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General introduction

PhD context

This PhD originates from a joint project on chemotherapy optimisation, bringing together
three advisors: Jean Clairambault, medical doctor and mathematician, Michèle Sabbah,
cancer biologist, and Emmanuel Trélat, mathematician specialised in optimal control. Most
of the work undertaken has thus been motivated by questions from cancer biology or
therapy.

Answering them has required using and further developing tools from several different
mathematical areas, among them the asymptotic analysis for partial differential equations,
and theoretical and numerical optimal control. These developments have in turn posed
new mathematical problems, interesting in their own right, with applications in the math-
ematical fields of adaptive dynamics, population dynamics, optimal control or numerical
analysis, a classification which roughly corresponds to Parts I, II, III and IV, respectively.

A chronological overview

More than the first half of the PhD has been devoted to continuing and expanding a work
initiated by Jean Clairambault, Alexander Lorz and Emmanuel Trélat on the optimisation
of chemotherapy. This has led to the development of Lyapunov functionals for the asymp-
totic analysis of integro-differential systems (Chapter 1), with an application to a model
from population dynamics (Chapter 3). It has also raised related questions in adaptive
dynamics about the selection of phenotypes (Chapter 2).

Treating the problem theoretically has combined the previous asymptotic results as well
as techniques for the optimal control of ODEs (Chapter 5). Solving it numerically was
made possible thanks to classical but expert methods from numerical optimal control,
and required introducing a new method based on homotopies, in the setting of a more
complicated model (Chapter 6).

The second part of the PhD has consisted in a subproject studying problems of controlla-
bility for some other models in population dynamics (Chapter 4), while the central matter
was motivated by experiments of cells aggregating in a 3D structure. Trying to under-
stand these patterns thanks to a minimal chemotaxis model, the work ranged from 2D
simulations exhibiting similar ones and their analysis (Chapter 7), to the development of
appropriate numerical schemes for the 1D equations (Chapter 8).
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General introduction

1 Reaction-diffusion and selection-mutation models

1.1 A general model as a basis

All the partial differential equations (PDEs) analysed in this manuscript have in common
that they model the dynamics of a population over time, structured by a continuous variable
x ∈ Ω, where Ω is a bounded domain of Rd. It may represent space, in which case we are
interested in the spatial dynamics of the population, or a trait or phenotype variable, in
which case the selection dynamics are the object of study. An example of phenotype could
be the size of a giraffe’s neck, the colour of a given flower, etc.

Hence, the quantity of interest is n(t, x), the density of individuals at time t, at position
(or trait) x. It is assumed to satisfy the PDE

∂n

∂t
− β∆n = f(x, n), (1)

where t > 0, x ∈ Ω, starting from an initial density n0 > 0. The conditions on the
boundary ∂Ω of Ω are either Neumann or Dirichlet boundary conditions.

There are therefore two main ingredients in these equations, either called reaction-diffusion
or selection-mutation depending on the context:

• a reaction term, rather called a selection term in the phenotype case. It describes
the death and proliferation of the individuals, and may depend locally or non-locally
upon n. The simplest and most classical modelling for this term is undoubtedly

f(x, n) = n(1− n),

which means that there is exponential growth for n > 0 with saturation at n = 1.
Such a logistic hypothesis of saturation is central and will be shared by most choices
we shall be considering for f . It models the competition between the individuals by
an additional death rate, proportional to n, which will counterbalance the so-called
intrinsic reaction rate, here equal to 1.

• a diffusion term, which models the random movement of individuals in space. If
x is a phenotype, it is pinpointed as a mutation term, modelling the random pos-
sibility (here local and unbiased) for individuals to change phenotype. In biology,
mutations are modifications in the DNA, while epimutations are heritable changes
in DNA expression (but not in DNA itself), the latter being considered to occur on
much shorter time-scales. We shall abusively always speak of mutations or genetic
instability, grouping mutations and epimutations in their biological sense.

We refer to the monographs [11, 130] for an introduction to those models.

The coefficient β > 0 has great importance, because we shall consider the case β = 0,
circumstances under which we will say that equation (1) is integro-differential.

2



1. Reaction-diffusion and selection-mutation models

Additional advection term. A part of this PhD has been devoted to studying more
general models, for which there is also an oriented movement of individuals. They tend to
prefer the direction of the gradient of a certain function c, potentially nonlinearly through
a sensitivity function ϕ. With β > 0 normalised to 1, the model reads

∂n

∂t
−∆n+∇ · (ϕ(n)∇c) = f(x, n), (2)

In that case, c can be given a priori on Ω (Fokker-Planck equation), or be representing
the concentration of some signal emitted by the individuals themselves. The equation (2)
above is then coupled to an elliptic or parabolic equation for v, of the form

∂c

∂t
−∆c = n− c. (3)

It is a Keller-Segel model, originally introduced to study collective movement of cells
emitting a chemical signal, towards zones of higher concentration [128, 88, 89]. Neumann
boundary conditions are enforced for n and c, making of the initial mass for n a formally
preserved parameter when f = 0.

1.2 Modelling differences in the space and phenotype cases

The logistic hypothesis according to which competition between individuals (for resources,
space) induces an additional death rate more generally leads to non-local terms of the form

f(x, n) = n

(
r(x)−

∫

Ω
K(x, y)n(y) dy

)
, (4)

through a kernel K. The intrinsic reaction rate here depends on the variable x, but the
important change is that individuals at x do not compete exclusively with those sharing
the same x, but also with those at y, with a weight K(x, y).

The kernel K in the space case. When x stands for space, it is quite natural to
assume that K is localised, in order to describe that competition should occur mostly
between neighbours. K is thus thought of as a regularised Dirac at x − y. Equation (1)
with r = 1 and normalisation

∫
ΩK(x, y) dy = 1 for each x then becomes

∂n

∂t
− β∆n =

(
1−

∫

Ω
K(x, y)n(t, y) dy

)
n,

namely the non-local Fisher-KPP equation [12, 71]. At the limit K(x, y) → δ(x − y),
it indeed simplifies into the well-known Fisher-KPP equation i.e., that with second term
n(1− n) [92].

In another direction, a usual refinement in population dynamics is to model the necessity
for a minimal density of individuals for the population to be viable at a given x (for
reproduction or cooperation reasons, for example). The nonlinearity is then called bistable
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(in contrast with the monostable case like f(n) = n(1−n)). It is negative below a threshold
θ, then positive. The most common example is

f(n) = n(1− n)(n− θ).

Such bistable models are commonly used in physics (combustion theory, for instance), but
also in electrophysiology, e.g., with the FitzHugh-Nagumo equation.

The kernel K in the phenotype case. At variance with the space case, the phenotype
case allows for situations where K is not localised. If K is independent of y for example
with K(x, y) = d(x), we obtain

∂n

∂t
− β∆n = (r(x)− d(x)ρ(t))n, (5)

where
ρ(t) :=

∫

Ω
n(t, x) dx

is the total number of individuals at time t. The asymptotic behaviour for these equations
in the integro-differential case β = 0 is particularly interesting and mathematically well
understood: under general hypotheses, ρ converges to ρ∞ := max

(
r
d

)
and n concentrates

on arg max
(
r
d

)
[129]. If this set were to be discrete, the limit should be a sum of Dirac

masses.

This property of concentration on certain specific phenotypes is generally interpreted as
the selection of these phenotypes. It justifies the attention these models have attracted
in adaptative dynamics, the branch of mathematical biology dealing with the modelling of
selection processes in ecology [49, 51].

1.3 Mathematical tools and properties

Well-posedness. Let us start by mentioning a few results on (1).

When β > 0 and if the dependence of f on n is local, the standard theory of semilinear
parabolic equations applies, and quite generally there are classical solutions locally in
time [56]. If f is furthermore logistic (vanishing at x = 1), the solutions are even global
and remain between 0 and 1 provided that the initial condition itself is, a fact due to the
parabolic maximum principle [11].

When f depends non-locally on n under the form (4), and if β > 0, solutions are still
classical and global in time, by a fixed point argument [46]. If β = 0, however, the
regularity inherited from the initial condition cannot be improved but the exponential
structure is enough to prove global existence, for example in a model like (5) [129].

Finally, for the Keller-Segel system (2)-(3), and assuming f = 0 for simplicity, solutions are
in general classical but the advection term (pushing the individuals towards oneanother)
might overcome the diffusion term. A remarkable phenomenon is then the existence of a
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critical mass for the initial condition, under which solutions are global, and above which
there is finite-time blow-up [54, 16].

An option to get rid of blow-up is to choose a logistic sensitivity, creating a threshold
density at which the biased movement in the direction of the gradient of c is shut off [75],
and more generally there are sharp results on whether solutions are global or not depending
on ϕ [165].

Asymptotic analysis. For equations (1) with a non-local reaction term, and when
solutions are defined globally, the typical behaviour is convergence towards stationary
states. A striking example of this general principle is the following result, for β > 0 and
f(x, n) = f(n) analytic (semilinear heat equation): any trajectory must converge to a
stationary state [156].

The standard method to arrive at these types of results is the construction of energy
functionals. When β = 0 and if f(x, n) =

(
r(x)−

∫
ΩK(x, y)n(y) dy

)
is non-local in n,

stationary solutions also attract all trajectories. This result holds for quite general kernels
and also rests on some Lyapunov functionals [82], on which we shall come back in much
more detail.

If β > 0 and still in the non-local case, however, a complete understanding is lacking.
Only the very peculiar situation when K depends only on y has been tackled: the term∫

ΩK(x, y)n(y) dy does not depend on x and can be temporarily gotten rid of by an ex-
ponential change of variable [46, 100]. The result is that any initial datum will converge
either to 0 or to a multiple of the first eigenfunction of the operator β∆ + r(x), depending
on the sign of the first eigenvalue of this operator.

As far as the Keller-Segel (2)-(3) is concerned, energies can be available, paving the way
for proving convergence towards certain stationary states [27, 53].

For these models, being able to build numerical schemes preserving energy dissipation is
essential, not only because they are entropies or physical energies and thus have an actual
physical meaning, but also because it often guarantees that steady states will also be
preserved at the discrete level.

Let us mention the related questions for the non-local Fisher-KPP equation. With Neu-
mann boundary conditions and in the purely local case n(1 − n), the local Fisher-KPP
equation has 1 as a constant stationary state. It attracts all non-zero initial conditions,
and the question is whether this steady state remains attractive in the non-local case, since
other stationary states than 0 and 1 might exist. Results on 1 being the only steady state
other than 0 if K is localised enough have been obtained in the literature [12, 71].

Control and optimal control. Control of models (1) belongs to the theory of control
of PDEs, a whole mathematical branch in itself [103, 41]. The control can act on the
whole or a part of the domain Ω, or on the whole or a part of the boundary ∂Ω (Dirichlet
or Neumann controls). Controlling PDEs (or ODEs) roughly means being able to steer
from a given state to another one in some fixed or free time, by means of appropriately
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chosen controls. The literature on the controllability of parabolic semilinear equations is
abundant, at least when f depends locally upon n [103, 41, 176].

Let us consider, for example, the semilinear heat equation controlled with controls acting
on ω, non-empty open subset of Ω:

∂n

∂t
− β∆n = f(n) + u(t, x)1ω.

Under fairly general hypotheses with f a small enough nonlinearity depending locally on
n, then any initial datum can be brought to 0 in arbitrarily small time T > 0, with some
control u ∈ L2(ω × (0, T )) [94, 55, 57]. The regularising properties of the heat equation
are crucial to prove this result, which therefore requires β > 0.

The above control ensuring controllability to 0 will of course become larger and larger
as we take T smaller [58]. Consequently, these results do not apply to the quite natural
context where L∞ constraints are enforced on the control. They also do not apply, at
least directly, if the control does not act additively, although multiplicative controls are
ominous in population dynamics for example, such as when the control plays the role of an
additional death term. Developing controllability techniques in the presence of constraints
is an active research problem [132, 107, 108].

A more flexible alternative to controllability when there are constraints on the controls (or
on the state), at least towards numerical experiments, is to set an optimal control problem.
In general, it writes as the minimisation of some criterion of the form

J(u) =

∫ T

0
f0(t, n(t), u(t)) dt+ g(T, n(T ))

among all controls satisfying the constraints prescribed by the problem. When one aims
at targeting n̄, a standard example is J(u) = ‖n(T )− n̄‖2 in an appropriate norm.

Analysing such an optimal control problem from a theoretical point of view is possible
after applying a Pontryagin Maximum Principle (PMP) in a well-chosen space [136, 102],
although it is not often the case that precise information will be obtained on the optimal
control. From a numerical point of view, all PDE-based optimal control problems can at
least formally be solved by direct methods [167]. Their principle is simple: the equation
and controls are discretised so that the optimal control problem becomes a high but finite-
dimensional optimisation problem. Its resolution is thus not yet granted, even with a good
algorithm. The computations can indeed be very heavy due to the high dimension, and a
good a priori is needed to initiate the algorithm.
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2 Motivations and related mathematical questions

2.1 Optimisation of chemotherapy and modelling

Clinical question and resistance in cancer therapy. Most of the mathematical
work presented in this manuscript has originates from the following question: how can one
use chemotherapy efficiently to try and eradicate (or control the size of) a given tumour?
This is a tall order because any strategy will be faced with the two classical pitfalls of
cancer therapy, which are

• the toxicity to the healthy tissue,

• the emergence of drug resistance.

The main chemotherapeutic drugs used fall into two main categories

• the cytotoxic drugs, which actively kill cancer cells,

• the cytostatic drugs, which lower their proliferation,

the former being believed to be triggering drug resistance, because they subject cancer
cells to mortal stress, contrarily to cytostatic drugs.

It is indeed commonly seen in the clinic that using so-called maximum tolerated doses
(MTD) for too long will eventually

• damage the healthy tissue to a life-threatening extent,

• lead to regrowth of the tumour [72, 127, 149].

There might be an initial decrease of the tumour burden, because cells that are sensitive
to the treatment have been killed, while the resistant ones will take over the whole cancer
cell population making the tumour insensitive to further intensive treatment [152, 134]

An ecological paradigm to explain drug resistance relies on the idea that phenotypic het-
erogeneity in cancer cells and the dynamics of cancer cell populations can be understood
through the principles of Darwinian evolution [65, 67]. Cancer cells indeed all evolve in
the extracellular matrix (ECM), which is their structural and biochemical support, while,
given a particular tumour micro- and macro-environment (e.g., access to oxygen, nutri-
ents, growth factors, drug exposure), the fittest cells are selected. In the case of resistance,
resistant cell subpopulations are assumed to emerge and be selected for their high levels of
fitness in the presence of chemotherapeutic agents.

An idea gaining popularity is that some cells, called CSC for cancer stem cells, have a
higher plasticity because they are phenotypically very close to stem cells [153], and as such
are much more resistant to drugs. They are further identified as having undergone the
epithelial-to-mesenchymal transition (EMT), i.e., they have passed from an epithelial phe-
notype with strong cell-cell adhesive properties, to a mesenchymal phenotype characterised
by increased migrative properties.
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Since the EMT in a given cell can for example be assessed by the E-cadherin protein
concentration (necessary for junctions between cells), the level of resistance to a drug is
better represented by a continuous variable. Resistance to the drug can further be corre-
lated to other continuous biological characteristics, e.g., the intracellular concentration of
a detoxication molecule (such as reduced glutathione), the activity of detoxifying enzymes
in metabolising the administered drug, or drug efflux transporters eliminating the drug.

Consequently, a relevant modelling alternative to the binary sensitive versus resistant ODE
framework (as already proposed long ago in e.g., [43, 44]) consists of studying the cells at
the population level using a selection-mutation model as those introduced, and we choose
as a basis the model (5)

∂n

∂t
− β∆n = (r(x)− d(x)ρ(t))n,

with ρ(t) =
∫ 1

0 n(t, x) dx. Here, x ∈ [0, 1] stands for the phenotype for resistance, ranging
continuously from sensitiveness (x = 0) to full resistance (x = 1). Note that the diffu-
sion term can be complemented with an advection term [37, 38]. The idea is to model
stress-induced adaptation: individuals actively adapt to their environment and this can be
thought of as an appropriate modelling of Lamarckian induction. Such generalisations will
not be considered in this thesis.

The model. From the previous equation, we build a model for the problem at hand in
the form of a system of two coupled non-local PDEs for healthy and cancer cells densities
nH(t, x) and nC(t, x), given by

∂nH
∂t

(t, x) =

[
rH(x)

1 + αHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

]
nH(t, x) + βH∆nH(t, x),

∂nC
∂t

(t, x) =

[
rC(x)

1 + αCu2(t)
− dC(x)IC(t)− u1(t)µC(x)

]
nC(t, x) + βC∆nC(t, x),

(6)

starting from an initial condition (n0
H , n

0
C), with Neumann boundary conditions in x = 0

and x = 1. This model and variants are introduced in [111].

Let us describe in more details the different terms and parameters appearing above, with
the functions rH , rC , dH , dC , µH µC all continuous and non-negative on [0, 1], with rH ,
rC , dH , dC positive on [0, 1].

• The terms rH(x)
1+αHu2(t) ,

rC(x)
1+αCu2(t) stand for the selection rates lowered by the effect of

the cytostatic drugs, with
αH < αC .

• The non-local terms dH(x)IH(t), dC(x)IC(t) are added death rates to the competition
inside and between the two populations, with

IH := aHHρH + aHCρC , IC := aCCρC + aCHρH

8
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and as before

ρi(t) =

∫ 1

0
ni(t, x) dx, i = H,C.

We make the important assumption that the competition inside a given population
is greater than between the two populations:

aHC < aHH , aCH < aCC .

• The terms µH(x)u1(t), µC(x)u1(t) are additional death rates due to the cytotoxic
drugs. Owing to the meaning of x = 0 and x = 1, µH and µC are taken to be
decreasing functions of x.

• The terms βH∆nH(t, x) and βC∆nC(t, x) model the random mutations, with their
rates βH , βC such that

βH < βC ,

because cancer cells have higher genetic instability than healthy cells.

We first require the model to be rich enough to recover that high constant doses are
deleterious in the long-run, both on the healthy cell count and on the tumour itself. The
focus is not on transient behaviours, although numerically, it is also of interest to see
whether the model is able to reproduce an initial drop in the tumour size before it starts
growing again.

It is therefore natural to tackle this aspect from the point of view of asymptotic analysis
for the previous system, with constant doses of drugs. For these systems, the existing
techniques for asymptotic analysis (developed for a single equation) do not work, as we
shall see.

The optimal control problem. Looking for alternative strategies where the infusion
rates are now allowed to vary, we have in mind alternatives that are currently being ex-
tensively investigated by oncologists, e.g., metronomic scheduling, which relies on frequent
and continuous low doses of chemotherapy [10, 29, 127].

For a fixed final time T , we consider the following optimal control problem, denoted in
short by (OCP1). It consists in minimising the number of cancer cells at the end of the
time-frame

inf ρC(T )

as a function of the L∞ controls u1, u2 subject to L∞ constraints for the controls and two
state constraints on (ρH , ρC), for all 0 6 t 6 T :

• The maximum tolerated doses cannot be exceeded:

0 6 u1(t) 6 umax1 , 0 6 u2(t) 6 umax2 .

• The tumour cannot be too big compared to the healthy tissue:

ρH(t)

ρH(t) + ρC(t)
> θHC , (7)

9
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with 0 < θHC < 1.

• Toxic side-effects must remain controlled:

ρH(t) > θHρH(0), (8)

with 0 < θH < 1.

In other words, having fixed some therapeutic time-window [0, T ], we consider all possible
infusion protocols below the maximum tolerated doses, while we want to keep the tumour
size below a critical size (relatively to the healthy cell population) and curb damages to
the healthy tissue.

2.2 Transcription into mathematical words and related difficulties

On the asymptotic analysis. For the theoretical study of the model (6), we start
by assuming βH = βC = 0. Understanding the asymptotic behaviour of the 2x2 resulting
integro-differential system for constant doses boils down (after renaming functions) to that
of models of the form

∂n1

∂t
(t, x) =

(
r1(x)− d1(x)I1(t)

)
n1(t, x),

∂n2

∂t
(t, x) =

(
r2(x)− d2(x)I2(t)

)
n2(t, x).

where the coupling is competitive and appears only in the non-local term

I1 = a11ρ1 + a12ρ2, I2 = a22ρ2 + a21ρ1

with ρi(t) =
∫ 1

0 ni(t, x) dx, i = 1, 2.

We recall that that the asymptotic behaviour for a single integro-differential equation in
the previous form

∂n

∂t
(t, x) = (r(x)− d(x)ρ(t))n(t, x),

is well summed up by the statements that

• ρ converges to ρ∞ = max r
d ,

• n concentrates on the set arg max( rd).

There is no difficulty in formally understanding the above formulae: assume for a moment
that ρ converges to some ρ̄ > 0. The asymptotic behaviour of n(t, x0) for some fixed x0 is
then exponential, with rate arbitrarily close to r(x0)− d(x0)ρ̄ as time goes by. On the one
hand, if it were to be a positive quantity for some x0, there would be exponential blow-up
of n in a neighborhood of x0. Consequently, ρ would blow-up as well, a contradiction with
its convergence. On the other hand, if r(x)− d(x)ρ̄ < 0 on the whole [0, 1], then n would
converge to 0 exponentially, uniformly on [0, 1]. This also contradicts the convergence of ρ
to a positive limit.
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Collecting these results, we have obtained r(x)− d(x)ρ̄ 6 0 for all x, where equality must
hold at least for some phenotypes. For other phenotypes (namely those satisfying r(x) −
d(x)ρ̄ < 0), the previous reasoning shows that all the mass has vanished asymptotically.
Thus any mass left must be where equality holds. This proves that ρ̄ is uniquely determined
as the smallest positive real such that r(x) − d(x)ρ̄ 6 0, i.e., ρ̄ = max r

d = ρ∞, but also
that n concentrates on the set arg max

(
r
d

)
.

The difficulty is to show the convergence of ρ. The classical approach is to prove that
ρ is BV on [0,+∞). The intuition is that for the logistic ODE ρ′ = ρ(1 − ρ), ρ will
converge increasingly towards its carrying capacity 1 if the initial condition is below 1.
For the integro-differential equation, the monotony is lost but it still holds true that ρ
"does not decrease too much": it satisfies that its derivative has integrable negative part
(ρ′)− ∈ L1(0,+∞). Since ρ is bounded from above, it is BV and hence must converge.
This is detailed in Appendix 1.5 of Chapter 1.

This approach, however, fails for a competitive system and one must thus look for an
alternative strategy, extendable to systems. Such results have remained scarce, unless
some particular structure is available [25].

On the optimal control. The optimal control problem (OCP1) is hard to solve for
two main reasons: it is infinite-dimensional and has state constraints. Solving it either
numerically or theoretically is therefore a challenging task.

On the theoretical side, Pontryagin Maximum Principles (PMP) exist even when there
are state constraints [174], but the difficulties in analysing the resulting equations are
numerous:

• Lagrange multipliers associated with the constraints are measures, and it is in general
difficult to ensure that these measures have no singular continuous part,

• as the system is a PDE, the adjoint equation is a PDE as well and it also makes it
more difficult to analyse,

• more generally, even if the constraints were to be neglected in the first place, the
complexity of the equations leads to intractable computations.

On the numerical side, indirect methods rely on a PMP, and as stressed above the con-
straints are not amenable for it to be treated efficiently [166]. Thus, we restrict ourselves
to direct methods which consists in discretising the whole problem (in the variable t and in
the variable x) so that the optimal control problem is approximated by a finite-dimensional
optimisation problem. These problems are in general not easily dealt with because they
are non convex. There are, however, some specific difficulties related to the complexity of
the equations (of PDE nature and with state constraints):

• discretisation in both variables lead to a very high-dimensional optimisation problem,
making the use of expert optimisation routines compulsory.

• the best optimisation algorithms in a nonconvex setting require a good initial guess,
which is all the more difficult that the problem itself is.
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2.3 Cells forming spheroids in a 3D structure

Biological experiments. In the Laboratoire de Biologie et Thérapeutique des Cancers of
INSERM at Saint-Antoine Hospital, Michèle Sabbah and Nathalie Ferrand have performed
experiments consisting in putting cells in a 3D hydrogel structure mimicking the actual
environment they encounter in vivo, the extracellular matrix, in sharp contrast with usual
2D in vitro experiments in Petri dishes. The results strikingly show that breast cancer
cells tend to organise spatially as numerous spheroids in the hydrogel, see Figure 1 below.

Figure 1: 2D image of hydrogel showing spheroids formed by cells from a breast cancer cell line
(MCF7) after 8 days of culture, courtesy of N. Ferrand and M. Sabbah.

The interest for these patterns is at least twofold

• the ability of cells to move and aggregate is very much linked to the occurrence of
metastases, because it is now very well documented that migrating cells responsible
for metastases are not alone, but rather organise as clusters [80],

• in breast cancer, cancer cells invading the surrounding adipose tissue are known to
give rise to nontrivial spatial structures.

Turing instabilities. Starting from the seminal work of Turing [168], the so-called
Turing patterns have emerged as a fundamental tool to explain patterns in biology, such
as stripes on the bodies of animals. Mathematically, these are exhibited by reaction-
diffusion equations for which, following the definition of Perthame [130], the three following
ingredients all coexist regarding some steady state:

• extinction and blow-up are impossible,

• the steady state is linearly unstable,

• the unstable modes have bounded frequencies.

Contrarily to other works [125, 175], we do not enter into the physics of the cell-structure
adhesion. Assuming that cells in this hydrogel can move randomly in all directions (pro-
vided that the hydrogel is loose enough and isotropic), we choose a simple diffusion term.
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Because they also emit chemokines attracting other cells, such as CXCL12 or CXCL8 for
breast cancer cells [119], we instead consider chemotaxis to be the main feature and focus
on a minimal Keller-Segel model. We also take growth into account since the hydrogel is
put in a renewed high glucose medium.

Mathematical model. More precisely, we are interested in Keller-Segel models writing
in dimensionless form as {

∂n
∂t −∆n+∇ · (ϕ(n)∇c) = n,

ε∂c∂t −∆c = n− c.
(9)

posed on Ω with Neumann boundary conditions. Here, Ω ⊂ R3 is the hydrogel, a cylinder
of small height. Thus, taking Ω ⊂ R2 to be a disk is a reasonable approximation both for
simulations and analysis, while we shall also consider an interval of R for the analysis of
numerical schemes.

For the sensitivity function ϕ, we have in mind the classical case ϕ(n) = n but also
ϕ(n) = n(1 − n) to prevent chemotaxis from occurring above a critical density 1, or the
more flexible nonlinearity ϕ(n) = ne−n.

For the model (9), several questions are in order:

• can it exhibit Turing patterns, and if so, what are the key parameters responsible for
the emergence of patterns, their size and number?

• do the Turing patterns qualitatively match the structures experimentally obtained?

• how can one explain discrepancies between the model outcomes and the experiments?

Turing instabilities, steady states and numerical schemes.

For these types of models, Turing patterns have been shown to exist but the dynamics
can be quite intricate [126, 53]. For example, when ϕ(n) = n(1 − n), structures with
high density (close to 1) may arise (while n is close to 0 on the rest of the domain), but
they tend to merge slowly on very long time-scales [137]. These instabilities thus seem
stable on relevant biological scales and are pinpointed as metastable in the literature. As
a consequence, understanding the possible steady states (which might attract trajectories)
is not enough because they would be obtained only on non-realistic time-scales.

There are energies for these Keller-Segel equations (for certain specific functions ϕ), which
sometimes are enough to prove convergence towards stationary states [27, 53]. Mathemat-
ically, relying on efficient algorithms preserving energy decrease, pertinent bounds for the
problems and steady states is also of great importance, in particular when it comes to
the complex question of discriminating between actual steady states, metastable ones, or
"wrong" steady states due to poor discretisation.

Such schemes have been developed in [30], where finite-volumes schemes adapted to the
gradient flow structure of the equations are designed and shown to preserve energy dissipa-
tion and positivity, at the semi-discrete level (i.e., after discretisation of the space variable)
but not all the way to the discrete level.
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3 Mathematical results and applications

3.1 Asymptotic analysis

From ODEs to integro-differential equations. The approach we have developed for
the asymptotic analysis of systems of integro-differential equations is based on some type
of Lyapunov functionals, which were introduced in this context by Jabin and Raoul [82]. A
good introduction (and probably, how the intuition came to the aforementioned authors)
for these functionals is to consider the equation of interest on some set Ω ⊂ Rd

∂n

∂t
(t, x) =

(
r(x)−

∫

Ω
K(x, y)n(t, y) dy

)
n(t, x), (10)

and discretise it formally in x through ri = r(xi), aij = K(xi, xj), n(t, xi) = yi(t), which
yields

dyi
dt

(t) =


ri −

N∑

j=1

aijyj(t)


 yi(t), i = 1, . . . , N. (11)

The equation (11) falls into the category of Lotka-Volterra ODEs, where A = (aij) is the
so-called interaction matrix [64, 63].

Assume that this equation has a steady state (y∞i )16i6N > 0 and consider

Vd :=
N∑

j=1

λj

(
(
yj − y∞j

)
− y∞j ln

(
yj
y∞j

))
> 0,

where the λj > 0 are to be chosen.

Computing the derivative along trajectories, we find

dVd
dt

= −1

2
uT
(
ATD +DA

)
u,

where D = diag(λi), A = (aij), u = y − y∞. From the classical theorems from the
Lyapunov theory, we arrive at a Theorem due to Goh, dating back to 1977.
Theorem ([64]). Assume that there is the ODE system has a steady state (y∞i )16i6N > 0.
Then if there exists a diagonal matrix D with positive entries such that ATD + DA > 0,
y∞ attracts all non-negative solutions other than 0.

Knowing such a result, it is a quite natural idea to consider its infinite-dimensional coun-
terpart i.e., for a given steady state n∞ of (10), the following function

V (t) :=

∫

Ω
m(x)

(
n(t, x)− n∞(x)− n∞(x) ln

(
n(t, x)

n∞(x)

))
dx, (12)

with m > 0 a weight to be chosen.
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Computing the derivative formally, we find

dV

dt
= −1

2

∫

Ω2

(m(x)K(x, y) +m(y)K(y, x)) (n(t, x)− n∞(x)) (n(t, y)− n∞(y)) dx dy.

The energy dissipates if there exists a weight m such that (x, y) 7→ m(x)K(x, y) +
m(y)K(y, x) is a positive definite kernel (the infinite-dimensional version of the ODE hy-
pothesis). This should be enough to conclude with some minor technical difficulties due
to the infinite dimension.

Dealing with the Dirac masses. As noticed already by Jabin and Raoul, there is
actually a hidden difficulty in the well-posedness of the function V itself: recall that for
some kernels the asymptotic behaviour should be convergence to Dirac masses! The term
n∞ ln(n∞) does not make sense in these cases and the formula (12) is not even defined.
At first glance, this seems like a reasonable hurdle because this term does not depend on
time and, as such, can be removed without changing the (possible) decreasing behaviour
of V along trajectories.

The main difficulty comes from the fact that V is then no longer a non-negative function,
and one has to focus instead on the dissipation dV

dt itself, trying to prove that it tends to
0, at the expense of further computations to estimate the second derivative of V .

In the specific case of K(x, y) = d(x) which we are interested in, this Lyapunov func-
tional happens to be perfectly fitted. Indeed, choosing any measure n∞ concentrated on
arg max

(
r
d

)
and of mass

∫
Ω n
∞ = ρ∞ = max

(
r
d

)
, and with m = 1

d , we find

dV

dt
= −(ρ− ρ∞)2 +

∫

Ω
m(x) (r(x)− d(x)ρ∞)n(t, x) dx =: I1 + I2.

Both terms are non-positive: the first one is linked to the convergence of ρ, while the
second accounts for the concentration of n. The Lyapunov functional naturally decouples
the two phenomena.

Estimating V from below and its derivative in the spirit of Jabin and Raoul’s work, there
holds that dV

dt vanishes asymptotically, and so must the two-terms I1 and I2. In particular,
ρ converges to ρ∞ and concentration follows from the reasoning already given earlier.

Extension to systems. With these functionals perfectly suited for our interest, we turn
our attention towards systems, motivated by the 2x2 one for cancer and healthy cells, and
more generally in any dimension, in the form

∂

∂t
ni(t, x) =


ri(x)− di(x)

N∑

j=1

aijρj(t)


ni(t, x), i = 1, . . . , N. (13)

For these equations, if there were to be convergence and concentration, then as for a single
equation, the limits for ρi and the sets on which ni concentrate are unambiguously defined
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(provided that A is invertible): more precisely, a limit ρ∞ for ρ must satisfy for each i
ri(x)− di(x)(Aρ∞)i 6 0 with equalities for some phenotypes, in other words:

Aρ∞ =

(
max

ri(x)

di(x)

)

16i6N

from which a formula follows after inversion.

The functional is now a mix between the ODE one and the infinite-dimensional one, and
reads

Vs(t) :=
N∑

i=1

λi

∫

Ω
mi(x)

[
n∞i (x) ln

(
1

ni(t, x)

)
+ (ni(t, x)− n∞i (x))

]
dx,

with mi = 1
di

and the λi > 0 to be chosen, and where the ni are measures with appropriate
mass and support. Their use is presented in Chapter 1.

With this functional, we have proved in [140]
Theorem 0.1 (P. and Trélat). Assume that there exists a diagonal matrix D with positive
entries such that DA is symmetric positive definite. Then, convergence and concentration
hold for (13).

The requirement that DA be symmetric is quite restrictive as soon as N > 3 because it
translates into some polynomial constraints on the coefficients of A. However, it essentially
covers all interesting cases in dimension N = 2, which was our initial motivation for the
cancer and healthy cells and the first result we proved and used in [139], see Chapter 5.

Finally, we have extended the BV technique to the system (13) in Section 1.4 of Chapter 1,
when the system is cooperative (the non-diagonal coefficients of A are non-positive). In
this particular setting, comparison principles for ODEs can be used and the BV approach
still yields interesting results.

A case with diffusion. To apply such Lyapunov functionals as (12) to a case where there
is the Laplacian has one advantage: steady states are smooth and not measures so that the
term n∞ ln(n∞) makes perfect sense. However, a new term appears in the dissipation rate
of the functional (12) which has no sign in general and it is an open problem to understand
how to compensate it with the first one. This term can however be given a sign if handled
properly by choosing the weight in front as m = n∞.

Such a choice is motivated by the usual entropies for linear parabolic equations, which take
the form ∫

Ω
n∞φH

(
n

n∞

)
,

where H is convex and φ is the solution of the adjoint elliptic problem [130]. In our case,
the operator is self-adjoint and H(z) := z − 1− ln(z), which gives exactly

V (t) =

∫

Ω
n∞(x)

(
n(t, x)− n∞(x)− n∞(x) ln

(
n(t, x)

n∞(x)

))
dx.
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The dissipation of (12) is now

dV

dt
= −

∫

Ω2

n∞(x)K(x, y) (n(t, x)− n∞(x)) (n(t, y)− n∞(y)) dx dy

− β
∫

Ω

(n∞(x))4

n2(t, x)

∣∣∣∣∇
(
n(t, x)

n(x)

)∣∣∣∣
2

dx.

Under the assumption that (x, y) 7→ n∞(x)K(x, y)+n∞(y)K(y, x) is positive semi-definite,
we can conclude. The hypothesis nonetheless remains implicit and therefore not usable as
is, because we do not know n∞. There is an important case, however, where this is explicit,
that is n∞ = 1 and then we require thatK be positive definite. The equation is then indeed
the non-local Fisher-KPP equation (under the additional hypothesis

∫
ΩK(x, y) dy = 1 for

all x).

Difficulties arise if this equation is posed in the whole Rd, but everything works smoothly
in bounded domains with Neumann boundary conditions, a fact developed in a note [138]
and presented in Chapter 3:
Theorem 0.2 (P.). If K is positive semi-definite, the state 1 attracts all non-negative
non-zero solutions.

We believe this condition on K to be highly relevant, even on Rd where the use of this
Lyapunov functional is an open problem. This is because when K(x, y) = φ(x − y) is
a convolution, the condition that it should be a non-negative definite kernel on Rd is
essentially equivalent to φ having a positive Fourier transform. This condition has already
proved to be sufficient for 1 to be the only stationary state other than 0 for the equation,
when d = 1 [12].

Refining the asymptotic analysis for Dirac masses. A somewhat puzzling feature
of integro-differential equations with a kernel K(x, y) = d(x) is that the limit n∞ is not
necessarily unique and there is typically a non countable set of steady states. Assume that
the set on which it is supposed to be concentrated is made of two phenotypes x1 and x2.
Then we have a one-paremeter family of steady states given by

ρ∞ (αδx1 + (1− α)δx2) , 0 6 α 6 1,

and the actual limit of n among them depends on the initial condition, so that we cannot
say more.

It is then reasonable to wonder whether this kind of degeneracy is due to neglecting the
mutation term. In other words, can we recover some uniqueness by instead considering

∂nε
∂t
− ε∆nε = (r(x)− d(x)ρε(t))nε,

with some small parameter ε? This question is addressed in Chapter 2.

The goal is then to analyse the asymptotic behaviour of the equation above as t goes to
+∞, and assuming that there is a unique limit n∞ε , investigate the limit of n∞ε as ε goes
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to 0. We are able to do it only if d is constant, and we normalise it to 1. The important
quantities are now max(r) =: ρ∞ which is the limit of ρ, and arg max(r) into which the
support of any limit point of n(t, ·) must be contained.

When d = 1 is constant, there is no particular difficulty in proving that, for ε small enough
and max(r) > 0, nε converges to a multiple of the first eigenvector ψε of the operator ε∆+r,
namely (−λε)ψε where λε is its first eigenvalue and ψε is normalised by

∫
Ω ψε = 1 [46, 100].

Using the Rayleigh quotients, it is possible to prove that the approach is coherent, namely
that the limit points of the family ((−λε)ψε) are measures with total mass max(r) = ρ∞

and support included in arg max(r), and this is totally independent of the initial condition.
Thanks to this result, we are thus interested in the behaviour of n∞ε as ε goes to 0 in place
of that of n as t goes to +∞. This approach will have brought something if we are able to
say more on the support of the limit.

To go further, we must understand more deeply the behaviour of the first eigenfunction
(and first eigenvalue) of the operator ε∆+r as ε tends to 0. Of course, there are some cases
where symmetry at the level of the data (the function r and the domain Ω) is inherited by
the eigenfunction, so that any limit of the first eigenfunction must be symmetric, which
will typically yield uniqueness at the limit ε→ 0.

In the absence of symmetry, much more can still be said: interestingly, this question had
attracted a lot of attention in semi-classical analysis where −r = V is a potential with
several local minima at the same height, and the question is to determine where this
particle will be found in the limit of small noise [155]. Translating results obtained in this
community [79], the support for limit points of the eigenfunction are narrowed down. A
formal and working statement is

Theorem 0.3 (Lorenzi and P.). Among the set arg max(r), n∞ε must concentrate on the
phenotypes for which r has the lowest concavity.

For example, on [0, 1] and if r has a two maxima at x1 and x2 in (0, 1) with −r′′(x1) <
−r′′(x2), then n∞ε converges to ρ∞δx1 as ε tends to 0.

3.2 Optimal control for chemotherapy optimisation

A motivation from the asymptotic analysis. In the particular case of the system for
healthy and cancer cells (6) with βH = βC = 0 (neglecting the mutations), the result for
systems of integro-differential equations applies. It means that, under constant infusion
of drugs ū1, ū2, the total number of cells ρH and ρC converge to some ρ∞H , ρ∞C while the
densities nH and nC concentrate on some sets, all of them being computable from the data
and ū1, ū2.

It these sets are reduced to singletons x∞H , x∞C whatever the doses, we have a mapping
between ū1, ū2, and the resulting asymptotic number of cells ρ∞H , ρ∞C , as well as the
phenotypes x∞H , x∞C on which the cell densities have concentrated.
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3. Mathematical results and applications

This provides a nice framework showing that our model reproduces the failure of giving
high doses: simulations show that the cancer cell count first decreases and then increases
to its asymptotic value. This is because the cancer cell density has converged to a weighted
Dirac at x∞C which is very close to 1, a very resistant phenotype, meaning that after some
time, the treatment becomes inefficient.

This is also a motivation for the analysis of the optimal control problem (OCP1) in detail,
which we did in [139] for βH = βC = 0 (mutations are neglected). This work is presented
in Chapter 5.

Theoretical optimal control: a smaller class of controls. As already emphasised,
obtaining quantitative results out of a PMP applied to (OCP1) is out of reach. We instead
provide several heuristics for related optimal control problems on simpler ODE models in
Section 5.3 of Chapter 5, all suggesting that, when the final time T is large, the optimal
control strategy will first consist in taking constant controls on a long phase to ensure
concentration on resistant phenotypes.

Therefore, we proceed to the analysis of the optimal control problem in a (much) smaller
but still rich class of controls

BT :=

{
(u1, u2), (u1(t), u2(t)) = (ū1, ū2) on (0, T1), T − T1 6 TM2

}
,

namely controls that take some constant values on a (long) first phase, and then switch
to any controls on a second (short) phase, and we aim at doing so in the limit T → +∞.
Finding the optimal control amounts to determining

• the constant values (ū1, ū2) for the controls on the long phase (0, T1),

• the L∞ controls (u1, u2) on the short phase (T − T1, T ),

• the length of second phase T − T1 6 TM2 .

The results from the asymptotic analysis then come in very handy: at T1, denoting x∞H and
x∞C the phenotypes on which the healthy cells and cancer cell densities have concentrated,
there holds nH(t, ·) ' ρH(t)δx∞H , nH(t, ·) ' ρC(t)δx∞C at the limit T → +∞. Furthermore,
ρH and ρC are arbitrarily close to solving the ODE system:

dρH
dt

=

[
rH(x∞H )

1 + αHu2(t)
− dH(x∞H )IH(t)− u1(t)µH(x∞H )

]
ρH(t),

dρC
dt

=

[
rC(x∞C )

1 + αCu2(t)
− dC(x∞C )IC(t)− u1(t)µC(x∞C )

]
ρC(t),

(14)

on the interval [T − T1, T ].

Theoretical optimal control: the optimal structure in the smaller class. For the
previous ODE system (14), minimising ρC(T ) with the state constraints requires lengthy
but manageable computations, if one assumes that the Lagrange multipliers associated
with the constraints, which are measures, have no singular continuous part. And indeed
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we can prove that for the ODE system, the optimal strategy is such that the last three
arcs must be

• a boundary arc along the constraint (7) on ρH
ρH+ρC

,

• a free arc with controls u1 = umax1 and u2 = umax2 ,

• a boundary arc along the constraint (8) on ρH , with u2 = umax2 .

All the previous results put together yield the optimal strategy in the set of controls BT
as T goes to +∞, which informally reads as follows, and holds under various technical
hypotheses.
Theorem 0.4 (Clairambault, Lorz, P. and Trélat). Asymptotically in T there exists an
asymptotically optimal solution to (OCP1) in BT . More precisely, there exists a control
strategy which minimises ρC(T ) up to an error vanishing as T goes to +∞, and such that
the trajectory on (T − T1, T ) is arbitrarily close to the concatenation of at most three arcs:

• a quasi-boundary arc along the constraint (7),

• a free arc with controls u1 = umax1 and u2 = umax2 ,

• a quasi-boundary arc along the constraint (8), with u2 = umax2 .

Numerical optimal control problem: direct methods and homotopies. The
numerical resolution of the optimal control problem is here made through a direct method,
thanks to a discretisation both in time and in the variable x, described by respective
number of points Nt and Nx. It leads, as explained in detail in Section 6.3 of Chapter 6, to
a complex nonlinear constrained optimisation problem with about 2NtNx variables, which
we denote P1. Even efficient algorithms will fail for Nt and Nx large because they require
a good initial guess.

To overcome this, our general approach is to perform a homotopy, the principle of which is
simple: we wish to find a much simpler problem P0 which can be linked to P1 by a series
of optimisation problems (Pλ) where λ ranges from 0 to 1.

Assuming that P0 is simple enough for the optimisation algorithm to converge regardless
of the initial value, this yields the homotopy algorithm

• solve P0, and set λ = 0

• while λ 6 1,

λ← λ+ dλ.

Solve Pλ+dλ with the solution of Pλ as initial guess.

For the specific problem we are dealing with, we use the modelling language AMPL [60]
and the optimisation routine IpOpt [173], together with a homotopy on Nt and Nx, starting
from low values (i.e., a coarse discretisation). The result of a typical simulation is given
below in Figure 2.
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3. Mathematical results and applications

Figure 2: Simulation of the solution to (OCP1) for T = 30. Here, ρCS(t) :=
∫ 1

0
(1−x)nC(t, x) dx

accounts for the number of resistant cells.

These simulations clearly indicate that for the chosen numerical data, if T is large enough,
then the optimal controls are such that:

• the optimal control u1 is first equal to 0 on a long arc. Then, on a short-time arc,
u1 = umax

1 and then to a value such that the constraint (8) saturates;

• the optimal control u2 has a three-part structure, with a long-time starting arc which
is a boundary arc, that is, an arc along which the state constraint (7) is (very quickly)
saturated. It corresponds to an almost constant value for the control u2. The last
short-time arc coincides with that of u1, and along this arc u2 = umax2 .

In other words, the optimal strategy is made of

• a first long phase with no cytotoxic drugs and low doses of cytostatic drugs (as
low as the constraint (7) allows it), at the end of which the cancer cell density has
concentrated on a sensitive phenotype.

• a second short phase first with maximal doses (which are efficient on a sensitive
tumour), up until the constraint (8) on the side effects has saturated. Then, inter-
mediate cytotoxic drug doses are given (while the cytostatic drugs are still given at
full dose), in order to make the tumour still shrink while the constraint (8) remains
saturated.

In particular, we numerically recover the three arcs obtained that were obtained theoreti-
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cally.

Numerical optimal control problem with mutations. The previous approach to
numerically solving the optimal control problem is time-consuming when T becomes large,
and even starts failing for fine discretisation parameters. These problems are made worse
with the Laplacian terms, which have to be either discretised explicitly or implicitly, leading
to a CFL or costly inversions, respectively.

The core idea presented in Chapter 6 which we developed in [124], is also based on homo-
topies, but first performed on the optimal control problem itself. We simplify the optimal
control problem up to a point where a PMP in infinite dimension can provide very precise
results on the optimal controls. More precisely, setting βH = βC = aCH = θH = θHC = 0,
we end up with the optimal control problem (OCP0)

min
(u1,u2)∈U

ρC(T )

where nC solves

∂nC
∂t

(t, x) =

[
rC(x)

1 + αCu2(t)
− dC(x)ρC(t)− µC(x)u1(t)

]
nC(t, x),

with 0 6 u1(t) 6 umax1 , 0 6 u2(t) 6 umax2 , but without state constraints (they are inactive
because θH = θHC = 0).

The main result is the following.
Theorem 0.5 (Olivier and P.). The optimal controls for problem (OCP0) are given by

u1(t) = umax1 1[t1,T ], u2(t) = umax2 1[t2,T ].

for some t1 ∈ [0, T [, t2 ∈ [0, T [.

One can therefore reduce the controls (originally in the infinite-dimensional space L∞(0, T )2)
to their switching times t1, t2 (in R2). Numerically, the problem can be discretised very
finely, and the corresponding problem is an optimisation problem from R2 onto R, which
can be solved quickly and efficiently. This serves as a starting point (i.e., as the problem
P0) for the homotopy procedure, at the end of which the problem P1 (associated with the
full optimal control problem (OCP1)) is solved.

Simulations resulting from this technique, shown in Section 6.4 of Chapter 6, indicate that
the optimal controls have the same structure as in the integro-differential case, and the
computations have been made much quicker (even if βH = βC = 0).

It does not only provide a very precise result for the problem with mutations (with a
much finer discretisation than with the previous approach) but also a general strategy for
numerical optimal control: working at the continuous level by simplifying the problem so
that it can be theoretically analysed with a PMP. The discretised counterpart is then an
excellent candidate as starting point for a homotopy.
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Towards an application to the clinic. In the clinic, we advocate that the optimal
strategy obtained here must be thought of as a pattern to be repeated in a kind of periodic
way, with three phases:

• (1) a long phase with low doses, as low as the maximal tumour size allows it,

• (2) a short phase with maximal doses up until the side-effects are deemed too great,

• (3) a potential (risky) extension to the previous phase with high cytostatic doses and
intermediate cytotoxic ones to let the tumour further decrease while side-effects are
at their limit.

Examples of such strategies are given in Section 5.4 of Chapter 5..

An actual implementation of this strategy requires to define it in feedback form, where the
decision to switch from one phase to another is made on some biological markers:

• from phase (1) to phase (2): when resistance markers show that the tumour has
become sensitive enough for the maximum tolerated doses to be used efficiently or
when the tumour is considered to be too big (it becomes a threat to the organ or
metastases are too likely to occur),

• from phase (2) to phase (3): when the maximal tolerated doses are no longer toler-
ated,

• from phase (3) to phase (1): when resistance markers show that the tumour has
become resistant again. Alternatively, or equivalently, one could think that if the
tumour starts increasing again, this is the sign that resistance is too high and that
treatment at high doses must stop.

A key hypothesis (tacit in the model) for these strategies to work is for the tumour to be
plastic enough to go back to sensitiveness in the absence of strong drug pressure. This
reversibility must also happen quickly enough for phase (1) not to be too long. Finally, it
is implicit here that several indicators can be measured for the assessment of several or all
of the following: the level of resistance to the drugs, the damage to the healthy tissue and
the tumour size.

3.3 Controllability for monostable and bistable 1D equations

Problem statement and link with asymptotic analysis. We are concerned with the
control of 1D semilinear parabolic equations for population dynamics in the form





yt − yxx = f(y),

y(t, 0) = u(t), y(t, L) = v(t),

y(0) = y0.

(15)

with Dirichlet controls on the boundary between 0 and 1, and 0 6 y0 6 1, where f is either
of monostable type, e.g., f(y) = y(1− y), or of bistable type, e.g., f(y) = y(1− y)(y − θ).
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We aim at solving the following controllability problem: can we control the equation
towards 0 (extinction), 1 (invasion) or even the unstable state θ (in finite time or infinite
time)?

For 0 (resp. 1), the question boils down to analysing what happens if we put 0 (resp. 1) on
the boundary because of the parabolic comparison principle [142, 93]. This is consequently
a problem of asymptotic analysis, for which a key result due to Matano is the following:
with static controls, any trajectory must converge to a stationary state. Thus, if we set 0
on the boundary, any trajectory will asymptotically converge to 0 provided that the trivial
solution 0 is the only one to the stationary problem

{
−yxx = f(y),

y(0) = y(L) = 0.
(16)

From phase plane analysis for the ODE −y′′ = f(y), it is possible to find a threshold
L? (computable as a transcendental integral) under which 0 is the only solution to the
stationary problem (16), while there is at least another one if L > L?.

Control towards θ. To control towards θ, the main tool is the staircase method, which
relies on the result that, for any two path-connected steady states, there exists a control
strategy steering the first one to the second one.

Managing to use this technique properly amounts to finding a steady state yinit such that

• a suitable choice of boundary Dirichlet controls will make yinit globally attractive,

• there exists a path of steady states linking yinit and θ.

Both requirements are ensured thanks to a fine analysis of the phase portrait in the bistable
case. The general result obtained in this work presented in Chapter 3, is summed up as
follows.
Theorem 0.6 (P., Trélat and Zuazua). (15) is controllable

• in infinite time towards 0 if and only if L 6 L? in the monostable case (resp. L < L?

in the bistable case).

• in infinite time towards 1 independently of L.

• in finite (or infinite) time towards θ if and only if L < L? in the bistable case.

3.4 Spheroid formation and Keller-Segel equations

Turing instabilities for Keller-Segel. For the dimensionalised Keller-Segel system
without growth (neglected to ease computations)

{
∂n
∂t −D1∆n+ χ · (ϕ(n)∇c) = 0,
∂c
∂t −D2∆c = αn− βc,
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we use standard methods in Chapter 7 to determine a necessary and sufficient condition
for the steady-state (M, αβM) to be Turing unstable, withM the total and preserved mass,
given by

∫
Ω n

0 = M . The condition writes simply as

ϕ(M) >
βD1

αχ
. (17)

If ϕ increases up to some density and then decreases, for example in the logistic (ϕ(n) =
n(1−n)) and exponential cases (ϕ(n) = ne−n), a consequence of the previous condition (17)
is the following: all other parameters being fixed, there are no Turing instabilities forM too
small or too large, while they can exist for intermediate values for the mass. Interestingly,
experiments seem to yield such results, which is a good indicator that these functions are
a better choice than the more classical ϕ(n) = n.

2D simulations. We provide 2D simulations on a disk for the system without and with
growth, either for the logistic or exponential function, obtaining round patterns. These
patterns appear abruptly, first at the periphery and then all the way to the center of the
disk. A typical example is given in Figure 3.

IsoValue
-0.2
-0.13
-0.06
0.01
0.08
0.15
0.22
0.29
0.36
0.43
0.5
0.57
0.64
0.71
0.78
0.85
0.92
0.99
1.06
1.13
1.2

Figure 3: An example of a simulation exhibiting patterns, for a logistic sensitivity function and
no growth.

Numerical analysis of 1D finite-volume schemes. For models like the Keller-Segel
one above, we develop schemes in Chapter 8, in the simplified case where the chemoattrac-
tant diffuses much faster than the cells (which leads to neglect the time-derivative for the
equation on c). They must preserve important continuous properties such as positivity and
energy dissipation. Indeed, for the parabolic-elliptic Keller-Segel system posed on (0, 1),

{
∂n
∂t − ∂2n

∂x2 + ∂
∂x

(
ϕ(n) ∂c∂x

)
= 0,

− ∂2c
∂x2 = n− c,

the energy

E(t) =

∫ 1

0

[
G(n)− 1

2
nc

]
dx
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dissipates, where G′ = g, g′ = 1
ϕ . There are two close ways of writing the equation for n:

the first one is the classical Gradient Flow

∂n

∂t
− ∂

∂x

[
ϕ(n)

∂ (g(n)− c)
∂x

]
= 0,

or a Scharfetter-Gummel one, inspired by a common technique for the discretisation of
PDEs arising in the physics of semi-conductors:

∂n

∂t
− ∂

∂x

[
ec−g(n)ϕ(n)

∂eg(n)−c

∂x

]
= 0.

Following closely these computations to write the flux terms Fi+1/2 in a finite-volume
approach leads to two semi-discrete schemes which preserve energy dissipation. At this
stage, the equations become ODEs for ni(t) ' n(t, xi), of the form

dni(t)

dt
+

1

∆x
[Fi+1/2(t)− Fi−1/2(t)] = 0.

We use an semi-implicit scheme Euler scheme, which requires choosing appropriately terms
that will be discretised explicitly or implicitly in order for the properties preserved at the
semi-discrete to be further conserved at the discrete one. This has to be done with care
since existence and uniqueness of a solution for the schemes is not granted due to the
implicit terms. They actually rely on some appropriate monotonicity of Fi+1 as a function
of ni+1, ni, see Appendix 8.8.

This whole process yields two different finite-volumes schemes at the discrete level, pre-
sented in the article [22]:
Theorem 0.7 (Bubba, Neves de Almeida, P. and Perthame). For the 1D parabolic-elliptic
Keller-Segel system, the Gradient Flow and Scharfetter-Gummel approaches lead to discrete
schemes preserving mass conservation, energy dissipation, positivity and steady states.

4 Some perspectives and open problems

On the asymptotic analysis for a single equation. For the selection-mutation equa-
tion with a non-local selection term (4), a complete picture is still lacking. The work of
Jabin and Raoul has undoubtedly shed some light in the integro-differential case. Our
extension to the PDE case with a weight m = n∞ has allowed us to treat the very special
case of the non-local Fisher-KPP equation for a bounded domain.

Extending this result to the non-local equation on the full space seems trickier due to the
fact that asking that n(t)− 1− ln(n(t)) be in L1(Rd) is too restrictive. A natural path is
to consider an exponential weight to gain integrability, but it is not clear how to handle
the new terms appearing in the dissipation.

Does the implicit condition that (x, y) 7→ n∞(x)K(x, y)+n∞(y)K(y, x) be positive definite
apply to other interesting cases? For other choices of weight m (not depending on n∞)
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4. Some perspectives and open problems

we can always assume that (x, y) 7→ m(x)K(x, y) + m(y)K(y, x) is positive definite, but
the term coming from the diffusion term in the dissipation of V has no sign. It is an open
question to see whether it can be balanced by the other term by, for example, appropriate
functional analytic inequalities.

On the asymptotic analysis for a system. For systems, the Lyapunov functionals
introduced by Jabin and Raoul have been proved to be appropriate for integro-differential
systems with an arbitrary number of equations for a specific form of the kernel (K(x, y) =
d(x)). We have explained how the argument is general for 2x2 systems, but the condition
on the interaction matrix becomes much more restrictive in higher dimensions, although
simulations do not seem to suggest that the convergence and concentration properties are
lost.

When the system is not integro-differential, the situation is essentially as open as for a single
equation: only kernels of the form K(x, y) = d(y) are dealt with, as in [100], because they
can be handled as some kind of eigenvalue depending on time.

On the optimal control. For the theoretical analysis of (OCP1) in the integro-differential
case, the critical idea was that for a long final time T , it is optimal to try and first reach
a very sensitive phenotype. This result, confirmed by numerical simulations and hinted at
by several arguments for simpler ODE equations, still remains to be proved rigorously in
its full generality.

The numerical approach developed in Section 6 has been proved to successfully deal with
(OCP1), but we believe that the strategy is a relevant option for a wide variety of problems,
in particular when it holds that:

• a direct method is appropriate but does not converge for a fine discretisation,

• a priori theoretical knowledge is available on the type of equation: some simplifi-
cations lead to optimal control problems for which a PMP significantly reduces the
dimension of the space of controls (this is typically the case if they are bang-bang).

An interesting perspective is to illustrate this strategy on some other challenging optimal
control problems.

Application to the clinic. Discussions are ongoing with oncologists from the Tenon
Hospital of Paris, in order to derive therapeutical protocols in the light of the optimal
control strategy obtained in this PhD.

The first step would be to compare the results of infusion strategies already tried on
patients. The data would contain the therapeutical strategy over time as well as medical
imaging data for the tumour size, and would be used to parametrise the model.

As a second step, the goal would be to implement alternative strategies inspired from the
optimal one exhibited for (OCP1), in vitro and/or in vivo (on mice).
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Chapter 1

Systems of integro-differential
selection equations

In this work with Emmanuel Trélat, we investigate the asymptotic properties of
Lotka-Volterra integro-differential systems for N species, proving convergence
and concentration results for certain types of interaction matrices. A first gen-
eral result is given using Lyapunov functionals, which happens to be sharp
in dimension 2 but more restrictive in higher dimensions. The second result
assumes that the interaction between species is mutualistic, setting for which
the BV approach yields results, at least when the interaction is small. It is
the subject of an article accepted in the Journal of Biological Dynamics, enti-
tled Global stability with selection in integro-differential Lotka-Volterra systems
modelling trait-structured populations [140].

1.1 Introduction

1.1.1 Biological motivations

We are interested in the evolution of N populations of individuals, each of which is struc-
tured by a continuous phenotypic trait, also called trait. In each species the phenotype
models some continuous biological characteristics (such as the size of the individual, the
concentration of a protein inside it, etc). We shall consider both interactions inside a given
population and between the populations and we assume that mutations can be neglected.
Mathematical modelling and analysis of such ecological scenarios is one purpose of the field
of adaptive dynamics, a branch of mathematical biology which aims at describing evolution
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Chapter 1. Systems of integro-differential selection equations

among a population of individuals, see [49, 117, 129] for an introduction to deterministic
models.

The basis for our model stems from the logistic ODE dN
dt = (r − dN)N where r is the

intrinsic growth rate, dN the logistic death rate due to competition for nutrients and
for space by direct or indirect inhibition of proliferation between individuals. Its natural
extension to a density n(t, x) of individuals of phenotype x (say in [0, 1]) is a non-local
logistic model

∂

∂t
n(t, x) = (r(x)− d(x)ρ(t)) n(t, x), (1.1)

with ρ(t) :=
∫ 1

0 n(t, x) dx the total number of individuals.

Note that these models can be derived from stochastic models at the individual level [34,
50, 69], and more generally measure-valued functions n can be considered [28, 70]. The
asymptotic behaviour of the previous model (1.1) and variants is analysed in [68, 111, 129],
and one important property among others is that solution typically tend to concentrate on
a few phenotypes, a convergence to Dirac masses in mathematical terms. These models
are thus successful at representing the survival of only a few phenotypes, which we will
refer to as selected.

The mathematical results available for N = 1 naturally call for generalisations on systems
of interacting species with such non-local logical terms based on the total number of indi-
viduals. For instance, to study resistance in cancer, one may think also of different cancer
subpopulations interacting with healthy cells and between them, each one of them being
endowed with a specific drug resistance phenotype in a tumour ’bet hedging’ strategy [21].
These generalisations, in turn, might help unravel general principles about the underlying
ecological processes, and develop new mathematical techniques to analyse them.

1.1.2 The model

We consider N populations structured by respective phenotypes x ∈ Xi, where Xi is some
compact subset of Rpi , with pi ∈ IN∗, for i = 1, . . . , N . Although they model distinct
quantities, we abusively denote all variables x to improve readability.

The model writes

∂

∂t
ni(t, x) =


ri(x) + di(x)

N∑

j=1

aijρj(t)


ni(t, x), i = 1, . . . , N, (1.2)

where, for i = 1, . . . , N , ri and di > 0 are functions in L∞(Xi),

ρi(t) :=

∫

Xi

ni(t, x) dx

is the total number of individuals in species i, and aij ∈ R are fixed (interaction) coeffi-
cients.
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1.1. Introduction

The initial conditions are
ni(0, ·) = n0

i i = 1, . . . , N (1.3)

where each initial density n0
i is taken to be a non-negative function in L1(Xi). From now

on, we will call these equations integro-differential Lotka-Volterra equations.

The matrix A := (aij)16i,j6N , called matrix of interactions, describes the interactions
between the populations: if aij > 0, the species j acts positively on the species i, and neg-
atively if aij < 0. Finally, we will say that the equations are competitive (resp. mutualistic)
if aij < 0 (resp., aij > 0) for all i 6= j.

Another interpretation of the equations is to see them as coupled logistic equations of the
form

∂

∂t
ni(t, x) =

(
ri(x)− di(x)Ii(t)

)
ni(t, x), i = 1, . . . , N.

In other words, the species i reacts to its environment through the non-local variable Ii
defined for i = 1, . . . , N by

Ii := −
N∑

j=1

aijρj .

The terms ri(x) and di(x)Ii respectively stand for the intrinsic proliferation rate and logistic
death rate of individuals in species i, of phenotype x.

We will also use the notation Ri(x, ρ1, . . . , ρN ) := ri(x) +di(x)
∑N

j=1 aijρj , with which the
equations rewrite:

∂

∂t
ni(t, x) = Ri (x, ρ1(t), . . . , ρN (t))ni(t, x), i = 1, . . . , N.

These models generalise Lotka-Volterra ordinary differential equation (ODE) models [6]: if
the functions ri, di are all constant (say equal to some ri, and di = 1), then after integration
with respect to x ∈ Xi, the equations boil down to

d

dt
ρi(t) =


ri +

N∑

j=1

aijρj(t)


 ρi(t), i = 1, . . . , N, (1.4)

which we will from now on refer to as classical Lotka-Volterra equations. It can be written in
the more compact form dρ

dt = (r+Aρ)ρ. Thus, another advantage of a logistic term directly
defined by ρ is that it makes our model more tractable with respect to the corresponding
already well understood ODE models. Conversely, the integro-differential model can be
seen as a perturbation of the ODE one where the individuals among a given population
are allowed to have different proliferation and death rates depending on their phenotype.

Our goal is to understand the asymptotic behaviour of the solutions to these equations,
both in terms of convergence at the level of the total number of individuals ρi, and in terms
of concentration at the level of the densities ni. The first problem is usual in population
dynamics while the second is specific to adaptive dynamics and consists of determining
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Chapter 1. Systems of integro-differential selection equations

which traits asymptotically survive, taking over the whole population. These are then
called Evolutionary Attractors, and the fact that it is the generic situation has been coined
exclusion principle. Mathematically, this corresponds to a given density ni converging to
a sum of Dirac masses. For one Dirac mass only, concentration writes, for some x0 ∈ Xi:

ni(t, ·)− ρi(t)δx0 ⇀ 0

as t→ +∞, in the weak sense of measures.

The more precise aim of this chapter is to study the global asymptotic stability (GAS) of
what we will call coexistence steady states, namely of possible ρ∞ with positive components
(all species asymptotically survive) such that ρ converges to ρ∞, because we will see how
it determines on which phenotypes the densities concentrate. When it is possible, we
will investigate the speed at which convergence and concentration occur. An interesting
question is also to see if a result of that type is sharp, i.e., to compare the assumptions
needed to obtain global asymptotic stability in our generalised setting to those known for
classical Lotka-Volterra equations.

At this stage, we did not make any restrictive assumptions on the matrix A. However, it will
be clear from the results recalled below in the ODE case and the ones presented in Section
1.2, that answers to the previous questions are available when interspecific interactions
are low compared to the intraspecific ones. Thus, we are covering the ecological scenario
of each species i having its own niche, but inside which competition (if aii < 0) is blind
because of the term aiiρi.

Notations. In what follows, RN>0 will stand for the positive orthant in RN , the set of
vectors whose components are all positive, and we will write x > y when x− y ∈ RN>0. We
will also use the usual ordering on the set of symmetric matrices: for A a real symmetric
matrices, we denote A > 0 (resp., A > 0) when A is positive semidefinite (resp., positive
definite). Finally,M1(X) will denote the set of Radon measures supported in X.

1.1.3 State of the art

Classical Lotka-Volterra equations. The ODE system (1.4) has been extensively
studied, dating back to the pioneering works of Lotka and Volterra for two populations of
preys and predators [113, 171]. Since then, many contributions to the analysis of steady
states and their stability have been made, and we refer to [120] for an introduction and
to [6] for a review.

Regarding the global asymptotic stability of coexistence steady states, a very well-known
result due to Goh [64] states a simple and very general condition on the matrix A =
(aij)16i,j6N which ensures convergence to the (unique) coexistence steady state:
Theorem 1.1 ([64]). Assume that the equation Aρ+r = 0 (where r ∈ RN and ρ ∈ RN are
the vectors (ri)16i6N and (ρi)16i6N ) has a solution ρ∞ in RN>0. If there exists a diagonal
matrix D > 0 such that ATD+DA < 0, then ρ∞ is GAS in RN>0 (and hence is the unique
coexistence steady state) for system (1.4).
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1.1. Introduction

A result also worth stating is that the mere existence of a unique coexistence steady state
is not enough for it to be GAS. Other steady states on the boundary of RN>0 can attract
trajectories even in dimension N = 2. Another possibility is the occurrence of chaotic
behaviour even in low dimension as evidenced in [169] for N = 3. Finally, we mention
the more recent work [46], where the authors tackle the problem of GAS for some type of
Lotka-Volterra ODEs with mutations. In particular, they obtain GAS of the coexistence
steady state in the case where the logistic variables Ii, i = 1, . . . , N all coincide, that is,
when they are equal to some variable I :=

∑N
j=1 ajρj(t). In such a case, it is proved that

the convergence to the equilibrium is exponential. The result of GAS is also extended to
perturbations of this specific case.

Integro-differential Lotka-Volterra equations. The first question for such equations
is the existence of a solution for all positive times. This obviously does not hold true in
full generality since the ODE y′ = y2 is a particular case. Let us first state an existence
and uniqueness theorem.
Theorem 1.2. Assume that for a given n0 ∈ ∏N

i=1 L
1(Xi), n0 > 0, there exists 0 < ρsup

such that we have an a priori upper bound ρ(t) 6 ρsup for the functions ρi whenever they
are defined. Then the Cauchy problem (1.2)-(1.3) has a unique solution n = (ni)16i6N ,
n > 0, in C

(
[0,+∞),

∏N
i=1 L

1(Xi)
)
.

The proof is a straightforward generalisation of that given in [129, Theorem 2.4] for N = 1,
relying on the Banach Fixed Point Theorem. For completeness, we provide it in Ap-
pendix 1.5.

In the case of a single equation, the asymptotic behaviour is well understood. For N = 1,
assuming a11 < 0 to avoid blow-up, the equation is simply

∂

∂t
n1(t, x) = (r1(x)− d1(x)ρ1(t)) n1(t, x),

where, without loss of generality, we have set a11 = −1. The first result is that ρ1 converges.

Theorem 1.3. Assume some regularity on X1, r1, d1, and r1 > 0, Then, for any positive
continuous initial condition n0

1, ρ1 the function t 7→ ρ1(t) is well defined on [0,+∞) and

converges to ρM1 := maxx∈X1

r1(x)

d1(x)
as t→ +∞.

This, in turn, completely determines where n1 concentrates.
Corollary 1.1. Under the previous hypotheses, n1(t), viewed as a Radon measure on X1,
concentrates on the set {

x ∈ X1, r1(x)− d1(x)ρM1 = 0
}

as t→ +∞. If this set is reduced to some x∞1 , we obtain in particular

n1(t, ·) ⇀ ρM1 δx∞1

weakly inM1(X1), as t→ +∞.
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Chapter 1. Systems of integro-differential selection equations

This result is classical and it relies on proving that ρ1 is a bounded variation (BV ) function
on [0,+∞). For completeness, we recall it in Appendix 1.5. Let us stress that when the
set on which n1 concentrates is not reduced to a singleton, the steady state (at the level
of n1) is not unique. For example, if the set is made of two points, the repartition of the
limiting density on these two points depends on the initial condition, see for example [45].
This is why for this equation and the general equations considered here, there is no hope
in proving general GAS results directly at the level of the densities ni.

For a general logistic term
(∫
X K(x, y)n(t, y) dy

)
n(t, x) and a single equation, the asymp-

totic behaviour is also analysed in detail in both [48] and [82]. In the latter, under some
suitable assumptions on the kernel K, a Lyapunov functional is used to prove that some
measure is GAS, in a very specific sense depending on K. Similar results can be found
in [35], where their counterpart for competitive classical Lotka-Volterra equations are also
discussed.

In the case of integro-differential systems, however, much less is known about the asymp-
totic behaviour. We mention [25] where an integro-differential system of two populations is
analysed, and whose form does not fit in our framework. A particular triangular coupling
structure allows the authors to perform an asymptotic analysis.

The chapter is organised as follows. In Section 1.2, we explain how coexistence steady states
can be identified, allowing us to state rigorously what we mean by GAS for system (1.2). We
explain why, under the hypothesis of GAS, only some phenotypes are generically selected,
and how to compute them. Then, we present the two main results about GAS for such
equations. Section 1.3 is devoted to the proof of the first result, which applies for any type
of interactions and relies on analysing a suitably designed Lyapunov functional. In the
specific case of mutualistic interactions, our second main result gives alternative conditions
sufficient for GAS. It is presented in Section 1.4. In Section 1.5, we conclude with several
comments and open questions.

1.2 Possible coexistence steady states and main results

For the rest of the chapter, we will work with the following assumptions:

ri, di, n
0
i ∈ C(Xi), n

0
i > 0 for i = 1, . . . , N.

This will simplify statements, but we will be more specific below as to which data our
results generalise.

1.2.1 Analysis of coexistence steady states

In the context of this system of integro-differential equations, the expression "GAS in
RN>0" must be defined. By that, we mean that there exists ρ∞ > 0 such that, whatever
the positive continuous initial conditions n0

i are, ρi converges to ρ∞i for all i.
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First, let us explain how to compute the possible steady states at the level of ρ, i.e., possible
limits ρ∞ > 0 for positive continuous initial conditions. We will work with the following
topological assumption on the sets Xi:

∀x ∈ ∂Xi, ∀η > 0, λpi (B(x, η) ∩Xi) > 0, (1.5)

where λpi stands for the Lebesgue measure on Rpi and B(x, η) for the open ball of center
x and radius η.

Assume that each ρi converges to some ρ∞i > 0, in which case the exponential behaviour
of ni(t, x) is asymptotically governed by ri(x) + di(x)

∑N
j=1 aijρ

∞
j , the sign of which we

can analyse as follows.

• If this quantity is positive for some x0, let us prove that ni(t, x) blows up in its
neighbourhood, leading to the explosion of ρi.

If ri(x0) + di(x0)
∑N

j=1 aijρ
∞
j > 0, there exists η > 0 such that by continuity ri(x) +

di(x)
∑N

j=1 aijρ
∞
j > 0 on (B(x0, η) ∩Xi), and then λpi (B(x0, η) ∩Xi) > 0 whether

x0 ∈ int(Xi) or also if x0 ∈ ∂Xi thanks to (1.5). For ε > 0 small enough and t large
enough (say t > t0) such that ri(x0) + di(x0)

∑N
j=1 aijρj > ε, we can write:

ρi(t) >
∫

B(x0,η)∩Xi
ni(t, x) dx

>
∫

B(x0,η)∩Xi
ni(t0, x) e

∫ t
t0
Ri(x,ρ1(s),...,ρN (s)) ds

dx

> λpi (B(x0, η) ∩Xi)

(
inf

B(x0,η)∩Xi
ni(t0, x)

)
eε(t−t0),

with the right-hand side blowing up as t → +∞, which cannot be compatible with
the convergence of ρi.

• If ri + di
∑N

j=1 aijρ
∞
j is negative globally on Xi, this clearly implies the extinction of

species i, which is also incompatible with the convergence of ρi to a positive limit.
Remark 1.1. It is possible to relax the regularity on both the sets Xi and the data ri
and di by working only with points which are both Lebesgue points of ridi and of Lebesgue
density 1 for Xi, see [56]. If the functions ri

di
are in L1(Xi), one can indeed check that

ri + di
∑N

j=1 aijρ
∞
j 6 0 a.e. on Xi.

The previous results motivate the following definition:

I∞i := max
x∈Xi

ri(x)

di(x)
, i = 1, . . . , N.

With this definition, a steady state ρ∞ > 0 exists if and only if the following assumption
holds:

the equation Aρ+ I∞ = 0 has a solution ρ∞ in RN>0, (1.6)

which we assume from now on.
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Chapter 1. Systems of integro-differential selection equations

The previous computations also show that ni vanishes where ri(x) − di(x)I∞i < 0, which
implies the following result:
Proposition 1.1. Assume that assumption (1.6) holds, and that ρ converges to the co-
existence steady state ρ∞. Then, ni(t), viewed as a Radon measure, concentrates on the
set

Ki :=
{
x ∈ Xi, ri(x)− di(x)I∞i = 0

}

as t→ +∞, for all i = 1, . . . , N .

If, for some i, Ki is reduced to some x∞, we obtain in particular

ni(t, ·) ⇀ ρ∞i δx∞i

as t→ +∞ inM1(Xi).

Densities ni of total mass ρ∞i and concentrated on Ki are called Evolutionary Stable
Distributions (ESD) in [82].
Remark 1.2. In the hypothesis of global existence and convergence of ρ towards ρ∞, the
previous reasoning actually shows that the concentration is ensured as soon as n0

i ∈ L1(Xi)
is bounded by below by a positive constant on a neighbourhood of one of the points of Ki.
For more general hypotheses ensuring concentration, we refer to [82].
Remark 1.3. If all the sets Ki are reduces to some singletons x∞i , then the dynamics
of ρ are asymptotically governed by classical Lotka-Volterra equations concentrated in
(x∞1 , . . . , x

∞
N ), namely

d

dt
ρi(t) '


ri (x∞i ) + di (x∞i )

N∑

j=1

aijρj(t)


 ρi(t), i = 1, . . . , N,

as t goes to +∞. For a precise statement, see Chapter 5.

1.2.2 Main results

Our first approach to prove GAS is to mix a Lyapunov functional which is inspired by
the one designed in [82] and the Lyapunov functional used for classical Lotka-Volterra
equations [64], which is the key tool to obtain Theorem 1.1. With some mild regularity
assumptions on the data, we obtain the following result:
Theorem 1.4. Assume (1.6) and that there exists a diagonal matrix D > 0 such that DA
is symmetric and DA < 0. Then the solution to the Cauchy problem (1.2)-(1.3) is globally
defined. Furthermore, the solution ρ∞ to Aρ+ I∞ = 0 is GAS (and hence, unique).

We emphasise that there is no assumption on the type of interactions, i.e., on the sign of
the coefficients of A. However, a necessary condition for the existence of D is that A must
be such that aiiajj > aijaji for all i, j. For this result to apply, interactions must therefore
be stronger inside species than between them.
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1.3. General interactions

We also remark that our hypothesis is exactly the one exhibited in [35] for competitive
classical Lotka-Volterra equations. The analysis of the Lyapunov functional allows to de-
termine a speed at which convergence to ρ∞ and concentration on a given set of phenotypes
occur. In dimension 2, we also analyse more deeply the link between this condition and
the one for classical Lotka-Volterra equations, which in most interesting cases happen to
be equivalent.

Our second main result focuses on the special case of mutualistic interactions, and an
informal statement of the theorem is the following.
Theorem 1.5. Assume (1.6), that for i = 1, . . . , N , ri > 0 and that for some explicit
0 < ci < Ci, the matrix Â defined by âii := ciaii and âij = Ciaij for i 6= j is Hurwitz.
Then the solution to the Cauchy problem (1.2)-(1.3) is globally defined. Furthermore, the
solution ρ∞ to Aρ+ I∞ = 0 is GAS.

Again, this applies to the case of interspecific interactions being higher that intraspecific
ones, because a Hurwitz matrix is a matrix such that all its eigenvalues have negative real
part and it has to do with diagonally dominant matrices (see Section 1.4).

Because of the hypothesis of mutualism, the system is cooperative, and sub and superso-
lution techniques can succeed. More precisely, it is possible to prove that all functions ρi
are BV on [0,+∞) and this implies their convergence.

1.3 General interactions

1.3.1 Proof of the main theorem

In this section, we need slightly more regularity for the data, namely that the functions
are Lipschitz continuous:

for i = 1, . . . , N, ri, di ∈ C0,1(Xi). (1.7)

We can now restate the first theorem:
Theorem 1.6. Assume (1.6) and (1.7). Assume that there exists a diagonal matrix D > 0
such that DA is symmetric and DA < 0. Then the solution to the Cauchy problem (1.2)-
(1.3) is globally defined.

Furthermore, the solution ρ∞ to Aρ+ I∞ = 0 is GAS with

ρ(t)− ρ∞ = O

((
ln(t)

t

) 1
2

)
. (1.8)

Concentration of a given ni occurs at speed O
(

ln(t)
t

)
, in the following sense:

∫

Xi

mi(x)Ri (x, ρ∞1 , . . . , ρ
∞
N )ni(t, x) dx = O

(
ln(t)

t

)
. (1.9)
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In particular, if Ki is reduced to a singleton x∞i , then

∀ε > 0,

∫

Xi\B(x∞i ,ε)
ni(t, x) dx = O

(
ln(t)

t

)
. (1.10)

Proof. First step: definition of the Lyapunov functional. From (1.6), Evolutionary Stable
Densities exist and we can pick one of them: for i = 1, . . . , N , we choose any measure n∞i
inM1(Xi) satisfying n∞i (Xi) = ρ∞i , which is furthermore concentrated on Ki, i.e.,

supp(n∞i ) ⊂ Ki. (1.11)

We abusively write integration of functions g against measures µ as
∫
X g(x)µ(x) dx. We

also set mi := 1
di

and define N functions Vi by

Vi(t) :=

∫

Xi

mi(x)

[
n∞i (x) ln

(
1

ni(t, x)

)
+ (ni(t, x)− n∞i (x))

]
dx.

In what follows, we consider the following Lyapunov functional:

V (t) :=

N∑

i=1

λiVi(t)

where the positive constants λi are to be chosen later. The diagonal matrix of diagonal
entries λ1, . . . , λN is denoted by D.

Second step: computation and sign of the derivative. For any i, we compute

dVi
dt

=

∫

Xi

mi(x)

[
−n∞i (x)

∂tni(t, x)

ni(t, x)
+ ∂tni(t, x)

]
dx

=

∫

Xi

mi(x)Ri (x, ρ1, . . . , ρN ) [ni(t, x)− n∞i (x)] dx

=

∫

Xi

mi(x) (Ri (x, ρ1, . . . , ρN )−Ri (x, ρ∞1 , . . . , ρ
∞
N )) [ni(t, x)− n∞i (x)] dx

+

∫

Xi

mi(x)Ri (x, ρ∞1 , . . . , ρ
∞
N ) [ni(t, x)− n∞i (x)] dx.

The definition of mi implies that the first term simplifies as follows
∫

Xi

mi(x)di(x) [A (ρ− ρ∞)]i [ni(t, x)− n∞i (x)] dx = [A (ρ− ρ∞)]i (ρi − ρ∞i ) .

For the second term, the choice (1.11) leads to

Bi(t) :=

∫

Xi

mi(x)Ri (x, ρ∞1 , . . . , ρ
∞
N )ni(t, x) dx.

The functions Bi are all non-positive by definition of ρ∞.
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1.3. General interactions

Defining the vector u := ρ− ρ∞, we arrive at:

dV

dt
=

N∑

i=1

λi [A (ρ− ρ∞)]i (ρi − ρ∞i ) +
N∑

i=1

λiBi

=
N∑

i=1

λi(Au)iui +
N∑

i=1

λiBi.

Thus, we end up with the expression

dV

dt
= uT (DA)u+

N∑

i=1

λiBi.

Since the antisymmetric part of DA does not play any role, this can also be expressed

dV

dt
=

1

2
uT (ATD +DA)u+

N∑

i=1

λiBi.

By assumption, M := ATD +DA < 0, from which we deduce
dV

dt
6 0. Furthermore, the

convergence of the term uTMu to 0 is equivalent to that of ρ to ρ∞. However, we do not
have the usual property V > 0 for Lyapunov functions, so that we cannot yet conclude.

Third step: estimates on dV
dt . Let

G :=
1

2
uTMu+ 2

N∑

i=1

λiBi.

We are going to show that G is non-decreasing.

We denote by 〈u, v〉 the canonical scalar product of two vectors u and v in RN .
d

dt

(
uT (DA)u

)
=

d

dt
〈(DA)u, u〉

=

〈
(DA)

du

dt
, u

〉
+

〈
(DA)u,

du

dt

〉
.

For i = 1, . . . , N , the derivative of Bi is given by
dBi
dt

=

∫

Xi

mi(x)Ri (x, ρ∞1 , . . . , ρ
∞
N )Ri (x, ρ1, . . . , ρN )ni(t, x) dx

=

∫

Xi

mi(x)R2
i (x, ρ1, . . . , ρN )ni(t, x) dx

+

∫

Xi

mi(x) [Ri (x, ρ∞1 , . . . , ρ
∞
N )−Ri (x, ρ1, . . . , ρN )]Ri (x, ρ1, . . . , ρN )ni(t, x) dx

>
[
A (ρ∞ − ρ)

] ∫

Xi

Ri (x, ρ1, . . . , ρN )ni(t, x) dx

= −(Au)i

(
du

dt

)

i
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leading to the bound

d

dt

(
N∑

i=1

λiBi

)
> −

N∑

i=1

λi(Au)i

(
du

dt

)

i

= −
〈

(DA)u,
du

dt

〉
.

Put together, these estimates yield:

dG

dt
>

〈
(DA)

du

dt
, u

〉
+

〈
(DA)u,

du

dt

〉
− 2

〈
(DA)u,

du

dt

〉

=

〈
(DA)

du

dt
, u

〉
−
〈

(DA)u,
du

dt

〉
.

The last expression is equal to 0 if DA is symmetric, in which case G is non-decreasing as
claimed.

The assumptions that DA is symmetric and that ATD + DA < 0 are equivalent to the
assumption made for the theorem: DA is supposed to be a symmetric negative definite
matrix.

As a consequence of the monotonicity of G, we get uT (−DA)u 6 −G(0) for all t. The
left-hand side is the square of some norm on RN , which means that ρ has to be bounded:
these a priori bounds ensure the global definition of the solution to (1.2)-(1.3).

Fourth step: a lower estimate for V . To estimate V from below, we need a uniform (in
x) upper bound on the densities ni. Because of the regularity assumption (1.7) , there
exists C > 0 such that:

∀i = 1, . . . , N, ∀(x, y) ∈ X2
i , Ri (y, ρ1, . . . , ρN ) > Ri (x, ρ1, . . . , ρN )− C|x− y|.

The constant C can be chosen to be independent of t since the functions ρi are bounded.
This implies for a given i
∫

Xi

ni(t, y) dy =

∫

Xi

n0
i (y) exp

(∫ t

0
Ri (y, ρ1, . . . , ρN ) ds

)
dy

>
∫

Xi

n0
i (y)

n0
i (x)

(
n0
i (x) exp

(∫ t

0
Ri (x, ρ1, . . . , ρN )

))
exp (−Ct|x− y|) dy

>
ni(t, x)

n0
i (x)

∫

Xi

exp (−Ct|x− y|) dy.

Computing the integral, we write, thanks to the boundedness of ρi n0
i and (C has changed

and is independent of t and x): for t large enough, ni(t, x) 6 Ct. The bound on V follows
immediately:

V (t) > −C (ln(t) + 1) .
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1.3. General interactions

Fifth step: convergence. G bounds dV
dt from above: dV

dt 6 1
2G. Thus

V (t)− V (0) 6
1

2

∫ t

0
G(s) ds 6

1

2
tG(t)

thanks to the third step. We can now write G(t) > −C ln(t)+1
t : G(t) = O

(
ln(t)
t

)
, conse-

quently, each non-positive term it is composed of also vanishes like O
(

ln(t)
t

)
as t→ +∞.

In other words, 1
2u

TMu and each Bi onverge to 0 as as well O
(

ln(t)
t

)
. This is nothing but

the two first statements (1.8) and (1.9).

For the last statement, we fix i and ε > 0. We denote hi := −miRi (·, ρ∞1 , . . . , ρ∞N ), which
is non-negative on Xi, and by assumption vanishes at x∞i only. We choose a > 0 small
enough such that a1I{Xi\B(x∞i ,ε)}

6 h on Xi. This enables us to write

∫

Xi\B(x∞i ,ε)
ni(t, x) dx 6

1

a

∫

Xi

mi(x)Ri (x, ρ∞1 , . . . , ρ
∞
N )ni(t, x) dx = O

(
ln(t)

t

)
.

Remark 1.4. The first interesting fact is that the convergence rate of G to 0, in O
(

ln(t)
t

)
,

is almost optimal in many cases. Indeed, if the sets Ki are reduced to singletons, there
cannot exist any α > 1 such that this sum vanishes like O

(
1
tα

)
. This comes from the

fact that if it were true, dV
dt would be integrable on the half-line, which would imply the

convergence of V . This is not possible since each Vi has to go to −∞ as t goes to +∞.

This might seem contradictory with the exponential convergence rates obtained in [46] for
some classical Lotka-Volterra equations, but the Lyapunov functional gives us information
on the speed of both phenomena in the sense defined above (through the function G) and
it does not say whether one of the two is faster.

1.3.2 Sharpness in dimension 2

It is clear that if we can find D > 0 diagonal such that DA is symmetric and DA < 0, then
ATD + DA < 0. The condition that DA should be symmetric is constraining, especially
if N > 3 in which case it imposes some polynomial equalities on the coefficients of the
matrix A. In dimension 2, however, the result is sharp in various contexts, as stated in the
following proposition.
Proposition 1.2. Assume N = 2, a11 < 0, a22 < 0 and a12 a21 > 0. Then the following
conditions are equivalent.

(i) there exists D > 0 diagonal such that DA is symmetric and DA < 0;

(ii) there exists D > 0 diagonal such that ATD +DA < 0;

(iii) det(A) > 0.
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Proof. (i) implies (ii) as noticed before. Now, let us assume (ii) and compute M :=

ATD + DA =

(
2λ1a11 λ1a12 + λ2a21

λ1a12 + λ2a21 2λ2a22

)
, which has positive determinant, i.e.,

det(M) = 4λ1λ2a11a22 − (λ1a12 + λ2a21)2 > 0. If det(A) 6 0, det(M) 6 4λ1λ2a12a21 −
(λ1a12 + λ2a21)2 = −(λ1a12 − λ2a21)2 6 0, a contradiction.

Now, if (iii) holds, we take λ1 := 1
|a12| and λ1 := 1

|a21| for whichDA =

(
a11
|a12| sgn(a12)

sgn(a21) a22
|a21|

)

is clearly symmetric negative definite, whence (i).

1.4 Cooperative case

1.4.1 Some facts about Hurwitz matrices

We now focus on the cooperative case, i.e., on the case where all off-diagonal elements
of A are non-negative. We will also assume that the diagonal elements are negative,
since otherwise blow-up clearly occurs: there is intra-spectific competition inside any given
species. We will say that such a matrix is cooperative.

In this case, we can hope for stronger results at the level of the integro-differential system
because sub and super-solution techniques work. For our purpose, the following result on
ODEs is sufficient.
Lemma 1.1. For T > 0 (possibly T = +∞), let f : [0, T ) × RN −→ RN be a continous
function on [0, T ) × RN , locally Lipschitz in x ∈ RN uniformly in t ∈ [0, T ). Denoting
f(t, x) := (fi(t, x1, . . . , xN ))16i6N , further assume that for all i = 1, . . . , N , fi is non-
decreasing with xj for all j 6= i.

Assume that we have a solution z on [0, T ) of the following Cauchy problem:

dz

dt
= f(t, z)

z(0) = z0,

where z0 ∈ RN , and a function y subsolution to the previous Cauchy problem, i.e.,

dy

dt
6 f(t, y)

y(0) 6 z0.

Then y(t) 6 z(t) on [0, T ).

When the matrix A is cooperative, it is possible to give an equivalent condition to the
one required in Theorem 1.1 for GAS in classical Lotka-Volterra equations. Let us explain
how, starting with the three following lemmas, the two first of which can be found in [6].
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1.4. Cooperative case

Lemma 1.2. Let A be a cooperative matrix. Then it is Hurwitz if and only if it is negatively
diagonally dominant, i.e., if and only if there exists a vector v > 0 such that aiivi +∑

j 6=i aijvj < 0 for i = 1, . . . , N .

This first lemma will be useful in its own right in this section. A consequence is that
Lemma 1.3. If A is cooperative and r > 0, Aρ + r = 0 has a unique solution in RN>0 if
and only if A is Hurwitz.

Finally, it comes from the theory of M-matrices (see [135] for a review) that
Lemma 1.4. Let A be cooperative. Then A is Hurwitz if and only if there exists D > 0
diagonal such that ATD +DA < 0.

An important consequence of these three lemmas is the following rephrasing of Theorem
1.1 for classical Lotka-Volterra equations.
Proposition 1.3. Assume that A is cooperative, r > 0 and that the equations (1.4) have
a unique steady state in RN>0. Then the equations are globally defined and this steady state
is GAS.

Thus, in the context of cooperation between the species, the requirement that A is Hur-
witz is somehow optimal to obtain a GAS coexistence steady state, since it is already
required to have its mere existence, a fact mentioned in [63]. We will mainly work with
this characterisation (rather than the equivalent one given by Lemma 1.4 which we used
for a general interaction matrix A) because the next results will lead us to modify the ma-
trix A: analysing whether it is still Hurwitz or not is easier than checking this equivalent
condition.

1.4.2 A priori bounds

For the remaining part of this section, we make the assumption that ri is positive on Xi

for i = 1, . . . , N , and we define the lower and upper bounds 0 < dmi 6 di(x) 6 dMi ,
0 < rmi 6 ri(x) 6 rMi .
Theorem 1.7. Assume that the matrix Ã defined by ãii := dmi aii and ãij := dMi aij is
Hurwitz. Then the solutions to (1.2) are globally defined and bounded.

Proof. First remark that since Ã is Hurwitz, then so is A from Lemma 1.2.

We integrate the equations with respect to x and bound them (through ri(x) 6 rMi )

d

dt
ρi(t) 6

(
rMi +

N∑

j=1

aijρj(t)

∫

Xi

di(x)ni(t, x) dx

)
i = 1, . . . , N.

Since the diagonal elements are negative, the off-diagonal non-negative, we obtain

d

dt
ρi(t) 6

(
rMi + aiid

m
i ρi +

N∑

j 6=i
aijd

M
i ρj(t)

)
ρi(t), i = 1, . . . , N.
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Chapter 1. Systems of integro-differential selection equations

Thus, the vector (ρ1, . . . , ρN ) is a subsolution of the previous system which is nothing but
classical Lotka-Volterra equations with interaction matrix Ã. Thanks to (1.3), the solutions
to this system are bounded. Thus, so are those of the integro-differential one.

Remark 1.5. Note that the assumption that Ã is Hurwitz reduces to A being Hurwitz
in the case of constant coefficients. Thus, this result for boundedness is sharp, since it is
exactly the one required for convergence to the coexistence steady state when the equations
at hand are classical Lotka-Volterra equations.

Using Theorem 1.7, we can thus define ρM > 0 as the GAS steady state for the system
obtained in the previous proof, that is to the equations

d

dt
ui =

(
rMi + aiid

m
i ui +

N∑

j 6=i
aijd

M
i uj(t)

)
ui(t), i = 1, . . . , N.

In other words, ρM := −Ã−1rM where rM is the vector (rMi )16i6N . This means that we
can write

lim sup
t→+∞

ρi 6 ρMi i = 1, . . . , N. (1.12)

In a similar fashion to the previous proposition, bounding ρi away from 0:

d

dt
ρi >

(
rmi + aiid

M
i ρi +

N∑

j 6=i
aijd

m
i ρj(t)

)
ρi(t), i = 1, . . . , N,

leading to
lim inf
t→+∞

ρi > ρmi i = 1, . . . , N (1.13)

where ρm := −B−1rm > 0 with B, a Hurwitz matrix defined by bii := dMi aii, bij := dmi aij
for i 6= j and rm := (rmi )16i6N .

1.4.3 GAS in the mutualistic case

We can now state the main result:
Theorem 1.8. Assume ri > 0 for all i = 1, . . . , N , and that the matrix Â defined by
âii := dmi ρ

m
i aii and âij := dMi ρ

M
i aij for i 6= j, is Hurwitz. Then Ã, A and B are also

Hurwitz. Furthermore, ρ∞ := −A−1I∞ lies in RN>0 and it is GAS.

Proof. The fact that Ã, A and B are also Hurwitz is a direct consequence of Lemma 1.2.
Since Ã is Hurwitz, the solutions are globally defined with ρ bounded thanks to Theo-
rem 1.7. Since A is Hurwitz, it is invertible and ρ∞ := −A−1I∞ is in RN>0 thanks to
Lemma 1.3.

Let us now prove that it is GAS. The idea is to prove that each ρi is BV on [0,+∞).
Identifying the limit is straightforward, thanks to the reasoning made in Section 1.2.
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1.4. Cooperative case

For any i, we define qi :=
dρi
dt

and write Ri = Ri (x, ρ1, . . . , ρN ) for readability. Since

qi =
dρi
dt

=
∫
Xi
Rini, we obtain

dqi
dt

=

∫

Xi

R2
ini +

∫

Xi




N∑

j=1

∂Ri
∂ρj

qj


ni >

N∑

j=1

aij

(∫

Xi

di(x)ni(t, x) dx

)
qj .

Let bi(t) :=
∫
Xi
di(x)ni(t, x) dx. The idea is that ρi is "mostly" increasing, so we are

interested in the negative part of qi, denoted by (qi)−. For this quantity we have the (a.e.)
bound

d(qi)−
dt

6 bi

N∑

j=1

aijqj
(
−1I{qi<0}

)

On the one hand,
biaiiqi

(
−1I{qi<0}

)
= biaii(qi)−.

On the other hand, for i 6= j,

biaijqj
(
−1I{qi<0}

)
6 biaij(qj)−.

Combining these two, we get
d(qi)−
dt

6 bi (A(q)−)i .

We fix ε > 0 small enough and t large enough (say t > t0) such that Â+εJ is Hurwitz (where
J is the matrix composed of ones only) and such that, for each (i, j), bi(t)aij 6 âij+ε. The
first requirement is easily derived from Lemma 1.2 since Â+ εJ is clearly cooperative and
negatively diagonally dominant for ε > 0 small enough. The second requirement comes
from the lower and upper bounds for the functions ρi as stated in (1.12) and (1.13).

The resulting inequality is

d(qi)−
dt

6
((
Â+ εJ

)
(q)−

)
i
,

so that ((q1)−, . . . , (qN )−) is a subsolution of the system with same initial conditions at t0,
given by

dy

dt
=
(
Â+ εJ

)
y.

The solutions to this system go exponentially to 0 since Â+ εJ is Hurwitz.

For any i, we have thus proved that (qi)− goes to 0 exponentially. Together with the fact
that ρi is bounded from above, we conclude that it is BV on [0,+∞). Indeed it holds true
that a function u which is both bounded from above and such that u− ∈ L1([0,+∞)) is
BV on [0,+∞), see [129, Lemma 6.7]. Therefore, ρ converges (to ρ∞).
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1.5 Conclusion

We have analysed the global asymptotic stability properties for integro-differential systems
of N species structured by traits x belonging to different trait spaces Xi. The coupling
comes from a non-local logistic term, which is a linear combination of the total number of
individuals ρi in each species. Theses systems generalise the usual Lotka-Volterra ODEs
for which many stability analyses are available in the literature. Our main focus has
been on the asymptotic behaviour of the functions ρi(t) as t → +∞, especially towards
equilibrium ρ∞ with positive components, i.e., of persistence of all species. In Section
1.2, we explained how identifying it essentially determines the asymptotic behaviour of the
underlying density ni, namely the phenotypes on which the measures ni(t, ·) concentrate
in large time.

In Section 1.3, an adequate Lyapunov functional allowed us to state a general result relying
solely on an assumption on the matrix A, regardless of the type of interactions. For N = 2,
this is essentially a sharp result, but becomes more restrictive for N > 3. This tool also
provided us with convergence rates to equilibrium. In Section 1.4, we presented another
strategy based on a BV bound which yielded a second result of global asymptotic stability,
this time for mutualistic equations.

The result of Theorem 1.8 is partly less general than the one given in Theorem 1.6 because
it requires a sign on the coefficients of A. However, the set of matrices which satisfy the
hypothesis given in the last theorem is an open subset of the set of real matrices RN×N
in any dimension. This in sharp contrast with the hypothesis of Theorem 1.6, which, as
already mentioned, imposes some polynomial equalities on the coefficients of A as soon
as N > 3. In other words, for a small perturbation of a cooperative matrix for which
GAS holds, GAS still holds. In particular, if one has weakly (but mutualistically) coupled
equations, GAS holds, whereas Theorem 1.6 does not cover the case of any weakly coupled
equations for general interactions, unless N = 2.

In both cases, the assumptions fall within the class of matrices which cannot have off-
diagonal coefficients which are too high compared to the diagonal ones. The present results
thus apply to cases where interactions among individuals of a same species are not only
blind because of the term a11ρ1, but also stronger than the interactions between species.
In other words, each one of them has its own ecological niche inside which interactions are
independent of how given phenotypes x and y are distant from another.

Let us remark that theBV method would apply to more general functionsRi(x, ρ1, . . . , ρN ),
as long as they are increasing in the variables ρj , j 6= i. However, the Lyapunov functional
used in Theorem 1.6 seems to be dependent on the linear coupling chosen here and it is an
open problem to generalise our results for other settings. Another open question is about
finding whether there are matrices A for which the underlying classical Lotka-Volterra
equations converge to the coexistence steady state (for example such that there exists
D > 0 with ATD + DA < 0), but for which there is no GAS for the integro-differential
system. Numerically at least, we could not build any such case.
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Appendix A: proof of Theorem 1.2

Proof. The proof is based on the Banach-Picard fixed point theorem. We set T > 0,
and define the Banach spaces Z :=

∏N
i=1 L

1(Xi) endowed with the max norm, and E :=
C ([0, T ], Z) endowed with the norm ‖m‖E := sup06t6T ‖m(t)‖Z . Finally, we consider the
following closed subset: F := {m ∈ E /m > 0 and ‖m‖E 6M} where M > ρsup.

We now build the application. Let m be a fixed element in F , and let us define for
i = 1, . . . , N

ρ̃i(t) =

∫

Xi

mi(t, x) dx.

For each i = 1, . . . , N and each fixed x ∈ Xi, we consider the solution γi,x to the following
differential equation: { dγi,x

dt = Ri (x, ρ̃1(t), . . . , ρ̃N (t)) γi,x
γi,x(0) = n0

i (x)
(1.14)

which is global on [0, T ].

We then define for all (t, x) in [0, T ]×X and i = 1, . . . , N the function ni(t, x) := γi,x(t),
thus building an application Φ through Φ(m) := n.

We now show that Φ maps F onto itself.
The equation (1.14) can be solved explicitly by

ni(t, x) = n0
i (x)e

∫ t
0 Ri(x,ρ̃1(s),...,ρ̃N (s)) ds,

which shows both n > 0 and n ∈ E.

Let us fix some i = 1, . . . , N and bound as follows

∂

∂t
ni(t, x) 6 (‖ri‖L∞ + ‖di‖L∞‖A‖∞ρsup)ni(t, x).

Integrating in x, we uncover d
dt‖n(t)‖Z 6 C‖n(t)‖Z for some constant C > 0, which leads

to
‖n(t)‖Z 6 ρsupeCT .

To obtain n ∈ F , it only remains to choose T small enough so that ρsupeCT 6 K.

The last step is to prove the strong contraction property for Φ. In the following, C will
denote various positive constants, which might change from line to line. Let (m1,m2) ∈ F 2

and (n1, n2) its image by Φ. We define ρ̃k as before for k = 1, 2. For all i, we write

(n1
i − n2

i )(t, x) = n0
i (x)

[
e
∫ t
0 Ri(x,ρ̃

1
1(s),...,ρ̃1

N (s)) ds − e
∫ t
0 Ri(x,ρ̃

2
1(s),...,ρ̃2

N (s)) ds
]
.
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Now, since the argument in the exponentials can be bounded by CT , the mean value
theorem yields

|(n1
i − n2

i )|(t, x) 6 n0
i (x)eCT

∣∣∣∣
∫ t

0

[
Ri
(
x, ρ̃1

1(s), . . . , ρ̃1
N (s)

)
−Ri

(
x, ρ̃2

1(s), . . . , ρ̃2
N (s)

)]
ds

∣∣∣∣

6 ‖di‖L∞‖A‖∞n0
i (x)eCT

[∫ T

0
‖ρ̃1(s)− ρ̃2(s)‖∞ ds

]

6 Cn0
i (x)TeCT ‖m1 −m2‖E .

This implies after integrating in x and taking the supremum both in t ∈ [0, T ] and in
i = 1, . . . , N :

‖n1 − n2‖E 6 CρsupTeCT ‖m1 −m2‖E .
It provides us with the contracting property for Φ whenever T is small enough.

We conclude by noticing that T has been chosen small independently of the initial data,
so that the argument can be iterated on [0, T ], [T, 2T ], etc.

Appendix B: proof of convergence in the case N = 1

Proof. We are going to prove that ρ is a BV function. To that end, let us prove that ρ is
bounded from above, and that it has integrable negative part.

First step: upper bound for ρ. The existence of such a bound comes from integrating the
equation with respect to x:

ρ′(t) =

∫

X
(r(x)− d(x)ρ(t))n(t, x) dx.

If ρ is too large, the right hand side is negative, forcing ρ to decrease. It proves the claim
on the upper bound for ρ. Similarly, because of assumption (1.3), ρ increases if it is too
close to 0: ρ is bounded from below by some ρmin > 0.

Second step: estimate on the negative part of ρC . We define q := ρ′ and wish to prove that
q− ∈ L1(0,+∞) and write in short R for r(x) − d(x)ρ. We differentiate ρ′ =

∫
X nR to

obtain:
q′ =

∫

X
nR2 +

(∫

X
n
∂R

∂ρ

)
q

It provides an upper bound for the negative part of q:

(q)′− 6

(∫

X
n
∂R

∂ρ

)
q− 6 −dminρmin(q)−

where 0 < dmin 6 d on X. We conclude that q− vanishes exponentially and is consequently
integrable over the half-line. Therefore, ρ converges to some ρ∞ > 0.
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Chapter 2

Selected phenotypes among those of
equal fitness for small mutations

The goal here is to go further in understanding what happens at the limit for a
simple integro-differential equation exhibiting convergence and concentration:
on which phenotypes does the latter occur? This cannot be decided at the
integro-differential level independently of the initial condition. Together with
Tommaso Lorenzi, we propose to introduce a small diffusion term and pass to
the limit as time goes to infinity in the non-local PDE, and then to pass to the
limit as the diffusion rate vanishes. The analysis then boils down to that of the
behaviour of the first eigenfunction of the operator ε∆+r where r is the fitness
function. Translating results from the community of semi-classical analysis,
we find that uniqueness is recovered, and in the absence of symmetries, that a
single phenotype is typically selected. This work is the subject of an upcoming
article, under the (yet tentative) name Finding selected phenotypes among those
of equal fitness in the limit of small mutations.

2.1 Introduction

The purpose of adaptive dynamics is to provide a mathematical framework to study and
understand evolution. Following Diekmann [49], a fundamental concept is that of ecological
feedback loop: the individuals of a given population create the environment they live in.
As a consequence, what happens at the individual level is shaped by the population-level.

Assuming on top of it the existence of small mutations, a basic selection-mutation model
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Chapter 2. Selected phenotypes among those of equal fitness for small mutations

like
∂n

∂t
(t, x)− β∆n(t, x) = (r(x)− d(x)ρ(t))n(t, x), (2.1)

(with β > 0 small) and close models have attracted some attention [129, 51]. Here,
ρ(t) =

∫
Ω n(t, x) dx, Ω ⊂ Rd is the set of phenotypes, and we set Neumann boundary

conditions on ∂Ω. r is the so-called fitness function.

Note that a tacit hypothesis is that individuals of phenotype x are independent of one
another, in that they all react the same to the environment created by the whole population
through ρ(t).

As explained in the General Introduction, if β = 0, there holds that ρ(t) −→ max
(
r
d

)

while n(t, ·) concentrates on the set arg max
(
r
d

)

The integro-differential equation thus leads to selection of those phenotypes maximising
some function (related to the fitness function), a satisfying property from the applicative
point of view. However, a problematic feature remains: if arg max

(
r
d

)
is not reduced to a

singleton, there are uncountably many possible limits, the one being observed at the limit
t→ +∞ depending on the initial condition.

Writing things explicitly, if arg max
(
r
d

)
= {x1, . . . , xN}, any limit measure n∞ is of the

form
n∞∫
Ω n
∞ =

N∑

i=1

αiδxi .

If for example the whole problem is symmetric (r, d and Ω are), then one would expect at
the limit to find a repartition n∞ which preserves this symmetry. This does not hold true
at the integro-differential level.

Going back to the model with small mutations, a significant effort has been put in the
analysis of the model after rescaling of time [129, 7, 112]. More precisely, inserting

√
β in

front of the time derivative and considering instead of (2.1)

√
β
∂n

∂t
(t, x)− β∆n(t, x) = (r(x)− d(x)ρ(t))n(t, x),

the goal is to analyse, t being fixed, the behaviour of n(t, x) as β tends to 0.

If r(x)−d(x)ρ̄ has a unique maximum point for all ρ̄ > 0 , then the limit is a Dirac located
at an appropriate point, and in the long-run t → +∞ we recover the concentration on
arg max

(
r
d

)
and convergence of ρ towards max

(
r
d

)
. The proof of these results is involved

and relies on the solution of a Hamilton-Jacobi equation.

The situation is somewhat more complicated and not well understood when there are
several maximum points [129]. A concentration set of more than one phenotype is conse-
quently a difficulty also with this approach. We here take a different direction to analyse
the problem, without rescaling time, and we do so in the simpler case where d(x) is a
constant, which we normalise to 1.
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2.2. Why total mass and support match

To that end, we intend to use the equation with small mutations, of rate now denoted by ε,
to obtain uniqueness. From the applicative point of view, this amounts to deciphering how
completely neglecting small mutations for these types of models might be inappropriate,
and how the problem can be addressed by introducing them back in the model.

We aim at comparing

∂nε
∂t

(t, x) =
(
r(x)− ρε(t)

)
nε(t, x) + ε∆nε(t, x), x ∈ Ω, t > 0,

∂nε
∂ν

(t, x) = 0, x ∈ ∂Ω, t > 0,

(2.2)

with its integro-differential approximation for ε = 0 given by

∂n

∂t
(t, x) =

(
r(x)− ρ(t)

)
n(t, x), x ∈ Ω, t > 0, (2.3)

with both equations starting at the same initial condition n0 > 0, n0 6= 0 in L1(Ω),
independent of ε.

The goal is to pass to the limit as t goes to +∞ on (2.2) to obtain some limit n∞ε ,
and then as ε goes to 0 on the (at this stage hypothetical) unique limit n∞ε , obtaining
some measure n∞. Since for (2.3), we have convergence of ρ(t) towards ρ∞ := max(r)
and concentration of n(t, ·) on the set arg max(r), the first requirement will be for this
procedure to yield a measure n∞ with mass ρ∞ and support included in arg max(r). We
shall address these questions in Section 2.2.

In Section 2.3, we will explain how the symmetric case is well dealt with by this method,
and then turn our attention towards more general cases without symmetry: using knowl-
edge from semi-classical analysis, we will explain how the typical case is for the limit
measure to be concentrated on a single phenotype. Theoretical results with be illustrated
by simulations.

2.2 Why total mass and support match

2.2.1 Asymptotic analysis of t 7→ nε(t, ·)

We assume
n0 ∈ L1(Ω), (2.4)

r ∈ C0,1(Ω), (2.5)

Under the previous assumptions (2.4)-(2.5), it holds that (2.2) has a unique classical solu-
tion in C([0,+∞), L1(Ω)) ∩ C1((0,+∞), C2,α(Ω)) [46]. We will also assume max(r) > 0.

In what follows, we will denote (for a given ε > 0) Aε the elliptic operator defined by

Aε := ε∆ + r.
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Chapter 2. Selected phenotypes among those of equal fitness for small mutations

The theory of elliptic operators ensures that Aε has a principal eigenvalue λε and a unique
eigenfunction ψε > 0 (once normalised by

∫
Ω ψε = 1). We also recall that λε is obtained

as the infimum of the Rayleigh quotients defined for φ ∈ H1(Ω) \ {0}, by

R(φ) :=
ε
∫

Ω |∇φ(x)|2 dx−
∫

Ω r(x)φ2(x) dx∫
Ω φ

2(x) dx
.

In other words,
λε = inf

φ∈H1(Ω)\{0}
R(φ),

with the infimum being reached by multiples of ψε. The asymptotic behaviour of (2.2) is
given by the following alternative, a standard fact [46, 100].
Proposition 2.1. If λε > 0, then the whole population goes extinct:

ρε(t)→ 0 as t goes to +∞.

If λε < 0,
nε(t, x) −→ n∞ε := −λεψε,

as t goes to +∞, in L∞(Ω) (in particular, ρε converges to −λε).

Proof. The idea is to consider the non-local term as an eigenvalue and to introduce a
suitable change of variables allowing to momentarily get rid of that term. Let us define
ñε(t, x) := a(t)nε(t, x) with a solving the Cauchy problem

a′(t) = ρε(t)a(t) + λεa(t), a(0) = 1.

ñε satisfies

∂ñε
∂t

(t, x) = a′(t)nε(t, x) + a(t)
∂nε
∂t

(t, x)

= a′(t)nε(t, x) +
(
r(x)− ρε(t)

)
a(t)nε(t, x) + a(t)∆nε(t, x)

=
(
a′(t)− ρ(t)a(t)

)
n(t, x) +Aεñ(t, x)

= λεñ(t, x) +Aεñ(t, x),

where the last equality is obtained thanks to the definition of a.

It is a standard fact about parabolic operators that this implies the convergence of ñε(t, x)
towards Cψε(x) for some C > 0, in L∞(Ω). Integrating the equality ñε(t, x) = a(t)nε(t, x)
in x, we obtain that a(t)ρε(t) converges to C.

This allows to recast the ODE on a as a′(t) = λεa(t) + C + o(1), and this is enough to
characterise the asymptotic behaviour of a depending on the sign of λε: if λε > 0, then
a(t)→ +∞ as t goes to +∞, while it converges to C

−λε if λε < 0.

From the convergence of a(t)ρε(t) to C, we get that ρε(t) goes to 0 for λε > 0, and to −λε
in the other case. Owing to ñε = anε, we get the announced result on the asymptotic
behaviour of nε.
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2.2. Why total mass and support match

2.2.2 Passing to the limit again on n∞ε

We now address the question of proving that any limit measure for (n∞ε )ε>0 must have
total mass ρ∞ and support included in arg max(r). Thanks to the normalisation

∫
Ω ψε = 1,

we have split these two questions into the analysis of the behaviour of λε and ψε separately.

Remark 2.1. In what follows, we will be led to consider sequences (un) of functions in
L1(Ω) which we will see as elements of the larger spaceM1

(
Ω
)
of Radon measures, in the

sense of the dual of C
(
Ω
)
. In this setting, such a sequence will be said to concentrate on

a given set F if for all g ∈ C
(
Ω
)
such that supp(g) does not intersect F , we have

〈un, g〉 =

∫

Ω
ung −→ 0,

as n goes to +∞.

A well-known fact from measure theory is that if un concentrates on a finite set {x1, . . . , xN}
and converges to a measure µ ∈ M1

(
Ω
)
, then µ must be a linear combination of Dirac

masses located at the points xi, 1 6 i 6 N , because if the previous result holds true, then
the support of µ must be contained in F .

The result writes as follows
Proposition 2.2. Assume that r does not attain its maximum exclusively in ∂Ω. As ε
tends to 0, we then have

−λε −→ ρ∞ = max(r),

and
ψε concentrates on the set arg max(r).

Proof. We split the proof into two steps, first concentrating on the mass (the first state-
ment), then on the support (the second one).

Step 1: computation of the mass. For the first result, we need to establish that −λε tends
to max(r) as ε tends to 0.

Recall that

λε = inf
φ∈H1(Ω)\{0}

{
ε
∫

Ω |∇φ(x)|2 dx−
∫

Ω r(x)φ2(x) dx∫
Ω φ

2(x) dx

}
,

and because for any φ ∈ H1(Ω), ε
∫

Ω |∇φ(x)|2 dx−
∫

Ω r(x)φ2(x) dx > −max(r)
∫

Ω φ
2(x) dx,

we already have λε > −max(r).

For the upper bound, let us build a sequence of functions (φε) converging to a Dirac located
in x0 ∈ arg max(r), x0 /∈ ∂Ω, at an appropriate rate depending on ε. Let G : x 7−→ Ce−|x|

2 ,
where | · | is the Euclidean norm on Rd, and C is such that

∫
Rd G = 1. It is then standard

that 1
αd
G
(
x−x0
α

)
converges to the Dirac mass δx0 located at the point x0

1

αd
G

(
x− x0

α

)
⇀ δx0
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Chapter 2. Selected phenotypes among those of equal fitness for small mutations

as α→ 0 weakly inM1
(
Ω
)1.

We take α = ε
1
4 , namely we define the Gaussian φ2

ε := x 7−→ 1

ε
d
4
G
(
x−x0

ε
1
4

)
, which converges

to δx0 as ε tends to 0. Let us study the Rayleigh quotientR(φε) and prove that it converges
to −max(r), which will yield the first statement of the proposition. We already know that∫

Ω r(x)φ2
ε(x) dx and

∫
Ω φ

2
ε(x) dx converge to r(x0) = max(r) and 1, respectively. It remains

to show that the term ε
∫

Ω |∇φε(x)|2 dx vanishes.

We compute ε
∫

Ω |∇φε(x)|2 dx =
∫

Ω |x− x0|2 φ2
ε(x) dx, which tends to |x0 − x0|2 = 0.

Step 2: computation of the support. As stated in Remark 2.1, our aim is to prove that for
all g ∈ C

(
Ω
)
such that supp(g) does not intersect arg max(r), we have

∫

Ω
ψεg −→ 0,

as ε goes to 0.

Integrating the equation ε∆ψe + rψε = −λεψε, we find
∫

Ω(−λε − r)ψε = 0, and from the
first step this entails the convergence of

∫
Ω(max(r)− r)ψε towards 0.

Fixing now a function g ∈ C
(
Ω
)
and defining g̃ := g

max(r)−r which belongs to L∞(Ω), we
write ∣∣∣∣

∫

Ω
ψεg

∣∣∣∣ =

∣∣∣∣
∫

Ω
(max(r)− r)ψεg̃

∣∣∣∣ 6 ‖g̃‖∞
∫

Ω
(max(r)− r)ψε,

whence the result by letting ε tend to 0.

Remark 2.2. If r attains its maximum only at the boundary of Ω, it is possible to adapt
the previous proof by suitably changing the constant C. This has to be done depending
on the geometry of ∂Ω near the maximum point, but for the sake of simplicity we stick
with this simplest case.

Also note that since max(r) > 0, we infer from the previous result that −λε > 0 for ε
small enough. Owing to Proposition 2.1, a consequence is that there is no extinction for
(2.2) when ε is small enough.

2.2.3 Numerical simulations

Let us illustrate this result when arg max(r) is reduced to a singleton. In the subsequent
simulations (and also in the next subsection), we will always take Ω = (0, 1), max(r) = 1,

1 Let φ ∈ C
(
Ω
)
. Changing variables, we have∫
Ω

φ(x)
1

αd
G
(x− x0

α

)
dx =

∫
Rd

φ (x0 + αu)G(u)1I{u∈Rd, x0+αu∈Ω} du.

Because x0 ∈ Ω, there is pointwise convergence of u 7→ φ (x0 + αu)G(u)1I{u∈Rd, x0+αu∈Ω} towards
φ(x0)G(u) on Rd. Furthermore, this function is bounded by ‖φ‖∞G(u). One can thus pass to the limit
thanks to Lebesgue’s dominated convergence Theorem, obtaining φ(x0).
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2.2. Why total mass and support match

n0(x) := Ce−
(x−0.5)2

2σ2 with σ = 0.1 and C such that
∫

Ω n
0 = 1

2 , so that n0 is a (truncated)
Gaussian with maximum at 0.5.

We here consider r with a single maximum point at 0.5, given by Figure 2.1 below. We
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Figure 2.1: Plot of the function r with a single maximum point at 0.5.

also compare the time evolution of ρ(t), n(t, ·) with ρε(t), n(t, ·) on Figure. At the level of
the total mass, we indeed find that ρ converges to ρ∞ = max(r) = 1, while ρε converges
to −λε < ρ∞ = 1. At the level of the density, n concentrates as a Dirac mass on 0.5, while
nε has stabilised as a smoothed version of this Dirac, also centred at 0.5, which we know
is a multiple of the first eigenfunction ψε of Aε.
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Figure 2.2: On the left, plots of functions ρ, ρε, on the right of n and nε at the final time,
together with the initial condition. Parameter values are ε = 5.10−4 and T = 200.
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Chapter 2. Selected phenotypes among those of equal fitness for small mutations

2.3 Inferring the real Dirac masses

At this stage, the question is to see whether the uniqueness of n∞ε is preserved at the limit
even when there are several maximum points. If it is the case, the next goal is to identify
the limit among the family of convex combination of Dirac masses.

2.3.1 In the case of symmetry

An appropriate setting for uniqueness is a case where the data has some symmetries,
because principal eigenfunctions typically preserve such symmetries. We thus assume that
Ω and r are symmetric with respect to some hyperplane, which without loss of generality
we can assume to be H := {x1 = 0}. For a point x ∈ Ω, we write x = (x1, x

′), the
assumption on Ω meaning (x1, x

′) ∈ Ω =⇒ (−x1, x
′) ∈ Ω. For a generic function v

defined on Ω, we will always denote by v̂ its symmetric, defined by v̂(x1, x
′) = v(−x1, x

′):
by symmetric function we hence mean v̂ = v. When Ω and r are symmetric, the symmetry
extends to the first eigenfunction of the operator ε∆ + r.
Lemma 2.1. The first eigenfunction ψε is symmetric with respect to H.

Proof. We simply write the equation defining ψε: ε∆ψε(−x1, x
′)+r(−x1, x

′)ψε(−x1, x
′) =

−λεψε(−x1, x
′). It rewrites ε∆ψ̂ε(x1, x

′) + r(x1, x
′)ψ̂ε(x1, x

′) = −λεψ̂ε(x1, x
′), due to

the symmetry of r. Thus, ψ̂ε is also an eigenfunction of the operator ε∆ + r, which by
uniqueness must be equal to ψε.

Now, because the limit is expected to be a measure, we need to define what it means for
a measure to be symmetric. It is as usual defined on the test-functions: a measure µ in
M1

(
Ω
)
will be said to be symmetric if for all v ∈ C

(
Ω
)
, it satisfies 〈µ, v̂〉 = 〈µ, v〉. It

is easy to check that it extends the previous definition for L1 functions: if v ∈ L1(Ω) is
symmetric, then the measure it defines is also symmetric. We finish these remarks with
the following straightforward lemma.
Lemma 2.2. Let (µn) be a sequence of symmetric Radon measures in M1

(
Ω
)
weakly

converging to a measure µ. Then µ is also symmetric.

From all the previous results, we are able to state the following proposition.
Proposition 2.3. Assume that Ω and r are symmetric, with arg max(x) = {x1, x2}, both
points lying inside Ω. Then

n∞ε ⇀
1

2
ρ∞ (δx1 + δx2) ,

weakly inM1
(
Ω
)
, as ε goes to 0.

Proof. We first note that the symmetry of Ω and r imposes that the maxima must be
symmetric: we can write x1 = (x1

1, x
′), x2 = (−x1

1, x
′) for some x1

1, x′.
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2.3. Inferring the real Dirac masses

Since we already know that −λε converges to ρ∞, we focus on (ψε). Let µ be a (weak)
limit point of (ψε). From Proposition 2.2, we know that µ = (αδx1 + (1− α)δx2) for some
0 6 α 6 1. From Lemma 2.1, we know that the sequence is composed of symmetric
functions, and by Lemma 2.2, the limit µ must also be symmetric, which entails α = 1

2 .
Since the sequence (ψε) is bounded in L1(Ω), it is weakly relatively compact in M1

(
Ω
)

from the Banach-Alaoglu theorem. As a consequence, the whole sequence must weakly
converge to its unique limit point 1

2 (δx1 + δx2).

We illustrate these results still with an initial condition centred at 0.5, but now r has two
maximum points at x1 := 1

3 and x = 2
3 and is symmetric with respect to x = 1

2 , see Figure
2.3 below.
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Figure 2.3: Plot of the symmetric function r with two maximum points at 1
3 and 2

3 .

We also plot the time-evolution of n and nε in Figure 2.4. At time T1 = 500, the integro-
differential equation is already quite concentrated at x1, and eventually all the mass will
be at x1. For nε, we have to take a large final time: the solution tends to concentrate
at x1 before the mass at x1 is slowly "absorbed" at the other maximum point x2, and at
T2 = 20000, the solution is almost symmetric, as expected theoretically.

2.3.2 In the absence of symmetry

What can be said in the absence of a very particular symmetry? The question can be
addressed by slightly changing the viewpoint. Indeed, let us set V = −r to emphasise that
we are considering −r as a potential, and we now see x as a space variable.

We are thus interested in the behaviour of the first eigenfunction ψε of the operator ε∆−V ,
as ε tends to 0. From the previous results, we already know that it concentrates where V
is minimal, namely on the set arg max(r).
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Figure 2.4: On the left, plot of functions n(t, ·) at different times up to T1 = 500, on the right
plot of functions nε(t, ·) at different times up to T2 = 20000, with ε = 5.10−4.

Further investigating in which points in arg min(V ) = arg max(r) there will actually be
some mass is a fundamental question in semi-classical analysis. It is motivated by the
analysis of the behaviour of a particle in a potential well, in the limit of small noise.

We assume that r is at least C2, attains its maximum at a finite number of points
(x1, . . . , xN ) and that they are non-degenerate maxima. For simplicity, we also assume
that these points all lie inside Ω. We finally introduce some notations.

If xi is a point of arg max(r), we denote (λi(xi))16i6d the (positive) eigenvalues of the
Hessian of −r at the point xi, and set

ζi :=

p∑

i=1

√
λi(xi).

Translating the results obtained in semi-classical analysis, we obtain the following Theorem.

Theorem 2.1 ([79], Theorem 2). ψε concentrates on the set S := arg min16i6N (ζi) as ε
goes to 0.

Returning to our problem, we have obtained the following result.
Corollary 2.1. n∞ε concentrates on the set S = arg min16i6N (ζi) as ε goes to 0.

For example, in dimension 1, we obtain that n∞ε will concentrate on the points x in
arg max(r) which minimise −r′′(x).
Remark 2.3. We stress that if the previous set S is not reduced to a singleton, the limit
is still not completely identified. In [79], the analysis is continued to further reduce the
possible points on which concentration occur. This reduced set has a very complicated
expression, and we stick to the simpler one above which is enough for our purpose.

We illustrate these results (again with an initial condition centred at 0.5), and a non-
symmetric r with two maximum points at x1 := 1

4 and x2 := 5
8 , see Figure 2.5 below.
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Figure 2.5: Plot of the non-symmetric function r with two maximum points at 1
4 and 5

8 .

We also plot the time-evolution of n and nε in Figure 2.6. At time T = 500, the solution
of the integro-differential equation is already quite concentrated at x1, and eventually all
the mass will be at x1. For nε, the behaviour at the same time T = 500 is quite different,
the solution is close to a smoothed Dirac at x2, in perfect agreement with the theoretical
results, because we have −r′′(x2) 6 −r′′(x1).
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Figure 2.6: On the left, plot of functions n(t, ·), on the right plot of functions nε(t, ·) at different
times, with ε = 1.10−5. In both cases, T = 500.

2.3.3 On transient behaviours

We have seen that different behaviours can be expected at the same time T for equations
(2.2) and (2.3), starting from the same initial condition. There are however cases for which
reaching the unique stationary state is long, as in the symmetric case.
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In the non-symmetric case, let us consider r with x1 = 1
4 and x2 = 5

8 as maximum points,
in which case we know that in the end concentration will be on x2. As evidenced by
Figure 2.7, If the initial data is initially concentrated at x = 0.1, there will be a transient
concentration on x1 and a quick transition to concentration on x2.
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Figure 2.7: Plot of functions nε(t, ·) at different times, with ε = 1.10−5 and final time T = 800,
for an initial condition centred at 0.1.

This is a relevant problem related to the actual biological time-scales at which such phe-
nomena would occur. Capturing this mathematically requires to change time-scales, but
it remains a challenging (and open) problem, as already explained in the introduction.
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Chapter 3

The non-local Fisher-KPP equation
in a bounded domain

In this note accepted in the Comptes Rendus Mathematique, entitled On the
stability of the state 1 in the non-local Fisher-KPP equation in bounded do-
mains [138], we push the use of Lyapunov functionals based on the convex
function z 7→ z − 1 − ln(z) further to a case with diffusion. Under a strong
competition assumption on the kernel, we prove that 1 attracts all trajectories.
This condition is reminiscent of other ones found in the literature concerning
the stability of 1.

3.1 Introduction

We consider the so-called non-local Fisher-KPP equation endowed with Neumann bound-
ary conditons

∂u

∂t
(t, x) = µ

(
1−

∫

Ω
K(x, y)u(t, y) dy

)
u(t, x) + ∆u(t, x), x ∈ Ω, t > 0,

∂u

∂n
(t, x) = 0, x ∈ ∂Ω, t > 0,

u(0, x) = u0(x) > 0 x ∈ Ω,

(3.1)

where Ω a regular bounded domain of Rd and K > 0 a kernel modelling an additional
death rate due to non-local interactions.

We will sometimes write in short K[u] =
∫

ΩK(x, y)u(y) dy for a generic function u.
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Chapter 3. The non-local Fisher-KPP equation in a bounded domain

Assuming

∀x ∈ Ω,

∫

Ω
K(x, y) dy = 1, (3.2)

and in the limit K(x, y)→ δx−y, we recover the classical Fisher KPP-equation

∂u

∂t
= µ(1− u)u+ ∆u. (3.3)

The assumption (3.2) ensures that 1 remains a homogeneous stationary solution of (3.1).

The classical Fisher-KPP equation (3.3) is often analysed on the whole space for the
investigation of travelling waves, which are known to exist since the pioneering works of
Fisher, Kolmogorov, Petrovsky and Piskunov [92] for any speed above 2

√
µ. Furthermore,

any-non zero initial condition eventually converges locally uniformly to 1, which is therefore
a globally asymptotically stable for non zero initial conditions.

When one adds a non-local term, it does not remain true that travelling waves exist and
when they do, whether they link 0 to 1 or another non-homogeneous steady-state of the
equation. 1 can indeed become unstable: Turing patterns appear [121, 130].

A natural question is thus to understand under which conditions the status of 1 is changed
due to the non-local term. When K(x, y) is given by a convolution φ(x−y), several results
have already been obtained in the full space, in dimension d = 1. If the Fourier transform
is everywhere positive of if µ is small enough, it is known that travelling waves necessarily
connect 0 to 1 [12]. See also [3, 71]

In this note, we provide a general result on the global asymptotic stability on 1 on a
bounded domain, based on a Lyapunov functional. The results holds provided that the
following general assumption on the kernel K is satisfied:

∀f ∈ L2(Ω),

∫

Ω×Ω
K(x, y)f(x)f(y) dx dy > 0. (3.4)

K is then referred to as being a positive kernel, and (3.4) can be thought of as a strong
competition assumption. These types of Lyapunov functionals have been used successfully
in selection equations in [82, 140, 139] and are inspired by Lyapunov functions for Lotka-
Volterra ODEs [64].

It remains an open question to know whether this condition leads to the same conclusion on
the whole space. As such, our Lyapunov function requires integrability for u(t)−1−ln(u(t))
which is too much to ask in Rd. We still believe that the condition (3.4) is highly relevant.
Indeed, when Ω = Rd, and if K is a convolution K(x, y) = φ(x− y), then condition (3.4)
becomes

∀f ∈ L2
(
Rd
)
,

∫

Rd×Rd
φ(x− y)f(x)f(y) dx dy > 0. (3.5)

It is easy to check that if φ has a non-negative Fourier transform, then condition (3.5) is
satisfied, see [82]. The converse is almost true, as evidenced by Bochner’s Theorem [143]:
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if φ is bounded an continuous, then (3.4) holds if and only if it is the Fourier transform of
a finite bounded measure on Rd.

Consequently, condition (3.4) (or (3.5)) shows that the condition on the Fourier transform
of φ used in dimension 1 in the literature can be appropriate in any dimension, and may
not only be a sufficient but also a necessary condition when it comes to the stability of the
state 1.

3.2 The Lyapunov function approach

We make the following regularity assumption on the kernel K:

K ∈ C0,1
(
Ω× Ω

)
, (3.6)

where C0,1
(
Ω× Ω

)
denotes the set of Lipschitz continuous functions on Ω× Ω.

Under the previous assumption (3.6), for u0 ∈ L1(Ω), we know from [45] that there exists a
unique non-negative classical solution in C([0,+∞), L1(Ω))∩C1((0,+∞), C2,α(Ω)), which
we denote t 7−→ Stu

0.

It will also be convenient to introduce the set Z := {u ∈ C2,α(Ω), u > 0}. Finally, we
define the non-negative function H(w) := w − 1− ln(w) for w > 0, and for u in Z

V (u) :=

∫

Ω
(u(x)− 1− ln(u(x)) dx,

the last integral possibly being equal to +∞.

Our result is then the following:
Theorem 3.1. Assume (3.4), (3.6), (3.2). Then for any initial datum u0 in L1(Ω), u0 > 0,
u0 6= 0, the solution to (3.1) satisfies

u(t, ·) −→ 1

uniformly in Ω.

Proof. First step: computation of the Lyapunov functional.

First, let us remark that by the parabolic strong maximum principle, u(t, x) > 0 for all
t > 0, x ∈ Ω. Now, let us check that this holds true also for x ∈ ∂Ω, from which we
will infer that V (u(t)) is well defined for all t > 0. By the parabolic strong maximum
principle at the boundary, we have the following alternative for x ∈ ∂Ω: either u(t, x) > 0

or u(t, x) = 0 and
∂u

∂n
(t, x) < 0. Only u(t, x) > 0 can hold due to the Neumann boundary

conditions.
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Chapter 3. The non-local Fisher-KPP equation in a bounded domain

We now consider g(t) := V (u(t)) for t > 0, where {u(t)}t>0 is the trajectory emanating
from by u0. Let us prove that this is a Lyapunov functional, by computing for t > 0

g′(t) =

∫

Ω

∂u

∂t
(t)

(
1− 1

u(t)

)

=

∫

Ω
∆u(t)

(
1− 1

u(t)

)
− µ

∫

Ω
(1−K[u(t)]) (1− u(t)))

= −
∫

Ω

|∇(u(t, x))|2
u2(t, x)

dx− µ
∫

Ω2

K(x, y) (1− u(t, x))) (1− u(t, y)) dx dy.

after integration by part for the first term. For the second one, we used 1−K[u] = K[1−u],
owing to (3.2).

Thanks to (3.4), this yields g′(t) 6 0 i.e., that g is non-increasing over R+. Since g > 0,
we infer the convergence of g(t) as t tends to +∞, and we denote l its limit.

Second step: compactness of trajectories.

Since C2,α(Ω) is compactly embedded into C
(
Ω
)
, the trajectory {Stu0}t>δ (for some fixed

δ > 0) is relatively compact in C(Ω), meaning that one can find ū > 0 in C(Ω) and a
sequence (tk) tending to +∞ in k, such that u(tk) converges to ū as k goes to +∞, in
C
(
Ω
)
. Note that the limit cannot be identically 0 since otherwise g(t) would go to +∞,

in contradiction with its convergence to l.

Our aim is to prove that ū = 1, which will mean that the whole trajectory converges to ū,
hence the expected result.

Third step: identifying the limit.

Let us now consider the trajectory starting from the initial datum ū, namely {Stū}t>0,
which we also denote by {ũ(t)}t>0. Because ū > 0, ū 6= 0, we again have ũ(t, x) > 0 for all
t > 0, x ∈ Ω. Let us prove that V is constant along the trajectory {Stū}t>0 for t > 0.

For this, we write V (ũ(t)) = V (Stū) = V
(
St limk→+∞ Stku

0
)

= V
(
limk→+∞ St+tku

0
)
. It

is also easy to see that for any u in C
(
Ω
)
which is furthermore positive on Ω, V (seen as

acting on C
(
Ω
)
) is continuous at u, and this implies V (ũ(t)) = limk→+∞ V

(
St+tku

0
)

= l.
As claimed the function t 7−→ V (Stū) is constant (equal to l) for t > 0.

Hence its derivative must be zero for t > 0: from the computations made in the first step,
it must hold that both

∫
Ω
|∇(ũ(t))|2
ũ2(t)

and
∫

Ω2 K(x, y) (ũ(t, x)− 1)) (ũ(t, y)− 1) dx dy vanish
identically for t > 0. Let us now fix t > 0, and from the first term, we know that ũ(t) is
a constant. From the second term and owing to K > 0, this constant must be equal to 1.
By continuity of the trajectory, this also holds true at t = 0, i.e., ū = 1, which ends the
proof.

68



Chapter 4

Control of the 1D monostable and
bistable reaction-diffusion equations

In this work with Emmanuel Trélat and Enrique Zuazua, we consider the prob-
lem of controlling the monostable and bistable equations on (0, L) for a density
of individuals 0 6 y(t, x) 6 1, by means of Dirichlet controls taking their values
in [0, 1]. We prove that the system can always be steered to invasion (steady
state 1), while it is possible in the case of extinction (steady state 0) if and
only if the length L of the interval domain is less than some threshold value L?,
which can be computed as an integral. In the bistable case, controlling to the
other homogeneous steady state 0 < θ < 1 relies on a staircase control strategy,
and we prove that θ can be reached in finite time if and only if L < L?. The
phase plane analysis of those equations is instrumental in the whole process,
from reading obstacles to controllability and computing the threshold value for
domain size, to the design of the path of steady states for the control strategy.
This is the subject of a submitted article, entitled Phase portrait control for 1D
monostable and bistable reaction-diffusion equations.

4.1 Introduction

For L > 0, 0 6 T 6 +∞, we consider the following controlled reaction-diffusion equation
on (0, L)× (0, T ) 




yt − yxx = f(y),

y(t, 0) = u(t), y(t, L) = v(t),

y(0) = y0.

(4.1)
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where f is a C1 nonlinearity satisfying f(0) = f(1) = 0, with initial data 0 6 y0 6 1 in
L∞(0, L). The Dirichlet controls u and v are measurable functions satisfying the constraints

0 6 u(t) 6 1, 0 6 v(t) 6 1.

In such a setting, (4.1) admits a unique solution in

L∞((0, T )× (0, L)) ∩ C([0, T ];H−1(0, L)),

see for instance [103].

We will consider two types of functions.

(H1) The monostable case: f > 0 on (0, 1). In such a case, we will also assume f ′(0) > 0.
The typical example is f(y) = y(1− y).

(H2) The bistable case: f < 0 on (0, θ) and f > 0 on (θ, 1) where 0 < θ < 1. In
such a case, we will also assume f ′(0) < 0 and f ′(1) < 0. The typical example is
f(y) = y(1− y)(y − θ).

We also set

F (y) :=

∫ y

0
f(z) dz for y ∈ [0, 1].

In the case (H2), we will without loss of generality always assume F (1) > 0, which is
equivalent to θ 6 1

2 when f(y) = y(1 − y)(y − θ). If F (1) < 0, one can set z = 1 − y to
apply the results obtained when F (1) > 0.

By means of appropriately chosen Dirichlet controls u(t) and v(t) in L∞(0, T ; [0, 1]) at
x = 0 and x = L respectively, our goal is to control the equation towards either the steady
states 0, 1, or in cases (H2), also towards the steady state θ.

Let us denote a a generic solution of f(y) = 0, namely a = 0, a = 1 or also a = θ in the
case (H2). Our goal is to provide controls u, v steering the system to those homogeneous
steady states. We will say that the controlled equation (4.1) is

• controllable in finite time towards a if for any initial condition 0 6 y0 6 1 in L∞(Ω),
there exist 0 6 T < +∞, controls u, v ∈ L∞(0, T ; [0, 1]) such that

y(T, ·) = a.

• controllable in infinite time towards a if for any initial condition 0 6 y0 6 1 in L∞(Ω),
there exist controls u, v ∈ L∞(0,+∞; [0, 1]) such that

y(t, ·) −→ a

uniformly in [0, L] as t tends to +∞.
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Motivations. These models are ubiquitous in population dynamics (see [5, 85, 130])
but they also appear in other contexts, e.g. in the theory of combustion. Let us use the
point of view of population dynamics to introduce the main modelling aspects.

In case (H1), having in mind the example f(y) = y(1−y), there is exponential increase of y
whenever y > 0, but there is a saturation effect near y = 1 because the full capacity of the
system has been reached. In case (H2), f takes negative values close to 0 to model the fact
that a minimal density θ is required for reproduction and cooperation, under which the
population will die out. The state θ is unstable in the absence of diffusion, since f ′(θ) > 0.

These models are also amenable to modelling invasion phenomena, because (when posed on
the whole space) they typically have solutions called travelling waves in the form y(x− ct)
for certain speeds c, linking the states 0 and 1, see the pioneering work [92].

For such problems, it is thus a requirement for the solution to satisfy y > 0, a condition
which is fulfilled with non-negative Dirichlet boundary conditions. We might consider
using controls that are above 1, taking into account the possibility for releases at 0 or L
to be above the capacity of the system.

However, there are contexts in which y is the proportion of individuals of type A over the
total number of individuals of types A and B. This can be obtained as the suitable limit
of a system of two reaction-diffusion equations for each type [160].

Thus, we shall also impose that the controls are below 1 to cover these cases, which will
not be a restriction for the results. Imposing 0 6 u(t), v(t) 6 1 leads to 0 6 y(t, x) 6 1 by
the parabolic maximum principle [142, 93].

In applications, it is common to target extinction or invasion of a given population: the
goal is to reach the steady state 0 or the steady state 1. Converging to an intermediate
steady state such as θ can also be desirable if the goal is to maintain the population all
over the domain, but below invasion levels.

If one thinks of y as a proportion of one species over the total number of individuals in two
species, reaching θ is one way of ensuring coexistence on the whole domain (0, L). Doing
it is a priori a more challenging task than for 0 and 1 since θ is an unstable equilibrium
for the dynamical system y′ = f(y).

On the control for model (4.1). The literature for the control of semilinear parabolic
equations such as (4.1) is abundant, whether it is by means of Dirichlet controls or controls
acting inside the domain [41, 176]. The typical results (for nonlinearities small enough to
avoid blow-up) when such controls are unbounded is the possibility to control towards 0
in any time T > 0 [94, 55, 57], but of course at the expense of controls becoming larger
and larger as T becomes smaller [58].

Much effort has been recently put into studying controllability problems also in the presence
of constraints on the controls, because it is a quite common assumption for applications.
Such additional control constraints, and in particular non-negativity constraints, may dra-
matically change the types of results one can obtain [132, 107]. Controllability to 0 is no
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longer granted, and when it is, a minimal time for controllability might appear. Also note
that even with unbounded controls, controls on the state itself can result in difficulties for
controllability and appearances of minimal times for it to hold true [108].

A simple static strategy. The simplest approach to steering the system to a homoge-
neous steady state a is by choosing constant controls u(t) = v(t) = a, a strategy we shall
call static in what follows. A crucial result due to Matano is that any trajectory must
converge to some stationary state.
Theorem 4.1 ([115]-Theorem B). Consider the equation





yt − yxx = f(y),

y(t, 0) = ū, y(t, L) = v̄,

y(0) = y0.

(4.2)

with some constant controls 0 6 ū, v̄ 6 1. Then y(t, ·) solving (4.2) converges uniformly to
some stationary state as t→ +∞, i.e., a solution ȳ of

{
−ȳxx = f(ȳ),

ȳ(0) = ū, ȳ(L) = v̄.
(4.3)

This classical but nontrivial result is established thanks to the strong maximum principle,
in the spirit of work that followed studying the number of oscillation points or of sign
changes of solutions (lap-number, see [116]) as time evolves.

Note that the limit stationary state is not necessarily known: the above result only as-
serts its existence. Moreover, it is not necessarily unique. As a consequence, choosing
u(t) = v(t) = a will work asymptotically (independently of the initial condition) if the
homogeneous solution a is the only solution to the above stationary problem (4.3) for
ū = v̄ = a.

Threshold for domain size and obstacles. Intuitively, one can expect that if L is
small, y = a will be the only solution to the previous stationary problem, while if L is
large, there might be others. It is indeed well-known that there exists a threshold for L
under which a is the only solution, and above which there is at least one other [105]. Let
us denote La this threshold.

When ū = v̄ = a, other stationary solutions ȳ to (4.3) than a are obstacles for the static
control strategy to work, since if y0 > ȳ (resp. y0 6 ȳ), then y(t, ·) > ȳ (resp. y(t, ·) 6 ȳ)
for the solution of the controlled model with constant controls u(t) = v(t) = a. This a
consequence of the parabolic comparison principle.

Note that these obstacles also come up naturally for the construction of so-called bubbles,
i.e., initial conditions in the case (H2) on the whole space, which are big enough to induce
invasion [161, 17].

Consequently, combining Matano’s Theorem with this threshold phenomenon already yields
that the static strategy (leaving aside the case of L = La for the moment) is such that:

72



4.1. Introduction

• for L < La, any initial condition converges asymptotically to a,

• for L > La, there exist some initial conditions for which the solution will not converge
to a.

Application to invasion and extinction. Another application of the comparison
principle shows that this actually settles the case of a = 0 and a = 1. We take a = 0
to illustrate the idea. The solution y of the controlled equation of (4.1) is such that
y(t, x) > z(t, x) where z solves the same equation but with u(t) = v(t) = 0. Thus a given
control strategy will work if and only if the static strategy does.

Also note that the strong parabolic maximum principle entails that when y0 6= 0, then
y(t, x) > 0 inside (0, L): it is possible to reach the state 0 only asymptotically, and the same
holds for 1. At this stage, for a = 0 or a = 1, we can state that system is not controllable
to a in finite time, and that it is controllable in infinite time towards a depending on the
position of L with respect to La.

Designing strategies for θ. The previous reasoning shows that the steady state θ will
asymptotically attract all trajectories if L is small enough, more precisely if L < Lθ, just
by the static strategy of putting u(t) = v(t) = θ on both sides. One can then hope to
reach θ in finite time, by waiting for the system to be close enough to θ in order to use a
local controllability result.

Contrarily to the case of 0 and 1, the static strategy might be improved for the control
towards θ since controls can take values both above and below θ. If either 0 or 1 attracts
all trajectories, our idea is to try and use a path of steady states linking θ to 0 (or 1), in
order to use the staircase method inspired by [42] and its development in [132]. It allows
to steer (in finite time) any steady state to another one, as long as they are linked by a
path of steady states.

Main results. In this chapter, we provide a complete understanding of controllability
properties towards constant steady states for the equation (4.1), and the essential tool
is phase plane analysis for the ODE −y′′ = f(y). First, it will allow us to prove that
L1 = +∞ (due to F (1) > 0 which implies that 0 and 1 do not play symmetric roles), and
that L0, which we denote L? from now on, is positive and can be computed explicitly as a
transcendental integral. More precisely, we will show that

• (4.1) is controllable in infinite time towards 0 if and only if L 6 L? in the case (H1)
(resp. L < L? in the case (H2)),

• (4.1) is controllable in infinite time towards 1 independently of L in both the cases
(H1) and (H2).

Recall that, by parabolic comparison, controllability to 0 or 1 is never possible within
finite time. Furthermore, L? = π/

√
f ′(0) under quite generic conditions in the case (H1).

In the case (H2), let us stress that our integral formula for L? was established for cubic
nonlinearities, already with phase plane analysis in [158], but for other purposes.
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Second, phase plane analysis will also be critical in understanding the controllability prop-
erties of θ. We already know from the reasonings above that θ can be reached asymptoti-
cally by the simple static strategy, which works for L < Lθ. The main contribution of this
chapters is the design of a control strategy which works not only for L < Lθ, but more
generally for L < L?. More precisely, we shall prove in the case (H2) that

(4.1) is controllable in finite time towards θ if and only if L < L?.

The proof of this equivalence as well as the design of an appropriate control strategy are
instrumentally based on the phase plane analysis of the dynamical system −y′′ = f(y), in
the region 0 6 y 6 1, which involves the three steady states 0, θ and 1.

Such a strategy is far from obvious due to the instability of θ for the corresponding ODE.
The main idea is to use the staircase method, together with a fine analysis of the phase
plane showing that there is a path of steady states linking 0 and θ if and only if L < L?.
Actually, because the controls must be non-negative, 0 is not an appropriate steady state
and we shall need to find, again by phase plane analysis, another globally asymptotically
stable steady state yinit close to 0 such that a path of steady states still links yinit to θ.
Finally, we will also explain why there is a minimal time for controllability: one cannot
hope to reach θ in arbitrarily small time.

Outline of the chapter. The chapter is organised as follows. In Section 4.2, we
focus on the case of 0 and 1. Phase plane analysis allows us to recover the existence of a
threshold and to find an explicit formula, together with some estimates. The problem of
controllability towards θ is investigated in detail in Section 4.3, where we first recall the
staircase method before using it with the help of phase plane analysis. Finally, Section 4.4
is devoted to confirming the theoretical results by numerical experiments, together with
presenting some byproducts and perspectives which follow from our work.

4.2 Threshold length L? for extinction and invasion

4.2.1 A general result for invasion

We recall that we assume F (1) > 0 (thus 0 and 1 do not play the same role in the bistable
case).
Proposition 4.1. Whether f satisfies (H1) or (H2), (4.1) is controllable in infinite time
towards 1.

Proof. As explained in the introduction, Matano’s Theorem 4.1 and the parabolic compar-
ison principle combined imply that (4.1) is controllable towards 1 in infinite time if and
only if the only solution to {

−wxx = f(w),

w(0) = 1, w(L) = 1,
(4.4)
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with 0 6 w 6 1 on [0, L], is the constant 1. The equation −wxx = f(w) is a second-order
ODE which can be rewritten as wx = z, zx = −f(w), and there is a solution to the previous
equation if and only if there are curves (w(x), w′(x)) in the phase portrait (w,w′) starting
and ending on the axis w = 1, which satisfy 0 6 w 6 1. In both cases, (H1) and (H2), the
only such a curve is the trivial one: w ≡ 1.

For completeness, we give an analytical proof. Assume there is a such a function 0 6 w 6 1
which is not identically 1. Then there is x0 ∈ (0, L) such that w reaches its minimum,
satisfying w(x0) < 1. Since w′(x0) = 0, the conservation of the energy 1

2w
′2 + F (w) yields

1
2(w′(0))2 + F (1) = F (w(x0)) which implies F (w(x0)) > F (1). If f satisfies (H1) or (H2)
with F (1) > 0, the last inequality imposes w(x0) = 1, a contradiction. If f satisfies
(H2) together with F (1) = 0, then w′(0) = 0. Then w would solve the second-order
ODE −wxx = f(w) with w(0) = 1, w′(0) = 0, meaning that w would be identically 1 by
Cauchy-Lipschitz uniqueness, a contradiction.

Remark 4.1. In the case (H1), a Lyapunov functional exists and can be used to prove
convergence to 1 [138]. Indeed, consider the solution to

{
yt − yxx = f(y),

y(t, 0) = 1, y(t, L) = 1,

and, for t > 0, the functional V (t) :=
∫ L

0

(
y(t, x)− 1− ln(y(t, x))

)
dx. Then

dV

dt
= −

∫ L

0

(
yx(t, x)

y(t, x)

)2

dx−
∫ L

0
f(y(t, x))

1− y(t, x)

y(t, x)
dx 6 0.

Up to our knowledge, however, no such Lyapunov functional has been exhibited in the
case (H2).

4.2.2 A general result for extinction

Let us first note that in the case (H2) and if F (1) = 0, then the argument given for the
state 1 in the previous section works similarly for 0, because the phase plane shows that 0
is the only solution to {

−wxx = f(w),

w(0) = 0, w(L) = 0,

Thus, F (1) = 0 is a particular case for which (4.1) is controllable in infinite time towards
0 regardless of L. We now assume F (1) > 0 for the rest of this section.

Let us introduce some notations. In what follows, we will need to invert the function F .

In case (H1), F is increasing, and thus its inverse F−1 is well-defined, mapping [0, F (1)]
onto [0, 1].

In case (H2) and if F (1) > 0, F decreases from 0 to F (θ), and then increases from F (θ) to
F (1) > 0. There is thus a unique θ1 ∈ (θ, 1) such that F (θ1) = 0. In case (H2), we choose
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to denote F−1 the inverse of F on [θ1, 1] which maps [0, F (1)] onto [θ1, 1]. If F (1) = 0, we
set θ1 = 1.
Proposition 4.2. In cases (H1) and (H2), there exists L? such that

• if L < L?, (4.1) is controllable towards 0 in infinite time,

• if L > L?, (4.1) is not controllable towards 0 in infinite time.

Furthermore,

L? = inf
α∈(0,F (1))

√
2

∫ F−1(α)

0

dy√
α− F (y)

.

At this stage, we do not know yet that L? > 0, nor what happens if L = L?, but this will
be addressed in the next subsection.

Proof. We know that (4.1) is controllable towards 0 in infinite time if and only if the only
solution to {

−wxx = f(w),

w(0) = 0, w(L) = 0,

with 0 6 w 6 1 on [0, L], is the constant 0. There is a non-zero solution to the previous
equation if and only if there are curves (w(x), w′(x)) in the phase portrait (w,w′) starting
and ending on the w′-axis having length L exactly, with the starting and ending points
different from the origin.

Let us parametrise such curves by their starting point
(
0,
√

2α
)
where α ∈ (0, F (1)]. If

these curves end on the w′-axis, the end-point is
(
0,−
√

2α
)
and we denote L(α) the time

required for them to reach this end-point. By symmetry, this is also twice the time for this
trajectory to reach the w-axis, at a point which we denote ymax(α). To illustrate these
curves, we refer to Figure 4.1 for a schematic view of the phase portrait, given in the case
(H1).

Finally, we use the fact that y increases from 0 to ymax(α), which makes of y a C1-
diffeomorphism from

[
0, 1

2L(α)
]
onto [0, ymax(α)], allowing us to compute

L(α) = 2

∫ L(α)
2

0
dz = 2

∫ ymax(α)

0

dy

y′
.

The energy 1
2(y′)2 + F (y) is conserved along trajectories, so that F (ymax(α)) = α, and

inverting this yields ymax(α) = F−1(α). We also have y′ =
√

2
√
α− F (y), and we arrive at

L(α) =
√

2

∫ F−1(α)

0

dy√
α− F (y)

.

It is easy to check that this integral is finite, except, as we will see, for α = F (1). Thus, L?

is well-defined. From this formula, one clearly infers that if L < L?, there is no curve other
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0 ymax(α) 1

−
√

2F (1)

−
√
2α

√
2α

√
2F (1)

y

y′ 1
2y
′2 + F (y) = F (1)

Trajectory linking 0 and 0

Figure 4.1: Phase portrait in the monostable case (here f(y) = y(1− y)), with the trajectory of
energy 1

2y
′2 + F (y) = F (1) and an example of trajectory parametrised with α.

than 0 linking two points on the w′-axis such that the corresponding trajectory satisfies
0 6 w 6 1. Thus, if L < L?, (4.1) is controllable towards 0 in infinite time.

To prove the second point, we compute L(F (1)) =
√

2
∫ 1

0
dy√

F (1)−F (y)
= +∞ because

F (1) − F (z) ∼
z→1

F (k)(1)
k! (1 − z)k where k > 2 since F ′(1) = f(1) = 0. Consequently,

L(F (1)) = +∞ leading to L(α) → +∞ as α tends to F (1). Owing to the continuity
of α 7→ L(α), this implies the existence of a non-zero stationary solution to (4.3) (with
ū = v̄ = 0) and equivalently, the non-controllability of (4.1) towards 0 in infinite time, as
soon as L > L?.

Remark 4.2. Since α 7→ ymax(α) is increasing with α, we can instead parametrise by
β := ymax(α) leading to the alternative formulae

L? = inf
β∈(0,1)

√
2

∫ β

0

dy√
F (β)− F (y)

and

L? = inf
β∈(θ1,1)

√
2

∫ β

0

dy√
F (β)− F (y)

in cases (H1) and (H2) respectively.

4.2.3 Estimating L?

Let us start by giving a global bound for L?, valid both in cases (H1) and (H2).
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Proposition 4.3. It holds that

L? >
π√

maxy∈[0,1]

(
f(y)
y

) .

Proof. Let 0 6 y0 6 1 be given in L∞(0, L) and consider the solution to (4.1) with null-
boundary Dirichlet values. For R := maxy∈[0,1]

(
f(y)
y

)
, we can bound

yt − yxx = f(y) =

(
f(y)

y

)
y 6 Ry on (0, L).

Subsequently, y is a subsolution of the equation




zt − zxx = Rz,

z(t, 0) = 0, z(t, L) = 0,

z(0) = y0.

From the comparison principle for parabolic equations, we deduce y(t, x) 6 z(t, x). Now,
using the Hilbertian basis of L2(0, L) formed by eigenvectors of the operator A : z 7→
−zxx −Rz, it is standard that

‖z(t, ·)‖L2(0,L) 6 ‖y0‖L2(0,L)e
−λ1t

where λ1 is the first eigenvalue of A, given by λ1 := −R + π2

L2 . Thus it is clear that
z(t, ·)→ 0 independently of y0 as soon as L < π√

R
.

In case (H1), it is possible to obtain the actual value of L? under an additional sufficient
condition on the function f .
Proposition 4.4. Let f satisfy (H1) be a C2 function. Further assume

f2 > 2Ff ′ on [0, 1]. (4.5)

Then
L? =

π√
f ′(0)

.

The hypothesis clearly applies to concave functions, hence the following corollary.
Corollary 4.1. Let f satisfy (H1). If f is strictly concave on [0, 1], then L? = π√

f ′(0)
. In

particular, if f(y) = y(1− y), then L? = π.

Proof (of Proposition 4.4). Let us first prove that α 7→ L(α) is increasing on (0, F (1)). We
first change variables by setting u = αF−1(y), yielding L(α) =

√
2α
∫ 1

0
(F−1)′(αu)√

1−u du. Now

78



4.2. Threshold length L? for extinction and invasion

we compute the derivative of the previous expression for α ∈ (0, F (1))

L′(α) =
1√
2α

∫ 1

0

(F−1)′(αu)√
1− u du+

√
2α

∫ 1

0

u(F−1)(2)(αu)√
1− u dz

=
1√
2α

∫ 1

0

(F−1)′(αu) + 2(αu)(F−1)(2)(αu)√
1− u du.

If F−1(z) + 2z(F−1)(2)(z) > 0 for all z ∈ (0, F (1)) our claim is proved. Computing the
derivatives, we find

(F−1)′(z) + 2z(F−1)(2)(z) =
1

f(F−1(z))

(
1− 2z

f ′(F−1(z))

(f(F−1(z)))2

)
.

Changing variables again through z = F (y), the last quantity is non-negative on (0, F (1))

if and only if 1− 2F (y) f
′(y)

f2(z)
> 0 on (0, 1), which is exactly the hypothesis (4.5).

At this stage, we can claim that
L? = lim

α→0
L(α),

and it remains to compute the limit. Recall that

L(α) =
√

2α

∫ 1

0

(F−1)′(αu)√
1− u du =

√
2α

∫ 1

0

1√
1− u

1

f(F−1(αu))
du.

Since F (y) ∼
y→0

F (2)(0)
2 y2 = f ′(0)

2 y2, F−1(z) ∼
z→0

√
2z
f ′(0) . As a consequence, f(F−1(z)) ∼

z→0

f ′(0)F−1(z) ∼
z→0

√
2f ′(0)z. Finally, we arrive at 1

f(F−1(αu))
∼
α→0

1√
2αf ′(0)u

leading to

L(α) ∼
α→0

1√
f ′(0)

∫ 1

0

1√
u(1− u)

du =
π√
f ′(0)

whence the result.

From the previous result, we know what happens for L = L?: there is no obstacle to the
convergence to 0.

Corollary 4.2. Let f satisfy (H1) and (4.5). Then (4.1) is controllable towards 0 in
infinite time if and only if L 6 L?.

We now turn our attention towards the case (H2), for which there is no simple formula.
When F (1) = 0, we set L? = +∞ as a convention, i.e., (4.1) is controllable in infinite time
towards 0, whatever the value of L for this particular value of F (1).

Proposition 4.5. Let f satisfy (H2) and F (1) > 0. Then α 7→ L(α) reaches a minimum
at some point of (0, F (1)).
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Proof. We define g(α) := 1√
2
L(α) =

∫ F−1(α)
0

dy√
α−F (y)

to get rid of the constant, and split

the integral in two on the intervals [0, θ1] and [θ1, F
−1(α)], and change variables in the

second integral as in the monostable case to uncover

g(α) =

∫ θ1

0

dy√
α− F (y)

+
√
α

∫ 1

0

(F−1)′(αu)√
1− u du.

We first note that the second integral converges to 0 when α tends to 0, while the first
one converges to

∫ θ1
0

dy√
−F (y)

= +∞ because F (y) ∼
y→0

f ′(0)
2 y2. Thus, the infimum of

L(α) =
√

2g(α) is a minimum, reached inside (0, F (1)).

From the previous result, we know what happens for L = L?: there is an obstacle to the
convergence to 0.
Corollary 4.3. Let f satisfy (H2). Then (4.1) is controllable towards 0 in infinite time if
and only if L < L?.

4.3 Controlling towards θ in the bistable case

In this Section, we assume the function f to be of type (H2). We will see that if and only
if L < L?, it is possible to build a control strategy steering any initial state in finite time
towards the constant steady state θ.

Existence of a minimal time for controllability. Before doing so, a simple argument
suffices to explain why it is not possible to steer the system to θ in arbitrarily small time.
For simplicity, assume that y0 ∈ C([0, L]), and first that y0 is strictly above θ at least at
one point in space inside Ω. As usual, whatever the controls, we can write y(t, ·) > z(t, ·),
where z(t, ·) starts from y0 but with zero Dirichlet boundary conditions.

Since the trajectory z(t, ·) is smooth in time, it requires a positive time t1 to be uniformly
below θ, and so if there exists a time T and a control strategy such that y(T, ·) = θ,
there must hold that T > t1. If y0 is below θ somewhere inside Ω, we argue similarly by
comparing to the trajectory associated with Dirichlet boundary controls equal to 1.

4.3.1 Control along a path of steady states

We will say that a steady state ȳ associated with static controls ū, v̄ is admissible if

0 < ū, v̄ < 1.

This property will be of great importance because we shall need to make small variations
around the controls ū, v̄ when making use of the staircase method.
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Finally, we will say that there exists a path of steady states linking two steady states y1

and y2 if there is a set of steady states S and a continuous mapping

γ : [0, 1] 7−→ S

such that γ(0) = y1, γ(1) = y2, where S is endowed with the C([0, L])-topology. The
corresponding 1-parameter family of controls will be denoted by (ū(s), v̄(s))06s61.

We start by giving a local exact controllability result, which holds uniformly given a family
of steady states and rests on the local controllability for a single steady state, well known
in the 1D case [146] and since then generalised [55, 94], see for example [132] for a full
derivation. We stress that the controls provided by this result do not necessarily lie in
[0, 1]. We also emphasise that such a uniform result is possible because, by definition,
steady states are taken to be between 0 and 1.
Lemma 4.1. Assume that we have a set of steady states ȳ ∈ S associated with controls
ū, v̄. Let T > 0 be fixed. Then there exist constants C(T ) > 0, δ(T ) > 0 such that for all
ȳ ∈ S, for all 0 6 y0 6 1 in L∞(0, L) with

‖y0 − ȳ‖∞ 6 δ(T ),

there exist controls u, v ∈ L∞(0, T ;R) such that the solution of (4.1) starting at y0 satisfies

y(T, ·) = ȳ.

Furthermore,

max (|u(t)− ū|, |v(t)− v̄|) 6 C(T ) ‖y0 − ȳ‖∞ on (0, T ).

With this lemma, we can now explain the staircase method. Applied with a path of
admissible steady states, it ensures that one can steer any steady state to another one by
controls with values in [0, 1].
Proposition 4.6. Assume that there exists a path of admissible steady states (ȳs)06s61

associated with controls (ūs, v̄s)06s61. Then there exists a time T > 0 and a control strategy
u, v ∈ L∞(0, T ; [0, 1]) such that the solution of (4.1) starting at ȳ0 satisfies

y(T, ·) = ȳ1.

The proof simply goes by applying a finite number of times the local controllability result
along the (compact) path of steady states.

Proof. We take T = 1. By continuity, δ0 := min06s61(ūs, v̄s, 1− ūs, 1− v̄s) > 0. We choose
an integer N large enough such that for all k = 1, . . . , N ,

∥∥∥ȳ k−1
N
− ȳ k

N

∥∥∥
∞

6 ε,

where ε will be defined below.
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For k = 1, . . . , N , let uk, vk be the controls in L∞(0, 1;R) such that the solution of (4.1)
starting at ȳ k−1

N
reaches exactly ȳ k

N
at time 1. These controls are such that

max
(∣∣∣uk(t)− ū k

N

∣∣∣ ,
∣∣∣vk(t)− v̄ k

N

∣∣∣
)
6 C(1)

∥∥∥ȳ k−1
N
− ȳ k

N

∥∥∥
∞

6 C(1)ε

on [0, 1]. In particular, uk(t) > ū k
N
− C(1)ε > 0 for ε small enough. We prove similarly

that uk is bounded away from 1, and the reasoning for vk is the same. At this stage, it
suffices to define (u, v) = (uk(t − k), vk(t − k)) for t ∈ (k, k + 1) to obtain the desired
control.

4.3.2 Phase portrait in the case (H2)

To define a path of steady states linking an appropriate state (say yinit) to the state θ,
phase plane analysis is again instrumental. We will indeed consider a path of steady
states (ws)06s61 (such that w0 = yinit and w1 = θ) by choosing a path of initial conditions
s ∈ [0, 1] 7→ (ws(0), w′s(0)) in the phase plane. For some L fixed, the corresponding controls
are s ∈ [0, 1] 7→ (ws(0), ws(L)), but there is no reason in general that 0 6 ws(L) 6 1.

However, if 0 6 ws(L) 6 1 for all s ∈ [0, 1], it yields a path of steady states, defined by
the controls s ∈ [0, 1] 7→ (ws(0), ws(L)). The continuity of the mapping s 7→ ws is ensured
by continuity of solutions of ODEs with respect to initial conditions. To ensure that the
chosen path of initial conditions does not violate 0 6 ws(L) 6 1, we must analyse further
elementary properties of the phase portrait in the case (H2), an example of which we depict
on Figure 4.2.

0 θa θ1 1

−
√

2F (1)

√
2F (1)

y

y′ 1
2y
′2 + F (y) = F (1)
1
2y
′2 + F (y) = 0

Trajectory linking a and a
Region Γ

Figure 4.2: Phase portrait in the bistable case (H2). (Here, f(y) = y(1− y)(y − θ), θ = 1
3 .) The

hatched region is Γ, delimited by the trajectory of energy 1
2y
′2 + F (y) = 0. Also depicted: the

trajectory of energy 1
2y
′2 + F (y) = F (1) and an example of a trajectory starting and ending at a.
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There are two curves of importance in the phase portrait for (H2). The first one is defined
by the energy 1

2y
′2 +F (y) = F (1), while the second has energy 1

2y
′2 +F (y) = 0. Note that

if one starts with an initial condition along the first curve (resp. the second curve), it takes
an infinite time (here, length), for the corresponding solution to the ODE −w′′ = f(w) to
reach 1 (resp. 0).

We define Γ to be the region defined by the set of points (x, y) such that |y| 6
√
−2F (x),

that is, those delimited by the second curve. The important result in what follows is that
any initial condition (w(0), w′(0)) inside Γ is such that the corresponding trajectory w(x)
remains indefinitely between 0 and 1 (actually, between 0 and θ1).

Finally, let us fix some a ∈ [0, 1]. We look at all the trajectories starting with w(0) = a
and outside the interior of Γ, namely with

√
−2F (a) 6 w′(0) 6

√
2(F (1)− F (a)). In

accordance with notations of the introduction, we define La to be the minimal time for
such trajectories to reach a again. Note that with this definition, we clearly have L0 = L?.

4.3.3 The control strategy induced by phase plane analysis

First recall the simple static strategy to try and reach θ, which consists in setting θ on the
boundary. With the notations introduced in the previous Subsection 4.3.2, this is the case
if and only if L is below the threshold Lθ < L?. Consequently, this strategy is suitable but
works only for smaller domains when compared with the one we are about to introduce.

Let us now define the control strategy for L < L?, based on the staircase method. The core
idea is to find a path of steady states between 0 and θ, which, as we shall see, is possible if
and only if L < L?. However 0 is not admissible so that we must instead resort to another
close admissible steady state. We will build an admissible steady state yinit such that

• yinit can be reached asymptotically for any initial condition,

• there exists a path of admissible steady states linking yinit to θ.

The key lemma in order to obtain such a state is the following.
Lemma 4.2. Let L < L?. Then for any ε < θ1 small enough, the solutions 0 6 w 6 1 of

{
−wxx = f(w),

w(0) = ε, w(L) = ε.
(4.6)

are in Γ, namely they must be such that |w′(0)| 6
√
−2F (ε).

Proof. With the notations of Subsection 4.3.2, Lε tends to L0 = L? when ε tends to 0,
and thus we can choose ε small enough such that L < L(ε) < L?. Consequently, by the
very definition of L(ε), there is no solution to (4.6) other than those in Γ.

Theorem 4.2. (4.1) is controllable towards θ in finite time (or infinite time) if and only
if L < L?.
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Proof. We fix L < L? and some initial data 0 6 y0 6 1 in L∞(0, L). Assume that ε > 0
is small enough so that the conclusions of Lemma 4.2 hold true. The idea is to first use
static Dirichlet controls u(t) = v(t) = ε for a long time, because Lemma 4.2 ensures
that the trajectory will converge to some steady state yinit in Γ, independently of the
initial condition. Such a steady state can then be reached exactly because of the local
controllability result. Finally, the fact that yinit is in Γ allows us to find a path of steady
states linking it to θ, so that it remains to use the staircase method.

First step. We start by approaching a steady state yinit in Γ. Consider the equation





yt − yxx = f(y),

y(t, 0) = ε, y(t, L) = ε,

y(0) = y0.

Then, by Theorem 4.1, the solution must converge to a steady state with Dirichlet boundary
conditions (ε, ε). By Lemma 4.2, this is some state in Γ, which we denote yinit. In
particular, for any η > 0, there exists t0 > 0 such that for t > t0, ‖y(t, ·)− yinit‖∞ 6 η.
Thus, we start by taking u(t) = ε, v(t) = ε on (0, t0) (η and the corresponding t0 will be
fixed appropriately in the next step).

Second step. We now make use of Lemma 4.1 with for example time 1 and choosing η
(and corresponding t0) such that C(1)η is small enough for ε − C(1)η > 0 to hold. This
provides controls ũ, ṽ in L∞(0, 1; [0, 1]) such that defining u(t) = ũ(t− t0), v(t) = ṽ(t− t0)
on (t0, t0 + 1), we have y(t0 + 1, ·) = yinit.

Third step. We build a path c of initial conditions linking the initial conditions associated
with yinit, i.e. (ε, y′init(0)), and θ, i.e., (θ, 0). The simplest choice is the straight line,
illustrated by Figure 4.3 below.

0 ε θ θ1 1

−
√

2F (1)

√
2F (1)

.yinit

y

y′ c

Figure 4.3: The path c linking the initial conditions for yinit and those for θ.
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We denote γ the path of admissible steady states associated with c, and it now just re-
mains to follow this path: by Theorem 4.6, there exist a time T0 and controls u0, v0 in
L∞(0, T0; [0, 1]) bringing yinit to θ. We set u(t) = u0(t− (t0 + 1)), v(t) = v0(t− (t0 + 1))
on (t0 + 1, t0 + 1 + T0) and T = t0 + 1 + T0. The controls u and v are indeed such that
y(t, ·) reaches exactly θ at time T .

We now prove the converse and assume L > L?. We know that there exists a non trivial
solution 0 6 w 6 1 to {

−wxx = f(w),

w(0) = 0, w(L) = 0,

As already pointed out when it came to controlling towards 0, for any control strategy
u(t), v(t), the solution of (4.1) with y0 > w satisfies y(t, ·) > w. If we had found a control
strategy bringing us in finite (or infinite time) towards θ, we would have w 6 θ. Let us
prove that w must take values higher than θ. Let us denote x0 ∈ (0, L) such that w reaches
its maximum. Then w′(x0) = 0 and w′′(x0) 6 0, from which we infer f(w(x0)) > 0. Thus,
w(x0) must either be 0, or in [θ1, 1]. It cannot be 0, θ (nor 1) because together with
w′(x0) = 0, Cauchy-Lipschitz uniqueness would yield w = 0 or w = θ. Thus w(x0) > θ,
and our claim is proved.

4.4 Numerical simulations, comments and perspectives

4.4.1 A numerical optimal control approach

We consider the case (H2), and look for numerical control strategies to reach the state θ
with the goal of both

• illustrating the theoretical results,

• investigating alternative strategies to the staircase one.

To this end, we consider the following optimal control problem for some final time T > 0:

minimise CT (u, v) = ‖y(T, ·)− θ‖2L2(0,L)

over controls u, v ∈ L∞(0, T ; [0, 1]), and where y solves (4.1).

We are interested in seeing whether, for a given L > 0, we can find some T > 0 such
that this optimal control problem leads to a very small cost: this will correspond to a
strategy such that y(T, ·) is very close to θ. We do not need to reach θ exactly because we
know that, once very close to it, there is a control strategy to reach it exactly, given by
Lemma 4.1. In some instances, we will also force the controls to be equal to θ to illustrate
when this control strategy suffices to reach θ.

To study this optimal control problem from a numerical point of view, we use direct
methods. In a few words, the idea is to discretise the whole problem both in time and
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space, through discretisation parameters Nt and Nx, and to solve the resulting high but
finite-dimensional optimisation problem. This last step is done through the combination
of automatic differentiation softwares (with the modelling language AMPL, see [60]) and
expert optimisation routines (with the open-source package IpOpt, see [173]).

All the numerical experiments will be led with

f(y) = y(1− y)(y − θ), θ =
1

3
, y0 = 0.1

(x
L

)
+ 0.8

(
1− x

L

)

Nx = 60, Nt = 400.

For this function f and this value of θ, using the formula for L?, we find numerically
L? ≈ 10.43. As for the threshold Lθ (above which setting θ on the boundary makes θ
globally asymptotically stable), we find Lθ ≈ 6.29.

We start by taking L = 5 < Lθ and impose θ on the boundary. For T = 20, we indeed
find that this is enough to approach θ, see Figure 4.4.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

θ
0.4

0.6

0.8

1

t

u, v

u
v

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

θ
0.4

0.6

0.8

1

x

y(t, ·)

y0(·)
y
(
T
4 , ·
)

y
(
T
2 , ·
)

y
(
3T
4 , ·
)

y(T, ·)

Figure 4.4: Static strategy u = v = θ and resulting state at times 0, T
4 ,

T
2 ,

3T
4 and T for

L = 5 < Lθ, T = 20.

For Lθ < L = 8 < L? and T = 20 (or larger final times), the static strategy is not enough
as already known theoretically and evidenced by the upper graphs of Figure 4.5. The
lower graphs show the optimal control, as obtained numerically, to reach θ: the interesting
feature is that it oscillates very quickly around θ near the final time T . This is a common
feature when controlling a heat equation to zero [104]. Also worth mentioning is the fact
that controls take small values for a long time, which is reminiscent of the first long phase
of our staircase strategy with u(t) = v(t) = ε for a small ε.

For L = 12 > L? and even for a large final time T = 100, the control strategy minimising
the cost does not bring the final state close to θ, see Figure 4.6. One can see that the control
is close to 0 for a long time, trying to bring the solution down but it remains blocked by
a non-zero solution to the stationary problem with zero Dirichlet boundary conditions.

About taking same Dirichlet controls u = v. One important feature reflected
by these simulations is that the optimal controls u and v are actually very close to one
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Figure 4.5: Constant controls u = v = θ (upper) or optimal controls u, v (lower) and resulting
state at times 0, T4 ,

T
2 ,

3T
4 and T for Lθ < L = 8 < L?, T = 20.

another, almost equal after some time. Further simulations (not shown here) performed
with u = v indeed indicate that it is possible to design a control strategy with u = v to
reach θ, whenever L < L?. It remains an open problem to prove it, because we stress again
that the strategy developed in Section 4.3 is such that, in general, u 6= v.

4.4.2 Comments and perspectives

Other boundary conditions and steady states. As a byproduct of our analysis, we
also have proved results for





yt − yxx = f(y),

y(t, 0) = u(t), yx(t, L) = 0,

y(0) = y0,

namely the system where there is only one control at x = 0, while a Neumann boundary
condition is enforced at the other end of the domain. Indeed, the same phase plane analysis
shows that it is controllable towards 0 in infinite time if and only if (putting u(t) = 0 at
the left end) L 6 L?

2 in the monostable case (L < L?

2 in the bistable case, respectively).

Simulations not shown here suggest that this system can be controlled to θ if L < L?

2 in
the bistable case, and it is an open problem to prove it (as our control strategy requires to
act on both ends).
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Figure 4.6: Optimal controls u, v and resulting state at times 0, T4 ,
T
2 ,

3T
4 and T for L = 12 > L?,

T = 100.

Also note that our approach would also work it we had Neumann controls instead of
Dirichlet controls. It can also be used to reach other stationary states, while the strategy
as well as possible obstacles and corresponding threshold values are all readable on the
phase plane.

The multi-D case. Understanding what happens in the previous case would be critical
in view of tackling the problem in higher dimension. It is indeed natural to think of
situations where the control acts only on a part of the boundary, while the rest of the
boundary is endowed with Neumann conditions.

If the control acts on the whole boundary, the problem of controllability towards 0 again
leads to analysing whether only the trivial solution solves the stationary problem, because
the result of Matano has been generalised [156]. Then, the threshold phenomenon is already
known [105]. In this work, it is stated for

{
−∆y = λf(y) in Ω,

y = 0 on ∂Ω

where the parameter related to the domain size is λ. However, there are up to our knowl-
edge no explicit formulae for the threshold value, although bounding like in Subsection 4.2.3
still works.

For the control towards 1 and in the monostable case (H1), the Lyapunov functional
introduced in Remark 4.1 works in arbitrary dimension [138].

Feedback control. The control strategy designed for θ is not constructive when it comes
to the staircase part, but it would be possible to design it in feedback form, by adapting
the results of [42]. The whole control procedure would then be completely constructive,
except for the time required for the solution to be close enough to yinit so that the local
exact controllability result can be applied with controls between 0 and 1.

88



Part III

Optimal control for chemotherapy
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Chapter 5

Theoretical and numerical study of
the optimal control problem (OCP1)

In this Chapter, we investigate the optimal control (OCP1) in the integro-
differential case (namely βH = βC = 0), both theoretically and numerically.
We manage to carry out the theoretical analysis in a smaller class, using the
asymptotic analysis result from Chapter 1 which entails that with constant
doses, we will reach Dirac masses. Then, the system becomes arbitrarily close
to an ODE one for which the PMP with state constraints can be applied. The
structure of the optimal controls is obtained and confirmed by the numerical
results, conveying the idea that it is necessary to use low doses for a long time in
order to let the tumour be sensitive enough for the maximum tolerated doses
to work efficiently. All these results are presented in the article Asymptotic
analysis and optimal control of an integro-differential system modelling healthy
and cancer cells exposed to chemotherapy, jointy written with Jean Clairam-
bault, Alexander Lorz and Emmanuel Trélat, and published in the Journal de
Mathématiques Pures et Appliquées [139].

5.1 Introduction

One of the primary causes of death worldwide is cancer [154]. Cancer treatment encounters
two main pitfalls: the emergence of drug resistance in cancer cells and toxic side effects
to healthy cells. Given these causes of treatment failure, designing optimised therapeutic
strategies is a major objective for oncologists. In this chapter, we develop a mathematical
framework for modelling these phenomena and optimally combining therapies.
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5.1.1 Overview and motivation

The most frequently used class of anti-cancer drugs are chemotherapeutic (cytotoxic) drugs,
which are toxic to cells, leading to cell death. For example, platinum-based agents kill
dividing cells by causing DNA damage and disrupting DNA replication [86]. Another class
of drugs are cytostatic drugs, which slow down cell proliferation without killing cells. For
example, trastuzumab is a cytostatic drug used in breast cancer treatment that targets
growth factor receptors present on the surface of cells, and inhibits their proliferation [81].
Despite this obvious functional difference between the two classes, cytostatic drugs, such
as tyrosine kinase inhibitors, can also be cytotoxic at high doses [145].

It is a well documented fact that cytotoxic agents can fail to control cancer growth and
relapse [72, 127, 149]. First, eradication of the tumour cell population is compromised by
the emergence of drug resistance, due to intrinsic or acquired genotypic and phenotypic
heterogeneity in the cancer cell population [9, 24, 66, 123], because a subpopulation of
resistant cells survives and proliferates, even in the presence of further treatment with
identical [152], or higher doses [134]. Second, chemotherapeutic treatments have unwanted
side effects on healthy cells, which precludes unconstrained treatment use for fear of un-
wanted toxicities to major organs. It is therefore a challenge for oncologists to optimally
and safely treat patients with chemotherapy.

The medical objective of killing cancer cells together with preserving healthy cells from
excessive toxicity is routinely translated in mathematical terms as finding the best thera-
peutic strategies (i.e., below some maximum tolerated dose, referred to as MTD) in order
to minimise an appropriately chosen cost function. There are many works in mathemati-
cal oncology focusing on the optimal modulation of chemotherapeutic doses and schedules
designed to control cancer growth, e.g. [2, 43, 44, 91, 98, 96, 97, 95, 162, 163, 164].

Since using ordinary differential equations (ODEs) is a common technique for modelling the
temporal dynamics of cell populations, the mathematical field of optimal control applied to
ODEs has emerged as an important tool to tackle such questions (see for instance [151] for
a complete presentation). In these ODE models, toxicity can either be incorporated in the
cost functional as in [44], or by adding the dynamics of the healthy cells [14]. One simple,
but rather coarse, paradigm used to represent drug resistance in such ODE models is by
distinguishing between sensitive and resistant cancer cell subpopulations [44, 98]. Herein,
the main tools available to obtain rigorous results are the Pontryagin maximum principle
(PMP) and geometric optimal control techniques [1, 136, 150, 166].

Adaptive dynamics is a natural theoretical framework for the representation of phenotypic
evolution in proliferating cell populations exposed to anti-cancer drugs and tumor micro-
environmental factors. Non-Darwinian evolutionary principles have also been proposed to
take into account drug resistance phenomena [133]. Adaptive dynamics is amenable to
modelling these principles as well. To this end, stochastic or game-theoretic points of view
(see [34, 78]) are standard in adaptive dynamics. Apart from ODEs, partial differential
equations (PDEs) and integro-differential equations (IDEs) represent other deterministic
approaches. The latter ones represent our focus. For an introduction to PDE and IDE
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models in adaptive dynamics, we refer the interested reader to [129, 112].

We show that our model is consistent with clinical observations on the effect of constant
infusion of high doses [20, 72], and we address the optimal control problem of such IDE
models. Our study has a potential impact for oncologists and mathematical biologists,
since it provides an accurate and robust understanding of possible optimal strategies.

5.1.2 Modelling and overview of the main results

We recall that we here consider the system presented in the General Introduction, in its
integro-differential form, namely

∂nH
∂t

(t, x) = RH (x, ρH(t), ρC(t), u1(t), u2(t))nH(t, x),

∂nC
∂t

(t, x) = RC (x, ρC(t), ρH(t), u1(t), u2(t))nC(t, x),

(5.1)

with the intrinsic growth rates defined as

RH(x, ρH , ρC , u1, u2) :=
rH(x)

1 + αHu2
− dH(x)IH − u1µH(x),

RC(x, ρC , ρH , u1, u2) :=
rC(x)

1 + αCu2
− dC(x)IC − u1µC(x),

the non-local coupling as

IH := aHHρH + aHCρC , IC := aCHρH + aCCρC ,

with

ρH(t) =

∫ 1

0
nH(t, x) dx, ρC(t) =

∫ 1

0
nC(t, x) dx.

The system starts from the initial conditions

nH(0, x) = n0
H(x) > 0, nC(0, x) = n0

C(x) > 0.

Also recall that we assume

αH < αC . (5.2)

and
0 < aHC < aHH , 0 < aCH < aCC . (5.3)

Asymptotic behaviour for controls in BV ([0,+∞)). Our first aim is to show that
our model reproduces the following clinical observations: when high drug doses are admin-
istered, the tumour first reduces in size before regrowing, insensitive to further treatment.

The following statement is our first main result: using Lyapunov functionals as in Chapter 1
we achieve a complete description of the asymptotic behaviour of system (5.1), with a class
of asymptotically constant controls.
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Theorem 5.1. Let u1, u2 be any functions in BV ([0,+∞)), and let ū1, ū2 be their limits at
+∞. Then, for any positive initial population of healthy and of tumour cells, (ρH(t), ρC(t))
converges to some equilibrium point (ρ∞H , ρ

∞
C ), which can be explicitly computed. Further-

more, nH and nC concentrate on a set of points which can also be explicitly computed.

The explicit values can be found in Section 5.2, where this result is proved. If ū1 = 0,
the sets of points on which nH and nC concentrate are independent of ū2. This is due
to the fact that the phenotypic variable x models resistance to cytotoxic drugs. If µC
vanishes identically on some interval [1 − ε, 1] (meaning that full resistance is possible),
this theorem explains why, in the long run, high doses are not optimal. This means that
our mathematical conclusions are in agreement with the idea that the standard method
used in the clinic, namely administering maximum tolerated doses, should be reconsidered.
Alternatives are currently extensively being investigated by oncologists, e.g., metronomic
scheduling, which relies on frequent and continuous low doses of chemotherapy [10, 29, 127].

Theorem 5.1 thus motivates the optimal control problem (OCP1) of searching for the best
possible functions u1 and u2 to minimise the number of cancer cells within a given horizon
of time, with

0 6 u1(t) 6 umax
1 , 0 6 u2(t) 6 umax

2 , (5.4)

and we recall the two state constraints

ρH(t)

ρH(t) + ρC(t)
> θHC , (5.5)

together with
ρH(t) ≥ θHρH(0). (5.6)

It might seem more natural to study the problem in free final time, but as explained later
on, the mapping T 7−→ ρC(T ) (where ρC(T ) is the optimal value obtained by solving
(OCP1) on [0, T ]) is decreasing in T . This implies that the optimal control problem in
free final time T is ill-posed and does not admit any solution. The other implication is
that when solving the optimal control problem in free final time tf under the constraint
tf 6 T (where T is a horizon), then the optimal solution will be such that tf = T . This is
why we focus on an optimal control problem in fixed final time.

In this chapter, we perform a thorough study of (OCP1), both theoretically and numeri-
cally. Recall that the theoretical analysis is made is made in

BT :=

{
(u1, u2) ∈ AT , (u1(t), u2(t)) = (ū1, ū2) on (0, T1), T − T1 6 TM2

}

where TM2 is given.

The reason for this restriction to this class of controls comes from the answer to the
following question: given a specific tumour size (i.e., a given number of cancer cells),
what would be the optimal phenotypic cellular distribution in order to minimise the tumor
burden at the end of the time interval? Proposition 5.1 shows that, for a very short time,
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it is always better that the cancer cell population be concentrated on some appropriate
phenotype, i.e., that the initial population be a Dirac mass at some appropriate point.

From Theorem 5.1, we know that it is possible to asymptotically reach Dirac masses with
constant controls. The combination of these two results justifies the analysis in BT . In
this class of controls, our second main result characterises a quasi-optimal strategy in large
time. The precise result and hypotheses are given by Theorem 5.2 in Section 5.3.

In order for Theorem 5.2 to hold, an important assumption we make is that when cancer
cells are concentrated on a sensitive phenotype, the maximum tolerated doses will kill more
cancer cells than healthy ones. Without this assumption, it is not clear whether one can
expect the same strategy to be optimal, nor whether the patient can efficiently be treated.

We also emphasise that, for these IDEs, a PMP can be established but would not lead to
tractable equations. The key property to still be able to identify the optimal strategy in
BT is that the long first phase allows us to use Theorem 5.1: both populations concentrate
and their dynamics on the last phase are (approximately) governed by ODEs, as proved
in Lemma 5.4. The second phase can thus be analysed with ODE techniques, here the
Pontryagin maximum principle (see [1, 136, 167]). This is done in Proposition 5.2.

More concretely, Theorem 5.2 says that:

the quasi-optimal strategy consists of:

• first, administering constant doses to the patient, over a long time. The
role of the first long-time arc is to allow the cancer cell population to
concentrate on a sensitive phenotype. From a mathematical point of view,
this means that the healthy and tumour cell populations have (almost)
converged to a Dirac mass.

• second, during a short-time phase, following a strategy composed of at
most three arcs. If the first phase is such that the constraint (5.5) is
saturated, then there can be a first arc along this constraint. The maximal
amount of drugs is administered until the constraint (5.6) saturates. The
last arc is along this constraint, with an appropriately chosen cytotoxic
drug infusion which leads to a further decrease of the number of cancer
cells.

Numerically, we solve the problem (OCP1) in AT . The simulations confirm the theoretical
results and show that, with the chosen set of parameters, the strategy indeed approximately
consists of these two phases for T large. We also compare the optimal strategy with a
periodic one, and verify that the former performs better than the latter.

Furthermore, the numerical results suggest that for generic parameters, the optimal choice
of constant controls on the first phase is such that the constraint (5.5) is saturated. Thus,
the second phase possibly starts on this constraint.

Another important property highlighted by the numerical simulations is that, given the
choice of parameters made, ρC can decrease arbitrarily close to 0 once the cancer cell
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population has concentrated on a sensitive enough phenotype. We thus find a strategy for
which T 7−→ ρC(T ) is decreasing to 0; hence, there would be no solution to (OCP1) if the
final time T were let free.

This is the first time that a mathematical model based on integro-differential equations
demonstrates that, within our modelling framework, immediate administration of maximal
tolerated drug doses, or a periodic treatment schedule, is not an optimal solution for
eradicating cancer. Here, we prove that it is better to allow the phenotypes to concentrate,
before administering maximal doses.

The chapter is organised as follows. Section 5.2 is devoted to the proof of Theorem 5.1 and
to numerical simulations showing how the model can reproduce the regrowth of a cancer
cell population. Using these results, we have theoretical and numerical grounds for our
claim that constant doses are sub-optimal and we then turn our attention to (OCP1). In
Section 5.3, several arguments are given to justify the restriction to the class BT , with a
long first phase. The rest of the section is then devoted to proving Theorem 5.2. The
numerical solutions of (OCP1) in AT are provided in Section 5.4. They are compared to
periodic strategies. In Section 5.5, we conclude with several comments and open questions.

5.2 Constant infusion strategies

This section is devoted to the asymptotic analysis of the IDE model (5.1), in order to
specifically understand the effect of giving constant doses on the long run.

5.2.1 Asymptotics for the complete model: proof of Theorem 5.1

Now, let us take into account the complete coupling between healthy and tumour cells.
For the remaining part of this chapter, we assume for simplicity that both n0

H and n0
C are

continuous and positive on [0, 1]. A further technical assumption is needed to prove that
convergence and concentration hold, namely that the functions are Lipschitz continuous:

rH , rC , dH , dC , µH , µC ∈ C0,1(0, 1). (5.7)

We use the Lyapunov functional technique introduced in Chapter 1, which needs to be
slightly adapted to the fact that controls are asymptotically constant, not only constant.

Recall that the limits of ρH , ρC and the sets on which nH , nC concentrate are defined as
follows. We invert the system

aHHρ
∞
H + aHCρ

∞
C = I∞H ,

aCHρ
∞
H + aCCρ

∞
C = I∞C ,

where I∞H > 0 is the smallest nonnegative real number such that

rH(x)

1 + αH ū2
− ū1µH(x) 6 dH(x)I∞H ,
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and I∞C > 0 is the smallest nonnegative real number such that

rC(x)

1 + αC ū2
− ū1µC(x) 6 dC(x)I∞C .

Furthermore, if this convergence holds true, then nH (resp. nC) concentrate on AH (resp.
AC) defined as

AH =

{
x ∈ [0, 1],

rH(x)

1 + αH ū2
− ū1µH(x)− dH(x)I∞H = 0

}
,

AC =

{
x ∈ [0, 1],

rC(x)

1 + αC ū2
− ū1µC(x)− dC(x)I∞C = 0

}
.

Proof of Theorem 1. We adapt the proof of Chapter 1 for these BV controls: we choose

any couple of measures (n∞H , n
∞
C ) inM1(0, 1) satisfying

∫ 1
0 n
∞
i (x) dx = ρ∞i , and also

supp(n∞H ) ⊂ AH , supp(n∞C ) ⊂ AC . (5.8)

For i = H,C, and mi := 1
di
, we define the Lyapunov functional as

V (t) := λHVH(t) + λCVC(t),

where

Vi(t) =

∫ 1

0
mi(x)

[
n∞i (x) ln

(
1

ni(t, x)

)
+ (ni(t, x)− n∞i (x))

]
dx,

with positive constants λH and λC to be adequately chosen later.

In what follows, we skip dependence in t in the functions RH and RC to increase readability.
This time, we have

dVH
dt

=

∫ 1

0
mH(x) (RH (x, ρH , ρC , u1, u2)−RH (x, ρ∞H , ρ

∞
C , u1, u2)) [nH(t, x)− n∞H (x)] dx

+

∫ 1

0
mH(x)RH (x, ρ∞H , ρ

∞
C , u1, u2) [nH(t, x)− n∞H (x)] dx

The first term is simply

∫ 1

0
mH(x) (RH (x, ρH , ρC , u1, u2)−RH (x, ρ∞H , ρ

∞
C , u1, u2)) [nH(t, x)− n∞H (x)]

=

∫ 1

0
mH(x)dH(x) [aHH(ρ∞H − ρH) + aHC(ρ∞C − ρC)] [nH(t, x)− n∞H (x)] dx

= −aHH(ρ∞H − ρH)2 − aHC(ρ∞C − ρC)(ρ∞H − ρH)
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The second term can also be written as

BH(t) :=

∫ 1

0
mH(x)RH (x, ρ∞H , ρ

∞
C , u1, u2) [nH(t, x)− n∞H (x)] dx

=

∫ 1

0
mH(x)RH (x, ρ∞H , ρ

∞
C , ū1, ū2) [nH(t, x)− n∞H (x)] dx

+

∫ 1

0
mH(x) (RH (x, ρ∞H , ρ

∞
C , u1, u2)−RH (x, ρ∞H , ρ

∞
C , ū1, ū2)) [nH(t, x)− n∞H (x)] dx

=

∫ 1

0
mH(x)RH (x, ρ∞H , ρ

∞
C , ū1, ū2)nH(t, x) dx

+

∫ 1

0
mH(x)

[
rH(x)

(
1

1 + αHu2
− 1

1 + αH ū2

)
+ µH(x)(ū1 − u1)

]
[nH(t, x)− n∞H (x)] dx,

where we use (5.8) for the last equality. Note that the first term in the last expression is
nonpositive by definition of (ρ∞H , ρ

∞
C ), and the second goes to 0 as t goes to +∞. Conse-

quently, the decomposition

Bi = B̃i + Ei, i = H,C, (5.9)

holds, with B̃H , B̃C nonpositive, and EH , EC which asymptotically vanish. This decom-
position will be important in the last step.

Eventually, we have:
dV

dt
= −1

2
XTMX + λHBH + λCBC

with M = ATD +DA, X =

(
ρ∞H − ρH
ρ∞C − ρC

)
, D =

(
λH 0
0 λC

)
and A =

(
aHH aHC
aCH aCC

)
.

We choose λH := 1
aHC

and λC := 1
aCH

as in Proposition 1.2 of Chapter 1, so that det(M) >
0 by assumption (5.3).

Our aim is to prove that −1

2
XTMX converges to 0 as t goes to +∞, which will yield the

convergence of (ρH , ρC).

We have as in Chapter 1 the lower estimate V (t) > −C (ln(t) + 1), which uses assump-
tion (5.7).

We now set

G := −1

2
XTMX + 2 (λHBH + λCBC) .

Differentiating G, we no longer find that G is non-decreasing as in Chapter 1, as new terms
come up from the derivatives of u1, u2:

dG

dt
> −

(
a(t)

du2

dt
+ b(t)

du1

dt

)
(5.10)
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where a and b are bounded functions defined by

a(t) := 2λH
1

(1 + αHu2)2

∫ 1

0
mH(x)rH(x)(nH(t, x)− n∞H (x)) dx

+ 2λC
1

(1 + αCu2)2

∫ 1

0
mC(x)rC(x)(nC(t, x)− n∞C (x)) dx,

b(t) := 2λH

∫ 1

0
mH(x)µH(x)(nH(t, x)− n∞H (x)) dx

+ 2λC

∫ 1

0
mC(x)µC(x)(nC(t, x)− n∞C (x)) dx.

We conclude by noting that, by dV
dt 6 1

2G, it follows that V (t)−V (0) 6 1
2

∫ t
0 G(s) ds. From

G(s) = G(t)−
∫ t
s
dG
dt (z) dz, using (5.10) and by integrating the previous inequality, we have

V (t)− V (0)

t
6

1

2
G(t) +

1

2t

∫ t

0

∫ t

s

(
a(z)

du2

dt
(z) + b(z)

du1

dt
(z)

)
dz ds.

Now, using the decomposition (5.9) introduced previously, we obtain:

2
V (t)− V (0)

t
− 1

t

∫ t

0

∫ t

s

(
a(z)

du2

dt
(z) + b(z)

du1

dt
(z)

)
dz ds− 2 (λHEH + λCEC)

6 −1

2
XTMX + 2

(
λHB̃H + λCB̃C

)
.

In other words, since the right-hand side of this inequality consists of nonpositive terms,
the claim on the convergence of ρH and ρC is proved if we establish that the left-hand side
tends to 0.
As a consequence of the lower estimate V , 2

V (t)− V (0)

t
converges to 0. This is also true

for 2 (λHEH + λCEC). It thus remains to analyse the asymptotic behaviour of the function
1
t

∫ t
0

∫ t
s

(
a(z)du2

dt (z) + b(z)du1
dt (z)

)
dz ds. The analysis relies on the following lemma.

Lemma 5.1. Let φ in L∞(0,+∞), and u in BV ([0,+∞)). Then

lim
t→+∞

1

t

∫ t

0

∫ t

s
φ(z)u′(z) dz ds = 0.

Proof. Let us start by writing

1

t

∫ t

0

∫ t

s
φ(z)u′(z) dz ds =

1

t

∫ t

0

∫ t

0
φ(z)u′(z) dz ds− 1

t

∫ t

0

∫ s

0
φ(z)u′(z) dz ds

=

∫ t

0
φ(z)u′(z) dz − 1

t

∫ t

0

∫ s

0
φ(z)u′(z) dz ds

= Γ(t)− 1

t

∫ t

0
Γ(s) ds
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where Γ(t) :=
∫ t

0 φ(z)u′(z) dz. The expression above can thus be decomposed as the
function Γ minus its Cesàro average. To conclude, it suffices that Γ has a limit at +∞,
which in turn is true as soon as φu′ is integrable on the half-line. This fact is a direct
consequence of the boundedness of φ and the integrability of the derivative of a BV function
on [0,+∞).

This ends the proof of Theorem 5.1.
Remark 5.1. This theorem means that under general conditions, both populations con-
centrate and the total number of healthy (resp., cancer) cells converge. In the case of
constant controls and when there is selection of a unique phenotype in both populations,
it provides a complete understanding of the mapping

(ū1, ū2) 7−→ (x∞H , x
∞
C , ρ

∞
H , ρ

∞
C ),

where ρ∞H δx∞H and ρ∞C δx∞C are the respective limits of nH(t, ·) and nC(t, ·) inM1(0, 1), as t
goes to +∞. In particular, if we restrict ourselves to constant controls and a large time T ,
the problem of minimising ρC(T ) is equivalent to minimising ρ∞C as a function of (ū1, ū2).

5.2.2 Mathematical simulations of the effect of constant drug doses

Throughout the study, we will consider the following numerical data, taken from [111]:

rH(x) =
1.5

1 + x2
, rC(x) =

3

1 + x2
,

dH(x) =
1

2
(1− 0.1x), dC(x) =

1

2
(1− 0.3x),

aHH = 1, aCC = 1, aHC = 0.07, aCH = 0.01,

αH = 0.01, αC = 1,

umax
1 = 3.5, umax

2 = 7,

and the initial data

nH(0, x) = KH,0 exp(−(x− 0.5)2/ε), nC(0, x) = KC,0 exp(−(x− 0.5)2/ε),

with ε > 0 small (typically, we will take either ε = 0.1 or ε = 0.01), and where KH,0 > 0
and KC,0 > 0 are such that

ρH(0) = 2.7, ρC(0) = 0.5.

The value ρH(0) is not the same as in [111]: it is chosen to be slightly below the equilibrium
value of the system with nC ≡ 0, u1 ≡ 0, u2 ≡ 0, in accordance with the fact that there is
homeostasis in a healthy tissue. Indeed, we start with a non-negligible tumour which must
have (due to competition) slightly lowered the number of healthy cells with comparison to
a normal situation.
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We also define ρCS(t) :=
∫ 1

0 (1− x)nC(t, x) dx, which may be seen as the total number at
time t of tumour cells that are sensitive, and ρCR(t) :=

∫ 1
0 xnC(t, x) dx, which may be seen

as the total number at time t of tumour cells that are resistant.

Of course, sensitivity/resistance being by construction a non-binary variable, the weights x
and 1−x are an example of a partition between a relatively sensitive class and a relatively
resistant class in the cancer cell population; other choices might be made for these weights,
e.g., x2 and 1− x2.

Discussion of the choice for µH and µC . These functions measure the efficiency of
the drugs treatment. The choice done in [111] is

µH(x) =
0.2

0.72 + x2
, µC(x) =

0.4

0.72 + x2
.

However, with this choice of functions, if we take constant controls u1 and u2, with

ū1 = umax
1 = 3.5, ū2 = 2,

then we can kill all tumour cells (at least, they decrease exponentially to 0), and no
optimisation is necessary. The results of a simulation can be seen on Figure 5.1. The

Figure 5.1: Simulation with ū1 = 3.5 and ū2 = 2, in time T = 10. At the top, left and middle:
evolution in time of the curves x 7→ nH(t, x) and x 7→ nC(t, x), with the initial conditions in black,
and the final ones in red. At the right, top and bottom: graphs of t 7→ ρC(t) and of t 7→ ρH(t). At
the bottom, left and middle: graphs of t 7→ ρH(t)

ρH(t)+ρC(t) and of t 7→ ρCS(t)
ρC(t) .

population of tumour cells is Gaussian-shaped, decreases exponentially to 0 while its center
is being shifted to the right: it means that tumour cells become more and more resistant as
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time goes by. This is in agreement with the fact that cells acquire resistance to treatment
when drugs are given constantly. However, although the proportion of sensitive cells t 7→
ρCS(t)
ρC(t) is quickly decreasing, the drugs are still efficient at killing the cells. This is not
realistic, as it does not match the clinically observed saturation phenomenon. Most cancer
cells have acquired resistance and any immediate further treatment should have no effect.

In the simulation above, there is no saturation because the function µC is continuous and
positive over the whole interval [0, 1] and is not small enough close to 1. In order to model
this saturation phenomenon, we choose to modify the model used in [111], by modifying
slightly the function µC . The new function µC that will throughout be considered is defined
by

µC(x) = max

(
0.9

0.72 + 0.6x2
− 1, 0

)
.

On Figure 5.2, the former function µC is in blue, and the new one is in red. This new

Figure 5.2: Former function µC in blue, and new function µC in red.

function µC is nonnegative and decreasing on [0, 1], and vanishes identically on a subinterval
containing x = 1.

With this new function, the simulation of Figure 5.1, with ū1 = 3.5 and ū2 = 2, is
completely modified, as can be seen on Figure 5.3. Indeed, this time, the strategy consisting
of taking constant controls ū1 = 3.5 and ū2 = 2 is not efficient anymore and does not allow
for (almost) total eradication of the tumour. In sharp contrast, we observe on Figure 5.1
that the tumour cells are growing again, moreover concentrating around some resistant
phenotype.

Conclusion on constant controls. The simulations show that choosing constant doses
too high leads to the selection of resistant cells, and then, to regrowth of the cancer cell
population if these cells can become insensitive to the treatment. With the notations of
Theorem 5.1, it is because among constant controls, (umax1 , umax2 ) does not minimise ρ∞C .
However, it is quite clear that choosing the optimal constant dose (ū1, ū2) to minimise
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Figure 5.3: Simulation with ū1 = 3.5 and ū2 = 2, in time T = 10, with the new function µC .

ρ∞C leaves room for improvement, as the choice (umax1 , umax2 ) is still the optimal one for
sensitive cells. Therefore, it makes sense to allow u1 and u2 to be any functions satisfying
(5.1) as in (OCP1), which we will study both from the theoretical and numerical points
of view in the next two sections.

5.3 Theoretical analysis of (OCP1)

Before analysing (OCP1), let us first consider a much simpler ODE model for which we
can find the solution explicitly in order to develop some intuition.

5.3.1 Simplified optimal control problems

We consider the ODE

dρ

dt
= (r − dρ(t)− µu(t))ρ(t),

ρ(0) = ρ0 > 0.
(5.11)

(C1) Optimal control problem: minimise ρ(T ) over all possible solutions of (5.11) with a
L1-constraint on u, i.e., ∫ T

0
u(t) dt ≤ u1,max. (5.12)
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Lemma 5.2. The optimal solution for problem (C1) is

uopt = u1,maxδt=T .

Remark 5.2. The statement can be misleading: we actually prove that there is no optimal
solution, but rather that the problem leads to an infimum. Still, writing uopt = u1,maxδt=T
makes sense as a way to obtain the infimum is to take a family (uε)ε>0 in L1 which converges
to uopt, for example uε := 1

εu
1,max1[T−ε,T ].

Adding another the constraint, we have a second optimal control problem

(C2) minimise ρ(T ) over all possible solutions of (5.11) with the L1-constraint (5.12) and
a L∞-constraint

u ≤ u∞,max.

We assume u∞,maxT > u1,max, since otherwise it is clear that the optimal strategy is
u∞,max1I{[0,T ]}.

Lemma 5.3. We define T1(T ) := T − u1,max

u∞,max . The optimal solution for problem (C2) is

uop = u∞,max1I{[T1,T ]}.

The proofs of these two results can be found in Appendix 5.6.
Remark 5.3. The previous lemmas on simplified equations give some insight on two
important features:

• for large times, constant controls lead to concentration, as evidenced by Theorem 5.1. As
explained more rigorously further below in Lemma 5.4, when the populations are concen-
trated on some single phenotypes, the integro-differential equations boil down to ODEs,
for which the last results and standard techniques from optimal control theory apply.

• for ODE models, it is optimal to use the maximal amount of drug at the end of the time-
window if there is a L1 constraint on the control. Avoiding the emergence of resistance will
indirectly act as some L1 constraint, which is why this result also provides some interesting
intuition on the optimal control problem (OCP1).

5.3.2 Assumptions and further remarks

Let us start by mentioning a possible alternative state constraint for (OCP1).
Remark 5.4. Alternatively to (5.5), we might want to directly control the number of
cancer cells and replace (5.5) by

ρC(t) 6 Cmax (5.13)

for some Cmax > 0. The set of constraints (5.5)-(5.6) on the one hand, and (5.13)-(5.6) on
the other hand, are similar. Although we focus on the first one in the sequel, our analysis
applies to the other set of constraints.
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We now make several important additional assumptions which will be used throughout
this section, all relying on the notations of Theorem 5.1. Our first assumption is that

for any 0 6 ū1 6 umax1 , 0 6 ū2 6 umax2 , AH and AC are reduced to singletons. (5.14)

In this case, recall that Theorem 5.1 provides a mapping (ū1, ū2) 7→ (x∞H , x
∞
C , ρ

∞
H , ρ

∞
C ), and

with a slight abuse of notation, we will omit the dependence in (ū1, ū2) in the following
final assumptions:

whenever ū1, ū2 are admissible (i.e., such that neither the constraint (5.5) nor
the constraint (5.6) is violated), we require that the solution of the ODE system

dρH
dt

= RH (x∞H , ρH , ρC , u
max
1 , umax2 ) ρH ,

dρC
dt

= RC (x∞C , ρC , ρH , u
max
1 , umax2 ) ρC ,

with initial data (ρ∞C , ρ
∞
H ), has the following property:

d

dt
ρC < 0,

d

dt
ρH < 0 and

d

dt

ρC
ρH

< 0. (5.15)

The assumption (5.15) means that both populations of cells decrease but that the treatment
is more efficient on cancer cells. In some sense, this is a curability assumption and it will
be crucial in the sequel.

We now motivate the choice of restricting our attention to the class BT by giving two
results.

5.3.3 Optimality of a concentrated initial population for a small time

Here, we assume that for any 0 6 ρC 6 ρmaxC , 0 6 ρH 6 ρmaxH , 0 6 u1 6 umax1 and
0 6 u2 6 umax2 ,

x 7→ RC(x, ρC , ρH , u1, u2) has a unique minimum. (5.16)

For a given initial amount of cancer cells ρ0
C > 0, we define:

Aρ0
C

:=

{
n0
C ∈M1(0, 1) such that

∫ 1

0
n0
C(x) dx = ρ0

C

}
.

For n0
C ∈ Aρ0

C
, and given n0

H inM1(0, 1), final time tf > 0, and controls u1, u2 in BV (0, tf )

satisfying (5.4), we consider the associated trajectory (nH(·, x), nC(·, x)) on [0, tf ] solution
to the system (5.1) starting from (n0

H , n
0
C).

We consider the following minimisation problem

inf
06u1(t)6umax1
06u2(t)6umax2

inf
n0
C∈AρC0

ρC(tf ).

In other words, for a fixed initial tumour size, we aim at tackling the following question:
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what is the cancer cells’ best possible repartition in phenotype?

A simpler (and instantaneous) version of the previous optimisation problem for tf small is

inf
06u16umax1
06u26umax2

inf
n0
C∈AρC0

dρC
dt

(0), (5.17)

for which the solution is easily obtained, and given in the following proposition.
Proposition 5.1. Let g := RC

(
·, ρ0

C , ρ
0
H , u

max
1 , umax2

)
. We define xC by {xC} := arg min g

and ñ0
C := ρ0

CδxC . The optimal solution for the optimisation problem (5.17) is given by
(
umax1 , umax2 , ρ0

CδxC
)
. (5.18)

Proof. For any 0 6 u1 6 umax1 , 0 6 u2 6 umax2 , n0
C ∈ AρC0 ,

dρC
dt

(0) =

∫ 1

0
RC
(
x, ρ0

C , ρ
0
H , u1, u2

)
n0
C(x) dx >

∫ 1

0
g(x)n0

C(x) dx

with equality if and only if u1 = umax1 , u2 = umax2 .

We also have
∫ 1

0 g(x)n0
C(x) dx >

∫ 1
0 g(xC)n0

C(x) dx = g(xC)ρ0
C and it remains to prove

that there is equality if and only if n0
C = ρ0

CδxC . If n
0
C 6= ρ0

CδxC there exists a ∈ supp
(
n0
C

)
,

a 6= xC : it is therefore possible to find ε > 0 such that both xC 6∈ [a − ε, a + ε] and∫
[a−ε,a+ε] n

0
C(x) dx > 0.

This implies
∫ 1

0
(g(x)− g(xC))n0

C(x) dx >
∫

[a−ε,a+ε]
(g(x)− g(xC))n0

C(x) dx > 0,

which concludes the proof.

For (OCP1), the previous Proposition means that, very close to T , the best shape of the
cancer cell density nC(t, ·) is a Dirac mass. As it was proved in Theorem 5.1, it is possible
(in arbitrarily large time) to reach Dirac masses with constant controls. The combination
of these two results is our motivation for the restriction to the set BT .

5.3.4 Reduction of IDEs to ODEs at the end of the long first phase

Because of the previous result, it makes sense to steer the cancer dell density as close as
possible to a Dirac mass. As it was proved in Theorem 5.1, it is possible (in large time
limit) to reach Dirac masses with constant controls. Our aim is now to prove that if we
give constant controls (ū1, ū2) for a long time, the dynamics of the total number of cells
(ρH , ρC) are arbitrarily close to being driven by a system of ODEs, a result which comes
from the concentration of the IDE on (x∞H , x

∞
C ). The rigorous statement is given hereafter:
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Lemma 5.4. We fix T2 > 0, 0 6 ū1 6 umax1 and 0 6 ū2 6 umax2 . We consider any controls
(u1, u2) defined on [0, T1 +T2] as follows: they are constant equal to (ū1, ū2) on [0, T1], and
any BV functions on [T1, T1 + T2] which satisfy (5.4).

Let (nH , nC) be the solution of (5.1) on [0, T1 + T2], with corresponding (ρH , ρC). Then

lim
T1→+∞

sup
[T1,T1+T2]

max (|ρH − ρ̃H |, |ρC − ρ̃C |) = 0,

where (ρ̃H , ρ̃C) solves the controlled ODE system

dρ̃H
dt

= RH (x∞H , ρ̃H , ρ̃C , u1, u2) ρ̃H ,

dρ̃C
dt

= RC (x∞C , ρ̃C , ρ̃H , u1, u2) ρ̃C ,

defined on [T1, T1 + T2], starting at T1 from (ρH(T1), ρC(T1)).

Proof. Let ε > 0. We focus on the equation on nH which we integrate in x for any
t ∈ [T1, T1 + T2]:

dρH
dt

=

∫ 1

0
RH(x, ρH , ρC , u1, u2)nH(t, x) dx

= RH (x∞H , ρH , ρC , u1, u2) ρH

+

∫ 1

0
(RH(x, ρH , ρC , u1, u2)−RH (x∞H , ρH , ρC , u1, u2))nH(t, x) dx

For the first term, we write

RH(x∞H , ρH , ρC , u1, u2)ρH = RH(x∞H , ρH , ρC , u1, u2)ρ̃H +RH(x∞H , ρH , ρC , u1, u2)(ρH − ρ̃H)

=
dρ̃H
dt

+ ρ̃HdH(x∞H ) (−aHH(ρH − ρ̃H)− aHC(ρC − ρ̃C))

+RH (x∞H , ρH , ρC , u1, u2) (ρH − ρ̃H)

This means we end up with

d

dt
(ρH − ρ̃H) = ρ̃HdH(x∞H ) (−aHH(ρH − ρ̃H)− aHC(ρC − ρ̃C))

+RH (x∞H , ρH , ρC , u1, u2) (ρH − ρ̃H)

+

∫ 1

0
(RH(x, ρH , ρC , u1, u2)−RH (x∞H , ρH , ρC , u1, u2))nH(t, x) dx.

We look at the last term separately: the first two ones are linked to the discrepancy between
ρ and ρ̃, while the last one will be small because nH is concentrated if T1 is large enough.
Setting w := max (|ρH − ρ̃H |, |ρC − ρ̃C |), we have the differential inequality

d

dt
|ρH − ρ̃H | 6 Cw +

∫ 1

0
(RH(x, ρH , ρC , u1, u2)−RH (x∞H , ρH , ρC , u1, u2))nH(t, x) dx

(5.19)
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for some constant C > 0. The last term can be decomposed as

1

1 + αHu2

∫ 1

0
(rH(x)− rH(x∞H ))nH(t, x) dx

− u1

∫ 1

0
(µH(x)− µH(x∞H ))nH(t, x) dx− IH

∫ 1

0
(dH(x)− dH(x∞H ))nH(t, x) dx.

Note that u1, 1
1+αHu2

and IH are all bounded on [T1, T1 + T2]. Thus, if for any generic
function φ,

∫ 1
0 (φH(x)− φH(x∞H ))nH(t, x) dx is arbitrarily small, so is the last quantity.

To that end, we write the solution of the IDE in exponential form

nH(t, x) = nH(T1, x) exp

(∫ t

T1

RH (x, ρH(s), ρC(s), u1(s), u2(s)) ds

)
,

where the exponential is uniformly bounded on [0, 1] × [T1, T1 + T2], which means that∣∣∣
∫ 1

0 (φH(x)− φH(x∞H ))nH(t, x) dx
∣∣∣ 6 C

∫ 1
0 |φH(x)− φH(x∞H )|nH(T1, x) dx. Since

nH(T1, ·) converges to ρ∞H δx∞H in M1(0, 1) as T1 goes to +∞, this quantity is arbitrarily
small. Plugging this estimate into (5.19) and writing a similar inequality for the equations
on the cancer cells, we obtain for T1 large enough dw

dt 6 Cw+ ε. We conclude by applying
the Gronwall lemma, together with the fact that w(T1) = 0.

5.3.5 Analysis of the second phase

According to the previous results, for large T and admissible constant controls (ū1, ū2),
we arrive at concentrated populations whose dynamics are driven by a system of ODEs.
This naturally leads to considering the following optimal control problem, on the resulting
ODE concentrated in (x∞H , x

∞
C ), starting from (ρ∞H , ρ

∞
C ) at t = 0. For readability, we write

gH for gH(x∞H ) (resp., gC for g(x∞C )) for any function gH (resp., gC), and we stress that all
assumptions made in this subsection are made for all possible admissible constant controls
(ū1, ū2).

The ODE system of equations now reads

dρH
dt

=
( rH

1 + αHu2
− dHIH − u1µH

︸ ︷︷ ︸
RH

)
ρH ,

dρC
dt

=
( rC

1 + αCu2
− dCIC − u1µC

︸ ︷︷ ︸
RC

)
ρC .

(5.20)
For a given TM2 > 0, we investigate the optimal problem of minimising ρC(tf ) for tf 6 TM2
and controls (u1, u2) which satisfy (5.4), as well as the constraints (5.6) and (5.5). The
constraint (5.5) rewrites ρC

ρH
6 γ with

γ :=
1− θHC
θHC

.
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Assume that there exists an optimal solution which is the concatenation of free and con-
strained arcs (either on the constraint (5.6) or (5.5)), with associated times (ti)16i6M . In
particular, we thus assume without loss of generality that the parameters are such that

both constraints do not saturate simultaneously on an optimal arc. (5.21)

Then, by the Pontryagin maximum principle for an optimal control problem with state
constraints (see [170]), there exists a bounded variation adjoint vector p = (pH , pC) defined
on [0, tf ], a scalar p0 6 0, non-negative functions η1 and η2 and non-negative scalars νi,
i = 1, . . . ,M such that if we define the Hamiltonian function by

H(ρH , ρC , pH , pC , u1, u2)

:= pHRHρH + pCRCρC + η1(θHρ
0
H − ρH) + η2(ρC − γρH)

= − pHdHIHρH − pCdCICρC +

(
rHpHρH
1 + αHu2

+
rCpCρC

1 + αCu2

)

− (µHpHρH + µCpCρC)u1 + η1(θHρ
0
H − ρH) + η2(ρC − γρH),

we have

1. p, p0, η1, η2 and the (νi)i=1,...,M are not all zero.

2. The adjoint vector satisfies

dpH
dt

= − ∂H
∂ρH

= −pH (−aHHdHρH +RH) + aCHdCpCρC + η1 + γη2,

dpC
dt

= − ∂H
∂ρC

= −pC (−aCCdCρC +RC) + aHCdHpHρH − η2,

with pH(tf ) = 0, pC(tf ) = p0.

3. t 7−→ η1(t) (resp. t 7−→ η2(t)) is continuous along (5.6) (resp. (5.5)), and is such that
η1(θHρ

0
H − ρH) = 0 (resp. η2(ρC − γρH) = 0) on [0, tf ].

4. For any i = 1, . . . ,M , the Hamiltonian is continuous at ti. If ti is a junction or contact2

point with the boundary (5.6) (resp. with the boundary (5.5)), pH(t+i ) = pH(t−i ) + νi,
pC(t+i ) = pC(t−i ) (resp. pH(t+i ) = pH(t−i ) + γνi, pC(t+i ) = pC(t−i )− νi).
5. The controls u1, u2 maximise the Hamiltonian almost everywhere.

We now make several technical assumptions (for all admissible constant controls (ū1, ū2))
by requiring

γ <
µH
µC

µCaHHdH − µHaCHdC
µHaCCdC − µCaHCdH

(5.22)

(assuming first µCaHHdH > µHaCHdC , aCCµHdC > aHCµCdH),

µH , µC > 0, (5.23)
2The starting and ending points of a boundary arc are called junction points if they are distinct, and

contact points if they coincide (i.e., if the arc is reduced to a singleton).
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αHµCrH < αCµHrC , αHµHrC < αCµCrH (5.24)

(αCrHµC−αHrCµH) (umax2 )2 +2(rHµC−rCµH)umax2 +
αHrHµC − αCrCµH

αHαC
< 0. (5.25)

Note that the two last assumptions are satisfied as soon as αH
αC

is very small, at least
compared to µH

µC
. This amounts to saying that cytostatic drugs specifically target the

cancer cells better than cytotoxic drugs do.

This last necessary condition motivates the definitions

φ1 := µHpHρH + µCpCρC ,

and (abusively, since this quantity also depends on t)

ψ(u2) :=
rHpHρH
1 + αHu2

+
rCpCρC

1 + αCu2
.

Let us first analyse a constrained arc on (5.6), whenever it is not reduced to a singleton.

Arc on the constraint (5.6).

First note that ρC = ρC
ρH
ρH = ρC

ρH
θHρ

0
H is bounded from above by γ θHρ0

H . If we differen-
tiate the constraint, we find that u1 and u2 are determined by

rH
1 + αHu2

− dH(aHHθHρ
0
H + aHCρC)− u1µH = 0,

together with the fact that

(u1, u2) ∈ arg max

(
rHpHρH
1 + αHu2

+
rCpCρC

1 + αCu2
− (µHpHρH + µCpCρC)u1

)

= arg max
pCρC
µH

(
rCµH

1 + αCu2
− rHµC

1 + αHu2

)

One can check that (5.24) and (5.25) are sufficient conditions to have decrease of the
function u2 7→ rCµH

1+αCu2
− rHµC

1+αHu2
. In particular, u2 = umax2 if pC < 0, u2 = 0 if pC > 0.

Thus, the maximisation condition is equivalent to maximising −φ1u1 if pC does not vanish
on the arc. Hence, φ1 = 0 when this condition on pC is fulfilled. We also obtain u1 in
feedback form along the arc, and when pC does not vanish it is given by:

ub,v1 :=
1

µH

(
rH

1 + αHv
− dH(aHHθHρ

0
H + aHCρC)

)

where v = 0 or v = umax2 depending on the sign of pC . We assume that this is an admissible
control, i.e., that it satisfies

0 < ub,v1 < umax1 (5.26)

for v = 0 and v = umax2 , and any 0 6 ρC 6 γθHρ
0
H . If pC > 0 and u2 = 0, the dynamics

of ρC on the arc (5.6) are given by

dρC
dt

=
1

µH
(rb − dbρC) ρC
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with

rd := (rCµH − rHµC) + (aHHdHµC − µHaCHdC) θHρ
0
H , db := (aCCµHdC − aHCµCdH) ,

which we assume to be positive. This autonomous ODE leads to a monotonic behaviour
of ρC . In order to ensure that the boundary control u1 = ub,01 is not enough to prevent the
increase of ρC we assume the following

γ θHρ
0
H <

rd
bd
. (5.27)

The previous hypothesis implies that ρC will increase on an arc on (5.6) when pC > 0.

Arc on the constraint (5.5).

If we differentiate the constraint, we find that RH = RC , i.e., u1 and u2 are related to one
another by

rH
1 + αHu2

− dHρH(aHH + γaHC)− u1µH =
rC

1 + αCu2
− dCρH(γaCC + aCH)− u1µC .

We are now set to prove the result:
Proposition 5.2. Assume (5.2), (5.14), (5.15), (5.21), (5.22), (5.23), (5.24), (5.25),
(5.26), (5.27) and that there exists an optimal solution which is the concatenation of
free and constrained arcs (either on the constraint (5.6) or (5.5)), with associated times
(ti)16i6M . Then, the last three possible arcs are:

• a boundary arc along the constraint (5.5).

• a free arc with controls u1 = umax1 and u2 = umax2 ,

• a boundary arc along the constraint (5.6) with u2 = umax2 .

The proof is technical and can be found in Appendix 5.7.

5.3.6 Solution of (OCP1) in BT for large T : proof of Theorem 5.2

Recall that we want to solve (OCP) for controls (u1, u2) ∈ BT for large T and small TM2 ,
a choice motivated by the previous results. For a given T , we denote

(
ū

(T )
1 , ū

(T )
2

)
a choice

of optimal values for the constant controls during the first phase.
Theorem 5.2. Assume the hypotheses of Proposition 5.2. Then asymptotically in T and
for TM2 small, there exists at least one solution to (OCP1) in BT . More precisely, there ex-
ists

(
ūopt1 , ūopt2 , T ode2

)
,
(
uode1 , uode2

)
∈ BV

(
0, T ode2

)
such that if we define the control (u1, u2)

by

(u1, u2)(t) =

{ (
ūopt1 , ūopt2

)
on

(
0, T − T ode2

)
(
uode1 (t− T + T ode2 ), uode2 (t− T + T ode2 )

)
on

(
T − T ode2 , T

)
,
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then up to a subsequence we have

lim
T→+∞

(
CT (u1, u2)− inf

(u1,u2)∈BT
CT (u1, u2)

)
= 0,

meaning that (u1, u2) is quasi-optimal if T is large enough. Furthermore, on
(
T − T ode2 , T

)

the optimal trajectory trajectory obtained with (u1, u2) is the concatenation of at most three
arcs:

• a quasi-boundary arc along the constraint (5.5),

• a free arc with controls u1 = umax1 and u2 = umax2 ,

• a quasi-boundary arc along the constraint (5.6), with u2 = umax2 .
Remark 5.5. By quasi-boundary arc, we mean that the quasi-optimal control is such that
(ρH , ρC) almost saturates the constraints, i.e., up to an error vanishing as T goes to +∞.

Proof.
Up to a subsequence, still denoted T , we can find

(
ūopt1 , ūopt2

)
such that

(
ū

(T )
1 , ū

(T )
2

)
con-

verges to
(
ūopt1 , ūopt2

)
as T → +∞. These values for the constant controls yield asymptotic

phenotypes
(
xoptH , xoptC

)
thanks to Theorem 5.1. Then, for any choice of time T2 6 TM2

and BV controls (u1, u2) on (T − T2, T ),

lim
T→+∞

sup
[T−T2,T ]

max (|ρH − ρ̃H |, |ρC − ρ̃C |) = 0, (5.28)

with the notations of Lemma 5.4: ρ is obtained from the IDE system, while ρ̃ is obtained
from the ODE concentrated on

(
xoptH , xoptC

)
. This is a consequence of a slight refinement of

Lemma 5.4. Indeed, for T large, the IDE is almost concentrated on some
(
x

(T )
H , x

(T )
C

)
asso-

ciated to
(
ū

(T )
1 , ū

(T )
2

)
. The formulae for these quantities given by Theorem 5.1 show that

(
x

(T )
H , x

(T )
C

)
converges to

(
xoptH , xoptC

)
, hence the concentration of the IDE on

(
xoptH , xoptC

)

and the result (5.28).

As a consequence, the optimal strategy for the ODE, obtained by Proposition 5.2 is also
optimal for the IDE, up to an error vanishing as T goes to infinity. We denote T ode2 6 TM2 ,(
uode1 , uode2

)
∈ BV

(
0, T ode2

)
the solutions of this optimal control problem. The last state-

ments of the theorem are then a direct consequence of Proposition 5.2 and the assumption
that TM2 is small, since the IDE and ODE trajectories are arbitrarily close.

5.4 Numerical simulations

In this section, we solve (OCP1) numerically in the full class AT . We will compare the
results with the previous section, and check that alternative strategies to the one given in
Theorem 5.2 are indeed sub-optimal when T is large.

112



5.4. Numerical simulations

5.4.1 Numerical simulations of the solution to (OCP1)

For a survey on numerical methods in optimal control of ODEs, we refer to [167].

Here, we use direct methods which consist in discretising the whole problem and reducing
it to a "standard" constrained optimisation problem, and we refer to Chapter 6 for a more
detailed presentation of the approach. For the simulations, we take θHC = 0.4, θH =
0.6, ε = 0.1. We let T take the value T = 60 to complement the graph already given in
the Introduction for T = 30. The results are reported on Figure 5.4. These simulations

Figure 5.4: Simulation of (OCP1) for T = 60.

clearly indicate that for the chosen numerical data, if T is large enough, then the optimal
controls are such that:

• the optimal control u1 is first equal to 0 on a long arc. Then, on a short-time arc,
u1 = umax

1 and then to a value such that the constraint (5.6) saturates;

• the optimal control u2 has a three-part structure, with a long-time starting arc which
is a boundary arc, that is, an arc along which the state constraint (5.5) is (very
quickly) saturated. It corresponds to an almost constant value for the control u2.
The last short-time arc coincides with that of u1, and along this arc u2 = umax2 .

We denote by ts(T ) the switching time, defined by largest time such that u1(t) = 0 for all

113



Chapter 5. Theoretical and numerical study of the optimal control problem (OCP1)

t < ts(T ).

According to the numerical simulations, as T tends to +∞, both x 7→ nC(ts(T ), x), x 7→
nH(ts(T ), x) converge to (weighted) Dirac masses. Since the controls u1 and u2 are almost
constant on (0, ts(T )), this is in accordance with Theorem 5.1. The cancer cell population
is then concentrated on a phenotype on which the drugs are very efficient.

More precisely, as T tends to +∞, the optimal strategy seems to tend to a two-piece
trajectory, consisting of:

• a first long-time arc, along the boundary ρH(t)
ρH(t)+ρC(t) = θHC , with u1(t) = 0 and with

a constant control u2, at the end of which the populations of healthy and of cancer
cells have concentrated on some given sensitive phenotype;

• a second short-time arc along which the populations of healthy and cancer cells are
very quickly decreasing with u1 = umax1 , u2 = umax2 , before the constraint on ρH
saturates and u1 switches to a boundary value allowing ρC to keep decreasing.

We also find that the mapping T 7−→ ρC(T ) (where ρC(T ) is the value obtained by solving
(OCP1) on [0, T ]) is decreasing. This is because our parameters are such that, once
concentrated on a sensitive phenotype, the cancer cell population satisfies a controlled
ODE for which there exists a strategy letting ρC converge to 0. Because our model is
exponential, we cannot reach 0 exactly but for very small values of ρC , one can consider
that the tumour has been eradicated.
Remark 5.6. In order to avoid additional lengthy hypotheses, we did not give conditions
under which the strategy established in Theorem 5.2 can further be identified. However,
the numerical solutions show that, for generic parameters, it can be expected that:

• the constant controls on the first phase are such that at the end of the first phase, we
have saturation of (5.5),

• the second phase is of time duration TM2 and starts with a constrained arc along (5.5).

5.4.2 Comparison with clinical settings

As explained before, our results advocate for a first long phase which must be all the
more long for an initially heterogeneous tumour (with respect to resistance). They also
apply to ’born to be bad’ tumours [159], with high initial heterogeneity with respect to
genes or phenotypes in general. Indeed, the heterogeneity or homogeneity we address
here is related to one phenotype defined by resistance towards one category of cytotoxic
drug. In this sense, our use of the term heterogeneity is unambiguous, functionally defined,
and cannot be superimposed on other more classical uses, defined by the accumulation of
mutations, such as in [52, 62, 159].

This being said, we are ultimately concerned with the application of our optimal control
methods to the improvement of classical therapeutic regimens in which repeated courses
of chemotherapy are delivered to patients with cancer. To this end, we keep the previous
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parameters, that are in particular relevant to represent an initially heterogeneous tumour,
and we propose for possible implementation in the clinic a quasi-periodic strategy such as
in the example defined below:

• As long as ρH
ρH+ρC

> θHC , we follow the drug-holiday strategy by choosing u1 = ū1 =
0, u2 = ū2 = 0.5 obtained in the previous numerical simulations.

• Then, as long as ρH > θHρH(0), we use the maximal amount of drugs. As soon as
ρH = θHρH(0), go back to the drug-holiday strategy.

The implementation is straightforward, Figure 5.5 shows an example for T = 60. This
strategy allows to maintain the tumour size below some upper value and to prevent resistant
cells from taking over the whole population. However, the tumour is not eradicated and
this strategy is far from being optimal: ρC(T ) is slightly below 1, to be compared to the
value obtained with T = 60 (see Figure 5.4) with the optimal strategy, which is around
1.10−5. It is another proof of the importance of a long first phase. It also shows that, at
least with our parameters, the last arc on the constraint (5.6) obtained in the previous
simulations is instrumental in view of significantly decreasing the tumour size. To assess

Figure 5.5: Quasi-periodic strategy, for T = 60.

the importance of the saturation of the constraint ρH = θHρH(0), we complement the
previous strategy with an arc on this constraint, with u2 = umax2 , and adequately chosen
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feedback control u1 obtained from the equality dρH
dt = 0. We go back to the drug-holiday

strategy as soon as ρC starts increasing again, since it is a sign that the tumour has become
too resistant. We choose T = 100 to have enough cycles; the corresponding results are
reported on Figure 5.6 below. They tend to show that ρC can be brought arbitrarily close
to 0 after enough cycles, meaning that there is a chance for total eradication of the tumour.

Figure 5.6: Second quasi-periodic strategy, for T = 100.

5.5 Conclusion

5.5.1 Summary of the results

By analysing a controlled integro-differential system of cancer and healthy cells structured
by a resistance phenotype, we have mathematically investigated the effect of combined
chemotherapeutic (cytotoxic and cytostatic) drugs on a tumour. Since we chose a biologi-
cally grounded modelling for the resistance phenomenon and took the healthy tissue into
account, our approach is tailored for understanding and circumventing the two main pit-
falls in cancer therapy: resistance to drugs and toxicity to healthy tissue. The goal of our
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analysis was indeed twofold: check that our model can reproduce the possible deleterious
effect of chemotherapy when MTDs are used (the standard clinical strategy), and propose
alternative (optimised) infusion protocols.

Since MTD can first strongly reduce the size of the tumour which then starts growing again,
we addressed the first question through an asymptotic analysis of the model. This was
performed in Theorem 5.1, which showed that both populations converge, while the cells
concentrate on some phenotypes. The proof of convergence and concentration, presented
in Section 5.2, relies instead on a suitably defined Lyapunov function. Interestingly, the
approach could incorporate controls which are not only constant, but also asymptotically
constant.

The rest of the chapter was then devoted to addressing the second question, by considering
the optimal control problem (OCP1) of minimising the number of cancer cells on a given
time interval [0, T ], keeping the tumour size in check and limiting damage to the healthy
tissue. In Section 5.3, we gave several rigorous mathematical arguments to explain why,
when T is large, a good strategy is to first steer the cancer cell population on an appropriate
phenotype by first giving constant doses for a long time. These arguments justified a
restriction to a smaller class of controls for which we managed to identify an asymptotically
optimal strategy in large time, presented in Theorem 5.2.

In Section 5.4, we showed through numerical simulations that, when T increases, the
optimal solution is indeed increasingly close to a two-phase trajectory. The first very
long phase consists in giving low doses of drugs in order to let the cancer cell population
concentrate on a given sensitive phenotype. The doses are chosen as low as the constraint
on the relative tumour size allows it. Our results advocate for a first long phase which
must be all the more long for an initially heterogeneous tumour (with respect to resistance).
During the second phase, we numerically recover the expected trajectory, given by Theorem
5.2: high doses are given (MTD as long as the constraint on the healthy tissue does not
saturate) and the cancer cell population quickly decreases.

5.5.2 Possible generalisations

Other extensions than those already introduced in the general presentation of the thesis
(advection term, mutation term which will be considered in the next Chapter) are worth
mentioning. A possibility is a mixed deterministic/stochastic framework, namely using a
piecewise deterministic Markov process (PDMP [47], see [144] for the optimal control of
this class of equations). In these models, mutations are stochastic jumps between determin-
istic (and phenotypically reversible) models, each jump becoming less and less rare in the
course of phenotypic evolution in the deterministic processes. Furthermore, the probabil-
ity of jump would depend exclusively on (and as an increasing function of) the phenotype
structure variable, that would thus bear a quantitative meaning of malignancy, or pheno-
type plasticity entraining genetic instability (this last point is discussed with references
in [36]).
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A final extension would stem from the fact that tumours are also very heterogeneous
in space (for example, because cells at the outer rim and cells at the centre of a tumour
spheroid encompass very different metabolic conditions; more genenerally, high heterogene-
ity depending on space has been experimentally shown in solid tumours [62, 159], which
should lead to also structure the populations of cells according to an added space variable.
Another modelling advantage of such representation is that the interaction between the
tumour and the healthy tissue is itself spatial, since part of it essentially happens at the
boundary of the tumour, through direct contact. For possible cancer models taking both
phenotype and space into account, we refer to [83, 110, 118].

5.6 Appendix A: proofs for the simplified optimal control
problems

Proof of Lemma 5.2

Proof. Using the family uε defined in Remark 5.2, we obtain the corresponding ρε(T ),
which can be computed exactly, as well as its limit. It is given by

ρopt(T ) := ρopt(T
−) exp(−µu1,max)

where ρopt is the function obtained through d
dtρopt(t) = (r− dρopt(t))ρopt(t) for t < T , and

ρopt(0) = ρ0.
Now, let any u satisfy (5.12). The solution of (5.11) with u is thus a subsolution of that
satisfied by ρopt, leading to ρ 6 ρopt on [0, T ). Using u > 0, we also have

ρ(T ) > ρ0 exp
(∫ T

0
(r − dρ(s)) ds

)
exp(−µu1,max).

Since ρopt(T−) = ρ0 exp
(∫ T

0 (r − dρopt(s)) ds
)
and ρ 6 ρopt, this implies ρ(T ) > ρopt(T ).

Let us now investigate the possible case of equality to prove that the infimum is not
attained: the foregoing equality implies that there is equality if and only if

∫ T
0 u ds = u1,max

(the contraint is saturated) and

exp
(∫ T

0
(r − dρ(s)) ds

)
= exp

(∫ T

0
(r − dρopt(s)) ds

)
,

whence ρ ≡ ρopt on [0, T ). As ρ is continuous, ρ(T ) would be given by taking u ≡ 0, which
is not optimal.
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Proof of Lemma 5.3

Proof. To account for the L1 constraint (C1), we augment the system by defining another
state variable y, whose dynamics are given by dy

dt = u, leading to:

dρ

dt
= (r − dρ− µu)ρ,

dy

dt
= u,

ρ(0) = ρ0, y(0) = 0.

The constraint (C1) thus rewrites y(T ) 6 u1,max.

According to the Pontryagin maximum principle (see [136]), there exist absolutely contin-
uous adjoint variables pρ and py on [0, T ], and p0 6 0, such that:

dpρ
dt

= −∂H
∂ρ

= −(r − 2dρ− µu) pρ,
dpy
dt

= −∂H
∂y

= 0

where the Hamiltonian is

H(ρ, y, pρ, py, u) := pρ (r − dρ− µu) ρ+ pyu = (r − dρ) pρ + u (py − µpρρ) .

Thus, py is some constant, and pρ does not change sign on [0, T ].
The maximisation of the Hamiltonian leads to defining the switching function φ := py −
µpρρ. u is thus equal to u∞,max whenever φ > 0, equal to 0 whenever φ < 0.

The transversality condition is that the vector
(
pρ
py

)
(T ) −p0

(
1
0

)
must be orthogonal to

the tangent space of {(p, y) ∈ R2, y 6 u1,max} at the point (ρ(T ), y(T )).

First case.

If y(T ) < u1,max, then the transversality conditions imply pρ(T ) = p0 and py ≡ 0. p0 6= 0
since otherwise we would have (pρ, py, p

0) ≡ 0. Thus, in this case, pρ(T ) < 0 and pρ is
negative on the interval [0, T ]. The switching function φ is therefore positive on the whole
[0, T ], which would imply u ≡ u∞,max. This is a contradiction since a consequence is∫ T

0 u(s) ds = u∞,maxT > u1,max.

Second case.

If y(T ) = u1,max, we still have pρ(T ) = p0. As in the first case, we cannot have py = 0.
Let us first remark that φ cannot be positive nor negative on the whole interval, since
otherwise u ≡ u∞,max, a contradiction, or u ≡ 0, which is clearly not optimal. If p0 = 0,
pρ ≡ 0, so that φ has the sign of py 6= 0, a contradiction. Therefore, pρ < 0 on [0, T ] as
before, and this implies py < 0 to ensure that φ changes sign.

The derivative of φ is given by dφ
dt = −µdpρρ2 > 0. Thus, φ is increasing and u is bang-

bang with one switching only. The fact that y(T ) =
∫ T

0 u(s) ds = u1,max imposes that this
switching happens at T1(T ) as announced, which ends the proof.
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5.7 Appendix B: proof of Proposition 5.2

Proof. If the constraint (5.5) does not saturate on the whole [0, tf ], we distinguish on
whether the last arc is a free arc or a boundary arc on (5.6).

First case: the last arc is a boundary arc on (5.6), not reduced to a singleton.

In this case, tM = tf and there can be a jump on the adjoint vector at tf .

Let us start by proving the following:

Lemma 5.5. p0 < 0.

Proof. We argue by contradiction and assume p0 = 0. We first look at the interval
[tM−1, tf ], and assume, also by contradiction, that νM > 0. Then pH(t−f ) = −νM < 0,
hence p′C(t−f ) < 0, leading to pC > 0 in a right neighbourhood of tf . From assumption
(5.27), this means that ρC decreases locally around tf , a contradiction since tf is free (a
better strategy would be to stop before ρC starts increasing): νM = 0.

Now, let us prove that pH , pC and η1 vanish identically on [tM−1, tf ]. If we have pC(t0) > 0
(resp., pC(t0) < 0) for some t0 ∈ [tM−1, tf ), we define the maximal interval [t0, t

?) on which
pC > 0 (resp., pC < 0), with pC(t?) = 0. In this case, we know that the switching function
φ1 vanishes on [t0, t

?], hence pH factorises with pC . Coming back to the equation on pC , we
have p′C = βCpC on (t0, t

?), for some function βC . Since pC(t?) = 0, this imposes pC ≡ 0
on the interval, a contradiction. Thus pC is identically 0 on the whole (tM−1, tf ), and so
are pH (from the equation on pC) and η1 (from the equation on pH).

We now analyse the arc [tM−2, tM−1]. From the previous step, we know that φ1(tM−1) = 0.
If νM−1 > 0, then φ1(t−M−1) < φ1(tM−1) = 0, thus u1 = umax1 locally on the left of tM−1.
Similarly, maximising ψ(u2) imposes u2 = umax2 . Also, H (tM−1) = 0, and H

(
t−M−1

)
=

−νM−1RH
(
t−M−1

)
ρH(tM−1). By continuity of the Hamiltonian, we get RH

(
t−M−1

)
= 0.

At the left of tM−1, u1 and u2 saturate at their maximal values. At the right of tM−1,
RH = 0 but this imposes u1 < umax1 or u2 < umax2 since, owing to (5.15), ρH decreases for
the maximal values. Thus, 0 = RH

(
t−M−1

)
< RH(tM−1) = 0, a contradiction. Finally, we

have proved νM−1 = 0.

Standard Cauchy-Lispchitz arguments, together with the result pH(t−M−1) = pC(t−M−1) = 0
yield that pH and pC are also identically null on the interval [tM−2, tM−1]. Repeating these
arguments on the whole [0, tf ], we find that p, p0, η1, η2 and the (νi)i=1,...,M are all zero,
in contradiction with condition 1 given by the PMP (see Section 5.3).

Thus p0 < 0 and we set p0 = −1. This normalisation is allowed because the final adjoint
vector (p(tf ), p0) is defined up to scaling. Again, we start by analysing the PMP on
[tM−1, tf ]. From pC(tf ) < 0, we know that u2 = umax2 and φ1 = 0 locally around tf . This
implies pH > 0 also locally around tf . In particular, νM = 0. Using the same reasoning as
before with p′C = βCpC , we get this time that pC and pH have constant sign on (tM−1, tf ):
pC < 0 and pH > 0.
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Let us now first assume νM−1 > 0. Then φ1(t−M−1) < 0, leading to u1 = umax1 close to
tM−1. If νM−1 is such that pH

(
t−M−1

)
6 0, then clearly the maximisation of ψ(u2) leads

to u2 = umax2 . At tM−1, we would thus have continuity of u2 and not u1 since u1 < umax1

on [tM−1, tf ] from assumption (5.26). In such a case, it holds true that there can be no
jump on the adjoint vector (see for instance [18]), which is contradictory unless νM−1 is
such that pH

(
t−M−1

)
> 0, which we assume from now on.

Let us now analyse the interval [tM−2, tM−1], on which we will prove that u1 = umax1 ,
u2 = umax2 . Because η1 and η2 vanish on such an interval, it is easy to prove from standard
Cauchy-Lipschitz uniqueness arguments that pC < 0 and pH > 0 on [tM−2, tM−1]. Also,
because of (5.22) the inequality

ρC
ρH

<
µH
µC

µCaHHdH − µHaCHdC
µHaCCdC − µCaHCdH

(5.29)

is satisfied on [0, tf ]. Let us prove that this implies φ1 < 0 on (tM−2, tM−1). For that
purpose, we will prove that whenever φ1(t0) = 0, its derivative satisfies φ′1(t0) > 0. Note
that we already know that φ1(t−M−1) 6 φ1(tM−1) = 0. For such a time t0 we indeed obtain

φ′1(t0) = −(pCρC) (t0)

µH

[
µH
(
µCaHHdH − µHaCHdC

)
ρH(t0)

− µC
(
µHaCCdC − µCaHCdH

)
ρC(t0)

]
.

Combined with (5.29), this yields φ′1(t0) > 0, as announced. Thus u1 = umax1 on the whole
[tM−2, tM−1].

For u2, the proof is a bit more involved because the dependence is not linear. In what
follows, we generically denote φ(λH , λC) = λHpHρH+λCpCρC for positive constants λH , λC .
With this notation the previous established result writes φ(µH , µC) < 0 on (tM−2, tM−1).

We need to maximise ψ(u2) = rHpHρH
1+αHu2

+ rCpCρC
1+αCu2

as a function of u2, whose derivative has
the opposite sign of P (u2), where

P (u) := αHαCφ(αCrH , αHrC) u
2 + 2(αHαC)φ(rH , rC) u+ φ(αHrH , αCrC),

which has discriminant ∆ = −αHαCrHpHρHrCpCρC(αC − αH)2 > 0 on (0, tf ). We
consider two cases, depending on the sign of φ(αCrH , αHrC). Note that (5.2) implies the order
φ(αHrH , αCrC) < φ(rH , rC) < φ(αCrH , αHrC). From (5.24) and φ1 < 0, P (0) = φ(αHrH , αCrC) <
0.

Let us first assume φ(αCrH , αHrC) < 0, in which case all the coefficients of the polynomial
are negative. Let us denote u+ the greater root of this polynomial. Since the coefficient in
front of u2 is negative, the function ψ is increasing with u2 on (u+,+∞). We cannot have
u+ > 0 because of the signs of the coefficients: umax2 maximises the function of interest. If
φ(αCrH , αHrC) = 0, it is easy to see that the same result holds.

Now, let us assume that φ(αCrH , αHrC) > 0. Because P (0) < 0, P (umax2 ) < 0 is a sufficient
condition for umax2 to maximise ψ(u2). For any λH > 0, λC > 0, φ1 < 0 leads to φ(λH , λC) <
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(λHµC − λCµH)pHρHµC
. Applying this to P (umax2 ), we find

P (umax2 ) <
pHρH
µC

(
αHαC(αCrHµC − αHrCµH) (umax2 )2

+2(αHαC)(rHµC − rCµH)umax2 +(αHrHµC − αCrCµH)
)
.

We conclude that P (umax2 ) < 0 thanks to (5.25).

Thus, we have proved that, on (tM−2, tM−1), u1 = umax1 and u2 = umax2 . Note that the
result actually implies νM−1 = 0. However the same reasoning with νM−1 = 0 works and
we obtain u1 = umax1 and u2 = umax2 . From assumption (5.15), ρC

ρH
increases backwards.

If this ratio reaches the value γ, i.e., if the system saturates the constraint (5.5) (if not,
tM−2 = 0), then we have a potential boundary arc on (5.5) on (tM−3, tM−2).

Second case: the last arc is a boundary arc on (5.6), reduced to a singleton.

Note that, again, tM = tf . This case is handled as the previous one: p0 cannot be 0 and
φ1(t−f ) 6 0. Because of this result, the whole reasoning made above in the previous case
applies: there is an unconstrained arc with u1 = umax1 and umax2 . If there is a previous arc,
it is a constrained arc on (5.5).

Third case: the last arc is a free arc.

Again, the same kind of arguments are enough to prove that p0 < 0, and u1 = umax1 and
umax2 on this arc. If there is a previous arc, it is a constrained arc on (5.5).
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Chapter 6

A homotopy strategy in numerical
optimal control, application to

(OCP1).

The goal of this Chapter is to provide a suitable approach for the numeri-
cal solution for the full optimal control problem (OCP1). With A. Olivier,
we develop a general method in numerical optimal control, relying on direct
methods but consisting in working first at the continuous level. The idea is
to simplify the problem by setting appropriate parameters to 0, in order for
a PMP to yield precise information. At the discrete level, this provides us
with a suitable starting point for a homotopy. When applied to the problem
(OCP1), this technique allows to discretise the equations much more finely,
and to check that our results in the integro-differential case are robust to the
addition of modelling genetic instability. This work has led to the submit-
ted article Combination of direct methods and homotopy in numerical optimal
control: application to the optimisation of chemotherapy in cancer [124].

6.1 Introduction

The motivation for this work is the article [139], namely the previous Chapter 5. In this
work, the numerical resolution of the optimal control problem was made through a direct
method, thanks to a discretisation both in time and in the phenotypic variable. It led to
a complex nonlinear constrained optimisation problem, for which even efficient algorithms
will fail for large discretisation parameters because they require a good initial guess. To
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overcome this, the idea was to perform (with AMPL and IpOpt, see below) a continuation
on the discretisation parameters, starting from low values (i.e., a coarse discretisation) for
which the optimisation algorithm converges regardless of the starting point.

A clear optimal strategy emerged from these numerical simulations when the final time
was increased. It roughly consists of first using as few drugs as possible during a long
first phase to avoid the emergence of resistance. Cancer cells would hence concentrate
on a sensitive phenotype, allowing for an efficient short second phase with the maximum
tolerated doses.

The model of the previous chapter did not include any genetic instability, having in mind
that epimutations which are believed to be very frequent in the life-time of a tumor. Our
aim here is to numerically address the optimal control problem with the mutations modeled
through diffusion operators, i.e., the full problem (OCP1) with βH , βC > 0.

However, the previous numerical technique already failed (even without Laplacians) to get
fine discretisations when the final time is very large: the optimisation stops converging
when the discretisation parameters are large. The values reached for the discretisation in
time were enough to observe the optimal structure, in particular all the arcs that were
expected for theoretical reasons.

The addition of Laplacians significantly increases the run-time and again fails to work once
the discretisation parameters are too large when the final time itself is large, and some arcs
become difficult to observe. We thus have to find an alternative method to see whether
the optimal strategy found in Chapter 5 is robust with respect to adding the effect of
mutations.

This chapter is devoted to the presentation of a method which, up to our knowledge, is new.
In our case, it provides a significant improvement in run-time and precision, and shows
that the optimal strategy keeps an analogous structure when mutations are considered.
The method relies on the two following steps:

• first, simplify the optimal control problem up to a point where we can show that,
thanks to a Pontryagin Maximum Principle (PMP) in infinite dimension, the optimal
controls are bang-bang and thus can be reduced to their switching times, which are
very easy to estimate numerically. This is equivalent to setting several coefficients to
0 in the model.

• second, perform a continuation on these parameters on the optimisation problems
obtained with a direct method, starting from the simplified problem all the way back
to the full optimal control problem.

It allows us to start the homotopy method on this simplified optimisation problem with
an already fine discretisation, actually much finer than the maximal values which could be
obtained with the previous homotopy method.

Numerical optimal control and novelty of the approach. Discretising the time
variable, control and state variables to approximate a control problem for an ODE (which
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is an optimisation problem in infinite dimension) by a finite-dimensional optimisation prob-
lem has now become the most standard way of proceeding. These so-called direct methods
thus lead to using efficient optimisation algorithms, for example through the combination
of automatic differentiation softwares (such as the modelling language AMPL, see [60])
and expert optimisation routines (such as the open-source package IpOpt, see [173]).

Another approach is to use indirect methods, where the whole process relies on a PMP,
leading to a shooting problem on the adjoint vector. Numerically, one thus needs to find the
zeros of an appropriate function, which is usually done through a Newton-like algorithm.
For a comparison of the advantages and drawbacks of direct and indirect methods, we refer
to the survey [167].

For both direct and indirect methods, the numerical problem shares at least the difficulty of
finding an initial guess leading to convergence of the optimisation algorithm or the Newton
algorithm, respectively (it is well known that Newton algorithms can have a very small
domain of convergence). To tackle this issue in the case of indirect methods, it is very
standard to use homotopy techniques, for instance to simplify the problem so that one
can have a good idea for a starting point as in [33, 39], or to change the cost in order to
benefit from convexity properties, as in [61, 26]. Besides, when studying optimal control
problem for ODE systems, a common approach is to use of so-called hybrid methods, in
order to take advantage from the better convergence properties of the direct method and
the high accuracy provided by the indirect method. We refer to [167, 23, 131, 172] for
further developments on this subject.

We have found the combination of direct methods and continuation (such as the one done in
Chapter 5) to be much less common in the literature, see however [23]. For a mathematical
investigation of why continuation methods are mathematically valid, see [167].

It is however believed that direct methods typically lead to optimisation problems with
several local minima [167], as it could happen for the starting problem (with low discreti-
sation), which has yet no biological meaning. This implies one important drawback of
a continuation on discretisation parameters with direct methods: although the algorithm
will quickly converge in such cases, one cannot a priori exclude that one will get trapped
in local minima that are meaningless, with the possibility for such trapping to propagate
through the homotopy procedure.

Our approach of simplifying the optimal control problem so that it can be analyzed with
theoretical tools such as a PMP is a way to address the previous problem and to decrease
the computation time. The simplified optimal control problem, once approximated by
a direct method, will indeed efficiently be solved even with a very refined discretisation.
Therefore, another original aspect of our work, due to the complex PDE structure of the
model, is the use of the PMP in view of building an initial guess for the direct method, in
contrast with the hybrid approach we described for ODE systems, where direct methods
serve to initialise shooting problems.

More generally, we advocate for the strategy of trying to simplify the problem, testing
whether a PMP can provide a good characterisation of the optimal controls. Then con-
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tinuation with direct methods are performed to get back to the original and more difficult
one. We believe that this can always be tried as a possible strategy to solve any optimal
control problem (ODE or PDE) numerically.

Recalling the optimal control problem. The system of equations describing the
time-evolution of the density of healthy cells nH(t, x) and cancer cells nC(t, x) is given by

∂nH
∂t

(t, x) =

[
rH(x)

1 + αHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

]
nH(t, x) + βH∆nH(t, x),

∂nC
∂t

(t, x) =

[
rC(x)

1 + αCu2(t)
− dC(x)IC(t)− u1(t)µC(x)

]
nC(t, x) + βC∆nC(t, x),

starting from an initial condition (n0
H , n

0
C) in C([0, 1])2, with Neumann boundary condi-

tions in x = 0 and x = 1.

Finally, for a fixed final time T we consider the optimal control problem (OCP1) of
minimising the number of cancer cells at the end of the time-frame

inf ρC(T )

as a function of the L∞ controls u1, u2 subject to L∞ constraints for the controls and two
state constraints on (ρH , ρC), for all 0 6 t 6 T :

• The maximum tolerated doses cannot be exceeded:

0 6 u1(t) 6 umax1 , 0 6 u2(t) 6 umax2 .

• The tumor cannot be too big compared to the healthy tissue:

ρH(t)

ρH(t) + ρC(t)
> θHC , (6.1)

with 0 < θHC < 1.

• Toxic side-effects must remain controlled:

ρH(t) > θHρH(0), (6.2)

with 0 < θH < 1.
Remark 6.1. In practice, other objective functions can be deemed pertinent. For example,
if there is no hope of actually getting rid of the tumour, the goal might be to try and control
its size on the whole interval. Thus, we will also consider objective functions of the form
of convex combinations

λ0

∫ T

0
ρC(s) ds+ (1− λ0)ρC(T ),

where 0 6 λ0 6 1. For λ0 = 0, we recover the previous objective function, while for λ1 = 1
only the L1 norm of ρC is considered.
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Outline of the chapter. The chapter is organised as follows. Section 6.2 presents the
simplified optimal control problem together with the application of a Pontryagin Maximum
Principle in infinite dimension which almost completely determines the optimal controls.
In Section 6.3, we thoroughly explain how direct methods for the optimal control of PDEs
and continuations can be combined to solve a given PDE optimal control problem. These
techniques and the result of Section 6.2 are then used to build an algorithm solving the
complete optimal control problem. In Section 6.4 the numerical simulations obtained
thanks to the algorithm are presented.

6.2 Resolution of a Simplified Model

6.2.1 Simplified Model for one Population with no State Constraints

We here introduce the simpler optimal control problem. Its precise link with the initial
optimal control (OCP1) will be explained in Section 6.3. It is based on the equation

∂nC
∂t

(t, x) =

[
rC(x)

1 + αCu2(t)
− dC(x)ρC(t)− µC(x)u1(t)

]
nC(t, x), (6.3)

starting from n0
C , where ρC(t) =

∫ 1
0 nC(t, x) dx. We denote by (OCP0) the optimal control

problem
inf

(u1,u2)∈U
ρC(T )

where U is the space of admissible controls

U := {(u1, u2) ∈ L∞([0, T ], IR) such that 0 6 u1 6 umax1 , 0 6 u2 6 umax2 , a.e. on [0, T ]} .

6.2.2 A Maximum Principle in Infinite Dimension

General statement. Let T be a fixed final time, X be a Banach space and n0 ∈ X, U
be a separable metric space. We also consider two mappings f : [0, T ]×X × U → X and
f0 : [0, T ]×X × U → IR.

We consider the optimal control problem of minimising an integral cost, with a free final
state n(T ):

inf
u∈U

J(u(·)) :=

∫ T

0
f0(t, n(t), u(t)) dt,

where y(·) is the solution3 of

ṅ(t) = f(t, n(t), u(t)), n(0) = n0.

3Note that the evolution equation has to be understood in the mild sense

n(t) = n0 +

∫ t

0

f(s, n(s), u(s)) ds.
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In [102, Chapter 4], necessary conditions for optimality are presented, for such problems
(they are actually presented in [102] in a more general setting, but for the sake of simplicity,
we restrict ourselves to the material required to solve (OCP0)). The set of these conditions
is referred to as a Pontryagin Maximum Principle (PMP).

Under appropriate regularity assumptions on f and f0, it states that any optimal pair
(n(·), u(·)) must be such that there exists a nontrivial pair (p0, p(·)) ∈ IR × C([0, T ], X)
satisfying

p0 6 0, (6.4)

ṗ(t) = −∂H
∂n

(t, n(t), u(t), p0, p(t)), (6.5)

H(t, n(t), u(t), p0, p(t)) = max
v∈U

H(t, n(t), v, p0, p(t)), (6.6)

where the hamiltonian H is defined as H(t, n, u, p, p0) := p0f0(t, n, u) + 〈p, f(t, n, u)〉.
Remark 6.2. If the final state is free, (6.4) can be improved to p0 < 04 and we have the
additional transversality condition:

p(T ) = 0. (6.7)

Besides, if the final state were fixed, there would be additional assumptions to check in
order to apply the PMP, assumptions that are automatically fulfilled whenever n(T ) is
free. We refer to [102, Chapter 4 - Section 5] for more details on this issue.

Application to the problem (OCP0). By applying the PMP, we derive the following
theorem on the optimal control structure.
Theorem 6.1. Let (nC(·), u(·)) be an optimal solution for (OCP0). There exists t1 ∈
[0, T [ and t2 ∈ [0, T [ such that

u1(t) = umax1 1[t1,T ], u2(t) = umax2 1[t2,T ].

Proof. Let us define U := {u = (u1, u2) such that 0 6 u1 6 umax1 , 0 6 u2 6 umax2 }. Given
a function u ∈ L∞([0, T ], U), the associated solution of the equation (6.3) belongs to
C([0, T ], C(0, 1)), which can be seen as a subset of C([0, T ], L2(0, 1)). We define X =
L2(0, 1).

First, we notice that minimising the cost ρC(T ) is equivalent to minimising the cost ρC(T )−
ρC(0) (as the initial number of cells is prescribed), and it can be written under the integral
form:

ρC(T )− ρC(0) =

∫ T

0
ρ′C(t) dt

=

∫ T

0

∫ 1

0
∂tnC(t, x) dx dt

=

∫ T

0

∫ 1

0

[
rC(x)

1 + αCu2(t)
− dC(x)ρC(t)− µC(x)u1(t)

]
nC(t, x) dx dt

4An extremal in the PMP is said to be normal (resp. abnormal) whenever p0 6= 0 (resp. p0 = 0). Here,
it means that there is no abnormal extremal.
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Thus, in view of applying the PMP, we define the function f0 : X × U → IR by

f0(n, u1, u2) :=

∫ 1

0

[
rC(x)

1 + αCu2
− dC(x)ρ− µC(x)u1

]
n(x) dx,

where ρ :=
∫ 1

0 n, and the hamiltonian is then defined by

H(n, u1, u2, p, p
0) := p0f0(n, u1, u2)

+

∫ 1

0
p(x)

[
rC(x)

1 + αCu2
− dC(x)ρ− µC(x)u1

]
n(x) dx.

Since (nC(·), u(·)) is optimal, there exists a non trivial pair (p0, p(·)) ∈ IR × C([0, T ], X),
such that the adjoint equation (6.5) writes:

∂p

∂t
(t, x) = −

[
rC(x)

1 + αCu2(t)
− dC(x)ρ− µC(x)u1(t)

] (
p(t, x) + p0

)

+

∫ 1

0
d(x)n(t, x)

(
p(t, x) + p0

)
dx.

Owing to Remark 6.2, we know that p0 < 0.

Let us set p̃ := p+ p0, which satisfies

∂p̃

∂t
(t, x) = −

[
rC(x)

1 + αCu2(t)
− dC(x)ρ− µC(x)u1(t)

]
p̃(t, x) +

∫ 1

0
d(x)n(t, x)p̃(t, x) dx.

The transversality equation (6.7) yields p(T, ·) = 0, i.e., p̃(T ) = p0.

Then, in order to exploit the maximisation condition (6.6), we split the hamiltonian as

H(t, nC(t), u1(t), u2(t), p(t), p0) = −
(∫ 1

0
p(t, x)dC(x)nC(t, x) dx

)
ρ(t)

− u1(t)φ1(t) +
φ2(t)

1 + αCu2(t)
,

where the two switching functions are defined by

φ1(t) :=

∫ 1

0
µC(x)nC(t, x)p̃(t, x) dx, φ2(t) :=

∫ 1

0
rC(x)nC(t, x)p̃(t, x) dx.

Thus, we derive the following rule to compute the controls:

• If φ1(t) > 0 (resp. φ2(t) > 0), then u1(t) = 0 (resp. u2(t) = 0).

• If φ1(t) < 0 (resp. φ2(t) < 0), then u1(t) = umax1 (resp. u2(t) = umax2 ).
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We compute the derivative of the switching function:

φ′1(t) =

∫ 1

0
µC(x) (∂tnC(t, x)p̃(t, x) + nC(t, x)∂tp̃(t, x)) dx

=

(∫ 1

0
µC(x)nC(t, x) dx

)(∫ 1

0
dC(x)nC(t, x)p̃(t, x) dx

)
.

We know that
∫ 1

0 µC(x)nC(t, x) dx > 0, so that the sign of φ′1(t) is given by the sign of
∫ 1

0
dC(x)nC(t, x)p̃(t, x) dx.

Let us set ψ1(t) :=
∫ 1

0 dC(x)nC(t, x)p̃(t, x) dx. The same computation as before yields

ψ′1(t) =

(∫ 1

0
dC(x)nC(t, x) dx

)
ψ1(t).

Therefore, the sign of ψ1(t) is constant, given by the sign of

ψ1(T ) =

∫ 1

0
dC(x)nC(T, x)p̃(T, x) dx =

∫ 1

0
dC(x)nC(T, x)p0 dx < 0

since p0 < 0. This implies that the function φ1 is decreasing on [0, T ]. Since at the final
time, φ1(T ) < 0, we deduce the existence of a time t1 ∈ [0, T ) such that φ1(t) > 0 on
[0, t1], and φ1(t) < 0 on [t1, T ]. The same computation yields the same result for φ2, for
some time t2 ∈ [0, T ].

6.3 The Continuation Procedure

6.3.1 General Principle

We here recall the principle of direct methods and of continuations for optimisation prob-
lems. Together with Theorem 6.1, we then derive an algorithm to solve the problem
(OCP1).

On direct methods for PDEs. Let us give an informal presentation of the principle of
a direct method for the resolution of the optimal control of a PDE. Assume that we have
some evolution equation written in a general form on [0, T ]× [0, 1] as

∂n

∂t
(t, x) = f(t, n(t), u(t)) +An(t, x), n(0) = n0,

where T is a fixed time, A is some operator on the state space, f some function which
might depend non-locally on n, u a scalar control, t ∈ [0, T ], and x ∈ [0, 1] is the space
or phenotype variable. The possible boundary conditions are contained in the operator A,
which in our case will be the Neumann Laplacian.
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Consider the optimal control problem

inf
u∈U

g(n(T )),

where T is fixed, as a function of u ∈ U := {u ∈ L∞([0, T ], IR), 0 6 u(t) 6 umax on [0, T ]}.

Further assume that we have discretised this PDE both in time and space through uniform
meshes 0 < t0 < t1 < . . . < tNt := T , 0 =: x0 < x1 < . . . < xNx := 1, and that we are given
some discretisations of the operator A (resp. the function f , g) denoted by Ah (resp. fh,
gh), where h := 1

Nx
. With a Euler scheme in time, if one writes formally n(ti, xj) ≈ ni,j ,

u(ti) ≈ ui and ni := (ni,j)06j6Nx , we are faced with the optimisation problem

inf
ui, 06i6Nt

gh (nNt) ,

subject to the constraints

ni+1,j = ni,j + hfh,j(ti, ni,j , ui) + hAh(ni), ni,0 = n0(xi), 0 6 ui 6 umax

for all 0 6 i 6 Nt, 0 6 j 6 Nx. Note that fh,j(ti, ni,j , ui) stands for the function
fh(ti, ni,j , ui) evaluated at xj .

On continuation methods for optimisation problems. The optimal control
problem of a PDE becomes a finite-dimensional optimisation problem once approximated
through a direct method, such as the one presented above. Let us denote P1 this prob-
lem. As already mentioned in the introduction, the numerical resolution of such a problem
requires a good initial guess for the optimal solution. The idea of a continuation is to
deform the problem to an easier problem P0 for which we either have a very good a priori
knowledge of the optimal solution, or expect the problem to be solved efficiently.

One then progressively transforms the problem back to the original one thanks to a contin-
uation parameter λ, thus passing through a series of optimisation problems (Pλ). At each
step of the procedure, the optimisation problem Pλ+dλ is solved by taking the solution to
Pλ as an initial guess.

6.3.2 From (OCP1) to (OCP0)

Let us consider (OCP1) and formally set the following coefficients to 0:

βH , βC , aCH , θH , θHC .

Note that by setting βH and βC to 0, we also imply that the Neumann boundary conditions
are no longer enforced.

When doing so, the equations on nC and nH are no longer coupled since the constraints do
not play any role and the interaction itself (through aCH) is switched off. Consequently,
the optimal control problem with all these coefficients set to 0 is precisely (OCP0).
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We now define a family of optimal controls (OCPλ) where λ ∈ R4 has each of its com-
ponents between 0 and 1. It is a vector because several consecutive continuations will be
performed (in an order to be chosen) on the different parameters. For λ = (λi)16i64, we
use the subscript λ for the parameters associated to the optimal control problem (OCPλ),
and they are defined by:

β
(λ)
H := λ1βH , β

(λ)
C := λ1βC , a

(λ)
CH := λ2aCH , θ

(λ)
CH := λ3θCH , θ

(λ)
H := λ4θH .

In other words, λ1, λ2, λ3 and λ4 stand for the continuations on the mutations rates, the
interaction coefficient aCH , the constraint (6.1) and the constraint (6.2), respectively.

6.3.3 General Algorithm

Let us now explain the general approach based on the previous considerations.

Final objective and discretisation. Our final aim is to solve (OCP1) numerically,
with T large, and a very fine discretisation in time (Nt is taken to be large): T , Nt and
Nx are thus fixed to certain given values. To do so, we will solve successively several
problems (OCPλ) with the same discretisation paremeters. Following the general method
introduced about direct methods for PDEs, numerically solving an intermediate optimal
control problem (OCPλ) for a given λ will mean solving the resulting optimisation problem.
To be more specific, we briefly explain below how the different terms are discretised. Recall
that our discretisation is uniform both in time t and in phenotype x, with respectively Nt

and Nx points.

• The non-local terms ρH , ρC are discretised with the rectangle method:

ρ(ti) =

∫ 1

0
n(ti, x) dx ≈ 1

Nx

Nx−1∑

j=0

ni,j .

• The Neumann Laplacian is discretised by its classical discrete explicit counterpart:

∆n(ti, xj) ≈
ni,j+1 − 2ni,j + ni,j−1

(∆x)2
.

We manage to take Nt large enough to make sure that the CFL

βCT
(Nx)2

Nt
<

1

2
,

is verified. Using an implicit discretisation could allow us to get rid of the CFL
condition but an implicit scheme happens to be more time-consuming. Therefore,
we preferred using an explicit discretisation, as our procedure enables us to discretise
the equations finely enough to satisfy the CFL.

• The selection term (whose sign can be both positive or negative) is discretised through
an implicit-explicit scheme to ensure unconditional stability.
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Sketch of the algorithm.

Step 1. We start the continuation by solving (OCP0). Thanks to the result 6.1, finding
the minimiser of the end-point mapping (u1, u2) 7−→ ρC(T ) is equivalent to finding the
minimiser of the application (t1, t2) 7−→ ρC(T ) where t1 (resp. t2) are the switching times
of u1 (resp. u2) from 0 to umax1 (resp. umax2 ), as introduced in Theorem 6.1.

Numerically, we can use an arbitrarily refined discretisation of (OCP0), since the resulting
optimisation problem has to be made on a R2-valued function, which leads to a quick and
efficient resolution.

Step 2. Once (OCP0) has been solved numerically, we get an excellent initial guess to start
performing the continuation on the parameter λ. Its different components will successively
be brought from 0 to 1, either directly or, when needed, through a proper discretisation of
the interval [0, 1]. The order in which the successive coefficients are brought to their actual
values is chosen so as to reduce the run-time of the algorithm. The precise order and way
in which the continuation has been carried out are detailed together with the numerical
results in Section 6.3.

Let us make a few remarks on possible further continuations:

• Since the goal is to take large values for T , one might think of performing a contin-
uation on the final time. We again emphasise that the interest and coherence of the
method requires to start with a fine discretisation at Step 1, but we note that it is
also possible to further refine the discretisation after Step 2.

• Finally, it is also possible to consider the cost as introduced in Remark 6.1, which
can be done through a continuation on the parameter λ0.

6.4 Numerical Results

Let us now apply the algorithm with AMPL and IpOpT.

For our numerical experiments, we will use the following values, taken from [109]:

rC(x) =
3

1 + x2
, rH(x) =

1.5

1 + x2
,

dC(x) =
1

2
(1− 0.3x), dH(x) =

1

2
(1− 0.1x),

aHH = 1, aCC = 1, aHC = 0.07, acH = 0.01

αH = 0.01, αC = 1,

µH =
0.2

0.72 + x2
, µC = max

(
0.9

0.72 + 0.6x2
− 1, 0

)
,

umax1 = 2, umax2 = 5.
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Also, we consider the initial data:

nH(0, x) = KH,0 exp

(
−(x− 0.5)2

ε

)
, nC(0, x) = KC,0 exp

(
−(x− 0.5)2

ε

)
,

with ε = 0.1 and KH,0 and KC,0 are chosen such that:

ρH(0) = 2.7, ρC(0) = 0.5.

The rest of the parameters (namely βH , βC , θH and θHC) will depend on the case we
consider, and we will specify them in what follows.
Remark 6.3. Note that we have taken umax1 and umax2 to be slightly below their values
chosen in Chapter 5 (which makes the problem harder from the applicative point of view).
This is because we are here able to let T take larger values, for which the final cost obtained
with the optimal strategy ρC(T ) becomes too small, see below for the related numerical
difficulties.

As for the mutations rates, we have proceeded as follows: we have simulated the effect of
constant doses and observed the long-time behaviour. In the case βH = βC = 0, we know
from the previous chapter that both cell densities must converge to Dirac masses. With
mutations, we expect some Gaussian-like approximation of these Diracs, the variance of
which was our criterion to select a suitable mutation rate in terms of modelling. It must
be large enough to observe a real variability due to the mutations, but small enough to
avoid seeing no selection effects (diffusion dominates and the steady state looks almost
constant).

Test case 1: T = 60. We set the parameters for the diffusion to βH = 0.001 and
βC = 0.0001. The coefficients for the constraints are θHC = 0.4 and θH = 0.6. For such
numerical values, the optimal cost satisfies ρC(T ) << 1, which can be source of numerical
difficulties. To overcome this, we introduce the following trick: let us define umax,01 = 1

and umax,02 = 4. We apply the procedure described in Section 6.2 with the values umax,01

and umax,02 . We then add another continuation step by raising them to the original desired
values umax1 = 2 and umax2 = 5. In the formalism previously introduced, it amounts to
adding two continuation parameters λ5 and λ6 to the vector λ = (λi)16i64. The parameters
associated to the optimal control problem (OCPλ) are then defined as:

u
max,(λ)
1 := (1− λ5)umax,01 + λ5u

max
1 , u

max,(λ)
2 := (1− λ6)umax,02 + λ6u

max
2 .

More precisely, we perform the continuation in the following way, summarised in Figure 6.1:

• First, we solve (OCP0), with umax,01 = 1 and umax,02 = 4.

• Second, we add the interaction between the two populations, the diffusion parame-
ters, and the constraint on the number of healthy cells. That is, the parameters aCH ,
βH , βC and θH are set to their values.

• Then, we add the constraint measuring the ratio between the number of healthy cells
and the total number of cells, that is θHC .
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• Lastly, we raise the maximum values for the controls from umax,0i to umaxi (i ∈ {1, 2}),
and we solve (OCP1) for T = 60.

(OCP0)

aCH = 0.01
βC = 10−3

βH = 10−3

θH = 0.6

θHC = 0.4

umax
1 = 2
umax
2 = 5
(OCP1)

Figure 6.1: Continuation procedure to solve (OCP1) for T = 60.

Actually, for this set of parameters, only four consecutive resolutions are required to solve
(OCP1) starting from (OCP0). That is, the components of the continuation vector λ =
(λi)16i66 are brought directly from 0 to 1, taking no intermediate value, in the order
schematised on Figure 6.1. We will study further in the chapter a case for a larger final
time, for which having a more refined discretisation is mandatory.

On Figure 6.2, we plot the optimal controls u1 and u2 at the four steps of the continuation
procedure. We also display the evolution of the constraint on the size of the tumor com-
pared to the healthy tissue (6.1). We can clearly identify the emergence of the expected
structure for the controls, namely a long phase along which the constraint (6.1) saturates,
followed by a bang arc with u1 = umax1 and u2 = umax2 , and a last boundary arc along
which the constraint (6.2) saturates. Throughout this section, we will use a red solid line
in our figures for (OCP1), a green solid line for (OCP0) and a dotted style for anything
refering to (OCPλ).
Remark 6.4. We would like to emphasise here that our procedure enables us to use a
much more refined discretisation of the problem than what was done in Chapter 5. More
precisely, we discretise with Nt = 500 and Nx = 20 points in our direct method. For such
a discretisation, directly tackling (OCP1) with the direct method fails.
Remark 6.5. Note that the constraint ρH/ρH(0) > 0.6 does not saturate until the last
step of the continuation, when raising the maximal value of the controls. Therefore, when
we add it at the beginning of the procedure, it is not actually active.

Test case 2: T = 80. Whereas one could believe that raising the final time from T = 60
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Figure 6.2: Intermediate steps of the continuation procedure for the test case 1.

to T = 80 does not much increase the difficulty of the problem, we noticed that several
numerical obstacles appeared. In the following, we consider a discretisation with Nt = 250
and Nx = 12 points, in order to keep the optimisation run-time reasonable. Besides, in
order to test the robustness of our procedure, we consider a more restrictive constraint on
the number of healthy cells: we choose θH = 0.75 (0.6 in the first example).

First, we use the same numerical trick as explained in our first example, reducing the
maximal value for the controls to umax,01 = 0.7 and umax,02 = 3.5. For given values of umax1

and umax2 , the optimal cost ρC(T ) decreases when T increases. This is why we now use
smaller values of umax,01 and umax,02 , compared to the first example where we set them to
respectively 1 and 4.

We performed the continuation in the following way, summarised in Figure 6.3:

• First, we solve (OCP0), with umax,01 = 0.7 and umax,02 = 3.5.

• Second, we add the interaction between the two populations (via the parameter aCH),
and the constraint measuring the ratio between the number of healthy cells and the
total number of cells (6.1) is introduced at the intermediate value θ(λ)

HC = 0.3.
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(OCP0)
aCH = 0.01
θHC = 0.3

θHC = 0.4

umax
1 = 2
umax
2 = 5

θH = 0.75

(OCP1)
βH = 10−3

βC = 10−4

Figure 6.3: Continuation procedure to solve (OCP1) for T = 80.

• We then raise it to its final value of θHC = 0.4.

• As a fourth step, we simultaneously add the constraint (6.2) on the healthy cells and
raise the maximal values for the controls from umax,0i to umaxi (i ∈ {1, 2}).

• Lastly, we add diffusion to the model, via the parameters βH and βC , and we solve
(OCP1) for T = 80.

At this point, we need to make two important remarks concerning this continuation pro-
cedure.

Remark 6.6. The order in which we make the components of the continuation vector λ =
(λi)16i66 vary from 0 to 1 is different from the order we presented for T = 60. For instance,
we noticed that the diffusion makes the problem significantly harder to solve, although the
Laplacians where discretised using the simplest explicit finite-difference approximation.
Therefore, we only added it at the last step of the continuation.

Remark 6.7. Whereas for T = 60, raising the (λi)16i66 directly from 0 to 1 was enough
to solve (OCP1), it became necessary to use a more refined discretisation for T = 80.
This fact justifies the principle of our continuation procedure, as each step is necessary to
solve the next one, and thus (OCP1) in the end. For instance, on Figure 6.4, we display
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Figure 6.4: Evolution of the constraint (6.1) during continuation.

the evolution of the constraint (6.1):

ρH(t)

ρC(t) + ρH(t)
> λ3θHC

when raising the continuation parameter λ3 from 0 to 1. On Figure 6.5, we display
the evolution of the controls u1 and u2 when raising their maximal allowed values from
(umax,01 , umax,02 ) to (umax1 , umax2 ). For the sake of readability, we do not show all the steps
of the continuation, but only some of them. It clearly shows how the structure of the
optimal solution evolves from the simple one of (OCP0) to the much more complex one
of (OCP1).

Finally, we display on Figure 6.6 the evolution of nC , when applying the optimal strategy
we found solving (OCP1). In black we represent the initial condition nC(0, ·), and with
lighter shades of red, the evolution of nC(t, x) as time increases.

One clearly sees that the optimal strategy has remained the same: the cancer cell popula-
tion concentrates on a sensitive phenotype, which is the key idea to then use the maximal
tolerated doses. In other words, the strategy identified in Chapter 5 is robust with respect
to addition of mutations. An important remark is that the cost obtained with the optimal
strategy is higher with the mutations than without them: this is because we cannot have
convergence to a Dirac located at a sensitive phenotype, but to a smoothed (Gaussian-
like) version of that Dirac. There will always be residual resistant cells which will make
the second phase less successful.
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Figure 6.5: Raising the maximal values umax1 , umax2 for the controls.
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Figure 6.6: Evolution of nC for the optimal solution of (OCP1).

Test case 3: T = 60, more general objective function. The optimal strategy
obtained with the previous objective function ρC(T ) might seem surprising, in particular
because it advocates for very limited action at the beginning: giving no cytotoxic drugs and
low loses of cytostatic drugs. To further investigate the robustness of this strategy, let us
also consider the objective function λ0

∫ T
0 ρC(s) ds+(1−λ0)ρC(T ) as introduced in Remark

6.1, for different values of λ0. To ease numerical computations, we take βH = βC = 0,
umax1 = 2, umax2 = 5, and finallyNx = 20, Nt = 100. The results are reported on Figure 6.7.
For λ0 = 0.5, the L1 term is dominant in the optimisation and the variations of ρC are
smaller over the interval ]0, T [. However, although there is a significant change in the
control u2 which is always equal to umax2 , u1 has kept the same structure: an arc with no
drugs, a short arc with maximal doses and a final arc with intermediate doses. The only
(though important) difference is that the first arc is not a long one as before.

We infer from these numerical simulations that the optimal structure is inherent in the
equations: there is no choice but to let the cancer cell density concentrate on a sensitive
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Figure 6.7: Plot of the optimal controls and optimal trajectories for different values of λ0, for
T = 60.

phenotype if the goal is to eradicate the tumour at time T . Since at λ0 = 0.5, the integral
term dominates, we also consider other convex combinations with smaller values of λ0 up
to 0, for which u2 takes intermediate values before being equal to umax2 , while u1 = 0 on a
longer arc.

Among these families of objectives (depending on λ0) and their outcomes, it is up to
the oncologist to decide which one is best, depending also on what is not modeled here,
for example metastases. We see that a balance between ρC(T ) and

∫ T
0 ρC(s) ds provide

interesting strategies curbing tumour growth, but not killing it.

Further comments on the continuation principle. A continuation procedure is an
option for many related problems. Let us illustrate our point with an example: we have
presented a procedure to solve (OCP1), for some initial conditions n0

H and n0
C . Suppose

that we wish to solve (OCP1) for some different initial conditions ñ0
H and ñ0

C . Biologically,
this could correspond to finding a control strategy for a different tumor. A natural idea
is then to use a continuation procedure to deform the problem from the initial conditions
(n0
H , n

0
C) to (ñ0

H , ñ
0
C), rather than applying again the whole procedure to solve (OCP1)

with ñ0
H and ñ0

C . We successfully performed some numerical tests to validate this idea: if
we dispose of a set of initial conditions for which we want to solve (OCP1), it is indeed
faster to solve (OCP1) for one of them and then perform a continuation on the initial
data, rather than solving (OCP1) for each of the initial conditions. More generally, any
parameter in the model could lend itself to a continuation.
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Spheroid formation and Keller-Segel
equations
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Chapter 7

Turing instabilities in chemotaxis for
spheroid formation

The purpose of this chapter is to explain patterns observed in cultures of cells
in a 3D structure mimicking the extracellular matrix. We show that chemotaxis
is a good candidate by analysing a Keller-Segel system with nonlinear sensitiv-
ity, which exhibits Turing patterns. These patterns indeed prove to be a good
qualitative match with the experimental ones, as evidenced by 2D simulations.
This chapter is a very preliminary version of an article in preparation, written
jointly with Federica Bubba, Nathalie Ferrand, Luis Neves de Almeida, Benoît
Perthame and Michèle Sabbah, a tentative title being A chemotaxis-based ex-
planation of spheroid formation in 3D structures mimicking the extracellular
matrix.

7.1 Introduction and biological data

The 3D culture of cells is progressively becoming preferred over 2D cultures for in vitro
experiments, because it is closer to the environment cells encounter in vivo, namely that
of the extra-cellular matrix (ECM). Regardless of the chemical engineering process for the
creation of these 3D scaffolds, the typical behaviour of cells inside them is aggregation [99].
The fact that different types of patterns can emerge depending on the type of cells is now
well documented [90, 157].

The aggregation process and type of aggregates is already interesting from the point of
view of theoretical biology, since it can shed light on how normal cells move and organise
spatially in the ECM. It has also great importance in cancer biology, in order to understand
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tumour progression in a more realistic experimental scenario. The focus is in particular
on metastases, since it is crucial to understand how cells can organise to escape a given
organ, having in mind that cells creating metastases move in clusters and not alone [80]. In
this direction, a natural question is the following: how do normal healthy cells, epithelial
cancer cells or invasive cancer cells compare regarding the type of pattern exhibited?

Experimental setting. The experiments performed at the Laboratoire de Biologie et
Thérapeutique des Cancers by Michèle Sabbah and Nathalie Ferrand were made with 3D
hydrogels. They are cylinders of radius a = 5mm, of small height h = 2mm.

The cell lines used are breast cancer cell lines, the MCF7 breast cancer cell line (epithelial
cells) and the MCF7-sh-WISP2 cell line of invasive breast cancer cells (mesenchymal cells).
Note that the latter cell line is obtained by the former after knock-down of the protein
WISP2, which regulates cell adhesion, migration, proliferation and differentiation. We
refer to [59] for a detailed study of invasive properties of the MCF7-sh-WISP2 cell line.

The MCF7 or MCF7-sh-WISP2 cells are put at the top of the hydrogel so that they can
enter the 3D structure by gravity and spread inside it. The different initial numbers of cells
considered are 10000, 25000, 50000, 75000 and 100000. The hydrogel is put in a growth
medium renewed every 2 or 3 days. At days 4, 8, and 14 (denoted respectively by J4, J8
and J14), a 2D image is obtained thanks to an EVOS imaging station. The number and
size of patterns are estimated by a dedicated software.

An overview of the experimental results. First, cells tend to spread uniformly in
the whole structure. It is only after this very quick first phase that, in most cases, cells
have formed patterns at day J4, in accordance with the results observed in the literature.
These patterns are close to being round in the MCF7 case, while for the other cell line, the
structure is less compact, more elongated, see a comparison in Figure 7.1 below. This is
why, as in previous works, we shall slightly abusively refer to these patterns as spheroids.
A typical spheroid has a radius of around 100µm, and contains an estimated number of
5000 cells.

The common dynamical features exhibited by all the experiments (apart from the special
case of 100000 cells which we shall discuss below):

• From J4 to J8, the number of spheres is almost constant, while the average size of
spheres slightly increases.

• At J14, the number of spheroids has almost doubled, while their average size has
remained constant.

In the meantime, cells grow unboundedly as long as they have enough space since the
medium is renewed. Note, however, that this growth is less important from J4 to J8
than it is after J8. It has already been reported that growth is typically inhibited by the
formation of spheroids, except at their periphery [175].

The case of 100000 seeded cells is a bit specific: no patterns are observed and all cells tend
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(a) (b)

Figure 7.1: 2D image of spheroids in the hydrogel, formed by MCF7 cells after 8 days of culture
(left panel) and by cells from MCF7-sh-wisp2 after 4 days of culture (right panel), courtesy of N.
Ferrand and M. Sabbah.

aggregate to outside the hydrogel. Such aggregates are reported to escape the hydrogel
also for lower seeding numbers, but only after enough time. Finally, let us mention that
although the number and size of spheroids increases with the initial number of cells for
10000, 25000 to 50000 cells, it remains constant from 50000 to 75000: some plateau has
been reached.

Mathematical modelling for patterns in the ECM. The aim of this work is to
propose a minimally-parametrised continuous model amenable to reproducing these pat-
terns. Mathematical models for cells in the extracellular matrix are numerous, and belong
to two main distinct categories, see for instance [141] for a review. The first category
is that of discrete models, or agent-based models (lattice-based or not), where each cell
is individually modelled and its behaviour is defined by probabilistic laws. The second
one is that of continuum models, typically based on ODEs or PDEs which can be either
phenomenological or derived from physical or chemical laws [125].

To the best of our knowledge, however, works on the formation of patterns by cells in the
ECM have focused on finely describing the cell-matrix adhesion, while chemotaxis is not
necessarily a feature of these models. In the PDE models of [125], for example, there is
no chemotaxis and patterns are obtained, but at the expense of assuming that ECM fibers
have a specific orientation. No patterns are reported when the ECM is isotropic. In the
lattice-based models of [175] developed precisely for patterns of hepatocarcinoma cells in
3D scaffolds, cell diffusion, cell division, cell-cell adhesion and cell-scaffold adhesion are
taken into account, but not chemotaxis.

Here, we choose a different approach by modelling chemotaxis, reducing the cell-hydrogel
modelling to a diffusion term (thus assuming that the 3D structure is isotropic). In our
case, well-documented chemoattractants are the chemokines CXCL12 and CXCL8 [119],
the first one (resp. the second) being believed to be mostly expressed by MCF7 cells (resp.
MCF7-sh-wisp2 cells).
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The model has very few parameters and, as we shall see, the condition for pattern formation
has a simple expression in terms of the parameters.

7.2 Chemotaxis model and spheroid formation

7.2.1 The Keller-Segel model

We now introduce the model, namely the Keller-Segel system for the density of cells n and
chemoattractant density c:

{
∂n
∂t −D1∆n+ χ∇ · (ϕ(n)∇c) = rn,
∂c
∂t −D2∆c = αn− βc,

(7.1)

in Ω endowed with Neumann boundary conditions, starting from (n0, c0), with initial mass∫
Ω n

0 = M . Here Ω ⊂ R3 is the hydrogel, a cylinder with small height (thus taking Ω ⊂ R2

as a disk is a good approximation).

The first main ingredient is diffusion: cells can move randomly at rate D1, thanks to the
scaffold. The second ingredient is chemotaxis: cells move in the direction of the gradient of
chemoattractant, of density c, the movement strength being measure by χ, and depends on
a possibly nonlinear function ϕ(n), which we shall specify later on. The chemoattractant
is produced by the cells themselves at rate α, is naturally depleted at rate β, and diffuses
at rate D2. At variance with other works, we again emphasise that we do not explicitly
model cell-scaffold adhesion and stick to a simpler diffusion term.

Finally, cells grow at rate r, and we will keep a simple exponential growth term rather than
a logistic one because nutrients are constantly being brought to them, and for the time-
scale of interest, there is enough space for cells to grow. There is also a hidden parameter
in the model, namely the total mass of the initial condition M := 1

|Ω|
∫

Ω n
0(x) dx. We

will assume that the initial condition is close to being homogeneous, namely n0 ≈ M , as
observed quickly after cells have been seeded.

Upon changes of time and space variables t̃ = βD1
D2
t, x̃ =

√
β
D2
x and appropriate scalings

for n and c, namely

n(t, x) = ñ

(
β
D1

D2
t,

√
β

D2
x

)
, c(t, x) =

α

β
c̃

(
β
D1

D2
t,

√
β

D2
x

)
,

and writing again n for ñ, c for c̃ we find a minimally parametrised version:
{
∂n
∂t −∆n+A∇ · (ϕ(n)∇c) = r0n,

ε∂c∂t −∆c = n− c,
(7.2)
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where only three parameters A, ε and r0 remain, given by

A =
αχ

βD1
, ε =

D1

D2
, r0 =

r

βε
.

ε is thus typically small because the chemoattractant diffuses much faster than cells, while
A depends on the ratio χ

D1
, which measures the relative importance of diffusion and at-

traction.

Although we will consider the growth term in simulations, we will neglect it for the investi-
gation of Turing instabilities. Then, when it starts near the homogeneous initial condition
n0 ≈M , c0 ≈M , this system has a homogenous (in space) solution, given by

n̄ = M, c̄ = M,

the (linear) stability of which we now investigate in detail.

7.2.2 Condition for Turing instabilities

Around the homogeneous steady-state (n̄, c̄), the linearised system without growth reads
{
∂n
∂t −∆n+Aϕ(M)∆c = 0,

ε∂c∂t −∆c = n− c,
(7.3)

We denote (ψk)k>1 the orthonormal basis of L2(Ω) made of the eigenfunctions of the
Neumann Laplace operator associated with eigenvalues (λk)k>1, namely

{
−∆ψk = λkψk,
∂ψk
∂ν = 0.

Projecting the linearised equation (7.3) on the orthonormal basis (ψk)k>1 through

n(t, ·) =
∑

ak(t)ψk, c(t, ·) =
∑

bk(t)ψk,

we find {
a′k(t) = −λkak(t) +Aϕ(M)λkbk(t),

εb′k(t) = −λkbk(t) + ak(t)− bk(t).
Looking for exponentially increasing (in time) solutions, we must test whether there are
solutions in the form (ak(t), bk(t)) = eλt(a0

k, b
0
k) with real part <(λ) > 0. This is equivalent

to finding a solution λ with <(λ) > 0 for (Ak − λId)X = 0 with

X =

(
a0
k

b0k

)
, Ak =

(
−λk Aϕ(M)λk

1
ε −1

ε (λk + 1).

)
.

Since Tr(Ak) < 0, it easy to check that Ak has such an eigenvalue λ if and only if det(Ak) <
0, which is equivalent to

λk + 1 < Aϕ(M) = ϕ(M)
αχ

βD1
,
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Chapter 7. Turing instabilities in chemotaxis for spheroid formation

a condition which does not depend on D2.

Thus, we have the following result (owing to λ1 = 0):
Proposition 7.1. The state (M,M) is Turing unstable if and only if

ϕ(M) >
βD1

αχ
. (7.4)

We denote µ = Aϕ(M)− 1, so that Turing instability is equivalent to µ > 0.
Remark 7.1. If we were to try and analyse Turing instabilities for the model with the
growth term, the system should be linearised around the homogeneous (in space) solution
given by

n̄(t) := Mer0t, c̄(t) :=
M

1 + εr0

(
εr0e

− t
ε + er0t

)
.

Turing instabilities around time-dependent homogeneous steady states has attracted at-
tention in the case of growing domains, at the expense of more involved computations and
concepts that are beyond the scope of this chapter [114].

7.2.3 Turing unstable modes

The observed mode. In practice, when there are k0 unstable modes, those that will
be observed are the ones associated with the highest eigenvalue λ. For each 0 6 k 6 k0,
we denote λ+

k the highest eigenvalue of Ak, and we investigate how it depends on λk.
For convenience, we set x := λk, and we are led to analyse the variations of the function
x 7→ λ+(x) := 1

2(t(x) +
√
t2(x)− 4d(x)) where t(x) = Tr(Ak) = −

(
1
ε + 1

)
x − 1

ε , d(x) =

det(Ak) = x(x−µ)
ε .

At the zeroth order in ε, we find

λ+(x) ' xµ− x
x+ 1

,

the derivative of which has the sign of −x2 − 2x+ µ. Recall that 0 < x < µ (since we are
assuming that the kth mode is unstable, namely λk < µ), and we find that the maximum
of λ+(x) on (0, µ) is reached at −1 +

√
1 + µ. As a consequence, we find that when λk < µ

for 1 6 k 6 k0 and at the zeroth order in ε, either the mode k? − 1 or k? will be observed,
where k? is defined by λk?−1 6 −1 +

√
1 + µ < λk? .5

Computing the modes explicitly. Since Ω has a particular shape, eigenvalues and
eigenfunctions can actually be explicitly computed. We first consider the case of the
2D simulations, namely when Ω is a disk of radius a. It is then standard that, after
separation of variables in polar coordinates ψ(x, y) = f(r)g(θ), the equation −∆ψ = λψ
with Neumann boundary conditions is equivalent to g(θ) = A cos(mθ)+B sin(mθ) for some
m ∈ Z and ρ 7→ f( ρ√

λ
) must solve the Bessel equation ρ2y′′(ρ)+ρy′(ρ)+(ρ2−m2)y(ρ) = 0

5The actual mode observed is k? − 1 (resp. k?) if λ+(λk?−1) > λ+(λk?) (resp. λ+(λk?−1) 6 λ+(λk?)).
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with y′(0) = y′(
√
λa) = 0. This yields, up to a constant, to the result f(r) = Jm(

√
λr)

where Jm is the first kind Bessel function of order m. The boundary conditions impose
m 6= ±1 (because J ′m(0) = 0 for all m except 1 and −1), while, denoting γm,p the pth zero
of the derivative of Jm, we find λ =

(βm,p
a

)2.

Summing up, we obtain

λm,p =

(
βm,p
a

)2

,

ψm,p(r, θ) = Jm

(
βm,p
a

r

)
(A cos(mθ) +B sin(mθ)),

a family indexed by m ∈ Z \ {±1}, p ∈ N?. Unless m = 0 for which the eigenfunction is
unique after normalisation, the eigenspace associated to λm,p is of dimension 2.

Similar computations for the case of a cylinder of height h and radius a lead to the result

λm,p,l =

(
βm,p
a

)2

+

(
lπ

h

)2

,

ψm,p,l(r, θ, z) = Jm

(
βm,p
a

r

)
(A cos(mθ) +B sin(mθ)) cos

(
lπz

h

)
,

a family indexed by m ∈ Z \ {±1}, p ∈ N?, l ∈ N. The multiplicity of eigenfunctions is the
same as in the previous case (1 if m = 0 and 2 if not).

If h is small, we will typically not see the eigenvalues with high frequency in the z variable,
and thus only the modes with l = 0 will be observed. An interesting and relevant conse-
quence is that from the point of view of Turing instabilities, it is a good approximation to
neglect the z variable and focus on Ω ⊂ R2 as a disk for simulations.

Choosing the nonlinearity. From the previous computations, we uncover that µ =
Aϕ(M)−1 has the same monotony as ϕ in terms of the initial mass: hence, we expect that
there should be more spheroids for higher values of ϕ(M), all other parameters being fixed.
Experiments have shown that the number of spheroids increases with M , and reaches a
plateau at 50000, 75000 seeded cells. For 100000 cells, there are essentially no spheroids
in the hydrogel since most of them have escaped it. It is not clear whether it proves that
no patterns are exhibited in this situation.

However, we can already assert that the classical linear sensitivity ϕ(n) = n is not an
appropriate modelling choice. This is why we will instead consider either the logistic
function ϕ(n) = n(1 − n

K ) or the exponential one ϕ(n) = ne−
n
K . The first one has been

proposed long ago to prevent overcrowding [75, 137], since the density K plays the role
of a maximal packing above which movement by chemotaxis is shut down. The second is
less classical but has the advantage of flexibility because it does not impose an a priori
maximal density.
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7.3 Comparison of 2D simulations with experiments

In this section, we perform several numerical simulations, and for simplicity, all simulations
will be done with the adimensionalised system, with parameters, K, M , ε and A, as well
as the radius a of the disk in these 2D simulations. Simulations for the model with growth
have r0 as an additional parameter. We shall always fix in the forthcoming simulations the
following values:

M = 0.1, ε = 1.10−2, K = 1, a = 40.

The initial condition is always taken to be a small perturbation of the homogeneous steady
state (M,M). The value of A will vary depending on the simulation. All simulations have
been done using the software Freefem++ [73], with finite elements P1 basis functions,
dt = 0.01 and a mesh made of around 40000 triangles.

7.3.1 Pattern formation and agreement with the theoretical results

Let us start by providing a typical simulation exhibiting Turing instability with spheroidal
patterns, in the logistic case ϕ(n) = n(1 − n

K ). We take A = 50, for which we expect
patterns since µ = Aϕ(M) − 1 = 3.5 > 0. We report the results from times t = 5 to
t = 8 on Figure 7.2. From time t = 0 to t = 5, only the constant state is visible. From
t = 6 onwards, patterns very quickly become visible, first at the periphery and then,
centripetally, everywhere in the domain. Most of them have formed at t = 8.
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Figure 7.2: Simulation of the cancer cell density (satisfying 0 6 n 6 1 up to numerical errors)
for the Keller-Segel model (7.2) without growth, with A = 50 and a logistic sensitivity function,
from times t = 5 to t = 8.
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For the exponential function, the results are close and it is not clear whether one of the
two is better. Simulations not shown here also exhibit round patterns are also obtained,
but there are more of them and they are smaller. This is also in agreement with the Turing
instability condition, since for the same K, we always have ne−

n
K > n(1 − n

K ). Thus, all
other parameters being equal, µ is larger in the exponential case than in the logistic case.

7.3.2 Pattern formation with growth

Once patterns have formed, a long transient phase starts, during which spheroids slowly
merge, in accordance with some theoretical results obtained in 1D [137]. From the ex-
perimental point of view, this peculiar phenomenon is not relevant since it requires long
time scales during which growth will take over. We now provide some simulations with the
growth term r0n, in Figure 7.3. The exponential sensitivity function is preferred over the
logistic one, since growth can make densities exceed the value 1 (and then the advection
term would make cells go in the opposite direction of ∇c in zones of densities higher than
1), which is not an appropriate modelling.
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Figure 7.3: Simulation of the cancer cell density (which approximately ranges from 0 to 5 up
to numerical errors)for the Keller-Segel model (7.2) with growth, with A = 40, r0 = 0.1 and
exponential sensitivity function, at times t = 5, t = 6 and t = 7.

We finally provide a comparison with a simulation with a lower value for A, in order to
investigate the effect of a change of parameters modelling differences between the more
adhesive MCF7 cells with the more invasive MCF7-sh-WISP2. The rationale is that,
assuming that the sensitivity strength measured by χ is roughly the same for both cell
lines, the diffusion constant D1 is expected to be higher for the MCF7-sh-WISP2. In the
absence of growth, the Turing pattern constant µ will thus be larger for MCF7 cells than
it is for MCF7-sh-WISP2: we expect less spheroids, and of bigger size for the latter.

Figure 7.4 compares spheroids for values A = 20 and A = 30. It indeed shows that, even
with the growth term, the spheroids are bigger and less numerous for a smaller A. It can
be interpreted as them being less compact, a feature which is coherent with experiments.
Another interesting feature is that the geometry has also changed, as structures look less
round.
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Figure 7.4: Simulation of the cancer cell density (which approximately ranges from 0 to 5 up to
numerical errors) for the Keller-Segel model (7.2) with growth, with A = 20 (A) and A = 30 (B)
at times t = 15 and t = 10 respectively.

7.3.3 Conclusions and perspectives

Our 2D simulations show a good ability at qualitatively reproducing the patterns obtained
experimentally. Contrarily to other modelling approaches, the salient feature is not cell-
scaffold adhesion, which we reduce to a diffusion term, but instead chemotaxis. We thus
hypothesise that it is a key phenomenon responsible for these aggregates.

Once a nonlinear sensitivity function has been chosen, the monotony of the Turing insta-
bility constant µ, as a function of the diffusion D1, is qualitatively consistent with the
differences observed between MCF7 cells and MCF7-sh-WISP2 cells. The number, size,
and to a lesser extent, the shape of spheroids match well, at least for days J4 and J8. Going
further in this direction would require to analyse Turing instabilities in the presence of the
growth term, since it is not the same for both cell lines, building up on works carried out
for growing domains [114].

The model has however difficulties in showing more flexibility in the size of patterns. To
quantify that, the numerical results have also been analysed with the software counting
spheroids, and the distribution (in size) of spheroids does not match very well: while
the standard deviation was of the order of the average size for experiments, we find that
standard deviation is about one third of the mean size in simulations. Numerically, we also
did not manage to account for the important increase in the number of spheres at day J14.

Finally, we remark that the numerical schemes (based on finite element methods) do not
preserve desirable properties, such as positivity of the solution, nor that it should be below
1 in the absence of growth and with a logistic sensitivity. The difficulties at preserving
these bounds are mostly seen at the sharp interfaces between zones of high densities (the
spheroids), and zones of low densities (the rest). We address this problem in the next
chapter.
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Chapter 8

Numerical analysis of schemes for
the 1D Keller-Segel equation

In this work with Federica Bubba, Luis Neves de Almeida and Benoît Perthame,
we provide two finite-volume schemes for the 1D Fokker-Planck equation and
parabolic-elliptic Keller-Segel equation with a nonlinear sensitivity. They are
obtained either by following the Gradient-Flow structure or by a rewriting
inspired by the Scharfetter-Gummel discretisation, so that the schemes preserve
energy, steady states and bounds at the semi-discrete level. An implicit-explicit
(in time) scheme is then proposed by tuning the discretisation of each term
in order to obtain appropriate monotony ensuring that the scheme is well-
posed and still preserves the important properties at the discrete level. This
has been accepted under the name Energy and implicit discretization of the
Fokker-Planck and Keller-Segel type equations [22].

8.1 Introduction

Taxis-diffusion and aggregation equations are widely studied in the context of biological
populations (see [120, 77, 74, 32] for instance). They describe cell communities which react
to external stimuli and form aggregates of organisms (pattern formation), such as bacterial
colonies, slime mold or cancer cells. The Patlak-Keller-Segel model [87] is the most famous
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system and we are interested in the following generalisation




∂u
∂t − ∂

∂x

[
∂u
∂x − ϕ(u) ∂v∂x

]
= 0, x ∈ (0, 1), t > 0,

∂u
∂x − ϕ(u) ∂v∂x = 0, for x = 0 or 1,

u(x, 0) = u0(x) > 0, x ∈ [0, 1].

(8.1)

Here, u(x, t) > 0 represents the density of a given quantity (e.g., cells or bacteria popula-
tion) and the initial data u0(x) is a given nonnegative smooth function. As for the function
v, which models a molecular concentration, we choose either the case of the Fokker-Planck
(FP in short) equation, where v(x) is known

v := v(x) > 0,
∂v

∂x
∈ L∞(0, 1),

or the case of the generalised Keller-Segel (GKS in short) equation, where

v(x, t) =

∫
K(x, y)u(y, t)dy, K(x, y) a smooth symmetric kernel. (8.2)

Depending on the modelling choice for ϕ(u), solutions to (8.1) can blow-up in finite time
depending upon a critical mass (see [122, 16]) or reach stationary profiles in the form of
peaks or plateaus [137] (pattern formation by Turing instability). The high nonlinearities
due to the advection term make problem (8.1) mainly intractable through analytical meth-
ods. Thus, it is important to dispose of reliable numerical methods avoiding non-physical
oscillations and numerical instabilities even when dealing with non-smooth solutions. The
main properties that one wishes to preserve in a numerical method are

(P1) positivity property, since we are dealing with densities or concentrations,

u(x, t) > 0, (8.3)

(P2) mass conservation, because no-flux boundary conditions are imposed,
∫ 1

0
u(x, t) =

∫ 1

0
u0(x)dx, (8.4)

(P3) preservation of discretised steady states of the form

g(u) = µ+ v, g′(u) =
1

ϕ(u)
, (8.5)

where µ is a parameter related to the mass of u, and

(P4) energy dissipation

d

dt
E(t) 6 0, E(t) =

∫ 1

0
[G(u)− κuv] dx, (8.6)
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where G(u) is a primitive of g(u) and the value of κ differs for the two cases we study here,
namely

κ = 1 (FP case), κ =
1

2
(GKS case). (8.7)

The aims of our work are first to recall two points of view for the derivation of the above
energy inequality, second to use them for the construction of conservative, finite volume
numerical schemes preserving energy dissipation to solve equation (8.1), third to make
numerical comparisons in the case of complex patterns in order to distinguish physical
instabilities from numerical artifacts. The two different derivations of the energy dis-
sipation use two symmetrisation strategies: the gradient flow or the Scharfetter-Gummel
approaches. It turns out that they lead to two strategies for discretisation of problem (8.1).
We prove that the proposed schemes satisfy properties (8.3)–(8.6) and because we build
implicit schemes, there is no limitation on the time step in the fully discrete case.

There exist other works which propose schemes for the resolution of problems in the
form (8.1). For instance, finite elements methods are used, see [147] and references therein.
Optimal transportation schemes for Keller-Segel systems are introduced in [15]. The pa-
pers [31] and [30] propose a finite-volume method able to preserve the above properties,
including energy dissipation, at the semi-discrete level or with an explicit in time discretisa-
tion, using the gradient flow approach. The symmetrisation using the Scharfetter-Gummel
approach is used in [106] where properties similar to ours are proved. However, the results
do not include sensitivity saturation. To the best of our knowledge, our work is the first
to propose implicit in time methods, without time step limitation (CFL condition), for
which we are able to prove that, under generic conditions, the energy decreases at both
semi-discrete and discrete level. Moreover, we build an alternative to the gradient flow
approach applying the Scharfetter-Gummel strategy [148] for the discretisation of drift-
diffusion equations (8.1) with a general saturation function ϕ.

The chapter is organised as follows. In Section 8.2, we present in more details our as-
sumptions for the equation (8.1). We also explain some modelling choices in particular
for the nonlinearity ϕ(u) and on the choice of the kernel K. 8.3 is devoted to the in-
troduction of the two approaches, gradient flow or Scharfetter-Gummel, and to how we
use the continuous version of energy dissipation to derive the schemes. In Sections 8.4
and 8.5, we show how the aforementioned two approaches lead to two different numerical
methods, developed from the semi-discrete (only in space discretisation) level to the fully
discretised scheme. In particular, using a general result recalled in 8.8 about monotone
schemes, we prove that the proposed schemes are well-posed and satisfy the fundamental
properties (8.3)–(8.6). These theoretical results are illustrated in Section 8.6 by numerical
simulations: we compare the gradient flow and the Scharfetter-Gummel schemes with the
upwind approach, typically used to solve this kind of models.
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8.2 Assumptions and notations

The standard biological interpretation of (8.1) ([76, 120, 130]) provides us with some further
properties of the nonlinearities which we describe now.

Chemotactic sensitivity. The function ϕ(u) is called chemotactic sensitivity. It de-
termines how the random movement of particles of density u is biased in the direction
of the gradient of v. In order to include the different choices of ϕ, as ϕ(u) = u as in the
Keller-Segel or drift-diffusion model, or the logistic case ϕ(u) = u(1−u), or the generalised
case ϕ(u) = ue−u, we use the formalism

ϕ(u) = uψ(u), with ψ(u) > 0, ψ′(u) 6 0.

More precisely, we consider two cases for the smooth function ψ,

ψ(u) > 0, ∀u > 0, (8.8)

or
ψ(u) > 0 for 0 < u < M, ψ(M) = 0. (8.9)

In the case (8.9) we only consider solutions which satisfy u ∈ [0,M ].

It is convenient to introduce the notations

g(u) =

∫ u

a

1

ϕ(v)
dv, G(u) =

∫ u

0
g, (8.10)

where a is a constant that enables to get rid of the integration constant and depends on
the choice of ϕ. For instance, for the standard case ϕ(u) = u, a = 1 and one obtains
g(u) = ln(u) and G(u) = u ln(u)−u. For functions ϕ satisfying (8.8), a natural hypothesis
which is related to blow-up is the following

1

ϕ
/∈ L1(1,+∞), g(u) −→

u→∞
+∞, (8.11)

an assumption which, as we see it later, appears naturally when it comes to the well-
posedness of numerical schemes.

Note that under assumption (8.8) and if ψ is bounded, solutions exist globally and are
uniformly bounded [40]. Under assumption (8.9), if 0 6 u0 6 M , the solution is also
globally defined and satisfies 0 6 u(t, ·) 6M for all times [74].

Expression of the drift v. The convolution expression for v as a function of u
has been widely used in recent studies [4, 8, 13]. It also comes from the Keller-Segel
model [77, 87, 130], where the equation for the cells density in (8.1) is complemented with
a parabolic equation for the chemoattractant concentration v. Since the chemoattractant
is supposed to diffuse much quicker than the cells density, we can consider a simplified
form of the Keller-Segel system and couple (8.1) with the elliptic equation for v

{
− ∂2v
∂x2 = u− v, x ∈ (0, 1),

∂v
∂x = 0, x = 0 or 1.
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This equation leads to (8.2) using the Green function given by the positive and symmetric
kernel K(x, y) defined as

K(x, y) = λ
(
ex + e−x

) (
ey + e2−y) , x 6 y, λ =

1

2 (e2 − 1)
.

Notations for numerical schemes. We give here our notations for discretisation. We
consider a (small) space mesh size ∆x = 1

I , I ∈ IN. The mesh is centered at xi = i∆x,
with endpoints xi+1/2 = (i + 1/2)∆x for i = 1, ..., I − 1. Therefore, our computational
domain is always shifted and takes the form

(
∆x
2 , (I + 1

2)∆x
)
. Finally, the mesh is formed

by the intervals

Ii =
(
xi− 1

2
, xi+ 1

2

)
, xi+ 1

2
=

(
i+

1

2

)
∆x.

As for time discretisation, we consider (small) time steps ∆t > 0, and set tn = n∆t. The
approximation of u(x, t), interpreted in the finite volume sense ([19, 101]), is denoted by

uni ≈
1

∆x

∫

Ii

u(x, tn)dx.

Integration on the interval Ii yields fluxes Fi+ 1
2
≈
(
∂u
∂x − ϕ(u) ∂v∂x

) ∣∣∣
x
i+ 1

2

for i = 0, . . . , I − 1

through the interval interfaces.

8.3 Energy dissipation

Energy dissipation is the most difficult property to preserve in a discretisation and methods
might require corrections [84]. Therefore, it is useful to recall how it can be derived
simply for the continuous equation. We focus on two different strategies, that lead to two
different discretisation approaches, the gradient flow approach and the Scharfetter-Gummel
approach.

The gradient flow approach to energy. Using the notations (8.10), the equation for
u can be rewritten as

∂u

∂t
− ∂

∂x

[
ϕ(u)

∂ (g(u)− v)

∂x

]
= 0, (8.12)

so that

(g(u)− v)
∂u

∂t
= (g(u)− v)

∂

∂x

[
ϕ(u)

∂ (g(u)− v)

∂x

]

=
1

2

∂

∂x

[
ϕ(u)

∂(g(u)− v)2

∂x

]
− ϕ(u)

[
∂(g(u)− v)

∂x

]2

.
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Consequently, we find, in the Fokker-Planck case

d

dt

∫ 1

0
[G(u)− uv(x)]dx = −

∫ 1

0
ϕ(u)

[
∂(g(u)− v)

∂x

]2

dx 6 0,

and in the generalised Keller-Segel case

d

dt

∫ 1

0
[G(u)− 1

2
uv(x, t)]dx = −

∫ 1

0
ϕ(u)

[
∂(g(u)− v)

∂x

]2

dx 6 0,

because, thanks to the symmetry assumption on K and by using the definition (8.2) of v,
we have
∫ ∫

K(x, y)u(y, t)
∂u(x, t)

∂t
=

∫ ∫
K(x, y)

∂u(y, t)

∂t
u(x, t) =

1

2

d

dt

∫ ∫
K(x, y)u(y, t)u(x, t).

The Scharfetter-Gummel approach to energy. Inspired from the case of electric
forces in semi-conductors, the equation for u can be rewritten as

∂u

∂t
− ∂

∂x

[
ev−g(u)ϕ(u)

∂eg(u)−v

∂x

]
= 0, (8.13)

so that

(g(u)− v)
∂u

∂t
= (g(u)− v)

∂

∂x

[
ev−g(u)ϕ(u)

∂eg(u)−v

∂x

]

=
∂

∂x

[
(g(u)− v)ev−g(u)ϕ(u)

∂eg(u)−v

∂x

]
− ev−g(u)ϕ(u)

∂eg(u)−v

∂x

∂ (g(u)− v)

∂x
.

It is immediate to see that the last term has the negative sign while the time derivative
term is exactly the same as in the gradient flow approach.

At the continuous level, these two calculations are very close to each other. However, they
lead to the construction of different discretisations. The gradient flow point of view is used
for numerical schemes by [32], the Scharfetter-Gummel approach is used in [106].

8.4 Semi-discretisation

The mass conservative form of (8.1) leads to a finite volume type semi-discrete scheme




dui(t)
dt + 1

∆x [Fi+1/2(t)− Fi−1/2(t)] = 0, i = 0, . . . , I, t > 0,

F1/2(t) = FI+1/2(t) = 0.

(8.14)
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We use the definition (8.7) for κ and set for i = 0, . . . , I

Ei(t) = G(ui)− κuivi.

The semi-discrete energy is then

Esd(t) = ∆x

I∑

i=0

Ei(t).

8.4.1 The gradient flow approach

Using the form (8.12) of equation (8.1), we define the semi-discrete flux as

Fi+1/2(t) = −
ϕi+1/2

∆x

[
g(ui+1)− vi+1 −

(
g(ui)− vi

)]
, i = 1, . . . , I − 2. (8.15)

The precise expression of ϕi+1/2 is not relevant for our present purpose which is to preserve
the energy dissipation property. However, for stability considerations it is useful to upwind,
an issue which we shall tackle when we consider the full discretisation.
Then, the semi-discrete energy form is obtained after multiplication by (g(ui) − vi) and
yields

d

dt
∆x

I∑

i=0

Ei(t) = −
I−1∑

i=1

(g(ui)− vi)[Fi+1/2 − Fi−1/2]

=

I−1∑

i=1

Fi+1/2

[(
g(ui+1)− vi+1

)
− (g(ui)− vi)

]
.

Therefore, we find the semi-discrete form of energy dissipation

dEsd

dt
= −∆x

I−1∑

i=1

ϕi+1/2

[(
g(ui+1)− vi+1

)
−
(
g(ui)− vi

)

∆x

]2

6 0.

8.4.2 The Scharfetter-Gummel approach

We choose to discretise the form (8.13), defining the semi-discrete flux as

Fi+1/2(t) = −
(
ev−g(u)ϕ(u)

)
i+1/2

∆x

[
eg(ui+1)−vi+1 − eg(ui)−vi

]
, i = 1, . . . , I − 2, (8.16)

where, again, the specific form of the interpolant
(
ev−g(u)ϕ(u)

)
i+1/2

is not relevant here.
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As above, the semi-discrete energy form follows upon multiplication by g(ui)−vi and reads

d

dt
∆x

I∑

i=0

Ei(t) = −
I−1∑

i=1

(
g(ui)− vi

) [
Fi+1/2 − Fi−1/2

]

=
I−1∑

i=1

Fi+1/2

[(
g(ui+1)− vi+1

)
−
(
g(ui)− vi

)]
.

Summing up, the semi-discrete form of energy dissipation here writes

dEsd

dt
= −∆x

I−1∑

i=1

(
ev−g(u)ϕ(u)

)
i+1/2

eg(ui+1)−vi+1 − eg(ui)−vi
∆x

(
g(ui+1)− vi+1

)
−
(
g(ui)− vi

)

∆x
,

and thus we also have dEsd
dt 6 0.

8.4.3 Discrete steady states

Steady states make the energy dissipation vanish which imposes both in the gradient flow
and the Scharfetter-Gummel approaches that

(
g(ui+1) − vi+1

)
=
(
g(ui) − vi

)
. In other

words they are given, up to a constant µ, as the discrete version of (8.5),

g(ui) = vi + µ, ∀i = 0, . . . , I . (8.17)

We recall from [137] that in the GKS case, there are several steady states and the constant
ones can be unstable.

8.5 Fully discrete schemes

To achieve the time discretisation, and restricting our analysis to the Euler scheme, we
write the time difference dui(t)

dt as u
n+1
i −uni

∆t . Therefore, the full discretisation of (8.14) writes




un+1
i − uni + ∆t

∆x

[
Fn+1
i+1/2 − F

n+1
i−1/2

]
= 0, i = 0, . . . , I,

Fn+1
1/2 = Fn+1

I−1/2 = 0.

(8.18)

The issue here is to decide which terms (in u and v) should be discretised with implicit or
explicit schemes based on fully discrete energy dissipation. We claim that, apart from the
interpolant, we need to make the terms in ui implicit and, for the GKS case, the terms in
vi explicit, a fact on which we now elaborate.

The computation made in the semi-discrete case, dEi(t)dt = dui(t)
dt (g(ui(t)) − vi(t)), extends

to the fully discrete setting and leads to the following constraint on the energy
I∑

i=0

(
En+1
i − Eni

)
6

I∑

i=0

(un+1
i − uni )(g(uαni )− vβni ).
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Here, uαni := αuni + (1−α)un+1
i vβni := βvni + (1− β)un+1

i . The convexity of G(·) imposes
the choice of an implicit discretisation for u, namely α = 0, because

G(un+1
i )−G(uni ) 6 g(un+1

i )(un+1
i − uni ).

Regarding the term in uv, only the case of GKS needs to be fixed and we thus require

−
I∑

i=0

[
(uv)n+1

i − (uv)ni
]
6 −2

I∑

i=0

vβni (un+1
i − uni ).

It is natural to try and balance the terms by choosing a semi-explicit discretisation with
β = 1

2 , which yields

2
I∑

i=0

[
vβni (un+1

i − uni )−
(
un+1
i vn+1

i − uni vni
)]

=
I∑

i=0

(
un+1
i vni − uni vn+1

i

)

=
∑

i,j

Kij

(
un+1
i unj − uni un+1

j

)

with the last term vanishing due to the symmetry of K.

However, implicit and explicit time discretisations for v can also be considered at the
expense of adding hypotheses on the kernel K. Indeed, for a given 0 6 β 6 1, we find

2
I∑

i=0

[
vβni (un+1

i − uni )−
(
un+1
i vn+1

i − uni vni
)]

= (2β − 1)
∑

i,j

Kij(u
n+1
i − uni )(un+1

j − unj ).

As a consequence, an explicit (resp. implicit) scheme is suitable for the time discretisation
of v provided that K is a non-negative (resp. non-positive) symmetric kernel. Since K is a
non-negative symmetric kernel for the Keller-Segel equation (8.2), for simplicity we choose
an explicit discretisation for v.

Finally, we note that the interpolant does not play any role for energy discretisation and
we can use the simplest explicit or implicit discretisation (both in u and v), so as to make
the analysis of the scheme as simple as possible.

8.5.1 The gradient flow approach

We consider the full discretisation of (8.15) and define the fully discrete flux in (8.18) as

Fn+1
i+1/2 = −

ϕ(u)n+1
i+1/2

∆x

[(
g(un+1

i+1 )− vni+1

)
−
(
g(un+1

i )− vni
)]
, i = 1, ..., I − 2. (8.19)

At this level, we need to define the form of the interpolant ϕ(u)n+1
i+1/2. From the theorem

in 8.8, we use an upwind technique in order to ensure well-posedness and monotonicity
properties of the scheme. Thus, for i = 1, . . . , I − 2, we define

ϕ(u)n+1
i+1/2 :=

{
un+1
i ψ(un+1

i+1 ) when g(un+1
i )− g(un+1

i+1 ) + vni+1 − vni > 0,

un+1
i+1 ψ(un+1

i ) when g(un+1
i )− g(un+1

i+1 ) + vni+1 − vni < 0.
(8.20)
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Proposition 8.1 (Fully discrete gradient flow scheme). We assume either (8.8) and (8.11),
or (8.9) and give the u0

i > 0. Then, the scheme (8.19)–(8.20) has the following properties:
(i) the solution uni exists and is unique, for all i = 0, . . . , I, and n > 1;
(ii) it satisfies uni > 0, and uni 6M for the case (8.9), if it is initially true;
(iii) the steady states g(ui)− vi = µ are preserved;
(iv) the energy dissipation inequality is satisfied

En+1 − En 6 −∆t

∆x

I−1∑

i=1

ϕ(u)ni+1/2

[(
g(un+1

i+1 )− vni+1

)
−
(
g(un+1

i )− vni
)]2

.

Notice that this theorem does not state a uniform bound in the case (8.8) and (8.11).

Proof. (i) We prove that the scheme satisfies the hypotheses of the theorem in 8.8. We set

Ai+1/2(un+1
i , un+1

i+1 ) =
∆t

(∆x)2
Fn+1
i+1/2.

Then, the simplest case is when ϕ satisfies (8.9), since clearly un+1
i ≡ 0 and un+1

i ≡M are
respectively a sub- and supersolution. When ϕ satisfies (8.8) and (8.11), un+1

i ≡ 0 is again
a subsolution, while for the supersolution we choose Ūn+1

i = g−1(C + vni ). Such a choice
indeed makes the flux terms vanish:

Fn+1
i+1/2 = −

ϕ(u)n+1
i+1/2

∆x

[(
g(Ūn+1

i+1 )− vni+1

)
−
(
g(Ūn+1

i )− vni
)]

= −
ϕ(u)n+1

i+1/2

∆x
[C − C] = 0.

Thus Ūn+1
i is a supersolution as soon as g−1(C + vni ) > uni , which holds when C is taken

to be large enough because we recall that assumption (8.11) ensures that g(u) tends to
+∞ as u tends to +∞.

Moreover, the scheme is monotone since

∂1Ai+ 1
2
(un+1
i , un+1

i+1 ) =− ∆t

(∆x)2
un+1
i+1 ψ

′(un+1
i )

[
g(un+1

i+1 )− vni+1 −
(
g(un+1

i )− vni
)]

+

− ∆t

(∆x)2
ψ(un+1

i+1 )
[
g(un+1

i+1 )− vni+1 −
(
g(un+1

i )− vni
)]
−

− ∆t

(∆x)2
ϕ(u)n+1

i+ 1
2

[
−g′(un+1

i )
]
> 0,

where

0 6 [x]+ =

{
x for x > 0

0 for x < 0
and 0 > [x]− =

{
0 for x > 0

x for x < 0
.

(ii) Positivity of discrete solutions and the upper bound in the logistic case follow from
the subsolution and supersolution build in step (i).
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(iii) Preservation of steady states at the discrete level follows immediately from the form
we have chosen for the fully discrete fluxes.
(iv) For the energy inequality, we remark that the contribution regarding time discretisa-
tion is treated in the introduction of the present section. The space term is exactly treated
as in the corresponding subsection of Section 8.4.

8.5.2 The Scharfetter-Gummel approach

In (8.18), the fully discrete Scharfetter-Gummel flux reads as

Fn+1
i+1/2 =

(
ev
n−g(un)ϕ

(
un+1

))
i+1/2

[
eg(u

n+1
i+1 )−vni+1 − eg(un+1

i )−vni
]
, i = 1, ..., I − 2.

(8.21)
As for the gradient flow approach, we need the upwind technique to get a scheme which
satisfies the hypotheses in 8.8. Thus, we set for i = 1, . . . , I − 2

(
ev
n−g(un)ϕ

(
un+1

))
i+1/2

= un+1
i+1 ψ(un+1

i )ev
n
i+1−g(uni+1) if e(g(u

n+1
i+1 )−vni+1)−e(g(un+1

i )−vni ) > 0,

(8.22)
and
(
ev
n−g(un)ϕ

(
un+1

))
i+1/2

= un+1
i ψ(un+1

i+1 )ev
n
i −g(uni ) if e(g(u

n+1
i+1 )−vni+1) − e(g(un+1

i )−vni ) < 0.

(8.23)

Proposition 8.2 (Fully Scharfetter-Gummel scheme). We assume either (8.8) and (8.11),
or (8.9) and give the u0

i > 0. Then, the scheme (8.21)–(8.23) has the following properties:
(i) the solution uni exists and is unique, for all i = 1, . . . , I, and n > 1;
(ii) it satisfies uni > 0, and uni 6M for the case (8.9), if it is initially true;
(iii) the steady states g(ui)− vi = µ are preserved;
(iii) the energy dissipation inequality is satisfied

En+1 − En 6 −∆t
∆x

∑I−1
i=1

(
ev
n−g(un)ϕ (un)

)
i+1/2

[
eg(u

n+1
i+1 )−vni+1 − eg(un+1

i )−vni
] [(

g
(
un+1
i+1

)
− vni+1

)
−
(
g
(
un+1
i

)
− vni

)]
6 0.

Proof. We argue exactly as for the gradient flow approach.

8.5.3 The upwinding approach

The upwind scheme is driven by simplicity and, in (8.18), the fluxes are defined by

Fn+1
i+1/2 = − 1

∆x

[
un+1
i+1 − un+1

i − ϕ(u)ni+1/2

(
vni+1 − vni

)]
, i = 1, ..., I − 2,
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with

ϕ(u)n+1
i+1/2 :=

{
un+1
i ψ(un+1

i+1 ) when vni+1 − vni > 0,

un+1
i+1 ψ(un+1

i ) when vni+1 − vni < 0,
(8.24)

as in (8.20), but this time depending on the sign of vni+1 − vni .

Proposition 8.3 (Fully discrete upwind scheme). We assume either (8.8) and (8.11),
or (8.9) and give the u0

i > 0. Then, the scheme (8.19)–(8.20) has the following properties:
(i) the solution uni exists and is unique, for all i = 0, . . . , I, and n > 1;
(ii) it satisfies uni > 0, and uni 6M for the case (8.9), if it is initially true.

Proof. As for the gradient flow approach, the above choice makes the scheme monotone,
because

∂1Fi+ 1
2
(un+1
i , un+1

i+1 ) =−
(
−1− un+1

i+1 ψ
′(un+1

i )
[
vni+1 − vni

]
− − ψ(un+1

i+1 )
[
vni+1 − vni

]
+

)
> 0.

Thus, arguing as for the gradient flow approach and relying on the results in Appendix 8.8,
existence and uniqueness of the discrete solution as well as preservation of the initial bounds
follow immediately.

Thus, choice (8.24) enables to prove that the scheme is well-defined, satisfies uni > 0 and
preserves the bound uni 6 M for the case (8.9), but the energy dissipation inequality is
lost. Also the steady states, in this case, are defined by the nonlinear relation ui+1 − ui =
ϕ(u)i+1/2(vi+1 − vi) which are usually not in the form (8.17).

8.6 Numerical simulations

8.6.1 The Fokker-Planck equation, ϕ(u) = u

We first present the numerical implementation of the Fokker-Planck equation with ϕ(u) =
u. We do not consider the gradient flow approach which requires to solve a nonlinear
fixed point unlike the other methods. The Scharfetter-Gummel and upwind approaches
are linear and can be compared, in fact they only require the solution of a tri-diagonal
system at each time step.

We consider a first case with χ/D = 24, with I = 100 and an initial density u0 = 1. We
take the velocity field as

v = x(1− x)|x− 0.3|.
In 8.1, we compare the approximate stationary solutions obtained with the upwind scheme
(blue, dashed line) and the Scharfetter-Gummel scheme (red line) with the exact sta-
tionary solution (black line), which in this case has the form u(x) = Ceχv(x)/D, with

C =
(∫ 1

0 e
χv(x)/Ddx

)−1
so that the mass of the solution is constant in time. In this first

case, the two schemes have no significant differences; this is a major difference with the
Keller-Segel equation, as we show it in the next subsection.
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Figure 8.1: Left: Comparison of solutions of the Scharfetter-Gummel (red line) and upwind
(blue, dashed line) schemes at time t = 100 with the exact stationary solution (black line) for the
linear Fokker-Planck equation with ϕ(u) = u. Right: Dynamics of discrete solutions.

8.6.2 The nonlinear Keller-Segel equation

We turn to the equation (8.1) coupled with (8.2) for two nonlinear forms of the chemotactic
sensitivity function: the logistic form ϕ(u) = u(1 − u) and the exponential form ϕ(u) =
ue−u. The goal is to compare the discrete solutions obtained with the three numerical
approaches presented above when patterns arise, namely when Turing instabilities drive
the formation of spatially inhomogeneous solutions (we refer to [120] for an introduction
to this topic). To this end, we slightly modify the original equation (8.1) to





∂u
∂t − ∂

∂x

[
D ∂u
∂x − χϕ(u) ∂v∂x

]
= 0, x ∈ (0, 1), t > 0,

D ∂u
∂x − χϕ(u) ∂v∂x = 0, for x = 0 or 1,

u(x, 0) = u0(x) > 0, x ∈ [0, 1],

(8.25)

in order to emphasise the coefficients driving the instabilities: D > 0, the constant diffusion
coefficient and χ > 0, the chemosensitivity. The concentration of the chemoattractant v
remains driven by (8.2).
We first consider the logistic case with χ/D = 40. We take as initial condition a random
spatial perturbation of the constant steady state u0 = 0.5 and solve the equation with 100
equidistant points in [0, 1].

Figure 8.2 shows the evolution in time of the density uni obtained with the Scharfetter-
Gummel (red line) and the gradient flow approach (black, dashed line). After a rather
short-time period, the initial spatial perturbation evolves, as expected, in spatially inho-
mogeneous patterns: a series of “steps” arise in the regions where the concentration of the
chemoattractant is greater. After some time, a structure with a smaller number of steps
forms when the two central plateaus merge. It is worth noticing that, even if the transitions
from one structure to another happen very quickly, the time period during which these
structures remain unchanged grows with the number of transitions that occurred. In [137],
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Figure 8.2: Evolution in time of solutions to (8.25) in the logistic case ϕ(u) = u(1 − u)
with χ/D = 40. We solved the equation with the Scharfetter-Gummel (red line) and the gradient
flow scheme (black dashed line) with I = 100 and ∆t = 1. There is no major difference between
the solutions given by the two approaches.
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Figure 8.3: Evolution in time of solutions to (8.25) in the logistic case ϕ(u) = u(1 − u)
with χ/D = 40. We solved the equation with the Scharfetter-Gummel (red line) and the upwind
scheme (blue, dashed line) with I = 100 and ∆t = 1. The upwind solution transitions faster from
one metastable state to the following, while the Scharfetter-Gummel scheme preserves discrete
stationary profiles.
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where the inter-transitions patterns are called metastable, this peculiar phenomenon is ex-
plained in details. As for the schemes, Figure 8.2 shows that the Scharfetter-Gummel
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Figure 8.4: Stationary profiles and dynamics. (A), (B) Comparison of the stationary
profiles of solutions to the Scharfetter-Gummel (red line) and the upwind (blue, dashed line)
schemes at t = 50 and t = 9000. The Scharfetter-Gummel scheme approximates the expected
0-1 plateaus better, while the solution to the upwind scheme has smoother edges. (C) The dy-

namics of solutions represented by the quantity ‖u
n−un−1‖∞
‖un−1‖∞

. Peaks correspond to transitions.
The Scharfetter-Gummel and the gradient flow solutions have smaller errors when they reach a
metastable profile.
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Figure 8.5: Evolution in time of solutions to (8.25) in the exponential case ϕ(u) = ue−u

with χ/D = 24. We solved the equation with the Scharfetter-Gummel (red line) and the gradient
flow schemes (black, dashed line) with I = 100 and ∆t = 1. As for the logistic model, the two
schemes give the same solution.

and the gradient flow approaches give the same solution; no difference can be spotted.
This is not true for the upwind approach. In Figure 8.3, we compare the solutions to
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the Scharfetter-Gummel (red line) and the upwind (blue, dashed line) schemes. The up-
wind solution transitions faster from one metastable structure to the following than the
Scharfetter-Gummel one. In fact, as proved above, the latter preserves discrete stationary
profiles which, using the no-flux boundary conditions, solve the equation

∂u

∂x
=
χ

D
ϕ(u)

∂v

∂x
. (8.26)

From (8.26), it is clear that, in the logistic case, the expected stationary solutions are 0-1
plateaus (or “steps”) connected by a sigmoid curve which is increasing or decreasing when
v is. We refer again to [137] and also to [53] for a detailed study of the stationary solu-
tions and their properties for the logistic Keller-Segel system. In Figures 8.4a and 8.4b,
we compare two stationary solutions to the Scharfetter-Gummel and upwind schemes, at
time t = 50 and t = 9000 respectively. The Scharfetter-Gummel scheme approximates
the 0-1 plateaus better than the upwind scheme, whose solutions have smoother edges.
Moreover, in 8.4c we compare the L∞ dynamics of the three schemes, computing the
quantity

∥∥un − un−1
∥∥
∞ /

∥∥un−1
∥∥
∞ for each n. The peaks shown by this figure correspond

to the transitions from one profile to another. Observe that, for both solutions of the
Scharfetter-Gummel and the gradient flow scheme, the two peaks are further away in time
than the ones from the upwind scheme: this confirms that the upwind solution is in ad-
vance when it comes to transitioning. Nevertheless, from t ≈ 6000, the relative errors of
the upwind solution are consistently greater that the ones from the two other approaches,
thus confirming that only the Scharfetter-Gummel and the gradient flow schemes preserve
the exact discrete stationary profiles. Notice however that none of the schemes produce
overshoot, due to our upwinding of the term in ψ(u). Next, we consider an exponentially
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Figure 8.6: Stationary profiles and dynamics. (A), (B) Comparison of the stationary
profiles obtained with the Scharfetter-Gummel (red line) and the upwind scheme (blue, dashed
line) at t = 50 (left) and t = 200. (C) Dynamics of solutions to the three schemes: observe
that the upwind approach, even though it is faster, has greater errors when stationary profiles are
reached.

decreasing form of the chemotactic sensitivity function with χ/D = 24. Again, we take as
initial condition a random spatial perturbation of the constant steady state u0 = 0.7 and
solve the equation on 100 equidistant points. The evolution in time of discrete solutions
obtained with the three numerical approaches are compared in Figures 8.5 and 8.7. In
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Figure 8.7: Evolution in time of solutions to (8.25) in the exponential case ϕ(u) = ue−u

with χ/D = 24. We compare the solutions of the Scharfetter-Gummel (red line) and the upwind
schemes (blue, dashed line) obtained with I = 100 and ∆t = 1 for different times.

this model, no initial upper bound for the solution is imposed, so that the cells aggregate
“naturally” where the chemoattractant has the greatest concentration, resulting in profiles
without the plateaus observed in the logistic model. However, solutions face the same kind
of transitions observed before, evolving from one stationary profile to another. As before,
the Scharfetter-Gummel and the gradient flow approaches give the same solutions (8.5),
while the solution of the upwind scheme evolves faster since we cannot expect conservation
of the stationary profiles for this approach (8.7). In Figures 8.6a and 8.6b, we compare sta-
tionary profiles obtained with the different approaches while in 8.6c we compare dynamics
of the solutions. This last figure shows that, as for the logistic model, smaller errors can
be expected for the Scharfetter-Gummel and gradient flow approaches when steady states
are reached.

8.7 Conclusion

In the context of the Generalised Keller-Segel system, we have presented constructions
of numerical schemes which extend previous works [106, 32], built on two different views
of energy dissipation. Our construction unifies these two views, the gradient flow and
Scharfetter-Gummel symmetrisations. Our schemes preserve desirable continuous proper-
ties: positivity, mass conservation, exact energy dissipation, discrete steady states. Being
correctly tuned between implicit and explicit discretisation, they can handle large time
steps without CFL condition.

The present work is motivated by experiments of breast cancer cells put in a 3D structure
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mimicking the conditions they meet in vivo, namely in the extracellular matrix. After a
few days, confocal Images/ of 2D sections show that cells have organised as spheroids, a
phenomenon believed to be driven by chemotaxis. The spheroids can then be interpreted
as Turing patterns for Keller-Segel type models and it is crucial to use appropriate schemes
for them to be distinguishable from actual steady states or numerical artifacts. Comparing
2D simulations of such models with these experimental images will be the subject of future
work.

In fact, it is important to remark that the schemes we presented here in 1D could easily
be extended to rectangular domains, without loss of properties (8.3)–(8.6). However, it
remains a perspective to treat more general geometries in a multi-dimensional setting with
our approach.

8.8 Appendix C: well-posedness for monotone schemes

We recall sufficient conditions for which an implicit Euler discretisation in time can be
solved, independently of the step-size. This is the case for a monotone scheme. The proof
relies on the existence of sub and supersolutions, and thus also yields the preservation of
positivity and other pertinent bounds as we have used in Section 8.5.

We consider the problem of finding a unique solution
(
un+1
i

)
to the nonlinear equation

arising in Section 8.5 which reads

un+1
i − uni

∆t
+

1

∆x2

[
F (uni , u

n
i+1, v

n
i , v

n
i+1, u

n+1
i , un+1

i+1 )︸ ︷︷ ︸
Fn+1

i+ 1
2

−Fn+1
i− 1

2

]
= 0, i = 1, . . . , I.

With simplified notations, we thus consider the problem of finding a solution (ui) (which
stands for un+1

i ) to

ui +Ai+ 1
2
(ui, ui+1)−Ai− 1

2
(ui−1, ui) = fi, i = 1, . . . , I, (8.27)

where we assume that the fi are given (it stands for uni ) and that the Ai are Lipschitz
continuous and, a.e.,

∂1Ai+ 1
2
(·, ·) > 0, ∂2Ai+ 1

2
(·, ·) 6 0, (8.28)

and there are a supersolution (Ūi)i=1 ...,I and a subsolution (U i)i=1 ...,I

Ūi+Ai+ 1
2
(Ūi, Ūi+1)−Ai− 1

2
(Ūi−1, Ūi) > fi, U i+Ai+ 1

2
(U i, U i+1)−Ai− 1

2
(U i−1, U i) 6 fi.

We build a solution of (8.27) using an evolution equation

dui(t)

dt
+ ui(t) +Ai+ 1

2
(ui(t), ui+1(t))−Ai− 1

2
(ui−1(t), ui(t)) = fi. (8.29)
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Theorem 8.1. Assume (8.28) and the existence of a subsolution and of a supersolution.
Then,
(i) For a supersolution (resp. subsolution) initial data, the dynamics (8.29) satisfies
dūi(t)
dt 6 0 (resp. dui(t)

dt > 0) for all times t > 0, and thus ūi(t) is a supersolution (resp.
subsolution) for all times.
(ii) A subsolution is smaller than a supersolution.
(iii) ūi(t) and ui(t) converge to the same solution of (8.27).

Proof. (i) We prove the statement with the supersolution. We set

zi(t) =
dūi(t)

dt
, zi(0) 6 0.

Differentiating the equation, we obtain

dzi(t)

dt
+ zi(t) + [∂1Ai+ 1

2
− ∂2Ai− 1

2
] zi(t) = −∂2Ai+ 1

2
zi+1(t) + ∂1Ai− 1

2
zi−1(t).

The solution cannot change sign and thus zi(t) 6 0 for all times.
(ii) Consider u, (v) sub (super) solutions. Set w = u−v and we want to prove that w 6 0.
We write

wi + [Ai+ 1
2
(ui, ui+1)−Ai+ 1

2
(vi, ui+1)] + [Ai+ 1

2
(vi, ui+1)−Ai+ 1

2
(vi, vi+1)]

− [Ai− 1
2
(ui−1, ui)−Ai− 1

2
(vi−1, ui)]− [Ai− 1

2
(vi−1, ui)−Ai− 1

2
(vi−1, vi)] 6 0.

Multiply by sgn+(wi) and add the relations to conclude that

I∑

i

(wi)+ +

I−1∑

i

Ji+ 1
2

+

I−1∑

i

Ki+ 1
2

= 0,

with
Ji+ 1

2
= [Ai+ 1

2
(ui, ui+1)−Ai+ 1

2
(vi, ui+1)] [sgn+(wi)− sgn+(wi+1)],

Ki+ 1
2

= [Ai+ 1
2
(vi, ui+1)−Ai+ 1

2
(vi, vi+1)] [sgn+(wi)− sgn+(wi+1)].

For each of the these terms, we show that Ji+ 1
2
> 0, Ki+ 1

2
> 0, as follows. Only the

case when the + signs in the right brackets are different has to be considered. Assume for
instance that

ui > vi, and ui+1 6 vi+1.

Then, we have by assumption (8.28),

[Ai+ 1
2
(ui, ui+1)−Ai+ 1

2
(vi, ui+1)] > 0 ⇒ Ji+ 1

2
> 0,

[Ai+ 1
2
(vi, ui+1)−Ai+ 1

2
(vi, vi+1)] > 0 ⇒ Ki+ 1

2
> 0.

Therefore
∑

i(wi)+ 6 0 and this implies wi 6 0 for all i.
(iii) This is clear since the limits are solutions.
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