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géosciences, et je lui suis infiniment reconnaissant de m’avoir guidé, tout au long de ces

années, jusqu’ici.

Enfin, tout ceci n’aurait aucun sens sans la famille et les amis. Clément, les moments
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Introduction

Le cycle de l’eau est un acteur majeur de l’histoire de la Terre. Chaque année, plus de

quatre cent mille kilomètres cubes d’eau s’évaporent des océans, dont un quart précipite

ensuite à la surface des continents, sous forme de pluie ou de neige (figure 1, Rotaru et al.

(2006)). Une partie de ces précipitations s’évapore à nouveau par l’évapotranspiration,

et le reste se répartit en deux réservoirs principaux. La glace des calottes polaires et des

glaciers représente environ 69% des stocks d’eau douce (Gleick, 1996). Le reste est es-

sentiellement enfoui dans le sous-sol qui, lorsqu’il est suffisamment poreux et perméable,

forme un aquifère.

Les aquifères représentent une ressource essentielle pour l’Homme, fournissant envi-

ron la moitié de l’eau potable sur Terre et 20% des eaux d’irrigation (Darnault, 2008).

L’eau contenue dans les aquifères alimente aussi de nombreux écosystèmes (Le Maitre

et al., 1999; Naumburg et al., 2005). Enfin, les aquifères alimentent les rivières, qui ne

représentent que 0.6% des stocks d’eau douce, mais qui assurent l’essentiel des transferts

précipitations

évaporation

réservoirs
souterrains

atmosphère

océans

ruissellement

eaux de surface

Figure 1: Le cycle de l’eau.
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saturated
zone

water table

river
groundwater
flow

infiltration

Figure 2: Une rivière est souvent la partie affleurant à la surface terrestre d’une nappe

phréatique étendue dans tout le sous-sol environnant. Si la surface de la nappe est

au-dessus de la rivière, la pression pousse l’eau souterraine vers la rivière.

d’eau, de minéraux dissous et de matières organiques (Maher and Chamberlain, 2014).

Lorsqu’une goutte de pluie atteint le sol, deux chemins s’offrent à elle. Si le sol n’est

pas suffisamment perméable, elle reste à sa surface, et ruisselle pour s’écouler dans une

rivière. Si le sol est suffisamment perméable, l’eau s’infiltre sous l’effet de la gravité, et

alimente les aquifères. Les nappes phréatiques, situées à faible profondeur, ne sont pas

confinées: leur surface supérieure (water table) est libre de s’adapter aux conditions de

l’écoulement.

Lorsqu’une nappe est alimentée par la pluie, sa surface s’élève, la pression dans

l’aquifère augmente, et l’eau s’écoule vers les zones de moindre pression. Là où la sur-

face de la nappe s’élève suffisamment pour atteindre celle du sol, l’eau affleure et forme

une rivière (figure 2). C’est ainsi que l’eau des nappes phréatiques rejoint le réseau de

drainage qui l’entrâıne vers les océans.

Les nappes phréatiques sont le théâtre de réactions chimiques qui altèrent les roches

qui constituent l’aquifère. L’ensemble de ces réactions chimiques transforme les roches

primaires en minéraux secondaires non solubles, en général des argiles, qui les remplacent

pour former un sol mobile et propice à la végétation (Brantley and Lebedeva, 2011).

Les ions dissous, quant à eux, sont emportés par les nappes phréatiques vers les rivières

puis les océans, où ils précipitent et forment des roches sédimentaires (Gaillardet et al.,

1999; Lloret et al., 2013).

Avant de précipiter au fond des océans, les minéraux solubles issus de l’altération sont

déversés par les nappes phréatiques dans les rivières, sous forme d’ions. Ils représentent

donc un moyen d’observer l’écoulement dans les nappes phréatiques. Pour mesurer la

quantité de minéraux dissous dans une rivière, on mesure la conductivité électrique

de l’eau, proportionnelle à sa concentration en ions. La figure 3 montre le débit et la

conductivité de la rivière Bras-David (Guadeloupe) en fonction du temps, ainsi que le
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Figure 3: Taux de précipitations ( , haut), conductivité électrique ( , milieu), et

débit ( , bas) de la rivière Bras-David (Guadeloupe), en Janvier 2014. La conductivité

électrique crôıt avec la concentration en ions. Lorsque le débit de la rivière augmente,

la conductivité diminue.



4 INTRODUCTION

taux de précipitation. Lorsqu’il pleut, le débit de la rivière augmente, et la conductivité

diminue rapidement. L’explication la plus simple attribue ces variations au ruissellement

de surface, dont l’écoulement est beaucoup plus rapide que celui des nappes phréatiques.

En effet, l’eau du ruissellement ne traverse pas la nappe, et ne se charge donc pas en

éléments dissous. Le ruissellement, de faible concentration, dilue l’eau de la rivière, et la

concentration de cette dernière diminue donc en période de crue (Johnson et al., 1969).

Cependant, dans la plupart des cas, les mesures de concentration en période de crue

sont supérieures à la concentration attendue pour une simple dilution (Neal and Rosier,

1990; Kirchner et al., 2000). Cela signifie que l’eau de pluie, avant d’arriver dans la

rivière, s’est écoulée dans la nappe et s’est chargée en ions (McDonnell, 1990; Kirchner,

2009). Des transferts rapides ont donc lieu au sein des nappes phréatiques, ce qui leur

permet de délivrer aux rivières des quantités d’ions importantes lors des crues.

L’origine physique ou chimique de cette surprenante rapidité demeure débattue à

l’heure actuelle (Kirchner, 2003; McDonnell, 2003). D’une part, il s’agit d’évaluer la

vitesse des réactions d’altération (Maher, 2010). Celles-ci peuvent-elles être suffisam-

ment rapides pour expliquer la grande concentration en ions observée dans les rivières

en temps de crue ? D’autre part, il s’agit d’évaluer la vitesse et la dynamique des

écoulements souterrains. Les nappes phréatiques peuvent-elles réagir suffisamment rapi-

dement à la pluie pour augmenter de manière significative le débit, et donc la quantité

d’ions délivrés à la rivière en temps de crue ?

Dans cette thèse, nous nous intéresserons à la dynamique des écoulements dans les

nappes phréatiques, et à l’influence de cette dynamique sur le débit des rivières. Lorsqu’il

pleut, la surface d’une nappe phréatique s’élève, ce qui augmente la pression au sein de

la nappe et entrâıne une augmentation du débit délivré aux rivières (Sophocleous, 2002;

Bresciani et al., 2014). Lorsqu’il ne pleut plus, l’aquifère se vide lentement, la surface

de la nappe décrôıt progressivement, et avec elle le débit de la rivière qu’elle alimente

(Troch et al., 1993; Chapman, 2003; Troch et al., 2013).

Comme les écoulements en milieu poreux sont lents, une nappe continue d’alimenter

sa rivière longtemps après la fin de la pluie, maintenant ainsi son débit d’étiage (drought

flow). Ce mécanisme a fait l’objet de nombreuses études (Ibrahim and Brutsaert, 1965;

Sanford et al., 1993; Brutsaert and Nieber, 1977; Szilagyi and Parlange, 1998; Brutsaert

and Lopez, 1998). En revanche, le comportement d’une nappe et de sa surface libre en

réaction à la pluie est bien moins documenté (Beven, 1981; Pauwels and Troch, 2010).

Ce manuscrit sera majoritairement consacré à la réponse rapide d’une nappe phréatique

à un événement de pluie. Nous focaliserons notamment notre attention sur le début de

cette réponse transitoire (régime asymptotique). Dans ce but, notre approche consistera

à simplifier le système au maximum. Cette simplification nous permettra d’élaborer un

modèle analytique, que nous testerons dans une expérience de laboratoire. Une fois

validé en laboratoire, nous pourrons ensuite évaluer la pertinence de ce modèle et tester

ses prédictions dans des aquifères naturels, plus complexes.

Le manuscrit s’organisera autour de quatre parties. Nous présenterons tout d’abord

un état des connaissances sur les écoulements souterrains (partie I). Le chapitre 1
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présentera, de manière générale, les modèles actuels, essentiellement numériques. Dans

le chapitre 2, nous présenterons, de manière plus spécifique, comment le problème peut

être traité analytiquement et expérimentalement. Dans une deuxième partie, nous mon-

trerons comment une nappe phréatique génère une crue (partie II). Pour cela, nous tra-

vaillerons dans le cadre de l’approximation de Dupuit-Boussinesq, qui permet de réduire

la description de notre écoulement souterrain à une seule dimension (approximation de

l’eau peu profonde). Nous comparerons notamment un régime asymptotique de montée

de crue, dérivé de la théorie de Dupuit-Boussinesq, aux résultats d’une expérience de

laboratoire (chapitre 3). Dans une troisième partie, nous présenterons une expérience

de terrain destinée à identifier ces régimes dans un petit bassin versant (partie III).

Nous vérifierons tout d’abord que la nappe se comporte bien, qualitativement, comme

dans notre expérience de laboratoire (chapitre 4). Nous présenterons ensuite plusieurs

méthodes pour évaluer les caractéristiques hydrauliques de l’aquifère (chapitre 5). Nous

analyserons enfin la dynamique du débit de la rivière à l’aide de régimes asymptotiques

dérivés de la théorie de Dupuit-Boussinesq (chapitre 6). Nous comparerons enfin ces

régimes asymptotiques à des hydrographes d’autres bassins versants (chapitre 7). Enfin,

la dernière partie montrera comment la théorie de Dupuit-Boussinesq peut être mise en

défaut, même dans une géométrie simple (partie IV, chapitre 8).
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Chapter 1

Groundwater flows
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This manuscript is devoted to the dynamics of groundwater flow. The present chap-

ter attempts to present how groundwater flow is modelled in the hydrogeology literature.

Through their storage capacities, aquifers act as filters between the rainfall signal and

its output as streamflow. Lumped-parameter models reduce this filter to a single-valued

function, generally relating the discharge delivered by the aquifer to the volume of wa-

ter stored in the aquifer. Yet, this filter can also be described on a physical basis, and

distributed models attempt to simulate the flow continuously within the whole aquifer.

Distributed models reproduce reality more accurately, but are more time-consuming

than lumped-parameter models.

9
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1.1 Aquifers as filtering reservoirs: lumped-parameter

models

1.1.1 Storage-Discharge relationships

Lumped-parameter models consider an aquifer as a black box, which transforms

an input signal (as rainfall) into an output signal (as the river discharge). They are

generally used to study large-scale processes, such as the response of large aquifers to

climatic change, or the influence of pumping or dams on groundwater sustainability. In

these models, the aquifer is a module among others, such as vegetation, overland flow or

climate. As an example, the Hydrologiska Byr̊ans Vattenbalansavdelning (HBV) model

(Bergström et al., 1995) has allowed to study the impact of snowmelt on a stream

discharge in Turkey, or the impact of climatic change on river flooding in a small river

in France (Şorman et al., 2009; Booij, 2005).

As they attempt to simulate numerous complex processes at the same time, lumped-

parameter models must reduce these processes to simple behaviours. The aquifer module

is generally used to assess groundwater sustainability through the volume S of water

stored in the aquifer, and the discharge Q delivered to the river. The simplest way to

estimate both is to relate them with a single function:

Q = f(S) . (1.1)

The function f varies according to the different models, but is often a power law.

An exponent of one simply models the aquifer as a linear reservoir (Alcamo et al.,

2003; Döll et al., 2003). However, this linear representation of an aquifer is generally not

satisfactory (Tallaksen, 1995). Lindström et al. (1997) or Kirchner (2009) thus propose

to represent the function f with a general power law

Q = k Sn , (1.2)

where k and the exponent n are fitting parameters, characterising the aquifer. Chapman

(1999) adds further complexity, and proposes to separate the groundwater reservoir into

two reservoirs: a shallow storage Ss and a deep storage Sd. This separation into two

reservoirs is supposed to reflect the variations of the hydraulic properties with depth.

The discharge is then the sum of the shallow discharge Qs = ks Ss and of the deep

discharge Qd = kd (Ss + Sd). Tallaksen (1995) finally states that the exponent itself

could also depend on the storage:

Q = k S1+αS , (1.3)

where α is a fitting parameter.

Tallaksen (1995), in a review of drought flow analysis, lists all the functions pro-

posed to relate Q and S. However, Chapman (1999) argues that these storage-discharge

relationships do not give full satisfaction during rainfall events. Finally, Sloan (2000)

observes hysteretic behaviours between the discharge and the storage of an aquifer, and

shows that a single-valued storage-discharge function cannot reproduce such behaviours.
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Figure 1.1: Illustration of a catchment as a filter, which receives and processes an input

signal (rainfall, but also chemicals), and delivers an output signal into a stream.

1.1.2 Transit-time models

The transit-time distribution is another way to represent the flow within an aquifer

(figure 1.1). The transit (or residence) time is defined as the time water spends flowing

within an aquifer, from the moment it enters the aquifer to the moment it exits the

aquifer, generally into a river (McDonnell et al., 2010). The transit time of a water

droplet thus depends on its distance to the river when it enters the aquifer. The area

drained by the river defines the catchment. The latter is characterised by a spatial

distribution of distinct transit times. These transit times depend on many factors such

as the permeability or the geology of the aquifer. A catchment can thus be represented

by a transit time distribution, which provides important information to describe its

filtering process.

Three generic distributions are usually used to represent the transit-time distribution

of a catchment (McGuire and McDonnell, 2006). The simplest one, called the piston-

flow model, considers that the flow pathways to the river all have the same velocity and

path length. The distribution thus consists of a single transit time, calculated as the

ratio of the catchment storage over its outflow discharge. This model is rather unrealistic

(McGuire and McDonnell, 2006).

The exponential model simply uses an exponential distribution of transit times. Hait-

jema (1995) shows that this distribution can be inferred from a physical description of the

groundwater flow, in the specific case where the shallow water (or Dupuit-Boussinesq)

approximation holds, and where the Dupuit-Boussinesq equation can be linearised (see

chapter 2, section 2.3).

The third common model is the dispersion model, inferred from the one-dimensional

advection-dispersion equation (Kreft and Zuber, 1978; Ma loszewski and Zuber, 1982).
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Yet, this solution assumes a unique flow path. Integrating spatially this solution over

all the pathways of the catchment, this model can account for fractal distributions of

chemical tracers, suggesting a fractal distribution of flow paths (Kirchner et al., 2000,

2001).

These three transit-time distributions are generally used in lumped-parameter mod-

els. For example, McGuire et al. (2005) analyse the composition of δ18O as an age tracer

for water, and use these models to fit their data. As a result, these fits yield the mean

residence time in the catchment. Comparing their results on seven different catchments,

McGuire et al. (2005) find that the exponential model yields the best results.

Most transit time distribution models are based on a common assumption: linear-

ity. In addition to provide simple transit time distributions, linearity allows frequency-

domain analyses, and defines a mean residence time. Yet, Cardenas (2007) shows that

the full resolution of the two-dimensional flow equations also results in a power-law

distribution. Power-law distributions are not associated with any mean or characteris-

tic residence time (McGuire et al., 2005). In the previous section, we also noted that

the assumption of linear reservoirs is generally not satisfactory, and would deserve fur-

ther evaluation (Tallaksen, 1995). For this purpose, we must describe physically the

groundwater flow.

1.2 Flow in a porous aquifer

To understand the groundwater flow, we must first describe its reservoirs.

1.2.1 Groundwater reservoirs

A great variety of rocks constitute Earth’s surface, which thus presents varied land-

scapes. All areas of Earth have their own history, yet most share the ability to store

water. An underground permeable layer of rock which contains water is called an aquifer.

The storage capacity of an aquifer depends on the properties of the rock. For instance,

the ground near Plœmeur, Brittany, was studied to better understand the flow in under-

ground fracture networks (Le Borgne et al., 2004, 2006b). The igneous and metamorphic

rocks composing this aquifer are referred to as crystalline rocks, because they are highly

impermeable. A very productive source yet reveals significant groundwater storage

(Le Borgne et al., 2006a). In this specific case, groundwater infiltrates into fractures

between blocks of impervious rocks. At the other end of the spectrum, the Apalachicola

Bluffs and Ravine Preserve, located in North Florida, present ramified stream networks

which shape could be related to groundwater flow (Petroff et al., 2011; Devauchelle

et al., 2012; Petroff et al., 2013). The ground is composed of a rather homogeneous

quartz sand. It is obviously porous and permeable to water (Devauchelle et al., 2011).

The geology of these two sites is different, yet both contain groundwater.

The capacity of an aquifer to store water is primarily controlled by its porosity s,

defined as the volume Vvoid of voids contained in a given volume Vtot of solid:
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Type of rock Porosity

Unaltered granite and gneiss 0.02− 1.8%

Quartzite 0.8%

Shales, slates, mica-shists 0.5− 7.5%

Limestones, primary dolomites 0.5− 12.5%

Secondary dolomites 10− 30%

Chalk 8− 37%

Sandstones 3.5− 38%

Volcanic tuff 30− 40%

Sands 15− 48%

Clays 44− 53%

Swelling clays, silt Up to 90%

Tilled arable soils 45− 65%

Table 1.1: Typical porosity of several types of rocks and granular materials. Fractures

are not taken into account, and can significantly increase the porosity in some cases.

Table reproduced from De Marsily (1986).

s =
Vvoid

Vtot

. (1.4)

By definition, the porosity ranges between zero and one. Its value varies significantly

from one aquifer to another (figure 1.2). As an example, the random packing of perfect

spheres with uniform size has a porosity of about s ' 0.4 (Andreotti et al., 2012).

In sand aquifers, which generally have a non-uniform grain-size distribution, the small

grains fill the pores between larger grains, and consequently the volume of void decreases

(figure 1.2b): sand aquifers have a porosity of the order of a few dozens of per cent

(De Marsily, 1986). In fractured aquifers, where the ground is made of large blocks of

rock, the porosity can be due to both the porosity of the rock itself, and to the fractures

between the rocks (figure 1.2c). Depending on the porosity of the rocks, the number and

the volume of the fractures, the porosity can be as low as a few per cent, or even lower

(Halley and Schmoker, 1983; De Marsily, 1986; Andermann et al., 2012). Table 1.1 lists

the typical porosity of several types of rocks and granular materials.

As a consequence of this porosity, the ground can store water. In general, we define

three zones of groundwater storage (De Marsily, 1986). Near the surface, the vadose

zone is unsaturated: it contains both water and air (figure 1.3). The water content

progressively increases with depth, until the ground becomes fully saturated. Under the

vadose zone, two distinct layers form the saturated zone. The capillary fringe defines

the upper layer, in which surface tension lowers the water pressure below atmospheric

pressure (Abdul and Gillham, 1984). Under the capillary fringe, the phreatic zone is

saturated with water, and its pressure is higher than atmospheric pressure. The virtual
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(a) (b) (c)

Figure 1.2: Influence of the grain-size distribution and grain shape on an aquifer porosity.

(a): Packing of monodisperse spheres. (b): Packing of polydisperse spheres. The small

grains fill the pores between larger grains, and the resulting porosity is lower. (c):

Fractured aquifer.

vadose
zone

capillary
fringe

phreatic
zone

water
 tab

le

depth

pressure

water content

100%0

Figure 1.3: The three groundwater reservoirs. The vadose zone is not saturated, the

capillary fringe is saturated and at “negative pressures” (less than atmospheric), and

below the water table the ground is saturated and at “positive” pressures.
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surface at which the water pressure is atmospheric is the water table.

Both the vadose zone and the capillary fringe are dominated by surface tension.

In the vadose zone, surface tension causes part of the water to adhere to the walls of

the rocks, inducing spatial and temporal variations of water content. In the saturated

zone, the capillary rise of water is due to surface tension. According to Jurin’s law,

the smaller the size of the pores in the ground, the higher the capillary fringe (Guyon

et al., 2001). In a layer of clay, the capillary fringe may be as high as a few metres

(Polubarinova-Kochina, 1962). In sand, where the pore size is larger, the capillary rise

is of the order of a few centimetres.

Surface tension induces problems of wetting and of hysteresis, and is sensitive to

the geometry of the pores (de Gennes et al., 2002; Marchand et al., 2011; Snoeijer

and Andreotti, 2013). Its consequences are uneasy to quantify. Richards (1931) and

Brutsaert (1968) described the vertical flow of water within the unsaturated zone with

Darcy’s law (see next section), and a permeability which depends on the water content.

This approach is equivalent to treating the unsaturated zone as a saturated zone of

varying permeability. Parlange and Brutsaert (1987) estimate the influence of such flow

on the drainage of an initially saturated aquifer. Chapman (2003) assumes that the

unsaturated zone drains as a linear reservoir, and estimates its influence on the flow

in the saturated zone. Finally, Abdul and Gillham (1984) investigate experimentally

the effects of the capillary fringe on streamflow generation, and conclude that a large

capillary fringe may accelerate streamflow generation.

Under the water table, water is moved by the combined action of pressure and

gravity. In the next section, we will describe more precisely the mechanisms which

drive the motion of a fluid in a saturated porous material, when surface tension can be

neglected.

1.2.2 Fluid motion in a saturated porous material

Darcy (1856) was the first to investigate the flow of a fluid through a porous material,

with an experiment represented in figure 1.4. In his experiment, water flows steadily

through a column of sand. The water pressure is imposed at both ends of the column,

and measured as a water height ∆H, also called pressure head. Measuring the discharge

Q flowing out of the column, Darcy observed that it is proportional to the pressure head

and inversely proportional to the length L of the column:

Q = K S
∆H

L
, (1.5)

where S is the section of the column and K is the proportionality coefficient. This

proportionality coefficient, expressed in m s−1, is the hydraulic conductivity of the porous

material. It depends on the material properties, but also on the fluid properties.

The empirical result (1.5) obtained by Darcy is very robust. It has been generalised

to three-dimensional flows:

q = −k
η

(∇p− ρg), (1.6)
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S

L

Q

Figure 1.4: Darcy experiment. The discharge Q is proportional to the pressure head

∆H.

where η is the dynamic viscosity of the fluid, P is the pressure, ρ is the density of the

fluid, and g is the acceleration of gravity. Here, q is the specific flux, or discharge per unit

area. It has the dimensions of a velocity, but is not equal to the actual velocity v of the

fluid. Because only a fraction of the total volume is available for the flow, the specific

flux is lower than the actual velocity of the fluid within the pores. Both are related

through the porosity s of the material: q = sv. Finally, the proportionality coefficient

k is the permeability of the porous medium. With the dimension of a surface (m2), it

characterises the geometry of the porous material only, and is roughly proportional to

the square size of the pores, and to porosity (Guyon et al., 2001). It is related to the

hydraulic conductivity K through the following relationship:

K =
k ρ g

η
. (1.7)

Several limitations hinder the validity of Darcy’s law (1.6). First, it is valid only for

laminar flows. When the Reynolds number increases beyond order one, the discharge

deviates from its linear relationship with the pressure gradient (Brutsaert, 2005). Sec-

ond, equation (1.6) only concerns isotropic materials. Some porous materials, made of

lamellar grains for example, may exhibit preferential directions (Dagan, 1967). When

this is the case, the permeability is a 3D tensor which takes into account anisotropy.

Natural aquifers provide several examples where Darcy’s law is not valid. In karstic

aquifers, water flows within cavities as large as a few metres, such that the flow is not

laminar (Aquilina et al., 2006). In fractured aquifers, some fractures may also be so

large that the Reynold’s number would increase beyond the limit of validity of Darcy’s

law (Long et al., 1982; Renard and De Marsily, 1997). In some regions, fractures are

oriented preferentially in a specific direction, and the aquifer is not isotropic (Neuman

et al., 1984).
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Figure 1.5: Conceptual scheme of a fractured aquifer. Fracture networks are character-

ized by a multi-scale heterogeneity. Arrow size represents the relative contribution to

the flow of the different structures. From Jiménez-Mart́ınez et al. (2013).

In the next section, we briefly present how one can model the groundwater flow

within fractured aquifers.

1.2.3 Flow inside fractures

Fractured aquifers are composed of large blocks of impermeable rocks, separated by

a network of interconnected fractures (figure 1.5). The scale of these fractures can be

highly variable, even within a single aquifer. Inferring general hydraulic properties from

such aquifers therefore raises difficulties. The multi-scale nature of fractures networks in

fractured aquifer induces strong heterogeneities (Davy et al., 2006). Modelling the con-

sequently heterogeneous flow field generally requires statistical and numerical methods

(Berkowitz et al., 2006; Le Borgne et al., 2008). As an example, the software MPFRAC

(see on the platform H2OLAB1) is devoted to stochastic simulations of groundwater

flow into fractured aquifers (Le Goc, 2009; Erhel et al., 2009). It simulates a random

network of fractures (with given properties, such as a fracture-length distribution), and

then simulating the flow within these fractures.

Yet, numerous studies try to simplify these highly heterogeneous structures, looking

for equivalences with classical porous media. One can thus define an equivalent perme-

ability, and study how it is influenced by the distribution of fractures scales (de Dreuzy

1http://h2olab.inria.fr/

http://h2olab.inria.fr/
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et al., 2004; Davy et al., 2006). Within this approach, one focuses on the average

properties of the flow (Le Borgne et al., 2004).

The average properties are then often modelled with lumped-parameter models.

The simplest one is to model the aquifer as a linear reservoir (Gelhar, 1993). A second

model is the Dupuit model, based on the theory of flow into porous media (linearised

Dupuit-Boussinesq equation, see section 2.3) (Jiménez-Mart́ınez et al., 2013). A third

class of models, called combined model, considers two flow components: a rapid flow

component corresponding to a shallow reservoir, and a linear or Dupuit model describing

the contribution of a deep reservoir (Molenat et al., 1999; Trinchero et al., 2011).

The hydrological properties of fractured aquifers are often studied with frequency

domain analysis and transfer functions (Gelhar, 1986; Molenat et al., 1999; Jiménez-

Mart́ınez et al., 2013). This method assumes a linear relationship between the input

and the output.

Porous media are simpler to cope with, because one can model the flow continuously.

1.3 Groundwater flow in a homogeneous aquifer

As opposed to fractured aquifer, classical porous aquifers are composed of a large

amount of small grains of rock, like a granular material at rest. These aquifers are

simpler to cope with, because one can model the flow continuously at the scale of the

aquifer.

1.3.1 Laplace equation

Unconfined aquifers generally present a thickness of several metres. At this scale,

we consider water as incompressible. As a consequence, continuity ensures that the

divergence of the velocity q vanishes:

∇ · q = 0 . (1.8)

Combined with Darcy’s law (1.6), the continuity equation induces that there exists a

scalar field φ, the velocity potential, which satisfies the Laplace equation

∇2φ = 0 , (1.9)

where ∇2 refers to the the Laplace operator. Stemming from Darcy’s law (1.6), the

velocity potential reads

φ =
p

ρ g
+ y , (1.10)

where y is the vertical coordinate oriented upwards. In the hydrogeology literature, the

velocity potential is often referred to as the hydraulic head h.

The Laplace equation (1.9) has been largely studied, in many different fields of

physics. As a non exhaustive list of examples:
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• In the absence of electric charges, the electric field E satisfies the Laplace equa-

tion. Around a point charge for example, the solution to the Laplace equation is

inversely proportional to the radius r squared:

E ∼ 1/r2 . (1.11)

• The temperature in a heat conductor and in steady state satisfies the Laplace

equation. For example, let’s consider a 1D conducting rod thermally isolated,

which extremities temperatures are T1 in x = 0 and T2 in x = L. The Laplace

equation results in a linear temperature field:

T (x) = T1 + (T2 − T1)
x

L
. (1.12)

• The velocity potential of a viscous fluid flowing between two closely spaced plates

(Hele-Shaw cell) satisfies the Laplace equation. When a viscous fluid pushes a

more viscous fluid, the laplacian potentials of the two fluids interact with each

other. This interaction acts on the fluids interface, which can deform into a wide

range of shapes, from fingers to fractals (Saffman and Taylor, 1958; Arneodo et al.,

1989; Lajeunesse and Couder, 2000).

These three examples, in which the Laplace equation leads to entirely different results,

only differ by their boundary conditions.

Natural aquifers offer a wide range of different boundary conditions, yet one usually

classifies aquifers into two types:

• when the upper surface of the saturated zone is bounded by an impermeable layer,

the aquifer is referred to as artesian — or confined. Confined aquifers typically

lie deep into the ground. Because of their confinement, artesian aquifers respond

linearly to changes in pressure — according to Darcy’s law.

• when the upper surface of the saturated zone is connected to the atmosphere

through the pores of the vadose zone (as in figure 1.3), the aquifer is said to be

unconfined. Contrary to confined aquifers, the upper surface of unconfined aquifers

is not fixed by any physical boundary, and adapts its shape to the flow conditions.

The water table acts therefore as a free surface. Being a free surface, the water

table possibly induces non-linear behaviours.

In this manuscript, we focus on unconfined aquifers. As rainwater infiltrates into

the aquifer, the water table rises to accommodate more water, until it reaches a drain

— generally a river or a spring. Moved by pressure gradients, groundwater then flows

towards the river. The aquifer progressively empties, until it receives rainwater again.

The rainfall fluctuations thus induce variations in the groundwater flow, which in turn

cause variations of the river discharge. To study these fluctuations, we must solve the

Laplace equation for the velocity potential.

Figure 1.6 represents the groundwater flow and its boundaries in a typical unconfined

aquifer. Hereafter, we describe these boundaries.
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Figure 1.6: Three-dimensional unconfined aquifer. Five boundaries delimit the ground-

water flow towards the river: the water table, the water divide, the river, the seepage

face and the bottom.

Groundwater divide. The area drained by the river is coloured in green. It is called

a catchment (or watershed). This area is delimited by the groundwater divide: outside

of this limit, groundwater flows towards another river. If we call n the unit vector

normal to the water divide, this condition formally reads

∂nφ = 0 . (1.13)

The location and shape of the groundwater divide mainly depend on the shapes of the

river network and of the adjacent rivers. However, in general, the groundwater divide is

distinct from the topographic divide (Haitjema and Mitchell-Bruker, 2005). Figure 1.7

illustrates this distinction. In a symmetric system, where the water table connects

two similar rivers at the same altitude, the ground elevation is likely to be similar to

the water table shape. In contrast, when the system is not symmetric, their shapes

can differ considerably. In practice, it is often difficult to determine the position of

the groundwater divide. It is underground, it can vary in time, and two-dimensional

effects can even induce non-vertical groundwater divides (see figure 8.1). Due to these

difficulties, this problem is often neglected, and one often assimilates topography and

groundwater divides to estimate drainage areas (see sections 7.1 and 7.2).

Impermeable bottom. At the bottom, the flow is generally bounded by an imper-

meable layer — although this bottom is not always well-defined. In some cases, the

permeability progressively decreases with depth, and the transition from the perme-

able aquifer to the impermeable bottom is smooth (Godsey et al., 2009). Sometimes

this transition is even considered to occur at infinite depth (Goderniaux et al., 2013).

For the sake of simplicity, we consider that a sharp interface separates the aquifer, of
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flow

Figure 1.7: Difference between topography (or water) divide and groundwater divide.

a) In a symmetric system, the topography approximately reflects the water table shape.

b) In an asymmetric system, the water table and the topography differ considerably.

homogeneous permeability, from its impermeable bottom. The flow cannot cross this

boundary, which formally reads

∂nφ = 0 . (1.14)

Free surface. The water table, being a free surface, concentrates the difficulties of

our problem. In particular, its moving location makes the flow time-dependent and

non-linear (figure 1.6). This situation, referred to as a Stefan problem, requires two

boundary conditions for a free boundary. Here, the first condition is that the water

table must accommodate rainwater. The mass balance describes its evolution:

(s ∂th−R)ny = K∇φ · n . (1.15)

Here, R denotes the rainfall rate, h the water table elevation, n the unit vector per-

pendicular to the water table, and ny its vertical component. We chose to note y the

vertical coordinate, oriented upwards. A single condition is not sufficient to determine

a free surface, and this mass balance must be supplemented with the condition that the

water table must be at atmospheric pressure. For the velocity potential, this condition

formally reads

φ = h on the free surface. (1.16)

Seepage face. When the water table rises sufficiently high, it may reach the ground

surface (see figure 2.2). In this case, water simply flows over the surface, following its

topography. The water table therefore adopts the shape of the Earth surface: it is

not a free surface any more. This fixed surface, called a seepage face, must satisfy the

atmospheric pressure condition only:

φ = h on the seepage face. (1.17)



22 CHAPTER 1. GROUNDWATER FLOWS

Drainage network. Finally, groundwater flows towards a network of channels. Along

this network, the river imposes its pressure to the groundwater flow, exactly as the at-

mosphere imposes its pressure to the seepage face. As the other boundaries, the river

network imposes its shape to the groundwater flow. Recent studies suggest that the

geometry of a river network, in turn, is sometimes determined by the groundwater flow

field, through seepage erosion (Devauchelle et al., 2012; Petroff et al., 2013).

Due to these boundary conditions, the flow in a natural aquifer depends on many

factors, among which: the ground elevation, the shape of the river network, the shape

of the other boundaries such as the water divide or the impervious bottom. Taking into

account all the parameters which uniquely determine the groundwater flow in a specific

aquifer requires numerical models. We now briefly present these models, often referred

to as distributed models.

1.3.2 Distributed models

Even in numerical methods, the free surface causes major difficulties. It is non-

linear, and contains the time-dependency of the problem. Several simplifications allow

to tackle the problem analytically, under simplified conditions — this is the subject of

the present manuscript. However, to account for more realistic conditions, one generally

resorts to numerical models. However, even numerical models require simplifications,

which vary according to the desiderata of the study. On the one hand, some models

take full account of the non-linearity of the free-surface condition — but they let aside

the time-dependency. On the other hand, some models allow to study the transients

properties of a groundwater flow — often requiring some linearisation of the free surface

condition. Hereafter, we attempt to establish a list of numerical methods used to solve

this problem, classifying them based on the simplifications they adopt.

Transient, Dupuit-Boussinesq approximation. Very popular in hydrogeology,

the Dupuit-Boussinesq (or shallow-water) approximation assumes that the flow is paral-

lel to the aquifer bottom. This removes one dimension to the problem — transforming

the Laplace equation into the Dupuit-Boussinesq equation (chapter 2). Sloan (2000)

solves numerically this equation to show that the discharge delivered by an aquifer is

not a single-valued function of its storage. Beven and Freer (2001) also use the shallow

water approximation, and linearise it for the TOPMODEL2. This model predicts the

evolution of the groundwater flow in any type of catchment, given its topography. This

model is popular because its simplicity adapts to many field situations. It is mainly

designed to predict floods.

Transient, linearised free surface. Younes et al. (2010) developed a numerical

model which solves the two-dimensional diffusion equation, taking into account com-

pressibility and volumetric source terms. Without source term, the diffusion equation

2http://csdms.colorado.edu/wiki/Model:TOPMODEL

http://csdms.colorado.edu/wiki/Model:TOPMODEL
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becomes the Laplace equation. However, they do not consider the water table as a free

surface, thus discarding the non-linearity of the problem.

Fully non-linear, steady state. Darbandi et al. (2007) present a numerical scheme

to solve the Laplace equation in a vertical two-dimensional plane, taking full account

of the non-linearity of the free-surface condition. Bresciani et al. (2012) propose an

alternative scheme, which allows them to simulate the groundwater flow in two and

three dimensions. With this model, they evaluate the validity of the Dupuit-Boussinesq

approximation in a specific geometric configuration (Bresciani et al., 2014).

Fully non-linear, transient. Finally, MODFLOW3 is a very popular model which

solves the diffusion equation with the non-linear and time-dependent free-surface condi-

tion (Harbaugh, 2005). MODFLOW can be used as a lumped-parameter model to study

water balances in a specific catchment, but also to study groundwater flow structures.

Goderniaux et al. (2013) use it to study the location of a two-dimensional flow in a deep

aquifer, and show that it can distribute over several scales, from first-order streams to

lower rivers. Woessner (2000) uses MODFLOW to study the water exchange between

the groundwater flow and a fluvial stream. However, MODFLOW suffers from problems

of convergence, and the water table is not always treated accurately (Naff and Banta,

2008; Bresciani, 2011).

1.4 Objective of the study

Numerical models have the advantage to take into account complex natural configu-

rations, such as spatial heterogeneities of the aquifer, or of the ground surface. However,

accounting for this complexity has a cost: these models are generally designed to model

the behaviour of a specific aquifer, and must be adapted to any new situation. In ad-

dition, many models assume linearity, as a simplification allowing to take into account

the natural complexity. However, several studies criticise this simplification (Tallaksen,

1995; Cardenas, 2007).

Are aquifers linear reservoirs? Is it possible to linearise the free-surface condition,

and what does it change? Are there generic features, which would be common to many

aquifers?

These questions particularly concern the transient behaviours of groundwater flow.

To address these questions, we choose to focus on simplified systems. The study of

simplified systems allows us to perform more simple mathematics, potentially leading

to analytic predictions. In addition, simplified systems can also be easily reproduced in

laboratory experiments, under controlled and reproducible conditions. Finally, once a

simplified system is understood, it is then easier to single out the prominent features

of its behaviour. The parsimony of simplified systems then allows us to answer general

questions, and to identify generic features.

3http://water.usgs.gov/ogw/modflow/

http://water.usgs.gov/ogw/modflow/
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In the next chapter, we present several ways to simplify the groundwater flow, both

analytically and experimentally.



Chapter 2

The Dupuit-Boussinesq theory

Modelling the groundwater flow in a natural aquifer is complicated, and requires

simplifications. In the previous chapter, we have presented the common simplifications

used in numerical models: assumption of steady state, or of linearity. In the present

chapter, we discuss how the Dupuit-Boussinesq approximation simplifies the study of

groundwater flows.

2.1 Vertical two-dimensional flow

A first step towards simplification of natural aquifers is to reduce the complexity of

the drainage network. A drainage network is often a complex ramification of channels

(figure 2.1). A common simplification is to reduce this network to a simple linear

channel, halving the aquifer into two symmetric parts around the channel. The channel

is further considered as infinitely long, such that groundwater flows perpendicularly to

the channel. In this simplified configuration, the groundwater flow can be reduced to a

vertical plane perpendicular to the river channel.

Figure 2.2 illustrates this two-dimensional groundwater flow. As we will see in

part IV, a theory based on complex analysis allows us to model the two-dimensional

groundwater flow in various geometries, although only in steady state (Polubarinova-

Kochina, 1962). We now concentrate on the dynamical behaviour of the groundwater

flow. To take the dynamics into account, we further remove one dimension, and adopt

the shallow-water approximation. In hydrogeology, this approximation is known as the

Dupuit-Boussinesq (or Dupuit-Forchheimer) approximation.

2.2 Reduction to one dimension: Dupuit-Boussinessq

approximation

The Dupuit-Boussinesq approximation combines Darcy’s law with the shallow-water

approximation to describe the groundwater flow in an unconfined aquifer (Boussinesq,

1903). Based on the observation that the horizontal dimension of the flow is often much

25
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Figure 2.1: A river network is a complex ramified network of channels (left). To simplify

the problem of groundwater flow, we reduce the network to a simple linear channel.

The channel halves the aquifer into two symmetric parts, equally feeding the river.

In this simplified configuration, the groundwater flow is confined to a vertical plane

perpendicular to the river. Figure from Bresciani et al. (2014).

river

seepage face

water table water divide

L

H

y

x

h

Figure 2.2: Two-dimensional groundwater flow towards a river, in a vertical section

perpendicular to the river channel.



2.2. Reduction to one dimension 27

larger than its vertical dimension (L � H), the shallow-water approximation assumes

that the velocity is almost horizontal, and that the vertical component of the velocity

vanishes: vy ∼ 0. Through Darcy’s law (1.6), this is equivalent to assuming that the

pressure is hydrostatic:

p = ρ g (h− y) . (2.1)

Accordingly, the horizontal velocity vx is proportional to the water table slope ∂xh, and

the total flux q of fluid through a vertical line halving the aquifer reads (figure 2.2)

q = −K h
∂h

∂x
. (2.2)

The mass balance then leads straightforwardly to the Dupuit-Boussinesq equation:

s
∂h

∂t
=
K

2

∂2h2

∂x2
+R , (2.3)

where s is the drainable porosity of the aquifer. The drainable porosity is the volume

of water that gravity would extract from a porous material in the absence of a pressure

gradient, divided by the total volume of porous material (De Marsily, 1986). Due to

surface tension, it differs slightly from the geometric porosity.

A major part of this manuscript will be devoted to solutions of the Dupuit-Boussinesq

equation, and their implications on the discharge of a river (parts II and III). The

Dupuit-Boussinesq equation is non-linear, and does not have any general analytical

solution. In the next section of this chapter, we present several analytical solutions

to the Dupuit-Boussinesq equation which have already been derived in the literature

(section 2.3). Here, we first analyse qualitatively this equation, by solving it numerically

with Mathematica.

We supplement the Dupuit-Boussinesq equation with two boundary conditions. The

first condition states that the water table elevation h vanishes at the river, that is in

x = 0:

h(0, t) = 0 . (2.4)

Then, the groundwater divide, which we fix in x = 1, imposes that the horizontal velocity

vanishes. Combined with Darcy’s law and the Dupuit-Boussinesq approximation, it

formally reads

∂xh(1, t) = 0 . (2.5)

Finally, we begin the numerical experiment with an empty aquifer:

h(x, 0) = 0 . (2.6)

We then impose a constant rainfall rate R = 1 at t = 0, and stop the rainfall at t = 0.25.

The parameters of the equation, s and K, are set to one. The numerical resolution then

gives the shape h(x, t) of the water table from t = 0 to t = 5. Combining equation (2.2)

with this solution in x = 0, we obtain the discharge delivered by the aquifer to the river

(figure 2.3).
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Figure 2.3: Discharge given by a numerical resolution of the Dupuit-Boussinesq equa-

tion (2.3), with the parameters s and K set to one. A constant rainfall rate R = 1 is

imposed from t = 0 to t = 0.25, and then stopped.

The numerical hydrograph is qualitatively similar to typical river hydrographs (see

figures 4.9, 7.3 and 7.9 for comparisons). The discharge increases rapidly during rain-

fall, decreases rapidly just after the rainfall has stopped, and then progressively relaxes

towards zero. The discharge starts increasing instantaneously when rainfall starts, show-

ing that the flow adjusts instantly to the shape of the water table. The variations of

the water table elevation, due to variations of the rainfall rate, induce changes in the

pressure field within the saturated zone, therefore acting on the groundwater flow. Even

though groundwater flows slowly, the pressure field propagates rapidly. On the contrary,

the groundwater reservoir created during rainfall takes a long time to empty. At the

end of the experiment, at t = 5, a small discharge still persists.

Based on this numerical hydrograph, we define three regimes in a hydrograph: the

storm flow, the early stage of the drought flow, and the late stage of the drought flow.

The first stage, when the discharge increases during rainfall, is generally referred to as

the storm flow. When rainfall has stopped, the discharge decrease is generally referred

to as the drought flow. Here, we emphasise the distinction between the rapid discharge

decrease during the early stage of drought flow, and the long tail of the discharge

decrease. This long tail will be referred to as the late stage of drought flow.

2.3 The drought flow regimes

The drought flow of a Dupuit-Boussinesq groundwater flow has attracted much more

attention in the literature, and several analytical solutions are known since the late
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nineteenth century (Dupuit, 1863; Boussinesq, 1877). We now focus on these solutions.

To understand how groundwater dynamics can influence the discharge of a river, we

first present laboratory experiments which reproduce a Dupuit-Boussinesq drought flow.

After the theoretical investigations of Dupuit and Boussinesq, the first laboratory studies

were, to our knowledge, performed by Todd (1954) and, a few years later, by Ibrahim

and Brutsaert (1965). Here, we first describe Ibrahim and Brutsaert’s experiment, which

simulates the drainage of an initially fully saturated aquifer. They measure the position

of the water table and compute, from these measurements, the discharge based on the

Dupuit-Boussinesq approximation (equation (2.2)). They compare this discharge with

the discharge measured experimentally, concluding to a good agreement. Here, we will

rather compare their measurements with asymptotic regimes of the Dupuit-Boussinesq

theory (section 2.3.2). Asymptotic regimes yield analytic predictions and scaling laws.

These scaling laws are a robust way to test a theory in the laboratory and on the field,

and to evaluate its limitations. We finally compare these asymptotic regimes with field

measurements of river discharge (section 2.3.3).

2.3.1 The experiment of Ibrahim and Brutsaert

2.3.1.1 Experimental setup

To design their experiment, Ibrahim and Brutsaert (1965) use the well-known anal-

ogy between Darcy’s law and a Poiseuille flow in a Hele-Shaw cell. In a Hele-Shaw

cell, a viscous fluid flows between two parallel plates closely spaced (Hele-Shaw, 1898).

If the gap between the two plates is sufficiently small, the flow is laminar. Like in a

Darcy flow, the velocity is then proportional to the pressure gradient (Guyon et al.,

2001). According to Poiseuille’s law, the mean velocity of a viscous fluid flowing in a

Hele-Shaw cell reads:

v = −ρW
2 g

3 η
∇
(
p

ρ g
+ y

)
, (2.7)

where W is the width of the tank. This flow is indeed analogue to Darcy’s law, with

K =
ρW 2 g

3 η
. (2.8)

The only difference is that the hydraulic conductivity K is analytically determined in a

Poiseuille configuration, whereas it must be measured in a porous medium.

Using this analogy, they simulate a two-dimensional aquifer with two closely spaced

parallel plates, forming a 0.147× 52× 243 cm tank (figure 2.4). This Hele-Shaw cell con-

tains a viscous fluid (96% glycerine, which viscosity η was measured to be 0.355 Pa s−1)

between a vertical impermeable wall (right), a horizontal impermeable bottom, and a

vertical impermeable gate (left) which opens into a large outflow tank. The outflow

tank acts as a draining reservoir and roughly represents a river. A pipe of adjustable

height hc fixes a constant outflow level hc. The right-hand wall represents the water

divide, and the bottom represents an impervious layer on which groundwater flows. In

this configuration, the river is supposed to flow on the same impermeable layer as the
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Figure 2.4: Ibrahim and Brutsaert’s experiment. A two-dimensional tank (Hele-Shaw

cell) holds a viscous fluid between an impermeable wall (right) and an impermeable gate

(left). When the gate opens, the asymmetry of the boundary conditions causes the fluid

to flow towards the outflow tank.

groundwater flow. In the literature, this simplified configuration is referred to as a fully-

penetrating stream. This simplification is important, because it ensures the correctness

of the Dupuit-Boussinesq approximation (chapter 8).

2.3.1.2 Observations

An experiment consists in suddenly opening the gate of a tank initially filled with

fluid up to the elevation H. Figure 2.5 shows the decline of the water table for two

experiments performed with an outflow height fixed at zero (top) and at hc/H = 0.25

(bottom). As the water table is higher than the outflow reservoir, a pressure disconti-

nuity arises at the outlet. The fluid tends to smooth out this discontinuity by flowing

towards the outlet, pushed by the pressure gradient. As a result, the water table de-

clines. Because the fluid velocity is proportional to the pressure gradient, the fluid is

faster near the outlet, where the pressure gradient is higher. Far from the outlet, the

water table is almost horizontal, and the fluid flows more slowly.

The decline of the water table generates a discharge Q, flowing out of the experi-

mental aquifer. Figure 2.6 shows the discharge of three experiments performed with the

same outflow height hc = 0, but with three different initial elevations H. The higher the

initial elevation, the larger the initial pressure difference with the outlet, and the larger

the initial discharge. Then, as the water table declines, the pressure gradient decreases,

and the outflow discharge decreases. At long times, the discharges of all three exper-

iments seem to collapse on the same trend. Like in the numerical hydrograph, these

experimental drought flows result in two regimes: the early stage, where the discharge

decreases quickly, and the late stage, where it decreases more slowly.
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Figure 2.5: Decline of the water table as observed in two of Ibrahim and Brutsaert’s

experiments. Top: hc = 0. Bottom: hc/H = 0.25.
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Figure 2.6: Outflow discharge recorded in some of the Ibrahim and Brutsaert’s experi-

ments. The experiments shown here are made with hc = 0. The blue points are made

with initial level H = 40 cm (•), the green points with H = 30 cm (•) and the magenta

points with H = 20 cm (•).

2.3.2 Discharge exiting the aquifer: comparison of the experi-

ment of Ibrahim and Brutsaert with asymptotic regimes

of the Dupuit-Boussinesq equation

In this section we discuss several analytical solutions to the Dupuit-Boussinesq equa-

tion (2.3) previously derived in the literature. We then compare these solutions, which

correspond to asymptotic regimes of the Dupuit-Boussinesq equation, with the exper-

imental results of Ibrahim and Brutsaert (1965). To our knowledge, this approach —

comparing the asymptotic regimes of the Dupuit-Boussinesq equation with experiments

— is new. Indeed, Ibrahim and Brutsaert (1965) computed a semi-theoretical discharge

from measurements of the water table position (as we did for our numerical hydro-

graph), and compared it with the discharge measured experimentally. The few other

experimental studies of fully-penetrating aquifers also favoured other approaches (Todd,

1954; Hewlett and Hibbert, 1963; Abdul and Gillham, 1984).

As it is of second order in space, the Dupuit-Boussinesq equation must be supple-

mented with two boundary conditions. First, the flux vanishes at the water divide:

∂h

∂x
= 0 for x = L , (2.9)

where x = L is the length of the aquifer (figure 2.2).

The second boundary condition is less straightforward. If we neglect surface tension,

the outflow reservoir imposes its hydrostatic pressure under the outflow level (for h ≤
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hc), whereas the outlet imposes atmospheric pressure to the fluid above the outflow level

(for h ≥ hc). In the Dupuit-Boussinesq framework, this approximation translates into

h = hc for x = 0 . (2.10)

When hc = 0, this boundary condition generates a singularity at the outlet. Indeed, if

qo is the flux of groundwater exiting the aquifer, then equation (2.2) implies that the

water table elevation behaves like

h ∼
√

2 qo x

K
. (2.11)

The square root implies that the slope of the water table diverges near the outlet, which

is incompatible with the Dupuit-Boussinesq approximation. Indeed, the measurements

of the water table show that this condition does not hold in reality (figure 2.5). Even

in the experiments with hc 6= 0, the condition (2.10) is not exactly satisfied (figure 2.5).

This boundary condition, inherent to the Dupuit-Boussinesq approximation, is one of

the limitations of this theory.

2.3.2.1 Linearisation: hc 6= 0

The Dupuit-Boussinesq equation (2.3) is non-linear. The simplest way to solve it

consists in linearising it around an equilibrium value. During the experiment, the water

table declines and tends to the outflow reservoir level hc:

h→ hc for t→∞ . (2.12)

If hc 6= 0, we can write the water table elevation as

h = hc + δh , (2.13)

where δh � hc. Combining (2.13) with (2.3), we only keep the first order terms to

obtain the linearised Dupuit-Boussinesq equation:

s
∂ δh

∂t
= K hc

∂2 δh

∂x2
. (2.14)

To solve this equation, Boussinesq (1904) assumes that the shape of the water table

gradually assumes the first harmonic solution to (2.14), leading to the long-time solution

(see Brutsaert (2005) for the complete derivation):

h ∼ hc + 4
H − hc
π

sin
(π x

2L

)
exp

(−π2K hc t

4 sL2

)
, (2.15)

where we recall that H is the initial level of saturation of the aquifer (figure 2.4). The

discharge delivered to the river by this linearised groundwater flow, given by equation

(2.2) taken in x = 0 and multiplied by the width W of the aquifer, thus reads

Q(t) ∼ 2W hcK
H − hc
L

exp

(−π2K hc t

4 sL2

)
. (2.16)
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Figure 2.7: Outflow discharge measured in an experiment with hc = 0.05 m and H =

0.2 m (�). ( ) is the exponential decrease predicted in equation (2.16), without any

fitting parameter.

The experimental results conform well with this long-time solution (figure 2.7). With

no fitting parameter, the measurements nearly collapse on the theoretical prediction.

Despite the slight discrepancy between the outlet boundary condition and the level

observed in the experiments (figure 2.7), the Dupuit-Boussinesq approximation seems

to be relevant in this particular configuration, where hc 6= 0.

However, natural hydrographs hardly ever exhibit any exponential behaviour, even

long after the last rain event (Wittenberg, 1994; Chapman, 2003). As equation (2.16) is a

long-time solution, it is possible that natural rivers never reach this long-time behaviour,

and rather exhibit series of sub-harmonic solutions. An other possibility is that, in the

conditions of natural aquifers, one cannot linearise the Dupuit-Boussinesq equation. As

a matter of fact, it is very likely that the depth of most aquifers is much larger than

the depth of their river. As an example, the Quiock Creek studied in part III is at

most about 10 cm deep, whereas the elevation of the water table is a few metres higher

than the river. In this particular case at least, the height hc of the river is negligible

compared to the elevation of the water table. In what follows, we will consider that the

depth of the river can be neglected: hc → 0.

2.3.2.2 Early stage of drought flow (hc = 0)

When hc = 0, one cannot linearise the Dupuit-Boussinesq equation (2.3). To solve

this non-linear equation, we look for similarity solutions.

At the very beginning of the experiment, that is at the exact moment when the

gate is opened, the experimental aquifer is fully saturated, whereas the outflow reser-
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voir imposes atmospheric pressure at the outlet. In the frame of the shallow-water

approximation, this corresponds to a singular initial condition:

{
h = 0 for x = 0 ,

h = H for x > 0 .
(2.17)

This initial condition suggests that, as soon as the aquifer starts draining, the singularity

in x = 0 diffuses in the aquifer. As it diffuses, it progressively moves towards the other

extremity of the aquifer in x = L, like the front of a wave. This wave does not feel

the influence of the water divide until it reaches it. We consequently consider the water

divide as being infinitely far from the outlet:

h = H for x→∞ . (2.18)

These initial and boundary conditions, combined with the left-hand condition (2.10)

h = 0 for x = 0, suggest the use of Botzmann’s variable x t−1/2 to solve the Dupuit-

Boussinesq equation. Indeed, Polubarinova-Kochina (1962) shows that the elevation of

the water table adopts a self-similar shape of the form

h = H f

( √
s x

2
√
KH t

)
. (2.19)

The similarity function f satisfies the following ordinary differential equation

2 ξ f ′ + f f ′′ + f ′2 = 0 , (2.20)

where ξ is the Boltzmann similarity variable:

ξ =

√
s x

2
√
KH t

. (2.21)

The boundary conditions (2.10) and (2.18) translate into f = 0 for ξ = 0 and f = 1

for ξ →∞, respectively. By comparing equation (2.20) to the Blasius equation (theory

of viscous boundary layers), Polubarinova-Kochina (1962) shows (p. 507) that the self-

similar solution of the water table has a square root shape close to the outlet:

f(ξ) ∼ aesdf

√
ξ for ξ → 0 , (2.22)

where aesdf ≈ 1.152 is a numerical integration constant borrowed from the theory of the

boundary layer of a plate. This result is in good agreement with a numerical resolution

of equation (2.20), which exhibits a square root shape close to the outlet and tends to

1 for ξ →∞ (figure 2.8).

The shape of the water table gives us access to the theoretical discharge flowing out of

the aquifer through equation (2.2), and we obtain the following short-times asymptotic

behaviour for the discharge:

q(t) ∼ a2
esdf

4

(sK H3)1/2

√
t

. (2.23)
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Figure 2.8: Numerical solution of (2.20) corresponding to the self-similar shape of the

water table during the early stage of the drainage ( ). Its behaviour near the outlet

is 1.152
√
ξ ( ).
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Figure 2.9: Dimensionless discharge recorded in the three experiments with hc = 0, as a

function of dimensionless time (following equation (2.24)). The blue points were made

with the initial level H = 40 cm (•), the green points with H = 30 cm (•) and the

magenta points with H = 20 cm (•). The red line is the short time asymptotic 1/
√
t

behaviour ( ), with no adjustable parameters (equation (2.23)).
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We expect this asymptotic regime to be valid until the wave front reaches the water

divide, that is until

t ∼ sL2

KH
. (2.24)

The three experiments by Ibrahim and Brutsaert (1965) with hc = 0 conform well

with this prediction (figure 2.9). Once the time is rescaled with equation (2.24) and

the discharge with (2.23), the data of the three experiments merge on the same −1/2

power law. As expected, when the dimensionless time roughly equals one, the discharge

deviates from the early-time asymptotic regime.

Fitting a −1/2 power law to the experimental data before the dimensionless time

equals one yields a prefactor of 0.56, that is about 1.7 times the theoretical prefactor of

0.332. This slight mismatch could be due to the breakdown of the Dupuit-Boussinesq

approximation at the outlet.

2.3.2.3 Late stage of drought flow (hc = 0)

The asymptotic regime (2.23) relies on the hypothesis that the aquifer is initially

fully saturated, and holds only during the beginning of the experiment. As seen on

figure 2.9, the discharge rapidly deviates from this 1/
√
t behaviour.

Dupuit (1863) and Boussinesq (1877) show that the Dupuit-Boussinesq equation

(2.3) has an other self-similar solution compatible with the boundary conditions (2.9)

and (2.10):

h(x, t) =
L2 s

K t
Hd

(x
L

)
, (2.25)

where L is the length of the aquifer, and the shape Hd of the water table satisfies

HdH
′′
d +H ′2d +Hd = 0 . (2.26)

We can then directly translate conditions (2.9) and (2.10) to obtain the two boundary

conditions: H ′d(1) = 0 and Hd(0) = 0 . The solution to this equation can be approxi-

mated by a square root close to zero:

Hd ∼ ad

√
x

L
, (2.27)

where ad is a mathematical constant expressed in terms of the Euler gamma function Γ

(Brutsaert, 2005):

ad =

√
8

3

(
Γ(7/6)√
π Γ(2/3)

)3/2

≈ 1.177 . (2.28)

A numerical resolution of equation (2.26) shows the shape of this self-similar solution

(figure 2.10).

The discharge associated to this self-similar solution reads

Q ∼ a2
d

2

s2W L3

K t2
. (2.29)
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Figure 2.10: Numerical solution of (2.26) corresponding to the self-similar shape of the

water table during the late stage of the drainage ( ). Its behaviour near the outlet is
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Figure 2.11: Outflowing discharge recorded in the three experiments made with hc = 0.

(•) was made with the initial level H = 40 cm, (•) with H = 30 cm and (•) with

H = 20 cm. ( ) is the long times asymptotical 1/t2 power law, with no adjustable

parameters.
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Figure 2.12: Sketch of a sloping aquifer flowing towards a river which flows on the same

impermeable layer.

By analogy with the linear heat equation, we expect most solutions of the Dupuit-

Boussinesq equation to tend towards the self-similar solution Hd at long times, regardless

of the initial conditions. The drought flow of a fully-penetrating stream is therefore

expected to decrease as the inverse time squared at long times. In contrast with the

early stage of drought flow, the late stage of drought flow depends on the length of the

aquifer.

The experiments of Ibrahim and Brutsaert (1965) with hc = 0 did not last long

enough to decide positively whether they will eventually reach a −2 power law of time

(figure 2.11). The three experiments seem to tend towards the same asymptotic be-

haviour, which seems to have a slope −2. Longer experiments would be necessary to

confirm this result.

2.3.2.4 Sloping aquifers

So far in this section we have considered the discharge exiting a horizontal fully-

penetrating aquifer. Yet some aquifers, generally located in mountaneous areas, lie

along inclined hillslopes. A large part of the literature, which can be referred to as

hillslope hydrology, assumes that the aquifer bottom reflects the ground elevation, and

consequently presents large slopes. Here, we briefly expose some results concerning

sloping aquifers draining into a fully-penetrating stream (figure 2.12). In such case,

Childs (1971) uses the Dupuit-Boussinesq approximation, which translates here into the

hypothesis that the flow is parallel to the sloping bed of the aquifer. As a consequence,

the flux of water flowing along the x direction reads

q = −K h

(
∂h

∂x
cos i+ sin i

)
, (2.30)
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Type of aquifer Stage of drought Discharge regime Exponent in a Q Q̇ plot

Horizontal, hc 6= 0 Late Q ∝ exp(−t) 1

Horizontal, hc = 0 Early Q(t) ∝ 1/
√
t 3

Horizontal, hc = 0 Late Q(t) ∝ 1/t2 3/2

Sloping, hc 6= 0 Early Q(t) ∝ 1/
√
t 3

Sloping, hc 6= 0 Late Q ∝ exp(−t) 1

Table 2.1: Summary of all the asymptotic regimes of an aquifer presented in this chap-

ter concerning the drought flow. See Rupp and Selker (2006b) for a larger review of

the existing asymptotic regimes. These asymptotic regimes are associated to specific

exponents in the Q Q̇ plane, as discussed in section 2.3.3.

where i is the angle of the aquifer. Mass balance then straightfordwardly leads to a new

Dupuit-Boussinesq equation:

s
∂h

∂t
=
K

2

(
∂2h2

∂x2
cos i+ 2

∂h

∂x
sin i

)
. (2.31)

One can find many solutions to this equation in the literature (Zecharias and Brut-

saert, 1988; Sanford et al., 1993; Troch et al., 2013). The solving techniques do not

vary much from those already exposed in this section, and most solutions consist in

linearising this equation (Brutsaert, 1994). The main results are an early-time drought-

flow self-similar regime where the discharge behaves like the inverse square root of time,

and a long-time regime where the river discharge behaves exponentially (see table 2.1,

which lists all the predictions presented in this chapter). To our knowledge, there is no

experimental verification of these results in the literature.

Even though other derivations exist, we have presented the majority of the analytical

models which lead to the prediction of the discharge delivered by an aquifer during

drought. Comparing the asymptotic regimes of a horizontal aquifer feeding a fully-

penetrating stream with the experimental results of Ibrahim and Brutsaert (1965), we

conclude to a good agreement with the Dupuit-Boussinesq theory. Yet, the long-times

asymptotic regime (2.29) would deserve longer experiments to be tested. In the next

section we analyse the discharge of natural rivers, and compare them to the Dupuit-

Boussinesq asymptotic regimes.

2.3.3 Comparison with natural rivers: the Q Q̇ plot method

In this section, we look for the behaviour of natural rivers in the absence of rainfall

using data from the literature. Based on the analytic results of the previous section, we
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expect the discharge to decrease exponentially or as a power law of time. To discriminate

between these different regimes, Brutsaert and Nieber (1977) have developed a now

widespread method: the Q Q̇ plot.

The simple semi-log plot of a river hydrograph reveals whether the river discharge

decreases exponentially or not. However, as discussed previously, discharge recessions

seem to be hardly ever exponential, and we shall rather seek power-law behaviours:

Q = A (t− t0)−B , (2.32)

where A and B depend on the characteristics of the system, and t0 depends on the

initial conditions. Such power law strongly depends on t0. Unfortunately, we do not

know a priori the value of t0, and looking for such power law is equivalent to a three

parameters fit — A, B, and t0 — whereas we are only interested in A and B.

Brutsaert and Nieber (1977) circumvent this problem by examining the behaviour

of the time derivative of the discharge Q̇ versus the discharge Q, instead of examining

directly the relationship Q = f(t). Equation (2.32) thus becomes

Q̇ = −AB−1/B Q1+1/B = −aQb, (2.33)

which does not depend on t0. As a consequence, the three-parameters fit in the t/Q

plane becomes a two-parameters fit in the Q/Q̇ plane. Table 2.1 lists the theoretical

asymptotic regimes derived in this chapter, and the exponent b in the Q Q̇ plane to

which they correspond.

Brutsaert and Nieber (1977) developed this method to analyse the discharge of sev-

eral rivers in the Finger Lakes region, in the United States. Figure 2.13a illustrates

their result for the Fall Creek. Although their data do not span much more than one

decade of discharge measurements, their field measurements seem to be consistent with

a b = 3/2 slope. Following equations (2.33) and (2.32), this result would imply that the

discharge decreases as the inverse time squared: Q ∼ t−2. This behaviour is consistent

with the analytical result (2.29) derived in the previous section.

Brutsaert and Nieber (1977) inspired many later studies (Troch et al., 1993; Szilagyi

and Parlange, 1998; Brutsaert and Lopez, 1998; Huyck et al., 2005). Figure 2.13b shows

the result of the same analysis performed for a spring in the Philippines (Malvicini et al.,

2005), and figure 2.13c for a river in central Oklahoma (Brutsaert and Lopez, 1998).

Both analyses show that a large scatter may hinder the Q Q̇ analysis. Brutsaert and

Nieber (1977) assume that this scatter is due to other sources of discharge decrease.

According to them, the main component of the discharge decrease is the decline of the

water table, but if there is evapotranspiration for example, the discharge decreases faster.

As a consequence, the asymptotic regimes of groundwater flow represent the smallest

discharge decrease |Q̇| possible at a given discharge Q. According to this argument,

the asymptotic regimes presented in this chapter should therefore represent the lowest

envelopes of a Q/Q̇ plot.

On the contrary, Kirchner (2009) estimates that the scatter is inherent to field mea-

surements, and calculates averages of his Q/Q̇ measurements. Fitting his averaged data,



42 CHAPTER 2. THE DUPUIT-BOUSSINESQ THEORY

(a) Brutsaert and Nieber (1977) analysis.

ln(Q)
-7 -5 -3 -1

(b) Malvicini et al. (2005) analysis.

Q (cfs)

(c) Brutsaert and Lopez (1998) analysis. (d) Kirchner (2009) analysis.

Figure 2.13: River discharge recession analysis of several rivers found in the literature.

The straight lines indicate exponential or power laws: a 3/2 slope indicates that Q ∼
1/t2, a slope of 3 indicates Q ∼ 1/

√
t, and a slope of 1 indicates exponential behaviour

(table 2.1).
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he obtains a slope b ≈ 2, implying that the discharge decreases as the inverse of time:

Q ∼ 1/t (figure 2.13d). Strictly speaking, the latter power law is not integrable, which

implies an infinite volume of water. Yet, a slightly larger exponent would be integrable.

The interpretation of the large scatter of the Q Q̇ plots is not clear yet. However,

the exponential decrease of the discharge predicted by the linearised Dupuit-Boussinesq

equation corresponds to an exponent b = 1 in a Q Q̇ plot (table 2.1). This exponent

is hardly ever found in the literature. This observation is consistent with the fact that

semi-log plots of river hydrographs hardly ever exhibit straight lines. We may conclude

from this observation that, in most cases, aquifers do not behave as linear reservoirs.

The decline of a water table after rainfall has been widely studied, in many differ-

ent configurations. Here, we have chosen to focus on scaling laws derived analytically,

which requires strong simplifications (table 2.1). Among these simplifications, perhaps

the most important ones are: the reduction to two dimensions, the assumption of a

homogeneous porous medium, a simple geometry, negligible surface tension, and the as-

sumption of a fully-penetrating stream. The failure of these approximations can explain,

at least partly, the scatter of field measurements (figure 2.13).

2.4 The storm flow

Surprisingly, the behaviour of an aquifer during a rainfall event has been much less

studied. Contrary to most studies of the drought flow, most works treating this question

have assumed that the impermeable bottom of the aquifer is inclined towards the river.

In this section we summarise their main results, before treating the case of the linearised

Dupuit-Boussinesq equation in a horizontal aquifer.

2.4.1 Sloping aquifers.

When it rains, the Dupuit-Boussinesq equation for a sloping aquifer reads

s
∂h

∂t
=
K

2

(
∂2h2

∂x2
cos i+ 2

∂h

∂x
sin i

)
+R , (2.34)

where the only difference with equation (2.31) is the presence of the rainfall rate R.

Henderson and Wooding (1964) show that the single dimensionless parameter

λ =
4R cos i

K sin2 i
(2.35)

determines the solution to equation (2.34). When λ < 1, that is essentially for large

slopes, the problem can be formulated as a kinematic wave (Beven, 1981) (figure 2.14).

In the kinematic wave framework, at the beginning of the rain event, the river has no

influence on the groundwater flow. As groundwater flows downhill, the water divide, at

the top of the hill, fully determines the groundwater flow. Before it feels the effects of

the river, the water table, at the river, rises linearly with time and proportionally to the
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Figure 2.14: Domain of validity of the kinematic wave approximation for the ground-

water flow on a hillslope. Figure adapted from Beven (1981).

rainfall rate: h ∼ R t in x = 0. This asymptotic regime only works at the early stage

of the rainfall event, until the groundwater flow feels the effect of the river. For larger

values of λ, the water table deviates from this asymptotic behaviour.

The discharge associated to this self-similar solution is linear in time (Beven, 1981):

Q ∼ K sin i R t . (2.36)

Numerical solutions to equation (2.34) show that this solution is indeed reasonable for

small values of λ (figure 2.15). The smaller the value of λ, the better the approximation.

For small slopes, which means large values of λ, this approximation does not work.

2.4.2 Horizontal aquifers.

Pauwels and Troch (2010) are the only one to have addressed analytically the be-

haviour of a horizontal aquifer submitted to rainfall. Primarily considering sloping

aquifers, their model also provides a solution when the aquifer has no slope, as a specific

case of more general solutions.

The Dupuit-Boussinesq equation, in the limit where the river depth is neglected

(hc = 0 in figure 2.4), is non-linear. However, Pauwels and Troch (2010) linearise the

flux following Brutsaert (1994):

q = K h
∂h

∂x
' K pD

∂h

∂x
, (2.37)

where D is the constant aquifer depth, and p is a fitting parameter. Following this

technique, the Dupuit-Boussinesq equation is linearised:

∂h

∂t
=
K pD

s

∂2h

∂x2
+
R

s
. (2.38)
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Figure 2.15: Discharge delivered by a sloping aquifer, predicted by the extended Dupuit-

Boussinesq equation (2.34) solved numerically for different values of λ (broken lines),

and kinematic wave solution (solid line). Figure from Beven (1981).

To this equation are associated two boundary conditions: no flux at the water divide,

that is ∂h/∂x = 0 for x = L, and h = 0 at the river, for x = 0. At last, they assume it

has not rained for a long time, and that the aquifer is initially empty: h = 0 for t = 0.

Through a Laplace transform, they state that the solution to equation (2.38) leads to

Q(t) = 4W R

√
K pD

s

√
t. (2.39)

To check this result, Pauwels and Troch (2010) produce a synthetic hydrograph by

numerically solving equation (2.38), with a varying rainfall rate. The analysis of the

rising limbs of several floods of this synthetic hydrograph conforms well to their asymp-

totic result (2.39).

The two models presented here use asymptotic solutions to the linearised Dupuit-

Boussinesq equation. As a result, both discharge predictions depend linearly on the

rainfall rate. However, to our knowledge, there is no comparison to experimental studies,

nor to field measurements.

2.5 Conclusions

Since Dupuit and Boussinesq, several authors have studied theoretically the dynam-

ics of a water table declining after a rainfall event. In particular, several asymptotic

regimes of the Dupuit-Boussinesq equation emerge from the literature. According to

these asymptotic regimes, the discharge delivered by an aquifer to a fully-penetrating
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stream evolves as the inverse of the square root of time at the beginning of the drought

flow (Q ∼ 1/
√
t), and then exponentially or as the inverse of the square of time

(Q ∼ 1/t2). The Q Q̇ plot method, developed to test these regimes, revealed that

most aquifers do not behave as linear reservoirs. Natural aquifers compare relatively

well with the Dupuit-Boussinesq asymptotic regimes, but the large scatter of field data

hinders to draw definitive conclusions. Additional tests, such as separate measurements

of the hydraulic parameters, water table measurements or the analysis of the storm

flow, could help to confirm whether natural aquifers could be described by the generic

features of a Dupuit-Boussinesq groundwater flow.

In contrast, the behaviour of an aquifer during storm flow has been less studied.

Most analytical studies assumed linearity, but they were not tested against laboratory

experiments or field data.

To our knowledge, the asymptotic regimes of the Dupuit-Boussinesq equation were

never tested against laboratory experiments. Systematic laboratory experiments are

necessary to confirm that an aquifer behaves non-linearly, even in a simplified config-

uration. Moreover, field studies need to confront their scattered results with separate

measurements. For instance, we are not aware of any measurement of the water table

decline during drought periods in natural conditions. The dynamics of a groundwater

flow during storm flow could also add information on the behaviour of the groundwater

flow in natural aquifers.

In this manuscript, we will address the question of the linearity of aquifers in sim-

plified configurations, with a strong emphasis on the groundwater dynamics during

rain events. In chapter 3, we design a laboratory aquifer to further study the Dupuit-

Boussinesq model and its asymptotic regimes. We first confirm the 1/t2 late stage of

drought flow. We then observe its behaviour during rainfall, additionally deriving a new

asymptotic regime for the early reaction to rainfall.

We then test the Dupuit-Boussinesq asymptotic regimes in natural aquifers in part III,

which is divided into four chapters. We begin with a field experiment, especially de-

signed to test qualitatively and quantitatively the influence of the groundwater flow on

the river dynamics. We first present the field installation and qualitative observations

(chapter 4). We then measure separately the hydraulic parameters of the aquifer (chap-

ter 5). We finally compare the river dynamics with the Dupuit-Boussinesq asymptotic

regimes (chapter 6). We end part III by testing these regimes against hydrographs of

other catchments (chapter 7).

In the last part of this manuscript, we explore the influence of two-dimensional flow

on the dynamics of groundwater (part IV, chapter 8).
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Chapter 3

Response of a laboratory aquifer to

rainfall
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How does groundwater react to rainfall? Can groundwater generate rapid floods?

Our numerical resolution of the Dupuit-Boussinesq equation (section 2.2) suggests that

the flow in an unconfined aquifer can react quickly to a storm. Yet, the dynamics of

groundwater in response to rainfall has been much less studied than its drought flow.

In this chapter, we reproduce an aquifer in a fully-penetrating configuration in a sim-

plified laboratory experiment, with a threefold objective. We first want to determine

49
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whether an aquifer can qualitatively reproduce the dynamics observed in rivers hydro-

graphs. Then, we intend to evaluate the validity of the Dupuit-Boussinesq drought flow

asymptotic behaviour against experiment. Finally, we plan to apply the same method

(experiment and asymptotic regime) to the groundwater flow induced by a storm.

Most of this chapter has been previously published in an abbreviated form (Guérin

et al., 2014).

3.1 Why a laboratory experiment?

In this manuscript, we will attempt to isolate generic features of the response of

an aquifer to rainfall. For that purpose, we will emphasise the asymptotic regimes of

the Dupuit-Boussinesq equation. Indeed, asymptotic regimes yield scaling laws, which

constitute robust results to test a theory, and provide a simple and efficient way to assess

the influence of the various parameters. Asymptotic regimes depend on hypotheses, and

must be tested against experiments.

The Dupuit-Boussinesq theory requires simplifying hypotheses. Unfortunately, the-

ses hypotheses are often difficult to assess in the field. For example, to study the

groundwater flow in a natural aquifer, we need to know the geometry of the aquifer.

Indirect imaging techniques, like electrical resistivity tomography or seismic tomogra-

phy, may allow to identify some underground structure; but they do not give access to

permeability (Kalinski et al., 1993; Dannowski and Yaramanci, 1999; Chevigny, 2014).

Yet, direct laboratory measurement of the permeability of a ground sample is unreliable:

it is impossible to know whether collecting a sample of ground changes its structure;

furthermore, sampling provides a local permeability, which could be totally different

from the permeability at the aquifer scale.

To these technical difficulties must be added physical hypotheses, which are also

difficult to test. For example, it is much easier to study the groundwater flow if we

neglect surface tension. In the field, its influence is uneasy to quantify.

Finally, a physical model such that the Dupuit-Boussinesq theory also relies on math-

ematical hypotheses. Indeed, the dynamics of a vertical two-dimensional groundwater

flow has never been investigated so far and, for the moment, we must reduce the problem

to a one-dimensional flow. This simplification requires that the aquifer be connected to

a fully-penetrating stream.

On the whole, many hypotheses are necessary to study the dynamic behaviour of

a groundwater flow. A laboratory experiment offers the possibility to satisfy some of

them. The geometry of the aquifer is well-defined, and we can even chose to satisfy

one of the Dupuit-Boussinesq conditions, the fully-penetrating geometry. Furthermore,

we can measure independently porosity and permeability. Finally, we can reduce to a

reasonable level the influence of surface tension. Last but not least, small laboratory

setups allow to reduce the duration of the experiments, to reproduce experiments as

many times as necessary, and to vary the parameters independently. In such controlled

conditions, we can assess the validity of the physical and mathematical model.



3.2. Laboratory aquifer compatible with the Dupuit-Boussinesq theory 51

h

impervious wall

water table

y

x

sprinkler pipe

50 cm

flow

permeable grid

scale

Figure 3.1: Experimental aquifer. The water table separates the unsaturated zone of

porous material (light zone, above) from its saturated zone (darker zone, bottom). At

the outlet, we collect water in a bucket weighed every second.

3.2 Laboratory aquifer compatible with the Dupuit-

Boussinesq theory

3.2.1 Geometry

The simplest configuration of a free-surface aquifer consists of a homogeneous porous

medium partly filled with water, the flow of which is confined to a vertical plane. We

approximate this idealistic representation with a quasi two-dimensional tank filled with

glass beads (figure 3.1). Two vertical glass plates (143 × 40 cm) separated by a 5 cm

gap hold the glass beads between an impervious vertical wall (right-hand side), an

impervious horizontal bottom, and a permeable grid through which water can exit the

experiment (left-hand side). The impervious wall corresponds to the drainage divide of

a natural aquifer, whereas the outlet of the experiment is a rough representation of the

drainage network.

As we pour water onto this experimental aquifer, water infiltrates downwards, into

the aquifer. As water reaches the aquifer impervious bottom, a groundwater reservoir

forms and rises, and groundwater begins to exit the aquifer through the outlet.

At the outlet, we collect the water exiting the experiment with a rectangular spout

about 10 cm long to drive water from the outlet to a bucket (figure 3.2). Along the

vertical outlet grid, the water table height is finite — in contrast with the Dupuit-

Boussinesq outlet condition (equation (2.10)). This height adjusts to the discharge it

must accommodate. Typically, it is of the order of 1 mm for small discharges, up to

approximately 1 cm for large discharges.
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scale

thin film of water flowing
downwards

spout

Figure 3.2: Outlet device to collect the water exiting the aquifer. Along the vertical

grid, a thin film of water flows downwards, due to the finite elevation of the water table.

3.2.2 Porous material

We performed two series of experiments with different glass beads (1 mm and 4 mm),

to test the influence of permeability.

3.2.2.1 Porosity

We measure the porosity of a porous material by pouring P = 7.609 kg of 1 mm glass

beads into a 5-litres bucket. The density of glass is ρ = 2.5 kg l−3, and we thus calculate

a volume of 3.04 l actually occupied by the glass beads. We then totally saturate this

random packing of beads with 1.98 l of water. We thus roughly estimate the porosity

s ≈ 0.39 of the medium made with 1 mm beads. With the same procedure, we estimate

s ≈ 0.42 for the 4 mm beads.

3.2.2.2 Hydraulic conductivity

To measure the hydraulic conductivity of a porous material, we use a Darcy column.

It consists of a vertical cylinder of section S = 63.62 cm2, and height H = 50 cm

(figure 3.3). In this column, we pour a height L of glass beads. This column is supplied

with water by a water tower, imposing a constant pressure at the bottom of the column.

At the top of the column, a small pipe drives water towards a bucket, weighed every

second to measure the discharge Q flowing out of the column (see section 3.2.4). The

principle of Darcy’s experiments is to impose a constant pressure head ∆H between the

bottom and the top of the column, such that the discharge Q is proportional to this



3.2. Laboratory aquifer compatible with Dupuit-Boussinesq 53

pipettes

L
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Q

Figure 3.3: Experimental setup used to measure the permeability of the porous media.

pressure head:

Q = K S
∆H

L
. (3.1)

The proportionality coefficient K is the hydraulic conductivity of the porous material.

To measure the pressure head difference ∆H, we connect both the water tower and

the top of the column to small transparent pipettes (7 mm in diameter) with tubes filled

with water, such that the water level in both pipettes reflect the water levels in both

reservoirs (figure 3.3).

For a given height L of porous material, we collect a set of data points as follows. We

start from a pressure head difference ∆H = 0. We then progressively increase ∆H, step

by step. At each step, we wait for the discharge to stabilise into a steady state regime,

and measure the steady state discharge during approximately two minutes. We thus

measure Q with the average discharge of this steady state, estimating the measurement

error with the standard error of the measurements. During this steady state regime,

we then take a picture of the pipettes and measure ∆H. Repeating this procedure at

each step, we progressively increase the imposed pressure head. To avoid hysteresis, we

then decrease the pressure head progressively and also perform measurements during

this decrease.

For each bead size, we thus collect two data sets, with two distinct column heights

L (figure 3.4). In the four data sets, the discharge increases linearly with the hydraulic

head, at least for small hydraulic heads. Fitting a linear relationship over the linear

parts of the data sets, and comparing the proportionality coefficient to equation (3.1),

we thus obtain two measurements of K for each beads size (table 3.1).

Yet, all experiments seem to deviate from a linear relationship at large values of the

pressure head. The largest the beads and the lowest the height L of porous column, the
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1 mm beads 4 mm beads

L = 24.8 cm L = 46 cm L = 24.7 cm L = 45.4 cm

K (linear fit) 1.01 1.00 5.10 7.37

K (polynomial fit) 0.91 1.02 4.76 6.34

K (average) 0.97 ± 0.06 K = 5.7 ± 1

Table 3.1: Results of the Darcy experiments, in cm s−1.

strongest the deviation. We attribute this deviation to a departure from a laminar flow.

Indeed, we estimate that the Reynolds number Re = 1 for Q ≈ 0.6 g s−1 with the 4 mm

beads, and Q ≈ 2.5 g s−1 with the 1 mm beads. We thus make a second estimate of the

linear part of the data sets by fitting a polynom of order two (Forchheimer, 1901). The

linear component of this polynom yields a second estimate of the hydraulic conductivity

for each data set, and we end up with four estimates of the hydraulic conductivity of the

porous material for each beads size. Taking the mean values and maximum difference

of the measurements, we thus measure a conductivity K of 0.97 ± 0.06 cm s−1 for the

1 mm glass beads and K = 5.7 ± 1 cm s−1 for the 4 mm glass beads.

3.2.3 Rainfall

To simulate rainfall, a sprinkler pipe of diameter 2.5 cm is held above the tank. A

series of 31 holes of diameter 1 mm spreads regularly along it, and distributes water

evenly over the aquifer surface. The internal diameter is about 2.1 cm. The 31 holes

are therefore tubes of length ≈ 2 mm. Limescale deposits sometimes partly plug some

holes, but overall the rainwater spatial distribution is homogeneous.

As a distance of about 4.5 cm separates neighbouring holes, the spatial distribution

of rainwater is discretised. Yet, as a jet of rainwater infiltrates downwards to join

the groundwater reservoir, it forms a plume of width about 3 cm. This makes the

groundwater recharge almost homogeneous.

Finally, we measure the rainfall rate with an electromagnetic flowmeter (Kobold,

MIK-5NA10AE34R). It measures the rainfall discharge with a precision of 2%, for dis-

charges from 0.05 l min−1 to 1 l min−1.

3.2.4 Discharge measurement

The flow exiting the aquifer is collected in a bucket weighted every second (scale

Ohaus, Explorer 22) with a precision of 0.1 g. The time interval between each measure-

ment is not exactly one second and slightly varies, so we need to record the time of each

measurement. The water discharge is then simply the derivative of the bucket weight

with respect to time.
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Figure 3.4: Results of the Darcy experiments. The blue points are measurements (•),
the red lines are linear fits over the first part of the data ( ), and the green lines are

polynomial fits of order 2 of all the data ( ).
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3.2.5 Surface tension

Above the groundwater reservoir, air connects the porous material to atmospheric

pressure, thus maintaining the water it contains under capillary tension. For the 1 mm

(resp. 4 mm) glass beads, this tension creates a capillary fringe of thickness about 4 cm

(resp. 1 cm). This capillary fringe is particularly visible at the end of an experiment,

when the discharge exiting the aquifer has vanished. A fringe of porous material, at

the bottom of the aquifer, is still saturated with water. Capillary tension hinders this

reservoir to exit the aquifer.

Surface tension exhibits a strong hysteresis (de Gennes et al., 2002). A visible

consequence is that the angles of contact of a moving droplet on a solid are different at

the front and at the rear (Le Grand et al., 2005; Snoeijer and Andreotti, 2013). As a

result, we expect the capillary fringe height to be higher when the water table declines,

and lower when the water table rises. This prevents us from locating the water table

visually with good accuracy.

Finally, surface tension also plays a role at the outlet. We have chosen a grid which

holes are slightly smaller than the beads. Yet, if the grid were in direct contact with air,

surface tension would induce a pressure jump at the outlet. To avoid this inconvenience,

we spread a soft plastic sheet over the outside of the grid. This device maintains a thin

film of water at atmospheric pressure over the grid surface (suggestion of A. Daerr).

In what follows we neglect surface tension, and assume that the upper surface of the

saturated reservoir is at atmospheric pressure. This free surface is referred to as the

water table.

3.3 Observations

A typical experiment begins with an empty aquifer. We then switch on the rainfall

and maintain its rate R constant for a few tens of seconds. Rainwater infiltrates ver-

tically through the porous material until it reaches the bottom of the tank, where its

accumulation forms a reservoir. As the water table expands to accommodate more rain-

water, the asymmetry of the boundary conditions causes it to curve towards the aquifer

outlet. The resulting pressure field pushes the water out of the aquifer, generating a

discharge Q.

We performed two series of experiments, with the rainfall ranging from 1.67 ml s−1

to 42 ml s−1 for the 1 mm beads, and from 2 ml s−1 to 35 ml s−1 for the 4 mm beads.

We observed the same behaviour in all cases: a few seconds after the beginning of

rainfall, the water discharge exiting the aquifer rises quickly, until the rainfall stops

(figure 3.5a). At this point, the discharge suddenly decreases, and then relaxes slowly

towards zero. As observed in the hydrograph predicting by the Dupuit-Boussinesq

theory (figure 2.3), we observe three regimes: a storm flow, an early stage of drought

flow where the discharge decreases rapidly, and a late stage of drought flow where the

discharge decreases slowly. This laboratory hydrograph resembles both the numerical

hydrograph, and typical river hydrographs (figures 4.9, 7.3 and 7.9).
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(a) Hydrograph realised by stopping rainfall during the storm flow.
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(b) Hydrograph realised by imposing a constant rainfall rate until saturation of

the discharge.

Figure 3.5: Rainfall rate R imposed to our laboratory aquifer (green line, top), and water

discharge Q exiting the experiment (blue line, bottom). Measurements are collected at

1 Hz, with a precision of about 0.1 g s−1. In this experimental run, the porous reservoir

is made of 1 mm glass beads.
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Of course, if we maintain a constant rainfall during a sufficiently long time (about

4 minutes for the 4 mm beads, and 15 minutes for the 1 mm beads), the water dis-

charge will eventually saturate to equal the rainfall input (figure 3.5b). At this point,

the water table shape is stationary. At the groundwater divide (right-hand side), its

maximum elevation increases with the rainfall rate. Yet, it reaches approximately 10 cm

(respectively 25 cm) for the 4 mm (respectively the 1 mm) beads.

In the experiment of figure 3.5a, the water discharge increases about 40 s after the

beginning of the rain. We observe a similar time lag in every experiment. We interpret

it as the travel time of rainwater trough the 40 cm of unsaturated porous medium which

separate the aquifer’s surface from its bottom. This would imply that the rainwater

infiltration velocity through the unsaturated porous material is about 1 cm s−1. This

velocity is indeed consistent with the measured conductivity of the saturated aquifer,

although one could expect the porous media to be less permeable when unsaturated.

In the next section, we focus on the drought flow of this laboratory aquifer. The

purpose is to confirm experimentally the asymptotic regime of the Dupuit-Boussinesq

theory concerning the late stage of the drought flow (equation (2.29)).

3.4 Experimental drought flow: comparison with

the Dupuit-Boussinesq theory

When the rain stops, the water discharge relaxes slowly towards zero. Here, we

compare this drought flow with the Dupuit-Boussinesq asymptotic regimes derived in

section 2.3. Reproducing the early stage of the drought flow which corresponds to

the early-times asymptotic regime (equation (2.23)) requires to saturate completely the

experimental aquifer with water, as in section 2.3.2.2. This condition was difficult to

realise with our experimental setup, and we only reproduced the late stage of the drought

flow.

In a fully-penetrating configuration, the Dupuit-Boussinesq theory predicts that the

discharge decreases as 1/t2 during this drainage regime (section 2.3, equation (2.29)).

More precisely, the asymptotic regime at long times reads:

Q ∼ ad
s2W L3

K t2
(3.2)

where ad ≈ 0.693 is a mathematical constant, s is the porosity, W and L are the width

and the length of the aquifer, and K is the hydraulic conductivity.

We test this prediction by imposing a constant rainfall rate R = 34 ml s−1 during

several minutes, until we reach steady state. We then stop the rainfall, and measure

the discharge during more than one day for the 1 mm beads, and almost two days for

the 4 mm beads. With the two porous materials, we perform two drainage experiments.

Figure 3.6 shows the discharge evolution averaged over two experiments, for the two

porous materials.

At the end of the experiments, the discharge reaches 10−5 ml s−1, which corresponds

approximately to one droplet every ten minutes (for a droplet of radius 1 mm). The scale
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Figure 3.6: Top: Evolution of the water discharge after rainfall has been switched off

(blue solid line ( ): 4 mm glass beads, green dashed line ( ): 1 mm glass beads).

The red line represents the asymptotic regime (3.2). Bottom: Negative time derivative

of the discharge with respect to the discharge, as suggested by (Brutsaert and Nieber,

1977) (see section 2.3.3). The red line is the 3/2 power law of equation (3.2), without

any fit parameter.
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cannot measure such a low discharge. As a consequence, we increase logarithmically the

time between each measurement. At the beginning the measurement time interval is

one second. After two days of experiment, the time interval is about three hours.

At the end of one experiment (with 1 mm beads), the measured discharge is (slightly)

negative, of the order of 3 ·10−4 ml s−1. This is certainly due to evaporation in the outlet

bucket.

To compare the drainage regime of the two porous materials, we scale out the the

permeability in equation (3.2):

Q

KW L
= ad

(
sL

K t

)2

. (3.3)

Our experimental aquifer conforms well with the drought flow of the Dupuit-Boussinesq

theory (figure 3.6). After appropriate rescaling, the relaxation of the water discharge

appears to be independent of the aquifer permeability. Without any fit parameter, the

two drainage regimes conform well to the theoretical prediction. Fitting a power law

to the data after the transient (Kt/(sL) > 10) yields an exponent of −1.87 ± 0.03,

comparable with the theoretical exponent. We estimate the error on the exponent by

estimating a lowest and highest value of the exponent. The lowest value is obtained

with the minimisation of the horizontal distance of the data points to the fit function,

and the highest value with the vertical distance. Now assuming the exponent is exactly

−2, the data is best fitted with a prefactor of 0.48± 0.2, again in reasonable agreement

with the theoretical value of ad = 1.177.

Based on Brutasert and Nieber’s method (section 2.3.3), we also plot the negative

time derivative of the rescaled discharge with respect to the discharge (figure 3.6). In

this plot, we expect the late stage drought flow to conform to a 3/2 power law (table 2.1).

Fitting a power law to the data after the transient (Kt/(sL) > 10) yields an exponent of

1.502±0.002, in good agreement with the theoretical exponent. Assuming this exponent

is exactly 1.5, the data is best fitted with a prefactor of 3.10± 0.1, again in reasonable

agreement with the theoretical value of 2/
√
ad = 2.402.

The mismatch between theory and observation is hardly distinguishable from the

experimental noise, thus supporting the use of the Dupuit-Boussinesq approximation

to interpret the drought flow of our experimental aquifer. Yet, the breakdown of the

Dupuit-Boussinesq approximation near the outlet indicates that the two-dimensionality

of the flow might play a significant role there (section 2.3, equation (2.11)). Indeed, a

two-dimensional description of the flow could account for the finite height of the water

table observed along the outlet grid, as described in section 3.2.1. We will show, in

section 8.3.1.4, how matching asymptotically a two-dimensional flow near the outlet

with the Dupuit-Boussinesq solution far from the outlet could alter the prefactor of

equation (3.2).
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Figure 3.7: Left : Increase of the water discharge just after the beginning of rainfall

for various rainfall rates (solid blue lines, R = 36.7, 16.8 and 8.3 mL s−1 from top to

bottom). The curves are shifted horizontally so that time is zero at the beginning of

the discharge increase. For each run, a linear increase is fitted to the data (dashed red

lines). Right : Dependence of the discharge increase rate on the rainfall rate (blue dots).

A linear relationship is fitted to the data for comparison (dashed red line). In this series

of experiments, the porous reservoir is made of 4 mm glass beads.

3.5 Experimental storm flow

We now focus on the storm flow of our laboratory hydrograph. After the rainfall

rate has started, rainwater infiltrates downwards through the porous material. Once the

rainwater has reached the bottom of the aquifer, the discharge at the experiment’s outlet

appears to increase linearly with time (figure 3.7). This observation holds over the entire

range of rainfall rates we were able to investigate (from 2.4× 10−5 to 5.8× 10−4 m s−1).

A simple reasoning might explain the linear increase of the discharge during rainfall:

far from the outlet, the water table moves upwards in proportion to the water input,

that is R t, and arguably so does the pressure in the reservoir. Assuming discharge

is simply proportional to the pressure in the reservoir, we conclude that the discharge

increase rate should be constant, and proportional to the rainfall rate R.

We can measure the discharge increase rate Q̇ by fitting a linear relation to the

data, at the beginning of an experimental run (figure 3.7). Repeating this procedure

for various rainfall rates, we find that the discharge increase rate is a growing function

of the rainfall rate. This relationship, however, is not linear, and resembles a power law

with an exponent larger than one (figure 3.7, right). This finding contradicts the simple

reasoning based on the linear pressure increase, thus suggesting that the discharge is

not proportional to the elevation of the water table far from the outlet.

The non-linear relation between discharge and pressure is likely to be the signature

of a free-surface flow. Indeed, when the geometry of the flow is confined, Darcy’s law
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Figure 3.8: Numerical solution of equation (3.7), corresponding to the self-affine shape

of the water table during the early stage of a rain event (blue line). Its behaviour near

the aquifer outlet is a
√
X (red dashed line).

leads to a linear response of the aquifer. To the contrary, when the shape of the water

table adjusts to the flow conditions, its dynamics influences the aquifer’s response to

rainfall.

3.6 Early response to rainfall: asymptotic regime of

the Dupuit-Boussinesq equation

The Dupuit-Boussinesq equation reads

s
∂h

∂t
=
K

2

∂2h2

∂x2
+R , (3.4)

where R is the rainfall rate. Our experiments suggest a power-law relationship between

the discharge increase rate and the rainfall rate during the early stage of a rain event

(figure 3.7). This is an incentive to look for the asymptotic behaviour of the Dupuit-

Boussinesq equation at the beginning of rainfall.

We expect the groundwater flow to be insensitive to the boundary far from the

outlet, and therefore the water table elevation should increase as R t/s, where the time

t is set to zero when rainwater reaches the bottom of the experiment. In contrast with

the simple reasoning of section 3.5, we now propose a self-affine shape for the water

table:

h(x, t) =
R t

s
H (X) , (3.5)
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where X is a new variable, which depends on x and t. The purpose of this new variable is

to transform the partial differential equation (3.4) into an ordinary differential equation.

For that purpose, we assume a self-affine expression X = x/tβ, and introduce the self-

affine shape (3.5) into the Dupuit-Boussinesq equation (3.4). We thus find β = 1.

Finally, the self-affine variable

X =
s x

t

√
2

K R
, (3.6)

together with the self-affine shape H, transform the Dupuit-Boussinesq equation into a

parameterless ordinary differential equation:

H H ′′ +H ′2 +
1

2
(X H ′ −H + 1) = 0 . (3.7)

The boundary condition at the outlet (equation (2.10) in section 2.2) translates into

H(0) = 0, while the steady rise of the water table far from the outlet formally reads

lim
X→+∞

H = 1 . (3.8)

This boundary condition is valid as long as the impervious boundary is far from

the outlet, compared to the characteristic length of the flow. Mathematically, t �
sL/
√
K R (for the experiment of figure 3.5a, t� 400 s).

We are not aware of any analytical solution to the above problem, and therefore we

approximate H numerically (figure 3.8). With the same arguments as in section 2.3.2, we

expect a singularity in X = 0: as H = 0, the slope H ′ must be infinite to accommodate

a finite discharge. In equation (3.7), we therefore expect, at first order, the two left

terms to dominate close to zero:

H H ′′ ∼ H ′2 when X → 0 . (3.9)

This implies that H adopts a square root shape near the outlet:

H ∼ a
√
X (3.10)

where a is a constant adjusted to satisfy the far-field boundary condition (3.8). Using

a numerical shooting method to do so, we find a ≈ 1.016.

To the self-affine regime of the groundwater flow at early time corresponds the fol-

lowing water discharge, in dimensional form:

Q(t) ∼ a2 W

s

√
K

2
R3/2 t (3.11)

where W is the width of the aquifer. The above expression is encouraging, as it features

the linear time dependence of the discharge we observe in experiments. Furthermore,

the prefactor of this relation includes the rainfall rate R to a power larger than one,

again in qualitative agreement with observations (figure 3.7).



64 CHAPTER 3. RESPONSE OF A LABORATORY AQUIFER TO RAINFALL

10−3 10−2 10−1

rainfall rate R/K

10−4

10−3

10−2

di
sc

ha
rg

e
in

cr
ea

se
ra

te
Q̇
φ
/(
K

2
W

)

Figure 3.9: Dependence of the discharge increase rate with respect to the rainfall rate,

for two series of experiments: 4 mm glass beads (blue dots) and 1 mm glass beads (green

squares). The red line represents the asymptotic regime (3.12).

To further compare this asymptotic regime to observation, we supplement the data

of figure 3.7 with similar experiments involving a less permeable aquifer, made of 1 mm

glass beads. Equation (3.11) suggests that the permeability K be scaled out of the data:

Q̇ s

K2W
∼ a2

√
2

(
R

K

)3/2

. (3.12)

Indeed, when rescaled according to the above expression, the discharge increase rate

and the rainfall rate from all experiments gather around the same relation, regardless

of permeability (figure 3.9). Fitting a power law through the data yields an exponent of

1.47± 0.01, in reasonable accordance with the 3/2 exponent of the asymptotic regime.

Here again, we estimate the error on the exponent by estimating a lowest and highest

value of the exponent. The lowest value is obtained with the minimisation of the hor-

izontal distance of the data points to the fit function, and the highest value with the

vertical distance. Assuming the asymptotic exponent is correct, the data are best fitted

with a prefactor of 2.0± 0.1, that is about three times the theoretical value of 0.73.

The asymptotic regime resulting in equation (3.12) explains the scaling of the dis-

charge increase rate with both the rainfall rate and the conductivity, throughout the

range of parameters we were able to explore experimentally. The overestimate of the

drainable porosity could explain part of the mismatch between the theoretical prefactor

and our measurements, though not all of it (section 2.2).

This mismatch does not depend on the rainfall rate, nor on the conductivity of the

aquifer, which points to a geometrical effect. The breakdown of the Dupuit-Boussinesq

approximation near the outlet could play a significant role here, which could affect
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boundary condition (2.10) and alter the prefactor of equation (3.11).

3.7 Conclusion

The experiment presented here supports the use of the Dupuit-Boussinesq approx-

imation to describe the response of an aquifer to a rainfall event. In particular, it

correctly predicts the increase of the groundwater discharge at the beginning of rainfall,

and reveals an unexpected asymptotic behaviour: the discharge increase is proportional

to the rainfall rate to the power 3/2.

If its validity extends to field situations, this strong dependence would induce a fast

groundwater contribution to the discharge of rivers, especially under intense rainfall.

Therefore its consequences in terms of flood predictions deserve detailed scrutiny. An

ideal field site to assess the contribution of this asymptotic regime would be dominated

by groundwater hydrology, with negligible surface run-off. In such site, our new asymp-

totic regime could contribute to determine the hydrological parameters of the aquifer,

adding a supplementary constraint to the drought flow analysis developed by Brutsaert

and Nieber (1977).

However, even in a simplified laboratory experiment, the fast dynamics of a free-

surface aquifer requires more investigations. Indeed, our experiment shows a slight

mismatch between the numerical factors yielded by the Dupuit-Boussinesq approxima-

tion and measurements. We speculate that the two-dimensionality of the flow might

come into play near the outlet, thus changing the effective boundary condition there.

Finally, under natural conditions, various phenomena excluded from the present

analysis, such as surface tension, heterogeneities of the aquifer and evapotranspiration,

are likely to play a significant role. In the next chapter, we present a field experiment

to assess the Dupuit-Boussinesq theory in the field.



66 CHAPTER 3. RESPONSE OF A LABORATORY AQUIFER TO RAINFALL



Part III

Response of a natural aquifer to

rainfall

67





Chapter 4

The Quiock Creek field experiment
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In the previous chapter, we have studied the dynamics of a groundwater flow in

controlled and simplified conditions, and assessed the validity of asymptotic regimes of

the Dupuit-Boussinesq equation. These asymptotic regimes resulted in predictions on

the dynamics of the discharge delivered by an aquifer to a river. In field situations,

the complexity of natural aquifers could break several of the hypotheses satisfied in the

laboratory experiment. This questions the validity of our predictions in natural aquifers.

To test these predictions, we need to measure simultaneously the discharge of a river,

the water table profile, and the rainfall rate. These measurements must be acquired at

high frequency to capture quick flood events. They must also cover a duration long

enough to analyse many events. To our knowledge, there exists no such data set in

the literature. This is why we have developed a field experiment in the Quiock Creek

catchment, in Guadeloupe.

The first objective of this field experiment is to observe qualitatively the behaviour

of the groundwater flow. To do so, we measure a water table profile perpendicularly
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to the river. Second, the analysis of the Dupuit-Boussinesq equation suggests that a

groundwater flow reacts rapidly to rainfall events, and can generate quick floods. We

measure the water table elevation and the river discharge at short time intervals, to

confirm that their dynamics is comparable.

In this chapter, we present our field set-up, and qualitative results from this experi-

ment.

4.1 Field site

4.1.1 Catchment

The Quiock Creek is located on Basse-Terre, a volcanic island of the Guadeloupe

archipelago, in the French West Indies. It is a small tributary of the Bras-David river,

in the center of the primary tropical rainforest of the Guadeloupe National Park. Where

both rivers join, the Bras-David river drains approximately nineteen km2, with a mean

discharge of 8.5 m3 s−1 (figure 4.1).

The Quiock Creek flows over a heavily weathered aquifer. A 12.5-metres deep ground

profile revealed a very homogeneous material mostly composed of clay (about 70%,

mainly halloysite and kaolinite) and of secondary minerals (essentially Fe(III)-hydroxides

(about 19%)) (Buss et al., 2010). The rest is composed of primary minerals (quartz,

feldspar and cristobalite), predominantly found in the first 30 cm beneath the surface.

This ferralitic regolith, which develops on Pleistocene andesitic pyroclastic deposits, is

often thicker than 15 metres on the Basse-Terre island (Clergue, 2015). It is considered

to be reasonably permeable (Colmet-Daage and Lagache, 1965).

Using the Whitebox Geospatial Analysis Tool1, we find that the drainage area of

the Quiock Creek is 7.86 hectares at the point where we record the discharge, with

about 979 m of channels (section 6.2.5). To calculate these values, this software uses a

digitised elevation model (DEM), which gives the earth surface elevation on a 5× 5 m

grid2. An algorithm associates each point of the grid with a flow direction: towards its

lowermost neighbour (or, equivalently, towards the maximum slope). Then, a specific

point of the drainage network collects the flow from a given number of pixels. All these

pixels define the catchment associated to this specific point. This catchment is therefore

associated to overland flow. However, nothing forces groundwater to flow in the direction

of the ground surface maximum slope. The area drained by the groundwater flow and

the overland flow catchment therefore possibly differ (figure 1.7). In the following, we

assume that their orders of magnitude are comparable.

Overall, the Quiock Creek catchment combines several characteristics favourable

to test the asymptotic regimes of the Dupuit-Boussinesq equation. First, the Quiock

Creek drains a small area on homogeneous ground, limiting the possible influence of

heterogeneities. Moreover, as the channels are relatively short, the flood waves within

the stream are likely to play a minor role on the floods dynamics. Second, the smooth

1http://www.uoguelph.ca/~hydrogeo/Whitebox/
2This model results from a Litto3D campaign (http://professionnels.ign.fr/litto3d).

http://www.uoguelph.ca/~hydrogeo/Whitebox/
http://professionnels.ign.fr/litto3d
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Figure 4.1: Field installation in the Basse-Terre island (Guadeloupe, lesser Antilles).

We measure the discharge of the Quiock Creek with a Venturi flume (•). Where we

measure the discharge, the river approximately drains eight hundred metres of channels

over about eight hectares (catchment area delimited by the dotted line (···)). We measure

the water table with six piezzometers located besides the Ravine Quiock river along the

transect ( ) (see figures 4.7 and 4.10). A rain gauge measures the rainfall rate close

to the piezzometers. A station additionally measures the Bras-David river discharge

continuously, as well as the rainfall rate outside the forest (•). At last, figure 4.2 shows

the topography around the Quiock Creek along the transect ( ), seen from the left

(see section 4.1.2).
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Figure 4.2: Surface topography along a transect perpendicular to the river (see fig-

ure 4.1) (top) and tomographic profile (bottom). In the top graph, the surface topography

is derived from a 5×5 m digitised elevation model (DEM). We measured the topography

of the bottom graph more precisely, with a laser pointer (which measures the distance

and angle to a given target).

topography of the ground does not present any mark of overland flow. In addition, the

creek flows throughout most of the year, even after long drought periods. These two

points suggest a significant contribution of groundwater to the discharge of the Quiock

Creek. Third, the loose constitution of the weathered rock allows to dig easily into the

ground, which facilitates the monitoring of the water table. Finally, the Observatoire de

l’eau et de l’érosion aux Antilles (ObsErA3) has been studying chemical weathering on

this site for four years now (Lloret, 2010; Clergue, 2015). The existence of this INSU-

CNRS observatory allows to maintain the site and to collect data frequently (thanks to

C. Dessert, T. Kitou, V. Robert and O. Crispi). Moreover, our hydrological data should

soon be complemented with chemical data.

4.1.2 Aquifer geometry

The geometry of an aquifer strongly influences the groundwater flow. In particular,

the Dupuit-Boussinesq theory assumes a fully-penetrating stream. To investigate the

structure of the Quiock Creek aquifer, we used electric resistivity tomography (ERT).

With this technique, one can assess the homogeneity of the aquifer and localise the

hypothetic aquifer impervious bottom. We performed this tomography profile in a field

3https://morpho.ipgp.fr/Obsera/Home

https://morpho.ipgp.fr/Obsera/Home
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campaign in collaboration with A. Quiquerez (Université de Bourgogne), V. Langlois,

P. Allemand and P. Grandjean (Université Lyon 1).

The ERT method consists in imposing an electrical current in the ground with

a pair of electrodes (Chevigny, 2014). The electrical potential is then measured at

various locations on the ground surface with a second pair of electrodes. Repeating this

procedure along a transect, we end up with an inverse problem which solution yields an

estimate of the electrical resistivity in the ground (Loke, 1999).

The resistivity of a ground layer depends on its mineral composition, on its structure,

and on its water content. Typically, the resistivity of groundwater is expected to be

between 10 and 100 Ω m (Samouëlian et al., 2005). The resistivity of an unsaturated

ground is generally larger, but highly variable, and depends strongly on its water content.

Typically, the resistivity of clay varies from 10 Ω m with a high water content, up to a

few hundreds of Ω m if it is dry (Samouëlian et al., 2005). The resistivity also depends

on the soil properties, such as its structure or its mineralogy. We therefore expect a

resistivity profile to show abrupt variations at interfaces between two layers of different

composition.

We placed 24 electrodes spread every two metres along a transect perpendicular to

the river. With this set-up, we could measure the resistivity of the ground down to 6 m

below the ground surface (figure 4.2). The soil profile reveals a surface layer of about

0.5 - 1 m in depth with a relatively high resistivity, between 400 and 900 Ω m. This

surface layer probably corresponds to the organic material extracted at the beginning of

the drillings (section 4.2.3), although it could also be due to biased measurements close

to the electrodes (A. Quiquerez personal communication). Under this surface layer, the

resistivity profile shows little variation, between 80 and 320 Ω m. This range of resistivity

is consistent with the dry clay observed in the material extracted from the boreholes

(section 4.2.3), and reported by Buss et al. (2010). The resistivity profile thus suggests

that the Quiock Creek aquifer is homogeneous, in agreement with Buss et al. (2010).

However, this soil profile also points to the absence of a bottom layer below the river.

In addition to this tomography profile, we have drilled six boreholes along this transect,

at several distances from the river. The boreholes depth reached up to six metres down

the ground surface, and the material extracted from drilling appeared homogeneous to

the eye. This second observation supports the idea that the aquifer impervious bottom,

along this particular transect, is deeper than four metres below the river.

4.2 Field installation

We developed this field experiment to collect high-frequency measurements of the

water table elevation, of the river discharge and of the rainfall rate, to compare their

dynamics. Here, we present our measurement procedure.
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Figure 4.3: Left: Measurement of the river discharge with a Venturi flume. The relation

between water height and water discharge is calibrated. Right: A PVC pipe is introduced

in a borehole to prevent its collapse. At the bottom of the borehole, a pressure sensor

measures the water level (see figure 4.7).

4.2.1 Rainfall measurement

We measure the rainfall rate with a tipping-bucket rain gauge. Rainfall fills a bucket

which tips over after 0.2 mm of cumulated rainfall. Every minute, we record how many

times the bucket has tipped over, obtaining a volume of rainfall every minute. We then

sum this volume over a sampling period of five minutes, and divide it by the sampling

period to obtain the rainfall rate.

A dense vegetation covers the catchment, and large trees intercept part of the rainfall.

As a result, a rainfall rate measured within the forest of the catchment could differ from

the actual rainfall rate. To test the influence of the forest on our rainfall measurements,

we measure the rainfall rate at two different locations. A first weather station is located

within the forest, near the Quiock Creek (figure 4.1). A second weather station is located

outside the forest, near the Bras-David river station (black point in figure 4.1), and a

few hundred meters far from the Quiock Creek. This station is close enough to the

Quiock Creek catchment to assume that it records the local rainfall rate.

Outside the forest, the Bras-David weather station has been measuring the rainfall

rate outside the forest since November 2011. These measurements confirm the Météo

France estimations of an average 3500 mm yr−1, with small seasonal variations (the

wet season, from July to December, can be twice as rainy as the dry season) (Lloret

et al., 2013). Estimations by Clergue (2015) reveal that the volume recorded outside the

forest is only 12% larger than within the forest. Hereafter, we use the “within-forest”

measurements.

Finally, the evapotranspiration is estimated to be around 60%, typical of tropical

rainforests (Clergue, 2015).
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4.2.2 Discharge measurement

We began to monitor discharge of the Quiock Creek in September 2014. To do so,

we force the stream to flow through a Venturi flume (ISMA, exponential cross section

Type III, measurement range) (figure 4.3). The Venturi flume is a 19 × 26.6 × 250 cm

epoxy channel. Its rectangular cross section contracts about 62.5 cm upstream from

its outlet, and expands again to a rectangular shape about 40 cm upstream from its

outlet. The principle of such flume is to measure the height of water upstream of the

contraction. This height h depends on the stream discharge Q, in a relationship which

has been calibrated by the manufacturer (figure 4.4). A polynomial fit of the calibration

data points made by the manufacturer reads

Q ≈ −0.597h+ 1156.49h2 − 1126.96h3 + 6552.4h4 , (4.1)

where the discharge is in m3 h−1, and the height in m. The stream level consequently

rises as the discharge flowing into the flume increases. Fitting a power law to these

data points yields an exponent of 1.93, i.e. close to 2. Manufacturing defects can induce

measurement errors of about 3%.

The exponential cross section of the contraction allows to measure a large range of

discharges. The minimum height giving a reliable discharge is 2.9 cm and corresponds

to a discharge of 0.93 m3 h−1, and the maximum height is 26.6 cm and corresponds to a

discharge of 93.26 m3 h−1.

We focus the stream into the canal with a concrete dam (figure 4.5). Up to a height

h ≈ 24.7 cm, the entire flow enters the flume but, above this threshold value, the stream

overflows the dam. For this reason we do not consider measurements above 24.7 cm,

which correspond to a maximum discharge of about 76.01 m3 h−1.

We measure the water height in the flume with a pressure sensor (CS451, Campbell

Scientific, precision δh =0.7 mm). As the discharge is approximately proportional to

the height squared, the measurement error on the discharge δQ reads:

δQ ∼ 2Q
δh

h
∼ 2

√
Qδh . (4.2)

The discharge measurement error therefore increases with the square root of the dis-

charge.

With this installation, we measure the evolution of the water height in the canal

(figure 4.6), and convert it into a water discharge (figure 4.9). We have measured the

creek discharge every five minutes from September 9th, 2014 to September 26th, 2014

and every minute from October 10th, 2014 to June 30th, 2015. Over almost ten months

(from September 2014 to May 2015), we measured a mean discharge of 9.9 m3 h−1.

Divided by the drainage are, the mean discharge is about 0.12 mm h−1.

4.2.3 Measurement of the water table elevation

We measure the profile of the water table along a transect perpendicular to the river,

located approximately 20 m upstream of the Venturi flume. Using an auger, we drilled
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Figure 4.4: Calibration relationship between the height of water in the Venturi flume,

and the river discharge. The blue points are the calibration points by the manufacturer

(•), and the red line is their provided fit (equation (4.1)) ( ).

Figure 4.5: Picture of the concrete dam which focuses the stream into the Venturi flume,

up to a water height of about 24.7 cm.
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Figure 4.6: Evolution of the height measured in the Venturi flume in September 2014.
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Figure 4.7: Left: Side view of the field installation. Along a transect perpendicular to

the river bed, six pressure sensors (•) are located at the bottom of boreholes ( ), 1,

2.4, 4.5, 9.4, 21.2 and 29.8 m away from the river. The ground topography was measured

with a laser pointer. Right: A borehole. At the top, we fill the gap between its wall and

the PVC pipe with a clay plug, to prevent overland flow from filling the borehole. Near

the bottom, the PVC pipe is perforated, to allow water to enter through its sides.
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six boreholes (10 cm in diameter) along this transect, at six distinct locations: 1, 2.4,

4.5, 9.4, 21.2 and 29.8 m away from the river (figure 4.7). We number these boreholes

from one to six, respectively.

The drilling procedure was similar for all boreholes. After roughly 50 cm of muddy

and organic clay, the ground material become homogeneous during the whole drilling

process, corresponding to the homogeneous ferralitic regolith described in Buss et al.

(2010). The ground material was similar in all boreholes, confirming the homogeneity of

the aquifer (section 4.1.2). In boreholes number 4, 5 and 6, we drilled until we reached

a more resistant material, which hindered drilling. This resistant layer set the depth of

these boreholes, which is why the bottom of boreholes 5 and 6 is higher than the river.

In contrast, near the river (boreholes number 1, 2 and 3), we stopped drilling before

reaching any resistant layer.

To prevent any collapse, we inserted PVC pipe into the borehole (8 cm in diameter).

The borehole is two centimetres larger in diameter than the PVC pipe, such that a

one-centimetre gap separates its wall from the tube. In order to prevent any overland

flow to enter the borehole through this gap, we plugged the gap with clay over the

uppermost dozen centimetres (schematic in figure 4.7). We eventually overcome the

potential formation of a mud plug at the bottom of the PVC tube by drilling small

holes evenly over the lowermost twenty centimetres of the tube.

Near the bottom of the boreholes, we placed a pressure sensor connected to a data

logger (Campbell Scientific, CR800). Each sensor is approximately 15 cm above the

borehole bottom, to prevent clogging by residual mud. By measuring the length of the

cable from the top of the PVC pipe to the sensor, we estimate the depth of the sensors

relative to the ground surface. We then measured the topography of the transect with

a laser pointer, which measures the distance and angle of a given target. From this

accurate topography and the depth of the sensors, we estimate the elevation of the

sensors relative to the river elevation, which we arbitrarily fix to zero. As a result, as

we measure the water height in the boreholes, we obtain the water table profile relative

to the river. We have measured this water table profile every minute during almost six

months, from January 2015 to June 2015.

4.3 Behaviour of the groundwater flow

The field set-up presented in the previous section allows us to observe the behaviour

of groundwater in the Quiock Creek catchment. The water-table profile allows us to

estimate the direction of the groundwater flow.

4.3.1 Average water table profile

Figure 4.8 shows the water table profile averaged over almost six months, from 15th

January 2015 to 28th June 2015. During this period, boreholes 5 and 6 happened to be

dry during several drought periods (almost 40 days in total). In the averaging procedure

of the six boreholes, we did not take into account data from this period.
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Figure 4.8: Average water table profile between 15th January and 28th June 2015. The

blue points represent the measured water level (•), and we then interpolate the water

table between each borehole ( ).

The averaged water table profile resembles the experimental water tables observed in

Ibrahim and Brutsaert’s laboratory experiment (section 2.3), and in our’s (chapter 3).

It is above the river, and slopes towards the river. This slope implies that the pres-

sure gradient is oriented towards the river. On average, along this specific profile, the

groundwater of the Quiock Creek aquifer feeds the Quiock Creek.

We now investigate dynamics of the water table and the river discharge. For the

sake of clarity, we first observe the water table dynamics through a single borehole. In

section 4.3.3, we will extend our observations to the entire profile.

4.3.2 River discharge and water table elevation

Figure 4.9 shows the evolution of the water table level and of the river discharge

during ten days. Submitted to several rainfall events, the water level recorded in the

borehole strikingly resembles the river discharge. We can identify six distinct rainfall

events, five of which cause a fast increase of both the water table and the river discharge.

On the contrary, one of the rainfall events (on 6th Feb.) is too small to trigger a water

table reaction and, similarly, the river discharge does not react.

Moreover, the reaction times of the water table and the river discharge are similar.

As they start increasing, both reach their maximum after a comparable duration, of the

order of a dozen minutes. When rainfall stops, both start decreasing rapidly, and slowly

relax to their initial stage. Yet, the discharge signal is slightly narrower than the water

table level signal.

Both the water table and the river discharge react slightly after the rainfall event has

started, generally a few dozen minutes. Like in our laboratory experiment (chapter 3),

we interpret this time shift by the infiltration time of the rainwater down to the water

table. Considering that the water table is about 1 m below the ground surface at the

beginning of the event, and that the water table starts increasing about ten minutes
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Figure 4.9: Rainfall rate (top), water level in the borehole 5 (compared to the river

elevation, middle) and river discharge (bottom) during ten days in February 2015. The

water level in the borehole and the river discharge are strongly correlated: both in-

crease very rapidly during rainfall events, and decrease slowly afterwards. Moreover,

the water table elevation is more than two metres higher than the river, indicating that

groundwater flows towards the river.
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Figure 4.10: Top: water table profile recorded on 3rd February 2015 at 04:45 am, in a

period of low discharge — at the very beginning of a flood (see figure 4.9). Bottom: pro-

file recorded exactly three hours later, during the river discharge peak. In the boreholes,

the water level has increased of 0.22, 0.93, 0.73, 0.02, 1.35 and 1.36 m respectively.

after the beginning of the event, we conclude that rainwater seeps down at the velocity

of about 1 mm s−1.

Combined with the slope of the water table towards the river, the similarity between

the water table level and the river discharge evolutions suggests that the Quiock Creek

groundwater flow is able to generate quick floods. One needs not invoke overland flow

to explain the quick floods observed on the Quiock Creek hydrograph.

4.3.3 Water table dynamics

We now briefly extend our observations over the entire profile of the water table.

Figure 4.10 shows two snapshots of the water table profile. The top profile was

recorded during a period of relatively low discharge, a few minutes before the flood

event of 3rd Feb. (see also figure 4.9). This snapshot profile is similar to the averaged

profile, and indicates that groundwater flows towards the river.

The bottom graph shows the water table profile recorded three hours later, during the

river discharge peak. The water level has increased in all boreholes — except number 4.

Moreover, the further away from the river, the larger the water level increase — except
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Figure 4.11: Top: Temperature recorded in boreholes 4 ( ) and 5 ( ) during six

days in February 2015. Bottom: Water level in the same boreholes. In borehole 5, the

temperature decreases strongly when the water level rises. In borehole 4, the water level

does not rise and, accordingly, the temperature is steady.

in borehole 4. This indicates that, during the storm, the pressure gradient increases,

thus accelerating the groundwater flow. This observation again supports the idea that

the groundwater flow of the Quiock Creek catchment generates quick floods.

Yet, the water level in the fourth borehole has only risen by two centimetres during

this storm event. The quasi-absence of reaction recorded in this borehole was observed

for all recorded floods. The reaction time in this borehole is much longer than in

the others. In the present example, the quasi-absence of reaction in the fourth borehole

causes its water level to be lower than on its left and on its right. If our measurements are

correct, this means that the groundwater flow changes direction between the boreholes

3 and 5. We rather invoke a biased measurement, and suggest that borehole 4 was

drilled in a less permeable material. This biased measurement seems to be confirmed

by temperature measurements in the boreholes (figure 4.11). When the water level in a

borehole rises, the temperature in the borehole varies. In borehole 4, the temperature

is almost steady, as the water level.



4.4. Conclusion 83

At the beginning of July 2015, we have drilled an additional borehole close to this

defective point, to better understand this odd behaviour. We are waiting for the results.

In all boreholes but number 4, the water level increases rapidly during flood events,

in a way similar to figure 4.9. Moreover, the water level during floods elevates to higher

levels further away from the river. Therefore, the pressure difference between the river

and groundwater is higher during floods, thus accelerating the groundwater flow, and

increasing the discharge delivered by the aquifer.

4.4 Conclusion

The field experiment presented here looks suitable to test the asymptotic regimes

of the Dupuit-Boussinesq equation, which concern the storm flow and the drought flow

delivered by an aquifer to a river.

First, an electric tomography profile revealed a relatively homogeneous aquifer. Sec-

ond, the water table slopes towards the river, which indicates that groundwater flows

towards the river. Third, simultaneous measurements of the water table and of the river

discharge revealed a comparable dynamics. In particular, the water table rises quickly

during rainfall events.

Overall, our field observations indicate that the groundwater flow of the Quiock

Creek is able to generate quick floods. As we measure the rainfall rate and the river

discharge with a high frequency, we can now test the storm flow regime derived in

section 3.6. For that purpose, we must first measure the hydraulic properties of the

aquifer.
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In the previous chapter, we have presented the Quiock Creek field site, where the

groundwater flow behaves similarly as in our laboratory experiment. This site seems

suitable to test the Dupuit-Boussinesq asymptotic regimes concerning the drought flow

(section 2.3) and the storm flow (section 3.6). These regimes depend on the porosity

and hydraulic conductivity of the aquifer. As the hydraulic properties of an aquifer are

difficult to measure, these parameters are often fitting parameters of groundwater flow

models. Here, we present our attempts to estimate these parameters independently.

5.1 Aquifer porosity

Estimating the porosity of an aquifer is a difficult task, because direct measurements

on ground samples are generally not reliable (Bresciani, 2011). Indeed, it implies to

collect an aquifer sample and measure its porosity in the laboratory. This method has

three major drawbacks. First, a single sample may not be representative of the porosity

85



86 CHAPTER 5. CHARACTERISATION OF THE QUIOCK CREEK AQUIFER

10−3 10−2

volume of the rainfall event RT (m)

10−2

10−1

100

w
at

er
le

ve
li

nc
re

as
e

∆
h

(m
)

Figure 5.1: Water level rise ∆h with respect to the volume V = RT of a rainfall event,

in the boreholes number 5 (•) and 6 (•). The red line is the fit of a linear relationship

( ), yielding a prefactor 53.4. The inverse of this prefactor provides an evaluation of

the porosity s = 1.87 · 10−2.

of the whole aquifer. Second, the actual porosity of a sample may differ from the

effective porosity, which only accounts for the pores actually filled with water. Third, the

sampling process may alter the structure of the material, inducing biased measurements

in the laboratory. As a result, the porosity is often a fitting parameter, integrated in a

groundwater flow model (Brutsaert and Nieber, 1977).

Here, we propose a method to evaluate in situ the effective porosity s of an aquifer.

This method, inspired from the asymptotic analysis of the storm flow in chapter 3,

requires high frequency measurements of the water table.

At the very beginning of a rainfall event, we assume that, far from the river, the

groundwater flow is insensitive to the river. As a consequence, the water table rises

steadily, in proportion with the volume V = R t it receives from rainfall:

h =
V

s
. (5.1)

The assumption of a steady rise of the water table far from the river was the boundary

condition (3.8) of the storm flow asymptotic regime. This condition requires the Dupuit-

Boussinesq assumption. If the groundwater flow is two-dimensional, groundwater may

flow downwards, which could break the approximation of a steady rise (chapter 8).

During ten distinct flood events, we measured the water table increase ∆h in bore-

holes 5 and 6. We then plot it against the volume V of the corresponding rainfall event

(figure 5.1). As expected, ∆h is positively correlated with the volume of rainfall. If

we except a few points, a linear relationship is compatible with the data. Fitting a
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linear relationship to the data yields a prefactor 53.4, which corresponds to a porosity

s = 1.87 · 10−2.

Despite a large uncertainty, this estimation is in reasonable agreement with values

from the literature. The porosity of clays is generally considered to be of the order of a

dozen of per cents, but one per cent remains reasonable (De Marsily, 1986).

Yet, our measurements are much scattered, which hinders our ability to positively

decide whether the relationship is indeed linear. In particular, fitting a power law to

the data yields an exponent 1.67 ± 1.2, and several measurement points in borehole

6 exhibit a strong departure from the linear relationship. This can be due to spatial

heterogeneities of the rainfall rate, or to differences in the initial conditions prior to the

rainfall event.

5.2 Hydraulic conductivity: the slug test

We now measure the second hydraulic parameter which characterises an aquifer: the

hydraulic conductivity.

The hydraulic conductivity of an aquifer is a key parameter to model groundwater

flow. Yet, as for the porosity, measuring it in the laboratory leads to large uncertain-

ties. As a result, several in-situ methods have been developed to measure it in the field,

generally requiring the measurement of the water table level in boreholes. A classical

method involves the steady pumping of water from a borehole, and the measurement of

the water table profile around this borehole (Theis, 1935). Assuming a given groundwa-

ter model — Dupuit-Boussinesq for example —, one can estimate the conductivity of

the aquifer. This method provides a value of the conductivity at the catchment scale.

However, it requires heavy field installations.

Here we use another classical method, involving only light equipment. It consists in

pouring a known volume of water into a borehole, and then recording the rate of decline

of the water level in the borehole. This method, generally referred to as the slug test in

the literature, measures the permeability only locally, i.e. just around the borehole.

5.2.1 The slug test

The slug test consists in adding a volume (a “slug”) of water in a borehole and

analysing the evolution of the water level (figure 5.2). Figure 5.3 shows the water level

in borehole 6, where we suddenly added a volume V0 ≈ 2.5 L of water. After a sudden

increase, the water level decreases rapidly at the beginning, and then slowly relaxes

towards its initial level. Unfortunately, a rainfall event starts approximately 4.5 hours

after the beginning of our experiment, stopping the experiment before we could observe

the late stage of the water level decline.

To measure the conductivity of the aquifer, we need to interpret the decline rate of

the water level in the borehole. Figure 5.2 illustrates the principle of the slug test. As

the water level in the borehole increases due to the slug, this creates a pressure difference

between the borehole and the surrounding groundwater. In response to this pressure
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Figure 5.2: Principle of a slug test. A slug of water is added into a borehole, perturbing

the groundwater flow around it. As groundwater flows away from it, the water level in

the borehole declines.
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Figure 5.3: Evolution of the water level ( ) recorded in borehole 6, after we added

a slug h0 = 0.36 m of water. We measure the height relative to its initial level. A

significant rainfall event ( ) starts 4.5 hours after the beginning of the test, therefore

stopping the experiment.
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impervious bottom

horizontal flow
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extent

Figure 5.4: Idealised configuration of the classical approach. The flow is assumed to be

horizontal. The water table is assumed to recover its initial level h = 0 at the ad-hoc

distance L from the borehole.

increase, groundwater flows away from the borehole. The water table accommodates

this new flow condition, joining the borehole water surface to the initial water table

level far from the borehole. This last point implies that the slug should not perturb the

groundwater flow far from the borehole, which is supposed to be initially at rest. This

assumption is reasonable if the slug volume is small enough. This is why a slug test

only gives a local measurement of the conductivity.

The interpretation of the water level decline in the borehole therefore requires a

theoretical model. Several flow regimes are possible. In what follows, we propose three

different interpretations. We first begin with the classical interpretation of slug tests in

unconfined aquifers (section 5.2.2). We then present another classical approach, which

was originally intended for confined aquifers (section 5.2.3). We finally propose a third

method, which models a two-dimensional groundwater flow.

In the three methods presented hereafter, we consider a homogeneous porous aquifer,

where the groundwater flow can be described by Darcy’s law. We also assume a radial

symmetry: groundwater flows only radially, and there is no variation in the circular

component.

5.2.2 One-dimensional flow with finite lateral extent

In the classical approach, one assumes that the aquifer presents a horizontal impervi-

ous bottom, a finite depth H below the water table. Figure 5.4 illustrates this idealised

configuration.

Mass balance combined with the shallow-water approximation leads to the Dupuit-

Boussinesq equation for the water-table elevation η:

s
∂η

∂t
=

K

2 r

∂

∂r

(
r
∂η2

∂r

)
, (5.2)
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expressed here in radial coordinates. Far from the borehole, the slug has no influence

on the groundwater flow, and the water table elevation remains at its original level H:

∂rη = 0 for r →∞ . (5.3)

At the boundary of the well (i.e. in r = R), a mass balance relates the discharge of

water escaping the borehole to the flux of groundwater flow:

π R2 ∂tη = 2π R ηK ∂rη for r = R . (5.4)

We now consider that, at long times, the slug of water only slightly perturbs the water

table. We thus linearise both the Dupuit-Boussinesq equation (5.2) and the boundary

condition (5.4) by writing η = H + h, where h� H. The Dupuit-Boussinesq equation

thus becomes:

s
∂h

∂t
=
K H

r

∂

∂r
(r

∂h

∂r
) , (5.5)

and the condition at the borehole boundary reads:

∂th = 2K
H

R
∂rh for r = R . (5.6)

We now rescale our length variables with the characteristic length H, and the time

t̃ = t/T with the characteristic time

T =
H

K
. (5.7)

The system of equations describing the decline of the water table around the borehole

thus becomes 



s ∂th =
1

r
∂r(r ∂rh)

ε ∂th = 2 ∂rh for r = ε ,

∂rh = 0 for r →∞ ,

(5.8)

where all variables are dimensionless, and ε = R/H. Two dimensionless parameters

determine our system: the aspect ratio ε and the porosity s. Both tend to be small in

the field. Indeed, the porosity is always inferior to unity and, in the present case, of the

order of a few per cents (see section 5.1). In our case, the diameter of the well is 10 cm,

and we do not know the depth of the aquifer. However we suppose it is of the order of a

few metres, and we have ε ≈ 10−1 − 10−2. In our case, both parameters therefore have

the same order of magnitude.

The classical theoretical treatment of slug tests involves the hypothesis that s � ε

(Bouwer and Rice, 1976; De Marsily, 1986). With this hypothesis, Bouwer and Rice

(1976) assume that the water decline in the borehole is the limiting factor of the process.

This leads to the quasi-static approximation for the water table profile around the

borehole:

∂r(r ∂rh) = 0 . (5.9)

A generic solution to this equation is h = a + b ln(r). However, such solution cannot

satisfy the far-field boundary condition ∂rh = 0 for r → ∞. To avoid this problem,
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Bouwer and Rice (1976) assume that the flow does not extend beyond a finite lateral

extent L:

h = 0 for r = L . (5.10)

Bouwer and Rice (1976) discuss the exact value of L, and find that it approximately cor-

responds to the depth H of the water level. In dimensionless variables (length variables

rescaled with H), we can thus consider L ≈ 1.

In r = ε, the discharge Q escaping the borehole determines the slope of the water

table. This condition allows us to determine the integration constants a and b as a

function of the rescaled discharge Q̃:

Q̃ = −2 π ε ∂rh . (5.11)

Satisfying these two boundary conditions, we obtain the quasi-static water table profile

as a function of the discharge:

h = − Q̃

2 π
ln (r) for r > ε . (5.12)

In the same time, Q̃ also determines the water level decline in the well: Q̃ = −π ε2 ∂th
for r = ε. Combined with the water table profile (5.12), this leads to a differential

equation on the height in the borehole:

∂th =
2h

ε2 ln(ε)
. (5.13)

We straightforwardly integrate this equation, and obtain that the water height in the

borehole declines exponentially (as ε < 1, ln(ε) < 0):

h = exp

(
2 t

ε2 ln(ε)

)
. (5.14)

Dimensionally, the water level in the borehole therefore reads:

h(t) = h0 exp

( −2KH t

R2 ln(H/R)

)
. (5.15)

Figure 5.5 shows the slug test we performed in the sixth borehole on a semi-logarithmic

plot. The curve we obtain does not seem to be exponential. We momentarily ignore this

inconsistency, and fit an exponential law to the curve. The fit yields a characteristic time

of ≈ 3000 s, which leads to a hydraulic conductivity K ≈ 8.74 · 10−7 m s−1. The same

procedure applied to the five other boreholes gives an average value K = 5.2 ·10−7 m s−1

(see figure 5.9 and table 5.1).

The solution (5.15) derived here depends on the arbitrary choice of the length L,

which fixes the water table level at a finite distance from the borehole. In a domain

of finite size, when the solution of a linear partial differential equation relaxes towards

an equilibrium value, it often tends exponentially towards this equilibrium value at

asymptotically long time. The time constant of this exponential function is generally
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Figure 5.5: Water level decline in the well ( ), and fit of an exponential law ( ), as

predicted by the classical theory (5.15). The fit yields a characteristic time of ≈ 3000 s.

determined by the size of the domain. For instance, this is the case with the linear heat

equation (Carslaw and Jaeger, 1959). However, exponential declines after a slug test

seem to be rarely observed, as pointed by Bouwer himself (Bouwer, 1989). In fact, any

size L would give an acceptable solution to the equation system (5.8). If we sum all

these solutions, in a Laplace transform for example, one can obtain a non-exponential

decline.

5.2.3 One-dimensional, infinite flow

If we relax the hypothesis of a finite lateral extent, the slug perturbation propagates

away from the borehole. After a sufficiently long time, the radius of the borehole

becomes negligible compared to the characteristic length of the flow. In this case, we

can investigate the behaviour of the equation system (5.8) in the limit where ε � s

(figure 5.6).

To do so, we use the same hypotheses as in the previous section, except that the

horizontal extension of the domain is now infinite. This reduces the borehole to a line

source at long times. The present situation is identical to the one depicted in Cooper

et al. (1967), except that they consider a confined aquifer, which allows them to linearise

the Dupuit-Boussinesq equation (5.5). Yet in an unconfined aquifer of finite depth, the

Dupuit-Boussinesq equation can also be linearised at long times.

Introducing a new characteristic time

T =
sH

K
, (5.16)
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horizontal flow

impervious bottom

Figure 5.6: When the radius of the borehole can be neglected, the water table is a de-

clining gaussian mound (equation (5.19). The flow is assumed to be horizontal (Dupuit-

Boussinesq approximation).

we rescale the system of equations (5.8). This slightly changes equation (5.8) into




∂th =
1

r
∂r(r ∂rh)

ε

s
∂th = 2 ∂rh for r = ε ,

∂rh = 0 for r →∞ .

(5.17)

The only difference with respect to the system (5.8) is that the porosity s now stands

on the left-hand side of the boundary condition at r = ε. We now consider the limit

ε/s � 1 such that the left-hand side of the boundary condition in the well vanishes.

The system becomes comparable to the heat equation:




∂th =
1

r
∂r(r ∂rh)

∂rh = 0 for r = 0 ,

∂rh = 0 for r →∞ ,

(5.18)

with a Dirac delta function h = h0 for r = 0 as initial condition. The solution to this

system reads (Carslaw and Jaeger, 1959):

h(r, t) =
V0

4 π t
exp

(−r2

4 t

)
, (5.19)

where V0 represents the dimensionless volume injected into the well. This solution

represents the spreading of a Gaussian mound.

As the borehole is not a perfect Dirac delta function, we expect its water level to

tend towards the heat equation solution (5.19) at sufficiently long times. Then, the

water level in the borehole, i.e. in r = 0, is supposed to decline as the inverse of time.

Returning to physical dimensions, the water level in the borehole thus reads

h =
s h0R

2

4HK t
for r = 0 . (5.20)
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Figure 5.7: Time derivative ḣ of the water level decline as a function of the water level

h ( ). The fit of a power law 2 ( ), as predicted by the Dupuit-Boussinesq theory

(equation (5.21)), yields a prefactor of 2.64 · 10−3 m−1 s−1. It corresponds to a declining

gaussian mound (section 5.2.3). The fit of a power law 3/2 ( ), as predicted by the

two-dimensional flow theory (equation (5.40)), yields a prefactor of 7.3 · 10−4 m−1/2 s−1.

It corresponds to a two-dimensional flow in an infinitely deep aquifer (section 5.2.4).

Like in the analysis of the drought flow of natural rivers in section 2.3.3, we are

now looking for a power law which initial time is unknown. We avoid this problem by

computing the time derivative of the height, supposed to be proportional to the height

squared:

− ḣ =
s h0R

2

4HK t2
=

4HK

sh0R2
h2 . (5.21)

Our field data are consistent with the power law 5.21 within the limited range of

heights we were able to measure (figure 5.7). Indeed, fitting a power law to the data

yields an exponent 2.09. Assuming that the exponent is exactly 2, the data are best fitted

with a prefactor of 2.64 · 10−3 m−1 s−1. Using equation (5.21), we find a permeability of

K = 9.73 · 10−9 m s−1.

We measured the hydraulic conductivity around the five other boreholes with the

same procedure (see figure 5.10 and table 5.1). We obtain an average value K =

4.6 · 10−9 m s−1.

Finally, the two methods presented so far rely on the shallow-water approximation,

which is a one-dimensional description of the problem. We end this section by investi-

gating a situation where the Dupuit-Boussinesq approximation is relaxed.
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two-dimensional flow

Figure 5.8: In a two-dimensional slug test, the borehole radius is considered infinitely

small, and the aquifer bottom infinitely deep. The slug acts as a perturbation propa-

gating horizontally and vertically outwards and downwards.

5.2.4 Two-dimensional flow in an infinitely deep aquifer

So far in this section, we have used the Dupuit-Boussinesq — or shallow-water —

approximation. This method is possible only if the aquifer presents an impermeable

bottom, at a finite depth H below the water table. This is one of the main assumptions

we made, not only in the present section, but also in the entire manuscript so far. Yet,

the electrical resistivity tomographic soil profile (figure 4.2) challenges this hypothesis.

In fact, the slug acts as a perturbation of the groundwater flow, which propagates

horizontally but also vertically (figure 5.8). Before this propagation wave reaches the

aquifer bottom, the flow induced by the slug is therefore two-dimensional. In this

section, we investigate the response to a slug test of a groundwater flow in an infinitely

deep aquifer.

For this purpose, we invoke Darcy’s law again:

v = −K∇φ where φ =
p

ρ g
+ y . (5.22)

Combined with the mass balance, we consider that the groundwater flow is laplacian.

In radial coordinates,

∆rφ =
1

r
∂r(r ∂rφ) + ∂yyφ = 0 , (5.23)

where we assume that the problem is radially symmetric.

The Laplace equation must be supplemented by boundary conditions. In the present

situation, the bottom and lateral boundaries are sent to infinity, where the flow is

considered to be at rest:

φ = 0 (5.24)

at infinity.
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We further simplify this system, and consider the borehole radius as infinitely small,

such that it can be considered a line source. We therefore neglect its influence on the

flow.

The water table is a free surface and requires two conditions. The first condition is

that the pressure is atmospheric:

φ = h for y = h , (5.25)

where h is the deviation of the water table height with respect to its initial level. Mass

balance leads to the second condition on the free surface:

s ∂th = K (∂rφ ∂rh− ∂yφ) for y = h . (5.26)

An obvious solution to the equation system (5.23) to (5.26) is
{
φ = 0 and

h = 0 ,
(5.27)

and corresponds to the initial state of the system, which is at rest before we perturb it.

We now consider the slug V0 added in the borehole as a small perturbation of this

initial state. We therefore consider

h = ε h1 and φ = ε φ1 , (5.28)

where ε � 1 is a small parameter (different from the aspect ratio ε). Linearising the

free surface condition, we obtain

s ∂th1 = −K ∂yφ1 for y = h1 . (5.29)

We choose L = V
1/3

0 as the characteristic length of the problem, and

T =
sL

K
(5.30)

as the characteristic time. Rescaling the variables

t̂ =
t

T
, r̂ =

r

L
, ŷ =

y

L
and φ̂ =

φ

L
, (5.31)

we obtain the following dimensionless and linear system of equations:




∆rφ = 0

∂th = −∂yφ at the free surface ,

φ = h at the free surface ,

(5.32)

where we have removed the hats from the rescaled variables.

We now look for a self-similar solution of the form




h = tα h̃
( r
tβ

)

φ = tα φ̃
( r
tβ
,
r

tβ

)
.

(5.33)
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The mass balance ∂th = −∂yφ on the free surface imposes β = 1, but the system (5.32)

yields no constraint on α. We determine α from the integral of the mass balance: at any

time, the total volume of the perturbation must be conserved. This condition formally

reads
V0

L3
= 2π

∫ ∞

0

h(r, t) r dr = 2π tα
∫ ∞

0

h̃(r/t) r dr. (5.34)

Within the integrand, we substitute r/t = r̃ and obtain

V0

L3
= 2π tα+2

∫ ∞

0

h̃(r̃) r̃ dr̃ . (5.35)

The integral of the mass balance therefore imposes α = −2. This reasoning suggests

that, if a self-similar solution to our problem exists, then

h =
1

t2
h̃
(r
t

)
and φ =

1

t2
φ̃
(r
t
,
y

t

)
, (5.36)

where the self-similar problem reads





∆rφ̃ = 0

2 h̃+ r̃ h̃′ = ∂ỹφ̃ for ỹ = 0 ,

φ̃ = h̃ for ỹ = 0 .

(5.37)

We have not found any analytical solution to this system.

However, let us assume that a solution exists. Then, the self-similar height h̃ must

tend to a finite value γ near the borehole:

h̃ ∼ γ for r̃ → 0 . (5.38)

The mathematical constant γ must be determined by a resolution of the system of

equations (5.37). For this linear system, it should be accessible numerically.

As a result of this finite value near the borehole, the dimensionless water level in

the borehole (r = 0) declines proportionally to the inverse time squared: h ∼ 1/t2.

Returning to physical dimensions, we obtain

h ∼ γ V
1/3

0

(
s h0

K t

)2

. (5.39)

Once again, we end up with a power-law relationship between the water level in the

borehole and time. In order to evaluate this new regime against our observations, we

measure the time derivative of the water level ḣ as function of h, and expect a 3/2 power

law relationship:

ḣ = −2 γ V
1/3

0

(
s V

1/3
0

K

)2
1

t3
= −2

K

sγ3/2 V
1/2

0

h3/2 . (5.40)

Figure 5.7 shows how a 3/2 power law compares with our slug test. Once again, the

range of height measurements is too small to observe a clear tendency. In particular,
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we cannot discriminate between a 3/2 power law and the squared relationship derived

in the previous section. Both seem to be compatible with our data.

Assuming that solution (5.39) holds, and that γ = 1, the fit of a 3/2 power law

yields a prefactor of 7.3 · 10−4 m−1/2 s−1. Comparing with expression (5.40), we measure

a hydraulic conductivity K = 2.23 · 10−6 m s−1. With the same procedure, we measure

the hydraulic conductivity around the five other boreholes (figure 5.10 and table 5.1).

We obtain an average value of 1.14 · 10−6 m s−1.

Of course, this method requires more investigation, especially because we must still

find a solution to the system of equations (5.37).

5.2.5 Discussion

To conclude, the three methods presented in this section yield three significantly

different values of the permeability. These values are larger than what we would expect

from the literature (10−9 to 10−13 m s−1 (De Marsily, 1986)). Yet, the volcanic clays

of Guadeloupe are expected to be more permeable than usual (Colmet-Daage and La-

gache, 1965). On the whole, the three methods presented here present advantages and

drawbacks.

First, the classical method relies on the definition of an arbitrary length and predicts

an exponential decline, which is not observed in any of the boreholes. The choice of this

method is therefore questionable.

The second method assumes that, at long times, the borehole radius can be con-

sidered as infinitely small. As a consequence, the water table is a spreading Gaussian

mound. This is certainly true at long times, but our experiment was stopped after 4.5

hours. 4.5 hours correspond to a dimensionless time K t/(sH) ≈ 0.01 � 1, if we take

the average value of this method, K ≈ 5 · 10−9 m s−1. This very short dimensionless

time does not support the use of the long-times asymptotic regime (5.20) in this specific

case.

The third method presented here assumes a borehole of infinitely small radius, and an

infinitely deep aquifer. These assumptions imply that it corresponds to an intermediate

asymptotic regime: we consider times sufficiently long for the radius of the borehole to

be neglected, but sufficiently short that the perturbation has not reached the aquifer

bottom. In the present case, with the average value K ≈ 10−6 m s−1, the duration

t = 4.5 hours corresponds to a dimensionless time K t/s h0 ≈ 1. This dimensionless

time seems more reasonable than in the previous section, and supports the use of this

method. However, this method requires further investigation, as we have no information

about the depth of the aquifer bottom, and we still need to solve a system of equations.

A physical argument, concerning the seeping velocity of rainwater, also supports the

latter method. Based on the present measurements and on the estimation of the porosity

(s ≈ 10−2, section 5.1), we can roughly estimate the velocity v of the fluid seeping into

the ground. It is the ratio of the hydraulic conductivity over the porosity: v ∼ K/s. If

we take K ≈ 10−6 m s−1, the downwards infiltration velocity of rainwater into the ground

is v ≈ 0.1 mm s−1. This is about one order of magnitude lower than what we observed
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Figure 5.9: Time derivative −ḣ of the water level decline as a function of the water

level h in the six boreholes ( ). The red lines are exponential fits ( ), as predicted

by equation (5.15), and corresponding to a declining gaussian mound (section 5.2.2).
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Figure 5.10: Time derivative −ḣ of the water level decline as a function of the water

level h in the six boreholes ( ). The red dashed lines are power law 2 fits ( ),

as predicted by equation (5.21), and corresponding to a spreading Gaussian mound

(section 5.2.3). The red lines are 3/2 power law fits ( ), as predicted by equation (5.40),

and corresponding to a two-dimensional flow in an infinitely deep aquifer (section 5.2.4).
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Method
Borehole number

Average
1 2 3 4 5 6

Finite lateral extent (section 5.2.2)

(×10−6 m s−1)

0.72 0.23 0.42 0.32 0.55 0.87 0.52

Infinite lateral extent (section 5.2.3)

(×10−9 m s−1)

5.66 1.69 4.14 2.43 3.95 9.73 4.6

2D flow, infinitely deep aquifer (sec-

tion 5.2.4) (×10−6 m s−1)

0.76 0.43 1.44 1.15 0.83 2.23 1.14

Table 5.1: Hydraulic conductivityK. Summary of all the results on the aquifer hydraulic

conductivity.

in section 4.3.2. A larger conductivity K would better conform to the observations of

section 4.3.2. The relatively large difference between these observations and our local

estimations also provides an estimate for uncertainties on the measurements of K and s.

All these observations call for a dedicated investigation in controlled conditions — in

the laboratory, or numerically. For instance we could build a homogeneous laboratory

aquifer with finite depth H and radial extent L, into which we pour a slug h0 in a

borehole of negligible radius. We consider h0 � H � L. At the beginning, we expect the

slug to perturb the groundwater flow only locally around the borehole, and close to the

water table. During this early regime, the groundwater flow is insensitive to the bottom

of the aquifer, which can be considered as infinitely deep. Equation (5.39) is therefore

expected to hold during early times. As the slug spreads, the perturbation hits the

aquifer bottom. At this moment, the Dupuit-Boussinesq approximation progressively

replaces the early-times regime. We therefore expect the long-times regime (5.20) to

hold, and the water level within the borehole to progressively adopt a 1/t behaviour.

All these speculations would deserve detailed scrutiny in a dedicated experiment.

5.3 Conclusion

In this chapter, we presented new methods to estimate separately the porosity and

the hydraulic conductivity of an aquifer. These methods rely on interpretations involving

a groundwater flow model.

To estimate the porosity of the aquifer, we assume the geometric configuration of a

fully-penetrating stream. In this configuration, we can use the Dupuit-Boussinesq ap-

proximation and assume that, far from the river and at the beginning of a rainfall event,

the flow is insensitive to the river. The water table thus rises steadily, in proportion

to the rainfall rate and to the inverse of the porosity. Analysing ten rainfall events, we

estimated a porosity of 1.87 · 10−2. If confirmed, this method could be a simple way to
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measure in-situ the porosity of an aquifer.

The slug test used to estimate the hydraulic conductivity is difficult to interpret.

The duration of the slug tests presented in this chapter is relatively short, such that

we favour an intermediate asymptotic regime involving a two-dimensional flow in an

infinitely deep aquifer. This new method leads to an estimate of K ≈ 10−6 m s−1. Yet,

it needs further investigation.

With the estimates of the porosity and of the hydraulic conductivity, we can now

analyse the Quiock Creek hydrograph.
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The Quiock Creek hydrograph
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In chapter 4, we have presented our field experiment in the Quiock Creek catchment.

The measurements of the water table elevation and of the river discharge showed that

the groundwater flow reacts quickly to rainfall events, and is likely to generate rapid

flood events. Having measured the hydraulic properties of the aquifer in the previous

chapter, we can now assess quantitatively to what extent the Quiock Creek hydrograph

results from the groundwater flow dynamics.

Figure 6.1 shows the evolution of the Quiock Creek discharge. Like our numerical and

experimental hydrographs (figures 2.3 and 3.5a), this hydrograph clearly defines three

regimes: the storm flow, where the creek discharge increases rapidly during rainfall; the

early stage of drought flow, where the discharge decreases rapidly; and the late stage of

drought flow, where the discharge decreases much more slowly.

In this chapter, we analyse these regimes with the Dupuit-Boussinesq asymptotic

regimes.
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Figure 6.1: Discharge of the Quiock Creek river ( ) and rainfall rate ( ) measured

during twenty-five days in February 2015.

6.1 Drought flow

6.1.1 Early stage of the drought flow

We analyse the Quiock Creek drought flow with the method developed by Brutsaert

and Nieber (1977), and which we described in details in section 2.3.3. To identify a power

law, we plot the negative time derivative of the discharge −Q̇ versus the discharge Q.

If it holds, the Dupuit-Boussinesq theory predicts a power law relationship between

−Q̇ and Q, with an exponent 3 for the early stage of the drought flow (Q ∼ 1/
√
t,

equation (2.23)), and an exponent 3/2 for the late stage of the drought flow (Q ∼ 1/t2,

equation (2.29)) (see table 2.1).

The hydrograph of figure 6.1 illustrates a feature often encountered during the late

stage of the drought flow: daily cycles, most probably due to vegetation. In the present

analysis, we examine only the early stages of drought flows to avoid these daily cycles.

We accordingly select twenty-three drought events in the Quiock Creek, most of which

last less than one day (figure 6.2). Most of the drought events selected happened during

the wet season, and span from 15th September 2014 to 12th January 2015. We do not

have any water table measurement for this period.

The discharge variations during drought are still relatively low, and measuring

straightforwardly −Q̇ as the difference between two consecutive measurements leads

to large measurement artefacts (figure 6.3). Indeed, if we name δQ the discharge mea-

surement precision and δt the measurement time interval, the smallest possible value of

Q̇ is δQ/δt. From equation (4.2), as δh/δt is a constant, this induces that Q̇ varies with
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Figure 6.2: Distribution of the duration of droughts.

√
Q. As a result, our Q̇ measurements are attracted towards straight lines of slope 1/2

in a logarithmic plot.

A way to avoid this artefact is to increase the time interval δt between two discharge

measurements, as in the left-hand graph of figure 6.4. The resulting data points are

the average discharge versus the average slope of the discharge decrease over δt =

15 minutes. Another possibility, suggested by Rupp and Selker (2006a), is to adapt the

time interval δt such that the discharge difference between two data points is always

larger than a given value (right-hand graph of figure 6.4). The discharge is a function of

the water height h in the Venturi flume, and we measure the height with a precision of

δh = 0.7 mm. We therefore adapt the time interval ti+1− ti between two measurements

such that the height difference hi+1 − hi is larger than k δh, where k > 1 is arbitrarily

chosen. Choosing a large k reduces measurement noise. On the other hand, a small

k preserves more data points at small discharge. The right-hand graph of figure 6.4

illustrates this method on a specific drought event. For illustrative purposes, we have

chosen a large height difference (k = 30): the time interval ti+1− ti is adapted such that

hi+1 − hi > 2 cm.

In practice, we performed this analysis with a less restrictive criterion: hi+1 − hi >
2.1 mm, which is three times the measurement precision (figure 6.5). As typically ob-

served in this kind of plots, our data points are much scattered. We reduce this scatter

by averaging the data over bins of Q, and then calculate the average values of Q and −Q̇
into these bins. The resulting averaged points conform surprisingly well to a straight

line in a logarithmic plot (figure 6.5). Fitting a power law to this average data yields an

exponent of 2.81± 0.02. With the other measurement technique (δt = 15 minutes), we

obtain an exponent 3.08±0.02. As in chapter 3, we estimate the error on the exponents
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Figure 6.4: Two different methods to calculate the time derivative of the discharge. In

both plots, the blue line ( ) is the measured discharge and the green line ( ) is the

mean slope corresponding to a mean discharge (•). Left: A time interval δt is fixed, and

we calculate the mean slope between each time interval. Right: A mean discharge Qi

is calculated over a time interval δti such that Qi −Qi+1 > δQ, where δQ is arbitrarily

chosen. Accordingly, the time interval between two points (Qi, −Q̇i) increases as the

discharge decreases.
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by estimating a lowest and highest value of the exponent. The lowest value is obtained

with the minimisation of the horizontal distance of the data points to the fit function,

and the highest value with the vertical distance.

These exponents are close to the exponent 3 predicted by the early-times asymptotic

regime of the Dupuit-Boussinesq equation. If confirmed, this result implies that the

early stage of the Quiock Creek drought flow is well described by the Dupuit-Boussinesq

theory.

We can further assess this result with the prefactor of this power law. Within the

Dupuit-Boussinesq framework, the early stage of the drought flow (equation (2.23))

reads:

Q(t) ∼ 2× a2
esdf

4
W

(sK H3)1/2

√
t

, (6.1)

where aesdf ≈ 1.152 is a mathematical constant, W is the length of the stream, and

H is the depth of the aquifer. This equation differs from equation (2.23) by a factor

two. Indeed, our laboratory aquifer simulates only one side of a river, whereas a natural

stream is obviously fed from both sides. In the Q̇/Q plane, this equation translates into

the following relationship:

− Q̇ =
1

2

a2
esdf

2
W

(sK H3)1/2

t3/2
=

2

(a2
esdf W )2 sK H3

Q3 , (6.2)

In chapter 5, we estimated s = 1.87 · 10−2 and K ≈ 10−6 m s−1. We also estimated the

total stream length W ≈ 979 m. Finally, the maximum altitude difference between the

ground topography and the river is about 6 m, along the profile we measured (figure 4.2).

We thus roughly estimate the depth of the aquifer H ≈ 6 m. We assume that the aquifer

is initially fully saturated over this whole depth, as required to derive the early-times

asymptotic regime (2.23).

The early-times asymptotic regime therefore predicts a prefactor of 0.293 s m−6 for

the power law (6.2). In comparison, fitting a power law with an exponent 3 to the data

yields a prefactor of 0.638 s m−6. The Quiock Creek early stage drought flow is therefore

in good agreement with the Dupuit-Boussinesq prediction.

Being a short-times regime, the early stage of the drought flow (6.1) has a finite

duration. In section 2.3, we showed that this regime is valid until the front reaches the

divide, that is

t ≈ sL2

KH
. (6.3)

In the present case, the drainage area A is about eight hectares (A ≈ 8 ·104 m2) and the

channel length W is about a thousand metres. We therefore estimate that the lateral

extension of the aquifer L ≈ 40 m (see also section 6.2.5). Using our local estimations

of the hydraulic parameters K ≈ 10−6 m s−1 and s = 1.87 · 10−2, we obtain a regime

validity of about 70 days. As all the drought events examined in this section last less

than 4 days, they are therefore within the range of validity of the Dupuit-Boussinesq

regime.
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Figure 6.5: Time derivative of the discharge −Q̇ as a function of the discharge Q. The

small transparent blue points are the raw data points, and the blue points (•) are

averaged bins. Top: Q̇ is calculated over a fixed time interval. The fit of a power law

with an exponent of 3 ( ) yields a prefactor of 0.570 s m−6. Bottom: Q̇ is calculated

over a time interval ti+1 − ti such that the discharge difference Qi − Qi+1 between

two measurements is three times larger than the discharge measurement precision δQ:

Qi − Qi+1 > 3 δQ (see text). A power law with an exponent of 3 ( ) fitted to the

binned data yields a prefactor of 0.638 s m−6.
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6.1.2 Late stage of the drought flow

The early-times regime is expected to last during approximately 70 days. As drought

periods rarely exceed two weeks, we could expect this regime to hold for all droughts.

Yet, this flow regime implies that the aquifer does not empty far from the river. This

situation is not possible, as the groundwater flow is often being recharged. There must

be periods where the discharge quits this early flow regime.

During the dry season — since January 2015 (to July 2015) — the rainfall events

are scarce. We consequently observe more late stages of drought flow, characterised by

daily variations. We did not have time to analyse these late drought flows yet.

6.2 Storm flow

As a result of intense rainfall events, the Quiock Creek discharge can increase by a

factor of 20 or more in less than an hour. The purpose of this section is to evaluate

quantitatively the contribution of groundwater to these flood events. In section 5.1, we

analysed the water table dynamics during rainfall events, in order to measure the aquifer

porosity. This analysis showed that, far from the river, the water table rise during rainfall

is compatible with a linear relationship with the rainfall rate, and therefore compatible

with the Dupuit-Boussinesq theory.

In this section, we analyse the discharge dynamics of the Quiock Creek during rainfall

events. We compare this analysis with the storm-flow asymptotic regime (3.11) of the

Dupuit-Boussinesq equation derived in section 3.6, which relates the discharge Q of the

river with the rainfall rate R through a 3/2 power law:

Q(t) ∼ 2 a2 W

s

√
K

2
R3/2 t , (6.4)

where W is the length of the stream, s is the porosity, K is the hydraulic conductivity,

and a ≈ 1.016 is a mathematical constant. Equation (6.4) differs from equation (3.11)

by a factor two because our laboratory aquifer simulates only one side of a river.

Prediction (6.4) results from the condition that the aquifer is empty before the

beginning of the rainfall event. In fact, the Quiock Creek discharge never vanished

during the period analysed here, and the aquifer certainly never totally empties. In the

present section, we ignore this inconsistency. However, we carefully select the floods to

be analysed, such that they are as close as possible from ideal conditions. Three criteria

are required to select a flood. First, the river discharge prior to the flood should be

sufficiently low, such that the initial state of the aquifer prior to the flood be close to be

empty. In practice, the initial discharge of all selected floods is inferior to 22.5 m3 h−1.

Second, the rainfall event should be isolated from other rainfall events; and with only

one local maximum (see figure 6.9). Finally, the discharge signal should be regular

enough to evaluate discharge increase rate Q̇ (figure 6.7).

In total, we selected 84 flood events for this analysis. As equation (6.4) only describes

the early response to rainfall, its validity is limited in time. We first evaluate this validity

in our data set.



110 CHAPTER 6. THE QUIOCK CREEK HYDROGRAPH

0 10 20 30 40 50 60

flood duration (min)

0

2

4

6

8

10

12

14

16

nu
m

be
r

of
oc

cu
re

nc
es

Figure 6.6: Distribution of the duration of the floods of our data set.

6.2.1 Flood duration

Equation (6.4) derives from an early-times asymptotic regime. In chapter 3, we

showed that this regime is valid until the front reaches the divide, that is until

t ≈ sL√
K R

. (6.5)

As the drainage area A is about eight hectares (A ≈ 8 ·104 m2) and the channel is about

a thousand metres long, we estimate that the lateral extension of the aquifer is about

L ≈ 40 m. For a rainfall rate R ≈ 10−5 m s−1 (our most intense event), the asymptotic

regime is valid about three days.

Figure 6.6 shows the distribution of storm duration. All storms lasted less than one

hour, and the average duration is thirteen minutes (figure 6.6). The selected floods

therefore satisfy the early times condition.

According to equation (6.4), the discharge increase rate Q̇ is expected to be propor-

tional to the rainfall rate at the power of 3/2:

Q̇ ∝ R3/2 . (6.6)

We now present our procedure to measure Q̇ and R during storm events.

6.2.2 Measurement of the discharge increase rate

Figure (6.7) shows a typical flood, to illustrate how we measure the discharge increase

rate and the rainfall rate, and how we estimate the measurement errors.
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Figure 6.7: Example of a flood in the Quiock Creek ( ), during December 2014. The

mean slope of the discharge over the whole duration of the discharge increase yields the

discharge increase rate Q̇ ( ).

We estimate the discharge increase rate by recording the time at which the discharge

starts increasing, and the time at which it starts decreasing. We thus estimate the

duration over which the discharge increases. We then fit an affine function to the

discharge over this duration. The slope of this linear function is the discharge increase

rate Q̇. This method reduces the influence of discharge measurement errors.

As the measurement of a time derivative may be sensitive to the way it is computed,

we have also tested four other procedures. For each flood, we have measured the max-

imum slope over ten minutes, the slope over the first half of the flood, and the slope

over the middle half of the flood. In addition, we have estimated visually the discharge

increase rate. The comparison of these four measurement methods with the average

slope method reveals that the five methods are roughly equivalent, but individual data

points may differ up to a factor of two (figure 6.8). For each data point, we calculated

the standard deviation between the five measurement techniques. The average stan-

dard deviation over all our data points is 23%. Our evaluations are therefore rather

insensitive to the procedure we use.

6.2.3 Rainfall rate during the flood events

We now present the procedure we follow to evaluate the rainfall rate. In the asymp-

totic theory of section 3.6, we assumed that the rainfall rate is constant during a flood

event. This is obviously not true in the field. To approximate this assumption, we mea-

sure the rainfall rate by fitting a rectangular function to the rainfall signal (figure 6.9).

We impose that the fitting function preserves the volume of rainwater of each event. We
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Figure 6.8: Comparison of the four methods used to measure the discharge increase

rate. We compare four different automated procedures with a visual estimate of the

slope.
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Figure 6.9: Rain event causing a flood ( ), and the associated rectangular fit ( ).

thus fit two parameters: the time of the event and its duration.

To assess the robustness of this procedure, we compare these measurements with

visual estimations of the rainfall rates (figure 6.10). The data follow a linear trend with

moderate fluctuations. For each data point, we calculated a standard deviation between

the two techniques of 11% in average.

Another issue might stem from the choice of the sampling period, which influences

strongly the rainfall signal. Figure 6.11 illustrates this influence. The same rainfall event

is recorded with three different sampling periods: one minute, five minutes and fifteen

minutes. To these three signals, we have applied our fitting procedure to evaluate the

average rainfall intensity. Not surprisingly, the shorter the sampling period, the larger

the rainfall intensity. Figure 6.12 illustrates this artefact by comparing the results of the

three signals. With a sampling period of one minute (top graph), we observe a minimum

threshold Rmin ≈ 10 mm h−1, which corresponds to the rain gauge volume (0.2 mm)

divided by one minute. This very short sampling period is therefore not adapted to

measure moderate rainfall events. On the contrary, the rainfall rates measured with

sampling periods of fifteen and five minutes are, on average, proportional. Fitting a

power law to the data yields an exponent of 1.19, and the average standard deviation

is 34%. Fitting a linear relationship between the two signals, we find that the rainfall

intensity obtained with a sampling period of fifteen minutes is, on average, lower by a

factor two. In what follows, we consider the five-minutes signal.

Finally, we also compared our measurements with the intensity of the rainfall events

outside the forest. Not surprisingly, the rainfall rate measured outside the forest is

slightly larger. The discrepancy between the two signals is slightly larger for small

rainfall rates, suggesting that the measurement error in the Quiock Creek catchment is

larger for small rainfall events.
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Figure 6.10: Rainfall rate measured by a rectangular fit as a function of a visual estimate

of the rainfall rate of the event (•). The red dashed line ( ) is identity.
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minute (top), five minutes (middle) and fifteen minutes (bottom). The rainfall rate R

( ) associated to a flood event depends on the sampling period.
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causing a flood. The red dashed line ( ) corresponds to identity.
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Figure 6.13: Discharge increase rate as a function of the rainfall rate in the Quiock

Creek (•). The red line ( ) represents a 3/2 power law fitted to the data, yielding a

prefactor of 483.60 m3/2 s−1/2. The shaded area represents the least-square fit based on

each axis.

6.2.4 Asymptotic regime of the Dupuit-Boussinesq theory

For the eighty-four floods thus analysed, we plot the discharge increase rate Q̇ as a

function of the rainfall rate R (figure 6.13). As expected, the discharge increase rate is a

growing function of the rainfall rate. This growing function is not linear, and resembles

a power law with an exponent larger than one. Fitting a power law to the data yields

an exponent of 1.35 ± 0.45. The minimum and maximum fits are estimated with a

lest-square fit based on x-axis and on the y-axis, respectively. These exponents are in

reasonable agreement with the 3/2 exponent of the asymptotic regime predicted from

the Dupuit-Boussinesq theory (equation (6.4)).

Assuming that the prediction (6.4) holds and fitting a 3/2 power law to all the

data (figure 6.13) yields a prefactor of 483.60 m3/2 s−1/2. Using our estimates of the

hydraulic parameters K ≈ 10−6 m s−1 and s = 1.87 · 10−2, and our estimate of the total

drainage length W = 979 m, we obtain a theoretical prefactor of 76.43 m3/2 s−1/2. Our

measurements therefore compare reasonably with the asymptotic regime (6.4) of the

Dupuit-Boussinesq equation.

Yet, the theoretical prefactor is about six times lower than our measurement. Three

reasons could explain this mismatch besides disqualifying the Dupuit-Boussinesq the-

ory. First, our experiments already resulted in a prefactor three times larger than the

theoretical prefactor (chapter 3). To explain this mismatch, we pointed to the possible

breakdown of the Dupuit-Boussinesq approximation near the outlet. This remark still

holds here. Second, our local estimates of K and s may slightly differ from the aquifer
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b)a)

c)

Figure 6.14: Influence of the drainage-network geometry on the flow. a) Configuration

adopted in this manuscript. A single lateral extent characterises the network, and

the flow is one-dimensional. b) A single lateral extent characterises the network, but

the flow is two-dimensional near the tip of the channel. c) Drainage network of the

Quiock Creek. Multiple tributaries define multiple lateral extents, and the flow is two-

dimensional around the network.

hydraulic properties at the catchment scale (yet, these values yielded a good agreement

with the drought flow analysis). Third, the one-dimensional approach we used here and

in our experiment neglects the influence of the drainage network on the hydrograph,

reducing it to a single straight channel. In the next paragraph, we investigate this

influence.

6.2.5 Influence of the drainage-network geometry

Most natural drainage networks are ramified collections of streams, and the typical

lateral extent of a drainage divide depends on scale. In addition, the network induces

horizontal two-dimensional flows near tips, ramifications and sharp curves (Devauchelle

et al., 2012; Petroff et al., 2013). In this manuscript, we reduced the network to a single

channel, with a single lateral length (figure 6.14). As a result, the flow was confined

to a line perpendicular to the river. In reality, the geometry of the network affects the

dynamics of the groundwater flow.

Provided the flow is shallow enough, the Dupuit-Boussinesq approximation still holds

in two dimensions:

s ∂th =
K

2
∇2h2 +R , (6.7)

and we need to solve it around the network. How do the asymptotic regimes of this
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equation compare with their one-dimensional counterparts?

Storm flow. The self-affine rescaling of the storm flow (equations (3.5) and (3.6))

affects the space coordinates. This rescaling cannot match the river boundary condition

in two dimensions, and therefore is not an exact solution to equation (6.7).

However, the one-dimensional solution corresponds to a front propagating away from

the river. This solution is valid as long as this front has not reached another boundary.

Thus, the one-dimensional storm flow is likely to be a reasonable approximation of the

two-dimensional flow, until the thickness of the front becomes comparable to the lateral

extent L of the aquifer.

In that case, we expect the storm-flow discharge to depend on the drainage length

W only:

Q(t) ∼ a2 W

s

√
K

2
R3/2 t . (6.8)

The lateral extent L of the divide only affects the duration of the asymptotic-regime

validity.

Early drought flow. The rescaling of the early-drought-flow regime also corresponds

to a front propagating away from the river. Following the same reasoning as above, we

also expect the one-dimensional asymptotic regime to provide a reasonable approxima-

tion of the discharge, as long as the front is thinner than the lateral extent L of the

aquifer:

Q(t) ∼ W
a2

esdf

4

(sK H3)1/2

√
t

. (6.9)

Again, the discharge is proportional to the drainage length.

Late drought flow. Contrary to the two above regimes, the rescaling of the late-

drought-flow regime does not affect the space coordinates. Indeed, substituting

h(x, y, t) =
L2 s

K t
Hd

(x
L
,
y

L

)
(6.10)

into the two-dimensional Dupuit-Boussinesq equation (6.7) yields

∇2H2 +H = 0 (6.11)

which is but the extension of equation (2.26) to two dimensions. The length L is the

typical extension of the entire catchment. The non-linear Helmholtz equation (6.11)

depends on space only, and can be supplemented with a boundary condition along the

drainage network. Based on the one-dimensional case, we expect it to admit a single

solution for any given geometry of the network. If this is true, the late-drought-flow

regime is an exact solution of the two-dimensional Dupuit-Boussinesq equation. The

corresponding discharge is the integral of the groundwater flux along the entire drainage

network:

Q ∼ ãd
s2 L4

K t2
, (6.12)
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where ãd is a dimensionless constant which depends on the network geometry only.

In conclusion, the three asymptotic regimes of the Dupuit-Boussinesq equation can

be generalised to two dimensions. However, the planform geometry of the drainage

network is likely to affect the integration constant of an asymptotic regime, and the

duration of its validity. Therefore, we cannot expect to predict accurately the prefactor

of the corresponding discharge expression. We can only expect its order of magnitude

to compare with observations.

6.2.6 Sources of variability in the measurements

Our analysis supports the use of the Dupuit-Boussinesq theory to describe the Quiock

Creek discharge evolution. Yet, our measurements show a large scatter (figure 6.13).

Here, we try to evaluate possible sources of variability.

Our error bars are smaller than the scatter of the data. This suggests that this scatter

comes from the heterogeneity of natural conditions, rather than from measurement

errors. Among the most obvious sources of variability are the heterogeneity of the

ground, of the rainfall rate, or the fact that the initial state prior to a flood slightly

varies from one flood to another.

Figure 6.15 points to the influence of seasons on our measurements. Indeed, all the

points measured in September (in purple) lie into the lower part of the data cloud. If

we select only the floods recorded in September, we are left with fourteen data points

(figure 6.16). The resulting graph appears much less scattered, although these fourteen

points almost cover the same range of rainfall rate measurements. Fitting a power law to

these data points yields an exponent of 1.74± 0.1. However, a 3/2 power law could also

fit the data within the error bars. Moreover, fitting a 3/2 power law to these fourteen

data points yields a prefactor of 284.29 m3/2 s−1/2, which is closer to the theoretical

prefactor calculated with equation (6.4).

Finally, we also estimate the influence of the sampling period on our results. The

high frequency of our discharge measurements, collected every minute, allows a good

temporal resolution of the quick storm events, but it can induce measurement noise.

Decreasing the measurement frequency reduces this noise but, in turn, it can lower

the number of floods observed, or affect the discharge increase rate measurement. To

estimate the influence of the discharge measurement frequency, we artificially increase

the sampling time of the measurements. We then select flood events, based on the same

criteria as described at the beginning of this section, and measure Q̇. We repeat this

procedure with sampling times of 15 minutes, one hour and five hours (figure 6.17). As

expected, we observe less floods when we increase the sampling time. Fitting a power

law to the three new data sets, we obtain the exponents 1.36, 1.54 and 2.02, all in

reasonable agreement with the Dupuit-Boussinesq prediction. Yet, the measurement

error on the exponent increases with the sampling time. Of course, the sampling time

should not be larger than the average duration of flood events.
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Figure 6.15: Influence of the season on our results. September is the very beginning of

the wet season, which ends in December - January.
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Figure 6.16: Discharge increase rate as a function of the rainfall rate in the Ravine

Quiock (•). On this graph, only the points recorded in September 2014 are represented.

The red line ( ) represents a 3/2 power law fitted to the data, yielding a prefactor of

284.29 m3/2 s−1/2.
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Figure 6.17: Influence of the sampling time on the relationship between the discharge

increase rate and the rainfall rate.
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6.3 Discussion

Our measurements of the water table elevation indicated that groundwater can gen-

erate quick floods in the Quiock Creek (chapter 4). In the present chapter, we have

analysed the Quiock Creek discharge dynamics with high-frequency measurements. We

compared this dynamics with asymptotic regimes of the Dupuit-Boussinesq equation,

using the methods developed for our laboratory aquifer (chapter 3).

Both the analyses of the drought flow and of the storm flow revealed a non-linear

behaviour. During the drought flow, the Quiock Creek discharge decreases as a power

law of time. During the storm flow, the discharge increase grows with the rainfall rate

more than linearly. This suggests that the Quiock Creek aquifer is a non-linear reservoir.

The early stage of the river drought flow seems compatible with the asymptotic

regime of the Dupuit-Boussinesq equation. This implies that the river discharge de-

creases as the inverse square root of time. The prefactor of this scaling law also conforms

to the prediction, indicating that our measurements of the aquifer hydraulic properties

are reasonable. It would be interesting to compare the river discharge and water table

decline to the long-times asymptotic regime of the Dupuit-Boussinesq equation. Unfor-

tunately, we could not observe drought flows over a period long enough to do so, due to

the presence of strong daily variations during periods of low discharge, and to a lack of

time.

The river discharge increase rate during rainfall events grows with the rainfall rate in

a non-linear power-law relationship. The exponent of this relationship is close to 3/2, in

agreement with the early-times asymptotic regime derived in chapter 3. The theoretical

prefactor of this scaling law also reasonably conforms with our measurements. The

Dupuit-Boussinesq asymptotic regimes therefore describe the Quiock Creek discharge

dynamics reasonably well, during storm events and during drought events. This suggests

that the Quiock Creek is mostly fed by groundwater. There is no need to invoke overland

flow to explain the quick floods which affect its discharge.

Finally, we developed in this chapter a new method to analyse a river hydrograph:

plotting the discharge increase rate Q̇ with respect to the rainfall rate R during storm

flow. In complement to the Q Q̇ plot method of Brutsaert and Nieber (1977) for drought

flow analysis (section 2.3.3), this method could contribute to determine the flow pro-

cesses within a catchment. In this chapter, we showed that a power law with an exponent

of 3/2 could be the signature of a groundwater-dominated catchment where the Dupuit-

Boussinesq approximation holds. As the prefactor of this power law depends on the

hydraulic properties of the aquifer, the Q̇ R plot method is also a way to estimate the

porosity and hydraulic conductivity of an aquifer, if associated to a known asymptotic

regime.

Yet, the asymptotic regimes of a two-dimensional groundwater flow in a deep aquifer

are still to be known. Whereas the mathematics of a groundwater flow feeding a fully-

penetrating stream is easier to grasp, nothing justifies this assumption in general. In

the Quiock Creek aquifer, an electrical resistivity soil profile did not reveal any bottom

(chapter 4). Moreover, the most convincing interpretation of the slug tests performed in
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section 5.2 corresponds to an infinitely deep aquifer. The two-dimensional groundwater

flow in a deep aquifer certainly deserves a detailed scrutiny.

Before addressing this question in chapter 8, we first test the Q̇ R plot method to

analyse, in the next chapter, the hydrograph of natural rivers.
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Hydrographs from other catchments
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In the last three chapters, we have shown that a natural groundwater flow can

react quickly to rainfall events, and generate floods. In the present chapter, we analyse

the hydrograph of other natural catchments, and evaluate their compatibility with the

Dupuit-Boussinesq asymptotic regimes. In particular, we analyse the river floods by

plotting the discharge increase rate Q̇ with respect to the rainfall rate, expecting a 3/2

power law if the catchment is dominated by groundwater and the latter conforms to the

Dupuit-Boussinesq theory.

The ideal site to test the Dupuit-Boussinesq theory is a small catchment, where the

geologic and climatic conditions are homogeneous. We further require high-frequency

measurements of the discharge. We found three instrumented catchments which satisfy

these two conditions: the two catchments of the Severn and of the Wye rivers, known as

the Plynlimon catchments, in mid-Wales, UK; and the Draix catchment, in the French

125
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Préalpes. As these two sites are geologically different, we separate the analyses of the

Plynlimon catchments and of the Draix catchment.

7.1 The fractured aquifers of the Plynlimon catch-

ments, Wales

Figure 7.1: A gauging station of the Severn river, Wales (picture: J. Kirchner,

from http://www.ethlife.ethz.ch/archive_articles/130812_Wasserqualitaet_

aj/index_EN).

7.1.1 Field sites

Known as the Plynlimon catchments, the headwaters of the Severn and of the Wye

rivers are a historical landmark for hydrological research. For more than four decades,

these two neighbouring catchments were extensively instrumented to study the chem-

istry of groundwater, the impact of vegetation on evapotranspiration, or to evaluate

long-term water balances (Calder, 1977; Kirby et al., 1991; Neal, 1997; Neal et al.,

1997b; Marc and Robinson, 2007). The two catchments lie in the Cambrian Moun-

tains and share very similar geological features. Their upland massif is composed of

Ordovician and Silurian mudstones, sandstones, shales, and slates. The bulk of these

hard stones is virtually impermeable, but boreholes revealed extensive groundwater cir-

culation through fractures (Neal et al., 1997a; Haria and Shand, 2004; Kirchner, 2009).

The upper layer of the soil is mostly composed of blanket peat (> 40 cm thick) at

http://www.ethlife.ethz.ch/archive_articles/130812_Wasserqualitaet_aj/index_EN
http://www.ethlife.ethz.ch/archive_articles/130812_Wasserqualitaet_aj/index_EN


7.1. The fractured aquifers of the Plynlimon catchments 127

Wye river

Severn river

Iago

Cefn Brwyn

Upper Hore

Carreg Wen

1 km N Gauging stations
Weather stations

Figure 7.2: The headwaters of the Wye and Severn rivers. The catchments and sub-

catchments (associated to gauging stations) are delimited by a black line ( ). The

blue dots (•) represent the gauging stations measuring the discharge of the Upper Hore

and Iago streams. Finally, the rainfall rates used in the present study are measured by

the weather stations, indicated by black dots (•).
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higher altitudes, and of podzols (weathered sandstone) at lower altitudes. The most

substantial difference between the two catchments is their vegetation cover: the Wye

river catchment is mostly composed of grassland used for sheep pasture, whereas 70% of

the Severn river catchment was forested with conifers at the time of the measurements

(Brandt et al., 2004).

The climate is cool and humid. The average monthly temperature is typically 2-

3◦C in winter and 11-13◦C in summer (Kirchner, 2009). The annual rainfall is around

2500-2600 mm y−1, of which approximately 500 mm y−1 are lost to evapotranspiration

(Brandt et al., 2004). Seasonal variations feature a larger rainfall during winter (280-

300 mm month−1) than during summer (135-155 mm month−1). Finally, snow accounts

for approximately 5% of annual rainfall (Kirchner, 2009).

Since the seventies, a Crump weir and a trapezoidal flume allow to measure con-

tinuously the discharges of the Wye and of the Severn rivers. Three of the upstream

tributaries of the Wye river, and four of the upstream tributaries of the Severn river are

additionally monitored by trapezoidal flumes. For the present study, we have had access

to these data collected by the Centre for Ecology and Hydrology (CEH) of Wallingford

and, more precisely, to the data set used in Kirchner (2009) (courtesy of M. Robinson

and J. Kirchner). Here, we focus on only one tributary of each river.

Among the four tributaries of the Severn river, we analyse the Upper Hore stream,

associated with the rainfall rate measured at the Carreg Wen weather station (fig-

ure 7.2). Identifying the groundwater drainage area with the overland flow drainage

area (section 4.1), Neal et al. (1997a) estimate the area drained by the Upper Hore

stream to about 178 ha. With a Digital Elevation Model of resolution 25 × 25 m and

the Whitebox Geospatial Analysis Tool1, we estimate the total stream length to about

7945 m. Inside the catchment, the altitude ranges between 405 and 736 m, with slopes

reaching 30◦ (Brandt et al., 2004). During the five years of the data set, the average

annual rainfall is 2703 mm y−1, and the average annual discharge running off the Upper

Hore stream is 2051 mm y−1. With the units of a velocity, the discharge is here divided

by the area it drains, as it is usually made in hydrogeology to compare a stream runoff

to its rainfall. In units of a volumetric discharge, the mean discharge of the Upper Hore

stream is 417 m3 h−1.

Among the three tributaries of the Wye river, we choose to analyse the Iago stream,

because it drains the smallest area (figure 7.2). To do so, we use the rainfall rate

measured in the weather station the closest to the Iago stream catchment (station known

as Cefn Brwyn, see Kirchner (2009)). With the Whitebox Geospatial Analysis Tool, we

estimate the length of the Iago stream channels to about 3940 metres. Identifying the

groundwater drainage area with the overland flow drainage area, we estimate the area

drained by the Iago stream to about 112 ha. Inside this catchment, the altitude ranges

between 380 m and 620 m, with slopes reaching 30◦ (Brandt et al., 2004). During the

five years of the present data set, the average annual rainfall is 2433 mm y−1, and the

average annual discharge running off the Iago stream is 1996 mm y−1. This corresponds

to a volumetric discharge of 255 m3 h−1.

1http://www.uoguelph.ca/~hydrogeo/Whitebox/

http://www.uoguelph.ca/~hydrogeo/Whitebox/


7.1. The fractured aquifers of the Plynlimon catchments 129

7.1.2 River hydrograph

In the present study, we use the five years long (from 1992 to 1996) data set used

by Kirchner (2009). The discharge was measured every 15 minutes, and then averaged

every hour. Figure 7.3 shows part of this data set, with 3-months hydrographs recorded

in the Upper Hore and the Iago streams. The two rainfall signals are strikingly similar

and, naturally, so are the two hydrographs. Comparing them to figure 4.9, we note

that they also look similar to the Quiock Creek hydrograph. During flood events, the

discharge increases rapidly and strongly. After a flood event, the discharge decreases

rapidly at the beginning, and slowly afterwards. During the five years of the data set,

both streams permanently flow — they never dry up. In the Iago stream for example,

the minimum discharge recorded is 3.3·10−2 mm h−1, and the maximum discharge is

6.36 mm h−1.

In the next section, we analyse the drought flows of the two streams.

7.1.3 Drought flow

In order to analyse the drought flow of the two streams, we plot the negative

time derivative of the discharge −Q̇ with respect to the discharge Q (Brutsaert and

Nieber, 1977), as in section 6.1.1. If the streams discharge evolutions follow the Dupuit-

Boussinesq predictions, we can expect two asymptotic regimes. During the early stage of

the drought flow, the discharge decreases as the inverse square root of time (Q ∼ 1/
√
t,

equation (2.23)), and Q̇ depends on Q at the power 3. The long-times asymptotic regime

predicts a discharge decrease as the inverse time squared (Q ∼ 1/t2, equation (2.29)),

and a power 3/2 between Q̇ and Q.

For this analysis, we selected 136 drought events in the Upper Hore stream, and

163 drought events in the Iago stream. For both streams, the mean duration of these

drought flows is 2.5 days. We measure Q̇ with respect to the discharge Q with the

methods exposed in section 6.1.1. Figure 7.4 shows the results where Q̇ is calculated as

the mean slope over ten hours, and Q is the mean discharge over the same ten hours.

The discharge derivative, −Q̇, increases with the discharge Q. Averaging the data over

bins of Q reduces the dispersion of the data.

The fit of a power law to these bins yields exponents of 2.10 ± 0.01 for the Upper

Hore, and 2.30 ± 0.03 for the Iago stream. These exponents do not change when we

vary the duration over which we calculate Q̇. With the other method (with a threshold

discharge value arbitrarily chosen at 3·10−4 mm h−1, see section 6.1.1), we find exponents

of 1.90 ± 0.01 for the Upper Hore, and 2.05 ± 0.02 for the Iago stream. These results

are in a good agreement with Kirchner (2009), who finds exponents of 1.97 for the

Severn river, and 2.10 for the Wye river. Larger than one, these exponents mean that,

in both rivers, the discharge does not decrease exponentially, but as a power law of

time. An exponent 2 corresponds to a discharge decrease in proportion to the inverse

time: Q ∼ 1/t. This is problematic, because such regime is not integrable in time:

the discharge cannot decrease infinitely as 1/t, as it would induce an infinite volume

of water. Only exponents lower than 2 in the Q̇ Q plane correspond to an integrable
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Figure 7.3: Rainfall rate ( ) and discharge ( ) of the Upper Hore stream, a tributary

of the Severn river, and of the Iago stream, a tributary of the Wye river, during three

months in the year 1992. The volumetric discharge of the stream is divided by the area

it drains, such that it has the dimensions of a rainfall rate.
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Figure 7.4: Time derivative of the discharge −Q̇ as a function of the discharge Q for

the two streams. For each data point (small blue points), Q̇ is the mean slope over ten

hours, and Q the mean discharge. (•) are averaged bins of all the data points. A 3/2

power law ( ) fitted to the binned data yields a prefactor of 4.98 · 10−2 m−1/2 s−1/2 for

the Upper Hore stream, and 5.88 · 10−2 m−1/2 s−1/2 for the Iago stream. The fit of a

power law yields exponents of 2.10 ± 0.01 for the Upper Hore, and 2.30 ± 0.03 for the

Iago stream.
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discharge decrease.

These exponents do not seem to correspond to any Dupuit-Boussinesq asymptotic

regime. Yet, the data present a large scatter, and we only have slightly more than one

decade of discharges. A 3/2 power law cannot be excluded (figure 7.4). Besides its

exponent, we can test this power law with its prefactor. This power law corresponds to

the long-times asymptotic regime of the Dupuit-Boussinesq theory (equation (2.29)):

Q ∼ a2
d

s2W L3

K t2
. (7.1)

Here, we assume that the drought flow of both streams follows this asymptotic regime.

We assume that the typical lateral length of the catchment is the ratio of the area over

the total streams length divided by two: L = A/(2W ) (see section 6.2.5). Our discharge

measurements QA are divided by the area of the catchment: QA = Q/(2W L). As a

result, the time derivative of the measured discharge QA reads

− Q̇A ∼ 2
√

2

√
K

ad sL
Q

3/2
A . (7.2)

Fitting a 3/2 power law to the data yields prefactors of 4.98 · 10−2 m−1/2 s−1/2 for the

Upper Hore, and 5.88 · 10−2 m−1/2 s−1/2 for the Iago stream. Identifying with expres-

sion (7.2), we measure the ratio of the hydraulic conductivity over the porosity squared:

K

s2
= 5.39 m s−1 in the Upper Hore (7.3)

and
K

s2
= 12.09 m s−1 in the Iago stream. (7.4)

It is uneasy to confirm these results because, to our knowledge, there is no information

on the hydraulic conductivity in the Plynlimon aquifers (Haria and Shand, 2004). Yet,

these values are compatible with a fractured aquifer.

This result must be confirmed by other methods. We now analyse the storm flow of

the Upper Hore and Iago hydrographs.

7.1.4 Storm flow

The Iago and Upper Hore streams both respond promptly, and strongly, to rainfall

events. For example, during the flood event of 5th August 1992, the Iago discharge

increases from 4·10−2 to 1.4 mm h−1, i.e. by a factor 35, in seven hours (figure 7.3).

In the present section, we analyse the response of both streams to rainfall events, by

plotting the discharge increase rate Q̇ with respect to the rainfall rate, as in section 6.2.

As in section 6.2, we have carefully chosen numerous floods to be analysed. Here

again, we apply three criteria to extract a well-defined flood event. First, the river

discharge prior to the flood should be sufficiently low, such that the initial state of the

aquifer prior to the flood be close to empty. Second, the rainfall event should be isolated
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from other rainfall events, and regular: with only one local maximum. The last criterion

is also that the discharge signal be regular enough: a distinct discharge increase, with a

well-defined slope. With these three criteria, we have selected 187 flood events for the

analysis of the Upper Hore, and 140 for the Iago stream.

With the same methods as in section 6.2, we have measured the discharge increase

rate of each flood. By comparing the results of five different methods, we estimate a

measurement error of 54% for the Upper Hore, and of 43% for the Iago stream.

In order to measure the rainfall rate of each rainfall event selected, we also used the

same procedure as in section 6.2. However the present data set presents a relatively

long sampling period of one hour, in contrast with the one minute sampling period in

the Quiock creek. Here we only compared the rainfall rates measured with a sampling

period of one hour, and with a sampling period of two hours. Calculating the average

standard deviation between the two techniques, we estimate a measurement error on

the rainfall rate of 8% in the Upper Hore, and of 7% in the Iago stream.

Figure 7.5 shows the results of the analysis. For both streams, the discharge increase

rate Q̇ is a growing function of the rainfall rate. This growing function is not linear, but

resembles a power law, with an exponent larger than one. Fitting a power law to the

data yields an exponent of 2.67± 0.91 in the Upper Hore, and of 2.08± 0.52 in the Iago

stream. Both results seem to exclude the possibility of a 3/2 power law, as predicted

by the Dupuit-Boussinesq asymptotic regime (equation (3.11)). However, a 3/2 power

law is visually acceptable for the Iago stream.

Assuming that the storm flow of both streams conforms to the Dupuit-Boussinesq

asymptotic regime (equation (3.11)), the fit of a 3/2 power law to the data yields a

prefactor of 6.33 · 10−3 m−1/2 s−1/2 for the Upper Hore, and 1.25 · 10−2 m3/2 s−1/2 for the

Iago stream. As the recorded discharge QA is rescaled with the area A = 2W L of the

catchment, equation (3.11) here leads to the following prediction:

Q̇A ∼
a2

sL

√
K

2
R3/2 . (7.5)

Identifying the prefactors with this expression, we find

K

s2
= 0.94 m s−1 in the Upper Hore (7.6)

and
K

s2
= 5.92 m s−1 in the Iago stream. (7.7)

These values are in reasonable agreement with the values found from the drought flow

analysis. In the Iago stream, which seems the most compatible with the Dupuit-

Boussinesq theory, only a factor of two differentiates the result of the drought flow

analysis from the early response to rainfall.

The asymptotic regime of the early response to rainfall is valid until the front reaches

the divide, that is for a flood duration

T =
sL√
K R

. (7.8)
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Figure 7.5: Discharge increase rate as a function of the rainfall rate in the Upper Hore

and in the Iago streams (•). In both graphs, the red line represents a 3/2 power law

fitted to the data ( ), yielding prefactors of 6.33 · 10−3 m−1/2 s−1/2 for the Upper Hore,

and 1.25 · 10−2 m3/2 s−1/2 for the Iago stream. The shaded area represents the minimum

and maximum power-law fits.
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Figure 7.6: Duration of all the floods analysed for the Iago stream.

As we have measured the ratio K/s2, we can estimate this limit of validity. Using the

largest rainfall rate measured for the Iago stream R = 6 · 10−6 m s−1, we estimate the

duration of the asymptotic regime around 7 hours. Figure 7.6 shows the duration of

all the floods analysed for the Iago stream. They are all shorter than one day, and

most of them last between four and ten hours, that is of the order of the asymptotic

regime duration limit. This emphasises the need of higher frequency measurements, to

be able to measure shorter flood events. Yet, 77 flood events are shorter than seven

hours. Fitting a power law to these 77 data points yields an exponent of 1.9± 0.4. This

is slightly closer to the 3/2 exponent expected. However, this result is not drastically

different from the result shown in figure 7.5, and the floods duration does not seem to

play a major role here.

7.1.5 Discussion

Both the analyses of the drought flow and of the storm flow, in the Upper Hore

and Iago streams, reveal a non-linear behaviour. During drought flow, in both streams,

the discharge seems to decrease as a power law of time, and not exponentially. During

storm flow, the discharge increase rate grows more than linearly with the rainfall rate.

Fitting a power law to the drought flow and storm flow data yields exponents com-

patible with the Dupuit-Boussinesq asymptotic regimes, if we take into account the

large uncertainties of the data. Moreover, for both streams, the drought flow and storm

flow analyses yield almost the same value of the ratio of the hydraulic conductivity over

the porosity squared (table 7.1). This result supports the use of the Dupuit-Boussinesq

approximation to analyse the dynamics of the groundwater flow in these catchments.
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More generally, it is a strong indication that both Plynlimon catchments are dominated

by groundwater flow, included during storm events. This confirms older studies, which

noticed large and rapid responses of the water table to rainfall events (Hill and Neal,

1997; Haria and Shand, 2004).

However, we have no information of any impervious bottom of the aquifers, and

we can wonder about the influence of two-dimensional groundwater flows on the rivers

discharge dynamics (J. Kirchner, personal communication).

Unfortunately, in the present case, the analysis of the river discharge dynamics,

on its own, is not sufficient to determine the aquifer hydraulic properties. As both

the drought flow and the early response to rainfall provide an estimate of the ratio

K/s2, we are presently unable to separate hydraulic conductivity and porosity. Separate

measurements of either K or s could allow to determine both and, furthermore, to

confirm our conclusions. For example, high frequency measurements of the water table,

even in a single borehole, would allow us to do so. If the borehole is sufficiently far

from any stream, we could measure the rise of the water table during rainfall events.

Assuming it is proportional to the ratio of the rainfall rate over the porosity, this would

allow to estimate the porosity of the aquifer, as in section 5.1.

Finally, as for the Quiock Creek, we observe a large dispersion of the data. We

suggest several reasons for this dispersion: the heterogeneity of the aquifer’s properties

and the spatial distribution of rainfall, the influence of the unsaturated zone, vegetation,

or the inital state of the groundwater flow prior to a rainfall event.

7.2 The badlands of the Laval catchment, French

Alps

7.2.1 Field site

The Draix experimental catchments are located in the southern French Alps near

Digne-les-Bains. Six catchments, featuring varied lithology and various types of vege-

tation covers, are devoted to the study of floods and erosion. They are monitored by

the Institut national de recherche en sciences et technologies pour l’environnement et

l’agriculture (IRSTEA). Among these six catchments, we focus on the Laval catchment

(44◦08’26”N, 6◦21’39”E).

The Laval catchment lies on Jurassic marine black marls belonging to Bajocian,

Bathonian and Callovo-Oxfordian units. This marly formation, characterised by dense

layering, is very sensitive to weathering and erosion. This results in characteristic bad-

lands morphologies, with numerous V-shaped gullies and rills (Saez et al., 2011) (see fig-

ure 7.7). During floods, considerable bedload transport runs off the catchment (Badoux

et al., 2012). A characteristic soil profile features a superficial loose detrital cover ap-

proximately 10 cm thick, a regolith of marl between 10 and 50 cm, and a very compact,

structured and cohesive marl bedrock below 50 cm (Maquaire et al., 2002).

The climate is Mediterranean with mountaineous influences. The mean annual tem-
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Figure 7.7: Picture of the Laval creek catchment, in the southern French Alps (picture:

D. Richard, from http://oredraixbleone.irstea.fr/).

perature is 9.8◦C with warm summers (28◦C in July) and mild winters. The mean

annual rainfall (1984-2004) is 900 mm, with an average of 200 days without rain and

five days with rainfall depths larger than 30 mm (Saez et al., 2011). Important seasonal

variations generally feature heavy rainfall in spring and autumn. Snow is not unusual

but does not form a semi-permanent cover (Saez et al., 2011).

The Draix Creek drains about 86 ha (figure 7.8). The altitude of the catchment

ranges between 850 and 1250 m, with a mean slope of 58%. With a 1 × 1 m Digital

Elevation Model and the Whitebox Geoanalysis Tool, we estimate the total drainage

length to about 33.9 km.

The data set used in the present section contains eight years (2000-2007) of contin-

uous discharge and rainfall-rate measurements of the Laval creek, collected by the Base

de Données pour les Observatoires en Hydrologie (BDOH, Irstea). The stage of the

Laval creek is measured with a hydrostatic pressure probe, and converted into discharge

with a calibration relationship (Duvert et al., 2012). Over the eight years of the present

data set, the mean discharge is 1.64·10−2 m3 s−1, with a maximum of 10.7 m3 s−1, and

a minimum of 0 m3 s−1. The discharge measurement time interval is highly variable,

because it adapts to the discharge variations. During flood events, the time interval

is generally one minute, whereas during low flow, it is around two hours. Comparing

the average stream discharge with the average annual rainfall of 830 mm recorded at

the Laval station, we estimate an evapotranspiration of 230 mm, which is ≈ 28% of the

total rainfall.

The rain gauge is a tipping bucket, which volume corresponds to 0.2 mm of cumulated

rainfall. It records the minute at which the bucket tips over. We then obtain the rainfall

rate signal as the cumulated volume over fifteen minutes, divided by the sampling period

http://oredraixbleone.irstea.fr/
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200 m N

Figure 7.8: Laval creek catchment, from a 1× 1 m Digital Elevation Model (courtesy of

C. Le Bouteiller). The blue dot (•) represents the gauging station, and the black dot

(•) the weather station.

of fifteen minutes.

7.2.2 River hydrograph

Figure 7.9 shows twenty-five days of the Laval creek hydrograph. The rainfall events

are scarce but intense. As a result, the creek discharge increases strongly and quickly.

For instance, during the flood of 23rd May 2002, the discharge increases from 0.02 to

0.78 m3 s−1, i.e. by a factor 40, in twenty minutes. This is typical of floods in the Laval

creek. These flood events are typically followed by a rapid decrease of the discharge. In

contrast with the Plynlimon rivers or the Quiock Creek, periods of low flow are short,

and the creek rapidly dries up. As an example, three days after the flood event of 23rd

May, the discharge was only 5 · 10−4 m3 s−1.

In the next section, we analyse the drought flows of the Laval creek, with the same

method as in sections 6.1.1 and 7.1.3.

7.2.3 Drought flow

We selected 80 drought flows during the eight years of the data set. As the time

interval between each measurement varies with discharge variations, we measure the

time derivative Q̇ as the mean slope over a fixed number of points. We arbitrarily chose

this number to be 6. During the periods where the time interval is approximately two
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Figure 7.9: Rainfall rate ( ) and discharge ( ) of the Laval creek, French Alps, during

25 days in May 2002.

hours, we therefore measure the mean derivative of the discharge over half a day. Yet,

during periods of large discharge decrease (early stage of drought flow), Q̇ is measured

over about 5 minutes. We have tested different values, and concluded that it does not

significantly change the results.

Figure 7.10 shows the time derivative of the discharge −Q̇ with respect to the dis-

charge Q. Naturally, as the discharge increases, its derivative −Q̇ increase. Averaging

the data over bins of Q, the resulting averaged points seem to align on a power-law re-

lationship. Fitting a power law to these binned points yields an exponent of 1.60±0.02.

As it is lower than 2, this exponent induces that the corresponding discharge decrease

regime is integrable. On the other hand, as it is larger than one, this exponent reveals

that the discharge of the Laval creek does not decrease exponentially.

This exponent is close to the 3/2 exponent expected with the long-times asymptotic

regime of the Dupuit-Boussinesq regime (equation (2.29)):

Q ∼ a2
d

s2W L3

K t2
. (7.9)

If the discharge decreases as predicted by this equation, its variations Q̇ depend on the

discharge at the power 3/2:

− Q̇ =
2
√
K

ad s
√
W L3

Q3/2 . (7.10)

Identifying with the prefactor obtained in figure 7.10, we measure the ratio of the hy-
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Figure 7.10: Time derivative of the discharge −Q̇ as a function of the discharge Q for

the Laval creek during drought flow. For each data point (small and transparent blue

points), Q̇ is the mean slope over six measurements, and Q the mean discharge. the

blue points (•) are averaged bins of all the data points. A 3/2 power law ( ) fitted

to the binned data yields a prefactor of 4.20 · 10−4 m−3/2 s−1/2. The fit of a power law

yields exponents of 1.60± 0.02.
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Figure 7.11: Discharge increase rate with respect to the rainfall rate (•). ( ) represents

a 3/2 power law fitted to the data, yielding a prefactor of 1.58·104 m3/2 s−1/2. The shaded

area represents the minimum and maximum power-law fits.

draulic conductivity over the porosity:

K

s2
≈ 8.45 m s−1 . (7.11)

This value is similar to the values found in the Plynlimon catchments in the previous

section but, here again, we do not have any information on the porosity or on the hy-

draulic conductivity of the aquifer.

In the next section, we estimate the validity of this result by analysing the storm

flow of the Laval creek.

7.2.4 Storm flow

With the same criteria as in sections 6.2 and 7.1.4, we selected 159 flood events in

order to plot their discharge increase rate Q̇ with respect to the rainfall rate R of the

rainfall event. To reduce noise, we measured Q̇ on a 5-minutes averaged signal. The

method was the same as in sections 6.2 and 7.1.4, including for the measurement errors

(estimated to about 78%). Also with the same method, the rainfall rate measurements

are based on a 15-minutes signal. The measurement errors are estimated to about 23%

(comparison with the measurements based on a 5-minutes signal and on a 30-minutes

signal).

Figure 7.11 shows the results of this analysis. The discharge increase rate grows

non-linearly with the rainfall rate. Fitting a power law to the data yields an exponent

of 2.71± 1.2.
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Upper Hore Iago Laval

Catchment area A (m2) 1.78 · 106 1.12 · 106 8.6 · 105

Total streams length W (m) 7945 3940 33900

Lateral length of the aquifer L (m) 112 142 13

K
s2

from the drought analysis (m s−1) 5.39 12.09 8.45

K
s2

from the flood analysis (m s−1) 0.94 5.92 0.11

Table 7.1: Dimensions of the aquifers analysed in the present chapter, and results of the

discharge dynamics analyses, which yield estimates of the ratio K/s2.

This exponent seems to exclude the 3/2 power law expected with the Dupuit-

Boussinesq asymptotic regime, although the large uncertainty keeps this theoretical

exponent possible. Fitting a 3/2 power law to the data, we find a prefactor of 1.58 ·
104 m3/2 s−1/2. Identifying the prefactor with expression (3.11), we measure the following

ratio of the hydraulic conductivity over the porosity:

K

s2
≈ 0.11 m s−1 . (7.12)

This is two orders of magnitude lower than the result obtained with the drought flow

analysis (equation (7.11)). This mismatch suggests that the floods of the Laval creek

cannot be explained by the Dupuit-Boussinesq asymptotic regime, confirming the fact

that a 3/2 power law hardly fits the plot of figure 7.11.

7.2.5 Discussion

The analysis of the Laval creek drought flow compares well with the long-times

asymptotic regime of the Dupuit-Boussinesq equation, and the exponent of a power-law

fit only slightly differs from the prediction. Moreover, this analysis yields a reasonable

value of the ratio of the conductivity over the porosity squared, which supports the use

of the late stage regime of the Dupuit-Boussinesq equation to describe the drought flows

of the Laval creek. Yet, the drought flows observed on the hydrograph decrease very

rapidly and, comparing with the Quiock Creek (section 6.1.1), we could have expected

the early stage regime to manifest in the hydrograph.

In contrast, the storm flow analysis does not compare with the early-times asymp-

totic regime of the Dupuit-Boussinesq equation. As the Laval creek is known for regular

overland flow, this is not surprising. On the contrary, our analysis suggests that the

relationship between the discharge increase rate and the rainfall rate could be a power

law with an exponent 2.5 or 3. If confirmed, this large exponent could be the signature

of overland flow-dominated floods. Of course, this speculation requires further investiga-

tion, specially about the dynamics of floods generated by overland flow. Yet, we suggest
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that plotting Q̇ versus R during floods is an interesting tool to analyse the response of

a catchment to rainfall.

7.3 Conclusion

In this chapter, we have analysed the discharge dynamics of three rivers. The Wye

and the Severn rivers drain fractured aquifers in Wales, and the Laval creek drains

marly badlands in the French Alps. The methods developed with the Dupuit-Boussinesq

theory allowed us to analyse the drought flows by plotting −Q̇ with respect to Q, and the

response of the rivers to rainfall events by plotting Q̇ with respect to R. During drought

flows as well as storm flows, the three rivers behave non-linearly. During drought, the

discharge does not decrease exponentially. During floods, Q̇ increases with R faster than

linearly. These observations are similar to the Quiock Creek observations.

The drought flows of the three rivers seem compatible with the late-times asymp-

totic regime of the Dupuit-Boussinesq equation, despite large uncertainties. Conversely,

the storm flow analysis yields contrasted results. On the one hand, the groundwater-

dominated Plynlimon catchments are compatible with the asymptotic regime of the

Dupuit-Boussinesq theory, which confirms previous observations of extensive contribu-

tion of groundwater to streamflow during storm events (Hill and Neal, 1997; Haria and

Shand, 2004). On the other hand, the relationship between Q̇ and R in the Laval creek

is more likely a power law with an exponent of 2.5 or 3, discarding the use of the Dupuit-

Boussinesq approximation for this hydrograph, at least during storm events.

The Q̇ R plot method, used to analyse the Quiock Creek, the two Plynlimon streams

and the Laval creek hydrographs, proved its utility to identify the flow processes within a

catchment. In the Quiock Creek catchment, it validates the use of the Dupuit-Boussinesq

theory to describe the entire hydrograph. In complement to the drought flow analysis

of Brutsaert and Nieber (1977), it also allows to provide estimates of the porosity and

hydraulic conductivity at the catchment scale. In the Plynlimon catchments, it supports

the use of the Dupuit-Boussinesq theory; yet, the drought flow and the storm flow

analyses both provide the ratio K/s2, and the Q̇ R plot method is not sufficient to

determine the hydraulic parameters of these aquifers. In the Plynlimon catchments,

separate measurements would be necessary. In the Laval creek catchment, this method

reveals a different behaviour, identifying a power-law relationship with an exponent of

2.5 or 3. This large exponent could be the mark of overland-flow dominated catchments.

Finally, the Q̇ R plot could be a method to discriminate between groundwater-

dominated and overland flow-dominated catchments. However, this suggestion requires

further investigations. Indeed, a power 3/2 is characteristic of a Dupuit-Boussinesq

groundwater flow. It implies a fully-penetrating stream, where the flow can be approx-

imated as one-dimensional. Conversely, the dynamical behaviour of two-dimensional

groundwater flows is still unknown. Our electric tomography of the Quiock Creek

aquifer did not reveal any impermeable bottom layer. In the Plynlimon aquifers, deep

groundwater circulations were observed. In section 8.3.2.2, we will additionally see that
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groundwater head measurements from Haria and Shand (2004) strongly suggest that

the flow becomes two-dimensional near the Severn river.

In the next chapter, we address the question of dynamical two-dimensional flows

with a laboratory experiment. We then present our attempts to describe theoretically

this problem.
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Deep aquifers: Two-dimensional

flows
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8.1 Introduction

In the previous chapters, we have shown that a groundwater flow can reproduce the

main characteristics of a river hydrograph. Among these characteristics, the Dupuit-

Boussinesq theory revealed that a groundwater flow features non-linear behaviours, dur-

ing drought flow as well as during rainfall. In particular, we suggested that a 3/2 power-

law relationship between the discharge increase rate Q̇ and the rainfall rate R could be

the signature of a groundwater-controlled hydrograph.

The Dupuit-Boussinesq theory implies a fully-penetrating stream: the aquifer has a

finite depth, and the river flows on the impermeable bottom of the aquifer. Yet, it is

difficult to evaluate the validity of this hypothesis in the field. The ground tomography

of the Quiock Creek aquifer suggests that the bottom of the aquifer lies deep under the

river (chapter 4). Several field studies, addressing the question of the aquifers depth

with hydrochemical tracers, revealed significant contributions of deep groundwater to

the streamflow (Neal et al., 1997a; Shand et al., 2005; Banks et al., 2009). Studying the

groundwater flow of the Severn river headwaters, Plynlimon, Wales, Haria and Shand

(2004) come to the same conclusions, and further emphasize that the deep groundwater

flow reacts rapidly to rainfall events.

If the aquifer bottom is deeper than the river, the Dupuit-Boussinesq approximation

does not hold any more, at least near the river (Bresciani et al., 2014). Indeed, below the

river, groundwater must flow upwards to exit the aquifer. If the aquifer is a homogeneous

porous medium, Darcy’s law combined with the incompressiblity of water leads to the

Laplace equation:

∆φ = 0 , (8.1)

where φ = y + p/(ρ g) is the velocity potential (see section 1.2). This equation must be

supplemented with boundary conditions, among which the water table plays an impor-

tant role. Its free-surface condition is non-linear and time-dependant, which introduces

analytical and numerical difficulties.

If this boundary condition is linearised, analytical studies of the problem show that

groundwater flow in a deep aquifer is fully two-dimensional (Toth, 1963; Haitjema and

Mitchell-Bruker, 2005; Jiang et al., 2011). Near a drainage divide, groundwater flows

downwards; below a river, groundwater flows upwards (figure 8.1). If the aquifer depth

is larger than the typical lateral length of the river catchment, these studies further show

that, deep under the river, groundwater can bypass the river, and directly flow towards

a lower river. In that case, the groundwater flow and the chemical elements it transports

distribute over several scales, from first-order streams to the regional scale (Zijl, 1999;

Cardenas, 2007). If Polubarinova-Kochina (1962) analytically solved the fully non-linear

problem in several two-dimensional configurations, numerical models allow to resolve it

in more realistic conditions, sometimes even in three dimensions (Bresciani et al., 2012;

Goderniaux et al., 2013). Yet, these studies address static problems only.

Even though the numerical model MODFLOW allows to simulate time-varying three-

dimensional flows, we are not aware of any systematic study of the dynamics of such

flows. In the present chapter, we investigate the dynamics of a vertical two-dimensional
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Figure 8.1: Streamlines from Laplace equation, with a linearised free-surface condition.

At the top of the domain, the six outlets represent rivers. The grey shaded area repre-

sents the area of the flow domain which flows towards the river number 3. This figure,

realised in Cardenas (2007), reproduces Toth (1963) solution, where a small perturbation

of the potential φ is prescribed on the water table. This small perturbation, represented

on the top graph, is sinusoidal with a large-scale slope s: φ = s x+ a sin(k x).

groundwater flow. With a laboratory aquifer, we analyse the drought flow and the early

response to rainfall of a two-dimensional flow, with the particular purpose to compare

these regimes with the field measurements of the previous chapter. We then propose var-

ious theoretical perspectives to address this problem. Although our theoretical analysis

remains incomplete, it may provide some insight into the behaviour of two-dimensional

flows.

The experimental and theoretical results presented in this chapter are part of a work

in progress.

8.2 Two-dimensional flow in a laboratory aquifer

In the literature, only few studies of groundwater flow were devoted to laboratory

experiments, and even fewer to deep aquifers. Abdul and Gillham (1984) study the

effects of the capillary fringe on streamflow generation, whereas Hewlett and Hibbert

(1963) and Nieber and Walter (1981) study the influence of the unsaturated zone in

sloping aquifers. In this section, we describe the experimental setup which allows us to

mimic two-dimensional groundwater flows in a deep aquifer.
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Figure 8.2: Two-dimensional groundwater flow in a deep aquifer. A vertical line halves

the aquifer into two symmetric parts around the river.

8.2.1 Design of a deep laboratory aquifer

8.2.1.1 Experimental setup

In chapter 3, the geometry of the experiment was intended to reproduce the config-

uration of a fully-penetrating stream. Here, an additional boundary comes into play,

underneath the river. Indeed, as the river flows on the porous material, groundwater

can flow underneath the river (figure 8.2). Confining the groundwater flow to a vertical

plane perpendicular to the river, we assume that the aquifer is symmetric with respect

to the river. In this idealistic configuration, groundwater cannot cross the vertical line

halving the aquifer around the river (contrary to Toth flow in figure 8.1). Under the

river, this vertical line therefore represents a boundary for the groundwater flow. This

boundary acts exactly as an impervious boundary: the flow can be parallel to it, but

it cannot cross it. This boundary also exists in a non-symmetric aquifer, but its shape

is more complicated than a simple vertical line. This boundary is the main difference

with the configuration used in chapter 3.

To account for this boundary, we modified the geometry of the laboratory aquifer

used in chapter 3. Two vertical glass plates (90.5 × 92 cm) separated by a 5 cm gap

hold a porous material in a quasi two-dimensional tank (figure 8.3). As in chapter 3,

the right-hand side of the tank is an impervious wall, and the horizontal bottom is

impervious. However, the left-hand side is composed of a vertical permeable grid placed

on top of an impervious vertical wall (63 cm). This impervious wall represents the

vertical line which halves an aquifer into two symmetric parts around the river. Above

this impervious boundary, the outlet represents a river. The right-hand side represents

the drainage divide of a natural aquifer. Finally, the horizontal bottom of the tank

represents the impervious bottom of the aquifer, at a finite depth below the river. In

this configuration, the depth of the aquifer is similar to its lateral extent.

We reproduce a porous aquifer with glass beads of diameter 3 mm. We have not

measured the hydraulic conductivity of the porous material composed of these beads.

In chapter 3 though, we measured a conductivity K of 0.97 ± 0.06 cm s−1 with 1 mm

beads, and K = 5.7 ± 1 cm s−1 with 4 mm beads. We expect the conductivity of 3 mm

beads to lie between these two values. In this porous material, the capillary height
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Figure 8.3: Experimental aquifer. The water table separates the unsaturated zone from

the saturated zone (blue zone, bottom). At the outlet, we collect water flowing through

the permeable grid in a bucket weighed every 0.1 second. Below the permeable grid, a

vertical impervious wall represents the boundary halving an aquifer into two symmetric

parts around the river.
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is around 1 cm. In what follows, we neglect the capillary fringe, and approximate the

water table as the top surface of the saturated zone.

Above this porous medium, we reproduce rainfall with a sprinkler pipe of section

2 cm. A series of 20 holes (1 mm in diameter) spreads regularly along the sprinkler

pipe, fed with a water tower. An electromagnetic flowmeter (Kobold) measures the

rainfall rate with discharges ranging from 0.83 to 16.67 ml s−1. In order to reproduce a

larger range of rainfall rates, we installed a derivation in the water supply device, with

a flowmeter ranging from 8.3 to 166.7 ml s−1. With this device, the rainfall rate of our

experiments range from 1 to 53.3 ml s−1.

The last change of this experiment with respect to chapter 3 is the scale used to

measure the cumulated weight of water flowing out of the aquifer. As we will see

in section 8.2.2, the transient regimes of the experimental hydrographs obtained with

the present setup are shorter than observed in the configuration of a fully-penetrating

stream (chapter 3). In particular, the regime of early response to rainfall lasts only a

few seconds (see figure 8.11). In order to measure precisely this regime, we used a more

precise scale (Kern, PLJ-1200-3A) which measures the weight every 0.1 seconds, with a

precision of 1 mg.

8.2.1.2 Outlet

Our deep laboratory aquifer produces fast transient regimes, which require more

precision. Unfortunately, this precision revealed an instability triggered by the outlet

device which induced significant noise (figure 8.4). This instability already existed in the

experiments of chapter 3, but its influence was negligible compared to the measurement

precision. It is induced by the rectangular spout about 10 cm long used to drive water

from the aquifer outlet to the weighed bucket (figure 8.4a). On this spout, water flows

in rivulets which spontaneously meander (Daerr et al., 2011). As the meanders are

unstable, the discharge delivered to the bucket fluctuates around its average value.

These fluctuations induced a significant measurement noise, so that we had to change

the outlet device.

We started by creating a water reservoir which collects the groundwater almost

immediately after it flows out of the aquifer (figure 8.4b). The purpose was to minimise

the distance over which water flows until we can measure its weight. This intermediate

reservoir is connected to the weighed bucket with a tube filled with water, such that

the levels of the bucket and of the outlet reservoir are supposed to be equal. When

the reservoir collects water, its level rises, and water consequently flows towards the

bucket to equate their levels. Part of the outflowing water is therefore lost in the

reservoir, and not weighed in the bucket. We reduce at maximum the proportion of

water lost in the intermediate reservoir, by increasing the surface of the bucket. The

latter is approximately 200 cm2, whereas the surface of the reservoir is approximately

5 cm2, which is approximately 2.5% of the bucket surface. We therefore hope to lose

only approximately 2.5% of the outflowing water into the reservoir. Unfortunately, this

device induced gravity oscillations between the water levels in the reservoir and in the

bucket. The amplitude of these waves was too large to be neglected, and we had to
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Figure 8.4: Three different outlet devices used to measure the most precisely possible

the discharge of water flowing out of the experimental aquifer. a) Outlet used in the

experiment of chapter 3. On this device, rivulets of water spontaneously meander while

flowing down, inducing noise in the measurement. b) Second attempt of outlet device.

At the outlet, an intermediate reservoir collects water immediately after it flows out of

the aquifer. This intermediate reservoir is connected to the weighed bucket. c) Present

configuration of the outlet. At the bottom of the intermediate reservoir, a small pipe

drives water towards the weighed bucket.
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develop a second device.

The present outlet device is illustrated in figure 8.4c. We use the same intermediate

reservoir as in figure 8.4b but, now, the reservoir is almost empty. At the bottom, a

small pipe drives the outflowing water towards the bucket. The advantage of this device

compared to figure 8.4a is that the water flows in a pipe, which hinders the meandering

of rivulets. Its drawback is that, before flowing into the small pipe, the outflowing water

must flow down the vertical reservoir wall over approximately 50 cm. This drawback

could again be improved in the future.

8.2.2 Observations

8.2.2.1 Two-dimensional streamlines

The experimental procedure is similar to the one described in chapter 3. We switch

on rainfall and wait until equilibrium. Rainwater infiltrates down the porous material,

until it reaches the groundwater reservoir. The water table then rises to accommodate

more rainwater, and curves towards the outlet. The water table shape is qualitatively

similar as in the fully-penetrating configuration of chapter 3. However, it rises much

less than in a fully-penetrating configuration. For example, with a rainfall discharge

of 28 ml s−1, the water level rises by about 3 cm at its maximum (right boundary). In

comparison, with the 4 mm beads (with a larger conductivity, the water table is supposed

to rise less), the water table rises by about 10 cm in the fully-penetrating configuration.

After a few minutes, the system reaches steady state. To visualize the streamlines,

we introduce 3 ml of blue dye at four locations (19.1, 37.7, 56.9 and 75.6 cm away from

the outlet) (figure 8.5). We then take pictures of the experiment every 20 seconds during

twenty-two minutes. Figure 8.5 shows the pictures taken 30 seconds, three minutes and

five minutes after injecting dye. After processing the 65 pictures, we select for each pixel

the picture in which the pixel displays the minimum of light intensity. As a result, the

bottom picture of figure 8.5 displays the minimum of intensity recorded in each pixel.

This allows us to visualize the stationary flowlines.

As we introduce them, the four blue stains exhibit a lateral extent of about 3 cm.

Then, they flow towards the outlet, following the streamlines. As they do so, they extend

longitudinally (in the direction of the flow), but their lateral extent hardly changes

(Van Genuchten and Wierenga, 1976, 1977).

According to their position relative to the outlet, the four stains flow downwards

and towards the outlet. The furthest stain flows almost vertically downwards at the

beginning, progressively changing its course as it gets closer to the outlet. As a result,

the furthest stain also corresponds to the deepest streamline. Conversely, the closest

stain flows almost horizontally.

Finally, the streamlines get closer to each other as they flow towards the outlet.

In fact, the flow almost concentrates in a single line along the outlet — the area of

outflowing water, on the outlet grid, is about 1 or 2 mm in height. As a result, flow

accelerates as it gets closer to the outlet. To illustrate this observation, the closest stain

has almost totally disappeared after approximately 1 minute, and the second flows out
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Experiment after 30 sec After 3 min After 5 min

Average streamlines

Figure 8.5: Top: Three pictures of the experiment thirty seconds (left), three minutes

(middle), and five minutes after the injection of dye (right). After three minutes, the

two closest stains have already exited the aquifer. Bottom: Streamlines revealed by

displaying, for each pixel, its lowest intensity value.
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Figure 8.6: Resolution of the Laplace equation, with the free surface condition linearised.

of the aquifer in about 2 minutes and a half. Conversely, the furthest stain flows out

of the aquifer in more than twenty minutes. These features, similar as in figure 8.1,

emphasize the two-dimensionality of the flow in the present laboratory configuration.

8.2.2.2 Two-dimensional flow: linearisation of the free-surface condition

These experiments, realised in steady state, point to a remarkable feature of the

groundwater flow in this deep configuration: the water table is almost horizontal, and

its elevation h is close to the river elevation. This feature is an incentive to linearise

the problem around this horizontal position. Here, we solve numerically the linearised

problem of a groundwater flow in a rectangle (experimental configuration), receiving a

constant rainfall rate R, and in steady state.

With a finite element method (with the solver FreFem++ (Hecht, 2012)), we solve

the Laplace equation on the stream function, ψ (see section 8.3):

∆ψ = 0 , (8.2)

in order to visualise the stream lines. This is equivalent to solving the Laplace equation

on the velocity potential φ.

This equation must be supplemented with boundary conditions. Along the impervi-

ous walls, normal fluxes vanish. On the right wall, on the bottom, and on the left wall,

this condition imposes that the stream function is constant. Moreover, this constant is
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the same for the three boundaries, because they all correspond to the same streamline.

We arbitrarily fix this constant to:

ψ = −L , (8.3)

where L is the lateral extent of the aquifer.

The part considered so far is linear. The last boundary, the water table, induces

non-linearity. Two conditions on φ define it. First, it is connected to atmosphere, such

that the pressure on the water table is atmospheric:

φ = y on y = h . (8.4)

The second condition is a mass balance, which reads in steady state:

R = K (∂xφ ∂xh− ∂yφ) on y = h . (8.5)

We now linearise around the position h = 0:

φ(h) ' φ(0) + h ∂xφ(0) . (8.6)

Then, equation (8.4) forces φ to be of the order h, and equation (8.5) linearises into

R = −K ∂yφ on y = 0 . (8.7)

On the stream function, the Cauchy-Riemann conditions (see section 8.3, equation (8.16))

translate this equation on φ into an equation on ψ:

R = K ∂xψ on y = 0 . (8.8)

We have therefore defined a rectangular domain, where all boundary conditions are

linear. However, groundwater exits this rectangular domain through the single upper

left corner, which represents the outlet. This point is singular, which complicates the

numerical resolution. To avoid this problem, we introduce artificially a fifth boundary.

We approximate the outlet as a small quarter circle of radius ε, where we impose a

constant velocity potential. This implies that the streamlines are orthogonal to the

quarter circle:

∂nψ = 0 . (8.9)

Figure 8.6 shows the streamlines from our numerical resolution, with the dimensions

of the experiment (see appendix A for the numerical code). In this resolution, the radius

of the quarter circle is one percent of the total lateral length of the domain. Changing

its value does not influence, at least qualitatively, the shape of the streamlines. Finally,

the imposed rainfall rate is R/K = 1. As the problem is linear, the rainfall rate does

not influence the shape of the flow; it only modifies the discharge exiting the domain,

in proportion to the rainfall.

The streamlines thus obtained strongly resemble the streamlines of the laboratory

experiment (figure 8.5). Far from the outlet, the groundwater first flows downwards,
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progressively modifying its course to finish by flowing upwards and towards the outlet.

Conversely, the streamlines starting near the outlet are nearly horizontal. As all the

streamlines are directed towards the single upper left corner, they are forced to get closer

to each other near the outlet, all concentrating towards this small boundary.

With a numerical trick, we have skirted the problem posed by the singularity of

the outlet. As the numerical resolution seems to strongly resemble the laboratory ex-

periment, the linearisation of the free surface seems to be a reasonable approximation.

However, the resolution of the linear problem shows the importance played by the river.

If we want to find the general features of a two-dimensional flow, we hope that the river

shape plays a minor role. As its dimensions are small compared to the groundwater

flow domain, a natural approach consists in reducing the outlet to a point. However,

this point becomes singular, because it must accommodate the finite discharge exiting

the aquifer. According to equation (8.6), this implies that ∂xφ diverges near the outlet

and, as a consequence, the linearisation of the free-surface condition (8.5) is impossible.

If we consider it as a point, the outlet forces the problem to be non-linear.

In what follows, we investigate whether this non-linearity has a strong influence on

the dynamics of the experimental two-dimensional flow.

8.2.2.3 Experimental hydrograph

Let us start by exploring the transient regimes of our deep experimental aquifer.

A typical experiment begins with a horizontal water table, which level corresponds to

the outlet level (about 63 cm). We then switch on the rainfall and maintain its rate R

constant for a few tens of seconds. A few seconds after rainfall starts, the discharge of

water exiting the aquifer starts rising (figure 8.7). It rises quickly during a few seconds.

After about 5 s, the discharge increases less quickly, as it gradually reaches its steady

state value of 16 ml s−1, imposed by the rainfall rate. In the experiment of figure 8.7,

the rainfall lasts only about 35 s, and the discharge has almost already reached its

equilibrium value. As a comparison, with the same rainfall rate, in the fully-penetrating

configuration and with the 4 mm beads, the discharge reached its steady state in about

4 minutes (section 3.3). The transient regimes are therefore much shorter in the deep

aquifer configuration. This can be interpreted as a geometrical effect. To accommodate

the same discharge, the water table must rise less in the deep configuration than in a

fully-penetrating configuration. The groundwater flow therefore adjusts faster to new

conditions.

8.2.3 Drought flow

When the rainfall stops, the discharge starts to decrease. It decreases quickly at the

beginning, and then relaxes slowly towards zero. In this section, we study the dynamics

of this drought flow.

To study the drought flow of this deep laboratory aquifer, we pour a volume V =

600 ml of water on the aquifer, close to the right-hand side boundary. All the water
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Figure 8.7: Rainfall rate R imposed to our laboratory aquifer (green line, top), and water

discharge Q exiting the experiment (blue line, bottom). Measurements are collected at

10 Hz, with a precision of about 10−2 ml s−1.
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Figure 8.8: Drought flow in the deep aquifer ( ). The inset displays only the early

stages of the drought flow. The red line is the exponential decay ( ) predicted, without

any fit parameter, by the linearised Dupuit-Boussinesq equation. It may be valid at very

early times, but the experimental drought flow rapidly deviates from it.
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Figure 8.9: Drought flow in the deep laboratory aquifer. We pour a volume V =

600 ml on the porous material, and measure the discharge of water flowing out of the

aquifer during 5.5 hours (2 · 104 s) ( ). The fit of a power law ( ) yields an exponent

−1.26± 0.02.

infiltrates into the porous material, joining the groundwater reservoir. As the recharge

is spatially localised, this forms a mound about 20 cm large, and about 10 cm high. This

mound rapidly propagates towards the outlet, and the discharge of water flowing out

of the aquifer increases quickly. Within 5 seconds, the discharge increases from zero to

22 ml s−1. The discharge then starts decreasing.

During the first 200 seconds of the experiment, we weigh the outlet bucket every

second. Afterwards, we weigh it every 15 seconds. We measure the water discharge

during 2 · 104 s, i.e. five hours and a half (figure 8.8). At the end of the experiment,

groundwater still flows, delivering a discharge of 2.7 · 10−3 ml s−1.

We first investigate the possibility of an exponential decay. On figure 8.8, we compare

our drought flow with the theoretical exponential decay predicted by the linearisation

of the Dupuit-Boussinesq equation (see section 2.2, equation (2.16)):

Q(t) ∼ 2W hcK
H − hc
L

exp

(−π2K hc t

4 sL2

)
, (8.10)

where W is the width of the tank, hc is the depth of the aquifer below the river, K is

the hydraulic conductivity, H is the depth of aquifer initially saturated with water, L is

the lateral length of the aquifer, and s is the porosity. The experimental drought flow is

comparable to this prediction during the very early stages of the experiment. However,

it does not really seem exponential at long times. Very rapidly, the discharge deviates

from the prediction (8.10). In the deep aquifer, the groundwater flow therefore exhibits

a non-linear behaviour during drought.
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Figure 8.10: Time derivative −Q̇ of the discharge with respect to the discharge, during

the drought flow of the deep laboratory aquifer ( ). The fit of a power law ( ) yields

an exponent 1.91± 0.02.

The fit of a power law to the drought flow yields an exponent−1.26±0.02 (figure 8.9).

We also compare this result with the method developed to analyse the drought flow of

natural rivers, which consists in plotting the negative time derivative of the discharge

−Q̇ with respect to the discharge (figure 8.10). Fitting a power law to this data yields

an exponent 1.91 ± 0.02. This exponent corresponds to a regime of discharge decrease

slightly different from the previous method:

Q ∼ 1

t1.1
. (8.11)

The exponents found by both methods, as they are larger than one, correspond to

regimes of drought flow integrable in time. They do not compare to any of the Dupuit-

Boussinesq asymptotic regimes, which predicted two possible exponents: 1/2 and 2.

However, they seem to be close to a regime in Q ∼ 1/t, which we found in the Plynlimon

catchments (see section 7.1 and Kirchner (2009)).

Yet, this preliminary result must be confirmed by further experiments. The exper-

imental drought flow realised here needs to be improved. First, a better outlet device

is necessary, such that the droplets flowing out of the aquifer, at the end of the experi-

ment, must not flow down over about 50 cm to reach the weighed bucket. Second, at the

point where the experiment stops, about 625 ml of water has exited the aquifer. This

slightly exceeds the input volume. This excess probably results from the slowly draining

unsaturated zone, which was certainly not totally empty before the experiment started.
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Figure 8.11: Increase of the water discharge just after the beginning of rainfall for various

rainfall rates ( , R = 51.7, 17.2 and 7.8 mL s−1 from top to bottom). The curves are

shifted horizontally so that time is zero at the beginning of the discharge increase. For

each run, a linear increase is fitted to the data ( ).

8.2.4 Early response to rainfall

In this section, we analyse the early response to rainfall of the experimental two-

dimensional groundwater flow. The results presented here are only preliminary, because

the outlet device used here might induce measurement errors.

The discharge delivered by the two-dimensional groundwater flow increases quickly

after the beginning of rain. As shown in figure 8.7, the discharge reaches a steady state

in a few tens of seconds. Before curving to reach its steady state asymptote, the early

stages of this transient regime seem to be linear in time. Figure 8.11 shows the first five

seconds after the discharge has started to increase, for three different experiments. The

larger the rainfall rate, the larger the discharge increase. On this figure, the experiment

made with the larger rainfall rate rapidly deviates from its linear behaviour — after

only one or two seconds. The two other experiments, performed at lower rainfall rates,

exhibit a linear behaviour during the five seconds displayed in figure 8.11.

The three signals exhibit a strong measurement noise. This noise is, in part, due

to the high frequency of the weight measurements. However, each of them displays a

strong peak at the beginning of the discharge increase. For each of them, this peak

occurs at the precise moment when the discharge increases beyond about 0.65 ml s−1.

This threshold value being similar for all the experiments, this suggests a measurement

bias due to the outlet device.

If the discharge indeed increases linearly with time, the weight of the bucket increases

with the time squared. In order to measure the discharge increase rate Q̇ of the early
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Figure 8.12: Dependence of the discharge increase rate with respect to the rainfall

rate (•). The best fit of the data yields an exponent 2.08 ± 0.07 ( ). A 3/2 power

law ( ) is also fitted to the data, rescaled as in the Dupuit-Boussinesq configuration

(equation (3.12)). This fit yields a prefactor of 7.3, which is about 10 times the Dupuit-

Boussinesq prefactor.

response to rainfall, as the discharge signals exhibit a strong noise, we fit a squared

relationship to the weight signal. This method avoids differentiating our data. Repeating

the experiment with various rainfall rates R, we measure the relationship between Q̇

and R (figure 8.12). Not surprisingly, the discharge increase rate increases with the

rainfall rate. However, as in the Dupuit-Boussinesq configuration, it increases faster

than linearly. Fitting a power law to the data yields an exponent of 2.08 ± 0.07. This

exponent is similar to the exponents found in the Plynlimon catchments (section 7.1).

Due to the large measurement noise, the points measured for low rainfall rates are

highly uncertain. A 3/2 power law is plausible for the larger rainfall rates, which would

be compatible with our results with the Quiock Creek hydrograph (chapter 6). Rescaling

the data as suggested by the Dupuit-Boussinesq asymptotic regime (equation (3.12)),

we fit a 3/2 power law, and obtain a prefactor of 7.3. This is about 10 times larger

than the Dupuit-Boussinesq prefactor, confirming that the early response to rainfall is

quicker in the present laboratory experiment than in a Dupuit-Boussinesq configuration.

For the moment, the quality of our experimental data does not allow us to clearly

determine the relationship between Q̇ and R. Further experiments are necessary. With

these new experiments, it would also be interesting to explore the influences of hydraulic

conductivity and aquifer depth.

Here, we also lack a theoretical background concerning the dynamics of a two-

dimensional groundwater flow. In the next sections, we explore several theoretical
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analyses of the problem, without reaching any definitive conclusion. Nonetheless, our

analysis hopefully provides some insight on the general behaviour of a two-dimensional

groundwater flow.

8.3 Analysis of two-dimensional flows

8.3.1 Two-dimensional flow in steady state

Complex analysis is an efficient method to solve the Laplace equation. In this section,

we explain how the theory of analytic functions can help to solve the Laplace equation

in two dimensions. We then illustrate this method with a simple example.

8.3.1.1 Properties of analytic functions

The problem of two-dimensional flow involves the resolution of the Laplace equation

for the velocity potential φ(x, y). For that purpose, we introduce the real scalar field

ψ(x, y) and the complex scalar field Φ(x, y), defined as

Φ = φ+ i ψ . (8.12)

Noting z = x + i y the complex variable and z̄ = x− i y, we now write Φ as a function

of z and z̄:

Φ(x, y) = Φ(z, z̄) . (8.13)

We now suppose that Φ does not depend on z̄:

∂z̄Φ = 0 . (8.14)

This condition is a very strong restriction, as Φ is now a function of the single variable

z. If this function is differentiable, then we have
{
∂xΦ = ∂zΦ

∂yΦ = i ∂zΦ .
(8.15)

Identifying the real and imaginary parts of equations (8.15), the condition (8.14) imposes

that φ and ψ satisfy the Cauchy-Riemann conditions:

∂φ

∂x
=
∂ψ

∂y
,

∂φ

∂y
= −∂ψ

∂x
. (8.16)

As a result of the Cauchy-Riemann conditions, the real part of the complex potential,

φ, satisfies the Laplace equation:

∆φ =
∂

∂x

∂φ

∂x
+

∂

∂y

∂φ

∂y
=

∂

∂x

∂ψ

∂y
− ∂

∂y

∂ψ

∂x
= 0 . (8.17)

Similarly, we can show that the imaginary part ψ of the complex potential also satisfies

the Laplace equation. From the Cauchy-Riemann equations, we also obtain

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (8.18)
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ψ = 0

ψ = 1/2

ψ = 1

φ = 0

φ = 2

water table

impervious base

drainage
slit

Q

Figure 8.13: Example of a flow satisfying the Laplace equation: φ =
√
z. The stream-

lines are defined by ψ = const ( , equation (8.20)), and the isopotential lines are

defined by φ = const ( , equation (8.21)).

where u and v denote for the horizontal and vertical components of the velocity. This

defines ψ as the stream function of the flow. The stream function of a two-dimensional

flow is useful, because the streamlines of the flow, defined as ψ = const, represent the

trajectories of particles in a steady flow.

We have therefore shown that if the complex potential Φ is analytic — it is differ-

entiable and satisfies condition (8.14) —, then its real and imaginary parts satisfy the

Cauchy-Riemann equations and, in turn, the Laplace equation. The boundary condi-

tions then provide supplementary constraints to the problem, and determine the single

analytic function which represents the flow.

More information about the use of complex analysis for groundwater flows can be

found in Polubarinova-Kochina (1962), Bear (1972) or Appel (2008).

8.3.1.2 Complex analysis

To illustrate how a function of the complex variable z can represent a flow, we begin

with a simple example, given in Polubarinova-Kochina (1962): Φ(z) =
√
z/A, where A

is, for the moment, an undetermined real constant.

The streamlines of the flow are characterised by ψ = const. For a specific value of

ψ = ψ0, we write

z = x+ iy = AΦ2 = A (φ2 − ψ2
0 + 2 i φ ψ0) . (8.19)

Identifying the real and imaginary parts of z, we infer the equation of the streamline

characterised by ψ = ψ0:

y = 2Aψ0

√
x

A
+ ψ2

0 . (8.20)
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Similarly, isopotential lines are defined by φ = const. The isopotential line characterised

by φ = φ0 reads

y = 2Aφ0

√
φ2

0 −
x

A
. (8.21)

Figure 8.13 represents the streamlines and isopotential lines of the flow corresponding

to Φ =
√

2 z. We have arbitrarily fixed A = 1/2. Because Φ is analytic, the streamlines

and the isopotential lines are always orthogonal to each other.

To understand which physical flow may be represented by Φ =
√

2 z, we consider its

boundaries.

Impervious base of the flow. The horizontal blue line, defined by ψ = 0 and

delimiting the bottom of the flow (which we have arbitrarily fixed in y = 0), acts as an

impervious boundary. Indeed, as ψ = const, the derivative of ψ along the horizontal

coordinate x vanishes: ∂xψ = 0. According to the Cauchy-Riemann equations, this is

equivalent to

∂yφ = v = 0 , (8.22)

which is the condition defining an impervious boundary in a porous material.

Drainage slit. On the left of this impervious base, at the same vertical coordinate

y = 0, a horizontal isopotential line φ = 0 additionally delimits the bottom of the flow.

On this segment we have y = 0 and φ = 0. This segment therefore corresponds to a

boundary where the pressure vanishes:

p = 0 . (8.23)

This corresponds to a boundary where the flow is directly in contact with air, such as a

permeable grid for example. This grid drains the flow, as the fluid flows in the inverse

direction of the potential gradient.

Water table. Finally, the top surface of the flow is characterised by a streamline, with

a constant ψ: ψ = 1. Here, we will show that this streamline can be the free surface of

the flow, or the water table.

Being a free surface, the water table is defined by two boundary conditions. One of

the conditions is a mass balance, which determines the shape that the water table must

adopt to accommodate for the flow. In steady state, and with the absence of rainfall,

this condition simply translates into the condition of a vanishing normal flux:

∂nφ = 0 , (8.24)

where n denotes the unit vector perpendicular to the surface. With the Cauchy-Riemann

equations, this condition is equivalent to ∂sψ = 0, where s denotes the unit vector

parallel to the surface. In other words, this condition states that, in steady state and in



8.3. Analysis of two-dimensional flows 167

the absence of rainfall, the free surface is a streamline — i.e. characterised by ψ = const.

All the streamlines of the flow could therefore represent its free surface.

A second condition defines the free surface of the flow. As it is directly connected to

the atmosphere, its pressure is atmospheric. For the velocity potential, this translates

into

φ = y . (8.25)

As z = Φ2/2, this condition is satisfied on ψ = 1.

Discharge drained by the drainage slit. In the three previous paragraphs, we

have shown that the flow represented in figure 8.13, which corresponds to Φ =
√

2 z,

satisfies the Laplace equation. It is delimited by an impervious base, a water table and

a permeable slit which drains the flow. Here, we show that the two values of the stream

function ψb at the bottom and ψt at the top of the flow fix the discharge of fluid drained

by the slit (of course, in general, one faces the inverse situation: the discharge of fluid

fixes the extreme values of the streamlines). Indeed, if l is a line connecting the bottom

to the top of the flow domain, the discharge q of fluid crossing this line reads

q =

∫

l

~v · ~n ds = K

∫

l

∂ ψ

∂s
ds = K (ψt − ψb) (8.26)

where K is the conductivity. The flow represented in figure 8.13 therefore represents a

porous material draining a discharge q = K into a permeable slit.

With this simple example, we have shown how an analytic function can represent a

flow satisfying the Laplace equation. However, determining a groundwater flow generally

requires the inverse approach: we know that the flow satisfies the Laplace equation, and

we want to find the analytic function which describes it, i.e. the analytic function which

satisfies the boundary conditions. In the next section, we describe this inverse approach,

with the same example.

8.3.1.3 Conformal mapping

We have shown that the function Φ = f(z), if it is analytic, describes a flow. In

the physical plane, z geometrically represents a point, defined by its abscissa x and its

ordinate y. Similarly, in a plane where φ and ψ define the abscissa and ordinate, Φ

represents a point. Thus, the function f associates each point z0 of the z-plane to a

point Φ0 in the Φ-plane. In this way, Φ0 is the image of the point z0 into the Φ-plane

(see figure 8.14). The function f is then called a map, or a transformation. As f is

analytic, it is a conformal map, which means it preserves angles locally (Bear, 1972).

In the physical plane, the boundaries of the flow are defined by specific conditions

on φ and/or ψ. Let us consider the previous example, and assume we do not know the
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Figure 8.14: Conformal mapping. On the left, the Φ-plane is defined by φ on the abscissa

axis, and ψ on the ordinate axis. On the right, the physical (or z-) plane. The boundary

conditions (8.27) can be represented equivalently in both planes. However, the position

of the water table is unknown in the physical plane, whereas it corresponds to a fixed

line in the Φ-plane.

function f which describes it. We assume we only know its boundary conditions:




ψ = 0 on the impervious base,

φ = 0 on the permeable slit,

ψ = q/K on the water table

φ = y on the water table .

(8.27)

These boundaries all have their image into the Φ-plane (figure 8.14). The flow domain,

represented by the blue shaded area, has also its image into the Φ-plane, delimited by

the boundaries images. A remarkable feature of the flow domain image into the Φ-plane

is the position of the water table. As it is defined by ψ = q/K, the water table is fixed

in the Φ-plane: it is a straight horizontal line.

The idea of conformal mapping is to find the function f which maps the boundaries

of the z-plane into the boundaries of the Φ-plane. As f must be analytic, its inverse

function z = g(Φ) exists, and is analytic (Bear, 1972). It is therefore possible to tackle

the problem the other way around, and to look for the function g which satisfies the

boundary conditions. In the Φ-plane, the boundary conditions are defined by




y = 0 on the impervious base,

y = 0 on the permeable slit,

y = φ on the water table .

(8.28)

Note that, as the water table is not a free surface in the Φ-plane, it is defined by a single

boundary condition. It is therefore easier to find the function g. We will now try to find

the function g, assuming we do not know it from the previous section.

As we must have y = φ on the water table, the first natural proposition is z = iΦ,

which satisfies this condition everywhere. The drainage slit is defined by φ = 0, so we

indeed have y = 0. However, the impervious base is defined by ψ = 0, so with the

function g(Φ) = iΦ, we do not have y = 0. We must find another function.
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z = Φ2/2

Φ =
√

2z

Figure 8.15: Streamlines and isopotential lines of a flow. Left: in the Φ-plane, isopo-

tential lines are trivially vertical, and streamlines are horizontal. In this plane, the

boundaries (equation (8.27)) are fixed. Right: in the z-plane, we must find the function

which transforms the boundaries of the Φ-plane into the physical boundaries, in the

z-plane.

We can get inspired from our first guess though, because it satisfied two of the

three conditions. We want to have y = 0 on ψ = 0, so we multiply our first guess by

−iΦ = ψ − i φ, such that z = g(Φ) = Φ2 = φ2 − ψ2 + 2 i φ ψ. On the impervious base,

ψ = 0 such that y = 0. On the drainage slit, φ = 0 and we also have y = 0. Finally,

the water table is defined by ψ = q/K, so we obtain y = 2φ q/K. Multiplying by the

factor K/(2 q), we therefore obtain that the function g(Φ) such that

z =
K

2 q
Φ2 (8.29)

satisfies the boundary conditions (8.28). As it is analytic, we have found the solution

to the problem defined by the Laplace equation on φ, supplemented by the boundary

conditions (8.28). Inversely, the inverse function

Φ =

√
2 q z

K
(8.30)

is also analytic, such that φ satisfies the Laplace equation, and the boundary condi-

tions (8.27). Figure 8.15 represents the isopotential lines and the streamlines defined by

these transformations, in the Φ-plane and in the z-plane.

Before using conformal mapping to investigate the behaviour of a two-dimensional

groundwater flow in deep aquifers, we match this two-dimensional solution of a shallow

groundwater flow with the Dupuit-Boussinesq solution.

8.3.1.4 Matching with the Dupuit-Boussinesq solution

In chapter 3, we have shown that the Dupuit-Boussinesq equation admits a self-

similar solution at early times of a rainfall event. This solution leads to the prediction
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seepage face

rainfallrainfall
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Figure 8.16: Illustration of the asymptotic matching between a Dupuit-Boussinesq so-

lution, far from the outlet, and a two-dimensional solution, close to the outlet. Close to

the outlet, the two-dimensional flow is insensitive to rainfall, and the water must only

accommodate for the discharge q0 coming from the one-dimensional flow, on the right.

that the discharge increases linearly with time, and in proportion to the rainfall rate at

the power 3/2:

Q(t) ∼ a2 W

s

√
K

2
R3/2 t , (8.31)

where W is the width of the aquifer, s the porosity, K the hydraulic conductivity, R

the rainfall rate and t the time. The mathematical constant a comes from the inte-

gration of the Dupuit-Boussinesq equation. Our experimental results conformed to this

prediction, except for the prefactor of the scaling law. In the experiments, we found a

prefactor about 3 times larger than the Dupuit-Boussinesq prediction. We attributed

this mismatch to a singularity induced by the Dupuit-Boussinesq framework.

We mentioned the problem of this singularity in section 2.3. In the configuration

of a fully-penetrating stream, the shallow water approximation imposes that the water

table elevation is fixed at h = 0 at the river (in x = 0). Combined with Darcy’s law

(equation (2.2)), this implies that the water table behaves like

h ∼
√

2 qo x

K
, (8.32)

where q0 is the discharge of water exiting the aquifer. This square root is incompatible

with the shallow-water approximation, since the slope of the water table diverges near

the outlet. This suggests that, close to the outlet, the groundwater flows in two dimen-

sions, even in this shallow configuration. Here we propose to examine the asymptotic

behaviour of the two-dimensional solution of the groundwater flow in a shallow config-

uration. We expect that, far from the river, it asymptotically exhibits a square root

shape. In that case, matching this two-dimensional flow with the Dupuit-Boussinesq

solution could change the prefactor in front of equation (8.32) and, in turn, the prefactor

in front of equation (8.31).



8.3. Analysis of two-dimensional flows 171

a) b)

Figure 8.17: Illustration of a deep aquifer. a) Below the river, groundwater flows ver-

tically upwards. b) At the beginning of a rainfall event, the perturbation imposed by

rainfall to the groundwater flow may be insensitive to the aquifer bottom, if any.

For this purpose, we must solve the two-dimensional flow near the outlet, which

is a vertical porous grid in the laboratory aquifer of chapter 3. Unfortunately, we

are not aware of any analytical solution of the two-dimensional flow with a vertical

permeable grid. Yet in the present chapter, we have found a solution with a horizontal

grid (equation (8.29)). In what follows, we adopt this solution.

To match the two-dimensional solution (8.29) to a Dupuit-Boussinesq flow, we as-

sume that rain falling in the immediate neighbourhood of the outlet represents a neg-

ligible fraction of the discharge exiting the aquifer. Sufficiently close to the outlet, the

rainfall rate can be neglected, and the flow is essentially determined by the discharge

q0 coming from the right (figure 8.16). The discharge q0 is determined outside of the

two-dimensional area, where the shallow water approximation remains valid.

With the solution (8.29), we determine the shape of the water table of the two-

dimensional flow:

y =

√
2 q0

k
x+

( q0

K

)2

. (8.33)

Far from the outlet, the water table adopts asymptotically a square-root shape, as for

a Dupuit-Boussinesq flow:

h ∼
√

2 qo x

K
. (8.34)

The prefactor of this square-root shape is exactly the same as for a Dupuit-Boussinesq

flow (equation (8.32)). As a consequence, the asymptotic matching with solution (8.29)

has no effect on the Dupuit-Boussinesq scaling laws. It would be interesting to test the

matching of the Dupuit-Boussinesq solution with the two-dimensional flow, in the case

where the river is modelled by a vertical grid at the outlet. The hodograph method

could be a way to track this solution analytically (Polubarinova-Kochina (1962), p.162).

8.3.2 Infinitely deep aquifer

In this section, we investigate the two-dimensional flow in an infinitely deep, and

infinitely large aquifer. The problem of an infinitely deep aquifer is interesting for three
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a) b)

c)x

y

Figure 8.18: Representations of the groundwater flow domain in an infinitely deep

aquifer, in three different planes: z, Φ and Θ. The vertical axis of symmetry halv-

ing the aquifer around the river is represented with a red line ( ) in the three different

planes. Similarly, the water table is represented with a blue line ( ).

reasons. First, it is difficult to find any evidence that a tangible impermeable bottom

layer delimits all aquifers. The possibility that some aquifers can be very deep cannot

be excluded. Second, the analytic solution of a two-dimensional groundwater flow in

steady state is easy to obtain in an infinitely deep aquifer. With this simple analytic

solution, we can describe some characteristic features of two-dimensional flows in deep

aquifers. Finally, we suggest that, at the beginning of a flood, rainfall induces only a

small perturbation of the water table. In this case, even in an aquifer of finite depth, the

perturbation may be insensitive to the aquifer bottom at the early stage of the response

to rainfall (figure 8.17).

8.3.2.1 Steady state

Each specific shape of river induces a specific solution to the Laplace equation.

However, we are looking for the general features of a groundwater flow in a deep aquifer.

We hope that these general features do not depend much on the specific shape of each

river, and that, sufficiently far from the river, the influence of the river shape can be

neglected. In this section, we consider the river as a singular point (green point on

figure 8.18a)

The groundwater flow in an infinitely deep and infinitely large aquifer thus presents
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three boundaries (figure 8.18). First, the vertical axis of symmetry (red line on fig-

ure 8.18a), which halves the aquifer around the river, acts as an impervious boundary.

On this boundary, the stream function is therefore constant. We arbitrarily fix the value

of this constant, such that

ψ = 0 (8.35)

on the vertical axis of symmetry.

The second boundary is the water table. The condition that the pressure is atmo-

spheric on the water table reads, for the velocity potential:

φ = y . (8.36)

The second condition on the water table is given by mass balance. Here, we will consider

the case of a discharge q flowing towards the river, without any rainfall. In steady

state, as shown in the previous section, the absence of rainfall implies that the water

table is a streamline, i.e. ψ is a constant. This constant is given by a mass balance

(equation (8.26)):

ψ =
q

K
. (8.37)

As in the previous section, the water table therefore corresponds to the fixed straight

line ψ = q/K in the Φ-plane (figure 8.18b). However, the situation is different here,

because of the position of the streamline ψ = 0 in the z-plane: the positive part of the

abscissa in the Φ-plane maps onto a vertical line in the z-plane.

The third boundary is the river, located in x = 0 and y = 0. In the river, the

potential vanishes, such that

φ = 0 . (8.38)

However, the stream function jumps from 0 on the axis of symmetry to ψ = q/K on

the water table:

0 < ψ <
q

K
. (8.39)

This jump is the reason why the river is a singular point, which therefore transforms

into a segment in the Φ-plane (figure 8.18b).

In order to find the function f which maps the boundaries of the flow from the

Φ-plane to the z-plane, we introduce a new analytic function, the Zhukovsky function

Θ (Zhukovsky, 1920; Polubarinova-Kochina, 1962):

Θ = Φ + i z . (8.40)

The Zhukovsky function is analytic, because it is the sum of two analytic functions.

Writing Θ = θ1 + i θ2, the real and imaginary parts of the Zhukovsky function read
{
θ1 = φ− y
θ2 = ψ + x .

(8.41)

This new analytic function is useful because both the water table and the axis of sym-

metry are fixed in the Θ-plane. Indeed, equation (8.36) is equivalent to

θ1 = 0 (8.42)
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φ = 0

φ = 1.5

φ = 1

Figure 8.19: Streamlines ( ) and isopotential lines ( ) in an infinitely deep aquifer,

corresponding to the analytic function (8.45).

on the water table. In the Θ-plane, the water table is therefore mapped onto the positive

semi-infinite ordinate axis, with the minimum value θ2 = q/K (figure 8.18c). The axis

of symmetry is in x = 0, such that equation (8.35) leads to

θ2 = 0 (8.43)

on the axis of symmetry. The image of the axis of symmetry is therefore the same in the

Φ- and the Θ-planes (figure 8.18). Finally, the river is characterised by y = 0 and φ = 0,

such that θ1 = 0. Its image in the Θ-plane is therefore the same as in the Φ-plane.

The advantage of having introduced the Zhukovsky function is that in both the Φ-

and Θ-planes, the three boundaries are fixed. Thus, it is easier to find a conformal map

between those two planes. In the present case, a hyperbolic function maps Φ onto Θ:

Θ =
q

K
√

2

√
cosh

(
πK Φ

q

)
− 1 . (8.44)

This result, combined with the definition (8.40) of the Zhukovsky function, gives the

function which maps the flow from the Φ-plane to the physical plane:

z = i

(
Φ− q

K
√

2

√
cosh

(
πK Φ

q

)
− 1

)
. (8.45)

Figure 8.19 shows the streamlines and the isopotential lines corresponding to this

analytic function. As in the laboratory experiment, the streamlines get closer to each
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other as they flow towards the outlet (see figure 8.5). Here, the analytic function also

allows to observe that the isopotential lines concentrate as they get closer to the river.

This implies that the flow accelerates as it gets closer to the river.

The isopotential line φ = 0 is supposed to correspond to the river. The solution (8.45)

gives, for φ = 0: 



x = −ψ +
q

K
√

2

√
1− cos

(
πK ψ

q

)

y = 0 .

(8.46)

It therefore maps the river as a segment of finite size in y = 0, and not as a singular

point. Indeed, we would like to impose three conditions at the river: x = 0, y = 0 and

φ = 0 on the segment 0 < ψ < q/K. However, we can only impose two conditions on

a boundary. Here, our representation of the river in the Φ- and Θ-planes (figures 8.18a

and b) implicitly imposes the two conditions y = 0 and φ = 0. The solution (8.45)

additionally satisfies x = 0 for the two points (φ = 0, ψ = 0) and (φ = 0, ψ = q/K).

However, the isopotential line φ = 0 of solution (8.45) does not prescribe the real

shape of the river. We simply found no analytic function which could take into account

the singularity of the river. As we want the shape of the river to be neglected, solu-

tion (8.45) is rather an intermediate asymptotics: it is valid sufficiently far from the

river, such that the shape of the river can be neglected; and sufficiently close to the

river, such that the bottom and right boundaries of the aquifer can be neglected.

Naturally, as the flow satisfies the Laplace equation, the isopotential lines are per-

pendicular to the streamlines. Therefore, all the isopotential lines connect the vertical

axis of symmetry to the water table, which is close to be horizontal. As a consequence,

the isopotential lines describe circular curves turning around the river. This particular-

ity, characteristic of any two-dimensional flow in a deep aquifer, points to an interesting

observation. The isopotential lines are not vertical, as in a Dupuit-Boussinesq configu-

ration. As a result, pressure is not hydrostatic in a deep aquifer. On the contrary, the

value of φ increases with depth. This means that the pressure is larger than hydrostatic

if we measure it deep into the aquifer.

In some field studies, the pressure measured deep into the aquifer happens to be

larger than hydrostatic. This phenomenon, referred to as artesian, is generally explained

by confining layers. Here, our results suggest that a two-dimensional free-surface flow

could also generate non-hydrostatic flow. In the next section, we briefly investigate this

particular feature of two-dimensional flows.

8.3.2.2 Two-dimensional flow near a river

Drilling a borehole into the ground sometimes causes water to flow out of the bore-

hole. This means that the pressure at the bottom of the borehole is larger than hy-

drostatic. In this case, the borehole is referred to as artesian. This phenomenon is

generally explained by the presence of an impermeable layer above the bottom of the
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borehole. This impermeable layer confines groundwater and can, in specific geometrical

conditions, lead to pressures larger than hydrostatic.

In the present section, we investigate the possibility that this phenomenon could

also be due to a two-dimensional flow in a homogeneous aquifer. For that purpose,

we compare qualitatively our analytic solution to field measurements performed in the

aquifer of the Severn river headwaters, in Plynlimon, Wales.

Artesian boreholes in the Severn river catchment. In one of the Plynlimon

catchments studied in section 7.1, close to the Severn river, Haria and Shand (2004)

have investigated the deep groundwater flow. Motivated by hydrochemical studies high-

lighting the importance of deep groundwater in streamflow generation, they tested the

hypothesis that groundwater inputs into the river are significant.

Their field set-up is similar to the installation we made in the Quiock Creek catch-

ment (chapter 4). Along a transect perpendicular to the river bed, they installed pressure

sensors at the bottom of boreholes to measure the water table level. At each location,

they drilled three boreholes of different depth (figure 8.20). At the closest distance from

the river though, access difficulties hindered them to drill deep into the aquifer, and

they only drilled two shallow boreholes. In what follows, we will focus on the results

given by the nests of boreholes 1, 2 and 3.

In order to measure the pressure field within the aquifer, care must be taken not to

perturb the pressure field. They introduce a plastic tube in each borehole. Around this

tube, there is an annular gap between the tube wall and the borehole wall. This gap,

if filled with water, could impose hydrostatic pressure to the surrounding groundwater

flow. To prevent this, they sealed this gap by filling it with an expanding resin. In

this manner, the pressure sensors indeed measure the local pressure field, at the desired

depth, without perturbing the rest of the flow.

Haria and Shand (2004) present a time series of the nine pressure sensors. This time

series includes the height of water recorded in the boreholes, relative to the ground level

at the location of the borehole. We estimated visually, on their time series, the value

of the height recorded in the nine boreholes at a particular instant in December 2001.

These values are representative of the whole time series. We estimate errors on these

rough estimations of about ≈ 20 cm. We call hi(y) the relative height measured in the

borehole i of depth y. Figure 8.20 shows, for each nest of boreholes, the evolution of

the height with respect to the depth of the borehole. In order to compare the three

profiles, we plot the height relative to the height measured in the shallowest borehole:

hi(y)−hi, top. If the pressure field were hydrostatic, the height would not depend on the

depth of the borehole, and we would have hi(y) = hi, top.

On the contrary, in the three nests of boreholes, the height varies according to the

depth of the sensor (figure 8.20, bottom). Yet, the relationship between the depth of

the sensor and the height recorded is not similar in the three nests. In the first nest for

example (blue points), the shallowest sensor records a larger pressure head (≈ 15 cm)

than the “middle-depth” sensor, but lower (≈ 2.5 m) than the deepest sensor. We

observe a similar trend for the second nest of boreholes (green points) but, for the third
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Figure 8.20: Artesian behaviour observed close to the Severn river. Top: Side view of the

field installation in Haria and Shand (2004) to measure the pressure at different distances

and different depths close to the Severn river. The points represent the locations of

the sensors. Each colour corresponds to a different distance to the river. Bottom:

Deviation to hydrostatic equilibrium h = htop of the height with respect to the depth of

measurement. The three profiles correspond to the three nests of boreholes represented

on the top illustration.
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one (red points), the trend is different: the pressure head is larger in the “middle-depth”

borehole, but lower in the deepest borehole. Also, the two closest nests of boreholes

exhibit a strong departure from hydrostatic equilibrium. On the contrary, the third

profile is closer to hydrostatic equilibrium.

Haria and Shand (2004) interpret these artesian pressures as a mark of the complexity

of the aquifer geometry. Here, we show that these results could also be attributed to

the behaviour of a two-dimensional flow in an infinitely deep aquifer.

Artesian behaviour of a two-dimensional flow. We now compare these results

with the analytic solution (8.45) of two-dimensional flows provided in the previous sec-

tion. This solution gives the profile of pressure with respect to depth, at any given

distance to the river. For that purpose, we fix the distance to the river x = xi at

which we want to infer the pressure profile with depth, and obtain a parametric rela-

tionship between the potential φ(xi, y) and the depth y, ψ being the parameter. As

φ = p/(ρ g) + y, the hydrostatic equilibrium at a given distance xi from the river is

defined by φ(xi, y) = h(xi), where h is the height of the water table compared to the

river elevation. At each distance xi of the river, the difference φ(xi, y)− h(xi) therefore

corresponds to the deviation to a hydrostatic profile.

Figure 8.21 shows three profiles φ(xi, y) − h(xi) at three distances from the river

(0.5, 2 and 7), for q = 1 and K = 1. The three profiles deviate from the hydrostatic

equilibrium. As the measurement point gets deep into the aquifer, it reaches isopoten-

tial lines which correspond to φ > h, i.e. pressures larger than hydrostatic. The deeper

into the aquifer, the larger the value of φ, and the larger the deviation to hydrostatic

pressure. The distance of the borehole to the river also comes into play. The closer to

the river, the larger the deviation. This is a geometrical effect: the isopotential lines

concentrate as they approach the river. The variations of φ are therefore larger near

the river. Finally, we notice that, at small depths, the deviation to hydrostatic pressure

can be negative (i.e. pressures lower than hydrostatic). This effect gets stronger near

the river.

Comparing these theoretical curves with the field measurements of figure 8.21, we

observe a striking similarity. The closest nest of boreholes exhibits the strongest posi-

tive deviation to hydrostatic equilibrium, and the furthest almost exhibits hydrostatic

equilibrium. Moreover, in the nests of boreholes 1 and 2, the “middle-depth” sensor ex-

hibits a negative deviation to hydrostatic equilibrium, in a similar way as the theoretical

curves show a negative departure from hydrostatic equilibrium at shallow depths.

The qualitative similarity between the field measurements and the theoretical curves

of figure 8.21 suggests that these artesian boreholes could result from a deep two-

dimensional flow in the aquifer. Furthermore, Haria and Shand (2004) observe that all

boreholes rapidly rise during rainfall, and decline similarly after rainfall. The dynamics

being similar in all the boreholes, this observation further suggests that the Severn river

aquifer behaves as a large and deep porous material, where the deep groundwater flow

contributes significantly to the stream flow generation, during floods as well as during
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Figure 8.21: Deviation of the potential φ to its hydrostatic value φ = const, in an

ideal infinitely deep aquifer. Top: Representation of three boreholes in the potential

field of the aquifer, at three distances from the river: 0.5 ( ), 2 ( ) and 7 ( ).

Bottom: Profiles of the potential φ = p/(ρ g)−y in the three boreholes. The hydrostatic

equilibrium corresponds to φ = 0. If φ > 0, the pressure is larger than hydrostatic

(artesian).
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drought flow. If this is true, this two-dimensional groundwater flow also induces artesian

effects.

However, the similarity between figures 8.20 and 8.21 is not perfect. Several reasons

can explain this mismatch. First, it can be due to the finite depth of the aquifer. Sec-

ond, local heterogeneities could affect the flow, especially in a fractured aquifer, where

we expect strong heterogeneities at the local scale. Finally, the traditional explanation

that an artesian well has been dug through a confining impervious layer could also hold

here. Yet, this theory hardly explains the large negative departure from hydrostatic

equilibrium in the second nest.

We now investigate whether the two-dimensionality of a flow has an influence on

transient regimes.

8.3.2.3 Early response to rainfall: self-similarity

In the present section, we analyse the transient behaviour of the two-dimensional

groundwater flow in an infinitely deep aquifer. The analysis proposed here is incomplete

because of technical difficulties. Yet, it suggests that a self-similar solution may exist

during the early stages of the reaction to rainfall.

As in steady state, we neglect the influence of the river, such that only two boundaries

delimit the flow: the water table and the axis of symmetry. In transient regime, the

mass balance on the water table reads:

s
∂h

∂t
= K

(
∂φ

∂x

∂h

∂x
− ∂φ

∂y

)
+R , (8.47)

where h is the water table elevation compared to the river. The second condition on

the water table is that the pressure is atmospheric:

φ = y (8.48)

at the water table. The axis of symmetry stays a streamline, even during transient

regimes. We chose to fix at 0 the value of the stream function:

ψ = 0 (8.49)

on the axis of symmetry.

We now suggest that a self-similar solution exists at the early stages of the reaction

to rainfall. We assume that the groundwater flow is at rest before the rainfall starts,

and the water table level is h = 0 at t = 0. We now further assume that, far from the

river in the horizontal direction, the groundwater flow is insensitive to the river, and

fills up in proportion to rainfall:

h =
R t

s
for x→∞ . (8.50)

This assumption is the same as in chapter 3. However, contrary to the Dupuit-Boussinesq

configuration, the configuration here allows groundwater to flow downwards, especially
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far from the river. Therefore, the validity of this assumption is less obvious in the

present case. In what follows, we proceed with this untested assumption. In the same

way as in chapter 3, we now propose a self-affine transformation for the potential φ and

for the elevation h of the water table:




Φ(x, y, t) =
R t

s
Φ̃(x̃, ỹ)

h(x, t) =
R t

s
f(x̃) ,

(8.51)

where the tildes denote the self-affine functions and variables, and the self-affine variables

read 



x =
R t

s
x̃

y =
R t

s
ỹ .

(8.52)

With this self-affine transformation, the boundary conditions (8.48) and (8.49) translate

into

φ̃ = ỹ (8.53)

and

ψ̃ = 0 . (8.54)

Finally, incorporating the self-affine transformations into the mass balance equation (8.47),

we obtain the second condition defining the water table in the self-affine plane:

R

K
(f − x̃f ′ − 1) =

∂φ̃

∂x̃
f ′(x̃)− ∂φ̃

∂ỹ
. (8.55)

The self-affine transformations (8.51) and (8.52) have therefore transformed the par-

tial differential equation (8.47) into a two-dimensional ordinary differential equation.

Removing the time-dependency from the problem, these transformations reduce its dif-

ficulty. We end up with a problem similar as the steady state one, except that the free

surface condition (8.55) is now more complicated.

We have not found any analytical solution to this problem yet. This problem is also

difficult numerically, because of the free surface.

8.4 Conclusion

The experiment presented in this chapter showed that the groundwater flow in a deep

aquifer is two-dimensional. Far from the river, a water droplet feeding the groundwater

reservoir begins its course by flowing downwards, and almost reaches the bottom of the

aquifer. It then changes its course to progressively flow towards the river. If the aquifer is

sufficiently deep, this two-dimensional feature of the flow breaks the Dupuit-Boussinesq

approximation (Bresciani et al., 2014). One consequence is that the pressure, in a two-

dimensional flow, is not hydrostatic. On the contrary, the isopotential lines wind around
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the river. The deeper, the larger the velocity potential, and the larger the hydraulic

head. Measuring the pressure — or, equivalently, the hydraulic head — deep into a

two-dimensional groundwater flow therefore leads to artesian pressure. We suggest that

a two-dimensional flow in the Severn river aquifer could explain the artesian pressures

measured in Haria and Shand (2004).

In reaction to equivalent rainfall rates, the water table elevates less in the deep

laboratory aquifer than in a fully-penetrating configuration. As a result, small variations

of the water table elevation induce large variations of the discharge in a deep aquifer.

This certainly explains the observation that the transient regimes in the deep aquifer

are shorter than in the fully-penetrating configuration. This observation suggests that a

larger system reacts faster than a smaller one. This result is counter-intuitive, as most

flow paths are longer in a deep aquifer configuration. Far from the river, the velocity

is also lower. As a result, the transit times distribution is certainly more extended in a

deep aquifer than in an aquifer feeding a fully-penetrating stream.

The drought flow delivered by the two-dimensional groundwater flow seems to behave

non-linearly. The discharge measured at the outlet of the experimental aquifer rapidly

deviates from the exponential behaviour predicted by the linearised Dupuit-Boussinesq

equation. Instead, the discharge seems to exhibit a power law with an exponent close

to −1. This exponent is reminiscent of the exponent we found in section 7 in the

Plynlimon catchments. New experiments in an improved set-up, as well as further

theoretical investigations, are necessary to confirm this result.

As in a fully-penetrating configuration, the early response of the two-dimensional

flow to rainfall grows non-linearly with the rainfall rate. A 3/2 power law similar to the

Dupuit-Boussinesq asymptotic regime could possibly fit our experimental data. This

could explain the 3/2 power-law relationship we found in the Quiock Creek hydrograph

(chapter 6). Therefore, this relationship could be the general signature of groundwater

flow-dominated floods, whatever the geometry of the aquifer. However, a power law with

an exponent 2 fits better our experimental data. This result is similar to our observations

on the Plynlimon catchments. A quadratic relationship between the discharge increase

rate of a river during a flood and the rainfall rate could therefore be the signature of two-

dimensional groundwater flows, thus differentiating a fully-penetrating configuration

from a deep aquifer.

All these speculations would deserve new experiments, in improved experimental

conditions — particularly concerning the aquifer outlet. Furthermore, we also lack

theoretical investigations. Here, we propose that the early stages of a flood could be

described by an infinitely deep and infinitely large aquifer. On the contrary, if the aquifer

depth is sufficiently low compared to its typical lateral extent, the Dupuit-Boussinesq

theory could be matched with a two-dimensional flow close to the river. In such case,

the asymptotic regimes would certainly be similar to those found in chapter 3.
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Chapter 9

Conclusion and perspectives

River hydrographs generally exhibit a quick discharge increase during rainfall fol-

lowed by a slowly decreasing discharge. The usual interpretation of these features

invokes the superimposition of a fast surface runoff on a slow groundwater baseflow

(figure 9.1). In this manuscript, we have shown that the dynamics of groundwater in

an unconfined aquifer may account for these features as well. In this context, we inter-

pret a hydrograph as a series of asymptotic regimes of the groundwater flow equations

(figure 9.2).

time

baseflow

d
is
ch
a
rg
e

rainfall

quick-response
runoff

Figure 9.1: A typical flood hydrograph can be interpreted as the superimposition of the

quick-response runoff on the baseflow.

The first regime, the storm flow, corresponds to the rapid discharge increase during

rainfall (figure 9.2). Based on a laboratory experiment, we have shown that a homoge-

neous and two-dimensional aquifer submitted to artificial rainfall generates a realistic

storm flow, in the absence of surface runoff. When the infiltrating rainwater reaches

the water table, the latter begins to rise and causes the discharge to increase instantly.

In the frame of the Dupuit-Boussinesq (shallow-water) approximation, the discharge
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Figure 9.2: Typical flood hydrograph generated by a groundwater flow. It is a succesion

of distinct asymptotic regimes of the groundwater flow.

increase rate is a non-linear function of the rainfall rate:

Q̇ ∝ R3/2 . (9.1)

After the rainfall has stopped, the drought flow begins, and the discharge decreases

slowly. According to the Dupuit-Boussinesq theory, this relaxation involves two asymp-

totic regimes (figure 9.2). During the early drought flow, the discharge decreases as the

inverse of the square root of time (Q ∼ 1/
√
t). At longer times, the flow evolves towards

a late drought flow regime. From then on, the discharge decreases as the inverse of the

square of time (Q ∼ 1/t2).

To identify these regimes in nature, we designed a field experiment in the small

catchment of the Quiock Creek, in Guadeloupe. High-frequency measurements show

that the water table elevation and the river discharge react simultaneously and rapidly

to rainfall. Plotting the discharge increase rate Q̇ against the rainfall rateR during storm

flows, we observe a power-law relationship with an exponent close to 3/2, as predicted by

equation (9.1). In addition, the prefactor of equation (9.1) provides reasonable estimates

of the porosity and hydraulic conductivity of the aquifer. The storm flow of the Quiock

Creek is therefore compatible with the Dupuit-Boussinesq theory.

Once the rainfall has stopped, the Quiock Creek discharge decreases according to the

early drought flow regime. The full Quiock Creek hydrograph can therefore be explained

by the dynamics of a shallow groundwater flow equation, without invoking surface runoff.

Extending the above analysis to three other catchments, we found that they also re-

spond non-linearly to rainfall (Q̇ ∝ Rn, with n > 1), but with exponents n different from



187

3/2. This suggests a breakdown of the Dupuit-Boussinesq approximation, and points

to possible vertical flow. Our preliminary experimental results with a two-dimensional

laboratory aquifer also suggest a non-linear response to rainfall, with an exponent larger

than one. Yet, this observation remains to be theoretically understood.

All the catchments we investigated, whether in the laboratory or in the field, re-

spond non-linearly to the rainfall driving. We attribute this behaviour to the motion of

the water table. This non-linearity has significant implications. First, in a catchment

dominated by groundwater, the discharge increases more than linearly with the storm

intensity (equation (9.1)), which is specially relevant to flood forecasting. Second, it

precludes the use of Fourier analysis and transfer functions to investigate the response

of a catchment to the rain signal.

As water travels within an aquifer, it interacts chemically with the surrounding

rocks, turning them into secondary minerals. The transit time of a catchment, i.e. the

time spent by water within the aquifer, thus controls chemical weathering. Yet, even

in steady state and in simple aquifer geometries, there might not be any well-defined

characteristic transit time (Chesnaux et al., 2005; Cardenas, 2007). We have established

that, in addition, the groundwater flow can undergo dramatic variations in time. As a

result, the transit time of a rain drop not only depends on the location where it enters

the catchment, but also on its arrival time. This questions the very use of transit time

to interpret weathering processes. Instead, we propose to couple chemical weathering

with the groundwater flow.



188 CHAPTER 9. CONCLUSION AND PERSPECTIVES



Part VI

Appendix

189





Appendix A

Numerical resolution of the Laplace

equation with FreeFem++

1 // d e f i n e cons tant s

r e a l L = 673.−20. ;

r e a l H = 710−191;

r e a l e p s i l o n = 0.01∗L ;

6 int Npoints = 50 ;

// d e f i n e borders

border top ( t = −eps i l on , −L){ x = t ; y = 0 . ; }
border l e f t ( t = 0 , −H){ x = −L ; y = t ; }

11 border bottom ( t = −L , 0){ x = t ; y = −H; }
border r i g h t ( t = −H, −e p s i l o n ){ x = 0 ; y = t ; }
border o u t l e t ( t = −pi / 2 . , −pi ){ x = e p s i l o n ∗ cos ( t ) ; y =

e p s i l o n ∗ s i n ( t ) ; }

// bu i ld the mesh

16 mesh Th = buildmesh ( top ( Npoints ) + l e f t ( Npoints ) +

bottom ( Npoints ) + r i g h t ( Npoints ) + o u t l e t ( Npoints ) ) ;

f e spac e Vh(Th, P2) ;

// d e f i n e v a r i a b l e s

21 Vh psi , pps i ;

problem Laplace ( ps i , pps i ) =

int2d (Th) ( dx ( p s i )∗dx ( pps i ) + dy ( p s i )∗dy ( pps i ) )

+ on ( top , p s i=x )

26 + on ( l e f t , bottom , r ight , p s i=−L ) ;

191
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APPENDIX A. NUMERICAL RESOLUTION OF THE LAPLACE EQUATION

WITH FREEFEM++

// s o l v e the problem

Laplace ;

Th = adaptmesh (Th, p s i ) ;

31 Laplace ;

Th = adaptmesh (Th, p s i ) ;

Laplace ;
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Saez, J. L., Corona, C., Stoffel, M., Rovéra, G., Astrade, L., and Berger, F. (2011).

Mapping of erosion rates in marly badlands based on a coupling of anatomical changes

in exposed roots with slope maps derived from lidar data. Earth Surface Processes

and Landforms, 36(9):1162–1171.

Saffman, P. G. and Taylor, G. (1958). The penetration of a fluid into a porous medium

or hele-shaw cell containing a more viscous liquid. Proceedings of the Royal Society

of London. Series A. Mathematical and Physical Sciences, 245(1242):312–329.
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Résumé

L’évolution du débit d’une rivière présente généralement des épisodes de crue in-

tenses, au cours desquels le débit augmente rapidement, suivis par une diminution lente

du débit lorsque la pluie s’arrête. Dans ce manuscrit, nous montrons que l’écoulement

souterrain dans un aquifère non confiné permet de comprendre cette dynamique.

Dans le cadre de l’approximation de Dupuit-Boussinesq (eau peu profonde), la vitesse

de montée de crue Q̇ est une fonction non-linéaire du taux de précipitations R : Q̇ ∝
R3/2. Après la pluie, on distingue deux régimes asymptotiques de décrue. Au début

de la décrue, le débit décrôıt proportionnellement à l’inverse de la racine du temps

(Q ∝ 1/
√
t (Polubarinova-Kochina, 1962)). En fin de décrue, le débit décrôıt comme

l’inverse du temps au carré (Q ∝ 1/t2 (Boussinesq, 1903)).

L’étude d’un aquifère de laboratoire soumis à une pluie artificielle confirme l’existence

de ces régimes asymptotiques. Ce dispositif expérimental simplifié (aquifère homogène

et bidimensionnel) génère des montées de crue réalistes, en l’absence de ruissellement.

L’instrumentation d’un site de terrain dans le bassin versant de la Ravine Quiock,

sur l’̂ıle de Basse-Terre en Guadeloupe, révèle un comportement similaire. La surface de

la nappe phréatique et le débit de la rivière évoluent simultanément pendant la pluie,

et se conforment aux prédictions théoriques. Comme dans l’expérience de laboratoire,

cet aquifère réagit donc non-linéairement au forçage induit par les précipitations.

L’analyse de données acquises dans trois autres bassins versants (Plynlimon, Pays de

Galles, et Laval, France) confirme le caractère non-linéaire de la réponse d’un aquifère

à la pluie : Q̇ ∝ Rn, avec n > 1. Cependant, l’exposant n obtenu est différent de

3/2. Une expérience préliminaire en laboratoire suggère que cet écart à la théorie de

Dupuit-Boussinesq pourrait être induit par l’écoulement vertical dans l’aquifère.
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Abstract

River hydrographs generally exhibit intense flood events during which the discharge

increases quickly during rainfall, and decreases slowly afterwards. In this manuscript,

we show that the dynamics of groundwater in an unconfined aquifer can account for

these features.

In the frame of the Dupuit-Boussinesq (shallow-water) approximation, the discharge

increase rate Q̇ is a non-linear function of the rainfall rate R: Q̇ ∝ R3/2. After the

rain, two consecutive asymptotic regimes compose the drought flow. During the early

drought flow, the discharge decreases as the inverse square root of time (Q ∼ 1/
√
t

(Polubarinova-Kochina (1962)). Later, the discharge decreases as the inverse square of

time (Q ∼ 1/t2 (Boussinesq, 1903)).

A laboratory aquifer (homogeneous and bidimensional) submitted to artificial rainfall

confirms the existence of these asymptotic regimes. This simplified experimental setup

generates a realistic flood signal, in the absence of surface runoff.

Field observation in the catchment of the Quiock Creek, Guadeloupe reveals a similar

behaviour. The water table and the river discharge evolve simultaneously during rainfall,

and conform to theory. Like in our laboratory experiment, this aquifer reacts non-

linearly to forcing by rainfall.

The river discharge from three other catchments (Plynlimon, Wales and Laval,

France) confirms this non-linear reaction: Q̇ ∝ Rn, with n > 1. The exponent, however,

is different from 3/2. A preliminary laboratory experiment suggests that this breakdown

of the Dupuit-Boussinesq theory is due to vertical groundwater flow.
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