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Resumé

Depuis ces dernieres décennies, des millions d’internautes produisent et échangent
des données sur le Web. Ces informations peuvent étre structurées, semi-structurées
et/ou non-structurées, tels que les blogs, les commentaires, les pages Web, les con-
tenus multimédias, etc. Afin de faciliter la publication ainsi que ’échange de don-
nées, le World Wide Web Consortium (ou W3C) a défini en 1999 le standard RDF.
Ce standard est un modele qui permet notamment de structurer une information
sous la forme d’un réseau de données dans lequel il est possible d’y attacher des de-
scriptions sémantiques. Ce modele permet donc d’améliorer I'interopérabilité entre
différentes applications exploitant des données diverses et variées présentes sur le
Web.

Actuellement, une grande quantité de descriptions RDF est disponible en
ligne, notamment grace a des projets de recherche qui traitent du Web de don-
nées liées, comme par exemple DBpedia et LinkedGeoData. De plus, de nombreux
fournisseurs de données ont adopté les technologies issus de cette communauté du
Web de données en partageant, connectant, enrichissant et publiant leurs infor-
mations & l'aide du standard RDF, comme les gouvernements (France, Canada,
Grande-Bretagne, etc.), les universités (par exemple Open University) ainsi que les
entreprises (BBC, CNN, etc.). Il en résulte que de nombreux acteurs actuels (par-
ticuliers ou organisations) produisent des quantités gigantesques de descriptions
RDF qui sont échangées selon différents formats (RDF/XML, Turtle, N-Triple,
etc.).

Néanmoins, ces descriptions RDF sont souvent verbeuses et peuvent égale-
ment contenir de la redondance d’information. Ceci peut concerner a la fois leur
structure ou bien leur sérialisation (ou le format) qui en plus souffre de multiples
variations d’écritures possibles au sein d’'un méme format. Tous ces probléemes
induisent des pertes de performance pour le stockage, le traitement ou encore le

chargement de ce type de descriptions.



Dans cette theése, nous proposons de nettoyer les descriptions RDF en élimi-
nant les données redondantes ou inutiles. Ce processus est nommé “normalisation”
de descriptions RDF et il est une étape essentielle pour de nombreuses applications,
telles que la similarité entre descriptions, I'alignement, I'intégration, le traitement
des versions, la classification, I’échantillonnage, etc. Pour ce faire, nous proposons
une approche intitulée R2NR qui a partir de différentes descriptions relatives a
une méme information produise une et une seule description normalisée qui est
optimisée en fonction de multiples parametres liés & une application cible. Notre
approche est illustrée en décrivant plusieurs cas d’étude (simple pour la compréhen-
sion mais aussi plus réaliste pour montrer le passage a 1’échelle) nécessitant ’étape

de normalisation.
La contribution de cette these peut étre synthétisée selon les points suivants:

i) Produire une description RDF normalisée (en sortie) qui préserve les informations

d’une description source (en entrée),
ii) Eliminer les redondances et optimiser I’encodage d’une description normalisée,

iii) Engendrer une description RDF optimisée en fonction d’une application cible

(chargement rapide, stockage optimisée...),

iv) Définir de maniére compléte et formelle le processus de normalisation a laide

de fonctions, d’opérateurs, de regles et de propriétés bien fondées, etc.

v) Fournir un prototype RDF2NormRDF (avec deux versions : en ligne et hors

ligne) permettant de tester et de valider efficacité de notre approche.

Afin de valider notre proposition, le prototype RDF2NormRDF a été utilisé
avec une batterie de tests. Nos résultats expérimentaux ont montré des mesures
trés encourageantes par rapport aux approches existantes, notamment vis-a-vis du
temps de chargement ou bien du stockage d’une description normalisée, tout en

préservant le maximum d’informations.



Abstract

Over the past three decades, millions of people have been producing and shar-
ing information on the Web, this information can be structured, semi-structured,
and/or non-structured such as blogs, comments, Web pages, and multimedia data,
etc., which require a formal description to help their publication and/or exchange
on the Web. To help address this problem, the Word Wide Web Consortium (or
W3C) introduced in 1999 the RDF standard as a data model designed to stan-
dardize the definition and use of metadata, in order to better describe and handle
data semantics, thus improving interoperability, and scalability, and promoting the

deployment of new Web applications.

Currently, billions of RDF descriptions are available on the Web through the
Linked Open Data cloud projects (e.g., DBpedia and LinkedGeoData). Also, sev-
eral data providers have adopted the principles and practices of the Linked Data to
share, connect, enrich and publish their information using the RDF standard, e.g.,
Governments (e.g., Canada Government), universities (e.g., Open University) and
companies (e.g., BBC and CNN). As a result, both individuals and organizations
are increasingly producing huge collections of RDF descriptions and exchanging
them through different serialization formats (e.g., RDF /XML, Turtle, N-Triple,
etc.).

However, many available RDF descriptions (i.e., graphs and serializations)
are noisy in terms of structure, syntax, and semantics, and thus may present prob-
lems when exploiting them (e.g., more storage, processing time, and loading time).
In this study, we propose to clean RDF descriptions of redundancies and unused in-
formation, which we consider to be an essential and required stepping stone toward
performing advanced RDF processing as well as the development of RDF databases
and related applications (e.g., similarity computation, mapping, alignment, inte-
gration, versioning, clustering, and classification, etc.). For that purpose, we have
defined a framework entitled R2NR which normalizes different RDF descriptions

pertaining to the same information into one normalized representation, which can



then be tuned both at the graph level and at the serialization level, depending
on the target application and user requirements. We illustrate this approach by

introducing use cases (real and synthetics) that need to be normalized.
The contributions of the thesis can be summarized as follows:

i) Producing a normalized (output) RDF representation that preserves all the in-

formation in the source (input) RDF descriptions,

ii) Eliminating redundancies and disparities in the normalized RDF descriptions,

both at the logical (graph) and physical (serialization) levels,

iii) Computing a RDF serialization output adapted w.r.t. the target application

requirements (faster loading, better storage, etc.),

iv) Providing a mathematical formalization of the normalization process with ded-

icated normalization functions, operators, and rules with provable properties, and

v) Providing a prototype tool called RDF2NormRDF (desktop and online versions)

in order to test and to evaluate the approach’s efficiency.

In order to validate our framework, the prototype RDF2NormRDEF has been
tested through extensive experimentations. Experimental results are satisfactory
show significant improvements over existing approaches, namely regarding loading

time and file size, while preserving all the information from the original description.
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Chapter 1

Introduction

The Semantic Web is a global information space consisting of interlinked data about resources
[BLO9], aiming to assign/extend data with well-defined meaning that can be understood and
utilized by machines to improve the quality of the information retrieved and also perform
more sophisticated data management and interchange tasks (e.g., intelligent data search, data
integration, merging, classification, etc.). In this context, one of the core technologies of the
Semantic Web to connect data is the Resource Description Framework MMM 04,
SR14], as a World Wide Web Consortium standard. Basically, an RDF description is
composed of a set of triples < Subject, Predicate, Object >, also named statements. These
triples altogether form an RDF graph highlighting the semantic linkage/relationships between

Web resources.

For instance, the following triple: <http://www.univ-pau.fr| exl:lab, http://liuppa.
univ-pau.fr/live/> states that the subject http://www.univ-pau.fr, identified by its In-
ternationalized Resource Identifier (IRI), has a lab, identified by its own IRI: http://liuppa.
univ-pau.fr/live/. Several RDF datasets are currently available online thanks to Linked
Data [HB11] research projectsE]7 such as DBpedia, LinkedGeoData, Geonames, New York Times,
etc. Through the initiative of Linking Open Data , individuals and organizations can

share all their information with others based on RDF triples.

These triples are serialized to be usually stored in RDF machine readable formats such as
RDF /XML [Bec04] (since XML-based technologies give more readability and provide standard-
ized frameworks that can be used to handle such a format), N-Triple [BB01], Turtle [BBL11],
N3 [BL05] or JSON-LD [SLK"14|. Therefore, RDF can be described in different ways as shown
in Figure[L.1| where an RDF description is represented by a graph (cf. Figure|l.1la) and several

corresponding RDF formats (serializations) (cf. Figures [1.1}b.1,[1.1}b.2,[1.1}b.3 and [L.1]b.4).

"http://linkedgeodata.org, http://data.nytimes.com/, http://dbpedia.org, http://www.geonames.
org/, http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets
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ex:nameProf,

http://www.univ-pau.fr

ex1:lab

exifirst_name

exilast_name

http://www.univ-pau.fr/live/

“Sebastien”

<rdf:Description rdf:nodelD="UX">
<ex:first_name> Sebastien </ex:first_name>
<ex:last_name> Durand </ex:last_name>
</rdf:Description>

(1) RDF/XML

"@id": " _:Nf6a5c38b4f1049bi8aft884fdd714eco",
"http://lexample.org/stuff/1.0/first_name": [{"@value": "Sebastien"}].
“http://example.org/stuff/1.0/last_name": [{"@value": "Durand"}

(2) JSON-LD

@prefix ex1: <http://example.org/stuff/1.0/>
<http://www.univ-pau.fr> ex1:lab <http:/liuppa.univ-pau.fr/live/> ;
ex:nameprof [ ex:first_name "Sebastien";

ex:last_name "Durand" ]

(3) N3

_:N17 http://fexample.org/stuff/1.0/first_name
"Sebastien"M<http://www.w3.0rg/2001/XMLSchema#string>
_:N17 <http://example.org/stuff/1.0/last_name> "Durand"@fr
<http://www.univ-pau.fr> <http://example.org/stuff/1.0/nameprof>
_:N17 <http://www.univ-pau.fr> <http://example.org/stuff/1.0/lab>
<http://liuppa.univ-pau.fr/live/>

(4) N-Triple

(a) RDF Graph 1

(b) RDF Serializations of Graph 1

Figure 1.1: RDF description Example.

http://www.univ-pau.fr

ex:nameProf

http://www.univ-pau.fr/live/

ex:first_name “Sebastien”
ex:last_name
“Durand”
ex:first_name “Sebastien”
ex:last_name M N
= Durand
ex:last_name “Durand”

Figure 1.2: RDF Graph 2 describing the same information of Fig. 1.

In different scenarios (e.g., automatic serialization generation [STCI4] [Vea09], collabora-
tive generation [Jeald], data integration [PST™15], etc.), RDF descriptions might be verbose
and contain several redundancies in terms of both: the structure of the graph and/or the se-
rialization result. For instance, in automatic serialization generation, let us consider two RDF
descriptions to represent the same information: Graph 1 in Figure [I.I}a and Graph 2 in Figure
which have been created by two different users. Both graphs are different in terms of struc-
ture even though they are based on (and refer to) the same information. Actually, the RDF
graph in Figure contains duplicated information (i.e., duplication of nodes and duplication
of edges) that produces more statements in comparison with the RDF graph Figure a. Ad-
ditionally, even more redundancies and disparitiesEl will occur when serializing the RDF graph

in Figure b, highlighting typical problems with RDF serialization (cf. Motivating examples

in Sections and :

'We use disparities to designate different serializations of the same information.
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e The same RDF resource can be serialized in several ways (e.g., in Figure b.l, we use
the attribute value rdf:nodeID=“UX” as one of several ways to represent the blank node
identifier in a graph following the RDF/XML format, which can be done differently in

other formats),

e The language and datatype declarations for a given RDF resource (objects of the state-
ment) can be specified (or not) after serialization (e.g., in Figure b.47 the datatype
string is mentioned in resource Sebastien as “Sebastien” ““xsd : string and the lan-
guage fr is mentioned in resource Durand as “Durand”@fr, which can be omitted in

other formats),

e The same URL namespace can have different short names, thus producing namespace
duplications (e.g., the namespace http://xmlns.com/foaf/1.0/ in Figure b.l has
the short name “ex” whereas it has the short name “ex1” in Figure [L.1]b.3).

The [LOD] context, as we mentioned before, individuals and organizations share data for
several purposes, e.g., to build new businesses, to increase online commerce, to accelerate scien-
tific progress, etc. So, all the problems above can be duplicated, if we want to integrate/merge
the information of one (or more) resource(s) using different datasets in the

For instance, the data integration of the resource Luxembourg (see Figure provided
by different datasets as DBpedia and Geonames may increase the redundancies and disparities
in the merged RDF description output. Also, it has an impact in the storage, loading time,
etc., e.g., RDF Graph X + RDF Graph Y 4+ RDF Graph Z will take more space for storage and
also more time for loading than the RDF graph without redundant and unused information.
Considering a subgraph of the integrated RDF description output in Figure we find more

redundancies based on semantic ambiguities and IRI discrepanciesﬂ (cf. Motivating examples

in Sections and :

e The language and datatype declarations for a given RDF resource can change following
different primitive values (e.g., string, integer, etc.) but the meaning will be the same
(e.g.,,inF igure the language es is mentioned in “Luxemburgo”’@es and language en is
mentioned “Luxembourg”@en. So, we can notice that the name of the resource changed
but the meaning is the same: they simply provide the name for Luxembourg but in

different languages),

e The different IRIs can refer to the same RDF resource (e.g., in Figure the IRI http:
//dbpedia.org/resource/Luxembourg uses the DBpedia dataset and the IRI http://
sws.geonames.org/2960313/| uses the Geonames dataset, such that both IRIs identify

the same resource Luxzembourg).

'We use discrepancies to designate different IRIs that refer to the same resource
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Figure 1.3: Example of Linked Data about the resource Luxembourg
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Figure 1.4: Subgraph of the Data Integration in Figure
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Such duplications and discrepancies which can occur both at the RDF graph (logical)
level and/or at the serialization (physical) level, are inherently problematic in RDF processing,
and would have a negative impact on the development/deployment of RDF databases [Geall]
(including storage, querying, processing time, loading time, similarity measuring, mapping,

alignment, and versioning).

In this thesis, we present a proposal which provides a foundation and the main building
block for full-fledged RDF normalization. We continue this chapter by first identifying the
principal aim and the objectives of the thesis (Section [I.I)). Next, in Section we explain
our research contributions and, in Section we conclude this chapter with the outline of the

remainder of this work.

1.1 Research Aims and Objectives

The ultimate aim of this thesis is to resolve RDF logical redundancies and physical disparities
by introducing a framework for RDF normalization named R2NR, allowing to transform dif-
ferent RDF descriptions using the same RDF statements reference into one single (normalized)
representation, while allowing to adapt RDF output serialization following application domain

requirements.

Our approach targets RDF normalization through the following objectives:

1. Eliminate redundancies in RDF graphs (which is typically useful in improving graph-
based RDF querying, mapping, and versioning applications) in the structure/graph (log-

ical) level, and

2. Eliminate redundancies and disparities in the structure of RDF files in the serialization
(physical) level, and adapting it to the target application domain, in order to optimize

storage space and loading time.

3. Prove that our normalization process is: i) valid with respect to a set of provable proper-
ties, ii) flexible and adaptable to user and application requirements, and iii) efficient and

scalable in processing large RDF repositories.

1.2 Research Contributions

Based on the aim and objectives described above, and our study of the research area (developed
in Sections and , we present the following as our primary contribution in this thesis:



1.2. Research Contributions

1. Syntactic RDF Normalization

The challenge of obtaining an RDF normalized description has only been partly addressed
in the literature (cf. Section . Existing solutions do not consider all syntactic aspects
of RDF including: blank node duplication, unused namespaces, etc., that we further
categorize in this thesis as logical redundancies and physical disparities. In order to

perform syntactic RDF normalization, we provide:

e Systematic and complete description of R2NR’s formal mathematical model, in-
cluding a battery of formalized normalization rules, functions, operators, with their

properties, and corresponding proofs.

e Eliminating redundancies and disparities in the normalized RDF descriptions, both

at the logical (graph) and physical (serialization) levels in the syntactic way.

e Producing a normalized (output) RDF representation that preserves all the infor-

mation in the source (input) RDF descriptions.

e Providing several RDF serialization outputs adapted to the target application re-

quirements (faster loading, better storage, etc.).

2. Semantic RDF Normalization

In addition to considering the syntactic features of RDF, we have also extended our
proposal to deal with RDF semantic normalization: considering not only the occurrence
of duplicate RDF elements (i.e., repetition of identical RDF subjects/predicates/objects),
but also the occurrence of semantically similar/related elements, and how these can affect
normalization. As the semantic issues are inherently important in RDF descriptions,
we have extended our RDF Normalization framework with a Semantic Level processing

component, providing:

e Mathematical formalization for the rules and functions related to solving logical

redundancies based on semantic ambiguities.

e Dedicated components to eliminate redundancies in the normalized RDF descrip-

tions at the logical level.

e Dedicated components to perform semantic analysis, required for solving semantic

redundancies in RDF descriptions.

3. IRI RDF Normalization

The second extension of our syntactic proposal of RDF normalized considers IRI discrep-
ancies. In a new environment, such as the Semantic Web, where the IRIs are the base of
all Web applications to link the information about resources in datasets of linked data,

we study solutions to solve the problems of the IRI identity and IRI coreferenceﬂ In

!Coreference means that two or more IRIs are used to designate the same resource in the same way
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practice, RDF' descriptions can also have redundancies and disparities which we aim to

solve by introducing a dedicated IRI Level solution, providing:

e Mathematical formalization for the rules and functions related to solving logical

redundancies and physical disparities based on IRI discrepancies.

e Eliminating redundancies and disparities in the normalized RDF descriptions, both

at the logical and physical levels, generated by the IRI discrepancies.

e A dedicated component to identify the IRI coreference, which is in turn required to

identify and solve IRI discrepancies.

We also develop a prototype tool called RDF2NormRDF in two versions: Desktop and
online applicationﬂ in order to test and to evaluate our approach’s: i) effectiveness: quality
in detecting and eliminating redundancies and disparities in RDF descriptions, and ii) effi-
ciency: evaluating processing time, loading time, and storage space. Our experiments target
both logical and physical normalization at the syntactic level, and are being extended toward
evaluating semantic normalization. As well, we present an extensive and comparative experi-
mental evaluation study analyzing large scale experimental results in comparison with existing
methods.

Results have been presented and published in the proceedings of the 34th International
Conference on Conceptual Modelling ER’15 [THTC™15], and the extended study is currently
submitted (under review) in the International Journal on Web Semantics (Elsevier JWS)
[THTCLI6].

1.3 Manuscript Structure

Next, we present an overview of each of the following chapters in this thesis:

Chapter [2] (The Semantic Web: RDF and Linked Data) presents the necessary back-
ground information regarding the concepts and principles about WWW, Semantic Web,
IRIs, RDF and the Web of Linked Data considered to better understanding the normal-

ization process.

Chapter [3] (Motivating Examples) presents motivating examples, highlighting different
normalization features left unaddressed by most existing approaches. Regarding these

features, this chapter also presents our challenges for the RDF normalization.

Chapter [4] (Syntactic RDF Normalization) describes our syntactic proposal for RDF

Normalization. This chapter also includes preliminary notions, basic definitions related

"http://sigappfr.org/spider/research-projects/towards-rdf-normalization/
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1.3. Manuscript Structure

to RDF logical and physical descriptions, a set of normalization functions, operators and
properties, and a comparison with related works in RDF standardization and normaliza-

tion. Finally, we detail our overall R2NR framework architecture and components.

Chapter [5] (Semantic and IRI RDF Normalization) describes an extension of R2NR
framework architecture considering RDF Semantic and IRI problems. This chapter also
includes preliminary notions related to semantic ambiguity, IRI identity, IRI coreference,
and RDF semantic normalization, as well as a set of normalization functions, operators,
and properties linked to solving logical redundancies and physical disparities caused by
the presence of semantic ambiguities and IRI discrepancies. This extension adds two
levels to our original framework: Semantic level and IRI level. In this chapter, we also

present our prototype and the experimental environment describing all our datasets.

Chapter [6] (Experimental Evaluation) illustrates and discusses experimental results of
evaluating the R2NR proposal that we presented in the preceding chapters, and shows
results of the validation of RDF Normalization output through the fulfilment of RDF
normalization properties, as well as the cost in processing time and the gain in loading

time and storage space achieved after normalization.

Chapter [7] (Conclusions and Future Works) concludes our work, recapitulating our con-

tributions and highlighting future research directions.



Chapter 2

The Semantic Web: RDF and
Linked Data

“I made some electronic gadgets to control the
trains. Then I ended up getting more interested in
electronics than trains. Later on, when I was in
college I made a computer out of an old television

set.”
— Tim Berners-Lee

In this chapter, we present the Semantic Web concept and its associated elements. It is
important that we first understand the nature, purpose and principles of the Semantic Web
before the challenges of the normalization. The nature of the Semantic Web is
linked to two motivations: 1) The first one, it is the distributed modelling of the world that
allows “anyone to say anything about anything” in a globally unambiguous, machine-readable
format with a shared data model, and 2) The second one, it is the infrastructure where data and
schemas can be published, found and used by anyone. So, the main question for researchers was:
how to publish information about resources in a way that allows interested users and software
applications to find and interpret them [AVOS, [SCV1I] [Boo03|]. To that end, for answering this
question, we begin this chapter with a brief history of the World Wide Web and the
(Section and a short background description related to: i) Internationalized Resource
Identifiers (IRIs) (Section [2.2)), and ii) Resource Description Framework (RDF) (Section [2.3)).
Finally, we present the relation between the Linked Data movement (Section and the
Semantic Web.



2.1. World Wide Web and Semantic Web

2.1 World Wide Web and Semantic Web

The WWW] named as Web, was invented by Tim Berners-Lee in 1989, as a collaboration tool
for the High-Energy Physics research community at The European Organization for Nuclear
Research D[BLSQ]. Berners-Lee had developed a concept for the Web as “universal
information space”, in his original proposal he said “We should work towards a universal linked
information system, in which generality and portability are more important than fancy graphics
and complex extra facilities” [BL89]. This concept was related with the main goal of Berners-

Lee’s proposal that was to connect the tremendous amounts of data of [CERN]

Also, Tim Berners-Lee, Roy Fielding, Dan Connolly, and others were participants of the
Internet Engineering Task Force to create software to run the Internet [WalOl] and
the result of this collaboration, around 1990, was the development of basic protocols and data
formats as URIs that is a unique address used to identify each resource on the Web (see more
details in Section , HyperText Markup Language that is the markup language of
the Web and Hypertext Transfer Protocol that allow us the retrieval of linked resources
from across the Web. These three fundamental technologies remain the foundation of today’s
Web [Hall3a] where there is no central computer controlling the Web, no single network on
which these protocols work, not even an organization anywhere that runs the Web according
with Berners-Lee’s proposal. For Berners-Lee, the Web is not a material thing, it is completely
different than what people could imagine. In [BLF00], he said: “The Web was not a physical
thing that existed in a certain place. It was a space in which information could exist” [BLE00].
That is, we are talking about something completely abstract that can be found in everywhere

and can be utilized at any time.

There are various technologies that go under the rubric of the Web. In fact, these
technologies are related to the infrastructure operation of the Web known as the Internet, In-
ternationalized Resource Identifier (IRI), [HT TP} [HTML] etc. On one hand, the Internet “is a

global system of interconnected computer networks that interchange data by packet switching

using the standardized Internet Protocol Suite (Transmission Control Protocol/Internet Pro-
tocol (TCP/IP))” [Sta09] and on the other hand the Web, following the W3C definition, “is an
information space in which the items of interest, referred to as resources, are identified by global
identifiers called Uniform Resource Identifiers (URI)” [JWO04]. In brief, we conclude that the
Web acts as an information system based on hypertext pages (developed in the format)
to link information through URIs in a global network of computers (Internet) where the hy-
pertext pages, named as Web pages, are requested and transferred over the [FGM™99)

using the hyperlinks that are a reference to a document or specific element within a document.

The linking that we refer to in the last paragraph is one of the main advantage of the

Web, because it allows to connect the documents over the Web. This advantage is better

!CERN: See http://www.cern.ch
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highlighted by examining the main principles of the Web architecture.

2.1.1 Principles of Web Architecture

There are five principles that serve as the normative for the Web: Universality, Linking, Self-
Description, the Open World, and Least Power [Hall3a]. They are considered as normative but
several applications on the Web do not follow them, but it is a recommendation to be under
the norm for having a compliance with the Web architecture and the proper operability of the

applications.

1. Principle of Universality: establishes that “any resource can be identified by a Uni-
form Resource Identifier (UR)” (See definitions of resource and in Section|2.2). The
Universality is based that everything or every concept in the World can be represented

and accessible on the Web.

2. Principle of Linking: establishes that “any resource can be linked to another resource
identified by a[URI. The linking guarantees that all resources are not islands, they have

a relationship with other resource.

3. Principle of Self-description: establishes that “the obtaining of information for in-
terpreting a Web representation (resource) should be given from the Web representation
itself ”. The process of following the links to determine valid interpretations for
a resource is informally named following your nose in Web architecture [JW04]. This
process allows the user-agents to find information that they can use to interpret the Web

representation.

4. The Open Word Principle: establishes that “the number of resources on the Web can
always increase”. Web-pages can appear any moment on the Web, also resources with

their respective [URIk can be created everytime without any centralized link index.

5. Principle of Least Power: establishes that “a Web representation given by a resource
should be described in the least powerful but adequate language”. Searching a language
that can fulfill the minimal requirements to convey the information and whatever sense
and then to extend with more specifications. For example, using [HTML], we can build in
a simple way the common core of a Web-page and after we can add another technologies

to develop more advanced features.

2.1.2 Semantic Web

The Semantic Web (SW) is an extension of the Web beyond the hypertext, the Web evolved

from a global information space of linked documents to the SW]where documents and data are

11
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linked. The[SW]is also named as the Web of Data because the main goal is to reveal data on the
Web in “machine understandable formats” within interlinked datasets. For Berners-Lee et al.
in ﬂm, “the Semantic Web is not a separate Web but an extension of the current one, in
which information is given well-defined meaning, better enabling computers and people to work
in cooperation”. One of the main standards created for improving the collaboration between
computers and people were developed by the called eXtensible Markup Language .
[XMT]is used to differentiate content and presentation in Web-pages and helps users to manage,
exchange and control the information [BPSMT08]. But also, the SW represents the knowledge
for the Web using a special language named RDF (see more details in Section [2.3). We can
find several technologies related to the development of the SW, which have been gaining more
relevance in the WWW community in the last decade. In [GMBOS, [TRC*13], the authors show
the evolution of the Semantic Web architecture and technologies as [URI] [XMT], [RDF], etc.

In Figure we present two common versions of the Semantic Web Stack, among
others. We choose them because the first one is the Tim Berners-Lee version that shows all
the standards for the SW and the second one is considered as the most popular version by
Harry Halpin in [Hall3b]. Accordingly with both stacks, we notice that the base of the SW
is URI/IRI and the standard model language is RDF to be used for the other technologies.

Therefore, we provide more information about them in the following sections.

User Interface & Applications I

Trust I Proof
q T
_—' Rules / Query

Ontology:
owL Rulizs Ontology

RIF
RDFS l RDF Mode! & Syntax

Query:
SPARQL

Crypto

Data interchange:

RDF
=) | —
(a) By Tim Berners-Lee. (b) By Harry Halpin in [HalI3b].

Figure 2.1: Semantic Web Stack.

2.2 Internationalized Resource Identifier

IRIs are an integral part of the Semantic Web, and constitute the bottom layer supporting the

Semantic Web stack, providing the core of linkage and identification capabilities connecting

12
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RDF with resources and the Web. In this section, we introduce the basic concepts of resource,

IRI, their types, and related concepts.

2.2.1 Resource

DEFINITION 2.1 . A resource can be anything that has an identity, [BLFM98, [MBLF05, [HP09]
ranging from a Web-page (with an identifying Web address) to a human being (with an iden-
tifying name or social security number). More formally, resources can be organized in two
main categories [Hall3b, [HP0I] (see Figure [2.9): i) information resources (a.k.a. Web IRI,
or information IRI) used to designate and access electronic information on the Web (e.g.,
Web-pages and documents), and i) non-information resources (a.k.a. Semantic Web IRIs, or
non-information IRIs) referring to non-electronic information like physical entities (e.g., per-
son named John, monument named Tour Eiffel, and academic institution named University of

Pau) and abstract concepts (e.g., definition of academia, concept of democracy, etc.)

For instance, a Web page describing the University of Pau is an information resource,
but the University of Pau itself (i.e., the academic institution) is a non-information resource.
Each resource would be identified through its own IRI: using a Web IRI (URL) for the former
(e.g., http://www.univ-pau.fr/live/) and a Semantic Web IRI for the latter (e.g., http:
//dbpedia.org/resource/UPPA).

Resource

Information N i
n-Information
Connected using RDF 2 Siliidf)

Resource Resource
(Web IRI) (Semantic Web IRI)

Figure 2.2: Resource Classification

2.2.2 Uniform Resource Identifier - URI

DEFINITION 2.2 . [t is is a string of characters used to identify a resource. A URI can be
further classified as a locator (URL), a name (URN), or both [BLFM98, [IMBLF05] as we show

in Figure [2.54

e A Uniform Resource Locator (URL) is the most common type of URI, also known as
Web address, used to locate information resources on the Web [BLFMO98, MBLF05], e.g.,
http://dbpedia.org/resource/University
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e A Uniform Resource Name is another form of less commonly used URIs, using
the urn scheme of the form urn:nsi:nss where nsi is the namespace identifier and nss a
namespace string [BLFMO98| MBLF05], e.g., urn:isbn:0451450523, providing the ISBN
number of a certain book as Romeo et Juliet, but not a reference to the content of the
book itself.

2.2.3 Internationalized Resource Identifier - IRI

DEFINITION 2.3 . [t extends the existing Uniform Resource Identifier (URI) scheme to iden-
tify a resource, by allowing sequences of characters from the Unicode set, including Chinese,
Japanese, and Korean, etc., as opposed to ASCII characters only with URI [DS04/¢

There is a mapping from IRIs to URIs, URLs or URNS when IRIs are used instead
of them to identify resources. This mapping we show in the Fuler Diagram of the relations
between IRI, URI, URL, URN in Figure 2.3

4 )

IRI
URI
URL |

N J

Figure 2.3: This Euler diagram shows that an IRI is a URI, and URI is either a Uniform
Resource Locator (URL), a Uniform Resource Name (URN), or both.

2.2.4 1IRI Classification

IRIs can be used to designate different things [Boo03|, referred to as different IRI types, and
which we can classify in two categories: i) conventional IRIs, and ii) owner defined IRIs, as
described in Figure

1. Conventional IRI: An IRI is named based on a standard mechanism for specifying its

identity, according to:

(a) Implementation: some Web applications (e.g., DBpedia) give a IRI depending on
their implementation (see Figure a). This category is classified as following;:
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IRI
Conventional Owner
IRI defined IRI
IRI
1
Type i o
| RN user-defined classification
I 1
Implementation Naming
IRI Resources IRI
I I | 1 I I | | 1
Document
Resource IRI Page IRI Data IRI Ontology IRI Document IRI Representation Concept IRI Id IRI
IRI
|
‘Web/Information IRI
Resource
Type

I

Semantic Web/Non -information IRI

Figure 2.4: Taxonomy of IRI types.

e Resource: to name/identify the resource. For example: http://dbpedia.

org/resource/Luxembourg

e Page: to give the Web location of the resource. For example: http://dbpedia.
org/page/Luxembourg

e Data: to provide a representation of the resource (e.g., rdf, nt, json, etc.). For
example: http://dbpedia.org/data/Luxembourg.rdf

e Ontology: to name the domain ontology for the resource. For example: http:

//dbpedia.org/ontology/Place

The IRI structure of each type based on implementation classification is described

in Table 211

Table 2.1: Conventional IRI types based on Implementation with their respective structures

IRI type IRI structure

Resource http://{domain}/resource/{resource}

Page http://{domain}/page/{resource}

Data http://{domain}/data/{resource.file-extension}
Ontology http://{domain}/ontologies/{resource}

(b) Naming resources: other Web applications give an IRI using the names of the
uses of the IRI (identifier, concept, etc.) [Boo03] as we show in Figure [2.5b. This

category is classified as following:
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2.2. Internationalized Resource Identifier

Identifier TRI: to name/identify the resource. For example: http://www.
example.com/id/sebastien

Document IRI: to identify the location of the resource. For example: http:
//www.example.com/doc/sebastien

Document representation IRI: each document can have one or more repre-
sentations (text, html, rdf, owl, etc.). For example: http://www.example.com/
doc/sebastien.rdf

Concept TRI: to name the concept that models the resource. For example:
http://www.example.com/def/sebastien

Ontology IRI: to name the domain ontology including the concept that models

the resource, e.g., http://www.example.com/ontologies/person

The IRI structure of each type based on naming resources classification is described

in Table

Table 2.2: Conventional IRI types based on naming resources with their respective structures

IRI type

IRI structure

Identifier

Document

Concept
Ontology

Doc. Representation | http://{domain}/doc/{concept}/{reference}/{doc.file-extension}

http://{domain}/id/{concept}/{reference}
http://{domain}/doc/{concept}/{reference}

http://{domain}/def/{concept}
http://{domain}/ontologies/{concept}

2. Owner defined TRI: An IRI is named using a declaration without specifying its type

in the path, while using the owner preferences for the naming. For example, http:

//toureiffel.fr is an owner defined IRI since it does not follow any of the conventional

IRI types described above, while identifying a certain resource: toureiffel.fr.

2.2.5 IRI Dereferencing

DEFINITION 2.4 . IRI dereferencing is the process of looking up an IRI on the Web, i.e.,

accessing the resource referenced by the IRI, which usually comes down to accessing a Web-page

or another kind of document representation of the resource available online [BLCC™ 06, BCOG]4

Also, note that non-information resources can be linked with information resources available
on the Web using RDF (as described in the following sections, cf. Figure [2.2)).

Figure[2.6|shows the dereferencing process of the resource Eiffel Tower in Web-page http:
//www.example.org/EiffelTower. In terms of [[RIs, this means issuing an request in

order to retrieve the data pertaining to Eiffel Tower.
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Resource: Luxembourg msssss) country

Resource IRI Page IRI Document Representation(s) IRI
(Web location)
http://dbpedia.org/data/L t nt
http://dbp t http://dbpedia.org/page/Luxemt http://dbpedia.org/data/L b json

(a) Luzembourg resource.

Resource: Sebastien mmssms)  person

Identifier IRI Concept IRI Document IRT Document Representation(s) IRI
(Web location)

http://www.example.com/doc/sebastien.rdf
http://www.example.com/id/sebastien | http:/www.example.com/def/sebastien [http:/www.example.com/doc/sebastien| http:/www.example.com/doc/sebastien.nt

~

o o

JL

(b) Sebastien resource.

Figure 2.5: Examples of IRI uses.

User Agent

HTTP Request

HTTP GET

hrtp:,".ﬂ’w ww.example. c)rg{;’ﬁiffulan(‘r

HTTP Response
200 OK

Server

http://www r,/xamplc org/Efffel Tower
Web Representation -
A Web Page //,

-
refers -~
-

Resource
The Eiffel Tower Itself

Figure 2.6: Dereferencing the resource Eiffel Tower in [Hall3a].



2.3. Resource Description Framework

2.3 Resource Description Framework

The first knowledge representation language for the[SW]is the Resource Description Framework
was developed by Ora Lassila and Ralph Swick in 1998 [LSWC98| and over the
years new versions came out with the intervention of new authors as in [MMM™04, [SR14].
The inspiration of this work was based on the Meta-Content Framework by R.V. Guha
[Guh08], who works as a chief of Cyc Project related to the Artificial Intelligence area [GLT92).
RDF was built in accordance with the principles of the Web Architecture explained in Section
2.1.1, To fulfill these principles, RDF (also named as a modeling language) represents the
information of resources as assertions in the form subjet-predicate-object (named Triples or
statements in RDF terminology). To better understand this modeling language, we explain:
the RDF terminology, the serialization formats, and the relation with each principle of the
Web.

2.3.1 RDF Terminology

DEFINITION 2.5 (RDF Resource [r]) An RDF resourceﬂ represents the abstraction of an
entity (document, abstract concept, person, company, etc.) in the real world. It is noted r € U
U L, where U is a set of IRIs and L is a set of literals. A RDF resource r may be associated
with a language tag (e.g., @Qfr, @en, etc.) or with a datatypﬂ (e.g., string, number, date, etc.)

in order to give more information about the corresponding valued

ex:first_name

“Sebastien” xsd:string

ex:nameProf

http://www.univ-pau.fr

ex:last_name

l l Durand@fr
IRI property bn property Literal

Figure 2.7: Example of RDF graph

Figure shows the following RDF resource&ﬂ

e http://www.univ-pau.fr is an IRI that represents the University of Pau;

o “Sebastien” “xsd : string is a literal associated with the String datatype; and

' The difference between RDF resource definition with the definition of Resource inm is that RDF resource

is an extension of the resource with more declared characteristics and differenciation between IRIs or literals.
2Only literal resources are concerned.
3The attributes datatype and language are added to the graph for illustrative and explanatory purposes only.
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e “Durand”@fr is a literal associated with the French language.

Note that in the remainder of the study, R, Lang and DT are used for naming the set of

resources, languages and datatypes respectively.

DEFINITION 2.6 (Blank Node [bn]) An RDF blank node represents an anonymous RDF re-
source characterizing a set of RDF resources’ properties. A blank node, noted bn € BN, can
be associated with an identifier (or nodelD) to cope with data semantics and simplify the seri-

alization proces{ ¢

For instance, bn_1 in Figure is a group of first name and last name properties. The

bn here is illustrated without an explicit identifier.

DEFINITION 2.7 (Property [p/) An RDF property is defined as an IRI (conventional or
owner defined), noted as p € U, to represent a predicate (relationship) between RDF' resources
r, between blank nodes (see Def. @), or both. A data-type and/or a language tag may be
declared within a property: utilized to describe the data-type and the language of the associated
object literald

Figure shows three propertiesﬂ that represent the abstract concepts of a professor’s

full name (nameProf), consisting of concepts: first name and last name respectively.

DEFINITION 2.8 (Statement [st/) An RDF statement expresses a relationship between two
RDF resources, two blank nodes, or one resource and one blank node. It is defined as an atomic
structure consisting of a triple with a Subject (s), a Predicate (p) and an Object (o), noted as
st:< s,p,0 >, w.r.t. a specific vocabulary V (see Def. , where:

* s € UU BN represents the subject to be described,

* p € U refers to the properties of the subject,

* o0 € UU BN U L describes the object

The example presented in Figure underlines 3 statements with different RDF re-

sources, properties, and blank nodes such as:

f no identifier is used, serialization usually provides a meaningless random identifier.
We removed IRIs from nameProf, first_name and last_name to avoid repeating them and thus simplify

presentation.
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e st;: <http://www.univ-pau.fr, ex : nameProf, bn_1 >
o sto: < bn_l, ex : first_name, “Sebastien” “xsd : string >

e st3: < bn_l, ex : last_name, “Durand”Qfr >

DEFINITION 2.9 (RDF Graph [G]) An RDF graph is defined as a set of statements denoted
by G : {sty, sta, sts,. .., st,} where G is a directed labeled graph [LS99] in which each statement
is represented as a node-edge-node link [KC0JJ. Therefore, G nodes represent RDF subjects

and objects, and linking edges represent corresponding predicates

For instance, Figure depicts an RDF Graph made of three statements described
following Definition

In the remainder of the study, “RDF graph” and “RDF logical representation” are used

interchangeably.

DEFINITION 2.10 (RDF Graph Vocabulary [V]) An RDF Graph Vocabulary is the set of
all values occurring in the RDF graph, i.e., V.= UU L U BN¢

DEFINITION 2.11 (External Vocabulary [QN/) An RDF External Vocabulary is a set of
QNameéE] (QN) to represent IRI references {qni, qna,. . .,qnyn}. Each qn; is a tuple < px;,ns; >
where px; is a preﬁaﬂ (e.g., foaf, ex, dc,...) and ms; is a namespace. The prefix is a short
name (loca{:’_‘] or standard) that is assigned to a namespace IRI and which can be subsequently
referenced in the entire description (MMM 04, [SR1]/¢

For instance QN={(ex, http://example.org/stuff/1.0), (mypx, http://ucsp.edu.

)

pe)}, where “ex” is a standard prefix, “mypx” is a local prefix, and http://example.org/

stuff/1.0 and http://ucsp.edu.pe/| are the namespaces.

DEFINITION 2.12 (RDF File [F]) An RDF file is defined as an encoding of a set of RDF
statements or of an RDF graph, using o predefined serialization format complying with an RDF
W3C standards, such as RDF/XML, Turtle, N3, and others (see Section . Formally:

F = Enc(ST, enc)

where:

ST is a set of RDF statements, enc is the chosen file format following which the state-
ments will be serialized, where enc € { RDF/XML, JSON-LD, Turtle, N-Triple, etc.} 4

"http://www.w3.org/TR/REC-xml-names/
ZFollowing the W3C Recommendation, we consider that all the prefixes have to be unique for each namespace.
31t is a short name of the namespace given by the user.
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In the remainder of the study, “RDF file”, “RDF serialization” and “RDF physical repre-

sentation” are used interchangeably.

Table [2.3] summarizes the list of sets used in our approach, based on all these definitions.

Table 2.3: Summarized descriptions of sets used in our approach

Set Description

U Set of IRIs

L Set of literals

BN Set of blank nodes

ST Set of Statements

\% Set of IRIs, literals and blank nodes

QN Set of Qnames

Lang | Set of Languages such as en(english), fr(french), es(spanish), etc.

DT Set of Datatypes such as string, integer, decimal, etc.
NS Set of Namespaces
Pz Set of Prefixes

2.3.2 RDF and the Principles of the Web

According with the principles of the Web, the RDF standard was developed to fulfill them, as

we explain as follows:

1. RDF and the Principle of Universality: for labelling the nodes and edges RDF
uses instead of using natural language terms. So, RDF can model this knowledge
making statements that use for identifying the RDF resources. For example, the
statement st1: <http://www.univ-pau.fr, ex : nameProf, bn_1 > of Figure uses
the http://www.univ-pau.fr|to identify the University of Pau.

2. RDF and the Principle of Linking: as RDF is composed of RDF resources, and
his minimal representation is an RDF statement where two RDF resources are linked
by a predicate, then any RDF resource may be linked to another RDF resource. For
instance, statement st; represents a relation between two resources, where the RDF

resource University of Pau is linked with the anonymous resource professor (represented
by a blank node).

3. RDF and the Principle of Self-description: through the links of an RDF descrip-
tion, we can discover the context of an RDF statement. After discovering the context,
we can obtain an interpretation about the RDF resource. Each RDF statement can be
transported to several contexts depending on its utilization. So, we can discover the in-
terpretation of the SW]data by following the links. For example, in the RDF statement
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st1, one can discover more information about University of Pau, like a logo, objectives,
name of professors, etc., by accessing http://www.univ-pau.fr, we can also have more
information about the predicate ex : nameProf following the namespace associated to
the RDF resource [Con07].

4. RDF and the the Open Word Principle: this principle is linked also to the inference
on the[SW] To help the inference process, a new simple language for declaring sub-classes
and sub-properties was developed under the name RDF Schema based on the
RDF standard. In this way, using the RDF statements may infer information, which is a
non-trivial problem. Such simple reasoning uses a set of axiomatic RDF statements, rules
for inferences, and semantic conditions to infer more RDF statements [Hay04), [HPS14].
For handling complex inferences, Web Ontology Language (OWL) [PSHH™04] also ap-
pears as an extension of RDF semantics, that allows to handle restrictions with cardinality

in predicates, subjunctions, disjunctions, etc.

5. RDF and the Principle of Least Power: since RDF is a language designed to build
the using the languages of triples (RDF statements) as the most basic language,
hence we conclude that RDF can be considered as the least powerful and simple language
to develop the [SW]

2.3.3 Serialization Formats

Over the Web, there are several serialization formats for RDF descriptions. The most popular
and utilized is the RDF /XML format [Bec04] because it is based on the standard which is
a fundamental standard for efficient data management and exchange over the Web [BPSM™08].
For this reason, we classify these formats in two categories: i) XML serialization formats and
ii) Non-XML serialization formats. The differences between them lie in verbosity, compression,

and human-understandability, among other aspects.

e XML serialization formats: There is the typical RDF /XML format (e.g., in Figure
2.8), an abbreviated form of RDF/XML (e.g., in Figure format, and a simplified
format designed to be integrated with Web page formatting (e.g., HTML) calledRDFa

[ABMPOSg] (e.g, in Figure [2.10).
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<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlins:ex="http://example.org/stuff/1.0/"
xmlins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:nodelD="bn_1">
<ex:first_name rdf:datatype="http://www.w3.0rg/2001/XMLSchemat#string">Sebastien</ex:first_name>
<ex:last_name xml:lang="fr">Durand</ex:last_name>
</rdf:Description>
<rdf:Description rdf:about="http://www.univ-pau.fr">
<ex:nameprof rdf:nodelD="bn_1"/>
</rdf:Description>
</rdf:RDF>

Figure 2.8: RDF/XML serialization of the RDF graph depicted in Figure

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:ex="http://example.org/stuff/1.0/">
<rdf:Description rdf:about="http://www.univ-pau.fr">
<ex:nameprof>
<rdf:Description rdf:nodelD="bn_1">
<ex:first_name rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">Sebastien</ex:first_name>
<ex:last_name xml:lang="fr">Durand</ex:last_name>
</rdf:Description>
</ex:nameprof>
</rdf:Description>
</rdf:RDF>

Figure 2.9: Abbreviated RDF /XML serialization of the RDF graph depicted in Figure

<div xmIns="http://www.w3.0rg/1999/xhtm|"
prefix="
rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
ex: http://example.org/stuff/1.0/
xsd: http://www.w3.0rg/2001/XMLSchema#
rdfs: http://www.w3.0rg/2000/01/rdf-schema#"
>
<div typeof="rdfs:Resource" about="http://www.univ-pau.fr'>
<div rel="ex:nameprof">
<div typeof="rdfs:Resource">
<div property="ex:last_name" xml:lang="fr" content="Durand"></div>
<div property="ex:first_name" datatype="xsd:string" content="Sebastien"></div>
</div>
</div>
</div>
</div>

Figure 2.10: RDFa serialization of the RDF graph depicted in Figure

e Non-XML serialization formats: There are several formats such as Notation 3 (N3)

[BLOF] (e.g., in Figure [2.13)), JSON—LIﬂ SLK™14|(e.g, in Figure [2.12)), Turtle [BBL11]
(e.g., in Figure , and N-Triples [BBO1] (e.g., in Figure [2.11]).

'Note that JSON-LD has different serializations: compacted, flattened, expanded and embedding in HTML.
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{
"@context": {
"ex": "http://example.org/stuff/1.0/",
"rdf": "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#",
"rdfs": "http://www.w3.0rg/2000/01/rdf-schema#",
"xsd": "http://www.w3.0rg/2001/XMLSchema#"
b
"@graph": [
{
"@id": "http://www.univ-pau.fr",
"ex:nameprof": {
"@id": "_:N398bc0d5afc1498087d03f880cf3a577"
}
b
{
"@id": "_:N398bc0d5afc1498087d03f880cf3a577",
"ex:first_name": "Sebastien",
"ex:last_name": {
"@language": "fr",
"@value": "Durand"
}
}
]
}

Figure 2.12: JSON-LD serialization of the RDF graph depicted in Figure

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix ex: <http://example.org/stuff/1.0/> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix xml: <http://www.w3.0rg/XML/1998/namespace> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

<http://www.univ-pau.fr> ex:nameprof [ ex:first_name "Sebastien"*xsd:string ;
ex:last_name "Durand"@fr ] .

Figure 2.13: N3 serialization of the RDF graph depicted in Figure

<http://www.univ-pau.fr> <http://example.org/stuff/1.0/nameprof> _:genidl.
_:genidl <http://example.org/stuff/1.0/first_name>
"Sebastien"A<http://www.w3.0rg/2001/XMLSchematstring> .

_:genidl <http://example.org/stuff/1.0/last_name> "Durand"@fr .

Figure 2.11: N-Triple serialization of the RDF graph depicted in Figure

For ease of presentation, we adopt the RDF /XML format to illustrate RDF serialization

results in the remainder of our research, given that RDF/XML: i) has been promoted on the
Web as the W3C standard format for RDF, ii) is more ﬂexibldﬂ and structured than other

formats, and thus iii) can be easily used for conversion between formats like Turtle, N3, etc.

'Referring to many ways for specifying the statements.
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@prefix ns0: <http://example.org/stuff/1.0/> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

<http://www.univ-pau.fr> ns0:nameprof [
nsO:first_name "Sebastien"~"xsd:string ;
ns0:last_name "Durand" @fr

].

Figure 2.14: Turtle serialization of the RDF graph depicted in Figure

2.4 The Web of Linked Data

First of all, we have to highlight that the Web of Linked Data is a constituent part of the [SW]
Linked Data appears as a solution due to the increase of information on the Web, where the
goal is not only connecting HTML documents (URLs), but also connecting data (information
inside of these documents) [HB11], based on three technologies: URI, RDF and HTTP. So,
we can consider that the Linked Data paradigm is a guideline highlighting the best practices
for publishing and connecting structure Data on the Web (using links between data from
different sources) [BHBL0O9]. It promotes the development and support of a self-sustaining
ecosystem related to the publication and usage of data on the Web, where data should be easily
discoverable and understandable by humans and machines alike, facilitating data interaction
between publishers and consumers [FLBCI16]. Hence, the Web of Linked Data adds an extra
value to the traditional Web because the concept goes beyond linking only documents, toward
linking resources [BLCCT06].

To disseminate the goal of Linked Data, the W3C Semantic Web Education and Outreach
Group supports the creation of the community project [BHIBLOS], that was founded in
2007. This community aims to bootstrap the[SW]data with Linked Data by identifying existing
datasets that are available, converting these datasets to[RDF|according to their principles, and
publishing them on the Web [BHBL09]. Inside of this community, they develop several projects
as DBpediaE| (based on extract information of Wikipedia and make this information available
on the Web), LinkedGeoDataE] (based on extract information of the OpenStreetMap project
and make this information available on the Web), and FOAFE] (that is a dictionary of people-
related terms that can be used in structured data on the Web). Also, thanks to the LOD
project, various interesting open datasets as DBLPE], Geo—namesﬁ and WorNetE] available on
the Web [BHARQ7]. We show the evolution of these projects and the relationship between
them and other datasets in Section 2.4.2l

"http://linkeddata.org
“http://dbpedia.org/about
3http://linkedgeodata.org/About
“http://wuw.foaf-project.org/
Shttp://dblp.uni-trier.de/db/
Shttp://www.geonames.org/
"http://wordnet.princeton.edu/online/

25


http://linkeddata.org
http://dbpedia.org/about
http://linkedgeodata.org/About
http://www.foaf-project.org/
http://dblp.uni-trier.de/db/
http://www.geonames.org/
http://wordnet.princeton.edu/online/

2.4. The Web of Linked Data

2.4.1 Principles

For Berners-Lee in [BL0OG], the Web of Data (SW| has four principles to publish the data.
Following these principles the data became in one big data space, where all the information is
linked.

1. Use URIs as names for things.
2. Use HTTP URISs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards (RDF,
SPARQL]T| [HSP13))

4. Include links to other URISs, so that people can discover related things.

The principles give us the guidelines for publishing and connecting data following the

standards and using the infrastructure of the Web.

2.4.2 Linked Open Data Cloud Evolution

The evolution of the LOD is exponential since its inception to date. For example:

e As of May 2009, the LOD cloud consists of over 4.7 billion RDF triples, which are
interlinked by around 142 million RDF links [LAHT09].

e As of November 2010, the LOD cloud consists of over 26.93 billion RDF triples, which
are interlinked by around 395 million RDF links (see Table .

e As of September 2011, the LOD cloud consists of over 31.643 billion RDF triples, which
are interlinked by around 504 million RDF links (see Table [2.5).

Therefore, starting by 12 smaller datasets in 2007 until having 570 datasets in 2014, the
LOD cloud has had an important growing until nowadays, not only with respect to the quantity
of datasets as we show in Figures and but also with respect to the quantity of RDF
triples and RDF links related to some areas as Publications, Life sciences, etc (e.g., see Tables
and . The LOD project has a huge importance for Web applications users and a big

impact on the Web community.

For instance, in Figure we show a wikipedia Web-page of Luxembourg and its
corresponding DBpedia Web-page. The Dbpedia Web-page refers to several statements that

1SPARQL is the standard query language for RDF.
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Table 2.4: Topology of the Web of Data - November 2010 (Source: http://lod-cloud.net/, 2010)

Domain Data Sets Triples Percent | RDF Links Percent
Cross-domain 20 1,999,085,950 7.42 29,105,638 7.36
Geographic 16 5,904,980,833 21.93 16,589,086 4.19
Government 25 11,613,525,437 43.12 17,658,869 4.46
Media 26 2,453,898,811 9.11 50,374,304 12.74
Libraries 67 2,237,435,732 8.31 77,951,898 19.71
Life sciences 42 2,664,119,184 9.89 200,417,873 50.67
User Content 7 57,463,756 0.21 3,402,228 0.86
203 26,930,509,703 395,499,896

Table 2.5: Topology of the Web of Data - September 2011 (Source: http://lod-cloud.net/,
2011)

Domain Data Sets Triples Percent | RDF Links Percent
Cross-domain 41 4,184,635,715 13.23 63,183,065 12.54
Geographic 31 6,145,532,484 19.43 35,812,328 7.11
Government 49 13,315,009,400 42.09 19,343,519 3.84
Media 25 1,841,852,061 5.82 50,440,705 10.01
Publications 87 2,950,720,693 9.33 139,925,218 27.76
Life sciences 41 3,036,336,004 9.60 191,844,090 38.06
User Content 20 134,127,413 0.42 3,449,143 0.68
295 31,634,213,770 503,998,829
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Figure 2.15: Linked Datasets as 2007 (Source: http://lod-cloud.net/, 2007).
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Figure 2.16: Linked Datasets as 30 of August 2014 (Source: http://lod-cloud.net/, 2014).
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are linked to different vocabularies where concepts allow for example: to do inferences, create
more information, etc. Therefore, it proves that connecting structure data provides the users
a powerful tool for publishing and sharing their information on the LOD cloud in several
contexts. Through this interconnection of data, people can obtain new knowledge, more details

and different perspectives about a resource.
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2.4. The Web of Linked Data
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CHAPTER 2. The Semantic Web: RDF and Linked Data

2.5 Summary

In this chapter we have introduced all the background necessary for understanding the concepts
and Web technologies linked to RDF techonology and the Semantic Web.

We began this chapter with a brief introduction about World Wide Web and its relation
with the Semantic Web (Section [2.1). We then described the two main technologies for the
Semantic Web: IRIs (Section [2.2)) and RDF (Section [2.3). Finally, in Section we discussed
the Linked data movement which has given rise to the Web of Linked Data and boosted the
increase of RDF triples and their use on the Web.

Against this background, in the next chapter, we identify a number of research challenges

related to normalization through small use cases (synthetics and real).
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Chapter 3

Motivating Examples

“Those who know, do. Those who understand,

teach.”
— Aristotle

In this chapter, we present short scenarios describing RDF descriptions related to Uni-
versity of Pau and Luxembourg country. Each scenario aims to illustrate different problems
related to duplicated or non-used information. For a better explanation, we categorize the

motivations of our study into four different levels:

e Logical redundancies, where multiple RDF statements (i.e., triples), including redun-

dant subjects, predicates, and/or objects, describe the same information (Section (3.1)),

e Physical disparities, where different serializations, including duplicated namespaces
and distinct literal representations, describe the same initial RDF graph (Section |3.2]),

e Semantic ambiguities, where multiple RDF statements, including redundant blank
nodes (as subjects or objects) and/or literals (as objects), describe the same semantic
information (Section [3.3)). Note that semantic information refers not only to the value of
the node itself, but rather to the meaning of the whole statement: such that the meaning
of a literal and/or blank node (likewise for IRI nodes/edges) depends on the subject

and /or predicate of the containing statement,

e IRI discrepancies, where different IRIs, including duplicated IRIs with different types
and coreferences, describe the same resource (entity) (Section [3.4).

In all these sections, we present different RDF statements which can represent the same
information. This inherently renders such RDF files difficult to process via automated software

applications and humans alike.
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CHAPTER 3. Motivating Examples

We follow each level with a small explanation of the use case and the challenges present
for RDF Normalization.

3.1 Logical (Graph) Redundancies

3.1.1 Use Case 1 - University of Pau (Logical Representation)

For this use case (synthetic), we use three RDF resources:

e University of Pau http://www.univ-pau.fr| (IRI),
e Professor (Sebastien Durand), and

e Laboratory UPPA http://liuppa.univ-pau.fr/live (IRI).

We represent these resources across a set of triples in Figure [3.1 The RDF resource
professor in the RDF graph in Figure [3.1] shows two blank nodes bn_1 and UX having a name
consisting of a first name “Sebastien” (literal) associated with the string datatype and a last
name “Durand” (literal) associated with a French language tag.

(b)

Node Duplication
(Blank Node)

ex:first_name

“Sebastien” xsd:string

ex:last_name

ex:nameProf “Durand”@fr

ex:first_name

“Sebastien”xsd:string

ex:nameProf :
P bn_2 extlast_name ﬁrand"@fr

ttp://www.univ-pau.fr ) __ ex:last_name
<Texilab s,
“Durand”@fr
—exlab~—y
N ¢
Seam- ttp://liuppauniv-pau.fr/live/ a
| v

v Node Duplication

Edge Duplication (Literal)
(@) (©

Figure 3.1: RDF Graph 1 with node and edge duplication.

3.1.2 Challenges in Use Case 1

Considering use case 1, we show different kinds of redundancies in the RDF logical representa-

tion as follows:
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3.1. Logical (Graph) Redundancies

e Problem 1 - Edge Duplication: where identical edges, designating identical RDF
predicates, appear more than once (Figure [3.1}a).

e Problem 2 - Node duplication: where identical nodes, designating identical RDF
subjects and/or objects, appear more than once. For instance, Figure b highlights
blank node duplication with two kinds of representations: one with a nodeld identifier
called “UX” and the other without nodeld called “bn_1” (describing the same node in the
RDF graph), whereas Figure c highlights literal duplications.

Note that certain features of RDF literals, represented as nodes in the RDF Graph 1,
may also result in special node duplications as in Figure which is a variation of the

RDF Graph 1:

(b) Node Duplication
Node Duplication (Literr)al)

(Blank Node) (c1)

ex:last_name “Durand”

ex:first_name

ex:nameProf

Bebastien”xsd:strin )

ex:first_name ebastien”
— -~
ex:nameProf -
. X bn_2 ex:last_name urand’ @fF
ttp://www.univ-pau.fr ) _ o _ ex:last_name
ex:lab™ s, ) B
) Durand
ex:lab~
‘~§ > . . .
i ttp://liuppauniv-pau.fr/live/
% Node Duplication
Edge Duplication (Literal)
(a) (c2)

Figure 3.2: RDF Graph 2 with node and edge duplication with and without datatypes and

languages.

— Problem 2.1 - Handling data-typed Node literals: Literals can be typed or
not (e.g., Figure cl represents the same element with and without datatype

definitions).

— Problem 2.2 - Handling language-tagged Node literals: Distinguishing be-
tween identical literals having different language tags, when language tags are avail-
able (e.g., Figure c2 represents the same element with and without language
tags).

e Problem 3 - Edge and node duplication: where both edge and node duplication

problems affect the same statements.
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CHAPTER 3. Motivating Examples

1 <?xml version="1.0" encoding="UTF-8" encoding="UTF-8" standalone="no"?>
2 <rdf:RDF xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

3 xmins:dc="http://purl.org/dc/elements/1.1/"

4 xmins:ex="http://example.org/stuff/1.0/"

5 xmins:ex1="http://example.org/stuff/1.0/"

6 xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">

7 <rdf:Description rdf:about="http://www.univ-pau.fr'>

8 <ex:nameProf rdf:nodelD="UX"/>

9 <ex:nameProf>

10 <rdf:Description>

11 <ex1:first_name rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">Sebastien</ex:first_name>

12 <ex:last_name xml:lang="fr">Durand</ex:last_name>
13 <ex:last_name xml:lang="fr">Durand</ex:last_name>

14 </rdf:Description>

15 </ex:nameProf>

16 <ex:lab rdf:resource="http://liuppa.univ-pau.fr/live/"/>

17 <ex:lab rdf:resource="http://liuppa.univ-pau.fr/live/"/>

18 </rdf:Description>

19 <rdf:Description rdf:nodelD="UX">

20 <ex1:first_name rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">Sebastien</ex:first_name>
21 <ex:last_name xml:lang="fr">Durand</ex:last_name>

22 </rdf:Description>

23 </rdf:RDF>

Figure 3.3: RDF /XML serialization of the RDF graph in Fig.
3.2 Physical (Serialization) Disparities

3.2.1 Use Case 2 - University of Pau (Physical Representation)

Use case 2 represents a possible serialization of the RDF Graph 1 developed in use case 1
(Section [3.1.1) in Figure RDF Graph 1 is encoded in RDF /XML format in Figure to
show the namespaces linked with the resources, the order of the statements, and the type of

format in Figure (3.3

3.2.2 Challenges in Use Case 2

Considering Figure [3.3, one can see that several types of redundancies and disparities are
introduced: some are inherited from the logical level (node duplication in lines 8 and 9 and
edge duplication in lines 16 and 17), while others appear at the physical (serialization) level,

namely:
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3.2. Physical (Serialization) Disparities

1 <rdf:RDF

2 xmins:dc="http://purl.org/dc/elements/1.1/"

3 xmins:ex="http://example.org/stuff/1.0/"

4 xmins:ex1="http://example.org/stuff/1.0/"

5 xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
6 <rdf:Description rdf:about="http://www.univ-pau.fr'>

7 <ex1:nameProf rdf:parseType="Resource">

8 <ex:last_name>Durand</ex:last_name>

9 <ex:first_name rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">Sebastien</ex:first_name>
10 </ex:nameProf>

11 <ex:nameProf rdf:parseType="Resource">

12 <ex:first_name>Sebastien</ex:first_name>

13 <ex:last_name xml:lang="fr">Durand</ex:last_name>
14 <ex:last_name>Durand</ex:last_name>

15 </ex:nameProf>

16  <ex:lab rdf:resource="http://liuppa.univ-pau.fr/live/"/>

17  <ex:lab rdf:resource="http://liuppa.univ-pau.fr/live/"/>

18 </rdf:Description>

19 </rdf:RDF>

Figure 3.4: RDF/XML serialization of the RDF graph in Fig.

e Problem 4 - Namespace duplication: where two different prefixes are used to
designate the same namespaces, e.g., exr and er! addressing the namespace of http:
//example.org/stuff/1.0/ (lines 4-5 in Figure [3.3),

e Problem 5 - Unused namespace: where one (or more) namespace(s) is (are) declared
but never called in the body of the document, e.g., dc (line 3 in Figure [3.3)).

Note that other kinds of features may also result in RDF serialization disparities as
illustrated in Figure showing namely:

e Problem 6 - Handling node order variation: i.e., node siblings in the RDF descrip-
tion might be ordered differently when serialized (e.g., nodes in lines 6-18 in Figure
follow the order of appearance of XML elements different to the order in lines 7-22 in
Figure which can be re-ordered differently in another serialization).

e Problem 7 - Handling serialization format variation: i.e., RDF elements in the
same RDF description might be formatted differently when serialized (e.g., blank nodes
in lines 8,19-22 in Figurefollow the flat RDF /XML serialization, compared with nodes
in lines 7-10 in Figure that follow the compact RDF /XML serialization)
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CHAPTER 3. Motivating Examples

3.3 Semantic Ambiguities

3.3.1 Use Case 3 - University of Pau (Logical Representation)

This use case is a variation of RDF Graph 1 developed in use case 1 (Section [3.1.1)) in Figure
RDF Graph 3 (Figure shows the following additional information about:

Problem 1: Ambiguity

(Blank Node) Durand

ex:last_name

ex:first_name Sebastie@\

ex:nameProf ull_name exfirst_name Problem 2: Synonymy
' “Sebastian’@es (Literal)
(@)
ex:first_name W‘Sﬁeh
ex:nameProf
X x:last_name
http://www.univ-pau.fr Durand
X:laboratory T IUPPA
Jab ex:nam: Problem 2: Synonymy
. . - - (Literal)
http:/liuppa.univ-pau.fr/live ex:name UPPA ComLputer ®)
eex_.areaTOI cience La
"arear 5Mxsd:int
AL/ Problem 2: Synonymy
Literal
25.4""xsd:decimy ( (c) )

v

Figure 3.5: RDF Graph 3 with semantic ambiguities

e Different languages tags for the literal “Sebastien” (french and spanish),

e One Predicate between http://www.univ-pau.fr| and http://liuppa.univ-pau.fr/
live/ called lab,

e The name of the laboratory, expressed in two different ways: LIUPPA and UPPA Com-

puter Science Lab, and

e The area Total of the laboratory, expressed with two different datatypes and formats: 25

as integer and 25.4 as decimal.

3.3.2 Challenges in Use Case 3

Here, one can easily see several kinds of semantic ambiguities:

e Problem 8 - Ambiguity in Blank Nodes: where different blank nodes (with or with-

out nodelds), designating RDF subjects and/or objects, describe the same information

(Figure [3.5)),
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3.3. Semantic Ambiguities

e Problem 9 - Synonymy in Literals: where different literals, designating RDF ob-
jects, describe the same information (i.e., using acronyms, different languages, different

datatypes, etc.), e.g., Figure b highlights literal synonymity using acronyms.

Here, note that certain properties of RDF literals, namely language tag and/or datatypes,

may also result in special literals synonymy:

— Problem 9.1 - Handling language-tagged literals: Literals can be assigned a
language tag or not, e.g. Figure [3.5]a represents the same element but in different
languages while specifying the language tag in the first two cases while omitting it

in the third case.

— Problem 9.2 - Handling data-typed literals: Literals can also be assigned
different datatypes, e.g. Figure [3.5]c represents the same element but using the int

type or the decimal type, following the number format.

Note that we consider literal/blank node duplications within their contexts in the corre-
sponding RDF statements. For instance, deciding on whether or not the value of a given literal
node (e.g., “LIUPPA”) within the RDF statement consists of a duplication of another (e.g.,
“UPPA Computer Science Lab”), depends on the statement as a whole (e.g., < http://liuppa.
univ-pau.fr/live/, ex : name, LIUPPA > and < http://liuppa.univ-pau.fr/live/,
ex : name, UPPA Computer Science Lab > in Figure [3.5). This is different from the sit-
uation where the authors of the RDF statements would like to emphasize the fact that the
mentioned lab has two synonymous names. In the latter situation, they would formulate the
statements differently, e.g., < http://liuppa.univ-pau.fr/live/, ex : name, LIUPPA >
and < http://liuppa.univ-pau.fr/live/, ex : altName, UPPA Computer Science Lab >,
which would not be considered as duplicates (following our approach) and would be preserved in
the normalized RDF output. Likewise for the other cases mentioned in Problems 8 to 15, where
we target unintentional duplications (which ought to be eliminated) and not user intended ones

(which will be preserved).

However, to avoid any confusions (i.e., deleting duplicates otherwise deemed relevant by
the authors/users), an interactive verification phase can be added in our normalization process,
prompting the user whenever the system detects duplication cases covering Problems 8 to 15,
so that the system proceeds according to the user’s input (i.e., unintentional duplication: to

be removed, or intentional duplication: to be preserved).

3.3.3 Semantic Ambiguities creating Logical (Graph) Redundancies

Consider the example given in Figure in which we describe the University of Pau http:

//www.univ-pau. fr| (IRI) having a professor (bn) with first name Sebastien (literal) and last
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Node Duplication
(Blank Node)
Based on Problem 1: Ambiguity

(a) Durand

e
X oo
122
@ qame Sebastie@\
oxcfirst
full name ex:ﬁ'\\'s\)a\’\’\e “Sebastian’@es NOd?B;?!ﬁanon
ex:nameProf — Based on Problem 2: Synonymy
ex:first name Sebastien with Language tagged literals
— (b)
ex:nameProf X x:last_name
http://www.univ-pau.fr —
e
LIUPPA
:lab ex:nam »Node Duplication
. ) - - Literal
http://liuppa.univ-pau.fr/live ex:name UPPA ComLputer Based on Pr(oblem )2: Synonymy
eX:ar, cience La
——2ear, (c)
~arear 5™Mxsd:int
Otay o
Node Duplication
- (Literal)
25.4""xsd:decimalf] gased on Problem 2: Synonymy

with data-typed literals
(d)

Figure 3.6: RDF Graph 4 based on RDF Graph 3 with Logical redundancies due to semantic

ambiguities (concerning problems 1 and 2)

name Durand (literal), and a laboratory (IRI) with name LIUPPA (literal) and total area 25
(literal) highlighting different logical redundancies in the form of RDF graph node duplications:

e Problem 10 - Node Duplication based on Semantic Ambiguities: where seman-
tically equivalent nodes, designating semantically equivalent subjects and/or objects, ap-
pear more than once, e.g., Figure [3.6]a highlights a blank node duplication and Figure
[3:6lb, ¢ and d show different kinds of literal node duplications.

3.4 IRI Discrepancies

3.4.1 Use Case 4 - Luxembourg Country (Logical Representation)

This use case is based on part of a Dbpedia real RDF graph. The RDF Graph 5 represents
the RDF resource: Luxembourg with different types of IRIs and literals and two ontologyﬂ

descriptions for its description in Figure

"http://dbpedia.org/ontology/Place and http://dbpedia.org/ontology/Location are two descriptions
detailed on DBpedia ontology.
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3.4. IRI Discrepancies

<?xml version="1.0" encoding="utf-8" ?>

<rdf:RDF
xmlins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:ns8="http://dbpedia.org/ontology/PopulatedPlace/"

xmlns:dbo="http://dbpedia.org/ontology/"

mins:dcterm="http://schema.org Namespace

> duplication

ns:dct="http://purl.org/dc/ter,

<rdf:Description rdf:about="http://dbpedia.org/resource/Luxembourg">

<dcterm:about rdf:resource="http://dbpedia.org/resource/Category:Luxembourg" />

<dct:subject rdf:resource="http://dbpedia.org/resource/Category:Luxembourg" />

</rdf:Description>

</rdf:RDF>

Figure 3.8: Sub-part of RDF Serialization for the RDF Graph 5 in Figure with Physical

disparities due to IRI discrepancies (concerning problems 11 and 12).

ed“’\! http://dbpedia.org/data/Luxembourg.nt

O
o R &S
http://it.dbpedia.org/resource/Lussemburgo OL"“% W desc“bem http://dbpedia.org/data/Luxembourg.json
& S.
http://es.dbpedia.org/resource/Luxemburgo W/.'sam 8’4@ wdt
€4
< rdf:type http:/dbpedia.org/ontology/Place

. rdf:type
o0t
mai:‘\sana\'\/Top http:/dbpedia.org/resource/Luxembourg dCferm-ab Riip://dbpedia.orglontology/Location
e out
C
o
http://en.wikipedia.org/wiki/Luxembourg @,b‘ﬁ m )
) rdfs:label\dfs:label http:/dbpedia.org/resource/Category:Luxembourg

%

http://fr.wikipedia.org/wiki/Luxembourg_(pays

Luxemburgo | |Luxembourg|

Figure 3.7: RDF Graph 5 about of Luxembourg RDF resource

3.4.2 Use Case 5 - Luxembourg Country (Physical Representation)

This use case 5 represents a possible serialization of the RDF Graph 5 developed in the use
case 4 (Section [3.4.1)) in Figure The RDF Graph 5 is encoded in RDF/XML format to
show the namespaces linked with the resources in Figure [3.8
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’ IRl identity
IRl identity
(1d IRI) (Document Representation IRI)
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+ . IRI identity
IRI identity
IR identity (Concept IRI) (Concept IRI)
(Document IRI) (©) (©
(b)

Figure 3.9: RDF Graph with IRI discrepancies - IRI identity

3.4.3 Challenges in Use Cases 4 and 5

Consider Figures and which represent the RDF graph 5 with severals IRIs describing
the same resource (e.g., Luxembourg), such that Fig. highlights an IRI identity problem,
whereas Figure reflects an IRI coreference problem. In other words, several types of
identities (in Figure and references (in Figure are introduced to give extra information

about one resource, but not all the IRIs have the same information of the resource.

e Problem 11 - IRI Identity: where two different IRIs are used to designate in a dif-
ferent way the same resource. Consider for instance the case of DBpedia describing the
resource “Luxembourg” in Figure [3.9} For example, http://dbpedia.org/resource/
Luxembourg, http://en.wikipedia.org/wiki/Luxembourg, and http://dbpedia.org/
data/Luxembourg.nt/ (cf. Figure[3.9a, b and d) represent the same resource in different
ways: the first one is an identifier, the second one is a Web page, and the last one is a

document representation in N-triple format,

e Problem 12 - IRI Coreference: where two different IRIs are used to designate the same
resource in the same way. Following the example of DBpedia in Figure [3.10, DBpedia
uses different IRIs that provide information about resource “Luxembourg” in order to
describe it. Also, DBpedia uses vocabularies for the predicates to connect the statements
in a proper way. For example, http://dbpedia.org/resource/Luxembourg and http:
//es.dbpedia.org/resource/Luxemburgo (see Figure a) identify the resource using
conventional IRIs (cf. Section [2.2.4]), while http://schema.org/about and http://
purl.org/dc/terms/subject (see Figure ¢) provide definitions using owner defining
IRIs (cf. Section to establish a concept definition for the predicate.
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3.4. IRI Discrepancies

R o IRI reference
(ﬁ Ieéel)m:e (Document Representation IRI)
(d)

(@)
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S /len.wikipedia.org/wiki/Luxembourg= <

hitpy/fr.wikipedia.org/wiki/Luxembourg _(pe¥ys

¢ IRI reference
IRI reference (Concept IRI)
(Document IRI) (c)

(b)

Figure 3.10: RDF Graph with IRI discrepancies - IRI reference

In short, various types of semantic ambiguities and IRI discrepancies can occur in an
RDF description. For example, the fact that the same semantic informatiorﬂ can be described
in totally different ways, can seriously complicate RDF data processing such as RDF indexing,
storage, and querying (making it more difficult for example to define proper indexing structures
based on syntactic cues, or formulate meaningful SPARQL queries). Furthermore, semantic
ambiguities and IRI discrepancies in RDF may produce different kinds of logical redundancies
(RDF graph-level) and physical (RDF serialization-level) disparities in the RDF descriptions
which, on their own, can have a huge burden on RDF processing and the development of

RDF databases and solutions (processing time, loading time, similarity measuring, mapping,

alignment, and versioning) [Gea04, [THTC™15, THTCLI6].

3.4.4 1IRI Discrepancies creating Logical (Graph) Redundancies

Consider now the example given in Figure Here, one can also identify various logical re-

dundancies occurring in the forms of both RDF graph node duplications and edge duplications:

'Recall that the semantic information of an RDF statement refers not only to the values of the sub-
ject/predicate/object nodes/edges in the statement, but rather to the meaning of the statement as a whole:
such that the meaning of a literal/blank/IRI node/edge depends on the subject/predicate/object nodes/edges

it connects with in the containing statement.
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(doc. representation IRI)
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) Node Duplication
Edge Duplication (ontology IRI)
(concept IRI) (e)
(c)

Node Duplication
(document IRI)
(b)

Figure 3.11: RDF Graph with Logical redundancies due to IRI discrepancies (concerning prob-
lems 3 and 4)

e Problem 13 - Node Duplication based on IRI discrepancies: where equivalent
IRI nodes, designating equivalent subjects and/or objects, appear more than once. For
instance, Figures [3.11]a, b, d, and e highlight different node duplications with: identifier
IRI, document IRI, document representation IRI, and ontology IRI respectively.

e Problem 14 - Edge Duplication based on IRI discrepancies: where equivalent IRI
edges, designating equivalent RDF predicates, appear more than once, such as in Figure
¢ with highlights an edge duplication with concept IRI.

3.4.5 IRI Discrepancies creating Physical (Serialization) Disparities

IRI discrepancies can also produce disparities at the RDF serialization level, namely producing
duplicate namespaces in the same RDF file. More formally:

e Problem 15 - Namespace Duplication based on IRI discrepancies: where two

different namespaces are used to designate the same vocabulary, e.g., in Figure[3.8} http:
//schema.org/ and http://purl.org/dc/terms/ point to the same vocabulary.

3.5 Summary

In this chapter, we present different use cases in order to illustrate different kinds of redundan-

cies and disparities which can occur in RDF descriptions, in order to help shape the direction
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3.5. Summary

of our research. From these use cases, we identified 15 research challenges that we called prob-
lems, which broadly fall into our four levels: logical redundancies, physical disparities, semantic

ambiguities and IRI discrepancies.

One can clearly realize the compound effect of missing the different kinds of RDF logical
duplications and physical disparities which can result from the various problems of syntactic
redundancies (Sections and , semantic ambiguities (Section and IRI discrepancies
(Section [3.4)), all of which represent same (syntactic) or equivalent (semantic or coreferenced)

RDF information which needs to be normalized into unified and unambiguous statements.

Against this background, in the next chapter, we introduce our first contribution towards
the first two levels of the challenges: logical redundancies and physical disparities in a syntactic
evaluation for RDF Normalization. Consequently, we cover semantic and IRI discrepancies in

the following chapters.
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Chapter 4

Syntactic RDF Normalization

“ We are what we repeatedly do. Excellence, then,
is not an act, but a habit.”
— Aristotle

The necessity of working with RDF descriptions is increasing in an exponential way
nowadays as discussed in Section The impact of the Semantic Web and Linked Data to
users (persons, organizations, etc.) of the Web affects the development of more applications

that use RDF descriptions to publish their information in different areas.

All the information processed by these applications may contain duplications, since the
users obtain the data of different sources. These duplications are the base of our motivation
for cleaning the RDF descriptions as we describe with our uses cases in Sections [3.1] and

In this chapter, we present our Syntactic RDF normalization contribution. First, we
begin by further explaining some definitions developed for our normalization process (Section
. We then propose normalization functions and normalization operators (Sections [4.1.2
and for facilitating the creation of our normalization rules (Section[4.3). Next, we discuss
related work which has influenced our understanding and the design of our approach (Section
. We consequently establish our normalization properties (Section for validating our
normalization rules that we use in our normalization process (Section . Finally, in Section

[4.6] we conclude this chapter with a summary.

4.1 Preliminaries

We start this section by providing definitions describing the main concepts related to our

normalization process.
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4.1.1 Definitions

DEFINITION 4.1 (Extended Statement [st"]) An extended RDF statement is a more ex-

pressive representation of a statement (st), denoted as: stt:< s, p/, 0 > where:

o J: < s,ts > is a tuple that we call “extended subject” composed of the subject value (s)

and its type (ts), where ts € {u,bn}.

e p/: < p,dt,lang > is a 3-tuple that we call “extended predicated” composed of the predicate
value (p), its datatype dt € DT U { L}, and language tag lang € Lang U { L}. L represents
a “‘null” value.

e 0: <o,to> is atuple that we call “extended object” composed of the object value (0) and
its type to € {u,bn,l}4

Recall that: u stands for IRI, bn stands for blank node, and [ stands for literal.

The following notation is adopted to represent an extended statement:

+ . lang
sth < Stsef{ubn}r Pgr > Otoc{ubn,l} =

Based on the example of Figure RDF statement st; becomes extended statement stf =
<http://www.univ-pau.fr,, ex:nameProf, bn_1p, >.

The function ST (G) will be used in the following to return all the extended statements
of an RDF description.

In the rest of the study, we use the extended statement definition to represent RDF

statements in the normalization process.

DEFINITION 4.2 (RDF Description [D]) An RDF description D stands for either: i) an
RDF graph G (when referring to the RDF logical representation), or #) an RDF file F' (when

referring to the RDF physical representation), depending on the context and application at
handé

DEFINITION 4.3 (RDF Element [E]) An RDF element E refers to any of the components
of an RDF description, including either: i) IRI, ii) literal, iii) blank node, vi) statement, v)
extended statement, vi) namespace, or vii) prefiz, depending on the context and application at

handé
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DEFINITION 4.4 (RDF Normalization) RDF normalization is the process that transforms
a (non-normalized) RDF description noted D (i.e., either an RDF graph G or an RDF file F')
into another (normalized) RDF description noted D = Norm(D) (i.e., either a normalized RDF
graph G or a normalized RDF file F ), which is equivalent in its semantic expressiveness to D
after eliminating logical redundancies and physical dispam’tieﬂ and establishing an appropriate
order (indezing [WKBOS]) of the resulting serialized RDF statements [THTCL16, THTC* 15/4

Note that in our definition or normalization, we consider the ordering of statements within
the serialization of an RDF description (i.e., the RDF file) as an important issue because it
can affect the resulting RDF description’s processing efficiency within the target application,

w.r.t. storage, similarity, processing time, querying, etc., which we further discuss in Sections

M.5.1 and [6.4.31

In order to fulfil our RDF normalization process, we first develop a set of dedicated
functions (Section and operators (Section , which will serve as “construction tools”,
utilized to formulate/build a set of formal normalization rules (Section with provable
properties comprising the main pillars of our framework (Section .

4.1.2 Normalization Functions

We develop several functions to be utilized in defining our normalization rules. These can be
categorized in two main groups: i) basic functions which are related to the basic RDF model
detailed in Section (cf. Table[4.1), and ii) normalization functions which are defined to
serve our concept of RDF normalization (cf. Table [£.2).

i) Basic Functions:

In the remainder, the following functions R, U, L, BN, ST, NS, Pz, Enc, and QN will
be used respectively to return all the Resources (IRIs and literals), IRIs, literals, blank nodes,
Extended Statements, Namespaces, Prefixes, Encoding, or Qnames of an RDF description D.
Additionally, we created other basic function named UNS to return all the Unused Namespaces
of an RDF description D.

"While our definition of RDF normalization is comparable to the notion of RDF normal form in [Gealll,
nonetheless the authors in [Geall] mostly address the normalization of RDF statements defined using the RDFS
vocabulary and disregard the kinds of redundancies and disparities addressed in this study. Regarding simple
RDF, the authors in [Geall] aim to eliminate blank nodes in defining lean graphs in order to produce normal
forms later (cf. Section . In this context, our approach completes the study in [Geall] by eliminating
redundancies from the graph, which can then be processed to produce a lean and normal form representation
following [Geald]. Recall that the study in [Geall] does not address physical (serialization) disparities.

!Function names here were specifically chosen to match their outputs’ names (in most cases) in order to

simplify the description of normalization operators, rules, and properties later on (cf. Sections and .
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Table 4.1: Summarized descriptions of functions based on the basic definitions of RDF

Function [1 Input Output| Description

ST+ G|F ST+ | Returns all the extended Statements of an RDF Graph
U ST+ U Returns a set of IRIs from ST+
L ST+ L Returns a set of literals from ST+
BN ST+ BN | Returns a set of blank nodes from ST+
R ST+ R Returns a set of Resources from ST+
Enc ST, enc F Returns the encoding of an RDF file based on the parameter

enc € {RDF/XML, Turtle, etc.}

QN F QN Returns all the QNames of an RDF file

NS F NS Returns all the Namespaces of an RDF file

Px F Px Returns all the Prefixes of an RDF file
UNS F UNS | Returns all the Unused Namespaces of an RDF file

ii) Normalization Functions:

In this section, we develop a group of normalization functions to handle specific characteristics
of the extended RDF statements, and which will be utilized in defining our normalization rules,
including: identifying statements outgoing from blank nodes, computing the cardinality of RDF
descriptions based on the number of extended statements, removing or replacing elements in

extended statements, or changing the order of extended statements in RDF descriptions.

FuncTtIiON 1 (Extended Statement Outgoings [O]) The extended statement outgoings
function accepts as input an RDF extended statement st:' and returns as output the set of

all the extended statements deriving from the input extended statement. More formally, the
+

outgoings of st;”, noted O(st;r), designate the set of extended statements having for subject the

object element o of st} :

O(stf) = {st;“, sty

where:
st) =< (0}, 0 >, .., stk =< 0, p,, 0, > #

For example, considering extended statement st;r in Figure we identify the following
outgoings of stj:
O(st]) = {st], stg }

O(st) = {< bn_Lyn, Potiping: Ly >+ < Lo, p3”7 12y >}
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Note that for the sake of simplicity, we only define extended statement outgoings here, and
not extended statement incomings (which would underline triples incoming into the extended
statement’s objects) since the latter are not specifically useful in the syntactic normalization

process.

FunctioN 2 (RDF Description Cardinality []|/) The RDF Description Cardinality func-
tion, noted card(D) or |D| for short, accepts as input an RDF description D, and returns as
output the number of extended statements in D, card(D) = |STT |4

For instance, in Figure |G| = 9 since the cardinality of G takes into account all the

extended statements.

FunctioN 3 (RDF Description Minimal Cardinality [||||/) The RDF Description Min-
imal Cardinality function, noted cardMin(D) or ||D|| for short, takes as input an RDF descrip-
tion D (where D is either an RDF graph G or an RDF file F), and returns as output the number

of distinct extended statements in D while disregarding duplicated statements, cardMin(D) =
ST

For instance, in Figure |G|| = 4 since the cardinality of G does not take into account
the two duplicated extended statements:
< st:}f >:< ulu,p4j,uzu >,
< stg >:< bn,2bn,p3i,lgl >, and
all the statements linked with bn_1 because bn_1 is contained inlJ bn_2

FuncTIiON 4 (Remove RDF element [remove]) The remove RDF element function noted:
remove(e, D), accepts as input an RDF description D (or any of its components, e.g., STT(D),
QN (D), etc.) and an RDF element e (i.e., an RDF statement or any of its components, e.g.,
IRI, literal, iii) blank node, etc., cf. Definition , and returns as output a variation D’ of
D, where an element e has been removed, i.e., remove (e, D) = D’ = D - e. Note that the

remove function is mainly designed to remove duplicate statements and/or unused Qnames (cf.

Section 0

For instance, in Figure given st; = stz, we can apply remove(stz, STT(@G)) to delete

the extended statement duplication, because both statements are equals.

FunctioN 5 (Replace RDF element [replace]) The replace RDF' element function noted:

replace(i, j, D), accepts as input an RDF description D (or any of its components, e.g.,

1The operator of “contained in” is presented in Section
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STT(D), QN(D), etc.), as well as two qname prefizes: i and j, and returns a variation D’ of

D, where all occurrences of i have been replaced by 4

For instance, in Figure there are two prefixes ex and exl that are equivalent (i.e.,
er = exl) because they refer to the same namespace “http://example.org/stuff/1.0/".
As a result, applying replace(exl,ex, STT(F)) returns a variation of RDF file F' where all

occurrences of ex! have been replaced by ex.

FuNcTION 6 (Order RDF Statements [order]) The order RDF statements function, noted:
ordeT(stZ', st;', D, p), accepts as input an RDF description D and two extended statements St:'
and st}F within D, and an ordering parameter p, and returns a variation D’ of D, where stj
and st}-|r have been ordered following the ordering parameter p, i.e., stf <p stj, where <z allow
us to order from lowest to highest statements according to the parameter p. Parameter p high-
lights the user’s preference in ordering statements (which can be done following their subjects,

predicates, objects, or their combination, described in details in Section 0

Table 4.2: Summarized descriptions of functions based on definition of the normalization pro-

cess
Function Input Output | Description
@) stt O(stT) | Returns all the outgoings of st™
card D |D| Returns the number of elements of D including
duplications
cardMin D | D] Returns the number of elements of D without du-
plications
remove i,D D—i Returns D € {G,F} without element(s) i €
(ST*(D),QN(D)}
replace i,75,STT(D) | ST+(D) | Returns all the statements ST (D) updated with
the replacement of j by ¢ where i A j € QN (D)
sth, stT, D, .
order R ST* (D) | Returns ST of D ordered following the user’s
b preference order based on parameter p

4.1.3 Normalization Operators

Here, we make use of the functions introduced in the previous section to define a set of operators
(see Table needed to represent the equality relationship between RDF statements, graphs,
and files, which will be chiefly utilized in identifying (and then eliminating) duplicate statements
in our normalization process (i.e., informally, we need to eliminate all repetitive occurrences of

equal - and thus redundant - RDF statements).
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\
\
O[st*s) € O[st*s)

Ofst*2)

Figure 4.1: RDF example of extended statement containment depicting the graph in Figure (3.1
where stj, ui, pi, bn;, and l; respectively represent corresponding extended statements, IRIs,

predicates, blank nodes, and literals.

OPERATOR 1 (Statement Containment [<]) An extended statement st is said to be con-
tained in another extended statement stj, noted stj = stj, if: 1) all the outgoings of st;F occur
in stj, i.e., O(st]) C O(st;r), 2) both st and stj have the same subject and predicate, and
3) the object type (to) in both statements is a blank node (bn). Formally:

Vstj',stj € G,st;" = st;|r <= stf.to = “bn” A st;r.to = “bn” A st;".s = stj'.s A st;".p = stj.p A
(O(stf) € O(st]))#

For instance, in Figure stir = 5155L since they share the same subject (i.e., u1) and
the same predicate (i.e., p1), and have O(st]) C O(st]) w.r.t their outgoings.

Similarly, we say an extended statement st;r is not contained in another extended state-
ment st;r (ie., stf £ stj) if any of the extended statements containment conditions (related
to the subject, predicate, and outgoings, defined with Operator ) does not hold. Note that

blank node identifiers (when available) do not affect the statement containment property.

The statement containment property will be mainly useful in detecting node duplications

(cf. Section and Section [4.5)).

OPERATOR 2 (Extended Statement Equality [=,]) An extended statement st] is said to
be equal to another extended statement st;r, noted stj =gt stj, if and only if: 1) the subject of
st:' is equal to the subject of st;', 2) the predicate of stj' is equal to the predicate of st;', and
3) the object of st is equal to the object of st;r. Formally:
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Figure 4.2: RDF example with equal and different extended statements.

Vst st;' € G, st =4 st <= st .5} = st;'.s;./\

+ )t o + ot
st .p; = st .p; N\ st .0; = st; .05

sti.s) = st;r.s;- > st .8 = st;r.sj Asthits; = st;.tsj/\
sti.p; = stf.pl <= st .pi = st .p; A st].dt; = st].dt; A st] lang; = st} lang;A

st].0; = st} .0} <= st .0; = st} .0; Ast] to; = st] to;#

For instance, in Figure stér =g sti since they share the same subject (i.e., up), the

same predicate (i.e., p4), and the same object (i.e., ua).

Similarly, we say an extended statement st;r is not equal (i.e., unequal) to another ex-
tended statement st;r (ie., stf #q st;“) if any of the extended statements equality conditions
(related to the subject, predicated, and object, defined with Operator [2))) does not hold. For-
mally:

Vst stj' € G,stf #4 st <= sti.s) # stj'.s;\/

st .p) # st;r.p;- V st .o} # st;r.og-

For instance, in Figure st #g std since they share the same subject (i.e., u1) but
with different predicates (i.e., p and p3) and different objects (i.e., {1 and l3).

OPERATOR 3 (Extended Statement Intersection [N]) The extended statement set ST,
of an RDF Description D;, i.e., STf(Di), 1s said to intersect with another extended statement
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set STj+ of an RDF Description Dj, i.e., ST;r (Dj), if and only if there exists an extended state-
ment st™ that simultaneously belongs to two extended statement sets: ST, (D;) and ST;(D]-).
Formally:

ST (D;) N ST} (Dy) = {st™ /st™ € ST, (D;) Ast™ € ST, (D)}

For instance, regarding Figure .2 and Figure [£.5] as two RDF graphs G; and G respec-
tively, then Sz—'z—i_(Gl) N ST7+(GJ) = {(ulaph bnfl)a <u17p47 ’LLQ), (bn*17p27 ll)7 (bn,l,pg, ZQ)}

OPERATOR 4 (RDF graph Equality [=rprg]) An RDF graph G; is said to be equal to
another RDF graph Gj, noted G; =rprc Gy, if and only if: i) all the extended statements of
G are equal or contained in extended statements of G; and vice versa, and i) they have equal

minimum cardinalities. Formally:

Gi =rprc Gj
Vst?‘ S Gi,ﬂst;" e Gj/stz‘.*‘ =g stj' v stj' < stj/\
Vstj' € Gj, Elstj' € Gi/stj' =g stj‘ Vi stj‘ < st?‘/\
1Gill = 11G; 1|14

In other words, G; =rprg G means that both graphs share the same extended state-
ments, and thus the same semantic expressiveness; without necessarily being normalized, i.e.,

they can contain logical redundancies (duplicate statements).

OPERATOR 5 (RDF file Equality /=rprr]) An RDF file F; is said to be equal to another
RDF file F;, noted F; =rprr Fj, if and only if: i) their corresponding RDF graphs are equal,
i.e., G; =ppra Gj, 1) their corresponding namespaces are equal, i.e., NS(F;) = NS(F}) and

iii) F; is serialized following the same encoding format (i.e., enc;) as Fj (i.e., encj). Formally:

F; =rprr I

G; =rpra GjA
NS(F) = NS(F;)A

Enc(F;, enc;) N Enc(Fj,encj) A enc; = enc; 4

In other words, F; =rprr Fj means both files share equivalent logical representations
(equal RDF graphs), they share the same namespaces, and they are serialized using the same

encoding format.
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Table 4.3: Summarized descriptions of operators based on definition of the normalization pro-

cess
Operator Description
= Containment between two extended statements when the objects are blank nodes
=g Equality between two extended statements
N Intersection between two extended statements
=RDFC Equality between two RDF graphs
=RDFF Equality between two RDF files

4.2 Related Work

The need for RDF normalization has been identified and discussed in various domains, ranging
over domain-specific knowledge representation and data integration. Yet, few existing studies
have specifically addressed the issues of logical (graph) and physical (syntax) RDF normaliza-

tion.

In the following, for clarity of presentation, we review RDF normalization approaches
based on the application (knowledge representation and data integration) and the evaluation
level they use for their elements (i.e., logical and physical). Therefore, we classify the methods
in three categories: i) Knowledge Representation and Integration, ii) RDF graph normalization,
and iii) RDF syntax normalization. We estimate that this categorization provides the simplest
and most consistent unified view of the wide variety of diverse approaches proposed for the

literature.

The kinds of RDF data being treated as well as the limitations and intended applica-
tions domains will be discussed for each approach. Catalogs summarizing the properties and
characteristics of all covered approaches are depicted in Tables [4.4] and

4.2.1 Knowledge Representation and Integration

Various approaches have been developed to normalize knowledge representation in RDF, namely
in the bioinformatics domain [Tea09, Pea(9, [Jeal3, Beal8, Neal2]. In [Tea09], the authors
provide an approach to map LexGrid [Pea09], a distributed network of lexical resources for
storing, representing and querying biomedical ontologies and vocabularies, to various Semantic
Web (SW) standards, namely RDF and SKOSﬂ They introduce the LexRDF project which

leverages LexGrid, mapping its concepts and properties to standard (normalized) RDF tagging

!The Simple Knowledge Organization System (SKOS) is a stand-alone vocabulary, built with OWL and

RDFS, designed to create controlled vocabularies and thesauri in RDF.
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following the SKOS [BM09] specification, thus providing a unified RDF based model (using a
common terminology) for both semantic and lexical information describing biomedical data. In
[Jeal3], the authors introduce a framework designed to allow open data access and collabora-
tion for ICD-11 (International Classification of Diseases, version 11ED. The RDF normalization
process developed in this approach includes: i) generating uniform IDs for ICD-11 categories
using the ICD URI schemeﬂ proposed by WHO (World Health Organization), and ii) normal-
izing lexical properties of ICD-11 contents using the SKOS RDF model. In a related study
[Neal2], the authors introduce the Bio2RDF project, aiming to create a network of coherent
linked data across life sciences databases. The authors address URI normalization, as a nec-
essary prerequisite to build an integrated bioinformatics data warehouse on the SW, where
resources are assigned URIs normalized around the bio2rdf.org namespace. Table shows

the summarization of all the approaches presented in this section.

4.2.2 RDF Graph (Logical) Normalization

While various studies have highlighted the need for RDF normalization, yet very few have
actually targeted the issues of RDF logical (graph) and physical (syntactic/serialization) nor-
malization. In [HG04], Hayes and Gutierrez target RDF graph model normalization. The
authors argue that the notion of RDF graph has not been explicitly defined in the RDF specifi-
cation [KC04], it does not distinguish clearly among the term “RDF Graph”, the mathematical
concept of graph, and the graph-like visualization of RDF data. The authors discuss some of
the redundancies which can occur in a traditional RDF directed labeled graph (cf. Section
, particularly regarding the connectivity of resources. Namely, an RDF graph edge label
(i.e., a predicate) can occur redundantly as the subject or the object of another statement
(e.g., < dbpedia : Researcher,dbpedia : Workplace, dbpedia : University > and < dbpedia :
Workplace, rdf : type, dbpedia : Professional >). Hence, the authors in [HG04] introduce an
RDF graph model as a special bipartite graph where RDF triples are represented as ordered
3-uniform hypergraphs where edge nodes correspond to the < subject,predicate,object >
triplet constituents, ordered following the statement’s logical triplet ordering. The new model
is proven effective in reducing the predicate-node duplication redundancies identified by the

authors.

In subsequent studies [Gea04) (Geall], the authors address the problem of producing RDF
normal forms and evaluating the equivalence among them. The studies in [Gea04), [Geall] specif-

ically target the RDFS vocabulary with a set of reserved words to describe the relationships

"http://www.who.int/classifications/icd/en
2The ICD URI scheme is dedicated for naming and supporting Web Services handling ICD data. It is available

on http://id.who.int, with http://id.who.int/icd/schema as the prefix for the vocabulary terms that relate
to the ICD classification, and http://id.who.int/icd/entity| for the fundamental foundation entities related
to ICD concepts.
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Table 4.4: Summarized knowledge representation and integration approaches

Dat
App. ata Features Limitations Aplication Output
Targeted
Domain Area
Proposal name: LexGrid
e Identifying logical inconsistencies in
ontologies and vocabularies
OWL, Blank
an
Pathak RRF, Providi istent standardized d
0 nodes
et al. OBO, ‘rov1 ng a consisten S andardize . Biomedical | Querying LexGrid
rich API to access multiple vocabu- Literals
[Peal9] XML, . i L X
laries and ontologies distribution Statements
Text
e Giving a standard storage of con-
trolled vocabularies and ontologies
Proposal name: LexRDF project
e LexGrid [Pea09] data is considered to
be properly described
e Mapping the concepts and properties
Tao to standard - normalized RDF tag- Blank_nodes Querying RDF
et al. LexGrid ging Literals Biomedical and tripl
riples
[Tea09] Statements Storing P
e Following SKOS specification
o Considering the normalization as a
result between the correctly mapping
of LexGrid to LexRDF
Framework designed to allow open data
access and collaboration
Mappi data ICD-11 alpha to th
° dpl'slrng dté alpha to € Blank nodes JSON
e ormatio
Jiang RDF pew miormation Literals Knowledge XML
et al. triples Statements Biomedical Repre-
izati S: RDF/XML
[Jeal3] (ICD-11) ¢ RDF nt:)rmallz'atlon proceés (a) Names- sentation /
Generating uniform IDs using ICD paces Turtle
URI scheme, and (b) Normalizing
lexical properties of ICD-11 using the
SKOS RDF model
Proposal name: Bio2RDF project
o URI normalization Blank_nodes
Bell Literal
chean RDF o serals ) ) Data In- RDF
et al. . o Producing Bio2RDF statements Statements Biomedical . .
triples tegration triples
[Beal8| Names-
e Probably done manually by domain paces
experts
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between resources (e.g., rdfs:type, rdfs:range, rdfs:domain, etc.). They provide a full-fledged

theoretical model including notions such as:

i) RDF lean graph as a minimal graph preserving all URISs of its origin graph while having
fewer blank nodes (where minimality designates that the RDF graph cannot be further

reduced), and

ii) RDF normal form as a unique representation of an RDF lean graph (where uniqueness

designates that the lean RDF graph is unique with respect to the original RDF graph).

First, the authors do not identify nor target the kinds of redundancies and disparities
addressed in our study, both at the logical and physical levels (e.g., edge/node duplications,
literals, IRIs, prefixes, and data-types, among others). Second, they focus on RDFS vocabulary
constructs which are out of the scope of our study. Third, the authors’ main motivation in
[Geall] is different from ours: they aim to reduce (simplify) RDF query answers by: i) pro-
ducing the answer, and then ii) generating its normal form. They discuss RDF query language
features and how those should translate to process the logical RDF descriptions (graphs). In
contrast, our study aims at normalizing (simplifying) RDF descriptions from the start, indepen-
dently of any particular application, targeting both logical (graph) and physical (serialization)
levels, so that querying (and other applications/functionality) can be later performed on the

normalized data.

In short, while the studies in [Gea04, [Gealll, HGO04] thoroughly cover general theoretical
foundations of RDF logical (graph) representation and processing, our approach completes the
latter by targeting specific logical (graph) redundancies (and physical/serialization disparities)
which were out of the scope of |[Gea04), [Gealll [HGO04], namely distinct edge (predicate) du-
plication, node (subject/object) duplication, and combined edge and node (whole statement)

duplication, as well as all kinds of physical disparities (see motivation Section .

In a related study [Feal3], the authors introduce the binary RDF representation for
publication and exchange called: HDT (Header-Dictionary-Triples) serialization format. The
HDT representation format is based on three main components: i) a Header that includes
metadata describing the RDF dataset, ii) a Dictionary that organizes all the identifiers in the
RDF graph, and iii) Triples which represent the pure structure of the underlying RDF graph.
Using this format, the authors reduce the verbosity/redundancy and storage space of the RDF
files while transforming blank nodes into IRIs, thus losing the meaning of the blank node in
defining RDF statements.

Recent approaches [SL13, [Lon15| introduce a graph normalization algorithm which ex-
tend toward RDF dataset normalization. In [SL13], the authors transform an RDF graph

into a standard form, generating a cryptographically-strong hash identifier for the graph, or
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digitally signing it. The authors define normalization as “the process of taking an input graph
and performing a transformation on that input that results in all the aspects of the graph being
arranged in a deterministic way in the output graph”. In [Lonl5], the author extends the RDF
normalization approach from [SL13] toward so-called RDF dataset normalization, revising the
concept of normalization as “the process of transforming an input RDF dataset to a normalized
RDF dataset. That is, any two input RDF datasets that contain the same information, regard-
less of their arrangement, will be transformed into identical normalized RDF datasets”. The
proposed algorithms in [SLI3| [LonI5| take a JSON-LD input format, and provide an output in

N-triple serialization while relabeling certain nodes and erasing certain redundancies.

Yet, the authors in [Feal3l [SLI3| [Lon15] do not control redundancies within RDF graphs

containing blank nodes, and do not address serialization disparities.

4.2.3 RDF Syntax (Physical) Normalization

At the physical (syntactic) level, Vrandecic et al. [VeaQ9] argue that the same RDF graph
can be expressed in many different ways in RDF/XML serialization, using different RDF
constructs, thus complicating the processing of RDF descriptions. The authors introduce a
method to normalize the serialization of an RDF graph using XML grammar (DTD) defini-
tions. The process consists of two steps: (a) Defining an XML grammar (DTD) with whom all
generated RDF /XML serializations should comply; the DTD is generated semi-automatically,
such that the system provides a tool box to help the user (expert) to choose elements and
attributes/properties following her serialization needs and, (b) Defining SPARQL query state-
ments to query the RDF dataset in order to return results, consisting of serializations compliant
with the grammar (DTD) at hand. This is comparable to the concept of semantic mediation
using SPARQL queries [Kea08]. Note that SPARQL statements are automatically generated
based on the grammar (DTD). The authors provide an online implementationE] to demonstrate
the usefulness of their proposal. Here, we note that the authors’ motivation in [Vea09| clearly
corresponds to the same problem addressed in our proposal. Nonetheless, we consider serial-
ization disparities as well as logical (blank node) redundancies which are not addressed in the

mentioned work. In other words, our approach is complementary to the method in [Vea(9].

To sum up, our approach completes and builds on existing methods to normalize RDF in-
formation, namely |[Gea04, HGO04 [Vea09, [Gealll [SLI3| Lon15], by handling logical and physical

redundancies and disparities which were (partially or totally) unaddressed in the latter.

Table depicts the summarization of RDF Graph (Logical) and Syntax (Physical)
Normalization approaches developed in the literature where the approaches have several limi-

tation w.r.t. blank nodes, literals, URI, namespaces and statements, that we overcome in our

"http://km.aifb.kit.edu/services/RDFSerializer/
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approach.

4.3 Normalization Rules

In this section, we provide a set of rules that allow to solve the motivation problems in Section
We consequently establish two normalization goals here: i) solving logical redundancies
(discussed in Section [3.1)) and ii) solving physical disparities (discussed in Section [3.2]).

In the following, we use D, G, and F to designate a normalized RDF description, RDF

graph, and RDF file respectively (cf. Definition .

4.3.1 Solving Logical Redundancies

Logical redundancies related to node duplication, edge duplication, and node/edge duplications
(presented in Section can be eliminated from an RDF graph G by applying the following

transformation rules:

e Rule 1 - Statement Equality Elimination (R1): It is designed to eliminate edge
duplications and/or node duplications within individual extended statements. More for-

mally:
Vst sth € STH(G) [ i # j, if stf = stf = remove({st]}, ST*(G))
Given two equal extended RDF statements st;r and stj in an RDF graph G such that

st;r =gt st;r, applying Rule 1 on G produces another RDF Graph G’ where st;r has been

removed ¢

LEMMA 1 Gliven two extended statements stf, stj+ € ST (G) where sti+ =g st;r, ap-

plying Rule 1 on G produces an RDF Graph G’ verifying at least one of the following

features:

- STH(G") C STT(G) / |STH(G)| = |STH(G)| — 1 (reducing the number of edge
duplications by 1 where the object of the statement is represented either as a IRI or

as a literal);

- L(G") C L(G) / |L(G")| = |L(G)| — 1 (reducing the number of node duplications by

1 where the object of the statement is represented as a literal).
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Table 4.5: Summarized RDF Graph (Logical) and Syntax (Physical) Normalization approaches

Data Exploited
App. Tar- Orde RDF Features Limitations Aplication Output
geted Elements
Domain Area
RDF Graph (Logical) Normalization
Proposal name: Bipartite RDF
graph
e Reducing redundan-
cies (edge - node
. . Blank
duplication)
H " nodes Not Storage
ayes e o
Y RDF A Literals . and Bipartite
al. Graph SPO Statement e Improving the con- URIs speci- Cluster Graph
[HGO04] b nectivity between fied R P
Names- ing
resources
paces
o DBetter distinction
between schema and
data statement
e Formalizing mini-
Guti .
utierres Not Blank mal  and i maximal Statements RDFs
et al. RDF . representations . RDF
consid- nodes Names- vocabu- Querying
[Geal4l Graph ) X Graph
ered Resources paces laries
Geall] e Establishing normal
forms for RDF data
e Transforming an RDF
graph into a standard
form
Alphab. i -
pha Blank ¢ Generating a\, crypto Statements Not .
Longley JSON- based nodes graphically AAS strong Names- speci- Linked N-
[Lonls) LD on hash identifier for the Data triple
. Resources paces fied
N-triple graph
o Relabeling certain
nodes and erasing
certain redundancies
Proposal name: RDF HDT
Data
format
Blank Man-
Fernandez N Reduci bosit nodes Not age-
et al. tripl SPO Resources * e' um:\hg Vler 0>1ty Statements speci- ment HDT
riples :
[Feal3] P using ree ? e.men s Names- fied and
Header, Dictionary,
N paces Com-
triples N
pression
RDF Syntax (Physical) Normalization
o Defining XML gram-
mar (DTD) to gener-
ate RDF/XML serial-
ization Blank
. . nodes
Vrandecic Arbitrary NOF e Defining SPARQL Literals FOAF )
et al. RDF consid- Statement vocabu- Querying XSLT
[Vea09] aAS file ered uery statements URIs lar,
to query the RDF Names- v
dataset paces
-> comparable to the concept
of semantic mediation in
[Kea08]

“Designates the order of statements in the RDF description, which can be performed following

the subject (S), predicate (P), and/or object (O) elements of the statements (cf. details in Section

i53)
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PROOF 1 Given two extended statements st;r, st;r € ST (G) where St;r =g st;r, applying
Rule 1 on G produces an RDF graph G’ which is identical to G except that in G': the

redundant extended statement st;-F has been removed. This means that:

— When st;L.to = “" vV st;r.to = “u”, the set of extended statements in the resulting
graph G’ is included in that of G, i.e., STT(G") C STT(G) such that STT(G') =
ST (G) — {stj} since exactly one extended statement stj has been removed, which
means |STT(G")| = |STH(G)| — 1.

— When st}".to = “I”, the set of literals in the resulting graph G’ is included in that
of G, i.e., L(G') C L(G) such that L(G') = L(G) — {stj.o} since exactly one literal
value stj.o has been removed, which means |L(G")| = |L(G)| — 1.

LEMMA 2 Given two subsets ST, (G), STJ-JF(G) C STT(G) where Vst € ST{F(G)/\stj €

STHG) | st = st

least one of the following features:

applying Rule 1 on G produces an RDF Graph G’ verifying at

- STH(G') € STH(G) / |STH(G)| = |STH(G)| = [ST;H(G) N ST} (G)| (reducing the
number of edge duplications by |SY}+(G)QSTJ*(G)] where the object of the statement
is represented either as a IRI or as a literal);

- L(G") C L(G) | |L(G")| = |L(G)| — |Li(G) N Lj(G)| (reducing the number of node
duplications by |L;(G) N Lj(G)| where the object of the statement is represented as
a literal).

PROOF 2 Given two extended statements ST;(G),ST]*(G) C STT(G) where Vst €
ST (G) A st;' € ST;‘(G) / st =g st;', applying Rule 1 on G produces an RDF graph
G’ which is identical to G except that in G': redundant extended statements in ST; (G)N

ST;F(G) have been removed. This means that:

— When (Vstt € (ST;F(G) N STjJr(G)) / stt.to = “I" V stt.to = “u”), the set of ex-
tended statements in the resulting graph G' is included in that of G, i.e., STT(G') C
STT(G) such that STT(G') = STH(G) — (ST;"(G)N ST;(G)) since extended state-
ments duplicated in S’EJF(G)QSI“]*(G) have been removed, which means |STT(G")| =
|STH(G)| = |ST;H(G) N ST (G)].

— When Vstt € (ST;"(G)N ST]-JF(G)) / stT.to= “I", the set of literals in the resulting
graph G' is included in that of G, i.e., L(G") C L(G) such that L(G") = L(G) —
(Li(G) N Lj(Q)) since Li(G) N L;j(G) literals, which are the objects of the extended
statements where L;(G)NL;(G), have been removed, which means |L(G")| = |L(G)|—
|1 Li(G) N L (G-
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BTN

Figure 4.3: RDF graph example with edge duplication and literal node duplication.
Properties of Rule 1:

Following Lemmas (1] and [2| we can produce a set of properties which characterize an

input RDF graph G, and its transformed counterpart G’ resulting from applying Rule 1:

(a) STH(G") C STH(Q), i.e., |[STT(G)| < |STH(GQ)| (reducing the number of duplicate
statements, which amounts to reducing both edge and node duplications)

(b) L(G") C L(G), i.e., |L(G")| < |L(G)| (reducing literal node duplications)

(c) U(G") =U(G), ie., |UG")| = |U(G)| (preserving IRI nodes and thus all the corre-
sponding information)

(d) BN(G') € BN(G), i.e., IBN(G")| = |[BN(G)| (since we are preserving here blank
nodes. Please note they are analyzed by Rule 2)

(e) Vst st;-|r € STH(G) | i # j = st] #s st}r (all duplicate statements, inducing the
aforementioned edge and node duplications, are eliminated)

(f) G' C G, ie., |G < |G| (since G’ might suffer from other kinds of duplications which
are not resolved with Rule 1)

() |G| = G| (since minimum cardinalities are naturally equivalent)

(h) G' =rprc G (which carries directly from the above properties)

Example 1: Consider the RDF Graph G in Figure One can realize that G contains
a pair of duplicated edges: st;r < ulu,pzd, Uz, > and stjlr 1< U]_u,p4j:7 Uug, >, as well as a
pair of duplicated nodes: stg :< bngbn,pgﬁr, ly; > and sty :< bngbn,pgﬁr, lo; >. Applying
Rule 1 on G produces an RDF graph G’ where both edge and node duplications have
been removed as shown in Figure As a result, G’ fulfills the following properties:

(@) [STT(@)] =9 A STT(G)| = [STT(G)| =2 =T = |ST(G)] < |STT(G)]
(b) [L(G)] =5 A L(G)] = [L(G)| = 1 =4 = |L(G)] < |L(G)|
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Figure 4.4: RDF graph obtained after applying R1 on the RDF Graph in Figure [£.3]

(c) [U(G)=2AUG)=2= [U(G)|=|UG)

(d) [BN(G)| =2 A |BN(G")| = 2= |BN(G")| = |[BN(G)|

(e) Vsti € STH(G') /i #3Ni#8 = st] #q stg Ast] # sty
() |G| =7TA|G| =9

(8) IG'| =Gl =4

e Rule 2 - Statement Containment Elimination (R2): It is designed to handle ex-
tended statements and their outgoings, by eliminating edge duplications between IRIs
and /or blank nodes in the outgoing statements, and eliminating node duplications where
the objects of the extended statements are blank nodes linked to the outgoing statements.

More formally:
Vst st;r € STH(G) /i #3j,if stj+ < st = 7“677”40116((515;r u O(stj)),STJF(G))

Given two distinct extended RDF statements st;L and stj in an RDF graph G where
stj’ < st applying Rule 2 on G produces another RDF Graph G’ where zst;-F has been

7

removed along with its outgoing statements O(stj)‘

LEMMA 3 Given two distinct extended statements st st;-|r € ST (G) where stj’ < st

applying Rule 2 on G produces another RDF Graph G’ wverifying at least one of the

following features:

- STH(G') C STH(G) [ [STH(G")| = |STH(G)| = (1+]0(st])|) (reducing the number
of node duplications by 1+ \O(stj)] where the objects of the extended statements are
blank nodes).

- L(G") CL(GQ) / IL(G")| = |L(G)| — |L(O(st;'))] (reducing the number of literal node
duplications by ]L(O(stj))\ where the object of the statement is a literal).
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- BN(G') € BN(G) / |BN(G")| = |BN(G)| — (1 + |BN(O(5tj+))|) (reducing the
number of blank node duplications by 1 + |BN(O(5t;'))| where the statement has a

blank node element).

17 1’

PROOF 3 Given two extended statements st st;r € ST*(G) where stj = st, applying
Rule 2 on G produces an RDF graph G' which is identical to G except that in G’: redun-
dant extended statement st;r and its outgoings O(stj) have been removed. This means
that:

— When st;r.to = “bn”, the set of extended statements in the resulting graph G’ is
included in that of G, i.e., STT(G") C STT(G) such that STT(G') = STH(G) —
({stj)} U O(st;r)) since st;r and its outgoings O(st;r) have been removed, which
means |STH(G")| = |STH(G)| — |1 + ‘O(St;_)’.

— When Vst™ € O(st]) / st™.to = I, the set of literals in the resulting set G’ is
included in that of G, i.e., L(G") C L(G) such that L(G'") = L(G) — (L(O(stj)))
since all the duplicated literals of outgoings O(st;r), have been removed, which means
()] = |L(G)| — |L(O(sth)].

— When (stf.to = “bn”) A (Vst™ € (O(st]) / stt.to = “bn”), the set of blank
nodes in the resulting set G' is included in that of G, i.e., BN(G') C BN(G)
such that BN(G') = BN(G) — ({stj.o} U BN(O(st;r))) since St;r.O and its out-
goings BN(O(stj)) have been removed, which means, |[BN(G')| = |BN(G)| — (1 +
BN(O(t)))).

LEMMA 4 Given two subsets of extended statements ST, (G), ST;(G) C ST*(G) where
Vsti € ST;"(G) A st}-|r € ST;F(G) / st;r < st applying Rule 2 on G produces another
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RDF Graph G’ verifying at least one of the following features:

- STH(G') € STH(G) / |STH(G)| = |STH(G)| - (IST; (G)NST (G)|+]O0(ST; (G)N
STJJF(G))]) (reducing the mumber of mode duplications by |ST; (G) N STJ-JF(G)] +
|O(S]}+(G)OSI}-+(G))| where the objects of the extended statements are blank nodes).

- L(G") CL(G) / |L(G")] = \L(G)|—|L(O(SY}+(G)HSCZ’;(G)))| (reducing the number
of literal node duplications by |L(O(ST;"(G) N ST;(G)))\ where the objects of the
extended statements of the outgoings are literals).

- BN(G') € BN(G) / |IBN(G')| = |BN(G)| - (IBN(ST;"(G) N ST (G)) |+
|BN(O(ST;"(G) n ST;(G)))D (reducing the number of blank node duplications by
|BN;(G) N BN;(G)|+|BN(O(ST;"(G) DST;“(G)))]) where the extended statements

of the outgoings have blank node elements).

PROOF 4 Given two extended statements SI?(G),SQ?(G) C STT(G) where Vst €
ST (G) A St;r € ST]-JF(G)/stj+ = st;, applying Rule 2 on G produces an RDF graph G’

which is identical to G except that in G': redundant extended statements in ST{"(G) N
ST;(G) and their outgoings O(ST;" (G) ﬂST;L(G)) have been removed. This means that:
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— When Vstt € (ST;"(G) N ST;(G)) / stj.to = “bn”, the set of extended statements

in the resulting graph G' is included in that of G, i.e., STT(G') C STT(G) such
_ + + + + :
that ST*(G") = STH(G) — ((ST;"(G) N ST, (G)) U O(ST;" (G) N ST} (G))) since
S’T;F(G)HST;F(G) and its outgoings O(ST?(G)HSQ?(G)) have been removed, which
means |ST*(G")| = [ST*(G)| - (IST;"(G) N ST (G)| + |O(ST;(G) N ST;H(G)))).-
When Vstt € (ST (G) N ST;(G)) AVsth € O(ST; (G) N ST;F(G)) / stt.o =
st .sAsth.to= “l", the set of literals in the resulting set G’ is included in that of G,
i.e., L(G') C L(G) such that L(G') = L(G) — (L(O(ST;"(G) N ST;(G)))) since all
the outgoings in O(ST;" (G) N STjJF(G)) with duplicated literals, have been removed,
which means |L(G")| = |L(G)| — |L(O(ST;" (G) N STf(G)))|
When Vstt € (ST, (G) N STJ*(G)) AVsti € O(ST; (G) N STjJr(G)) / stt.o =
str.s A sth.to = “bn”, the set of blank nodes in the resulting set G' is included in
that of G, i.e., BN(G') C BN(G) such that BN(G') = BN(G) — (BN(ST;"(G) N
+ + + : + + :
ST (G))UBN(O(ST;" (G)NST; (G)))) since BN (ST, (G)N ST} (G)) and its out-
goings BN(O(ST;"(G) N ST;F(G))) have been removed, which means |BN(G')| =
|BN(G)| = (IBNi(G) N BN;(G)| + | BN(O(ST;*(G) N ST} (G))))).

Properties of Rule 2:

Following Lemmas [3] and [d] we can also produce a set of properties which characterizes

an input RDF graph G and its transformed counterpart G’ resulting from applying Rule

STT(G') C STH(G), i.e., |STT(G")| < |STT(G)]| (reducing the number of duplicate

statements, which amounts to reducing both edge and node duplications)
L(G") C L(Q), i.e., |L(G")| < |L(G)| (reducing literal node duplications)
U(G") =U(G), ie., [UG")| = |U(G)| (preserving IRI nodes and thus all the neces-

sary information)
BN(G') € BN(G), i.e., IBN(G")| < |BN(G)| (reducing blank node duplications)

Vst st] € STT(G') = st] £ st (all extended statements contained in others,

inducing the aforementioned edge and node duplications, are eliminated)

G' C G, ie., |G| < |G| (since G” might suffer from other kinds of duplications which

are not resolved with Rule 2)
|G|l = |G|l (since minimum cardinalities are naturally equivalent)

G’ =gprc G (which carries directly from the above properties)

Example 2: Consider the RDF Graph G in Figure[£.4] One can realize that G contains

an extended statement contained in another: st; =< stf. These two extended statements

induce the following node duplications in their outgoing statements:
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Co e =
Figure 4.5: RDF graph obtained after applying R2 on the RDF graph in Figure

. 1 . 1
sti < bnlbmp2smng7lll >, stg < bnzbn?pQString7lll > and
Stg_ < bnlbn,pgf_r,lm >, St;_ < bnzbn,pg,f_r,lm >

Consequently, applying Rule 2 on G produces an RDF graph G’ where node duplications
have been removed as shown in Figure As aresult, G’ fulfills the following properties:

(a) [STH(G)| =7 A |O(stg)| = 2 and [STT(G")| = |STH(G)| — 1 — |O(st5)| = 4 =
[STH@)| < |STH(G)]

(b) [L(G)| = 4 A L(O(st3))| = 2 and |L(G")| = |L(G)| — [O(stf)| = 2 = |L(G")]| <
L(G)|

(&) [U(@)| =2 A [U(E)] =2 = [U(E)] = |U(G)]

(d) |BN(G)| =2 A |BN(G")| = |BN(G)| — 1 = |BN(G")| < |BN(G)]

)
)
(e) Vstf € STT(G') | i#j=>st] £st]
) 16 = 16| = 4

)

(&) IG'] =Gl = 4

THEOREM 1 Given an RDF graph G, applying Rules 1 and 2 on the set of extended statements
of G, STH(Q), produces a graph G which is a normalized version of G, i.e., G = Norm(G),
cf. Deﬁmtion where all logical duplications (i.e., Problems 1-3, cf. Section have been

eliminated in G.

In goes without saying that Lemma [I| highlights the combined properties of Lemmas
1-4, which comes down to the (more general) properties of Lemmas 3-4, characterizing the

relationship between an RDF graph G and its normalized counterpart G.

4.3.2 Solving Physical Disparities

Physical disparities related to namespace duplication, unused namespaces, and node order
variation (presented in Section [3.2]) can be eliminated from an RDF file F' by applying the

following transformation rules:
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e Rule 3 - Namespace Duplication Elimination (R3): It is designed to eliminate

namespace duplications along with corresponding namespace prefixes. More formally:

Vgni, qnj € QN(F) /i # j, if gn;.ns; = qnj.ns; = remove({qn;}, QN (F))A

replace(qn;.px;, qni.pz;, STT(F))4

LEMMA 5 Given two Qnames qn;, qn; € QN (F) where gn;.ns; = gnj.ns;, applying Rule
3 on F produces an RDF file F' verifying the following features:

- NS(F') C NS(F) / INS(F")| = [INS(F)| — 1 (reducing the number of namespace
duplications by 1).
- Px(F') C Pxz(F) / |Px(F')| = |Pz(F)| — 1 (reducing the number of prefives -

corresponding to the duplicated namespaces - by 1).

PRrROOF 5 Given two Qnames qn;,qn; € QN (F) where gn;.ns; = qnj.ns; where qn; =
qn;, applying Rule 3 on F produces an RDF file F' which is identical to F except that in

F': redundant gname gn; has been removed. This means that:

— The set of namespaces in the resulting file F, NS(F') C NS(F) / NS(F') =
NS(F) — {qnj.ns;} since exactly one namespace qn;.ns; has been removed, which
means |[NS(F')| = [INS(F)| — 1.

— The set of prefizes in the resulting file F', Px(F') C Px(F) / Px(F') = Px(F) —
{qn;j.pz;} since exactly one prefiz qn;.px; has been removed, which means |Px(F')| =

|Px(F)| — 1.

LEMMA 6 Given two subsets QN;(F),QN;(F) C QN (F) where Yqn;.ns; € NS;(F) A
qnj.ns; € NS;(F) / qni.ns; = qn;.ns;, applying Rule 3 on F produces an RDF file F’

verifying the following features:

- NS(F') CNS(F) /| |INS(F')| = |NS(F)|—|NS;(F)NNS;(F)| (reducing the number
of namespace duplications by |NS;(F) N NS;(F)]).

- Px(F') C Px(F) / |Pz(F")| = |Px(F)| — |Pz;(F) N Pxj(F)| (reducing the number
of prefizes - corresponding to the duplicated namespaces - by |Px;(F) N Px;(F)]).

PROOF 6 Given two subsets of Qnames QN;(F),QN;(F) C QNT(F) where Vgn;.ns; €
NS;(F)ANgnj.nsj € NS;(F) | qni.ns; = qnj.nsj, applying Rule 3 on F produces an RDF
file F' which is identical to F except that in F': redundant gnames QN;(F) N QN;(F)

have been removed. This means that:
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— The set of namespaces in the resulting file F, NS(F') C NS(F) / NS(F') =
NS(F) — (NS;(F) N NS;(F)) since namespaces in NS;(F) N NS;(F) have been
removed, which means [INS(F")| = [NS(F)| — [NS;(F') N NS;(F)].

— The set of prefizes in the resulting file F', Px(F') C Px(F) / Px(F') = Px(F) —
(Pzi(F) N Px;(F)) since prefizes in Px;(F) N Pxz;(F) have been removed, which
means |Px(F")| = |Pz(F')| — |Pz;(F) N Pxz;(F)].

Properties of Rule 3:

Following Lemmas [5] and [f], we can produce a set of properties which characterizes an

input RDF file F' and its transformed counterpart F’ resulting from applying Rule 3:

(a) Vns;,ns; € NS(F') /i # j = ns; # ns; (eliminating all namespace duplications)

(b) NS(F') C NS(F), i.e., INS(F")| < |[NS(F)| (reducing the number of namespaces,
as a result of eliminating namespace duplications)

(c) Vpzi,prj € PX(F') /i # j = px; # px; (eliminating all prefizes corresponding to
the duplicate namespaces)

(d) Pz(F') C Px(F), ie., Px(F') C Px(F), ie.,|Px(F')| < |Px(F)| (reducing the
number of prefizes, as a result of eliminating prefiz duplications)

(e) Corresponding RDF graphs remain the same: G' = G, i.e., |G| = |G| (since extended

statements are not affected at the logical level)

(f) F' =pprr F (naturally carries from the above properties)

Example 3: Consider the RDF file F' in Figure[3.3] One can realize that F' contains the

following Qnames with namespace duplications and corresponding prefixes:

gni < pri,nsy >= pr1 = “ex” ,ns; = “hitp : //example.org/stuff/1.0/” (line 4) A
qna < pra,nsy >=— pro = “exl”,nsy = “http : //example.org/stuff/1.0/” (line 5)

Applying Rule 3 on F produces an RDF file F’ where namespace duplications with
corresponding prefixes have been removed as shown in Figure As a result, F” fulfills

the following properties:

(a) INS(F)|=4 AN |NS(F')|=|NS(F)|—1=3=|NS(F')| < |[NS(F)|
(considering the default “http://www.w3.org/1999/02/22-rdf-syntax-ns” as a name
space)

(b) Vgn;.ns; € NS(F') /i # 1 = qny.nsy # qn;.ns;

(¢) |Px(F)| =4 A |Pz(F")| = |Px(F)| —1=3= |Px(F')| < |Px(F)|
(considering the default “rdf” as prefix)
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1 <?xmlversion="1.0" encoding="UTF-8" standalone="no"?>

2 <rdf:RDFxmlins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
3 xmins:dc="http://purl.org/dc/elements/1.1/"

4 xmins:ex="http://example.org/stuff/1.0/">

5 <rdf:Description rdf:about="http://www.univ-pau.fr'>

6 <ex:nameprof>

7  <rdf:Description>

8  <ex:first_namerdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">Sebastien</ex:first_name>
9 <ex:last_namexml:lang="fr">Durand</ex:last_name>

10 </rdf:Description>

11 </ex:nameprof>

12 <ex:lab rdf:resource="http://liuppa.univ-pau.fr/live/"/>

13 </rdf:Description>

14 </rdf:RDF>

Figure 4.6: RDF file obtained after applying R1, R2 and R3 on the RDF file in Figure 3.3

(d) Vpx; € Px(F') /i # 1= px1 # px;
(e) |G'| = |G| = 4 (since the files’ RDF graphs remain unchanged)

e Rule 4 - Unused Namespace Elimination (R4): It is designed to eliminate unused

namespaces{ﬂ with their respective prefixes. More formally:
Vagn;.ns; € NS(F), if gn;.ns; ¢ NS(G) = remove({qn;}, QN (F)).

Given ¢n; in an RDF file F' where gn;.ns; is not used in any RDF statement in F),
applying R4 on F produces another RDF file F/ where unused namespace gn;.ns; and its

respective prefix px; have been removed$

LEMMA 7 Given a Qname qn; € QN (F) where gn;.ns; ¢ NS(G), applying Rule 4 on F
produces an RDF file F' verifying the following feature:

QN(F') CQN(F) / |QN(F")| = |QN(F)| -1 (reducing the number of unused @Names
by 1).

PROOF 7 Given a Qname gn; € QN (F) where qn;.ns; ¢ NS(G), applying Rule 4 on
F produces an RDF file F' which is identical to F except that in F': unused qname qn;
has been removed. This means that the set of gnames in the resulting file F, QN (F') C
QN(F) /| QN(F') = QN(F) — {qn;} since exactly one gqname gqn; has been removed,
which means |QN (F')| = |QN(F)| — 1.

! An unused namespace is a namespace which is mention in the serialization file but which is not use in any

of the statements, it is means, they will not appear in the Graph.
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LEMMA 8 Given a subset QN;(F) C QN(F) where Yqn;.ns; € QN;(F) / qn;ns; ¢
NS(G), i.e., UNS(F) = UNS(F) U {qgn;.ns;}, applying Rule 4 on F produces an RDF
file F" verifying the following feature:
QN(F') C QN(F) / |QN(F")| = |QN(F)| — |QN(UNS(F))| (reducing the number of
unused QNames by |[QN(UNS(F))|).

PROOF 8 Given a set Qname QN;(F) C QN (F) where Yqn;.ns; € QN;(F)/qni.ns; ¢
NS(G), i.e., UNS(F) = UNS(F)U{qn;.ns;}, applying Rule 4 on F produces an RDF file
F" which is identical to F except that in F': unused gnames set QN(UNS(F')) has been
removed. This means that the set of gnames in the resulting file F, QN (F') C QN(F) /
QN(F")=QN(F)— (QN(UNS(F))) since unused qnames in QN(UNS(F)) have been
removed, which means |QN(F")| = |QN(F)| — |QN(UNS(F))|.

Properties of Rule 4:

Following Lemmas [7] and [8] we can produce a set of properties which characterizes an

input RDF file F' and its transformed counterpart F’ resulting from applying Rule 4:

(a) NS(F') C NS(F), ie., |[NS(F")| < |NS(F)| (reducing the number of unused names-

paces)
(b) Px(F') C Px(F), i.e.,|Px(F")| < |Px(F)| (reducing the number of unused prefizes)

(¢c) NS(G') C NS(F'), i.e., INS(G")| = |NS(F")| (the number of used namespaces in
the RDF Graph becomes equal to that in the corresponding RDF file)

(d) Corresponding RDF graphs remain the same: |G'| = |G| (since extended statements
are not affected at the logical level)

(e) F' =grprr F (naturally carries from the above properties)

Example 4: Consider the RDF file F in Figure One can realize that F' contains the

following unused namespace and corresponding prefix:
nss = “http : //purl.org/dc/elements/1.1/” — pxs = “dc” (line 3)

Applying Rule 4 on F produces an RDF file I’ where the unused namespace and its
corresponding prefix have been removed as shown in Figure As a result, F' fulfills

the following properties:

(a) INS(F)| =3 A NS(F')| = [NS(F)| - 1 =2 — [NS(F")| < [NS(F)|
(b) |Pz(F)| =3 A |Pz(F")| = |Pz(F)| —1=2= |Px(F")| < |Pz(F)|
(¢) INS(F)| =2 A INS(G')] = 2 = [NS(F)| = [NS(G)
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1 <?xmlversion="1.0" encoding="UTF-8" standalone="no"?>

2 <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
3 xmlns:ex="http://example.org/stuff/1.0/">

4 <rdf:Description rdf:about="http://www.univ-pau.fr'>

5 <ex:nameprof>

6 <rdf:Description>

7 <ex:first_name rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">Sebastien</ex:first_name>
8 <ex:last_namexml:lang="fr">Durand</ex:last_name>

9 </rdf:Description>

10 </ex:nameprof>

11 <ex:lab rdf:resource="http://liuppa.univ-pau.fr/live/"/>

12 </rdf:Description>

13 </rdf:RDF>

Figure 4.7: RDF file obtained after applying R4 on the RDF file in Figure 4.6

(d) |G’ = |G| = 4 (since the files’ RDF graphs remain unchanged)

e Rule 5 - Reordering (R5): It is designed to solve the varying node order problem
by imposing a predefined (user-chosen) order on all statements of an RDF file F’. More

formally:
‘v’stj, st;r € STH(F), order(st;r, st;r, F.p) = St:r <p st;r

Given the extended statements in an RDF file F, where stated in F' following an ini-
tial order, applying Rule 5 using the order function (cf. Section {4.1.2)) with ordering
parameter p (based on our statement expression order detailed in Section 2) on the
two extended statements in F' produces an RDF file F’ which is equal to F, F' =gppr F,
where all the statements have been ordered following the (user-chosen) order type pa-

rameter pé

The parameter p is a tuple composed of indexing order “iorder” and sorting criteria
“sortc” (the values of these two elements are detailed in Section 2), represented by
p :< iorder, sortc >. The default value for the parameter p in our proposal is < sop, asc >

representing an ascending order of statements w.r.t. their subjects / objects / predicates

(sop).

Properties of Rule 5:

(a) F =gprr F (both files having equal RDF graphs and the same encoding format)
(b) |F| = |F| (both files having the same number of statements)
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(¢) The only difference between F and F is in statement ordering, noted order (ST (F))
#5 order(ST*(F)) (they are different according to their respective p parameter or-
der)

Example 5: Consider RDF file F' in Figure ordering ST (F) using our default
ordering parameter p :< SOP,asc > (Subject-Object-Predicate in ascending order fol-
lowing our sorting process detailed in Section 2) produces an RDF file F’ where all

statements have been re-ordered accordingly, as shown in Figure

1 <?xmlversion="1.0" encoding="UTF-8" standalone="no"?>

2 <rdf:RDFxmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

3 xmlns:ex="http://example.org/stuff/1.0/">

4 <rdf:Description rdf:about="http://www.univ-pau.fr'">

5 <ex:labrdf:resource="http://liuppa.univ-pau.fr/live/"/>

6 <ex:nameprof>

7  <rdf:Description>

8 <ex:last_namexml:lang="fr">Durand</ex:last_name>

9  <ex:first_name rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">Sebastien</ex:first_name>

10 </rdf:Description>
11 </ex:nameprof>
12 </rdf:Description>
13 </rdf:RDF>

Figure 4.8: RDF file result after applying R5 in Figure [£.7]

THEOREM 2 Given an RDF file F, applying Rules 3, 4 and 5 on F produces a file F which is
a normalized version of F, i.e., F = Norm/(F), cf. Deﬁnition where all physical disparities
(i.e., Problems 4-6, cf. Section have been eliminated in F.

In goes without saying that Lemma [2 highlights the combined properties of Lemmas 5-8,

characterizing the relationship between an RDF file F and its normalized counterpart F.

Table provides a snapshot of all normalization rules with their properties. Note that
the problems related to element types and language tags can also be related to the semantic
meaning of corresponding elements, and will be further investigated using dedicated semantic-

aware transformation rules which we report to a subsequent study.
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4.4 Normalization Properties

Based on the individual normalization rules’ properties (highlighted based on their correspond-

ing lemmas in the previous section) allowing both logical and physical normalization, we develop

and discuss in this section the general properties characterizing the quality of our integrated

normalization approach.

DEFINITION 4.5 (Property 1: Completeness) An RDF description D and its transformed

counterpart D', D' is said to be complete regarding D if D' preserves and does not lose any

information w.r.t. D, i.e., each resource, statement, and namespace of D has a corresponding

resource, statement, and namespace in D'. More formally:

D 2D«

LEMMA 9 . Given an RDF description D,

U(D") =U(D)
BN(D') C BN(D)
L(D') € L(D)
ST+(D') C ST+(D)
NS(D') C NS(D)
1D = ||D]]

its normalized counterpart D is complete w.r.t. D.

PROOF 9 . Given an RDF description D and its normalized counterpard D, the following

properties are satisfied:

e Properties resulting from applying rules R1 and R2:

— The sets of IRIs in the original and resulting RDF descriptions D and D are equal,
i.e., UD) =U(D) / |UD)| = |U(D)| since Yu € U(D) = u € U(D).

— The set of blank nodes in the resulting RDF description D is included in that of
D, i.e., BN(D) C BN(D) / |BN(D)| < |BN(D)| since Ybn € BN(D) = bn €

BN (D).

— The set of literals in the resulting RDF description D is included in that of D, i.e.,
L(D) C L(D) / |L(D)| < |L(D)| since ¥l € L(D) = | € L(D).

— The set of extended statements in the resulting RDF description D is included in that
of D, i.e., STH(D) C STH(D) / |ST*(D)| < |ST*(D)| since (Vstt € ST*(D) =
stt € STT(D)) v (Vstj,st;r € ST*(D), st < st;r = st} € STH(D)).

e Properties resulting from applying rules R3 and R4:
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— The set of namespaces in the resulting RDF description D is included in that of D,
i.e., NS(D) C NS(D) / INS(D)| < [NS(D)| since ¥ns € NS(D) = ns € NS(D).

— The set of namespaces in the resulting RDF description D is equal to that of D, i.e.,
NS(F)=NS(G) / INS(F)| = |INS(G)| since F is one serialization of D and G is
the Graph of D.

o The minimum cardinality of the resulting RDF description D has to be the same of the
minimum cardinality of D since D is the same RDF description without duplications and

unused information.

Therefore, we conclude that D is complete w.r.t. D ¢

DEFINITION 4.6 (Property 2: Minimality) An RDF Description D is said to be minimal,
noted by Dmin, if all the resources, statements, and namespaces of D are unique (i.e., they do
not have duplicates in D) and all the namespaces are used (i.e., there are no unused names-

paces). More formally:

Vui, uj € U(D) = u; # uj

Vbn;, bnj S BN(D) — bn; 7é bnj

Vst st] € STT(D) = st} #a st]

Vnsi,ns; € NS(D) = ns; # ns; = UNS(D) =@

Dmin <= Vi # j

LEMMA 10 . Given an RDF description D, its normalized counterpart D is minimal.

PROOF 10 . Given an RDF description D, applying rules Rules 1, 2 and 3 produces a nor-
malized RDF description D verifying the following properties:

* Yug,u; € U(D) = u; # uj. Following Rules 1 and 2 (properties “c” and “c”)
* Vbn;, bn; € BN(D) == bn; # bn;. Following Rules 1 and 2 (properties “d” and “e”)
* st st;r € STH(D) = st;r #st st; . Following Rules 1 and 2 (properties “a” and “e”)

* Vns;,ns; € NS([)) = ns; # nsj. Following Rule 3 (properties “a” and “b”)
Therefore, we conclude that D is minimal ¢

DEFINITION 4.7 (Property 3: Compliance) An RDF file F is said to be compliant with
the RDF standard if: i) its corresponding RDF graph G is valid w.r.t. the RDF standard, i.e.,
G’s structure remains compliant with RDF serialization standards (e.g., RDF/XML)), i) all
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extended statements in G also appear in F and, iii) all namespaces used in G also appear in

F. More formally:
G > RDF

F > RDF < { |ST*(G)| = |ST*(F)|
INS(G)| = [NS(F)]

LEMMA 11 . Given an RDF file F, its normalized counterpart F; is compliant with the RDF

standard.

PRrROOF 11 . Given and RDF file F' and its normalized counterpart F, with G and G repre-
senting their corresponding RDF graphs:

o Vst :st;-|r € STH(G) /i # j, if stj =« st}-|r — G will be identical to G except that stj
has been removed from G (satisfying R1). Hence, if Gt> RDF = G > RDF

° ‘v’stj,st;r € STY(G) /i # 7, if stj+ = stf = G will be identical to G except that
stjUO(stj) have been removed from G (satisfying R2). Hence, if G>RDF = G>RDF

e Vgn;,qn; € QN(F) /i # j, if qni.ns; = qnj.ns; = F will be identical to F except that
qnj has been removed from F (satisfying R3). Hence, if F'i> RDF —> F > RDF

o Vqn;.ns; € NS(F) if qnins; ¢ NS(G) = F will be identical to F except that qn; has
been removed from F (satisfying R4). Hence, if (F A G) > RDF = (F AG) 1> RDF

. ‘v’stj,st;r € STT(F), order(st:r,stj, F,p) = F will be identical to F except that in
F: Stj_ <p st;' after ordering (satisfying R5). Hence, if F > RDF = F > RDF

Therefore, given the above such that |STT(G)| = |STT(F)| and |NS(G)| = |[NS(F)|, we con-
clude that F is compliant with the RDF standard 4

DEFINITION 4.8 (Property 4: Consistency) Given an RDF description D and its trans-
formed counterpart D', D' is said to be consistent if D' verifies all three properties: i) complete-
ness w.r.t. D, i) minimality, and iii) compliance w.r.t. the RDF standard; which, combined,

ensure the data quality of the description. Formally:

D'2£D holds
D' is consistent <= { D’ = D'min holds
F'> RDF holds

LEMMA 12 . Given an RDF description D, its normalized counterpart D is consistent w.r.t.
D.
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PROOF 12 . Given an RDF description D and its normalized counterpart D:

e D2D following Lemma@ i.e., D is complete w.r.t. D since it preserves and does not

loose any information w.r.t. D.

e D = Dmin following Lemma i.e., D is minimal such that all statements, resources,

and namespaces are unique in D.

o Given I the serialization of D, Fr>RDF following Lemma i.e., F is compliant with
the RDF standard.

Therefore, we conclude that D is consistent ¢

Verifying RDF description consistency means that we will be preserving all the IRIs and
namespaces (with their prefixes) in the normalized RDF description which can be reused later.
This corresponds to the notion of information reusability which is discussed in existing Studiesﬂ
Through the shareability of the RDF standard, the resources will support the reusability of
metadata on the Web. With reusability, RDF descriptions can be more robust (as discussed in

the Sections (1| and , while saving on storage space by avoiding duplications.

4.5 RDF Normalization Process

The overall architecture of our R2NR (RDF to Normalized RDF) framework is depicted in
Figure It consists of two main components: i) Logical Normalization and ii) Physical
Normalization. In short, both components have different algorithms to control and manage the
redundancies and disparities discussed in Section [3] by implementing our normalization rules
developed in Section R2NR accepts as input: a) the RDF graph (logical representation) or
RDF file (physical representation) to be normalized, and b) user parameters related to the RDF
output form and prefix renaming, enabling the user to tune the results according to her/his

requirements.

Note that the development of separate components is a design choice to: i) emphasize
the modularity of our approach (allowing to easily integrate additional algorithms or modules
in the future), and ii) enable the user to easily customize the normalization process (depending

on the application at hand). In the following, we describe each component in more details.

'This is comparable to the notion of map function in [Geall] where authors verify that RDF files have valid
structures and contain necessary information (namely IRIs), as a pre-processing step before storage in an RDF
database. Yet, the authors in [Geall] focus on the general theoretical foundations of RDF processing, and do

not specifically target normalization problems (cf. Section |4.2.2).
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Figure 4.9: Overall architecture of our R2NR, framework.

4.5.1 Logical Normalization

The first step in our normalization process is to perform logical normalization, allowing to
eliminate all logical redundancies (discussed in Section [3.1)) from nodes and edges of the RDF
graph, and obtain extended statements without duplications (cf. Rules 1 and 2). For this

purpose, we divide logical normalization in two sub-components:

4.5.1.1 Statement Generator (SG)

It implements a preprocessing step, generating the extended statements (see Def. |4.1)) from the
input RDF file.

4.5.1.2 Redundancy Controller (RC)

It implements the core logical normalization process, detecting and eliminating edge and node
duplications in the RDF graph. The input of this sub-component is the list of extended state-
ments. We provide the pseudo-code of the redundancy controller in Algorithm 1. The algorithm

starts by detecting and erasing the redundancies in statements that contain IRIs or literals.

Consequently, it removes the statements with duplicated blank nodes (bn) (as well as all
the outgoings O derived of the bn) using Operator [I| and based on normalization Rules 1 and
2.
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Algorithm 1 Redundancy Controller

Input: ST+[| //List of Extended Statements of the RDF Description
Output: STT][] //List of Extended Statements without duplication

1: N=stt.length(); //Number of Statements in the list

2: for i=1,i < N, i++ do

3:  for j=it1,j < N, j++ do

4: if stt[i].to = “IRI” or st*[i].to = “literal” and st [i] = stT[j] then

5: remove(stj', ST*[]); // remove statement duplication - Rule 1

6: else

T if st*[j].to = “bn” and st*[i].to = “bn” and stt[i].s = stT[j].s and st [i].p = stT[j].p and (st [i] < stT[4]
or stt[j] < stt[i]) then

8: ren’bove((st;r U O(st;-r))7 STH[]); // remove blank node duplication - Rule 2

9: else

10: if st*[i].o = stT[j].0 then

11: remove(stj, STH[]) // remove statement duplication - Rule 1

12: return ST

4.5.2 Physical Normalization

The second step in our normalization process is to perform physical normalization by handling
serialization disparities (discussed in Section cf. Rules 3, 4, and 5). It is divided into three

sub-components based on the types of physical disparities being processed:

4.5.2.1 Namespaces Controller (NC)

It controls namespace duplication by erasing redundant namespaces (Rule 3) and unused names-
paces (Rule 4) in the RDF file. This component takes as input the prefix renaming parameter,
which allows to customize the renaming of the prefixes while providing a unique way to nor-

malize them. The process allows three renaming types according to the user’s input parameter:

e Original Renaming: allows the names of input prefixes to be preserved in the output
RDF file. By default, in the case of two or more repeated namespaces with different
prefixes, we preserve the shortest one. However, other preferences can be adopted as well

(most significant one, most used, etc.).

For instance, the original renaming of the namespaces in the use case 2 (Section is:
rdf = http://www.w3.0rg/1999/02/22-rdf-syntax-ns#

dc = http://purl.org/dc/elements/1.1/

ex = http://example.org/stuff/1.0/

e System Renaming: generates prefixes using a default formal grammarﬂ (Q) (with ter-

minal and non-terminal symbols, and a set of production rules defining the grammar’s

'Moreover, we can customize the grammar w.r.t. user’s requirements.
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prefix language, L(2) [HMUOI]) which is composed of: i) an alphabet of terminal sym-
bols, ii) an alphabet of nonterminal symbols, iii) an initial symbol, iv) a set of production

rules, and v) a number of repetitions, represented as:
Q= {ET72NaSaPan}

where:

Sr=A{a,...,2,A, ..., Z,0,...,9}

YN = {prefiz,lowerletter, upperletter, digit, name, _}
S =prefix

P is a set of production rules:

< lowerletter >:=alb|...|z
< upperletter >:= A|B|...|Z
< digit >::=0|[1]...]9

< prefix >i= _ < name >

< name >:= [< lowerletter > | < upperletter > | < digit > [| < name >|]

For instance, the system renaming of the namespaces in the use case 2 (Section is:
_a = http://example.org/stuff/1.0/
_b =http://purl.org/dc/elements/1.1/
_¢c =http://www.w3.0rg/1999/02/22-rdf-syntax—ns#

e Collective Renaming: generates prefixes using an inverted index to store all the gen-
erated ones within a file collection and their corresponding namespaces. This also allows
the generation of a collective index that could be shared among several users, which

could later be beneficial in several scenarios (e.g., when the RDF descriptions have to be

exchanged between multiple databases)ﬂ

For instance, the collective renaming of the namespaces in the use case 2 (Section (3.2.1])

may be:

_a = http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
_b =http://purl.org/dc/elements/1.1/

_c = http://example.org/stuff/1.0/

Note that, in the collective renaming the order depends of the entry into the database,

to generate the identifier.

1This will be investigated in a dedicated upcoming study.
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4.5.2.2 Sorting Process (SP)

Normalization Rule 5 establishes node order variation, to have an appropriate and unique
specification of the statements in the output serialization with respect to a sorting parameter
P :< dorder, sortc >. The combination of the values of iorder and sortc in parameter p may
vary according to the requirements of the user w.r.t. the targeted applications, using all pos-
sible triple orderings in iorder and the sorting criteria in sortc. For the iorder, we follow the
six indexing schemes presented in [WKBOg| (SPO, SOP, PSO, POS, OSP, OPS) describing the
different combinations of the three elements composing an RDF statement (subject, predicate,
object), and for sortc, we adopt asc, des and null to represent ascending, descending and no

order respectively.
The sorting process is based in a Statement Sorting Expression (¥) which is composed
of: i) an alphabet of terminal sorting symbols, ii) an alphabet of nonterminal sorting symbols,

iii) an initial sorting symbol, iv) a set of production rules of the sorting, and v) a number of

repetitions, represented as:

U ={Yrs,YXns, IS, PS,n}

where:

Yrs ={S, P,0O,asc,desc,iri,bn,l}
Y ns = {order, index, element, type_element, criteria}
1S = order

PS is a set of production rules:

< element >:= s|p|o

< type_element >::= iri|bn|l

< criteria >:= asc|desc|null

< order >:= [< index > | < index > | < index >]

<indexr >:= [< element > | < type_element > | < criteria >|

In this study, we assume the ascending (asc) order as a default value (used as reference

to analyze data storage).
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Our Statement Sorting FExpression allows to reorder each element taking into account
the type element and the criteria. Although our representation is generic, allowing to choose
different order criteria for each (S, P, O) element, yet we simplify and consider that the same

criterion will be chosen by the user for the three elements.

In Rule 5, we choose the SOP (subject-object-predicate) index as a default value since
it: i) allows to group first the subject and object elements that describe the information of
resources, and then the blank nodes. We adopted this approach since the number of different
predicates is always much smaller than the number of different subjects or objects, which allows
to perform sorting much faster. The improved efficiency of the SOP index was highlighted in

[Feald] and is reflected in our performance evaluation experiments in Section (see Figure

6.8).

Taking into account our default parameter p, the sorting process is lexicographically
ascending, based on the element type and on the values of subjects, objects, and predicates

(SOP). The sorting is undertaken as follows:

e Reorder the statements according to the type of the subject (first IRI and after BN),
e Reorder the values of the subjects in lexicographic ascending order,

e For all subjects, reorder the statements according to the type of the object (literal, IRI
and then BN),

e Reorder the values of the objects in lexicographic ascending order,

e Reorder the values of the predicates in lexicographic ascending order.

The pseudo-code of our statements sorting algorithm is provided in Algorithm 2. Note
that sorting can be achieved in average linear time using efficient sorting algorithms such as
Quick Sort, Merge Sort, Bucket Sort [Knu98]. We adopt a basic Merge Sort algorithm in our
approach due to its constant complexity level (i.e., worst case O(N xlog(N)) and average O(N)
where N is the number of siblings being ordered). Details of our adapted MergeSort algorithm
are provided in the Appendix (since it is widely known and used in practice), along with the
algorithm describing our statement comparison operator (<y) defined following the statement

sorting expression ¥ described above.

Algorithm 2 Statement Sorter

Input: ST+[| //List of Extended Statements of the RDF Description to be sorted

Output: ST+’[] //Sorted list of Extended Statements of the RDF Description

1: ST+ = MergeSort(STH[], <g) //where <y is our statement comparison operator (cf. Algorithm 5)
2: return ST+/[]
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In addition, note that the statements’ order has a direct impact in Web applications,
e.g., in Jena Loading Time, the PSO index order has a better time performance in comparison

with other indexes as we shown in Section [6.2]

4.5.2.3 Formatting Process (FP)

This component allows to: a) choose a specific form for the output RDF file, b) manage the

variety of blank node serializations, and c¢) manage datatypes and languagesﬂ

Our current solution allows three different output forms (other forms could be devised

based on user/application requirements):

e Flat: it develops each RDF statement one by one as a single declaration, i.e., each subject
has one declaration in the file. In the case of blank node serialization, it uses nodelds.
For instance, Figure shows a flat form output of the RDF graph in Figure [3.1

e Compact: it nests the RDF statement, i.e., each statement may have another statement
nested in its declaration. For the blank node serialization, this form uses the parse-
Type=“Resource”. We show hereunder another serialization of the RDF graph in Figure
represented in compact form:

<?7xml version="1.0" encoding="utf-8"7>
<rdf :RDF xmlns:ex="http://example.org/stuff/1.0/"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf -syntax
-ns#">
<rdf :Description rdf:about="http://www.univ-pau.fr">
<ex:nameprof rdf:parseType="Resource">
<ex:first_name rdf:datatype="http://www.w3.org/
2001/XMLSchema#string">Sebastien</exl:first_name>
<ex:last_name xml:lang="fr">Durand</exl:last_name>
</ex:nameprof>
<ex:lab rdf:resource="http://liuppa.univ-pau.fr/live/"/>
</rdf :Description>
</rdf :RDF>

e Full compact: dedicated to RDF/XML format, it nests RDF statement, uses the EN-
TITY XML construct to reduce space by providing an abbreviation for IRI&E], reuses the
variables in the RDF file, and uses attributes instead of properties for the blank node
serialization. We show hereunder yet another serialization of the RDF graph in Figure
[3.1] using the full compact form:

Not considering the cases when the datatypes and languages have different declarations in the statements.
2Refer to XML ENTITY construct in http://www.w3.org/TR/xml-entity-names/(IRI of XML W3C stan-

dard)
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<?7xml version="1.0" encoding="utf-8"7>

<!DOCTYPE rdf:RDF [
<!ENTITY _a ’http://liuppa.univ-pau.fr/’>

1>

<rdf:RDF
xmlns:ex="http://example.org/stuff/1.0/"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax
-ns#">

<rdf :Description rdf:about="http://www.univ-pau.fr">

<exl:lab rdf:resource="&_a;live/"/>
</rdf :Description>
</rdf :RDF>

Providing different output types is necessary to satisfy the requirements of different kinds
of RDF-based applications. For instance, compact representations are usually of interest to
human users when storing RDF data [AMMHO7, [ICDD*04, IAOD14, WW06, Wea(3], and
running and answering RDF queries [Gealll, [HDO05], yet less compact/more structured repre-
sentations - which are easier to process by machines - could be useful in automated processing
(e.g., automatic annotation of vector images into RDF files to be processed for image cluster-

ing/annotation recommendation [STCI14]).

4.6 Summary

In this chapter, we proposed a syntactic RDF normalization process, as a means to transform
RDF descriptions into a normalized representation in Section [4.5] To develop this approach,
in Section [4.1] we presented definitions, functions and operators as the building blocks of our
normalization process. Against this background, we reviewed relevant existing works in Section
[4.2] highlighting the properties and limitations of solutions that authors proposed to solve the
problems of RDF redundancies and disparities. Then, in Sections and we put forward

a set of rules and properties to develop our approach in a formal and verifiable way.

Our approach allows to: i) preserve all the information in RDF descriptions, ii) eliminate
all the logical redundancies and physical disparities in the output RDF description, iii) establish
a unique specification of the statements in the RDF output description, iv) formalize the
normalization process, and v) consider user parameters to handle the application requirements

and adapt RDF output formats accordingly.

In Table we show all the syntactic problems detailed in Sections [3.1] and against
the approaches detailed in Section and our approach, to highlight and compare which
problems were solved by each approach. Note that in the table[d.8f X means that the approach

does not solve the problem, v'* means that the approach solves partially the problem, and v/

85



4.6. Summary

means that the approach solves the problem.

We extend this, in Chapter [b, by investigating other challenges pertaining to: semantic
ambiguities and IRI discrepancies for the RDF normalization process described in Sections [3.3]
and developing an extension of the R2NR framework in order to perform semantic and

IRI-aware RDF logical and physical normalization.
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Chapter 5

Semantic and IRI RDF

Normalization

“I think in general it’s clear that most bad things
come from misunderstanding, and communication is
generally the way to resolve misunderstandings, and
the Web’s a form of communications, so it generally
should be good.”

— Tim Berners-Lee

As discussed in the previous chapter, RDF normalization has been treated for different
approaches in knowledge representation, data integration, graph representation and syntax
serialization (Section . However, all these approaches focus on syntactic problems disre-
garding other challenges related to semantic ambiguities and IRI coreference (Sections and
that may also affect the RDF descriptions.

In this chapter, we present an extension of our RDF normalization approach by integrat-
ing solutions for logical redundancies and physical disparities that are caused by the presence
of semantic ambiguities and IRI discrepancies in RDF descriptions. We first describe some
functions (Section developed for facilitating the understanding and creation of our nor-
malization rules (Section . Next, we discuss related works regarding semantic ambiguity
(Section [5.2.1)), IRI identity (Section [5.2.2), and IRI coreference (Section to understand
the impact of these problems in the data duplication of RDF descriptions. Against this back-
ground, we discuss also the approaches related to RDF normalization w.r.t semantic and IRI
problems (Section which have influenced the understanding and design of our approach.
We then develop our RDF Normalization extended approach with two additional levels: Se-
mantic level and IRI level (Section . Finally, we conclude this chapter with a summary and
a comparison between our approach with the approaches studied in this chapter (Section .
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5.1 Normalization Functions

We start this chapter by providing functions related to our semantic and IRI normalization
process, while reusing some of the functions and operators described in Sections [£.1.2)and £.1.3]

Table summarizes the functions developed for the Semantic and IRI normalization.

FuNcTION 7 (Synonymy RDF selector [Syn]) The synonymy RDF selector function, noted
Syn(st;r.o, stj.o, KB), takes as input two RDF objects of the respective extended statements
and a knowledge bascﬂ (KB), and returns as output a boolean True or False value, designating

whether they are synonyms or noté

For instance, in Figure c given stir and st;, where:

sty <http://liuppa.univ-pau.fr/liveu,ex:namei, “LIUPPA”; >

sty <http://liuppa.univ-pau.fr/liveu,ex:namei, “UPPA Computer Science Lab”; >
We can apply Syn(st] .o, st5 .0, K B) where:

Syn(LIUPPA, UPPA Computer Science Lab, KB) = True

Note that using Natural Language Processing (NLP) techniques such as acronym recog-
nition and machine translation, we can recognize entities and their variants in different lan-
guages (e.g., “LIUPPA” is recognized as equivalent to “Laboratoire Informatique de 'UPPA”
using acronym recognition, which in term is recognized as “UPPA Computer Science Lab” using

machine translation).

FunctiOoN 8 (Equivalent literals [EquivLit]) The equivalent literals function, noted

Equz’sz’t(st?.o, stj.o, KB, TP), takes as input two RDF literals and two optional parameters:
Knowledge base (KB) and Tolerance Parameter (TP,EL and returns as output a boolean True or
False, designating whether the literals are equivalent or not. This function performs synonym
detection (using function Syn) and data-type conversion using a dedicated function performing
the necessary literal value type conversions (e.g., string to number, number to date, date to

string, etc.) to evaluate whether literals are equivalent or noté

For instance, we show two examples:

a) In Figure c given st?f and stjf, where:

1A knowledge base is a structure resources as thesaurus, machine-readable dictionaries, or ontologies.
2The tolerance parameter allows the system to evaluated two numbers that are considered equivalent if their

difference is less than the tolerance
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st <http://liuppa.univ-pau. fr/liveu,exznamei, “LIUPPA”; >

sty : <http: //liuppa.univ—pau.fr/liveu,ex:areaTotali, “UPPA Computer Science Lab”; >
We can apply EquivLit(st;.o, st;f.o, K B, null) where:
EquivLit(25,25.4, K B,null) = True given a KB.

b) In Figure d given st and st], where:

st;: <http://liuppa.univ—pau.fr/liveu,ex:areaTotalf;Lt, 25; >
sty <http://liuppa.univ—pau.fr/liveu,ex:areaTotalj-ecimal, 25.4; >

We can apply EquivLit(st; .o, stf.o,null, TP) where:

EquivLit(25,25.4, KB,0.5) = True given numerical tolerance 0.5.

FuNcTION 9 (Semantic RDF selector [SemSelect]) The semantic RDF selector function,
noted SemSelect(st?, st;r, TS,DH,LI), takes as input two RDF statements (for selecting only
one) and three parameters (for giving the type of selection): Type Selector (TS) parameter
(e.g., generic, short, specific, long), Datatype Hierarchy (DH) parameter (e.g., standard or
user), Language Indicator (LI) parameter (e.g., user option: en, fr, etc., see Table in
Section , and returns as output one extended statement (stf,,,) according to the parameters
for semantic selection (blank nodes do not have datatypes nor languages, and thus will take null

parameters when processed )
For instance, in Figure c given stf, stéF and T'S = “short”, we can apply:

SemSelect(st], sty , TS, null, null) where:

+
Stsem

= SemSelect (st st;,TS, null,null) = stir

Regarding the Type Selector (TS) parameter values: i) generic - specific designate
whether more generic values or more specific values (namely data-types and/or literals) should
appear in the output RDF description. For example, following the RDF /XML data-type hier-
archy, “decimal” is considered as a more generic data-type compared with “int” (integer) which

is more specific. Hence, a numeric value defined in one RDF /XML serialization as a decimal,
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or in another serialization as an integer, can be represented in the corresponding output nor-
malized description following the user’s choice of parameter TSE]; ii) short - long highlight the
preferred size of RDF elements in the output serialization. For instance, following the size of
literals “LIUPPA” and “UPPA Computer Science Lab”, “LIUPPA” is considered shorter as a
literal value than “UPPA Computer Science Lab” which is longer. Note that we use default
value “short” for parameter TS in our normalization process, which aims to reduce the output
(normalized) RDF description’s size. Yet, the selection of T'S parameter values ultimately
depends on user preference and the target application. The selection of T'S parameter values

ultimately depends on user preference and the target application.

FunctioN 10 (Identify fidentify]) The identify function, noted identify(st; .o, IL), takes
as input an IRI object and the IRI Layer (IL) parameter (for giving the type of IRI analysis),
and returns as output the identity of the IRI {identifier, document, document representation,
ontology, concept} ¥

For instance, in Figure b, given:

st .o =http://it.dbpedia.org/resource/Lussemburgo and I L = network

We can apply identify(stf.o, IL), where:

identify(http://it.dbpedia.org/resource/Lussemburgo, I L) = identifier

FuNcTION 11 (Statement Selector [StSelect]) The statement selector function, noted
StSelect(st?, stj,TS), takes as input two RDF extended statements and a type selector (TS)
parameter, and returns as output an equivalent RDF' extended statement (st;fe suit)> to be later

removed from the RDF description according to parameter TS.
For instance, in Figure b, given stf, st; and T'S = “short”, where:

stf: <http://dbpedia. org/resource/Luxembourgu,owl:sameAsi, http://it.dbpedia.org/

resource/Lussemburgo, >

st;: <http://dbpedia. org/resource/Luxembourgu,owl:sameAsi, http://it.dbpedia.org/

resource/Luxemburgo, >

We can apply StSelect(stf, st;, T'S) and obtain:

!The parameter TS has the same behavior to evaluated the generality or specificity of literals values, blank

nodes values or IRIs (id values, content, etc.).
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st

result = 5t2+ Likewise, when we apply T'S = “long”, we obtain: stf.

FuncTtioN 12 (Namespace Selector [NamespaceSelect]) The namespace selector function,
noted NamespaceSelect(qn;, qnj, T'S), takes as input two gnames and a type selector (TS) pa-
rameter, and returns as output an equivalent RDF qname (qMyesut), to be later removed from

the RDF description according to parameter TS.

For instance, in Figure given gqni, qng and T'S = “short”, where:
gni < pri,ns; >= pr1 = “dcterm”,ns; = “hitp : //schema.org/”
qna < pra,nsy >= pro = “dct” ,nse = “http : //purl.org/dc/terms”

We can apply NamespaceSelect(qny,qne, T'S) and obtain:

qMresuit = qni Likewise, when we apply T'S = “long”, we obtain: gns.

Table 5.1: Summarized descriptions of functions based on definition of the extended normal-

ization process

Function Input Output | Description

Syn st;r.o, stj.o, KB T or F | Returns a boolean value to designate whether
the input values are synonyms or not
st;".o, st;r.o, KB,

EquivLit Tp T or ' | Returns a boolean value to designate whether
the input values are equivalents or not
sth, sth, TS, .
SemSelect ZbHJ ,LI stt,. | Returns an extended statement according to

the parameters (T'S,DH,LI)
identify st?‘.o, 1L identity | Returns the identity of the IRI (e.g., identi-
fier, document, etc. )

StSelect stj, st;r, TS st;“esul . | Returns an extended statement according to
the parameter T'S
NamespaceSelect qng, qng, T'S qnresuiz | Returns an gname according to the parameter

Ts

5.2 Related Work

The need for RDF normalization has been identified and discussed in various domains, ranging

over domain-specific knowledge representation, data integration, as well as service and semantic
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data mediation. Yet, few existing studies have specifically addressed the issues of logical (graph)
and physical (syntax) RDF normalization, also the need for solving the ambiguity and identity
of a resource has been identified and discussed in various studies, e.g., text summarization
IMA12], sub-structures for document summarization [LGMF04], semantic matching [ACMI0],
etc. Yet, few of them have specifically addressed the issues of the semantic ambiguity, IRI

identity, and IRI coreference to perform RDF normalization.

For clarity of presentation, we classify state of the art methods in three categories: i)
Semantic Disambiguation (briefly describing traditional semantic disambiguation for flat text
and some approaches based on RDF descriptions), ii) IRI identity identification (methods to
unambiguously identify resources in RDF descriptions), and iii) IRI coreferencing (methods

that handle co-referencing through IRI disambiguation).

5.2.1 Resolving Semantic Ambiguity

Several approaches have been developed to manage the lexical ambiguity problem, the main
problem is to identify: a term may have a multiple meanings (polysemy), a word can be im-
plied by other related terms (metonymy), and/or several terms can have the same meaning
(synonymy) [KC92| [Tek16]. Also, in RDF context, literals and RDF resource names can be
ambiguous and have multiple senses, this is a challenge for automated methods presented in
[VKMO7, MJB12, IAAD™09, [VAGS06]. In [AADT09, VAGS06], the authors proposed disam-
biguating metadata of some ontologies (Gene Ontology, MeSH and RDF/OWL of WordNet)
using sense disambiguation techniques. Authors in [VKMOT7] used techniques of name disam-
biguation to identify geographic features through the names. As Dbpedia is a big and important
knowledge base of Linked Data in [M.JJB12], the authors used named entity recognition to extend
the dataset.

All these aspects are treated in the Word Sense Disambiguation (WSD) approaches
[Nav(09] following four main elements: i) selection of word senses, ii) using external knowledge

sources, iii) identifying the context, and iv) selection of an automatic classification method.

5.2.1.1 Selection of word senses

Word sense can not be easily discretized because the language is inherently subject to change
and interpretation [Nav(9]. In the literature, we find two possible solutions to select words for
disambiguation [Tek16]: i) all-words, or ii) lexical-example. In [NWC03, PLDP07| the system is
expected to disambiguate all the words in a flat document. For the lexical-ezample in [PLDPOT],
we found specific target words that are selected for disambiguation. Experimental results

reported in [Nav09] show high disambiguation accuracy using the lexical-example approach
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against with the all-words approach. But, the major difficulty for adopting the lexical-example
is the supervised learning approaches of selecting the target words (these approaches are time-

consuming and requires training data which is not always available).

5.2.1.2 Using External Knowledge Sources

Knowledge is a main component of WDS, providing data which are needed to associate sense
with words. The WSD methods can be distinguish as: i) corpus-based (unstructured resources)
or ii) knowledge-base (structured resources) depending on the knowledge source they rely on
[Tek16]. In [MT07, [Ped06], authors develop corpus-based (data-driven) approaches, involv-
ing information about words previously disambiguated, and require supervised learning from
sense-tagged corpora (e.g., OntoNotes [PRM™11] and SemCor [MLTB93|]) where words have
been associating with explicit semantic meaning, in order to enable predictions for few words.
On the other hand, in [Mih06, NV05] knowledge-based (knowledge-driven) methods handle a
structured sense inventory and/or repository of information about words and in this way they
can automatically distinguish their meanings in the text. The structures resources (knowledge
base) as thesaurus (e.g., Roget’s thesaurus [Yar92]), machine-readable dictionaries (e.g., Word-
Net [Mil95] and Yago [HSBW13]), and ontologies (e.g., FOAF [BMI12]) provide ready-made

sources of information about word senses.

5.2.1.3 Identifying the context

Another important issue in WSD is to identify the context of the words selected to be disam-
biguated. In fact, the context give us more meaning and information about the words that
we need to disambiguate. In traditional textual data, the context of a word usually consist
of the set of terms in the word’s vicinity, i.e., terms occurrence close to the word, within a
certain predefined window size [Les86]. After the context is identified, it has to be effectively
represented to perform disambiguation computation [Tek16]. The literature shows different
methods to determine the co-occurrence of the words in flat text ([IV98]) and structured doc-
uments ([AMALS06]).

5.2.1.4 Selection of an automatic classification method

The final step is how we can associate the sense with words, taking into account the three first
points mentioned before. We can broadly distinguish two main approaches to WSD: i) super-
vised WSD and ii) unsupervised WSD. One hand, supervised methods use machine-learning
techniques to learn a classifier from labeled training sets. On the other hand, unsupervised

methods are based on unlabeled corpora, not requiring any human interaction (completely
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automated). Most recent (and RDF-related) approaches, e.g., [VKMOT7, MJB12, [AADT09,
VAGS06, LGMFE04, [MA12], make use of a machine-readable knowledge based (e.g., WordNet
[MGI95)).

Many approaches have been proposed for flat text [Nav09] and semi-structured XML-
based data [Tek16], but very few approaches have been dedicated for RDF and linked data

disambiguation.

In the remainder of this study, we constrain our proposal to the general definition of un-
supervised WSD using a reference KB (i.e., unsupervised and knowledge-based WSD) [Nav(9]
because corpus-based and supervised methods are highly time consuming and require exten-
sive and reliable training sets (to produce a relevant sense-annotated corpus) which are not
always available, while knowledge-base and unsupervised methods do not require any human
interaction or training phase, reducing the time consumption and automating the obtention of

meanings of the words in the text.

5.2.2 Resolving IRI Identity

The Semantic Web introduces a problem with IRI identity, having into account: the meaning
of a resource, and how it is represented. The Semantic Web introduces a problem with the
IRI identity, having to do with the meaning of a resource and how it is referred to. Here,
the diversity in different types of IRIs (cf. Figure [2.4)), referring to both information and non-
information resources, highlights a so-called “identity crisis” [BSMGO06]: how to distinguish
the identities of IRIs referring to information resources (on the Web), and especially IRIs
referring to non-information resources (on the Semantic Web). For instance, how can we identify
which of the following non-information IRIs is actually referring to the required information
pertaining to Sebastien: http://www.example.com/id/sebastien and http://www.example.
com/doc/sebastien. To address the problem, various methods have been suggested [AV0S]
Hal11l [Hal13bl, [JTGMO07, BSNMOS, BSB0S| Boo08|, [HHOS, HHM ™10, [HHI0, HPUZI0], which we
organize in two main categories, i.e., methods performing IRI identification: i) at the network

layer, and ii) at the data layer, based on user required services (cf. Figure [5.1)).

5.2.2.1 Network layer

Methods in this category, e.g., [AV0S, Hallll Hall3bl [JGMO07, BSNMO0S, BSB0S|, utilize the
HTTP protocol to identify the Semantic Web IRIs. Here, two solutions have been suggested:
using Hash IRIs and using 303 IRISE] [Fie03]. Methods of the former group use the hash
symbol (#) to fragment the IRI, separating its so-called root from its definition, e.g., IRI

Lurlhttp: //lists.w3.org/Archives /Public/www-tag/2005Jun/0039.html
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Figure 5.1: Taxonomy of IRI identification methods

http://www.example.com/about#sebastien would be fragmented into the root http://www.
example.com/about and the definition sebastien (cf. Figure . The Hash IRI approach is
generally preferred when handling small and stable sets of resources that evolve together (e.g.,
RDF schema vocabularies and OWL ontologies) [BG14, PSHHT04], as it reduces the number of
unnecessary HTTP round-trips and consequently access latency, while allowing IRIs to share
the same non-hash part. Yet, the major drawback of this technique is the need for loading
the data for all resources sharing the same root, because they are all in the same physical file

(location).

With 303 IRI solution, IRI identification is handled using a special HT'TP status code:
303 See Other HTTP header [Fic03], which allows to indicate that the requested resource
is not an information IRI (i.e., it is not a Web document) by dereferencing the IRI itself
to obtain a new IRI, which can in turn be dereferenced, until reaching an IRI definition.
Dereferencing can happen by going through i) one so-called generic document which then links
to others, or ii) by linking directly to different documents [Hall3b]. For example, in Figure
IRI http://www.example.com/id/sebastien| is dereferencing to on generic document
referred to by http://www.example.com/doc/sebastien, which is in turn dereferenced to
different documents: an RDF document (http://www.example.com/doc/sebastien.rdf)) and
an HTML page (http://www.example.com/doc/sebastien.html). However, Figure[5.4shows
the same IRI (http://www.example.com/id/sebastien) which directly derives to the RDF
document or HTML page without using a generic document. The 303 IRI method is usually
more suitable when dealing with large sets of data (e.g., RDF owner descriptions). In addition,
with the 303 IRI technique, the redirection target can be configured separately for each resource,
hence reducing network delay. This technique is also flexible with respect to the Hash IRI
method because it considers two dereferencing approaches: using generic documents or different
documents, which is not allowed (and can be coupled) with Hash IRI. While effective, yet the

303 IRI technique can produce a large number of redirects, thus ultimately causing high network
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http://www.example.com/about#sebastien
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content
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Content-Location: Content-Location

http://www.example.com/about.rdf  http://www.example.com/about.html

Figure 5.2: Example using Hash IRIs

latency, and may even require downloading all data to process a large number of requests in a

timely manner.

5.2.2.2 Data layer

Methods based on the data layer, e.g., [Boo0S, [HHOS, HHM ™10, HHI0, HPUZI10], can also be
organized in two categories: 1) using competing definitions, and ii) using IRI declaration. Meth-
ods of the former category, e.g., [MJBI2, [SHIJ09, HHM ™10, [HHT0, [HPUZI0, Boo08], assume
that all RDF statements are created equal, so the community or marketplace decides which
statements become the prevailing definition of a particular IRI, e.g., st;: <http://dbpedia.
org/resource/Luxembourg, owl:sameAs, http://es.dbpedia.org/resource/Luxemburgo>
and stg: <http://dbpedia.org/resource/Luxembourg, wdrs:describedBy, http://dbpedia.
org/data/Luxembourg.nt> where sameAs and describedBy are the competing definitions.
Yet, methods of the latter category (using IRI declarations), e.g., [BooO8, HHOS, [HPUZI0],
assume that RDF statements are not created equal: some are special from the outset (core
assertions). Here, the use of IRIs becomes less straightforward identifying the prevailing defini-
tion using a follow-your-nose strategy [Boo0O§| (considering all statements containing the IRI),
such that the IRI should be consistently used as the definition in all statements. For example,
considering st;: <http://www.univ-pau.fr, exi:lab, http://liuppa.univ-pau.fr/live/>,
predicate lab can have a definition provided by the owner (i.e., creator of the statement), e.g., a

laboratory. As a result, competing definitions become more ambiguous, since an IRI can mean
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Figure 5.5: Taxonomy of IRI coreference methods

what the owner chooses it to mean, or what the user would like it (perceives it) to mearﬂ

Hence, in most approaches for entity name systems [JGMO07, BSBO§| and summarization
IMA12, LGMF04] in the literature, the competing definitions approach is adopted, allowing
the user community to agreed upon the prevailing IRI definition, thus facilitating the sharing

of unambiguous information without complications.

5.2.3 Handling IRI Coreference

As the Semantic Web is an open place to publish the information, it is inevitable to have
multiple IRIs that reference the same resource. Hence, several methods were developed to
address the IRI coreference problem, e.g., [BSMGO06, BSGO7, BSB08, BSNMO0S, [GLMDO0T7,
JGMOT, [JTGMO8al, [GIM09, [JTGMO8b, RT12, LAHT09], in order to help Semantic Web applica-

tions refactor and/or republish the data. In this context, most existing approaches are based

on one of two main initiatives (cf. Figure [5.5)):

e The first initiative is OKKAM’s approach [BSMGO6, BSGO07] that advocates universally
agreed IRIs for each entity with a centralized system. The goal of the OKKAM project,
is not only to create a naming service for (non-information) resources, but also to create
a directory containing resource profiles under the single control of one authority. Addi-
tionally, this approach has a service called OKKamCore that allows to modify, remove
and publish resources and RDF statements based on a set of criteria [BSMGO06]. Based
on this project, the authors in [BSBOS, BSNMOS| [Sto08] suggested the development of
an Entity Name System (ENS) as a Web service to provide unique and uniform names

for resources.

e The second initiative is the CRS approach |[GLMDOT, JGMO07] that provides a service

!The IRI owner naming can have a lot of restrictions and problems in the implementation, because each IRI

will vary based on each owner
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which allows the publication and maintenance of coreference information in a single store
with a distributed system. In this way, clients can discover alternative IRIs to the one
they are using and use this information to help them for creating relations, RDF triples,
graphs, etc. Additionally, this approach has a general service called SameAs.orgﬂ which
provides coreference data in RDF formats. Based on the CRS project, the authors in
[JGMO8al [GJM09] propose to manage equivalent IRIs referring to the same concept or
entity (IRI synonymity), analyzing the advantages and disadvantages of using the CRS

proposal over other coreference methods.

Some authors propose to use OKKAM or CRS interchangeably [JGMO8b|, or suggest
to utilize alternative services for extracting (non-information) resourcesﬂ as Named Entity
extraction techniques for extracting, classifying and disambiguating named resources [LAH™09]
and provide IRI disambiguation for each entity that was extracted from a specific text [RT12]

using keywords provided by users.

In light of the above presentation and discussion, we will focus on unsupervised WSD
using a reference KB for solving semantic ambiguities in RDF statements (due to their re-
duced execution time and usually improved quality in comparison with unsupervised approaches
[Tek16]), while combining network layer and data layer IRI identification (by taking into ac-
count the pros of both strategies), as well as using the CRS based SameAs service for solving
IRI coreferences (which seems generally more robust and efficient that OKKAM'’s approach
[JGMO8D]). Recall that our ultimate goal remains to perform RDF normalization: i.e., to
remove all the logical redundancies and physical disparities in RDF descriptions which can
exacerbated with the presence of semantic ambiguities and IRI identify and coreference dis-
crepancies as we develop in the sections and

5.2.4 Semantic and IRI RDF Normalization
5.2.4.1 Semantic Mediation

Semantic interoperability between RDF stores is also becoming an essential requirement: al-
lowing different systems to communicate “meaningfully” with each other, exchanging RDF data
and services despite the heterogeneous nature of the underlying information structures. Seman-
tic interoperability can be achieved by the development of comprehensive shared information
models using SW technologies (e.g., shared RDF or OWL reference ontologies defining common
semantics following the SW vision)[KVS0T7, (GCGP10], or by providing appropriate semantic

mediators (translators), in order to convert information following the data format which each

"http://sameas.org/
http://www.alchemyapi.com, http://dbpedia.org/spotlight, http://extractiv.com, http://opencalais.com,

http://zemanta.com, http://www.sindice.com/
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system understands [Kea08| [Kea07, [ZV11]. Table shows the summary of all the approaches

presented in this section.

Table 5.2: Summarized semantic mediation approaches

Data
App. Targeted Features Limitations Aplication Output
r
Domain Area
e Defining common semantics follow- Blank nodes
Krogstie ing the Semantic Web vision Literals Not Semantic
et al. OWL Statements ified Inter- OWL
: specifie L
[KVS07] e Trying to produce a universal ontol- Names- operability
ogy paces
e Identifying ontology heterogeneity Semantic
. levels: lexical, syntactic, paradigm, Blank_nodes
Garcia . ) d Literal Inter-
a erals L
_Castro OWL, termino F)gll(:a s conceptual, an o 1t T . Not operability WL
atements
et al. RDF/XML pragmatica N specified and
ames-
[GCGP10] Bench-
e Storing ontologies and sharing re- paces marking
sources (URI)
Proposal name: Ontology - Based mediator
e The result of the RDF data and
query are normalized based on inte- Blank _nodes
Kerzazi grated ontologies Literals
Not Data In- RDF
et al. RDF file Statements . a 'n
. . . specified tegration file
[KealT7] e Using matching techniques Names-
paces
o Registration of resources’ semantics
by relating them with ontologies
Using the Ontology - based mediator in
[Keal7]
Blank_nodes
Kerzazi Literals
raaznt Query e Translating and optimizing the query er Not Data In- Plain
et al. Statements . )
[R<a08) RDF N specified tegration text
eal ames-
e Using several phases into an exe-
paces
cutable query plan

In most of the above mentioned projects, RDF normalization is viewed as applying prede-
fined mapping dictionaries to define the correspondences between the original data constructs
and the RDF constructs. In other words, most studies consider the original data to be well
organized (normalized), thus the resulting RDF data would allegedly follow. Note that in most
of these projects, issues of redundancies in RDF logical and syntax representations, which can

occur in the produced RDF descriptions, are mostly left unaddressed.

5.2.4.2 TIRI Disambiguation in RDF descriptions

Resource disambiguation in RDF descriptions is also becoming a challenge to normalized RDF
descriptions, allowing to reduce number of IRIs and reuse them in the LOD context. Several

approaches have been developed to IRI disambiguation, using different datasets as DBpedia,
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DBLP, WordNet, OpenCy etc. in [JGMOSD, RSD*10, SNAT2, [UNRF14]. In [JGMOSD], the
authors address the problem of coreference and provides an analysis about two main solutions
for IRI disambiguation. The first one, ReSIST [Srl] project that has gathered metadata from
publications and institutions and exposed them as linked data, using 15 repositories with their
own CRS [GLMDO07, [JGMQT7], each CRS can use different algorithms to identify equivalent
resources (see Section . The second one, OKKAM project, detailed also in Section
it is considered as a generator of “Web Entities” where the main aims are to create a naming

service for resources and a directory with resource profiles.

For service-oriented natural language processing, there are some approaches that use
resources (RDF/OWL) to disambiguate text [SRDT09, RSD*10], thus providing annota-
tions of words and improving the semantic graph quality, by merging nodes that refer to the
same disambiguated concept. In a related study [UNR™14] to resource disambiguation, the
authors introduce AGDISTIS as a knowledge base approach for named entity disambiguation.
AGDISTIS combines the Hypertext-Induced Topic Search algorithm with string sim-
ilarity measures (breadth-first) and label expansion strategies to detect the correct IRI for a

given set of named resources.

In [SNA12], in order to disambiguate a resource and generate an automatic query seg-
mentation, the authors leverage the semantic relationships between data items using Markov
models and algorithm to disambiguate resources. Results of this approach show that it

is robust with regard to query expression variance of resources.

Note that, in most of the above mentioned projects, RDF normalization is viewed as
disambiguating IRIs. In other words, the focus of these studies are in handeling coreference
between IRIs, to obtain the correct IRI (normalized) for a resource. Finally, issues of redun-
dancies and disparities generated for IRI coreference are left unaddressed. Table shows the

summarization of all the approaches presented in this section.

5.3 RDF Normalization Rules

In this section, we provide a set of rules to resolve the normalization problems generated by

semantic ambiguities and IRI discrepancies listed in Section

5.3.1 Solving Logical Redundancies generated by Semantic Ambiguities

Given an input RDF graph G, logical redundancies related to node duplication based on seman-
tic ambiguities (presented in Section [3.3.3) can be eliminated from G by applying the following

"http://sw.opencyc.org
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Table 5.3: Summarized Resource

disambiguation approaches

App.

Data
Targeted

Features

Limitations

Aplication

Datasets

Area

Output

Jaffri et
al.
[JGMO8D|

RDF
description

Analysing two solutions to
the coreference problem

ReSIST Szl handles
coreference from publi-
cations and institutions
with 15 repositories each
with  their own CRS
[GLMDO07, [IGMO07]

OKKAM project
[BSMGO06, [BSGO07] is a
centralised system to cre-
ate a naming service for
entities

Blank_nodes
Literals
Statements
Namespaces

DBLP
DBpedia

Identity
manage-
ment

Theoretical
approach

Rusu et
al.
[RSDT 10|

Text
fragment

Extension of Enrycher
ISRDT09] with RDF/OWL
word sense annotation

Every word or collocation
in a text fragment is anno-
tated with the correspond
resources to WordNet and
OpenCyc

Blank_nodes
Literals
Statements
Namespaces

WordNet
OpenCyc

Service-
oriented
NLP

Not
specified

Shekarpour
et al.
[SNA12)|

n-tuple

Automatic query segmen-
tation and resource disam-
biguation method leverag-
ing background knowledge

Leveraging the semantic
relationship between data
items using Markov models

Distributing a normalized
connectivity degree across

the state space (with [HITS]

algorithm)

Blank_nodes
Literals
Statements
Namespaces

DBpedia

Data

Integration

RDF file

Usbeck et
al.
[UNRT14]

N3 Text

Proposal name: AGDISTIS

e Named entity disambigua-

tion approach and frame-
work

Combining m algo-
rithm with label expansion
and string similarity
measures

Blank_nodes
Literals
Statements
Namespaces

Reuters-21578
RSS-500
news.de
AIDA-
YAGO2
MSNBC
AQUAINT
IITB

Information
Extration

Plain
text
(HITS)
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transformation rules:

Rule 1 - Semantic Statement Elimination containing blank node elements: It is
designed to eliminate node duplications with blank node elements using the semantic select
function (SemSelect) between extended statements. More precisely, Vst;r,st;r e STH(G) /
i # 7, if stf < st = remove((st.,, UO(stl,,,)), STT(G)), where:

SeEmM sem

+
Stsem

= SemSelect(st?, stj, TS, null, null).

Rule 2 - Semantic-based Statement Elimination containing literal elements: It is
designed to eliminate node duplications with literal nodes using the semantic select function
(SemSelect) between extended statements. More precisely, V.St;r,stj+ € STT(G) /i # j,
if Stj.s = st.s A stj.p = stf.pAstfto= stj'.to = “literal” A Syn(st] .o, st;'.o, KB) =

remove(st,,,, STT(G)), where:
sth, = SemSelect(st], st;r, TS, null, null).

Note that literals can be affected by properties as datatypes and languages. Considering

these properties, we establish variants of the Rule 2 as follows:

Rule 2.1 - Semantic-based Statement Elimination with same datatype: It is designed
to eliminate node duplications when literals are affected by the same datatype using the se-
mantic select function (SemSelect) between extended statements. More precisely, Vst , stj+ €
STH(G) /i # j, if stf.s = st .s Nst].p = stf.pAstfto = stf.to = “literal” N st].dt =
st .dt A EquivLit(st] .o, st} .0, KB, TP) = remove(st},,, STT(G)), where:

sem?

+
Stsem

= SemSelect(st], stj, TS, null, null)

Rule 2.2 - Semantic-based Statement Elimination with different datatypes and
same object values: It is designed to eliminate node duplications when literals are affected
by different datatypes while having the same object (literal) using the semantic select function
(SemSelect) between extended statements. More precisely, Vst;r,st;“ € STH(G) /i # j,
if st?.s = stf.s A stj.p = stf.p A st;r.o = stf.oA st;r.to = st .to = “literal” N stj.dt +

sti.dt = remove(st},,,, STT(G)), where:

sem?

+
Stsem

= SemSelect(st], Stj_, TS, DH, null)

Rule 2.3 - Semantic-based Statement Elimination with different datatypes and
different object values: It is designed to eliminate node duplications when different liter-
als, having the same meaning, are affected by different datatypes using the semantic select
function (SemSelect) between extended statements. More precisely, Vstj,st;r e STH(G) /
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i # g, if stj.s = st;r.s A st;r.p = stj.p A st;r.to = st;“.to = “literal” N st;r.dt <> stf.dt A
EquivLit(st] .o, stj.o, KB, TP) = remove(st},,,, ST (G)), where:

sem?

stT

S = SemSelect (st} stj', TS, DH,null)

Rule 2.4 - Semantic-based Statement Elimination with same language tag: It is
designed to eliminate node duplications when literals are assigned the same language tag,
using the semantic select function (SemSelect) between extended statements. More precisely,
Vstj,stj € STT(G) /i # j,if st;r.s = st .s A stj.p = sti.pA st;r.to = st .to = “literal” N
stj.lang = st .lang A Syn(st] .o, st;r.o, K B) = remove(stt,,., STT(G), where:

sem?

+
Stsem

= SemSelect(st], st;r, TS, null, null)
Rule 2.5 - Semantic-based Statement Elimination with different language tags and
same object value: It is designed to eliminate node duplications when literals are affected
by different language tags using the semantic select function (SemSelect) between extended
statements. More precisely, Vstj,st;r € STH(G) /i # j, if st;r.s = stf.s A st;r.p = sti.p A
stj.to = st .to = “literal” A stj.o = st oA stj.lang # st .lang = remove(stl,,,, STT(G)

where:

+
Stsem

= SemSelect(st], Stj_, TS, null, LT)

Rule 2.6 - Semantic-based Statement Elimination with different language tags and
different object values: It is designed to eliminate node duplications when different literals,
having the same meaning, are affected by different language tags using the semantic select
function (SemSelect) between extended statements. More precisely, Vst;r,st;r e STH(G) /
i # 7, if stj.s = stj.s/\stj.p = st .pASyn(st] .o, stj.o, KB)Astf to= st;L.to = “literal’ =

remove(stl,, ST (G)) where:

sem?

+
Stsem

= SemSelect(st], stj, TS, null, L)

Recall that we use default value “short” for parameter 7'S in our normalization rules,
which aims to reduce the output (normalized) RDF description’s size. Yet, any other T'S
parameter value can be chosen by the user, following her/his preferences and the target appli-

cation.

5.3.2 Solving Logical Redundancies generated by IRI Discrepancies

Given an input RDF graph G, logical redundancies related to node duplication, and edge
duplication based on IRI discrepancies (presented in Sec. |3.4.4) can be eliminated from G by

applying the following transformation rules:
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Rule 3 - IRI-based Statement Elimination: It is designed to eliminate edge duplica-
tions and/or node duplications using the entity select function (StSelect) between extended

statements, which we detail in the following in two variants:

Rule 3.1 - IRI-based Statement Elimination based on objects: It is designed to elimi-
nate node duplications using the entity select function (StSelect) between extended statements.
More precisely, Vst:r,stj € STH(G) /i # j if identify(st] .0, IL) = identify(stj.o, IL)) A
sti.s= st;r.s/\st;“.p = st;r.p = remove(st} .. STT(G))Areplace(st} .0, sth, .0, STT(G)),

result’ result
where:
sth o = StSelect(st;r,st;r,TS) and st .o is the IRI selected as equivalent from

+

+
the extended statement st selec

result and st

,-0 is the IRI selected (i.e., equivalent) of the other

extended statement.

Rule 3.2 - IRI-based Statement Elimination based on predicates: It is designed to elim-
inate edge duplications using the entity select function (StSelect) between extended statements.
More precisely, Vst stj+ € STH(G) /i # j if identify(st} .p,IL) = identify(st;r.p, IL)) A

sti.s = st;'.s Asth.o= st;'.o = remove(st ST*(G)), where:

result’

st

result

= StSelect(st;, st;', TS)

5.3.3 Solving Physical Disparities generated by IRI Discrepancies

Given an input RDF file F', physical disparities related to namespace duplication base on IRI
discrepancies (presented in Section [3.4.5)) can be eliminated from F' by applying the following

transformation rule:

Rule 4 - IRI-based Namespace Duplication Elimination: It is designed to eliminate
namespace duplications using the namespace select function (NamespaceSelect) in an RDF file
F. More precisely: Vgn;,qn; € QN (F') /i # j ifidentify(qn;.ns,IL) = identify(gnj.ns,IL)) =
remove(qnyesut, QN (F)) A replace(qnyesuis-ns, qMiselect-ns, STT(F)), where:

qNyesuit = NamespaceSelect(qn;, qn;, T'S) and qngeect select (i.e., equivalent) names-

pace.

5.4 RDF Normalization Process

Here, we build on the R2NR architecture provided in Chapter [4]to consider all the new semantic

and IRI-based problems presented in Section (3 (i.e., semantic ambiguities between literals and
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blank nodes, as well as IRI identification and coreference discrepancies). We develop the overall
architecture of our new R2NRE (RDF to Normalized RDF Extended) framework, depicted in
Figure It consists of three levels: i) syntactic level, ii) semantic level and, iii) Entity level
with one extra module called IRI handler. In short, the three levels have different algorithms
to remove and manage the redundancies and disparities discussed in Section |3}, based on the
normalization rules developed in Section [5.3] R2NRE accepts as input an RDF graph or an
RDF file as well as a set of parameters (summarized in Table to handle the semantic and
IRI-based normalization according to the requirements of the user (cf. detailed descriptions of
functions in Section and operator parameter in Section. In the following, we describe

the semantic and IRI level in more details.

IRI Cache
Manager -
External IRI Source 3 Ll 2
(e.g., SameAS API) E
IRI =
o Matcher E
7 >
e Reference Resolver
User parameters: IRI type
1.Output Format (OF), 7 é Identifier IRI reference Namespace reference
2. Prefixing Renaming (PR), Resolver Resolver =
3.5orting Index (S1), 8 = ry 2
4.5emantic Target (ST), e o
5. Datatype Hierarchy (DH), | or <
6.Language Indicator (LI, IRI 9 o
7.1RI Layer (IL) a 2 Extractor
8. Type Selector (T3)
9. Document Type (DT)
o
Datatype g
Resolver g
Semantic Reference Semantic Redundancy =3
Base Resolver [
(e.g., WordNet) '<n
g LTS o Output
Normalized
Input Namespaces Formatter RDF
: Filter w
RDF I, Syntactic = Description
Description Extractor Redundancy o I
Resolver a8 ”
a D
D 1 g
o
Logical Normalization Physical Normalization

Figure 5.6: Overall architecture of our RDF normalization framework

Note that our framework is flexible such that the user can choose the kind of normalization
to apply on an RDF description, based on her needs, i.e., performing: syntactic-only, syntactic-

semantic, syntactic-IRI, or combined syntactic-semantic-IRI normalization.
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Table 5.4: Summarized descriptions of sets used in our approach

Parameter

Allowed Values

Description

Output Format (OF)

vy: flat, vo: compact,

vs: full compact

Allows the user to choose between three
types of formats defined in [THTC™15])

Prefixing Renaming (PR)

v1: original, vy: sys-
(default), wvs:
collective

tem

Allows the user to choose between the
original prefixes, the system renaming
prefixes or the collective prefixes defined
in [THTC™15]

Sorting Index (SI)

V1t SpO, Ug: PSO, Us:
pOS, U4: OSP, Us: ODS,
vg: sop (default)

Allows the user to choose between the six
indexes for the elements of the statement

(subject, predicate, object)

Semantic Target (ST)

v1: bn, vg: IRI, v3:
literal (default), wvq:
null

Allows the user to choose the elements of
the RDF Description to analyze seman-
tically (blank nodes, IRIs, literals, or the
combinations between them)

Datatype Hierarchy (DH)

v1: user, vg: stan-

dard (default)

Allows the user to choose the standard
hierarchy (W3C) of the datatypes or in-
sert the user hierarchy preference

Language Indicator (LI)

v1: user option, vg:

null default: en

Allows the user to choose the language
preference for the normalization (en, es,
fr, etc.)

IRI Layer (IL)

vy network, vs:
data (default), wvs:
null

Allows the user to choose the layer for

the IRI analyzing (network or data)

Type Selector (TS)

v1: generic, vy: Spe-
cific, vs: short (de-
fault), vy long, vy:
threshold, wvs: an-
other

Allows the user to choose the type of se-
mantic and IRI evaluation based on the
generic or specific information, the short-
est or longest one or using a threshold,
i.e., the user he will choose the parame-
ter depending on the target application
that he wants to use, e.g., storage (less

expensive), loading, etc.

Document Type (DT)

s RDF/XML,
ve: N3 (default),
vz:  JSON-LD, wvy:

another

Allows the user to choose the document
type of semantic evaluation based on the
generic or specific information, the short-
est one or using a threshold
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5.4.1 Semantic Level

This level is developed to resolve semantic ambiguities between literals and blank nodes in an
RDF description. It only targets logical (RDF graph) normalization, allowing to eliminate all
semantic-based blank node duplications and/or literal node duplications (discussed in Section
3.3.3)), and obtain extended statements without semantic duplications (cf. Rules 1 and 2). It

consists of two major components:

1. Semantic Redundancy Resolver (RR): it allows to eliminate all the redundancies
(Rules 1 and 2) caused by the semantic ambiguities. The inputs of this component are
the extended statements from the input RDF description and the type of selector (TS)
parameter given by the user, and produces as output a transformed RDF description
where semantically redundant statements have been eliminated (following user preferences

expressed by TS).

2. Property Resolver (PR): activated when the statements contain datatypes and/or lan-
guages tags. It allows to eliminate the logical redundancies in statements with datatypes
and language tags (Rules 2.1 until 2.6) caused by the semantic ambiguities. The inputs
of this component are the extended statements obtained as output from the semantic
redundancy resolver, and two optional parameters: Datatype Hierarchy (DT) and Lan-
guage Indicator (LI), highlighting the user’s preferences about working with a specific
datatype hierarchy or language.

The pseudo-code of our semantic redundancy resolver is provided in Algorithm 3. Note
that, the property resolver is activated in the algorithm 3, using the parameters DH and LI to

select the semantic statement duplication.

5.4.2 IRI Level

This level is developed to resolve IRI identification and coreference discrepancies in an RDF
description, to avoid IRI duplications. It targets both logical (RDF graph) and physical (RDF

serialization) normalization.

6.2.1 Logical Normalization

It is the first step in IRI-level normalization, allowing to eliminate all the logical redundancies
in the input RDF graph created by the IRI discrepancies (discussed in Section [3.4.4]), and
obtain extended statements without IRI duplications (cf. Rule 3). For this purpose, we divide

logical normalization in three-components:
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Algorithm 3 Semantic Redundancy Resolver

Input: ST+[| //List of Extended Statements of the RDF Description

TS,DH, LI //Parameters
KB //Knowledge base

Output: STT[] //List of Extended Statements without semantic duplication
1: N=stt.length(); //Number of Statements in the list
2: for i=1,i < N, i++ do

3:
4:

9.

10:
11:
12:
13:
14:
15:

for j=i+1, j < N, j++ do
if stT[j].to = “bn” and stt[i].to = “bn” and st*[i].s = st [j].s and st*[i].p = stt[j].p and (stt[i] < stT[j] or
stt[j] < stt[i]) then
SemSelect(stj_, st}' ,TS, DH, null)
remove((stdem U O(stdem)), STT(]); // remove blank node duplication - Rule 1
else
if stt[i].to = “literal” and st*[i].s = st*[j].s and stT[i].p = stT[j].p and Syn(st; .o, stj'.o, KB) then
if DH<>null then
S’emS’elect(st?7 stj7 TS, DH, null)
if LI<>null then
SemSelect(st:r, st;-r7 TS, null, LT)
else
,S'emSelect(st;."7 stj', TS, null, null)

remove(stiem, STT]); // remove semantic statement duplication - Rule 2

16: return ST

1. IRI Extractor (IE): it extracts all the IRIs from the extended statements in an RDF

Graph. The inputs of this component are the extended statements produced as output
by property resolver, or the extended statements produced as output by the syntactic
redundancy resolver (in the case the user wished to perform syntactic-IRI normalization

only, i.e., without semantic normalization).

. IRI type identifier (ITI): it implements the type identification step of each IRI (name

recognition of the entity and type). The inputs of this component are all the IRIs with
their respective extended statements from the RDF graph, and the IRI layer (IL) pa-
rameter that allows the user to choose between data or network IRI (cf. Section [5.2.2))

evaluation.

. IRI Reference Resolver (IRR): it allows to eliminate all the redundancies (Rule 3)

caused by the IRI discrepancies in the RDF Graph. The inputs of this component are
the sets of ambiguous extended statements (based on the type of IRI, identifying the
same resource) and two parameters: Type Selector (TS) and the Document Type (DT).
allowing to capture user preferences about the type of selection (e.g., short, generic, etc.,
according to the target application) and the type of serialization (format, e.g., RDF /XML,
N3, etc.) when dealing with the “document presentation” IRI type. The pseudo-code of

our IRI reference resolver is provided in Algorithm 4.
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Algorithm 4 IRI Reference Resolver

Input: ST+[| //List of Extended Statements of the RDF Description
TS,IL //Parameter

Output: STH[] //List of Extended Statements without IRI discrepancies

1: N=stt.length(); //Number of Statements in the list

2: for i=1,1 < N, i++ do

3: for j=i+1, j <N, j++ do

4: if stT[i].to = “IRI” and st*[i].s = st*[j].s then

5: if stT[i].p = stT[j].p and iclemfify(st;r.07 IL) = identify(stj.o, IL) then

6: StSelect(st?,st?,TS)

T else

8: if stt[il.o = st*[j].0 and identify(stzr.p7 IL) = identify(st;r.p7 IL) then
9: StSelect(st?,st}r,TS)

10: Temove(st:mb, ST*[]); // remove semantic statement duplication - Rule 3

11: return ST

6.2.2 Physical Normalization

It is the second step in IRI-level normalization, allowing to eliminate namespace duplications
which can create IRI discrepancies (discussed in Section , and allows obtaining an RDF
file without namespaces duplications (cf. Rule 4). It basically consists of one component:
Namespace Reference Resolver, which accepts as input the sets of ambiguous namespaces
in an RDF file, and eliminates duplicated ones (based on the type of IRI identifying the same
vocabulary). We provide the pseudo-code of this component in Algorithm 5.

Algorithm 5 Namespace Reference Resolver

Input: QN[] //List of Qnames of the RDF Description
TS,IL //Parameter

Output: QN[] //List of Qnames without IRI discrepancies

1: N=stt.length(); //Number of namespaces in the list

2: for i=1,i < N, i++ do

3 for j=i+1, j < N, j++ do

4: if identify(qni.ns, IL) = identify(qn;.ns,IL) then

5

6

NamespaceSelect(qn;, qn;, T'S)
remove(qnams, QN|[]) and replace(qnamp-ns, @nseciect-ns, STT(]); // remove namespace discrepancies - Rule

4
7: return QN T[]

5.4.3 IRI Handler

This module is developed to solve the IRI reference problem (discussed in Section which

is required to detect and eliminate IRI duplications.

1. IRI Matcher: it implements IRI disambiguation between IRIs that identify the same
resource with the same type (which is used inside Function [I1). The inputs of this

component are all the IRIs with their respective types and extended statements, as well

111



5.5. Summary

as the IRI layer (IL) parameter. We provide the pseudo-code of this component in
Algorithm 6.

2. IRI Cache Manager: it provides a storage for IRIs that generated after doing the
matching between the IRIs using an External IRI Source (e.g. SameAsE] API). It allows
the matching component to request the information from the IRI cache manager and , in

case it is not found, to the request it from an external (user designated) IRI source.

Algorithm 6 IRI Matcher
Input: IRI;,IRI; //Iris to be match
IL //Parameter
Source //Parameter

Output: boolean //Boolean value
1: Matcher(IRI;,IRI;, Source)
2: return boolean

5.5 Summary

In this chapter, we propose an extension of our syntactic RDF normalization framework, i.e.,
R2NR (Chapter {4)) by integrating two additional levels (semantic and IRI) and one component
(IRI handler) detailed in Section

To develop this extension in Section we presented additional functions related to
solving the semantic and IRI challenges, leading to the creation of our new normalization rules
(Section [5.3). Our extended RDF normalization framework, titled R2NRE, allows to keep all
the characteristic of our first approximation, adding two new specifications related to semantic
and IRI normalization, where through functions an rules our method can eliminate all the log-
ical redundancies and physical disparities in RDF descriptions related to semantic ambiguities
and IRI discrepancies (identified in our motivation Chapter [3) and obtain a normalized RDF

description.

In table we compare our extended RDF normalization against state of the art ap-
proaches detailed in Section Note that in the table X means that the approach
does not solve the problem, v'* means that the approach solves partially the problem, and v/
means that the approach solves the problem. As shown this table, our approach covers all the
problems presented in Chapter [3] in contrast with existing techniques which neglect most of
them.

In the next chapter, we present and analyze the results of our experimental evaluation
and discuss what this means for the effectiveness and efficiency of our approach. Also, we

compare our results against two main methods (HDT and JSON-LD).

"http://sameas.org/
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Chapter 6

Experimental Evaluation

“Simplicity is prerequisite for reliability.”

— E. Dijkstra

In the preceding two chapters we presented our RDF normalization approach. In this
chapter, we describe our prototypes (Section , experimental metrics (Section , the
experimental environment (See section , and the results of our experiments (Section .
Experiments target the effectiveness, efficiency, jena loading time improvement, and storage
improvement of RDF descriptions when performing normalization. Next, in Section [6.5] we
also compare the quality of our approach with respect to JSON-LD and HDT methods. Finally,
we wrap-us this chapter with a summary in Section

6.1 Prototype

In order to validate our proposal, we have developed two versions of our prototype: online
and desktop systems to test, evaluate, and validate our RDF Normalization framework. We
call our prototypes RDF2NormRDF. The desktop prototype system was developed using
Java 7.0 (See Figure , whereas the online prototype system[] was developed using PHP and
Java as the RDF engine (See Figure . RDF2NormRDF was implemented following the
R2NR architecture described in Figure Hereunder, we describe the main components of

the system:

e The logical normalization component, accepts as input a (set of) RDF /XML file(s)

and then parses the corresponding RDF descriptions, transforming them into extended

! Available at http://rdfn.sigappfr.org/
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Figure 6.1: Desktop Prototype Interface.
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prefixes, etc. of
input and output
file, % redundancy,
etc.

statements while removing all logical redundancies, using Jena Libraries to parse the

input file.

e The physical normalization component accepts as input: the output of the logical

normalization component, in addition to prefix renaming and output format parameters,

and then runs the latter through three consecutive processes: (a) Namespaces Controller

(including the elimination of duplicate and unused namespaces), (b) Sorting Processor

(producing statements in a specific order), and (¢) Formatting Processor (producing the

output normalized RDF description based on the output form chosen by the user).

Below, we detail the information of the tabs in the Output online interface (Figure :

after the sorting process.

according to the input parameter about the prefix renaming.

Info: in this part, we present the following information:

Output: the RDF/XML normalized document in accordance with the RDF /XML docu-

ment input and the parameters of the format.

Statements: The statements are printed with the subject, predicate and object values

Prefix: The prefixes and namespaces they represent after the normalization process,

— Normalization Time: It measures the total time of the process. The time computa-

tion is represented in nanoseconds.
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— Input Jena Time: the time to uploading in Jena the input file.

— Input size: The number of bytes in the input.

— Input IRI nodes: the number of IRIs in the input file.

— Input Blank nodes: the number of BNs in the input file.

— Input Literal nodes: the number of literals in the input file.

— Input Statements: the number of statements in the input file.

— Input Namespaces: the number of namespaces in the input file.

— Output Jena Time: the time to uploading in Jena the output file.
— OQOutput size: The number of bytes in the output file.

— Output IRI nodes: the number of IRIs in the output file.

— Output Blank nodes: the number of BNs in the output file.

— Output Literal nodes: the number of literals in the output file.

— Output Statements: the number of statements in the output file.
— Output Namespaces: the number of namespaces in the output file.
— Results of % Redundancy Reduction.

— Results of % Disparity Reduction.

— Results of % Size Reduction.

— Results of % Reduction Jena Loading Time.

6.2 Experimental Metrics

We utilized three main criteria to evaluate the quality of our normalization approach: i) effec-

tiveness, ii) efficiency, and iii) applicability.

6.2.1 Effectiveness (Z)

It is a boolean value that measures our normalization method (logical normalization process
and physical normalization process) by assessing the resulting normalized RDF files w.r.t. the
normalization goals and properties covered in Sections [4.3] and such as:

E(DS;) = T(DS;) AP(DS;) AK(DS;) (6.1)
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[(DS;) = True if yg(DS;) = v1(DS;)

Y, (D) 62)

DS;) =
YE(DS;) -

Y, (D) 63

DS;) =
Y1(DS;) -

where:

DS is the RDF dataset,
n is the number of files in the dataset,

I' is the comparison between the average of logical redundancies in the input dataset
group (DS;) and the logical redundancies eliminated from the same dataset group for the
method,

Ir is the percentage of logical redundancies in the file,

ve and ~; are the average of logical redundancies in the dataset group where E is the

average of the eliminated redundancies and I is the average of the input of redundancies.

P(DS;) = True if pg(DS;) = pr(DS;)

Z?:l pd(Di)

DS;) =
PE( Sz) n

(6.4)

2 iz Pd(Di)

DS;) =
p1(DS;) .

(6.5)

where:

DS is the RDF dataset,
n is the number of files in the dataset,

P is the comparison between the average of physical disparities in the input dataset group

and the physical disparities eliminated from the same dataset group for the method,
pd is the percentage of physical disparities in the file,

pr and py are the averages of physical disparities in the dataset group where E is the

average of the eliminated disparities and I is the average of the input of disparities.
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K(DS;) = True if:

VD; € DS;/D; is consistent
where:

e DS is the RDF dataset,

e /C is the evaluation of the consistency in the dataset group.

6.2.2 Efficiency ()

In addition to assessing the effectiveness of our method in producing normalized documents,
we evaluated its time performance and its complexity, using the following measure:

" pt(D;

)\(DSZ) — Zl_]_p ( ’L)

’ (6.6)

where:

e 7 is the number of files in the dataset,

e pt is the average of processing time of the file.

6.2.3 Applicability

We also evaluated the impact of our normalization process in a practical application setting,
evaluating: i) Jena (framework for building Semantic Web applications which has been used
in several projectd]] and existing studies [GCGP10]) loading time (IT) and ii) RDF file storage

space (®). Here, we used the following measures:

f(ps, - S22 67
(05, - Zear(D) 69

where:

e 1 is the number of files in the dataset,
e [t is the average of Jena loading time of the file,

e sr is the percentage of size reduction of the file.

"https://jena.apache.org/about_jena/contributions.html
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6.3. Experimental Environment

6.3 Experimental Environment

6.3.1 Processing Context

The experiments have been done under the environment described in Table

Table 6.1: Experimental Environment

CPU Intel®Core(TM) i7 - 2600 + 3.4GHz
Memory 8.00GB

OS MS Windows 7 Professional
Programming Environment Sun JDK 1.7

6.3.2 Dataset Context

We conducted experiments on 11 datasets categorized in four groups:

e (Group 1): The first dataset group consists of two synthetic data-sets created based on

the running examples covered in our study. This group was created to test the quality

of our method when applied on user files with redundant information in blank nodes,

literals, statements, namespaces and unused namespaces.

Syn_DS1

Syn_DS2

: It consists of 13 generated RDF /XML files with different characteristics manually
tuned to highlight the behavior of our method, while varying the duplications of
BNs, statements, literals, and namespaces. Files of the Syn_DS1 dataset are hetero-
geneous w.r.t. file size, RDF output form (flat, compact, or full compact), as well
as the number of IRIs, BNs, literals, and statements. Yet, the files are homogeneous

w.r.t. the namespaces utilized (i.e., they contain only few namespace disparities, cf.

Table .

: It consists of 114 generated RDF /XML files based on modifications in the running
example with more statements, blank node duplications as well as duplicated names-
pace prefixes and unused namespaces on a bigger scale then Syn_DS2 dataset. This

dataset is heterogeneous w.r.t. the number of blank nodes, literals and statements

(cf. Table [6.2)).

e (Group 2): The second dataset group is based on real files from the online version of

the Linked Open Data cloud. This group was created to test the quality of our method

when applied on real files with few or without redundant information.
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LGD Link’edGeoDataﬂ dataset consists of 500 RDF/XML homogeneous files sharing

similar features w.r.t. the number of nodes and the number of statements.

DBp DBpedz'aE| dataset consists of 355 RDF /XML heterogeneous files which mainly vary

w.r.t. file size, the number of IRIs, and the number of statements.

WN : WordN 6le| dataset consists of 1087 RDF /XML heterogeneous files which vary w.r.t.

the number of nodes, and the number of statements.

e (Group 3): The third group of datasets is generated by including additional random
redundancies and disparities in two real datasets of the Group 2. This group was gen-
erated to test and measure the behavior of our method when handling typical files with

redundant information.

LGD2 : It consists of 145 generated files of Linked GeoData with statements and namespaces

duplicated and a few unused namespaces.

DBp2 : It consists of 119 generated files of DBpedia with statements and namespaces

duplicated and a few unused namespaces.

e (Group 4): The fourth dataset group was synthetically created based on the datasets
of groups 1 and 3 (Syn_DS1, Syn_DS2, LGD2 and DBp2) after applying theJSON-LD
Normalizatz’onﬁ and HDT techm’qudﬂ This group was used to test the efficiency of our
approach in comparison with both JSON-LD and HDT normalization methods.

The main features of all datasets are summarized in Tables and Note
that in tables and the datasets after applying JSON-LD method have some logical
redundancies but not present any physical disparities (due to the output format does not allow
to have namespaces duplications) and datasets after applying HDT method do not present any
logical redundancies or physical disparities (due to all blank node redundancies are represented
as IRIs). A detailed evaluation about this results, we provide in Section where we discuss
about the behavior of other methods.

"http://linkedgeodata.org/Datasets

http://wiki.dbpedia.org/Datasets

3http://wordnet-rdf.princeton.edu/

“http://json-1d.org/playground/

Shttp://www.rdfhdt.org/download/, HDT is a compact data structure and format for RDF. In order to

compress the file, this technique reduces the verbosity, erasing some redundancies and assigning unique IDs to

the elements (see Section [4.2.2).
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6.4 Experimental Results

6.4.1 Effectiveness (RDF Normalization Quality)

We verified, for both synthetic and real datasets, that our normalization goals were success-
fully reached, solving all identified problems (cf. Section , and verifying all normalization
properties (cf. Section [4.4)) as well.

In short, results clearly show in Table[6.5] that the effectiveness scores of our method in all
the dataset groups are True, e.g. Z(Syn_DS1) = True. In other words, the normalized RDF
descriptions, that our approach produces, fulfill all predefined properties and goals in both real
and synthetic datasets, i.e., eliminating the logical redundancies and physical disparities (only
for the syntactic leveED while preserving the consistency of the files. Note that WN dataset
does not have logical redundancies and physical disparities and after applying our method the
dataset continue preserving the consistency. So, we prove that our method does not cause any

variation in quality of original data.

In group 2, we have special cases: RDF files that they do not have redundancies and/or
disparities, or contain few redundancies as DBp, however our approach does not cause any

negative impact in the datasets and thus preserves the consistency of such files.

Table 6.5: Goals and properties achieved in the Datasets

Goals/Properties Group 1 Group 2 Group 3
Syn DS1 | Syn.DS2 | LGD DBp | WN | LGD2 | DBp2

Solving logical redundan- | 32% 64% 0% 0.004% | 0% 57% 52%
cies (%input=%erase)

Solving physical dispari- | 60% 70% 54% 0% 0% 48% 46%
ties (%input=%erase)

Preserving completeness True True True True True | True True
Preserving minimality True True True True True | True True
Preserving compliance True True True True True | True True
Preserving consistency True True True True True | True True

6.4.2 Efficiency (Time Performance)

In fact, the complexity of our method comes down to worst case O(/N?) time where N represents

the number of RDF statements in the target RDF description D, since our main normalization

!The semantic and IRI levels will be evaluate in future works

125



6.4. Experimental Results

30
3 2
20
9 15
10

on

milise

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

bytes

Figure 6.3: Average normalization time in the Syn_DS1 dataset which RDF descriptions contain

a considerable amount of logical redundancies and physical disparities.

process (cf. Algorithm 1 - Redundancy Controller) needs to process each statement in D against
all others in D in order to identify and then solve redundancies/disparities, given that output
(normalized) statement re-ordering and serialization (cf. Algorithm 2 - Statements Sorter)

requires average linear time.

Note that our overall normalization process can reach average linear complexity lev-
els, i.e., best case O(NN), when processing RDF descriptions with no or very few redundan-
cies/disparities: where the normalization process would simply come down to sorting state-
ments (cf. Algorithm 2).

Experimentally, we evaluate our method’s time performance with each grouﬂ

e Group 1: First in the Syn_DS1 dataset, we verify our method’s polynomial time
(almost linear) dependency on the size of the RDF file, containing blank nodes, logical

redundancies, and physical disparities (see Figure [6.3)).

Second in Syn_DS2, we verify our method’s polynomial time (almost linear) dependency
on the amount of blank nodes of the RDF file, containing logical redundancies and physical
disparities (see Figure a). Meanwhile, time dependency on RDF file size becomes

relatively trivial when the amount of the blank nodes is significant in the files as shown

in Figure Hﬂ

e Group 2: Results in Figure[6.5]a show that processing time is almost linear w.r.t. file size
when the amount of logical redundancies and/or physical disparities in the file is limited
such as with LGD (see Figure a) and when the amount of IRIs and statements is
homogeneous in the dataset. However, processing time becomes polynomial when the
files have a considerable amount of IRIs and statements without logical redundancies
and/or physical disparities such as in the DBp and WN datasets (see Figure b and
)

LAll the tests related to time processing were executed 10 times, and for the evaluation we used an average

value of the 10 executions.
“Note that the variation in the behavior of Figure b is because a file of the dataset (Syn_DS2) contains a

shorter number of BNs w.r.t. the others files.

126



CHAPTER 6. Experimental Evaluation

160000

140000 140000
é 120000 A g 120000 [
S 100000 < 100000 |
O 20000 O 80000
Q 1] |
2 60000 / K] 60000 J
= 40000 = 40000
€ 0000 _/ £ 20000 ._,\/-\//1
0 0
0 20 40 60 80 100 120 140 0 10000 20000 30000 40000 50000 60000
# blank nodes bytes
(a) Syn_DS2 normalization time evaluated w.r.t. (b) Syn_DS2 normalization time evaluated w.r.t.
the number of BNs. file size.

Figure 6.4: Average normalization time in Syn_DS2 dataset.
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Figure 6.7: Average normalization time of the DBp2 dataset (containing a considerable amount
of logical redundancies and physical disparities, cf. Table .

e Group 3: Results in Figure [6.6] show that processing time is almost linear w.r.t. file
size when the files have logical redundancies and/or physical disparities, and the amount
of IRIs and statements is homogeneous in the dataset, such as with LGD2. On the
other hand, DBp2 has a considerable amount of IRIs and statements and the files are
not homogeneous (cf. Table , therefore, the results vary. As we show in Figure
time dependency on RDF file size becomes relatively trivial when the amount of IRIs and
statements is bigger in the dataset, and when the files are not homogeneous w.r.t these
variables. For example, we can see variations in Figure [6.7}b because the amount of IRIs

is decreasing in some files.

Morover, we evaluated the impact of the sorting indexes order (cf. Section 2) in the
Normalization Time. Results in Figure show that index SOP (subject-object-predicate)
highlights the best time performance, whereas SPO underlines the worst time performance

among all six indices.
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Figure 6.9: Average Jena loading time of the datasets in Group 1.

6.4.3 Applicability
A. Jena loading time:

Results, with respect to all three groups, indicate that our approach improved the files’

loading time in comparison with the original loading time of the datasets.

e Group 1: Results shown in Figure concur with those shown in the previous
subsection, such that loading time becomes polynomial when normalizing files of
the Syn_DS1 and Syn_DS2 datasets having logical redundancies and physical

disparities, where the increase of loading time varies depending on the amount of
blank nodes (as shown in Figure [6.9]b).

e Group 2: Results shown in Figure a concur with those shown in the previous
subsection, such that loading time is almost linear in the size of files in the LG D

dataset since they contain very few redundancies/disparities and are more or less
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Figure 6.11: Average Jena loading time of RDF files in the LGD2 dataset.

homogeneous w.r.t. the amount of IRIs and statements. In contrast, loading time
in Figures b and c is polynomial w.r.t. the amount of IRIs and statements in
DBp and WN datasets.

Group 3: In Figure|6.11] results shown that loading time is linear when we remove
all the logical redundancies and physical disparities and the dataset is homogeneous
w.r.t. the amount of IRIs and statements as LGD2. In Figure [6.12] one can
conclude that time dependency on file size becomes trivial when the amount of IRIs
and statements increases as in DBp2. For example, in Figure [6.12]b shows that
loading time varies with file size because the files are not homogeneous, i.e., the

amount of statements increases but the amount of IRIs decreases in some files.
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Figure 6.12: Average Jena loading time of RDF files in the DBp2 dataset.

More significant, results in Figure[6.13|show that even when applied on homogeneous files
(e.g., WordNet) without or with a limited amount of logical redundancies and physical
disparities (e.g., DBpedia), our method continues improving the Jena loading time due
to the format of our outputs (flat, compact and full compact). After analyzing the results
of each data-set, one can conclude that Jena loading time improves (i.e., is reduced) as
a direct result of normalizing the data-sets, taking into account RDF file size, as well as
the amount of statements, IRIs, and blank nodes in the RDF graph (cf. Figure[6.13)).

In addition, we evaluated the impact of the sorting indexes order (cf. Section 2)
in Jena loading time. Results in Figure show that index PSO (predicate-subject-
object) highlights the best time performance, whereas SPO underlines the worst time

performance among all six indices.

. Storage:

Results, w.r.t. all three groups, indicate that our method reduces RDF file output size in
comparison with the original size of the files. Based on our output formats: flat, compact
and full compact, we show that our method is adaptable to different target applications.
For instance, if the application requires improving the compression ratio of the file, the

full compact format would more suitable than other formats.
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Figure 6.13: Average size reduction results w.r.t. the compact format.
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Figure 6.15: Average size reduction of the Datasets w.r.t the output format

We also analyzed the full compact format against the behavior of the other formats.
Results in Figure show that it has higher ratio in the results. For example, it pro-

duces:

e An average of 74.34% reduction in size of Syn_DS2 (dataset with a considerable
amount of logical redundancies and physical disparities) in comparison with a 69.38%

reduction using the flat format,

e An average of 15.2% reduction in size of DBp (dataset without physical dispari-
ties and with minimal (0.004%) logical redundancies) in comparison with a 4.79%

reduction using the flat format, and

e An average of 26.88% reduction in size of WN (dataset without physical disparities
and logical redundancies) in comparison with a 16.68% reduction using the flat

format.

6.5 Comparison with existing Methods

We also evaluated the quality of our approach in comparison with alternative methods, namely
the JSON-LD normalization approach [SL13] and the HDT (RDF compression) method [Feal3],
using dataset Group 4 (see Tables and .

It is worthy to note that we only compared our approach with JSON-LD and HDT
methods, since most other methods are theoretical, or incomplete, or do not provide accessible

prototypes.
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6.5.1 Effectiveness (RDF Normalization Quality)

We compared the effectiveness of our approach in comparison to alternative methods by assess-
ing the nature and properties of resulting normalized RDF files w.r.t. our set normalization
problems and goals (cf. Sections (3| and, [4.3).

i) First, results in Tables and show that our method produces normalized RDF
files that fulfill all our normalization properties and goals in comparison with JSON-LD and

HDT methods which miss several logical and physical redundancies/disparities.

ii) Second by comparing the original input in Syn_DS1, Syn_DS2, LGD2 and DBp2
w.r.t. the outputs of JSON-LD, HDT and our method (see Tables and , we further

verified that the goals and properties are not successfully reached for both approaches:

e JSON-LD method: it preserves some redundancies and disparities, i.e., in Table[6.8] we
show that JSON-LD removes only 5% over a 32% average of logical redundancies in the
Syn_DS1 dataset, and 12% over a 64% average of logical redundancies in the Syn_DS2
dataset. However, it removes all logical redundancies and physical disparities from the
LGD2 and DBp2 datasets (all 57% and 52% of logical redundancies and 48% and 46%
of physical disparities were removed). A careful inspection of JSON-LD shows that it
preserves blank node duplication and certain literal duplications, which explains the re-
sults obtained with LGD2 and DBp2 (since it does not contain any blank nodes). As a
result, the JSON-LD approach does not satisfy the minimality and consistency properties

(cf. Section [4.4)).

e HDT method: results show, at first glance, that it successfully eliminates logical re-
dundancies and physical disparities (see Table . Nonetheless, a closer look at the
results revealed that the HDT technique actually preserves blank node redundancies by
assigning them different identifiers and/or representing them as IRIs. Hence, the HDT
method actually keeps logical redundancies and physical disparities pertaining to blank
node related statement duplications, and does not consequently satisfy the completeness,

minimality and consistency properties.

Hence, overall results indicate that our method yields improved effectiveness (i.e., nor-

malization quality) in comparison with current alternative methods.
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Table 6.6: Goals and properties achieved in the Dataset Group 4 based on Group 1

Group 4 based on Group 1

Goals/Properties
Syn_DS1 - | Syn.DS1 - | Syn_.DS2 - | Syn_ DS2 -
JSON-LD HDT JSON-LD HDT
Solving logical redundancies | 27% 0% 52% 0%
(%input=Y%erase)
Solving physical disparities (%in- | 0% 0% 0% 0%
put=%erase)
Preserving completeness True True True True
Preserving minimality True True True True
Preserving compliance True True True True
Preserving consistency True True True True

Table 6.7: Goals and properties achieved in the Dataset Group 4 based on Group 3

Group 4 based on Group 3

Goals/Properties
LGD2 - | LGD2 - | DBp2 - | DBp2 -
JSON-LD HDT JSON-LD HDT
Solving logical redundancies | 0% 0% 0% 0%
(%input=%erase)
Solving physical disparities (%in- | 0.17% 0.17% 0% 0%
put=Y%erase)
Preserving completeness True True True True
Preserving minimality True True True True
Preserving compliance True True True True
Preserving consistency True True True True
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Table 6.8: Goals and properties achieved in the Dataset Group 1 after applying normalization

processes

Goals/ Proper- Group 1
ties
Syn DS1 - | Syn DS1 | Syn DS1 | Syn. DS2 - | Syn DS2 Syn_DS2
JSON-LD - HDT - R2NR JSON-LD - HDT - R2NR
Solving logical re- | 5% 32% 32% 12% 64% 64%
dundancies
Solving  physical | 60% 60% 60% 70% 70% 70%
disparities
Preserving com- | True False True True False True
pleteness
Preserving correct- | True True True True True True
ness
Preserving mini- | False False True False False True
mality
Preserving consis- | False False True False False True
tency

Table 6.9: Goals and properties achieved in the Datasets of Group 3 after applying normaliza-

tion processes

Goals/ Proper- Group 3
ties
LGD2 - | LGD2 - | LGD2 - | DBp2 - | DBp2 - | DBp2 -
JSON-LD HDT R2NR JSON-LD HDT R2NR
Solving logical re- | 57% 57% 57% 52% 52% 52%
dundancies
Solving  physical | 48% 48% 48% 46% 46% 46%
disparities
Preserving com- | True False True True False True
pleteness
Preserving correct- | True True True True True True
ness
Preserving  mini- | True True True True True True
mality
Preserving consis- | True True True True True True
tency
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Figure 6.16: Comparison of the Average normalization time with JSON, HDT and R2NR.
6.5.2 Efficiency (Time Performance)

We evaluated the time performance of JSON-LD and HDT methods our approach’s normal-
ization time. Results in Figure [6.16la show that our method also performs better than its
alternatives (our method’s shows a 46.77% of average reduction in normalization time com-
pared to JSON-LD, and 52.18% of average reduction in time compared to HDT) because it
erases all the logical and physical disparities in the dataset, including blank node duplications.
Results in Figure [6.16lb show that our method is performs better than JSON-LD method
(highlighting a 99.93% of average reduction in normalization time)ﬂ As one can observe in
Figure[6.16]b the temporal behavior of our method is similar to HDT method because the lat-
ter converts the blank nodes into IRIs. This conversion reduces processing time but preserves
redundancies. Our method has 3.298 milliseconds of average in processing time while the HDT
method has 7.34 miliseconds of average in processing time. Therefore, our method also shows
better results than HDT.

Note that reducing redundancies means reducing document size, erasing duplication in blank

nodes, literal, statements, which consequently reduces processing and loading time to produce

the normalized output files.

6.5.3 Applicability

We also tested the efficiency and the impact of our method in Jena loading time and RDF file

storage size.

'Note that the normalization time of Syn_DS2 using JSON-LD method keeps the variation in the behavior
of Figure b because JSON-LD preserves all the BNs duplication. As we show before, Syn_DS2 dataset has

a file that contains a shorter number of BNs causing a faster normalization time w.r.t. the others files.
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Figure 6.17: Average Jena loading time comparison with JSON-LD.

A. Jena loading time:

e JSON-LD method: On one hand, Figures [6.17}a,[6.17b,[6.17 ¢, and [6.17}d depict

Jena loading time in comparison with our approach’s time and that of JSON-LD’s
approach. Results demonstrate that our method executes faster than JSON-LD’s.
Note that redundancy reduction using of JSON-LD amounts to 5% on average file
size in the Syn_DS1, while our method reaches an average 27% size reduction ratio,

which explains the reduction in loading time.

HDT method: On the other hand, results in Figures [6.18a, [6.18b, [6.18lc, and
[6.18]d show that our method remains also faster than the HDT method. In fact, as
shown in Table[6.8]and [6.9] the datasets generated by HDT do not have redundancies
and present some disparities, yet contain a larger number of IRIs with no (zero) BNs.
This confirms that HDT is transforming BNs into IRIs, which shows that RDF

compression does not always guarantee normalization. Note that we are currently

investigating this issue in more detail in a dedicated experimental study.

B. Storage:

Neither JSON-LD nor HDT methods provide parameters to customize output format

requirements as we do. They work with their predefined outputs, i.e., the JSON-LD pro-

duces files serialized as N-triples, and HDT produces Bitmap Triples (BT), in comparison
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Figure 6.18: Average Jena loading time comparison with HDT.

with our method which handles the standard formats with different configurations (i.e.,
flat, compact, and full compact, cf. Section 3) and thus allows developing different
outputs w.r.t the target application. Empirically, results in Figure show that our
normalization approach improves the size of the RDF files in all formats of the datasets
processed by JSON-LD and HDT methods.
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Figure 6.19: Average size reduction in dataset Group 4 w.r.t. the output format
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6.6 Summary

As we have seen in this chapter, our RDF normalization approach has produced rather mixed
results with a large degree of variation over different datasets with respect to Jena loading time,
normalization time and storage. These variations correspond to the different natures of each
dataset, i.e., some are homogeneous datasets and another heterogeneous datasets. The hetero-
geneity of the dataset depends of several variables as number of IRIs, number of statements,

number of blank nodes, redundancy, etc.

Despite these variations, results are promising and clearly show that our approach can
work for cleaning the RDF descriptions. Therefore, we can say that we have successfully
fulfilled all the challenges presented in Sections and We have demonstrated that our
RDF normalization approach can be applied to an RDF description and provide an RDF

normalized description successfully.

In terms of fulfillment of our properties, we saw a score well on effectiveness, efficiency,
jena loading time improvement and storage improvement for the output files with respect to
the input files of each dataset. What this served to demonstrate is that our approach works

for all our datasets.

At the same time with all the datasets, we also showed that our approach can lead to
significant improvements with respect to other methods as JSON-LD and HDT. In other words,
results showed that our approach solves all the logical redundancies and physical disparities
detailed in Section 3 and also gives improvements in the RDF /XML formats to reduce the

storage, all of which are not considered in existing methods.

Another interesting point that has been raised by these experiments is the impact of
our parameters that give to the user more flexibility to handle his/her requirements following
a specific target application. For example, if the target application is based on compression,
the user can choose full compact format with system renaming to obtain a compressed RDF

normalized description.

In the near future, we plan to test the impact and effect of applying our normalization
approach on native RDF database systems, using a public benchmark such as LUBME to
evaluate database-related parameters such as: indexing time, storage space, query evaluation

time, among others, in order to further evaluate and validate our solution.

"http://swat.cse.lehigh.edu/projects/lubm/
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Chapter 7

Conclusions and Future Works

“We can’t blame the technology when we make

mistakes.”
— Tim Berners-Lee

In this thesis, we have proposed and evaluated an RDF normalization framework, called
R2RN, that eliminates logical redundancies and physical disparities from RDF descriptions in
order to provide a normalized RDF descriptions. We have proposed a formal mathematical
model with rules, functions, operators, properties, and proofs which allowed us to validate our
proposal. We also conducted a thorough analysis of state of the art methods, highlighting
the properties and limitations toward RDF normalization. In this chapter, we present our
conclusions on our work and discuss some of the wider issues around the challenges. Finally,
we present a number of ideas for future works that could be undertaken to extend our work and

further our aim to other topics in the Semantic Web as the Web Ontology Language - OWL.

7.1 Recap

Chapter [2| covered the background review, in which we focused on basic notions about the
World Wide Web - WWW, International Resource Identifier - IRI, Resource Description
Framework - RDF, and the Web of Linked Data - LD. We also discussed the principles of
the Web related to the RDF and Linked Data and the relationships between them to the
RDF data on the Web. Then, we investigated the evolution of the Web of Linked Data
and its impact on the number of projects and providers using RDF to share and connect

the information.

Chapter |3| described different use cases to illustrate the problems motivating our work, cat-

egorized in four levels: logical redundancies, physical disparities, semantic ambiguities,
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and IRI discrepancies. Note that, the two first levels are the bases of the normaliza-
tion challenges, whereas the last two levels can produce more logical redundancies and

physical disparities for the normalization challenges.

Chapter 4| developed our RDF normalization framework called R2NR, as a means to trans-

form RDF descriptions into normalized representations. Our approach allows to:

1. Preserve all the information in RDF descriptions,

2. Eliminate all the logical redundancies and physical disparities in the output RDF

description,
3. Establish a unique specification of the statements in the RDF output description,
4. Formalize the normalization process,

5. Consider user parameters to handle the application requirements and adapt RDF

output formats accordingly.

To our knowledge, this is the first attempt to study and integrate RDF normalization
in two aspects: logical redundancies and physical disparities. Understanding that the
presence of logical redundancies in RDF descriptions would have a negative impact on
the processing of RDF information, as well as on the development/deployment of RDF
databases and related applications (including storage, querying, similarity-based match-
ing, and versioning, among others), our theoretical proposal showed that our approach
helps alleviate the problem by eliminating all identified redundancies which were moti-

vated in our study.

Chapter [5| presented our proposed extension of the RDF Syntactic Normalization in Chap-
ter |4 where it is possible to normalize RDF descriptions taking into account: semantic

ambiguities and IRI discrepancies. The semantic level allows to:

1. Eliminate all the logical redundancies generated for semantic problems as synonymy

and ambiguity,
2. Preserve the semantic meaning in RDF descriptions,
3. Extend the R2RN framework with the semantic rules and functions.

4. Extend user parameters to handle the semantic application requirements.
The IRI level allows to:

1. Eliminate all the logical redundancies and physical disparities generated for IRI

problems as coreference,
2. Preserve all the information in RDF description without the redundancies,
3. Extend the R2RN framework with the IRI rules and functions.

4. Extend user parameters to handle the IRI discrepancies.
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With these two additional levels, our approach cover all the challenges that we identified
in Chapter [3] Due to solving all the problems, our approach allows to have a complete
RDF normalized description based on erasing in each level the logical redundancies and

physical disparities.

Chapter [6] describes our prototype implementation for the R2NR framework, experimental

7.2

metrics used to assess the quality and effectiveness of our approach, the experimental
environment with our 11 datasets (synthetic and real), and our experimental results.
This evaluation has revealed the need for a normalization process that can clean RDF
descriptions of all the logical redundancies and physical disparities through the syntactic

level and the impact of this process on the reduction of the storage and loading time.

Extensive experimental results confirm the positive impact of our normalization approach
in terms of i) effectiveness, ii) efficiency, iii) applicability, and vi) storage space, in com-
parison with two of its most recent alternatives, confirming that the presence of logical
redundancies and physical disparities in RDF descriptions would have a negative im-
pact on the processing of RDF information, as well as on RDF databases and target
applications.

Our experimental evaluation reinforces the theoretical validation presented in Chapter
to solve the RDF normalization problem by eliminating all identified redundancies and

disparities which were motivated in our study.

Future Works

In this section, we discuss a number of possible avenues for future works that would advance our

own r

esearch motivated by issues that our study has raised. Possible future directions include

improvements to the RDF Normalization approach, Extended Statement Recommendation

Format, Guidelines for Generating Normalized RDF descriptions, Ontology Normalization,

RDF

normalization for educational purposes, and Pre-processing phase for Web applications.

These topics are now briefly described:

7.2.1

Improvements to the RDF Normalization Approach

In chapters 4] and [5} we have shown that RDF Normalization can be undertaken at three levels:

syntactic, semantic, and IRI, and also takes into account two aspects: logical redundancies and

physical disparities. These levels have specific topics that we can improve:

1.

Syntactic level:

(a) Adding the reification topic for evaluation.
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(b) Generating more RDF serializations in the prototype and evaluating the results with
respect to the storage and loading time with RDF /XML format.

(¢) Testing and comparing the experiments with a Collective renaming.
2. Semantic level:

e Adding parameters and creating a module for semantic order in the RDF statements.
e Generating the properties to validate the Semantic RDF normalization.

e Testing all the datasets with the semantic level.
3. IRI level:

e Integrating ontology alignment for vocabularies utilized in the RDF description.
e Generating properties to validate the Entity RDF normalization.

e Testing all the datasets with the IRI level.

7.2.2 Extended Statement Recommendation Format

Using the extended statement format, it is possible to give more information for the developers
of RDF descriptions and/or RDF data providers. This extension of the statement (triple)
proposes to establish an extended logical format completely separated from the serialization. In
this way, the developers can have all the information about languages and data types utilized
in the RDF description before implementation. We consider as good practice to have the
overall information for the development, having all the constraints that users might need in

their models.

7.2.3 Guidelines for Generating Normalized RDF Descriptions

Another important direction is to propose guidelines to be use for different kind of users (e.g.,
professors, developers, students, etc.). These guidelines establish how to develop an RDF
normalized description starting from the user’s requirements and IRIs evaluation, and also
evaluate the normalization level for their models. Our current work provides a valid starting

point for further research on using normalized RDF descriptions in different applications.

These guidelines coined with the RDF normalization framework can be also used as a
tool for evaluating RDF descriptions developed in an educational environment. These results

provide an overall idea of the abstraction and correct utilization of the data.
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7.2.4 RDF Normalization using Ontology Inference Mechanisms

Normalized RDF descriptions may also refers to different concepts (derived of ontologies) that
may generate knowledge duplication in the statements of the description. Some derived state-
ments of an RDF graph G may be deduced from one or more ontologies in several ways. With
the normalization using ontology inference mechanisms, we may generate new statements of

the RDF Graph G inferred of the original ones to reduce redundant knowledge.

7.2.5 Ontology Normalization

Another possible future direction is to devise a OWL Normalization approach based on our
study. It is possible to provide normalized ontologies or RDF(S) files with the normalization
levels because ontologies and vocabularies are developed following the RDF standard. We can
attempt to normalized existing vocabularies or ontologies in our R2RN framework and analyze
the results to discover new challenges to fulfill a normalized ontology or vocabulary. However,
such a normalized ontology is not a trivial task, since the normalization process has to consider

the inference engine through declarations (statements) in the original ontology.

7.2.6 Plug-and-Play Pre-Processing Component

On the long run, we aim to utilize our normalization approach as a pre-processing phase to
prepare and clean RDF files to be effectively and efficiently utilized in semantic-aware appli-
cations, namely similarity-based approximate querying, approximate pattern matching, and
similarity-based versioning within online RDF databases |[AOD14, [Gea04, [GealT].
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Appendix A

Appendix

Merge Sort is a sorting algorithm that takes advantage of the ease of merging already sorted
lists into a new sorted list. Algorithm 3 provides the pseudo-code of the overall process. It
starts by recursively decomposing the list (of extended statements) to be merged, into equal
halves (lines 2 - 6). If the obtained sub-lists are of cardinality (length) 1, then they are
already sorted, otherwise the algorithms continues with the decomposition process (lines 7
and 8). Consequently, it then merges each pair of resulting single extended statement lists,
by comparing corresponding extended statements and swapping them if the first should come
after the second (lines 9-12). The merging process is recursively executed until at last two
lists are merged into the final sorted list. Algorithm Merge Sort is of O(N x logN) worst-case
complexity where N is the size of the list (e.g., number of statements in an RDF description)

being sorted, and thus scales well to very large lists [Knu98| (e.g., very large RDF description).

Algorithm 7 MergeSort
Input: ST+ //List of Extended Statements of the RDF Description to be sorted
Output: STt //Sorter list of Extended Statements of the RDF Description
Variables: Left, Right //Temporary list exploited in the sorting process

¢ if card(STT) < 1 then

return ST+ //A list of length 1 is already sorted
for i=0, i < %ST“ —1, i++ do

add ST*[i] to Left_ST* //Decomposing STt into two halves
':%STJF), i < card(STT), i++ do

for i
add ST1[i] to Right_ST* //of about equal sizes

Left_ST+ = MergeSort(Left_STT) //Recursive decomposition process

Right ST+ = MergeSort(Right_ST+) //Recursive decomposition process

if Right_ST* .last_Statement <y Left_STT .first_Statement then
ST+ = Fusion(Left_ST+ Right_STT)// Merges the lists by comparing their elements (statements)

: else

ST+ = Append(Left_ST* ,Right ST+)// Simply appends both lists, since the last element (statement)of the first

list is < the first element (statement) of the second

: return ST+
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Algorithm 8 Fusion //used in the MergeSort algorithm

Input: Left_ ST+ Right STT //Two lists of extended statements to be merged
Output: sT+ // Output merged and sorted list
1: while card(Left_ST+) > 0 and card(Right_ST+) > 0 do
2: if Left_ ST .first_Statement <y Right_STT .first_Statement //Comparing statements of both lists then
Append(Left_STT first_Statement,L)
Left_ST+ = Left_ ST - {Left_ST first_Statement}
else
Append(Right_ST first_Statement, ST+ )
Right_ST+ = Right_ST* - {Right_ST first_Statement}
. if card(Left_STT) > 0 then
9:  Append(Left_ST+,ST+)
10: else
11:  Append(Right_ST+,ST+")
12: return ST+

3
4
5:
6:
7
8

Note that algorithm Merge Sort is stable and not in place:

e Stable: Maintains the order of elements with equal values,

e Not in place: requires auxiliary structures for data to be temporarily stored (i.e., tem-
porary lists Left_ST* and Right_ST™*, and output list ST+ exploited in the main algo-
rithm).

Also, the pseudo-code of our statements comparison operator (<y), defined following our
statement sorting expression ¥ (cf. Section 7.2.2) is provided below.
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CHAPTER A. Appendix

Algorithm 9 Statement Comparator <y

Input: st

T, sts //Extended statements to compare

Output: st //Select extended statement

1
2
3
4:
5:
6.
7
8
9

s if st s < st;ts //where IRI > BN then

return stir

: else

return st;'
if stir.s is lexicographically lesser than st;r.s then
return stir

: else

return st;r

o if stf.to < st .to //where IRI > BN > literal then
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

return sti"‘
else
return stgL
if str.to is not blank node then
if stir.o is lexicographically lesser than st;.o then
return stir
else
return st;
if stl+ .p is lexicographically lesser than st;.p then
return str
else
return st;r
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Appendix B

Résumé étendu

Introduction

Le Web Sémantique est un espace d’information qui consiste, d’'une part, a lier les
ressources du Web les unes aux autres, et, d’autre part, a leur donner du sens afin que les ma-
chines puissent les comprendre et les exploiter. Ce cadre permet a la recherche d’information
d’étre plus performante au méme titre que les processus de gestion et d’échanges de données
(e.g., recherche d’information intelligente, intégration de données, fusion, classification, etc.).
Dans ce contexte, la technologie exploitée dans le domaine du Web Sémantique qui permet
de connecter les ressources du Web entre elles est la suivante : RDF (Resource Description
Framework), un standard du W3C (World Wide Web Consortium). De maniere synthétique,
une description RDF est formée d’un ensemble de triplet < Swujet, Prdicat, Objet >. Ces
triplets forment un graphe RDF qui met en lumiere les liens ou relations sémantiques entre

différentes ressources.

Par exemple, le triplet suivant : <http://www.univ-pau.fr} exl : lab, http://liuppa.
univ-pau.fr/live/| > signifie que le sujet http://www.univ-pau.fr, identifié par son IRI
(Internationalized Resource Identifier), dispose d’un laboratoire (ex1 : lab) qui est référencé
par une autre IRI http://liuppa.univ-pau.fr/live/. De nombreuses descriptions RDF de
ce type qui contiennent elles-mémes de multiples triplets sont actuellement disponibles en ligne
grace notamment aux projets de recherche qui traitent des Données Liées (Linked Data), tels
que DBpedia, LinkedGeoData, Geonames, New York Times, etc. Ces initiatives autour des
Données Liées Ouvertes (Linked Open Data - LOD) permettent aujourd’hui a tout a chacun
(individus ou organisations) de partager des informations entre différentes communautés sur la
base de triplets RDF.

Afin d’étre stocké et exploité par une machine, ces triplets RDF sont sérialisés a 1’aide
de différents formats, tels que RDF/XML, N-Triple, Turtle, N3 ou bien JSON-LD. Comme
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<rdf:Description rdf:nodelD="UX">
<ex:first_name> Sebastien </ex:first_name>
<ex:last_name> Durand </ex:last_name>
</rdf:Description>

(1) RDF/XML

exifirst_name Sebastien

"@id": "_:Nf6a5c38b4F1049bfBaff884fdd714ec9",
"http://lexample.org/stuff/1.0/first_name": [{"@value": "Sebastien"}].

“http://example.org/stuff/1.0/last_name": [{"@value": "Durand"}
(2) JSON-LD

ex:nameProf,

http://www.univ-pau.fr

ex1:lab

@prefix ex1: <http://example.org/stuff/1.0/>
<http://www.univ-pau.fr> ex1:lab <http:/liuppa.univ-pau.fr/live/> ;
ex:nameprof [ ex:first_name "Sebastien";

ex:last_name "Durand" ]

exilast_name

. - (3) N3
http://www.univ-pau.fr/live/
_:N17 http://fexample.org/stuff/1.0/first_name
"Sebastien"M<http://www.w3.0rg/2001/XMLSchema#string>
_:N17 <http://example.org/stuff/1.0/last_name> "Durand"@fr
<http://www.univ-pau.fr> <http://example.org/stuff/1.0/nameprof>
_:N17 <http://www.univ-pau.fr> <http://example.org/stuff/1.0/lab>
<http://liuppa.univ-pau.fr/live/>

(4) N-Triple
(a) RDF Graph 1 (b) RDF Serializations of Graph 1

Figure B.1: Exemple d’une description RDF.

illustré dans la figure une description RDF peut se représenter a 1’aide d’un graphe (cf.,
Figure a) et peut étre encodée & I'aide de différents langages (cf., Figures [B.1]b.1,[B.1]b.2,

B.1]b.3 et B.1]b.4).

Dans certains scénarios (e.g., génération automatique, génération collaborative, intégra-
tion de données, etc.), les descriptions RDF peuvent étre tres verbeuses et peuvent également
contenir de la redondance d’information. Ceci peut concerner a la fois la structure du graphe
ou bien la sérialisation utilisée. Par exemple, considérons les deux graphes suivants : le graphe
1 dans la figure [B.I]a et le graphe 2 dans la figure qui ont été créés par différents éditeurs.
Ces deux graphes décrivent la méme information : La ressource http://www.univ-pau.fr|a
un professeur qui s’appelle Sebastien Durand et qui dispose d’un laboratoire dont la référence
est http://www.univ-pau.fr/live/. Néanmoins, leurs structures sont différentes comme il
est possible de le constater visuellement dans ces deux figures. En effet, le graphe RDF de la
figure contient des données dupliquées a la fois en ce qui concerne les noeuds mais aussi
les arcs. Ceci a pour conséquence d’engendrer plus de triplets en comparaison avec le graphe
RDF de la figure [B.1]a. Bien entendu, la phase de sérialisation est impactée par ces redon-
dances, sans compter les multiples variations d’écritures possibles au sein d’un méme format
pour décrire un triplet. Les éléments suivants permettent de se faire une idée des problemes

qui peuvent subvenir durant une sérialisation de descriptions RDF :

e La méme ressource RDF peut étre sérialisée de différentes fagons (e.g., dans la fig-
ure [B:Ilb.1, nous avons utilisé l'attribut rdf:nodeID=*UX” comme l'une des fagons en
RDF /XML de représenter un noeud de type “Blank Node”. Ceci peut étre effectué dif-

féremment dans d’autres langages de sérialisation.

e Le type de données ainsi que la langue d’une ressource RDF peut étre spécifié ou non. Par

exemple, dans la figure [B.1]b.4, le type de données string est mentionné pour la ressource
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ex:first_name “Sebastien”
ex:last_name
“Durand”
ex:first_name “Sebastien”
ex:nameProf ex:last_name D »
http://www.univ-pau.fr uran
ex:last_name “Durand”

http://www.univ-pau.fr/live/

Figure B.2: Graphe RDF 2 décrivant la méme information de la Fig.

Sebastien de la fagon suivante “Sebastien” zsd : string. La langue fr est spécifiée quant
a elle pour la ressource Durand comme ceci “Durand”@fr. Ces informations sur le type
de données et la langue d’une ressource peuvent étre omises dans d’autres formats de

sérialisation.

e Différents espaces de nommage peuvent faire référence au méme nom de domaine. Par
exemple, le nom de domaine http://xmlns.com/foaf/1.0/ dispose du nom d’espace de
nommage “ex” dans la figure [B.I}b.1 alors qu’il est nommé “ex1” dans la figure [B.1]b.3.

Comme nous ’avons exposé précédemment, actuellement les individus ou les organisa-
tions s’échangent des données liées les unes aux autres, e.g., pour créer de nouvelles oppor-
tunités en terme de projets et/ou d’applications, pour favoriser entre autres le commerce en
ligne avec des données supplémentaires pour les clients, pour accélérer les progres scientifiques
dans la gestion ou la recherche des données, etc. Dans ce contexte d’intégration et de fusion
d’informations d’une ou de plusieurs ressources décrites par des communautés différentes, ces

problemes de redondances ou de variations d’encodage ne peuvent qu’étre renforcés.

Par exemple, au sein d’'une méme description RDF, l'intégration de données au sujet de
la ressource “Luxembourg” (voir la figure fourni par des communautés différentes, telles
que DBpedia et Geonames, ne peut qu’accroitre ce phénomene de redondances et de variations
de sérialisation. De plus, ce bruit a un impact négatif sur le stockage ou bien le temps de
chargement d’une description RDF. En effet, la description “RDF Graph X 4+ RDF Graph
Y + RDF Graph Z” prendra plus d’espace de stockage et de chargement qu’une description

dépourvue d’informations redondantes ou inutiles.

Considérons maintenant le sous-graphe de la figure [B:4] Nous pouvons constater des
données redondantes tenant compte des ambiguités sémantiques ou encore des multiples IRI

pointant vers la méme information :
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a
x
R D F —Srisy
Graph 2
Dbpedia x
Luxembourg - vt

Redundant information
Unused Information

Linked Open Data Cloud
(RDF external datasets)

Y

Dbpedia
History of Luxembourg

Data Integration

Redundant information
Unused Information

+ Redundant information
+ Unused Information

$

Geonames ‘
Luxembourg

Redundant information
Unused Information
+ Storage
+ Loading Time
+ Time in querying
+ Difficulties for similarity

Figure B.3: Exemple de Données Liées sur la ressource “Luxembourg”.

e Pour une ressource RDF, la déclaration du type ou de la langue peut faire référence a
différentes valeurs primitives (e.g., chaine de caracteres, entier...) mais la signification
sera équivalente. Par exemple, dans la figure [B.4] la langue es est mentionnée dans
I’expression “Luxembourgo”@es et la langue en est indiquée également “Luxembourg”@en.
Nous pouvons donc constater que le nom de la ressource peut étre dupliqué méme si l’on

évoque dans les deux cas la ville de Luxembourg.

e Différentes IRI peuvent faire référence a la méme ressource RDF (e.g., dans la figure
B4 'IRI http://dbpedia.org/resource/Luxembourg se base sur DBpedia mais I'IRI
http://sws.geonames.org/2960313 se réfere a Geonames. Ces deux IRI font référence

a la méme ville : Luxembourg.

Ces duplications ou variations d’encodage qui peuvent subvenir soit sur la structure du
graphe RDF ou bien sur sa sérialisation doivent étre prises en compte lorsqu’une description
est a traiter. Ne pas la traiter aura forcément un impact négatif sur le développement ou
le déploiement de bases de données RDF, ceci incluant le stockage, l'interrogation, le temps
de chargement et de traitement, la mesure de similarité, l’appariement, l’alignement et le

versionning pour ne citer que ces exemples.

Dans cette these, nous défendons une approche autour de la normalisation de descriptions
RDF, c’est-a-dire épurer au maximum une description RDF. Dans la partie suivante, nous

identifions nos principaux objectifs ainsi que nos contributions.
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Luxembourg@en | |Luxemburgo@es

gn:name gn:name

http://sws.geonames.org/2960313/
PN

o, http://sws.geonames.org/2960313/about.rdf
.'/l///(/,‘oed/é
/T/(;/e

rdfs:seeAlso |[rdfs:seeAlso

foaf:isPrimaryTopicOf

ttp://dbpedia.org/resource/Luxembourg Wars hitp-//en.wikipedia.org/wiki/Luxembourg

Jescr, begp,

dfs:label \rdfs:label http://dbpedia.org/data/Luxembo@

Luxembourg@en | |Luxembourg

Figure B.4: Sous-graphe d’intégrations de données dans la Fig.

Nos objectifs de recherche

L’objectif de cette these consiste a résoudre les problemes liés a la redondance d’informations
ainsi que les variations d’encodage des descriptions RDF. Pour ce faire, nous avons défini
un cadre de normalisation de descriptions RDF, nommé R2NR, qui permet de transformer
n’importe quelle description RDF en une description RDF optimisée (normalisée). La sortie de
ce processus peut étre adaptée selon que le domaine d’application ou sera appliqué la normali-
sation nécessite une optimisation en terme de stockage, comme la compression de la description

par exemple.

Notre approche R2NR cible une normalisation de descriptions RDF selon les objectifs

suivants :

e Eliminer les redondances au sein de la description (ceci est un objectif prioritaire puisqu’en
optimisant la structure, on favorisera le traitement des requétes, ’alignement et le ver-

sionning). Cet objectif se focalise sur la structure du graphe RDF.

e Eliminer les redondances ainsi que certaines structures d’encodage au sein du fichier RDF.
Cet objectif se focalise sur I’écriture de la description RDF afin d’optimiser son stockage

ainsi que son temps de chargement.

e Prouver que le processus de normalisation est : (i) valide selon un ensemble de propriétés,
(ii) flexible et adaptable en fonction des criteres d’un utilisateur ou des prérequis liés a
une application d’'un domaine métier en particulier, et (iii) efficace sur tout type de

descriptions RDF contenant de quelques triplets RDF jusqu’a des milliers.
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Nos contributions dans cette thése

Selon les objectifs cités ci-dessus, les contributions de cette these sont les suivantes :

1. Normalisation syntaxique de descriptions RDF

Ce défi qui consiste a normaliser des descriptions RDF a déja été envisagé dans la littéra-
ture, néanmoins il n’a pas été atteint dans son ensemble. En effet, les solutions existantes
restent partielles car elles ne considérent pas tous les aspects syntaxiques liés aux descrip-
tions RDF, comme par exemple la duplication de “Blank Nodes” ou encore les espaces de
noms non-utilisés. Afin de réaliser une normalisation syntaxique de descriptions RDF,

nous avons fourni :

e Des définitions formelles des concepts exploités dans notre approche R2NR selon
un modele mathématique. Ces définitions systématiques et détaillées pour chaque
élément de notre contribution incluent de surcroit des regles, des fonctions, des

opérateurs avec les propriétés et les preuves associées.

e Des algorithmes qui permettent une élimination de la redondance d’information au
sein d’une description RDF, que ce soit au niveau du graphe ou bien au niveau de

son encodage.

e Des preuves permettant de valider qu'une description RDF normalisée préserve toute

les informations initialement spécifiées par un éditeur.

e Une approche personnalisable qui permet d’adapter la sortie de la normalisation de
descriptions RDF en fonction de I’application cible (e.g., optimiser le stockage et/ou

le temps de chargement).

2. Normalisation sémantique de descriptions RDF

En plus de la normalisation syntaxique de descriptions RDF, nous avons étendu son
champ d’actions afin de traiter les aspects liés a la sémantique des données. En effet, au-
dela de la considération d’éléments dupliqués qui concernent une méme ressource avec son
identifiant, nous avons étendu notre approche R2NR pour que celle-ci traite d’éléments
sémantiquement équivalents. Afin d’ajouter ce niveau sémantique a notre proposition

R2NR, nous avons fourni :

e Un ensemble de regles et de fonctions mathématiques qui permettent de résoudre les
duplications d’informations en levant des ambiguités sémantiques identifiées entre

certaines ressources.

e Des algorithmes qui analysent le sens associé aux données issues d’une description
RDF et élimine les redondances lorsque certains de ces éléments décrivent la méme

information.
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3. Normalisation des IRI exploitées au sein d’une description RDF

Nous avons proposé également de normaliser les IRI exploitées au sein d’une description
RDF. Au sein du Web Sémantique, les IRI sont la base de descriptions d’une information.
Il s’agit tres souvent d’un identifiant qui sera exploité pour lui associer par la suite
d’autres informations. Etant donné que différentes communautés peuvent décrire une
méme information (nous avons vu le cas précédemment avec la ville de Luxembourg),
actuellement ces communautés attribuent chacune un identifiant différent pour décrire
cette méme donnée. Par conséquent, lors d’une fusion de plusieurs descriptions produites
par différentes communautés, une description RDF va contenir différentes IRI décrivant
une méme information. Notre derniére contribution a donc consisté a normaliser ces

différentes IRI décrivant un méme concept. Pour ce faire, nous avons fourni :

e Un ensemble de regles et de fonctions mathématiques qui permettent de résoudre les
duplications d’IRI que ce soit au niveau de la structure du graphe RDF mais aussi

au niveau de son encodage.

e Des algorithmes qui identifient les similarités entre IRI afin d’éliminer leurs redon-

dances au sein d’une description RDF.

4. Un prototype RDF2NormRDF

Pour valider nos contributions, nous avons développé un outil nommé RDF2NormRDF. Il
existe actuellement une version en ligne (http://sigappfr.org/spider/research-projects/
towards-rdf-normalization/) et une autre disponible hors ligne. Cet outil a permis

de tester et d’évaluer notre approche selon les criteres suivants :

e Efficacité : mesurer la qualité de détection et d’élimination des informations redon-

dantes.

e Performance : évaluer le temps d’exécution de notre approche de normalisation, le

temps de chargement de la sortie produite ou bien sa taille mémoire.

Nous avons présenté dans cette these une évaluation complete et détaillée de notre ap-
proche. Nous l'avons bien évidemment comparé a d’autres approches existantes. Les
résultats ont été publiés dans les actes de la conférence ER 2015 (34th International Con-
ference on Conceptual Modelling) et une version journal est en cours de soumission pour

JWS (Journal on Web Semantics).

Structure du manuscrit

Je propose de décrire chaque chapitre dans ce qui suit afin de dresser un panorama du

contenu de la these.
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Chapitre 2

Dans ce chapitre, nous présentons le Web Sémantique ainsi que tous les concepts im-
portants qui y sont rattachés et que nous utiliserons pour cette theése. Il est primordial de
bien comprendre les principes ainsi que les technologies existantes dans ce domaine pour bien
appréhender les défis liés a la normalisation de descriptions RDF. En quelques mots, le Web

Sémantique est 1ié a deux motivations principales :

e La premiere consiste a ce que quiconque peut décrire n’importe quelle information sur
n’importe quel type de sujets. Ces descriptions doivent étre distribuées, compréhensibles

par les machines et liées les unes aux autres ceci afin d’enrichir une description.

e La seconde doit permettre de publier et de rechercher des descriptions par n’importe quel

utilisateur.

La question principale des chercheurs a donc été de trouver ce moyen de publication
et de partage de l'information, comme on peut le faire traditionnellement sur le Web des
documents mais au sujet de connaissances. Dans ce chapitre, nous avons donc retracé 1’histoire
du Web (WWW) avec celle du Web Sémantique. Nous avons également décrit les concepts et
technologies principales issues du Web Sémantique qui seront utilisées dans ce mémoire, telles
que les IRI et RDF. Enfin, nous présenterons I'impact de ces technologies aujourd’hui sur le

courant lié aux Données Liées (Linked Data).
Chapitre 3

Ce chapitre présente des scénarios qui exploitent des descriptions RDF au sujet par
exemple de "Université de Pau et du Luxembourg. Chaque scénario a pour objectif d’illustrer
les problemes de la non-utilisation ou bien de la duplication de données au sein d’une description

RDF. Nous avons catégorisé ces probléemes en quatre niveaux :

e Redondances logiques : Plusieurs triplets RDF peuvent décrire la méme information.

e Redondances physiques : Différents encodages avec différentes possibilités d’écriture pour

chaque format peuvent décrire une méme description RDF.

o Ambiguités sémantiques : Différents concepts décrivent sémantiquement la méme infor-

mation.

o Divergences des IRI : Différents identifiants de ressources peuvent décrire la méme donnée.

Chaque niveau de problemes est décrit en détail et illustré avec des exemples. Ces
exemples serviront par la suite pour démontrer le processus de normalisation de descriptions

RDF.
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Chapitre 4

De plus en plus de descriptions RDF sont maintenant disponibles sur le Web. Les im-
pacts liés au développement des technologies issues du Web Sémantique ou bien de courant
comme celui des Données Liées ont conduit & ce qu'une multitude d’applications ont vu le jour.
Ces applications exploitent bien évidemment des descriptions RDF pour afficher, partager et

rechercher de I'information.

Ces descriptions peuvent contenir des redondances puisque différents utilisateurs les ont
réalisés. Ces duplications de données sont a la base de la motivation de cette these qui consiste

a nettoyer les descriptions RDF.

Ce chapitre présente donc la normalisation de descriptions RDF, sous un aspect pour
le moment purement syntaxique. Nous commencgons par introduire des définitions utiles pour
poser le cadre de la normalisation. Nous définissons ensuite des fonctions, des regles ainsi que
des opérateurs qui permettent de normaliser une description RDF. Nous discutons de 1’état
de ’art au sujet de la normalisation et des choix qui ont influencé la spécification de certains
concepts utiles & la normalisation de descriptions RDF. Afin de valider plus tard ce cadre, nous

spécifions un ensemble de propriétés quune description RDF normalisée doit satisfaire.
Chapitre 5

Comme nous le voyons dans le chapitre précédent, la normalisation de descriptions RDF
a déja été traitée pour différents types d’applications comme la représentation des connais-
sances, intégration de données, la théorie des graphes... Cependant, toutes ces approches se
focalisent sur des probléemes qui concernent la syntaxe de la description RDF, laissant de coté
les problemes liés a I'ambiguité sémantique ou bien ceux liés a la variabilité des IRI au sujet

d’une méme ressource.

Dans ce chapitre, nous présentons une extension de la normalisation de descriptions RDF
en y intégrant des solutions permettant de lever ces problemes d’ambiguité et de variabilité des
IRI tant au niveau logique (c’est-a-dire sur le graphe de description) qu’au niveau physique
(c’est-a~dire au sein de l'encodage de la description). Pour ce faire, a l'instar du chapitre
précédent, nous définissons des fonctions ainsi que des regles qui permettront une normalisa-
tion de descriptions RDF de plus haut niveau, c’est-a-dire tenant compte de la sémantique
de I'information. Nous présentons les travaux de la littérature qui traitent de 'ambiguité sé-
mantique et de 'identité des IRI afin de mieux comprendre leur impact sur la duplication de
données. Nous détaillons bien sur toute I’approche de normalisation et nous montrons le lien
entre normalisation syntaxique et sémantique. Nous concluons ce chapitre par une comparaison

de notre proposition avec les approches existantes.

168



CHAPTER B. Résumé étendu

Chapitre 6

Dans les deux chapitres précédents, nous avons présenté une approche de normalisation
de descriptions RDF. Au sein de ce chapitre, nous présentons notre prototype, des mesures
ainsi que I'environnement expérimentales que nous avons mis en place autour de ce prototype,
et les résultats issus d’une évaluation. Nos expérimentations ont mis en lumiere 'efficacité ainsi
que la performance de notre prototype et approche, entre autres sur le temps de chargement de
descriptions RDF dans le framework JENA ainsi que sur la taille mémoire des descriptions RDF
normalisées. Nous avons comparé ces résultats avec d’autres méthodes, telles que JSON-LD
ou HDT.

Conclusion

Dans cette these, nous avons proposé et évalué notre proposition de normalisation de
descriptions RDF. Notre processus de normalisation élimine les redondances d’informations
au sein d’une description que ce soit au niveau de la structure du graphe de description mais
aussi au niveau de 'encodage de cette description. Nous avons défini formellement la nor-
malisation de descriptions RDF a ’aide de regles, de fonctions, d’opérateurs, de propriétés et
de preuves qui nous permettent de valider théoriquement notre contribution dans ce domaine.
Bien évidemment, nous avons établi une analyse de ’état de ’art, notamment les méthodes de

normalisation existantes tout en mettant en évidence leurs propriétés et leurs limites.

Dans ce qui suit, nous présentons quelques perspectives a notre travail tant au niveau de
I’approche de normalisation elle-méme que sur son potentiel impact sur d’autres technologies
issues du Web Sémantique. En effet, ces perspectives concernent des pistes d’améliorations pos-
sibles de la normalisation de descriptions RDF, la normalisation d’ontologies, la normalisation

a des fins d’apprentissage...

Dans les chapitres 4 et 5, nous avons montré que la normalisation de descriptions RDF
peuvent s’opérer sur 3 niveaux : syntaxique, sémantique et sur les IRI. Nous avons égale-
ment précisé qu’elle agit tant sur le graphe de description RDF que sur son encodage. La

normalisation pour chacune de ces dimensions peut étre améliorée :

e Niveau syntaxique :

— Ajouter le traitement de la réification pour I’évaluation

— Engendrer encore plus de sérialisations RDF au sein du prototype et évaluer les
résultats en terme d’espace de stockage ou bien de chargement des descriptions
RDF /XML normalisées.

— Tester et comparer les expérimentations avec un renommage collaboratif.

169



e Niveau sémantique :

— Ajouter des parametres et créer un module pour ordonner chaque triplet RDF.
— Générer des propriétés afin de valider la normalisation RDF au niveau sémantique.

— Tester tous les jeux de données au niveau sémantique.
o IRI:

— Intégrer I'alignement d’ontologie dans notre processus de normalisation.
— Définir des propriétés pour valider la normalisation d’entités RDF.

— Tester tous les jeux de données pour en démontrer son impact au niveau des IRI.

Une autre piste d’amélioration de notre travail consiste a proposer un guide qui sera ex-
ploité pédagogiquement par différents utilisateurs (e.g., enseignants, développeurs, étudiants,
etc.). Ce guide doit pouvoir aider un utilisateur a produire une description RDF normalisée. Ce
guide pourrait également étre utilisé pour pouvoir évaluer ses propres descriptions RDF et no-
tamment répondre aux questions suivantes : “Ma description RDF contient-elle de 'information

redondante 77, “Ma description RDF peut-elle étre encodée de facon plus optimisée ?”...

Dans cette these, nous avons normalisé des descriptions RDF. Ces descriptions font sou-
vent référence & de multiples concepts (définis au sein d’ontologies). Le mécanisme de raison-
nement sur ces ontologies peut en déduire de nouveaux triplets RDF qui, combiné a plusieurs
ontologies, peut engendrer des duplications d’informations. Notre processus de normalisation
peut tenir compte du mécanisme d’inférence sur les ontologies afin d’éliminer ces informations

dupliquées.

Une ontologie est décrite a ’aide du formalisme RDF. Bien que cela nécessiterait d’intégrer
de nouveaux vocabulaires et de prendre en considération les mécanismes d’inférence, il est tout
a fait envisageable de normaliser des ontologies ou bien des descriptions RDF(S) a 'aide de

notre travail dans cette these.

Pour finir, notre proposition de normalisation de descriptions RDF pourrait étre une pré-
phase incontournable pour préparer et nettoyer des descriptions RDF. Cette pré-phase serait
un prérequis au calcul de similarité entre descriptions, au filtrage par motif ainsi qu’a la gestion

de versions pour les bases de données RDF en ligne.
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