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Notations

Espaces fonctionnels : I ⊂ R : un ouvert ; L p (I) : espaces de Lebesgue ; W p,q (I) : espaces de Sobolev ; H q (I) = W q,2 (I) ; C(I, R) : ensemble des fonctions continues de I dans R ;

C c (I) : ensemble des fonctions continues et à support compact ; L(X ) : espace des opérateurs linéaires continus de X dans X ; K(X ) ⊂ L(X ) : sous-espace fermé des opérateurs compacts ;

X + : cône positif de X un ensemble ordonné.

Opérateurs :

A : D(A) ⊂ X → X : un opérateur linéaire ; D(A) : domaine de l'opérateur A ; D(A) : adhérence de D(A) dans X ; A |L 1 (I) : restriction de l'opérateur A à l'ensemble L 1 (I) {T A (t)} t≥0 ou {e tA } t≥0 : semigroupe généré par A ; σ(A) : spectre de l'opérateur A ; ρ(A) : ensemble résolvant de A ; σ p (A) : ensemble ponctuel de A ; s(A) : borne spectrale de A ; r σ (A) : rayon spectral de A ; ω 0 (A) : type (ou taux de croissance) de A ; ω ess (A) : type essentiel (ou taux de croissance essentiel) de A ;

• ess : norme essentielle.

Notations générales :

sign(f (s)) = f (s)/|f (s)| si f (s) = 0 et 0 sinon ; χ I : fonction indicatrice sur I ; ∂ s f : dérivée partielle de f par rapport à s ; supp(f ) : support de f ; Φ : semiflot ; ω(z) : ensemble ω -limite de z.

Chapitre 1

Introduction générale 1.1 Motivation

Déterminer l'évolution d'une population au cours du temps intéresse depuis longtemps les biologistes et les mathématiciens. Une des premières modélisations mathématiques remonte en effet au XII ème siècle avec la description par Leonardo Fibonacci du comportement d'une population de lapins à l'aide de suites récurrentes. Cette branche de l'écologie appelée dynamique des populations possède de nombreuses modélisations mathématiques (voir les livres de Hillion [START_REF] Hillion | Les Théories Mathématiques des Populations[END_REF], Bacaër [START_REF] Bacaër | A Short History of Mathematical Population Dynamics[END_REF] ainsi que de Ianelli et Pugliese [START_REF] Iannelli | An Introduction to Mathematical Population Dynamics[END_REF]). La grande majorité des modèles étudiés (Malthus, Verhulst, Lotka-Volterra pour ne citer que quelques-uns des plus connus) utilisent des Équations Différentielles Ordinaires (EDO) où la variable en jeu est t, le temps qui est supposé continu. Cependant, comme chaque modélisation, celle-ci a ses limites. Dans les modèles cités ci-dessus, les caractéristiques intrinsèques de la population décrite sont négligées : tous les individus sont supposés avoir le même taux de mortalité, de reproduction... mais on peut supposer que ces phénomènes diffèrent d'un individu à l'autre selon une caractéristique qui lui est propre (âge, taille, poids, position dans l'espace ou encore sa charge d'infection). On peut ainsi augmenter le nombre d'équations et étudier des systèmes à compartiments comme en épidémiologie avec les modèles SI, SIR où les individus peuvent être sains, infectés ou guéris.

On peut également considérer que la variable par laquelle on veut distinguer les individus est continue et on parlera alors de modèle de population structurée qui est au coeur de cette thèse. Un nombre important de travaux sur ce sujet est présent dans la littérature et on peut en trouver une introduction dans les livres de Charlesworth [START_REF] Charlesworth | Evolution in Age-Structured Populations[END_REF], Diekmann et Metz [START_REF] Metz | The Dynamics of Physiologically Structured Populations[END_REF], Cushing [START_REF] Cushing | An Introduction to Structured Population Dynamics[END_REF], Iannelli Martcheva et Milner [START_REF] Iannelli | Gender-Structured Population Modeling[END_REF]. On retrouve des applications en épidémiologie dans les livres de Magal et Ruan [START_REF] Magal | Structured Population Models in Biology and Epidemiology[END_REF], de Brauer et Castillo-Chavez [START_REF] Brauer | Mathematical Models in Population Biology and Epidemiology[END_REF], dans celui de Iannelli et Milner [START_REF] Iannelli | The Basic Approach to Age-Structured Population Dynamics[END_REF] ainsi qu'en démographie avec le livre de Inaba [START_REF] Inaba | Age-Structured Population Dynamics in Demography and Epidemiology[END_REF].

Dans cette thèse, nous étudions différents modèles de populations structurées. Ce travail est organisé en trois parties. Premièrement, nous allons considérer deux modèles s'écrivant à l'aide d'équations de transport. L'un reprend les équations de Lotka-Volterra où la proie est structurée selon son âge :

    
∂ t x(t, a) + ∂ a x(t, a) = -µ(a)x(t, a) -y(t)γ(a)x(t, a), y (t) = αy(t) ∞ 0 γ(a)x(t, a)da -δy(t), x(t, 0) = ∞ 0 β(a)x(t, a)da, (1.1) pour a, t ≥ 0 et une condition aux bords non locale de type intégrale. L'autre modélise l'évolution d'une population de cellules structurée en taille, pouvant entrer dans un état de quiescence, à l'aide du système couplé

        
∂ t u 1 (t, s) + ∂ s (γ 1 (s)u 1 (t, s)) = -c 1 (s)u 1 (t, s) + c 2 (s)u 2 (t, s) -µ(s)u 1 (t, s) + m 0 β(s, y)u 1 (t, y)dy, ∂ t u 2 (t, s) + ∂ s (γ 2 (s)u 2 (t, s)) = c 1 (s)u 1 (t, s) -c 2 (s)u 2 (t, s), u 1 (t, 0) = u 2 (t, 0) = 0, (1.2) pour 0 ≤ s ≤ m ≤ ∞, t ≥ 0 et des conditions aux bords de Dirichlet. Dans la deuxième partie, nous étudions un modèle de transport/diffusion qui décrit l'évolution d'une population d'individus structurés en taille :

         ∂ t u(t, s) + ∂ s (γ(s)u(t, s)) = ∂ s (d(s)∂ s (u(t, s))) -µ(s)u(t, s) + m 0 β(s, y)u(t, y)dy, [∂ s (d(s)∂ s u(t, s))] s=0 = b 0 ∂ s u(t, 0) -c 0 u(t, 0), [∂ s (d(s)∂ s u(t, s))] s=m = -b m ∂ s u(t, m) -c m u(t, m),
(1.3) pour 0 ≤ s ≤ m ≤ ∞, t ≥ 0 et des conditions aux bords de Feller. Une troisième partie est consacrée à l'analyse du modèle de Lotka-Volterra à retard x (t) = β 0 e -µ 0 τ x(t -τ ) -µ 0 x(t) -γ 0 x(t)y(t), y (t) = αγ 0 x(t)y(t) -δy(t), (1.4) pour t ≥ 0, τ > 0. De ces modèles, nous allons nous intéresser à deux aspects :

• le caractère bien posé du problème ;

• le comportement en temps long des solutions.

Une description sommaire des principaux résultats de cette thèse se trouve dans la Section 1.6.

Sur les équations de transport

Avant de présenter nos résultats, nous faisons un petit tour d'horizon de la littérature connexe. Lorsque la variable structurante est continue, on est amené à étudier une Équation aux Dérivées Partielles (EDP) de type transport (voir Sharpe et Lotka [START_REF] Sharpe | A problem in age-distribution[END_REF],

McKendrick [START_REF] Mckendrick | Applications of mathematics to medical problems[END_REF] et Von Förster [START_REF] Foerster | Some remarks on changing populations[END_REF]) de la forme où (t, a) ∈ R + × [0, a max ]. Cette EDP a été largement étudiée entre autre par Gurtin et MacCamy [START_REF] Gurtin | Nonlinear age-dependent population dynamics[END_REF], Webb [START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF], Metz et Diekmann [START_REF] Metz | The Dynamics of Physiologically Structured Populations[END_REF], Thieme [START_REF] Thieme | Mathematics in Population Biology[END_REF], Perthame [122], Magal et Ruan [START_REF] Magal | Structured Population Models in Biology and Epidemiology[END_REF]. Considérons maintenant que la variable structurante est la taille que l'on va noter s ∈ [0, s max ] où s max ≤ +∞ est la taille maximale. Puisque celle-ci n'évolue pas forcément à la même vitesse que le temps, on va noter γ(s) le taux de croissance d'un individu de taille s, i.e. γ(s) = ds dt et l'équation de transport (1.5) devient alors ∂ t x(t, s) + ∂ s (γ(s)x(t, s)) = -µ(s)x(t, s).

Cette équation a été obtenue par Sinko et Streifer [START_REF] Sinko | A new model for age-size structure of a population[END_REF] en supposant de manière plus générale que les individus sont structurés à la fois en âge et en taille. Contrairement au cas où la variable structurante est l'âge, on peut supposer qu'aucun individu ne naît avec une taille nulle et donc considérer une condition aux bords de type Dirichlet en s = 0. Le terme de reproduction apparaît ainsi directement dans l'équation de transport sous forme intégrale :

∂ t x(t, s) + ∂ s (γ(s)x(t, s)) = -µ(s)x(t, s) + smax 0 β(s, y)x(t, s)dy, où β(s, y) représente le taux avec lequel un individu de taille y produit un individu de taille s. Pour plus de littérature sur les modèles structurés en taille, on pourra regarder [START_REF] Arino | A survey of structured cell population dynamics[END_REF][START_REF] Metz | The Dynamics of Physiologically Structured Populations[END_REF][START_REF] Webb | Population models structured by age, size, and spatial position[END_REF] ainsi que les références à l'intérieur.

Lorsque l'on modélise une densité d'individus, une propriété fondamentale qui intervient est celle de la positivité des solutions. Un cadre qui apparaît alors naturellement pour l'étude de ces modèles est l'espace de Lebesgue L 1 afin que la quantité totale d'individus définie pour (1.6) par

X(t) = amax 0
x(t, a)da soit finie à chaque instant t ≥ 0. Par conséquent, on se placera par la suite dans un espace L 1 (Ω, µ).

De la diffusion en dynamique des populations 1.3.1 Les équations de transport/diffusion

Sous certaines considérations, on peut être amené à rajouter de la diffusion dans ces équations de transport. On peut en effet prendre en compte le déplacement des individus dans l'espace et se retrouver avec un modèle de réaction-diffusion. De telles applications biologiques sont apparues avec les travaux de Kolmogorov, Petrovskii et Piscunov [START_REF] Kolmogorov | A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem[END_REF], puis on pourra regarder les livres de Skellam [START_REF] Skellam | Random dispersal in theoretical populations[END_REF][START_REF] Skellam | The formulation and interpretation of mathematical models of diffusionary processes in population biology[END_REF], Okubo [START_REF] Okubo | Diffusion and Ecological Problems : Mathematical Models[END_REF] et de Murray [START_REF] Murray | Mathematical Biology. Biomathematics[END_REF] pour une introduction à ce type de modèle. On peut également noter les travaux de Ducrot et Magal [START_REF] Ducrot | Travelling wave solutions for an infection-age structured model with diffusion[END_REF] sur des modèles structurés en âge d'infection et en espace, où de la diffusion spatiale permet d'obtenir l'existence d'ondes de propagation.

On peut également incorporer de la diffusion dans des modèles structurés par un trait morphologique pour décrire des variations qui peuvent apparaître par exemple dans la croissance des individus. Considérons par exemple une population d'individus structurés en taille. On peut alors supposer que la croissance ne se fait pas de manière universelle (à l'inverse des modèles structurés en âge où chaque individu vieillit à la même vitesse) mais varie de manière aléatoire : certains grandissent plus vite, plus tôt, etc.

Le premier modèle avec de telles considérations provient de l'article de Waldstätter, Hadeler et Greiner [START_REF] Waldstätter | A Lotka-McKendrick model for a population structured by the level of parasitic infection[END_REF] dans un contexte épidémiologique avec un cadre mathématique hilbertien. On peut également citer l'article de Milner et Patton [START_REF] Milner | A diffusion model for host-parasite interaction[END_REF] où une étude numérique est effectuée avec une comparaison des solutions obtenues avec des modèles sans diffusion. Langlais et Milner [START_REF] Langlais | Existence and uniqueness of solutions for a diffusion model of host-parasite dynamics[END_REF] ont ensuite donné un résultat de génération du même modèle. Par la suite, Chu, Ducrot, Magal et Ruan [START_REF] Chu | Hopf bifurcation in a sizestructured population dynamic model with random growth[END_REF] ont introduit de la diffusion (constante) dans un modèle de population structurée en taille en montrant l'existence d'une bifurcation de Hopf. Hadeler [START_REF] Hadeler | Structured populations with diffusion in state space[END_REF] a obtenu de manière plus générale l'équation

∂ t u(t, s) + ∂ s (γ(s)u(t, s)) = ∂ s (d(s)∂ s u(t, s)), s ≥ 0, (1.7) 
où il fait essentiellement une discussion sur le choix de la condition aux bords à choisir. L'analyse d'une telle équation (avec en plus un terme de mortalité et de reproduction) a été initiée par les travaux de Farkas et de Hinow [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF] en domaine borné, avec un résultat de génération dans L 1 et une étude du comportement de croissance exponentielle asynchrone. Nous reviendrons dessus dans la Section 1.4.4. Dans un contexte épidémiologique, Calsina et Farkas [START_REF] Calsina | Steady states in a structured epidemic model with Wentzell boundary condition[END_REF] ont étudié un modèle nonlinéaire de transport/diffusion en montrant le caractère bien posé du problème dans L 1 ainsi qu'en faisant une étude de stabilité des équilibres dont ils ont au préalable cherché l'existence. Les mêmes auteurs ont également analysé dans [START_REF] Calsina | On a strain-structured epidemic model. Nonlinear Anal[END_REF] un modèle SI avec une équation de diffusion non linéaire pour les individus infectés et une EDO non linéaire pour les individus sains (ou susceptibles). Ils montrent existence et unicité de solutions dans un cadre L 1 et étudient l'existence d'un équilibre endémique. Dans deux papiers, Bartłomiejczyk et Leszczyński [START_REF] Bartłomiejczyk | Method of lines for physiologically structured models with diffusion[END_REF][START_REF] Bartłomiejczyk | Structured populations with diffusion and Feller conditions[END_REF] ont ensuite repris le modèle étudié par Farkas et Hinow [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF] et ont d'une part écrit un schéma numérique dont ils ont montré un principe du maximum faible, puis certaines propriétés de stabilité. D'autre part, ils ont montré un principe du maximum également pour le modèle EDP, puis étudié le comportement asymptotique des solutions dans un cadre hilbertien.

La condition aux bords de Feller

Afin que le problème de transport/diffusion (1.7) soit bien posé, il faut ajouter une condition en s = 0. Dans son article fondateur [START_REF] Feller | The parabolic differential equations and the associated semi-groups of transformations[END_REF], Feller a donné une classification complète de toutes les conditions aux bords possibles pour des diffusions en dimension un. La condition aux bords ainsi dite de Feller ou de Wentzell-Robin s'écrit, pour l'équation (1.7), sous la forme [∂ s (d(s)∂ s u(t, s))] s=0 -b 0 ∂ s u(t, 0) + c 0 u(t, 0) = 0, (1.8) avec b 0 et c 0 deux constantes réelles. Elle fait ainsi intervenir l'opérateur diffusif évalué au bord et englobe les conditions aux bords classiques de Dirichlet, Neumann et de Robin (voir e.g. [START_REF] Apushkinskaya | A survey of results on nonlinear Venttsel problems[END_REF]. Wentzell [157] l'a par la suite généralisée en dimension quelconque.

Une importante littérature sur des équations du second ordre avec de telles conditions aux bords est présente principalement pour l'équation de la chaleur (voir e.g. [START_REF] Favini | C 0semigroups generated by second order differential operators with general Wentzell boundary conditions[END_REF] et les références à l'intérieur). Pour des modèles issus de la dynamique des populations, le premier article avec ce type de condition aux bords est celui de Farkas et Hinow [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF]. L'objet du Chapitre 4 portera sur l'analyse spectrale de ce modèle (qui a également été étudié dans [START_REF] Bartłomiejczyk | Method of lines for physiologically structured models with diffusion[END_REF][START_REF] Bartłomiejczyk | Structured populations with diffusion and Feller conditions[END_REF][START_REF] Calsina | Steady states in a structured epidemic model with Wentzell boundary condition[END_REF]).

Des inteprétations probabilistes de cette condition aux bords sont abordées par Feller [START_REF] Feller | Diffusion processes in one dimension[END_REF] (voir aussi le livre de Bobrowski [START_REF] Bobrowski | Convergence of one-parameter operator semigroups[END_REF]Chapitre 3]) et de nouveaux phénomènes (tels que l'absorption au niveau de la frontière) sont ainsi rendus possibles. On pourra regarder l'article de Peskir [START_REF] Peskir | On boundary behaviour of one-dimensional diffusions : from Brown to Feller and beyond[END_REF] pour un historique sur ce sujet. On pourra aussi regarder l'article de G. Goldstein [START_REF] Goldstein | Derivation and physical interpretation of general boundary conditions[END_REF] pour une dérivation et une interprétation de conditions aux bords générales (dont celle de Feller) dans le cadre de l'équation de la chaleur et des ondes.

D'un point de vue biologique, considérons l'équation (1.7) et évaluons-la formellement en s = 0. L'équation (1.8) peut ainsi se réécrire sous la forme dynamique

∂ t u(t, 0) = (b 0 -γ(0))∂ s u(t, 0) -(c 0 + γ (0))u(t, 0).
Cette condition aux bords permet ainsi aux individus de taille s = 0 d'évoluer au cours du temps. Une interprétation biologique [START_REF] Bartłomiejczyk | Method of lines for physiologically structured models with diffusion[END_REF] est que ces individus entrent dans un état d'inactivité. Dans un contexte épidémiologique [START_REF] Calsina | Steady states in a structured epidemic model with Wentzell boundary condition[END_REF], u(t, 0) représente la densité d'individus qui ont une charge d'infection nulle, autrement dit les individus sains. Les deux classes d'individus se retrouvent ainsi dans une même variable u, alors que dans les modèles épidémiologiques SI classiques (voir e.g. l'article de Hadeler [START_REF] Waldstätter | A Lotka-McKendrick model for a population structured by the level of parasitic infection[END_REF]), les individus susceptibles et infectés sont séparés en deux variables différentes.

Quelques comportements asymptotiques

Dans le but d'étudier ces équations de transport, plusieurs approches ont été développées telles que l'utilisation de la formulation d'équations intégrales de Volterra [START_REF] Iannelli | Mathematical Theory of Age-structured Population Dynamics[END_REF][START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF], des espaces "suns and stars" [START_REF] Diekmann | Stability and bifurcation analysis of volterra functional equations in the light of suns and stars[END_REF] et enfin de la théorie des semigroupes (voir e.g. [START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF]). On considère dans toute cette section l'espace de Lebesgue X = L 1 (Ω, µ) où (Ω, µ) est un espace mesuré avec Ω ⊂ R n , n ≥ 1. Tout au long de ce manuscrit, nous allons nous servir de l'approche par semigroupes (voir Section A.2 pour plus de détails) et réécrire chaque modèle comme le problème de Cauchy semi-linéaire u (t) = Au(t) + f (t, u(t)), t > 0, u(0) = u 0 , (1.9) où A : D(A) ⊂ X → X est un opérateur linéaire et f : X → X une fonction nonlinéaire. Plusieurs rappels sont donnés dans la Section A.5. Le caractère bien posé est montré à l'aide du théorème de Lumer-Phillips où l'on vérifie que A génère un C 0 -semigroupe et f est une fonction localement lipschitzienne.

Équilibres et stabilité

Une fois que l'on a existence et unicité des solutions, on s'intéresse à leur comportement asymptotique. Pour cela, on peut regarder s'il existe des solutions indépendantes du temps, que l'on appelle équilibres de (1.9). On a besoin également de la notion de semiflot qui donne la solution du problème de Cauchy à tout t et pour toute condition initiale. Définition 1.4.1. On appelle semiflot continu du problème (1.9) l'application Φ : R + × X → X (t, z) → Φ t (z) := u z (t) où u z ∈ X est l'unique solution de (1.9) de condition initiale u z (0) = z.

Lorsque le problème de Cauchy est non linéaire, il peut exister un (ou plusieurs) équilibre que l'on va noter E dans cette section. L'idée est ensuite d'étudier le comportement des solutions au voisinage de cet équilibre en déterminant sa stabilité au sens classique, rappelée ci-dessous. Définition 1.4.2. Soit S ⊂ X un sous-espace fermé de X . On dit que le point d'équilibre E est :

1. stable (au sens de Lyapunov) si pour tout ε > 0, il existe η > 0 tel que pour tout z ∈ X on a z -E X ≤ η ⇒ Φ t (z) -E X ≤ ε, ∀t ≥ 0;

2. localement attractif dans S s'il existe η > 0 tel que pour tout z ∈ S satisfaisant z -E X ≤ η, alors lim t→+∞ Φ t (z) -E X = 0;

(1.10) De la même manière que pour un système d'EDO non linéaires, on linéarise l'équation semi-linéaire autour de l'équilibre en question, puis on regarde le spectre de l'opérateur linéarisé, qui n'est pas forcément ponctuel en dimension infinie. Ceci donnera un résultat de stabilité globale pour le modèle linéarisé, mais locale pour le système nonlinéaire. On pourra regarder les Sections A.1 et A.2 pour quelques rappels sur la théorie spectrale d'opérateurs et de semigroupes (type, type essentiel, borne spectrale, rayon spectral, etc.) Théorème 1.4.3 ([153], Proposition 4. 19, p. 206). On considère le problème de Cauchy (1.9) et on note E un équilibre de ce problème. On dénote par D E f la différentielle de f au point E. Le système linéarisé de (1.9) est ainsi

u (t) = (A + D E f )u(t)
et on obtient :

1. Si ω 0 (A + D E f ) < 0 alors E est localement asymptotiquement stable ;

2. Si ω 0 (A + D E f ) > 0 et ω ess (A + D E f ) ≤ 0 alors E est instable,
où ω 0 (A+D E f ) et ω ess (A+D E f ) désignent respectivement le taux de croissance (ou type) et le taux de croissance essentiel (ou type essentiel) de A + D E f . Remarque 1.4.4. Il est important de noter ce qu'il se passe lorsque ω ess (A + D E f ) > 0. Puisque

ω 0 (A + D E f ) = max{ω ess (A + D E f ), s(A + D E f )}, où s(A + D E f ) est la borne spectrale de A + D E f , alors forcément ω 0 (A + D E f ) > 0.
En revanche, rien n'est dit pour le signe de s(A + D E f ). Lorsque A génère un C 0 -semigroupe positif dans L 1 , alors s(A + D E f ) > 0 (puisque, dans ce cas, la borne spectrale et le type sont égaux), ce qui implique l'instabilité de E.

Dans le Chapitre 2, nous allons nous servir de cette notion de stabilité pour donner une idée du comportement des solutions au voisinage des équilibres pour le modèle non linéaire (1.1). Afin d'obtenir plus de renseignements sur le caractère asymptotique des solutions, on définit la notion d'ensemble attractif. 

Définition 1.4.5. On note O z = {Φ t (z), t ≥ 0} l'orbite partant d'un point z ∈ X et ω(z) = ∩ a≥0 {Φ t (z), t ≥ a} l'ensemble ω -limite de z.

Quelques mots sur le R 0

Lors de l'étude de modèles issus de la dynamique des populations, une question fondamentale que se posent en particulier les biologistes est de savoir si les populations vont s'éteindre et disparaître ou au contraire subsister. Une notion qui apparaît alors régulièrement dans la littérature est celle de "R 0 " (voir l'article de Heesterbeek [START_REF] Heesterbeek | A brief history of R 0 and a recipe for its calculation[END_REF] pour un bref historique). Considérons le modèle de McKendrick-Von Förster (1.6) avec a max = +∞. La quantité totale d'individus au temps t est alors donnée par

X(t) = +∞ 0
x(t, a)da et une intégration formelle de (1.6) par rapport à a donne

X (t) = ∞ 0 (β(a) -µ(a))x(t, a)da
pour tout t ≥ 0). Si les fonctions β et µ ne sont pas constantes, il n'est à première vue pas évident de savoir comment va évoluer la population totale X(t). Afin d'en déduire le comportement des solutions, on définit

R 0 = +∞ 0 β(a)e -a 0 µ(s)ds da.
(

Un résultat, pressenti par Sharpe et Lotka [START_REF] Sharpe | A problem in age-distribution[END_REF], puis montré rigoureusement par Feller [START_REF] Feller | On the integral equation of renewal theory[END_REF] à l'aide de formulations intégrales et enfin par Webb [START_REF] Webb | A semigroup proof of the Sharpe-Lotka theorem[END_REF][START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF] en utilisant les semigroupes et la méthode des caractéristiques, est le suivant (sous de bonnes hypothèses). représente la probabilité pour chaque individu de survivre jusqu'à l'âge a. Des modèles linéaires plus généraux conduisent aussi à des seuils analogues liés à la borne spectrale de A (voir par exemple l'article de Thieme [START_REF] Thieme | Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity[END_REF]).

Persistance de solutions

Lorsque R 0 > 1, l'équilibre trivial de (1.6) est instable, mais rien n'est dit quant au caractère asymptotique des solutions. En supposant par exemple que

supp(β) = [β 0 , β 1 ], 0 ≤ β 0 < β 1 < +∞,
où supp(β) désigne le support de la fonction β et en prenant une condition initiale

x 0 ∈ L 1 (R + ) vérifiant supp(x 0 ) ⊂ [β 1 , +∞),
on peut montrer qu'il n'y a jamais de renouvellement de la population i.e. x(t, 0) = 0 pour tout t ≥ 0 et donc

lim t→+∞ x(t, •) L 1 (0,∞) = 0.
Cependant, d'autres conditions initiales (voir e.g. [START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF]Théorème 4.10,p. 188]) engendrent une solution dont la norme L 1 tend vers l'infini. On voit donc que, malgré l'instabilité de l'équilibre trivial, la population peut encore disparaître selon la condition initiale choisie. Une autre notion qui intervient alors naturellement est celle de persistance (voir par exemple [START_REF] Butler | Persistence in dynamical systems[END_REF][START_REF] Freedman | Persistence definitions and their connections[END_REF]), qui s'intéresse à savoir si, pour des temps assez grands, la population totale va subsister ou non. Cette notion est d'abord apparue dans des modèles démographiques [START_REF] Freedman | Mathematical analysis of some three-species food-chain models[END_REF], puis dans un contexte épidémiologique, où la question est de savoir si une maladie va persister (voir e.g. [START_REF] Perasso | Asymptotic behavior and numerical simulations for an infection load-structured epidemiological model : application to the transmission of prion pathologies[END_REF]).

On se place ici dans X = L 1 (0, +∞), puis on définit ρ : X x → ∞ 0 x(t, a)da ∈ R + une fonction positive uniformément continue sur X et on note σ ρ (t, x) = ρ(Φ t (x)) qui est donc continue, où Φ t est le semiflot défini plus haut. Avant de donner la définition de persistance, on introduit les notations suivantes

σ + ρ (x) = lim sup t→+∞ σ ρ (t, x), σ - ρ (x) = lim inf t→+∞ σ ρ (t, x).
Définition 1.4.9. La population x est dite 1. uniformément fortement persistante si

∃ε > 0 : ∀x ∈ X , ρ(x) > 0 ⇒ σ - ρ (x) ≥ ε;
2. uniformément faiblement persistante si on a l'inégalité ci-dessus avec σ + ρ (x) au lieu de σ - ρ (x).

Remarque 1.4.10. On peut également définir de la persistance non uniforme si ε dépend de la condition initiale x choisie.

Cette notion de persistance sera utilisée lors de l'étude du modèle (1.1) dans le cas où R 0 > 1 i.e. quand l'équilibre trivial est instable.

Croissance exponentielle asynchrone

Un autre phénomène important en dynamique des populations est la propriété de croissance exponentielle asynchrone. De manière grossière, ce phénomène dit que, pour une population structurée selon une variable a, sa densité de population u(t, a) est asymptotiquement égale à e λ 0 t n 0 (a) pour t assez grand, où λ 0 est une constante et n 0 est une distribution indépendante de la condition initiale. Autrement dit, la structure de la population se réorganise de la même manière que la fonction n 0 (voir e.g. [START_REF] Gyllenberg | Asynchronous exponential growth of semigroups of nonlinear operators[END_REF] et [START_REF] Webb | An operator-theoretic formulation of asynchronous exponential growth[END_REF]). La définition mathématique est la suivante (voir par exemple [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF], p. 336). Définition 1.4.11. Soit {T (t)} t≥0 un C 0 -semigroupe d'opérateurs linéaires bornés sur X . On dit que le semigroupe a la propriété de croissance exponentielle asynchrone de taux intrinsèque λ 0 ∈ R s'il existe un projecteur de rang fini noté P 0 , dans X tel que lim t→+∞ e -λ 0 t T (t) = P 0 (la limite étant dans la topologie de norme d'opérateur).

En pratique, le comportement asynchrone est démontré à l'aide de deux notions clés :

• l'irréductibilité du semigroupe dont on rappelle la définition juste après ;

• l'existence d'un gap spectral, i.e. (1.12).

On note X + et X respectivement le cône positif et le dual de X puis on dénote par •, • le crochet de dualité entre L 1 et L ∞ . La notation f > 0 signifie f ∈ X + et f = 0. On pourra regarder la Section A.4 pour plus de rappels sur les opérateurs positifs. Définition 1.4.12. Soit {T (t)} t≥0 un C 0 -semigroupe positif. On dit qu'il est irréductible si pour chaque f ∈ X , f > 0 et x ∈ X , x > 0 il existe t > 0 tel que T (t)f, x > 0. De même, on dira que A est irréductible si, pour chaque f ∈ X , f > 0 et x ∈ X , x > 0, il existe un entier n tel que A n f, x > 0. D'un point de vue géométrique, A est irréductible si et seulement s'il n'existe pas de sous-espace de la forme

L 1 ( Ω), Ω ⊂ Ω, 0 < | Ω| < |Ω| qui soit invariant par A.
Nous énonçons maintenant le résultat utilisé par la suite pour montrer le comportement asynchrone. 

∂ s (d(s)∂ s (u(t, s))).
Nous reviendrons dans la Section 1.6 sur l'existence d'un gap spectral pour ces modèles.

Deux applications biologiques

On présente dans cette section deux applications : l'évolution d'une population de cellules pouvant être soit actives soit au repos, ainsi que les interactions proie-prédateur avec un intérêt particulier sur les équations de Lotka-Volterra.

Modèles cellulaires avec état de quiescence

Dans certaines populations, les individus ne sont pas tous dans un état actif de croissance et de prolifération. En effet, dans certaines circonstances, un individu (ou une cellule) peut croître puis arriver dans un état de repos, dit 'quiescent', avant de retourner dans un état actif. Par exemple, lors de la division de cellules eucaryotes, celles-ci peuvent passer, après la mitose, par la phase G 0 dite de quiescence.

En prenant en compte la maturation des cellules à l'aide d'une variable continue, Rotenberg [START_REF] Rotenberg | Transport theory for growing cell populations[END_REF] a introduit dans ce contexte le premier modèle de population structurée. On peut également citer l'article de Dyson, Villella-Bressan et Webb [START_REF] Dyson | A maturity structured model of a population of proliferating and quiescent cells[END_REF] où la maturation des cellules est également prise en compte. La taille jouant un rôle important dans la dynamique des cellules, Gyllenberg et Webb ont introduit dans [START_REF] Gyllenberg | Age-size structure in populations with quiescence[END_REF] le premier modèle de population structurée en taille (et en âge), avec un état de quiescence, pour lequel ils montrent le comportement de croissance exponentielle asynchrone sous des hypothèses générales. Parmi les modèles structurés en âge, on peut regarder les travaux de Arino, Sánchez et Webb [START_REF] Arino | Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence[END_REF] ainsi que de Dyson, Villella-Bressan et Webb [START_REF] Dyson | Asynchronous exponential growth in an age structured population of proliferating and quiescent cells[END_REF]. Dans ce cas, les équations étudiées sont de la forme 

∂ t u 1 (t, a) + ∂ a u 1 (t, a) = -c 1 (a)u 1 (t, a) + c 2 (a)u 2 (t, a) -µ(a)u 1 (t, a), ∂ t u 2 (t, a) + ∂ a u 2 (t, a) = c 1 (a)u 1 (t, a) -c 2 (a)u 2 (t,
u 2 (t, 0) = 0.
De plus, pour décrire la division cellulaire et la phase de mitose (division des cellules en deux, supposée se produire uniquement dans l'état actif), on impose

u 1 (t, 0) = 2 amax 0 µ(a)u 1 (t, a)da.
Dans ces modèles structurés en âge, le phénomène de croissance exponentielle asynchrone est mis en évidence sous des hypothèses très générales sur les paramètres. Il est en effet démontré dans [START_REF] Arino | Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence[END_REF][START_REF] Dyson | Asynchronous exponential growth in an age structured population of proliferating and quiescent cells[END_REF], que pour obtenir l'irréductibilité du semigroupe, il faut avoir

inf supp c 1 = 0, sup supp c 2 = a max , sup supp µ = a max .
Ces hypothèses permettent respectivement aux cellules proliférantes de jeune âge de devenir quiescentes, aux cellules quiescentes d'âge maximal de redevenir proliférantes, et aux cellules proliférantes d'âge maximal de se reproduire. Par la suite, Farkas et Hinow [START_REF] Farkas | On a size-structured two-phase population model with infinite states-at-birth[END_REF] ont introduit le modèle linéaire (1.2) structuré en taille. Le terme intégral décrivant la reproduction apparaît ainsi dans l'équation et non dans la condition aux bords. Le comportement asymptotique des solutions est étudié sous des hypothèses similaires :

inf supp c 1 = 0, sup supp c 2 = m et il est supposé qu'il existe ε 0 > 0 tel que pour tout 0 < ε ≤ ε 0 on a ε 0 m m-ε β(s, y)dyds > 0
i.e. les individus de taille maximale peuvent donner naissance à des individus de taille minimale. On généralise leurs résultats dans plusieurs directions dans le Chapitre 3. Pour des cas particuliers de ce modèle, on peut regarder [START_REF] Bai | Well-posedness and asynchronous exponential growth of solutions of a two-phase cell division model[END_REF][START_REF] Gyllenberg | A nonlinear structured population model of tumor growth with quiescence[END_REF][START_REF] Gyllenberg | Quiescence in structured population dynamics : applications to tumor growth[END_REF][START_REF] Rossa | Quiescence as an explanation for asynchronous exponential growth in a size structured cell population of exponentially growing cells. I[END_REF]. On note également une étude de bifurcation de Hopf d'un modèle similaire [START_REF] Chu | Hopf bifurcation for a size-structured model with restingphase[END_REF] ainsi que la prise en compte du retard [START_REF] Bai | On a two-phase size-structured population model with infinite states-at-birth and distributed delay in birth process[END_REF] dans la reproduction. De manière générale, les modèles de population avec phase quiescente ont été largement étudiés même sans structuration (voir [START_REF] Hadeler | Homogeneous systems with a quiescent phase[END_REF][START_REF] Hadeler | Quiescent phases and stability in discrete time dynamical systems[END_REF] et les références citées à l'intérieur).

Les modèles proie-prédateur

Lorsque l'on souhaite décrire l'évolution de plusieurs populations d'individus, on peut supposer que celles-ci interagissent entre elles. En considérant deux espèces différentes, une grande classe d'interactions est appelée par les écologues trophique ou ressource consommateur. Celle-ci regroupe les relations dites de proie-prédateur où la première est mangée à ses dépens par la seconde ce qui lui permet de survivre. Le premier modèle mathématique décrivant de telles interactions trophiques remonte aux années 1920 avec les travaux de Lotka [START_REF] Lotka | Elements of Physical Biology[END_REF] et Volterra [START_REF] Volterra | Fluctuations in the abundance of a species considered mathematically[END_REF]. Ce modèle, composé de deux EDO, s'écrit sous la forme

     x (t) = ax(t) -bx(t)y(t), y (t) = cx(t)y(t) -dy(t), x(0) = x 0 , y(0) = y 0 .
(1.15) où x(t) et y(t) sont respectivement les densités de populations de proies et de prédateurs à l'instant t, avec :

• a > 0 le taux de reproduction des proies ;

• d > 0 le taux de mortalité des prédateurs ;

• b, c > 0 des taux liés à la prédation.

Il est connu (voir les livres de Edelstein-Keshet [START_REF] Edelstein-Keshet | Mathematical Models in Biology[END_REF] et Murray [START_REF] Murray | Mathematical Biology. Biomathematics[END_REF]) qu'il existe un équilibre d'extinction (0, 0) et un de cohabitation (d/c, a/b). De plus, pour chaque condition initiale (x 0 , y 0 ), la solution de (1.15) est périodique (voir Figure 1.1) ce qui explique par exemple les variations obtenues dans les populations de lièvres et de lynx [START_REF] Gilpin | Do hares eat lynx ?[END_REF] ou encore dans les populations de loups et d'élans [START_REF] Jost | The wolves of isle royale display scale-invariant satiation and ratio-dependent predation on moose[END_REF]. Ce résultat empêche également la population de disparaître ou d'exploser en temps long. [START_REF] Turchin | Complex Population Dynamics : a Theoretical/Empirical Synthesis[END_REF]) ont étudié des modèles de la forme

     x (t) = ax(t) 1 - x(t) K -p(x(t))y(t), y (t) = cp(x(t))y(t) -dy(t),
où K > 0 est la capacité limite des proies. Cette considération rajoute l'existence d'un équilibre (K, 0) avec uniquement la survie de la proie. May [START_REF] May | Stability and Complexity in Model Ecosystems[END_REF] a par exemple proposé un modèle à l'aide d'une réponse fonctionnelle de type I où les solutions convergent soit vers l'équilibre de coexistence soit vers celui de disparition des prédateurs. On peut également citer le modèle de Rosenzweig-McArthur [START_REF] Rosenzweig | Graphical representation and stability conditions of predator-prey interactions[END_REF] avec une réponse fonctionnelle de type II pour lequel on peut obtenir l'existence d'un cycle limite (les solutions convergent vers une fonction périodique) en variant les paramètres. Ces différents comportements n'apparaissent pas pour le modèle classique de Lotka-Volterra. Pourtant, nous allons voir dans le Chapitre 2 qu'en rajoutant de la structure en âge sur les proies et en considérant le modèle (1.1), on arrive à les retrouver. On pourra regarder les livres de Hastings [START_REF] Hastings | Population Biology, Concepts and Models[END_REF] et de Turchin [START_REF] Turchin | Complex Population Dynamics : a Theoretical/Empirical Synthesis[END_REF] pour une introduction aux modèles proie-prédateur.

Les équations de Lotka-Volterra

Structurées en âge

Les équations de Lotka-Volterra restent encore un vaste sujet d'étude en dynamique des populations. La plupart utilisent des EDO et parfois des EDP quand on rajoute une partie diffusive en espace (voir par exemple [START_REF] Hosono | Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator[END_REF][START_REF] Langa | Permanence and asymptotically stable complete trajectories for nonautonomous Lotka-Volterra models with diffusion[END_REF] et de manière plus générale le livre de Murray [START_REF] Murray | Mathematical Biology. Biomathematics[END_REF] pour l'étude de modèles de réaction-diffusion). Par ailleurs, il peut sembler important de prendre en compte une structuration en âge dans les dynamiques des espèces considérées.

La littérature à propos des modèles proie-prédateur avec structure en âge contient de nombreux modèles EDO compartimentaux (voir [START_REF] Al-Omari | A stage-structured predator-prey model with distributed maturation delay and harvesting[END_REF][START_REF] Falconi | Stability and global dynamic of a stage-structured predator-prey model with group defense mechanism of the prey[END_REF][START_REF] Fang | Stage-structured models of intra-and inter-specific competition within age classes[END_REF][START_REF] Liu | Recent progress on stage-structured population dynamics[END_REF] et les références à l'intérieur), mais, à notre connaissance, seulement quelques articles prennent en compte une variable d'âge continue. Le premier modèle a été proposé par Gurtin et Levine [START_REF] Gurtin | On predator-prey interactions with predation dependent on age of prey[END_REF] sous la forme suivante :

     ∂ t x(t, a) + ∂ t x(t, a) = -µx(t, a) -by(t)x(t, a), y (t) = cy(t) ∞ 0 x(t, a)da -dy(t), x(t, 0) = ∞ 0 β(a)
x(t, a)da, où b, c, d, µ > 0 sont des constantes strictement positives, avec µ le taux de mortalité des proies et β(a) le taux de reproduction des proies d'âge a. Les auteurs montrent alors que sous l'hypothèse β(a) = β 0 ae -αa , a ≥ 0 pour β 0 > 0 et α > 0, leur modèle peut être transformé en un problème EDO plus classique. La plupart des articles suivants [START_REF] Levine | On the stability of a predator-prey system with egg-eating predators[END_REF][START_REF] Thompson | Predator-prey interactions : egg-eating predators[END_REF][START_REF] Coleman | Satiable egg eating predators[END_REF] utilisent le même type d'hypothèses sur les paramètres et obtiennent en conséquence quelques résultats de stabilité grâce aux modèles EDO. On pourra également regarder [START_REF] Saleem | Predator-prey relationships : egg-eating predators[END_REF][START_REF] Saleem | Egg-eating age-structured predators in interaction with age-structured prey[END_REF] pour le cas spécifique de modèles de prédateur mangeur d'oeufs ('egg-eating'), ainsi que [START_REF] Cushing | A predator prey model with age structure[END_REF][START_REF] Luo | Optimal birth control for predator-prey system of three species with age-structure[END_REF][START_REF] Saleem | Predator-prey relationships : indiscriminate predation[END_REF] pour des modèles plus généraux.

Un article de Levine [START_REF] Levine | Bifurcating periodic solutions for a class of age-structured predatorprey systems[END_REF] se concentre sur l'existence d'une solution périodique en temps en faisant l'hypothèse que le taux de prédation est une fonction dépendant de l'âge, de la forme b(a

) = r + λ 1 S 1 (a) + λ 2 S 2 (a)
où r, λ 1 , λ 2 sont des constantes strictement positives et avec plusieurs hypothèses sur les fonctions S 1 et S 2 . On peut également citer l'article de Venturino [START_REF] Venturino | Age-structured predator-prey models[END_REF] où à la fois la proie et le prédateur sont structurés en âge. Les taux de prédation sont supposés dépendre de l'âge des individus. En supposant que les taux de mortalité et de reproduction de chacune des espèces dépendent de la quantité totale d'individus et sous l'hypothèse que la condition au bord est de la forme

x(t, 0) = ∞ 0 ae -ka (f 0 -f 1 X(t))x(t, a)da où c, f 0 , f 1 ≥ 0 sont des constantes positives et X(t) = ∞ 0 x(t, a
)da, il montre le caractère borné des solutions. Sous des hypothèses similaires de reproduction bornée et où la prédation dépend uniquement de la quantité totale de proies, Li [START_REF] Li | Dynamics of age-structured predator-prey population models[END_REF] a étudié l'existence et la stabilité de trois équilibres correspondant à l'extinction et à la coexistence des deux espèces ainsi qu'à la persistance de la population de proies uniquement.

Dans le Chapitre 2, nous allons étudier le modèle (1.1) où la structure en âge apparaît dans les proies. Leurs taux de mortalité, de prédation et de reproduction dépendent ainsi chacun de l'âge des proies et seule l'hypothèse que ces fonctions sont bornées est considérée, rendant l'étude de ce modèle plus générale que les travaux mentionnés ci-dessus.

Récemment, basé sur le modèle de Cushing et Saleem [START_REF] Cushing | A predator prey model with age structure[END_REF] où uniquement le prédateur est structuré en âge, dans deux articles ont été analysé l'effet d'une période de maturation et d'un retard dans le processus de natalité [START_REF] Liu | Stability and bifurcation in a predator-prey model with age structure and delays[END_REF][START_REF] Tang | Hopf bifurcation for a predator-prey model with age structure[END_REF]. En outre, on peut également noter que certains modèles proie-prédateur ont aussi été utilisés en épidémiologie, couplés avec des modèles SI [START_REF] Arino | Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey[END_REF][START_REF] Bhattacharya | A predator-prey-disease model with immune response in infected prey[END_REF][START_REF] Delgado | Analysis of an agestructured predator-prey model with disease in the prey[END_REF]. La taille de la proie étant reconnue comme un élément clé de la prédation sélective [START_REF] Solomon | The natural control of animal populations[END_REF], on peut aussi étudier des modèles proie-prédateur avec une structure (continue) en taille (voir e.g. [START_REF] Bhattacharya | Oscillations in a size-structure preypredator model[END_REF][START_REF] Logan | Type II functional response for continuous, physiologically structured models[END_REF] et les références à l'intérieur). Certains prennent également en compte une partie stochastique [START_REF] Hening | Stochastic Lotka-Volterra food chains[END_REF].

Avec retard

On peut également supposer que la reproduction ne se fait pas instantanément mais après un certain temps de latence. Cette considération implique ainsi d'étudier des équations à retard (voir les livres de Cushing [START_REF] Cushing | Integrodifferential Equations and Delay Models in Population Dynamics[END_REF] et de Smith [START_REF] Smith | An Introduction to Delay Differential Equations with Applications to the Life Sciences[END_REF] pour une introduction à de telles équations en biologie). Concernant le modèle de Lotka-Volterra, May [START_REF] May | Time-delay versus stability in population models with two and three trophic levels[END_REF] a analysé le modèle

     x (t) = ax(t) 1 - x(t -τ ) K -bx(t)y(t), y t) = cx(t)y(t) -dy(t),
où le retard intervient sur le terme de capacité limite de la proie. Une application aux modèles épidémiologiques est due à Beretta, Capasso et Rinaldi [START_REF] Beretta | Global stability results for a generalized Lotka-Volterra system with distributed delays : applications to predatorprey and to epidemic systems[END_REF]. Par la suite, Faria [START_REF] Faria | Stability and bifurcation for a delayed predator-prey model and the effect of diffusion[END_REF] a considéré le modèle Remarquons enfin que l'extension du modèle de Rosenzweig-MacArthur avec de la structuration en âge n'a été faite à notre connaissance que très récemment [START_REF] Lu | Threshold dynamics of a predator-prey model with agestructured prey[END_REF], où les auteurs se placent dans un cas particulier permettant de se ramener à un modèle à retard. L'étude du modèle entier reste donc encore un problème ouvert. On peut également noter l'existence d'un article [START_REF] Bilinsky | Quiescence stabilizes predator-prey relations[END_REF], où l'étude porte sur un modèle faisant le lien entre celui de Rosenzweig-MacArthur et le modèle cellulaire avec quiescence.

           x (t) = ax(t) 1 - x(t) K 1 -bx(t)y(t -τ ), y (t) = cx(t -

Principaux résultats du manuscrit

Cette section est consacrée à un résumé des principaux résultats de cette thèse.

Un modèle proie-prédateur structuré en âge

Dans le Chapitre 2, nous étudions un modèle proie-prédateur avec structuration en âge sur la proie comme dans [START_REF] Gurtin | On predator-prey interactions with predation dependent on age of prey[END_REF] où l'on rajoute une dépendance en âge de la prédation et de la mortalité des proies. On note x(t, a) la densité de proies d'âge a à l'instant t et y(t) la densité de prédateurs, ce qui amène à étudier le système

         ∂ t x(t, a) + ∂ a x(t, a) = -µ(a)x(t, a) -y(t)γ(a)x(t, a), y (t) = αy(t) ∞ 0 γ(a)x(t, a)da -δy(t), x(t, 0) = ∞ 0 β(a)x(t, a)da, x(0, a) = x 0 (a) et y(0) = y 0 , (1.16)
pour tout t ≥ 0 et a ≥ 0. On se place dans l'espace

X = L 1 (0, ∞) × R et on définit l'opérateur linéaire A : D(A) ⊂ X → X où D(A) = {(φ, z) ∈ X , φ ∈ W 1,1 (R + ) et φ(0) = ∞ 0 β(a)φ(a)da}, A = D 0 0 -δ avec Dφ = -φ -µφ
et où W 1,1 désigne l'espace de Sobolev des fonctions L 1 dont la dérivée au sens faible est également L 1 . On définit également la fonction f : X → X par

f (φ, z) = -zγ(.)φ(.) αz ∞ 0 γ(a)φ(a)da
, pour ainsi réécrire l'équation (1.16) comme le problème de Cauchy (1.9). On montre dans un premier temps que l'opérateur A génère un C 0 -semigroupe à l'aide du théorème de Lumer-Phillips, puis le fait que f soit localement lipschitzienne nous donne existence et unicité de solution locale pour toute condition initiale [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF]. En se servant d'arguments de perturbation comme dans [START_REF] Perasso | Infection load structured SI model with exponential velocity and external source of contamination[END_REF][START_REF] Perasso | Asymptotic behavior and numerical simulations for an infection load-structured epidemiological model : application to the transmission of prion pathologies[END_REF], on montre ensuite que la solution reste positive. En utilisant des estimations à priori, on en déduit que la solution est globale en temps. Afin d'étudier le comportement asymptotique des solutions, on fait une recherche d'équilibres. On pose ainsi On trouve alors que 1. Si R 0 < 1 ou si (R -> 1) alors il y a un unique équilibre qui est E 0 = (0, 0) ; .

R 0 = ∞ 0 β(a)e
2. Si R 0 > 1 et R -< 1 alors, outre l'équilibre trivial E 0 , apparaît l'équilibre positif E 2 = (x * 2 , y * ), où y * vérifie ∞ 0 β(a)e
Notons E un équilibre et la différentielle de f en ce point est donnée par

D E f = -y * γ -γx * αy * L γ (.) α ∞ 0 γ(a)x * (a)da . Sous l'hypothèse µ(a) ≥ µ 0 > 0, ∀a ≥ 0, (H1) 
on montre que

ω ess (A + D E f ) ≤ -µ 0 < 0.
Ce qui permet d'avoir

{λ ∈ σ(A + D E f ), Re λ ≥ 0} = σ p (A + D E f ),
où σ p désigne le spectre ponctuel. On est ainsi ramené, à l'aide du Théorème 1.4.3, à une étude de recherche de valeurs propres de partie réelle positive. On est alors en mesure de montrer que 1. si R 0 < 1, alors E 0 est globalement asymptotiquement stable dans X + ;

2. si R 0 > 1, alors E 0 est instable.

On fait ensuite l'hypothèse

∃η 1 > 0, ∃ 0 < a < a < +∞ tels que β(a) ≥ η 1 p.p. a ∈ (a, a), (H2) 
on définit la propriété

∃η 2 > 0, ∃ 0 ≤ t 1 < t 2 < a : t 2 t 1
x 0 (a)da ≥ η 2 .

(P) et on note X p l'ensemble défini par

X p = {(x 0 , y 0 ) ∈ X + , +∞ 0
x 0 (a)da > 0, y 0 > 0 et vérifiant (P)}.

On montre alors que si R -> 1 et si (x 0 , y 0 ) ∈ X p , alors les populations de proies et de prédateurs explosent : 

lim t→+∞ X(t) = +∞, lim t→+∞ y(t) = +∞, où X(t) = +∞ 0 x(t,
R 0 > 1 et R -< 1
on montre que les populations totales de proies ainsi que de prédateurs sont uniformément faiblement persistantes. À l'aide de simulations numériques, il semble qu'il y ait même de la persistance uniforme forte et que La convergence vers E 2 reste hypothétique mais semble confortée numériquement. L'ensemble de ces résultats fait l'objet de l'article [START_REF] Perasso | Implication of age-structure on the dynamics of Lotka-Volterra equations[END_REF]. Nous analyserons plus en détails la stabilité de l'équilibre non trivial dans le Chapitre 5 avec l'étude d'un cas particulier permettant de se ramener à l'étude d'un système d'équations différentielles à retard. De plus, la question de savoir sous quelle condition on passe d'une convergence vers l'équilibre à une convergence vers une fonction périodique reste un problème ouvert.

1.5 -Convergence vers E 2 R 0 < 1 R 0 > 1 et (P) Convergence vers E 0 R -< 1 R ->

Un modèle cellulaire à deux phases avec structure en taille

Dans le Chapitre 3, nous étudions le modèle de population structurée en taille introduit par Farkas et Hinow [START_REF] Farkas | On a size-structured two-phase population model with infinite states-at-birth[END_REF]. On considère ainsi le système d'équations linéaires de transport

     ∂ t u 1 (t, s) + ∂ s (γ 1 (s)u 1 (t, s)) = -µ(s)u 1 (t, s) + m 0 β(s, y)u 1 (t, y)dy -c 1 (s)u 1 (t, s) + c 2 (s)u 2 (t, s), ∂ t u 2 (t, s) + ∂ s (γ 2 (s)u 2 (t, s)) = c 1 (s)u 1 (t, s) -c 2 (s)u 2 (t, s), pour s ∈ [0, m], t ≥ 0, avec des conditions aux bords de Dirichlet u 1 (t, 0) = 0, u 2 (t, 0) = 0.
On se place dans

X = L 1 (0, m) × L 1 (0, m)
puis on définit l'opérateur linéaire

A : D(A) ⊂ X → X par A u 1 u 2 = A u 1 u 2 + B u 1 u 2 = -(γ 1 u 1 ) -(γ 2 u 2 ) + -(µ + c 1 )u 1 + c 2 u 2 + m 0 β(•, y)u 1 (y)dy) -c 2 u 2 + c 1 u 1 ,
et où le domaine de A est donné par

D(A) = {(u 1 , u 2 ) ∈ W 1,1 (0, m) × W 1,1 (0, m) : u 1 (0) = 0, u 2 (0) = 0}.
On montre ainsi que le problème est bien posé dans X . Comme expliqué précédemment, un des points clés pour étudier le caractère de croissance exponentielle asynchrone est l'irréductibilité du semigroupe. Dans [START_REF] Farkas | On a size-structured two-phase population model with infinite states-at-birth[END_REF], les auteurs l'obtiennent sous les hypothèses

∃ ε 0 > 0 : ∀ε ∈ (0, ε 0 ], ε 0 m m-ε β(s, y)dyds > 0 et inf supp c 1 = 0, sup supp c 2 = m.
Ici, on montre que le semigroupe est irréductible si et seulement si l'hypothèse ∀ε ∈ (0, m),

ε 0 m ε β(s, y)dyds > 0, inf supp c 1 = 0, sup supp c 2 = m, (1.17)
est vérifiée. Cette propriété n'est à priori pas évidente à montrer à cause des conditions aux bords de Dirichlet homogènes que l'on a choisies. On décompose dans un premier temps B en trois opérateurs : 

B u 1 u 2 = B 1 u 1 u 2 + B 2 u 1 u 2 + B 3 u 1 u 2 = -(µ + c 1 )u 1 -c 2 u 2 + c 2 u 2 c 1 u 1 + m 0 β(•,
s(A + B 1 + B 2 ) = -∞.
On montre ensuite que la borne spectrale de A est finie (i.e. s(A) > -∞) si et seulement si

∃ δ ∈ (0, m) : δ 0 m δ β(s, y)dyds > 0. (1.18) 
Pour cela on définit les opérateurs

A 1 : D(A 1 ) u → -(γ 1 u) ∈ L 1 (0, m), K : L 1 (0, m) u → m 0 β(., y)u(y)dy ∈ L 1 (0, m) où D(A 1 ) = {u ∈ W 1,1 (0, m) : u(0) = 0}.
L'hypothèse (1.18) assure l'existence d'un point δ 2 ∈ (δ, m) pour que l'opérateur

χ [δ,δ 2 ] (λ -(A 1 + K)) -1 |L 1 (δ,δ 2 )
soit irréductible et compact, avec χ [δ,δ 2 ] la fonction indicatrice sur [δ, δ 2 ] et où L 1 (δ, δ 2 ) est le sous-espace de L 1 (R + ) des fonctions valant 0 en dehors de (δ, δ 2 ). Ces deux propriétés impliquent grâce au théorème de de Pagter (voir Théorème A.4.7) que

r σ χ [δ,δ 2 ] (λ -(A 1 + K)) -1 |L 1 (δ,δ 2 ) > 0,
où r σ désigne le rayon spectral. Par perturbation positive on en déduit que

r σ ((λ -A) -1 ) ≥ r σ χ [δ,δ 2 ] (λ -(A 1 + K)) -1 |L 1 (δ,δ 2 ) > 0.
Le fait que

r σ ((λ -A) -1 ) = 1 λ -s(A) implique ainsi s(A) > -∞.
On suppose ensuite que K est faiblement compact, i.e. qu'il envoie tout borné de X sur une partie relativement faiblement compacte de X (voir Section A.3 pour plus de détails).

On montre que le semigroupe généré par A a la propriété de croissance exponentielle asynchrone sous l'hypothèse (1.17 

ω ess (A) ≤ s(A + B 1 + B 2 ) = -∞.
On en déduit alors que -∞ = ω ess (A) < s(A) = ω 0 (A).

Ce gap spectral combiné à l'irréductibilité du semigroupe explique ainsi le comportement de croissance exponentielle asynchrone. Dans [START_REF] Farkas | On a size-structured two-phase population model with infinite states-at-birth[END_REF], le gap spectral est obtenu sous l'hypothèse plus forte que

β ∈ C([0, m] 2 ) et qu'il existe 0 ≤ s * < y * ≤ m tel que β(s * , y * ) > 0.
Dans le cas où l'hypothèse de gap spectral (1.18) est vérifiée, mais où celle de l'irréductibilité (1.17) ne l'est pas, le semigroupe possède le comportement décrit par (1.13). La question de savoir si la borne spectrale s(A) est semi-simple (i.e. que le semigroupe a la propriété asynchrone) est un problème ouvert. On se place ensuite dans le cas où la taille maximale des cellules est infinie. On étudie ainsi dans la Section 3.2 le modèle suivant, qui ne semble pas avoir été étudié jusqu'ici

     ∂ t u 1 (t, s) + ∂ s (γ 1 (s)u 1 (t, s)) = -µ(s)u 1 (t, s) + ∞ 0 β(s, y)u 1 (t, y)dy -c 1 (s)u 1 (t, s) + c 2 (s)u 2 (t, s), ∂ t u 2 (t, s) + ∂ s (γ 2 (s)u 2 (t, s)) = c 1 (s)u 1 (t, s) -c 2 (s)u 2 (t, s),
pour s, t ≥ 0, et les mêmes conditions aux bords (de Dirichlet) que dans le cas fini. On se place dans

X ∞ = (L 1 (0, ∞) × L 1 (0, ∞), • X ∞ ) muni de la norme (x 1 , x 2 ) X ∞ = x 1 L 1 (0,∞) + x 2 L 1 (0,∞) .
On définit

A ∞ u 1 u 2 = A ∞ u 1 u 2 + B ∞ u 1 u 2 = -(γ 1 u 1 ) -(γ 2 u 2 ) + -(µ + c 1 )u 1 + c 2 u 2 + ∞ 0 β(•, y)u 1 (y)dy -c 2 u 2 + c 1 u 1 , où le domaine de A ∞ est donné par D(A ∞ ) = {(u 1 , u 2 ) ∈ W 1,1 (0, ∞) × W 1,1 (0, ∞) : u 1 (0) = 0, u 2 (0) = 0}.
On décompose ensuite B ∞ en

B ∞ u 1 u 2 = B ∞ 1 u 1 u 2 + B ∞ 2 u 1 u 2 + B ∞ 3 u 1 u 2 = -(µ + c 1 )u 1 -c 2 u 2 + c 2 u 2 c 1 u 1 + ∞ 0 β(•, y)u 1 (y)dy 0 .
De manière similaire, on montre que le problème est bien posé et que le semigroupe généré par A ∞ est irréductible si et seulement si l'hypothèse

∀ε ∈ (0, ∞), ε 0 ∞ ε β(s, y)dyds > 0, inf supp c 1 = 0, sup supp c 2 = ∞. (1.19)
est vérifiée. Considérons les opérateurs

B ∞ 3 = B ∞ 3 2 , B ∞ = A ∞ + B ∞ 1 + B ∞ 2 + B ∞ 3 ,
et supposons que B ∞ 3 est faiblement compact. On montre alors que sous l'hypothèse (1.19), le semigroupe présente un gap spectral si et seulement si

lim λ→s(B ∞ ) r σ (B ∞ 3 (λ -B ∞ ) -1 ) > 1.
(1.20)

Alors le semigroupe généré par A ∞ a la propriété de croissance exponentielle asynchrone. On remarque dans un premier temps que la fonction

s(B ∞ ), +∞ λ → r σ (B ∞ 3 (λ -B ∞ ) -1 )
est convexe et donc continue [START_REF] Mokhtar-Kharroubi | Mathematical Topics in Neutron Transport Theory : New Aspects[END_REF]. En utilisant un raisonnement similaire au cas fini et à l'aide du théorème de de Pagter, on montre que

r σ (B ∞ 3 (λ -B ∞ ) -1 ) > 0 (λ > s(B ∞ )). (1.21) Alors la fonction s(B ∞ ), +∞ λ → r σ (B ∞ 3 (λ -B ∞ ) -1 )
est en fait strictement décroissante [START_REF] Mokhtar-Kharroubi | Mathematical Topics in Neutron Transport Theory : New Aspects[END_REF]. D'après l'hypothèse (1.20) il existe un unique

λ > s(B ∞ ) tel que r σ (B ∞ 3 (λ -B ∞ ) -1 ) = 1. Puisque B ∞ 3 (λ -B ∞ ) -1 est positif et à puissance compacte, alors 1 = r σ (B ∞ 3 (λ -B ∞ ) -1 )
est une valeur propre isolée de B ∞ 3 (λ -B ∞ ) -1 et on montre que λ est une valeur propre de A ∞ . Comme dans le cas fini, la faible compacité de

B ∞ 3 implique ω ess (A ∞ ) = ω ess (B ∞ ). et par conséquent ω ess (A ∞ ) ≤ s(B ∞ ) < λ = s(A ∞ ).
Le 

Un modèle de transport-diffusion structuré en taille

Le Chapitre 4 est consacré au modèle de population structurée en taille étudié par Farkas et Hinow dans [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF]. On considère ainsi l'équation linéaire de transport/diffusion suivante : 

∂ t u(t, s) + ∂ s (γ(s)u(t, s)) = ∂ s (d(s)∂ s (u(t, s))) -µ(s)u(t, s) + m 0 β(s,
[∂ s (d(s)∂ s u(t, s))] s=0 -b 0 ∂ s u(t, 0) + c 0 u(t, 0) = 0, (1.23) [∂ s (d(s)∂ s u(t, s))] s=m + b m ∂ s u(t, m) + c m u(t, m) = 0, ( 1 
U (t) = AU (t), U (0) = (u 0 , u 0 0 , u 0 m ) ∈ X , (1.26) où A    u u 0 u m    = A    u u 0 u m    + K    u u 0 u m    =    (du ) -(γu) -µu (b 0 -γ(0))u (0) -ρ 0 u 0 -(b m + γ(m))u (m) -ρ m u m    +    m 0 β(., y)u(y)dy m 0 β 0 (y)u(y)dy m 0 β m (y)u(y)dy   
et on montre que le problème est bien posé au sens de la théorie des semigroupes dans l'espace

X = (L 1 (0, m) × R 2 , . X ) muni de la norme (x, x 0 , x m ) X = x L 1 (0,m) + c 1 |x 0 | + c 2 |x m | où c 1 = d(0) b 0 -γ(0) , c 2 = d(m) b m + γ(m) .
En fait, pour montrer le caractère bien posé du problème de Cauchy (1.26), l'opérateur K peut être ignoré en utilisant des arguments de perturbation bornée. Dans [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF], les auteurs définissent d'abord A sur les fonctions régulières

A s : D(A s ) → X (1.27) où D(A s ) = {(u, u 0 , u m ) ∈ C 2 [0, m] × R 2 : u(0) = u 0 , u(m) = u m }
et montrent la dissipativité de A s . Ils se réfèrent ensuite à la théorie des équations elliptiques [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] pour montrer que la fermeture de A s , notée A, est un générateur. Un tel argument ne donne à priori aucune information sur le domaine de A à part le fait que

D(A) ⊃ D(A s ).
Les auteurs affirment que le générateur A est à résolvante compacte car l'injection de W 1,1 [0, m] dans L 1 (0, m) est compacte mais ils ne montrent pas que le domaine de A est inclus dans W 1,1 [0, m]. Il y a donc à priori une lacune dans leur preuve que A est à résolvante compacte. Ici, on définit A sur un domaine explicite 

D(A) = {(u, u 0 , u m ) ∈ W 2,1 (0, m) × R 2 : u(0) = u 0 , u(m) = u m }, où W 2,
r σ ((λ -A) -1 ) > 0.
De plus, comme

r σ ((λ -A) -1 ) = 1 λ -s(A)
alors s(A) > -∞. Puisque la borne spectrale d'un opérateur positif de L 1 appartient à son spectre [START_REF] Mokhtar-Kharroubi | Mathematical Topics in Neutron Transport Theory : New Aspects[END_REF], alors l'existence d'une valeur propre réelle algébriquement simple de A est assurée.

Nous traitons ensuite un problème plus délicat. En effet, dans [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF] les auteurs déduisent du fait que A est à résolvante compacte et que {e tA } t≥0 est irréductible, que {e tA } t≥0 converge (en norme d'opérateur) exponentiellement vers le projecteur spectral P associé à la valeur propre dominante λ de A e -t λ e tA → P (t → ∞).

À priori, une telle preuve n'est pas complète. En effet, cette conclusion peut être obtenue uniquement si l'on sait que le semigroupe {e tA } t≥0 a un gap spectral, ce qui n'est pas du tout une conséquence de la compacité de la résolvante de A et de l'irréductibilité de {e tA } t≥0 . En fait, on a besoin d'étudier le spectre du semiroupe {e tA } t≥0 lui-même. On peut montrer cette propriété en utilisant des outils développés dans le contexte de théorie de Transport [START_REF] Mokhtar-Kharroubi | Mathematical Topics in Neutron Transport Theory : New Aspects[END_REF][START_REF] Mokhtar-Kharroubi | Spectral theory for neutron transport[END_REF]. En supposant que K est faiblement compact, on montre en premier lieu que

ω ess (A) = ω ess (A) ≤ s(A);
Deuxièmement, on suppose que K = 0 i.e. β(., .) n'est pas égale à 0 presque partout. Alors le fait que la résolvante (λ -A) -1 soit compacte et irréductible, et que

(λ -A) -1 ≤ (λ -A) -1 , 0 ≤ (λ -A) -1 = (λ -A) -1
nous permet d'utiliser le théorème de Marek (voir Théorème A.4.9) pour en déduire

r σ ((λ -A) -1 ) < r σ ((λ -A) -1 ). On obtient ainsi 1 λ -s(A) < 1 λ -s(A) pour λ assez grand et donc s(A) < s(A).
Ceci implique que {e tA } t≥0 possède un gap spectral

ω ess (A) < ω 0 (A).
Le fait que e -ts(A) e tA → P (t → ∞)

exponentiellement n'est donc qu'une conséquence de l'irréductibilité de {e tA } t≥0 et de l'existence d'un gap spectral. On généralise ensuite la théorie au cas m = ∞ permettant des tailles arbitraires pour la taille des cellules, c'est-à-dire que l'on étudie également dans la Section 4.2 le modèle suivant qui ne semble pas avoir été étudié jusqu'ici

∂ t (t, s) + ∂ s (γ(s)u(t, s)) = ∂ s (d(s)∂ s u(t, s)) -µ(s)u(t, s) + ∞ 0 β(s, y)u(t, y)dy, (1.29) [∂ s (d(s)∂ s u(t, s))] s=0 -b 0 ∂ s u(t, 0) + c 0 u(t, 0) = 0. (1.30) X ∞ = (L 1 (0, +∞) × R, . X∞ )
se trouve être bien plus complexe. En effet, l'opérateur étudié est

A ∞ u u 0 = A ∞ u u 0 + K ∞ u u 0 = (du ) -(γu) -µu (b 0 -γ(0))u (0) -ρ 0 u 0 + ∞ 0 β(., y)u(y)dy ∞ 0 β 0 (y)u(y)dy de domaine D(A ∞ ) donné par {(u, u 0 ) ∈ X ∞ ; u ∈ W 2,1 loc (R + ), u(0) = u 0 , (du ) -(γu) ∈ L 1 (R + ) et lim s→+∞ d(s)u (s) -γ(s)u(s) = 0}.
À priori, le domaine du générateur est plus grand que l'espace

(u, u 0 ) ∈ W 2,1 (R + ) × R; u(0) = u 0
mais on montre que cet espace est un coeur de D(A ∞ ) (i.e. un sous-espace fermé pour la norme du graphe).

Comme précédemment, l'irréductibilité du semigroupe est montrée en utilisant le principe du maximum de Hopf. De manière similaire, si

L 1 (R + ) u → ∞ 0 β(., y)u(y)dy ∈ L 1 (R + )
est faiblement compact alors les semigroupes {e tA∞ } t≥0 et {e tA∞ } t≥0 ont le même type essentiel. D'autre part, on ne peut pas faire appel aux arguments de Marek pour en déduire l'existence d'un gap spectral, car A ∞ n'est à priori pas à résolvante compacte. Dans ce cas, on montre que la propriété de gap spectral

ω ess (A) < s(A ∞ ) est satisfaite s'il existe un ensemble mesurable I ⊂ R + de mesure strictement positive tel que u ∈ L 1 (R + ), u(y) > 0 p.p. =⇒ ∞ 0 β(s, y)u(y)dy > 0 p.p. s ∈ I. et si lim λ→s(A∞) r σ (K ∞ (λ -A ∞ ) -1 ) > 1. (1.31)
On ne sait pas si (1.31) est toujours satisfaite. En particulier, on ne sait pas si lim

λ→s(A) r σ (K(λ -A) -1 ) = +∞ (1.32)
est toujours vérifiée. On peut noter que si

η := lim λ→s(A∞) r σ (K ∞ (λ -A ∞ ) -1 ) < +∞ (1.33) alors le semigroupe généré par A ∞ + cK ∞ a un gap spectral dès que c > η -1 .
Déterminer laquelle de (1.32) ou (1.33) a lieu en général est un problème ouvert. On peut aussi donner des conditions suffisantes en terme de norme. En effet, si β est minorée par un noyau séparable

β(x, y) ≥ β 1 (x)β 2 (y) (1.34)
alors on montre que

r σ (K ∞ (λ -A ∞ ) -1 ) ≥ β 2 (λ -A ∞ ) -1 β 1 β 1 (0) 1 L 1 (R + )
où (U ) 1 se réfère à la première composante de U ∈ X ∞ . En particulier, (1.31) est satisfaite si lim λ→s(A∞)

β 2 (λ -A ∞ ) -1 β 1 β 1 (0) 1 L 1 (R + ) > 1.
On note que (1.34) est vérifiée si β est continue à un point quelconque (x, y) avec β(x, y) > 0. Ces résultats font l'objet de l'article [START_REF] Mokhtar-Kharroubi | Time asymptotics of structured populations with diffusion and dynamic boundary conditions[END_REF].

Dans la Section 4.3, on montre que (1.31) est vérifiée dans le cas particulier où les fonctions d, γ, µ sont constantes, avec d > 0, µ ≥ 0 et où β vérifie (1.34). En effet, sous ces hypothèses, on peut donner explicitement l'expression de la résolvante, étant donné qu'on résout une équation différentielle du second ordre à coefficients constants. On est alors en mesure de montrer que s(A ∞ ) = -µ.

On calcule ensuite

β 2 (λ -A ∞ ) -1 β 1 β 1 (0) 1 L 1 (R + )
puis on montre que (1.32) est vérifiée. Ainsi, quelle que soit la valeur des constantes, le semigroupe généré par A ∞ a le comportement de croissance exponentielle asynchrone.

Un modèle proie-prédateur à retard

Le Chapitre 5 reprend le modèle de Lotka-Volterra structuré en âge (1.16) avec l'idée d'étudier le comportement obtenu sur la Figure 1.5. On considère les fonctions

µ ≡ µ 0 , β(a) = β 0 χ [τ,+∞) (a), γ(a) = γ 0 χ [τ,+∞) (a),
où τ > 0. Afin d'être dans le cas où la convergence vers l'équilibre non trivial semble possible, on calcule les seuils définis dans le Chapitre 2 et on trouve

R 0 = β 0 e -µ 0 τ µ 0 , a 1 = τ, R -= 0.
On suppose donc que R 0 > 1.

Une intégration formelle de (1.16) nous amène à étudier le système différentiel à retard

X (t) = β 0 e -µ 0 τ X(t -τ ) -µ 0 X(t) -γ 0 X(t)y(t), y (t) = αγ 0 X(t)y(t) -δy(t), (1.35) où X(t) = ∞ τ x(t, a
)da, qui est en fait un modèle de Lotka-Volterra à retard. On se place alors dans l'espace

X = C([-τ, 0], R) × R muni de la norme (u, v) X = u ∞ + |v| et on pose pour condition initiale X(θ) = φ(θ), ∀θ ∈ [-τ, 0], y(0) = y 0 ,
avec (φ, y 0 ) ∈ X . On obtient ainsi deux équilibres

E 0 := (0, 0) ∈ X , E * := (X * χ [-τ,0] , y * ) ∈ X , où (X * , y * ) = δ αγ 0 , β 0 e -µ 0 τ -µ 0 γ 0 et où E * existe (et est unique) si et seulement si R 0 > 1.
On considère ensuite les ensembles

S 2 = {(φ, y) ∈ X + : y > 0, 0 -τ φ(a)da > 0}, S 3 = {(φ, y) ∈ X + : y > 0, φ(a) > 0 ∀a ∈ [-τ, 0]} ⊂ S 2 .
En utilisant quelques majorations, on montre que l'ensemble

S 3 est positivement invariant, c'est-à-dire que Φ t (z) ∈ S 3 , ∀z ∈ S 3 , ∀t ≥ 0. De plus, l'ensemble S 2 est (2τ, S 3 )-positivement invariant au sens où, pour tout z ∈ S 2 , alors Φ t (z) ∈ S 3 , ∀t ≥ 2τ.
Ainsi tous les résultats qui sont montrés par la suite pour des conditions initiales dans S 3 peuvent en fait être étendus à S 2 . On pose ensuite

g(x) = x -ln(x) -1
et on montre que la fonction

L * : X (φ, y) → V 1 (φ, y) + V 2 (φ, y) + V 3 (φ, y) ∈ X est une fonction de Lyapunov sur S 3 , où l'on a V 1 (φ, y) = αX * g φ(0) X * , V 2 (φ, y) = y * g y y * , V 3 (φ, y) = αβ 0 e -µ 0 τ X * 0 -τ g φ(s) X * ds.
En effet, quelques calculs nous permettent de montrer que

∂ t [L * (Φ t (z))] = -αβ 0 X * g X(t -τ ) X(t) ≤ 0
pour tout z := (φ, y 0 ) ∈ S 3 . De plus, l'invariance de S 3 implique que L * est bien une fonction de Lyapunov. Puisque la fonction positive 

F (φ,y 0 ) : t → L * (Φ t (φ, y 0 )) est décroissante pour tout z := (φ, y 0 ) ∈ S 3 et lim x→+∞ g(x) = +∞ alors pour tout z ∈ S 3 ,
{v := (φ, y 0 ) ∈ S 3 : ∂ t [L * (Φ t (v)] = 0, ∀t ≥ 0} .
Or, on voit que la dérivée s'annule si et seulement si 

X(t -τ ) = X(t), ∀t ≥ 0, donc ω(z) est inclus dans {v := (φ, y 0 ) ∈ S 3 : Φ x t (v) = Φ x t+τ (v), ∀t ≥ 0}, où Φ x dénote
E = cx 0 -d + by 0 -a -a ln by 0 a -d ln cx 0 d .
La solution de (1.15) est périodique et la période (notée T ) dépend de E. En fait [START_REF] Rothe | The periods of the Volterra-Lotka system[END_REF],

la fonction E → T (E) est strictement croissante et lim E→0 T (E) = 2π √ ad , lim E→∞ T (E) = ∞.
En remplaçant les paramètres, on obtient ainsi

T ≥ 2π (β 0 e -µ 0 τ -µ 0 )δ = 2π √ δγ 0 y * .
Par conséquent, pour obtenir T = τ il faut que l'hypothèse (1.36) 

X A = {(x 0 , y 0 ) ∈ L 1 + (R + ) × R * + : ∞ 0 x 0 (a)da > 0}.
On est alors en mesure de montrer que, si 
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Introduction

In this Chapter we consider the following predator-prey system

         ∂ t x(t, a) + ∂ a x(t, a) = -µ(a)x(t, a) -y(t)γ(a)x(t, a), y (t) = αy(t) ∞ 0 γ(a)x(t, a)da -δy(t), x(t, 0) = ∞ 0 β(a)x(t, a)da ∀t ≥ 0, x(0, a) = x 0 (a) ∀a ≥ 0 and y(0) = y 0 , (2.1)
with x(t, a) and y(t) that are respectively the density of preys at age a ≥ 0 and time t ≥ 0 and the density of predators at time t where :

α ∈ (0, 1), δ > 0 are constant parameters that respectively denote the assimilation coefficient of ingested preys and the basic mortality rate of the predator ;

µ, γ, β ∈ L ∞ + (R + ) are age-dependent functions that represent the basic mortality rate of the preys, the predation rate and the birth rate for the preys.

In all that follows, we assume the following on parameter µ :

∃ µ 0 > 0 such that µ(a) ≥ µ 0 a.e. a ≥ 0. (H1) A consequence of (H1) is that ∞ µ(a)da = ∞, implying that a → e -a 0 µ(l)dl
is a probability function, this latter describing the survival until age a. Note that, linked to Problem (2.1), the total population at time t is given by

y(t) + ∞ 0 x(t, a) da
and the total ingested preys by the predators by

α ∞ 0 γ(a)x(t, a) da.

Well posedness and positivity

Notations

In all that follows, consider the Banach space

X = L 1 (R + ) × R
with the product norm and his nonnegative cone defined by

X + = L 1 + (R + ) × R + .
We consider the following differential operator

A : D(A) ⊂ X → X , where D(A) = {(φ, z) ∈ X , φ ∈ W 1,1 (R + ) and φ(0) = ∞ 0 β(a)φ(a)da}, A = D 0 0 -δ , Dφ = - dφ da -µφ
and the function f : X → X given by

f (φ, z) = -zγ(.)φ(.) αz ∞ 0 γ(a)φ(a)da
, so that Problem (2.1) rewrites as the following abstract Cauchy Problem :

       d dt x(t) y(t) = A x(t) y(t) + f (x(t), y(t)),
(x(0), y(0)) = (x 0 (.), y 0 ) ∈ X .

(2.2)

Linear part

To perform an analysis of Problem (2.2), we start by a study of the differential operator (A, D(A)). The same arguments that developped in [START_REF] Banks | Transformation semigroups and L 1approximation for size structured population models[END_REF] prove that D(A) is a dense subset of X . Furthermore, as proved in [START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF] and [START_REF] Perasso | Parameter identifiability for systems described by partial differential equations[END_REF] for such an operator, there exists real values λ 0 and ω 0 satisfying min(λ

0 , ω 0 ) ≥ β L ∞ (R + ) -µ 0 such that A -λ 0 I is dissipative and (λI -A) is surjective for every λ ≥ ω 0 . The classical Lumer-Phillips theorem implies that A is the infinitesimal generator of a positive C 0 - semigroup {T A (t)} t≥0 that is quasicontractive : T A (t) X ≤ e ωt for all t ≥ 0 and ω ≥ β L ∞ (R + ) -µ 0 .
The details of the proof can be found in Appendix B.

Local existence, uniqueness and positivity

Since the nonlinear part f of Problem (2.2) is quadratic, it is clearly a locally Lipschitz continuous function on X . A consequence of Theorem A.5.2 is that for every (x 0 , y 0 ) ∈ X , there exists t max ≤ +∞ such that Problem (2.2) has a unique mild solution u ∈ C([0, t max (x 0 , y 0 )), X ) where t max (x 0 , y 0 ) ≤ ∞. Furthermore, this solution is defined in a classical sense whenever (x 0 , y 0 ) ∈ D(A).

Section 2.2. Well posedness and positivity

We now prove that for any initial condition (x 0 , y 0 ) ∈ X + , the corresponding solution remains nonnegative on [0, t max ). To achieve that goal, we need the two following lemmas. Their proof can respectively be found in [119, Lemma 1] and [START_REF] Perasso | Asymptotic behavior and numerical simulations for an infection load-structured epidemiological model : application to the transmission of prion pathologies[END_REF]Lemma 2

.1]. Let us define B m = {(φ, z) ∈ X : (φ, z) X ≤ m}, m > 0.
Lemma 2.2.1. There exists K > 0 such that for every ((φ 1 , z 1 ), (φ 2 , z 2 )) ∈ B 2 m , and m > 0 we have

f (φ 1 , z 1 ) -f (φ 2 , z 2 ) X ≤ m K (φ 1 , z 1 ) -(φ 2 , z 2 ) X . Lemma 2.2.2. For every m > 0, there exists λ m ∈ R such that (φ, z) ∈ B m ∩ X + ⇒ f (φ, z) + λ m (φ, z) ∈ X + . In fact, it is sufficient to take λ m > m γ L ∞ (R + ) . Proposition 2.2.3. For every (x 0 , y 0 ) ∈ X + , there exists t max (x 0 , y 0 ) ≤ ∞ such that Problem (2.2) has a unique mild solution u ∈ C([0, t max (x 0 , y 0 )), X + ). Proof. Let m > 0 and λ m ≥ m γ L ∞ (R + ) .

Let us define the differential operator

A m = A -λ m I and the function f m = f + λ m I.
Then A m is the infinitesimal generator of a positive C 0 -semigroup {T Am (t)} t≥0 on X + that satisfies T Am (t) X ≤ e -(λm+ω)t for every t ≥ 0. We then let

r m = 2 (x 0 , y 0 ) X sup s∈[0,1] T Am (s) > 0,
then suppose m large enough to have r m ≤ m and we denote by

X rm + = X + ∩ B rm ⊂ B m . We consider τ > 0 such that τ ≤ min     1, 1 2(Kr m + λ m ) × sup s∈[0,1] T Am (s) X     ,
and a consequence of Lemmas 2.2.1 and 2.2.2 is that the linear operator

G : C([0, τ ], X ) → C([0, τ ], X ) defined by G(x(t, •), y(t)) = T Am (t). x 0 y 0 + t 0 T Am (t -s)f m x(s, •) y(s) ds
is a 1/2-shrinking operator on C([0, τ ], X rm + ) that preserves this latter space. The Banach-Picard theorem and some classical time extending properties of the solution then yield the proposition.

Global existence

Theorem 2.2.4. For all (x 0 , y 0 ) ∈ X + , Problem (2.2) has a unique mild solution (x, y) ∈ C(R + , X + ).

Proof. Consider (x, y) ∈ C([0, t max ), X + ) the solution of (2.2) and suppose by contradiction that t max < ∞. Let us first prove that for every t ≥ 0,

x(t, •) L 1 (R + ) < ∞. A direct consequence of the positivity is that ∂ t x(t, a) + ∂ a x(t, a) ≤ -µ(a)x(t, a).
It is classical, using the characteristics of the PDE equation, that an implicit formulation of the solution of

∂ t x(t, a) + ∂ a x(t, a) = -µ(a)x(t, a)
that satisfies the loopback boundary condition in (2.1) is given by :

x(t, a) =    x 0 (a -t)e - a a-t µ(s)ds if a ≥ t, ψ(t -a)e -a 0 µ(s)ds if a < t, ( 2.3) 
where ψ(t) = x(t, 0) satisfies :

ψ(t) = t 0 β(u)ψ(t -u)e -u 0 µ(s)ds du + ∞ t β(u)x 0 (u -t)e - u u-t µ(s)ds du = t 0 ψ(u)β(t -u)e -t-u 0 µ(s)ds du + ∞ 0 β(u + t)x 0 (u)e -u+t u µ(s)ds du. (2.4) 
From equation (2.4) we define two operators

S 1 : L 1 (0, t) → L 1 (0, t), S 2 : L 1 (R + ) → L 1 (0, t)
for every ψ ∈ L 1 (0, t), φ ∈ L 1 (R + ) and ξ ∈ [0, t] by

S 1 ψ(ξ) = ξ 0 ψ(y)β(ξ -y)e -ξ-y 0 µ(s)ds dy, S 2 φ(ξ) = ∞ 0 φ(y)β(y + ξ)e - ξ+y y
µ(s)ds dy, so we formally get the following representation :

x(t, a) =    x 0 (a -t)e - a a-t µ(s)ds if a ≥ t, (I -S 1 ) -1 S 2 x 0 (t -a)e -a 0 µ(s)ds if a < t.
This latter equality is well defined. Indeed, as proved in [START_REF] Arino | Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey[END_REF], S 1 is a Volterra operator, then for all λ ∈ C \ {0} and ψ ∈ L 1 (0, t) fixed, we have a unique function ϕ ∈ L 1 (0, t) such that (λI -S 1 )ϕ = ψ.

Thus (I -S 1 ) -1 is well defined from L 1 (0, t) to L 1 (0, t). Since x 0 ∈ L 1 (R + ) then (I -S 1 ) -1 S 2 x 0 ∈ L 1 (0, t).
Consequently for all t ≥ 0 we have

x(t, •) L 1 (R + ) ≤ ∞ t x 0 (a -t)da + t 0 (I -S 1 ) -1 S 2 x 0 (t -a)da < ∞.
Moreover, straightforward upper bounds imply that

y (t) ≤ αM y(t) γ L ∞ (R + )
for every t ≥ 0, where

M = max s∈[0,tmax] x(s, •) L 1 (R + ) < ∞.
Thus, if t max < ∞, an integration of the differential inequality would lead to

y(t) ≤ y 0 e αM tmax γ L ∞ < ∞,
implying a contradiction with the fact that we have either

lim t→tmax x(t, •) L 1 (R + ) = ∞ or lim t→tmax |y(t)| = ∞.
Finally t max = ∞ and the solution is global in time.

We finally get existence and uniqueness of a global nonnegative solution. The goal is now to analyze the asymptotic behavior of the solutions.

Stability, persistence and boundedness

Suppose that we have a positive initial condition (x 0 , y 0 ) ∈ X * + , where

X * + = {(x 0 , y 0 ) ∈ X + : ∞ 0
x 0 (a)da > 0 and y 0 > 0}.

Let us define

a 1 = sup{a ≥ 0 : |supp(γ) ∩ (0, a)| = 0} < ∞. (2.5) 
Remark 2.3.1. This definition implies that there exists γ -> 0 and a 2 > a 1 such that a 2 a 1 γ(a)da ≥ γ -. The case a 1 > 0 translates the fact that the youngest preys are not considered as a resource availability for the predators.

In all that follows, let us consider the following thresholds :

R 0 = ∞ 0 β(a)e -a 0 µ(s)ds da, (2.6 
)

R -= a 1 0 β(a)e -a 0 µ(s)ds da. (2.7)
Note that, similarly to the basic reproductive number in the epidemiological case (see Section 1.4.2 for more details), the R 0 value represents the average number of offspring that is produced over the lifetime by one prey and in a context with no predation. This threshold will give a characterization of extinction of the total population. In the same idea, the R -value represents the offspring produced by one prey from his birth, until it begins to be hunted by the predator. We will get an unboundedness result from this threshold.

Equilibria

We first look for steady points of problem (2.1). The point (x * , y * ) ∈ X is an equilibrium if it is a solution of the system

     (x * ) (a) = -µ(a)x * (a) -y * γ(a)x * (a), 0 = αy * ∞ 0 γ(a)x * (a)da -δy * , x * (0) = ∞ 0 x * (a)β(a)da.
An integration then gives

         x * (a) = x * (0)e -a 0 µ(s)ds-y * a 0 γ(s)ds , x * (0) 1 -∞ 0 β(a)e -a 0 µ(s)ds-y * a 0 γ(s)ds da = 0, y * [α ∞ 0 γ(a)x * (a)da -δ] = 0.
Note that R -≤ R 0 and we get the following proposition.

Proposition 2.3.2.

1. If R 0 < 1 or if (R 0 > 1 and R -≥ 1) then there is a unique equilibrium that is E 0 = (0, 0) ; 2. If R 0 = 1 and R -< 1 then for all ξ ∈ [0, ∞), E 1,ξ = (x * 1,ξ , 0) is an equilibrium, where x 1,ξ is defined by x * 1,ξ (a) = ξe -a 0 µ(s)ds . In particular E 1,0 = E 0 ;
3. If R 0 = 1 and R -= 1 then ∀ξ ≥ 0, E 1,ξ is an equilibrium and E 2,ξ = (x * 2,ξ , ξ) also, where

x * 2,ξ (a) = x * 2,ξ (0)e -a 0 µ(s)ds-ξ a 0 γ(s)ds , x * 2,ξ (0) = δ α ∞ 0 γ(a)e -a 0 µ(s)ds-ξ a 0 γ(s)ds da -1 ; 4. If R 0 > 1 and R -< 1 then besides the trivial equilibrium E 0 , there is a positive equilibrium E 2 = (x * 2 , y * ) = (x 2,y * , y * ) with y * that satisfies ∞ 0 β(a)e -a 0 µ(s)ds-y * a 0 γ(s)ds da = 1. (2.8)

Stability

To perform the stability analysis, we exhibit some spectral properties of the differential operator A and of the semigroup {T A (t)} t≥0 . For more details about spectral theory and stability results we can look at Sections A.2 and 1.4.1. In the context of Problem (2.1), the following result holds.

Theorem 2.3.3. We have ω

ess (A + D E f ) ≤ -µ 0 < 0.
To prove Theorem 2.3.3, we start by a lemma dealing with some compactness properties about the differential of f . One can note that for every E = (x * , y * ) ∈ X , the differential of f at an equilibrium E can be written as

D E f = (D E f ) 1 + (D E f ) 2 = -y * γ 0 0 0 + 0 -γx * αy * L γ (•) α ∞ 0 γ(a)x * (a)da
, where L γ is the operator defined for some integrable function h on R + by :

L γ : h → ∞ 0 γ(a)h(a)da. (2.9)
Here is the compactness result :

Lemma 2.3.4. The function f is in C 1 (X ) and the operator (D E f ) 2 is compact.
Proof. Since function D E f : X → X is Lipschitz continuous, it is a bounded operator on the Banach space X and so

D E f is continuous and f is in C 1 (X ). We now prove that (D E f ) 2 is compact. Denoting (D E f ) 2 = (G 1 , G 2 )
where G 1 : X → L 1 (R + ) and G 2 : X → R, we can easily check that G 2 has a finite dimensional range and is consequently compact. To prove the compactness of G 1 we use the classical Riesz-Fréchet-Kolmogorov (RFK) criterion in L 1 (see Theorem A.3.1). Let h ∈ R + and S ⊂ X be a bounded subset of X . Then there exists M ∈ R + such that (φ, z) X ≤ M for every (φ, z) ∈ S. Denoting by

τ h (φ) = φ(• + h)
the translation operator in L 1 we then have

τ h G 1 (φ, z) -G 1 (φ, z) L 1 (R + ) ≤ |z| ∞ 0 |γ(a)x * (a) -γ(a + h)x * (a + h)|da ≤ M τ h (γx * ) -(γx * ) L 1 (R + ) . Since γ ∈ L ∞ (R + ) and x * ∈ L 1 (R + ) then γx * ∈ L 1 (R + )

and consequently we have

τ h (γx * ) -(γx * ) L 1 (R + ) → h→0 0. It implies sup (φ,z)∈S τ h G 1 (φ, z) -G 1 (φ, z) L 1 (R + ) → h→0 0. (2.10)
Furthermore we can similarly prove, using the Lebesgue theorem, that sup

(φ,z)∈S ∞ r |G 1 (φ(a), z)|da → r→∞ 0. (2.11)
The consequence of (2.10)-(2.11) and the RFK criterion is the relative compactness of

G 1 (S) in L 1 (R + ). Finally, G 1 is compact and so is (D E f ) 2 .
We can now prove Theorem 2.3.3 :

Proof. (Theorem 2.3.3)
The fact that (D E f ) 2 is a compact operator and the use of Theorem A.2.9 implies that for every equilibrium E,

ω ess (A + D E f ) = ω ess (A + (D E f ) 1 ), so we need to prove ω ess (A + (D E f ) 1 ) ≤ -µ 0 .
Similarly to the proof of Theorem 2.2.4, we can calculate the expression of the semigroup generated by A + (D E f ) 1 :

T A+(D E f ) 1 (t) x 0 y 0 = x 0 (a -t)e - a a-t (µ(s)+y * γ(s))ds 1 {a≥t} + ψ(t -a)e -a 0 (µ(s)+y * γ(s))ds 1 {a<t} y 0 e -δt ,
where ψ(t) = x(t, 0). We decompose the operator T A+(D E f ) 1 in :

T A+(D E f ) 1 (t) x 0 y 0 (a) = T 1 (t) x 0 y 0 (a) + T 2 (t) x 0 y 0 (a) + T 3 (t)
x 0 y 0 (a), with :

T 1 (t) x 0 y 0 (a) =    (x 0 (a -t)e - a a-t (µ(s)+y * γ(s))ds , 0) if a ≥ t, (0, 0) if a < t. T 2 (t) x 0 y 0 (a) =    (0, 0) if a ≥ t, (ψ(t -a)e -a 0 (µ(s)+y * γ(s))ds , 0) if a < t. T 3 (t)
x 0 y 0 (a) = (0, y 0 e -δt ), ∀t ≥ 0, a ≥ 0.

The operator T 3 is compact because its range is a finite dimensional space.

For the operator T 1 , we get the upper bound

T 1 (t) x 0 y 0 X ≤ ∞ t x 0 (a -t)e - a a-t µ(s)ds da ≤ e -µ 0 t ∞ 0 x 0 (u)du
and consequently we get

T 1 (t) X ≤ e -µ 0 t . (2.12)
Let us define the operators

Ŝ1 : L 1 (0, t) → L 1 (0, t), Ŝ2 : L 1 (R + ) → L 1 (0, t) by Ŝ1 ψ(ξ) = ξ 0 ψ(y)β(ξ -y)e -ξ-y 0 [µ(s)+y * γ(s)]ds dy, Ŝ2 φ(ξ) = ∞ 0 φ(y)β(y + ξ)e - ξ+y y [µ(s)+y * γ(s)]ds dy.
Thus we get the following expression for the operator T 2 :

T 2 (t) x 0 y 0 (a) =      (0, 0) if a ≥ t, (I -Ŝ1 ) -1 Ŝ2 x 0 (t -a) e -a 0 (µ(s)+y * γ(s) ds), 0 if a < t.
We can show that Ŝ1 is bounded, so as I -Ŝ1 . Since (I -Ŝ1 ) -1 is well defined and (I -Ŝ1 ) is bijective from L 1 (0, t) in itself, which is a Banach space, then (I -Ŝ1 ) -1 is bounded. Let us define the operator

S 2 : L 1 (R + ) → L 1 (0, t) by S 2 φ(ξ) = ∞ 0 φ(y)ce - ξ+y y [µ(s)+y * γ(s)]ds dy,
where c is a positive constant. Using the RFK criterion (see Lemma 2.3.4), we can prove that S 2 is compact for every c > 0. Indeed, setting h > 0 and taking B a bounded subset of L 1 (R + ) we get, for φ ∈ B :

τ h S 2 φ -S 2 φ L 1 (0,t) ≤ c t 0 ∞ 0 φ(y) e - ξ+y y [µ(s)+y * γ(s)]ds -e - ξ+y+h y [µ(s)+y * γ(s)]ds dydξ ≤ c t 0 ∞ 0 φ(y)e - ξ+y y [µ(s)+y * γ(s)]ds 1 -e - ξ+y+h ξ+y [µ(s)+y * γ(s)]ds dydξ ≤ c t 0 ∞ 0 φ(y) 1 -e -h µ L ∞ dydξ ≤ ct 1 -e -h µ L ∞ ∞ 0 φ(y)dy,
which converges to 0 uniformly on B when h tends to 0 since

B is bounded. Therefore S 2 is compact. Since for c = β L ∞ we have Ŝ2 φ(x) ≤ S 2 φ(x)
for all φ ∈ L 1 (R + ) and x ∈ [0, t], then Ŝ2 is also compact and so is the operator T 2 . Finally since T 2 (t) and T 3 (t) are compact for every t ≥ 0 then

T A+(D E f ) 1 (t) ess = T 1 (t) + T 2 (t) + T 3 (t) ess = T 1 (t) ess ≤ T 1 (t) X ,
and consequently to (2.12),

ω ess (A + (D E f ) 1 ) ≤ -µ 0 . Equilibrium E 0
The differential of f at the point E 0 is the null matrix. So the linearized system to study is u (t) = Au(t).

Using Theorem A.2.8 and since ω ess (A) < 0, we just need to study eigenvalues of A. We thus try to solve the system

     ∂ t x(t, a) = -∂ a x(t, a) -µ(a)x(t, a), y (t) = -δy(t), x(t, 0) = ∞ 0 x(t, a)β(a)da.
(2.13)

We are looking for solutions of the form

x(t, a) = x(a)e λt , y(t) = ȳe λt , λ ∈ C.
So, after replacing the latter expressions in the first equation of the system (2.13) then resolving the system, we get

     x(a) = x(0)e -a 0 [λ+µ(s)]ds , λȳ = -δ ȳ, x(0) = ∞ 0 x(a)β(a)da.
The second equation only admits -δ as eigenvalue, which is real and negative. Then, using the third equation, we obtain the following characteristic equation

∞ 0 β(a)e -a 0 [λ+µ(s)]ds da = 1.
We thus can show the following theorem, where R 0 is defined in (2.6) :

Theorem 2.3.5. Then, if Re (λ) ≥ 0 we get R 0 ≥ 1 that is absurd, so ω 0 (A) < 0 and E 0 is locally exponentially asymptotically stable from Theorem 1.4.3. Now we prove the global stability. Let (x 0 , y 0 ) ∈ X + be the initial condition, then the solution of (2.1) at time t is given by the Duhamel formula

1. If R 0 < 1 then E 0 is globally asymptotically stable in X + . 2. If R 0 > 1 then E 0 is unstable. Proof. 1. Suppose that R 0 < 1.
x(t, •) y(t) = T A (t) x 0 y 0 + t 0 T A (t -s)f x(s, •) y(s) ds.
Since ω 0 (A) < 0 then We see that g is strictly decreasing with g(0) = R 0 > 1. There consequently exists λ > 0 such that g(λ) = 1, so ω 0 (A) > 0.

Since ω ess (A) ≤ 0 an application of Theorem 1.4.3 implies that E 0 is unstable.

Remark 2.3.6. We can see that in the case R 0 < 1, the total population is bounded.

Equilibria E 1,ξ
Let ξ > 0 and consider the equilibrium E 1,ξ . Then the differential of f at the point E 1,ξ is given by

D E 1,ξ f = 0 -γx * 1,ξ 0 α ∞ 0 γ(a)x * 1,ξ (a)da . The linearized system at E 1,ξ is thus du dt (t) = (A + D E 1,ξ f )u(t).
Once again we just need to study eigenvalues of the operator A + D E 1,ξ , so we study the system

       x(a) = x(0)e -a 0 [λ+µ(s)]ds -γ(a)x * 1,ξ (a)ȳ, λȳ = -δ ȳ + αȳ ∞ 0 γ(a)x * 1,ξ (a)da, x(0) = ∞ 0 x(a)β(a)da.
(2.14)

Let us denote

S = δ α ∞ 0 γ(a)e -a 0 µ(s)ds da -1
, then we get the following instability theorem.

Theorem 2.3.7.

1. If ξ > S then the equilibrium E 1,ξ is unstable.

2. If ξ > 0 then for every > 0 there exists ξ( )

such that E 1, ξ ∈ B(E 1,ξ , ).
Proof. We know by definition of

E 1,ξ that R 0 = 1. Consequently (1 - ∞ 0 β(a)e -a 0 (µ(s)+ λ)ds da) > 0.
Let ȳ = 1 and

x(0) = -ξ ∞ 0 β(a)γ(a)e -a 0 µ(s)ds da 1 -∞ 0 β(a)e -a 0 (µ(s)+ λ)ds da . Then, defining x(a) = x(0)e -a 0 [ λ+µ(s)]ds -γ(a)x * 1,ξ ( 
a), we finally find (x, ȳ) = (0, 0) that verifies the system (2.14), so we find a positive eigenvalue and the equilibrium E 1,ξ is unstable by using Theorem 1.4.3.

2. Let ξ > 0, > 0 and define ξ = ξ + µ 0 .

We then get E 1, ξ ∈ B(E 1,ξ , ) since

E 1, ξ -E 1,ξ X = x * 1, ξ -x * 1,ξ L 1 (R + ) = | ξ -ξ| ∞ 0 e -a 0 µ(s)ds da ≤ µ 0 ∞ 0 e -µ 0 a da ≤ .
The latter assertion prevents all equilibria E 1,ξ , ξ ≥ 0 to be locally asymptotically stable.

Equilibrium E 2

We now focus on the equilibrium E 2 = (x * 2 , y * ) that exists if and only if R 0 > 1 and R -< 1. Then the differential of f at the point E 2 is given by :

D E 2 f = -y * γ -γx * 2 αy * L γ (•) δ
where L γ is defined in (2.9). Since the linearized system is

u (t) = (A + D E 2 f )u(t)
we thus have to study the system

     x (a) = -[λ + µ(a) + y * γ(a)] x(a) -γ(a)x * 2 (a)ȳ, λȳ = αy * ∞ 0 γ(a)x(a)da, x(0) = ∞ 0 x(a)β(a)da.
We finally have to solve the system BX = C, where :

B = b 1 b 2 b 3 b 4 , C = 0 0 and X = x(0) ȳ , with :                    b 1 = 1 -∞ 0 β(a)e -a 0 (µ(s)+λ+y * γ(s))ds da, b 2 = δ αΓ ∞ 0 β(a)e -a 0 [µ(s)+y * γ(s)]ds a 0 γ(u)e -λ(a-u) duda, b 3 = αy * ∞ 0 γ(a)e -a 0 (µ(s)+λ+γ(s)y * )ds da, b 4 = -λ - δy * Γ ∞ 0 γ(a)e -a 0 [µ(s)+γ(s)y * ]ds a 0 γ(u)e -λ(a-u) duda, and Γ = ∞ 0 γ(a)e -a 0 [µ(s)+y * γ(s)]ds da.
In the specific case where γ is constant, we can compute the eigenvalues. This implies that

b 1 b 4 = b 2 b 3 ⇔ b 4 = δγ 0 b 3 αΓλ which is equivalent to -λ - δy * γ 2 0 λΓ ∞ 0 e -a 0 (µ(s)+γ 0 y * )ds da - ∞ 0 e - a 0 (µ(s) + γ 0 y * + λ) ds da    = δy * γ 2 0 λΓ ∞ 0 e - a 0 (µ(s) + γ 0 y * + λ) ds da.
With the expression of Γ, we finally get -λ = δy * γ 0 λ and the proof is completed.

Note that similarly to the ODE Lotka Volterra system, we get the existence of imaginary eigenvalues. In the case where γ is not constant, the analysis is much more complicated to perform. However, we will perform some simulations in the next section to exhibit the different possible behaviors.

Persistence

In this subsection we express some standard notions from mathematical ecology by formulating, in the context of Problem (2.1), the definition of persistence. First, let us give a proposition, whose arguments of the proof can be found in [START_REF] Perasso | Asymptotic behavior and numerical simulations for an infection load-structured epidemiological model : application to the transmission of prion pathologies[END_REF]. Proposition 2.3.9. Problem (2.1) induces a continuous semiflow via

Φ : R + × X + → X + (t, z 0 ) → Φ t (z 0 ) = (x(t), y(t)),
where (x(t), y(t)) is the unique solution that satisfies (x(0), y(0)) = z 0 .

Let us suppose that

∃ η 1 > 0, ∃ 0 < a < a < ∞ such that β(a) ≥ η 1 for almost every (f.a.e) a ∈ (a, a) (H2)
and consider the property

∃ η 2 > 0, ∃ 0 ≤ t 1 < t 2 < a : t 2 t 1 x 0 (a)da ≥ η 2 . (P)
Without lost of generality, we assume that |t 2 -t 1 | < |a -a| even if we reduce η 2 .

Remark 2.3.10.

1. Assumption (H2) means that preys of a certain range of age have a high ability to reproduce.

2. Assumption (P) together with property (H2) means that there is initially a high enough quantity of young preys that will be able to reproduce later.

Let us consider in all that follows the set

X P = {(x 0 , y 0 ) ∈ X * + that satisfies (P)}.
Here is the definition of persistence for our system (see also Section 1.4.3).

Definition 2.3.11. Considering the mapping ρ 1 : (x, y) ∈ X → x L 1 (R + ) , we say that 1. the prey population is uniformly strongly persistent if

∃ε > 0 : ∀(x 0 , y 0 ) ∈ X P , ρ 1 (x 0 , y 0 ) > 0 ⇒ σ - ρ 1 (x 0 , y 0 ) ≥ ε;
2. the prey population is uniformly weakly persistent when considering

σ + ρ 1 (x) instead of σ - ρ 1 (x).
This definition can be naturally extended to the case of persistence of the predator population, by considering the map ρ 2 : (x, y) ∈ X → y instead of ρ 1 . We thus can prove the following theorem, where R -is defined by (2.7).

Theorem 2.3.12. Suppose that the initial condition (x 0 , y 0 ) ∈ X P . If R -> 1 then prey population and predator population explode :

lim t→∞ ∞ 0 x(t, a)da = ∞, lim t→∞ y(t) = ∞.
Proof. We know that :

∂ t x(t, a) + ∂ a x(t, a) = -(µ(a) + y(t)γ(a))x(t, a), ∀t ≥ 0, ∀a ≥ 0.
This latter equation leads to :

x(t, a) ≥    x 0 (a -t)e - a a-t (µ(s)+y(t-a+s)γ(s))ds if a ≥ t, ψ(t -a)e -a 0 (µ(s)+y(t-a+s)γ(s))ds if a < t.
1. First we prove that there exists t such that

ψ(t) > 0, ∀t ∈ [t , t + a 1 ]
where a 1 defined by (2.5). We know that

ψ(t) ≥ t 2 t 1 β(u + t)x 0 (u)e -( µ L ∞ +M γ L ∞ )t du, ∀t ∈ [a -t 1 , a -t 2 ]
where

M = max u∈[0,a-t 2 ] y(u) < ∞ so that ψ(t) ≥ σ 1 := η 1 η 2 e -( µ L ∞ +M γ L ∞ )(a-t 2 ) > 0, ∀t ∈ [a -t 1 , a -t 2 ]
by Hypotheses (P) and (H2). Either

a -t 2 -(a -t 1 ) ≥ a 1
and this step is done, or we continue by defining

ε ∈ (0, a -t 2 -(a -t 1 )).
Then we prove that

ψ(t) ≥ σ 2 := η 1 σ 1 (t 2 -t 1 )e -µ L ∞ + M γ L ∞ (2a-t 2 -ε) > 0, for every t ∈ [2a -t 1 + ε, 2a -t 2 -ε], where M = max u∈[0,2a-t 2 -ε] y(u) < ∞. If a -t 2 -(a -t 1 ) + (a -a -ε) ≥ a 1
we stop, else we continue. Since we get each time a bigger interval on which ψ is positive then we get what we wanted.

2. With this suitable t , we can even prove that

ψ(t) > 0, ∀t ≥ t .
Indeed, since R -> 0, there exists ∈ (0, a 1 ) such that

a 1 β(u)du > 0.
Then for every ¯ ∈ [0, ] we have

ψ(t * + a 1 + ¯ ) ≥ t +a 1 t +¯ ψ(u)β(t + ¯ + a 1 -u)e -(t +¯ +a 1 -u) µ L ∞ du > 0.
Doing this step by step, we finally prove that ψ(t) > 0 for every t ≥ t .

3. Now we prove that lim

t→∞ ψ(t) = ∞.
We see that

ψ(t + a 1 ) ≥ ψ(t)R -,
where ψ(t) = min u∈[t ,t +a 1 ] ψ(u). Moreover for every h > 0 we have

ψ(t + a 1 + h) ≥ R - min u∈[t +h,t +a 1 +h] ψ(u) ≥ ψ(t)R - so ψ(t * + 2a 1 + h) ≥ R - min u∈[t +a 1 +h,t +2a 1 +h] ψ(u) ≥ ψ(t)R 2 -, ∀h > 0.
Once again, by induction and since R -> 1 we verify that lim t→∞ ψ(t) = ∞.

4. Since for every a ∈ [0, a 1 ] and every t > a we have

x(t, a) = ψ(t -a)e -a 0 µ(s)ds , then lim t→∞ x(t, a) = ∞, ∀a ∈ [0, a 1 ].
Consequently we have lim

t→∞ x(t, •) L 1 (R + ) = ∞.
Now, let us suppose that there exists M > 0 such that for every t ≥ 0 we have

y(t) ≤ M.
Then a lower bound of Problem (2.1) gives

x(t, a) ≥    x 0 (a -t)e -( µ L ∞ +M γ L ∞ )t if a ≥ t, ψ(t -a)e -( µ L ∞ +M γ L ∞ )a if a < t,
for every t ≥ 0. Since lim t→∞ ψ(t) = ∞, then for every M > 0, there exists t > 0 such that ψ(t) ≥ M , ∀t ≥ t .

Consequently, we have

x(t, a) ≥ M e -( µ L ∞ +M γ L ∞ a 2 ) =: M C,
for every t ≥ t + a 2 and every a ∈ (a 1 , a 2 ). From Problem (2.1) and Remark 2.3.1 we deduce that

y (t) ≥ α a 2 a 1 γ(a)x(t, a)da -δ y(t) ≥ αγ -M C -δ y(t) =: Cy(t),
for every t ≥ t + a 2 . Taking M big enough, we get C > 0. Finally, an integration of the latter equation gives

y(t) ≥ y(t + a 2 )e -C(t * +a 2 ) e Ct → t→∞ ∞
for every t ≥ t + a 2 , which is a contradiction with the fact that y is bounded.

5. Consequently there exists an increasing sequence (t n ) n∈N such that

lim n→∞ t n = ∞, lim n→∞ y(t n ) = ∞.
Thus for every M > 0, there exists n ∈ N such that

y(t n ) ≥ M, ∀n ≥ n .
Suppose that y(t) does not go to ∞ when t goes to ∞. Then there would exists ε > 0 such that for every n ∈ N, there exists t > t n that verifies y(t) < ε.

Obviously there exists n ∈ N such that

t ∈ [t n , t n +1 ],
meaning that

y(t n ) ≥ M, y(t) < ε, y(t n +1 ) ≥ M. Let M ≥ K := εe δ(a 2 -a 1 ) ,
then, using the continuity of y and the fact that

y (t) ≥ -δy(t),
we can find an interval

[t , t + (a 2 -a 1 )] ⊂ [t n , t n +1 ] such that y (t + (a 2 -a 1 )) < 0 (2.15) and y(t) ≤ K, ∀t ∈ [t , t + (a 2 -a 1 )].
Moreover, by definition of a 1 , we can find a 2 such that a 2 -a 1 < a 1 even if we reduce γ -. Since we have lim

t→∞ x(t, a) = ∞, ∀a ∈ [0, a 1 ]
then there exists t > 0 such that

x(t, a) ≥ δ αγ - e (a 2 -a 1 )( µ L ∞ +K γ L ∞ ) ,
for every t > t and every a ∈ [a 1 -(a 2 -a 1 ), a 1 ]. Consider n big enough such that t * ≥ t.

Consequently we get The following result states that persistence may hold in the case where R -< 1 but under the assumption R 0 > 1.

x(t * + (a 2 -a 1 ), a) ≥ δ αγ - for every a ∈ [a 1 -(a 2 -a 1 ), a 1
Theorem 2.3.14. Suppose that R 0 > 1 and R -< 1. Then the total population of prey and the total population of predator are uniformly weakly persistent.

Proof.

1. First, suppose that given a fixed ε > 0, there exists (x 0 , y 0 ) ∈ X P (that may depend on ε) such that σ + ρ 2 (x 0 , y 0 ) < ε.

(2.16)

Since we have R 0 > 1, then there exists a > 0 such that

C := a 0 β(z)e -z 0 µ(s)ds dz > 1.
Let us take C ∈ (1, C) and define

M = 1 a γ L ∞ ln C C > 0.
Consider ε small enough, then (2.16) leads to

y(t) ≤ M ,
for every t ≥ t big enough. Moreover y is bounded by a positive constant M and, using the last proof, we get

ψ(t) > 0, ∀t ≥ t .
Consequently, defining t = max{t , t},

we get ψ( t + a ) ≥ ψ(t)C,
where

ψ(t) = C min u∈[ t, t+a ] ψ(u).
Using the last proof with respectively t, a , C instead of t , a 1 , R -: we get

lim t→∞ ψ(t) = ∞ then lim t→∞ x(t, •) L 1 (R + ) = ∞, lim t→∞ y(t) = ∞
since y is bounded, which is a contradiction. Thus we get the persistence result for the predator.

2. Now suppose that for ε > 0 fixed, there exists (x 0 , y 0 ) ∈ X P such that

σ + ρ 1 (x 0 , y 0 ) < ε.
Taking ε small enough we get

x(t, .) L 1 (R + ) < δ α γ L ∞
for all t ≥ t big enough, so that lim t→∞ y(t) = 0 using the second equation of (2.1). We then get a contradiction by using the first point. Consequently the proof is completed.

Numerical simulations

The following numerical simulations, that are performed using the finite volume method, aim at investigating other behavior of the dynamical system (2.1) under some biologically reasonable parameters.

Numerical scheme

We define the intervals a ∈ [0, a max ] and t ∈ [0, T ] then we note ∆a and ∆t respectively the age and the time steps. We define a j+1/2 = j∆a, t n = n∆t, for j, n ∈ N then we note K j = (a j-1/2 , a j+1/2 ).

We denote by x n j the approximation of the average of x(t n , a) over K j and we compute the initial states

x n j ≈ 1 ∆a K j x(t n , a)da, x 0 j = 1 ∆a K j x 0 (a)da, y 0 = y 0 , ∀j ≥ 1.
We then set α, δ > 0 and once β, µ, γ are chosen, we compute the data :

β j = 1 ∆a K j β(a)da, µ j = 1 ∆a K j µ(a)da, γ j = 1 ∆a K j γ(a)da, ∀j ≥ 1.
We define

T (γx n ) = ∆a j≥1 γ j x n j ,
so that an Euler's Scheme (explicit for the predation term and implicit for the mortality term) of the second equation of (2.1) gives

y n+1 = y n (1 + α∆tT (γx n )) 1 + δ∆t , ∀n ≥ 0.
Integrating the first equation of (2.1) regarding a over K j and supposing x regular enough, we get

∂ t K j x(t, a)da + x(t, a j+1/2 ) -x(t, a j-1/2 ) = - K j [µ(a) + y(t)γ(a)] x(t, a)da.
Then, an Euler's scheme and the integrals estimates give us

x n+1 j+1 = x n j+1 + ∆t ∆a x n+1 j 1 + ∆t ∆a + ∆tµ j+1 + ∆ty n+1 γ j+1 , ∀j ≥ 0, ∀n ≥ 1.
Moreover, the boundary conditions gives us

x n+1 0 = ∆a j≥1 β j x n j , ∀n ≥ 1.
Then we have the following theorem which guarantees positivity of the numerical solution.

Theorem 2.4.1. If (x 0 , y 0 ) ∈ X + then ∀j ≥ 1, n ≥ 1, we have x n j ≥ 0 and y j ≥ 0.

Simulations

According to biological considerations, let us use the following functions :

1. µ(a) = µ 0 + µ 0 a/(1 + ah) with µ 0 > 0 and h ∈ R * + : the older is the prey, the easier she dies naturally, 2. β(a) = β 0 ae -ca with β 0 , c > 0 : the middle-aged preys are the one that reproduce themselves the most, 3. γ(a) = γ 0 (1 -age 1-ga ), with γ 0 > 0, g > 0 : the young and the old preys are more easily killed by the predators.

For our simulations we take the parameters : a max = 20, ∆a = 0.1, α = 0.7, δ = 0.1, µ 0 = 0.05, h = 1, c = 1, g = 0.25, γ 0 = 0.5 and we represent the trajectory of the solution with on the x-axis the quantity of predator and on the y-axis the total quantity x L 1 of prey.

If we take β 0 = 1, we have R 0 < 1, so for all (x 0 , y 0 ) ∈ X + the solution will converge to E 0 : Theorem 2.3.5 (see figure 2.1). If we take β 0 = 4 or β 0 = 7, then the simulations make us suppose that the solution is bounded for any positive initial conditions (x 0 , y 0 ) ∈ X P . Moreover we have R 0 > 1, R -< 1 and (H2) is verified since β 0 (a) > 0 a.e. a ≥ 0. Consequently of Theorem 2.3.14, the total populations are uniformly weakly persistent and the solution will either converge to a periodic function if β 0 = 4 (see figure 2.2) or converge to E 2 if β 0 = 7 (see figure 2.3).

If we take β 0 = 7 and if we consider the function

γ(a) = γ 0 (1 -age 1-ga )1 [2,∞) (a)
then (P), (H2) are verified and R -> 1 so consequently to Theorem 2.3.12 : the solutions explode (see figure 2.4). 

Final remarks

All the cases that we have studied theoretically and numerically are gathered in Table 2.1. One can note that, even when considering a linear functional response, a structure according to the age of the preys provides more complex dynamics of the predator-prey interactions than the Lotka Volterra ODE model. In particular, the realistic case of extinction of the population may occur. Indeed, we proved that, depending on the age distribution of the fertility rate and of the mortality rate of the preys, the total population tends to disappear. This phenomenon happens when a prey will produce, in average, less than one direct offspring during its lifespan, translated by R 0 < 1. In the opposite case, when R 0 > 1, we proved that under the assumption that the initial prey population is young enough (i.e. assumption (P)) then the total population is uniformly weakly persistent.

R 0 < 1 R 0 > 1 and (P) Convergence to E 0 R -< 1 R -> 1 Limit cycle or Convergence to E 2 Unbounded solutions Table 2.

-Different behaviors

The model shows another unexpected behavior : if the young preys "uncatchable" by predators have a high enough ability to reproduce, which is translated by (R -> 1), then both populations explode. This phenomenon, even if rare and perhaps biologically impossible, was not possible in the ODE case as well as in the PDE model incorporating a constant predation parameter. Finally in the other cases that were numerically investigated (i.e. when R 0 > 1, R -< 1 and (P) is verified) the solution converges either to a periodic function or to a positive equilibrium. A further work will be dedicated to a deeper analysis of the equilibrium E 2 in order to determine under which conditions it is asymptotically stable, and to theoretically look for the existence of periodic trajectories.

Appendix : a brief reminder of Lotka Volterra

The classical result of Lotka-Volterra is reminded in Section 1.5.3. Moreover, a formal integration with respect to the age variable a explains how the age-structured PDE problem (2.1) can be seen as a generalization of the Lotka Volterra equations, as stated in the following proposition : Proposition 2.5.1. Suppose that parameters γ, β and µ are independent of the age, given by the following constants :

γ(a) = γ 0 , β(a) = β 0 and µ(a) = µ 0 a.e. a ≥ 0. Then (X(t), y(t)) := ( ∞ 0 x(t, a) da, y(t)) is the solution of system (1.15) with a = β 0 -µ 0 , b = γ 0 , c = αγ 0 , d = δ, x 0 = ∞ 0 x 0 (a)
da and y 0 = y 0 . Hence we get periodic solutions in that case (see figure 2.5).

Remark 2.5.2. As it was explained in Section 2.2 we have D(A) ⊂ W 1,1 (R + ) × R. Then for every initial condition (x 0 , y 0 ) ∈ D(A), the function

a → x(t, a) remains in W 1,1 (R + ) for every t ≥ 0. A consequence is that lim a→∞ x(t, a) = 0 for every t ≥ 0. Consequently ∞ 0 ∂ a x(t, a)da = -β 0 X(t)
and the formal integration w.r.t. a is possible. 

Framework and hypotheses

In this section we consider the equation

     ∂ t u 1 (t, s) + ∂ s (γ 1 (s)u 1 (t, s)) = -µ(s)u 1 (t, s) + m 0 β(s, y)u 1 (t, y)dy -c 1 (s)u 1 (t, s) + c 2 (s)u 2 (t, s), ∂ t u 2 (t, s) + ∂ s (γ 2 (s)u 2 (t, s)) = c 1 (s)u 1 (t, s) -c 2 (s)u 2 (t, s), (3.1)
for every s ∈ [0, m], with Dirichlet boundary conditions

u 1 (t, 0) = 0, u 2 (t, 0) = 0, ∀t ≥ 0. (3.2)
We define the Banach space

X = (L 1 (0, m) × L 1 (0, m), . X ) endowed with the norm (u 1 , u 2 ) X = u 1 L 1 (0,m) + u 2 L 1 (0,m) .
We denote by X + the nonnegative cone of X and we introduce some hypotheses on the different parameters :

1. µ, c 1 , c 2 ∈ L ∞ (0, m) and γ 1 , γ 2 ∈ W 1,∞ (0, m),
2. β, µ, c 1 , c 2 ≥ 0 and there exists γ 0 > 0 such that for every s ∈ [0, m], γ 1 (s) ≥ γ 0 , γ 2 (s) ≥ γ 0 , 3. the operator

K : L 1 (0, m) u → m 0 β(., y)u(y)dy ∈ L 1 (0, m)
is weakly compact. Using (3.1), we define the operator A by :

A u 1 u 2 = A u 1 u 2 + B u 1 u 2 = -(γ 1 u 1 ) -(γ 2 u 2 ) + -(µ + c 1 )u 1 + c 2 u 2 + m 0 β(•, y)u 1 (y)dy) -c 2 u 2 + c 1 u 1 ,
where the domain of A is given by

D(A) = {(u 1 , u 2 ) ∈ W 1,1 (0, m) × W 1,1 (0, m) : u 1 (0) = 0, u 2 (0) = 0}.
We decompose B into three operators :

B u 1 u 2 = B 1 u 1 u 2 + B 2 u 1 u 2 + B 3 u 1 u 2 = -(µ + c 1 )u 1 -c 2 u 2 + c 2 u 2 c 1 u 1 + m 0 β(•, y)u 1 (y)dy 0 .
We are then concerned with the following Cauchy problem

U (t) = AU (t), U (0) = (u 0 1 , u 0 2 ) ∈ X ,
where Proof. We easily see that D(A) is densely defined in X . Moreover, for λ > 0 sufficiently large, the range condition (λI -A)U = H, where U = (u 1 , u 2 ) and H = (h 1 , h 2 ) ∈ X , is straightforward since (u 1 , u 2 ) is given by (3.3) so for λ ≥ γ L ∞ and i ∈ {1, 2}

U (t) = (u 1 (t), u 2 (t)) T .

Semigroup generation

Lemma 3.1.2. Let H = (h 1 , h 2 ) ∈ X , λ > s(A) and U = (λI -A) -1 H := (u 1 , u 2 ) ∈ D(A). Then for every s ∈ [0, m]            u 1 (s) = s 0 h 1 (y) γ 1 (y) exp - s y λ + γ 1 (u) γ 1 (u) du dy, u 2 (s) = s 0 h 2 (y) γ 2 (y) exp - s y λ + γ 2 (u) γ 2 (u) du dy.
u i L 1 (0,m) ≤ h L 1 (0,m) γ 0 < ∞ and u i L 1 (0,m) ≤ (λ + γ L ∞ (0,m) ) u L 1 (0,m) + h L 1 (0,m) γ 0 < ∞ hence U ∈ D(A). It remains to prove that A is a dissipative operator. Let λ > 0, U = (u 1 , u 2 ) ∈ D(A), H = (λI -A)U and H = (h 1 , h 2 ).
We have to prove that

H X ≥ λ U X
so, in fact, we have to show that for every i ∈ {1, 2},

h i L 1 (0,m) ≥ λ u i L 1 (0,m) .
By definition we have u i (0) = 0 and

λu i (s) + (γ i u i ) (s) = h i (s), s ∈ (0, m].
We multiply the latter equation by sign(u i (s)) then integrate between 0 and m. We get

λ u i L 1 (0,m) + m 0 (γ i u i ) (s)sign(u i (s))ds = m 0 h i (s)sign(u i (s))ds.
Any nonempty open set of the real line is a finite or countable union of disjoints open intervals (see [START_REF] Apostol | Mathematical Analysis[END_REF] Theorem 3.11, p. 51) so

{u i > 0} = {s ∈ (0, m) : u i (s) > 0} = ∪ i∈N (a i,1 , a i,2 ), {u i < 0} = {s ∈ (0, m) : u i (s) < 0} = ∪ i∈N (b i,1 , b i,2 ).
Since

u i ∈ W 1,1 (0, m) → C([0, m]) then ∀i, j ∈ N : u i (a i,1 ) = 0, u i (a i,2 ) = 0, u i (b j,1 ) = 0 and u i (b j,2 ) = 0 (except possibly at m). Thus m 0 (γ i u i ) sign(u i ) = {u i >0} (γ i u i ) - {u i <0} (γ i u i ) = j∈N [γ i (a j,2 )u i (a j,2 ) -γ i (a j,1 )u i (a j,1 )] - j∈N [γ i (b j,2 )u i (b j,2 ) -γ i (b j,1 )u i (b j,1 )] = γ i (m) |u i (m)| ≥ 0.
Hence

λ u i L 1 ≤ λ u i L 1 + γ i (m)|u i (m)| = m 0 h i (s)sign(u i (s))ds ≤ h i L 1
and we get the dissipativity of A.

Thus A generates a C 0 -semigroup {T (t)} t≥0 by Lumer-Phillips Theorem (see [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] Theorem 4.3, p. 14). Finally, as bounded perturbations of A, the operators A + B 1 , A + B 1 + B 2 and A also generate a quasi-contraction C 0 -semigroup {T 1 (t)} t≥0 , {T 2 (t)} t≥0 and {U (t)} t≥0 respectively.

On irreducibility

To understand time asymptotics of {U (t)} t≥0 , we need to prove a key result related to positivity. Definitions and results about positive and irreducible operators are reminded in Section A. [START_REF] Apushkinskaya | A survey of results on nonlinear Venttsel problems[END_REF] Proof.

1. We show first that the semigroup {U (t)} t≥0 is positive. Using Lemma 3.1.2, we readily see that the semigroup {T (t)} t≥0 is positive since (λI -A) -1 is positive for λ large enough. Since B 1 is a bounded operator and

B 1 + B 1 I ≥ 0 where B 1 = max( µ L ∞ + c 1 L ∞ , c 2 L ∞ )
then it follows (see e.g. [START_REF] Nagel | One-Parameter Semigroups of Positive Operators[END_REF] Theorem 1.11, C-II, p. 255) that {T 1 (t)} t≥0 is positive. Moreover, B 2 and B 3 are positive operators, so for λ large enough, we get

(λI -A -B 1 -B 2 ) -1 = (λI -A -B 1 ) -1 ∞ n=0 (B 2 (λI -A -B 1 ) -1 ) n ≥ 0 and (λI -A) -1 = (λI -A -B 1 -B 2 ) -1 ∞ n=0 (B 3 (λI -A -B 1 -B 2 ) -1
) n ≥ 0 so the C 0 -semigroups {T 2 (t)} t≥0 and {U (t)} t≥0 are positive.

2. Now we suppose that the assumptions (3.4)-(3.5)-(3.6) are verified and we prove that the resolvent (λI -A) -1 is positivity improving for large λ. In fact, since

B 1 + B 1 ≥ 0, we have (λI -A) -1 = ((λ + B 1 )I -A -(B 1 + B 1 I) -B 2 -B 3 ) -1 ≥ ((λ + B 1 )I -A -B 2 -B 3 ) -1
so it suffices to show that (λI -A -B 2 -B 3 ) -1 is positivity improving for λ large enough.

It is easy to see that

(λI -A -B 2 -B 3 ) -1 = (λI -A -B 2 ) -1 ∞ n=0 (B 3 (λI -A -B 2 ) -1 ) n = (λI -A) -1 ∞ l=0 (B 2 (λI -A) -1 ) l ∞ n=0 (B 3 (λI -A -B 2 ) -1 ) n . (3.7) Since ∞ n=0 (B 2 (λI -A) -1 ) n ≥ I + B 2 (λI -A) -1 and (λI -A -B 2 ) -1 ≥ (λI -A) -1 (I + B 2 (λI -A) -1 ) ≥ (λI -A) -1
we get

(λI -A -B 2 -B 3 ) -1 ≥ (λI -A) -1 (I + B 2 (λI -A) -1 ) ∞ n=0 (B 3 (λI -A -B 2 ) -1 ) n ≥ (λI -A) -1 (I + B 2 (λI -A) -1 ) ∞ n=0 (B 3 (λI -A) -1 ) n (I + B 2 (λI -A) -1 ) Let U := (u 1 , u 2 ) = (λI -A -B 2 -B 3 ) -1 H with H ∈ X + . Let us show that u 1 (s) > 0, u 2 (s) > 0 a.e. once H = (h 1 , h 2 ) ∈ X + -{0} .
First, suppose that H = (0, h 2 ) ∈ X + -{0}. Using Lemma 3.1.2, we get 

(λI -A) -1 H = (0, h 3 ) ∈ D(A),
Thus B 2 (λI -A) -1 H = (h 4 , 0)
where

h 4 ∈ L 1 + -{0}. So (I + B 2 (λI -A) -1 )H ≥ (h 4 , 0) ∈ X + -{0} . Now suppose that H = (h 1 , 0) ∈ X + -{0}, then (I + B 2 (λI -A) -1 )H ≥ H ≥ (h 1 , 0) ∈ X + -{0} .
In any case it suffices to compute

(λI -A) -1 (I + B 2 (λI -A) -1 ) ∞ n=0 (B 3 (λI -A) -1 ) n H for H = (h, 0) ∈ X + -{0}. We have (λI -A) -1 H = (h 1 , 0) ∈ D(A) where supp h 1 = (inf supp h, m]. Let k 1 := inf supp h 1 = inf supp h.
Using (3.4), we get

B 3 (λI -A) -1 H = B 3 (h 1 , 0) = (h 2 , 0)
where 

h 2 verifies k 2 := inf supp h 2 < k 1 . Indeed, by contradiction, if k 2 ≥ k 1 then h 2 ≡ 0 on [0, k 1 ]. Thus a.e. s ∈ [0, k 1 ],
(λI -A) -1 (B 3 (λI -A) -1 )H = (λI -A) -1 (h 2 , 0) = (h 3 , 0) ∈ D(A),
where supp h 3 = (k 2 , m] and k 3 := inf supp

h 3 = k 2 . Then B 3 (h 3 , 0) = (h 4 , 0)
where

k 4 := inf supp h 4 < k 3 .
Repeating this argument, we get 

B 2 (λI -A) -1 H = B 2 (h 1 , 0) = (0, h 2 ),
where inf supp h 2 = 0.

Once again with Lemma 3.1.2 we get

(λI -A) -1 (0, h 2 ) = (0, h 3 ),
where h 3 (s) > 0 for every s ∈ (0, m].

Finally (u 1 , u 2 ) := U = (λI -A) -1 (I + B 2 (λI -A) -1 )H ≥ (h 1 , h 3 ) so u 1 (s) > 0, u 2 (s) > 0 a.e.
so {U (t)} t≥0 is irreducible.

3. Now, to prove the converse, we use the contraposition. We suppose that either (3.4), (3.5) or (3.6) is not verified and we show that the semigroup is not irreducible. We identify L 1 (ε, m) the closed subspace of L 1 (0, m) of functions vanishing a.e. on (0, ε). We can prove that

L 1 (ε, m) × L 1 (ε, m) is a subspace of X which is invariant under (λI -A) -1 . Indeed, since B 1 ≤ 0, we have (λI -A) -1 ≤ (λI -(A + B 2 + B 3 )) -1 (3.9)
where the latter resolvent is given by (3.7). Using Lemma 3.1.2 we get for every

H ∈ L 1 (ε, m) × L 1 (ε, m), (λI -A) -1 H = (h 1 , h 2 ) where inf supp h 1 ≥ ε, inf supp h 2 ≥ ε.
Moreover, for every

H ∈ L 1 (ε, m) × L 1 (ε, m), we have D 2 H = (h 3 , h 4 ) where inf supp h 3 ≥ ε, inf supp h 4 ≥ ε.
Finally, for every

H := (h 1 , h 2 ) ∈ L 1 (ε, m) × L 1 (ε, m), we have B 3 H = (h 3 , 0) where h 3 (s) = m 0 β(s, y)h 1 (y)dy = m ε β(s, y)h 1 (y)dy ≤ h 1 L ∞ m ε β(s, y)dy = 0
a.e. s ∈ [0, ε], using (3.8). Thus we get inf supp h 3 ≥ ε.

Consequently, for every

H ∈ L 1 (ε, m) × L 1 (ε, m), (λI -(A + B 2 + B 3 )) -1 H = (h 1 , h 2 ) where inf supp h 1 ≥ ε, inf supp h 2 ≥ ε. Then L 1 (ε, m) × L 1 (ε, m) is a subspace of X which is invariant under (λI - A) -1 so (λI -A) -1
is not irreducible and a fortiori not positivity improving, consequently {U (t)} t≥0 is not irreducible by definition.

(b) If (3.5) is not verified then let

k := inf supp c 1 > 0 and take H := (h 1 , h 2 ) ∈ L 1 (0, m) × L 1 (0, m) -{0} such that inf supp h 2 ≥ k.
Then using (3.9) we have

(λI -A) -1 H ≤ (λI -(A + B 2 + B 3 )) -1 H =: (u 1 , u 2 ) where (u 1 , u 2 ) ∈ D(A) verify a.e. s ∈ [0, m] λu 2 (s) + (γ 2 u 2 ) (s) -c 1 (s)u 1 (s) = h 2 (s).
Consequently a.e. s ∈ [0, k] we get

λu 2 (s) + (γ 2 u 2 ) (s) = 0 which leads to u 2 ≡ 0 on [0, k],
and then

L 1 (0, m) × L 1 (k, m) is a subspace of X which is invariant under (λI -A) -1 . (c) If (3.6) is not verified then let k := sup supp c 2 < m
and take

H := (0, h 1 ) ∈ L 1 (0, m) × L 1 (0, m) -{0} such that inf supp h 1 ≥ k.
With Lemma 3.1.2, we get (λI -A) -1 (0, h 1 ) = (0, h 2 ) where inf supp h 2 ≥ k.

Thus we have

D 2 (0, h 2 ) = (c 2 h 2 , 0) = (0, 0) since supp c 2 ∩ supp h 2 = ∅. Consequently (λI -(A + B 2 )) -1 H = (0, h 2 ) then B 3 (0, h 2 ) = (0, 0) so ∞ n=0 (B 3 (λI -(A + B 2 )) -1 ) n H = H whence ∞ l=0 (B 2 (λI -A) -1 ) l ∞ n=0 (B 3 (λI -(A + B 2 )) -1
) n H = H and using (3.7) we get

(λI -(A + B 2 + B 3 )) -1 H = (0, h 2 ).
Finally (3.9) implies (λI -A) -1 H ≤ (0, h 2 ).

Consequently, {0} × L 1 (k, m) is a subspace of X which is invariant under (λI -A) -1 .
This concludes the proof.

Remark 3.1.5. We note that in [START_REF] Farkas | On a size-structured two-phase population model with infinite states-at-birth[END_REF], the assumption (3.4) is replaced by the stronger assumption

∃ ε 0 > 0 : ∀ε ∈ (0, ε 0 ], ε 0 m m-ε β(s, y)dyds > 0
which, in the continuous case, implies β(0, m) > 0 so that cells of maximal size can produce offspring of minimal size. With the assumption (3.4), it is not necessary and we even get the result for the mitosis case where every cell produce two offspring with half size, i.e. when β(s, y) = 2δ {y=2s}

(see e.g. [START_REF] Bai | Well-posedness and asynchronous exponential growth of solutions of a two-phase cell division model[END_REF][START_REF] Gyllenberg | A nonlinear structured population model of tumor growth with quiescence[END_REF][START_REF] Gyllenberg | Quiescence in structured population dynamics : applications to tumor growth[END_REF][START_REF] Rossa | Quiescence as an explanation for asynchronous exponential growth in a size structured cell population of exponentially growing cells. I[END_REF] for similar works).

On the spectral bound of the generator

Lemma 3.1.6. Let k > 0 be a positive constant and let V : L 1 (0, m) → L 1 (0, m) be the operator defined for every s ∈ [0, m] and h ∈ L 1 (0, m) by

V h(s) = k s 0 h(y)dy,
then V is a Volterra operator and σ(V ) = ∅.

Remark 3.1.7. Note that A has a compact resolvent (and consequently the spectrum of A is composed (at most) of isolated eigenvalues with finite algebraic multiplicity). This follows from the fact that the canonical injection i : (D(A), . 

D(A) ) → (X ,
A i u = -(γ i u) , i ∈ {1, 2} with u ∈ D(A 1 ) = D(A 2 ) = {u ∈ W 1,1 (0, m) : u(0) = 0}
. Thus, with Lemma 3.1.2, we have for every s ∈ [0, m] and i ∈ {1, 2}, (λI

-A i ) -1 h(s) ≤ k i s 0 h(y)dy := V i h(s),
where k 1 and k 2 are positive constants. Since V 1 and V 2 are Volterra operators, we have

σ(V 1 ) = ∅, σ(V 2 ) = ∅
using Lemma 3.1.6 and for i ∈ {1, 2} we have

σ((λ -A i ) -1 ) ⊂ σ(V i ) = ∅ so by definition r σ ((λ -A i ) -1 ) = 0, where r σ (O) = sup{|λ| : λ ∈ σ(O)}
is the spectral radius of O a bounded operator. On the other hand

r σ ((λ -A i ) -1 ) = 1 λ -s(A i ) (Theorem A.4.6) so we have for every i ∈ {1, 2}, s(A i ) = -∞ and consequently s(A) = max{s(A 1 ), s(A 2 )} = -∞, because A = A 1 A 2 .
Since A + B 2 has a compact resolvent, its spectrum is (at most) composed of eigenvalues. Thus, λ ∈ σ(A + B 2 ) if and only if there exists u = (u 1 , u 2 ) ∈ X -{0} such that

λu = (A + B 2 )u which is equivalent to (λ -A 1 )u 1 = c 2 u 2 , (λ -A 2 )u 2 = c 1 u 1 that is u 1 = V 3 u 1 , u 2 = V 4 u 2 ,
where the positive operators V 3 and V 4 are given by

V 3 u = (λ -A 1 ) -1 c 2 (λ -A 2 ) -1 c 1 u, V 4 u = (λ -A 2 ) -1 c 1 (λ -A 1 ) -1 c 2 u,
which are bounded as follow

V 3 v(s) ≤ V 1 c 2 V 2 c 1 v(s) ≤ k 3 V 1 V 2 v(s) ≤ k 1 k 2 k 3 s 0 y 0 v(z)dzdy V 4 v(s) ≤ V 2 c 1 V 1 c 2 v(s) ≤ k 4 V 2 V 1 v(s) ≤ k 1 k 2 k 4 s 0 y 0 v(z)dzdy,
where k 3 and k 4 are positive constants. Then we readily see that

V 3 v(s) ≤ k 3 s 0 v(y)dy =: V 3 v(s) V 4 v(s) ≤ k 4 s 0 v(y)dy =: V 4 v(s),
where k 3 and k 4 are positive constants. Consequently

λ ∈ σ(A + B 2 ) ⇐⇒ 1 ∈ σ(V 3 ) ∪ σ(V 4 ).
Since V 3 and V 4 are Volterra operators then for every i ∈ {3, 4} we have

σ(V i ) ⊂ σ(V i ) = ∅. Consequently 1 is not in σ(V 3 ) ∪ σ(V 4
) and the spectrum of A + B 2 is empty so

s(A + B 2 ) = -∞.
Finally, since B 1 is a nonpositive operator then s(A (3.11)

+ B 1 + B 2 ) ≤ s(A + B 2 ) = -∞
The idea is to prove some irreducibility result of the resolvent of A. Let λ > s(A) then

(λ -A) -1 ≥ (λ -(A + B 1 + B 3 )) -1 = (λ -( Ã1 + K)) -1 (λ -Ã2 ) -1
since B 2 ≥ 0, where Ã1 and Ã2 are the positive operators defined by

Ã1 u = -(γ 1 u) -(µ + c 1 )u, Ã2 u = -(γ 2 u) -c 2 u,
and

D( Ã1 ) = D( Ã2 ) = D(A 1
). Thus we have

r σ ((λ -A) -1 ) ≥ max{r σ ((λ -( Ã1 + K)) -1 ), r σ ((λ -Ã2 ) -1 )}.
Since Ã2 ≤ A 2 then with Theorem 3.1.8 we have

s( Ã2 ) ≤ s(A 2 ) = -∞
and r σ ((λ -Ã2 ) -1 ) = 0 so it remains to prove that r σ ((λ -( Ã1 + K)) -1 ) > 0.

We know that

(λ -( Ã1 + K)) -1 ≥ ((λ + µ L ∞ + c 1 L ∞ )I -(A 1 + K)) -1
so it suffices to prove that for λ > 0 large enough we have

r σ ((λ -(A 1 + K)) -1 ) > 0.
As in the proof of Theorem 3.1.4 we know that

(λ -(A 1 + K)) -1 ≥ (λ -A 1 ) -1 K(λ -A 1 ) -1 . Let v ∈ L 1 (δ, δ 2 ), then using Lemma 3.1.2 we get (λ -A 1 ) -1 v = v 1 ,
where v 1 (s) > 0 for every s ∈ (inf supp v, m]. In particular we have 

v 1 (s) > 0, ∀s ∈ [δ 2 , m] since inf supp v ≤ δ 2 . Then K(λ -A 1 ) -1 v = Kv 1 = v 2 where inf supp v 2 ≤ δ.
(λ -A 1 ) -1 K(λ -A 1 ) -1 v = (λ -A 1 ) -1 v 2 = v 3
where v 3 (s) > 0 for every s ∈ [inf supp v 2 , m] and in particular v 3 (s) > 0 for every s ∈ [δ, δ 2 ]. This implies that for λ > 0 large enough and for every v ∈ L 1 (δ, δ 2 ) we have (λ

-(A 1 + K)) -1 v(s) > 0, ∀s ∈ [δ, δ 2 ]. (3.12) 
We also know that

(λ -(A 1 + K)) -1 ≥ (λ -(A 1 + K)) -1 |L 1 (δ,δ 2 ) ≥ χ [δ,δ 2 ] (λ -(A 1 + K)) -1 |L 1 (δ,δ 2 ) ,
where χ [δ,δ 2 ] is the indicator function of [δ, δ 2 ], so

r σ ((λ -(A 1 + K)) -1 ) ≥ r σ χ [δ,δ 2 ] (λ -(A 1 + K)) -1 |L 1 (δ,δ 2 ) . Since A is resolvent compact then the operator χ [δ,δ 2 ] (λ -(A 1 + K)) -1 |L 1 (δ,δ 2 ) : L 1 (δ, δ 2 ) → L 1 (δ, δ 2 )
is compact and positivity improving with (3.12). Finally we get

r σ χ [δ,δ 2 ] (λ -(A 1 + K)) -1 |L 1 (δ,δ 2 ) > 0 (see Theorem A.4.7) and r σ ((λ -A) -1 ) > 0 whence s(A) > -∞.
2. Now to prove the converse, we use the contraposition. Suppose that the assumption (3.10) is not verified, that is

∀ δ ∈ (0, m) : δ 0 m δ β(s, y)dyds = 0. (3.13)
Suppose momentarily that (λ -(A 1 + K)) -1 is bounded by a Volterra operator V . Then following the same sketch of proof than for Theorem 3.1.8, we would have

σ((λ -(A 1 + K)) -1 ) ⊂ σ(V ) = ∅ so r σ ((λ -(A 1 + K)) -1 ) = 0 and s(A 1 + K) = -∞.
Then we would have

s(A + B 3 ) = max{s(A 1 + K), s(A 2 )} = -∞, because A + B 3 = A 1 + K A 2 .
As for Theorem 3.1.8, we can prove that

s(A + B 2 + B 3 ) = -∞ and finally s(A) ≤ s(A + B 2 + B 3 ) = -∞ since B 1 ≤ 0. Consequently it remains to prove that (λ -(A 1 + K)) -1
is bounded by a Volterra operator. We know that 

(λ -(A 1 + K)) -1 = (λ -A 1 ) -1 ∞ n=0 (K(λ -A 1 ) -1 ) n . Let v ∈ L 1 (0, m) -{0} and let k = inf supp v. Using Lemma 3.1.2 we have (λ -A 1 ) -1 v = v 1 where supp v 1 = (k, m] then K(λ -A 1 ) -1 v = Kv 1 = v 2 with v 2 (s) =
-(A 1 + k)) -1 v(s) = 0 a.e. s ∈ [0, k].
Consequently there exists a positive constant C such that for every v ∈ L 1 (0, m) -{0} we have

(λ -(A 1 + K)) -1 v(s) ≤ C s 0 v(y)dy =: V v(s), a.e. s ∈ [0, m],
and V is a Volterra operator.

Remark 3.1.11. Theorem 3.1.10 provides us with the existence of a real leading eigenvalue since s(A) ∈ σ(A) (see Theorem A.4.5). Moreover, we see that if for a finite m > 0, the assumption (3.10) is verified then it is also verified for every m ≥ m and the spectral bound is also finite. Note that if β is continuous at (0, 0) with β(0, 0) > 0 then (3.10) is verified for m > 0 as small as we want.

On asynchronous exponential growth

Some definitions and results about asynchronous exponential growth are reminded in Section 1.4.4. The main result of this section is : Theorem 3.1.12. Under the assumptions (3.4)-(3.5)-(3.6), the semigroup {U (t)} t≥0 generated by A has asynchronous exponential growth.

Proof. The semigroups {U (t)} t≥0 and {T 2 (t)} t≥0 are related by the Duhamel equation

U (t) = T 2 (t) + t 0 T 2 (t -s)B 3 U (s)ds.
Since B 3 is a weakly compact operator then so is T 2 (t -s)B 3 U (s) for all s ≥ 0. It follows that the strong integral t 0 T 2 (t -s)B 3 U (s)ds is a weakly compact operator (see [START_REF] Mokhtar-Kharroubi | On the convex compactness property for the strong operator topology and related topics[END_REF] Theorem 1 or [START_REF] Slüchtermann | On weakly compact operators[END_REF] Theorem 2.2). Hence U (t) -T 2 (t) is a weakly compact operator and consequently (see [START_REF] Mokhtar-Kharroubi | Mathematical Topics in Neutron Transport Theory : New Aspects[END_REF] Theorem 2.10, p. 24) {U (t)} t≥0 and {T 2 (t)} t≥0 have the same essential type

ω ess (A) = ω ess (A + B 1 + B 2 ), in particular ω ess (A) ≤ ω 0 (A + B 1 + B 2 ).
Note that s(A + B 1 + B 2 ) = ω 0 (A + B 1 + B 2 ) and s(A) = ω 0 (A) since {U (t)} t≥0 and {T 2 (t)} t≥0 are positive semigroups on L 1 spaces (see e.g. Theorem A.4.3). Since (3.4) implies (3.10) then applying Theorem 3.1.8 and Theorem 3.1.10 we get respectively

ω 0 (A) > -∞ and ω 0 (A + B 1 + B 2 ) = -∞ so ω ess (A) < ω 0 (A).
By combining this last result and the irreducibility of {U (t)} t≥0 , Theorem 1.4.13 ends the proof.

Remark 3.1.13. Note that if (3.10) is verified but either (3.4), (3.5) or (3.6) is not true then we get the spectral gap ω ess (A) < ω 0 (A) = s(A) but since {U (t)} t≥0 is not irreducible, we a priori do not have asynchronous exponential growth. However, as stated in Theorem 1.4.15, the semigroup has a similar behavior (1.13).

Models with unbounded sizes

In this section we consider the following model

     ∂ t u 1 (t, s) + ∂ s (γ 1 (s)u 1 (t, s)) = -µ(s)u 1 (t, s) + ∞ 0 β(s, y)u 1 (t, y)dy -c 1 (s)u 1 (t, s) + c 2 (s)u 2 (t, s), ∂ t u 2 (t, s) + ∂ s (γ 2 (s)u 2 (t, s)) = c 1 (s)u 1 (t, s) -c 2 (s)u 2 (t, s), (3.14)
for s, t ≥ 0, with the Dirichlet boundary conditions (3.2). Let

X ∞ = (L 1 (0, ∞) × L 1 (0, ∞), • X ∞ ) with norm (x 1 , x 2 ) X ∞ = x 1 L 1 (0,∞) + x 2 L 1 (0,∞) .
We denote by X ∞ + the nonnegative cone of X ∞ . We now introduce some hypotheses on the different parameters :

1. µ, c 1 , c 2 ∈ L ∞ (0, ∞), γ 1 , γ 2 ∈ W 1,∞ (0, ∞),
2. β, µ, c 1 , c 2 ≥ 0 and there exists γ 0 > 0 such γ 1 (s) ≥ γ 0 , γ 2 (s) ≥ γ 0 a.e. s ≥ 0, 3. the operator 

K ∞ : L 1 (0, ∞) u → ∞ 0 β(., y)u(y)dy ∈ L 1 (0, ∞)
A ∞ u 1 u 2 = A ∞ u 1 u 2 + B ∞ u 1 u 2 = -(γ 1 u 1 ) -(γ 2 u 2 ) + -(µ + c 1 )u 1 + c 2 u 2 + ∞ 0 β(•, y)u 1 (y)dy -c 2 u 2 + c 1 u 1 ,
where the domain of A ∞ is given by

D(A ∞ ) = {(u 1 , u 2 ) ∈ W 1,1 (0, ∞) × W 1,1 (0, ∞) : u 1 (0) = 0, u 2 (0) = 0}.
We decompose B ∞ into three operators :

B ∞ u 1 u 2 = B ∞ 1 u 1 u 2 + B ∞ 2 u 1 u 2 + B ∞ 3 u 1 u 2 = -(µ + c 1 )u 1 -c 2 u 2 + c 2 u 2 c 1 u 1 + ∞ 0 β(•, y)u 1 (y)dy 0 .
We are then concerned with the following Cauchy problem

U (t) = A ∞ U (t), U (0) = (u 0 1 , u 0 2 ) ∈ X ∞ ,
where U (t) = (u 1 (t), u 2 (t)) T .

Semigroup generation

Lemma 3.2.2. Let H = (h 1 , h 2 ) ∈ X ∞ , λ > s(A ∞ ) and U = (λI -A ∞ ) -1 H ∈ D(A ∞ ). Let U = (u 1 , u 2 ), then for every s ≥ 0            u 1 (s) = s 0 h 1 (y) γ 1 (y) exp - s y λ + γ 1 (u) γ 1 (u) du dy, u 2 (s) = s 0 h 2 (y) γ 2 (y) exp - s y λ + γ 2 (u) γ 2 (u) du dy. (3.15)
Consequently we get supp u 1 = (inf supp h 1 , ∞) and supp u 2 = (inf supp h 2 , ∞).

Theorem 3.2.3. The operator

A ∞ generates a C 0 -semigroup {U(t)} t≥0 of bounded linear operators on X ∞ .
Proof. The fact that D(A ∞ ) is densely defined in X ∞ is clear. Moreover, as in the finite case, the range condition (λI -A ∞ )U = H, where U = (u 1 , u 2 ) and H = (h 1 , h 2 ) ∈ X ∞ , is verified for λ > 0 sufficiently large. It remains to prove that there A ∞ is a dissipative operator. Let λ > 0, U = (u 1 , u 2 ) ∈ D(A ∞ ) and H = (λI -A ∞ )U . Let H = (h 1 , h 2 ), we have to prove that

H X ∞ ≥ λ U X ∞ that is h i L 1 (0,∞) ≥ λ u i L 1 (0,∞) .
for every i ∈ {1, 2}. We know that u i (0) = 0 and

λu i (s) + (γ i u i ) (s) = h i (s), s ∈ (0, ∞).
An integration thus leads to

λ u i L 1 (0,∞) + ∞ 0 (γ i u i ) (s)sign(u i (s))ds = ∞ 0 h i (s)sign(u i (s))ds. Since u i ∈ W 1,1 (0, ∞) → C([0, ∞]), we get, for every finite m > 0 m 0 (γ i u i ) sign(u i (s))ds = γ i (m) |u i (m)| . Hence ∞ 0 (γ i u i ) sign(u i (s))ds = lim m→∞ m 0 (γ i u i ) sign(u i (s))ds = 0 and we have λ u i L 1 = ∞ 0 h i (s)sign(u i (s))ds ≤ h i L 1 so the dissipativity of A ∞ follows.
Finally A ∞ generates a C 0 -semigroup {T (t)} t≥0 by Lumer-Phillips Theorem then the operators

A ∞ + B ∞ 1 , A ∞ + B ∞ 1 + B ∞ 2 and A ∞ also generate a quasi-contraction C 0 - semigroup {T 1 (t)} t≥0 , {T 2 (t)} t≥0 and {U(t)} t≥0 respectively, since B ∞ 1 , B ∞ 2 and B ∞ 3 are bounded operators.

On irreducibility

Let make some hypotheses on the parameters. Suppose that ) we show that the resolvent (λ -A ∞ ) -1 is positivity improving for λ large enough hence the irreducibility of {U(t)} t≥0 . Finally we can prove that if at least one of the three assumptions is not verified then {U(t)} t≥0 is not irreducible.

∀ε ∈ (0, ∞), ε 0 m ε β(s, y)dyds > 0, ( 3 

Asynchronous exponential growth

Define the weakly compact operator

B ∞ 3 by B ∞ 3 = B ∞ 3 2 and let B ∞ = A ∞ + B ∞ 1 + B ∞ 2 + B ∞ 3 . We can prove Theorem 3.2.3 and Theorem 3.2.4 with B ∞ 3 instead of B ∞ 3 , which implies that B ∞ generates a positive C 0 -semigroup {T 3 (t)} t≥0 and (λI -B ∞ ) -1
is positivity improving for λ sufficiently large.

Theorem 3.2.5. We assume that (3.16)-(3.17)-(3.18) are verified and

lim λ→s(B ∞ ) r σ (B ∞ 3 (λ -B ∞ ) -1 ) > 1 (3.19)
then the semigroup {U(t)} t≥0 generated by A ∞ has asynchronous exponential growth.

(using Equation (3.22)) then 

G |L 1 (I) : L 1 (I) → L 1 (I) and G ≥ G |L 1 (I) so r σ (G) ≥ r σ (G |L 1 (I) ). Since (λ -A ∞ ) -1 : X ∞ → X ∞ is
r σ G |L 1 (I) > 0.
This shows (3.21) and ends the proof.

On the spectral bound

In this section we compute the spectral bound of some operators.

Remark 3.2.6. In all the operators considered in the following, the idea to compute their spectral bound is to let λ vary and to see when one can or cannot compute their resolvent. When there is no integral part (the operator B ∞ 3 is supposed be zero), then we have to solve differential equations of order one, with homogeneous Dirichlet condition in 0. A simple application of the Cauchy-Lipschitz theorem implies that there exists a unique solution, that is locally integrable, so that it is bounded on every compact. The resolvent can then be computed if and only if the solution is globally integrable.

Simple operators

Let A ∞ 1 , A ∞ 2
and A ∞ µ be the positive operators defined by

A ∞ i u = -(γ i u) , i ∈ {1, 2}, A ∞ µ u = -(γ 1 u) -µu with u ∈ D(A ∞ 1 ) = D(A ∞ 2 ) = D(A ∞ µ ) = {u ∈ W 1,1 (0, ∞) : u(0) = 0}, whence A ∞ = A ∞ 1 A ∞ 2 . Proposition 3.2.7. The spectral bound of A ∞ is given by s(A ∞ ) = 0. Proof. Let λ > 0, i ∈ {1, 2}, h ∈ L 1 (0, ∞) and u = (λ -A ∞ i ) -1 h. Necessarily we have u(s) = s 0 h(y) γ i (y) exp - s y λ + γ i (u) γ i (u) du dy.
So we get

∞ 0 |u(s)|ds ≤ ∞ 0 s 0 |h(y)| γ i (y) exp - s y λ + γ i (u) γ i (u) du dyds ≤ ∞ 0 |h(y)| γ i (y) ∞ y exp - s y λ + γ i (u) γ i (u) du dsdy ≤ 1 γ 0 ∞ 0 |h(y)| ∞ y exp - λ(s -y) γ i L ∞ exp (ln(γ i (y)) -ln(γ i (s))) dsdy ≤ 1 γ 0 ∞ 0 |h(y)| exp λy γ i L ∞ ∞ y γ i (y) γ i (s) exp - λs γ i L ∞ dsdy ≤ γ i L ∞ (γ 0 ) 2 ∞ 0 |h(y)| exp λy γ i L ∞ exp - λy γ i L ∞ γ i L ∞ λ dy ≤ ( γ i L ∞ ) 2 λ(γ 0 ) 2 h L 1 < ∞.
Consequently u ∈ L 1 (0, ∞) and since we have s(A ∞ i ) = 0 for every i ∈ {1, 2}. Since we have

λu + (γ i u) = h then we easily see that u ∈ L 1 (0, ∞). Finally u ∈ D(A ∞ i ) and satisfies (λ -A ∞ i )u = h so we get s(A ∞ i ) ≤ 0. Now, let λ = 0, h ∈ L 1 + -{0} and u = (λ -A ∞ i ) -1 h. Necessarily we have ∞ 0 |u(s)|ds = ∞ 0 s 0 h(y) γ i (y) exp - s y γ i (u) γ i (u) du dyds = ∞ 0 h(y) γ i (y) ∞ y exp - s y γ i (u) γ i (u) du dsdy ≥ 1 γ i L ∞ ∞ 0 h(y) ∞ y exp ln(γ i (y)) ln(γ i (s)) dsdy ≥ 1 γ i L ∞ ∞ 0 h(y) ∞ y γ 0 γ i L ∞ dsdy = ∞. Thus u is not in L 1 (0, ∞) ⊂ D(A ∞ i ) and (λ -A ∞ i ) is not invertible so 0 ∈ σ(A ∞ i ) and
A ∞ = A ∞ 1 A ∞ 2 then s(A ∞ ) = max{s(A ∞ 1 ), s(A ∞ 2 )} = 0.
Notation. Let f be a function, in all the following we will denote by

f + = lim sup x→∞ f (x), f -= lim inf x→∞ f (x), f c+ = lim sup x→∞ 1 x x 0 f (s)ds, f c-= lim inf x→∞ 1 x x 0 f (s)ds
respectively the limit sup and inf, then limit sup and inf of Césaro of f .

Proposition 3.2.8. The spectral bound of

A ∞ µ is bounded from below s(A ∞ µ ) ≥ - (µ/γ 1 ) c+ (1/γ 1 ) c-:= -k.
We can note that

(1/γ 1 ) c-≥ 1/ γ 1 L ∞ > 0. Proof. Let ε > 0, λ = -k -ε, h ∈ L 1 + (0, ∞) and u := (λ -A ∞ µ ) -1 h. Then for every s ≥ 0 we have u(s) = s 0 h(y) γ 1 (y) exp - s y λ + µ(z) + γ 1 (z) γ 1 (z) dz dy so ∞ 0 |u(s)|ds = ∞ 0 h(y) γ 1 (y) ∞ y exp - s y -(k + ε) + µ(z) + γ 1 (z) γ 1 (z)
dz dsdy.

Hence we get

s y -(k + ε) + µ(z) + γ 1 (z) γ 1 (z) dz = s 0 µ(z) -(k + ε) γ 1 (z) dz + y 0 k + ε -µ(z) γ 1 (z) dz + ln γ 1 (s) γ 1 (y) ≤ s 0 µ(z) -(k + ε) γ 1 (z) dz + C 1 y + C 2 ,
where

C 1 = (k + ε) γ 0 , C 2 = ln γ 1 L ∞ γ 0 .
Consequently we get

∞ 0 |u(s)|ds ≥ ∞ 0 h(y) γ 1 (y) ∞ y e -s 0 [(µ(z)-(k+ε)]/γ 1 (z))dz e -C 1 y-C 2 dsdy.
Since h = 0 there exists y > 0 such that

y 0 h(z)dz > 0.
Moreover for every η > 0, there exists s > y such that for every s ≥ s we have

1 s s 0 µ(z) γ 1 (z) dz < (µ/γ 1 ) c+ + ε(1/γ 1 ) c- 2 and 1 s s 0 1 γ 1 (z) dz ≥ (1/γ 1 ) c--η
Consequently we obtain

∞ 0 |u(s)|ds ≥ y 0 h(y) γ 1 L ∞ ∞ s e -(µ/γ 1 ) c+ -ε(1/γ 1 ) c-/2 e (k+ε)[(1/γ 1 ) c--η] e -C 1 y-C 2 dsdy ≥ e -C 1 y-C 2 γ 1 L ∞ y 0 h(y)dy ∞ s e ε(1/γ 1 ) c-/2 e -η(k+ε) = ∞ by choosing η > 0 small enough. Thus u / ∈ L 1 (0, ∞) so λ ∈ σ(A ∞ µ ) for every ε > 0 and s(A ∞ µ ) ≥ -k.
Proposition 3.2.9. We have

-µ -≥ s(A ∞ µ ) ≥ -µ + .
Thus the spectral bound is exactly the limit of µ if the latter exists.

Proof. Let ε > 0, λ = -µ -+ ε, h ∈ L 1 (0, ∞) and u := (λ -A ∞ µ ) -1 h. Necessarily we get u(s) = s 0 h(y) γ 1 (y) exp - s y λ + γ 1 (u) + µ(u) γ 1 (u) dy then ∞ 0 |u(s)|ds ≤ γ 1 L ∞ γ 0 ∞ 0 |h(y)| γ 0 ∞ y exp - s y -µ -+ ε + µ(u) γ 1 (u) dsdy.
We know that there exists η > 0 such that for every y ≥ η we have µ(y

) ≥ µ --ε/2. First we get ∞ η |h(y)| γ 0 ∞ y exp - s y -µ -+ ε + µ(u) γ 1 (u) dsdy ≤ ∞ η |h(y)| γ 0 ∞ y exp - s y ε/2 γ 1 L ∞ dsdy ≤ ∞ η |h(y)| γ 0 ∞ y exp - ε(s -y) 2 γ 1 L ∞ dsdy ≤ 2γ 0 γ 1 L ∞ ε ∞ η |h(y)|dy < ∞.
Moreover, for every y ∈ [0, η] we have

∞ y exp - s y -µ -+ ε + µ(u) γ 1 (u) ds ≤ exp y 0 | -µ -+ ε + µ(u)| γ 1 (u) du ∞ y exp - s 0 -µ -+ ε + µ(u) γ 1 (u) du ds ≤ C 1 ∞ η C 2 exp - s η ε/2 γ 1 (u) du ds + C 3 ≤ C 1 ∞ η C 2 exp - s η ε/2 γ 1 (u) du ds + C 3 ≤ C 1 C 2 exp η γ 0 ∞ η exp ηε 2γ 0 exp - εs 2 ds + C 3 ≤ C 1 C 2 exp η γ 0 exp ηε 2γ 0 2 ε + C 3 < ∞
where

C 1 = exp η(|ε -µ -| + µ L ∞ ) γ 0 C 2 = exp - η 0 -µ -+ ε + µ(u) γ 1 (u) du < ∞ and C 3 = exp η(|ε -µ -| + µ L ∞ ) γ 0 η 0 exp - s 0 -µ -+ ε + µ(u) γ 1 (u) du ds < ∞.
Consequently we have

∞ 0 |u(s)|ds < ∞ so u ∈ L 1 (0, ∞) and λ ∈ ρ(A ∞ µ ) for every ε > 0 whence s(A ∞ µ ) ≤ -µ -. Now let ε > 0, λ = -µ + -ε, h ∈ L 1 + (0, ∞) and u := (λ -A ∞ µ ) -1 h. We know that u(s) = s 0 h(y) γ 1 (y) exp - s y λ + γ 1 (u) + µ(u) γ 1 (u) dy.
As in the proof of Proposition 3.2.8, there exists y > 0 and s > y such that y 0 h(z)dz > 0 and for every s ≥ s, µ(s) ≤ -µ + + ε/2. Consequently we get

∞ 0 |u(s)|ds ≥ y 0 h(y) γ 1 (y) ∞ s e -s s [(µ(z)-(µ + +ε)]/γ 1 (z))dz e -C 4 y C 5 dsdy, ≥ e -εs/(2 γ 1 L ∞ ) e -C 4 y C 5 y 0 h(y) γ 1 L ∞ ∞ s e εs/(2 γ 1 L ∞ ) dsdy = ∞
Now let λ = -µ + -ε, with ε > 0. We know that there exists η > 0 such that for every x ≥ η we have µ(x) ≤ µ + + ε/2 so that λ + µ(x) ≤ -ε/2 < 0. Suppose that (u 1 , u 2 ) ∈ W 1,1 (0, ∞) × W 1,1 (0, ∞) then an integration of (3.25) between η and ∞ implies that

0 ≥ -γ 1 (η)u 1 (η) -γ 2 (η)u 2 (η) + ∞ η (λ + µ(s))(u 1 (s) + u 2 (s))ds ≥ ∞ η h(u)du.
Taking h ∈ L 1 (0, ∞) such that ∞ η h(s)ds > 0 would lead to a contradiction. Thus for every ε > 0, we have λ ∈ σ(B ∞ ) and

s(B ∞ ) ≥ -µ + .
Finally, we suppose that µ -> 0 so that there exists ε > 0 and η > 0 such that for every x ≥ η, we have µ(x) ≥ ε/2 > 0. Let λ = 0, so an integration of (3.25) between 0 and ∞ then some lower bounds lead to

∞ 0 µ(s)u 1 (s)ds ≤ h L 1 < ∞. so ∞ η u 1 (s)ds < ∞ and obviously u 1 ∈ L 1 (0, ∞). The second equation of (3.24) implies that (λ -Ã∞ 2 )u 2 = h 2 + c 1 u 1 ∈ L 1 (0, ∞). Since s( Ã∞ 2 ) < 0 and λ = 0 ∈ ρ( Ã∞ 2 ) then u 2 ∈ D( Ã∞ 2 
). Moreover we can prove that u 1 ∈ D( Ã∞ 1 ) whence 0 ∈ ρ(B ∞ ).

Remark 3.2.11. The latter theorem gives a framing of the spectral bound of B ∞ . The condition s( Ã∞ 2 ) < 0 is satisfied for example as soon as c - 2 > 0. In a particular case, we can be more precise at stated in the following result. Theorem 3.2.12. Suppose that the limits

lim x→∞ µ(x) = l µ > 0, lim x→∞ c 1 (x) = l 1 > 0 exist and are finite then suppose that c 2 ∈ R * + .
Define the second order polynomial function

P : λ → λ 2 + λ(l 1 + c 2 + l µ ) + l µ c 2 whose discriminant is ∆ = l 2 1 + 2l 1 c 2 + 2l µ l 1 + (c 2 -l µ )
2 > 0 and let λ * be the largest root of P :

λ * = -(l 1 + c 2 + l µ ) + (l 1 + c 2 + l µ ) 2 -4l µ c 2 2 < 0 then s(B ∞ ) = λ * .
Proof. We know by Theorem 3.2.10 that s(B ∞ ) < 0. So let ε > 0 and

λ = λ * + ε such that λ < 0 then let (h 1 , h 2 ) ∈ L 1 (0, ∞) × L 1 (0, ∞), (u 1 , u 2 ) := (λ -B ∞ ) -1 (h 1 , h 2 )
. Thus we get (3.24) to solve. We multiply the first equation by (λ + c 2 ) and the second one by c 2 then we do the sum of both equations to obtain

(λ + c 2 )(γ 1 u 1 ) + c 2 (γ 2 u 2 ) + [λ 2 + λ(c 1 + c 2 + µ) + µc 2 ]u 1 = (λ + c 2 )h 1 + c 2 h 2 =: h, (3.26)
where h ∈ L 1 (0, ∞). We see that P (-c 2 ) = -l 1 c 2 < 0 and P (-l µ ) = -l 1 l µ < 0 so λ * > -c 2 and λ * > -l µ . By assumption made on c 1 and µ we know that for every η > 0, there exists δ > 0 such that for every s ≥ δ we have

|µ(s) -l µ | ≤ η, |c 1 (s) -l 1 | ≤ η.
Moreover for every s ≥ δ, we get

λ 2 + λ(c 1 (s) + c 2 (s) + µ(s)) + µ(s)c 2 (s) ≥ (λ * + ε) 2 + (λ * + ε)(l 1 + c 2 + l µ + 2η) + (l µ -η)(c 2 -η) ≥ ε 2 + 2ελ * + 2ηλ * + ε(l 1 + c 2 + l µ + 2η) -η(l µ + c 2 ) + η 2 ≥ ε[2λ * + (l 1 + c 2 + l µ )] + ε 2 + 2λ * η + 2εη + η 2 -η(l µ + c 2 ) ≥ ε 2 + 2λ * η + 2εη + η 2 -η(l µ + c 2 ) := C(η) since 2λ * ≥ -(l 1 + c 2 + l µ ).
We see that C(0) = ε 2 > 0 and since C is a continuous function then we can find η * > 0 small enough such that C(η * ) > 0. Thus there exists δ > 0 such that for every s ≥ δ, we get

λ 2 + λ(c 1 (s) + c 2 (s) + µ(s)) + µ(s)c 2 (s) ≥ C(η * ) > 0
and an integration of (3.26) between δ and ∞ leads to

(λ + c 2 ) ∞ δ (γ 1 u 1 ) (s) + c 2 ∞ δ (γ 2 u 2 ) (s) + C(η * ) ∞ δ u 1 (s)ds ≤ h L 1 (0,∞) < ∞ so that C(η * ) ∞ δ u 1 (s)ds ≤ h L 1 (0,∞) + (λ + c 2 )γ 1 (δ)u 1 (δ) + c 2 γ 2 (δ)u 2 (δ) < ∞.
Finally u 1 ∈ L 1 (0, ∞) so, using the second equation of (3.24) we get u 2 ∈ L 1 (0, ∞) and then λ ∈ ρ(B ∞ ) for every ε > 0 so that

s(B ∞ ) ≤ λ * .
Now let that λ = λ * -ε < 0, with ε > 0 small enough such that λ > -c 2 (which is possible since λ * > -c 2 ), then suppose that λ ∈ ρ(B ∞ ). Once again we get (3.26) to solve and by assumption on the parameters we use the following upper bound

λ 2 + λ(c 1 (s) + c 2 (s) + µ(s)) + µ(s)c 2 (s) ≤ (λ * -ε) 2 + (λ * -ε)(l 1 + c 2 + l µ -2η) + (l µ + η)(c 2 + η) ≤ ε 2 -2ελ * -2ηλ * -ε(l 1 + c 2 + l µ -2η) + η(l µ + c 2 ) + η 2 ≤ ε 2 -ε[2λ * + (l 1 + c 2 + l µ )] -2λ * η + 2εη + η 2 + η(l µ + c 2 ) ≤ ε 2 -ε(l 1 -2η) -2λ * η + η 2 + η(l µ + c 2 ) := C(η) since 2λ * + (l 1 + c 2 + l µ ) ≥ √ ∆ ≥ l 1 .
Suppose that ε ≤ l 1 /2, then C(0) = ε(ε -l 1 ) < 0 so by continuity of C, we can find η * small enough such that C(η * ) < 0. Thus there exists δ > 0 such that for every s ≥ δ, we get

λ 2 + λ(c 1 (s) + c 2 (s) + µ(s)) + µ(s)c 2 (s) ≤ C(η * ) < 0
and an integration of (3.26) between δ and ∞ leads to

(λ + c 2 ) ∞ δ (γ 1 u 1 ) (s) + c 2 ∞ δ (γ 2 u 2 ) (s) + C(η * ) ∞ δ u 1 (s)ds ≥ T δ h(s)ds so that 0 ≥ ∞ δ h(y)dy.
We choose h such that ∞ δ h(y)dy > 0 to get a contradiction. Thus u 1 or u 2 is not in L 1 (0, ∞) which proves that λ ∈ σ(B ∞ ) for every ε > 0 small enough, whence

s(B ∞ ) ≥ λ *
and the equality follows. which is natural since B ∞ is not a coupled operator in this case. The latter theorem provides an exact computation of the spectral bound of some coupled operator. Suppose for one moment that c 1 , c 2 , µ are nonnegative constants and consider the matrix

M = -µ -c 1 c 2 c 1 -c 2 .
We can readily see that s(M ) = λ * (l 1 = c 1 and l µ = µ). Considering this spectral bound as a function of c 1 , we can apply [72, Theorem 1. (c)] and verify that it is a strictly increasing function from max{-µ, -c 2 } to 0. Similarly if λ * is seen as a function of c 2 then by applying [72, Theorem 1. (a)], we verify that the function is strictly decreasing from 0 to -µ.

On the spectral gap

One can easily see that a spectral gap can only appear if K ∞ is a non identically zero operator, since there would be in that case no compact part. However, as we shall see in this section, it is not sufficient. We give indeed some examples for which there is, or there is not, a spectral gap. that is exactly s(A ∞ ) ≥ max{s( Ã∞ 1 + K ∞ ), s( Ã∞ 2 )} ≥ 0. We then proceed as in the proof of Theorem 3.2.14, to get

d dt ∞ 0 (u 1 (t, s) + u 2 (t, s))ds = ∞ 0 ∞ 0 β(s, y)ds -µ(y) u 1 (t, y)dy ≤ 0.
We thus get a under-conservative system so that

s(A ∞ ) ≤ 0. Hence s(A ∞ ) = 0 = s(B ∞ ).

Other examples

Define the operator

A ∞ K u = A ∞ µ u + ∞ 0 β(•, y)u(y)dy = -(γ 1 u) -µu + ∞ 0 β(•, y)u(y)dy.
In all the following, let Theorem 3.2.16. Suppose that K ∞ is large in the following sense : there exists ε > 0 such that

β 1 (s) = inf
β 1 ∈ L 1 (0, ∞) verifies ∞ 0 β 1 (s)ds ≥ µ L ∞ + c 1 L ∞ + ε. Then s(B ∞ ) ≤ 0 and s(A ∞ ) > 0.
Proof. The fact that s(B ∞ ) ≤ 0 follows from Theorem 3.2.10. Since B ∞ 2 is a positive operator then

s(A ∞ ) ≥ max{s( Ã∞ 1 + K ∞ ), s( Ã∞ 2 )}.
Let denote by ̰ K the operator defined by

Ã∞ K u = Ã∞ 1 u + K ∞ u = -(γ 1 u) -(µ + c 1 )u + ∞ 0 β(•, y)u(y)dy.
Then it remains to prove that s( Ã∞ K ) > 0. Let λ = ε and suppose that λ ∈ ρ( Ã∞ K ). Let h ∈ L 1 + (0, ∞) and denote by u := (λ-Ã∞ K ) -1 h. Necessarily we get

(γ 1 u) + (λ + µ + c 1 )u - ∞ 0 β(•, y)u(y)dy = h
and an integration leads to

∞ 0 (λ + µ(s) + c 1 (s))u(s)ds = ∞ 0 ∞ 0 β(s, y)u(y)dyds + ∞ 0 h(y)dy.

Thus we get

∞ 0 (ε + µ(s) + c 1 (s))u(s)ds ≥ ∞ 0 β 1 (s)ds ∞ 0 u(y)dy + ∞ 0 h(y)dy
and by assumption we get

0 ≥ ε + µ L ∞ + c 1 L ∞ - ∞ 0 β 1 (s)ds ∞ 0 u(s)ds ≥ ∞ 0 h(y)dy > 0 which is absurd. Consequently λ = ε ∈ σ( Ã∞ K ) and we have s( Ã∞ K ) ≥ ε > 0 whence s(A ∞ ) > 0.
In the constant case, we can even get a spectral gap with a weaker assumption on K ∞ . Theorem 3.2.17. Let c 1 , c 2 , µ be positive constants and suppose that

∞ 0 β 1 (s)ds > 0. Then s(A ∞ ) > s(B ∞ ).
Proof. The computation of s(B ∞ ) follows from Theorem 3.2.12 :

s(B ∞ ) := λ * = -(c 1 + c 2 + µ) + (c 1 + c 2 + µ) 2 -4µc 2 2 . Let ε > 0, λ = λ * + ε then suppose that λ ∈ ρ(A ∞ ). Let (h 1 , h 2 ) ∈ L 1 (0, ∞) × L 1 (0, ∞) and (u 1 , u 2 ) := (λ -A ∞ ) -1 (h 1 , h 2 ). Necessarily we have (γ 1 u 1 ) + (λ + c 1 + µ)u 1 -c 2 u 2 -∞ 0 β(•, y)u 1 (y)dy = h 1 , (γ 2 u 2 ) + (λ + c 2 )u 2 -c 1 u 1 = h 2 .
(3.27)

and as in the proof of Theorem 3.2.12, we get

(λ + c 2 )(γ 1 u 1 ) + c 2 (γ 2 u 2 ) + [λ 2 + λ(c 1 + c 2 + µ) + µc 2 ]u 1 - ∞ 0 β(•, y)u 1 (y)dy = h, where h = (λ + c 2 )h 1 + c 2 h 2 .
An integration of the latter equation between 0 and ∞ leads to s,y)u 1 (y)dyds (3.28) and replacing λ by its expression, we obtain

[λ 2 + λ(c 1 + c 2 + µ) + µc 2 ] ∞ 0 u 1 (y)dy = ∞ 0 h(y)dy + (λ + c 2 ) ∞ 0 ∞ 0 β(
[ε 2 + ε(2λ * + c 1 + c 2 + µ)] ∞ 0 u 1 (y)dy = ∞ 0 h(y)dy + (λ * + ε + c 2 ) ∞ 0 ∞ 0 β(s, y)u 1 (y)dyds so that [ε 2 + ε(2λ * + c 1 + c 2 + µ)] ∞ 0 u 1 (y)dy ≥ (λ * + ε + c 2 ) ∞ 0 β 1 (s)ds ∞ 0 u 1 (y)dy Define the function f : ε → [ε 2 + ε(2λ * + c 1 + c 2 + µ)] -(λ * + ε + c 2 ) ∞ 0 β 1 (s)ds. Since f (0) = -(λ * + c 2 ) ∞ 0 β 1 (s)ds < 0 and lim ε→∞ f (ε) = ∞ then by continuity there exists ε > 0 such that f (ε) = 0. Considering ε ∈ (0, ε] in (3.28) would lead to 0 ≥ f (ε) ∞ 0 u 1 (y)dy = ∞ 0 h(y)dy > 0
hence the contradiction and the fact that

s(A ∞ ) ≥ λ * + ε > λ * = s(B ∞ ).
Remark 3.2.18. In the end we showed some concrete examples where there is a spectral gap. Consequently the semigroup exhibits the asynchronous exponential growth behavior when the irreducibility conditions (3.16)-(3.17)-(3.18) are verified. Finally a case where there is no spectral gap (and consequently no asynchronous behavior of the semigroup) is shown. As in the finite case, the behavior of the semigroup when there is spectral gap but no irreducibility is as open problem.

Chapitre 4 Time asymptotics of structured populations with diffusion and dynamic boundary conditions 4.1 Models with bounded sizes

In this Section we consider the equation

∂ t (t, s) + ∂ s (γ(s)u(t, s)) = ∂ s (d(s)∂ s u(t, s)) -µ(s)u(t, s) + m 0 β(s, y)u(t, y)dy (4.1)
for every s ∈ [0, m] and t ≥ 0, with generalized Feller boundary conditions

[∂ s (d(s)∂ s u(t, s))] s=0 -b 0 ∂ s u(t, 0) + c 0 u(t, 0) = 0, (4.2) [∂ s (d(s)∂ s u(t, s))] s=m + b m ∂ s u(t, m) + c m u(t, m) = 0 (4.3) and b 0 -γ(0) > 0, b m + γ(m) > 0. (4.4)

Framework and hypotheses

In order to analyze the problem described by (4.1)-(4.2)-(4.3), following [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF] we rewrite the boundary conditions (4.2)-(4.3). We substitute the diffusion term in (4.2)-(4.3), by the remainder of (4.1) evaluated in 0 and m respectively. We thus get the following dynamic equations

∂ t u(t, 0) = -u(t, 0)ρ 0 + ∂ s u(t, 0)(b 0 -γ(0)) + m 0 β 0 (y)u(t, y)dy, (4.5) ∂ t u(t, m) = -u(t, m)ρ m -∂ s u(t, m)(b m + γ(m)) + m 0 β m (y)u(t, y)dy, ( 4.6) 
where

ρ 0 = γ (0) + µ(0) + c 0 , ρ m = γ (m) + µ(m) + c m and β 0 = β(0, .), β m = β(m, .
). Following [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF], the Banach space

X = (L 1 (0, m) × R 2 , . X ) is endowed with the norm (x, x 0 , x m ) X = x L 1 (0,m) + c 1 |x 0 | + c 2 |x m |,
where

c 1 = d(0) b 0 -γ(0) , c 2 = d(m) b m + γ(m) .
We denote by X + the nonnegative cone of X . We introduce some hypotheses on the different parameters :

1. γ, d ∈ W 1,∞ (0, m) and µ, β 0 , β m ∈ L ∞ (0, m),
2. the functions µ, γ and s → β(s, y) are continuous at s = 0 and s = m for every y ∈ [0, m],

3. the operator and is satisfied as soon as there exists β ∈ L 1 (0, m) such that β(s, y) ≤ β(s) a.e. (s, y) ∈ [0, m] 2 . This is the case for example if β is continuous on [0, m] 2 .

L 1 (0, m) u → m 0 β(., y)u(y)dy ∈ L 1 (0, m) is weakly compact, 4. b 0 , b m > 0, c 0 , c m ≥ 0, β, µ ≥ 0 and d(s) ≥ d 0 > 0 for all s ∈ [0, m] .
Using (4.1)-(4.5)-(4.6), we define the operator A by :

A    u u 0 u m    = A    u u 0 u m    + K    u u 0 u m    =    (du ) -(γu) -µu (b 0 -γ(0))u (0) -ρ 0 u 0 -(b m + γ(m))u (m) -ρ m u m    +    m 0 β(., y)u(y)dy m 0 β 0 (y)u(y)dy m 0 β m (y)u(y)dy    ,
where the domain of A is given by

D(A) = {(u, u 0 , u m ) ∈ W 2,1 (0, m) × R 2 : u(0) = u 0 , u(m) = u m }.
We are then concerned with the following Cauchy problem

U (t) = AU (t), U (0) = (u 0 , u 0 0 , u 0 m ) ∈ X where U (t) = (u(t), u 0 (t), u m (t)) T .

Semigroup generation

We show here that A is the generator of a C 0 -semigroup. The dissipativity arguments are essentially those in [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF] but we prove directly that A is closed, densely defined and satisfies the rank condition. Theorem 4.1.2. Let Assumption (4.4) be satisfied. Then A is the infinitesimal generator of a quasi-contractive C 0 -semigroup {U (t)} t≥0 on X .

Proof. We may restrict ourselves to the operator A ; straightforward (bounded) perturbation arguments will end the proof.

Let us show that

D(A) = X . Let u, u 0 , u m T ∈ X . Let (u j ) j be C ∞ functions with compact supports such that u j → u in L 1 (0, m) and supp u j ⊂ j -1 , m -j -1
We look for a parabola

f j 0 (s) = as 2 + bs + c (s ∈ 0, j -1 )
such that

f j 0 (0) = u 0 , f j 0 (j -1 ) = 0, df j 0 ds ( j -1 ) = 0.
This amounts to c = u 0 and

aj -2 + b j -1 + u 0 = 0 2aj -1 + b = 0.
We find f j 0 (s) = j 2 u 0 s 2 -2ju 0 s + u 0 = u 0 (js -1) 2 . Similarly, we look for a parabola

f j m (s) = as 2 + bs + c (s ∈ m -j -1 , m ) such that f j m (m) = u m , f j m (m -j -1 ) = 0, df j m ds (m -j -1 ) = 0.
We find

f j m (s) = u m j 2 s 2 -2u m j 2 s(m -j -1 ) + u m j 2 (m -j -1 ) 2 = u m j 2 (s -m + j -1 ) 2 . Define v j (s) =      f j 0 (s) if s ∈ [0, j -1 ] u j (s) if s ∈ [j -1 , m -j -1 ] f j m (s) if s ∈ [m -j -1 , m] . Then v j ∈ W 2,1 (0, m), v j (0) = u 0 and v j (m) = u m , i.e. v j , v j (0), v j (m) T ∈ D(A). Let us show that v j → u in L 1 (0, m). It suffices to show that j -1 0 f j 0 (s) ds + m m-j -1 f j m (s) ds → 0 (j → ∞).
We have

j -1 0 f j 0 (s) ds = |u 0 | j -1 0 (js -1) 2 ds = j 2 |u 0 | j -1 0 (s -j -1 ) 2 ds = |u 0 | 3j → 0 (j → ∞).
Similarly

m m-j -1 f j m (s) ds = |u m | 3j → 0 (j → ∞). Finally v j , v j (0), v j (m) T → u, u 0 , u m T in X and D(A) = X .

Let us show that for ω large enough

A -ω is a dissipative operator. Let λ > 0, U = u, u 0 , u m T ∈ D(A) and H = ((λ + ω)I -A)U . Let H = h, h 0 , h m T .
We have to prove that

H X ≥ λ U X .
By definition of H, we have

(λ + µ(s))u(s) + (γu) (s) -(du ) (s) = h(s), s ∈ (0, m), (4.7) (λ + ρ 0 )u 0 -(b 0 -γ(0))u (0) = h 0 , (4.8) (λ + ρ m )u m + (b m + γ(m))u (m) = h m (4.9) where µ(s) := ω + µ(s), ρ 0 := ω + ρ 0 , ρ m := ω + ρ m .
We multiply (4.7) by sign(u(s)), integrate between 0 and m and then multiply (4.8) and (4.9) respectively by sign(u 0 ) and sign(u m ). We get

λ u L 1 + m 0 µ|u| - m 0 (du ) sign(u) + m 0 (γu) sign(u) = m 0 hsign(u), (λ + ρ 0 )|u 0 | -(b 0 -γ(0))u (0)sign(u(0)) = h 0 sign(u(0)), (λ + ρ m )|u m | + (b m + γ(m))u (m)sign(u(m)) = h m sign(u(m))
which is equivalent to 

λ u L 1 + m 0 µ|u| - m 0 (du ) sign(u) + m 0 (γu) sign(u) = m 0 hsign(u), (4.10) u (0)sign(u(0)) = (λ + ρ 0 )|u 0 | b 0 -γ(0) - h 0 sign(u(0)) b 0 -γ(0) , ( 4.11) 
u (m)sign(u(m)) = - (λ + ρ m )|u m | b m + γ(m) + h m sign(u(m)) b m + γ(m) . ( 4 
{u > 0} = {s ∈ (0, m) : u(s) > 0} = ∪ i∈N (a i,1 , a i,2 ), {u < 0} = {s ∈ (0, m) : u(s) < 0} = ∪ i∈N (b i,1 , b i,2 ). Since u ∈ W 1,1 (0, m) → C([0, m]) then ∀i, j ∈ N : u(a i,1 ) = 0, u(a i,2 ) = 0, u(b j,1
) = 0 and u(b j,2 ) = 0 (except possibly at 0 and m).

Thus m 0 (γu) sign(u) = {u>0} (γu) - {u<0} (γu) = i∈N [γ(a i,2 )u(a i,2 ) -γ(a i,1 )u(a i,1 )] - j∈N [γ(b j,2 )u(b j,2 ) -γ(b j,1 )u(b j,1 )] = γ(m) |u(m)| -γ(0) |u(0)| . (4.13) (b) Consider m 0 (du ) (s)sign(u(s))ds. Since u ∈ W 1,1 (0, m) → C([0, m]) we have ∀i, j ∈ N : u (a i,2 ) ≤ 0, u (a i,1 ) ≥ 0, u (b j,2
) ≥ 0 and u (b j,1 ) ≤ 0 (except possibly at 0 and m). We have

m 0 (du ) sign(u) = {u>0} (du ) - {u>0} (du ) = i∈N [d(a i,2 )u (a i,2 ) -d(a i,1 )u (a i,1 )] - j∈N [d(b j,2 )u (b j,2 ) -d(b j,1 )u (b j,1 )] ≤ d(m)u (m)sign(u(m)) -d(0)u (0)sign(u(0)). Hence λ u L 1 + µ|u| + γ(m)|u(m)| -γ(0)|u(0)| ≤ d(m)u (m)sign(u(m)) -d(0)u (0)sign(u(0)) + hsign(u). Since d(0)u (0)sign(u(0)) = d(0)(λ + ρ 0 )|u 0 | b 0 -γ(0) - d(0)h 0 sign(u(0)) b 0 -γ(0) and d(m)u (m)sign(u(m)) = - d(m)(λ + ρ m )|u m | b m + γ(m) + d(m)h m sign(u(m)) b m + γ(m) then λ u L 1 + γ(m) + d(m)(λ + ρ m ) b m + γ(m) |u(m)| + -γ(0) + d(0)(λ + ρ 0 ) b 0 -γ(0) |u(0)| + µ|u| ≤ d(m)h m sign(u(m)) b m + γ(m) + d(0)h 0 sign(u(0)) b 0 -γ(0) + hsign(u) ≤ d(m) |h m | b m + γ(m) + d(0) |h 0 | b 0 -γ(0) + h L 1 or λ u L 1 + µ|u| + γ(m) c 2 + (λ + ρ m ) c 2 |u(m)| + - γ(0) c 1 + (λ + ρ 0 ) c 1 |u(0)| ≤ c 2 |h m | + c 1 |h 0 | + h L 1 . Note that if γ(m) c 2 + ρ m ≥ 0 and - γ(0) c 1 + ρ 0 ≥ 0 then λ u L 1 + µ|u| + λc 2 |u(m)| + λc 1 |u(0)| ≤ c 2 |h m | + c 1 |h 0 | + h L 1 . But γ(m) c 2 + ρ m = γ(m)(b m + γ(m)) d(m) + γ (m) + µ(m) + c m + ω and - γ(0) c 1 + ρ 0 = - γ(0)(b 0 -γ(0)) d(0) + γ (0) + µ(0) + c 0 + ω are nonnegative for ω large enough. Hence λ u L 1 + (µ + ω)|u| + λc 2 |u(m)| + λc 1 |u(0)| ≤ c 2 |h m | + c 1 |h 0 | + h L 1 and λ U X ≤ H X
for ω large enough..This ends the proof of the dissipativity of A -ω.

Let us prove that (A, D(A)

) is a closed operator.

Let (U n ) n∈N := (u n , u n 0 , u n m ) n∈N ⊂ D(A) and let U := (u, u 0 , u m ) ∈ X and G := (g, g 0 , g m ) ∈ X such that lim n→∞ U n -U X = 0 and lim n→∞ AU n -G X = 0. Note that u n (0) = u n 0 → u 0 and u n (m) = u n m → u m . Since (b 0 -γ(0))(u n ) (0) -ρ 0 u n (0) → g 0 then (u n ) (0) → h 0 := g 0 + ρ 0 u 0 b 0 -γ(0) . Similarly -(b m + γ(m))(u n ) (m) -ρ m u n (m) → g m and (u n ) (m) → h m := - g m + ρ m u m b m + γ(m) . Let f n := d(u n ) -γu n . Since (d(u n ) ) -(γu n ) -µu n → g then f n → g + µu (L 1 convergence) while f n (0) = d(0)(u n ) (0) -γ(0)u n (0) → d(0)h 0 -γ(0)u 0 so f n (x) = f n (0) + x 0 f n (s)ds → z(x) := d(0)h 0 -γ(0)u 0 + x 0 (g + µu)(s)ds (L 1 convergence). It follows that (u n ) → z + γu d (L 1 convergence) so u ∈ W 1,1 (0, m) and u n → u in W 1,1 (0, m). In particular u(0) = lim n→∞ u n (0) = lim n→∞ u n 0 = u 0 and u(m) = lim n→∞ u n (m) = lim n→∞ u n m = u m . Knowing that u n → u in W 1,1 (0, m), the fact that (d(u n ) ) -(γu n ) -µu n → g implies that (u n ) converges in L 1 (0, m) so that u ∈ W 2,1 (0, m) and u n → u in W 2,1 (0, m). Finally U ∈ D(A), G = AU.
This ends the proof of the closedness of A. -A) : D(A) → X is a surjective operator for λ > 0 large enough.

Let us prove that (λI

We consider first a particular case

H = h, h 0 , h m T ∈ L 2 (0, m) × R 2 .
We look for

U := u, u 0 , u m T ∈ D(A) such that (λI -A)U = H, i.e. (λ + µ)u -(du ) + (γu) = h in [0, m], (4.14) (λ + ρ 0 )u 0 -(b 0 -γ(0))u (0) = h 0 , (4.15) (λ + ρ m )u m + (b m + γ(m))u (m) = h m . ( 4.16) 
We multiply (4.14) by v ∈ H 1 (0, m) and integrate between 0 and m to get

λ m 0 uv + m 0 µuv - m 0 (du ) v + m 0 (γu) v = m 0 hv.
An integration by parts, with (4.15)-(4.16) leads to

λ m 0 uv + m 0 µuv + m 0 du v - m 0 γuv + K 0 u(0)v(0) + K m u(m)v(m) = m 0 hv + c 1 h 0 v(0) + c 2 h m v(m), (4.17) 
where

K 0 = c 1 (λ + ρ 0 ) -γ(0) and K m = c 2 (λ + ρ m ) + γ(m).
We define the bilinear form

a : H 1 (0, m) × H 1 (0, m) → R
by the left hand side and a linear form L : H 1 (0, m) → R by the right hand side of (4.17), to get a(u, v) = L(v).

Let us check the conditions of Lax-Milgram Theorem. The continuity of a and L are easily obtained by using the trace theory. The inequality

2ab ≤ a 2 ε 2 + (εb) 2 (∀ε > 0) implies m 0 γuu ≤ γ L ∞ u L 2 u L 2 ≤ γ L ∞ u 2 L 2 2ε 2 + ε 2 u 2 L 2 2 and consequently |a(u, u)| ≥ λ - γ L ∞ 2ε 2 u 2 L 2 + d 0 - γ L ∞ 2 2 u 2 L 2 +K 0 u(0) 2 + K m u(m) 2 .
Taking first ε > 0 small enough and then λ large enough, we finally get a coercivity estimate |a(u, u)| ≥ K u 2 H 1 where K > 0 is a constant. By Lax-Milgram Theorem, for every H ∈ L 2 (0, m) × R 2 , there exists a unique u ∈ H 1 (0, m) such that a(u, v) = L(v) for every v ∈ H 1 (0, m). Now, we need to verify that U belongs to D(A), where U is defined by U := (u, u(0), u(m)) = (u, u 0 , u m ). For this, we use (4.17 We deal now with the surjectivity of (λI -A) . Let

) with v ∈ C ∞ c ([0, m]). Then m 0 du v ≤ (|λ| + µ L ∞ ) u L 2 v L 2 + γ L ∞ m 0 uv + h L 2 v L 2 . Since u ∈ H 1 (0, m) then | m 0 uv | ≤ C v L 2 . Consequently m 0 du v ≤ [(|λ| + µ L ∞ ) u L 2 + C γ L ∞ + h L 2 ] . v L 2 ≤ K v L 2 . Thus du ∈ H 1 (0, m) and u ∈ H 2 (0, m) ⊂ W 2,1 (0, m) so U ∈ D(A).
H = (h, h 0 , h m ) ∈ L 1 (0, m) × R 2 .

There exists a sequence (H

n ) n≥0 = (h n , h 0 , h m ) ∈ L 2 (0, m) × R 2 such that lim n→∞ H n -H X = 0. We know that ∀n ≥ 0, ∃! U n ∈ D(A) : (λI -A)U n = H n . In particular ∀n, m ≥ 0, (λI -A)(U n -U m ) = H n -H m . Using the dissipativity result shown before, we get U n -U m X ≤ C H n -H m X .
It follows that (U n ) n≥0 is a Cauchy sequence in X . Let U be its limit. Since AU n = -H n + λU n then AU n converges to -H + λU. The closedness of A implies that U ∈ D(A) and (λI -A)U = H and this ends the proof of the surjectivity.

Thus A generates a C 0 -semigroup {T (t)} t≥0 by Lumer-Phillips Theorem. Finally, as a bounded perturbation of A, A generates also a quasi-contraction C 0 -semigroup {U (t)} t≥0 .

On irreducibility

To understand time asymptotics of {U (t)} t≥0 , we need to prove a key result related to positivity. Definitions and results about positive and irreducible operators are reminded in Section A.4. The main result of this subsection is :

Theorem 4.1.3. The C 0 -semigroup {U (t)} t≥0 is irreducible.
Proof. We have to show that the resolvent (λI -A) -1 is positivity improving for large λ. Using Theorem A.4.10 it is easy to see that for large λ

(λI -A) -1 = (λI -A -K) -1 = (λI -A) -1 ∞ n=0 (K(λI -A) -1 ) n = (λI -A) -1 + (λI -A) -1 ∞ n=1 (K(λI -A) -1 ) n . It follows that if (λI -A) -1 ≥ 0 then (λI -A) -1 ≥ (λI -A) -1
because K is a positive operator. Hence it suffices to prove that (λI -A) -1 is positivity improving.

Let us show first that (λI

-A) -1 ≥ 0. Let U = (λI -A) -1 H with H = (h, h 0 , h m ) ∈ X + . Since C + ([0, m]) is dense in L 1
+ (0, m), we may assume without loss of generality that h ∈ C + ([0, m]) .

Thus (λ + µ(s))u(s) + (γu) (s) -(du ) (s) = h(s), s ∈ (0, m), (λ + ρ 0 )u 0 -(b 0 -γ(0))u (0) = h 0 , (λ + ρ m )u m + (b m + γ(m))u (m) = h m . The first equation is -u + ρ 1 u + ρ 2 u = ρ 3
where

ρ 1 = -(d -γ)/d, ρ 2 (s) = (λ + µ(s) + γ (s))/d(s) > 0 ∀s for λ large enough and ρ 3 = h/d ≥ 0.
The absolute minimum of u is achieved at some s ∈ [0, m] . Let us show that u(s) ≥ 0. If not, i.e. if u(s) < 0 then s / ∈ (0, m) . Indeed, this would imply that

0 ≥ -u (s) = -ρ 2 (s)u(s) + ρ 3 (s) ≥ -ρ 2 (s)u(s) > 0 which is contradictory. Hence s = 0 or s = m. If s = 0 since (λ + ρ 0 )u(0) -(b 0 -γ(0))u (0) = h 0 then -(b 0 -γ(0))u (0) = -(λ + ρ 0 )u(0) + h 0 ≥ -(λ + ρ 0 )u(0) > 0.
It follows that u (0) < 0 and then u (s) < 0 in the neighborhood of s = 0 which contradicts the fact that the absolute minimum is achieved at 0. We argue similarly if s = m. Finally, u ≥ 0. Let us show now that (λI -A) -1 is positivity improving. We note first that for any ν > λ, the resolvent identity

(λI -A) -1 = (νI -A) -1 + (ν -λ)(λI -A) -1 (νI -A) -1 shows that (λI -A) -1 ≥ (ν -λ)(λI -A) -1 (νI -A) -1 so (λI -A) -1 H ≥ (λI -A) -1 G where G := (ν -λ)(νI -A) -1 H ∈ X +
has the peculiarity of belonging to

D(A) ⊂ W 2,1 (0, m) × R 2 ⊂ C ([0, m]) × R 2 .
Hence, without loss of generality, we may assume that

H = (h, h 0 , h m ) ∈ X + is such that h ∈ C + ([0, m]) . Let us show that u(s) > 0 a.e., u(0) > 0, u(m) > 0 once H = (h, h 0 , h m ) ∈ X + -{0} .
Let us show by contradiction that min u > 0.

The absolute minimum of u is achieved at some s ∈ [0, m] . Suppose u(s) = 0. Then

v := -u satisfies the equation v -ρ 1 v + ρ 2 v = h/d ≥ 0 where ρ 2 ≤ 0. Note that max v = -min u ≥ 0.
If u reaches its minimum in (0, m) then v reaches its maximum in (0, m) . By the maximum principle (see Theorem A.7.1), v must be constant and then u is equal to the constant

u(s) = 0. It follows that 0 = h 0 , 0 = h m , 0 = h which is contradictory. Hence u(s) > 0 ∀s ∈ (0, m)
and u(0) = 0 or u(m) = 0. Thus v reaches its maximum (equal to zero) at s = 0 or s = m. If s = 0 then v (0) < 0 by Hopf's maximum principle (see Theorem A.7.2) ; since

(b 0 -γ(0))v (0) = h 0 ≥ 0 we get a contradiction. If s = m then v (m) > 0 by Hopf's maximum principle ; since -(b m + γ(m))u (m) = h m
we get also a contradiction. Finally min u > 0.

On the spectral bound of the generator

We have :

Theorem 4.1.4. The spectral bound of A is finite, i.e. s(A) > -∞.
Proof. According to Theorem 4.1.3, for λ > s(A), (λ -A) -1 is positivity improving and therefore irreducible. Since (λ -A) -1 is also compact then

r σ ((λ -A) -1 ) > 0,
(see Theorem A.4.7). On the other hand 

r σ ((λ -A) -1 ) = 1 λ -s(A) (see Theorem A.4.6) whence s(A) > -∞.

On asynchronous exponential growth

Some definitions and results about asynchronous exponential growth are reminded in Section 1.4.4. Remark 4.1.6. Note that A has a compact resolvent (and consequently the spectrum of A is composed (at most) of isolated eigenvalues with finite algebraic multiplicity). This follows from the fact that the canonical injection i : (D(A), . D(A) ) → (X , . X ) is compact (by Rellich Kondrachov's Theorem) and D(A) = D(A) since K ∈ L(X ) (see e.g. Theorem A.3.3).

We are ready to give the main result of this subsection. Proof. The semigroups {U (t)} t≥0 and {T (t)} t≥0 are related by the Duhamel equation

U (t) = T (t) + t 0 T (t -s)KU (s)ds.
Since K is a weakly compact operator then so is T (t -s)KU (s) for all s ≥ 0. It follows that the strong integral t 0 T (t -s)KU (s)ds is a weakly compact operator (see [START_REF] Mokhtar-Kharroubi | On the convex compactness property for the strong operator topology and related topics[END_REF] Theorem 1 or [START_REF] Slüchtermann | On weakly compact operators[END_REF] Theorem 2.2). Hence U (t)-T (t) is a weakly compact operator and consequently (see [START_REF] Mokhtar-Kharroubi | Mathematical Topics in Neutron Transport Theory : New Aspects[END_REF] Theorem 2.10, p. 24) {U (t)} t≥0 and {T (t)} t≥0 have the same essential type ω ess (A) = ω ess (A), in particular ω ess (A) ≤ ω 0 (A).

Let λ > s(A) ≥ s(A). The positivity improving compact operators

O 1 := (λ -A) -1 and O 2 := (λ -A) -1 are such that O 2 ≥ O 1 ≥ 0 and O 2 = O 1 since K = 0. It follows from Theorem A.4.9 that r σ (O 1 ) < r σ (O 2 ).
In addition, according to Theorem A.4.6,

r σ (λ -A) -1 = 1 λ -s(A) and r σ (λ -A) -1 = 1 λ -s(A) so s(A) < s(A).
Note that s(A) = ω 0 (A) and s(A) = ω 0 (A) since {U (t)} t≥0 and {T (t)} t≥0 are positive semigroups on L 1 spaces (see e.g. Theorem A.4.3) so ω 0 (A) < ω 0 (A) and

ω ess (A) < ω 0 (A).
By combining this last result and the irreducibility of {U (t)} t≥0 , Theorem 1.4.13 ends the proof.

Remark 4.1.8. Note that in Theorem 4.1.7, the requirement K = 0 amounts to the fact that the function β is not identically zero.

Models with unbounded sizes

In this section, we generalize the theory to the case m = ∞ allowing arbitrary sizes, i.e. we study the model

∂ t u(t, s) + ∂ s (γ(s)u(t, s)) = ∂ s (d(s)∂ s u(t, s)) -µ(s)u(t, s) + ∞ 0 β(s, y)u(t, y)dy, (4.18) [∂ s (d(s)∂ s u(t, s))] s=0 -b 0 ∂ s u(t, 0) + c 0 u(t, 0) = 0. (4.19)

Framework and hypotheses

The boundary condition (4.19) can be rewritten into the following dynamic form

∂ t u(t, 0) = -u(t, 0)ρ 0 + ∂ s u(t, 0)(b 0 -γ(0)) + ∞ 0 β 0 (y)u(t, y)dy. (4.20) Let X ∞ = (L 1 (0, ∞) × R, . X∞ ) with norm (x, x 0 ) X∞ = x L 1 (0,∞) + c 1 |x 0 |.
We assume that b 0 -γ(0) > 0 (4.21)

and denote by X ∞,+ the nonnegative cone of X ∞ . We now introduce some hypotheses on the different parameters :

1. γ, d ∈ W 1,∞ (0, ∞) and µ, β 0 ∈ L ∞ (0, ∞),
2. the functions µ, γ and s → β(s, y) are continuous at s = 0, for every y ≥ 0, 3. the operator

L 1 (0, ∞) u → ∞ 0 β(., y)u(y)dy ∈ L 1 (0, ∞) is weakly compact, 4. b 0 > 0, c 0 ≥ 0, β, µ ≥ 0 and d(s) ≥ d 0 > 0 a.e. s ≥ 0.
Remark 4.2.1. According to the general criterion of weak compactness, the third hypothesis amounts to

sup y∈[0,∞) ∞ 0 β(s, y)ds < ∞, lim c→∞ sup y∈[0,∞) ∞ c β(s, y)ds = 0, lim |E|→0 sup y∈[0,∞) E β(s, y)ds = 0. Define W 2,1 loc (R + ) := u ∈ L 1 loc (R + ); u ∈ W 2,1 (0, c) ∀c > 0 .
By means of (4.18)-(4.20), we define the operator A ∞ by

A ∞ u u 0 = A ∞ u u 0 + K ∞ u u 0 = (du ) -(γu) -µu (b 0 -γ(0))u (0) -ρ 0 u 0 + ∞ 0 β(., y)u(y)dy ∞ 0 β 0 (y)u(y)dy with domain D(A ∞ ) given by {(u, u 0 ) ∈ X ∞ ; u ∈ W 2,1 loc (R + ), u(0) = u 0 , (du ) -(γu) ∈ L 1 (R + ) and lim s→∞ d(s)u (s) -γ(s)u(s) = 0}. Note that d(s)u (s) -γ(s)u(s) = d(0)u (0) -γ(0)u(0) + s 0 z(τ )dτ where z := (du ) -(γu) ∈ L 1 (R + ) shows that lim s→∞ d(s)u (s) -γ(s)u(s) exists.
As previously, we are concerned with the Cauchy problem

U (t) = A ∞ U (t), U (0) = (u 0 , u 0 0 ) ∈ X ∞ where U (t) = (u(t), u 0 (t)) T .

Semigroup generation

The main result of this subsection is :

Theorem 4.2.2. Let Assumption (4.21) be satisfied. Then A ∞ is the infinitesimal gene- rator of a quasi-contractive C 0 -semigroup {U ∞ (t)} t≥0 on X ∞ .
Proof. As previously, we restrict ourselves to A ∞ since K ∞ is bounded.

1. Let us show that D(A ∞ ) = X ∞ . Let (u, u 0 ) T ∈ X ∞ . Let (u j ) j be C ∞ functions with compact supports such that u j → u in L 1 (0, ∞) and supp(u j ) ⊂ j -1 , ∞ .
As in the finite case, we introduce the functions

v j (s) = f j 0 (s) if s ∈ [0, j -1 ] u j (s) if s ≥ j -1 ,
where f j 0 (s) = j 2 u 0 s 2 -2ju 0 s + u 0 = u 0 (js -1) 2 and we verify that

D(A ∞ ) (v j , v j (0)) T → (u, u 0 ) T ∈ X ∞ so D(A ∞ ) = X ∞ . 2. Let us prove that (A ∞ , D(A ∞ )) is a closed operator. We argue as previously. Let (U n ) n∈N := (u n , u n 0 ) n∈N ⊂ D(A ∞ ) then let U := (u, u 0 ) ∈ X ∞ and G := (g, g 0 ) ∈ X ∞ such that lim n→∞ U n -U X∞ = 0 and lim n→∞ A ∞ U n -G X∞ = 0. Let f n := d(u n ) -γu n .
Note that by assumption lim s→∞ f n (s) = 0. (4.22)

Since (d(u n ) ) -(γu n ) -µu n → g (L 1 (0, ∞) convergence) and (b 0 -γ(0)) (u n ) (0) -ρ 0 u n (0) → g 0 then f n → g + µu (L 1 (0, ∞) convergence) while f n (0) = d(0)(u n ) (0) -γ(0)u n (0) → d(0)h 0 -γ(0)u 0 where h 0 := g 0 + ρ 0 u 0 b 0 -γ(0) . Hence f n (s) = f n (0) + s 0 f n (τ )dτ → z(s) := d(0)h 0 -γ(0)u 0 + s 0 (g + µu)(τ )dτ (4.23)
in L 1 (0, c) for any finite c. It follows that (u n ) → z + γu d in L 1 (0, c) for any finite c so u ∈ L 1 (0, c) and u n → u in W 1,1 (0, c) for any finite c. In particular Let H = h, h 0 T . We have to prove that

u(0) = lim n→∞ u n (0) = lim n→∞ u n 0 = u 0 . Finally f n -µu n = (d(u n ) ) -(γu n ) -µu n → g (L 1 (0, ∞) convergence) implies that (u n ) converges in L 1 (0,
H X∞ ≥ λ U X∞ .
By definition of H, we have

(λ + µ(s))u(s) + (γu) (s) -(du ) (s) = h(s), s ∈ (0, ∞), (λ + ρ 0 )u 0 -(b 0 -γ(0))u (0) = h 0 , where µ(s) := ω + µ(s), ρ 0 := ω + ρ 0 .
By integration Hence

λ u L 1 + ∞ 0 µ|u| - ∞ 0 (du ) sign(u) + ∞ 0 (γu) sign(u) = ∞ 0 hsign(u), u (0)sign(u(0)) = (λ + ρ 0 )|u 0 | b 0 -γ(0) - h 0 sign(u(0)) b 0 -γ(0) . Since u ∈ W 2,1 loc (R + ) ⊂ C 1 (0, ∞),
λ u L 1 + ∞ 0 µ|u| ≤ l 0 + ∞ 0 hsign(u) so λ u L 1 + ∞ 0 µ|u| -γ(0)|u(0)| ≤ -d(0)u (0)sign(u(0)) + ∞ 0 hsign(u).
Since

d(0)u (0)sign(u(0)) = d(0)(λ + ρ 0 )|u 0 | b 0 -γ(0) - d(0)h 0 sign(u(0)) b 0 -γ(0) then λ u L 1 + ∞ 0 µ|u|ds + -γ(0) + d(0)(λ + ρ 0 ) b 0 -γ 0 |u(0)| ≤ d(0)|h 0 | b 0 -γ(0) + h L 1 or λ u L 1 + ∞ 0 µ|u|ds + - γ(0) c 1 + (λ + ρ 0 ) c 1 |u(0)| ≤ h L 1 + c 1 |h 0 |. Note that if - γ(0) c 1 + ρ 0 ≥ 0 then λ u L 1 + ∞ 0 µ|u|ds + λc 1 |u(0)| ≤ h L 1 + c 1 |h 0 |. Since - γ(0) c 1 + ρ 0 = - γ(0)(b 0 -γ(0)) d(0) + γ (0) + µ(0) + c 0 + ω is nonnegative for ω large enough then λ u L 1 + ∞ 0 (µ + ω)|u|ds + λc 1 |u(0)| ≤ c 1 |h 0 | + h L 1 and λ U X∞ ≤ H X∞
for ω large enough. Finally A ∞ -ωI is dissipative.

4. Let us prove that (λI -A ∞ ) : D(A ∞ ) → X ∞ is a surjective operator for λ > 0 large enough. We consider first a particular case

H = (h, h 0 ) T ∈ L 1 (0, ∞) ∩ L 2 (0, ∞) × R We look for U = (u, u 0 ) T ∈ D(A ∞ ) such that (λI -A ∞ )U = H, i.e. (λ + µ)u -(du ) + (γu) = h in R + , (4.24) (λ + ρ 0 )u 0 -(b 0 -γ(0))u (0) = h 0 . (4.25)
Multiply (4.24) by v ∈ H 1 (0, ∞) and integrate to get

λ ∞ 0 uv + ∞ 0 µuv - ∞ 0 (du ) v + ∞ 0 (γu) v = ∞ 0
hv.

An integration by parts and (4.25) lead to and u ∈ L 1 (R + ). Equation (4.24) shows that (du ) -(γu) ∈ L 1 (0, ∞). As for the previous finite case, by exploiting the closedness of A ∞ , we get the surjectivity of

λ ∞ 0 uv + ∞ 0 µuv + ∞ 0 du v - ∞ 0 γuv + K 0 u(0)v(0) = ∞ 0 hv + c 1 h 0 v(0).
(λI -A ∞ ) : D(A ∞ ) → X ∞ .
Finally A ∞ generates a C 0 -semigroup {T ∞ (t)} t≥0 by Lumer-Phillips' Theorem.

Note that a priori the domain of the generator is not

{(u, u 0 ) ∈ W 2,1 (0, ∞) × R : u(0) = u 0 }
but this subspace turns out to be a core of D(A ∞ ). Indeed, we have : 

Proposition 4.2.3. Let B : D(B) ⊂ X ∞ → X ∞ , be the restriction of A ∞ to {(u, u 0 ) ∈ W 2,1 (0, ∞) × R : u(0) = u 0 }. Then B is closable with closure A ∞ . Since (du ) -(γu) ∈ L 1 (R + ) then σ n (du ) -(γu) → (du ) -(γu) in L 1 (R + )
σ n (du) + σ n (d u) -(γu) σ n → 0 in L 1 (R + ) in L 1 (R + )

On irreducibility

The main result of this subsection is :

Proposition 4.2.4. The C 0 -semigroup {U ∞ (t)} t≥0 is irreducible.
Proof. As for the previous finite case, it suffices to prove that (λI -A ∞ ) -1 is positivity improving. Let us show first that

(λI -A ∞ ) -1 ≥ 0. Let U := (u, u 0 ) = (λI -A ∞ ) -1 H with H = (h, h 0 ) ∈ X ∞,+ and denote by C + c ([0, ∞[) the set of nonnegative continuous functions with compact support in [0, ∞[. Since C + c ([0, ∞[) is dense in L 1
+ (0, ∞) we may assume without loss of generality that

h ∈ C + c ([0, ∞[). Since h ∈ (L 2 ∩ L 1 ) × R then u ∈ H 2 (0, ∞). Now (λ + µ(s))u(s) + (γu) (s) -(du ) (s) = h(s), s ∈ (0, ∞), (λ + ρ 0 )u 0 -(b 0 -γ(0))u (0) = h 0
shows that u ∈ C(0, ∞). We write

-u + ρ 1 u + ρ 2 u = ρ 3
where We want to show that inf u ≥ 0. If inf u < 0 then the absolute minimum of u is achieved at some s ∈ [0, ∞) since lim s→∞ u(s) = 0. This implies that s = 0 otherwise 0 ≥ -u (s) = -ρ 2 (s)u(s) + ρ 3 (s) ≥ -ρ 2 (s)u(s) > 0 would lead to a contradiction. But if s = 0 then u(0) < 0 and the boundary condition

ρ 1 = -(d -γ)/d,
(λ + ρ 0 )u(0) -(b 0 -γ(0))u (0) = h 0 gives -(b 0 -γ(0))u (0) = -(λ + ρ 0 )u(0) + h 0 ≥ -(λ + ρ 0 )u(0) > 0
so u (0) < 0 and then u (s) < 0 in the neighborhood of s = 0 which contradicts the fact that the absolute minimum is achieved at 0. Hence inf u ≥ 0.

Let us show now that (λI -A ∞ ) -1 is positivity improving. As for the previous finite case, by using the resolvent identity, we may assume, without loss of generality, that

H ∈ D(A ∞ ) ∩ X + . Proof. Since A ∞ is resolvent positive and K ∞ ≥ 0 then K ∞ (λ -A ∞ ) -1 ≤ K ∞ (µ -A ∞ ) -1 (λ > µ) and (s(A ∞ ), ∞) λ → r σ (K ∞ (λ -A ∞ ) -1 ) (4.30) is nonincreasing. Since K ∞ (λ -A ∞ ) -1 is weakly compact then (K ∞ (λ -A ∞ ) -1 ) 2 is com- pact (see Theorem A.3.7). Note that (s(A ∞ ), ∞) λ → r σ (K ∞ (λ -A ∞ ) -1 )
is convex and therefore continuous (see [START_REF] Mokhtar-Kharroubi | Mathematical Topics in Neutron Transport Theory : New Aspects[END_REF] p. 107). Assume momentarily that

r σ (K ∞ (λ -A ∞ ) -1 ) > 0 (λ > s(A ∞ )).
(4.31)

Then (s(A ∞ ), ∞) λ → r σ (K ∞ (λ -A ∞ ) -1 )
is strictly decreasing (see [START_REF] Mokhtar-Kharroubi | Mathematical Topics in Neutron Transport Theory : New Aspects[END_REF] p. 106). If

lim λ→s(A∞) r σ (K ∞ (λ -A ∞ ) -1 ) > 1 then there exists a unique λ > s(A ∞ ) such that r σ (K ∞ (λ -A ∞ ) -1 ) = 1.
Since K ∞ (λ -A ∞ ) -1 is positive and power compact then

1 = r σ (K ∞ (λ -A ∞ ) -1 ) is an isolated eigenvalue of K ∞ (λ -A ∞ ) -1 associated to a nonnegative eigenfunction U so K ∞ (λ -A ∞ ) -1 U = U. Let V := (λ -A ∞ ) -1 U.
Then V = 0 and

K ∞ V = K ∞ (λ -A ∞ ) -1 U = U = (λ -A ∞ )V so A ∞ V = λV.
As for the previous finite case, the weak compactness of K ∞ implies that {U ∞ (t)} t≥0 and {T ∞ (t)} t≥0 have the same essential type

ω ess (A ∞ ) = ω ess (A ∞ ). Since ω ess (A ∞ ) ≤ s(A ∞ )
where χ I if the indicator function of I. We identify L 1 (I) to the closed subspace of L 1 (0, ∞) of functions vanishing a.e. outside I. Since K : L 1 (0, ∞) → L 1 (I) (using Equation (4.28)) then 

K |L 1 (I) : L 1 (I) → L 1 (I) and K ≥ K |L 1 (I) so r σ ( K) ≥ r σ (K |L 1 (I) ). Since (λ -A ∞ ) -1 : X ∞ → X ∞ is
r σ (K ∞ (λ -A ∞ ) -1 ) ≤ 1 then r σ (K ∞ (λ -A ∞ ) -1 ) < 1 (λ > s(A ∞ )) and (λI -A ∞ ) -1 = (λI -A ∞ -K ∞ ) -1 = (λI -A ∞ ) -1 ∞ n=0 (K ∞ (λI -A ∞ ) -1 ) n (∀λ > s(A ∞ )) shows that s(A ∞ ) ≤ s(A ∞ ). In fact s(A ∞ ) = s(A ∞ ) since s(A ∞ ) ≥ s(A ∞ ) due to K ∞ ≥ 0.
Remark 4.2.7. Roughly speaking Theorem 4.2.5 expresses that {U ∞ (t)} t≥0 has asynchronous exponential growth once s(A ∞ ) > s(A ∞ ). We mention that the spectral bound of generators of perturbed positive semigroups is characterized in [START_REF] Voigt | On resolvent positive operators and positive c 0 -semigroups on AL-spaces[END_REF] (see also [START_REF] Thieme | Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity[END_REF]). Note that s(A ∞ ) is not known explicitly. In case s(A ∞ ) = 0, then (4.29) could be interpreted in terms of the basic reproduction number R 0 (see [START_REF] Thieme | Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity[END_REF]), we thank one of the referees for drawing our attention to this fact.

Remark 4.2.8. Note that K ∞ (λ -A ∞ ) -1 and (λ -A ∞ ) -1 K ∞ have the same non-zero spectrum (see e.g. [START_REF] Abramovich | Problems in Operator Theory[END_REF] p. 196) and consequently

r σ (K ∞ (λ -A ∞ ) -1 ) = r σ ((λ -A ∞ ) -1 K ∞ ).
On the other hand, (λ -A ∞ ) -1 K ∞ is never positivity improving since

K ∞ 0 u 0 = 0 ∀u 0 ∈ R.
We end this subsection by a useful criterion to estimate a spectral radius.

Lemma 4.2.9. Let β(x, y) = β 1 (x)β 2 (y) where β 1 ∈ L 1 (0, ∞) and β 2 ∈ L ∞ (0, ∞). We assume that β 1 is continuous at 0. Then for every λ > s(A ∞ )

r σ K ∞ (λ -A ∞ ) -1 = β 2 (λ -A ∞ ) -1 β 1 β 1 (0) 1 L 1 (R + ) .
Proof. We know that

K ∞ (λ -A ∞ ) -1 f f 0 =       β 1 (.) β 2 (λ -A ∞ ) -1 f f 0 1 L 1 β 1 (0) β 2 (λ -A ∞ ) -1 f f 0 1 L 1       = β 2 (λ -A ∞ ) -1 f f 0 1 L 1 β 1 (.) β 1 (0) so K ∞ (λ -A ∞ )
-1 is a one-rank operator with a single non-zero eigenvalue

β 2 (λ -A ∞ ) -1 β 1 (.) β 1 (0) 1 L 1 associated to eigenvector β 1 (.) β 1 (0) . Hence r σ K ∞ (λ -A ∞ ) -1 = β 2 (λ -A ∞ ) -1 β 1 β 1 (0) 1 L 1 (R + ) .
Remark 4.2.10. Note that if the kernel β is not separable but is bounded below by a separable kernel, i.e. β(x, y) ≥ β 1 (x)β 2 (y), then a simple domination argument shows

r σ K ∞ (λ -A ∞ ) -1 ≥ β 2 (λ -A ∞ ) -1 β 1 β 1 (0) 1 L 1 (R + ) .
Simplified models (with constant coefficients) are dealt with in the next section to check the property lim λ→s(A∞)

β 2 (λ -A ∞ ) -1 β 1 β 1 (0) 1 L 1 (R + ) = ∞.
This amounts to solving the following system

(λ + µ)u + γu -u = β 1 , (4.36) u (0) - ρ 0 + λ b 0 -γ u 0 = - β 1 (0) b 0 -γ . (4.37)
The general solution of the homogeneous equation related to (4.36) is given by

u(x) = λ 1 exp(ξ 1 (λ)x) + λ 2 exp(ξ 2 (λ)x),
where

ξ 1 (λ) = (γ + γ 2 + 4(λ + µ)) 2 and ξ 2 (λ) = (γ -γ 2 + 4(λ + µ)) 2 .
We look for a particular solution of (4.36) in the form

w(x) = λ 1 (x)e ξ 1 (λ)x + λ 2 (x)e ξ 2 (λ)x .
We set the condition λ 1 (x)e ξ 1 (λ)x + λ 2 (x)e ξ 2 (λ)x = 0. (4.38)

We get

w (x) = ξ 1 (λ)λ 1 (x)e ξ 1 (λ)x + ξ 2 (λ)λ 2 (x)e ξ 2 (λ)x (4.39) 
and w (x) = ξ 2 1 (λ)λ 1 (x)e ξ 1 (λ)x + ξ 1 (λ)λ 1 (x)e ξ 1 (λ)x + ξ 2 2 (λ)λ 2 (x)e ξ 2 (λ)x + ξ 2 (λ)λ 2 (x)e ξ 2 (λ)x .

Consequently (λ + µ)w + γw -w = β 1 if and only if -ξ 1 (λ)λ 1 (x)e ξ 1 (λ)x -ξ 2 (λ)λ 2 (x)e ξ 2 (λ)x = β 1 (x).
With (4.38), we have to solve

λ 1 (x)e ξ 1 (λ)x + λ 2 (x)e ξ 2 (λ)x = 0, -ξ 1 (λ)λ 1 (x)e ξ 1 (λ)x -ξ 2 (λ)λ 2 (x)e ξ 2 (λ)x = β 1 (x). Therefore λ 1 (x) = -β 1 (x)e -ξ 1 (λ)x γ 2 + 4(λ + µ) , λ 2 (x) = β 1 (x)e -ξ 2 (λ)x γ 2 + 4(λ + µ) .
Hence a particular solution of (4.36) is

w(x) = ∞ x β 1 (s)e -ξ 1 (λ)s γ 2 + 4(λ + µ) ds e ξ 1 (λ)x + x 0 β 1 (s)e -ξ 2 (λ)s γ 2 + 4(λ + µ) ds e ξ 2 (λ)x . (4.40)
Consequently, the general solution of (4.36) is given by u(x) = λ 1 e ξ 1 (λ)x + λ 2 e ξ 2 (λ)x + w(x).

Since λ > -µ, we have ξ 1 (λ) > 0 and ξ 2 (λ) < 0. Therefore w ∈ L 1 (0, ∞) because

β 1 ∈ L 1 (0, ∞). Thus u ∈ L 1 (R + ) ⇔ λ 1 = 0,
and u(x) = λ 2 e ξ 2 (λ)x + w(x).

Furthermore, the boundary condition (4.37) is satisfied if and only if

λ 2 (λ)ξ 2 (λ) = ρ 0 + λ b 0 -γ u 0 - β 1 (0) b 0 -γ -ξ 1 (λ) ∞ 0 β 1 (s)e -ξ 1 (λ)s γ 2 + 4(λ + µ) ds.
Then u(0) = u 0 if and only if

λ 2 (λ)ξ 2 (λ) = ρ 0 + λ b 0 -γ   λ 2 (λ) + ∞ 0 β 1 (s)e -ξ 1 (λ)s γ 2 + 4(λ + µ) ds   - β 1 (0) b 0 -γ -ξ 1 (λ) ∞ 0 β 1 (s)e -ξ 1 (λ)s γ 2 + 4(λ + µ) ds which is equivalent to λ 2 (λ) = ∞ 0 β 1 (s)e -ξ 1 (λ)s γ 2 + 4(λ + µ) ds ξ 1 (λ) -(λ + ρ 0 )/(b 0 -γ) -ξ 2 (λ) + (λ + ρ 0 )/(b 0 -γ) + β 1 (0)/(b 0 -γ) -ξ 2 (λ) + (λ + ρ 0 )/(b 0 -γ) . ( 4.41) 
We know that λ + ρ 0 = λ + µ + c 0 ≥ c 0 , when λ > -µ so λ 2 (λ) is well-defined since

-ξ 2 (λ) + (λ + ρ 0 )/(b 0 -γ) > 0.
Thus, the expression of the resolvent is given by

u(x) = ∞ x β 1 (s)e -ξ 1 (λ)s γ 2 + 4(λ + µ) ds e ξ 1 (λ)x + x 0 β 1 (s)e -ξ 2 (λ)s γ 2 + 4(λ + µ) ds e ξ 2 (λ)x + λ 2 (λ)e ξ 2 (λ)x ,
where λ 2 (λ) is given by (4.41). We know that

u (x) = λ 2 (λ)ξ 2 (λ)e ξ 2 (λ)x + w (x).
Using (4.40) we verify that w ∈ L 1 and u ∈ L 1 (0, ∞). Moreover (4.36) proves that u ∈ L 1 since β 1 ∈ L 1 . Consequently (u, u(0)) T ∈ D(B).

Since A ∞ generates a positive C 0 -semigroup on X ∞ (see Section 4.2 then s(A ∞ ) ∈ σ(A ∞ ) (Theorem A.4.5) and s(A ∞ ) ≤ -µ.

We now prove that s(A ∞ ) = -µ. Suppose that γ > 0 and let λ = -µ, then the general solution of the homogeneous equation related to (4.36) is

u(x) = λ 1 exp(γx) + λ 2 .
Then a particular solution of (4.36) is given by

w(x) = e γx ∞ x β 1 (s)e -γs γ ds + x 0 β 1 (s) γ ds
and the general solution of (4.36) is

u(x) = λ 1 e γx + λ 2 + w(x).
Let us note l := lim x→∞ w(x). Then we see that

l = ∞ 0 β 1 (s) γ ds < ∞.
Moreover, l > 0 by assumption on β 1 so w is not in

L 1 (R + ). If λ 1 > 0 then lim x→∞ u(x) = ∞
and if λ 1 < 0 then we have lim

x→∞ u(x) = -∞.
In both cases, u is not in L 1 (R + ) (otherwise the limit should be zero). If λ 1 = 0 then

u(x) = λ 2 + w(x) which is not in L 1 (R + ) whatever λ 2 ∈ R.
Consequently there is no solution of (4.35) for λ = -µ, so

-µ ∈ σ(A ∞ ) and s(A ∞ ) = -µ.
Suppose that γ = 0 and let λ = -µ, then the general solution of the homogeneous equation related to (4.36) is

u(x) = λ 1 + λ 2 x.
We look for a particular solution of (4.36) in the form

w(x) = λ 1 (x) + λ 2 (x)x.
We set the condition λ 1 (x) + λ 2 (x)x = 0 so we get w (x) = λ 2 (x) and w (x) = λ 2 (x).

Consequently

-w = β 1 if and only if λ 2 (x) = -β 1 (x). So we get λ 1 (x) = β 1 (x)x, λ 2 (x) = -β 1 (x).
Hence a particular solution of (4.36) is

w(x) = x 0 sβ 1 (s)ds + x ∞ x β 1 (s)ds
and the general solution of (4.36) is given by

u(x) = λ 1 + λ 2 x + w(x).
We see that 

u (x) = λ 2 + ∞ x β 1 (s)ds which implies lim x→∞ u (x) = λ 2 , so, to have (u, u(0)) T ∈ D(A ∞ ),
u (0) - ρ 0 b 0 u(0) = - β 1 (0) b 0 which is equivalent to ∞ 0 β 1 (s)ds - λ 1 ρ 0 b 0 = - β 1 (0) b 0 . If ρ 0 = 0 then we get 0 < ∞ 0 β 1 (s)ds = - β 1 (0) b 0 ≤ 0 which is impossible. If ρ 0 > 0 then we get λ 1 = ∞ 0 β 1 (s)ds + β 1 (0) b 0 b 0 ρ 0 > 0. Consequently u(x) ≥ λ 1 > 0 for every x ≥ 0 and u is not in L 1 (R + ) so -µ ∈ σ(A ∞ ) and s(A ∞ ) = -µ.
Now suppose that γ < 0 and let λ ∈ (-γ 2 /4 -µ, -µ) close enough to -µ. Then the general solution of the homogeneous equation related to (4.36) is

u(x) = λ 1 e ξ 1 (λ)x + λ 2 e ξ 2 (λ)x ,
with ξ 1 (λ) < 0 and ξ 2 (λ) < 0. A particular solution w of (4.36) is given by (4.40).

Consequently the general solution of (4.36) is given by

u(x) = λ 1 e ξ 1 (λ)x + λ 2 e ξ 2 (λ)x + w(x). (4.42)
We can verify that w ∈ L 1 (0, ∞). Since ξ 1 (λ) < 0 and ξ 2 (λ) < 0 then u ∈ L 1 (0, ∞). Furthermore, the boundary condition (4.37) is satisfied if and only if

λ 1 (λ)ξ 1 (λ) + λ 2 (λ)ξ 2 (λ) = ρ 0 + λ b 0 -γ u 0 - β 1 (0) b 0 -γ -ξ 1 (λ) ∞ 0 β 1 (s)e -ξ 1 (λ)s γ 2 + 4(λ + µ) ds.
Then u(0) = u 0 if and only if

λ 1 (λ)ξ 1 (λ) + λ 2 (λ)ξ 2 (λ) = ρ 0 + λ b 0 -γ   λ 1 (λ) + λ 2 (λ) + ∞ 0 β 1 (s)e -ξ 1 (λ)s γ 2 + 4(λ + µ) ds   - β 1 (0) b 0 -γ -ξ 1 (λ) ∞ 0 β 1 (s)e -ξ 1 (λ)s γ 2 + 4(λ + µ) ds which is equivalent to λ 2 (λ) = ∞ 0 β 1 (s)e -ξ 1 (λ)s γ 2 + 4(λ + µ) ds ξ 1 (λ) -(λ + ρ 0 )/(b 0 -γ) -ξ 2 (λ) + (λ + ρ 0 )/(b 0 -γ) + β 1 (0)/(b 0 -γ) -ξ 2 (λ) + (λ + ρ 0 )/(b 0 -γ) + λ 1 (λ) [ξ 1 (λ) -(ρ 0 + λ)/(b 0 -γ)] -ξ 2 (λ) + (λ + ρ 0 )/(b 0 -γ) . (4.43)
Since the function

λ → -ξ 2 (λ) + λ + ρ 0 (b 0 -γ)
is continuous, strictly increasing on (-γ 2 /4 -µ, ∞) and equals to

-γ + ρ 0 b 0 -γ > 0
when λ = -µ, then, taking λ < -µ close enough to -µ we get

-ξ 2 (λ) + (λ + ρ 0 )/(b 0 -γ) > 0.
Consequently, for any λ 1 ∈ R, the function given by (4.42) is solution of (4.36) and is solution of (4.37) when λ 2 (λ) satisfies (4.43). Therefore we get an infinite number of solutions of (4.35) for every λ < -µ close enough to -µ so

-µ ∈ σ(A ∞ ) and s(A ∞ ) = -µ.
Now consider λ > -µ. Then we first see that

ξ 1 (λ) > ξ 2 (λ). So we have ξ 1 (λ) -(λ + ρ 0 )/(b 0 -γ) > ξ 2 (λ) -(λ + ρ 0 )/(b 0 -γ). Since ξ 2 (λ) -(λ + ρ 0 )/b 0 < 0, we get ξ 1 -(λ + ρ 0 )/b 0 -ξ 2 + (λ + ρ 0 )/b 0 > -1. (4.44) 
A computation gives

β 2 (λ -A) -1 β 1 β 1 (0) 1 L 1 (R + ) = ∞ 0 β 1 (s)e -ξ 1 (λ)s γ 2 + 4(λ + µ) s 0 β 2 (x)e ξ 1 (λ)x dxds + ∞ 0 β 1 (s)e -ξ 2 (λ)s γ 2 + 4(λ + µ) ∞ s β 2 (x)e ξ 2 (λ)x dxds + λ 2 (λ) ∞ 0 β 2 (x)e ξ 2 (λ)x dx.
Using (4.41)-(4.44), we get the lower bound

β 2 (λ -A) -1 β 1 β 1 (0) 1 L 1 (R + ) ≥ β 1 (0)/b 0 -ξ 2 (λ) + (λ + ρ 0 )/b 0 ∞ 0 β 2 (x)e ξ 2 (λ)x dx + ∞ 0 β 1 (s) γ 2 + 4(λ + µ) × e -ξ 1 (λ)s s 0 e ξ 1 (λ)x -e ξ 2 (λ)x β 2 (x)dx + e -ξ 2 (λ)s -e -ξ 1 (λ)s ∞ s e ξ 2 (λ)x β 2 (x)dx ds.
Suppose that x 1 > y 1 . Then we use the lower bound

β 2 (λ -A) -1 β 1 β 1 (0) 1 L 1 (R + ) ≥ x 2 x 1 β 1 (s) γ 2 + 4(λ + µ) e -ξ 1 s min(x 1 ,y 2 ) y 1 e ξ 1 x -e ξ 2 x β 2 (x)dxds.
Furthermore, we know that lim

λ→-µ ξ 1 (λ) = 0 if γ ≥ 0 and lim λ→-µ |ξ 2 (λ)| = 0 if γ < 0.
Consequently for x ∈ [y 1 , min(x 1 , y 2 )] we use the lower bounds

(e ξ 1 (λ)x -e ξ 2 (λ)x )β 2 (x) ≥    M 1 e ξ 1 (λ)x if γ ≥ 0, M 2 e ξ 2 (λ)x if γ < 0,
where M 1 , M 2 > 0 are positive constants since β 2 > 0 on [y 1 , y 2 ] and ξ 1 (λ) > ξ 2 (λ).

If γ ≥ 0 then

β 2 (λ -A) -1 β 1 β 1 (0) 1 L 1 (R + ) ≥ M 1 x 2 x 1 β 1 (s) γ 2 + 4(λ + µ) e -ξ 1 (λ)s min{x 1 ,y 2 } y 1 e ξ 1 (λ)x dxds ≥ M 1 x 2 x 1 β 1 (s) ξ 1 (λ) γ 2 + 4(λ + µ) e -ξ 1 (λ)s e ξ 1 (λ) min{x 1 ,y 2 } -e ξ 1 (λ)y 1 ds ≥ M 1 x 2 x 1 β 1 (s)e -ξ 1 (λ)s ξ 1 (λ) γ 2 + 4(λ + µ) ds ≥ M 1 C ξ 1 (λ)
where M 1 , C > 0 are positive constants because

β 1 > 0 on [x 1 , x 2 ]. Since ξ 1 (λ) > 0 for λ > -µ and lim λ→-µ ξ 1 (λ) = 0 then lim λ→0 M 1 C ξ 1 (λ) = ∞
and we get lim

λ→-µ β 2 (λ -A) -1 β 1 β 1 (0) 1 L 1 (R + ) = ∞.
If γ < 0 then, since ξ 2 (λ) < 0 for λ > -µ, we get

β 2 (λ -A) -1 β 1 β 1 (0) 1 L 1 (R + ) ≥ M 2 x 2 x 1 β 1 (s) γ 2 + 4(λ + µ) e -ξ 1 (λ)s min{x 1 ,y 2 } y 1 e ξ 2 (λ)x dxds ≥ M 2 x 2 x 1 β 1 (s) |ξ 2 (λ)| γ 2 + 4(λ + µ) e -ξ 1 (λ)s e ξ 2 (λ)y 1 -e ξ 2 (λ) min{x 1 ,y 2 } ds ≥ M 2 x 2 x 1 β 1 (s)e -ξ 1 (λ)s |ξ 2 (λ)| γ 2 + 4(λ + µ) ds ≥ M 2 C ξ 2 (λ)
where M 2 , C > 0 are positive constants. Since lim λ→-µ |ξ 2 (λ)| = 0 then lim λ→-µ

M 2 C ξ 2 (λ) = ∞ and we get lim λ→-µ β 2 (λ -A) -1 β 1 β 1 (0) 1 L 1 (R + ) = ∞. Now, suppose that x 1 ≤ y 1 . Then β 2 (λ -A) -1 β 1 β 1 (0) 1 L 1 (R + ) ≥ ∞ 0 β 1 (s) γ 2 + 4(λ + µ) e -ξ 2 (λ)s -e -ξ 1 (λ)s ∞ s e ξ 2 (λ)x β 2 (x)dxds ≥ ∞ 0 β 2 (x)e ξ 2 (λ)x γ 2 + 4(λ + µ) x 0 β 1 (s)(e -ξ 2 (λ)s -e -ξ 1 (λ)s )dsdx ≥ y 2 (y 1 +y 2 )/2 β 2 (x)e ξ 2 (λ)x γ 2 + 4(λ + µ) min{(y 1 +y 2 )/2,x 2 } x 1 β 1 (s)(e -ξ 2 (λ)s -e -ξ 1 (λ)s )dsdx.
Furthermore, we know that lim

λ→-µ ξ 1 (λ) = 0 if γ ≥ 0 and lim λ→-µ |ξ 2 (λ)| = 0 if γ < 0.
Consequently for s ∈ [x 1 , min{(y 1 + y 2 )/2, x 2 }] we use the lower bounds

β 1 (s)(e -ξ 2 (λ)s -e ξ 1 (λ)s ) ≥    M 1 e -ξ 1 (λ)s if γ ≥ 0, M 2 e -ξ 2 (λ)s if γ < 0,
where M 1 , M 2 > 0 are positive constants since β 1 > 0 on [x 1 , x 2 ] and -ξ 2 (λ) > -ξ 1 (λ).

If γ ≥ 0 then

β 2 (λ -A) -1 β 1 β 1 (0) 1 L 1 (R + ) ≥ M 1 y 2 (y 1 +y 2 )/2 β 2 (x) γ 2 + 4(λ + µ) e ξ 2 (λ)x min{(y 1 +y 2 )/2,x 2 } x 1 e -ξ 1 (λ)s dsdx ≥ M 1 y 2 (y 1 +y 2 )/2 β 2 (x) ξ 1 (λ) γ 2 + 4(λ + µ) e ξ 2 (λ)x e -ξ 1 (λ)x 1 -e -ξ 1 (λ) min{(y 1 +y 2 )/2,x 2 } dx ≥ M 1 y 2 (y 1 +y 2 )/2 β 2 (x)e ξ 2 (λ)x ξ 1 (λ) γ 2 + 4(λ + µ) dx ≥ M 1 C ξ 1 (λ)
where M 1 , C > 0 are positive constants because

β 2 > 0 on [y 1 , y 2 ]. Since ξ 1 (λ) > 0 for λ > -µ and lim λ→-µ ξ 1 (λ) = 0 then lim λ→-µ M 1 C ξ 1 (λ) = ∞
and we get lim

λ→-µ β 2 (λ -A) -1 β 1 β 1 (0) 1 L 1 (R + ) = ∞.
If γ < 0 then, since ξ 2 (λ) < 0 for λ > 0, we get 

β 2 (λ -A) -1 β 1 β 1 (0) 1 L 1 (R + ) ≥ M 2 y 2 (y 1 +y 2 )/2 β 2 (x) γ 2 + 4(λ + µ) e ξ 2 (λ)x min{(y 1 +y 2 )/2,x 2 } x 1 e -ξ 2 (λ)s dsdx ≥ M 2 y 2 (y 1 +y 2 )/2 β 2 (x) |ξ 2 (λ)| γ 2 + 4(λ + µ) e ξ 2 (λ)x e -ξ 2 (λ) min{(y 1 +y 2 )/2,x 2 } -e -ξ 2 (λ)x 1 dx ≥ M 2 y 2 (y 1 +y 2 )/2 β 2 (x)e ξ 2 (λ)x |ξ 2 (λ)| γ 2 + 4(λ + µ) dx ≥ M 2 C |ξ 2 (λ) where M 2 , C > 0 are positive constants. Since lim λ→-µ |ξ 2 (λ)| = 0 then lim λ→-µ M 2 C |ξ 2 (λ)| = ∞ and lim λ→-µ β 2 (λ -A) -1 β 1 β 1 (0) 1 L 1 (R + ) = ∞.
λ d + µ d u + γu d -u = β 1 d
and with some change of variables we get exactly what we studied before, that is :

( λ + μ)u + γu -u = β1 . Let the Banach space X = C([-τ, 0], R) × R endowed with the norm (u, v) X = u ∞ + |v|
and let X + be his nonnegative cone. We study (5.1) with the initial condition

X(θ) = φ(θ), -τ ≤ θ ≤ 0, y(0) = y 0 ,
where (φ, y 0 ) ∈ X .

Remark 5.1.1. The delay differential system (5.1) is only deduced from the PDE model (2.1). The equivalence is only true if the initial condition (φ, y 0 ) also satisfies (2.1). In the following, we will work in the general case and then get our desired result for the particular initial condition which allows to return to the PDE model.

The equilibria of (5.1) are given by

E 0 := (0, 0); E * := (X * , y * ) = δ αγ 0 , β 0 e -µ 0 τ -µ 0 γ 0 .
We verify that E * exists (in the positive orthant) if and only if R 0 > 1 and the nontrivial equilibrium is unique under this latter condition.

Partition of X +

Consider the sets

S 0 = {(φ, y) ∈ X + : 0 -τ φ(a)da > 0}, ∂S 0 = X + \ S 0 , S 1 = {(φ, y) ∈ X + : φ(a) > 0 for every a ∈ [-τ, 0]}, S 2 = {(φ, y) ∈ X + : y > 0, 0 -τ φ(a)da > 0}, ∂S 2 = X + \ S 2 , S 3 = {(φ, y) ∈ X + : y > 0, φ(a) > 0 ∀a ∈ [-τ, 0]}.
Remark 5.1.2. We have the inclusions

S 3 ⊂ S 2 ⊂ S 0 , S 3 ⊂ S 1 ⊂ S 0
and we get the partition

X + = S 2 (∂S 2 ∩ S 0 ) (∂S 2 ∩ ∂S 0 ) (disjoint unions) which is in fact X + = S 2 (∂S 2 ∩ S 0 ) ∂S 0 since ∂S 0 ⊂ ∂S 2 .
4. We know that ∂S 2 ∩ ∂S 0 = ∂S 0 is positively invariant. Consider an initial condition (φ, y 0 ) ∈ ∂S 2 ∩ S 0 so y 0 = 0 and 0 -τ φ(a)da > 0. Then Equation (5.1) implies that y(t) = 0 for every t ≥ 0. Since S 0 is positively invariant, we get the invariance of ∂S 2 ∩ S 0 and ∂S 2 . Moreover, with the second and third points, we have Φ t (φ, y 0 ) ∈ S 1 ∩ ∂S 2 for every t ≥ 2τ . Thus, for every t ≥ τ , x(t) > 0. We see that (5.1) becomes the delayed Malthusian equation

X (t) = β 0 e -µ 0 τ X(t -τ ) -µ 0 X(t).
As explained in [85, section I.2], the solution behaves as

X(t) = c 0 e α * t (1 + Ω(t)), lim t→∞ Ω(t) = 0,
where c 0 > 0 and α * > 0 since R 0 > 1. Consequently we get lim t→∞ X(t) = ∞.

Attractiveness

Some definitions

Since for every initial condition z ∈ S 2 , the ω-limit set of z is a subset of X , we will need the following notations E 0 := (0, 0) ∈ X , E * := (X * χ [-τ,0] , y * ) ∈ X . We aim to prove that the nontrivial equilibrium satisfy a global stability property. To avoid some confusion between stability and attractiveness, some definitions are reminded in Section 1.4.1. We first want to prove the global attractiveness of E * on some subset S ⊂ X . To achieve that goal, we use Lyapunov functions. Consider the key function (see e.g. [START_REF] Perasso | Global stability and uniform persistence for an infection loadstructured si model with exponential growth velocity[END_REF]) g(x) = x -ln(x) -1, then define the following function

L * (φ, y) = V 1 (φ, y) + V 2 (φ, y) + V 3 (φ, y) formally defined for (φ, y) ∈ X by V 1 (φ, y) = αX * g φ(0) X * , V 2 (φ, y) = y * g y y * , V 3 (φ, y) = αβ 0 e -µ 0 τ X * 0 -τ g φ(s)
X * ds, (see e.g. [START_REF] Vargas-De-León | Lyapunov functionals for global stability of Lotka-Volterra cooperative systems with discrete delays[END_REF] and also [START_REF] Huang | Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate[END_REF] where the Volterra-type Lyapunov functional V 3 was introduced). is nonincreasing. Consequently, for every t ≥ 0, F (φ,y 0 ) (t) ≤ F (φ,y 0 ) (0) where

F (φ,y 0 ) (0) = αX * g φ(0) x * + y * g y 0 y * + αβ 0 e -µ 0 τ X * 0 -τ g φ(s) X * ds.
Since each term of F (φ,y 0 ) is positive and lim x→∞ g(x) = ∞, then there exists a positive constant C(z) > 0 such that X(t) ≤ C(z), y(t) ≤ C(z), t ≥ 0 (otherwise it would contradict the fact that F (φ,y 0 ) (t) ≤ F (φ,y 0 ) (0)). We can then deduce the result in S 2 using Proposition 5.1.9.

In the following we will call 'τ -periodic solution' any solution that is τ -periodic but not constant. Theorem 5.2.4. For every initial condition z ∈ S 3 we have

ω(z) ⊂ {v ∈ S 3 : Φ t (v) = Φ t+τ (v), ∀t ≥ 0}
i.e. the solution (X, y) goes to a τ -periodic or a constant function.

Proof. Let z ∈ S 3 . Using Proposition 5.2.2 and Lemma 5.2.3, we know that L * is a Lyapunov function on S 3 and Φ t (w) is a bounded solution such that Φ t (w) ∈ S 3 for every t ≥ 0. Consequently, with [138, Theorem 5.17], we conclude that ω(z) = ∅ and is contained in the maximal invariant of

{v := (φ, y 0 ) ∈ S 3 : ∂ t [L * (Φ t (v)] = 0, ∀t ≥ 0} .
We see that (5.3) implies that

X(t -τ ) = X(t), ∀t ≥ 0, so ω(z) is included in {v := (φ, y 0 ) ∈ S 3 : Φ x t (v) = Φ x t+τ (v), ∀t ≥ 0}
, where Φ x is the first component of Φ. Consequently X goes to a τ -periodic or constant function. If it goes to a constant then y as well. If it's toward a τ -periodic then classical results (see e.g. [START_REF] Hale | Introduction to Functional Differential Equations[END_REF]) shows that X is in C 1 [0, ∞). Thus, we get

lim t→∞ [X (t) -X (t -τ )] = 0 which implies lim t→∞ [γ 0 X(t)y(t) -γ 0 X(t -τ )y(t -τ )] = 0 hence lim t→∞ [y(t) -y(t + τ )] = 0
and y goes to a τ -periodic which ends the proof.

Corollary 5.2.5. For every initial condition z ∈ S 2 , the solution (X, y) goes to a τperiodic or constant function.

Proof. We know that the set S 2 is (2τ, S 3 )-positively invariant (Proposition 5.1.9). So taking (φ, y 0 ) ∈ S 2 and considering Φ 2τ (φ, y 0 ) ∈ S 3 as initial condition instead of (φ, y 0 ), we can use Theorem 5.2.4 and prove this statement.

Number of τ -periodic solutions

With the latter result we have the convergence to either one of the equilibria (E 0 or E * ) or to a τ -periodic solution. A necessary and sufficient condition to get such periodic solution is the following τ √ δy * γ 0 2π > 1 (5.5)

as stated in the next proposition.

Theorem 5.2.6.

There is a τ -periodic solution of (5.1) if and only if (5.5) is verified.

In this case, the solution is unique and will be denoted by (p, q) ∈ C 1 (R + , R 2 + ) in the following.

Remark 5.2.7. By unique, we mean that if there are two periodic solutions (X, y) and

(u, v) in C(R + , R 2 ) then there exists h ∈ [0, τ ] such that (X, y) = (τ h u, τ h v)
where τ h u = u(h + .) is the translation operator.

Let us first remind some useful property about the classical Lotka-Volterra ODE model.

Lemma 5.2.8 ([128], Theorem 1). The solution of

     x (t) = ax(t) -bx(t)y(t), y (t) = cx(t)y(t) -dy(t), (x(0), y(0)) = (x 0 , y 0 ) ∈ R 2 , (5.6)
is periodic with some period T . Define the conserved energy E (through time) of (5.6) by

E = cx 0 -d + by 0 -a -a ln by 0 a -d ln cx 0 d = dg cx 0 d + ag by 0 a ≥ 0 (5.7)
then the period T depends on E and moreover the function

E → T (E) is strictly increasing with lim E→0 T (E) = 2π √ ad , lim E→∞ T (E) = ∞.
Proof of Theorem 5.2.6. If (X, y) is a τ -periodic solution of (5.1) then it is in fact solution of X (t) = (β 0 e -µ 0 τ -µ 0 ) X(t) -γ 0 X(t)y(t), y (t) = αγ 0 X(t)y(t) -δy(t).

(5.8)

Suppose that τ √ δy * γ 0 2π < 1, then, using Lemma 5.2.8, for each initial condition, the solution is periodic with some period T . Since the period is strictly increasing, the period must verify

T ≥ 2π (β 0 e -µ 0 τ -µ 0 )δ = 2π √ δγ 0 y * > τ, which is absurd. If τ √ δy * γ 0 2π = 1
then to get T = τ one we need to have E = 0, so using (5.7), we get

x 0 = d c , y 0 = a b
which is equivalent, for (5.8), to

x 0 = X * , y 0 = y * so the solution is in fact constant and the first implication is thus proved. Conversely, suppose that (5.5) is verified. Using Lemma 5.2.8, there is a unique energy E * > 0 such that T (E * ) = τ . Moreover, using (5.7) we can see that there is at least one initial condition (x 0 , y 0 ) ∈ R 2 such that the energy is equal to E * . Thus there is at least one τ -periodic solution (X, y) of (5.8). Besides, every initial condition (x 1 , y 1 ) with energy E * is located on the solution (p, q) in the sense that there exists t ∈ [0, τ ] such that (p(t), q(t)) = (x 1 , y 1 ).

Consequently there is a unique τ -periodic solution (p, q) of (5.8). We finally see that (p, q) is also solution of (5.1) which ends the proof.

We can now be more precise about the attractive set, as stated in the following proposition.

Proposition 5.2.9. Let the initial condition z ∈ S 3 .

1. If (5.5) is not verified then ω(z) ⊂ {E * } ∪ {E 0 }; 2. If (5.5) is verified then ω(z) ⊂ {E * } ∪ {E 0 } ∪ S τ ;
where S τ ⊂ S 3 is the (periodic) positively invariant subset of S 3 defined by

S τ = {(φ, y 0 ) ∈ S 3 : ∃h ∈ [0, τ ], ∀s ∈ [-τ, 0], φ(s) = p(h + s + τ ), y 0 = q(h)}.
Proof. The result follows easily from Theorem 5.2.4 and Theorem 5.2.6.

Around the equilibria

In this section, we first show that the solution cannot converge to E 0 and then we prove that E * is Lyapunov stable.

Unattractivity of E 0

Since the equilibrium {E 0 } is possibly an attractive set, we have to show that it is in fact not the case. 

Local stability of E *

Now we give a result about the non trivial equilibrium.

Proposition 5.3.2. E * is Lyapunov stable.

To prove this result, we need to define the following sets

L η = {(φ, y) ∈ X + : L * (φ, y) < η}, η > 0 B(E * , ρ) = {(w, y) ∈ R 2 : (w, y) -E * R 2 ≤ ρ}, ρ > 0, B(E * , ρ) = {(φ, y) ∈ X + : (φ, y) -E * X ≤ ρ}, ρ > 0,
and we give two lemmas (see [58, proof of Theorem 1.2] for the idea of such results). Lemma 5.3.3. For every ρ > 0, there exists η > 0 such that (φ, y) ∈ L η ⇒ (φ(0), y) ∈ B(E * , ρ).

Proof. Let ρ > 0, η > 0 and let (φ η , y η ) ∈ L η . Thus we have L * (φ η , y η ) < η so Proof. Let η > 0, ρ > 0 and let (φ ρ , y ρ ) ∈ B(E * , ρ) then (φ ρ , y ρ ) -E * X ≤ ρ so we get

V 1 (φ η , y η ) < η, V 2 (φ η , y η ) < η,
φ ρ -X * χ [-τ,0] ∞ ≤ ρ, |y ρ -y * | ≤ ρ.
Consequently we have lim ρ→0

y ρ = y * , lim ρ→0 φ ρ (s) = X * , ∀s ∈ [-τ, 0],
and then

lim ρ→0 g y ρ y * = 0, lim ρ→0 g φ ρ (s) X * = 0, ∀s ∈ [-τ, 0]. Consequently lim ρ→0 V 1 (φ ρ , y ρ ) = 0, lim ρ→0 V 2 (φ ρ , y ρ ) = 0, lim ρ→0 V 3 (φ ρ , y ρ ) = 0.
So, considering ρ > 0 small enough, we get L * (φ ρ , y ρ ) ≤ η.

Proof of Proposition 5.3.2. Let ρ 1 > 0, then using Lemma 5.3.3, there exists η > 0 such that (φ, y) ∈ L η ⇒ (φ(0), y) ∈ B(E * , ρ 1 ) and using Lemma 5.3.4, there exists ρ 2 > 0 such that

B(E * , ρ 2 ) ⊂ L η . Let (φ, y) ∈ B(E * , ρ 2 ) then (φ, y) ∈ L η so (φ(0), y) ∈ B(E * , ρ 1 ).
Since F (φ,y) is nonincreasing, then L η is positively invariant, which implies that (Φ x t (φ, y)(0), Φ y t (φ, y)) ∈ B(E * , ρ 1 ), ∀t ≥ 0, (where Φ y is the second component of Φ), i.e.

(X(t), y(t)) ∈ B(E * , ρ 1 ), ∀t ≥ 0.

Consequently

|X(t) -X * | + |y(t) -y * | ≤ ρ 1 , ∀t ≥ 0. Since (φ, y) ∈ B(E * , ρ 2 ) then we have φ -X * χ [-τ,0] ∞ + |y -y * | ≤ ρ 2 ,
and considering ρ 2 > 0 small enough, verifying ρ 2 ≤ ρ 1 , we get

X t -X * χ [-τ,0] ∞ + |y(t) -y * | ≤ ρ 1 , ∀t ≥ 0, that is (X t , y(t)) -E * X ≤ ρ 1 , ∀t ≥ 0 and then Φ t (φ, y) ∈ B(E * , ρ 1 ), ∀t ≥ 0.
We finally have shown that E * is Lyapunov stable, since for every ρ 1 > 0 there exists 

ρ 2 > 0 such that (φ, y) ∈ B(E * , ρ 2 ) ⇒ Φ t (φ, y) ∈ B(E * ,

Back to the PDE model

In this section we deduce some stability result for the PDE model (2.1). We consider the set

X A = {(x 0 , y 0 ) ∈ L 1 + (R + ) × R * + : ∞ 0 x 0 (a)da > 0}.
Theorem 5.4.1. Suppose that E * is globally asymptotically stable in S 2 . Under the assumptions made in Section 5.1.1, the equilibrium E 2 is globally attractive in X A for (2.1).

Proof. Let (x 0 , y 0 ) ∈ X A and (x, y) be the solution of (2.1). We get for every a ≥ τ

x(τ, a) ≥ x 0 (a -τ )e -µ 0 τ e -γ 0 τ M , where M = max s∈[0,τ ] y(s) < ∞. Therefore ∞ τ

x(τ, a)da > 0 and we also have y(τ ) ≥ y 0 e -δτ > 0.

We can then consider for (5.1) the initial condition z = (φ, y(τ )) ∈ X , where

φ(θ) = ∞ τ x(τ + θ, a)da,
for every θ ∈ [-τ, 0]. Since φ(0) > 0, we can verify by continuity that 0 -τ φ(s)ds > 0 whence z ∈ S 2 . We supposed that E * is globally stable in S 2 (for (5.1)) so we get

lim t→∞ y(t) = y * , lim t→∞ X(t) = X * , consequently lim t→∞ x(t, 0) = lim t→∞ β 0 ∞ τ x(t, a)da = lim t→∞ β 0 X(t) = β 0 X * .
Let ε > 0, then there exists t * > 0 such that for every t ≥ t * , we have |X(t) -X * | ≤ ε. Hence for t ≥ t * we get

∂ a x(t, a) + ∂ t x(t, a) = -µ 0 x(t, a) -γ 0 χ [τ,∞) (a)x(t, a), β 0 (X * -ε) ≤ x(t, 0) ≤ β 0 (X * + ε).
We thus have for a ≤ t

   β 0 (X * -ε)e -µ 0 a ≤ x(t, a) ≤ β 0 (X * + ε)e -µ 0 a if a ∈ [0, τ ], β 0 (X * -ε)e -µ 0 a e (a-τ )γ 0 y * ≤ x(t, a) ≤ β 0 (X * + ε)e -µ 0 a e (a-τ )γ 0 y * if a ∈ [τ, t].
We know that E 2 = (x * , y * ) must satisfy the following system

        
x * (a) = x * (0)e We readily see that y * is the same for (2.1) and (5.1) i.e.

y * = β 0 e -µ 0 τ -µ 0 γ 0 .

Moreover we have

x * (a) =   

x * (0)e -µ 0 a if a ∈ [0, τ ],

x * (0)e -µ 0 a e -γ 0 y * (a-τ ) if a ≥ τ, so that αγ 0 x * (0)

∞ τ e -µ 0 a e -γ 0 y * (a-τ ) da = δ whence x * (0) = δ αγ 0 e µ 0 τ (µ 0 + γ 0 y * ) = β 0 X * .

It is then clear that lim t→∞ x(t, a) = x * (a)

for every a ≥ 0 and the result follows.

Quatrième partie

Annexes

Annexe A

Quelques rappels

Nous faisons dans cette annexe quelques rappels concernant les opérateurs non bornés et les semigroupes. On rappelle des résultats de compacité et de positivité puis le principe du maximum fort de Hopf.

A.1 Quelques propriétés spectrales des opérateurs non bornés

Soient (X , • X ) un espace de Banach et 

A : D(A) ⊂ X → X

A.2 Quelques propriétés spectrales des semigroupes

Dans cette section, nous rappelons quelques résultats concernant la théorie des semigroupes. On pourra consulter les livres de Hille et Phillips [START_REF] Hille | Functional Analysis and Semigroups[END_REF], Pazy [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF], Nagel et al [START_REF] Nagel | One-Parameter Semigroups of Positive Operators[END_REF] ainsi que celui de Engel et Nagel [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF] pour plus d'informations. Définition A.2.1. Soit {T (t)} t≥0 une famille d'opérateurs linéaires bornés de X . On dit que {T (t)} t≥0 est un C 0 -semigroupe si les conditions suivantes sont satisfaites :

1. T (0) = Id X (l'opérateur identité dans X ) ; 2. T (t + s) = T (t)T (s) pour tout t, s ≥ 0 (propriété de semigroupe).

3. 0 ≤ t → T (t)x est continue pour tout x ∈ X (continuité forte).

On utilisera la notation {e tA } t≥0 ou {T A (t)} t≥0 pour désigner le semigroupe généré par A (si aucune confusion n'est possible, on s'autorisera la notation {T (t)} t≥0 ). On peut donner une majoration de la norme du semigroupe avec la est le type (ou taux de croissance) de {T (t)} t≥0 , que l'on note également ω 0 (A) puisqu'il y a une correspondance entre les semigroupes et les générateurs.

Définition A.2.6. On note K(X ) le sous-espace de L(X ) composé des opérateurs compacts sur X , c'est-à-dire qui envoie toute partie bornée de X sur une partie relativement compacte de X (dont l'adhérence dans X est compacte). On définit la norme essentielle de L ∈ L(X ) par

L ess := inf K∈K(X ) L -K X .
L'espace quotient L(X )/K(X ) est appelé Algèbre de Calkin et est une algèbre de Banach unitaire lorsqu'on la munit de la norme L = L ess où L = L + K(X ). Pour montrer la compacité de la résolvante, on donne l'équivalence suivante. 

A.4 Quelques résultats de positivité

Cette section concerne la positivité des opérateurs et des semigroupes. On se place dans toute cette section dans l'espace X = L 1 (Ω, µ) où (Ω, µ) est un espace mesuré avec Ω ⊂ R n , n ≥ 1. On notera X + = {f ∈ X : f (x) ≥ 0 p.p. x ∈ Ω} le cône positif de X et X le dual de X , puis on dénote par ., . le crochet de dualité entre L 1 et L ∞ . Pour f ∈ X , la notation f > 0 signifiera f ∈ X + et f = 0. 

A.7 Principe du maximum

On rappelle dans cette section le principe du maximum fort de Hopf. Soit u ∈ C 2 [a, b] une fonction qui satisfait l'inégalité u + g(x)u + h(x)u ≥ 0, x ∈ (a, b).

On suppose que h ≤ 0 et que g et h sont bornées sur tout sous-intervalle de (a, b). On a ainsi les deux théorèmes suivants, qui donnent une propriété quand le maximum de la fonction u est atteint respectivement à l'intérieur de (a, b) ou sur le bord. 

Annexe B

Compléments techniques au Chapitre 2

On donne dans cette section quelques compléments permettant de montrer que l'opérateur A défini dans la Section 2. On définit la fonction g η := φ η + η ψ η où η est un réel à déterminer pour que g η ∈ U . Vérifions que g η ∈ W 1,1 (R + ). On a 

≤ φ L 1 β L ∞ + ψ L 1 λ + λ 0 + µ 0
Par conséquent, on obtient 

ψ L 1 ≥ (λ + λ 0 + µ 0 -β L ∞ ) φ L 1 ≥ λ φ L 1 lorsque λ 0 ≥ β L ∞ -µ 0 .
1 -F λ + G λ L 1 . Donc f λ L 1 ≤ +∞ 0 β(u)G λ (u)du (1 -F λ )(λ + µ 0 ) + G λ L 1 ≤ β L ∞ G λ L 1 (1 -F λ )(λ + µ 0 ) + G λ L 1 < +∞.
Ainsi, f λ ∈ L 1 (R + ) et comme (λ + µ)f λ + f λ = φ alors on arrive à

f λ L 1 (R + ) ≤ φ L 1 + (|λ| + µ L ∞ ) f λ L 1 < +∞.

Finalement (f λ , y) ∈ D(A).

La génération d'un C 0 -semigroupe se montre grâce au théorème de Lumer-Phillips. La positivité du semigroupe se démontre en utilisant le Théorème A.4.2 où on est ramené à montrer la positivité de la résolvante de A. On se sert ensuite de la preuve de la Proposition B.3 où l'on a vu que, pour λ assez grand, on a y ≥ 0 et f λ (a) ≥ 0 pour tout a ≥ 0 dès que (φ, z) ∈ X + .

∂∂

  t x(t, a) + ∂ a x(t, a) = -µ(a)x(t, a), (1.5) où x(t, a) représente la densité de population à l'instant t ≥ 0 et d'âge a ∈ (0, a max ). Les fonctions β et µ étant respectivement les taux de reproduction et de mortalité des individus, la prise en compte des naissances ainsi que la condition initiale conduit à l'équation connue sous le nom de McKendrick-Von Förster t x(t, a) + ∂ a x(t, a) = -µ(a)x(t, a), x(0, a) = x 0 (a), x(t, 0) = amax 0 β(a)x(t, a)da, (1.6)

Dans le Chapitre 5 Définition 1 . 4 . 6 .

 5146 nous allons étudier l'attractivité d'un équilibre non trivial pour le modèle (1.4) grâce aux fonctions de Lyapunov dont on rappelle la définition. Soit D ⊂ X un sous-espace fermé de X . Une fonction L : X → R est dite de Lyapunov D si 1. L est continue sur D ; 2. la fonction t → L(Φ t (z)) est décroissante pour tout z ∈ D.

-a 0 µ 1 0

 01 (s)ds da, (la notation R 0 est choisie en référence au taux de reproduction discutée dans la Section 1.4.2) et R -= a β(a)e -a 0 µ(s)ds da où a 1 = sup{a ≥ 0 : | supp(γ) ∩ (0, a)| = 0} < +∞.

2

 2 (a) = x * 2 (0)e -a 0 µ(s)ds-y * a 0 γ(s)ds , x * 2 (0) = δ α ∞ 0 γ(a)e -a 0 µ(s)ds-y * a 0 γ(s)ds da -1

  lim sup t→+∞ X(t) < +∞ et lim sup t→+∞ y(t) < +∞.

Figure 1 Figure 1 Figure 1 . 4 -

 1114 Figure 1.2 -Extinction des populations

Figure

  Figure 1.5 -Convergence vers E 2

. 24 )

 24 et on suppose que b 0 -γ(0) > 0, b m + γ(m) > 0. (1.25) Sous certaines hypothèses sur les fonctions, on réécrit les équations (1.22)-(1.23)-(1.24) sous la forme matricielle

  The real part of the characteristic equation gives : ∞ 0 β(a)e -Re (λ)a cos(-Im (λ)a)e -a 0 µ(s)ds da = 1.

  , •) L 1 = 0 since the first component of f is non positive. Finally, with the second equation of (2.1), we get lim t→∞ y(t) = 0 and the global stability of E 0 follows. 2. Suppose that R 0 > 1 and define the function g : λ → ∞ 0 β(a)e -λa e -a 0 µ(s)ds da.

1 .

 1 Let ξ > S. The second equation of (2.14) and the definition of x * 1,ξ given in Proposition 2.3.2 imply λȳ = -δ + α ∞ 0 γ(a)ξe -a 0 µ(s)ds da ȳ. Defining λ = -δ + α ∞ 0 γ(a)ξe -a 0 µ(s)ds da, we get λ > 0 since ξ > S. The first and third equations of (2.14) give us 1 -∞ 0 β(a)e -a 0 (µ(s)+ λ)ds da x(0) + ξ ȳ ∞ 0 β(a)γ(a)e -a 0 µ(s)ds da = 0. Since λ > 0, we get ∞ 0 β(a)e -a 0 (µ(s)+ λ)ds da < R 0 .

Theorem 2 . 3 . 8 .

 238 If γ(a) = γ 0 , ∀a ≥ 0 then λ = ±i √ y * γ 0 δ. Proof. By solving BX = C, we need to have det(B) = 0 to get a non zero solution X. It is then equivalent to have b 1 b 4 = b 2 b 3 . Since b 2 = δγ 0 αΓλ ∞ 0 β(a)e -a 0 (µ(s)+y * γ(s))ds da -∞ 0 β(a)e -a 0 (µ(s)+λ+y * γ(s))ds da , then, with (2.8), we get b 2 = δγ 0 αΓλ 1 -∞ 0 β(a)e -a 0 (µ(s)+λ+y * γ(s))ds da = δγ 0 b 1 αΓλ .

Corollary 2 . 3 . 13 .

 2313 ] and then y (t * + (a 2 -a 1 )) ≥ 0 which contradicts (2.15). Finally we have lim t→∞ y(t) = ∞ and the proof is completed. Prey population and predator population are uniformly strongly persistent.
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 21 Figure 2.1 -Convergence to E 0

Figure 2 . 2 -

 22 Figure 2.2 -Convergence to a periodic function
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 23224 Figure 2.3 -Convergence to E 2

Figure 2

 2 Figure 2.5 -Periodic solutions

Remark 3 . 1 . 1 .

 311 According to the general criterion of weak compactness (see e.g. Section 4 in[START_REF] Weis | A generalization of the Vidav-Jorgens perturbation theorem for semigroups and its application to transport theory[END_REF]), the third hypothesis amounts to sup y∈[0,m] m 0 β(s, y)ds < ∞ and lim |E|→0 sup y∈[0,m] E β(s, y)ds = 0and is satisfied as soon as there exists β ∈ L 1 (0, m) such that β(s, y) ≤ β(s) a.e. (s, y) ∈ [0, m] 2 . This is the case for example if β is continuous on [0, m] 2 .

(3. 3 )Theorem 3 . 1 . 3 .

 3313 Consequently we get supp u 1 = (inf supp h 1 , m] and supp u 2 = (inf supp h 2 , m]. The operator A generates a positive C 0 -semigroup {U (t)} t≥0 of bounded linear operators on X .

Theorem 3 . 1 . 4 .

 314 . Let the following assumptions ∀ε ∈ (0, m), The C 0 -semigroup {U (t)} t≥0 is positive. Moreover, it is irreducible if and only if the assumptions (3.4)-(3.5)-(3.6) are verified.

where supp h 3 =

 3 (inf supp h 2 , m]. Since by assumption (3.6) we have sup supp c 2 = m then supp c 2 ∩ supp h 3 = ∅.

m k 1 β

 1 (s, y)h 1 (y)dy ≤ m 0 β(s, y)h 1 (y)dy = h 2 (s) = 0 then, since h 1 (y) > 0 for every y ∈ (k 1 , m], we get a.e. s ∈ [0, k 1 ],

∞ n=0 (B 3

 n=03 (λI -A) -1 ) n H = (h, 0), where inf supp h = 0. Indeed, by contradiction, suppose that k := inf supp h > 0. Then with Lemma 3.1.2 we get (λI -A) -1 (h, 0) = (h 1 , 0) where supp h 1 = (k, m] and B 3 (λI -A) -1 (h, 0) = (h 2 , 0) where inf supp h 2 < k by using Assumption (3.4), which is absurd. So it remains to compute (λI -A) -1 (I + B 2 (λI -A) -1 )H for H = (h, 0) ∈ X -{0} where inf supp h = 0. Using Lemma 3.1.2 we have (λI -A) -1 H = (h 1 , 0), where h 1 (s) > 0 for every s ∈ (0, m]. Using Assumption (3.6) we get

  (a) If (3.4) is not verified then ∃ ε ∈ (0, m) :

which ends the proof. Remark 3 . 1 . 9 .Theorem 3 . 1 . 10 . 1 .m δ 2 β

 319311012 Since s(A + B 1 + B 2 ) = -∞, it is then necessary and sufficient that s(A) > -∞ to get a spectral gap. It is obtained under the following assumption∃ δ ∈ (0, m) : δ 0 m δ β(s, y)dyds > 0, (3.10) as stated in the following theorem. The spectral bound of A is finite, i.e. s(A) > -∞, if and only if the the assumption (3.10) is verified. Proof. Suppose that (3.10) is verified. By continuity of the integral, we can find δ 2 ∈ (δ, m) such that δ 0 (s, y)dyds > 0.

2 β 2 βm δ 2 β

 222 Indeed by contradiction, if inf suppv 2 > δ then v 2 ≡ 0 on [0, δ]. We would have a.e. s ∈ [0, δ] m δ (s, y)v 1 (y)dy ≤ m 0 β(s, y)v 1 (y)dy = v 2 (s) = 0.So a.e. s ∈ [0, δ] we would have m δ (s, y)dy = 0 since v 1 (s) > 0 for every s ∈ [δ 2 , m], and consequently δ 0 (s, y)dyds = 0, which contradicts (3.11). Consequently using Lemma 3.1.2 we get

v 2

 2 , y)v 1 (y)dy since v 1 ≡ 0 on [0, k]. Finally, using (3.13) with δ = k we get (s) = 0 a.e. s ∈ [0, k] and then (λ

is weakly compact. Remark 3 . 2 . 1 .

 321 According to the general criterion of weak compactness, the third hypo-∞) E β(s, y)ds = 0. Using (3.14), we define the operator A ∞ by

Remark 3 . 2 . 13 .

 3213 If l µ = 0 or c 2 = 0 we see that s(B ∞ ) = 0, as with Theorem 3.2.10. The case where l 1 = 0 leads to s(B ∞ ) = max{-l µ , -c 2 }

  so that for every s, y ≥ 0 we have β(s, y) ≥ β 1 (s).

Remark 4 . 1 . 1 .

 411 According to the general criterion of weak compactness (see e.g. Section 4 in [156]), the third hypothesis amounts to sup y∈[0,m] m 0 β(s, y)ds < ∞ and lim |E|→0 sup y∈[0,m] E β(s, y)ds = 0

  .12) (a) Any nonempty open set of the real line is a finite or countable union of disjoints open intervals (see [3] Theorem 3.11, p. 51) so

  Now we prove that (λI -A)U = H i.e. (4.14)-(4.15)-(4.16) are satisfied. An integration by parts of (4.17) with v ∈ C ∞ c (0, m) implies (4.14). Moreover, an integration by parts of (4.17) with v ∈ C ∞ (0, m) and v(0) = 1, v(m) = 0 (respectively v(0) = 0, v(m) = 1) gives us (4.15) (resp. (4.16)).

Remark 4 . 1 . 5 .

 415 Theorem 4.1.4 provides us with the existence of a real leading eigenvalue since s(A) ∈ σ(A) (see Theorem A.4.5).

Theorem 4 . 1 . 7 .

 417 If K = 0 then the semigroup {U (t)} t≥0 generated by A has asynchronous exponential growth.

  c) for any finite c so that u ∈ W 2,1 (0, c) for any finite c and(d(u) ) -(γu) -µu = g. Note that (4.23) shows that |f n (s) -z(s)| ≤ |f n (0) -(d(0)h 0 -γ(0)u 0 )| + ∞ 0 |f n (τ ) -(g(τ ) + µ(τ )u(τ ))| dτ → 0 so f n (s) → z(s) = d(s)u (s) -γ(s)u(s) uniformly on R + and (4.22) implies lim s→∞ d(s)u (s) -γ(s)u(s) = 0. Thus U ∈ D(A ∞ ) and G = A ∞ U .

3 .

 3 We consider now the dissipativity of (A ∞ -ωI) for ω large enough. Let λ > 0, U = u, u 0 T ∈ D(A ∞ ) and H = ((λ + ω)I -A ∞ )U .

0 ( 0 ( 0 (

 000 we get, for every finite m > 0 m du ) sign(u) ≤ d(m)u (m)sign(u(m)) -d(0)u (0)sign(u(0)) and m γu) sign(u) = γ(m)|u(m)| -γ(0)|u(0)|. Consequently m du ) sign(u) -m 0 (γu) sign(u) ≤ (d(m)u (m) -γ(m)u(m)) sign(u(m)) + l 0 where l 0 = -d(0)u (0)sign(u(0)) + γ(0)|u(0)|. Since lim m→∞ d(m)u (m) -γ(m)u(m) sign(u) ≤ l 0 .

(4. 26 ) 0 (

 260 One can show that the bilinear form defined by the left hand of (4.26) is coercive. By Theorem A.6.1, there exists a unique u ∈ H 1 (R + ) satisfying (4.26) for all v ∈ H 1 (R + ). It follows easily that u ∈ H 2 (R + ). One sees that U = (u, u(0)) satisfies (4.24)-(4.25). Since u ∈ H 2 (R + ) then u ∈ W 2,1 (0, c) for every c > 0 andlim m→∞ u(m) = 0, lim m→∞ u (m) = 0. Since γ, d ∈ L ∞ (R + ) then lim m→∞ d(m)u (m) -γ(m)u(m) = 0.Let us prove that u ∈ L 1 (R + ). Consider λ := λ + ω, with λ, ω > 0. Since( λ + µ(s))u(s) + (γu) (s) -(du ) (s) = h(s), s ∈ (0, ∞), (λ + ρ 0 )u 0 -(b 0 -γ(0))u (0) = h 0 , then m λ + µ(s)) |u(s)| ds = sign(u)andu (0)sign(u(0)) = ( λ + ρ 0 )|u 0 | b 0 -γ(0) -h 0 sign(u(0)) b 0 -γ(0)so, using the above estimates,( λ + ω) ) + (d(m)u (m) -γ(m)u(m)) sign(u(m)) -d(0)u (0)sign(u(0)) +γ(0)|u(0)|. The fact that lim m→∞ d(m)u (m) -γ(m)u(m) = 0 gives ( λ + ω) ∞ 0 |u(s)| ds ≤ ∞ 0 hsign(u) -d(0)u (0)sign(u(0)) + γ(0)|u(0)| < ∞

  by the dominated convergence theorem. Note that sup s |σ n (s)| = sup s |σ (s)| < ∞ sup s |σ n (s)| = sup s |σ (s)| < ∞ and the supports of σ n and σ n are included in [n, n + 1] so

  by the dominated convergence theorem because du, d u and γu belong to L 1 (R + ). The most tricky term isσ n (du ) . Since lim s→∞ d(s)u (s) -γ(s)u(s) = 0, for any ε > 0 there exists s > 0 such that |d(s)u (s) -γ(s)u(s)| ≤ ε (s ≥ s). Then |d(s)u (s)| ≤ ε + |γ(s)u(s)| (s ≥ s) and R + |σ n (s)d(s)u (s)| ds = n+1 n |σ n (s)d(s)u (s)| ds )u(s)| ds (for n large enough) so lim sup n→∞ R + |σ n (s)d(s)u (s)| ds ≤ ε sup s |σ (s)| since γu ∈ L 1 (R + ). Hence σ n (du ) → 0 in L 1 (R + )since ε is arbitrary. This ends the proof.

ρ 2 (

 2 s) = (λ + µ(s) + γ (s))/d(s) > 0 ∀s for λ large enough and ρ 3 = h/d ≥ 0.

β 1

 1 (s)ds so the boundary condition (4.37) is verified if and only if

Remark 4 . 3 . 2 .

 432 In this case we can thus use Theorem 4.2.5 to get the asynchronous exponential growth of the semigroup generated by the operator A ∞ . Note that we took d ≡ 1 for convenience but we can take d ∈ R * + as well. The boundary condition (4.37) will be the same. However the Equation (4.36) will become (λ + µ)u + γu -du = β 1 then it suffices to divide by d > 0 to get

Proposition 5 . 3 . 1 .

 531 E 0 is strongly unattractive in S 2 .Proof. Suppose by contradiction that there exists z := (φ, y) ∈ S 2 such that ω(z) = E 0 . Then it would imply that lim t→∞ X(t) = 0, lim t→∞ y(t) = 0 and consequently, since lim x→0 + g(x) = ∞ we would have lim t→∞ F (φ,y) (t) = ∞ which contradicts Lemma 5.2.3.

Lemma 5 . 3 . 4 .

 534 g is zero only at 1, we obtain lim η→0 φ η (0) = X * , lim η→0 y η = y * .So considering η > 0 small enough we get (φ(0), y)-E * R 2 ≤ ρ and (φ(0), y) ∈ B(E * , ρ). For every η > 0, there exists ρ > 0 such that B(E * , ρ) ⊂ L η .

-a 0 µ

 0 (s)ds-y * a 0 y(s)ds , x * (0) 1 -∞ 0 β(a)e -a 0 µ(s)ds-y * a 0 γ(s)ds da = 0, y * [α ∞ 0 γ(a)x * (a)da -δ] = 0.

Définition A. 1 . 2 .

 12 un opérateur linéaire non borné sur X . On dit que A est fermé si son graphe Γ(A) := {(u, Au) : u ∈ D(A)} est fermé dans X × X . Cette propriété se traduit aussi par Proposition A.1.1 ([16] Théorème 2.1, p. 5). Un opérateur A est fermé si et seulement si, pour toute suite (x n ) n≥1 ⊆ D(A) telle que lim n→+∞ x n = x ∈ X et lim n→+∞ Ax n = y ∈ X , on a x ∈ D(A) et Ax = y. Lorsque A est fermé, alors D(A) muni de la norme du graphe u D(A) := u X + Au X est un espace de Banach. Un sous-espace D de D(A) est appelé un coeur de A si D est dense dans D(A) pour la norme du graphe.

Soit A :

 : D(A) ⊂ X → X un opérateur fermé.On appelle ensemble résolvant de A l'ensemble ρ(A) := {λ ∈ C, λ -A : D(A) → X est bijectif}.Son complémentaire dans le plan complexe est appelé le spectre de A et sera noté σ(A).On notera que, si λ ∈ ρ(T ), l'inverseR(λ, A) := (λ -A) -1est défini sur tout l'espace X et est fermé. Par le théorème du graphe fermé, il est borné, i.e. R(λ, A) ∈ L(X ), où L(X ) désigne l'ensemble des opérateurs bornés sur X . Cet opérateur est appelé la résolvante de A au point λ. L'ensemble résolvant ρ(A) est un ouvert du plan complexe et l'applicationρ(A) λ → R(λ, A)est analytique sur chaque composante connexe de ρ(A). La résolvante satisfait à l'équation fonctionnelle suivante dite identité de la résolvanteR(λ, A) -R(µ, A) = (µ -λ)R(λ, A)R(µ, A), λ, µ ∈ ρ(A).Le spectre de A est donc un fermé de C. Lorsque A est borné, σ(A) est un compact non vide et on appelle alors rayon spectral de A le nombrer σ (A) := max{|λ| : λ ∈ σ(A)}.On définit également la borne spectrale de A par s(A) := sup{Re λ : λ ∈ σ(A)}, qui permet de définir le spectre périphérique σ + (A) := {λ ∈ σ(A) : Re λ = s(A)}. Un sous-ensemble important du spectre est le spectre ponctuel σ p (A) := {λ, λ -A : D(A) → X n'est pas injectif}.Un élément de σ p (A) est dit valeur propre de A et il lui correspond alors un vecteur D(A) x ≡ 0 tel que (λ -A)x = 0 que l'on appelle vecteur propre (ou fonction propre lorsque X est un espace de fonctions) correspondant à λ.Un élément µ ∈ σ(A) est dit isolé s'il existe une série de Laurent autour de µ :(λ -A) -1 = +∞ n=-∞ (λ -µ) n U n , où U n = 1 2iπ C (λ -A) -1 (λ -µ) n+1 dλ, n ∈ Z avec C unchemin positivement orienté centré en µ. On dit que µ est un pôle de la résolvante s'il existe k > 0 tel que U -k = 0 et U -n = 0 pour tout n > k. Dans ce cas, k est appelé ordre du pôle et µ est une valeur propre de A. On appelle alors multiplicité algébrique de µ le nombre m a := dim ker(µ -A) k ≤ +∞.

Proposition A. 2 . 2 (Définition A. 2 . 4 .

 2224 [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] Théorème 2.2, p. 4). Soit {T (t)} t≥0 un C 0 -semigroupe. Alors il existe deux constantes ω ≥ 0 et M ≥ 1 telles que T (t) ≤ M e ωt , pour tout t ∈ [0, +∞). Définition A.2.3. Si, dans la majoration précédente, on a ω = 0, alors le semi-groupe est dit uniformément borné. Si de plus M = 1, on a un C 0 -semigroupe dit de contraction, sinon on dira seulement de quasi-contraction.Pour tout C 0 -semigroupe {T (t)} t≥0 , on peut associer son générateur infinitésimal (ou juste générateur) défini parAx = lim t→0 T (t)x -x t de domaine D(A) := {x ∈ X : lim t→0 T (t)x -x t existe}.On peut vérifier que l'opérateur A ainsi défini est fermé et à domaine dense. On énonce maintenant le théorème de Lumer-Phillips (voir e.g. [115, Théorème 4.3, p. 14]) permettant de vérifier qu'un opérateur est bien un générateur. Il requiert auparavant la notion de dissipativité. Un opérateur linéaireA : D(A) ⊂ X → X est dit dissipatif si, pour tout x ∈ D(A) et tout λ > 0, on a (λI -A)x ≥ λ x .Théorème A.2.5 (Lumer-Phillips). Supposons que A est à domaine dense. S'il existe ω ≥ 0 tel que (ωI -A) soit dissipatif et s'il existe λ 0 > ω tel que (λ 0 I -A) soit surjectif, alors A est le générateur infinitésimal d'un semigroupe {T (t)} t≥0 , qui satisfait T (t) ≤ e ωt pour tout t ≥ 0. On remarque que la résolvante R(λ, A) peut s'écrire comme transformée de Laplace du semigroupe : R(λ, A) = ∞ 0 e -λt T (t)ds pour tout Re λ > ω 0 (A), où ω 0 ({T (t)} t≥0 ) := lim t→+∞ ln( T (t) X ) t

Définition A. 2 . 7 .

 27 Soit {T (t)} t≥0 un C 0 -semigroupe de générateur infinitésimal A. Alors on définit le taux de croissance essentiel ou (type essentiel) de A (et de {T (t)} t≥0 ) parω ess ({T (t)} t≥0 ) := lim t→+∞ ln( T (t) ess ) t ,que l'on notera aussi ω ess (A). Les deux théorèmes suivants, démontrés par Engel et Nagel[START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF], donnent d'une part une caractérisation du type essentiel par le type et la borne spectrale et impliquent d'autre part l'invariance du type essentiel par tout opérateur compact.Théorème A.2.8([45] Corollaire IV. 2.11, p. 258). On a 1. ω 0 (A) = max{ω ess (A), s(A)} ;2. pour tout ω > ω ess (A), l'ensemble σ ω = {λ ∈ σ(A), Re λ > ω} est formé au plus de valeurs propres isolées de multiplicité algébrique finie.Théorème A.2.9 ([45] Proposition IV. 2.12, p. 258). Pour tout opérateur K ∈ K(X ), on a ω ess (A + K) = ω ess (A).Afin de montrer par exemple le comportement exponentiel asynchrone d'un semigroupe, on donne la définition suivante. Définition A.2.10. Soit {T (t)} t≥0 un C 0 -semigroupe généré par l'opérateur A. On dit que A (ou {T (t)} t≥0 ) a un gap spectral si ω ess (A) < ω 0 (A).

A. 3

 3 Résultats de compacité (faible)D'après la Définition A.2.7 et le Théorème A.2.9, on voit que les opérateurs compacts jouent un rôle fondamental pour déterminer le type essentiel. Un moyen classique de montrer la compacité (forte) d'un opérateur dans les espaces L p est le théorème de Riesz-Fréchet-Kolmogorov ([160, Théorème X.1, p. 275]).Théorème A.3.1 (Riesz-Fréchet-Kolmogorov). Soit B un ensemble borné de L p (R n ) avec p ∈ [1, +∞) et n ≥ 1. Alors B est relativement compact si et seulement si on a 1. lim h→0 τ h f -f L p (R n ) = 0 uniformément sur B, où τ h f est la translation de f par h, i.e. τ h f (x) = f (x -h) ; 2.lim r→+∞ |x|>r |f (x)| p dx = 0 uniformément sur B. Lorsque la résolvante d'un opérateur est compacte, on peut être plus précis quant à son spectre. Théorème A.3.2 ([45] Corollaire IV. 1.19, p. 248). Si A est à résolvante compacte alors le spectre de A est composé (au plus) de valeurs propres isolées de multiplicité algébrique finie.

Théorème A. 3 . 3 (Définition A. 3 . 5 .

 3335 [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF] Proposition II. 4.25, p. 117). Soit (A, D(A)) un opérateur sur X avec ρ(A) = ∅ alors A est à résolvante compacte si et seulement si l'injection canonique i : (D(A), • A ) → X est compacte.De plus, on peut énoncer le théorème de Rellich-Kondrachov (voir[START_REF] Evans | Partial Differential Equations[END_REF] Théorème 5.7.1, p. 272), qui permet d'avoir la compacité de l'injection canonique dans certains cas.Théorème A.3.4 (Rellich-Kondrachov). Soit Ω ⊂ R un ouvert borné. Alors l'injection canonique i : W 1,1 (Ω) → L 1 (Ω) est compacte.Dans le cadre L 1 , la notion de compacité faible joue un rôle clé. Un ensemble borné est dit faiblement compact s'il est compact pour la topologie faible. De plus, l'opérateur A ∈ L(X ) est faiblement compact s'il envoie tout borné de X sur un ensemble relativement faiblement compact de X (dont l'adhérence dans X est faiblement compacte). Dans le cadre L 1 , on donne une caractérisation plus précise d'ensemble relativement faiblement compact. Théorème A.3.6 ([156], Section 4). Soient I ⊂ R et U ⊂ L 1 (I). Alors U est relativement faiblement compact si et seulement si • sup f ∈U I |f (s)|ds < +∞ ; f (s)ds = 0. Une propriété importante des opérateurs faiblement compacts est la suivante. Théorème A.3.7 ([41] Corollaire VI.13. p. 510). Si A est un opérateur faiblement compact de L 1 alors l'opérateur composé A 2 est compact.

Définition A. 4 . 1 .Théorème A. 4 . 2 .

 4142 Soient A ∈ L(X ) un opérateur et {T (t)} t≥0 un C 0 -semigroupe. On dit que 1. A est positif s'il laisse le cône positif X + invariant. On le notera A ≥ 0 ; 2. {T (t)} t≥0 est positif si chaque opérateur T (t) est positif ; 3. A est strictement positif ('positivity improving') si, pour chaque f ∈ X , f > 0 etx ∈ X , x > 0, on a Af, x > 0 : il envoie les fonctions positives non identiquement nulles sur des fonctions strictement positives presque partout ;4. A est irréductible si, pour chaque f ∈ X , f > 0 et x ∈ X , x > 0, il existe un entier n tel que A n f, x > 0 ; 5. {T (t)} t≥0 est irréductible si, pour chaque f ∈ X , f > 0 et x ∈ X , x > 0, il existe t > 0 tel que T (t)f, x > 0.Voici quelques résultats faisant le lien entre ces définitions. Soit {T (t)} t≥0 un C 0 -semigroupe sur X de générateur A. Alors le semigroupe est positif (respectivement irréductible) si et seulement si, pour λ assez grand, la résolvante R(λ, A) est positive (respectivement strictement positif) ([START_REF] Clément | One-Parameter Semigroups[END_REF], p. 165). De plus, A est irréductible si et seulement s'il n'existe pas de sous-espace de la forme L 1 ( Ω), Ω ⊂ Ω, 0 < | Ω| < |Ω| qui soit invariant par A ([START_REF] Mokhtar-Kharroubi | Mathematical Topics in Neutron Transport Theory : New Aspects[END_REF], p. 101).

Théorème A. 7 . 1 (

 71 [START_REF] Protter | Maximum Principles in Differential Equations[END_REF], Théorème 3, p. 6). Sous les hypothèses précédentes, si u atteint son maximum M ≥ 0 en un point c ∈ (a, b), alors u(x) ≡ M pour tout x ∈ (a, b). Théorème A.7.2 ([124], Théorème 4, p. 7). On suppose les hypothèses précédentes, que u est une solution non constante qui possède une dérivée à droite en a et une dérivée à gauche en b. Si u atteint son maximum (positif ou nul) en a et si la fonction g(x) + (x -a)h(x) est minorée en x = a, alors u (a) < 0. De même, si u atteint son maximum en b et si la fonction g(x) -(b -x)h(x) est majorée en x = b, alors u (b) > 0.

  2.2 est bien générateur d'un C 0 -semigroupe. Proposition B.1. L'ensemble D(A) est dense dans X . Preuve : On se sert de [11, Lemme 2.2] pour la preuve. On poseU = {φ ∈ L 1 (R + ) : φ + µφ ∈ L 1 (R + ) et φ(0) = +∞ 0 φ(a)β(a)da} puis on définit l'ensemble E = {φ ∈ L 1 (R + ) : supp(φ) ⊂ [0, +∞)}qui est dense dans L 1 (R + ). Ainsi, il suffit de montrer que U est dense dans E. Soit φ ∈ E. Le but est de construire une fonction de U qui va converger vers φ. Soit m < +∞ tel que φ(a) = 0 pour tout a ∈ (m, +∞), qui existe par définition de E. Pour tout η ∈ (0, m) ,on définitφ η (a) = φ(a) si a ≥ η φ(η) si 0 ≤ a ≤ η et ψ η (a) = 0 si a ≥ η, 1 -a/η si 0 ≤ a ≤ η.

Proposition B. 2 .

 2 ) + η (1 -a/η)|da + +∞ η |φ(a)|da ≤ η|φ(η)| + η η + φ L 1 (R + ) < +∞. Ainsi g η ∈ L 1 (R + ),puis on calcule ∞ 0 dg η da da = +∞ 0 |φ η (a) + η ψ η (a)|da = η 0 1 η da + +∞ η |φ (a)|da≤ 1 + φ L 1 (R + ) < +∞ Par conséquent, g η ∈ W 1,1 (R + ) et il faut ensuite que g η (0) = +∞ 0 β(a)g η (a)da ⇔ φ η (0) + η ψ η (0) = +∞ 0 β(a)g η (a)da ⇔ φ(η) + η = +∞ 0 β(a) (φ η (a) + η ψ η (a)) da ⇔ η = +∞ 0 β(a)φ η (a)da -φ(η) 1 -+∞ 0 β(a)ψ η (a)da .Par convergence dominée, on montre quelim η→0 +∞ 0 ψ η (a)β(a)da = 0. Par conséquent, il existe η 0 ≤ m tel que, pour tout η ≤ η 0 , on a 0 ≤ +∞ 0 ψ η (a)β(a)da ≤ 1/2.Ainsi, pour tout η ∈ [0, η 0 ), η est bien défini et on a| η | ≤ φ η L 1 (R + ) β L ∞ (R + ) + |φ(η)| 1 -+∞ 0 ψ η (a)β(a)da puis | η | ≤ 2 φ η L 1 (R + ) β L ∞ (R + ) + |φ(η)| < +∞.La fonction η → η est donc bornée sur [0, η 0 ]. De plus lim η→0 φ η -φ L 1 = 0 et lim η→0 ψ η L 1 = 0. Ainsi lim η→0 η ψ η L 1 = 0 et donc lim η→0 g η -φ L 1 = 0. Par conséquent, U est dense dans E qui est dense dans L 1 (R + ). Il existe λ 0 ≥ β L ∞ -µ 0 tel que A -λ 0 I est dissipatif. Preuve : On se sert de [153, Proposition 3.8, p. 89] dans lequel Webb utilise la notion d'opérateur accrétif (A est accrétif si et seulement si -A est dissipatif). On sait que A -λ 0 I est dissipatif si et seulement si, pour tout x ∈ D(A) et tout λ > 0, on aλx -Ax + λ 0 x X ≥ λ x X . Soient (φ, z) ∈ D(A) et λ > 0. On veut montrer que φ + (λ + µ + λ 0 )φ L 1 (R + ) + |(δ + λ + λ 0 )z| ≥ λ( φ L 1 (R + ) + |z|)pour un λ 0 > 0 assez grand. Il suffit en fait de vérifier que φ+ (λ + µ + λ 0 )φ L 1 (R + ) ≥ λ φ L 1 (R + ) . On pose ψ = φ + (λ + µ + λ 0 )φ et,après intégration, on obtient φ(a) = φ(0)e -a 0 (λ+λ 0 +µ(r))dr + a 0 ψ(s)e -a s (λ+λ 0 +µ(r))dr ds Compléments techniques au Chapitre 2 avec φ(0) = +∞ 0 φ(a)β(a)da. En intégrant par rapport à a, on obtient la majoration suivante : φ L 1 (R + ) ≤ φ(0) )e (s-a)(λ+λ 0 +µ 0 ) dsda ≤ φ(0) λ + λ 0 + µ 0 + +∞ 0 ψ(s)e s(λ+λ 0 +µ 0 ) +∞ s e -a(λ+λ 0 +µ 0 ) dads

Proposition B. 3 .-a 0 (

 30 Il existe ω 0 ≥ β L ∞ -µ 0 tel que, pour tout λ ≥ ω 0 , l'opérateur λI -A est surjectif.Preuve : On se sert de[START_REF] Perasso | Parameter identifiability for systems described by partial differential equations[END_REF] Lemme 4, p. 76] et on procède par analyse-synthèse. Soit(φ, z) ∈ X et λ > 0. Si λI -A est surjectif, alors il existe (ψ, y) ∈ D(A) tel que (λI -A) λ + µ)ψ = φ ⇔ ψ(a) = ψ(0)e -a 0(λ+µ(r))dr + a 0 φ(s)e -a s (λ+µ(r))dr ds(λ + δ)y = z ⇔ y = z λ + δ (B.1) On a bien y ∈ R car z ∈ R et λ, δ > 0. De plus, on veut que ψ(0) = +∞ 0 β(a)ψ(a)da, ce qui est équivalent à ψ(0) = +∞ 0 β(a) ψ(0)e -a 0 (λ+µ(r))dr + a 0 φ(s)e -a s(λ+µ(r))dr ds da.Posons la fonctionG λ : a → r))dr da.Alors l'équation précédente est équivalente àψ(0) [F λ -1] + +∞ 0 β(a)G λ (a)da = 0 d'où ψ(0) = +∞ 0 β(a)G λ (a)da 1 -F λ .Annexe B On considère alors la fonctionf λ : a → +∞ 0 β(u)G λ (u)du 1 -F λ e -a 0 (λ+µ(s))ds + G λ (a).Par conséquent, f λ est solution de la première équation de (B.1) et vérifief λ (0) = +∞ 0 β(a)f λ (a)da.Il ne reste donc plus qu'à montrer quef λ ∈ W 1,1 (R + ). Puisqueβ(a)e -a 0 (λ+µ(r))dr ≤ β(a) qui est indépendant de λ et lim λ→+∞ β(a)e -a 0 (λ+µ(s))ds = 0, donc par convergence dominée, on obtient lim λ→+∞ F λ = 0. De plus, comme F λ ≥ 0 pour tout λ > 0 alors il existe ω 0 assez grand tel que pour tout λ ≥ ω 0 on a F λ < 1. Par conséquent, pour tout λ ≥ ω 0 , f λ (a) ≥ 0 pour tout a ≥ 0 et f λ est bien définie. De plus, on a G λ ∈ L 1 (R + ) et f λ L 1 ≤ +∞ 0 β(u)G λ (u)du +∞ 0 e λ+µ(s))ds da

  'irréductibilité du semigroupe n'intervient pas de la même manière dans les modèles (1.2) et (1.3). Pour le premier modèle, elle est liée au terme intégral et n'est pas toujours satisfaite. Le comportement (1.13) a ainsi lieu dans ce cas. Pour le second modèle, elle est toujours satisfaite grâce au terme diffusif

	m	
	0	β(s, y)u 1 (t, y)dy,
	Théorème 1.4.13 ( [29], Théorème 9.11, p. 224). Soit {T (t)} t≥0 un C 0 -semigroupe positif
	de générateur A sur X . Si	
	ω ess (A) < ω 0 (A)	(1.12)

et si {T (t)} t≥0 est irréductible, alors {T (t)} t≥0 a la propriété de croissance exponentielle asynchrone et le projecteur P 0 est de rang un. Remarque 1.4.14. On se réfère à Webb [154, Proposition 2.3] et Thieme [141, Théorème 2.7] pour des résultats similaires dans des espaces de Banach. Lorsque le semigroupe n'est pas irréductible, on a le résultat suivant. Théorème 1.4.15 ( [29], Théorème 9.11, p. 224). Soit {T (t)} t≥0 un C 0 -semigroupe positif de générateur A sur X . Si A possède un gap spectral, alors lim t→+∞ e -s(A)t T (t) -e tD P 0 X = 0 (1.13) où P 0 est un projecteur de rang fini dans X et D = (λ 0 -A)P 0 . Lorsque le semigroupe est irréductible, s(A) est semi-simple (i.e. est un pôle simple de la résolvante de A) et il y a comportement asynchrone puisque D = 0. L

  La fonction µ représente la mortalité (uniquement dans l'état actif) et les fonctions c 1 et c 2 dénotent les taux de transition entre l'état de prolifération et de quiescence, ainsi qu'entre l'état de quiescence et de prolifération. Les cellules sont supposées naître dans l'état proliférant :

a),

(1.14) 

avec 0 < a < a max < +∞, t > 0. De plus, u 1 (t, a) et u 2 (t, a) représentent respectivement les densités de populations d'âge a et à l'instant t, à l'état proliférant et à l'état de repos.

Table 1 .

 1 1 Cycle limite ou convergence vers E 2 Solutions non bornées 1 -Plusieurs comportements asymptotiques On voit en effet apparaître numériquement la convergence vers E 2 ou vers une fonction périodique (voir Figures 1.4 et 1.5). De manière schématique, on résume les différents comportements obtenus dans la Table 1.1.

  dénote la densité d'individus de taille s ∈ [0, m] au temps t ≥ 0 pour m < +∞. À cela sont rajoutées des conditions aux bords de Feller en s = 0 et s = m :

	où u(t, s)	
	y)u(t, y)dy,	(1.22)

  1 désigne l'espace de Sobolev des fonctions L 1 dont les dérivées au sens faible d'ordre un et deux sont également dans L 1 . En effet, en plus des arguments de dissipativité de[START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF], on montre directement que l'opérateur est fermé, densément défini et qu'il satisfait la condition du surjectivité. Ainsi, on donne un résultat de génération avec un générateur explicite. En particulier, la connaissance de D(A) permet d'affirmer que A est à résolvante compacte.Dans[START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF], les auteurs montrent que {e tA } t≥0 est irréductible sous l'hypothèse que β est continue sur [0, m] 2 et β(., .) > 0.

(1.28) 

On montre ici que l'hypothèse (1.28) de stricte positivité n'est pas nécessaire. En effet, e tA ≥ e tA et on montre que {e tA } t≥0 est irréductible en utilisant le principe du maximum de Hopf. En particulier, {e tA } t≥0 est irréductible même si β = 0. Le fait que la résolvante (λ -A) -1 soit compacte et irréductible implique grâce au théorème de de Pagter que

  la solution du problème (1.35) est bornée. Le caractère borné et le fait que L * soit une fonction de Lyapunov sur S 3 implique [138] que pour tout z ∈ S 3 , l'ensemble ω(z) est non vide et est contenu dans le sous-ensemble invariant maximal de

  positivity improving then our assumption on β imply thatG |L 1 (I) : L 1 (I) → L 1 (I)is positivity improving too. Since G |L 1 (I) is weakly compact then (G |L 1 (I) ) 2 is compact (see e.g. Theorem A.3.7) and irreducible so

	r σ G 2 |L 1 (I) > 0
	(see Theorem A.4.7) and finally

  positivity improving then our assumption on β imply thatK |L 1 (I) : L 1 (I) → L 1 (I)is positivity improving too. Since K |L 1 (I) is weakly compact then (K |L 1 (I) ) 2 is compact (see Theorem A.3.7) and irreducible so

	r σ K	2 |L 1 (I) > 0
	(see Theorem A.4.7) and finally	
	r σ K |L 1 (I) > 0.
	Remark 4.2.6. Note that if	
	lim λ→s(A∞)	

  ρ 1 ), ∀t ≥ 0. Section 5.4. Back to the PDE model We can then conclude of the attractiveness of E * in some case. If (5.5) is not verified, then E * is globally asymptotically stable in S 3 (hence in S 2 ). ∈ S 3 . Then the global stability of E * (and E * ) in the basin S 3 under the assumption (5.5) is a consequence of Proposition 5.3.2 and Proposition 5.1.9. Using the same argument as for proving Corollary 5.2.5, we get the global stability in the basin S 2 .

	Theorem 5.3.5. Proof. Using Proposition 5.2.9 and Proposition 5.3.1 we get
	ω(z) = {E * }
	for every z

Remerciements

Proof. Since B

∞ is resolvent positive and

pact (see e.g. Theorem A.3.7). Note that

is convex and therefore continuous (see [START_REF] Mokhtar-Kharroubi | Mathematical Topics in Neutron Transport Theory : New Aspects[END_REF] p. 107). Assume momentarily that

is strictly decreasing (see [START_REF] Mokhtar-Kharroubi | Mathematical Topics in Neutron Transport Theory : New Aspects[END_REF] p. 106). By Hypothesis (3.19) there exists a unique

Since B ∞ 3 (λ -B ∞ ) -1 is positive and power compact then

is an isolated eigenvalue of

Then V ≡ 0 and

As for the previous finite case, the weak compactness of B ∞ 3 implies that {U(t)} t≥0 and {T 3 (t)} t≥0 have the same essential type

Thus {U(t)} t≥0 exhibits a spectral gap and consequently {U(t)} t≥0 has asynchronous exponential growth since it is irreducible. Finally, we just have to check (3.21). By hypotheses made on β, we know that there exists a measurable subset I ⊂ R + with positive measure such that u ∈ L 1 (R + ), u(y) > 0 a.e. =⇒ ∞ 0 β(s, y)u(y)dy > 0 a.e. s ∈ I. (3.22) Now, let the operator G ∈ L(L 1 (0, ∞)) be such that for every v ∈ L(0, ∞)

where Gv ∈ L 1 (0, ∞) -{0} (with Equation (3.22)). We then see that

so we need to have νu 2 = 0.

If ν = 0 then we look for (u

which is absurd since (λ -B ∞ ) -1 is positivity improving and by assumption on β. Thus

where χ I if the indicator function of I. Since

where

Coupled operators

Define the positive operators

Theorem 3.2.10. We have

Proof. Since B ∞ 2 is a positive operator then we have

Necessarily we have

Doing the sum we get

We know that B ∞ is a positive linear operator so it suffices to take (h 1 , h 2 ) ∈ X ∞ + . Then u 1 , u 2 are nonnegative functions and an integration of the latter equation with some lower bounds gives

Conservative systems Theorem 3.2.14. Suppose that for every y ≥ 0 we have

Proof. The fact that s(B ∞ ) < 0 follows directly from Theorem 3.2.10. To prove that s(A ∞ ) ≥ 0, we integrate both equations of (3.14) between 0 and ∞ to get for every t ≥ 0

and the sum of the latter equations leads to

by assumption. We thus get a sur-conservative system so that s(A ∞ ) ≥ 0. Theorem 3.2.15. Suppose that c c+ 2 = 0 and for every y ≥ 0 we have 

Deuxième partie

Étude d'équation de transport avec diffusion

Proof. Note first that A ∞ is closed and

(in the sense of graphs) so B ⊂ A ∞ and B is a graph, i.e. B is closable.

To show that B = A ∞ , it suffices to show that for any U = (u, u(0)) ∈ D(A ∞ ) there exists a sequence

Note that

by the dominated convergence theorem. It suffices to show (4.27). Note that

In particular u ∈ C(0, ∞). Let us show that u(s) > 0 a.e. and u(0

Let us show by contradiction that u > 0 everywhere. If the absolute minimum of u is not achieved, then u > 0 since u ≥ 0. Consequently we only need to deal with the case where it is achieved at some

If u reaches its minimum in (0, c) then v reaches its maximum in (0, c). By the maximum principle (see Theorem A.7.1), v must be constant and then u is equal to the constant u(s) = 0. It follows that

which is contradictory.

If v reaches its maximum (equal to zero) at s = 0 then v (0) < 0 by Hopf's maximum principle (see Theorem A.7.2) which is contradictory since

Finally u > 0 everywhere.

Asynchronous exponential growth

The main result of this subsection is : Theorem 4.2.5. We assume that there exists a measurable subset I ⊂ R + with positive measure such that

(4.28)

then the semigroup {U ∞ (t)} t≥0 generated by A ∞ has asynchronous exponential growth.

Thus {U ∞ (t)} t≥0 exhibits a spectral gap and consequently {U ∞ (t)} t≥0 has asynchronous exponential growth since it is irreducible. Finally, we just have to check (4.31). To this end, let K∞ ∈ L(X ∞ ) be defined by

where Kv ∈ L 1 (0, ∞) -{0} (with Equation (4.28)). We then see that

Indeed since K ∞ is weakly compact then so is K∞ and K∞ (λ

is positivity improving and by assumption on β. Thus

Now define the linear operator K ∈ L(L 1 (0, ∞)) by

The constant case 4.3.1 Framework

In this section we show that the property (4.2.10) is verified in the constant case

We thus consider the operator

whose the domain is

and with

We keep all hypotheses made on Section 4.2 so that we have

The main result

We have the following theorem.

Theorem 4.3.1. Let I 1 , I 2 ⊂ R + be two intervals with positive lengths. We assume that

where

with β 1 continuous at 0. Then (4.28) is satisfied and

Proof. The fact that (4.28) is satisfied is clear. In all the following, we will write for more convenience

Consider λ > -µ and solve 

System and equilibria

In this chapter we continue the study of the predator-prey model (2.1). The goal of this work is to prove the convergence to the non trivial equilibrium (see Figure 2.3) in some case. More exactly, we consider

where τ > 0 is some delay. We readily see that in that case we get

The behavior of the solution when R 0 < 1 is clear (see Theorem 2.3.5) : both populations go extinct. We thus suppose in the following that

Formal integrations of the PDE equation in (2.1) (we suppose that lim a→∞ x(t, a) = 0) implies that

where X(t) = ∞ τ x(t, a)da and Z(t) = τ 0 x(t, a)da. Using the boundary condition we get

Since the function Z can be deduce from X and y, we will then study the following delay differential system

y(t) -δy(t).

(5.1)

Preliminary results

Remark 5.1.3. We see that the initial-value problem (5.1) can be rewritten in a more convenient way

where (φ, y 0 ) ∈ X and f : X → R 2 is defined by

and where

(We omit the initial condition dependence since there is no misunderstanding and we write X t (θ) instead of X t (θ, z 0 ), where z 0 := (φ, y 0 )).

Proposition 5.1.4. For every initial condition z 0 := (φ, y 0 ) ∈ X + , Problem (5.2) has a unique mild solution (X t , y(t)) for every t ≥ 0. Moreover, Problem (5.2) induces a continuous semiflow via :

Proof. The proposition results from the general case proved in Proposition 2.3.9.

Remark 5.1.5. Consequently of the latter proposition, the solution stay in the nonnegative cone and there is no explosion in finite time.

Definition 5.1.6. Let S, T ⊂ X , then in all the following we will say that S is 1. positively invariant if Φ t (S) ⊂ S for t ≥ 0, i.e. for every z ∈ S and every t ≥ 0, Φ t (z) ∈ S.

2. (ε, T )-positively invariant (with ε ≥ 0) if for every z ∈ S, then Φ t (z) ∈ T for every t ≥ ε.

Remark 5.1.7. In all the following, we will denote by (X t , y(t)) ∈ X the solution of (5.2) at time t ≥ 0 with initial condition (φ, y 0 ) ∈ X .

We now give some properties about the sets defined in Section 5.1.2, with first a useful lemma.

Lemma 5.1.8. Let (φ, y 0 ) ∈ X + be a nonnegative initial condition. Suppose that there exists t * ∈ [-τ, 0] such that φ(t * ) > 0 then X(t * + τ ) > 0.

Proof. By contradiction, suppose that X(t * + τ ) = 0 then Equation (5.1) implies

which contradicts the nonnegativity of X. Proposition 5.1.9.

1. The sets S 1 and S 3 are positively invariant.

2. The set S 0 (resp S 2 ) is (2τ, S 1 )-positively invariant (resp (2τ, S 3 )). Consequently, all the asymptotic results proved for initial conditions in S 3 can be extended to S 2 .

3. The set ∂S 0 is positively invariant and the equilibrium E 0 is globally asymptotically exponentially stable for Φ restricted to R + × ∂S 0 .

4. The set ∂S 2 is positively invariant. Moreover, if we take the restriction of Φ to the set R + × S 0 ∩ ∂S 2 then the solution (X, y) of Problem (5.1) diverges to (∞, 0) when t → ∞.

Proof.

1. Consider an initial condition (φ, y 0 ) ∈ S 1 . Then X 0 = φ and X(t) > 0 for every t ∈ [-τ, 0]. Then Lemma 5.1.8 implies that X(t) > 0 for t ∈ [0, τ ]. Repeating this argument, we get X(t) > 0 for every t ≥ -τ . Consequently S 1 is positively invariant. We easily see that S 3 is positively invariant, since y (t) ≥ -δy(t) and

2. Take an initial condition (φ, y 0 ) ∈ S 0 . We then have 0 -τ φ(a)da > 0 so there exists t * ∈ [-τ, 0] such that φ(t * ) > 0. Using Lemma 5.1.8, we get X(t * + τ ) > 0. Then, for every t ∈ [t * + τ, 2τ ], we have

Consequently for every t ∈ [t * + τ, 2τ ], we get

where y = max t∈[t * +τ,2τ ] y(t) < ∞ (using Remark 5.1.5). Then X(t) > 0 for every t ∈ [τ, 2τ ] and (X 2τ , y(2τ )) ∈ S 1 . Since S 1 is positively invariant, then S 0 is (2τ, S 1 )-positively invariant and we easily see that S 2 is (2τ, S 3 )positively invariant.

3. Consider an initial condition (φ, y 0 ) ∈ ∂S 0 . We have 0 -τ φ(a)da = 0 and X(t) = 0 for every t ∈ [-τ, 0]. Then we get

Repeating this argument, we get X(t) = 0 for every t ≥ 0. We readily see that 0 -τ X t (θ)dθ = 0 for every t ≥ 0 and ∂S 0 is positively invariant. It is then clear that the solution will converge to E 0 since X(t) = 0 for every t ≥ 0 and y (t) ≤ -δy(t) so lim t→∞ y(t) = 0.

Lyapunov function

In order to prove that L * is a Lyapunov function, we first give a well-posedness result and remind the definition of a Lyapunov function for the semiflow Φ in the case of infinite dimensional systems.

Proof. Note that the condition R 0 > 1 is necessary to define L * since the equilibrium E * only exists in this case. Moreover, the positive invariance of the set S 3 (Proposition 5.1.9) proves that V 1 , V 2 and V 3 are well defined when applied to the semiflow Φ. Now we can give the main result of this section. Proof. L * is well defined on S 3 (Proposition 5.2.1) and is clearly continuous. Let z := (φ, y 0 ) ∈ S 3 . We can compute the derivative of

We see that

Consequently we have

We know the following properties about the equilibrium :

1. αγ 0 X * = δ, 2. αµ 0 X * + δy * = αβ 0 X * e -µ 0 τ , 3. αµ 0 + αγ 0 y * = αβ 0 e -µ 0 τ .

Thus we get

Finally we get :

and since g is a non-negative function, L * is a Lyapunov function on S 3 .

Attractive set of the solutions

Now we compute the ω-limit set of each element of S 3 , with first of all a result about the boundedness of the solution, which results from the fact that some energy is at most conserved through time (or is decreasing). Lemma 5.2.3. For every z ∈ S 2 , there exists a finite constant C(z) > 0 such that X(t) ≤ C(z) and y(t) ≤ C(z) for every t ≥ 0.

Proof. The proof results from Proposition 5.2.2, where we proved that for every z := (φ, y 0 ) ∈ S 3 , the positive function

defined by Théorème A.5.2 ([115], Théorème 6.1.4, p. 185). Soit f : X → X une fonction localement lipschitzienne sur X . Si A est le générateur infinitésimal d'un C 0 -semigroupe {T (t)} t≥0 sur X , alors, pour toute condition initiale u 0 ∈ X , il existe t max ≤ +∞ tel que le problème (1.9) admet une unique solution mild u ∈ C([t 0 , t max ), X ). Si, de plus, t max < +∞ alors lim t→tmax u(t) X = +∞.

A.6 Théorème de Lax-Milgram

Théorème A.6.1 (Lax-Milgram). [ [START_REF] Brézis | Analyse Fonctionnelle : Théorie et Applications. Collection Mathématiques appliquées pour la maïtrise[END_REF]