(config, reference)
Input: Configurations config and reference

Exposed parameters: n
Side effect: Updates the cache regarding conf and reference

insts← the n instances;
foreach instance i ∈ insts do

cache[reference,i]← performance of reference over i;
cache[config,i]← performance of config over i;

5.2.2 BasicILS, FocusedILS

BasicILS is the most simple version of ParamILS. It uses a single parameter, n,
which specifies how many instances are needed to compare configuration per-
formance. This allows for every configuration to have exactly the same level of
detail, because the procedure update (Procedure 5.4) always use the same set of
instances. This set of instances is selected uniformly at random (without replace-
ment) from the given training set at the beginning of the algorithm.

However, BasicILS has major issues, mainly due to the difficulty of choosing
the value of the parameter n. Chosen too small, solution quality can be inaccurate,
leading to poor generalisation of the final configuration to unseen test instances.
Chosen too large, much effort will be wasted on evaluating poor performing con-
figurations, compromising the efficiency of the search process. Additionally, if
after n instances the quality of two configurations seems almost identical there is
no possibility to further refine them to take an adequate decision.

94 Chapter 5. MO-ParamILS

To overcome these disadvantages, a more advanced version of ParamILS, Fo-
cusedILS, was simultaneously proposed. The key idea behind FocusedILS is to
avoid the potential problems arising from the use of a fixed number of instances
for evaluating configurations by starting comparisons between configurations on
a small initial set of instances and then increasing the number of instances as better
and better configurations are found.

Procedure 5.5 outlines the update procedure of FocusedILS. Compared to the
original version of Hutter et al. (2007), we propose to introduce two optional para-
meters nmin and nmax to better control the level of detail of the configurations; val-
ues of nmin = 0 and nmin = ∞ effectively disable them. This procedure follows
three steps. First, a minimum level of detail nmin is enforced. Then, until a choice
between the two configurations can be made according to the compare procedure,
effectively when one of the two configurations dominates the other, their levels of
detail are increasingly updated. Finally, if the two configurations have the same
level of detail, the resulting configuration go through an intensification procedure.

In Procedure 5.6, we propose an alternative, more efficient variant of the ori-
ginal intensification mechanism, which performs a variable number of runs based
on the time spent since intensification was last performed. The proposed intensi-
fication takes a configuration in input and performs new runs until its new quality
dominates the previous one. To avoid spending too much time in the intensific-
ation procedure, a maximum number of evaluation could be specified. Another
alternative intensification mechanism, less efficient, might also simply perform a
fixed number of new runs.

5.2.3 Adaptive Capping Strategies

Adaptive capping strategies enable to stop evaluating a configuration when it be-
comes clear that the configuration will be discarded, in order to avoid wasting time
evaluating poor configurations.

Indeed, with sufficient knowledge of the possible performance of the target
algorithm (in particular, the minimal value of the performance indicator), it is
possible to compute a lower bound of the performance approximation on a given
number of instance. By comparing this lower bound to the quality of the config-
uration being compared to, the update procedure (Procedure 5.4; Procedure 5.5)
can then be stopped early. This improvement, denoted as trajectory-preserving cap-
ping in Hutter et al. (2009), has the property of not modifying the result of a given
local search of ParamILS due to its tabu mechanism. This property generalises to
the full trajectory of BasicILS runs; however not for FocusedILS as it may impact
further comparison to a capped configuration.

5.2. Single-objective ParamILS 95

Procedure 5.5: update(config, reference)
Input: Configurations config and reference

Exposed parameters: nmin = 0, nmax = ∞
Side effect: Updates the cache regarding conf and reference

/* Pre-comparison */

insts← the nmin first instances;
foreach instance i ∈ insts do

cache[config,i]← performance of config over i;
cache[reference,i]← performance of reference over i;

/* Comparison */

repeat
nconfig← detail(config);
nreference← detail(reference);
if nconfig > nreference then

inst← the (nconfig + 1)th instance;
cache[config,inst]← performance of config over inst;

else if nconfig < nreference then
inst← the (nreference + 1)th instance;
cache[reference,inst]← performance of reference over
inst;

else if nconfig = nmax then
break ;

else
inst← the (nconfig + 1)th instance;
cache[config,inst]← performance of config over inst;
cache[reference,inst]← performance of reference over
inst;

until compare(config, reference) = reference or
compare(reference, config) = config;

/* Post-comparison */

if detail(config) = detail(reference) then
if compare(config, reference) = reference then

intensify(reference);
else

intensify(config);

96 Chapter 5. MO-ParamILS

Procedure 5.6: intensify(config)
Input: Configuration conf

Side effect: Updates the cache regarding conf and reference

loop do
q← quality(conf);
inst← the (detail(config)+1)th instance;
cache[config,inst]← performance of config over inst;
if quality(conf) ⩽ q then

break ;

A second capping mechanism was also introduced, denoted as aggressive cap-
ping, in which the incumbent is used in comparison to the lower bound instead
of the current best solution of the local search. An additional parameter is then
required to allow some slack in the accepted performance values, without which
the local search would stale until a neighbour of the current best solution actually
improve the overall incumbent.

Finally, in the case of optimising the running time of the target algorithm, both
capping strategies can be further extended to enable early termination of the target
algorithm, at the possible cost of having to rerun it on an instance on which it had
been capped later in the search.

5.2.4 Configuration Protocol

In order to use ParamILS, it is required to follow a machine learning protocol.
This protocol comprises either two steps (namely: training and test) or three steps
(namely: training, validation, and test). In both cases, two sets of instances are re-
quired: a set of training instances and a set of test instances, which should be distinct
from the first set and kept unseen during training. Training instances are used to
build a prediction of the best configuration of the target algorithm, while test in-
stances are used to verify that the quality of the predicted configuration actually
generalises to other instances in order to avoid over-fitting.

Training: ParamILS is used on the training instances in order to predict the best
configuration. Generally, only a subset of instances is used because there are
more training instances than the expected level of detail for configurations.
For three reasons: (i) ParamILS is a stochastic algorithm, (ii) the sample sub-
set of training instances might have a great impact of the final configuration,
and (iii) since the order of the instances itself may compromise the efficiency

5.3. Multi-objective ParamILS 97

of FocusedILS search strategy, it is recommended to perform multiple, inde-
pendent, runs of ParamILS using different subset and ordering of the training
instances. Note that these multiple training runs can typically be conducted
in parallel.

Validation: Two problems arise at the end of the training step. First, if there are
sufficiently enough training instances, the different subsets used during the
training steps may be different. Furthermore, in the case of FocusedILS, the
quality of the final configurations may not have been approximated using
the same number of instances. For these reasons, in order to fairly compare
the performance of all ParamILS runs, the quality of every final configuration
should be reassessed on the same subset of training instances. The reassess-
ment of each configuration may again be performed independently in parallel.
This step may be skipped in two cases: if there is few enough training in-
stances so that every final configuration was assessed on the exact same in-
stances, or if the level of detail of each final configuration is high enough so
that they are considered a very good approximation of their quality over the
complete distribution of instances.
At the end of this step, only the best configuration is considered.

Test: Finally, to verify that the configuration resulting from the validation step
actually generalises over previously unseen instances, its quality is reassessed
once more, this time on a subset of the test instances. Again, the reassessment
of each configuration may be performed independently in parallel.

5.3 Multi-objective ParamILS

In this section, we propose MO-ParamILS, a multi-objective extension of the single-
objective configurator ParamILS, able to simultaneously optimise the performance
of the target algorithm with regard to multiple performance indicators.

5.3.1 Motivations

The main motivation behind MO-ParamILS is to propose an efficient inherently
multi-objective configurator that could be used without requiring any additional
specific knowledge, such as for example an a priori aggregation of the different
performance indicators.

To obtain a multi-objective configurator, we choose to extend a very efficient
and well-known single-objective configurator, ParamILS. Indeed, ParamILS re-
lies on a single-objective iterated local search procedure, and literature shows a
large number of examples of efficient multi-objective local search algorithms (see

98 Chapter 5. MO-ParamILS

Chapter 3). Other options would have included extending other well known single-
objective configurators such as for example SMAC (Hutter et al., 2011), or irace
(López-Ibáñez et al., 2016), for which works for multi-objective contexts has also
recently been carried out (see Zhang et al., 2015, 2016, 2018).

5.3.2 Core Algorithm

We now describe our multi-objective extension of the ParamILS framework, out-
lined in Algorithm 5.7. The main difference with ParamILS (Algorithm 5.1) lies in
the use of a multi-objective iterated local search process (Procedure 5.8), in which
an archive (i.e., set of non-dominated configurations) is iteratively modified rather
than a single configuration of the given target algorithm. This search process is dir-
ectly related to the multi-objective local search algorithms discussed in Chapter 3.
Likewise, rather than a single incumbent, an archive of incumbent is updated dur-
ing the whole configuration process. MO-ParamILS exposes the same three para-
meters as ParamILS: the number r of initial random configurations, the number
s of random search steps performed in each perturbation phase and the restart
probability prestart.

The initialisation of the search process does not conceptually change, except
that an initial set of default configurations can be provided and is combined, with
the r randomly chosen configurations, into an archive. We ensure that whenever
we add a new configuration to an archive, all Pareto-dominated configurations
are discarded (see Function 5.9), so that the archive always contains only non-
dominated configurations.

MO-ParamILS make use of the same auxiliary functions than ParamILS, with
some minor differences. The quality function now returns a vector of qualities.
The compare function now compares configurations using Pareto dominance: if
ParamILS version accepted configurations of better or equal quality (see Proced-
ure 5.3), the MO-ParamILS version similarly accepts configurations that are not of
worse quality, i.e., configurations with either better, equal, or incomparable quality.

The restart mechanism mostly remains unchanged: it now replaces the current
archive with one containing a single configuration chosen uniformly at random
from the entire configuration space Θ. As for the perturbation mechanism, the ori-
ginal perturbation of ParamILS is used on a single configuration from the current
archive, chosen uniformly at random, to obtain a single configuration stored as a
new archive and used as the starting point of the subsequent local search phase
(Geiger, 2008).

The subsidiary local search process used in MO-ParamILS is outlined in Pro-
cedure 5.8. From the wide range of existing multi-objective local search (MOLS)

5.3. Multi-objective ParamILS 99

Algorithm 5.7: Multi-objective ParamILS
Exposed parameters: r, prestart and s

Input: Initial archive of configurations
Output: The archive of incumbents, i.e., the overall best configurations

found
Side effect: Updates the cache and the archive of incumbents

/* Initialisation */

current_arch← initial archive;
for i← 1 . . . r do

tmp← random configuration;
update(tmp, current_arch);
current_arch← archive(current_arch, tmp);

/* Iterated local search */

until termination criterion is met do
/* Perturbation */

if first iteration then
tmp← current_arch;

else
with probability prestart then // Restart

/* incumbents are not forgotten */

current_arch← { random configuration };
tmp← current_arch;

otherwise // Random walk

config← current_config;
for i← 1 . . . s do

config← random neighbour of tmp;

tmp← { config };

/* Local search */

tmp← local_search(tmp);
foreach config ∈ tmp do

update(config, current_arch);
current_arch← archive(current_arch, config);

return the archive of incumbent;

100 Chapter 5. MO-ParamILS

Procedure 5.8: localSearch(init_arch)
Data: Initial archive of configurations
Result: Best archive of configurations found
Side effect: Change or update the incumbent if necessary

current_arch← initial archive;
tabu_set← current_arch;
repeat

/* Selection */

candidate_set← ∅;
foreach current_config ∈ current_arch do

foreach neighbour ∈ randomised neighbourhood of
current_config do
/* Exploration */

if neighbour ∈ tabu_set then
next ;

else
tabu_set← tabu_set ∪ {neighbour};

update(neighbour, current_config);
if compare(neighbour, current_config) =

neighbour then
candidate_set← candidate_set ∪ {neighbour};
break ;

else if compare(current_config, neighbour) =

neighbour then
candidate_set← candidate_set ∪ {neighbour};

/* Archive */

foreach conf ∈ candidate_set do
current_arch← archive(current_arch, conf);

until candidate_set = ∅;
return current_arch;

5.3. Multi-objective ParamILS 101

Function 5.9: archive(arch, challenger)
Input: Archive arch, configuration challenger

Output: Updated archive arch

foreach config ∈ arch do
if compare(challenger, config) = challenger then

arch← arch \ { config };
else if compare(config, challenger) = config then

return arch;

arch← arch ∪ { challenger };
return arch;

procedures (see Chapter 3), it is based on a MOLS algorithm that is conceptually
simple and resembles the original subsidiary local search procedure used in Para-
mILS; this MOLS algorithm in particular has also been previously shown to be
very efficient (Blot et al., 2015). At each step of the local search process, every con-
figuration of the current archive is explored individually and sequentially. When
exploring a given configuration config, its neighbours are evaluated in random
order (excluding any configurations already visited earlier in the same local search
phase, using ParamILS tabu mechanism), until one is found that strictly domin-
ates config or all neighbours have been visited. All non-dominated neighbours
encountered during this process are added to the current archive, making sure
that dominated solutions are removed; this can be seen as a generalised version
of the acceptance criterion used in the single-objective ParamILS framework. The
local search then stops when no more unvisited neighbour can be added to the
archive. Of course, the local search also stops when the termination criteria of
MO-ParamILS is met (no more budget, or global wall clock time exceeded), even
if not explicitly handled here.

Finally, as the quality function now returns a vector of mean qualities rather
than a scalar mean quality, in the compare function (Procedure 5.3) the condition
is changed so that it returns the challenger configuration if it is either of better
or equal quality, or if its quality is incomparable.

Following the existing versions of ParamILS, we also propose MO-BasicILS and
MO-FocusedILS, two versions of MO-ParamILS. Both versions are direct equival-
ents of BasicILS and FocusedILS, with only very slight difference: regarding Fo-
cusedILS, the stopping criterion of the intensify mechanism (Procedure 5.6) is
changed to stop the procedure if the new quality dominates the previous quality.

102 Chapter 5. MO-ParamILS

5.3.3 Configuration Protocol

The configuration protocol of MO-ParamILS is a direct multi-objective extension
of the ParamILS configuration protocol, presented in the last section.

Training Run MO-ParamILS, multiple times independently with different order-
ing and subsets of the training instance set. Each run results in an archive of
configurations.

Validation Reassess the quality of each final training configuration on the same
subset of training instances, regarding all performance indicators. Filter domin-
ated configurations out, to focus on the best configurations of the training set.

Test Reassess the quality of final validation configurations on the previously un-
seen test instances.

Again, MO-ParamILS runs of the training step are independent and can be con-
ducted in parallel, which is also the case of both reassessments of validation and
test steps.

5.4 Hybrid Multi-Objective Approaches

The configuration protocol of ParamILS and MO-ParamILS enable them to tackle
single-objective and multi-objective configuration scenario, respectively. In this
section, we discuss the direct use of ParamILS on multi-objective configuration
scenarios. Specifically, we will consider a bi-objective scenario in which the per-
formance of a target algorithm is optimised regarding two performance indicators
o1 and o2.

5.4.1 Single Performance Indicator

The most straightforward approach that can be used is to first simply use Para-
mILS on a single performance indicator, i.e., either o1 or o2 independently, while
completely ignoring the second performance indicator. As multiple runs of Para-
mILS are recommended in any case, the training budget time can easily be divided
to train over the different performance indicators.

In the experiments of the following section, we show examples in which the
training of ParamILS focus on solution quality (o1) while being divided for mul-
tiple values of running time (o2); and in which the training is evenly divided
between the two performance indicators (solution quality and memory usage).

This approach only modifies the training step of the MO-ParamILS configura-
tion protocol. The original multi-objective validation and test steps then follow, in

5.5. Framework Evaluation 103

which all performance indicators are simultaneously assessed. While the training
does not ultimately use the same objectives than the two following steps of the
protocol, this problem is alleviated by first the validation step, which is performed
in a multi-objective way on the training instances, and second by the multiple runs
of the configurator recommended, that allow the training step to return multiple
configurations.

5.4.2 Aggregation of Multiple Performance Indicators

The obvious downside of the previous approach is that it can only search con-
figuration along the directions of the independent performance indicators in the
multi-objective space.

The second approach that we propose is to use a weighted linear scalarisation
of the two performance indicators o1 and o2 in order to obtain a single metric oagg.
With the addition of an aggregation coefficient α ∈ [0, 1] such that oagg = α · o1 +

(1 − α) · o2, this approach is able to optimise both performance indicators in a
specific direction of the objective space, while enabling the use of existing single-
objective configuration tools.

However, two questions arise. First, how to choose the value of the aggregation
coefficient α? Then, how should the performance indicators o1 and o2 be normal-
ised? Indeed, the coefficient α directly defines the direction in which the search
will be conducted, and even very small variations of α may change the theoret-
ical optimal configuration. If there is no clear relation or preference between the
different cost function this will result in a very hard choice for the end user. Fur-
thermore, such an aggregation will presuppose that both performance indicators
are correctly normalised, otherwise the precise direction determined by the coeffi-
cient α will have no real meaning. One way to answer both question would be to
sufficiently know in advance the quality of optimal configuration, which can only
be approximated with costly preliminary experiments.

Finally, again, this approach only modifies the training step of the multi-objective
configuration protocol. The original validation and test steps then follow, with the
same upsides and downsides.

5.5 Framework Evaluation

In this section, we investigate the worth of MO-AAC and the efficiency of MO-
ParamILS over several multi-objective configuration scenarios.

First, we investigate the trade-off between running time and solution qual-
ity for an anytime optimisation algorithm on multiple configuration scenarios.

104 Chapter 5. MO-ParamILS

Table 5.1 – Configuration scenarios

Dataset Target Training Performance objectives Abbrv.

Regions200 CPLEX 1 day [quality, cutoff] RCut
Regions200 CPLEX 1 day [quality, running time] RRun
CORLAT CPLEX 1 day [quality, cutoff] CCut
CORLAT CPLEX 1 day [quality, running time] CRun
QUEENS CLASP 1 day [memory usage, running time] QUEENS

Our second example involves the simultaneous optimisation running time and
memory usage. While both cases involves only two performance indicators, MO-
ParamILS is not restricted to such bi-objective algorithm configuration problems.

5.5.1 Experimental Protocol

The three AAC approaches compared in the experimentation are as follows. First,
we consider two MO-AAC approaches, that use MO-FocusedILS and MO-BasicILS,
respectively. Regarding the MO-BasicILS approach, its parameter n is set to 100,
meaning that estimations of configuration performance will use 100 training in-
stances. Then, we consider a SO-AAC approaches that use the original single-
objective ParamILS configurator, that we will refer to as SO-ParamILS. This second
approach will use FocusedILS with every recommended improvement enabled
(e.g., aggressive capping). Finally, these three AAC approaches are also compared
to a baseline obtained by simply using the default configuration of the target al-
gorithm.

The five configuration scenarios we consider are described in Table 5.1. These
scenarios use three datasets and two target algorithms, which belong to ACLib1, a
comprehensive algorithm configuration library. They are already known and have
been studied as single-objective algorithm configuration problems. Details of the
two target algorithms are precised in Table 5.2. Note that as the neighbourhood
relation of ParamILS requires every parameters to be categorical, ACLib provides
discretised sets of values for the integer and continuous parameters of the target
algorithms.

We first investigate the trade-off between solution quality and running time
for the commercial solver CPLEX, a very well known and highly parameterised
mixed integer programming (MIP) optimiser, on two different existing MIP data-

1http://aclib.net

http://aclib.net

5.5. Framework Evaluation 105

Table 5.2 – Target algorithm parameters (with number of possible values)

Algorithm Categorical Integer Continuous Total configurations

CPLEX 5 (2) 65 (2–7) 2 (5–6) 2.26 · 1046

CLASP 15 (2–5) 43 (2–16) 8 (6–14) 9.96 · 1048

sets, Regions200 and CORLAT. To achieve this, we consider the cutoff time (i.e.,
the maximum running time) as an additional parameter with five possible values:
1, 2, 3, 5 and 10 CPU seconds. In these scenarios we compare using MO-ParamILS
directly with using SO-FocusedILS independently on each running time values
with proportional configuration budget; that is, as the configuration budget given
to a single MO-ParamILS run is one day, the configuration budget given to a single
run of ParamILS for a k CPU second cutoff is k/(1+2+3+5+10) × 24 hours. Solution
quality for these scenarios is the MIP gap. In the event of CPLEX not returning
a MIP gap value within allocated time, the solution quality we set to 1010.Finally,
we considered two scenarios for each problem, one using directly the value of the
maximum running time parameter value as objective, and the other using the real
running time.

For the last scenario, we study the trade-off between memory usage and run-
ning time of the SAT solver CLASP on the QUEENS dataset. In this scenario we
compare using MO-ParamILS directly with using SO-FocusedILS separately on
each of the two objectives for 12 hours. In the event of CLASP not returning any
solution within the allocated 300 CPU seconds, we use the PAR10 performance
metric (Hutter et al., 2009) to penalise failed runs, i.e., apparent running time of
failed runs is set to 10 times the cutting time (3000 CPU seconds).

In all scenarios, penalising configurations that lead to failure of the target al-
gorithm with extremely bad performance values ensures that they are quickly dis-
carded in favour of better performing configurations.

As for the configuration protocol, in the training step each approach is run 25
times with a configuration budget of one day each, using 25 different permuta-
tions of the training set and resulting in 25 archives (possibly reduced to a single
solution) of configurations. For the CPLEX scenarios we filtered out configurations
that resulted in some timeouts. In the validation step, we use a single subset of 100
training instances. In the test step, we use a single subset of 1000 test instances.

106 Chapter 5. MO-ParamILS

Table 5.3 – Hypervolume (top) and ε indicator values (bottom) for final test fronts.

Approach RCut RRun CCut CRun Queens

MO-FocusedILS 9.02e-03 2.07e-03 2.37e-02 7.63e-04 1.57e-02
MO-BasicILS 2.46e-03 5.41e-02 5.53e-02 1.02e-01 5.49e-02
SO Approach 3.82e-02 5.82e-02 3.35e-01 1.72e-01 3.04e-02

Default 2.43e-01 3.57e-01 2.70e-01 5.30e-01 1.08e+00

MO-FocusedILS 1.44e-02 9.05e-03 9.00e-02 8.06e-04 2.64e-02
MO-BasicILS 1.80e-02 1.71e-01 1.11e-01 1.48e-01 8.35e-02
SO Approach 5.77e-02 1.38e-02 3.33e-01 1.42e-01 6.52e-02

Default 2.22e-01 2.69e-01 2.33e-01 3.90e-01 1.00e+00

5.5.2 Results

After the test step, final fronts have been compared using the hypervolume and
ε indicators, after normalisation of every objective in the interval [1, 2]. For each
scenario, the reference front have been computed by merging every front and filter-
ing dominated points using Pareto dominance. Normalisation and indicator com-
putation have been carried out using the PISA framework (Knowles et al., 2006).
Table 5.3 shows the results of this performance assessment for both indicators, the
best value for each scenario being highlighted.

Clearly, MO-FocusedILS finds considerably better Pareto fronts for the test sets
of all our multi-objective configuration scenarios than the baseline single-objective
approach in terms of hypervolume and ε indicator. In all but one case, MO-
FocusedILS also produces better results than MO-BasicILS, which, in most cases,
still produces better results than the single-objective approach, but with less of a
margin.

Empirical results for each scenario, after both validation steps and test steps,
are shown in Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4, and Figure 5.5, respect-
ively. These results are shown considering only instances solved before the given
timeout, the corresponding number of unsuccessful runs being given in Table 5.4.

Figure 5.1 and Figure 5.2 show the fronts of configurations after the validation
and test steps on the Regions200 dataset. Time is showed using a logarithmic scale.
First, we note that because of the anytime nature of CPLEX, even the baseline,
that uses the default configuration without training, resulted in a trade-off curve;
however, it achieved much worse results. On the cutoff scenario even if the MO-
FocusedILS seems slightly better after the validation step, all three configuration
approaches achieve similar performance on unseen instances. In the other hand,

5.5. Framework Evaluation 107

1 10

0

2

4

Cutoff [CPU sec]

MIP gap

1 10

0

2

4

Cutoff [CPU sec]

MIP gap

MO-FocusedILS MO-BasicILS SO-FocusedILS Default

Figure 5.1 – Final fronts on the Regions200 – CPLEX (cutoff) scenario (left: valida-
tion; right: test)

1 1.58 2.51 3.98 6.31

0

2

4

Running time [CPU sec]

MIP gap

1 1.58 2.51 3.98 6.31

0

2

4

Running time [CPU sec]

MIP gap

MO-FocusedILS MO-BasicILS SO-FocusedILS Default

Figure 5.2 – Final fronts on the Regions200 – CPLEX (running time) scenario (left:
validation; right: test)

108 Chapter 5. MO-ParamILS

10 100
0

0.5

1

1.5

Cutoff [CPU sec]

MIP gap

10 100

0

0.5

1

1.5

2

Cutoff [CPU sec]

MIP gap

MO-FocusedILS MO-BasicILS SO-FocusedILS Default

Figure 5.3 – Final fronts on the CORLAT – CPLEX (cutoff) scenario (left: validation;
right: test)

2.51 3.98 6.31 10 15.8

0

1

2

3

Running time [CPU sec]

MIP gap

2.51 3.98 6.31 10
0

0.5

1

1.5

2

Running time [CPU sec]

MIP gap

MO-FocusedILS MO-BasicILS SO-FocusedILS Default

Figure 5.4 – Final fronts on the CORLAT – CPLEX (running time) scenario (left:
validation; right: test)

5.5. Framework Evaluation 109

10 100 1,000
40

60

80

100

Running time (PAR10) [CPU sec]

RAM [MB]

10 100 1,000
40

60

80

100

Running time [CPU sec]

RAM [MB]

MO-FocusedILS MO-BasicILS SO-FocusedILS Default

Figure 5.5 – Final fronts on the QUEENS – CLASP scenario (left: validation; right:
test)

Table 5.4 – Average percentages of timeouts for final CPLEX configurations

Validation Test

Approach RCut RRun CCut CRun RCut RRun CCut CRun

MO-FocusedILS 1.3 0.7 4.2 3.6 0 0 1.06 2.89
MO-BasicILS 0.1 0.6 3.6 2.9 0.04 0 0.47 3.78
SO Approach 0.3 0.4 4.8 5.1 0.12 0 1.87 1.87

Default 0 0 2.2 2.2 0 0 0.14 0.14

110 Chapter 5. MO-ParamILS

on the running time scenario, MO-FocusedILS achieve slightly better results after
both steps, while MO-BasicILS is worse for the shortest running times and SO-
FocusedILS is worse on the longer ones. For both scenarios, performance after the
validation step is very similar to the performance after the test step.

On the CORLAT scenarios (Figure 5.3 and Figure 5.4) this is no more the case,
as some approaches lead to results worse than the default configuration after gen-
eralisation on unseen instances. For the cutoff variant MO-FocusedILS leads to
the best performance, while MO-BasicILS fails for the shortest cutoff, and SO-
FocusedILS does not improve the default configuration. Note that MO-BasicILS
finds the best configuration for 5 CPU seconds, while MO-FocusedILS has none;
however, the configuration found by MO-Focused ILS for 2 CPU seconds could be
(and probably should have been) used with the 5 CPU seconds cutoff to complete
the front. For the running time variant, MO-FocusedILS clearly outperforms the
other approaches.

On the QUEENS scenario (Figure 5.5), the default configuration of CLASP res-
ulted as expected in a single point. All three other approaches successfully foun-
ded configuration with much better memory consumption and diverse running
time. Overall, MO-FocusedILS achieved the best results.

When analysing these results, we also noticed that MO-FocusedILS evaluates
many more unique configurations than MO-BasicILS (4752 vs 166 on average, over
all five scenarios). This clearly indicates the efficacy of the way in which MO-
FocusedILS controls the number of runs per configuration performed and mirrors
analogous findings for BasicILS vs FocusedILS in the single-objective case (Hutter
et al., 2009).

On all five scenarios, the default configurations of CPLEX and CLASP pro-
duced few unsuccessful runs on training or test instances. The three other ap-
proaches lead to configurations generating about as many timeouts as the default
configuration. However, by also taking in account the configurations returned that
have both more timeouts and better performance on successful instances, we were
able to achieve even better results at the cost of a small loss of generality, as shown
in Table 5.3. While our CLASP scenario uses PAR10 scores to take into account
instances that could not be solved within the given cutoff time, as previously men-
tioned, the final Pareto fronts we produce for the CPLEX scenarios do not reflect a
small number of instances for which no MIP gap was obtained within the allocated
running time. The fraction of the validation and test sets on which this happened
is shown in Table 5.4; as seen there, timeouts generally occur for a small fraction
of instances, and while that fraction tends to increase as we configure CPLEX, it
remains low enough in all cases to not raise serious concerns.

5.6. Perspectives 111

5.6 Perspectives

In this chapter, we presented ParamILS, a prominent algorithm configurator, then
we introduced MO-ParamILS, a multi-objective extension enabling to consider
multiple performance criteria simultaneously, while also proposing a configura-
tion protocol for using standard single-objective configurators on multi-objective
scenarios. We also validated our the performance of our framework by comparing
the multiple variants of MO-ParamILS to the best variant of ParamILS on various
configuration scenarios.

We detail in the following two perspectives related to MO-ParamILS and multi-
objective automatic algorithm configurators.

Other multi-objective configurators. First of all, to propose our multi-objective
algorithm configurator, we choose to extend the existing ParamILS configurator,
based on its use of local search techniques. It is clear that other well-known con-
figurators from the literature, such as for example irace (López-Ibáñez et al., 2016)
or SMAC (Hutter et al., 2011), could also be similarly extended to bring both com-
petition and other insights on automatic multi-objective algorithm configuration.
Furthermore, while there have already been preliminary works on multi-objective
racing (Zhang et al., 2015, 2016, 2018), users could really benefit by having more
available ready- and easy-to-use configurators.

Configuration protocol. We proposed multiple configuration protocol and ap-
proaches to tackle multi-objective configuration scenarios, for both single-objective
and multi-objective configurators. However, these are still primarily focused on
ParamILS, and should be further analysed and discussed in general for all con-
figurators. For example, we advocate parallelising the training step, running the
simultaneously configurator multiple times on multiple subsets of the training set
of instances, although other configurators (e.g., irace) advocate to run the config-
urator only once. While there may definitely are strong opinions, to our present
knowledge there are no consequent results on, within other open questions, how
to fairly compare the multiple configuration protocols associated to each configur-
ator, how many times should be run the configurator, how the training instances
should be selected and how exactly their distribution impact the configurator per-
formance.

112 Chapter 5. MO-ParamILS

Chapter 6

MOLS Configuration

Knowing yourself is the beginning of all
wisdom.

Aristotle

In this chapter, we conduct three successive studies on the static multi-objective
local search (MOLS) algorithm presented in Chapter 4.

First, we investigate the configuration space of our static MOLS algorithm, to
see to which extent using different configurations can lead to different results, and
to better understand the impact of the different parameters and their relations
between each others. Therefore, we consider a reduced number of parameters
and we conduct an exhaustive analyse of all the resulting possible configurations
of two permutation problems presented in Chapter 1: the flowshop scheduling
problems (PFSP) and the travelling salesman problem (TSP).

Then, we investigate the automatic configuration of our static MOLS algorithm,
by comparing the performance of three configurations approaches: two single-
objective (SO-AAC) approaches based on a single performance indicator and on
an aggregation of two performance indicators, and a multi-objective (MO-AAC)
approach using a Pareto trade-off between the two performance indicators. This
second study builds on the first study, by first considering the reduced config-
uration space used for the exhaustive analysis, before considering a much larger
configuration space. Indeed, while the reduced configurations space enables ex-
haustive evaluation, global visualisation and general discussions, the larger con-
figurations space is more representative of algorithms for which exhaustive ana-
lysis would be prohibitive.

Finally, we study the impact of objectives correlation of the multi-objective
problem itself on the performance of the three automatic configuration approaches.

113

114 Chapter 6. MOLS Configuration

Therefore, we conduct this study using instances for which the correlation between
objectives is controlled. In this final study, in addition to the PFSP and the TSP, we
also use another classical permutation problem, the quadratic assignment problem
(QAP), also presented in Chapter 1.

This chapter contributions are closely linked to the following publications:

• Blot, A., Jourdan, L., and Kessaci-Marmion, M. (2017a). Automatic design
of multi-objective local search algorithms: case study on a bi-objective per-
mutation flowshop scheduling problem. In Bosman, P. A. N., editor (2017).
Genetic and Evolutionary Computation Conference, GECCO 2017. Proceedings,
pages 227–234. ACM.
• Blot, A., Pernet, A., Jourdan, L., Kessaci-Marmion, M., and Hoos, H. H. (2017c).

Automatically configuring multi-objective local search using multi-objective
optimisation. In Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O.,
Wiecek, M. M., Jin, Y., and Grimme, C., editors (2017). Evolutionary Multi-
Criterion Optimization – 9th International Conference, EMO 2017. Proceedings,
volume 10173 of Lecture Notes in Computer Science, pages 61–76. Springer.
• Blot, A., Hoos, H. H., Kessaci, M., and Jourdan, L. (2018a). Automatic con-

figuration of multi-objective optimization algorithms. impact of correlation
between objectives. In 30th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2018. IEEE Computer Society. (To appear).

Additionally, the following paper has been submitted in the special issue on
algorithm selection and configuration of the Evolutionary Computation journal:

• Blot, A., Kessaci-Marmion, M., Jourdan, L., and Hoos H. H.. Automatic Con-
figuration of Multi-Objective Local Search Algorithm for Permutation Prob-
lems.

6.1 Exhaustive Analysis

In the first study, we focus on analysing the configuration space of our static MOLS
algorithm. By considering a reduced configuration space of the MOLS algorithm,
we are able to conduct an exhaustive analysis on various PFSP and TSP scenarios,
and to draw general conclusions over MOLS parameters.

6.1.1 Experimental Protocol

In this study, we ensure that the size of the configuration scenario is small enough
so that an exhaustive assessment of all possible configurations of the target al-

6.1. Exhaustive Analysis 115

Table 6.1 – Small version of the MOLS configuration space (300 configurations)

Phase Parameter Parameter values

Selection select-strat {all, rand, oldest}
Selection select-size {1, 10}
Exploration explor-strat {imp, imp-ndom, ndom}
Exploration explor-ref {sol, arch}
Exploration explor-size {1, 10}
Archive bound-strat {rand}
Archive bound-size {1000}
Perturbation perturb-strat {kick, kick-all, restart}
Perturbation perturb-size {10}
Perturbation perturb-strength {3, 10}

Selection: (1 + 2× 2) combinations ; Exploration: (3× 2× 2) ; Perturbation:
(2× 2 + 1) ; Total: 5× 12× 5 = 300 configurations

gorithm is feasible. This has one direct consequence: we will be able to analyse the
entire induced search space and the optimal configurations, which would be other-
wise unfeasible. More specifically, we restrict the configuration space of our static
MOLS algorithm according to Table 6.1. The full configuration space of the MOLS
algorithm have been presented in Chapter 4 (see Table 4.1). In terms of parameter
values, we removed the newest selection strategy, the all and all-imp explor-
ation strategies, and the replace archive strategy; we also restricted numerical
parameters to only one or two parameter values. These restrictions have been
based on preliminary experiments with the two goals of first producing known
efficient combinations of parameters and second keeping a very small total num-
ber of configurations (here, only 300). Note that the chosen bound-size para-
meter value, 1000, effectively disables the bounding mechanism as archives never
achieve such a large size.

We consider six distinct scenarios: three PFSP scenarios with instances with 50,
100, and 200 jobs, all with 20 machines; and three TSP scenarios with 100, 300, and
500 cities. For each of the PFSP scenarios, we considered the corresponding exist-
ing 10 Taillard instances for the test set, while we generated 30 new instances for
the training set using Taillard’s generation procedure. For each of the TSP scen-
arios, we considered the 15 pairwise independent combinations of the existing 6
Paquete instances for the test set and generated 30 new pairs of instances for the

116 Chapter 6. MOLS Configuration

training set, obtained using the original DIMACS generator. Further details re-
garding these instances are provided in Chapter 1.

The running time of our static MOLS algorithm depends of the scenario size.
On PFSP instances, it was set to n2·m/1000 CPU seconds, with n the number of jobs
and m = 20 the number of machines (i.e., 50 CPU seconds, 3 minutes and 20 CPU
seconds, and 13 minutes and 20 CPU seconds, respectively to instances with 50,
100, and 200 jobs, all with 20 machines). On TSP instances, it was set to n · 0.9 CPU
seconds, with n the number of cities (i.e., 1 minute and 30 CPU seconds, 4 minutes
and 30 CPU seconds, and 7 minutes and 30 CPU seconds, respectively to instances
with 100, 300, and 500 cities).

Additionally, on PFSP instances, the search was initialised using the 2-phase
local search algorithm (Dubois-Lacoste et al., 2011b), which is based on the iterated
greedy (IG) procedure (Ruiz and Stützle, 2007). This method is known to produce
relatively good and well-distributed solutions sets in the objective space. We use
25% of the overall time budget for this initialisation, and 75% for the remainder of
each MOLS run. On TSP instances, as no such initialisation procedure is known
to produce quick and well-distributed solutions sets on the Paquete instances, the
search is initialised using two independent solutions, obtained using a greedy pro-
cedure on each of the two distance matrices taken individually, to avoid starting
only from solutions taken uniformly at random from the search space.

To compare each of the 300 configurations, we assessed each of them using a
single run on each of the instance of the training set and 10 runs on each of the
instance of the test set, averaging independently the hypervolume and ∆ ′ spread
values. These levels of detail of the approximations have been taken so they are
compatible with the experimental protocol of the second study.

As introduced in Chapter 1, the hypervolume and the ∆ ′ spread are two multi-
objective performance indicators, capturing information about the accuracy and
the distribution of Pareto sets of solutions. We recall that we transform the hyper-
volume (HV) into a minimisation measure (1-HV) to simplify the analysis of our
results, and thus, when speaking of good hypervolume values, we refer to high
HV (i.e., low values of 1-HV).

The experiments, for all three studies of this chapter, have been conducted on
the grace cluster of the ADA research group at the Leiden Institute of Advance
Computer Science (LIACS), in the Netherlands. Each of the 32 nodes of grace is
equipped with two 16-core 2.10GHz Intel Xeon E5-2683 v4 CPUs with 40MB L3
cache and 94GB RAM, running CentOS 7.4.1708. Computations were conducted
in parallel as much as possible.

6.1. Exhaustive Analysis 117

6.1.2 Parameter Distribution Analysis

Figure 6.1 shows the parameter distribution of the 300 configurations on test in-
stances of the PFSP and the TSP scenarios, highlighting the parameter values of
the two parameters: select-strat, with crosses (+ × ⋆), polygons (□∆⋄), and
circles (o⊕⊗); and explor-strat, with red (+□o), green (×∆⊕), and blue (⋆ ⋄⊗)
colours.

PFSP. (Figure 6.1, left) None among the 300 possible configurations simultan-
eously achieves good hypervolume and spread values. The Pareto front is dis-
tinctly non-convex. While for the smallest scenario, with 50 jobs, most of all con-
figurations achieve good hypervolume values (i.e., low 1-HV), such configura-
tions get rarer as the number of jobs increases. This result was expected, since it
is known that larger PFSP instance are harder for MOLS algorithms. Examining
these results in more detail, we observe that the imp exploration strategy always
obtains rather bad hypervolume values. For 50 jobs, this strategy leads to better
spread values; however, it tends to be no longer true for larger instances. For the
three instance sizes, the imp-ndom and ndom strategies appear to give better per-
formance in terms of hypervolume.

TSP. (Figure 6.1, right) The results on the TSP markedly differ from those on the
PFSP. Firstly, we observe that the shape of the Pareto-optimal front of configura-
tions varies with instance size: while it is convex for 100 cities with some degree
of correlation between hypervolume and spread, for larger instances, the correl-
ation between the two performance indicators decreases, and the front becomes
non-convex. In contrast to the PFSP, where the two objectives are correlated, for
our TSP benchmark sets the objectives are completely independent. Therefore,
the final archives are much bigger, as there exist a larger space of trade-off solu-
tions. The impact on spread is evident: values above 1 correspond to two tightly
clustered sets of solutions separated by a large gap that the respective configura-
tion of MOLS failed to cover, and spread values of 0 correspond to final sets con-
taining only two solutions, which are produced when the imp exploration strategy
fails to sufficiently diversify.

6.1.3 Optimal Configurations

Table 6.2 and Table 6.3 list the Pareto-optimal configurations within the exhaust-
ively enumerated configuration space for both PFSP and TSP scenarios. A “∗”
symbol indicates that the value of the respective parameter does not impact the

118 Chapter 6. MOLS Configuration

0.475 0.48 0.485 0.49

0.4

0.6

0.8

1-HV

∆ ′

PFSP 50 jobs 20 machines – Test

0.14 0.16 0.18 0.2 0.22 0.24
0.6

0.8

1.0

1.2

1.4

1.6

1-HV

∆ ′

TSP 100 cities – Test

0.43 0.435 0.44 0.445
0.2

0.4

0.6

0.8

1.0

1-HV

∆ ′

PFSP 100 jobs 20 machines – Test

0.1 0.12 0.14 0.16 0.18 0.2

0.0

0.5

1.0

1.5

2.0

1-HV

∆ ′

TSP 300 cities – Test

0.36 0.365 0.37 0.375 0.38

0.4

0.6

0.8

1.0

1.2

1-HV

∆ ′

PFSP 200 jobs 20 machines – Test

0.08 0.1 0.12 0.14 0.16 0.18

0.0

0.5

1.0

1.5

2.0

1-HV

∆ ′

TSP 500 cities – Test

Figure 6.1 – Exhaustive analysis parameter distribution on test instances (left:
PFSP; right: TSP); Selection strategy: +×⋆: all (crosses), □∆⋄: oldest (poly-
gons), o⊕⊗: rand (circles); Exploration strategy: +□o: imp (red), ×∆⊕:
imp-ndom (green), ⋆ ⋄ ⊗: ndom (blue)

6.1. Exhaustive Analysis 119

performance of the configured MOLS when the other parameter values are held
fixed at the values shown. Conversely, when a specific parameter is shown, any
deviation from it will reduce performance.

PFSP. (Table 6.2) Regarding the nature of the configurations, we observe a trend
across the three instance sizes. The best hypervolume is always reached with the
oldest selection strategy, the ndom exploration strategy and the arch exploration
reference set choice. Slightly worse hypervolume, but better spread is achieved us-
ing the imp-ndom exploration strategy. Finally, the best spread values are obtained
from configurations using the imp exploration strategy, although this comes at the
cost of rather bad hypervolume. In almost every case, the perturbation strategy did
not significantly impact the performance of the non-dominated configurations.

TSP. (Table 6.3) MOLS configurations achieving the best hypervolume values al-
ways use the imp-ndom exploration strategy with the sol reference set. While
for 300- and 500-city instances, the oldest selection strategy is preferred, for 100
cities, the more common rand selection strategy performs better. Similarly to the
PFSP, the choice of perturbation mechanism does not significantly impact the per-
formance of optimal configurations.

6.1.4 Discussions

The exhaustive analysis of a small subset of the configuration space validates the
worth of automatically configuring our static MOLS algorithm.

First, as shown in Figure 6.1, the possible configurations are both very distinct
and well clustered in the objective space, confirming first that it is useful to search
for the best possible configuration, and second that the parameter values have
specific, non-random, impact on the performance of our MOLS algorithm. Inter-
estingly, if for PFSP instances the three configuration spaces are very similar, hint-
ing that observations on small instances could be generalised on larger instances,
this is not true for TSP instances for which the three configuration spaces are very
unalike.

General observations on MOLS strategies can nevertheless be made: the choice
of the perturbation strategy is clearly the less important, as it mostly does not im-
pact much the performance of the optimal configurations. Furthermore, save for
the smallest TSP dataset, the imp exploration strategy generally lead to poorer
convergence but better distribution of the solutions.

In conclusion, the analysis of the optimal configuration given by Table 6.2 and

120 Chapter 6. MOLS Configuration

Table 6.2 – PFSP (optimal configurations)

1-HV ∆ ′ Selection Exploration Perturbation

(PFSP 50 jobs 20 machines)
0.4747 0.7775 oldest 10 ndom arch 1 ∗ 10 ∗
0.4754 0.7640 all ndom arch 1 ∗ 10 ∗
0.4770 0.7420 all imp-ndom sol 10 ∗ 10 ∗
0.4837 0.6798 rand 1 imp arch 10 ∗ 10 ∗
0.4853 0.5856 rand 1 imp sol 10 ∗ 10 ∗
0.4855 0.5277 ∗ 10 imp arch 1 ∗ 10 ∗
0.4860 0.4433 rand 1 imp arch 1 ∗ 10 ∗
0.4862 0.4093 ∗ imp sol 1 ∗ 10 ∗
0.4877 0.3336 oldest 1 imp sol 1 kick ∗ 10

(PFSP 100 jobs 20 machines)
0.4299 0.7865 oldest 10 ndom arch 1 kick 10 3
0.4299 0.7979 oldest 10 ndom arch 1 kick-all ∗
0.4332 0.7802 oldest 1 ndom arch 1 kick 10 ∗
0.4336 0.7640 all ndom arch 1 ∗ 10 ∗
0.4344 0.7541 rand 10 imp-ndom arch 1 ∗ 10 ∗
0.4351 0.7540 all imp-ndom sol 1 ∗ 10 ∗
0.4370 0.7470 rand 10 imp-ndom arch 10 ∗ 10 ∗
0.4387 0.7338 rand 1 imp arch 10 ∗ 10 ∗
0.4397 0.5396 rand 1 imp sol 10 ∗ 10 ∗
0.4402 0.4409 ∗ 10 imp arch 1 ∗ 10 ∗
0.4407 0.3428 oldest 10 imp sol 1 ∗ 10 ∗
0.4410 0.3201 rand 1 imp sol 1 ∗ 10 ∗
0.4410 0.3371 all imp sol 1 ∗ 10 ∗
0.4454 0.2711 oldest 1 imp sol 1 kick 10 ∗

(PFSP 200 jobs 20 machines)
0.3600 0.8093 oldest 1 ndom arch 1 restart 10 ∗
0.3600 0.8093 oldest 1 ndom arch 1 kick 10 ∗
0.3618 0.8027 oldest 10 ndom arch 1 ∗ 10 ∗
0.3638 0.7628 rand 1 imp-ndom arch 1 ∗ 10 ∗
0.3645 0.7534 all imp-ndom arch 1 ∗ 10 ∗
0.3686 0.3511 rand 1 imp sol 1 ∗ 10 ∗
0.3687 0.3456 ∗ 10 imp sol 1 ∗ 10 ∗

6.1. Exhaustive Analysis 121

Table 6.3 – TSP (optimal configurations)

1-HV ∆ ′ Selection Exploration Perturbation

(TSP 100 cities)
0.1372 0.7389 rand 10 imp-ndom sol 10 ∗ 10 ∗
0.1431 0.6572 all imp-ndom sol 10 restart

0.1443 0.6544 all imp-ndom arch 10 restart

0.1902 0.6488 oldest 1 ndom sol 1 kick 10 3

(TSP 300 cities)
0.1003 1.3582 oldest 10 imp-ndom sol 1 ∗ 10 ∗
0.1006 1.3417 oldest 10 imp-ndom sol 10 ∗ 10 ∗
0.1092 1.0409 oldest 10 ndom sol 10 ∗ 10 ∗
0.1128 0.7933 rand 10 imp-ndom arch 1 ∗ 10 ∗
0.1129 0.7880 rand 1 imp-ndom arch 1 ∗ 10 ∗
0.1171 0.5003 rand 1 imp sol 10 restart

0.1183 0.2288 rand 1 imp sol 1 restart

0.1190 0.0409 rand 1 imp arch 1 restart

(TSP 500 cities)
0.0841 1.3767 oldest 10 imp-ndom sol 1 ∗ 10 ∗
0.0989 1.2983 oldest 1 imp-ndom arch 10 ∗ 10 ∗
0.1003 1.2897 oldest 10 ndom arch 10 ∗ 10 ∗
0.1015 1.1290 oldest 10 ndom sol 10 ∗ 10 ∗
0.1159 1.0080 rand ∗ imp-ndom arch 1 ∗ 10 ∗
0.1403 0.8468 oldest 10 ndom arch 1 kick 10 ∗
0.1616 0.4420 rand 1 imp sol 10 ∗ 10 ∗
0.1624 0.0000 rand 1 imp ∗ 1 ∗ 10 ∗

122 Chapter 6. MOLS Configuration

Table 6.3 confirm that there is no default configuration of the MOLS algorithm that
would be optimal on all PFSP and TSP datasets. Indeed, optimal configurations
are highly dependant of the both the problem tackled and the size of the instances.
It also confirms that the MOLS configuration space is well structured and adapted
to AAC.

6.2 AAC Approaches Analysis

In the second study, we focus on analysing the performance of automatic algorithm
configuration (AAC) approaches on out static MOLS algorithm. We investigate
three different AAC approaches, using diverse PFSP and TSP scenarios of mul-
tiple size. This study enables to validate efficient approaches to design MOLS al-
gorithms.

6.2.1 Experimental Protocol

In this second study, as well as in the third study, we consider three AAC ap-
proaches: two single-objective AAC (SO-AAC) approaches and one multi-objective
AAC (MO-AAC) approach, using ParamILS and MO-ParamILS, respectively. We
recall the distinction made in Chapter 2: SO-AAC deals with the optimisation of
a single scalar performance indicator, while MO-AAC simultaneously deals with
the optimisation of a vector of performance indicators.

More specifically, we will compare:

HV, a SO-AAC approach that optimises the hypervolume indicator only;
HV+∆′, a SO-AAC approach that optimises a weighted sum of hypervolume (with

a 0.75 coefficient) and ∆ ′ spread (with a 0.25 coefficient); and
HV||∆′, a MO-AAC approach that simultaneously considers hypervolume and

∆ ′ spread.

The latter two approaches are motivated by the previously mentioned belief that
the performance assessment of multi-objective algorithms benefits from the use
of multiple performance indicators (Zitzler et al., 2003). By comparing HV to the
two other configuration approaches, we aim to assess this belief in the context of
automatic configuration of MOLS algorithms. Furthermore, by comparing HV+∆ ′

and HV ||∆ ′, we intend to assess the benefits of MO-AAC compared to SO-AAC
with aggregated performance metrics. The aggregation coefficient, 0.75, results
from the ∆ ′ indicator being seen as a complementary measure to the hypervolume,
in order to focus on convergence first and diversity second.

6.2. AAC Approaches Analysis 123

Table 6.4 – Large version of the MOLS configuration space (10 920 configurations)

Phase Parameter Parameter values

Selection select-strat {all, rand, newest, oldest}
Selection select-size {1, 3, 10}
Exploration explor-strat {all, all-imp, imp, imp-ndom, ndom}
Exploration explor-ref {sol, arch}
Exploration explor-size {1, 3, 10}
Archive bound-strat {rand}
Archive bound-size {20, 50, 100, 1000}
Perturbation perturb-strat {kick, kick-all, restart}
Perturbation perturb-size {1, 5, 10}
Perturbation perturb-strength {3, 5, 10}

Selection: (1 + 3× 3) combinations ; Exploration: (1 + 2 + 3× 2× 3) ;
Perturbation: (3× 3 + 3 + 1) ; Total: 10× 21× 13× 4 = 10 920 configurations

Note that all three AAC approaches are nevertheless used in a MO-AAC pro-
tocol, detailed hereafter, in which the training step is either performed in a single-
or multi-objective way, while both validation and test steps are performed in a
multi-objective, Pareto, way.

The three approaches use the FocusedILS variants of both ParamILS and MO-
ParamILS configurators, since these usually give the best performance; regarding
the HV and HV+∆ ′ approaches, they both follow the recommendation of using
adaptive and aggressive capping (Hutter et al., 2009). Details on both configurators
and their respective variants are given in Chapter 5.

We analyse the performance of all three approaches on two different configur-
ation spaces. First, we use the small space of 300 configurations described in the
first study of this chapter (see Table 6.1), to analyse the performance of the three
approaches in an exhaustively enumerated context. Then, we consider a much
richer space of 10 920 configurations, detailed in Table 6.4, on which the previous
study would require a computational budget several orders of magnitude higher
due to the relatively high running times for each configuration and the stochastic
nature of the target algorithm.

We use the AAC protocol presented in Chapter 5, whose specific details are
summarised in Table 6.5. The main protocol differences for the two configuration

124 Chapter 6. MOLS Configuration

Table 6.5 – AAC Experimental Protocol

Step Small configuration space Large configuration space

Training No default configuration No default configuration
1 random configuration 10 random configurations
10 ParamILS runs 20 ParamILS runs
100 MOLS runs budget 1000 MOLS runs budget
max 10 MOLS run per config. max 100 MOLS run per config.

Validation 1 run per instance 1 run per instance
Test 10 runs per instance 10 runs per instance

spaces concern the training step. For the small (large) configuration space, Para-
mILS starts by evaluating a single (10) random configuration, and can execute 100
(1000) MOLS runs before stopping, where each selected configuration cannot be
run more than 10 (100) times. Due to the reduced size of the small configuration
space, only 10 independent runs of ParamILS are performed, compared to 20 runs
for the large space. In the validation step, the configurations resulting from the
training step are evaluated on all training instances, running every configuration
once on each instance. In the test step, each of the configurations in the Pareto set
obtained from the validation step is run 10 times on every test instance. For both
validation and test steps, the performance of each configuration is assessed based
on the average hypervolume and ∆ ′ spread values over the runs. Obviously, for
the small configuration space, our exhaustive analysis ensures that the perform-
ance of all configurations are known for all training and test instances, and we
directly use these results in the validation and test steps to avoid recomputing the
performance of configurations selected in the training step.

Lastly, Table 6.6 reports the bounds used for each scenario to compute the ag-
gregation in the case of the HV+∆ ′ approach. These bounds have been determ-
ined using preliminary data from the exhaustive analysis on the training sets of
instances.

6.2.2 Small Configuration Space Results

Figure 6.2 and Figure 6.3 show the results of the configuration process using the
small configuration space on PFSP and TSP scenarios, respectively. The configura-
tions in consideration by the three approaches are shown after the validation step
on training instances, and after the test step on test instances. Every configuration

6.2. AAC Approaches Analysis 125

Table 6.6 – Indicator bounds used in the HV+∆ ′ approach

Scenario (1-HV) lower (1-HV) upper ∆ lower ∆ upper

PFSP 50 0.48 0.5 0.2 1
PFSP 100 0.44 0.46 0.1 1.1
PFSP 100 0.355 0.375 0.3 1.3
TSP 100 0.13 0.24 0.6 1.7
TSP 300 0.09 0.2 0 2
TSP 500 0.08 0.18 0 2

not in consideration by any of the three approaches is also indicated, as already
exhaustively enumerated during the first study.

PFSP. (Figure 6.2) All three approaches find very good, even near-optimal config-
urations – in particular, HV ||∆ ′, which results in configurations spreading over the
entire Pareto-front. The 10 configurator runs of HV and HV+∆ ′ produce close to 10
unique configurations each and all of these show good hypervolume values. How-
ever, after validation and testing, for both AAC approaches few configurations re-
main and those tend to have good hypervolume but average spread. On the other
hand, the MO-AAC approach HV ||∆ ′ produces many more configurations after the
training, validation and test steps. Compared to the two other approaches, HV ||∆ ′

clearly achieves better coverage of the optimal Pareto set of configurations. Note
that all three approaches use the same time budget for configuration, the number
of final solutions being strongly dependant of the kind (single-objective or multi-
objective) of AAC used for training.

TSP. (Figure 6.3) The HV configuration approach produces few configurations,
achieving near-optimal hypervolume. HV+∆ ′ produces weak training results on
the 100-city instances, but works well on the 300-city instances, because of the
shape of the Pareto-optimal front. As for the PFSP, HV ||∆ ′ finds many more con-
figurations and achieves far better coverage of the Pareto front. In the test in-
stances from the literature, all three AAC approaches produces optimal configur-
ations for 100-city instances, HV+∆ ′ and HV ||∆ ′ also do on 300-city instances, but
only HV ||∆ ′ manages to find most of the optimal configurations on the 500-city
instance.

For both problems, within the small configuration space, all three AAC ap-
proaches are able to find configurations very close to the true Pareto-front. As ex-

126 Chapter 6. MOLS Configuration

0.48 0.485 0.49 0.495
0.2

0.4

0.6

0.8

1.0

1-HV

∆ ′

PFSP 50 jobs – Validation

0.475 0.48 0.485 0.49

0.4

0.6

0.8

1-HV

∆ ′

PFSP 50 jobs – Test

0.44 0.445 0.45 0.455 0.46

0.2

0.4

0.6

0.8

1.0

1-HV

∆ ′

PFSP 100 jobs – Validation

0.43 0.435 0.44 0.445
0.2

0.4

0.6

0.8

1.0

1-HV

∆ ′

PFSP 100 jobs – Test

0.36 0.365 0.37 0.375

0.4

0.6

0.8

1.0

1.2

1-HV

∆ ′

PFSP 200 jobs – Validation

0.36 0.365 0.37 0.375 0.38

0.4

0.6

0.8

1.0

1.2

1-HV

∆ ′

PFSP 200 jobs – Test

Figure 6.2 – Experiments on the small configuration space – PFSP scenarios
x: HV approach, o: HV+∆ ′ approach, ∆: HV ||∆ ′ approach, +: exhaustive analysis

6.2. AAC Approaches Analysis 127

0.14 0.16 0.18 0.2 0.22 0.24

0.6

0.8

1.0

1.2

1.4

1.6

1-HV

∆ ′

TSP 100 cities – Validation

0.14 0.16 0.18 0.2 0.22 0.24
0.6

0.8

1.0

1.2

1.4

1.6

1-HV

∆ ′

TSP 100 cities – Test

0.1 0.12 0.14 0.16 0.18 0.2

0.0

0.5

1.0

1.5

2.0

1-HV

∆ ′

TSP 300 cities – Validation

0.1 0.12 0.14 0.16 0.18 0.2

0.0

0.5

1.0

1.5

2.0

1-HV

∆ ′

TSP 300 cities – Test

0.08 0.1 0.12 0.14 0.16 0.18

0.0

0.5

1.0

1.5

2.0

1-HV

∆ ′

TSP 500 cities – Validation

0.08 0.1 0.12 0.14 0.16 0.18

0.0

0.5

1.0

1.5

2.0

1-HV

∆ ′

TSP 500 cities – Test

Figure 6.3 – Experiments on the small configuration space – TSP scenarios
x: HV approach, o: HV+∆ ′ approach, ∆: HV ||∆ ′ approach, +: exhaustive analysis

128 Chapter 6. MOLS Configuration

pected, the two SO-AAC approaches strongly favours the hypervolume indicator.
However, for similar training time, the MO-AAC approach is able to accurately
cover the full range of Pareto-optimal configurations.

6.2.3 Large Configuration Space Results

Figure 6.4 shows the final configurations produced by all three AAC approaches
for both PFSP and TSP scenarios, considering the larger configuration space of
10920 configurations. In contrary to the results on the small configuration space
of 300 configurations only, the configurations in consideration by the three ap-
proaches are only shown on the test instances. We also show the 300 configura-
tions of the smaller set of configurations that we previously exhaustively evalu-
ated, in order to highlight that these final configurations map very closely those
found within the small space, which suggests that the small space indeed captures
the high-performance configurations from the much larger space and, more im-
portantly, demonstrates that our AAC approaches effectively finds such configura-
tions. In the following, we focus on the performance of the three AAC approaches.

SO-AAC. Both SO-AAC approaches, HV and HV+∆ ′, produce very few non-
dominated configurations in their final testing step – typically between 2 and 4
on each instance set. As one might expect, HV always finds a final configuration
with near-optimal hypervolume. The results for HV+∆ ′ are similar to those for
HV for the PFSP, but markedly different on the TSP scenarios. For 100-city bTSP in-
stances, HV+∆ ′ covers the Pareto front, while for 300 cities, it finds the two extreme
configurations, due to accidentally well-adapted weights used for aggregating hy-
pervolume and spread. However, due to the non-convex shape of the front, no
trade-off configurations are found between these extremes. For 500-city instances,
HV+∆ ′ only finds configurations with near-optimal hypervolume, similar to what
we observed for the PFSP.

MO-AAC. In the other hand, the MO-AAC approach, HV ||∆ ′, consistently pro-
vides many more non-dominated configurations, except for the small 100-city bTSP
instance set, where the Pareto front is completely covered by all three approaches.
In all cases, the sets of configurations found by HV ||∆ ′ are very well distributed
over the entire front of optimal configurations. Although HV+∆ ′ sometimes finds
better configurations (e.g., on the 100- and 200-jobs PFSP scenarios), HV ||∆ ′ always
produces configurations with similar performance.

6.2. AAC Approaches Analysis 129

0.475 0.48 0.485 0.49

0.4

0.6

0.8

1-HV

∆ ′

PFSP 50 jobs 20 machines – Test

0.14 0.16 0.18 0.2 0.22 0.24
0.6

0.8

1.0

1.2

1.4

1.6

1-HV

∆ ′

TSP 100 cities – Test

0.43 0.435 0.44 0.445
0.2

0.4

0.6

0.8

1.0

1-HV

∆ ′

PFSP 100 jobs 20 machines – Test

0.1 0.12 0.14 0.16 0.18 0.2

0.0

0.5

1.0

1.5

2.0

1-HV

∆ ′

TSP 300 cities – Test

0.36 0.365 0.37 0.375 0.38
0.2

0.4

0.6

0.8

1.0

1.2

1-HV

∆ ′

PFSP 200 jobs 20 machines – Test

0.08 0.1 0.12 0.14 0.16 0.18

0.0

0.5

1.0

1.5

2.0

1-HV

∆ ′

TSP 500 cities – Test

Figure 6.4 – Experiments on the large configuration space
x: HV approach, o: HV+∆ ′ approach, ∆: HV ||∆ ′ approach, +: exhaustive analysis

130 Chapter 6. MOLS Configuration

Table 6.7 – Number of configurations after training, validation and testing

Scenario Approach Small space Large space
Configs Pareto Final Configs Pareto Final

PFSP 50 HV 10 2 2 20 2 2
HV+∆ ′ 10 4 2 10 2 2
HV ||∆ ′ 32 (38) 9 7 145 14 11

PFSP 100 HV 10 4 3 19 (20) 1 1
HV+∆ ′ 8 (10) 3 3 20 4 2
HV ||∆ ′ 36 (42) 12 6 171 (172) 27 19

PFSP 200 HV 10 3 3 20 4 3
HV+∆ ′ 9 (10) 5 3 16 (20) 2 2
HV ||∆ ′ 29 (39) 11 8 111 (117) 14 9

TSP 100 HV 6 (10) 1 1 15 (20) 2 1
HV+∆ ′ 6 (10) 2 2 15 (20) 6 4
HV ||∆ ′ 16 (26) 3 3 62 (73) 11 5

TSP 300 HV 9 (10) 2 2 13 (20) 4 2
HV+∆ ′ 9 (10) 5 5 12 (20) 5 2
HV ||∆ ′ 33 (41) 8 6 107 (130) 18 12

TSP 500 HV 6 (10) 5 4 16 (20) 4 4
HV+∆ ′ 8 (10) 5 4 14 (20) 3 2
HV ||∆ ′ 36 (40) 12 11 135 (145) 25 22

6.2.4 Discussions

In addition to the quality of the final configurations, the analysis of the sizes of the
sets of configurations returned by each AAC approach at each step of the config-
uration protocol provides more insight on each approach performance.

Table 6.7 details the number of configurations resulting after each of the three
steps of the configuration protocol, for each of the three configuration approaches,
the six scenarios, and the two configuration spaces. The first column, “Configs”,
gives the number of unique configurations after the training step, the total number
being given with parenthesis when a unique configuration results from multiple
ParamILS runs. The second column, “Pareto”, gives the number of configurations
that are not dominated on the training instances, after the validation step. Finally,
the third column, “Final”, gives the number of configurations that, non-dominated
on the training instances, also are non-dominated on the test instances.

First, the numbers of final training configurations of the SO-AAC approaches

6.3. Analysis of Objective Correlation 131

are obviously limited by the number of ParamILS runs, as a maximum of one con-
figuration is returned each run. Fewer configurations results when multiple runs
returns the same configuration. On the other hand, each run of the MO-AAC ap-
proach returns a set of configuration, resulting on far more training configurations.
After the validation many of the training configurations are discarded, while most
of the non-dominated configurations on the training instance sets are also non-
dominated on the associated testing instance sets, indicating that they generalise
well on the unseen instances.

Overall, Figure 6.2, Figure 6.3, and Figure 6.4 show that the MO-AAC approach,
HV ||∆ ′, produces substantially better results than the two SO-AAC approaches,
HV and HV+∆ ′. HV finds excellent sets of configurations with respect to hyper-
volume, but only provides very few of those and consequently fails to achieve
good spread. HV+∆ ′ sometimes provides better results and, under favourable cir-
cumstances, can cover the entire set of Pareto-optimal configurations; however,
especially for more challenging scenarios, its performance is similar to that of HV .
The main drawback of this approach is the requirement of a costly preliminary
step for calibrating the weights used for aggregating the two optimisation object-
ives. Finally, HV ||∆ ′, the MO-AAC approach, always efficiently covers the entire
Pareto-front of configurations, while still finding sets of configurations with excel-
lent hypervolume, as produced by the two SO-AAC approaches.

In conclusion, HV ||∆ ′, the MO-AAC approach should clearly be preferred on
all of our datasets. Despite using the same configuration budget (1000 target al-
gorithm runs), it is able to efficiently cover the entire Pareto front of configurations
while simultaneously matching the performance of both SO-AAC approaches HV

and HV+∆ ′.

6.3 Analysis of Objective Correlation

Finally, in the third study we focus on comparing the performance our AAC ap-
proaches on diverse scenarios on which the correlation between objectives is manu-
ally controlled. This study enables to control for the impact of objective correlation
on our multi-objective scenarios.

6.3.1 Experimental Protocol

The classical instances of PFSP and TSP used in the previous sections greatly differ
in terms of objective correlation. Indeed, in the PFSP Taillard instances, makespan

132 Chapter 6. MOLS Configuration

and total flow time, the two objective under optimisation, are positively very cor-
related. This is no surprise as they coincide to the maximum and the average,
respectively, of the due dates of the flowshop schedule. In contrary, in our TSP
instances we optimise the distance of a tour over two independent sets of cities,
making the two objectives completely uncorrelated.

To study the specific impact of correlation between objectives on our AAC ap-
proaches, we tackle a new set of scenarios for which the correlation is manually
controlled. We consider three problems, with the quadratic assignment problem
(QAP), two sizes of instances per problem, and three degrees of correlation, fol-
lowing previous a work of Kessaci-Marmion et al. (2017). Specifically, for the sizes
of instances, for each of the three problems we consider instances with n = 50 and
n = 100, with n being the number of PFSP jobs, TSP cities, and QAP facilities,
respectively.

On PFSP instances, we consider the simultaneous optimisation of two makespan
measures computed from two independent matrices of processing times. These
processing times are generated following the uniform distribution U([1; 99]). To
manually correlate the two objectives, a percentage ρ of the processing times of
the first matrix is carried over the second matrix, using the coverage method. No
correlated instances were obtained using the two independent matrices directly,
while medium correlation instances used the value ρ = 0.6 and high correlation
instances the value ρ = 0.9.

On TSP instances, we consider the simultaneous optimisation of the distances
of two tours computed from two sets of cities in the Euclidean plane. The position
of each city on the plane is determined following the distribution U([1; 3163]) ×
U([1; 3163]). To manually correlate the two objectives, the second set of cities is
obtained by moving each city according to a normal distribution N(0, ρ). Medium
correlation and high correlation instances were generated using the values ρ = 600
and ρ = 150, respectively.

On QAP instances, we consider the simultaneous optimisation of two costs as-
sociated with two flow matrices, the position of the facilities being shared. For
both matrices the flow between any two facilities is generated following the uni-
form distribution U([0; 99]). As for the PFSP instances, we use the coverage method
to carry over a percentage ρ of the first flow matrix to the second one. Again, no
correlated instances were obtained using the two independent matrices directly,
while medium correlation and high correlation instances were obtained using the
values ρ = 0.6 and ρ = 0.9, respectively.

As for the configuration space of the MOLS algorithm, we use the same large
configuration space as in the second study (Table 6.4), at the slight difference of

6.3. Analysis of Objective Correlation 133

the bound-strat parameter, which now takes the value replace instead of
the value rand, meaning that after reaching the maximum archive capacity non-
dominated solutions are accepted if and only if they replace a solution from the
archive, rather than discarding non-dominated solutions uniformly at random.

Lastly, we use the same three approaches as in the second study (i.e., HV ,
HV+∆ ′, and HV ||∆ ′), following the experimental protocol of the large configur-
ation space (see Table 6.5 and Table 6.6).

6.3.2 Optimised Configurations

Table 6.8 to Table 6.13 show the final non-dominated configurations found by the
three AAC approaches HV , HV+∆ ′, and HV ||∆ ′, on all eighteen scenarios (three
problems, two size of instances, three degrees of correlation).

PFSP. (Table 6.8 and Table 6.9) The configurations found across all six scenarios
are very similar. The combination of the ndom exploration with either the oldest
or the rand selection strategy seems to lead to the best performance in terms
of hypervolume, while the combination of the imp exploration strategy with the
rand selection strategy leads to solution sets with worse hypervolume but better
∆ ′ spread. While both the sol and arch exploration reference choices are found
within the final configurations for all scenarios, arch is slightly more favoured on
larger instances, indicating that referencing more stringently against the current
archive during exploration is beneficial for larger instance sizes.

TSP. (Table 6.10 and Table 6.11) Compared to the PFSP scenarios, the number
of distinct non-dominated configurations is much smaller. The configurations
we found vary strongly with both correlation level and problem size. Overall,
the ndom exploration strategy is preferred, together with either the rand or the
oldest strategy. However, for instance with medium or no correlation, the arch
exploration reference leads to better HV performance, and may be used together
with the imp-ndom exploration strategy when the number of cities increases. Fur-
thermore, on the smallest high correlated instances the MOLS algorithm may be-
nefit from using a bounded archive and restart between iterations, while a large
archive of size 1000 is chosen (i.e., basically unbounded), along with a kick-based
perturbation strategy, for all other instances. This is consistent with the idea that
larger TSP instances benefit from a less aggressive perturbation mechanism in
combination with a more diverse archive of candidate tours. Finally, correlation
between objective has an impact similar to the problem size, making low (and

134 Chapter 6. MOLS Configuration

Table 6.8 – PFSP 50 jobs 20 machines (optimised configurations)

1-HV ∆ ′ Selection Exploration Archive Perturbation

(high correlation)
0.4942 1.3851 oldest 1 ndom arch 1 1000 kick 1 10
0.4945 1.3550 oldest 1 ndom arch 1 50 kick 1 5
0.4951 1.2305 oldest 1 ndom sol 1 20 kick 1 3
0.5052 1.1126 rand 10 ndom arch 10 1000 restart

0.5083 1.0840 rand 10 all 50 kick-all 3
0.5118 1.0449 rand 10 ndom arch 1 1000 kick-all 3
0.5133 1.0367 all ndom arch 3 20 restart

0.5140 0.7539 rand 1 all-imp arch 100 restart

0.5150 0.6622 rand 1 imp arch 3 100 restart

0.5150 0.6622 rand 1 imp arch 3 50 restart

0.5176 0.3286 rand 1 imp sol 1 100 restart

0.5195 0.1154 rand 1 imp arch 1 20 kick 10 10
0.5198 0.0900 oldest 1 imp arch 1 20 kick 1 3

(medium correlation)
0.5032 1.2096 oldest 1 ndom sol 3 1000 kick 5 3
0.5035 1.1864 oldest 1 ndom sol 3 100 kick 5 10
0.5055 1.1257 oldest 1 ndom arch 1 50 kick 10 10
0.5088 1.0564 rand 10 all 50 restart

0.5168 0.8827 all ndom arch 3 20 kick 1 5
0.5202 0.8554 rand 1 imp arch 3 1000 restart

0.5217 0.7230 rand 1 imp arch 3 100 kick-all 5
0.5217 0.7230 rand 1 imp arch 3 1000 kick-all 5
0.5217 0.7230 rand 1 imp arch 3 20 kick-all 10
0.5222 0.4934 rand 1 imp sol 1 100 restart

0.5222 0.4934 rand 1 imp sol 1 50 restart

0.5223 0.4787 rand 1 imp arch 1 1000 restart

0.5223 0.4787 rand 1 imp arch 1 20 restart

0.5258 0.1951 rand 1 imp arch 1 20 kick-all 10
0.5272 0.1160 oldest 1 imp arch 1 20 kick 10 10
0.5277 0.0283 rand 1 imp arch 1 100 kick 1 5
0.5277 0.0283 rand 1 imp sol 1 20 kick 1 10
0.5277 0.0283 rand 1 imp sol 1 50 kick 1 10
0.5278 0.0254 oldest 1 imp arch 1 20 kick 1 3

6.3. Analysis of Objective Correlation 135

Table 6.8 – PFSP 50 jobs 20 machines (optimised configurations, continued)

1-HV ∆ ′ Selection Exploration Archive Perturbation

(no correlation)
0.5214 0.9715 rand 10 ndom arch 3 1000 kick 5 10
0.5214 0.9709 rand 10 ndom arch 3 1000 kick 10 3
0.5246 0.8414 rand 3 imp-ndom sol 10 50 kick-all 10
0.5317 0.8065 newest 1 ndom arch 3 50 kick 5 10
0.5337 0.8064 rand 10 all 20 kick 5 10
0.5405 0.7626 rand 1 imp sol 3 100 kick 10 3
0.5415 0.5862 all imp arch 1 100 restart

0.5415 0.5862 all imp arch 1 1000 restart

0.5415 0.5862 all imp arch 1 50 restart

0.5415 0.5862 newest 10 imp arch 1 100 restart

0.5416 0.5792 oldest 3 imp sol 1 20 restart

0.5416 0.5792 rand 10 imp sol 1 1000 restart

0.5416 0.5792 rand 10 imp sol 1 50 restart

0.5416 0.5792 rand 3 imp sol 1 1000 restart

0.5455 0.3180 rand 1 imp arch 1 20 kick 10 10
0.5455 0.3173 rand 1 imp sol 1 1000 kick 10 10
0.5485 0.2275 oldest 1 imp sol 1 1000 kick 10 5
0.5503 0.1294 rand 1 imp sol 1 50 kick 1 10

136 Chapter 6. MOLS Configuration

Table 6.9 – PFSP 100 jobs 20 machines (optimised configurations)

1-HV ∆ ′ Selection Exploration Archive Perturbation

(high correlation)
0.3543 1.8848 oldest 1 ndom arch 1 1000 kick 1 10
0.3559 1.7607 oldest 1 ndom arch 1 100 kick 1 3
0.3650 1.5112 oldest 1 ndom sol 1 20 kick 10 5
0.3748 1.4685 oldest 1 ndom arch 1 20 kick 1 3
0.3753 1.4292 oldest 1 ndom sol 1 20 restart

0.3769 1.3065 rand 10 all 20 restart

0.3798 1.2688 newest 10 ndom arch 3 20 restart

0.3800 1.2406 newest 10 ndom arch 10 20 restart

0.3802 0.9826 rand 1 all-imp arch 1000 restart

0.3825 0.7963 rand 1 imp arch 3 1000 restart

0.3825 0.7963 rand 1 imp arch 3 20 restart

0.3838 0.7796 rand 3 all-imp sol 50 kick 5 3
0.3841 0.1203 rand 1 imp arch 1 20 restart

0.3845 0.0713 rand 1 imp arch 1 50 kick-all 5

(medium correlation)
0.3698 1.7468 oldest 1 ndom arch 1 1000 kick 1 10
0.3699 1.5941 oldest 1 ndom arch 1 100 kick 5 3
0.3707 1.5485 oldest 1 ndom arch 1 100 kick 1 5
0.3722 1.4407 oldest 1 ndom arch 1 50 kick 10 3
0.3787 1.4315 rand 1 ndom arch 10 1000 restart

0.3790 1.3252 oldest 1 ndom arch 1 20 kick 10 10
0.3792 1.2412 rand 3 ndom arch 10 100 kick-all 3
0.3813 1.0833 rand 3 imp-ndom arch 10 100 kick 5 10
0.3817 1.0583 rand 1 imp-ndom sol 10 100 kick 5 5
0.3818 1.0502 rand 10 imp-ndom arch 10 100 kick-all 10
0.3820 1.0159 rand 3 imp-ndom arch 10 50 restart

0.3824 1.0077 rand 10 imp-ndom sol 10 50 kick-all 10
0.3846 0.9621 rand 10 all 50 kick 1 10
0.3855 0.9461 all ndom arch 3 20 kick 1 3
0.3875 0.8628 rand 10 all 20 kick-all 10
0.3908 0.1667 rand 1 imp arch 1 1000 restart

0.3929 0.0578 rand 1 imp sol 1 50 kick 10 10
0.3931 0.0062 rand 1 imp sol 1 20 kick 1 10
0.3931 0.0062 rand 1 imp sol 1 50 kick 1 10

6.3. Analysis of Objective Correlation 137

Table 6.9 – PFSP 100 jobs 20 machines (optimised configurations, continued)

1-HV ∆ ′ Selection Exploration Archive Perturbation

(no correlation)
0.3869 1.2148 rand 1 ndom arch 1 1000 restart

0.3873 1.1696 rand 3 ndom arch 3 1000 kick-all 3
0.3873 1.1677 rand 3 ndom arch 3 1000 kick 5 5
0.3873 1.1657 rand 3 ndom arch 3 1000 kick-all 10
0.3883 0.9964 rand 10 ndom arch 10 1000 restart

0.3883 0.9892 rand 10 ndom arch 10 1000 kick 1 10
0.3893 0.9579 rand 1 ndom arch 10 100 kick 5 3
0.3894 0.9481 rand 10 ndom arch 10 100 kick-all 3
0.3894 0.9424 rand 10 ndom arch 10 100 kick 1 10
0.3906 0.9232 rand 1 imp-ndom arch 3 100 kick-all 3
0.3906 0.9222 rand 1 imp-ndom arch 3 100 restart

0.3935 0.8042 all ndom arch 3 50 kick 10 5
0.4035 0.1481 rand 1 imp sol 1 50 restart

0.4035 0.1508 rand 1 imp arch 1 1000 restart

0.4035 0.1506 rand 1 imp arch 1 50 restart

0.4085 0.1480 rand 1 imp sol 1 50 kick 10 10
0.4087 0.1304 rand 1 imp arch 1 1000 kick-all 3
0.4117 0.0744 all imp arch 1 100 kick 1 5
0.4117 0.0744 all imp arch 1 50 kick 1 5
0.4117 0.0744 all imp sol 1 1000 kick 1 3
0.4117 0.0744 all imp sol 1 20 kick 1 10
0.4117 0.0744 newest 10 imp arch 1 100 kick 1 3

138 Chapter 6. MOLS Configuration

no) correlated small instances significantly harder and requiring more aggressive
mechanisms than equally sized high correlated instances.

QAP. (Table 6.12 and Table 6.13) Again, much fewer configurations were ob-
tained than for the PFSP scenarios. These configurations are much more varied
than for the PFSP and TSP, and vary with instance size as well as correlation
between the objectives. The restart perturbation strategy is favoured for small,
50-facility instances, while kick-based perturbation strategies appear to work bet-
ter for the larger 100-facility instances. Interestingly, the larger instances seem to
be amenable to a wider range of exploration strategies. However, the degree of
objective correlation affects the choice of exploration strategy; e.g., for the larger
instances, the imp-ndom exploration strategy is only chosen when the objectives
are uncorrelated. Similarly, we found that bounding the archive size appears to
work only well for sufficiently correlated objectives, while the same observation
holds for the oldest selection strategy.

6.3.3 Discussions

Table 6.14 summarises the performance of our three AAC approaches HV , HV+∆ ′,
and HV ||∆ ′ on all eighteen scenarios, and details the number of final configurations
and the range of hypervolume and ∆ ′ indicator values.

Clearly, HV ||∆ ′ produces much larger sets of configurations than HV and HV+∆ ′,
in particular for the PFSP. While HV+∆ ′ and HV ||∆ ′ achieve overall similar hyper-
volume values to the dedicated HV approach, on some scenarios (highly correlated
PFSP and uncorrelated 100-city TSP), HV achieves the best hypervolume, as could
be expected. Surprisingly, on the uncorrelated 100-job PFSP scenario, the HV ||∆ ′

approach performs best in terms of hypervolume. Regarding the complementary
∆ ′ spread indicator, HV ||∆ ′ generally achieves much better results, which are only
occasionally matched by the HV+∆ ′ approach, when the direction of aggregation
is compatible with the shape of the optimised front of solutions; but to ensure this
is the case, a costly preliminary analysis is required to permit appropriate norm-
alisation of hypervolume and ∆ ′ spread. These observations are consistent with
the previous study. As for correlation between objectives, there is no clear overall
impact on the three AAC approaches. We note, however, that the single-objective
HV approach clearly achieves the best hypervolume for the highly correlated PFSP
scenarios.

In conclusion, we showed that the observations of the second study of this
chapter generalised on other datasets, in which the correlation between objectives

6.3. Analysis of Objective Correlation 139

Table 6.10 – TSP 50 cities (optimised configurations)

1-HV ∆ ′ Selection Exploration Archive Perturbation

(high correlation)
0.1575 0.8045 oldest 1 ndom sol 3 1000 restart

0.1575 0.8040 oldest 1 ndom sol 3 100 restart

0.1575 0.7320 rand 1 ndom sol 1 50 restart

0.1582 0.6705 rand 1 ndom sol 3 1000 restart

0.1582 0.6697 rand 1 ndom sol 3 100 restart

0.1582 0.6462 rand 1 ndom sol 3 50 restart

0.1591 0.6126 rand 1 ndom sol 10 50 restart

0.1599 0.6066 all ndom arch 10 50 restart

0.1600 0.5911 oldest 1 ndom sol 3 1000 kick 10 3
0.1632 0.5621 oldest 1 imp sol 10 50 restart

0.1642 0.4527 oldest 1 imp arch 1 100 restart

(medium correlation)
0.1673 0.6627 rand 1 ndom arch 1 1000 kick-all 3
0.1675 0.6581 rand 1 ndom arch 10 1000 kick 10 3
0.1675 0.6581 rand 1 ndom arch 10 1000 kick 10 10
0.1675 0.6578 rand 1 ndom arch 10 1000 restart

(no correlation)
0.1850 0.6769 rand 1 ndom arch 1 1000 kick-all 5
0.1850 0.6767 rand 1 ndom arch 1 1000 kick-all 10
0.1850 0.6763 rand 1 ndom arch 1 1000 kick-all 3
0.1904 0.6555 rand 1 ndom arch 1 1000 restart

0.1957 0.6553 rand 1 ndom sol 1 1000 kick-all 10
0.1968 0.6250 rand 3 ndom sol 3 1000 restart

0.2070 0.6170 rand 1 ndom sol 1 1000 restart

140 Chapter 6. MOLS Configuration

Table 6.11 – TSP 100 cities (optimised configurations)

1-HV ∆ ′ Selection Exploration Archive Perturbation

(high correlation)
0.1153 0.6292 rand 1 ndom sol 3 1000 kick 10 3
0.1157 0.6232 rand 3 ndom sol 10 1000 kick-all 3

(medium correlation)
0.1237 0.8163 rand 10 imp-ndom arch 1 1000 kick 10 10
0.1237 0.6623 rand 3 ndom sol 10 1000 kick-all 10
0.1237 0.6620 rand 3 ndom sol 10 1000 restart

0.1237 0.6615 rand 3 ndom sol 10 1000 kick 1 3
0.1237 0.6614 rand 3 ndom sol 10 1000 kick-all 3
0.1237 0.6608 rand 3 ndom sol 10 1000 kick-all 5
0.1251 0.6546 rand 1 ndom sol 3 1000 restart

0.1258 0.6536 rand 1 ndom sol 1 1000 kick-all 5
0.1268 0.6447 rand 1 ndom sol 1 1000 restart

(no correlation)
0.1395 0.9566 oldest 1 imp-ndom arch 1 1000 kick 5 3
0.1395 0.9560 oldest 1 imp-ndom arch 1 1000 kick 10 3
0.1395 0.9558 oldest 1 imp-ndom arch 1 1000 kick 5 5
0.1398 0.9020 oldest 3 ndom sol 10 1000 kick 10 10
0.1398 0.9012 oldest 3 ndom sol 10 1000 kick 10 5
0.1403 0.8855 oldest 1 ndom sol 10 1000 kick-all 5
0.1405 0.8574 oldest 10 ndom sol 10 1000 kick 10 10
0.1416 0.6544 rand 10 ndom sol 10 1000 kick 10 3
0.1416 0.6530 rand 10 ndom sol 10 1000 kick 10 5
0.1450 0.6457 rand 1 ndom sol 3 1000 kick 10 3
0.1451 0.6432 rand 3 ndom sol 3 1000 kick 10 5
0.1456 0.6361 rand 10 ndom sol 3 1000 kick-all 3

6.3. Analysis of Objective Correlation 141

Table 6.12 – QAP 50 facilities (optimised configurations)

1-HV ∆ ′ Selection Exploration Archive Perturbation

(high correlation)
0.3194 0.8931 oldest 1 ndom sol 1 1000 restart

0.3194 0.8824 oldest 1 ndom sol 1 100 restart

0.3195 0.8724 oldest 1 ndom sol 1 20 restart

0.3208 0.4438 oldest 1 imp arch 3 50 restart

0.3209 0.3434 rand 1 imp arch 1 50 restart

0.3210 0.3090 oldest 1 imp arch 1 100 restart

0.3210 0.3011 rand 1 imp sol 1 50 restart

0.3210 0.2663 oldest 1 imp sol 1 20 restart

0.3213 0.1694 oldest 1 imp arch 1 20 kick-all 10

(medium correlation)
0.3211 0.8846 oldest 1 ndom arch 1 1000 restart

0.3211 0.8767 oldest 1 ndom arch 1 100 restart

0.3212 0.8614 oldest 1 ndom sol 1 100 kick 1 3
0.3212 0.8498 oldest 1 ndom sol 1 1000 kick 1 3
0.3212 0.8480 oldest 1 ndom sol 1 100 kick 1 5
0.3224 0.4980 oldest 1 imp arch 3 100 kick 5 3
0.3224 0.1728 oldest 1 imp arch 1 100 kick 5 3

(no correlation)
0.3221 0.7973 rand 10 ndom arch 3 1000 restart

0.3221 0.7870 rand 1 ndom arch 3 1000 restart

0.3221 0.7849 rand 1 ndom arch 3 1000 kick 10 3
0.3221 0.7829 rand 1 ndom arch 3 1000 kick-all 10
0.3223 0.7702 rand 1 ndom sol 10 1000 kick-all 10
0.3225 0.7168 rand 1 imp sol 1 100 restart

0.3226 0.7106 oldest 1 imp sol 1 50 restart

142 Chapter 6. MOLS Configuration

Table 6.13 – QAP 100 facilities (optimised configurations)

1-HV ∆ ′ Selection Exploration Archive Perturbation

(high correlation)
0.3199 0.8395 oldest 1 ndom sol 1 50 restart

0.3200 0.8158 oldest 1 ndom sol 1 20 restart

0.3208 0.5251 rand 1 imp arch 3 1000 kick 10 3
0.3209 0.2974 rand 1 imp sol 3 50 kick 5 3
0.3209 0.1000 rand 1 imp sol 1 100 kick-all 10
0.3210 0.0900 newest 10 imp arch 1 1000 kick-all 10
0.3210 0.0800 all imp sol 1 50 kick 10 3

(medium correlation)
0.3209 0.9070 oldest 1 ndom arch 1 1000 restart

0.3209 0.8865 oldest 1 ndom arch 1 1000 kick 10 3
0.3209 0.8784 oldest 1 ndom sol 1 1000 kick 10 5
0.3209 0.8688 oldest 1 ndom sol 1 1000 kick 1 5
0.3209 0.8389 oldest 1 ndom arch 1 1000 kick 1 3
0.3211 0.8088 rand 1 imp-ndom arch 1 1000 kick-all 3
0.3211 0.7974 rand 3 imp-ndom arch 1 1000 kick-all 3
0.3213 0.4084 rand 1 all-imp sol 1000 kick-all 5
0.3213 0.3026 rand 1 all-imp sol 100 kick 5 5
0.3213 0.2727 rand 1 all-imp sol 100 kick 10 10
0.3213 0.1575 rand 1 imp sol 3 50 kick-all 5
0.3213 0.0000 rand 1 imp arch 1 50 kick 1 10

(no correlation)
0.3210 0.7131 rand 3 imp-ndom arch 1 1000 restart

0.3210 0.7107 rand 3 imp-ndom arch 1 1000 kick 1 3
0.3210 0.7081 rand 1 imp-ndom arch 1 1000 kick-all 3
0.3210 0.7024 rand 3 imp-ndom arch 1 1000 restart

0.3210 0.7023 rand 10 imp-ndom arch 1 1000 kick-all 10
0.3212 0.2618 rand 1 imp sol 3 50 kick 5 3
0.3212 0.0000 rand 1 imp arch 1 1000 kick-all 5

6.3. Analysis of Objective Correlation 143

Table 6.14 – AAC performance: number of final configurations and objective
ranges

1-HV values ∆ ′ values # 1-HV values ∆ ′ values

PFSP 50 jobs 20 machines PFSP 100 jobs 20 machines
(high correlation)

HV 3 0.4942–0.4951 1.2305–1.3851 3 0.3543–0.3753 1.4995–1.8848
HV+∆′ 5 0.4954–0.5191 0.4021–1.5234 3 0.3551–0.3755 1.4856–1.9303
HV||∆′ 13 0.4951–0.5198 0.0900–1.4546 15 0.3551–0.3845 0.0713–1.9302

(medium correlation)
HV 1 0.5035 1.1864 3 0.3698–0.3707 1.5517–1.7486

HV+∆′ 4 0.5032–0.5088 1.0564–1.2096 8 0.3698–0.3820 1.0159–1.7468
HV||∆′ 19 0.5035–0.5278 0.0254–1.1879 14 0.3707–0.3931 0.0062–1.5485

(no correlation)
HV 1 0.5214 0.9709 1 0.3873 1.1677

HV+∆′ 1 0.5214 0.9715 5 0.3873–0.3906 0.8222–1.1702
HV||∆′ 17 0.5215–0.5503 0.1294–0.9754 20 0.3869–0.4117 0.0744–1.2148

TSP 50 cities TSP 100 cities
(high correlation)

HV 3 0.1575–0.1582 0.6692–0.8045 2 0.1153–0.1157 0.6232–0.6292
HV+∆′ 4 0.1582–0.1600 0.5911–0.6705 2 0.1154 0.6275–0.6297
HV||∆′ 6 0.1575–0.1642 0.4527–0.7320 2 0.1154–0.1157 0.6233–0.6303

(medium correlation)
HV 1 0.1675 0.6578 2 0.1237 0.6620–0.8163

HV+∆′ 2 0.1673–0.1675 0.6581–0.6627 3 0.1237 0.6608–0.6623
HV||∆′ 2 0.1673–0.1675 0.6581–0.6632 5 0.1237–0.1268 0.6447–0.8156

(no correlation)
HV 1 0.1850 0.6767 4 0.1395–0.1403 0.8841–0.9560

HV+∆′ 1 0.1850 0.6763 5 0.1395–0.1416 0.6544–0.9566
HV||∆′ 5 0.1850–0.2070 0.6170–0.6769 8 0.1395–0.1456 0.6361–0.9559

144 Chapter 6. MOLS Configuration

Table 6.14 – AAC performance: number of final configurations and objective
ranges (continued)

1-HV values ∆ ′ values # 1-HV values ∆ ′ values

QAP 50 facilities QAP 100 facilities
(high correlation)

HV 2 0.3194–0.3195 0.8810–0.8824 1 0.3199 0.8395
HV+∆′ 2 0.3194–0.3195 0.8724–0.8931 1 0.3199 0.8217
HV||∆′ 8 0.3194–0.3213 0.1694–0.8914 6 0.3200–0.3210 0.0800–0.8158

(medium correlation)
HV 3 0.3211–0.3212 0.8498–0.8846 1 0.3209 0.8688

HV+∆′ 3 0.3211–0.3212 0.8480–0.8788 5 0.3209–0.3213 0.0000–0.8865
HV||∆′ 3 0.3212–0.3224 0.1728–0.8614 8 0.3209–0.3214 0.0000–0.9070

(no correlation)
HV 2 0.3221 0.7870–0.7949 4 0.3210 0.7023–1.2196

HV+∆′ 2 0.3221 0.7814–0.7960 3 0.3210 0.7107–1.2491
HV||∆′ 5 0.3221–0.3226 0.7106–0.7973 4 0.3210–0.3212 0.0000–0.7081

was controlled.

HV ||∆ ′, the MO-AAC approach, should generally be preferred on all of the
datasets we considered. Using similar configuration budgets, it is able to match
the performance of both SO-AAC approaches HV and HV+∆ ′ on their dedicated
search direction, while simultaneously efficiently cover the entire Pareto front.

6.4 Perspectives

In this chapter, we conducted three successive studies to analyse the automatic
configuration of a static MOLS algorithm on different permutation problems. We
first focused on a restricted set of parameters values to perform an exhaustive
evaluation of the resulting configuration space, then compared the performance
of three AAC approaches, with both the restricted and a larger set of parameter
values, before finally specifically investigating the impact of objective correlation
on the configuration process.

We detail in the following three perspectives related to multi-objective auto-
matic algorithm configuration in general.

6.4. Perspectives 145

Artificial configuration spaces. The main difficulty while designing a configur-
ator and in general while tackling configuration problems is the sheer amount of
time required in order to complete a optimisation pass of the target algorithm para-
meters. Indeed, it is no surprise that the configuration process is orders of mag-
nitude longer than the time spent by the target algorithm over a single instance. It
follows that in-depth analysis of the performance of the configurator itself is again
orders of magnitude longer, therefore generally prohibitively expensive. In partic-
ular, automatically configuring the configurator itself is mostly inefficient (e.g., see
Hutter et al., 2009), even if surrogate models can be used to speed-up the process
to a reasonable length (e.g., see Dang et al., 2017).

In order to considerably reduce the time spent by the configuration process,
it would be really useful to have access to exhaustively pre-computed target al-
gorithm runs, which would enable to avoid the overhead of effectively running the
target algorithm. The obvious problem is that this pre-computation is of course far
more expensive than the configuration process itself, even if it can be used mul-
tiple times. Another problem would be that the configuration spaces of all target
algorithms are not similar, so many of such highly expensive pre-computations
would be necessary.

One possible solution would be to have instead a dummy target algorithm, able
to instantly produce outputs similar to existing target algorithms. This dummy
algorithm should be quick, highly parameterisable so it can generate various con-
figuration spaces, and able to emulates complex parameter interactions. To obtain
such an algorithm, it would be necessary to analyse samples of existing configura-
tion spaces (e.g., such as Figure 6.1), to propose a cohesive model (possibly several
models) that would enable exploration of configuration space at reasonable cost,
thus transforming otherwise prohibitively expensive configuration problem into
much faster to solve optimisation problems.

Search space analysis tool. Configuration spaces are hard to visualise. Most im-
portantly, they are very expensive to sample, and the relation between paramet-
ers values may be complex and not always clearly discernible. In Figure 6.1, we
showed how few parameters could explain how configuration are clustered, while
some other produce essentially localised noise, as show Table 6.2 and Table 6.3 in
which the setting of perturbation parameters had essentially no effect on the per-
formance of optimal configurations. These analyses were performed by hand, and
only possible because first we already knew what would be the most impactful
parameters, and then because they were very few parameters overall. A tool able
to automatically produce insights on the full parameter space, as opposed to con-
figurators, that only focuses on optimal configurations, could be very useful and

146 Chapter 6. MOLS Configuration

crucial in the obtainment of artificial configuration spaces. In some sense, it would
be related to parameter ablation (e.g., see Hutter et al., 2013; Biedenkapp et al.,
2017), which aims to identify and focus on impactful parameters.

Other multi-objective applications. MO-ParamILS, our multi-objective exten-
sion of ParamILS, is a fully fledged multi-objective configurator, able to accom-
modate other multi-objective scenario than the solution quality versus running
time trade-offs of Chapter 5 and the optimisation of multiple multi-objective per-
formance indicators of Chapter 6. Within the possible applications not tackled in
this thesis, three are detailed hereafter.

First, regarding multi-objective algorithms, we only considered in this thesis
optimising both hypervolume and ∆ ′ spread, resulting in a trade-off between ac-
curacy and distribution. It would be interesting to investigate other kind of trade-
offs, using for example the objectives of the target algorithm directly. For a bi-
objective algorithm optimising objectives o1 and o2, this could mean for example
simultaneously optimising the n+ 1 aggregations (k·o1+(n−k)·o2)/n (for k ∈ 0, . . . ,n
with n > 0) to find complementing variants of the target algorithms efficient re-
garding distinct directions of the objective space.

It would also be interesting to use multi-objective configuration to optimise the
parameters of binary classification algorithms. While the configuration of such
algorithms have already been tackled before (AutoWeka, Thornton et al., 2013),
the configuration process only considered the loss (misclassification rate) of the
underlying learning algorithm. With MO-ParamILS, or any future multi-objective
configurator, it would be possible to consider independently multiple performance
measures, such as the sensitivity, the specificity, the precision, or the recall.

Then, a frequent performance measure in single-objective configuration is the
penalised average runtime PAR measure (e.g., Hutter et al., 2009), where failures
by the target algorithm are penalised by a given factor; usually a factor of 10
(“PAR10”), but sometimes also as low as 2 or as high as 100. The use of a multi-
objective configurator could first enable to analyse more precisely the performance
of penalised algorithms (e.g., considering the failure ratio as an independent meas-
ure to minimise), while also analysing the PAR measure itself postmortem.

Finally, regarding the trade-off between solution quality and running time, we
proposed approaches in which the running time is taken as algorithm parameter,
while optimising either the true running time or directly the running time para-
meter value. Other approaches could be investigated, in particular to focus on
optimising the anytime properties of the target algorithm, using for example an
area under the curve -based indicator, or simply using multiple objectives being the
performance at given key time points.

To succeed, planning alone is insufficient.
One must improvise as well.

Foundation
Isaac Asimov

Part IV

Automatic Online Design

147

Chapter 7

MOLS Control

Intelligence is the ability to adapt to change.

Stephen Hawking

Previously, in Chapter 6, we used automatic configuration approaches in or-
der to optimise the performance of static MOLS algorithms. Conversely, in this
chapter, we focus on using simple control mechanisms that are able to modify the
current configuration of a MOLS algorithm during its execution, rather than pre-
dicting a single best configuration that is used for the entire run.

The motivation of this chapter is to provide complementary tools to the auto-
matic algorithm configuration (AAC) procedure studied in Chapter 6. One of the
major drawback of AAC is that it ultimately provides a single configuration of the
target algorithm, that will be used on future instances: in addition to being very
computationally expensive, only the final prediction matters while slightly less
optimal alternatives are ultimately discarded. Furthermore, AAC restricts to the
use of the same configuration of the target algorithm for the entire search, leaving
no space for combining the strengths and potentials of multiple high-performing
configurations. This chapter aims to investigate parameter control as a possible
solution to overcome these problems.

In this chapter, We use the adaptive MOLS algorithm presented in Chapter 4,
that can incorporate mechanisms to control the exploration of the MOLS algorithm.
We focus on only three different exploration strategies (ndom, imp-ndom, and imp)
that were analysed in Chapter 6, and two very simple control mechanisms: a uni-
form control mechanism and an ε-greedy mechanism. Other, more complex, al-
ternatives to the generic control mechanisms are also discussed.

We conduct three successive experiments, using first the three possible strategies,
then using only the better two strategies, before finally studying how a long-term

149

150 Chapter 7. MOLS Control

learning mechanism could allow to further improve performance by delaying the
prediction of the best strategies. The experiments are conducted on the permuta-
tion flowshop scheduling problem (PFSP) instances presented in Chapter 1.

The results presented in this chapter are linked to the following publication:

• Blot, A., Kessaci, M., Jourdan, L., and Causmaecker, P. D. (2018c). Adapt-
ive multi-objective local search algorithms for the permutation flowshop
scheduling problem. In Pardalos, P. and Kotsireas, I., editors, Learning and In-
telligent Optimization – 12th International Conference, LION 12. Revised Selected
Papers, Lecture Notes in Computer Science. Springer. (To appear).

7.1 Adaptive MOLS Algorithm

We first introduce the adaptive MOLS algorithm used in the experiments, and re-
view the possible control mechanisms that can be integrated into it.

7.1.1 Adaptive Algorithm

We use Algorithm 4.2, an adaptive variant of Algorithm 4.1 that use a control
mechanism to select an exploration strategy every time the local search is restarted.

We focus on three exploration strategies, using the imp, imp-ndom, and ndom

parameter values introduced in Chapter 4. All three explorations use the current
archive as reference, and stops after the first accepted neighbour (explor-size =

1). These three strategies have been considered to investigate a specific scenario in
which there a very good strategy is known (ndom), an effective alternative is con-
sidered (imp-ndom), together with a less effective one (imp). As for the other
parameters, for the selection phase a single neighbour is selected uniformly at ran-
dom (select-strat = rand and select-size = 1), the archive is unbounded
(bound-strat = unbounded), and for the perturbation step a single configura-
tion is selected uniformly at random and then replaced three times by one neigh-
bour selected uniformly at random (perturb-strat = kick, perturb-size =

1, and perturb-strength = 3). These choices are motivated by preliminary
expert knowledge that includes observations resulting from Chapter 6

As for the initialisation of the MOLS algorithm, we use a simple single-objective
greedy algorithm on the two objectives independently. Indeed, using smarter ini-
tialisation procedures, the starting solutions would be too close to the optimal
Pareto front, which is undoubtedly detrimental to the current study since we aim

7.1. Adaptive MOLS Algorithm 151

to emphasise the impact of the control mechanisms over the algorithm itself. To
obtain two solutions of reasonable quality, we choose the NEH procedure (Nawaz
et al., 1983) for the two objectives independently. NEH is often used to seed state-
of-the-art PFSP initialisation procedures as for example the 2-phase local search
algorithm (Dubois-Lacoste et al., 2011b), which is the initialisation procedure used
on the PFSP instances in Chapter 6.

The termination criterion of both the static algorithms and the adaptive al-
gorithms is a total running time fixed to n2m/500 CPU seconds. While being twice
as long as the running time used in Chapter 6, we are here less constrained as we
run the target MOLS algorithm orders of magnitude lower than in the previous
configuration scenarios. The termination criterion of the inner MOLS algorithm
(Algorithm 4.3) is a combination of either n2 solution evaluations or n iterations
without improvement. These criteria are well adapted to the PFSP since they en-
able a sufficient number of iterations of both the inner algorithm and the control
mechanism.

In the following experiments, these termination criteria resulted in about 1600
executions of the inner MOLS algorithm for instances with 20 jobs, then about 750,
400, 250 and 100 iterations for instances with 50, 100, 200 and 500 jobs, respectively.
This decrease of the number of executions when the number of jobs increases is ex-
plained by the exploration step that becomes more and more long and challenging
as the size of the neighbourhood quickly grows (typical PFSP neighbourhoods are
quadratic in the number of jobs of the instance).

7.1.2 Generic Online Mechanisms

Parameter control mechanisms are generally classified between deterministic, ad-
aptive and self-adaptive approaches, following the taxonomy of Eiben et al. (1999)
(see Chapter 2). In the following, we focus on adaptive approaches that are para-
meter and algorithm-independent. More in-depth surveys on parameter control,
focused on evolutionary algorithms, can be found in (Eiben et al., 2007; Karafotias
et al., 2015; di Tollo et al., 2015; Aleti and Moser, 2016).

To facilitate comparisons between the approaches that we present in the follow-
ing, we use the following notations. Arms designate the different variants of the
algorithm being controlled. More precisely, an arm can be related to either a single
or a combination of specific parameter values, operators, or specific strategies of
the algorithm. For approaches using probabilities, the arm i is chosen at time t

with probability pi(t), returning a reward ri(t). In addition, two scalars qi(t) and
ni(t) can also be defined at time t to estimate the reward of the arm i and indicate
how many times the arm i was chosen, respectively. Finally, we will suppose that

152 Chapter 7. MOLS Control

there is a finite, positive, number of arms N.

Uniform Random Control

The most simple random control mechanism is based on uniform distribution of
arms (see Equation 7.1).

pi(t+ 1) =
1
N

, for all arms i (7.1)

Probability Matching

Other random approaches exist, that use a specific distribution to select the next
arm: arms with better results on average in the past are assigned a higher probab-
ility to be selected. The second most simple random algorithm is then perhaps the
probability matching algorithm (Thierens, 2005), that simply assigns probabilities
linearly to their expected reward (see Equation 7.2).

pi(t+ 1) =
qi(t)∑

arm j

qj(t)
, for all arms i (7.2)

Additionally, to avoid situations when an arm is never selected again because
its expected reward is too low, a minimum probability pmin (with 0 < pmin < 1/n)
and maximum probability pmax (with pmax = 1 − n · pmin) can be introduced to
ensure minimal exploration (e.g., see Equation 7.3; Thierens, 2005).

pi(t+ 1) = pmin + pmax ·
qi(t)∑

arm j

qj(t)
, for all arms i (7.3)

For all control mechanisms in general, considering the average reward at time t

(see Equation 7.4, with ni(t) the number of times the arm i was selected at time t)
only works well for stationary systems.

qi(t+ 1) =

⎧⎨⎩
ni(t)·qi(t)+ri(t)

ni(t)+1 , if the arm i was selected

qi(t), otherwise
(7.4)

For non-stationary systems, when the estimate of the reward of an arm is only
reliable when the rewards received are not too old, a solution is to use a recency-
weighted average that updates the current estimate with a fraction of the difference
of the target value and the current estimate (see Equation 7.5; Thierens, 2005). This
solution use an adaptation rate α (with 0 < α ⩽ 1), where the value α = 1 means

7.1. Adaptive MOLS Algorithm 153

that only the last reward is used, and values of α close to 0 mean that the estimate
is only slightly steered with recent reward values.

qi(t+ 1) =

⎧⎨⎩ri(t) + (1 − α) · qi(t), if the arm i was selected

qi(t), otherwise
(7.5)

Softmax algorithms

Another possibility is to use a Boltzman distribution with the probability to select
arm i at time t + 1 is given in terms of the average rewards at time t (Sutton and
Barto (1998); see Equation 7.6).

pi(t+ 1) =
eqi(t)/τ∑

arm j

eqj(t)/τ
, for all arms i (7.6)

In Equation 7.6, τ is a temperature parameter that can be taken constant or decreas-
ing (Cesa-Bianchi and Fischer, 1998; Vermorel and Mohri, 2005).

Adaptive Pursuit

Pursuit algorithms relate to classical techniques from machine learning in that the
probability to select any arm is adjusted after each selection of a specific arm.
Given a learning rate β, the probabilities at t + 1 are adapted after t (Thathachar
and Sastry (1985); Rajaraman and Sastry (1996); Sutton and Barto (1998); see Equa-
tion 7.7).

pi(t+ 1) =

⎧⎨⎩pi(t) + β · (1 − pi(t)), if i = arg maxj qj(t)

pi(t) + β · (0 − pi(t)), otherwise
(7.7)

In order to deal with non-stationary contexts, adaptive pursuit was conceived
(Thierens, 2005). In adaptive pursuit, again, a minimum and a maximum (pmin

and pmax, with 0 < pmin < 1/n and pmax = 1 − n · pmin) for the probabilities pi are
introduced to leave room for exploration (see Equation 7.8).

pi(t+ 1) =

⎧⎨⎩pi(t) + β · (pmax − pi(t)), if i = arg maxj qj(t)

pi(t) + β · (pmin − pi(t)), otherwise
(7.8)

Multi Armed Bandits

Multi armed bandits (MAB) algorithms, metaphorically referring to the infamous
gambling machines, model a decision problem where the only (or main in some

154 Chapter 7. MOLS Control

versions) source of information is history of previous selections (Lai and Robbins,
1985; Sutton and Barto, 1998; Auer et al., 2002). The only decision to be taken is
which arm to pull next. The aim is to maximise the expected outcome of a finite
series of decisions. In an adaptive local search setting, MAB algorithms can be used
to model the decisions to be taken on which sub-algorithm or neighbourhood to
select in the next step given the history of the current search. MAB algorithms have
been applied in evolutionary algorithms (Costa et al., 2008; Maturana et al., 2009;
Fialho et al., 2010; Belluz et al., 2015) as well as in evolution based hyperheuristic
settings (Sabar et al., 2015). An early example of an application to combinatorial
optimisation in networks is Gai et al. (2012). The design of algorithms using MAB
was studied in Drugan and Nowé (2013); Yahyaa et al. (2014).

To cope with dynamic situations, MAB-based control approaches can for ex-
ample be augmented with restart mechanisms, e.g., the dynamic MAB of (Costa
et al., 2008; Maturana et al., 2009) coupled with a Page-Hinkley test, as well with
sliding mechanisms to only focus on the newest rewards (Fialho et al., 2010).

Upper Confidence Bound

The upper confidence bound 1 (UCB1) algorithm is a MAB algorithm based on the
principle of optimism in the face of uncertainty (Auer et al., 2002). Every decision, it
selects the arm that optimises the expected reward while simultaneously minim-
ises the associated regret (see Equation 7.9).

pi(t+ 1) =

⎧⎨⎩1, if i = arg maxj

(
qj(t) +

√
2·log(t)
nj(t)

)
0, otherwise

(7.9)

While the left part of the equation, qj(t) is simply the expected reward associated
to the arm j (Equation 7.4), the right part ensures that every arm will eventually
being selected an infinite number of times. In the context of algorithm control, a
scaling of the right part of the equation by a given constant is necessary to accom-
modate non-Boolean rewards (Costa et al., 2008).

ε-Greedy

MAB algorithms, having only history to learn from, need to make decisions that
both optimise the immediate result and optimise the lessons learned for better fu-
ture results. Handling this exploitation versus exploration dilemma is what makes
a strategy for a MAB. A simple strategy is to pick the decision that has delivered
the best result on average in the past. The MAB can then eventually start with an
exploration phase where every arm is tried once or a predetermined number of

7.1. Adaptive MOLS Algorithm 155

times, after which the greedy strategy is used, adjusting the averages after every
decision. In dynamical situations, the average may be weighted to introduce a bias
towards recent history. These approaches are termed “greedy”. In a slightly more
explorative approach, a probability is introduced to allow for random selection of
an arm, independently of its average success rate. This kind of approaches are
called ε-greedy (e.g., see Aleti and Moser, 2016). One possibility is to select at time
t+ 1 the best performing arm with a probability of (1− ε), leaving a probability of
ε to uniformly select an arm at random (see Equation 7.10).

pi(t+ 1) =

⎧⎨⎩(1 − ε) + ε/N, if i = arg maxj qj(t)

ε/N, otherwise
(7.10)

Reinforcement Learning

In addition to, as in MAB algorithms, simply learning the optimal arm to select, re-
inforcement learning algorithms (Sutton and Barto, 1998) also focus on describing
the possible states the system can be in, to then learn the optimal arm to select in
each possible state. Examples of RL algorithms used for parameter control include
Eiben et al. (2006); Whiteson and Stone (2006); Sakurai et al. (2010); Karafotias et al.
(2014).

Other Approaches

Other simple approaches can also be devised. An hybrid mechanism between uni-
form random control and probability matching would be one in which the differ-
ent probabilities for each arm are statistically defined before the execution. These
probabilities could be set using expert knowledge, with regard to the expected
reward for each arm, or also optimised using an offline automatic configurator.

It would also be possible to use a deterministic approach, in which each arm
is used following a sequence defined before the execution. Again, this sequence
could be hand crafted using expert knowledge but also automatically worked out
using an offline automatic configurator.

Finally, other more complex or less general control approaches include the
probabilistic rule-driven adaptive model (PRAM, Wong et al., 2003), predictive
parameter control (Aleti and Moser, 2011; Aleti et al., 2014), or adaptive range
parameter control (Aleti et al., 2012; Aleti and Moser, 2013).

156 Chapter 7. MOLS Control

7.2 Experimental Protocol

In the experiments, we first compare the three deterministic instantiations of Al-
gorithm 4.1, each using a single exploration strategy (denoted simply by imp,
imp-ndom, and ndom, respectively), to adaptive algorithms (Algorithm 4.2), us-
ing a basic random control mechanism or a ε-greedy control mechanism. While
many of the other more sophisticated mechanisms could have also been com-
pared, as well as other existing adaptive MOLS algorithms (Veerapen and Saub-
ion, 2011; Gretsista and Burke, 2017), they would likely be very similar as only
three arms were considered, which considerably limits the number of dissimilar
decision strategies.

In the random control mechanism decisions are uniformly taken at random,
without any feedback from the search, in contrary to the ε-greedy control mechan-
ism that uses feedback to take decisions. This feedback is computed every iteration
using the hypervolume difference between the hypervolume of the new archive
and the one of the previous iteration. It is then used to update the reward asso-
ciated to the current strategy using a learning rate α = 0.8 (Equation 7.5). In this
study, we set ε = 0.1 (Equation 7.10), meaning that the best performing strategy
(i.e., the arm argmaxi qi(t)) is chosen with 93.3% probability, either strategy being
selected uniformly at random otherwise (3.33% probability each).

For both control strategies, we consider four different variants, that differ by
the subset of exploration strategies that are available. First, the three exploration
strategies are available for both adaptive algorithms (rand_3, greedy_3). Note
that it is already known that the imp strategy leads to poorer results on the PFSP.
But, we still decide to make available this bad strategy in order to evaluate the
control mechanism without any a priori knowledge. Secondly, we use this ex-
pertise and only make available the two strategies imp-ndom and ndom for both
adaptive algorithms (rand_2, greedy_2). Finally, the last two variants intro-
duce a long-term learning scheme, beginning with the three strategies but switch-
ing to only use the two best strategies during the search. Two possibilities are
evaluated: either after half the total running time of both adaptive algorithms
(rand_ltl_50, greedy_ltl_50), or after twenty percent of the total running
time (rand_ltl_20, greedy_ltl_20).

The experimental protocol is reduced to the simple exhaustive comparison of
all approaches on all benchmark instances. Experiments are conducted across all
classical PFSP Taillard instances, separated in twelve benchmarks of 10 instances
sharing the same number of jobs and machines. Because of the stochasticity of
both the algorithm and the control mechanisms, all approaches are run 20 times

7.3. Experimental Results 157

Table 7.1 – Experiments summary

Type Approach 3 arms 2 arms LTL

Deterministic imp ✓

Deterministic imp-ndom ✓ ✓

Deterministic ndom ✓ ✓

Random rand_3 ✓ ✓

Random rand_2 ✓ ✓

Random rand_ltl_50 ✓

Random rand_ltl_20 ✓

ε-greedy greedy_3 ✓ ✓

ε-greedy greedy_2 ✓ ✓

ε-greedy greedy_ltl_50 ✓

ε-greedy greedy_ltl_20 ✓

on each instance, using a given set of 20 random seeds.
In total, the eleven approaches (three deterministic, eight adaptive) are com-

pared in 4 successive steps as detailed in Table 7.1. First, we compare the three de-
terministic approaches with the two adaptive approaches that use all three explor-
ations strategies. Then, we focus on the two best strategies, and compare the re-
spective two deterministic approaches with the two adaptive approaches that use
them only. Finally, we investigate the potential of a long-term learning scheme for
the two control mechanisms independently, first by switching from three arms to
two arms after half of the runtime has passed (rand_ltl_50, greedy_ltl_50),
then after only twenty percent of the runtime (rand_ltl_20, greedy_ltl_20).

7.3 Experimental Results

The experiments have been conducted on part of the cluster of the ORKAD re-
search group, CRIStAL laboratory, at the University of Lille, France. The two nodes
used are equipped with two 12-core 3.00GHz Intel Xeon E5-2687W v4 CPUs with
8MB L3 cache and 64GB RAM, running Archlinux. Computations were conducted
in parallel as much as possible.

Table 7.2, Table 7.3, and Table 7.4 present the rankings resulting of the experi-
ments for the twelve instance sizes, together with the resulting average ranks. For
each instance size, the ranking is computed using pairwise Wilcoxon signed rank

158 Chapter 7. MOLS Control

Table 7.2 – 3-arm ranking

Approach Instance (N, M) Avg.

20 50 100 200 500

5 10 20 5 10 20 5 10 20 10 20 20

imp 5 5 5 5 5 5 5 5 5 5 5 5 5
imp-ndom 4 4 3 4 4 4 4 1 2 1 2 1 2.8
ndom 1 1 3 1 1 1 1 1 1 1 1 1 1.2
rand_3 1 1 1 1 1 1 1 1 2 3 3 3 1.6
greedy_3 1 1 1 1 1 1 1 1 2 3 3 3 1.6

tests; a Friedman test post hoc analysis is used to check the statistical equivalence
between algorithms ranked 1 and their difference with the others.

7.3.1 3-arm Results

First, we focus on the 3-arm adaptive approaches, rand_3 and greedy_3, com-
paring them to the three respective deterministic approaches imp, imp-ndom and
ndom. As detailed on Table 7.2, the imp and ndom approaches always perform very
poorly and very well, respectively. Meanwhile, the imp-ndom approach performs
rather poorly in small instances, but achieves very good results on the largest ones.
Surprisingly, the two adaptive approaches (rand_3 and greedy_3) equivalently
perform. More precisely, they perform very well on the first eight instances (rank
1), but their performance are more debatable on the four largest ones. Indeed, for
instances with 100 jobs and 20 machines, they are outperformed by the determin-
istic approach ndom and equivalently perform with the imp-ndom approach. But,
for instances with 200 and 500 jobs, they are also outperformed by this latter ap-
proach. In these cases, they are still better than the imp approach. This results
show that the imp approach affects more the adaptive algorithms when the prob-
lem gets harder.

7.3.2 2-arm Results

Then, in the second step, as shown on Table 7.3, the imp approach is discarded and
we focus on the 2-arm adaptive approaches (rand_2 and greedy_2) that have
only the choice between the imp-ndom and ndom exploration strategies. Once
again, the two adaptive approaches equivalently perform. However, they are rank
1 for all the instances except for the 100-jobs 20-machines instances (rank 2). Con-

7.4. Discussions 159

Table 7.3 – 2-arm ranking

Approach Instance (N, M) Avg.

20 50 100 200 500

5 10 20 5 10 20 5 10 20 10 20 20

imp-ndom 4 4 3 4 4 4 4 4 4 4 4 1 3.7
ndom 1 1 3 1 1 1 1 1 1 1 1 1 1.2
rand_2 1 1 1 1 1 1 1 1 2 1 1 1 1.1
greedy_2 1 1 1 1 1 1 1 1 2 1 1 1 1.1

sidering only the well performing exploration strategies largely improves the ad-
aptive approaches for the largest instances.

7.3.3 Long Term Learning Results

Having validated that the imp arm should not be used on larger machines in-
stances, we finally investigate a long-term learning scheme where arms can be dis-
carded during the execution of the algorithm if they are worse than the others. Two
approaches have been tested: the discard of the worst strategy is done after either
fifty percent (rand_ltl_50, greedy_ltl_50) or twenty percent (rand_ltl_20,
greedy_ltl_20) of the total running time. In order to effectively analyse this
long-term learning scheme, the two adaptive approaches are investigated and ranked
separately. Results are shown on Table 7.4. Unsurprisingly, the 2-arm versions of
both adaptive approaches always statistically outperform their respective 3-arm
versions and so for the versions using the long-term learning. Introducing long-
term learning to only keep well-performing arms is efficient. The ranking between
the two control mechanisms rand and greedy are not the same size by size, but
the average ranks show that it is more efficient to discard an arm sooner since
rand_ltl_20 and greedy_ltl_20 are better ranked than rand_ltl_50 and
greedy_ltl_50 respectively. These results demonstrate how control mechan-
isms can effectively identify and evaluate the performance of strategies during the
search.

7.4 Discussions

Table 7.5 summarises all experiments and shows the overall ranking of the eleven
approaches on each instance size and shows the final average ranks.

160 Chapter 7. MOLS Control

Table 7.4 – Long-time learning ranking

Approach Instance (N, M) Avg.

20 50 100 200 500

5 10 20 5 10 20 5 10 20 10 20 20

rand_3 4 4 2 4 4 4 4 4 4 4 4 3 3.8
rand_ltl_50 3 1 2 1 1 1 3 3 3 2 3 3 2.2
rand_ltl_20 1 1 2 1 1 1 1 1 1 2 2 2 1.3
rand_2 1 1 1 1 1 1 1 1 1 1 1 1 1

greedy_3 1 1 1 1 4 4 4 4 4 4 4 3 2.9
greedy_ltl_50 1 1 1 1 1 1 3 3 3 3 2 3 1.9
greedy_ltl_20 1 1 1 1 3 1 1 1 1 1 2 2 1.3
greedy_2 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 7.5 – Complete ranking

Approach Instance (N, M) Avg.

20 50 100 200 500

5 10 20 5 10 20 5 10 20 10 20 20

imp 11 11 11 11 11 11 11 11 11 11 11 11 11
imp-ndom 10 10 9 10 10 10 9 7 6 4 4 1 7.5
ndom 1 1 9 1 1 1 1 1 1 1 1 1 1.7
rand_3 9 9 6 9 9 7 10 10 9 9 9 9 8.8
rand_ltl_50 8 1 6 1 5 1 7 7 6 6 7 7 5.2
rand_ltl_20 1 1 6 1 5 1 5 1 2 6 5 5 3.2
rand_2 1 1 1 1 1 1 1 1 2 1 1 1 1.1
greedy_3 1 1 1 1 8 9 8 9 9 9 10 9 6.2
greedy_ltl_50 1 1 1 1 1 7 5 6 8 6 7 7 4.2
greedy_ltl_20 1 1 1 1 5 1 1 1 2 4 6 5 2.4
greedy_2 1 1 1 1 1 1 1 1 2 1 1 1 1.1

7.5. Perspectives 161

Regarding the three deterministic approaches, while the imp approach is al-
ways ranked last, the ndom approach is almost always ranked first, only beaten
on the 20-job 20-machine instance where it is outperformed by all adaptive ap-
proaches. Regarding the adaptive approaches, both the 2-arm approaches rand_2
and greedy_2 are the best performing, then are ranked the ltl_20 ones and
the ltl_50 ones. The approaches using the random control mechanism generally
perform worse than the ones using the ε-greedy mechanism, especially for the 3-
arm variants and the long-term learning variants. Interestingly, even the random
adaptive approach performs really well when considering the two imp-ndom and
ndom arms, potentially meaning that the adaptive algorithms will achieve very
good results as long as there is no critically bad performing arm available. How-
ever, the long-term learning variants show that it is possible to identify, remove
and recover in such event.

In conclusion, our experiments showed that is was possible, and beneficial, to
combine multiple MOLS configurations during the search. While the adaptive al-
gorithm did not in the end outperformed the best static MOLS variant, it was able
to statistically match its performance. Note that the configuration provided by a
AAC procedure is relative to a given distribution of training instances, and aims
to optimise the performance on all instances; being able to use multiple configur-
ations means a better probability of using the best configurations of the particular
instance being solved.

Finally, we also showed that if a bad configuration was initially provided to the
adaptive MOLS algorithm, it was possible to identify and remove it during the
search while still achieving good results.

7.5 Perspectives

In this chapter we focused on one of the feature and drawback of offline algorithm
design (Part III): it predicts a single configuration whose parameters values stay
fixed during the execution.

More specifically, we focused on integrating generic control mechanisms in
multi-objective local search (MOLS) algorithms, to enable the use of multiple strategies
during the execution of the MOLS algorithm. We showed that even very simple
control mechanisms were able to efficiently combine multiple exploration strategies
without noticeable performance loss, given that the least effective strategies are
correctly and rapidly identified.

162 Chapter 7. MOLS Control

In the following, we detail four perspective that are related to this chapter.

Controlling a larger number of arms. We focused on using only three arms,
which individual performance were already well known due to previous exper-
iments, in order to be able to better understand and explain our results.

Having demonstrated that it was possible to identify and focus on the best-
performing strategies during the run, the natural next step is to consider more
alternative strategies, possibly on other problems (e.g., the travelling salesman
problem or the quadratic assignment problem described in Chapter 1), to study
scenarios in which the best arms are less clear.

Multi-parameters control mechanisms. Our adaptive MOLS algorithm focused
on a single parameter of the static MOLS algorithm: the exploration strategy, while
every other parameter was fixed. However, offline mechanisms (also, configura-
tion scheduling) are able to optimise many more individual independent paramet-
ers. Another perspective would be to focus on simultaneously controlling multiple
parameters of the static MOLS algorithm, for example either two parameters from
the exploration step (e.g., the exploration strategy and the number of neighbours
sought as an additional numerical parameter), or two different categorical para-
meters (e.g., the selection and explorations strategies).

Using more complex control mechanisms. Naturally, more alternative strategies
means that it would be required to use the more advanced control mechanisms
that were until now not considered. After the very simple mechanisms that we
used, the most relevant mechanisms would be those directly based on multi-armed
bandits algorithms and reinforcement learning.

Offline design of adaptive algorithms. Finally, control mechanisms themselves
often expose new parameters that need to be set, in addition to the parameters
of the underlying algorithm. There may also be alternatives in use of the feed-
back that is used to compute performance predictions. Another natural perspect-
ive would then be to use an offline configurator (e.g., (MO-)ParamILS, presented
in Chapter 5) to automatically select the best performing control mechanisms, to-
gether with its set of parameter and the most suitable feedback source.

Chapter 8

MOLS Configuration Scheduling

Weak emperors mean strong viceroys.

Foundation
Isaac Asimov

In Chapter 6, we analysed the offline automatic design of a static multi-objective
local search (MOLS) algorithm, using automatic algorithm configuration (AAC)
and more specially the MO-ParamILS, the multi-objective automatic configurator
presented in Chapter 5. Then, in Chapter 7, we investigated the online automatic
design of an adaptive MOLS algorithm, through the use of generic control mech-
anisms, to complement and overcome some of the drawbacks of AAC.

In this chapter, we investigate the use of schedules of MOLS configurations,
and their automatic offline configuration. That is, instead of either predicting the
best single MOLS configuration (algorithm configuration), or dynamically trying
to find the best parameters values during the search (parameter control), we pro-
pose to predict the best sequence of configurations, in order to enable more mod-
ularity and increase potential performance. This approach is described in detail in
Chapter 4.

We more specifically aim to overcome one specific drawback of AAC: that dif-
ferent configurations may be optimal at different parts of the search. Indeed, it
may for example be beneficial to use some strategies at the start of the search to
start from good solutions, then switch to another strategy to efficiently converge
close to the optimal solutions, then finally use yet another strategy once improving
solutions becomes very hard.

After having presented the subset of the static MOLS configuration space that
we use in the experiments, we investigate the automatic configuration of MOLS
schedules in three successive steps. First, we perform an exhaustive analysis of

163

164 Chapter 8. MOLS Configuration Scheduling

Table 8.1 – Investigated MOLS configuration space (60 configurations)

Phase Parameter Parameter values

Selection select-strat {all, rand, newest, oldest}
Selection select-size 1
Exploration explor-strat {all, all-imp, imp, imp-ndom, ndom}
Exploration explor-ref arch

Exploration explor-size 5
Archive bound-strat unbounded

Perturbation perturb-strat {kick, kick-all, restart}
Perturbation perturb-size 1
Perturbation perturb-strength 3

the subset of the MOLS configuration space, thus constructing the baseline that
can be obtained by using schedules containing a single configurations. Then, we
successively analyse the automatic design of schedules accommodating two, and
then three configurations, while the possible time budget splits are set in advance.

The experiments are conducted on the permutation flowshop scheduling prob-
lem (PFSP) instances presented in Chapter 1.

8.1 MOLS Configurations

We use the static MOLS algorithm presented in Chapter 6, using the configuration
space described in Table 8.1. This configuration space Θ only comprises 60 possible
configurations.

Three configurable dynamic algorithm frameworks are considered, in which
multiple types of schedules are allowed. We denote by K the maximal length k

allowed for the schedules. First, as a baseline, we consider frameworks with K = 1,
meaning that the schedule is constituted by a single configuration for the entire
run. Then, we investigate frameworks with K = 2 and K = 3, i.e., enabling the
use of schedules of size 2 and 3, respectively. For the frameworks with K = 2,
we consider possible time budgets of (T), (T/2, T/2), (T/4, 3T/4), and (3T/4, T/4).
For the frameworks with K = 3, we consider in addition possible time budgets of
(T/3, T/3, T/3), (T/4, T/4, T/2), and (T/2, T/4, T/4). These seven types of schedules are
pictured in Figure 8.1. As every sub-configuration of a schedule has 60 possible
values, for K = 2 (i.e., k ∈ 1, 2), this results in a final configuration space of 60 + 3 ·
602 = 10 860 possible schedules. For K = 3, (i.e., k ∈ 1, 2, 3), this results in a final
configuration space of 60 + 3 · 602 + 3 · 603 = 658 860 possible schedules, a much

8.2. Experimental Protocol 165

t = 0 t = T
time

(T)

(T/2, T/2)

(T/4, 3T/4)

(3T/4, T/4)

(T/3, T/3, T/3)

(T/4, T/4, T/2)

(T/2, T/4, T/4)

k = 1

k = 2

k = 3

Figure 8.1 – The seven types of schedules used in the experiments

bigger space that the large space of Chapter 6. This exponential growth explain
why only schedules of size k ∈ 1, 2, 3 have been considered, why we restricted the
initial Θ configuration space to only 60 configurations, and why the possible time
budget were statistically fixed.

As for the algorithm itself, its entire time budget is devoted to the configura-
tion schedule and an instantaneous initialisation of 10 solutions uniformly taken
at random from the search space was preferred to more efficient but longer initial-
isation procedures. The total running time is fixed to T = n2m/1 000 CPU seconds as
in Chapter 6.

8.2 Experimental Protocol

Three experiments are conducted successively, to consider the different sizes of
frameworks independently. First, we consider the K = 1 frameworks. As there
are only 60 possible schedules using a single configuration, we investigate them
exhaustively by aggregating their performance over 15 runs on each of the 10 Tail-
lard instances. Similarly as in previous chapters, we use both the hypervolume
(HV) and the ∆ ′ spread.

Then, for both K = 2 and K = 3 frameworks, as the number of possible sched-
ules grows exponentially we use MO-ParamILS to automatically configure the se-
quences of configurations. We use the configuration protocol of Chapter 5. For
training, we generated 100 new Taillard-like instances, using the original instance

166 Chapter 8. MOLS Configuration Scheduling

Table 8.2 – Training computational time

Jobs Machines 1 MOLS run K = 1 K = 2 K = 3

20 20 8 seconds 8 minutes 2.22 hours 22.22 hours
50 20 50 seconds 50 minutes 13.89 hours 5.79 days

100 20 3.33 minutes 3.33 hours 2.31 days 23.15 days
200 20 13.33 minutes 13.33 hours 9.26 days 92.59 days

generator process. MO-ParamILS was run 20 times for both frameworks, with a
configuration budget of 1 000 MOLS runs for K = 2 (for 10 860 possible schedules)
and 10 000 runs for K = 3 (for 658 860 possible schedules).

Table 8.2 describes, for different PFSP instance sizes, the running time of a
single MOLS runs, the time required to exhaustively evaluate K = 1 frameworks
(i.e., 60 MOLS runs), and the training time of a single MO-ParamILS runs for K = 2
(i.e., 1 000 MOLS runs), and K = 3 (i.e., 10 000 MOLS runs). Note that to obtain the
total computation time, theses training times (for K = 2 and K = 3) should be mul-
tiplied by the number of MO-ParamILS runs (here, 20), and that the time required
for the validation and test steps are not included.

In the following, we choose to conduct the experiments on two smallest classes
of small PFSP instances of Table 8.2. We focus on the classical Taillard instances
with 50 jobs and 20 machines, as they are already much harder to solve than smal-
ler instances, while keeping the running time quick enough (50 CPU seconds).
They are also the smallest PFSP instances considered in Chapter 6. In addition to
them, we also consider smaller instances, with only 20 jobs and 20 machines, as
they are much faster to solve. Due to the considerable amount of time required
by the experiments, larger size of instances (e.g., 100 or 200 jobs) have not been
considered.

8.3 Experimental Results

The experiments have been conducted on part of the cluster of the ORKAD re-
search group, CRIStAL laboratory, at the University of Lille, France. The two nodes
used are equipped with two 12-core 3.00GHz Intel Xeon E5-2687W v4 CPUs with
8MB L3 cache and 64GB RAM, running Archlinux. Computations were conducted
in parallel as much as possible.

8.3. Experimental Results 167

0.53 0.54 0.55 0.56 0.57

0.5

0.6

0.7

0.8

1-HV

∆ ′

PFSP 20 jobs 20 machines – Test

Pareto
dominated

0.49 0.5 0.51 0.52

0.5

0.6

0.7

0.8

0.9

1

1-HV

∆ ′

PFSP 50 jobs 20 machines – Test

Pareto
dominated

Figure 8.2 – Initial search space and optimal configurations (K = 1; left: 20 jobs;
right: 50 jobs)

8.3.1 Exhaustive Enumeration

Figure 8.2 shows the average performance of all 60 possible schedules using ex-
actly one configuration (K = 1) over the 10 Taillard instances (left: instances with
20 jobs and 20 machines; right: instances with 50 jobs and 20 machines). Pareto
optimal configurations are circled in red, while also described in Table 8.3 and
Table 8.4.

On the 50-job instances, 10 of the 60 configurations are non-dominated. Results
are coherent with the exhaustive study of Chapter 6, with a cluster of configura-
tions having a good hypervolume (low 1 − HV) but a poor ∆ ′ spread, and con-
figurations with a much better distribution but a much poorer hypervolume. The
Pareto front is well separated between the two types of configurations, the first
using the ndom exploration strategy, while the second uses the imp exploration
strategy.

Very interestingly, a single of the 60 configurations achieves both a very good
hypervolume and a very good spread, using a combination of the all selection
strategy, the imp exploration strategy, and the restart perturbation strategy.
This is surprising first because first it has no close neighbour in the objective space,
hinting that the performance of the configuration is more due to the particular
combination of parameters, rather than only its strategy components, and second
because this particular region of the objective space was not reached by any of the
final configurations of Chapter 6.

On the 20-job instances, 20 of the 60 configurations are non-dominated. The

168 Chapter 8. MOLS Configuration Scheduling

Table 8.3 – Optimal configurations (K = 1; PFSP 20 jobs)

1 −HV ∆ ′ Selection Exploration Perturbation

0.5322 0.8464 random imp-ndom restart

0.5324 0.8450 random ndom restart

0.5338 0.8486 random ndom kick

0.5340 0.8414 older ndom kick

0.5346 0.8297 random ndom kick-all

0.5368 0.8253 older all restart

0.5373 0.8172 older all kick

0.5390 0.8161 older all kick-all

0.5403 0.7983 newest ndom kick

0.5409 0.7076 all all-imp restart

0.5414 0.6759 all imp restart

0.5422 0.6515 random all-imp restart

0.5430 0.6164 random imp restart

0.5495 0.6056 all all-imp kick-all

0.5514 0.5495 all imp kick-all

0.5519 0.5429 all imp kick

0.5588 0.5376 older imp kick

0.5592 0.5291 older imp kick-all

0.5598 0.4931 random all-imp kick-all

0.5613 0.4743 random all-imp kick

8.3. Experimental Results 169

Table 8.4 – Optimal configurations (K = 1; PFSP 50 jobs)

1 −HV ∆ ′ Selection Exploration Perturbation

0.4848 0.9706 random ndom kick-all

0.4850 0.9608 random ndom kick

0.4853 0.9568 all ndom restart

0.4854 0.9345 older ndom kick

0.4856 0.9060 older ndom kick-all

0.4889 0.5719 all imp restart

0.5023 0.5151 all imp kick

0.5024 0.5063 all imp kick-all

0.5036 0.4975 random imp restart

0.5114 0.4862 random imp kick-all

configurations seem less clustered, and the configurations better distributed along
the Pareto front. The optimal configurations are much more diverse than on the
50-job instances, and include strategies such as the newest selection strategy, the
all, all-imp, and imp-ndom exploration strategies. For both sizes of instances,
there is no clear consensus on the perturbation strategy.

8.3.2 K = 2 Configuration Schedules

Figure 8.3 shows the average performance of the configuration schedules resulting
from the test step of MO-ParamILS, on the 10 Taillard instances, when schedules
using two configurations (K = 2) are available (left: instances with 20 jobs; right:
instances with 50 jobs). These configurations are separated according to the length
k of their schedule, and are described in Table 8.5 and Table 8.6. To facilitate the
analysis, the 60 configurations of the exhaustive enumeration are also shown for
both sizes of instances.

On 50-job instances, the AAC approaches only resulted in schedules using two
successive configurations. Conversely, on 20-job instances, half of the Pareto front,
corresponding to the schedules that achieves better hypervolume, use a single con-
figuration, while the other half use two successive configurations. The schedules
that use two successive configurations are slightly more efficient than the sched-
ules using a single configuration on the 20-job instances. On the 50-job instances,
save from the singular configuration that achieves both a very good hypervolume

170 Chapter 8. MOLS Configuration Scheduling

0.53 0.54 0.55 0.56 0.57

0.5

0.6

0.7

0.8

1-HV

∆ ′

PFSP 20 jobs 20 machines – Test

k = 1
k = 2

0.48 0.49 0.5 0.51 0.52

0.6

0.8

1

1-HV

∆ ′

PFSP 50 jobs 20 machines – Test

k = 1
k = 2

Figure 8.3 – Final optimised configuration schedules (K = 2; left: 20 jobs; right: 50
jobs)

Table 8.5 – Final optimised configuration schedules (K = 2; PFSP 20 jobs)

1 −HV ∆ ′ k Ti Selection Exploration Perturbation

0.5322 0.8424 1 − random imp-ndom restart

0.5345 0.8398 1 − older imp-ndom restart

0.542 0.8233 1 − newest imp-ndom restart

0.542 0.8211 1 − newest ndom restart

0.5422 0.6515 1 − random all-imp restart

0.5429 0.6489 2 1/4 newest imp kick

3/4 random imp restart

0.543 0.6164 1 − random imp restart

0.5485 0.5739 2 1/4 newest all-imp restart

3/4 all all-imp kick

0.549 0.5311 2 1/4 older all-imp restart

3/4 random all-imp kick

0.5561 0.4939 2 3/4 all imp kick-all

1/4 older imp kick-all

8.3. Experimental Results 171

Table 8.6 – Final optimised configuration schedules (K = 2; PFSP 50 jobs)

1 −HV ∆ ′ k Ti Selection Exploration Perturbation

0.4809 0.9523 2 1/2 older ndom restart

1/2 random all kick-all

0.4819 0.9428 2 3/4 older imp-ndom restart

1/4 all ndom restart

0.4850 0.7776 2 3/4 older ndom restart

1/4 all all-imp restart

0.4865 0.7582 2 1/2 older ndom restart

1/2 all imp kick

0.4912 0.7415 2 3/4 all ndom kick-all

1/4 random all-imp restart

0.4914 0.7371 2 3/4 all ndom kick-all

1/4 random all-imp kick-all

0.4930 0.6729 2 3/4 newest ndom restart

1/4 random all-imp kick

0.4959 0.6473 2 3/4 newest ndom kick

1/4 random all-imp kick

0.4967 0.6374 2 1/4 newest ndom kick-all

3/4 all imp kick

0.4974 0.5900 2 1/2 all all kick-all

1/2 all imp kick-all

0.5009 0.5614 2 1/2 newest ndom kick-all

1/2 random all-imp kick-all

0.5012 0.4649 2 3/4 all imp restart

1/4 random all-imp kick-all

172 Chapter 8. MOLS Configuration Scheduling

0.53 0.54 0.55 0.56 0.57

0.5

0.6

0.7

0.8

1-HV

∆ ′

PFSP 20 jobs 20 machines – Test

k = 1
k = 2
k = 3

0.48 0.49 0.5 0.51 0.52

0.5

0.6

0.7

0.8

0.9

1

1-HV

∆ ′

PFSP 50 jobs 20 machines – Test

k = 1
k = 2
k = 3

Figure 8.4 – Final optimised configuration schedules (K = 3; left: 20 jobs; right: 50
jobs)

and a very good spread, the 59 other schedules composed by a single configur-
ation are all dominated by the final schedules. Unfortunately, no general trend
arises from the time budget decomposition used.

On 50-job instances, a large number of the configuration schedules are able to
achieve very good compromises between hypervolume and ∆ ′ spread, that were
not achieved by any of the configurations of Chapter 6.

Regarding the strategies selected in the final schedules, the only sensible obser-
vation is that the restart perturbation strategy seems slightly favoured on 20-job
instances, while kick-all is slightly favoured on 50-job instances. An explana-
tion would be that 20-job instances are easy enough so that few lucky individual
MOLS runs can reach optimal solutions, implying that always restarting is a viable
strategy. This does not hold for larger instances.

8.3.3 K = 3 Configuration Schedules

Similarly, Figure 8.4 shows the average performance of the configuration sched-
ules resulting from the test step of MO-ParamILS, on the 10 Taillard instances,
when schedules using three successive configurations (K = 3) are available (left:
instances with 20 jobs; right: instances with 50 jobs). These configurations are sep-
arated according to the length k of their schedule, and are described in Table 8.7
and Table 8.8. Again, to facilitate the analysis, the 60 configurations of the exhaust-
ive enumeration are also shown for both sizes of instances.

On the 20-job instances, a single of the seventeen final schedules uses a single

8.3. Experimental Results 173

Table 8.7 – Final optimised configuration schedules (K = 3; PFSP 20 jobs)

1 −HV ∆ ′ k Ti Selection Exploration Perturbation

0.5312 0.8417 2 3/4 random all restart

1/4 random ndom restart

0.5315 0.8298 3 1/2 random all restart

1/4 all ndom kick

1/4 random all restart

0.5338 0.8035 2 3/4 older ndom restart

1/4 random all-imp restart

0.5359 0.8029 3 1/2 older imp-ndom restart

1/4 random imp restart

1/4 all all-imp restart

0.5364 0.7751 3 1/3 newest ndom kick-all

1/3 older ndom restart

1/3 all imp restart

0.5371 0.7739 2 1/4 older ndom restart

3/4 all imp restart

0.5374 0.7723 3 1/2 random imp-ndom kick-all

1/4 older all restart

1/4 all imp restart

0.5376 0.7223 2 3/4 newest imp-ndom restart

1/4 random all-imp restart

0.5397 0.6979 2 3/4 all imp restart

1/4 random all-imp restart

0.5405 0.6751 3 1/2 older imp restart

1/4 newest imp restart

1/4 random all-imp restart

0.5406 0.6637 3 1/2 newest imp restart

1/4 random all-imp kick-all

1/4 random imp restart

0.5419 0.6527 3 1/2 older imp kick-all

1/4 newest imp restart

1/4 random all-imp restart

174 Chapter 8. MOLS Configuration Scheduling

Table 8.7 – Final optimised configuration schedules (K = 3; PFSP 20 jobs; contin-
ued)

1 −HV ∆ ′ k Ti Selection Exploration Perturbation

0.543 0.6164 1 − random imp restart

0.5446 0.5971 2 3/4 newest imp restart

1/4 random imp kick-all

0.5458 0.5926 3 1/2 older all-imp restart

1/4 newest imp kick

1/4 random imp kick

0.5489 0.5359 3 1/2 random imp kick

1/4 newest imp restart

1/4 all imp kick

0.5494 0.5282 2 1/4 newest all-imp restart

3/4 random imp kick-all

configuration. The other schedules, together with the schedules of the 50-job in-
stances, use two or three configurations while very slightly favouring using three
configurations. In comparison to Figure 8.4, this time every of the 60 schedules
composed by a single configuration are dominated by at least one of the final
schedules. Unfortunately, as previously, no general trend arises from the time
budget decomposition used.

Again, on 50-job instances, a large number of the configuration schedules are
able to achieve very good compromises between hypervolume and ∆ ′ spread, that
were not achieved by the configurations of Chapter 6.

Finally, the perturbations strategies of the final schedules are coherent to the
previous ones: the restart strategies is clearly favoured on 20-job instances,
while the schedules on the 50-jobs instances often use a combination of both the
restart and the kick-all perturbation strategies.

8.4 Discussions

Figure 8.5 compares the three sets of non-dominated configurations from the ex-
haustively enumerated search space (K = 1) and optimised (K = 2 and K = 3)
configuration schedules.

8.4. Discussions 175

Table 8.8 – Final optimised configuration schedules (K = 3; PFSP 50 jobs)

1 −HV ∆ ′ k Ti Selection Exploration Perturbation

0.4803 0.9527 2 3/4 older ndom restart

1/4 all ndom kick-all

0.4806 0.9366 3 1/2 older ndom restart

1/4 random imp-ndom kick

1/4 random ndom kick

0.4835 0.8326 3 1/2 older ndom restart

1/4 all ndom kick-all

1/4 all all-imp restart

0.4851 0.7796 2 3/4 older ndom restart

1/4 all imp kick-all

0.4875 0.7623 3 1/2 older ndom restart

1/4 random all-imp kick

1/4 all all-imp restart

0.4896 0.7403 3 1/2 older imp-ndom restart

1/4 random imp kick-all

1/4 random all-imp restart

0.4941 0.63 3 1/2 newest imp-ndom restart

1/4 older all-imp kick-all

1/4 random all-imp restart

0.495 0.621 3 1/2 newest imp-ndom restart

1/4 random imp kick

1/4 random all-imp kick-all

0.4987 0.5266 3 1/2 all imp restart

1/4 all all-imp kick

1/4 random imp restart

0.5013 0.5177 2 1/4 newest all-imp restart

3/4 random all-imp restart

0.5063 0.4992 3 1/2 newest all-imp restart

1/4 random imp kick-all

1/4 random imp kick

176 Chapter 8. MOLS Configuration Scheduling

0.53 0.54 0.55 0.56

0.5

0.6

0.7

0.8

1-HV

∆ ′

PFSP 20 jobs 20 machines – Test

K = 1
K = 2
K = 3

0.48 0.49 0.5 0.51

0.6

0.8

1

1-HV

∆ ′

PFSP 50 jobs 20 machines – Test

K = 1
K = 2
K = 3

Figure 8.5 – Final comparison

On 20-job instances, while the enumeration of the 60 configurations resulted in
a very well-distributed Pareto front, the search of K = 2 configuration schedules
was only very slightly beneficial, giving very similar performing configurations
schedules. On the contrary, with K = 3 many new configuration schedules out-
perform the previously found ones.

On 50-jobs instances, the enumeration of the 60 considered configurations res-
ulted in the two clusters of configurations is coherent with the observations of
Chapter 6, and a single, very surprising, configuration achieving a very good com-
promise between hypervolume and ∆ ′ spread, that previously investigated con-
figurations were unable to achieve. Both K = 2 and K = 3 configuration schedules
achieve similar looking Pareto fronts, with numerous schedules with good com-
promises between hypervolume and ∆ ′ spread.

In conclusion, on both datasets, the use of configuration schedules led to many
new algorithms that outperformed most if not all of the initial configurations they
are constituted from. However, the major drawback of this approach is the com-
binatorial explosion of the number of possible configuration schedules.

Nonetheless, this chapter only presented preliminary results, that did not took
this drawback into account but yet sufficed to show the potential of this approach.
Future works on this topic should, within other perspectives, focus on alleviate this
combinatorial explosion by, for example, better consider the structure of the search
space by iteratively constructing the schedules and pruning the search space of
uninteresting strategies.

8.5. Perspectives 177

8.5 Perspectives

In this chapter we continued to focus on one of the drawback of offline algorithm
design (Part III), which is that it predicts a single configuration whose parameters
values stay fixed during the execution.

More specifically, we investigated using offline algorithm design techniques on
schedules of configurations. We showed that even statically determined schedules
of configurations were able to easily reach better performance and compromises
between convergence and distribution that were not found in the experiments of
Chapter 6.

In the following, we detail two perspectives that are related to this chapter.

Schedule-independent parameters. The size of the configuration space of the
schedule grows exponentially with the number of sub-configurations considered.
As such, only very few parameter were considered to be controlled by the sched-
ule, while all the other were manually fixed. A continuation of our work would be
to include these parameters, independently, in addition to the schedule paramet-
ers, so they can also be automatically optimised by the configuration process.

Dynamic time budgets. Furthermore, during the experiments of Chapter 8 we
used a very small number of possible time schedules, that were manually fixed.
These schedule, along with the number of configurations composing the schedule,
can also be automatically determined. While a too precise description of the time
budget would induce far too many possible schedules, it would nevertheless be
very interesting to allow more diversity in how the budget is divided.

178 Chapter 8. MOLS Configuration Scheduling

General Conclusion

Not all those who wander are lost.

The Fellowship of the Ring
J.R.R. Tolkien

Automatic algorithm design (AAD) is a recent but thriving research field. It
has reached a point where efficient tools became easily usable and actually used in
practice. Multi-objective optimisation is one of the most recent direction toward
which AAD is developing, with renewed interest from both communities. We
strongly believe that this direction of work will highly benefit designers of single-
objective algorithms, multi-objective algorithms, and automatic design tools al-
together, by further enabling even better raw performance and understanding of
algorithmic components.

Contribution Summary

In this thesis, we investigated the multi-objective automatic design of a particu-
lar class of multi-objective metaheuristics, the multi-objective local search (MOLS)
algorithms. In the following, we summarise our main contributions.

Automatic algorithm design (AAD). Within many others, algorithm selection,
algorithm configuration, parameter tuning, parameter control, hyper-heuristics,
reactive and autonomous search, are research fields that focus on systematically
optimising the search process, as opposed to solely optimising the search results.

We proposed a new taxonomy to unify these research fields under the lar-
ger field of automatic algorithm design. Our taxonomy is based on two gen-
eral viewpoints. First, a temporal viewpoint, according to which approaches are
already divided between offline approaches that are optimised prior to their ex-
ecution and online approaches that are adapted during their execution Then, a
structural viewpoints, according to which approaches are classified based on the

179

180 General Conclusion

algorithmic structure of the elements being optimised. We also discussed a com-
plementary complexity viewpoint, related to the available available knowledge
sources.

Multi-objective local search (MOLS) algorithms. Local search algorithms are
first and foremost known for being very effective on single objective problems.
Often being introduced either as direct multi-objective extensions of known single-
objective local search algorithms, as part of bigger evolutionary algorithms, or as
independent original multi-objective algorithms, many multi-objective approaches
use local search techniques. However, these approaches are less well-known and
studied than their single-objective counterparts.

We first conducted a chronological survey of the use of local search techniques
on multi-objective problems, and discussed their characteristics, detailing for each
local search component the existing strategies found in the literature. From this
analysis followed a new unification proposition, building on existing unifications
but further generalising to other single-trajectory multi-objective local search al-
gorithms.

MO-ParamILS. ParamILS is an efficient and very well known algorithm config-
uration framework. However, similarly to the other available configuration tools
of the literature (e.g., irace, SMAC, GGA, GGA++), it is only able to consider a
single performance metric.

In order to overcome this limitation, we formally defined multi-objective auto-
matic algorithm configuration, discussed its use cases, and more importantly we
presented MO-ParamILS, our extension of ParamILS for multiple performance in-
dicators. We validated the efficiency of MO-ParamILS by comparing its two vari-
ants MO-BasicILS and MO-FocusedILS against a baseline using ParamILS, on vari-
ous classical optimisation scenarios extended to two performance indicators. In
particular, we used MO-ParamILS to configure both the final solution quality and
the running time of CPLEX, a well known commercial mixed integer programming
optimiser, and to configure both the memory usage and running time of SAT-solver
CLASP. In all five scenarios we considered, similarly as for ParamILS for which
FocusedILS generally outperforms BasicILS, MO-FocusedILS outperformed MO-
BasicILS as well as the baseline.

MOLS automatic configuration. Performance assessment of multi-objective al-
gorithms is traditionally conducted using multiple complementary multi-objective
performance indicators. While multi-objective algorithms can be optimised by
classical single-objective configurators according to a single metric, one of the main

Contribution Summary 181

goal of introducing multi-objective algorithm configuration and proposing MO-
ParamILS was specifically to take advantage of multiple performance indicators
during the optimisation process.

We investigated this use case in depth by considering the automatic configura-
tion of a MOLS algorithm with regard to two complementary performance traits:
convergence and distribution of the final solutions. We considered three classical
bi-objective permutation-based problems: the permutation flowshop scheduling
problem (PFSP), the travelling salesman problem (TSP), and the quadratic assign-
ment problem (QAP). The MOLS algorithm considered is a classical, static, and
highly parameterised MOLS algorithm that exposes many possible combinations
of strategies found in the literature. We first exhaustively investigated a subset
of the design space of the MOLS algorithm to analyse it directly, then automatic-
ally configured it first on literature instances, then on specially crafted instance on
which correlation between objectives is hand-tuned.

Regarding MOLS algorithms in particular, we highlighted the impact of indi-
vidual strategies on convergence and distribution and computed optimised com-
binations of strategies of the various considered scenarios. Regarding configura-
tion of multi-objective algorithms in general, we showed that multi-objective ap-
proaches (such as MO-ParamILS) were more suitable than hybrid approaches us-
ing classical single-objective configurators (such as ParamILS). These observations
have been validated across the various scenarios involving different sizes of in-
stances as well as different degree of correlation between objectives.

One of key point of classical automatic algorithm configuration is that the con-
figurator tool predict parameter values that stay fixed during the execution of the
algorithm. We investigated two extensions of algorithm configuration, for which
preliminaries are presented in the last two chapters of this thesis, that focus on
algorithms that are able to combine multiple strategies along the execution: first
parameter control, then configuration scheduling.

MOLS parameter control. The first extension was to consider control mechan-
isms that are able to repeatedly switch between several alternative strategies dur-
ing the execution of the algorithm.

We discussed the integration of generic control mechanisms inside our static
MOLS algorithm, proposed an adaptive MOLS algorithm in which the explora-
tion strategy is adapted between each iteration of an iterated local search scheme
according to its performance. After reviewing the simplest control mechanisms
that we could easily integrate in our adaptive algorithm, we selected and invest-
igated the impact of two of them: a uniform random control mechanism and a

182 General Conclusion

ε-greedy mechanism. We conducted three successive studies: first using a set of
three possible exploration strategies, then a set of the two most efficient exploration
strategies, and finally an hybrid approach of long-term learning in which the third
and least effective strategy is identified and removed during the search process.

As result, we showed that it was possible to take advantage of several strategies
without loss of performance. Even using the very simplest control mechanisms, we
were able to effectively match the performances of a static approach solely using
the best exploration strategy, even if sub-optimal strategies were considered at the
start of the search process.

MOLS configuration scheduling. Finally, the second extension was to consider
multiple MOLS configurations, that are sequentially used with regard to a static
schedule. This approach enables modifications of the strategies and parameter val-
ues during the execution of the algorithm, which is classically not possible. Config-
urations schedules can also be optimised using standard automatic algorithm con-
figuration tools, thus conserving one of the main advantages of static algorithms.

We formally defined configuration scheduling, and investigated schedules of
MOLS configurations on the PFSP. Specifically, we analysed the automatic config-
uration of schedules of two and three configurations, using MO-ParamILS as the
automatic configurator. We showed very promising results, with many schedules
easily outperforming static MOLS variants while simultaneously achieving much
better and diverse compromises between convergence and distribution.

Future Research

Many perspectives arose from the different contributions of this thesis, were de-
tailed at the end of their respective chapters. In the following, we focus on the two
perspectives that we consider to be the most natural and believe to have the most
potential.

Anytime behaviour of algorithms. The key feature of multi-objective automatic
algorithm configuration is to be able to investigate trade-offs between multiple
performance indicators. One of the most interesting use case is the anytime be-
haviour of algorithms: the trade-off between solution quality and running time,
i.e., the questions of how long should the algorithm run with regard to the expec-
ted final quality, and whether the algorithm can or not provide good intermediary
solutions before the end of the execution and the final output.

Future Research 183

There are many ways in which this problematic can be encoded in terms of
a multi-objective scenario, that can lead to many different ways to analyse the
anytime behaviour of algorithms. Some have been proposed in this thesis (see
Chapter 5), some were only outlined as perspectives (e.g., using the area under the
curve), and others are yet to be devised. We strongly believe that MO-ParamILS
and other multi-objective configurators will in the future bring valuable insight to
many algorithms.

Artificial configuration spaces. The biggest disadvantage of automatic configur-
ators is the very large amount of computation they can require in order to optimise
their prediction of the best configuration. Indeed, if many configurations are avail-
able, many runs are necessary to have a reliable estimation of their performance,
and the total configuration time is directly function of the running time of the tar-
get algorithm.

It follows that optimising the design of automatic configurators, such as for
example ParamILS and MO-ParamILS, is a very slow and manual procedure, at
least orders of magnitude longer than the base configuration process. A problem
can also arise that the configurator may have been over tuned for a particular class
of configuration scenario. In general, it is very difficult to analyse the performance
of configurators.

To enable quick and fruitful comparisons of configuration processes and con-
figuration protocols, it is essential that the time taken by the configuration process
becomes reasonably small. We believe that the most promising solution would be
to create a specific target algorithm that would be able to run instantaneously and
accurately model distinct configuration scenarios. It would be obtained by thor-
oughly analysing existing target algorithms with the goal of obtaining stand-alone
reusable models.

184 General Conclusion

Publications

The following papers have been, in chronological order, submitted, accepted, and
have or will be presented in international conferences during this thesis:

• Blot, A., Hoos, H. H., Jourdan, L., Kessaci-Marmion, M., and Trautmann, H.
(2016). MO-ParamILS: A multi-objective automatic algorithm configuration
framework. In Festa, P., Sellmann, M., and Vanschoren, J., editors (2016).
Learning and Intelligent Optimization – 10th International Conference, LION 10.
Revised Selected Papers, volume 10079 of Lecture Notes in Computer Science, pages
32–47. Springer.
• Blot, A., Pernet, A., Jourdan, L., Kessaci-Marmion, M., and Hoos, H. H. (2017c).

Automatically configuring multi-objective local search using multi-objective
optimisation. In Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O.,
Wiecek, M. M., Jin, Y., and Grimme, C., editors (2017). Evolutionary Multi-
Criterion Optimization – 9th International Conference, EMO 2017. Proceedings,
volume 10173 of Lecture Notes in Computer Science, pages 61–76. Springer.
• Blot, A., Kessaci-Marmion, M., and Jourdan, L. (2017b). AMH: a new frame-

work to design adaptive metaheuristics. In 12th Metaheuristics International
Conference, MIC 2017. Proceedings, pages 586–588.
• Blot, A., Jourdan, L., and Kessaci-Marmion, M. (2017a). Automatic design

of multi-objective local search algorithms: case study on a bi-objective per-
mutation flowshop scheduling problem. In Bosman, P. A. N., editor (2017).
Genetic and Evolutionary Computation Conference, GECCO 2017. Proceedings,
pages 227–234. ACM.
• Blot, A., Kessaci, M., and Jourdan, L. (2018b). Survey and unification of local

search techniques in metaheuristics for multi-objective combinatorial op-
timisation. Journal of Heuristics.
• Blot, A., Kessaci, M., Jourdan, L., and Causmaecker, P. D. (2018c). Adapt-

ive multi-objective local search algorithms for the permutation flowshop
scheduling problem. In Pardalos, P. and Kotsireas, I., editors, Learning and In-
telligent Optimization – 12th International Conference, LION 12. Revised Selected
Papers, Lecture Notes in Computer Science. Springer. (To appear).

185

186 Publications

• Blot, A., López-Ibáñez, M. Kessaci, M., and Jourdan, L. (2018d). New ini-
tialisation techniques for multi-objective local search application on the bi-
objective permutation flowshop. In Auger, A., Fonseca, C. M., Lourenço, N.,
Machado, P., Paquete, L., and Whitley, D., editors, Parallel Problem Solving from
Nature – 15th International Conference, PPSN XV. Proceedings, Part I, volume
11101 of Lecture Notes in Computer Science. Springer. (To appear).
• Blot, A., Hoos, H. H., Kessaci, M., and Jourdan, L. (2018a). Automatic con-

figuration of multi-objective optimization algorithms. impact of correlation
between objectives. In 30th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2018. IEEE Computer Society. (To appear).

Additionally, the following papers also have been submitted to international
journals and conferences, and are either currently under review or revision:

• Pageau, C., Blot, A., Kessaci-Marmion, M., Jourdan, L., and Hoos H. H.. Auto-
matic design of a dynamic multi-objective local search algorithm.
• Blot, A., Kessaci-Marmion, M., Jourdan, L., and Hoos H. H.. Automatic con-

figuration of multi-objective local search algorithms for permutation prob-
lems.

Bibliography

This book was written using 100% recycled
words.

Wyrd Sisters
Terry Pratchet

Abbasi, M., Paquete, L., and Pereira, F. B. (2015). Local search for multiobject-
ive multiple sequence alignment. In Guzman, F. M. O. and Rojas, I., editors,
Bioinformatics and Biomedical Engineering – Third International Conference, IWBBIO
2015. Proceedings, Part II, volume 9044 of Lecture Notes in Computer Science, pages
175–182. Springer. (citation on page 43)

Adenso-Díaz, B. and Laguna, M. (2006). Fine-tuning of algorithms using fractional
experimental designs and local search. Operations Research, 54(1):99–114.

(citation on page 29)

Aguirre, H. E. and Tanaka, K. (2005). Random bit climbers on multiobjective mnk-
landscapes: Effects of memory and population climbing. IEICE Transactions,
88-A(1):334–345. (citations on pages 47, 50, 61, and 62)

Aleti, A. and Moser, I. (2011). Predictive parameter control. In Krasnogor and
Lanzi (2011), pages 561–568. (citations on pages 30 and 155)

Aleti, A. and Moser, I. (2013). Entropy-based adaptive range parameter control for
evolutionary algorithms. In Blum, C. and Alba, E., editors, Genetic and Evolution-
ary Computation Conference, GECCO 2013. Proceedings, pages 1501–1508. ACM.

(citation on page 155)

Aleti, A. and Moser, I. (2016). A systematic literature review of adaptive para-
meter control methods for evolutionary algorithms. ACM Computing Surveys,
49(3):56:1–56:35. (citations on pages 29, 151, and 155)

187

188 Bibliography

Aleti, A., Moser, I., Meedeniya, I., and Grunske, L. (2014). Choosing the appropri-
ate forecasting model for predictive parameter control. Evolutionary Computation,
22(2):319–349. (citation on page 155)

Aleti, A., Moser, I., and Mostaghim, S. (2012). Adaptive range parameter control.
In IEEE Congress on Evolutionary Computation, CEC 2012. Proceedings, pages 1–8.
IEEE. (citation on page 155)

Amadini, R., Gabbrielli, M., and Mauro, J. (2014). SUNNY: a lazy portfolio ap-
proach for constraint solving. Theory and Practice of Logic Programming, 14(4-
5):509–524. (citations on pages 27 and 76)

Angel, E., Bampis, E., and Gourvès, L. (2004). Approximating the Pareto curve
with local search for the bicriteria TSP(1, 2) problem. Theoretical Computer Science,
310(1-3):135–146. (citations on pages 47, 50, 61, and 62)

Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., and Tierney, K. (2015).
Model-based genetic algorithms for algorithm configuration. In Yang, Q. and
Wooldridge, M., editors, Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015. Proceedings, pages 733–739. AAAI Press.

(citation on page 29)

Ansótegui, C., Sellmann, M., and Tierney, K. (2009). A gender-based genetic al-
gorithm for the automatic configuration of algorithms. In Gent, I. P., editor,
Principles and Practice of Constraint Programming – 15th International Conference,
CP 2009. Proceedings, volume 5732 of Lecture Notes in Computer Science, pages
142–157. Springer. (citation on page 29)

Arroyo, J. E. C., dos Santos Ottoni, R., and de Paiva Oliveira, A. (2011). Multi-
objective variable neighborhood search algorithms for a single machine schedul-
ing problem with distinct due windows. Electronic Notes in Theoretical Computer
Science, 281:5–19. (citation on page 45)

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the mul-
tiarmed bandit problem. Machine Learning, 47(2-3):235–256.

(citation on page 154)

Balaprakash, P., Birattari, M., and Stützle, T. (2007). Improvement strategies for the
F-Race algorithm: Sampling design and iterative refinement. In Bartz-Beielstein,
T., Aguilera, M. J. B., Blum, C., Naujoks, B., Roli, A., Rudolph, G., and Sampels,
M., editors, Hybrid Metaheuristics – 4th International Workshop, HM 2007. Proceed-
ings, volume 4771 of Lecture Notes in Computer Science, pages 108–122. Springer.

(citation on page 28)

Bibliography 189

Bandyopadhyay, S., Saha, S., Maulik, U., and Deb, K. (2008). A simulated
annealing-based multiobjective optimization algorithm: AMOSA. IEEE Trans-
actions on Evolutionary Computation, 12(3):269–283. (citation on page 44)

Bartz-Beielstein, T., Branke, J., Filipic, B., and Smith, J., editors (2014). Parallel
Problem Solving from Nature – 13th International Conference, PPSN XIII. Proceedings,
volume 8672 of Lecture Notes in Computer Science. Springer.

(citations on pages 190 and 196)

Bartz-Beielstein, T., Lasarczyk, C., and Preuss, M. (2005). Sequential parameter op-
timization. In IEEE Congress on Evolutionary Computation, CEC 2005. Proceedings,
pages 773–780. IEEE. (citation on page 29)

Bartz-Beielstein, T. and Markon, S. (2004). Tuning search algorithms for real-world
applications: a regression tree based approach. In IEEE Congress on Evolutionary
Computation, CEC 2004. Proceedings, pages 1111–1118. IEEE.

(citation on page 29)

Basseur, M. and Burke, E. K. (2007). Indicator-based multi-objective local search.
In IEEE Congress on Evolutionary Computation, CEC 2007. Proceedings, pages 3100–
3107. IEEE. (citations on pages 12, 43, 48, 50, 61, and 62)

Basseur, M., Zeng, R., and Hao, J. (2012). Hypervolume-based multi-objective local
search. Neural Computing and Applications, 21(8):1917–1929.

(citation on page 48)

Battiti, R., Brunato, M., and Mascia, F. (2008). Reactive Search and Intelligent Optim-
ization. Springer Publishing Company, Incorporated, 1st edition.

(citation on page 31)

Baykasoglu, A., Owen, S., and Gindy, N. (1999). A taboo search based approach
to find the Pareto optimal set in multiple objective optimization. Engineering
Optimization, 31(6):731–748. (citation on page 44)

Beausoleil, R. P. (2001). Multiple criteria scatter search. In 4th Metaheuristics Inter-
national Conference, pages 534–539. (citation on page 44)

Belluz, J., Gaudesi, M., Squillero, G., and Tonda, A. P. (2015). Operator selection
using improved dynamic multi-armed bandit. In Silva and Esparcia-Alcázar
(2015), pages 1311–1317. (citation on page 154)

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimiza-
tion. Journal of Machine Learning Research, 13:281–305. (citation on page 28)

190 Bibliography

Bezerra, L. C. T., López-Ibáñez, M., and Stützle, T. (2014). Automatic design
of evolutionary algorithms for multi-objective combinatorial optimization. In
Bartz-Beielstein et al. (2014), pages 508–517. (citation on page 19)

Biedenkapp, A., Lindauer, M. T., Eggensperger, K., Hutter, F., Fawcett, C., and
Hoos, H. H. (2017). Efficient parameter importance analysis via ablation with
surrogates. In Singh, S. P. and Markovitch, S., editors, Thirty-First AAAI Confer-
ence on Artificial Intelligence. Proceedings, pages 773–779. AAAI Press.

(citation on page 146)

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm
for configuring metaheuristics. In Langdon, W. B., Cantú-Paz, E., Mathias, K. E.,
Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V. G., Rudolph, G., We-
gener, J., Bull, L., Potter, M. A., Schultz, A. C., Miller, J. F., Burke, E. K., and Jono-
ska, N., editors, Genetic and Evolutionary Computation Conference, GECCO 2002.
Proceedings, pages 11–18. Morgan Kaufmann. (citation on page 28)

Blot, A., Aguirre, H. E., Dhaenens, C., Jourdan, L., Marmion, M., and Tanaka, K.
(2015). Neutral but a winner! How neutrality helps multiobjective local search
algorithms. In Gaspar-Cunha, A., Antunes, C. H., and Coello, C. A. C., edit-
ors, Evolutionary Multi-Criterion Optimization – 8th International Conference, EMO
2015. Proceedings, Part I, volume 9018 of Lecture Notes in Computer Science, pages
34–47. Springer. (citations on pages 51, 54, and 101)

Blot, A., Hoos, H. H., Jourdan, L., Kessaci-Marmion, M., and Trautmann, H.
(2016). MO-ParamILS: A multi-objective automatic algorithm configuration
framework. In Festa et al. (2016), pages 32–47.

(citations on pages 32, 87, and 185)

Blot, A., Hoos, H. H., Kessaci, M., and Jourdan, L. (2018a). Automatic configur-
ation of multi-objective optimization algorithms. impact of correlation between
objectives. In 30th IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2018. IEEE Computer Society. (To appear).

(citations on pages 114 and 186)

Blot, A., Jourdan, L., and Kessaci-Marmion, M. (2017a). Automatic design of multi-
objective local search algorithms: case study on a bi-objective permutation flow-
shop scheduling problem. In Bosman (2017), pages 227–234.

(citations on pages 56, 60, 114, and 185)

Blot, A., Kessaci, M., and Jourdan, L. (2018b). Survey and unification of local

Bibliography 191

search techniques in metaheuristics for multi-objective combinatorial optimisa-
tion. Journal of Heuristics. (To appear). (citations on pages 41 and 185)

Blot, A., Kessaci, M., Jourdan, L., and Causmaecker, P. D. (2018c). Adaptive multi-
objective local search algorithms for the permutation flowshop scheduling prob-
lem. In Pardalos, P. and Kotsireas, I., editors, Learning and Intelligent Optimization
– 12th International Conference, LION 12. Revised Selected Papers, volume to appear
of Lecture Notes in Computer Science. Springer. (To appear).

(citations on pages 150 and 185)

Blot, A., Kessaci-Marmion, M., and Jourdan, L. (2017b). AMH: a new framework
to design adaptive metaheuristics. In 12th Metaheuristics International Conference,
MIC 2017. Proceedings. (citations on pages 64 and 185)

Blot, A., López-Ibáñez, M., Kessaci, M., and Jourdan, L. (2018d). Archive-aware
scalarisation-based multi-objective local search for a bi-objective permutation
flowshop problem. In Auger, A., Fonseca, C. M., Lourenço, N., Machado, P.,
Paquete, L., and Whitley, D., editors, Parallel Problem Solving from Nature – 15th
International Conference, PPSN XV. Proceedings, Part I, volume 11101 of Lecture
Notes in Computer Science. Springer. (citation on page 186)

Blot, A., Pernet, A., Jourdan, L., Kessaci-Marmion, M., and Hoos, H. H. (2017c).
Automatically configuring multi-objective local search using multi-objective op-
timisation. In Trautmann et al. (2017), pages 61–76.

(citations on pages 60, 114, and 185)

Bosman, P. A. N., editor (2017). Genetic and Evolutionary Computation Conference,
GECCO 2017. Proceedings. ACM. (citations on pages 190 and 192)

Burke, E. K., Gendreau, M., Hyde, M. R., Kendall, G., Ochoa, G., Özcan, E., and
Qu, R. (2013). Hyper-heuristics: a survey of the state of the art. Journal of the
Operational Research Society, 64(12):1695–1724. (citation on page 30)

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., and Woodward, J. R.
(2010). A classification of hyper-heuristic approaches. In Gendreau and Potvin
(2010), pages 449–468. (citations on pages 30, 31, 37, and 38)

Cesa-Bianchi, N. and Fischer, P. (1998). Finite-time regret bounds for the mul-
tiarmed bandit problem. In Shavlik, J. W., editor, Fifteenth International Conference
on Machine Learning, ICML 1998. Proceedings, pages 100–108. Morgan Kaufmann.

(citation on page 153)

192 Bibliography

Coello, C. A. C., editor (2011). Learning and Intelligent Optimization – 5th Interna-
tional Conference, LION 5. Selected Papers, volume 6683 of Lecture Notes in Com-
puter Science. Springer. (citations on pages 196 and 205)

Coello, C. A. C. and Cortés, N. C. (2005). Solving multiobjective optimization prob-
lems using an artificial immune system. Genetic Programming and Evolvable Ma-
chines, 6(2):163–190. (citation on page 15)

Coello, C. A. C., Lamont, G. B., Van Veldhuizen, D. A., et al. (2007). Evolutionary
algorithms for solving multi-objective problems. Springer, 2nd edition.

(citation on page 13)

Costa, L. D., Fialho, Á., Schoenauer, M., and Sebag, M. (2008). Adaptive operator
selection with dynamic multi-armed bandits. In Ryan, C. and Keijzer, M., ed-
itors, Genetic and Evolutionary Computation Conference, GECCO 2008. Proceedings,
pages 913–920. ACM. (citations on pages 30 and 154)

Cowling, P. I., Kendall, G., and Soubeiga, E. (2000). A hyperheuristic approach to
scheduling a sales summit. In Burke, E. K. and Erben, W., editors, Practice and
Theory of Automated Timetabling III – Third International Conference, PATAT 2000.
Selected Papers, volume 2079 of Lecture Notes in Computer Science, pages 176–190.
Springer. (citation on page 30)

Czyzak, P. and Jaszkiewicz, A. (1996). A multiobjective metaheuristic approach
to the location of petrol stations by the capital budgeting model. Control and
Cybernetics, 25:177–187. (citations on pages 14, 43, 44, 50, 54, 56, 61, and 62)

Czyzak, P. and Jaszkiewicz, A. (1998). Pareto simulated annealing – a metaheuristic
technique for multiple-objective combinatorial optimization. Journal of Multi-
Criteria Decision Analysis, 7(1):34–47. (citations on pages 44 and 53)

Dang, N., Cáceres, L. P., Causmaecker, P. D., and Stützle, T. (2017). Configuring
irace using surrogate configuration benchmarks. In Bosman (2017), pages 243–
250. (citation on page 145)

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. John Wiley
& Sons. (citations on pages 13 and 56)

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimisation: NSGA-II.
In Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Guervós, J. J. M.,
and Schwefel, H., editors, Parallel Problem Solving from Nature – 6th International

Bibliography 193

Conference, PPSN VI. Proceedings, volume 1917 of Lecture Notes in Computer Sci-
ence, pages 849–858. Springer. (citation on page 13)

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2002). A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Com-
putation, 6(2):182–197. (citations on pages 13, 15, and 17)

di Tollo, G., Lardeux, F., Maturana, J., and Saubion, F. (2015). An experimental
study of adaptive control for evolutionary algorithms. Applied Soft Computing,
35:359–372. (citations on pages 29, 68, and 151)

Doerr, B. and Doerr, C. (2015). Optimal parameter choices through self-adjustment:
Applying the 1/5-th rule in discrete settings. In Silva and Esparcia-Alcázar
(2015), pages 1335–1342. (citation on page 29)

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: optimization by a
colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 26(1):29–41. (citation on page 13)

Drugan, M. M. and Nowé, A. (2013). Designing multi-objective multi-armed ban-
dits algorithms: A study. In International Joint Conference on Neural Networks,
IJCNN 2013, pages 1–8. IEEE. (citation on page 154)

Drugan, M. M. and Thierens, D. (2010). Path-guided mutation for stochastic Pareto
local search algorithms. In Schaefer, R., Cotta, C., Kolodziej, J., and Rudolph, G.,
editors, Parallel Problem Solving from Nature – 11th International Conference, PPSN
XI. Proceedings, Part I, volume 6238 of Lecture Notes in Computer Science, pages
485–495. Springer. (citation on page 59)

Drugan, M. M. and Thierens, D. (2012). Stochastic Pareto local search: Pareto
neighbourhood exploration and perturbation strategies. Journal of Heuristics,
18(5):727–766. (citations on pages 48, 50, 56, 59, 61, and 62)

Dubois-Lacoste, J., López-Ibáñez, M., and Stützle, T. (2011a). Automatic configura-
tion of state-of-the-art multi-objective optimizers using the TP+PLS framework.
In Krasnogor and Lanzi (2011), pages 2019–2026. (citation on page 32)

Dubois-Lacoste, J., López-Ibáñez, M., and Stützle, T. (2011b). A hybrid TP+PLS al-
gorithm for bi-objective flow-shop scheduling problems. Computers & Operations
Research, 38(8):1219–1236. (citations on pages 18, 48, 116, and 151)

Dubois-Lacoste, J., López-Ibáñez, M., and Stützle, T. (2011c). Improving the any-
time behavior of two-phase local search. Annals of Mathematics and Artificial In-
telligence, 61(2):125–154. (citation on page 19)

194 Bibliography

Dubois-Lacoste, J., López-Ibáñez, M., and Stützle, T. (2012). Pareto local search
algorithms for anytime bi-objective optimization. In Hao, J. and Middendorf, M.,
editors, Evolutionary Computation in Combinatorial Optimization – 12th European
Conference, EvoCOP 2012. Proceedings, volume 7245 of Lecture Notes in Computer
Science, pages 206–217. Springer. (citations on pages 49 and 56)

Dubois-Lacoste, J., López-Ibáñez, M., and Stützle, T. (2015). Anytime Pareto local
search. European Journal of Operational Research, 243(2):369–385.

(citations on pages 19, 43, 49, and 51)

Eiben, A. E., Hinterding, R., and Michalewicz, Z. (1999). Parameter control in evol-
utionary algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141.

(citations on pages 25, 29, 31, 32, 33, 37, and 151)

Eiben, A. E., Horváth, M., Kowalczyk, W., and Schut, M. C. (2006). Reinforcement
learning for online control of evolutionary algorithms. In Brueckner, S., Hassas,
S., Jelasity, M., and Yamins, D., editors, Engineering Self-Organising Systems – 4th
International Workshop, ESOA 2006. Revised and Invited Papers, volume 4335 of
Lecture Notes in Computer Science, pages 151–160. Springer.

(citations on pages 30 and 155)

Eiben, A. E., Michalewicz, Z., Schoenauer, M., and Smith, J. E. (2007). Parameter
control in evolutionary algorithms. In Lobo, F. G., Lima, C. F., and Michalewicz,
Z., editors, Parameter Setting in Evolutionary Algorithms, volume 54 of Studies in
Computational Intelligence, pages 19–46. Springer.

(citations on pages 29 and 151)

Eiben, A. E. and Smit, S. K. (2012). Evolutionary algorithm parameters and meth-
ods to tune them. In Hamadi et al. (2012), pages 15–36. (citation on page 25)

Engrand, P. (1998). A multi-objective optimization approach based on simulated
annealing and its application to nuclear fuel management. Technical report,
Électricité de France. (citation on page 44)

Feo, T. A., Resende, M. G. C., and Smith, S. H. (1994). A greedy randomized
adaptive search procedure for maximum independent set. Operations Research,
42(5):860–878. (citation on page 44)

Festa, P., Sellmann, M., and Vanschoren, J., editors (2016). Learning and Intelli-
gent Optimization – 10th International Conference, LION 10. Revised Selected Papers,
volume 10079 of Lecture Notes in Computer Science. Springer.

(citations on pages 190 and 200)

Bibliography 195

Fialho, Á., Costa, L. D., Schoenauer, M., and Sebag, M. (2010). Analyzing bandit-
based adaptive operator selection mechanisms. Annals of Mathematics and Artifi-
cial Intelligence, 60(1-2):25–64. (citation on page 154)

Fonseca, C. M., Fleming, P. J., Zitzler, E., Deb, K., and Thiele, L., editors (2003).
Evolutionary Multi-Criterion Optimization – Second International Conference, EMO
2003. Proceedings, volume 2632 of Lecture Notes in Computer Science. Springer.

(citations on pages 198 and 202)

Gai, Y., Krishnamachari, B., and Jain, R. (2012). Combinatorial network optim-
ization with unknown variables: Multi-armed bandits with linear rewards and
individual observations. IEEE/ACM Transactions on Networking, 20(5):1466–1478.

(citation on page 154)

Geiger, M. J. (2008). Randomised variable neighbourhood search for multi object-
ive optimisation. In Design and Evaluation of Advanced Hybrid Meta-Heuristics –
4th EU/ME Workshop. Proceedings, pages 34–42.

(citations on pages 45, 50, 61, 62, and 98)

Gendreau, M. and Potvin, J.-Y., editors (2010). Handbook of Metaheuristics, volume
146 of International Series in Operations Research & Management Science. Springer,
2nd edition. (citations on pages 191 and 200)

Glover, F. (1989). Tabu search – part I. ORSA Journal on computing, 1(3):190–206.
(citations on pages 42 and 44)

Glover, F. W. and Laguna, M. (1997). Tabu Search. Springer US.
(citations on pages 13, 42, and 44)

Gretsista, A. and Burke, E. K. (2017). An iterated local search framework with ad-
aptive operator selection for nurse rostering. In Battiti, R., Kvasov, D. E., and
Sergeyev, Y. D., editors, Learning and Intelligent Optimization – 11th International
Conference, LION 11. Revised Selected Papers, volume 10556 of Lecture Notes in Com-
puter Science, pages 93–108. Springer. (citation on page 156)

Hamadi, Y., Monfroy, E., and Saubion, F., editors (2012). Autonomous Search.
Springer. (citations on pages 25, 31, 32, 34, and 194)

Hansen, M. P. (1997). Tabu search for multiobjective optimization: MOTS. In
Stewart, T., editor, Multiple Criteria Decision Making – 13th International Confer-
ence. Proceedings, pages 574–586. Springer.

(citations on pages 14, 43, 44, 50, 53, 54, 56, 61, and 62)

196 Bibliography

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT press.

(citation on page 13)

Hoos, H., Lindauer, M. T., and Schaub, T. (2014). claspfolio 2: Advances in al-
gorithm selection for answer set programming. Theory and Practice of Logic Pro-
gramming, 14(4-5):569–585. (citations on pages 27 and 35)

Hoos, H. H. (2012). Programming by optimization. Communications of the ACM,
55(2):70–80. (citation on page 24)

Hoos, H. H., Kaminski, R., Lindauer, M. T., and Schaub, T. (2015). aspeed: Solver
scheduling via answer set programming. Theory and Practice of Logic Program-
ming, 15(1):117–142. (citations on pages 27 and 76)

Hoos, H. H. and Stützle, T. (2004). Stochastic Local Search: Foundations & Applica-
tions. Elsevier / Morgan Kaufmann. (citations on pages 14, 31, 43, and 89)

Horn, D., Schork, K., and Wagner, T. (2016). Multi-objective selection of algorithm
portfolios: Experimental validation. In Handl, J., Hart, E., Lewis, P. R., López-
Ibáñez, M., Ochoa, G., and Paechter, B., editors, Parallel Problem Solving from
Nature – 14th International Conference, PPSN XIV. Proceedings, volume 9921 of Lec-
ture Notes in Computer Science, pages 421–430. Springer. (citation on page 32)

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Sequential model-based
optimization for general algorithm configuration. In Coello (2011), pages 507–
523. (citations on pages 29, 35, 98, and 111)

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). Identifying key algorithm
parameters and instance features using forward selection. In Nicosia and
Pardalos (2013), pages 364–381. (citation on page 146)

Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. (2009). Paramils: An
automatic algorithm configuration framework. Journal of Artificial Intelligence
Research, 36:267–306. (citations on pages 29, 89, 94, 105, 110, 123, 145, and 146)

Hutter, F., Hoos, H. H., and Stützle, T. (2007). Automatic algorithm configuration
based on local search. In Twenty-Second AAAI Conference on Artificial Intelligence.
Proceedings, pages 1152–1157. AAAI Press. (citations on pages 29, 89, and 94)

Inja, M., Kooijman, C., de Waard, M., Roijers, D. M., and Whiteson, S. (2014).
Queued Pareto local search for multi-objective optimization. In Bartz-Beielstein
et al. (2014), pages 589–599. (citation on page 49)

Bibliography 197

Ishibuchi, H. and Murata, T. (1996). Multi-objective genetic local search algorithm.
In Evolutionary Computation, IEEE International Conference. Proceedings, pages
119–124. IEEE. (citations on pages 14, 43, 46, 50, 61, and 62)

Ishibuchi, H. and Murata, T. (1998). A multi-objective genetic local search al-
gorithm and its application to flowshop scheduling. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C, 28(3):392–403. (citation on page 46)

Ishibuchi, H., Tsukamoto, N., and Nojima, Y. (2008). Evolutionary many-objective
optimization: A short review. In IEEE Congress on Evolutionary Computation, CEC
2008. Proceedings, pages 2419–2426. IEEE. (citation on page 43)

Jaeggi, D., Asselin-Miller, C., Parks, G., Kipouros, T., Bell, T., and Clarkson, J.
(2004). Multi-objective parallel tabu search. In Yao et al. (2004), pages 732–741.

(citation on page 44)

Jaeggi, D., Parks, G. T., Kipouros, T., and Clarkson, P. J. (2008). The development
of a multi-objective tabu search algorithm for continuous optimisation problems.
European Journal of Operational Research, 185(3):1192–1212. (citation on page 44)

Jaszkiewicz, A. (2002). Genetic local search for multi-objective combinatorial op-
timization. European Journal of Operational Research, 137(1):50–71.

(citations on pages 43 and 46)

Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., and Sellmann, M. (2011).
Algorithm selection and scheduling. In Lee, J. H., editor, Principles and Practice
of Constraint Programming – 17th International Conference, CP 2011. Proceedings,
volume 6876 of Lecture Notes in Computer Science, pages 454–469. Springer.

(citation on page 27)

Kadioglu, S., Malitsky, Y., Sellmann, M., and Tierney, K. (2010). ISAC – instance-
specific algorithm configuration. In Coelho, H., Studer, R., and Wooldridge, M.,
editors, 19th European Conference on Artificial Intelligence, ECAI 2010. Proceedings,
volume 215 of Frontiers in Artificial Intelligence and Applications, pages 751–756.
IOS Press. (citation on page 27)

Karafotias, G., Eiben, Á. E., and Hoogendoorn, M. (2014). Generic parameter con-
trol with reinforcement learning. In Arnold, D. V., editor, Genetic and Evolutionary
Computation Conference, GECCO 2014. Proceedings, pages 1319–1326. ACM.

(citations on pages 70 and 155)

198 Bibliography

Karafotias, G., Hoogendoorn, M., and Eiben, Á. E. (2015). Parameter control in
evolutionary algorithms: Trends and challenges. IEEE Transactions on Evolution-
ary Computation, 19(2):167–187. (citations on pages 26, 29, and 151)

Karafotias, G., Smit, S. K., and Eiben, A. E. (2012). A generic approach to parameter
control. In Chio, C. D., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F. F., Caro,
G. A. D., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A. I., Farooq, M., Langdon,
W. B., Guervós, J. J. M., Preuss, M., Richter, H., Silva, S., Simões, A., Squillero, G.,
Tarantino, E., Tettamanzi, A., Togelius, J., Urquhart, N., Uyar, S., and Yannaka-
kis, G. N., editors, Applications of Evolutionary Computation - EvoApplications 2012:
EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM,
EvoPAR, EvoRISK, EvoSTIM, and EvoSTOC. Proceedings, volume 7248 of Lecture
Notes in Computer Science, pages 366–375. Springer. (citation on page 68)

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In IEEE Inter-
national Conference on Neural Networks. Proceedings, volume 4, pages 1941–1948.

(citation on page 13)

Kernighan, B. W. and Lin, S. (1970). An efficient heuristic procedure for partition-
ing graphs. The Bell system technical journal, 49(2):291–307. (citation on page 21)

Kessaci-Marmion, M., Dhaenens, C., and Humeau, J. (2017). Neutral neighbors in
bi-objective optimization: Distribution of the most promising for permutation
problems. In Trautmann et al. (2017), pages 344–358.

(citations on pages 19, 20, 22, and 132)

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., et al. (1983). Optimization by simulated
annealing. science, 220(4598):671–680. (citations on pages 42 and 43)

Knowles, J., Thiele, L., and Zitzler, E. (2006). A tutorial on the performance assess-
ment of stochastic multiobjective optimizers. 214, Computer Engineering and
Networks Laboratory (TIK), ETH Zurich, Switzerland. revised version.

(citation on page 106)

Knowles, J. D. and Corne, D. (2003). Instance generators and test suites for the
multiobjective quadratic assignment problem. In Fonseca et al. (2003), pages
295–310. (citation on page 22)

Knowles, J. D. and Corne, D. W. (1999). The Pareto archived evolution strategy: A
new baseline algorithm for Pareto multiobjective optimisation. In IEEE Congress
on Evolutionary Computation, CEC 99. Proceedings, pages 98–105. IEEE.

(citations on pages 14, 43, 46, 47, 50, 53, 61, and 62)

Bibliography 199

Knowles, J. D. and Corne, D. W. (2000a). Approximating the nondominated front
using the Pareto archived evolution strategy. Evolutionary Computation, 8(2):149–
172. (citations on pages 46, 50, 61, and 62)

Knowles, J. D. and Corne, D. W. (2000b). M-PAES: A memetic algorithm for mul-
tiobjective optimization. In IEEE Congress on Evolutionary Computation, CEC 00.
Proceedings, pages 325–332. IEEE. (citation on page 46)

Knowles, J. D. and Corne, D. W. (2002). On metrics for comparing nondomin-
ated sets. In IEEE Congress on Evolutionary Computation, CEC 2002. Proceedings,
volume 1, pages 711–716. IEEE. (citation on page 14)

Kotthoff, L. (2016). Algorithm selection for combinatorial search problems: A sur-
vey. In Bessiere, C., Raedt, L. D., Kotthoff, L., Nijssen, S., O’Sullivan, B., and
Pedreschi, D., editors, Data Mining and Constraint Programming: Foundations of
a Cross-Disciplinary Approach, volume 10101 of Lecture Notes in Computer Science,
pages 149–190. Springer. (citation on page 27)

Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., and Leyton-Brown, K. (2017).
Auto-weka 2.0: Automatic model selection and hyperparameter optimization in
WEKA. Journal of Machine Learning Research, 18:25:1–25:5. (citation on page 35)

Krasnogor, N. and Lanzi, P. L., editors (2011). Genetic and Evolutionary Computation
Conference, GECCO 2011. Proceedings. ACM. (citations on pages 187 and 193)

Lai, T. L. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules.
Advances in applied mathematics, 6(1):4–22. (citation on page 154)

Langdon, W. B. (2015). Genetically improved software. In Gandomi, A. H., Alavi,
A. H., and Ryan, C., editors, Handbook of Genetic Programming Applications, pages
181–220. Springer. (citation on page 32)

Lawler, E. L., Lenstra, J. K., Kan, A. H. R., and Shmoys, D. B. (1993). Sequencing
and scheduling: Algorithms and complexity. Handbooks in operations research and
management science, 4:445–522. (citation on page 18)

Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., and Talbi, E. (2012). On
dominance-based multiobjective local search: design, implementation and ex-
perimental analysis on scheduling and traveling salesman problems. Journal of
Heuristics, 18(2):317–352.

(citations on pages 43, 48, 50, 51, 52, 53, 60, 61, 62, and 64)

200 Bibliography

Lin, S. and Kernighan, B. W. (1973). An effective heuristic algorithm for the
traveling-salesman problem. Operations research, 21(2):498–516.

(citation on page 21)

Lindauer, M., Bergdoll, R., and Hutter, F. (2016). An empirical study of per-instance
algorithm scheduling. In Festa et al. (2016), pages 253–259.

(citations on pages 27 and 76)

Lindauer, M. T., Hoos, H. H., Hutter, F., and Schaub, T. (2015). AutoFolio: An auto-
matically configured algorithm selector. Journal of Artificial Intelligence Research,
53:745–778. (citation on page 35)

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., and Stützle, T.
(2016). The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, 3:43–58. (citations on pages 28, 98, and 111)

López-Ibáñez, M. and Stützle, T. (2010a). Automatic configuration of multi-
objective ACO algorithms. In Dorigo, M., Birattari, M., Caro, G. A. D., Doursat,
R., Engelbrecht, A. P., Floreano, D., Gambardella, L. M., Groß, R., Sahin, E.,
Sayama, H., and Stützle, T., editors, Swarm Intelligence – 7th International Confer-
ence, ANTS 2010. Proceedings, volume 6234 of Lecture Notes in Computer Science,
pages 95–106. Springer. (citation on page 13)

López-Ibáñez, M. and Stützle, T. (2010b). The impact of design choices of mul-
tiobjective antcolony optimization algorithms on performance: an experimental
study on the biobjective TSP. In Pelikan, M. and Branke, J., editors, Genetic
and Evolutionary Computation Conference, GECCO 2010. Proceedings, pages 71–78.
ACM. (citation on page 13)

Lourenço, H., Martin, O., and Stützle, T. (2010). Iterated local search: Framework
and applications. In Gendreau and Potvin (2010), chapter 9, pages 363–397.

(citation on page 42)

Lourenço, H., Martin, O., and Stützle, T. (2003). Iterated local search. In Glover,
F. W. and Kochenberger, G. A., editors, Handbook of Metaheuristics, volume 57 of
International Series in Operations Research & Management Science, pages 321–353.
Springer. (citations on pages 59 and 89)

Lust, T. and Teghem, J. (2010). Two-phase Pareto local search for the biobjective
traveling salesman problem. Journal of Heuristics, 16(3):475–510.

(citation on page 48)

Bibliography 201

Malitsky, Y., Sabharwal, A., Samulowitz, H., and Sellmann, M. (2013). Algorithm
portfolios based on cost-sensitive hierarchical clustering. In Rossi, F., editor,
Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI 2013. Pro-
ceedings, pages 608–614. IJCAI/AAAI. (citation on page 27)

Mansour, I. B. and Alaya, I. (2015). Indicator based ant colony optimization for
multi-objective knapsack problem. Procedia Computer Science, 60:448–457.

(citation on page 12)

Martí, R., Campos, V., Resende, M. G. C., and Duarte, A. (2015). Multiobjective
GRASP with path relinking. European Journal of Operational Research, 240(1):54–
71. (citation on page 45)

Maturana, J., Fialho, Á., Saubion, F., Schoenauer, M., and Sebag, M. (2009). Extreme
compass and dynamic multi-armed bandits for adaptive operator selection. In
IEEE Congress on Evolutionary Computation, CEC 2009. Proceedings, pages 365–372.
IEEE. (citations on pages 30, 70, and 154)

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers
& Operations Research, 24(11):1097–1100. (citations on pages 42 and 45)

Moalic, L., Caminada, A., and Lamrous, S. (2013). A fast local search approach for
multiobjective problems. In Nicosia and Pardalos (2013), pages 294–298.

(citations on pages 48, 50, 61, and 62)

Moffaert, K. V., Drugan, M. M., and Nowé, A. (2013). Hypervolume-based multi-
objective reinforcement learning. In Purshouse, R. C., Fleming, P. J., Fonseca,
C. M., Greco, S., and Shaw, J., editors, Evolutionary Multi-Criterion Optimization -
7th International Conference, EMO 2013. Proceedings, volume 7811 of Lecture Notes
in Computer Science, pages 352–366. Springer. (citation on page 70)

Molina, J., Laguna, M., Martí, R., and Caballero, R. (2007). SSPMO: A scatter tabu
search procedure for non-linear multiobjective optimization. INFORMS Journal
on Computing, 19(1):91–100. (citation on page 44)

Moslehi, G. and Mahnam, M. (2011). A Pareto approach to multi-objective flex-
ible job-shop scheduling problem using particle swarm optimization and local
search. International Journal of Production Economics, 129(1):14–22.

(citation on page 47)

Murata, T., Ishibuchi, H., and Gen, M. (2000). Cellular genetic local search for
multi-objective optimization. In Whitley, L. D., Goldberg, D. E., Cantú-Paz, E.,

202 Bibliography

Spector, L., Parmee, I. C., and Beyer, H., editors, Genetic and Evolutionary Com-
putation Conference, GECCO ’00. Proceedings, pages 307–314. Morgan Kaufmann.

(citation on page 46)

Nawaz, M., Enscore, E. E., and Ham, I. (1983). A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem. Omega, 11(1):91–95.

(citation on page 151)

Nicosia, G. and Pardalos, P. M., editors (2013). Learning and Intelligent Optimiza-
tion – 7th International Conference, LION 7. Revised Selected Papers, volume 7997 of
Lecture Notes in Computer Science. Springer. (citations on pages 196 and 201)

Okabe, T., Jin, Y., and Sendhoff, B. (2003). A critical survey of performance indices
for multi-objective optimisation. In IEEE Congress on Evolutionary Computation,
CEC 2003. Proceedings, pages 878–885. IEEE. (citation on page 14)

Paquete, L., Chiarandini, M., and Stützle, T. (2004). Pareto local optimum sets in
the biobjective traveling salesman problem: An experimental study. In Gand-
ibleux, X., Sevaux, M., Sörensen, K., and T’kindt, V., editors, Metaheuristics for
multiobjective optimisation, volume 535, pages 177–199. Springer Science & Busi-
ness Media. (citations on pages 47, 50, 53, 61, and 62)

Paquete, L. and Stützle, T. (2003). A two-phase local search for the biobjective
traveling salesman problem. In Fonseca et al. (2003), pages 479–493.

(citation on page 47)

Pareto, V. (1896). Cours d’économie politique, volume 1. F. Rouge.
(citation on page 11)

Petke, J., Haraldsson, S. O., Harman, M., Langdon, W. B., White, D. R., and Wood-
ward, J. R. (2017). Genetic improvement of software: a comprehensive survey.
IEEE Transactions on Evolutionary Computation. (citation on page 32)

Rajaraman, K. and Sastry, P. S. (1996). Finite time analysis of the pursuit algorithm
for learning automata. IEEE Transactions on Systems, Man, and Cybernetics, Part
B, 26(4):590–598. (citation on page 153)

Rice, J. R. (1976). The algorithm selection problem. In Advances in computers,
volume 15, pages 65–118. Elsevier. (citation on page 26)

Riquelme, N., von Lücken, C., and Barán, B. (2015). Performance metrics in multi-
objective optimization. In 2015 Latin American Computing Conference, CLEI 2015,
pages 1–11. IEEE. (citation on page 14)

Bibliography 203

Ruiz, R. and Stützle, T. (2007). A simple and effective iterated greedy algorithm for
the permutation flowshop scheduling problem. European Journal of Operational
Research, 177(3):2033–2049. (citation on page 116)

Sabar, N. R., Ayob, M., Kendall, G., and Qu, R. (2015). A dynamic multiarmed
bandit-gene expression programming hyper-heuristic for combinatorial optim-
ization problems. IEEE Transactions on Cybernetics, 45(2):217–228.

(citation on page 154)

Sakurai, Y., Takada, K., Kawabe, T., and Tsuruta, S. (2010). A method to con-
trol parameters of evolutionary algorithms by using reinforcement learning. In
Yétongnon, K., Dipanda, A., and Chbeir, R., editors, Sixth International Conference
on Signal-Image Technology and Internet-Based Systems, SITIS 2010, pages 74–79.
IEEE Computer Society. (citation on page 155)

Schumer, M. and Steiglitz, K. (1968). Adaptive step size random search. IEEE
Transactions on Automatic Control, 13(3):270–276. (citation on page 30)

Serafini, P. (1994). Simulated annealing for multi objective optimization problems.
In Multiple Criteria Decision Making, pages 283–292. Springer.

(citations on pages 14, 43, 50, 54, 56, 61, and 62)

Silva, S. and Esparcia-Alcázar, A. I., editors (2015). Genetic and Evolutionary Com-
putation Conference, GECCO 2015. Proceedings. ACM.

(citations on pages 189, 193, and 206)

Suman, B. (2003). Simulated annealing-based multiobjective algorithms and their
application for system reliability. Engineering Optimization, 35(4):391–416.

(citation on page 44)

Suman, B. and Kumar, P. (2006). A survey of simulated annealing as a tool for
single and multiobjective optimization. Journal of the Operational Research Society,
57(10):1143–1160. (citation on page 44)

Suppapitnarm, A. and Parks, G. (1999). Simulated annealing: an alternative ap-
proach to true multiobjective optimization. In Banzhaf, W., Daida, J. M., Eiben,
A. E., Garzon, M. H., Honavar, V. G., Jakiela, M. J., and Smith, R. E., editors,
Genetic and Evolutionary Computation Conference, GECCO 1999. Proceedings, pages
406–407. Morgan Kaufmann. (citation on page 44)

Suresh, R. K. and Mohanasundaram, K. M. (2004). Pareto archived simulated an-
nealing for permutation flow shop scheduling with multiple objectives. In IEEE

204 Bibliography

Conference on Cybernetics and Intelligent Systems, CIS 2004. Proceedings, volume 2,
pages 712–717. IEEE. (citation on page 44)

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning - an introduction. Ad-
aptive computation and machine learning. MIT Press.

(citations on pages 30, 153, 154, and 155)

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64(2):278–285. (citation on page 19)

Talbi, E., Rahoual, M., Mabed, M. H., and Dhaenens, C. (2001). A hybrid evol-
utionary approach for multicriteria optimization problems: Application to the
flow shop. In Zitzler, E., Deb, K., Thiele, L., Coello, C. A. C., and Corne, D., edit-
ors, Evolutionary Multi-Criterion Optimization – 1st International Conference, EMO
2001. Proceedings, pages 416–428. Springer.

(citations on pages 14, 43, 45, 46, 47, 50, 61, and 62)

Thathachar, M. and Sastry, P. S. (1985). A new approach to the design of reinforce-
ment schemes for learning automata. IEEE Transactions on Systems, Man, and
Cybernetics, 15(1):168–175. (citation on page 153)

Thierens, D. (2005). An adaptive pursuit strategy for allocating operator probabil-
ities. In Beyer, H. and O’Reilly, U., editors, Genetic and Evolutionary Computation
Conference, GECCO 2005. Proceedings, pages 1539–1546. ACM.

(citations on pages 30, 152, and 153)

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). Auto-
weka: combined selection and hyperparameter optimization of classification al-
gorithms. In Dhillon, I. S., Koren, Y., Ghani, R., Senator, T. E., Bradley, P., Parekh,
R., He, J., Grossman, R. L., and Uthurusamy, R., editors, Knowledge Discovery
and Data Mining – 19th ACM SIGKDD International Conference, KDD 2013, pages
847–855. ACM. (citations on pages 35 and 146)

Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O., Wiecek, M. M., Jin, Y.,
and Grimme, C., editors (2017). Evolutionary Multi-Criterion Optimization – 9th
International Conference, EMO 2017. Proceedings, volume 10173 of Lecture Notes in
Computer Science. Springer. (citations on pages 191 and 198)

Tricoire, F. (2012). Multi-directional local search. Computers & Operations Research,
39(12):3089–3101. (citation on page 49)

Ulungu, B., Fortemps, P., and Teghem, J. (1995). Heuristic for multi-objective com-
binatorial optimization problems by simulated annealing. In Gu, J., Chen, G.,

Bibliography 205

Wei, Q., and Wang, S., editors, MCDM: Theory and Applications 1995, pages 229–
238. Sci-Tech. (citations on pages 14, 43, 50, 54, 56, 61, and 62)

Ulungu, B., Teghem, J., Fortemps, P., and Tuyttens, D. (1999). MOSA method: a
tool for solving multiobjective combinatorial optimization problems. Journal of
Multi-Criteria Decision Analysis, 8(4):221. (citations on pages 43 and 53)

van Veldhuizen, D. A. and Lamont, G. B. (2000). Multiobjective evolutionary al-
gorithms: Analyzing the state-of-the-art. Evolutionary Computation, 8(2):125–147.

(citation on page 14)

Veerapen, N. and Saubion, F. (2011). Pareto autonomous local search. In Coello
(2011), pages 392–406. (citations on pages 72 and 156)

Vermorel, J. and Mohri, M. (2005). Multi-armed bandit algorithms and empirical
evaluation. In Gama, J., Camacho, R., Brazdil, P., Jorge, A., and Torgo, L., editors,
16th European Conference on Machine Learning, ECML 2005. Proceedings, volume
3720 of Lecture Notes in Computer Science, pages 437–448. Springer.

(citation on page 153)

Vianna, D. S. and Arroyo, J. E. C. (2004). A GRASP algorithm for the multi-
objective knapsack problem. In XXIV International Conference of the Chilean Com-
puter Science Society, SCCC 2004. Proceedings, pages 69–75. IEEE Computer Soci-
ety. (citation on page 44)

Whiteson, S. and Stone, P. (2006). On-line evolutionary computation for rein-
forcement learning in stochastic domains. In Cattolico, M., editor, Genetic and
Evolutionary Computation Conference, GECCO 2006. Proceedings, pages 1577–1584.
ACM. (citation on page 155)

Wong, Y.-Y., Lee, K.-H., Leung, K.-S., and Ho, C.-W. (2003). A novel approach
in parameter adaptation and diversity maintenance for genetic algorithms. Soft
Computing, 7(8):506–515. (citations on pages 30 and 155)

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2008). Satzilla: Portfolio-
based algorithm selection for SAT. Journal of Artificial Intelligence Research,
32:565–606. (citation on page 27)

Yahyaa, S. Q., Drugan, M. M., and Manderick, B. (2014). Annealing-Pareto multi-
objective multi-armed bandit algorithm. In IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning. ADPRL 2014, pages 1–8. IEEE.

(citation on page 154)

206 Bibliography

Yao, X., Burke, E. K., Lozano, J. A., Smith, J., Guervós, J. J. M., Bullinaria, J. A.,
Rowe, J. E., Tiño, P., Kabán, A., and Schwefel, H., editors (2004). Parallel Problem
Solving from Nature – 8th International Conference, PPSN VIII. Proceedings, volume
3242 of Lecture Notes in Computer Science. Springer.

(citations on pages 197 and 206)

Zhang, Q. and Li, H. (2007). MOEA/D: A multiobjective evolutionary al-
gorithm based on decomposition. IEEE Transactions on Evolutionary Computation,
11(6):712–731. (citation on page 13)

Zhang, T., Georgiopoulos, M., and Anagnostopoulos, G. C. (2015). SPRINT multi-
objective model racing. In Silva and Esparcia-Alcázar (2015), pages 1383–1390.

(citations on pages 32, 98, and 111)

Zhang, T., Georgiopoulos, M., and Anagnostopoulos, G. C. (2016). Multi-objective
model selection via racing. IEEE Transactions on Cybernetics, 46(8):1863–1876.

(citations on pages 32, 98, and 111)

Zhang, T., Georgiopoulos, M., and Anagnostopoulos, G. C. (2018). Pareto-optimal
model selection via SPRINT-Race. IEEE Transactions on Cybernetics, 48(2):596–
610. (citations on pages 32, 98, and 111)

Zitzler, E. and Künzli, S. (2004). Indicator-based selection in multiobjective search.
In Yao et al. (2004), pages 832–842. (citations on pages 12 and 13)

Zitzler, E., Laumanns, M., and Thiele, L. (2001). SPEA2: Improving the strength
Pareto evolutionary algorithm. TIK-report, 103. (citation on page 13)

Zitzler, E. and Thiele, L. (1998). Multiobjective optimization using evolutionary
algorithms - A comparative case study. In Eiben, A. E., Bäck, T., Schoenauer, M.,
and Schwefel, H., editors, Parallel Problem Solving from Nature – 5th International
Conference, PPSN V. Proceedings, volume 1498 of Lecture Notes in Computer Science,
pages 292–304. Springer. (citation on page 15)

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: a compar-
ative case study and the strength Pareto approach. IEEE Transactions on Evolu-
tionary Computation, 3(4):257–271. (citations on pages 12, 13, 14, 15, and 48)

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca, V. G. (2003).
Performance assessment of multiobjective optimizers: an analysis and review.
IEEE Transactions on Evolutionary Computation, 7(2):117–132.

(citations on pages 14, 15, and 122)

Title. Reacting and Adapting to the Environment – Designing Autonomous
Methods for Multi-Objective Combinatorial Optimisation

Keywords. automatic algorithm design, multi-objective optimisation, combinat-
orial optimisation, metaheuristics, local search algorithms

Abstract. Large-scale optimisation problems are usually hard to solve optimally.
Approximation algorithms such as metaheuristics, able to quickly find sub-optimal
solutions, are often preferred. This thesis focuses on multi-objective local search
(MOLS) algorithms, metaheuristics able to deal with the simultaneous optimisa-
tion of multiple criteria. As many algorithms, metaheuristics expose many para-
meters that significantly impact their performance. These parameters can be either
predicted and set before the execution of the algorithm, or dynamically modified
during the execution itself.

While in the last decade many advances have been made on the automatic
design of algorithms, the great majority of them only deal with single-objective
algorithms and the optimisation of a single performance indicator such as the al-
gorithm running time or the final solution quality. In this thesis, we investigate the
relations between automatic algorithm design and multi-objective optimisation,
with an application on MOLS algorithms.

We first review possible MOLS strategies ans parameters and present a general,
highly configurable, MOLS framework. We also propose MO-ParamILS, an auto-
matic configurator specifically designed to deal with multiple performance indic-
ators. Then, we conduct several studies on the automatic offline design of MOLS
algorithms on multiple combinatorial bi-objective problems. Finally, we discuss
two online extensions of classical algorithm configuration: first the integration
of parameter control mechanisms, to benefit from having multiple configuration
predictions; then the use of configuration schedules, to sequentially use multiple
configurations.

Titre : Réagir et s’adapter à son environnement – Concevoir des méthodes auto-
nomes pour l’optimisation combinatoire à plusieurs objectifs

Mots-clés : design automatique d’algorithmes, optimisation multi-critères, optimi-
sation combinatoire, métaheuristiques, algorithmes de recherche locale

Résumé : Les problèmes d’optimisation à grande échelle sont généralement diffi-
ciles à résoudre de façon optimale. Des algorithmes d’approximation tels que les
métaheuristiques, capables de trouver rapidement des solutions sous-optimales,
sont souvent préférés. Cette thèse porte sur les algorithmes de recherche locale
multi-objectif (MOLS), des métaheuristiques capables de traiter l’optimisation si-
multanée de plusieurs critères. Comme de nombreux algorithmes, les MOLS ex-
posent de nombreux paramètres qui ont un impact important sur leurs perfor-
mances. Ces paramètres peuvent être soit prédits et définis avant l’exécution de
l’algorithme, soit ensuite modifiés dynamiquement.

Alors que de nombreux progrès ont récemment été réalisés pour la conception
automatique d’algorithmes, la grande majorité d’entre eux ne traitent que d’algo-
rithmes mono-objectif et l’optimisation d’un unique indicateur de performance.
Dans cette thèse, nous étudions les relations entre la conception automatique d’al-
gorithmes et l’optimisation multi-objective.

Nous passons d’abord en revue les stratégies MOLS possibles et présentons un
framework MOLS général et hautement configurable. Nous proposons également
MO-ParamILS, un configurateur automatique spécialement conçu pour gérer plu-
sieurs indicateurs de performance. Nous menons ensuite plusieurs études sur la
conception automatique de MOLS sur de multiples problèmes combinatoires bi-
objectifs. Enfin, nous discutons deux extensions de la configuration d’algorithme
classique : d’abord l’intégration des mécanismes de contrôle de paramètres, pour
bénéficier de multiples prédictions de configuration ; puis l’utilisation séquentielle
de plusieurs configurations.

	General Introduction
	Motivations
	Outline

	I Multi-objective Optimisation and Algorithm Design
	Multi-objective Metaheuristics
	Multi-objective Combinatorial Optimisation
	Introduction
	Definition
	Solution Comparison
	Multi-objective Metaheuristics

	Performance Assessment
	Overview
	Hypervolume
	D Spread

	Permutation Problems
	Permutation Flow Shop Scheduling Problem
	Travelling Salesman Problem
	Quadratic Assignment Problem

	Automatic Algorithm Design
	Preliminaries
	Overview
	Algorithm Selection
	Algorithm Configuration / Parameter Tuning
	Parameter Control
	Hyper-heuristics
	Other Fields and Taxonomies
	Multi-objective Automatic Design

	Overall Automatic Design Taxonomy Proposition
	Temporal Viewpoint
	Structural Viewpoint
	Overview
	Additional Complexity Viewpoint

	II Multi-objective Local Search
	Unified MOLS Structure
	Preliminaries
	Definitions
	Historical Development
	Condensed Literature Summary
	Analysis and Discussion

	MOLS Strategies
	Set of Potential Pareto Optimal Solutions (Archive)
	Set of Current Solutions (Memory)
	Exploration Strategies
	Selection Strategies
	Termination Criteria

	Escaping Local Optima
	MOLS Unification Proposition
	Main Loop
	Local Search Exploration
	Iterated Local Search Algorithm

	Literature Instantiation

	MOLS Instantiations
	Static MOLS Algorithm
	Algorithm
	Configuration Space

	Control Mechanisms Integration
	Parameter Analysis
	Knowledge Exploitation
	Knowledge Extraction
	Knowledge Modelling
	Decisional Schedule

	Adaptive MOLS Algorithm
	Algorithm
	Related adaptive MOLS Algorithms

	Configuration Scheduling
	Proposition
	Definitions
	Related Approaches

	AMH: Adaptive MetaHeuristics
	Motivation
	Philosophy
	Design and Implementation
	Execution Flow Examples

	Perspectives

	III Automatic Offline Design
	MO-ParamILS
	Multi-objective Automatic Configuration
	Definition
	Use Cases

	Single-objective ParamILS
	Core Algorithm
	BasicILS, FocusedILS
	Adaptive Capping Strategies
	Configuration Protocol

	Multi-objective ParamILS
	Motivations
	Core Algorithm
	Configuration Protocol

	Hybrid Multi-Objective Approaches
	Single Performance Indicator
	Aggregation of Multiple Performance Indicators

	Framework Evaluation
	Experimental Protocol
	Results

	Perspectives

	MOLS Configuration
	Exhaustive Analysis
	Experimental Protocol
	Parameter Distribution Analysis
	Optimal Configurations
	Discussions

	AAC Approaches Analysis
	Experimental Protocol
	Small Configuration Space Results
	Large Configuration Space Results
	Discussions

	Analysis of Objective Correlation
	Experimental Protocol
	Optimised Configurations
	Discussions

	Perspectives

	IV Automatic Online Design
	MOLS Control
	Adaptive MOLS Algorithm
	Adaptive Algorithm
	Generic Online Mechanisms

	Experimental Protocol
	Experimental Results
	3-arm Results
	2-arm Results
	Long Term Learning Results

	Discussions
	Perspectives

	MOLS Configuration Scheduling
	MOLS Configurations
	Experimental Protocol
	Experimental Results
	Exhaustive Enumeration
	K=2 Configuration Schedules
	K=3 Configuration Schedules

	Discussions
	Perspectives

	General Conclusion
	Contribution Summary
	Future Research

	Publications
	Bibliography

