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Résumé / Abstract

Les mathématiques à rebours de théorèmes de type Ramsey

Dans cette thèse, nous investiguons le contenu calculatoire et la force logique du théorème
de Ramsey et de ses conséquences. Pour cela, nous utilisons les outils des mathématiques à
rebours et de la réduction calculatoire. Nous procédons à une analyse systématique de divers
énoncés de type Ramsey à travers des outils unifiés et minimalistes, et obtenons une analyse
précise de leurs interdépendances.

Nous clarifions notamment le role du nombre de couleurs dans le théorème de Ramsey.
En particulier, nous montrons que la hiérarchie du théorème de Ramsey induite par le nombre
de couleurs est strictement croissante au niveau des réductions calculatoires, et exhibons en
mathématiques à rebours une hiérarchie infinie décroissante de théorèmes de type Ramsey en
affaiblissant les contraintes d’homogénéité. Ces résultats tendent à montrer que les énoncés de
type Ramsey ne sont pas robustes, c’est-à-dire que de faibles variations des énoncés mènent à
des sous-systèmes strictement différents.

Enfin, nous poursuivons l’analyse des liens entre les théorèmes de Ramsey et les arguments
de compacité, en étendant le théorème de Liu à de nombreux énoncés de type Ramsey et en
prouvant son optimalité sous différents aspects.

The reverse mathematics of Ramsey-type theorems

In this thesis, we investigate the computational content and the logical strength of Ramsey’s
theorem and its consequences. For this, we use the frameworks of reverse mathematics and of
computable reducibility. We proceed to a systematic study of various Ramsey-type statements
under a unified and minimalistic framework and obtain a precise analysis of their interrelations.

We clarify the role of the number of colors in Ramsey’s theorem. In particular, we show that
the hierarchy of Ramsey’s theorem induced by the number of colors is strictly increasing over
computable reducibility, and exhibit in reverse mathematics an infinite decreasing hiearchy of
Ramsey-type theorems by weakening the homogeneity constraints. These results tend to show
that the Ramsey-type statements are not robust, that is, slight variations of the statements lead to
strictly different subsystems.

Finally, we pursuit the analysis of the links between Ramsey’s theorems and compacity
arguments, by extending Liu’s theorem to several Ramsey-type statements and by proving its
optimality under various aspects.
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Introduction (Français)

Le présent document est un rapport de thèse résultant de trois années de recherche sous la
supervision de Laurent Bienvenu et Hugo Herbelin. Nous commençons par une introduction
gentille aux domaines mathématiques dont il est question, puis nous fournissons un résumé
détaillé de la thèse ainsi que de ses principales contributions.

Calculabilité et mathématiques à rebours

Cette thèse contribue au domaine des mathématiques à rebours d’un point de vue calculatoire.
Nous introduirons brièvement la calculabilité, qui fournit un environnement de travail solide
pour parler de la notion d’ensemble calculable. Ensuite, nous effectuerons une introduction
aux mathématiques à rebours avec une orientation calculatoire, en présentant ses principales
motivations et ses défis.

Calculabilité

Informellement, un ensemble d’entiers naturels est calculable si l’on peut décider de manière
effective quels sont les éléments lui appartenant. En ce sens, tout ensemble fini est calculable dans
la mesure où l’on peut apprendre par cœur la liste de ses éléments. En revanche, lorsqu’il s’agit
d’ensembles infinis, il faut trouver une méthode systématique (ou algorithme) pour effectuer une
telle décision. La thèse de Church-Turing énonce que la notion d’ensemble calculable est robuste,
en ce que tout modèle de calcul raisonnable définit la même classe d’ensembles calculables.
Ainsi, l’on peut aisément se convaincre qu’un ensemble est calculable en écrivant un algorithme
de décision dans n’importe quel langage de programmation standard.

Bien que définie pour des entiers naturels, la notion d’ensemble calculable s’étend à n’importe
quel type de données par une simple technique de codage. Toutes les fonctions de codage que
nous considérerons sont calculables. De ce fait, il sera possible de parler indifféremment d’une
structure de données ou de l’ensemble d’entiers naturels correspondant. Par exemple, un couple
d’entiers (a,b) peut être codé par l’entier 2a3b. A partir d’une fonction de couplage, il est
possible de définir un codage des chaînes d’entiers, et ainsi de suite.

Combien y a-t-il d’ensembles calculables ? Dès lors que chaque ensemble calculable vient
avec un algorithme de décision, il ne peut y en avoir qu’un nombre dénombrable. Par un
simple argument diagonal, l’on peut montrer que la collection de tous les ensembles n’est pas
dénombrable, et ainsi que la vaste majorité des ensembles d’entiers naturels est incalculable.
L’exemple le plus connu d’un tel ensemble non calculable est le problème de l’arrêt, défini
comme l’ensemble des (codes de) programmes qui terminent.

Lorsqu’un ensemble n’est pas calculable, il est naturel de se demander à quel point il
ne l’est pas. Par exemple, pourrions-nous calculer cet ensemble si nous étions capable de
résoudre le problème de l’arrêt ? Il est possible d’étendre la notion d’ensemble calculable en
ajoutant la fonction caractéristique χY d’un ensemble Y parmi les primitives de son langage
de programmation préféré. La fonction χY n’est pas calculable, et doit être par conséquent
considérée comme un oracle. Un ensemble X décidable par un algorithme dans ce langage
étendu est dit calculable relativement à Y . On l’abrège usuellement par X ≤T Y (où T tient
de Turing). Si X ≤T Y , alors l’ensemble Y est au moins aussi difficile à calculer que X . Il est
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possible de définir une hiérarchie infinie de degrés d’incalculabilité, dans le même esprit que la
hiérarchie d’infinitudes révélée par Cantor.

La notion d’ensemble calculable admet une caractérisation purement logique en terme de
formules de l’arithmétique. Fixons un ensemble infini de variables de nombres x,y,z, . . . , qui
sont supposées prendre pour valeur des entiers naturels. Nous pouvons former des expressions

numériques en les utilisant comme des paramètres dans des additions et multiplications d’entiers.
Par exemple, (3+ x) · y est une expression numérique, qui, après avoir remplacé x par 18 et y

par 2, s’évalue en l’entier 42. Il est ensuite possible de définir des formules en reliant deux
expressions numériques par une égalité = ou une inégalité ≤, en utilisant des quantificateurs sur
les entiers (∃x) (il existe x) et (∀x) (pour tout x), des quantificateurs bornés (∃x ≤ y), (∀x ≤ y),
et en les composant avec des connecteurs logiques tels que ∧, ∨, ¬, →, ≡ (et, ou, non, implique,
si et seulement si). Par exemple, la formule (∀x)(∃y ≤ x)(x = 2y∨ x = 2y+1) est une formule
affirmant que tout nombre x est soit pair, soit impair.

Une formule ϕ contenant une variable libre, c’est-à-dire, telle que x n’apparaît pas sous le
champ d’un quantificateur, peut être associée à un ensemble Sϕ , défini comme l’ensemble de
tous les entiers naturels n tels que la formule ϕ est satisfaite en replaçant x par n. Par exemple, la
formule (∃y)(x = 2y) définit l’ensemble S = {n : (∃y)(n = 2y)} qui n’est autre que l’ensemble
des entiers pairs. Il est possible de classifier la complexité des formules en fonction de leur
alternance de quantificateurs. Une formule est Σ0

1 (resp. Π0
1) si elle est de la forme (∃x)ϕ (resp.

(∀x)ϕ), où ϕ est une formule ne contenant que des quantificateurs bornés. Un ensemble est dit
Σ0

1 s’il est défini par une formule Σ0
1. Les ensembles Π0

1 sont définis similairement. Intuitivement,
les ensembles Σ0

1 sont ceux dont les éléments peuvent être énumérés, car il suffit de tester chaque
valeur de x jusqu’à en trouver une pour laquelle la formule ϕ correspondante est satisfaite. Un
ensemble est ∆0

1 s’il est à la fois Σ0
1 et Π0

1. Un célèbre théorème d’Emil Post énonce que les
ensembles ∆0

1 sont exactement les ensembles calculables. Ce théorème n’est qu’un point de
départ de toute une correspondance entre la calculabilité et la définissabilité par des formules.

Nous avons maintenant les bases de calculabilité nécessaires à une introduction aux mathé-
matiques à rebours.

Mathématiques à rebours

Un axiome est un énoncé mathématique pris comme un postulat. Étant donné un ensemble
d’axiomes, souvent appelé théorie, et des règles de déduction, on peut dériver des conséquences
mathématiques appelées théorèmes. D’un point de vue purement mathématique, un axiome et
un théorème ne sont rien d’autre que des énoncés mathématiques. La seule différence est qu’un
axiome est auto-justifié, tandis qu’il faut fournir la preuve d’un théorème.

Il est raisonnable de vouloir qu’une théorie soit calculatoirement énumerable, c’est-à-dire,
que l’ensemble de ses axiomes soit Σ0

1. En effet, l’on voudrait être capable de savoir quels
axiomes sont disponibles pour prouver un théorème. Heureusement, la vaste majorité des
formalisations de concepts aboutit de fait à des théories calculatoirement énumérables. C’est
en particulier le cas de la théorie des ensembles. Dans son premier théorème d’incomplétude,
Gödel affirme qu’une telle théorie, si elle est cohérente et suffisamment expressive, ne peut
être qu’incomplète, c’est-à-dire qu’elle contient des énoncés mathématiques qui ne sont ni
prouvables, ni réfutables. Ce théorème exclus tout espoir de trouver un jour un ensemble
calculable d’axiomes qui nous permettrait de décider n’importe quel énoncé mathématique. Il
en résulte que le programme fondationnel de recherche d’axiomes naturels que nous pourrions
ajouter à la théorie des ensembles est un processus non terminé, et un sujet de recherche toujours
actif.

Les mathématiques à rebours sont un vaste programme mathématique cherchant à déterminer
quels axiomes sont nécessaires pour prouver les théorèmes des mathématiques. L’idée sous-



13

jacente est très simple. Retirez tous les axiomes forts de la théorie des ensembles, et gardez
seulement une théorie de base très faible, dans laquelle presque aucun des théorèmes usuels n’est
prouvable. Cette théorie doit cependant être suffisamment forte pour pouvoir formaliser toutes
les astuces triviales de codage que nous utilisons, et ainsi ne pas dépendre de la présentation des
structures de données utilisées. Ensuite, choisissez un théorème ordinaire P, utilisé dans la vie de
tous les jours, et essayez de le prouver avec un nombre minimal d’axiomes. Parfois, le théorème
P est directement prouvable dans la théorie de base. Dans ce cas, cela signifie que le théorème
ne possède pas une preuve complexe, puisque nous avons choisi une théorie de base très faible.
Lorsque ce n’est pas le cas, nous devons ajouter certains axiomes A0,A1, . . . ,An à la théorie de
base pour prouver P. A ce niveau, nous savons que les axiomes A0,A1, . . . ,An sont suffisants

pour prouver P, mais comment s’assurer qu’ils sont vraiment nécessaires ? Il suffit simplement
d’essayer de prouver la réciproque, c’est-à-dire d’ajouter le théorème P à la théorie de base, et
essayer de prouver A0 ∧A1 ∧ ·· · ∧An. Si nous réussissons, alors nous venons de prouver que,
dans la théorie de base, les axiomes A0,A1, . . . ,An sont les minimaux requis pour prouver P.

Le programme des mathématiques à rebours a été initié par Harvey Friedman en 1975. Depuis
lors, de nombreux chercheurs ont contribué à son développement, le contributeur le plus notable
étant Stephen Simpson. Des milliers de théorèmes provenant des domaines principaux des
mathématiques ont été étudiés, notamment en algèbre, en analyse et en topologie. Un phénomène
surprenant est apparu aux débuts des mathématiques à rebours: la plupart des théorèmes étudiés
ne nécessite que des axiomes très faibles. Plus encore, nombre d’entre eux se trouvent être
équivalents à l’un parmi cinq grands ensembles d’axiomes, plus connus sous le nom de Club

des Cinq. Ces cinq ensembles d’axiomes correspondent à des approches philosophiques bien
connues. Une partie de la recherche actuelle consiste à essayer de comprendre ce phénomène, et
en particulier à étudier les théorèmes échappant au Club des Cinq.

Nous allons maintenant entrer dans le détail des mathématiques à rebours et de la théorie de
base. Pour cela, nous devons étendre notre notion de formule à l’arithmétique du second ordre.
Prenons notre précédent langage, augmenté de primitives pour parler d’ensembles d’entiers
naturels. Plus précisément, il nous faut fixer une collection de variables d’ensembles X ,Y,Z,
et étendre notre précédente notion de formule avec la relation de possession (n ∈ X) et des
quantificateurs sur les ensembles (∀X), (∃X). Par exemple, la formule (∃X)(∀x)[x ∈ X ↔ x < 5]
énonce que l’ensemble des entiers naturels inférieurs à 5 existe. Harvey Friedman ayant remarqué
que la grande majorité des théorèmes mathématiques pouvait être énoncé de manière naturelle
dans le langage de l’arithmétique du second ordre, nous pouvons restreindre le programme des
mathématiques à rebours aux énoncés mathématiques de l’arithmétique du second ordre sans
trop perdre en généralité.

Dans ce contexte, un axiome précise le comportement des entiers naturels et ensembles
d’entiers naturels, que nous appellerons respectivement partie du premier ordre et partie du

second ordre. Par exemple, l’énoncé “0 6= 1” est un axiome. Plus la théorie de base aura
d’axiomes, moins ses modèles seront chaotiques. La théorie de base RCA0, signifiant Axiome
de Compréhension Récursif, contient un ensemble d’axiomes du premier ordre connu sous le
nom d’arithmétique de Robinson. Ces axiomes décrivent le comportement des entiers naturels
vis-à-vis de l’addition, la multiplication et de l’ordre. Par le théorème de compacité, il n’est pas
possible d’exclure tous les comportements non-standards des entiers naturels simplement avec
des axiomes du premier ordre, mais l’arithmétique de Robinson s’assure qu’ils vont au moins se
comporter comme prévu vis-à-vis des opérations standards.

RCA0 contient également des axiomes du second ordre, qui vont décrire quels ensembles
d’entiers naturels sont assurés d’exister. Les axiomes du second ordre de RCA0 peuvent être
classifiés selon deux catégories: les axiomes d’induction et les axiomes de compréhension. Étant
donnée une formule ϕ(x) avec une variable de nombre distinguée x, l’axiome d’induction pour
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ϕ énonce que si ϕ(0) est vrai, et ϕ(n+1) est vrai lorsque ϕ(n) l’est, alors ϕ(n) est satisfaite
pour tout entier naturel n. L’axiome de compréhension pour ϕ énonce que la collection des n’s
tels que ϕ(n) est satisfaite existe en tant qu’ensemble. On dénote par {n : ϕ(n)} cet ensemble.
Les axiomes d’induction et de compréhension peuvent être vus comme des méthodes pour
construire de nouveaux ensembles à partir de ceux existants dans les modèles. RCA0 contient le
schéma d’induction pour toute formule Σ0

1, et le schéma de compréhension pour tout prédicat ∆0
1.

Par la correspondance entre les prédicats ∆0
1 et les ensembles calculables, nous n’autorisons la

construction de nouveaux ensembles que calculatoirement à partir des précédents ensembles. En
ce sens, RCA0 capture les mathématiques calculables.

De nombreux théorèmes peuvent être vus comme des problèmes mathématiques, venant
avec une classe naturelle d’instances, et de solutions pour chaque instance. Par exemple, le
lemme de König énonce pour tout arbre infini à branchement fini l’existence d’un chemin infini à
travers l’arbre. Ici, l’instance est un arbre infini à branchement fini T , et une solution de T est un
chemin infini à travers T . Il existe une notion naturelle de réduction calculatoire d’un problème
P vers un autre problème Q (noté P ≤c Q), signifiant que toute instance X0 de P calcule une
instance X1 de Q telle que toute solution de X1 calcule (avec l’aide de X0) une solution de X0.
Informellement, P≤c Q si nous pouvons résoudre calculatoirement le problème mathématique P
à partir d’une boite noire permettant de résoudre Q. Une réduction calculatoire de P vers Q peut
être vue comme une preuve de Q→ P dans RCA0, dans laquelle une seule application de Q est
autorisée. En ce sens, la réduction calculatoire est plus précise que les mathématiques à rebours.
En particulier, cela permet de révéler de subtiles distinctions entre des énoncés mathématiques
qui seraient indistinguables du point de vue des mathématiques à rebours.

Résumé de la thèse

Nous commençons cette section en expliquant plus précisément le contenu de cette thèse. Nous
détaillerons ensuite ces explications chapitre par chapitre, puis nous terminerons avec un résumé
des principales contributions de cette thèse.

Le sujet

Cette thèse porte sur les mathématiques à rebours d’énoncés mathématiques venant de la théorie
de Ramsey. La théorie de Ramsey est une branche des mathématiques étudiant les conditions
sous lesquelles une certaine structure apparaît dans une collection d’objets suffisamment grande.
Par exemple, dans tout groupe de six personnes, au moins trois personnes se connaissent
mutuellement ou se sont étrangères mutuellement. Le plus connu de ces théorèmes est peut-
être le théorème de Ramsey, qui énonce que pour tout k-coloriage de [N]n (où [N]n dénote les
n-uplets d’entiers naturels), il existe un ensemble infini d’entiers naturels H tel que [H]n est
monochromatique. Un tel ensemble est dit homogène. En particulier, le théorème de Ramsey
pour les singletons (n = 1) n’est autre que la version infinie du principe des tiroirs, qui énonce
que si un nombre infini d’objets est réparti en k boites, au moins l’une des boites contient un
nombre infini d’objets.

Au cours des deux dernières décennies, la théorie de Ramsey est devenue l’un des sujets de
recherche les plus importants en mathématiques à rebours. Cette théorie fournit un large panel de
théorèmes échappant au phénomène du Club des Cinq, et dont la force logique est notoirement
difficile à évaluer. Nous effectuons une étude systématique de nombreuses conséquences du
théorème de Ramsey, parmi lesquelles le théorème d’Erdős-Moser, les théorèmes d’ensemble
libre, d’ensemble mince et le théorème de l’arc-en-ciel de Ramsey, avec les outils des mathéma-
tiques à rebours et de la réduction calculatoire. En outre, nous les comparons à de nombreux
théorèmes précédemment étudiés en mathématiques à rebours.
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Structure de la thèse

Cette thèse est divisée en 4 parties: un préambule, la force du théorème de Ramsey, des études
thématiques, et une conclusion. Nous allons maintenant expliquer brièvement le contenu de
chaque partie.

Dans le préambule, nous introduisons les concepts de base de la calculabilité que nous aurons
à manipuler. Puis nous présentons une introduction détaillée des mathématiques à rebours et
du phénomène du Club des Cinq. Ensuite, nous comparons les mathématiques à rebours à
différentes notions de réductions introduites récemment, et qui mettent l’accent sur certains
aspects calculatoires des théorèmes considérés. Enfin, nous introduisons la principale technique
de séparation utilisée tout au long de cette thèse: le forcing effectif. Cette technique est un
raffinement de la notion de forcing de Cohen dans le but de préserver certaines propriétés
calculatoires.

Dans la second partie, nous effectuons une étude systématique du théorème de Ramsey et
d’un certain nombre de ces conséquences, en mathématiques à rebours et avec la réduction
calculatoire. Nous considérons principalement des théorèmes bien établis et qui ont déjà été
introduits en mathématiques à rebours. Parmi eux, nous étudions la cohésion, une version stable
du théorème de Ramsey pour les paires, le théorème d’Erdős-Moser, les théorèmes d’ensemble
libre, d’ensemble mince et le théorème de l’arc-en-ciel de Ramsey. Nous fournissons des preuves
simplifiées de séparations existantes avec un ensemble d’outils uniformisés et minimalistes, et
résolvons de nombreuses questions ouvertes.

La troisième partie est plus thématique. Nous étudions différents théorèmes en mathéma-
tiques à rebours sous certains angles calculatoires. En premier lieu, nous étudions l’existence
d’instances maximalement difficiles à résoudre (instances universelles) de théorèmes de type
Ramsey, et les degrés de Turing dominant leurs solutions. Ensuite, nous montrons l’orthogonalité
de différents théorèmes de type Ramsey vis-à-vis de la compacité. Nous identifions également
une nouvelle classe de théorèmes généralisant le théorème de Ramsey pour les paires, et dont
la force calculatoire est actuellement inconnue. Enfin, nous concevons de nouvelles notions
de forcing avec de meilleures propriétés de définissabilité, dans l’espoir de prouver que les
hiérarchies des théorèmes d’ensemble libre, d’ensemble mince et de l’arc-en-ciel de Ramsey,
sont strictes en mathématiques à rebours.

Dans la conclusion, nous discutons de la naturalité des outils utilisés pour étudier les énoncés
de type Ramsey en mathématiques à rebours, et essayons de donner de nouvelles perspectives
sur le rôle des théorèmes de type Ramsey par rapport au phénomène du Club des Cinq. Nous
fournissons ensuite une liste de questions ouvertes restantes, avec leurs motivations et des
explications sur la raison de leur difficulté.

Principales contributions

Au cours de cette thèse, nous résolvons 25 questions ouvertes, venant de 17 papiers différents.
Nous allons maintenant détailler les principales contributions originales de cette thèse.

• La principale contribution est probablement d’ordre méthodologique. En accord avec le
fameux proverbe “Si tu donnes un poisson à un homme, il mangera un jour. Si tu lui ap-

prends à pêcher, il mangera toujours”, nous sommes davantage intéressés par le développe-
ment d’outils permettant de séparer de manière systématique des théorèmes en mathéma-
tiques à rebours, plutôt que par les séparations en tant que telles. Dans [Pat15c], nous avons
présenté une simplification d’outils introduits par Lerman, Solomon et Towsner [LST13].
Nous montrons que ces outils sont suffisamment généralistes pour reprouver différentes
séparations avec des arguments plus simples (Corollaire 10.3.6, Corollaire A.2.10) et
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séparer le théorème de Ramsey pour les pairs du théorème des arbres pour les pairs
(Théorème 14.0.1), répondant par cela même à une question de Montálban [Mon11].

• Parmi les contributions importantes, mentionnons la séparation du théorème de Ramsey
pour k+1 couleurs du théorème de Ramsey pour k couleurs sous la réduction calculatoire
(Théorème 6.0.1). Cette question fut initialement posée sous une forme plus faible par
Mileti [Mil04], puis pour la réduction de Weihrauch par Dorais, Dzhafarov, Hirst, Mileti,
et Shafer [Dor+16] qui l’ont considérée comme la plus importantes des questions non
résolues de leur article. Nous répondons aux deux questions. Hirschfeldt et Jockusch [HJ]
on récemment demandé combien d’applications du théorème de Ramsey pour m couleurs
sont nécessaires pour résoudre le théorème de Ramsey pour k couleurs en fonction de m et
k. Nous donnons une réponse précise à travers le Théorème 6.0.1.

• Nous révélons que la hiérarchie du théorème d’ensemble fin, basée sur le nombre de
couleurs est strictement décroissante en mathématiques à rebours (Théorème 8.3.1) et
que le théorème d’ensemble libre n’implique pas le théorème de Ramsey pour les paires
(Corollaire 8.5.3). Cela répond en particulier à de nombreuses questions de Cholak, Guisto,
Hirst, Jockusch [Cho+01] et de Montálban [Mon11].

• La séparation du théorème de Ramsey pour les paires du lemme faible de König est restée
ouverte pendant des décennies, jusqu’à ce que Liu [Liu12] la résolve récemment. Nous
étendons le théorème de Liu aux théorèmes d’ensemble libre, d’ensemble fin et d’arc-en-
ciel de Ramsey, montrant ainsi qu’aucun d’entre eux n’implique le lemme doublement
faible de König sous RCA0. Ces questions avaient été posées par Hirschfeldt [Hir15]
et leur réponse a fait intervenir une machinerie élaborée. Nous montrons également
l’optimalité du théorème de Liu en prouvant que le théorème de Ramsey pour les paires
n’évite pas les 1-énumerations d’ensembles clos (Corollaire 13.2.6).

• Nous montrons la faiblesse calculatoire du théorème d’Erdős-Moser, en prouvant qu’il
est borné par des degrés low2 (Section 12.3) et qu’il n’implique pas même le théorème
de modèle atomique (Section 10.5) en mathématiques à rebours. Ce dernier résultat
renforce les séparations pré-existences de Lerman, Solomon et Towsner [LST13] et de
Wang [Wan14c]. En particulier, cela répond à une question d’Hirschfeldt, Shore et
Slaman [HSS09] en montrant que la cohesion n’implique pas le théorème de modèle
atomique dans RCA0.

• Nous développons de nouvelles notions de forcing avec de bonnes propriétés définition-
nelles pour différents théorèmes de type Ramsey. L’existence de telles notions de forcing
peut être vue comme un pas en avant vers la preuve que les hiérarchies des théorèmes
d’ensemble libre, d’ensemble fin et d’arc-en-ciel de Ramsey basées sur la taille de leur
n-uplets est stricte. La question de savoir si ces hiérarchies sont strictes a été posée par
Cholak, Giusto, Hirst et Jockusch [Cho+01] et reste ouverte à ce jour. En particulier, nous
répondons positivement à deux conjectures de Wang [Wan14c] à travers le Théorème 15.2.1
et le Théorème 15.3.1.



Introduction (English)

This document is a thesis report resulting from three years of research under the supervision of
Laurent Bienvenu and Hugo Herbelin. We start with a gentle introduction to the mathematical
fields that we deal with here. We then give a detailed summary of the thesis and its main
contributions.

Computability theory and reverse mathematics

This thesis contributes to the domain of reverse mathematics under a computational perspective.
We briefly introduce computability theory, which provides a solid framework to talk about the
notion of computable set. We then provide a computationally-oriented introduction to reverse
mathematics with its main motivations and challenges.

Computability theory

Informally, a set of natural numbers is computable if one can effectively decide which elements
belong to it and which do not. In this sense, every finite set is computable since one can learn by
heart the list of its elements. However, when dealing with infinite sets, one must find a systematic
method (or algorithm) to make such a decision. The Church-Turing thesis asserts that the notion
of computable set is robust, in that any reasonable model of computation defines the same class
of computable sets. One can therefore easily get convinced that some set is computable by
writing a decision algorithm in any mainstream programming language.

Although defined over natural numbers, the notion of computable set extends to any data
structure by using a simple coding technique. All the coding functions we shall consider are
computable and therefore one can talk transparently about a data structure or its corresponding
set of natural numbers. For example, an ordered pair of integers (a,b) can be coded as the
integer 2a3b. Once we have a pairing function, we can define a coding of strings, and so on.

How large is the class of computable sets? Since each computable set comes with a decision
algorithm, there are only countably many of them. By a simple diagonal argument, one can show
that the collection of all sets is uncountable, and therefore that the vast majority of sets of natural
numbers is incomputable. The most famous example of such an incomputable set is the halting

problem, defined as the set of all the (codes of) programs which halt.
Whenever a set is not computable, one may naturally wonder how much incomputable it is.

For example, would we be able to compute the set if we were able to solve the halting problem?
One can extend the notion of computable set by adding the characteristic function χY of a set Y

among the primitives of any programming language. The function χY cannot be computed,
and must therefore be thought of as an oracle. A set X which is decidable by an algorithm in
this augmented language is said to be computable relative to Y . This is usually abbreviated
by X ≤T Y (where T stands for Turing). If X ≤T Y , then the set Y is at least as hard to compute

as X . One can define an infinite hierarchy of degrees of incomputability, in the same spirit as the
hierarchy of infinities revealed by Cantor.

The notion of computable set admits a purely logical characterization in terms of formulas in
arithmetic. Fix an infinite set of number variables x,y,z, . . . , which are intended to range over
natural numbers. We can form numerical expressions by using them as placeholders in some
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additions and multiplications of integers. For example, (3+ x) · y is a numerical expression,
which, once replaced x by 18 and y by 2, denotes the number 42. One can then define formulas

by relating two numerical expressions with the equality = or the inequality ≤, using number
quantifiers (∃x) (there exists x) and (∀x) (for all x), bounded quantifiers (∃x ≤ y), (∀x ≤ y), and
composing them with some logical connectives, such as ∧,∨,¬,→,↔ (and, or, not, implies, if
and only if). For example, the formula (∀x)(∃y ≤ x)(x = 2y∨ x = 2y+1) is a formula saying
that every number x is an even number or an odd number.

A formula ϕ with one free variable x, that is, such that x does not appear in a quantifier,
can be associated a set Sϕ , defined as the set of all the natural number n such that the formula
ϕ holds whenever x is replaced by n. For example, the formula (∃y)(x = 2y) defines the
set S = {n : (∃y)(n = 2y)} which is nothing but the set of even numbers. We can classify the
complexity the formulas in function of their alternation of quantifiers. A formula is Σ0

1 (resp. Π0
1)

if it is of the form (∃x)ϕ (resp. (∀x)ϕ), where ϕ is a formula with only bounded quantifiers. We
say that a set is Σ0

1 if it is defined by a Σ0
1 formula. Π0

1 sets are defined accordingly. Intuitively, Σ0
1

sets are those whose elements can be enumerated, since one can try each value of x until we find
one for which the corresponding formula ϕ holds. A set is ∆0

1 if it is both Σ0
1 and Π0

1. A famous
theorem from Emil Post asserts that the ∆0

1 sets are exactly the computable sets. This theorem is
only a bootstrap of a whole correspondence between computability and definability by formulas.

We now have the necessary background in computability theory to introduce reverse mathe-
matics.

Reverse mathematics

An axiom is a mathematical statement which is taken as a postulate. Given a set of axioms, often
called a theory, and some deduction rules, one can derive some mathematical consequences
called theorems. From a purely mathematical point of view, an axiom and a theorem are nothing
but mathematical statements. The only difference is that an axiom is self-justified, whereas a
theorem must be given a proof.

It is reasonable to require a theory to be computably enumerable, that is, such that the set of
axioms is Σ0

1. Indeed, one want to be able to know which axioms are available to prove a theorem.
Thankfully, the vast majority of formalizations of concepts yield computably enumerable theories.
This is in particular the case for set theory. In his first incompleteness theorem, Gödel asserts
that every such theory which is consistent and sufficiently expressive is incomplete, that is,
have mathematical statement which are neither provable, nor refutable. This theorem rules
out the hope to find one day a computable set of axioms which would enable us to decide any
mathematical statement. As a consequence, the foundational search for natural axioms we could
add to set theory is an unfinished process and still an active research subject.

Reverse mathematics is a vast mathematical program that seeks to determine which axioms
are required to prove theorems of mathematics. The underlying idea is very simple. Remove all
the strong axioms from set theory and keep only a very weak base theory, in which almost no
theorem is provable. This theory nevertheless has to be strong enough to formalize all the trivial
coding tricks we use, and therefore not to be depending on the presentation of the considered
data structures. Then choose an ordinary theorem P that is used in everyday life, and try to
prove it with the minimum number of axioms. Sometimes, the theorem P is directly provable
in the base theory. In this case, this means that the theorem does not have a very complex
proof since we chose a very weak base theory. When it is not the case, we need to add some
axioms A0,A1, . . . ,An to the base theory to prove P. At this stage, we know that the axioms
A0,A1, . . . ,An are sufficient to prove P, but how can we ensure that they are necessary? Simply
try to prove the reverse implication, that is, add the theorem P to the base theory, and try to prove
A0 ∧A1 ∧ ·· · ∧An. If we succeed, then we just proved that, over the base theory, the axioms
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A0,A1, . . . ,An are the minimal required to prove P.

The reverse mathematical program was founded by Harvey Friedman in 1975. Since then,
many researchers have contributed to this endeavor, the most notable contributor being Stephen
Simpson. Thousands of theorems have been studied from core mathematical areas, such as
algebra, analysis, topology, among others. A surprising phenomenon emerged from the early
years of reverse mathematics: Most theorems studied require very weak axioms. Moreover, many
of them happen to be equivalent to one of five main sets of axioms, that are referred to as the
Big Five. These five sets of axioms have been shown to correspond to well-known philosophical
approaches. There is an ongoing research to understand the reasons of this phenomenon, and in
particular which theorems escape the Big Five.

We now go into the details of the framework of reverse mathematics and the base theory. For
this, we need to extend our notion of formula to second-order arithmetic. Take our previous
language, augmented with some primitives to talk about sets of natural numbers. We therefore
fix a set of set variables X ,Y,Z, and extend our previous notion of formula with ownership
(n ∈ X) and quantifiers over sets (∀X), (∃X). For example, the formula (∃X)(∀x)[x ∈ X ↔ x < 5]
asserts that the set of natural numbers smaller than 5 exists. Harvey Friedman noticed that the
large majority of mathematical theorems could be naturally stated in the language of second-
order arithmetic. Therefore, one can restrict the reverse mathematical program to mathematical
statements from second-order arithmetic without loosing too much of generality.

In this setting, an axiom precises the behavior of the natural numbers and the sets of natural
numbers, that we refer to as the first-order part and the second-order part, respectively. For
example, the statement “0 6= 1” is an axiom. The more axioms the base theory has, the less
chaotic its models will be. The base theory RCA0, standing for Recursive Comprehension Axiom,
contains a set of first-order axioms known as Robinson arithmetic. These axioms describe the
behavior of the natural numbers with respect to addition, multiplication and order. By the
compactness theorem, it is not possible to exclude all non-standard behaviors of the natural
numbers with only first-order axioms, but Robinson arithmetic ensures that they will behave as
expected with respect to the standard operations.

RCA0 also contains second-order axioms which will describe which sets of natural numbers
are ensured to exist. The second-order axioms of RCA0 can be classified into two kinds: the
induction axioms and the comprehension axioms. Given a formula ϕ(x) with one distinguished
free number variable x, the induction axiom for ϕ asserts that if ϕ(0) holds and ϕ(n+1) holds
whenever ϕ(n) holds, then ϕ(n) holds for every natural number n. The comprehension axiom
for ϕ asserts that the collection of the n’s such that ϕ(n) holds exists as a set. We write {n : ϕ(n)}
for this set. The induction and comprehension axioms can be seen as methods to build new sets
from existing ones in the models. RCA0 contains the induction scheme for every Σ0

1 formula, and
the comprehension scheme for any ∆0

1 predicate. By the correspondence between ∆0
1 predicates

and computable sets, we allow only to build new sets computably from the previous ones. In this
sense, RCA0 captures computable mathematics.

Many theorems can be seen as mathematical problems, coming with a natural class of
instances and of solutions to each instance. For example, König’s lemma asserts for every
infinite, finitely branching tree the existence of an infinite path through the tree. Here, an instance
is an infinite, finitely branching tree T , and a solution to T is an infinite path through T . One
can naturally define a notion of computable reduction from a problem P to another problem Q

(written P≤c Q) by saying that every instance X0 of P computes an instance X1 of Q such that
every solution to X1 computes (with the help of X0) a solution to X0. Informally, P≤c Q if we
can computably solve the mathematical problem P from a Q-solver. A computable reduction
from P to Q can be seen as a proof that Q→ P over RCA0 where only one use of Q is allowed.
In this sense, computable reduction is more precise than reverse mathematics. In particular, it



20

enables one to reveal some fine distinctions between mathematical statements which would be
indistinguishable from the point of view of reverse mathematics.

Thesis summary

We start this section explaining more accurately the content of this thesis. We then develop those
explanations chapter by chapter and we end with a summary of the main original contribution of
the thesis.

The subject

This thesis is about the reverse mathematics of mathematical statements coming from Ramsey
theory. Ramsey theory is a branch of mathematics studying the conditions under which some
structure appears among a sufficiently large collection of objects. For example, in any group
of six people, there are at least three people who all know each other or three people who are
all strangers to each other. Perhaps the most famous such theorem is Ramsey’s theorem, which
asserts that for every k-coloring of [N]n (where [N]n denotes the n-tuples of natural numbers),
there is an infinite set of natural numbers H such that [H]n is given only one color. Such a set
is called homogeneous. In particular, Ramsey’s theorem for singletons (n = 1) is nothing but
the infinite pigeonhole principle, which asserts that if an infinite number of items is spread in k

boxes, at least one of the boxes must contain infinitely many items.
In the past two decades, Ramsey theory emerged as one of the most important topics in

reverse mathematics. This theory provides a large class of theorems escaping the Big Five
phenomenon, and whose strength is notoriously hard to gauge. We conduct a systematic study of
various consequences of Ramsey’s theorem, namely, the Erdős-Moser theorem, the free set, thin
set and rainbow Ramsey theorems, among others, within the frameworks of reverse mathematics
and of computable reducibility. Moreover, we relate them to several existing theorems studied in
reverse mathematics.

Structure of this thesis

This thesis is divided into 4 parts, namely, a preamble, the strength of Ramsey’s theorem, further
topics, and a conclusion. We briefly explain the content of each part.

In the preamble, we introduce the basic concepts about computability theory that we will
deal with. Then, we provide a detailed introduction to reverse mathematics and the Big Five
phenomenon. We then relate reverse mathematics to various recently introduced reducibility
notions which focus on some computational aspects of the theorems we consider. Last, we
introduce the main separation technique that is used all along this thesis, namely, effective
forcing. This technique is a refinement of Cohen’s notion of forcing in order to preserve some
computability-theoretic properties.

In the second part, we conduct a systematic study of Ramsey’s theorem and various of its
consequences under reverse mathematics and computable reducibility. We mainly consider
well-established theorems which have already been introduced in reverse mathematics, namely,
cohesiveness, stable Ramsey’s theorem for pairs, the Erdős-Moser theorem, the free set, the
thin set and the rainbow Ramsey theorem, among others. We provide simpler proofs of existing
separations with a uniform and minimalistic framework, and answer several open questions.

The third part is more thematic, that is, we study various existing theorems in reverse
mathematics under some specific computational perspective. First, we study the existence of
maximally difficult instances (universal instances) of Ramsey-type theorems and the Turing
degrees bounding their solutions. Then, we show the orthogonality of some Ramsey-type
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theorems with respect to compactness. We also identify a new class of theorems strengthening
Ramsey’s theorem for pairs and whose computational strength is currently unknown. Last, we
design new notions of forcing with better definability properties, with the hope to prove the
strictness of the free set, thin set and rainbow Ramsey theorem hierarchies in reverse mathematics.

In the conclusion, we discuss the naturality of the tools used to study Ramsey-type statements
in reverse mathematics, and try to give some perspective on the role of Ramsey-type theorems
with respect to the Big Five phenomenon. We then provide a list of remaining open questions
with their motivation and some insights about the reason of their difficulty.

Main contributions

Along this thesis, we answer 25 open questions from 17 different papers. We detail here the
main original contributions of this thesis.

• The main contribution is probably methodological. According to the famous proverb
“give a man a fish and you feed him for a day; teach a man to fish and you feed him for a

lifetime”, we are more interested in the development of tools to separate systematically
theorems over reverse mathematics than to actual separations. In [Pat15c], we presented
a simplification of a framework introduced by Lerman, Solomon and Towsner [LST13].
We show that this framework is sufficiently general reprove various separations with a
simpler argument (Corollary 10.3.6, Corollary A.2.10) and separate Ramsey’s theorem for
pairs from the tree theorem for pairs (Theorem 14.0.1), thereby answering a question of
Montálban [Mon11].

• Another important contribution is the separation of Ramsey’s theorem for k+ 1 colors
from Ramsey’s theorem for k colors over computable reducibility (Theorem 6.0.1). This
question was first asked in a weaker form by Mileti [Mil04], and then for Weihrauch
reducibility by Dorais, Dzhafarov, Hirst, Mileti and Shafer [Dor+16] who left it open as a
“chief question”. We answer both questions. Hirschfeldt and Jockusch [HJ] recently asked
how many applications of Ramsey’s theorem for m colors are necessary to solve Ramsey’s
theorem for k colors in function of m and k. We give a precise answer in Theorem 6.0.1.

• We reveal that the hierarchy of the thin set theorem based on the number of colors is strictly
decreasing over reverse mathematics (Theorem 8.3.1) and that the free set theorem does
not imply Ramsey’s theorem for pairs (Corollary 8.5.3). This answers several questions of
Cholak, Giusto, Hirst and Jockusch [Cho+01] and of Montálban [Mon11].

• The separation of Ramsey’s theorem for pairs from weak König’s lemma was open for
decades, until Liu [Liu12] recently solved it. We extend Liu’s theorem to the free set, thin
set and the rainbow Ramsey theorem, therefore showing that none of them imply weak
weak König’s lemma over RCA0. These questions were asked by Hirschfeldt [Hir15]
and their answers require an involved machinery. We also show the optimality of Liu’s
theorem by proving that Ramsey’s theorem for pairs does not avoid 1-enumerations of
closed sets (Corollary 13.2.6).

• We show the computational weakness of the Erdős-Moser theorem by proving that it
admits a low2 bounding degree (Section 12.3) and that it does not even imply the atomic
model theorem (Section 10.5) in reverse mathematics. The later result strengthens the
previous separations of Lerman, Solomon and Towsner [LST13] and of Wang [Wan14c].
In particular, it answers a question of Hirschfeldt, Shore and Slaman [HSS09] by showing
that cohesiveness does not imply the atomic model theorem over RCA0.
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• We develop new notions of forcing with good definitional properties for various Ramsey-
type theorems. The existence of such notions of forcing can be seen as a step towards the
resolution of the strictness of the free set, thin set, and rainbow Ramsey theorem hierarchies
based on the number of their tuples. The question of the strictness of those hierarchies is
asked by Cholak, Giusto, Hirst and Jockusch [Cho+01] and remains open. In particular,
we answer positively two conjectures of Wang [Wan14c] through Theorem 15.2.1 and
Theorem 15.3.1.



A coffee break

Everyone knows that a mathematician transforms coffee18 into theorems. This fact has been
empirically verified since ever, and in particular non vacuously since coffee has been invented.
However, coffee is an expensive ressource, especially in those troubled times of economic crisis.
One may therefore naturally wonder whether coffee is really necessary for a mathematician to
produce theorems. Water may be sufficient, and much cheaper.

How can we ensure that coffee is optimal for producing theorems? An attempt would
consist of taking a theorem and, using the mathematician, trying to extract some coffee from it.
Assuming Lavoisier’s Law of Conservation of Mass, coffee cannot be created ex nihilo. In case
of success, we can therefore reasonably deduce that the coffee was extracted from the theorem,
and that we really need coffee to make a theorem.

We must however be careful with the choice of the mathematician. The insights we may get
from our coffee extraction strongly depends on his skills. If the mathematician can brew coffee,
we cannot establish any link between coffee and the theorem, in that he may not have used the
theorem in his recipe of coffee19. On the other hand, a too cautious mathematician will require to
drink only a specific brand of coffee to produce his theorems. We do not want to be bothered by
those distinctions, and want our insights to be independent of the precise definition of “coffee”.
We will therefore choose a mathematician who is able to perform only basic operations so that we
can establish a link between what we provide him and what he produces, but who is sufficiently
skilled not to depend on the presentation of the input.

Assuming coffee is optimal for the production of a theorem, how many cups do we need to
prove a theorem? Can the same mathematician produce every theorem if we give him a sufficient
amount of coffee, or do we need the whole scientific community? The author tries to answer
those questions for a particular class of theorems coming from Ramsey’s theory. This theory
informally states that we can always find some structure out of a sufficiently large amount of
disorder. By a quirk of fate, Ramsey’s theory introduces disorder in the structured world that
used to be reverse mathematics.

In this thesis, you may find action, suspence, hope, disappointment, hope again, but above
all, you will find... theorems. Some of the presented results are trivial, some are rather technical.
The author just hopes you will find his theorems tasty enough to prepare a good coffee...

18The choice of coffee is not crucial in this explanation. You may even replace it with your favorite beverage: tea,
chocolate, orange juice, ... Note that the notion of beverage has to be defined carefully: hemlock is a beverage, but it
can be drunk only once.

19Beware if you order coffee in touristic places: rumor has it that some locals replace theorems by cheap lemmas
in the preparation of coffee, in order to increase their margins.
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Preamble





1. Computability theory

Many physical phenomena can be apparented to computation and used to solve mathematical
problems. Their analysis often leads to new paradigms of computation, with the dual hope to
increase our understanding of the physical world, and to obtain more efficient and maybe more

expressive computational models. DNA synthesis and quantum phenomena are case in point
examples of such approaches.

However, among all the computational behaviors found in nature hitherto, no one has been
shown to be more expressive than a computer. Is this remark an empirical observation, or is there
a philosophical justification to the unability to find more expressive models of computation?
More generally, what kind of mathematical problems can we solve by physical means? Is there a
natural class of functions that we can reasonably consider as effectively computable?

1.1 The Church-Turing thesis

The early 1930’s have seen the emergence of three equivalent models of computation discovered
independently. Herbrand and Gödel [Her31] proposed a system of equations with an evaluation
mechanism in order to remedy the lack of expressive power of primitive recursive functions. On
his side, Church introduced the λ -calculus, a calculus of functions, and formulated the thesis
that his calculus captured exactly the effectively computable functions. However, it was hard at
the time to be convinced without some manipulation that λ -calculus was expressive enough to
capture every computational process. It is only when Turing introduced his now-called Turing
machines [Tur36] in a seminal paper providing all the evidences of the naturality of his model of
computation that Church’s thesis became universally accepted.

Thesis 1.1.1 — Church-Turing thesis. Every effectively computable function is recursive.

Apart from its philosophical meaning, the Church-Turing thesis has practical consequences
in the development of computability theory. It is a common practice, when proving the existence
of a Turing machine computing some property, to simply provide an informal description of how
to compute this property, and use the Church-Turing thesis to deduce that the property is indeed
computable in a formal sense. For this reason, we shall remain voluntarily vague concerning the
choice of the computational model over which we will build computability theory.

Fix any reasonable programming language, and define a Gödel numbering of all programs,
that is, an effective coding of the programs into natural numbers. By reasonable, we mean any
programming language which can be converted to and from a Turing machine. In particular,
mainstream programming language such as C, Java and PHP are reasonable.

Definition 1.1.1 — Partial computable function. The eth partial computable (p.c.) func-

tion Φe is defined by P if e is the Gödel number of a program P, and is the empty program
otherwise.

We call the number e the Turing index, or simply the index of the p.c. function Φe. Since
Turing machines provide a suited computational model to analyse the complexity of algorithms
in terms of time and space, they are usually adopted as the underlying model supporting
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computability theory. For this reason, Φe is often called a Turing machine and partial computable
functions inherit the standard terminology of Turing machines. In particular, we say that Φe

diverges on x and write Φe(x) ↑ if x is not in the domain of Φe. If Φe does not diverge on x, then
it converges to the value Φe(x) and we write Φe(x) ↓. We use Φe(x)≃ Φi(y) to say that either
both functions diverge, or they both converge to the same value. We write We for the domain
of the eth partial computable function Φe. Such a set is called computably enumerable as its
elements can be enumerated by executing the program of Φe and adding an element x whenever
the program halts on the input x.

We also want to define what it means for a set to be computable. One may think of a set of
integers X as a decision problem whose questions are of the form “is n in X?”.

Definition 1.1.2 A set of integers X is decidable if its characteristic function is total com-
putable.

For any reasonable programming language, the corresponding Gödel numbering is admissible

in the sense of Rogers [Rog67], and the listing of partial computable functions satisfies the
following standard lemmas and theorems.

Lemma 1.1.2 — Padding Lemma. For each index e and threshold m, one may effectively
obtain some index i > m such that Φi ≃ Φe.

Proof idea. Add to the program of Gödel number e some useless instructions to artificially
increase its Gödel number. �

Altough used in many arguments, the padding lemma should be seen as a curse rather than a
desired property. Indeed, any listing can be transformed into one satisfying the padding lemma
by using the bijection between N×N and N. What the padding lemma really tells us is that
there is no way to avoid this property, and in particular to make an effective listing of all partial
computable functions without redundancy.

The following theorem is due to Kleene [Kle38]. It is an integrated feature of some alternative
models of computation such as the λ -calculus [Bar84].

Theorem 1.1.3 — S-m-n theorem. For each partial computable function f (e,x), one may
effectively obtain a computable function q such that Φq(e)(x)≃ f (e,x) for each x.

Proof idea. Hardcode the parameter e into the program corresponding to the function f . �

The S-m-n theorem informally states that given a partial computable function, one can fix
some parameters and transform it into an effective listing of partial computable functions of the
remaining parameters.

The last theorem about the enumeration of all partial computable functions, also due to
Kleene [Kle38], is certainly the most difficult to interpret.

Theorem 1.1.4 — Kleene’s recursion theorem. For any partial computable function f (e,x),
there is an index e such that Φe(x)≃ f (e,x) for each x.

Kleene’s recursion theorem informally states that we can define self-referential algorithms,
that is, algorithms in which we assume we are provided their Turing index. Altough simple, the
proof of Kleene’s recursion theorem is relatively obscure, and one generally prefers to avoid
using this theorem when unecessary.
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1.2 Definability and the arithmetic hierarchy

Since there are uncountably many sets of integers, but only countably many programs, some sets
of integers are non-computable. Turing [Tur36] gave one of the first examples of unsolvable
decision problems.

Theorem 1.2.1 — Halting problem. The halting set K = {e : Φe(e) ↓} is undecidable.

Proof idea. Let Φe(n) = 1−χK(n). Is e in K? �

The existence of non-computable sets is a starting point to define the notion of relative

computability. Given a set X , we can add to our programming language the characteristic
function of X as a primitive of the language. We then denote by ΦX

0 ,Φ
X
1 , . . . the enumeration

of the X-partial computable functions, that is, the partial computable functions which can be
computed with the help of the oracle X . The notion of X-c.e. set is defined accordingly and we
denote by W X

e the domain of ΦX
e .

Definition 1.2.1 — Turing reducibility. A set X ⊆ N computes a set Y (written Y ≤T X) if
Y = ΦX

e for some index e. We write X ≡T Y to say that X ≤T Y and Y ≤T X . The Turing

degree deg(X) is the collection {Y ⊆ N : Y ≡T X}.

The notion of Turing reducibility extends to Turing degrees. We denote the Turing degrees
by bold lower case letters d,e, . . . and call 0 the degree of the computable sets. Letting the
effective join X ⊕Y be the set {2n : n ∈ X}∪{2n+1 : n ∈ Y}, two Turing degrees d = deg(X)
and e = deg(Y ) have a least upper-bound d∪ e = deg(X ⊕Y ).

Theorem 1.2.1 tells us that K 6≤T /0. The halting problem can be relativized to any oracle,
and leads to the notion of Turing jump which plays a central role in computability theory.

Definition 1.2.2 — Jump operator. The jump of a set X is the set X ′ = {e : ΦX
e (e) ↓}.

The Turing jump can be iterated as follows: Given a set X , X (0) = X and X (n+1) = (X (n))′.
In particular, /0′ = K. From now on, we drop the notation K for the halting set, and simply use /0′.

1.2.1 The arithmetic hierarchy

According to Hirschfeldt [Hir15], computability theory is above all about the relationship
between computation and definability. Post’s theorem (see below) is one of the core theorems
establishing this correspondance. It provides bridges between computability and provability.

Definition 1.2.3 — Arithmetic hierarchy. A set X is Σ0
n if there is a computable rela-

tion R(x1, . . . ,xn,y) such that y ∈ X iff

∃x1∀x2∃x3∀x4 . . .Qnxn
︸ ︷︷ ︸

n alterning quantifiers

R(x11, . . . ,xn,y)

where Qn is ∃ if n is odd and ∀ if n is even. The definition of X being Π0
n is the same, except

that the leading quantifier is a ∀.

It is easy to see that a set X is Σ0
n iff X is Π0

n. A set X is ∆0
n if it is both Σ0

n and Π0
n.

Theorem 1.2.2 — Post [Pos48]. A set is Σ0
n+1 iff it is /0(n)-c.e., and is ∆0

n+1 iff it is /0(n)-
computable.
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In particular, ∆0
1 sets are the computable sets, Σ0

1 sets are the c.e. sets and ∆0
2 sets are the sets

computable from the halting problem.
Given an X-partial computable function ΦX

e , we can define the sth approximation ΦX
e [s]

of ΦX
e as the partial computable function obtained by running the program of ΦX

e in at most s

steps. If within this time, the program halts on some input x, then ΦX
e [s](x) ↓= ΦX

e (x). Otherwise,
ΦX

e [s](x) ↑. We denote by W X
e [s] the domain of ΦX

e [s]. The set W X
e [s] is computable uniformly in e

and s, and W X
e [s]⊆W X

e for each s. Shoenfield [Sho59] generalized the notion of approximation
to any ∆0

2 set.

Lemma 1.2.3 — Shoenfield’s limit lemma. A set X is ∆0
2 iff there is a computable {0,1}-

valued function g such that lims g(n,s) exists and lims g(n,s) = χX(n) for all n.

The function g is called a ∆0
2 approximation of X . When X is ∆0

2 we usually fix a ∆0
2

approximation g and write X [s] = {n ≤ s : g(n,s) = 1}.

1.2.2 Low and high degrees

If X ≤T Y , then X ′ ≤T Y ′. However, it is not true that if X <T Y , then X ′ <T Y ′. In particular,
there are some non-computable sets X such that X ′ =T /0′.

Definition 1.2.4 A set X is low over Y if (X ⊕Y )′ ≤T Y ′. A set X is high over Y if Y ′′ ≤T=
(X ⊕Y )′. A set X is low (high) if it is low over /0 (high over /0).

Intuitively, a set is low if it is indistinguishable from a computable set from the point of view
of the halting set. A set is high if its jump is maximally difficult to decide. In particular, every
low set is ∆0

2. By the previous assertion, there exist some non-computable low sets. The low
sets are downward-closed under the Turing reducibility. Note that lowness is a degree-theoretic
property. An important feature of lowness is that it is preserved under relativization.

Lemma 1.2.4 If X is low over a low set Y , then X is low.

Proof. X ′ ≤T (X ⊕Y )′ ≤T Y ′ ≤ /0′ �

The notions of lowness and highness can be generalized to arbitrary jumps. Thus, a set X

is lown over Y if (X ⊕Y )(n) ≤T Y (n). The notion of highnness is defined accordingly. The high
degrees admit a simple characterization that we shall present in the next section.

1.3 Domination and hyperimmunity

There are many ways to encode some non-computable information into a set X . One way consists
in using the sparsity of X to compute some fast-growing function. The principal function pX

of a set X = {n0 < n1 < .. .} is the function defined by pX(i) = ni. The sparser the set X is, the
faster its principal function will grow.

� Example 1.1 The modulus function me of a c.e. set We is defined for each n as the least stage s

such that (We ∩ [0,n))rWe[s] = /0. Any function growing faster than the modulus function of We

computes We. In particular, any sufficiently sparse set computes the halting set. �

The notions of domination and hyperimmunity are suitable tools to study the sparsity of a
set. They will naturally appear in many constructions over this thesis.

Definition 1.3.1 — Domination, hyperimmunity. A function f dominates a function g if
f (x)≥ g(x) for all but finitely many x. A function f is hyperimmune if it is not dominated by
any computable function.
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A set X is hyperimmune if its principal function pA is hyperimmune. One must think of
hyperimmune sets as having large holes from time to time. This intuition can be made formal by
the following characterization of hyperimmune sets.

Lemma 1.3.1 Fix a computable list of all finite sets D0,D1, . . . A set X is hyperimmune iff for
every computable function f such that the sets D f (0),D f (1), . . . are mutually disjoint, there is
some i such that X ∩D f (i) = /0.

A Turing degree d is hyperimmune if it contains a hyperimmune function, otherwise d is
hyperimmune-free. Every computable function f is dominated by the computable function g(x) =
f (x)+1. Therefore, there is no computable hyperimmune function and 0 is a hyperimmune-free
degree. Miller and Martin [MM68] showed the existence of a non-zero hyperimmune-free degree.
However, there is no such ∆0

2 degree by the following theorem.

Theorem 1.3.2 — Miller and Martin [MM68]. Every non-zero ∆0
2 degree is hyperimmune.

We shall see in section 4.3 that hyperimmunity is a weak form of genericity. The following
theorem shows that highness is a dual notion of hyperimmunity.

Theorem 1.3.3 — Martin [Mar66]. A set X is high iff it computes a function dominating
every computable functions.

1.4 PA degrees

In this section, we are interested in the following problem: Given an infinite, finitely branching
tree, how complicated is it to find an infinite path through the tree? In order to make precise the
definition of a tree and of a path, we need to introduce some notation.

Fix a set X . A string over X is an ordered tuple of integers a0, . . . ,an−1 ∈ X . The empty
string is written ε . A sequence over X is an infinite listing of integers a0,a1, · · · ∈ X . The sets
X s, X<s and X<N are the sets of strings of length s, strictly smaller than s and finite length,
respectively. When X is not specified, we shall take X = N. A binary string is a string in 2<N

and a real is a sequence in 2N. We often identify a real X with the set of integers {n : X(n) = 1}.

Definition 1.4.1 — Tree, path. A tree T ⊆ N<N is a set downward-closed under the prefix
relation. The tree T is finitely branching if every node σ ∈ T has finitely many immediate
successors. A binary tree is a tree T ⊆ 2<N. A sequence P is a path through T if for every
σ ≺ P, that is, every initial segment σ of P, σ ∈ T .

Given a tree T , we denote by [T ] the collection of its infinite paths. König’s lemma asserts
that every infinite, finitely branching tree has an infinite path. We call weak König’s lemma the
restriction of König’s lemma to infinite binary trees.

First, notice that the complexity of a path through a tree depends on the effectiveness of the
tree T itself, since every real X computes the infinite binary tree TX = {σ ∈ 2<N : σ ≺ X} whose
unique path is X . We shall therefore restrict ourselves to computable trees.

The standard proof of König’s lemma is the following: Given an infinite, finitely branching
tree, since the root has finitely many immediate successors, at least one of the successors induces
an infinite subtree. Choose one of them, and apply the same procedure on the induced subtree.
The standard proof of König’s lemma is not effective, in that it requires to decide which node
induce an infinite subtree. Kreisel showed that there is no effective proof of weak König’s lemma
in the following sense.
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Theorem 1.4.1 — Kreisel [Kre53]. There is an infinite binary tree with no computable path.

For now, we shall restrict ourselves to binary trees.

1.4.1 Π0
1 classes

A Π0
1 class is a collection of sets of the form {X ∈ 2N : (∀n)ϕ(X↾n)} for some Π0

1 formula ϕ . It
is easy to see that for every Π0

1 class C , there is a binary tree T such that C = [T ]. A Π0
1 class is

non-empty if it is the collection of paths through an infinite binary tree.
Weak König’s lemma can be seen as a collection of problems parameterized by their tree.

One may question the relevance of studying a class of problems as a single statement, since the
complexity of finding a path through a computable tree depends on the tree. However, there is a
computable binary tree of maximal complexity, in the following sense.

Definition 1.4.2 — Universality. A non-empty Π0
1 class C is universal if for every non-empty

Π0
1 class D , every member of C computes some member of D .

Intuitively, finding a member of a universal Π0
1 class is as hard as finding a member of any

non-empty Π0
1 class. There are many natural examples of universal Π0

1 classes. By Gödel’s
second incompleteness theorem [Göd31], there is no computable completion of Peano arithmetic.
Computability theory gives us a more precise understanding of how hard it is to find such a
completion.

Theorem 1.4.2 — Scott [Sco62]. The Π0
1 class of completions of Peano arithmetic is univer-

sal.

We call PA the degrees of completion of Peano arithmetic. By Solovay [unpublished]
(see [DH10]), the PA degrees are closed upward under the Turing reduction. The notion of PA
degree can be relativized to any set X . We write P ≫ X to say that P is of PA degree relative to X ,
that is, if every non-empty Π

0,X
1 class has a P-computable member. In particular, P computes X

as witnessed by the X-computable tree TX .

1.4.2 Basis theorems

The common structure of Π0
1 classes enables one to deduce general upper bounds on the com-

plexity of finding a member in them. A basis for Π0
1 classes states that each non-empty Π0

1 class
has a member satisfying some property. In particular, there is a PA degree satisfying this property.
The three basis theorems presented in this section are proven by Jockusch and Soare [JS72b].

The first basis theorem surprisingly states that if some set X is non-computable, being able
to compute a completion of Peano arithmetic is of no help to compute X .

Theorem 1.4.3 — Cone avoidance basis theorem. If X is non-computable, every non-
empty Π0

1 class has a member which does not compute X .

The cone avoidance basis theorem should not be interpreted as “the completions of Peano
arithmetic carry no incomputable information”. In fact, this extra information is of behavioral
nature, as shows the following lemma generalizing [CJS01, Lemma 4.2].

Lemma 1.4.4 — Folklore. Fix two sets P and X . Then P ≫ X iff for every uniform sequence
of pairs of Π

0,X
1 statements (γe,0,γe,1)e∈N there is a P-computable function f such that γe, f (i) is

true whenever γe,0 or γe,1 is true.

Lemma 1.4.4 is another core example of the correspondance between computability and
definability. The next basis theorem is, according to Cenzer [Cen99], perhaps the most cited result
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in the theory of Π0
1 classes. It shows that we can always find a member which is indistiguishable

from the computable sets from the point of view of the halting set.

Theorem 1.4.5 — Low basis theorem. Every non-empty Π0
1 class has a member of low

degree.

Last, every non-empty Π0
1 class has a member P such that the P-computable functions are all

dominated by some computable functions.

Theorem 1.4.6 — Hyperimmune-free basis theorem. Every non-empty Π0
1 class has a

member of hyperimmune-free degree.

As noted by Hirschfeldt [Hir15], the cone avoidance basis theorem is a consequence of the
low basis and the hyperimmune-free basis theorems. Indeed, given a non-computable set X and
a non-empty Π0

1 class C , either X is ∆0
2, in which case no hyperimmune-free degree bounds it, or

it is not ∆0
2, and by the low basis theorem, there is a member of C of low degree, which therefore

does not compute X .
We shall prove in further parts several other basis theorems for more marginal computability-

theoretic properties.

1.4.3 König’s lemma

We now clarify the links between König’s lemma and weak König’s lemma. Given a collection
of sets S, we denote by deg(S) the set of Turing degrees of elements of S.

The basis theorems stated above are all based on the fact that we can computably bound
the successors of any node. More precisely, a tree T ⊆ N<N is computably bounded if there is
a computable function f such that if σ ∈ T , then σ(n) ≤ f (n) for all n < |σ |. Jockusch and
Soare [JS72b] proved that we can code a computably bounded tree into a binary tree.

Theorem 1.4.7 — Jockusch and Soare. For every computable, computably bounded tree T ,
there is a binary tree T̂ such that deg([T̂ ]) = deg([T ]).

However, when considering computable, finitely branching trees in their full generality,
the problem of finding a path becomes more difficult. In particular, Jockusch, Lewis and
Remmel [JLR91] constructed a computable, finitely branching tree whose unique path computes
the halting set. Since every infinite, finitely branching tree is /0′-computably bounded, every PA
degree relative to /0′ computes an infinite path through it. In the other direction, Jockusch, Lewis
and Remmel proved the existence of such a tree whose paths are all of PA degree relative to /0′

with the following one-to-one correspondence.

Theorem 1.4.8 — Jockusch, Lewis and Remmel. For every /0′-computable infinite binary
tree T , there is a computable, finitely branching tree T̂ such that deg([T̂ ]) = deg([T ]).

Therefore, according to Hirschfeldt [Hir15], König’s lemma can be considered has behaving
like weak König’s lemma “one jump up”.

1.4.4 Algorithmic randomness

The word “randomness” is part of the common language and can be employed with very different
meanings, according to which aspect of randomness we consider. Algorithmic randomness uses
the framework of computability theory to study the various notions of randomness. Among them,
Martin-Löf randomness stands out from the crowd by its numerous characterizations with very



34 Chapter 1. Computability theory

different paradigms, namely, measure theory, Kolmogorof complexity, martingales.

Definition 1.4.3 — Martin-Löf randomness. A Martin-Löf test is a sequence U0,U1, . . . of
uniformly Σ0

1 classes such that µ(Ui)≤ 2−i for every i ∈ ω . A real Z is Martin-Löf random if
for every Martin-Löf test U0,U1, . . . , Z 6∈

⋂

iUi.

Martin-Löf randomness has strong connections with a subclass of weak König’s lemma.

Definition 1.4.4 A binary tree T ⊆ 2<N has positive measure if lims
|{σ∈T :|σ |=s}|

2s > 0.

The restriction of weak König’s lemma to trees of positive measure is poetically called weak

weak König’s lemma. Informally, a tree of positive measure is very bushy, and each branch is
very likely to be infinite. Therefore, one may expect to obtain an infinite path by a random walk
trough a tree of positive measure. The following theorem makes precise the correspondence
between weak weak König’s lemma and Martin-Löf randomness.

Theorem 1.4.9 — Kučera [Kuc85].

(i) A Martin-Löf random real is a path (up to prefix) through a tree T ⊆ 2<N iff T has
positive measure.

(ii) There is a computable binary tree of positive measure whose paths are all Martin-Löf
random.



2. Reverse mathematics

What are the set existence axioms needed to prove ordinary theorems in mathematics? How
constructive are our theorems? How to relate two theorems and formalize the intuition that some
theorems are consequences of others? When will the author stop asking questions?

Reverse mathematics is a vast foundational program whose goal is to study the logical
strength of everyday life theorems. Before getting into the details, let us introduce some of its
main motivations.

2.0.1 In search of optimal axioms

There may be several ways to measure the naturality of an axiom. A simple way consists in
providing a philosophical justification of its truth. One can also consider the collection of its
consequences, and in particular what desired theorems are unprovable without it. This method
requires to be able to classify theorems according to the axioms they need. The finer this
classification is, the more insights about the naturality of the axioms we get. In the best case, we
should be able to find axioms which are equivalent to the considered theorem. This is exactly
the purpose of reverse mathematics, which tries to (and succeeds in) finding the optimal axioms
to prove natural theorems.

2.0.2 The constructive perspective

The 20th century have seen the emergence of constructivism, with Brower’s intuitionism in 1908,
Hilbert and Bernay’s finitism in 1920, and Bishop’s constructive analysis in 1967 among others.
Mathematicians started to care about the constructive content of their theorems, and to rebuild
the core of mathematics under this perspective. Type theory and topos theory are examples of
alternative foundational theories focusing on the constructive content of the theorems. Reverse
mathematics follows on from this movement by providing a framework to analyse the logical
strength and the computational content of ordinary theorems.

2.0.3 The interrelationships between theorems

It is a common mathematical practice to state corollaries after a theorem. Informally, a corollary
is an immediate consequence of the previous result. Being a corollary Q of a theorem P is not
an intrinsic property of the statement Q, but a relationship between P and Q. Sometimes, the
theorem P can also be deduced from its corollary Q by elementary means, in which case we
may think of P and Q as being equivalent. Reverse mathematics enables one to make formal the
notion of “immediate consequence”, by prodiving a framework in which an implication P→ Q

is interpreted as “the statement Q can be logically deduced from P in a very weak theory”.

2.0.4 The search of simpler proofs

Although a theorem logically reduces to its truth value, in the evolving process of mathematical
discovery, a theorem is a living object. The proofs of important theorems are regularly refined
and simplified, with the ultimate goal to find a proof that Paul Erdős would call “from The
Book” [AZ14]. Such a proof would be natural enough to reveal the essence of the theorem,
and weak enough so that no stronger statement can be proved without modifying the core of
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the argument. In his attempt to find the optimal axioms needed by a theorem, the reverse
mathematician will sometimes need to find new and constructively simpler proofs, and in this
way contributes to give new insights into the theorems.

2.1 The strength of theorems

Many theorems of “ordinary” mathematics can be formulated as mathematical problems, coming
with a natural class of instances. Each instance has a collection of solutions associated to it.
In the case of König’s lemma which asserts that every infinite, finitely branching tree has an
infinite path, an instance is an infinite, finitely branching tree and a solution is an infinite path

through the tree. More precisely, we are interested in the theorems which can be formalized in
the language of second-order arithmetic. This language happens to be expressive enough to state
in a natural way many theorems coming from countable mathematics. See Simpson [Sim09]
for a discussion about the notion of countable mathematics. Formally, we mainly consider Π1

2
sentences P of the form

∀X(ϕ(X)→∃Y ψ(X ,Y ))

where ϕ and ψ are arithmetic formulas, that is, formulas which do not contain any set quantifier.
A set X such that ϕ(X) holds is a P-instance, and a set Y such that ψ(X ,Y ) holds is a solution

to X .
Some theorems are more effective than others. Consider the proof of the intermediate value

theorem. Given a continuous real-valued function which is negative at 0 and positive at 1, one
can (non-uniformly) compute a real x ∈ (0,1) such that f (x) = 0 essentially by using the usual
interval-halving procedure. On the other hand, we have seen that König’s lemma is non-effective,
in the sense that given a computable infinite, finitely branching tree, one cannot in general
compute an infinite path. In the same spirit as for the Turing degrees, one may wonder how
non-effective theorems are whenever they do not admit a computable solution.

There are many ways to understand the notion of strength of a theorem. In this chapter,
we embrace the provability approach, and try to capture the logical strength of the theorems in
terms of set existence axioms. The main idea is to place oneself in a theory T weak enough so
that non-effective theorems are not provable. In this theory, a proof of P→ Q can therefore be
interpreted as “the statement Q can be obtained from P by effective (and therefore elementary)
means”.

2.2 The base theory

We now formally define the weak theory which will serve as a base to study our theorems. Such
a theory has to be chosen carefully so that an implication P→ Q provides some insights into the
relation between the statements P and Q. The base theory is called RCA0, standing for recursive

comprehension axiom.
We first describe the first-order part of RCA0. We would like the integers to behave suffi-

ciently nicely, not to be bothered by the coding details of the objects we manipulate. The base
theory therefore contains the basic first-order Peano axioms.

∀m(m+1 6= 0) ∀m∀n(m× (n+1) = (m×n)+m)
∀m∀n(m+1 = n+1 → m = n) ∀m∀n(m < n+1 ↔ (m < n∨m = n))
∀m(m+0 = m) ∀m¬(m < 0)
∀m∀n(m+(n+1) = (m+n)+1) ∀m(m×0 = 0)
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In the second-order part, we want to allow only sets which can be constructed from other
sets in an effective way. By Post’s theorem, a set X is computable from Y if it is ∆

0,Y
1 -definable.

We therefore add a set-building scheme, the comprehension scheme restricted to ∆0
1 formulas

with parameters. The ∆0
1 comprehension scheme consists of the universal closures of all formulas

of the form

∀n(ϕ(n)↔ ψ(n))→∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ is Σ0
1, ψ is Π0

1, and X is not free in ϕ .
Finally, we add some induction scheme. We should also be careful about the amount of

induction we want, since it adds new finite sets in the theory. Since the logical strength of a
theorem is defined according to its set existence axioms, it is natural to control the finite sets as
well. Such a control enables one to prove conservativity results. For each n ∈ ω , the Σ0

n (resp.
Π0

n) induction scheme, denoted IΣ0
n (resp. IΠ0

n), consists of the universal closures of all formulas
of the form

[ϕ(0)∧∀n(ϕ(n)→ ϕ(n+1))]→∀nϕ(n),

where ϕ is Σ0
n (resp. Π0

n). The Σ0
1 induction scheme is exactly the amount of induction we want

to add to RCA0. Indeed, the Σ0
1 induction scheme is equivalent to the bounded ∆0

1 comprehension

scheme, that is, the ∆0
1 comprehension scheme stating the existence of sets of the form {n ∈ X ↔

n < b∧ϕ(n)}.
One can prove over RCA0 the properties of many basic primitive recursive codings, and

in particular the properties of the Cantor pairing function 〈·, ·〉 : N×N → N. After some
manipulation, the mathematician gets an intuition about which argument can, and which cannot
be formalized over RCA0. One of the main pitfalls of which a beginner (and even a more
experimented mathematician) should take care, is that a finite union of finite sets is not necessarily
finite. Those statements are the bounding schemes. For each n ∈ ω , the Σ0

n (resp. Π0
n) bounding

scheme, denoted BΣ0
n (resp. BΠ0

n), consists of the universal closures of all formulas of the form

∀a[(∀n < a)(∃m)ϕ(n,m)→∃b(∀n < a)(∃m < b)ϕ(n,m)],

where ϕ is Σ0
n (resp. Π0

n). The Σ0
n bounding scheme is a strict consequence of the Σ0

n induction
scheme. In particular, RCA0 ⊢ BΣ0

1, but not BΣ0
2. Such a concern happens for example when

we use the fact that given the ∆0
2 approximation g of a ∆0

2 set, and some integer b, there is some
stage s after which g(x, ·) is constant for every x < b.

2.3 The Big Five phenomenon

Over the past decades, theorems from all over mathematics have been studied within the frame-
work of reverse mathematics. A surprising phenomenon emerged from the early years of
reverse mathematics: Most theorems studied require very weak set existence axioms. More-
over, many of them happen to be equivalent to one of five main subsystems over RCA0, that
Montálban [Mon11] refers to as the Big Five. These are, in the strictly increasing strength
order, RCA0, weak König’s lemma (WKL), the arithmetic comprehension axiom scheme (ACA),
arithmetic transfinite recursion (ATR) and the Π1

1 comprehension axiom scheme (Π1
1-CA). These

subsystems are characterized by their robustness, that is, the invariance of their strength under
small changes in their definition. It is currently unclear whether the existence of the Big Five
reflects a bias in the statements studied in mathematics, or whether there is some philosophical
justification to this structure. We briefly detail the five subsystems.
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2.3.1 RCA0

We already detailed the definition of RCA0. By the equivalence for a set to be ∆0
1-definable

and to be computable, RCA0 can be thought of as capturing constructive mathematics. If we
consider the structures in which the first-order part is composed of the standard integers ω with
the standard operations, RCA0 admits a minimal model M0 (in the inclusion sense), in which
the second-order part consists of all the computable sets. Therefore, if some theorem P admits a
computable instance with no computable solution, M0 is not a model of P, hence RCA0 does
not prove P.

2.3.2 WKL

Weak König’s lemma is the statement “Every infinite binary tree has a path”. WKL captures com-

pactness arguments and is equivalent to several famous theorems, such as Gödel’s completeness
theorem or the Heine/Borel covering lemma.

2.3.3 ACA

The arithmetic comprehension axiom scheme consists of the universal closures of all formulas
of the form

∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ is a formula with no set quantifier and such that X is not free in ϕ . ACA is sufficiently
expressive to prove the vast majority of ordinary theorems over RCA0. It is in particular
equivalent to full König’s lemma and to the statement “Every set has a Turing jump” over RCA0.
Thus, every model of RCA0+ACA contains the halting set.

2.3.4 ATR

The arithmetic transfinite recursion axiom informally asserts that the Turing jump can be iterated
along any countable well-ordering, starting at any set. More precisely, let ϕ(n,X) be an arithmetic
formula with parameters, and let Φ(X) = {n : ϕ(n,X)}. ATR is the statement “For every well-
order (D,�), the sequence of sets {Kn : n ∈ D} such that Kn = Φ({〈m,x〉 : m ≺ n∧ x ∈ Km})
exists.” ATR is sufficiently strong to prove many basic theorems of classical descriptive set
theory, and is equivalent to Ulm’s theorem for countable reduced Abelian groups.

2.3.5 Π1
1-CA

The Π1
1 comprehension scheme is the comprehension scheme restricted to Π1

1 formulas, that is,
formulas of the form ∀Xθ where θ is an arithmetic formula. Π1

1-CA is strong enough to develop
a good theory of ordinals and is equivalent to the Cantor-Bendixson theorem.

In this thesis, we shall focus exclusively on statements below ACA over RCA0. A large part
of mathematics can already be developped within this subsystem.

2.4 Ramsey’s theorem

In order to put to the test the robustness of the Big Five phenomenon, the reverse mathematics
community started to investigate candidate theorems leading to their own subsystems. Ram-
sey’s theory provides, among others, a large collection of statements escaping the Big Five
phenomenon. This theory informally asserts that given some size s, every sufficiently large col-
lection of objects has a sub-collection of size s, whose objects satisfy some structural properties.
Perhaps the most famous example of such a statement is Ramsey’s theorem. Given a set X , we
denote by [X ]k the set of unordered k-tuples over X .
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Definition 2.4.1 — Ramsey’s theorem. A subset H of N is homogeneous for a coloring f :
[N]n → k (or f -homogeneous) if each n-tuples over H are given the same color by f . RTn

k is
the statement “Every coloring f : [N]n → k has an infinite f -homogeneous set”.

Jockusch [Joc72] conducted a computable analysis of Ramsey’s theorem and gave precise
definitional bounds on the complexity of homogeneous sets. Simpson [Sim09] formalized
Ramsey’s theorem in the setting of reverse mathematics, and proved that RTn

k is equivalent
to ACA over RCA0 for each n ≥ 3.

The strength of Ramsey’s theorem for pairs has been a long-standing open problem, until
Seetapun [SS95] proved that RT2

2 is strictly weaker than ACA over RCA0. Cholak, Jockusch
and Slaman [CJS01] studied extensively Ramsey’s theorem for pairs. In particular, they showed
that RT2

2 is not a consequence of weak König’s lemma over RCA0. Later, Liu [Liu12] clarified
the relation between RT2

2 and the Big Five by proving that RT2
2 does not imply WKL over RCA0.

Every computable instance of Ramsey’s theorem for singletons has a computable solution.
However, the statement (∀k)RT1

k (often written RT1
<∞) is not provable over RCA0. In fact,

it is equivalent to BΣ0
2, the bounding scheme for Σ0

2 formulas [CJS01]. The full statement
(∀n)(∀k)RTn

k , written RT, is strictly stronger than ACA, again for induction reasons.
The full diagram of the relation between variants of Ramsey’s theorem and the Big Five is

summarised in Figure 2.1. An arrow between P and Q means that RCA0 ⊢ P→ Q. The missing
arrows are non-implications.

ATR

RT2
2

RTn
2,n ≥ 3

RT

RT1BΣ0
2

WKL

ACA

RCA0

Figure 2.1: Ramsey’s theorem zoo

Due to the complexity of their separations, Ramsey-type statements received a lot of attention
from the reverse mathematics community. Many consequences of Ramsey’s theorem have been
investigated in reverse mathematics, coming from graph theory [BW05; LST13; Pata], model
theory [Con08; HSS09], set theory [CDI15; Dow+12], combinatorics [Cho+01; CM09; Fri;
Wan14b] and order theory [HS07] among others.





3. Reducibilities

There are many ways to understand the strength of a theorem. We have already seen the
provability approach, which consists in comparing the logical consequences of the theorems in
terms of set existence axioms. We will now present the computational approach which comes
up with various reducibility notions, depending on which specific constructive properties we
focus on. More precisely, we will present three reducibility notions and relate them to reverse
mathematics.

3.1 Computable reducibility

One of the simplest way to define the relative computable strength between two theorems consists
of using the natural reducibility notion induced by the Turing reduction. For this, take again the
interpretation of a theorem P as a mathematical problem with instances and solutions. Informally,
a problem Q is simpler than another problem P if the ability to solve any P-instance gives the
ability to solve any Q-instance.

In other words, the theorem P can be seen as a blackbox, where the input is a P-instance, and
the output is any valid solution. Therefore, Q is simpler than P if we can simulate a blackbox
for Q from any blackbox for P. We want some effectiveness restriction on the simulation to give
some computational meaning to this relation. In particular, the P-instance has to be constructed
computably from the Q-instance, and a solution to the Q-instance has to be transformed into a
solution to the P-instance by constructive means.

Definition 3.1.1 — Computable reducibility. Fix two Π1
2 statements P and Q. Q is com-

putably reducible to P (written Q≤c P) if every Q-instance I computes a P-instance J such
that for every solution X to J, X ⊕ I computes a solution to I.

Computable reducibility is illustrated in Figure 3.1. Note that the solution to the Q-instance I

can be computed with the help of the instance I. One can imagine a reducibility notion where the
solution to I has to be computable from the solution to the P-instance. This leads to the notion
of strong computable reducibility. Various reducibility notions have a strong version.

P solver≤T ≤T

Q solver

Figure 3.1: Computable reducibility

Computable reducibility provides in some sense a more fine-grained analysis of the relations
between theorems than reverse mathematics. Indeed, in reverse mathematics, a principle can be
applied an arbitrary number of times. For example, the statement “Every set has a Turing jump”
is equivalent to “Every set has a Turing double jump” over RCA0, since for any model M of the
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former statement and any set X ∈ M , X ′ ∈ M , and hence X ′′ ∈ M . Therefore, an implication
from P to Q over RCA0 may involve many P-instances to obtain a solution to one Q-instance.
On the other hand, computable reducibiliy allows the use of only one P-instance in a reduction
from Q to P.

This difference is useful to reveal some subtle distinctions between statements that would
be collapsed in reverse mathematics. In particular, Ramsey’s theorem does not depend on the
number of its colors in reverse mathematics as witnessed by a simple color blindness argument,
whereas we shall see that RTn

k+1 6≤c RT
n
k for any n,k ≥ 2.

Many implications proofs over RCA0 happen to be computable reductions. However, a
proof of Q ≤c P is not sufficient to deduce that RCA0 ⊢ P → Q. Indeed, the argument has
to be formalizable over RCA0, and in particular one must care about the amount of induction
used to prove its validity. On the other hand, proving that Q does not computably reduce
to P is simpler than separating Q from P over standard models, since in the Q 6≤c P case,
one has to build a Q-instance I which diagonalizes against only the I-computable P-instances.
Computable non-reducibility is therefore often used as a preliminary separation, which is then
generalized to a separation over RCA0. This is in particular the approach of Lerman, Solomon
and Towsner [LST13].

3.2 Weihrauch reducibility

Some proofs are more uniform than others. Let us take back the example of the intermediate
value theorem. Given a continuous real-valued function f which is negative at 0 and positive
at 1, the computation of a real x ∈ (0,1) such that f (x) = 0 is split into two cases. In the first
case, there is a rational x ∈ (0,1) such that f (x) = 0. Every rational is computable, so f admits a
computable solution, even though the real x is not effectively provided. In the second case, we
compute a solution to f essentially by using an interval-halving procedure. The standard proof
of the intermediate value theorem involves a case analysis, and in this sense, is not uniform.
Moreover, Brattka and Gherardi [BG11] proved that the intermediate value theorem does not
admit a uniform proof.

Weihrauch reducibility is a refinement of computable reducibility, where the transformation
of a Q-instance into a P-instance has to be done uniformly in the instance, and so has to be the
computation of a Q-solution.

Definition 3.2.1 — Weihrauch reducibility. Fix two Π1
2 statements P and Q. Q is Weihrauch

reducible to P (written Q ≤W P) if there are two Turing functionals Φ and Γ such that for
every Q-instance I, ΦI is a P-instance J such that for every solution X , ΓI⊕X is a solution to I.

Weihrauch reducibility has been used by Dorais, Dzhafarov, Hirst, Mileti and Shafer [Dor+16]
to study extensively the uniform content of combinatorial theorems. It is currently an active
research subject [Dzh; HJ; Rak15].

P solverΦ Γ

Q solver

Figure 3.2: Weihrauch reducibility

Although the flavor of Weihrauch reducibility is very similar to the one of computable re-
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ducibility, the constructive properties they focus on is very different. In particular, Weihrauch re-
ducibility enables one to establish distinctions between statements which are provable over RCA0,
whereas computable reducibility cannot since RCA0 has a model whose second-order part is ex-
actly the collection of computable sets. For example, the intermediate value theorem is provable
over RCA0, but the proof is not uniform (see Brattka and Gherardi [BG11]).

3.3 Computable entailment

Although the historical motivation of reverse mathematics is proof-theoretic, many researchers
in the field adopt the computational point of view. In particular, they do not feel concerned about
the amount of induction needed to formalize their arguments. Starting from this observation,
Shore [Sho10] proposed a computability-theoretic reduction with a model-theoretic flavor closely
related to reverse mathematics.

The models of reverse mathematics are of the form M = (M,I ,+,×,<,0,1,∈) where M

and I are the first-order and second-order parts, respectively, + and × are binary functions
on M, < is a binary relation on M and 0 and 1 are members of M. An ω-structure is a
structure M = (ω,I ,+ω ,×ω ,<ω ,0,1,∈) where ω are the standard integers, coming with the
standard operations. An ω-structure is therefore fully specified by its second-order part I .
The second-order parts of ω-models of RCA0 admits a simple purely computability-theoretic
characterization.

Definition 3.3.1 — Turing ideal. A Turing ideal I is a collection of subsets of ω which is
closed under

(i) the Turing reduction: (∀X ∈ I )(∀Y ≤T X)[Y ∈ I ]
(ii) the effective join: (∀X ,Y ∈ I )[X ⊕Y ∈ I ].

Friedman [Fri74] proved that the second-order parts of ω-models of RCA0 are exactly the
Turing ideals. Therefore, we say that a second-order formula ϕ holds in a Turing ideal I

(written I |= ϕ) if it holds in the ω-structure whose second-order part is I . In particular, a Π1
2

statement P holds in I if every P-instance in I has a solution in I .

Definition 3.3.2 — Computable entailment. Fix two second-order formulas ϕ and ψ . We
say that ϕ computably entails ψ if every Turing ideal satisfying ϕ also satisfies ψ .

In other words, ϕ computably entails ψ if whenever ϕ holds in an ω-model of RCA0, then
so does ψ . Note that the notion of computable entailment is defined over every second-order
formulas. It is therefore a more general framework than computable and Weihrauch reducibilities.
Hirschfeldt and Jockusch [HJ] used the notation Q ≤ω P to express that the Π1

2 statement P
computably entails the Π1

2 statement Q. In this thesis, we shall consider only computable
entailments for Π1

2 statements.
Although recently introduced as a formal reduction, this reducibility notion was already

used de facto for a long time, in particular to separate statements over RCA0. Indeed, any proof
of Q 6≤ω P is a proof of RCA0+P 6⊢ Q. Computable entailment and computable reducibility
coincide for some statements like WKL.

Theorem 3.3.1 — [HJ]. For any Π1
2 statement P, P≤c WKL iff P≤ω WKL.

Proof. Suppose that P≤ω WKL. Let I be a P-instance, and let T be an I-computable tree such
that every path is of PA degree relative to I. By Scott [Sco62], for every path S through T , S

bounds a Turing ideal I containing I in which WKL holds. Since P≤ω WKL, P holds in I , so
I contains a solution to I and therefore every path through T computes a solution to I. �
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Theorem 3.3.1 is essentially due to the fact that every set of PA degree bounds an ω-model
of WKL. Such a property is also true for any notion for which a Van Lambalgen-like theorem
holds. This is in particular the case of Martin-Löf randomness [Van90] and 1-genericity [Yu06]
(defined in section 4.3).

Hirschfeldt and Jockusch [HJ] introduced a generalized Weihrauch reducibility which is the
dual notion of computable entailment for Weihrauch reductions. This reduction enables one to
express a relation between statements which needs more than one application, but for which the
multiple instances are uniformly built. This is in particular the case for the reduction from RTn

k+1
to RTn

k .

3.4 Separating principles

Consider two Π1
2 statements P and Q. Unfolding the definition, in order to prove that P does not

imply Q over RCA0, one needs to create a model M satisfying RCA0+P but not Q. In its full
generality, the model M can be non-standard, but one usually wants to construct an ω-structure,
so that the separation is not due to some induction technicalities, but also holds with our standard
understanding of the integers. The usual construction of an ω-model of RCA0+P is done by
building a Turing ideal in which P holds, as follows.

Start with a topped Turing ideal I0, that is, a Turing ideal of the form {Z : Z ≤T C}
for some set C. The Turing ideal of all computable sets is commonly chosen.
Assuming that as stage s, we have a topped Turing ideal Is = {Z : Z ≤T Cs} for
some set Cs,

(i) Pick the next P-instance X ∈ Is with no solution in Is, for a reasonable
ordering so that each P-instance will receive attention at some stage.

(ii) Construct a solution Y to X . Such a solution exists by the classical proof of P.
(iii) Set Is+1 = {Z : Z ≤T Y ⊕Cs}.

Then, go to the next stage. Finally, take I =
⋃

s Is.

Furthermore, if one want the resulting Turing ideal I not to satisfy Q, one need to be a bit
more careful during the construction. First, there must be a Q-instance I with no I-computable
solution, otherwise every statement computably entails Q. Start with I0 = {Z : Z ≤T I}. By
the choice of the Q-instance, Q does not hold in I0. Ideally (no pun intended), one would like
to preserve the property that Q does not hold in Is at any stage s. However, sometimes, this
invariant is not strong enough, and one adds solutions to the Q-instance I during the step (iii).
One therefore needs to maintain a stronger invariant, which leads to the notion of preservation of

a weakness property.

Definition 3.4.1 — Weakness preservation. A weakness property is a collection P of
subsets of ω which is downward-closed under the Turing reduction. A Π1

2 statement P
admits P preservation for some weakness property P , if for every set C ∈ P and every
C-computable P-instance X , there is a solution Y to X such that Y ⊕C ∈ P .

We have already seen two important examples of weakness properties, namely, lowness
and hyperimmune-freeness. By the low and hyperimmune-free basis theorems, WKL admits
both lowness and hyperimmune-freeness preservation. P preservation is designed so that it is
possible to tweak the previous Turing ideal construction to maintain the invariant that Is ⊆ P .

Lemma 3.4.1 If P admits P preservation, then for every set C ∈ P , P holds in a Turing
ideal I ⊆ P containing C.
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Proof. Follow the previous construction, starting with I0 = {Z : Z ≤T C}. At any stage s,
maintain the invariant that Is = {Z : Z ≤T Cs} for some set Cs ∈ P . Therefore,

⋃

s Is ⊆ P .
This is possible since by P preservation for P, one can choose at step (ii) a solution Y to X such
that Y ⊕Cs ∈ P . �

In particular, P preservation is strong enough to obtain separations over ω-models, and a

fortiori separations over RCA0.

Lemma 3.4.2 If P admits P preservation but not Q, then Q 6≤ω P.

Proof. Let C ∈ P and I ≤T C be a Q-instance such that for every solution Y to I, Y ⊕C 6∈ P .
By Lemma 3.4.1, P holds in a Turing ideal I ⊆ P such that C ∈ I . In particular, I ∈ I .
Suppose for the sake of contradiction that I contains a solution Y to I. Then Y ⊕C ∈ I by the
closure under the effective join, contradicting our choices of C and I. �

Weakness preservation admits a dual presentation in terms of avoidance.

Definition 3.4.2 — Avoidance. Let Q be a collection of sets upward-closed under the
Turing reducibility. A Π1

2 statement P admits Q avoidance if for every set C 6∈ Q and every
C-computable P-instance X , there is a solution Y to X such that Y ⊕C 6∈ Q.

The two notions are trivially equivalent, since Q avoidance is {Z : Z 6∈ Q} preservation
and P preservation is {Z : Z 6∈ P} avoidance. There is however an ontological difference
between those two notions. Weakness properties such as lowness talk intuitively about how
easy to compute a set is, whereas the sets satisfying an avoidance property can be arbitrarily
complicated. In general, one will prefer to use a presentation such that the considered property
is countable. For example, there are countably many low sets, so it is more natural to define
lowness preservation rather than non-lowness avoidance. On the other hand, the upper cone of a
non-computable set is countable, so one will rather use cone avoidance to build a Turing ideal
avoiding the halting set.

We shall often consider families of preservations or avoidances.

� Example 3.1 — Cone avoidance. A Π1
2 statement P admits cone avoidance if for every

pair of sets A and C such that A 6≤T C, every C-computable P-instance X has a solution Y such
that A 6≤T Y ⊕C. In other words, P admits cone avoidance if for every set A, P admits QA

avoidance, where QA = {Z : A ≤T Z}. �





4. Effective forcing

We now introduce the notion of effective forcing, which is one of the main tools to construct
solutions to theorems in reverse mathematics. The forcing framework is a technique introduced
by Cohen in set theory to prove consistency and independence results [Coh63]. His technique
was a major breakthrough and has been successfully re-applied in set theory and computability
theory over the following years. In this chapter, we present an effectivization of the forcing
framework to fit the purposes of computability theory.

Consider the following problem: Let M be a universe satisfying some set of properties T .
By “universe”, we mean a collection of objects. Typically, M will be a Turing ideal, or a
structure, and T will be a collection of sentences such that M |= T . We would like to add some
elements to M , so that the new universe N satisfies some extra properties S, while preserving T .
This problem basically occurs when we try to separate a statement P from a statement Q, by
constructing a Turing ideal in which P holds, but not Q. At some stage s, we want to add a
solution to some chosen P-instance, while avoiding adding solutions to a Q-instance. The forcing
framework enables one to create new objects while controlling the propagation of the properties
from the ground universe to the new one.

4.1 Basic notions

A forcing notion is a partial order (P,�), whose elements are called conditions. A condition c

informally represents a partial approximation of the object we are constructing. It often comes
with a natural notion of satisfiability. An object G satisfies a condition c if it belongs to the
candidate objects approximated by c. A condition d extends a condition c (written d � c) if the
approximation of d is more precise than the one of c. In other words, d � c if the collection of
objects satisfying the condition d is a subset of the ones satisfying c, hence the reverse notation
for the extension relation.

Given a formula ϕ(G) with only one distinguished set parameter G, we can represent the
property ϕ(G) by the set Dϕ ⊆ P of all conditions c such that ϕ(H) holds for every set H

satisfying c. A set D ⊆ P is dense if every condition in P has an extension in D. Therefore, if
the set Dϕ for some property ϕ(G) is dense, then whatever the partial approximation c we have
chosen so far, it is always possible to find a refinement of the approximation which furthermore
satisfies the property ϕ(G).

� Example 4.1 — Tree forcing. Let T ⊆ 2<ω be a computable, infinite binary tree for which
we want to construct an infinite path. Consider the forcing notion (P,�) where P is the collection
of all computable infinite subtrees of T . A set G satisfies a condition U ⊆ T if it is a path
through U . A condition V extends U if V ⊆U . Note that [V ]⊆ [U ]. By taking a subtree V , one
removes some paths and therefore refines the approximation of U . For each index e, consider the
following sets

De,↓ = {U ∈ P : (∃s)(∀σ ∈U [s])Φσ
e (e) ↓} De,↑ = {U ∈ P : (∀σ ∈U)Φσ

e (e) ↑}

where U [s] = {σ ∈U : |σ |= s}. The set De = De,↓∪De,↑ is dense. In particular, if U ∈ De, then
we have decided the termination of ΦG

e (e) for every set G satisfying U . �
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A filter is a set F ⊆ P which is closed upward under the extension relation, i.e., if d ∈ F

and d � c, then c ∈ F , and such that any two elements are compatible, that is, if c,d ∈ F , then
there is some e ∈ F such that e � c and e � d. A filter is D-generic for a countable collection of
dense sets D if it intersects every element of D . Such a collection D represents the collection of
properties we would like to satisfy by the constructed object.

Theorem 4.1.1 Let (P,�) be a notion of forcing, let D be a countable collection of dense
subsets of P, and let c ∈ P. There is a D-generic filter containing c.

The collection D is often not explicited and we argue that every sufficiently generic filter
satisfies some property if, whenever we put sufficiently many dense sets in D , every D-generic
filter satisfies the property. When the filter is sufficiently generic, there is often a unique object
satisfying the intersection of all its members, in which case we skip the filter notation and simply
say that a set G is sufficiently generic for a forcing notion.

� Example 4.2 — Tree forcing. Take the forcing notion of Example 4.1. Consider the following
set for each string σ ∈ 2<ω :

Dσ = {U ∈ P : (∀τ ∈U)[τ � σ ∨σ � τ]}

For each n, the set Dn =
⋃

σ∈2n Dσ is dense. In particular, every sufficiently generic filter F will
intersect Dσ for each n and exactly one σ ∈ 2n. Therefore, the filter F will induce a unique
real GF =

⋃
{σ ∈ 2<ω : Dσ ∩F 6= /0}. �

4.2 The forcing relation

One of the main features of the forcing framework is the ability to control the properties of the
resulting object during the construction. We have interpreted a property ϕ(G) as the set Dϕ ⊆ P

of all conditions c such that the property holds for every set satisfying c. This interpretation is
however too restrictive, and in particular, the set Dϕ ∪D¬ϕ is not dense in general. For example,
with the forcing notion defined in Example 4.1, the set

{U ∈ P : (∀H ∈ [U ])[ΦH
e is total]∨ (∀H ∈ [U ])[ΦH

e is partial]}

is not dense, although for every set G sufficiently generic, ΦG
e will be either total or partial.

We therefore widen our satisfaction of a property, and say that a condition c forces a
formula ϕ(G) (written c 
 ϕ) if ϕ(G) holds for every sufficiently generic filter containing c. In
particular, the forcing relation satisfies the following enjoyable property.

Theorem 4.2.1 Let F be a sufficiently generic filter, G be the corresponding generic set
and ϕ be any formula where G is the only free variable. Then ϕ(G) holds iff there is a
condition c ∈ F such that c 
 ϕ .

This forcing relation is defined in a semantic way, but it also admits a purely syntactic
definition. We denote by c 
∗ ϕ(G) the syntactic forcing relation, which is defined inductively
as follows. The base case, that is, the forcing relation over Σ0

0 formulas, depends on the forcing
notion we consider and in particular the way we obtain a set G from a generic filter. It will
always be clear in the context. In Example 4.1, U 
∗ ϕ holds for some Σ0

0 formula ϕ(G) if there
is some threshold t such that ϕ(σ) holds for every σ ∈ U of length t. The forcing relation is
extended to arbitrary formulas by the following rules.

1. c 
∗ ¬ϕ iff d 6
∗ ϕ for all d � c

2. c 
∗ ϕ ∧ψ iff c 
∗ ϕ and c 
∗ ψ
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3. c 
∗ (∃n)ϕ(n) iff for every d � c, there is some n ∈ ω and some e � d such that e 
∗ ϕ(n).

By the following theorem, the syntactic and the semantic forcing relations coincide.

Theorem 4.2.2 Let c be a condition and ϕ be any formula where G is the only free variable.
Then c 
 ϕ iff c 
∗ ϕ .

4.3 Effective forcing

Theorem 4.1.1 admits an effective analogue if we impose effectiveness restrictions on the
collection D . Given a set D ⊆ P, let D⊥ = {c ∈ P : (∀d � c)d 6∈ D}. We cannot effectively
enumerate all dense Σ0

n sets. However, for every Σ0
n set D, the set D∪D⊥ is dense. We say that a

filter F ⊆ P is n-generic if it intersects D∪D⊥ for every Σ0
n set D ⊆ P. The filter F meets D if it

intersects D, and avoids D if it intersects D⊥. A filter F ⊆ P is weakly n-generic if it intersects
every dense Σ0

n set D ⊆ P.
Cohen notion of forcing (2<ω ,�) is of particular interest. The conditions are strings σ ∈ 2<ω ,

and a string τ extends σ if σ is a prefix of τ . Cohen genericity is a very useful notion as it
represents, together with Martin-Löf randomness, the informal idea of typical set. Genericity is
typical in a Baire category sense, while Martin-Löf randomness is typical in a measure-theoretic
sense. Weakly 1-genericity for Cohen forcing coincides with the notion of hyperimmunity that
we already met.

Theorem 4.3.1 — Kurtz [Kur82; Kur83]. A degree d bounds a Cohen weakly 1-generic real
iff d is hyperimmune.

Proof idea. Given a string σ , let pσ denote its principal function. For every computable function,
the dense set D f = {σ : (∃n)pσ (n)> f (n)} witnesses the hyperimmunity of weakly 1-generic
reals. In the other direction, take a hyperimmune function f and construct a weakly 1-generic
real by a greedy algorithm, looking at stage s at the f (s)th approximation of the c.e. sets of
strings. �

Cohen forcing is a very simple notion of forcing, both conceptually and effectively. In
general, one will want to use the most effective notion of forcing possible, that is, a forcing
notion whose conditions and extension relation are effectively describable, in order to make the
generic set preserve more properties.

� Example 4.3 — Tree forcing. Suppose we want to prove the cone avoidance basis theorem
(Theorem 1.4.3). Let T be a computable, infinite binary tree and A be a non-computable set.
Consider the forcing notion of Example 4.1. It suffices to prove that for every index e, the
following set is dense.

De = {U ∈ P : (∃n)(∀σ ∈U)[Φσ
e (n) ↓→ Φσ

e (n) 6= A(n)]}

Fix some infinite binary tree U ∈ P and let Γn = {σ ∈ 2<ω : Φσ
e (n) ↑}. By convention on the

notation Φσ
e (·), the set U ∩Γn is a computable binary tree. We claim that one of the two following

must hold:
1. Φσ

e (n) ↓6= A(n) for some n and some extendible σ ∈U

2. U ∩Γn is infinite for some n

In the first case, the tree U [σ ] = {τ ∈U : τ � σ} is in De, and in the second case, U ∩Γn ∈ De.
If none of 1 and 2 hold, then we can compute A, by a procedure which on input n, searches for
some threshold t and some value x such that Φσ

e (n) ↓= x for every string σ ∈U of length t. This
contradicts the assumption that A is not computable. �
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The core of the argument is the following. We want to diagonalize against a complex object
(here, the set A) while working within a weak forcing notion (computable trees). If there is
no way to diagonalize against the object, then the forcing notion gives us some grasp on it,
and therefore the object admits a simple description. In Example 4.3, if we used arbitrary
infinite binary trees instead of computable ones, there would be no contradiction in obtaining an
U-computation of A.

The importance of an effective description of the partial order is even more visible when
we consider the forcing relation. In order to construct a set G of lown degree, that is, such
that G(n) ≤T /0(n), one need to decide Σ0

n formulas in a /0(n)-effective construction. In particular,
one want to /0(n)-effectively decide whether, given a condition c ∈ P and a Σ0

n formula ϕ(G),
there is an extension d 
∗ ϕ or d 
∗ ¬ϕ . The relation d 
∗ ϕ for Σ0

0 formulas is usually
decidable. However, the third inductive rule makes the relation d 
∗ ϕ too complex when dealing
with higher rank formulas. We need to define a stronger relation of forcing which has better
definitional properties. Define c 
◦ ϕ in the same way as c 
∗ ϕ for Σ0

0 formulas, and add the
following inductive rules.

(a) c 
◦ (∀n)ϕ(n) iff d 
◦ ϕ(n) for all n ∈ ω and all d � c

(b) c 
◦ (∃n)ϕ(n) iff c 
◦ ϕ(n) for some n ∈ ω .

The relation 
◦ is known as the strong forcing relation and was introduced by Cohen [Coh63].
Note that, unlike the previous forcing relation, the strong forcing relation is not semantic. In
particular, there are some logically equivalent formulas ϕ and ψ such that c 
◦ ϕ and c 6
◦ ψ .
See Mummert [Mum] for a discussion. Thankfully, the strong forcing relation also satisfies
Theorem 4.2.1. It relates to the weak forcing relation as follows.

Theorem 4.3.2 Let c be a condition and ϕ be any formula where G is the only free variable.
Then c 
 ϕ iff c 
◦ ¬¬ϕ .

Looking at Cohen forcing (2<ω ,�), is it clear that the set {σ : σ 
◦ ϕ} for some Σ0
n (Π0

n)
formula ϕ is Σ0

n (Π0
n). However, when considering more complicated forcing notions, the

complexity of the forcing relation can increase due to the complexity of the quantification over
all extensions of a given condition. This is in particular the case for Mathias forcing, which we
introduce below.

From now on, we will consider only the strong forcing relation and write it 
.

4.4 Mathias forcing

Mathias forcing is a central notion of forcing in the computable analysis of Ramsey’s theorem
and its consequences. Variants of Mathias forcing have been successfully used to separate various
Ramsey-type theorems.

Definition 4.4.1 — Mathias forcing. A Mathias condition is an ordered pair (F,X), where F

is a finite set of integers and X is an infinite set such that max(F)< min(X). A condition d =
(E,Y ) extends c = (F,X) (written d ≤ c) if F ⊆ E, Y ⊆ X and E rF ⊂ X . A set G satisfies a
Mathias condition (F,X) if F ⊂ G and GrF ⊆ X .

One may think of a Mathias condition (F,X) as a finite approximation F of the generic set G,
together with an infinite reservoir X , that is, a set of candidate elements we may add to F later
on. The restriction max(F)< min(X) ensures that F is an initial segment of the set G (when we
view sets as binary strings/sequences).

The shape of a notion of forcing strongly depends on the nature of the object one wants to
construct. It is therefore common to use slight variations of Mathias forcing to force solutions to
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Ramsey-type statements. A reservoir is not only a restriction of the domain, but also a warrant of
the extensibility of a condition.

� Example 4.4 — Mathias forcing for RT2
2. Let f : [ω]2 → 2 be a computable coloring for

which we want to construct an infinite f -homogeneous set. First, note that a finite f -homogeneous
set F may not be extendible into an infinite one. For example, a set F which is f -homogeneous
for color 0, and such that f (x,y) = 1 for some x ∈ F and cofinitely many y is not extendible.

The suitable forcing notion to obtain extendible conditions is the following variant of
Mathias forcing: The conditions are tuples (F0,F1,X) such that (F0,X) and (F1,X) form Mathias
conditions. The conditions furtheremore satisfy the following property:

(∀i < 2)(∀y ∈ X)[Fi ∪{y} is f -homogeneous for color i]

This property over the reservoir ensures that at least one of the finite f -homogeneous sets F0

or F1 is extendible into an infinite one. To see this, apply RT2
2 over the coloring f restricted

to the reservoir X , to obtain an infinite f -homogeneous set H ⊆ X , say for color i. Then the
set Fi ∪H is also f -homogeneous. �

As explained in the previous section, one usually wants to impose some effectiveness property
over the notion of forcing. In the case of Mathias forcing, the reservoir X often satisfies some
weakness property. Suppose we want to prove that some statement P admits P preservation for
some weakness property P . Let C ∈P and I be a C-computable P-instance. One usually works
with a Mathias forcing (F,X) such that X ⊕C ∈ P . In particular, the absence of a solution Y

to I such that Y ⊕C ∈ P ensures the extendibility of all finite approximations.

� Example 4.5 — Mathias forcing for RT2
2. Suppose we want to prove that RT2

2 admits cone
avoidance. Let A be a non-computable set, and let f : [ω]2 → 2 be a computable coloring. If
there is an infinite f -homogeneous set H such that A 6≤T H, then we are done. So suppose it
is not the case. Consider the variant of Mathias forcing introduced in Example 4.4, where we
furthermore impose that A 6≤T X .

For every condition c = (F0,F1,X) and every i < 2, there is an extension d = (E0,E1,Y )
such that |Ei| > |Fi|. By symmetry, say i = 0. Ask whether there is some x ∈ Y such that the
set Y = {y ∈ X : f (x,y) = 0} is infinite. If so, the condition (F0∪{x},F1,Y r [0,x]) is the desired
extension. If there is no such x ∈ Y , then for almost all x and y ∈ Y , f (x,y) = 1. By thinning
out the set X , one may obtain an X-computable f -homogeneous set H. In particular, A 6≤T H,
contradicting our assumption.

Of course, we need to prove that the sets forcing the generic G not to compute A are dense,
but this goes beyond an introduction to effective forcing. �

Mathias forcing is a good notion of forcing to control properties below the first jump.
In particular, the forcing relation over Σ0

1 formulas is Σ0
1. However, the situation gets more

complicated when controlling iterated jumps. Cholak, Dzhafarov and Hirst [Cho+14] studied
the complexity of the forcing relation for computable Mathias forcing, that is, a Mathias forcing
whose reservoirs are computable.

Theorem 4.4.1 — [Cho+14]. Let (F,X) be a computable Mathias condition and let ϕ(G) be
a formula with exactly one free set variable.

(1) If ϕ is Σ0
0 then the relation (F,X) 
 ϕ is computable.

(2) If ϕ is Π0
1, Σ0

1 or Σ0
2 then so is the relation (F,X) 
 ϕ .

(3) For n ≥ 2, if ϕ is Π0
n then the relation (F,X) 
 ϕ is Π0

n+1.
(4) For n ≥ 3, if ϕ is Σ0

n then the relation (F,X) 
 ϕ is Σ0
n+1.

The extra complexity of the forcing relation is essentially due to the fact that the sentence “Y is
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an infinite subreservoir of X” is hard to describe. The separation between Ramsey-type statements
can be usually done by computability-theoretic properties which admit a diagonalization below
the first jump. In this case, Mathias forcing is a suited notion of forcing. However, in some
cases, one needs to control iterated jumps, in particular when dealing with hiearchies such as the
free set and the thin set hierarchies. We shall see in Chapter 15 alternative notions of forcing
for various Ramsey-type theorems, whose complexity of the forcing relation admits the same
bounds as for Cohen forcing.

Finally, Cholak, Jockusch and Slaman [CJS01] noted that every sufficiently computable
Mathias generic produces a set of high degree.

Lemma 4.4.2 — [CJS01]. Every set sufficiently generic for computable Mathias forcing is of
high degree.

Proof. For every computable function f , the set D f = {(F,X) : pF∪X dominates f} is dense. In
particular, for every infinite set G satisfying some condition (F,X) ∈ D f , pG dominates f . �

One can however restrict the amount of genericity of the filter to obtain sets of lower degree,
as did Cholak, Jockusch and Slaman for Ramsey’s theorem for pairs.



Part II

The strength of Ramsey’s theorem





5. A proof of Ramsey’s theorem

Ramsey’s theory claims that true chaos does not exist1, in the sense that one can always find
some substructure in a sufficiently large collection of arbitrary data. Ramsey’s theorem is perhaps
the most famous example of such a statement and asserts that every coloring of the n-tuples of
integers into k colors has an infinite monochromatic set.

The strength of Ramsey’s theorem and its consequences is notoriously hard to tackle. Its
investigation led to a number of new separation techniques and contributed to increase the global
understanding of reverse mathematics. The effective analysis of Ramsey’s theorem was started
by Jockusch [Joc72] who gave precise bounds on the definitional complexity of solutions to
Ramsey’s theorem.

Theorem 5.0.1 — Jockusch. Fix some n,k ≥ 2.
• Every computable coloring f : [N]n → k has a Π0

n homogeneous set.
• There is a computable coloring f : [N]n → k with no Σ0

n homogeneous set.

In particular, Theorem 5.0.1 shows that RTn
k is a consequence of ACA in standard models

since ACA can be understood as the statement “Every set has a Turing nth jump”. There are
many ways to prove Ramsey’s theorem. The simplest one is an inductive argument using
prehomogeneous sets.

Definition 5.0.1 Let f : [N]n+1 → k be a coloring. A set P is f -prehomogeneous if for
every σ ∈ [P]n and every x,y ≥ max(σ), f (σ ,x) = f (σ ,y).

In other words, a set P is f -prehomogenous if the color of a tuple over P do not depend
on its last component. In particular, every f -homogeneous set is f -prehomogeneous. From a
computational point of view, Jockusch [Joc72] showed that König’s lemma (KL) proves the
existence of a prehomogeneous set. Simpson [Sim09] formalized Jockusch’s argument in RCA0.

Lemma 5.0.2 — (RCA0+KL, ≤sc KL). Every coloring f : [N]n+1 → k has an infinite f -preho-
mogenous set.

Proof. Let T ⊆ N<N be the set of all strings a0 < a1 < · · · < at−1 such that {a0, . . . ,at−1} is
f -prehomogeneous and for each i < t, ai is the least a > ai−1 such that f (σ ,ai) = f (τ,ai) for
each σ ,τ ∈ [{a0, . . . ,ai−1}]

n (where a−1 =−1). The set T is an infinite, ∆
0,T
1 finitely branching

tree whose paths are f -prehomogeneous. �

Since König’s lemma holds in RCA0+ACA, we can use the notion of prehomogeneous set
to reduce RTn+1

k to RTn
k .

Theorem 5.0.3 For every standard n, RCA0 ⊢ ACA→ RTn
<∞.

Proof. Assume by induction over n that RCA0 ⊢ACA→RTn
<∞. Let f : [N]n+1 → k be a coloring.

By Lemma 5.0.2, there is an infinite f -prehomogeneous set P. Let f̃ : [P]n → k be such that for

1Ramsey never went into my room.
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each σ ∈ [P]n, f̃ (σ) = f (σ ,x) for the least x ∈ P such that x > max(σ). By RTn
<∞, there is an

infinite f̃ -homogeneous set H. The set H is f -homogeneous. �

Note that the induction in Lemma 5.0.3 lives in the meta theory. In fact, Simpson [Sim09]
proved that the statement RT does not hold in RCA0+ACA. Of course, RT holds in any ω-model
of ACA.

Is the proof of RTn
<∞ optimal? The use of prehomogeneous sets as intermediary objects is

done without loss of optimality since every homogeneous set is prehomogeneous. However, the
resort to König’s lemma to prove the existence of a prehomogeneous set may be unnecessary. In
fact, Hirschfeldt and Jockusch [HJ] showed that whenever n ≥ 3, the use of König’s lemma is
optimal, in the following sense.

Theorem 5.0.4 — RCA0. For every set X , there is a ∆
0,X
1 coloring f : [N]3 → 2 such that every

f -prehomogeneous set is of PA degree relative to the jump of X .

In particular, RCA0 ⊢ RT3
2 → KL and KL ≤sc RT

3
2. It follows that, RTn

k and RTn
<∞ are

equivalent to ACA over RCA0 for every n ≥ 3 and k ≥ 2.

5.1 Cohesiveness and stability

Can we do better for Ramsey’s theorem for pairs? Let us have a closer look at the standard
proof of RT2

2 using prehomogeneous sets. Let f : [N]2 → k be a coloring and let P be an infinite
f -prehomogeneous set. The set P induces a ∆

0, f⊕P
1 partition A0, . . . ,Ak−1 of P defined by

Ai = {x ∈ P : (∀y ∈ P)[y > x → f (x,y) = i]}

Note that any infinite subset of one of the A’s is a solution to f . Apply RT1
k to obtain an infinite

f -homogeneous set. In their seminal paper, Cholak, Jockusch and Slaman [CJS01] had the idea
to use a stronger variant of the pigeonhole principle in order to weaken the properties expected
from the set P.

Definition 5.1.1 Dn
k is the statement “For every ∆0

n k-partition A0, . . . ,Ak−1 of N, there is an
infinite subset of one of the A’s”.

By Shoenfield’s limit lemma, for every ∆0
2 such k-partition A0, . . . ,Ak−1 of N, there is

a computable function f : [N]2 → k such that for every x, limy f (x,y) exists and x ∈ Ai iff
limy f (x,y) = i. The function f can be seen as a particular RT2

k-instance such that limy f (x,y)
exists for every x. Such a function is called stable and we denote by SRT2

k the statement RT2
k

restricted to stable functions. In particular, every infinite f -homogeneous set for color i is
an infinite subset of Ai. On the other hand, we can f -computably thin out any infinite subset
of Ai into an infinite f -homogeneous set for color i. The statements D2

k and SRT2
k are therefore

computably equivalent. Cholak, Jockusch and Slaman [CJS01] formalized the equivalence
over RCA0. However, they used the Σ0

2 bounding scheme (BΣ0
2) to compute an infinite f -

homogeneous set from a subset of one of the A’s. Later, Chong, Lempp and Yang [CLY10]
showed that D2

2 implies BΣ0
2 over RCA0 using an involved argument.

Theorem 5.1.1 For every k, RCA0 ⊢ D2
k ↔ SRT2

k and D2
k =c SRT

2
k .

Given a coloring f : [N]2 → k, the restriction f : [P]2 → k is stable for every f -prehomogeneous
set P. In fact, every set which is eventually prehomogeneous satisfies this property. Let CRT2

2
be the statement asserting for every coloring f : [N]2 → 2 the existence of an infinite set C such
that f : [C]2 → 2 is stable. One immediately sees that RCA0 ⊢ RT2

2 ↔ [CRT2
2∧SRT2

2]. However,
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we shall rather use the following seemingly stronger statement. Given two sets A and B, the
notation A ⊆∗ B means that the set A is included in B, up to finite changes.

Definition 5.1.2 — Cohesiveness. An infinite set C is ~R-cohesive for a sequence of sets
R0,R1, . . . if for each i ∈ ω , C ⊆∗ Ri or C ⊆∗ Ri. A set C is p-cohesive if it is ~R-cohesive where
~R is an enumeration of all primitive recursive sets. COH is the statement “Every uniform
sequence of sets ~R has an ~R-cohesive set.”

Cohesiveness implies CRT2
2 over RCA0 as shows the following simple reduction.

Lemma 5.1.2 RCA0 ⊢ COH→ CRT2
2 and CRT2

2 ≤sW COH

Proof. Let f : [N]2 → 2 be a coloring. Define the ∆
0, f
1 sequence of sets R0,R1, . . . for each x as

Rx = {y ∈N : f (x,y) = 1} and let C be an ~R-cohesive set. The function f : [C]2 → 2 is stable. �

At first sight, cohesiveness seems to be more than what we require in the proof of Lemma 5.1.2.
Indeed, any infinite set C such that for every x ∈ C, C ⊆∗ Rx or C ⊆∗ Rx would be sufficient.
Mileti [Mil04] proved that cohesiveness can chosen without loss of optimality.

Lemma 5.1.3 RCA0 ⊢ RT2
2 → COH and COH≤sW RT2

2.

Proof idea. Let R0,R1, . . . be a sequence of sets. By adding some dummy sets, we can assume
that for each x 6= y, there is some i such that Ri(x) 6= Ri(y). Let i(x,y) be the least such i.
Define f : [N]2 → 2 for each x < y by f (x,y) = 1 iff x ∈ Ri(x,y). Any infinite f -homogeneous set

is ~R-cohesive. However, one must be careful with the induction to carry the proof over RCA0. �

Later, Hirschfeldt and Shore [HS07] clarified the links between CRT2
2 and COH by proving

that they coincide over RCA0+BΣ0
2. Putting Theorem 5.1.1, Lemma 5.1.2 and Lemma 5.1.3

together, we obtain the following equivalence.

Theorem 5.1.4 RCA0 ⊢ RT2
2 ↔ [COH∧D2

2].

5.2 Effective constructions

The effective analysis of Ramsey’s theorem for pairs now reduces to the analysis of cohesiveness
and the D2

2 statement. The former one will be extensively studied in Chapter 7. We now proceed
to an effective analysis of D2

2. Most of the constructions we will encounter in this thesis will be
P preservations for some weakness property P which is a genericity notion, that is, for which
we can prove that every sufficiently Mathias generic preserves P . For example, hyperimmunity
and cone avoidance are genericity notions whereas lowness is not. For any such weakness
property P , we do not care about the effectiveness of the construction. In particular, a proof of
P preservation for D2

2 often happens to be a proof of strong P preservation for RT1
2.

Definition 5.2.1 — Strong weakness preservation. A Π1
2 statement P admits strong P

preservation for some weakness property P , if for every set C ∈ P and every (non-
necessarily C-computable) P-instance X , there is a solution Y to X such that Y ⊕C ∈ P .

Strong P preservation represents a structural weakness of the statement P in that it is not
possible to encode in a P-instance the amount of information to escape P . On the other hand, the
standard P preservation represents an effective weakness, in that the weakness of the solutions
may come from the effectiveness restrictions on the P-instance. Some statements like WKL are
effectively weak while being structurally strong. Indeed, by the cone avoidance basis theorem,
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WKL admits cone avoidance, whereas there is an infinite binary tree whose unique path computes
the halting set.

Since any D2
2-instance can be seen as a non-effective RT1

2-instance, if RT1
2 admits strong P

preservation then D2
2 admits P preservation. In particular, the proofs of P preservation for RT2

2
are often based on the following lemma which holds by Theorem 5.1.4.

Lemma 5.2.1 If RT1
2 admits strong P preservation and COH admits P preservation, then RT2

2
admits P preservation.

We now present a proof sketch of strong P avoidance for RT1
2 for an arbitrary collection P

of subsets of ω . Of course, such a proof will contain some holes which can be completed only for
some particular P’s. Let A0∪A1 = ω be an arbitrary RT1

2-instance. Fix some set C belonging to
some weakness property P and suppose that there is no infinite subset H of one of the A’s such
that H ⊕C ∈ P , as otherwise we are done. We want to build a set G such that G∩A0 and G∩A1

are both infinite, and either (G∩A0)⊕C ∈ P or (G∩A1)⊕C ∈ P . For this, we use a variant
of Mathias forcing (F,X) where X ⊕C ∈ P . First, notice that Mathias generics are cohesive.

Lemma 5.2.2 If G is sufficiently Mathias generic, then G is cohesive.

Proof. Let R be a computable set and c= (F,X) be a Mathias condition. The sets X ∩R and X ∩R

are both X ⊕C-computable, and one of them is infinite. Therefore, either (F,X ∩R) or (F,X ∩R)
is a valid extension forcing G ⊆∗ R in the former case, and G ⊆∗ R in the latter case. �

Lemma 5.2.2 is one of the main reasons why it is so difficult to separate Ramsey-type
statements from COH. Indeed, many Ramsey-type theorems are constructed using variants of
Mathias forcing whose generics are cohesive. It is still possible to prove that some statement P
does not imply COH using Mathias forcing, but then some effectiveness restriction has to be put
on the overall construction.

Assuming that there is no infinite subset H of one of the A’s such that H ⊕C ∈ P , we can
prove that G∩A0 and G∩A1 are both infinite if G is sufficiently generic.

Lemma 5.2.3 For every condition c = (F,X) and every i < 2, there is an extension d = (E,Y )
to c such that |E ∩Ai|> |F ∩Ai|.

Proof. Fix c and i. First suppose that the set X ∩Ai is empty. In this case X ⊆ A1−i, is infinite, and
is such that X ⊕C ∈ P , contradicting our assumption. So suppose X ∩Ai 6= /0, and let n ∈ X ∩Ai.
The condition d = (F ∪{n},X r [0,n]) is the desired extension. �

At this stage, it is important to clarify the difference between a generic for this notion of
forcing and a solution to the RT1

2-instance A0,A1. Every sufficiently generic filter for this variant
of Mathias forcing induces a single set G that we call the generic. However, we are in fact
constructing two sets G∩A0 and G∩A1, which aim to be solutions to the RT1

2-instance for
color 0 and 1, respectively. One may wonder why we build two solutions in parallel, since
Lemma 5.2.3 shows that both can be forced to be infinite. The need for two solutions becomes
clear when trying to force the solutions to preserve P . Indeed, given a set H, one can usually
ensure that H ∈ P by satisfying a countable collection of requirements RH

0 ,RH
1 , . . . In the case

of strong P preservation for RT1
2, we satisfy a countable collection of disjunctive requirements

Q0,0,Q0,1,Q1,0, . . . defined for each e0,e1 by

Qe0,e1 = R
(G∩A0)⊕C
e0 ∨R

(G∩A1)⊕C
e1

By a simple pairing argument, if the Q-requirements are all satisfied, then all the RG∩Ai-
requirements are satisfied for some i < 2, in which case G∩Ai is a solution to the A’s such
that (G∩Ai)⊕C ∈ P .
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� Example 5.1 — Cone avoidance. Suppose we want to prove that RT1
2 admits strong cone

avoidance. One can split the property A 6≤T H into the countable collection of requirements
RH

0 ,RH
1 , . . . where RH

e is “ΦH
e 6= A”. Therefore, to prove that RT1

2 admits strong cone avoidance,
one will try to satisfy the following requirements for each e0,e1 ∈ ω .

Qe0,e1 : Φ
(G∩A0)⊕C
e0 6= A∨Φ

(G∩A1)⊕C
e1 6= A

If all the Q-requirements are satisfied, then either A 6≤T (G∩A0)⊕C or A 6≤T (G∩A1)⊕C. �

We now describe how to decide Σ
0,C
1 formulas over the solutions. Let ϕ0(H) and ϕ1(H)

be two Σ
0,C
1 formulas with one distinguished set parameter. Given a condition c = (F,X), we

would like to decide whether there is an extension d = (E,Y ) forcing ϕ0(G∩A0)∨ϕ1(G∩A1)
or forcing ¬ϕ1(G∩A0)∨¬ϕ1(G∩A1). By “forcing”, we mean that the property holds for every
set G satisfying the condition d.

There exist two main arguments to decide Σ
0,C
1 formulas. Both seem to be equi-expressive

whenever the overall construction has no effectiveness restriction. Indeed, all the existing
weakness preservation proofs for generic weakness notions can use the former and the latter
argument interchangeably.

In both cases, we assume that WKL admits P preservation. In fact, this assumption is too
strong and we will present in Chapter 11 the Ramsey-type weak König’s lemma which is a
weakening of WKL sufficient to carry both arguments.

5.3 Seetapun-style forcing

This argument has been introduced by Seetapun [SS95] to prove that Ramsey’s theorem for pairs
admits cone avoidance. It has been recently generalized by Dzhafarov [Dzh] who extracted the
core of its combinatorics.

Fix a condition c = (F,X) and pick an X ⊕C-computable sequence of finite sets of max-
imal length E0 < E1 < .. . over X , such that ϕ0((F ∩A0)∪Es) holds for each s. Suppose the
sequence E0 < E1 < .. . finite. Then there is some stage s and a threshold t such that for every
finite set E ⊆ X ∩ (t,+∞), ϕ0((F ∩A0)∪E) does not hold. In this case, the condition d =
(F,X ∩ (t,+∞)) forces ϕ0(G∩A0) not to hold and therefore forces ¬ϕ0(G∩A0)∨¬ϕ1(G∩A1).
So suppose now that the sequence is infinite.

If there is some s ∈ ω such that Es ⊆ A0, then the condition d = (F ∪Es,X r [0,max(Es)])
forces ϕ0(G∩A0) to hold and therefore forces ϕ0(G∩A0)∨ϕ1(G∩A1). From now on, we
suppose that for every s ∈ ω , Es ∩A1 6= /0. In particular, the set A1 is not hyperimmune relative
to X ⊕C.

Let T ⊆ X<ω be the X ⊕C-computable, finitely branching tree such that σ ∈ T iff σ(i) ∈ Es

for each i < |σ | and for every E ⊆ {σ(i) : i < |σ |−1}, ϕ1((F ∩A1)∪E) does not hold.
If the tree T is finite, then there is some leaf σ ∈ T such that ran(σ)⊆ A1. Let E ⊆ ran(σ) be

such that ϕ1((F ∩A1)∪E) holds. The condition d = (F ∪E,X r [0,max(E)]) forces ϕ0(G∩A1)
to hold and therefore forces ϕ0(G∩A0)∨ϕ1(G∩A1). Last, suppose that the tree T is infinite.

By P preservation for WKL, there is an infinite path P through T such that P⊕C 6∈ P .
The set Y = ran(P) is an infinite subset of X such that ϕ1((F ∩A1)∪E) does not hold for
every finite set E ⊆ Y . The condition d = (F,Y ) forces ϕ1(G∩A1) not to hold, and therefore
forces ¬ϕ0(G∩A0)∨¬ϕ1(G∩A1).

Seetapun’s argument has a trial and error flavor, in that we first try to find an extension
making ϕ0(G∩A0) hold. If we fail trying such an extension, then we exploit this failure to build
an extension making ϕ1(G∩A1) hold.
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5.4 CJS-style forcing

This argument has been introduced by Cholak, Jockusch and Slaman [CJS01] to control the
first jump of solutions to Ramsey’s theorem for pairs. It has been reused by Dzhafarov and
Jockusch [DJ09] to prove strong cone avoidance for RT1

2. Fix a condition c = (F,X) and ask the
following question:

Is it the case that for every 2-partition Z0 ∪Z1 = X , there is some side i < 2 and a
finite set E ⊆ Zi such that ϕi((F ∩Ai)∪E) holds?

Suppose the answer is yes. In particular, taking Z0 = X ∩A0 and Z1 = X ∩A1, there is
some i < 2 and a finite set E ⊆ X ∩Ai such that ϕi((F ∩Ai)∪E) holds. The condition d =
(F ∪E,X r [0,max(E)]) is an extension forcing ϕi(G∩Ai) to hold, and therefore forcing ϕ0(G∩
A0)∨ϕ1(G∩A1).

Suppose now that the answer is no. Then, the Π
0,X⊕C
1 class C of all sets Z0 ⊕ Z1 such

that Z0∪Z1 = X is a 2-partition and for every side i < 2 and every finite set E ⊆ Zi, ϕi((F ∩Ai)∪
E) does not hold is not empty. Since WKL admits P preservation, there is a set Z0 ⊕Z1 ∈ C

such that Z0 ⊕ Z1 ⊕ X ⊕C ∈ P . As Z0 ∪ Z1 = X , one of the Z’s is infinite, say Zi. The
condition d = (F,Zi) is an extension of c forcing ϕi(G∩Ai) not to hold, and therefore forcing
¬ϕ0(G∩A0)∨¬ϕ1(G∩A1).

The intuition behind this argument is the following: Given a condition c = (F,X), we would
like to know whether there is some side i < 2 and a finite set E ⊆ X ∩Ai such that ϕi((F ∩Ai)∪E)
holds. The RT1

2-instance A0 ∪A1 = ω is non-effective, and therefore non-accessible. All we
know is F ∩A0 and F ∩A1 since it requires only a finite amount of information from the A’s.

As we cannot access the RT1
2-instance A0,A1, we over-approximate the question and ask

whether for every RT1
2-instance Z0,Z1, there is some finite set E which is compatible with the Z’s

and such that ϕi((F ∩Ai)∪E) holds. If the answer is yes, then in particular, the answer is yes for
the good RT1

2-instance A0,A1. However, if the answer is no, then the RT1
2-instance witnessing

the failure may not be A0,A1 and therefore at first sight, we cannot deduce that ϕi(G∩Ai) will
not hold for both i < 2.

This is where we use an essential feature of Ramsey-type statements: the ability to make a
set a solution to multiple instances at the same time. Indeed, if we let B0,B1 be the RT1

2-instance
witnessing the negative answer, making the solutions G∩A0 and G∩A1 be also solutions to B0,
B1 from now on ensures that ϕi(G∩Ai) will not hold for some i < 2.

One may wonder why we are able to access the witness of failure B0,B1 whereas is can be
any RT1

2-instance. In fact, we would be happy with any RT1
2-instance witnessing this failure, and

this class admits a simple description since the formulas are Σ
0,C
1 . Among this class, at least one

witness instance has a simple description, and can be accessed with the help of any PA degree.
Last, notice that by a compactness argument, the main question is Σ

0,X⊕C
1 and therefore can

be decided in the jump of X ⊕C. In the case of a positive answer, the extension can be found
A0 ⊕A1 ⊕X ⊕C-effectively, and therefore in the jump of X ⊕C if A0 ⊕A1 is ∆

0,C
2 . In the case of

a negative answer, we need to choose which one over Z0 and Z1 is infinite, which requires the
computational power of a PA degree relative to the jump of X ⊕C.



6. The colors in Ramsey’s theorem

The strength of Ramsey’s theorem is known to remain the same when changing the number
of colors in the setting of reverse mathematics. Indeed, given some coloring f : [ω]n → k2,
we can define another coloring g : [ω]n → k by merging colors together by blocks of size k.
After one application of RTn

k to the coloring g, we obtain an infinite set H over which f uses at
most k different colors. Another application of RTn

k gives an infinite f -homogeneous set. This
standard proof of RCA0 ⊢ RTn

k → RTn
k2 involves two applications of RTn

k . In this chapter, we use
computable reducibility to show that multiple applications are really necessary to reduce RTn

k

to RTn
ℓ whenever k > ℓ and n ≥ 2.

More generally, Hirschfeldt and Jockusch [HJ] asked how many applications of RTn
ℓ are

needed in a proof that RCA0 ⊢ RTn
ℓ → RTn

k whenever k > ℓ and n ≥ 2. They introduced a
refinement Q≤n

ω P of computable entailment in which at most n applications of P are allowed.
This notion can be easily formulated within the game-theoretic framework [HJ] (see section 6.3).

Given two integers u, ℓ ≥ 1, we let π(u, ℓ) denote the unique a ≥ 1 such that u = a · ℓ− b

for some b ∈ [0, ℓ). Informally, π(u, ℓ) is the minimal number of pigeons we can ensure
in at least one pigeonhole, given u pigeons and ℓ pigeonholes. Given k ≥ 1 and ℓ ≥ 2, we
define mk,ℓ inductively as follows. First, m1,ℓ = 0. Assuming that ms,ℓ is defined for every s < k,
let mk,ℓ = 1+mπ(k,ℓ),ℓ whenever k ≥ 2. Note that mπ(k,ℓ),ℓ is already defined since π(k, ℓ) < k

whenever k, ℓ ≥ 2. In this chapter, we answer the question of Hirschfeldt and Jockusch by
proving the following theorem.

Theorem 6.0.1 For every k > ℓ≥ 2
(i) RTn

k ≤
2
ω RTn

ℓ for every n ≥ 3
(ii) SRTn

k 6≤c RT
n
ℓ for every n ≥ 2

(iii) RT2
k ≤

mk,ℓ
ω RT2

ℓ

(iv) SRT2
k 6≤

mk,ℓ−1
ω RT2

ℓ

We first prove items (i) and (iii). The negative results will be proven at the end of this chapter.

Proof of Theorem 6.0.1 item (i). Let f : [ω]n → k be an instance of RTn
k . By Jockusch [Joc72],

there is an f -computable RTn
ℓ -instance g : [ω]n → ℓ such that every infinite g-homogeneous set

f -computes the Turing jump of f . Let Hg be an infinite g-homogeneous set. By Hirschfeldt
and Jockusch [HJ], there is an f ⊕Hg-computable RTn

ℓ -instance h : [N]n → ℓ such that every
infinite h-homogeneous set Hh f ⊕Hg-computes a set P of PA degree relative to ( f ⊕Hg)

(n−2)

and therefore relative to f (n−1). By Lemma A.2 in [HJ], P computes an infinite f -homogeneous
set, and therefore so does f ⊕Hg ⊕Hh. �

Proof of Theorem 6.0.1 item (iii). We prove that RT2
k ≤

mk,ℓ
ω RT2

ℓ by induction over k ≥ 1. In the
case k = 1, RT2

k is computably true and therefore we are done. Fix k ≥ 2 and suppose it holds for
all k′ < k. Let f : [ω]2 → k be a coloring. Define the coloring g : [ω]2 → ℓ by g(x,y) = f (x,y)
mod ℓ. For any infinite g-homogeneous set Hg, the coloring f uses at most π(k, ℓ) colors over Hg.
Therefore, there is a f ⊕Hg-computable coloring h : [ω]2 → π(k, ℓ) such that every infinite
h-homogeneous set f ⊕Hg-computes an infinite f -homogeneous set. By induction hypothesis,
since π(k, ℓ) is smaller than k whenever k, ℓ ≥ 2, RT2

π(k,ℓ) ≤
mπ(k,ℓ),ℓ
ω RT2

ℓ . By definition of mk,ℓ,

mk,ℓ = 1+mπ(k,ℓ),ℓ so RT2
π(k,ℓ) ≤

mk,ℓ−1
ω RT2

ℓ . Therefore RT2
k ≤

mk,ℓ
ω RT2

ℓ . �
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The remainder of this chapter is devoted to the proof of items (ii) and (iv) of Theorem 6.0.1.

6.1 Partition of the integers and strong computable reduciblity

We start our analysis with partitions of integers. Of course, every computable partition has an
infinite computable homogeneous set, so we need to consider non-effective partitions and strong
computable reducibility. The study of RT1

k over strong reducibility has close connections with
cohesiveness. Dzhafarov [Dzh14] proved that COH 6≤sc D

2
<∞ by iterating the following theorem.

Theorem 6.1.1 — Dzhafarov [Dzh14]. For every k ≥ 2 and ℓ < 2k, there is a finite se-
quence R0, . . . ,Rk−1 such that for all partitions A0 ∪ ·· · ∪Aℓ−1 = ω hyperarithmetical in ~R,
there is an infinite subset of some A j that computes no ~R-cohesive set.

Hirschfeldt and Jockusch noticed in [HJ] that the proof of Theorem 6.1.1 can be slightly
modified to obtain a proof that RT1

k 6≤sc RT
1
ℓ whenever k > ℓ ≥ 2. Montálban asked whether

the hyperarithmetic effectiveness restriction can be removed from Dzhafarov’s theorem. We
give a positive answer, which has been proved independently by Hirschfeldt & Jockusch [HJ].
Moreover, we show that ~R can be chosen to be low. More precisely, we will prove in this section
the following theorem, from which we deduce several corollaries about cohesiveness and RT1

k .

Theorem 6.1.2 Fix some k ≥ 1 and ℓ≥ 2, some set I and k I-hyperimmune sets B0, . . . ,Bk−1.
For every ℓ-partition A0 ∪ ·· · ∪Aℓ−1 = ω , there exists an infinite subset H of some Ai such
that π(k, ℓ) sets among the B’s are I ⊕H-hyperimmune.

We will postpone the proof of Theorem 6.1.2 until after Corollary 6.1.6. Using the existence
of a low k-partition B0 ∪·· ·∪Bk−1 = ω such that B j is hyperimmune for every j < k, we deduce
the following corollary.

Corollary 6.1.3 For every k > ℓ ≥ 2, there is a low k-partition B0 ∪ ·· · ∪Bk−1 = ω such
that for all ℓ-partitions A0 ∪ ·· · ∪Aℓ−1 = ω , there is an infinite subset H of some Ai and a
pair j0 < j1 < k such that every infinite H-computable set intersects both B j0 and B j1 .

Proof. Fix some k > ℓ≥ 2 and a low k-partition B0∪·· ·∪Bk−1 =ω such that B j is hyperimmune
for every j < k. Since k > ℓ≥ 2, π(k, ℓ)≥ 2. Therefore, by Theorem 6.1.2, for every ℓ-partition
A0 ∪·· ·∪Aℓ−1 = ω , there is an infinite subset H of some Ai and a pair j0 < j1 < k such that B j0

and B j1 are H-hyperimmune. In particular, every infinite H-computable set intersects both B j0

and B j1 . �

The positive answer to Montálban’s question is an immediate consequence of the previous
corollary.

Corollary 6.1.4 For every k ≥ 2 and ℓ < 2k, there is a finite sequence of low sets R0, . . . ,Rk−1

such that for all partitions A0 ∪ ·· · ∪Aℓ−1 = ω , there is an infinite subset of some Ai that
computes no ~R-cohesive set.

Proof. Given k ≥ 2 and ℓ < 2k, fix the low 2k-partition (Bσ : σ ∈ 2k) whose existence is stated
by Corollary 6.1.3. For each i < k, define Ri =

⋃

σ(i)=1 Bσ . Note that by disjointness of the
B’s, Ri =

⋃

σ(i)=0 Bσ . By choice of the B’s, for all ℓ-partitions A0 ∪ ·· ·∪Aℓ−1 = ω , there is an
infinite subset H of some A j and a pair σ <lex τ ∈ 2k such that every infinite H-computable set
intersects both Bσ and Bτ . Let i < k be the least bit such that σ(i) 6= τ(i). As σ <lex τ , σ(i) = 0
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and τ(i) = 1. By definition of Ri, Bτ ⊆ Ri and Bσ ⊆ Ri. Therefore no infinite H-computable set
is homogeneous for Ri. In particular no infinite H-computable set is ~R-cohesive. �

The construction of the B’s is done uniformly in k. We can therefore deduce the following
corollary.

Corollary 6.1.5 There exists a sequence of low sets R0,R1, . . . such that every finite partition
of ω has an infinite subset in one of its parts which does not compute an ~R-cohesive set.

The effectiveness of B in the statement of Corollary 6.1.3 enables us to deduce computable
non-reducibility results about stable Ramsey’s theorem for pairs, thanks to the computable
equivalence between SRT2

ℓ and the statement D2
ℓ .

Corollary 6.1.6 For every k > ℓ≥ 2, SRT2
k 6≤c SRT

2
ℓ .

Proof. Fix k > ℓ≥ 2. By Corollary 6.1.3, there is a ∆0
2 k-partition B0 ∪·· ·∪Bk−1 = ω such that

for all ℓ-partitions A0, . . . ,Aℓ−1 of ω , there is an infinite subset H of some Ai which does not
compute an infinite subset of any B j. By Cholak et al. [CJS01], for every stable computable
function f : [ω]2 → ℓ, there exists a ∆0

2 ℓ-partition A0 ∪ ·· ·∪Aℓ−1 = ω such that every infinite
subset of a part computes an infinite f -homogeneous set. Therefore, for every such function f ,
there exists an infinite f -homogeneous set which does not compute an infinite subset of any B j.
By Shoenfield’s limit lemma [Sho59], the ∆0

2 approximation g : [ω]2 → k of the k-partition B0 ∪
·· ·∪Bk−1 = ω is a stable computable function and every infinite g-homogeneous set with color j

is an infinite subset of B j. �

We now turn to the proof of Theorem 6.1.2. We shall prove it by induction over ℓ, using
a forcing construction whose forcing conditions are Mathias conditions (F,X) where X is an
infinite set such that the B’s are X ⊕ I-hyperimmune. The case where ℓ= 1 trivially holds since
π(k,1) = k.

6.1.1 Forcing limitlessness

For every ℓ-partition A0∪·· ·∪Aℓ−1 =ω , we want to satisfy the following scheme of requirements
to ensure that G∩Ai is infinite for each i < ℓ.

Qp : (∃n0, . . . ,nℓ−1 > p)[n0 ∈ G∩A0 ∧·· ·∧nℓ−1 ∈ G∩Aℓ−1]

Of course, all requirements may not be satisfiable if some part Ai is finite. Usually, a forcing
argument starts with the assumption that the instance is non-trivial, that is, does not admit a
solution with the desired properties (cone avoiding, low, ...). In order to force the solution to
be infinite, it suffices to ensure that the reservoirs satisfy the desired properties, and therefore
cannot be a solution to a non-trivial instance.

In our case, we say that an ℓ-partition A0∪·· ·∪Aℓ−1 is non-trivial if there is no infinite set H

included in the complement of one of the A’s and such that the B’s are H ⊕ I-hyperimmune. The
following lemma states that we can focus on non-trivial partitions without loss of generality.

Lemma 6.1.7 For every trivial ℓ-partition A0 ∪ ·· · ∪Aℓ−1, there is an infinite set H ⊆ Ai for
some i < ℓ such that π(k, ℓ) sets among the B’s are H ⊕ I-hyperimmune.

Proof. Let G = {n0 < n1 < .. .} be an infinite subset of Ai for some i < ℓ such that the B’s are
G⊕ I-hyperimmune. Define the (ℓ−1)-partition (C j : j 6= i) by setting C j = {s ∈ ω : ns ∈ A j}
for each j 6= i. By induction hypothesis, there exists an infinite set H0 ⊆C j for some j 6= i such
that π(k, ℓ−1) sets among the B’s are H0 ⊕G⊕ I-hyperimmune. Note that π(k, ℓ−1)≤ π(k, ℓ).
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The set H = {ns : s ∈ H0} is an H0 ⊕G-computable subset of A j and π(k, ℓ) sets among the B’s
are H ⊕ J-hyperimmune. �

Notice that the proof of Lemma 6.1.7 uses the induction hypothesis with a different context,
namely, G⊕ I instead of I. This is where we needed to use the relativized version of the theorem
in the proof. A condition c = (F,X) forces Qp if there exists some n0, . . . ,nm−1 > p such
that ni ∈ F ∩A j for each i < ℓ. Therefore, if G satisfies c and c forces Qp, then G satisfies the
requirement Qp. We now prove that the set of conditions forcing Qp is dense for each p ∈ ω .
Thus, every sufficiently generic filter will induce an infinite solution.

Lemma 6.1.8 For every condition c and every p ∈ ω , there is an extension forcing Qp.

Proof. Fix some p ∈ ω . It is sufficient to show that given a condition c = (F,X) and some i < ℓ,
there exists an extension d0 = (E,Y ) and some integer ni > p such that ni ∈ E ∩Ai. By iterating
the process for each i < ℓ, we obtain the desired extension d. By definition of non-triviality, Ai is
co-immune in X and therefore X ∩Ai is infinite. Take any ni ∈ X ∩Ai ∩ (p,+∞). The condition
d0 = (F ∪{ni},X r [0,ni]) is the desired extension. �

6.1.2 Forcing non-homogeneity

The second scheme of requirements aims at ensuring that for some i < ℓ, at least π(k, ℓ) sets
among the B’s are (G∩Ai)⊕ I-hyperimmune. The requirements are of the following form for
each j < k and each tuple of indices~e = e0, . . . ,eℓ−1.

R~e, j : R
A0,B j
e0 ∨·· ·∨R

Aℓ−1,B j
eℓ−1

where R
A,B
e is the statement “Φ

(G∩A)⊕I
e does not dominate pB”.

We claim that if all the requirements are satisfied, then (G∩Ai) has the desired property
for some i < ℓ. Indeed, if for some fixed j < k, all the requirements R~e, j are satisfied, then by
the usual pairing argument, there is some i < ℓ such that B j is (G∩Ai)⊕ I-hyperimmune. So
if all the requirements are satisfied, then by the pigeonhole principle, there is some i < ℓ such
that π(k, ℓ) sets among the B’s are (G∩Ai)⊕ I-hyperimmune.

A condition forces R~e, j if every set G satisfying this condition also satisfies the require-
ment R~e. The following lemma is the core of the forcing argument.

Lemma 6.1.9 For every condition c = (F,X), every j < k and every tuple of Turing indices~e,

there exists an extension d = (E,Y ) forcing Φ
(G∩Ai)⊕I
ei not to dominate pB j

for some i < ℓ.

Proof. Let f be the partial X ⊕ I-computable function which on input x, searches for a finite set
of integers U such that for every ℓ-partition Z0 ∪ ·· ·∪Zℓ−1 = X , there is some i < ℓ and some

set E ⊆ Zi such that Φ
((F∩Ai)∪E)⊕I
ei (x) ↓∈U . If such a set U is found, then f (x) = max(U)+1,

otherwise f (x) ↑. We have two cases.
• Case 1: The function f is total. By X ⊕ I-hyperimmunity of B j, f (x)≤ pB j

(x) for some x.
Let U be the finite set witnessing f (x) ↓. Letting Zi = X ∩Ai for each i < ℓ, there is

some i and some finite set E ⊆ X ∩Ai such that Φ
((F∩Ai)∪E)⊕I
ei (x) ↓∈U . The condition d =

(F ∪E,X r [0,max(E)]) is an extension forcing Φ
(G∩Ai)⊕I
ei (x)< f (x)≤ pB j

(x).

• Case 2: There is some x such that f (x) ↑. By compactness, the Π
0,X⊕I
1 class C of

sets Z0 ⊕·· ·⊕Zℓ−1 such that Z0 ∪·· ·∪Zℓ−1 = X and for every i < ℓ and every set E ⊆ Zi,

Φ
((F∩Ai)∪E)⊕I
ei (x) ↑ is non-empty. By the hyperimmune-free basis theorem [JS72b], there

is some ℓ-partition Z0 ⊕·· ·⊕Zℓ−1 ∈ C such that all the B’s are Z0 ⊕·· ·⊕Zℓ−1 ⊕X ⊕ I-
hyperimmune. Let i < ℓ be such that Zi is infinite. The condition d = (F,Zi) is an extension

of c forcing Φ
(G∩Ai)⊕I
ei (x) ↑.

�
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6.1.3 Construction

We have all necessary ingredients to build an infinite set G such that each G∩Ai is infinite, and
such that π(k, ℓ) sets among the B’s are (G∩Ai)⊕ I-hyperimmune for some i < ℓ. Thanks to
Lemma 6.1.8 and Lemma 6.1.9, define an infinite descending sequence of conditions (ε,ω)≥
c0 ≥ . . . such that for each s ∈ ω ,

(a) cs forces Qs

(b) cs forces R~e, j if s = 〈~e, j〉

where cs = (Fs,Xs). Define the set G =
⋃

s Fs. By (a), G∩Ai is infinite for every i < ℓ, and by
(b), each requirement R~e, j is satisfied. This finishes the proof of Theorem 6.1.2.

6.2 Reducibility to Ramsey’s theorem for pairs

Dorais et al. [Dor+16] asked whether RTn
k 6≤c RT

n
ℓ for every n ≥ 2 and k > ℓ≥ 2. Hirschfeldt &

Jockusch [HJ] and Rakotoniaina [Rak15] proved that SRTn
k is not Weihrauch reducible to RTn

ℓ

whenever k > ℓ. We extend the result to computable reducibility. In the first place, we shall
focus on the case n = 2. For this, we will take advantage of the proof of RT2

ℓ that applies
the cohesiveness principle to obtain a stable coloring f : [ω]2 → ℓ. This coloring can itself
be considered as the ∆0

2 approximation of a /0′-computable ℓ-partition of ω , and therefore as a
non-effective instance of RT1

ℓ . Any infinite subset of one of its parts computes an infinite set
homogeneous for f .

Lerman, Solomon and Towsner [LST13] introduced a framework to separate Ramsey-type
statements in reverse mathematics. It turns out that their framework correspond to variants of
preservation of hyperimmunity [Pat15c]. We shall see that this framework provides a sufficiently
fine-grained analysis of Ramsey’s theorem to answer Hirschfeldt and Jockusch’s question.

Definition 6.2.1 — Preservation of hyperimmunity. A Π1
2 statement P admits preservation

of hyperimmunity if for each set Z, each sequence of Z-hyperimmune sets A0,A1, . . . , and
each P-instance X ≤T Z, there is a solution Y to X such that the A’s are Y ⊕Z-hyperimmune.

By Lemma 3.4.2, if some statement P admits preservation of hyperimmunity and some other
statement Q does not, then RCA0∧P0Q. By the hyperimmune-free basis theorem [JS72b], weak
König’s lemma admits preservation of hyperimmunity. Note that any hyperimmune-free degree
preserves all the hyperimmune sets simultaneously, which is much stronger than preserving only
countably many of them. Some statements such as cohesiveness have computable instances with
no hyperimmune-free solution, while they admit preservation of hyperimmunity.

Theorem 6.2.1 COH admits preservation of hyperimmunity.

The proof is done by the usual construction of a cohesive set with Mathias forcing, combined
with the following lemma.

Lemma 6.2.2 For every set Z, every Z-computable Mathias condition (F,X), every index e

and every Z-hyperimmune set B, there exists an extension (E,Y ) such that X =∗ Y and which
forces ΦG⊕Z

e not to dominate pB.

Proof. Let f be the partial Z-computable function which on input x, searches for some finite
set E ⊆ X and some n such that Φ

(F∪E)⊕Z
e (x) ↓= n. If such an n is found, then f (x) = n,

otherwise f (x) ↑. If there is some x such that f (x) ↑, then (F,X) already forces ΦG⊕Z
e to be

partial. Otherwise, f is a Z-computable function, and by Z-hyperimmunity of B, there is some x

such that f (x) < pB(x). Let E ⊆ X be such that Φ
(F∪E)⊕Z
e (x) ↓< pB(x). The condition d =

(F ∪E,X r [0,max(E)]) extends c and forces ΦG⊕Z
e (x)< pB(x). �
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Note that this theorem is optimal in the sense that every p-cohesive set is hyperimmune. RT2
ℓ

does not admit preservation of hyperimmunity for any ℓ≥ 2. However, it is able to preserve the
hyperimmunity of some sets among an initial sequence of hyperimmune sets.

Definition 6.2.2 — Preservation of k hyperimmunities. A Π1
2 statement P admits preser-

vation of p among k hyperimmunities if for each set Z, each Z-hyperimmune sets A0, . . . ,
Ak−1, and each P-instance X ≤T Z, there is a solution Y to X such that at least p sets among
the A’s are Y ⊕Z-hyperimmune.

We say that P admits preservation of k hyperimmunities if it admits preservation of k

among k hyperimmunities. Beware, preservation of ω among ω hyperimmunities is strictly
weaker than preservation of hyperimmunity. For example, RT2

2 admits preservation of ω

among ω hyperimmunities, but does not even admit preservation of 2 hyperimmunities. Using
Theorem 6.1.2, we can deduce the following theorem.

Theorem 6.2.3 For every k ≥ 1 and ℓ ≥ 2, RT2
ℓ admits preservation of π(k, ℓ) among k

hyperimmunities.

Proof. Fix k Z-hyperimmune sets B0, . . . ,Bk−1 for some set Z. Let f : [ω]2 → ℓ be a Z-
computable coloring and consider the sequence of sets R0,R1, . . . defined for each x ∈ ω by

Rx = {s : f (x,s) = 1}

By Theorem 6.2.1, there is an infinite ~R-cohesive set C such that the B’s are hyperimmune relative
to C ⊕ Z. Let f̃ : ω → ℓ be defined by f̃ (x) = lims∈C f (x,s). By Theorem 6.1.2 relativized
to C⊕Z, there is an infinite f̃ -homogeneous set H such that π(k, ℓ) among the B’s are H ⊕C⊕Z-
hyperimmune. In particular, H ⊕C⊕Z computes an infinite f -homogeneous set. �

Using again the existence of a low k-partition B0 ∪·· ·∪Bk−1 such that B j is hyperimmune
for every j < k, we deduce the following corollary.

Corollary 6.2.4 For every k > ℓ ≥ 2, there is a low k-partition B0 ∪ ·· · ∪Bk−1 = ω such
that each computable coloring f : [ω]2 → ℓ has an infinite f -homogeneous set H and a
pair j0 < j1 < k such that every infinite H-computable set intersects both B j0 and B j1 .

Proof. Fix some k > ℓ≥ 2 and a low k-partition B0∪·· ·∪Bk−1 =ω such that B j is hyperimmune
for every j < k. Since k > ℓ ≥ 2, π(k, ℓ) ≥ 2. Therefore, by Theorem 6.2.3, for every RT2

ℓ -
instance f : [ω]2 → ℓ, there is an infinite f -homogeneous set H and a pair j0 < j1 < k such
that B j0 and B j1 are H-hyperimmune. In particular, every infinite H-computable set intersects
both B j0 and B j1 . �

Using Corollary 6.2.4 in a relativized form, we can extend the result to colorings over
arbitrary tuples.

Theorem 6.2.5 For every n≥ 2, and every k>ℓ≥ 2, there is a ∆0
n k-partition B0∪·· ·∪Bk−1 =

ω such that each computable coloring f : [ω]n → ℓ has an infinite f -homogeneous set H and
a pair j0 < j1 < k such that every infinite H-computable set intersects both B j0 and B j1 .

Proof. This is proved in a relativized form by induction over n. The case n = 2 is proved by
relativizing Corollary 6.2.4. Now assume it holds for some n in order to prove it for n+ 1.
Let P ≫ /0′ be such that P′ ≤ /0

′′
. Such a set exists by the relativized low basis theorem [JS72b].

Applying the induction hypothesis to P, there is a ∆
0,P
n (hence ∆0

n+1) k-partition B0∪·· ·∪Bk−1 =
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ω such that each P-computable coloring f : [ω]n → ℓ has an infinite f -homogeneous set H and a
pair j0 < j1 < k such that every infinite H ⊕P-computable set intersects both B j0 and B j1 .

Let f : [ω]n+1 → ℓ be a computable coloring. By Jockusch [Joc72, Lemma 5.4], there
exists an infinite set C pre-homogeneous for f such that C ≤T P. Let f̃ : [C]n → ℓ be the P-
computable coloring defined for each σ ∈ [C]n by f̃ (σ) = f (σ ,a), where a ∈ A, a > max(σ).
Every f̃ -homogeneous set is f -homogeneous. By definition of B0 ∪·· ·∪Bk−1 = ω , there exists
an infinite f̃ -homogeneous (hence f -homogeneous) set H and a pair j0 < j1 < k such that every
infinite H ⊕P-computable set intersects both B j0 and B j1 . �

Using the fact that Dn
k ≤c SRT

n
k for every n,k ≥ 2, we obtain the following corollary strength-

ening the result of Hirschfeldt & Jockusch [HJ] and Rakotoniaina [Rak15]. This proves item (ii)
of Theorem 6.0.1.

Corollary 6.2.6 For every n ≥ 2 and every k > ℓ≥ 2, SRTn
k 6≤c RT

n
ℓ .

This answers in particular Question 7.1 of Dorais et al. [Dor+16]. Note that two applications
of RTn

2 are sufficient to deduce RTn
k in the case n ≥ 3 by item (i) of Theorem 6.0.1. The following

corollary answers positively Question 5.5.3 of Mileti [Mil04].

Corollary 6.2.7 There exists two stable computable functions f1 : [ω]2 → 2 and f2 : [ω]2 → 2
such that there is no computable g : [ω]2 → 2 with the property that every set Hg homogeneous
for g computes both a set H f1 homogeneous for f1 and a set H f2 homogeneous for f2.

Proof. By Corollary 6.2.4 with ℓ= 2 and k = 3, there exists a ∆0
2 3-partition B0 ∪B1 ∪B2 = ω

such that each computable coloring f : [ω]2 → 2 has an infinite f -homogeneous set H and a
pair j0 < j1 < 3 such that every infinite H-computable set intersects both B j0 and B j1 . As in
Corollary 6.1.4, we assume that the B’s are disjoint. By Shoenfield’s limit lemma [Sho59], there
exist two stable computable colorings f1 and f2 such that lims f1(·,s) = B0 and lims f2(·,s) = B1.
If j0 = 0 (resp. j0 = 1) then H does not compute an infinite set homogeneous for f1 (resp. f2).
This completes the proof. �

6.3 Ramsey’s theorem and reduction games

Hirschfeldt and Jockusch [HJ] introduced the following game-theoretic presentation of com-
putable entailment.

Definition 6.3.1 — Reduction game. Given two Π1
2 statements P and Q, the reduction

game G(Q→ P) is a two-player game that proceeds as follows.
On the first move, Player 1 plays a P-instance X0 and Player 2 either plays an X0-

computable solution to X0 and declares victory, in which case the game ends, or responds
with an X0-computable Q-instance Y1.

For n > 1, on the nth move, Player 1 plays a solution Xn−1 to the Q-instance Yn−1. Then
Player 2 plays either an (

⊕

i<n Xi)-computable solution to X0 and declares victory, in which
case the game ends again, or plays an (

⊕

i<n Xi)-computable Q-instance Yn. Player 2 wins the
game if it ever declares victory. Otherwise Player 1 wins.

In particular, they showed that P≤ω Q if and only if Player 2 has a winning strategy for the
reduction game G(Q→ P). They defined the reduction P≤n

ω Q to hold if Player 2 has a winning
strategy that guarantees victory in n+1 or fewer moves.

We start with a simple lemma which states some properties of a finite sequence of integers
a0, . . . ,amk,ℓ

. Intuitively, an is the number of sets among k hyperimmune sets which can be
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preservered at the end of the (n+1)th move during the reduction game G(RT2
ℓ → P).

Lemma 6.3.1 Fix some k ≥ ℓ≥ 2 and let a0, . . . ,amk,ℓ
be the finite sequence defined by a0 = k

and ai+1 = π(ai, ℓ). Then
(i) mk,ℓ = i+mai,ℓ for each i ≤ mk,ℓ

(ii) ai ≥ 1 for each i ≤ mk,ℓ

(iii) ai+1 < ai for each i < mk,ℓ

(iv) amk,ℓ
= 1.

Proof. Items (i-ii) are proven by induction over i. The case i = 0 is trivial, and assuming it holds
for i, mk,ℓ = i+mai,ℓ = i+1+mπ(ai,ℓ),ℓ = i+1+mai+1,ℓ. and ai+1 = π(ai, ℓ)≥ 1 since ai, ℓ≥ 1.
Item (iii) is proven as follows: Since i < mk,ℓ, by item (i) ai 6= 1. ai+1 = π(ai, ℓ)< ai since ai, ℓ >
2. Item (iv) is proven from item (i) by taking i = mk,ℓ. Indeed, we obtain mamk,ℓ

,ℓ = 0 and
therefore amk,ℓ

= 1. �

Proof of Theorem 6.0.1 item (i). Consider the reduction game G(RT2
ℓ →RT2

k) and let a0, . . . ,amk,ℓ

be the finite sequence defined in Lemma 6.3.1.
Let B0 ∪·· ·∪Bk−1 = ω be a ∆0

2 k-partition of ω such that B j is hyperimmune for each j < k.
By Shoenfield’s limit lemma [Sho59], there is a stable computable function f0 : [ω]2 → k such
that x ∈ B j iff lims f0(x,s) = j for each x ∈ ω .

We prove by induction over n ≤ mk,ℓ that at the end of the nth move, if the game has
not yet ended, an−1 sets among the B’s have a (

⊕

i<n fi)-hyperimmune complement. Player 1
first plays f0. Since f0 is computable, a0(= k) sets among the B’s have an f0-hyperimmune
complement. After n moves, 0 ≤ n ≤ mk,ℓ, suppose that an−1 sets among the B’s have a (

⊕

i<n fi)-
hyperimmune complement. If at the end of the nth move, Player 2 does not declare victory,
then he plays a (

⊕

i<n fi)-computable RT2
ℓ -instance g : [ω]2 → ℓ. By Theorem 6.2.3, there is

an infinite Hg-homogeneous set such that π(an−1, ℓ) sets among the an−1 remaining B’s with a
(
⊕

i<n fi)-hyperimmune complement have a (
⊕

i<n fi)⊕Hg-hyperimmune complement. Player
1 plays Hg. This finishes the induction.

Suppose now that Player 2 wins in mk,ℓ moves or fewer, and let H be the (
⊕

i<n fi)-
computable solution to f . Then at least an−1 among the B’s have an H-hyperimmune com-
plement. By items (iii) and (iv) of Lemma 6.3.1, an−1 ≥ 2 and therefore H intersects at least two
B’s, contradicting the fact that H is an infinite f -homogeneous set. �



7. Degrees of unsolvability of cohesiveness

Cohesiveness plays a central role in reverse mathematics. It appears naturally in the standard
proof of Ramsey’s theorem, as a preliminary step to reduce an instance of Ramsey’s theorem over
(n+1)-tuples into a non-effective instance over n-tuples. An important part of current research
about Ramsey-type principles in reverse mathematics consists in trying to understand whether
cohesiveness is a consequence of stable Ramsey’s theorem for pairs, or more generally whether
it is a combinatorial consequence of the infinite pigeonhole principle [CJS01; Dzh12; Dzh14;
Wan13a]. Chong et al. [CSY14] recently showed using non-standard models that cohesiveness is
not a proof-theoretic consequence of the pigeonhole principle. However it remains unknown
whether stable Ramsey’s theorem for pairs computationally implies cohesiveness.

Cohesiveness is a Π1
2 statement whose instances are sequences of sets ~R and whose solutions

are ~R-cohesive sets. It is natural to wonder about the degrees of unsolvability of the ~R-cohesive
sets according to the sequence of sets ~R. Mingzhong Cai asked whether whenever a uniformly
computable sequence of sets R0, R1, . . . has no computable ~R-cohesive set, there exists a non-
computable set which does not compute one. On the opposite direction, one may wonder whether
every unsolvable instance of COH is maximally difficult.

In this chapter, we establish a pointwise correspondence between the sets cohesive for a
sequence and the sets whose jump computes a member of a Π

0, /0′

1 class. Then, using the known
interrelations between typical sets and Π0

1 classes, we give precise genericity and randomness
bounds above which no typical set helps computing a cohesive set. We identify various layers of
unsolvability and spot a class of instances sharing many properties with the universal instance.
As the author [Pat15a] did about the pigeonhole principle and weak König’s lemma (WKL), we
show that some unsolvable instances of COH are combinatorial consequences of the pigeonhole
principle.

7.1 Cohesiveness and König’s lemma

Jockusch and Stephan [JS93] studied the degrees of unsolvability of cohesiveness and proved
that COH admits a universal instance whose solutions are the p-cohesive sets. They characterized
their degrees as those whose jump is PA relative to /0′. We refine their analysis by establishing an
instance-wise correspondence between the degrees of the sets cohesive for a sequence, and the
degrees whose jump computes a member of a non-empty Π

0, /0′

1 class.

Definition 7.1.1 Fix a uniformly computable sequence of sets R0,R1, . . . For every σ ∈ 2<ω ,
let Rσ =

⋂

σ(i)=1 Ri ∩
⋂

σ(i)=0 Ri. For example, R0110 = R0 ∩R1 ∩R2 ∩R3. By convention,

Rε = ω . Let C (~R) be the Π
0, /0′

1 class of binary sequences P such that for every σ ≺ P, the
set Rσ is infinite.

Our first lemma shows that the degrees of ~R-cohesive sets can be characterized by their jumps.
This lemma reveals in particular that low sets fail to solve unsolvable instances of cohesiveness.

Lemma 7.1.1 For every uniformly computable sequence of sets R0,R1, . . . , a set computes
an ~R-cohesive set if and only if its jump computes a member of C (~R).
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Proof. Fix an ~R-cohesive set C. Let P =
⋃
{σ ∈ 2<ω : C ⊆∗ Rσ}. The sequence P is infinite

and C′-computable as there exists exactly one string σ of each length such that C ⊆∗ Rσ . In
particular, for every σ ≺ P, Rσ is infinite, so P is a member of C (~R).

Conversely, let X be a set whose jump computes a member P of C (~R). By Shoenfield’s limit
lemma [Sho59], there exists an X-computable function f (·, ·) such that for each x, lims f (x,s) =
P(x). Define an ~R-cohesive set C =

⋃

sCs X-computably by stages C0 = /0 (C1 ( . . . as follows.
At stage s, search for some string σ of length s and some integer n ∈ Rσ greater than s such
that f (x,n) = σ(x) for each x < |σ |. We claim that such σ and n must exist, as there exists a
threshold n0 such that for every n > n0, f (x,n) = P(x) for each x < s. Let σ ≺ P be of length s.
By definition of P, Rσ is infinite, so there must exist some n ∈ Rσ which is greater than n0

and s. Set Cs+1 =Cs ∪{n} and go to the next stage. We now check that C =
⋃

sCs is ~R-cohesive.
For every x ∈ ω , there exists a threshold n1 such that for every n > n1, f (x,n) = P(x). By
construction, for every element n ∈ CrCn1 , n ∈ Rσ for some string σ such that σ(x) = P(x).
Therefore C ⊆∗ Rx or C ⊆∗ Rx. �

Jockusch and Stephan [JS93] showed the existence of a uniformly computable sequence of
sets R0,R1, . . . having no low ~R-cohesive set. We prove that it suffices to consider any sequence ~R
with no computable ~R-cohesive set to obtain this property.

Corollary 7.1.2 A uniformly computable sequence of sets R0,R1, . . . has a low ~R-cohesive
set if and only if it has a computable ~R-cohesive set.

Proof. Let X be a low ~R-cohesive set. By Lemma 7.1.1, the jump of X (hence /0′) computes a
member of C (~R) and therefore there exists a computable ~R-cohesive set. �

One may naturally wonder about the shape of the Π
0, /0′

1 classes C (~R) for uniformly com-

putable sequences R0,R1, . . . The next lemma shows that C (~R) can be any Π
0, /0′

1 class. Together

with Lemma 7.1.1, it establishes an instance-wise correspondence between cohesive sets and Π
0, /0′

1
classes.

Lemma 7.1.3 For every non-empty Π
0, /0′

1 class D ⊆ 2ω , there exists a uniformly computable
sequence of sets R0,R1, . . . such that C (~R) = D .

Proof. By Shoenfield’s limit lemma [Sho59], there exists a computable function g : 2<ω ×ω → 2
whose limit exists and such that D is the collection of X such that for every σ ≺ X , lims g(σ ,s) =
1. We can furthermore assume that whenever g(σ ,s) = 1, then for every τ ≺ σ , g(τ,s) = 1, and
that for every s ∈ ω , the set Us = {σ ∈ 2s : g(σ ,s) = 1} is non-empty. We define a uniformly
computable sequence of sets R0,R1, . . . such that C (~R) = D by stages as follows.

As stage 0, Ri = /0 for every i ∈ ω . Suppose that we have already decided Ri ↾ ns for
every i ∈ ω and some ns ∈ ω . At stage s+1, we will add elements to R0, . . . ,Rs so that for each
string σ of length s+ 1, Rσ ↾ [ns,ns + p] 6= /0 if and only if σ ∈ Us+1. To do so, consider the
set Us+1 = {σ0, . . . ,σp} defined above and add {ns + i : σi( j) = 1, i ≤ p} to R j for each j ≤ s.
Set ns+1 = ns + p+1 and go to the next stage.

We claim that Rσ is infinite if and only if σ ≺ X for some X ∈ D . Assume that Rσ is
infinite. By construction, there are infinitely many s such that Rσ ↾ [ns,ns + p] 6= /0. So there
are infinitely many stages s such that τ ∈ Us (g(τ,s) = 1) for some τ � σ . By assumption
on g, there are infinitely many τ � σ such that g(τ,s) = 1 for infinitely many s. Therefore, by
compactness, there exists some X ∈ D such that σ ≺ X . Conversely, if σ ≺ X for some X ∈ D ,
then there are infinitely many stages s such that τ ∈Us for some τ � σ . At each of these stages,
Rσ ↾ [ns,ns + p]⊇ Rτ ↾ [ns,ns + p] 6= /0. Therefore Rσ is infinite. �
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Jockusch et al. proved in [JLR91] that for every Π
0, /0′

1 class C ⊆ 2ω , there exists a Π0
1

class D ⊆ ωω such that deg(C ) = deg(D), where deg(C ) is the class of degrees of members
of C . For the reader who is familiar with Weihrauch degrees, what we actually prove here is that
König’s lemma is the jump of the cohesiveness principle under Weihrauch reducibility. Bienvenu
[personal communication] suggested the use of Simpson’s Embedding Lemma [Sim07, Lemma
3.3] to prove the reducibility of some unsolvable instances of cohesiveness to various statements.

Lemma 7.1.4 — Bienvenu. For every Σ
0, /0′

3 class E ⊆ ωω with no /0′-computable member, there
exists a uniformly computable sequence of sets R0,R1, . . . with no computable ~R-cohesive set
but such that every member of E computes an ~R-cohesive set.

Proof. By a relativization of Lemma 3.3 in [Sim07], there exists a Π
0, /0′

1 class D whose degrees
(relative to /0′) are exactly deg(E )∪PA[ /0′]. Therefore D has no /0′-computable member and
every member of E /0′-computes a member of D . By Lemma 7.1.3, there exists a uniformly
computable sequence of sets R0,R1, . . . such that C (~R) = D . By Lemma 7.1.1, there exists
no computable ~R-cohesive set, but every member of D (and in particular every member of E )
computes an ~R-cohesive set. �

7.2 How genericity helps solving cohesiveness

A natural first approach in the analysis of the strength of a principle consists in looking in
which way typical sets can help computing a solution to an unsolvable instance. The notion of
typical set is usually understood in two different ways: using the genericity approach and the
randomness approach. Wang [Wan13a] answered the question of Mingzhong Cai by investigating
the solvability of cohesiveness by typical sets. We now take advantage of the analysis of the
previous section to deduce optimal bounds on how much genericity is needed to avoid solving
an unsolvable instance of COH.

Recall that a real is n-generic if it meets or avoids each Σ0
n set of strings. A real is weakly

n-generic if it meets each Σ0
n dense set of strings.

By Friedberg’s jump inversion theorem [Fri57], there exists a 1-generic which is of high
degree, and therefore computes a cohesive set for every uniformly computable sequence of sets.
Wang [Wan13a] proved that whenever a uniformly computable sequence of sets R0,R1, . . . has no
computable ~R-cohesive sets, no weakly 3-generic computes an ~R-cohesive set. He asked whether
there exists a 2-generic computing an ~R-cohesive set. We prove the optimality of Wang’s bound
by showing the existence of an unsolvable instance of COH which is solvable by a 2-generic
real.

Lemma 7.2.1 There exists a 2-generic real G together with a uniformly computable sequence
of sets R0,R1, . . . with no computable ~R-cohesive set such that G computes an ~R-cohesive set.

Proof. Fix any ∆0
3 2-generic real G and consider the singleton E = {G}. As no 2-generic

is ∆0
2, the class E has no /0′-computable member. By Lemma 7.1.4, there exists a uniformly

computable sequence of sets R0,R1, . . . with no computable ~R-cohesive set, such that G computes
an ~R-cohesive set. �

However, if we slightly increase the unsolvability of the sequence of sets, no 2-generic real
helps computing a set cohesive for the sequence. A 1-enum of a class C ⊆ 2<ω is a sequence of
strings σ0,σ1, . . . such that |σs|= s and [σs]∩C 6= /0 for each s ∈ ω . The notion is extensively
studied in chapter 13.
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Theorem 7.2.2 For any uniformly computable sequence of sets R0,R1, . . . such that C (~R)
has no /0′-computable 1-enum, no 2-generic real computes an ~R-cohesive set.

Proof. By Jockusch [Joc80], every n-generic set is GLn and in particular, every 2-generic is GL1.
Therefore, by Lemma 7.1.1, a 2-generic set G computes an ~R-cohesive set if and only if there
exists some functional Γ such that ΓG⊕ /0′ is a member of C (~R). Fix a functional Γ such that ΓG⊕ /0′

is total for some 2-generic set G, and define the following Σ
0, /0′

1 set:

Wbad = {σ ∈ 2<ω : [Γσ⊕ /0′ ]∩C (~R) = /0}

We claim that G meets Wbad . Suppose for the sake of contradiction that G avoids Wbad . By
2-genericity of G, there exists a string σ ≺ G with no extension in Wbad . We show that there
exists a /0′-effective procedure which computes a 1-enum of C (~R), contradicting our hypothesis.

On input n, /0′-effectively search for a τn � σ such that Γτn⊕ /0′ ↾ n is defined. Such τn exists
as σ ≺ G and ΓG⊕ /0′ is total. As τn 6∈Wbad , [Γτn⊕ /0′ ]∩C (~R) 6= /0 and therefore (τn : n ∈ ω) is a
/0′-computable 1-enum of C (~R). �

Note that if we assume that G is weakly 3-generic and therefore avoids the set Wbad ∪Wpartial

where

Wpartial = {σ ∈ 2<ω : (∀τ � σ)|Γτ⊕ /0′ |< |σ |}

then we can furthermore impose that τn+1 � τn and /0′-compute a member of C (~R). This suffices
to reprove that no weakly 3-generic helps solving an unsolvable intance of COH.

We now prove a theorem inspired by the proof of domination closure of p-cohesive degrees
by Jockusch and Stephan [JS93].

Theorem 7.2.3 For any uniformly computable sequence of sets R0,R1, . . . such that C (~R)
has no /0′-computable 1-enum, every ~R-cohesive set is of hyperimmune degree.

Proof. Suppose for the sake of contradiction that there exists some ~R-cohesive set C = {a0 <
a1 < .. .} and a computable set B = {b0 < b1 < .. .} such that (∀i)(ai < bi). For each n ∈ ω ,
let Bn = {n,n+ 1, . . . ,bn}. Note that an ∈ Bn for every n, and therefore for every length s,
there exists a string σs of length s such that (∀∞n)Rσs

∩ Bn 6= /0. Let σ0,σ1, . . . be the /0′-
computable sequence of such strings. We claim that this sequence is a 1-enum of C (~R),
therefore contradicting our hypothesis. Indeed, as (∀∞n)Rσs

∩Bn 6= /0, the set Rσs
is infinite and

therefore C (~R)∩ [σs] 6= /0. �

Of course, there exists some uniformly computable sequence of sets R0,R1, . . . with no
computable ~R-cohesive set but with an ~R-cohesive set of hyperimmune-free degree. Simply
apply Lemma 7.1.4 with E = {X} where X is a ∆0

3 set of hyperimmune-free degree. Such a set
is known to exist by Miller and Martin [MM68]. The class E has no /0′-computable member as
every ∆0

2 set is hyperimmune.

7.3 How randomness helps solving cohesiveness

We now explore the interrelations between cohesiveness and the measure-theoretic paradigm of
typicality, namely, algorithmic randomness. We already defined in section 1.4.4 the notion of
Martin-Löf random real. The notion naturally relativizes by considering Σ0

n tests.
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Definition 7.3.1 — Randomness. A Σ0
n (Martin-Löf) test is a sequence U0,U1, . . . of uni-

formly Σ0
n classes such that µ(Ui)≤ 2−i for every i ∈ ω . A real Z is n-random if for every Σ0

n

test U0,U1, . . . , Z 6∈
⋂

iUi. A real Z is weakly n-random if it is in every Σ0
n class of measure 1.

Wang [Wan13a] proved that whenever a uniformly computable sequence of sets R0,R1, . . .
has no computable ~R-cohesive sets, there exists a Martin-Löf random real computing no ~R-
cohesive set. Thanks to Corollary 7.1.2, we know that it suffices to take any low Martin-Löf
random real to obtain this property. Wang asked whether we can always ensure the existence of
a 3-random real computing an ~R-cohesive set whenever the instance is unsolvable. The next two
lemmas answer this question by proving that it depends on the considered sequence of sets ~R.

Lemma 7.3.1 There exists a uniformly computable sequence of sets R0,R1, . . . with no com-
putable ~R-cohesive set, but such that every 2-random real computes an ~R-cohesive set.

Proof. Let D be a Π
0, /0′

1 class of positive measure with no /0′-computable member. By Lemma 7.1.3,
there exists a uniformly computable sequence of sets R0,R1, . . . such that C (~R) = D . By
Kautz [Kau91; Kau98], every 2-random real is, up to prefix, a member of C (~R). Therefore, by
Lemma 7.1.1, every 2-random real computes an ~R-cohesive set. �

Lemma 7.3.2 No weakly 3-random real computes a p-cohesive set.

Proof. Jockusch and Stephan [JS93] proved that degrees of p-cohesive sets are those whose
jump is PA relative to /0′. By a relativization of Stephan [Ste06], every 2-random real whose jump
is of PA degree relative to /0′ is high. By Kautz [Kau91], no weakly 3-random real is high. �

Avigad et al. [ADR12] introduced the principle n-WWKL stating that every ∆0
n tree of

positive measure has a path. In particular, 1-WWKL is WWKL. Thanks to Lemma 7.3.2, for
every n ∈ ω , one can apply the usual constructions to build an ω-model of n-WWKL which
does not contain any p-cohesive set and therefore is not a model of COH. Pick any n-random
Z which does not compute any p-cohesive set and consider it as an infinite join Z0 ⊕Z1 ⊕ . . . .
By Van Lambalgen’s theorem [Van90], the ω-structure whose second-order part is the Turing
ideal {X : (∃i)X ≤T Z0 ⊕ ·· · ⊕ Zi} is a model of n-WWKL. Moreover it does not contain a
p-cohesive set.

7.4 How Ramsey-type theorems help solving cohesiveness

In his paper separating Ramsey’s theorem for pairs from weak König’s lemma, Liu [Liu12]
proved that every (non-necessarily effective) set A has an infinite subset of either it or its
complement which is not of PA degree. The absence of effectiveness conditions on A shows the
combinatorial nature of the weakness of the infinite pigeonhole principle. On the other hand, the
author [Pat15a] showed that this weakness depends on the choice of the instance of WKL, by
constructing a computable tree with no computable path together with a ∆0

2 set A such that every
infinite subset of either A or A computes a path trough the tree. We answer a similar question for
cohesiveness and study the weakness of the pigeonhole principle for typical partitions.

Lemma 7.4.1 There exists a ∆0
3 (in fact low over /0′) set A and a uniformly computable sequence

of sets R0,R1, . . . with no computable ~R-cohesive set, such that every infinite subset of either A

or A computes an ~R-cohesive set.

Proof. Fix a set A which is low over /0′ and bi-immune relative to /0′. The set of the infinite,
increasing sequences which form an subset of either A or A is Π

0,A
1 , hence Π

0, /0′

2 in the Baire
space:

E = {X ∈ ωω : (∀s)[X(s)< X(s+1)]∧ [(∀s)(X(s) ∈ A)∨ (∀s)(X(s) ∈ A)]}
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Moreover, E has no /0′-computable member by bi-immunity relative to /0′ of A. Apply Lemma 7.1.4
to complete the proof. �

We showed in a previous section the existence of a uniformly computable sequence of
sets R0,R1, . . . with no computable ~R-cohesive set such that every 2-random real computes
an ~R-cohesive set. The following lemma strengthens this result by constructing an unsolvable
instance of COH solvable by every infinite subset of any 2-random real.

Definition 7.4.1 — Diagonal non-computability. A function f : ω → ω is diagonally

non-computable relative to X if for every e ∈ ω , f (e) 6= ΦX
e (e).

By Kjos-Hanssen [Kjo09] and Greenberg & Miller [GM09], a set computes a function d.n.c.
relative to /0(n−1) if and only if it computes an infinite subset of an n-random.

Lemma 7.4.2 There exists a uniformly computable sequence of sets R0,R1, . . . with no com-
putable ~R-cohesive set, such that every function d.n.c. relative to /0′ computes an ~R-cohesive
set.

Proof. The class of functions which are d.n.c. relative to /0′ is Π
0, /0′

1 in the Baire space:

E =
{

f ∈ ωω : (∀e)[Φ /0′
e (e) ↑ ∨ f (e) 6= Φ /0′

e (e)]
}

Moreover, E has no /0′-computable member. Apply Lemma 7.1.4 to complete the proof. �

In contrast with this lemma, if we require a bit more uncomputability in the ~R-cohesive sets
of the sequence R0,R1, . . . , we can ensure the existence of a function d.n.c. relative to /0′ which
does not compute an ~R-cohesive set.

Theorem 7.4.3 Fix a uniformly computable sequence of sets R0,R1, . . . such that C (~R) has
no /0′-computable 1-enum. For every set X , there exists a function f d.n.c. relative to X whose
jump does not compute a 1-enum of C (~R). In particular, f does not compute an ~R-cohesive
set.

The proof of Theorem 7.4.3 is done by a bushy tree forcing argument. See the survey from
Khan and Miller [KM15] for terminology and definitions. Fix a set X . We will construct a GL1

function which is d.n.c. relative to X . Our forcing conditions are tuples (σ ,B) where σ ∈ ω<ω

and B ⊆ ω<ω is an upward-closed set k-small above σ for some k ∈ ω . A sequence f satisfies a
condition (σ ,B) if σ ≺ f and B is small above every initial segment of f . Our initial condition
is (ε,BX

DNC) where
BX

DNC = {σ ∈ ω<ω : (∃e)σ(e) = ΦX
e (e)}

Therefore every infinite sequence f satisfying (ε,BX
DNC) is d.n.c. relative to X . Thanks to the

following lemma, we can prevent f ⊕ /0′ from computing a 1-enum of C (~R). As the constructed
function f is GL1, f ′ ≤T f ⊕ /0′ does not compute a 1-enum of C (~R).

Lemma 7.4.4 For every condition c = (σ ,B) and every Turing functional Γ, there exists an
extension d = (τ,C) forcing Γ f⊕ /0′ to be partial or such that Γτ⊕ /0′ is not a 1-enum of C (~R).

Proof. Suppose that B is k-small above σ . For every n ∈ ω , define the Σ
0, /0′

1 set Dn = {τ ∈ ω<ω :
Γτ⊕ /0′(n) ↓∈ 2n}. Make a /0′-effective search for an n ∈ ω such that one of the following holds:

(a) Dn is k2n-small above σ for some n ∈ ω

(b) Dn,ρ = {τ ∈ ω<ω : Γτ⊕ /0′(n) ↓= ρ} is k-big above σ for some string ρ ∈ 2n such that
[ρ]∩C (~R) = /0.
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Such an n exists, as otherwise, for every n∈ω , Dn is k2n-big above σ . By the smallness additivity
property, Dn,ρ is k-big above σ for some ρ ∈ 2n. For every such string ρ , [ρ]∩C (~R) 6= /0.
Therefore we can /0′-compute a 1-enum of C (~R) by searching on each input n for some ρ of
length n such that Dn,ρ is k-big above σ .

If we are in case (a), take d = (τ,C ∪ Dn) as the desired extension. The condition d

forces Γ f⊕ /0′ to be partial. If we are in case (b), by the concatenation property, there exists an
extension τ ∈ Dn,ρ such that B is still k-small above τ . The condition d = (τ,B) is an extension
forcing Γ f⊕ /0′ not to be a 1-enum of C (~R) as Γ f⊕ /0′(n) = Γτ⊕ /0′(n) = ρ and [ρ]∩C (~R) = /0. �

Looking at the proof of the previous lemma, we can /0′-decide in which case we are, and then
use the knowledge of f to see which path has been chosen in the bushy tree. The construction
therefore yields a GL1 sequence.





8. Thin set and free set theorems

Simpson [Sim09, Theorem III.7.6] proved that Ramsey’s theorem for n-tuples is equivalent to the
arithmetic comprehension axiom over RCA0 whenever n ≥ 3. Therefore, the Ramsey hierarchy
collapses at level three. One may wonder about some natural weakenings of Ramsey’s theorem
over arbitrary tuples which remain strictly weaker than ACA.

Ramsey’s theorem asserts that every k-coloring over [N]n has an infinite monochromatic
set H. A natural weakening consists of allowing more colors in the solution H. Let RTn

k,ℓ

be the statement “Every k-coloring over [N]n has an infinite set H using at most ℓ colors”.
Since RTn

k,ℓ and RTn
m,ℓ are equivalent over RCA0 whenever k,m ≥ ℓ, we shall fix ℓ to be k−1.

The statement RTn
k,k−1 is known as a thin set theorem.

Definition 8.0.1 — Thin set theorem. Given a coloring f : [N]n → k (resp. f : [N]n →N), an
infinite set H is thin for f if | f ([H]n)| ≤ k−1 (resp. f ([H]n) 6=N). For every n ≥ 1 and k ≥ 2,
TSn

k is the statement “Every coloring f : [N]n → k has a thin set” and TSn is the statement
“Every coloring f : [N]n → N has a thin set”.

As for RT2
2, we shall denote by STS2

k the restriction of TS2
k to stable colorings. TS is the

statement (∀n)TSn. The reverse mathematical analysis of the thin set theorem started with
Friedman [Fri; Fri13]. It has been studied by Cholak et al. [Cho+01], Wang [Wan14b] and the
author [Pat15a; Pat15b] among others.

8.1 The strength of the thin set theorem for pairs

Various proofs involving Ramsey’s theorem for pairs and its consequences can be adapted to the
thin set theorem. For instance, Downey, Hirschfeldt, Lempp and Solomon [Dow+01] constructed
a computable instance of SRT2

2 with no computable solution. A similar theorem can be obtained
for the thin set theorem simply by slightly changing their proof.

Theorem 8.1.1 — RCA0+ IΣ0
2. There exists a computable stable coloring f : [N]2 → N with

no low infinite set thin for f .

Proof. This is a straightforward adaptation of the proof of [Dow+01]. We assume that definitions
and the procedure P(m) has been defined like in the original proof. Given a stable coloring
f : [N]2 → N, define Ai = {x ∈ N : (∀∞s) f (x,s) 6= i}.

We need to satisfy the following requirements for all Σ0
2 sets U , all partial computable binary

functions Ψ and all i ∈ N:

RU,Ψ,i : U ⊆ Ai ∧U ∈ ∆0
2 ∧U infinite ∧∀n(lim

s
Ψ(n,s) exists)→U ′ 6= lim

s
Ψ(−,s)

The strategy for satisfying a single requirement RU,Ψ,i is almost the same. It begins by
choosing an e ∈ N. Whenever a number x enters U , it enumerates the axiom 〈e,{x}〉 for U ′.
Whenever it sees that Ψ(e,s) ↓6= 1 for some new number s, it commits every x for which it has
enumerated an axiom 〈e,{x}〉 to be assigned color i, i.e. starts settings f (x, t) = i for every t ≥ s.
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If U is ∆0
2 and infinite, and lims Ψ(e,s) exists and is not equal to 1, then eventually an axiom

〈e,{x}〉 for some x ∈ U is enumerated, in which case U ′(e) = 1 6= lims Ψ(e,s). On the other
hand, if U ⊆ Ai and lims Ψ(e,s) = 1 then for all axioms 〈e,{x}〉 that are enumerated by our
strategy, x is eventually commited to be assigned color i, which implies that x 6∈U . Thus in this
case, U ′(e) = 0 6= lims Ψ(e,s).

The global construction is exactly the same as in the original proof. �

We now prove that the thin set theorem implies the atomic model theorem.

Definition 8.1.1 — Atomic model theorem. A formula ϕ(x1, . . . ,xn) is an atom of a theory
T if for each formula ψ(x1, . . . ,xn) we have T ⊢ ϕ → ψ or T ⊢ ϕ → ¬ψ but not both. A
theory T is atomic if, for every formula ψ(x1, . . . ,xn) consistent with T , there is an atom
ϕ(x1, . . . ,xn) extending it, i.e. one such that T ⊢ ϕ → ψ . A model A of T is atomic if every
n-tuple from A satisfies an atom of T . AMT is the statement “Every complete atomic theory
has an atomic model”.

AMT has been introduced as a principle by Hirschfeldt, Shore and Slaman in [HSS09].
It is in particular computably equivalent to the statement “For every ∆0

2 function f , there is a
function g not dominated by f ” [Con08; HSS09]. Therefore, the atomic model theorem can
be seen as a statement between hyperimmunity and hyperimmunity relative to /0′. Hirschfeldt
et al. in [HSS09] proved that WKL and AMT are incomparable over RCA0, and in particular
that AMT is a consequence of the stable ascending descending sequence principle (defined in
chapter 10). We show that the proof can be adapted to the stable thin set theorem for pairs.

Theorem 8.1.2 RCA0 ⊢ STS2 → AMT and AMT≤W STS2.

Proof. We prove that for any atomic theory T , there exists a ∆
0,T
1 stable coloring f : [N]2 → N

such that for any infinite f -thin set H, there is a ∆
0,H⊕T
1 atomic model of T . The proof is very

similar to [HSS09, Theorem 4.1]. We begin again with an atomic theory T and consider the
tree S of standard Henkin constructions of models of T . We want to define a stable coloring
f : [N]2 → N such that any infinite f -thin set computes an infinite path P through S that
corresponds to an atomic model A of T . Define as in [HSS09, Theorem 4.1] a monotonic
computable procedure Φ which on tuple 〈x1, . . . ,xn〉 will return a tuple 〈σ1, . . . ,σn〉 such that
σi+1 is the least node of S extending σi such that we have found no witness that σi+1 is not an
atom about c0, . . . ,cxi

after a standardized search of xi+1 many steps. σ1 is the least node on S

mentioning c0 and such that we have not found a witness that σ1 is not an atom about c0 after x1

many steps.
The construction of the coloring f will involve a movable marker procedure. At each stage

s, we will ensure to have defined f on {x : x ≤ s}. For each color i, we can associate the set
Ci = {x : (∀∞s) f (x,s) = i}. At stage s, we maintain a set Ci,s with the intuition that Ci = limsCi,s.

For each e, i ∈ N, the requirement Re,i ensures that for any sequence x1, . . . ,xn,de,i,t in Ci

that is increasing in natural order, σn+1 includes an atom about c0, . . . ,cxn
where de,i,t is the value

of the marker de,i associated to Re,i at stage t, and Φ(x1, . . . ,xn,de,i,t) = 〈σ1, . . . ,σn+1〉.
We say that the requirement Re,i needs attention at stage s if there exists a sequence

x1, . . . ,xn,de,i,s of elements of Ci,s increasing in natural order, such that Φ(x1, . . . ,xn,de,i,s) =
〈σ1, . . . ,σn+1〉 and by stage s we have seen a witness that σn+1 does not supply an atom about
c0, . . . ,cxn

.
At stage s, suppose the highest priority requirement needing attention is Re,i. The strategy

commits to Ci each x < s that are in greater or equal to de,i,s. We let de,i,s+1 = s. All du, j,s+1

become undefined for 〈u, j〉> 〈e, i〉. If no requirement needs attention, we let du, j,s+1 = s for the
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least 〈u, j〉 such that du, j,s is undefined. For each x < s, set f (x,s) = i if x is committed to be in
Ci. Otherwise set f (x,s) = 0. We then go to the next stage.

Claim 8.1.3 The resulting coloring is stable.

Proof. Take any x ∈ N. If no requirement ever commits x to be in some Di then x is committed
at stage x+1 to be in C0 and this commitment is never injured, so (∀∞s) f (x,s) = 0. Otherwise
by IΣ0

1 there is a requirement of highest priority that commits x to be in some Ci. Say it is Re,i

and it acts to commit x at stage s. This means that de,i,s ≤ x < s. Then we set de,i,s+1 = s and
never decrease this marker. No requirement of higher priority will act after stage s on x by our
choice of Re,i and the markers for strategies of lower priority will be initialized after stage s to a
value greater than s. So x will stay for ever in Ci. Thus (∀∞s) f (x,s) = i. �

Claim 8.1.4 Each requirement Re,i acts finitely often and de,i,s will eventually remain fixed.
Moreover, if de,i,s never changes after stage t, then, for any sequence x1, . . . ,xn,de,i,t in Ci that is
increasing in natural order, σn+1 includes an atom about c0, . . . ,cxn

where Φ(x1, . . . ,xn,de,i,t) =
〈σ1, . . . ,σn+1〉.

Proof. We prove it by Σ0
1 induction. Assume that Re,i acts at stage s and no requirement of

higher priority ever acts again. We then set de,i,s+1 = s and now act again for Re,i only if we
discover a new witness as described in the definition of needing attention. As we never act
for any requirement of higher priority, at any stage t > s the numbers between de,i,s and de,i,t

will all be committed to Ci. Then the sequences x1, . . . ,xn ≤ de,i,t in Ci, increasing in natural
order are sequences x1, . . . ,xn ≤ de,i,s in Ci. Hence their set is bounded. By the same trick as
in [HSS09, Theorem 4.1], we can avoid the use of BΣ0

2 by constructing a single atom extending
each σ(x1, . . . ,xn) where σ(x1, . . . ,xn) is the next to last value under Φ. By IΣ0

1, there is a first
such atom and a bound on the witnesses needed to show that all smaller candidates are not such
an atom. Once we passed such a stage, no change occurs in de,i,t and its value must also be
above the stage where all witnesses are found. After such a stage, Re,i will never need attention
again. �

The construction of an atomic model of T from any infinite f -thin set for color i is exactly
the same as in [HSS09, Theorem 4.1]. �

We have seen that the thin set theorem is strong enough to carry out some constructions
involving Ramsey’s theorem. We will now prove that it is a strict weakening of Ramsey’s
theorem. Furthermore, we shall see that the thin set theorems with bounded range form a strictly
decreasing hierarchy in reverse mathematics. Since the thin set theorem with unbounded range
is a consequence of each of them, it implies none of them over RCA0.

8.2 The thin set theorem and strong reducibility

We start our analysis of the weakness of the thin set theorem with partitions of integers like we
did with Ramsey’s theorem. Every computable partition has an infinite computable set avoiding
one of its parts. The natural reducibility to consider is therefore strong computable reducibility.
In this section, we show that TS1

k 6≤sc TS
1
k+1.

8.2.1 Negative preservation results

We now prove that the thin set theorems with bounded range cannot preserve too many hyper-
immunities simultaneously. More precisely, we shall see that TS2

k does not admit preservation
of k hyperimmunities for every k ≥ 2. The following theorem builds a function with stronger
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properties than necessary. The property (ii) will be useful to show that a stable version of the
ascending descending sequence does not admit preservation of 2 hyperimmunities.

Theorem 8.2.1 There is a stable computable coloring f : [ω]2 → ω such that for each i,
(i) {x : lims f (x,s) 6= i} is hyperimmune;

(ii) f (x,y) 6= i∧ f (y,z) 6= i → f (x,z) 6= i for each each x < y < z ∈ ω .

Proof. The construction of the function f is done by a finite injury priority argument with
a movable marker procedure. We want to satisfy the following scheme of requirements for
each e ∈ ω and i ∈ ω , where Bi = {x : lims f (x,s) = i}:

Re,i : Φe does not dominate pBi

The requirements are given the usual priority ordering. We proceed by stages, maintaining a
sequence of sets B0,B1, . . . which represent the limit of the function f . At stage 0, Bi,0 = /0 for
each i and f is nowhere defined. Moreover, each requirement Re,i is given a movable marker me,i

initialized to 0.
A strategy for Re,i requires attention at stage s + 1 if Φe,s(me,i) ↓= n for some n < s

and Bi,s ∩ [me,i,n] 6= /0. The strategy sets Bi,s+1 = Bi,s ∪ [me,i,n], and B j,s+1 = B j,s r [me,i,n] for
every j 6= i. Then it is declared satisfied until some strategy of higher priority changes its marker.
Each marker me′,i′ of strategies of lower priorities is assigned the value s+1.

At stage s+ 1, assume that B0,s ∪ ·· · ∪Bk−1,s = [0,s) and that f is defined for each pair
over [0,s). For each x ∈ [0,s), set f (x,s) = i for the unique i such that x ∈ Bi,s. If some strategy
requires attention at stage s+1, take the least one and satisfy it. If no such requirement is found,
set B0,s+1 = B0,s ∪{s} and Bi,s+1 = Bi,s for i > 0. Then go to the next stage. This ends the
construction.

Each time a strategy acts, it changes the markers of strategies of lower priority, and is
declared satisfied. Once a strategy is satisfied, only a strategy of higher priority can injury it.
Therefore, each strategy acts finitely often and the markers stabilize. It follows that the B’s also
stabilize and that f is a stable function.

Claim 8.2.2 For every i ∈ ω and every x < y < z, f (x,y) 6= i∧ f (y,z) 6= i → f (x,z) 6= i.

Proof. Suppose that f (x,y) 6= i but f (x,z) = i for some i < k. Let s ≤ z be the least stage
such that f (x, t) = i for every t ∈ [s+1,z]. At stage s+1, some strategy Re,i moved to Bi the
whole interval [me,i,s]. Since me′,i′ ≤ me,i for every strategy Re′,i′ of higher priority, none of
the elements in [me,i,s] leave Bi before stage z+1. As f (x,y) 6= i, y 6∈ [s+1,z] so y ∈ [me,i,s].
Therefore y ∈ Bi,z and thus f (y,z) = i. �

Claim 8.2.3 For every e, i ∈ ω , Re,i is satisfied.

Proof. By induction over the priority order. Let s0 be a stage after which no strategy of higher
priority will ever act. By construction, me,i will not change after stage s0. If Φe is total and
dominates pBi

, Φe(me,i) will eventually halt and output some n such that Bi ∩ [me,i,n] 6= /0 and
therefore Re,i will require attention at some stage s ≥ u. As no strategy of higher priority ever
acts after stage s0, Re,i will receive attention, be satisfied and never be injured. �

Satisfying Re,i for every e ∈ ω and i < k guarantees that f has no computable thin set. This
last claim finishes the proof of Theorem 8.2.1. �

Note that we could have interleaved some lowness requirements to ensure that the function f

is low.
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Corollary 8.2.4

(i) STS2 does not admit preservation of hyperimmunity.
(ii) For every k ≥ 2, STS2

k does not admit preservation of k hyperimmunities.

Proof. We first prove (i). Let f : [ω]2 → ω be as in Theorem 8.2.1 and let Bi = {x : lims g(x,s) =
i}. Any infinite f -thin set H for color i is an infinite subset of Bi. In particular, Bi is not
H-hyperimmune since pH dominates pBi

.
We now prove (ii). Let f be as in case (i), and let g : [ω]2 → k be the stable computable

function defined by g(x,s) = f (x,s) for x < k−1 and g(x,s) = f (k−1,s) otherwise. Let Ci =
{x : lims g(x,s) = i}. Notice that Ci ⊆ Bi for each i < k and therefore that Ci is hyperimmune for
each i < k. The argument is similar to case (i). �

8.2.2 Strong preservation of hyperimmunity

Because every computable instance of TS1
k having a computable solution, TS1

k admits preser-
vation of k hyperimmunities for every k. On the other hand, we would like to say that TS1

k

does not combinatorially preserve k hyperimmunities since Theorem 8.2.1 shows the existence
of a non-effective instance of TS1

k whose solutions do not preserve k hyperimmunities. This
combinatorial notion of preservation is called strong preservation.

Definition 8.2.1 — Strong preservation of k hyperimmunities. A Π1
2 statement P admits

strong preservation of k hyperimmunities if for each set Z, each list of Z-hyperimmune sets
B0, . . . ,Bk−1 and each (arbitrary) P-instance X , there exists a solution Y to X such that the B’s
are Y ⊕Z-hyperimmune.

We have seen through Theorem 8.2.1 that for every k ≥ 2, TS1
k does not admit strong preser-

vation of k hyperimmunities. The following theorem shows the optimality of Theorem 8.2.1.

Theorem 8.2.5 For every k ≥ 2, TS1
k+1 admits strong preservation of k hyperimmunities.

Theorem 8.2.5 is proven at the end of this section. We first state a few immediate corollaries.
Putting Theorem 8.2.1 and Theorem 8.2.5 together, we obtain the desired separation over strong
computable reducibility.

Corollary 8.2.6 For every ℓ > k ≥ 2, TS1
k 6≤sc TS

1
ℓ

Using the computable equivalence between the problem of finding a infinite set thin for an ∆0
2

ℓ-partition and STS2
ℓ , we deduce the following corollary.

Corollary 8.2.7 For every ℓ > k ≥ 2, STS2
k 6≤c STS

2
ℓ

Proof. Fix ℓ > k ≥ 2 and consider the ∆0
2 k-partition B0 ∪·· ·∪Bk−1 = ω of Theorem 8.2.1. By

Shoenfield’s limit lemma [Sho59], there exists a stable computable function g : [ω]2 → k such
that B j = {x : lims g(x,s) = j} for each j < k. Every infinite g-thin set is thin for the B’s. Fix
any stable computable function f : [ω]2 → ℓ and let Ai = {x : lims f (x,s) = i} for each i < m. By
Theorem 8.2.5, there exists an infinite set H thin for the A’s which does not compute an infinite
set thin for the B’s (hence for g). As H ⊕ f computes an infinite f -thin set G, f has an infinite
f -thin set which does not compute an infinite g-thin set. �

The remainder of this section is devoted to the proof of Theorem 8.2.5. Fix some set C

preserving the hyperimmunity of some sets B0, . . . ,Bk−1 and fix some (k+1)-partition A0 ∪·· ·∪
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Ak = ω . We will construct a set G such that G∩Ai is infinite for each i ≤ k and all the B’s are
(G∩Ai)⊕C-hyperimmune for some i ≤ k. Our forcing conditions are Mathias conditions (F,X)
where X is an infinite set of integers such that all the B’s are X ⊕C-hyperimmune.

8.2.3 Forcing limitlessness

We want to satisfy the following scheme of requirements to ensure that G∩Ai is infinite for
each i ≤ k:

Qp : (∃m0, . . . ,mk > p)[m0 ∈ G∩A0 ∧·· ·∧mk ∈ G∩Ak]

We say that an (k+1)-partition A0 ∪·· ·∪Ak = ω is non-trivial if there exists no infinite set H

homogeneous for the A’s such that all the B’s are H ⊕C-hyperimmune. Of course, every
infinite set homogeneous for the A’s is thin for the A’s, so if the partition A0 ∪ ·· · ∪Ak = ω

is trivial, we succeed. Therefore we will assume from now on that the partition is non-trivial.
A condition c = (F,X) forces Qp if there exist some m0, . . . ,mk > p such that mi ∈ F ∩Ai for
each i ≤ k. Therefore, if G satisfies c and c forces Qp, then G satisfies the requirement Qp. We
now prove that the set of conditions forcing Qp is dense for each p ∈ ω . Thus, every sufficiently
generic filter will induce a set G such that G∩Ai is infinite for each i ≤ k.

Lemma 8.2.8 For every condition c and every p, there is an extension forcing Qp.

Proof. Fix some p ∈ ω . It is sufficient to show that given a condition c = (F,X) and some i ≤ k,
there exists an extension d0 = (E,Y ) and some integer mi > p that mi ∈ E ∩Ai. By iterating the
process for each i ≤ k, we obtain an extension forcing Qp. Suppose for the sake of contradiction
that X ∩Ai is finite. One can then X-compute an infinite set H ⊆ Ai, contradicting non-triviality
of the A’s. Therefore, there exists an mi ∈ X ∩ Ai such that mi > p. The condition d0 =
(F ∪{mi},X r [0,mi]) is the desired extension. �

8.2.4 Forcing preservation

The second scheme of requirements consists of ensuring that the sets B0, . . . ,Bk−1 are all (G∩
Ai)⊕C-hyperimmune for some i ≤ k. The requirements are of the following form for each tuple
of indices~e = e0, . . . ,ek:

R~e :
∧

j<k

R
A0,B j
e0 ∨·· ·∨

∧

j<k

R
Ak,B j
ek

where R
Ai,B j
e is the requirement “Φ

(G∩Ai)⊕C
e0 does not dominate pB j

”. A condition forces R~e if
every set G satisfying this condition also satisfies requirement R~e. The following lemma is the
core of the forcing argument.

Lemma 8.2.9 For every condition c = (F,X), every i0 < i1 ≤ k, every j < k and every vector of

indices~e, there is an extension d forcing either Φ
(G∩Ai0 )⊕C
ei0

or Φ
(G∩Ai1 )⊕C
ei1

not to dominate pB j
.

Proof. Let f be the partial X ⊕C-computable function which on input x, searches for a finite
set of integers U such that for every 2-cover Zi0 ∪Zi1 = X , there is some i ∈ {i0, i1} and some

set E ⊆ Zi such that Φ
((F∩Ai)∪E)⊕C
ei (x) ↓∈U . If such a set U is found, then f (x) = max(U)+1,

otherwise f (x) ↑. We have two cases:
• Case 1: The function f is total. By X ⊕C-hyperimmunity of B j, f (x)≤ pB j

(x) for some x.
Let U be the finite set witnessing f (x) ↓. Letting Zi0 = X ∩Ai0 and Zi1 = X ∩Ai1 , there

is some i ∈ {i0, i1} and some finite set E ⊆ X ∩Ai such that Φ
((F∩Ai)∪E)⊕C
ei (x) ↓∈U . The

condition d = (F ∪E,X r [0,max(E)]) is an extension forcing Φ
(G∩Ai)⊕C
ei (x) < f (x) ≤

pB j
(x).
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• Case 2: There is some x such that f (x) ↑. By compactness, the Π
0,X⊕C
1 class C of

sets Zi0 ⊕ Zi1 such that Zi0 ∪ Zi1 = X and for every i ∈ {i0, i1} and every set E ⊆ Zi

Φ
((F∩Ai)∪E)⊕C
ei (x) ↑ is non-empty. As WKL admits preservation of k hyperimmunities, there

exists some 2-cover Zi0 ⊕Zi1 ∈ C such that all the B’s are Zi0 ⊕Zi1 ⊕X ⊕C-hyperimmune.
Let i ∈ {i0, i1} be such that Zi is infinite. The condition d = (F,Zi) is an extension of c

forcing Φ
(G∩Ai)⊕C
ei (x) ↑.

�

As usual, the following lemma iterates Lemma 8.2.9 and uses the fact that k+1 > k to satisfy
the requirement R~e.

Lemma 8.2.10 For every condition c, and every vector of indices~e, there exists an extension d

forcing R~e.

Proof. Fix a condition c, and iterate applications of Lemma 8.2.9 to obtain an extension d such

that for each j < k, d forces Φ
(G∩Ai)⊕C
ei not to dominate pB j

for k different i’s. By the pigeonhole

principle, there exists some i ≤ k such that d forces Φ
(G∩Ai)⊕C
ei not to dominate pB j

for each j < k.
Therefore, d forces R~e. �

8.2.5 Construction

Thanks to Lemma 8.2.8 and Lemma 8.2.10, define an infinite descending sequence of conditions
( /0,ω)≥ c0 ≥ . . . such that for each s ∈ ω ,

(a) cs forces Qs

(b) cs forces R~e if s = 〈~e〉

where cs = (Fs,Xs). Let G =
⋃

s Fs. By (a), G∩Ai is infinite for every i ≤ k and by (b), G satisfies
each requirement R~e. This finishes the proof of Theorem 8.2.5.

8.3 The weakness of the thin set theorem for pairs

There is a fundamental difference in the way we proved that RT1
k 6≤sc RT

1
ℓ and that TS1

ℓ 6≤sc TS
1
k

whenever k > ℓ. In the former case, we have built an instance I of RT1
k satisfying some hyperim-

munity properties, and used those properties to construct a solution X to each instance of RT1
ℓ

which does not compute a solution to I. We did not ensure that those hyperimmunity properties
are preserved relative to the solution X , which prevents us from iterating the construction. As
it happens, those properties are not preserved as multiple applications of RT1

ℓ are sufficient to
compute a solution to I. In the latter case, we proved that TS1

ℓ has an instance whose solutions do
not preserve some definitional property, whereas each instance of TS1

k has a solution preserving
it. This preservation enables us to iterate the applications of TS1

k and build ω-structures whose
second-order part is made of sets preserving this property. We will take advantage of those
observations to obtain new separations in reverse mathematics.

In this section, we prove that TS2
k+1 does not imply TS2

k over RCA0 for every k ≥ 2. In
particular, we answer several questions asked by Cholak, Giusto, Hirst and Jockusch [Cho+01]
and by Montálban [Mon11] about the relation between RT2

2 and TS2. Dorais et al. [Dor+16]
proved that RCA0 ⊢ TSn

k → ACA for n ≥ 3 whenever k is not large enough. Therefore we cannot
hope to obtain the same separation result over RCA0 for arbitrary tuples. However, we shall see
that TSn

k is not computably reducible to TSn
k+1 for n,k ≥ 2.

Theorem 8.3.1 For every k ≥ 2, RCA0∧COH∧WKL∧TS2
k+1 0 STS2

k .



84 Chapter 8. Thin set and free set theorems

Cholak et al. [Cho+01] and Montálban [Mon11] asked whether TS2 implies RT2
2 over RCA0.

Thanks to Theorem 8.3.1, we answer negatively, noticing that TS2
2 is the statement RT2

2
and RCA0 ⊢ TS2

k → TS2 for every k ≥ 2 (see Dorais et al. [Dor+16]).

Corollary 8.3.2 TS2 does not imply RT2
2 over RCA0.

Using the standard trick of prehomogeneous sets, we can generalize from computable
non-reducibility over pairs to arbitrary tuples.

Corollary 8.3.3 For every k,n ≥ 2 there exists a ∆0
n k-partition B0 ∪·· ·∪Bk−1 = ω such that

every computable coloring f : [ω]n → k+1 has an infinite f -thin set computing no set thin
for the B’s.

Proof. This is proved in a relativized form by induction over n ≥ 2. The case n = 2 is obtained
by relativizing the proof of Theorem 8.3.1, which indeed shows the existence of a ∆0

2 k-partition
B0 ∪·· ·∪Bk−1 = ω such that every computable coloring f : [ω]2 → k+1 has an infinite f -thin
set computing no set thin for the B’s. Now assume it holds for some n in order to prove it for n+1.
By the relativized low basis theorem [JS72b], let P ≫ /0(n−1) be such that P′ ≤ /0(n). Applying
the induction hypothesis to P, there is a ∆

0,P
2 (hence ∆0

n+1) k-partition B0 ∪·· ·∪Bk−1 = ω such
that each P-computable coloring f : [ω]n → k+ 1 has an infinite f -homogeneous set H such
that H ⊕P does not compute an infinite set thin for the B’s.

Let f : [ω]n+1 → k+1 be a computable coloring. By Jockusch [Joc72, Lemma 5.4], there
exists an infinite set C pre-homogeneous for f such that C ≤T P. Let f̃ : [C]n → k+1 be the P-
computable coloring defined for each σ ∈ [C]n by f̃ (σ) = f (σ ,a), where a ∈ A, a > max(σ).
Every f̃ -thin set is f -thin. By definition of B0 ∪ ·· ·∪Bk−1 = ω , there exists an infinite f̃ -thin
(hence f -thin) set H such that H ⊕P does not compute an infinite set thin for the B’s. �

Corollary 8.3.4 For every k,n ≥ 2, STSn
k 6≤c TS

n
k+1

By Shoenfield’s limit lemma [Sho59], a stable computable coloring over (n+ 1)-tuples
can be considered as a non-effective coloring over n-tuples. This consideration establishes a
bridge between preservation properties for colorings over (n+1)-tuples and strong preservation
properties for colorings over n-tuples. In particular, it enables us to prove preservation results
by induction over n. The following lemma has been proven by the author in its full generality
in [Pat15a]. Nevertheless we reprove it in the context of preservation of hyperimmunity.

Lemma 8.3.5 For every k,n ≥ 1 and ℓ≥ 2, if TSn
ℓ admits strong preservation of k hyperimmu-

nities, then TSn+1
ℓ admits preservation of k hyperimmunities.

Proof. Fix any set C, k C-hyperimmune sets A0, . . . ,Ak−1 and any C-computable coloring f :
[ω]n+1 → ℓ. Consider the uniformly C-computable sequence of sets ~R defined for each σ ∈ [ω]n

and i < ℓ by

Rσ ,i = {s ∈ ω : f (σ ,s) = i}

As COH admits preservation of k hyperimmunities, there exists some ~R-cohesive set G such that
G⊕C preserves hyperimmunity of the A’s. The cohesive set induces a (G⊕C)′-computable
coloring f̃ : [ω]n → ℓ defined by:

(∀σ ∈ [ω]n) f̃ (σ) = lim
s∈G

f (σ ,s)
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As TSn
ℓ admits strong preservation of k hyperimmunities, there exists an infinite f̃ -thin set H

such that H ⊕G⊕C preserves hyperimmunity of the A’s. H ⊕G⊕C computes an infinite f -thin
set. �

Using Theorem 8.2.5 together with Lemma 8.3.5, we deduce the following corollary.

Corollary 8.3.6 For every k ≥ 2, TS2
k+1 admits preservation of k hyperimmunities.

We are now ready to prove Theorem 8.3.1.

Proof of Theorem 8.3.1. Fix some k ≥ 2. By Theorem 6.2.1 and by the hyperimmune-free basis
theorem [JS72b], COH and WKL admit preservation of k hyperimmunities. By Corollary 8.3.6,
so does TS2

k+1. By Corollary 8.2.4, STS2
k does not admit preservation of k hyperimmunities. An

application of Lemma 3.4.2 completes the proof. �

8.4 The weakness of the thin set theorem for tuples

In this section, we extend the preservation of hyperimmunity of the thin set theorem for pairs to
arbitrary tuples, using the same construction pattern as Wang [Wan14b]. We deduce that TSn

ℓ does
not imply TSn

k over RCA0 whenever ℓ is large enough, which is informally the strongest result
we can obtain since Proposition 5.3 in Dorais et al. [Dor+16] states that RCA0 ⊢ ACA↔ TSn

k

for n ≥ 3 whenever k is not large enough.

Theorem 8.4.1 For every k,n ≥ 1, TSn
ℓ admits strong preservation of k hyperimmunities for

sufficiently large ℓ.

Using the fact that RCA0 ⊢ TSn
ℓ → TSn for every n, ℓ≥ 2, we obtain the following preserva-

tion result for TS.

Corollary 8.4.2 For every k ≥ 1, TS admits strong preservation of k hyperimmunities.

Thanks to the existing preservations of hyperimmunity and Proposition 2.4 from Wang [Wan14c],
we deduce the following separations over ω-models.

Corollary 8.4.3 For every k ≥ 2, RCA0∧COH∧WKL∧TS2
k+1∧TS 0 STS2

k .

The remainder of this section is devoted to the proof of Theorem 8.4.1.

8.4.1 Proof structure

We shall follow the proof structure of strong cone avoidance by Wang [Wan14b]. Fix some k ≥ 1.
The induction works as follows:
(A1) In section 8.3 we proved that TS1

k+1 admits strong preservation of k hyperimmunities.
This is the base case of our induction.

(A2) Assuming that for each t ∈ (0,n), TSt
dt+1 admits strong preservation of k hyperimmuni-

ties, we prove that TSn
dn−1+1 admits preservation of k hyperimmunities. This is done by

Lemma 8.3.5.
(A3) Then we prove that TSn

dn+1 admits strong preservation of k hyperimmunities where

dn = d1dn−1 + ∑
0<t<n

dtdn−t
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Properties (A1) and (A2) are already proven. We now prove property (A3). It is again done
in several steps. Fix a coloring f : [ω]n → dn + 1 and a set C preserving hyperimmunity of k

sets A0, . . . ,Ak−1.
(S1) First, we construct an infinite set D ⊆ ω such that D⊕C preserves hyperimmunity of

the A’s and a sequence (Iσ : 0 < |σ |< n) such that for each t ∈ (0,n) and each σ ∈ [ω]t

(a) Iσ is a subset of {0, . . . ,dn} with at most dn−t many elements
(b) (∃b)(∀τ ∈ [D∩ (b,+∞)]n−t) f (σ ,τ) ∈ Iσ

(S2) Second, we construct an infinite set E ⊆ D such that E ⊕C preserves hyperimmunity of
the A’s and a sequence (It : 0 < t < n) such that for each t ∈ (0,n)

(a) It is a subset of {0, . . . ,dn} of size at most dtdn−t

(b) (∀σ ∈ [E]t)(∃b)(∀τ ∈ [E ∩ (b,+∞)]n−t) f (σ ,τ) ∈ It
(S3) Third, we construct a sequence (ξi ∈ [E]<ω : i < ω) such that

(a) The set G =
⋃

i ξi is infinite and G⊕C preserves hyperimmunity of the A’s
(b) | f ([ξi]

n)| ≤ dn−1 and max(ξi)< min(ξi+1) for each i < ω

(c) For each t ∈ (0,n) and σ ∈ [
⋃

j<i ξ j]
t , f (σ ,τ) ∈ It for all τ ∈ [

⋃

j≥i ξ j]
n−t

(S4) Finally, we build an infinite set H ⊆ G such that H⊕C preserves hyperimmunity of the A’s
and | f ([H]n)| ≤ dn.

8.4.2 Generalized cohesiveness

Before proving that TSn
dn+1 admits strong preservation of k hyperimmunities, we need to prove

strong preservation for a generalized notion of cohesiveness already used by the author in [Pat15a].
Cohesiveness can be seen as the problem which takes as an input a coloring of pairs f : [ω]2 → ℓ
and fixes the first parameter to obtain an infinite sequence of colorings of integers fx : ω → ℓ for
each x ∈ ω . A solution to this problem is an infinite set G which is eventually homogeneous for
each coloring fx.

Going further in this approach, we can consider that cohesiveness is a degenerate case of
the problem which takes as an input a coloring of pairs f : [ω]2 → ω using infinitely many
colors, and fixes again the first parameter to obtain an infinite sequence of colorings of integers
fx : ω → ω . A solution to this problem is an infinite set G such that for each color i, either
eventually the color will be avoided by fx over G, or G will be eventually homogeneous for fx

with color i.
We can generalize the notion to colorings over tuples f : [ω]n → ω , seeing f as an infinite

sequence of colorings over t-uples fσ : [ω]t → ω for each σ ∈ [ω]n−t . We will create a set G

such that at most dt colors will appear for arbitrarily large pairs over G for each function fσ .
This set will be constructed by applying TSt

dt+1 to fσ for each σ .
We do not need Theorem 8.4.4 in its full generality to complete our step (S1). However, it

will be useful in a later section for proving that the free set theorem admits preservation of k

hyperimmunities.

Theorem 8.4.4 Fix a coloring f : [ω]n → ω , some t ≤ n and suppose that TSs
ds+1 admits

strong preservation of k hyperimmunities for each s ∈ (0, t]. For every set C preserving
hyperimmunity of some sets A0, . . . ,Ak−1, there exists an infinite set G such that G ⊕C

preserves hyperimmunity of the A’s and for every σ ∈ [ω]<ω such that n− t ≤ |σ |< n,
∣
∣
∣

{

x : (∀b)(∃τ ∈ [G∩ (b,+∞)]n−|σ |) f (σ ,τ) = x
}∣
∣
∣≤ dn−|σ |

Proof. Our forcing conditions are Mathias conditions (F,X) where X ⊕C preserves hyperimmu-
nity of the A’s. Lemma 6.2.2 states that for every set G which is sufficiently generic for (F,X),
G⊕C preserves k hyperimmunities. It suffices therefore to prove the following lemma.
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Lemma 8.4.5 For every condition (F,X) and σ ∈ [ω]<ω such that n− t ≤ |σ | < n, for every
finite set I such that |I|= dn−|σ |, there exists an extension (F, X̃) such that

{ f (σ ,τ) : τ ∈ [X̃ ]n−|σ |} ⊆ I or I 6⊆ { f (σ ,τ) : τ ∈ [X̃ ]n−|σ |}

Proof. Define the function g : [X ]n−|σ | → I∪{⊥} by g(τ) = f (σ ,τ) if f (σ ,τ)∈ I and g(τ) =⊥

otherwise. By strong preservation of k hyperimmunities of TSn−|σ |
dn−|σ |+1, there exists an infinite

subset X̃ ⊆ X such that X̃ ⊕C preserves hyperimmunity of the A’s and
∣
∣{g(τ) : τ ∈ [X̃ ]n−|σ |}

∣
∣≤

dn−|σ |. The condition (F, X̃) is the desired extension. �

Using Lemma 6.2.2 and Lemma 8.4.5, one can define an infinite descending sequence of
conditions ( /0,ω)≥ c0 ≥ c1 ≥ . . . such that for each s ∈ ω

1. cs = (Fs,Xs) with |Fs| ≥ s

2. cs forces W G⊕C
e 6= Ai if s = 〈e, i〉

3. { f (σ ,τ) : τ ∈ [Xs]
n−|σ |} ⊆ I or I 6⊆ { f (σ ,τ) : τ ∈ [Xs]

n−|σ |} if s = 〈σ , I〉 and |I|= dn−|σ |.
The set G =

⋃

s Fs is an infinite set such that G⊕C preserves hyperimmunity of the A’s. We claim
that G satisfies the desired properties. Fix a σ ∈ [ω]<ω such that n− t ≤ |σ |< n. Suppose that
there exists dn−|σ |+1 elements x0, . . . ,xdn−|σ |

such that (∀b)(∃τ ∈ [G∩(b,+∞)]n−|σ |) f (σ ,τ) = xi

for each i ≤ dn−|σ |. Let I = {x0, . . . ,xdn−|σ |−1}. By step s = 〈σ , I〉, G satisfies (Fs,Xs) such that

{ f (σ ,τ) : τ ∈ [Xs]
n−|σ |} ⊆ I or I 6⊆ { f (σ ,τ) : τ ∈ [Xs]

n−|σ |}. In the first case it contradicts the
choice of xdn−|σ |

and in the second case it contradicts the choice of an element of I. This finishes
the proof of Theorem 8.4.4. �

8.4.3 Step (S1) : Construction of the set D

We start with the construction of an infinite set D ⊆ ω such that D⊕C preserves hyperimmunity
of the A’s and a sequence (Iσ : 0 < |σ |< n) such that for each t ∈ (0,n) and each σ ∈ [ω]t

(a) Iσ is a subset of {0, . . . ,dn} with at most dn−t many elements
(b) (∃b)(∀τ ∈ [G∩ (b,+∞)]n−t) f (σ ,τ) ∈ Iσ

Let D be the set constructed in Theorem 8.4.4 for t = n−1. For each σ ∈ [ω]<ω such that
0 < |σ |< n, let

Iσ = {x ≤ dn : (∀b)(∃τ ∈ [G∩ (b,+∞)]n−|σ |) f (σ ,τ) = x}

By choice of D, the set Iσ has at most dn−|σ | many elements. Moreover, for each y ≤ dn such
that y 6∈ Iσ , there exists a bound by such that (∀τ ∈ [D∩ (by,+∞)]n−|σ |) f (σ ,τ) 6= x. So taking
b = max(by : y ≤ dn ∧ y 6∈ Iσ ), we obtain

(∀τ ∈ [D∩ (b,+∞)]n−|σ |) f (σ ,τ) ∈ Iσ

8.4.4 Step (S2) : Construction of the set E

We now construct an infinite set E ⊆ D such that E ⊕C preserves hyperimmunity of the A’s and
a sequence (It : 0 < t < n) such that for each t ∈ (0,n)

(a) It is a subset of {0, . . . ,dn} of size at most dtdn−t

(b) (∀σ ∈ [E]t)(∃b)(∀τ ∈ [E ∩ (b,+∞)]n−t) f (σ ,τ) ∈ It

For each t ∈ (0,n) and σ ∈ [ω]t , let Ft(σ) = Iσ . Using strong preservation of k hyperimmu-
nities of TSt

dt+1, we build a finite sequence D ⊇ E1 ⊇ ·· · ⊇ En−1 such that for each t ∈ (0,n)
1. Et ⊕C preserves hyperimmunity of the A’s
2. |Ft([Et ]

t)| ≤ dt
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Let E = En−1 and It =
⋃

Ft([E]
t) for each t ∈ (0,n). As for each σ ∈ [E]t , |Ft(σ)|= |Iσ | ≤ dn−t ,

|It | ≤ dtdn−t , so property (a) holds. We now check that property (b) is satisfied. Fix a σ ∈ [E]t .
By definition of It , Ft(σ) = Iσ ⊆ It . As E ⊆ D,

(∃b)(∀τ ∈ [E ∩ (b,+∞)]n−t) f (σ ,τ) ∈ Iσ ⊆ It

8.4.5 Step (S3) : Construction of the set G

Given the set E and the sequence of sets of colors (It : 0 < t < n), we will construct a se-
quence (ξi ∈ [E]<ω : i < ω) such that

(a) The set G =
⋃

i ξi is infinite and G⊕C preserves hyperimmunity of the A’s
(b) | f ([ξi]

n)| ≤ dn−1 and max(ξi)< min(ξi+1) for each i < ω

(c) For each t ∈ (0,n) and σ ∈ [
⋃

j<i ξ j]
t , f (σ ,τ) ∈ It for all τ ∈ [

⋃

j≥i ξ j]
n−t

We construct our set G by Mathias forcing (σ ,X) where X is an infinite subset of E such
that X ⊕C preserves hyperimmunity of the A’s. Using property (b) of E, we can easily construct
an infinite sequence (ξi ∈ [E]<ω : i < ω) satisfying properties (b) and (c) of step (S3). The
following lemma shows how to satisfy property (a).

Lemma 8.4.6 Fix a condition (σ ,X), some e ∈ ω and some j < k. There exists an exten-
sion (σξ ,Y ) with | f ([ξ ]n)| ≤ dn−1, forcing ΦG⊕C

e not to dominate pA j
.

Proof. Let h be the partial X ⊕C-computable function which on input x, searches for a finite
set of integers U such that for every coloring g : [X ]n → dn + 1, there is a set ξ ∈ [X ]<ω such

that |g([ξ ]n)| ≤ dn−1 and Φ
σξ⊕C
e (x) ↓∈ U . If such a set U is found, then f (x) = max(U)+ 1,

otherwise f (x) ↑. We have two cases:
• Case 1: the function is total. By X ⊕C-hyperimmunity of A j, f (x)≤ pA j

(x) for some x.
Let U be the finite set witnessing f (x) ↓. Letting g = f , there exists a set ξ ∈ [X ]<ω such

that | f ([ξ ]n)| ≤ dn−1 and Φ
σξ⊕C
e (x) ↓∈ U . The condition d = (σξ ,X) is an extension

forcing ΦG⊕C
e (x)< f (x)≤ pA j

(x).

• Case 2: There is some x such that f (x) ↑. By compactness, the Π
0,X⊕C
1 class C of

colorings g : [X ]n → dn +1 such that for every set ξ ∈ [X ]<ω satisfying |g([ξ ]n)| ≤ dn−1,

Φ
σξ⊕C
e (x) ↑ is non-empty. As WKL admits preservation of k hyperimmunities, there

is some coloring g ∈ C such that g⊕X ⊕C preserves hyperimmunity of the A’s. By
preservation of k hyperimmunities of TSn

dn−1+1, there exists an infinite subset Y ⊆ X such
that Y ⊕C preserves hyperimmunity of the A’s and |g([Y ]n)| ≤ dn−1. The condition (σ ,Y )
forces ΦG⊕C

e (x) ↑.
�

Using Lemma 8.4.6 and property (b) of the set E, we can construct an infinite descending
sequence of conditions (ε,E)≥ c0 ≥ . . . such that for each s ∈ ω

(i) σs+1 = σsξs with |σs| ≥ s and f ([ξs]
n)≤ dn−1

(ii) f (σ ,τ) ∈ It for each t ∈ (0,n), σ ∈ [σs]
t and τ ∈ [X ]n−t .

(iii) cs forces ΦG⊕C
e not to dominate pA j

if s = 〈e, j〉
where cs = (σs,Xs). The set G =

⋃

s σs satisfies the desired properties.

8.4.6 Step (S4) : Construction of the set H

Finally, we build an infinite set H ⊆ G such that H ⊕C preserves hyperimmunity of the A’s
and | f ([H]n)| ≤ dn.

For each i < ω , let Ji = f ([ξi]
n). By property (b) of step (S3), Ji is a subset of {0, . . . ,dn}

such that |Ji| ≤ dn−1. For each subset J ⊆ {0, . . . ,dn} of size dn−1, define the set

ZJ = {x ∈ G : (∃i)x ∈ ξi ∧ f ([ξi]
n)⊆ J}
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There exists finitely many such J’s, and the Z’s form a partition of G. Apply strong preservation
of k hyperimmunities of TS1

d1+1 to obtain a finite set S of J’s of such that |S| ≤ d1 and an infinite
set H ⊆

⋃

J∈S ZJ ⊆ G such that H ⊕G⊕C preserves hyperimmunity of the A’s.

Lemma 8.4.7 | f ([H]n)| ≤ dn

Proof. As H ⊆ G, any σ ∈ [H]n can be decomposed into ρ⌢τ for some ρ ∈ [ξi]
<ω and some τ ∈

[
⋃

j≥i ξ j]
<ω with |ρ|> 0. If |τ|= 0 then f (σ)∈

⋃

J∈S J by definition of H. If |τ|> 0, then f (σ)∈
I|ρ| by property (c) of step (S3). In any case

f (σ) ∈ (
⋃

J∈S

J)∪ (
⋃

t∈(0,n)

It)

Recall that |S| ≤ d1, |J|= dn−1 for each J ∈ S, and |It | ≤ dtdn−t for each t ∈ (0,n). We obtain
therefore the desired inequality. �

This completes property (A3) and the proof of Theorem 8.4.1.

8.5 The free set theorem

The free set theorem is a strengthening of the thin set theorem in which every member of a free set
is a witness of thinness of the same set. Indeed, if H is an infinite f -free set for some function f ,
for every a ∈ H, H r {a} is f -thin with witness color a. See Theorem 3.2 in [Cho+01] for a
formal version of this claim.

Definition 8.5.1 — Free set theorem. Given a coloring f : [N]n → N, an infinite set H is
f -free if for every σ ∈ [H]n, f (σ) ∈ H → f (σ) ∈ σ . For every n ≥ 1, FSn is the statement

“Every coloring f : [N]n → N has a free set”.

Again, SFS2 is the restriction of FS2 to stable colorings and FS is the statement (∀n)FSn.
Cholak et al. [Cho+01] studied the thin set theorem with infinitely many colors as a weakening
of the free set theorem. Cholak et al. [Cho+01] proved that RCA0 ⊢ RTn

2 → FSn → TSn for
every n ≥ 2. Wang [Wan14b] proved that FS (hence TS) does not imply ACA over ω-models.
The author [Pat15a] proved that FS does not imply WKL (and in fact weak weak König’s lemma)
over RCA0.

The forcing notions used by Wang in [Wan14c] and by the author in [Pat15a] for constructing
solutions to free set instances both involve the thin set theorem for a finite, but arbitrary number
of colors. These constructions may suggest some relation between FSn and TSn

k for arbitrarily
large k, but the exact nature of this relation is currently unclear.

In this section, we use the preservation of k hyperimmunities of the thin set theorem to
deduce similar preservation results for the free set theorem, and thereby separate FS from RT2

2
over RCA0. More precisely, we prove the following preservation theorem.

Theorem 8.5.1 For every k ∈ ω , FS admits strong preservation of k hyperimmunities.

Cholak et al. [Cho+01] asked whether any of FS2, FS2+COH and FS2+WKL imply RT2
2

and Hirschfeldt [Hir15] asked whether FS2+WKL implies SRT2
2. We answer all these questions

negatively with the following corollary.

Corollary 8.5.2 For every k ≥ 2, RCA0∧WKL∧COH∧FS∧TS2
k+1 6⊢ STS2

k .

In particular, since the statement TS2
2 is nothing but Ramsey’s theorem for pairs, we deduce

the following corollary.
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Corollary 8.5.3 RCA0∧FS 0 RT2
2.

The remainder of this section is devoted to the proof of Theorem 8.5.1. The proof is done
by induction over the size of the tuples. The base case of our induction states that FS0 admits
strong preservation of k hyperimmunities. Consider FS0 as a degenerate case of the free set
theorem, where an instance is a constant c and a solution to c is an infinite set H which does
not contain c. Indeed, a function f : [ω]0 → ω can be considered as a constant c, and a set H is
f -free if for every ε ∈ [H]0, f (ε) ∈ H → f (ε) ∈ ε . As f (ε) 6∈ ε , f (ε) = c 6∈ H. From now on,
we will assume that FSt admits strong preservation of k hyperimmunities for every t ∈ [0,n).

We start with a lemma similar to Lemma 8.3.5.

Lemma 8.5.4 For every n≥ 1 and k ≥ 2, if FSn admits strong preservation of k hyperimmunities,
then FSn+1 admits preservation of k hyperimmunities.

Proof. Fix any set C, k C-hyperimmune sets A0, . . . ,Ak−1 and any C-computable coloring f :
[ω]n+1 → ω . Consider the uniformly C-computable sequence of sets ~R defined for each σ ∈ [ω]n

and y ∈ ω by

Rσ ,y = {s ∈ ω : f (σ ,s) = y}

As COH admits preservation of k hyperimmunities, there exists some ~R-cohesive set G such that
G⊕C preserves hyperimmunity of the A’s. The cohesive set induces a coloring f̃ : [ω]n → ω

defined for each σ ∈ [ω]n by

f̃ (σ) =

{
lims∈G f (σ ,s) if it exists
0 otherwise

As FSn admits strong preservation of k hyperimmunities, there exists an infinite f̃ -free set H

such that H ⊕G⊕C preserves hyperimmunity of the A’s. In particular,

(∀σ ∈ [H]n)(∀y ∈ H rσ)(∀∞s) f (σ ,s) 6= y

Thus H ⊕G⊕C computes an infinite f -free set. �

8.5.1 Trapped functions

Although the notion of free set can be defined for every coloring over tuples of integers, we
shall restrict ourselves to a particular kind of colorings: left trapped functions. The notion of
trapped function has been introduced by Wang in [Wan14b] to prove that FS does not imply ACA

over ω-models. It has been later reused by the author in [Pat15a] to separate FS from WWKL

over ω-models. Given a string σ ∈ [ω]<ω and some n < |σ |, we write σ(n) for the value of σ at
the (n+1)th position.

Definition 8.5.2 A function f : [ω]n → ω is left (resp. right) trapped if for every σ ∈ [ω]n,
f (σ)≤ σ(n−1) (resp. f (σ)> σ(n−1)).

The following lemma is again a particular case of a more general statement proven by the
author in [Pat15a]. It follows from the facts that FSn for right trapped functions is strongly
Weihrauch reducible to the diagonally non-computable principle (DNR), which itself is com-
putably reducible to FSn for left trapped functions.

Lemma 8.5.5 For each k,n ≥ 1, if FSn for left trapped functions admits (strong) preservation
of k hyperimmunities then so does FSk.

It therefore suffices to prove strong preservation of k hyperimmunities for left trapped
functions.
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8.5.2 Case of left trapped functions

In this part, we will prove the following theorem which, together with Lemma 8.5.5 is sufficient
to prove Theorem 8.5.1 by induction over n.

Theorem 8.5.6 For each k,n ≥ 1, if FSt admits strong preservation of k hyperimmunities for
each t ∈ [0,n), then so does FSn for left trapped functions.

The two following lemmas will ensure that the reservoirs of our forcing conditions will have
good properties, so that the conditions will be extensible.

Lemma 8.5.7 Suppose that FSt admits strong preservation of k hyperimmunities for each
t ∈ (0,n) for some k∈ω . Fix a set C, some C-hyperimmune sets A0, . . . ,Ak−1, a finite set F and an
infinite set X computable in C. For every function f : [X ]n → ω there exists an infinite set Y ⊆ X

such that Y ⊕C preserves hyperimmunity of the A’s and (∀σ ∈ [F ]t)(∀τ ∈ [Y ]n−t) f (σ ,τ) 6∈Y rτ

for each t ∈ (0,n).

Proof. Fix the finite enumeration σ0, . . . ,σm−1 of all elements of [F ]t for all t ∈ (0,n). We define
a finite decreasing sequence of sets X = Y0 ⊇ Y1 ⊇ ·· · ⊇ Ym such that for each s < m

(a) all the A’s are Ys+1 ⊕C-hyperimmune
(b) ∀τ ∈ [Ys+1]

n−|σs| f (σs,τ) 6∈ Ys+1 r τ

Given some stage s < m and some set Ys, define the function fσs
: [Ys]

n−|σs| → ω by fσs
(τ) =

f (σs,τ). By strong preservation of k hyperimmunities of FSn−|σs|, there exists an infinite set
Ys+1 ⊆ Ys satisfying (a) and (b). We claim that Ym satisfies the properties of the lemma. Fix
some σ ∈ [F ]t and some τ ∈ [Ym]

n−t for some t ∈ (0,n). There is a stage s < m such that σ = σs.
Moreover, τ ∈ [Ys+1]

n−|σs|, so by (b), f (σs,τ) 6∈Ys+1rτ , therefore f (σ ,τ) 6∈Ymrτ , completing
the proof. �

Lemma 8.5.8 Suppose that TSt
dt+1 admits strong preservation of k hyperimmunities for each

t ∈ (0,n] and FSt admits strong preservation of k hyperimmunities for each t ∈ [0,n). For every
function f : [ω]n → ω and every set C preserving hyperimmunity of some sets A0, . . . ,Ak−1,
there exists an infinite set X such that X ⊕C preserves hyperimmunity of the A’s and for every
σ ∈ [X ]<ω such that 0 ≤ |σ |< n,

(∀x ∈ X rσ)(∃b)(∀τ ∈ [X ∩ (b,+∞)]n−|σ |) f (σ ,τ) 6= x

Proof. Let X be the infinite set constructed in Theorem 8.4.4 with t = n. For each s <
n and i < dn−s, let fs,i : [X ]s → ω be the function such that fs,i(σ) is the ith element of
{x : (∀b)(∃τ ∈ [X ∩ (b,+∞)]n−s) f (σ ,τ) = x} if it exists, and 0 otherwise. Define a finite se-
quence X ⊇ X0 ⊇ ·· · ⊇ Xn−1 such that for each s < n

1. Xs ⊕C preserves hyperimmunity of the A’s
2. Xs is fs,i-free for each i < dn−s

We claim that Xn−1 is the desired set. Fix s < n and take any σ ∈ [Xn−1]
s and any x ∈ Xn−1rσ . If

(∀b)(∃τ ∈ [X ∩ (b,+∞)]n−s) f (σ ,τ) = x, then by choice of X , there exists an i < dn−s such that
fs,i(σ) = x, contradicting fs,i-freeness of Xn−1. So (∃b)(∀τ ∈ [X ∩ (b,+∞)]n−s) f (σ ,τ) 6= x. �

Proof of Theorem 8.5.6. Fix k ≥ 2, some set C, some C-hyperimmune sets A0, . . . ,Ak−1 and a
left trapped coloring f : [ω]n → ω . We will construct an infinite f -free set H such that all the
A’s is H ⊕C-hyperimmune. Our forcing conditions are Mathias conditions (F,X) such that

(a) X ⊕C preserves hyperimmunity of the A’s
(b) (∀σ ∈ [F ∪X ]n) f (σ) 6∈ F rσ

(c) (∀σ ∈ [F ∪X ]t)(∀x ∈ (F ∪X)rσ)(∃b)(∀τ ∈ [(F ∪X)∩ (b,+∞)]n−t)
f (σ ,τ) 6= x for each t ∈ [0,n).
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(d) (∀σ ∈ [F ]t)(∀τ ∈ [X ]n−t) f (σ ,τ) 6∈ X r τ for each t ∈ (0,n)
Properties (c) and (d) will be obtained by Lemma 8.5.8 and Lemma 8.5.7 and are present to
maintain the property (b) over extensions. A set G satisfies a condition (F,X) if it is f -free and
satisfies the Mathias condition (F,X). Our initial condition is ( /0,Y ) where Y is obtained by
Lemma 8.5.8.

Lemma 8.5.9 For every condition (F,X) there exists an extension (H,Y ) such that |H|> |F |.

Proof. Choose an x ∈ X such that (∀σ ∈ [F ]n) f (σ) 6= x and set H = F ∪{x}. By property (c)
of (F,X), there exists a b such that

(∀σ ∈ [F ]t)(∀τ ∈ [X ∩ (b,+∞)]n−t) f (σ ,τ) 6= {x}rσ

for each t ∈ [0,n]. By Lemma 8.5.7, there exists an infinite set Y ⊆ X r [0,b] such that Y ⊕C

preserves hyperimmunity of the A’s and property (d) is satisfied for (H,Y ). We claim that (H,Y )
is a valid condition. Properties (a), (c) and (d) trivially hold. We now check property (b). By
property (b) of (F,X), we only need to check that (∀σ ∈ [F ∪Y ]k) f (σ) 6= x. This follows from
our choice of b. �

Lemma 8.5.10 For every condition (F,X), every e ∈ ω and j < k, there exists an extension
(H,Y ) forcing ΦG⊕C

e not to dominate pA j
.

Proof. By removing finitely many elements of X , we can assume that (∀σ ∈ [F ]n) f (σ) 6∈ X .
Let f be the partial X ⊕C-computable function which on input x searches for some finite set
of integers U such that for every left trapped function g : [X ]n → ω , there is a g-free set E ⊆ X

such that Φ
(F∪E)⊕C
e (x) ↓∈U . If such a set U is found, f (x) = 1+max(U), otherwise f (x) ↑. We

have two cases:
• Case 1: the function f is total. By X ⊕C-hyperimmunity of A j, f (x)≤ pA j

(x) for some x.
Let U be the finite set witnessing f (x) ↓. By definition of f , taking g = f , there exists

a finite f -free set E such that a ∈W
(F∪E)⊕C
e . Set H = F ∪E. By property (c) of (F,X),

there exists a b such that

(∀σ ∈ [H]t)(∀x ∈ H)(∀τ ∈ [X ∩ (b,+∞)]n−t) f (σ ,τ) 6= {x}rσ

for each t ∈ [0,n). By Lemma 8.5.7, there exists an infinite set Y ⊆ X ∩ (b,+∞) such that
Y ⊕C preserves hyperimmunity of the A’s and property (d) is satisfied for (H,Y ). We
claim that (H,Y ) is a valid condition.
Properties (a), (c) and (d) trivially hold. We now check property (b). By our choice of
b, we only need to check that (∀σ ∈ [H]n) f (σ) 6∈ H rσ . By property (b) of (F,X), it
suffices to check that (∀σ ∈ [H]n) f (σ) 6∈ E rσ . By property (d) of (F,X), and our initial
assumption on X , we only need to check that (∀σ ∈ [E]n) f (σ) 6∈ E rσ , which is exactly
f -freeness of E.

• Case 2: there is some x such that f (x) ↑. By compactness, the Π
0,X⊕C
1 class C of all

left trapped functions g : [X ]n → ω such that for every g-free set E ⊆ X , Φ
(F∪E)⊕C
e (x) ↑

is non-empty. As WKL admits preservation of k hyperimmunities, there exists a left
trapped functions g ∈ C such that g⊕X ⊕C preserves hyperimmunity of the A’s. As FSn

admits preservation of k hyperimmunities, there exists some infinite g-free set Y ⊆ X such
that Y ⊕C preserves hyperimmunity of the A’s. The condition (F,Y ) forces ΦG⊕C

e (x) ↑.
�

Let Y be the set constructed in Lemma 8.5.8. Using Lemma 8.5.9 and Lemma 8.5.10, we can
define an infinite decreasing sequence of conditions ( /0,Y )≥ c0 ≥ . . . such that for every s ∈ ω
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(i) |Fs| ≥ s

(ii) cs forces W G⊕C
e 6= A j if s = 〈e, j〉

where cs = (Fs,Xs). Let G =
⋃

s Fs. By (i), G is infinite and by (ii), all the A’s are G⊕C-
hyperimmune. This completes the proof of Theorem 8.5.6. �





9. The rainbow Ramsey theorem

Among the consequences of Ramsey’s theorem, the rainbow Ramsey theorem intuitively states
the existence of an infinite injective restriction of any function which is already close to being
injective. We now provide its formal definition.

Definition 9.0.1 — Rainbow Ramsey theorem. Fix n,k ∈ N. A coloring function f :
[N]n → N is k-bounded if for every y ∈ N,

∣
∣ f−1(y)

∣
∣ ≤ k. A set R is a rainbow for f (or an

f -rainbow) if f is injective over [R]n. RRTn
k is the statement “Every k-bounded function

f : [N]n → N has an infinite f -rainbow”.

As usual, RRT is the statement (∀n)(∀k)RRTn
k . Galvin noticed that it follows easily from

Ramsey’s theorem. Csima and Mileti [CM09], Conidis and Slaman [CS13], Wang [Wan;
Wan13b] and the author [Pat15g] among others studied the reverse mathematics of the rainbow
Ramsey theorem.

Wang [Wan] proved that the rainbow Ramsey theorem is an immediate consequence of
the free set theorem at each level. More precisely, he showed that RCA0 ⊢ (∀n)[FSn → RRTn

2].
When not considering the levels of the hierarchies individually, we can obtain a partial reversal.

Theorem 9.0.1 For every n ≥ 1, RCA0 ⊢ RRT2n+1
2 → FSn.

Proof. Let 〈·, ·〉 be a bijective coding from {(x,y) ∈ N2 : x < y} to N, such that 〈x,y〉 < 〈u,v〉
whenever x < u and y < v. We shall refer to this property as (P1). We say that a function f :
[N]n → N is t-trapped for some t ≤ n if for every~z ∈ [N]n, zt−1 ≤ f (~z) < zt , where z−1 = −∞

and zn =+∞. Wang proved in [Wan14b, Lemma 4.3] that we can restrict ourselves without loss
of generality to trapped functions when n is a standard integer.

Let f : [N]n →N be a t-trapped coloring for some t ≤ n. We build a ∆
0, f
1 2-bounded coloring

g : [N]2n+1 → N such that every infinite g-rainbow computes an infinite f -thin set. Given
some~z ∈ [N]n, we write~z ⊲⊳t u to denote the (2n+1)-uple

x0,y0, . . . ,xt−1,yt−1,u,xt ,yt , . . . ,xn−1,yn−1

where zi = 〈xi,y1〉 for each i < n. We say that~z ⊲⊳t u is well-formed if the sequence above is a
strictly increasing.

For every y ∈N and~z ∈ [N]n such that~z ⊲⊳t y is well-formed, if f (~z) = 〈x,y〉 for some x such
that~z ⊲⊳t x is well-formed, then set g(~z ⊲⊳t y) = g(~z ⊲⊳t x). Otherwise assign g(~z ⊲⊳t y) a fresh
color. The function g is total and 2-bounded.

Let H = {x0 < y0 < x1 < y1 < .. .} be an infinite g-rainbow and let H1 = {〈xi,yi〉 : i ∈ N}.
We claim that H1 is f -free. Let~z ∈ [H1]

n be such that f (~z) ∈ H1. In particular, f (~z) = 〈xi,yi〉
for some i ∈ N. Since f is t-trapped and by (P1), if f (~z) 6= zt−1 then~z ⊲⊳t xi and~z ⊲⊳t yi are both
well-formed. Hence g(~z ⊲⊳t xi) = g(~z ⊲⊳s yi). Because H is a g-rainbow, either xi or yi is not in H,
contradicting 〈xi,yi〉 ∈ H1. Therefore f (~z) = zt−1. �
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Corollary 9.0.2 RRT and FS coincide over ω-models.

When considering the thin set theorem, we can obtain better bounds. In particular, the proof
is uniform in n, and we can deduce that the full rainbow Ramsey theorem implies the thin set
theorem over RCA0.

Theorem 9.0.3 RCA0 ⊢ (∀n)[RRTn+1
2 → TSn] and TSn ≤sW RRTn+1

2 .

Proof. Fix some n ∈ N and let f : [N]n → N be a coloring. We build a ∆
0, f
1 2-bounded coloring

g : [N]n+1 → N such that every infinite g-rainbow is, up to finite changes, f -thin. For every
y ∈ N and~z ∈ [N]n, if f (~z) = 〈x,y〉 with x < y < min(~z), then set g(y,~z) = g(x,~z). Otherwise
assign g(y,~z) a fresh color. The function g is clearly 2-bounded. Let H be an infinite g-rainbow
and let x,y ∈ H be such that x < y. Set H1 = H r [0,y]. We claim that H1 is f -thin with
color 〈x,y〉. Indeed, for every~z ∈ [H1]

n, if f (~z) = 〈x,y〉 then x < y < min(~z), so g(x,~z) = g(y,~z).
This contradicts the fact that H is a g-rainbow. �

9.1 The rainbow Ramsey theorem and randomness

The thin set, free set and rainbow Ramsey theorem admit the same definability bounds as the
ones proven by Jockusch for Ramsey’s theorem [Joc72]. In particular, Pn admits a computable
instance with no Σ0

n solution, where Pn is any of RTn
2, TSn

2, FSn or RRTn
2. One may wonder

whether those problems admit probabilistic solutions.
There are many ways to understand the notion of probabilistic solution. In our case, we shall

take the algorithmic randomness approach, and consider the following computability-theoretic
definition.

Definition 9.1.1 A Π1
2 statement P admits probabilistic solutions if for every P-instance X ,

the measure of oracles Z such that Z ⊕X computes a solution to X is positive.

Let n-RAN be the statement “For every set X , there is an n-random real relative to X”.
Avigad, Dean and Rute [ADR12] studied the reverse mathematics of the statement n-RAN and
proved that 1-RAN is equivalent to WWKL over RCA0. Not to admit probabilistic solutions is
sufficient to obtain a separation over standard models.

Lemma 9.1.1 If P does not admit probabilistic solutions, then P 6≤ω n-RAN for every n.

Proof. Let X be a P-instance such that the measure of oracles Z which X-compute a solution
to X is null. In particular, there is an n-random real R relative to X such that R⊕X does not
compute a solution to X . By Van Lambalgen theorem [Van90], n-RAN holds in the Turing
ideal I = {Z : (∃i)[Z ≤T X ⊕R0 ⊕·· ·⊕Ri]}, where R =

⊕

i Ri. Since every C ∈ I is R⊕X-
computable, I 6|= P. �

It turns out that very few theorems studied in reverse mathematics admit probabilistic solu-
tions. One can easily prove that weak statements such as the atomic model theorem do not admit
ones by simply noticing that the halting set is uniformly almost-everywhere dominating [DS04].

Theorem 9.1.2 AMT does not admit probabilistic solutions.

Proof. By [Con08; HSS09], AMT is computably equivalent to the statement “For every ∆0
2

function f , there is a function g not dominated by f ”. Kurtz [Kur82] proved the existence of a
∆0

2 function f such that for almost every set A, f dominates every A-computable function. Let T

be a computable, complete atomic theory such that every atomic model computes a function not
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dominated by f . By choice of f , the measure of oracles which compute an atomic model of T is
null. �

We shall see in Corollary 9.2.33 that the rainbow Ramsey theorem for triples implies AMT

over RCA0. Therefore, RRTn
2 does not admit probabilistic solutions for n ≥ 3. Surprisingly, the

case of the rainbow Ramsey theorem for pairs is pretty different.
Csima and Mileti [CM09] gave a probabilistic algorithm to compute solutions to the rainbow

Ramsey theorem for pairs. Conidis and Slaman [CS13] formalized their argument in reverse
mathematics and proved that RRT2

2 is a consequence of 2-RAN over RCA0. We therefore study
how randomness and hyperimmunity relate to each other, in order to deduce preservation of
hyperimmunity results about the rainbow Ramsey theorem for pairs and compare it to the other
statements in reverse mathematics. The following theorem is well-known and has been proven
by Agafonov and Levin [ZL70].

Theorem 9.1.3 Fix some set Z and a countable collection of Z-hyperimmune sets B0,B1, . . .
If R is sufficiently random relative to Z, the B’s are R⊕Z-hyperimmune.

Proof. It suffices to prove that for every e, i ∈ ω , the following class is Lebesgue null.

Se,i = {X : ΦX⊕Z
e dominates pBi

}

Suppose it is not the case. There exists σ ∈ 2<ω such that

µ {X ∈ Se,i : σ ≺ X}> 2−|σ |−1

Let f be the partial Z-computable function which on input n, looks for a clopen set [U ]⊆ [σ ] such
that µ([U ])> 2−|σ |−1 and Φτ⊕Z

e (n) ↓ for each τ ∈U , and outputs 1+max(Φτ⊕Z
e (n) : τ ∈U). In

particular, [U ]∩Se,i 6= /0, so f (n)≥ pBi
. The function f is total by choice of Z and dominates Bi.

Contradiction. �

Note that this does not mean that the set R is hyperimmune-free relative to Z. In fact,
Kautz [Kau91] proved that the converse holds for Z = /0, that is, if R sufficiently random, then it
is hyperimmune.

Corollary 9.1.4 For every n, n-RAN and RRT2
2 admit preservation of hyperimmunity.

Proof. Immediate by Lemma 9.1.3 for n-RAN and by Csima and Mileti [CM09] for RRT2
2. �

In fact, the rainbow Ramsey theorem for pairs admits an exact characterization in terms
of algorithmic randomness. Miller noticed that in the proof of Csima and Mileti [CM09] any
function d.n.c. relative to /0′ is sufficient to carry the whole construction. He furthermore obtained
a reversal, thereby proving that the rainbow Ramsey theorem for pairs is equivalent to the
diagonal non-computable principle relative to /0′.

Theorem 9.1.5 — Miller [Mil]. Fix a set X .
(i) There is an X-computable 2-bounded coloring f : [N]2 → N such that every infinite

f -rainbow computes (not relative to X) a function d.n.c. relative to X
′
.

(ii) For every X-computable 2-bounded coloring f : [N]2 → N and every function g d.n.c.
relative to X ′, there exists a g⊕X-computable infinite f -thin set.

Following the notation of [ADR12], we denote by n-DNR the statement “For every set X ,
there is a function d.n.c. relative to X (n−1)”. The argument of Miller is easily formalizable in
RCA0, which gives the following corollary.
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Corollary 9.1.6 — Miller [Mil]. RCA0 ⊢ RRT2
2 ↔ 2-DNR and RRT2

2 =u 2-DNR.

Kang [Kan14] asked whether the rainbow Ramsey theorem for pairs is a consequence of
the thin set theorem for pairs. We now answer positively, thanks to Miller’s characterization
of RRT2

2. Note that the implication is strict, since AMT and therefore STS2 does not admit
probabilistic solutions.

Theorem 9.1.7 RCA0 ⊢ TS2 → 2-DNR and 2-DNR≤sW TS2.

Proof. We prove that for every set X , there is an X-computable coloring function f : [N]2 → N
such that every infinite f -thin set computes (not relative to X) a function d.n.c. relative to X

′
.

The structure of the proof is very similar to Theorem 10.1.2, but instead of diagonalizing against
computing an infinite transitive tournament, we will diagonalize against computing an infinite
set avoiding color i. Applying diagonalization for each color i, we will obtain the desired result.

Let X be a set and g(., .) be a total ∆
0,X
1 function such that ΦX ′

e (e) = lims g(e,s) if the limit
exists, and ΦX ′

e (e) ↑ if the limit does not exist. For each e, i,s ∈ N, interpret g(e,s) as the code
of a finite set De,i,s of size 3e·i. We define the coloring f by Σ1-induction as follows. Set
f0 = /0. At stage s+ 1, do the following. Start with fs+1 = fs. Then, for each α(e, i) < s –
where α(., .) is the Cantor pairing function, i.e., α(e, i) = (e+i)(e+i+1)

2 + e – take the first element
x ∈ De,i,s r

⋃

(e′,i′)<(e,i) De′,i′,s (notice that these exist by cardinality assumptions on the De,i,s),
and if fs+1(s,x) is not already assigned, assign it to color i. Finally, for any z < s such that
fs+1(s,z) remains undefined, assign any color to it in a predefined way (e.g., for any such pair
{x,y}, set fs+1(x,y) to be 0). This finishes the construction of fs+1. Set f =

⋃

s fs, which must
exist as a set by Σ1-induction.

First of all, notice that f is a coloring function of domain [N]2, as at the end of stage s+1
of the construction f (x,y) is assigned a value for (at least) all pairs {x,y} with x < s and y < s.
By TS2, let A be an infinite f -thin set. Let i ∈ Nr f ([A]2). Let h(e) be the code of the finite
set Ae consisting of the first 3e·i+1 elements of A. We claim that h(e) 6= ΦX ′

e (e) for all e, which
would prove 2-DNR. Suppose otherwise, i.e., suppose that ΦX ′

e (e) = h(e) for some e. Then there
is a stage s0 such that h(e) = g(e,s) for all s ≥ s0 or equivalently De,i,s = Ae for all s ≥ s0. Let
Ne = max(Ae). The same argument as in the proof of Theorem 10.1.2 shows that for any s be
bigger than both max(

⋃

e,i,s<Ne
De,i,s) and s0, the restriction of f to Ae ∪{s} does not avoid color

i, which contradicts the fact that the infinite set A containing Ae avoids color i in f . �

Corollary 9.1.8 RCA0 ⊢ TS2 → RRT2
2 and RRT2

2 ≤W TS2.

Proof. Immediate by Theorem 9.1.7 and Corollary 9.1.6. �

9.2 A stable rainbow Ramsey theorem for pairs

In this section, we study a stable version of the rainbow Ramsey theorem. There exist different
notions of stability for k-bounded functions.

Consider a 2-bounded coloring f of pairs as the history of interactions between people in an
infinite population. f (x,s) = f (y,s) means that x and y interact at time s. In this world, x and y get
married if f (x,s)= f (y,s) for cofinitely many s, whereas a person x becomes a monk if f (x,s) is a
fresh color for cofinitely many s. Finally, a person x is wise if for each y, either x and y get married
or x and y eventually break up forever, i.e., (∀y)[(∀∞s) f (x,s) = f (y,s)∨ (∀∞s) f (x,s) 6= f (y,s)].
In particular married people and monks are wise. Note that 2-boundedness implies that a person x

can get married to at most one y.
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RRT2
2 states that given an world, we can find infinitely many instants where people behave

like monks. However we can weaken our requirement, leading to new principles.

Definition 9.2.1 — Stable rainbow Ramsey theorem. A coloring f : [N]2 →N is rainbow-

stable if for every x, one of the following holds:
(a) There is a y 6= x such that (∀∞s) f (x,s) = f (y,s)
(b) (∀∞s) |{y 6= x : f (x,s) = f (y,s)}|= 0

SRRT2
2 is the statement “every rainbow-stable 2-bounded coloring f : [N]2 → N has a rain-

bow.”

Hence in the restricted world of SRRT2
2, everybody either gets married or becomes a monk.

SRRT2
2 is a particular case of RRT2

2.
The naturality of this version of stability is justified by the existence of various simple

characterizations of the stable rainbow Ramsey theorem for pairs. We shall later study another
version which seems more natural in the sense that a stable instance can be obtained from a
non-stable one by an application of the cohesiveness principle. However the latter version does
not admit immediate simple characterizations.

Definition 9.2.2 A 2-bounded coloring f : [N]2 → N is strongly rainbow-stable if (∀x)(∃y 6=
x)(∀∞s) f (x,s) = f (y,s) A set X ⊆ N is a prerainbow for a 2-bounded coloring f : [N]2 → N
if (∀x ∈ X)(∀y ∈ X)(∀∞s ∈ X)[ f (x,s) 6= f (y,s)].

Lemma 9.2.1 — Wang in [Wan], RCA0+BΣ0
2. Let f : [N]2 → N be a 2-bounded coloring and

X be an infinite f -prerainbow. Then X ⊕ f computes an infinite f -rainbow Y ⊆ X .

Theorem 9.2.2 The following are equivalent over RCA0+BΣ0
2:

(i) SRRT2
2

(ii) Every strongly rainbow-stable 2-bounded coloring f : [N]2 → N has a rainbow.

Proof. (i)→ (ii) is straightforward as any strongly rainbow-stable coloring is rainbow-stable.
(ii)→ (i): Let f : [N]2 → N be a 2-bounded rainbow-stable coloring. Consider the following
collection:

S = {x ∈ N : (∀∞s)(∀y 6= x)[ f (y,s) 6= f (x,s)]}

If S is finite, then take n ≥ max(S). The restriction of f to [n,+∞) is a strongly rainbow-
stable 2-bounded coloring and we are done. So suppose S is infinite. We build a 2-bounded
strongly rainbow-stable coloring g ≤T f by stages.

At stage t, assume g(x, i) is defined for every x, i < t. For every pair x,y ≤ t such that
f (x, t) = f (y, t), define g(x, t) = g(y, t). Let St be the set of x ≤ t such that g(x, t) has not been
defined yet. Writing St = {x1 < x2 < .. .}, we set g(x2i) = g(x2i+1) for each i. If St has an odd
number of elements, there remains an undefined value. Set it to a fresh color. This finishes the
construction. It is clear by construction that g is 2-bounded.

Claim 9.2.3 g is strongly rainbow-stable.

Proof. Fix any x ∈ N. Because f is rainbow-stable, we have two cases:
• Case 1: there is a y 6= x such that (∀∞s) f (x,s) = f (y,s). Let s0 be the threshold such that
(∀s ≥ s0) f (x,s) = f (y,s). Then by construction, at any stage s ≥ s0, g(x,s) = g(y,s) and
we are done.

• Case 2: x∈ S. Because x is infinite, it has a successor y0 ∈ S. By BΣ0
2, let s0 be the threshold

such that for every y ≤ y0 either there is a z ≤ y0, z 6= y such that (∀s ≥ s0) f (y,s) = f (z,s)
or (∀s ≥ s0) f (y,s) is a fresh color. Then by construction of g, for every t ≥ s0, St↾y = S↾y.
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Either x = x2i for some i and then (∀t ≥ s0)g(x, t) = g(x2i+1, t) or x = x2i+1 for some i and
then (∀t ≥ s0)g(x, t) = g(x2i, t).

�

Claim 9.2.4 Every infinite g-prerainbow is an f -prerainbow.

Proof. Let X be an infinite g-prerainbow and assume for the sake of contradiction that it is not an
f -prerainbow. Then there exists two elements x,y ∈ X such that (∀s)(∃t ≥ s)[ f (x, t) = f (y, t)].
But then because f is rainbow-stable, there is a threshold s0 such that (∀s ≥ s0)[ f (x,s) = f (y,s)].

Then by construction of g, for every s ≥ s0, g(x,s) = g(y,s). For every u ∈ X there is an
s ∈ X with s ≥ u,s0 such that g(x,s) = g(y,s) contradicting the fact that X is a g-prerainbow. �

Using Lemma 9.2.1, for any infinite H g-prerainbow, f ⊕H computes an infinite f -rainbow.
This finishes the proof. �

9.2.1 Relation with diagonal non-recursiveness

It is well-known that being able to compute a d.n.c. function is equivalent to being able to
uniformly find a member outside a finite Σ0

1 set if we know an upper bound on its size, and also
equivalent to diagonalize against a Σ0

1 function. The proof relativizes well and is elementary
enough to be formalized in RCA0 (see Theorem 9.2.5).

Definition 9.2.3 Let (Xe)e∈N be a uniform family of finite sets. An (Xe)e∈N-escaping function

is a function f : N2 → N such that (∀e)(∀n)[|Xe| ≤ n → f (e,n) 6∈ Xe]. Let h : N→ N be a
function. An h-diagonalizing function f is a function N→ N such that (∀x)[ f (x) 6= h(x)].
When (Xe)e∈N and h are clear from context, they may be omitted.

Theorem 9.2.5 — Folklore. For every n ≥ 1, the following are equivalent over RCA0:
(i) n-DNR

(ii) Any uniform family (Xe)e∈N of Σ0
n finite sets has an escaping function.

(iii) Any partial ∆0
n function has a diagonalizing function.

Proof. Fix a set A and some n ≥ 1.
• (i)→ (ii): Let (Xe)e∈N be a uniform family of finite Σ

0,A
n+1 finite sets and f be a function

d.n.c. relative to A(n−1). Define a function h : N2 →N by h(e,s) = 〈 f (i1), . . . , f (is)〉 where
i j is the index of the partial ∆

0,A
n function which on every input, looks at the jth element k

of Xe if it exists, interprets k as an s-tuple 〈k1, . . . ,ks〉 and returns k j. The function diverges
if no such k exists. One easily checks that h is an (Xe)e∈N-escaping function.

• (ii)→ (iii): Let f : N→N be a partial ∆
0,A
n function. Consider the enumeration defined by

Xe = { f (e)} if it f (e) ↓ and Xe = /0 otherwise. This is a uniform family of Σ
0,A
n finite sets,

each of size at most 1. Let g : N2 → N be an (Xe)e∈N-escaping function. Then h : N→ N
defined by h(e) = g(e,1) is an f -diagonalizing function.

• (iii) → (i): Consider the partial ∆
0,A
n function f (e) = ΦA(n−1)

e (e). Any f -diagonalizing
function is d.n.c relative to A(n−1).

�

In particular, using Miller’s characterization of RRT2
2 by 2-DNR, we have the following

theorem taking n = 2:
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Theorem 9.2.6 — Folklore. The following are equivalent over RCA0:
(i) RRT2

2
(ii) Any uniform family (Xe)e∈N of Σ0

2 finite sets has an escaping function.
(iii) Any partial ∆0

2 function has a diagonalizing function.

In the rest of this section, we will give an equivalent of Theorem 9.2.6 for SRRT2
2.

Lemma 9.2.7 — RCA0+BΣ0
2. For every ∆0

2 function h : N → N, there exists a computable
rainbow-stable 2-bounded coloring c : [N]2 →N such that every infinite rainbow R for c computes
an h-diagonalizing function.

Proof. Fix a ∆0
2 function h and a uniform family (De)e∈N of all finite sets. We will construct

a rainbow-stable 2-bounded coloring c : [N]2 → N by a finite injury priority argument. By
Shoenfield’s limit lemma, there exists a total computable function g(·, ·) such that lims g(x,s) =
h(x) for every x.

Our requirements are the following:

Rx: If
∣
∣Dlims g(x,s)

∣
∣≥ 3x+2 then ∃u,v ∈ Dlims g(x,s) such that (∀∞s)c(v,s) = c(v,s).

We first check that if every requirement is satisfied then we can compute a function f :N→N
such that (∀x)[ f (x) 6= h(x)] from any infinite c-rainbow. Fix any infinite c-rainbow R. Let f be
the function which given x returns the index of the set of the first 3x+2 elements of R. Because
of the requirement Rx, D f (x) 6= Dlims g(x,s). Otherwise

∣
∣D f (x)

∣
∣= 3x+2 and there would be two

elements u,v ∈ D f (x) ⊂ R such that (∀∞s)c(x,s) = c(y,s). So take an element s ∈ R large enough
to witness this fact. c(x,s) = c(y,s) for x,y,s ∈ R contradicting the fact that R is a rainbow. So
D f (x) 6= Dlims g(x,s) from which we deduce f (x) 6= lims g(x,s) = h(x).

Our strategy for satisfying a local requirement Rx is as follows. If Rx receives attention at
stage t, it checks whether

∣
∣Dg(x,t)

∣
∣≥ 3x+2. If this is not the case, then it is declared satisfied.

If
∣
∣Dg(x,t)

∣
∣≥ 3x+2, then it chooses the least two elements u,v ≥ x, such that u,v ∈ Dg(x,s) and

u and v are not restrained by a strategy of higher priority and commits to assigning a common
color. For any such pair u,v, this commitment will remain active as long as the strategy has
a restraint on that element. Having done all this, the local strategy is declared to be satisfied
and will not act again unless either a higher priority puts restraint on u or v or at a further stage
t ′ > t, g(x, t ′) 6= g(x, t). In both cases, the strategy gets injured and has to reset, releasing all its
restraints.

To finish stage t, the global strategy assigns c(u, t) for all u ≤ t as follows: if u is committed
to some assignment of c(u, t) due to a local strategy, define c(u, t) to be this value. If not, let
c(u, t) be a fresh color. This finishes the construction and we now turn to the verification. It is
easy to check that each requirement restrains at most two elements at a given stage.

Claim 9.2.8 Every given strategy acts finitely often.

Proof. Fix some x ∈ N. By BΣ0
2 and because g is limit-computable, there exists a stage s0 such

that g(y,s) = g(y,s0) for every y ≤ x and s ≥ s0. If |Dg(x,s0)| < 3x+ 2, then the requirement
is satisfied and does not act any more. If |Dg(x,s0)| ≥ 3x+ 2, then by a cardinality argument,
there exists two elements u and v in Dg(x,s0) which are not restrained by a strategy of higher
priority. Because Dg(y,s) = Dg(y,s0) for each y ≤ x and s ≥ s0, no strategy of higher priority will
change its restrains and will therefore injure Rx after stage s0. So (∀∞s)c(u,s) = c(v,s) for some
u,v ∈ Dlims g(x,s) and requirement Rx is satisfied. �

Claim 9.2.9 The resulting coloring c is rainbow-stable.

Proof. Consider a given element u ∈ N. We distinguish three cases:
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• Case 1: the element becomes, during the construction, free from any restraint after some
stage t ≥ t0 . In this case, by construction, c(u, t) is assigned a fresh color for all t ≥ t0.
Then (∀∞s)(∀v 6= u)[c(u,s) 6= c(v,s)].

• Case 2: there is a stage t0 at which some restraint is put on u by some local strategy, and
this restraint is never released. In this case, the restraint comes together with a commitment
that all values of c(u,s) and c(v,s) be the same beyond some stage t0 for some fixed v 6= x.
Therefore for all but finitely many stages s, c(u,s) = c(v,s).

• Case 3: during the construction, infinitely many restraints are put on u and are later
released. This is actually an impossible case, since by construction only strategies for
requirements Ry with y ≤ u can ever put a restraint on u. By BΣ0

2, there exists some stage
after which no strategy Ry acts for every y ≤ u and therefore the restraints on u never
change again.

�

This last claim finishes the proof. �

Lemma 9.2.10 — RCA0+ IΣ0
2. For every computable strongly rainbow-stable 2-bounded color-

ing f : [N]2 →N there exists a uniform family (Xe)e∈N of ∆0
2 finite sets whose sizes are uniformly

∆0
2 computable such that every (Xe)e∈N-escaping function computes a c-rainbow.

Proof. Fix any uniform family (De)e∈N of finite sets. Let f : [N]2 → N be a 2-bounded rainbow-
stable computable coloring. For an element x, define

Bad(x) = {y ∈ N : (∀∞s) f (x,s) = f (y,s)}

Notice that x ∈ Bad(x). Because f is strongly rainbow-stable, Bad is a ∆0
2 function. For a set

S, Bad(S) =
⋃

x∈S Bad(x). Define Xe = Bad(De). Hence Xe is a ∆0
2 set, and this uniformly in e.

Moreover, |Xe| ≤ 2 |De| and for every x, |Bad(x)|= 2 so we can /0′-compute the size of Xe with
the following equality

|Xe|= 2|De|−2 |{{x,y} ⊂ De : Bad(x) = Bad(y)}|

Let h : N→ N be a function satisfying (∀e)(∀n)[|Xe| ≤ n → h(e,n) 6∈ Xe]. We can define
g : N→ N by g(e) = h(e,2 |De|). Hence (∀e)g(e) 6∈ Xe.

We construct a prerainbow R by stages R0(= /0) ( R1 ( R2, . . . Assume that at stage s,
(∀{x,y} ⊆ Rs)(∀

∞s)[ f (x,s) 6= f (y,s)]. Because Rs is finite, we can computably find some index
e such that Rs = De. Set Rs+1 = Rs ∪{g(e)}. By definition, g(e) 6∈ Xe. Let x ∈ Rs. Because
g(e) 6∈ Xe, (∀∞s) f (x,s) 6= f (g(e),s). By IΣ0

2, the set R is an f -prerainbow. By Lemma 9.2.1 we
can compute an infinite f -rainbow from R⊕ f . �

Theorem 9.2.11 The following are equivalent over RCA0+ IΣ0
2:

(i) SRRT2
2

(ii) Any uniform family (Xe)e∈N of Σ0
2 finite sets whose sizes are uniformly ∆0

2 has an
escaping function.

(iii) Any ∆0
2 function h : N→ N has a diagonalizing function.

Proof. (i)→ (iii) is Lemma 9.2.7 and (ii)→ (i) follows from Lemma 9.2.10. This is where
we use IΣ0

2. We now prove (iii)→ (ii). Let (Xe)e∈N be a uniform family of Σ0
2 finite sets such

that |Xe| is ∆0
2 uniformly in e. For each n, i ∈ N, define (n)i to be the ith component of the tuple

whose code is n, if it exists. Define

h(〈e, i〉) =

{
(n)i where n is the ith element of Xe if i < |Xe|
0 otherwise
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By (iii), let g : N→ N be a total function such that (∀e)[g(e) 6= h(e)]. Hence for every pair 〈e, i〉
such that i ≤ |Xe|, g(〈e, i〉) 6= (n)i where n is the ith element of Xe. Define f : N2 → N to return
on inputs e and s the tuple 〈g(〈e,0〉), . . . ,g(〈e,s〉)〉. Hence if s ≥ |Xe| then f (e,s) 6= m where m

is the ith element of Xe for each i < |Xe|. So f (e,n) 6∈ Xe. �

Corollary 9.2.12 Every ω-model of SRRT2
2 is a model of DNR.

Proof. Let h : N→ N be the ∆0
2 function which on input e returns Φe(e) if Φe(e) ↓ and returns

0 otherwise. By (iii) of Theorem 9.2.11 there exists a total function f : N → N such that
(∀e)[ f (e) 6= h(e)]. Hence (∀e)[ f (e) 6= Φe(e)] so f is a d.n.c. function. �

We strengthen Corollary 9.2.12 and prove that in fact SRRT2
2 implies DNR over RCA0.

Theorem 9.2.13 RCA0 ⊢ SRRT2
2 → DNR

Proof. If Φe(e) ↓ then interpret Φe(e) as the code of a finite set De of size 3e+1 with min(De)> e.
Let De,s be the approximation of De at stage s, i.e. De,s is the set {e+1, . . . ,e+3e+1} if Φe,s(e) ↑
and De,s = De if Φe,s(e) ↓. We will construct a rainbow-stable coloring f : [N]2 → N meeting
the following requirements for each e ∈ N.

Re : Φe(e) ↓→ (∃a,b ∈ De)(∀
∞s) f (a,s) = f (b,s)

Before giving the construction, let us explain how to compute a d.n.c. function from any
infinite f -rainbow if each requirement is satisfied. Let H be an infinite f -rainbow. Define the
function g : N→ N which given e returns the code of the 3e+1 first elements of H. We claim
that g is a d.n.c. function. Otherwise suppose g(e) = Φe(e) for some e. Then De ⊆ H, but
by Re, (∃a,b ∈ De)(∀

∞s) f (a,s) = f (b,s). As H is infinite, there exists an s ∈ H such that
f (a,s) = f (b,s), contradicting the fact that H is an f -rainbow.

We now describe the construction. The coloring f is defined by stages. Suppose that at stage
s, f (u,v) is defined for each u,v < s. For each e < s take the first pair {a,b} ∈ De,s r

⋃

k<e Dk,s.
Such a pair must exist by cardinality assumption on the De,s. Set f (a,s) = f (b,s) = i for some
fresh color i. Having done that, for any u not yet assigned, assign f (u,s) a fresh color and go to
stage s+1.

Claim 9.2.14 Each requirement Re is satisfied.

Proof. Fix an e ∈ N. By BΣ0
1 there exists a stage s such that Φk,s(k) = Φk(k) for each k ≤ e.

Then at each further stage t, the same par {a,b} will be chosen in De,s to set f (a, t) = f (b, t).
Hence if Φe(e) ↓, there are a,b ∈ De such that (∀∞s) f (a,s) = f (b,s). �

Claim 9.2.15 The coloring f is rainbow-stable.

Proof. Fix an element u ∈N. By BΣ0
1 there is a stage s such that Φk,s(k) = Φk(k) for each k < u.

If u ∈ {a,b} for some pair {a,b} chosen by a requirement of priority k < u then at any further
stage t, f (u, t) = f (a, t) = f (b, t). If u is not chosen by any requirement of priority k < u, then u

will not be chosen by any further requirement as min(De)> e for each e ∈N. So by construction,
f (u, t) will be given a fresh color for each t > s. �

�
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9.2.2 König’s lemma and relativized Schnorr tests

D.n.c. degrees admit other characterizations in terms of Martin-Löf tests and Ramsey-Type
König’s lemmas. For the former, it is well-known that d.n.c. degrees are the degrees of infinite
subsets of Martin-Löf randoms [GM09; Kjo09]. The latter has been introduced by Flood
in [Flo12] under the name RKL and and renamed into RWKL in [BPS15]. It informally states
the existence of an infinite subset of P or P where P is a path through a tree. We shall

Definition 9.2.4 Fix a binary tree T ⊆ 2<N and a c∈{0,1}. A string σ ∈ 2<N is homogeneous

for a tree T with color c if there exists a τ ∈ T such that ∀i < |σ |, σ(i) = 1 → τ(i) = c. A set
H is homogeneous for T if there is a c ∈ {0,1} such that for every initial segment σ of H, σ

is homogeneous for T with color c.

Flood proved in [Flo12] the existence of a computable tree of positive measure such that
every infinite homogeneous set computes a d.n.c. function. We shall study this the Ramsey-type
König’s lemma in chapter 11.

Definition 9.2.5 A Martin-Löf test relative to X is a sequence (Ui)i∈N of uniformly Σ
0,X
1

classes such that µ(Un)≤ 2−n for all n. A set H is homogeneous for a Martin-Löf test (Ui)i∈N

if there exists an i such that H is homogeneous for the tree corresponding to the closed set Ui.

Theorem 9.2.16 — Flood [Flo12], Bienvenu et al. [BPS15]. For every n ∈ N, the following
are equivalent over RCA0+ IΣ0

n+1:
(i) DNR[0(n)]

(ii) Every Martin-Löf test (Ui)i∈N relative to /0(n) has an infinite homogeneous set.
(iii) Every ∆0

n+1 tree of positive measure has an infinite homogeneous set.

In the rest of this section, we will prove an equivalent theorem for SRRT2
2.

Definition 9.2.6 — Schnorr [Sch71]. A Martin-Löf test (Un)n∈N relative to X is a Schnorr

test relative to X if the measures µ(Un) are uniformly X-computable.

Lemma 9.2.17 — RCA0+BΣ0
2. For every set A, every n ∈ N and every function f ≤T A′ there

exists a tree T ≤T A′ such that µ(T ) is an A′-computable positive real, µ(T )≥ 1− 1
2n and every

infinite set homogeneous for T computes a function g such that g(e) 6= f (e) for every e.
Moreover the index for T and for its measure can be found effectively from n and f .

Proof. Fix n ∈ N. Let (De,i)e,i∈N be an enumeration of finite sets such that
(i) min(De,i)≥ i

(ii) |De,i|= i+2+n

(iii) given an i and finite set U satisfying (i) and (ii), one can effectively find an e such that
De,i =U .

For any canonical index e of a finite set, define Te to be the downward closure of the f -
computable set

{
σ ∈ 2<ω : ∃a,b ∈ D f (e),e : σ(a) = 0∧σ(b) = 1

}
. The set Te exists by BΣ

0, f
1 ,

hence BΣ0
2. Define also T≤e =

⋂e
i=0 Te. It is easy to see that

µ(Te) = 1−
1

2|D f (e),e|−1

Fix a /0′-computable function f . Consider the following tree T =
⋂∞

i=0 Ti. Because of
condition (ii),

µ(T )≥ 1−
∞

∑
i=0

[1−µ(Ti)] = 1−
∞

∑
i=0

1
2i+1+n

= 1−
1
2n
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Claim 9.2.18 T is an f -computable tree.

Proof. Fix a string σ ∈ 2<ω . σ ∈ T iff σ ∈
⋂∞

i=0 Ti By definition, σ ∈ Ti iff σ � τ for some
τ ∈ 2<ω such that there are some elements a,b ∈ D f (i),i verifying τ(a) = 0 and τ(b) = 1. When
i ≥ |σ |, because of conditions (i) and (ii) there exists a,b ≥ i with a,b ∈ D f (i),i and τ � σ such
that τ(a) = 0 and τ(b) = 1. Hence σ ∈ T iff σ ∈ T≤|σ |, which is an f -computable predicate
uniformly in σ . �

Claim 9.2.19 µ(T ) is an f -computable real.

Proof. Fix any c ∈ N. For any d ∈ N, by condition (ii)

µ(T≤d)≥ µ(T )≥ µ(T≤d)−
∞

∑
i=d

1
2i+1+n

In particular, for d such that 2−n −∑
d
i=0

1
2i+1+n ≤ 2−c we have

|µ(T≤d)−µ(T )| ≤
∞

∑
i=d

1
2i+1+n

≤
1
2c

It suffices to notice that µ(T≤d) is easily f -computable as for u = max(
⋃d

i=0 D f (i),i)

µ(T≤d) =
|{σ ∈ 2u : σ ∈ T≤d}|

2u

�

Let H be an infinite set homogeneous for T .

Claim 9.2.20 H computes a function g such that g(i) 6= f (i) for every i.

Proof. Let g be the H-computable function which on input i returns an e ∈ N such that De,i is
the set of the first i+2+n elements of H. Such an element can be effectively found by condition
(iii).

Assume for the sake of contradiction that g(i) = f (i) for some i. Then by definition of being
homogeneous for T , there exists a j ∈ {0,1} and a σ ∈ T such that σ(u) = j whenever u ∈ H.
In particular, σ ∈ Ti. So there exists a,b ∈ D f (i),i = Dg(i),i ⊂ H such that σ(a) = 0 and σ(b) = 1.
Hence there exists an a ∈ H such that σ(a) 6= j. Contradiction. �

This last claim finishes the proof. �

Corollary 9.2.21 For every 2-bounded, computable coloring f : [N]2 → N there exists a /0′-
computable tree T of positive /0′-computable measure such that every infinite set homogeneous
for T computes an infinite f -rainbow.

Corollary 9.2.22 For every 2-bounded, computable coloring f : [N]2 → N there exists a
Schnorr test (Ui)i∈N relative to /0′ such that every infinite set homogeneous for (Ui)i∈N

computes an infinite f -rainbow.
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Theorem 9.2.23 — RCA0+ IΣ0
2. Fix a set X . For every X ′-computable tree T of positive

X ′-computable measure µ(T ) there exists a uniform family (Xe)e∈N of ∆
0,X
2 finite sets whose

sizes are uniformly X ′-computable and such that every (Xe)e∈N-escaping function computes
an infinite set homogeneous for T .

Proof. Consider X to be computable for the sake of simplicity. Relativization is straightforward.
We denote by (De)e∈N the canonical enumeration of all finite sets. Let T be a /0′-computable tree
of positive /0′-computable measure µ(T ). For each s ∈ N, let Ts be the set of strings σ ∈ 2<N of
length s and let µs(T ) be the first s bits approximation of µ(T ). Consider the following set for
each finite set H ⊆ N and k ∈ N.

Bad(H,k) =
{

n ∈ N : µ4k(T ∩Γ0
H ∩Γ0

n)< 2−2k
}

First notice that the measure of T ∩Γ0
H (resp. T ∩Γ0

H ∩Γ0
n) is /0′-computable uniformly in

H (resp. in H and n), so one Bad(H,k) is uniformly ∆0
2. We now prove that Bad(H,k) has a

uniform ∆0
2 upper bound, which is sufficient to deduce that |Bad(H,k)| is uniformly ∆0

2.
Given an H and a k, let ε = 2−k−1 − 2−2k − 2−4k. We can /0′-computably find a length

s = s(H,k) such that
|Ts ∩Γ0

H |

2s
−µ(T ∩Γ0

H)< ε

Claim 9.2.24 If 2−k ≤ µ(T ∩Γ0
H), then max(Bad(H,k))≤ s

Proof. Fix any n > s. By choice of s,

µ(T ∩Γ0
H ∩Γ1

n)≤
|Ts ∩Γ0

H |

2s+1 ≤
µ(T ∩Γ0

H)

2
+ ε

Furthermore,
µ(T ∩Γ0

H ∩Γ0
n) = µ(T ∩Γ0

H)−µ(T ∩Γ0
H ∩Γ1

n)

Putting the two together, we obtain

µ(T ∩Γ0
H ∩Γ0

n) ≥ µ(T ∩Γ0
H)−

µ(T ∩Γ0
H)

2
− ε

≥
µ(T ∩Γ0

H)

2
− ε ≥ 2−k−1 − ε ≥ 2−2k +2−4k

In particular
µ4k(T ∩Γ0

H ∩Γ0
n)≥ µ(T ∩Γ0

H ∩Γ0
n)−2−4k ≥ 2−2k

Therefore n 6∈ Bad(H,k). �

For each H and k, let XH,k = Bad(H,k)∩ [0,s(H,k)]. The set XH,k is ∆0
2 uniformly in H

and k, and its size is uniformly ∆0
2. In addition, by previous claim, if 2−k ≤ µ(T ∩Γ0

H) then
Bad(H,k)⊆ XH,k.

Let g : P f in(N)×N×N→ N be a total function such that for every finite set H and k ∈ N,
g(H,k,n) 6∈ XH,k whenever n ≥ |XH,k|. Fix any k ∈ N such that 2−k ≤ µ(T ). We construct by
IΣ

0,g
1 a set H and a sequence of integers k0,k1, . . . by finite approximation as follows. First let

H0 = /0 and k0 = k. We will ensure during the construction that for all s:
(a) |Hs|= s

(b) T ∩Γ0
Hs

has measure at least 2−ks

(c) Hs ⊆ Hs+1 and every n ∈ Hs+1 rHs is greater than all elements in Hs.
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Suppose Hs has been defined already. The tree T ∩Γ0
Hs

has measure at least 2−ks and |Bad(Hs,ks)|
has at most 2ks elements. Thus g(Hs,ks) 6∈ XHs,ks

⊇ Bad(Hs,ks). We set Hs+1 = Hs ∪{g(e,ks)}
and ks+1 be the least integer such that 2−ks+1 ≤ 2−2ks − 2−4ks . By definition of Bad(Hs,ks),
T ∩Γ0

Hs+1
has measure at least 2−2ks with an approximation of 2−4ks , so has measure at least

2−ks+1 .
Let now H =

⋃

s Hs.

Claim 9.2.25 H is homogeneous for T .

Proof. Suppose for the sake of contradiction that H is not homogeneous for T . This means
that there are only finitely many σ ∈ T such that H is homogeneous for σ . Therefore for some
level l, {σ ∈ Tl | ∀i ∈ H σ(i) = 0} = /0. Since H ∩{0, .., l} = Hl ∩{0, .., l}, we in fact have
{σ ∈ Tl | ∀i ∈ Hl σ(i) = 0}= /0.

In other words, T ∩Γ0
Hl

= /0 which contradicts property (b) in the definition of Hl ensuring
that T ∩Γ0

Hl
has measure at least 2−kl . Thus H is homogeneous for T . �

�

Theorem 9.2.26 The following are equivalent over RCA0+ IΣ0
2:

(i) SRRT2
2

(ii) Every Schnorr test (Ui)i∈N relative to /0′ has an infinite homogeneous set.
(iii) Every ∆0

2 tree of /0′-computable positive measure has an infinite homogeneous set.

Proof. (i)→ (iii) is Theorem 9.2.23 together with Theorem 9.2.11. (iii)→ (ii) is obvious and
(ii)→ (i) is Corollary 9.2.22. �

Hirschfeldt et al. proved in [HT08, Theorem 3.1] that for every X ′-computable martingale M,
there is a set low over X on which M does not succeed. Schnorr proved in [Sch71] that for every
Schnorr test C relative to X ′ there exists an X ′-computable martingale M such that a set does not
succeeds on M iff it passes the test C. By Corollary 9.2.22, there exists an ω-model of SRRT2

2
containing only low sets. However we will prove it more directly under the form of a low basis
theorem for /0′-computable trees of /0′-computable positive measure. This is an adaptation of
[BMN12, Proposition 2.1].

Theorem 9.2.27 — Low basis theorem for ∆0
2 trees. Fix a set X . Every X ′-computable

tree of X ′-computable positive measure has an infinite path P low over X (i.e., such that
(X ⊕P)′ ≤T X ′).

Proof. Fix T , an X ′-computable tree of X ′-computable positive measure µ(T ). We will define
an X ′-computable subtree U of measure µ(T )

2 such that any infinite path through T is GL1 over X .

It then suffices to take any ∆
0,X
2 path through U to obtain the desired path low over X .

Let f be an X ′-computable function that on input e returns a stage s after which e goes
into A′ for at most measure 2−e−2µ(T ) of oracles A. Given e and s = f (e), the oracles A

such that e goes into A′ after stage s form a Σ
0,X
1 class Ve of measure µ(Ve) ≤ 2−e−2µ(T ).

Thus µ(
⋂

eVe)≥ 1−∑e 2−e−2µ(T )≥ 1− µ(T )
2 . Therefore µ(T ∩

⋂

eVe)≥
µ(T )

2 . One can easily

restrict T to a subtree U such that [U ]⊆
⋂

eVe and µ(U) = µ(T )
2 . For any path P ∈ [U ] and any

e ∈ N, e ∈ P′ ↔ e ∈ P′
f (e). Hence P is GL1 over X . �
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Corollary 9.2.28 There exists an ω-model of SRRT2
2 containing only low sets.

Corollary 9.2.29 There exists an ω-model of SRRT2
2 which is neither a model of SEM nor

of STS2.

Proof. If every computable stable tournament had a low infinite subtournament then we could
build an ω-model M of SEM+SADS having only low sets, but then M |= SRT2

2 contradicting
[Dow+01]. Moreover, by Theorem 8.1.1 any ω-model of STS2 contains a non-low set. �

In fact we will see later that even RRT2
2 implies neither SEM nor STS2 on ω-models.

9.2.3 Relations to other principles

We now relate the stable rainbow Ramsey theorem for pairs to other existing principles studied
in reverse mathematics. This provides in particular a factorization of existing implications proofs.
For example, both the rainbow Ramsey theorem for pairs and the stable Erdős-Moser theorem
are known to imply the omitting partial types principle (OPT) over RCA0. In this section, we
show that both principles imply SRRT2

2, which itself implies OPT over RCA0. Hirschfeldt &
Shore in [HS07] introduced OPT and proved its equivalence with HYP over RCA0.

Theorem 9.2.30 RCA0 ⊢ SRRT2
2 → HYP

Proof using Cisma & Mileti construction, RCA0. We prove that the construction from Csima &
Mileti in [CM09] that RCA0 ⊢ RRT2

2 → HYP produces a rainbow-stable coloring. We take the
notations and definitions of the proof of Theorem 4.1 in [CM09]. It is therefore essential to have
read it to understand what follows. Fix an x ∈N. By BΣ0

1 there exists an e ∈N and a stage t after
which nk

j and mk will remains stable for any k ≤ e and any j ∈ N and such that ne
i ≤ x < ne

i+1 for
some i.

• If i > 0 then x will be part of no pair (m, l) for any requirement and f (x,s) = 〈x,s〉 will be
fresh for cofinitely many s.

• If i = 0 and ne
j is defined for each j such that j + 1 ≤

(ne
0−me)2−(ne

0−me)
2 then as there

are finitely many such j, after some finite stage x will not be paired any more and
f (x,s) = 〈x,s〉 will be fresh for cofinitely many s.

• If i = 0 and ne
j is undefined for some j such that 〈m,x〉= j+1 or 〈x,m〉= j+1 for some

m, then x will be part of a pair (m, l) for cofinitely many s and so there exists an m such
that f (x,s) = f (m,s) for cofinitely many s.

• If i = 0 and ne
j is undefined for some j such that 〈m,x〉 6= j+1 or 〈x,m〉 6= j+1 for any m

then x will not be paired after some stage and f (x,s) = 〈x,s〉 will be fresh for cofinitely
many s.

In any case, either f (x,s) is fresh for cofinitely many s, or there is a y such that f (x,s) = f (y,s)
for cofinitely many s. So the coloring is rainbow-stable. �

We can also adapt the proof using Π0
1-genericity to SRRT2

2.

Proof using Π0
1-genericity, RCA0+ IΣ0

2. Take any incomplete ∆0
2 set P of PA degree. The author

proved in [Pat15b] the existence of a ∆0
2 function f such that P does not compute any f -

diagonalizing function.
Fix any functional Ψ. Consider the Σ0

2 class

U =
{

X ∈ 2ω : (∃e)ΨX(e) ↑ ∨ΨX(e) = f (e)
}
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Consider any Π0
1-generic X such that ΨX is total. Either there exists a X ∈U in which case

ΨX(e) = f (e) hence ΨX is not an f -diagonalizing function. Or there exists a Π0
1 class F disjoint

from U and containing X . Any member of F computes an f -diagonalizing function. In particular
P computes an f -diagonalizing function. Contradiction. �

Corollary 9.2.31 RCA0 ⊢ SRRT2
2 → OPT

The following theorem is not surprising as by a relativization of Theorem 9.2.30 to /0′, there
exists an /0′-computable rainbow-stable coloring of pairs such that any infinite rainbow computes
a function hyperimmune relative to /0′. Csima et al. [Csi+04] and Conidis [Con08] proved that
AMT is equivalent over ω-models to the statement “For any ∆0

2 function f , there exists a function
g not dominated by f ”. Hence any ω-model of SRRT2

2[ /0
′] is an ω-model of AMT. We will

prove that the implication holds over RCA0.

Theorem 9.2.32 RCA0 ⊢ (∀n)[SRRTn+1
2 → STSn]

Proof. Fix some n ∈ N and let f : [N]n → N be a stable coloring. If n = 1, then f has a
∆

0, f
1 infinite thin set, so suppose n > 1. We build a ∆

0, f
1 rainbow-stable 2-bounded coloring

g : [N]n+1 → N such that every infinite g-rainbow is, up to finite changes, f -thin. Construct g as
in the proof of Theorem 9.0.3. It suffices to check that g is rainbow-stable whenever f is stable.

Fix some x ∈ N and~z ∈ [N]n−1 such that x < min(~z). As f is stable, there exists a stage s0 >
max(~z) after which f (~z,s) = f (~z,s0). Interpret f (~z,s0) as a tuple 〈u,v〉. If u ≥ v or v ≥ min(~z)
or x 6∈ {u,v}, then g(x,~z,s) will be given a fresh color for every s ≥ s0. If u < v < min(~z)
and x ∈ {u,v} (say x = u), then g(x,~z,s) = g(v,~z,s) for every s ≥ v. Therefore g is rainbow-
stable. �

Corollary 9.2.33 RCA0 ⊢ SRRT3
2 → AMT

Theorem 9.2.34 — RCA0+BΣ0
2. For every ∆0

2 function f , there exists a computable stable
coloring c : [N]2 → N such that every infinite c-thin set computes an f -diagonalizing function.

Proof. Fix a ∆0
2 function f as stated above. For any n ∈N, fix a canonical enumeration (Dn,e)e∈N

of all finite sets of n+ 1 integers greater than n. We will build a computable stable coloring
c : [N]2 → N fulfilling the following requirements for each e, i ∈ N:

Re,i : ∃u ∈ D〈e,i〉, f (e) such that (∀∞s)c(u,s) = i.

We first check that if every requirement is satisfied, then any infinite c-thin set computes an
f -diagonalizing function. Let H be an infinite c-thin set for color i. Define h : N→ N to be the
H-computable function which on e returns the value v such that D〈e,i〉,v is the set of the 〈e, i〉+1
first elements of H greater than 〈e, i〉.

Claim 9.2.35 h is an f -diagonalizing function.

Proof. Suppose for the sake of contradiction that h(e) = f (e) for some e. Then D〈e,i〉,h(e) =
D〈e,i〉, f (e). But by Re,i, ∃u ∈ D〈e,i〉, f (e) such that (∀∞s)c(u,s) = i. Then there is an s ∈ H such
that c(u,s) = i, and as D〈e,i〉, f (e)∪{s} ⊂ H, H is not c-thin for color i. Contradiction. �

By Shoenfield’s limit lemma, let g(·, ·) be the partial approximations of f . The strategy
for satisfying a local requirement Re,i is as follows. At stage s, it takes the least element u of
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D〈e,i〉,g(x,s) not restrained by a strategy of higher priority if it exists. Then it puts a restraint on
u and commits u to assigning color i. For any such u, this commitment will remain active as
long as the strategy has a restraint on that element. Having done all this, the local strategy is
declared to be satisfied and will not act again, unless either a higher priority puts a restraint on u,
or releases a v ∈ D〈e,i〉,g(e,s) with v < u or at a further stage t > s, g(e, t) 6= g(e,s). In each case,
the strategy gets injured and has to reset, releasing its restraint.

To finish stage s, the global strategy assigns c(u,s) for all u ≤ s as follows: if u is commited
to some assignment of c(u,s) due to a local strategy, define c(u,s) to be this value. If not, let
c(u, t) = 0. This finishes the construction and we now turn to the verification. It is easy to check
that each requirement restrains at most one element at a given stage.

Claim 9.2.36 Each strategy Re,i acts finitely often.

Proof. Fix some strategy Re,i. By BΣ0
2, there is a stage s0 after which g(x,s) = f (x) for

every x ≤ 〈e, i〉. Each strategy restrains at most one element, and the strategies of higher priority
will always choose the same elements after stage s0. As

∣
∣D〈e,i〉, f (e)

∣
∣ = 〈e, i〉+ 1, the set of

u ∈ D〈e,i〉, f (e) such that no strategy of higher priority puts a restraint on u is non empty and does
not change. Let umin be its minimal element. By construction, Re,i will choose umin before stage
s0 and will not be injured again. �

Claim 9.2.37 The resulting coloring c is stable.

Proof. Fix a u ∈ N. If 〈e, i〉 > u then Re,i does not put a restraint on u at any stage. As each
strategy acts finitely often, by BΣ0

2 there exists a stage s0 after which no strategy Re,i with
〈e, i〉 ≤ u will act on u. There are two cases: In the first case, at stage s0 the element u is
restrained by some strategy Re,i with 〈e, i〉 ≤ u in which case c(u,s) will be assigned a unique
color specified by strategy Re,i for cofinitely many s. In the other case, after stage s0, the element
u is free from any restraint, and c(u,s) = 0 for cofinitely many s. �

�

Corollary 9.2.38 RCA0+ IΣ0
2 ⊢ STS2 → SRRT2

2

Theorem 9.2.39 — RCA0. For every rainbow-stable 2-bounded coloring f : [N]2 → N, there
exists an f -computable stable tournament T such that every infinite transitive subtournament
of T computes an f -rainbow.

Proof. Use exactly the same construction as in Theorem 3.1 in [Kan14]. We will prove that
in case of rainbow-stable colorings, the constructed tournament T is stable. Fix an x ∈ N. By
rainbow-stability, either f (x,s) is a fresh color for cofinitely many s, in which case T (x,s) holds
for cofinitely many s, or there exists a y such that f (y,s) = f (x,s) for cofinitely many s. If T (x,y)
holds then T (x,s) does not hold and T (y,s) holds for cofinitely many s. Otherwise T (x,s) holds
and T (y,s) does not hold for cofinitely many s. Hence T is stable. �

Corollary 9.2.40 RCA0 ⊢ SEM→ SRRT2
2

Question 9.1 Does SRRT2
2+COH imply RRT2

2 over RCA0 ?
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9.3 A weakly-stable rainbow Ramsey theorem for pairs

Despite the robustness of the stable rainbow Ramsey theorem for pairs which has been shown to
admit several simple characterizations, rainbow-stability does not seem to be the natural stability
notion corresponding to RRT2

2. In particular, it is unknown whether RCA0 ⊢ COH+SRRT2
2 →

RRT2
2.

Wang used in [Wan14a] another version of stability for rainbow Ramsey theorems to prove
various results, like the existence of non-PA solution to any instance of RRT3

2. This notion leads
to a principle between RRT2

2 and SRRT2
2.

Definition 9.3.1 — Weakly stable rainbow Ramsey theorem. A coloring f : [N]2 →N is
weakly rainbow-stable if

(∀x)(∀y)[(∀∞s) f (x,s) = f (y,s)∨ (∀∞s) f (x,s) 6= f (y,s)]

wSRRT2
2 is the statement “every weakly rainbow-stable 2-bounded coloring f : [N]2 →N has

an infinite rainbow.”

Weak rainbow-stability can be considered as the “right” notion of stability for 2-bounded
colorings as one can extract an infinite weakly rainbow-stable restriction of any 2-bounded
coloring using cohesiveness. However the exact strength of wSRRT2

2 is harder to tackle. A
characterization candidate would be computing an infinite subset of a path in a /0′-computably
graded ∆0

2 tree where the notion of computable gradation is taken from the restriction of Martin-
Löf tests to capture computably random reals.

In this section, we study the weakly-rainbow stable rainbow Ramsey theorem for pairs. We
prove that it is enough be able to escape finite ∆0

2 sets to prove wSRRT2
2. We also separate

wSRRT2
2 from RRT2

2 by proving that wSRRT2
2 contains an ω-model with only low sets. The

question of exact characterizations of wSRRT2
2 remains open.

It is easy to see that every rainbow-stable coloring is weakly rainbow-stable, hence RCA0 ⊢
wSRRT2

2 → SRRT2
2. Wang proved in [Wan14a, Lemma 4.11] that RCA0 ⊢ COH+wSRRTn

2 →
RRTn

2 and that wSRRT2
2[ /0

′] has an ω-model with only low2 sets. We show through the following
theorem that wSRRTn+1

2 corresponds to the exact strength of RRTn
2[ /0

′] for every n.

Theorem 9.3.1 For every standard n ≥ 1, RCA0+BΣ0
2 ⊢ wSRRTn+1

2 ↔ RRTn
2[ /0

′]
and wSRRTn+1

2 =c RRT
n
2[ /0

′].

Proof. We first prove that RCA0 ⊢ wSRRTn+1
2 → RRTn

2[ /0
′]. Fix a X ′-computable 2-bounded

coloring f : [N]n → N. Using Shoenfield’s limit lemma, there exists an X-computable approxi-
mation function h : [N]n+1 → N such that lims h(~x,s) = f (~x) for every~x ∈ [N]n. Let 〈. . .〉 be a
standard coding of the lists of integers into N and ≺N be a computable total order over N<N. We
define an X-computable 2-bounded coloring g : [N]n+1 as follows.

g(~x,s) =

{
〈h(~x,s),s,0〉 if there is at most one~y ≺N~x s.t. h(~y,s) = h(~x,s)
〈rank≺N(~x),s,1〉 otherwise

(where rank≺N(~x) is the position of~x for any well-order ≺N over tuples). By construction g is
2-bounded and X-computable. Also notice that g is rainbow-stable.

Claim 9.3.2 Every infinite g-rainbow is an f -rainbow.

Proof. Let A be an infinite g-rainbow. Assume for the sake of contradiction that~x,~y ∈ [A]n are
such that~y ≺N~x and f (~y) = f (~x). Fix t ∈ N such that h(~z,s) = f (~z) whenever~z �N~x and s ≥ t.
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Fix s such that s ∈ A, s ≥ t and s > max(~x). Notice that since f is 2-bounded and h(~z,s) = f (~z)
for every~z �N~x, we have g(~z,s) = 〈h(~z,s),s,0〉= 〈 f (~z),s,0〉 for every~z �N~x. Hence

g(~x,s) = 〈 f (~x),s,0〉= 〈 f (~y),s,0〉= g(~y,s)

contradicting the fact that A is a g-rainbow. �

We now prove that RCA0+BΣ0
2 ⊢ RRTn

2[ /0
′] → wSRRTn+1

2 . Let f : [N]n+1 → N be a 2-
bounded weakly rainbow-stable coloring. Let g : [N]n → N be the 2-bounded coloring which
on~x ∈ [N]n will fetch the least~y �n~x such that (∀∞s) f (~x,s) = f (~y,s) and return color 〈~y〉. One
easily sees that g is f ′-computable and 2-bounded. By RRTn

2[ /0
′], let H be an infinite g-rainbow.

We claim that H is an f -prerainbow. Suppose for the sake of contradiction that there exists
~x �n~y ∈ H such that (∀∞s) f (~x,s) = f (~y,s). Then by definition g(~x) = g(~y) = 〈~x〉 and H is not a
g-rainbow. By Lemma 9.2.1 and BΣ0

2, f ⊕H computes an infinite f -rainbow. �

Lemma 9.3.3 — RCA0+ IΣ0
2. For every computable weakly rainbow-stable 2-bounded coloring

f : [N]2 → N there exists a uniformly ∆0
2 family (Xe)e∈N of finite sets such that every (Xe)e∈N-

escaping function computes an infinite f -rainbow.

Proof. Fix any uniformly ∆0
2 family (De)e∈N of finite sets. Let f : [N]2 → N be a 2-bounded

weakly rainbow-stable computable coloring. For an element x, define

Bad(x) = {y ∈ N : (∀∞s)c(x,s) = c(y,s)}

Notice that x ∈ Bad(x). Because f is weakly rainbow-stable, Bad is a ∆0
2 function. For a set

S, Bad(S) =
⋃

x∈S Bad(x). Define Xe = Bad(De). Hence Xe is a ∆0
2 set, and this uniformly in e.

Moreover, |Xe| ≤ 2 |De|.
Let h : N→ N be a function satisfying (∀e)(∀n)[|Xe| ≤ n → h(e,n) 6∈ Xe]. We can define

g : N→ N by g(e) = h(e,2
(|De|

2

)
). Hence (∀e)g(e) 6∈ Xe.

We construct a prerainbow R by stages R0(= /0)( R1 ( R2, . . . as in Lemma 9.2.10. Assume
that at stage s, (∀{x,y} ⊆ Rs)(∀

∞s)[ f (x,s) 6= f (y,s)]. Because Rs is finite, we can computably
find some index e such that Rs = De. Set Rs+1 = Rs ∪{g(e)}. By definition, g(e) 6∈ Xe. Let
x ∈ Rs. Because g(e) 6∈ Xe, (∀∞s) f (x,s) 6= f (g(e),s). By IΣ0

2, the set R is an f -prerainbow. By
Lemma 9.2.1 we can compute an infinite f -rainbow from R⊕ f . �

9.3.1 Lowness and bushy tree forcing

In this section, we prove that the rainbow Ramsey theorem for pairs restricted to weakly rainbow-
stable colorings is strictly weaker than the full rainbow Ramsey theorem for pairs, by constructing
an ω-model of wSRRT2

2 having only low sets. As RRT2
2 does not admit such a model, wSRRT2

2
does not imply RRT2

2 over RCA0.

Theorem 9.3.4 For every set X and every weakly rainbow-stable X-computable 2-bounded
function f : [N]2 → N, there exists an infinite f -rainbow low over X .

We will use bushy tree forcing for building a low solution to a computable instance
of wSRRT2

2. This forcing notion has been successfully used for proving many properties of d.n.c.
degrees [Amb+04; BP16; KM15; Pat15f]. Indeed, the power of a d.n.c. function is known to be
equivalent to finding a function escaping a uniform family of c.e. sets [KMS11], which is exactly
what happens with bushy tree forcing: we build an infinite set by finite approximations, avoiding
a set of bad extensions whose size is computably bounded. We start by stating the definitions of
bushy tree forcing and the basic properties without proving them. See the survey of Kahn and
Miller [KM15] for a good introduction.
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Definition 9.3.2 — Bushy tree. Fix a function h and a string σ ∈ N<N. A tree T is h-bushy
above σ if every τ ∈ T is increasing and comparable with σ and whenever τ � σ is not a
leaf of T , it has at least h(|τ|) immediate children. We call σ the stem of T .

Definition 9.3.3 — Big set, small set. Fix a function h and some string σ ∈ N<N. A set
B ⊆ N<N is h-big above N if there exists a finite tree T h-bushy above σ such that all leafs of
T are in B. If no such tree exists, B is said to be h-small above σ .

Consider for example a weakly rainbow-stable 2-bounded function f : [N]2 →N. We want to
construct an infinite f -prerainbow. We claim that the following set is id-small above ε , where id

is the identity function:

B f = {σ ∈ N<N : (∃x,y ∈ σ)(∀∞s) f (x,s) = f (y,s)}

Indeed, given some string σ 6∈B f , there exists at most |σ | integers x such that σx∈B f . Therefore,
given any infinite tree which is h-bushy above /0, at least one of the paths will be an f -prerainbow.
Also note that because f is weakly rainbow-stable, the set B f is ∆

0, f
2 . We now state some basic

properties about bushy tree forcing.

Lemma 9.3.5 — Smallness additivity. Suppose that B1,B2, . . . ,Bn are subsets of N<N, g1, g2,
..., gn are functions, and σ ∈ N<N. If Bi is gi-small above σ for all i, then

⋃

i Bi is (∑i gi)-small
above σ .

Lemma 9.3.6 — Small set closure. We say that B ⊆ N<N is g-closed if whenever B is g-
big above a string ρ then ρ ∈ B. Accordingly, the g-closure of any set B ⊆ N<N is the set
C =

{
τ ∈ N<N : B is g-big above τ

}
. If B is g-small above a string σ , then its closure is also

g-small above σ .

Note that if B is a ∆
0,X
2 g-small set for some computable function g, so is the g-closure of B.

Moreover, one can effectively find a ∆
0,X
2 index of the g-closure of B given a ∆

0,X
2 index of B.

Fix some set X . Our forcing conditions are tuples (σ ,g,B) where σ is an increasing string, g is a
computable function and B ⊆ N<N is a ∆

0,X
2 g-closed set g-small above σ . A condition (τ,h,C)

extends (σ ,g,B) if σ � τ and B ⊆C. Any infinite decreasing sequence of conditions starting
with (ε, id,B f ) will produce an f -prerainbow.

The following lemma is sufficient to deduce the existence of a ∆
0,X
2 infinite f -prerainbow.

Lemma 9.3.7 Given a condition (σ ,g,B), one can X ′-effectively find some x ∈ N such that the
condition (σx,g,B) is a valid extension.

Proof. Pick the first x ∈ N greater than σ(|σ |) such that σx 6∈ B. Such x exists as there are at
most g(|σ |)−1 many bad x by g-smallness of B. Moreover x can be found X ′-effectively as B

is ∆
0,X
2 . By g-closure of B, B is g-small above σx. Therefore (σx,g,B) is a valid extension. �

A sequence G satisfies the condition (σ ,g,B) if it is increasing, σ ≺ G and B is g-small
above τ for every τ ≺ G. We say that (σ ,g,B) 
 ΦG⊕X

e (e) ↓ if Φσ⊕X
e (e) ↓, and (σ ,g,B) 


ΦG⊕X
e (e) ↑ if ΦG⊕X

e (e) ↑ for every sequence G satisfying the condition (σ ,g,B). The following
lemma decides the jump of the infinite set constructed.

Lemma 9.3.8 Given a condition (σ ,g,B) and an index e ∈ N, one can X ′-effectively find some
extension d = (τ,h,C) such that d 
 ΦG⊕X

e (e) ↓ or d 
 ΦG⊕X
e (e) ↑. Moreover, one can X ′-decide

which of the two holds.

Proof. Consider the following Σ
0,X
1 set:

D = {τ ∈ N<N : Φτ⊕X
e (e) ↓}
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The question whether D is g-big above σ is Σ
0,X
1 and therefore can be X ′-decided.

• If the answer is yes, we can X-effectively find a finite tree T g-bushy above σ witnessing
this. As B is ∆

0,X
2 , we can take X ′-effectively some leaf τ ∈ T . By definition of T ,

σ ≺ τ . As B is g-closed, B is g-small above τ , and therefore (τ,g,B) is a valid extension.
Moreover Φτ⊕X

e (e) ↓.
• If the answer is no, the set D is g-small above σ . By the smallness additivity property

(Lemma 9.3.5), B∪D is 2g-small above σ . We can X-effectively find a ∆0
2 index for its

2g-closure C. The condition (σ ,2g,C) is a valid extension forcing ΦG⊕X
e (e) ↑.

�

We are now ready to prove Theorem 9.3.4.

Proof of Theorem 9.3.4. Fix some set X and some weakly rainbow-stable X-computable 2-
bounded function f : [N]2 → N. Thanks to Lemma 9.3.7 and Lemma 9.3.8, define an infinite
decreasing X ′-computable sequence of conditions c0 ≥ c1 ≥ . . . starting with c0 = (ε, id,B f )
and such that for each s ∈ N,

(i) |σs| ≥ s

(ii) cs+1 
 ΦG⊕X
s (s) ↓ or cs+1 
 ΦG⊕X

s (s) ↑

where cs = (σs,gs,Bs). The set G =
⋃

s σs is an f -prerainbow. By (i), G is infinite and by (ii), G

is low over X . By Lemma 9.2.1, G⊕X computes an infinite f -rainbow. �

Corollary 9.3.9 There exists an ω-model of wSRRT2
2 having only low sets.

Corollary 9.3.10 wSRRT2
2 does not imply RRT2

2 over RCA0.

Proof. By Corollary 9.1.6, every model of RRT2
2 is a model of 2-DNR, and no function d.n.c.

relative to /0′ is low. �

9.3.2 Relations to other principles

In this last section, we prove that the rainbow Ramsey theorem for pairs for weakly rainbow-
stable colorings is a consequence of the stable free set theorem for pairs. We first need to
introduce some useful terminology.

Definition 9.3.4 — Wang in [Wan14a]. Fix a 2-bounded coloring f : [N]n → N and k ≤ n.
A set H is a k-tail f -rainbow if f (~u,~v) 6= f (~w,~x) for all~u,~w ∈ [H]n−k and distinct~v,~x ∈ [H]k.

Every 2-bounded coloring f : [N]2 → N admits an infinite f -computable 1-tail f -rainbow.
Wang proved in [Wan14a] that for every 2-bounded coloring f : [N]n → N, every f -random
computes an infinite 1-tail f -rainbow H. We refine this result by the following lemma.

Lemma 9.3.11 — RCA0. Let f : [N]n+1 → N be a 2-bounded coloring. Every function d.n.c.
relative to f computes an infinite 1-tail f -rainbow H.

Proof. By [KMS11], every function d.n.c. relative to f computes a function g such that if
|W f

e | ≤ n then g(e,n) 6∈W
f

e . Given a finite 1-tail f -rainbow F , there exists at most
(|F |

n

)
elements x

such that F ∪{x} is not a 1-tail f -rainbow. We can define an infinite 1-tail f -rainbow H by stages,
starting with H0 = /0. Given a finite 1-tail f -rainbow Hs of cardinal s, set Hs+1 = Hs∪{g(e,

(
s
n

)
)}

where e is a Turing index such that W
f

e = {x : Hs ∪{x} is not a 1-tail f -rainbow}. �
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Theorem 9.3.12 RCA0+BΣ0
2 ⊢ SFS2 → wSRRT2

2

Proof. Fix a weakly rainbow-stable 2-bounded coloring f : [N]2 →N. As RCA0 ⊢ SFS2 →DNR,
there exists by Lemma 9.3.11 an infinite 1-tail f -rainbow X . We will construct an infinite X ⊕ f -
computable stable coloring g : [X ]2 →{0,1} such that every infinite g-free set is an f -rainbow.
We define the coloring g : [N]2 → N by stages as follows.

At stage s, assume g(x,y) is defined for every x,y < s. For every pair x < y < s such that
g(x,s) = g(y,s), set g(y,s) = x. For the remaining x < s, set g(x,s) = 0. This finishes the
construction. We now turn to the verification.

Claim 9.3.13 Every infinite g-free set H is an f -rainbow.

Proof. Assume for the sake of contradiction that H is not an f -rainbow. Because X is a 1-tail
f -rainbow and H ⊆ X , there exists x,y,s ∈ H such that c(x,s) = c(y,s) with x < y < s. As f is
2-bounded, neither x nor y can be part of another pair u,v such that f (u,s) = f (v,s). So neither x

nor y is restrained by another pair already satisfied, and during the construction we set g(y,s) = x.
So g(y,s) = x with {x,y,s} ⊂ H, contradicting the freeness of H for g. �

Claim 9.3.14 The coloring g is stable.

Proof. Fix a y ∈ N. As f is weakly rainbow-stable, we have two cases. Either there exists an
x < y such that f (y,s) = f (x,s) for cofinitely many s, in which case g(y,s) = x for cofinitely
many s and we are done. Or f (y,s) 6= f (x,s) for each x < y and cofinitely many s. Then by BΣ0

2,
for cofinitely many s, f (y,s) = 0. �

�

Question 9.2 Does STS2 imply wSRRT2
2 over RCA0 ?

Last, we give an upper bound on the strength of the rainbow Ramsey theorem which enables
us to separate it from the thin set theorem over computable reducibility.

Theorem 9.3.15 Fix some n ≥ 2, and a computable RRTn
2-instance f : [ω]n → ω . For

every P ≫ /0(n−2) and every function g d.n.c. relative to P′, P⊕ g computes an infinite f -
rainbow.

Proof. We prove a relativized version of this theorem by induction over n. The case n = 2 is
proven by Miller [Mil]. He in fact proved the stronger statement that for every set X , every
X-computable RRT2

2-instance f and every function g d.n.c. relative to X ′, X ⊕g computes an
infinite f -rainbow.

We need to treat the case n = 3 independently as well. Fix a set X , an X-computable
RRT3

2-instance f and a set P ≫ X ′. We can assume that ω is a 1-tail f -rainbow since every
X-computable k-bounded coloring admits an X-computable 1-tail rainbow. For each σ ,τ ∈ [ω]n,
let Rσ ,τ = {s : f (σ ,s) = f (τ,s)}. By Jockusch and Stephan [JS93], there is an infinite ~R-
cohesive set C such that (X ⊕C)′ ≤T P. By Theorem 9.3.1, there is an (X ⊕C)′-computable
RRT2

2-instance h such that every infinite h-rainbow H X ⊕C-computes an infinite f -rainbow.
Using the stronger statement proven by Miller relativized to P, for every function g d.n.c. relative
to P′, P⊕g computes an infinite h-rainbow, hence P⊕g-computes an infinite f -rainbow.

We now prove the case n ≥ 4 by induction. Fix some set X and some X-computable RRTn
2-

instance f such that ω is a 1-tail f -rainbow. Fix also a set P ≫ X (n−2) and a function g d.n.c.
relative to X (n−1). For each σ ,τ ∈ [ω]n, let again Rσ ,τ = {s : f (σ ,s) = f (τ,s)}. By Jockusch
and Stephan [JS93], there is an infinite ~R-cohesive set C such that (X ⊕C)(2) ≤T Y (2). In
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particular, P ≫ X (n−2) ≥T (X ⊕C)(n−2) since n ≥ 4. Still by Theorem 9.3.1, there is an (X ⊕C)′-
computable RRTn−1

2 -instance h such that every infinite h-rainbow H X ⊕C-computes an infinite
f -rainbow. By induction hypothesis relativized to (X ⊕C)′, for every function g d.n.c. relative
to P′, P⊕g-computes an infinite h-rainbow, hence P⊕g-computes an infinite f -rainbow. �

Corollary 9.3.16 For every n ≥ 2, STSn 6≤c RRT
n
2.

Proof. By Theorem 8.1.2, AMT ≤c STS
2 ≤c TS

1[ /0′]. By Csima et al. [Csi+04] and Coni-
dis [Con08], AMT is computably equivalent to the statement “For every ∆0

2 function f , there is a
function g not dominated by f ”. By Kurtz [Kur82], for every set X , there is an X ′-computable
function such that the measure of oracles which X-compute a function not dominated by f is
null. Therefore, for every set X , there is an X ′-computable function f : ω → ω such that the
measure of oracles Z such that X ⊕Z-computes an infinite f -thin set is null. Such a function can
also be easily constructed by a direct argument.

Fix a computable RRTn
2-instance g for some n ≥ 2, and let P ≫ /0(n−2) be such that P′ ≤T

/0(n−1). By the previous argument relativized to P, there is a /0(n−1)-computable function f : ω →
ω such that the measure of oracles Z such that P⊕Z computes an infinite f̃ -thin set is null.
Let f : [ω]n → ω be the stable computable function obtained by taking the ∆0

n approximation of
the function f̃ . Every infinite f -thin set is f̃ -thin. By Kučera [Kuc85], the measure of oracles
computing a function d.n.c. relative to P′ is positive, so there is some function h d.n.c. relative
to P′ such that P⊕h does not compute an infinite f -thin set. However, by Theorem 9.3.15, P⊕h

computes an infinite g-rainbow. �



10. The Erdős-Moser theorem

The Erdős-Moser theorem is a statement from graph theory which received a particular interest
from reverse mathematical community as it provides, together with the ascending descending
sequence principle, an alternative proof of Ramsey’s theorem for pairs.

Definition 10.0.1 — Erdős-Moser theorem. A tournament T is an irreflexive binary relation
such that for all x,y ∈ ω with x 6= y, exactly one of T (x,y) or T (y,x) holds. A tournament T is
transitive if the corresponding relation T is transitive in the usual sense. EM is the statement
“Every infinite tournament T has an infinite transitive subtournament.”

Bovykin and Weiermann [BW05] proved Ramsey’s theorem for pairs as follows: Given a
coloring f : [N]2 → 2, we can see f as a tournament T such that whenever x <N y, T (x,y) holds
if and only if f (x,y) = 1. Any transitive subtournament H can be seen as a linear order (H,≺)
such that whenever x <N y, x ≺ y if and only if f (x,y) = 1. Any infinite ascending or descending
sequence is f -homogeneous. It is therefore natural to study the ascending descending sequence
principle together with the Erdős-Moser theorem.

Definition 10.0.2 — Ascending descending sequence. Given a linear order (L,<L), an
ascending (descending) sequence is a set S such that for every x <N y ∈ S, x <L y (x >L y).
ADS is the statement “Every infinite linear order admits an infinite ascending or descending
sequence”.

SADS is the restriction of ADS to linear orders of type ω +ω∗. The above-mentioned
argument is easily formalizable over RCA0. Furthermore, both EM and ADS are immediate
consequences of Ramsey’s theorem for pairs over RCA0. We therefore obtain the following
equivalence.

Theorem 10.0.1 — [BW05]. RCA0 ⊢ RT2
2 ↔ [EM∧ADS]

One can also consider the stable versions of the Erdős-Moser theorem and the ascending
descending sequence principle. For the latter statement, a linear order is stable iff it is of order
type ω +ω∗. The decomposition of RT2

2 into EM and ADS also holds for the stable versions.
The particular shape of the decomposition enables one to make EM and SEM inherit several
properties of RT2

2 and SRT2
2, respectively.

Theorem 10.0.2 If ADS admits P preservation but not RT2
2, then neither does EM. Moreover,

the witnesses of failure for RT2
2 and EM have the same Turing degree.

Proof. Let C ∈P and f : [ω]2 → 2 be a C-computable coloring such that for every f -homogeneous
set H, H ⊕C 6∈ P . The coloring f can be seen as a tournament T where for each x < y, T (x,y)
holds iff f (x,y) = 1. If there is an infinite transitive sub-tournament U such that U ⊕C ∈ P ,
then considering (U,<T ) as a linear order, since ADS admits P preservation, there is an in-
finite ascending or descending sequence S such that S⊕U ⊕C ∈ P . The set S is an infinite
f -homogeneous set such that S⊕C ∈ P , contradicting our choices of C and f . Therefore, C
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and T witness the failure of P preservation for EM. �

The same theorem holds for the stable version of the statements. In particular, we can reprove
some properties of the Erdős-Moser theorem for free.

Corollary 10.0.3 — Kreuzer [Kre12]. There exists a transitive computable tournament hav-
ing no low infinite subtournament.

Proof. Downey et al. proved in [Dow+01] that there is a computable instance of SRT2
2 with

no low solution. On the other hand, Hirschfeldt et al. [HS07] proved SADS admits lowness
preservation. By Theorem 10.0.2, there is a computable instance of SEM with no low solution.

�

It sometimes happens that the combinatorics of two statements P and Q are so incompatible
that whenever a C-computable Q-instance X as no computable solution, then every C-computable
P-instance has a solution which does not C-compute a solution to X . In this case, we say that P
admits Q avoidance.

Theorem 10.0.4 If Q≤c RT
2
2 and ADS admits Q avoidance, then Q≤c EM.

Proof. Let I be any instance of Q. As Q ≤c RT
2
2, there exists an I-computable coloring f :

[N]2 → 2 such that for any infinite f -homogeneous set H, I ⊕H computes a solution to I. The
coloring f can be seen as a tournament T where for each x < y, T (x,y) holds iff f (x,y) = 1. If
T has an infinite sub-tournament U such that H ⊕ I does not compute a solution to I, consider H

as an I ⊕H-computable stable linear order. Then since ADS admits Q-avoidance, there exists
a solution S to H such that S⊕H ⊕ I does not compute a solution to I. But S is an infinite
f -homogeneous set, contradicting our choice of f . �

Using the stable version of Theorem 10.0.4, we deduce again properties of the Erdős-Moser
theorem for free. Rice [Ric] proved that DNR is a consequence of EM over RCA0. We shall
see in the next section that DNR even follows from the stable Erdős-Moser theorem over RCA0.
Meanwhile, we can deduce the following weaker result.

Corollary 10.0.5 DNR≤c SEM.

Proof. Hirschfeldt et al. proved in [Hir+08] that DNR≤c SRT
2
2 and in [HS07] that ADS admits

DNR avoidance. By the stable version of Theorem 10.0.4, DNR≤c SEM. �

Corollary 10.0.6 COH≤c SRT
2
2 if and only if COH≤c SEM

Proof. If COH≤c SEM, then COH≤c SRT
2
2 since SEM≤c SRT

2
2. We now prove the reverse

implication. We showed in section 7.1 that we can associate a Π
0, /0′

1 class C (~R) to any sequence
of sets R0, R1, ..., so that a degree bounds an ~R-cohesive set if and only if its jump bounds a
member of C (~R). Hirschfeldt et al. [HS07] proved that every X-computable instance I of SADS
has a solution Y low over X . Therefore, if X does not compute an ~R-cohesive set, then X ′ does not
compute a member of C (~R). As (Y ⊕X)′ ≤ X ′, (Y ⊕X)′ does not compute a member of C (~R),
Y ⊕X does not compute an ~R-cohesive set. In other words, SADS admits COH avoidance.
Conclude by the stable version of Theorem 10.0.4. �
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10.1 The strength of the Erdős-Moser theorem

We shall see (Corollary 10.3.6) that EM does not imply the stable thin set theorem for pairs
over RCA0. The Erdős-Moser theorem is not known to imply the cohesiveness principle as
well. However, a simple combinatorial argument shows that it implies the disjunction of STS2

and COH.

Theorem 10.1.1 RCA0 ⊢ EM→ [STS2∨COH]

Proof. Let f : [N]2 → N be a stable coloring and R0,R1, . . . be a uniform sequence of sets. We

denote by f̃ the function defined by f̃ (x) = lims f (x,s). We build a ∆
0, f⊕~R
1 tournament T such

that every infinite transitive subtournament is either thin for f̃ or is an ~R-cohesive set. As every
set H thin for f̃ H ⊕ f -computes a set thin for f , we are done. For each x,s ∈ N, set T (x,s) to
hold if one of the following holds:

(i) f (x,s) = 2i and x ∈ Ri

(ii) f (x,s) = 2i+1 and x 6∈ Ri

Otherwise set T (s,x) to hold. Let H be an infinite transitive subtournament of T which is not
f̃ -thin. Suppose for the sake of contradiction that H is not ~R-cohesive. Then there exists an i ∈N
such that H intersects Ri and Ri infinitely many times. As H is not f̃ -thin, there exists x,y ∈ H

such that f̃ (x) = lims f (x,s) = 2i and f̃ (y) = lims f (y,s) = 2i+ 1. As H intersects Ri and Ri

infinitely many times, there exists s0 ∈ Ri ∩H and s1 ∈ Ri ∩H such that f (x,s0) = f (x,s1) = 2i

and f (y,s0) = f (y,s1) = 2i+1. But then T (x,s0), T (s0,y), T (y,s1) and T (s1,x) hold, forming a
4-cycle and therefore contradicting the transitivity of H. �

Definition 10.1.1 Let T be a tournament on a domain D⊆N. A n-cycle is a tuple (x1, . . . ,xn)∈
Dn such that for every 0 < i < n, T (xi,xi+1) holds and T (xn,x1) holds.

Kang [Kan14] attributed to Wang a direct proof of RCA0 ⊢ EM→ RRT2
2. We provide an

alternative proof using the characterization of RRT2
2 by 2-DNR from Miller.

Theorem 10.1.2 RCA0 ⊢ EM→ 2-DNR

Proof. Let X be a set. Let g(., .) be a total X-computable function such that ΦX ′

e (e) = lims g(e,s)
if the limit exists, and ΦX ′

e (e) ↑ if the limit does not exist. Interpret g(e,s) as the code of a finite
set De,s of size 3e+1. We define the tournament T by Σ1-induction as follows. Set T0 = /0. At
stage s+ 1, do the following. Start with Ts+1 = Ts. Then, for each e < s, take the first pair
{x,y} ∈ De,s r

⋃

k<e Dk,s (notice that such a pair exists the by cardinality assumptions on the
De,s), and if Ts+1(s,x) and Ts+1(s,y) are not already assigned, assign them in a way that (x,y,s)
forms a 3-cycle in Ts+1. Finally, for any z < s such that Ts+1(s,z) remains undefined, assign any
truth value to it in a predefined way (e.g., for any such pair {x,y}, set Ts+1(x,y) to be true if
x < y, and false otherwise). This finishes the construction of Ts+1. Set T =

⋃

s Ts, which must
exist as a set by Σ1-induction.

First of all, notice that T is a tournament of domain [N]2, as at the end of stage s+1 of the
construction T (x,y) is assigned a truth value for (at least) all pairs {x,y} with x < s and y < s.
By EM, let H be an infinite, transitive subtournament of T . Let f (e) be the code of the finite
set Ae consisting of the first 3e+1 elements of H. We claim that f (e) 6= ΦX ′

e (e) for all e, which
would prove 2-DNR. Suppose otherwise, i.e., suppose that ΦX ′

e (e) = f (e) for some e. Then
there is a stage s0 such that f (e) = g(e,s) for all s ≥ s0 or equivalently De,s = Ae for all s ≥ s0.
Let Ne = max(Ae). We claim that for any s be bigger than both max(

⋃

e,s<Ne
De,s) and s0, the
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restriction of T to Ae ∪{s} is not a transitive subtournament, which contradicts the fact that the
restriction H of T to the infinite set A containing Ae is transitive.

To see this, let s be such a stage. At that stage s of the construction of T , a pair {x,y} ∈
De,s r

⋃

k<e Dk,s is selected, and since De,s = Ae, this pair is contained in Ae. Furthermore, we
claim that T (s,x) and T (s,y) become assigned at that precise stage, i.e., were not assigned before.
This is because, by construction of T , when the value of some T (a,b) is assigned at a stage t,
either a ≤ t or b ≤ t. Thus, if T (s,x) was already assigned at the beginning of stage s, it would
have in fact been assigned during or before stage x. However, x ∈ Ae, so x < Ne, and at stage Ne

the number s, by definition of Ne, has not appeared in the construction yet. In particular T (s,x) is
not assigned at the end of stage x. This proves our claim, therefore T (s,x) and T (s,y) do become
assigned exactly at stage s, in a way – still by construction – that {x,y,s} form a 3-cycle for T .
Therefore the restriction of T to Ae ∪{s} is not a transitive subtournament, which is what we
needed to prove. �

Corollary 10.1.3 — Wang in [Kan14]. RCA0 ⊢ EM→ RRT2
2

Proof. Immediate by Theorem 10.1.2 and Corollary 9.1.6. �

We have seen (see Corollary 10.0.5) that every ω-model of SEM is a model of DNR. We
now give a direct proof of it and show that it holds over RCA0.

Theorem 10.1.4 RCA0 ⊢ SEM→ DNR

Proof. This is obtained by small variation of the proof of Theorem 10.1.2. Fix a set X . Let g(., .)
be a total X-computable function such that ΦX

e (e) = lims g(e,s) if ΦX
e (e) ↓ and lims g(e,s) = 0

otherwise. Interpret g(e,s) as a code of a finite set De,s of size 3e+1 such that min(De,s)≥ e and
construct the infinite tournament T accordingly. The argument for constructing a function d.n.c.
relative to X given an infinite transitive subtournament is similar. We will only prove that the
tournament T is stable.

Fix some u ∈N. By BΣ0
2, which is provable from SEM over RCA0 (see [Kre12]), there exists

some stage s0 after which De,s remains constant for every e ≤ u. If u is part of a pair {x,y} ⊂ De,s

for some s ≥ s0 and e, then e ≤ u because min(De,s) ≥ e. As the De,s’s remain constant for
each e ≤ u, the pair {x,y} will be chosen at every stage s ≥ s0 and therefore T (u,s) will be
assigned the same value for every s ≥ s0. If u is not part of a pair {x,y}, it will always be assigned
the default value at every stage s ≥ s0. In both cases, T (u,s) stabilizes at stage s0. �

10.2 The combinatorics of the Erdős-Moser theorem

The standard way of building an infinite object by forcing consists of defining an increasing
sequence of finite approximations, and taking the union of them. Unlike COH where every finite
set can be extended to an infinite cohesive set, some finite transitive subtournaments may not be
extensible to an infinite one. We therefore need to maintain some extra properties which will
guarantee that the finite approximations are extendible. The nature of these properties constitute
the core of the combinatorics of EM.

Lerman et al. [LST13] proceeded to an analysis of the Erdős-Moser theorem. They showed
in particular that it suffices to ensure that the finite transitive subtournament F has infinitely
many one-point extensions, that is, infinitely many elements x such that F ∪{x} is transitive,
to extend F to an infinite transitive subtournament (see [LST13, Lemma 3.4]). This property
is sufficient to add elements one by one to the finite approximation. However, when adding
elements by block, we shall maintain a stronger invariant. We will require that the reservoir is
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included in a minimal interval of the finite approximation F . In this section, we reintroduce
the terminology of Lerman et al. [LST13] and give a presentation of the combinatorics of the
Erdős-Moser theorem motivated by its computational analysis.

Definition 10.2.1 — Minimal interval. Let R be an infinite tournament and a,b ∈ R be such
that R(a,b) holds. The interval (a,b) is the set of all x ∈ R such that R(a,x) and R(x,b) hold.
Let F ⊆ R be a finite transitive subtournament of R. For a,b ∈ F such that R(a,b) holds, we
say that (a,b) is a minimal interval of F if there is no c ∈ F ∩ (a,b), i.e., no c ∈ F such that
R(a,c) and R(c,b) both hold.

Fix a computable tournament R, and consider a pair (F,X) where
(i) F is a finite R-transitive set representing the finite approximation of the infinite R-transitive

subtournament we want to construct
(ii) X is an infinite set disjoint from F , included in a minimal interval of F and such that

F ∪{x} is R-transitive for every x ∈ X . In other words, X is an infinite set of one-point
extensions. Such a set X represents the reservoir, that is, a set of candidate elements we
may add to F later on.

a

b

c

d

e

f (−∞,a)

(a,b)

(b,c)

(c,+∞)

Figure 10.1: In this figure, F = {a,b,c} is a transitive set, X = {d,e, f , . . .} a set of one-point
extensions, (b,c) = {e, . . .} a minimal interval of F and (F,X ∩ (b,c)) an EM condition. The
elements d and f are not part of the minimal interval (b,c).

The infinite set X ensures extensibility of the finite set F into an infinite R-transitive subtour-
nament. Indeed, by applying the Erdős-Moser theorem to R over the domain X , there exists an
infinite R-transitive subtournament H ⊆ X . One easily checks that F ∪H is R-transitive. The pair
(F,X) is called an Erdős-Moser condition in [Pat15b]. A set G satisfies an EM condition (F,X) if
it is R-transitive and satisfies the Mathias condition (F,X). In order to simplify notation, given a
tournament R and two sets E and F , we denote by E →R F the formula (∀x ∈ E)(∀y ∈ F)R(x,y).

Suppose now that we want to add a finite number of elements of X into F to obtain a
finite T -transitive set F̃ ⊇ F , and find an infinite subset X̃ ⊆ X such that (F̃ , X̃) has the above
mentioned properties. We can do this in a few steps:

1. Choose a finite (non-necessarily R-transitive) set E ⊂ X .
2. Any element x ∈ X rE induces a 2-partition 〈E0,E1〉 of E by setting E0 = {y∈ E : R(y,x)}

and E1 = {y ∈ E : R(x,y)}. Consider the coloring f which associates to any element of
X rE the corresponding 2-partition 〈E0,E1〉 of E.

3. As E is finite, there exists finitely many 2-partitions of E, so f colors X rE with finitely
many 2-partitions. By Ramsey’s theorem for singletons applied to f , there exists a 2-
partition 〈E0,E1〉 of E together with an infinite subset X̃ ⊆ X rE such that for every x ∈ X̃ ,
f (x) = 〈E0,E1〉. By definition of f and Ei, E0 →R X̃ →R E1.

4. Take any R-transitive subset F1 ⊆ Ei for some i < 2 and set F̃ = F ∪F1. The pair (F̃ ,Ỹ )
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satisfies the required properties (see Lemma 10.3.3 for a proof).
In a computational point of view, if we start with a computable condition (F,X), that is,

where X is a computable set, we end up with a computable extension (F̃ ,Ỹ ). Remember that our
goal is to define a ∆0

2 function f which will dominate every G-computable function for some
solution G to R. For this, we need to be able to /0′-decide whether ΦG

e (n) ↓ or ΦG
e (n) ↑ for every

solution G to R satisfying some condition (F,X). More generally, given some Σ0
1 formula ϕ , we

focus on the computational power required to decide a question of the form

Q1: Is there an R-transitive extension F̃ of F in X such that ϕ(F̃) holds?

Trying to apply naively the algorithm above requires a lot of computational power. In
particular, step 3 requires to choose a true formula among finitely many Π

0,X
2 formulas. Such a

step needs the power of PA degree relative to the jump of X . We shall apply the same trick as for
cohesiveness, consisting in not trying to choose a true Π

0,X
2 formula, but instead parallelizing the

construction. Given a finite set E ⊂ X , instead of finding an infinite subset Ỹ ⊂ X rE whose
members induce a 2-partition of E, we will construct as many extensions of (F,X) as there are
2-partitions of E. The question now becomes

Q2: Is there a finite set E ⊆ X such that for every 2-partition 〈E0,E1〉 of E, there exists an

R-transitive subset F1 ⊆ Ei for some i < 2 such that ϕ(F ∪F1) holds?

This question is Σ
0,X
1 , which is good enough for our purposes. If the answer is positive, we

will try the witness F1 associated to each 2-partition of E in parallel. Note that there may be
some 2-partition 〈E0,E1〉 of E such that the set Y = {x ∈ X rE : E0 →R {x} →R E1} is finite,
but this is not a problem since there is at least one good 2-partition such that the corresponding
set is infinite. The whole construction yields again a tree of pairs (F,X).

If the answer is negative, we want to ensure that ϕ(F̃) will not hold at any further stage of
the construction. For each n ∈ ω , let Hn be the set of the n first elements of X . Because the
answer is negative, for each n ∈ ω , there exists a 2-partition 〈E0,E1〉 of Hn such that for every
R-transitive subset F1 ⊆ Ei for any i < 2, ϕ(F ∪F1) does not hold. Call such a 2-partition an
avoiding partition of Hn. Note that if 〈E0,E1〉 is an avoiding partition of Hn+1, then 〈E0↾n,E1↾n〉
is an avoiding partition of Hn. So the set of avoiding 2-partitions of some Hn forms an infinite
tree T . Moreover, the predicate “〈E0,E1〉 is an avoiding partition of Hn” is ∆

0,Hn

1 so the tree T is
∆

0,X
1 . The collection of the infinite paths through T forms a non-empty Π

0,X
1 class C defined as

the collection of 2-partitions Z0 ∪Z1 = X such that for every i < 2 and every R-transitive subset
F1 ⊆ Zi, ϕ(F ∪F1) does not hold. Apply weak König’s lemma to obtain a 2-partition Z0∪Z1 = X

such that for every finite R-transitive subset F1 of any of its parts, ϕ(F ∪F1) does not hold.

10.3 The weakness of the Erdős-Moser theorem

We now study the computational weakness of the Erdős-Moser theorem using the framework
of preservation of hyperimmunity. The forcing notion to construct solutions to the Erdős-
Moser theorem shares many properties with the one for Ramsey’s theorem for pairs. The main
difference is that only one object is built, namely, a transitive subtournament, whereas in the case
of Ramsey’s theorem for pairs, a set homogeneous for color 0 and another one for color 1 are built
simultaneously. It follows that there is no disjunction in the requirements of the Erdős-Moser
theorem and that countably many hyperimmunities can be preserved simultaneously.

Theorem 10.3.1 EM admits preservation of hyperimmunity.

Before proving Theorem 10.3.1, we introduce the notion of Erdős Moser condition and prove
some basic combinatorial lemmas.
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Definition 10.3.1 An Erdős Moser condition (EM condition) for an infinite tournament T is
a Mathias condition (F,X) where

(a) F ∪{x} is T -transitive for each x ∈ X

(b) X is included in a minimal T -interval of F .

The extension relation is the usual Mathias extension. EM conditions have good properties
for tournaments as stated by the following lemmas. Given a tournament T and two sets E and F ,
we denote by E →T F the formula (∀x ∈ E)(∀y ∈ F)T (x,y) holds.

Lemma 10.3.2 Fix an EM condition (F,X) for a tournament T . For every x ∈ F , {x}→T X or
X →T {x}.

Proof. Fix an x ∈ F . Let (u,v) be the minimal T -interval containing X , where u,v may be
respectively −∞ and +∞. By definition of interval, {u}→T X →T {v}. By definition of minimal
interval, T (x,u) or T (v,x) holds. Suppose the former holds. By transitivity of F ∪{y} for every
y ∈ X , T (x,y) holds, therefore {x}→T X . In the latter case, by symmetry, X →T {x}. �

Lemma 10.3.3 Fix an EM condition c = (F,X) for a tournament T , an infinite subset Y ⊆ X and
a finite T -transitive set F1 ⊂ X such that F1 <Y and [F1 →T Y ∨Y →T F1]. Then d = (F ∪F1,Y )
is a valid extension of c.

Proof. Properties of a Mathias condition for d are immediate. We prove property (a). Fix an
x ∈ Y . To prove that F ∪F1 ∪{x} is T -transitive, it suffices to check that there exists no 3-cycle
in F ∪F1 ∪{x}. Fix three elements u < v < w ∈ F ∪F1 ∪{x}.

• Case 1: {u,v,w}∩F 6= /0. Then u ∈ F as F < F1 < {x} and u < v < w. If v ∈ F then
using the fact that F1 ∪{x} ⊂ X and property (a) of condition c, {u,v,w} is T -transitive. If
v 6∈ F , then by Lemma 10.3.2, {u}→T X(⊇ F ∪{x}) or X →T {u} hence {u}→T {v,w}
or {v,w}→T {u} so {u,v,w} is T -transitive.

• Case 2: {u,v,w}∩F = /0. Then at least u,v∈ F1 because F1 < {x}. If w∈ F1, then {u,v,w}
is T -transitive by T -transitivity of F1. Otherwise, as F1 →T Y or Y →T F1, {u,v}→T {w}
or {w}→T {u,v} and {u,v,w} is T -transitive.

We now prove property (b). Let (u,v) be the minimal T -interval of F in which X (hence Y ) is
included by property (b) of condition c. u and v may be respectively −∞ and +∞. By assumption,
either F1 →T Y or Y →T F1. As F1 is a finite T -transitive set, it has a minimal and a maximal
element, say x and y. If F1 →T Y then Y is included in the T -interval (y,v). Symmetrically,
if Y →T F1 then Y is included in the T -interval (u,x). To prove minimality for the first case,
assume that some w is in the interval (y,v). Then w 6∈ F by minimality of the interval (u,v) w.r.t.
F , and w 6∈ F1 by maximality of y. Minimality for the second case holds by symmetry. �

We are now ready to prove Theorem 10.3.1.

Proof of Theorem 10.3.1. Let B0,B1, . . . be a countable sequence of C-hyperimmune sets for
some set C, and let T be a C-computable tournament. We will build an infinite transitive sub-
tournament G such that the B’s are G⊕C-hyperimmune. For this, we use Mathias forcing (F,X)
where X is an infinite set such that the B’s are X ⊕C-hyperimmune. The following lemma is the
core of the argument.

Lemma 10.3.4 Fix a condition c = (F,X) and two integers e, i ∈ ω . There is an extension d

of c forcing ΦG⊕C
e not to dominate pBi

.

Proof. Let f be the partial X ⊕C-computable function which on input x searches for a finite
set of integers U such that for every 2-partition Z0 ∪Z1 = X , there is some j < 2 and a finite
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T -transitive set E ⊆ Z j such that Φ
(F∪E)⊕C
e (x) ↓∈U . If such a set U is found, f (x) = 1+max(U),

otherwise f (x) ↑. We have two cases.
• Case 1: f is total. By X ⊕C-hyperimmunity of Bi, there is some x such that f (x)≤ pBi

(x).
Let U be the finite set witnessing f (x) ↓. By compactness, there exists a finite set H ⊂ X

such that for every partition H0 ∪H1 = H, there is some j < 2 and a T -transitive set E ⊆

H j such that Φ
(F∪E)⊕C
e (x) ↓∈ U . Each element y ∈ X induces a partition H0 ∪H1 =

H such that H0 →T {y} →T H1. There exists finitely many such partitions, so by the
infinite pigeonhole principle, there exists an X-computable infinite set Y ⊂ X and a
partition H0 ∪H1 = H such that H0 →T Y →T H1. Let j < 2 and E ⊆ H j be the T -

transitive set such that Φ
(F∪E)⊕C
e (x) ↓∈ U . By Lemma 10.3.3, (F ∪ E,Y ) is a valid

extension forcing ΦG⊕C
e (x) ↓≤ pBi

(x).
• Case 2: there is some x such that f (x) ↑. By compactness, the Π

0,X⊕C
1 class C of sets

Z0 ⊕ Z1 such that Z0 ∪ Z1 = X and for every j < 2 and every T -transitive set E ⊆ Z j,

Φ
(F∪E)⊕C
e (x) ↑. By preservation of hyperimmunity of WKL, there exists some parti-

tion Z0 ⊕Z1 ∈ C such that the B’s are Z0 ⊕Z1 ⊕Z-hyperimmune. The set Z j is infinite for
some j < 2 and the condition (F,Zi) is an EM extension forcing ΦG⊕C

e (x) ↑.
�

Thanks to Lemma 10.3.3 and Lemma 10.3.4, define an infinite descending sequence of
conditions ( /0,ω)≥ c0 ≥ . . . such that for each s ∈ ω ,

(a) |Fs| ≥ s

(b) cs forces ΦG⊕C
e not to dominate pBi

if s = 〈e, i〉

where cs = (Fs,Xs). Let G =
⋃

s Fs. By (a), G is infinite and by (b), the B’s are G ⊕C-
hyperimmune. This finishes the proof of Theorem 10.3.1. �

Corollary 10.3.5 Neither ADS nor SADS admit preservation of 2 hyperimmunities.

Proof. By the stable version of Theorem 10.0.1, RCA0 ⊢ SRT2
2 ↔ [SEM∧SADS]. If SADS

admitted preservation of 2 hyperimmunities, then so would RT2
2, contradicting Corollary 8.2.4.

In a more direct way, let f : [ω]2 → 2 be the stable computable function of Theorem 8.2.1.
Let L = (ω,<L) be defined for each x <ω y by x <L y iff f (x,y) = 0, and x >L y otherwise.
By item (ii) of Theorem 8.2.1, L is a linear order of order type ω +ω∗ and by item (i) of
Theorem 8.2.1, the ω part and the ω∗ part are both hyperimmune. The ω (resp. ω∗) part is
hyperimmune-free relative to any infinite ascending (resp. descending) sequence. �

The following corollary has been proven by Wang [Wan14c] using the notion of preservation
of non-c.e. definitions.

Corollary 10.3.6 — Wang [Wan14c]. RCA0∧EM∧COH∧WKL 0 STS2∨SADS.

Proof. By Theorem 10.3.1, Theorem 6.2.1 and the hyperimmune-free basis theorem [JS72b],
EM, COH and WKL admit preservation of hyperimmunity. Let f : [ω]2 → ω be the stable
computable function of Theorem 8.2.1, let Bi = {x : lims f (x,s) = i} and let L = (ω,<L) be
defined as in Corollary 10.3.5. The complement of the B’s are all hyperimmune. The set Bi is
hyperimmune-free relative to any infinite f -thin set for color i, and B1 (resp. B0) is hyperimmune-
free relative to any infinite ascending (resp. descending) sequence. Lemma 3.4.2 enables us to
conclude. �
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Note that by Theorem 10.1.1, every model of RCA0∧EM which is not a model of STS2 is a
model of COH. Therefore, Theorem 10.3.1 implies Theorem 6.2.1.

There has been recently a lot of literature around the weakness of the Erdős-Moser theorem.
Lerman, Solomon and Towsner [LST13] proved that RCA0∧EM 0 SADS. The author [Pat13]
refined their proof to obtain RCA0∧EM 0 STS2. Wang [Wan14c] enhanced these results by
proving that RCA0∧EM∧COH∧WKL 0 STS2∨SADS. Recently, the author [Pata] strength-
ened all the above-mentioned results by proving that EM∧COH∧WKL does not even imply the
atomic model theorem (AMT). This is a strictly stronger result since AMT is a consequence of
both SADS and STS2 over RCA0.

Even though the deep combinatorics remain the same, the argument to separate the Erdős-
Moser theorem from AMT is significantly more complicated. Indeed, the atomic model theorem
is a genericity notion. In particular, for every computable, complete atomic theory, every set
of hyperimmune degree relative to /0′ computes an atomic model. Therefore, every solution
sufficiently generic for the notion of forcing of the Erdős-Moser theorem will compute solutions
to the atomic model theorem. One needs to restrict the amount of genericity of the solutions by
making the overall construction effective.

Over the next sections, we will prove computable non-reducibility results, which are therefore
strictly weaker than a separation over RCA0, but already contain the main ideas of the general
construction. See [Pata] for the whole proof.

10.4 Dominating cohesive sets

Before proving that the atomic model theorem does not computably reduce to the Erdős-Moser
theorem theorem, we illustrate the key features of our construction by showing that AMT does
not computable reduce to COH. The remainder of this section is devoted to the proof of the
following theorem.

Theorem 10.4.1 AMT 6≤c COH

In order to prove Theorem 10.4.1, we need to construct a ∆0
2 function f such that for every

uniformly computable sequence of sets R0,R1, . . . , there is an ~R-cohesive set G such that every G-
computable function is dominated by f . Thankfully, Jockusch & Stephan [JS93] proved that for
every such sequence of sets ~R, every p-cohesive set computes an infinite ~R-cohesive set. The
sequence of all primitive recursive sets is therefore called a universal instance. Hence we only
need to build a ∆0

2 function f and a p-cohesive set G such that every G-computable function is
dominated by f to obtain Theorem 10.4.1.

Given some uniformly computable sequence of sets R0,R1, . . . , the usual construction of an
~R-cohesive set G is done by a computable Mathias forcing. The forcing conditions are pairs
(F,X), where F is a finite set representing the finite approximation of G and X is an infinite,
computable reservoir such that max(F) < min(X). The construction of the ~R-cohesive set is
obtained by building an infinite, decreasing sequence of Mathias conditions, starting with ( /0,ω)
and interleaving two kinds of steps. Given some condition (F,X),
(S1) the extension step consists in taking an element x from X and adding it to F , therefore

forming the extension (F ∪{x},X r [0,x]);
(S2) the cohesiveness step consists of deciding which one of X ∩Ri and X ∩Ri is infinite, and

taking the chosen one as the new reservoir.
The first step ensures that the constructed set G will be infinite, whereas the second step makes the
set G ~R-cohesive. Looking at the effectiveness of the construction, the step (S1) is computable,
assuming we are given some Turing index of the set X . The step (S2), on the other hand, requires
to decide which one of two computable sets is infinite, knowing that at least one of them is. This
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decision requires the computational power of a PA degree relative to /0′ (see [CJS01, Lemma
4.2]). Since we want to build a ∆0

2 function f dominating every G-computable function, we
would like to make the construction of G ∆0

2. Therefore the step (S2) has to be revised.

10.4.1 Effectively constructing a cohesive set

The above construction leads to two observations. First, at any stage of the construction,
the reservoir X of the Mathias condition (F,X) has a particular shape. Indeed, after the first
application of stage (S2), the set X is, up to finite changes, of the form ω ∩R0 or ω ∩R0. After
the second application of (S2), it is in one of the following forms: ω ∩R0 ∩R1, ω ∩R0 ∩R1,
ω ∩R0 ∩R1, ω ∩R0 ∩R1, and so on. More generally, given some string σ ∈ 2<ω , we can
define Rσ inductively as follows: First, Rε = ω , and then, if Rσ has already been defined for
some string σ of length i, Rσ0 = Rσ ∩Ri and Rσ1 = Rσ ∩Ri. By the first observation, we can
replace Mathias conditions by pairs (F,σ), where F is a finite set and σ ∈ 2<ω . The pair (F,σ)
denotes the Mathias condition (F,Rσ ∩ (max(F),+∞)). A pair (F,σ) is valid if Rσ is infinite.
The step (S2) can be reformulated as choosing, given some valid condition (F,σ), which one of
(F,σ0) and (F,σ1) is valid.

( /0,ε) ({x},ε)

({x},0)

({x},1)

({x,y},0)

({x,z},1)

({x,y},00)

({x,y},01)

({x,z},10)

({x,z},11)

(S1)

(S1)

(S1)

(S2)

(S2)

(S2)

Second, we do not actually need to decide which one of Rσ0 and Rσ1 is infinite assuming
that Rσ is infinite. Our goal is to dominate every G-computable function with a ∆0

2 function f .
Therefore, given some G-computable function g, it is sufficient to find a finite set S of candidate
values for g(x) and make f (x) be greater than the maximum of S. Instead of choosing which
one of Rσ0 and Rσ1 is infinite, we will explore both cases in parallel. The step (S2) will split
some condition (F,σ) into two conditions (F,σ0) and (F,σ1). Our new forcing conditions are
therefore tuples (Fσ : σ ∈ 2n) which have to be thought of as 2n parallel Mathias conditions
(Fσ ,σ) for each σ ∈ 2n. Note that (Fσ ,σ) may not denote a valid Mathias condition in general
since Rσ may be finite. Therefore, the step (S1) becomes ∆0

2, since we first have to check whether
Rσ is non-empty before picking an element in Rσ . The whole construction is ∆0

2 and yields a ∆0
2

infinite binary tree T . In particular, any degree PA relative to /0′ bounds an infinite path though T

and therefore bounds a G-cohesive set. However, the degree of the set G is not sensitive in our
argument. We only care about the effectiveness of the tree T .

10.4.2 Dominating the functions computed by a cohesive set

We have seen in the previous section how to make the construction of a cohesive set more
effective by postponing the choices between forcing G ⊆∗ Ri and G ⊆∗ Ri to the end of the
construction. We now show how to dominate every G-computable function for every infinite
path G through the ∆0

2 tree constructed in the previous section. To do this, we will interleave
a third step deciding whether ΦG

e (n) halts, and if so, collecting the candidate values of ΦG
e (n).

Given some Mathias precondition (F,X) (a precondition is a condition where we do not assume
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that the reservoir is infinite) and some e,x ∈ ω , we can ∆0
2-decide whether there is some set

E ⊆ X such that ΦF∪E
e (x) ↓. If this is the case, then we can effectively find this a finite set E ⊆ X

and compute the value ΦF∪E
e (x). If this is not the case, then for every infinite set G satisfying the

condition (F,X), the function ΦG
e will not be defined on input x. In this case, our goal is vacuously

satisfied since ΦG
e will not be a function and therefore we do not need do dominate ΦG

e . Let us go
back to the previous construction. After some stage, we have constructed a condition (Fσ : σ ∈ 2n)
inducing a finite tree of depth n. The step (S3) acts as follows for some x ∈ ω:
(S3) Let S = {0}. For each σ ∈ 2n and each e ≤ x, decide whether there is some finite

set E ⊆ Rσ ∩ (max(Fσ ),+∞) such that ΦFσ∪E
e (x) ↓. If this is the case, add the value of

ΦFσ∪E
e (x) to S and set F̃σ = Fσ ∪E, otherwise set F̃σ = Fσ . Finally, set f (x) = max(S)+1

and take (F̃σ : σ ∈ 2n) as the next condition.
Note that the step (S3) is ∆0

2-computable uniformly in the condition (Fσ : σ ∈ 2n). The whole con-
struction therefore remains ∆0

2 and so does the function f . Moreover, given some G-computable
function g, there is some Turing index e such that ΦG

e = g. For each x ≥ e, the step (S3) is
applied at a finite stage and decides whether ΦG

e (x) halts or not for every set satisfying one of
the leaves of the finite tree. In particular, this is the case for the set G and therefore ΦG

e (x) ∈ S.
By definition of f , f (x)≥ max(S)≥ ΦG

e (x). Therefore f dominates the function g.

10.4.3 The formal construction

Let R0,R1, . . . be the sequence of all primitive recursive sets. We define a ∆0
2 decreasing sequence

of conditions ( /0,ε)≥ c0 ≥ c1 . . . such that for each s ∈ ω

(i) cs = (Fs
σ : σ ∈ 2s) and |Fs

σ | ≥ s if Rσ ∩ (max(Fs
σ ),+∞) 6= /0.

(ii) For every e ≤ s and every σ ∈ 2s, either Φ
Fs

σ
e (s) ↓ or ΦG

e (s) ↑ for every set G satisfying
(Fs

σ ,Rσ ).
Let P be a path through the tree T = {σ ∈ 2<ω : Rσ is infinite} and let G =

⋃

s Fs
P↾s. By (i),

for each s ∈ ω , |Fs
P↾s| ≥ s since RP↾s is infinite. Therefore the set G is infinite. Moreover, for

each s ∈ ω , the set G satisfies the condition (Fs+1
P↾s+1,RP↾s+1), so G ⊆∗ RP↾s+1 ⊆ Rs if P(s) = 1

and G ⊆∗ RP↾s+1 ⊆ Rs if P(s) = 0. Therefore G is ~R-cohesive.

For each s ∈ ω , let f (s) = 1+max(Φ
Fs

σ
e (s) : σ ∈ 2s,e ≤ s). The function f is ∆0

2. We claim
that it dominates every G-computable function. Fix some e such that ΦG

e is total. For every s ≥ e,

let σ = P ↾ s. By (ii), either Φ
Fs

σ
e (s) ↓ or ΦG

e (s) ↑ for every set G satisfying (Fs
σ ,Rσ ). Since

ΦG
e (s) ↓, the first case holds. By definition of f , f (s)≥ Φ

Fs
σ

e (s) = ΦG
e (s). Therefore f dominates

the function ΦG
e . This completes the proof of Theorem 10.4.1.

10.5 Dominating the Erdős-Moser theorem

We now strengthen the analysis of the previous section by proving that the atomic model theorem
is not computably reducible to the Erdős-Moser theorem. Theorem 10.4.1 is an immediate
consequence of this result since [AMT∨COH]≤c EM (see [Pat15g]).

Theorem 10.5.1 AMT 6≤c EM

Just as we did for cohesiveness, we will show how to build solutions to EM through ∆0
2

constructions postponing the Π0
2 choices to the end.

10.5.1 Enumerating the computable infinite tournaments

Proving that some principle P does not computably reduce to Q requires to create a P-instance X

such that every X-computable Q-instance has a solution Y such that Y ⊕X does not compute
a solution to X . In the case of AMT 6≤c COH, we have been able to restrict ourselves to only
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one instance of COH, since Jockusch & Stephan [JS93] showed it admits a universal instance.
It is currently unknown whether the Erdős-Moser theorem admits a universal instance, that is,
a computable infinite tournament such that for every infinite transitive subtournament H and
for every computable infinite tournament T , H computes an infinite transitive T -subtournament.
See [Pat15b] for an extensive study of the existence of universal instances for principles in
reverse mathematics.

Since we do not know whether EM admits a universal instance, we will need to diagonalize
against the solutions to every computable EM-instance. In fact, we will prove a stronger
result. We will construct a ∆0

2 function f and an infinite set G which is eventually transitive
simultaneously for every computable infinite tournament, and such that f dominates every
G-computable function. There exists no computable sequence of sets containing all computable
sets. Therefore it is not possible to computably enumerate every infinite computable tournament.
However, one can define an infinite, computable, binary tree such that every infinite path
computes such a sequence. See the notion of sub-uniformity defined by Mileti in [Mil04] for
details. By the low basis theorem, there exists a low set bounding a sequence containing, among
others, every infinite computable tournament. As we shall prove below, for every set C and every
uniformly C-computable sequence of infinite tournaments ~R, there exists a set G together with a
∆

0,C
2 function f such that
(i) G is eventually R-transitive for every R ∈ ~R

(ii) If ΦG⊕C
e is total, then it is dominated by f for every e ∈ ω .

Thus it suffices to choose C to be our low set and ~R to be a uniformly C-computable sequence of
infinite tournaments containing every computable tournament to deduce the existence of a set G

together with a ∆0
2 function f such that

(i) G is eventually R-transitive for every infinite, computable tournament R

(ii) If ΦG⊕C
e is total, then it is dominated by f for every e ∈ ω

By the computable equivalence between AMT and the escape property, there exists a com-
putable atomic theory T such that every atomic model computes a function g not dominated by f .
If AMT≤c EM, then there exists an infinite, computable tournament R such that every infinite
R-transitive subtournament computes a model of T , hence computes a function g not dominated
by f . As the set G is, up to finite changes, an infinite R-transitive subtournament, G computes
such a function g, contradicting our hypothesis. Therefore AMT 6≤c EM.

10.5.2 Cover classes

In this part, we introduce some terminology about classes of k-covers. Recall that a k-cover is a
k-partition whose parts are not required to be pairwise disjoint.

Cover class. We code a k-cover Z0 ∪ ·· · ∪Zk−1 of some set X as the set Z =
⊕

i<k Zi. We
will identify a k-cover with its code. A k-cover class of some set X is a tuple 〈k,X ,C 〉 where C

is a collection of codes of k-covers of X . We will be interested in Π0
1 k-cover classes. For the

simplicity of notation, we may use the same letter C to denote both a k-cover class (k,X ,C ) and
the actual collection of k-covers C . We then write dom(C ) for X and parts(C ) for k.

Restriction of a cover. Given some k-cover Z = Z0 ⊕·· ·⊕Zk−1 of some set X and given
some set Y ⊆ X , we write Z ↾Y for the k-cover (Z0 ∩Y )⊕·· ·⊕ (Zk−1 ∩Y ) of Y . Similarly, given
some cover class (k,X ,C ) and some set Y ⊆ X , we denote by C ↾ Y the cover class (k,Y,D)
where D = {Z ↾ Y : Z ∈ C }. Given some part ν of C and some set E, we write C [ν ,E] for the
cover class (k,X ,D) where D = {Z0 ⊕·· ·⊕Zk−1 ∈ C : E ⊆ Zν}.

Refinement. The collection of cover classes can be given a natural partial order as follows.
Let m ≥ k and f : m → k. An m-cover V0 ⊕·· ·⊕Vm−1 of Y f -refines a k-cover Z0 ⊕·· ·⊕Zk−1 of
X if Y ⊆ X and Vν ⊆ Z f (ν) for each ν < m. Given two cover classes (k,X ,C ) and (m,Y,D) and
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some function f : m → k, we say that D f -refines C if for every V ∈ D , there is some Z ∈ C

such that V f -refines Z. In this case, we say that part ν of D refines part f (ν) of C .

Acceptable part. We say that part ν of C is acceptable if there exists some Z0⊕·· ·⊕Zk−1 ∈C

such that Zν is infinite. Part ν of C is empty if for every Z0 ⊕·· ·⊕Zk−1 ∈ C , Zν = /0. Note that
if C is non-empty and dom(C ) is infinite, then C has at least one acceptable part. Moreover,
if D ≤ f C and part ν of D is acceptable, then so is part f (ν) of C . The converse does not hold
in general.

10.5.3 The forcing notion

We now get into the core of our forcing argument by defining the forcing notion which will be
used to build an infinite set eventually transitive for every infinite computable tournament. Fix a
set C and a uniformly C-computable sequence of infinite tournaments R0,R1, . . . We construct
our set G by a forcing whose conditions are tuples (α,~F ,C ) where

(a) C is a non-empty Π
0,C
1 k-cover class of [t,+∞) for some k, t ∈ ω ; α ∈ t<ω

(b) (Fν r [0,α(i)))∪{x} is Ri-transitive for every Z0 ⊕·· ·⊕Zk−1 ∈ C , every x ∈ Zν , every
i < |α| and each ν < k

(c) Zν is included in a minimal Ri-interval of Fν r [0,α(i)) for every Z0 ⊕ ·· ·⊕Zk−1 ∈ C ,
every i < |α| and each ν < k.

A condition d = (β ,~E,D) extends c = (α,~F ,C ) (written d ≤ c) if β � α and there exists a
function f : parts(D)→ parts(C ) such that the following holds:

(i) (Eν ,dom(D)) Mathias extends (Ff (ν),dom(C )) for each ν < parts(D)

(ii) D f -refines C
[ f (ν),EνrFf (ν)] for each ν < parts(D)

One may think of a condition (α,~F ,C ) where k = parts(C ) as k parallel Mathias conditions
which are, up to finite changes, Erdős-Moser conditions simultaneously for the tournaments
R0, . . . ,R|α|−1. Given some i < |α|, the value α(i) indicates at which point the sets ~F start
being Ri-transitive. More precisely, for every part ν < k and every k-cover Z0 ⊕·· ·⊕Zk−1 ∈ C ,
(Fν r [0,α(i)),Zν) is an Erdős-Moser condition for Ri for each i < |α|. Indeed, because of
clause (i), the elements Eν rFf (ν) added to Eν come from dom(C ) and because of clause (ii),

these elements must come from the part f (ν) of the class C , otherwise C
[ f (ν),EνrFf (ν)] would be

empty and so would be D .
Of course, there may be some parts ν of C which are non-acceptable, that is, such that Zν is

finite for every k-cover Z0 ⊕·· ·⊕Zk−1 ∈ C . However, by the infinite pigeonhole principle, Zν

must be infinite for at least one ν < k. Choosing α to be in t<ω instead of ω<ω ensures that all
elements added to ~F will have to be Ri-transitive simultaneously for each i < |α|, as the elements
are taken from dom(C ) and therefore are greater than the threshold α(i) for each i < |α|. By
abuse of terminology, we may talk about a part of a condition when talking about a part of its
corresponding cover class.

We start with a few basic lemmas reflecting the combinatorics described in the section 10.2.
They are directly adapted from the basic properties of an Erdős-Moser condition proven
in [Pat15b]. The first lemma states that each element of the finite transitive tournaments ~F
behaves uniformly with respect to the elements of the reservoir, that is, is beaten by every
element of the reservoir or beats all of them.

Lemma 10.5.2 For every condition c = (α,~F ,C ), every Z0 ⊕·· ·⊕Zk−1 ∈ C , every part ν of
C , every i < |α| and every x ∈ Fν r [0,α(i)), either {x}→Ri

Zν or Zν →Ri
{x}.

Proof. By property (c) of the condition c, there exists a minimal Ri-interval (u,v) of Fν r [0,α(i))
containing Zν . Here, u and v may be respectively −∞ and +∞. By definition of an interval,
{u}→Ri

Zν →Ri
{v}. By definition of a minimal interval, Ri(x,u) or Ri(v,x) holds. Suppose the
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former holds. By transitivity of Fν r [0,α(i)), for every y ∈ Zν , Ri(x,y) holds, since both Ri(x,u)
and Ri(u,y) hold. Therefore {x}→Ri

Zν . In the latter case, by symmetry, Zν →Ri
{x}. �

The second lemma is the core of the combinatorics of the Erdős-Moser theorem. It provides
sufficient properties to obtain a valid extension of a condition. Properties (i) and (ii) are simply
the definition of an extension. Properties (iii) and (iv) help propagating properties (b) and (c)
from a condition to its extension. We shall see empirically that properties (iii) and (iv) are simpler
to check than (b) and (c), as the former properties match exactly the way we add elements to our
finite tournaments ~F . Therefore, ensuring that these properties are satisfied usually consists of
checking that we followed the standard process of adding elements to ~F .

Lemma 10.5.3 Fix a condition c = (α,~F ,C ) where C is a k-cover class of [t,+∞). Let
E0, . . . ,Em−1 be finite sets, D be a non-empty Π

0,C
1 m-cover class of [t ′,+∞) for some t ′ ≥ t and

f : m → k be a function such that for each i < |α| and ν < m,
(iii) Eν is Ri-transitive
(iv) Vν →Ri

Eν or Eν →Ri
Vν for each V0 ⊕·· ·⊕Vm−1 ∈ D

Set Hν = Ff (ν) ∪Eν for each ν < m. If properties (i) and (ii) of an extension are satisfied

for d = (α, ~H,D) with witness f , then d is a valid condition extending c.

Proof. All we need is to check properties (b) and (c) for d in the definition of a condition. We
prove property (b). Fix an i < |α|, some part ν of D , and an x ∈Vν for some V0⊕·· ·⊕Vm−1 ∈D .
In order to prove that (Ff (ν)∪Eν)r [0,α(i))∪{x} is Ri-transitive, it is sufficient to check that
the set contains no 3-cycle. Fix three elements u < v < w ∈ (Ff (ν)∪Eν)r [0,α(i))∪{x}.

• Case 1: {u,v,w}∩Ff (ν)r [0,α(i)) 6= /0. Then u∈Ff (ν)r [0,α(i)) as Ff (ν) <Eν < {x} and
u < v < w. By property (ii), there is some Z0 ⊕·· ·⊕Zk−1 ∈ C such that Eν ∪{x} ⊆ Z f (ν).
If v ∈ Ff (ν), then by property (b) of the condition c on Z f (ν), {u,v,w} is Ri-transitive. If
v 6∈ F , then by Lemma 10.5.2, {u}→Ri

Z f (ν) or Z f (ν) →Ri
{u}, so {u,v,w} is Ri-transitive

since v,w ∈ Z f (ν).
• Case 2: {u,v,w}∩Ff (ν)r [0,α(i)) = /0. Then at least u,v ∈ Eν because Eν < {x}. If w ∈

Eν then {u,v,w} is Ri-transitive by Ri-transitivity of Eν . In the other case, w = x ∈Vν . As
Eν →Ri

Vν or Vν →Ri
Eν , {u,v}→Ri

{w} or {w}→Ri
{u,v} and {u,v,w} is Ri-transitive.

We now prove property (c) for d. Fix some V0 ⊕ ·· ·⊕Vm−1 ∈ D , some part ν of D and
some i < |α|. By property (ii), there is some Z0 ⊕·· ·⊕Zk−1 ∈ C such that Eν ∪Vν ⊆ Z f (ν). By
property (c) of the condition c, Z f (ν) (and so Vν ) is included in a minimal Ri-interval (u,v) of
Ff (ν)r [0,α(i)). Here again, u and v may be respectively −∞ and +∞. By assumption, either
Eν →Ri

Vν or Vν →Ri
Eν . As Eν is a finite Ri-transitive set, it has a minimal and a maximal

element, say x and y. If Eν →Ri
Vν then Vν is included in the Ri-interval (y,v). Symmetrically,

if Vν →Ri
Eν then Vν is included in the Ri-interval (u,x). To prove minimality for the first case,

assume that some w is in the interval (y,v). Then w 6∈ Ff (ν)r [0,α(i)) by minimality of the
interval (u,v) with respect to Ff (ν)r [0,α(i)), and w 6∈ Eν by maximality of y. Minimality for
the second case holds by symmetry. �

Now we have settled the necessary technical lemmas, we start proving lemmas which
will be directly involved in the construction of the transitive subtournament. The following
simple progress lemma states that we can always find an extension of a condition in which we
increase both the finite approximations corresponding to the acceptable parts and the number of
tournaments for which we are transitive simultaneously. Moreover, this extension can be found
uniformly.

Lemma 10.5.4 — Progress. For every condition c = (α,~F ,C ) and every s ∈ ω , there exists
an extension d = (β ,~E,D) such that |β | ≥ s and |Eν | ≥ s for every acceptable part ν of D .
Furthermore, such an extension can be found C′-effectively, uniformly in c and s.
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Proof. Fix a condition c = (α,~F ,C ). First note that for every β � α such that β (i)> max(Fν :
ν < parts(C )) whenever |α| ≤ i < |β |, (β ,~F ,C ) is a condition extending c. Therefore it suffices
to prove that for every such condition c and every part ν of C , we can C′-effectively find a
condition d = (α, ~H,D) refining c with witness f : parts(D)→ parts(C ) such that f forks only
parts refining part ν of C , and either every such part µ of D is empty or |Hµ |> |Fν |. Iterating
the process finitely many times enables us to conclude.

Fix some part ν of C and let D be the collection of Z0 ⊕·· ·⊕Zk−1 ∈ C such that Zν = /0.
We can C′-decide whether or not D is empty. If D is non-empty, then (α,~F ,D) is a valid
extension of c with the identity function as witness and such that part ν of D is empty. If D is
empty, we can C′-computably find some Z0 ⊕·· ·⊕Zk−1 ∈ C and pick some x ∈ Zν . Consider
the C-computable 2|α|-partition (Xρ : ρ ∈ 2|α|) of ω defined by

Xρ = {y ∈ ω : (∀i < |α|)[Ri(y,x)↔ ρ(i) = 1]}

Let D̃ be the cover class refining C [ν ,x] such that part ν of D̃ has 2|α| forks induced by the
2|α|-partition ~X . Define ~H by Hµ = Fµ if µ refines a part different from ν , and Hµ = Fν ∪{x} if
µ refines part ν of C . The forking according to ~X ensures that property (iv) of Lemma 10.5.3
holds. By Lemma 10.5.3, d = (α, ~H,D̃) is a valid extension of c. �

10.5.4 The strategy

Thanks to Lemma 10.5.4, we can define an infinite, C′-computable decreasing sequence of
conditions (ε, /0,{ω})≥ c0 ≥ c1 ≥ . . . such that for each s ∈ ω ,

1. |αs| ≥ s.
2. |Fs,ν | ≥ s for each acceptable part ν of Cs

where cs = (αs,~Fs,Cs). As already noticed, if some acceptable part µ of Cs+1 refines some
part ν of Cs, part ν of Cs is also acceptable. Therefore, the set of acceptable parts forms an
infinite, finitely branching C′-computable tree T . Let P be any infinite path through T . The set
H(P) = (

⋃

s Fs,P(s)) is infinite, and H(P)r [0,αi+1(i)) is Ri-transitive for each i ∈ ω .
Our goal is to build a C′-computable function dominating every function computed by

H(P) for at least one path P trough T . However, it requires too much computational power to
distinguish acceptable parts from non-acceptable ones, and even some acceptable part may have
only finitely many extensions. Therefore, we will dominate the functions computed by H(P) for
every path P trough T .

At a finite stage, a condition contains finitely many parts, each one representing the con-
struction of a transitive subtournament. As in the construction of a cohesive set, it suffices to
check one by one whether there exists an extension of our subtournaments which will cause a
given functional to terminate at a given input. In the next subsection, we develop the framework
necessary to decide such a termination at a finite stage.

10.5.5 Forcing relation

As a condition c = (α,~F ,C ) corresponds to the construction of multiple subtournaments
F0,F1, . . . at the same time, the forcing relation will depend on which subtournament we are
considering. In other words, the forcing relation depends on the part ν of C we focus on.

Definition 10.5.1 Fix a condition c = (α,~F ,C ), a part ν of C and two integers e, x.

1. c 
ν ΦG⊕C
e (x) ↑ if Φ

(Fν∪F1)⊕C
e (x) ↑ for all Z0 ⊕·· ·⊕Zk−1 ∈ C and all subsets F1 ⊆ Zν

such that F1 is Ri-transitive simultaneously for each i < |α|.
2. c 
ν ΦG⊕C

e (x) ↓ if ΦFν⊕C
e (x) ↓.

The forcing relations defined above satisfy the usual forcing properties. In particular, let
c0 ≥ c1 ≥ . . . be an infinite decreasing sequence of conditions. This sequence induces an
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infinite, finitely branching tree of acceptable parts T . Let P be an infinite path trough T .
If cs 
P(s) ΦG⊕C

e (x) ↑ (resp. cs 
P(s) ΦG⊕C
e (x) ↓) at some stage s, then Φ

H(P)⊕C
e (x) ↑ (resp.

Φ
H(P)⊕C
e (x) ↓).

Another important feature of this forcing relation is that we can decide C′-uniformly in
its parameters whether there is an extension forcing ΦG⊕C

e (x) to halt or to diverge. Deciding
this relation with little computational power is useful because our C′-computable dominating
function will need to decide the termination ΓG⊕C(x) to check whether it has to dominate the
value outputted by ΓG⊕C(x).

Lemma 10.5.5 For every condition c = (α,~F ,C ) and every pair of integers e,x ∈ ω , there
exists an extension d = (α, ~H,D) such that for each part ν of D

d 
ν ΦG⊕C
e (x) ↑ ∨ d 
ν ΦG⊕C

e (x) ↓

Furthermore, such an extension can be found C′-effectively, uniformly in c, e and x.

Proof. Given a condition c and two integers e,x ∈ ω , let Ie,x(c) be the set of parts ν of c such that
c 6
ν ΦG⊕C

e (x) ↓ and c 6
ν ΦG⊕C
e (x) ↑. Note that Ie,x(c) is C′-computable uniformly in c, e and x.

It suffices to prove that given such a condition c and a part ν ∈ Ie,x(c), one can C′-effectively
find an extension d with witness f such that f (Ie,x(d))⊆ Ie,x(c)r{ν}. Applying iteratively the
operation enables us to conclude.

Fix a condition c = (α,~F ,C ) where C is a k-cover class, and fix some part ν ∈ Ie,x(c).
The strategy is the following: either we can fork part ν of C into enough parts so that we
force ΦG⊕C

e (x) to diverge on each forked part, or we can find an extension forcing ΦG⊕C
e (x) to

converge on part ν without forking. Hence, we ask the following question.

Q2: Is it true that for every k-cover Z0 ⊕·· ·⊕Zk−1 ∈ C , for every 2|α|-partition
⋃

ρ∈2α Xρ =

Zν , there is some ρ ∈ 2|α| and some finite set F1 which is Ri-transitive for each i < |α| simulta-

neously, and such that Φ
(Fν∪F1)⊕C
e (x) ↓?

If the answer is no, then by forking the part ν of C into 2|α| parts, we will be able to
force ΦG⊕C

e (x) to diverge. Let m = k+2|α|−1 and define the function f : m → k by f (µ) = µ

if µ < k and f (µ) = ν otherwise. Let D be the collection of all m-covers V0 ⊕·· ·⊕Vm−1 which
f -refine some Z0⊕·· ·⊕Zk−1 ∈ C and such that for every part µ of D f -refining part ν of C and
every subset F1 ⊆Vµ which is Ri-transitive simultaneously for each i < |α|, ΦFν∪F1

e (x) ↑. Note
that D is a Π

0,C
1 m-cover class f -refining C . Moreover D is non-empty since the answer to Q2 is

no. Let ~E be defined by Eµ = Fµ if µ < k and Eµ = Fν otherwise. The condition d = (α,~E,D)
extends c with witness f . For every part µ of D f -refining part ν of C , d 
µ ΦG⊕C

e (x) ↑,
therefore f (Ie,x(d))⊆ Ie,x(c)r{ν}.

Suppose now that the answer is yes. By compactness, we can C′-effectively find a finite
set E ⊆ Zν for some Z0 ⊕ ·· ·⊕Zk−1 ∈ C such that for every 2|α|-partition (Eρ : ρ ∈ 2|α|) of
E, there is some ρ ∈ 2|α| and some set F1 ⊆ Eρ which is Ri-transitive simultaneously for each

i < |α| and such that Φ
(Fν∪F1)⊕C
e (x) ↓. There are finitely many 2|α|-partitions of E. Let n be the

number of such partitions. These partitions induce a finite C-computable n-partition of dom(C )
defined for each (Eρ : ρ ∈ 2|α|) by

X〈Eρ :ρ∈2|α|〉 =

{

y ∈ dom(C ) : (∀i < |α|)

{
if ρ(i) = 0 then Eρ →Ri

{y}
if ρ(i) = 1 then {y}→Ri

Eρ

}

Let D̃ be the Π
0,C
1 (k+ n− 1)-cover class refining C [ν ,E] and such that part ν of C [ν ,E] is

refined accordingly to the above partition of dom(C ). Let f : k+ n− 1 → k be the refining
function witnessing it. Define ~H as follows. For every part µ of D , refining part ν of C [ν ,E],
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by definition of D̃ , there is some 2|α|-partition
〈
Eρ : ρ ∈ 2|α|

〉
of E such that for every V0 ⊕

. . .Vk+n−2 ∈ D̃ , Vµ ⊆X〈Eρ :ρ∈2|α|〉. By choice of E, there exists some set F1 ⊆Eρ for some ρ ∈ 2|α|

which is Ri-transitive simultaneously for each i < |α| and such that Φ
(Fν∪F1)⊕C
e (x) ↓. This set F1

can be found C′-effectively. Set Hµ = Fν ∪F1. For every part µ of D̃ which refines some part ξ

of C [ν ,E] different from ν , set Hµ = Fξ . By Lemma 10.5.3, d = (α, ~H,D̃) is a valid condition
extending c. Moreover, for every part µ of D̃ refining part ν of C , d 
µ ΦG⊕C

e (x) ↓. Therefore
f (Ie,x(d))⊆ Ie,x(c)r{ν}. �

10.5.6 Construction

We are now ready to construct our infinite transitive subtournament H(P) together with a C′-
computable function f dominating every H(P)⊕C-computable function. Thanks to Lemma 10.5.4
and Lemma 10.5.5, we can C′-compute an infinite descending sequence of conditions (ε, /0,1<ω)≥
c0 ≥ c1 ≥ . . . such that at each stage s ∈ ω ,

1. |αs| ≥ s

2. |Fs,ν | ≥ s for each acceptable part ν of Cs

3. cs 
ν ΦG⊕C
e (x) ↓ or cs 
ν ΦG⊕C

e (x) ↑ for each part ν of Cs if 〈e,x〉= s

where cs = (αs,~Fs,Cs). Property 1 ensures that the resulting set with be eventually transitive for
every tournament in ~R. Property 2 makes the subtournaments infinite. Last, property 3 enables us
to C′-decide at a finite stage whether a functional terminates on a given input, with the transitive
subtournament as an oracle.

Define the C′-computable function f : ω → ω as follows: On input x, the function f looks at
all stages s such that s = 〈e,x〉 for some e ≤ x. For each such stage s, and each part ν in Cs, the
function C′-decides whether cs 
ν ΦG⊕C

e (x) ↓ or cs 
ν ΦG⊕C
e (x) ↑. In the first case, f computes

the value Φ
Fs,ν⊕C
e (x). Having done all that, f returns a value greater than the maximum of the

computed values.
Fix any infinite path P trough the infinite tree T of the acceptable parts induced by the

infinite descending sequence of conditions. We claim that f dominates every function computed
by H(P)⊕C. Fix any Turing index e∈ω such that Φ

H(P)⊕C
e is total. Consider any input x≥ e and

the corresponding stage s = 〈e,x〉. As Φ
H(P)⊕C
e is total, cs 6
P(s) ΦG⊕C

e (x) ↑, hence by property

3, cs 
P(s) ΦG⊕C
e (x) ↓. By construction, f (x) computes the value of Φ

Fs,P(s)⊕C
e (x) and returns a

greater value. As Fs,P(s) is an initial segment of H(P), Φ
Fs,P(s)⊕C
e (x) = Φ

H(P)⊕C
e (x) and therefore

f (x)> Φ
H(P)⊕C
e (x). This completes the proof of AMT 6≤c EM.





11. A Ramsey-type König’s lemma

This chapter is a joint work with Laurent Bienvenu and Paul Shafer.
Weak König’s lemma informally captures compactness arguments [Sim09]. It is involved

in many constructions of solutions to Ramsey-type statements, e.g., cone avoidance [SS95;
Wan14b] or control of the jump [CJS01; Pat16a]. It is natural to wonder whether the use of
compactness is really necessary to prove Ramsey’s theorem. The question of whether RT2

2
implies WKL over RCA0 has been open for two decades, until Liu [Liu12] solved it by proving
that PA degrees are not a combinatorial consequence of RT1

2.
Recently, Flood [Flo12] clarified the relation between Ramsey-type theorems and WKL, by

introducing a Ramsey-type variant of weak König’s lemma (RWKL). Informally, seing a set as a
2-coloring of the integers, for every Π0

1 class of 2-colorings, RWKL states the existence of an
infinite set homogeneous for one of them. The exact statement of RWKL has to be done with
some care, as we do not want to state the existence of a member of the Π0

1 class.

Definition 11.0.1 — Ramsey-type weak König’s lemma. A set H ⊆ N is homogeneous

for a σ ∈ 2<N if (∃c < 2)(∀i ∈ H)(i < |σ | → σ(i) = c), and a set H ⊆N is homogeneous for
an infinite tree T ⊆ 2<N if the tree {σ ∈ T : H is homogeneous for σ} is infinite. RWKL is
the statement “for every infinite subtree of 2<N, there is an infinite homogeneous set.”

Flood [Flo12] proved that RWKL is a strict consequence of both SRT2
2 and WKL. The

Ramsey-type weak König’s lemma is in fact a consequence of the stable Erdős-Moser theorem
over RCA0, as proven independently by Flood and Towsner [FT14] and Bienvenu, Patey and
Shafer [BPS15].

Theorem 11.0.1 RCA0 ⊢ SEM→ RWKL.

Proof. Let T ⊆ 2<N be an infinite tree. For each s ∈ N, let σs be the leftmost element of T s. We
define a tournament R from the tree T . For x < s, if σs(x) = 1, then R(x,s) holds and R(s,x) fails;
otherwise, if σs(x) = 0, then R(x,s) fails and R(s,x) holds. This tournament R is essentially the
same as the coloring f (x,s) = σs(x) defined by Flood in his proof that RCA0 ⊢ SRT2

2 → RWKL

([Flo12] Theorem 5), where he showed that f is stable. By the same argument, R is stable.
Apply SEM to R to get an infinite transitive sub-tournament U . Say that a τ ∈U<N satis-

fies (⋆) if ran(τ) is not homogenous for T with color 1 and (∀k < |τ|)R(τ(k),τ(k+1)). Consider
a hypothetical τ ∈U<N satisfying (⋆). There must be a k < |τ| such that R(s,τ(k)) for cofinitely
many s. This is because otherwise there would be infinitely many s such that (∀k < |τ|)R(τ(k),s)
and hence infinitely many s for which ran(τ) is homogeneous for σs with color 1, contradicting
that ran(τ) is not homogeneous for T with color 1. From the facts that R(s,τ(k)) for cofinitely
many s, that (∀k < |τ|)R(τ(k),τ(k+1)), and that U is transitive, we conclude that R(s,τ(|τ|−1))
for cofinitely many s.

The proof now breaks into two cases. First, suppose that the τ(|τ| − 1) for the τ ∈ U<N

satisfying (⋆) are unbounded. Then, because (⋆) is a Σ0
1 property of U , there is an infinite set

X consisting of numbers of the form τ(|τ|−1) for τ ∈ U<N satisfying (⋆). As argued above,
every x ∈ X satisfies R(s,x) for cofinitely many s. Thus we can thin out X to an infinite set H
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such that (∀x,y ∈ H)(x < y → R(y,x)). Thus H is homogeneous for T with color 0 because H is
homogeneous for σy with color 0 for every y ∈ H.

Second, suppose that the τ(|τ| − 1) for the τ ∈ U<N satisfying (⋆) are bounded, say by
m. Then H = U r {0,1, . . . ,m} is homogeneous for T with color 1. To see this, suppose not.
Then there is a finite V ⊆ H that is not homogeneous for T with color 1. Let τ ∈ V<N be the
enumeration of V in the order given by R: (∀k < |τ|)R(τ(k),τ(k+1)). Then τ satisfies (⋆), but
τ(|τ|−1)> m. This is a contradiction. �

11.1 A Ramsey-type weak weak König’s lemma

Flood [Flo12] proved that RWKL implies DNR over RCA0 and asked whether the implication is
strict. We shall prove in section 11.4 that it is the case. In this section, we clarify the relation
between the Ramsey-type weak König’s lemma and DNR. Just as WKL can be weakened to
WWKL by restricting to trees of positive measure, so can RWKL be weakened to RWWKL by
restricting to trees of positive measure.

Definition 11.1.1 RWWKL is the statement “for every subtree of 2<N with positive measure,
there is an infinite homogeneous set.”

Applying RWWKL to a tree in which every path is Martin-Löf random yields an infinite
subset of a Martin-Löf random set, and every infinite subset of every Martin-Löf random set
computes a DNR function. In fact, computing an infinite subset of a Martin-Löf random set is
equivalent to computing a DNR function, as the following theorem states.

Theorem 11.1.1 — Kjos-Hanssen [Kjo09], Greenberg and Miller [GM09]. For every A ∈
2ω , A computes a DNR function if and only if A computes an infinite subset of a Martin-Löf
random set.

Theorem 11.1.1 also relativizes: a set A computes a DNR(X) function if and only if it
computes an infinite subset of a set that is Martin-Löf random relative to X . Thus one reasonably
expects that DNR and RWWKL are equivalent over RCA0. This is indeed the case, as we show.
The proof makes use of the following computability-theoretic lemma, which reflects a classical
fact concerning diagonally non-computable functions.

Lemma 11.1.2 The statement “for every set X there is a function g : N3 → N such that
∀e,k,n(g(e,k,n)> n∧ (|W X

e |< k → g(e,k,n) /∈W X
e ))” is provable in RCA0+DNR.

Proof. Fix a sequence of functions (bk)k∈N such that, for each k ∈ N, bk maps N onto Nk in
such a way that b−1

k (~x) is infinite for every~x ∈ Nk. Let c : N→ N be a function such that, for all
e, i,k,x ∈ N, ΦX

c(e,i,k)(x) = bk(y)(i) for the (i+1)th number y enumerated in W X
e if |W X

e | ≥ i+1;

and ΦX
c(e,i,k)(x)↑ otherwise. Let f be diagonally non-computable relative to X . Define g by let-

ting g(e,k,n) be the least x> n such that bk(x) = 〈 f (c(e,0,k)), f (c(e,1,k)), . . . , f (c(e,k−1,k))〉.
Suppose for the sake of contradiction that |W X

e | < k but that g(e,k,n) ∈ W X
e . Then g(e,k,n)

is the (i+ 1)th number enumerated into W X
e for some i+ 1 < k. Hence ΦX

c(e,i,k)(c(e, i,k)) =

bk(g(e,k,n))(i). However, by the definition of g, bk(g(e,k,n))(i)= f (c(e, i,k)). Thus f (c(e, i,k))=
ΦX

c(e,i,k)(c(e, i,k)), contradicting that f is DNR relative to X . �

Notice that in the statement of the above lemma, W X
e need not exist as a set. Thus ‘|W X

e |< k’
should be interpreted as ‘∀s(|W X

e,s| < k),’ where (W X
e,s)s∈N is the standard enumeration of W X

e .
The following theorem has been obtained independently by Flood and Towsner [FT14] and
Bienvenu, Patey and Shafer [BPS15].
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Theorem 11.1.3 RCA0 ⊢ DNR↔ RWWKL.

Proof. The direction RWWKL→DNR is implicit in Flood’s proof that RCA0 ⊢ RWKL→DNR

([Flo12] Theorem 8). Indeed, Flood’s proof uses the construction of a tree of positive measure
due to Jockusch [Joc74]. The proof that DNR→ RWWKL is similar to the original proof of
Theorem 11.1.1. However, some adjustments are needed as the original argument uses techniques
from measure theory and algorithmic randomness which can only be formalized within WWKL.
We instead use explicit combinatorial bounds.

Assume DNR, and consider a tree T of measure ≥ 2−c for some c, which we can assume to
be ≥ 3 (the reason for this assumption will become clear). For a given set H ⊆ N and a value
v ∈ {0,1}, let Γv

H = {σ ∈ 2<ω : (∀i ∈ H)(σ(i) = v)}, and abbreviate Γv
{n} by Γv

n. For a tree

T and a constant c, let Bad(n,T,c) be the Σ0
1 predicate ‘µ(T ∩Γ0

n) < 2−2c.’ In the following
claim, {n : Bad(n,T,c)} need not a priori exist as a set, so ‘|{n : Bad(n,T,c)}|< 2c’ should be
interpreted in the same manner as ‘|W X

e |< k’ in the statement of Lemma 11.1.2.

Claim 11.1.4 If c ≥ 3 and µ(T )≥ 2−c, then |{n : Bad(n,T,c)}|< 2c.

Proof. Suppose for the sake of contradiction that |{n : Bad(n,T,c)}| ≥ 2c, and let B be the
first 2c elements enumerated in {n : Bad(n,T,c)}. For each n ∈ B, the tree T ∩Γ0

n has measure
< 2−2c, which implies that (∀n ∈ B)(∃i)(|T i ∩Γ0

n|< 2i−2c) (recall that T i is the set of strings in
T of length i). By BΣ0

1, let N0 be such that (∀n ∈ B)(∃i < N0)(|T
i ∩Γ0

n|< 2i−2c), and observe
that (∀n ∈ B)(∀ j > N0)(|T

j ∩Γ0
n|< 2 j−2c). Let N = N0 +max(B).

On the one hand,
∣
∣
∣
∣
∣
T N ∩

⋃

n∈B

Γ0
n

∣
∣
∣
∣
∣
= |T N rΓ1

B| ≥ |T N |− |Γ1
B ∩{0,1}N | ≥ 2N−c −2N−2c.

On the other hand,
∣
∣
∣
∣
∣
T N ∩

⋃

n∈B

Γ0
n

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

⋃

n∈B

T N ∩Γ0
n

∣
∣
∣
∣
∣
≤ ∑

n∈B

|T N ∩Γ0
n| ≤ 2c ·2N−2c.

Putting the two together, we get that 2N−c −2N−2c ≤ 2c ·2N−2c, which is a contradiction for
c ≥ 3. �

Let g be as in Lemma 11.1.2 for X = T . Given a (canonical index for a) finite set F

and a c, we can effectively produce an index e(F,c) such that ∀n(n ∈ W T
e(F,c) ↔ Bad(n,T ∩

Γ0
F ,c)). Computably construct an increasing sequence h0 < h1 < h2 < .. . of numbers by letting,

for each s ∈ N, Hs = {hi : i < s} and hs = g(e(Hs,c · 2s),c · 2s+1,max(Hs ∪{0})). Using Π0
1-

induction (IΠ0
1), we prove that ∀s(µ(T ∩Γ0

Hs
)≥ 2−c·2s

). For s = 0, this is simply the assumption
µ(T )≥ 2−c. Assuming µ(T ∩Γ0

Hs
)≥ 2−c·2s

, the claim implies that |W T
e(Hs,c·2s)|< c ·2s+1. Thus

hs = g(e(Hs,c ·2s),c ·2s+1,max(Hs ∪{0})) /∈We(Hs,c·2s), and therefore ¬Bad(hs,T ∩Γ0
Hs
,c ·2s).

This means that µ(T ∩Γ0
Hs
∩Γ0

hs
)≥ 2−c·2s+1

, which is what we wanted because Γ0
Hs
∩Γ0

hs
= Γ0

Hs+1
.

Let H = {hs : s∈N}, which exists by ∆0
1 comprehension because the sequence h0 < h1 < h2 <

.. . is increasing. We show that H is homogeneous for T . Suppose for the sake of contradiction
that H is not homogeneous for T . This means that there are only finitely many σ ∈ T such that
H is homogeneous for σ . Therefore at some level s, {σ ∈ T s : (∀i ∈ H)(σ(i) = 0)} = /0. As
H ∩{0,1, . . . ,s} ⊆ Hs, we in fact have that {σ ∈ T s : (∀i ∈ Hs)(σ(i) = 0)}= /0. In other words,
T ∩Γ0

Hs
= /0, which contradicts µ(T ∩Γ0

Hs
)≥ 2−c·2s

. Thus H is homogeneous for T . �
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11.2 Ramsey-type statisfiability

One can conceivably consider a Ramsey-type variant of any Π1
2 statement ∀X∃Y ϕ(X ,Y ) so long

as one can provide a reasonable formulation of what it means for a set Z to be consistent with a
Y such that ϕ(X ,Y ). For example, in the case of RWKL, we think of a set H as being consistent
with a path through an infinite tree T ⊆ 2<ω if H is homogeneous for T . We are interested
in analyzing the strengths of Ramsey-type variants of statements that are equivalent to WKL

over RCA0. Several such statements have trivial Ramsey-type variants. For example, RCA0

proves that for every pair of injections f ,g : N→N with disjoint ranges, there is an infinite set X

consistent with being a separating set for the ranges of f and g because RCA0 proves that there
is an infinite subset of the range of f . The obvious Ramsey-type variant of Lindenbaum’s lemma
(every consistent set of sentences has a consistent completion) is also easily seen to be provable
in RCA0. For the remainder of this paper, we consider non-trivial Ramsey-type variants of the
compactness theorem for propositional logic and of graph coloring theorems. Many of these
variants are equivalent to RWKL, which we take as evidence that RWKL is robust.

Definition 11.2.1 A set C of propositional formulas is finitely satisfiable if every finite C0 ⊆C

is satisfiable (i.e., has a satisfying truth assignment). We denote by SAT the compactness
theorem for propositional logic, which is the statement “every finitely satisfiable set of
propositional formulas is satisfiable.”

It is well-known that SAT is equivalent to WKL over RCA0 (see [Sim09] Theorem IV.3.3).
If C is a set of propositional formulas, then let atoms(C) denote the set of propositional

atoms appearing in the formulas in C. Strictly speaking, RCA0 does not in prove that atoms(C)
exists for every set of propositional formulas C. However, in RCA0 we can rename the atoms
appearing in a set of propositional formulas C in such a way as to produce an equivalent set
of propositional formulas C′ for which atoms(C′) does exist. Indeed, we may assume that
atoms(C) = N whenever atoms(C) is infinite. Thus for simplicity, we always assume that
atoms(C) exists as a set.

Definition 11.2.2 Let C be a set of propositional formulas. A set H ⊆ atoms(C) is homo-

geneous for C if there is a c ∈ {T,F} such that every finite C0 ⊆ C is satisfiable by a truth
assignment ν such that (∀a ∈ H)(ν(a) = c).

As is typical, we identify T with 1 and F with 0.

Definition 11.2.3 — Ramsey-type satisfiability. RSAT is the statement “for every finitely
satisfiable set C of propositional formulas with atoms(C) infinite, there is an infinite H ⊆
atoms(C) that is homogeneous for C.”

We first show that RCA0 ⊢ RSAT→ RWKL. In fact, we show that the restriction of RSAT to
what we call 2-branching clauses implies RWKL over RCA0. This technical restriction is useful
for the proof of Theorem 11.3.12 in our analysis of Ramsey-type graph coloring principles.

Recall that a propositional formula ℓ is called a literal if either ℓ = a or ℓ = ¬a for some
propositional atom a and that a clause is a disjunction of literals.

Definition 11.2.4 Let {ai : i ∈N} be an infinite set of propositional atoms. A set C of clauses
is called 2-branching if, for every clause ℓ0 ∨ ℓ1 ∨·· ·∨ ℓn−1 ∈C and every i < n, the literal ℓi

is either ai or ¬ai. RSAT2-branching is RSAT restricted to 2-branching clauses.

Proposition 11.2.1 RCA0 ⊢ RSAT2-branching → RWKL.

Proof. Let A = {ai : i ∈N} be a set of propositional atoms, and to each string σ ∈ 2<N associate
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the clause θσ =
∨

i<|σ | ℓi, where ℓi = ai if σ(i) = 0 and ℓi = ¬ai if σ(i) = 1. Let T ⊆ 2<N be
an infinite tree. Let C = {θσ : σ /∈ T}, and observe that C is 2-branching. We show that C is
finitely satisfiable. Given C0 ⊆C finite, choose n large enough so that the atoms appearing in
the clauses in C0 are among {ai : i < n}. As T is infinite, choose a τ ∈ T of length n. Define
a truth assignment t : {ai : i < n} → {T,F} by t(ai) = τ(i). Now, if θ is a clause in C0, then
θ = θσ =

∨

i<|σ | ℓi for some σ /∈ T with |σ | < n. Thus there is an i < n such that σ(i) 6= τ(i)
(because τ ∈ T and σ /∈ T ), from which we see that t(ℓi) = T and hence that t(θσ ) = T. Thus t

satisfies C0.
By RSAT2-branching, let H0 ⊆A and c∈ {T,F} be such that H0 is homogeneous for C with truth

value c. Let H = {i ∈ N : ai ∈ H0}. We show that H is homogeneous for a path through T with
color c. Given n ∈N, we want to find a τ ∈ T such that |τ|= n and (∀i < |τ|)(i ∈ H → τ(i) = c).
Thus let t : {ai : i < n} → {T,F} be a truth assignment satisfying C0 = {θσ : σ /∈ T ∧ |σ |= n}
such that (∀a ∈ {ai : i < n}∩H0)(t(a) = c). Let τ ∈ 2n be defined by τ(i) = t(ai) for all i < n.
Notice that (∀i < |τ|)(i ∈ H → τ(i) = c) and that t(θτ) = F. If τ /∈ T , then θτ ∈C0, contradicting
that t satisfies C0. Thus τ ∈ T as desired. �

11.3 Ramsey-type graph coloring principles

Let k ∈ N, and let G = (V,E) be a graph. A function f : V → k is a k-coloring of G if (∀x,y ∈
V )((x,y)∈ E → f (x) 6= f (y)). A graph is k-colorable if it has a k-coloring, and a graph is locally

k-colorable if every finite subgraph is k-colorable. A simple compactness argument proves that
every locally k-colorable graph is k-colorable. In the context of reverse mathematics, we have
the following well-known equivalence.

Theorem 11.3.1 — see [Hir90]. For every k ∈ ω with k ≥ 2, the following statements are
equivalent over RCA0:

(i) WKL

(ii) Every locally k-colorable graph is k-colorable.

In light of Theorem 11.3.1, we define Ramsey-type analogs of graph coloring principles and
compare them to Ramsey-type weak König’s lemma.

Definition 11.3.1 — Ramsey-type graph coloring. Let G = (V,E) be a graph. A set
H ⊆ V is homogeneous for G if every finite V0 ⊆ V induces a subgraph that is k-colorable
by a coloring that colors every vertex in V0 ∩H with color 0. RCOLORk is the statement
“for every infinite, locally k-colorable graph G = (V,E), there is an infinite H ⊆ V that is
homogeneous for G.”

The goal of this section is to obtain the analog of Theorem 11.3.1 with RWKL in place
of WKL and with RCOLORk in place of the statement “every locally k-colorable graph is k-
colorable.” We are able to obtain this analog for all standard k ≥ 3 instead of all standard k ≥ 2.
The case k = 2 remains open. Showing the forward direction, that RCA0 ⊢ RWKL→ RCOLORk

(indeed, that RCA0 ⊢ RWKL→ RCOLORk), is straightforward.

Lemma 11.3.2 For every k ∈ ω , RCA0 ⊢ RWKL→ RCOLORk.

Proof. Let G = (V,E) be an infinite graph such that every finite V0 ⊆V induces a k-colorable
subgraph. Enumerate V as (vi)i∈N, and let T ⊆ k<N be the tree

T = {σ ∈ k<N : (∀i, j < |σ |)((vi,v j) ∈ E → σ(i) 6= σ( j))}.

T exists by ∆0
1 comprehension and is downward closed. T is infinite because for any n ∈ N, any

k-coloring of the subgraph induced by {vi : i < n} corresponds to a string in the tree of length
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n. Apply RWKLk (which follows from RCA0+RWKL) to T to get an infinite set H0 ⊆ N and a
color c < k such that H0 is homogeneous for a path through T with color c. Let H = {vi : i ∈ H0}.
We show that every finite V0 ⊆V induces a subgraph that is k-colorable by a coloring that colors
every v ∈V0 ∩H with color 0. Let V0 ⊆V be finite, let n = max{i+1 : vi ∈V0}, and let σ ∈ T

be such that |σ | = n and such that H0 is homogeneous for σ with color c. Then the coloring
of V0 given by vi 7→ σ(i) is a k-coloring of V0 that colors the elements of V0 ∩H with color c.
Swapping colors 0 and c thus gives a k-coloring of V0 that colors the elements of V0 ∩H with
color 0. �

We now prove that RCA0 ⊢ RCOLOR3 → RWKL (Theorem 11.3.12 below). Our proof
factors through the Ramsey-type satisfiability principles and is a rather elaborate exercise in
circuit design. The plan is to prove that RCA0 ⊢ RCOLOR3 → RSAT2-branching, then appeal to
Proposition 11.2.1. Given a 2-branching set of clauses C, we compute a locally 3-colorable
graph G such that every set homogeneous for G computes a set that is homogeneous for C. G is
built by connecting widgets, which are finite graphs whose colorings have desirous properties.
A widget W (~v) has distinguished vertices~v through which we connect the widget to the larger
graph. These distinguished vertices can also be regarded, in a sense, as the inputs and outputs of
the widget.

In an RCOLOR3 instance built out of widgets according to an RSAT2-branching instance, some
of the vertices code literals so that the colorings of these coding vertices code truth assignments
of the corresponding literals in such a way that a homogeneous set for the RSAT2-branching

instance can be decoded from a homogeneous set for the graph that contains only coding
vertices. However, we have no control over what vertices appear in an arbitrary homogeneous
set. Therefore, we must build our graph so that the color of every vertex gives information about
the color of some coding vertex.

When we introduce a widget, we prove a lemma concerning the three key aspects of the wid-
get’s operation: soundness, completeness, and reversibility. By soundness, we mean conditions
on the 3-colorings of the widget, which we think of as input-output requirements for the widget.
By completeness, we mean that the widget is indeed 3-colorable and, moreover, that 3-colorings
of certain sub-widgets extend to 3-colorings of the whole widget. By reversibility, we mean that
the colors of some vertices may be deduced from the colors of other vertices.

To aid the analysis of our widgets, we introduce a notation for the property that a coloring
colors two vertices with the same color.

Notation 11.1. Let G = (V,E) be a graph, let a,b ∈V , and let ν : V → k be a k-coloring of G.

We write a =ν b if ν(a) = ν(b).

The graph G that we build from widgets has three distinguished vertices 0, 1, and 2, connected
as a triangle. The intention of these vertices is to code truth values. If v is a vertex coding a
literal ℓ, then (v,2) is an edge in G, and, for a 3-coloring ν , we interpret v =ν 0 as ℓ is false and
v =ν 1 as ℓ is true. Our widgets often include vertices 0, 1, and 2.

Widget 11.3.3 Rx 7→y
y7→z

(a,u) is the following widget.

x

y

z

v

a

u

Lemma 11.3.4
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(i) Let ν be a 3-coloring of Rx 7→y
y7→z

(a,u). If a =ν x then u =ν y, and if a =ν y then u =ν z.

(ii) Every 3-coloring of the subgraph of Rx 7→y
y7→z

(a,u) induced by {x,y,z,a} can be extended to a

3-coloring of Rx 7→y
y 7→z

(a,u).

(iii) In every 3-coloring of Rx 7→y
y7→z

(a,u), the color of each vertex in {u,v} determines the color

of a.

Proof. The lemma follows from examining the two possible (up to permutations of the colors)
3-colorings of Rx 7→y

y 7→z
(a,u):

a =ν x v =ν z u =ν y (11.1)

a =ν y v =ν x u =ν z. (11.2)

We see (i) immediately. For (ii), if a =ν x, then color the widget according to the first coloring;
and if a =ν y, then color the widget according to the second coloring. For (iii), if u =ν y or
v =ν z, then a =ν x; and if u =ν z or v =ν x, then a =ν y. �

The intention is that, in Rx 7→y
y 7→z

(a,u), the vertices x, y, and z are some permutation of the

vertices 0, 1, and 2. For example, R07→1
17→2

(a,u) is the instance of this widget where x = 0, y = 1,

and z = 2. The notation ‘R0 7→1
1 7→2

(a,u)’ is evocative of Lemma 11.3.4 (i). Thinking of a as the

widget’s input and of u as the widget’s output, Lemma 11.3.4 (i) says that the widget maps 0 to
1 and maps 1 to 2.

Widget 11.3.5 Ux,y,z(ℓ,b,u) is the following widget.

x y

z

ℓℓ̄ b

Rx 7→y
y 7→z

(ℓ,r)

r

d

u

In the diagram above, the box labeled ‘Rx 7→y
y 7→z

(ℓ,r)’ represents an Rx 7→y
y 7→z

(ℓ,r) sub-widget. The

vertices ℓ and r are the same as those appearing inside Rx 7→y
y 7→z

(ℓ,r). They have been displayed to

show how they connect to the rest of the Ux,y,z(ℓ,b,u) widget. The vertices x, y, and z are also the
same as the corresponding vertices appearing inside Rx 7→y

y7→z
(ℓ,r), and some of the edges incident

to them (for example, the edge (x,r)) have been omitted to improve legibility.
The properties of Ux,y,z(ℓ,b,u) highlighted by the next lemmas may seem ill-motivated at

first. We explain their significance after the proofs.

Lemma 11.3.6

(i) Every 3-coloring ν of the subgraph of Ux,y,z(ℓ,b,u) induced by {x,y,z, ℓ,b} can be ex-
tended to a 3-coloring of Ux,y,z(ℓ,b,u).

(ii) If ν is a 3-coloring of Ux,y,z(ℓ,b,u) in which ℓ=ν x and b =ν y, then u =ν x.
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(iii) Every 3-coloring ν of the subgraph of Ux,y,z(ℓ,b,u) induced by {x,y,z, ℓ,b} in which
ℓ=ν x and b 6=ν y can be extended to a 3-coloring of Ux,y,z(ℓ,b,u) in which u =ν z.

(iv) Every 3-coloring ν of the subgraph of Ux,y,z(ℓ,b,u) induced by {x,y,z, ℓ,b} in which
ℓ=ν y can be extended to a 3-coloring of Ux,y,z(ℓ,b,u) in which u =ν y.

Proof. For (i), let ν be a 3-coloring of the subgraph of Ux,y,z(ℓ,b,u) induced by {x,y,z, ℓ,b}.
• If ℓ=ν x and b =ν x, then color the widget so that ℓ̄=ν y, r =ν y, d =ν y, and u =ν z.
• If ℓ=ν x and b =ν y, then color the widget so that ℓ̄=ν y, r =ν y, d =ν z, and u =ν x.
• If ℓ=ν x and b =ν z, then color the widget so that ℓ̄=ν y, r =ν y, d =ν y, and u =ν z.
• If ℓ=ν y and b =ν x, then color the widget so that ℓ̄=ν x, r =ν z, d =ν z, and u =ν y.
• If ℓ=ν y and b =ν y, then color the widget so that ℓ̄=ν x, r =ν z, d =ν x, and u =ν y.
• If ℓ=ν y and b =ν z, then color the widget so that ℓ̄=ν x, r =ν z, d =ν x, and u =ν y.

In each of the above cases, the sub-widget Rx 7→y
y7→z

(ℓ,r) is colored according to Lemma 11.3.4.

For (ii), let ν be a 3-coloring of Ux,y,z(ℓ,b,u) in which ℓ=ν x and b =ν y. Then it must be
that ℓ̄=ν y and d =ν z, and therefore it must be that u =ν x.

Item (iii) can be seen to hold by inspecting the first and third colorings in the proof of (i).
Item (iv) can be seen to hold by inspecting the last three colorings in the proof of (i). �

Lemma 11.3.7 Let ν be a 3-coloring of Ux,y,z(ℓ,b,u). If w is ℓ̄, u, or any vertex appearing in
the Rx 7→y

y 7→z
(ℓ,r) sub-widget that is not x, y, or z, then the color of w determines the color of ℓ.

Moreover,
• if d =ν x, then ℓ=ν y;
• if d =ν y, then ℓ=ν x;
• if d =ν z, then b 6=ν z.

Proof. Let ν be a 3-coloring of Ux,y,z(ℓ,b,u). It is easy to see that if ℓ̄ =ν x, then ℓ =ν y and
that if ℓ̄ =ν y, then ℓ =ν x. If w is a vertex in Rx 7→y

y 7→z
(ℓ,r) that is not x, y, or z, then the color of

w determines the color of ℓ by Lemma 11.3.4 (iii). For u, if u =ν x or u =ν z it cannot be that
ℓ=ν y because then ℓ̄=ν x and, by Lemma 11.3.4 (i), r =ν z. On the other hand, if u =ν y, it
cannot be that ℓ=ν x because then ℓ̄=ν y. Thus if u =ν x or u =ν z, then ℓ=ν x; and if u =ν y,
then ℓ =ν y. It is easy to see that if d =ν x then ℓ =ν y, that if d =ν y then ℓ =ν x, and that if
d =ν z then b 6=ν z because ℓ and b are neighbors of d. �

Consider a clause ℓ0 ∨ ℓ1 ∨ ·· · ∨ ℓn−1. The idea is to code truth assignments that satisfy
the clause as 3-colorings of a graph constructed by chaining together widgets of the form
Ux,y,z(ℓi,b,u). Let ν be a 3-coloring of Ux,y,z(ℓi,b,u). The color of the vertex ℓi represents the
truth value of the literal ℓi: ℓi =ν x is interpreted as ℓi is false, and ℓi =ν y is interpreted as
ℓi is true. The color of the vertex b represents the truth value of ℓ0 ∨ ℓ1 ∨ ·· · ∨ ℓi−1 as well as
the truth value of the literal ℓi−1: b =ν x is interpreted as ℓ0 ∨ ℓ1 ∨ ·· · ∨ ℓi−1 is true but ℓi−1 is
false; b =ν y is interpreted as ℓ0 ∨ ℓ1 ∨ ·· · ∨ ℓi−1 is false (and hence also as ℓi−1 is false); and
b =ν z is interpreted as ℓi−1 is true (and hence also as ℓ0 ∨ ℓ1 ∨·· ·∨ ℓi−1 is true). Similarly, the
color of the vertex u represents the truth value of ℓ0 ∨ ℓ1 ∨ ·· · ∨ ℓi as well as the truth value
of the literal ℓi. However, the meanings of the colors are permuted: u =ν x is interpreted as
ℓ0 ∨ ℓ1 ∨ ·· · ∨ ℓi is false (and hence also as ℓi is false); u =ν y is interpreted as ℓi is true (and
hence also as ℓ0 ∨ ℓ1 ∨ ·· · ∨ ℓi is true); and u =ν z is interpreted as ℓ0 ∨ ℓ1 ∨ ·· · ∨ ℓi is true but
ℓi is false. Lemma 11.3.6 tells us that Ux,y,z(ℓi,b,u) properly implements this coding scheme.
Lemma 11.3.6 (ii) says that if a 3-coloring codes that ℓi is false and that ℓ0 ∨ ℓ1 ∨ ·· ·∨ ℓi−1 is
false, then it must also code that ℓ0 ∨ ℓ1 ∨·· ·∨ ℓi is false. Lemma 11.3.6 (iii) says that if ν is a
3-coloring of the subgraph of Ux,y,z(ℓi,b,u) induced by {x,y,z, ℓi,b} coding that ℓi is false and
that ℓ0 ∨ ℓ1 ∨ ·· · ∨ ℓi−1 is true, then ν can be extended to a 3-coloring of Ux,y,z(ℓi,b,u) coding
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that ℓ0 ∨ ℓ1 ∨ ·· · ∨ ℓi is true. The reader may worry that here it is also possible to extend ν to
incorrectly code that ℓ0 ∨ ℓ1 ∨·· ·∨ ℓi is false, so we assure the reader that this is irrelevant. What
is important is that it is possible to extend ν to code the correct information. Lemma 11.3.6 (iv)
says that if ν is a 3-coloring of the subgraph of Ux,y,z(ℓi,b,u) induced by {x,y,z, ℓi,b} coding
that ℓi is true, then ν can be extended to a 3-coloring of Ux,y,z(ℓi,b,u) coding that ℓ0∨ℓ1∨·· ·∨ℓi

is true. Lemma 11.3.7 helps us deduce the colors of literal-coding vertices from the colors of
auxiliary vertices and hence helps us compute a homogeneous set for a set of clauses from a
homogeneous set for a graph.

The next widget combines Ux,y,z(ℓ,b,u) widgets into widgets coding clauses.

Widget 11.3.8 D(ℓ0, ℓ1, . . . , ℓn−1) is the following widget.

0 1

2

ℓ0

U1(ℓ′1, ℓ0,u1)ℓ′1R1(ℓ1, ℓ
′
1)ℓ1

u1

U2(ℓ′2,u1,u2)ℓ′2R2(ℓ2, ℓ
′
2)ℓ2

u2

U3(ℓ3,u2,u3)ℓ3

u3

un−2

Un−1(ℓ′n−1,un−2,un−1)ℓ′n−1Rn−1(ℓn−1, ℓ
′
n−1)ℓn−1

un−1

x

The widget also contains the edge (2, ℓi) for each i < n, which we omitted from the diagram to
keep it legible. For 0 < i < n, the sub-widget U i(ℓ′i,ui−1,ui) is U0,1,2(ℓi,ui−1,ui) if i ≡ 0 mod 3,
is U2,0,1(ℓ

′
i,ui−1,ui) if i ≡ 1 mod 3 (with ℓ0 in place of u0 when i = 1), and is U1,2,0(ℓ

′
i,ui−1,ui)

if i ≡ 2 mod 3. For 0 < i < n, the sub-widget Ri(ℓi, ℓ
′
i) is R17→0

07→2
(ℓi, ℓ

′
i) if i ≡ 1 mod 3 and

is R0 7→1
1 7→2

(ℓi, ℓ
′
i) if i ≡ 2 mod 3. If i ≡ 0 mod 3, then there is just the vertex ℓi instead of the

subgraph

ℓi Ri(ℓi, ℓ
′
i) ℓ′i

.
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The vertex x is 0 if n−1 ≡ 0 mod 3, is 2 if n−1 ≡ 1 mod 3, and is 1 if x ≡ 2 mod 3. Note
that the vertex x is thus drawn twice because it is identical to one of 0, 1, 2. For clarity, we also
point out that in the case of D(ℓ0), the widget is simply

0

1

2

ℓ0
.

Lemma 11.3.9

(i) Every 3-coloring ν of the subgraph of D(ℓ0, ℓ1, . . . , ℓn−1) induced by {0,1,2, ℓ0, ℓ1, . . . , ℓn−1}
in which ℓi =ν 1 for some i < n can be extended to a 3-coloring of D(ℓ0, ℓ1, . . . , ℓn−1).

(ii) There is no 3-coloring ν of D(ℓ0, ℓ1, . . . , ℓn−1) in which ℓ0 =ν ℓ1 =ν · · ·=ν ℓn−1 =ν 0.

Proof. For (i), let ν be a 3-coloring of the subgraph induced by {0,1,2, ℓ0, ℓ1, . . . , ℓn−1} in
which ℓi =ν 1 for some i < n. For each i < n, let Di(ℓ0, ℓ1, . . . , ℓn−1) denote the subgraph of
D(ℓ0, ℓ1, . . . , ℓn−1) induced by 0, 1, 2, and the vertices appearing in R j(ℓ j, ℓ

′
j) and U j(ℓ′j,u j−1,u j)

for all j ≤ i. That is, if i < n− 1, then Di(ℓ0, ℓ1, . . . , ℓn−1) is D(ℓ0, ℓi, . . . , ℓi) without the edge
between ui and x; and if i = n−1, then Di(ℓ0, ℓ1, . . . , ℓn−1) is D(ℓ0, ℓi, . . . , ℓn−1). Item (i) is then
the instance i = n−1 of the following claim.

Claim 11.3.10 For all i < n, ν can be extended to a 3-coloring of Di(ℓ0, ℓ1, . . . , ℓn−1). Moreover,
if ℓ j =ν 1 for some j ≤ i, then ν can be extended to a 3-coloring of Di(ℓ0, ℓ1, . . . , ℓn−1) in which
ν(ui) codes this fact. That is, if i ≡ 0 mod 3, then ui 6=ν 0; if i ≡ 1 mod 3, then ui 6=ν 2; and if
i ≡ 2 mod 3, then ui 6=ν 1 (for i = 0, interpret u0 as ℓ0).

Proof. By induction on i < n. For i = 0, D0(ℓ0, ℓ1, . . . , ℓn−1) is the subgraph of induced by
{0,1,2, ℓ0}, which is 3-colored by ν by assumption. Clearly if ℓ0 =ν 1, then ℓ0 6=ν 0. Now
suppose that ν has been extended to a 3-coloring of Di−1(ℓ0, ℓ1, . . . , ℓn−1). For the sake of
argument, suppose that i ≡ 1 mod 3 (the i ≡ 0 mod 3 and i ≡ 2 mod 3 cases are symmetric),
and suppose that if ℓ j =ν 1 for some j ≤ i−1, then ui−1 6=ν 0. First suppose that ℓi =ν 0. As
Ri(ℓi, ℓ

′
i) = R1 7→0

0 7→2
(ℓi, ℓ

′
i), apply Lemma 11.3.4 (i) to extend ν to Ri(ℓi, ℓ

′
i) so that ℓ′i =ν 2. By

Lemma 11.3.6 (i), it is possible to extend ν to U i(ℓ′i,ui−1,ui). Furthermore, if ℓ j =ν 1 for some
j ≤ i− 1, then ui−1 6=ν 0. In this situation, by Lemma 11.3.6 (iii), it is possible to extend ν

to U i(ℓ′i,ui−1,ui) = U2,0,1(ℓ
′
i,ui−1,ui) so that ui =ν 1 (and hence ui 6=ν 2). Now suppose that

ℓi =ν 1. As Ri(ℓi, ℓ
′
i) = R17→0

07→2
(ℓi, ℓ

′
i), apply Lemma 11.3.4 (i) to extend ν to Ri(ℓi, ℓ

′
i) so that

ℓ′i =ν 0. By Lemma 11.3.6 (iv), it is possible to extend ν to U i(ℓ′i,ui−1,ui) =U2,0,1(ℓ
′
i,ui−1,ui)

so that ui =ν 0 (and hence ui 6=ν 2). �

For (ii), suppose for the sake of contradiction that ν is a 3-coloring of D(ℓ0, ℓ1, . . . , ℓn−1)
in which ℓ0 =ν ℓ1 =ν · · · =ν ℓn−1 =ν 0. We prove by induction on i < n that ui =ν 0 if i ≡ 0
mod 3, ui = 2 if i ≡ 1 mod 3, and ui =ν 1 if i ≡ 2 mod 3 (again u0 is interpreted as ℓ0).
Item (ii) follows from the case i = n− 1 because this gives the contradiction un−1 =ν x. For
i = 0, ℓ0 =ν 0 by assumption. Now consider 0 < i < n, assume for the sake of argument
that i ≡ 1 mod 3 (the i ≡ 0 mod 3 and i ≡ 2 mod 3 cases are symmetric), and assume that
ui−1 =ν 0. By Lemma 11.3.4 (i) for the widget Ri(ℓi, ℓ

′
i) = R17→0

07→2
(ℓi, ℓ

′
i), we have that ℓ′i =ν 2.

Thus U i(ℓ′i,ui−1,ui) = U2,0,1(ℓ
′
i,ui−1,ui), ℓ′i =ν 2, and ui−1 =ν 0, so it must be that ui =ν 2 by

Lemma 11.3.6 (ii). �
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Lemma 11.3.11 Let ν be a 3-coloring of D(ℓ0, ℓ1, . . . , ℓn−1). If 0 < i < n and w is a vertex
appearing in an Ri(ℓi, ℓ

′
i) sub-widget or a U i(ℓ′i,ui−1,ui) sub-widget that is not 0, 1, or 2, then the

color of w determines either the color of ℓi or the color of ℓi−1.

Proof. Consider a 3-coloring ν of D(ℓ0, ℓ1, . . . , ℓn−1), an i with 0 < i < n, and a vertex w in
an Ri(ℓi, ℓ

′
i) sub-widget or a U i(ℓ′i,ui−1,ui) sub-widget that is not 0, 1, or 2. If w appears in

Ri(ℓi, ℓ
′
i), then the color of w determines the color of ℓi by Lemma 11.3.4 (iii). If w appears in

U i(ℓ′i,ui−1,ui), then there are a few cases. If w is not ui−1 or d, then the color of w determines
the color ℓ′i by Lemma 11.3.7, which we have just seen determines the color of ℓi (or ℓ′i is ℓi

in the case i ≡ 0 mod 3). Consider w = ui−1. If i = 1, then ui−1 is really ℓ0, and of course
the color of ℓ0 determines the color of ℓ0. Otherwise, i > 1, ui−1 appears in the sub-widget
U i−1(ℓ′i−1,ui−2,ui−1), and hence the color of ui−1 determines the color of ℓi−1.

Lastly, consider w = d. U i(ℓ′i,ui−1,ui) is Ux,y,z(ℓ
′
i,ui−1,ui), where x, y, and z are some

permutation of 0, 1, and 2. If d =ν x or d =ν y, then this determines the color of ℓ′i by
Lemma 11.3.7, which in turn determines the color of ℓi. Otherwise d =ν z, meaning that
ui−1 6=ν z by Lemma 11.3.7. If i = 1, then z = 1, u0 is really ℓ0, and we conclude that ℓ0 =ν 0.
If i > 1, then U i−1(ℓ′i−1,ui−2,ui−1) is Uy,z,x(ℓ

′
i−1,ui−2,ui−1) and, by examining the proof of

Lemma 11.3.7, ui−1 6=ν z implies that ℓ′i−1 =ν y, which in turn determines the color of ℓi−1. �

To code a conjunction of two clauses ℓ0 ∨ ℓ1 ∨·· ·∨ ℓn−1 and s0 ∨ s1 ∨·· ·∨ sm−1, we overlap
the widgets D(ℓ0, ℓ1, . . . , ℓn−1) and D(s0,s1, . . . ,sm−1) by sharing the vertices pertaining to the
longest common prefix of ℓ0, ℓ1, . . . , ℓn−1 and s0,s1, . . . ,sm−1. For example, consider the clauses
ℓ0 ∨ ℓ1 ∨ ℓ2 ∨ ℓ3 ∨ ℓ4 and ℓ0 ∨ ℓ1 ∨ s2 ∨ s3, where ℓ2 6= s2. We overlap D(ℓ0, ℓ1, ℓ2, ℓ3, ℓ4) and
D(ℓ0, ℓ1,s2,s3) as follows:

0 1

2

ℓ0

U1(ℓ′1, ℓ0,u1)ℓ′1R1(ℓ1, ℓ
′
1)ℓ1

u1

U2(ℓ′2,u1,u2)ℓ′2R2(ℓ2, ℓ
′
2)

ℓ2 u2

U2(s′2,u1,v2) s′2 R2(s2,s
′
2)

s2v2

U3(ℓ′3,u2,u3)ℓ3

u3

U3(s′3,v2,v3) s3

v3

U4(ℓ′4,u3,u4)ℓ′4R4(ℓ4, ℓ
′
4)

ℓ4 u4

2

0
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Theorem 11.3.12 RCA0 ⊢ RCOLOR3 → RWKL.

Proof. We prove RCA0 ⊢ RCOLOR3 → RSAT2-branching. The theorem follows by Proposi-
tion 11.2.1.

Let C be a 2-branching and finitely satisfiable set of clauses over an infinite set of atoms
A = {ai : i ∈ N}. We assume that no clause in C is a proper prefix of any other clause in C by
removing from C every clause that has a proper prefix also in C. We build a locally 3-colorable
graph G such that every infinite homogeneous set for G computes an infinite homogeneous set
for C. To start, G contains the vertices 0, 1, and 2, as well as the literal-coding vertices ai and
¬ai for each atom ai ∈ A. These vertices are connected according to the diagram below.

0

1

2

a0 ¬a0

a1 ¬a1

Now build G in stages by considering the clauses in C one-at-a-time. For clause ℓ0 ∨ ℓ1 ∨
·· ·∨ ℓn−1, find the previously appearing clause s0 ∨ s1 ∨·· ·∨ sm−1 having the longest common
prefix with ℓ0 ∨ ℓ1 ∨ ·· ·∨ ℓn−1. Then add the widget D(ℓ0, ℓ1, . . . , ℓn−1) by overlapping it with
D(s0,s1, . . . ,sm−1) as described above. In D(ℓ0, ℓ1, . . . , ℓn−1), for each i < n, the vertex ℓi is the
vertex ai if the literal ℓi is the literal ai, and the vertex ℓi is the vertex ¬ai if the literal ℓi is the
literal ¬ai. The vertices appearing in the sub-widgets Ri(ℓi, ℓ

′
i) and U i(ℓ′i,ui−1,ui) for i beyond

the index at which ℓ0 ∨ ℓ1 ∨ ·· ·∨ ℓn−1 differs from s0 ∨ s1 ∨ ·· ·∨ sm−1 are chosen fresh, except
for 0, 1, 2, and the literal-coding vertices ℓi. This completes the construction of G.

Claim 11.3.13 G is locally 3-colorable.

Proof. Let G0 be a finite subgraph of G. Let s be the latest stage at which a vertex in G0 appears,
and let C0 ⊆C be the set of clauses considered up to stage s. By extending G0, we may assume
that it is the graph constructed up to stage s.

By the finite satisfiability of C, let t : atoms(C0)→{T,F} be a truth assignment satisfying C0.
The truth assignment t induces a 3-coloring ν on the literal-coding vertices in G0. First define
ν on the truth value-coding vertices by ν(0) = 0, ν(1) = 1, and ν(2) = 2. If t(ℓ) is defined
for the literal ℓ, then set ν(ℓ) = t(ℓ) (identifying 0 with F and 1 with T). If ℓ is a literal-coding
vertex in G0 on which t is not defined, then set ν(ℓ) = 1 if ℓ is a positive literal and set ν(ℓ) = 0
if ℓ is a negative literal. For each clause ℓ0 ∨ ℓ1 ∨ ·· · ∨ ℓn−1 in C0, extend ν to a 3-coloring of
G0 by coloring each widget D(ℓ0, ℓ1, . . . , ℓn−1) according to the algorithm implicit in the proof
of Lemma 11.3.9 (i). The hypothesis of Lemma 11.3.9 (i) is satisfied because t satisfies C0,
so for each clause ℓ0 ∨ ℓ1 ∨ ·· · ∨ ℓn−1 in C0, there is an i < n such that ℓi =ν 1. Overlapping
widgets D(ℓ0, ℓ1, . . . , ℓn−1) and D(s0,s1, . . . ,sm−1) are colored consistently because the colors of
the shared vertices depend only on the colors of the literal-coding vertices corresponding to the
longest common prefix of the two clauses. �

Apply RCOLOR3 to G to get an infinite homogeneous set H. We may assume that H contains
exactly one of the truth value-coding vertices 0, 1, or 2. Call this vertex c.
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Consider a vertex w∈H that is not c. The vertex w appears in some widget D(ℓ0, ℓ1, . . . , ℓn−1),
and, by Lemma 11.3.11, from w we can compute an i < n and a ci ∈ {0,1} such that ℓi =ν ci

whenever ν is a 3-coloring of D(ℓ0, ℓ1, . . . , ℓn−1) in which w =ν c. Moreover, for each literal ℓ,
we can compute a bound on the number of vertices w in the graph whose color determines the
color of ℓ. Still by Lemma 11.3.11, if w appears in an Ri(ℓi, ℓ

′
i) sub-widget or a U i(ℓ′i,ui−1,ui)

sub-widget, then the color of w determines either the color of ℓi or the color of ℓi−1. Thus
the vertices whose colors determine the color of ℓi only appear in Ri(ℓi, ℓ

′
i), U i(ℓ′i,ui−1,ui),

Ri+1(ℓi+1, ℓ
′
i+1), and U i+1(ℓ′i+1,ui,ui+1) sub-widgets. The fact that C is a 2-branching set of

clauses and our protocol for overlapping the D(ℓ0, ℓ1, . . . , ℓn−1) widgets together imply that, for
every j > 0, there are at most 2 j sub-widgets of the form R j(ℓ j, ℓ

′
j) and at most 2 j sub-widgets

of the form U j(ℓ′j,u j−1,u j). This induces the desired bound on the number of vertices whose
colors determine the color of ℓi.

Thus from H we can compute an infinite set H ′ of pairs 〈ℓ,cℓ〉, where each ℓ is a literal-
coding vertex and each cℓ is either 0 or 1, such that every finite subgraph of G is 3-colorable by a
coloring ν such that (∀〈ℓ,cℓ〉 ∈ H ′)(ℓ=ν cℓ). Modify H ′ to contain only pairs 〈a,ca〉 for positive
literal-coding vertices a by replacing each pair of the form 〈¬a,c¬a〉 with 〈a,1− c¬a〉. Now
apply the infinite pigeonhole principle to H ′ to get an infinite set H ′′ of positive literal-coding
vertices a and a new c ∈ {0,1} such that the corresponding ca is always c. We identify a positive
literal-coding vertex a with the corresponding atom and show that H ′′ is homogeneous for C.

Let C0 ⊆C be finite. Let G0 be the finite subgraph of G containing {0,1,2}, the literal-coding
vertices whose atoms appear in the clauses in C0, and the D(ℓ0, ℓ1, . . . , ℓn−1) widgets for the
clauses ℓ0 ∨ ℓ1 ∨·· ·∨ ℓn−1 in C0. By the homogeneity of H ′′ for G, there is a 3-coloring ν of G0

such that a =ν c for every a ∈ H ′′. From ν , define a truth assignment t on atoms(C0) by t(a) = T

if a =ν 1 and t(a) = F if a =ν 0. This truth assignment satisfies every clause ℓ0∨ℓ1∨·· ·∨ℓn−1 in
C0. The 3-coloring ν must color the widget D(ℓ0, ℓ1, . . . , ℓn−1), so by Lemma 11.3.9 (ii), it must
be that ℓi =ν 1 for some i < n. Then t(ℓi) = T for this same i, so t satisfies ℓ0 ∨ ℓ1 ∨ ·· ·∨ ℓn−1.
Moreover, t(a) is the truth value coded by c for every a ∈ H ′′, so H ′′ is indeed an infinite
homogeneous set for C. �

It follows that RWKL and RCOLORk are equivalent for every fixed k ≥ 3.

Corollary 11.3.14 For every k ≥ 3, RCA0 ⊢ RWKL↔ RCOLORk.

Proof. Fix k ∈ ω with k ≥ 3. RCA0 ⊢ RWKL → RCOLORk by Lemma 11.3.2. It is easy to
see that RCA0 ⊢ RCOLORk → RCOLOR3. Given a locally 3-colorable graph G, augment G

by a clique C containing k−3 fresh vertices, and put and edge between every vertex in C and
every vertex in G. The resulting graph G′ is locally k-colorable, and every infinite set that is
k-homogeneous for G′ is also 3-homogeneous for G. Finally, RCA0 ⊢ RCOLOR3 → RWKL by
Theorem 11.3.12. �

The question of the exact strength of RCOLOR2 remains open. We were unable to determine
if RCOLOR2 implies RWKL or even if RCOLOR2 implies DNR.

11.4 The strength of RWKL

In this section, we prove various non-implications concerning RWKL and RCOLOR2. The
main result is that RCA0+WWKL 0 RCOLOR2 (Theorem 11.4.9). From this it follows that
RCA0+DNR 0 RWKL, which answers Flood’s question of whether or not RCA0 ⊢ DNR →
RWKL from [Flo12]. We also show that RCA0+CAC0RCOLOR2 (Theorem 11.4.7), where CAC
stands for the chain antichain principle, defined below. Note that it is immediate that RCA0+CAC0
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RWKL because RCA0+RWKL ⊢ DNR (by [Flo12]) but RCA0+CAC 0 DNR (by [HS07]). We
do not know if RCA0 ⊢ RCOLOR2 → DNR, so we must give a direct proof that RCA0+CAC 0
RCOLOR2.

In summary, the situation is thus. WKL and RT2
2 each imply RWKL and therefore each imply

RCOLOR2. However, if WKL is weakened to WWKL, then it no longer implies RCOLOR2.
Similarly, if RT2

2 is weakened to CAC, then it no longer implies RCOLOR2.
We begin our analysis of RCOLOR2 by constructing an infinite, computable, bipartite graph

with no infinite, computable, homogeneous set. It follows that RCA0 0 RCOLOR2. The graph
we construct avoids potential infinite, r.e., homogeneous sets in a strong way that aids our proof
that RCA0+CAC 0 RCOLOR2.

Definition 11.4.1 Let G = (V,E) be an infinite graph. A set W ⊆V 2 is column-wise homo-

geneous for G if W [x] is infinite for infinitely many x (where W [x] = {y : 〈x,y〉 ∈W} is the xth

column of W ), and ∀x∀y(y ∈W [x] →{x,y} is homogeneous for G).

Lemma 11.4.1 There is an infinite, computable, bipartite graph G = (ω,E) such that no r.e. set
is column-wise homogeneous for G.

Proof. The construction proceeds in stages, starting at stage 0 with E = /0. We say that We

requires attention at stage s if e < s and there is a least pair 〈x,y〉 such that
• e < x < y < s,
• y ∈W

[x]
e,s ,

• x and y are not connected to each other, and
• neither x nor y is connected to a vertex ≤ e.

At stage s, let e be least such that We requires attention at stage s and has not previously received
attention. We then receives attention by letting 〈x,y〉 witness that We requires attention at stage s,
letting u and v be the least isolated vertices > s, and adding edges (x,u), (u,v), and (v,y) to E.
This completes the construction.

We verify the construction. We first show that G is acyclic by showing that it is acyclic at
every stage. It follows that G is bipartite because a graph is bipartite if and only if it has no odd
cycles. All vertices are isolated at the beginning of stage 0, hence G is acyclic at the beginning of
stage 0. By induction, suppose G is acyclic at the beginning of stage s. If no We requires attention
at stage s, then no edges are added at stage s, hence G is acyclic at the beginning of stage s+1. If
some least We requires attention at stage s, then during stage s we add a length-3 path connecting
the connected components of the x and y such that 〈x,y〉 witnesses that We requires attention at
stage s. This action does not add a cycle because by the definition of requiring attention, x and y

are not connected at the beginning of stage s. Hence G is acyclic at the beginning of stage s+1.

We now show that, for every e, if there are infinitely many x such that W
[x]
e is infinite, then

there are an x and a y with y ∈W
[x]
e and {x,y} not homogeneous for G. If We receives attention,

then there is a length-3 path between an x and a y with y ∈ W
[x]
e , in which case {x,y} is not

homogeneous for G. Thus it suffices to show that if W
[x]
e is infinite for infinitely many x, then We

requires attention at some stage.

Suppose that W
[x]
e is infinite for infinitely many x, and suppose for the sake of contradiction

that W
[x]
e never requires attention. Let s0 be a stage by which every Wi for i < e that ever requires

attention has received attention. The graph contains only finitely many edges at each stage, so let
x0 be an upper bound for the vertices that are connected to the vertices ≤ e at stage s0. Notice
that when some Wi receives attention, the vertices connected at that stage are not connected to
vertices ≤ i. Therefore once all the Wi for i < e that ever require attention have received attention,
no vertex that is not connected to a vertex ≤ e is ever connected to a vertex ≤ e. In particular,
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no vertex ≥ x0 is ever connected to a vertex ≤ e. Now let x > x0 be such that W
[x]
e is infinite,

and let s1 > s0 be a stage by which every Wi for i < x that ever requires attention has received
attention. Let y0 be an upper bound for the vertices that are connected to x and the vertices ≤ e

at stage s1, and again note that no vertex ≥ y0 is ever connected to x or a vertex ≤ e. As W
[x]
e is

infinite, let s > s1 be a stage at which there is a y > y0 with x < y < s and y ∈W
[x]
e,s . This y is not

connected to x, and neither x nor y is connected to a vertex ≤ e, so We requires attention at stage
s, a contradiction. �

Proposition 11.4.2 RCA0 0 RCOLOR2.

Proof. Consider the ω-model of RCA0 whose second-order part consists of exactly the com-
putable sets. The graph G from Lemma 11.4.1 is in the model because G is computable. However,
the model contains no homogeneous set for G because if H were an infinite, computable, homo-
geneous set, then {〈x,y〉 : x,y ∈ H} would be a computable, column-wise homogeneous set, thus
contradicting Lemma 11.4.1. �

The notion of restricted Π1
2 conservativity helps separate Ramsey-type weak König’s lemma

and the Ramsey-type coloring principles from a variety of weak principles.

Definition 11.4.2 — [HS07; HSS09]. A sentence is restricted Π1
2 if it is of the form ∀A(Θ(A)→

∃B(Φ(A,B))), where Θ is arithmetic and Φ is Σ0
3. A theory T is restricted Π1

2 conservative

over a theory S if S ⊢ ϕ whenever T ⊢ ϕ and ϕ is restricted Π1
2.

Theorem 11.4.3 — [HS07; HSS09]. COH and AMT are restricted Π1
2 conservative over RCA0.

RCOLOR2 is a restricted Π1
2 sentence, so we immediately have that neither COH nor AMT

implies RCOLOR2 over RCA0. Consequently, over RCA0, COH, AMT and OPT are all incom-
parable with RWKL and with RCOLOR2.

Theorem 11.4.4 RWKL and RCOLOR2 are incomparable with each of COH, AMT, and
OPT over RCA0.

Proof. By [HSS09], AMT implies OPT over RCA0. Thus we need only show that nei-
ther RCA0+COH nor RCA0+AMT prove RCOLOR2 and that RCA0+RWKL proves neither
COH nor OPT. Observe that RCOLOR2 is restricted Π1

2 sentence, so we have that neither
RCA0+COH nor RCA0+AMT proves RCOLOR2 by Proposition 11.4.2 and Theorem 11.4.3.
RCA0+RWKL proves neither COH nor OPT because RCA0+WKL proves RCA0+RWKL

and RCA0+WKL proves neither COH [HS07] nor OPT [HSS09]. �

Definition 11.4.3 — Chain-antichain. A partial order P = (P,≤P) consists of a set P

together with a reflexive, antisymmetric, transitive, binary relation ≤P on P. A chain in
P is a set S ⊆ P such that (∀x,y ∈ S)(x ≤P y∨ y ≤P x). An antichain in P is a set S ⊆ P

such that (∀x,y ∈ S)(x 6= y → x|Py) (where x|Py means that x �P y∧ y �P x). A partial order
(P,≤P) is stable if either (∀i ∈ P)(∃s)[(∀ j > s)( j ∈ P → i ≤P j)∨ (∀ j > s)( j ∈ P → i |P j)]
or (∀i ∈ P)(∃s)[(∀ j > s)( j ∈ P → i ≥P j)∨ (∀ j > s)( j ∈ P → i |P j)]. CAC is the statement
“every infinite partial order has an infinite chain or an infinite antichain.” SCAC is the
restriction of CAC to stable partial orders.

We now adapt the proof that RCA0+CAC 0 DNR in [HS07] to prove that RCA0+CAC 0
RCOLOR2. We build an ω-model of RCA0+SCAC+COH that is not a model of RCOLOR2 by
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alternating between adding chains or antichains to stable partial orders and adding cohesive sets
without ever adding an infinite set homogeneous for the graph from Lemma 11.4.1.

Lemma 11.4.5 Let X be a set, let G = (V,E) be a graph computable in X such that no column-
wise homogeneous set for G is r.e. in X , and let P = (P,≤P) be an infinite, stable partial order
computable in X . Then there is an infinite C ⊆ P that is either a chain or an antichain such that
no column-wise homogeneous set for G is r.e. in X ⊕C.

Proof. For simplicity, assume that X is computable. The proof relativizes to non-computable X .
As P is stable, assume for the sake of argument that P satisfies (∀i ∈ P)(∃s)[(∀ j > s)( j ∈ P →
i ≤P j)∨ (∀ j > s)( j ∈ P → i |P j)]. The case with ≥P in place of ≤P is symmetric. Also assume
that there is no computable, infinite antichain C ⊆ P, for otherwise we are done.

Let U = {i ∈ P : (∃s)(∀ j > s)( j ∈ P → i ≤P j)}. The fact that there is no computable, infi-
nite antichain in P implies that U is infinite. Let F = (F,⊑) be the partial order consisting of
all σ ∈U<ω that are increasing in both < and ≤P, where τ ⊑ σ if τ � σ . Let H be sufficiently
generic for F , and notice that H (or rather, the range of H, which is computable from H as H

is increasing in <) is an infinite chain in P. Suppose for the sake of contradiction that W H
e is

column-wise homogeneous for G. Fix a σ � H such that

σ 
 ∀x∀y(y ∈ (W H
e )[x] →{x,y} is homogeneous for G).

Define a partial computable function τ : ω2 → P<ω by letting τ(x, i)∈ P<ω be the string with the

least code such that τ(x, i)⊇σ , that τ(x, i) is increasing in both < and ≤P, and that |(W τ(x,i)
e )[x]|>

i. From here there are two cases:
Case 1: There are infinitely many pairs 〈x, i〉 such that both τ(x, i) is defined and there

is a y ∈ (W
τ(x,i)
e )[x] with {x,y} not homogeneous for G. The last element of such a τ(x, i)

is in PrU because otherwise τ(x, i) ∈ F and τ(x, i) � σ , contradicting that σ 
 ∀x∀y(y ∈
(W H

e )[x] →{x,y} is homogeneous for G). Thus the set C consisting of the last elements of such
strings τ(x, i) is an infinite r.e. subset of PrU . As elements i of PrU have the property
(∃s)(∀ j > s)( j ∈ P → i |P j), we can thin C to an infinite r.e. antichain in P and hence to an
infinite computable antichain in P, a contradiction.

Case 2: There are finitely many pairs 〈x, i〉 such that τ(x, i) is defined and there is a y ∈

(W
τ(x,i)
e )[x] with {x,y} not homogeneous for G. In this case, let x0 be such that if x > x0 and τ(x, i)

is defined, then (∀y ∈ (W
τ(x,i)
e )[x])({x,y} is homogeneous for G). Notice that if |(W H

e )[x]| > i,
then there is a τ with σ � τ � H such that |(W τ

e )
[x]|> i. Hence if (W H

e )[x] is infinite, then τ(x, i)
is defined for all i. Thus let

W =
{〈

x,max(W τ(x,i)
e )[x]

〉

: x > x0 ∧ i ∈ ω ∧ τ(x, i) is defined
}

.

Then W is an r.e. set that is column-wise homogeneous for G, a contradiction.
Thus there is no column-wise homogeneous set for G that is r.e. in H. Therefore (the range

of) H is our desired chain C. �

Lemma 11.4.6 Let X be a set, let G = (V,E) be a graph computable in X such that no column-
wise homogeneous set for G is r.e. in X , and let ~R = (Ri)i∈ω be a sequence of sets uniformly
computable in X . Then there is an infinite set C that is cohesive for R such that no column-wise
homogeneous set for G is r.e. in X ⊕C.

Proof. For simplicity, assume that X is computable. The proof relativizes to non-computable X .
We force with computable Mathias conditions (D,L), where D ⊆ ω is finite, L ⊆ ω is

infinite and computable, and every element of D is less than every element of L. The order is
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(D1,L1)⊑ (D0,L0) if D0 ⊆ D1, L1 ⊆ L0, and D1 rD0 ⊆ L0. Let H be sufficiently generic. Then
H is an infinite cohesive set for ~R (as in, for example, Section 4 of [CJS01]).

Suppose for the sake of contradiction that W H
e is column-wise homogeneous for G. Let

(D,L) be a condition such that D ⊆ H ⊆ L and

(D,L) 
 ∀x∀y(y ∈ (W H
e )[x] →{x,y} is homogeneous for G).

Let

W =
{
〈x,y〉 : ∃E(E is finite∧D ⊆ E ⊆ L∧〈x,y〉 ∈W E

e )
}
.

W is an r.e. set, and ∀x∀y(y ∈W [x] →{x,y} is homogeneous for G). To see the second statement,
suppose there is a 〈x,y〉 ∈W such that {x,y} is not homogeneous for G, and let E witness 〈x,y〉 ∈
W . Then (E,LrE)� (D,L), but (E,LrE)
 (y ∈ (W H

e )[x]∧{x,y} is not homogeneous for G),
a contradiction. Finally, W ⊇W H

e because if 〈x,y〉 ∈W H
e , then there is a finite E with D ⊆ E ⊆ L

such that 〈x,y〉 ∈ W E
e , in which case 〈x,y〉 ∈ W . Thus W is an r.e. set that is column-wise

homogeneous for G. This contradicts the lemma’s hypothesis. Therefore no column-wise
homogeneous set for G is r.e. in H, so H is the desired cohesive set. �

Theorem 11.4.7 RCA0+CAC 0 RCOLOR2

Proof. Iterate and dovetail applications of Lemma 11.4.5 and Lemma 11.4.6 to build a collection
of sets S such that (ω,S ) � RCA0+COH+SCAC, the graph G from Lemma 11.4.1 is in S ,
and no set that is r.e. in any set in S is column-wise homogeneous for G. Then (ω,S ) � CAC

by [HS07], and (ω,S ) 2 RCOLOR2 by the same argument as in Proposition 11.4.2. �

We conclude by proving that RCA0+DNR 0 RWKL, thereby answering [Flo12] Question 9.
In fact, we prove the stronger result RCA0+WWKL 0 RCOLOR2. This is accomplished by
building a computable bipartite graph G such that the measure of the set of oracles that compute
homogeneous sets for G is 0. It follows that there is a Martin-Löf random X that does not
compute a homogenous set for G, and a model of RCA0+WWKL+¬RCOLOR2 is then easily
built from the columns of X .

Recall that, in the context of a bipartite graph G = (V,E), a set H ⊆V is 2-homogeneous for
G if no two vertices in H are connected by an odd-length path in G. Here we simply say that such
an H is G-homogeneous (or just homogeneous). Likewise, if H ⊆V contains two vertices that
are connected by an odd-length path in G, then H is G-inhomogeneous (or just inhomogeneous).

Theorem 11.4.8 There is a computable bipartite graph G = (ω,E) such that the measure of
the set of oracles that enumerate homogeneous sets for G is 0.

Proof. By Lebesgue density considerations (see, for example, [Nie09] Theorem 1.9.4), if a
positive measure of oracles enumerate infinite homogeneous sets for a graph G, then

(∀ε > 0)(∃e)[µ{X : W X
e is infinite and G-homogeneous}> 1− ε].

Thus it suffices to build G to satisfy the following requirement Re for each e ∈ ω:

Re : µ{X : W X
e is infinite and G-homogeneous} ≤ 0.9.

Let us first give a rough outline of the construction. Observe our construction must necessarily
produce a graph G that does not contain an infinite connected component. If G has an infinite
connected component, then that component contains a vertex v such that infinitely many vertices
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are connected to v by an even-length path. These vertices that are at an even distance from v can
be effectively enumerated, and they form a homogeneous set. Thus our graph G must be a union
of countably many finite connected components. Each stage of the construction adds at most
finitely many edges, and thus at each stage of the construction all but finitely many vertices are
isolated. For each e, our plan is the following. We monitor the action of W X

e for all oracles X

until we see a sufficient measure of X’s produce enough vertices (in a sense to made precise).
Then, the idea is to satisfy the requirement by adding edges to these vertices in a way that defeats
about half (in the measure-theoretic sense) of the oracles X . This is done by a two-step process.
Requirement Re acts by either type I or type II actions, the second type following the first type.
In a type I action, Re locks some finite number of vertices, thereby preventing lower priority
requirements from adding edges to these locked vertices. In a type II action, Re merges finitely
many of G’s connected components into one connected component by adding some new edges
while maintaining that G is a bipartite graph. This merging is made in a way which ensures that
for a sufficient measure of oracles X , W X

e is inhomogeneous for the resulting graph.
We now present the construction in full detail. At stage s, we say that
• Re requires type I attention if Re has no vertices locked and there are strings of length s

witnessing that

µ{X : (∃x ∈W X
e,s)(x is not connected to any v locked by Rk for any k < e)}> 0.9;

• Re requires type II attention if it currently has locked vertices due to a type I action, has
never acted according to type II, and there are strings of length s witnessing that

µ{X : (∃y ∈W X
e,s)(y is not connected to any v locked by Rk for any k ≤ e)}> 0.9;

• Re requires attention if Re requires type I attention or requires type II attention.
At stage 0, E = /0, and no requirement has locked any vertices.
At stage s+1, let e < s be least such that Re requires attention (if there is no such e, then go

on to the next stage). If Re requires type I attention, let x0,x1, . . . ,xn−1 be vertices that are not
connected to any v locked by Rk for any k < e and such that the strings of length s witness that
µ{X : (∃i < n)(xi ∈W X

e,s)}> 0.9. Re locks the vertices x0,x1, . . . ,xn−1. All requirements Rk for
k > e unlock all of their vertices.

If Re requires type II attention, let y0,y1, . . . ,ym−1 be vertices that are not connected to any
v locked by Rk for any k ≤ e and such that the strings of length s witness that µ{X : (∃ j <
m)(y j ∈W X

e,s)}> 0.9. Let x0,x1, . . . ,xn−1 be the vertices that are locked by Re. First we merge
the connected components of the xi’s into a single connected component and the connected
components of the y j’s into a single connected component. To do this, let a,b,c,d > s be fresh
vertices, and add the edges (a,b) and (c,d). The graph is currently bipartite, so for each i < n

add either the edge (xi,a) or (xi,b) so as to maintain a bipartite graph. Similarly, merge the
connected components of the y j’s by adding either the edge (y j,c) or (y j,d) for each j < m. The
component of the xi’s is disjoint from the component of the y j’s because the y j’s were chosen
not to be connected to the xi’s. Thus both the graph G1 obtained by adding the edge (a,c) and
the graph G2 obtained by adding the edge (a,d) are bipartite. Each pair {xi,y j} is homogeneous
for exactly one of G1 and G2, and the strings of length s witness that

µ{X : (∃i < n)(∃ j < m)(xi ∈W X
e,s ∧ y j ∈W X

e,s)}> 0.8

and therefore that

µ{X : W X
e,s is either G1-inhomogeneous or G2 inhomogeneous}> 0.8.
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Thus the strings of length s either witness that

µ{X : W X
e,s is G1-inhomogeneous}> 0.4,

in which case we extend to G1 by adding the edge (a,c), or that

µ{X : W X
e,s is G2-inhomogeneous}> 0.4,

in which case we extend to G2 by adding the edge (a,d). This completes the construction.
To verify the construction, we first notice that G is bipartite because it is bipartite at every

stage. Furthermore, G is computable because if an edge (u,v) is added at stage s, either u > s or
v > s. Thus to check whether an edge (u,v) is in G, it suffices to check whether the edge has
been added by stage max(u,v).

We now verify that every requirement is satisfied. Suppose that Re acts according to type II
at some stage s+1. Then Re is satisfied because we have ensured that

µ{X : W X
e is G-inhomogeneous}> 0.4

and thus that

µ{X : W X
e is G-homogeneous} ≤ 0.6.

We prove by induction that, for every e ∈ ω , Re is satisfied and there is a stage past which
Re never requires attention. Consider Re. If µ{X : W X

e is infinite} ≤ 0.9, then Re is satisfied and
Re never requires attention. So assume that µ{X : W X

e is infinite} > 0.9. By induction, let s0

be a stage such that no Rk for k < e ever requires attention at a stage past s0. If Re has locked
vertices at stage s0, then these vertices remain locked at all later stages because no higher priority
Rk ever unlocks them. If Re does not have locked vertices at stage s0, then let s1 ≥ s0 be least
such that the strings of length s1 witness that Re requires type I attention. Such an s1 exists
because µ{X : W X

e is infinite}> 0.9 and because the finite set of vertices that are connected to
vertices locked by the Rk for k < e have stabilized by stage s0. Re then requires and receives
type I attention at stage s1, and the vertices that Re locks at stage s1 are never later unlocked.
So there is a stage s1 ≥ s0 by which Re has locked a set of vertices that are never unlocked. If
Re has acted according to type II by stage s1, then Re is satisfied and never requires attention
past stage s1. If Re has not acted according to type II by stage s1, let s2 ≥ s1 be least such that
the strings of length s2 witness that Re requires type II attention. Such an s2 exists because
µ{X : W X

e is infinite} > 0.9 and because, past stage s1, no requirement except Re can act to
connect a vertex to a vertex locked by an Rk for a k ≤ e. Re then requires and receives type II
attention at stage s2. Hence Re is satisfied, and Re never requires attention at a later stage. This
completes the proof. �

Theorem 11.4.9 RCA0+WWKL 0 RCOLOR2.

Proof. Let G be the computable graph from Theorem 11.4.8. There are measure 1 many Martin-
Löf random sets, but only measure 0 many sets compute homogeneous sets for G. Thus let X be a
Martin-Löf random set that does not compute a homogeneous set for G, and let M be the structure
whose first-order part is ω and whose second-order part is {Y : ∃k(Y ≤T

⊕

i<k X [i])}. It is well-
known that M � RCA0+WWKL, which one may see by appealing to van Lambalgen’s theorem
(see [DH10] Section 6.9) and the equivalence between WWKL and 1-RAN. Moreover, M 2
RCOLOR2 because M contains the bipartite graph G, but it does not contain any homogeneous
set for G. �
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It now follows that RCA0+DNR 0 RWKL. This has been proved independently by Flood
and Towsner [FT14] using the techniques introduced by Lerman, Solomon, and Towsner [LST13].
Recently, the author [Pat15f] enhanced the separation of DNR and RWKL by proving that for
every computable order h, there is an ω-model of the statement “for every X there is a function
that is DNR relative to X and bounded by h” that is not a model of RCOLOR2. This answers a
question in [FT14].

Corollary 11.4.10 RCA0+DNR 0 RWKL.

Proof. This follows from Theorem 11.4.9 because RCA0 ⊢ WWKL → DNR and RCA0 ⊢
RWKL→ RCOLOR2. �



Part III

Further topics





12. Degrees bounding principles

Many theorems studied in reverse mathematics are Π1
2 statements and can be seen as collections

of problems parameterized by their instances. The study of theorems which are collections of
problems rather than the study of the instances individually is justified by the existence of a
single argument, namely, the proof of the theorem, to construct a solution to each instance. An
effective analysis of the argument enables one to give a uniform bound on the solutions to the
instances, even tough some instances may be harder to solve than others.

Some theorems such as cohesiveness or weak König’s lemma happen to have maximally
difficult instances, that is, instances such that any solution to them can produce a solution to any
other instance. Such an instance is then called universal.

Definition 12.0.1 — Universal instance. Given a statement P, a degree d bounds P (written
d ≫P /0) if every computable instance X of P has a d-computable solution. A statement P
admits a universal instance if there is a computable P-instance X such that every solution to
X bounds P.

The notation d ≫ /0 historically means that the degree d is PA and therefore is equivalent
to d ≫WKL /0. It is well-known that WKL admits a universal instance – e.g. take the Π0

1 class
of completions of Peano arithmetics –. A few principles have been proven to admit universal
instances, namely, weak König’s lemma [Odi92], König’s lemma [Hir15], cohesiveness [JS93],
the Ramsey-type weak weak König’s lemma [BPS15], the finite intersection property (FIP)
[Dow+12], the omitting partial type theorem (OPT) [HSS09], or even the rainbow Ramsey
theorem for pairs [Mil], but most of the principles studied in reverse mathematics do not admit
one.

The standard way to prove that some statement P does not admit a universal instance
consists of showing that every computable P-instance has a solution satisfying some weakness
property P , but that no degree in P bounds P. More generally, the following lemma holds.

Lemma 12.0.1 Fix some weakness property P and let P and Q be two Π1
2 statements such that

the following holds.
(i) Every computable P-instance has a solution in P .

(ii) For every set X ∈ P , there is a computable Q-instance with no X-computable solution
Then no Π1

2 statement R such that Q≤c R≤c P admits a universal instance.

Proof. Let R be a Π1
2 statement such that Q≤c R≤c P. Let I be a computable R-instance. We

will prove that it is not universal. Since R≤c P, I has a solution Y ∈ P , and since Q≤c R, there
is a computable R-instance J with no Y -computable solution. Therefore, the solution Y to I does
not bound P and I is not a universal instance. �

Mileti [Mil04] studied the degrees bounding Ramsey’s theorem for pairs and proved in
particular that stable Ramsey theorem for pairs admits no bound of low2 degree. Therefore,
no statement computably in between Ramsey’s theorem for pairs and its stable version admits
a universal instance. Independently, Hirschfeldt & Shore proved in [HS07] that the stable
ascending descending sequence principle admits no bound of low degree. Hence neither SADS
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nor the stable chain antichain principle admit a universal instance. In this chapter, we generalize
these results and study the degree boundings Ramsey-type theorems.

12.1 Degrees bounding the atomic model theorem

The atomic model theorem is a statement of model theory admitting a simple, purely computability-
theoretic characterization over ω-models. This statement happens to have a weak computational
content and is therefore a consequence of many other principles in reverse mathematics. For
those reasons, the atomic model theorem is a good candidate for factorizing proofs of properties
which are closed upward by the consequence relation. Recall that the principle AMT has been
proven in [Con08; HSS09] to be computably equivalent to the following principle:

Definition 12.1.1 — Escape property. For every ∆0
2 function f , there exists a function g

such that f (x)≤ g(x) for infinitely many x.

This equivalence does not hold over RCA0 as, unlike AMT, the escape property implies IΣ0
2

over BΣ0
2 [HSS09]. Hirschfeldt and Shore proved in [HS07] that the stable ascending descending

sequence principle admits no bound of low degree. Using the characterization of AMT in terms
of the escape property, we can easily deduce the following theorem.

Theorem 12.1.1 There is no low2 ∆0
2 degree bounding AMT.

Note that Theorem 12.1.1 is a strengthening of the result of Hirschfeldt and Shore [HS07]
since Hirschfeldt et al. [HSS09] proved that AMT is a consequence of SADS over computable
reducibility. Theorem 12.1.1 can be easily proven using the following characterization of ∆0

2
low2 sets in terms of domination:

Lemma 12.1.2 — Martin, [Mar66]. A set A ≤T /0′ is low2 iff there exists an f ≤T /0′ dominating
every A-computable function.

Proof. A set A is low2 iff /0′ is high relative to A. We conclude the lemma from the observation
that a set X is high relative to a set A ≤T /0′ iff it computes a function dominating every A-
computable function. �

As explained Conidis in [Con08], Theorem 12.1.1 cannot be extended to every low2 sets.
Indeed, Soare [Con08] constructed a low2 set bounding the escape property using a forcing
argument. So there exists a low2 degree bounding AMT.

Corollary 12.1.3 No principle P having an ω-model with only low sets and such that
AMT≤c P admits a universal instance.

Proof. Suppose for the sake of contradiction that P has a universal instance U and an ω-model
M with only low sets. As U is computable, U ∈ M . Let X ∈ M be a (low) solution to U . In
particular, X is low2 and ∆0

2, so by Lemma 12.1.2 and the computable equivalence of AMT and
the escape property, there exists a computable instance Y of AMT such that X does not compute
a solution to Y . As AMT≤c P, there exists a Y -computable (hence computable) instance Z of P
such that every solution to Z computes a solution to Y . Thus X does not compute a solution to Z,
contradicting the universality of U . �

Hirschfeldt et al. proved in [HS07] the existence of an ω-model of SADS and SCAC with
only low sets. Therefore we obtain another proof that neither SADS nor SCAC admits a universal
instance. The result was first proven in [HS07] using an ad-hoc notion of reducibility.
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Corollary 12.1.4 None of AMT, SADS and SCAC admit a universal instance.

The previous argument cannot directly be applied to SRT2
2, SEM or STS2 as none of

those principles admit an ω-model with only low sets [Dow+01; Kre12; Pat15g]. However
Corollary 12.1.3 can be extended to principles such that every computable instance has a ∆0

2
low2 solution. It is currently unknown whether every ∆0

2 set admits a ∆0
2 low2 infinite subset in

either it or its complement. A positive answer would lead to a proof that SRT2
2, SEM and STS2

have no universal instance, and more importantly, would provide an ω-model of SRT2
2 that is not

a model of 2-DNR as explained in [Hir+08]. We shall see in a later section that none of SRT2
2,

SEM and STS2 admits a universal instance.

12.2 No low2 degree bounds STS
2 or SADS

Mileti originally proved in [Mil04] that no principle P having an ω-model with only low2 sets
and satisfying SRT2

2 ≤c P admits a universal instance, and deduced that none of SRT2
2 and RT2

2
admit one. In this section, we reapply his argument to much weaker statements and derive
non-universality results to a large range of principles in reverse mathematics. Thin set theorem
and ascending descending sequence are example of statements weak enough to be a consequence
of many others, and surprisingly strong enough to diagonalize against low2 sets. As does Mileti
in [Mil04], we deduce the following theorem by the application of his proof technique.

Theorem 12.2.1 There exists no low2 degree bounding any of STS2 or SADS.

Corollary 12.2.2 No principle P having an ω-model with only low2 sets and such that any
of STS2, SADS is computably reducible to P admits a universal instance.

The proof of Theorem 12.2.1 is split into three lemmas. Lemma 12.2.5 provides a general way
of obtaining bounding and universality results, assuming the ability of a principle to diagonalize
against a particular set. Lemma 12.2.6 and Lemma 12.2.7 state the desired diagonalization for
respectively STS2 and SADS.

Corollary 12.2.3 None of the following principles admits a universal instance: RT2
2, 2-RWKL,

FS2, TS2, CAC, ADS and their stable versions.

Proof. Each of the above mentioned principles is a consequence of RT2
2 over RCA0 and com-

putably implies either SADS or STS2. See [Flo12] for 2-RWKL, [Cho+01] for FS2 and TS2,
and [HS07] for CAC and ADS. By Theorem 3.1 of [CJS01], there exists an ω-model of RT2

2
having only low2 sets. The result now follows from Corollary 12.2.2. �

In order to prove Theorem 12.2.1, we need the following theorem proven by Mileti. It simply
consists of applying a relativized version of the low basis theorem to a Π0

1 class of completions
of the enumeration of all partial computable sets.

Theorem 12.2.4 — Mileti, Corollary 5.4.5 of [Mil04]. For every set X , there exists f : ω2 →
{0,1} low over X such that for every X-computable set Z, there exists an e ∈ ω with Z =
{a ∈ ω : f (e,a) = 1}.

Before going into the core lemmas, we show how to obtain Theorem 12.2.1 from Lemma 12.2.6
and Lemma 12.2.7.
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Lemma 12.2.5 Fix an n ∈ ω and two principles P and Q such that P≤c Q. Suppose that for any
f : ω2 →{0,1} satisfying f ′′ ≤T /0(n+2), there exists a computable instance I of P such that for
each e ∈ ω , if {a ∈ ω : f (e,a) = 1} is infinite then it is not a solution to I. Then the following
holds:

(i) For any degree d low2 over /0(n) there is a computable instance U of P such that d does not
bound a solution to U .

(ii) There is no degree low2 over /0(n) bounding P.
(iii) If every computable instance I of Q has a solution low2 over /0(n), then Q has no universal

instance.

Proof.

(i) Consider any set X of degree low2 over /0(n). By Theorem 12.2.4, there exists a function
f : ω2 →{0,1} low over X , hence low2 over /0(n), such that any X-computable set Z is of
the form {a ∈ ω : f (e,a) = 1} for some e ∈ ω . Take a computable instance I of P having
no solution of the form {a ∈ ω : f (e,a) = 1} for any e ∈ ω . Then X does not compute a
solution to I.

(ii) Immediate from (i).
(iii) Take any computable instance U of Q. By assumption, U has a solution X low2 over /0(n).

By (i), there exists an instance I of P such that X does not compute a solution to I. As
P≤c Q, there exists an I-computable (hence computable) instance J of Q such that any
solution to J computes a solution to I. Then X does not compute a solution to J, hence U

is not a universal instance.
�

We will prove the following lemmas which, together with Lemma 12.2.5, are sufficient to
deduce Theorem 12.2.1.

Lemma 12.2.6 Fix a set X . Suppose f : ω2 → {0,1} satisfies f ′′ ≤T X
′′
. There exists an

X-computable stable coloring g : [ω]2 → ω such that for all e ∈ ω , if {a ∈ ω : f (e,a) = 1} is
infinite then it is not thin for g.

Lemma 12.2.7 Fix a set X . Suppose f : ω2 →{0,1} satisfies f ′′ ≤T X
′′
. There exists a stable

X-computable linear order L such that for all e ∈ ω , if {a ∈ ω : f (e,a) = 1} is infinite then it is
neither an ascending nor a descending sequence in L.

Before proving the two remaining lemmas, we relativize the results to colorings over arbitrary
tuples.

Theorem 12.2.8 For any n, there exists no degree low2 over /0(n) bounding STSn+2.

Proof. Apply Lemma 12.2.6 relativized to X = /0(n) together with Lemma 12.2.5. Simply notice
that if f : [ω]n →ω is a /0′-computable coloring, the computable coloring g : [ω]n+1 →ω obtained
by an application of Shoenfield’s limit lemma is such that every infinite set thin for g is thin
for f . �

Corollary 12.2.9 For any n, no principle P having an ω-model with only low2 over /0(n) sets
and such that STSn+2 ≤c P admits a universal instance.

Proof. Same reasoning as Corollary 12.2.2 using the remark in the proof of Theorem 12.2.8. �
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Theorem 12.2.10 For any n, none of RTn+2
2 , (n+2)-RWKL, FSn+2, TSn+2 and their stable

versions admits a universal instance.

Proof. Fix an n ∈ ω . Each of the above cited principles P satisfies STSn+2 ≤c P and is a
consequence of RTn+2

2 over ω-models. Cholak et al. [CJS01] proved the existence of an ω-
model of RTn+2

2 having only low2 over /0(n) sets. Apply Corollary 12.2.9. �

We now turn to the proofs of Lemma 12.2.6, and Lemma 12.2.7.

Proof of Lemma 12.2.6. We prove it in the case when X = /0. The general case follows by a
straightforward relativization. For each e ∈ ω , let Ze = {a ∈ ω : f (e,a) = 1}. The proof is very
similar to [Mil04, Theorem 5.4.2.]. We build a /0′-computable function c : ω → ω such that for
all e ∈ ω , if Ze is infinite then it is not thin for c. Given such a function c, we can then apply
Shoenfield’s limit lemma to obtain a stable computable function h : [ω]2 → ω such that for each
x ∈ ω , lims h(x,s) = c(x). Every set thin for h is thin for c, and therefore for all e ∈ ω , if Ze is
infinite then it is not thin for h.

Suppose by Kleene’s fixpoint theorem that we are given a Turing index d of the function c as
computed relative to /0′. The construction is done by a finite injury priority argument satisfying
the following requirements for each e, i ∈ ω:

Re,i : Ze is finite or (∃a)[ f (e,a) = 1 and Φ /0′
d (a) = i]

The requirements are ordered in a standard way, that is, ordering pairs in lexicographic order.
Notice that each of these requirement is Σ

f
2 , and furthermore we can effectively find an index

for each as such. Therefore, for each e and i ∈ ω , we can effectively find an integer me,i such
that Re,i is satisfied if and only if me,i ∈ f ′′. By Shoenfield’s limit Lemma relativized to /0′ and
low2-ness of f , there exists a /0′-computable function g : ω2 → 2 such that for all m, we have
m ∈ f ′′ ↔ lims g(m,s) = 1 and m 6∈ f ′′ ↔ lims g(m,s) = 0. Notice that for all e and i ∈ ω , Re,i is
satisfied if and only if lims g(me,i,s) = 1.

At stage s, assume we have defined c(u) for every u < s. If there exists a least strategy Re,i

(in priority order) with 〈e, i〉 < s such that g(me,i,s) = 0, set c(s) = i. Otherwise set c(s) = 0.
This ends the construction. We now turn to the verification.

Claim 12.2.11 Every requirement Re,i is satisfied.

Proof. By induction over ordered pairs 〈e, i〉 in lexicographic order. Suppose that Re′,i′ is satisfied
for all 〈e′, i′〉< 〈e, i〉, but Re,i is not satisfied. Then there exists a threshold t ≥ 〈e, i〉 such that
g(me′,i′ ,s) = 1 for all 〈e′, i′〉< 〈e, i〉 and g(me,i,s) = 0 whenever s ≥ t. By construction, c(s) = i

for every s ≥ t. As Ze is infinite, there exists an element s ∈ Ze such that c(s) = i, so Ze is not
thin for c with witness i and therefore Re,i is satisfied. Contradiction. �

�

Proof of Lemma 12.2.7. Again, we prove the lemma in the case when X = /0. For each e ∈ ω ,
let Ze = {a ∈ ω : f (e,a) = 1}. The proof is very similar to [Mil04, Theorem 5.4.2.]. We build a
∆0

2 set U together with a stable computable linear order L such that U is the ω part of L, that is,
U is the collection of elements L-below cofinitely many other elements. We furthermore ensure
that for each e ∈ ω , if Ze is infinite, then it intersects both U and U . Therefore, if Ze is infinite,
it is neither an ascending, nor a descending sequence in L as otherwise it would be included in
either U or U .

Assume by Kleene’s fixpoint theorem that we are given the Turing index d of U as computed
relative to /0′. The set U is built by a finite injury priority construction with the following
requirements for each e ∈ ω:
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• R2e : Ze is finite or (∃a)[ f (e,a) = 1 and Φ /0′
d (a) = 1]

• R2e+1 : Ze is finite or (∃a)[ f (e,a) = 1 and Φ /0′
d (a) = 0]

Notice again that each of these requirement is Σ
f
2 , and furthermore we can effectively find

an index for each as such. Therefore, for each i ∈ ω , we can effectively find an mi such that
Ri is satisfied if and only if mi ∈ f ′′. By two applications of Shoenfield’s limit Lemma and
low2-ness of f , there exists a computable function g : ω3 → 2 such that for all m ∈ ω , we have
m ∈ f ′′ ↔ limt lims g(m,s, t) = 1 and m 6∈ f ′′ ↔ limt lims g(m,s, t) = 0. Notice that for all i ∈ ω ,

Ri is satisfied ↔ lim
t

lim
s

g(mi,s, t) = 1

At stage 0, U0 = /0 and every integer is a leader and follows itself. We say that Ri requires

attention for u at stage s if i ≤ u ≤ s, u is leader and g(mi,s,u) = 0. At stage s+ 1, assume
we have decided u <L v or u >L v for every u,v < s. Set u <L s if u ∈Us and u >L s if u 6∈Us.
Initially set Us+1 =Us. For each leader u ≤ s which has not been claimed at stage s+1 and for
which some requirement Ri, i < u requires attention, say that the least such Ri claims u and act
as follows.

(a) If i = 2e and u 6∈Us, then add [u,s] to Us+1, where the interval [u,s] is taken in the usual
order on ω and not in <L. Elements of [u+1,s] follow u and are no more considered as
leaders from now on and at any further stage.

(b) If i = 2e+1 and u ∈Us, then remove [u,s] from Us+1. Similarly, elements of [u+1,s] are
no more leaders and follow u.

Then go to the next leader u ≤ s. This ends the construction. An immediate verification shows
that at every stage,

• if u stops being a leader it never becomes again a leader
• if u follows v then v ≤ u, v is a leader, every w between v and u follows v and thus u will

never follow any w > v.
So the leader that u follows eventually stabilizes. Moreover, because g is limit-computable, each
leader eventually stops increasing its number of followers and therefore there are infinitely many
leaders.

Claim 12.2.12 L is a linear order.

Proof. As L is a tournament, it suffices to check there is no 3-cycle. By symmetry, we check
only the case where u <L s <L v <L u forms a 3-cycle with s the maximal element in <ω order.
By construction, this means that u ∈ Us, v 6∈ Us. If u <ω v, then u 6∈ Uv and so there exists a
leader w ≤ω u and an even number i ≤ w such that Ri requires attention for w at a stage t ≥ v.
Case (a) of the construction applies and the interval [w+1, t] is included U at least until stage s.
As v ∈ [w+1, t], v ∈Us contradicting our hypothesis. Case u >ω v is symmetric. �

Claim 12.2.13 U is ∆0
2.

Proof. Suppose for the sake of contradiction that there exists a least element u entering U and
leaving it infinitely many times. Such a u must be a leader, otherwise it would not be the least
one. Let Ri be the least requirement claiming u infinitely many times. As lims g(mi,s,u) exists,
it will claim u cofinitely many times and therefore u will be in U or in U cofinitely many times.
Contradiction. �

It immediately follows that L is stable.

Claim 12.2.14 Every requirement Ri is satisfied.
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Proof. By induction over Ri in priority order. Suppose that R j is satisfied for all j < i, but Ri is
not satisfied. Then there exists a threshold t0 ≥ i such that lims g(m j,s, t) = 1 for all j < i and
lims g(mi,s, t) = 0 whenever t ≥ t0.

Then for every leader u ≥ t0, Ri will claim u cofinitely many times, and therefore u will be
in U if i is even and in U if i is odd. As every element follows the least leader below itself, every
v above the least leader greater than t0 will be in U if i is even and in U if i is odd. So if Ze is
infinite, there will be such a v ∈ Ze satisfying Ri. Contradiction. �

�

12.3 A low2 degree bounding the Erdős-Moser theorem

The Erdős-Moser theorem does not fall into the scope of Theorem 12.2.1 since neither SADS
nor STS2 computably reduces to EM (see Corollary 10.3.6). In fact, the converse holds: there
is a low2 degree bounding the Erdős-Moser theorem. We provide in the next subsections two
different proofs of the existence of a low2 degree bounding EM. More precisely, we construct a
low2 set G which is, up to finite changes, transitive for every infinite computable tournament.

By Theorem 10.1.1, [STS2∨COH]≤c EM. Therefore every low2 degree bounding EM also
bounds COH. The proof does not seem adaptable to prove that COH is a consequence of EM
even in ω-models. However we can prove a weaker statement:

Lemma 12.3.1 For every set X , there exists an infinite X-computable tournament T such that
for every infinite T -transitive subtournament U , U ⊆∗ X or U ⊆∗ X .

Proof. Fix a set X . We define a tournament T as follows: For each a < b, set T (a,b) to hold iff
a ∈ X and b ∈ X or a 6∈ X and b 6∈ X . Suppose for the sake of contradiction that U is an infinite
transitive subtournament of T which intersects infinitely often X and X . Take any a,c ∈U ∩X

and b,d ∈ U ∩X such that a < b < c < d. Then T (a,c), T (c,b), T (b,d) and T (d,a) hold
contradicting transitivity of U . �

Using the previous lemma, the constructed set G must be cohesive and therefore provides
another proof of the existence of a low2 cohesive set. Finally, we can deduce a statement slightly
weaker than Theorem 12.2.8 simply by the existence of a low2 degree bounding EM.

Lemma 12.3.2 There exists a set C such that there is no low2 over C degree d ≫SADS C.

Proof. Fix a low2 set C ≫EM /0 and a set X low2 over C. By low2-ness of C, X is low2. Consider
the stable coloring f : [ω]2 → 2 constructed by Mileti in [Mil04, Corollary 5.4.5], such that X

computes no infinite f -homogeneous set. We can see f as a stable tournament T such that for
each x < y, T (x,y) holds iff f (x,y) = 1. As C ≫EM /0, there exists an infinite C-computable
transitive subtournament U of T . U is a stable linear order such that every infinite ascending
or descending sequence is f -homogeneous. Therefore X computes no infinite ascending or
descending sequence in U . �

The following question remains open:

Question 12.1 Does EM admit a universal instance?

12.3.1 A low2 degree bounding EM using first jump control

The following theorem uses the proof techniques introduced in [CJS01] for producing low2 sets
by controlling the first jump. It is done in the same spirit as Theorem 3.6 in [CJS01].
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Theorem 12.3.3 For every set P ≫ /0′, there exists a set G ≫EM /0 such that G′ ≤T P.

Proof. We will prove Theorem 12.3.3 using a variation of Erdős-Moser conditions. Recall that
an EM condition for an infinite tournament T is a Mathias condition (F,X) where

(a) F ∪{x} is T -transitive for each x ∈ X

(b) X is included in a minimal T -interval of F .
The main properties of an EM condition are proven in section 10.3 under Lemma 10.3.2 and
Lemma 10.3.3.

Let C be a low set such that there exists a uniformly C-computable enumeration ~T of infinite
tournaments containing every computable tournament. Note that P ≫C′. Our forcing conditions
are tuples (σ ,F,X) where σ ∈ ω<ω and the following holds:

(a) (F,X) forms a Mathias condition and X is a set low over C.
(b) (F r [0,σ(ν)],X) is an EM condition for Tν for each ν < |σ |.

A condition (σ̃ , F̃ , X̃) extends a condition (σ ,F,X) if σ � σ̃ and (F̃ , X̃) Mathias extends (F,X).
A set G satisfies the condition (σ ,F,X) if Gr [0,σ(ν)] is Tν -transitive for each ν < |σ | and G

satisfies the Mathias condition (F,X). An index of a condition (σ ,F,X) is a code of the tuple
〈σ ,F,e〉 where e is a lowness index of X .

The first lemma simply states that we can ensure that G will be infinite and eventually
transitive for each tournament in ~T .

Lemma 12.3.4 For every condition c = (σ ,F,X) and every i, j ∈ ω , one can P-compute an
extension (σ̃ , F̃ , X̃) such that |σ̃ | ≥ i and |F̃ | ≥ j uniformly from i, j and an index of c.

Proof. Let x be the first element of X . As X is low over C, x can be found C′-computably from a
lowness index of X . The condition (σ̃ ,F,X) is a valid extension of c where σ̃ = σ⌢x . . .x so that
|σ̃ | ≥ i. It suffices to prove that we can C′-compute an extension (σ̃ , F̃ , X̃) with |F̃ |> |F | and
iterate the process. Define the computable coloring g : X → 2|σ̃ | by g(s) = ρ where ρ ∈ 2|σ̃ | such
that ρ(ν) = 1 iff Tν(x,s) holds. One can find uniformly in P a ρ ∈ 2|σ̃ | such that the following
C-computable set is infinite:

Y = {s ∈ X r{x} : g(s) = ρ}

By Lemma 10.3.3, ((F ∪{x})r [0, σ̃(ν)],Y ) is a valid EM extension for Tν . As Y is low over C,
(σ̃ ,F ∪{x},Y ) is a valid extension for c. �

It remains to be able to decide e ∈ (G⊕C)′ uniformly in e. We first need to define a forcing
relation.

Definition 12.3.1 Fix a condition c = (σ ,F,X) and two integers e and x.

1. c
ΦG⊕C
e (x) ↑ if Φ

(F∪F1)⊕C
e (x) ↑ for all finite subsets F1 ⊆X such that F1 is Tν -transitive

simultaneously for each ν < |σ |.
2. c 
 ΦG⊕C

e (x) ↓ if ΦF⊕C
e (x) ↓.

Note that the way we defined our forcing relation c 
 ΦG⊕C
e (x) ↑ differs slightly from the

“true” forcing notion 
∗ inherited by the notion of satisfaction of G. The true forcing definition
of this statement is the following:

c 
∗ ΦG⊕C
e (x) ↑ if Φ

(F∪F1)⊕C
e (x) ↑ for all finite extensible subsets F1 ⊆ X such that F1 is

Tν -transitive simultaneously for each ν < |σ |, i.e., for all finite subsets F1 ⊆ X such that there
exists an extension d = (σ̃ ,F ∪F1, X̃).

However c 
∗ ΦG⊕C
e (x) ↑ is not a Π0

1 statement whereas c 
 ΦG⊕C
e (x) ↑ is. In particular the

fact that c 6
 ΦG⊕C
e (x) ↑ does not mean that c has an extension forcing its negation. This subtlety

is particularly important in Lemma 12.3.6. The following lemma gives a sufficient constraint,
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namely being included in a part of a particular partition, on finite transitive sets to ensure that
they are extensible.

Lemma 12.3.5 Let c = (σ ,F,X) be a condition and E ⊆ X be a finite set. There exists a 2|σ |

partition (Eρ : ρ ∈ 2|σ |) of E and an infinite set Y ⊆ X low over C such that E < Y and for all
ρ ∈ 2|σ | and ν < |σ |, if ρ(ν) = 0 then Eρ →Tν Y and if ρ(ν) = 1 then Y →Tν Eρ .

Moreover this partition and a lowness index of Y can be uniformly P-computed from an
index of c and the set E.

Proof. Given a set E, define PE to be the finite set of ordered 2|σ |-partitions of E, that is,

PE = {(Eρ : ρ ∈ 2|σ |) :
⋃

ρ∈2|σ |

Eρ = E and ρ 6= ξ → Eρ ∩Eξ = /0}

Define the C-computable coloring g : X → PE by g(x) = (Ex
ρ : ρ ∈ 2|σ |) where Ex

ρ = {a ∈ E :

(∀ν < |σ |)[Tν(a,x) holds iff ρ(ν) = 0]}. On can find uniformly in P a partition (Eρ : ρ ∈ 2|σ |)
such that the following C-computable set is infinite:

Y = {x ∈ X rE : g(x) = (Eρ : ρ ∈ 2|σ |)}

By definition of g, for all ρ ∈ 2|σ | and ν < |σ |, if ρ(ν) = 0 then Eρ →Tν Y and if ρ(ν) = 1 then
Y →Tν Eρ . �

We are now ready to prove the key lemma of this forcing, stating that we can P-decide
whether or not e ∈ G′ for any e ∈ ω .

Lemma 12.3.6 For every condition (σ ,F,X) and every e ∈ ω , there exists an extension d =
(σ̃ , F̃ , X̃) such that one of the following holds:

1. d 
 ΦG⊕C
e (e) ↓

2. d 
 ΦG⊕C
e (e) ↑

This extension can be P-computed uniformly from an index of c and e. Moreover there is a
C′-computable procedure to decide which case holds from an index of d.

Proof. Let k = |σ |. Using a C′-computable procedure, we can decide from an index of c and e

whether there exists a finite set E ⊂ X such that for every 2k-partition (Ei : i < 2k) of E, there
exists an i < 2k and a subset F1 ⊆ Ei Tν -transitive simultaneously for each ν < k and satisfying
Φ

(F∪F1)⊕C
e (e) ↓.
1. If such a set E exists, it can be C′-computably found. By Lemma 12.3.5, one can P-

computably find a 2k-partition (Eρ : ρ ∈ 2k) of E and a set Y ⊆ X low over C such that
for all ρ ∈ 2k and ν < k, if ρ(ν) = 0 then Eρ →Tν Y and if ρ(ν) = 1 then Y →Tν Eρ . We
can C′-computably find a ρ ∈ 2k and a set F1 ⊆ Eρ which is Tν -transitive simultaneously

for each ν < k and satisfying Φ
(F∪F1)⊕C
e (e) ↓. By Lemma 10.3.3, (F r [0,σ(ν)])∪F1,Y )

is a valid EM extension of (F r [0,σ(ν)],X) for Tν for each ν < k. As Y is low over C,
(σ ,F ∪F1,Y ) is a valid extension of c forcing ΦG⊕C

e (e) ↓.
2. If no such set exists, then by compactness, the Π

0,C
1 class of all 2k-partitions (Xi : i <

2k) of X such that for every i < 2k and every finite set F1 ⊆ Xi which is Tν -transitive

simultaneously for each ν < k, Φ
(F∪F1)⊕C
e (e) ↑ is non-empty. In other words, the Π

0,C
1

class of all 2k-partitions (Xi : i < 2k) of X such that for every i < 2k, (σ ,F,Xi)
 ΦG⊕C
e (e) ↑

is non-empty. By the relativized low basis theorem, there exists a 2k-partition (Xi : i < 2k)
of X low over C. Furthermore, a lowness index for this partition can be uniformly C′-
computably found. Using P, one can find an i < 2k such that Xi is infinite. (σ ,F,Xi) is a
valid extension of c forcing ΦG⊕C

e (e) ↑.
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�

Using Lemma 12.3.4 and Lemma 12.3.6, one can P-compute an infinite decreasing sequence
of conditions c0 = (ε, /0,ω)≥ c1 ≥ . . . such that for each s > 0

1. |σs| ≥ s, |Fs| ≥ s

2. cs 
 ΦG⊕C
s (s) ↓ or cs 
 ΦG⊕C

s (s) ↑
where cs = (σs,Fs,Xs). The resulting set G =

⋃

s Fs is Tν -transitive up to finite changes for each
ν ∈ ω and G′ ≤T P. �

12.3.2 A low2 degree bounding EM using second jump control

We now use the second proof technique used in [CJS01] for producing a low2 set. It consists of
directly controlling the second jump of the produced set.

Theorem 12.3.7 There exists a low2 degree bounding EM.

Proof. Similar to Theorem 12.3.3, we fix a low set C such that there exists a uniformly C-
computable enumeration ~T of infinite tournaments containing every computable tournament. In
particular P ≫C′.

Our forcing conditions are the same as in Theorem 12.3.3. We can release the constraints of
infinity and lowness over C for X in a condition (σ ,F,X). This gives the notion of precondition.
The forcing relations extend naturally to preconditions.

Definition 12.3.2 Fix a finite set of Turing indices~e. A condition (σ ,F,X) is~e-small if there
exists a number x and a sequence (σi,Fi,Xi : i < n) such that for each i < n

(i) (σi,Fi,Xi) is a precondition extending c

(ii) (Xi : i < n) is a partition of X ∩ (x,+∞)
(iii) max(Xi)< x or (σi,F ∪Fi,Xi) 
 (∃e ∈~e)(∃y < x)ΦG⊕C

e (y) ↑
A condition is~e-large if it is not~e-small.

A condition (σ̃ , F̃ , X̃) is a finite extension of (σ ,F,X) if X̃ =∗ X . Finite extensions do not
play the same fundamental role as in the original forcing in [CJS01] as adding elements to the
set F may require to remove infinitely many elements of the promise set X to obtain a valid
extension. We nevertheless prove the following classical lemma.

Lemma 12.3.8 Fix an~e-large condition c = (σ ,F,X).
1. If ~e′ ⊆~e then c is ~e′-large.
2. If d is a finite extension of c then d is~e-large.

Proof. Clause 1 is trivial as ~e appears only in a universal quantification in the definition of
~e-largeness. We prove clause 2. Let d = (σ̃ , F̃ , X̃) be an ~e-small finite extension of c. We
will prove that c is ~e-small. Let x ∈ ω and (σi,Fi,Xi : i < n) witness ~e-smallness of d. Let
y = max(x,X r X̃). For each i < n, set X̃i = Xi ∩ (y,+∞). Then y and (σi,Fi, X̃i : i < n) witness
~e-smallness of c. �

Lemma 12.3.9 There exists a C′′-effective procedure to decide, given an index of a condition c

and a finite set of Turing indices~e, whether c is~e-large. Furthermore, if c is~e-small, there exists
sets (Xi : i < n) low over C witnessing this, and one may C′-compute a value of n, x, lowness
indices for (Xi : i < n) and the corresponding sequences (σi,Fi,Xi : i < n) which witness that c is
~e-small.

Proof. Fix a condition c = (σ ,F,X) The predicate “(σ ,F,X) is~e-small” can be expressed as a
Σ0

2 statement
(∃z)(∃Z)P(z,Z,F,X ,~ν ,~e)
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where P is a Π
0,C
1 predicate. Here z codes n and x, and Z codes (Xi : i < n). The predicate

(∃Z)P(z,Z,F,X ,σ ,~e) is Π
0,C⊕X
1 by compactness. As X is low over C and F and σ are finite, one

can compute a ∆
0,C
2 index for the same predicate P with parameter z, an index of c and~e, from a

lowness index for X , F and σ . Therefore there exists a Σ
0,C
2 statement with parameters an index

of c and~e which holds iff c is~e-small.
If c is~e-small, there exists sets (Xi : i < n) low over X (hence low over C) witnessing it by

the low basis theorem relativized to C. By the uniformity of the proof of the low basis theorem,
one can compute lowness indices of (Xi : i < n) uniformly from a lowness index of X . �

As the extension produced in Lemma 12.3.4 is not a finite extension, we need to refine it to
ensure largeness preservation.

Lemma 12.3.10 For every~e-large condition c= (σ ,F,X) and every i, j ∈ω , one can P-compute
an~e-large extension (σ̃ , F̃ , X̃) such that σ̃ ≥ i and |F̃ | ≥ j uniformly from an index of c, i, j and
~e.

Proof. Let x be the first element of X . As X is low over C, x can be found C′-computably from a
lowness index of X . The condition d = (σ̃ ,F,X) is a valid extension of c where σ̃ = σ⌢x . . .x
so that |σ̃ | ≥ i. As d is a finite extension of c, it is~e-large by Lemma 12.3.8. It suffices to prove
that we can C′-compute an ~e-large extension (σ̃ , F̃ , X̃) with |F̃ | > |F | and iterate the process.
Define the C-computable coloring g : X → 2|σ̃ | as in Lemma 12.3.4. For each ρ ∈ 2|σ̃ |, define
the following set:

Yρ = {s ∈ X r{x} : g(s) = ρ}

There must be a ρ ∈ 2|σ̃ | such that Yρ is infinite and (σ̃ ,F ∪{x},Yρ) is ~e-large, otherwise the
witnesses of~e-smallness for each ρ ∈ 2|σ̃ | would witness~e-smallness of c. By Lemma 12.3.9,
one can C′′-find a ρ ∈ 2|σ̃ | such that (σ̃ ,F ∪ {x},Yρ) is ~e-large. As seen in Lemma 12.3.4,
(σ̃ ,F,{x},Yρ) is a valid extension. �

The following lemma is a refinement of Lemma 12.3.5 controlling largeness preservation.

Lemma 12.3.11 Let c = (σ ,F,X) be an~e-large condition and E ⊆ X be a finite set. There is a
2|σ | partition (Eρ : ρ ∈ 2|σ |) of E and an infinite set Y ⊆ X low over C such that E < Y and

1. for all ρ ∈ 2|σ | and ν < |σ |, if ρ(ν) = 0 then Eρ →Tν Y and if ρ(ν) = 1 then Y →Tν Eρ .
2. (σ ,F ∪F1,Y ) is an~e-large condition extending c for every ρ ∈ 2|σ | and every finite set

F1 ⊆ Eρ which is Tν -transitive for each ν < |σ |
Moreover this partition and a lowness index of Y can be uniformly C′′-computed from an index
of c and the set E.

Proof. Given a set E, recall from Lemma 12.3.5 that PE is the finite set of ordered 2k-partitions
of E. Define again the computable coloring g : X → PE by g(x) = (Ex

ρ : ρ ∈ 2|σ |) where

Ex
ρ = {a ∈ E : (∀ν < |σ |)[Tν(a,x) holds iff ρ(ν) = 0]}. If for each partition (Eρ : ρ ∈ 2|σ |),

there exists a ρ ∈ 2|σ | and a F1 ⊆ Eρ which is Tν -transitive simultaneously for each ν < |σ | and
such that (σ ,F ∪F1,Y ) is~e-small where

Y = {x ∈ X rE : g(x) = (Eρ : ρ ∈ 2|σ |)}

Then we could construct a witness of~e-smallness of c using smallness witnesses of (σ ,F ∪F1,Y )
for each partition (Eρ : ρ ∈ 2|σ |). Therefore there must exist a partition (Eρ : ρ ∈ 2|σ |) such
that Y is infinite and d = (σ ,F ∪F1,Y ) is~e-large for every ρ ∈ 2|σ | and every F1 ⊆ Eρ which is
Tν -transitive for each ν < |σ |.

By Lemma 12.3.9, such a partition can be found C′′-computably. By definition of g, for all
ρ ∈ 2|σ | and ν < k, if ρ(ν) = 0 then Eρ →Tν Y and if ρ(ν) = 1 then Y →Tν Eρ . Therefore, by
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Lemma 10.3.3, ((F r [0,σ(ν)])∪F1,Y ) is a valid EM extension of (F r [0,σ(ν)],X) for Tν for
each ν < |σ |, so d is a valid condition. �

Lemma 12.3.12 Suppose that c = (σ ,F,X) is~e-large. For every y ∈ ω and e ∈~e, there exists an
~e-large extension d such that d 
 ΦG⊕C

e (y) ↓. Furthermore, an index for d can be C′-computed
uniformly in an index of c, e and y.

Proof. Let k = |σ |. As c is ~e-large, then by a compactness argument, there exists a finite set
E ⊂ X such that for every 2k-partition (Ei : i < 2k) of E, there exists an i < k and a finite subset

F1 ⊆ Ei which is Tν -transitive simultaneously for each ν < k, and Φ
(F∪F1)⊕C
e (y) ↓. Moreover this

set E can be C′-computably found. By Lemma 12.3.11, on can uniformly C′′-find a partition
(Eρ : ρ ∈ 2k) of E and a lowness index for an infinite set Y ⊆ X low over C such that

1. for all ρ ∈ 2k and ν < k, if ρ(ν) = 0 then Eρ →Tν Y and if ρ(ν) = 1 then Y →Tν Eρ .
2. (σ ,F ∪F1,Y ) is an~e-large condition extending c for every ρ ∈ 2k and every finite set finite

set F1 ⊆ Eρ which is Tν -transitive for each ν < k

We can then produce by a C′-computable search a ρ ∈ 2k and a finite set F1 ⊆ Eρ which is

Tν -transitive for each ν < k and such that Φ
(F∪F1)⊕C
e (y) ↓. By Lemma 10.3.3, ((F r [0,σ(ν)])∪

F1,Y ) is a valid EM extension of (F r [0,σ(ν)],X) for Tν for each ν < k. As Y is low over C,
(σ ,F ∪F1,Y ) is a valid~e-large extension. �

Lemma 12.3.13 Suppose that c= (σ ,F,X) is~e-large and (~e∪{u})-small. There exists a~e-large
extension d such that d 
 ΦG⊕C

u (y) ↑ for some y ∈ ω . Furthermore one can find an index for d

by applying a C′′-computable function to an index of c,~e and u.

Proof. By Lemma 12.3.9, we may choose the sets (Xi : i < n) witnessing that c is (~e∪{u})-
small to be low over C. Fix the corresponding x and (σi,Fi : i < n). Consider the i’s such that
(σi,Fi,Xi) 
 ΦG⊕C

u (y) ↑ for some y < x. As c is~e-large, there must be such an i < n such that
(σi,Fi,Xi) is an~e-large condition. By Lemma 12.3.9 we can find C′′-computably such an i < n.
(σi,Fi,Xi) is the desired extension. �

Using the previous lemmas, we can C′′-compute an infinite descending sequence of conditions
c0 = (ε, /0,ω) ≥ c1 ≥ . . . together with an infinite increasing sequence of Turing indices~e0 =
/0 ⊆~e1 ⊆ . . . such that for each s > 0

1. |σs| ≥ s, |Fs| ≥ s, cs is~es-large
2. Either s ∈~es or cs 
 ΦG⊕C

s (y) ↑ for some y ∈ ω

3. cs 
 ΦG⊕C
e (x) ↓ if s = 〈e,x〉 and e ∈~es

where cs = (σs,Fs,Xs). The resulting set G =
⋃

s Fs is Tν -transitive up to finite changes simulta-
neously for each ν ∈ ω and G′′ ≤T C′′ ≤T /0′′. �

12.4 No incomplete ∆0
2 degree bounds SRRT

2
2

Mileti proved in [Mil04] that the only ∆0
2 degree bounding SRT2

2 is 0′. Using the fact that every
∆0

2 set has an infinite incomplete ∆0
2 subset in either it or its complement [Hir+08], we obtain

another proof that SRT2
2 admits no universal instance.

In this section, we extend Mileti’s theorem by proving that the only ∆0
2 degree bounding a

stable version of the rainbow Ramsey theorem for pairs (SRRT2
2) is 0′ and deduce several results

about which stable statements admit a universal instance.
Recall that SRRT2

2 is the restriction of the rainbow Ramsey theorem for pairs in which every-
body either gets married or becomes a monk. See Definition 9.2.1 for a formal presentation. The
stable rainbow Ramsey theorem for pairs admits several computably equivalent characterizations.
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We are in particular interested in a characterization which can be seen as a stable notion of
diagonal non-computability and proven in Theorem 9.2.11.

Definition 12.4.1 Given a function f : ω → ω , a function g is f -diagonalizing if (∀x)[ f (x) 6=
g(x)]. 2-SDNR is the statement “Every ∆0

2 function f : ω → ω has an f -diagonalizing
function”.

The following theorem extends Mileti’s result to 2-SDNR. As 2-SDNR is computably below
many stable principles, we shall deduce a few more non-universality results.

Theorem 12.4.1 For every ∆0
2 incomplete set X , there exists a ∆0

2 function f : ω → ω such
that X computes no f -diagonalizing function.

Corollary 12.4.2 A ∆0
2 degree d bounds SRRT2

2 iff d = 0′.

Proof. As SRRT2
2 ≤c SRT

2
2, any computable instance of SRRT2

2 has a ∆0
2 solution. So 0′ bounds

SRRT2
2. If d is incomplete, then by Theorem 12.4.1 and by SRRT2

2 =c 2-SDNR, there is a
computable instance of SRRT2

2 such that d bounds no solution. �

Corollary 12.4.3 No statement P such that SRRT2
2 ≤c P ≤c SRT

2
2 admits a universal in-

stance.

Proof. By [Hir+08, Corollary 4.6] every ∆0
2 set or its complement has an incomplete ∆0

2 infinite
subset. As P≤c SRT

2
2 ≤c D2

2, every computable instance U of P has a ∆0
2 incomplete solution

X . By Theorem 12.4.1, there exists a computable coloring f : [ω]2 → ω such that X computes
no infinite f -rainbow. As SRRT2

2 ≤c P, there exists a computable instance of P such that X does
not compute a solution to it. Hence U is not a universal instance of P. �

Corollary 12.4.4 None of SRRT2
2, SEM, STS2 and SFS2 admits a universal instance.

Proof of Theorem 12.4.1. The proof is an adaptation of [Mil04, Theorem 5.3.7]. Suppose that D

is a ∆0
2 incomplete set. We will construct a ∆0

2 function f : ω → ω such that D does not compute
any f -diagonalizing function. We want to satisfy the following requirements for each e ∈ ω:

Re : If ΦD
e is total, then there is an a such that ΦD

e (a) = f (a).

For each e ∈ ω , define the partial function ue by letting ue(a) be the use of ΦD
e on input

a if ΦD
e (a)↓ and letting ue(a)↑ otherwise. We can assume w.l.o.g. that whenever ue(a)↓ then

ue(a)≥ a. Also define a computable partial function θ by letting θ(a) = (µt)[a ∈ /0′t ] if a ∈ /0′

and θ(a)↑ otherwise.
The local strategy for satisfying a single requirement Re works as follows. If Re receives

attention at stage s, this strategy does the following. First it identifies a number a ≥ e that is not

restrained by strategies of higher priority such that the following conditions holds:
(i) ΦDs

e,s(a) ↓
(ii) ue,s(a)< max(0,θs(a))

If no such number a exists, the strategy does nothing. Otherwise it puts a restraint on a and
commits to assigning fs(a) = ΦDs

e,s(a). For any such a, this commitment will remain active as
long as the strategy has a restraint on this element. Having done all this, the local strategy is
declared to be satisfied and will not act again unless either a strategy of higher priority puts
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restraints on a, or the value of ue,s(a) or θs(a) changes. In both cases the strategy gets injured

and has to reset, releasing all its restraints.
To finish stage s, the global strategy assigns values fs(y) for all y ≤ s as follows: if y is

commited to some value assignment of fs(y) due to a local strategy, then define fs(y) to be this
value. If not, let fs(y) = 0. This finishes the construction and we now turn to the verification.

For each e,a ∈ ω , let Ze,a = {s ∈ ω : Re restrains a at stage s}.

Claim 12.4.5 For each e,a ∈ ω ,
(a) if ΦD

e (a) ↑ then Ze,a is finite;
(b) if ΦD

e (a) ↓ then Ze,a is either finite or cofinite.

Proof. By induction on the priority order. We consider Ze,a, assuming that for all Re′ of higher
priority, the set Ze′,a is either finite or cofinite. First notice that Ze,a = /0 if a < e or a 6∈ /0′, so
we may assume that a ≥ e and a ∈ /0′. If there exists e′ < e such that Ze′,a is cofinite, then Ze,a

is finite because at most one requirement may claim a at a given stage. Suppose that Ze′,a is
finite for all e′ < e. Fix t0 such that for all e′ < e and s ≥ t0 Re′ does not restrain a at stage s and
θs(a) = θ(a).

Suppose that ΦD
e (a) ↑. Fix t1 ≥ t0 such that D(b) = Ds(b) for all b ≤ θ(a) and all s ≥ t1.

Then for all s ≥ t1, if ΦDs
e,s(a) ↓ then we must have ue,s(a)> θ(a) because otherwise ΦD

e (a) ↓. It
follows that for all s ≥ t1, requirement Re does not restrain a at stage s. Hence Ze,a is finite.

Suppose now that ΦD
e (a) ↓. Fix t1 ≥ t0 such that for all s ≥ t1 we have ΦDs

e,s(a) ↓ and
Ds(c) = D(c) for every c ≤ ue(a). For every s ≥ t1, ue,s(a) = ue,t1(a) and θs(a) = θt1(a) for each
i ≤ a. So properties (i) and (ii) will either hold at each stage s ≥ t1, or not hold at each stage
s ≥ t1. Therefore Ze,a is either finite or cofinite. �

Claim 12.4.6 Each requirement Re is satisfied.

Proof. Suppose that ΦD
e is total for some e ∈ ω . We will prove that ΦD

e is not an f -diagonalizing
function. Let A =

{
a ≥ e : (∀e′ < e)Ze′,a is finite

}
. Notice that A is cofinite since for each e′ < e,

there is at most one a such that Ze′,a is cofinite.
If for all but finitely many k ∈ ω , we have k ∈ /0′ → k ∈ /0′

ue(k)
, then /0′ ≤T ue ≤T D, contrary

to hypothesis. Thus we may let a be the least element of {k ∈ A : k ∈ /0′r /0′
ue(k)

}. We then have

(1) a ≥ e, ΦD
e (a) ↓, θ(a)> ue(a)

(2) For all e′ < e, there exists t such that Re′ does not claim a at any stage s ≥ t.
Therefore we may fix t ≥ a such that for all s≥ t, we have ΦDs

e,s(a) ↓, θs(a)= θ(a), ue,s(a)= ue(a),
and for each e′ < e, Re′ does not claim a at stage s. Thus, for every s ≥ t, requirement Re claims
a′ ≤ a at stage s. Since Ze,i is either finite or cofinite for each i ≤ a, it follows that Ze,a is cofinite.
By the above argument, we must have ΦD

e (a) ↓, and by construction, f (a) = ΦD
e (a). Therefore

Re is satisfied. �

Claim 12.4.7 The resulting function fs is ∆0
2.

Proof. Consider a particular element a. By construction, if e > a then Ze,a = /0. By Claim 12.4.5,
we have then two cases: Either Ze,a is finite for all e ≤ a, in which case for all but finitely many
s, fs(a) = 0, or Ze,a is cofinite for some e. Then there is a stage s at which requirement Re has
committed fs(a) = ΦD

e (a) for assignment and has never been injured. Thus f is ∆0
2. �

This last claim finishes the proof of Theorem 12.4.1. �



13. Avoiding enumerations of closed sets

The celebrated first theorem of Liu [Liu12] separated Ramsey’s theorem for pairs from weak
König’s lemma over computable entailment, therefore showing that the use of a full compactness
argument was not necessary in the proof of RT2

2. Far from closing the topic, Liu’s theorem
opened two new research directions, each of them trying to answer a different question:

• What is the precise among of compactness needed in the proof of Ramsey’s theorem?

Flood [Flo12] started the investigation of the question by introducing a Ramsey-type
weak König’s lemma, which happens to be the exact amount of compactness needed in
various Ramsey-type statements, such as the Erdős-Moser theorem (see Theorem 11.0.1).
Further work has been done by Flood and Towsner [FT14] and Bienvenu, Shafer and the
author [BPS15]. This approach has been developped in chapter 11.

• How orthogonal are Ramsey’s theorem and compactness arguments? Liu’s theorem
showed that Ramsey’s theorem for pairs does not imply the existence of a member of a
particular Π0

1 class, namely, the class of the completions of Peano arithmetic. For which Π0
1

classes or more generally for which closed sets of the Baire space is it the case? Liu [Liu15]
partially answered this question by proving that Ramsey’s theorem for pairs does not imply
the existence of a member of any closed set admitting no computable constant-bound
enumeration (defined below). In this chapter, we push further his investigations by
extending this avoidance property to various Ramsey-type hierarchies such as the free
set, the thin set and the rainbow Ramsey theorems. We also show the optimality of the
constant-bound enumeration avoidance by proving that Ramsey’s theorem for pairs does
not admit k-enumeration avoidance for a fixed k, and in particular that RT2

2 implies the
existence of members of some special Π0

1 classes.

All the properties we shall consider in this chapter are special cases of avoidance. This notion
has been defined in chapter 3, but we now recall the definition.

Definition 13.0.1 — Avoidance. Let C ⊆ ωω be a set upward-closed under the Turing
reducibility. A Π1

2 statement P admits C avoidance if for every set C 6∈ C and every C-
computable P-instance X , there is a solution Y to X such that Y ⊕C 6∈ C .

The notion of C avoidance is extended to arbitrary sets by taking their upward-closure under
the Turing reducibility. Moreover, we say that P admits strong C avoidance if the P-instance is
not required to be C-computable. Strong C avoidance shows the structural weakeness of the
statement P, whereas C avoidance reflects its effective weakness.

Of course, only computably true statements admit C avoidance for an arbitrary set C ⊆ ωω .
Indeed, let X be a P-instance with no X-computable solution and let C be the collection of all
the solutions to X . If P admits C avoidance, then by Lemma 3.4.1, P holds in a Turing ideal I

containing X and such that I ∩C = /0, contradiction. We must therefore restrict this schema of
avoidance to some particular classes of sets.
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13.1 Avoiding members of a closed set

In his paper extending the separation of Ramsey’s theorem for pairs from weak weak König’s
lemma, Liu [Liu15] asked whether whenever an arbitrary tree T has no computable member,
any set A has an infinite subset in either in it or its complement which still does not compute a
path throught T . In this section, we answer negatively and give a general classification of the
theorems in reverse mathematics which admit such a property.

Definition 13.1.1 — Path avoidance. A Π1
2 statement P admits (strong) path avoidance if

it admits (strong) C avoidance for every closed set C ⊆ ωω .

Unfolding the definition, a Π1
2 statements P admits path avoidance if for every set C, every

closed set C ⊆ ωω with no C-computable member, and every C-computable instance X , there is
a solution Y to X such that C has no Y ⊕C-computable member. The notion of path avoidance
is defined for every closed set of the Baire space. However, it happens that whenever a principle
is shown not to admit path avoidance, the closed set witnessing the failure belongs to the Cantor
space.

13.1.1 Cohen genericity

As usual, a starting point in the analysis of the behavior of the statements of reverse mathematics
with respect to a computability-theoretic property consists of looking at how this property
interacts with typical sets. In this section, we interpret the notion of typicality by Cohen
genericity. Cohen genericity has been introduced in chapter 4.

Theorem 13.1.1 Fix a set C computing no member some closed set C ⊆ ωω . If G is a real
sufficiently Cohen generic, then G⊕C computes no member of C .

Proof. Given a Turing index e, consider the Σ
0,C
2 sets of strings

De = {σ ∈ 2<ω : (∃n)(∀τ � σ)Φτ⊕C
e (n) ↑}

He = {σ ∈ 2<ω : [Φσ⊕C
e ]∩C = /0}

It suffices to prove that the set De ∪He is dense. Let σ ∈ 2<ω . Suppose there exists no finite
extension τ ∈ De. Then for every extension τ ≻ σ and every n ∈ ω , there is an extension ρ � τ

such that Φ
ρ⊕C
e (n) ↓. Define a C-computable sequence of binary strings σ0 ≺ σ1 ≺ . . . as follows.

At stage 0, σ0 = σ . At stage s+1, let σs+1 be the first string extending σs such that Φ
σs+1⊕C
e (s) ↓.

Such a string exists as σs � σ and therefore σs 6∈ De. We claim that σs ∈ He for some stage s ∈ ω .
If this is not the case, let G =

⋃

s σs. The real G is C-computable and ΦG⊕C
e is a member of C ,

contradiction. �

Corollary 13.1.2 OPT, AMT and Π0
1G admit path avoidance.

Proof. Hirschfeldt et al. [HSS09] proved that OPT and AMT are both consequences of Π0
1G,

which itself is a restricted notion of Cohen genericity. �

13.1.2 The arithmetic hierarchy

By Simpson’s embedding lemma [Sim07, Lemma 3.3] (see Corollary 13.1.9), there exists an
effectively closed set C ⊆ 2ω with no computable member, and a set A such that every infinite
subset in either A or its complement computes a member of C . Therefore, every degree d such
that A is c.e. or co-c.e. relative to d computes a member of C . However, when considering ∆0

2
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approximations, we never have enough computational power to compute a member of C , as
stated by the following theorem.

Theorem 13.1.3 Fix a real C computing no member of some closed set C ⊆ ωω . For every
real A, there exists a real X such that A is ∆

0,X
2 and X ⊕C computes no member of C .

Proof. For a given real A, we build a limit-computable function f ∞ : ω2 → 2 such that f ∞ ⊕C

computes no member of C and (∀x) lims f ∞(x,s) = A(x). By Schoenfield’s limit lemma, the
jump of f ∞ computes A. Our forcing conditions are tuples (g,n) such that g is a finite partial
approximation of f ∞ and n is an integer. A condition (h,m) extends (g,n) if

(a) dom(g)⊆ dom(h) and (∀(x,s) ∈ dom(g))g(x,s) = h(x,s)
(b) m ≥ n and (∀(x,s) ∈ dom(h)rdom(g))[s < n → h(x,s) = A(s)]

Informally, property (a) states that h is a function extending g and property (b) forces the n first
columns of g to converge to A ↾ n. Therefore making n grow arbitrarily large will ensure that the
constructed function f ∞ is a ∆0

2 approximation of A. Our initial condition is ( /0,0). The following
lemma states that we can force the constructed function f ∞ to be total.

Lemma 13.1.4 For every condition (g,n) and every t ∈ ω , there exists an extension (h,m) such
that m > n and [0, t]2 ⊆ dom(g)

Proof. Let h be the function over domain [0, t]2 ∪dom(g) defined by h(x,s) = g(x,s) for (x,s) ∈
dom(g) and h(x,s) = A(x) for (x,s) 6∈ dom(g). (h,n+1) is a valid extension of (g,n). �

A function f ∞ : ω2 → 2 satisfies a condition (g,n) if (∀(x,s)∈ dom(g))g(x,s) = f ∞(x,s) and
(∀(x,s)∈ ω2rdom(g))[s < n → f ∞(x,s) = A(s)]. In other words, for every finite approximation
h of f ∞ such that dom(h)≥ dom(g), (h,n) is a valid extension of (g,n). Note that f ∞ may not be
limit-computable, and that if f ∞ satisfies (g,n) and m < n, then f ∞ satisfies (g,m). A condition c

forces Φ
f ∞⊕C
e to be partial if Φ

f ∞⊕C
e is partial for every function f ∞ satisfying c.

Lemma 13.1.5 For every condition (g,n) and every e ∈ ω , there exists an extension (h,m)
forcing Φ

f ∞⊕C
e to be partial, or [Φh⊕C

e ]∩C = /0.

Proof. If there is an extension (h,m) forcing Φ
f ∞⊕C
e to be partial or such that Φh⊕C

e ↾ n = σ

for some string σ ∈ ωn such that C ∩ [σ ] = /0, then we are done. So suppose that it is not the
case. We will describe how to C-compute a member of C and derive a contradiction. Define
a C-computable sequence of conditions (g,n) = (g0,n)≥ (g1,n)≥ . . . as follows: Given some
condition (gi,n), let (gi+1,n) be the least extension such that Φ

gi+1⊕C
e (i) ↓. Such an extension

exists as otherwise (gi,n) would force Φ
f ∞⊕C
e to be partial. Let f ∞ =

⋃

i gi. The function f ∞

has been constructed C-computably in such a way that Φ
f ∞⊕C
e is total and a member of C . This

contradicts the assumption that C does not compute a member of C . �

Let F = {c0,c1, . . .} be a sufficiently generic filter containing ( /0,0), where cs = (gs,ns).
The filter F yields a unique partial function f ∞ =

⋃

s gs. By Lemma 13.1.4, the function f ∞

is total, and by definition of a forcing condition, f ∞ is a ∆0
2 approximation of the real A. By

Lemma 13.1.5, f ∞ ⊕C computes no member of C . �

Corollary 13.1.6 COH admits path avoidance.

Proof. Fix a real C computing no member of some closed set C ⊆ ωω and let R0,R1, . . .
be a uniformly C-computable sequence of reals. By Theorem 13.1.3, there exists a real X

such that X ⊕C computes no member of C and the jump of X computes /0′′. Jockusch and
Stephan [JS93] proved that if R0,R1, . . . is a uniform sequence of reals, for any real X whose
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jump if of PA degree relative to the jump of ~R, X ⊕~R computes an infinite ~R-cohesive real.
Therefore X ⊕C computes an infinite ~R-cohesive real. �

Corollary 13.1.7 For every real A and every non-computable real B, there exists a real X

such that A ∈ ∆
0,X
2 but X 6≥T B.

Proof. Apply Theorem 13.1.3 with C = {B} to obtain a real X such that A ∈ ∆
0,X
2 and X

computes no member of C , hence X 6≥T B. �

We shall see in Corollary 13.1.14 that COH does not admit strong path avoidance since RT1
2

does not.

13.1.3 The embedding lemma

The following application of Simpson’s embedding lemma is very useful for proving that some
principle does not admit path avoidance.

Lemma 13.1.8 If some principle P has a computable (resp. arbitrary) instance with no com-
putable solution and such that its collection of solutions is a Σ0

3 subset of ωω , then P does not
admit (strong) path avoidance.

Proof. We prove it in the case of path avoidance. Let X be a computable P-instance with no
computable solution, and let C ⊆ ωω be its set of solutions. By Lemma 3.3 in Simpson [Sim07],
there exists an effectively closed set D ⊆ 2ω whose degrees are exactly the PA degrees and the
degrees of members of C . Since X has no computable solution, D has no computable member.
Every solution to X is a member of C and thus computes a member of D . Therefore P does not
admit path avoidance. �

Note that the witness of failure of path avoidance is an effectively closed set. The three
following corollaries are direct applications of Lemma 13.1.8.

Corollary 13.1.9 RT1
2 does not admit strong path avoidance.

Proof. Let A be a ∆0
2 bi-immune set. The collection of its infinite homogeneous sets a Π0

2 subset
of ωω :

C = {X ∈ ωω : (∀i)[X(i)<N X(i+1)∧X(i) ∈ A ↔ X(i+1) ∈ A]}

Apply Lemma 13.1.8. �

Of course, if Q≤c P and Q does not admit path avoidance, then so does P. We therefore want
to prove that very weak principles do not admit path avoidance to obtain the same conclusion for
many statements belonging to the reverse mathematics zoo.

Corollary 13.1.10 DNR does not admit path avoidance.

Proof. The collection of d.n.c. functions is a Π0
1 subset of ωω with no computable member:

C = { f ∈ ωω : (∀e,s)[Φe,s(e) ↓→ Φe,s(e) 6= f (e)]}

Apply Lemma 13.1.8. �
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Corollary 13.1.11 SADS does not admit path avoidance.

Proof. Tennenbaum [Ros82] constructed a computable linear order of order type ω +ω∗ with
no computable ascending or descending sequence. Given a linear order L , the collection of its
infinite ascending or descending sequences is a Π0

1 subset of ωω :

C = {X ∈ ωω : (∀i)[X(i)<L X(i+1)]∨ (∀i)[Xi >L X(i+1)]}

Apply Lemma 13.1.8. �

The following lemma shows that avoidance is closed downward under computable reducibilty.
As many proofs of reductions in reverse mathematics are in fact computable reductions, this
lemma has many applications.

Lemma 13.1.12 If P is (strongly) computably reducible to Q and Q admits (strong) C avoidance,
then so does P.

Proof. We prove it in the case of computable reducibility. The strong case is similar. Let C be a
real computing no member of C and let I be a C-computable instance of P. As P ≤c Q, there
exists an I-computable instance J of Q such that for every solution X to J, X ⊕ I computes a
solution to I. By C avoidance of Q, there exists a solution X to J such that X ⊕C computes no
member of C . X ⊕C computes a solution Y to I, but computes no member of C . �

Corollary 13.1.13 None of RT2
2 ADS, CAC, EM, TS2 RRT2

2 admit path avoidance.

Proof. By Hirschfeldt et al. [Hir+08], DNR≤c SRT
2
2. By Hirschfeldt & Shore [HS07], SADS≤c

ADS ≤c CAC. By Rice [Ric], DNR ≤c TS2. By Miller [Mil], DNR ≤c RRT2
2. By the

author [Pat15g], DNR ≤c EM. Conclude by Lemma 13.1.12, Corollary 13.1.10 and Corol-
lary 13.1.11. �

Corollary 13.1.14 COH does not admit strong path avoidance.

Proof. Immediate by Corollary 13.1.9, Lemma 13.1.12 and the fact that RT1
2 ≤sc COH. �

13.1.4 Simultaneous path avoidance

The notion of path avoidance expresses the ability for a principle to avoid computing a member
of a (boldface) Π0

1 set of the Baire space. We now see that the notion of avoidance for Fσ sets
coincides with path avoidance.

Definition 13.1.2 — Simultaneous path avoidance. Fix a countable collection of closed
sets C0,C1, · · · ⊆ ωω . A principle P admits (strong) path avoidance for ~C if it admits (strong)
⋃

i Ci avoidance. A principle P admits (strong) simultaneous path avoidance if it admits
(strong) path avoidance for ~C for every countable collection of closed sets C0,C1, · · · ⊆ ωω

The notion of Muchnik reducibility is very useful to substitute closed sets by some others
while preserving the notion of avoidance.

Definition 13.1.3 — Muchnik reducibility. Let C and D be two classes of reals. C is
Muchnik reducible to D (denoted by C ≤w D) if for every X ∈ D , there exists a Y ∈ C such
that Y ≤T X .
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Lemma 13.1.15 Let C0,C1, · · · ⊆ ωω be a countable collection of closed sets such that Ci has
no computable member for each i. There exists a closed set D ⊆ ωω such that D and

⋃

i Ci are
Muchnik equivalent. Moreover, if the C ’s belong the Cantor space, then so does D .

Proof. We may assume that some Ci is non-empty as otherwise, D = /0 is a trivial solution.
Let X be a member of some Ci and define D as follows:

D = {σ⌢(i+1 mod 2)⌢Z : σ⌢i ≺ X ∧Z ∈ C|σ |}

The set D is closed and Muchnik equivalent to
⋃

i Ci. �

Corollary 13.1.16 If a principle P admits (strong) path avoidance, then it admits (strong)
simultaneous path avoidance.

Proof. We prove it in the case of path avoidance. Let C be a set computing no member of
⋃

i Ci

for some countable collection of sets C0,C1, · · · ⊆ ωω , and let X be a C-computable instance of P.
By Lemma 13.1.15, there exists a closed set of reals D Muchnik equivalent to

⋃

i Ci. Therefore
C computes no member of D . By path avoidance of P, there is a solution Y to X such that Y ⊕C

computes no member of D and therefore computes no member of
⋃

i Ci. �

13.2 Enumeration avoidance

We have seen in the previous section that Ramsey’s theorem for pairs does not admit path
avoidance even for special Π0

1 classes (Corollary 13.1.13). In his follow-up paper [Liu15], Liu
identified a stronger property enjoyed by the Π0

1 class of completions of Peano arithmetic and
for which Ramsey’s theorem for pairs admits avoidance.

Definition 13.2.1 — Constant-bound enumeration.

(i) A k-enumeration (or k-enum) of a set D ⊆ ωω is a sequence D0,D1, . . . of finite sets
of strings such that for each n ∈ ω , |Dn| ≤ k, (∀σ ∈ Dn)|σ |= n and D ∩ [Dn] 6= /0. A
constant-bound enumeration (or c.b-enum) of D is a k-enum of D for some k ∈ ω .

(ii) Fix a collection of sets C0,C1, · · · ⊆ ωω . A Π1
2 statement admits (strong) c.b-enum

avoidance for ~C if it admits (strong) D avoidance, where D is the set of reals wich
code a c.b-enum of some Ci.

We can define the notion of (strong) k-avoidance accordingly for every k. Note that the notion
of k-avoidance for every k and the notion of c.b-enum avoidance do not necessarily coincide. In
fact, we shall see that c.b-enum avoidance is strictly weaker. The following trivial lemma shows
that the existence of a computable c.b-enum for an effectively closed set of reals is not invariant
in the Muchnik degrees.

Lemma 13.2.1 For every effectively closed set C ⊆ 2ω , there exists an effectively closed set
D ⊆ 2ω Muchnik equivalent to C with a computable 1-enum.

Proof. Let T be a computable tree such that [T ] = C . The set D = {σ⌢Z : σ ∈ T ∧Z ∈ C } is
effectively closed and Muchnik equivalent to C . For every σ ∈ T , [σ ]∩D 6= /0, therefore we can
compute a 1-enum of D by returning on input n a string of length n in T . �

However, when considering the uniform version of Muchnik reducibility, namely, Medvedev
reducibility, then the degrees of the c.b-enums are preserved in the special case of compact sets.
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Definition 13.2.2 — Medvedev reducibility. Let C ⊆ ωω and D ⊆ ωω be two sets of
sequences. We say that C is Medvedev reducible to D (denoted by C ≤s D) if there exists a
Turing functional Γ such that ΓX ∈ C for every sequence X ∈ D .

Lemma 13.2.2 Let C ⊆ ωω be a set of sequences Medvedev below a compact set of sequences
D ⊆ ωω . For every k ∈ ω , every k-enum of D computes a k-enum of C .

Proof. Let Γ be the Turing functional witnessing the Medvedev reduction from C to D . We
prove it by induction over k. Let (Di : i ∈ ω) be a k-enum of D . Suppose that there exists a
σ ∈ 2<ω such that D ∩ [σ ] = /0 and for infinitely many i ∈ ω , σ � τ for some τ ∈ Di. Then k > 1
and we can compute a (k− 1)-enum of D by computably finding on input i a j > i such that
σ � τ for some τ ∈ D j and returning Ei = {σ ↾ i : σ ∈ D j r τ}. ~E is a (k−1)-enum of D and
by induction hypothesis, it computes a (k−1)-enum of C , so a fortiori a k-enum of C .

So suppose there exists no such σ . This means that for every i ∈ ω , there exists a j > i such
that D ∩ [σ ↾ i] 6= /0 for each σ ∈ D j. As C ⊆ hω , by the pigeonhole principle Γ will produce
arbitrarily large k-tuples of initial segments of members of C . We compute a k-enum of C as
follows: For each i ∈ ω , let Ei = {Γσ ↾ i : σ ∈ D j} for some j such that Γσ ↾ i is defined on each
σ ∈ D j. Such Ei has been shown to exist and can be found computably in ~D. As [σ ]∩D 6= /0
for some σ ∈ D j, [Γσ ↾ i]∩C 6= /0, hence (∃τ ∈ Ei)C ∩ [τ] 6= /0 hence and ~E is a valid k-enum
of C . �

Like we did for path avoidance, we can define the notion of simultaneous c.b-enum avoidance.

Definition 13.2.3 — Simultaneous c.b-enum avoidance. Fix a Π1
2 statement P. P admits

(strong) simultaneous c.b-enum avoidance if it admits (strong) c.b-enum avoidance for every
countable collection of sets C0,C1 · · · ⊆ 2ω .

First, notice that unlike path avoidance, we did not require the sets to be closed. Indeed, a
set and its topological closure have the same constant-bound enumerations. Also notice that
we defined the notion of c.b-enum avoidance over the Cantor space. In fact, this restriction is
expressive enough to obtain c.b-enum avoidance over compact sets of the Baire space, since
for every compact set C ⊆ ωω , one can find a closed set D ⊆ 2ω such that the degrees of the
c.b-enums of C and of D coincide [Pat15a].

We now relate c.b-enum avoidance and simultaneous c.b-enum avoidance as we did for
path avoidance. See [Pat15a] for an extensive study of the relations between path avoidance,
k-avoidance, c.b-enum avoidance and their simultaneous variants. We start by proving that the
notions of c.b-enum avoidance and simultaneous avoidance do not coincide. Moreover, there
is a whole hierarchy of avoidance relations based on how many closed sets can be avoided
simultaneously.

Theorem 13.2.3 There exists a countable collection of closed sets C0,C1, · · · ⊆ 2ω together
with a ∆0

2 function f : ω → ω and a 1-enum (ρi : i ∈ ω) such that
(i)

⋃

j 6=i C j has no computable c.b-enum for each i

(ii) [ρi]∩C f (i) 6= /0 for each i

Proof. Fix a non-computable ∆0
2 set X and a computable sequence X0,X1, . . . of reals pointwise

converging to X . We build the closed sets of reals ~C by forcing. Our forcing conditions are
tuples (k,C0, . . . ,Ck−1,E0, . . . ,Ek−1) where

(a)
⋃

j 6=i C j are closed sets containing X and with no computable c.b-enum for each i < k

(b) Ei is a finite set of strings for each i < k

(c) (
⋃

j 6=i C j)∩ [Ei] = /0 for each i < k
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(d) (∀s)(∃i < k)([Xs ↾ s] 6⊆ [
⋃

j 6=i E j])

A condition (m, C̃0, . . . , C̃m−1, Ẽ0, . . . , Ẽm−1) extends a condition (k,C0, . . . ,Ck−1,E0, . . . ,Ek−1)
if m ≥ k, Ci ⊆ C̃i and Ei ⊆ Ẽi for each i < k. The set Ei is a forbidden open set for

⋃

j 6=i C j.
To force

⋃

j 6=i C j not to have computable c.b-enum, we shall put strings in it. Our initial
condition is (2,{X},{X}, /0, /0) which is valid since every c.b-enum of a singleton {X} com-
putes X . Note that given some condition c = (k,C0, . . . ,Ck−1,E0, . . . ,Ek−1), the condition (k+
1,C0, . . . ,Ck−1,{X},E0, . . . ,Ek−1, /0) is a valid extension of c.

We want our forcing to be /0′-effective to obtain a ∆0
2 function f : ω → ω such that property

(ii) holds. Given some condition c = (k,C0, . . . ,Ck−1,E0, . . . ,Ek−1), a code of c is a tuple
〈k,e0, . . . ,ek−1,E0, . . . ,Ek−1〉 such that for each i < k, Φ /0′

ei
is the characteristic function of the set

of strings σ ∈ 2<ω such that [σ ]∩Ci 6= /0. Note that a condition may not have a code in general,
but our initial condition (2,{X},{X}, /0, /0) has one. We will show that we can /0′-effectively find
an infinite decreasing sequence of extensions having codes and forcing the desired properties.

Lemma 13.2.4 For every condition c = (k,C0, . . . ,Ck−1,E0, . . . ,Ek−1) and s ∈ ω , there exists an
extension d = (k, C̃0, . . . , C̃k−1,E0, . . . ,Ek−1) and some i< k such that [Xs ↾ s]∩C̃i 6= /0. Moreover,
one can /0′-effectively find a code of d given a code of c.

Proof. By property (d) of the condition c there is some i < k such that [Xs ↾ s] 6⊆ [
⋃

j 6=i E j].
Let E =

⋃

j 6=i E j. As E is finite, there exists a finite τ ≻ Xs ↾ s such that [τ]∩ [E] = /0. Moreover,
those i and τ can be /0′-effectively found. Let C̃i = Ci ∪{τ⌢Z : Z ∈ Ci} and let C̃ j = C j for
each j 6= i. The closed set C̃i is Medvedev above Ci. Therefore, for each j < k,

⋃

r 6= j C̃r is
Medvedev above

⋃

r 6= j Cr and by Lemma 13.2.2 and property (a) of condition c, it admits
no computable c.b-enum. The condition d = (k, C̃0, . . . , C̃k−1,E0, . . . ,Ek−1) satisfies therefore
properties (a), (b) and (d). We check property (c). If (

⋃

r 6= j C̃r)∩ [E j] 6= /0 for some j < k, then by
property (c) of the condition c, j 6= i and (

⋃

r 6= j Cr)∩ [E j] = /0. As (
⋃

r 6= j C̃r)⊆ (
⋃

r 6= j Cr)∪ [τ],
we obtain [τ]∩ [E j] 6= /0, contradiction. Hence property (c) holds and d is a valid extension
of c. The Turing index of the characteristic function of the strings extensible in C̃i can be
effectively found from the Turing index of the characteristic function of the strings extensible
in Ci. Therefore the condition d has a code, which can be /0′-effectively found from a code
of c. �

Lemma 13.2.5 For every condition c = (k,C0, . . . ,Ck−1,E0, . . . ,Ek−1), every i < k and every
e ∈ ω , there exists an extension d = (k,C0, . . . ,Ck−1, Ẽ0, . . . , Ẽk−1) such that if Φe is an e-enum
then (∃n)Φe(n)⊂ Ẽi. Moreover, one can /0′-effectively find a code of d given a code of c.

Proof. Let F =
⋃

j 6=i E j and let u=max(|σ | : σ ∈F). We can /0′-effectively find some stage t > u

such that Xt ↾ u=X ↾ u. By Lemma 13.2.4, we can assume that for every s< t, there is some j < k

such that [Xs ↾ s]∩C j 6= /0. As by property (a) of the condition c,
⋃

j 6=i C j admits no computable
c.b-enum, there exists some n > t + e such that either Φe(n) ↑, or [Φe(n)]∩

⋃

j 6=i C j = /0. We
can /0′-decide in which case we are. In the first case, we take c as the desired extension. Set
Ẽi = Ei ∪Φe(n) and Ẽ j = E j for each j 6= i. Properties (a), (b) and (c) hold for the condition
d = (k,C0, . . . ,Ck−1, Ẽ0, . . . , Ẽk−1). We now check property (d).

Suppose for the sake of contradiction that for some s, for every j < k, [Xs ↾ s]⊆ [
⋃

r 6= j Ẽr]. In
particular, [Xs ↾ s]⊆ [F ]. In this case s < t, otherwise [Xs ↾ s]⊆ [X ↾ u]. But then [X ↾ u]∩ [F ] 6= /0
and as u=max(|σ | : σ ∈F), [X ↾ u]⊆ [E j] for some j < k, contradicting the fact that X ∈

⋃

r 6= j Cr

and property (c) of the condition c. By property (d) of the condition c, there exists some j < k

such that [Xs ↾ s] 6⊆ [
⋃

r 6= j Er]. Let µ be the Lebesgue measure. Since t > max(|σ | : σ ∈ F), t > s

and [Xs ↾ s] 6⊆ [
⋃

r 6= j Er], µ([Xs ↾ s]r [
⋃

r 6= j Er]) ≥ 2−t . Since Φe is an e-enum and n > t + e,
µ([Φe(n)]) ≤ e× 2−t−e < 2−t . Therefore, µ([Xs ↾ s]r ([

⋃

r 6= j Er]∪ [Φe(e)])) > 0 so [Xs ↾ s] 6⊆
[
⋃

r 6= j Ẽr], contradiction. �
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Thanks to Lemma 13.2.4 and Lemma 13.2.5, we build an infinite /0′-computable decreasing
sequence of conditions c0 = ({X},{X}, /0, /0)≥ c1 ≥ c2 ≥ . . . together with their codes, such that
for each s ∈ ω , assuming cs = (ks,C0,s, . . . ,Cks−1,s,E0,s, . . . ,Eks−1,s),

(i) ks ≥ s

(ii) If Φs is a total s-enum, then (∀i < ks)(∃n)Φs(n)⊂ Ei,s

(iii) [Xs ↾ s]∩
⋃

i<ks
Ci,s 6= /0

This way, taking Ci =
⋃

s≥i Ci,s, we obtain two closed sets admitting no computable c.b-enum by
(ii) and such that s 7→ Xs ↾ s is a computable 1-enum of

⋃

i Ci by (ii). This completes the proof of
Theorem 13.2.3. �

In the following corollary, n c.b-enum avoidance is the restriction of simultaneous avoidance
to sequences of n sets of reals.

Corollary 13.2.6 STS2
n does not admit n c.b-enum avoidance for every n ≥ 2. In particular,

SRT2
2 does not admit 2 c.b-enum avoidance. Moreover, STS2 does not admit simultaneous

c.b-enum avoidance.

Liu defined in [Liu15] c.b-enum avoidance for any increasing sequence (in inclusion order)
of sets of reals. We prove that this apparently stronger notion of avoidance is in fact reducible to
c.b-enum avoidance.

Lemma 13.2.7 Let C0 ⊆ C1 ⊆ ·· · ⊆ 2ω be an increasing countable collection of sets of reals
with no computable c.b-enum. There exists a set D ⊆ 2ω Medvedev below each Ci such that D

has no computable c.b-enum.

Proof. Fix a set X 6≤T /0′ and let

D = {σ⌢(1− i)⌢Z : σ⌢i ≺ X ∧Z ∈ C|σ |}

The set D is Medvedev below each Ci. We prove that there exists no computable c.b-enum of
D . Fix a computable k-enum (Di : i ∈ ω) of D . By thinning out ~D, we can obtain a computable
k-enum (Ei : i ∈ ω) of D together with a finite set of strings (with possible duplications)
σ0, . . . ,σr−1 for some r ≤ k and a computable injective function g : ω × r → 2<ω such that

(i) (∀i < r)σi 6≺ X ∧ (σi↾|σi|−1)≺ X

(ii) (∀i ∈ ω)(∀ j < r)[g(i, j) ∈ Ei ∧σ j ≺ g(i, j)]
(iii) if σ 6≺ X then there are finitely many i such that σ ≺ τ for some τ ∈ Ei r{g(i, j) : j < r}.

If r = k then let n = max({|σ j| : j < r}). For each i ∈ ω and j < k, let f (i, j) be the unique
string ρ of length i such that σ⌢

j ρ ≺ g(n+ i, j) and let Fi = {g(i, j) : j < k}. We claim that

the sequence ~F is a k-enum of Cn. Indeed, since ~E is a k-enum of D , for each i, there exists a
τ ∈ Ei+n such that [τ]∩D 6= /0. Since f is injective, there is some j < k such that τ = g(i+n, j).
By construction of D , [ f (i, j)]∩C|σ j|−1 6= /0 so [ f (i, j)]∩Cn 6= /0 since Cn ⊇ C|σ j|−1.

If r < k then consider for each i the non-empty set Fi = Ei r {g(i, j) : j < r}. For every
m > max(|σ j| : j < r), (∀∞i)(∀τ ∈ Fi)τ↾m ≺ X . Therefore we can /0′-compute X , contradicting
our choice of X . �

Although some principles admit c.b-enum but not simultaneous c.b-enum avoidance, they
can simultaneously avoid computing a c.b-enum of all effectively closed set with no computable
c.b-enum.

Lemma 13.2.8 Let C0,C1, · · · ⊆ 2ω be a countable collection of effectively closed sets with no
computable c.b-enum. There exists a (non-effectively) closed set D ⊆ 2ω Medvedev below each
Ci such that D has no computable c.b-enum.
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Proof. Fix a set X 6≤ /0′ and define D as in Lemma 13.2.7. D is Medvedev below each Ci. We
prove by induction over k that there exists no computable k-enum of D . Fix a computable k-enum
(Di : i ∈ ω) of D . If there exists a σ 6≺ X and infinitely many i such that σ ≺ τ for some τ ∈ Di.
As σ 6≺ X , there exists ρ,ν ∈ 2<ω and j ∈ {0,1} such that ν⌢ j ≺ X and σ = ρ⌢(1− j)⌢ν .
If there exists infinitely many i such that σ ≺ τ for some τ ∈ Di and C|ρ| ∩ [ξ ] = /0 where
τ = ρ⌢(1− j)⌢ξ , then we can computably find infinitely many such τ and compute a (k−1)-
enum by enumerating Di r τ for each such i. If there are finitely many such i, then we can
compute a 1-enum of D by enumerating each such τ . So suppose that for every σ 6≺ X , there exist
finitely many i such that σ ≺ τ for some τ ∈ Di. Then the jump of ~D computes X , contradicting
X 6≤T /0′. �

Before closing this section about constant-bound enumeration avoidance, we prove that every
principle admitting c.b-enum avoidance admits simultaneous cone avoidance. Of course, given a
countable collection of non-computable reals A0,A1, · · · ⊆ ω , the set of reals C = {Ai : i ∈ ω}
has no computable member but may have a computable 1-enum. For example, fix any non-
computable real A and set Ai to be the real A prefixed by i zeros. No Ai is computable, but
corresponding set of reals C will have a trivial 1-enum consisting of the sequence of all 0-strings.
Thankfully, we can construct an increasing sequence of sets of reals C0 ⊆ C1 ⊆ ·· · ⊆ 2ω such
that computing a c.b-enum of ~C is equivalent to computing one of the reals Ai.

Lemma 13.2.9 Fix a set C and let A0,A1, · · · ⊆ ω be a countable collection non-C-computable
reals. There exists a countable collection of closed sets of reals C0 ⊆ C1 ⊆ . . . with no C-
computable c.b-enum and such that for every n, An computes a c.b-enum of Cn.

Proof. By induction over n. Case n = 0 is satisfied by defining C0 = {A0}. As every c.b-enum
of {A0} computes A0, there exists no C-computable c.b-enum of C0. Suppose we have defined
Cn and consider An+1. We have two cases. Suppose first that An+1 C-computes a c.b-enum of Cn.
In this case, set Cn+1 = Cn and we are done.

Suppose now that An+1 C-computes no c.b-enum of Cn. Set Cn+1 = Cn ∪{An+1}. If there
exists a C-computable c.b-enum (Di : i < ω) of Cn+1, then An+1 6∈ [Di] for infinitely many i,
otherwise it would be, up to finite change, a C-computable c.b-enum of {An+1} and would
C-compute An+1. So An+1 C-computes a c.b-enum of Cn by looking on input i to the least j ≥ i

such that An+1 6∈ D j and returning D j ↾ i. This contradicts our hypothesis. �

Corollary 13.2.10 If a Π1
2 statement P admits (strong) c.b-enum avoidance, then it admits

(strong) simultaneous cone avoidance.

Proof. We prove it in the case of c.b-enum avoidance. Let C be a set, let A0,A1, · · · ⊆ ω

be a countable collection non-C-computable reals and let X be a C-computable P-instance.
Let C0 ⊆ C1 ⊆ ·· · ⊆ 2ω be the countable collection of closed sets constructed in Lemma 13.2.9.
By Lemma 13.2.7, there is a closed set D ⊆ 2ω Medvedev below each Ci and with no C-
computable c.b-enum. By c.b-enum avoidance of P, there is an solution Y to X such that D

has no Y ⊕C-computable c.b-enum. Suppose for the sake of contradiction that Ai ≤T Y ⊕C for
some i. By Lemma 13.2.9, Y ⊕C computes a c.b-enum of Ci, so Y ⊕C computes a c.b-enum
of D by Lemma 13.2.2, contradiction. �

13.3 A framework for enumeration avoidance

The proofs of c.b-enum avoidance are usually complicated. Liu [Liu15] proved that RT1
2 admits

strong c.b-enum avoidance using an involved machinery. Moreover RT1
2 is often taken as a
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bootstrap for proving the same property for whole hierarchies such as the free set and the thin set
theorems [Wan14b]. In this section, we develop some tools to simplify such proofs. For this,
we introduce some reducibility notions enabling us to propagate c.b-enum avoidance from one
statement to another. These reductions happen to be simpler to prove than a direct argument.
Next, we generalize and abstract the lemmas proven by Liu [Liu15] in order to freely reapply
them with other statements.

Definition 13.3.1 — Path and enum reducibility. Fix two Π1
2 statements P and Q.

(i) Q is path reducible to P (written Q≤path P) if for every closed set of reals C ⊆ 2ω , if
P admits C avoidance then so does Q

(ii) Q is enum reducible to P (written Q≤enum P) if for every countable collection of sets
of reals C0,C1, · · · ⊆ 2ω , if P admits 1-enum avoidance for ~C then so does Q

The strong versions of the reducibilities are defined accordingly, and are written Q≤spath P

and Q ≤senum P, respectively. The enum reduction, unlike the path reduction, is defined for
a countable collection of sets. The path reduction could have been defined similarly without
changing the reduction, whereas restricting the enum reduction to only one set of reals weakens
strictly the reducibility notion. These notions of reducibility are designed so that they enjoy the
two following lemmas. See [Pat15a] for a proof.

Lemma 13.3.1 Let P and Q be two principles such that Q≤path P. If P admits c.b-enum (resp.
simultaneous c.b-enum, n c.b-enum, 1-enum) avoidance then so does Q. The same statement
holds if Q≤spath P and we replace avoidance by strong avoidance.

Lemma 13.3.2 Let P and Q be two principles such that Q≤enum P. If P admits c.b-enum (resp.
simultaneous c.b-enum, n c.b-enum) avoidance then so does Q. The same statement holds if
Q≤senum P and we replace avoidance by strong avoidance.

We need to extend the notion of k-partition of the integers to colorings over arbitrary tuples.
The forcing in Liu’s theorem involved Π0

1 classes of ordered k-partitions of ω . Those partitions
correspond to the sets which are simultaneously homogeneous for a finite number of 2-colorings
of the integers. For example, three functions g0,g1,g2 : ω → 2 induce the 6-partition

X
g0
0 ∩X

g1
0 ,Xg0

0 ∩X
g2
0 ,Xg1

0 ∩X
g2
0 ,Xg0

1 ∩X
g1
1 ,Xg0

1 ∩X
g2
1 ,Xg1

1 ∩X
g2
1

where X
g
i is the set of the integers x such that g(x) = i. In our case, we will not manipulate

colorings of integers but of tuples of integers. The sets homogeneous for a function g : [ω]n → k

do not form a partition of the integers. This is why have to make explicit the formulas expressing
the homogeneity constraints.

Definition 13.3.2 — Coloring formula. Fix some d ≥ 1 and some finite set S.
1. A coloring d-atom over S is a pair (g,J) (written g[J]) where g is a function symbol and

J ⊂ S is a set of size d. A coloring d-formula over S is a (possibly empty) conjunction
of coloring d-atoms over S. We denote by ε the empty conjunction of coloring d-atoms.

2. A valuation of a set of coloring d-formulas over S with function symbols g0, . . . ,gt−1 is
a function π with dom(π)⊇ {g0, . . . ,gt−1} and such that for every g ∈ dom(π), π(g)
is a finite set J ⊂ S of size d.

3. A valuation π satisfies a coloring d-formula ϕ = g0[J0]∧·· ·∧gt−1[Jt−1] (written π |=ϕ)
if π(gi) = J j for each i < t.

4. A pseudo k-partition of coloring d-formulas is an ordered k-set of coloring d-formulas
(ϕν : ν < k) such that for every valuation π , π |= ϕν for some ν < k.

In particular, the singleton {ε} is trivially a pseudo 1-partition. Given a coloring formula ϕ =
g0[J0]∧·· ·∧gk[Jk], we write dom(ϕ) for the set {g0, . . . ,gk}. The domain of a pseudo k-partition
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is the union of the domain of its coloring d-formulas.
For some fixed n and d, a natural interpretation of a function symbol g is a function f : [ω]n →

d +1. In this interpretation, a set H satisfies a coloring atom g[J] if f ([H]n)⊆ J. Accordingly, a
set H satisfies a coloring d-formula ϕ = g0[J0]∧·· ·∧gt−1[Jt−1] within the interpretation gi 7→ fi

if fi([H]n)⊆ Ji for each i. If (ϕν : ν < k) is a pseudo k-partition of coloring d-formulas and κ

is a function from dom(~ϕ) to functions of type [ω]n → d +1, then every set H which is f -thin
simultaneous for each f ∈ ran(κ) satisfies ϕν for some ν < k. We now prove some closure
properties.

Lemma 13.3.3 For every pseudo k-partition of coloring d-formulas ~ϕ = (ϕν : ν < k) over a
finite set S, every µ < k and every function symbol g, the set ~ψ = (ϕν : ν 6= µ)∪ (ϕµ ∧g[I] : I ⊆

S∧|I|= d) is a pseudo (k+
(|S|

d

)
−1)-partition of coloring d-formulas.

Proof. Fix some valuation π with dom(π) ⊇ dom(~ϕ)∪{g}. As (ϕν : ν < k) is a pseudo k-
partition, there exists a ν < k such that π |= ϕν . If µ 6= ν , then we are done since ϕν ∈ ~ψ . If
µ = ν , then π |= ϕµ ∧g[π(g)] and we are also done since ϕµ ∧g[π(g)] ∈ ~ψ . �

We now need to redefine a few notions introduced by Liu in [Liu15]. In the following, a
k-cover of a set X is a k-tuple of sets X0, . . . ,Xk−1 such that X0 ∪ ·· · ∪Xk−1 = X . We do not
require the sets Xi to be pairwise disjoint.

The main combinatorial property used in the proof that a statement P admits PA avoidance is
the ability to construct sets which are solutions to multiple P-instances simultaneously. Indeed,
fix a notion of forcing to construct a solution G to a P-instance X . Given a condition c and
a Turing functional Γ, when trying to prevent ΓG from being a {0,1}-valued DNC function,
one can usually define for each e and i < 2 the Π0

1 class Ce,i of P-instances X̃ such that for
every extension d to c compatible with X̃ , either d 
 ΓG(e) ↑ or d 
 ΓG(e) ↓6= i. If Ce,i = /0 for
some e such that Φe(e) ↓= i then we are done. Otherwise, we deduce the existence of one e

such that Ce,0 and Ce,1 are both non-empty. In this case, we would like to make G a solution
to X , X̃0 and X̃1 simultaneously, where X̃i ∈ Ce,i, so that we force ΓG(e) ↑. The conjunction of
multiple P-instances has to be done with some care to guarantee the existence of a solution. The
following notion of supporter informally describes the “valid” conjunctions of constraints.

Definition 13.3.3 — Supporter. Fix some integers k and q. A k-supporter ~K of {1, . . . ,q}
is k-tuple (Kν : ν < k) where Kν = {Kν ,i : i < qν} such that each Kν ,i is a subset of {1, . . .q}
and for every ordered k-cover (Pν : ν < k) of {1, . . . ,q}, there exists some Kν and some
Kν ,i ∈ Kν such that Kν ,i ⊆ Pν .

A k-supporter ~K = (Kν : ν < k) of {1, . . . ,q} enables us to compose q pseudo k-partitions
of coloring d-formulas ~ϕ1 = (ϕ1

ν : ν < k), . . . ,~ϕq = (ϕq
ν : ν < k) as follows:

Cross(~ϕ1, . . . ,~ϕq, ~K ) =







∧

i∈Kν , j

ϕ i
ν : Kν , j ∈ Kν ,ν < k







Lemma 13.3.4 Let ~ϕ1 = (ϕ1
ν : ν < k), . . . ,~ϕq = (ϕq

ν : ν < k) be q pseudo k-partitions of coloring
d-formulas, let ~K = (Kν : ν < k) be a k-supporter of {1, . . . ,q} and let K′ = ∑ν<k |Kν |. Then
Cross(~ϕ1, . . . ,~ϕq, ~K ) is a pseudo K′-partition of coloring d-formulas.

Proof. Fix a valuation π with dom(π) ⊇
⋃

i dom(~ϕ i). For every i ∈ (0,q], since (ϕ i
ν : ν < k)

is a pseudo k-partition of coloring d-formulas, there is some νi < k such that π |= ϕ i
νi

. This
induces an ordered k-partition (Pν : ν < k) of {1, . . . ,q} where Pν = {i ∈ {1, . . . ,q} : νi = ν}.
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By definition of being a k-supporter of {1, . . . ,q}, there exists some Kν and some Kν , j ∈ Kν

such that Kν , j ⊆ Pν . By definition of Pν and of the cross operator,
∧

i∈Kν , j

ϕ i
νi

is the same as
∧

i∈Kν , j

ϕ i
ν which is in Cross(~ϕ1, . . . ,~ϕq, ~K )

and π |=
∧

i∈Kν , j
ϕ i

νi
. Hence π |= ψ for some ψ ∈Cross(~ϕ1, . . . ,~ϕq, ~K ). �

When working with c.b-enums, we will end-up with Π0
1 classes of P-instances CV0 ,CV1 , . . .

where V0,V1, . . . are clopen sets, such that for every extension d to c which is compatible with
some P-instance X̃ ∈ CVi

, d forces ΓG either to diverge or to intersect Vi. If we make G be simul-
taneously a solution to P-instances from CV0 , . . . ,CVq

for some clopen sets such that
⋂

i≤qVi = /0,
then we will force ΓG to diverge. The following notion of k-disperse sequence of clopen sets
formalizes this idea.

Definition 13.3.4 — Disperse sequence. Fix some integers k and q. A sequence of q

clopen sets V (1), . . . ,V (q) is k-disperse if for every ordered k-cover (Pν : ν < k) of {1, . . . ,q},
there exists a ν < k such that

⋂

i∈Pν
V (i) = /0.

Lemma 13.3.5 Let (eν : ν < k) be k natural numbers and let k′ = ∑ν<k eν . If V (1), . . . ,V (q) is a
k′-disperse sequence of clopen sets, then ~K = {Kν : ν < k} where

Kν = {K ⊆ {1, . . . ,q} : {V (i)}i∈K is an eν -disperse sequence}

is a k-supporter of {1, . . . ,q}.

Proof. Suppose for the sake of contradiction that there exists a k-cover (Pν : ν < k) of {1, . . . ,q}
such that for all ν < k, Pν 6∈Kν , i.e., {V (i)}i∈Pν is not an eν -disperse sequence of clopen sets. Then
for each ν < k, there exists an eν -cover (Pν , j : j < eν) of Pν such that (∀ j < eν)(

⋂

i∈Pν , j
V (i) 6= /0).

However then (Pν , j : j < eν ,ν < k) is a k′-cover of {1, . . . ,q} that contradicts the assumption
that V (1), . . . ,V (q) is a k′-disperse sequence of clopen sets. �

In particular, we can reprove that the pointwise conjunction of k+1 pseudo k-partitions of
coloring d-formulas is again a pseudo partition.

Lemma 13.3.6 Let ~ψ0 = (ϕ0
ν : ν < k), . . . , ~ψk = (ϕk

ν : ν < k) be k+ 1 pseudo k-partitions of
coloring d-formulas. The set ~ψ = {ϕ i

ν ∧ϕ
j

ν : i < j ≤ k,ν < k} is a pseudo (k
(

k+1
2

)
)-partition of

coloring d-formulas.

Proof. First, notice that ~ψ =Cross(~ϕ0, . . . ,~ϕk, ~K ), where ~K = {Kν : ν < k} is defined by

Kν = {{i, j} : i < j ≤ k}

Thanks to Lemma 13.3.4, it suffices to prove that ~K is a k-supporter of {0, . . . ,k}. Fix some
k-cover (Pν : ν < k) of {0, . . . ,k}. For each i≤ k, let νi < k be such that i∈Pνi

. By the pigeonhole
principle, there are some i < j ≤ k such that νi = ν j. Hence {i, j} ⊆ Pνi

. Since {i, j} ∈ Kνi
, we

conclude. �

Given a set C ⊆ 2ω and some n ∈ ω , define

Cn = {ρ ∈ 2n : [ρ]∩C 6= /0}

The following last lemma is the core of the forcing argument. It asserts that whenever the
context is too weak with respect to some computability-theoretic notion, then either we will miss
some valid elements, or we will capture some invalid ones.
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Lemma 13.3.7 . For every set D computing no c.b-enum of C and every Σ
0,D
1 formula ϕ(V )

where V is a clopen variable, one of the following must hold.
1. ϕ(Cn) holds for some n ∈ ω .
2. For every k ∈ ω , there exists a k-disperse sequence of clopen sets V (1), . . . ,V (m) such that

for every i = 1, . . . ,m, ϕ(V (i)) does not hold.

Proof. Define the following D-c.e. set.

E = {W ⊆ 2<ω : (∀ρ,σ ∈W )|ρ|= |σ |∧ϕ(W )}

Suppose case 1 does not hold. In other words Cn 6∈ E for every n ∈ ω . We prove that for every
k ∈ ω and almost every n ∈ ω , the following is a k-disperse:

Wn = {W ⊆ 2<ω : (∀ρ ∈W )|ρ|= n∧W 6∈ E}

Note that Wn is co-D-c.e. uniformly in n. Fix some k ∈ ω . Let Wn,t denote Wn at stage
t. We have Wn,t+1 ⊆ Wn,t . Therefore if there exists a k-cover (Pν : ν < k) of Wn such that
(∀ν < k)

⋂

W∈Pν
W 6= /0, then this cover can be found in a finite amount of time. Furthermore

Cn ∈ Pν for some ν < k, so
(∀ρ ∈

⋂

W∈Pν

W )[ρ]∩C 6= /0

It follows that if there exists infinitely many n such that such a k-cover exists, we can D-
computably find infinitely of them and define the D-computable enumeration h which on input n

returns (ρν : ν < k) such that there exists some t,m ≥ n and a k-cover (Pν : ν < k) of Wm,t such
that (∀ν < k)

⋂

W∈Pν
W 6= /0 and ρν is the leftmost string in

⋂

W∈Pν
W . This contradicts the fact

that D computes no c.b-enum of C . �

13.4 The weakness of Ramsey’s theorem for pairs

By Liu’s theorem [Liu15], Ramsey’s theorem for pairs admits c.b-enum avoidance. Since the
notion of avoidance is downward-closed under computable entailment, all its consequences
admit c.b-enum avoidance. On the other hand, by a consequence of Simpson’s embedding
lemma [Sim07, Lemma 3.3], various weak statements do not admit path avoidance, even for
effectively closed sets (Corollary 13.1.13). Furthermore, some statements such as the thin set
theorem for pairs do not admit simultaneous path avoidance (Corollary 13.2.6). In this section,
we study consequences of Ramsey’s theorem for pairs which admit stronger notions of avoidance
such as 1-enum avoidance and simultaneous c.b-enum avoidance. This enables us to reprove
some existing separations over computable entailment.

Some lemmas become pretty standard in the analysis of the combinatorics of Ramsey’s
theorem and its consequences. They are independently reproven for each new notion of avoidance.
We state them in their most general form, without providing a proof when they are too trivial.
The first lemma simply reflects the fact that strong avoidance is not sensitive to the number of
applications of a statement.

Lemma 13.4.1 If RT1
2 admits strong C avoidance for some set C ⊆ ωω , then so does RT1

<∞.

Corollary 13.4.2 — [Liu15]. RT1
<∞ admits strong c.b-enum avoidance.

The next lemma is a part of the inductive proof of Ramsey’s theorem and has been reproven
in [Liu12, Corollary 1.6] for PA avoidance, in [Liu15, Corollary 5.1] for c.b-enum avoidance,
in [Pat15i, Theorem 4.11] for fairness preservation, among others.
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Lemma 13.4.3 If COH admits C avoidance and RTn
2 strong C avoidance, then RTn+1

2 admits
C avoidance.

Proof. Let C be a set computing no member of C and f : [ω]n+1 → 2 be a C-computable coloring
function. For each σ ∈ [ω]n, let Rσ = {y : f (σ ,y) = 1}. By C avoidance of COH applied to
~R, there exists an infinite set X such that X ⊕C computes no member of C and lims∈X f (σ ,s)
exists for each σ ∈ [ω]n. Let f̃ : [ω]n → 2 be the function defined by f (σ) = lims∈X f (σ ,s).
By strong C avoidance of RTn

2, there exists an infinite set Y ⊆ X and an i ∈ {0,1} such that
(∀σ ∈ [Y ]n) f̃ (σ) = i = lims∈X f (σ ,s) and Y ⊕X ⊕C computes no member of C . Y ⊕X ⊕C

computes an infinite set H such that f ([H]n+1) = i. �

The following lemma is a typical example of a relative avoidance which is known not to be
enjoyed by the premisse, but which is useful to propagate weaker notions of avoidance, such as
c.b-enum avoidance.

Corollary 13.4.4 If RT1
2 admits strong path avoidance for some set C ⊆ ωω , then RT2

2
admits path avoidance for C .

Proof. It follows from Lemma 13.4.3 and Theorem 13.4.6. �

Corollary 13.4.5 — [Liu15]. RT2
2 admits c.b-enum avoidance.

Proof. Apply Lemma 13.3.1 to Corollary 13.4.4, using strong c.b-enum avoidance of RT1
2. �

13.4.1 Cohesiveness

Cohesiveness has been proven to admit path avoidance (Corollary 13.1.6). On the other hand,
it does not admit strong path avoidance since RT1

2 ≤sc COH and by Corollary 13.1.9. There is
however a strong relation between Ramsey’s theorem for singletons and cohesiveness. Indeed,
the latter can be constructed by sequentially applying the former. This relation is formalized
through the following theorem.

Theorem 13.4.6 COH≤spath RT
1
2

Proof. Let C ⊆ ωω be a closed set with no C-computable member for some set C, and let ~R
be a countable sequence of sets. Our forcing conditions are tuples (F,X) forming a Mathias
condition, with the additional requirement that C has no X ⊕C-computable member. Our initial
condition is ( /0,ω). We can easily force our satisfying sets to be infinite.

Lemma 13.4.7 For every condition c = (F,X) and every e,∈ ω , there exists an extension (F̃ , X̃)
of c forcing ΦG⊕C

e not to be a member of C .

Proof. Suppose for the sake of contradiction that there is no extension of c forcing ΦG⊕C
e to

be partial or ΦG⊕C
e ↾|σ |= σ for some σ ∈ 2<ω such that [σ ]∩C = /0. We show how to X ⊕C-

compute a member of C . Define an X ⊕C-computable sequence of sets F0 ⊆ F1 ⊆ ·· · ⊆ X

such that Φ
(F∪Fi)⊕C
e (i) ↓ and ∀x ∈ Fi+1 rFi, x ≥ max(Fi). Such a sequence exists since there

is no extension of c forcing ΦG⊕C
e to be partial. We claim that the set Y defined by Y (i) =

Φ
(F∪Fi)⊕C
e (i) is a member of C . If not, then there is some i such that C ∩ [Y ↾i] = /0. In this case,

(F ∪Fi,X r [0,max(Fi)]) is an extension of c forcing ΦG⊕C
e ↾|σ |= σ for some σ ∈ 2<ω such that

[σ ]∩C = /0, contradiction. �
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Lemma 13.4.8 For every condition c = (F,X) and every e, i ∈ ω , there exists an extension
(F̃ , X̃) of c such that X̃ ⊆ Ri or X̃ ⊆ Ri.

Proof. Consider the coloring f : X → {0,1} such that f (x) = 1 iff x ∈ Ri. By strong 1-enum
avoidance of RT1

2 for ~C , there exists an infinite subset X̃ ⊆ X such that X̃ ⊕C does not compute
a 1-enum of ~C and X̃ ⊆ Ri or X̃ ⊆ Ri. (F, X̃) is the desired extension. �

Let F = {c0,c1, . . .} be a sufficiently generic filter containing ( /0,ω), where cs = (Fs,Xs).
The filter F yields a unique infinite set G =

⋃

s Fs. By Lemma 13.4.8, G is ~R-cohesive and by
Lemma 13.4.7, C has no G⊕C-computable member. �

Wang [Wan14a] proved that COH admits strong PA avoidance with a similar argument using
strong PA avoidance of RT1

2. Thanks to Theorem 13.4.6, we can prove the following stronger
corollary.

Corollary 13.4.9 COH admits strong c.b-enum avoidance.

Proof. By strong c.b-enum avoidance of RT1
2, Theorem 13.4.6 and Lemma 13.3.1. �

13.4.2 The Erdős-Moser theorem

The Erdős-Moser theorem shares a lot of the combinatorial aspects of Ramsey’s theorem for
pairs. The most notable difference is that the notion of forcing seen on Section 10.3 yields
only one set. Unlike Ramsey’s theorem for pairs whose requirements are disjunctions, the
requirements for the Erdős-Moser theorem can be interleaved, which enables us to prove that
the Erdős-Moser admits simultaneous c.b-enum avoidance. As for cohesiveness, RT1

2 ≤sc EM

(Lemma 13.1.12), hence EM does not admit strong simultaneous c.b-enum avoidance. We now
prove that the Erdős-Moser admits 1-enum avoidance relative to the Ramsey-type König’s lemma.
The question whether it admits 1-enum avoidance remains open.

Theorem 13.4.10 EM≤enum RWKL.

Proof. Since COH admits 1-enum avoidance, it suffices to prove the result for stable tournaments.
Fix a countable sequence of sets C0,C1, · · · ⊆ 2ω for which RWKL admits 1-enum avoidance.
Let C be a set computing no 1-enum of Ci for any i, and let T be a C-computable stable
tournament.

We will construct an infinite T -transitive subtournament by using Erdős-Moser conditions,
defined in section 10.3. Recall that an EM condition for T is a Mathias condition (F,X) where

(a) F ∪{x} is T -transitive for each x ∈ X

(b) X is included in a minimal T -interval of F .
We furthermore impose that the C ’s have no X ⊕C-computable 1-enum. A set G satisfies

a condition (F,X) if it is T -transitive and satisfies the Mathias condition (F,X). Our initial
condition is ( /0,ω). The first lemma shows that we can force the transitive subtournament to be
infinite.

Lemma 13.4.11 For every condition c = (F,X), there is an extension (F̃ , X̃) such that |F̃ |> |F |.

Proof. Let x ∈ X . Since T is stable, there is some n such that {x} →T X ∩ [n,+∞) or X ∩
[n,+∞)→T {x}. By Lemma 10.3.3, d = (F ∪{x},X ∩ [n,+∞) is a valid extension. �

Lemma 13.4.12 For every condition c = (F,X) and every e, i ∈ ω , there exists an extension
(F̃ , X̃) of c forcing ΦG⊕C

e not to be a 1-enum of Ci where G is the forcing variable.
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Proof. Suppose there exists a string σ ∈ 2<ω such that [σ ]∩Ci = /0 and a finite set E ⊂ X such
that for every 2-partition E0∪E1 =E, there exists a finite T -transitive F ′ ⊆E j for some j < 2 such

such that Φ
(F∪F ′)⊕C
e (|σ |) ↓= σ . Then consider the 2-partition E0 ∪E1 = E defined by E0 = {x ∈

E : (∀∞s)T (x,s)} and E1 = {x∈E : (∀∞s)T (s,x)}. Let F ′ ⊆Ei be such that Φ
(F∪F ′)⊕C
e (|σ |) ↓=σ .

In particular, there is some n ∈ ω such that F ′ →T X ∩ [n,+∞) or X ∩ [n,+∞) →T F ′, so by
Lemma 10.3.3, the condition (F ∪F ′,X ∩ [n,+∞)) is a valid extension forcing ΦG⊕C

e not to be a
1-enum of Ci.

So suppose there is no such σ ∈ 2<ω . For each σ ∈ 2<ω , let Tσ denote the collection

of the sets Z such that for every finite T -transitive set F ′ ⊆ Z or F ′ ⊆ Z, Φ
(F∪F ′)⊕C
e (|σ |) ↑ or

Φ
(F∪F ′)⊕C
e (|σ |) 6= σ . Note that Tσ are uniformly Π

0,X⊕C
1 classes. Because the previous case does

not hold, then by compactness Tσ 6= /0 for each σ such that Ci ∩ [σ ] = /0. The set {σ : Tσ = /0}
is X ⊕C-c.e. If for each u ∈ ω , there exists a σ ∈ 2u such that Tσ = /0 then X ⊕C computes
a 1-enum of Ci, contradicting our hypothesis. So there must be a u such that Tσ 6= /0 for each
σ ∈ 2u.

Thanks to 1-enum avoidance of RWKL for ~C , define a finite decreasing sequence X = X0 ⊇
·· · ⊇ X2u−1 = X̃ such that for each σ ∈ 2u

1. Xσ is homogeneous for a path in Fσ .
2. Xσ ⊕C computes no 1-enum of any of the C ’s.

We claim that (F, X̃) is an extension forcing ΦG⊕C
e (u) ↑ or ΦG⊕C

e (u) 6∈ 2u. Suppose for the sake of
contradiction that there exists a σ ∈ 2u and a set G satisfying (F, X̃) such that ΦG⊕C

e (u) ↓= σ . By

continuity, there exists a finite set F ′ ⊆ G such that Φ
(F∪F ′)⊕C
e (u) ↓= σ . The set F ′ is T -transitive

by definition of satisfaction of (F, X̃). It suffices to show that F ′ ⊆ Z or F ′ ⊆ Z for some Z ∈ Tσ

to obtain a contradiction. This is immediate since X̃ is homogeneous for a path in Tσ . �

Let F = {c0,c1, . . .} be a sufficiently generic filter containing ( /0,ω), where cs = (Fs,Xs).
The filter F yields a unique set G =

⋃

s Fs. By definition of a condition, the set G is a transitive
subtournament of T . By Lemma 13.4.11, G is infinite and by Lemma 13.4.12, G⊕C computes
no 1-enum of Ci for any i ∈ ω . �

Corollary 13.4.13 EM admits simultaneous c.b-enum avoidance.

Proof. Apply Lemma 13.3.2 to Theorem 13.4.10 and simultaneous c.b-enum avoidance of RWKL

(Theorem 13.5.1). �

Since RT1
2 ≤sc EM, EM admits neither strong 1-enum avoidance, nor strong 2 c.b-enum

avoidance. However, we can prove that EM admits strong 1-enum avoidance relative to RT1
2.

This enables us to prove in particular that EM admits strong c.b-enum avoidance, and strong
cone avoidance.

Theorem 13.4.14 EM≤senum RT1
2.

In order to prove Theorem 13.4.14, we need to introduce some notation.

Definition 13.4.1 A ⊕k-tournament is a set ~T = T0 ⊕·· ·⊕Tk−1 such that each Ti is a tourna-
ment. One might think of a ⊕k-tournament as a conjunction of tournaments. Thus, notions
over tournaments can be naturally extended to ⊕k-tournaments. For example, a set U is a
subtournament of a ⊕k-tournament ~T if it is a subtournament of Ti for each i < k.

Proof of Theorem 13.4.14. Let C1,C2, · · · ⊆ 2ω be a countable collection of sets for which RT1
2

admits strong 1-enum avoidance. Fix a set C computing no 1-enum of ~C and let T be an
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infinite tournament. We will construct an infinite T -transitive subtournament by a forcing whose
conditions are tuples (k,F,X , ~U) such that

(a) ~U is a ⊕k-tournament
(b) X ⊕C does not compute a 1-enum of ~C
(c) (F,X) is an EM condition for each Ui ∈ ~U

A condition (m,F ′,X ′, ~U ′) extends another condition (k,F,X , ~U) if (F ′,X ′) Mathias extends
(F,X), m ≥ k and {Ui : i < k} ⊆ {U ′

i : i < m}. A set G satisfies a condition (k,F,X , ~U) if it is
~U-transitive and satisfies the Mathias condition (F,X). Our initial condition is (1, /0,ω,T ). The
first lemma shows that every sufficiently generic filter yields an infinite set.

Lemma 13.4.15 For every condition (k,F,X , ~U), there exists an extension (k, F̃ , X̃ , ~U) such that
|F̃ |> |F |.

Proof. Take any x ∈ X . Let f : X → 2k be the coloring defined by f (y) = σy where |σy|= k and
for each i < k, σy(i) = 1 iff Ui(x,y) holds. By strong 1-enum avoidance of RT1

<∞ for ~C , there
exists an infinite set X̃ and a σ ∈ 2k such that

(∀i < k)(∀y ∈ X̃)(Ui(x,y) holds ↔ σ(i) = 1)

and X̃ ⊕C does not compute a 1-enum of ~C . By Lemma 10.3.3, (F ∪{x}, X̃) is a valid EM
extension for Ui for each i < k so (k,F ∪{x}, X̃ , ~U) is a valid extension. �

Lemma 13.4.16 Fix a set C computing no 1-enum of ~C . Let X be an infinite C-computable set
and ~T be a ⊕k-tournament. For each finite subset E ⊆ X , there is a 2k partition E =

⋃

σ∈2k Eσ

and an infinite set Y ⊆ X such that E < Y , Y ⊕C does not compute a 1-enum of ~C and for all
σ ∈ 2k and i < k, if σ(i) = 0 then Eσ →Ti

Y and if σ(i) = 1 then Y →Ti
Eσ .

Proof. Given a set E, define PE to be the finite set or ordered 2k-partitions of E, i.e.

PE =

{
〈

Eσ : σ ∈ 2k
〉

:
⋃

σ∈2k

Eσ = E and σ 6= τ → Eσ ∩Eτ = /0

}

Define the coloring g : X → PE by g(x) =
〈
Ex

σ : σ ∈ 2k
〉

where

Ex
σ = {a ∈ E : (∀i < k)Ti(a,x) holds iff σ(i) = 0}

By strong 1-enum avoidance of RT1
<∞ for ~C , there exists an infinite set Y ⊆ X homogeneous for

g such that X ⊕Y does not compute a 1-enum of ~C . Let
〈
Eσ : σ ∈ 2k

〉
be the color. By removing

finitely many elements of X , we can ensure that E < Y and by definition of g, for all σ ∈ 2k and
i < k, if σ(i) = 0 then Eσ →Ti

Y and if σ(i) = 1 then Y →Ti
Eσ . �

Lemma 13.4.17 For every condition (k,F,X , ~U) and every e, i ∈ ω , there exists an extension
(m, F̃ , X̃ ,~V ) forcing ΦG⊕C

e not to be a 1-enum of Ci where G is the forcing variable.

Proof. Suppose there exists a string σ ∈ 2<ω such that [σ ]∩Ci = /0 and a finite set E ⊂ X such
that for each 2k-partition E = E0 ∪ ·· ·∪E2k−1, there is a j < 2k and a ~U transitive set F ′ ⊆ E j

such that Φ
(F∪F ′)⊕C
e (|σ |) ↓= σ . Take the partition E = E0 ∪ ·· · ∪E2k−1 and the infinite set

X̃ ⊆ X guaranteed by Lemma 13.4.16. Fix a j < 2k and an ~U-transitive set F ′ ⊆ E j such that

Φ
(F∪F ′)⊕C
e (|σ |) ↓= σ . By Lemma 10.3.3, (F ∪F ′, X̃) is a valid EM condition for Ui for each

i < k so (k,F ∪F ′, X̃ , ~U) is a valid extension and forces ΦG⊕C
e not to be a 1-enum of Ci.

So suppose there is no such σ ∈ 2<ω and finite set E ⊂ X . For each σ ∈ 2<ω , let Tσ

denote the collection of ⊕k-tournaments ~W satisfying conditions (c) and (d) such that for each
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finite set E ⊂ X , there exists a 2k-partition E = E0 ∪ ·· ·∪E2k−1 such that for every j < 2k and
~W -transitive set F ′ ⊆ E j, Φ

(F∪F ′)⊕C
e (|σ |) ↑ or Φ

(F∪F ′)⊕C
e (|σ |) 6= σ . Note that Tσ are uniformly

Π
0,X⊕C
1 classes. Because above case does not hold, ~U ∈ Tσ for each σ such that Ci ∩ [σ ] = /0.

The set {σ : Tσ = /0} is X ⊕C-c.e. If for each u ∈ ω , there exists a σ ∈ 2u such that Tσ = /0
then X ⊕C computes a 1-enum of Ci, contradicting our hypothesis. So there must be a u such
that Tσ 6= /0 for each σ ∈ 2u.

Given a σ ∈ 2u, let ~Vσ ∈ Tσ . Define the (non-computable) predicate Q(E,E0, . . . ,E2k−1)

which holds iff for each j < 2k and ~Vσ -transitive set F ′ ⊆ E j, Φ
(F∪F ′)⊕C
e (u) ↑ or Φ

(F∪F ′)⊕C
e (u) 6=

σ . For each m ∈ ω , let S(m) be the set of all 2k-partitions E0 ∪ ·· · ∪ E2k−1 of the m first
elements E of X such that Q(E,E0, . . . ,E2k−1) holds. By definition of Tσ , S(m) is non-empty for
each m ∈ ω . Moreover, if Q(E,E0, . . . ,E2k−1) holds then so does Q(E ↾ s,E0 ↾ s, . . . ,E2k−1 ↾ s).
Therefore S is an infinite finitely branching tree. Every infinite path in S is a 2k-partition Xσ

0 ∪

·· ·∪Xσ
2k−1 of X such that for every j < 2k, and every ~Vσ -transitive set F ′ ⊆ Xσ

j , Φ
(F∪F ′)⊕C
e (u) ↑

or Φ
(F∪F ′)⊕C
e (u) 6= σ . By strong 1-enum avoidance of RT1

<∞ for ~C , there exists a j < 2k and an
infinite set Xσ ⊆ X j such that Xσ ⊕C computes no 1-enum of ~C .

By repeating the process for each σ ∈ 2u, we obtain an infinite set X̃ ⊆ X such that X̃ ⊕C

computes no 1-enum of ~C and for every (
⊕

σ∈2u~Vσ )-transitive F ′ ⊆ X̃ , Φ
(F∪F ′)⊕C
e (u) ↑ or

Φ
(F∪F ′)⊕C
e (u) ↓6∈ 2u. ((2u +1)k,F, X̃ , ~U

⊕

σ∈2u~Vσ ) is the desired extension. �

Let F = {c0,c1, . . .} be a sufficiently generic filter containing (1, /0,ω,T ), where cs =
(ks,Fs,Xs, ~Us). The filter F yields a unique set G=

⋃

s Fs. By definition of a forcing condition, the
set G is a transitive subtournament of T . By Lemma 13.4.15, G is infinite and by Lemma 13.4.17,
G⊕C computes no 1-enum of ~C . �

Corollary 13.4.18 EM admits strong c.b-enum avoidance.

Proof. Apply Lemma 13.3.2 to Theorem 13.4.14, knowing that RT1
2 admits strong c.b-enum

avoidance. �

13.4.3 The rainbow Ramsey theorem for pairs

Among the consequences of Ramsey’s theorem for pairs, the rainbow Ramsey theorem for pairs
surprisingly admits a very nice computability-theoretic characterization in terms of algorithmic
randomness. Miller [Mil] proved that it is computably equivalent to the relativized diagonally
non-computable principle, which itself corresponds to the assertion of the existence of an infinite
subset of a 2-random.

Given a closed set of positive measure, the measure of oracles which do not compute a c.b-
enum of this closed set is null. In particular, neither weak weak König’s lemma nor its relativized
statements admit c.b-enum avoidance. We will however see that the rainbow Ramsey theorem
for pairs admits 1-enum avoidance. This results cannot be proven for higher exponents since
by Theorem 9.0.3, STS2 ≤sc RRT

3
2. Therefore RRT3

2 does not admit simultaneous c.b-enum
avoidance and a fortiori does not admit 1-enum avoidance. We start by proving that the rainbow
Ramsey theorem for singletons admits strong 1-enum avoidance and then apply the standard
inductive argument.

Theorem 13.4.19 RRT1
2 admits strong 1-enum avoidance.
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Definition 13.4.2 A 2-bounded ⊕k-function is a set ~f = f0 ⊕·· ·⊕ fk−1 such that each fi is a
coding of a 2-bounded coloring over integers. One might think of an 2-bounded ⊕k-function
as a conjunction of 2-bounded functions. Thus notions over functions can be naturally
extended to 2-bounded ⊕k-functions: – e.g. A set F is a rainbow for a 2-bounded ⊕k-function
~f if it is an fi-rainbow for each i < k –.

Proof of Theorem 13.4.19. Let C be a set computing no 1-enum of C for some set C ⊆ 2ω and
f : ω → ω be a 2-bounded coloring. Our forcing conditions are tuples (k,F,X ,~g) such that

(a) ~g is a normal 2-bounded ⊕k-function
(b) X is an infinite set such that F < X and X ⊕C computes no 1-enum of C

(c) F is a finite~g-rainbow.
A set G satisfies a condition (k,F,X ,~g) if it satisfies the Mathias condition (F,X) and G if gi-free
for each i < k. Our initial condition is (1, /0,ω, f ). A condition (m,F ′,X ′,~g′) extends another
condition (k,F,X ,~g) if (F ′,X ′) Mathias extends (F,X), m ≥ k and (∀i < k)gi = g′i.

Lemma 13.4.20 For every condition (k,F,X ,~g) there exists an extension (k, F̃ , X̃ ,~g) such that
|H|> |F |.

Proof. Take x ∈ X r
⋃

i gi(F). F ∪{x} is a ~g-rainbow, hence (k,F ∪{x},X r [0,x],~g) is the
desired extension. �

Lemma 13.4.21 For every condition (k,F,X ,~g) and every e ∈ ω , there exists an extension
(m, F̃ , X̃ ,~h) forcing ΦG⊕C

e not to be a 1-enum of C , where G is the forcing variable.

Proof. Suppose there exists a σ ∈ 2<ω such that [σ ]∩C = /0 and a finite set F ′ ⊆ X such that

F ∪F ′ is gi-free for each i < k and Φ
(F0∪F ′)⊕C
e (|σ |) ↓= σ . (k,F ∪F ′,X r [0,max(F ′)],~g) is a

condition forcing ΦG⊕C
e not to be a 1-enum of C .

Suppose there is no such finite set F ′ ⊂ X . For each σ ∈ 2<ω , let Fσ denote the collection
of 2-bounded ⊕k-functions~h such that F is~h-free and for each finite set F ′ ⊂ X such that F ∪F ′

is h j-free for each j < k, either Φ
(F∪F ′)⊕C
e (|σ |) ↑ or Φ

(F∪F ′)⊕C
e (|σ |) 6= σ . Note that Fσ are

uniformly Π
0,X⊕C
1 classes. Because the above case does not hold,~g ∈ Fσ for each σ such that

C ∩ [σ ] = /0. The set {σ : Fσ = /0} is X ⊕C-c.e. If for each u ∈ ω there exists a σ ∈ 2u such
that Fσ = /0 then X ⊕C computes a 1-enum of C , contradicting our hypothesis. So there must
be an u ∈ ω such that Fσ 6= /0 for each σ ∈ 2u.

For each σ ∈ 2u, let~hσ ∈Fσ . ((2u+1)k,F,X ,~g
⊕

σ∈2u
~hσ ) is a condition forcing ΦG⊕C

e (u) ↑
or ΦG⊕C

e (u) ↓6∈ 2u. �

Let F = {c0,c1, . . .} be a sufficiently generic filter containing (1, /0,ω, f ), where cs =
(ks,Fs,Xs,~gs). The filter F yields a unique set G =

⋃

s Fs. By Lemma 13.4.20, the set G is
infinite. By definition of a forcing condition, G is an f -rainbow, and by Lemma 13.4.21, G⊕C

computes no 1-enum of C . �

Lemma 13.4.22 DNR≤sc RRT
1
2[ /0

′]

Proof. Fix a set X and a canonical enumeration of all finite sets (Di : i ∈ ω). We construct a
2-bounded coloring f : ω → ω such that for every e ∈ ω , if ΦX

e (e) ↓ and DΦX
e (e)

has at least
2(e+1) elements, then either DΦX

e (e)
∩ [0,e] 6= /0 or it is not an f -rainbow. We first show how,

given an infinite f -rainbow H, we compute a function g d.n.c. relative to X . For every e ∈ ω ,
g(e) = i where Di are the first 2(e+1) elements of H greater than e. Suppose for the sake of
contradiction that g(e) = ΦX

e (e) for some e. Then DΦX
e (e)

is not an f -rainbow and therefore
DΦX

e (e)
6= Dg(e). Contradiction.
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We now detail the construction of f by stages. At stage 0, dom( f0) = /0. Suppose that at
stage s, [0,s) ⊆ dom( fs) and |dom( fs)| ≤ 3s. If ΦX

s (s) ↓ and |DΦX
s (s)

| ≥ 2(s+ 1) and has no
element before s, then by cardinality, there exist u,v ∈ DΦX

s (s)
rdom( fs). Set f (u) = f (v) and

give a fresh color to f (s) if s 6∈ dom( fs). Then go to stage s+1. f =
⋃

s fs is the desired coloring.
Note that f is X ′-computable. �

Corollary 13.4.23 DNR admits strong 1-enum avoidance.

Proof. By Theorem 13.4.19, Lemma 13.4.22 and Lemma 13.1.12. �

Corollary 13.4.24 RRT2
2 admits 1-enum avoidance.

Proof. By Miller [Mil], RRT2
2 =c DNR[ /0′]. By Corollary 13.4.23, DNR[ /0′] admits strong 1-

enum avoidance, so a fortiori 1-enum avoidance. Lemma 13.1.12 enables us to conclude. �

13.5 The weakness of the thin set hierarchy

Wang [Wan14b] first showed, by proving that the thin set and the free set theorems admit strong
cone avoidance, that increasing the number of colors in the output set changes fundamentally
the combinatorics of Ramsey’s theorem and gives a strictly weaker statement. We strengthened
Wang’s result in chapter 8 by showing that the thin set and the free set theorems admit preservation
of arbitrary many hyperimmunities. In this section, we prove a similar result about simultaneous
c.b-enum avoidance.

The argument is however significantly more involved since we cannot make a free use of
weak König’s lemma which does not admit c.b-enum avoidance. Flood [Flo12] clarified the
situation for Ramsey’s theorem for pairs by introducing the Ramsey-type weak König’s lemma
(RWKL) which happens to be the right amount of compactness needed for RT2

2 and even weaker
statements such as the Erdős-Moser theorem. In order to extend c.b-enum avoidance to the
thin set and free set theorems, we need to generalize the Ramsey-type weak König’s lemma to
arbitrary colorings.

Fix an enumeration of all n-tuples of integers t0, t1, · · · ⊆ [ω]n. Every string σ ∈ kω can be
interpreted as a function fσ : {ti : i < |σ |}→ k defined by fσ (ti) = σ(i). An infinite sequence S ∈
kω is then interpreted as the unique function fS : [ω]n → k such that fS(ti) = S(i) for each i ∈ ω .

Definition 13.5.1 For every n,k ≥ 2, Π0
1(TS

n
k) is the statement “For every infinite tree T ⊆

k<ω , there is an infinite set H and some c < k such that for every length ℓ ∈ ω , there is
some σ ∈ T of length ℓ such that fσ (ti) 6= c for each i < |σ | such that ti ∈ [H]n”.

Informally, for every non-empty Π0
1 class P of TSn

k-instances, Π0
1(TS

n
k) asserts the existence

of an infinite f -thin set for some f ∈P . The statement Π0
1(TS

n
k) is formulated so that it does not

imply the existence of the function f ∈P . In particular, Π0
1(TS

1
2) is nothing but the Ramsey-type

weak König’s lemma. Fix some m ≥ 1 and define dn inductively as follows.

d1 = m d̃1 = 1 and d̃n = ∑
0<s<n

dsdn−s dn = (m+1)d̃n for n > 1

Theorem 13.5.1 Fix some n ≥ 1
(i) RWKL admits simultaneous c.b-enum avoidance.

(ii) Π0
1(TS

n
d̃n+1) admits m c.b-enum avoidance.
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(iii) TSn
dn+1 admits strong m c.b-enum avoidance.

Before proving Theorem 13.5.1, we state an immediate corollary. As usual, strong avoidance
for n-tuples becomes avoidance for (n+1)-tuples thanks to cohesiveness.

Lemma 13.5.2 If COH admits C avoidance and TSn
k strong C avoidance, then TSn+1

k admits
C avoidance.

Corollary 13.5.3 If TSn
k admits strong path avoidance for some set C ⊆ ωω , then TSn+1

k

admits path avoidance for C .

Corollary 13.5.4 TSn+1
dn+1 admits m c.b-enum avoidance.

Finally, notice that d̃n = (m+1)2n−2an, where a1 = 1 and

an =
n−1

∑
i=1

aian−i

The reader will have recognized Catalan numbers [Kos09]. Therefore we can obtain an explicit
growth for dn:

dn = (m+1)d̃n =
(m+1)2n−1

(2n
n

)

n+1

We now turn to the proof of Theorem 13.5.1. Fix a countable collection of sets C0,C1, · · · ⊆
2ω . The proof of Theorem 13.5.1 is done in several steps by a mutual induction as follows:

(A1) Assuming that for each t ∈ (0,n), TSt
dt+1 admits strong c.b-enum avoidance for ~C , we

prove that Π0
1(TS

n
d̃n+1) admits c.b-enum avoidance for ~C .

(A2) Assuming that RWKL admits m c.b-enum avoidance, we prove that TS1
d1+1 admits strong

m c.b-enum avoidance.
(A3) Assuming that for each t ∈ (0,n), TSt

dt+1 admits strong 1-enum avoidance for ~C and

that Π0
1(TS

n
d̃n+1) admits 1-enum avoidance for ~C , we prove that TSn

dn+1 admits strong

1-enum avoidance for ~C .

By (A1), we deduce that RWKL admits simultaneous c.b-enum avoidance. Moreover,
1-enum avoidance can be replaced by c.b-enum avoidance in step (A3) by Lemma 13.3.2.

13.5.1 Strong path avoidance of generalized cohesiveness

As we did for preservation of hyperimmunity, we need to state a few theorems asserting the
existence of sets satisfying some cohesiveness properties generalized to the thin set theorem. The
proof is very similar to the proof of Theorem 8.4.4, and is obtained by replacing Lemma 6.2.2 by
Lemma 13.4.7.

Theorem 13.5.5 Fix a coloring f : [ω]n → ω , some t ≤ n and a closed set C ⊆ ωω for which
TSs

ds+1 admits strong path avoidance for each s ∈ (0, t]. For every set C computing no member
of C , there exists an infinite set G such that G⊕C computes no member of C and for every
σ ∈ [ω]<ω such that n− t ≤ |σ |< n,

∣
∣
∣

{

x : (∀b)(∃τ ∈ [G∩ (b,+∞)]n−|σ |) f (σ ,τ) = x
}∣
∣
∣≤ dn−|σ |
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When considering a function f : [ω]n → k and taking t = n−1, we obtain a set similar to the
one constructed in section 3.1 in [Wan14b].

Theorem 13.5.6 Fix a coloring f : [ω]n → k and a closed set C ⊆ ωω for which TSs
ds+1

admits strong path avoidance for each s ∈ (0,n). For every set C which does not compute a
member of C , there exists an infinite set G such that G⊕C computes no member of C and a
sequence (Iσ : 0 < |σ |< n) such that for each ℓ ∈ (0,n) and each σ ∈ [ω]ℓ

(a) Iσ is a subset of {0, . . . ,k−1} with at most dn−ℓ elements
(b) (∃b)(∀τ ∈ [G∩ (b,+∞)]n−ℓ) f (σ ,τ) ∈ Iσ

Proof. Let G be the set constructed by Theorem 13.5.5 for t = n−1. For each σ ∈ [ω]<ω such
that 0 < |σ |< n, let

Iσ = {x < k : (∀b)(∃τ ∈ [G∩ (b,+∞)]n−|σ |) f (σ ,τ) = x

By choice of G, |Iσ | has at most dn−|σ | many elements. Moreover, for each y < k such that
y 6∈ Iσ , there exists a bound by such that (∀τ ∈ [G∩ (by,+∞)]n−|σ |) f (σ ,τ) 6= y. So taking
b = max{by : y < k∧ y 6∈ Iσ}, we have

(∀τ ∈ [G∩ (b,+∞)]n−|σ |) f (σ ,τ) ∈ Iσ

�

Theorem 13.5.7 Fix a coloring f : [ω]n → k and a closed set C ⊆ ωω for which TSs
ds+1

admits strong path avoidance for each s ∈ (0,n). For every set C which does not compute a
member of C , there exists an infinite set G such that G⊕C computes no member of C and a
finite set (Is : 0 < s < n) such that for each s ∈ (0,n)

(a) Is is a finite set of at most ds sets of colors, and |I| ≤ dn−s for each I ∈ Is.
(b) (∀σ ∈ [G]s)(∃b)(∃I ∈ Is)(∀τ ∈ [G∩ (b,+∞)]n−s) f (σ ,τ) ∈ I

Proof. Let X be the infinite set and (Iσ : 0 < |σ | < n) be the infinite sequence constructed
in Theorem 13.5.6. For each s ∈ (0,n) and σ ∈ [G]s, let Fs(σ) = Iσ . Using strong path avoidance
of TSs

ds+1 for C , we build a finite sequence X ⊇ X1 ⊇ ·· · ⊇ Xn−1 such that for each s ∈ (0,n)
1. Xs ⊕C computes no member of C

2. |Fs([Xs]
s)| ≤ ds

Let G = Xn−1 and Is = Fs([G]s) for each s ∈ (0,n). We now check that property (b) is satisfied.
Fix a σ ∈ [G]s. Because G ⊆ X , (∃b)(∀τ ∈ [G∩ (b,+∞)]n−s) f (σ ,τ) ∈ Iσ . So Fs(σ) = Iσ , but
σ ∈ [G]s, hence Iσ ∈ Is. �

In particular, in our ongoing forcing, we will use the following corollary.

Corollary 13.5.8 Fix a countable collection of sets C0,C1, · · · ⊆ 2ω for which TSs
ds+1 admits

strong c.b-enum avoidance for each s ∈ (0,n). For every coloring f : [ω]n → k and every
set C which does not compute a c.b-enum of the C ’s, there exists an infinite set G such that
G⊕C computes no c.b-enum of the C ’s and a finite set I ⊆ {0, . . . ,k−1} such that |I| ≤ d̃n

and for each s ∈ (0,n),

(∀σ ∈ [G]s)(∃b)(∀τ ∈ [G∩ (b,+∞)]n−s) f (σ ,τ) ∈ I

Proof. Apply Theorem 13.5.7 taking I =
⋃

I and Lemma 13.3.1 using strong c.b-enum avoid-
ance of TSs

ds+1 for ~C . �
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13.5.2 Strong c.b-enum of Π0
1(TS

n
k)

We now prove step (A1) in the proof of Theorem 13.5.1.

Theorem 13.5.9 Fix a sequence of sets C0,C1, · · · ⊆ 2ω . For every n ≥ 1, if TSs
ds+1 ad-

mits strong c.b-enum avoidance for ~C , then Π0
1(TS

s
d+1) admits c.b-enum avoidance for ~C ,

where d = 1 if n = 1 and d = ∑0<s<n dsdn−s otherwise.

Proof. Fix a set C computing no c.b-enum of the C ’s, and let P0 be a Π
0,C
1 class of colorings of

type [ω]n → d +1. We want to build an infinite f -thin set G for some f ∈ P0 such that G⊕C

computes no c.b-enum of the C ’s. Before describing the strategy to build such a set, we
need to provide some suitable semantics to the notion of coloring formula. We shall only
consider coloring d-formulas over {0, . . . ,d}. In the following, we will omit the parameters d

and {0, . . . ,d}.

Definition 13.5.2 — Assignment. An assignment of a coloring formula ϕ is a function κ

such that dom(κ) ⊇ dom(ϕ) and for every g ∈ dom(κ), κ(g) is a function of type [ω]n →
d + 1. Given a coloring formula ϕ = g0[J0]∧ ·· · ∧ gt−1[Jt−1] and an assignment κ , a set
F ⊆ ω satisfies ϕ (written (F,κ) |= ϕ) if κ(g j)([F ]n)⊆ J j for each j < t.

In other words, (F,κ) |= ϕ iff there is a valuation π |= ϕ such that κ(g j)([F ]n)⊆ π(g j) for
each j < t. By Lemma 13.3.3, the set ~ϕ0 = (g[J] : J ⊆ [0,d]∧ |J| = d) is a pseudo (d + 1)-
partition of coloring d-formulas over {0, . . . ,d} with one function symbol g. We will construct
an infinite set G such that G⊕C computes no c.b-enum of the C ’s. We furthermore ensure that
(Gi, f ) |= ϕ for some ϕ ∈ ~ϕ0 and some assignment κ such that κ(g) ∈ P0. Therefore, the set G

will be f -thin for some f ∈ P0 and will be a solution to P0. The requirements to ensure that G

is infinite are
Qs : (∃w > s)(w ∈ G)

The requirements to ensure that G⊕C computes no c.b-enum of the C ’s are for each e, j ∈ ω

Re, j : ΦG⊕C
e total → (∃w)|ΦG⊕C

e (w) 6= Φw(w)|> e∨ [ΦG⊕C
e (w)]∩C j = /0

Definition 13.5.3 Given a Turing functional Φe, a finite set F , a clopen V , a coloring formula
ϕ , an assignment κ and a set X , we say that ΦF⊕C

e abandons V on ϕ , κ and X if there is a
w ∈ ω and a finite set F ′ ⊂ X such that (F ′,κ) |= ϕ and

|Φ
(F∪F ′)⊕C
e (w)|> e∨ [Φ

(F∪F ′)⊕C
e (w)]∩V = /0

The following lemma tells us that computing an e-enum and not abandoning an e-disperse
sequence of clopen sets is incompatible.

Lemma 13.5.10 Let V (1), . . . ,V (q) be an e-disperse sequence of clopen sets. Suppose ΦF⊕C
e

does not abandon V ( j) on ϕ , κ and X for every j = 1, . . . ,q. Then for every set G satisfying the
Mathias condition (F,X) such that (G,κ) |= ϕ , ΦG⊕C

e is not total or is not an e-enum.

Proof. Fix such a set G and a j ∈ {1, . . . ,q}. Because ΦF⊕C
e does not abandon V ( j) on ϕ , κ and

X , for every w ∈ ω such that ΦG⊕C
e (w) ↓, the following holds

|ΦG⊕C
e (w)| ≤ e∧ [ΦG⊕C

e (w)]∩V ( j) 6= /0

By convention, if ρ ∈ ΦG⊕C
e (w) then |ρ| = w. Taking w large enough, we have for every

j ∈ {1, . . . ,q} and every ρ ∈ ΦG⊕C
e (w)

[ρ]∩V ( j) 6= /0 → [ρ]⊆V ( j)
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For i < e, let ρi be the ith string in ΦG⊕C
e (w). The string ρi induces an e-cover (Pi : i < e) of the

clopen sets defined by
Pi = {V ( j) : [ρi]⊆V ( j)}

But then for each i < e, [ρi]⊆
⋂

j∈Pi
V ( j) 6= /0 contradicting the assumption that V (1), . . . ,V (q) is

e-disperse. �

We are now ready to define the actual notion of forcing and prove that every sufficiently
generic filter yields the desired p-tuple of sets.

Definition 13.5.4 — Single condition.

1. A single condition is a tuple (F,X ,ϕ,κ) where (F,X) is a Mathias condition, ϕ is a
coloring formula and κ is an assignment such that for each s ∈ (0,n),

(∀σ ∈ [F ]s)(∀τ ∈ [F ∪X ]n−s)(στ,κ) |= ϕ

2. A single condition d = (H,Y,ψ,γ) extends c = (F,X ,ϕ,κ) if (H,Y ) Mathias extends
(F,X), κ ⊆ γ and there exists a coloring formula θ such that ψ = ϕ ∧θ .

3. A set G satisfies a single condition (F,X ,ϕ,κ) if G satisfies the Mathias condition
(F,X) and (G,κ) |= ϕ .

Definition 13.5.5 — Condition.

1. A condition is a tuple (k,~F ,X ,D,~ϕ,P) where k > 0, ~F is a k-tuple of finite sets
(Fν : ν < k), D computes no c.b-enum of the C ’s, X ⊕C ≤T D, ~ϕ = (ϕν : ν < k) is a
pseudo k-partition of coloring formulas, P is a non-empty Π

0,D
1 class of assignments

and for each κ ∈ P , each ν < k, (Fν ,X ,ϕν ,κ) is a single condition.
2. A condition d = (m, ~H,Y,E, ~ψ,Q) extends c = (k,~F ,X ,D,~ϕ,P) if D ≤T E and there

is a function f : m → k with the following property: for each γ ∈ Q, there is some
κ ∈ P such that the single condition (Hν ,Y,ψν ,γ) extends (Ff (ν),X ,ϕ f (ν),κ). In this
case, the function f witnesses the extension and part ν of d refines part f (ν) of c.

3. A set G satisfies some condition c= (k,~F ,X ,D,~ϕ,P) on part ν if there is some κ ∈P

such that G satisfies the single condition (Fν ,X ,ϕν ,κ). G satisfies c if it satisfies c on
some of its parts.

4. A condition (k,~F ,X ,D,~ϕ,P) forces Qu on part ν if there exists some w > u such that
w ∈ Fν .

5. A condition d forces Re, j on part ν if every set G satisfying d on part ν satisfies Re, j.
6. Part ν of (k,~F ,X ,D,~ϕ,P) is acceptable if there is an infinite set Y ⊆ X such that

Y ⊕D computes no c.b-enum of the C ’s and there is a κ ∈ P such that for each
s ∈ (0,n),

(∀σ ∈ [Y ]s)(∃b)(∀τ ∈ [Y ∩ (b,+∞)]n−s)(στ,κ) |= ϕν

Lemma 13.5.11 Every condition has an acceptable part.

Lemma 13.5.12 For every condition c and every u ∈ ω , there is a condition d extending c such
that d forces Qu on each of its acceptable parts.

Lemma 13.5.13 For every condition c and every e, j ∈ ω there exists an extension d forcing
Re, j on each of its acceptable parts.

The construction of G given the three lemmas above is strictly the same as in [Hir15,
Lagniappe]: We build an infinite, decreasing sequence of conditions c0 ≥ c1 ≥ . . . start-
ing with c0 = (d + 1, /0, . . . , /0,ω,C,~ϕ0,P0) with the following properties assuming that cs =
(ks,~Fs,Xs,Ds,~ϕs,Ps):



196 Chapter 13. Avoiding enumerations of closed sets

1. Each cs has an acceptable part.
2. If part ν of cs is acceptable, then cs forces Re, j on part ν if s = 〈e, j〉.
3. If part ν of cs is acceptable, then cs forces Qs on part ν .

If part ν of cs+1 is acceptable and refines part µ of cs, then part µ of cs is also acceptable. Hence
the acceptable parts of the conditions form an infinite finitely branching tree. By König’s lemma,
there exists an infinite sequence ν0,ν1, . . . where part νs+1 of cs+1 refines part νs of condition cs.
One easily checks that G =

⋃

s Fνs,s is the desired set,.

Proof of Lemma 13.5.11. Let c = (k,~F ,X ,D,~ϕ,P) be a condition. As P is non-empty, there
exists an assignment κ ∈ P . Thanks to Corollary 13.5.8, define a finite decreasing sequence
X ⊇ Y0 ⊇ ·· · ⊇ Yt−1 such that for each i < t

1. Yi ⊕D computes no c.b-enum of the C ’s
2. there is a set Ji of size d such that for each s ∈ (0,n),

(∀σ ∈ [Yi]
s)(∃b)(∀τ ∈ [Yi ∩ (b,+∞)]n−s)κ(gi)(σ ,τ) ∈ Ji

Let π be the valuation defined by π(gi) = Ji for each i < t. Since ~ϕ = (ϕν : ν < k) is a pseudo
k-partition, there is some ν < k such that π |= ϕν . We claim that ν and Yt−1 satisfy the desired
properties. For each s ∈ (0,n) and i < t, by definition of π ,

(∀σ ∈ [Yt−1]
s)(∃b)(∀τ ∈ [Yt−1 ∩ (b,+∞)]n−s)κ(gi)(σ ,τ) ∈ π(gi)

Therefore, for each s ∈ (0,n),

(∀σ ∈ [Yt−1]
s)(∃b)(∀τ ∈ [Yt−1 ∩ (b,+∞)]n−s)(∀i < t)κ(gi)(σ ,τ) ∈ π(gi)

Since (στ,κ) |= ϕ iff (∀i < t)κ(gi)(σ ,τ) ∈ π(gi) for some valuation π |= ϕ ,

(∀σ ∈ [Yt−1]
s)(∃b)(∀τ ∈ [Yt−1 ∩ (b,+∞)]n−s)(στ,κ) |= ϕν

Therefore part ν of c is acceptable. �

Proof of Lemma 13.5.12. Fix some u ∈ ω . It suffices to prove that given a condition c =
(k,~F ,X ,D,~ϕ,P), if part µ is acceptable, then there exists an extension d = (k, ~H,Y,Y ⊕D,~ϕ,Q)
which forces Qu on part µ and whose extension is witnessed by the identity map. By iterating
the process, we obtain an extension satisfying the statement of the lemma.

Fix an acceptable part µ . By definition, there exists an assignment κ ∈ P and an infinite
subset Y0 ⊆ X such that Y0 ⊕D computes no c.b-enum of the C ’s and for each s ∈ (0,n),

(∀σ ∈ [Y0]
s)(∃b)(∀τ ∈ [Y0 ∩ (b,+∞)]n−s)(στ,κ) |= ϕµ

By the fact that (Fµ ,Y0,ϕµ) is a single condition, for each s ∈ (0,n),

(∀σ ∈ [Fµ ]
s)(∀τ ∈ [Fµ ∪Y0]

n−s)(στ,κ) |= ϕµ

therefore by taking y ∈ Y0 ∩ (u,+∞) and removing finitely many elements from Y0, we obtain a
set Y such that for each s ∈ (0,n),

(∀σ ∈ [Fµ ∪{y}]s)(∀τ ∈ [Fµ ∪Y ]n−s)(στ,κ) |= ϕµ

Let Hν = Fν if ν 6= µ and Hµ = Fµ ∪{y} otherwise. Let Q be the Π
0,Y⊕D
1 collection of all the

assignments κ ∈ P such that the above formula holds. The condition (k, ~H,Y,Y ⊕D,~ϕ,Q) is
an extension forcing Qu on part µ . �
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It remains to prove Lemma 13.5.13. Given a condition c, and any e, j ∈ ω , let Ue, j(c) be
the set of all acceptable parts ν such that c does not force Re, j on part ν . If Ue, j(c) = /0, we are
already done as condition c already forces Re, j on each of its acceptable parts. In order to prove
Lemma 13.5.13, it suffices to prove and iterate the following lemma.

Lemma 13.5.14 For every condition c and every e, j ∈ ω such that Ue, j(c) 6= /0, there exists an
extension d such that

∣
∣Ue, j(d)

∣
∣<

∣
∣Ue, j(c)

∣
∣.

The proof of Lemma 13.5.14 is split into two cases, according to Lemma 13.3.7. In the first
case, we can find a piece of oracle in a part of Ue, j(d), forcing the Turing functional we consider
to halt on a “wrong” input, i.e., on a clopen set which does not intersect C j. In the second case,
there exist many clopen sets which are intersected by the Turing functional whenever it halts.
The first lemma states the existence of a finite extension forcing the Turing functional to halt
on a wrong input on a part of Ue, j(d) when the first case holds. The second lemma states the
existence of an extension forcing the Turing functionals to diverge or not to be an e-enum on
each of the parts of Ue, j(d) when the second case holds. Before stating and proving the two
lemmas, we need to extend the abandoning terminology to a condition.

Definition 13.5.6 Let c = (k,~F ,X ,D,~ϕ,P) be a condition and V be a clopen set.

1. We say that part µ of c abandons V on some assignment κ if Φ
Fµ⊕C
e abandons V on

ϕµ , κ and X .
2. We say that part µ of c abandons V if for every assignment κ ∈P , part µ of c abandons

V on κ . The condition c abandons V if it abandons V on some part µ ∈Ue, j(c).

Given a condition c = (k,~F ,X ,D,~ϕ,P), define the following Π
0,D
1 class of assignments

for ~ϕ:

PV = {κ ∈ P : (∀ν ∈Ue, j(c))Φ
Fν⊕C
e does not abandon V on ϕν ,κ and X}

Notice that c abandons V iff PV = /0, hence the predicate “c abandons V ” is Σ
0,D
1 . We are

now about to prove the first lemma, but need one last definition. The acceptation of a part ν of
a condition c = (k,~F ,X ,D,~ϕ,P) intuitively means that we can find an infinite set Y ⊆ X such
that (k,~F ,Y,Y ⊕D,~ϕ,P) is a valid extension and there exists an assignment κ ∈ P such that
for each s ∈ (0,n),

(∀σ ∈ [Y ]s)(∃b)(∀τ ∈ [Y ∩ (b,+∞)]n−s)(στ,κ) |= ϕν

The condition (k,~F ,Y,Y ⊕D,~ϕ,P) has the same number of parts and its part ν can take Y

as a witness of being acceptable. This process can be iterated so that we obtain a condition
d =(k,~F ,Z,E,~ϕ,P) such that for every acceptable part ν of d, there exists an assignment κ ∈P

such that Z is a witness of acceptation of part ν . Such a condition is said to witness its acceptable

parts. Every condition can be extended to a condition witnessing its acceptable parts. For each
q ∈ ω , define

Cq = {ρ ∈ 2q : [ρ]∩C j 6= /0}

Lemma 13.5.15 Let c = (k,~F ,X ,D,~ϕ,P) be a condition witnessing its acceptable parts, and
let µ ∈Ue, j(c) such that part µ of c abandons Cq for some q ∈ ω . There exists an extension d

with the same parts as c, such that for every set G satisfying d on part µ , ΦG⊕C
e is not an e-enum

of C j.

Proof. By definition of witnessing its acceptable parts, there exists an assignment κ ∈ P such
that for each s ∈ (0,n),

(∀σ ∈ [X ]s)(∃b)(∀τ ∈ [X ∩ (b,+∞)]n−s)(στ,κ) |= ϕµ
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As part µ of c abandons Cq, then Φ
Fµ⊕C
e abandons Cq on ϕµ , κ and X . Unfolding the definition,

there exists a w ∈ ω and finite set F ′ ⊆ X , such that (F ′,κ) |= ϕµ and

|Φ
(Fµ∪F ′)⊕C
e (w)|> e∨ [Φ

(Fµ∪F ′)⊕C
e (w)]∩Cq(⊇ C ) = /0

Set Hν = Fµ ∪F ′ if µ = ν and Hν = Fν otherwise. By removing finitely many elements from X ,
we obtain a set Y ⊆ X such that for each s ∈ (0,n),

(∀σ ∈ [Fµ ∪F ′]s)(∀τ ∈ [Fµ ∪F ′∪Y ]n−s)(στ,κ) |= ϕµ

Let Q be the Π
0,D
1 class of all the assignments κ ∈ P satisfying the above property. The

condition (k, ~H,Y,D,~ϕ,P) is a valid extension forcing Re, j on part µ . �

We now prove the second lemma stating the existence of an extension forcing ΦG⊕C
e to be

partial or not to be a e-enum on each of the parts refining a part in Ue, j(c).

Lemma 13.5.16 Let V (1), . . . ,V (q) be an e-disperse sequence of clopen sets and let c be a
condition which does not abandon V ( j) for every j = 1, . . . ,q. There exists an extension d of c

such that for every set G satisfying d, ΦG⊕C
e is either partial or is not an e-enum of C j.

Proof. Fix some condition c = (k,~F ,X ,D,~ϕ,P). By the hypothesis that c does not abandon
V (t) for every t ∈ {1, . . . ,q}, the Π

0,D
1 class PV (t) is non-empty. Let ~K be the e-supporter of

{1, . . . ,q} constructed in Lemma 13.3.5 and let K′ = ∑Ki∈K |Ki|. By renaming the function

symbols, we can suppose that ~ϕV (1)
, . . . ,~ϕV (q)

have pairwise disjoint domains. By Lemma 13.3.4,
~ψ =Cross(~ϕV (1)

, . . . ,~ϕV (q)
, ~K ) is a pseudo K′-partition of coloring formulas. Let Q be the Π

0,D
1

class of all assignments κ such that κ = κ1 ⊔ ·· · ⊔κq for some κ t ∈ PV (t) . For each µ < K′,
let Hµ = Fν if part µ refines part ν of c. Then the condition d = (K′, ~H,X ,D, ~ψ,Q) is a valid
extension of c. We claim that d forces ΦG⊕C

e to be either partial or not to be an e-enum of C j for
each set G satisfying d.

Fix such a set G satisfying c on some part µ < K′ of d. If part µ of d refines a part of c

which is not in Ue, j(c) then by definition part µ of d already forces ΦG⊕C
e not to be an e-enum of

C j. So suppose that part µ of d refines a part ν of c such that ν ∈Ue, j(c).
By definition of satisfaction and the definition of the cross operator, there exists a K ∈ Kν

and for each t ∈ {1, . . . ,q} an assignment κ t ∈ PV (t) such that G satisfies the single condition

(Fν ,X ,
∧

t∈K

ϕ t
ν ,κ

t)

In particular, G satisfies the Mathias condition (Fν ,X) and

(G,κ t) |=
∧

t∈K

ϕ t
ν

By construction of ~K , {V (t) : t ∈ K} is an e-disperse sequence of clopen sets. By definition
of PV (t) , ΦFν⊕C

e does not abandon V (t) on ϕ t
ν , κ t and X . So in particular ΦFν⊕C

e does not abandon
V (t) on

∧

t∈K ϕ t
ν , κ1 ⊔·· ·⊔κq and X . Applying Lemma 13.5.10, we deduce that G is not total or

does not compute an e-enum. �

Proof of Lemma 13.5.14. Fix a condition c = (k,~F ,X ,D,~ϕ,P). We can furthermore assume
without loss of generality that c witnesses its acceptable parts. If Ue, j(c) = /0, we are done. So
suppose Ue, j(c) 6= /0. By Lemma 13.3.7 applied to the Σ

0,D
1 formula “c abandons V ”, we have

two cases:
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1. There exists a q ∈ ω and a part µ ∈ Ue, j(c) such that part µ of c abandons Cq. In this
case, by Lemma 13.5.15 there exists an extension d having the same parts as c, and such
that for every set G satisfying d on part µ , ΦG⊕C

e is not an e-enum of C j. Therefore,
Ue, j(d) =Ue, j(c)r{µ} and we are done.

2. There exists an e-disperse sequence of clopen sets V (1), . . . ,V (q) such that for every
t = 1, . . . ,q, c does not abandon V (t). By Lemma 13.5.16, there exists an extension d such
that for every set G satisfying d, ΦG⊕C

e is either partial or is not an e-enum of C j. In this
case we have Ue, j(d) = /0.

�

This last lemma finishes the proof. �

13.5.3 Strong c.b-enum avoidance of TS1

Next, we prove step (A2) of Theorem 13.5.1.

Theorem 13.5.17 TS1
m+1 admits strong m c.b-enum avoidance for every m ≥ 1.

Proof. Fix a set C and m sets C0, . . . ,Cm−1 ⊆ 2ω with no C-computable c.b-enum. Let A0∪·· ·∪
Am = ω be an (m+1)-cover of ω , and assume that there is no infinite set H ⊆ Ai for some i ≤ m

such that H ⊕C computes no c.b-enum of the C ’s, otherwise we are done. We will construct
simultaneously m+ 1 sets G0, . . . ,Gm such that Gi ⊕C computes no c.b-enum of the C ’s for
some i ≤ m. We furthermore ensure that for each i ≤ m, Gi ⊆ Ai. The requirements to ensure
that all Gi’s are infinite are

Qs : (∀i < p)(∃w > s)(w ∈ Gi)

The requirements to ensure that Gi ⊕C computes no c.b-enum of the C ’s for some i ≤ m are

Re0,...,em
:
∧

j<m

Re0, j ∨·· ·∨
∧

j<m

Rem, j

where

Rei, j : ΦGi⊕C
ei

total → (∃w)|ΦGi⊕C
ei

(w) 6= Φw(w)|> ei ∨ [ΦGi⊕C
ei

(w)]∩C j = /0

The sets G0, . . . ,Gm are built by a variant of Mathias forcing whose conditions are tuples c =
(F0, . . . ,Fm,X) where (Fi,X) is a Mathias condition such that Fi ⊆ Ai and X ⊕C computes no
c.b-enum of the C ’s for each i ≤ m. A condition d = (H0, . . . ,Hm,Y ) extends a condition c =
(F0, . . . ,Fm,X) if (Hi,Y ) Mathias extends (Fi,X) for each i ≤ m. A set Gi satisfies part i of c if Gi

satisfies the Mathias condition (Fi,X). The first lemma asserts that every sufficiently generic
filters yields infinite sets.

Lemma 13.5.18 For every condition c = (F0, . . . ,Fm,X), every i ≤ m and every u, there is an
extension d = (H0, . . . ,Hm,Y ) of c such that Hi ∩ (u,+∞).

Proof. If X ∩Ai ∩ (u,+∞) = /0, then X ⊆ Ai contradicting our initial assumption. Therefore,
let x ∈ X ∩Ai ∩ (u,+∞). The condition d = (F0, . . . ,Fi−1,Fi ∪{x},Fi+1, . . . ,Fm,X r (x,+∞)) is
the desired extension. �

Definition 13.5.7 Given a Turing functional Φe, a finite set F , a clopen V , we say that ΦF⊕C
e

abandons V on a set Y if there is a w ∈ ω and a finite set F ′ ⊆ X such that

|Φ
(F∪F ′)⊕C
e (w)|> e∨ [Φ

(F∪F ′)⊕C
e (w)]∩V = /0
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Given a condition c = (F0, . . . ,Fm,X), a vector of indices ~e and some i0 < i1 ≤ m, we say
that (i0, i1) abandons V on c if for every 2-cover Zi0 ∪Zi1 = X , either ΦFi⊕C

ei
abandons V on Zi

for some i ∈ {i0, i1}.

Given a condition c = (F0, . . . ,Fm,X), a vector of indices~e and some i0 < i1 ≤ m, define the
following Π

0,X⊕C
1 class:

PV = {Zi0 ⊕Zi1 : Zi0 ∪Zi1 = X ∧ (∀i ∈ {i0, i1})Φ
Fi⊕C
ei

does not abandon V on Zi}

Note that (i0, i1) abandons c on V iff PV = /0. In particular, the formula “(i0, i1) abandons c

on V ” is Σ
0,X⊕C
1 .

Lemma 13.5.19 For every condition c and every i0 < i1 ≤ m, every j < m and every vector of
indices~e there exists an extension d of c forcing Rei0 , j

or Rei1 , j
.

Proof. Fix a condition c= (F0, . . . ,Fm,X) and let Cq = {ρ ∈ 2q : [ρ]∩C j 6= /0}. By Lemma 13.3.7
applied to the Σ

0,X⊕C
1 formula “(i0, i1) abandons c on V ”, we have two cases:

• Case 1: (i0, i1) abandons c on some Cq. Let Zi0 ∪ Zi1 = X be the 2-cover defined for
each i ∈ {i0, i1} by Zi = X ∩Ai. Let i ∈ {i0, i1} be such that ΦFi⊕C

ei
abandons Cq on X ∩Ai.

By definition, there is some w ∈ ω and a finite set F ′ ⊆ X ∩Ai such that

|Φ
(Fi∪F ′)⊕C
ei (w)|> ei ∨ [Φ

(Fi∪F ′)⊕C
ei (w)]∩Cq = /0

The extension d = (F0, . . . ,Fi−1,Fi ∪F ′,Fi+1, . . . ,Fm,X r (0,max(F ′)) forces Rei, j.
• Case 2: There exists an (ei0 +ei1)-disperse sequence of clopen sets V (1), . . . ,V (q) such that

for every t = 1, . . . ,q, (i0, i1) does not abandon V (t) on c. Let ~K = {Ki0 ,Ki1} be defined
for each i ∈ {i0, i1} by

Ki = {K ⊆ {1, . . . ,q} : {V (t)}t∈K is an ei-disperse sequence}

By Lemma 13.3.5, ~K is a 2-supporter of {1, . . . ,q}. By c.b-enum avoidance of RWKL

for the C ’s, for each t ∈ {1, . . . ,q}, there are 2-covers ZV (t)

i0
⊕ ZV (t)

i1
∈ PV (t) such that

⊕q
t=1 ZV (t)

i0
⊕ZV (t)

i1
⊕C computes no c.b-enum of the C ’s. For each t ∈ {1, . . . ,q}, let st ∈

{i0, i1} be such that Y =
⋂q

t=1 ZV (t)

st
is infinite. We claim that the condition d =(F0, . . . ,Fm,Y )

forces either Rei0 , j
or Rei1 , j

. For this, consider the 2-partition Pi0 ,Pi1 of {1, . . . ,q} defined

for each i∈ {i0, i1} by Pi = {t ∈ {1, . . . ,q} : st = i}. Since ~K is a 2-supporter of {1, . . . ,q},
there is some i ∈ {i0, i1} and some K ∈ Ki such that K ⊆ Pi. Fix a set Gi satisfying part i

of d. In particular, since ΦFi⊕C
ei

does not abandon V (t) on
⋂q

t=1 ZV (t)

st
for each t ∈ K, ei-

ther ΦGi⊕C
ei

is partial, or [ΦGi⊕C
ei

(w)]∩V (t) 6= /0 for every t ∈ K. However, {V (t) : t ∈ K}

is an ei-disperse sequence, hence
⋂

t∈K V (t) = /0 so ΦGi⊕C
ei

is partial and therefore Rei, j is
forced.

�

Lemma 13.5.20 For every condition c and every vector of indices~e there exists an extension d

of c forcing R~e.

Proof. Fix a condition c, and apply iteratively Lemma 13.5.19 to obtain an extension d such
that for each j < m, d forces Rei, j for m different i’s. By the pigeonhole principle, there exists
some i ≤ m such that d forces

∧
Rei, j for each j < m. Therefore, d forces R~e. �

Let F = {c0,c1, . . .} be a sufficiently generic filter containing ( /0, . . . , /0,ω), where cs =
(F0,s, . . . ,Fm,s,Xs). The filter F yields an (m+ 1)-tuple of reals G0, . . . ,Gm defined by Gi =
⋃

s Fi,s. By definition of a forcing condition, Gi ⊆ Ai. By Lemma 13.5.18, Gi is infinite for
each i ≤ m, and by Lemma 13.5.20, Gi⊕C computes no c.b-enum of the C ’s for some i ≤ m. �
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13.5.4 Strong c.b-enum avoidance of TSn

Last, we prove step (A3) of Theorem 13.5.1.

Theorem 13.5.21 Fix a sequence of sets C0,C1, · · · ⊆ 2ω . Fix some n ≥ 1 and suppose that
for each t ∈ (0,n), TSt

dt+1 admits strong 1-enum avoidance for ~C and that Π0
1(TS

n
d̃n+1) admits

1-enum avoidance for ~C . Then TSn
dn+1 admits strong 1-enum avoidance for ~C .

Proof. The proof is again done in several steps and is very similar to the proof of preservation
of hyperimmunity. Fix a countable collection of sets C0,C1, · · · ⊆ 2ω and assume that for
each t ∈ (0,n), TSt

dt+1 admits strong 1-enum avoidance for ~C and that Π0
1(TS

n
d̃n+1) admits

1-enum avoidance for ~C . Fix a coloring f : [ω]n → dn +1 and a set C computing no 1-enum of
the C ’s.

(S1) First, we construct an infinite set D ⊆ ω such that D⊕C computes no 1-enum of the C ’s
and a sequence (Iσ : 0 < |σ |< n) such that for each t ∈ (0,n) and each σ ∈ [ω]t

(a) Iσ is a subset of {0, . . . ,dn} with at most dn−t many elements
(b) (∃b)(∀τ ∈ [D∩ (b,+∞)]n−t) f (σ ,τ) ∈ Iσ

(S2) Second, we construct an infinite set E ⊆ D such that E ⊕C computes no 1-enum of the C ’s
and a sequence (It : 0 < t < n) such that for each t ∈ (0,n)

(a) It is a subset of {0, . . . ,dn} of size at most dtdn−t

(b) (∀σ ∈ [E]t)(∃b)(∀τ ∈ [E ∩ (b,+∞)]n−t) f (σ ,τ) ∈ It
(S3) Third, we construct a sequence (ξi ∈ [E]<ω : i < ω) such that

(a) The set G =
⋃

i ξi is infinite and G⊕C computes no 1-enum of the C ’s
(b) | f ([ξi]

n)| ≤ d̃n and max(ξi)< min(ξi+1) for each i < ω

(c) For each t ∈ (0,n) and σ ∈ [
⋃

j<i ξ j]
t , f (σ ,τ) ∈ It for all τ ∈ [

⋃

j≥i ξ j]
n−t

(S4) Finally, we build an infinite set H ⊆ G such that H ⊕C computes no 1-enum of the C ’s
and | f ([H]n)| ≤ dn.

We only show step (S3) since the other steps are exactly the same as for preservation of
hyperimmunity. Given the set E and the sequence of sets of colors (It : 0 < t < n), we will
construct a sequence (ξi ∈ [E]<ω : i < ω) such that

(a) The set G =
⋃

i ξi is infinite and G⊕C computes no 1-enum of the C ’s
(b) | f ([ξi]

n)| ≤ d̃n and max(ξi)< min(ξi+1) for each i < ω

(c) For each t ∈ (0,n) and σ ∈ [
⋃

j<i ξ j]
t , f (σ ,τ) ∈ It for all τ ∈ [

⋃

j≥i ξ j]
n−t

We construct our set G by Mathias forcing (σ ,X) where X is an infinite subset of E such
that X ⊕C computes no 1-enum of the C ’s. Using property (b) of E, we can easily construct
an infinite sequence (ξi ∈ [E]<ω : i < ω) satisfying properties (b) and (c) of step (S3). The
following lemma shows how to satisfy property (a).

Lemma 13.5.22 Fix a condition (σ ,X) and some e, i ∈ ω . There exists an extension (σξ ,Y )
with | f ([ξ ]n)| ≤ d̃n, forcing ΦG⊕C

e not to be a 1-enum of Ci.

Proof. Suppose there exists a string ρ ∈ 2<ω such that [ρ]∩Ci = /0 and a finite set E ⊂ X

such that for every coloring g : [X ]n → dn +1, there is a set ξ ∈ [X ]<ω such that |g([ξ ]n)| ≤ d̃n

and Φ
σξ⊕C
e (|ρ|) ↓= ρ . Then, taking f = g, the condition d = (σξ ,X r [0,max(ξ )]) is a valid

extension of c forcing ΦG⊕C
e not to be a 1-enum of Ci.

So suppose there is no such ρ ∈ 2<ω . For each ρ ∈ 2<ω , let Pρ denote the collection
of the colorings g : [X ]n → dn + 1 such that for every set ξ ∈ [X ]<ω such that |g([ξ ]n)| ≤ d̃n,

Φ
σξ⊕C
e (|ρ|) ↑ or Φ

σξ⊕C
e (|ρ|) 6= ρ . Note that Pρ are uniformly Π

0,X⊕C
1 classes. Because the

previous case does not hold, then by compactness Pρ 6= /0 for each ρ such that Ci ∩ [ρ] = /0. The
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set {ρ : Pρ = /0} is X ⊕C-c.e. If for each u ∈ ω , there exists a ρ ∈ 2u such that Pρ = /0 then
X ⊕C computes a 1-enum of Ci, contradicting our hypothesis. So there must be a u such that
Pρ 6= /0 for each ρ ∈ 2u.

Thanks to 1-enum avoidance of Π0
1(TS

n
d̃n+1) for ~C , define a finite decreasing sequence

X = X0 ⊇ ·· · ⊇ X2u−1 = X̃ such that for each ρ ∈ 2u

1. |g([Xρ ]
n)| ≤ d̃n for some g ∈ Pρ .

2. Xρ ⊕C computes no 1-enum of any of the C ’s.
We claim that (σ , X̃) is an extension forcing ΦG⊕C

e (u) ↑ or ΦG⊕C
e (u) 6∈ 2u. Suppose for the sake

of contradiction that there exists a ρ ∈ 2u and a set G satisfying (σ , X̃) such that ΦG⊕C
e (u) ↓= ρ .

By continuity, there exists a finite ξ ⊆ G ⊆ X̃ such that Φ
σξ⊕C
e (u) ↓= ρ . In particular, ξ ⊆ Xρ ,

so |g([ξ ]n)| ≤ d̃n for some g ∈ Pρ , contradiction. �

Using Lemma 13.5.22 and property (b) of the set E, we can construct an infinite descending
sequence of conditions (ε,E)≥ c0 ≥ . . . such that for each s ∈ ω

(i) σs+1 = σsξs with |σs| ≥ s and f ([ξs]
n)≤ d̃n

(ii) f (σ ,τ) ∈ It for each t ∈ (0,n), σ ∈ [σs]
t and τ ∈ [X ]n−t .

(iii) cs forces ΦG⊕C
e not to be a 1-enum of Ci if s = 〈e, i〉

where cs = (σs,Xs). The set G =
⋃

s σs satisfies the desired properties. This finishes step (S3)
and the proof of Theorem 13.5.21. �

13.6 The weakness of the free set hierarchy

Recall that given a coloring f : [ω]n → ω , a set A is f -free if for every x1 < · · · < xn ∈ A, if
f (x1, . . . ,xn) ∈ A then f (x1, . . . ,xn) ∈ {x1, . . . ,xn}. As Wang did for strong cone avoidance and
we did for preservation of hyperimmunity, we can propagate strong c.b-enum avoidance from
the thin set theorem to the free set theorem. More precisely, we prove the following stronger
theorem.

Theorem 13.6.1 Fix a countable collection of sets C0,C1, · · · ⊆ 2ω . If TSs
dt+1 admits simulta-

neous strong 1-enum avoidance for ~C for each s ∈ (0,n], then so does FSn.

Corollary 13.6.2 FS admits strong m c.b-enum avoidance for every m ≥ 1.

Proof. By strong m c.b-enum avoidance of TSt
dt+1 for every t ∈ (0,n], Theorem 13.6.1 and

Lemma 13.3.2. �

In particular, since the rainbow Ramsey theorem is a consequence of the free set theorem in
reverse mathematics, we obtain strong c.b-enum avoidance of the rainbow Ramsey theorem for
free.

Corollary 13.6.3 RRT admits strong m c.b-enum avoidance for every m ≥ 1.

Proof. Wang proved in [Wan14b] that RRT≤sc FS. Apply Lemma 13.1.12 and Corollary 13.6.2.
�

The usual lemma about the propagation of strong avoidance for n-tuples to avoidance for
(n+1)-tuples holds for the free set theorem as well.

Lemma 13.6.4 — Wang [Wan14b]. For each n≥ 1, if FSn and COH admit strong C avoidance,
then FSn+1 admits C avoidance.
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The proof of strong 1-enum avoidance of FS relative to strong 1-enum avoidance of TS uses a
case analysis only on two kinds of functions: left trapped and right trapped functions. Recall that
a function f : [ω]n → ω is left (resp. right) trapped if for every σ ∈ [ω]n, f (σ)≤ σ(n−1) (resp.
f (σ)> σ(n−1)). We have already used the notion of trapped functions for the preservation of
hyperimmunity of the free set theorem. We now prove the lemmas in their general form.

Lemma 13.6.5 — Wang in [Wan14b]. For each n ≥ 1, if FSn for trapped functions admits
(strong) C avoidance for some set C ⊆ ωω , then so does FSn.

Proof. We prove it in the case of strong C avoidance. The proof of C avoidance is similar. Let
f : [ω]n → ω be a coloring and C be set computing no member of C . For each σ ∈ [ω]n and
i ≤ n, let

f0(σ) = min( f (σ),max(σ)) f1(σ) = max( f (σ),max(σ)+1)

By strong C avoidance of FSn for trapped functions, we can define a finite sequence ω ⊇H0 ⊇H1

such that for each i ≤ n

1. Hi is an infinite fi-free set
2. Hi ⊕C computes no member of C .

We claim that H1 is f -free. Let σ ∈ [Hn]
n. f (σ) = fi(σ) for some i ∈ {0,1}. As H1 is free for

fi, f (σ) 6∈ H1 rσ . �

13.6.1 Case of right trapped functions

We now show that the case of right trapped functions can be reduced to the left trapped functions
since they admit solutions computable by any diagonally non-computable function.

Lemma 13.6.6 Let f : [ω]n → ω be a right trapped function. Every function d.n.c. relative to f

computes an infinite set free for f .

Proof. By [KMS11], every function d.n.c. relative to f computes a function g such that if
|W f

e | ≤ m then g(e,m) 6∈W
f

e . Given a finite f -free set F , there exists at most
(|F |

n

)
elements x

such that F ∪{x} is not f -free. We can define an infinite f -free set H by stages. H0 = /0. Given a
finite f -free set Hs of cardinal s, set Hs+1 = Hs ∪{g(e,

(
s
n

)
)} where e is a Turing index such that

W
f

e = {x : F ∪{x} is not f − free}. �

Lemma 13.6.7 For each n ≥ 1, if FSn for left trapped functions admits (strong) C avoidance
for some set C ⊆ ωω , then so does FSn.

Proof. Again, we prove it in the case of strong C avoidance. By Lemma 13.6.5, it suffices to
prove that FSn for right trapped functions admits strong C avoidance. Let f : [ω]n → ω be a
right trapped function and C be a set computing no member of C . By Rice [Ric], there exists
an f -computable stable left trapped function g such that every infinite set thin for g computes a
function d.n.c. relative to f . By [Cho+01, Theorem 3.2], every infinite set free for g is, up to
finite variation, a set thin for g. By strong C avoidance of FSn for left trapped functions, there
is an infinite g-free set H such that H ⊕C computes no member of C . By Lemma 13.6.6, H

computes an infinite f -free set. �

13.6.2 Case of left trapped functions

By Lemma 13.6.7 it remains to prove strong 1-enum avoidance of FSn for left trapped functions,
assuming strong 1-enum avoidance of TSt

d for each t ≤ n and sufficiently large d’s.
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Theorem 13.6.8 Fix a countable collection of sets C0,C1, · · · ⊆ 2ω . If TSs
dt+1 admits simul-

taneous strong 1-enum avoidance for ~C for each s ∈ (0,n], then so does FSn for left trapped
functions.

The proof will be by induction over n. The base case is easy and follows directly from the
strong 1-enum avoidance of TS1

2 for ~C .

Lemma 13.6.9 If RT1
2 admits strong 1-enum avoidance for ~C then so does FS1.

Proof. Cholak et al. proved in [Cho+01] that FS1 for left trapped functions is strongly computably
reducible to RT1

4. Apply Lemma 13.1.12 to deduce strong 1-enum avoidance of FS1 for left
trapped functions for ~C . Conclude with Lemma 13.6.7. �

The two following lemmas will ensure that the reservoirs of our forcing conditions will enjoy
some good properties which will ensure that the conditions are extendible.

Lemma 13.6.10 Suppose that FSs admits strong C avoidance for each s < n for some set
C ⊆ ωω . Fix a set C computing no member of C , a finite set F and an infinite set X computable
in C. For every function f : [X ]n → ω there exists an infinite set Y ⊆ X such that Y ⊕C computes
no member of C and (∀σ ∈ [F ]t)(∀τ ∈ [Y ]n−t) f (σ ,τ) 6∈ Y r τ for each 0 < t < n.

Proof. Fix the finite enumeration σ1, . . . ,σk for all σ ∈ [F ]t for some 0< t < n. Start with Y0 =X .
Suppose that Ym−1 ⊕C computes no member of C and for all i < m, ∀τ ∈ [Ym−1]

n−|σi| f (σi,τ) 6∈
Ym−1 r τ . Define the function fσm

: [Ym−1]
n−|σm| → ω by fσm

(τ) = f (σm,τ). By strong C

avoidance of FSn−|σm|, there exists an infinite set Ym ⊆ Ym−1 such that Ym ⊕C computes no
member of C and (∀τ ∈ [Ym]

n−|σm|) f (σm,τ) 6∈ Ym r τ . Yk is the desired set. �

Lemma 13.6.11 Suppose that TSs
ds+1 admits strong 1-enum avoidance for ~C and for each

0 < s ≤ n and FSs admits strong 1-enum avoidance for ~C and for each 0 < s < n. For every
function f : [ω]n → ω and every set C computing no 1-enum of ~C , there exists an infinite set X

such that X ⊕C computes no 1-enum of ~C and for every σ ∈ [G]<ω such that 0 ≤ |σ |< n,

(∀x ∈ Grσ)(∃b)(∀τ ∈ [G∩ (b,+∞)]n−|σ |) f (σ ,τ) 6= x

Proof. Let X be an infinite set satisfying property of Theorem 13.5.5 with t = n. For each s < n

and i < dn−s, let fs,i : [X ]s → ω be the function such that fs,i(σ) is the ith element of the set

{x : (∀b)(∃τ ∈ [X ∩ (b,+∞)]n−s) f (σ ,τ) = x}

if it exists, and 0 otherwise. Define a finite sequence X ⊇ X0 ⊇ ·· · ⊇ Xn−1 such that for each
s < n

1. Xs is fs,i-free for each i < dn−s

2. Xs ⊕C computes no 1-enum of ~C
We claim that Xn−1 is the desired set. Fix s < n and take any σ ∈ [Xn−1]

s and any x ∈ Xn−1rσ . If
(∀b)(∃τ ∈ [G∩ (b,+∞)]n−s) f (σ ,τ) = x, then by choice of X , there exists an i < dn−s such that
fs,i(σ) = x, contradicting fs,i-freeness of Xn−1. So (∃b)(∀τ ∈ [G∩ (b,+∞)]n−s) f (σ ,τ) 6= x. �

We are now ready to prove Theorem 13.6.8.

Proof of Theorem 13.6.8. Fix a countable collection of sets C0,C1, · · · ⊆ 2ω for which TSs
ds+1

admits strong 1-enum avoidance for each 0 < s ≤ n. Let f : [ω]n → ω be a left trapped function
and C be a set computing no 1-enum of ~C . Our forcing conditions are tuples (k,~F ,X ,~g) such
that

(a) ~g is a left trapped ⊕k-function, ~F is a finite ⊕k-set
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(b) X is an infinite set such that F0 < X and X ⊕C computes no 1-enum of ~C
(c) (∀σ ∈ [Fi ∪X ]n)gi(σ) 6∈ Fi rσ for each i < k

(d) (∀σ ∈ [Fi ∪X ]t)(∀x ∈ (Fi ∪X)rσ)(∃b)(∀τ ∈ [(Fi ∪X)∩ (b,+∞)]n−t)
gi(σ ,τ) 6= x for each i < k and 0 ≤ t < n.

(e) (∀σ ∈ [Fi]
t)(∀τ ∈ [X ]n−t)gi(σ ,τ) 6∈ X r τ for each i < k and 0 < t < n

Properties (d) and (e) will be obtained by Lemma 13.6.11 and Lemma 13.6.10 and are present to
ensure to have extensions such that (c) holds. A set G satisfies a condition (k,~F ,X ,~g) if it satisfies
the Mathias condition (F0,X) and Gr (F0 rFi) if gi-free for each i < k. Our initial condition is
(1, /0,Y, f ) where Y is obtained by Lemma 13.6.11. A condition (m,~F ′,X ′,~g′) extends another
condition (k,~F ,X ,~g) if X ′ ⊆ X , m ≥ k, (∀i < k)gi = g′i and there is a finite E ⊂ X such that

(i) for every i < k, Fi ⊆ F ′
i and F ′

i rFi = E

(ii) for every k ≤ i < m, F ′
i = E

Lemma 13.6.12 For every condition (k,~F ,X ,~g) there exists an extension (k, ~H, X̃ ,~g) such that
|Hi|> |Fi| for each i < k.

Proof. Choose an x ∈ X such that (∀ j < k)(∀σ ∈ [Fj]
n)g j(σ) 6= x and set Hi = Fi ∪{x} for

each i < k. By property (d) of (k,~F ,X ,~g), there exists a b such that (∀i < k)(∀σ ∈ [Fi]
t)(∀τ ∈

[X ∩ (b,+∞)]n−t)gi(σ ,τ) 6= {x}rσ for each 0 ≤ t ≤ n. By k applications of Lemma 13.6.10,
there exists a X̃ ⊆ X r [0,b] such that X̃ ⊕C computes no 1-enum of ~C and property (e) is
satisfied for (k, ~H, X̃ ,~g). We claim that (k, ~H, X̃ ,~g) is a valid condition. Properties (a), (b) and
(d) trivially hold. It remains to check property (c). By property (c) of (k,~F ,X ,~g), we only need
to check that (∀σ ∈ [Fi ∪ X̃ ]n)gi(σ) 6= x for each i < k. This follows from our choice of b. �

Lemma 13.6.13 For every condition (k,~F ,X ,~g) and every e, i ∈ ω , there exists an extension
(m, ~H, X̃ ,~h) forcing ΦG⊕C

e not to be a 1-enum of Ci, where G is the forcing variable.

Proof. By removing finitely many elements to X , we can suppose w.l.o.g. that (∀ j < k)(∀σ ∈
[Fj]

n)g j(σ) 6∈ X . Suppose there exists a σ ∈ 2<ω such that [σ ]∩Ci = /0 and a finite set F ′ ⊆ X

which is g j-free for each j < k and Φ
(F0∪F ′)⊕C
e (|σ |) ↓= σ . Set H j = Fj ∪F ′ for each j < k.

By property (d) of (k,~F ,X ,~g), there exists a b such that (∀σ ∈ [Hi]
t)(∀x ∈ Hi)(∀τ ∈ [X ∩

(b,+∞)]n−t)gi(σ ,τ) 6= {x}rσ for each i< k and 0≤ t < n. By k applications of Lemma 13.6.10,
there exists a X̃ ⊆ X ∩ (b,+∞) such that X̃ ⊕C computes no 1-enum of ~C and property (e) is
satisfied for (k, ~H, X̃ ,~g). We claim that (k, ~H, X̃ ,~g) is a valid condition.

Properties (a), (b), (d) and (e) trivially hold. It remains to check property (c). By our choice
of b, we need only to check that (∀σ ∈ [Hi]

n)(∀x ∈ Hi)gi(σ) 6= {x}rσ for each i < k. By
property (c) of (k,~F ,X ,~g), it suffices to check that (∀σ ∈ [Hi]

n)gi(σ) 6∈ F ′rσ for each i < k.
By property (e) of (k,~F ,X ,~g), it remains the case (∀σ ∈ [F ′]n)gi(σ) 6∈ F ′rσ for each i < k,
which is exactly~g-freeness of F ′.

Suppose there is no such finite set F ′ ⊂ X . For each σ ∈ 2<ω , let Fσ denote the collection
of left trapped ⊕k-functions ~g such that for each finite set F ′ ⊂ X which is g j-free for each

j < k, either Φ
(F0∪F ′)⊕C
e (|σ |) ↑ or Φ

(F0∪F ′)⊕C
e (|σ |) 6= σ . Note that Fσ are uniformly Π

0,X⊕C
1

classes. Because the above case does not hold,~g ∈ Fσ for each σ such that Ci ∩ [σ ] = /0. The
set {σ : Fσ = /0} is X ⊕C-c.e. If for each u ∈ ω there exists a σ ∈ 2u such that Fσ = /0 then
X ⊕C computes a 1-enum of Ci, contradicting our hypothesis. So there must be an u ∈ ω such
that Fσ 6= /0 for each σ ∈ 2u.

For each σ ∈ 2u, let~hσ ∈ Fσ . Set H j = Fj for each j < k and H j = /0 for each k ≤ j <
(2u+1)k. By 2u applications of Lemma 13.6.11, there exists an infinite set X̃ ⊆X such that X̃ ⊕C

computes no 1-enum of ~C and property (d) of ((2u+1)k, ~H, X̃ ,~g
⊕

σ∈2u
~hσ ) holds. As properties

(a-c) and (e) trivially hold, ((2u +1)k, ~H, X̃ ,~g
⊕

σ∈2u
~hσ ) is a valid condition. Moreover it forces

ΦG⊕C
e (u) ↑ or ΦG⊕C

e (u) ↓6∈ 2u. �
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Let F = {c0,c1, . . .} be a sufficiently generic filter containing (1, /0,Y, f ), where cs =
(ks,~Fs,~gs). The filter F yields a unique real G =

⋃

s Fs,0. By definition of a forcing condi-
tion, G is an f -free set. By Lemma 13.6.12, G is infinite, and by Lemma 13.6.13, G⊕C

computes no 1-enum of ~C . �



14. Strengthenings of Ramsey’s theorem

The last three sections of this chapter are a joint work with Emanuele Frittaion.
Thanks to Seetapun’s theorem [SS95], we know that Ramsey’s theorem for pairs is strictly

weaker than the arithmetic comprehension axiom in reverse mathematics. Since then, many
consequences of Ramsey’s theorem have been proven to be strictly weaker than RT2

2, namely,
the Erdős-Moser theorem, the ascending descending sequence, the thin set theorem for pairs...
However, no natural principle is currently known to be strictly between ACA and RT2

2. There are
two good candidates: a generalization of Ramsey’s theorem to colorings over trees [CHM09],
and a theorem about partitions of rationals due to Erdős and Rado [ER52].

The tree theorem is a strengthening of Ramsey’s theorem in which we do not consider
colorings over tuples of integers, but colorings over tuples of nodes over a binary tree. Ramsey’s
theorem can be recovered from the tree theorem by identifying all nodes at every given level of
the tree.

Definition 14.0.1 — Tree theorem. We denote by [2<ω ]n the collection of linearly ordered

subsets of 2<ω of size n. A subtree S ⊆ 2<ω is order isomorphic to 2<ω (written S ∼= 2<ω )
if there is a bijection g : 2<ω → S such that for all σ ,τ ∈ 2<ω , σ � τ if and only if g(σ)�
g(τ). Given a coloring f : [2<ω ]n → k, a tree S is f -homogeneous if S ∼= 2<ω and f ↾[S]n is
monochromatic. TTn

k is the statement “Every coloring f : [2<ω ]n → k has an f -homogeneous
tree.”

Note that if S ∼= 2<ω , witnessed by the bijection g : 2<ω → S, then S is g-computable. There-
fore we can consider that TTn states the existence of the bijection g instead of the pair 〈S,g〉.
The tree theorem was first analyzed by McNicholl [McN95] and by Chubb, Hirst, and McNi-
choll [CHM09]. They proved that TT2

2 lies between ACA and RT2
2 over RCA0, and left open

whether any of the implications is strict. Further work was done by Corduan, Groszek, and
Mileti [CGM10]. Dzhafarov, Hirst and Lakins [DHL10] studied stability notions for the tree
theorem and introduced a polarized variant.

Montálban [Mon11] asked whether RT2
2 implies TT2

2 over RCA0. We give a negative answer
by proving the following stronger theorem.

Theorem 14.0.1 RT2
2∧WKL does not imply TT2

2 over RCA0.

The next three sections are dedicated to a proof of Theorem 14.0.1. We introduce in
section 14.1 the main ideas of the separation, then we design in section 14.2 a weakness
property based on the combinatorics of the previous section, and prove the main preservations in
section 14.3. The last sections are devoted to the Erdős-Rado theorem.

14.1 The tree theorem and strong reducibility

In order to get progressively into the framework used to separate Ramsey’s theorem for pairs
from the tree theorem for pairs, we shall first study the singleton version of the considered
principles. Ramsey’s theorem for singletons is simply the infinite pigeonhole principle, stating
that for every finite partition of an infinite set, one of its parts has an infinite subset. Both RT1

k
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and TT1
k are effective and provable over RCA0. We shall therefore study non-effective instances

of RT1
k and TT1

k to see how their combinatorics differ. The remainder of this section will be
dedicated to proving that TT1

2 6≤sc RT
1
2. More precisely, we shall prove the following stronger

theorem.

Theorem 14.1.1 There exists a ∆0
2 TT1

2-instance A0 ∪A1 = 2<ω such that for every (non-
effective) RT1

2-instance B0 ∪B1 = ω , there is an infinite set homogeneous for the B’s which
does not compute a TT1

2-solution to the A’s.

In section 14.3, we will prove a theorem which implies Theorem 14.1.1. Therefore we shall
focus on the key ideas of the construction rather than on the technical details.

Requirements. Let us first assume that we have constructed our TT1
2 instance A0 ∪A1 = 2<ω .

Fix some 2-partition B0 ∪B1 = ω . We will construct by forcing an infinite set G such that both
G∩B0 and G∩B1 are infinite. Let Φ0,Φ1, . . . be an enumeration of all partial tree functionals
isomorphic to 2<ω , that is, if ΦX(n) halts, then ΦX(n) outputs 2n pairwise incomparable strings
representing the nth level of the tree. We require that the following formula holds for every pair
of indices e0,e1.

Qe0,e1 : R
G∩B0
e0

∨ R
G∩B1
e1

where RH
e is the statement

Either ΦH
e is partial, or ΦH

e (n) is a set D of 2n incomparable strings intersecting
both A0 and A1 for some n.

If every Q-requirement is satisfied, then by the usual pairing argument, either every R-
requirement is satisfied for G∩B0, or every R-requirement is satisfied for G∩B1. Call such a
set H. Suppose that H computes a tree S ∼= 2<ω using some procedure Φe. By the requirement
RH

e , S intersects both A0 and A1, and therefore S is not a TT1
2-solution to the A’s.

Forcing. The forcing conditions are Mathias conditions (F,X) where X belongs to some
fixed Scott set S , that is, a Turing ideal satisfying weak König’s lemma. By Simpson [Sim09,
Theorem VIII.2.17], we can choose S so that S = {Xi : C =

⊕

i Xi} for some low set C. This
precision will be useful during the construction of the TT1

2-instance. We furthermore assume
that C does not compute a solution to the A’s, and therefore that there is no C-computable infinite
set homogeneous for the B’s, otherwise we are done.

The following lemma ensures that we can force both G∩B0 and G∩B1 to be infinite,
assuming that the B’s have no infinite C-computable homogeneous set.

Lemma 14.1.2 Given a condition c=(F,X) and some side i< 2, there is an extension d =(E,Y )
such that |E ∩Bi|> |F ∩Bi|.

Proof. If X ∩Bi = /0 then X is an infinite C-computable subset of B1−i, contradicting our assump-
tion. So there is some x ∈ X ∩Bi. Take d = (F ∪{x},X r [0,x]) as the desired extension. �

The next step consists in forcing the Q-requirements to be satisfied. A condition c forces a
requirement Qe0,e1 if Qe0,e1 holds for every set G satisfying c. By choosing our TT1

2-instance A0∪
A1 = 2<ω carefully, we claim that we can ensure the following property.

(P) Given a condition c = (F,X) and some indices e0,e1, there is an extension d

of c forcing Qe0,e1 .
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We will first assume that the property (P) holds, and show how to build our infinite set G

from it. We will construct later a TT1
2-instance A0∪A1 = 2<ω so that the property (P) is satisfied.

Construction. Thanks to Lemma 14.1.2 and the property (P), we can define an infinite,
decreasing sequence of conditions ( /0,ω)≥ c0 ≥ c1 . . . such that for each s ∈ ω

(i) |Fs ∩B0| ≥ s and |Fs ∩B1| ≥ s

(ii) cs forces Qe0,e1 if s = 〈e0,e1〉

where cs = (Fs,Xs). The set G =
⋃

s Fs is such that both G∩B0 and G∩B1 are infinite by (i),
and either G∩B0 or G∩B1 does not compute a TT1

2-solution to the A’s by (ii). We now need to
satisfy the property (P).

Satisfying the property (P). Given a condition, the extension stated in the property (P) cannot
be ensured for an arbitrary TT1

2-instance A0 ∪A1 = 2<ω . We must design the A’s so that the
property (P) holds. To do so, we will apply the ideas developped by Lerman, Solomon and
Towsner [LST13]. We can see the construction of the set G as a game. The opponent is the TT1

2-
instance which will try everything, not to be diagonalized against. However, the opponent is
TT-fair, in the sense that if we have infinitely many occasions to diagonalize against him, then
he will let us do it. More precisely, if given a condition c = (F,X) and some indices e0,e1, we
can make both ΦG∩B0

e0
and ΦG∩B1

e1
produce arbitrarily large outputs, then one of those output will

intersect both A0 and A1.
We now describe how to construct a TT-fair TT1

2-instance. The construction of the A’s will
be ∆

0,C
2 , hence ∆0

2 since C is low. The access to the oracle C enables us to code the conditions
c = (F,X) into finite objects, namely, pairs (F, i) so that C =

⊕

i Xi and X = Xi, and to enumerate
them C-effectively. More precisely, we can enumerate preconditions since it requires too much
computational power to decide whether X is infinite or not. Given a precondition c = (F,X), we
can enumerate all possible guesses of F ∩B0 and F ∩B1 by considering each 2-partition of F .
Last, we can enumerate all pairs of indices e0,e1.

The construction of the A’s is done by stages. At stage s, we have constructed two sets A0,s ∪
A1,s = 2<q for some q ∈ ω . We want to satisfy the property (P) given a precondition c = (F,X), a
guess of F ∩B0 and F ∩B1, and a pair of indices e0,e1. If any of ΦF∩B0

e0
(2) and ΦF∩B1

e1
(2) is not

defined, do nothing and go to the next stage. We can restrict ourselves without loss of generality
to preconditions such that both ΦF∩B0

e0
(2) and ΦF∩B1

e1
(2) are defined. Indeed, if in the property

(P), the condition c has no such extension, then c already forces either ΦG∩B0
e0

or ΦG∩B1
e1

to be
partial and therefore vacuoulsy forces Qe0,e1 . The choice of “2” as input seems arbitrary. It has
not been picked randomly and this choice will be justified in the next paragraph.

Let D0 and D1 be the 4-sets of pairwise incomparable strings outputted by ΦF∩B0
e0

(2) and
ΦF∩B1

e1
(2), respectively. Altough the strings are pairwise incomparable within D0 or D1, there

may be two comparable strings in D0 ∪D1. However, by a simple combinatorial argument, we
may always find two strings σ0,τ0 ∈ D0 and σ1,τ1 ∈ D1 such that σ0,τ0,σ1 and τ1 are pairwise
incomparable (see Lemma 14.2.1). Here, we use the fact that on input 2, the sets have cardinality
4, which is enough to apply Lemma 14.2.1. We are now ready to ask the main question.

“Is it true that for every 2-partition Z0∪Z1 = X , there is some side i < 2 and some set G ⊆ Zi

such that Φ
(F∩Bi)∪G
ei (q) halts?”

Note that the question looks Π
1,X
2 , but is in fact Σ

0,X
1 by the usual compactness argument. It

is therefore C′-decidable since X ∈ S and so can be uniformly decided during the construction.
We have two cases.

Case 1: The answer is negative. In this case, the Π
0,X
1 class C of all sets Z0 ⊕Z1 such that

Z0 ∪Z1 = X and for every i < 2 and every set G ⊆ Zi, Φ
(F∩Bi)∪G
ei (q) ↑ is non-empty. In this

case, we do nothing and claim that the property (P) holds for c. Indeed, since S is a Scott set
containing X , there is some Z0 ⊕Z1 ∈ C ∩S such that Z0 ∪Z1 = X . As X is infinite, there is



210 Chapter 14. Strengthenings of Ramsey’s theorem

some i < 2 such that Zi is infinite. In this case, d = (F,Zi) is an extension forcing Φ
(G∩Bi)
ei (q) ↑

and therefore forcing Qe0,e1 . Note that this extension cannot be found C′-effectively since it
requires to decide which of Z0 and Z1 is infinite. However, we do not need to uniformly provide
this extension. The property (P) simply states the existence of such an extension.

Case 2: The answer is positive. Given a string σ ∈ 2<ω , let Sσ = {τ � σ}. Since the

Φ’s are tree functionals and Φ
(F∩Bi)∪G
ei (2) outputs (among others) the strings σi and τi, if

Φ
(F∩Bi)∪G
ei (q) halts, then it outputs a finite set D of size 2q intersecting both Sσi

and Sτi
. Therefore,

by compactness, there are finite sets U0 ⊆ Sσ0 , V0 ⊆ Sτ0 , U1 ⊆ Sσ1 and V1 ⊆ Sτ1 such that
for every 2-partition Z0 ∪ Z1 = X , there is some side i < 2 and some set G ⊆ Zi such that
Φ

(F∩Bi)∪G
ei (q) intersects both Ui and Vi. In particular, taking Z0 = X ∩B0 and Z1 = X ∩B1,

there is some i < 2 and some finite set G ⊆ X ∩Bi such that Φ
(F∩Bi)∪G
ei (q) intersects both Ui

and Vi. Notice that all the strings in Ui and Vi have length at least q and therefore are not
yet colored by the A’s. Put the U’s in A0,s+1 and the V ’s in A1,s+1 and complete the coloring
so that A0,s+1 ∪A1,s+1 = 2<r for some r ≥ q. Then go to the next step. We claim that the
property (P) holds for c. Indeed, let E = F ∪G where G ⊆ X ∩Bi is the finite set witnessing
Φ

(F∩Bi)∪G
ei (q)∩Ui 6= /0 and Φ

(F∩Bi)∪G
ei (q)∩Vi 6= /0. The condition d = (E,X r [0,max(E)]) is an

extension forcing Qe0,e1 by its ith side. This finishes the construction of the TT1
2-instance and

the proof of Theorem 14.1.1.

14.2 A fairness property for trees

In this section, we analyse the one-step separation proof of section 14.1 in order to extract the
core of the argument. Then, we use the framework of Lerman, Solomon and Towsner to design
the computability-theoretic property which will enable us to discriminate RT2

2 from TT2
2.

The multiple-step case. We have seen how to diagonalize against one application of RT1
2.

The strength of TT1
2 comes from the fact that when we build a solution S to some TT1

2-instance
A0 ∪A1 = 2<ω , we must provide finite subtrees Sn

∼= 2<n for arbitrarily large n. However, as
soon as we have outputted Sn, we commit to provide arbitrarily large extensions to each leaf
of Sn. Since the leaves in Sn are pairwise incomparable, the sets of their extensions are mutually
disjoint. During the construction of the TT1

2-instance, we can pick any pair σ ,τ of incomparable
leaves in Sn, and put the extensions of σ in A0 and the extensions of τ in A1 since they are
disjoint.

In the proof of TT1
2 6≤sc RT

1
2, when we create a solution to some RT1

2-instance B0 ∪B1 = ω ,
we build two candidate solutions G∩B0 and G∩B1 at the same time. For each pair of tree
functionals Φe0 and Φe1 , we must prevent one of ΦG∩B0

e0
and ΦG∩B1

e1
from being a TT1

2-solution
to the A’s. However, the finite subtrees S0 and S1 outputted respectively by the left side and the
right side may have comparable leaves. We cannot take any 2 leaves of S0 and 2 leaves of S1

to obtain 4 pairwise incomparable strings. Thankfully, if S0 and S1 contain enough leaves (4 is
enough), we can find such strings.

If we try to diagonalize against two applications of RT1
2, below each side G∩B0 and G∩B1

of the first RT1
2-instance, we will have again two sides corresponding to the second RT1

2-
instance. We will then have to diagonalize against four candidate subtrees S0, S1, S2 and S3.
We need therefore to wait until the subtrees have enough leaves, so that we can find 8 pairwise
incomparable leaves σ0,τ0, . . . ,σ3,τ3 such that σi,τi ∈ Si for each i < 4.

In the general case, we will then have to diagonalize against an arbitrarily large number of
subtrees, and want to ensure that if they contain enough leaves, we can find two leaves in each,
such that they form a set of pairwise incomparable strings. This leads to the notion of disjoint
matrix.
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Definition 14.2.1 — Disjoint matrix. An m-by-n matrix M is a rectangular array of strings
σi, j ∈ 2<ω such that i < m and j < n. The ith row M(i) of the matrix M is the n-tuple of
strings σi,0, . . . ,σi,n−1. An m-by-n matrix M is disjoint if for each row i < m, the strings
σi,0, . . . ,σi,n−1 are pairwise incomparable.

The following combinatorial lemma gives an explicit bound on the number of leaves we
require on each subtree to obtain our desired sequence of pairwise incomparable strings.

Lemma 14.2.1 For every m-by-2m disjoint matrix M, there are pairwise incomparable strings
σ0,τ0, . . . ,σm−1,τm−1 such that σi,τi ∈ M(i) for every i < m.

Proof. Consider the following greedy algorithm. At each stage, we maintain a set P of pending
rows which is initially the whole matrix M. Pick a string ρ of maximal length among all pending
rows. Let M(i) be a pending row such that ρ ∈ M(i). If we have already chosen the value of σi,
set τi = ρ and remove M(i) from the pending rows. Otherwise, set σi = ρ . In any case, remove
every prefix of ρ from any row of M and go to the next step.

Notice that at any step, we remove at most one string from each row of M since the strings in
each row are pairwise incomparable. Moreover, since we want to construct a sequence of 2m

pairwise incomparable strings, and at each step we add one string to this sequence, there are
at most 2m steps. The algorithm gets stuck at some points only if all pending rows are empty,
which cannot happen since each row contains at least 2m strings.

We claim that the chosen strings are pairwise incomparable. Indeed, when at some stage, we
pick a string ρ , it is of shorter length than any string we have picked so far, and cannot be a prefix
of any of them since each time we pick a string, we remove its prefixes from the matrix. �

Abstracting the requirements. The first feature of the framework of Lerman, Solomon
and Towsner that we already exploited is the “TT-fairness” of the TT1

2-instance which allows
each RT1

2-instance to diagonalize him as soon as the RT1
2-instance gives him enough occasions

to do it. We will now use the second aspect of this framework which consists in getting rid of
the complexity of the requirements by replacing them with arbitrary computable predicates (or
blackboxes).

Indeed, consider the case of two successive applications of RT1
2. Say that the first instance is

B0 ∪B1 = ω , and the second C0 ∪C1 = ω . We need to design the TT1
2-instance A0 ∪A1 = 2<ω

so that there is an infinite set G∩Bi for some i < 2 and an infinite set H ∩B j for some j < 2
such that (G∩Bi)⊕ (H ∩B j) does not compute a solution to the A’s. While constructing the A’s,
we enumerate two levels of conditions. We first enumerate the conditions c = (F,X) used for
constructing the set G, but we also enumerate the conditions c0 = (F0,X0) and c1 = (F1,X1) such
that ci is used to construct a solution H to the second RT1

2-instance C0 ∪C1 = ω below G∩Bi.
The question that the TT1

2-instance asks during its construction becomes

“For every 2-partition Z0 ∪Z1 = X , is there some side i < 2 and some set G ⊆ Zi such that
for every 2-partition W0 ∪W1 = Xi, there is some side j < 2 and some set H ⊆ Wj such that

Φ
((F∩Bi)∪G)⊕((Fi∩C j)∪H)
ei, j (q) halts?”

While staying Σ0
1 (with parameters), the question becomes arbitrarily complicated to formu-

late. Moreover, looking at the shape of the question, we see that the first iteration can box any
Σ0

1 question asked about the second iteration. We can therefore abstract the question and make
the TT-fairness property independent of the specificities of the forcing notion used to solve
the RT1

2-instances. See [Pat15c] for detailed explanations about this abstraction process.

Definition 14.2.2 — Formula, valuation. An m-by-n formula is a formula ϕ with distin-
guished set variables Ui, j for each i < m and j < n. Given an m-by-n matrix M = {σi, j : i <
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m, j < n}, an M-valuation V is a tuple of finite sets Ai, j ⊆ {τ ∈ 2<ω : τ � σi, j} for each i < m

and j < n. The valuation V satisfies ϕ if ϕ(Ai, j : i < m, j < n) holds. We write ϕ(V ) for
ϕ(Ai, j : i < m, j < n).

Given some valuation V = (Ai, j : i < m, j < n) and some integer s, we write V > s to say that
for every τ ∈ Ai, j, |τ|> s. Moreover, we denote by V (i) the n-tuple Ai,0, . . . ,Ai,n−1. Following
the terminology of [LST13], we define the notion of essentiality for a formula (an abstract
requirement), which corresponds to the idea that there is room for diagonalization since the
formula is satisfied for arbitrarily far valuations.

Definition 14.2.3 — Essential formula. An m-by-n formula ϕ is essential in an m-by-n
matrix M if for every s ∈ ω , there is an M-valuation V > s such that ϕ(V ) holds.

The notion of TT-fairness is defined accordingly. If some formula is essential, that is, gives
enough room for diagonalization, then there is an actual valuation which will diagonalize against
the TT1

2-instance.

Definition 14.2.4 — TT-fairness. Fix two sets A0,A1 ⊆ 2<ω . Given an m-by-n disjoint
matrix M, an M-valuation V diagonalizes against A0,A1 ⊆ 2<ω if for every i < m, there
is some L,R ∈ V (i) such that L ⊆ A0 and R ⊆ A1. A set X is n-TT-fair for A0,A1 if for
every m and every Σ

0,X
1 m-by-2nm formula ϕ essential in some disjoint matrix M, there is

an M-valuation V diagonalizing against A0,A1 such that ϕ(V ) holds. A set X is TT-fair for
A0,A1 if it is n-TT-fair for A0,A1 for some n ≥ 1.

Of course, if Y ≤T X , then every Σ
0,Y
1 formula is Σ

0,X
1 . As an immediate consequence, if

X is n-TT-fair for some A0,A1 and Y ≤T X , then Y is n-TT-fair for A0,A1. Moreover, if X is
n-TT-fair for A0,A1 and p > n, X is also p-TT-fair for A0,A1 as witnessed by cropping the rows.

Definition 14.2.5 — TT-fairness preservation. Fix a Π1
2 statement P.

1. P admits TT-fairness (resp. n-TT-fairness) preservation if for all sets A0,A1 ⊆ 2<ω ,
every set C which is TT-fair (resp. n-TT-fair) for A0,A1 and every C-computable
P-instance X , there is a solution Y to X such that Y ⊕C is TT-fair (resp. n-TT-fair) for
A0,A1.

2. P admits strong TT-fairness (resp. n-TT-fairness) preservation if for all sets A0,A1 ⊆
2<ω , every set C which is TT-fair (resp. n-TT-fair) for A0,A1 and every P-instance X ,
there is a solution Y to X such that Y ⊕C is TT-fair (resp. n-TT-fair) for A0,A1.

Note that a principle P may admit TT-fairness preservation without preserving n-TT-fairness
for any fixed n, as this is the case with RT2

2 (see Theorem 14.3.9 and Theorem 14.3.10). On
the other hand, if P admits n-TT-fairness preservation for every n, then it admits TT-fairness
preservation. The notion of TT-fairness is a weakness property. Therefore Lemma 3.4.2 can be
applied under the following form.

Lemma 14.2.2 If P admits TT-fairness preservation but not Q, then P does not imply Q over
RCA0.

Now we have introduced the necessary terminology, we create a non-effective instance
of TT1

2 which will serve as a bootstrap for TT-fairness preservation.

Lemma 14.2.3 There exists a ∆0
2 partition A0 ∪A1 = 2<ω such that /0 is 1-TT-fair for A0,A1.

Proof. The proof is done by a no-injury priority construction. Let ϕ0,ϕ1, . . . be an effective
enumeration of all m-by-2m Σ0

1 formulas and M0,M1, . . . be an enumeration of all m-by-2m

disjoint matrices for every m. We want to satisfy the following requirements for each pair of
integers e,k.
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Re,k: If ϕe is essential in Mk, then ϕe(V ) holds for some Mk-valuation V diagonaliz-
ing against A0,A1.

The requirements are ordered via the standard pairing function 〈·, ·〉. The sets A0 and A1

are constructed by a /0′-computable list of finite approximations Ai,0 ⊆ Ai,1 ⊆ . . . such that all
elements added to Ai,s+1 from Ai,s are strictly greater than the maximum of Ai,s for each i < 2.
We then let Ai =

⋃

s Ai,s which will be a ∆0
2 set. At stage 0, set A0,0 = A1,0 = /0. Suppose that at

stage s, we have defined two disjoint finite sets A0,s and A1,s such that
(i) A0,s ∪A1,s = 2<b for some integer b ≥ s

(ii) Re′,k′ is satisfied for every 〈e′,k′〉< s

Let Re,k be the requirement such that 〈e,k〉= s. Decide /0′-computably whether there is some
Mk-valuation V > b such that ϕe(V ) holds. If so, effectively fetch such a V and let d be an upper
bound on the length of the strings in V . By Lemma 14.2.1, there are pairwise incomparable
strings σ0,τ0, . . . ,σm−1,τm−1 such that σi,τi ∈ M(i) for every i < m. For each i < m, let Ai,l

and Ai,r be the sets in V corresponding to σi and τi, respectively. Set A0,s+1 = A0,s
⋃

i<m Ai,l

and A1,s+1 = 2<d rA0,s+1. This way, A0,s+1 ∪A1,s+1 = 2<d . Since the σ ’s and τ’s are pairwise
incomparable, the sets Ai,l and Ai,r are disjoint, so

⋃

i<m Ai,r ⊆ 2<d rA0,s+1 and the requirement
Re,i is satisfied. If no such Mk-valuation is found, the requirement Re,k is vacuously satisfied.
Set A0,s+1 = A0,s ∪2b and A1,s+1 = A1,s. This way, A0,s+1 ∪A1,s+1 = 2<(b+1). In any case, go to
the next stage. This finishes the construction. �

Theorem 14.2.4 TT2
2 does not admit TT-fairness preservation.

Proof. Let A0 ∪A1 = 2<ω be the ∆0
2 partition constructed in Lemma 14.2.3. By Shoenfield’s

limit lemma [Sho59], there is a computable function h : 2<ω ×ω → 2 such that for each σ ∈ 2<ω ,
lims h(σ ,s) exists and σ ∈ Alims h(σ ,s). Let f : [2<ω ]2 → 2 be the computable coloring defined
by f (σ ,τ) = h(σ , |τ|) for each σ ≺ τ ∈ 2<ω . Let S ∼= 2<ω be a TT2

2-solution to f with witness
isomorphism g : 2<ω → S and witness color c < 2.

Fix any n ≥ 1. We claim that S is not n-TT-fair for A0,A1. Let ϕ(U j : j < 2n) be the 1-by-2n

Σ
0,S
1 formula which holds if for each j < 2n, U j is a non-empty subset of S. Let M = (σ j : j < 2n)

be the 1-by-2n disjoint matrix defined for each j < 2n by σ j = g(τ j) where τ j is the jth string of
length n. In other words, σ j is the jth node at level n in S. For every s, let Vs be the M-valuation
defined by B j = {g(ρ)} such that ρ is the least string of length max(n,s) extending τ j. Notice
that Vs > s and ϕ(Vs) holds. Therefore, the formula ϕ is essential in M. For every M-valuation
V = (B j : j < 2n) such that ϕ(V ) holds, there is no j < 2n such that B j ⊆ A1−c since it would
contradict the fact that B j is a non-empty subset of Ac. Therefore S is not n-TT-fair. �

Notice that we actually proved a stronger statement. Dzhafarov, Hirst and Lakins defined
in [DHL10] various notions of stability for the tree theorem for pairs. A coloring f : [2<ω ]2 → r

is 1-stable if for every σ ∈ 2<ω , there is some threshold t and some color c < r such that
f (σ ,τ) = c for every τ ≻ σ such that |τ| ≥ t. In the proof of Theorem 14.2.4, we showed in
fact that TT2

2 restricted to 1-stable colorings does not admit TT-fairness preservation. In the
same paper, Dzhafarov et al. studied an increasing polarized version of the tree theorem for
pairs, and proved that its 1-stable restriction coincides with the 1-stable tree theorem for pairs
over RCA0. Therefore the increasing polarized tree theorem for pairs does not admit TT-fairness
preservation.
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14.3 The strength of the tree theorem for pairs

In this section, we prove TT-fairness preservation for various principles in reverse mathematics,
namely, weak König’s lemma, cohesiveness and RT2

2. We prove independently that they admit
TT-fairness preservation, and then use the compositional nature of the notion of preservation to
deduce that the conjunction of these principles does not imply TT2

2 over RCA0.
We start with weak König’s lemma which is involved in many proofs of Ramsey-type

theorems, and in particular in the proof of Ramsey’s theorem for pairs.

Theorem 14.3.1 For every n ≥ 1, WKL admits n-TT-fairness preservation.

Proof. Let C be a set n-TT-fair for some sets A0,A1 ⊆ 2<ω , and let T ⊆ 2<ω be a C-computable
infinite binary tree. We construct an infinite decreasing sequence of computable subtrees
T = T0 ⊇ T1 ⊇ . . . such that for every path P through

⋂

s Ts, P⊕C is n-TT-fair for A0,A1.
More precisely, if we interpret s as a tuple 〈m,ϕ,M〉 where ϕ(G,U) is an m-by-2nm Σ

0,C
1

formula ϕ(G,U) and M is an m-by-2nm disjoint matrix M, we want to satisfy the following
requirement.

Rs : For every path P through Ts+1, either ϕ(P,U) is not essential in M, or ϕ(P,V )
holds for some M-valuation V diagonalizing against A0,A1.

Given two M-valuations V0 = (Bi, j : i < m, j < 2nm) and V1 = (Di, j : i < m, j < 2nm), we
write V0 ⊆V1 to denote the pointwise subset relation, that is, for every i < m and every j < 2nm,
Bi, j ⊆ Di, j. At stage s = 〈m,ϕ,M〉, given some infinite, computable binary tree Ts, define the
m-by-2nm Σ

0,C
1 formula

ψ(U) = (∃n)(∀τ ∈ Ts ∩2n)(∃Ṽ ⊆U)ϕ(τ,Ṽ )

We have two cases. In the first case, ψ(U) is not essential in M with some witness t. By
compactness, the following set is an infinite C-computable subtree of Ts:

Ts+1 = {τ ∈ Ts : (for every M-valuation V > t)¬ϕ(τ,V )}

The tree Ts+1 has been defined so that ϕ(P,U) is not essential in M for every P ∈ [Ts+1].
In the second case, ψ(U) is essential in M. By n-TT-fairness of C for A0,A1, there is an

M-valuation V diagonalizing against A0,A1 such that ψ(V ) holds. We claim that for every
path P ∈ [Ts], ϕ(P,Ṽ ) holds for some M-valuation Ṽ diagonalizing against A0,A1. Fix some
path P ∈ [Ts]. Unfolding the definition of ψ(V ), there is some n such that ϕ(P↾n,Ṽ ) holds for
some M-valuation Ṽ ⊆ V . Since V is diagonalizing against A0,A1, for every i < m, there is
some L,R ∈ V (i) such that L ⊆ A0 and R ⊆ A1. Let L̃, R̃ ∈ Ṽ (i) be such that L̃ ⊆ L and R̃ ⊆ R.
In particular, L̃ ⊆ A0 and R̃ ⊆ A1 so Ṽ diagonalizes against A0,A1. Take Ts+1 = Ts and go to the
next stage. This finishes the proof of Theorem 14.3.1. �

As previously noted, preserving n-TT-fairness for every n implies preserving TT-fairness.
However, we really need the fact that WKL admits n-TT-fairness preservation and not only
TT-fairness preservation in the proof of Theorem 14.3.6.

Corollary 14.3.2 WKL admits TT-fairness preservation.

As usual, we shall decompose Ramsey’s theorem for pairs into a cohesiveness instance and
a non-effective partition of the integers. We shall therefore prove independently TT-fairness
preservation of COH and strong TT-fairness preservation of RT1

2 to deduce that RT2
2 admits

TT-fairness preservation.
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Theorem 14.3.3 For every n ≥ 1, COH admits n-TT-fairness preservation.

Proof. Let C be a set n-TT-fair for some sets A0,A1 ⊆ 2<ω , and let R0,R1, . . . be a C-computable
sequence of sets. We will construct an ~R-cohesive set G such that G⊕C is n-TT-fair for A0,A1.
The construction is done by a Mathias forcing, whose conditions are pairs (F,X) where X is a
C-computable set. The result is a direct consequence of the following lemma.

Lemma 14.3.4 For every condition (F,X), every m-by-2nm Σ
0,C
1 formula ϕ(G,U) and every

m-by-2nm disjoint matrix M, there exists an extension d = (E,Y ) such that ϕ(G,U) is not
essential for every set G satisfying d, or ϕ(E,V ) holds for some M-valuation V diagonalizing
against A0,A1.

Proof. Define the m-by-2nm Σ
0,C
1 formula ψ(U) = (∃G ⊇ F)[G ⊆ F ∪X ∧ϕ(G,U)]. By n-TT-

fairness of C for A0,A1, either ψ(U) is not essential in M, or ψ(V ) holds for some M-valuation V

diagonalizing against A0,A1. In the former case, the condition (F,X) already satisfies the desired
property. In the latter case, by the finite use property, there exists a finite set E satisfying (F,X)
such that ϕ(E,V ) holds. Let Y = X r [0,max(E)]. The condition (E,Y ) is a valid extension. �

Using Lemma 14.3.4, define an infinite descending sequence of conditions c0 = ( /0,ω) ≥
c1 ≥ . . . such that for each s ∈ ω

(i) |Fs| ≥ s

(ii) Xs+1 ⊆ Rs or Xs+1 ⊆ Rs

(iii) ϕ(G,U) is not essential in M for every set G satisfying cs+1, or ϕ(Fs+1,V ) holds for some
M-valuation V diagonalizing against A0,A1 if s = 〈ϕ,M〉

where cs = (Fs,Xs). The set G =
⋃

s Fs is infinite by (i), ~R-cohesive by (ii) and G⊕C is n-TT-fair
for A0,A1 by (iii). This finishes the proof of Theorem 14.3.3. �

Corollary 14.3.5 COH admits TT-fairness preservation.

The next theorem is the reason why we use the notion of TT-fairness instead of n-TT-
fairness in our separation of RT2

2 from TT2
2. Indeed, given an instance of RT1

2 and a set C

which is n-TT-fair for some sets A0,A1, the proof constructs a solution H such that H ⊕C is
(n+ 1)-TT-fair for A0,A1. We shall see in Corollary 14.3.11 that the proof is optimal, in the
sense that RT1

2 does not admit strong n-TT-fairness preservation.

Theorem 14.3.6 RT1
2 admits strong TT-fairness preservation.

Proof. Let C be a set n-TT-fair for some sets A0,A1 ⊆ 2<ω , and let B0 ∪B1 = ω be a (non-
effective) 2-partition of ω . Suppose that there is no infinite set H ⊆ B0 or H ⊆ B1 such that H⊕C

is n-TT-fair for A0,A1, since otherwise we are done. We construct a set G such that both G∩B0

and G∩B1 are infinite. We need therefore to satisfy the following requirements for each p ∈ ω .

Np : (∃q0 > p)[q0 ∈ G∩B0] ∧ (∃q1 > p)[q1 ∈ G∩B1]

Furthermore, we want to ensure that one of (G∩B0)⊕C and (G∩B1)⊕C is TT-fair for A0,A1.
To do this, we will satisfy the following requirements for every integer m, every m-by-2n+1m

Σ
0,C
1 formulas ϕ0(H,U) and ϕ1(H,U) and every m-by-2n+1m disjoint matrices M0 and M1.

Qϕ0,M0,ϕ1,M1 : R
G∩B0
ϕ0,M0

∨ R
G∩B1
ϕ1,M1

where RH
ϕ,M holds if ϕ(H,U) is not essential in M or ϕ(H,V ) holds for some M-valuation V

diagonalizing against A0,A1. We first justify that if every Q-requirement is satisfied, then either
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(G∩B0)⊕C or (G∩B1)⊕C is (n+1)-TT-fair for A0,A1. By the usual pairing argument, for
every m, there is some side i < 2 such that the following property holds:

(P) For every m-by-2n+1m Σ
0,C
1 formula ϕ(G∩Bi,U) and every m-by-2n+1m disjoint

matrix M, either ϕ(G∩Bi,U) is not essential in M, or ϕ(G∩Bi,V ) holds for some
M-valuation V diagonalizing against A0,A1.

By the infinite pigeonhole principle, there is some side i < 2 such that (P) holds for infinitely
many m. By a cropping argument, if (P) holds for m and q < m, then (P) holds for q. Therefore
(P) holds for every m on side i. In other words, (G∩Bi)⊕C is (n+1)-TT-fair for A0,A1.

We construct our set G by forcing. Our conditions are Mathias conditions (F,X), such
that X ⊕C is n-TT-fair for A0,A1. We now prove the progress lemma, stating that we can force
both G∩B0 and G∩B1 to be infinite.

Lemma 14.3.7 For every condition c = (F,X), every i < 2 and every p ∈ ω there is some
extension d = (E,Y ) such that E ∩Bi ∩ (p,+∞) 6= /0.

Proof. Fix c, i and p. If X ∩Bi ∩ (p,+∞) = /0, then X ∩ (p,+∞) is an infinite subset of B1−i.
Moreover, X ∩ (p,+∞) is n-TT-fair for A0,A1, contradicting our hypothesis. Thus, there is
some q > p such that q ∈ X ∩ Bi ∩ (p,+∞). Take d = (F ∪ {q},X r [0,q]) as the desired
extension. �

Next, we prove the core lemma stating that we can satisfy each Q-requirement. A condition c

forces a requirement Q if Q is holds for every set G satisfying c. This is the place where we
really need the fact that WKL admits n-TT-fairness preservation and not only TT-fairness
preservation.

Lemma 14.3.8 For every condition c = (F,X), every integer m, every m-by-2n+1m Σ
0,C
1 for-

mulas ϕ0(H,U) and ϕ1(H,U) and every m-by-2n+1m disjoint matrices M0 and M1, there is an
extension d = (E,Y ) forcing Qϕ0,M0,ϕ1,M1 .

Proof. Let ψ(U0,U1) be the 2m-by-2n+1m Σ
0,X⊕C
1 formula which holds if for every 2-partition Z0∪

Z1 = X , there is some i < 2, some finite set E ⊆ Zi and an m-by-2n+1m Mi-valuation V ⊆Ui such
that ϕi((F ∩Bi)∪E,V ) holds. By n-TT-fairness of X ⊕C, we have two cases.

In the first case, ψ(U0,U1) is not essential in M0,M1, with some witness t. By compactness,
the Π

0,X⊕C
1 class C of sets Z0 ⊕Z1 such that Z0 ∪Z1 = ω and for every i < 2 and every finite

set E ⊆ Zi, there is no Mi-valuation V > t such that ϕi((F ∩Bi)∪E,V ) holds is non-empty. By
n-TT-fairness preservation of WKL (Theorem 14.3.1), there is a 2-partition Z0 ⊕Z1 ∈ C such
that Z0 ⊕Z1 ⊕C is n-TT-fair for A0,A1. Since Z0 ∪Z1 = X , there is some i < 2 such that Zi is
infinite. Take such an i. The condition d = (F,Zi) is an extension forcing Qϕ0,M0,ϕ1,M1 by the ith
side.

In the second case, ψ(V0,V1) holds for some (M0,M1)-valuation (V0,V1) diagonalizing
against A0,A1. Let Z0 = X ∩B0 and Z1 = X ∩B1. By hypothesis, there is some i < 2, some finite
set E ⊆ Zi = X ∩Bi and some Mi-valuation V ⊆Vi such that ϕi((F ∩Bi)∪E,V ) holds. Since V ⊆
Vi, the Mi-valuation V diagonalizes against A0,A1. The condition d = (F ∪E,X r [0,max(E)])
is an extension forcing Qϕ0,M0,ϕ1,M1 by the ith side. �

Using Lemma 14.3.7 and Lemma 14.3.8, define an infinite descending sequence of condi-
tions c0 = ( /0,ω)≥ c1 ≥ . . . such that for each s ∈ ω

(i) |Fs ∩B0| ≥ s and |Fs ∩B1| ≥ s

(ii) cs+1 forces Qϕ0,M0,ϕ1,M1 if s = 〈ϕ0,M0,ϕ1,M1〉
where cs = (Fs,Xs). Let G =

⋃

s Fs. The sets G∩B0 and G∩B1 are both infinite by (i) and one
of G∩B0 and G∩B1 is TT-fair for A0,A1 by (ii). This finishes the proof of Theorem 14.3.6. �
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Theorem 14.3.9 RT2
2 admits TT-fairness preservation.

Proof. Fix any set C TT-fair for some sets A0,A1 ⊆ 2<ω and any C-computable coloring f :
[ω]2 → 2. Consider the uniformly C-computable sequence of sets ~R defined for each x ∈ ω by

Rx = {s ∈ ω : f (x,s) = 1}

As COH admits TT-fairness preservation, there is some ~R-cohesive set G such that G⊕C is
TT-fair for A0,A1. The set G induces a (G⊕C)′-computable coloring f̃ : ω → 2 defined by:

(∀x ∈ ω) f̃ (x) = lim
s∈G

f (x,s)

As RT1
2 admits strong TT-fairness preservation, there is an infinite f̃ -homogeneous set H such

that H ⊕G⊕C is TT-fair for A0,A1. The set H ⊕G⊕C computes an infinite f -homogeneous
set. �

We are now ready to prove our main theorem.

Proof of Theorem 14.0.1. By Theorem 14.3.9 and Corollary 14.3.2, RT2
2 and WKL admit TT-

fairness preservation. By Theorem 14.2.4, TT2
2 does not admit TT-fairness preservation. We

conclude by Lemma 14.2.2. �

We now prove the optimality of Theorem 14.3.6 and Theorem 14.3.9 by showing that n-TT-
fairness cannot be preserved.

Theorem 14.3.10 SRT2
2 does not admit n-TT-fairness preservation for any n ≥ 1.

Proof. Let A0 ∪A1 = 2<ω be the ∆0
2 partition constructed in Lemma 14.2.3. By Shoenfield’s

limit lemma [Sho59], there is a stable computable function f : [ω]2 → 2 such that x ∈ Alims f (x,s)

for every x. Fix some n ≥ 1. For each σ ∈ 2n+1, apply SRT2
2 to the coloring f restricted to

the set Sσ = {τ � σ} to obtain an infinite f -homogeneous set Hσ for some color cσ < 2. By
definition of f , Hσ ⊆ Acσ . By the finite pigeonhole principle, there is a color c < 2 and a set
M ⊆ 2n+1 of size 2n such that cσ = c for every σ ∈ M. We can see M as a 1-by-2n disjoint
matrix. Let H =

⊕

σ∈M Hσ and let ϕ(Uσ : σ ∈ M) be the 1-by-2n Σ
0,H
1 formula which holds if

for every σ ∈ M, Uσ is a non-empty subset of Hσ . Note that Hσ ⊆ Ac for every σ ∈ M. The
formula ϕ(U) is essential in M but there is no M-valuation V = (Vσ : σ ∈ M) such that ϕ(V )
holds and Vσ ⊆ A1−c for some σ ∈ M. Therefore H is not n-TT-fair for A0,A1. �

Corollary 14.3.11 RT1
2 does not admit n-TT-fairness preservation for every n ≥ 1.

Proof. Fix some n ≥ 2. By Theorem 14.3.10, there is some set C n-TT-fair some A0,A1 and a
stable C-computable function f : [ω]2 → 2 such that for every infinite f -homogeneous set H,
H ⊕C is not n-TT-fair for A0,A1. Let f̃ : ω → 2 be defined by f̃ (x) = lims f (x,s). Every infinite
f̃ -homogeneous set H C-computes an infinite f -homogeneous set H1 such that H1 ⊕C is not
n-TT-fair for A0,A1. Therefore H ⊕C is not n-TT-fair for A0,A1. �
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14.4 An Erdős-Rado theorem

In this section, we investigate the reverse mathematics of a well-known theorem due to Erdős and
Rado about partitions of rationals [FP15]. This theorem is a natural strengthening of Ramsey’s
theorem for pairs in the following sense. Ramsey’s theorem for pairs can be stated as ω → (ω)2

2,
where α → (β )2

2 is the statement “For every coloring f : [L]2 → 2, where L is a linear order of
order type α , there is a homogeneous set H such that (H,≤L) has order type β”. It turns out
that ω and ω∗ are the only countable order types α such that α → (α)2

2 holds. In particular,
η → (η)2

2 does not hold, where η is the order type of the rationals. A standard counterexample
is as follows. Fix a one-to-one map j : Q→ N. Define f : [Q]2 → 2 by letting

f (x,y) =

{

0 if x <Q y∧ j(x)< j(y);

1 if x <Q y∧ j(x)> j(y).

A dense homogeneous set would give an embedding of Q into ω (color 0) or ω∗ (color 1),
which is impossible. Even though Ramsey’s theorem for rationals fails, Erdős and Rado [ER52,
Theorem 4, p. 427] proved the following Ramsey-type theorem (see also Rosenstein [Ros82,
Theorem 11.7, p. 207]).

Theorem 14.4.1 — Erdős-Rado theorem. The partition relation η → (ℵ0,η)2 holds.

The statement η → (ℵ0,η)2 asserts that for every coloring f : [L]2 → 2, where L is a linear
order of order type η , there is either an infinite 0-homogeneous set or a 1-homogeneous set of
order type η .The partition relation η → (ℵ0,η)2 can be easily formalized in RCA0 by fixing a

computable presentation Q of the rationals. We may safely assume that the domain of Q is N. In
order to study η → (ℵ0,η)2 we also consider a version of the infinite pigeonhole principle over
the rationals, namely the statement “For every n and for every n-coloring f : Q→ n there exists
a dense homogeneous set”, which we denote by η → (η)1<∞.

We start off the analysis of the Erdős-Rado theorem by proving that the statement η → (ℵ0,η)2

lies between ACA and RT2
2. On the lower bound hand, η → (ℵ0,η)2 can be seen as an im-

mediate strengthening of RT2
2. The upper bound is an effectivization of the original proof

of η → (ℵ0,η)2 by Erdős and Rado in [ER52].

Lemma 14.4.2 η → (ℵ0,η)2 implies RT2
2 over RCA0.

Proof. An instance of RT2
2 can be regarded as an instance of η → (ℵ0,η)2. Moreover, provably

in RCA0, a dense set is infinite. �

The rest of this section is devoted to show that η → (ℵ0,η)2 is provable in ACA. For this
purpose, we give the following definition.

Definition 14.4.1 — RCA0. By interval we mean a set of the form I = (x,y)Q for x,y ∈ Q.
We say that A ⊆Q is somewhere dense if A is dense in some interval of Q, i.e., there exists
an interval I such that for all intervals J ⊆ I we have that A∩ J 6= /0. We call A nowhere dense

otherwise.

Notice that the above notion is the usual notion of topological density with respect to the order
topology of Q. In general, the nowhere dense sets of a topological space form an ideal. This is
crucial in the proof by Erdős and Rado. For this reason, we also use the terminology positive and
small for somewhere dense and nowhere dense respectively. In RCA0 we can show that nowhere
dense subsets of Q are small in the set-theoretic sense, meaning that:

(1) If A ⊆Q is small and B ⊆ A, then B is small;
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(2) If A,B ⊆Q are small, then A∪B is small.
With enough induction, it is possible to generalize (2) to finitely many sets.

Lemma 14.4.3 — RCA0+ IΣ0
2. If Ai is a small subset of Q for all i < n, then

⋃

i<n Ai is small.

Proof. Suppose that Ai is small for every i < n. Fix an interval I. We aim to show that
An =

⋃

i<n Ai is not dense on I. By IΣ0
2 (induction on i), we prove that

(∀i ≤ n)(∃J ⊆ I interval)Ai ∩ J = /0,

where Ai =
⋃

j<i A j. The conclusion follows from i = n. The case i = 0 is vacuously true.
Suppose the property holds for i and that i+ 1 ≤ n. By the induction hypothesis there exists
J ⊆ I such that Ai ∩ J = /0. As Ai is small, there exists K ⊆ J such that Ai ∩K = /0. It follows that
Ai+1 ∩K = (Ai ∪Ai)∩K = /0, as desired. �

Theorem 14.4.4 ACA implies η → (ℵ0,η)2 over RCA0.

Proof. Let f : [Q]2 → 2 be given. For any x ∈ Q, let red(x) = {y ∈ Qr {x} : f (x,y) = 0}.
Define blue(x) accordingly. We say that A ⊆Q is 0-admissible if there exists some x ∈ A such
that A∩red(x) is positive.

Case I. Every positive subset of Q is 0-admissible. We aim to show that there exists an infinite
0-homogeneous set. We define by arithmetical recursion a sequence (xn)n∈N as follows. Supppose
we have defined xi for all i < n, and assume by arithmetical induction that An =

⋂

i<n red(xi) is
positive, and hence 0-admissible (where

⋂

i<0 red(xi) =Q). Search for the ω-least xn ∈ An such
that An ∩red(xn) =

⋂

i<n+1 red(xi) is positive. By definition, the set {xn : n ∈ N} is infinite and
0-homogeneous.

Case II. There is a positive subset A of Q which is not 0-admissible. In this case, we show
that there exists a dense 1-homogeneous set. Let I be a witness of A being positive. Fix an
enumeration (In)n∈N of all subintervals of I. Notive that by definition A intersects every In.

We define by arithmetical recursion a sequence (xn)n∈N as follows. Let x0 ∈ A∩ I0. Suppose
we have defined xi ∈ A∩ Ii for all i < n. By Lemma 14.4.3, since every A∩red(xi) with i < n

is small, it follows that E =
⋃

i<n

(
A∩red(xi)

)
is small. Let J ⊆ In be such that E ∩ J = /0. We

may safely assume that no xi with i < n belongs to J. Since A is dense in I and J ⊆ I, we can find
xn ∈ A∩ J. In particular, xn ∈

⋂

i<n blue(xi). Therefore {xn : n ∈ N} is a dense 1-homogeneous
set. �

14.5 The strength of the Erdős-Rado theorem

In this section, we prove that the Erdős-Rado theorem for pairs does not reduce to Ramsey’s
theorem for pairs in one step.

Theorem 14.5.1 η → (ℵ0,η)2 6≤c RT
2
<∞.

Interestingly, this diagonalization does not seem to be easily generalizable to a separation
over ω-models. A reason is that the fairness property ensured by the η → (ℵ0,η)2-instance
does not seem to be preserved by weak König’s lemma. This is hitherto the first example of
a computable non-reducibility of a principle P to RT2

<∞ which is not generalizable to a proof
that RT2

2 does not imply P over RCA0. Indeed, a diagonalization against an RT2
4-instance is

similar to a diagonalization against two RT2
2-instances. Therefore, diagonalizing against RT2

<∞

has some common flavor with a separation over standard models.
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The remainder of this section is devoted to a proof of Theorem 14.5.1. The notion of fairness
presented below may have some ad-hoc flavor. It has been obtained by applying the main ideas
of the framework of Lerman, Solomon and Towsner [LST13; Pat15c]. Thanks to an analysis of
the combinatorics of Ramsey’s theorem for pairs and the Erdős-Rado theorem for pairs, we prove
our computable non-reducibility result by constructing an instance of η → (ℵ0,η)2 ensuring
the density of the diagonalizing conditions in the forcing notion of RT2

2. Then we abstract the
diagonalization to any Σ0

1 formula, to get rid of the specificities of the forcing notion of RT2
2 in

the notion of ER-fairness preservation.

Definition 14.5.1 — Simple partition. A simple partition intQ(S) is a finite sequence of
open intervals (−∞,x0),(x0,x1), . . . ,(xn−1,+∞) for some set of rationals S = {x0 <Q · · ·<Q

xn−1}. We set intQ( /0) = {Q}. A simple partition I0, . . . , In−1 refines another simple parti-
tion J0, . . . ,Jm−1 if for every i < n, there is some j < m such that Ii ⊆ J j. Given two simple
partitions I0, . . . , In−1 and J0, . . . ,Jm−1, the product~I ⊗ ~J is the simple partition

{I ∩ J : I ∈~I ∧ J ∈ ~J}

One can easily see that intQ(S) refines intQ(T ) if T ⊆ S and that intQ(S∪T ) = intQ(S)⊗ intQ(T ).
Note that every simple partition has a finite description, since the set S and each rational has a
finite description. Also note that a simple partition is not a true partition of Q since the endpoints
do not belong to any interval. However, we have S∪

⋃
intQ(S) =Q.

Definition 14.5.2 — Matrix. An m-by-n matrix M is a rectangular array of rationals xi, j ∈Q
such that xi, j <Q xi,k for each i < m and j < k < n. The ith row M(i) of the matrix M

is the n-tuple of rationals xi,0 < · · · < xi,n−1. The simple partition intQ(M) is defined by
⊗

i<m intQ(M(i)). In particular,
⊗

i<m intQ(M(i)) refines the simple partition intQ(M(i)) for
each i < m.

It is important to notice that an m-by-n matrix is formally a 3-tuple 〈m,n,M〉 and not only
the matrix itself M. This distinction becomes important when dealing with the degenerate cases.
An m-by-0 matrix M and a 0-by-n matrix N are both empty. However, they have different sizes.
In particular, we shall define the notion of M-type for a matrix, and this definition will depend
on the number of columns of the matrix M, which is 0 for M, and n for N. Notice also that, for a
degenerate matrix M, the simple partition intQ(M) is the singleton {Q}.

Given a simple partition~I, we want to classify the k-tuples of rationals according to which
interval of~I they belong to. This leads to the notion of (~I,k)-type.

Definition 14.5.3 — Type. Given a simple partition I0, . . . , In−1 and some k ∈ ω , an (~I,k)-
type is a tuple T0, . . . ,Tk−1 such that Ti ∈ ~I for each i < k. Given an m-by-n matrix M,
an M-type is an (intQ(M),n)-type.

We now state two simple combinatorial lemmas which will be useful later. The first trivial
lemma simply states that each m-tuple of rational (different from the endpoints of a simple
partition) belongs to a type.

Lemma 14.5.2 For every simple partition I0, . . . , In−1 and every k-tuple of rationals x0, . . . ,xk−1 ∈
⋃

i<n Ii, there is an (~I,k)-type T0, . . . ,Tk−1 such that x j ∈ Tj for each j < k.

Proof. Fix k rationals x0, . . . ,xk−1. For each i < k, there is some interval Ti ∈~I such that xi ∈ Ti

since xi ∈
⋃

j<n I j. The sequence T0, . . . ,Tk−1 is the desired (~I,k)-type. �

The next lemma is a consequence of the pigeonhole principle.
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Lemma 14.5.3 For every m-by-n matrix M and every M-type T0, . . . ,Tn−1, there is an m-tuple
of intervals J0, . . . ,Jm−1 with Ji ∈ intQ(M(i)) such that

(
⋃

j<n

Tj)∩ (
⋃

i<m

Ji) = /0

Proof. Let T0, . . . ,Tn−1 be an M-type. For every i < m and j < n, there is some J ∈ intQ(M(i))
such that Tj ⊆ J. Since |intQ(M(i))| = n+ 1, there is an interval Ji ∈ intQ(M(i)) such that
(
⋃

j<n Tj)∩ Ji = /0. �

Definition 14.5.4 — Formula, valuation. Given an m-by-n matrix M, an M-formula is a
formula ϕ(~U ,~V ) with distinguished set variables U j for each j < n and Vi,I for each i < m

and I ∈ intQ(M(i)). An M-valuation (~R,~S) is a tuple of finite sets R j ⊆ Q for each j < n

and Si,I ⊆ I for each i<m and I ∈ intQ(M(i)). The M-valuation (~R,~S) is of type ~T for some M-
type T0, . . . ,Tn−1 if moreover R j ⊆ Tj for each j < n. The M-valuation (~R,~S) satisfies ϕ if
ϕ(~R,~S) holds.

Given some valuation (~R,~S) and some integer s, we write (~R,~S) > s to say that for every
x ∈ (

⋃~R)∪ (
⋃~S), x > s. Following the terminology of [LST13], we define the notion of

essentiality for a formula (an abstract requirement), which corresponds to the idea that there is
room for diagonalization since the formula is satisfied for arbitrarily far valuations.

Definition 14.5.5 — Essential formula. Given an m-by-n matrix M, and M-formula ϕ is
essential if for every s ∈ ω , there is an M-type ~T and an M-valuation (~R,~S) > s of type ~T
such that ϕ(~R,~S) holds.

The notion of ER-fairness is defined accordingly. If some formula is essential, that is, gives
enough room for diagonalization, then there is an actual valuation which will diagonalize against
the η → (ℵ0,η)2-instance.

Definition 14.5.6 — ER-fairness. Fix two sets A0,A1 ⊆Q. Given an m-by-n matrix M, an
M-valuation (~R,~S) diagonalizes against A0,A1 if

⋃~R ⊆ A1 and for every i < m, there is
some I ∈ intQ(M(i)) such that Si,I ⊆ A0. A set X is ER-fair for A0,A1 if for every m,n ∈ ω ,
every m-by-n matrix M and every Σ

0,X
1 essential M-formula, there is an M-valuation (~R,~S)

diagonalizing against A0,A1 such that ϕ(~R,~S) holds.

Of course, if Y ≤T X , then every Σ
0,Y
1 formula is Σ

0,X
1 . As an immediate consequence, if X is

ER-fair for some A0,A1 and Y ≤T X , then Y is ER-fair for A0,A1.
Now we have introduced the necessary terminology, we create a non-effective instance

of η → (ℵ0,η)1 which will serve as a bootstrap for ER-fairness preservation.

Lemma 14.5.4 For every set C, there exists a ∆
0,C
2 partition A0 ∪A1 =Q such that C is ER-fair

for A0,A1.

Proof. The proof is done by a no-injury priority construction. Let M0,M1, . . . be an enumeration
of all m-by-n matrices and ϕ0,ϕ1, . . . be an effective enumeration of all Σ

0,C
1 Mk-formulas for

every m,n ∈ ω . We want to satisfy the following requirements for each pair of integers e,k.

Re,k: If the Mk-formula ϕe is essential, then ϕe(~R,~S) holds for some Mk-valuation
(~R,~S) diagonalizing against A0,A1.

The requirements are ordered via the standard pairing function 〈·, ·〉. The sets A0 and A1

are constructed by a C′-computable list of finite approximations Ai,0 ⊆ Ai,1 ⊆ . . . such that all
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elements added to Ai,s+1 from Ai,s are strictly greater than the maximum of Ai,s (in the N order)
for each i < 2. We then let Ai =

⋃

s Ai,s which will be a ∆
0,C
2 set. At stage 0, set A0,0 = A1,0 = /0.

Suppose that at stage s, we have defined two disjoint finite sets A0,s and A1,s such that
(i) A0,s ∪A1,s = [0,b]N for some integer b ≥ s

(ii) Re′,k′ is satisfied for every 〈e′,k′〉< s

Let Re,k be the requirement such that 〈e,k〉= s. Decide C′-computably whether there is some
M-type ~T and some Mk-valuation V = (~R,~S) > b of type ~T such that ϕe(V ) holds. If so, C-
effectively fetch ~T = T0, . . . ,Tn−1 and such a (~R,~S)> b. Let d be an upper bound (in the N order)
on the rationals in (~R,~S). By Lemma 14.5.3, for each i < m, there is some Ji ∈ intQ(M(i)) such
that

(
⋃

j<n

Tj)∩ (
⋃

i<m

Ji) = /0

Set A0,s+1 = A0,s
⋃

i<m Ji ∩ (b,d]N and A1,s+1 = [0,d]N rA0,s+1. This way, A0,s+1 ∪A1,s+1 =
[0,d]N. By the previous equation,

⋃

j<n Tj ∩ (b,d]N ⊆ [0,d]NrA0,s+1 and the requirement Re,k

is satisfied. If no such Mk-valuation is found, the requirement Re,k is vacuously satisfied. Set
A0,s+1 = A0,s ∪{b} and A1,s+1 = A1,s. This way, A0,s+1 ∪A1,s+1 = [0,b+1]N. In any case, go to
the next stage. This finishes the construction. �

Lemma 14.5.5 If X is ER-fair for some sets A0,A1 ⊆ Q, then X computes neither an infinite
subset of A0, nor a dense subset of A1.

Proof. Since ER-fairness is downward-closed under the Turing reducibility, it suffices to prove
that if X is infinite and ER-fair for A0,A1, then it intersects both A0 and A1.

We first prove that X intersects A1. Let M be the 0-by-1 matrix and ϕ(U) be the Σ
0,X
1

M-formula which holds if U ∩X 6= /0. The only M-type is Q and since X is infinite, ϕ is essential.
By ER-fairness of X , there is an M-valuation R diagonalizing against A0,A1 such that ϕ(R) holds.
By definition of diagonalization, R ⊆ A1. Since R∩X 6= /0, this shows that X ∩A1 6= /0.

We now prove that X interects A0. Let M be the 1-by-0 matrix and ϕ(V ) be the Σ
0,X
1

M-formula which holds if V ∩X 6= /0. The M-formula ϕ is essential since X is infinite. By
ER-fairness of X , there is an M-valuation S diagonalizing against A0,A1 such that ϕ(S) holds.
By definition of diagonalization, S ⊆ A0. Since R∩X 6= /0, this shows that X ∩A0 6= /0. �

Note that we did not used the fact that X is dense to make it intersect A0. Density will be
useful in the proof of Theorem 14.5.6.

Definition 14.5.7 A Scott set is a set S ⊆ 2ω such that
(i) (∀X ∈ S )(∀Y ≤T X)[Y ∈ S ]

(ii) (∀X ,Y ∈ S )[X ⊕Y ∈ S ]
(iii) Every infinite, binary tree in S has an infinite path in S .

Theorem 14.5.6 Let A0,A1 ⊆ Q and S be a Scott set whose members are all ER-fair
for A0,A1. For every set C ∈ S , every C-computable coloring f : [ω]2 → k, there is an
infinite f -homogeneous set H such that H ⊕C computes neither an infinite subset of A0, nor a
dense subset of A1.

Proof. The proof is done by induction over the number of colors k. The case k = 1 is ensured by
Lemma 14.5.5. Fix a set C ∈ S and let f : [ω]2 → k be a C-computable coloring. If f has an
infinite f -thin set H ∈S , that is, an infinite set over which f avoids at least one color, then H⊕C

computes a coloring g : [ω]2 → k−1 such that every infinite g-homogeneneous set computes
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relative to H ⊕C an infinite f -homogeneous set. Since H ⊕C ∈ S , by induction hypothesis,
there is an infinite g-homogeneous set H1 such that H1 ⊕H ⊕C computes neither an infinite
subset of A0, nor a dense subset of A1. So suppose that f has no infinite f -thin set in S .

We construct k infinite sets G0, . . . ,Gk−1. We need therefore to satisfy the following require-
ments for each p ∈ ω .

Np : (∃q0 > p)[q0 ∈ G0] ∧·· ·∧ (∃qk−1 > p)[qk−1 ∈ Gk−1]

Furthermore, we want to ensure that one of the G’s computes neither an infinite subset of A0, nor
a dense subset of A1. To do this, we will satisfy the following requirements for every k-tuple of
integers e0, . . . ,ek−1.

Q~e : R
G0
e0

∨·· ·∨ R
Gk−1
ek−1

where RH
e holds if W H⊕C

e is neither an infinite subset of A0, nor a dense subset of A1.
We construct our sets G0, . . . ,Gk−1 by forcing. Our conditions are variants of Mathias

conditions (F0, . . . ,Fk−1,X) such that X is an infinite set in S and the following property holds:
(P) (∀i < k)(∀x ∈ X)[Fi ∪{x} is f -homogeneous with color i]

A condition d = (E0, . . . ,Ek−1,Y ) extends c = (F0, . . . ,Fk−1,X) if (Ei,Y ) Mathias extends (Fi,X)
for every i < k. We now prove the progress lemma, stating that we can force the G’s to be infinite.
This is where we use the fact that there is no infinite f -thin set in S .

Lemma 14.5.7 For every condition c = (F0, . . . ,Fk−1,X), every i < k and every p ∈ ω there is
some extension d = (E0, . . . ,Ek−1,Y ) such that Ek ∩ (p,+∞)N 6= /0.

Proof. Fix c, i and p. If for every x ∈ X ∩ (p,+∞)N and almost every y ∈ X , f (x,y) 6= i, then
X computes an infinite f -thin set, contradicting our hypothesis. Therefore, there is some x ∈
X ∩ (p,+∞)N such that f (x,y) = i for infinitely many y ∈ X . Let Y be the collection of such y’s.
The condition (F0, . . . ,Fi−1,F ∪{x},Fi+1, . . . ,Fk,Y ) is the desired extension. �

We now prove the core lemma stating that we can satisfy each Q-requirement. A condition c

forces a requirement Q if Q is holds for every set G satisfying c.

Lemma 14.5.8 For every condition c = (F0, . . . ,Fk−1,X) and every k-tuple of indices~e, there is
an extension d = (E0, . . . ,Ek−1,Y ) forcing Q~e.

Proof. We can assume that W Fi⊕C
ei

has already outputted at least k elements and is either included
in A0 or in A1 for each i < k. Indeed, if c has no such extension, then c forces W Gi⊕C

ei
to be finite

or not to be a valid solution for some i < k and therefore forces Q~e. For each i < k, we associate
the label ℓi < 2 and the number pi such that W Fi⊕C

ei
is the (pi +1)th set included in Aℓi

.
Let n be the number of sets W Fi⊕C

ei
which are included in A0, and let M be the (k−n)-by-n

matrix such that the jth row is composed of the n first elements already outputted by the set
W Fi⊕C

ei
where pi = j and ℓi = 1. In other words, M( j) are the n first elements outputted by the

jth set W Fi⊕C
ei

included in A1.

Let ϕ(~U ,~V ) be the Σ
0,X⊕C
1 formula which holds if for every k-partition Z0 ∪·· ·∪Zk−1 = X ,

there is some i < k and some finite set E ⊆ Zi which is f -homogeneous with color i and such
that either ℓi = 0 and W

(Fi∪E)⊕C
ei ∩Upi

6= /0, or ℓi = 1 and W
(Fi∪E)⊕C
ei ∩Vpi,I 6= /0 for each I ∈

intQ(M(pi)). We have two cases.
In the first case, ϕ(~U ,~V ) is essential. Since X ⊕C is ER-fair for A0,A1, there is an M-

valuation (~R,~S) diagonalizing against A0,A1 such that ϕ(~R,~S) holds. By compactness and
definition of diagonalization against A0,A1, there is a finite subset D ⊂ X such that for ev-
ery k-partition D0 ∪ ·· · ∪Dk−1 = D, there is some i < k and some finite set E ⊆ Di which is
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f -homogeneous with color i and such that either ℓi = 0 and W
(Fi∪E)⊕C
ei ∩A1 6= /0, or ℓi = 1

and W
(Fi∪E)⊕C
ei ∩A0 6= /0.

Each y∈XrD induces a k-partition D0∪·· ·∪Dk−1 of D by setting Di = {x∈D : f (x,y)= i}.
Since there are finitely many possible k-partitions of D, there is a k-partition D0∪·· ·∪Dk−1 = D

and an infinite X-computable set Y ⊆ X such that

(∀i < k)(∀x ∈ Di)(∀y ∈ Y )[ f (x,y) = i]

We furthermore assume that min(Y ) is larger than the use of the computations. Let i < k

and E ⊆ Di be the f -homogeneous set with color i such that either ℓi = 0 and W
(Fi∪E)⊕C
ei ∩A1 6= /0,

or ℓi = 1 and W
(Fi∪E)⊕C
ei ∩A0 6= /0. The condition (F0, . . . ,Fi−1,Fi ∪E,Fi+1, . . . ,Fk−1,Y ) is an

extension of c forcing Q~e by the ith side.
In the second case, there is some threshold s ∈ ω such that for every M-type ~T , there is no M-

valuation (~R,~S)> s of type ~T such that ϕ(~R,~S) holds. By compactness, it follows that for every
M-type ~T , the Π

0,X⊕C
1 class C~T of all k-partitions Z0 ∪ ·· ·∪Zk−1 = X such that for every i < k

and every finite set E ⊆ Zi which is f -homogeneous with color i, either ℓi = 0 and W
(Fi∪E)⊕C
ei ∩

Tpi
∩ (s,+∞)N = /0, or ℓi = 1 and W

(Fi∪E)⊕C
ei ∩ I ∩ (s,+∞)N = /0 for some I ∈ intQ(M(pi)) is

non-empty. Since S is a Scott set, for each M-type ~T , there is a k-partition ~Z
~T ∈ C~T such

that
⊕

~T
~Z
~T ⊕X ⊕C ∈ S .

If there is some M-type ~T and some i < k such that ℓi = 1 and Z
~T
i is infinite, then the

condition (F0, . . . ,Fk−1,Z
~T
i ) extends X and forces W Gi⊕C

ei
not to be dense. So suppose that it is

not the case. Let Y ∈S be an infinite subset of X such that for each M-type ~T , there is some i< k

such that Y ⊆ Z
~T
i . Note that by the previous assumption, ℓi = 0 for every such i. We claim that

the condition (F0, . . . ,Fk−1,Y ) forces W Gi⊕C
ei

to be finite for some i < k such that ℓi = 0. Suppose
for the sake of contradiction that there are some rationals x0, . . . ,xn−1 > s such that xpi

∈W Gi⊕C
ei

for each i < k where ℓi = 0. Since x0, . . . ,xn−1 > s, x0, . . . ,xn−1 ∈ intQ(M). Therefore, by
Lemma 14.5.2, let ~T be the unique M-type such that x j ∈ Tj for each j < n. By assumption, there

is some i < k such that Y ⊆ Z
~T
i and ℓi = 0. By definition of Z

~T
i , W Gi⊕C

ei
∩Tpi

∩ (s,+∞)N = /0,
contradicting xpi

∈W Gi⊕C
ei

. �

Using Lemma 14.5.7 and Lemma 14.5.8, define an infinite descending sequence of condi-
tions c0 = ( /0, . . . , /0,ω)≥ c1 ≥ . . . such that for each s ∈ ω

(i) |Fi,s| ≥ s for each i < k

(ii) cs+1 forces Q~e if s = 〈e0, . . . ,ek−1〉

where cs = (F0,s, . . . ,Fk−1,s,Xs). Let Gi =
⋃

s Fi,s for each i < k. The G’s are all infinite by (i) and
Gi does not compute an η → (ℵ0,η)1-solution to the A’s for some i < k by (ii). This finishes
the proof of Theorem 14.5.6. �

We are now ready to prove the main theorem.

Proof of Theorem 14.5.1. By the low basis theorem [JS72b], there is a low set P of PA degree.
By Scott [Sco62], every PA degree bounds a Scott set. Let S be a Scott set such that X ≤T P

for every X ∈ S . By Lemma 14.5.4, there is a ∆
0,P
2 (hence ∆0

2) partition A0 ∪A1 =Q such that
P is ER-fair for A0,A1. In particular, every set X ∈ S is ER-fair for A0,A1 since ER-fairness is
downward-closed under the Turing reducibility.

By Shoenfield’s limit lemma [Sho59], there is a computable function h : [Q]2 → 2 such
that for each x ∈ Q, lims h(x,s) exists and x ∈ Alims h(x,s). Note that for every infinite set D

0-homogeneous for h, D ⊆ A0, and for every dense set D 1-homogeneous for h, D ⊆ A1.
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Fix a computable RT2
<∞-instance f : [ω]2 → k. In particular, f ∈ S . By Theorem 14.5.6,

there is an infinite f -homogeneous set H such that H computes neither an infinite subset of A0,
nor a dense subset of A1. Therefore, H computes no η → (ℵ0,η)2-solution to h. �

14.6 Discussion and open questions

Both TT2
2 and η → (ℵ0,η)2 lie between the arithmetic comprehension axiom and RT2

2, but
more than that, they share a disjoint extension commitment. Let us try to explain this informal
notion with a case analysis.

Suppose we want to construct a computable RT1
2-instance f : N→ 2 which diagonalizes

against two opponents W
f

0 and W
f

1 . After some finite amount of time, each opponent W
f

i will
have outputted a finite approximation of a solution to f , that is, a finite f -homogeneous set Fi.
The two opponents share a common strategy. W

f
0 tries to build an infinite f -homogeneous set H0

for color 0, and W
f

1 tries to build an infinite f -homogeneous set H1 for color 1. It is therefore
difficult to defeat both opponents at the same time, since if from now on we set f (x) = 1, W

f
1

will succeed in extending F1 to an infinite f -homogenenous set, and if we set f (x) = 0, W
f

0 will
succeed with its dual strategy.

Consider now the same situation, where we want to construct a computable TT1
2-instance

f : 2<N → 2. After some time, the opponent W
f

0 will have outputted a finite tree S0
∼= 2<b

which is f -homogeneous for color 0, and the opponent W
f

1 will have done the same with a
finite tree S1

∼= 2<b f -homogeneous for color 1. The main difference with the RT1
2 case is

that each opponent will commit to extend each leaf of his finite tree Si into an infinite tree
isomorphic to 2<N. In particular, for each tree Si, the sets Xσ of nodes extending the leaf σ ∈ Si

are pairwise disjoint. Therefore, each opponent commits to extend its partial solution to disjoint
sets. Moreover, by asking b to be large enough, each opponent will commit to extend enough
pairwise disjoint sets so that we can choose two of them for each opponent and operate the
diagonalization without any conflict.

This combinatorial property works in the same way for η → (η)1<∞-instances. Indeed, in
this case, each opponent will commit to extend its partial solution to pairwise disjoint intervals
due to the density requirement of an η → (η)1<∞-solution. Since the combinatorial arguments of
the Erdős-Rado theorem and the tree theorem for pairs are very similar, one way wonder whether
they are equivalent in reverse mathematics.

Question 14.1 How do η → (ℵ0,η)2 and TT2
2 compare over RCA0?

The failure of Seetapun’s argument for η → (ℵ0,η)2 comes from this disjoint extension
commitment feature. In particular, there it is hard to find a forcing notion for η → (ℵ0,η)2

whose conditions are extendible.

Question 14.2 Does any of TT2
2 and η → (ℵ0,η)2 imply ACA over RCA0?

η → (η)1<∞ and TT1 have the same state of the art due to their common combinatorial flavor.
However, when looking at their statements for pairs, η → (ℵ0,η)2 and TT2

2 have a fundamental
difference: η → (ℵ0,η)2 has only a half disjoint extension commitment feature. This weaker
property prevents one from separating RT2

2 from η → (ℵ0,η)2 over RCA0 by adapting the
argument of TT2

2.

Question 14.3 Does RT2
2 imply η → (ℵ0,η)2 over RCA0?





15. Controlling iterated jumps

Effective forcing is a very powerful tool in the computational analysis of mathematical statements.
In this framework, lowness is achieved by deciding formulas during the forcing argument, while
ensuring that the whole construction remains effective. Thus, the definitional strength of the
forcing relation is very sensitive in effective forcing.

Among the hierarchies of combinatorial principles, namely, Ramsey’s theorem [CJS01;
Joc72; SS95], the rainbow Ramsey theorem [CM09; Pat15g; Wan14a], the free sets and thin
set theorems [Cho+01; Wan14b], only the hierarchy of Ramsey’s theorem is known to collapse
within the framework of reverse mathematics. The above-mentioned hierarchies satisfy the lower
bounds of Jockusch [Joc72], that is, there exists a computable instance at every level n ≥ 2 with
no Σ0

n solution. Thus, a possible strategy for proving that a hierarchy is strict consists of showing
the existence for every computable instance at level n of a lown solution.

The computable analysis of combinatorial principles often uses Mathias forcing, whose
forcing relation is known to be of higher definitional strength than the formula it forces [Cho+14].
Therefore there is a need for new forcing notions with a better-behaving forcing relation. In this
chapter, we present a new forcing argument enabling one to control iterated jumps of solutions
to Ramsey-type theorems. Therefore it can be seen as a step toward resolving the strictness
question of the combinatorial hierarchies.

15.1 Preservation of the arithmetic hierarchy

The notion of preservation of the arithmetic hierarchy has been introduced by Wang in [Wan14c],
in the context of a new analysis of principles in reverse mathematics in terms of their definitional
strength.

Definition 15.1.1 — Preservation of definitions.

1. A set Y preserves Ξ-definitions (relative to X) for Ξ among ∆0
n+1,Π

0
n,Σ

0
n where n > 0,

if every properly Ξ (relative to X) set is properly Ξ relative to Y (X ⊕Y ). Y preserves

the arithmetic hierarchy (relative to X) if Y preserves Ξ-definitions (relative to X) for
all Ξ among ∆0

n+1,Π
0
n,Σ

0
n where n > 0.

2. A Π1
2 statement P admits preservation of Ξ-definitions if for each set Z, every Z-

computable P-instance admits a solution preserving Ξ-definitions relative to Z. P

admits preservation of the arithmetic hierarchy if for each set Z, every Z-computable
P-instance admits a solution preserving the arithmetic hierarchy relative to Z.

The preservation of the arithmetic hierarchy seems closely related to the problem of con-
trolling iterated jumps of solutions. Indeed, a proof of such a preservation usually consists of
noticing that the forcing relation has the same definitional strength as the formula it proves and
then derive a diagonalization. See Lemma 3.14 in [Wan14c] for a case-in-point. Wang proved
in [Wan14c] that weak König’s lemma, the rainbow Ramsey theorem for pairs and the atomic
model theorem admit preservation of the arithmetic hierarchy. He conjectured that this is also
the case for cohesiveness and the Erdős Moser theorem. We prove the two conjectures.
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15.2 An effective forcing for cohesiveness

In this section, we design a forcing notion enabling us to prove the following theorem.

Theorem 15.2.1 COH admits preservation of the arithmetic hierarchy.

Before proving Theorem 15.2.1, we state an immediate corollary.

Corollary 15.2.2 There exists a cohesive set preserving the arithmetic hierarchy.

Proof. Jockusch [JS72a] proved that every PA degree computes a sequence of sets containing,
among others, all the computable sets. Wang proved in [Wan14c] that WKL preserves the
arithmetic hierarchy. Therefore there exists a uniform sequence of sets ~R containing all the
computable sets and preserving the arithmetic hierarchy. By Theorem 15.2.1 relativized to ~R,
there exists an infinite ~R-cohesive set C preserving the arithmetic hierarchy relative to ~R. In
particular C is r-cohesive and preserves the arithmetic hierarchy. By [JS93], the degrees of
r-cohesive and cohesive sets coincide. Therefore C computes a cohesive set which preserves the
arithmetic hierarchy. �

Given a uniformly computable sequence of sets R0,R1, . . . , the construction of an ~R-cohesive
set is usually done with computable Mathias forcing, that is, using conditions (F,X) in which X

is computable. The construction starts with ( /0,ω) and interleaves two kinds of steps. Given
some condition (F,X),
(S1) the extension step consists in taking an element x from X and adding it to F , therefore

forming the extension (F ∪{x},X r [0,x]);
(S2) the cohesiveness step consists in deciding which one of X ∩Ri and X ∩Ri is infinite, and

taking the chosen one as the new reservoir.
As presented in Section 4.4, computable Mathias forcing has a forcing relation with good

definitional properties to decide the first jump, but not iterated jumps. Indeed, given a computable
Mathias condition c= (F,X) and a Σ0

1 formula (∃x)ϕ(G,x), one can /0′-effectively decide whether
there is an extension d forcing (∃x)ϕ(G,x) by asking the following question:

Is there an extension d = (E,Y )≤ c and some n ∈ ω such that ϕ(E,n) holds?

If there is such an extension, then we can choose it to be a finite extension, that is, such that Y =∗ X .
Therefore, the question is Σ

0,X
1 . Consider now a Π0

2 formula (∀x)(∃y)ϕ(G,x,y). The question
becomes

For every extension d ≤ c and every m ∈ ω , is there some extension e = (E,Y )≤ d

and some n ∈ ω such that ϕ(E,m,n) holds?

In this case, the extension d can be arbitrary and therefore the question cannot be presented in a
Π0

2 way. In particular, the formula “Y is an infinite subset of X” is definitionally complex. In
general, deciding iterated jumps of a generic set requires to be able to talk about the future of a
given condition, and in particular to describe by simple means the formula “d is a valid condition”
and the formula “d is an extension of c”.

Thankfully, in the case of cohesiveness, we do not need the full generality of the computable
Mathias forcing. As noted in Section 10.4, the reservoirs have a very special shape. Indeed,
after the first application of stage (S2), the set X is, up to finite changes, of the form ω ∩R0 or
ω ∩R0. After the second application of (S2), it is in one of the following forms: ω ∩R0 ∩R1,
ω ∩R0 ∩R1, ω ∩R0 ∩R1, ω ∩R0 ∩R1, and so on. More generally, after n applications of (S2), a
condition c = (F,X) is characterized by a pair (F,σ) where σ is a string of length n representing
the choices made during (S2).
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Even within this restricted partial order, the decision of the Π0
2 formula remains too com-

plicated sinces it requires to decide whether Rσ is infinite. However, notice that the σ ’s such
that Rσ is infinite are exactly the initial segments of the Π

0, /0′

1 class C (~R) defined in Section 7.1.
We can therefore use a compactness argument at the second level to decrease the definitional
strength of the forcing relation, as did Wang [Wan14c] for weak König’s lemma.

15.2.1 The forcing notion

In order to simplify our presentation, let us first introduce some useful notation.

Notation 15.1. Given two finite sets E,F and σ ∈ 2<ω , we write E ≤σ F for the formula

F ⊆ G ⊆ F ∪ (Rσ ∩ (max(F),+∞)), where Rσ is defined in Section 7.1. A tree T has stem
σ ∈ 2<ω if every node of T is comparable with σ . We write T [σ ] for {τ ∈ T : τ � σ ∨ τ � σ}.

We let T denote the collection of all the infinite /0′-primitive recursive trees T such that [T ]⊆
C (~R). By /0′-primitive recursive, we mean the class of functions obtained by adding the charac-
teristic function of /0′ to the basic primitive recursive functions, and closing under the standard
primitive recursive operations. Note that T is a computable set. We are now ready to defined our
partial order.

Definition 15.2.1 Let P be the partial order whose conditions are tuples (F,σ ,T ) where F ⊆
ω is a finite set, σ ∈ 2<ω , and T ∈ T with stem σ . A condition d = (E,τ,S) extends

c = (F,σ ,T ) (written d ≤ c) if E ≤σ F , τ � σ and S ⊆ T .

Given a condition c = (F,σ ,T ), the string σ imposes a finite restriction on the possible
extensions of the set F . The condition c intuitively denotes the Mathias condition (F,Rσ ∩
(max(F),+∞)) with some additional constraints on the extensions of σ represented by the
tree T . Accordingly, set G satisfies (F,σ ,T ) if it satisfies the induced Mathias condition, that is,
if F ⊆ G ⊆ F ∪ (Rσ ∩ (max(F),+∞)). We let Ext(c) be the collection of all the extensions of c.

Note that although we did not explicitely require Rσ to be infinite, this property holds for
every condition (F,σ ,T ) ∈ P. Indeed, since [T ]⊆ C (~R), then Rτ is infinite for every extensible
node τ ∈ T . Since σ is a stem of T , it is extensible and therefore Rσ is infinite.

15.2.2 Preconditions and forcing Σ0
1 (Π0

1) formulas

When forcing complex formulas, we need to be able to consider all possible extensions of some
condition c. Checking that some d = (E,τ,S) is a valid condition extending c requires to decide
whether the tree /0′-p.r. S is infinite, which is a Π0

2 question. At some point, we will need to
decide a Σ0

1 formula without having enough computational power to check that the tree part
is infinite (see clause (ii) of Definition 15.2.4). As the tree part of a condition is not accurate
for such formulas, we may define the corresponding forcing relation over a weaker notion of
condition where the tree is not anymore required to be infinite.

Definition 15.2.2 — Precondition. A precondition is a condition (F,σ ,T ) without the
assumption that T is infinite.

In particular, Rσ may be a finite set. The notion of condition extension can be generalized
to the preconditions. The set of all preconditions is computable, contrary to the set P. Given
a precondition c, we denote by Ext1(c) the set of all preconditions (E,τ,S) extending c such
that τ = σ and T = S. Here, T = S in a strong sense, that is, the Turing indices of T and S are
the same. This fact is used in clause a) of Lemma 15.2.9. We let A denote the collection of all
the finite sets of integers. The set A represents the set of finite approximations of the generic
set G. We also fix a uniformly computable enumeration A0 ⊆ A1 ⊆ . . . of finite subsets of A
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such that
⋃

sAs = A. We denote by Apx(c) the set {E ∈ A : (E,σ ,T ) ∈ Ext1(c)}. In particular,
Apx(c) is collection of all finite sets E satisfying c, that is, Apx(c) = {E ∈ A : E ≤σ F}. Last,
we let Apxs(c) = Apx(c)∩As. We start by proving a few trivial statements.

Lemma 15.2.3 Fix a precondition c = (F,σ ,T ).
1) If c is a condition then Ext1(c)⊆ Ext(c).
2) If c is a condition then Apx(c) = {E : (E,τ,S) ∈ Ext(c)}.
3) If d is a precondition extending c then Apx(d)⊆ Apx(c) and Apxs(d)⊆ Apxs(c).

Proof.

1) By definition, if c is a condition, then T is infinite. If d ∈ Ext1(c) then d = (E,σ ,T ) for
some E ∈ Apx(c). As d is a precondition and T is infinite, d is a condition.

2) By definition, Apx(c) = {E : (E,σ ,T ) ∈ Ext1(c)} ⊆ {E : (E,τ,S) ∈ Ext(c)}. In the other
direction, fix an extension (E,τ,S) ∈ Ext(c). By definition of an extension, E ≤τ F , so
E ≤σ F . Therefore (E,σ ,T ) ∈ Ext1(c) and by definition of Apx(c), E ∈ Apx(c).

3) Fix some (E,τ,S) ∈ Ext1(d). As d extends c, τ � σ . By definition of an extension,
E ≤τ F , so E ≤σ F , hence (E,σ ,T ) ∈ Ext1(c). Therefore Apx(d) = {E : (E,τ,S) ∈
Ext1(d)}⊆ {E : (E,σ ,T )∈Ext1(c)}=Apx(c). For any s∈ω , Apxs(d)=Apx(d)∩As ⊆
Apx(c)∩As = Apxs(c).

�

Note that although the extension relation has been generalized to preconditions, Ext(c) is
defined to be the set of all the conditions extending c. In particular, if c is a precondition which is
not a condition, Ext(c) = /0, whereas at least c ∈ Ext1(c). This is why clause 1 of Lemma 15.2.3
gives the useful information that whenever c is a true condition, so are the members of Ext1(c).

Definition 15.2.3 Fix a precondition c = (F,σ ,T ) and a Σ0
0 formula ϕ(G,x).

(i) c 
 (∃x)ϕ(G,x) iff ϕ(F,w) holds for some w ∈ ω

(ii) c 
 (∀x)ϕ(G,x) iff ϕ(E,w) holds for every w ∈ ω and every set E ∈ Apx(c).

As explained, σ restricts the possible extensions of the set F (see clause 3 of Lemma 15.2.3),
so this forcing notion is stable by condition extension. The tree T itself restricts the possible
extensions of σ , but has no effect of the decision of a Σ0

1 formula (Lemma 15.2.4).
The following trivial lemma expresses the fact that the tree part of a precondition has no

effect in the forcing relation for a Σ0
1 or Π0

1 formula.

Lemma 15.2.4 Fix two preconditions c = (F,σ ,T ) and d = (F,σ ,S), and some Σ0
1 or Π0

1
formula ϕ(G).

c 
 ϕ(G) if and only if d 
 ϕ(G)

Proof. Simply notice that the tree part of the condition does not occur in the definition of the
forcing relation, and that Apx(c) = Apx(d). �

As one may expect, the forcing relation for a precondition is closed under extension.

Lemma 15.2.5 Fix a precondition c and a Σ0
1 or Π0

1 formula ϕ(G). If c 
 ϕ(G) then for every
precondition d ≤ c, d 
 ϕ(G).

Proof. Fix a precondition c = (F,σ ,T ) such that c 
 ϕ(G) and an extension d = (E,τ,S)≤ c.
• If ϕ ∈ Σ0

1 then ϕ(G) can be expressed as (∃x)ψ(G,x) where ψ ∈ Σ0
0. As c 
 ϕ(G), then by

clause (i) of Definition 15.2.3, there exists a w ∈ ω such that ψ(F,w) holds. By definition
of d ≤ c, E ≤σ F , so ψ(E,w) holds, hence d 
 ϕ(G).
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• If ϕ ∈ Π0
1 then ϕ(G) can be expressed as (∀x)ψ(G,x) where ψ ∈ Σ0

0. As c 
 ϕ(G), then
by clause (ii) of Definition 15.2.3, for every w ∈ ω and every H ∈ Apx(c), ϕ(H,w) holds.
By clause 3 of Lemma 15.2.3, Apx(d)⊆ Apx(c) so d 
 ϕ(G).

�

15.2.3 Forcing higher formulas

We are now able to define the forcing relation for any arithmetic formula. The forcing relation
for arbitrary arithmetic formulas is induced by the forcing relation for Σ0

1 formulas. However,
the definitional strength of the resulting relation is too high with respect to the formula it forces.
We therefore design a custom relation with better definitional properties, and which still preserve
the expected properties of a forcing relation, that is, the density of the set of conditions forcing a
formula or its negation, and the preservation of the forced formulas under condition extension.

Definition 15.2.4 Let c = (F,σ ,T ) be a condition and ϕ(G) be an arithmetic formula.
(i) If ϕ(G) = (∃x)ψ(G,x) where ψ ∈ Π0

n+1 then c 
 ϕ(G) iff there is a w < |σ | such
that c 
 ψ(G,w)

(ii) If ϕ(G) = (∀x)ψ(G,x) where ψ ∈ Σ0
1 then c 
 ϕ(G) iff for every τ ∈ T , every E ∈

Apx|τ|(c) and every w < |τ|, (E,τ,T [τ]) 6
 ¬ψ(G,w)

(iii) If ϕ(G) = ¬ψ(G,x) where ψ ∈ Σ0
n+3 then c 
 ϕ(G) iff d 6
 ψ(G) for every d ≤ c.

Note that in clause (ii) of Definition 15.2.4, there may be some τ ∈ T such that T [τ] is finite,
hence (E,τ,T [τ]) is not necessarily a condition. This is where we use the generalization of
forcing of Σ0

1 and Π0
1 formulas to preconditions. We now prove that this relation enjoys the main

properties of a forcing relation.

Lemma 15.2.6 Fix a condition c and an arithmetic formula ϕ(G). If c 
 ϕ(G) then for every
condition d ≤ c, d 
 ϕ(G).

Proof. We prove by induction over the complexity of the formula ϕ(G) that for every condition
c, if c 
 ϕ(G) then for every condition d ≤ c, d 
 ϕ(G). Fix a condition c = (F,σ ,T ) such that
c 
 ϕ(G) and an extension d = (E,τ,S).

• If ϕ ∈ Σ0
1 ∪Π0

1 then it follows from Lemma 15.2.5.
• If ϕ ∈ Σ0

n+2 then ϕ(G) can be expressed as (∃x)ψ(G,x) where ψ ∈ Π0
n+1. By clause (i) of

Definition 15.2.4, there exists a w ∈ ω such that c 
 ψ(G,w). By induction hypothesis,
d 
 ψ(G,w) so by clause (i) of Definition 15.2.4, d 
 ϕ(G).

• If ϕ ∈ Π0
2 then ϕ(G) can be expressed as (∀x)ψ(G,x) where ψ ∈ Σ0

1. By clause (ii) of
Definition 15.2.4, for every ρ ∈ T , every w < |ρ|, and every H ∈ Apx|ρ|(c), (H,ρ,T [ρ]) 6

¬ψ(G,w). As S ⊆ T and Apx(d) ⊆ Apx(c), for every ρ ∈ S, every w < |ρ|, and every
H ∈ Apx|ρ|(d), (H,ρ,T [ρ]) 6
 ¬ψ(G,w). By Lemma 15.2.4, (H,ρ,S[ρ]) 6
 ¬ψ(G,w)
hence by clause (ii) of Definition 15.2.4, d 
 ϕ(G).

• If ϕ ∈ Π0
n+3 then ϕ(G) can be expressed as ¬ψ(G) where ψ ∈ Σ0

n+3. By clause (iii)
of Definition 15.2.4, for every e ∈ Ext(c), e 6
 ψ(G). As Ext(d) ⊆ Ext(c), for every
e ∈ Ext(d), e 6
 ψ(G), so by clause (iii) of Definition 15.2.4, d 
 ϕ(G).

�

Lemma 15.2.7 For every arithmetic formula ϕ , the following set is dense

{c ∈ P : c 
 ϕ(G) or c 
 ¬ϕ(G)}

Proof. We prove by induction over n > 0 that if ϕ is a Σ0
n (Π0

n) formula then the following set is
dense

{c ∈ P : c 
 ϕ(G) or c 
 ¬ϕ(G)}
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It suffices to prove it for the case where ϕ is a Σ0
n formula, as the case where ϕ is a Π0

n formula
is symmetric. Fix a condition c = (F,σ ,T ).

• In case n = 1, the formula ϕ is of the form (∃x)ψ(G,x) where ψ ∈ Σ0
0. Suppose there exist

a w ∈ ω and a set E ∈ Apx(c) such that ψ(E,w) holds. The precondition d = (E,σ ,T )
is a condition extending c by clause 1 of Lemma 15.2.3 and by definition of Apx(c).
Moreover d 
 (∃x)ψ(G,x) by clause (i) of Definition 15.2.3 hence d 
 ϕ(G). Suppose
now that for every w ∈ ω and every E ∈ Apx(c), ψ(E,w) does not hold. By clause (ii) of
Definition 15.2.3, c 
 (∀x)¬ψ(G,x), hence c 
 ¬ϕ(G).

• In case n = 2, the formula ϕ is of the form (∃x)ψ(G,x) where ψ ∈ Π0
1. Let

S = {τ ∈ T : (∀w < |τ|)(∀E ∈ Apx|τ|(c))(E,τ,T
[τ]) 6
 ψ(G,w)}

The set S is obviously /0′-p.r. We prove that it is a subtree of T . Suppose that τ ∈ S

and ρ � τ . Fix a w < |ρ| and E ∈ Apx|ρ|(c). In particular w < |τ| and E ∈ Apx|τ|(c) so

(E,τ,T [τ]) 6
 ψ(G,w). Note that (E,τ,T [τ]) is a precondition extending (E,ρ,T [ρ]), so by
the contrapositive of Lemma 15.2.5, (E,ρ,T [ρ]) 6
 ψ(G,w). Therefore ρ ∈ S. Hence S is
a tree, and as S ⊆ T , it is a subtree of T .
If S is infinite, then d = (F,σ ,S) is an extension of c such that for every τ ∈ S, every
w < |τ| and every E ∈ Apx|τ|(c), (E,τ,T

[τ]) 6
 ψ(G,w). By Lemma 15.2.4, for every E ∈

Apx|τ|(c), (E,τ,S
[τ]) 6
 ψ(G,w) and by clause 3 of Lemma 15.2.3, Apx|τ|(d)⊆ Apx|τ|(c).

Therefore, by clause (ii) of Definition 15.2.4, d 
 (∀x)¬ψ(G,x) so d 
 ¬ϕ(G). If S is
finite, then pick some τ ∈ T rS such that T [τ] is infinite. By choice of τ ∈ T rS, there
exist a w < |τ| and an E ∈ Apx|τ|(c) such that (E,τ,T [τ]) 
 ψ(G,w). d = (E,τ,T [τ]) is a
valid condition extending c and by clause (i) of Definition 15.2.4 d 
 ϕ(G).

• In case n > 2, density follows from clause (iii) of Definition 15.2.4.
�

Any sufficiently generic filter F induces a unique generic real G defined by

G =
⋃

{F ∈ A : (F,σ ,T ) ∈ F}

The following lemma informally asserts that the forcing relation is sound and complete. Sound
because whenever it forces a property, then this property actually holds over the generic real G.
The forcing is also complete in that every property which holds over G is forced at some point
whenever the filter is sufficiently generic.

Lemma 15.2.8 Suppose that F is a sufficiently generic filter and let G be the corresponding
generic real. Then for each arithmetic formula ϕ(G), ϕ(G) holds iff c 
 ϕ(G) for some c ∈ F .

Proof. We prove by induction over the complexity of the arithmetic formula ϕ(G) that ϕ(G)
holds iff c 
 ϕ(G) for some c ∈ F . Note that thanks to Lemma 15.2.7, it suffices to prove
that if c 
 ϕ(G) for some c ∈ F then ϕ(G) holds. Indeed, conversely if ϕ(G) holds, then by
genericity of G either c 
 ϕ(G) or c 
 ¬ϕ(G) for some c ∈ F , but if c 
 ¬ϕ(G) then ¬ϕ(G)
holds, contradicting the hypothesis. So c 
 ϕ(G).

We proceed by case analysis on the formula ϕ . Note that in the above argument, the converse
of the Σ case is proved assuming the Π case. However, in our proof, we use the converse of
the Σ0

n+3 case to prove the Π0
n+3 case. We need therefore prove to the converse of the Σ0

n+3 case
without Lemma 15.2.7. Fix a condition c = (F,σ ,T ) ∈ F such that c 
 ϕ(G).

• If ϕ ∈ Σ0
1 then ϕ(G) can be expressed as (∃x)ψ(G,x) where ψ ∈ Σ0

0. By clause (i) of
Definition 15.2.3, there exists a w ∈ ω such that ψ(F,w) holds. As F ⊆ G and GrF ⊆
(max(F),+∞), then by continuity ψ(G,w) holds, hence ϕ(G) holds.
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• If ϕ ∈ Π0
1 then ϕ(G) can be expressed as (∀x)ψ(G,x) where ψ ∈ Σ0

0. By clause (ii) of
Definition 15.2.3, for every w ∈ ω and every E ∈ Apx(c), ψ(E,w) holds. As {E ⊂ f in G :
E ⊇ F} ⊆ Apx(c), then for every w ∈ ω , ψ(G,w) holds, so ϕ(G) holds.

• If ϕ ∈ Σ0
n+2 then ϕ(G) can be expressed as (∃x)ψ(G,x) where ψ ∈ Π0

n+1. By clause (i) of
Definition 15.2.4, there exists a w ∈ ω such that c 
 ψ(G,w). By induction hypothesis,
ψ(G,w) holds, hence ϕ(G) holds.
Conversely, suppose that ϕ(G) holds. Then there exists a w ∈ ω such that ψ(G,w)
holds, so by induction hypothesis c 
 ψ(G,w) for some c ∈ F , so by clause (i) of
Definition 15.2.4, c 
 ϕ(G).

• If ϕ ∈ Π0
2 then ϕ(G) can be expressed as (∀x)ψ(G,x) where ψ ∈ Σ0

1. By clause (ii) of
Definition 15.2.4, for every τ ∈ T , every w < |τ|, and every E ∈ Apx|τ|(c), (E,τ,T

[τ]) 6

¬ψ(G,w). Suppose by way of contradiction that ψ(G,w) does not hold for some w ∈
ω . Then by induction hypothesis, there exists a d ∈ F such that d 
 ¬ψ(G,w). Let
e = (E,τ,S) ∈ F be such that e 
 ¬ψ(G,w), |τ| > w and e extends both c and d. The
condition e exists by Lemma 15.2.5. We can furthermore require that E ∈ Apx|τ|(c), so
e 6
 ¬ψ(G,w) and e 
 ¬ψ(G,w). Contradiction. Hence for every w ∈ ω , ψ(G,w) holds,
so ϕ(G) holds.

• If ϕ ∈ Π0
n+3 then ϕ(G) can be expressed as ¬ψ(G) where ψ ∈ Σ0

n+3. By clause (iii) of
Definition 15.2.4, for every d ∈ Ext(c), d 6
 ψ(G). By Lemma 15.2.6, d 6
 ψ(G) for
every d ∈ F , and by a previous case, ψ(G) does not hold, so ϕ(G) holds.

�

We now prove that the forcing relation enjoys the desired definitional properties, that is, the
complexity of the forcing relation is the same as the complexity of the formula it forces. We start
by analysing the complexity of some components of this notion of forcing.

Lemma 15.2.9

a) For every precondition c, Apx(c) and Ext1(c) are ∆0
1 uniformly in c.

b) For every condition c, Ext(c) is Π0
2 uniformly in c.

Proof.

a) Fix a precondition c = (F,σ ,T ). A set E ∈ Apx(c) iff the following ∆0
1 predicate holds:

(F ⊆ E)∧ (∀x ∈ E rF)[x > max(F)∧ x ∈ Rσ ]

Moreover, (E,τ,S) ∈ Ext1(c) iff the ∆0
1 predicate E ∈ Apx(c)∧ τ = σ ∧S = T holds. As

already mentioned, the equality S = T is translated into “the indices of S and T coincide”
which is a Σ0

0 statement.
b) Fix a condition c = (F,σ ,T ). By clause 2) of Lemma 15.2.3, (E,τ,S) ∈ Ext(c) iff the

following Π0
2 formula holds

E ∈ Apx(c)∧σ � τ

∧(∀ρ ∈ S)(∀ξ )[ξ � ρ → ξ ∈ S] (S is a tree)
∧(∀n)(∃ρ ∈ 2n)ρ ∈ S) (S is infinite)
∧(∀ρ ∈ S)(σ ≺ ρ ∨ρ � σ) (S has stem σ )
∧(∀ρ ∈ S)(ρ ∈ T ) (S is a subset of T )

�

Lemma 15.2.10 Fix an arithmetic formula ϕ(G).
a) Given a precondition c, if ϕ(G) is a Σ0

1 (Π0
1) formula then so is the predicate c 
 ϕ(G).

b) Given a condition c, if ϕ(G) is a Σ0
n+2 (Π0

n+2) formula then so is the predicate c 
 ϕ(G).
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Proof. We prove our lemma by induction over the complexity of the formula ϕ(G). Fix a
(pre)condition c = (F,σ ,T ).

• If ϕ(G) ∈ Σ0
1 then it can be expressed as (∃x)ψ(G,x) where ψ ∈ Σ0

0. By clause (i) of
Definition 15.2.3, c 
 ϕ(G) if and only if the formula (∃w ∈ ω)ψ(F,w) holds. This is a
Σ0

1 predicate.
• If ϕ(G) ∈ Π0

1 then it can be expressed as (∀x)ψ(G,x) where ψ ∈ Σ0
0. By clause (ii) of

Definition 15.2.3, c 
 ϕ(G) if and only if the formula (∀w ∈ ω)(∀E ∈ Apx(c))ψ(E,w)
holds. By clause a) of Lemma 15.2.9, this is a Π0

1 predicate.
• If ϕ(G) ∈ Σ0

n+2 then it can be expressed as (∃x)ψ(G,x) where ψ ∈ Π0
n+1. By clause (i) of

Definition 15.2.4, c 
 ϕ(G) if and only if the formula (∃w < |σ |)c 
 ψ(G,w) holds. This
is a Σ0

n+2 predicate by induction hypothesis.
• If ϕ(G) ∈ Π0

2 then it can be expressed as (∀x)ψ(G,x) where ψ ∈ Σ0
1. By clause (ii)

of Definition 15.2.4, c 
 ϕ(G) if and only if the formula (∀τ ∈ T )(∀w < |τ|)(∀E ∈
Apx|τ|(c))(E,τ,T

[τ]) 6
¬ψ(G,w) holds. By induction hypothesis, (E,τ,T [τ]) 6
¬ψ(G,w)

is a Σ0
1 predicate, hence by clause a) of Lemma 15.2.9, c 
 ϕ(G) is a Π0

2 predicate.
• If ϕ(G) ∈ Π0

n+3 then it can be expressed as ¬ψ(G) where ψ ∈ Σ0
n+3. By clause (iii)

of Definition 15.2.4, c 
 ϕ(G) if and only if the formula (∀d)(d 6∈ Ext(c)∨ d 6
 ψ(G))
holds. By induction hypothesis, d 6
 ψ(G) is a Π0

n+3 predicate. Hence by clause b) of
Lemma 15.2.9, c 
 ϕ(G) is a Π0

n+3 predicate.
�

15.2.4 Preserving the arithmetic hierarchy

The following lemma asserts that every sufficiently generic real for this notion of forcing
preserves the arithmetic hierarchy. The argument deeply relies on the fact that this notion of
forcing admits a forcing relation with good definitional properties.

Lemma 15.2.11 If A 6∈ Σ0
n+1 and ϕ(G,x) is Σ0

n+1, then the set of c ∈ P satisfying the following
property is dense:

[(∃w ∈ A)c 
 ¬ϕ(G,w)]∨ [(∃w 6∈ A)c 
 ϕ(G,w)]

Proof. Fix a condition c = (F,σ ,T ).
• In case n = 0, ϕ(G,w) can be expressed as (∃x)ψ(G,w,x) where ψ ∈ Σ0

0. Let U = {w ∈
ω : (∃E ∈ Apx(c))(∃u)ψ(E,w,u)}. By clause a) of Lemma 15.2.9, U ∈ Σ0

1, thus U 6= A.
Fix w ∈ U∆A. If w ∈ U rA then by definition of U , there exist an E ∈ Apx(c) and a
u ∈ ω such that ψ(E,w,u) holds. By definition of Apx(c) and clause 1) of Lemma 15.2.3,
d = (E,σ ,T ) is a condition extending c. By clause (i) of Definition 15.2.3, d 
 ϕ(G,w).
If w ∈ ArU , then for every E ∈ Apx(c) and every u ∈ ω , ψ(E,w,u) does not hold, so by
clause (ii) of Definition 15.2.3, c 
 (∀x)¬ψ(G,w,x), hence c 
 ¬ϕ(G,w).

• In case n= 1, ϕ(G,w) can be expressed as (∃x)ψ(G,w,x) where ψ ∈Π0
1. Let U = {w∈ω :

(∃s)(∀τ ∈ 2s ∩T )(∃u < s)(∃E ∈ Apxs(c))(E,τ,T
[τ]) 
 ψ(G,w,u)}. By Lemma 15.2.10

and clause a) of Lemma 15.2.9, U ∈ Σ0
2, thus U 6= A. Fix w ∈U∆A. If w ∈U rA then by

definition of U , there exist an s ∈ ω , a τ ∈ 2s ∩T , a u < s and an E ∈ Apxs(c) such that
T [τ] is infinite and (E,τ,T [τ]) 
 ψ(G,w,u). Thus d = (E,τ,T [τ]) is a condition extending
c and by clause (i) of Definition 15.2.4, d 
 ϕ(G,w). If w ∈ ArU , then let S = {τ ∈ T :
(∀u < |τ|)(∀E ∈ Apx|τ|(c)(E,τ,T

[τ]) 6
 ψ(G,w,u)}. As proven in Lemma 15.2.7, S is a
/0′-p.r. subtree of T and by w 6∈U , S is infinite. Thus d = (F,σ ,S) is a condition extending
c. By clause 3) of Lemma 15.2.3, Apx(d)⊆ Apx(c), so for every τ ∈ S, every u < |τ|, and
every E ∈ Apx|τ|(d), (E,τ,T

[τ]) 6
 ψ(G,w,u). By Lemma 15.2.4, (E,τ,S[τ]) 6
 ψ(G,w,u),
so by clause (ii) of Definition 15.2.4, d 
 (∀x)¬ψ(G,w,u) hence d 
 ¬ϕ(G,w).
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• In case n> 1, let U = {w∈ω : (∃d ∈ Ext(c))d 
 ϕ(G,w)}. By clause b) of Lemma 15.2.9
and Lemma 15.2.10, U ∈ Σ0

n, thus U 6= A. Fix w ∈U∆A. If w ∈U rA then by definition
of U , there exists a condition d extending c such that d 
 ϕ(G,w). If w ∈ ArU , then for
every d ∈ Ext(c)d 6
 ϕ(G,w) so by clause (iii) of Definition 15.2.4, c 
 ¬ϕ(G,w).

�

We are now ready to prove Theorem 15.2.1.

Proof of Theorem 15.2.1. Let C be a set and R0,R1, . . . be a uniformly C-computable sequence
of sets. Let T0 be a C′-primitive recursive tree such that [T0] ⊆ C (~R). Let F be a sufficiently
generic filter containing c0 = ( /0,ε,T0). and let G be the corresponding generic real. By genericity,
the set G is an infinite ~R-cohesive set. By Lemma 15.2.11 and Lemma 15.2.10, G preserves
non-Σ0

n+1 definitions relative to C for every n ∈ ω . Therefore, by Proposition 2.2 of [Wan14c],
G preserves the arithmetic hierarchy relative to C. �

15.3 An effective forcing for the Erdős-Moser theorem

We now extend the previous result to the Erdős-Moser theorem. This is an extension in that the
stable thin set theorem for pairs does not admit preservation of the arithmetic hierarchy (see
Wang [Wan14c]). Therefore, by Theorem 10.1.1, if the Erdős-Moser admits preservation of the
arithmetic hierarchy, then so does cohesiveness.

Theorem 15.3.1 EM admits preservation of the arithmetic hierarchy.

Again, the core of the proof consists of finding a good forcing notion whose generics will
preserve the arithmetic hierarchy. For the sake of simplicity, we will restrict ourselves to stable
tournaments even though it is clear that the forcing notion can be adapted to arbitrary tournaments.
The proof of Theorem 15.3.1 will be obtained by composing the proof that cohesiveness and
the stable Erdős-Moser theorem admit preservation of the arithmetic hierarchy. We first need to
introduce some terminology and in particular the notion of partition tree.

15.3.1 Partition trees

Recall that given some k ∈ ω , k<ω is the set of all strings σ such that σ(i)< k for each i < |σ |.
Given a string σ ∈ k<ω , we denote by setν(σ) the set {x < |σ | : σ(x) = ν} where ν < k. The
notion can be extended to sequences P ∈ kω where setν(P) = {x ∈ ω : P(x) = ν}.

Definition 15.3.1 — Partition tree. A k-partition tree of [t,+∞) for some k, t ∈ ω is a tuple
(k, t,T ) such that T is a subtree of k<ω . A partition tree is a k-partition tree of [t,+∞) for
some k, t ∈ ω .

To simplify our notation, we may use the same letter T to denote both a partition tree (k, t,T )
and the actual tree T ⊆ k<ω . We then write dom(T ) for [t,+∞) and parts(T ) for k. Given a p.r.
partition tree T , we write #T for its Turing index, and may refer to it as its code.

Definition 15.3.2 — Refinement. Given a function f : ℓ→ k, a string σ ∈ ℓ<ω f -refines a
string τ ∈ k<ω if |σ |= |τ| and for every ν < ℓ, setν(σ)⊆ set f (ν)(τ). A p.r. ℓ-partition tree
S of [u,+∞) f -refines a p.r. k-partition tree T of [t,+∞) (written S ≤ f T ) if #S ≥ #T , ℓ≥ k,
u ≥ t and for every σ ∈ S, σ f -refines some τ ∈ T .

The collection of partition trees is equipped with a partial order ≤ such that (ℓ,u,S)≤ (k, t,T )
if there exists a function f : ℓ→ k such that S ≤ f T . Given a k-partition tree of [t,+∞) T , we
say that part ν of T is acceptable if there exists a path P through T such that setν(P) is infinite.
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Moreover, we say that part ν of T is empty if (∀σ ∈ T )[dom(T )∩ setν(σ) = /0]. Note that each
partition tree has at least one acceptable part since for every path P through T , setν(P) is infinite
for some ν < k. It can also be the case that part ν of T is non-empty, while for every path P

through T , setν(P)∩dom(T ) = /0. However, in this case, we can choose the infinite computable
subtree S = {σ ∈ T : setν(σ)∩dom(T ) = /0} of T which has the same collection of infinite paths
and such that part ν of S is empty.

Given a k-partition tree T , a finite set F ⊆ ω and a part ν < k, define

T [ν ,F ] = {σ ∈ T : F ⊆ setν(σ)∨|σ |< max(F)}

The set T [ν ,F ] is a (possibly finite) subtree of T which id-refines T and such that F ⊆ setν(P) for
every path P through T [ν ,F ].

We denote by U the set of all ordered pairs (ν ,T ) such that T is an infinite, primitive
recursive k-partition tree of [t,+∞) for some t,k ∈ ω and ν < k. The set U is equipped with a
partial ordering ≤ such that (µ,S)≤ (ν ,T ) if S f -refines T and f (µ) = ν . In this case we say
that part µ of S refines part ν of T . Note that the domain of U and the relation ≤ are co-c.e. We
denote by U[T ] the set of all (ν ,S)≤ (µ,T ) for some (µ,T ) ∈ U.

Definition 15.3.3 — Promise for a partition tree. Fix a p.r. k-partition tree of [t,+∞) T . A
class C ⊆ U[T ] is a promise for T if

a) C is upward-closed under the ≤ relation restricted to U[T ]
b) for every infinite p.r. partition tree S ≤ T , (µ,S) ∈ C for some non-empty part µ of S.

A promise for T can be seen as a two-dimensional tree with at first level the acyclic digraph
of refinement of partition trees. Given an infinite path in this digraph, the parts of the members
of this path form an infinite, finitely branching tree.

Lemma 15.3.2 Let T and S be p.r. partition trees such that S ≤ f T for some function f :
parts(S)→ parts(T ) and let C be a /0′-p.r. promise for T .

a) The predicate “T is an infinite k-partition tree of [t,+∞)” is Π0
1 uniformly in T , k and t.

b) The relations “S f -refines T ” and “part ν of S f -refines part µ of T ” are Π0
1 uniformly in

S, T and f .
c) The predicate “C is a promise for T ” is Π0

2 uniformly in an index for C and T .

Proof.

a) T is an infinite k-partition tree of [t,+∞) if and only if the Π0
1 formula [(∀σ ∈ T )(∀τ �

σ)τ ∈ T ∩ k<∞]∧ [(∀n)(∃τ ∈ kn)τ ∈ T ] holds.
b) Suppose that T is a k-partition tree of [t,+∞) and S is an ℓ-partition tree of [u,+∞). S

f -refines T if and only if the following Π0
1 formula holds:

u ≥ t ∧ ℓ≥ k∧ [(∀σ ∈ S)(∃τ ∈ k|σ |∩T )(∀ν < u)setν(σ)⊆ set f (ν)(τ)]

Part ν of S f -refines part µ of T if and only if µ = f (ν) and S f -refines T .
c) Given k, t ∈ ω , let PartTree(k, t) denote the Π0

1 set of all the infinite p.r. k-partition trees
of [t,+∞). Given a k-partition tree S and a part ν of S, let Empty(S,ν) denote the Π0

1
formula “part ν of S is empty”, that is the formula (∀σ ∈ S)setν(σ)∩dom(S) = /0.
C is a promise for T if and only if the following Π0

2 formula holds:

(∀ℓ,u)(∀S ∈ PartTree(ℓ,u))[S ≤ T → (∃ν < ℓ)¬Empty(S,ν)∧ (ν ,S) ∈ C )]
∧(∀ℓ′,u′)(∀V ∈ PartTree(ℓ′,u′))(∀g : ℓ→ ℓ′)[S ≤g V ≤ T →
(∀ν < ℓ)((ν ,S) ∈ C → (g(ν),V ) ∈ C )]

�
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Given a promise C for T and some infinite p.r. partition tree S refining T , we denote by C [S]
the set of all (ν ,S′) ∈ C below some (µ,S) ∈ C , that is, C [S] = C ∩U[S]. Note that by clause
b) of Lemma 15.3.2, if C is a /0′-p.r. promise for T then C [S] is a /0′-p.r. promise for S.

Establishing a distinction between the acceptable parts and the non-acceptable ones requires
a lot of definitional power. However, we prove that we can always find an extension where the
distinction is ∆0

2. We say that an infinite p.r. partition tree T witnesses its acceptable parts if its
parts are either acceptable or empty.

Lemma 15.3.3 For every infinite p.r. k-partition tree T of [t,+∞), there exists an infinite p.r.
k-partition tree S of [u,+∞) refining T with the identity function and such that S witnesses its
acceptable parts.

Proof. Given a partition tree T , we let I(T ) be the set of its empty parts. Fix an infinite p.r.
k-partition tree of [t,+∞) T , It suffices to prove that if ν is a non-empty and non-acceptable part
of T , then there exists an infinite p.r. k-partition tree S refining T with the identity function, such
that ν ∈ I(S)r I(T ). As I(T )⊆ I(S) and |I(S)| ≤ k, it suffices to iterate the process at most k

times to obtain a refinement witnessing its acceptable parts.
So fix a non-empty and non-acceptable part ν of T . By definition of being non-acceptable,

there exists a path P through T and an integer u > max(t,setν(P)). Let S = {σ ∈ T : setν(σ)∩
[u,+∞) = /0}. The set S is a p.r. k-partition tree of [u,+∞) refining T with the identity function
and such that part ν of S is empty. Moreover, S is infinite since P ∈ [S]. �

The following lemma strengthens clause b) of Definition 15.3.3.

Lemma 15.3.4 Let T be a p.r. partition tree and C be a promise for T . For every infinite p.r.
partition tree S ≤ T , (µ,S) ∈ C for some acceptable part µ of S.

Proof. Fix an infinite p.r. ℓ-partition tree S ≤ T . By Lemma 15.3.3, there exists an infinite p.r.
ℓ-partition tree S′ ≤id S witnessing its acceptable parts. As C is a promise for T and S′ ≤ T , there
exists a non-empty (hence acceptable) part ν of S′ such that (ν ,S′) ∈ C . As C is upward-closed,
(ν ,S) ∈ C . �

15.3.2 Forcing conditions

We now describe the forcing notion for the Erdős-Moser theorem. Recall that an EM condition
for an infinite tournament R is a Mathias condition (F,X) where F ∪{x} is R-transitive for each
x ∈ X and X is included in a minimal R-interval of F . The main properties of an EM condition
are proven in section 10.3 under Lemma 10.3.2 and Lemma 10.3.3.

Definition 15.3.4 We denote by P the forcing notion whose conditions are tuples (~F ,T,C )
where

(a) T is an infinite p.r. partition tree
(b) C is a /0′-p.r. promise for T

(c) (Fν ,dom(T )) is an EM condition for R and each ν < parts(T )
A condition d = (~E,S,D) extends c = (~F ,T,C ) (written d ≤ c) if there exists a function
f : ℓ→ k such that D ⊆ C and the followings hold:

(i) (Eν ,dom(S)) EM extends (Ff (ν),dom(T )) for each ν < parts(S)

(ii) S f -refines
⋂

ν<parts(S) T [ f (ν),Eν ]

We may think of a condition c = (~F ,T,C ) as a collection of EM conditions (Fν ,Hν) for R,
where Hν = dom(T )∩ setν(P) for some path P through T . Hν must be infinite for at least one
of the parts ν < parts(T ). At a higher level, D restricts the possible subtrees S and parts µ
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refining some part of T in the condition c. Given a condition c = (~F ,T,C ), we write parts(c) for
parts(T ).

Lemma 15.3.5 For every condition c = (~F ,T,C ) and every n ∈ ω , there exists an extension
d = (~E,S,D) such that |Eν | ≥ n on each acceptable part ν of S.

Proof. It suffices to prove that for every condition c = (~F ,T,C ) and every acceptable part ν of
T , there exists an extension d = (~E,S,D) such that S ≤id T and |Eν | ≥ n. Iterating the process
at most parts(T ) times completes the proof. Fix an acceptable part ν of T and a path P trough
T such that setν(P) is infinite. Let F ′ be an R-transitive subset of setν(P)∩ dom(T ) of size
n. Such a set exists by the classical Erdős-Moser theorem. Let ~E be defined by Eµ = Fµ if
µ 6= ν and Eν = Fν ∪F ′ otherwise. As the tournament R is stable, there exists some u ≥ t such
that (Eν , [u,+∞)) is an EM condition and therefore EM extends (Fν ,dom(T )). Let S be the p.r.
partition tree T [ν ,Eν ] of [u,+∞). The condition (~E,S,C [S]) is the desired extension. �

Given a condition c ∈ P, we denote by Ext(c) the set of all its extensions.

15.3.3 The forcing relation

The forcing relation at the first level, namely, for Σ0
1 and Π0

1 formulas, is parameterized by some
part of the tree of the considered condition. Thanks to the forcing relation we will define, we can
build an infinite decreasing sequence of conditions which decide Σ0

1 and Π0
1 formulas effectively

in /0′. The sequence however yields a /0′-computably bounded /0′-computable tree of (possibly
empty) parts. Therefore, any PA degree relative to /0′ is sufficient to control the first jump of an
infinite transitive subtournament of a stable infinite computable tournament.

We cannot do better since Kreuzer proved in [Kre12] the existence of an infinite, stable,
computable tournament with no low infinite transitive subtournament. If we ignore the promise
part of a condition, the careful reader will recognize the construction of Cholak, Jockusch and
Slaman [CJS01] of a low2 infinite subset of a ∆0

2 set or its complement by the first jump control.
The difference, which at first seems only presentational, is in fact one of the key features of this
notion of forcing. Indeed, forcing iterated jumps require to have a definitionally weak description
of the set of extensions of a condition, and it requires much less computational power to describe
a primitive recursive tree than an infinite reservoir of a Mathias condition.

Definition 15.3.5 Fix a condition c = (~F ,T,C ), a Σ0
0 formula ϕ(G,x) and a part ν <

parts(T ).
1. c 
ν (∃x)ϕ(G,x) iff there exists a w ∈ ω such that ϕ(Fν ,w) holds.
2. c 
ν (∀x)ϕ(G,x) iff for every σ ∈ T , every w < |σ | and every R-transitive set F ′ ⊆

dom(T )∩ setν(σ), ϕ(Fν ∪F ′,w) holds.

We start by proving some basic properties of the forcing relation over Σ0
1 and Π0

1 formulas.
As one may expect, the forcing relation at first level is closed under the refinement relation.

Lemma 15.3.6 Fix a condition c = (~F ,T,C ) and a Σ0
1 (Π0

1) formula ϕ(G). If c 
ν ϕ(G) for
some ν < parts(T ), then for every d = (~E,S,D)≤ c and every part µ of S refining part ν of T ,
d 
µ ϕ(G).

Proof. We have two cases.
• If ϕ ∈ Σ0

1 then it can be expressed as (∃x)ψ(G,x) where ψ ∈ Σ0
0. By clause 1 of Def-

inition 15.3.5, there exists a w ∈ ω such that ψ(Fν ,w) holds. By property (i) of the
definition of an extension, Eµ ⊇ Fν and (Eµ rFν)⊂ dom(T ), therefore ψ(Eµ ,w) holds
by continuity, so by clause 1 of Definition 15.3.5, d 
µ (∃x)ψ(G,x).
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• If ϕ ∈ Π0
1 then it can be expressed as (∀x)ψ(G,x) where ψ ∈ Σ0

0. Fix a τ ∈ S, a w < |τ|
and an R-transitive set F ′ ⊆ dom(S)∩ setµ(τ). It suffices to prove that ϕ(Eµ ∪F ′) holds
to conclude that d 
µ (∀x)ψ(G,x) by clause 2 of Definition 15.3.5. By property (ii) of
the definition of an extension, there exists a σ ∈ T [ν ,Eµ ] such that |σ |= |τ| and setµ(τ)⊆
setν(σ). As dom(S) ⊆ dom(T ), F ′ ⊆ dom(T )∩ setν(σ). As σ ∈ T [ν ,Eµ ], Eµ ⊆ setν(σ)
and by property (i) of the definition of an extension, Eµ ⊆ dom(T ). So Eµ ∪F ′ ⊆ dom(T )∩
setν(σ). As w < |τ|= |σ | and Eµ ∪F ′ is an R-transitive subset of dom(T )∩ setν(σ), then
by clause 2 of Definition 15.3.5 applied to c 
ν (∀x)ψ(G,x), ϕ(Fν ∪ (Eµ rFν)∪F ′,w)
holds, hence ϕ(Eµ ∪F ′) holds.

�

Before defining the forcing relation at higher levels, we prove a density lemma for Σ0
1 and

Π0
1 formulas. It enables us in particular to reprove that every degree PA relative to /0′ computes

the jump of an infinite R-transitive set.

Lemma 15.3.7 For every Σ0
1 (Π0

1) formula ϕ , the following set is dense

{c = (~F ,T,C ) ∈ P : (∀ν < parts(T ))[c 
ν ϕ(G)∨ c 
ν ¬ϕ(G)]}

Proof. It suffices to prove the statement for the case where ϕ is a Σ0
1 formula, as the case where

ϕ is a Π0
1 formula is symmetric. Fix a condition c = (~F ,T,C ) and let I(c) be the set of the parts

ν < parts(T ) such that c 6
ν ϕ(G) and c 6
ν ¬ϕ(G). If I(c) = /0 then we are done, so suppose
I(c) 6= /0 and fix some ν ∈ I(c). We will construct an extension d of c such that I(d)⊆ I(c)r{ν}.
Iterating the operation completes the proof.

The formula ϕ is of the form (∃x)ψ(G,x) where ψ ∈ Σ0
0. Define f : k+1 → k as f (µ) = µ

if µ < k and f (k) = ν otherwise. Let S be the set of all σ ∈ (k+ 1)<ω which f -refine some
τ ∈ T ∩ k|σ | and such that for every w < |σ |, every part µ ∈ {ν ,k} and every finite R-transitive
set F ′ ⊆ dom(T )∩ setµ(σ), ϕ(Fν ∪F ′,w) does not hold.

Note that S is a p.r. partition tree of [t,+∞) refining T with witness function f . Suppose
that S is infinite. Let ~E be defined by Eµ = Fµ if µ < k and Ek = Fν and consider the extension
d = (~E,S,C [S]). We claim that ν ,k 6∈ I(d). Fix a part µ ∈ {ν ,k} of S. By definition of S, for
every σ ∈ S, every w < |σ | and every R-transitive set F ′ ⊆ dom(S)∩setµ(σ), ϕ(Eµ ∪F ′,w) does
not hold. Therefore, by clause 2 of Definition 15.3.5, d 
µ (∀x)¬ψ(G,x), hence d 
µ ¬ϕ(G).
Note that I(d)⊆ I(c)r{ν}.

Suppose now that S is finite. Fix a threshold ℓ ∈ ω such that (∀σ ∈ S)|σ | < ℓ and a
τ ∈ T ∩kℓ such that T [τ] is infinite. Consider the 2-partition E0⊔E1 of setν(τ)∩dom(T ) defined
by E0 = {i ≥ t : τ(i) = ν ∧ (∀∞s)R(i,s) holds} and E1 = {i ≥ t : τ(i) = ν ∧ (∀∞s)R(s, i) holds}.
This is a 2-partition since the tournament R is stable. As there exists no σ ∈ S which f -refines
τ , there exist a w < ℓ and an R-transitive set F ′ ⊆ E0 or F ′ ⊆ E1 such that ϕ(Fν ∪F ′,w) holds.
By choice of the partition, there exists a t ′ > t such that F ′ →R [t ′,+∞) or [t ′,+∞)→R F ′. By
Lemma 10.3.3, (Fν ∪F ′, [t ′,+∞)) is a valid EM extension for (Fν , [t,+∞)). As T [τ] is infinite,
T [ν ,F ′] is also infinite. Let ~E be defined by Eµ = Fµ if µ 6= ν and Eµ = Fν ∪F ′ otherwise. Let S

be the k-partition tree (k, t ′,T [ν ,F ′]). The condition d = (~E,S,C [S]) is a valid extension of c. By
clause 1 of Definition 15.3.5, d 
µ ϕ(G). Therefore I(d)⊆ I(c)r{ν}. �

As in the previous notion of forcing, the following trivial lemma expresses the fact that the
promise part of a condition has no effect in the forcing relation for a Σ0

1 or Π0
1 formula.

Lemma 15.3.8 Fix two conditions c = (~F ,T,C ) and d = (~F ,T,D), and a Σ0
1 (Π0

1) formula. For
every part ν of T , c 
ν ϕ(G) if and only if d 
ν ϕ(G).

Proof. If ϕ ∈ Σ0
1 then ϕ(G) can be expressed as (∃x)ψ(G,x) where ψ ∈ Σ0

0. By clause 1 of
Definition 15.3.5, c 
ν ϕ(G) iff there exists a w ∈ ω such that ψ(Fν ,w) holds, iff d 
ν ϕ(G).
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Similarily, if ϕ ∈ Π0
1 then ϕ(G) can be expressed as (∀x)ψ(G,x) where ψ ∈ Σ0

0. By clause 2
of Definition 15.3.5, c 
ν ϕ(G) iff for every σ ∈ T , every w < |σ | and every R-transitive set
F ′ ⊆ dom(T )∩ setν(σ), ϕ(Fν ∪F ′,w) holds, iff d 
ν ϕ(G). �

We are now ready to define the forcing relation for an arbitrary arithmetic formula. Again,
the natural forcing relation induced by the forcing of Σ0

0 formulas is too complex, so we design a
more effective relation which still enjoys the main properties of a forcing relation.

Definition 15.3.6 Fix a condition c = (~F ,T,C ) and an arithmetic formula ϕ(G).
1. If ϕ(G) = (∃x)ψ(G,x) where ψ ∈ Π0

1 then c 
 ϕ(G) iff for every part ν < parts(T )
such that (ν ,T ) ∈ C there exists a w < dom(T ) such that c 
ν ψ(G,w)

2. If ϕ(G) = (∀x)ψ(G,x) where ψ ∈Σ0
1 then c
ϕ(G) iff for every infinite p.r. k′-partition

tree S, every function f : parts(S)→ parts(T ), every w and ~E smaller than #S such that
the followings hold

i) (Eν ,dom(S)) EM extends (Ff (ν),dom(T )) for each ν < parts(S)

ii) S f -refines
⋂

ν<parts(S) T [ f (ν),Eν ]

for every (µ,S) ∈ C , (~E,S,C [S]) 6
µ ¬ψ(G,w)
3. If ϕ(G) = (∃x)ψ(G,x) where ψ ∈ Π0

n+2 then c 
 ϕ(G) iff there exists a w ∈ ω such
that c 
 ψ(G,w)

4. If ϕ(G) = ¬ψ(G,x) where ψ ∈ Σ0
n+3 then c 
 ϕ(G) iff d 6
 ψ(G) for every d ∈ Ext(c).

Notice that, unlike the forcing relation for Σ0
1 and Π0

1 formulas, the relation over higher
formuals does not depend on the part of the relation. The careful reader will have recognized
the combinatorics of the second jump control introduced by Cholak, Jockusch and Slaman
in [CJS01]. We now prove the main properties of this forcing relation.

Lemma 15.3.9 Fix a condition c and a Σ0
n+2 (Π0

n+2) formula ϕ(G). If c 
 ϕ(G) then for every
d ≤ c, d 
 ϕ(G).

Proof. We prove the statement by induction over the complexity of the formula ϕ(G). Fix a
condition c = (~F ,T,C ) such that c 
 ϕ(G) and an extension d = (~E,S,D) of c.

• If ϕ ∈ Σ0
2 then ϕ(G) can be expressed as (∃x)ψ(G,x) where ψ ∈ Π0

1. By clause 1 of
Definition 15.3.6, for every part ν of T such that (ν ,T ) ∈ C , there exists a w < dom(T )
such that c 
ν ψ(G,w). Fix a part µ of S such that (µ,S) ∈D . As D ⊆ C , (µ,S) ∈ C . By
upward-closure of C , part µ of S refines some part ν of C such that (ν ,T ) ∈ C . Therefore
by Lemma 15.3.6, d 
µ ψ(G,w), with w < dom(T )≤ dom(S). Applying again clause 1
of Definition 15.3.6, we deduce that d 
 (∀x)ψ(G,x), hence d 
 ϕ(G).

• If ϕ ∈ Π0
2 then ϕ(G) can be expressed as (∀x)ψ(G,x) where ψ ∈ Σ0

1. Suppose by way of
contradiction that d 6
 (∀x)ψ(G,x). Let f : parts(S)→ parts(T ) witness the refinement
S ≤ T . By clause 2 of Definition 15.3.6, there exist an infinite p.r. k′-partition tree S′, a
function g : parts(S′)→ parts(S), a w ∈ ω , and ~H smaller than the code of S′ such that

i) (Hν ,dom(S′)) EM extends (Eg(ν),dom(S)) for each ν < parts(S′)

ii) S′ g-refines
⋂

ν<parts(S′) S[g(ν),Hν ]

iii) there exists a (µ,S′) ∈ D such that (~H,S′,D [S′]) 
µ ¬ψ(G,w).
To deduce by clause 2 of Definition 15.3.6 that c 6
 (∀x)ψ(G,x) and derive a contradiction,
it suffices to prove that the same properties hold w.r.t. T .

i) As by property (i) of the definition of an extension, (Eg(ν),dom(S)) EM extends
(Ff (g(ν)),dom(T )) and (Hν ,dom(S′) EM extends (Eg(ν),dom(S)), then (Hν ,dom(S′))
EM extends (Ff (g(ν)),dom(T )).
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ii) As by property (ii) of the definition of an extension, S f -refines
⋂

ν<parts(S′) T [ f (g(ν)),Eg(ν)]

and S′ g-refines
⋂

ν<parts(S′) S[g(ν),Hν ], then S′ (g◦ f )-refines
⋂

ν<parts(S′) T [(g◦ f )(ν),Hν ].

iii) As D ⊆ C , there exists a part (µ,S′) ∈ C such that (~H,S′,D [S′]) 
µ ¬ψ(G,w). By
Lemma 15.3.8, (~H,S′,C [S′]) 
µ ¬ψ(G,w).

• If ϕ ∈ Σ0
n+3 then ϕ(G) can be expressed as (∃x)ψ(G,x) where ψ ∈ Π0

n+2. By clause 3 of
Definition 15.3.6, there exists a w ∈ ω such that c 
 ψ(G,w). By induction hypothesis,
d 
 ψ(G,w) so by clause 3 of Definition 15.3.6, d 
 ϕ(G).

• If ϕ ∈ Π0
n+3 then ϕ(G) can be expressed as ¬ψ(G) where ψ ∈ Σ0

n+3. By clause 4 of
Definition 15.3.6, for every e ∈ Ext(c), e 6
 ψ(G). As Ext(d) ⊆ Ext(c), for every e ∈
Ext(d), e 6
 ψ(G), so by clause 4 of Definition 15.3.6, d 
 ϕ(G).

�

Lemma 15.3.10 For every Σ0
n+2 (Π0

n+2) formula ϕ , the following set is dense

{c ∈ P : c 
 ϕ(G) or c 
 ¬ϕ(G)}

Proof. We prove the statement by induction over n. It suffices to treat the case where ϕ is a Σ0
n+2

formula, as the case where ϕ is a Π0
n+2 formula is symmetric. Fix a condition c = (~F ,T,C ).

• In case n = 0, the formula ϕ is of the form (∃x)ψ(G,x) where ψ ∈ Π0
1. Suppose there

exist an infinite p.r. k′-partition tree S for some k′ ∈ ω , a function f : parts(S)→ parts(T )
and a k′-tuple of finite sets ~E such that

i) (Eν , [ℓ,+∞)) EM extends (Ff (ν),dom(T )) for each ν < parts(S).

ii) S f -refines
⋂

ν<parts(S) T [ f (ν),Eν ]

iii) for each non-empty part ν of S such that (ν ,S) ∈ C , (~E,S,C [S]) 
ν ψ(G,w) for
some w < #S

We can choose dom(S) so that (Eν ,dom(S)) EM extends (Ff (ν),dom(T )) for each ν <
parts(S). Properties i-ii) remain trivially true. By Lemma 15.3.6 and Lemma 15.3.8,
property iii) remains true too. Let D = C [S]r{(ν ,S′) ∈ C : part ν of S′ is empty}. As
C is an /0′-p.r. promise for T , C [S] is an /0′-p.r. promise for S. As D is obtained from
C [S] by removing only empty parts, D is also an /0′-p.r. promise for S. By clause 1 of
Definition 15.3.6, d = (~E,S,D) 
 (∃x)ψ(G,x) hence d 
 ϕ(G).
We may choose a coding of the p.r. trees such that the code of S is sufficiently large
to witness ℓ and ~E. So suppose now that for every infinite p.r. k′-partition tree S, every
function f : parts(S)→ parts(T ) and ~E smaller than the code of S such that properties i-ii)
hold, there exists a non-empty part ν of S such that (ν ,S) ∈ C and (~E,S,C ) 6
ν ψ(G,w)
for every w < ℓ. Let D be the collection of all such (ν ,S). The set D is /0′-p.r. since
by Lemma 15.3.14, both (~E,S,C ) 6
ν ψ(G,w) and “part ν of S is non-empty” are Σ0

1.
By Lemma 15.3.6 and since we require that #S ≥ #T in the definition of S ≤ T , D is
upward-closed under the refinement relation, hence is a promise for T . By clause 2 of
Definition 15.3.6, d = (~F ,T,D) 
 (∀x)¬ψ(G,x), hence d 
 ¬ϕ(G).

• In case n > 0, density follows from clause 4 of Definition 15.3.6.
�

Given any filter F = {c0,c1, . . .} with cs = (~Fs,Ts,Cs), the set of the acceptable parts ν

of Ts such that (ν ,Ts) ∈ Cs forms an infinite, directed acyclic graph G (F ). Whenever F is
sufficiently generic, the graph G (F ) has a unique infinite path P. The path P induces an infinite
set G =

⋃

s FP(s),s. We call P the generic path and G the generic real.

Lemma 15.3.11 Suppose that F is sufficiently generic and let P and G be the generic path and
the generic real, respectively. For any Σ0

1 (Π0
1) formula ϕ(G), ϕ(G) holds iff cs 
P(s) ϕ(G) for

some cs ∈ F .
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Proof. Fix a condition cs = (~F ,T,C ) ∈ F such that c 
P(s) ϕ(G), and let ν = P(s).
• If ϕ ∈ Σ0

1 then ϕ(G) can be expressed as (∃x)ψ(G,x) where ψ ∈ Σ0
0. By clause 1 of

Definition 15.3.5, there exists a w ∈ ω such that ψ(Fν ,w) holds. As ν = P(s), Fν =
FP(s) ⊆ G and GrFν ⊆ (max(Fν),+∞), so ψ(G,w) holds by continuity, hence ϕ(G)
holds.

• If ϕ ∈ Π0
1 then ϕ(G) can be expressed as (∀x)ψ(G,x) where ψ ∈ Σ0

0. By clause 2
of Definition 15.3.5, for every σ ∈ T , every w < |σ | and every R-transitive set F ′ ⊆
dom(T )∩ setν(σ), ψ(Fν ∪F ′,w) holds. For every F ′ ⊆ GrFν , and w ∈ ω there exists
a σ ∈ T such that w < |σ | and F ′ ⊆ dom(T )∩ setν(σ). Hence ψ(Fν ∪ F ′,w) holds.
Therefore, for every w ∈ ω , ψ(G,w) holds, so ϕ(G) holds.

The other direction holds by Lemma 15.3.7. �

Lemma 15.3.12 Suppose that F is sufficiently generic and let P and G be the generic path and
the generic real, respectively. For any Σ0

n+2 (Π0
n+2) formula ϕ(G), ϕ(G) holds iff cs 
 ϕ(G) for

some cs ∈ F .

Proof. We prove the statement by induction over the complexity of the formula ϕ(G). As
previously noted in Lemma 15.2.8, it suffices to prove that if cs 
 ϕ(G) for some cs ∈ F then
ϕ(G) holds. Indeed, conversely if ϕ(G) holds, then by Lemma 15.3.10 and by genericity of
F either cs 
 ϕ(G) or cs 
 ¬ϕ(G), but if c 
 ¬ϕ(G) then ¬ϕ(G) holds, contradicting the
hypothesis. So cs 
 ϕ(G). Fix a condition cs = (~F ,T,C ) ∈ F such that cs 
 ϕ(G). We proceed
by case analysis on ϕ .

• If ϕ ∈ Σ0
2 then ϕ(G) can be expressed as (∃x)ψ(G,x) where ψ ∈ Π0

1. By clause 1 of Defi-
nition 15.3.6, for every part ν of T such that (ν ,T ) ∈ C , there exists a w < dom(T ) such
that cs 
ν ψ(G,w). In particular (P(s),T ) ∈ C , so cs 
P(s) ψ(G,w). By Lemma 15.3.11,
ψ(G,w) holds, hence ϕ(G) holds.

• If ϕ ∈ Π0
2 then ϕ(G) can be expressed as (∀x)ψ(G,x) where ψ ∈ Σ0

1. By clause 2 of
Definition 15.3.6, for every infinite k′-partition tree S, every function f : parts(S) →
parts(T ), every w and ~E smaller than the code of S such that the followings hold

i) (Eν ,dom(S)) EM extends (Ff (ν),dom(T )) for each ν < parts(S)

ii) S f -refines
⋂

ν<parts(S) T [ f (ν),Eν ]

for every (µ,S) ∈ C , (~E,S,C [S]) 6
µ ¬ψ(G,w). Suppose by way of contradiction that
ψ(G,w) does not hold for some w ∈ ω . Then by Lemma 15.3.11, there exists a dt ∈ F

such that dt 
P(t) ¬ψ(G,w). Since F is a filter, there is a condition er = (~E,S,D) ∈ F

extending both cs and dt . Let µ = P(r). By choice of P, (µ,S) ∈ C , so by clause ii),
(~E,S,C [S]) 6
µ ψ(G,w), hence by Lemma 15.3.8, er 6
µ ¬ψ(G,w). However, since part µ

of S refines part P(t) of dt , then by Lemma 15.3.6, er 
µ ¬ψ(G,w). Contradiction. Hence
for every w ∈ ω , ψ(G,w) holds, so ϕ(G) holds.

• If ϕ ∈ Σ0
n+3 then ϕ(G) can be expressed as (∃x)ψ(G,x) where ψ ∈ Π0

n+2. By clause 3 of
Definition 15.3.6, there exists a w ∈ ω such that cs 
 ψ(G,w). By induction hypothesis,
ψ(G,w) holds, hence ϕ(G) holds.
Conversely, if ϕ(G) holds, then there exists a w ∈ ω such that ψ(G,w) holds, so by
induction hypothesis cs 
 ψ(G,w) for some cs ∈ F , so by clause 3 of Definition 15.3.6,
cs 
 ϕ(G).

• If ϕ ∈ Π0
n+3 then ϕ(G) can be expressed as ¬ψ(G) where ψ ∈ Σ0

n+3. By clause 4 of
Definition 15.3.6, for every d ∈ Ext(cs), d 6
 ψ(G). By Lemma 15.3.9, d 6
 ψ(G) for
every d ∈ F and by a previous case, ψ(G) does hold, so ϕ(G) holds.

�
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We now prove that the forcing relation has good definitional properties as we did with the
notion of forcing for cohesiveness.

Lemma 15.3.13 For every condition c, Ext(c) is Π0
2 uniformly in c.

Proof. Recall from Lemma 15.3.2 that given k, t ∈ ω , PartTree(k, t) denotes the Π0
1 set of all

the infinite p.r. k-partition trees of [t,+∞), and given a k-partition tree S and a part ν of S,
the predicate Empty(S,ν) denotes the Π0

1 formula “part ν of S is empty”, that is, the formula
(∀σ ∈ S)[setν(σ)∩dom(S) = /0]. If T is p.r. then so is T [ν ,H] for some finite set H.

Fix a condition c=(~F ,(k, t,T ),C ). By definition, (~H,(k′, t ′,S),D)∈Ext(c) iff the following
formula holds:

(∃ f : k′ → k)
(∀ν < k′)(Hν , [t

′,+∞)) EM extends (Ff (ν), [t,+∞)) (Π0
1)

∧S ∈ PartTree(k′, t ′)∧S ≤ f

∧

ν<k′ T
[ f (ν),Hν ] (Π0

1)
∧D is a promise for S∧D ⊆ C (Π0

2)

By Lemma 15.3.2 and the fact that
∧

ν<k′ T
[ f (ν),Hν ] is p.r. uniformly in T , f , ~H and k′, the above

formula is Π0
2. �

Lemma 15.3.14 Fix an arithmetic formula ϕ(G), a condition c = (~F ,T,C ) and a part ν of T .
a) If ϕ(G) is a Σ0

1 (Π0
1) formula then so is the predicate c 
ν ϕ(G).

b) If ϕ(G) is a Σ0
n+2 (Π0

n+2) formula then so is the predicate c 
 ϕ(G).

Proof. We prove our lemma by induction over the complexity of the formula ϕ(G).
• If ϕ(G) ∈ Σ0

1 then it can be expressed as (∃x)ψ(G,x) where ψ ∈ Σ0
0. By clause 1 of

Definition 15.3.5, c 
ν ϕ(G) if and only if the formula (∃w ∈ ω)ψ(Fν ,w) holds. This is a
Σ0

1 predicate.
• If ϕ(G) ∈ Π0

1 then it can be expressed as (∀x)ψ(G,x) where ψ ∈ Σ0
0. By clause 2 of

Definition 15.3.5, c 
ν ϕ(G) if and only if the formula (∀σ ∈ T )(∀w < |σ |)(∀F ′ ⊆
dom(T )∩ setν(σ))[F ′ R-transitive → ψ(Fν ∪F ′,w)] holds. This is a Π0

1 predicate.
• If ϕ(G)∈ Σ0

2 then it can be expressed as (∃x)ψ(G,x) where ψ ∈ Π0
1. By clause 1 of Defini-

tion 15.3.6, c 
 ϕ(G) if and only if the formula (∀ν < parts(T ))(∃w < dom(T ))[(ν ,T ) ∈
C → c 
ν ψ(G,w)] holds. This is a Σ0

2 predicate by induction hypothesis and the fact that
C is /0′-computable.

• If ϕ(G) ∈ Π0
2 then it can be expressed as (∀x)ψ(G,x) where ψ ∈ Σ0

1. By clause 2 of
Definition 15.3.6, c 
 ϕ(G) if and only if for every infinite k′-partition tree S, every
function f : parts(S)→ parts(T ), every w and ~E smaller than the code of S such that the
followings hold

i) (Eν ,dom(S)) EM extends (Ff (ν),dom(T )) for each ν < parts(S)

ii) S f -refines
⋂

ν<parts(S) T [ f (ν),Eν ]

for every (µ,S) ∈ C , (~E,S,C [S]) 6
µ ¬ψ(G,w). By Lemma 15.3.2, Properties i-ii) are ∆0
2.

Moreover, the predicate (µ,S)∈C is ∆0
2. By induction hypothesis, (~E,S,C ) 6
µ ¬ψ(G,w)

is Σ0
1. Therefore c 
 ϕ(G) is a Π0

2 predicate.
• If ϕ(G) ∈ Σ0

n+3 then it can be expressed as (∃x)ψ(G,x) where ψ ∈ Π0
n+2. By clause 3 of

Definition 15.3.6, c 
 ϕ(G) if and only if the formula (∃w ∈ ω)c 
 ψ(G,w) holds. This
is a Σ0

n+3 predicate by induction hypothesis.
• If ϕ(G) ∈ Π0

n+3 then it can be expressed as ¬ψ(G) where ψ ∈ Σ0
n+3. By clause 4 of

Definition 15.3.6, c 
 ϕ(G) if and only if the formula (∀d)(d 6∈ Ext(c)∨d 6
 ψ(G)) holds.
By induction hypothesis, d 6
 ψ(G) is a Π0

n+3 predicate. By Lemma 15.3.13, the set Ext(c)
is Π0

2-computable uniformly in c, thus c 
 ϕ(G) is a Π0
n+3 predicate.

�
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15.3.4 Preserving the arithmetic hierarchy

We now prove the core lemmas showing that every sufficiently generic real preserves the
arithmetic hierarchy. The proof is split into two lemmas since the forcing relation for Σ0

1 and Π0
1

formulas depends on the part of the condition, and therefore has to be treated separately.

Lemma 15.3.15 If A 6∈ Σ0
1 and ϕ(G,x) is Σ0

1, then the set of c = (~F ,T,C ) ∈ P satisfying the
following property is dense:

(∀ν < parts(T ))[(∃w ∈ A)cs 
ν ¬ϕ(G,w)]∨ [(∃w 6∈ A)cs 
ν ϕ(G,w)]

Proof. The formula ϕ(G,w) can be expressed as (∃x)ψ(G,w,x) where ψ ∈ Σ0
0. Given a condi-

tion c = (~F ,T,C ), let I(c) be the set of the parts ν of T such that for every w ∈ A, c 6
ν ¬ϕ(G,w)
and for every w ∈ A, c 6
ν ϕ(G,w). If I(c) = /0 then we are done, so suppose I(c) 6= /0 and fix
some ν ∈ I(c). We will construct an extension d such that I(d) ⊆ I(c)r {ν}. Iterating the
operation completes the proof.

Say that T is a k-partition tree of [t,+∞) for some k, t ∈ ω . Define f : k+1 → k as f (µ) = µ

if µ < k and f (k) = ν otherwise. Given an integer w ∈ ω , let Sw be the set of all σ ∈ (k+1)<ω

which f -refine some τ ∈ T ∩k|σ | and such that for every u < |σ |, every part µ ∈ {ν ,k} and every
finite R-transitive set F ′ ⊆ dom(T )∩ setµ(σ), ϕ(Fν ∪F ′,w,u) does not hold.

The set Sw is a p.r. (uniformly in w) partition tree of [t,+∞) refining T with witness function f .
Let U = {w ∈ ω : Sw is finite }. U ∈ Σ0

1, thus U 6= A. Fix some w ∈ U∆A. Suppose first that
w ∈ ArU . By definition of U , Sw is infinite. Let ~E be defined by Eµ = Fµ if µ < k and
Ek = Fν , and consider the extension d = (~E,Sw,C [Sw]). We claim that I(d)⊆ I(c)r{ν}. Fix
a part µ ∈ {ν ,k} of Sw. By definition of Sw, for every σ ∈ Sw, every u < |σ | and every R-
transitive set F ′ ⊆ dom(Sw)∩ setµ(σ), ϕ(Eµ ∪F ′,w,u) does not hold. Therefore, by clause 2 of
Definition 15.3.5, d 
µ (∀x)¬ψ(G,w,x), hence d 
µ ¬ϕ(G,w), and this for some w ∈ A. Thus
I(d)⊆ I(c)r{ν}.

Suppose now that w ∈U rA, so Sw is finite. Fix an ℓ ∈ ω such that (∀σ ∈ S)|σ |< ℓ and a
τ ∈ T ∩kℓ such that T [τ] is infinite. Consider the 2-partition E0∪E1 of setν(τ)∩dom(T ) defined
by E0 = {i ≥ t : τ(i) = ν ∧ (∀∞s)R(i,s) holds} and E0 = {i ≥ t : τ(i) = ν ∧ (∀∞s)R(s, i) holds}.
As there exists no σ ∈ Sw which f -refines τ , there exist a u < ℓ and an R-transitive set F ′ ⊆ E0

or F ′ ⊆ E1 such that ϕ(Fν ∪F ′,w,u) holds. By choice of the partition, there exists a t ′ > t

such that F ′ →R [t ′,+∞) or [t ′,+∞)→R F ′. By Lemma 10.3.3, (Fν ∪F ′, [t ′,+∞)) is a valid EM
extension of (Fν , [t,+∞)). As T [τ] is infinite, T [ν ,F ′] is also infinite. Let ~E be defined by Eµ = Fµ

if µ 6= ν and Eµ = Fν ∪F ′ otherwise. Let S be the k-partition tree (k, t ′,T [ν ,F ′]). The condition
d = (~E,S,C [S]) is a valid extension of c. By clause 1 of Definition 15.3.5, d 
µ ϕ(G,w) with
w 6∈ A. . Therefore I(d)⊆ I(c)r{ν}. �

Lemma 15.3.16 If A 6∈ Σ0
n+2 and ϕ(G,x) is Σ0

n+2, then the set of c ∈ P satisfying the following
property is dense:

[(∃w ∈ A)c 
 ¬ϕ(G,w)]∨ [(∃w 6∈ A)c 
 ϕ(G,w)]

Proof. Fix a condition c = (~F ,T,C ).
• In case n = 0, ϕ(G,w) can be expressed as (∃x)ψ(G,w,x) where ψ ∈ Π0

1. Let U be the
set of integers w such that there exist an infinite p.r. k′-partition tree S for some k′ ∈ ω , a
function f : parts(S)→ parts(T ) and a k′-tuple of finite sets ~E such that

i) (Eν , [ℓ,+∞)) EM extends (Ff (ν),dom(T )) for each ν < parts(S).

ii) S f -refines
⋂

ν<parts(S) T [ f (ν),Eν ]

iii) for each non-empty part ν of S such that (ν ,S) ∈ C , (~E,S,C [S]) 
ν ψ(G,w,u) for
some u < #S
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By Lemma 15.3.14 and Lemma 15.3.2, U ∈ Σ0
2, thus U 6= A. Let w ∈ U∆A. Suppose

that w ∈U rA. We can choose dom(S) so that (Eν ,dom(S)) EM extends (Ff (ν),dom(T ))
for each ν < parts(S). By Lemma 15.3.6 and Lemma 15.3.8, properties i-ii) remain
true. Let D = C [S]r {(ν ,S′) ∈ C : part ν of S′ is empty}. As C is an /0′-p.r. promise
for T , C [S] is an /0′-p.r. promise for S. As D is obtained from C [S] by removing
only empty parts, D is also an /0′-p.r. promise for S. By clause 1 of Definition 15.3.6,
d = (~E,S,D) 
 (∃x)ψ(G,w,x) hence d 
 ϕ(G,w) for some w 6∈ A.
We may choose a coding of the p.r. trees such that the code of S is sufficiently large to
witness u and ~E. So suppose now that w ∈ ArU . Then for every infinite p.r. k′-partition
tree S, every ℓ and ~E smaller than the code of S such that properties i-ii) hold, there exists
a non-empty part ν of S such that (ν ,S) ∈ C and (~E,S,C ) 6
ν ψ(G,w,u) for every u < ℓ.
Let D be the collection of all such (ν ,S). The set D is /0′-p.r. By Lemma 15.3.6 and
since #S ≥ #T whenever S ≤ f T , D is upward-closed under the refinement relation, hence
it is a promise for T . By clause 2. of Definition 15.3.6, d = (~F ,T,D) 
 (∀x)¬ψ(G,w,x),
hence d 
 ¬ϕ(G,w) for some w ∈ A.

• In case n > 0, let U = {w ∈ ω : (∃d ∈ Ext(c))d 
 ϕ(G,w)}. By Lemma 15.3.13 and
Lemma 15.3.14, U ∈ Σ0

n+2, thus U 6= A. Fix some w ∈ U∆A. If w ∈ U rA then by
definition of U , there exists a condition d extending c such that d 
 ϕ(G,w). If w ∈ ArU ,
then for every d ∈ Ext(c), d 6
 ϕ(G,w) so by clause 4 of Definition 15.3.6, c 
 ¬ϕ(G,w).

�

We are now ready to prove Theorem 15.3.1. It follows from the preservation of the arithmetic
hierarchy for cohesiveness and the stable Erdős-Moser theorem.

Proof of Theorem 15.3.1. Since RCA0 ⊢ COH∧SEM→ EM, then by Theorem 15.2.1 it suffices
to prove that SEM admits preservation of the arithmetic hierarchy. Fix some set C and a
C-computable stable infinite tournament R. Let C0 be the C′-p.r. set of all (ν ,T ) ∈ U such
that (ν ,T ) ≤ (0,1<ω). Let F be a sufficiently generic filter containing c0 = ({ /0},1<ω ,C0).
Let P and G be the corresponding generic path and generic real, respectively. By definition
of a condition, the set G is R-transitive. By Lemma 15.3.5, G is infinite. By Lemma 15.3.15
and Lemma 15.3.14, G preserves non-Σ0

1 definitions relative to C. By Lemma 15.3.16 and
Lemma 15.3.14, G preserves non-Σ0

n+2 definitions relative to C for every n ∈ ω . Therefore, by
Proposition 2.2 of [Wan14c], G preserves the arithmetic hierarchy relative to C. �

15.4 An effective forcing for stable Ramsey’s theorem for pairs

Among the Ramsey-type hierarchies, the D hierarchy is conceptually the simplest one. It is
therefore natural to study it in order to understand better the control of iterated jumps and focus
on the core combinatorics without the technicalities specific to another hierarchy. Recall that
for every n,k ≥ 1, Dn

k is the statement “Every ∆0
n k-partition of the integers has an infinite subset

in of its parts”. Wang [Wan14c] studied D2
2 within his framework of preservation of definitions

and proved that D2
2 admits preservation of Ξ definitions simultaneously for all Ξ in {Σ0

n+2,Π
0
n+2,

∆0
n+2 : n ∈ ω}, but not ∆0

2 definitions. He used for this a combination of the first jump control of
Cholak, Jockusch and Slaman [CJS01] and a relativization of the preservation of the arithmetic
hierarchy by WKL.

In this section, we design a notion of forcing for D2
2 with a forcing relation which has the

same definitional complexity as the formula it forces. It enables us to reprove that D2
2 admits

preservation of Ξ definitions simultaneously for all Ξ in {Σ0
n+2,Π

0
n+2,∆

0
n+2 : n ∈ ω}. The proof

is significantly more involved than the previous proofs of preservation of the arithmetic hierarchy.
This is why we will only sketch the proof by explaining its general structure and state the main
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lemmas without providing their proofs. We refer the reader to [Pat16a] for the details of the
proof.

15.4.1 Sides of a sequence of sets

A main feature in the construction of a solution to an instance R0,R1 of D2
2 is the parallel

construction of a subset of R0 and a subset of R1. The intrinsic disjunction in the forcing
argument prevents us from applying the same strategy as for the Erdős-Moser theorem and obtain
a preservation of the arithmetic hierarchy. Given some α < 2, we shall refer to Rα or simply α

as a side of ~R. We also need to define a relative notion of acceptation and emptiness of a part.

Definition 15.4.1 Fix a k-partition tree T of [t,+∞) and a set X . We say that part ν of T is
X-acceptable if there exists a path P through T such that setν(P)∩X is infinite. We say that
part ν of T is X-empty if (∀σ ∈ T )[dom(T )∩ setν(σ)∩X = /0].

The intended uses of those notions will be Rα -acceptation and Rα -emptiness. Every partition
tree has an Rα -acceptable part for some α < 2. The notion of X-emptiness is Π

0,X
1 , and therefore

Π0
2 if X is ∆0

2, which raises new problems for obtaining a forcing relation of weak definitional
complexity. We would like to define a stronger notion of “witnessing its acceptable parts” and
prove that for every infinite p.r. partition tree T , there is a p.r. refined tree S such that for each side
α and each part ν of S, either ν is Rα -empty in S, or ν is Rα -acceptable. However, the resulting
tree S would be /0′-p.r. since Rα is /0′-computable. Thankfully, we will be able to circumvent this
problem in Lemma 15.4.10.

15.4.2 Forcing conditions

Fix a ∆0
2 2-partition R0 ∪R1 = ω . We now describe the notion of forcing to build an infinite

subset of R0 or of R1.

Definition 15.4.2 We denote by P the forcing notion whose conditions are tuples (~F ,T,C )
where

(a) T is an infinite, p.r. k-partition tree for some k ∈ ω

(b) C is a /0′-p.r. promise for T

(c) (Fα
ν ,dom(T )) is a Mathias condition for each ν < k and α < 2

A condition d = (~E,S,D) extends c = (~F ,T,C ) (written d ≤ c) if there exists a function
f : parts(S)→ parts(T ) such that D ⊆ C and the followings hold

(i) (Eα
ν ,dom(S)∩Rα) Mathias extends (Fα

f (ν),dom(T )∩Rα) for each ν < parts(S) and
α < 2

(ii) S f -refines
⋂

ν<parts(S),α<2 T [ f (ν),Eα
ν ]

In the whole construction, the index α indicates that we are constructing a set which will
be almost included in Rα . Given a condition c = (~F ,T,C ), we write again parts(c) for parts(T ).
The following lemma shows that we can force our constructed set to be infinite if we choose it
among the acceptable parts.

Lemma 15.4.1 For every condition c = (~F ,T,C ) and every n ∈ ω , there exists an extension
d = (~E,S,D) such that |Eα

ν | ≥ n on each Rα -acceptable part ν of S for each α < 2.

Given a condition c, we denote by Ext(c) the set of all its extensions.

15.4.3 Forcing relation

We need to define two forcing relations at the first level: the “true” forcing relation, i.e., the one
having the good density properties but whose decision requires too much computational power,
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and a “weak” forcing relation having better computational properties, but which does not behave
well with respect to the forcing. We start with the definition of the true forcing relation.

Definition 15.4.3 — True forcing relation. Fix a condition c = (~F ,T,C ), a Σ0
0 formula

ϕ(G,x), a part ν < parts(T ), and a side α < 2.
1. c �α

ν (∃x)ϕ(G,x) iff there exists a w ∈ ω such that ϕ(Fα
ν ,w) holds.

2. c �α
ν (∀x)ϕ(G,x) iff for every σ ∈ T such that T [σ ] is infinite, every w < |σ | and every

set F ′ ⊆ dom(T )∩ setν(σ)∩Rα , ϕ(Fα
ν ∪F ′,w) holds.

Given a condition c, a side α < 2, a part ν of c and a Π0
1 formula ϕ , the relation c �α

ν ϕ(G)

is Π
0, /0′⊕Rα

1 , hence Π0
2 as Rα is ∆0

2. This relation enjoys the good properties of a forcing relation,
that is, it is downward-closed under the refinement relation (Lemma 15.4.2), and the set of the
conditions forcing either a Σ0

1 formula or its negation is dense (Lemma 15.4.3).

Lemma 15.4.2 Fix a condition c = (~F ,T,C ) and a Σ0
1 (Π0

1) formula ϕ(G). If c �α
ν ϕ(G) for

some ν < parts(T ) and α < 2, then for every d = (~E,S,D)≤ c and every part µ of S refining
part ν of T , d �α

µ ϕ(G).

Lemma 15.4.3 For every Σ0
1 (Π0

1) formula ϕ , the following set is dense in P:

{c ∈ P : (∀ν < parts(c))(∀α < 2)[c �α
ν ϕ(G) or c �α

ν ¬ϕ(G)]}

We now define the weak forcing relation which is almost the same as the true one, expect
that the set F ′ is not required to be a subset of Rα in the case of a Π0

1 formula.

Definition 15.4.4 — Weak forcing relation. Fix a condition c = (~F ,T,C ), a Σ0
0 formula

ϕ(G,x), a part ν < parts(T ) and a side α < 2.
1. c 
α

ν (∃x)ϕ(G,x) iff there exists a w ∈ ω such that ϕ(Fα
ν ,w) holds.

2. c 
α
ν (∀x)ϕ(G,x) iff for every σ ∈ T , every w < |σ | and every set F ′ ⊆ dom(T )∩

setν(σ), ϕ(Fα
ν ∪F ′,w) holds.

As one may expect, the weak forcing relation at the first level is also closed under the
refinement relation.

Lemma 15.4.4 Fix a condition c = (~F ,T,C ) and a Σ0
1 (Π0

1) formula ϕ(G). If c 
α
ν ϕ(G) for

some ν < parts(T ) and α < 2, then for every d = (~E,S,D)≤ c and every part µ of S refining
part ν of T , d 
α

µ ϕ(G).

The following trivial lemma simply reflects the fact that the promise C is not part of the
definition of the weak forcing relation for Σ0

1 or Π0
1 formulas, and therefore has no effect on it.

Lemma 15.4.5 Fix two conditions c = (~F ,T,C ) and d = (~E,T,D) and a Σ0
1 (Π0

1) formula. For
every part ν of T such that Fα

ν = Eα
ν , c 
α

ν ϕ(G) if and only if d 
α
ν ϕ(G).

We can now define the forcing relation over higher formulas. It is defined inductively,
starting with Σ0

1 and Π0
1 formulas. We extend the weak forcing relation instead of the true one

for effectiveness purposes. We shall see later that the weak forcing relation behaves like the true
one for some parts and some sides of a condition, and therefore that it tells us something about
the truth of the formula over some carefully defined generic real G. Note that the forcing relation
over higher formulas is still parameterized by the side α of the condition.

Definition 15.4.5 Fix a condition c = (~F ,T,C ), a side α < 2 and an arithmetic formula
ϕ(G).

1. If ϕ(G) = (∃x)ψ(G,x) where ψ ∈ Π0
1 then c 
α ϕ(G) iff for every part ν of T such
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that (ν ,T ) ∈ C there exists a w < dom(T ) such that c 
α
ν ψ(G,w)

2. If ϕ(G) = (∀x)ψ(G,x) where ψ ∈ Σ0
1 then c 
α ϕ(G) iff for every infinite p.r. k′-

partition tree S, every function f : parts(S)→ parts(T ), every w and ~E smaller than #S

such that the followings hold
i) E

β
ν = F

β
f (ν) for each ν < parts(S) and β 6= α

ii) (Eα
ν ,dom(S)∩Rα) Mathias extends (Fα

f (ν),dom(T )∩Rα) for each ν < parts(S)

iii) S f -refines
⋂

ν<parts(S) T [ f (ν),Eα
ν ]

for every (µ,S) ∈ C , (~E,S,C [S]) 6
α
µ ¬ψ(G,w)

3. If ϕ(G) = (∃x)ψ(G,x) where ψ ∈ Π0
n+2 then c 
α ϕ(G) iff there exists a w ∈ ω such

that c 
α ψ(G,w)
4. If ϕ(G) =¬ψ(G) where ψ ∈ Σ0

n+3 then c 
α ϕ(G) iff d 6
α ψ(G) for every d ∈ Ext(c).

Note that clause 2.ii) of Definition 15.4.5 seems to be Π0
2 since Rα is ∆0

2. However, in fact,
one just needs to ensure that dom(S) ⊆ dom(T ) and Eα

ν rFα
f (ν) ⊆ dom(T )∩Rα . This is a ∆0

2
predicate, and so is its negation, so one can already easily check that the forcing relation over a
Π0

2 formula will be also Π0
2. Before proving the usual properties about the forcing relation, we

need to discuss the role of the sides in the forcing relation. We are now ready to prove that the
forcing relation is closed under extension.

Lemma 15.4.6 Fix a condition c, a side α < 2 and a Σ0
n+2 (Π0

n+2) formula ϕ(G). If c 
α ϕ(G)
then for every d ≤ c, d 
α ϕ(G).

Although the weak forcing relation does not satisfy the density property, the forcing relation
over higher formulas does. The reason is that the extended forcing relation does not involve
the weak forcing relation over Σ0

1 formulas in the clause 2 of Definition 15.4.5, but uses instead
the weaker statement “c does not force the negation of the Σ0

1 formula”. The link between this
statement and the statement “c has an extension which forces the Σ0

1 formula” is used when
proving that ϕ(G) holds iff c 
 ϕ(G) for some condition belonging to a sufficiently generic filter.
We now prove the density of the forcing relation for higher formulas.

Lemma 15.4.7 For every Σ0
n+2 (Π0

n+2) formula ϕ , the following set is dense in P:

{c ∈ P : (∀α < 2)[c 
α ϕ(G) or c 
α ¬ϕ(G)]}

We now prove that the weak forcing relation extended to any arithmetic formula enjoys
the desired definability properties. For this, we start with a lemma showing that the extension
relation is Π0

2. Therefore, only the first two levels have to be treated independently, since the
extension relation does not add some extra complexity to the forcing relation for higher formulas.

Lemma 15.4.8 For every condition c, Ext(c) is Π0
2 uniformly in c.

Lemma 15.4.9 Fix an arithmetic formula ϕ(G), a condition c = (~F ,T,C ), a side α < 2 and a
part ν of T .

a) If ϕ(G) is a Σ0
1 (Π0

1) formula then so is the predicate c 
α
ν ϕ(G).

b) If ϕ(G) is a Σ0
n+2 (Π0

n+2) formula then so is the predicate c 
α ϕ(G).

15.4.4 Validity

As we already saw, we have two candidate forcing relations for Σ0
1 and Π0

1 formulas:
1. The “true” forcing relation c �α ϕ(G). This relation has been shown to have the expected

density properties through Lemma 15.4.3. However deciding such a relation requires too
much computational power.

2. The “weak” forcing relation c 
α ϕ(G). Deciding such a relation requires the same
definitional power as the formula it forces. It provides a sufficient condition for forcing
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the formula ϕ(G) as c 
α ϕ(G) implies c �α ϕ(G), but the converse does not hold and
we cannot prove the density property in the general case.

Thankfully, there exist some sides and parts of any condition on which those two forcing
relations coincide. This leads to the notion of validity.

Definition 15.4.6 — Validity. Fix an enumeration ϕ0(G),ϕ1(G), . . . of all Π0
1 formulas. Fix

a condition c = (~F ,T,C ), a side α < 2, and a part ν of T . We say that side α is n-valid in

part ν of T for some n ∈ ω if part ν of T is Rα -acceptable and for every i < n, c �α
ν ϕi(G)

iff c 
α
ν ϕi(G).

The following lemma shows that given some n ∈ ω , we can restrict C so that it “witnesses
its n-valid parts”.

Lemma 15.4.10 For every n ∈ ω , the following set is dense in P:

{(~F ,T,C ) ∈ P : (∀ν)(∃α < 2)[(ν ,T ) ∈ C → side α is n-valid in part ν of T ]}

Given any filter F = {c0,c1, . . .} with cs = (~Fs,Ts,Cs) the set of pairs (α,νs) such that
(νs,Ts) ∈ Cs forms again an infinite, directed acyclic graph G (F ). By Lemma 15.4.10, when-
ever F is sufficiently generic, the graph G (F ) yields a sequence of parts P such that for every s

if cs refines ct , then part P(s) of cs refines part P(t) of ct , and such that for every n, there is
some s and some side α < 2 such that the side α is n-valid in part P(s) of cs. The path P induces
an infinite set G =

⋃
{Fα

P(s),s : s ∈ ω}. Since whenever α is n-valid in part P(s) of cs, then it is
m-valid in part P(s) of cs for every m < n, we can fix an α < 2 such that for every n, there is
some s such that the side α is n-valid in part P(s) of cs. We call α the generic side, P the generic

path and G the generic real.
By choosing a generic path that goes through valid sides and parts of the conditions, we

recovered the density property for the weak forcing relation and can therefore prove that a
property holds over the generic real if and only if it can be forced by some condition belonging
to the generic filter.

Lemma 15.4.11 Suppose that F is sufficiently generic and let α , P and G be the generic side,
the generic path and the generic real, respectively. For every Σ0

1 (Π0
1) formula ϕ(G), ϕ(G) holds

iff cs 

α
P(s) ϕ(G) for some cs ∈ F .

Lemma 15.4.12 Suppose that F is sufficiently generic and let α and G be the generic side and
the generic real, respectively. For every Σ0

n+2 (Π0
n+2) formula ϕ(G), ϕ(G) holds iff cs 


α ϕ(G)
for some cs ∈ F .

15.4.5 Preserving definitions

The following (and last) lemma shows that every sufficiently generic real preserves higher
definitions. This preservation property cannot be proved in the case of non-Σ0

1 sets since the
weak forcing relation does not have the good density property in general.

Lemma 15.4.13 If A 6∈ Σ0
n+2 and ϕ(G,x) is Σ0

n+2, then the set of c ∈ P satisfying the following
property is dense:

(∀α < 2)[(∃w ∈ A)c 
α ¬ϕ(G,w)]∨ [(∃w 6∈ A)c 
α ϕ(G,w)]

We are now ready to reprove Corollary 3.29 from Wang [Wan14c].

Theorem 15.4.14 — Wang [Wan14c]. RT2
2 admits preservation of Ξ definitions simultane-
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ously for all Ξ in {Σ0
n+2,Π

0
n+2,∆

0
n+3 : n ∈ ω}.

Proof. Since RCA0 ⊢ COH∧D2
2 → RT2

2, and COH admits preservation of the arithmetic hierar-
chy, it suffices to prove that D2

2 admits preservation of Ξ definitions simultaneously for all Ξ in
{Σ0

n+2,Π
0
n+2,∆

0
n+3 : n ∈ ω}. Fix some set C and a ∆

0,C
2 2-partition R0 ∪R1 = ω . Let C0 be the

C′-p.r. set of all (ν ,T ) ∈ U such that (ν ,T ) ≤ (0,1<ω). Let F be a sufficiently generic filter
containing c0 = ({ /0, /0},1<ω ,C0). Let G be the corresponding generic real. By definition of a
condition, the set G is ~R-cohesive. By Lemma 15.4.13 and Lemma 15.4.9, G preserves non-Σ0

n+2
definitions relative to C for every n ∈ ω . Therefore, by Proposition 2.2 of [Wan14c], G preserves
Ξ definitions relative to C simultaneously for all Ξ in {Σ0

n+2,Π
0
n+2,∆

0
n+3 : n ∈ ω}. �
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16. Conclusion

The early study of reverse mathematics has seen the emergence of five main subsystems of
second-order arithmetic capturing the vast majority of mathematical reasoning. These subsystems
are known as the Big Five [Mon11]. Since then, the reverse mathematics community tried to
understand this phenomenon, by searching for its philosophical and mathematical justification
on one hand, and by studying theorems escaping the Big Five phenomenon on the other hand.
See Montálban [Mon11] for a discussion about the Big Five.

This thesis falls into the second approach, by studying the reverse mathematics of Ramsey-
type theorems. Indeed, Ramsey’s theory provides a large class of theorems escaping the Big Five
phenomenon. These theorems are characterized by their lack of robustness, i.e., slight variations
of the statements yield different subsystems. In this thesis, we tried to give a better grasp on the
chaotic nature of the Ramsey-type zoo. For this, we compared various Ramsey-type theorems
using a uniform, minimalistic and arguably natural framework, namely, Mathias forcing and
preservation of hyperimmunity. Its success in providing a precise analysis of the computational
differences between various Ramsey-type statements and its minimalistic nature makes us believe
that the current framework has reached a good degree of maturation. It follows that whenever
this framework fails to separate two Ramsey-type statements, they are likely to be equivalent. In
particular we take it as an argument in favor of the equivalence between the thin set theorem for
pairs and the free set theorem for pairs.

The study of various Ramsey-type theorems yielded the following empirical observation: few
Ramsey-type statements admit a nice computability-theoretic characterization. The most notable
exceptions are cohesiveness [JS93], the Ramsey-type weak weak König’s lemma [BPS15] and
the rainbow Ramsey theorem for pairs [Mil]. These statements admit characterizations in terms
of degrees whose jump is PA over /0′, of DNC degrees, and of DNC degrees over /0′, respectively.
One could argue that the true computability-theoretic nature of the other Ramsey-type statements
has simply not been found yet. Interestingly, all three exceptions admit a universal instance,
whereas we proved that most of the statements coming from the Ramsey-type zoo do not (see
Chapter 12). This is perhaps evidence that the remaining Ramsey-type theorems do not admit
nice computability-theoretic characterizations.

Last, we pursued the investigations of Liu [Liu12; Liu15] and Flood [Flo12] on the amount
of compactness needed in the proof of Ramsey-type theorems by studying variations of the
Ramsey-type weak König’s lemma on one hand, and by extending Liu’s notion of c.b-enum
avoidance to various Ramsey-type theorems such as the free set, thin set and the rainbow Ramsey
theorems on the other hand.

In the remainder of this conclusion, we develop some of the above-mentioned claims, namely,
the current framework used to analyse Ramsey-type theorems is natural and the computational
content of the Ramsey-type statements mainly comes from the sparsity of their solutions.

16.0.1 The naturality of the preservation framework

The notion of naturality is part of the common language, but it can have many interpretations. In
this section, we adopt the following (biased) definition: a solution is natural if sufficiently smart
people working independently on the same problem would come up with the same solution.
Under this definition, an informal proof of naturality consists in giving a simple reasoning with
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its justification leading to the design of the solution. In particular, if the reasoning is generated
by a short number of elementary rules, then a large majority of people could arguably eventually
come up with the resulting solution.

Although each Ramsey-type theorem comes up with its own notion of forcing reflecting
the combinatorics intrinsic to the theorem, the framework remains minimalistic, in that these
notions of forcing are designed by following a short number of general rules. Let us take the
example of the notion of forcing for Ramsey’s theorem for pairs. Given a coloring f : [ω]2 → 2,
a naive notion of forcing to construct a solution to f would be to use the finite approximation
method, that is, use increasing finite approximations F0 ( F1 ( . . . of the solution, and let H

be their union. We would like to prove that each finite approximation is extendible, so that any
sufficiently generic filter yields an infinite solution.

Here, we meet a first issue: which color do we want to make the set H homogeneous for? A
coloring of pairs does not have in general an infinite set homogeneous for each color. At this
stage, we apply the rule “If you cannot choose, try all”. The notion of forcing now becomes
over pairs of finite approximations (F,E) where F is homogeneous for color 0 and E for color 1.
We would like to prove that for each such pair (F,E), either F or E is extendible to an infinite
homogeneous set. This is not possible, as witnessed by taking the pair ({x},{y}) such that
(∀∞s) f (x,s) = 1 and (∀∞s) f (y,s) = 1. We need therefore to refine again our notion of forcing.
Without loss of generality, we can consider that a finite approximation F is extendible if it can
be “plugged” to an infinite set H > F so that F ∪H is homogeneous. If F and H are both
homogeneous for color 0, then the minimal condition to ensure that F ∪H is homogeneous for
color 0 is (∀x ∈ F)(∀y ∈ H) f (x,y) = 0. The good notion of forcing becomes (F,E,X), where F

is homogeneous for color 0, E is homogeneous for color 1, and X is an infinite set such that the
following holds:

(i) for every x ∈ F and y ∈ X , f (x,y) = 0
(ii) for every x ∈ E and y ∈ X , f (x,y) = 1

This way, by applying Ramsey’s theorem for pairs over the domain X , we obtain an infinite
f -homogeneous set H ⊆ X , say for color 0. By (i), F ∪H is f -homogeneous for color 0 and
therefore F is extendible. All the steps leading to the design of this notion of forcing involve
simple and natural reasonings. The condition of extendibility is arguably minimalistic.

Let us now justify the naturality of the preservation of hyperimmunity by giving some
details about the design of the notion. Suppose we want to separate any statement P from
stable Ramsey’s theorem for pairs. Consider any computable SRT2

2-instance with no computable
solution. Such an instance is nothing, but a stable, computable coloring f : [ω]2 → 2 such that
for each i < 2, the set Ai = {x : lims f (x,s) 6= i} is immune. Indeed, any infinite computable
set H will intersect both A0 and A1 and will not be f -homogeneous. If we are working over
computable reducibility, we need to prove that any computable P-instance has a solution S such
that f has no S-computable solution, in other words, such that A0 and A1 are S-hyperimmune.
Over computable entailment, we need to be able to iterate this property, and prove that whenever
the A’s are C-immune, then any C-computable P-instance has a solution S such that the A’s are
S⊕C-immune. This is nothing but the preservation of immunity. One can easily prove that
cohesiveness admits preservation of immunity.

Some other statements such as the Erdős-Moser theorem can prove some weak form of
compactness arguments, namely, the Ramsey-type weak König’s lemma. Because of this, the
notion of immunity has to be strengthened to defeat not only integers, but blocks of integers. This
is the notion of hyperimmunity. In this perspective, preservation of hyperimmunity is the natural
notion obtained while trying to separate a statement containing some weak form of compactness
from stable Ramey’s theorem for pairs over computable entailment.
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16.0.2 The computational content of Ramsey-type theorems

After an extensive study of various Ramsey-type theorems, it appears that the reductions from a
statement to a Ramsey-type theorem can be grouped into two families.

In the first case, the reduction exploits the ability of the Ramsey-type statement to impose
some strong sparsity constraints. For example, the proof that Ramsey’s theorem for triples
implies the arithmetic comprehension axiom uses a coloring whose homogeneous sets are sparse
enough to compute a fast-growing function [Joc72]. Similarly, the proof that the thin set theorem
for pairs implies the atomic model theorem exploits the ability of the thin set theorem for pairs
to impose large holes in its solutions, so that its principal function is not dominated by a ∆0

2
function (Theorem 8.1.2).

In the second case, the reduction has a combinatorial nature and involves two Ramsey-type
statements. This is then a strong reduction with no computability-theoretic considerations. For
example, the strong computable equivalence between the free set theorem and the rainbow
Ramsey theorem consists of encoding an instance of one statement into an instance of the
other statement, so that any solution to the latter is a solution to the former (see [Wan14b] and
Theorem 9.0.1).

It follows that Ramsey-type theorems, and more generally combinatorial theorems do not
seem to carry a strong computational content other than some simple sparsity considerations.
This consideration can be seen as a partial answer to the chaotic behavior of Ramsey-type
statements with respect to the reverse mathematics and computable reducibility.

16.0.3 Further developments

Various notions of preservation have been used among the past few years to separation state-
ments in reverse mathematics. Seetapun [SS95] used cone avoidance to separate Ramsey’s
theorem for pairs from the arithmetic comprehension axiom, Hirschfeldt and Shore [HS07] used
lowness to separate stable chain antichain from the ascending descending sequence principle,
Wang [Wan14c] used the preservation of non-c.e. definitions to separate the Erdős-Moser theorem
from the stable thin set theorem for pairs or stable Ramsey’s theorem for pairs, Liu [Liu15] used
c.b-enum avoidance to separate Ramey’s theorem for pairs from weak weak König’s lemma,
and the the author used preservation of k hyperimmunities to separate the thin set theorem from
Ramsey’s theorem for pairs, among others.

Those notions of preservation fall into two categories: the effectiveness properties and the
genericity properties. The preservation of an effectiveness property has to be done by an effective
construction. For example, lowness is an effectiveness property, since the whole construction has
to be ∆0

2. On the other hand, the preservation of a genericity property is proven by designing a
notion of forcing such that any sufficiently generic filter yields a set preserving this property. This
is for example the case of cone avoidance and preservation of hyperimmunity. The genericity
properties happen to be easier to prove since they do not involve effectiveness considerations
when proving that a set is dense.

The genericity properties often reveal some combinatorial and effective features of the corre-
sponding notions of forcing. The genericity properties are designed according to characteristics
of the notion of forcing rather than the converse. We detail some aspects taken in account in the
design of a genericity property:

(a) How many objects are built simultaneously? The notion of forcing for the Erdős-Moser
theorem yields only one set, while the one for Ramsey’s theorem for pairs and k colors
yields k sets. Whenever multiple sets are built together, the requirements have a disjunctive
shape, which prevents one from interleaving multiple requirements. This aspect is used in
a essential manner when separating the thin set for pairs and k+1 colors from the thin set
for pairs and k colors.
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(b) Whenever the decision of a Σ0
1(G) formula is positive, how many candidate extensions are

there? In computable Mathias forcing, a positive answer to a Σ0
1 question yields a single

candidate extension, whereas for weak König’s lemma, this yields a finite, but arbitrarily
large number of extensions. This aspect is used in the separation of the chain-antichain
principle from Ramey’s theorem for pairs.

(c) Whenever the decision of a Σ0
1(G) formula is negative, does the current condition already

force its negation? Again, in computable Mathias forcing, whenever the answer is negative,
the current condition already forces the negation of the Σ0

1(G) statement, whereas for
Ramsey’s theorem for pairs, a negative answer simply shows the existence of an extension
forcing the negation. This aspect is used in the separation of the ascending descending
sequence from the stable chain antichain principle.

One may naturally wonder whether we can establish a formal classification of the notions
of forcing so that the properties of preservation are directly proven over the abstract partial
orders. Then, one would independently prove that the statements studied in reverse mathematics
admit notions of forcing belonging to this classification, and directly deduce the corresponding
separations. Let us take an example.

Consider a notion of forcing (P,≤P) with a computable domain P = {c0,c1, . . .} together
with a computable function f : P×Σ

0,G
1 → Σ0

1 such that if c ∈ P and ϕ(G) is some Σ
0,G
1 formula,

f (c,ϕ) is a Σ0
1 formula which holds iff there is an extension d ≤P c forcing ϕ(G). We can show

that any sufficiently generic filter for this notion of forcing yields a set preserving countably
many immunities. For this, fix any immune set A and any Turing index e. We will show that the
set DA

e ⊆ P of conditions forcing W G
e not to be an infinite subset of A is P-dense. For any n ∈ ω ,

let ϕn(G) be the statement “n ∈ W G
e ”, and consider the set B = {n : f (ϕn) holds}. We have

two cases. In the first case, B is finite. In this case, c forces n 6∈ W G
e for cofinitely many n’s

and therefore forces W G
e not to be infinite. In the second case, B is infinite. Since f (ϕn) is Σ0

1
uniformly in n, the set B is c.e., therefore there is some n ∈ BrA. Since n ∈ B, f (ϕn) holds, so
there is an extension forcing n ∈W G

e , and therefore forcing W G
e not to be an infinite subset of A.

One easily sees that the computable Mathias forcing satisfies the previous properties and
therefore cohesiveness admits preservation of immunity. On the other hand, the standard notion of
forcing for weak König’s lemma does not satisfy the previous properties. It would be interesting
to extend this observation to various notions of forcing and various preservation properties.
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Figure 17.3: Avoidances and non-avoidances of closed sets



18. Open questions

The strength of consequences of Ramsey’s theorem has been extensively studied in reverse
mathematics and under various reducibilities, namely, computable reducibility and Weihrauch
reducibility. Our understanding of the combinatorics of Ramsey’s theorem and its consequences
has been greatly improved over the past decades. In this chapter, we state some questions which
naturally arose during this study. The inability to answer those questions reveals some gaps in
our understanding of the combinatorics of Ramsey’s theorem.

Many of the questions are already stated in various papers. These questions cover a much
thinner branch of reverse mathematics than the paper of Montálban [Mon11] and are of course
influenced by the own interest of the author. We put our focus on a few central open questions,
motivate them and try to give some insights about the reason for their complexity. We also detail
some promising approaches and ask more technical questions, driven by the resolution of the
former ones. The questions are computability-theoretic oriented, and therefore mainly involve
the relations between statements over computable entailment.

18.1 Cohesiveness and partitions

In order to better understand the combinatorics of Ramsey’s theorem for pairs, Cholak, Jockusch
and Slaman [CJS01] decomposed it into a cohesive and a stable version. This approach has
been fruitfully reused in the analysis of various consequences of Ramsey’s theorem [HS07].
They claimed that RT2

2 is equivalent to SRT2
2+COH over RCA0 with an erroneous proof.

Mileti [Mil04] and Jockusch & Lempp [unpublished] independently fixed the proof. Cholak
et al. [CJS01] proved that COH does not imply SRT2

2 over RCA0. The question of the other
direction was a long-standing open problem. Recently, Chong et al. [CSY14] proved that SRT2

2 is
strictly weaker than RT2

2 over RCA0+BΣ0
2. However they used non-standard models to separate

the statements and the question whether SRT2
2 and RT2

2 coincide over ω-models remains open.
See the survey of Chong, Li and Yang [CLY14] for the approach of non-standard analysis applied
to reverse mathematics.

Question 18.1 Does SRT2
2 imply RT2

2 (or equivalently COH) over ω-models?

Jockusch [Joc72] constructed a computable instance of RT2
2 with no ∆0

2 solution. Cholak
et al. [CJS01] suggested to build an ω-model of SRT2

2 composed only of low sets. However,
Downey et al. [Dow+01] constructed a ∆0

2 set with no low subset of either it or its complement.
As often, the failure of an approach should not be seen as a dead-end, but as a starting point. The
construction of Downey et al. revealed that SRT2

2 carries some additional computational power,
whose nature is currently unknown. Indeed, all the natural computability-theoretic consequences
of SRT2

2 known hitherto admit low solutions. Answering the following question would be a
significant step towards understanding the strength of SRT2

2.

Question 18.2 Is there a natural computable SRT2
2-instance with no low solution?

Here, by “natural”, we mean an instance which carries more informational content than not
having low solutions. Interestingly, Chong et al. [CSY14] constructed a non-standard model
of RCA0+BΣ0

2+SRT2
2 containing only low sets. This shows that the argument of Downey et
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al. [Dow+01] requires more than Σ0
2-bounding, and suggests that such an instance has to use an

elaborate construction.
Hirschfeldt et al. [Hir+08] proposed a very promising approach using an extension of

Arslanov’s completeness criterion [Ars81; Joc+89]. A set X is 1-CEA over Y if c.e. in and
above Y . A set X is (n+1)-CEA over Y if it is 1-CEA over a set Z which is n-CEA over Y . In
particular the sets which are 1-CEA over /0 are the c.e. sets. By [Joc+89], every set n-CEA over /0
computing a set of PA degree is complete. Hirschfeldt et al. asked the following question.

Question 18.3 Does every ∆0
2 set admit an infinite subset of either it or its complement which

is both low2 and ∆0
2?

A positive answer to Question 18.3 would enable one to build an ω-model M of SRT2
2 such

that for every set X ∈ M , X is low2 and X ′ is n-CEA over /0′. By Jockusch & Stephan [JS93],
if some X ∈ M computes some p-cohesive set, then X ′ is of PA degree relative to /0′. By a
relativization of Jockusch et al. [Joc+89], X ′ would compute /0′′, so would be high, which is
impossible since X is low2. Therefore, M would be an ω-model of SRT2

2 which is not a model
of COH, answering Question 18.1. Note that the argument also works if we replace low2 by
lown, where n may even depend on the instance. Hirschfeldt et al. [Hir+08] proved that every
∆0

2 set has an infinite incomplete ∆0
2 subset of either it or its complement. This is the best upper

bound currently known. They asked the following question which is the strong negation of
Question 18.3.

Question 18.4 Is there a ∆0
2 set such that every infinite subset of either it or its complement has

a jump of PA degree relative to /0′?

By Arslanov’s completeness criterion, a positive answer to Question 18.4 would also provide
one to the following question.

Question 18.5 Is there a ∆0
2 set such that every ∆0

2 infinite subset of either it or its complement
is high?

Cohesiveness can be seen as a sequential version of RT1
2 with finite errors (Seq∗(RT1

2)).
More formally, given some theorem P, Seq∗(P) is the statement “For every uniform sequence
of P-instances X0,X1, . . . , there is a set Y which is, up to finite changes, a solution to each of
the X’s.” One intuition about the guess that SRT2

2 does not imply COH could be that by the
equivalence between SRT2

2 and D2
2, SRT2

2 is nothing but a non-effective instance of RT1
2, and

that one cannot encode in a single instance of RT1
2 countably many RT1

2-instances. Note that
this argument is of combinatorial nature, as it does not make any effectiveness assumption on the
instance of RT1

2. We express reservations concerning the validity of this argument, as witnessed
by considering a sequential version of the thin set theorem.

Recall that for every n ≥ 1 and k ≥ 2, TSn
k is the statement “Every coloring f : [N]n → k

has a thin set” and TSn is the statement “Every coloring f : [N]n → N has a thin set”. Accord-
ing to the definition, Seq∗(TS1k) is the statement “For every uniform sequence of functions
f0, f1, · · · : N→ k, there is an infinite set H which is, up to finite changes, thin for all the f ’s.”
Theorem 3.5 in Jockusch & Stephan [JS93] can easily be adapted to prove that the degrees
of solutions to primitive recursive instances of Seq∗(TS1) (resp. Seq∗(TS1k)) are exactly those
whose jump is of DNC (resp. k-valued DNC) degree relative to /0′. By a relativization of
Friedberg [Joc89], the degrees whose jump is PA and those whose jump bounds a k-valued
DNC function coincide. Therefore COH and Seq∗(TS1k) are computably equivalent. However,
Seq∗(TS1) is a strictly weaker statement, as for any computable instance of Seq∗(TS1), the
measure of oracles computing a solution to it is positive.

Recall our intuition that a single instance of RT1
2 cannot encode the information of countably

many instances of RT1
2. This intuition is false when considering TS1. Indeed, there is a (non-∆0

2)
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instance of TS1 (and a fortiori one of RT1
2) whose solutions all bound a function DNC relative

to /0′, and therefore computes a solution to any computable instance of Seq∗(TS1). Therefore,
before asking whether COH is a consequence of /0′-effective instances of RT1

2, it seems natural
to ask whether COH is a consequence of any coloring over singletons in a combinatorial sense,
that is, with no effectiveness restriction at all.

Question 18.6 Is there any RT1
2-instance whose solutions have a jump of PA degree relative

to /0′?

Note that a negative answer to Question 18.6 would have practical reverse mathematical
consequences. There is an ongoing search for natural statements strictly between RT2

2 and SRT2
2

over RCA0 [DH09]. Dzhafarov & Hirst [DH09] introduced the increasing polarized Ram-
sey’s theorem for pairs (IPT2

2), and proved it to be between RT2
2 and SRT2

2 over RCA0. The
author [Pat15g] proved that IPT2

2 implies the existence of a function DNC relative to /0′, there-
fore showing that SRT2

2 does not imply IPT2
2 over RCA0. The statement IPT2

2 is equivalent
to 2-RWKL, a relativized variant of the Ramsey-type weak König’s lemma, over RCA0, and
therefore is a combinatorial consequence of RT1

2. An iterable negative answer to Question 18.6
would prove that IPT2

2 does not imply RT2
2, hence is strictly between RT2

2 and SRT2
2 over RCA0.

We have seen that Seq∗(TS1) is a combinatorial consequence of TS1. This information helps
us for tackling the following question. Indeed, if proven false, it must be answered by effective
means and not by combinatorial ones.

Question 18.7 Does SRT2
2 imply Seq∗(TS1) over ω-models?

Question 18.8 Is there a ∆0
2 set such that every infinite subset of either it or its complement has

a jump of DNC degree relative to /0′?

Although those questions are interesting in their own right, a positive answer to Question 18.3
would provide a negative answer to Question 18.7, and a positive answer to Question 18.8
would provide a positive answer to Question 18.5. Indeed, the extended version of Arslanov’s
completeness criterion states that in fact, every set n-CEA over /0 computing a set of DNC degree
is complete. In particular, if Question 18.3 has a positive answer, then there is an ω-model of
SRT2

2 which is not a model of the rainbow Ramsey theorem for pairs.
Let us finish this section by a discussion about why those problems are so hard to tackle.

There are different levels of answers, starting from the technical one which is more objective,
but probably also less informative, to the meta discussion might give more insights, but can be
more controversial.

From a purely technical point of view, all the forcing notions used so far to produce solutions
to Ramsey-type statements are variants of Mathias forcing. In particular, they restrict the future
elements to a “reservoir”. Any sufficiently generic filters for those notions of forcing yield cohe-
sive sets. Therefore, one should not expect to obtain a diagonalization against instances of COH
by exhibiting a particular dense set of conditions. Indeed, one would derive a contradiction
by taking a set sufficiently generic to meet both those diagonalizing sets, and the dense sets
producing a cohesive solution. More generally, as long as we use a forcing notion where we
restrict the future elements to a reservoir, any diagonalization against COH has to strongly rely
on some effectiveness of the overall construction. The first and second jump control of Cholak
et al. [CJS01] form a case in point of how to restrict the amount of genericity to obtain some
stronger properties, which are provably wrong when taking any sufficiently generic filter.

At a higher level, we have mentioned that COH is a statement about the jump of Turing
degrees. In other words, by Shoenfield’s limit lemma [Sho59], COH is a statement about
some limit behavior, and is therefore non-sensitive to any local modification. However, the
computability-theoretic properties used so far to separate statements below ACA are mainly
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acting “below the first jump”, in the sense that the diagonalization occurs after a finite amount
of time. With COH, there will be some need for a “continuous diagonalization”, that is, a
diagonalization which has to be maintained all along the construction.

18.2 A Ramsey-type weak König’s lemma

Weak König’s lemma plays a central role in reverse mathematics. It is one of the Big Five and
informally captures compactness arguments [Sim09]. WKL is involved in many constructions
of solutions to Ramsey-type statements, e.g., cone avoidance [SS95; Wan14b] or control of
the jump [CJS01; Pat16a]. The question of whether RT2

2 implies WKL over RCA0 was open
for decades, until Liu [Liu12] solved it by proving that PA degrees are not a combinatorial
consequence of RT1

2. Recently, Flood [Flo12] clarified the relation between Ramsey-type
theorems and WKL, by introducing a Ramsey-type variant of weak König’s lemma (RWKL),
that we studied in chapter 11. Informally, seeing a set as a 2-coloring of the integers, for every
Π0

1 class of 2-colorings, RWKL states the existence of an infinite set homogeneous for one of
them. Very little is currently known about RWKL. Despite its complicated formulation, RWKL

is a natural statement which is worth being studied due to the special status of Ramsey-type
theorems in reverse mathematics.

The statements analysed in reverse mathematics are collections of problems (instances)
coming with a class of solutions. Sometimes, it happens that one problem is maximally difficult.
In this case, the strength of the whole statement can be understood by studying this particular
(universal) instance. Weak König’s lemma is known to admit universal instances, e.g., the tree
whose paths are completions of Peano arithmetic, whereas Mileti [Mil04] proved that RT2

2
and SRT2

2 do not admit one. In chapter 12, we studied extensively which theorems in reverse
mathematics admit a universal instance, and which do not. It happens that most consequences of
RT2

2 in reverse mathematics do not admit a universal instance. The most notable exceptions are
the rainbow Ramsey theorem for pairs [CM09; Pat15g; Wan; Wan14a], the finite intersection
property [CDI15; Dow+12; DM13] and DNR. It is natural to wonder, given the fact that RWKL

is a consequence of both SRT2
2 and of WKL, whether RWKL admits a universal instance.

Question 18.9 Does RWKL admit a universal instance?

There is a close link between the P-bounding degrees and the existence of a universal P-
instance. Indeed, the degrees of the solutions to a universal P-instance are P-bounding. Using
the contraposition, a statement P is usually proven not to have a universal instance by showing
that every computable P-instance has a solution of degree belonging to a class C , and that for
every degree d ∈ C , there is a computable P-instance to which d bounds no solution [Mil04;
Pat15b].

Interestingly, Question 18.9 has some connections with the SRT2
2 vs COH question. The

only construction of solutions to instances of RWKL which do not produce sets of PA degree
are variants of Mathias forcing which produce solutions to Seq∗(RWKL). In both cases, the
solutions are RWKL-bounding, and in the latter case, they have a jump of PA degree relative
to /0′. By the previous discussion, one should not expect to prove that RWKL admits no universal
instance in the usual way, unless one can find a new, suitable, forcing notion.

Some statements do not admit a universal instance because their class of instances is too
restrictive, but they have a natural strengthening which does admit one. This is for example the
case of the rainbow Ramsey theorem for pairs, which by Miller [Mil] admit a universal instance
whose solutions are of DNC degree relative to /0′, but stable variants of the rainbow Ramsey
theorem do not admit one [Pat15b]. It is therefore natural to wonder whether there is some
strengthening of RWKL still below RT2

2 which admits a universal instance. The Erdős-Moser
theorem, defined in the next section, is a good candidate. The following question is a weakening
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of this interrogation.

Question 18.10 Is there some instance of RT1
2 or some computable instance of RT2

2 whose
solutions are RWKL-bounding?

Weak König’s lemma is equivalent to several theorems over RCA0 [Sim09]. However, the
Ramsey-type versions of those theorems do not always give statements equivalent to RWKL

over RCA0. For instance, the existence of a separation of two computably inseparable c.e. sets is
equivalent to WKL over RCA0, whereas it is easy to compute an infinite subset of a separating
set. Among those statements, the Ramsey-type version of the graph coloring problem [Hir90]
is of particular interest in our study of RWKL. Indeed, the RWKL-instances built in [BPS15;
FT14; Pat15f] are only of two kinds: trees of positive measure, and trees whose paths code the
k-colorings of a computable k-colorable graph. The restriction of RWKL to the former class
of instances is equivalent to DNR over RCA0. We shall discuss further the latter one. Recall
that for every n ≥ 2, RCOLORn is the statement “for every infinite, locally n-colorable graph
G = (V,E), there is an infinite H ⊆V that is n-homogeneous for G.”. The Ramsey-type graph
coloring statements have been introduced by Bienvenu, Shafer and the author [BPS15]. By
Corollary 11.3.14, RCOLORn is equivalent to RWKL for n ≥ 3, and by Theorem 11.4.9, DNR
(or even weak weak König’s lemma) does not imply RCOLOR2 over ω-models.

Question 18.11 Does RCOLOR2 imply RWKL or even DNR over RCA0?

Separating RCOLOR2 from RWKL may require constructing an RWKL-instance of a new
kind, i.e., not belonging to any of the two classes of instances mentioned before. The question
about the existence of a universal instance also holds for RCOLOR2.

18.3 The Erdős-Moser theorem

The Erdős-Moser theorem provides, together with the ascending descending principle (ADS),
an alternative decomposition of Ramsey’s theorem for pairs. Cholak et al. [CJS01] proved that
every computable RT2

2-instance has a low2 solution, while Mileti [Mil04] and the author (see
chapter 12) showed that various consequences P of RT2

2 do not have P-bounding low2 degrees,
showing therefore that P does not have a universal instance. This approach does not apply
to EM since there is a low2 EM-bounding degree (see section 12.3). The Erdős-Moser theorem
is, together with RWKL, one of the last Ramsey-type theorems for which the existence of a
universal instance is unknown. Since by Theorem 11.0.1, RCA0 ⊢ EM → RWKL, a positive
answer to the following question would refine our understanding of RWKL-bounding degrees.
Note that, like RWKL, the only known forcing notion for building solutions to EM-instances
produces EM-bounding degrees.

Question 18.12 Does EM admit a universal instance?

Due to the nature of the decomposition of RT2
2 into EM and ADS, the Erdős-Moser theorem

shares many features with RT2
2. In particular, there is a computable SEM-instance with no low

solution [Kre12]. The forcing notion used to construct solutions to EM-instances is very similar
to the one used to construct solutions to RT2

2-instances. The main difference is that in the EM

case, only one object (a transitive subtournament) is constructed, whereas in the RT2
2 case, both

a set homogeneous with color 0 and a set homogeneous with color 1 are constructed. As a
consequence, the constructions in the EM case remove the disjunction appearing in almost every
construction of solutions to RT2

2, and therefore simplifies many arguments, while preserving some
computational power. In particular, we proved that COH≤c SRT

2
2 if and only if COH≤c SEM.

Considering that SEM behaves like SRT2
2 with respect to COH, one would wonder whether

EM, like RT2
2, implies COH over RCA0. The closest result towards an answer is the proof
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that EM implies [STS2∨COH] over RCA0, where STS2 is the restriction of TS2 to stable
functions (Theorem 10.1.1). The Erdős-Moser theorem is known not to imply STS2 over
ω-models (Corollary 10.3.6), but the following question remains open.

Question 18.13 Does EM imply COH over RCA0?

A natural first step in the study of the computational strength of a principle consists in
looking how it behaves with respect to “typical” sets. Here, by typical, we mean randomness and
genericity. By Liu [Liu15], EM does not imply the existence of a Martin-Löf random. However,
it implies the existence of a function DNC relative to /0′ [Kan14; Pat15g], which corresponds
to the computational power of an infinite subset of a 2-random. On the genericity side, EM
implies the existence of a hyperimmune set [LST13] and does not imply Π0

1-genericity [HSS09;
Pata]. The relation between EM and 1-genericity is currently unclear. 1-genericity received
particular attention from the reverse mathematical community recently as it happened to have
close connections with the finite intersection principle (FIP). Dazhafarov & Mummert [DM13]
introduced FIP in reverse mathematics. Day, Dzhafarov, and Miller [unpublished] and Hirschfeldt
and Greenberg [unpublished] independently proved that it is a consequence of the atomic model
theorem (and therefore of SRT2

2) over RCA0. Downey et al. [Dow+12] first established a link
between 1-genericity and FIP by proving that 1-GEN implies FIP over RCA0. Later, Cholak et
al. [CDI15] proved the other direction.

Question 18.14 Does EM imply 1-GEN over RCA0?

Every 1-generic bounds an ω-model of 1-GEN. This property is due to a Van Lambalgen-like
theorem for genericity [Yu06], and implies in particular that there is no 1-generic of minimal
degree. Cai et al. [CGM15] constructed an ω-model of DNR such that the degrees of the second-
order part belong to a sequence 0,d1,d2, . . . where d1 is a minimal degree and dn+1 is a strong
minimal cover of dn. By the previous remark, such a model cannot contain a 1-generic real.
Construcing a similar model of EM would answer negatively Question 18.14. The following
question is a first step towards an answer. In particular, answering positively would provide a
proof that 1-GEN 6≤c EM.

Question 18.15 Does every computable EM-instance (or even RWKL-instance) admit a solution
of minimal degree?

18.4 Ramsey-type hierarchies

Jockusch [Joc72] proved that the hierarchy of Ramsey’s theorem collapses at level 3 over ω-
models, that is, for every n,m ≥ 3, RTn

2 and RTm
2 have the same ω-models. Simpson [Sim09,

Theorem III.7.6] formalized Jockusch’s results within reverse mathematics and proved that
RTn

2 is equivalent to the arithmetic comprehension axiom (ACA) over RCA0 for every n ≥ 3.
Since RT1

2 is provable over RCA0 and RT2
2 is strictly between RT3

2 and RCA0, the status of the
whole hierarchy of Ramsey’s theorem is known.

However, some consequences of Ramsey’s theorem form hierarchies for which the question
of the strictness is currently unanswered. This is for example the case of the thin set theorems,
the free set theorem and the rainbow Ramsey theorem. Wang [Wan14b] proved that the full free
set hierarchy (hence the thin set hierarchy) lies strictly below ACA over RCA0. We improved
this result by proving that FS does not even imply WKL (and in fact weak weak König’s lemma)
over RCA0 (Corollary 13.6.2).

Question 18.16 Does the free set theorem (resp. the thin set theorem with ω colors) form a
strict hierarchy?

Jockusch [Joc72] proved for every n ≥ 2 that every computable RTn
2-instance has a Π0

n
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solution and constructed a computable RTn
2-instance with no Σ0

n solution. Cholak et al. [Cho+01]
proved that FSn and TSn satisfy the same bounds. In particular, there is no ω-model of FSn or TSn

containing only ∆0
n sets. By Cholak et al. [CJS01], every computable instance of FS2 and TS2

admit a low2 solution. Therefore FS2 (hence TS2) are strictly weaker than TS3 (hence FS3)
over RCA0. Using this approach, a way to prove the strictness of the hierarchies would be to
answer positively the following question.

Question 18.17 For every n ≥ 3, does every computable instance of FSn (resp. TSn) admit a
lown solution?

The complexity of controlling the nth iterate of the Turing jump grows very quickly with n.
While the proof of the existence of low2 solutions to computable RT2

2-instances using first jump
control is relatively simple, the proof using the second jump control requires already a much
more elaborate framework [CJS01]. Before answering Question 18.17, one may want to get rid
of the technicalities due to the specific combinatorics of the free set and thin set theorems, and
focus on the control of iterated Turing jumps by constructing simpler objects.

Non-effective instances of Ramsey’s theorem for singletons is a good starting point, since the
only combinatorial argument involved is the pigeonhole principle. Moreover, RT1

2 can be seen
as a bootstrap principle, above which the other Ramsey-type statements are built. For instance,
cohesiveness is proven by making ω applications of the RT1

2 principles, and RT2
2 is obtained

by making one more application of RT1
2 over a non-effective instance. The proofs of the free

set and thin set theorems also make an important use of non-effective instances of RT1
2 [Pat15a;

Wan14b].

Question 18.18 For every n ≥ 3, does every ∆0
n set admit an infinite lown subset of either it or

its complement?

The solutions to Ramsey-type instances are usually built by forcing. In order to obtain lown

solutions, one has in particular to /0(n)-effectively decide the Σ0
n theory of the generic set. The

forcing relation over a partial order is defined inductively, and intuitively expresses whether,
whatever the choices of conditions extensions we make in the future, we will still be able to
make some progress in satisfying the considered property.

This raises the problem of talking about the “future” of a condition c. To do that, one
needs to be able to describe effectively the conditions extending c. The problem of the forcing
notions used to build solutions to Ramsey-type instances is that they use variants of Mathias
forcing, whose conditions cannot be described effectively. For instance, let us take the simplest
notion of Mathias forcing: pairs (F,X) where F is a finite set of integers representing the finite
approximation of the solution, X is a computable infinite “reservoir” of integers and max(F)<
min(X). Given a condition c = (F,X), the extensions of c are the pairs (H,Y ) such that F ⊆ H,
Y ⊆ X and H rF ⊆ X . Deciding whether a Turing index is the code of an infinite computable
subset of a fixed computable set requires a lot of computational power. Cholak et al. [Cho+14]
studied computable Mathias forcing and proved that the forcing relation for deciding Σ0

n properties
is not Σ0

n in general. This is why we need to be more careful in the design of the forcing notions.
In some cases, the reservoir has a particular shape. Through their second jump control,

Cholak et al. [CJS01] first used this idea by noticing that the only operations over the reservoir
were partitioning and finite truncation. This idea has been reused by Wang [Wan14a] to prove that
every computable Seq∗(D2

2
)-instance has a solution of low3 degree. We designed in chapter 15

new forcing notions for various Ramsey-type statements, e.g., COH, EM and D2
2, in which the

forcing relation for deciding Σ0
n properties is Σ0

n.





Answered questions

Question 18.19 — Flood and Towsner [FT14]. For which order h does DNRh imply RWKL

over RCA0?

Answer. DNRh does not imply RWKL over RCA0 for any computable order h [Pat15f]. �

Question 18.20 — Montalban [Mon11]. Is TT2
2 strictly stronger than RT2

2 over RCA0?

Answer. Yes, even stronger than RT2
2∧WKL by Theorem 14.0.1. �

Question 18.21 — Mileti [Mil04]. Do there exist computable f1 : [ω]2 → 2 and f2 : [ω]2 → 2
such there is no computable g : [ω]2 → 2 with the property that every set Hg homogeneous for g

computes both a set H f1 homogeneous for f1 and a set H f2 homogeneous for f2?

Answer. Yes, by Corollary 6.2.7. �

Question 18.22 — Liu [Liu15]. Is it the case that for every closed set C ⊆ 2ω with no computable
member and every set A, there is an infinite subset H of either A or A such that C has no H-
computable member?

Answer. No. We can even take C to be effectively closed and A to be ∆0
2 as a counter-

example [Pat15a]. �

Question 18.23 — Flood [Flo12]. Does DNR imply RWKL over RCA0?

Answer. No. By Theorem 11.4.8, RWKL has a computable instance such that the measure
of oracles computing a solution is null. This is a joint work with Laurent Bienvenu and Paul
Shafer. �

Question 18.24 — Flood [Flo12]. Does SRT2
2 imply 2-RWKL over RCA0?

Answer. No. By [BPS15], 2-RWKL implies 2-DNR over RCA0+BΣ0
2 and therefore there is no

model of RCA0∧BΣ0
2∧2-RWKL with only low sets, whereas RCA0∧BΣ0

2∧SRT2
2 has one. �

Question 18.25 — Wang [Wan14c]. Does any of COH and EM admit preservation of the
arithmetic hierarchy?

Answer. Yes, both do [Pat16a]. �

Question 18.26 — Hirschfeldt [Hir15]. Let n ≥ 3. Does FSn or TSn or FS or TS imply WKL

over RCA0?

Answer. No. By [Pat15a], they do not even imply WWKL over RCA0. �

Question 18.27 — Hirschfeldt [Hir15], Montalban [Mon11]. Does FS2 imply RT2
2 (or SRT2

2,
ADS or CAC) over RCA0? What about over RCA0∧WKL?

Answer. No. By Corollary 8.5.2, FS∧WKL implies none of SRT2
2, ADS or CAC over RCA0.

�
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Question 18.28 — Montalban [Mon11]. Does SRT2
2 imply IPT2

2 over RCA0?

Answer. No. By [Pat15e], IPT2
2 and 2-RWKL are equivalent over RCA0. �

Question 18.29 — Murakami [MYY14]. Does ADS imply psRT2
2 over RCA0?

Answer. Yes. See the Logic Blog 2015. �

Question 18.30 — Wang [Wan13a]. Is there a computable sequence of sets R0,R1, . . . with no
computable ~R-cohesive set but which admits an one computable from a 2-generic real?

Answer. Yes. By Lemma 7.2.1. �

Question 18.31 — Wang [Wan13a]. Is there a computable sequence of sets R0,R1, . . . with no
computable ~R-cohesive set but which admits an one computable from a 3-random real?

Answer. No. By Lemma 7.3.2. �

Question 18.32 — Dorais, Dzhafarov, Hirst, Mileti and Shafer [Dor+16]. If n, j,k ≥ 2 and
j < k, is it the case that RTn

k 6≤W RTn
j?

Answer. Yes. By Corollary 6.2.6, we even have RTn
k 6≤c RT

n
j . �

Question 18.33 — Jockusch and Hirschfeldt [HJ]. Let k > j > 2, where k may also be < ∞.
Is RT1

k ≤sc SRT
2
j?

Answer. No. This is a joint work with Damir Dzhafarov, Reed Solomon and Brown Westrick.
�

Question 18.34 — Dzhafarov [Dzh]. For k > 2, is it the case that COH ≤sc SRT
2
k? Is it the

case that COH≤sc SRT
2
<∞?

Answer. No. This is a joint work with Damir Dzhafarov, Reed Solomon and Brown Westrick.
�

Question 18.35 — Jockusch and Hirschfeldt [HJ]. Is it the case that for every function
f : ω → 3 with no computable f -thin set and every function g : ω → 2, there is an infinite
g-homogeneous set that does not compute any infinite f -homogeneous set?

Answer. No. Build a ∆0
2 coloring f : ω → 3 with no computable f -thin set, but such that any f -

thin set for color 2 is sparse enough to compute the halting set. Then, define g(x) = 1 iff f (x) = 2.
Any g-homogeneous set for color 1 is f -homogeneous for color 2, and any g-homogeneous set
for color 0 or 1 computes the halting set and therefore an f -homogeneous set. �

Question 18.36 — Montalbán, see [HJ]. Let 2 ≤ j < k. Is there a coloring f : ω → k such
that for every g : ω → j, there is an infinite g-homogeneous set that does not compute any infinite
f -homogeneous set?

Answer. Yes. By Corollary 6.1.3, we can even take f to be low. �

Question 18.37 — Kang [Kan14]. Does TS2 imply RRT2
2 over RCA0?

Answer. Yes. See Theorem 9.1.7. �

Question 18.38 — Hirschfeldt, Shore, Slaman [HSS09]. Does COH (or CADS) imply AMT

over RCA0?
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Answer. No, not even over RCA0∧WKL. See [Pata]. �

Question 18.39 — Cholak, Giusto, Hirst and Jockusch [Cho+01], Montalbán [Mon11].

Does any of FS2, TS2, FS2∧WKL or FS2∧COH imply RT2
2 over RCA0?

Answer. No. By Corollary 8.5.2, FS∧WKL∧COH does not imply SRT2
2 over RCA0. �

Question 18.40 — Dzhafarov and Jockusch [DJ09]. Is is the case that for every d ≫ /0′ and
every C 6≤T /0, every computable 2-coloring of pairs admits an infinite homogeneous set H 6≥T C

with deg(H ′)≤ d?

Answer. Yes. If deg(C) 6≤ d, this follows from [CJS01]. If C is ∆0
2, this follows from [DJ09].

If C is not ∆0
2 but deg(C)≤ d, then it is similar to the previous case. We simply use the low basis

theorem instead of Theorem 2.1. Indeed, because C is not ∆0
2, any low set is necessarily cone

avoiding. Notice that Lemma 4.6 needed the assumption C ≤T /0′ only because of Theorem 2.1.
Also notice that Lemma 4.7 only needs the assumption that deg(C)≤ d. �

Question 18.41 — Jockusch and Hirschfeldt [HJ]. Let n ≥ 2 and k > j ≥ 2. For which m do
we have RTn

k ≤
m
ω RTn

j?

Answer. See Theorem 6.0.1 for a full characterization. �

Question 18.42 — Brattka and Rakotoniaina [BR15]. Does WKL[ /0′]≤W SRT3
2 hold?

Answer. No. This does not even hold for computable reducibility. Indeed, SRT3
2 =c RT

2
2[ /0

′].
We now show that WKL[ /0′] 6≤c RT

2
2[ /0

′]. Relativizing Liu’s theorem to /0′, we obtain “For every
set C such that C⊕ /0′ 6≫ /0′ and for every set A, there is an infinite subset H of A or A such that
H ⊕C⊕ /0′ 6≫ /0′”. Fix a ∆0

2 RT
2
2-instance f : [ω]2 → 2 and let R0,R1, . . . be the sequence of ∆0

2
sets defined by Rx = {y : f (x,y) = 1}. Let C be a sufficiently generic real for the Mathias forcing
whose conditions (F,X) are such that X ⊕ /0′ 6≫ /0′. By the relativization of Liu’s theorem, C

is ~R-cohesive, and one easily checks that C⊕ /0′ 6≫ /0′. Let A = {x : lims∈C f (x,s) = 1}. Using
relativized Liu’s theorem, there is an infinite subset H of A or A such that H ⊕C⊕ /0′ 6≫ /0′. In
particular, H ⊕C⊕ /0′ computes an infinite f -homogeneous set. �

Question 18.43 — Brattka and Rakotoniaina [BR15]. Does IVT≤W RT2
2 hold?

Answer. Yes. Even IVT ≤W SRT2
2 holds. Fix a computable enumeration q0,q1, . . . of all the

rationals. Let f : [0,1]→ R be a continuous function such that f (0) < 0 < f (1). Define C =
{i ∈ ω : f (qi) = 0}. The set C is f -co-c.e. and we can fix an f -computable sequence of
its approximations C0 ⊇ C1 ⊇ . . . such that Ci 6= /0 for every i. Let g : [ω]2 → 2 be defined
by g(x,y) = 1 iff min(Cx) = min(Cy). The function g is stable and f -computable. By SRT2

2,
let H be an infinite f -homogeneous set for some color c < 2. We have two cases.

• Case c = 0. In this case, we claim that C is empty. Indeed, if not, then min(Cy) = min(C)
for almost every y. Taking any two sufficiently large y0,y1 ∈ H, min(Cy0) = min(C) =
min(Cy1), hence g(y0,y1) = 1 contradicting c = 0. In this case, we know that f (q) 6= /0 for
every rational q, so we can compute some y such that f (y) = 0 using the usual dichotomy
method.

• Case c = 1. Let q = min(Cx) for some x ∈ H. We claim that f (q) = 0. Indeed, g(x,y) = 1
for infinitely many y’s. Unfolding the definition of g, min(Cx) = min(Cy) for infinitely
many y’s, so min(Cx) = min(C).

�
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A. A simple separation of ADS from SCAC

Lerman, Solomon and Towsner [LST13] developped a framework to separate statements over
computable entailment, and proved in particular that ADS does not imply SCAC over RCA0.
The author [Pat15c] refined their technique to obtain a simpler framework. In this appendix, we
apply this simplification to the separation of ADS from SCAC. We also generalize the separation
to a pseudo Ramsey theorem.

A.1 A pseudo Ramsey theorem

Pseudo Ramsey’s theorem for pairs has been introduced by Murakami, Yamazaki and Yokoyama
in [MYY14] in the context of an analysis of a Ramseyan factorization theorem. They proved
that it is between the chain antichain principle and the ascending descending sequence principle
over RCA0, and asked whether it was equivalent to one of them. We answer positively. The
proof was indenpendently found by Silvia Steila, see [SY].

Definition A.1.1 — Pseudo Ramsey’s theorem. A coloring f : [N]2 → 2 is semi-transitive

if whenever f (x,y) = 1 and f (y,z) = 1, then f (x,z) = 1 for x < y < z. A set H = {x0 < x1 <
.. .} is pseudo-homogeneous for a coloring f : [N]n → k if f (xi, . . . ,xi+n−1)= f (x j, . . . ,x j+n−1)
for every i, j ∈N. psRTn

k is the statement “Every coloring f : [N]n → k has an infinite pseudo-
homogeneous set”.

Theorem A.1.1 RCA0 ⊢ psRT2
2 ↔ ADS

Proof. The direction psRT2
2 → ADS is Theorem 24 in [MYY14]. We prove that ADS→ psRT2

2.
Let f : [N]2 → 2 be a coloring. The reduction is in two steps. We first define a ∆

0, f
1 semi-transitive

coloring g : [N]2 → 2 such that every infinite set pseudo-homogeneous for g computes an infinite
set pseudo-homogeneous for f . Then, we define a ∆

0,g
1 linear order h : [N]2 → 2 such that every

infinite set pseudo-homogeneous for h computes an infinite set pseudo-homogeneous for g. We
conclude by applying ADS over h.

Step 1: Define the coloring g : [N]2 → 2 for every x < y by g(x,y) = 1 if there exists a
sequence x = x0 < · · ·< xl = y such that f (xi,xi+1) = 1 for every i < l, and g(x,y) = 0 otherwise.
The function g is a semi-transitive coloring. Indeed, suppose that g(x,y) = 1 and g(y,z) = 1,
witnessed respectively by the sequences x = x0 < · · ·< xm = y and y = y0 < · · ·< yn = z. The
sequence x = x0 < · · · < xm = y0 < · · · < yn = z witnesses g(x,z) = 1. We claim that every
infinite set H = {x0 < x1 < .. .} pseudo-homogeneous for g computes an infinite set pseudo-
homogeneous for f . If H is pseudo-homogeneous with color 0, then f (xi,xi+1) = 0 for each i,
otherwise the sequence xi < xi+1 would witness g(xi,xi+1) = 1. Thus H is pseudo-homogeneous
for f with color 0. If H is pseudo-homogeneous with color 1, then define the set H1 ⊇ H to be
the set of integers in the sequences witnessing g(xi,xi+1) = 1 for each i. The set H1 is ∆

0, f⊕H
1

and pseudo-homogeneous for f with color 1.
Step 2: Define the coloring h : [N]2 → 2 for every x < y by h(x,y) = 0 if there exists

a sequence x = x0 < · · · < xl = y such that g(xi,xi+1) = 0 for every i < l, and h(x,y) = 1
otherwise. For the same reasons as for g, h(x,z) = 0 whenever h(x,y) = 0 and h(y,z) = 0
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for x< y< z. We need to prove that if h(x,z)= 0 then either h(x,y)= 0 or h(y,z)= 0 for x< y< z.
Let x = x0 < · · ·< xl = z be a sequence witnessing h(x,z) = 0. If y = xi for some i < l then the
sequence x = x0 < · · ·< xi = y witnesses h(x,y) = 0. If y 6= xi for every i < l, then there exists
some i < l such that xi < y < xi+1. By semi-transitivity of g, either g(xi,y) = 0 or g(y,xi+1) =
0. In this case either x = x0 < · · · < xi < y witnesses h(x,y) = 0 or y < xi+1 < · · · < xl = z

witnesses h(y,z) = 0. Therefore h is a linear order. For the same reasons as for g, every infinite
set pseudo-homogeneous for h computes an infinite set pseudo-homogeneous for g. This last
step finishes the proof. �

A.2 Dependent hyperimmunity

In this section, we design the computability-theoretic property which will enable us to separate
ADS from SCAC. The notion of essential formula is inspired by the construction of Lerman,
Solomon and Towsner [LST13].

Definition A.2.1 — Dependent hyperimmunity. A formula ϕ(U,V ) is essential if for
every x ∈ ω , there is a finite set R > x such that for every y ∈ ω , there is a finite set S > y

such that ϕ(R,S) holds. A pair of sets A0,A1 ⊆ ω is dependently X-hyperimmune if for every
essential Σ

0,X
1 formula ϕ(U,V ), ϕ(R,S) holds for some R ⊆ A0 and S ⊆ A1.

Being essential is a density property. Intuitively, a formula ϕ(U,V ) is essential if we can
find arbitrarily large values to satisfy it. Therefore, one can ensure by a ∆0

2 construction of some
sets A0,A1 based on the finite extension method that every essential formula will have a valuation
included in A0 and A1.

If the pair A0,A1 is dependently hyperimmune, then A0 and A1 are both hyperimmune. A
reversal can be obtained for co-c.e. sets.

Lemma A.2.1 Fix two sets A0,A1 such that A0 is X-co-c.e. The pair A0,A1 is dependently
X-hyperimmune iff A0 and A1 are X-hyperimmune.

Proof. We first show that if A0 and A1 are dependently X-hyperimmune then both A0 and A1 are
X-hyperimmune. Let F0,F1, . . . be a X-c.e. array. Let ϕ(U,V ) be the Σ

0,X
1 formula which holds

if U = Fi for some i ∈ ω . The formula ϕ(U,V ) is essential, therefore there ϕ(R,S) holds for
some finite set R ⊆ A0 and S ⊆ A1. In particular, R = Fi for some i ∈ ω , therefore Fi ⊆ A0 and
A0 is hyperimmune. Similarly, the Σ

0,X
1 formula ψ(U,V ) which holds if V = Fi for some i ∈ ω

witnesses that A1 is hyperimmune.
We now prove that if A0 and A1 are X-co-c.e. and X-hyperimmune, then the pair A0,A1

is dependently X-hyperimmune. Let ϕ(U,V ) be an essential Σ
0,X
1 formula. Define an X-c.e.

sequence of sets F0 < F1 < .. . such that for every i ∈ ω , there is some R < Fi such that ϕ(R,Fi)
holds and R ⊆ A0. First, notice that the sequence is X-c.e. since A0 is X-co-c.e. Second, we
claim that the sequence is infinite. To see this, define an X-c.e. array E0 < F1 < .. . such that for
every i ∈ ω , there is some finite set S > Ei such that ψ(Ei,S) holds. The array is infinite since
ψ(U,V ) is essential. Since A0 is X-hyperimmune, there are infinitely many i’s such that Ei ⊆ A0.
Last, by X-hyperimmunity of A1, there is some i ∈ ω such that Fi ⊆ A1. By definition of Fi, there
is some R ⊆ A0 such that ϕ(R,Fi) holds. �

Definition A.2.2 — Preservation of dependent hyperimmunity. A Π1
2 statement P admits

preservation of dependent hyperimmunity if for every set Z, every pair of dependently Z-
hyperimmune sets A0,A1 ⊆ ω and every P-instance X ≤T Z, there is a solution Y to X such
that A0,A1 are dependently Y ⊕Z-hyperimmune.
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As usual, note that preservation of dependent hyperimmunity is a preservation property,
therefore if some Π1

2 statement P admits preservation of dependent hyperimmunity while another
statement Q does not, then by Lemma 3.4.2, P does not computably entail Q. We start by proving
that SCAC does not admit preservation of dependent hyperimmunity.

Theorem A.2.2 There exists a computable, stable semi-transitive coloring f : [ω]2 → 2 such
that the pair A0,A1 is dep. hyperimmune, where Ai = {x : lims f (x,s) = i}.

Proof. Fix an enumeration ϕ0(U,V ),ϕ1(U,V ), . . . of all Σ0
1 formulas. The construction of the

function f is done by a finite injury priority argument with a movable marker procedure. We
want to satisfy the following scheme of requirements for each e, where Ai = {x : lims f (x,s) = i}:

Re : ϕe(U,V ) essential → (∃R ⊆ f in A0)(∃S ⊆ f in A1)ϕe(R,S)

The requirements are given the usual priority ordering. We proceed by stages, maintaining
two sets A0,A1 which represent the limit of the function f . At stage 0, A0,0 = A1,0 = /0 and f is
nowhere defined. Moreover, each requirement Re is given a movable marker me initialized to 0.

A strategy for Re requires attention at stage s+1 if ϕe(R,S) holds for some R < S ⊆ (me,s].
The strategy sets A0,s+1 = (A0,s r (me,min(S))∪ [min(S),s] and A1,s+1 = (A1,s r [min(S),s])∪
(me,min(S)). Note that (me,min(S))∩ [min(S),s] = /0 since R < S. Then it is declared satisfied

and does not act until some strategy of higher priority changes its marker. Each marker me′ of
strategies of lower priorities is assigned the value s+1.

At stage s+1, assume that A0,s ∪A1,s = [0,s) and that f is defined for each pair over [0,s).
For each x ∈ [0,s), set f (x,s) = i for the unique i such that x ∈ Ai,s. If some strategy requires
attention at stage s+ 1, take the least one and satisfy it. If no such requirement is found,
set A0,s+1 = A0,s ∪{s} and A1,s+1 = A1,s. Then go to the next stage. This ends the construction.

Each time a strategy acts, it changes the markers of strategies of lower priority, and is
declared satisfied. Once a strategy is satisfied, only a strategy of higher priority can injure it.
Therefore, each strategy acts finitely often and the markers stabilize. It follows that the A’s also
stabilize and that f is a stable function.

Claim A.2.3 For every x < y < z, f (x,y) = 1∧ f (y,z) = 1 → f (x,z) = 1

Proof. Suppose that f (x,y) = 1 and f (y,z) = 1 but f (x,z) = 0. By construction of f , x ∈ A0,z,
x ∈ A1,y and y ∈ A1,z. Let s ≤ z be the last stage such that x ∈ A1,s. Then at stage s+ 1, some
strategy Re receives attention and moves x to A0,s+1 and therefore moves [x,s] to A0,s+1. In
particular y ∈ A0,s+1 since y ∈ [x,s]. Moreover, the strategies of lower priority have had their
marker moved to s+1 and therefore will never move any element below s. Since f (y,z) = 1,
then y ∈ A1,z. In particular, some strategy Ri of higher priority moved y to A1,t+1 at stage t +1
for some t ∈ (s,z). Since Ri has a higher priority, mi ≤ me, and since y is moved to A1,t+1, then
so is [mi,y], and in particular x ∈ A1,t+1 since mi ≤ me ≤ x ≤ y. This contradicts the maximality
of s. �

Claim A.2.4 For every e ∈ ω , Re is satisfied.

Proof. By induction over the priority order. Let s0 be a stage after which no strategy of higher
priority will ever act. By construction, me will not change after stage s0. If ϕe(U,V ) is essential,
then ϕe(R,S) holds for two sets me < R < S. Let s = 1+max(s0,S). The strategy Re will require
attention at some stage before s, will receive attention, be satisfied and never be injured. �

This last claim finishes the proof. �
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Corollary A.2.5 SCAC does not admit preservation of dependent hyperimmunity.

Proof. Let f : [ω]2 → 2 be the coloring of Theorem A.2.2. By construction, the pair A0,
A1 is dependently hyperimmune, where Ai = {x : lims f (x,s) = i}. Let H be an infinite f -
homogeneous set. In particular, H ⊆ A0 or H ⊆ A1. We claim that the pair A0,A1 is not
dependently H-hyperimmune. The Σ

0,H
1 formula ϕ(U,V ) defined by U 6= /0∧V 6= /0∧U ∪V ⊆ H

is essential since H is infinite. However, if there is some R ⊆ A1 and S ⊆ A0 such that ϕ(R,S)
holds, then H ∩A0 6= /0 and H ∩A1 6= /0, contradicting the choice of H. Therefore A0,A1 is not
dependently H-hyperimmune. Hirschfeldt and Shore [HS07] proved that SCAC is equivalent to
stable semi-transitive Ramsey’s theorem for pairs over RCA0. Therefore SCAC does not admit
preservation of dependent hyperimmunity. �

We will now prove the positive preservation result.

Theorem A.2.6 For every k ≥ 2, psRT2
k admits preservation of dep. hyperimmunity.

Proof. The proof is done by induction over k ≥ 2. Fix a pair of sets A0,A1 ⊆ ω dependently
Z-hyperimmune for some set Z. Let f : [ω]2 → k be a Z-computable coloring and suppose that
there is no infinite f -thin set H such that the pair A0,A1 is dependently H ⊕Z-hyperimmune,
as otherwise, we are done by induction hypothesis. We will build k infinite sets G0, . . . ,Gk−1

such that Gi is pseudo-homogeneous for f with color i for each i < k and such that A0,A1 is
dependently Gi ⊕Z-hyperimmune for some i < k. The sets G0, . . . ,Gk−1 are built by a variant of
Mathias forcing (F0, . . . ,Fk−1,X) such that

(i) Fi ∪{x} is pseudo-homogeneous for f with color i for each x ∈ X

(ii) X is an infinite set such that A0,A1 is dependently X ⊕Z-hyperimmune
A condition d = (H0, . . . ,Hk−1,Y ) extends c= (F0, . . . ,Fk−1,X) (written d ≤ c) if (Hi,Y ) Mathias
extends (Fi,X) for each i< k. A tuple of sets G0, . . . ,Gk−1 satisfies c if for every n∈ω , there is an
extension d = (H0, . . . ,Hk−1,Y ) of c such that Gi↾n ⊆ Hi for each i < k. Informally, G0, . . . ,Gk−1

satisfy c if the sets are generated by a decreasing sequence of conditions extending c. In particular,
Gi is pseudo-homogeneous for f with color i and satisfies the Mathias condition (Fi,X). The
first lemma shows that every sufficiently generic filter yields a k-tuple of infinite sets.

Lemma A.2.7 For every condition c = (F0, . . . ,Fk−1,X) and every i < k, there is an exten-
sion d = (H0, . . . ,Hk−1,Y ) of c such that |Hi|> |Fi|.

Fix an enumeration ϕ0(G,U,V ),ϕ1(G,U,V ), . . . of all Σ
0,Z
1 formulas. We want to satisfy the

following requirements for each e0, . . . ,ek−1 ∈ ω:

R~e : R
G0
e0

∨ . . . ∨ R
Gk−1
ek−1

where RG
e is the requirement “ϕe(G,U,V ) essential → ϕe(G,R,S) for some R ⊆ A0 and S ⊆ A1”.

We say that a condition c forces R~e if R~e holds for every k-tuple of sets satisfying c. Note that
the notion of satisfaction has a precise meaning given above.

Lemma A.2.8 For every condition c and every k-tuple of indices e0, . . . ,ek−1 ∈ ω , there is an
extension d of c forcing R~e.

Proof. Fix a condition c = (F0, . . . ,Fk−1,X). Let ψ(U,V ) be the Σ
0,X⊕Z
1 formula which holds if

there is a k-tuple of sets E0, . . . ,Ek−1 ⊆ X and a z ∈ X such that for each i < k,
(i) z > max(Ei)

(ii) Fi ∪Ei ∪{z} is pseudo-homogeneous for color i.
(iii) ϕei

(Fi ∪Ei,Ui,Vi) holds for some Ui ⊆U and Vi ⊆V
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Suppose that c does not force R~e, otherwise we are done.
We claim that ψ is essential. Since c does not force R~e, there is a k-tuple of infinite

sets G0, . . . ,Gk−1 satisfying c and such that ϕei
(Gi,U,V ) is essential for each i < k. Fix some

x ∈ ω . By definition of being essential, there are some finite sets R0, . . . ,Rk−1 > x such that for
every y ∈ ω , there are finite sets S0, . . . ,Sk−1 > y such that ϕei

(Gi,Ri,Si) holds for each i < k.
Let R =

⋃
Ri and fix some y ∈ ω . There are finite sets S0, . . . ,Sk−1 > y such that ϕei

(Gi,Ri,Si)
holds for each i < k. Let S =

⋃
Si. By continuity, there are finite sets E0, . . . ,Ek−1 such that

Gi↾max(Ei) = Fi ∪Ei and ϕei
(Fi ∪Ei,Ri,Si) holds for each i < k. By our precise definition of

satisfaction, we can even assume without loss of generality that (F0 ∪E0, . . . ,Fk−1 ∪Ek−1,Y ) is a
valid extension of c for some infinite set Y ⊆ X . Let z ∈Y . In particular, by the definition of being
a condition extending c, z ∈ X , z > max(E0, . . . ,Ek−1) and Fi ∪Ei ∪{z} is pseudo-homogeneous
for color i for each i < k. Therefore ψ(R,S) holds, as witnessed by E0, . . . ,Ek−1 and z. Thus
ψ(R,S) is essential.

Since A0,A1 is dependently X ⊕Z-hyperimmune, then ψ(R,S) holds for some R ⊆ A0 and
some S ⊆ A1. Let E0, . . . ,Ek−1 ⊆ X be the k-tuple of sets and z ∈ X be the integer witnessing
ψ(R,S). Let i < k be such that the set Y = {w ∈ X r [0,max(Ei)] : f (z,w) = i} is infinite. The
condition d = (F0, . . . ,Fi−1,Fi ∪Ei ∪{z},Fi+1, . . . ,Fk−1,Y ) is a valid extension of c forcing R~e.

�

Let F = {c0,c1, . . .} be a sufficiently generic filter containing ( /0, . . . , /0,ω), where cs =
(F0,s, . . . ,Fk−1,s,Xs). The filter F yields a k-tuple of sets G0, . . . ,Gk−1 defined by Gi =

⋃

s Fi,s.
By construction, G0, . . . ,Gk−1 satisfies every condition in F . By Lemma A.2.7, the set Gi is
infinite for each i < k and by Lemma A.2.8, the pair A0,A1 is dependently Gi ⊕Z-hyperimmune
for some i < k. �

Corollary A.2.9 For every k ≥ 2, RCA0∧psRT2
k 6⊢ SCAC.

Proof. Immediate by Theorem A.2.6, Corollary A.2.5 and Lemma 3.4.2. �

Corollary A.2.10 RCA0∧ADS 6⊢ SCAC.

Proof. Immediate by the previous corollary and Theorem A.1.1. �
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