
HAL Id: tel-01895386
https://hal.science/tel-01895386

Submitted on 15 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards RDF Normalization
Regina Paola Ticona Herrera

To cite this version:
Regina Paola Ticona Herrera. Towards RDF Normalization. Information Theory [cs.IT]. Université
de Pau et des Pays de l’Adour, 2016. English. �NNT : �. �tel-01895386�

https://hal.science/tel-01895386
https://hal.archives-ouvertes.fr


UNIVERSITE DE PAU ET DES PAYS DE L’ADOUR

ECOLE DOCTORALE DES SCIENCES EXACTES ET LEURS

APPLICATIONS

Towards RDF Normalization

Prepared by

Regina Paola TICONA HERRERA

A thesis submitted in fulfillment for the degree of Doctor of Phylosofy in Computer Science

Examination Committee:

Prof. Andrea TETTAMANZI, Nice Sophia Antipolis University (Reviewer)

Dr. Beatrice BOUCHOU, Francois Rabelais of Tours University (Reviewer)

Prof. Pascal MOLLI, Nantes University (Examiner)

Prof. Richard CHBEIR, University of Pau (Advisor)

Dr. Joe TEKLI, Lebanese American University, Lebanon (Co-Advisor)

Dr. Sébastien Laborie, University of Pau (Co-Advisor)

06 July 2016



To the memory of my grandmother Eliana

NIETO ESPEJO.



Acronyms

CERN The European Organization for Nuclear Research

HITS Hypertext-Induced Topic Search

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IRI Internationalized Resource Identifier

LOD Linking Open Data

MCF Meta-Content Framework

N3 Notation 3

OWL Web Ontology Language

RDF Resource Description Framework

RDF(S) RDF Schema

SW Semantic Web

TCP/IP Transmission Control Protocol/Internet Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

XML eXtensible Markup Language

W3C World Wide Web Consortium

WWW World Wide Web

i



Acknowledgments

I would like to express my sincere gratitude and humble acknowledgement to all the people

who have contributed to the preparation and completion of this research.

First of all, I would like to thank to my professors and academic supervisors Dr. Richard

Chbeir of the T2I Laboratory, University of Pau, as well as Dr. Joe Tekli of Lebanese American

University, and Dr. Sébastien Laborie of the T2I Laboratory, University of Pau whose successful

teachings have made this dissertation possible. I also thank the University of Pau for giving

me the opportunity to undertake this PhD.

I would like to express my mere expression of gratitude to Dr. Richard Chbeir, for his confidence

to accept me as his student and for his close supervision, exigency, and constant presence during

the past four years. My humble gratitude goes to him for his big patience, support, comments,

teachings, help and generous guidance during the completion of my PhD and for his time

spent in reviewing and improving this work. His support and guidance were key players in

making this research feasible. Equally, I would like to thank my co-supervisors: Dr. Joe

Tekli for his invaluable guidance, support in all the aspects, comprehension, encouragement,

teachings, trust, help, valuable advices, and commitment in improving always the work and

the time spent in reviewing the report, and Dr. Sébastien Laborie for his guidance, motivation,

encouragement, advice, and the time spent in reviewing the work during the thesis. Without

all of them I could not have got this far, it is a pleasure to know them and a privilege to work

all this time with them.

I would like to show my gratitude to Dr. Germán Chávez Contreras, Rector of the Universidad

Católica San Pablo from Peru, for his support to fulfill this PhD. Also, I want to thank: i)

Raquel Patiño Escarcina for pushing me to do the PhD and sending my application without

her encouragement probably I would not be here, ii) Ernesto Cuadros Vargas for introducing

me in the research world and giving me the chance to meet Richard Chbeir, and iii) Alejandro

Estenós and Gonzalo Fernández for giving me their unconditional support.

I am thankful for my friends that more than friends were my family in Europe: i) Marita

Vargas, Antonio Flores, Anaĺıa Boggia, Irvin Dongo, Denisse Muñante, Aritz Echenique, Aizea



Lojo, Joseba Nevado, and Marta Toribio, and ii) my first friends in France: Elie Raad, Eliana

Raad, Fernanda Sarubbi, Ghada Ben-Nejma, Keling Da and Solomon Asres. Above all, I am

thankful for their advices, encouragement and patience to me. I am also grateful to all my

friends that for space limitations I will not mention name by name, but I will have always all

the beautiful memories with them in my heart.

I would like to show my gratitude to my family for their support and encouragement, especially

to my father for the opportunities he has given me in life.

I also want to thanks to all the institutions/organizations that supported me in different ways

as FINCYT (Peru), Campus France, LIUPPA (France), and UCSP (Peru).

Lastly and most importantly, my deepest gratitude and love goes to God who filled me with

strength, patience, perseverance, and wisdom to finish this work.

iii



Resumé

Depuis ces dernières décennies, des millions d’internautes produisent et échangent

des données sur le Web. Ces informations peuvent être structurées, semi-structurées

et/ou non-structurées, tels que les blogs, les commentaires, les pages Web, les con-

tenus multimédias, etc. Afin de faciliter la publication ainsi que l’échange de don-

nées, le World Wide Web Consortium (ou W3C) a défini en 1999 le standard RDF.

Ce standard est un modèle qui permet notamment de structurer une information

sous la forme d’un réseau de données dans lequel il est possible d’y attacher des de-

scriptions sémantiques. Ce modèle permet donc d’améliorer l’interopérabilité entre

différentes applications exploitant des données diverses et variées présentes sur le

Web.

Actuellement, une grande quantité de descriptions RDF est disponible en

ligne, notamment grâce à des projets de recherche qui traitent du Web de don-

nées liées, comme par exemple DBpedia et LinkedGeoData. De plus, de nombreux

fournisseurs de données ont adopté les technologies issus de cette communauté du

Web de données en partageant, connectant, enrichissant et publiant leurs infor-

mations à l’aide du standard RDF, comme les gouvernements (France, Canada,

Grande-Bretagne, etc.), les universités (par exemple Open University) ainsi que les

entreprises (BBC, CNN, etc.). Il en résulte que de nombreux acteurs actuels (par-

ticuliers ou organisations) produisent des quantités gigantesques de descriptions

RDF qui sont échangées selon différents formats (RDF/XML, Turtle, N-Triple,

etc.).

Néanmoins, ces descriptions RDF sont souvent verbeuses et peuvent égale-

ment contenir de la redondance d’information. Ceci peut concerner à la fois leur

structure ou bien leur sérialisation (ou le format) qui en plus souffre de multiples

variations d’écritures possibles au sein d’un même format. Tous ces problèmes

induisent des pertes de performance pour le stockage, le traitement ou encore le

chargement de ce type de descriptions.



Dans cette thèse, nous proposons de nettoyer les descriptions RDF en élimi-

nant les données redondantes ou inutiles. Ce processus est nommé “normalisation”

de descriptions RDF et il est une étape essentielle pour de nombreuses applications,

telles que la similarité entre descriptions, l’alignement, l’intégration, le traitement

des versions, la classification, l’échantillonnage, etc. Pour ce faire, nous proposons

une approche intitulée R2NR qui à partir de différentes descriptions relatives à

une même information produise une et une seule description normalisée qui est

optimisée en fonction de multiples paramètres liés à une application cible. Notre

approche est illustrée en décrivant plusieurs cas d’étude (simple pour la compréhen-

sion mais aussi plus réaliste pour montrer le passage à l’échelle) nécessitant l’étape

de normalisation.

La contribution de cette thèse peut être synthétisée selon les points suivants:

i) Produire une description RDF normalisée (en sortie) qui préserve les informations

d’une description source (en entrée),

ii) Éliminer les redondances et optimiser l’encodage d’une description normalisée,

iii) Engendrer une description RDF optimisée en fonction d’une application cible

(chargement rapide, stockage optimisée...),

iv) Définir de manière complète et formelle le processus de normalisation à l’aide

de fonctions, d’opérateurs, de règles et de propriétés bien fondées, etc.

v) Fournir un prototype RDF2NormRDF (avec deux versions : en ligne et hors

ligne) permettant de tester et de valider l’efficacité de notre approche.

Afin de valider notre proposition, le prototype RDF2NormRDF a été utilisé

avec une batterie de tests. Nos résultats expérimentaux ont montré des mesures

très encourageantes par rapport aux approches existantes, notamment vis-à-vis du

temps de chargement ou bien du stockage d’une description normalisée, tout en

préservant le maximum d’informations.

v



Abstract

Over the past three decades, millions of people have been producing and shar-

ing information on the Web, this information can be structured, semi-structured,

and/or non-structured such as blogs, comments, Web pages, and multimedia data,

etc., which require a formal description to help their publication and/or exchange

on the Web. To help address this problem, the Word Wide Web Consortium (or

W3C) introduced in 1999 the RDF standard as a data model designed to stan-

dardize the definition and use of metadata, in order to better describe and handle

data semantics, thus improving interoperability, and scalability, and promoting the

deployment of new Web applications.

Currently, billions of RDF descriptions are available on the Web through the

Linked Open Data cloud projects (e.g., DBpedia and LinkedGeoData). Also, sev-

eral data providers have adopted the principles and practices of the Linked Data to

share, connect, enrich and publish their information using the RDF standard, e.g.,

Governments (e.g., Canada Government), universities (e.g., Open University) and

companies (e.g., BBC and CNN). As a result, both individuals and organizations

are increasingly producing huge collections of RDF descriptions and exchanging

them through different serialization formats (e.g., RDF/XML, Turtle, N-Triple,

etc.).

However, many available RDF descriptions (i.e., graphs and serializations)

are noisy in terms of structure, syntax, and semantics, and thus may present prob-

lems when exploiting them (e.g., more storage, processing time, and loading time).

In this study, we propose to clean RDF descriptions of redundancies and unused in-

formation, which we consider to be an essential and required stepping stone toward

performing advanced RDF processing as well as the development of RDF databases

and related applications (e.g., similarity computation, mapping, alignment, inte-

gration, versioning, clustering, and classification, etc.). For that purpose, we have

defined a framework entitled R2NR which normalizes different RDF descriptions

pertaining to the same information into one normalized representation, which can



then be tuned both at the graph level and at the serialization level, depending

on the target application and user requirements. We illustrate this approach by

introducing use cases (real and synthetics) that need to be normalized.

The contributions of the thesis can be summarized as follows:

i) Producing a normalized (output) RDF representation that preserves all the in-

formation in the source (input) RDF descriptions,

ii) Eliminating redundancies and disparities in the normalized RDF descriptions,

both at the logical (graph) and physical (serialization) levels,

iii) Computing a RDF serialization output adapted w.r.t. the target application

requirements (faster loading, better storage, etc.),

iv) Providing a mathematical formalization of the normalization process with ded-

icated normalization functions, operators, and rules with provable properties, and

v) Providing a prototype tool called RDF2NormRDF (desktop and online versions)

in order to test and to evaluate the approach’s efficiency.

In order to validate our framework, the prototype RDF2NormRDF has been

tested through extensive experimentations. Experimental results are satisfactory

show significant improvements over existing approaches, namely regarding loading

time and file size, while preserving all the information from the original description.

vii



Table of Contents

1 Introduction 1

1.1 Research Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Manuscript Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 The Semantic Web: RDF and Linked Data 9

2.1 World Wide Web and Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Principles of Web Architecture . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Internationalized Resource Identifier . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Uniform Resource Identifier - URI . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Internationalized Resource Identifier - IRI . . . . . . . . . . . . . . . . . 14

2.2.4 IRI Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.5 IRI Dereferencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Resource Description Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 RDF Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 RDF and the Principles of the Web . . . . . . . . . . . . . . . . . . . . 21

viii



TABLE OF CONTENTS

2.3.3 Serialization Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 The Web of Linked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Linked Open Data Cloud Evolution . . . . . . . . . . . . . . . . . . . . 26

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Motivating Examples 32

3.1 Logical (Graph) Redundancies . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Use Case 1 - University of Pau (Logical Representation) . . . . . . . . . 33

3.1.2 Challenges in Use Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Physical (Serialization) Disparities . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Use Case 2 - University of Pau (Physical Representation) . . . . . . . . 35

3.2.2 Challenges in Use Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Semantic Ambiguities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Use Case 3 - University of Pau (Logical Representation) . . . . . . . . . 37

3.3.2 Challenges in Use Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Semantic Ambiguities creating Logical (Graph) Redundancies . . . . . . 38

3.4 IRI Discrepancies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Use Case 4 - Luxembourg Country (Logical Representation) . . . . . . . 39

3.4.2 Use Case 5 - Luxembourg Country (Physical Representation) . . . . . . 40

3.4.3 Challenges in Use Cases 4 and 5 . . . . . . . . . . . . . . . . . . . . . . 41

3.4.4 IRI Discrepancies creating Logical (Graph) Redundancies . . . . . . . . 42

3.4.5 IRI Discrepancies creating Physical (Serialization) Disparities . . . . . . 43

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ix



TABLE OF CONTENTS

4 Syntactic RDF Normalization 45

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.2 Normalization Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.3 Normalization Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Knowledge Representation and Integration . . . . . . . . . . . . . . . . 54

4.2.2 RDF Graph (Logical) Normalization . . . . . . . . . . . . . . . . . . . . 55

4.2.3 RDF Syntax (Physical) Normalization . . . . . . . . . . . . . . . . . . . 58

4.3 Normalization Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Solving Logical Redundancies . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Solving Physical Disparities . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Normalization Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 RDF Normalization Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.1 Logical Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5.2 Physical Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Semantic and IRI RDF Normalization 88

5.1 Normalization Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Resolving Semantic Ambiguity . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.2 Resolving IRI Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.3 Handling IRI Coreference . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.4 Semantic and IRI RDF Normalization . . . . . . . . . . . . . . . . . . . 100

x



TABLE OF CONTENTS

5.3 RDF Normalization Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.1 Solving Logical Redundancies generated by Semantic Ambiguities . . . 102

5.3.2 Solving Logical Redundancies generated by IRI Discrepancies . . . . . . 105

5.3.3 Solving Physical Disparities generated by IRI Discrepancies . . . . . . . 106

5.4 RDF Normalization Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.1 Semantic Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.2 IRI Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.3 IRI Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Experimental Evaluation 114

6.1 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Experimental Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2.1 Effectiveness (Ξ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2.2 Efficiency (λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.3 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.1 Processing Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.2 Dataset Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.1 Effectiveness (RDF Normalization Quality) . . . . . . . . . . . . . . . . 125

6.4.2 Efficiency (Time Performance) . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.3 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5 Comparison with existing Methods . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5.1 Effectiveness (RDF Normalization Quality) . . . . . . . . . . . . . . . . 134

xi



TABLE OF CONTENTS

6.5.2 Efficiency (Time Performance) . . . . . . . . . . . . . . . . . . . . . . . 137

6.5.3 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7 Conclusions and Future Works 141

7.1 Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.1 Improvements to the RDF Normalization Approach . . . . . . . . . . . 143

7.2.2 Extended Statement Recommendation Format . . . . . . . . . . . . . . 144

7.2.3 Guidelines for Generating Normalized RDF Descriptions . . . . . . . . . 144

7.2.4 RDF Normalization using Ontology Inference Mechanisms . . . . . . . . 145

7.2.5 Ontology Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2.6 Plug-and-Play Pre-Processing Component . . . . . . . . . . . . . . . . . 145

Bibliography 156

A Appendix 157

B Résumé étendu 160

xii



List of Tables

2.1 Conventional IRI types based on Implementation with their respective structures 15

2.2 Conventional IRI types based on naming resources with their respective structures 16

2.3 Summarized descriptions of sets used in our approach . . . . . . . . . . . . . . 21

2.4 Topology of the Web of Data - November 2010 (Source: http://lod-cloud.net/,

2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Topology of the Web of Data - September 2011 (Source: http://lod-cloud.net/,

2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Summarized descriptions of functions based on the basic definitions of RDF . . 48

4.2 Summarized descriptions of functions based on definition of the normalization

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Summarized descriptions of operators based on definition of the normalization

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Summarized knowledge representation and integration approaches . . . . . . . 56

4.5 Summarized RDF Graph (Logical) and Syntax (Physical) Normalization ap-

proaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 RDF description normalization rules . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 RDF description normalization rules . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8 Relation between problems and RDF syntactic Normalization approaches . . . 87

xiii



LIST OF TABLES

5.1 Summarized descriptions of functions based on definition of the extended nor-

malization process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Summarized semantic mediation approaches . . . . . . . . . . . . . . . . . . . . 101

5.3 Summarized Resource disambiguation approaches . . . . . . . . . . . . . . . . . 103

5.4 Summarized descriptions of sets used in our approach . . . . . . . . . . . . . . 108

5.5 Relation between problems and RDF semantic and IRI Normalization approaches113

6.1 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Features of files in each Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Features of files in dataset Group 4 (after applying JSON-LD and HDT) based

on Group 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4 Features of files in dataset Group 4 (after applying JSON-LD and HDT) based

on Group 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.5 Goals and properties achieved in the Datasets . . . . . . . . . . . . . . . . . . . 125

6.6 Goals and properties achieved in the Dataset Group 4 based on Group 1 . . . . 135

6.7 Goals and properties achieved in the Dataset Group 4 based on Group 3 . . . . 135

6.8 Goals and properties achieved in the Dataset Group 1 after applying normaliza-

tion processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.9 Goals and properties achieved in the Datasets of Group 3 after applying nor-

malization processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xiv



List of Figures

1.1 RDF description Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 RDF Graph 2 describing the same information of Fig. 1. . . . . . . . . . . . . . 2

1.3 Example of Linked Data about the resource Luxembourg . . . . . . . . . . . . 4

1.4 Subgraph of the Data Integration in Figure 1.3 . . . . . . . . . . . . . . . . . . 4

2.1 Semantic Web Stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Resource Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 This Euler diagram shows that an IRI is a URI, and URI is either a Uniform

Resource Locator (URL), a Uniform Resource Name (URN), or both. . . . . . 14

2.4 Taxonomy of IRI types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Examples of IRI uses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Dereferencing the resource Eiffel Tower in [Hal13a]. . . . . . . . . . . . . . . . . 17

2.7 Example of RDF graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 RDF/XML serialization of the RDF graph depicted in Figure 2.7 . . . . . . . . 23

2.9 Abbreviated RDF/XML serialization of the RDF graph depicted in Figure 2.7 23

2.10 RDFa serialization of the RDF graph depicted in Figure 2.7 . . . . . . . . . . . 23

2.12 JSON-LD serialization of the RDF graph depicted in Figure 2.7 . . . . . . . . . 24

2.13 N3 serialization of the RDF graph depicted in Figure 2.7 . . . . . . . . . . . . . 24

2.11 N-Triple serialization of the RDF graph depicted in Figure 2.7 . . . . . . . . . 24

xv



LIST OF FIGURES

2.14 Turtle serialization of the RDF graph depicted in Figure 2.7 . . . . . . . . . . . 25

2.15 Linked Datasets as 2007 (Source: http://lod-cloud.net/, 2007). . . . . . . . . . 28

2.16 Linked Datasets as 30 of August 2014 (Source: http://lod-cloud.net/, 2014). . . 28

2.17 Example of Luxembourg in LOD cloud. . . . . . . . . . . . . . . . . . . . . . . 30

3.1 RDF Graph 1 with node and edge duplication. . . . . . . . . . . . . . . . . . . 33

3.2 RDF Graph 2 with node and edge duplication with and without datatypes and

languages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 RDF/XML serialization of the RDF graph in Fig. 3.1. . . . . . . . . . . . . . . 35

3.4 RDF/XML serialization of the RDF graph in Fig. 3.2. . . . . . . . . . . . . . . 36

3.5 RDF Graph 3 with semantic ambiguities . . . . . . . . . . . . . . . . . . . . . . 37

3.6 RDF Graph 4 based on RDF Graph 3 with Logical redundancies due to semantic

ambiguities (concerning problems 1 and 2) . . . . . . . . . . . . . . . . . . . . . 39

3.8 Sub-part of RDF Serialization for the RDF Graph 5 in Figure 3.7 with Physical

disparities due to IRI discrepancies (concerning problems 11 and 12). . . . . . . 40

3.7 RDF Graph 5 about of Luxembourg RDF resource . . . . . . . . . . . . . . . . 40

3.9 RDF Graph with IRI discrepancies - IRI identity . . . . . . . . . . . . . . . . . 41

3.10 RDF Graph with IRI discrepancies - IRI reference . . . . . . . . . . . . . . . . 42

3.11 RDF Graph with Logical redundancies due to IRI discrepancies (concerning

problems 3 and 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 RDF example of extended statement containment depicting the graph in Figure

3.1 where st+i , ui, pi, bni, and li respectively represent corresponding extended

statements, IRIs, predicates, blank nodes, and literals. . . . . . . . . . . . . . . 51

4.2 RDF example with equal and different extended statements. . . . . . . . . . . . 52

4.3 RDF graph example with edge duplication and literal node duplication. . . . . 62

4.4 RDF graph obtained after applying R1 on the RDF Graph in Figure 4.3 . . . . 63

4.5 RDF graph obtained after applying R2 on the RDF graph in Figure 4.4. . . . . 66

xvi



LIST OF FIGURES

4.6 RDF file obtained after applying R1, R2 and R3 on the RDF file in Figure 3.3 69

4.7 RDF file obtained after applying R4 on the RDF file in Figure 4.6. . . . . . . . 71

4.8 RDF file result after applying R5 in Figure 4.7. . . . . . . . . . . . . . . . . . . 72

4.9 Overall architecture of our R2NR framework. . . . . . . . . . . . . . . . . . . . 79

5.1 Taxonomy of IRI identification methods . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Example using Hash IRIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Example using Hash IRIs forwarding to one Generic Document . . . . . . . . . 98

5.4 Example using Hash IRIs forwarding to different documents . . . . . . . . . . . 98

5.5 Taxonomy of IRI coreference methods . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Overall architecture of our RDF normalization framework . . . . . . . . . . . . 107

6.1 Desktop Prototype Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Online Prototype Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Average normalization time in the Syn DS1 dataset which RDF descriptions

contain a considerable amount of logical redundancies and physical disparities. 126

6.4 Average normalization time in Syn DS2 dataset. . . . . . . . . . . . . . . . . . 127

6.5 Average normalization time of the datasets in Group 2. . . . . . . . . . . . . . 127

6.6 Average normalization time of the LGD2 dataset, with limited logical redundan-

cies and physical disparities. It presents a linear time. . . . . . . . . . . . . . . 128

6.7 Average normalization time of the DBp2 dataset (containing a considerable

amount of logical redundancies and physical disparities, cf. Table 6.2). . . . . . 128

6.8 Order comparison ratio against normalization time of the SOP order. . . . . . . 129

6.9 Average Jena loading time of the datasets in Group 1. . . . . . . . . . . . . . . 129

6.10 Average Jena loading time of the datasets in Group 2. . . . . . . . . . . . . . . 130

6.11 Average Jena loading time of RDF files in the LGD2 dataset. . . . . . . . . . . 130

xvii



LIST OF FIGURES

6.12 Average Jena loading time of RDF files in the DBp2 dataset. . . . . . . . . . . 131

6.13 Average size reduction results w.r.t. the compact format. . . . . . . . . . . . . 132

6.14 Order comparison ratio of the PSO sorting index order against Jena loading time.132

6.15 Average size reduction of the Datasets w.r.t the output format . . . . . . . . . 133

6.16 Comparison of the Average normalization time with JSON, HDT and R2NR. . 137

6.17 Average Jena loading time comparison with JSON-LD. . . . . . . . . . . . . . . 138

6.18 Average Jena loading time comparison with HDT. . . . . . . . . . . . . . . . . 139

6.19 Average size reduction in dataset Group 4 w.r.t. the output format . . . . . . . 139

B.1 Exemple d’une description RDF. . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B.2 Graphe RDF 2 décrivant la même information de la Fig. B.1. . . . . . . . . . . 162

B.3 Exemple de Données Liées sur la ressource “Luxembourg”. . . . . . . . . . . . . 163

B.4 Sous-graphe d’intégrations de données dans la Fig. B.3 . . . . . . . . . . . . . . 164

xviii



Chapter 1

Introduction

The Semantic Web is a global information space consisting of interlinked data about resources

[BL09], aiming to assign/extend data with well-defined meaning that can be understood and

utilized by machines to improve the quality of the information retrieved and also perform

more sophisticated data management and interchange tasks (e.g., intelligent data search, data

integration, merging, classification, etc.). In this context, one of the core technologies of the

Semantic Web to connect data is the Resource Description Framework (RDF) [MMM+04,

SR14], as a World Wide Web Consortium (W3C) standard. Basically, an RDF description is

composed of a set of triples < Subject, Predicate,Object >, also named statements. These

triples altogether form an RDF graph highlighting the semantic linkage/relationships between

Web resources.

For instance, the following triple: <http://www.univ-pau.fr, ex1:lab, http://liuppa.

univ-pau.fr/live/> states that the subject http://www.univ-pau.fr, identified by its In-

ternationalized Resource Identifier (IRI), has a lab, identified by its own IRI: http://liuppa.

univ-pau.fr/live/. Several RDF datasets are currently available online thanks to Linked

Data [HB11] research projects1, such as DBpedia, LinkedGeoData, Geonames, New York Times,

etc. Through the initiative of Linking Open Data (LOD), individuals and organizations can

share all their information with others based on RDF triples.

These triples are serialized to be usually stored in RDF machine readable formats such as

RDF/XML [Bec04] (since XML-based technologies give more readability and provide standard-

ized frameworks that can be used to handle such a format), N-Triple [BB01], Turtle [BBL11],

N3 [BL05] or JSON-LD [SLK+14]. Therefore, RDF can be described in different ways as shown

in Figure 1.1 where an RDF description is represented by a graph (cf. Figure 1.1.a) and several

corresponding RDF formats (serializations) (cf. Figures 1.1.b.1, 1.1.b.2, 1.1.b.3 and 1.1.b.4).

1http://linkedgeodata.org, http://data.nytimes.com/, http://dbpedia.org, http://www.geonames.

org/, http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets

1

http://www.univ-pau.fr
http://liuppa.univ-pau.fr/live/
http://liuppa.univ-pau.fr/live/
http://www.univ-pau.fr
http://liuppa.univ-pau.fr/live/
http://liuppa.univ-pau.fr/live/
http://linkedgeodata.org
http://data.nytimes.com/
http://dbpedia.org
http://www.geonames.org/
http://www.geonames.org/
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets


http://www.univ-pau.fr

UX

“Sebastien”

“Durand”

ex:nameProf

ex:first_name

ex:last_name

http://www.univ-pau.fr/live/

ex1:lab

…
<rdf:Description rdf:nodeID="UX">
 <ex:first_name> Sebastien </ex:first_name>
 <ex:last_name>  Durand </ex:last_name>
 </rdf:Description>
 …

…
"@id": "_:Nf6a5c38b4f1049bf8aff884fdd714ec9",
"http://example.org/stuff/1.0/first_name": [{"@value": "Sebastien"}].
“http://example.org/stuff/1.0/last_name": [{"@value": "Durand"}
...

...
@prefix ex1: <http://example.org/stuff/1.0/>
<http://www.univ-pau.fr> ex1:lab <http://liuppa.univ-pau.fr/live/> ;
ex:nameprof [ ex:first_name "Sebastien";
ex:last_name "Durand" ]

_:N17 http://example.org/stuff/1.0/first_name 
"Sebastien"^^<http://www.w3.org/2001/XMLSchema#string>
_:N17 <http://example.org/stuff/1.0/last_name> "Durand"@fr
<http://www.univ-pau.fr> <http://example.org/stuff/1.0/nameprof> 
_:N17 <http://www.univ-pau.fr> <http://example.org/stuff/1.0/lab> 
<http://liuppa.univ-pau.fr/live/>

(1) RDF/XML

(2) JSON-LD

(3) N3

(4) N-Triple

(a) RDF Graph 1 (b) RDF Serializations of Graph 1

Figure 1.1: RDF description Example.

http://www.univ-pau.fr

UX

“Sebastien”

“Durand”
ex:nameProf

ex:first_name

ex:last_name

bn_1

“Sebastien”

“Durand”
ex:nameProf

ex:first_name

ex:last_name

“Durand”ex:last_name

http://www.univ-pau.fr/live/ex:lab

ex:lab

Figure 1.2: RDF Graph 2 describing the same information of Fig. 1.

In different scenarios (e.g., automatic serialization generation [STC14, Vea09], collabora-

tive generation [Jea13], data integration [PST+15], etc.), RDF descriptions might be verbose

and contain several redundancies in terms of both: the structure of the graph and/or the se-

rialization result. For instance, in automatic serialization generation, let us consider two RDF

descriptions to represent the same information: Graph 1 in Figure 1.1.a and Graph 2 in Figure

1.2, which have been created by two different users. Both graphs are different in terms of struc-

ture even though they are based on (and refer to) the same information. Actually, the RDF

graph in Figure 1.2 contains duplicated information (i.e., duplication of nodes and duplication

of edges) that produces more statements in comparison with the RDF graph Figure 1.1.a. Ad-

ditionally, even more redundancies and disparities1 will occur when serializing the RDF graph

in Figure 1.1.b, highlighting typical problems with RDF serialization (cf. Motivating examples

in Sections 3.1 and 3.2):

1We use disparities to designate different serializations of the same information.

2



CHAPTER 1. Introduction

• The same RDF resource can be serialized in several ways (e.g., in Figure 1.1.b.1, we use

the attribute value rdf:nodeID=“UX” as one of several ways to represent the blank node

identifier in a graph following the RDF/XML format, which can be done differently in

other formats),

• The language and datatype declarations for a given RDF resource (objects of the state-

ment) can be specified (or not) after serialization (e.g., in Figure 1.1.b.4, the datatype

string is mentioned in resource Sebastien as “Sebastien” ˆ̂xsd : string and the lan-

guage fr is mentioned in resource Durand as “Durand”@fr, which can be omitted in

other formats),

• The same URL namespace can have different short names, thus producing namespace

duplications (e.g., the namespace http://xmlns.com/foaf/1.0/ in Figure 1.1.b.1 has

the short name “ex” whereas it has the short name “ex1” in Figure 1.1.b.3).

The LOD context, as we mentioned before, individuals and organizations share data for

several purposes, e.g., to build new businesses, to increase online commerce, to accelerate scien-

tific progress, etc. So, all the problems above can be duplicated, if we want to integrate/merge

the information of one (or more) resource(s) using different datasets in the LOD.

For instance, the data integration of the resource Luxembourg (see Figure 1.3) provided

by different datasets as DBpedia and Geonames may increase the redundancies and disparities

in the merged RDF description output. Also, it has an impact in the storage, loading time,

etc., e.g., RDF Graph X + RDF Graph Y + RDF Graph Z will take more space for storage and

also more time for loading than the RDF graph without redundant and unused information.

Considering a subgraph of the integrated RDF description output in Figure 1.4, we find more

redundancies based on semantic ambiguities and IRI discrepancies1 (cf. Motivating examples

in Sections 3.3 and 3.4):

• The language and datatype declarations for a given RDF resource can change following

different primitive values (e.g., string, integer, etc.) but the meaning will be the same

(e.g., in Figure 1.4, the language es is mentioned in“Luxemburgo”@es and language en is

mentioned “Luxembourg”@en. So, we can notice that the name of the resource changed

but the meaning is the same: they simply provide the name for Luxembourg but in

different languages),

• The different IRIs can refer to the same RDF resource (e.g., in Figure 1.4, the IRI http:

//dbpedia.org/resource/Luxembourg uses the DBpedia dataset and the IRI http://

sws.geonames.org/2960313/ uses the Geonames dataset, such that both IRIs identify

the same resource Luxembourg).

1We use discrepancies to designate different IRIs that refer to the same resource

3

http://xmlns.com/foaf/1.0/
http://dbpedia.org/resource/Luxembourg
http://dbpedia.org/resource/Luxembourg
http://sws.geonames.org/2960313/
http://sws.geonames.org/2960313/


Dbpedia
Luxembourg

Dbpedia
History of Luxembourg

Geonames
Luxembourg

Data Integra�on

Redundant informa�on
Unused Informa�on

Redundant informa�on
Unused Informa�on

Redundant informa�on
Unused Informa�on

+ Redundant informa�on
+ Unused Informa�on

+ Storage
+ Loading Time

+ Time in querying
+ Difficul�es for similarity

…

Graph

Graph

Graph

X

Y

Z

Linked Open Data Cloud
(RDF external datasets) 

X
Y

Z

PDFill 
PDF Edito

r w
ith

 Free
 W

rite
r a

nd Tools

Figure 1.3: Example of Linked Data about the resource Luxembourg

Figure 1.4: Subgraph of the Data Integration in Figure 1.3

4



CHAPTER 1. Introduction

Such duplications and discrepancies which can occur both at the RDF graph (logical)

level and/or at the serialization (physical) level, are inherently problematic in RDF processing,

and would have a negative impact on the development/deployment of RDF databases [Gea11]

(including storage, querying, processing time, loading time, similarity measuring, mapping,

alignment, and versioning).

In this thesis, we present a proposal which provides a foundation and the main building

block for full-fledged RDF normalization. We continue this chapter by first identifying the

principal aim and the objectives of the thesis (Section 1.1). Next, in Section 1.2, we explain

our research contributions and, in Section 1.3, we conclude this chapter with the outline of the

remainder of this work.

1.1 Research Aims and Objectives

The ultimate aim of this thesis is to resolve RDF logical redundancies and physical disparities

by introducing a framework for RDF normalization named R2NR, allowing to transform dif-

ferent RDF descriptions using the same RDF statements reference into one single (normalized)

representation, while allowing to adapt RDF output serialization following application domain

requirements.

Our approach targets RDF normalization through the following objectives:

1. Eliminate redundancies in RDF graphs (which is typically useful in improving graph-

based RDF querying, mapping, and versioning applications) in the structure/graph (log-

ical) level, and

2. Eliminate redundancies and disparities in the structure of RDF files in the serialization

(physical) level, and adapting it to the target application domain, in order to optimize

storage space and loading time.

3. Prove that our normalization process is: i) valid with respect to a set of provable proper-

ties, ii) flexible and adaptable to user and application requirements, and iii) efficient and

scalable in processing large RDF repositories.

1.2 Research Contributions

Based on the aim and objectives described above, and our study of the research area (developed

in Sections 4.2 and 5.2), we present the following as our primary contribution in this thesis:

5



1.2. Research Contributions

1. Syntactic RDF Normalization

The challenge of obtaining an RDF normalized description has only been partly addressed

in the literature (cf. Section 4.2). Existing solutions do not consider all syntactic aspects

of RDF including: blank node duplication, unused namespaces, etc., that we further

categorize in this thesis as logical redundancies and physical disparities. In order to

perform syntactic RDF normalization, we provide:

• Systematic and complete description of R2NR’s formal mathematical model, in-

cluding a battery of formalized normalization rules, functions, operators, with their

properties, and corresponding proofs.

• Eliminating redundancies and disparities in the normalized RDF descriptions, both

at the logical (graph) and physical (serialization) levels in the syntactic way.

• Producing a normalized (output) RDF representation that preserves all the infor-

mation in the source (input) RDF descriptions.

• Providing several RDF serialization outputs adapted to the target application re-

quirements (faster loading, better storage, etc.).

2. Semantic RDF Normalization

In addition to considering the syntactic features of RDF, we have also extended our

proposal to deal with RDF semantic normalization: considering not only the occurrence

of duplicate RDF elements (i.e., repetition of identical RDF subjects/predicates/objects),

but also the occurrence of semantically similar/related elements, and how these can affect

normalization. As the semantic issues are inherently important in RDF descriptions,

we have extended our RDF Normalization framework with a Semantic Level processing

component, providing:

• Mathematical formalization for the rules and functions related to solving logical

redundancies based on semantic ambiguities.

• Dedicated components to eliminate redundancies in the normalized RDF descrip-

tions at the logical level.

• Dedicated components to perform semantic analysis, required for solving semantic

redundancies in RDF descriptions.

3. IRI RDF Normalization

The second extension of our syntactic proposal of RDF normalized considers IRI discrep-

ancies. In a new environment, such as the Semantic Web, where the IRIs are the base of

all Web applications to link the information about resources in datasets of linked data,

we study solutions to solve the problems of the IRI identity and IRI coreference1. In

1Coreference means that two or more IRIs are used to designate the same resource in the same way

6



CHAPTER 1. Introduction

practice, RDF descriptions can also have redundancies and disparities which we aim to

solve by introducing a dedicated IRI Level solution, providing:

• Mathematical formalization for the rules and functions related to solving logical

redundancies and physical disparities based on IRI discrepancies.

• Eliminating redundancies and disparities in the normalized RDF descriptions, both

at the logical and physical levels, generated by the IRI discrepancies.

• A dedicated component to identify the IRI coreference, which is in turn required to

identify and solve IRI discrepancies.

We also develop a prototype tool called RDF2NormRDF in two versions: Desktop and

online application1, in order to test and to evaluate our approach’s: i) effectiveness: quality

in detecting and eliminating redundancies and disparities in RDF descriptions, and ii) effi-

ciency: evaluating processing time, loading time, and storage space. Our experiments target

both logical and physical normalization at the syntactic level, and are being extended toward

evaluating semantic normalization. As well, we present an extensive and comparative experi-

mental evaluation study analyzing large scale experimental results in comparison with existing

methods.

Results have been presented and published in the proceedings of the 34th International

Conference on Conceptual Modelling ER’15 [THTC+15], and the extended study is currently

submitted (under review) in the International Journal on Web Semantics (Elsevier JWS)

[THTCL16].

1.3 Manuscript Structure

Next, we present an overview of each of the following chapters in this thesis:

Chapter 2 (The Semantic Web: RDF and Linked Data) presents the necessary back-

ground information regarding the concepts and principles about WWW, Semantic Web,

IRIs, RDF and the Web of Linked Data considered to better understanding the normal-

ization process.

Chapter 3 (Motivating Examples) presents motivating examples, highlighting different

normalization features left unaddressed by most existing approaches. Regarding these

features, this chapter also presents our challenges for the RDF normalization.

Chapter 4 (Syntactic RDF Normalization) describes our syntactic proposal for RDF

Normalization. This chapter also includes preliminary notions, basic definitions related

1http://sigappfr.org/spider/research-projects/towards-rdf-normalization/

7

http://sigappfr.org/spider/research-projects/towards-rdf-normalization/


1.3. Manuscript Structure

to RDF logical and physical descriptions, a set of normalization functions, operators and

properties, and a comparison with related works in RDF standardization and normaliza-

tion. Finally, we detail our overall R2NR framework architecture and components.

Chapter 5 (Semantic and IRI RDF Normalization) describes an extension of R2NR

framework architecture considering RDF Semantic and IRI problems. This chapter also

includes preliminary notions related to semantic ambiguity, IRI identity, IRI coreference,

and RDF semantic normalization, as well as a set of normalization functions, operators,

and properties linked to solving logical redundancies and physical disparities caused by

the presence of semantic ambiguities and IRI discrepancies. This extension adds two

levels to our original framework: Semantic level and IRI level. In this chapter, we also

present our prototype and the experimental environment describing all our datasets.

Chapter 6 (Experimental Evaluation) illustrates and discusses experimental results of

evaluating the R2NR proposal that we presented in the preceding chapters, and shows

results of the validation of RDF Normalization output through the fulfilment of RDF

normalization properties, as well as the cost in processing time and the gain in loading

time and storage space achieved after normalization.

Chapter 7 (Conclusions and Future Works) concludes our work, recapitulating our con-

tributions and highlighting future research directions.

8



Chapter 2

The Semantic Web: RDF and

Linked Data

“I made some electronic gadgets to control the

trains. Then I ended up getting more interested in

electronics than trains. Later on, when I was in

college I made a computer out of an old television

set.”
— Tim Berners-Lee

In this chapter, we present the Semantic Web concept and its associated elements. It is

important that we first understand the nature, purpose and principles of the Semantic Web

before the challenges of the RDF normalization. The nature of the Semantic Web (SW) is

linked to two motivations: 1) The first one, it is the distributed modelling of the world that

allows “anyone to say anything about anything” in a globally unambiguous, machine-readable

format with a shared data model, and 2) The second one, it is the infrastructure where data and

schemas can be published, found and used by anyone. So, the main question for researchers was:

how to publish information about resources in a way that allows interested users and software

applications to find and interpret them [AV08, SCV11, Boo03]. To that end, for answering this

question, we begin this chapter with a brief history of the World Wide Web (WWW) and the

SW (Section 2.1) and a short background description related to: i) Internationalized Resource

Identifiers (IRIs) (Section 2.2), and ii) Resource Description Framework (RDF) (Section 2.3).

Finally, we present the relation between the Linked Data movement (Section 2.4) and the

Semantic Web.

9



2.1. World Wide Web and Semantic Web

2.1 World Wide Web and Semantic Web

The WWW, named as Web, was invented by Tim Berners-Lee in 1989, as a collaboration tool

for the High-Energy Physics research community at The European Organization for Nuclear

Research (CERN)1[BL89]. Berners-Lee had developed a concept for the Web as “universal

information space”, in his original proposal he said “We should work towards a universal linked

information system, in which generality and portability are more important than fancy graphics

and complex extra facilities” [BL89]. This concept was related with the main goal of Berners-

Lee’s proposal that was to connect the tremendous amounts of data of CERN.

Also, Tim Berners-Lee, Roy Fielding, Dan Connolly, and others were participants of the

Internet Engineering Task Force (IETF) to create software to run the Internet [Wal01] and

the result of this collaboration, around 1990, was the development of basic protocols and data

formats as URIs that is a unique address used to identify each resource on the Web (see more

details in Section 2.2), HyperText Markup Language (HTML) that is the markup language of

the Web and Hypertext Transfer Protocol (HTTP) that allow us the retrieval of linked resources

from across the Web. These three fundamental technologies remain the foundation of today’s

Web [Hal13a] where there is no central computer controlling the Web, no single network on

which these protocols work, not even an organization anywhere that runs the Web according

with Berners-Lee’s proposal. For Berners-Lee, the Web is not a material thing, it is completely

different than what people could imagine. In [BLF00], he said: “The Web was not a physical

thing that existed in a certain place. It was a space in which information could exist” [BLF00].

That is, we are talking about something completely abstract that can be found in everywhere

and can be utilized at any time.

There are various technologies that go under the rubric of the Web. In fact, these

technologies are related to the infrastructure operation of the Web known as the Internet, In-

ternationalized Resource Identifier (IRI), HTTP, HTML, etc. On one hand, the Internet “is a

global system of interconnected computer networks that interchange data by packet switching

using the standardized Internet Protocol Suite (Transmission Control Protocol/Internet Pro-

tocol (TCP/IP))” [Sta09] and on the other hand the Web, following the W3C definition, “is an

information space in which the items of interest, referred to as resources, are identified by global

identifiers called Uniform Resource Identifiers (URI)” [JW04]. In brief, we conclude that the

Web acts as an information system based on hypertext pages (developed in the HTML format)

to link information through URIs in a global network of computers (Internet) where the hy-

pertext pages, named as Web pages, are requested and transferred over the HTTP [FGM+99]

using the hyperlinks that are a reference to a document or specific element within a document.

The linking that we refer to in the last paragraph is one of the main advantage of the

Web, because it allows to connect the documents over the Web. This advantage is better

1CERN: See http://www.cern.ch

10

http://www.cern.ch


CHAPTER 2. The Semantic Web: RDF and Linked Data

highlighted by examining the main principles of the Web architecture.

2.1.1 Principles of Web Architecture

There are five principles that serve as the normative for the Web: Universality, Linking, Self-

Description, the Open World, and Least Power [Hal13a]. They are considered as normative but

several applications on the Web do not follow them, but it is a recommendation to be under

the norm for having a compliance with the Web architecture and the proper operability of the

applications.

1. Principle of Universality: establishes that “any resource can be identified by a Uni-

form Resource Identifier (URI)” (See definitions of resource and URI in Section 2.2). The

Universality is based that everything or every concept in the World can be represented

and accessible on the Web.

2. Principle of Linking: establishes that “any resource can be linked to another resource

identified by a URI”. The linking guarantees that all resources are not islands, they have

a relationship with other resource.

3. Principle of Self-description: establishes that “the obtaining of information for in-

terpreting a Web representation (resource) should be given from the Web representation

itself (URI)”. The process of following the links to determine valid interpretations for

a resource is informally named following your nose in Web architecture [JW04]. This

process allows the user-agents to find information that they can use to interpret the Web

representation.

4. The Open Word Principle: establishes that “the number of resources on the Web can

always increase”. Web-pages can appear any moment on the Web, also resources with

their respective URIs can be created everytime without any centralized link index.

5. Principle of Least Power: establishes that “a Web representation given by a resource

should be described in the least powerful but adequate language”. Searching a language

that can fulfill the minimal requirements to convey the information and whatever sense

and then to extend with more specifications. For example, using HTML, we can build in

a simple way the common core of a Web-page and after we can add another technologies

to develop more advanced features.

2.1.2 Semantic Web

The Semantic Web (SW) is an extension of the Web beyond the hypertext, the Web evolved

from a global information space of linked documents to the SW where documents and data are

11



2.2. Internationalized Resource Identifier

linked. The SW is also named as the Web of Data because the main goal is to reveal data on the

Web in “machine understandable formats” within interlinked datasets. For Berners-Lee et al.

in [BLHL+01], “the Semantic Web is not a separate Web but an extension of the current one, in

which information is given well-defined meaning, better enabling computers and people to work

in cooperation”. One of the main standards created for improving the collaboration between

computers and people were developed by the W3C, called eXtensible Markup Language (XML).

XML is used to differentiate content and presentation in Web-pages and helps users to manage,

exchange and control the information [BPSM+08]. But also, the SW represents the knowledge

for the Web using a special language named RDF (see more details in Section 2.3). We can

find several technologies related to the development of the SW, which have been gaining more

relevance in the WWW community in the last decade. In [GMB08, TRC+13], the authors show

the evolution of the Semantic Web architecture and technologies as URI, XML, RDF, etc.

In Figure 2.1, we present two common versions of the Semantic Web Stack, among

others. We choose them because the first one is the Tim Berners-Lee version that shows all

the standards for the SW and the second one is considered as the most popular version by

Harry Halpin in [Hal13b]. Accordingly with both stacks, we notice that the base of the SW

is URI/IRI and the standard model language is RDF to be used for the other technologies.

Therefore, we provide more information about them in the following sections.

 

PDFill
 P

DF E
di

to
r w

ith
 F

re
e W

rit
er

 an
d T

oo
ls

(a) By Tim Berners-Lee.

PDFill 
PDF Edito

r w
ith

 Free
 W

rite
r a

nd Tools

(b) By Harry Halpin in [Hal13b].

Figure 2.1: Semantic Web Stack.

2.2 Internationalized Resource Identifier

IRIs are an integral part of the Semantic Web, and constitute the bottom layer supporting the

Semantic Web stack, providing the core of linkage and identification capabilities connecting

12



CHAPTER 2. The Semantic Web: RDF and Linked Data

RDF with resources and the Web. In this section, we introduce the basic concepts of resource,

IRI, their types, and related concepts.

2.2.1 Resource

Definition 2.1 . A resource can be anything that has an identity, [BLFM98, MBLF05, HP09]

ranging from a Web-page (with an identifying Web address) to a human being (with an iden-

tifying name or social security number). More formally, resources can be organized in two

main categories [Hal13b, HP09] (see Figure 2.2): i) information resources (a.k.a. Web IRI,

or information IRI) used to designate and access electronic information on the Web (e.g.,

Web-pages and documents), and ii) non-information resources (a.k.a. Semantic Web IRIs, or

non-information IRIs) referring to non-electronic information like physical entities (e.g., per-

son named John, monument named Tour Eiffel, and academic institution named University of

Pau) and abstract concepts (e.g., definition of academia, concept of democracy, etc.)�

For instance, a Web page describing the University of Pau is an information resource,

but the University of Pau itself (i.e., the academic institution) is a non-information resource.

Each resource would be identified through its own IRI: using a Web IRI (URL) for the former

(e.g., http://www.univ-pau.fr/live/) and a Semantic Web IRI for the latter (e.g., http:

//dbpedia.org/resource/UPPA).

Information 
Resource 
(Web IRI)

Resource

Non-Information 
Resource

(Semantic Web IRI)

Connected using RDF

PDFill PDF Editor with Free Writer and Tools

Figure 2.2: Resource Classification

2.2.2 Uniform Resource Identifier - URI

Definition 2.2 . It is is a string of characters used to identify a resource. A URI can be

further classified as a locator (URL), a name (URN), or both [BLFM98, MBLF05] as we show

in Figure 2.3�

• A Uniform Resource Locator (URL) is the most common type of URI, also known as

Web address, used to locate information resources on the Web [BLFM98, MBLF05], e.g.,

http://dbpedia.org/resource/University

13

http://www.univ-pau.fr/live/
http://dbpedia.org/resource/UPPA
http://dbpedia.org/resource/UPPA
http://dbpedia.org/resource/University


2.2. Internationalized Resource Identifier

• A Uniform Resource Name (URN) is another form of less commonly used URIs, using

the urn scheme of the form urn:nsi:nss where nsi is the namespace identifier and nss a

namespace string [BLFM98, MBLF05], e.g., urn:isbn:0451450523, providing the ISBN

number of a certain book as Romeo et Juliet, but not a reference to the content of the

book itself.

2.2.3 Internationalized Resource Identifier - IRI

Definition 2.3 . It extends the existing Uniform Resource Identifier (URI) scheme to iden-

tify a resource, by allowing sequences of characters from the Unicode set, including Chinese,

Japanese, and Korean, etc., as opposed to ASCII characters only with URI [DS04]�

There is a mapping from IRIs to URIs, URLs or URNS when IRIs are used instead

of them to identify resources. This mapping we show in the Euler Diagram of the relations

between IRI, URI, URL, URN in Figure 2.3.

 

PDFill 
PDF Edito

r w
ith

 Free W
rite

r and Tools

Figure 2.3: This Euler diagram shows that an IRI is a URI, and URI is either a Uniform

Resource Locator (URL), a Uniform Resource Name (URN), or both.

2.2.4 IRI Classification

IRIs can be used to designate different things [Boo03], referred to as different IRI types, and

which we can classify in two categories: i) conventional IRIs, and ii) owner defined IRIs, as

described in Figure 2.4.

1. Conventional IRI: An IRI is named based on a standard mechanism for specifying its

identity, according to:

(a) Implementation: some Web applications (e.g., DBpedia) give a IRI depending on

their implementation (see Figure 2.5.a). This category is classified as following:

14

urn: isbn:0451450523


CHAPTER 2. The Semantic Web: RDF and Linked Data

IRI

Conventional 
IRI

Implementation 
IRI

Resource IRI Page IRI Data IRI Ontology IRI

Web/Information IRI

Naming 
Resources IRI

Document IRI
Document 

Representation 
IRI

Concept IRI Id IRI

Owner 
defined IRI

Semantic Web/Non -information IRI

Resource
Type

IRI
Type

user-defined classification

PDFill P
DF Editor w

ith Free W
rite

r and Tools

Figure 2.4: Taxonomy of IRI types.

• Resource: to name/identify the resource. For example: http://dbpedia.

org/resource/Luxembourg

• Page: to give the Web location of the resource. For example: http://dbpedia.

org/page/Luxembourg

• Data: to provide a representation of the resource (e.g., rdf, nt, json, etc.). For

example: http://dbpedia.org/data/Luxembourg.rdf

• Ontology: to name the domain ontology for the resource. For example: http:

//dbpedia.org/ontology/Place

The IRI structure of each type based on implementation classification is described

in Table 2.1.

Table 2.1: Conventional IRI types based on Implementation with their respective structures

IRI type IRI structure

Resource http://{domain}/resource/{resource}

Page http://{domain}/page/{resource}

Data http://{domain}/data/{resource.file-extension}

Ontology http://{domain}/ontologies/{resource}

(b) Naming resources: other Web applications give an IRI using the names of the

uses of the IRI (identifier, concept, etc.) [Boo03] as we show in Figure 2.5.b. This

category is classified as following:

15

http://dbpedia.org/resource/Luxembourg
http://dbpedia.org/resource/Luxembourg
http://dbpedia.org/page/Luxembourg
http://dbpedia.org/page/Luxembourg
http://dbpedia.org/data/Luxembourg.rdf
http://dbpedia.org/ontology/Place
http://dbpedia.org/ontology/Place
http://{domain}/resource/{resource}
http://{domain}/page/{resource}
http://{domain}/data/{resource.file-extension}
http://{domain}/ontologies/{resource}


2.2. Internationalized Resource Identifier

• Identifier IRI: to name/identify the resource. For example: http://www.

example.com/id/sebastien

• Document IRI: to identify the location of the resource. For example: http:

//www.example.com/doc/sebastien

• Document representation IRI: each document can have one or more repre-

sentations (text, html, rdf, owl, etc.). For example: http://www.example.com/

doc/sebastien.rdf

• Concept IRI: to name the concept that models the resource. For example:

http://www.example.com/def/sebastien

• Ontology IRI: to name the domain ontology including the concept that models

the resource, e.g., http://www.example.com/ontologies/person

The IRI structure of each type based on naming resources classification is described

in Table 2.2.

Table 2.2: Conventional IRI types based on naming resources with their respective structures

IRI type IRI structure

Identifier http://{domain}/id/{concept}/{reference}

Document http://{domain}/doc/{concept}/{reference}

Doc. Representation http://{domain}/doc/{concept}/{reference}/{doc.file-extension}

Concept http://{domain}/def/{concept}

Ontology http://{domain}/ontologies/{concept}

2. Owner defined IRI: An IRI is named using a declaration without specifying its type

in the path, while using the owner preferences for the naming. For example, http:

//toureiffel.fr is an owner defined IRI since it does not follow any of the conventional

IRI types described above, while identifying a certain resource: toureiffel.fr.

2.2.5 IRI Dereferencing

Definition 2.4 . IRI dereferencing is the process of looking up an IRI on the Web, i.e.,

accessing the resource referenced by the IRI, which usually comes down to accessing a Web-page

or another kind of document representation of the resource available online [BLCC+06, BC06]�

Also, note that non-information resources can be linked with information resources available

on the Web using RDF (as described in the following sections, cf. Figure 2.2).

Figure 2.6 shows the dereferencing process of the resource Eiffel Tower in Web-page http:

//www.example.org/EiffelTower. In terms of IRIs, this means issuing an HTTP request in

order to retrieve the data pertaining to Eiffel Tower.

16

http://www.example.com/id/sebastien
http://www.example.com/id/sebastien
http://www.example.com/doc/sebastien
http://www.example.com/doc/sebastien
http://www.example.com/doc/sebastien.rdf
http://www.example.com/doc/sebastien.rdf
http://www.example.com/def/sebastien
http://www.example.com/ontologies/person
http://{domain}/id/{concept}/{reference}
http://{domain}/doc/{concept}/{reference}
http://{domain}/doc/{concept}/{reference}/{doc.file-extension}
http://{domain}/def/{concept}
http://{domain}/ontologies/{concept}
http://toureiffel.fr
http://toureiffel.fr
http://www.example.org/EiffelTower
http://www.example.org/EiffelTower


CHAPTER 2. The Semantic Web: RDF and Linked Data

Resource:  Luxembourg country

Resource IRI Page IRI
(Web location)

Document Representation(s) IRI

http://dbpedia.org/resource/Luxembourg http://dbpedia.org/page/Luxembourg

http://dbpedia.org/data/Luxembourg.nt
http://dbpedia.org/data/Luxembourg.json 
…

PDFill PDF Editor with Free Writer and Tools

(a) Luxembourg resource.

Resource:  Sebastien person

Identifier IRI Concept IRI Document IRI 
(Web location)

Document Representation(s) IRI

http://www.example.com/id/sebastien http://www.example.com/def/sebastien http://www.example.com/doc/sebastien 

http://www.example.com/doc/sebastien.rdf
http://www.example.com/doc/sebastien.nt 
…

PDFill PDF Editor with Free Writer and Tools

(b) Sebastien resource.

Figure 2.5: Examples of IRI uses.

PDFill
 PDF E

dit
or

 w
ith

 Free
 W

rit
er 

an
d T

oo
ls

Figure 2.6: Dereferencing the resource Eiffel Tower in [Hal13a].

17



2.3. Resource Description Framework

2.3 Resource Description Framework

The first knowledge representation language for the SW is the Resource Description Framework

RDF. RDF was developed by Ora Lassila and Ralph Swick in 1998 [LSWC98] and over the

years new versions came out with the intervention of new authors as in [MMM+04, SR14].

The inspiration of this work was based on the Meta-Content Framework (MCF) by R.V. Guha

[Guh08], who works as a chief of Cyc Project related to the Artificial Intelligence area [GL+92].

RDF was built in accordance with the principles of the Web Architecture explained in Section

2.1.1. To fulfill these principles, RDF (also named as a modeling language) represents the

information of resources as assertions in the form subjet-predicate-object (named Triples or

statements in RDF terminology). To better understand this modeling language, we explain:

the RDF terminology, the serialization formats, and the relation with each principle of the

Web.

2.3.1 RDF Terminology

Definition 2.5 (RDF Resource [r]) An RDF resource1 represents the abstraction of an

entity (document, abstract concept, person, company, etc.) in the real world. It is noted r ∈ U

∪ L, where U is a set of IRIs and L is a set of literals. A RDF resource r may be associated

with a language tag (e.g., @fr, @en, etc.) or with a datatype2 (e.g., string, number, date, etc.)

in order to give more information about the corresponding value�

http://www.univ-pau.fr bn_1

“Sebastien”^^xsd:string

Durand@fr

ex:nameProf

ex:first_name

ex:last_name

IRI property bn property Literal

Figure 2.7: Example of RDF graph

Figure 2.7 shows the following RDF resources3:

• http://www.univ-pau.fr is an IRI that represents the University of Pau;

• “Sebastien”ˆ̂xsd : string is a literal associated with the String datatype; and

1The difference between RDF resource definition with the definition of Resource in 2.1 is that RDF resource

is an extension of the resource with more declared characteristics and differenciation between IRIs or literals.
2Only literal resources are concerned.
3The attributes datatype and language are added to the graph for illustrative and explanatory purposes only.

18

http://www.univ-pau.fr


CHAPTER 2. The Semantic Web: RDF and Linked Data

• “Durand”@fr is a literal associated with the French language.

Note that in the remainder of the study, R, Lang and DT are used for naming the set of

resources, languages and datatypes respectively.

Definition 2.6 (Blank Node [bn]) An RDF blank node represents an anonymous RDF re-

source characterizing a set of RDF resources’ properties. A blank node, noted bn ∈ BN, can

be associated with an identifier (or nodeID) to cope with data semantics and simplify the seri-

alization process1�

For instance, bn 1 in Figure 2.7 is a group of first name and last name properties. The

bn here is illustrated without an explicit identifier.

Definition 2.7 (Property [p]) An RDF property is defined as an IRI (conventional or

owner defined), noted as p ∈ U, to represent a predicate (relationship) between RDF resources

r, between blank nodes (see Def. 2.6), or both. A data-type and/or a language tag may be

declared within a property: utilized to describe the data-type and the language of the associated

object literal�

Figure 2.7 shows three properties2 that represent the abstract concepts of a professor’s

full name (nameProf), consisting of concepts: first name and last name respectively.

Definition 2.8 (Statement [st]) An RDF statement expresses a relationship between two

RDF resources, two blank nodes, or one resource and one blank node. It is defined as an atomic

structure consisting of a triple with a Subject ( s), a Predicate ( p) and an Object ( o), noted as

st:< s, p, o >, w.r.t. a specific vocabulary V (see Def. 2.10), where:

* s ∈ U ∪ BN represents the subject to be described,

* p ∈ U refers to the properties of the subject,

* o ∈ U ∪ BN ∪ L describes the object�

The example presented in Figure 2.7 underlines 3 statements with different RDF re-

sources, properties, and blank nodes such as:

1If no identifier is used, serialization usually provides a meaningless random identifier.
2We removed IRIs from nameProf, first name and last name to avoid repeating them and thus simplify

presentation.

19



2.3. Resource Description Framework

• st1: <http://www.univ-pau.fr, ex : nameProf , bn 1 >

• st2: < bn 1, ex : first name, “Sebastien”ˆ̂xsd : string >

• st3: < bn 1, ex : last name, “Durand”@fr >

Definition 2.9 (RDF Graph [G]) An RDF graph is defined as a set of statements denoted

by G : {st1, st2, st3,. . . , stn} where G is a directed labeled graph [LS99] in which each statement

is represented as a node-edge-node link [KC04]. Therefore, G nodes represent RDF subjects

and objects, and linking edges represent corresponding predicates�

For instance, Figure 2.7 depicts an RDF Graph made of three statements described

following Definition 2.8.

In the remainder of the study, “RDF graph” and “RDF logical representation” are used

interchangeably.

Definition 2.10 (RDF Graph Vocabulary [V]) An RDF Graph Vocabulary is the set of

all values occurring in the RDF graph, i.e., V = U ∪ L ∪ BN�

Definition 2.11 (External Vocabulary [QN]) An RDF External Vocabulary is a set of

QNames1 (QN) to represent IRI references {qn1, qn2,. . . , qnn}. Each qni is a tuple < pxi, nsi >

where pxi is a prefix2 (e.g., foaf, ex, dc,. . . ) and nsi is a namespace. The prefix is a short

name (local3 or standard) that is assigned to a namespace IRI and which can be subsequently

referenced in the entire description [MMM+04, SR14]�

For instance QN ={(ex, http://example.org/stuff/1.0), (mypx, http://ucsp.edu.

pe)}, where “ex” is a standard prefix, “mypx” is a local prefix, and http://example.org/

stuff/1.0 and http://ucsp.edu.pe/ are the namespaces.

Definition 2.12 (RDF File [F]) An RDF file is defined as an encoding of a set of RDF

statements or of an RDF graph, using a predefined serialization format complying with an RDF

W3C standards, such as RDF/XML, Turtle, N3, and others (see Section 2.3.3). Formally:

F = Enc(ST, enc)

where:

ST is a set of RDF statements, enc is the chosen file format following which the state-

ments will be serialized, where enc ∈ {RDF/XML, JSON-LD, Turtle, N-Triple, etc.}�
1http://www.w3.org/TR/REC-xml-names/
2Following the W3C Recommendation, we consider that all the prefixes have to be unique for each namespace.
3It is a short name of the namespace given by the user.

20

http://www.univ-pau.fr
http://example.org/stuff/1.0
http://ucsp.edu.pe
http://ucsp.edu.pe
http://example.org/stuff/1.0
http://example.org/stuff/1.0
http://ucsp.edu.pe/
http://www.w3.org/TR/REC-xml-names/


CHAPTER 2. The Semantic Web: RDF and Linked Data

In the remainder of the study, “RDF file”, “RDF serialization” and “RDF physical repre-

sentation” are used interchangeably.

Table 2.3 summarizes the list of sets used in our approach, based on all these definitions.

Table 2.3: Summarized descriptions of sets used in our approach

Set Description

U Set of IRIs

L Set of literals

BN Set of blank nodes

ST Set of Statements

V Set of IRIs, literals and blank nodes

QN Set of Qnames

Lang Set of Languages such as en(english), fr(french), es(spanish), etc.

DT Set of Datatypes such as string, integer, decimal, etc.

NS Set of Namespaces

Px Set of Prefixes

2.3.2 RDF and the Principles of the Web

According with the principles of the Web, the RDF standard was developed to fulfill them, as

we explain as follows:

1. RDF and the Principle of Universality: for labelling the nodes and edges RDF

uses URIs instead of using natural language terms. So, RDF can model this knowledge

making statements that use URIs for identifying the RDF resources. For example, the

statement st1: <http://www.univ-pau.fr, ex : nameProf , bn 1 > of Figure 2.7 uses

the URI http://www.univ-pau.fr to identify the University of Pau.

2. RDF and the Principle of Linking: as RDF is composed of RDF resources, and

his minimal representation is an RDF statement where two RDF resources are linked

by a predicate, then any RDF resource may be linked to another RDF resource. For

instance, statement st1 represents a relation between two resources, where the RDF

resource University of Pau is linked with the anonymous resource professor (represented

by a blank node).

3. RDF and the Principle of Self-description: through the links of an RDF descrip-

tion, we can discover the context of an RDF statement. After discovering the context,

we can obtain an interpretation about the RDF resource. Each RDF statement can be

transported to several contexts depending on its utilization. So, we can discover the in-

terpretation of the SW data by following the links. For example, in the RDF statement

21

http://www.univ-pau.fr
http://www.univ-pau.fr


2.3. Resource Description Framework

st1, one can discover more information about University of Pau, like a logo, objectives,

name of professors, etc., by accessing http://www.univ-pau.fr, we can also have more

information about the predicate ex : nameProf following the namespace associated to

the RDF resource [Con07].

4. RDF and the the Open Word Principle: this principle is linked also to the inference

on the SW. To help the inference process, a new simple language for declaring sub-classes

and sub-properties was developed under the name RDF Schema (RDF(S)) based on the

RDF standard. In this way, using the RDF statements may infer information, which is a

non-trivial problem. Such simple reasoning uses a set of axiomatic RDF statements, rules

for inferences, and semantic conditions to infer more RDF statements [Hay04, HPS14].

For handling complex inferences, Web Ontology Language (OWL) [PSHH+04] also ap-

pears as an extension of RDF semantics, that allows to handle restrictions with cardinality

in predicates, subjunctions, disjunctions, etc.

5. RDF and the Principle of Least Power: since RDF is a language designed to build

the SW using the languages of triples (RDF statements) as the most basic language,

hence we conclude that RDF can be considered as the least powerful and simple language

to develop the SW.

2.3.3 Serialization Formats

Over the Web, there are several serialization formats for RDF descriptions. The most popular

and utilized is the RDF/XML format [Bec04] because it is based on the XML standard which is

a fundamental standard for efficient data management and exchange over the Web [BPSM+08].

For this reason, we classify these formats in two categories: i) XML serialization formats and

ii) Non-XML serialization formats. The differences between them lie in verbosity, compression,

and human-understandability, among other aspects.

• XML serialization formats: There is the typical RDF/XML format (e.g., in Figure

2.8), an abbreviated form of RDF/XML (e.g., in Figure 2.9) format, and a simplified

format designed to be integrated with Web page formatting (e.g., HTML) calledRDFa

[ABMP08] (e.g, in Figure 2.10).

22

http://www.univ-pau.fr


CHAPTER 2. The Semantic Web: RDF and Linked Data

PDFill P
DF Editor with Free Writer and Tools

Figure 2.8: RDF/XML serialization of the RDF graph depicted in Figure 2.7

PDFill P
DF Editor with Free Writer and Tools

Figure 2.9: Abbreviated RDF/XML serialization of the RDF graph depicted in Figure 2.7

PDFill P
DF Editor w

ith Free Write
r and Tools

Figure 2.10: RDFa serialization of the RDF graph depicted in Figure 2.7

• Non-XML serialization formats: There are several formats such as Notation 3 (N3)

[BL05] (e.g., in Figure 2.13), JSON-LD1 [SLK+14](e.g, in Figure 2.12), Turtle [BBL11]

(e.g., in Figure 2.14), and N-Triples [BB01] (e.g., in Figure 2.11).

1Note that JSON-LD has different serializations: compacted, flattened, expanded and embedding in HTML.

23



2.3. Resource Description Framework

 

 
{ 
  "@context": { 
    "ex": "http://example.org/stuff/1.0/", 
    "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#", 
    "rdfs": "http://www.w3.org/2000/01/rdf-schema#", 
    "xsd": "http://www.w3.org/2001/XMLSchema#" 
  }, 
  "@graph": [ 
    { 
      "@id": "http://www.univ-pau.fr", 
      "ex:nameprof": { 
        "@id": "_:N398bc0d5afc1498087d03f880cf3a577" 
      } 
    }, 
    { 
      "@id": "_:N398bc0d5afc1498087d03f880cf3a577", 
      "ex:first_name": "Sebastien", 
      "ex:last_name": { 
        "@language": "fr", 
        "@value": "Durand" 
      } 
    } 
  ] 
} 
 

 

PDFill 
PDF Edito

r w
ith

 Free
 W

rite
r a

nd Tools

Figure 2.12: JSON-LD serialization of the RDF graph depicted in Figure 2.7

PDFill PDF Editor with Free Writer and Tools

Figure 2.13: N3 serialization of the RDF graph depicted in Figure 2.7

PDFill PDF Editor with Free Writer and Tools

Figure 2.11: N-Triple serialization of the RDF graph depicted in Figure 2.7

For ease of presentation, we adopt the RDF/XML format to illustrate RDF serialization

results in the remainder of our research, given that RDF/XML: i) has been promoted on the

Web as the W3C standard format for RDF, ii) is more flexible1 and structured than other

formats, and thus iii) can be easily used for conversion between formats like Turtle, N3, etc.

1Referring to many ways for specifying the statements.

24



CHAPTER 2. The Semantic Web: RDF and Linked Data

PDFill PDF Editor with Free Writer and Tools

Figure 2.14: Turtle serialization of the RDF graph depicted in Figure 2.7

2.4 The Web of Linked Data

First of all, we have to highlight that the Web of Linked Data is a constituent part of the SW.

Linked Data appears as a solution due to the increase of information on the Web, where the

goal is not only connecting HTML documents (URLs), but also connecting data (information

inside of these documents) [HB11], based on three technologies: URI, RDF and HTTP. So,

we can consider that the Linked Data paradigm is a guideline highlighting the best practices

for publishing and connecting structure Data on the Web (using links between data from

different sources) [BHBL09]. It promotes the development and support of a self-sustaining

ecosystem related to the publication and usage of data on the Web, where data should be easily

discoverable and understandable by humans and machines alike, facilitating data interaction

between publishers and consumers [FLBC16]. Hence, the Web of Linked Data adds an extra

value to the traditional Web because the concept goes beyond linking only documents, toward

linking resources [BLCC+06].

To disseminate the goal of Linked Data, the W3C Semantic Web Education and Outreach

Group supports the creation of the community project LOD1 [BHIBL08], that was founded in

2007. This community aims to bootstrap the SW data with Linked Data by identifying existing

datasets that are available, converting these datasets to RDF according to their principles, and

publishing them on the Web [BHBL09]. Inside of this community, they develop several projects

as DBpedia2 (based on extract information of Wikipedia and make this information available

on the Web), LinkedGeoData3 (based on extract information of the OpenStreetMap project

and make this information available on the Web), and FOAF4 (that is a dictionary of people-

related terms that can be used in structured data on the Web). Also, thanks to the LOD

project, various interesting open datasets as DBLP5, Geo-names6 and WorNet7 available on

the Web [BHAR07]. We show the evolution of these projects and the relationship between

them and other datasets in Section 2.4.2.

1http://linkeddata.org
2http://dbpedia.org/about
3http://linkedgeodata.org/About
4http://www.foaf-project.org/
5http://dblp.uni-trier.de/db/
6http://www.geonames.org/
7http://wordnet.princeton.edu/online/

25

http://linkeddata.org
http://dbpedia.org/about
http://linkedgeodata.org/About
http://www.foaf-project.org/
http://dblp.uni-trier.de/db/
http://www.geonames.org/
http://wordnet.princeton.edu/online/


2.4. The Web of Linked Data

2.4.1 Principles

For Berners-Lee in [BL06], the Web of Data (SW) has four principles to publish the data.

Following these principles the data became in one big data space, where all the information is

linked.

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards (RDF,

SPARQL1 [HSP13])

4. Include links to other URIs, so that people can discover related things.

The principles give us the guidelines for publishing and connecting data following the

standards and using the infrastructure of the Web.

2.4.2 Linked Open Data Cloud Evolution

The evolution of the LOD is exponential since its inception to date. For example:

• As of May 2009, the LOD cloud consists of over 4.7 billion RDF triples, which are

interlinked by around 142 million RDF links [LAH+09].

• As of November 2010, the LOD cloud consists of over 26.93 billion RDF triples, which

are interlinked by around 395 million RDF links (see Table 2.4).

• As of September 2011, the LOD cloud consists of over 31.643 billion RDF triples, which

are interlinked by around 504 million RDF links (see Table 2.5).

Therefore, starting by 12 smaller datasets in 2007 until having 570 datasets in 2014, the

LOD cloud has had an important growing until nowadays, not only with respect to the quantity

of datasets as we show in Figures 2.15 and 2.16, but also with respect to the quantity of RDF

triples and RDF links related to some areas as Publications, Life sciences, etc (e.g., see Tables

2.4 and 2.5). The LOD project has a huge importance for Web applications users and a big

impact on the Web community.

For instance, in Figure 2.17, we show a wikipedia Web-page of Luxembourg and its

corresponding DBpedia Web-page. The Dbpedia Web-page refers to several statements that

1SPARQL is the standard query language for RDF.

26



CHAPTER 2. The Semantic Web: RDF and Linked Data

Table 2.4: Topology of the Web of Data - November 2010 (Source: http://lod-cloud.net/, 2010)

Domain Data Sets Triples Percent RDF Links Percent

Cross-domain 20 1,999,085,950 7.42 29,105,638 7.36

Geographic 16 5,904,980,833 21.93 16,589,086 4.19

Government 25 11,613,525,437 43.12 17,658,869 4.46

Media 26 2,453,898,811 9.11 50,374,304 12.74

Libraries 67 2,237,435,732 8.31 77,951,898 19.71

Life sciences 42 2,664,119,184 9.89 200,417,873 50.67

User Content 7 57,463,756 0.21 3,402,228 0.86

203 26,930,509,703 395,499,896

Table 2.5: Topology of the Web of Data - September 2011 (Source: http://lod-cloud.net/,

2011)

Domain Data Sets Triples Percent RDF Links Percent

Cross-domain 41 4,184,635,715 13.23 63,183,065 12.54

Geographic 31 6,145,532,484 19.43 35,812,328 7.11

Government 49 13,315,009,400 42.09 19,343,519 3.84

Media 25 1,841,852,061 5.82 50,440,705 10.01

Publications 87 2,950,720,693 9.33 139,925,218 27.76

Life sciences 41 3,036,336,004 9.60 191,844,090 38.06

User Content 20 134,127,413 0.42 3,449,143 0.68

295 31,634,213,770 503,998,829

27



2.4. The Web of Linked Data

(a) 01 of May (b) 08 of October

(c) 07 of November

SW
Conference

Corpus

DBpedia

RDF Book 
Mashup

DBLP
Berlin

Revyu

Project 
Guten-
berg

FOAF

Geo-
names

Music-
brainz

Magna-
tune

Jamendo

World 
Fact-
book

DBLP
Hannover

SIOC

Sem-
Web-

Central

Euro-
stat

ECS 
South-
ampton

BBC
Later +
TOTP

Fresh-
meat

Open-
Guides

Gov-
Track

US 
Census 
Data

W3C
WordNet

flickr
wrappr

Wiki-
company

Open
Cyc

NEW! lingvoj

Onto-
world

NEW!

NEW!
NEW!

(d) 10 of November

Figure 2.15: Linked Datasets as 2007 (Source: http://lod-cloud.net/, 2007).

Linked Datasets as of August 2014

Uniprot

Alexandria
Digital Library

Gazetteer

lobid
Organizations

chem2
bio2rdf

Multimedia
Lab University

Ghent

Open Data
Ecuador

Geo
Ecuador

Serendipity

UTPL
LOD

GovAgriBus
Denmark

DBpedia
live

URI
Burner

Linguistics

Social Networking

Life Sciences

Cross-Domain

Government

User-Generated Content

Publications

Geographic

Media

Identifiers

Eionet
RDF

lobid
Resources

Wiktionary
DBpedia

Viaf

Umthes

RKB
Explorer

Courseware

Opencyc

Olia

Gem.
Thesaurus

Audiovisuele
Archieven

Diseasome
FU-Berlin

Eurovoc
in

SKOS

DNB
GND

Cornetto

Bio2RDF
Pubmed

Bio2RDF
NDC

Bio2RDF
Mesh

IDS

Ontos
News
Portal

AEMET

ineverycrea

Linked
User

Feedback

Museos
Espania
GNOSS

Europeana

Nomenclator
Asturias

Red Uno
Internacional

GNOSS

Geo
Wordnet

Bio2RDF
HGNC

Ctic
Public

Dataset

Bio2RDF
Homologene

Bio2RDF
Affymetrix

Muninn
World War I

CKAN

Government
Web Integration

for
Linked
Data

Universidad
de Cuenca
Linkeddata

Freebase

Linklion

Ariadne

Organic
Edunet

Gene
Expression
Atlas RDF

Chembl
RDF

Biosamples
RDF

Identifiers
Org

Biomodels
RDF

Reactome
RDF

Disgenet

Semantic
Quran

IATI as
Linked Data

Dutch
Ships and

Sailors

Verrijktkoninkrijk

IServe

Arago-
dbpedia

Linked
TCGA

ABS
270a.info

RDF
License

Environmental
Applications

Reference
Thesaurus

Thist

JudaicaLink

BPR

OCD

Shoah
Victims
Names

Reload

Data for
Tourists in

Castilla y Leon

2001
Spanish
Census
to RDF

RKB
Explorer

Webscience

RKB
Explorer
Eprints
Harvest

NVS

EU Agencies
Bodies

EPO

Linked
NUTS

RKB
Explorer

Epsrc

Open
Mobile

Network

RKB
Explorer
Lisbon

RKB
Explorer

Italy

CE4R

Environment
Agency

Bathing Water
Quality

RKB
Explorer
Kaunas

Open
Data

Thesaurus

RKB
Explorer
Wordnet

RKB
Explorer

ECS

Austrian
Ski

Racers

Social-
semweb

Thesaurus

Data
Open
Ac Uk

RKB
Explorer

IEEE

RKB
Explorer

LAAS

RKB
Explorer

Wiki

RKB
Explorer

JISC

RKB
Explorer
Eprints

RKB
Explorer

Pisa

RKB
Explorer

Darmstadt

RKB
Explorer
unlocode

RKB
Explorer

Newcastle

RKB
Explorer

OS

RKB
Explorer

Curriculum

RKB
Explorer

Resex

RKB
Explorer

Roma

RKB
Explorer
Eurecom

RKB
Explorer

IBM

RKB
Explorer

NSF

RKB
Explorer

kisti

RKB
Explorer

DBLP

RKB
Explorer

ACM

RKB
Explorer
Citeseer

RKB
Explorer

Southampton

RKB
Explorer
Deepblue

RKB
Explorer
Deploy

RKB
Explorer

Risks

RKB
Explorer

ERA

RKB
Explorer

OAI

RKB
Explorer

FT

RKB
Explorer

Ulm

RKB
Explorer

Irit

RKB
Explorer
RAE2001

RKB
Explorer

Dotac

RKB
Explorer
Budapest

Swedish
Open Cultural

Heritage

Radatana

Courts
Thesaurus

German
Labor Law
Thesaurus

GovUK
Transport

Data

GovUK
Education

Data

Enakting
Mortality

Enakting
Energy

Enakting
Crime

Enakting
Population

Enakting
CO2Emission

Enakting
NHS

RKB
Explorer

Crime

RKB
Explorer
cordis

Govtrack

Geological
Survey of

Austria
Thesaurus

Geo
Linked
Data

Gesis
Thesoz

Bio2RDF
Pharmgkb

Bio2RDF
SabiorkBio2RDF

Ncbigene

Bio2RDF
Irefindex

Bio2RDF
Iproclass

Bio2RDF
GOA

Bio2RDF
Drugbank

Bio2RDF
CTD

Bio2RDF
Biomodels

Bio2RDF
DBSNP

Bio2RDF
Clinicaltrials

Bio2RDF
LSR

Bio2RDF
Orphanet

Bio2RDF
Wormbase

BIS
270a.info

DM2E

DBpedia
PT

DBpedia
ES

DBpedia
CS

DBnary

Alpino
RDF

YAGO

Pdev
Lemon

Lemonuby

Isocat

Ietflang

Core

KUPKB

Getty
AAT

Semantic
Web

Journal

OpenlinkSW
Dataspaces

MyOpenlink
Dataspaces

Jugem

Typepad

Aspire
Harper
Adams

NBN
Resolving

Worldcat

Bio2RDF

Bio2RDF
ECO

Taxon-
concept
Assets

Indymedia

GovUK
Societal

Wellbeing
Deprivation imd

Employment
Rank La 2010

GNU
Licenses

Greek
Wordnet

DBpedia

CIPFA

Yso.fi
Allars

Glottolog

StatusNet
Bonifaz

StatusNet
shnoulle

Revyu

StatusNet
Kathryl

Charging
Stations

Aspire
UCL

Tekord

Didactalia

Artenue
Vosmedios

GNOSS

Linked
Crunchbase

ESD
Standards

VIVO
University
of Florida

Bio2RDF
SGD

Resources

Product
Ontology

Datos
Bne.es

StatusNet
Mrblog

Bio2RDF
Dataset

EUNIS

GovUK
Housing
Market

LCSH

GovUK
Transparency
Impact ind.
Households

In temp.
Accom.

Uniprot
KB

StatusNet
Timttmy

Semantic
Web

Grundlagen

GovUK
Input ind.

Local Authority
Funding From
Government

Grant

StatusNet
Fcestrada

JITA

StatusNet
Somsants

StatusNet
Ilikefreedom

Drugbank
FU-Berlin

Semanlink

StatusNet
Dtdns

StatusNet
Status.net

DCS
Sheffield

Athelia
RFID

StatusNet
Tekk

Lista
Encabeza
Mientos
Materia

StatusNet
Fragdev

Morelab

DBTune
John Peel
Sessions

RDFize
last.fm

Open
Data

Euskadi

GovUK
Transparency

Input ind.
Local auth.
Funding f.

Gvmnt. Grant

MSC

Lexinfo

StatusNet
Equestriarp

Asn.us

GovUK
Societal

Wellbeing
Deprivation Imd
Health Rank la

2010

StatusNet
Macno

Oceandrilling
Borehole

Aspire
Qmul

GovUK
Impact

Indicators
Planning

Applications
Granted

Loius

Datahub.io

StatusNet
Maymay

Prospects
and

Trends
GNOSS

GovUK
Transparency

Impact Indicators
Energy Efficiency

new Builds

DBpedia
EU

Bio2RDF
Taxon

StatusNet
Tschlotfeldt

Jamendo
DBTune

Aspire
NTU

GovUK
Societal

Wellbeing
Deprivation Imd

Health Score
2010

Lotico
GNOSS

Uniprot
Metadata

Linked
Eurostat

Aspire
Sussex

Lexvo

Linked
Geo
Data

StatusNet
Spip

SORS

GovUK
Homeless-

ness
Accept. per

1000

TWC
IEEEvis

Aspire
Brunel

PlanetData
Project

Wiki

StatusNet
Freelish

Statistics
data.gov.uk

StatusNet
Mulestable

Enipedia

UK
Legislation

API

Linked
MDB

StatusNet
Qth

Sider
FU-Berlin

DBpedia
DE

GovUK
Households

Social lettings
General Needs

Lettings Prp
Number

Bedrooms

Agrovoc
Skos

My
Experiment

Proyecto
Apadrina

GovUK
Imd Crime
Rank 2010

SISVU

GovUK
Societal

Wellbeing
Deprivation Imd
Housing Rank la

2010

StatusNet
Uni

Siegen

Opendata
Scotland Simd

Education
Rank

StatusNet
Kaimi

GovUK
Households

Accommodated
per 1000

StatusNet
Planetlibre

DBpedia
EL

Sztaki
LOD

DBpedia
Lite

Drug
Interaction
Knowledge

Base
StatusNet

Qdnx

Amsterdam
Museum

AS EDN LOD

RDF
Ohloh

DBTune
artists
last.fm

Aspire
Uclan

Hellenic
Fire Brigade

Bibsonomy

Nottingham
Trent

Resource
Lists

Opendata
Scotland Simd
Income Rank

Randomness
Guide

London

Opendata
Scotland

Simd Health
Rank

Southampton
ECS Eprints

FRB
270a.info

StatusNet
Sebseb01

StatusNet
Bka

ESD
Toolkit

Hellenic
Police

StatusNet
Ced117

Open
Energy

Info Wiki

StatusNet
Lydiastench

Open
Data
RISP

Taxon-
concept

Occurences

Bio2RDF
SGD

UIS
270a.info

NYTimes
Linked Open

Data

Aspire
Keele

GovUK
Households
Projections
Population

W3C

Opendata
Scotland

Simd Housing
Rank

ZDB

StatusNet
1w6

StatusNet
Alexandre

Franke

Dewey
Decimal

Classification

StatusNet
Status

StatusNet
doomicile

Currency
Designators

StatusNet
Hiico

Linked
Edgar

GovUK
Households

2008

DOI

StatusNet
Pandaid

Brazilian
Politicians

NHS
Jargon

Theses.fr

Linked
Life
Data

Semantic Web
DogFood

UMBEL

Openly
Local

StatusNet
Ssweeny

Linked
Food

Interactive
Maps

GNOSS

OECD
270a.info

Sudoc.fr

Green
Competitive-

ness
GNOSS

StatusNet
Integralblue

WOLD

Linked
Stock
Index

Apache

KDATA

Linked
Open
Piracy

GovUK
Societal

Wellbeing
Deprv. Imd
Empl. Rank

La 2010

BBC
Music

StatusNet
Quitter

StatusNet
Scoffoni

Open
Election

Data
Project

Reference
data.gov.uk

StatusNet
Jonkman

Project
Gutenberg
FU-BerlinDBTropes

StatusNet
Spraci

Libris

ECB
270a.info

StatusNet
Thelovebug

Icane

Greek
Administrative

Geography

Bio2RDF
OMIM

StatusNet
Orangeseeds

National
Diet Library

WEB NDL
Authorities

Uniprot
Taxonomy

DBpedia
NL

L3S
DBLP

FAO
Geopolitical

Ontology

GovUK
Impact

Indicators
Housing Starts

Deutsche
Biographie

StatusNet
ldnfai

StatusNet
Keuser

StatusNet
Russwurm

GovUK Societal
Wellbeing

Deprivation Imd
Crime Rank 2010

GovUK
Imd Income

Rank La
2010

StatusNet
Datenfahrt

StatusNet
Imirhil

Southampton
ac.uk

LOD2
Project

Wiki

DBpedia
KO

Dailymed
FU-Berlin

WALS

DBpedia
IT

StatusNet
Recit

Livejournal

StatusNet
Exdc

Elviajero

Aves3D

Open
Calais

Zaragoza
Turruta

Aspire
Manchester

Wordnet
(VU)

GovUK
Transparency

Impact Indicators
Neighbourhood

Plans

StatusNet
David

Haberthuer

B3Kat

Pub
Bielefeld

Prefix.cc

NALT

Vulnera-
pedia

GovUK
Impact

Indicators
Affordable

Housing Starts

GovUK
Wellbeing lsoa

Happy
Yesterday

Mean

Flickr
Wrappr

Yso.fi
YSA

Open
Library

Aspire
Plymouth

StatusNet
Johndrink

Water

StatusNet
Gomertronic

Tags2con
Delicious

StatusNet
tl1n

StatusNet
Progval

Testee

World
Factbook
FU-Berlin

DBpedia
JA

StatusNet
Cooleysekula

Product
DB

IMF
270a.info

StatusNet
Postblue

StatusNet
Skilledtests

Nextweb
GNOSS

Eurostat
FU-Berlin

GovUK
Households

Social Lettings
General Needs

Lettings Prp
Household

Composition

StatusNet
Fcac

DWS
Group

Opendata
Scotland

Graph
Simd Rank

DNB

Clean
Energy
Data

Reegle

Opendata
Scotland Simd
Employment

Rank

Chronicling
America

GovUK
Societal

Wellbeing
Deprivation

Imd Rank 2010

StatusNet
Belfalas

Aspire
MMU

StatusNet
Legadolibre

Bluk
BNB

StatusNet
Lebsanft

GADM
Geovocab

GovUK
Imd Score

2010

Semantic
XBRL

UK
Postcodes

Geo
Names

EEARod
Aspire

Roehampton

BFS
270a.info

Camera
Deputati
Linked
Data

Bio2RDF
GeneID

GovUK
Transparency

Impact Indicators
Planning

Applications
Granted

StatusNet
Sweetie

Belle

O'Reilly

GNI

City
Lichfield

GovUK
Imd

Rank 2010

Bible
Ontology

Idref.fr

StatusNet
Atari

Frosch

Dev8d

Nobel
Prizes

StatusNet
Soucy

Archiveshub
Linked
Data

Linked
Railway

Data
Project

FAO
270a.info

GovUK
Wellbeing

Worthwhile
Mean

Bibbase

Semantic-
web.org

British
Museum

Collection

GovUK
Dev Local
Authority
Services

Code
Haus

Lingvoj

Ordnance
Survey
Linked
Data

Wordpress

Eurostat
RDF

StatusNet
Kenzoid

GEMET

GovUK
Societal

Wellbeing
Deprv. imd
Score '10

Mis
Museos
GNOSS

GovUK
Households
Projections

total
Houseolds

StatusNet
20100

EEA

Ciard
Ring

Opendata
Scotland Graph

Education
Pupils by

School and
Datazone

VIVO
Indiana

University

Pokepedia

Transparency
270a.info

StatusNet
Glou

GovUK
Homelessness

Households
Accommodated

Temporary
Housing Types

STW
Thesaurus

for
Economics

Debian
Package
Tracking
System

DBTune
Magnatune

NUTS
Geo-
vocab

GovUK
Societal

Wellbeing
Deprivation Imd
Income Rank La

2010

BBC
Wildlife
Finder

StatusNet
Mystatus

Miguiad
Eviajes
GNOSS

Acorn
Sat

Data
Bnf.fr

GovUK
imd env.

rank 2010

StatusNet
Opensimchat

Open
Food
Facts

GovUK
Societal

Wellbeing
Deprivation Imd

Education Rank La
2010

LOD
ACBDLS

FOAF-
Profiles

StatusNet
Samnoble

GovUK
Transparency

Impact Indicators
Affordable

Housing Starts

StatusNet
CoreyavisEnel

Shops

DBpedia
FR

StatusNet
Rainbowdash

StatusNet
Mamalibre

Princeton
Library

Findingaids

WWW
Foundation

Bio2RDF
OMIM

Resources

Opendata
Scotland Simd

Geographic
Access Rank

Gutenberg

StatusNet
Otbm

ODCL
SOA

StatusNet
Ourcoffs

Colinda

Web
Nmasuno
Traveler

StatusNet
Hackerposse

LOV

Garnica
Plywood

GovUK
wellb. happy

yesterday
std. dev.

StatusNet
Ludost

BBC
Program-

mes

GovUK
Societal

Wellbeing
Deprivation Imd

Environment
Rank 2010

Bio2RDF
Taxonomy

Worldbank
270a.info

OSM

DBTune
Music-
brainz

Linked
Mark
Mail

StatusNet
Deuxpi

GovUK
Transparency

Impact
Indicators

Housing Starts

Bizkai
Sense

GovUK
impact

indicators energy
efficiency new

builds

StatusNet
Morphtown

GovUK
Transparency

Input indicators
Local authorities

Working w. tr.
Families

ISO 639
Oasis

Aspire
Portsmouth

Zaragoza
Datos

Abiertos
Opendata
Scotland

Simd
Crime Rank

Berlios

StatusNet
piana

GovUK
Net Add.
Dwellings

Bootsnall

StatusNet
chromic

Geospecies

linkedct

Wordnet
(W3C)

StatusNet
thornton2

StatusNet
mkuttner

StatusNet
linuxwrangling

Eurostat
Linked
Data

GovUK
societal

wellbeing
deprv. imd

rank '07

GovUK
societal

wellbeing
deprv. imd
rank la '10

Linked
Open Data

of
Ecology

StatusNet
chickenkiller

StatusNet
gegeweb

Deusto
Tech

StatusNet
schiessle

GovUK
transparency

impact
indicators
tr. families

Taxon
concept

GovUK
service

expenditure

GovUK
societal

wellbeing
deprivation imd

employment
score 2010

Figure 2.16: Linked Datasets as 30 of August 2014 (Source: http://lod-cloud.net/, 2014).

28



CHAPTER 2. The Semantic Web: RDF and Linked Data

are linked to different vocabularies where concepts allow for example: to do inferences, create

more information, etc. Therefore, it proves that connecting structure data provides the users

a powerful tool for publishing and sharing their information on the LOD cloud in several

contexts. Through this interconnection of data, people can obtain new knowledge, more details

and different perspectives about a resource.

29



2.4. The Web of Linked Data

Lu
xe

m
b

o
u

rg

P
o

p
u

la
�

o
n

 
D

e
n

si
ty

D
b

p
e

d
ia

o
n

to
lo

gy

W
ik

ip
e

d
ia

 w
e

b
 p

ag
e

D
b

p
e

d
ia

w
e

b
 p

ag
e

PD
Fi

ll 
PD

F 
Ed

ito
r w

ith
 F

re
e 

W
rit

er
 a

nd
 T

oo
ls

F
ig

u
re

2.
17

:
E

x
am

p
le

of
L

u
x
em

b
ou

rg
in

L
O

D
cl

ou
d
.

30



CHAPTER 2. The Semantic Web: RDF and Linked Data

2.5 Summary

In this chapter we have introduced all the background necessary for understanding the concepts

and Web technologies linked to RDF techonology and the Semantic Web.

We began this chapter with a brief introduction about World Wide Web and its relation

with the Semantic Web (Section 2.1). We then described the two main technologies for the

Semantic Web: IRIs (Section 2.2) and RDF (Section 2.3). Finally, in Section 2.4, we discussed

the Linked data movement which has given rise to the Web of Linked Data and boosted the

increase of RDF triples and their use on the Web.

Against this background, in the next chapter, we identify a number of research challenges

related to normalization through small use cases (synthetics and real).

31



Chapter 3

Motivating Examples

“Those who know, do. Those who understand,

teach.”
— Aristotle

In this chapter, we present short scenarios describing RDF descriptions related to Uni-

versity of Pau and Luxembourg country. Each scenario aims to illustrate different problems

related to duplicated or non-used information. For a better explanation, we categorize the

motivations of our study into four different levels:

• Logical redundancies, where multiple RDF statements (i.e., triples), including redun-

dant subjects, predicates, and/or objects, describe the same information (Section 3.1),

• Physical disparities, where different serializations, including duplicated namespaces

and distinct literal representations, describe the same initial RDF graph (Section 3.2),

• Semantic ambiguities, where multiple RDF statements, including redundant blank

nodes (as subjects or objects) and/or literals (as objects), describe the same semantic

information (Section 3.3). Note that semantic information refers not only to the value of

the node itself, but rather to the meaning of the whole statement: such that the meaning

of a literal and/or blank node (likewise for IRI nodes/edges) depends on the subject

and/or predicate of the containing statement,

• IRI discrepancies, where different IRIs, including duplicated IRIs with different types

and coreferences, describe the same resource (entity) (Section 3.4).

In all these sections, we present different RDF statements which can represent the same

information. This inherently renders such RDF files difficult to process via automated software

applications and humans alike.

32



CHAPTER 3. Motivating Examples

We follow each level with a small explanation of the use case and the challenges present

for RDF Normalization.

3.1 Logical (Graph) Redundancies

3.1.1 Use Case 1 - University of Pau (Logical Representation)

For this use case (synthetic), we use three RDF resources:

• University of Pau http://www.univ-pau.fr (IRI),

• Professor (Sebastien Durand), and

• Laboratory UPPA http://liuppa.univ-pau.fr/live (IRI).

We represent these resources across a set of triples in Figure 3.1. The RDF resource

professor in the RDF graph in Figure 3.1 shows two blank nodes bn 1 and UX having a name

consisting of a first name “Sebastien” (literal) associated with the string datatype and a last

name “Durand” (literal) associated with a French language tag.

Figure 3.1: RDF Graph 1 with node and edge duplication.

3.1.2 Challenges in Use Case 1

Considering use case 1, we show different kinds of redundancies in the RDF logical representa-

tion as follows:

33

http://www.univ-pau.fr
http://liuppa.univ-pau.fr/live


3.1. Logical (Graph) Redundancies

• Problem 1 - Edge Duplication: where identical edges, designating identical RDF

predicates, appear more than once (Figure 3.1.a).

• Problem 2 - Node duplication: where identical nodes, designating identical RDF

subjects and/or objects, appear more than once. For instance, Figure 3.1.b highlights

blank node duplication with two kinds of representations: one with a nodeId identifier

called “UX” and the other without nodeId called “bn 1” (describing the same node in the

RDF graph), whereas Figure 3.1.c highlights literal duplications.

Note that certain features of RDF literals, represented as nodes in the RDF Graph 1,

may also result in special node duplications as in Figure 3.2 which is a variation of the

RDF Graph 1:

Figure 3.2: RDF Graph 2 with node and edge duplication with and without datatypes and

languages.

– Problem 2.1 - Handling data-typed Node literals: Literals can be typed or

not (e.g., Figure 3.2.c1 represents the same element with and without datatype

definitions).

– Problem 2.2 - Handling language-tagged Node literals: Distinguishing be-

tween identical literals having different language tags, when language tags are avail-

able (e.g., Figure 3.2.c2 represents the same element with and without language

tags).

• Problem 3 - Edge and node duplication: where both edge and node duplication

problems affect the same statements.

34



CHAPTER 3. Motivating Examples

1 <?xml version="1.0" encoding="UTF-8" encoding="UTF-8" standalone="no"?> 

2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

3   xmlns:dc="http://purl.org/dc/elements/1.1/" 
4   xmlns:ex="http://example.org/stuff/1.0/" 
5   xmlns:ex1="http://example.org/stuff/1.0/" 
6   xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
7 <rdf:Description rdf:about="http://www.univ-pau.fr"> 
8    <ex:nameProf rdf:nodeID="UX"/> 
9    <ex:nameProf> 
10    <rdf:Description> 
11      <ex1:first_name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Sebastien</ex:first_name> 
12      <ex:last_name xml:lang="fr">Durand</ex:last_name> 

13      <ex:last_name xml:lang="fr">Durand</ex:last_name> 

14     </rdf:Description> 
15    </ex:nameProf> 
16    <ex:lab rdf:resource="http://liuppa.univ-pau.fr/live/"/> 
17    <ex:lab rdf:resource="http://liuppa.univ-pau.fr/live/"/> 
18   </rdf:Description> 
19  <rdf:Description rdf:nodeID="UX"> 
20    <ex1:first_name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Sebastien</ex:first_name> 
21    <ex:last_name xml:lang="fr">Durand</ex:last_name> 
22   </rdf:Description> 
23 </rdf:RDF> 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: RDF/XML serialization of the RDF graph in Fig. 3.1.

3.2 Physical (Serialization) Disparities

3.2.1 Use Case 2 - University of Pau (Physical Representation)

Use case 2 represents a possible serialization of the RDF Graph 1 developed in use case 1

(Section 3.1.1) in Figure 3.1. RDF Graph 1 is encoded in RDF/XML format in Figure 3.3, to

show the namespaces linked with the resources, the order of the statements, and the type of

format in Figure 3.3.

3.2.2 Challenges in Use Case 2

Considering Figure 3.3, one can see that several types of redundancies and disparities are

introduced: some are inherited from the logical level (node duplication in lines 8 and 9 and

edge duplication in lines 16 and 17), while others appear at the physical (serialization) level,

namely:

35



3.2. Physical (Serialization) Disparities

1 <rdf:RDF 

2  xmlns:dc="http://purl.org/dc/elements/1.1/"  
3   xmlns:ex="http://example.org/stuff/1.0/" 
4   xmlns:ex1="http://example.org/stuff/1.0/" 
5   xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
6 <rdf:Description rdf:about="http://www.univ-pau.fr"> 
7    <ex1:nameProf rdf:parseType="Resource"> 
8       <ex:last_name>Durand</ex:last_name> 
9       <ex:first_name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Sebastien</ex:first_name> 
10    </ex:nameProf> 
11    <ex:nameProf rdf:parseType="Resource"> 
12       <ex:first_name>Sebastien</ex:first_name> 

13       <ex:last_name xml:lang="fr">Durand</ex:last_name> 
14       <ex:last_name>Durand</ex:last_name> 
15     </ex:nameProf> 
16     <ex:lab rdf:resource="http://liuppa.univ-pau.fr/live/"/> 
17     <ex:lab rdf:resource="http://liuppa.univ-pau.fr/live/"/> 
18   </rdf:Description> 
19 </rdf:RDF> 

 

Figure 3.4: RDF/XML serialization of the RDF graph in Fig. 3.2.

• Problem 4 - Namespace duplication: where two different prefixes are used to

designate the same namespaces, e.g., ex and ex1 addressing the namespace of http:

//example.org/stuff/1.0/ (lines 4-5 in Figure 3.3),

• Problem 5 - Unused namespace: where one (or more) namespace(s) is (are) declared

but never called in the body of the document, e.g., dc (line 3 in Figure 3.3).

Note that other kinds of features may also result in RDF serialization disparities as

illustrated in Figure 3.4, showing namely:

• Problem 6 - Handling node order variation: i.e., node siblings in the RDF descrip-

tion might be ordered differently when serialized (e.g., nodes in lines 6-18 in Figure 3.4

follow the order of appearance of XML elements different to the order in lines 7-22 in

Figure 3.3, which can be re-ordered differently in another serialization).

• Problem 7 - Handling serialization format variation: i.e., RDF elements in the

same RDF description might be formatted differently when serialized (e.g., blank nodes

in lines 8,19-22 in Figure 3.3 follow the flat RDF/XML serialization, compared with nodes

in lines 7-10 in Figure 3.4 that follow the compact RDF/XML serialization)

36

http://example.org/stuff/1.0/
http://example.org/stuff/1.0/


CHAPTER 3. Motivating Examples

3.3 Semantic Ambiguities

3.3.1 Use Case 3 - University of Pau (Logical Representation)

This use case is a variation of RDF Graph 1 developed in use case 1 (Section 3.1.1) in Figure

3.1. RDF Graph 3 (Figure 3.5) shows the following additional information about:

http://www.univ-pau.fr

full_name

    “Sebastien”@fr

Durand

ex:nameProf

      X

Sebastien

Durand

ex:nameProf
ex:first_name

ex:last_name

http://liuppa.univ-pau.fr/live/

ex:lab

Problem 1: Ambiguity
(Blank Node)

ex:laboratory

ex:first_name

ex:last_name

UPPA Computer 
Science Lab

LIUPPA
ex:name

ex:name

Problem 2: Synonymy
(Literal)

(a)

    “Sebastian”@es

ex:first_name

25^^xsd:int

    25.4^^xsd:decimal

ex:areaTotalex:areaTotal

Problem 2: Synonymy
(Literal)

(b)

Problem 2: Synonymy
(Literal)

(c)

PDFill P
DF Editor with Free Writer and Tools

Figure 3.5: RDF Graph 3 with semantic ambiguities

• Different languages tags for the literal “Sebastien” (french and spanish),

• One Predicate between http://www.univ-pau.fr and http://liuppa.univ-pau.fr/

live/ called lab,

• The name of the laboratory, expressed in two different ways: LIUPPA and UPPA Com-

puter Science Lab, and

• The area Total of the laboratory, expressed with two different datatypes and formats: 25

as integer and 25.4 as decimal.

3.3.2 Challenges in Use Case 3

Here, one can easily see several kinds of semantic ambiguities:

• Problem 8 - Ambiguity in Blank Nodes: where different blank nodes (with or with-

out nodeIds), designating RDF subjects and/or objects, describe the same information

(Figure 3.5),

37

http://www.univ-pau.fr
http://liuppa.univ-pau.fr/live/
http://liuppa.univ-pau.fr/live/


3.3. Semantic Ambiguities

• Problem 9 - Synonymy in Literals: where different literals, designating RDF ob-

jects, describe the same information (i.e., using acronyms, different languages, different

datatypes, etc.), e.g., Figure 3.5.b highlights literal synonymity using acronyms.

Here, note that certain properties of RDF literals, namely language tag and/or datatypes,

may also result in special literals synonymy:

– Problem 9.1 - Handling language-tagged literals: Literals can be assigned a

language tag or not, e.g. Figure 3.5.a represents the same element but in different

languages while specifying the language tag in the first two cases while omitting it

in the third case.

– Problem 9.2 - Handling data-typed literals: Literals can also be assigned

different datatypes, e.g. Figure 3.5.c represents the same element but using the int

type or the decimal type, following the number format.

Note that we consider literal/blank node duplications within their contexts in the corre-

sponding RDF statements. For instance, deciding on whether or not the value of a given literal

node (e.g., “LIUPPA”) within the RDF statement consists of a duplication of another (e.g.,

“UPPA Computer Science Lab”), depends on the statement as a whole (e.g., < http://liuppa.

univ-pau.fr/live/, ex : name, LIUPPA > and < http://liuppa.univ-pau.fr/live/,

ex : name, UPPA Computer Science Lab > in Figure 3.5). This is different from the sit-

uation where the authors of the RDF statements would like to emphasize the fact that the

mentioned lab has two synonymous names. In the latter situation, they would formulate the

statements differently, e.g., < http://liuppa.univ-pau.fr/live/, ex : name, LIUPPA >

and < http://liuppa.univ-pau.fr/live/, ex : altName, UPPA Computer Science Lab >,

which would not be considered as duplicates (following our approach) and would be preserved in

the normalized RDF output. Likewise for the other cases mentioned in Problems 8 to 15, where

we target unintentional duplications (which ought to be eliminated) and not user intended ones

(which will be preserved).

However, to avoid any confusions (i.e., deleting duplicates otherwise deemed relevant by

the authors/users), an interactive verification phase can be added in our normalization process,

prompting the user whenever the system detects duplication cases covering Problems 8 to 15,

so that the system proceeds according to the user’s input (i.e., unintentional duplication: to

be removed, or intentional duplication: to be preserved).

3.3.3 Semantic Ambiguities creating Logical (Graph) Redundancies

Consider the example given in Figure 3.6 in which we describe the University of Pau http:

//www.univ-pau.fr (IRI) having a professor (bn) with first name Sebastien (literal) and last

38

http://liuppa.univ-pau.fr/live/
http://liuppa.univ-pau.fr/live/
http://liuppa.univ-pau.fr/live/
http://liuppa.univ-pau.fr/live/
http://liuppa.univ-pau.fr/live/
http://www.univ-pau.fr
http://www.univ-pau.fr


CHAPTER 3. Motivating Examples

http://www.univ-pau.fr

full_name

    “Sebastien”@fr

Durand

ex:nameProf

      X

Sebastien

Durand
ex:nameProf

ex:first_name

ex:last_name

http://liuppa.univ-pau.fr/live/

ex:lab

Node Duplication
(Blank Node)

Based on Problem 1: Ambiguity
(a)

ex:first_nameex:last_name

UPPA Computer 
Science Lab

LIUPPA
ex:name

ex:name

Node Duplication
(Literal)

Based on Problem 2: Synonymy 
with Language tagged literals

(b)

    “Sebastian”@esex:first_name

25^^xsd:int

    25.4^^xsd:decimal

ex:areaTotalex:areaTotal

Node Duplication
(Literal)

Based on Problem 2: Synonymy
(c)

Node Duplication
(Literal)

Based on Problem 2: Synonymy
with data-typed literals

(d)

PDFill P
DF Editor with Free Writer and Tools

Figure 3.6: RDF Graph 4 based on RDF Graph 3 with Logical redundancies due to semantic

ambiguities (concerning problems 1 and 2)

name Durand (literal), and a laboratory (IRI) with name LIUPPA (literal) and total area 25

(literal) highlighting different logical redundancies in the form of RDF graph node duplications:

• Problem 10 - Node Duplication based on Semantic Ambiguities: where seman-

tically equivalent nodes, designating semantically equivalent subjects and/or objects, ap-

pear more than once, e.g., Figure 3.6.a highlights a blank node duplication and Figure

3.6.b, c and d show different kinds of literal node duplications.

3.4 IRI Discrepancies

3.4.1 Use Case 4 - Luxembourg Country (Logical Representation)

This use case is based on part of a Dbpedia real RDF graph. The RDF Graph 5 represents

the RDF resource: Luxembourg with different types of IRIs and literals and two ontology1

descriptions for its description in Figure 3.7.

1http://dbpedia.org/ontology/Place and http://dbpedia.org/ontology/Location are two descriptions

detailed on DBpedia ontology.

39

http://dbpedia.org/ontology/Place
http://dbpedia.org/ontology/Location


3.4. IRI Discrepancies

<?xml version="1.0" encoding="utf-8" ?> 

<rdf:RDF 

    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

    xmlns:ns8="http://dbpedia.org/ontology/PopulatedPlace/" 

    xmlns:dbo="http://dbpedia.org/ontology/" 

    xmlns:dcterm="http://schema.org/" 

    xmlns:dct="http://purl.org/dc/terms/" > 

<rdf:Description rdf:about="http://dbpedia.org/resource/Luxembourg"> 

… 

<dcterm:about rdf:resource="http://dbpedia.org/resource/Category:Luxembourg" /> 

 <dct:subject rdf:resource="http://dbpedia.org/resource/Category:Luxembourg" /> 

… 

</rdf:Description> 

</rdf:RDF> 

 

Namespace 
 duplication

PDFill 
PDF Edito

r w
ith

 Free
 W

rit
er 

an
d Tools

Figure 3.8: Sub-part of RDF Serialization for the RDF Graph 5 in Figure 3.7 with Physical

disparities due to IRI discrepancies (concerning problems 11 and 12).

http://dbpedia.org/resource/Luxembourg

http://dbpedia.org/ontology/Place

Luxemburgo Luxembourg

rdf:type

wdrs:describedbyowl:sameAs

foaf:isPrimaryTopicOf

http://dbpedia.org/resource/Category:Luxembourg

dct:subject

dcterm:about
http://dbpedia.org/ontology/Location

rdf:type

http://dbpedia.org/data/Luxembourg.nt

http://dbpedia.org/data/Luxembourg.jsonwdrs:describedby

http://it.dbpedia.org/resource/Lussemburgo

http://es.dbpedia.org/resource/Luxemburgo

http://en.wikipedia.org/wiki/Luxembourg

http://fr.wikipedia.org/wiki/Luxembourg_(pays)

rdfs:labelrdfs:label

owl:sameAs

foaf:is
Prim

aryTopicOf

Figure 3.7: RDF Graph 5 about of Luxembourg RDF resource

3.4.2 Use Case 5 - Luxembourg Country (Physical Representation)

This use case 5 represents a possible serialization of the RDF Graph 5 developed in the use

case 4 (Section 3.4.1) in Figure 3.7. The RDF Graph 5 is encoded in RDF/XML format to

show the namespaces linked with the resources in Figure 3.8.

40



CHAPTER 3. Motivating Examples

Figure 3.9: RDF Graph with IRI discrepancies - IRI identity

3.4.3 Challenges in Use Cases 4 and 5

Consider Figures 3.9 and 3.10 which represent the RDF graph 5 with severals IRIs describing

the same resource (e.g., Luxembourg), such that Fig. 3.9 highlights an IRI identity problem,

whereas Figure 3.10 reflects an IRI coreference problem. In other words, several types of

identities (in Figure 3.9) and references (in Figure 3.10) are introduced to give extra information

about one resource, but not all the IRIs have the same information of the resource.

• Problem 11 - IRI Identity: where two different IRIs are used to designate in a dif-

ferent way the same resource. Consider for instance the case of DBpedia describing the

resource “Luxembourg” in Figure 3.9. For example, http://dbpedia.org/resource/

Luxembourg, http://en.wikipedia.org/wiki/Luxembourg, and http://dbpedia.org/

data/Luxembourg.nt (cf. Figure 3.9.a, b and d) represent the same resource in different

ways: the first one is an identifier, the second one is a Web page, and the last one is a

document representation in N-triple format,

• Problem 12 - IRI Coreference: where two different IRIs are used to designate the same

resource in the same way. Following the example of DBpedia in Figure 3.10, DBpedia

uses different IRIs that provide information about resource “Luxembourg” in order to

describe it. Also, DBpedia uses vocabularies for the predicates to connect the statements

in a proper way. For example, http://dbpedia.org/resource/Luxembourg and http:

//es.dbpedia.org/resource/Luxemburgo (see Figure 3.10.a) identify the resource using

conventional IRIs (cf. Section 2.2.4), while http://schema.org/about and http://

purl.org/dc/terms/subject (see Figure 3.10.c) provide definitions using owner defining

IRIs (cf. Section 2.2.4) to establish a concept definition for the predicate.

41

http://dbpedia.org/resource/Luxembourg
http://dbpedia.org/resource/Luxembourg
http://en.wikipedia.org/wiki/Luxembourg
http://dbpedia.org/data/Luxembourg.nt
http://dbpedia.org/data/Luxembourg.nt
http://dbpedia.org/resource/Luxembourg
http://es.dbpedia.org/resource/Luxemburgo
http://es.dbpedia.org/resource/Luxemburgo
http://schema.org/about
http://purl.org/dc/terms/subject
http://purl.org/dc/terms/subject


3.4. IRI Discrepancies

Figure 3.10: RDF Graph with IRI discrepancies - IRI reference

In short, various types of semantic ambiguities and IRI discrepancies can occur in an

RDF description. For example, the fact that the same semantic information1 can be described

in totally different ways, can seriously complicate RDF data processing such as RDF indexing,

storage, and querying (making it more difficult for example to define proper indexing structures

based on syntactic cues, or formulate meaningful SPARQL queries). Furthermore, semantic

ambiguities and IRI discrepancies in RDF may produce different kinds of logical redundancies

(RDF graph-level) and physical (RDF serialization-level) disparities in the RDF descriptions

which, on their own, can have a huge burden on RDF processing and the development of

RDF databases and solutions (processing time, loading time, similarity measuring, mapping,

alignment, and versioning) [Gea04, THTC+15, THTCL16].

3.4.4 IRI Discrepancies creating Logical (Graph) Redundancies

Consider now the example given in Figure 3.11. Here, one can also identify various logical re-

dundancies occurring in the forms of both RDF graph node duplications and edge duplications:

1Recall that the semantic information of an RDF statement refers not only to the values of the sub-

ject/predicate/object nodes/edges in the statement, but rather to the meaning of the statement as a whole:

such that the meaning of a literal/blank/IRI node/edge depends on the subject/predicate/object nodes/edges

it connects with in the containing statement.

42



CHAPTER 3. Motivating Examples

http://dbpedia.org/resource/Luxembourg

http://dbpedia.org/ontology/Place

rdf:type

wdrs:describedbyowl:sameAs

foaf:isPrimaryTopicOf

http://dbpedia.org/resource/Category:Luxembourg

dct:subject

Node Duplication
(doc. representation IRI)

(d)

Edge Duplication
   (concept IRI)
           (c)

dcterm:about
http://dbpedia.org/ontology/Location

rdf:type

http://dbpedia.org/data/Luxembourg.nt

http://dbpedia.org/data/Luxembourg.jsonwdrs:describedby

http://it.dbpedia.org/resource/Lussemburgo

http://es.dbpedia.org/resource/Luxemburgo

http://en.wikipedia.org/wiki/Luxembourg

http://fr.wikipedia.org/wiki/Luxembourg_(pays)

Node Duplication
(ontology IRI) 

(e)

owl:sameAs

foaf:is
Prim

aryTopicOf

Node Duplication
(document IRI)

(b)

Node Duplication
(identifier IRI)

(a)

Figure 3.11: RDF Graph with Logical redundancies due to IRI discrepancies (concerning prob-

lems 3 and 4)

• Problem 13 - Node Duplication based on IRI discrepancies: where equivalent

IRI nodes, designating equivalent subjects and/or objects, appear more than once. For

instance, Figures 3.11.a, b, d, and e highlight different node duplications with: identifier

IRI, document IRI, document representation IRI, and ontology IRI respectively.

• Problem 14 - Edge Duplication based on IRI discrepancies: where equivalent IRI

edges, designating equivalent RDF predicates, appear more than once, such as in Figure

3.11.c with highlights an edge duplication with concept IRI.

3.4.5 IRI Discrepancies creating Physical (Serialization) Disparities

IRI discrepancies can also produce disparities at the RDF serialization level, namely producing

duplicate namespaces in the same RDF file. More formally:

• Problem 15 - Namespace Duplication based on IRI discrepancies: where two

different namespaces are used to designate the same vocabulary, e.g., in Figure 3.8: http:

//schema.org/ and http://purl.org/dc/terms/ point to the same vocabulary.

3.5 Summary

In this chapter, we present different use cases in order to illustrate different kinds of redundan-

cies and disparities which can occur in RDF descriptions, in order to help shape the direction

43

http://schema.org/
http://schema.org/
http://purl.org/dc/terms/


3.5. Summary

of our research. From these use cases, we identified 15 research challenges that we called prob-

lems, which broadly fall into our four levels: logical redundancies, physical disparities, semantic

ambiguities and IRI discrepancies.

One can clearly realize the compound effect of missing the different kinds of RDF logical

duplications and physical disparities which can result from the various problems of syntactic

redundancies (Sections 3.1 and 3.2), semantic ambiguities (Section 3.3) and IRI discrepancies

(Section 3.4), all of which represent same (syntactic) or equivalent (semantic or coreferenced)

RDF information which needs to be normalized into unified and unambiguous statements.

Against this background, in the next chapter, we introduce our first contribution towards

the first two levels of the challenges: logical redundancies and physical disparities in a syntactic

evaluation for RDF Normalization. Consequently, we cover semantic and IRI discrepancies in

the following chapters.

44



Chapter 4

Syntactic RDF Normalization

“ We are what we repeatedly do. Excellence, then,

is not an act, but a habit.”

— Aristotle

The necessity of working with RDF descriptions is increasing in an exponential way

nowadays as discussed in Section 2.4. The impact of the Semantic Web and Linked Data to

users (persons, organizations, etc.) of the Web affects the development of more applications

that use RDF descriptions to publish their information in different areas.

All the information processed by these applications may contain duplications, since the

users obtain the data of different sources. These duplications are the base of our motivation

for cleaning the RDF descriptions as we describe with our uses cases in Sections 3.1 and 3.2.

In this chapter, we present our Syntactic RDF normalization contribution. First, we

begin by further explaining some definitions developed for our normalization process (Section

4.1.1). We then propose normalization functions and normalization operators (Sections 4.1.2

and 4.1.3) for facilitating the creation of our normalization rules (Section 4.3). Next, we discuss

related work which has influenced our understanding and the design of our approach (Section

4.2). We consequently establish our normalization properties (Section 4.4) for validating our

normalization rules that we use in our normalization process (Section 4.5). Finally, in Section

4.6, we conclude this chapter with a summary.

4.1 Preliminaries

We start this section by providing definitions describing the main concepts related to our

normalization process.

45



4.1. Preliminaries

4.1.1 Definitions

Definition 4.1 (Extended Statement [st+]) An extended RDF statement is a more ex-

pressive representation of a statement (st), denoted as: st+:< s′, p′, o′ > where:

• s′: < s, ts > is a tuple that we call “extended subject” composed of the subject value (s)

and its type (ts), where ts ∈ {u, bn}.

• p′: < p, dt, lang > is a 3-tuple that we call “extended predicated” composed of the predicate

value (p), its datatype dt ∈ DT ∪ {⊥}, and language tag lang ∈ Lang ∪ {⊥}. ⊥ represents

a “null” value.

• o′: < o, to > is a tuple that we call “extended object” composed of the object value (o) and

its type to ∈ {u, bn, l}�

Recall that: u stands for IRI, bn stands for blank node, and l stands for literal.

The following notation is adopted to represent an extended statement:

st+ :< sts∈{u,bn}, p
lang
dt , oto∈{u,bn,l} >

Based on the example of Figure 2.7, RDF statement st1 becomes extended statement st+1 =

<http://www.univ-pau.fru, ex:nameProf⊥⊥, bn−1bn >.

The function ST+(G) will be used in the following to return all the extended statements

of an RDF description.

In the rest of the study, we use the extended statement definition to represent RDF

statements in the normalization process.

Definition 4.2 (RDF Description [D]) An RDF description D stands for either: i) an

RDF graph G (when referring to the RDF logical representation), or ii) an RDF file F (when

referring to the RDF physical representation), depending on the context and application at

hand�

Definition 4.3 (RDF Element [E]) An RDF element E refers to any of the components

of an RDF description, including either: i) IRI, ii) literal, iii) blank node, vi) statement, v)

extended statement, vi) namespace, or vii) prefix, depending on the context and application at

hand�

46

http://www.univ-pau.fr


CHAPTER 4. Syntactic RDF Normalization

Definition 4.4 (RDF Normalization) RDF normalization is the process that transforms

a (non-normalized) RDF description noted D (i.e., either an RDF graph G or an RDF file F)

into another (normalized) RDF description noted D̃ = Norm(D) (i.e., either a normalized RDF

graph G̃ or a normalized RDF file F̃ ), which is equivalent in its semantic expressiveness to D

after eliminating logical redundancies and physical disparities1, and establishing an appropriate

order (indexing [WKB08]) of the resulting serialized RDF statements [THTCL16, THTC+15]�

Note that in our definition or normalization, we consider the ordering of statements within

the serialization of an RDF description (i.e., the RDF file) as an important issue because it

can affect the resulting RDF description’s processing efficiency within the target application,

w.r.t. storage, similarity, processing time, querying, etc., which we further discuss in Sections

4.5.1 and 6.4.3.

In order to fulfil our RDF normalization process, we first develop a set of dedicated

functions (Section 4.1.2) and operators (Section 4.1.3), which will serve as “construction tools”,

utilized to formulate/build a set of formal normalization rules (Section 4.3) with provable

properties comprising the main pillars of our framework (Section 4.5).

4.1.2 Normalization Functions

We develop several functions to be utilized in defining our normalization rules. These can be

categorized in two main groups: i) basic functions which are related to the basic RDF model

detailed in Section 2.3.1 (cf. Table 4.1), and ii) normalization functions which are defined to

serve our concept of RDF normalization (cf. Table 4.2).

i) Basic Functions:

In the remainder, the following functions R, U, L, BN, ST+, NS, Px, Enc, and QN will

be used respectively to return all the Resources (IRIs and literals), IRIs, literals, blank nodes,

Extended Statements, Namespaces, Prefixes, Encoding, or Qnames of an RDF description D.

Additionally, we created other basic function named UNS to return all the Unused Namespaces

of an RDF description D.

1While our definition of RDF normalization is comparable to the notion of RDF normal form in [Gea11],

nonetheless the authors in [Gea11] mostly address the normalization of RDF statements defined using the RDFS

vocabulary and disregard the kinds of redundancies and disparities addressed in this study. Regarding simple

RDF, the authors in [Gea11] aim to eliminate blank nodes in defining lean graphs in order to produce normal

forms later (cf. Section 4.2.2). In this context, our approach completes the study in [Gea11] by eliminating

redundancies from the graph, which can then be processed to produce a lean and normal form representation

following [Gea11]. Recall that the study in [Gea11] does not address physical (serialization) disparities.
1Function names here were specifically chosen to match their outputs’ names (in most cases) in order to

simplify the description of normalization operators, rules, and properties later on (cf. Sections 4.3 and 4.5).

47



4.1. Preliminaries

Table 4.1: Summarized descriptions of functions based on the basic definitions of RDF

Function 1 Input Output Description

ST+ G|F ST+ Returns all the extended Statements of an RDF Graph

U ST+ U Returns a set of IRIs from ST+

L ST+ L Returns a set of literals from ST+

BN ST+ BN Returns a set of blank nodes from ST+

R ST+ R Returns a set of Resources from ST+

Enc ST+, enc F Returns the encoding of an RDF file based on the parameter

enc ∈ {RDF/XML, Turtle, etc.}
QN F QN Returns all the QNames of an RDF file

NS F NS Returns all the Namespaces of an RDF file

Px F Px Returns all the Prefixes of an RDF file

UNS F UNS Returns all the Unused Namespaces of an RDF file

ii) Normalization Functions:

In this section, we develop a group of normalization functions to handle specific characteristics

of the extended RDF statements, and which will be utilized in defining our normalization rules,

including: identifying statements outgoing from blank nodes, computing the cardinality of RDF

descriptions based on the number of extended statements, removing or replacing elements in

extended statements, or changing the order of extended statements in RDF descriptions.

Function 1 (Extended Statement Outgoings [O]) The extended statement outgoings

function accepts as input an RDF extended statement st+i and returns as output the set of

all the extended statements deriving from the input extended statement. More formally, the

outgoings of st+i , noted O(st+i ), designate the set of extended statements having for subject the

object element o′i of st+i :

O(st+i ) = {st+j , ..., st
+
n }

where:

st+j =< (o′i, p
′
j , o

′
j >, ..., st

+
n =< o′i, p

′
n, o

′
n > �

For example, considering extended statement st+i in Figure 4.1, we identify the following

outgoings of st+i :

O(st+1 ) = {st+5 , st
+
6 }

O(st+1 ) = {< bn 1bn, p2
⊥
string, l1l >,< bn 1bn, p3

fr
⊥ , l2l >}

48



CHAPTER 4. Syntactic RDF Normalization

Note that for the sake of simplicity, we only define extended statement outgoings here, and

not extended statement incomings (which would underline triples incoming into the extended

statement’s objects) since the latter are not specifically useful in the syntactic normalization

process.

Function 2 (RDF Description Cardinality [||]) The RDF Description Cardinality func-

tion, noted card(D) or |D| for short, accepts as input an RDF description D, and returns as

output the number of extended statements in D, card(D) = |ST+|�

For instance, in Figure 4.2, |G| = 9 since the cardinality of G takes into account all the

extended statements.

Function 3 (RDF Description Minimal Cardinality [‖‖]) The RDF Description Min-

imal Cardinality function, noted cardMin(D) or ‖D‖ for short, takes as input an RDF descrip-

tion D (where D is either an RDF graph G or an RDF file F), and returns as output the number

of distinct extended statements in D while disregarding duplicated statements, cardMin(D) =

‖ST+‖�

For instance, in Figure 4.2, ‖G‖ = 4 since the cardinality of G does not take into account

the two duplicated extended statements:

< st+3 >:< u1u, p4
⊥
⊥, u2u >,

< st+8 >:< bn 2bn, p3
⊥
⊥, l2l >, and

all the statements linked with bn 1 because bn 1 is contained in1 bn 2

Function 4 (Remove RDF element [remove]) The remove RDF element function noted:

remove(e, D), accepts as input an RDF description D (or any of its components, e.g., ST+(D),

QN(D), etc.) and an RDF element e (i.e., an RDF statement or any of its components, e.g.,

IRI, literal, iii) blank node, etc., cf. Definition 4.3), and returns as output a variation D’ of

D, where an element e has been removed, i.e., remove (e, D) = D’ = D - e. Note that the

remove function is mainly designed to remove duplicate statements and/or unused Qnames (cf.

Section 4.3)�

For instance, in Figure 4.2 given st+3 = st+4 , we can apply remove(st+4 , ST
+(G)) to delete

the extended statement duplication, because both statements are equals.

Function 5 (Replace RDF element [replace]) The replace RDF element function noted:

replace(i, j, D), accepts as input an RDF description D (or any of its components, e.g.,

1The operator of “contained in” is presented in Section 4.1.3.

49



4.1. Preliminaries

ST+(D), QN(D), etc.), as well as two qname prefixes: i and j, and returns a variation D’ of

D, where all occurrences of i have been replaced by j�

For instance, in Figure 3.3, there are two prefixes ex and ex1 that are equivalent (i.e.,

ex = ex1) because they refer to the same namespace “http://example.org/stuff/1.0/”.

As a result, applying replace(ex1, ex, ST+(F )) returns a variation of RDF file F where all

occurrences of ex1 have been replaced by ex.

Function 6 (Order RDF Statements [order]) The order RDF statements function, noted:

order(st+i , st+j , D, p̃), accepts as input an RDF description D and two extended statements st+i
and st+j within D, and an ordering parameter p̃, and returns a variation D’ of D, where st+i
and st+j have been ordered following the ordering parameter p̃, i.e., st+i <p̃ st

+
j , where <p̃ allow

us to order from lowest to highest statements according to the parameter p̃. Parameter p̃ high-

lights the user’s preference in ordering statements (which can be done following their subjects,

predicates, objects, or their combination, described in details in Section 4.5.2)�

Table 4.2: Summarized descriptions of functions based on definition of the normalization pro-

cess

Function Input Output Description

O st+ O(st+) Returns all the outgoings of st+

card D |D| Returns the number of elements of D including

duplications

cardMin D ‖D‖ Returns the number of elements of D without du-

plications

remove i,D D − i Returns D ∈ {G,F} without element(s) i ∈
{ST+(D), QN(D)}

replace i, j, ST+(D) ST+(D) Returns all the statements ST+(D) updated with

the replacement of j by i where i ∧ j ∈ QN(D)

order
st+i , st+j , D,

p̃
ST+(D) Returns ST+ of D ordered following the user’s

preference order based on parameter p̃

4.1.3 Normalization Operators

Here, we make use of the functions introduced in the previous section to define a set of operators

(see Table 4.3) needed to represent the equality relationship between RDF statements, graphs,

and files, which will be chiefly utilized in identifying (and then eliminating) duplicate statements

in our normalization process (i.e., informally, we need to eliminate all repetitive occurrences of

equal - and thus redundant - RDF statements).

50

http://example.org/stuff/1.0/


CHAPTER 4. Syntactic RDF Normalization

Figure 4.1: RDF example of extended statement containment depicting the graph in Figure 3.1

where st+i , ui, pi, bni, and li respectively represent corresponding extended statements, IRIs,

predicates, blank nodes, and literals.

Operator 1 (Statement Containment [�]) An extended statement st+i is said to be con-

tained in another extended statement st+j , noted st+i � st
+
j , if: 1) all the outgoings of st+i occur

in st+j , i.e., O(st+i ) ⊆ O(st+j ), 2) both st+i and st+j have the same subject and predicate, and

3) the object type (to) in both statements is a blank node (bn). Formally:

∀st+i , st
+
j ∈ G, st

+
i � st+j ⇐⇒ st+i .to = “bn” ∧ st+j .to = “bn” ∧ st+i .s = st+j .s ∧ st

+
i .p = st+j .p ∧

(O(st+i ) ⊆ O(st+j ))�

For instance, in Figure 4.1, st+1 � st+2 since they share the same subject (i.e., u1) and

the same predicate (i.e., p1), and have O(st+1 ) ⊆ O(st+2 ) w.r.t their outgoings.

Similarly, we say an extended statement st+i is not contained in another extended state-

ment st+j (i.e., st+i � st+j ) if any of the extended statements containment conditions (related

to the subject, predicate, and outgoings, defined with Operator 1)) does not hold. Note that

blank node identifiers (when available) do not affect the statement containment property.

The statement containment property will be mainly useful in detecting node duplications

(cf. Section 4.3 and Section 4.5).

Operator 2 (Extended Statement Equality [=st]) An extended statement st+i is said to

be equal to another extended statement st+j , noted st+i =st st
+
j , if and only if: 1) the subject of

st+i is equal to the subject of st+j , 2) the predicate of st+i is equal to the predicate of st+j , and

3) the object of st+i is equal to the object of st+j . Formally:

51



4.1. Preliminaries

Figure 4.2: RDF example with equal and different extended statements.

∀st+i , st
+
j ∈ G, st

+
i =st st

+
j ⇐⇒ st+i .s

′
i = st+j .s

′
j∧

st+i .p
′
i = st+j .p

′
j ∧ st+i .o

′
i = st+j .o

′
j

if:

st+i .s
′
i = st+j .s

′
j ⇐⇒ st+i .si = st+j .sj ∧ st

+
i .tsi = st+j .tsj∧

st+i .p
′
i = st+j .p

′
j ⇐⇒ st+i .pi = st+j .pj ∧ st

+
i .dti = st+j .dtj ∧ st

+
i .langi = st+j .langj∧

st+i .o
′
i = st+j .o

′
j ⇐⇒ st+i .oi = st+j .oj ∧ st

+
i .toi = st+j .toj�

For instance, in Figure 4.2, st+3 =st st
+
4 since they share the same subject (i.e., u1), the

same predicate (i.e., p4), and the same object (i.e., u2).

Similarly, we say an extended statement st+i is not equal (i.e., unequal) to another ex-

tended statement st+j (i.e., st+i 6=st st
+
j ) if any of the extended statements equality conditions

(related to the subject, predicated, and object, defined with Operator 2)) does not hold. For-

mally:

∀st+i , st
+
j ∈ G, st

+
i 6=st st

+
j ⇐⇒ st+i .s

′
i 6= st+j .s

′
j∨

st+i .p
′
i 6= st+j .p

′
j ∨ st+i .o

′
i 6= st+j .o

′
j

For instance, in Figure 4.2, st+7 6=st st
+
8 since they share the same subject (i.e., u1) but

with different predicates (i.e., p2 and p3) and different objects (i.e., l1 and l2).

Operator 3 (Extended Statement Intersection [∩]) The extended statement set ST+
i

of an RDF Description Di, i.e., ST+
i (Di), is said to intersect with another extended statement

52



CHAPTER 4. Syntactic RDF Normalization

set ST+
j of an RDF Description Dj, i.e., ST+

j (Dj), if and only if there exists an extended state-

ment st+ that simultaneously belongs to two extended statement sets: ST+
i (Di) and ST+

j (Dj).

Formally:

ST+
i (Di) ∩ ST+

j (Dj) = {st+/st+ ∈ ST+
i (Di) ∧ st+ ∈ ST+

j (Dj)}

For instance, regarding Figure 4.2 and Figure 4.5 as two RDF graphs Gi and Gj respec-

tively, then ST+
i (Gi) ∩ ST+

j (Gj) = {(u1, p1, bn 1), (u1, p4, u2), (bn 1, p2, l1), (bn 1, p3, l2)}

Operator 4 (RDF graph Equality [=RDFG]) An RDF graph Gi is said to be equal to

another RDF graph Gj, noted Gi =RDFG Gj, if and only if: i) all the extended statements of

Gi are equal or contained in extended statements of Gj and vice versa, and ii) they have equal

minimum cardinalities. Formally:

Gi =RDFG Gj

if:

∀st+i ∈ Gi,∃st+j ∈ Gj/st
+
i =st st

+
j ∨ st

+
i � st

+
j ∧

∀st+j ∈ Gj ,∃st+i ∈ Gi/st
+
j =st st

+
i ∨ st

+
j � st

+
i ∧

‖Gi‖ = ‖Gj‖�

In other words, Gi =RDFG Gj means that both graphs share the same extended state-

ments, and thus the same semantic expressiveness; without necessarily being normalized, i.e.,

they can contain logical redundancies (duplicate statements).

Operator 5 (RDF file Equality [=RDFF ]) An RDF file Fi is said to be equal to another

RDF file Fj, noted Fi =RDFF Fj, if and only if: i) their corresponding RDF graphs are equal,

i.e., Gi =RDFG Gj, ii) their corresponding namespaces are equal, i.e., NS(Fi) = NS(Fj) and

iii) Fi is serialized following the same encoding format (i.e., enci) as Fj (i.e., encj). Formally:

Fi =RDFF Fj

if:

Gi =RDFG Gj∧

NS(Fi) = NS(Fj)∧

Enc(Fi, enci) ∧ Enc(Fj , encj) ∧ enci = encj�

In other words, Fi =RDFF Fj means both files share equivalent logical representations

(equal RDF graphs), they share the same namespaces, and they are serialized using the same

encoding format.

53



4.2. Related Work

Table 4.3: Summarized descriptions of operators based on definition of the normalization pro-

cess

Operator Description

� Containment between two extended statements when the objects are blank nodes

=st Equality between two extended statements

∩ Intersection between two extended statements

=RDFG Equality between two RDF graphs

=RDFF Equality between two RDF files

4.2 Related Work

The need for RDF normalization has been identified and discussed in various domains, ranging

over domain-specific knowledge representation and data integration. Yet, few existing studies

have specifically addressed the issues of logical (graph) and physical (syntax) RDF normaliza-

tion.

In the following, for clarity of presentation, we review RDF normalization approaches

based on the application (knowledge representation and data integration) and the evaluation

level they use for their elements (i.e., logical and physical). Therefore, we classify the methods

in three categories: i) Knowledge Representation and Integration, ii) RDF graph normalization,

and iii) RDF syntax normalization. We estimate that this categorization provides the simplest

and most consistent unified view of the wide variety of diverse approaches proposed for the

literature.

The kinds of RDF data being treated as well as the limitations and intended applica-

tions domains will be discussed for each approach. Catalogs summarizing the properties and

characteristics of all covered approaches are depicted in Tables 4.4 and 4.5.

4.2.1 Knowledge Representation and Integration

Various approaches have been developed to normalize knowledge representation in RDF, namely

in the bioinformatics domain [Tea09, Pea09, Jea13, Bea08, Nea12]. In [Tea09], the authors

provide an approach to map LexGrid [Pea09], a distributed network of lexical resources for

storing, representing and querying biomedical ontologies and vocabularies, to various Semantic

Web (SW) standards, namely RDF and SKOS1. They introduce the LexRDF project which

leverages LexGrid, mapping its concepts and properties to standard (normalized) RDF tagging

1The Simple Knowledge Organization System (SKOS) is a stand-alone vocabulary, built with OWL and

RDFS, designed to create controlled vocabularies and thesauri in RDF.

54



CHAPTER 4. Syntactic RDF Normalization

following the SKOS [BM09] specification, thus providing a unified RDF based model (using a

common terminology) for both semantic and lexical information describing biomedical data. In

[Jea13], the authors introduce a framework designed to allow open data access and collabora-

tion for ICD-11 (International Classification of Diseases, version 111). The RDF normalization

process developed in this approach includes: i) generating uniform IDs for ICD-11 categories

using the ICD URI scheme2 proposed by WHO (World Health Organization), and ii) normal-

izing lexical properties of ICD-11 contents using the SKOS RDF model. In a related study

[Nea12], the authors introduce the Bio2RDF project, aiming to create a network of coherent

linked data across life sciences databases. The authors address URI normalization, as a nec-

essary prerequisite to build an integrated bioinformatics data warehouse on the SW, where

resources are assigned URIs normalized around the bio2rdf.org namespace. Table 4.4 shows

the summarization of all the approaches presented in this section.

4.2.2 RDF Graph (Logical) Normalization

While various studies have highlighted the need for RDF normalization, yet very few have

actually targeted the issues of RDF logical (graph) and physical (syntactic/serialization) nor-

malization. In [HG04], Hayes and Gutierrez target RDF graph model normalization. The

authors argue that the notion of RDF graph has not been explicitly defined in the RDF specifi-

cation [KC04], it does not distinguish clearly among the term “RDF Graph”, the mathematical

concept of graph, and the graph-like visualization of RDF data. The authors discuss some of

the redundancies which can occur in a traditional RDF directed labeled graph (cf. Section

4.1.1), particularly regarding the connectivity of resources. Namely, an RDF graph edge label

(i.e., a predicate) can occur redundantly as the subject or the object of another statement

(e.g., < dbpedia : Researcher, dbpedia : Workplace, dbpedia : University > and < dbpedia :

Workplace, rdf : type, dbpedia : Professional >). Hence, the authors in [HG04] introduce an

RDF graph model as a special bipartite graph where RDF triples are represented as ordered

3-uniform hypergraphs where edge nodes correspond to the < subject, predicate, object >

triplet constituents, ordered following the statement’s logical triplet ordering. The new model

is proven effective in reducing the predicate-node duplication redundancies identified by the

authors.

In subsequent studies [Gea04, Gea11], the authors address the problem of producing RDF

normal forms and evaluating the equivalence among them. The studies in [Gea04, Gea11] specif-

ically target the RDFS vocabulary with a set of reserved words to describe the relationships

1http://www.who.int/classifications/icd/en
2The ICD URI scheme is dedicated for naming and supporting Web Services handling ICD data. It is available

on http://id.who.int, with http://id.who.int/icd/schema as the prefix for the vocabulary terms that relate

to the ICD classification, and http://id.who.int/icd/entity for the fundamental foundation entities related

to ICD concepts.

55

http://www.who.int/classifications/icd/en
http://id.who.int
http://id.who.int/icd/schema
http://id.who.int/icd/entity


4.2. Related Work

Table 4.4: Summarized knowledge representation and integration approaches

App.
Data

Targeted
Features Limitations Aplication Output

Domain Area

Pathak

et al.

[Pea09]

OWL,

RRF,

OBO,

XML,

Text

Proposal name: LexGrid

• Identifying logical inconsistencies in

ontologies and vocabularies

• Providing a consistent standardized

rich API to access multiple vocabu-

laries and ontologies distribution

• Giving a standard storage of con-

trolled vocabularies and ontologies

Blank

nodes

Literals

Statements

Biomedical Querying LexGrid

Tao

et al.

[Tea09]

LexGrid

Proposal name: LexRDF project

• LexGrid [Pea09] data is considered to

be properly described

• Mapping the concepts and properties

to standard - normalized RDF tag-

ging

• Following SKOS specification

• Considering the normalization as a

result between the correctly mapping

of LexGrid to LexRDF

Blank nodes

Literals

Statements

Biomedical

Querying

and

Storing

RDF

triples

Jiang

et al.

[Jea13]

RDF

triples

(ICD-11)

Framework designed to allow open data

access and collaboration

• Mapping data ICD-11 alpha to the

new information

• RDF normalization process: (a)

Generating uniform IDs using ICD

URI scheme, and (b) Normalizing

lexical properties of ICD-11 using the

SKOS RDF model

Blank nodes

Literals

Statements

Names-

paces

Biomedical

Knowledge

Repre-

sentation

JSON

XML

RDF/XML

Turtle

Belleau

et al.

[Bea08]

RDF

triples

Proposal name: Bio2RDF project

• URI normalization

• Producing Bio2RDF statements

• Probably done manually by domain

experts

Blank nodes

Literals

Statements

Names-

paces

Biomedical
Data In-

tegration

RDF

triples

56



CHAPTER 4. Syntactic RDF Normalization

between resources (e.g., rdfs:type, rdfs:range, rdfs:domain, etc.). They provide a full-fledged

theoretical model including notions such as:

i) RDF lean graph as a minimal graph preserving all URIs of its origin graph while having

fewer blank nodes (where minimality designates that the RDF graph cannot be further

reduced), and

ii) RDF normal form as a unique representation of an RDF lean graph (where uniqueness

designates that the lean RDF graph is unique with respect to the original RDF graph).

First, the authors do not identify nor target the kinds of redundancies and disparities

addressed in our study, both at the logical and physical levels (e.g., edge/node duplications,

literals, IRIs, prefixes, and data-types, among others). Second, they focus on RDFS vocabulary

constructs which are out of the scope of our study. Third, the authors’ main motivation in

[Gea11] is different from ours: they aim to reduce (simplify) RDF query answers by: i) pro-

ducing the answer, and then ii) generating its normal form. They discuss RDF query language

features and how those should translate to process the logical RDF descriptions (graphs). In

contrast, our study aims at normalizing (simplifying) RDF descriptions from the start, indepen-

dently of any particular application, targeting both logical (graph) and physical (serialization)

levels, so that querying (and other applications/functionality) can be later performed on the

normalized data.

In short, while the studies in [Gea04, Gea11, HG04] thoroughly cover general theoretical

foundations of RDF logical (graph) representation and processing, our approach completes the

latter by targeting specific logical (graph) redundancies (and physical/serialization disparities)

which were out of the scope of [Gea04, Gea11, HG04], namely distinct edge (predicate) du-

plication, node (subject/object) duplication, and combined edge and node (whole statement)

duplication, as well as all kinds of physical disparities (see motivation Section 3).

In a related study [Fea13], the authors introduce the binary RDF representation for

publication and exchange called: HDT (Header-Dictionary-Triples) serialization format. The

HDT representation format is based on three main components: i) a Header that includes

metadata describing the RDF dataset, ii) a Dictionary that organizes all the identifiers in the

RDF graph, and iii) Triples which represent the pure structure of the underlying RDF graph.

Using this format, the authors reduce the verbosity/redundancy and storage space of the RDF

files while transforming blank nodes into IRIs, thus losing the meaning of the blank node in

defining RDF statements.

Recent approaches [SL13, Lon15] introduce a graph normalization algorithm which ex-

tend toward RDF dataset normalization. In [SL13], the authors transform an RDF graph

into a standard form, generating a cryptographically-strong hash identifier for the graph, or

57



4.2. Related Work

digitally signing it. The authors define normalization as “the process of taking an input graph

and performing a transformation on that input that results in all the aspects of the graph being

arranged in a deterministic way in the output graph”. In [Lon15], the author extends the RDF

normalization approach from [SL13] toward so-called RDF dataset normalization, revising the

concept of normalization as “the process of transforming an input RDF dataset to a normalized

RDF dataset. That is, any two input RDF datasets that contain the same information, regard-

less of their arrangement, will be transformed into identical normalized RDF datasets”. The

proposed algorithms in [SL13, Lon15] take a JSON-LD input format, and provide an output in

N-triple serialization while relabeling certain nodes and erasing certain redundancies.

Yet, the authors in [Fea13, SL13, Lon15] do not control redundancies within RDF graphs

containing blank nodes, and do not address serialization disparities.

4.2.3 RDF Syntax (Physical) Normalization

At the physical (syntactic) level, Vrandecic et al. [Vea09] argue that the same RDF graph

can be expressed in many different ways in RDF/XML serialization, using different RDF

constructs, thus complicating the processing of RDF descriptions. The authors introduce a

method to normalize the serialization of an RDF graph using XML grammar (DTD) defini-

tions. The process consists of two steps: (a) Defining an XML grammar (DTD) with whom all

generated RDF/XML serializations should comply; the DTD is generated semi-automatically,

such that the system provides a tool box to help the user (expert) to choose elements and

attributes/properties following her serialization needs and, (b) Defining SPARQL query state-

ments to query the RDF dataset in order to return results, consisting of serializations compliant

with the grammar (DTD) at hand. This is comparable to the concept of semantic mediation

using SPARQL queries [Kea08]. Note that SPARQL statements are automatically generated

based on the grammar (DTD). The authors provide an online implementation1 to demonstrate

the usefulness of their proposal. Here, we note that the authors’ motivation in [Vea09] clearly

corresponds to the same problem addressed in our proposal. Nonetheless, we consider serial-

ization disparities as well as logical (blank node) redundancies which are not addressed in the

mentioned work. In other words, our approach is complementary to the method in [Vea09].

To sum up, our approach completes and builds on existing methods to normalize RDF in-

formation, namely [Gea04, HG04, Vea09, Gea11, SL13, Lon15], by handling logical and physical

redundancies and disparities which were (partially or totally) unaddressed in the latter.

Table 4.5 depicts the summarization of RDF Graph (Logical) and Syntax (Physical)

Normalization approaches developed in the literature where the approaches have several limi-

tation w.r.t. blank nodes, literals, URI, namespaces and statements, that we overcome in our

1http://km.aifb.kit.edu/services/RDFSerializer/

58

http://km.aifb.kit.edu/services/RDFSerializer/


CHAPTER 4. Syntactic RDF Normalization

approach.

4.3 Normalization Rules

In this section, we provide a set of rules that allow to solve the motivation problems in Section

3. We consequently establish two normalization goals here: i) solving logical redundancies

(discussed in Section 3.1) and ii) solving physical disparities (discussed in Section 3.2).

In the following, we use D̃, G̃, and F̃ to designate a normalized RDF description, RDF

graph, and RDF file respectively (cf. Definition 4.4).

4.3.1 Solving Logical Redundancies

Logical redundancies related to node duplication, edge duplication, and node/edge duplications

(presented in Section 3.1) can be eliminated from an RDF graph G by applying the following

transformation rules:

• Rule 1 - Statement Equality Elimination (R1): It is designed to eliminate edge

duplications and/or node duplications within individual extended statements. More for-

mally:

∀st+i , st
+
j ∈ ST+(G) / i 6= j, if st+i =st st

+
j =⇒ remove({st+j }, ST+(G))

Given two equal extended RDF statements st+i and st+j in an RDF graph G such that

st+i =st st
+
j , applying Rule 1 on G produces another RDF Graph G′ where st+j has been

removed�

Lemma 1 Given two extended statements st+i , st+j ∈ ST+(G) where st+i =st st
+
j , ap-

plying Rule 1 on G produces an RDF Graph G′ verifying at least one of the following

features:

- ST+(G′) ⊆ ST+(G) / |ST+(G′)| = |ST+(G)| − 1 (reducing the number of edge

duplications by 1 where the object of the statement is represented either as a IRI or

as a literal);

- L(G′) ⊆ L(G) / |L(G′)| = |L(G)| − 1 (reducing the number of node duplications by

1 where the object of the statement is represented as a literal).

59



4.3. Normalization Rules

Table 4.5: Summarized RDF Graph (Logical) and Syntax (Physical) Normalization approaches

App.

Data

Tar-

geted

Ordera
Exploited

RDF

Elements

Features Limitations Aplication Output

Domain Area

RDF Graph (Logical) Normalization

Hayes et

al.

[HG04]

RDF

Graph
SPO Statement

Proposal name: Bipartite RDF

graph

• Reducing redundan-

cies (edge - node

duplication)

• Improving the con-

nectivity between

resources

• Better distinction

between schema and

data statement

Blank

nodes

Literals

URIs

Names-

paces

Not

speci-

fied

Storage

and

Cluster-

ing

Bipartite

Graph

Gutierrez

et al.

[Gea04,

Gea11]

RDF

Graph

Not

consid-

ered

Blank

nodes

Resources

• Formalizing mini-

mal and maximal

representations

• Establishing normal

forms for RDF data

Statements

Names-

paces

RDFs

vocabu-

laries

Querying
RDF

Graph

Longley

[Lon15]

JSON-

LD

Alphab.

based

on

N-triple

Blank

nodes

Resources

• Transforming an RDF

graph into a standard

form

• Generating a crypto-

graphically âĂŞ strong

hash identifier for the

graph

• Relabeling certain

nodes and erasing

certain redundancies

Statements

Names-

paces

Not

speci-

fied

Linked

Data

N-

triple

Fernandez

et al.

[Fea13]

N-

triples
SPO Resources

Proposal name: RDF HDT

format

• Reducing verbosity

using three elements:

Header, Dictionary,

triples

Blank

nodes

Statements

Names-

paces

Not

speci-

fied

Data

Man-

age-

ment

and

Com-

pression

HDT

RDF Syntax (Physical) Normalization

Vrandecic

et al.

[Vea09]

Arbitrary

RDF

âĂŞ file

Not

consid-

ered

Statement

• Defining XML gram-

mar (DTD) to gener-

ate RDF/XML serial-

ization

• Defining SPARQL

query statements

to query the RDF

dataset

-> comparable to the concept

of semantic mediation in

[Kea08]

Blank

nodes

Literals

URIs

Names-

paces

FOAF

vocabu-

lary

Querying XSLT

aDesignates the order of statements in the RDF description, which can be performed following

the subject (S), predicate (P), and/or object (O) elements of the statements (cf. details in Section

4.5.2).

60



CHAPTER 4. Syntactic RDF Normalization

Proof 1 Given two extended statements st+i , st+j ∈ ST+(G) where st+i =st st
+
j , applying

Rule 1 on G produces an RDF graph G′ which is identical to G except that in G′: the

redundant extended statement st+j has been removed. This means that:

– When st+j .to = “l” ∨ st+j .to = “u”, the set of extended statements in the resulting

graph G′ is included in that of G, i.e., ST+(G′) ⊆ ST+(G) such that ST+(G′) =

ST+(G)− {st+j } since exactly one extended statement st+j has been removed, which

means |ST+(G′)| = |ST+(G)| − 1.

– When st+j .to = “l”, the set of literals in the resulting graph G′ is included in that

of G, i.e., L(G′) ⊆ L(G) such that L(G′) = L(G)− {st+j .o} since exactly one literal

value st+j .o has been removed, which means |L(G′)| = |L(G)| − 1.

Lemma 2 Given two subsets ST+
i (G), ST+

j (G) ⊂ ST+(G) where ∀st+i ∈ ST
+
i (G)∧st+j ∈

ST+
j (G) / st+i =st st

+
j , applying Rule 1 on G produces an RDF Graph G′ verifying at

least one of the following features:

- ST+(G′) ⊆ ST+(G) / |ST+(G′)| = |ST+(G)| − |ST+
i (G) ∩ ST+

j (G)| (reducing the

number of edge duplications by |ST+
i (G)∩ST+

j (G)| where the object of the statement

is represented either as a IRI or as a literal);

- L(G′) ⊆ L(G) / |L(G′)| = |L(G)| − |Li(G) ∩ Lj(G)| (reducing the number of node

duplications by |Li(G) ∩ Lj(G)| where the object of the statement is represented as

a literal).

Proof 2 Given two extended statements ST+
i (G), ST+

j (G) ⊂ ST+(G) where ∀st+i ∈
ST+

i (G) ∧ st+j ∈ ST
+
j (G) / st+i =st st

+
j , applying Rule 1 on G produces an RDF graph

G′ which is identical to G except that in G′: redundant extended statements in ST+
i (G)∩

ST+
j (G) have been removed. This means that:

– When (∀st+ ∈ (ST+
i (G) ∩ ST+

j (G)) / st+.to = “l” ∨ st+.to = “u”), the set of ex-

tended statements in the resulting graph G′ is included in that of G, i.e., ST+(G′) ⊆
ST+(G) such that ST+(G′) = ST+(G)− (ST+

i (G)∩ST+
j (G)) since extended state-

ments duplicated in ST+
i (G)∩ST+

j (G) have been removed, which means |ST+(G′)| =
|ST+(G)| − |ST+

i (G) ∩ ST+
j (G)|.

– When ∀st+ ∈ (ST+
i (G)∩ ST+

j (G)) / st+.to = “l”, the set of literals in the resulting

graph G′ is included in that of G, i.e., L(G′) ⊆ L(G) such that L(G′) = L(G) −
(Li(G) ∩ Lj(G)) since Li(G) ∩ Lj(G) literals, which are the objects of the extended

statements where Li(G)∩Lj(G), have been removed, which means |L(G′)| = |L(G)|−
|Li(G) ∩ Lj(G)|.

61



4.3. Normalization Rules

Figure 4.3: RDF graph example with edge duplication and literal node duplication.

Properties of Rule 1:

Following Lemmas 1 and 2, we can produce a set of properties which characterize an

input RDF graph G, and its transformed counterpart G′ resulting from applying Rule 1:

(a) ST+(G′) ⊆ ST+(G), i.e., |ST+(G′)| ≤ |ST+(G)| (reducing the number of duplicate

statements, which amounts to reducing both edge and node duplications)

(b) L(G′) ⊆ L(G), i.e., |L(G′)| ≤ |L(G)| (reducing literal node duplications)

(c) U(G′) = U(G), i.e., |U(G′)| = |U(G)| (preserving IRI nodes and thus all the corre-

sponding information)

(d) BN(G′) ⊆ BN(G), i.e., |BN(G′)| = |BN(G)| (since we are preserving here blank

nodes. Please note they are analyzed by Rule 2 )

(e) ∀st+i , st
+
j ∈ ST+(G′) / i 6= j =⇒ st+i 6=st st

+
j (all duplicate statements, inducing the

aforementioned edge and node duplications, are eliminated)

(f) G′ ⊆ G, i.e., |G′| ≤ |G| (since G’ might suffer from other kinds of duplications which

are not resolved with Rule 1 )

(g) ‖G′‖ = ‖G‖ (since minimum cardinalities are naturally equivalent)

(h) G′ =RDFG G (which carries directly from the above properties)

Example 1: Consider the RDF Graph G in Figure 4.3. One can realize that G contains

a pair of duplicated edges: st+3 :< u1u, p4
⊥
⊥, u2u > and st+4 :< u1u, p4

⊥
⊥, u2u >, as well as a

pair of duplicated nodes: st+8 :< bn2bn, p3
fr
⊥ , l2l > and st+9 :< bn2bn, p3

fr
⊥ , l2l >. Applying

Rule 1 on G produces an RDF graph G′ where both edge and node duplications have

been removed as shown in Figure 4.4. As a result, G′ fulfills the following properties:

(a) |ST+(G)| = 9 ∧ |ST+(G′)| = |ST+(G)| − 2 = 7 =⇒ |ST+(G′)| < |ST+(G)|

(b) |L(G)| = 5 ∧ |L(G′)| = |L(G)| − 1 = 4 =⇒ |L(G′)| < |L(G)|

62



CHAPTER 4. Syntactic RDF Normalization

Figure 4.4: RDF graph obtained after applying R1 on the RDF Graph in Figure 4.3

(c) |U(G)| = 2 ∧ |U(G′)| = 2 =⇒ |U(G′)| = |U(G)|

(d) |BN(G)| = 2 ∧ |BN(G′)| = 2 =⇒ |BN(G′)| = |BN(G)|

(e) ∀st+i ∈ ST+(G′) / i 6= 3 ∧ i 6= 8 =⇒ st+i 6=st st
+
3 ∧ st

+
i 6= st+8

(f) |G′| = 7 ∧ |G| = 9

(g) ‖G′‖ = ‖G‖ = 4

• Rule 2 - Statement Containment Elimination (R2): It is designed to handle ex-

tended statements and their outgoings, by eliminating edge duplications between IRIs

and/or blank nodes in the outgoing statements, and eliminating node duplications where

the objects of the extended statements are blank nodes linked to the outgoing statements.

More formally:

∀st+i , st
+
j ∈ ST+(G) / i 6= j, if st+j � st

+
i =⇒ remove((st+j ∪O(st+j )), ST+(G))

Given two distinct extended RDF statements st+i and st+j in an RDF graph G where

st+j � st+i , applying Rule 2 on G produces another RDF Graph G′ where st+j has been

removed along with its outgoing statements O(st+j )�

Lemma 3 Given two distinct extended statements st+i , st+j ∈ ST+(G) where st+j � st+i ,

applying Rule 2 on G produces another RDF Graph G′ verifying at least one of the

following features:

- ST+(G′) ⊆ ST+(G) / |ST+(G′)| = |ST+(G)|− (1 + |O(st+j )|) (reducing the number

of node duplications by 1 + |O(st+j )| where the objects of the extended statements are

blank nodes).

- L(G′) ⊆ L(G) / |L(G′)| = |L(G)|− |L(O(st+j ))| (reducing the number of literal node

duplications by |L(O(st+j ))| where the object of the statement is a literal).

63



4.3. Normalization Rules

- BN(G′) ⊆ BN(G) / |BN(G′)| = |BN(G)| − (1 + |BN(O(st+j ))|) (reducing the

number of blank node duplications by 1 + |BN(O(st+j ))| where the statement has a

blank node element).

Proof 3 Given two extended statements st+i , st+j ∈ ST+(G) where st+j � st
+
i , applying

Rule 2 on G produces an RDF graph G′ which is identical to G except that in G′: redun-

dant extended statement st+j and its outgoings O(st+j ) have been removed. This means

that:

– When st+j .to = “bn”, the set of extended statements in the resulting graph G′ is

included in that of G, i.e., ST+(G′) ⊆ ST+(G) such that ST+(G′) = ST+(G) −
({st+j )} ∪ O(st+j )) since st+j and its outgoings O(st+j ) have been removed, which

means |ST+(G′)| = |ST+(G)| − |1 + |O(st+j )|.

– When ∀st+ ∈ O(st+j ) / st+.to = “l”, the set of literals in the resulting set G′ is

included in that of G, i.e., L(G′) ⊆ L(G) such that L(G′) = L(G) − (L(O(st+j )))

since all the duplicated literals of outgoings O(st+j ), have been removed, which means

|L(G′)| = |L(G)| − |L(O(st+j ))|.

– When (st+j .to = “bn”) ∧ (∀st+ ∈ (O(st+j ) / st+.to = “bn”), the set of blank

nodes in the resulting set G′ is included in that of G, i.e., BN(G′) ⊆ BN(G)

such that BN(G′) = BN(G) − ({st+j .o} ∪ BN(O(st+j ))) since st+j .o and its out-

goings BN(O(st+j )) have been removed, which means, |BN(G′)| = |BN(G)| − (1 +

|BN(O(st+j ))|).

Lemma 4 Given two subsets of extended statements ST+
i (G), ST+

j (G) ⊂ ST+(G) where

∀st+i ∈ ST
+
i (G) ∧ st+j ∈ ST

+
j (G) / st+j � st+i , applying Rule 2 on G produces another

RDF Graph G′ verifying at least one of the following features:

- ST+(G′) ⊆ ST+(G) / |ST+(G′)| = |ST+(G)|−(|ST+
i (G)∩ST+

j (G)|+|O(ST+
i (G)∩

ST+
j (G))|) (reducing the number of node duplications by |ST+

i (G) ∩ ST+
j (G)| +

|O(ST+
i (G)∩ST+

j (G))| where the objects of the extended statements are blank nodes).

- L(G′) ⊆ L(G) / |L(G′)| = |L(G)|−|L(O(ST+
i (G)∩ST+

j (G)))| (reducing the number

of literal node duplications by |L(O(ST+
i (G) ∩ ST+

j (G)))| where the objects of the

extended statements of the outgoings are literals).

- BN(G′) ⊆ BN(G) / |BN(G′)| = |BN(G)| − (|BN(ST+
i (G) ∩ ST+

j (G))|+
|BN(O(ST+

i (G) ∩ ST+
j (G)))|) (reducing the number of blank node duplications by

|BNi(G)∩BNj(G)|+ |BN(O(ST+
i (G)∩ST+

j (G)))|) where the extended statements

of the outgoings have blank node elements).

Proof 4 Given two extended statements ST+
i (G), ST+

j (G) ⊂ ST+(G) where ∀st+i ∈
ST+

i (G) ∧ st+j ∈ ST
+
j (G)/st+j � st+i , applying Rule 2 on G produces an RDF graph G′

which is identical to G except that in G′: redundant extended statements in ST+
i (G) ∩

ST+
j (G) and their outgoings O(ST+

i (G)∩ST+
j (G)) have been removed. This means that:

64



CHAPTER 4. Syntactic RDF Normalization

– When ∀st+ ∈ (ST+
i (G) ∩ ST+

j (G)) / st+j .to = “bn”, the set of extended statements

in the resulting graph G′ is included in that of G, i.e., ST+(G′) ⊂ ST+(G) such

that ST+(G′) = ST+(G) − ((ST+
i (G) ∩ ST+

j (G)) ∪ O(ST+
i (G) ∩ ST+

j (G))) since

ST+
i (G)∩ST+

j (G) and its outgoings O(ST+
i (G)∩ST+

j (G)) have been removed, which

means |ST+(G′)| = |ST+(G)| − (|ST+
i (G) ∩ ST+

j (G)|+ |O(ST+
i (G) ∩ ST+

j (G))|).

– When ∀st+ ∈ (ST+
i (G) ∩ ST+

j (G)) ∧ ∀st+o ∈ O(ST+
i (G) ∩ ST+

j (G)) / st+.o =

st+o .s∧st+o .to = “l”, the set of literals in the resulting set G′ is included in that of G,

i.e., L(G′) ⊂ L(G) such that L(G′) = L(G)− (L(O(ST+
i (G) ∩ ST+

j (G)))) since all

the outgoings in O(ST+
i (G) ∩ ST+

j (G)) with duplicated literals, have been removed,

which means |L(G′)| = |L(G)| − |L(O(ST+
i (G) ∩ ST+

j (G)))|.

– When ∀st+ ∈ (ST+
i (G) ∩ ST+

j (G)) ∧ ∀st+o ∈ O(ST+
i (G) ∩ ST+

j (G)) / st+.o =

st+o .s ∧ st+o .to = “bn”, the set of blank nodes in the resulting set G′ is included in

that of G, i.e., BN(G′) ⊂ BN(G) such that BN(G′) = BN(G) − (BN(ST+
i (G) ∩

ST+
j (G))∪BN(O(ST+

i (G)∩ST+
j (G)))) since BN(ST+

i (G)∩ST+
j (G)) and its out-

goings BN(O(ST+
i (G) ∩ ST+

j (G))) have been removed, which means |BN(G′)| =

|BN(G)| − (|BNi(G) ∩BNj(G)|+ |BN(O(ST+
i (G) ∩ ST+

j (G)))|).

Properties of Rule 2:

Following Lemmas 3 and 4, we can also produce a set of properties which characterizes

an input RDF graph G and its transformed counterpart G′ resulting from applying Rule

2:

(a) ST+(G′) ⊆ ST+(G), i.e., |ST+(G′)| ≤ |ST+(G)| (reducing the number of duplicate

statements, which amounts to reducing both edge and node duplications)

(b) L(G′) ⊆ L(G), i.e., |L(G′)| ≤ |L(G)| (reducing literal node duplications)

(c) U(G′) = U(G), i.e., |U(G′)| = |U(G)| (preserving IRI nodes and thus all the neces-

sary information)

(d) BN(G′) ⊆ BN(G), i.e., |BN(G′)| ≤ |BN(G)| (reducing blank node duplications)

(e) ∀st+i , st
+
j ∈ ST+(G′) =⇒ st+j � st+i (all extended statements contained in others,

inducing the aforementioned edge and node duplications, are eliminated)

(f) G′ ⊆ G, i.e., |G′| ≤ |G| (since G’ might suffer from other kinds of duplications which

are not resolved with Rule 2 )

(g) ‖G′‖ = ‖G‖ (since minimum cardinalities are naturally equivalent)

(h) G′ =RDFG G (which carries directly from the above properties)

Example 2: Consider the RDF Graph G in Figure 4.4. One can realize that G contains

an extended statement contained in another: st+2 � st
+
1 . These two extended statements

induce the following node duplications in their outgoing statements:

65



4.3. Normalization Rules

Figure 4.5: RDF graph obtained after applying R2 on the RDF graph in Figure 4.4.

st+4 :< bn1bn, p2
⊥
string, l1l >, st+6 :< bn2bn, p2

⊥
string, l1l > and

st+5 :< bn1bn, p3
fr
⊥ , l2l >, st+7 :< bn2bn, p3

fr
⊥ , l2l >

Consequently, applying Rule 2 on G produces an RDF graph G′ where node duplications

have been removed as shown in Figure 4.5. As a result, G′ fulfills the following properties:

(a) |ST+(G)| = 7 ∧ |O(st+2 )| = 2 and |ST+(G′)| = |ST+(G)| − 1 − |O(st+2 )| = 4 =⇒
|ST+(G′)| < |ST+(G)|

(b) |L(G)| = 4 ∧ |L(O(st+2 ))| = 2 and |L(G′)| = |L(G)| − |O(st+2 )| = 2 =⇒ |L(G′)| <
|L(G)|

(c) |U(G)| = 2 ∧ |U(G′)| = 2 =⇒ |U(G′)| = |U(G)|

(d) |BN(G)| = 2 ∧ |BN(G′)| = |BN(G)| − 1 =⇒ |BN(G′)| < |BN(G)|

(e) ∀st+i ∈ ST+(G′) / i 6= j =⇒ st+1 � st+i

(f) |G′| = |G| = 4

(g) ‖G′‖ = ‖G‖ = 4

Theorem 1 Given an RDF graph G, applying Rules 1 and 2 on the set of extended statements

of G, ST+(G), produces a graph G̃ which is a normalized version of G, i.e., G̃ = Norm(G),

cf. Definition 4.4, where all logical duplications (i.e., Problems 1-3, cf. Section 3.1) have been

eliminated in G̃.

In goes without saying that Lemma 1 highlights the combined properties of Lemmas

1-4, which comes down to the (more general) properties of Lemmas 3-4, characterizing the

relationship between an RDF graph G and its normalized counterpart G̃.

4.3.2 Solving Physical Disparities

Physical disparities related to namespace duplication, unused namespaces, and node order

variation (presented in Section 3.2) can be eliminated from an RDF file F by applying the

following transformation rules:

66



CHAPTER 4. Syntactic RDF Normalization

• Rule 3 - Namespace Duplication Elimination (R3): It is designed to eliminate

namespace duplications along with corresponding namespace prefixes. More formally:

∀qni, qnj ∈ QN(F ) / i 6= j, if qni.nsi = qnj .nsj =⇒ remove({qnj}, QN(F ))∧

replace(qnj .pxj , qni.pxi, ST
+(F ))�

Lemma 5 Given two Qnames qni, qnj ∈ QN(F) where qni.nsi = qnj .nsj, applying Rule

3 on F produces an RDF file F ′ verifying the following features:

- NS(F ′) ⊆ NS(F ) / |NS(F ′)| = |NS(F )| − 1 (reducing the number of namespace

duplications by 1).

- Px(F ′) ⊆ Px(F ) / |Px(F ′)| = |Px(F )| − 1 (reducing the number of prefixes -

corresponding to the duplicated namespaces - by 1).

Proof 5 Given two Qnames qni, qnj ∈ QN(F) where qni.nsi = qnj .nsj where qni =

qnj, applying Rule 3 on F produces an RDF file F ′ which is identical to F except that in

F ′: redundant qname qnj has been removed. This means that:

– The set of namespaces in the resulting file F , NS(F ′) ⊆ NS(F ) / NS(F ′) =

NS(F ) − {qnj .nsj} since exactly one namespace qnj .nsj has been removed, which

means |NS(F ′)| = |NS(F )| − 1.

– The set of prefixes in the resulting file F ′, Px(F ′) ⊆ Px(F ) / Px(F ′) = Px(F ) −
{qnj .pxj} since exactly one prefix qnj .pxj has been removed, which means |Px(F ′)| =
|Px(F )| − 1.

Lemma 6 Given two subsets QNi(F ), QNj(F ) ⊂ QN+(F ) where ∀qni.nsi ∈ NSi(F ) ∧
qnj .nsj ∈ NSj(F ) / qni.nsi = qnj .nsj, applying Rule 3 on F produces an RDF file F ′

verifying the following features:

- NS(F ′) ⊆ NS(F ) / |NS(F ′)| = |NS(F )|−|NSi(F )∩NSj(F )| (reducing the number

of namespace duplications by |NSi(F ) ∩NSj(F )|).

- Px(F ′) ⊆ Px(F ) / |Px(F ′)| = |Px(F )| − |Pxi(F ) ∩ Pxj(F )| (reducing the number

of prefixes - corresponding to the duplicated namespaces - by |Pxi(F ) ∩ Pxj(F )|).

Proof 6 Given two subsets of Qnames QNi(F ), QNj(F ) ⊂ QN+(F ) where ∀qni.nsi ∈
NSi(F )∧ qnj .nsj ∈ NSj(F ) / qni.nsi = qnj .nsj, applying Rule 3 on F produces an RDF

file F ′ which is identical to F except that in F ′: redundant qnames QNi(F ) ∩ QNj(F )

have been removed. This means that:

67



4.3. Normalization Rules

– The set of namespaces in the resulting file F , NS(F ′) ⊆ NS(F ) / NS(F ′) =

NS(F ) − (NSi(F ) ∩ NSj(F )) since namespaces in NSi(F ) ∩ NSj(F ) have been

removed, which means |NS(F ′)| = |NS(F )| − |NSi(F ) ∩NSj(F )|.

– The set of prefixes in the resulting file F ′, Px(F ′) ⊆ Px(F ) / Px(F ′) = Px(F ) −
(Pxi(F ) ∩ Pxj(F )) since prefixes in Pxi(F ) ∩ Pxj(F ) have been removed, which

means |Px(F ′)| = |Px(F )| − |Pxi(F ) ∩ Pxj(F )|.

Properties of Rule 3:

Following Lemmas 5 and 6, we can produce a set of properties which characterizes an

input RDF file F and its transformed counterpart F ′ resulting from applying Rule 3:

(a) ∀nsi, nsj ∈ NS(F ′) / i 6= j =⇒ nsi 6= nsj (eliminating all namespace duplications)

(b) NS(F ′) ⊆ NS(F ), i.e., |NS(F ′)| ≤ |NS(F )| (reducing the number of namespaces,

as a result of eliminating namespace duplications)

(c) ∀pxi, pxj ∈ PX(F ′) / i 6= j =⇒ pxi 6= pxj (eliminating all prefixes corresponding to

the duplicate namespaces)

(d) Px(F ′) ⊆ Px(F ), i.e., Px(F ′) ⊆ Px(F ), i.e.,|Px(F ′)| ≤ |Px(F )| (reducing the

number of prefixes, as a result of eliminating prefix duplications)

(e) Corresponding RDF graphs remain the same: G′ = G, i.e., |G′| = |G| (since extended

statements are not affected at the logical level)

(f) F ′ =RDFF F (naturally carries from the above properties)

Example 3: Consider the RDF file F in Figure 3.3. One can realize that F contains the

following Qnames with namespace duplications and corresponding prefixes:

qn1 < px1, ns1 >=⇒ px1 = “ex”, ns1 = “http : //example.org/stuff/1.0/” (line 4) ∧

qn2 < px2, ns2 >=⇒ px2 = “ex1”, ns2 = “http : //example.org/stuff/1.0/” (line 5)

Applying Rule 3 on F produces an RDF file F ′ where namespace duplications with

corresponding prefixes have been removed as shown in Figure 4.6. As a result, F ′ fulfills

the following properties:

(a) |NS(F )| = 4 ∧ |NS(F ′)| = |NS(F )| − 1 = 3 =⇒ |NS(F ′)| < |NS(F )|
(considering the default “http://www.w3.org/1999/02/22-rdf-syntax-ns” as a name

space)

(b) ∀qni.nsi ∈ NS(F ′) / i 6= 1 =⇒ qn1.ns1 6= qni.nsi

(c) |Px(F )| = 4 ∧ |Px(F ′)| = |Px(F )| − 1 = 3 =⇒ |Px(F ′)| < |Px(F )|
(considering the default “rdf” as prefix)

68



CHAPTER 4. Syntactic RDF Normalization

Figure 4.6: RDF file obtained after applying R1, R2 and R3 on the RDF file in Figure 3.3

(d) ∀pxi ∈ Px(F ′) / i 6= 1 =⇒ px1 6= pxi

(e) |G′| = |G| = 4 (since the files’ RDF graphs remain unchanged)

• Rule 4 - Unused Namespace Elimination (R4): It is designed to eliminate unused

namespaces1 with their respective prefixes. More formally:

∀qni.nsi ∈ NS(F ), if qni.nsi /∈ NS(G) =⇒ remove({qni}, QN(F )).

Given qni in an RDF file F where qni.nsi is not used in any RDF statement in F,

applying R4 on F produces another RDF file F ′ where unused namespace qni.nsi and its

respective prefix pxi have been removed�

Lemma 7 Given a Qname qni ∈ QN(F ) where qni.nsi /∈ NS(G), applying Rule 4 on F

produces an RDF file F ′ verifying the following feature:

QN(F ′) ⊆ QN(F ) / |QN(F ′)| = |QN(F )| − 1 (reducing the number of unused QNames

by 1).

Proof 7 Given a Qname qni ∈ QN(F ) where qni.nsi /∈ NS(G), applying Rule 4 on

F produces an RDF file F ′ which is identical to F except that in F ′: unused qname qni

has been removed. This means that the set of qnames in the resulting file F , QN(F ′) ⊆
QN(F ) / QN(F ′) = QN(F ) − {qni} since exactly one qname qni has been removed,

which means |QN(F ′)| = |QN(F )| − 1.

1An unused namespace is a namespace which is mention in the serialization file but which is not use in any

of the statements, it is means, they will not appear in the Graph.

69



4.3. Normalization Rules

Lemma 8 Given a subset QNi(F ) ⊂ QN(F ) where ∀qni.nsi ∈ QNi(F ) / qni.nsi /∈
NS(G), i.e., UNS(F ) = UNS(F ) ∪ {qni.nsi}, applying Rule 4 on F produces an RDF

file F ′ verifying the following feature:

QN(F ′) ⊆ QN(F ) / |QN(F ′)| = |QN(F )| − |QN(UNS(F ))| (reducing the number of

unused QNames by |QN(UNS(F ))|).

Proof 8 Given a set Qname QNi(F ) ⊂ QN(F ) where ∀qni.nsi ∈ QNi(F )/qni.nsi /∈
NS(G), i.e., UNS(F ) = UNS(F )∪{qni.nsi}, applying Rule 4 on F produces an RDF file

F ′ which is identical to F except that in F ′: unused qnames set QN(UNS(F )) has been

removed. This means that the set of qnames in the resulting file F , QN(F ′) ⊆ QN(F ) /

QN(F ′) = QN(F )− (QN(UNS(F ))) since unused qnames in QN(UNS(F )) have been

removed, which means |QN(F ′)| = |QN(F )| − |QN(UNS(F ))|.

Properties of Rule 4:

Following Lemmas 7 and 8, we can produce a set of properties which characterizes an

input RDF file F and its transformed counterpart F ′ resulting from applying Rule 4:

(a) NS(F ′) ⊆ NS(F ), i.e., |NS(F ′)| ≤ |NS(F )| (reducing the number of unused names-

paces)

(b) Px(F ′) ⊆ Px(F ), i.e.,|Px(F ′)| ≤ |Px(F )| (reducing the number of unused prefixes)

(c) NS(G′) ⊆ NS(F ′), i.e., |NS(G′)| = |NS(F ′)| (the number of used namespaces in

the RDF Graph becomes equal to that in the corresponding RDF file)

(d) Corresponding RDF graphs remain the same: |G′| = |G| (since extended statements

are not affected at the logical level)

(e) F ′ =RDFF F (naturally carries from the above properties)

Example 4: Consider the RDF file F in Figure 4.6. One can realize that F contains the

following unused namespace and corresponding prefix:

ns3 = “http : //purl.org/dc/elements/1.1/”→ px3 = “dc” (line 3)

Applying Rule 4 on F produces an RDF file F ′ where the unused namespace and its

corresponding prefix have been removed as shown in Figure 4.7. As a result, F ′ fulfills

the following properties:

(a) |NS(F )| = 3 ∧ |NS(F ′)| = |NS(F )| − 1 = 2 =⇒ |NS(F ′)| < |NS(F )|

(b) |Px(F )| = 3 ∧ |Px(F ′)| = |Px(F )| − 1 = 2 =⇒ |Px(F ′)| < |Px(F )|

(c) |NS(F )| = 2 ∧ |NS(G′)| = 2 =⇒ |NS(F ′)| = |NS(G′)|

70



CHAPTER 4. Syntactic RDF Normalization

Figure 4.7: RDF file obtained after applying R4 on the RDF file in Figure 4.6.

(d) |G′| = |G| = 4 (since the files’ RDF graphs remain unchanged)

• Rule 5 - Reordering (R5): It is designed to solve the varying node order problem

by imposing a predefined (user-chosen) order on all statements of an RDF file F ′. More

formally:

∀st+i , st
+
j ∈ ST+(F ), order(st+i , st

+
j , F, p̃) =⇒ st+i <p̃ st

+
j

Given the extended statements in an RDF file F, where stated in F following an ini-

tial order, applying Rule 5 using the order function (cf. Section 4.1.2) with ordering

parameter p̃ (based on our statement expression order detailed in Section 4.5.2.2) on the

two extended statements in F produces an RDF file F ′ which is equal to F, F ′ =RDFF F ,

where all the statements have been ordered following the (user-chosen) order type pa-

rameter p̃�

The parameter p̃ is a tuple composed of indexing order “iorder” and sorting criteria

“sortc” (the values of these two elements are detailed in Section 4.5.2.2), represented by

p̃ :< iorder, sortc >. The default value for the parameter p̃ in our proposal is < sop, asc >

representing an ascending order of statements w.r.t. their subjects / objects / predicates

(sop).

Properties of Rule 5:

(a) F̃ =RDFF F (both files having equal RDF graphs and the same encoding format)

(b) |F | = |F̃ | (both files having the same number of statements)

71



4.3. Normalization Rules

(c) The only difference between F and F̃ is in statement ordering, noted order(ST+(F ))

6=p̃ order(ST
+(F̃ )) (they are different according to their respective p̃ parameter or-

der)

Example 5: Consider RDF file F in Figure 4.7, ordering ST+(F ) using our default

ordering parameter p̃ :< SOP, asc > (Subject-Object-Predicate in ascending order fol-

lowing our sorting process detailed in Section 4.5.2.2) produces an RDF file F ′ where all

statements have been re-ordered accordingly, as shown in Figure 4.8.

Figure 4.8: RDF file result after applying R5 in Figure 4.7.

Theorem 2 Given an RDF file F, applying Rules 3, 4 and 5 on F produces a file F̃ which is

a normalized version of F, i.e., F̃ = Norm(F), cf. Definition 4.4, where all physical disparities

(i.e., Problems 4-6, cf. Section 3.2) have been eliminated in F̃ .

In goes without saying that Lemma 2 highlights the combined properties of Lemmas 5-8,

characterizing the relationship between an RDF file F and its normalized counterpart F̃ .

Table 4.7 provides a snapshot of all normalization rules with their properties. Note that

the problems related to element types and language tags can also be related to the semantic

meaning of corresponding elements, and will be further investigated using dedicated semantic-

aware transformation rules which we report to a subsequent study.

72



CHAPTER 4. Syntactic RDF Normalization

T
ab

le
4.

6:
R

D
F

d
es

cr
ip

ti
on

n
or

m
al

iz
at

io
n

ru
le

s
#

N
o
ta

ti
o
n

F
e
a
tu

re
s

o
f

th
e

L
e
m

m
a

P
ro

p
e
rt

ie
s

L
o
g
ic

a
l

R
u
le

s

R
1
∀s
t+ i
,s
t+ j

∈
S
T

+
(G

)

/
i

6=
j,

if

st
+ i

=
s
t

st
+ j

=
⇒

re
m
ov
e(
{s
t+ j
},
S
T

+
(G

))

L
em

m
a

1

-
S
T

+
(G

′ )
⊆
S
T

+
(G

)
/
|S
T

+
(G

′ )
|=
|S
T

+
(G

)|
−

1

-
L

(G
′ )
⊆
L

(G
)
/
|L

(G
′ )
|=
|L

(G
)|
−

1

L
em

m
a

2

-
S
T

+
(G

′ )
⊆

S
T

+
(G

)
/
|S
T

+
(G

′ )
|

=
|S
T

+
(G

)|
−

|S
T

+ i
(G

)
∩
S
T

+ j
(G

)|

-
L

(G
′ )
⊆
L

(G
)
/
|L

(G
′ )
|=
|L

(G
)|
−
|L

i(
G

)
∩
L
j
(G

)|

(a
)
S
T

+
(G

′ )
⊆
S
T

+
(G

),
i.
e.

,
|S
T

+
(G

′ )
|≤
|S
T

+
(G

)|

(b
)
L

(G
′ )
⊆
L

(G
),

i.
e.

,
|L

(G
′ )
|≤
|L

(G
)|

(c
)
U

(G
′ )

=
U

(G
),

i.
e.

,
|U

(G
′ )
|=
|U

(G
)|

(d
)
B
N

(G
′ )
⊆
B
N

(G
),

i.
e.

,
|B
N

(G
′ )
|=
|B
N

(G
)|

(e
)
∀s
t+ i
,s
t+ j
∈
S
T

+
(G

′ )
/
i
6=
j

=
⇒
st

+ i
6=

s
t
st

+ j

(f
)
G

′
⊆
G

,
i.
e.

,
|G

′ |
≤
|G
|

(g
)
‖G

′ ‖
=
‖G
‖

(f
)
G̃

=
R
D
F
G
G

R
2
∀s
t+ i
,s
t+ j
∈
S
T

+
(G

)
/

i
6=
j,

if
st

+ j
�
st

+ i
=
⇒

re
m
ov
e(

(s
t+ j
∪
O

(s
t+ j

))
,

S
T

+
(G

))

L
em

m
a

3

-
S
T

+
(G

′ )
⊆
S
T

+
(G

)
/
|S
T

+
(G

′ )
|=
|S
T

+
(G

)|
−

(1
+

|O
(s
t+ j

)|)

-
L

(G
′ )
⊆
L

(G
)
/
|L

(G
′ )
|=
|L

(G
)|
−
|L

(O
(s
t+ j

))
|

-
B
N

(G
′ )
⊆

B
N

(G
)
/
|B
N

(G
′ )
|

=
|B
N

(G
)|
−

(1
+

|B
N

(O
(s
t+ j

))
|)

L
em

m
a

4

-
S
T

+
(G

′ )
⊆

S
T

+
(G

)
/
|S
T

+
(G

′ )
|

=
|S
T

+
(G

)|
−

(|S
T

+ i
(G

)
∩
S
T

+ j
(G

)|
+
|O

(S
T

+ i
(G

)
∩
S
T

+ j
(G

))
|)

-
L

(G
′ )
⊆
L

(G
)
/
|L

(G
′ )
|

=
|L

(G
)|
−
|L

(O
(S
T

+ i
(G

)
∩

S
T

+ j
(G

))
)|

-
B
N

(G
′ )
⊆

B
N

(G
)
/
|B
N

(G
′ )
|

=
|B
N

(G
)|
−

(|B
N

(S
T

+ i
(G

)
∩

S
T

+ j
(G

))
|

+
|B
N

(O
(S
T

+ i
(G

)
∩

S
T

+ j
(G

))
)|)

(a
)
S
T

+
(G

′ )
⊆
S
T

+
(G

),
i.
e.

,
|S
T

+
(G

′ )
|≤
|S
T

+
(G

)|

(b
)
L

(G
′ )
⊆
L

(G
),

i.
e.

,
|L

(G
′ )
|≤
|L

(G
)|

(c
)
U

(G
′ )

=
U

(G
),

i.
e.

,
|U

(G
′ )
|=
|U

(G
)|

(d
)
B
N

(G
′ )
⊆
B
N

(G
),

i.
e.

,
|B
N

(G
′ )
|≤
|B
N

(G
)|

(e
)
∀s
t+ i
,s
t+ j
∈
S
T

+
(G

′ )
=
⇒
st

+ j
�
st

+ i

(f
)
G

′
⊆
G

,
i.
e.

,
|G

′ |
≤
|G
|

(g
)
‖G

′ ‖
=
‖G
‖

(h
)
G̃

=
R
D
F
G
G

73



4.3. Normalization Rules

T
ab

le
4.

7:
R

D
F

d
es

cr
ip

ti
on

n
or

m
al

iz
at

io
n

ru
le

s
#

N
o
ta

ti
o
n

F
e
a
tu

re
s

o
f

th
e

L
e
m

m
a

P
ro

p
e
rt

ie
s

P
h
y
si

c
a
l

R
u
le

s

R
3
∀q
n
i,
qn

j
∈

Q
N

(F
)

/
i

6=
j,

if

qn
i.
n
s i

=
qn

j
.n
s j

=
⇒

re
m
ov
e(
{q
n
j
},

Q
N

(F
))

∧
re
p
la
ce

(q
n
j
.p
x
j
,
qn

i.
p
x
i,
F

)

L
em

m
a

5

-
N
S

(F
′ )
⊆
N
S

(F
)
/
|N
S

(F
′ )
|=
|N
S

(F
)|
−

1

-
P
x

(F
′ )
⊆
P
x

(F
)
/
|P
x

(F
′ )
|=
|P
x

(F
)|
−

1

L
em

m
a

6

-
N
S

(F
′ )
⊆
N
S

(F
)
/
|N
S

(F
′ )
|=
|N
S

(F
)|
−
|N
S
i(
F

)
∩

N
S
j
(F

)|

-
P
x

(F
′ )
⊆
P
x

(F
)
/
|P
x

(F
′ )
|

=
|P
x

(F
)|
−
|P
x
i(
F

)
∩

P
x
j
(F

)|

(a
)
∀n
s i
,n
s j
∈
N
S

(F̃
)
/
i
6=
j

=
⇒
n
s i
6=
n
s j

(b
)
N
S

(F
′ )
⊆
N
S

(F
),

i.
e.

,
|N
S

(F
′ )
|≤
|N
S

(F
)|

(c
)
∀p
x
i,
p
x
j
∈
P
X

(F
′ )
/
i
6=
j

=
⇒
p
x
i
6=
p
x
j

(d
)
P
x

(F
′ )
⊆
P
x

(F
),

i.
e.

,
|P
x

(F
′ )
|≤
|P
x

(F
)|

(e
)
|G

′ |
=
|G
|

(f
)
F̃

=
R
D
F
F
F

R
4
∀q
n
i.
n
s i

∈
N
S

(F
)

if

qn
i.
n
s i

/∈
N
S

(G
)

=
⇒

re
m
ov
e(
{q
n
i}
,
Q
N

(F
))

L
em

m
a

7

-
Q
N

(F
′ )
⊆
Q
N

(F
)
/
|Q
N

(F
′ )
|=
|Q
N

(F
)|
−

1

L
em

m
a

8

-
Q
N

(F
′ )
⊆

Q
N

(F
)
/
|Q
N

(F
′ )
|

=
|Q
N

(F
)|
−

|Q
N

(U
N
S

(F
))
|

(a
)
N
S

(F
′ )
⊆
N
S

(F
),

i.
e.

,
|N
S

(F
′ )
|≤
|N
S

(F
)|

(b
)
P
x

(F
′ )
⊆
P
x

(F
),

i.
e.

,
|P
x

(F
′ )
|≤
|P
x

(F
)|

(c
)
N
S

(G
′ )
⊆
N
S

(F
′ )

,
i.
e.

,
|N
S

(G
′ )
|=
|N
S

(F
′ )
|

(d
)
|G

′ |
=
|G
|

(e
)
F̃

=
R
D
F
F
F

R
5
∀s
t+ i
,s
t+ j

∈
S
T

+
(F

),

or
d
er

(s
t+ i
,s
t+ j
,
F
,p̃

)
=
⇒

st
+ i
<

p̃
st

+ j

(a
)
F̃

=
R
D
F
F
F

(b
)
|F
|=
|F̃
|

(c
)
or
d
(S
T

+
(F

))
6=

p̃
or
d
(S
T

+
(F̃

))

74



CHAPTER 4. Syntactic RDF Normalization

4.4 Normalization Properties

Based on the individual normalization rules’ properties (highlighted based on their correspond-

ing lemmas in the previous section) allowing both logical and physical normalization, we develop

and discuss in this section the general properties characterizing the quality of our integrated

normalization approach.

Definition 4.5 (Property 1: Completeness) An RDF description D and its transformed

counterpart D′, D′ is said to be complete regarding D if D′ preserves and does not lose any

information w.r.t. D, i.e., each resource, statement, and namespace of D has a corresponding

resource, statement, and namespace in D′. More formally:

D′ , D ⇐⇒



U(D′) = U(D)

BN(D′) ⊆ BN(D)

L(D′) ⊆ L(D)

ST+(D′) ⊆ ST+(D)

NS(D′) ⊆ NS(D)

‖D′‖ = ‖D‖

Lemma 9 . Given an RDF description D, its normalized counterpart D̃ is complete w.r.t. D.

Proof 9 . Given an RDF description D and its normalized counterpard D̃, the following

properties are satisfied:

• Properties resulting from applying rules R1 and R2:

– The sets of IRIs in the original and resulting RDF descriptions D and D̃ are equal,

i.e., U(D̃) = U(D) / |U(D̃)| = |U(D)| since ∀u ∈ U(D̃)⇒ u ∈ U(D).

– The set of blank nodes in the resulting RDF description D̃ is included in that of

D, i.e., BN(D̃) ⊆ BN(D) / |BN(D̃)| ≤ |BN(D)| since ∀bn ∈ BN(D̃) ⇒ bn ∈
BN(D).

– The set of literals in the resulting RDF description D̃ is included in that of D, i.e.,

L(D̃) ⊆ L(D) / |L(D̃)| ≤ |L(D)| since ∀l ∈ L(D̃)⇒ l ∈ L(D).

– The set of extended statements in the resulting RDF description D̃ is included in that

of D, i.e., ST+(D̃) ⊆ ST+(D) / |ST+(D̃)| ≤ |ST+(D)| since (∀st+ ∈ ST+(D̃) ⇒
st+ ∈ ST+(D)) ∨ (∀st+i , st

+
j ∈ ST+(D̃), st+i � st

+
j ⇒ st+i ∈ ST+(D)).

• Properties resulting from applying rules R3 and R4:

75



4.4. Normalization Properties

– The set of namespaces in the resulting RDF description D̃ is included in that of D,

i.e., NS(D̃) ⊆ NS(D) / |NS(D̃)| ≤ |NS(D)| since ∀ns ∈ NS(D̃)⇒ ns ∈ NS(D).

– The set of namespaces in the resulting RDF description D̃ is equal to that of D, i.e.,

NS(F̃ ) = NS(G) / |NS(F̃ )| = |NS(G)| since F̃ is one serialization of D and G̃ is

the Graph of D.

• The minimum cardinality of the resulting RDF description D̃ has to be the same of the

minimum cardinality of D since D̃ is the same RDF description without duplications and

unused information.

Therefore, we conclude that D̃ is complete w.r.t. D �

Definition 4.6 (Property 2: Minimality) An RDF Description D is said to be minimal,

noted by Dmin, if all the resources, statements, and namespaces of D are unique (i.e., they do

not have duplicates in D) and all the namespaces are used (i.e., there are no unused names-

paces). More formally:

Dmin⇐⇒ ∀i 6= j


∀ui, uj ∈ U(D) =⇒ ui 6= uj

∀bni, bnj ∈ BN(D) =⇒ bni 6= bnj

∀st+i , st
+
j ∈ ST+(D) =⇒ st+i 6=st st

+
j

∀nsi, nsj ∈ NS(D) =⇒ nsi 6= nsj =⇒ UNS(D) = ∅

Lemma 10 . Given an RDF description D, its normalized counterpart D̃ is minimal.

Proof 10 . Given an RDF description D, applying rules Rules 1, 2 and 3 produces a nor-

malized RDF description D̃ verifying the following properties:

* ∀ui, uj ∈ U(D̃) =⇒ ui 6= uj. Following Rules 1 and 2 (properties “c” and “e”)

* ∀bni, bnj ∈ BN(D̃) =⇒ bni 6= bnj. Following Rules 1 and 2 (properties “d” and “e”)

* ∀st+i , st
+
j ∈ ST+(D̃) =⇒ st+j 6=st st

+
i . Following Rules 1 and 2 (properties “a” and “e”)

* ∀nsi, nsj ∈ NS(D̃) =⇒ nsi 6= nsj. Following Rule 3 (properties “a” and “b”)

Therefore, we conclude that D̃ is minimal �

Definition 4.7 (Property 3: Compliance) An RDF file F is said to be compliant with

the RDF standard if: i) its corresponding RDF graph G is valid w.r.t. the RDF standard, i.e.,

G’s structure remains compliant with RDF serialization standards (e.g., RDF/XML)), ii) all

76



CHAPTER 4. Syntactic RDF Normalization

extended statements in G also appear in F and, iii) all namespaces used in G also appear in

F . More formally:

F BRDF ⇐⇒


GBRDF

|ST+(G)| = |ST+(F )|
|NS(G)| = |NS(F )|

Lemma 11 . Given an RDF file F , its normalized counterpart F̃i is compliant with the RDF

standard.

Proof 11 . Given and RDF file F and its normalized counterpart F̃ , with G and G̃ repre-

senting their corresponding RDF graphs:

• ∀st+i , st
+
j ∈ ST+(G) / i 6= j, if st+i =st st

+
j =⇒ G̃ will be identical to G except that st+j

has been removed from G̃ (satisfying R1). Hence, if GBRDF =⇒ G̃BRDF

• ∀st+i , st
+
j ∈ ST+(G) / i 6= j, if st+j � st+i =⇒ G̃ will be identical to G except that

st+j ∪O(st+j ) have been removed from G̃ (satisfying R2). Hence, if GBRDF =⇒ G̃BRDF

• ∀qni, qnj ∈ QN(F ) / i 6= j, if qni.nsi = qnj .nsj =⇒ F̃ will be identical to F except that

qnj has been removed from F̃ (satisfying R3). Hence, if F BRDF =⇒ F̃ BRDF

• ∀qni.nsi ∈ NS(F ) if qni.nsi /∈ NS(G) =⇒ F̃ will be identical to F except that qnj has

been removed from F̃ (satisfying R4). Hence, if (F ∧G)BRDF =⇒ (F̃ ∧ G̃)BRDF

• ∀st+i , st
+
j ∈ ST+(F ), order(st+i , st

+
j , F, p̃) =⇒ F̃ will be identical to F except that in

F̃ : st+i <p̃ st
+
j after ordering (satisfying R5). Hence, if F BRDF =⇒ F̃ BRDF

Therefore, given the above such that |ST+(G)| = |ST+(F )| and |NS(G)| = |NS(F )|, we con-

clude that F̃ is compliant with the RDF standard �

Definition 4.8 (Property 4: Consistency) Given an RDF description D and its trans-

formed counterpart D′, D′ is said to be consistent if D′ verifies all three properties: i) complete-

ness w.r.t. D, ii) minimality, and iii) compliance w.r.t. the RDF standard; which, combined,

ensure the data quality of the description. Formally:

D′ is consistent⇐⇒


D′ , D holds

D′ = D′min holds

F ′ BRDF holds

Lemma 12 . Given an RDF description D, its normalized counterpart D̃ is consistent w.r.t.

D.

77



4.5. RDF Normalization Process

Proof 12 . Given an RDF description D and its normalized counterpart D̃:

• D̃ , D following Lemma 9, i.e., D̃ is complete w.r.t. D since it preserves and does not

loose any information w.r.t. D.

• D̃ = Dmin following Lemma 10, i.e., D̃ is minimal such that all statements, resources,

and namespaces are unique in D̃.

• Given F̃ the serialization of D̃, F̃ BRDF following Lemma 11, i.e., F̃ is compliant with

the RDF standard.

Therefore, we conclude that D̃ is consistent �

Verifying RDF description consistency means that we will be preserving all the IRIs and

namespaces (with their prefixes) in the normalized RDF description which can be reused later.

This corresponds to the notion of information reusability which is discussed in existing studies1.

Through the shareability of the RDF standard, the resources will support the reusability of

metadata on the Web. With reusability, RDF descriptions can be more robust (as discussed in

the Sections 1 and 4.2), while saving on storage space by avoiding duplications.

4.5 RDF Normalization Process

The overall architecture of our R2NR (RDF to Normalized RDF) framework is depicted in

Figure 4.9. It consists of two main components: i) Logical Normalization and ii) Physical

Normalization. In short, both components have different algorithms to control and manage the

redundancies and disparities discussed in Section 3, by implementing our normalization rules

developed in Section 4.3. R2NR accepts as input: a) the RDF graph (logical representation) or

RDF file (physical representation) to be normalized, and b) user parameters related to the RDF

output form and prefix renaming, enabling the user to tune the results according to her/his

requirements.

Note that the development of separate components is a design choice to: i) emphasize

the modularity of our approach (allowing to easily integrate additional algorithms or modules

in the future), and ii) enable the user to easily customize the normalization process (depending

on the application at hand). In the following, we describe each component in more details.

1This is comparable to the notion of map function in [Gea11] where authors verify that RDF files have valid

structures and contain necessary information (namely IRIs), as a pre-processing step before storage in an RDF

database. Yet, the authors in [Gea11] focus on the general theoretical foundations of RDF processing, and do

not specifically target normalization problems (cf. Section 4.2.2).

78



CHAPTER 4. Syntactic RDF Normalization

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

Input 

 

 

 

 

 

RDF Description 
D 

 

 

 

 

 

User parameters:  
{Output Format (OF), 
Prefixing Renaming 

(PR)} 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logical Normalization 

 

 

 

 

 

Physical Normalization 

 

 

 

 

 

Redundancy 
Controller 

 

 

 

 

 

Statements 
Generator 

 

 

 

 

 

Namespaces 
Controller 

 

 

 

 

 

Sorting 
Processor 

 

 

 

 

 

Formatting 
Processor 

 

 

 

 

 

Output 

 

 

 

 

 

 

 

Normalized  
RDF Description   

 
 

 

 

 

 

OF 

PR 

Namespace DB 

Figure 4.9: Overall architecture of our R2NR framework.

4.5.1 Logical Normalization

The first step in our normalization process is to perform logical normalization, allowing to

eliminate all logical redundancies (discussed in Section 3.1) from nodes and edges of the RDF

graph, and obtain extended statements without duplications (cf. Rules 1 and 2). For this

purpose, we divide logical normalization in two sub-components:

4.5.1.1 Statement Generator (SG)

It implements a preprocessing step, generating the extended statements (see Def. 4.1) from the

input RDF file.

4.5.1.2 Redundancy Controller (RC)

It implements the core logical normalization process, detecting and eliminating edge and node

duplications in the RDF graph. The input of this sub-component is the list of extended state-

ments. We provide the pseudo-code of the redundancy controller in Algorithm 1. The algorithm

starts by detecting and erasing the redundancies in statements that contain IRIs or literals.

Consequently, it removes the statements with duplicated blank nodes (bn) (as well as all

the outgoings O derived of the bn) using Operator 1 and based on normalization Rules 1 and

2.

79



4.5. RDF Normalization Process

Algorithm 1 Redundancy Controller
Input: ST+[] //List of Extended Statements of the RDF Description

Output: ST+[] //List of Extended Statements without duplication

1: N=st+.length(); //Number of Statements in the list

2: for i=1, i ≤ N, i++ do

3: for j=i+1, j ≤ N, j++ do

4: if st+[i].to = “IRI” or st+[i].to = “literal” and st+[i] =st st+[j] then

5: remove(st+j , ST+[]); // remove statement duplication - Rule 1

6: else

7: if st+[j].to = “bn” and st+[i].to = “bn” and st+[i].s = st+[j].s and st+[i].p = st+[j].p and (st+[i] � st+[j]

or st+[j] � st+[i]) then

8: remove((st+j ∪O(st+j )), ST+[]); // remove blank node duplication - Rule 2

9: else

10: if st+[i].o = st+[j].o then

11: remove(st+j , ST+[]) // remove statement duplication - Rule 1

12: return ST+[]

4.5.2 Physical Normalization

The second step in our normalization process is to perform physical normalization by handling

serialization disparities (discussed in Section 3.2, cf. Rules 3, 4, and 5). It is divided into three

sub-components based on the types of physical disparities being processed:

4.5.2.1 Namespaces Controller (NC)

It controls namespace duplication by erasing redundant namespaces (Rule 3) and unused names-

paces (Rule 4) in the RDF file. This component takes as input the prefix renaming parameter,

which allows to customize the renaming of the prefixes while providing a unique way to nor-

malize them. The process allows three renaming types according to the user’s input parameter:

• Original Renaming : allows the names of input prefixes to be preserved in the output

RDF file. By default, in the case of two or more repeated namespaces with different

prefixes, we preserve the shortest one. However, other preferences can be adopted as well

(most significant one, most used, etc.).

For instance, the original renaming of the namespaces in the use case 2 (Section 3.2.1) is:

rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#

dc = http://purl.org/dc/elements/1.1/

ex = http://example.org/stuff/1.0/

• System Renaming : generates prefixes using a default formal grammar1 (Ω) (with ter-

minal and non-terminal symbols, and a set of production rules defining the grammar’s

1Moreover, we can customize the grammar w.r.t. user’s requirements.

80

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/
http://example.org/stuff/1.0/


CHAPTER 4. Syntactic RDF Normalization

prefix language, L(Ω) [HMU01]) which is composed of: i) an alphabet of terminal sym-

bols, ii) an alphabet of nonterminal symbols, iii) an initial symbol, iv) a set of production

rules, and v) a number of repetitions, represented as:

Ω = {ΣT ,ΣN , S, P, n}

where:

ΣT = {a, . . . , z, A, . . . , Z, 0, . . . , 9}
ΣN = {prefix, lowerletter, upperletter, digit, name, }
S = prefix

P is a set of production rules:

< lowerletter >::= a|b| . . . |z

< upperletter >::= A|B| . . . |Z

< digit >::= 0|1| . . . |9

< prefix >::= < name >

< name >::= [< lowerletter > | < upperletter > | < digit > [| < name >]]

For instance, the system renaming of the namespaces in the use case 2 (Section 3.2.1) is:

a = http://example.org/stuff/1.0/

b = http://purl.org/dc/elements/1.1/

c = http://www.w3.org/1999/02/22-rdf-syntax-ns#

• Collective Renaming : generates prefixes using an inverted index to store all the gen-

erated ones within a file collection and their corresponding namespaces. This also allows

the generation of a collective index that could be shared among several users, which

could later be beneficial in several scenarios (e.g., when the RDF descriptions have to be

exchanged between multiple databases)1.

For instance, the collective renaming of the namespaces in the use case 2 (Section 3.2.1)

may be:

a = http://www.w3.org/1999/02/22-rdf-syntax-ns#

b = http://purl.org/dc/elements/1.1/

c = http://example.org/stuff/1.0/

Note that, in the collective renaming the order depends of the entry into the database,

to generate the identifier.

1This will be investigated in a dedicated upcoming study.

81

http://example.org/stuff/1.0/
http://purl.org/dc/elements/1.1/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/
http://example.org/stuff/1.0/


4.5. RDF Normalization Process

4.5.2.2 Sorting Process (SP)

Normalization Rule 5 establishes node order variation, to have an appropriate and unique

specification of the statements in the output serialization with respect to a sorting parameter

p̃ :< iorder, sortc >. The combination of the values of iorder and sortc in parameter p̃ may

vary according to the requirements of the user w.r.t. the targeted applications, using all pos-

sible triple orderings in iorder and the sorting criteria in sortc. For the iorder, we follow the

six indexing schemes presented in [WKB08] (SPO, SOP, PSO, POS, OSP, OPS) describing the

different combinations of the three elements composing an RDF statement (subject, predicate,

object), and for sortc, we adopt asc, des and null to represent ascending, descending and no

order respectively.

The sorting process is based in a Statement Sorting Expression (Ψ) which is composed

of: i) an alphabet of terminal sorting symbols, ii) an alphabet of nonterminal sorting symbols,

iii) an initial sorting symbol, iv) a set of production rules of the sorting, and v) a number of

repetitions, represented as:

Ψ = {ΣTS ,ΣNS , IS, PS, n}

where:

ΣTS = {S, P,O, asc, desc, iri, bn, l}

ΣNS = {order, index, element, type element, criteria}

IS = order

PS is a set of production rules:

< element >::= s|p|o

< type element >::= iri|bn|l

< criteria >::= asc|desc|null

< order >::= [< index > | < index > | < index >]

< index >::= [< element > | < type element > | < criteria >]

In this study, we assume the ascending (asc) order as a default value (used as reference

to analyze data storage).

82



CHAPTER 4. Syntactic RDF Normalization

Our Statement Sorting Expression allows to reorder each element taking into account

the type element and the criteria. Although our representation is generic, allowing to choose

different order criteria for each (S, P, O) element, yet we simplify and consider that the same

criterion will be chosen by the user for the three elements.

In Rule 5, we choose the SOP (subject-object-predicate) index as a default value since

it: i) allows to group first the subject and object elements that describe the information of

resources, and then the blank nodes. We adopted this approach since the number of different

predicates is always much smaller than the number of different subjects or objects, which allows

to perform sorting much faster. The improved efficiency of the SOP index was highlighted in

[Fea13] and is reflected in our performance evaluation experiments in Section 6.4 (see Figure

6.8).

Taking into account our default parameter p̃, the sorting process is lexicographically

ascending, based on the element type and on the values of subjects, objects, and predicates

(SOP). The sorting is undertaken as follows:

• Reorder the statements according to the type of the subject (first IRI and after BN),

• Reorder the values of the subjects in lexicographic ascending order,

• For all subjects, reorder the statements according to the type of the object (literal, IRI

and then BN),

• Reorder the values of the objects in lexicographic ascending order,

• Reorder the values of the predicates in lexicographic ascending order.

The pseudo-code of our statements sorting algorithm is provided in Algorithm 2. Note

that sorting can be achieved in average linear time using efficient sorting algorithms such as

Quick Sort, Merge Sort, Bucket Sort [Knu98]. We adopt a basic Merge Sort algorithm in our

approach due to its constant complexity level (i.e., worst case O(N×log(N)) and average O(N)

where N is the number of siblings being ordered). Details of our adapted MergeSort algorithm

are provided in the Appendix (since it is widely known and used in practice), along with the

algorithm describing our statement comparison operator (≤Ψ) defined following the statement

sorting expression Ψ described above.

Algorithm 2 Statement Sorter
Input: ST+[] //List of Extended Statements of the RDF Description to be sorted

Output: ST+′
[] //Sorted list of Extended Statements of the RDF Description

1: ST+′
= MergeSort(ST+[],≤Ψ) //where ≤Ψ is our statement comparison operator (cf. Algorithm 5)

2: return ST+′
[]

83



4.5. RDF Normalization Process

In addition, note that the statements’ order has a direct impact in Web applications,

e.g., in Jena Loading Time, the PSO index order has a better time performance in comparison

with other indexes as we shown in Section 6.2.

4.5.2.3 Formatting Process (FP)

This component allows to: a) choose a specific form for the output RDF file, b) manage the

variety of blank node serializations, and c) manage datatypes and languages1.

Our current solution allows three different output forms (other forms could be devised

based on user/application requirements):

• Flat: it develops each RDF statement one by one as a single declaration, i.e., each subject

has one declaration in the file. In the case of blank node serialization, it uses nodeIds.

For instance, Figure 3.3 shows a flat form output of the RDF graph in Figure 3.1.

• Compact: it nests the RDF statement, i.e., each statement may have another statement

nested in its declaration. For the blank node serialization, this form uses the parse-

Type=“Resource”. We show hereunder another serialization of the RDF graph in Figure

3.1 represented in compact form:

<?xml version="1.0" encoding="utf-8"?>

<rdf:RDF xmlns:ex="http://example.org/stuff/1.0/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax

-ns#">

<rdf:Description rdf:about="http://www.univ-pau.fr">

<ex:nameprof rdf:parseType="Resource">

<ex:first_name rdf:datatype="http://www.w3.org/

2001/XMLSchema#string">Sebastien</ex1:first_name>

<ex:last_name xml:lang="fr">Durand</ex1:last_name>

</ex:nameprof>

<ex:lab rdf:resource="http://liuppa.univ-pau.fr/live/"/>

</rdf:Description>

</rdf:RDF>

• Full compact: dedicated to RDF/XML format, it nests RDF statement, uses the EN-

TITY XML construct to reduce space by providing an abbreviation for IRIs2, reuses the

variables in the RDF file, and uses attributes instead of properties for the blank node

serialization. We show hereunder yet another serialization of the RDF graph in Figure

3.1 using the full compact form:

1Not considering the cases when the datatypes and languages have different declarations in the statements.
2Refer to XML ENTITY construct in http://www.w3.org/TR/xml-entity-names/(IRI of XML W3C stan-

dard)

84

http://www.w3.org/TR/xml-entity-names/


CHAPTER 4. Syntactic RDF Normalization

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE rdf:RDF [

<!ENTITY _a ’http://liuppa.univ-pau.fr/’>

]>

<rdf:RDF

xmlns:ex="http://example.org/stuff/1.0/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax

-ns#">

<rdf:Description rdf:about="http://www.univ-pau.fr">

...

<ex1:lab rdf:resource="&_a;live/"/>

</rdf:Description>

</rdf:RDF>

Providing different output types is necessary to satisfy the requirements of different kinds

of RDF-based applications. For instance, compact representations are usually of interest to

human users when storing RDF data [AMMH07, CDD+04, AÖD14, WW06, Wea03], and

running and answering RDF queries [Gea11, HD05], yet less compact/more structured repre-

sentations - which are easier to process by machines - could be useful in automated processing

(e.g., automatic annotation of vector images into RDF files to be processed for image cluster-

ing/annotation recommendation [STC14]).

4.6 Summary

In this chapter, we proposed a syntactic RDF normalization process, as a means to transform

RDF descriptions into a normalized representation in Section 4.5. To develop this approach,

in Section 4.1, we presented definitions, functions and operators as the building blocks of our

normalization process. Against this background, we reviewed relevant existing works in Section

4.2, highlighting the properties and limitations of solutions that authors proposed to solve the

problems of RDF redundancies and disparities. Then, in Sections 4.3 and 4.4, we put forward

a set of rules and properties to develop our approach in a formal and verifiable way.

Our approach allows to: i) preserve all the information in RDF descriptions, ii) eliminate

all the logical redundancies and physical disparities in the output RDF description, iii) establish

a unique specification of the statements in the RDF output description, iv) formalize the

normalization process, and v) consider user parameters to handle the application requirements

and adapt RDF output formats accordingly.

In Table 4.8, we show all the syntactic problems detailed in Sections 3.1 and 3.2, against

the approaches detailed in Section 4.2 and our approach, to highlight and compare which

problems were solved by each approach. Note that in the table 4.8: X means that the approach

does not solve the problem, X* means that the approach solves partially the problem, and X

85



4.6. Summary

means that the approach solves the problem.

We extend this, in Chapter 5, by investigating other challenges pertaining to: semantic

ambiguities and IRI discrepancies for the RDF normalization process described in Sections 3.3

and 3.4, developing an extension of the R2NR framework in order to perform semantic and

IRI-aware RDF logical and physical normalization.

86



CHAPTER 4. Syntactic RDF Normalization

T
ab

le
4.

8:
R

el
at

io
n

b
et

w
ee

n
p
ro

b
le

m
s

an
d

R
D

F
sy

n
ta

ct
ic

N
or

m
al

iz
at

io
n

ap
p
ro

a
ch

es

A
p
p

ro
ac

h
es

P
ro

b
le

m
s

S
y
n
ta

ct
ic

Is
su

es
S
em

an
ti

c

A
m

b
ig

u
it

ie
s

IR
I

D
is

cr
ep

a
n
ci

es
P

1
P

2
P

2.
1

P
2.

2
P

3
P

4
P

5
P

6
P

7

P
at

h
ak

et
al

.
[P

ea
09

]
X

X
X

X
X

X
X

X
X

X
X

*

T
ao

et
al

.
[T

ea
09

]
X

X
X

X
X

X
X

X
X

X
X

*

J
ia

n
g

et
al

.
[J

ea
13

]
X

X
X

X
X

X
X

X
X

X
X

*

B
el

le
au

et
al

.
[B

ea
08

]
X

X
X

X
X

X
X

X
X

X
X

*

H
ay

es
et

al
.

[H
G

04
]

X
X

X
X

X
*

X
X

X
X

X
X

G
u

ti
er

re
z

et
al

.
[G

ea
04

,
G

ea
11

]
X

X
X

X
X

X
X

X
X

X
X

L
on

gl
ey

[L
on

15
]

X
X

X
X

X
X

X
X

X
X

X

F
er

n
an

d
ez

et
al

.
[F

ea
13

]
X

X
*

X
X

X
*

X
X

X
X

X
X

V
ra

n
d
ec

ic
et

al
.

[V
ea

09
]

X
X

X
X

X
X

X
X

X
X

X

O
u

r
ap

p
ro

ac
h

X
X

X
X

X
X

X
X

X
X

X

87



Chapter 5

Semantic and IRI RDF

Normalization

“I think in general it’s clear that most bad things

come from misunderstanding, and communication is

generally the way to resolve misunderstandings, and

the Web’s a form of communications, so it generally

should be good.”

— Tim Berners-Lee

As discussed in the previous chapter, RDF normalization has been treated for different

approaches in knowledge representation, data integration, graph representation and syntax

serialization (Section 4.2). However, all these approaches focus on syntactic problems disre-

garding other challenges related to semantic ambiguities and IRI coreference (Sections 3.3 and

3.4) that may also affect the RDF descriptions.

In this chapter, we present an extension of our RDF normalization approach by integrat-

ing solutions for logical redundancies and physical disparities that are caused by the presence

of semantic ambiguities and IRI discrepancies in RDF descriptions. We first describe some

functions (Section 5.1) developed for facilitating the understanding and creation of our nor-

malization rules (Section 5.3). Next, we discuss related works regarding semantic ambiguity

(Section 5.2.1), IRI identity (Section 5.2.2), and IRI coreference (Section 5.2.3) to understand

the impact of these problems in the data duplication of RDF descriptions. Against this back-

ground, we discuss also the approaches related to RDF normalization w.r.t semantic and IRI

problems (Section 5.2.4) which have influenced the understanding and design of our approach.

We then develop our RDF Normalization extended approach with two additional levels: Se-

mantic level and IRI level (Section 5.4). Finally, we conclude this chapter with a summary and

a comparison between our approach with the approaches studied in this chapter (Section 5.5).

88



CHAPTER 5. Semantic and IRI RDF Normalization

5.1 Normalization Functions

We start this chapter by providing functions related to our semantic and IRI normalization

process, while reusing some of the functions and operators described in Sections 4.1.2 and 4.1.3.

Table 5.1 summarizes the functions developed for the Semantic and IRI normalization.

Function 7 (Synonymy RDF selector [Syn]) The synonymy RDF selector function, noted

Syn(st+i .o, st
+
j .o,KB), takes as input two RDF objects of the respective extended statements

and a knowledge base1 (KB), and returns as output a boolean True or False value, designating

whether they are synonyms or not�

For instance, in Figure 3.6.c given st+1 and st+2 , where:

st+1 : <http://liuppa.univ-pau.fr/liveu,ex:name⊥⊥, “LIUPPA”l >

st+2 : <http://liuppa.univ-pau.fr/liveu,ex:name⊥⊥, “UPPA Computer Science Lab”l >

We can apply Syn(st+1 .o, st
+
2 .o,KB) where:

Syn(LIUPPA,UPPA Computer Science Lab,KB) = True

Note that using Natural Language Processing (NLP) techniques such as acronym recog-

nition and machine translation, we can recognize entities and their variants in different lan-

guages (e.g., “LIUPPA” is recognized as equivalent to “Laboratoire Informatique de l’UPPA”

using acronym recognition, which in term is recognized as“UPPA Computer Science Lab”using

machine translation).

Function 8 (Equivalent literals [EquivLit]) The equivalent literals function, noted

EquivLit(st+i .o, st
+
j .o,KB, TP ), takes as input two RDF literals and two optional parameters:

Knowledge base (KB) and Tolerance Parameter (TP)2, and returns as output a boolean True or

False, designating whether the literals are equivalent or not. This function performs synonym

detection (using function Syn) and data-type conversion using a dedicated function performing

the necessary literal value type conversions (e.g., string to number, number to date, date to

string, etc.) to evaluate whether literals are equivalent or not�

For instance, we show two examples:

a) In Figure 3.6.c given st+3 and st+4 , where:

1A knowledge base is a structure resources as thesaurus, machine-readable dictionaries, or ontologies.
2The tolerance parameter allows the system to evaluated two numbers that are considered equivalent if their

difference is less than the tolerance

89

http://liuppa.univ-pau.fr/live
http://liuppa.univ-pau.fr/live


5.1. Normalization Functions

st+1 : <http://liuppa.univ-pau.fr/liveu,ex:name⊥⊥, “LIUPPA”l >

st+2 : <http://liuppa.univ-pau.fr/liveu,ex:areaTotal⊥⊥, “UPPA Computer Science Lab”l >

We can apply EquivLit(st+3 .o, st
+
4 .o,KB, null) where:

EquivLit(25, 25.4,KB, null) = True given a KB.

b) In Figure 3.6.d given st+3 and st+4 , where:

st+3 : <http://liuppa.univ-pau.fr/liveu,ex:areaTotal⊥int, 25l >

st+4 : <http://liuppa.univ-pau.fr/liveu,ex:areaTotal⊥decimal, 25.4l >

We can apply EquivLit(st+3 .o, st
+
4 .o, null, TP ) where:

EquivLit(25, 25.4,KB, 0.5) = True given numerical tolerance 0.5.

Function 9 (Semantic RDF selector [SemSelect]) The semantic RDF selector function,

noted SemSelect(st+i , st
+
j , TS,DH,LI), takes as input two RDF statements (for selecting only

one) and three parameters (for giving the type of selection): Type Selector (TS) parameter

(e.g., generic, short, specific, long), Datatype Hierarchy (DH) parameter (e.g., standard or

user), Language Indicator (LI) parameter (e.g., user option: en, fr, etc., see Table 5.4 in

Section 5.4), and returns as output one extended statement (st+sem) according to the parameters

for semantic selection (blank nodes do not have datatypes nor languages, and thus will take null

parameters when processed)�

For instance, in Figure 3.6.c given st+1 , st+2 and TS = “short”, we can apply:

SemSelect(st+1 , st
+
2 , TS, null, null) where:

st+sem = SemSelect(st+1 , st
+
2 , TS, null, null) = st+1

Regarding the Type Selector (TS) parameter values: i) generic - specific designate

whether more generic values or more specific values (namely data-types and/or literals) should

appear in the output RDF description. For example, following the RDF/XML data-type hier-

archy, “decimal” is considered as a more generic data-type compared with “int” (integer) which

is more specific. Hence, a numeric value defined in one RDF/XML serialization as a decimal,

90

http://liuppa.univ-pau.fr/live
http://liuppa.univ-pau.fr/live
http://liuppa.univ-pau.fr/live
http://liuppa.univ-pau.fr/live


CHAPTER 5. Semantic and IRI RDF Normalization

or in another serialization as an integer, can be represented in the corresponding output nor-

malized description following the user’s choice of parameter TS1; ii) short - long highlight the

preferred size of RDF elements in the output serialization. For instance, following the size of

literals “LIUPPA” and “UPPA Computer Science Lab”, “LIUPPA” is considered shorter as a

literal value than “UPPA Computer Science Lab” which is longer. Note that we use default

value “short” for parameter TS in our normalization process, which aims to reduce the output

(normalized) RDF description’s size. Yet, the selection of TS parameter values ultimately

depends on user preference and the target application. The selection of TS parameter values

ultimately depends on user preference and the target application.

Function 10 (Identify [identify]) The identify function, noted identify(st+i .o, IL), takes

as input an IRI object and the IRI Layer (IL) parameter (for giving the type of IRI analysis),

and returns as output the identity of the IRI {identifier, document, document representation,

ontology, concept}�

For instance, in Figure 3.11.b, given:

st+1 .o =http://it.dbpedia.org/resource/Lussemburgo and IL = network

We can apply identify(st+1 .o, IL), where:

identify(http://it.dbpedia.org/resource/Lussemburgo, IL) = identifier

Function 11 (Statement Selector [StSelect]) The statement selector function, noted

StSelect(st+i , st
+
j , TS), takes as input two RDF extended statements and a type selector (TS)

parameter, and returns as output an equivalent RDF extended statement (st+result), to be later

removed from the RDF description according to parameter TS.

For instance, in Figure 3.11.b, given st+1 , st+2 and TS = “short”, where:

st+1 : <http://dbpedia.org/resource/Luxembourgu,owl:sameAs⊥⊥, http://it.dbpedia.org/

resource/Lussemburgou >

st+2 : <http://dbpedia.org/resource/Luxembourgu,owl:sameAs⊥⊥, http://it.dbpedia.org/

resource/Luxemburgou >

We can apply StSelect(st+1 , st
+
2 , TS) and obtain:

1The parameter TS has the same behavior to evaluated the generality or specificity of literals values, blank

nodes values or IRIs (id values, content, etc.).

91

http://it.dbpedia.org/resource/Lussemburgo
http://it.dbpedia.org/resource/Lussemburgo
http://dbpedia.org/resource/Luxembourg
http://it.dbpedia.org/resource/Lussemburgo
http://it.dbpedia.org/resource/Lussemburgo
http://dbpedia.org/resource/Luxembourg
http://it.dbpedia.org/resource/Luxemburgo
http://it.dbpedia.org/resource/Luxemburgo


5.2. Related Work

st+result = st+2 Likewise, when we apply TS = “long”, we obtain: st+1 .

Function 12 (Namespace Selector [NamespaceSelect]) The namespace selector function,

noted NamespaceSelect(qni, qnj , TS), takes as input two qnames and a type selector (TS) pa-

rameter, and returns as output an equivalent RDF qname (qnresult), to be later removed from

the RDF description according to parameter TS.

For instance, in Figure 3.8, given qn1, qn2 and TS = “short”, where:

qn1 < px1, ns1 >=⇒ px1 = “dcterm”, ns1 = “http : //schema.org/”

qn2 < px2, ns2 >=⇒ px2 = “dct”, ns2 = “http : //purl.org/dc/terms”

We can apply NamespaceSelect(qn1, qn2, TS) and obtain:

qnresult = qn1 Likewise, when we apply TS = “long”, we obtain: qn2.

Table 5.1: Summarized descriptions of functions based on definition of the extended normal-

ization process

Function Input Output Description

Syn st+i .o, st
+
j .o, KB T or F Returns a boolean value to designate whether

the input values are synonyms or not

EquivLit
st+i .o, st

+
j .o, KB,

TP
T or F Returns a boolean value to designate whether

the input values are equivalents or not

SemSelect
st+i , st+j , TS,

DH, LI
st+sem Returns an extended statement according to

the parameters (TS,DH,LI )

identify st+i .o, IL identity Returns the identity of the IRI (e.g., identi-

fier, document, etc. )

StSelect st+i , st+j , TS st+result Returns an extended statement according to

the parameter TS

NamespaceSelect qni, qnj , TS qnresult Returns an qname according to the parameter

TS

5.2 Related Work

The need for RDF normalization has been identified and discussed in various domains, ranging

over domain-specific knowledge representation, data integration, as well as service and semantic

92



CHAPTER 5. Semantic and IRI RDF Normalization

data mediation. Yet, few existing studies have specifically addressed the issues of logical (graph)

and physical (syntax) RDF normalization, also the need for solving the ambiguity and identity

of a resource has been identified and discussed in various studies, e.g., text summarization

[MA12], sub-structures for document summarization [LGMF04], semantic matching [ACM10],

etc. Yet, few of them have specifically addressed the issues of the semantic ambiguity, IRI

identity, and IRI coreference to perform RDF normalization.

For clarity of presentation, we classify state of the art methods in three categories: i)

Semantic Disambiguation (briefly describing traditional semantic disambiguation for flat text

and some approaches based on RDF descriptions), ii) IRI identity identification (methods to

unambiguously identify resources in RDF descriptions), and iii) IRI coreferencing (methods

that handle co-referencing through IRI disambiguation).

5.2.1 Resolving Semantic Ambiguity

Several approaches have been developed to manage the lexical ambiguity problem, the main

problem is to identify: a term may have a multiple meanings (polysemy), a word can be im-

plied by other related terms (metonymy), and/or several terms can have the same meaning

(synonymy) [KC92, Tek16]. Also, in RDF context, literals and RDF resource names can be

ambiguous and have multiple senses, this is a challenge for automated methods presented in

[VKM07, MJB12, AAD+09, VAGS06]. In [AAD+09, VAGS06], the authors proposed disam-

biguating metadata of some ontologies (Gene Ontology, MeSH and RDF/OWL of WordNet)

using sense disambiguation techniques. Authors in [VKM07] used techniques of name disam-

biguation to identify geographic features through the names. As Dbpedia is a big and important

knowledge base of Linked Data in [MJB12], the authors used named entity recognition to extend

the dataset.

All these aspects are treated in the Word Sense Disambiguation (WSD) approaches

[Nav09] following four main elements: i) selection of word senses, ii) using external knowledge

sources, iii) identifying the context, and iv) selection of an automatic classification method.

5.2.1.1 Selection of word senses

Word sense can not be easily discretized because the language is inherently subject to change

and interpretation [Nav09]. In the literature, we find two possible solutions to select words for

disambiguation [Tek16]: i) all-words, or ii) lexical-example. In [NWC03, PLDP07] the system is

expected to disambiguate all the words in a flat document. For the lexical-example in [PLDP07],

we found specific target words that are selected for disambiguation. Experimental results

reported in [Nav09] show high disambiguation accuracy using the lexical-example approach

93



5.2. Related Work

against with the all-words approach. But, the major difficulty for adopting the lexical-example

is the supervised learning approaches of selecting the target words (these approaches are time-

consuming and requires training data which is not always available).

5.2.1.2 Using External Knowledge Sources

Knowledge is a main component of WDS, providing data which are needed to associate sense

with words. The WSD methods can be distinguish as: i) corpus-based (unstructured resources)

or ii) knowledge-base (structured resources) depending on the knowledge source they rely on

[Tek16]. In [M+07, Ped06], authors develop corpus-based (data-driven) approaches, involv-

ing information about words previously disambiguated, and require supervised learning from

sense-tagged corpora (e.g., OntoNotes [PRM+11] and SemCor [MLTB93]) where words have

been associating with explicit semantic meaning, in order to enable predictions for few words.

On the other hand, in [Mih06, NV05] knowledge-based (knowledge-driven) methods handle a

structured sense inventory and/or repository of information about words and in this way they

can automatically distinguish their meanings in the text. The structures resources (knowledge

base) as thesaurus (e.g., Roget’s thesaurus [Yar92]), machine-readable dictionaries (e.g., Word-

Net [Mil95] and Yago [HSBW13]), and ontologies (e.g., FOAF [BM12]) provide ready-made

sources of information about word senses.

5.2.1.3 Identifying the context

Another important issue in WSD is to identify the context of the words selected to be disam-

biguated. In fact, the context give us more meaning and information about the words that

we need to disambiguate. In traditional textual data, the context of a word usually consist

of the set of terms in the word’s vicinity, i.e., terms occurrence close to the word, within a

certain predefined window size [Les86]. After the context is identified, it has to be effectively

represented to perform disambiguation computation [Tek16]. The literature shows different

methods to determine the co-occurrence of the words in flat text ([IV98]) and structured doc-

uments ([AMdLS06]).

5.2.1.4 Selection of an automatic classification method

The final step is how we can associate the sense with words, taking into account the three first

points mentioned before. We can broadly distinguish two main approaches to WSD: i) super-

vised WSD and ii) unsupervised WSD. One hand, supervised methods use machine-learning

techniques to learn a classifier from labeled training sets. On the other hand, unsupervised

methods are based on unlabeled corpora, not requiring any human interaction (completely

94



CHAPTER 5. Semantic and IRI RDF Normalization

automated). Most recent (and RDF-related) approaches, e.g., [VKM07, MJB12, AAD+09,

VAGS06, LGMF04, MA12], make use of a machine-readable knowledge based (e.g., WordNet

[Mil95]).

Many approaches have been proposed for flat text [Nav09] and semi-structured XML-

based data [Tek16], but very few approaches have been dedicated for RDF and linked data

disambiguation.

In the remainder of this study, we constrain our proposal to the general definition of un-

supervised WSD using a reference KB (i.e., unsupervised and knowledge-based WSD) [Nav09]

because corpus-based and supervised methods are highly time consuming and require exten-

sive and reliable training sets (to produce a relevant sense-annotated corpus) which are not

always available, while knowledge-base and unsupervised methods do not require any human

interaction or training phase, reducing the time consumption and automating the obtention of

meanings of the words in the text.

5.2.2 Resolving IRI Identity

The Semantic Web introduces a problem with IRI identity, having into account: the meaning

of a resource, and how it is represented. The Semantic Web introduces a problem with the

IRI identity, having to do with the meaning of a resource and how it is referred to. Here,

the diversity in different types of IRIs (cf. Figure 2.4), referring to both information and non-

information resources, highlights a so-called “identity crisis” [BSMG06]: how to distinguish

the identities of IRIs referring to information resources (on the Web), and especially IRIs

referring to non-information resources (on the Semantic Web). For instance, how can we identify

which of the following non-information IRIs is actually referring to the required information

pertaining to Sebastien: http://www.example.com/id/sebastien and http://www.example.

com/doc/sebastien. To address the problem, various methods have been suggested [AV08,

Hal11, Hal13b, JGM07, BSNM08, BSB08, Boo08, HH08, HHM+10, HH10, HPUZ10], which we

organize in two main categories, i.e., methods performing IRI identification: i) at the network

layer, and ii) at the data layer, based on user required services (cf. Figure 5.1).

5.2.2.1 Network layer

Methods in this category, e.g., [AV08, Hal11, Hal13b, JGM07, BSNM08, BSB08], utilize the

HTTP protocol to identify the Semantic Web IRIs. Here, two solutions have been suggested:

using Hash IRIs and using 303 IRIs1 [Fie03]. Methods of the former group use the hash

symbol (#) to fragment the IRI, separating its so-called root from its definition, e.g., IRI

1urlhttp://lists.w3.org/Archives/Public/www-tag/2005Jun/0039.html

95

http://www.example.com/id/sebastien
http://www.example.com/doc/sebastien
http://www.example.com/doc/sebastien


5.2. Related Work

  

IRI  

Identification 

Network Layer 
Identification IRI 

Hash IRIs 303 IRIs 

Data Layer Identification 
IRI 

Competing 
Definitions 

IRI Declaration 

 * The links are  IsA relationship

owner-defined 

PDFill P
DF Editor w

ith Free W
rite

r and Tools

Figure 5.1: Taxonomy of IRI identification methods

http://www.example.com/about#sebastien would be fragmented into the root http://www.

example.com/about and the definition sebastien (cf. Figure 5.2). The Hash IRI approach is

generally preferred when handling small and stable sets of resources that evolve together (e.g.,

RDF schema vocabularies and OWL ontologies) [BG14, PSHH+04], as it reduces the number of

unnecessary HTTP round-trips and consequently access latency, while allowing IRIs to share

the same non-hash part. Yet, the major drawback of this technique is the need for loading

the data for all resources sharing the same root, because they are all in the same physical file

(location).

With 303 IRI solution, IRI identification is handled using a special HTTP status code:

303 See Other HTTP header [Fie03], which allows to indicate that the requested resource

is not an information IRI (i.e., it is not a Web document) by dereferencing the IRI itself

to obtain a new IRI, which can in turn be dereferenced, until reaching an IRI definition.

Dereferencing can happen by going through i) one so-called generic document which then links

to others, or ii) by linking directly to different documents [Hal13b]. For example, in Figure

5.3, IRI http://www.example.com/id/sebastien is dereferencing to on generic document

referred to by http://www.example.com/doc/sebastien, which is in turn dereferenced to

different documents: an RDF document (http://www.example.com/doc/sebastien.rdf) and

an HTML page (http://www.example.com/doc/sebastien.html). However, Figure 5.4 shows

the same IRI (http://www.example.com/id/sebastien) which directly derives to the RDF

document or HTML page without using a generic document. The 303 IRI method is usually

more suitable when dealing with large sets of data (e.g., RDF owner descriptions). In addition,

with the 303 IRI technique, the redirection target can be configured separately for each resource,

hence reducing network delay. This technique is also flexible with respect to the Hash IRI

method because it considers two dereferencing approaches: using generic documents or different

documents, which is not allowed (and can be coupled) with Hash IRI. While effective, yet the

303 IRI technique can produce a large number of redirects, thus ultimately causing high network

96

http://www.example.com/about#sebastien
http://www.example.com/about
http://www.example.com/about
http://www.example.com/id/sebastien
http://www.example.com/doc/sebastien
http://www.example.com/doc/sebastien.rdf
http://www.example.com/doc/sebastien.html
http://www.example.com/id/sebastien


CHAPTER 5. Semantic and IRI RDF Normalization

 

Content-Location: 

http://www.example.com/about.html 

Content-Location: 

http://www.example.com/about.rdf 

content 

negotiation 
      text/html   wins application/rdf+xml    wins 

  

http://www.example.com/about#sebastien 

Person 

http://www.example.com/about 

Automatic truncation of fragment 

HTML RDF 

PDFill
 P

DF E
di

to
r w

ith
 F

re
e W

rit
er

 an
d T

oo
ls

Figure 5.2: Example using Hash IRIs

latency, and may even require downloading all data to process a large number of requests in a

timely manner.

5.2.2.2 Data layer

Methods based on the data layer, e.g., [Boo08, HH08, HHM+10, HH10, HPUZ10], can also be

organized in two categories: i) using competing definitions, and ii) using IRI declaration. Meth-

ods of the former category, e.g., [MJB12, SHJJ09, HHM+10, HH10, HPUZ10, Boo08], assume

that all RDF statements are created equal, so the community or marketplace decides which

statements become the prevailing definition of a particular IRI, e.g., st1: <http://dbpedia.

org/resource/Luxembourg, owl:sameAs, http://es.dbpedia.org/resource/Luxemburgo>

and st2: <http://dbpedia.org/resource/Luxembourg, wdrs:describedBy, http://dbpedia.

org/data/Luxembourg.nt> where sameAs and describedBy are the competing definitions.

Yet, methods of the latter category (using IRI declarations), e.g., [Boo08, HH08, HPUZ10],

assume that RDF statements are not created equal: some are special from the outset (core

assertions). Here, the use of IRIs becomes less straightforward identifying the prevailing defini-

tion using a follow-your-nose strategy [Boo08] (considering all statements containing the IRI),

such that the IRI should be consistently used as the definition in all statements. For example,

considering st1: <http://www.univ-pau.fr, ex1:lab, http://liuppa.univ-pau.fr/live/>,

predicate lab can have a definition provided by the owner (i.e., creator of the statement), e.g., a

laboratory. As a result, competing definitions become more ambiguous, since an IRI can mean

97

http://dbpedia.org/resource/Luxembourg
http://dbpedia.org/resource/Luxembourg
http://es.dbpedia.org/resource/Luxemburgo
http://dbpedia.org/resource/Luxembourg
http://dbpedia.org/data/Luxembourg.nt
http://dbpedia.org/data/Luxembourg.nt
http://www.univ-pau.fr
http://liuppa.univ-pau.fr/live/


5.2. Related Work

 

303 redirect 

Content-Location: 

http://www.example.com/doc/sebastien.html 

Content-Location: 

http://www.example.com/doc/sebastien.rdf 

content 

negotiation 
      text/html   wins application/rdf+xml    wins 

 Generic 

Document 

http://www.example.com/id/sebastien 

Person 

http://www.example.com/doc/sebastien 

HTML RDF 

PDFill 
PDF Edito

r w
ith

 Free
 W

rit
er 

an
d Tools

Figure 5.3: Example using Hash IRIs forwarding to one Generic Document

 

 

 

 

Content-Location: 

http://www.example.com/data/sebastien 

Content-Location: 

http://www.example.com/people/sebastien.html 

303 redirect        

with                 

content negotiation 

      text/html   wins application/rdf+xml    wins 

Person 

HTML RDF 

http://www.example.com/id/sebastien 

PDFill 
PDF Edito

r w
ith

 Free
 W

rit
er 

an
d Tools

Figure 5.4: Example using Hash IRIs forwarding to different documents

98



CHAPTER 5. Semantic and IRI RDF Normalization

 

IRI  

Coreference 

Okkam Project             
(Bouquet et al.                   

2006 - 2007) 

Bouquet et al 
2008 

Stoermer        
2008 

CRS Project  

(Glaser et al 2007,             
Jaffri et al 2007) 

Jaffri et al      
2008 

Glaser et al   
2009 

Other Projects 

Jaffri et al       
2008 

Rizzo et al      
2012 

PDFill PDF Editor with Free Writer and Tools

Figure 5.5: Taxonomy of IRI coreference methods

what the owner chooses it to mean, or what the user would like it (perceives it) to mean1.

Hence, in most approaches for entity name systems [JGM07, BSB08] and summarization

[MA12, LGMF04] in the literature, the competing definitions approach is adopted, allowing

the user community to agreed upon the prevailing IRI definition, thus facilitating the sharing

of unambiguous information without complications.

5.2.3 Handling IRI Coreference

As the Semantic Web is an open place to publish the information, it is inevitable to have

multiple IRIs that reference the same resource. Hence, several methods were developed to

address the IRI coreference problem, e.g., [BSMG06, BSG07, BSB08, BSNM08, GLMD07,

JGM07, JGM08a, GJM09, JGM08b, RT12, LAH+09], in order to help Semantic Web applica-

tions refactor and/or republish the data. In this context, most existing approaches are based

on one of two main initiatives (cf. Figure 5.5):

• The first initiative is OKKAM’s approach [BSMG06, BSG07] that advocates universally

agreed IRIs for each entity with a centralized system. The goal of the OKKAM project,

is not only to create a naming service for (non-information) resources, but also to create

a directory containing resource profiles under the single control of one authority. Addi-

tionally, this approach has a service called OKKamCore that allows to modify, remove

and publish resources and RDF statements based on a set of criteria [BSMG06]. Based

on this project, the authors in [BSB08, BSNM08, Sto08] suggested the development of

an Entity Name System (ENS) as a Web service to provide unique and uniform names

for resources.

• The second initiative is the CRS approach [GLMD07, JGM07] that provides a service

1The IRI owner naming can have a lot of restrictions and problems in the implementation, because each IRI

will vary based on each owner

99



5.2. Related Work

which allows the publication and maintenance of coreference information in a single store

with a distributed system. In this way, clients can discover alternative IRIs to the one

they are using and use this information to help them for creating relations, RDF triples,

graphs, etc. Additionally, this approach has a general service called SameAs.org1 which

provides coreference data in RDF formats. Based on the CRS project, the authors in

[JGM08a, GJM09] propose to manage equivalent IRIs referring to the same concept or

entity (IRI synonymity), analyzing the advantages and disadvantages of using the CRS

proposal over other coreference methods.

Some authors propose to use OKKAM or CRS interchangeably [JGM08b], or suggest

to utilize alternative services for extracting (non-information) resources2 as Named Entity

extraction techniques for extracting, classifying and disambiguating named resources [LAH+09]

and provide IRI disambiguation for each entity that was extracted from a specific text [RT12]

using keywords provided by users.

In light of the above presentation and discussion, we will focus on unsupervised WSD

using a reference KB for solving semantic ambiguities in RDF statements (due to their re-

duced execution time and usually improved quality in comparison with unsupervised approaches

[Tek16]), while combining network layer and data layer IRI identification (by taking into ac-

count the pros of both strategies), as well as using the CRS based SameAs service for solving

IRI coreferences (which seems generally more robust and efficient that OKKAM’s approach

[JGM08b]). Recall that our ultimate goal remains to perform RDF normalization: i.e., to

remove all the logical redundancies and physical disparities in RDF descriptions which can

exacerbated with the presence of semantic ambiguities and IRI identify and coreference dis-

crepancies as we develop in the sections 3.3 and 3.4.

5.2.4 Semantic and IRI RDF Normalization

5.2.4.1 Semantic Mediation

Semantic interoperability between RDF stores is also becoming an essential requirement: al-

lowing different systems to communicate “meaningfully” with each other, exchanging RDF data

and services despite the heterogeneous nature of the underlying information structures. Seman-

tic interoperability can be achieved by the development of comprehensive shared information

models using SW technologies (e.g., shared RDF or OWL reference ontologies defining common

semantics following the SW vision)[KVS07, GCGP10], or by providing appropriate semantic

mediators (translators), in order to convert information following the data format which each

1http://sameas.org/
2http://www.alchemyapi.com, http://dbpedia.org/spotlight, http://extractiv.com, http://opencalais.com,

http://zemanta.com, http://www.sindice.com/

100



CHAPTER 5. Semantic and IRI RDF Normalization

system understands [Kea08, Kea07, ZV11]. Table 5.2 shows the summary of all the approaches

presented in this section.

Table 5.2: Summarized semantic mediation approaches

App.
Data

Targeted
Features Limitations Aplication Output

Domain Area

Krogstie

et al.

[KVS07]

OWL

• Defining common semantics follow-

ing the Semantic Web vision

• Trying to produce a universal ontol-

ogy

Blank nodes

Literals

Statements

Names-

paces

Not

specified

Semantic

Inter-

operability

OWL

Garcia

-Castro

et al.

[GCGP10]

OWL,

RDF/XML

• Identifying ontology heterogeneity

levels: lexical, syntactic, paradigm,

terminological, conceptual, and

pragmatical

• Storing ontologies and sharing re-

sources (URI)

Blank nodes

Literals

Statements

Names-

paces

Not

specified

Semantic

Inter-

operability

and

Bench-

marking

OWL

Kerzazi

et al.

[Kea07]

RDF file

Proposal name: Ontology - Based mediator

• The result of the RDF data and

query are normalized based on inte-

grated ontologies

• Using matching techniques

• Registration of resources’ semantics

by relating them with ontologies

Blank nodes

Literals

Statements

Names-

paces

Not

specified

Data In-

tegration

RDF

file

Kerzazi

et al.

[Kea08]

Query

RDF

Using the Ontology - based mediator in

[Kea07]

• Translating and optimizing the query

• Using several phases into an exe-

cutable query plan

Blank nodes

Literals

Statements

Names-

paces

Not

specified

Data In-

tegration

Plain

text

In most of the above mentioned projects, RDF normalization is viewed as applying prede-

fined mapping dictionaries to define the correspondences between the original data constructs

and the RDF constructs. In other words, most studies consider the original data to be well

organized (normalized), thus the resulting RDF data would allegedly follow. Note that in most

of these projects, issues of redundancies in RDF logical and syntax representations, which can

occur in the produced RDF descriptions, are mostly left unaddressed.

5.2.4.2 IRI Disambiguation in RDF descriptions

Resource disambiguation in RDF descriptions is also becoming a challenge to normalized RDF

descriptions, allowing to reduce number of IRIs and reuse them in the LOD context. Several

approaches have been developed to IRI disambiguation, using different datasets as DBpedia,

101



5.3. RDF Normalization Rules

DBLP, WordNet, OpenCyc1, etc. in [JGM08b, RŠD+10, SNA12, UNR+14]. In [JGM08b], the

authors address the problem of coreference and provides an analysis about two main solutions

for IRI disambiguation. The first one, ReSIST [Srl] project that has gathered metadata from

publications and institutions and exposed them as linked data, using 15 repositories with their

own CRS [GLMD07, JGM07], each CRS can use different algorithms to identify equivalent

resources (see Section 5.2.3). The second one, OKKAM project, detailed also in Section 5.2.3,

it is considered as a generator of “Web Entities” where the main aims are to create a naming

service for resources and a directory with resource profiles.

For service-oriented natural language processing, there are some approaches that use

SW resources (RDF/OWL) to disambiguate text [ŠRD+09, RŠD+10], thus providing annota-

tions of words and improving the semantic graph quality, by merging nodes that refer to the

same disambiguated concept. In a related study [UNR+14] to resource disambiguation, the

authors introduce AGDISTIS as a knowledge base approach for named entity disambiguation.

AGDISTIS combines the Hypertext-Induced Topic Search (HITS) algorithm with string sim-

ilarity measures (breadth-first) and label expansion strategies to detect the correct IRI for a

given set of named resources.

In [SNA12], in order to disambiguate a resource and generate an automatic query seg-

mentation, the authors leverage the semantic relationships between data items using Markov

models and HITS algorithm to disambiguate resources. Results of this approach show that it

is robust with regard to query expression variance of resources.

Note that, in most of the above mentioned projects, RDF normalization is viewed as

disambiguating IRIs. In other words, the focus of these studies are in handeling coreference

between IRIs, to obtain the correct IRI (normalized) for a resource. Finally, issues of redun-

dancies and disparities generated for IRI coreference are left unaddressed. Table 5.3 shows the

summarization of all the approaches presented in this section.

5.3 RDF Normalization Rules

In this section, we provide a set of rules to resolve the normalization problems generated by

semantic ambiguities and IRI discrepancies listed in Section 3.

5.3.1 Solving Logical Redundancies generated by Semantic Ambiguities

Given an input RDF graph G, logical redundancies related to node duplication based on seman-

tic ambiguities (presented in Section 3.3.3) can be eliminated from G by applying the following

1http://sw.opencyc.org

102

http://sw.opencyc.org


CHAPTER 5. Semantic and IRI RDF Normalization

Table 5.3: Summarized Resource disambiguation approaches

App.
Data

Targeted
Features Limitations Aplication Output

Datasets Area

Jaffri et

al.

[JGM08b]

RDF

description

• Analysing two solutions to

the coreference problem

• ReSIST [Srl] handles

coreference from publi-

cations and institutions

with 15 repositories each

with their own CRS

[GLMD07, JGM07]

• OKKAM project

[BSMG06, BSG07] is a

centralised system to cre-

ate a naming service for

entities

Blank nodes

Literals

Statements

Namespaces

DBLP

DBpedia

Identity

manage-

ment

Theoretical

approach

Rusu et

al.

[RŠD+10]

Text

fragment

• Extension of Enrycher

[ŠRD+09] with RDF/OWL

word sense annotation

• Every word or collocation

in a text fragment is anno-

tated with the correspond

resources to WordNet and

OpenCyc

Blank nodes

Literals

Statements

Namespaces

WordNet

OpenCyc

Service-

oriented

NLP

Not

specified

Shekarpour

et al.

[SNA12]

n-tuple

• Automatic query segmen-

tation and resource disam-

biguation method leverag-

ing background knowledge

• Leveraging the semantic

relationship between data

items using Markov models

• Distributing a normalized

connectivity degree across

the state space (with HITS

algorithm)

Blank nodes

Literals

Statements

Namespaces

DBpedia
Data

Integration
RDF file

Usbeck et

al.

[UNR+14]

N3 Text

Proposal name: AGDISTIS

• Named entity disambigua-

tion approach and frame-

work

• Combining HITS algo-

rithm with label expansion

and string similarity

measures

Blank nodes

Literals

Statements

Namespaces

Reuters-21578

RSS-500

news.de

AIDA-

YAGO2

MSNBC

AQUAINT

IITB

Information

Extration

Plain

text

(HITS)

103



5.3. RDF Normalization Rules

transformation rules:

Rule 1 - Semantic Statement Elimination containing blank node elements: It is

designed to eliminate node duplications with blank node elements using the semantic select

function (SemSelect) between extended statements. More precisely, ∀st+i , st
+
j ∈ ST+(G) /

i 6= j, if st+j � st
+
i =⇒ remove((st+sem ∪O(st+sem)), ST+(G)), where:

st+sem = SemSelect(st+i , st
+
j , TS, null, null).

Rule 2 - Semantic-based Statement Elimination containing literal elements: It is

designed to eliminate node duplications with literal nodes using the semantic select function

(SemSelect) between extended statements. More precisely, ∀st+i , st
+
j ∈ ST+(G) / i 6= j,

if st+j .s = st+i .s ∧ st
+
j .p = st+i .p ∧ st

+
i .to = st+j .to = “literal′′ ∧ Syn(st+i .o, st

+
j .o,KB) =⇒

remove(st+sem, ST
+(G)), where:

st+sem = SemSelect(st+i , st
+
j , TS, null, null).

Note that literals can be affected by properties as datatypes and languages. Considering

these properties, we establish variants of the Rule 2 as follows:

Rule 2.1 - Semantic-based Statement Elimination with same datatype: It is designed

to eliminate node duplications when literals are affected by the same datatype using the se-

mantic select function (SemSelect) between extended statements. More precisely, ∀st+i , st
+
j ∈

ST+(G) / i 6= j, if st+j .s = st+i .s ∧ st
+
j .p = st+i .p ∧ st

+
j .to = st+i .to = “literal′′ ∧ st+j .dt =

st+i .dt ∧ EquivLit(st
+
i .o, st

+
j .o,KB, TP ) =⇒ remove(st+sem, ST

+(G)), where:

st+sem = SemSelect(st+i , st
+
j , TS, null, null)

Rule 2.2 - Semantic-based Statement Elimination with different datatypes and

same object values: It is designed to eliminate node duplications when literals are affected

by different datatypes while having the same object (literal) using the semantic select function

(SemSelect) between extended statements. More precisely, ∀st+i , st
+
j ∈ ST+(G) / i 6= j,

if st+j .s = st+i .s ∧ st
+
j .p = st+i .p ∧ st

+
j .o = st+i .o ∧ st

+
j .to = st+i .to = “literal′′ ∧ st+j .dt 6=

st+i .dt =⇒ remove(st+sem, ST
+(G)), where:

st+sem = SemSelect(st+i , st
+
j , TS,DH, null)

Rule 2.3 - Semantic-based Statement Elimination with different datatypes and

different object values: It is designed to eliminate node duplications when different liter-

als, having the same meaning, are affected by different datatypes using the semantic select

function (SemSelect) between extended statements. More precisely, ∀st+i , st
+
j ∈ ST+(G) /

104



CHAPTER 5. Semantic and IRI RDF Normalization

i 6= j, if st+j .s = st+i .s ∧ st
+
j .p = st+i .p ∧ st

+
j .to = st+i .to = “literal” ∧ st+j .dt <> st+i .dt ∧

EquivLit(st+i .o, st
+
j .o,KB, TP ) =⇒ remove(st+sem, ST

+(G)), where:

st+sem = SemSelect(st+i , st
+
j , TS,DH, null)

Rule 2.4 - Semantic-based Statement Elimination with same language tag: It is

designed to eliminate node duplications when literals are assigned the same language tag,

using the semantic select function (SemSelect) between extended statements. More precisely,

∀st+i , st
+
j ∈ ST+(G) / i 6= j, if st+j .s = st+i .s ∧ st

+
j .p = st+i .p ∧ st

+
j .to = st+i .to = “literal′′ ∧

st+j .lang = st+i .lang ∧ Syn(st+i .o, st
+
j .o,KB) =⇒ remove(st+sem, ST

+(G), where:

st+sem = SemSelect(st+i , st
+
j , TS, null, null)

Rule 2.5 - Semantic-based Statement Elimination with different language tags and

same object value: It is designed to eliminate node duplications when literals are affected

by different language tags using the semantic select function (SemSelect) between extended

statements. More precisely, ∀st+i , st
+
j ∈ ST+(G) / i 6= j, if st+j .s = st+i .s ∧ st

+
j .p = st+i .p ∧

st+j .to = st+i .to = “literal′′ ∧ st+j .o = st+i .o ∧ st
+
j .lang 6= st+i .lang =⇒ remove(st+sem, ST

+(G)

where:

st+sem = SemSelect(st+i , st
+
j , TS, null, LI)

Rule 2.6 - Semantic-based Statement Elimination with different language tags and

different object values: It is designed to eliminate node duplications when different literals,

having the same meaning, are affected by different language tags using the semantic select

function (SemSelect) between extended statements. More precisely, ∀st+i , st
+
j ∈ ST+(G) /

i 6= j, if st+j .s = st+i .s∧st
+
j .p = st+i .p∧Syn(st+i .o, st

+
j .o,KB)∧st+i .to = st+j .to = “literal′′ =⇒

remove(st+sem, ST
+(G)) where:

st+sem = SemSelect(st+i , st
+
j , TS, null, LI)

Recall that we use default value “short” for parameter TS in our normalization rules,

which aims to reduce the output (normalized) RDF description’s size. Yet, any other TS

parameter value can be chosen by the user, following her/his preferences and the target appli-

cation.

5.3.2 Solving Logical Redundancies generated by IRI Discrepancies

Given an input RDF graph G, logical redundancies related to node duplication, and edge

duplication based on IRI discrepancies (presented in Sec. 3.4.4) can be eliminated from G by

applying the following transformation rules:

105



5.4. RDF Normalization Process

Rule 3 - IRI-based Statement Elimination: It is designed to eliminate edge duplica-

tions and/or node duplications using the entity select function (StSelect) between extended

statements, which we detail in the following in two variants:

Rule 3.1 - IRI-based Statement Elimination based on objects: It is designed to elimi-

nate node duplications using the entity select function (StSelect) between extended statements.

More precisely, ∀st+i , st
+
j ∈ ST+(G) / i 6= j if identify(st+i .o, IL) = identify(st+j .o, IL)) ∧

st+i .s = st+j .s∧st
+
i .p = st+j .p =⇒ remove(st+result, ST

+(G))∧replace(st+result.o, st
+
select.o, ST

+(G)),

where:

st+result = StSelect(st+i , st
+
j , TS) and st+result.o is the IRI selected as equivalent from

the extended statement st+result and st+select.o is the IRI selected (i.e., equivalent) of the other

extended statement.

Rule 3.2 - IRI-based Statement Elimination based on predicates: It is designed to elim-

inate edge duplications using the entity select function (StSelect) between extended statements.

More precisely, ∀st+i , st
+
j ∈ ST+(G) / i 6= j if identify(st+i .p, IL) = identify(st+j .p, IL)) ∧

st+i .s = st+j .s ∧ st
+
i .o = st+j .o =⇒ remove(st+result, ST

+(G)), where:

st+result = StSelect(st+i , st
+
j , TS)

5.3.3 Solving Physical Disparities generated by IRI Discrepancies

Given an input RDF file F , physical disparities related to namespace duplication base on IRI

discrepancies (presented in Section 3.4.5) can be eliminated from F by applying the following

transformation rule:

Rule 4 - IRI-based Namespace Duplication Elimination: It is designed to eliminate

namespace duplications using the namespace select function (NamespaceSelect) in an RDF file

F . More precisely: ∀qni, qnj ∈ QN(F ) / i 6= j if identify(qni.ns, IL) = identify(qnj .ns, IL)) =⇒
remove(qnresult, QN(F )) ∧ replace(qnresult.ns, qnselect.ns, ST+(F )), where:

qnresult = NamespaceSelect(qni, qnj , TS) and qnselect select (i.e., equivalent) names-

pace.

5.4 RDF Normalization Process

Here, we build on the R2NR architecture provided in Chapter 4 to consider all the new semantic

and IRI-based problems presented in Section 3 (i.e., semantic ambiguities between literals and

106



CHAPTER 5. Semantic and IRI RDF Normalization

blank nodes, as well as IRI identification and coreference discrepancies). We develop the overall

architecture of our new R2NRE (RDF to Normalized RDF Extended) framework, depicted in

Figure 5.6. It consists of three levels: i) syntactic level, ii) semantic level and, iii) Entity level

with one extra module called IRI handler. In short, the three levels have different algorithms

to remove and manage the redundancies and disparities discussed in Section 3, based on the

normalization rules developed in Section 5.3. R2NRE accepts as input an RDF graph or an

RDF file as well as a set of parameters (summarized in Table 5.4) to handle the semantic and

IRI-based normalization according to the requirements of the user (cf. detailed descriptions of

functions in Section 5.1 and operator parameter in Section 4.1.3). In the following, we describe

the semantic and IRI level in more details.

 

PDFill 
PDF Edito

r w
ith

 Free
 W

rite
r a

nd Tools

Figure 5.6: Overall architecture of our RDF normalization framework

Note that our framework is flexible such that the user can choose the kind of normalization

to apply on an RDF description, based on her needs, i.e., performing: syntactic-only, syntactic-

semantic, syntactic-IRI, or combined syntactic-semantic-IRI normalization.

107



5.4. RDF Normalization Process

Table 5.4: Summarized descriptions of sets used in our approach

# Parameter Allowed Values Description

1 Output Format (OF) v1: flat, v2: compact,

v3: full compact

Allows the user to choose between three

types of formats defined in [THTC+15])

2 Prefixing Renaming (PR) v1: original, v2: sys-

tem (default), v3:

collective

Allows the user to choose between the

original prefixes, the system renaming

prefixes or the collective prefixes defined

in [THTC+15]

3 Sorting Index (SI) v1: spo, v2: pso, v3:

pos, v4: osp, v5: ops,

v6: sop (default)

Allows the user to choose between the six

indexes for the elements of the statement

(subject, predicate, object)

4 Semantic Target (ST) v1: bn, v2: IRI, v3:

literal (default), v4:

null

Allows the user to choose the elements of

the RDF Description to analyze seman-

tically (blank nodes, IRIs, literals, or the

combinations between them)

5 Datatype Hierarchy (DH) v1: user, v2: stan-

dard (default)

Allows the user to choose the standard

hierarchy (W3C) of the datatypes or in-

sert the user hierarchy preference

6 Language Indicator (LI) v1: user option, v2:

null default: en

Allows the user to choose the language

preference for the normalization (en, es,

fr, etc.)

7 IRI Layer (IL) v1: network, v2:

data (default), v3:

null

Allows the user to choose the layer for

the IRI analyzing (network or data)

8 Type Selector (TS) v1: generic, v2: spe-

cific, v3: short (de-

fault), v4: long, v4:

threshold, v5: an-

other

Allows the user to choose the type of se-

mantic and IRI evaluation based on the

generic or specific information, the short-

est or longest one or using a threshold,

i.e., the user he will choose the parame-

ter depending on the target application

that he wants to use, e.g., storage (less

expensive), loading, etc.

9 Document Type (DT) v1: RDF/XML,

v2: N3 (default),

v3: JSON-LD, v4:

another

Allows the user to choose the document

type of semantic evaluation based on the

generic or specific information, the short-

est one or using a threshold

108



CHAPTER 5. Semantic and IRI RDF Normalization

5.4.1 Semantic Level

This level is developed to resolve semantic ambiguities between literals and blank nodes in an

RDF description. It only targets logical (RDF graph) normalization, allowing to eliminate all

semantic-based blank node duplications and/or literal node duplications (discussed in Section

3.3.3), and obtain extended statements without semantic duplications (cf. Rules 1 and 2). It

consists of two major components:

1. Semantic Redundancy Resolver (RR): it allows to eliminate all the redundancies

(Rules 1 and 2) caused by the semantic ambiguities. The inputs of this component are

the extended statements from the input RDF description and the type of selector (TS)

parameter given by the user, and produces as output a transformed RDF description

where semantically redundant statements have been eliminated (following user preferences

expressed by TS).

2. Property Resolver (PR): activated when the statements contain datatypes and/or lan-

guages tags. It allows to eliminate the logical redundancies in statements with datatypes

and language tags (Rules 2.1 until 2.6) caused by the semantic ambiguities. The inputs

of this component are the extended statements obtained as output from the semantic

redundancy resolver, and two optional parameters: Datatype Hierarchy (DT) and Lan-

guage Indicator (LI), highlighting the user’s preferences about working with a specific

datatype hierarchy or language.

The pseudo-code of our semantic redundancy resolver is provided in Algorithm 3. Note

that, the property resolver is activated in the algorithm 3, using the parameters DH and LI to

select the semantic statement duplication.

5.4.2 IRI Level

This level is developed to resolve IRI identification and coreference discrepancies in an RDF

description, to avoid IRI duplications. It targets both logical (RDF graph) and physical (RDF

serialization) normalization.

6.2.1 Logical Normalization

It is the first step in IRI-level normalization, allowing to eliminate all the logical redundancies

in the input RDF graph created by the IRI discrepancies (discussed in Section 3.4.4), and

obtain extended statements without IRI duplications (cf. Rule 3). For this purpose, we divide

logical normalization in three-components:

109



5.4. RDF Normalization Process

Algorithm 3 Semantic Redundancy Resolver
Input: ST+[] //List of Extended Statements of the RDF Description

TS,DH,LI //Parameters

KB //Knowledge base

Output: ST+[] //List of Extended Statements without semantic duplication

1: N=st+.length(); //Number of Statements in the list

2: for i=1, i ≤ N, i++ do

3: for j=i+1, j ≤ N, j++ do

4: if st+[j].to = “bn” and st+[i].to = “bn” and st+[i].s = st+[j].s and st+[i].p = st+[j].p and (st+[i] � st+[j] or

st+[j] � st+[i]) then

5: SemSelect(st+i , st+j , TS,DH, null)

6: remove((st+sem ∪O(st+sem)), ST+[]); // remove blank node duplication - Rule 1

7: else

8: if st+[i].to = “literal” and st+[i].s = st+[j].s and st+[i].p = st+[j].p and Syn(st+i .o, st+j .o,KB) then

9: if DH<>null then

10: SemSelect(st+i , st+j , TS,DH, null)

11: if LI<>null then

12: SemSelect(st+i , st+j , TS, null, LI)

13: else

14: SemSelect(st+i , st+j , TS, null, null)

15: remove(st+sem, ST+[]); // remove semantic statement duplication - Rule 2

16: return ST+[]

1. IRI Extractor (IE): it extracts all the IRIs from the extended statements in an RDF

Graph. The inputs of this component are the extended statements produced as output

by property resolver, or the extended statements produced as output by the syntactic

redundancy resolver (in the case the user wished to perform syntactic-IRI normalization

only, i.e., without semantic normalization).

2. IRI type identifier (ITI): it implements the type identification step of each IRI (name

recognition of the entity and type). The inputs of this component are all the IRIs with

their respective extended statements from the RDF graph, and the IRI layer (IL) pa-

rameter that allows the user to choose between data or network IRI (cf. Section 5.2.2)

evaluation.

3. IRI Reference Resolver (IRR): it allows to eliminate all the redundancies (Rule 3)

caused by the IRI discrepancies in the RDF Graph. The inputs of this component are

the sets of ambiguous extended statements (based on the type of IRI, identifying the

same resource) and two parameters: Type Selector (TS) and the Document Type (DT).

allowing to capture user preferences about the type of selection (e.g., short, generic, etc.,

according to the target application) and the type of serialization (format, e.g., RDF/XML,

N3, etc.) when dealing with the “document presentation” IRI type. The pseudo-code of

our IRI reference resolver is provided in Algorithm 4.

110



CHAPTER 5. Semantic and IRI RDF Normalization

Algorithm 4 IRI Reference Resolver
Input: ST+[] //List of Extended Statements of the RDF Description

TS, IL //Parameter

Output: ST+[] //List of Extended Statements without IRI discrepancies

1: N=st+.length(); //Number of Statements in the list

2: for i=1, i ≤ N, i++ do

3: for j=i+1, j ≤ N, j++ do

4: if st+[i].to = “IRI” and st+[i].s = st+[j].s then

5: if st+[i].p = st+[j].p and identify(st+i .o, IL) = identify(st+j .o, IL) then

6: StSelect(st+i , st+j , TS)

7: else

8: if st+[i].o = st+[j].o and identify(st+i .p, IL) = identify(st+j .p, IL) then

9: StSelect(st+i , st+j , TS)

10: remove(st+amb, ST
+[]); // remove semantic statement duplication - Rule 3

11: return ST+[]

6.2.2 Physical Normalization

It is the second step in IRI-level normalization, allowing to eliminate namespace duplications

which can create IRI discrepancies (discussed in Section 3.4.5), and allows obtaining an RDF

file without namespaces duplications (cf. Rule 4). It basically consists of one component:

Namespace Reference Resolver, which accepts as input the sets of ambiguous namespaces

in an RDF file, and eliminates duplicated ones (based on the type of IRI identifying the same

vocabulary). We provide the pseudo-code of this component in Algorithm 5.

Algorithm 5 Namespace Reference Resolver
Input: QN [] //List of Qnames of the RDF Description

TS, IL //Parameter

Output: QN [] //List of Qnames without IRI discrepancies

1: N=st+.length(); //Number of namespaces in the list

2: for i=1, i ≤ N, i++ do

3: for j=i+1, j ≤ N, j++ do

4: if identify(qni.ns, IL) = identify(qnj .ns, IL) then

5: NamespaceSelect(qni, qnj , TS)

6: remove(qnamb, QN []) and replace(qnamb.ns, qnselect.ns, ST
+[]); // remove namespace discrepancies - Rule

4

7: return QN+[]

5.4.3 IRI Handler

This module is developed to solve the IRI reference problem (discussed in Section 3.4) which

is required to detect and eliminate IRI duplications.

1. IRI Matcher : it implements IRI disambiguation between IRIs that identify the same

resource with the same type (which is used inside Function 11). The inputs of this

component are all the IRIs with their respective types and extended statements, as well

111



5.5. Summary

as the IRI layer (IL) parameter. We provide the pseudo-code of this component in

Algorithm 6.

2. IRI Cache Manager: it provides a storage for IRIs that generated after doing the

matching between the IRIs using an External IRI Source (e.g. SameAs1 API). It allows

the matching component to request the information from the IRI cache manager and , in

case it is not found, to the request it from an external (user designated) IRI source.

Algorithm 6 IRI Matcher
Input: IRIi, IRIj //Iris to be match

IL //Parameter

Source //Parameter

Output: boolean //Boolean value

1: Matcher(IRIi, IRIj , Source)

2: return boolean

5.5 Summary

In this chapter, we propose an extension of our syntactic RDF normalization framework, i.e.,

R2NR (Chapter 4) by integrating two additional levels (semantic and IRI) and one component

(IRI handler) detailed in Section 5.4.

To develop this extension in Section 5.1, we presented additional functions related to

solving the semantic and IRI challenges, leading to the creation of our new normalization rules

(Section 5.3). Our extended RDF normalization framework, titled R2NRE, allows to keep all

the characteristic of our first approximation, adding two new specifications related to semantic

and IRI normalization, where through functions an rules our method can eliminate all the log-

ical redundancies and physical disparities in RDF descriptions related to semantic ambiguities

and IRI discrepancies (identified in our motivation Chapter 3) and obtain a normalized RDF

description.

In table 5.5, we compare our extended RDF normalization against state of the art ap-

proaches detailed in Section 5.2.4. Note that in the table 5.5: X means that the approach

does not solve the problem, X* means that the approach solves partially the problem, and X

means that the approach solves the problem. As shown this table, our approach covers all the

problems presented in Chapter 3, in contrast with existing techniques which neglect most of

them.

In the next chapter, we present and analyze the results of our experimental evaluation

and discuss what this means for the effectiveness and efficiency of our approach. Also, we

compare our results against two main methods (HDT and JSON-LD).

1http://sameas.org/

112

http://sameas.org/


CHAPTER 5. Semantic and IRI RDF Normalization

T
ab

le
5.

5:
R

el
at

io
n

b
et

w
ee

n
p
ro

b
le

m
s

an
d

R
D

F
se

m
an

ti
c

an
d

IR
I

N
or

m
al

iz
at

io
n

a
p

p
ro

a
ch

es

P
ro

b
le

m
s

S
em

an
ti

c
A

m
b
ig

u
it

ie
s

IR
I

D
is

cr
ep

a
n

ci
es

A
p
p

ro
ac

h
es

S
y
n
ta

ct
ic

Is
su

es
P

8
P

9
P

9.
1

P
9.

2
P

10
P

11
P

12
P

1
3

P
1
4

P
1
5

K
ro

gs
ti

e
et

al
.

[K
V

S
07

]
X

X
X

X
X

X
X

X
*

X
X

*
X

*

G
ar

ci
a-

C
as

tr
o

et
al

.
[G

C
G

P
10

]
X

X
X

X
X

X
X

X
*

X
X

*
X

*

K
er

za
zi

et
al

.
[K

ea
07

]
X

X
X

X
X

X
X

X
*

X
X

*
X

*

K
er

za
zi

et
al

.
[K

ea
08

]
X

X
X

X
X

X
X

X
*

X
X

*
X

*

J
aff

ri
et

al
.

[J
G

M
08

b
]

X
X

X
X

X
X

X
X

X
X

X

R
u
su

et
al

.
[R

Š
D

+
10

]
X

X
X

X
X

X
X

X
X

X
X

S
h

ek
ar

p
ou

r
et

al
.

[S
N

A
12

]
X

X
X

X
X

X
X

X
X

X
X

U
sb

ec
k

et
al

.
[U

N
R

+
14

]
X

X
X

X
X

X
X

X
X

X
X

O
u
r

a
p
p
ro

a
ch

X
X

X
X

X
X

X
X

X
X

X

113



Chapter 6

Experimental Evaluation

“Simplicity is prerequisite for reliability.”

— E. Dijkstra

In the preceding two chapters we presented our RDF normalization approach. In this

chapter, we describe our prototypes (Section 6.1), experimental metrics (Section 6.2), the

experimental environment (See section 6.3), and the results of our experiments (Section 6.4).

Experiments target the effectiveness, efficiency, jena loading time improvement, and storage

improvement of RDF descriptions when performing normalization. Next, in Section 6.5, we

also compare the quality of our approach with respect to JSON-LD and HDT methods. Finally,

we wrap-us this chapter with a summary in Section 6.6.

6.1 Prototype

In order to validate our proposal, we have developed two versions of our prototype: online

and desktop systems to test, evaluate, and validate our RDF Normalization framework. We

call our prototypes RDF2NormRDF . The desktop prototype system was developed using

Java 7.0 (See Figure 6.1), whereas the online prototype system1 was developed using PHP and

Java as the RDF engine (See Figure 6.2). RDF2NormRDF was implemented following the

R2NR architecture described in Figure 5.6. Hereunder, we describe the main components of

the system:

• The logical normalization component, accepts as input a (set of) RDF/XML file(s)

and then parses the corresponding RDF descriptions, transforming them into extended

1Available at http://rdfn.sigappfr.org/

114

http://rdfn.sigappfr.org/


CHAPTER 6. Experimental Evaluation

 

Input Section: 
- Original file (Input 
tab) 
-List of input 
statements 
- List the original 
prefixes with their 
namespaces 

Output Section: 
- Normalized file 
(Output tab) 
- Info about: Jena 
time loading input 
and output, number 
of URIs, BNs, 
Literals, Statements, 
prefixes, etc.  of 
input and output 
file, % redundancy, 
etc. 

Result about: 
- Size of input and 
output file 
- Normalization 
time 

User 
Parameters 

Figure 6.1: Desktop Prototype Interface.

statements while removing all logical redundancies, using Jena Libraries to parse the

input file.

• The physical normalization component accepts as input: the output of the logical

normalization component, in addition to prefix renaming and output format parameters,

and then runs the latter through three consecutive processes: (a) Namespaces Controller

(including the elimination of duplicate and unused namespaces), (b) Sorting Processor

(producing statements in a specific order), and (c) Formatting Processor (producing the

output normalized RDF description based on the output form chosen by the user).

Below, we detail the information of the tabs in the Output online interface (Figure 6.2):

• Output: the RDF/XML normalized document in accordance with the RDF/XML docu-

ment input and the parameters of the format.

• Statements: The statements are printed with the subject, predicate and object values

after the sorting process.

• Prefix: The prefixes and namespaces they represent after the normalization process,

according to the input parameter about the prefix renaming.

• Info: in this part, we present the following information:

– Normalization Time: It measures the total time of the process. The time computa-

tion is represented in nanoseconds.

115



6.1. Prototype

 

 

 

User 

Parameters 

Input 

Section 

PDFill P
DF Editor w

ith Free W
rite

r and Tools

(a) Input

(b) Output

Figure 6.2: Online Prototype Interfaces

116



CHAPTER 6. Experimental Evaluation

– Input Jena Time: the time to uploading in Jena the input file.

– Input size: The number of bytes in the input.

– Input IRI nodes: the number of IRIs in the input file.

– Input Blank nodes: the number of BNs in the input file.

– Input Literal nodes: the number of literals in the input file.

– Input Statements: the number of statements in the input file.

– Input Namespaces: the number of namespaces in the input file.

– Output Jena Time: the time to uploading in Jena the output file.

– Output size: The number of bytes in the output file.

– Output IRI nodes: the number of IRIs in the output file.

– Output Blank nodes: the number of BNs in the output file.

– Output Literal nodes: the number of literals in the output file.

– Output Statements: the number of statements in the output file.

– Output Namespaces: the number of namespaces in the output file.

– Results of % Redundancy Reduction.

– Results of % Disparity Reduction.

– Results of % Size Reduction.

– Results of % Reduction Jena Loading Time.

6.2 Experimental Metrics

We utilized three main criteria to evaluate the quality of our normalization approach: i) effec-

tiveness, ii) efficiency, and iii) applicability.

6.2.1 Effectiveness (Ξ)

It is a boolean value that measures our normalization method (logical normalization process

and physical normalization process) by assessing the resulting normalized RDF files w.r.t. the

normalization goals and properties covered in Sections 4.3 and 4.4, such as:

Ξ(DSi) = Γ(DSi) ∧ P(DSi) ∧ K(DSi) (6.1)

since:

117



6.2. Experimental Metrics

Γ(DSi) = True if γE(DSi) = γI(DSi)

γE(DSi) =

∑n
i=1 lr(Di)

n
(6.2)

γI(DSi) =

∑n
i=1 lr(Di)

n
(6.3)

where:

• DS is the RDF dataset,

• n is the number of files in the dataset,

• Γ is the comparison between the average of logical redundancies in the input dataset

group (DSi) and the logical redundancies eliminated from the same dataset group for the

method,

• lr is the percentage of logical redundancies in the file,

• γE and γI are the average of logical redundancies in the dataset group where E is the

average of the eliminated redundancies and I is the average of the input of redundancies.

P(DSi) = True if ρE(DSi) = ρI(DSi)

ρE(DSi) =

∑n
i=1 pd(Di)

n
(6.4)

ρI(DSi) =

∑n
i=1 pd(Di)

n
(6.5)

where:

• DS is the RDF dataset,

• n is the number of files in the dataset,

• P is the comparison between the average of physical disparities in the input dataset group

and the physical disparities eliminated from the same dataset group for the method,

• pd is the percentage of physical disparities in the file,

• ρE and ρI are the averages of physical disparities in the dataset group where E is the

average of the eliminated disparities and I is the average of the input of disparities.

118



CHAPTER 6. Experimental Evaluation

K(DSi) = True if:

∀Di ∈ DSi/Di is consistent

where:

• DS is the RDF dataset,

• K is the evaluation of the consistency in the dataset group.

6.2.2 Efficiency (λ)

In addition to assessing the effectiveness of our method in producing normalized documents,

we evaluated its time performance and its complexity, using the following measure:

λ(DSi) =

∑n
i=1 pt(Di)

n
(6.6)

where:

• n is the number of files in the dataset,

• pt is the average of processing time of the file.

6.2.3 Applicability

We also evaluated the impact of our normalization process in a practical application setting,

evaluating: i) Jena (framework for building Semantic Web applications which has been used

in several projects1 and existing studies [GCGP10]) loading time (Π) and ii) RDF file storage

space (Φ). Here, we used the following measures:

Π(DSi) =

∑n
i=1 lt(Di)

n
(6.7)

Φ(DSi) =

∑n
i=1 sr(Di)

n
(6.8)

where:

• n is the number of files in the dataset,

• lt is the average of Jena loading time of the file,

• sr is the percentage of size reduction of the file.

1https://jena.apache.org/about_jena/contributions.html

119

https://jena.apache.org/about_jena/contributions.html


6.3. Experimental Environment

6.3 Experimental Environment

6.3.1 Processing Context

The experiments have been done under the environment described in Table 6.1.

Table 6.1: Experimental Environment

CPU IntelrCore(TM) i7 - 2600 + 3.4GHz

Memory 8.00GB

OS MS Windows 7 Professional

Programming Environment Sun JDK 1.7

6.3.2 Dataset Context

We conducted experiments on 11 datasets categorized in four groups:

• (Group 1 ): The first dataset group consists of two synthetic data-sets created based on

the running examples covered in our study. This group was created to test the quality

of our method when applied on user files with redundant information in blank nodes,

literals, statements, namespaces and unused namespaces.

Syn DS1 : It consists of 13 generated RDF/XML files with different characteristics manually

tuned to highlight the behavior of our method, while varying the duplications of

BNs, statements, literals, and namespaces. Files of the Syn DS1 dataset are hetero-

geneous w.r.t. file size, RDF output form (flat, compact, or full compact), as well

as the number of IRIs, BNs, literals, and statements. Yet, the files are homogeneous

w.r.t. the namespaces utilized (i.e., they contain only few namespace disparities, cf.

Table 6.2).

Syn DS2 : It consists of 114 generated RDF/XML files based on modifications in the running

example with more statements, blank node duplications as well as duplicated names-

pace prefixes and unused namespaces on a bigger scale then Syn DS2 dataset. This

dataset is heterogeneous w.r.t. the number of blank nodes, literals and statements

(cf. Table 6.2).

• (Group 2 ): The second dataset group is based on real files from the online version of

the Linked Open Data cloud. This group was created to test the quality of our method

when applied on real files with few or without redundant information.

120



CHAPTER 6. Experimental Evaluation

LGD : LinkedGeoData1 dataset consists of 500 RDF/XML homogeneous files sharing

similar features w.r.t. the number of nodes and the number of statements.

DBp : DBpedia2 dataset consists of 355 RDF/XML heterogeneous files which mainly vary

w.r.t. file size, the number of IRIs, and the number of statements.

WN : WordNet3 dataset consists of 1087 RDF/XML heterogeneous files which vary w.r.t.

the number of nodes, and the number of statements.

• (Group 3 ): The third group of datasets is generated by including additional random

redundancies and disparities in two real datasets of the Group 2. This group was gen-

erated to test and measure the behavior of our method when handling typical files with

redundant information.

LGD2 : It consists of 145 generated files of LinkedGeoData with statements and namespaces

duplicated and a few unused namespaces.

DBp2 : It consists of 119 generated files of DBpedia with statements and namespaces

duplicated and a few unused namespaces.

• (Group 4 ): The fourth dataset group was synthetically created based on the datasets

of groups 1 and 3 (Syn DS1, Syn DS2, LGD2 and DBp2) after applying theJSON-LD

Normalization4 and HDT technique5. This group was used to test the efficiency of our

approach in comparison with both JSON-LD and HDT normalization methods.

The main features of all datasets are summarized in Tables 6.2, 6.3, and 6.4. Note

that in tables 6.3, and 6.4, the datasets after applying JSON-LD method have some logical

redundancies but not present any physical disparities (due to the output format does not allow

to have namespaces duplications) and datasets after applying HDT method do not present any

logical redundancies or physical disparities (due to all blank node redundancies are represented

as IRIs). A detailed evaluation about this results, we provide in Section 6.5, where we discuss

about the behavior of other methods.

1http://linkedgeodata.org/Datasets
2http://wiki.dbpedia.org/Datasets
3http://wordnet-rdf.princeton.edu/
4http://json-ld.org/playground/
5http://www.rdfhdt.org/download/, HDT is a compact data structure and format for RDF. In order to

compress the file, this technique reduces the verbosity, erasing some redundancies and assigning unique IDs to

the elements (see Section 4.2.2).

121

http://linkedgeodata.org/Datasets
http://json-ld.org/playground/


6.3. Experimental Environment

T
ab

le
6.

2:
F

ea
tu

re
s

of
fi

le
s

in
ea

ch
D

at
as

et

F
e
a
tu

re
s

G
ro

u
p

1
G

ro
u
p

2
G

ro
u
p

3

S
y
n

D
S
1

S
y
n

D
S
2

L
G

D
D

B
p

W
N

L
G

D
2

D
B

p
2

Max

Min

Avg

Max

Min

Avg

Max

Min

Avg

Max

Min

Avg

Max

Min

Avg

Max

Min

Avg

Max

Min

Avg

S
iz

e
K

b
4.

3
0.

5
2.

2
48

.6
0.

5
7.

9
3
.0

8
2
.2

7
2
.3

8
5
4
.4

9
1
.4

4
0
.0

8
4
8
.7

5
1
.0

3
2
.5

4
7
.2

2
.8

4
.5

2
7
5
.1

9
4
.0

7
7
3
.3

3

IR
Is

17
2

6
47

2
6

1
1

8
9

4
2
6
0

9
1
5
4

4
2
9

6
1
1

9
9

9
4
2
1

1
1

9
3

B
N

s
12

1
6

12
9

1
19

0
0

0
0

0

L
it

e
ra

ls
26

3
14

32
0

3
50

2
5

6
6

2
1
8

0
5
3

1
3
3

2
1
7

4
0

7
2
0

8
5
1

1
1
6
0

S
ta

te
m

e
n
ts

63
5

30
78

4
5

11
6

3
3

1
4

1
4

7
3
0
0

1
4

2
6
6

5
6
1

9
2
7

7
7

2
5

4
5

2
0
6
2

3
3

4
5
4

B
N

D
u
p

.
3

0
2

12
3

0
16

0
0

0
0

0

L
it

.
D

u
p
.

7
0

5
30

7
0

43
0

2
0

0
.0

1
0

3
4

1
1
4

6
6
7

0
9
9

S
t

D
u
p
.

18
0

12
75

3
0

98
0

2
0

0
.0

1
0

6
3

1
1

3
0

1
3
1
4

1
8

2
7
5

L
o
g
.

R
e
d

.

%

69
0

32
98

0
64

0
1
.2

7
0

0
.0

0
4

0
7
7

2
9

5
7

7
5

3
7

5
2

N
s

D
u
p
.

4
0

2
12

6
0

14
0

0
0

7
1

3
1
4

3
9

U
n
u

se
d

N
s

2
0

1
3

0
2

1
5

1
0

1
3

0
0

8
2

5
1

0
0
.8

P
h
y
s.

D
is

.

%

78
0

60
98

0
70

5
9

4
2

5
4

0
0

5
5

4
0

4
8

5
0

4
0

4
6

122



CHAPTER 6. Experimental Evaluation

T
ab

le
6.

3:
F

ea
tu

re
s

of
fi

le
s

in
d
at

as
et

G
ro

u
p

4
(a

ft
er

ap
p
ly

in
g

J
S

O
N

-L
D

an
d

H
D

T
)

b
as

ed
o
n

G
ro

u
p

1

F
e
a
tu

re
s

S
y
n

D
S
1

-
J
S

O
N

-L
D

S
y
n

D
S
1

-
H

D
T

S
y
n

D
S
2

-
J
S

O
N

-L
D

S
y
n

D
S
2

-
H

D
T

Max

Min

Avg

Max

Min

Avg

Max

Min

Avg

Max

Min

Avg

S
iz

e
K

b
4.

64
0.

56
2
.2

3
5
.5

8
0
.6

4
2
.6

7
3
7
.1

7
0
.5

6
6
.0

3
4
7
.6

5
0
.6

4
7
.5

7

IR
Is

17
2

6
2
9

3
1
1

4
7

2
5

1
4
1

3
2
5

B
N

s
12

1
6

0
1
2
9

1
1
9

0

L
it

e
ra

ls
25

3
1
3

2
5

3
1
3

2
5
9

3
4
0

2
5
9

3
4
0

S
ta

te
m

e
n
ts

54
5

2
4

5
4

5
2
4

4
0
0

5
6
6

4
0
0

5
6
6

B
N

D
u
p

.
3

0
2

0
1
2
3

0
1
6

0

L
it

.
D

u
p
.

6
0

4
0

2
4
6

0
3
2

0

S
t

D
u
p
.

9
0

6
0

3
6
9

0
4
9

0

L
o
g
.

R
e
d
.

%
60

0
2
7

0
9
6

0
5
2

0

N
s

D
u
p
.

0
0

0
0

U
n
u

se
d

N
s

0
0

0
0

P
h
y
s.

D
is

.
%

0
0

0
0

123



6.3. Experimental Environment

T
ab

le
6.

4:
F

ea
tu

re
s

of
fi

le
s

in
d
at

as
et

G
ro

u
p

4
(a

ft
er

ap
p
ly

in
g

J
S

O
N

-L
D

an
d

H
D

T
)

b
as

ed
o
n

G
ro

u
p

3

F
e
a
tu

re
s

L
G

D
2

-
J
S

O
N

-L
D

L
G

D
2

-
H

D
T

D
B

p
2

-
J
S
O

N
-L

D
D

B
p
2

-
H

D
T

Max

Min

Avg

Max

Min

Avg

Max

Min

Avg

Max

Min

Avg

S
iz

e
K

b
1.

82
1.

66
1.

6
8

1
.8

2
1
.6

6
1
.6

8
1
0
1
.4

2
2
.1

2
3
0
.5

6
1
0
1
.4

2
2
.1

2
3
0
.5

6

IR
Is

9
9

9
9

9
9

4
2
1

1
1

9
3

4
2
1

1
1

9
3

B
N

s
0

0
0

0

L
it

e
ra

ls
9

6
6

9
6

6
2
0
4

1
6
1

2
0
4

1
6
1

S
ta

te
m

e
n
ts

17
14

14
1
7

1
4

1
4

7
8
1

1
4

1
7
9

7
8
1

1
4

1
7
9

B
N

D
u
p

.
0

0
0

0

L
it

.
D

u
p
.

0
0

0
0

S
t

D
u
p
.

0
0

0
0

L
o
g
.

R
e
d
.

%
0

0
0

0

N
s

D
u
p
.

0
0

0
0

U
n
u

se
d

N
s

0
0

0
0

P
h
y
s.

D
is

.
%

0
0

0
0

124



CHAPTER 6. Experimental Evaluation

6.4 Experimental Results

6.4.1 Effectiveness (RDF Normalization Quality)

We verified, for both synthetic and real datasets, that our normalization goals were success-

fully reached, solving all identified problems (cf. Section 3), and verifying all normalization

properties (cf. Section 4.4) as well.

In short, results clearly show in Table 6.5 that the effectiveness scores of our method in all

the dataset groups are True, e.g. Ξ(Syn DS1) = True. In other words, the normalized RDF

descriptions, that our approach produces, fulfill all predefined properties and goals in both real

and synthetic datasets, i.e., eliminating the logical redundancies and physical disparities (only

for the syntactic level1) while preserving the consistency of the files. Note that WN dataset

does not have logical redundancies and physical disparities and after applying our method the

dataset continue preserving the consistency. So, we prove that our method does not cause any

variation in quality of original data.

In group 2, we have special cases: RDF files that they do not have redundancies and/or

disparities, or contain few redundancies as DBp, however our approach does not cause any

negative impact in the datasets and thus preserves the consistency of such files.

Table 6.5: Goals and properties achieved in the Datasets

Goals/Properties
Group 1 Group 2 Group 3

Syn DS1 Syn DS2 LGD DBp WN LGD2 DBp2

Solving logical redundan-

cies (%input=%erase)

32% 64% 0% 0.004% 0% 57% 52%

Solving physical dispari-

ties (%input=%erase)

60% 70% 54% 0% 0% 48% 46%

Preserving completeness True True True True True True True

Preserving minimality True True True True True True True

Preserving compliance True True True True True True True

Preserving consistency True True True True True True True

6.4.2 Efficiency (Time Performance)

In fact, the complexity of our method comes down to worst case O(N2) time where N represents

the number of RDF statements in the target RDF description D, since our main normalization

1The semantic and IRI levels will be evaluate in future works

125



6.4. Experimental Results

 

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
ili

se
co

n
d

s 

bytes 

Figure 6.3: Average normalization time in the Syn DS1 dataset which RDF descriptions contain

a considerable amount of logical redundancies and physical disparities.

process (cf. Algorithm 1 - Redundancy Controller) needs to process each statement in D against

all others in D in order to identify and then solve redundancies/disparities, given that output

(normalized) statement re-ordering and serialization (cf. Algorithm 2 - Statements Sorter)

requires average linear time.

Note that our overall normalization process can reach average linear complexity lev-

els, i.e., best case O(N), when processing RDF descriptions with no or very few redundan-

cies/disparities: where the normalization process would simply come down to sorting state-

ments (cf. Algorithm 2).

Experimentally, we evaluate our method’s time performance with each group1:

• Group 1 : First in the Syn DS1 dataset, we verify our method’s polynomial time

(almost linear) dependency on the size of the RDF file, containing blank nodes, logical

redundancies, and physical disparities (see Figure 6.3).

Second in Syn DS2 , we verify our method’s polynomial time (almost linear) dependency

on the amount of blank nodes of the RDF file, containing logical redundancies and physical

disparities (see Figure 6.4.a). Meanwhile, time dependency on RDF file size becomes

relatively trivial when the amount of the blank nodes is significant in the files as shown

in Figure 6.4.b2.

• Group 2 : Results in Figure 6.5.a show that processing time is almost linear w.r.t. file size

when the amount of logical redundancies and/or physical disparities in the file is limited

such as with LGD (see Figure 6.5.a) and when the amount of IRIs and statements is

homogeneous in the dataset. However, processing time becomes polynomial when the

files have a considerable amount of IRIs and statements without logical redundancies

and/or physical disparities such as in the DBp and WN datasets (see Figure 6.5.b and

c)

1All the tests related to time processing were executed 10 times, and for the evaluation we used an average

value of the 10 executions.
2Note that the variation in the behavior of Figure 6.4.b is because a file of the dataset (Syn DS2) contains a

shorter number of BNs w.r.t. the others files.

126



CHAPTER 6. Experimental Evaluation

 

 

0

20000

40000

60000

80000

100000

120000

140000

160000

0 20 40 60 80 100 120 140

m
ili

se
co

n
d

s 

# blank nodes 

PDFill PDF Editor with Free Writer and Tools

(a) Syn DS2 normalization time evaluated w.r.t.

the number of BNs.

 

 

0

20000

40000

60000

80000

100000

120000

140000

0 10000 20000 30000 40000 50000 60000

m
ili

se
co

n
d

s 

bytes 

PDFill PDF Editor with Free Writer and Tools

(b) Syn DS2 normalization time evaluated w.r.t.

file size.

Figure 6.4: Average normalization time in Syn DS2 dataset.

 

0
0.5

1
1.5

2
2.5

3
3.5

2300 2400 2500 2600 2700 2800 2900 3000 3100 3200m
il

is
e

c
o

n
d

s
 

bytes 

PDFill PDF Editor with Free Writer and Tools

(a) LGD contains only physical dispar-

ities without logical redundancies. It

presents a linear time.

 

0

2000

4000

6000

8000

10000

12000

14000

16000

0 90000 180000 270000 360000 450000 540000 630000 720000 810000 900000

m
ili

se
co

n
d

s 

bytes 

PDFill PDF Editor with Free Writer and Tools

(b) DBp without physical disparities and 0.004%

of logical redundancies. It presents an average lin-

ear time.

 

0

10

20

30

40

50

60

70

80

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

m
ili

se
co

n
d

s 

bytes 

PDFill P
DF Editor with Free Writer and Tools

(c) WN without logical redundancies and physical

disparities. It presents an average linear time.

Figure 6.5: Average normalization time of the datasets in Group 2.

127



6.4. Experimental Results

 

0.00

1.00

2.00

3.00

4.00

2800 3300 3800 4300 4800 5300 5800 6300 6800 7300 7800

m
ili

se
co

n
d

s 

bytes 

PDFill PDF Editor with Free Writer and Tools

Figure 6.6: Average normalization time of the LGD2 dataset, with limited logical redundancies

and physical disparities. It presents a linear time.

 

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0 50000 100000 150000 200000 250000 300000

m
ili

se
co

n
d

s 

bytes 

PDFill PDF Editor with Free Writer and Tools

(a) DBp2 evaluated w.r.t. the size.

 

 

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500

m
ili

se
co

n
d

s 

# statements 

PDFill PDF Editor with Free Writer and Tools

(b) DBp2 evaluated w.r.t. the number of state-

ments

 

 

0

100

200

300

400

0 50 100 150 200 250 300 350 400 450m
il

is
e

c
o

n
d

s
 

 # IRIs 

PDFill PDF Editor with Free Writer and Tools

(c) DBp2 evaluated w.r.t. the number

of IRIs

Figure 6.7: Average normalization time of the DBp2 dataset (containing a considerable amount

of logical redundancies and physical disparities, cf. Table 6.2).

• Group 3 : Results in Figure 6.6 show that processing time is almost linear w.r.t. file

size when the files have logical redundancies and/or physical disparities, and the amount

of IRIs and statements is homogeneous in the dataset, such as with LGD2 . On the

other hand, DBp2 has a considerable amount of IRIs and statements and the files are

not homogeneous (cf. Table 6.2), therefore, the results vary. As we show in Figure 6.7,

time dependency on RDF file size becomes relatively trivial when the amount of IRIs and

statements is bigger in the dataset, and when the files are not homogeneous w.r.t these

variables. For example, we can see variations in Figure 6.7.b because the amount of IRIs

is decreasing in some files.

Morover, we evaluated the impact of the sorting indexes order (cf. Section 4.5.2.2) in the

Normalization Time. Results in Figure 6.8 show that index SOP (subject-object-predicate)

highlights the best time performance, whereas SPO underlines the worst time performance

among all six indices.

128



CHAPTER 6. Experimental Evaluation

 

0

1

2

3

4

5

6

7

8

OPS OSP POS PSO SPO

6.64 

0.74 
0.12 

2.55 

7.21 

N
Ti

m
e 

co
m

pa
ris

on
 a

ga
in

st
 S

O
P 

(%
) 

Order Index 

Figure 6.8: Order comparison ratio against normalization time of the SOP order.
 

 

 

0
2
4
6
8

10
12
14
16

0.00 10000.00 20000.00 30000.00 40000.00 50000.00 60000.00

m
ili

se
co

nd
s 

bytes 

JT Input  JT Output

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
ili

se
co

nd
s 

bytes 

JT Input JT Output

(a) Syn DS1

 

 

 

0
2
4
6
8

10
12
14
16

0.00 10000.00 20000.00 30000.00 40000.00 50000.00 60000.00

m
ili

se
co

nd
s 

bytes 

JT Input  JT Output

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
ili

se
co

nd
s 

bytes 

JT Input JT Output
(b) Syn DS2

Figure 6.9: Average Jena loading time of the datasets in Group 1.

6.4.3 Applicability

A. Jena loading time:

Results, with respect to all three groups, indicate that our approach improved the files’

loading time in comparison with the original loading time of the datasets.

• Group 1 : Results shown in Figure 6.9 concur with those shown in the previous

subsection, such that loading time becomes polynomial when normalizing files of

the Syn DS1 and Syn DS2 datasets having logical redundancies and physical

disparities, where the increase of loading time varies depending on the amount of

blank nodes (as shown in Figure 6.9.b).

• Group 2 : Results shown in Figure 6.10.a concur with those shown in the previous

subsection, such that loading time is almost linear in the size of files in the LGD

dataset since they contain very few redundancies/disparities and are more or less

129



6.4. Experimental Results

 

 

 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

2300 2400 2500 2600 2700 2800 2900 3000 3100 3200

m
ili

se
co

nd
s 

bytes 

JT Input  JT Output

0

50

100

150

200

250

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

m
ili

se
co

nd
s 

bytes 

JT Input  JT Output

0

5

10

15

20

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

m
ili

se
co

nd
s 

bytes 

JT Input  JT Output

(a) LinkedGeoData - Dataset

 

 

 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

2300 2400 2500 2600 2700 2800 2900 3000 3100 3200

m
ili

se
co

nd
s 

bytes 

JT Input  JT Output

0

50

100

150

200

250

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

m
ili

se
co

nd
s 

bytes 

JT Input  JT Output

0

5

10

15

20

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

m
ili

se
co

nd
s 

bytes 

JT Input  JT Output
(b) DBpedia - Dataset

 

 

 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

2300 2400 2500 2600 2700 2800 2900 3000 3100 3200

m
ili

se
co

nd
s 

bytes 

JT Input  JT Output

0

50

100

150

200

250

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000
m

ili
se

co
nd

s 

bytes 

JT Input  JT Output

0

5

10

15

20

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

m
ili

se
co

nd
s 

bytes 

JT Input  JT Output

(c) WordNet - Dataset

Figure 6.10: Average Jena loading time of the datasets in Group 2.

 

0

0.5

1

1.5

2

2.5

2800 3300 3800 4300 4800 5300 5800 6300 6800 7300 7800

m
ili

se
co

nd
s 

bytes 

JT Input  JT Output

Figure 6.11: Average Jena loading time of RDF files in the LGD2 dataset.

homogeneous w.r.t. the amount of IRIs and statements. In contrast, loading time

in Figures 6.10.b and c is polynomial w.r.t. the amount of IRIs and statements in

DBp and WN datasets.

• Group 3 : In Figure 6.11, results shown that loading time is linear when we remove

all the logical redundancies and physical disparities and the dataset is homogeneous

w.r.t. the amount of IRIs and statements as LGD2 . In Figure 6.12, one can

conclude that time dependency on file size becomes trivial when the amount of IRIs

and statements increases as in DBp2 . For example, in Figure 6.12.b shows that

loading time varies with file size because the files are not homogeneous, i.e., the

amount of statements increases but the amount of IRIs decreases in some files.

130



CHAPTER 6. Experimental Evaluation

 

 

 

 

0

10

20

30

40

50

0 50000 100000 150000 200000 250000 300000

m
ili

se
co

nd
s 

bytes 

JT Input  JT Output

0

10

20

30

40

50

0 500 1000 1500 2000 2500

m
ili

se
co

nd
s 

# statements 

JT Input  JT Output

0

10

20

30

40

50

0 50 100 150 200 250 300 350 400 450

m
ili

se
co

nd
s 

# IRIs 

JT Input  JT Output

(a) DBp2 evaluated by the size

 

 

 

 

0

10

20

30

40

50

0 50000 100000 150000 200000 250000 300000

m
ili

se
co

nd
s 

bytes 

JT Input  JT Output

0

10

20

30

40

50

0 500 1000 1500 2000 2500

m
ili

se
co

nd
s 

# statements 

JT Input  JT Output

0

10

20

30

40

50

0 50 100 150 200 250 300 350 400 450

m
ili

se
co

nd
s 

# IRIs 

JT Input  JT Output

(b) DBp2 evaluated by the number of IRIs

 

 

 

 

0

10

20

30

40

50

0 50000 100000 150000 200000 250000 300000
m

ili
se

co
nd

s 
bytes 

JT Input  JT Output

0

10

20

30

40

50

0 500 1000 1500 2000 2500

m
ili

se
co

nd
s 

# statements 

JT Input  JT Output

0

10

20

30

40

50

0 50 100 150 200 250 300 350 400 450

m
ili

se
co

nd
s 

# IRIs 

JT Input  JT Output(c) DBp2 evaluated by the number of state-

ments

Figure 6.12: Average Jena loading time of RDF files in the DBp2 dataset.

More significant, results in Figure 6.13 show that even when applied on homogeneous files

(e.g., WordNet) without or with a limited amount of logical redundancies and physical

disparities (e.g., DBpedia), our method continues improving the Jena loading time due

to the format of our outputs (flat, compact and full compact). After analyzing the results

of each data-set, one can conclude that Jena loading time improves (i.e., is reduced) as

a direct result of normalizing the data-sets, taking into account RDF file size, as well as

the amount of statements, IRIs, and blank nodes in the RDF graph (cf. Figure 6.13).

In addition, we evaluated the impact of the sorting indexes order (cf. Section 4.5.2.2)

in Jena loading time. Results in Figure 6.14 show that index PSO (predicate-subject-

object) highlights the best time performance, whereas SPO underlines the worst time

performance among all six indices.

B. Storage:

Results, w.r.t. all three groups, indicate that our method reduces RDF file output size in

comparison with the original size of the files. Based on our output formats: flat, compact

and full compact, we show that our method is adaptable to different target applications.

For instance, if the application requires improving the compression ratio of the file, the

full compact format would more suitable than other formats.

131



6.4. Experimental Results

 

30.40 

59.52 

51.58 

3.66 

2.69 

50.76 

53.49 

39.46 

71.11 

30.65 

5.63 

20.76 

62.43 

58.26 

0 10 20 30 40 50 60 70 80

Syn_DS1

Syn_DS2

LGD

DBp

WN

LGD2

DBp2

% Avg Reduction (compact format) 

Size
Jena Time

Figure 6.13: Average size reduction results w.r.t. the compact format.

 

0
1
2
3
4
5
6
7
8
9

OPS OSP POS SOP SPO

1.05 1.33 

2.60 

7.52 

8.66 

Je
na

 L
oa

di
ng

 T
im

e 
co

m
pa

ris
on

 
ag

ai
ns

t P
SO

 (%
) 

Order index 

Figure 6.14: Order comparison ratio of the PSO sorting index order against Jena loading time.

132



CHAPTER 6. Experimental Evaluation

 

69.38 

71.11 

74.34 

59.75 

62.43 

66.70 

58.02 

58.26 

63.69 

35.50 

39.46 

45.55 

25.84 

30.65 

33.64 

16.68 

20.76 

26.88 

4.79 

5.63 

15.20 

0 10 20 30 40 50 60 70 80

Flat

Compact

FullCompact

% Avg Reduction 

DBp

WN

LGD

Syn_DS1

DBp2

LGD2

Syn_DS2

Figure 6.15: Average size reduction of the Datasets w.r.t the output format

We also analyzed the full compact format against the behavior of the other formats.

Results in Figure 6.15 show that it has higher ratio in the results. For example, it pro-

duces:

• An average of 74.34% reduction in size of Syn DS2 (dataset with a considerable

amount of logical redundancies and physical disparities) in comparison with a 69.38%

reduction using the flat format,

• An average of 15.2% reduction in size of DBp (dataset without physical dispari-

ties and with minimal (0.004%) logical redundancies) in comparison with a 4.79%

reduction using the flat format, and

• An average of 26.88% reduction in size of WN (dataset without physical disparities

and logical redundancies) in comparison with a 16.68% reduction using the flat

format.

6.5 Comparison with existing Methods

We also evaluated the quality of our approach in comparison with alternative methods, namely

the JSON-LD normalization approach [SL13] and the HDT (RDF compression) method [Fea13],

using dataset Group 4 (see Tables 6.3 and 6.4).

It is worthy to note that we only compared our approach with JSON-LD and HDT

methods, since most other methods are theoretical, or incomplete, or do not provide accessible

prototypes.

133



6.5. Comparison with existing Methods

6.5.1 Effectiveness (RDF Normalization Quality)

We compared the effectiveness of our approach in comparison to alternative methods by assess-

ing the nature and properties of resulting normalized RDF files w.r.t. our set normalization

problems and goals (cf. Sections 3 and, 4.3).

i) First, results in Tables 6.6 and 6.7 show that our method produces normalized RDF

files that fulfill all our normalization properties and goals in comparison with JSON-LD and

HDT methods which miss several logical and physical redundancies/disparities.

ii) Second by comparing the original input in Syn DS1 , Syn DS2 , LGD2 and DBp2

w.r.t. the outputs of JSON-LD, HDT and our method (see Tables 6.8 and 6.9), we further

verified that the goals and properties are not successfully reached for both approaches:

• JSON-LD method : it preserves some redundancies and disparities, i.e., in Table 6.8, we

show that JSON-LD removes only 5% over a 32% average of logical redundancies in the

Syn DS1 dataset, and 12% over a 64% average of logical redundancies in the Syn DS2

dataset. However, it removes all logical redundancies and physical disparities from the

LGD2 and DBp2 datasets (all 57% and 52% of logical redundancies and 48% and 46%

of physical disparities were removed). A careful inspection of JSON-LD shows that it

preserves blank node duplication and certain literal duplications, which explains the re-

sults obtained with LGD2 and DBp2 (since it does not contain any blank nodes). As a

result, the JSON-LD approach does not satisfy the minimality and consistency properties

(cf. Section 4.4).

• HDT method : results show, at first glance, that it successfully eliminates logical re-

dundancies and physical disparities (see Table 6.9). Nonetheless, a closer look at the

results revealed that the HDT technique actually preserves blank node redundancies by

assigning them different identifiers and/or representing them as IRIs. Hence, the HDT

method actually keeps logical redundancies and physical disparities pertaining to blank

node related statement duplications, and does not consequently satisfy the completeness,

minimality and consistency properties.

Hence, overall results indicate that our method yields improved effectiveness (i.e., nor-

malization quality) in comparison with current alternative methods.

134



CHAPTER 6. Experimental Evaluation

Table 6.6: Goals and properties achieved in the Dataset Group 4 based on Group 1

Goals/Properties
Group 4 based on Group 1

Syn DS1 -

JSON-LD

Syn DS1 -

HDT

Syn DS2 -

JSON-LD

Syn DS2 -

HDT

Solving logical redundancies

(%input=%erase)

27% 0% 52% 0%

Solving physical disparities (%in-

put=%erase)

0% 0% 0% 0%

Preserving completeness True True True True

Preserving minimality True True True True

Preserving compliance True True True True

Preserving consistency True True True True

Table 6.7: Goals and properties achieved in the Dataset Group 4 based on Group 3

Goals/Properties
Group 4 based on Group 3

LGD2 -

JSON-LD

LGD2 -

HDT

DBp2 -

JSON-LD

DBp2 -

HDT

Solving logical redundancies

(%input=%erase)

0% 0% 0% 0%

Solving physical disparities (%in-

put=%erase)

0.17% 0.17% 0% 0%

Preserving completeness True True True True

Preserving minimality True True True True

Preserving compliance True True True True

Preserving consistency True True True True

135



6.5. Comparison with existing Methods

Table 6.8: Goals and properties achieved in the Dataset Group 1 after applying normalization

processes

Goals/ Proper-

ties

Group 1

Syn DS1 -

JSON-LD

Syn DS1

- HDT

Syn DS1

- R2NR

Syn DS2 -

JSON-LD

Syn DS2

- HDT

Syn DS2

- R2NR

Solving logical re-

dundancies

5% 32% 32% 12% 64% 64%

Solving physical

disparities

60% 60% 60% 70% 70% 70%

Preserving com-

pleteness

True False True True False True

Preserving correct-

ness

True True True True True True

Preserving mini-

mality

False False True False False True

Preserving consis-

tency

False False True False False True

Table 6.9: Goals and properties achieved in the Datasets of Group 3 after applying normaliza-

tion processes

Goals/ Proper-

ties

Group 3

LGD2 -

JSON-LD

LGD2 -

HDT

LGD2 -

R2NR

DBp2 -

JSON-LD

DBp2 -

HDT

DBp2 -

R2NR

Solving logical re-

dundancies

57% 57% 57% 52% 52% 52%

Solving physical

disparities

48% 48% 48% 46% 46% 46%

Preserving com-

pleteness

True False True True False True

Preserving correct-

ness

True True True True True True

Preserving mini-

mality

True True True True True True

Preserving consis-

tency

True True True True True True

136



CHAPTER 6. Experimental Evaluation

 

 

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
ili

se
co

nd
s 

bytes 

R2NR JSON-LD HDT

-20000

0

20000

40000

60000

80000

100000

120000

140000

0 10000 20000 30000 40000 50000 60000

m
ili

se
co

nd
s 

bytes 

R2NR JSON-LD HDT(a) Syn DS1

 

 

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
ili

se
co

nd
s 

bytes 

R2NR JSON-LD HDT

-20000

0

20000

40000

60000

80000

100000

120000

140000

0 10000 20000 30000 40000 50000 60000

m
ili

se
co

nd
s 

bytes 

R2NR JSON-LD HDT

(b) Syn DS2

Figure 6.16: Comparison of the Average normalization time with JSON, HDT and R2NR.

6.5.2 Efficiency (Time Performance)

We evaluated the time performance of JSON-LD and HDT methods our approach’s normal-

ization time. Results in Figure 6.16.a show that our method also performs better than its

alternatives (our method’s shows a 46.77% of average reduction in normalization time com-

pared to JSON-LD, and 52.18% of average reduction in time compared to HDT) because it

erases all the logical and physical disparities in the dataset, including blank node duplications.

Results in Figure 6.16.b show that our method is performs better than JSON-LD method

(highlighting a 99.93% of average reduction in normalization time)1. As one can observe in

Figure 6.16.b the temporal behavior of our method is similar to HDT method because the lat-

ter converts the blank nodes into IRIs. This conversion reduces processing time but preserves

redundancies. Our method has 3.298 milliseconds of average in processing time while the HDT

method has 7.34 miliseconds of average in processing time. Therefore, our method also shows

better results than HDT.

Note that reducing redundancies means reducing document size, erasing duplication in blank

nodes, literal, statements, which consequently reduces processing and loading time to produce

the normalized output files.

6.5.3 Applicability

We also tested the efficiency and the impact of our method in Jena loading time and RDF file

storage size.

1Note that the normalization time of Syn DS2 using JSON-LD method keeps the variation in the behavior

of Figure 6.16.b because JSON-LD preserves all the BNs duplication. As we show before, Syn DS2 dataset has

a file that contains a shorter number of BNs causing a faster normalization time w.r.t. the others files.

137



6.5. Comparison with existing Methods 

 

 

 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
ili

se
co

n
d

s 

bytes 

HDT Original R2NR

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
ili

se
co

n
d

s 

bytes 

JSON-LD Original R2NR

(a) Syn DS1

 

 

 

0
2
4
6
8

10
12
14
16

0 10000 20000 30000 40000 50000 60000

m
ili

se
co

nd
s 

bytes 

Original JSON-LD R2NR

0
2
4
6
8

10
12
14
16

0 10000 20000 30000 40000 50000 60000

m
ili

se
co

nd
s 

bytes 

Original HDT R2NR
(b) Syn DS2

 

0

0.5

1

1.5

2

2.5

2800 3300 3800 4300 4800 5300 5800 6300 6800 7300 7800

m
ili

se
co

n
d

s 

bytes 

Original JSON-LD R2NR

(c) LGD2

 

0

10

20

30

40

50

0 50 100 150 200 250 300 350 400 450

m
iis

e
co

n
d

s 
# IRIs 

Original JSON R2NR

(d) DBp2

Figure 6.17: Average Jena loading time comparison with JSON-LD.

A. Jena loading time:

• JSON-LD method : On one hand, Figures 6.17.a, 6.17.b, 6.17.c, and 6.17.d depict

Jena loading time in comparison with our approach’s time and that of JSON-LD ’s

approach. Results demonstrate that our method executes faster than JSON-LD’s.

Note that redundancy reduction using of JSON-LD amounts to 5% on average file

size in the Syn DS1, while our method reaches an average 27% size reduction ratio,

which explains the reduction in loading time.

• HDT method : On the other hand, results in Figures 6.18.a, 6.18.b, 6.18.c, and

6.18.d show that our method remains also faster than the HDT method. In fact, as

shown in Table 6.8 and 6.9, the datasets generated by HDT do not have redundancies

and present some disparities, yet contain a larger number of IRIs with no (zero) BNs.

This confirms that HDT is transforming BNs into IRIs, which shows that RDF

compression does not always guarantee normalization. Note that we are currently

investigating this issue in more detail in a dedicated experimental study.

B. Storage:

Neither JSON-LD nor HDT methods provide parameters to customize output format

requirements as we do. They work with their predefined outputs, i.e., the JSON-LD pro-

duces files serialized as N-triples, and HDT produces Bitmap Triples (BT), in comparison

138



CHAPTER 6. Experimental Evaluation

 

 

 

 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
ili

se
co

nd
s 

bytes 

HDT Original R2NR

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
ili

se
co

nd
s 

bytes 

JSON-LD Original R2NR

(a) Syn DS1

 

 

 

0
2
4
6
8

10
12
14
16

0 10000 20000 30000 40000 50000 60000

m
ili

se
co

n
d

s 

bytes 

Original JSON-LD R2NR

0
2
4
6
8

10
12
14
16

0 10000 20000 30000 40000 50000 60000

m
ili

se
co

n
d

s 

bytes 

Original HDT R2NR

(b) Syn DS2

 

0

0.5

1

1.5

2

2.5

2800 3300 3800 4300 4800 5300 5800 6300 6800 7300 7800

m
ili

se
co

n
d

s 

bytes 

Original HDT R2NR

(c) LGD2

 

0

10

20

30

40

50

0 50 100 150 200 250 300 350 400 450

m
ili

se
co

n
d

s 
# IRIs 

Original HDT R2NR

(d) DBp2

Figure 6.18: Average Jena loading time comparison with HDT.

with our method which handles the standard formats with different configurations (i.e.,

flat, compact, and full compact, cf. Section 4.5.2.3) and thus allows developing different

outputs w.r.t the target application. Empirically, results in Figure 6.19 show that our

normalization approach improves the size of the RDF files in all formats of the datasets

processed by JSON-LD and HDT methods.

 

58 

60 

64 

37.60 

40.70 

46.90 

2.92 

19.71 

37.64 

2.94 

17.98 

31.54 

4.18 

10.84 

20.88 

4.21 

10.91 

16.07 

1.84 

2.40 

13.38 

1.87 

2.44 

13.00 

0 10 20 30 40 50 60 70

Flat

Compact

FullCompact

% Avg Reduction 

DBp2 - HDT

DBp2  - JSON-LD

LGD2  - HDT

LGD2  - JSON-LD

Syn_DS1 - HDT

Syn_DS2 - HDT

Syn_DS1 - JSON-LD

Syn_DS2 - JSON-LD

Figure 6.19: Average size reduction in dataset Group 4 w.r.t. the output format

139



6.6. Summary

6.6 Summary

As we have seen in this chapter, our RDF normalization approach has produced rather mixed

results with a large degree of variation over different datasets with respect to Jena loading time,

normalization time and storage. These variations correspond to the different natures of each

dataset, i.e., some are homogeneous datasets and another heterogeneous datasets. The hetero-

geneity of the dataset depends of several variables as number of IRIs, number of statements,

number of blank nodes, redundancy, etc.

Despite these variations, results are promising and clearly show that our approach can

work for cleaning the RDF descriptions. Therefore, we can say that we have successfully

fulfilled all the challenges presented in Sections 3.1 and 3.2. We have demonstrated that our

RDF normalization approach can be applied to an RDF description and provide an RDF

normalized description successfully.

In terms of fulfillment of our properties, we saw a score well on effectiveness, efficiency,

jena loading time improvement and storage improvement for the output files with respect to

the input files of each dataset. What this served to demonstrate is that our approach works

for all our datasets.

At the same time with all the datasets, we also showed that our approach can lead to

significant improvements with respect to other methods as JSON-LD and HDT. In other words,

results showed that our approach solves all the logical redundancies and physical disparities

detailed in Section 3 and also gives improvements in the RDF/XML formats to reduce the

storage, all of which are not considered in existing methods.

Another interesting point that has been raised by these experiments is the impact of

our parameters that give to the user more flexibility to handle his/her requirements following

a specific target application. For example, if the target application is based on compression,

the user can choose full compact format with system renaming to obtain a compressed RDF

normalized description.

In the near future, we plan to test the impact and effect of applying our normalization

approach on native RDF database systems, using a public benchmark such as LUBM1 to

evaluate database-related parameters such as: indexing time, storage space, query evaluation

time, among others, in order to further evaluate and validate our solution.

1http://swat.cse.lehigh.edu/projects/lubm/

140

http://swat.cse.lehigh.edu/projects/lubm/


Chapter 7

Conclusions and Future Works

“We can’t blame the technology when we make

mistakes.”
— Tim Berners-Lee

In this thesis, we have proposed and evaluated an RDF normalization framework, called

R2RN, that eliminates logical redundancies and physical disparities from RDF descriptions in

order to provide a normalized RDF descriptions. We have proposed a formal mathematical

model with rules, functions, operators, properties, and proofs which allowed us to validate our

proposal. We also conducted a thorough analysis of state of the art methods, highlighting

the properties and limitations toward RDF normalization. In this chapter, we present our

conclusions on our work and discuss some of the wider issues around the challenges. Finally,

we present a number of ideas for future works that could be undertaken to extend our work and

further our aim to other topics in the Semantic Web as the Web Ontology Language - OWL.

7.1 Recap

Chapter 2 covered the background review, in which we focused on basic notions about the

World Wide Web - WWW, International Resource Identifier - IRI, Resource Description

Framework - RDF, and the Web of Linked Data - LD. We also discussed the principles of

the Web related to the RDF and Linked Data and the relationships between them to the

RDF data on the Web. Then, we investigated the evolution of the Web of Linked Data

and its impact on the number of projects and providers using RDF to share and connect

the information.

Chapter 3 described different use cases to illustrate the problems motivating our work, cat-

egorized in four levels: logical redundancies, physical disparities, semantic ambiguities,

141



7.1. Recap

and IRI discrepancies. Note that, the two first levels are the bases of the normaliza-

tion challenges, whereas the last two levels can produce more logical redundancies and

physical disparities for the normalization challenges.

Chapter 4 developed our RDF normalization framework called R2NR, as a means to trans-

form RDF descriptions into normalized representations. Our approach allows to:

1. Preserve all the information in RDF descriptions,

2. Eliminate all the logical redundancies and physical disparities in the output RDF

description,

3. Establish a unique specification of the statements in the RDF output description,

4. Formalize the normalization process,

5. Consider user parameters to handle the application requirements and adapt RDF

output formats accordingly.

To our knowledge, this is the first attempt to study and integrate RDF normalization

in two aspects: logical redundancies and physical disparities. Understanding that the

presence of logical redundancies in RDF descriptions would have a negative impact on

the processing of RDF information, as well as on the development/deployment of RDF

databases and related applications (including storage, querying, similarity-based match-

ing, and versioning, among others), our theoretical proposal showed that our approach

helps alleviate the problem by eliminating all identified redundancies which were moti-

vated in our study.

Chapter 5 presented our proposed extension of the RDF Syntactic Normalization in Chap-

ter 4 where it is possible to normalize RDF descriptions taking into account: semantic

ambiguities and IRI discrepancies. The semantic level allows to:

1. Eliminate all the logical redundancies generated for semantic problems as synonymy

and ambiguity,

2. Preserve the semantic meaning in RDF descriptions,

3. Extend the R2RN framework with the semantic rules and functions.

4. Extend user parameters to handle the semantic application requirements.

The IRI level allows to:

1. Eliminate all the logical redundancies and physical disparities generated for IRI

problems as coreference,

2. Preserve all the information in RDF description without the redundancies,

3. Extend the R2RN framework with the IRI rules and functions.

4. Extend user parameters to handle the IRI discrepancies.

142



CHAPTER 7. Conclusions and Future Works

With these two additional levels, our approach cover all the challenges that we identified

in Chapter 3. Due to solving all the problems, our approach allows to have a complete

RDF normalized description based on erasing in each level the logical redundancies and

physical disparities.

Chapter 6 describes our prototype implementation for the R2NR framework, experimental

metrics used to assess the quality and effectiveness of our approach, the experimental

environment with our 11 datasets (synthetic and real), and our experimental results.

This evaluation has revealed the need for a normalization process that can clean RDF

descriptions of all the logical redundancies and physical disparities through the syntactic

level and the impact of this process on the reduction of the storage and loading time.

Extensive experimental results confirm the positive impact of our normalization approach

in terms of i) effectiveness, ii) efficiency, iii) applicability, and vi) storage space, in com-

parison with two of its most recent alternatives, confirming that the presence of logical

redundancies and physical disparities in RDF descriptions would have a negative im-

pact on the processing of RDF information, as well as on RDF databases and target

applications.

Our experimental evaluation reinforces the theoretical validation presented in Chapter 4

to solve the RDF normalization problem by eliminating all identified redundancies and

disparities which were motivated in our study.

7.2 Future Works

In this section, we discuss a number of possible avenues for future works that would advance our

own research motivated by issues that our study has raised. Possible future directions include

improvements to the RDF Normalization approach, Extended Statement Recommendation

Format, Guidelines for Generating Normalized RDF descriptions, Ontology Normalization,

RDF normalization for educational purposes, and Pre-processing phase for Web applications.

These topics are now briefly described:

7.2.1 Improvements to the RDF Normalization Approach

In chapters 4 and 5, we have shown that RDF Normalization can be undertaken at three levels:

syntactic, semantic, and IRI, and also takes into account two aspects: logical redundancies and

physical disparities. These levels have specific topics that we can improve:

1. Syntactic level:

(a) Adding the reification topic for evaluation.

143



7.2. Future Works

(b) Generating more RDF serializations in the prototype and evaluating the results with

respect to the storage and loading time with RDF/XML format.

(c) Testing and comparing the experiments with a Collective renaming.

2. Semantic level:

• Adding parameters and creating a module for semantic order in the RDF statements.

• Generating the properties to validate the Semantic RDF normalization.

• Testing all the datasets with the semantic level.

3. IRI level:

• Integrating ontology alignment for vocabularies utilized in the RDF description.

• Generating properties to validate the Entity RDF normalization.

• Testing all the datasets with the IRI level.

7.2.2 Extended Statement Recommendation Format

Using the extended statement format, it is possible to give more information for the developers

of RDF descriptions and/or RDF data providers. This extension of the statement (triple)

proposes to establish an extended logical format completely separated from the serialization. In

this way, the developers can have all the information about languages and data types utilized

in the RDF description before implementation. We consider as good practice to have the

overall information for the development, having all the constraints that users might need in

their models.

7.2.3 Guidelines for Generating Normalized RDF Descriptions

Another important direction is to propose guidelines to be use for different kind of users (e.g.,

professors, developers, students, etc.). These guidelines establish how to develop an RDF

normalized description starting from the user’s requirements and IRIs evaluation, and also

evaluate the normalization level for their models. Our current work provides a valid starting

point for further research on using normalized RDF descriptions in different applications.

These guidelines coined with the RDF normalization framework can be also used as a

tool for evaluating RDF descriptions developed in an educational environment. These results

provide an overall idea of the abstraction and correct utilization of the data.

144



CHAPTER 7. Conclusions and Future Works

7.2.4 RDF Normalization using Ontology Inference Mechanisms

Normalized RDF descriptions may also refers to different concepts (derived of ontologies) that

may generate knowledge duplication in the statements of the description. Some derived state-

ments of an RDF graph G may be deduced from one or more ontologies in several ways. With

the normalization using ontology inference mechanisms, we may generate new statements of

the RDF Graph G inferred of the original ones to reduce redundant knowledge.

7.2.5 Ontology Normalization

Another possible future direction is to devise a OWL Normalization approach based on our

study. It is possible to provide normalized ontologies or RDF(S) files with the normalization

levels because ontologies and vocabularies are developed following the RDF standard. We can

attempt to normalized existing vocabularies or ontologies in our R2RN framework and analyze

the results to discover new challenges to fulfill a normalized ontology or vocabulary. However,

such a normalized ontology is not a trivial task, since the normalization process has to consider

the inference engine through declarations (statements) in the original ontology.

7.2.6 Plug-and-Play Pre-Processing Component

On the long run, we aim to utilize our normalization approach as a pre-processing phase to

prepare and clean RDF files to be effectively and efficiently utilized in semantic-aware appli-

cations, namely similarity-based approximate querying, approximate pattern matching, and

similarity-based versioning within online RDF databases [AÖD14, Gea04, Gea11].

145



Bibliography

[AAD+09] Dimitra Alexopoulou, Bill Andreopoulos, Heiko Dietze, Andreas Doms, Fa-

bien Gandon, Jörg Hakenberg, Khaled Khelif, Michael Schroeder, and Thomas

Wächter. Biomedical word sense disambiguation with ontologies and metadata:

automation meets accuracy. BMC Bioinformatics, 10(1):1–15, 2009.

[ABMP08] Ben Adida, Mark Birbeck, Shane McCarron, and Steven Pemberton. Rdfa in

xhtml: Syntax and processing. Recommendation, W3C, 7, 2008.

[ACM10] Marcelo Arenas, Mariano Consens, and Alejandro Mallea. Revisiting blank nodes

in rdf to avoid the semantic mismatch with sparql. In RDF Next Steps Workshop,

pages 26–27, 2010.

[AMdLS06] Eneko Agirre, David Mart́ınez, Oier López de Lacalle, and Aitor Soroa. Two

graph-based algorithms for state-of-the-art wsd. In Proceedings of the 2006 Con-

ference on Empirical Methods in Natural Language Processing, EMNLP ’06, pages

585–593, Stroudsburg, PA, USA, 2006. Association for Computational Linguistics.

[AMMH07] Daniel J Abadi, Adam Marcus, Samuel R Madden, and Kate Hollenbach. Scalable

semantic web data management using vertical partitioning. In Proceedings of the

33rd international conference on Very large data bases, pages 411–422. VLDB

Endowment, 2007.

[AÖD14] Güneş Aluç, M Tamer Özsu, and Khuzaima Daudjee. Workload matters: Why rdf

databases need a new design. Proceedings of the VLDB Endowment, 7(10):837–

840, 2014.

[AV08] Danny Ayers and Max Völkel. Cool uris for the semantic web. Woking Draft.

W3C, 2008.

[BB01] Dave Beckett and A Barstow. N-triples-w3c rdf core wg. http://www.w3.org/

2001/sw/RDFCore/ntriples, 2001. [Accessed 15-09-2015].

[BBL11] D Becket and Tim Berners-Lee. Turtle-terse rdf triple language. http://www.w3.

org/TeamSubmission/turtle/, 2011. [Accessed 15-03-2016].

146

http://www.w3.org/2001/sw/RDFCore/ntriples
http://www.w3.org/2001/sw/RDFCore/ntriples
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/


BIBLIOGRAPHY

[BC06] Christian Bizer and Richard Cyganiak. D2r server-publishing relational databases

on the semantic web. In Poster at the 5th International Semantic Web Conference,

pages 294–309, 2006.

[Bea08] Francois Belleau and et al. Bio2rdf: Towards a mashup to build bioinformatics

knowledge systems. J. Biomedical Informatics, 41(5):706–716, 2008.

[Bec04] Dave Beckett. Rdf/xml syntax specification (revised). http://www.w3.org/TR/

rdf-syntax-grammar/, 2004. [Accessed 15-09-2015].

[BG14] Dan Brickley and Ramanathan V Guha. Rdf schema 1.1. W3C Recommendation,

25:2004–2014, 2014.

[BHAR07] Chris Bizer, Tom Heath, Danny Ayers, and Yves Raimond. Interlinking open

data on the web. In Demonstrations track, 4th european semantic web conference,

innsbruck, austria, 2007.

[BHBL09] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story so far.

Semantic Services, Interoperability and Web Applications: Emerging Concepts,

pages 205–227, 2009.

[BHIBL08] Christian Bizer, Tom Heath, Kingsley Idehen, and Tim Berners-Lee. Linked data

on the web (ldow2008). In Proceedings of the 17th International Conference on

World Wide Web, WWW ’08, pages 1265–1266, New York, NY, USA, 2008. ACM.

[BL89] Tim Berners-Lee. Information management: A proposal http://www.w3.org. His-

tory, 198(9), 1989.

[BL05] Tim Berners-Lee. Notation 3 logic. http://www.w3.org/DesignIssues/

Notation3.html, 2005. [Accessed 15-09-2015].

[BL06] Tim Berners-Lee. Linked data-design issues. https://www.w3.org/

DesignIssues/LinkedData.html, 2006. [Accessed 15-09-2015].

[BL09] Tim Berners-Lee. Linked data-the story so far. Int. Journal on Semantic Web

and IS, 5(3):1–22, 2009.

[BLCC+06] Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj,

James Hollenbach, Adam Lerer, and David Sheets. Tabulator: Exploring and

analyzing linked data on the semantic web. In Proceedings of the 3rd international

semantic web user interaction workshop, volume 2006. Athens, Georgia, 2006.

[BLF00] Tim Berners-Lee and Mark Fischetti. Weaving the Web: The Original Design and

Ultimate Destiny of the World Wide Web by Its Inventor. HarperInformation,

2000.

147

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/Notation3.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html


BIBLIOGRAPHY

[BLFM98] Tim Berners-Lee, Roy Fielding, and Larry Masinter. Rfc 2396: Uniform resource

identifiers (uri): Generic syntax. Status: DRAFT STANDARD, 1998.

[BLHL+01] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific

american, 284(5):28–37, 2001.

[BM09] Sean Bechhofer and A Miles. Skos simple knowledge organization system reference.

http://www.w3.org/2006/07/SWD/SKOS/reference/20090315/skos.rdf, 2009.

[Accessed 15-03-2016].

[BM12] Dan Brickley and Libby Miller. Foaf vocabulary specification 0.98. Namespace

document, 9, 2012.

[Boo03] David Booth. Four uses of a url: Name, concept, web location and document

instance. Retrieved January, 28:2003, 2003.

[Boo08] David Booth. Why uri declarations? a comparison of architectural approaches.

In IRSW, 2008.

[BPSM+08] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and Franois

Yergeau. Extensible markup language (xml) 1.0, 2008.

[BSB08] Paolo Bouquet, Heiko Stoermer, and Barbara Bazzanella. An entity name system

(ens) for the semantic web. Springer, 2008.

[BSG07] Paolo Bouquet, Heiko Stoermer, and Daniel Giacomuzzi. Okkam: Enabling a web

of entities. I3, 5:7, 2007.

[BSMG06] Paolo Bouquet, Heiko Stoermer, Michele Mancioppi, and Daniel Giacomuzzi.

Okkam: Towards a solution to the“identity crisis”on the semantic web. In SWAP,

volume 201, 2006.

[BSNM08] P. Bouquet, H. Stoermer, C. Niederee, and A. Maña. Entity name system: The

back-bone of an open and scalable web of data. In Semantic Computing, 2008

IEEE International Conference on, pages 554–561, Aug 2008.

[CDD+04] Jeremy J Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,

and Kevin Wilkinson. Jena: implementing the semantic web recommendations.

In Proceedings of the 13th international World Wide Web conference on Alternate

track papers & posters, pages 74–83. ACM, 2004.

[Con07] Dan Connolly. Gleaning resource descriptions from dialects of languages (grddl).

https://www.w3.org/TR/grddl/, 2007. [Accessed 30-03-2016].

[DS04] Martin Dürst and Michel Suignard. Internationalized resource identifiers (iris).

Technical report, 2004.

148

http://www.w3.org/2006/07/SWD/SKOS/reference/20090315/skos.rdf
https://www.w3.org/TR/grddl/


BIBLIOGRAPHY

[Fea13] Javier D Fernández and et al. Binary rdf representation for publication and ex-

change (HDT). J. Web Semantics, 19:22–41, 2013.

[FGM+99] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul

Leach, and Tim Berners-Lee. Hypertext transfer protocol–http/1.1. http://www.

hjp.at/doc/rfc/rfc2616.html, 1999. [Accessed 21-03-2016].

[Fie03] Roy T Fielding. httprange-14. Resolved, W3C Tag, 2003.

[FLBC16] Bernadette Farias-Loscio, Caroline Burle, and Newton Calegari. Data on the web

best practices. https://www.w3.org/TR/dwbp/, 2016. [Accessed 20-06-2016].

[GCGP10] Raúl Garćıa-Castro and Asunción Gómez-Pérez. Interoperability results for se-

mantic web technologies using OWL as the interchange language. J. Semantic

Web, 8(4):278–291, 2010.

[Gea04] Claudio Gutierrez and et al. Foundations of semantic web databases. In PODS

2004, pages 95–106. ACM, 2004.

[Gea11] Claudio Gutierrez and et al. Foundations of semantic web databases. J. Comput.

Syst. Sci., 77(3):520–541, May 2011.

[GJM09] Hugh Glaser, Afraz Jaffri, and Ian Millard. Managing co-reference on the semantic

web. 2009.

[GL+92] Ramanathan V Guha, Douglas B Lenat, et al. Language, representation and

contexts. JOURNAL OF INFORMATION PROCESSING-TOKYO-, 15:340–340,

1992.

[GLMD07] Hugh Glaser, Tim Lewy, Ian Millard, and Ben Dowling. On coreference and the

semantic web. 2007.

[GMB08] Aurona Gerber, Alta Merwe, and Andries Barnard. The Semantic Web: Research

and Applications: 5th European Semantic Web Conference, ESWC 2008, Tenerife,

Canary Islands, Spain, June 1-5, 2008 Proceedings, chapter A Functional Semantic

Web Architecture, pages 273–287. Springer Berlin Heidelberg, Berlin, Heidelberg,

2008.

[Guh08] Ramanathan V Guha. Meta content framework: A whitepaper. Technical report,

Apple Technical Report, 2008.

[Hal11] Harry Halpin. Sense and reference on the web. Minds and Machines, 21(2):153–

178, 2011.

[Hal13a] Harry Halpin. Social Semantics: The Search for Meaning on the Web, chapter

Architecture of the World Wide Web, pages 9–50. Springer US, Boston, MA, 2013.

149

http://www.hjp.at/doc/rfc/rfc2616.html
http://www.hjp.at/doc/rfc/rfc2616.html
https://www.w3.org/TR/dwbp/


BIBLIOGRAPHY

[Hal13b] Harry Halpin. Social Semantics: The Search for Meaning on the Web, chapter

The Semantic Web, pages 51–83. Springer US, Boston, MA, 2013.

[Hay04] Patrick Hayes. Rdf semantics. w3c recommendation 10 february 2004. https:

//www.w3.org/TR/2004/REC-rdf-mt-20040210/, 2004. [Accessed 21-03-2015].

[HB11] Tom Heath and Christian Bizer. Linked data: Evolving the web into a global data

space. Synthesis lectures on the semantic web: theory and technology, 1(1):1–136,

2011.

[HD05] Andreas Harth and Stefan Decker. Optimized index structures for querying rdf

from the web. In Web Congress, 2005. LA-WEB 2005. Third Latin American,

pages 10–pp. IEEE, 2005.

[HG04] Jonathan Hayes and Claudio Gutierrez. Bipartite graphs as intermediate model

for RDF. In Int. Sym. Semantic Web, pages 47–61. Springer, 2004.

[HH08] Patrick J Hayes and Harry Halpin. In defense of ambiguity. International Journal

on Semantic Web and Information Systems (IJSWIS), 4(2):1–18, 2008.

[HH10] Harry Halpin and Patrick J Hayes. When owl: sameas isn’t the same: An analysis

of identity links on the semantic web. In LDOW, 2010.

[HHM+10] Harry Halpin, Patrick J Hayes, James P McCusker, Deborah L McGuinness, and

Henry S Thompson. When owl: sameas isnŠt the same: An analysis of identity in

linked data. In The Semantic Web–ISWC 2010, pages 305–320. Springer, 2010.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to au-

tomata theory, languages, and computation. Addison Wesley, 2nd edition, 2001.

[HP09] Harry Halpin and Valentina Presutti. An ontology of resources for linked data. In

LDOW. Citeseer, 2009.

[HPS14] Patrick J Hayes and Peter F Patel-Schneider. Rdf 1.1 semantics. 2014. [Accessed

21-03-2015].

[HPUZ10] Aidan Hogan, Axel Polleres, Jürgen Umbrich, and Antoine Zimmermann. Some

entities are more equal than others: statistical methods to consolidate linked data.

In 4th International Workshop on New Forms of Reasoning for the Semantic Web:

Scalable and Dynamic (NeFoRS2010), 2010.

[HSBW13] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum.

Yago2: A spatially and temporally enhanced knowledge base from wikipedia. Ar-

tificial Intelligence, 194:28–61, 2013.

[HSP13] Steve Harris, Andy Seaborne, and Eric PrudŠhommeaux. Sparql 1.1 query lan-

guage. W3C Recommendation, 21, 2013.

150

https://www.w3.org/TR/2004/REC-rdf-mt-20040210/
https://www.w3.org/TR/2004/REC-rdf-mt-20040210/


BIBLIOGRAPHY

[IV98] Nancy Ide and Jean Véronis. Introduction to the special issue on word sense

disambiguation: The state of the art. Comput. Linguist., 24(1):2–40, March 1998.

[Jea13] Guoqian Jiang and et al. Using semantic web technology to support ICD-11

textual definitions authoring. J. Biomedical Semantics, 4:11, 2013.

[JGM07] Afraz Jaffri, Hugh Glaser, and Ian Millard. Uri identity management for semantic

web data integration and linkage. In On the Move to Meaningful Internet Systems

2007: OTM 2007 Workshops, pages 1125–1134. Springer, 2007.

[JGM08a] Afraz Jaffri, Hugh Glaser, and Ian Millard. Managing uri synonymity to enable

consistent reference on the semantic web. 2008.

[JGM08b] Afraz Jaffri, Hugh Glaser, and Ian Millard. Uri disambiguation in the context of

linked data. 2008.

[JW04] Ian Jacobs and Norman Walsh. Architecture of the world wide web, volume

one. w3c recommendation 15 december 2004. https://www.w3.org/TR/webarch/,

2004. [Accessed 21-03-2016].

[KC92] Robert Krovetz and W. Bruce Croft. Lexical ambiguity and information retrieval.

ACM Trans. Inf. Syst., 10(2):115–141, April 1992.

[KC04] Graham Klyne and Jeremy J. Carroll. Resource description framework (RDF):

Concepts and abstract syntax. http://www.w3.org/TR/rdf-concepts/, 2004.

[Accessed 21-03-2015].

[Kea07] Amine Kerzazi and et al. A model-based mediator system for biological data

integration. Journées Scientifiques en Bio-Informatique, pages 70–77, 2007.

[Kea08] Amine Kerzazi and et al. A semantic mediation architecture for RDF data inte-

gration. SWAP, pp. 3, 2008.

[Knu98] D. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searching.

Addison-Wesley, Massachusetts, pp. 780, 1998.

[KVS07] John Krogstie, Csaba Veres, and Guttorm Sindre. Integrating semantic web tech-

nology, web services, and workflow modeling: Achieving system and business in-

teroperability. Int. J. of Enterprise Information Systems, 3(1):22–41, 2007.

[LAH+09] Atif Latif, Muhammad Tanvir Afzal, Patrick Hoefler, Anwar Us Saeed, and Klaus

Tochtermann. Turning keywords into uris: simplified user interfaces for exploring

linked data. In Proceedings of the 2nd international conference on interaction

sciences: information technology, culture and human, pages 76–81. ACM, 2009.

151

https://www.w3.org/TR/webarch/
http://www.w3.org/TR/rdf-concepts/


BIBLIOGRAPHY

[Les86] Michael Lesk. Automatic sense disambiguation using machine readable dictionar-

ies: How to tell a pine cone from an ice cream cone. In Proceedings of the 5th

Annual International Conference on Systems Documentation, SIGDOC ’86, pages

24–26, New York, NY, USA, 1986. ACM.

[LGMF04] Jure Leskovec, Marko Grobelnik, and Natasa Milic-Frayling. Learning sub-

structures of document semantic graphs for document summarization. In

LinkKDD Workshop, pages 133–138, 2004.

[Lon15] Dave Longley. RDF dataset normalization. http://json-ld.org/spec/latest/

rdf-dataset-normalization/, 2015. [Accessed 21-08-2015].

[LS99] Ora Lassila and Ralph R Swick. Resource description framework

(RDF) model and syntax specification. http://www.w3.org/TR/1999/

REC-rdf-syntax-19990222/, 1999. [Accessed 21-03-2015].

[LSWC98] Ora Lassila, Ralph R. Swick, World Wide, and Web Consortium. Resource de-

scription framework (rdf) model and syntax specification, 1998.

[M+07] David Mart́ınez et al. Supervised corpus-based methods for wsd. In Word Sense

Disambiguation, pages 167–216. Springer, 2007.

[MA12] Ibrahim F Moawad and Mohammadreza Aref. Semantic graph reduction approach

for abstractive text summarization. In Computer Engineering & Systems (ICCES),

2012 Seventh International Conference on, pages 132–138. IEEE, 2012.

[MBLF05] Larry Masinter, Tim Berners-Lee, and Roy T Fielding. Uniform resource identifier

(uri): Generic syntax. 2005.

[Mih06] Rada Mihalcea. Word Sense Disambiguation: Algorithms and Applications, chap-

ter Knowledge-Based Methods for WSD, pages 107–131. Springer Netherlands,

Dordrecht, 2006.

[Mil95] George A. Miller. Wordnet: A lexical database for english. Commun. ACM,

38(11):39–41, November 1995.

[MJB12] Pablo N Mendes, Max Jakob, and Christian Bizer. Dbpedia: A multilingual cross-

domain knowledge base. In LREC, pages 1813–1817. Citeseer, 2012.

[MLTB93] George A. Miller, Claudia Leacock, Randee Tengi, and Ross T. Bunker. A seman-

tic concordance. In Proceedings of the Workshop on Human Language Technology,

HLT ’93, pages 303–308, Stroudsburg, PA, USA, 1993. Association for Computa-

tional Linguistics.

[MMM+04] Frank Manola, Eric Miller, Brian McBride, et al. RDF primer. http://www.w3.

org/TR/rdf-primer/, 2004. [Accessed 21-08-2015].

152

http://json-ld.org/spec/latest/rdf-dataset-normalization/
http://json-ld.org/spec/latest/rdf-dataset-normalization/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/


BIBLIOGRAPHY

[Nav09] Roberto Navigli. Word sense disambiguation: A survey. ACM Comput. Surv.,

41(2):10:1–10:69, February 2009.

[Nea12] Marc-Alexandre Nolin and et al. Building an hiv data mashup using Bio2RDF.

Briefings in bioinformatics, 13(1):98–106, 2012.

[NV05] R. Navigli and Paola Velardi. Structural semantic interconnections: a knowledge-

based approach to word sense disambiguation. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 27(7):1075–1086, July 2005.

[NWC03] Hwee Tou Ng, Bin Wang, and Yee Seng Chan. Exploiting parallel texts for word

sense disambiguation: An empirical study. In Proceedings of the 41st Annual

Meeting on Association for Computational Linguistics - Volume 1, ACL ’03, pages

455–462, Stroudsburg, PA, USA, 2003. Association for Computational Linguistics.

[Pea09] Jyotishman Pathak and et al. Lexgrid: a framework for representing, storing, and

querying biomedical terminologies from simple to sublime. J. of the American

Medical Informatics Assoc., 16(3):305–315, 2009.

[Ped06] Ted Pedersen. Unsupervised corpus-based methods for wsd. Word sense disam-

biguation: algorithms and applications, pages 133–166, 2006.

[PLDP07] Sameer S. Pradhan, Edward Loper, Dmitriy Dligach, and Martha Palmer.

Semeval-2007 task 17: English lexical sample, srl and all words. In Proceedings

of the 4th International Workshop on Semantic Evaluations, SemEval ’07, pages

87–92, Stroudsburg, PA, USA, 2007. Association for Computational Linguistics.

[PRM+11] Sameer Pradhan, Lance Ramshaw, Mitchell Marcus, Martha Palmer, Ralph

Weischedel, and Nianwen Xue. Conll-2011 shared task: Modeling unrestricted

coreference in ontonotes. In Proceedings of the Fifteenth Conference on Computa-

tional Natural Language Learning: Shared Task, CONLL Shared Task ’11, pages

1–27, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

[PSHH+04] Peter F Patel-Schneider, Patrick Hayes, Ian Horrocks, et al. Owl web ontology lan-

guage semantics and abstract syntax. W3C recommendation, 10, 2004. [Accessed

21-08-2015].

[PST+15] Christoph Pinkel, Andreas Schwarte, Johannes Trame, Andriy Nikolov, Ana Sasa

Bastinos, and Tobias Zeuch. Dataops: Seamless end-to-end anything-to-rdf data

integration. In The Semantic Web: ESWC 2015 Satellite Events, pages 123–127.

Springer, 2015.

[RŠD+10] Delia Rusu, Tadej Štajner, Lorand Dali, Blaž Fortuna, and Dunja Mladenić.

Demo: Enriching text with rdf/owl encoded senses. In Proceedings of the 2010

International Conference on Posters & Demonstrations Track-Volume 658, pages

133–136. CEUR-WS.org, 2010.

153



BIBLIOGRAPHY

[RT12] Giuseppe Rizzo and Raphaël Troncy. Nerd: A framework for unifying named en-

tity recognition and disambiguation extraction tools. In Proceedings of the Demon-

strations at the 13th Conference of the European Chapter of the Association for

Computational Linguistics, EACL ’12, pages 73–76, Stroudsburg, PA, USA, 2012.

Association for Computational Linguistics.

[SCV11] Leo Sauermann, Richard Cyganiak, and Max Völkel. Cool uris for the semantic

web. 2011.

[SHJJ09] Henry Story, Bruno Harbulot, Ian Jacobi, and Mike Jones. Foaf+ ssl: Restful

authentication for the social web. In Proceedings of the First Workshop on Trust

and Privacy on the Social and Semantic Web (SPOT2009), 2009.

[SL13] Manu Sporny and Dave Longley. RDF graph normalization. http://json-ld.

org/spec/ED/rdf-graph-normalization/20111016/, 2013. [Accessed 21-08-

2015].

[SLK+14] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, and Niklas Lind-

strom. Json-ld 1.0 a json-based serialization for linked data. http://www.w3.org/

TR/json-ld/, 2014. [Accessed 21-08-2015].

[SNA12] Saeedeh Shekarpour, Axel-Cyrille Ngonga Ngomo, and Sören Auer. Keyword-

driven resource disambiguation over rdf knowledge bases. In Semantic Technology,

pages 159–174. Springer, 2012.

[SR14] Guus Schreiber and Yves Raimond. Rdf 1.1 primer. W3C Working Group Note,

2014.

[ŠRD+09] Tadej Štajner, Delia Rusu, Lorand Dali, Blaž Fortuna, Dunja Mladenić, and

Marko Grobelnik. Enrycher: service oriented text enrichment. Proc. of SiKDD,

2009.

[Srl] Deep Blue Srl. Resist: Resilience for survivability in ist.

[Sta09] W3C Standards. Help and faq. https://www.w3.org/Help/#webinternet, 2009.

[Accessed 21-03-2016].

[STC14] Khouloud Salameh, Joe Tekli, and Richard Chbeir. SVG-to-RDF image semanti-

zation. In Similarity Search and Applications, pages 214–228. Springer, 2014.

[Sto08] Heiko Stoermer. Okkam: Enabling entity-centric information integration in the

semantic web. 2008.

[Tea09] Cui Tao and et al. A RDF-base normalized model for biomedical lexical grid. In

the 8th Int. Semantic Web Conference, Series A RDF-base Normalized Model for

Biomedical Lexical Grid, pp. 2, 2009.

154

http://json-ld.org/spec/ED/rdf-graph-normalization/20111016/
http://json-ld.org/spec/ED/rdf-graph-normalization/20111016/
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/json-ld/
https://www.w3.org/Help/#webinternet


BIBLIOGRAPHY

[Tek16] J. Tekli. An overview on xml semantic disambiguation from unstructured text to

semi-structured data: Background, applications, and ongoing challenges. IEEE

Transactions on Knowledge and Data Engineering, PP(99):1–1, 2016.

[THTC+15] Regina Ticona-Herrera, Joe Tekli, Richard Chbeir, Sébastien Laborie, Irvin

Dongo, and Renato Guzman. Toward rdf normalization. In Paul Johannesson,

Mong Li Lee, Stephen W. Liddle, Andreas L. Opdahl, and Oscar Pastor Lopez,

editors, Conceptual Modeling, volume 9381 of Lecture Notes in Computer Science,

pages 261–275. Springer International Publishing, 2015.

[THTCL16] Regina Ticona-Herrera, Joe Tekli, Richard Chbeir, and Sébastien Laborie. Resolv-

ing logical redundancies and physical disparities in rdf descriptions (under review).

Journal of Web Semantics: Science, Services and Agents on the World Wide Web

(JWS), 2016.

[TRC+13] Joe Tekli, Antoine Abou Rjeily, Richard Chbeir, Gilbert Tekli, Pélagie Houngue,

Kokou Yetongnon, and Minale Ashagrie Abebe. Semantic to intelligent web era:

building blocks, applications, and current trends. In Proceedings of the Fifth In-

ternational Conference on Management of Emergent Digital EcoSystems, MEDES

2013, pages 159–168. ACM, 2013.

[UNR+14] Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Michael Röder, Daniel Gerber, San-

dro Athaide Coelho, Sören Auer, and Andreas Both. Agdistis-graph-based disam-

biguation of named entities using linked data. In The Semantic Web–ISWC 2014,

pages 457–471. Springer, 2014.

[VAGS06] Mark Van Assem, Aldo Gangemi, and Guus Schreiber. Conversion of wordnet to

a standard rdf/owl representation. In Proceedings of the Fifth International Con-

ference on Language Resources and Evaluation (LRECŠ06), Genoa, Italy, pages

237–242, 2006.

[Vea09] Denny Vrandecic and et al. RDF syntax normalization using XML validation.

Proc. of the SemRUs, pp. 11, 2009.

[VKM07] Raphael Volz, Joachim Kleb, and Wolfgang Mueller. Towards ontology-based

disambiguation of geographical identifiers. In I3, 2007.

[Wal01] M. Mitchell Waldrop. The Dream Machine: J.C.R. Licklider and the Revolution

That Made Computing Personal. Viking Penguin, 2001.

[Wea03] Kevin Wilkinson and et al. Efficient rdf storage and retrieval in jena2. In SWDB,

volume 3, pages 131–150, 2003.

[WKB08] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore: sextuple

indexing for semantic web data management. Proc. VLDB Endow., 1(1):1008–

1019, 2008.

155



BIBLIOGRAPHY

[WW06] Kevin Wilkinson and Kevin Wilkinson. Jena property table implementation, 2006.

[Yar92] David Yarowsky. Word-sense disambiguation using statistical models of roget’s

categories trained on large corpora. In Proceedings of the 14th Conference on

Computational Linguistics - Volume 2, COLING ’92, pages 454–460, Stroudsburg,

PA, USA, 1992. Association for Computational Linguistics.

[ZV11] Wen Zhu and Summeet Vij. Extending SOA infraestructure for

semantic interoperability. http://fr.slideshare.net/bfmj4fj/

extending-soa-infrastructure-for-semantic-interoperability-13620422,

2011. [Accessed 15-01-2015].

156

http://fr.slideshare.net/bfmj4fj/extending-soa-infrastructure-for-semantic-interoperability-13620422
http://fr.slideshare.net/bfmj4fj/extending-soa-infrastructure-for-semantic-interoperability-13620422


Appendix A

Appendix

Merge Sort is a sorting algorithm that takes advantage of the ease of merging already sorted

lists into a new sorted list. Algorithm 3 provides the pseudo-code of the overall process. It

starts by recursively decomposing the list (of extended statements) to be merged, into equal

halves (lines 2 - 6). If the obtained sub-lists are of cardinality (length) 1, then they are

already sorted, otherwise the algorithms continues with the decomposition process (lines 7

and 8). Consequently, it then merges each pair of resulting single extended statement lists,

by comparing corresponding extended statements and swapping them if the first should come

after the second (lines 9-12). The merging process is recursively executed until at last two

lists are merged into the final sorted list. Algorithm Merge Sort is of O(N × logN) worst-case

complexity where N is the size of the list (e.g., number of statements in an RDF description)

being sorted, and thus scales well to very large lists [Knu98] (e.g., very large RDF description).

Algorithm 7 MergeSort
Input: ST+ //List of Extended Statements of the RDF Description to be sorted

Output: ST+′
//Sorter list of Extended Statements of the RDF Description

Variables: Left, Right //Temporary list exploited in the sorting process

1: if card(ST+) ≤ 1 then

2: return ST+ //A list of length 1 is already sorted

3: for i=0, i <
card(ST+)

2
− 1, i++ do

4: add ST+[i] to Left ST+ //Decomposing ST+ into two halves

5: for i=
card(ST+)

2
, i < card(ST+), i++ do

6: add ST+[i] to Right ST+ //of about equal sizes

7: Left ST+ = MergeSort(Left ST+) //Recursive decomposition process

8: Right ST+ = MergeSort(Right ST+) //Recursive decomposition process

9: if Right ST+.last Statement ≤Ψ Left ST+.first Statement then

10: ST+ = Fusion(Left ST+,Right ST+)// Merges the lists by comparing their elements (statements)

11: else

12: ST+ = Append(Left ST+,Right ST+)// Simply appends both lists, since the last element (statement)of the first

list is ≤ the first element (statement) of the second

13: return ST+

157



Algorithm 8 Fusion //used in the MergeSort algorithm

Input: Left ST+,Right ST+ //Two lists of extended statements to be merged

Output: ST+′
//Output merged and sorted list

1: while card(Left ST+) > 0 and card(Right ST+) > 0 do

2: if Left ST+.first Statement ≤Ψ Right ST+.first Statement //Comparing statements of both lists then

3: Append(Left ST+.first Statement,L)

4: Left ST+ = Left ST+ - {Left ST+.first Statement}
5: else

6: Append(Right ST+.first Statement,ST+′
)

7: Right ST+ = Right ST+ - {Right ST+.first Statement}
8: if card(Left ST+) > 0 then

9: Append(Left ST+,ST+′
)

10: else

11: Append(Right ST+,ST+′
)

12: return ST+

Note that algorithm Merge Sort is stable and not in place:

• Stable: Maintains the order of elements with equal values,

• Not in place: requires auxiliary structures for data to be temporarily stored (i.e., tem-

porary lists Left ST+ and Right ST+, and output list ST+′ exploited in the main algo-

rithm).

Also, the pseudo-code of our statements comparison operator (≤Ψ), defined following our

statement sorting expression Ψ (cf. Section 7.2.2) is provided below.

158



CHAPTER A. Appendix

Algorithm 9 Statement Comparator ≤Ψ

Input: st+1 , st+2 //Extended statements to compare

Output: st+ //Select extended statement

1: if st+1 .ts < st+2 .ts //where IRI > BN then

2: return st+1
3: else

4: return st+2
5: if st+1 .s is lexicographically lesser than st+2 .s then

6: return st+1
7: else

8: return st+2
9: if st+1 .to < st+2 .to //where IRI > BN > literal then

10: return st+1
11: else

12: return st+2
13: if st+1 .to is not blank node then

14: if st+1 .o is lexicographically lesser than st+2 .o then

15: return st+1
16: else

17: return st+2
18: if st+1 .p is lexicographically lesser than st+2 .p then

19: return st+1
20: else

21: return st+2

159



Appendix B

Résumé étendu

Introduction

Le Web Sémantique est un espace d’information qui consiste, d’une part, à lier les

ressources du Web les unes aux autres, et, d’autre part, à leur donner du sens afin que les ma-

chines puissent les comprendre et les exploiter. Ce cadre permet à la recherche d’information

d’être plus performante au même titre que les processus de gestion et d’échanges de données

(e.g., recherche d’information intelligente, intégration de données, fusion, classification, etc.).

Dans ce contexte, la technologie exploitée dans le domaine du Web Sémantique qui permet

de connecter les ressources du Web entre elles est la suivante : RDF (Resource Description

Framework), un standard du W3C (World Wide Web Consortium). De manière synthétique,

une description RDF est formée d’un ensemble de triplet < Sujet, Prdicat, Objet >. Ces

triplets forment un graphe RDF qui met en lumière les liens ou relations sémantiques entre

différentes ressources.

Par exemple, le triplet suivant : < http://www.univ-pau.fr, ex1 : lab, http://liuppa.

univ-pau.fr/live/ > signifie que le sujet http://www.univ-pau.fr, identifié par son IRI

(Internationalized Resource Identifier), dispose d’un laboratoire (ex1 : lab) qui est référencé

par une autre IRI http://liuppa.univ-pau.fr/live/. De nombreuses descriptions RDF de

ce type qui contiennent elles-mêmes de multiples triplets sont actuellement disponibles en ligne

grâce notamment aux projets de recherche qui traitent des Données Liées (Linked Data), tels

que DBpedia, LinkedGeoData, Geonames, New York Times, etc. Ces initiatives autour des

Données Liées Ouvertes (Linked Open Data - LOD) permettent aujourd’hui à tout à chacun

(individus ou organisations) de partager des informations entre différentes communautés sur la

base de triplets RDF.

Afin d’être stocké et exploité par une machine, ces triplets RDF sont sérialisés à l’aide

de différents formats, tels que RDF/XML, N-Triple, Turtle, N3 ou bien JSON-LD. Comme

160

http://www.univ-pau.fr
http://liuppa.univ-pau.fr/live/
http://liuppa.univ-pau.fr/live/
http://www.univ-pau.fr
http://liuppa.univ-pau.fr/live/


CHAPTER B. Résumé étendu

http://www.univ-pau.fr

UX

“Sebastien”

“Durand”

ex:nameProf

ex:first_name

ex:last_name

http://www.univ-pau.fr/live/

ex1:lab

…
<rdf:Description rdf:nodeID="UX">
 <ex:first_name> Sebastien </ex:first_name>
 <ex:last_name>  Durand </ex:last_name>
 </rdf:Description>
 …

…
"@id": "_:Nf6a5c38b4f1049bf8aff884fdd714ec9",
"http://example.org/stuff/1.0/first_name": [{"@value": "Sebastien"}].
“http://example.org/stuff/1.0/last_name": [{"@value": "Durand"}
...

...
@prefix ex1: <http://example.org/stuff/1.0/>
<http://www.univ-pau.fr> ex1:lab <http://liuppa.univ-pau.fr/live/> ;
ex:nameprof [ ex:first_name "Sebastien";
ex:last_name "Durand" ]

_:N17 http://example.org/stuff/1.0/first_name 
"Sebastien"^^<http://www.w3.org/2001/XMLSchema#string>
_:N17 <http://example.org/stuff/1.0/last_name> "Durand"@fr
<http://www.univ-pau.fr> <http://example.org/stuff/1.0/nameprof> 
_:N17 <http://www.univ-pau.fr> <http://example.org/stuff/1.0/lab> 
<http://liuppa.univ-pau.fr/live/>

(1) RDF/XML

(2) JSON-LD

(3) N3

(4) N-Triple

(a) RDF Graph 1 (b) RDF Serializations of Graph 1

Figure B.1: Exemple d’une description RDF.

illustré dans la figure B.1, une description RDF peut se représenter à l’aide d’un graphe (cf.,

Figure B.1.a) et peut être encodée à l’aide de différents langages (cf., Figures B.1.b.1, B.1.b.2,

B.1.b.3 et B.1.b.4).

Dans certains scénarios (e.g., génération automatique, génération collaborative, intégra-

tion de données, etc.), les descriptions RDF peuvent être très verbeuses et peuvent également

contenir de la redondance d’information. Ceci peut concerner à la fois la structure du graphe

ou bien la sérialisation utilisée. Par exemple, considérons les deux graphes suivants : le graphe

1 dans la figure B.1.a et le graphe 2 dans la figure B.2 qui ont été créés par différents éditeurs.

Ces deux graphes décrivent la même information : La ressource http://www.univ-pau.fr a

un professeur qui s’appelle Sebastien Durand et qui dispose d’un laboratoire dont la référence

est http://www.univ-pau.fr/live/. Néanmoins, leurs structures sont différentes comme il

est possible de le constater visuellement dans ces deux figures. En effet, le graphe RDF de la

figure B.2 contient des données dupliquées à la fois en ce qui concerne les noeuds mais aussi

les arcs. Ceci a pour conséquence d’engendrer plus de triplets en comparaison avec le graphe

RDF de la figure B.1.a. Bien entendu, la phase de sérialisation est impactée par ces redon-

dances, sans compter les multiples variations d’écritures possibles au sein d’un même format

pour décrire un triplet. Les éléments suivants permettent de se faire une idée des problèmes

qui peuvent subvenir durant une sérialisation de descriptions RDF :

• La même ressource RDF peut être sérialisée de différentes façons (e.g., dans la fig-

ure B.1.b.1, nous avons utilisé l’attribut rdf:nodeID=“UX” comme l’une des façons en

RDF/XML de représenter un noeud de type “Blank Node”. Ceci peut être effectué dif-

féremment dans d’autres langages de sérialisation.

• Le type de données ainsi que la langue d’une ressource RDF peut être spécifié ou non. Par

exemple, dans la figure B.1.b.4, le type de données string est mentionné pour la ressource

161

http://www.univ-pau.fr
http://www.univ-pau.fr/live/


http://www.univ-pau.fr

UX

“Sebastien”

“Durand”
ex:nameProf

ex:first_name

ex:last_name

bn_1

“Sebastien”

“Durand”
ex:nameProf

ex:first_name

ex:last_name

“Durand”ex:last_name

http://www.univ-pau.fr/live/ex:lab

ex:lab

Figure B.2: Graphe RDF 2 décrivant la même information de la Fig. B.1.

Sebastien de la façon suivante “Sebastien”̂ x̂sd : string. La langue fr est spécifiée quant

à elle pour la ressource Durand comme ceci “Durand”@fr. Ces informations sur le type

de données et la langue d’une ressource peuvent être omises dans d’autres formats de

sérialisation.

• Différents espaces de nommage peuvent faire référence au même nom de domaine. Par

exemple, le nom de domaine http://xmlns.com/foaf/1.0/ dispose du nom d’espace de

nommage “ex” dans la figure B.1.b.1 alors qu’il est nommé “ex1” dans la figure B.1.b.3.

Comme nous l’avons exposé précédemment, actuellement les individus ou les organisa-

tions s’échangent des données liées les unes aux autres, e.g., pour créer de nouvelles oppor-

tunités en terme de projets et/ou d’applications, pour favoriser entre autres le commerce en

ligne avec des données supplémentaires pour les clients, pour accélérer les progrès scientifiques

dans la gestion ou la recherche des données, etc. Dans ce contexte d’intégration et de fusion

d’informations d’une ou de plusieurs ressources décrites par des communautés différentes, ces

problèmes de redondances ou de variations d’encodage ne peuvent qu’être renforcés.

Par exemple, au sein d’une même description RDF, l’intégration de données au sujet de

la ressource “Luxembourg” (voir la figure B.3) fourni par des communautés différentes, telles

que DBpedia et Geonames, ne peut qu’accrôıtre ce phénomène de redondances et de variations

de sérialisation. De plus, ce bruit a un impact négatif sur le stockage ou bien le temps de

chargement d’une description RDF. En effet, la description “RDF Graph X + RDF Graph

Y + RDF Graph Z” prendra plus d’espace de stockage et de chargement qu’une description

dépourvue d’informations redondantes ou inutiles.

Considérons maintenant le sous-graphe de la figure B.4. Nous pouvons constater des

données redondantes tenant compte des ambigüıtés sémantiques ou encore des multiples IRI

pointant vers la même information :

162

http://xmlns.com/foaf/1.0/


CHAPTER B. Résumé étendu

Dbpedia
Luxembourg

Dbpedia
History of Luxembourg

Geonames
Luxembourg

Data Integra�on

Redundant informa�on
Unused Informa�on

Redundant informa�on
Unused Informa�on

Redundant informa�on
Unused Informa�on

+ Redundant informa�on
+ Unused Informa�on

+ Storage
+ Loading Time

+ Time in querying
+ Difficul�es for similarity

…

Graph

Graph

Graph

X

Y

Z

Linked Open Data Cloud
(RDF external datasets) 

X
Y

Z

PDFill 
PDF Edito

r w
ith

 Free
 W

rite
r a

nd Tools

Figure B.3: Exemple de Données Liées sur la ressource “Luxembourg”.

• Pour une ressource RDF, la déclaration du type ou de la langue peut faire référence à

différentes valeurs primitives (e.g., châıne de caractères, entier...) mais la signification

sera équivalente. Par exemple, dans la figure B.4, la langue es est mentionnée dans

l’expression“Luxembourgo”@es et la langue en est indiquée également“Luxembourg”@en.

Nous pouvons donc constater que le nom de la ressource peut être dupliqué même si l’on

évoque dans les deux cas la ville de Luxembourg.

• Différentes IRI peuvent faire référence à la même ressource RDF (e.g., dans la figure

B.4, l’IRI http://dbpedia.org/resource/Luxembourg se base sur DBpedia mais l’IRI

http://sws.geonames.org/2960313 se réfère à Geonames. Ces deux IRI font référence

à la même ville : Luxembourg.

Ces duplications ou variations d’encodage qui peuvent subvenir soit sur la structure du

graphe RDF ou bien sur sa sérialisation doivent être prises en compte lorsqu’une description

est à traiter. Ne pas la traiter aura forcément un impact négatif sur le développement ou

le déploiement de bases de données RDF, ceci incluant le stockage, l’interrogation, le temps

de chargement et de traitement, la mesure de similarité, l’appariement, l’alignement et le

versionning pour ne citer que ces exemples.

Dans cette thèse, nous défendons une approche autour de la normalisation de descriptions

RDF, c’est-à-dire épurer au maximum une description RDF. Dans la partie suivante, nous

identifions nos principaux objectifs ainsi que nos contributions.

163

http://dbpedia.org/resource/Luxembourg
http://sws.geonames.org/2960313


Figure B.4: Sous-graphe d’intégrations de données dans la Fig. B.3

Nos objectifs de recherche

L’objectif de cette thèse consiste à résoudre les problèmes liés à la redondance d’informations

ainsi que les variations d’encodage des descriptions RDF. Pour ce faire, nous avons défini

un cadre de normalisation de descriptions RDF, nommé R2NR, qui permet de transformer

n’importe quelle description RDF en une description RDF optimisée (normalisée). La sortie de

ce processus peut être adaptée selon que le domaine d’application où sera appliqué la normali-

sation nécessite une optimisation en terme de stockage, comme la compression de la description

par exemple.

Notre approche R2NR cible une normalisation de descriptions RDF selon les objectifs

suivants :

• Eliminer les redondances au sein de la description (ceci est un objectif prioritaire puisqu’en

optimisant la structure, on favorisera le traitement des requêtes, l’alignement et le ver-

sionning). Cet objectif se focalise sur la structure du graphe RDF.

• Eliminer les redondances ainsi que certaines structures d’encodage au sein du fichier RDF.

Cet objectif se focalise sur l’écriture de la description RDF afin d’optimiser son stockage

ainsi que son temps de chargement.

• Prouver que le processus de normalisation est : (i) valide selon un ensemble de propriétés,

(ii) flexible et adaptable en fonction des critères d’un utilisateur ou des prérequis liés à

une application d’un domaine métier en particulier, et (iii) efficace sur tout type de

descriptions RDF contenant de quelques triplets RDF jusqu’à des milliers.

164



CHAPTER B. Résumé étendu

Nos contributions dans cette thèse

Selon les objectifs cités ci-dessus, les contributions de cette thèse sont les suivantes :

1. Normalisation syntaxique de descriptions RDF

Ce défi qui consiste à normaliser des descriptions RDF a déjà été envisagé dans la littéra-

ture, néanmoins il n’a pas été atteint dans son ensemble. En effet, les solutions existantes

restent partielles car elles ne considèrent pas tous les aspects syntaxiques liés aux descrip-

tions RDF, comme par exemple la duplication de “Blank Nodes” ou encore les espaces de

noms non-utilisés. Afin de réaliser une normalisation syntaxique de descriptions RDF,

nous avons fourni :

• Des définitions formelles des concepts exploités dans notre approche R2NR selon

un modèle mathématique. Ces définitions systématiques et détaillées pour chaque

élément de notre contribution incluent de surcroit des règles, des fonctions, des

opérateurs avec les propriétés et les preuves associées.

• Des algorithmes qui permettent une élimination de la redondance d’information au

sein d’une description RDF, que ce soit au niveau du graphe ou bien au niveau de

son encodage.

• Des preuves permettant de valider qu’une description RDF normalisée préserve toute

les informations initialement spécifiées par un éditeur.

• Une approche personnalisable qui permet d’adapter la sortie de la normalisation de

descriptions RDF en fonction de l’application cible (e.g., optimiser le stockage et/ou

le temps de chargement).

2. Normalisation sémantique de descriptions RDF

En plus de la normalisation syntaxique de descriptions RDF, nous avons étendu son

champ d’actions afin de traiter les aspects liés à la sémantique des données. En effet, au-

delà de la considération d’éléments dupliqués qui concernent une même ressource avec son

identifiant, nous avons étendu notre approche R2NR pour que celle-ci traite d’éléments

sémantiquement équivalents. Afin d’ajouter ce niveau sémantique à notre proposition

R2NR, nous avons fourni :

• Un ensemble de règles et de fonctions mathématiques qui permettent de résoudre les

duplications d’informations en levant des ambigüıtés sémantiques identifiées entre

certaines ressources.

• Des algorithmes qui analysent le sens associé aux données issues d’une description

RDF et élimine les redondances lorsque certains de ces éléments décrivent la même

information.

165



3. Normalisation des IRI exploitées au sein d’une description RDF

Nous avons proposé également de normaliser les IRI exploitées au sein d’une description

RDF. Au sein du Web Sémantique, les IRI sont la base de descriptions d’une information.

Il s’agit très souvent d’un identifiant qui sera exploité pour lui associer par la suite

d’autres informations. Etant donné que différentes communautés peuvent décrire une

même information (nous avons vu le cas précédemment avec la ville de Luxembourg),

actuellement ces communautés attribuent chacune un identifiant différent pour décrire

cette même donnée. Par conséquent, lors d’une fusion de plusieurs descriptions produites

par différentes communautés, une description RDF va contenir différentes IRI décrivant

une même information. Notre dernière contribution a donc consisté à normaliser ces

différentes IRI décrivant un même concept. Pour ce faire, nous avons fourni :

• Un ensemble de règles et de fonctions mathématiques qui permettent de résoudre les

duplications d’IRI que ce soit au niveau de la structure du graphe RDF mais aussi

au niveau de son encodage.

• Des algorithmes qui identifient les similarités entre IRI afin d’éliminer leurs redon-

dances au sein d’une description RDF.

4. Un prototype RDF2NormRDF

Pour valider nos contributions, nous avons développé un outil nommé RDF2NormRDF. Il

existe actuellement une version en ligne (http://sigappfr.org/spider/research-projects/

towards-rdf-normalization/) et une autre disponible hors ligne. Cet outil a permis

de tester et d’évaluer notre approche selon les critères suivants :

• Efficacité : mesurer la qualité de détection et d’élimination des informations redon-

dantes.

• Performance : évaluer le temps d’exécution de notre approche de normalisation, le

temps de chargement de la sortie produite ou bien sa taille mémoire.

Nous avons présenté dans cette thèse une évaluation complète et détaillée de notre ap-

proche. Nous l’avons bien évidemment comparé à d’autres approches existantes. Les

résultats ont été publiés dans les actes de la conférence ER 2015 (34th International Con-

ference on Conceptual Modelling) et une version journal est en cours de soumission pour

JWS (Journal on Web Semantics).

Structure du manuscrit

Je propose de décrire chaque chapitre dans ce qui suit afin de dresser un panorama du

contenu de la thèse.

166

http://sigappfr.org/spider/research-projects/towards-rdf-normalization/
http://sigappfr.org/spider/research-projects/towards-rdf-normalization/


CHAPTER B. Résumé étendu

Chapitre 2

Dans ce chapitre, nous présentons le Web Sémantique ainsi que tous les concepts im-

portants qui y sont rattachés et que nous utiliserons pour cette thèse. Il est primordial de

bien comprendre les principes ainsi que les technologies existantes dans ce domaine pour bien

appréhender les défis liés à la normalisation de descriptions RDF. En quelques mots, le Web

Sémantique est lié à deux motivations principales :

• La première consiste à ce que quiconque peut décrire n’importe quelle information sur

n’importe quel type de sujets. Ces descriptions doivent être distribuées, compréhensibles

par les machines et liées les unes aux autres ceci afin d’enrichir une description.

• La seconde doit permettre de publier et de rechercher des descriptions par n’importe quel

utilisateur.

La question principale des chercheurs a donc été de trouver ce moyen de publication

et de partage de l’information, comme on peut le faire traditionnellement sur le Web des

documents mais au sujet de connaissances. Dans ce chapitre, nous avons donc retracé l’histoire

du Web (WWW) avec celle du Web Sémantique. Nous avons également décrit les concepts et

technologies principales issues du Web Sémantique qui seront utilisées dans ce mémoire, telles

que les IRI et RDF. Enfin, nous présenterons l’impact de ces technologies aujourd’hui sur le

courant lié aux Données Liées (Linked Data).

Chapitre 3

Ce chapitre présente des scénarios qui exploitent des descriptions RDF au sujet par

exemple de l’Université de Pau et du Luxembourg. Chaque scénario à pour objectif d’illustrer

les problèmes de la non-utilisation ou bien de la duplication de données au sein d’une description

RDF. Nous avons catégorisé ces problèmes en quatre niveaux :

• Redondances logiques : Plusieurs triplets RDF peuvent décrire la même information.

• Redondances physiques : Différents encodages avec différentes possibilités d’écriture pour

chaque format peuvent décrire une même description RDF.

• Ambigüıtés sémantiques : Différents concepts décrivent sémantiquement la même infor-

mation.

• Divergences des IRI : Différents identifiants de ressources peuvent décrire la même donnée.

Chaque niveau de problèmes est décrit en détail et illustré avec des exemples. Ces

exemples serviront par la suite pour démontrer le processus de normalisation de descriptions

RDF.

167



Chapitre 4

De plus en plus de descriptions RDF sont maintenant disponibles sur le Web. Les im-

pacts liés au développement des technologies issues du Web Sémantique ou bien de courant

comme celui des Données Liées ont conduit à ce qu’une multitude d’applications ont vu le jour.

Ces applications exploitent bien évidemment des descriptions RDF pour afficher, partager et

rechercher de l’information.

Ces descriptions peuvent contenir des redondances puisque différents utilisateurs les ont

réalisés. Ces duplications de données sont à la base de la motivation de cette thèse qui consiste

à nettoyer les descriptions RDF.

Ce chapitre présente donc la normalisation de descriptions RDF, sous un aspect pour

le moment purement syntaxique. Nous commençons par introduire des définitions utiles pour

poser le cadre de la normalisation. Nous définissons ensuite des fonctions, des règles ainsi que

des opérateurs qui permettent de normaliser une description RDF. Nous discutons de l’état

de l’art au sujet de la normalisation et des choix qui ont influencé la spécification de certains

concepts utiles à la normalisation de descriptions RDF. Afin de valider plus tard ce cadre, nous

spécifions un ensemble de propriétés qu’une description RDF normalisée doit satisfaire.

Chapitre 5

Comme nous le voyons dans le chapitre précédent, la normalisation de descriptions RDF

a déjà été traitée pour différents types d’applications comme la représentation des connais-

sances, intégration de données, la théorie des graphes... Cependant, toutes ces approches se

focalisent sur des problèmes qui concernent la syntaxe de la description RDF, laissant de côté

les problèmes liés à l’ambigüıté sémantique ou bien ceux liés à la variabilité des IRI au sujet

d’une même ressource.

Dans ce chapitre, nous présentons une extension de la normalisation de descriptions RDF

en y intégrant des solutions permettant de lever ces problèmes d’ambigüıté et de variabilité des

IRI tant au niveau logique (c’est-à-dire sur le graphe de description) qu’au niveau physique

(c’est-à-dire au sein de l’encodage de la description). Pour ce faire, à l’instar du chapitre

précédent, nous définissons des fonctions ainsi que des règles qui permettront une normalisa-

tion de descriptions RDF de plus haut niveau, c’est-à-dire tenant compte de la sémantique

de l’information. Nous présentons les travaux de la littérature qui traitent de l’ambigüıté sé-

mantique et de l’identité des IRI afin de mieux comprendre leur impact sur la duplication de

données. Nous détaillons bien sur toute l’approche de normalisation et nous montrons le lien

entre normalisation syntaxique et sémantique. Nous concluons ce chapitre par une comparaison

de notre proposition avec les approches existantes.

168



CHAPTER B. Résumé étendu

Chapitre 6

Dans les deux chapitres précédents, nous avons présenté une approche de normalisation

de descriptions RDF. Au sein de ce chapitre, nous présentons notre prototype, des mesures

ainsi que l’environnement expérimentales que nous avons mis en place autour de ce prototype,

et les résultats issus d’une évaluation. Nos expérimentations ont mis en lumière l’efficacité ainsi

que la performance de notre prototype et approche, entre autres sur le temps de chargement de

descriptions RDF dans le framework JENA ainsi que sur la taille mémoire des descriptions RDF

normalisées. Nous avons comparé ces résultats avec d’autres méthodes, telles que JSON-LD

ou HDT.

Conclusion

Dans cette thèse, nous avons proposé et évalué notre proposition de normalisation de

descriptions RDF. Notre processus de normalisation élimine les redondances d’informations

au sein d’une description que ce soit au niveau de la structure du graphe de description mais

aussi au niveau de l’encodage de cette description. Nous avons défini formellement la nor-

malisation de descriptions RDF à l’aide de règles, de fonctions, d’opérateurs, de propriétés et

de preuves qui nous permettent de valider théoriquement notre contribution dans ce domaine.

Bien évidemment, nous avons établi une analyse de l’état de l’art, notamment les méthodes de

normalisation existantes tout en mettant en évidence leurs propriétés et leurs limites.

Dans ce qui suit, nous présentons quelques perspectives à notre travail tant au niveau de

l’approche de normalisation elle-même que sur son potentiel impact sur d’autres technologies

issues du Web Sémantique. En effet, ces perspectives concernent des pistes d’améliorations pos-

sibles de la normalisation de descriptions RDF, la normalisation d’ontologies, la normalisation

à des fins d’apprentissage...

Dans les chapitres 4 et 5, nous avons montré que la normalisation de descriptions RDF

peuvent s’opérer sur 3 niveaux : syntaxique, sémantique et sur les IRI. Nous avons égale-

ment précisé qu’elle agit tant sur le graphe de description RDF que sur son encodage. La

normalisation pour chacune de ces dimensions peut être améliorée :

• Niveau syntaxique :

– Ajouter le traitement de la réification pour l’évaluation

– Engendrer encore plus de sérialisations RDF au sein du prototype et évaluer les

résultats en terme d’espace de stockage ou bien de chargement des descriptions

RDF/XML normalisées.

– Tester et comparer les expérimentations avec un renommage collaboratif.

169



• Niveau sémantique :

– Ajouter des paramètres et créer un module pour ordonner chaque triplet RDF.

– Générer des propriétés afin de valider la normalisation RDF au niveau sémantique.

– Tester tous les jeux de données au niveau sémantique.

• IRI :

– Intégrer l’alignement d’ontologie dans notre processus de normalisation.

– Définir des propriétés pour valider la normalisation d’entités RDF.

– Tester tous les jeux de données pour en démontrer son impact au niveau des IRI.

Une autre piste d’amélioration de notre travail consiste à proposer un guide qui sera ex-

ploité pédagogiquement par différents utilisateurs (e.g., enseignants, développeurs, étudiants,

etc.). Ce guide doit pouvoir aider un utilisateur à produire une description RDF normalisée. Ce

guide pourrait également être utilisé pour pouvoir évaluer ses propres descriptions RDF et no-

tamment répondre aux questions suivantes : “Ma description RDF contient-elle de l’information

redondante ?”, “Ma description RDF peut-elle être encodée de façon plus optimisée ?”...

Dans cette thèse, nous avons normalisé des descriptions RDF. Ces descriptions font sou-

vent référence à de multiples concepts (définis au sein d’ontologies). Le mécanisme de raison-

nement sur ces ontologies peut en déduire de nouveaux triplets RDF qui, combiné à plusieurs

ontologies, peut engendrer des duplications d’informations. Notre processus de normalisation

peut tenir compte du mécanisme d’inférence sur les ontologies afin d’éliminer ces informations

dupliquées.

Une ontologie est décrite à l’aide du formalisme RDF. Bien que cela nécessiterait d’intégrer

de nouveaux vocabulaires et de prendre en considération les mécanismes d’inférence, il est tout

à fait envisageable de normaliser des ontologies ou bien des descriptions RDF(S) à l’aide de

notre travail dans cette thèse.

Pour finir, notre proposition de normalisation de descriptions RDF pourrait être une pré-

phase incontournable pour préparer et nettoyer des descriptions RDF. Cette pré-phase serait

un prérequis au calcul de similarité entre descriptions, au filtrage par motif ainsi qu’à la gestion

de versions pour les bases de données RDF en ligne.

170


	Introduction
	Research Aims and Objectives
	Research Contributions
	Manuscript Structure

	The Semantic Web: RDF and Linked Data
	World Wide Web and Semantic Web
	Principles of Web Architecture
	Semantic Web

	Internationalized Resource Identifier
	Resource
	Uniform Resource Identifier - URI
	Internationalized Resource Identifier - IRI
	IRI Classification
	IRI Dereferencing

	Resource Description Framework
	RDF Terminology
	RDF and the Principles of the Web
	Serialization Formats

	The Web of Linked Data
	Principles
	Linked Open Data Cloud Evolution

	Summary

	Motivating Examples
	Logical (Graph) Redundancies
	Use Case 1 - University of Pau (Logical Representation)
	Challenges in Use Case 1

	Physical (Serialization) Disparities
	Use Case 2 - University of Pau (Physical Representation)
	Challenges in Use Case 2

	Semantic Ambiguities
	Use Case 3 - University of Pau (Logical Representation)
	Challenges in Use Case 3
	Semantic Ambiguities creating Logical (Graph) Redundancies

	IRI Discrepancies
	Use Case 4 - Luxembourg Country (Logical Representation)
	Use Case 5 - Luxembourg Country (Physical Representation)
	Challenges in Use Cases 4 and 5
	IRI Discrepancies creating Logical (Graph) Redundancies
	IRI Discrepancies creating Physical (Serialization) Disparities

	Summary

	Syntactic RDF Normalization
	Preliminaries
	Definitions
	Normalization Functions
	Normalization Operators

	Related Work
	Knowledge Representation and Integration
	RDF Graph (Logical) Normalization
	RDF Syntax (Physical) Normalization

	Normalization Rules
	Solving Logical Redundancies
	Solving Physical Disparities

	Normalization Properties
	RDF Normalization Process
	Logical Normalization
	Physical Normalization

	Summary

	Semantic and IRI RDF Normalization
	Normalization Functions
	Related Work
	Resolving Semantic Ambiguity
	Resolving IRI Identity
	Handling IRI Coreference
	Semantic and IRI RDF Normalization

	RDF Normalization Rules
	Solving Logical Redundancies generated by Semantic Ambiguities
	Solving Logical Redundancies generated by IRI Discrepancies
	Solving Physical Disparities generated by IRI Discrepancies

	RDF Normalization Process
	Semantic Level
	IRI Level
	IRI Handler

	Summary

	Experimental Evaluation
	Prototype
	Experimental Metrics
	Effectiveness ()
	Efficiency ()
	Applicability

	Experimental Environment
	Processing Context
	Dataset Context

	Experimental Results
	Effectiveness (RDF Normalization Quality)
	Efficiency (Time Performance)
	Applicability

	Comparison with existing Methods
	Effectiveness (RDF Normalization Quality)
	Efficiency (Time Performance)
	Applicability

	Summary

	Conclusions and Future Works
	Recap
	Future Works
	Improvements to the RDF Normalization Approach
	Extended Statement Recommendation Format
	Guidelines for Generating Normalized RDF Descriptions
	RDF Normalization using Ontology Inference Mechanisms
	Ontology Normalization
	Plug-and-Play Pre-Processing Component


	Bibliography
	Appendix
	Résumé étendu

