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Introduction

Je présente dans ce mémoire ma contribution à la géométrie numérique depuis
mon arrivée à Grenoble en 2005 comme maître de conférences. Dans la continuité
de mes travaux de thèse, j’ai travaillé sur des problèmes d’inférence géométrique
ainsi que sur divers problèmes de modélisation de surfaces ayant des connec-
tions avec des domaines variés tels que le transport optimal, la géométrie algo-
rithmique ou la théorie de l’intégration convexe. Le point commun de ma con-
tribution dans ces domaines est le développement de calculs effectifs dans des
problèmes géométriques. Dans tous les cas, le but est de certifier la construction
d’objets géométriques, tels que des variétés ou des triangulations, ou d’estimer
précisément des quantités reliées à la métrique, la courbure, ou d’autres invari-
ants géométriques.

Les contraintes géométriques apparaissant dans des problèmes de modélisa-
tion de surface peuvent parfois s’exprimer avec des équations aux dérivées par-
tielles (EDP). Cependant, les méthodes numériques standards, comme les méth-
odes d’éléments finis, ne permettent pas toujours d’obtenir une solution. J’ai tra-
vaillé ces dernières années sur des approches géométriques alternatives perme-
ttant de résoudre certaines EDP non linéaires. Je mentionne ci-dessous deux
exemples :

— Le problème du réflecteur en champ lointain est un problème bien connu
d’optique anidolique consistant à créer la surface d’un réflecteur avec une
contrainte de préservation d’énergie. Le but est de créer un miroir qui en-
voie une source de lumière ponctuelle sur une cible de lumière prescrite à
l’infini. Quand la source de lumière et la lumière cible sont modélisées par
des densités de probabilité sur la sphère, ce problème est équivalent à une
équation de type Monge-Ampère sur la sphère. En combinant une approche
variationnelle venant du transport optimal avec des outils de géométrie al-
gorithmique et une construction géométrique due à L. A. Caffarelli et V.
Oliker, nous avons proposé une méthode efficace de résolution numérique de
ce problème.
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— Un autre exemple impliquant une EDP est celui de la réalisation d’un plonge-
ment isométrique du tore carré plat dans l’espace euclidien de dimension
trois. Dans ce cas, la contrainte isométrique est exprimée par une EDP non
linéaire impliquant le tenseur de métrique. L’outil théorique principal que
nous avons utilisé est celui de la théorie de l’intégration convexe, qui a été
développé par M. Gromov dans les années 70-80 pour résoudre de manière
générale des systèmes différentiels sous-déterminés. Nous avons implé-
menté cet outil afin d’obtenir un algorithme de construction d’un plongement
isométrique du tore carré plat dans l’espace ambiant.

Les méthodes numériques standards permettant de résoudre efficacement les
EDP linéaires ne sont pas forcément adaptées à la résolution d’EDP non linéaires,
et l’utilisation de méthodes alternatives peut s’avérer efficace. De même, certaines
quantités géométriques, comme la courbure, sont bien définies sur des objets suff-
isamment réguliers, mais ne peuvent pas être définies directement en l’absence
d’une telle régularité. Des approches alternatives, venant par exemple de théorie
géométrique de la mesure, permettent de prendre en compte cette faible régularité.
Dans mes recherches, j’ai été amené à considérer des objets géométriques ayant
une régularité assez faible, comme des variétés plongées de classe C1, des trian-
gulations ou des nuages de points. J’ai aussi considéré différents types de bruits
dans des problématiques d’inférence géométrique, qui doivent également être ap-
préhendés avec des approches appropriées. Dans ce contexte, j’ai été amené à
utiliser et à développer des outils de différents domaines, tels que la géométrie al-
gorithmique, le transport optimal, l’analyse convexe et la théorie de l’intégration
convexe, afin de résoudre des problèmes de modélisation de surface satisfaisant
des contraintes géométriques, et de garantir les calculs effectués. Je mentionne
ci-dessous trois exemples.

— Un des buts de l’inférence géométrique est d’estimer certaines quantités
d’objets géométriques, à partir d’approximations qui peuvent avoir une faible
régularité, comme des triangulations ou des nuages de point. En combinant
et en établissant des propriétés de stabilité et de régularité des fonctions dis-
tances, nous avons obtenu un résultat de stabilité assez général des mesures
de courbure de Federer. L’algorithme que nous proposons pour calculer ces
mesures de courbure à partir d’un nuage de points est basé sur des outils
classiques de géométrie algorithmique.

— Les fonctions distances à des compacts ont été beaucoup utilisées dans le
contexte de l’inférence géométrique pour l’estimation de quantités géométriques
d’une forme à partir d’un objet proche pour la distance de Hausdorff. Cepen-
dant, quand les données contiennent des points aberrants, l’hypothèse de
proximité pour la distance de Hausdorff n’est pas satisfaite. Nous avons
utilisé la distance à une mesure, qui est une fonction distance généralisée
robuste aux points aberrants, pour estimer de manière robuste la géométrie
d’une forme. Les calculs sur des nuages de points utilisent la notion de dia-
gramme de puissance, qui est un outil central de géométrie algorithmique.

— La problématique du plongement isométrique est intrinsèquement liée à
des problèmes de régularité. Un argument classique basé sur le Theorema
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Egregium et sur la courbure de Gauss montre qu’un plongement isométrique
du tore carré plat dans l’espace euclidien de dimension trois ne peut pas être
de classe C2. Cependant, le théorème de Nash-Kuiper implique qu’il est pos-
sible de réaliser un tel plongement avec une régularité C1. La construction
du plongement que nous proposons est basée sur la théorie de l’intégration
convexe et a permis de révéler une structure inattendue, celle de fractale
lisse. On peut remarquer que cette théorie a aussi été utilisée pour le para-
doxe de Sheffer-Shnirelman, pour construire des solutions faibles non triv-
iales de l’équation d’Euler incompressible. La théorie de l’intégration con-
vexe peut être vue comme un outil permettant de construire des solutions
paradoxales.

DESCRIPTION DES CHAPITRES

Chapitre 1: Inférence géométrique basée sur la fonction distance

Le but de l’inférence géométrique est de répondre à la question suivante: à partir
d’un objet géométrique dans Rd connu uniquement à travers une approximation,
comme par exemple un nuage de points, peut-on estimer de manière robuste ses
propriétés topologiques et géométriques ? Les fonctions de distance à des com-
pacts ont été abondemment utilisées ces quinze dernières années dans ce con-
texte, de par leurs propriétés de régularité et de stabilité. Dans ce chapitre, nous
présentons plusieurs résultats d’inférence géométrique basés sur la fonction dis-
tance.

Nous avons établi avec André Lieutier un résultat de convergence de géodésiques
sur des triangulations [13]. Plus précisément, étant donné une suite (Tn)n≥0 de
triangulations dont les points et les normales convergent vers ceux d’une surface
S de classe C2 dans l’espace euclidien de dimension trois, et une suite de courbes
géodésiques Cn de Tn qui converge vers une courbe limite, nous montrons que
la courbe limite est une géodésique de S sous une hypothèse de vitesse de con-
vergence des normales et de vitesse de convergence des longueurs des arêtes des
triangulations. Comme les géodésiques que nous considérons ne sont pas forcé-
ment des plus courts chemins, la preuve ne peut pas uniquement reposer sur des
notions métriques et nous avons été amenés à introduire une notion de courbure
géodésique discrète.

Nous avons étudié avec Frédéric Chazal, David Cohen-Steiner et André Lieu-
tier la régularité des voisinages tubulaires et des “double offset” des compacts de
Rd [5]. Le r-voisinage tubulaire d’un compact est l’ensemble des points à distance
inférieure ou égale à r de K. Le double offset d’un compact est obtenu en prenant
le r-voisinage tubulaire du compact, puis en prenant le t-voisinage tubulaire de
l’adhérence de son complémentaire, avec t < r. Il est bien connu dans la com-
munauté de Computer Aided Geometric Design qu’une forme peut être lissée en
appliquant cette opération de “double offset”. Dans le cas où un compact est à
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µ-reach positif, qui est une hypothèse très faible de régularité, nous quantifions
la régularité de son voisinage tubulaire et de son “double offset”.

Nous utilisons ces résultats de régularité en inférence géométrique. Nous
montrons que les mesures de courbure du voisinage tubulaire d’un compact K à
µ-reach positif peuvent être estimées par les mesures de courbure d’un voisinage
tubulaire d’un compact K ′ qui est proche de K au sens de Hausdorff [6]. Nous
montrons comment calculer ces mesures de courbure sur une union de boules.
Les mesures de courbures du voisinage tubulaire d’un compact K à µ-reach posi-
tif peuvent ainsi être approchées par celles du voisinage tubulaire d’un nuage de
points.

En collaboration avec Jacques-Olivier Lachaud, nous avons considéré des prob-
lèmes d’inférence géométrique dans le contexte de la géométrie digitale, c’est à
dire quand les formes sont digitalisées et approchées par des ensembles de vox-
els (i.e. pixels de dimension d) de taille h. Nous étudions la topologie du bord de
l’ensemble digital et établissons un résultat de convergence d’intégration sur des
ensembles digitaux [12].

Chapitre 2: Mesure de covariance de Voronoi généralisée

Les résultats d’inférence géométrique du premier chapitre découlent des pro-
priétés de régularité et de stabilité (par rapport à la distance de Hausdorff) des
fonctions de distance. Malheureusement, les données sont souvent perturbées
par des points aberrants et l’hypothèse de proximité pour la distance de Haus-
dorff n’est pas toujours réaliste en pratique. Les fonctions distance-like ont été
introduites récemment dans le contexte de l’inférence géométrique car elles pos-
sèdent les mêmes propriétés de régularité que les fonctions distances [CCSM11],
à savoir elles sont Lipschitz et 1-semiconcaves. L’ensemble des fonctions distance-
like contient les fonctions distances aux compacts, mais aussi d’autres fonctions
comme les fonctions distance à une mesure qui sont robustes aux points aber-
rants [CCSM11].

La mesure de covariance de Voronoi (VCM) a été introduite dans [MOG11] pour
l’estimation de normales, de courbures et d’arêtes vives. Elle est définie pour tout
compactK et est stable pour la distance de Hausdorff, au sens où si deux compacts
sont proches au sens de Hausdorff, alors leurs VCM sont également proches l’une
de l’autre. De plus, la VCM d’une surface lisse contient de l’information sur le
champ de vecteurs normal à la surface.

Avec Louis Cuel, Jacques-Olivier Lachaud and Quentin Mérigot, nous avons
généralisé la mesure de covariance de Voronoi aux fonctions distance-like [7].
Plus précisément, nous associons à n’importe quelle fonction distance-like δ une
mesure à valeur dans l’ensemble des tenseurs, notée δ-VCM. Nous montrons un
résultat de stabilité du δ-VCM qui implique que l’on peut retrouver précisément
les normales d’une sous-variété S de Rd à partir du δ-VCM, si δ est une distance
à une mesure proche de la distance à la mesure de probabilité uniforme sur S
(pour la distance de Wasserstein). Cette estimation est stable pour la distance de
Hausdorff et robuste aux points aberrants. Nous proposons aussi un algorithme
de calcul du δ-VCM, quand la fonction distance-like δ est encodée par un nuage de
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points pondéré de petite taille, et nous l’utilisons pour l’estimation de normales et
d’arêtes vives. Avec Louis Cuel et Jacques-Olivier Lachaud, nous avons également
utilisé le VCM dans le contexte de la géométrie digitale [8].

Chapitre 3: Problème du réflecteur et transport optimal numérique

Dans le problème du réffecteur en champ lointain, les données sont la descrip-
tion d’une distribution de lumière émise par une source de lumière ponctuelle lo-
calisée à l’origine et une distribution de lumière souhaitée à l’infini, c’est à dire sur
la sphère des directions. Si on modélise les deux distributions de lumière par des
densités de probabilité µ sur la sphère source et ν sur la sphère cible, le problème
du réflecteur en champ lointain peut se formuler comme une équation de Monge-
Ampère généralisée sur la sphère. L’approche de L. A. Caffarelli and V. Oliker
pour montrer l’existence d’une solution faible à ce problème est géométrique et
fonctionne de la manière suivante [CO08] : ils approchent la mesure de proba-
bilité cible ν par une suite de mesures discrètes νN =

∑
i αiδyi supportées par

un ensemble fini de directions Y = {y1, . . . , yN}. Ils montrent l’existence d’une
solution du problème du réflecteur (semi-discret) entre µ et νN et montrent que
cette solution converge vers une solution du problème original quand N tend vers
l’infini. Plus récemment, il a été montré que le problème du réflecteur en champ
lointain est équivalent à un problème de transport optimal sur la sphère pour le
coût c : Sd−1 × Sd−1 → R défini par c(x, y) := − log(1− 〈x|y〉) [GO03, Wan04].

PROBLÈME DU RÉFLECTEUR EN CHAMP LOINTAIN : Simulation
de l’illumination à l’infini avec le moteur de rendu physiquement
réaliste LUXRENDER. La mesure µ est uniforme et supportée par
une demi-sphère. La mesure νN correspond à la discrétisation
d’une image de Monge sur la sphère cible. Les expériences ont
été réalisées avec N = 1000 à gauche et N = 15000 à droite.

Avec Pedro Machado Manhães de Castro et Quentin Mérigot, nous avons pro-
posé une résolution numérique du problème du réflecteur dans le cas semi-discret [10].
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En utilisant une formulation basée sur le transport optimal, nous transformons
ce problème en un problème de maximisation concave. Notre algorithme néces-
site le calcul de cellules de Laguerre sur la sphère, qui correspondent au c-sous-
différentiel de la variable duale dans la formulation duale du transport optimal.
Nous montrons que ces cellules de Laguerre peuvent être obtenues en intersectant
un diagramme de puissance avec la sphère unité and montrons que la complex-
ité de cette intersection est linéaire. Nous considérons également d’autres types
de réflecteurs intervenant dans des problèmes d’optique anidolique, par exem-
ple dans le problème du réflecteur en champ proche, où l’on souhaite éclairer des
points dans l’espace et non pas des directions.

Avec André Julien, Dominique Attali and Quentin Mérigot, nous avons aussi
proposé des heuristiques qui prennent en compte des contraintes de modélisation
industrielles [1].

Chapitre 4: intégration convexe et fractales lisses

Une application f d’une variété riemannienne (Mn, g) dans un espace eucli-
dien Eq = (Rq, 〈., .〉) est une isométrie si elle préserve les distances, i.e. si la
longueur de chaque courbe γ : [a, b] → Mn de classe C1 est égale à la longueur
de son image f ◦ γ. Si la métrique est donnée dans un système de coordonnées
locales par g =

∑n
i,j gijdxidxj , la condition d’isométrie est équivalente au système

non linéaire d’équations aux dérivées partielles

〈 ∂f
∂xi

,
∂f

∂xj
〉 = gij , 1 ≤ i ≤ j ≤ n (1)

de sn = n(n+1)
2 équations. En 1954, J. Nash a surpris la communauté mathé-

matique en montrant qu’il était possible de réaliser un plongement isométrique
f : (Mn, g) → Eq d’une variété riemannienne compacte si q ≥ n + 2, mais seule-
ment avec une régularité C1 [Nas54]. Des arguments reposant sur la courbure
empêchent d’avoir une régularité C2 en général. En 1955, le théorème de Nash a
été étendu par Kuiper à la codimension 1 [Kui55]. Le résultat de Nash et Kuiper
a beaucoup de conséquences contre-intuitives, l’une d’entre elles étant que le tore
carré plat E2/Z2 admet un plongement isométrique C1 dans E3.

Le résultat de Nash et de Kuiper, ainsi que d’autres résultats géométriques,
ont été revisités dans les années 70-80 par M. Gromov. Il a introduit le h-principe
qui établit que beaucoup de relations différentielles se ramènent à des problèmes
topologiques [GR70, Gro86] et a développé plusieurs outils pour résoudre ces re-
lations différentielles, l’un d’entre eux étant la théorie de l’intégration convexe.

Avec Vincent Borrelli, Said Jabrane et Francis Lazarus, nous avons adapté
la théorie de l’intégration convexe à la relation différentielle des isométries (1)
afin d’obtenir un algorithme de construction d’un plongement isométrique du tore
carré plat dans E3. Nous présentons des images d’un tel plongement. Cette visu-
alisation, ainsi que la simplification de la construction, nous a amené à découvrir
la notion de fractales lisses, qui est liée à la structure géométrique de l’application
de Gauss (i.e. le champ de vecteurs normal) du plongement limite. Nous mon-
trons que cette application de Gauss peut être obtenue par un produit infini de
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rotations appliqué à un plongement initial. Bien que les coefficients des rotations
soient intrinsèquement compliqués, le comportement asymptotique de ce produit
est relativement simple et présente une certaine similarité avec la fonction de
Weierstrass.

Image d’un plongement isométrique du tore carré plat dans E3





Introduction

In this dissertation, I present my contributions to numerical geometry since my
arrival in Grenoble in 2005 as an Assistant Professor. I have been working in
the field of geometric inference in the continuation of my PhD and also on differ-
ent problems of surface modeling having connections with various domains such
as optimal transport, computational geometry or convex integration theory. The
common point to my contribution in these fields is the development of effective
calculations in problems having a geometric flavor. In all the cases, the aim is
to certify the construction of geometric objects, such as manifolds or triangula-
tions, or to accurately estimate quantities related for example to the metric, the
curvature, or any other geometric invariant.

The geometric constraints that appear in surface modeling can sometimes be
expressed by partial differential equations (PDE). However standard numerical
approaches, such as finite element methods, do not always provide a solution. I
have investigated these last years alternative geometric approaches for numeri-
cally solving nonlinear geometric PDEs. I mention below two examples.

— The far-field reflector problem is a well-known inverse problem arising in
nonimaging optics that consists in designing a reflector surface that satis-
fies an energy preservation constraint. The goal is to create a mirror that
reflects a given point light source to a prescribed target light at infinity.
When the source and target lights are modeled by two probability densities
on the sphere, this problem amounts to solve a Monge-Ampere type equa-
tion on the sphere, which is a nonlinear PDE. By combining a variational
approach from optimal transport, computational geometry and a geometric
construction due to L. A. Caffarelli and V. Oliker, we have proposed an effi-
cient method to numerically solve this problem.

— Another example involving a PDE is the realization of an isometric embed-
ding of the square flat torus in the three dimensional Euclidean space. In
that case, the isometric constraint is expressed by a nonlinear PDE system
involving the metric tensor. Our main theoretical tool is the convex integra-
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tion theory that has been developed by M. Gromov in the 70s-80s for solving
underdeterminated differential systems. We have implemented this tool so
as to get an algorithm for building isometric embeddings of the square flat
torus in the ambient space.

The standard numerical methods that are efficient for solving linear PDEs
may not be adapted when PDEs are not anymore linear. As mentioned above, the
use of geometric approaches can then be helpful. Similarly, geometric quantities
such as curvatures are well defined on “regular” objects, but cannot be defined
directly when the regularity is too weak. Alternative approaches, coming for ex-
ample from geometric measure theory, then allow to take into account this low
regularity. In this dissertation, I consider geometric objects with low regularities,
such as manifolds of class C1, triangulations and even point sets. I also consider
different kind of noises in geometric inference problems, that again need to be
handled appropriately. In this context, I have been using and developing tools
from different fields, such as computational geometry, optimal transport, convex
analysis and convex integration in order to solve problems of surface modeling
with prescribed geometric constraints and to provide certified effective estima-
tions. I mention some examples below.

— In geometric inference, one often wants to estimate geometric quantities on
shapes such as manifolds, from approximations that can have a low regular-
ity, such as triangulations or point sets. By combining stability and regular-
ity properties of distance functions, we prove a stability result for Federer’s
curvature measures. Our algorithm to compute these curvatures for finite
point sets is using tools from computational geometry.

— Distance functions have been extensively used in the context of geometric
inference to provide geometric estimations for a shape from an Hausdorff
approximation. However, when the data are corrupted with outliers, the as-
sumption of proximity for the Hausdorff distance is not satisfied. We have
been using the distance to a measure, which is a generalized distance func-
tion robust to outliers, to provide robust estimation of the normals of a shape.
The computations on a point set involves the power diagram, which is a cen-
tral tool in computational geometry.

— The isometric embedding problematic is intrinsically related to regularity
problems. A classical argument based on Theorema Egregium and the Gaus-
sian curvature implies that an isometric embedding of the square flat torus
in the three dimensional Euclidean space cannot be of class C2. However,
the Nash-Kuiper Theorem asserts that it is possible to realize such an em-
bedding with a C1 regularity. The construction that we propose is using
the convex integration theory and has allowed to reveal the paradoxal no-
tion of smooth fractals. Remark that this theory has also been used for the
Scheffer–Shnirelman paradox, to provide non trivial weak solutions to the
incompressible Euler equation. The convex integration theory can be seen
as a tool to provide paradoxical solutions.
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BRIEF OVERVIEW OF MY CONTRIBUTIONS

Chapter 1: Geometric inference using distance functions

The aim of geometric inference is to answer the following question: Given a geo-
metric object in Rd that is only known through an approximation, such as a point
set, can we get a robust estimation of its topological or geometric properties? Dis-
tance functions to compact sets have been extensively used in this context the
last fifteen years, thanks to their regularity properties and Hausdorff stability
properties. By Hausdorff stability, we mean that if two compact sets are close for
the Hausdorff distance, then their distance functions are close for the supremum
norm. In this chapter, we present several results of geometric inference that are
based on distance functions.

Together with André Lieutier, we have provided a result of convergence of
geodesics on triangulations [13] . More precisely, given a sequence (Tn)n≥0 of
triangulations whose points and normals converge to those of a surface S of class
C2 in the three dimensional space, and a sequence of geodesic curves Cn on Tn
that is converging to a limit curve, we show that the limit curve is a geodesic of S
under reasonable assumptions concerning the rate of convergence of the normals
and of the edges of the triangulation. Since we consider geodesics that are not
necessarily shortest paths, the proof cannot only rely on metric notions and we
are led to introduce a discrete notion of geodesic curvature.

With my co-authors Frédéric Chazal, David Cohen-Steiner and André Lieu-
tier, we have studied the regularity of the offset and double offset of compact sets
of Rd [5]. The r-offset of a compact set K is the set of points that are at a distance
less than r from K. The double offset of a compact set is obtained by offsetting it
with a parameter r, then offsetting the closure of its complement with a parameter
t < r. It is well known in the Computer Aided Geometric Design community that
a shape can be smoothed using the double offset operation. Under the assump-
tion that the compact set has positive µ-reach, which is a very weak regularity
assumption, we quantify the regularity of its offset and double-offset.

We use these regularity results for curvature estimation. We show that the
curvature measures of the offset of a compact set K with positive µ-reach can be
estimated by the curvature measures of the offset of a compact set K ′ close to K in
the Hausdorff sense [6]. We show how these curvature measures can be computed
for finite unions of balls. The curvature measures of the offset of a compact set
with positive µ-reach can thus be approximated by the curvature measures of the
offset of a point-cloud sample.

Together with Jacques-Olivier Lachaud, we also have considered geometric
inference problems in the context of digital geometry, namely when a shape of
Rd is digitized and approximated by a set of voxels (i.e. d-dimensional pixels) of
size h. We study the topology of the boundary of the digitization and provide a
convergence result for digital integration [12].
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Chapter 2: Generalized Voronoi Covariance Measure

The inference results of the first chapter derive from the regularity properties
and from the Hausdorff stability of the distance function. Unfortunately, geomet-
ric data is usually corrupted with outliers, and the hypothesis of proximity for the
Hausdorff distance is not realistic in practice. Distance-like functions have been
recently introduced in the context of geometric inference because they possess the
key regularity properties of the distance function: they are Lipschitz and their
square are 1-semiconcave [CCSM11]. The set of distance-like functions contains
distance functions, but also contains other functions such as distances to measures
that are robust to outliers [CCSM11].

The Voronoi Covariance Measure (VCM) has been introduced in [MOG11] for
normal, curvature and sharp features estimations. It is a tensor-valued measure
associated to any compact set K. It has been shown to be Hausdorff stable, in the
sense that if two compact sets are close in the Hausdorff sense, their VCM are
also close to each other. Furthermore the VCM of a smooth surface encodes the
normal vector field to this surface.

Together with Louis Cuel, Jacques-Olivier Lachaud and Quentin Mérigot, we
have generalized the VCM to any distance-like function δ [7]. More precisely, we
associate to any distance-like function δ a tensor-valued measures called the δ-
Voronoi covariance measure (δ-VCM) and show its stability. As a consequence, it
is possible to recover the normal vectors of a manifold S of Rd accurately from the
δ-VCM, provided that δ is a distance to a measure close to the distance to the uni-
form probability measure on S (for the Wasserstein distance). This estimation is
Hausdorff stable and robust to outliers. We also provide an algorithm to compute
the δ-VCM, when the distance-like function δ is encoded by a weighted point set
with small cardinality, and use it for normal, curvature and sharp features esti-
mations. With Louis Cuel and Jacques-Olivier Lachaud [8] we have also used the
VCM in the context of digital geometry and provided a convergent digital normal
estimator.

Chapter 3: Reflector problem and numerical optimal transport

The far-field reflector problem is a well-known problem arising in nonimaging
optics. The inputs are the description of the light distribution emitted by a punc-
tual light source located at the origin and a desired target distribution of light
at infinity, that is, on the sphere of directions. When the two light distributions
can be modeled by a probability density µ on the source sphere and a probability
density ν on the target sphere, the far-field reflector problem can be formulated
as a generalized Monge-Ampère equation on the sphere. The approach of L. A.
Caffarelli and V. Oliker to show the existence of a weak solution to this problem
is geometric [CO08] and works as follows: they approximate the target proba-
bility measure ν by a sequence of discrete measures νN =

∑
i αiδyi supported on

a finite set of directions Y = {y1, . . . , yN}. They show the existence of a solu-
tion to the (semi-discrete) far field reflector problem between µ and νN , and show
that this solution converges to a solution of the original problem as N tends to
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infinity. More recently, the far field reflector problem was shown to be equiva-
lent to an optimal transport problem on the sphere [GO03, Wan04] for the cost
c : Sd−1 × Sd−1 → R defined by c(x, y) := − log(1− 〈x|y〉).

Together with Pedro Machado Manhães de Castro and Quentin Mérigot, we
have proposed a numerical resolution of the reflector problem in the semi-discrete
setting [10]. Using the optimal transport formulation, we cast this problem into
a concave maximization problem. Our algorithm requires to calculate Laguerre
cells on the sphere, that corresponds to the c-subdifferentials of the dual variable
in the optimal transport formulation. We show that these Laguerre cells can
be computed by intersecting a certain power diagram with the unit sphere and
show that the complexity of this intersection is linear. We have also investigated
other types of reflectors arising in nonimaging optics, for example in the near
field reflector problem, where one wants to illuminate points in the space instead
of directions.

Together with André Julien, Dominique Attali and Quentin Mérigot, we have
also proposed heuristics that take into account industrial design constraints on
the reflector surface [1].

FAR-FIELD REFLECTOR PROBLEM: Simulation of the illumina-
tion at infinity using the physically accurate raytracer engine
LUXRENDER. The measure µ is supported on half the source
sphere and is uniform. The measure νN is discretizing the mea-
sure of an image of Monge projected on the target sphere. The ex-
periments were done with N = 1, 000 on the left and N = 15, 000

on the right.

Chapter 4: Convex Integration Theory and Smooth Fractals

A map f from a Riemannian manifold (Mn, g) into a Euclidean space Eq =

(Rq, 〈., .〉) is an isometry if it preserves length, that is the length of every C1 curve
γ : [a, b]→Mn is equal to the length of its image f ◦γ. Suppose that, in some local
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coordinate system, the metric is given by g =
∑n

i,j gijdxidxj , then the isometric
condition is equivalent to a system of nonlinear PDE

〈 ∂f
∂xi

,
∂f

∂xj
〉 = gij , 1 ≤ i ≤ j ≤ n

of sn = n(n+1)
2 equations. In 1954, Nash surprised the mathematical community

by showing that it was possible to realize an isometric embedding f : (Mn, g)→ Eq
of a Riemannian manifold, but only with a C1 regularity [Nas54], provided that
q ≥ n + 2. This C1 regularity cannot be improved to C2 in general since the
curvature tensor would then provide obstructions to the existence of isometric
maps. Shortly after, the theorem of Nash was extended by Kuiper to the codi-
mension 1 [Kui55]. The result of Nash and Kuiper has many counterintuitive
consequences, one of them being that the square flat torus E2/Z2 admits a C1

isometric embedding into E3.

The result of Nash and Kuiper, as well as other geometric results, was revisited
in the 70s and 80s by Gromov. He introduced the h-principle that states that many
partial differential relations reduce to topological problems [GR70, Gro86] and he
developed several tools to solve partial differential relations, one of them being
the convex integration theory.

Together with Vincent Borrelli, Said Jabrane and Francis Lazarus, we have
adapted the convex integration theory to the differential relation for isometries so
as get an algorithm for the construction of an isometric embedding of the square
flat torus in E3. We provide images of such an embedding. This visualization,
as well as the simplification of the construction, led us to discover the notion of
Smooth Fractals, which is related to the geometric structure of the Gauss map (i.e.
the normal vector field) of the limit isometric embedding. We show that this Gauss
map can be obtained as an infinite product of rotations applied to the Gauss map
of an initial embedding. Although the coefficients of the rotations are intrinsically
complicated, the asymptotic behavior of this product is fairly simple and bears a
formal similarity with the Weierstrass function.

Image of an isometric embedding of the square flat torus in E3
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Chapter 1

Geometric inference using
distance functions

The purpose of geometric inference is to answer the following problem: Given a
geometric object in Rd that is only known through an approximation, such as a
point set, can we get a robust estimation of its topological or geometric proper-
ties? This problematic is motivated by certain applications arising in different do-
mains such as medical imaging, reverse engineering, life sciences, cultural object
scans, metrology, etc, where point sets are acquired by sensors from a 3D shape.
We can be interested in recovering topological properties, such as the number of
connected components, the genus, Betti numbers or geometric properties, such
as the curvatures, the normals, etc. Two kind of questions then arise: can we
define geometric notions, such as normals or curvatures, on non-smooth objects
such as point sets ? Under which assumption do these notions approximate their
continuous counterparts on the underlying object ?

The distance function to a compact set has been widely used in geometric in-
ference, because it encodes geometric information on the compact set, it provides
a projection map that allows the comparison with other geometric shapes, and it
is Hausdorff stable (this will be detailed below). In this context, the notion of sets
with positive reach, introduced and first studied by Federer [Fed59], is central.
Sets with positive reach share important properties with convex sets and smooth
manifolds. Originally, they were introduced because it is possible to generalize on
those sets a notion of curvature due to Steiner, Minkowski and Weyl [Wey39].

A compact set K of Rd is said to have a reach greater than r > 0, if every point
x ∈ Rd at a distance strictly less than r from K admits a unique projection on K

(i.e. has a unique closest point on K). The set of points at a distance less than r

from a compact set K is called r-offset or r-tubular neighborhood. The projection
map defined on an offset of a compact set K with positive reach allows one to
compare the compact setK with an Hausdorff approximation of it. This projection
map has been used in many situations, for example to show convergence results
for the curvature measures of a sequence of triangulations converging to a smooth
manifold [Fu93a]. It has also been used by to get quantitative estimations of the
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normals [MT04] and of the curvature measures [CSM06] of a smooth manifold
from a triangulation close to it in the Hausdorff sense. Note that a notion of
anisotropic curvature measure allowing an estimation of principal curvatures and
principal directions was also introduced in [CSM06].

Over the last ten years, distance functions to compact sets have also been suc-
cessfully used to recover the topology or approximate the geometry of a shape
from a compact set close to it with respect to the Hausdorff distance. It is clear
that two compact sets can be very close in the Hausdorff sense and have drasti-
cally different topological and geometric properties. However, it has been shown
that properties measured on offsets are more stable. For example, the topology of
a submanifold can be recovered from a union of balls of radius r centered at points
that are close to the sub-manifold [NSW08]. Another example concerns compact
sets that satisfy the very weak assumption of having positive µ-reach: the topol-
ogy of the offsets of a compact set with positive µ-reach can be recovered from the
offsets of a compact set which is close in the Hausdorff sense [CCSL09b]. Note
that the notion of positive µ-reach is a relaxed version of the notion of positive
reach, which is Hausdorff stable (in a sense that will be made clear later). It has
also been used to show that the normal cone of the offset of a compact set with
positive µ-reach is close to the normal cone of an offset of a compact set Hausdorff
close [CCSL09a].

Contribution.
— Convergence of geodesics (Section 1.2). In the joint work [13] with An-

dré Lieutier, we consider the following problem: Given a sequence (Tn)n≥0 of
triangulations whose points and normals converge to those of a C2-surface
S of the three dimensional space, if Cn is a geodesic of Tn and if (Cn)n≥0

converges to a curve, we want to know if the limit curve is a geodesic. The
result is straightforward and positive when the geodesics Cn are shortest
paths, but does not hold in general. We exhibit a counter-example. We also
prove a result of convergence with additional assumptions concerning the
rate of convergence of the normals and of the edges of the triangulation.
This result is applied to different subdivision schemes, thus validating an
existing algorithm that builds geodesics on subdivision surfaces [PTSB01].

— Double offset regularity (Section 1.3). It is well known in the Computer
Aided Geometric Design community that a shape can be smoothed using
the double offset operation. The double offset of a compact set is obtained by
offsetting it with a parameter r, then offsetting the closure of its complement
with a parameter t < r. Under the assumption that the shape has positive µ-
reach, a simple combination of results from [Fed59] and [Fu85] implies that
the boundary of the double offset is of class C1,1. Together with Frédéric
Chazal, David Cohen-Steiner and André Lieutier, we worked on the offset
and double offset regularity [5]. We give an explicit lower bound on the
reach of a compact set with positive µ-reach and also provide an estimation
of the curvature of its double offset.

— Stability of curvature measure (Section 1.4). We address with Frédéric
Chazal, David Cohen-Steiner and André Lieutier the problem of curvature
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estimation from sampled compact sets [6]. We show that the gaussian, mean
or anisotropic curvature measures of the offset of a compact set K with pos-
itive µ-reach can be estimated by the same curvature measures of the offset
of a compact set K ′ close to K in the Hausdorff sense. We show how these
curvature measures can be computed for finite unions of balls. The curva-
ture measures of the offset of a compact set with positive µ-reach can thus
be approximated by the curvature measures of the offset of a point-cloud
sample.

— Digital geometry (Section 1.5). We consider with Jacques-Olivier Lachaud
geometric inference problems in the context of digital geometry [12], namely
when a shape X of Rd is digitized and represented by a set of voxels (i.e.
d-dimensional pixels) of size h. We assume that the boundary of X has pos-
itive reach. We show the boundary ∂hX of the Gauss digitization is close to
the boundary of the shape in the Hausdorff sense in any dimension, thus
extending a 2D result [Lac06]. Furthermore, the boundary ∂hX is not a
d − 1-dimensional manifold in general. We show that the non-manifoldness
of the Gauss digitized boundary ∂hX may only occur in “small parts”. The
restriction to ∂hX of the projection map onto ∂X being not injective, we show
the non-injective part is negligible, thus providing a convergence result for
digital integration.

Before detailing my contribution in Sections 1.2, 1.3, 1.4 and 1.5, we briefly
recall in Section 1.1 important properties of distance functions and related notions
that are central in the context of geometric inference.

1.1 DISTANCE FUNCTIONS, REACH AND µ-REACH

Many results in geometric inference rely on the distance function and on the reach
of a compact set. We recall in this section the most important properties used later
in the context of geometric inference.

1.1.1 — Sets with positive reach

Distance functions. The distance function to a compact subset K of Rd is the
function on Rd defined by the formula dK(x) := minp∈K ‖p − x‖. Remark that dK
encodes entirely the compact set K since K = d−1

K ({0}). Note also that dK is 1-
Lipschitz and is thus, by Rademacher theorem, differentiable almost everywhere
for the Lebesgue measure. For any positive number r, we denote byKr the r-offset
of K, defined by Kr := {x |dK(x) ≤ r}. The set Kr is also often called the tubular
neigborhood of K of size r.

Proposition 1.1. Let x be a point in the complement Rd \K of K. The following
three statements are equivalent

(i) d2
K is differentiable at the point x ;

(ii) dK is differentiable at the point x ;
(iii) x has a unique projection p on K.
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Moreover, if one of this statement holds we have:

∇d2
K(x) = 2(x− p) and ∇dK(x) =

x− p
dK(x)

.

The medial axis of K, denoted by Med(K), is the set where the projection is
not unique. This set, or variants of it, plays an important role in computational
geometry, in reconstruction problems and in geometric inference.

The following property, stating that the distance function is semiconcave, is
fundamental in this chapter and will also play a central role in the following chap-
ter with the generalized distance-like functions.

Lemma 1.2. The squared distance function to a compact set K is 1-semiconcave.
More precisely, for every x ∈ Rd the function kx : Rd → R defined by

kx(y) := ‖y − x‖2 − d2
K(y)

is convex.

Sets with positive reach. The notion of sets with positive reach generalizes
the notions of smooth sub-manifolds and convex sets of the Euclidean space and
offers a natural framework allowing a definition of curvature measures. The
Steiner-Minkowski formula states that the volume of an ε-offset of a convex body
in the Euclidean space is a polynomial of degree d in ε. The Weyl tube formula
shows that the volume of an ε-offset of a submanifold of Rd is also a polynomial,
provided ε is small enough [Wey39]. Herbert Federer extended the tube formula
to sets with positive reach. He also introduced a local version of the tube formula,
allowing a consistent definition of curvature measures [Fed59].

DEFINITION 1.3. The reach of a compact set K ⊆ Rd is the maximum radius r
such that the offset Kr does not intersect the medial axis Med(K), or equivalently

reach(K) = max {r ≥ 0; dK is differentiable in Kr}

The set K is said to have positive reach if reach(K) > 0.

Convex sets have infinite reach. The reach of an embedded C2 submanifold
of Rd is bounded by 1/ρ, where ρ is the maximal principal curvature of the sub-
manifold. One important fact about sets with positive reach is the existence of a
projection map

pK : Kr → K

defined on the r-offset Kr, where r < reach(K). This map is a practical tool be-
cause it allows to compare the compact set K with an object which is Hausdorff
close. Furthermore, this map is Lipschitz:

Lemma 1.4. Let K be a compact set with reach R and r < R. Then the projection
map pK is R

R−r -Lipschitz in the offset Kr.

Combined with Proposition 1.1, this lemma directly implies that dK is of class
C1,1 in the set Kr2 \Kr1 where 0 < r1 < r2 < reach(K) and d2

K is of class C1,1 on
Kr, where r < reach(K).
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θK(x)

x

∇dK(x)
dK(x)

projK(x)

Figure 1.1: A 2-dimensional example with 2 closest points.

1.1.2 — The generalized gradient and its flow.

The distance function dK is not differentiable on Med(K). However, it is possible
to define a generalized gradient function ∇dK : Rd → Rd that coincides with the
usual gradient of dK at points where dK is differentiable. In the geometric in-
ference community, this generalized gradient, as well as its flow, was introduced
by André Lieutier [Lie04]. We note that it was also known in the more general
context of semiconcave functions (see [Pet07] for instance).

Generalized gradient. For any point x ∈ Rd \K, we denote by projK(x) the set
of points in K closest to x (Figure 1.1):

projK(x) = {y ∈ K | d(x, y) = d(x,K)}

Note that projK(x) is a non empty compact set. There is a unique smallest closed
ball σK(x) enclosing projK(x) (cf. Figure 1.1). We denote by θK(x) the center of
σK(x) and by FK(x) its radius. The point θK(x) can equivalently be defined as the
point on the convex hull of projK(x) nearest to x. For x ∈ Rd \K, the generalized
gradient ∇dK(x) is defined as follows:

∇dK(x) =
x− θK(x)

dK(x)
.

It is natural to set ∇dK(x) = 0 for x ∈ K. For x ∈ Rd \K, ‖∇dK(x)‖ is the cosine of
the (half) angle of the smallest cone with apex x that contains projK(x). Note that
the generalized gradient at the point x corresponds to the orthogonal projection
of 0 onto the Clarke subgradient ([Cla90] and [CCSL09a, Lemma 5.2]).

Gradient flow. The map x 7→ ‖∇dK(x)‖ is lower semicontinuous. Although
∇dK is not continuous, it is shown that Euler schemes using ∇dK converge uni-
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formly, when the integration step decreases, towards a continuous flow C : R+ ×
Rd → Rd. The integral line of this flow starting at a point x ∈ Rd can be param-
eterized by arc length s 7→ C(t(s), x). It is possible to express the value of dK at
the point C(t(l), x) by summing along the integral line with length l downstream
point x:

dK (C(t(l), x)) = dK(x) +

∫ l

0
‖∇dK(C(t(s), x)‖ds (1.1)

It is proven in [Lie04] that the functions FK and RK are increasing along the
trajectories of the flow. The Integration Flow Formula (1.1) is one of the main
technical tools used in [CL05, CCSL09b, CCSL09a] to prove stability results and
is also a key ingredient of [5].

Critical point theory. The critical points of dK are defined as the points x for
which ∇dK(x) = 0. Note that this notion of critical point is the same as the one
considered in the setting of non smooth analysis [Cla90] and Riemannian geome-
try [Gro93]. The topology of the offsets Kr of a compact set K are closely related
to the critical values of dK [Gro93] (i.e. the values of its distance function at crit-
ical points). The weak feature size of K, or wfs(K), is defined as the minimum
distance between K and the set of critical points of dK . Notice that wfs(K) may
be equal to 0. Nevertheless, wfs(K) is non zero for a large class of compact sets
including polyhedrons and piecewise analytic sets [CL05]. Furthermore, wfs(K)

may be viewed as the “minimum size of the topological features” of the set K:

Lemma 1.5 ([CL05]). If 0 < r, s < wfs(K) then Kr and Ks are homeomorphic.
The same holds for the complements of Kr and Ks. The same also holds for the
boundaries ∂Kr and ∂Ks that are topological (n− 1)-dimensional manifolds.

1.1.3 — Hausdorff stability and µ-reach

Haudorff stability. The Hausdorff distance dH(K,K ′) between two compact
sets K and K ′ in Rd is the minimal number r such that K ⊂ K ′r and K ′ ⊂ Kr. The
distance function is Hausdorff stable since one has dH(K,K ′) = supx∈Rd |dK(x) −
dK′(x)|. This Hausdorff stability does not hold anymore for the projection pK and
pK′ and for the gradients∇dK and∇dK′ . However, it has been shown in [CCSL09b]
that if a point x of Rd is far enough from K, then one can bound from below
‖∇dK(x)‖ by using the generalized gradient of dK′ , provided that dH(K,K ′) is
small. Roughly speaking, the norm of the gradient can be estimated by the norm
of the gradient of an Hausdorff approximation. This motivates the definitions of
µ-reach and critical function introduced in [CCSL09b].

Sets with positive µ-reach. Remark that dK is differentiable at a point x if
and only if the norm of its generalized gradient at the point x is equal to 1. Hence
the reach of a compact set K can be seen as the maximal offset value r for which
every point x ∈ Kr satisfies ‖∇dK(x)‖ = 1. Using this remark, one can define a
parameterized notion of reach, the µ-reach.
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DEFINITION 1.6. Let µ > 0. The µ-reach of a compact set K is the maximal offset
value r for which every point x ∈ Kr satisfies ‖∇dK(x)‖ ≥ µ:

reachµ(K) = sup
{
r, ∀x ∈ Kr ‖∇dK(x)‖ ≥ µ

}
.

Note that the 1-reach coincides with the reach introduced by Federer [Fed59].

DEFINITION 1.7 (critical function). Given a compact set K ⊂ Rd, its critical func-
tion χK : (0,+∞)→ R+ is the real function defined by:

χK(r) = inf
x∈d−1

K (r)
||∇dK(x)||

We note that the infimum can be replaced by a minimum since ‖∇dK‖ is lower
semicontinuous and d−1

K (r) is compact. It also results from the compactness of
d−1
K (r) that r 7→ χK(r) is lower semicontinuous. The critical function is in some

sense “stable” with respect to small (measured by Hausdorff distance) perturba-
tions of a compact set, precisely [CCSL09b]:

Theorem 1.8 (critical function stability theorem). Let K and K ′ be two compact
sets of Rd and dH(K,K ′) ≤ ε. For all r ≥ 0 , we have:

inf{χK′(u) |u ∈ I(r, ε)} ≤ χK(r) + 2

√
ε

r

where I(r, ε) = [r − ε, r + 2χK(r)
√
εr + 3ε]

The claim of Theorem 1.8 can be read as χK(r) ≥ inf{χK′(u) |u ∈ I(r, ε)}−2
√

ε
r

and says that a lower bound on the critical function of a compact set K ′ yields a
lower bound on the critical function of “nearby” (for Hausdorff distance) compact
sets K. In particular, if a set K ′ of measured points is known to lie within some
Hausdorff distance of a physical object represented by the unknown compact set
K, the critical function of K ′ gives, by Theorem 1.8, a lower bound on the critical
function of the partially known physical object K. Since the computation of the
critical function of a point set is straightforward [CCSL09b], this implies that a
lower bound on the critical function of a compact set can be estimated from a point
set which is Hausdorff close.

1.2 CONVERGENCE OF GEODESICS

A shortest path is a curve on a surface with minimal length among all the curves
connecting two given points. A geodesic is a curve on a surface whose length does
not decrease if it is perturbed in a small neighborhood of any point. A shortest
path is clearly a geodesic, but the converse is not true.

Various applications of the computation of geodesics have been considered. For
example, the heart’s left ventricle can be modeled by a family of embedded sur-
faces; a muscular fiber of the central region of the left ventricle has particular
properties and can be considered as a geodesic of one of those surfaces [Mou03,
Str79]. The computation of geodesics appears in the simulation of several physical
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processes. In the fabrication of composite parts by filament winding, the filament
must ideally wind along geodesics. The computation of radar cross sections in-
volves the simulation of creeping rays which follow geodesics of the object. Since
triangulations are widely used for surface modeling, it is natural to consider the
modeling of geodesics on surfaces approximated by triangulations. Many algo-
rithms have been proposed for the computation of shortest paths on triangula-
tions [KS98, PC05]. Concerning geodesics [PTSB01] have also proposed an algo-
rithm that builds geodesics on triangulations.

A simple calculation shows that if a sequence (Tn)n∈N of triangulations con-
verges in Hausdorff distance to S, if the normals of Tn also converge to the nor-
mals of S, then the limit curve of a sequence of shortest paths is a shortest path
of S [HPW06, MS05]. However, as we will see later, this result does not hold any-
more for geodesics. This is due to the fact that a shortest path is a notion that only
depends on the distance and is therefore a quantity of order 1. On the contrary,
because of the local characterization, a geodesic is a notion of order 2 and involves
the curvature. Hence, the result of convergence of [HPW06] cannot be used in
some applications. For example, in the modeling of the human heart, the curves
modeling the fibers are closed and are not shortest paths [Mou03]. Furthermore,
this result cannot be used to validate the algorithm given in [PTSB01], where the
authors build a sequence of geodesics on approximating triangulations that are
not shortest paths in general.

Contributions. We first show that the result of convergence for shortest paths
cannot be applied to geodesics, by providing a counter-example. In a second step,
we provide a positive result of convergence for geodesics on triangulations. We
suppose, as for the result with shortest paths given in [HPW06], that the points
and the normals of the triangulation converge to those of a smooth surface. We
also add an assumption on the convergence speed of the normals and of the length
edges of the sequence of triangulations. We assume that the edge lengths cannot
converge faster to zero than the angles between the normals (in a sense that will
be precized later). The proof relies on a notion of discrete geodesic curvature.

We then apply these results to sequences of triangulations that follow subdivi-
sion schemes, such as for example Catmull-Clark schemes or subdivision schemes
for splines (of degree greater than or equal to three) or Bézier polygons. In par-
ticular, our results validate the algorithm of [PTSB01] that builds geodesics on
subdivision surfaces.

1.2.1 — Geodesics on triangulations

Let C be a polygonal curve of a triangulation T . We suppose that C is a geodesic of
T , namely that it minimizes locally the distance. The curve C is clearly a straight
line on each triangle. When C crosses an edge of T at a point p, which is not a
vertex of T , then the incident and refracted angles of C on T at p are equal. If C
passes through a vertex p of T , then it is a little more tricky: the polygonal curve
C separates the set of the triangles of T containing p into two connected regions
r1 and r2 (see Figure 1.3). If one denotes by αr1p the sum of the angles αr1i of the
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triangles of region r1 at p (resp. by αr2p the sum of the angles αr2i of the triangles
of region r2 at p), one has

αr1p ≥ π and αr2p ≥ π. (1.2)

Remark that if a geodesic traverses a vertex p of T , then the sum of the angles
of the triangles of T at the vertex p is greater than 2π, namely αr1p + αr2p ≥ 2π.
We can also notice that if αr1p + αr2p > 2π, then the geodesic cannot be extended
uniquely beyond p: there exist two distinct polygonal curves C1 and C2 containing
p and q that satisfy Equation (1.2) are geodesics.

1.2.2 — Counter-example

We show in Figure 1.2 a sequence of triangulations that converges in normals
and in distance to the plane. However a sequence of geodesics Cn of Tn does not
converge to a geodesic of the plane. The construction is done as follows: The
triangulation overlaps the horizontal plane R2 × {0} outside the large circle and
inside the small one. In the ring between the two circles, it is made of 4n identical
small “roof shaped” bumps detailed on the right of Figure 1.2. The points d1

n, d2
n,

pn andmn are on the plane R2×{0}while the points t1n and t2n stand at some height
above the plane. The faces d1

nt
1
nd

2
n, pnt2nmn, d1

nt
1
nt

2
nmn and d2

nt
1
nt

2
npn are planar and

all make a slope sn with R2 × {0}. If we take sn = 3
2n , one has, for each n ∈ N,

β1 + β2 + β3 + β4 > π. Thus the polygonal curve Cn wrapped around the outer
circle is a geodesic. Remark that the length of the edge mnpn is of order 1/4n and
is therefore converging faster to 0 than the slope sn.

an

Cn

mn

nn

bn

Figure 1.2: Triangulation Tn and geodesic Cn seen from above: on the left we see
the whole surface; the region in the dashed quadrangle is depicted on the right

Observe that the sequence (Tn)n∈N of triangulations converges towards the
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plane in the Hausdorff sense. Furthermore the normals of Tn tend to the normals
of the plane. The shortest path on Tn between the point an and bn is the straight
line. However, the line anmnnnbn (denoted by Cn), wrapped around the circle
between mn and nn is a local minimum, that is a geodesic, between an and bn.
These geodesics converge in the Hausdorff sense towards a curve C composed of
two lines and an arc of circle. We can notice that the triangulations Tn and the
curves Cn satisfy all the assumptions of the result of [HPW06], except that Cn is
a geodesic (and not a shortest path). However the limit curve C is not a geodesic.
This counter-example implies that the convergence in distance and in normals of
Tn to S is not sufficient to expect a result of convergence for geodesic.

1.2.3 — Convergence towards a geodesic

The main result is the following theorem, whose proof will be sketched in Section
1.2.5. Roughly speaking, if the points and normals of the triangulation Tn con-
verge to those of a surface S and if the edge lengths do not converge faster to zero
than the angles between the normals, then geodesics of Tn converge to geodesics
of S.

Theorem 1.9 ([13]). Let S be a smooth surface of R3, let r denote the reach of S and
let (Tn)n∈N be a sequence of triangulations. LetK, K̃, θmin be positive constants and
let (dn)n∈N be a sequence of real numbers converging to 0. Suppose that for every n:

a) Tn belongs to the r-offset Sr of S;
b) for every m ∈ Tn ‖m− pS(m)‖ ≤ dn, where pS is the projection onto S.
c) for every m ∈ Tn, the angle between any triangle ∆ containing m and the

tangent plane TpS(m)S of S at pS(m) is smaller than K
2n ;

d) the lengths of the edges of Tn are greater than K̃
2n ;

e) all the angles of Tn are greater than θmin;
Let (Cn)n∈N be a sequence of polygonal curves Cn : [0, 1] → R3 with uniform
parametrization such that Cn is an interior geodesic of Tn and pS(Cn) does not
intersect the boundary of S. If (Cn)n∈N converges towards a curve C in the sup
norm sense in R3, then C is of class C2 and is a geodesic of S.

1.2.4 — Application to subdivision surfaces

Corollary 1.10 is a general result that can be easily applied to several subdivision
schemes. Let (Pn)n∈N be a sequence of parameterized triangulations Pn : [0, 1]2 →
R3 that is converging to a parameterized smooth surface f : [0, 1]2 → R3. The
parameter domain [0, 1]2 of each Pn can be triangulated so that Pn is linear on
each triangle of [0, 1]2. We say that the parameter domain of Pn is a triangular
grid if its vertices are pi,jn =

(
i

2n ,
j

2n

)
(where i, j ∈ {0, ..2n}) and the edges are

pi,jn p
i+1,j
n , pi,jn pi,j+1

n and pi,jn p
i+1,j+1
n . We say that (Pn)n∈N uniformly converges to a

function f with rate of convergence 1
2n if

∃N ∈ N, ∃K ∈ R, n > N ⇒ sup
(u,v)∈[0,1]2

‖Pn(u, v)− f(u, v)‖ ≤ K

2n
.
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We say that (Pn)n∈N uniformly converges in derivative to f with rate of conver-
gence 1

2n if there exists K > 0 and N ∈ N, such that for any n > N :

sup i∈{0,..,2n−1}
j∈{0,..,2n}

∥∥∥2n
[
Pn

(
i+1
2n ,

j
2n

)
− Pn

(
i

2n ,
j

2n

)]
− ∂f

∂u

(
i

2n ,
j

2n

)∥∥∥ ≤ K
2n ,

and sup i∈{0,..,2n}
j∈{0,..,2n−1}

∥∥∥2n
[
Pn

(
i

2n ,
j+1
2n

)
− Pn

(
i

2n ,
j

2n

)]
− ∂f

∂v

(
i

2n ,
j

2n

)∥∥∥ ≤ K
2n .

One obtains the following corollary.

Corollary 1.10. Let (Pn)n∈N be a sequence of parametrized triangulations Pn :

[0, 1]2 → R3and f : [0, 1]2 → R3 be a parametrized surface of class C2, such that:
a) the parameter domain of each Pn is a triangular grid,
b) (Pn)n∈N uniformly converges to f with rate of convergence 1

2n ,
c) (Pn)n∈N uniformly converges in derivative to f with rate of convergence 1

2n ,
d) f is regular, i.e. ∀(u, v) ∈ [0, 1]2 ∂f

∂u(u, v) ∧ ∂f
∂v (u, v) 6= 0.

Let (Cn)n∈N be a sequence of polygonal curves Cn : [0, 1] → R3 with uniform
parametrization such that Cn is an interior geodesic of Pn. If (Cn)n∈N converges
in the sup norm sense towards a curve C which is interior to S, then C is of class
C2 and is a geodesic of S.

This corollary allows to show directly convergence of geodesics for several sub-
division surfaces, for example subdivision schemes of splines of arbitrary degree
(greater than or equal to 3) or Bézier polygons. It also works for Catmull-Clark
schemes, if the limit curve does not contain extraordinary vertices.

1.2.5 — Sketch of proof of Theorem 1.9

The idea of the proof is the following: loosely speaking, we show that if a triangu-
lation Tn is “almost planar”, then any geodesic Cn on Tn is “not turning too much”.
When projected onto tangent planes to S, it is even turning much less. Using this
fact allows to show that a kind of local discrete curvature of Cn is very small. This
is sufficient to show that the limit curve of Cn is of class C1,1 in R3. Using the fact
that the limit curve lies on S allows to conclude that it is a geodesic of class C2.
More precisely:

Let Cn : [0, 1]→ R3 be a polygonal parameterized curve of Tn linear on each tri-
angle of Tn. Let us take two parameters 0 ≤ ta < tb ≤ 1. We denote by l(Cn, ta, tb)
the length of Cn between ta and tb. The total curvature of Cn between ta and tb is
given by:

TC3D(Cn, ta, tb) =
∑

pn vertex of Cn([ta,tb])

β3D
dev(pn),

where β3D
dev(p) is the deviation angle of Cn at the vertex p (see Figure 1.3). Here,

the deviation angle of a polygonal curve p1, .., pn at the vertex pi is the angle
∠−−−→pi−1pi,

−−−→pipi+1 . We now introduce the tangential curvature, which is a kind of
discrete geodesic curvature of Cn on Tn relatively to S. The tangent total curva-
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ture of Cn with respect to S between ta and tb is defined by

TCTSTan(Cn, ta, tb) =
∑

pn vertex of Cn([ta,tb])

βTSdev(pn),

where βTSdev(pn) is the deviation angle of the orthogonal projection of Cn([ta, tb]) onto
the plane TpS(pn)S tangent to S at the vertex pS(pn) (see Figure 1.3).

We now need two preliminary lemmas. Intuitively, Lemma 1.11 implies that
angle deviation tends to 0, but its projection onto the plane tangent to S tends
faster to 0. Lemma 1.12 states that if the curve Cn does not turn too much and if
its length is not too long, then Cn cannot intersect too many edges of Tn.

TpS(pn)S

pn

β3D
dev(pn)

αr11
αr12

αr1m

Cn

region r1

pS βTSdev(pn)

pS(pn)

Figure 1.3: Deviation angle of a geodesic and of its orthogonal projection

Lemma 1.11. There exists K1 such that for every n, if Cn is a geodesic of Tn and
pn is a vertex of Cn, one has:

β3D
dev(pn) ≤ K1 αn, and βTSdev(pn) ≤ K1 α

2
n,

where αn is the maximal angle between all the triangles of Tn containing pn and
TpS(pn)S.

Lemma 1.12. There exists a constant K2, such that the number of intersection
](Cn, ta, tb) between Cn([ta, tb]) and the edges of Tn satisfies

](Cn, ta, tb) ≤ K2

[
1 + TCTSTan(Cn, ta, tb) + 2n l(Cn, ta, tb)

]
.

The proof is now divided into the following steps.
Step 1. By combining the two previous lemmas, we have the following circular
inequality:

TCTSTan(Cn, ta, tb) ≤ K1 α
2
n ] (Cn, ta, tb)

≤ K1 K2 α
2
n

[
1 + TCTSTan(Cn, ta, tb) + 2n l(Cn, ta, tb)

]
.
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pn

Cn

Cn

Figure 1.4: The number of intersections ]Cn depends on TCTSTan(Cn) and l(Cn).

Therefore, for some constants K3 and K4 independant of ta and tb, one has

TCTSTan(Cn, ta, tb) ≤
K3

2n
l(Cn, ta, tb) +

K4

4n
. (1.3)

Step 2. By using again the same lemmas, one can show that for some constant K
and K ′:

TC3D(Cn, ta, tb) ≤ K l(Cn, ta, tb) +K ′
1

2n
. (1.4)

Step 3. Using this last equation, we prove that the limit curve C is of class
C1,1. For this, we proceed as follows. We first show that the sequence

(
dCn
dt+

)
n≥0

is
bounded and is a Cauchy sequence. We deduce that the lengths and the slopes dCn

dt+

of Cn converge. We then deduce that C is of class C1 and that
(
dCn
dt+

)
n≥0

converges
to dC

dt . We finally show that dC
dt is Lipschitz-continuous.

Step 4. We consider a point p0 = C(t0). In this step, using Equations (1.3) and
(1.4), we prove that pTC(t0)

S ◦ C is twice differentiable at t0 and that (pTC(t0)S
◦

C)′′(t0) = 0. Here pTC(t0)
S denotes the orthogonal projection on the plane tangent

to S at C(t0). One can show that this implies that C is of class C2, then that it has
zero geodesic curvature and then that it is a geodesic of S.

Remark that the projection map pS onto S is used all along the proof, and in
particular its Lipschitz constant in an offset of S in Step 4.

1.3 DOUBLE OFFSET REGULARITY

In Computer Aided Geometric Design (CAGD) applications, blending or filleting
operators consist in “rounding” sharp edges and corners of objects. It may be
motivated by aesthetic or ergonomy, constrained by manufacturing processes such
as machining or moulding, or required by functional issues such as structural
or aerodynamical behaviour. A widely used geometric definition, illustrated on
Figure 1.5 consists in the so called blends by rolling ball [RR86].

Figure 1.5 shows on the left a simple solid, made of the union of two “boxes”.
In the middle, concave edges have been rounded, while, on the right, all edges
have been rounded. Starting from the solid on the left, the rounding of concave
edges can be defined by the following fictive operation. Assuming the solid to be
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Figure 1.5: Smoothing by double offset illustrated on a simple CAD model

made of a hard material (like steel) one embed it in a bloc of wax. Then one uses
a spherical ball of given radius to remove as much wax as possible to obtain the
solid on the middle of the figure.The remaining solid is said to be the initial one
rounded from the outside by a rolling ball. The rounding of convex edges can be
obtained by applying the same fictive process to the complement of the solid: one
build the complement of the part in the middle out of a hard material, fill it with
wax and remove (from the inside!) as much wax as possible with a spherical ball.
Taking again the complement of the resulting solid yields the solid on the right
of Figure 1.5 . This definition of rounding is rather natural if one’s intent is to
design a part which have to be machined by a spherical tool (or whose mold has
to be machined by a spherical tool). In many situations, this rounding process
produces solids with smooth boundaries.

Contributions. We consider here a similar smoothing done by a double offset
operation. The double offset of a compact set is obtained by offsetting it with a
parameter r, then offsetting the closure of its complement with a parameter t < r.
Given a compact set K with positive µ-reach, we quantify the reach of Rd \Kr and
of the boundary of Kr,t := Rd \Kr

t
. We also provide estimations on the Hausdorff

distance between ∂K, ∂Kr and ∂Kr,t and show that ∂Kr and ∂Kr,t are isotopic
hypersurfaces.

1.3.1 — Complements of offsets

Let K ⊂ Rd be a compact set with positive µ-reach. It can be easily deduced, by
using a result of Joseph Fu [Fu85, Corollary 3.4] that that the closure Rd \Kr

of the complement of the offset of K has positive reach, for any value 0 < r <

reachµ(K). The main result of [5] is the following theorem that provides an explicit
lower bound on this reach. Moreover, one gives a lower bound for the critical
function of Kr.

Theorem 1.13 ([5]). For r ∈ (0, rµ), one has

reach(Rd \Kr) ≥ µr (1.5)

Moreover the critical function of Rd \Kr is lower bounded for any t ∈ (µr, r):

χRd\Kr(t) ≥
2µr − t(1 + µ2)

t(1− µ2)
. (1.6)



GEOMETRIC INFERENCE USING DISTANCE FUNCTIONS 31

The bound on the reach is tight. We provide in Figure 1.6 an example of com-
pact set K with positive µ-reach such that reach(Rd \Kr) = µr.

Figure 1.6: Tightness of the bound : in the first image, we can visualize a compact
K (here we take µ = sinα); the complement Rd \Kr of its offset in the second one
(where r = h

cosα ); In the last image, we visualize Kr,t where t < µr and µ = sinα.

Example of Figure 1.6: Let α ∈ (0, π/2), h > 0, P1 = (h, 0, h
tanα), P2 = (−h, 0, h

tanα),
I1 = (h, 0, 0) and I2 = (−h, 0, 0). Let Ci be the cone of axis (PiIi), with vertex Pi
and angle α. Let K be the compact set defined as (see top of Figure 1.6) the union
of the rectangular box whose top face is in the plane z = 0, together with the two
cones delimited by C1, C2 and the plane z = 0. An easy computation shows that
reachµ(K) = 0 for µ > sinα and reachµ(K) = +∞ for µ ≤ sinα. The two cones C1

and C2 intersect along a curve C in the plane y = 0. If r ≤ h
cosα , then the r-offsets

of C1 and C2 intersect in the plane y = 0 along a curve that is a translation of the
curve C. Let Q = (0, 0, 0). By Meusnier’s theorem, the radius of curvature of C at
P is given by h tanα. Therefore we have

reach(Rd \Kr) = min(r, h tanα).

If we now take r = h
cosα , one has that reach(Rd \Kr) = µr, for µ = sinα.

SKETCH OF PROOF. Let x ∈ (Kr \K). We denote by projK(x) the set of nearest
neighbors of x ∈ Rd \Kr, d the distance from x to Rd \Kr and y the center of the
ball of smallest radius l ≥ 0 enclosing projK(x). To obtain the inequalities of the
theorem, we establish and compare an upper and a lower bound of dK(y).

Step 1. Using the convexity of the function kx(z) := ‖z − x‖2 − d2
K(z), one shows

kx(y) = d2 − l2 − d2
K(y) ≤ d2 − r2, from which on gets

d2
K(y) ≥ r2 − l2.

Step 2. We consider the flow line of ∇dK issued from y and denote by ỹ the first
intersection point of this trajectory with the sphere centered on x and of diameter
d. Using the Flow Integration Formula (1.1) and the fact that the norm of the
gradient is strictly increasing along the flow line, one gets

dK(y) ≤ r − l̃µ,

where l̃ is the length of the flow line in between y and ỹ.
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Step 3. We deduce from the two previous equations that r2 − l2 ≤ (r − l̃µ)2. Let
θ be the angle between y − x and any vector joining x to a point of Γ. From the
relations l = d sin θ and l̃ ≥ d(1− cos θ), a simple computation shows that if d < µr,
then θ = 0. The conclusion follows from the fact that cos θ = ‖∇dRd\Kr(x)‖. A
simple calculation then gives Equation (1.6). �

We can also deduce from the Flow Integration Formula (1.1) an upper bound
on the Hausdorff distance between ∂K and ∂Kr. Note that the bound of Theorem
1.14 is tight, as illustrated in Figure 1.14.

Theorem 1.14 (Offset distance theorem [5]). Let K be a compact set and let µ > 0,
r > 0 be such that r < reachµ(K). Then

dH(∂K, ∂Kr) <
r

µ
.

r
√
2r

K

Figure 1.7: The boundary of the r-offset of a square K in the plane is at Haus-
dorff distance

√
2r of K. For µ =

√
2

2 , reachµ(K) > 0 and this example shows the
tightness of the bound in Theorem 1.14

1.3.2 — Smoothness of double offsets

Let K ⊂ Rd be a compact set. For 0 < d < r, the (r, d)-double offset Kr,t of K is the
set of points that are at distance t of Rd \Kr:

Kr,t = Rd \Kr
t

= {x ∈ Rd : d(x,Rd \Kr) ≤ t}

Since the distance function dV to a compact set V with positive reach is differen-
tiable with non-zero Lipschitz gradient on the offset V t, where t < reach(V ), one
obtains the following result.

Theorem 1.15 (Double offset theorem [5]). If r < reachµ(K) for some value µ > 0

and if t < µr then ∂Kr,t is a smooth C1,1-hypersurface. Moreover,

reach(∂Kr,t) ≥ min(t, µr − t)

which implies that the smallest of the principal radii of curvature at any point of
∂Kr,t is at least min(t, µr − t).
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One also gets an estimation on the Hausdorff distance between ∂Kr,t and ∂K
and also show that ∂Kr and ∂Kr,t are isotopic.

Proposition 1.16 ([5]). If r < reachµ(K) for some value µ > 0 and if 0 < t < µr

then
dH(∂Kr,t, ∂K) ≤ r

µ
− t

Theorem 1.17 (Offsets isotopy theorem [5]). For r < reachµ(K) and 0 < t < µr,
∂Kr and ∂Kr,t are isotopic hypersurfaces.

1.4 STABILITY OF CURVATURE MEASURES

We address the problem of curvature estimation from sampled compact sets. Let
us first recall a question of John Milnor [Mil93]: In what sense do two sets have to
be close to each other, in order to guarantee that their curvature measures are close
to each other? We provide here a partial answer to this question.

Contribution. We show that the curvature measures (anisotropic or not) of the
offset of a compact set K with positive µ-reach can be estimated by the same
curvature measures of the offset of a compact set K ′ close to K in the Hausdorff
sense. Hence a Hausdorff proximity is sufficient to answer the question of John
Milnor. However, the stability does not concern the sets themselves but their
offset. Since the curvature measures can be computed for finite unions of balls,
the curvature measures of the offset of a compact set with positive µ-reach can
thus be approximated by the curvature measures of the offset of a point-cloud
sample.

1.4.1 — Curvature measures and normal cycle of sets with positive reach

Curvature measures have been defined for sets with positive reach by Herbert
Federer and have been generalized by Joseph Fu to a wide class of compact sets,
containing in particular triangulations, semialgebraic sets and subanalytic sets
[Fu93b, Fu94], using the normal cycle theory introduced by Peter Wintgen and
Martina Zähoe [Win82, Zäh86]. Although we only deal here with compact sets
with positive reach, we introduce the definition based on normal cycle, because it
is useful in the proofs.

We first need to introduce the definition of invariant forms of the tangent bun-
dle TRd of Rd. We identify the tangent bundle TRd with E×F , where E is the base
space and F is the fiber. Let J : E → F be the canonical isomorphism between
E and F . We endow TRd with the dot product < (e, f), (e′, f ′) >=< e, e′ > + <

J−1(f), J−1(f ′) >. At any point (m, ξ) of STRd = {(m, ξ) ∈ E × F, ‖ξ‖ = 1}, we
consider an orthonormal frame (e1, ..., ed−1) of the space orthogonal to J−1(ξ) and
we take εi = J(ei). We build the (d-1)-differential form:

Ω = (e∗1 + tε∗1) ∧ ... ∧ (e∗d−1 + tε∗d−1),

where u∗ denotes the 1-form defined by u∗(x) =< u, x >. One can show that this
form does not depend on the chosen orthonormal frame. The coefficient of tk is a
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(d-1)-form denoted by ωk. One can show that each ωk is invariant under the action
of the orthogonal group.

Let now V be a set with positive reach. We define the set:

S(V ) = {(p, n) ∈ Rd × Sd−1, p ∈ ∂V and n ∈ N (p)},

where N (p) = {n ∈ Sd−1,∃t > 0, pV (p+ tn) = p} is the normal cone of V at p. One
can show that S(V ) is a Lipschitz (d-1)-manifold. The normal cycle N(V ) of V is
then by definition the (d−1)-current on Rd×Rd defined for every (d-1)-differential
form ω by:

N(V )(ω) =

∫
S(V )

ω.

DEFINITION 1.18. Let V be compact set of Rd with positive reach. The kth-
curvature measure of V , denoted by Φk

V associates to each measurable function
f on Rd the real number:

Φk
V (f) = N(V )(f̄ ωk),

where f̄ is defined on Rd × Rd by f̄(p, n) = f(p).

Remark that our definition is slightly different from the classical one. More
precisely, in the particular case where f = 1B is the characteristic function of
a Borel set B, one recovers the usual notion of curvature measure [Fed59]. We
have extended the definition to any (Lipschitz) function, because it is a natural
framework allowing to state stability results. One can show that if V is the volume
enclosed by an hypersurface ∂V , then Φk

V (1B) is the integral over ∂V ∩ B of the
k-th symmetric function of the principal curvatures of ∂V . In dimension 3, Φ1

V

and Φ2
V are respectively the integral of twice the mean curvature and the integral

of the gaussian curvature:

Φ2
V (1B) =

∫
B∩∂V

G(p)dp and Φ1
V (1B) =

∫
B∩∂V

H(p)dp,

where H(p) an G(p) denote respectively the gaussian and twice the mean curva-
ture of ∂V at p.

Anisotropic curvature measures have also been introduced in [CSM06]. The
authors associate to every pair of vectors X and Y of Rd a differential form ωX,Y

of Rd×Rd. They then define the anisotropic curvature measure HV of a geometric
set V that associates to every (Lipschitz) function f : Rd → R the bilinear form

HV (f) : (X,Y ) 7→ N(C)(f̄ωX,Y ).

In the particular case where V is the volume enclosed by a C2 compact hypersur-
face, HV (1B) is just the integral over B ∩ ∂V of a symmetric bilinear form II∂V
related to the second fundamental form of ∂V . More precisely, this form II∂V co-
incides with the second fundamental form of ∂V on the tangent plane of V and
vanishes on its orthogonal complement. For any Borel set B of Rd, one has:

HV (1B) =

∫
B∩∂V

II∂V (p)dp.



GEOMETRIC INFERENCE USING DISTANCE FUNCTIONS 35

Now, let K be a compact set whose µ-reach is greater than r > 0. Then V =

Rd \Kr has a reach greater than µr. It is then possible to define the extended
notions of curvature measures of Kr [RZ03, RZ05] by:

Φk
Kr(f) = (−1)kΦk

V (f) and HKr(f) = −HV (f).

1.4.2 — Stability of the curvature measures of the offsets

We compare here the curvature measures of the offsets of two compact sets, pro-
vided that the two compact sets are close in the Hausdorff sense and have positive
µ-reach (Theorem 1.19). This result is obviously using the regularity of the offset
of a compact set with positive µ-reach established in the previous section. Be-
yond that, it is worth noting that the smoothness of its double offset quantified in
Theorem 1.15, is central in the proof.

We recall that the covering number N (A, t) of a compact set A is the minimal
number of closed balls of radius t needed to cover A. Given a function f : Rd → R,
we let ‖f‖∞ := maxx∈Rd |f(x)| and denote Lipf := maxx6=y |f(x)− f(y)|/‖x− y‖ its
Lipschitz constant, which can be infinite. We define the bounded-Lipschitz norm
by ‖f‖BL := ‖f‖∞ + Lip(f).

Theorem 1.19 ([6]). Let K and K ′ be two compact sets of Rd whose µ-reaches are
greater than r. We suppose that the Hausdorff distance ε = dH(K,K ′) between K

and K ′ is less than rµ (2−
√

2)
2 min(µ, 1

2). For any function f : Rd → R, one has:

|Φi
Kr(f)− Φi

K′r(f)| ≤ k(r, µ, d, f) ‖f‖BL

√
ε,

and
‖HKr(f)−HK′r(f)‖ ≤ k(r, µ, d, f) ‖f‖BL

√
ε,

where k(r, µ, d, f) only depends on f through the covering numberN (spt(f)O(
√
ε), µr/2)

and spt(f) = {x ∈ Rd, f(x) 6= 0}.

ǫ

p q

θ

K ′r

r
s

r

a b

Figure 1.8: Tightness of the bound of Theorem 1.19: we take K = [p, q] and K ′ = [p, q] ∪
{s}, where s is at a distance ε from K. We have dH(K,K ′) = ε and the total curvature θ of
K ′r between a and b satisfies θ = 2 arccos

(
r−ε
r

)
= O (

√
ε) .

Remark that the upper bound in
√
ε of Theorem 1.19 is sharp. Furthermore,

one may notice that one can estimate locally the curvature: if we take the function
f(x) = max(1−‖x−c‖/r, 0) equal to 1 at a point c ∈ ∂K ′r that radially decreases in
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a “small" ball B of radius r and vanishes out of B, then we can get local information
about the curvature of K ′r from the curvature of Kr in the neighborhood of c.

We also note that the conclusion of the theorem may be rephrased by say-
ing that the bounded Lipschitz distance between the curvature measures of Kr

and K ′r is bounded by O(
√
ε). The bounded Lipschitz distance between measures

is similar to the 1-Wasserstein distance, except that it applies to general signed
measures whereas Wasserstein distance is limited to probability measures.

A similar stability result has been obtained in [CCSM10]. They also show
that the bounded Lipschitz distance between the curvature measures of Kr and
K ′r is bounded by O(

√
ε). The main differences are that our result also ap-

plies to anisotropic curvature measures, whereas [CCSM10] is only limited to
the usual curvature measures. On the other hand, the stability result for curva-
ture measures in [CCSM10] derives from a stability result for so-called boundary
measures, which holds without any assumptions on the underlying compact set,
whereas ours requires to assume a lower bound on the µ-reach. While the two
results seem related at first sight, the proof techniques are drastically different.

Theorem 1.19 assumes that both the compact sets K and K ′ have sufficiently
large µ-reach. Nevertheless, in practical settings, particularly when dealing with
point clouds, such an hypothesis is never satisfied. Using a variant of Theorem
1.8, it is still possible to approximate the curvature measures of the offsets of a
compact set with positive µ-reach from any sufficiently close approximation of it.

Theorem 1.20 ([6]). LetK andK ′ be two compact subsets of Rd such that reachµ(K ′) >

r. Assume that the Hausdorff distance ε = dH(K,K ′) between K and K ′ is such
that ε < µ2

60+9µ2
r. Then the conclusions of Theorem 1.19 also hold.

1.4.3 — Computation of the curvature measures of 3D point clouds

When the compact set K is a finite point set in R3 it is possible to provide explicit
formula for the curvature measures. The boundary of Kr is a spherical polyhe-
dron: its faces are spherical polygons; its edges are circle arcs contained in the
intersection of pairs of spheres of radius r with centers in K; its vertices belong
to the intersection of three spheres of radius r with centers in K. Moreover, the
combinatorial structure of ∂Kr is in one-to-one correspondence with the bound-
ary of the α-shape of K [Ede93]. To get the experimental results below we used a
half-edge data structure for boundaries of union of balls designed based upon the
α-complex data structure of the library CGAL [Cga].

Let C be a cell of ∂Kr (i.e. a face, an edge or a vertex). A simple calculation
shows that for i ∈ {1, 2}, Φi

Kr(1C) is proportional to either the area, or the length,
or the Dirac measure of C (depending on if C is a face or an edge or a vertex). One
has Φi

Kr(1C) = ϕiKr(C) Hl(C), where l is the dimension of C. As a consequence,
once computed on each cell C of ∂Kr, the values ϕiKr(1C) can simply be stored by
adding an extra information to the elements of the data structure representing
∂Kr. For each vertex v of ∂Kr and 0 < r1 < r2, we define fv : R3 → R by fv(x) = 1

if ‖x− v‖ ≤ r1, fv(x) = 0 if ‖x− v‖ > r2 and fv(x) = 1− ‖x−v‖−r1r2−r1 otherwise.

ALGORITHM
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Input: a 3D point cloud K, a radius r and two values 0 < r1 < r2

Output: an estimated curvature value on each vertex of ∂Kr

1. Compute ∂Kr

2. For each cell C (faces, edges, vertices) of ∂Kr compute ϕ1
Kr(C) and ϕ2

Kr(C).
3. For each vertex v of ∂Kr, we approximate Φ1

Kr(fv) and Φ2
Kr(fv) using a piece-

wise constant approximation of fv.

In Figures 1.9 and 1.10 below, the curvatures are then represented on the
boundary of the α-shape (for α = r) of the point clouds where each triangle is
colored according to the curvature value of its corresponding vertex in ∂Kr and to
the colorbar on the right of Figure 1.9. Note that the color values are different for
the different examples (since the extrema values are different). This algorithm
can be easily adapted to calculate the anisotropic curvature measures for a finite
set of points. In particular, this allows to estimate the principal curvatures and
principal directions from a point set.

Figure 1.9: The Gauss (left) and mean (right) curvatures computed on the offset of a
point set sampled around a smooth surface. The colors are related to the values of the
curvature according to the colorbar on the right, the blue color corresponding to the lowest
values.

Figure 1.10: The Gauss (two first) and mean (two last) curvatures computed on the
offset of a point cloud sampled around a non-manifold set union of a cube with a disc and
a circle. As expected, the vertices and the boundary of the disc have a large Gaussian
curvature.
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1.4.4 — Sketch of proof of Theorem 1.19

We give here the sketch of the proof by comparing the two offsets Kr and K ′r

globally. In [6], we compare these two offsets locally (i.e. in a Borel set B that
contains the support of the function f ), which gives a better bound on the error.
The proof is therefore more complicated since a second current (related to the
boundary of B ∩ ∂K ′r,t, where B is a Borel set) appears in Equation (1.7).

The proof can now be divided into three steps: in the first step, we show that
the problem can be carried onto the double offsets (that are smooth); in a second
step, we compare the normal cycles of the double offsets; in the last step, we
combine Step 1 and Step 2 to show that the curvature measures of the two offsets
are close. Let K and K ′ be two compact sets with positive µ-reach that satisfy all
the assumptions of Theorem 1.19.

Step 1: Carrying the problem into the double offsets
First note that Rd \Kr and Rd \K ′r have positive reach. We introduce the map:

F−t : Rd × Rd → Rd × Rd
(p, n) 7→ (p− tn, n)

.

If V is any compact set with positive reach and t < reach(V ), the map F−t induces
naturally a one-to-one correspondence between the support of the normal cycle of
the offset V t and the support of the normal cycle of V . In particular, this map
allows to send simultaneously the normal cycles of Kr,t and K ′r,t to respectively
the normal cycles of Kr and K ′r. More precisely, one has:

N(Rd \Kr)−N(Rd \K ′r) = F−t](N(Kr,t)−N(Kr,t)),

where F−t] denotes the push-forward for currents. Therefore, in order to compare
the normal cycles of Rd \Kr and Rd \K ′r, it is sufficient to compare the normal
cycles of the double offsets Kr,t and K ′r,t.

Step 2: Comparison of the normal cycles of the double offsets
In order to compare the normal cycles of Kr,t and K ′r,t, we first need to compare
their (geometric) supports in Rd × Rd. Using the Flow Integration Formula (1.1),
one first shows that the Hausdorff distance between ∂Kr,t and ∂K ′r,t is less than
ε/µ. Using a result of [CCSL09a] one also shows that the difference between
the normals of ∂Kr,t and ∂K ′r,t is bounded by 30

√
ε/(µt). Hence the (geometric)

supports of N(Kr,t) and N(K ′r,t) are close to each other. Let us take t = µr/2.
Since the reach of ∂Kr,t is larger than t (Theorem 1.15), the projection map p∂Kr,t

onto ∂Kr,t is then defined on the offset Ut := (∂Kr,t)t. Since ∂K ′r,t ⊂ Ut, the map
p∂Kr,t induces a one-to-one map between ∂K ′r,t and ∂Kr,t. We now define

ψ : Ut × Rd → spt (N (Kr,t))

(x, n) 7→ (p∂Kr,t(x), np∂Kr,t (x))
.

Using the affine homotopy between ψ and the identity, the homotopy Lemma [Fed69,
4.1.9 page 363-364] allows to show that N(Kr,t) and N(K ′r,t) are close. More pre-
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cisely
N(Kr,t)−N(K ′r,t) = ∂R, (1.7)

where ∂R is the boundary of a particular d-rectifiable R current whose support
spt(R) has a d-volume bounded by Hd(spt(R)) ≤ k(r, µ, d)Hd−1(∂K ′r,t)

√
ε, where

Hk denotes the k-dimensional Hausdorff measure and k(r, µ, d) is a constant that
only depends on r, µ and d.

Step 3
Let us take an invariant form ωk. By combining previous equations, one has:

φk
Rd\Kr

(f)− φk
Rd\K′r

(f) = N(Rd \Kr)(f̄ωk)−N(Rd \K ′r)(f̄ωk) = F−t]∂R(f̄ωk).

We show that F−t is
√

1 + t2-Lipschitz. Since ωk and dωk are uniformly bounded
by a constant depending on the dimension, Lip(f̄) = Lip(f), one gets by Stokes
theorem:

|φk
Rd\Kr

(f)− φk
Rd\K′r

(f)| ≤ k(r, µ, d) ‖f‖BL Hd−1(∂K ′r,t)
√
ε,

The previous inequality still holds for Kr and K ′r. To conclude the proof, we use
the bound on Hd−1(∂K ′r,t) in terms of covering number of Kr [CCSM10].

1.5 APPLICATION IN DIGITAL GEOMETRY

In some applications, a real object or a scene is known through a digital image,
that is a union of voxels. Since the digitization process aims to be as faithful
as possible to the real data, it is very natural to look at topological and geometric
properties that can be inferred from digital data for rather elementary digitization
processes. Here we consider the problem of estimating properties of the boundary
∂X of a compact set of Rd from the boundary ∂hXof its Gauss digitization at a
scale h.

A voxel of size h > 0, denoted by Voxh(z), is a closed cube of size h aligned with
the axis of Rd and centered in z ∈ hZd. Given a compact domain X ⊂ Rd and a
sampling grid step h > 0, the Gauss digitization ofX is the point setXh = X∩hZd,
the associated digital set is DhX := ∪x∈XhVoxh(x). The boundary of the Gauss
digitization of X is denoted ∂hX := ∂(DhX).

The inference of topological properties has been extensively studied especially
in the 2D case, when the shape is R-regular (i.e. when its boundary has positive
reach) mainly with morphological tools [Pav82, Ser82, GL95, LCG98, SK05]. The
extension to non R-regular shapes appears quite challenging. Fewer works ad-
dress the case of d-dimensional images, for d ≥ 3. One underlying reason is that
topology preservation cannot be achieved in general already for d = 3. Stelldinger
and Köthe [SK05, Theorem 3] exhibit an example of shape whose boundary is
of class C1,1, but whose Gauss digitization has non-manifold boundary, even for
small h. Concerning geometric inference in R3, there are many methods that es-
timate the area of the boundary of a shape from its digitization, but few of them
come with guarantee. Even for methods that have been shown to be convergent,
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such as methods based on the estimation of the volume of an offset [SLS07] or sta-
tistical methods [LYZ+10], there is no error bound, hence the convergence speed
is unknown.

Contribution. Using classical properties of distance functions to compact sets,
we provide geometric inference results in the context of digital geometry [12].
We first connect the notion of R-regularity well used in digital geometry [GL95,
LCG98, Pav82, Ser82] to the notion of reach. We consider a compact domain X of
Rd whose boundary has positive reach. We establish that ∂X and ∂hX are Haus-
dorff close to each other whatever the dimension (this result was previously only
known in dimension 2). We then show that “places” where ∂hX is non manifold
may only occur where the normal vector is almost aligned with some digitization
axis, and the limit angle decreases with h. Finally, we study the restriction to
∂hX of the projection map p∂X onto ∂X. Since it is not an homeomorphism, we
estimate the size of the set of points on ∂X for which this map is not one-to-one,
and show that it tends to zero with h. This allows us to show a convergence result
for digital integration.

1.5.1 — R-regularity, reach and Hausdorff proximity

R-regularity and positive reach TheR-regularity property was independently
proposed by Pavlidis [Pav82] and Serra [Ser82]. Gross, Conrad and Latecki intro-
duced the similar definition of par(R)-regularity in [GL95]. A closed ball iob(x,R)

of radius R is an inside osculating ball of radius R to ∂X at point x ∈ ∂X if
∂X ∩ ∂iob(x,R) = {x} and iob(x,R) ⊆ X◦ ∪ {x}, where X◦ is the interior of X. A
closed ball oob(x,R) of radius R is an outside osculating ball of radius R to ∂X at
point x ∈ ∂X if ∂X ∩ ∂oob(x,R) = {x} and oob(x,R) ⊆ (Rd \X) ∪ {x}. A set X is
par(R)-regular if there exist an outside and an inside osculating ball of radius R
at each x ∈ ∂X [LCG98]. In the case where X is a d-dimensional object, the reach
of ∂X and the R-regularity of X are related as follows.

Lemma 1.21 ([12]). Let X be a d-dimensional compact domain of Rd. Then

reach(∂X) ≥ R ⇐⇒ ∀R′ < R X is par(R′)−regular.

Hausdorff distance between ∂X and its digital counterpart The following
theorem is valid for arbitrary dimensions, thus extending a result in 2D [Lac06,
Lemma B.9]. For x ∈ ∂X, we denote by n(x, l) the segment of length 2l, centered
on x and aligned with the normal vector at x. Using the projection map, this result
is straightforward.

Proposition 1.22 ([12]). Let X be a compact domain of Rd such that the reach of
∂X is greater thanR. Then, for any digitization step 0 < h < 2R/

√
d, the Hausdorff

distance between sets ∂X and ∂hX is less than
√
dh/2. More precisely:

∀x ∈ ∂X,∃y ∈ ∂hX, ‖x− y‖ ≤
√
d

2
h and y ∈ n(x,

√
d

2
h), (1.8)

∀y ∈ ∂hX,∃x ∈ ∂X, ‖x− y‖ ≤
√
d

2
h and y ∈ n(x,

√
d

2
h). (1.9)
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(a) h = 0.1 (b) h = 0.05 (c) h = 0.025
Ap∂X

= 67.29%, Anm = 1.49% Ap∂X
= 35.14%, Anm = 0.37% Ap∂X

= 18.24%, Anm = 0.09%

(a) h = 0.04 (b) h = 0.02 (c) h = 0.01
Ap∂X

= 69.36%, Anm = 0.86% Ap∂X
= 34.82%, Anm = 0.12% Ap∂X

= 18.75%, Anm = 0.03%

Figure 1.11: Illustration of Theorem 1.23 and Theorem 1.24 on several Gauss dig-
itizations of two polynomial surfaces (top row displays a Goursat’s smooth cube
and bottom row displays Goursat’s smooth icosahedron). Zones in dark grey in-
dicates the surface parts where the Gauss digitization might be non manifold
(Theorem 1.23); their relative area is denoted by Anm. Zones in light grey (and
dark grey) indicates the surface parts where projection p∂X might not be an home-
omorphism (Theorem 1.24); their relative area is denoted by Ap∂X . Clearly, both
zones tends to area zero as the gridstep gets finer and finer, while parts where
digitization might not be manifold are much smaller than parts where p∂X might
not be homeomorphic.

1.5.2 — Manifoldness of the boundary of Gauss digitized sets in R3

We show in the following result that only places of ∂X with a normal very close
to some axis direction may induce a non-manifold place in the h-boundary (dark
grey zones in Figure 1.11). Even better, if the shape is not flat at these places,
these zones tend to area zero with finer digitization gridsteps.

Theorem 1.23 ([12]). Let X be some compact domain of R3 whose boundary has
positive reach and h < 0.178reach(∂X). Let y be a point of ∂hX and Ch be a 2-cell
of ∂hX containing y. If Ch ∩ ∂X = ∅ or if there exists p ∈ Ch ∩ ∂X such that the
angle αy between Ch and the normal to ∂X at p satisfies αy ≥ 1.2h/R, then ∂hX is
homeomorphic to a 2-disk around y.

IDEA OF THE PROOF. The proof relies on the determination of necessary condi-
tions for the presence of crossed configurations in the digitized set Dh(X). There
are two kind of crossed configurations.
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i) crossed 8-configuration: Let p be the point common to eight voxels. We say
that there is a crossed 8-configuration around p if either only two voxels (out
of the eight voxels) belong to Dh(X) and only share p or if only two voxels
(out of the eight voxels) do not belong to Dh(X) and only share p.

ii) crossed 4-configuration: Let e be the edge common to four voxels. We say
that there is a crossed 4-configuration around p if only two voxels (among
the four voxels) belong to Dh(X) and only share the edge e.

A digital set without crossed configuration is a 2-manifold [Lat97]. The proof is
then a technical calculation showing that under the assumptions of the theorem,
there is no crossed configuration. �

1.5.3 — Non-homeomorphic part of the projection map

We assume that h ≤ R/
√
d, which implies by Proposition 1.22 that the Hausdorff

distance between ∂X and ∂hX is less than R/2. Therefore the projection map p∂X
on ∂X is well defined on ∂hX. However, this map is not one-to-one in general. We
show here that the subset of ∂X for which p∂X is not injective from ∂hX, otherwise
said the part of ∂X with multiplicity greater than one through projection, is small.
We define the following set

mult(∂X) = {x ∈ ∂X, s.t. ∃y1, y2 ∈ ∂hX, y1 6= y2, p∂X(y1) = p∂X(y2) = x}. (1.10)

Theorem 1.24 ([12]). If h ≤ R/
√
d, then one has

Hd−1(mult(∂X)) ≤ K1(h) Hd−1(∂X) h,

where

K1(h) =
4d2

R
+O(h) ≤ d2 3d+1

R
.

Here the constant appearing in O(h) only involves the dimension d and the
reach R.

IDEA OF THE PROOF. Let p′ : ∂hX → ∂X be the restriction to ∂hX of the projection
p∂X onto ∂X. Proposition 1.22 implies that p′ is surjective. However, it may not
be injective in general. We introduce the set mult(∂hX) = p′−1(mult(∂X)). Clearly,
the map

p′ : ∂hX \mult(∂hX)→ ∂X \mult(∂X)

is one-to-one. For any point x ∈ ∂X, we denote by n(x) the outward unit normal
vector to ∂X at x and by nh(y) the outward unit normal vector to ∂hX at y. The
outline of the proof is the following:

i) We show that the scalar products between normals of ∂hX and ∂X is always
greater than −2

√
dh/R.

ii) We show that mult(∂X) ⊂ p′(P (h)), where

P (h) := {y ∈ ∂hX,
〈
n(p′(y))|nh(y)

〉
≤ 0}.

iii) We show that the d−1 jacobian of p′ at y is approximately | 〈n(p′(y))|nh(y)〉 |,
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hence the jacobian of its restriction to P (h) is in O(h).
iv) We conclude that Hd−1(mult(∂X)) is in O(h).

�

1.5.4 — Digital surface integration

We introduce a digital surface integral and show its convergence. Let DhZ =

∪z∈ZVoxh(z) be a digital set, namely a union of voxels centered in a point set
Zh ⊂ h · Zd. The boundary of this digital set, denoted by ∂hZ = ∪z∈Zh is composed
of d− 1 facets.

DEFINITION 1.25. Let f : Rd → R be an integrable function and n̂ be a digital
normal estimator. We define the digital surface integral by

DIh(f,DhZ, n̂) :=
∑

c is a d−1 facet of ∂hZ
hd−1f(ċ)|n̂(ċ) · n(ċ)|,

with n(ċ) the trivial normal to the (d− 1)-cell c.

We recall that the bounded-Lipschitz norm of a function f : Rd → R is given
by ‖f‖BL := ‖f‖∞+ Lip(f). Given a normal estimator n̂ defined on ∂hX, we define
the error of the normal estimation by

‖n̂− n‖est := sup
y∈∂hX

‖n(p∂X(y))− n̂(y)‖.

We prove the convergence of the digital surface integral.

Theorem 1.26 ([12]). Let X be a compact domain whose boundary has positive
reach R. For h ≤ R√

d
, the digital integral is convergent towards the integral over

∂X. More precisely, for any integrable function f : Rd → R, one gets∣∣∣∣∫
∂X

f(x)dx−DIh(f,Dh(X), n̂)

∣∣∣∣ ≤ k(R, d) Hd−1(∂X) ‖f‖BL

(
h+ ‖n̂− n‖est

)
where the constant k(R, d) only depends on the dimension d and the reach R.

IDEA OF THE PROOF. Let p′ : ∂hX → ∂X be the restriction to ∂hX of the projection
p∂X onto ∂X. The proof is decomposed as follows

— We first show that the multiplicity of p′ is bounded almost everywhere for
the (d-1)-Hausdorff measure.

— Since the set where the projection p′ is not one-to-one is negligible (Theo-
rem 1.24), we deduce from the general coarea formula that∫

∂X
f(x)dx ≈

∫
∂hX

f(p′(y))Jac(p′)(y)dy,

where Jac(p′) is the d− 1 jacobian of p′.
— From the relation Jac(p′)(y) ≈ | 〈n(p′(y))|nh(y)〉 |, where n(p′(y)) is the nor-

mal to ∂X at the point p′(y) and nh(y) is the normal of a d − 1 face of ∂hX
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containing y, we deduce∫
∂X

f(x)dx ≈
∫
∂hX

f(p′(y))|
〈
n(p′(y))|nh(y)

〉
|dy.

— Finally, we approximate this integral on each d − 1 face. The Lipschitz con-
stant appears here, coming from triangle inequalities.

�



Chapter 2

Generalized Voronoi
Covariance Measure

Most of the stability properties mentioned in the first chapter derive from the
regularity properties and from the Hausdorff stability of the distance function,
namely if K and L are Hausdorff-close, then dK and dL are uniformly close. Un-
fortunately, geometric data is usually corrupted with outliers, and the hypothesis
of Hausdorff noise is not realistic in practice.

Distance-like functions have been recently introduced in the context of geomet-
ric inference because they possess the key regularity properties of the distance
function: they are Lipschitz and their square are 1-semiconcave [CCSM11]. The
set of distance-like functions contains distance functions, but also contains other
functions such as distances to measures that are robust to outliers [CCSM11].
Loosely speaking, the underlying idea of using distance to measures in the con-
text of geometric inference is to replace compact sets by measures supported on
compact sets and to work with distances to measures that are resistant to outliers
(i.e., not sensitive to isolated parts whose measure is “small”).

In the particular case where one takes the uniform measure on a point set K,
the distance to the measure is called the k-distance of K and can be computed us-
ing the notion of Power Diagram. Unfortunately it is not computable in practice
since the number of cells appearing in the Power Diagram is of the order of

(
n
k

)
,

where n is the number of points in K. To palliate this problem, a computable
k-distance that approximates well the k-distance to K, called the witnessed k-
distance, has been introduced in [GMM13].

There are many methods for normal or curvature estimation from point sets.
Classical principal component analysis methods try to estimate normal vectors by
fitting a tangent plane. In contrast, Voronoi-based methods try to fit the normal
cones to the underlying shape, either geometrically [AB99, DS06] or using covari-
ance matrices of Voronoi cells [ACSTD07, MOG11]. In the latter case, the normal
estimation is given by the eigenvector corresponding to the largest eigenvalue of
the covariance matrix. A tensor-valued measure, which is called the Voronoi Co-
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variance Measure (VCM), has been defined for any compact set K [MOG11]. This
tensor relies on the distance function to the compact set K. It is Hausdorff stable,
in the sense that if two compact sets are close in the Hausdorff sense, their VCM
are also close to each other. Furthermore the VCM of a smooth surface encodes
the normal vector field to this surface. As a consequence, the geometric informa-
tion extracted from the VCM of a point set which is Hausdorff close to a surface
provides an estimation of the normal vector field of the smooth surface.

Contributions With my PhD student Louis Cuel, Jacques-Olivier Lachaud (who
was co-advising Louis Cuel) and Quentin Mérigot, we have extended the notion
of Voronoi Covariance Measure of a compact set [7]. More precisely, we associate
to any distance-like function δ a tensor-valued measures called the δ-Voronoi co-
variance measure (δ-VCM). We show its stability: if a distance-like function δ

approximates well the distance function to a compact set K, then the δ-VCM is
close to the VCM of K. When applied to a point cloud P approximating a surface
S of R3, this implies that one can recover the normal vectors of S accurately from
δ, if δ is the k-distance to P . This estimation is Hausdorff stable and robust to
outliers.

The distance to a measure of a point cloud being not computable in practice,
we replace it by the witnessed k-distance. We show that the associated VCM still
well approximates the VCM of the underlying surface, which opens the door to
practical computations using the notion of Power Diagram. We show on various
examples that the δ-VCM provides a very robust normal estimator resilient to
Hausdorff noise and to outliers. We also use the δ-VCM to estimate curvatures
and sharp features. Finally, with Louis Cuel and Jacques-Olivier Lachaud [8] we
also use the VCM in the context of digital geometry and provide a convergent
digital normal estimator.

Before detailing our contribution in Sections 2.2, 2.3 and 2.4, we briefly recall
definitions and properties of distance-like functions and VCM.

2.1 BACKGROUND ON DISTANCE-LIKE FUNCTIONS AND VCM

We first recall some basics on distance-like functions, distance to measures and
k-distances [CCSM11].

Distance-like functions A function δ : Rd → R+ is called distance-like if it
is proper (i.e. lim‖x‖→∞ δ(x) = ∞) and if δ2 is 1-semiconcave (i.e. δ2(.) − ‖.‖2 is
concave). These two properties imply that δ is 1-Lipschitz.

Distance functions to compact sets are clearly distance-like. Other typical ex-
amples central in this chapter are the power distances. Given a point cloud P and
a family of non-negative weights (ωp)p∈P , the power distance to P is the distance-
like function δP defined by

δP (x) :=

(
min
p∈P

(
‖x− p‖2 + ωp

))1/2

. (2.1)
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Figure 2.1: Distance to a measure. We suppose here that the measure µ is sup-
ported on a compact set K. The quantity δµ,m(x) is the minimal radius r such that
B(x, r) ∩K has a mass m.

When the weights are all zero, the power distance is nothing but the distance
function to the point set P . Remark also that a power distance induces a de-
composition of the space into a family of convex polyhedra, called power cells, on
which the function δ2

P is quadratic. The power cell of a point p in P is defined by

PowP (p) = {x ∈ Rd;∀q ∈ P, ‖x− p‖2 + ωp ≤ ‖x− q‖2 + ωq}.

When the weight vector ω vanishes, we recover the notion of Voronoi cell. Note
that the Power Diagram is an important notion in computational geometry that
will also be central in the next chapter.

Distance to a measure The distance to a measure is defined for any probability
measure µ on Rd. The underlying idea is to replace a compact set by a (uniform)
measure on it. Hence an outlier in a compact set K will have an importance
related to its mass.

DEFINITION 2.1. Let µ be a probability measure on Rd and m0 a regularization
parameter in (0, 1). The distance to the measure µ is defined for every point x in
Rd by

dµ,m0(x) :=

(
1

m0

∫ m0

0
δ2
µ,m(x)dm

)1/2

, (2.2)

where δµ,m(x) = inf{r ≥ 0, µ(B(x, r)) ≥ m}.

The distance to the measure is distance-like and has been shown to be resilient
to wasserstein noise. More precisely, one has [CCSM11, Theorem 3.5]∥∥dµ,m0 − dµ′,m0

∥∥
∞ ≤

1√
m0

W2(µ, µ′),

where W2 is the 2-Wasserstein distance between measures and ‖.‖∞ is the sup
norm.
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Point cloud case Let P ⊂ Rd be a finite point set with n points, k ∈ (0, n) a real
number and m0 = k/n. The k-distance to P , denoted by dP,k, is the distance to the
uniform probability measure on P for the parameter m0. In the particular case
where k is an integer, a simple calculation shows that for every point x in Rd

d2
P,k(x) =

1

k

∑
pi∈NNP,k(x)

‖x− pi‖2 ,

where NNP,k(x) are the k nearest neighbors of x in P . The k-distance dP,k is a
power distance. More precisely, if we denote BaryP,k the set of isobarycenters of k
distinct points in P , one has

∀x ∈ Rd d2
P,k(x) = min

b∈BaryP,k

(
‖x− b‖2 + ωb

)
,

where the weight is given by ωb = 1
k

∑
pi∈NNP,k(b) ‖b− pi‖2.

Voronoi Covariance Measure The Voronoi Covariance Measure is a tensor-
valued measure that depends on an offset parameter R > 0 [MOG11]. It asso-
ciates to any measurable function χ : Rd → R the positive semi-definite matrix
defined by

VdK ,R(χ) =

∫
KR

(x− pK(x))⊗ (x− pK(x)).χ(pK(x))dx,

where v⊗w denotes the d×d matrix whose entries are defined by (v⊗w)ij = viwj .

r

Kr

p

Figure 2.2: VCM of a point set K in R2. Here χ is the characteristic function
of the ball B(p, r) centered in p and of radius r. VdK ,R(χ) is an integral over all
the Voronoi cells of the points of K ∩ B(p, r). The eigenvector corresponding to
the largest eigenvalue of VdK ,R(χ) is shown and is capturing the normal of an
underlying smooth curve (Courtesy of Louis Cuel).

This tensor encodes geometric information on the compact set K. In the par-
ticular case where S is a smooth compact surface of R3 with exterior unit normal
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n, if R is chosen small enough, one has the following expansion as r → 0:∥∥∥∥VdS ,R(1B(p,r))−
2π

3
R3r2 [n(p)⊗ n(p)]

∥∥∥∥
op

= O(r3), (2.3)

where ‖.‖op is the operator norm. Furthermore, it has been shown that if two
compact sets are Hausdorff close, then their VCM are close. Hence, under reason-
able assumptions, an eigenvector associated to the highest eigenvalue of VdK ,R(χ)

gives an estimation of the normal direction of S at the point p if K is a point set
Hausdorff close to S and χ is a function supported on a small ball centered in p.

2.2 δ-VORONOI COVARIANCE MEASURE

We extend the notion of Voronoi Covariance Measure of a compact set. We asso-
ciate to any distance-like function δ a tensor-valued measure called the δ-Voronoi
Covariance Measure or δ-VCM.

DEFINITION 2.2 (δ-VCM [7]). The δ-Voronoi Covariance Measure is a tensor-valued
measure. It associates to any measurable function χ : Rd → R the positive semi-
definite matrix defined by

Vδ,R(χ) :=

∫
δR

nδ(x)⊗ nδ(x).χ (x− nδ(x)) dx, (2.4)

where δR := δ−1((−∞, R]) and nδ(x) := 1
2∇δ2(x).

By the 1-semiconcavity property of distance-like functions, this vector field
nδ is defined at almost every point of Rd. The tensor Vδ,R(χ) is a convolution of
a tensor with the function χ that localizes the calculation on the support of χ.
Intuitively, if χ is the indicatrix of a ball B ⊂ Rd, then the VCM Vδ,R(χ) is the
integral of nδ ⊗ nδ over the set of points of δR whose projection lie in the ball B.

The following lemma shows that computing the VCM of a power distance
amounts to computing the covariance matrix of the intersection of each power
cell with a ball, and can thus be implemented using the notion of Power Diagram
(efficiently implemented in CGAL [Cga]).

Lemma 2.3 ([7]). Let (P, ω) be a weighted point cloud. For any measurable func-
tion χ : Rd → R, one has

VδP ,R(χ) =
∑
p∈P

χ(p) Mp, (2.5)

where
Mp :=

∫
Cp

(x− p)⊗ (x− p)dx (2.6)

is the covariance matrix of Cp := PowP (p)∩B(p, (R2−ωp)1/2) and B(p, (R2−ωp)1/2)

is the ball centered in p of radius (R2 − ωp)1/2).

Stability of the δ-VCM Our main theoretical result is Theorem 2.4, which as-
serts in a quantitative way that if a distance-like function δ is uniformly close to
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the distance function to a compact set, then the δ-VCM is close to the VCM of this
compact set. Informally, this theorem shows that one can recover geometric in-
formation about a compact set using an approximation of its distance function by
a distance-like function. We recall that the bounded-Lipschitz norm of bounded
Lischitz function function f : Rd → R is given by ‖f‖BL = ‖f‖∞ + Lip(f).

Theorem 2.4 ([7]). Let K be a compact set and δ a distance-like function. For any
bounded Lipschitz function χ : Rd −→ R, one has

‖Vδ,R(χ)− VdK ,R(χ)‖op ≤ C ‖χ‖BL ‖δ − dK‖
1
2∞ ,

where C is a constant that only depends on R, d and diam(K).

A notable feature of this theorem is that the constant in the upper bound only
depends on the diameter of K and not on its local geometry or on its regularity. In
practice choosing a test function χ supported in a small ball allows one to recover
local information from the δ-VCM.

SKETCH OF PROOF. We have to bound the quantity∫
KR

(x− pK(x))⊗ (x− pK(x)).χ(pK(x))dx−
∫
δR

nδ(x)⊗ nδ(x).χ (x− nδ(x)) dx.

The idea is to compare the two integrals on the common set E = KR−ε where
ε = ‖δ − dK‖∞ and to show that remaining parts are negligible.

— We first show that KR−ε ⊂ δR ⊂ KR+ε, from which one can show that

Hd(δR \ E) = O(‖δ − dK‖∞) and Hd(KR \ E) = O(‖δ − dK‖∞).

— We then bound the integrand. Since d2
K and δ2 are 1-semiconcave, the two

functions nδ and ndK (x) := x − pK(x) = 1
2∇(‖x‖2 − d2

K(x)) are the gradient
of two convex functions [CCSM11]. Using a result that bounds the L1-norm
of the gradient of convex functions, one gets∫

E
‖x− pK(x)− nδ(x)‖dx =

∫
E
‖ndK (x)− nδ(x)‖dx = O(‖δ − dK‖

1
2∞).

— We then conclude by injecting χ and using triangle inequalities. In this step
appear the sup norm ‖χ‖∞ and the Lipschitz constant Lip(χ).

�

Stability for the VCM using the k-distance Using the fact that the distance
to a measure is resilient to outliers, we show that our δ-VCM, where δ is a distance
to a measure or a k-distance, is robust to outliers. Although this result can hold for
measures supported in Rd, we choose to state it for uniform measures on surfaces
of R3, so as to give a better intuition.

Corollary 2.5 ([7]). Let P be a point set with n points, S a surface of R3, µP and
µS be the uniform probability measures on P and S respectively. There exists k > 0
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such that
‖VdP,k,R(χ)− VdS ,R(χ)‖op ≤ C ‖χ‖BL W2(µS , µP )

1
4 ,

where dP,k is the k-distance function to K and the constant C depends on S and R.

Remark this result can be easily extended to any dimension d and also to the
case where the measure µS supported on the compact set S has a dimension at
most l (i.e. there exists a constant αS such that µS(B(p, r)) ≥ αSr

l). Remark also
that one can get a similar result if we replace the k-distance by the witnessed
k-distance, which is computable in practice.

2.3 COMPUTATION AND EXPERIMENTS

We proposed an algorithm to compute an approximation of the VCM of a power
distance. Let (P, ω) be a weighted point cloud that defines a distance-like function
δP . In practice we replace the unit ball by a convex polyhedron. The input of our
algorithm (summarized in Algorithm 1) is a weighted point cloud, a radius R and
an approximation of the unit ball by a convex polyhedron B. Using Lemma 2.3,
we compute an approximation of the cell Cp by CBp := PowP (p)∩(p+(R2−ωp)1/2B)

and we also compute exactly MB
p =

∫
CBp

(x− p)⊗ (x− p)dx.

Algorithm 1 Computation of the measure VδP ,R supported on P .

Require: P ⊆ Rd point cloud, R > 0, B = approximation of B(0, 1)
Computation of the power diagram (PowP (p))p∈P
for all p ∈ P do
CBp ← PowP (p) ∩ (p+ (R2 − ωp)1/2B)

∆1
p, . . . ,∆

kp
p ← decomposition of CBp into tetrahedra

MB
p ←

∑kp
i=1

∫
∆i
p
(x− p)⊗ (x− p)dx

end for
return (MB

p )p∈P .

In practice, we choose for the power distance the witnessed k-distance. Re-
mark that one can also try other power distances [7]. Once we have the measure
(MB

p )p∈P , we compute for each point q in P an approximation of the covariance
matrix VδP ,R(χrq), where χrq is the characteristic function of the ball B(q, r). We use
it for normal estimation and also feature detection in noisy point sets (Figures 2.3
and 2.4). The estimations are very robust in practice.

2.4 DIGITAL VORONOI COVARIANCE MEASURE IN R3

We also have adapted the Voronoi Covariance Measure in digital geometry [8].
The VCM also provides accurate results in this context, in particular on normal
estimation (see Figure 2.5). Let DhZ = ∪z∈ZVoxh(z) be a digital set, where Zh ⊂
hZ3 is set of points. We denote by ∂hZ the boundary of DhZ. We define the digital
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Figure 2.3: Rendering of “caesar” data using triangle normal (top row) and esti-
mated δ-VCM normal (bottom row) where δ is the witnessed k-distance. Render-
ing with Phong shading, parameters R = 0.04D, r = 0.04D, k = 30, where D is
the diameter of the original shape. From left to right, all the vertices are moved
randomly at a distance less 0.02D, 0.04D and 0.06D.

Input δ-VCM VCM

Figure 2.4: Edge detection on a noisy fandisk of diameter D: 98% of the points
are moved at a distance at most 0.05D and 2% are moved at a distance at most
0.25D (Input). The results are computed with the parameters R = 0.06D and
r = 0.02D. In the middle, we have the δ-VCM, where δ is the witnessed k-distance
(with k = 30). On the right, we have the results with the VCM.

VCM of DhZ that associates to any measurable function χ : Rd → R the matrix

V̂DhZ,R(χ) :=
∑
x∈ΩRh

h3(x− pPh(x))⊗ (x− pPh(x))χ(pPh(x)),

where Ph := ∂hZ ∩ h(Z + 1
2)3 is the set of vertices of ∂hZ; ΩR

h = {x ∈ PRh ∩ h(Z +
1
2)3,Voxh(x) ⊂ PRh } is the set of centers of voxels entirely contained in the R-
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Figure 2.5: Normal estimation of digital set. The computation is made with the
Dgtal library

offset PRh of Ph. We define the normal direction estimator n̂r,R(p0) at a point p0 as
the direction of an eigenvector associated to the largest eigenvalue of V̂Zh,R(χr),
where χr is a Lipschitz function that is equal to 1 on B(p0, r), equal to 0 outside
B(p0, r + r

3
2 ) and that linearly interpolates in B(p0, r + r

3
2 ) \ B(p0, r). One obtains

in particular the following convergence result.

Corollary 2.6 ([8]). Let X be a compact domain of R3 whose boundary ∂X is a C2

surface. Let a, b ∈ R+, r = ah
1
4 and R = bh

1
4 . Then the angle between the normal

N(p0) to S at p0 and the direction n̂r,R(p0) satisfies( ̂n̂r,R(p0), n(p0)
)
≤ CS h

1
8 .

where the constant CS only depends on the reach of ∂X.

One observes in practice a better convergence with a speed in O(h). The proof
has a similar flavor than the one of the δ-VCM stability. The main differences are
the following: since we want to relate the parameters r and R and make them
tend to 0, we have to localize the calculations. Furthermore, the numerical error
due to the digitalization has to be taken into account. Using a local version of the
Weyl’s tube formula, we bound locally the volume of the symmetric difference of
some offsets.

2.5 PERSPECTIVES

Curvature measures robust to outliers We have noticed with Frédéric Chazal,
David Cohen-Steiner and Quentin Mérigot that the curvature measure stability
theorem might be generalized with the distance to the measure. Indeed, the reg-
ularity result on the offset and double offset of compact set with positive µ-reach
can be straightforwardly generalized to distance-like functions (instead of dis-
tance functions). More precisely, if δ : Rd → R is a distance-like function such
that ‖∇δ(x)‖ > µ for x ∈ δ−1([r,R]) then the reach of δ−1([r,+∞]) is greater than
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a strictly positive constant. This can be used to show that if a distance like func-
tion δ is close to the distance function dK of a compact set, then δ−1([r,+∞]) has
positive reach for an appropriate r. One may then proceed similarly as in [6] to
show that the curvature measures are robust to outliers.

Stable sharp edge reconstruction The idea is to get a method which allows
one to reconstruct a surface from a point cloud corrupted with outliers with-
out oversmoothing its sharp features. Suppose we are given a projection that
smoothes sharp edges, for example a projection corresponding to a convolved dis-
tance function, such as a distance to a measure, and that this projection is cor-
rected so as to reinforce sharp edges. Then one wants to rebuild a distance-like
function that preserves these sharp edges.

More precisely, given a projection map p : Rd → Rd defined Hd almost every-
where, we want to consider the following optimization problem

min
δ

∫
Rd
‖1

2
∇ψδ(x)− p(x)‖2dHd(x), (2.7)

where ψδ(x) := ‖x‖2 − δ2(x) and the infimum is taken over all the distance-like
functions. Remark that the semiconcavity condition for δ2 is almost a convex
constraint. In general, the discretization of this kind of problem is not straight-
forward. For example, the space of piecewise linear convex functions on regular
grids of the square is not dense in the space of convex functions on the square
[CLM01]. One may proceed with geometric methods similarly to [MO14].



Chapter 3

Reflector problem and
numerical optimal transport

The reflector problem is motivated by concrete applications in which one wants to
light precisely in certain directions. It appears for example naturally in the con-
text of automotive and aerospace industries for the design of car beams where one
wants to light in specific directions with a given intensity. The problem consists
in designing a reflector surface that is going to reflect a light source, emitted for
example by a bulb, to a prescribed light intensity in the space of directions.

In the particular case where the light source is punctual, namely when the
light is only emitted by one point, the reflector problem is well posed, has been
extensively studied and is referred as the far-field reflector problem. The inputs
are the description of the light distribution emitted by a punctual light source
located at the origin and a desired target distribution of light at infinity, that is,
on the sphere of directions. When the two light distributions can be modeled by
a probability density µ on the source sphere and a probability density ν on the
target sphere, the far-field reflector problem can be formulated as a generalized
Monge-Ampère equation on the sphere. This equation is a fully non-linear elliptic
partial differential equation. L.A Caffarelli and V. Oliker proved the existence
of weak solutions to this equation in a preprint from 1994 (published in 2008
[CO08]), and the uniqueness has also been determined under different conditions
on the densities [Wan96, GW98].

Semi-discrete Monge-Ampère equation The approach of L. A. Caffarelli and
V. Oliker to show the existence of a weak solution to the far field reflector problem
is geometric [CO08] and works as follows: they approximate the target probabil-
ity measure ν by a sequence of discrete measures νN =

∑
i αiδyi supported on a

finite set of directions Y = {y1, . . . , yN}. They show the existence of a solution to
the (semi-discrete) far field reflector problem between µ and νN , and show that
this solution converges to a solution of the original problem as N tends to infinity.

For the semi-discrete problem between µ and νN , they build a surface com-
posed of patches of N confocal paraboloids of revolution. Denote by P (y, λ) the
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convex hull of a paraboloid of revolution focused at the origin with direction y

and focal distance λ. It is well known that any ray of light emanating from
the focal point is reflected by the surface ∂P (y, λ) in the direction y. Caffarelli
and Oliker ensure there exist focal distances λ1, . . . , λN such that the surface
R = ∂(∩1≤i≤NP (yi, λi)) solves the far field reflector problem: for every i, the
amount of light reflected by R in the direction yi is exactly αi [CO08] .

They also propose an algorithm based on this Supporting paraboloids ap-
proach [CKO99]. Given a desired precision error ε, this algorithm constructs in
R3 a solution in N2/ε steps. At each step, the algorithm requires the computation
of the intersection of N confocal paraboloids.

Optimal transport The far field reflector problem was shown in 2003 to be
equivalent to an optimal transport problem on the sphere [GO03, Wan04]. This
new formulation allows to reformulate the reflector problem as a linear program-
ming problem, as already noticed by X. J. Wang [Wan04]. Furthermore, it also
opens the door to a concave maximization formulation, using Kantorovich duality.
This concave formulation is similar to an approach suggested by Aurenhammer,
Hoffmann and Aronov [AHA98] to solve the quadratic optimal transport problem
in the plane between a measure with density and a finitely supported measure.
Quentin Mérigot also used this approach in a multiscale algorithm to compute the
optimal transport in the plane for the quadratic cost [Mér11].

Similar inverse problems in geometric optics. The far-field reflector prob-
lem is related to the intersection of solid confocal paraboloids, but can also be han-
dled using union of solid confocal paraboloids [GO03]. In the near field reflector
problem, where one wants to illuminate points in the space instead of directions,
reflector surfaces are made of patches of ellipsoids and can be built as union or
intersections of solid ellipsoids [Oli03, KO97]. Using a radial parameterization,
each of these computations is equivalent to the computation of a decomposition of
the unit sphere into cells, that are not necessarily connected.

Contributions. With Pedro Machado de Manhães and Quentin Mérigot, we
worked on the numerical resolution of the reflector problem in the semi-discrete
setting [10].

— We show that the cells on the sphere for the four types of reflectors (union
or intersection of confocal paraboloids or ellipsoids) can be computed by in-
tersecting a certain power diagram with the unit sphere.

— We show that the complexity bounds of these four diagram types on the
sphere are different. In the case of intersection of solid confocal paraboloids
in R3, the complexity of the intersection diagram is O(N). This is in contrast
with the Ω(N2) complexity of the intersection of a power diagram with a
paraboloid in R3 [BK03]. In the case of the union and intersection of solid
confocal ellipsoids, we recover this Ω(N2) complexity. Finally, the case of
the union of paraboloids is very different from the case of the intersection of
paraboloids. Indeed, in the latter case, the corresponding cells on the sphere
are connected, while in the former case the number of connected component
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of a single cell can be Ω(N). The complexity of the diagram in this case is
unknown.

— We propose an algorithm for computing the intersection of a power diagram
with the unit sphere. This algorithm uses the exact geometric computation
paradigm, implying that the combinatorics of the cells is exact and does not
depend on numerical approximations. It can be applied to the four types
of unions and intersections. It is optimal for the union and intersection of
ellipsoids, but its optimality for the case of intersection of paraboloids is
open.

— We use our algorithm for the numerical resolution of the far-field reflector
problem. Using a known optimal transport formulation [Wan04, GO03] and
similar techniques to [AHA98], we cast this problem into a concave maxi-
mization problem.

Together with our PhD student André Julien, co-advised with Dominique Attali
and Quentin Mérigot, we have also proposed heuristics that take into account
industrial design constraints on the reflector surface [1].

3.1 INTERSECTION OF CONFOCAL PARABOLOIDS OF REVOLUTION

Because of their optical properties, finite intersections of solid paraboloids of rev-
olutions with the same focal point play a crucial role in the far-field reflector prob-
lem. We show that the geometry and the combinatorics of the paraboloid intersec-
tion can be obtained by intersecting a power diagram in Rd with the unit sphere,
which is very useful for the numerical computation.

Paraboloid intersection diagram A paraboloid of revolution in Rd with fo-
cal point at the origin is uniquely defined by its focal distance λ and its direc-
tion, described by a unit vector y. We denote by P (y, λ) the convex hull of such
a paraboloid. Given a family Y = (yi)1≤i≤N of unit vectors and a family λ =

(λi)1≤i≤N of positive focal distances, we denote by RλY = ∂(∩1≤i≤NP (yi, λi)) the
boundary of the intersection of the solid paraboloids (P (yi, λi))1≤i≤N .

DEFINITION 3.1. The paraboloid intersection diagram associated to a family of
solid paraboloids (P (yi, λi))1≤i≤N is a decomposition of the unit sphere into N

cells defined by:
PIλY (yi) := pSd−1(RλY ∩ ∂P (yi, λi))

where pSd−1 is the radial projection onto the sphere.

Power diagram formulation The power diagram is a well known tool from
computational geometry that we have already used in the context of geometric
inference. We recall that it associates to any weighted point cloud (P, ω) of Rd a
decomposition of the space into power cells defined for every points p of P by:

PowP (p) = {x ∈ Rd;∀q ∈ P, ‖x− p‖2 + ωp ≤ ‖x− q‖2 + ωq}.
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It can be efficiently computed using for example the C++ library CGAL [Cga]. We
show here that it can be used to compute the paraboloid intersection diagram on
the sphere. More precisely

Proposition 3.2 ([10]). Let (P (yi, λi))1≤i≤N be a family of confocal paraboloids.
One has

∀i ∈ {1, . . . , N} PIλY (yi) = Sd−1 ∩ Powω
P (pi),

where the points and weights are given by pi = −(λ−1
i /2)yi and ωi = −λ−1

i −λ−2
i /4.

Proof. The proof is straightforward and is using the radial parametrization of the
paraboloids. The boundary surface ∂P (yi, λi) can be parameterized in spherical
coordinates by the radial map u ∈ Sd−1 7→ ρyi,λi(u) u, where ρyi,λi(u) := λi

1−〈yi|u〉 .
For any point u ∈ Sd−1, we have the following equivalence:

u belongs to PIλY (yk)⇐⇒ k = arg min
1≤i≤N

λi
1− 〈yi|u〉

⇐⇒ k = arg max
1≤i≤N

λ−1
i −

〈
u|λ−1

i yi
〉
.

An easy computation gives:

max1≤i≤N λ
−1
i −

〈
u|λ−1

i yi
〉

= max1≤i≤N λ
−1
i −

∥∥u+ 1
2λ
−1
i yi

∥∥2
+ ‖u‖2 + 1

4

∥∥λ−1
i yi

∥∥2

= ‖u‖2 −min1≤i≤N

(∥∥u+ 1
2λ
−1
i yi

∥∥2 − λ−1
i − 1

4λ
−2
i

)
.

This implies that a unit vector u belongs to the paraboloid intersection cell PIλY (yi)

if and only if it lies in the power cell Powω
P (pi).

Complexity of the paraboloid intersection diagram in R3 The paraboloid
intersection diagram in R3 contains edges, circular edges and faces, as illustrated
in Figure 3.1. The study of the complexity of this diagram strongly relies on the
following proposition [CO08].

Proposition 3.3. Let P (y, λ) and P (z, µ) be two confocal paraboloids and R =

∂
(
P (y, λ)∩ P (z, µ)

)
. Then the orthogonal projection of R∩ ∂P (y, λ) onto the plane

orthogonal to y is a disc.

Let RλY = ∂(∩1≤i≤N∂P (yi, λi)) be the reflector surface associated to the family
of N paraboloids and let Ri = RλY ∩ ∂P (yi, λi) be the part of the reflector corre-
sponding to the paraboloid P (yi, λi). The previous proposition implies that the
orthogonal projection of Ri onto the plane orthogonal to yi is an intersection of
N − 1 discs, thus is convex. Hence Ri and PIλY (yi) are connected, and the num-
ber of faces of the paraboloid intersection diagram is less than N . Using Euler’s
formula, one can then prove the following theorem.

Theorem 3.4 ([10]). Let (P (yi, λi))1≤i≤N be a family of solid paraboloids of R3.
Then the number of edges, vertices and faces of its paraboloid intersection diagram
is in O(N).

We show that the computation complexity of the paraboloid intersection di-
agram amounts to a sorting algorithm of N reals, thus leading to the following
result:
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Proposition 3.5 ([10]). The complexity of the computation of the paraboloid in-
tersection diagram is Ω(N log(N)), even under an assumption of genericity.

3.2 OTHER TYPES OF UNION AND INTERSECTIONS

Other types of union or intersection of quadrics appear in non-imaging optic prob-
lems. In the far-field reflector case, instead of building a reflector surface as the
boundary of the intersection of filled confocal paraboloids, one can also consider
the boundary of the union of filled confocal paraboloids [GO03]. In the near field
reflector problem, where one wants to illuminate points in the space instead of
directions (as in the far-field reflector problem) [KO97], one considers solutions
made of patches of ellipsoids. It is therefore natural to consider intersection or
union of ellipsoids. As for the paraboloids intersection, we show that the geome-
try and the combinatorics can be obtained by intersecting a power diagram in Rd
with the unit sphere.

Union of confocal paraboloids of revolution LetRUλT := ∂
(⋃

1≤j≤N P (yj , λj)
)

denote the boundary of the union of paraboloids. This surface can be parameter-
ized over the sphere Sd−1, and one defines the paraboloid union diagram as the
associated decomposition of the sphere into cells:

PUλ
Y (yi) := pSd−1

(
RUλT ∩ ∂P (yi, λi)

)
.

As before, we show that these cells can be seen as the intersection of certain power
cells with the unit sphere.

Proposition 3.6 ([10]). Given a family (P (yi, λi))1≤i≤N of solid paraboloids, one
has for all i,

PUλ
Y (yi) = Sd−1 ∩ powω

P (pi),

where the points and weights are given by pi = 1
2λ
−1
i yi and ωi = λ−1

i − 1
4λ
−2
i .

Proposition 3.3 implies that for every i, the projection ofRi := RUλY ∩∂P (yi, λi)

onto the plane orthogonal to yi is a finite intersection of complements of discs.
Consequently, one cannot use the connectedness argument as in the proof of The-
orem 3.4, and the complexity of the paraboloid union diagram is unknown in di-
mension three. Actually, we constructed an example of a family of paraboloids
(P (yi, λi))0≤i≤N such that the paraboloid union cell PUλ

Y (y1) has Ω(N) connected
components.

Intersection and union of confocal ellipsoids of revolution An ellipsoid of
revolution whose one focal point lies at the origin is characterized by its second
focal point y and its eccentricity e in (0, 1). We denote by E(y, e) the convex hull of
such an ellipsoid of revolution. Given a family of ellipsoids (E(yi, ei))1≤i≤N , we de-
note by EIeY := ∂

(⋂
1≤i≤N E(yi, ei)

)
and EUeY := ∂

(⋃
1≤i≤N E(yi, ei)

)
respectively

the boundary of the intersection and of the union of ellipsoids. These two surfaces
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can be parameterized over the unit sphere. The ellipsoid intersection diagram is
the decomposition of the unit sphere into cells

EIeY (yi) := pSd−1 (EIeY ∩ ∂E(yi, ei)) .

Similarly, the cells of the ellipsoid union diagram are defined by

EUe
Y (yi) := pSd−1 (EUeY ∩ ∂E(yi, ei)) .

As for the paraboloids, the computation of each diagram amounts to compute the
intersection of a power diagram with the unit sphere.

Proposition 3.7 ([10]). Let (E(yi, ei))1≤i≤N be a family of solid confocal ellipsoids.
Then

(i) the cells of the ellipsoid intersection diagram are given by EIeY (yi) = Sd−1 ∩
powω

P (pi), where pi = − ei
2di

yi
‖yi‖ and ωi = − 1

di
− e2i

4d2i
.

(ii) The cells of the ellipsoid union diagram are given by : EUe
Y (yi) = Sd−1 ∩

powω
P (pi), where pi = ei

2di
yi
‖yi‖ and ωi = 1

di
− e2i

4d2i
.

The theorem below shows that in dimension three the complexity of these dia-
grams can be quadratic in the number of ellipsoids. This is in sharp contrast with
the case of the paraboloid intersection diagram, where the complexity is linear in
the number of paraboloids.

Theorem 3.8 ([10]). In R3, there exists a configuration of confocal ellipsoids of
revolution such that the number of vertices and edges in the ellipsoid intersection
diagram (resp. the ellipsoids union diagram) is Ω(N2).

3.3 COMPUTING THE INTERSECTION OF A POWER DIAGRAM WITH A SPHERE

We have a robust and efficient algorithm to compute the intersection between a
power diagram of a weighted point set (P, ω) in R3 and the unit sphere S2. This
algorithm is implemented using the Computational Geometry Algorithms Library
(CGAL) [Cga], and bears some similarity to [BK03, Del08]. Our algorithm pro-
vides the exact combinatorial structure of the diagram on the sphere for points
whose coordinates and weights are rational.

Note that the intersection diagram has complex combinatorics. If one assumes
that the weighted points are given by a paraboloid intersection diagram, Proposi-
tion 3.3 shows that the cells on the sphere are connected. But even in this case,
the intersection between two adjacent cells on the sphere can have multiple con-
nected components. Consequently, one cannot hope to be able to reconstruct these
cells from the adjacency graph (i.e., the graph that contains the points in P as
vertices, and where two vertices are connected by an arc if the two cells intersect
in a non-trivial circular arc), even in this simple case. In general, the cells of the
intersection diagram can be disconnected and they can have holes, as shown in
Figure 3.1. We prove the following for our algorithm:
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Figure 3.1: Examples of diagram on the sphere. Left: an intersection diagram
containing faces with no vertices, faces with holes and faces with two vertices or more.
Right: a diagram corresponding to the intersection of a cube and a sphere; there are seven
faces, six faces with no vertices, and a face with no vertices and six holes.

Theorem 3.9 ([10]). There is an O(N logN +C) algorithm for obtaining the inter-
section diagram of a set P of N weighted points in R3, where C is the complexity of
the power diagram of P .

From Theorem 3.8, the size of the output in the worst case for the intersection
(or union) of confocal ellipsoids is Ω(N2). This implies that our algorithm is opti-
mal for computing an ellipsoid intersection (or union) diagram. The optimality of
the algorithm for the paraboloid intersection diagram is an open problem.

3.4 NUMERICAL RESOLUTION AND SEMI-DISCRETE OPTIMAL TRANSPORT

We consider a discrete probability measure µN =
∑

1≤i≤N αi δyi supported on the
finite set of points Y = (y1, . . . , yN ) of the unit (target) sphere, and a probability
density ρ on the unit (source) sphere. The far-field reflector problem consists in
finding a vector of non-negative focal distances (λi)1≤i≤N , such that

∀i ∈ {1, . . . , N}, ρ(PIλY (yi)) = αi, (FF)

where for a subset X of the sphere, ρ(X) :=
∫
X ρ(u)du is the weighted area of X.

Since all the incident rays of the cell PIλY (yi) are reflected to the direction yi, this
means that the measure received by yi is exactly αi.

Semi-discrete optimal transport formulation It was noticed in 2003 that
the far field reflector problem can be seen as an optimal transport problem on the
sphere for the cost c : Sd−1 × Sd−1 → R given by c(x, y) = − log(1 − 〈x|y〉). In
the semi-discrete setting, the cells (PIλY (yi))1≤i≤N on the sphere correspond to the
c-subdifferential of the dual variable ψ : Y → R, where ψ(yi) = log(λi), also called
Laguerre cells, as expressed by the following lemma.
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(a) Initial (λi)1≤i≤N (b) Final (λi)1≤i≤N (c) Rendering

(d) Final (λi)1≤i≤N (e) Reflector (f) Rendering

Figure 3.2: Numerical computation. Calculations were done with N = 1000

paraboloids for the first row and N = 15000 paraboloids for the second row. (a) Paraboloid
intersection diagram for an initial (λi)1≤i≤N . (b,d) Final intersection diagram after opti-
mization. (e) Reflector surface defined by the intersection of paraboloids. (c,f) Simulation
of the illumination at infinity from a punctual light source lighting uniformly S2−, using
LUXRENDER, a physically accurate raytracer engine.

Lemma 3.10. The cells of the paraboloid intersection diagram are given by

PIλY (yi) = {x ∈ Sd−1, c(x, yi) + ψi ≤ c(x, yj) + ψj ∀j},

where c(x, y) = − log(1− 〈x|y〉) and ψi := log(λi).

Proof. The proof is straightforward and is using the radial parameterization of
paraboloids. Let x be a point of the unit sphere Sd−1. Then

x ∈ PIλY (yi) ⇐⇒ i ∈ arg minj
λj

1−〈x|yj〉
⇐⇒ i ∈ arg minj log(λj)− log(1− 〈x|yj〉)
⇐⇒ i ∈ arg minj ψj + c(x, yj)

Using the Kantorovitch functional, the far-field reflector problem can be trans-
formed into the maximization of a concave functional, combining ideas from [Wan04,
GO03, AHA98].
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Theorem 3.11 ([10]). A vector of focal distances (λi)1≤i≤N solves the far-field re-
flector problem (FF) if and only if the vector ψ := (ψi)1≤i≤N defined by ψi = log(λi)

is a global maximizer of the following C1 concave function:

Φ(ψ) :=

[
N∑
i=1

∫
PIexpψY (yi)

(c(u, yi) + ψi)ρ(u)du

]
−

N∑
i=1

ψiαi (3.1)

where c(u, v) := − log(1 − 〈u|v〉) and with the convention log(0) = −∞. Moreover,
the gradient of the function Φ is given by

∇Φ(ψ) := (ρ(PI
exp(ψ)
Y (yi))− αi)1≤i≤N . (3.2)

The implementation of the maximization of the functional Φ follows closely
[Mér11]. We rely on a quasi-Newton method, which only requires being able to
evaluate the value of Φ and the value of its gradient at any point ψ, as given
by Equations (3.1)–(3.2). The computations of these values are performed in
two steps. First, we compute the boundary of the paraboloid intersection cells
PI

exp(ψ)
Y (yi), using the algorithm described in Section 3.3. These cells are then

tessellated, and the integrals in Equations (3.1)–(3.2) are evaluated numerically
using a simple Gaussian quadrature. In the experiments illustrated in Figure
3.2, we constructed the measure

∑
i αiδyi so as to approximate a picture of Gas-

pard Monge (projected on a part of the half-sphere S2
+ := S2 ∩ {z ≥ 0}). The

density ρ is constant in the half-sphere S2
− and vanishes in the other half. To

the best of our knowledge, the only other numerical implementation of this for-
mulation of the far-field reflector problem has been proposed in [CKO99]. The
authors develop an algorithm, called Supporting paraboloids which bears resem-
blance to Bertsekas’ auction algorithm for the assignment problem [BE88]. Using
the quasi-Newton approach presented above, and the algorithm developed in Sec-
tion 3.3, we solve this problem for 15,000 paraboloids in less than 10 minutes on
a desktop computer.

3.5 INDUSTRIAL DESIGN CONSTRAINTS

In the previous section, we constructed a reflector surface S parameterized over
the sphere. However, for applications, the surface S also needs to satisfy certain
design constraints:

1. The surface S should be the graph of a function over a fixed convex domain
Ω ⊆ R2 × {0}. More precisely, for every u in Ω, the ray joining (u,−∞) to
(u,+∞) should intersect the surface S exactly once.

2. The surface S should be convex, in the sense that it is contained in the
boundary of a convex domain of R3.

In addition to aesthetic reasons, these constraints are useful for building physical
moulds for the reflectors, in particular for car lights. The convexity constraint
allows one to mill the mould exactly. Furthermore, it creates a reflector surface
for which the chemical vapor deposition is easier [CBC77]. The graph constraint
is a natural constraint that appears for the construction of car beams. To be
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more precise, a high beam is in general decomposed into several “pillows”, each
pillow being a reflector surface whose orthogonal projection onto a given plane
is a simple two dimensional domain, such as a rectangle [CCO99]. It is therefore
natural to model the surface of each pillow by the graph of a function over a planar
domain. The whole reflector, composed of several pillows, is then also the graph
of a function. One may notice that this property allows one to be able to remove
the mould after the fabrication of the reflector.

Although supported paraboloid methods allow to find a solution to the reflec-
tor problem, the solution does not satisfy the graph constraint. Some caustics
design methods can deal with the graph constraints, but they are based on non-
deterministic non-convex optimization methods, and do not guarantee the fact
that the generated surface satisfies the convexity constraint.

Together with Julien André, Dominique Attali and Quentin Mérigot, we pro-
posed an heuristic method that iteratively improves the optical properties of the
surface patch while adhering strictly to the design constraints. This method relies
on a fixed-point algorithm which alternates between the resolution of a discrete
optimal transport that produces a radially parametrized surface, and the parame-
terization of this solution by the graph of a function over the domain Ω ⊂ R2×{0}.

R2 × {0}
Ω

Sφ−

Rhλ

pS2(Sφ−)

o

Figure 3.3: When rays from the origin in directions pS2(Sφ−) strike Rhλ, they
define a patch whose orthogonal projection onto the plane R2 × {0} does not nec-
essarily coincides with Ω.

The algorithms is illustrated in Figure 3.3. The inputs are a source measure
µ and the discrete target measure νN on the sphere S2. We are also given a
rectangular domain Ω of R2 × {0} and denote by U the set of nodes of a regular
grid of Ω. For every function φ : U → R defined on the grid, we encode both the
value of the function φ(u) and of its gradient ∇φ(u) at nodes u.

Main steps of the algorithm We start by computing an initial function φ :

U → R, whose graph is a surface Sφ. We then iterate the following steps:
— We put φ− := φ.
— We compute a discrete measure µM supported on M points (where M is the

number of nodes of U ) that approximates the restriction of the measure µ to
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the radial projection pS2(Sφ−) of Sφ onto the unit sphere.
— We solve the far field reflector problem between the two discrete measures

µM and µN (it is a linear programming problem). The result provides the
parameterization of a reflector surface Rλ defined up to an homothety.

— We find the scale parameter h such that the orthogonal projection of the
reflector Rhλ onto R2 × {0} best fits the domain Ω.

— We compute a discrete function φ : U → R whose graph approximates Rhλ.
We iterate this process until ‖φ− φ−‖ is less than an error parameter ε.

In practice a fixed point is attained after 3 or 4 steps. The solution satisfies
the design constraints and can handle complicated target measures, which may
be supported on convex or non convex sets.

3.6 PERSPECTIVES

The far field reflector problem is an optimal transport problem on the sphere for
the cost c(x, y) = − log(1 − 〈x|y〉). The Laguerre cells on the sphere correspond to
the c-subdifferential of the dual function ψ : Y → R, where ψ(yi) is the logarithm
of the focal distance λi. Grégoire Loeper showed that if a cost c satisfies the clas-
sical Ma-Trudinger-Wang (MTW) regularity condition, then the c-subdifferentials
are convex in a particular chart [Loe09]. Using this property, the algorithm of
supporting paraboloids could be extended to optimal transport problems involv-
ing a cost function c that satisfies this MTW condition [Kit12]. For this algorithm
to be practical, one needs to compute efficiently the Laguerre cells. I mention here
some of the perspectives and ongoing works.

Efficient computation of Laguerre cells Together with Pedro Machado and
Quentin Mérigot, we are investigating the computation of the Laguerre cells for
costs satisfying the MTW condition. Since the Laguerre cells are connected, we
believe that a randomized incremental algorithm could be used to calculate the
Laguerre cells in O(N log(N)) operations in dimension 2.

Newton Algorithm for semi-discrete optimal transport problems The nu-
merical resolution of an optimal transport problem in the semi-discrete setting
amounts to the maximization of a concave function Φ. In the far field reflector
problem, we have used a quasi-Newton algorithm. We are investigating, together
with Quentin Mérigot and Jun Kitagawa the analysis of a damped Newton algo-
rithm when the cost satisfies the MTW condition. In that case, the convexity of
the Laguerre cells in some charts may insure that one can lower bound explic-
itly the first non vanishing eigenvalue of the hessian of Φ. We have preliminary
results in this direction.

Refractor problem The refractor problem is an optimal transport problem on
the sphere for the cost c(x, y) = − log(1 − κ 〈x|y〉) [GH09]. This cost satisfies the
MTW condition when κ > 1, but it does not when κ < 1. The refractor surface is
the boundary of the intersection of confocal ellipsoids with constant eccentricity
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κ. The Laguerre cells on the sphere are also obtained as the intersection of power
cells with the unit sphere. We can adapt our approach here to numerically build
refractors.



Chapter 4

Convex Integration Theory and
Smooth Fractals

In this chapter, we present the construction of an isometric embedding of the
square flat torus in the ambient space that led to the discovery of the notion of
smooth fractals. This work was announced in the Proceedings of the National
Academy of Sciences [2] in 2012 and has been well diffused and popularized since
then. It is the result of a multidisciplinary work together with Vincent Borrelli,
Said Jabrane and Francis Lazarus that was initiated in 2006. At that time, Vin-
cent Borrelli, who knew well the h-principle and the Convex Integration theory
was thinking that it was possible to implement the Convex Integration theory so
as to get explicit constructions of isometric embeddings of Riemannian manifolds
in Euclidean spaces. We decided all together to work on that problem and to try
to realize a construction of an embedding of the square flat torus in the three
dimensional space. To this end, we had to adapt the Convex Integration theory
of Gromov so as to make it implementable. The computational and theoretical
aspects are intimately related and had to be developed simultaneously. The dis-
covery of smooth fractals is a consequence of this multidisciplinary work, where
the implementation and the theory mutually enriched each other. We only pro-
vide in this chapter the main ideas of this work, whose details can be found in
[4].

A map f from a Riemannian manifold (Mn, g) into a Euclidean space Eq =

(Rq, 〈., .〉) is an isometry if it preserves length, that is the length of every C1 curve
γ : [a, b] → Mn is equal to the length of its image f ◦ γ. More formally, f is
an isometry if the pullback of the inner product is the initial metric: f∗〈., .〉 =

g. Suppose that, in some local coordinate system, the metric is given by g =∑n
i,j gijdxidxj , then the isometric condition f∗〈., .〉 = g is equivalent to a non linear

PDE system

〈 ∂f
∂xi

,
∂f

∂xj
〉 = gij , 1 ≤ i ≤ j ≤ n

of sn = n(n+1)
2 equations. It was conjectured by Schlaefli [Sch73] in 1873 that any

n-dimensional Riemannian manifold can be locally isometrically embedded in Esn .
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In the years 1926-1927, Janet and Cartan proved that the above PDE system has
a solution if the dimension of the ambient space is at least sn and (Mn, g) is an
analytic Riemannian manifold.

In 1954, Nash surprised the mathematical community by breaking down the
barrier of the Janet dimension, considering maps with only C1 regularity [Nas54].
Precisely, he proved that any strictly short global embedding f0 : (Mn, g) → Eq,
i.e., an embedding that strictly shortens distances: f∗0 〈., .〉 < g, can be deformed
into a true C1 global isometric embedding f provided that q ≥ n+2. Moreover, the
embedding f can be required to be arbitrarily close to the initial map f0 for the
sup norm. But its C1 regularity cannot be improved to C2 in general since the cur-
vature tensor would then provide obstructions to the existence of isometric maps.
Shortly after, the theorem of Nash was extended by Kuiper to the codimension
1 [Kui55].

The result of Nash and Kuiper has many counterintuitive consequences, one
of them concerning the flat torus. The square flat torus E2/Z2 is the quotient
of the Euclidean 2-plane by the lattice Z2. Its Gaussian curvature is obviously
identically equal to zero. A classical argument shows that any C2 complete com-
pact surface in E3 has a point with positive Gaussian curvature. From Theorema
Egregium it ensues that there is no C2 isometric embedding of any flat torus.
However, Nash-Kuiper Theorem implies that the square flat torus admits a C1

isometric embedding into E3.

The result of Nash and Kuiper, as well as other geometric results, was revis-
ited in the 70’s and 80’s by Gromov. He introduced the h-principle that states that
many partial differential relations reduce to topological problems [GR70, Gro86]
and he developed several tools to solve partial differential relations, one of them
being the Convex Integration theory. Using this theory, it is possible to build a
sequence of embeddings of the square flat torus that converges to an isometric
embedding [EM02]. However this approach is too generic to be implemented di-
rectly.

Contributions. We adapted the Convex Integration theory to the differential
relation for isometries so as get an algorithm for the construction of an embedding
of the square flat torus in E3. In particular, we had the following contributions:

— We proposed a one-dimensional Convex Integration formula that captures
the natural geometric notion of a corrugation.

— Mimicking the initial approach of Nash and Kuiper, we built a sequence of
embeddings of the square flat torus in E3 that is converging to an isometric
embedding. Guided by computational constraints, we adapted and simpli-
fied previous approaches: our construction takes into account the periodicity
of the torus and is global at each iteration, whereas previous constructions
were only local.

— We provided images of an embedding of the square flat torus in the ambient
space. This visualization, as well as the simplification of the construction,
led us to discover the notion of Smooth Fractals, which is related to the geo-
metric structure of the Gauss map (i.e. the normal vector field) of the limit
isometric embedding. We show that this Gauss map can be obtained as an
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infinite product of rotations applied to the Gauss map of an initial embed-
ding. Although the coefficients of the rotations are intrinsically complicated,
the asymptotic behavior of this product is fairly simple and bears a formal
similarity with the Weierstrass function.

We start by explaining in the first section the one dimensional Convex Inte-
gration process, which is a key ingredient of our process. We give in Section 4.2
the spirit of our construction of an isometric embedding of the square flat torus,
and present in Section 4.3 the asymptotic behavior of its Gauss map.

4.1 ONE-DIMENSIONAL CONVEX INTEGRATION AND CORRUGATIONS

Convex Integration is intrinsically a one dimensional process. In this section, we
show how to apply it to curves for the differential relation of isometries.

Differential relation. Let I := [0, 1] be an interval and suppose that for every
x ∈ I we are given a subset Rx of vectors of Rd. The disjoint union R = ∪x∈IRx
is called a differential relation. A solution of R is a C1 curve f : I → Rd such
that f ′(x) ∈ Rx for all x ∈ I. In other words, a differential relation expresses a
condition on the derivative of a curve that depends on the considered parameter.
(In a more general setting, the differential relation depends on the parameter and
the image point on the curve [EM02].)

Differential relation of isometries. Given a speed function r : I → R∗+, the
differential relation of isometries for curves is determined by Rx = {y ∈ Rd, ‖y‖ =

r(x)}. This means that a curve f is a solution of R if its speed is given by f ′(x) =

r(x) for every x ∈ I. Starting from an initial parameterized curve f0 : I → Ed
whose speed is strictly less than r, the Convex Integration process is going to
generate a parameterized curve f : I → Ed whose speed equals r (i.e. f is a
solution of R). The length of f is therefore controlled.

Figure 4.1: Convex Integration process. Left: initial parameterized curve f0.
Right: parameterized curve f obtained by the Convex Integration process applied
to f0 (with N = 25 oscillations) drawn on top of the curve f0
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4.1.1 — Convex Integration process

We detail here the Convex Integration process for a general differential relation
R. Given a C1 curve f : I → Rd, Convex Integration often allows us to construct
a solution of R that is close to f for the sup norm. We will first introduce the
construction and then will say to which f and R it applies. The first step of the
process is to define for fixed x ∈ I a C1 one-parameter family of loops h(x, ·) :

R/Z→ Rx so that f ′(x) is the average of h(x, ·):

∀x ∈ I, f ′(x) =

∫ 1

0
h(x, u)du. (4.1)

x

u h(x, ·)

f ′(x) R

Figure 4.2: The loop h(x, ·) is shown as a (red) thick curve contained in the dif-
ferential relation R (in blue) and surrounding f ′(x). In this figure the differential
constraint sets Rx are all parallel.

In practice, we first choose a path whose average is f ′(x). The loop h(x, ·) is then
obtained by travelling along this path in both directions (see Fig. 4.2). The curve
f is said to be strictly short if f ′(x) is interior to the convex hull of Rx for all x ∈ I.
When R is open and path connected, this is a necessary and sufficient condition
for h to exist [EM02].

In the second step of the process we simply define FN : I → Rd by

FN (t) := f(0) +

∫ t

0
h(x, {Nx})dx, (4.2)

where N is a positive integer and {Nx} is the fractional part of Nx. Remark that
F ′N (x) = h(x, {Nx}) and therefore FN satisfies by construction the differential
relation R, namely F ′N (x) ∈ Rx for every x. Intuitively, FN is obtained by inte-
grating h along a periodic curve with period 1/N (see Fig. 4.3). When N is large
enough, the restriction of h to each period is close to a single loop h(x, ·) and its
integral is close to f ′(x). Summing over the N periods, we see that FN is roughly
equal to a Riemann sum of f ′, hence to f . This is formally stated in the following
lemma.

Lemma 4.1 (C0-density [EM02][2]). Let f, h,N , and FN be defined as above. Then
FN is a solution of R and

‖FN − f‖∞ ≤
K(h)

N
,
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x

u
h(x, {Nx})

Figure 4.3: Because the parameter u belongs to S1 = R/Z, the horizontal edges of
the left square domain must be glued to produce a cylindrical domain. The path
x 7→ (x, {Nx}) winds N times around that cylinder.

where K(h) only depends on the C1-norm of h.

4.1.2 — Our choice of loops h(s, ·) for the isometries differential relation

As far as the isometric embedding problem is concerned, we deal with closed dif-
ferential relations for which Rs is a sphere of radius r(s) in Rd, for some strictly
positive function r : I → R∗+. In other words, the relation R constrains the norm
of the derivative. In this case, a curve f is short if and only if ‖f ′(s)‖ ≤ r(s), for
all s ∈ I. Suppose that f ′ is never zero and let n : I → Rd be a vector field normal
to f . We choose the loop h(s, ·) with image in the circle of radius r(s), intersection
of Rs with the plane spanned by t(s) := f ′(s)/‖f ′(s)‖ and n(s), and set

h(s, u) = r(s)(cos(αs cos(2πu))t(s) + sin(αs cos(2πu))n(s)) (4.3)

with αs := J−1
0 (‖f ′(s)‖/r(s)) (see Fig. 4.4). Here J0 is the Bessel function of 0 order

restricted to the interval [0, z], where z ≈ 2.4 is the smallest positive root of J0.
The choice of αs guarantees the identity (4.1).

rn(s)

f ′(s)

rt(s)

αs

h(s, ·)

Figure 4.4: The loop h(s, ·) starts from the top of the (red) thick arc, sweeps the
arc and comes back to its starting point.

As noted in [2], our Convex Integration formula (4.3) captures the natural
geometric notion of a corrugation. Indeed, in the planar case n = 2 the signed
curvature measure µ := kds = k(t)‖F ′(t)‖dt of the resulting curve F given by (4.2)
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is connected to the signed curvature measure µ0 := k0ds of the initial curve f by
the following simple formula

µ := µ0 +
(
α′ cos(2πNt)− 2πNα sin(2πNt)

)
dt.

Our Convex Integration formula thus modifies the curvature in the simplest way
by sine and cosine terms with frequency N .

Loosely speaking, the Convex Integration process amounts to replace the func-
tion f0 by a function f that oscillates a lot, but whose derivative is close in average
to the derivative of f0. This phenomenon can be seen in Figure 4.12, where the
derivative of f corrugates a lot and has in average the same direction that the
derivative of f0. We say that f is a corrugated map that has been obtained by
applying a corrugation to the map f0. As a consequence, the curve f stays close to
the curve f0, as stated in the C0-density lemma.

4.2 CONSTRUCTION OF AN EMBEDDING OF THE SQUARE FLAT TORUS

In this section, we give a brief overview of our construction of an embedding of
the square flat torus in the Euclidean space E3, whose details can be found in
[2]. Starting from a strictly short embedding f0 : (R2/Z2, 〈.|.〉E2)→ E3, namely an
embedding that shortens distances, our aim is to build an isometric embedding

f : (R2/Z2, 〈.|.〉E2)→ E3.

The first naive idea is to apply a one dimensional Convex Integration process
along curves that foliate the torus, as illustrated on Figure 4.5. On each curve
along which the Convex Integration process is applied one can recover exactly the
metric condition. However the metric is perturbed in transverse directions. The
idea is then to apply the Convex Integration process in other directions so as to
reduce the isometric default everywhere.

Figure 4.5: Convex Integration along a family of lines. Left: a family of segments
that foliate the torus. Middle: images by f0 of the family of segments. Right:
Convex Integration is performed along each segment

4.2.1 — Reduction of the isometric default: a salve

The isometric default of f0 is measured by the field of bilinear forms ∆(·, ·) :=

〈.|.〉E2 − f∗0 〈·|·〉E3 . As usual, f∗0 〈·|·〉E3 = 〈df0(·)|df0(·)〉E3 denotes the pull-back of the
Euclidean inner product by f0. Since f0 is strictly short, this isometric default ∆
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Figure 4.6: The space of symmetric bilinear forms is identified with R3. Left: cone
C of metrics in red. Right: polyhedral cone C that lies inside the cone of metrics

is a metric, i. e., a map from the square flat torus into the positive cone C of inner
products of the plane

C =
{
E e∗1 × e∗1 + F (e∗1 × e∗2 + e∗2 × e∗1) +Ge∗2 × e∗2 | EG− F 2 > 0, E > 0, G > 0

}
,

where (e1, e2) is the canonical basis of E2. Here we use the notation `1×`2(U, V ) :=

`1(U) `2(V ) for any vectors U and V in the plane and linear forms `i. Not that
squares of linear forms `× ` lie on the boundary on this cone. By convexity, there
exist linear forms of the plane `1, ..., `S , S ≥ 3, such that ∆ =

∑S
j=1 ρj`j × `j for

non-negative functions ρj . By a convenient choice of the initial map f0 and of
the `j ’s, the number S can be set to three. In practice we set the linear forms
`j(·) := 〈U(j)/‖U(j)‖|·〉E2 to the normalized duals of the following constant vector
fields

U(1) := e1, U(2) :=
1

5
(e1 + 2e2), U(3) :=

1

5
(e1 − 2e2).

As an initial map we choose a standard parametrization of a geometric torus
whose isometric default ∆ belongs to the polyhedral cone spanned by the `j × `j ’s,
j ∈ {1, 2, 3}, see Figure 4.6:

C =


3∑
j=1

ρj`j × `j | ρ1 > 0, ρ2 > 0, ρ3 > 0

 .

We now to apply the Convex Integration process along flow lines that foliate
the square torus, successively in the directions U(1), U(2) and U(3). In theory
and also numerically, it does not work if the corrugations are performed along
segments directed by the U(i)’s. We have to integrate along particular flow lines
as shown in Figure 4.7. Furthermore, each corrugated map is not defined on the
whole torus, but only on a cylinder, and we have to “merge” its boundary. We
do not give the complete description of the construction. For more details, one
may refer to [2]. The first, second and third Convex Integration processes depend
respectively on three oscillation numbers N1, N2 and N3. We denote by FN1,N2,N3
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the resulting embedding. After the three corrugations, the isometric default is
reduced as stated in the following theorem.

Theorem 4.2 ([2]). The embedding FN1,N2,N3 that results from our construction
satisfies the following properties:

‖FN1,N2,N3 − f0‖∞ = O(
1

N1
+

1

N2
+

1

N3
)

and
‖ 〈.|.〉E2 − F ∗N1,N2,N3

〈·|·〉E3 ‖∞ = O(
1

N1
+

1

N2
+

1

N3
),

where ‖.‖∞ denotes the supremum norm over R2/Z2 (of the absolute value or of any
matrix norm).

Remark that the embedding FN1,N2,N3 converges to f0 in the sup norm sense,
which implies that the pullback of the limit embedding of FN1,N2,N3 is the initial
metric f∗0 〈·|·〉E3 . As a consequence, the embedding FN1,N2,N3 can be as close as we
want to an isometric embedding of the flat torus if we chose the Ni’s large enough,
but its limit when the Nis tend to infinity cannot be an isometry. We call salve the
fact of applying three such corrugations.

Figure 4.7: Curves that foliate the square torus and along which the Convex Inte-
gration process is performed. From left to right: the curves are associated to the
directions U(1), U(2) and U(3).

4.2.2 — A sequence of salves

As noticed above, it is not possible to reach in one salve an isometric embedding
of the square flat torus in the ambient space. Mimicking Nash’s approach, we
consider a sequence of metrics (gk)k≥0 on the torus that is converging to the flat
metric g∞ := 〈.|.〉E2 . We suppose that the sequence is strictly increasing, namely
for every point x ∈ R2/Z2 and any tangent vector X at the point x

gk(X,X) < gk+1(X,X) < ‖X‖2.

The key idea is to reduce iteratively the isometric default while staying strictly
short at each step. We start with an initial embedding f0 : (R2/Z2, g1)→ E2 which
is strictly short for the metric g1. More precisely, we manage so that the isometric
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default lies inside the polyhedral cone C at every point. We can therefore apply
three consecutive corrugations to f0 to build a map f1 := FN1,N2,N3 which is almost
an isometry for the metric g1 and which is stricly short for the metric g2. More
precisely, we guarantee that the isometric default lies again inside the polyhedral
cone C at every point. We repeat this process to construct f2 from f1 by applying
again three Convex Integration steps. We pursue this process iteratively and
finally build a sequence of embeddings (fk)k≥0. At each step, we guarantee that
the embedding fk : (R2/Z2, gk) → E2 is almost an isometry for the metric gk. At
the limit, we get an isometric embedding of the square flat torus.

In practice, we have to choose an oscillation number at each Convex Integra-
tion step. For this, we established the Loop condition, which is a sufficient the-
oretical condition that guarantees that the process can be iterated. We showed
that this Loop condition is always satisfied if the oscillation number is chosen
large enough. Hence, our algorithm consists in taking (by an exponential search
and then a dichotomy) the smallest oscillation number such that the corrugated
map satisfies the Loop condition.

Theorem 4.3 ([2]). There exists an increasing sequence of metrics (gk)k≥1, such
that if the corrugation numbers are chosen large enough at each corrugation, then
our sequence of embeddings (fk)k≥0 C

1-converges to an isometric embedding of the
square flat torus

f∞ : T2 → E3.

The construction is illustrated in Figure 4.8 using the language of differential
relations: the isometry to the flat metric corresponds to differential relation Riso.
At each Step k, the differential relation Rk corresponds to εk-isometries to the
metric gk. Loosely speaking, the differential relation Rk is thickened by a param-
eter εk that is measuring the error to the metric gk. The embedding fk satisfies
the differential relation Rk and remains strictly short for the differential relation
Rk+1. At the limit, the function f∞ satisfies the differential relation Riso.

R1
f ′1

Riso
R2

R∞ = Riso

f ′2

R3

R∞ = Riso

f ′3

Figure 4.8: Illustration of the construction of the sequence: we consider an in-
creasing sequence of (thick) differential relations Rk converging to the (thin) dif-
ferential relation for isometries Riso. At each step the embedding fk is a solution
of Rk. The limit embedding f∞ is a solution of Riso.

Without entering into the numerous laborious details, I mention what are the
main differences of our construction with previous approaches.

— We provide a Convex Integration formula (4.3) for the differential relation
of isometries which is particularly simple.
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— At every salve, the isometric default at every point always lies inside the
same polyhedral cone spanned by only three directions. Furthermore, the
directions U(i) are related to fundamental domains of the torus. These two
points allow us to apply Convex Integration processes globally on the torus,
whereas previous approaches were only applying local Convex Integration
processes.

— We keep exactly the same three directions for all the salves.

4.2.3 — Implementation

As mentioned above, at each Convex Integration process the oscillation number is
imposed by the Loop condition. Our numerical experiments show that the oscilla-
tion numbers grow at least exponentially. Starting with a initial parameterization
of a torus of revolution and doing only calculations on a small part of the torus,
the Loop condition imposes the following oscillation numbers for the four first
corrugations:

611, 69, 311, 20, 914, 595, 6, 572, 411, 478.

This is far too much to be implemented in practice on the whole torus R2/Z2.
However, the Loop condition being only a sufficient condition, we were able to
reduce these numbers to

12, 80, 500, 9000.

Figure 4.9: Iterative construction: initial embedding and the embeddings after
respectively one, two and three corrugations

In practice, calculations were performed on a 8-core CPU (3.16 GHz) with 32
GB of RAM and parallelised C++ code. We used a 10, 0002 grid mesh for the three
first corrugations and refined the grid to 2 milliards nodes for the last corruga-



CONVEX INTEGRATION THEORY AND SMOOTH FRACTALS 77

Figure 4.10: Image of an isometric embedding of the square flat torus. This image
is obtained after four corrugations. Further corrugations would not be visible to
the naked eye at this distance.

tion. Due to memory limitations, the last mesh was divided into 33 pieces. The
computation of the final mesh took approximately two hours.

We illustrate the metric improvement by comparing the lengths of a collection
of curves on the flat torus (Fig. 4.11a) with the lengths of their images by the
fourth embedding f2,1. The length of any curve in the collection differs by at most
10.2% with the length of its image by f2,1. By contrast, the deviation reaches 80%

when the standard torus f0 is taken in place of f2,1.

a b c

Figure 4.11: Comparison of lengths in the parameter and image domain
for the fourth corrugated map f2,1. a, A fundamental domain of the flat torus
with four nets of meridians, parallels, main diagonals and skew diagonals, each
composed of 20 curves. b, The images by f2,1 of four curves, one taken in each net.
c, A closer look at the curves evinces a fractal geometry, though the limit curves
are C1 regular.

Remark that the curve of Figure 4.11a seems to have a fractal behavior even
though the limit curve is C1 regular. If we zoom in this curve, we notice that the
corrugations appear at each scale. We analyze this behavior in the next section.
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4.3 SMOOTH FRACTALS

In this section, we show that the Gauss map n∞ of the limit isometric embedding
f∞ can be approximated by an infinite product of rotation matrices. Asymptoti-
cally, this infinite product bares some similarities with the Weierstrass function
and the Riesz product, that are known to have connections with fractals. We
start by analyzing the iterative process of Convex Integrations in a one dimen-
sional setting, since we have explicit formula in that case and the analogy with
the Weierstrass function is obvious.

4.3.1 — Corrugation Theorem on S1

Let f0 : S1 = E/Z → E2 be a radially symmetric strictly short embedding of the
circle, i.e., for every x ∈ S1 : ‖f ′0(x)‖ < 1. Similarly to the torus case, we thus
build a sequence of corrugated maps fk : S1 → E2 that C1-converges to a C1-
isometry f∞ : S1 → E2 (see [3] for more details on this construction). We get
explicit formula for the normal vector field:

Figure 4.12: Example of a sequence of maps (f0, f1, f2 and f∞) with an exponential
growth of the Nk ’s.

Theorem 4.4 (Corrugation Theorem on S1 [3]). The normal map n∞ of f∞ is given
by

∀x ∈ S1, n∞(x) = eiA∞(x)n0(x) with A∞(x) =
∞∑
j=1

αj(x) cos(2πNjx).

Remark that the terms of the series A∞(x) come from our Convex Integration
formula (4.3). Informally, we say that the curve f∞ : S1 → E2 has a C1 fractal
structure as it is both a primitive of −in∞ and of class C1. An interesting case of
a C1 fractal structure occurs when

A∞(x) =
∑
j

aj cos(2πbjx)

for some positive numbers a, b with a < 1 and ab > 1. Indeed, in that case, A∞
is the well-known Weierstrass function. Although its exact value is conjectural,
the Hausdorff dimension of its graph is strictly larger than one [Fal03]. It follows
that the Hausdorff dimension of the graph of n∞ is also strictly larger than one.
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Let nk(x) =
∑

p∈Z ap(k)e2iπpx be the Fourier expansion of the normal vector
field nk of the embedding fk. Its structure is given by Lemma 4.5, is illustrated
in Figure 4.13 and bares some similarities with Riesz products that are known to
have fractal structures. We also provide in [3] an analysis of the regularity of f∞
in terms of the speed of convergence of the oscillation numbers and of the metric.

Lemma 4.5 (Fourier expansion of nk [3]). We have

∀p ∈ Z, ap(k) =
∑
n∈Z

un(k)ap−nNk(k − 1)

where un(k) = inJn(αk) (Jn denotes the Bessel function of order n).

Figure 4.13: A schematic picture of the various spectra (ap(k))p∈Z with Nk = bk.

4.3.2 — Corrugation Theorem on E2/Z2

Our isometric embedding of the flat torus f∞ : (R2/Z2, 〈.|.〉E2)→ E3 is obtained as
the limit of a sequence

f0; f1,1, f1,2, f1,3; f2,1, f2,2, f2,3; f3,1, f3,2, f3,3; ...

As illustrated in Figure 4.14, there is a natural orthonormal basis (v⊥k,j , vk,j ,nk,j)

that comes with each map fk,j of this sequence. The vector field v⊥k,j corresponds
to the direction in which the Convex Integration has been performed to build fk,j
from fk,j−1 and nk,j is the normal vector field of fk,j . We denote byMk,j+1(p) the
rotation matrix that maps (v⊥k,j , vk,j ,nk,j) to (v⊥k,j+1, vk,j+1,nk,j+1) at a point p ∈
R2/Z2. The corrugation matrix Mk,j+1(p) has intricate coefficients with integro-
differential expressions. The Corrugation Theorem provides, up to an error term,
a simple expression for this matrix.

Theorem 4.6 (Corrugation theorem [2, 4]). Each rotation Mk,j+1(p) can be de-
composed as the product of two rotations

Mk,j+1(p) = Lk,j+1(p)Rk,j(p)
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whose asymptotic behaviors are given by

Rk,j(p) =

 cosβj sinβj 0

− sinβj cosβj 0

0 0 1

+O(εk,j),

where εk,j = ‖〈., .〉E2 − f∗k,j〈., .〉E3‖∞ is the isometric default of fk,j and βj is the
oriented angle between U(j) and U(j + 1).

Lk,j+1(p,Nk,j+1) =

 cos(θk,j+1) 0 sin(θk,j+1)

0 1 0

− sin(θk,j+1) 0 cos(θk,j+1)

+O

(
1

Nk,j+1

)

where θk,j+1 := αk,j+1(p) cos(2πNk,j+1sj+1(p)), sj+1(p) = 〈p−O|U(j + 1)〉 and αk,j+1(p)

is a function of p not detailed here.

Figure 4.14: The rotation that maps the basis (v⊥k,j , vk,j ,nk,j) to
(v⊥k,j+1, vk,j+1,nk,j+1) is the composition of two rotations: i) Up to O(εk,j),
the first rotation is a rotation of angle βj in the tangent space to fk,j(T2) at fk,j(p).
ii) Up to O

(
1

Nk,j+1

)
, the second rotation is due to the Convex Integration process.

At each corrugation, we apply two rotations. The significance of these rota-
tions are illustrated in Figure 4.14. Loosely speaking, the first rotation is a ro-
tation of angle βj in the tangent space of the embedding fk,j . Note that βj is
the angle between the directions U(j) and U(j + 1) of two consecutive corruga-
tions. The error is bounded by the isometric default of the current embedding
and does not depend on the salve k. The second rotation, associated to the ma-
trix Lk,j+1(p,Nk,j+1) is about an axis parallel to vk,j+1. This rotation is related to
the Convex Integration process and the error tends to 0 if the oscillation number
Nk,j+1 tend to infinity.
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4.3.3 — Asymptotic behavior of the Gauss map

The Gauss map n∞ of f∞ is given by the infinite product of matrices: v⊥∞
v∞
n∞

 (p) =

∞∏
k=1

3∏
j=1

Mk,j

 v⊥0
v0

n0

 (p).

We introduce

Mk,j+1 :=

 cos(θk,j+1) 0 sin(θk,j+1)

0 1 0

− sin(θk,j+1) 0 cos(θk,j+1)

  cosβj sinβj 0

− sinβj cosβj 0

0 0 1


It follows from the Corrugation theorem that the Gauss map of f∞ is asymptoti-
cally given by an infinite product of matrices Mk,j+1:

Theorem 4.7 (Riesz Asymptotic Behavior [4]). There exists an increasing sequence
of metrics (gk)k≥0, such that we have the following properties:

i) The product
∏
Mk converges with respect to the sup norm.

ii) For every ε > 0, there exists N > 0 such that for all n ≥ N :∥∥∥∥∥∥
∞∏
k=n

3∏
j=1

Mk,j −
∞∏
k=n

3∏
j=1

Mk,j

∥∥∥∥∥∥
∞

≤ ε.

By analogy with the one-dimensional case, we call the corrugated torus f∞ a
C1 fractal or a smooth fractal.

4.4 MORE IMAGES

Since our embedding is encoded as a three dimensional mesh, it is possible to take
advantage of the existing 3D printing devices to obtain a solid representation of
an embedded flat torus. Due to the resolution of those devices (about 0.1 mm), we
had to limit the printing to the first three corrugations. We also present several
beautiful images rendered by Damien Rohmer.

Figure 4.15: Flat torus, from the inside and from profile (rendered by Damien
Rohmer)
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Figure 4.16: 3D printing (left) and computer renderings (right) of the map f1,3

output by our algorithm.

4.5 PERSPECTIVES

Convex Integration is a tool for solving underdeterminated differential systems.
I mention here some of the ongoing works and perspectives directly related to
Convex Integration.

Nash-Kuiper spheres We have seen that the existence of a C1 isometric em-
bedding of the square flat torus in E3 is a consequence of the Nash-Kuiper Theo-
rem. This theorem has other counter-intuitive examples, such as the Nash-Kuiper
sphere: it is possible to isometrically embed the unit sphere S2 of the Euclidean
space inside the ball B(O, r) of radius r < 1 centered at the origin, for any value
of r. Together with the present members of the HEVEA project, namely Evangelos
Bartzos, Vincent Borrelli, Roland Denis, Francis Lazarus and Damien Rohmer,
we are working on the realization of Nash-Kuiper spheres.

In our approach, we start with an initial C1 map f0 : S2 → B(O, r) ⊂ R3

which is shortening distances. The map f0 is defined as follows: we cut S2 into
three pieces, two small spherical caps centered at the poles and a complementary
equatorial belt B ⊂ S2; by construction, the map f0 vertically translates each cap
into B(O, r) and the restriction of f0 to the equatorial belt is shortening distances.
Since the restriction of f0 to each cap is an isometry, we just have to build an
isometry on the belt B. Mimicking the torus case, the idea is to build iteratively a
sequence of corrugated maps fk : B → B(O, r) that is converging to an isometric
map f∞ : B → B(O, r) and such that f∞ : S2 → B(O, r) is of class C1.

Note that we cannot directly apply the construction used for the torus. At each
step k, the image of ∂B by the map fk is prescribed and has already the desired
length. Hence the map fk is not strictly short on the boundary of B and we cannot
apply directly the Convex Integration process. Together with the Hevea team, we
are handling this boundary condition in the Convex Integration process and have
already results on the realization of Nash-Kuiper spheres.
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Effective Convex Integration The actual implementation of Convex Integra-
tion is numerically too complicated to be used in practice in different applications,
where one wants to build isometries. In particular, it is not possible to compute
locally fk without having to calculate the whole embeddings fj , for j < k. This
global construction is one of the main limitation for getting an efficient algorithm.
I am planning to investigate a numerically efficient Convex Integration process
for the differential relation of isometries, by considering a local construction based
on a piecewise linear Convex Integration process [BZ95].
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