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Introduction et résumé

Cette dissertation s’articule autour de trois thématiques importantes : la notion
d’incertitude, la notion de fonction d’utilité et enfin le concept d’absence d’oppor-
tunité d’arbitrage. Dans cette introduction, nous nous proposons de faire un bref
survol de ces sujets et d’une partie de la littérature mathématique correspondante.
Nous nous efforcerons en particulier de donner un aperçu des outils mathéma-
tiques innovants qui ont été mis en place pour traiter les problèmes qui appa-
raissent lorsqu’il y a de l’incertitude sur les lois de probabilités des phénomènes
étudiés. Nous précisons que le but n’est pas, à ce stade, de donner une présentation
formelle et rigoureuse. Au contraire nous espérons que cette introduction pourra
intéresser des lecteurs non-spécialistes. Enfin nous insistons sur le fait que les pro-
blèmes que nous allons aborder ne sont pas uniquement d’un interêt purement ma-
thématique. Non seulement ils sont liés à des problèmes concrets qui apparaissent
sur les marchés financiers (évaluation de produits dérivés, gestion des risques, ré-
gulations,..) mais ils interviennent aussi dans beaucoup d’autres disciplines telles
que les sciences économiques, les politiques monétaires et budgétaires, la psycho-
logie,...

Aléas, risque et incertitude

Quelques exemples
L’aléa est omniprésent dans notre vie quotidienne et apparait à travers de mul-
tiples phénomènes et dans de nombreuses disciplines. Au cours du vingtième siècle,
les mathématiciens ont développé à travers la théorie des probabilités et de la sta-
tistique des outils très puissants pour étudier et comprendre ces situations. Ces
outils ont été un élément essentiel de la compréhension et la modélisation de phé-
nomènes complexes dans des domaines aussi variés que la mécanique quantique,
de la génétique jusqu’au dévelopement récent du "big data". De façon similaire, le
monde de la finance et plus particulièrement la finance quantitative, a suscité un
grand nombre de recherches et ainsi également contribué au développement d’ou-
tils mathématiques adaptés et innovants et cela essentiellement depuis 1970. De
façon réflexive ces outils ont eux-mêmes profondément modifié la façon dont les
marchés financiers fonctionnent.
Des recherches récentes dans le domaine de la psychologie rendues accessibles à un
grand public dans [87] par exemple ainsi que dans [125] pour une audience peut-
être plus spécifique, ont radicalement changé la façon dont est modelisée la réac-
tion d’un agent économique qui fait face à une situation incertaine. En quelques
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mots, ces études montrent que notre esprit n’est pas toujours apte à appréhender
ce qui est aléatoire. Même lorsque nous pensons que nous nous comportons de façon
rationnelle, nous sommes en réalité souvent victimes de multiples biais conscients
ou inconscients. D’une certaine façon notre cerveau n’est pas, d’un point de vue
biologique, adapté pour comprendre et traiter les probabilités et la statistique : il
suffit de voir par exemple comment notre intuition (et même celle d’esprits experts
ou entrainés) est souvent fausse face à des situations impliquant des espérances
conditionnelles et le Théorème de Bayes.
Citons un exemple extrait de [87] : "Linda a 31 ans, est célibataire, ouverte et
brillante. Elle a un diplôme en philosophie. Quand elle était étudiante, elle se sen-
tait très concernée par les problèmes de discrimination et d’injustice sociale et elle
a participé à des manifestations anti-nucléaires." Classez les deux asserstions sui-
vantes en fonction de la probabilité de la situation qu’elles décrivent a) Linda est
une employée de banque , b) Linda est une employée de banque qui est active dans
des mouvements féministes. De façon surprenante, des expériences ont montré que
la réponse b) est souvent vue comme plus probable que a) bien qu’elle décrive une
situation moins générale. Il y a bien sûr beaucoup d’explications à cela : la formu-
lation de la question n’est pas étrangère aux réponses obtenues mais cela reste
profondément surprenant et montre à quel point notre esprit peut nous jouer des
tours. Pour plus d’exemples tout aussi surprenants et révélateurs de certaines de
nos faiblesses, nous invitons le lecteur curieux à se plonger dans la lecture de [87].
Il est bien sûr en dehors du cadre de cette dissertation de faire une liste exhaustive
de toutes ces problématiques. Toutefois dans les lignes qui suivent, nous voudrions
mettre l’accent sur quelques exemples typiques et montrer aussi comment ils sont
en relation avec les problèmes mathématiques que nous traiterons par la suite.
Pour commencer nous nous intéressons au concept d’aversion au risque qui est
tout particulièrement important lorsque l’on modélise le comportement d’un agent
économique. Nous verrons par ailleurs qu’il est lié au concept d’utilité que nous in-
troduirons plus loin et tout particulièrement à la concavité des fonctions d’utilité.
Historiquement, on a souvent considéré un agent économique "rationnel" comme
étant averse au risque : un agent préfère en général une situation dont le résultat
est connu à une situation au résultat inconnu même si son espérance de gain dans
la seconde est un peu supérieure à celle de la première. Cependant si un agent
économique préfèrera recevoir 50 plutôt que de jouer à pile ou face et gagner 100
(si pile) ou 0 (si face) , son comportement n’est pas forcement le même si l’on parle
de pertes potentielles. Ainsi un agent économique préfère en général prendre le
risque de jouer à un jeu ou il peut perdre 100 (si pile) ou 0 (si face) (encore avec
une chance sur deux) plutôt que de perdre de façon certaine 50 : la possibilité de
ne rien perdre l’incite à prendre le risque alors que dans le cas précédent c’était
l’éventualité de ne rien gagner qui le poussait à ne pas jouer. En terme de gestion
des risques c’est bien évidemment une attitude problématique (car contraire à une
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gestion raisonnable dans laquelle on essaie de limiter les pertes et on ne prend
des risques que lorsque l’on peut se le permettre) et qui doit être prise en compte
par exemple lorsque l’on considère la régulation des établissement financiers. D’un
point de vue mathématique c’est l’une des motivations du Chapitre 2 ou nous étu-
dierons des fonctions d’utilité qui ne sont pas concaves.
Un second exemple concerne la notion de distorsion de la loi de probabilité. Il y a
dans la littérature économique et mathématique une longue historique de débats
sur la nature des lois de probabilités. En résumant et simplifiant, est-ce qu’une loi
de probabilité est un élément purement objectif ou bien est-elle subjective, c’est à
dire dépendante de la personne qui prend la décision ? Nous verrons comment cette
distinction entre des lois de probabilités objectives et subjectives intervient dans
la contexte d’espérance d’utilité. Toutefois la notion de distorsion de probabilité va
plus loin : non seulement l’agent économique utilise sa propre loi de probabilité
subjective pour appréhender une situation incertaine mais en plus il modifie men-
talement (consciemment ou pas) cette loi : en général la probabilité des évènements
rares est sur-estimée et celle des évènements fréquents sous-estimée. Cette notion
a été introduite par exemple dans [88] et on peut trouver des exemples dans [87].
D’un point de vue mathématique, pour modéliser ce comportement, on introduit
une fonction croissante 𝑓 : [0, 1] → [0, 1] telle que 𝑓(0) = 0 and 𝑓(1) = 1 et on rem-
place la probabilité 𝑃 (𝐴)d’un évenement 𝐴 par 𝑐(𝐴) = 𝑓(𝑃 (𝐴)). Il est important de
noter que par cette transformation , il n’y a aucune raison que 𝑐 demeure une loi de
probabilité. On parle alors de capacité et ces problématiques sont liées également
à la notion d’intégrale de Choquet et (voir [41]) d’espérance non linéaire que nous
présentons brièvement plus bas.

Risque vs incertitude, le risque de modèle et le dévelopement
d’outils mathématiques adaptés

Dans cette section, nous abordons une distinction fondamentale au sujet de l’aléa-
toire et qui est au coeur de notre étude. Il s’agit de la distinction entre le risque
et l’incertitude. Le risque est "l’inconnu connu" alors que l’incertitude représente
"l’inconnu inconnu". On parle d’incertitude knigthienne, en référence à F. Knight
à qui on attribue la parenté de ce concept (voir [90]). Pour illustrer ce concept pre-
nons l’exemple suivant inspiré du paradoxe d’Ellsberg (nous le reprendrons par la
suite). On vous propose de jouer à un jeu dans lequel vous devez choisir entre rece-
voir 20 ou bien tirer une boule dans une urne qui contient 100 boules. Si vous tirez
une boule rouge vous recevrez 100 et sinon 0. Cependant, vous ne savez pas quelle
est la quantité exacte de boules rouges présente dans l’urne. On vous dit simple-
ment qu’il y a entre 20 et 80 boules rouges. Si on vous avait indiqué la quantité
précise de boules rouges, alors c’est votre aversion au risque qui aurait déterminé
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votre choix. Si il y a 20 boules rouges, la plupart d’entre nous choisirons de ne pas
tirer de boule et de recevoir 20. Si par contre il y a 50 ou 80 boules rouges alors
un plus grand nombre décidera de tirer une boule dans l’urne (et donc de prendre
le risque de ne rien recevoir). Mais le jeu présenté est différent : il ne s’agit pas
seulement d’aversion au risque. Comment peut on calculer l’espérance de gain de
ce jeu ? Doit-on prendre le cas le plus défavorable (20 boules), le cas moyen (50
boules) ou bien le cas le plus favorable (80 boules) ? En général, face à ce genre de
situation, un agent économique fait preuve d’une aversion à l’incertitude au sens
oú il préfère une situation oú l’incertitude est réduite. Par exemple, si dans le cas
oú il y a exactement 50 boules rouges, un agent économique était content de tirer
une boule, ce ne sera pas forcement le cas dans la situation avec incertitude sur
le nombre de boules rouges même si en moyenne on peut dire que l’espérance de
gain est la même. Il est important de remarquer qu’il est finalement très facile de
trouver des exemples quotidiens similaires où nous faisons face à des situations
d’incertitude. Il s’agit donc d’un concept particulièrement pertinent et nous ver-
rons plus bas comment il intervient lorsque l’on modélise de façon plus formelle le
comportement d’un agent économique.
Ce n’est pas un concept récent mais au cours des 15 à 20 dernières années, il est
réapparu dans le contexte des marchés financiers. En effet c’est un concept bien
adapté à l”etude des problèmes de risque de modèles. De façon un peu schématique
on peut distinguer deux formes d’incertitude. La première forme est liée aux ques-
tions de stabilité d’un modèle. Plutôt que fixer un modèle précis, on considère un
ensemble de modèles que l’on interprête comme de petites pertubations autour du
modèle initial. C’est finalement une forme modérée d’incertitude dans le sens où les
perturbations sont censées être limitées. L’incertitude de modèle peut prendre une
forme plus extréme. Prenons l’exemple oú les hypothèses sous-jacentes du modèle
ne décrivent pas suffisamment précisément le phénomène que l’on veut étudier
(typiquement le prix d’un actif financier). La meilleure illustration de ces problé-
matiques est probablement celles relatives à la modélisation de la volatilité d’un
actif financier. C’est un sujet qui a une longue histoire et qui a suscité de nom-
breuses recherches tant du côté académique que du côté des salles de marchés.
Dans les travaux originaux de [18], la volatilité de l’actif sous-jacent est supposée
constante. Très vite il est apparu évident que ce modèle ne correspondait pas à
la réalite, ne serait-ce que parce qu’en pratique la volatilité observée à travers les
prix des options observés sur les marchés dépend du strike et de la maturité de
l’option. De nouveaux modèles ont alors été construits : d’abord des modèles à vo-
latilit́é locale ([56]) ou la volatilité est une fonction de la valeur de l’actif, puis des
modèles à volatilité stochastiques (le modèle de Hull and White [83], le modèle de
Heston [77], et enfin le modèle SABR [71]) où la volatilité est elle-même aléatoire
jusqu’aux travaux récents sur la "rough" volatilité (voir par exemple [65]). Quel
que soit le modéle choisi, on peut considérer pour chacun de petites variations de
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ses paramètres. C’est d’ailleurs ce que font souvent les opérateurs de marché en
pratique en calculant des bid-offer et/ou des réserves en fonction de la variation du
prix de modèle lorsque l’on fait bouger certains des paramètres. Mais chacun de
ces modèles repose sur des hypothèses complexes, parfois cachées et ne décrivent
le comportement de l’actif sous-jacent que dans des situations particulières. Si l’on
veut comprendre (mesurer) vraiment le risque d’une position financière, peut-être
faut-il considérer l’ensemble de ces modèles. Une fois encore c’est souvent ce qui se
passe en pratique où le gestionnaire de risque peut utiliser un modèle ou un autre
en fonction des caractéristiques du produit et des qualités respectives de chacun
des modèles. Mais d’un point de vue mathématique cette approche a besoin d’être
formalisée. Comment s’assurer par exemple que l’utilisation de ces différentes mé-
thodes d’évaluation n’amène pas à des arbitrages ? L’approche adoptée dans le mo-
dèle à volatilité incertaine (voir [5], [93]) s’appuie aussi sur cette idée : le processus
de la volatilité n’est pas directement modélisé mais on suppose seulement que la
volatilité de l’actif sous-jacent se trouve entre deux bornes. Une situation finale-
ment assez similaire à l’exemple décrit ci-dessus de l’urne où la proportion exacte
de boules rouges était entre deux bornes.
L’évolution importante des marchés financiers dont le comportement et la struc-
ture semblent par ailleurs de plus en plus déconnectés des réalites économiques
sous-jacentes a motivé plus encore ce type de questionnements. Les épisodes ré-
cents de volatilité extrême autour d’évènements politiques ou encore les épisodes
de "flash-crash" observés ces dernières années soulèvent des questions et des in-
quiétudes légitimes. Dans ce contexte, la notion d’incertitude est un cadre puissant
permettant aussi de mieux décrire et modéliser le comportement et les interactions
des acteurs économiques. Cela est particulièrement important dans des périodes de
tensions importantes comme ce fut le cas lors de la crise de 2008 où l’interaction
entre les agents économiques dans des situations d’incertitude extrême a joué un
role essentiel dans la propagation de la crise. Il s’agit là bien entendu d’une forme
beaucoup plus profonde d’incertitude et qui dépasse le problème de risque de mo-
dèle.
D’un point de vue mathématique, ces questions ont amené au dévelopement d’ou-
tils mathématiques innovants afin de mieux formaliser et modéliser le problème
d’incertitude des lois de probabilités. Nous présentons brièvement la notion d’es-
pérance non-linéaire qui est un des outils sous-jacents aux problèmes que nous
étudierons. Le but n’est bien entendu pas de donner une présentation rigoureuse
et complète et nous renvoyons le lecteur à [103] et [104] pour plus de détails et
d’autres références. On considère un espace mesurable (Ω,𝒮) qui représente l’en-
semble des évènements possibles et un espace linéaire ℋ de fonctions réelles et me-
surables définies sur Ω (et qui contient les fonctions constantes). Chacune des ces
fonctions correspond au résultat financier d’une décision ou d’un investissement.
On introduit une espérance sous-lineaire, c’est à dire une fonctionnelle ℰ : ℋ → R
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qui

∙ est monotone : si 𝑋 ≥ 𝑌 alors ℰ(𝑋) ≥ ℰ(𝑌 )

∙ préserve les constantes : pour 𝑐 ∈ R, ℰ(𝑐) = 𝑐

∙ est sous-additive : pour 𝑋, 𝑌 ∈ ℋ, ℰ(𝑋 + 𝑌 ) ≤ ℰ(𝑋) + ℰ(𝑌 )

∙ est positivement homogène : pour 𝜆 ≥ 0, 𝑋 ∈ ℋ, ℰ(𝜆𝑋) = 𝜆ℰ(𝑋).

La motivation sous-jacente est la suivante : une façon de représenter l’incerti-
tude est d’introduire non pas une loi de probabilité 𝑃 mais un ensemble de lois
de probabilité 𝒫. Ainsi pour une variable aléatoire 𝑋 ∈ ℋ, il semble naturel de
remplacer l’espérance ℰ(𝑋) = sup𝑃∈𝒫 𝐸𝑃𝑋

1. La moyenne de la variable aléatoire
est ainsi remplacée par l’intervale [−ℰ(−𝑋), ℰ(𝑋)] : celui-ci représente l’incerti-
tude sur la moyenne (et de même sur la variance). Il est alors possible de géné-
raliser dans ce contexte les notions de variables indentiquement distribuées, de
variables aléatoires indépendantes, de convergence en loi (au sens de l’espérance
sous-linéaire). On peut aussi obtenir dans le contexte d’incertitude un équivalent
de la loi des grands nombres, du théorème central limite et de bien d’autres résul-
tats et concepts classiques.
Nous finissons cette section en considérant le problème suivant dont les consé-
quences mathématiques sont importantes. Lorsque l’on fixe un ensemble de lois de
probabilité 𝒫 (celui-ci pouvant être réduit à une seule probabilité le cas échéant)
la distinction entre les évènements pouvant se produire (c’est à dire de probabilité
strictement positive pour au moins l’un des éléments de 𝒫) et ceux qui ne peuvent
pas arriver est essentielle et tout aussi importante que la quantification précise
des probabilités respectives de chacun des événements. A titre d’exemple : est-ce
qu’un modèle permet ou non que les taux d’interêts soient négatifs ? Il est bien
évident que l’attention et la réponse apportées à cette question de modélisation ne
sont plus aujourd’hui les mêmes qu’il y a 10 ou 15 ans. Sur le plan mathématique,
on distingue deux situations : soit il existe une probabilité 𝑃 * telle que pour tout
𝐴 ∈ 𝒮, 𝑃 *(𝐴) = 0 implique que 𝑃 (𝐴) = 0 pour tout 𝑃 ∈ 𝒫. On dit alors que 𝒫 est do-
minée par 𝑃 * et c’est 𝑃 * qui détermine les événements qui peuvent arriver ou non.
D’un point de vue mathématique c’est le cas le plus simple car on pourra utiliser les
outils classiques de la théorie des probabilités. Mais si par malchance, l’ensemble
𝒫 n’est pas dominé la situation devient beaucoup plus délicate. En effet les outils
classiques comme l’esperance conditionelle ou le supremum essentiel sont définis
𝑃 -presque sûrement (pour un 𝑃 donné) c’est à dire seulement sur l’événements vi-
sibles par 𝑃 . Ces outils ne sont donc a priori pas adaptés à l’étude d’un ensemble de
probabilité non-dominé puisque leurs définitions posent problème. Cela amène à la

1 Notons que inf𝑃∈𝒫 𝐸𝑃𝑋 = − sup𝑃∈𝒫 𝐸𝑃 (−𝑋)
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problématique d’agrégation (voir par exemple [124] or [43]) et qui sera également
au coeur du Chapitre 4. Il est important de noter qu’il ne s’agit pas seulement
d’une question théorique. Ainsi, dans le modèle à volatilité incertaine que nous
avons mentionné plus tôt, on obtient des ensembles non-dominés de probabilites
dans lesquelles les lois de probabilités sont deux à deux mutuellement singulières.

Fonctions d’utilité et la notion d’espérance d’utilité
Nous présentons dans cette section le concept d’espérance d’utilité qui sera lui
aussi, central dans cette dissertation. Nous donnerons brièvement l’idée générale
sous-jacente. Le lecteur interessé pourra se reporter au [62, Chapter 2] par exemple
pour une présentation plus complète et détaillée. La formalisation de la théorie de
von Neumann et Morgenstern a été initialement développée dans [126]. Supposons
que l’ensemble des scenarios possibles soit représenté par un espace mesurable
(Ω,ℱ) et que chaque décision (un investissement par exemple) soit representée par
une variable aléatoire 𝑋 : Ω → R correspondant au résultat financier de cette
décision. Supposons par ailleurs qu’il existe une loi de probabilité 𝑃 connue sur
(Ω,ℱ) décrivant la distribution de chacune de ces variables aléatoires. En d’autres
termes, l’agent économique est en situation de risque (et non d’incertitude). Alors
sous l’axiomatique développée par [126], pour un agent donné chaque décison peut
être representée par

𝑢(𝑋) = 𝐸𝑃𝑈(𝑋)

ou 𝑈 : R → R est une fonction concave et croissante que l’on appelle fonction d’uti-
lité et qui est propre à chaque agent. Ainsi 𝑢(𝑥) représente l’espérance d’utilité de
𝑋 et une décision 𝑋 sera preférée à 𝑌 si et seulement si 𝑢(𝑋) = 𝐸𝑃𝑈(𝑋) ≥ 𝑢(𝑌 ) =

𝐸𝑃𝑈(𝑌 ). Un agent essaie toujours de maximiser son espérance d’utilité en choisis-
sant parmi toutes les actions 𝑋 disponibles. On distingue souvent deux types de
fonctions d’utilité : soit 𝑈 est définie sur tout R, soit uniquement sur (𝑎,∞) pour un
réel 𝑎 (et 𝑈 = −∞ en dessous de 𝑎). Dans ce cas, 𝑎 correspond au capital maximum
que l’agent peut perdre. Parmi les fonctions d’utilité usuelles on trouve : les fonc-
tions logarithmes, puissances ou exponentielles (cette dernière correspond à une
aversion au risque constante quelque soit la richesse). La concavité de la fonction
d’utilité est liée à l’aversion au risque comme nous l’avons déjà mentionné. Pour
une décision 𝑋, notons 𝑚(𝑋) = 𝐸𝑃𝑋 la moyenne de 𝑋 sous 𝑃 . L’aversion au risque
signifie que l’agent économique préfère recevoir𝑚(𝑋) qui est sûr plutôt que𝑋 (sauf
si bien sur 𝑋 n’est pas aléatoire). C’est une hypothèse importante et comme nous
l’avons vu qui en pratique n’est pas toujours vérifiée. C’est ce qui nous poussera à
étudier dans le Chapitre 2 des fonctions non-concaves.
Au-delà de ce problème d’aversion au risque, la modélisation ci-dessous présente



8 Table des matières

d’autres faiblesses importantes : en particulier peut-on vraiment supposer qu’il
existe une probablité 𝑃 objective, connue et partagée par tous les agents ? Le pa-
radoxe d’Allais (voir [62, Example 2.32]) montre par ailleurs que les axiomes sous-
jacents de la théorie de von Neumann et Morgenstern ne sont pas toujours vérifiés.
Pour répondre à ces critiques, L.J. Savage ([120]) proposa une approche modifiée.
Dans le cadre de Savage, on ne fait plus l’hypothèse qu’il existe une probabilité
𝑃 objective et connue. En ajoutant des hypothèses supplémentaires sur les pré-
férences des agents, on peut obtenir une nouvelle représentation numérique des
préférences des agents sous la forme suivante :

𝑢(𝑋) = 𝐸𝑄𝑈(𝑋)

où 𝑄 est une loi de probabilité subjective on (Ω,ℱ) et qui dépend donc de chaque
agent (𝑈 est toujours une fonction concave et croissante). Dans ce cadre un agent
économique cherche toujours à maximiser son espérance d’utilité mais en fonction
de sa propre vision du monde.
Malheureusement cette représentation n’est toujours pas complètement satisfai-
sante. En effet, le paradoxe d’Ellsberg [62, Exemple 2.32] montre que les hypo-
thèses sous-jacentes de la représentation de Savage ne sont, elles aussi, pas tou-
jours vérifiées expérimentalement. Le concept d’aversion à l’incertitude décrit plus
haut a alors été introduit. C’est en quelques sorte l’analogue de l’aversion au risque
pour l’incertitude. Cette approche, utilisée dans [69], permet de proposer une nou-
velle théorie d’espérance d’utilité. Cette fois les préférences des agents peuvent
s’écrire sous la forme

𝑢(𝑋) = inf
𝑃∈𝒫

𝐸𝑃𝑈(𝑋)

où 𝒫 est un ensemble de loi de probabilités subjective (et donc dépendant de chaque
agent) et qui représente toutes les croyances d’un agent économique. La fonction
𝑈 : R → R est toujours concave et croissante. Dans ce cadre, un agent économique
va donc maximiser éspérances d’utilités calculées sous la croyance la plus défavo-
rable. Le cadre introduit par [69] a ensuite été étendu dans [94] où une fonction
de pénalité 𝑐(𝑃 ) est introduite dans la fonctionelle précédente. Finalement, dans
[39], les préférences des agents sont représentées par une fonctionnelle de la forme
inf𝑃∈𝒬𝐺(𝐸𝑃𝑈(𝑋), 𝑃 ) ou 𝐺 est appellé l’indice d’incertitude et représente l’attitude
de l’agent économique face à l’incertain. Il existe bien entendu d’autres réponses
aux critiques formulées à l’encontre du paradigme de l’espérance d’utilité de von
Neumann et Morgenstern : on peut se rapporter par exemple [42] pour un exposé
de ces différentes idées.
Dans le contexte des marchés financiers, les fonctions d’utilité n’ont pas toujours
été utilisées autant que d’autres techniques essentiellement car il est difficle de sa-
voir comment les estimer. Toutefois elles ont gagné en popularité récemment. Tout
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d’abord parce qu’elles permettent justement d’introduire des distinctions entre les
agents economiques. Par ailleurs elles sont aussi utilisée dans des situations où les
couvertures (hedge) parfaits sont impossibles et ou l’on considère des couvertures
partielles. C’est en particulier le point de vue utilisé dans l’évaluation par indiffé-
rence d’utilité dont certains aspects en présence d’incertitude seront étudiés dans
le Chapitre 5.

Notons qu’une revue de la littérature mathématique récente sur le problème de
maximisation d’espérance d’utilité est proposée plus loin en Section 1.2.2.

La notion d’arbitrage en mathématiques financières
Nous concluons cette introduction en présentant brièvement la notion d’arbitrage
en mathématiques financières qui est un concept essentiel. En quelques mots l’ab-
sence d’opportunité d’arbitrage veut simplement dire qu’un investisseur ne peut
pas faire de profit certain sans prendre un risque : c’est à dire sans s’exposer à
une perte potentielle. ll s’agit bien entendu d’une vision idealisée des marchés. En
pratique, des arbitrages existent et pour de multiples raisons d’ailleurs. Ceci étant
dit, il semble raisonnable de supposer qu’une fois qu’une opportunité d’arbitrage
est detectée, un ou plusieurs "arbitragiste" interviendront sur les marchés pour en
profiter et que cette opportunité va donc rapidement disparaitre.
Dans le cadre classique où il existe une probabilité objective (historique), on dit de
façon informelle, qu’une stratégie est un arbitrage si sur un horizon de temps 𝑇 ,
elle délivre toujours un résultat positif ou nul et qu’il existe des situations dans
lesquelles elle délivre un profit. Attention pour qu’il y ait arbitrage, il faut que
les situations dans lesquelles la stratégie délivre un profit soient visibles pour le
modèle sous-jacent, c’est à dire qu’elles aient une probablité strictement positive
dans ce modèle. Ainsi si une stratégie amène un profit dans une situation où les
taux d’interêts sont négatifs et qu’elle délivre toujours un résultat positif dans tous
les autres situations mais que le modèle en question ne permet pas d’avoir des
taux d’interêts négatifs, il n’y a pas d’arbitrage. La notion d’arbitrage et ses consé-
quences en terme de loi de probabilité d’évaluation sont au coeur du développement
de la finance moderne. Cette notion a véritablement révolutionné la façon dont
beaucoup de marchés financiers fonctionnent et a contribué à leur croissance ex-
ponentielle. Cette croissance est allée de pair avec le dévelopement d’outils mathé-
matiques complexes qui ont eux-même incité beaucoup d’intervenants à construire
et élaborer des instruments financiers toujours plus sophistiqués. Cette croyance
parfois aveugle en la toute-puissance et l’infaillibilité des outils mathématiques
malgré des accidents et crises récurrentes sont sans aucun doute des sources d’in-
quiétudes. Mais ces questions sortent largement du cadre de cette dissertation.
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Pour revenir sur la notion d’arbitrage, les bases de la théorie ont été développées
et formalisées par [74], [75] and [92]. Un résultat essentiel de cette théorie est
le théorème fondamental de l’évaluation des actifs qui fait le lien entre la notion
de non-arbitrage et celle de probabilité risque-neutre (ou probabilité martingale) :
un modèle est sans opportunité d’arbitrage si et seulement si il existe une loi de
probabilité risque-neutre. De façon informelle, probabilité risque neutre est proba-
bilité sous laquelle le prix actualisé à la date 𝑡 d’un actif est exactement l’espérance
conditionnellement à l’information disponible à la date 𝑡, du prix de l’actif actua-
lisé à la date 𝑡 + 1. En d’autres termes que l’on achète ou vende cet actif à la date
𝑡, l’espérance de gain en date 𝑡 + 1 est nulle. Notons qu’il s’agit du prix actualisé
de l’actif : c’est à dire son prix exprimé pas rapport à un actif de référence (souvent
appelé, à tort, actif sans risque). Par ailleurs dans ce cas, le prix actualisé d’un
actif contingent (c’est à dire un actif dont le prix dépend du prix d’un ou plusieurs
actifs sous-jacents) est exactement son espérance mais calculée sous cette proba-
bilité risque neutre (et non en utilisant une loi de probabilité historique). Ces ré-
sultats sont désormais bien connus et bien ancrés dans les pratiques des marchés.
Mais répétons qu’ils ont véritablement revolutionné la façon dont les marchés fonc-
tionnent.
Rappelons que la notion d’arbitrage est aussi liée à la notion de sur-réplication.
Pour un actif contingent, le prix de sur-réplication correspond au prix minimum
que demande un agent économique vendant cet actif contingent afin de pouvoir le
sur-répliquer en achetant/vendant dynamiquement les actifs sous-jacents dans le
marché : en d’autre terme la stratégie de sur-réplication doit permettre à l’agent de
délivrer l’actif contingent dans tous les situations possibles sans aucun risque. La
relation entre ce prix et le(s) prix obtenus par espérance risque neutre est donnée
par le théorème de sur-réplication : le prix de sur-réplication d’un actif contigent
est égal au supremum des prix obtenus par espérance (parmi toutes les probabili-
tés risque-neutre).
Pour conclure cette introduction, nous évoquons brièvement comment le concept de
non-arbitrage est impacté en présence d’incertitude. Ces questions ont suscité en
effet un regain d’intérêt récemment, en particulier pour répondre aux problèmes
liés au risque de modèle comme nous l’avons déjà evoqué. Dans ce cadre, il existe
différentes approches et nous proposons une discussion plus detaillée sur ces diffé-
rentes approches et une revue de la litteŕature mathématique récente plus bas (voir
section 1.3.2). Dans cette dissertation, nous suivrons essentiellement la modélisa-
tion proposée par [25] où l’incertitude est modélisée en introduisant un ensemble
non-dominé de lois de probabilité (qui représentent donc les différentes croyances
des agents). Dans ce cadre, une généralisation assez naturelle de la notion clas-
sique (avec une seule loi de probabilité) d’arbitrage est proposée. Cette définition
permet en particulier d’étendre les résultas classiques sur l’existence de lois de pro-
babilité risque neutre et de sur-réplication. Nous reviendrons plus en détails sur
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ces points en particulier dans le Chapitre 3.

Résumé de la dissertation

Le travail présenté dans cette dissertation est le résultat de différents articles (voir
[20], [19], [21], [22]) dont certains ont été soumis pour publication. Le contenu de
chacun des chapitres correspond donc à une version détaillée et complète. En par-
ticulier, nous avons volontairement laissé les répétitions entre les différents cha-
pitres. Par exemples nous répétons dans la Section 3.2 du Chapitre 3, la Section
4.2 du Chapitre 4 et la Section 5.2.1 du Chapitre 5 tout ce qui concerne les nota-
tions utilisées, la façon dont l’incertitude est modélisée et les outils de théorie de la
mesure utilisés. Notons aussi qu’un certain nombres de preuves dans les différents
chapitres utilisent des arguments similaires. De même, les introductions de cha-
cune des parties sont parfois redondantes et reprennent certains éléments de cette
introduction générale. Nous avons fait ce choix afin que chacun de ces chapitres
puisse être lu de façon (presque) indépendante du reste de la dissertation.

Nous proposons ci-dessous un résumé des résultats et outils utilisés dans cha-
cun de ces chapitres.

Chapitre 1

Le Chapitre 1 reprend en anglais l’introduction et propose aussi une revue de la
littérature sur les problématiques d’utilité et d’arbitrage.

Chapitre 2

Dans le Chapitre 2 nous étudions dans un cadre classique (c’est-à-dire avec une
seule probabilité), le problème de maximisation d’espérance d’utilité pour une fonc-
tion d’utilité qui n’est ni concave, ni continue et qui est définie sur l’axe des réels
positifs. Dans ce cadre, nous établissons le résultat qui est le plus complet à notre
connaissance, garantissant l’existence d’une stratégie d’investissement optimale.
Une des raisons qui nous a poussée à étudier des fonctions non-concaves a déjà
été abordée précédemment : un agent économique n’est pas forcement averse au
risque dans toutes les situations. Par ailleurs, le fait d’avoir des fonctions d’utilité
discontinues est aussi intéressant sur le plan pratique : une fois que l’on dépasse un
certain seuil de richesse, l’utilité d’un agent peut sauter d’un niveau par exemple.
Enfin, notre résultat permet aussi de considérer des fonctions d’utilité qui ne sont
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pas finies en 0 (le logarithme par exemple) ce qui n’était pas le cas dans les résul-
tats précédemment obtenus. Notre preuve utilise des outils de théorie de la mesure
et de sélection mesurable et repose sur le principe de programmation dynamique.
Nous donnons les preuves de tous les résultats utilisés (certains étant des résultats
classiques dont nous rappelons les démonstrations en les adaptant à notre cadre).
En particulier, nous démontrons tous les résultas nécessaires relatifs à la condition
de non-arbitrage.
Les deux résultats principaux sont les suivants

Theorem 0.0.1 Supposons que la condition (NA) et les hyptothèses 2.4.7, 2.4.8
and 2.4.10 soient verifiées. Soit 𝑥 ≥ 0. Alors, 𝑢(𝑥) < ∞ et il existe une stratégie
optimale 𝜑* ∈ Φ(𝑈, 𝑥) telle que

𝑢(𝑥) = 𝐸𝑈(·, 𝑉 𝑥,𝜑*

𝑇 (·)).

De plus, 𝜑*
𝑡 (·) ∈ 𝐷𝑡(·) p.s. pour tout 0 ≤ 𝑡 ≤ 𝑇 .

Theorem 0.0.2 Supposons que la condition (NA) et l’hyptothèses2.4.10 soit ve-
rifiées. Suppons par ailleurs que 𝐸𝑈+(·, 1) < +∞ et que pour tout 0 ≤ 𝑡 ≤ 𝑇

|Δ𝑆𝑡|, 1
𝛼𝑡

∈ 𝒲𝑡. Soit 𝑥 ≥ 0. Alors, pour tout 𝜑 ∈ Φ(𝑥) et tout 0 ≤ 𝑡 ≤ 𝑇 , 𝑉 𝑥,𝜑
𝑡 ∈ 𝒲𝑡. De

plus, il existe une stratégie optimale 𝜑* ∈ Φ(𝑈, 𝑥) telle que

𝑢(𝑥) = 𝐸𝑈(·, 𝑉 𝑥,𝜑*

𝑇 (·)) <∞

Plus précisement, le Chapitre 2 est structuré de la façon suivante. Après une
partie introductive qui replace le chapitre par rapport à la recherche existante,
nous présentons le cadre et les notations utilisées : nous décrivons l’espace proba-
bilisé et présentons les notions de noyau stochastique et d’intégrale généralisée
qui seront utilisées par la suite. Nous présentons ensuite la condition de non-
arbitrage : après avoir rappelé des propriétés de mesurabilité importantes, nous
établissons la Proposition 2.3.7 qui sera essentielle par la suite. Dans la section
suivante, nous introduisons la définition de fonction d’utilité et posons précise-
ment le problème qui nous intéresse. Nous présentons et discutons ensuite les
différentes hypothèses nécessaires à la démonstration de notre théorème princi-
pal (Théorème 2.4.17) et en particulier les nouvelles conditions d’intégrabilité et
d’élasticité asymptotique.
La démonstration du théorème s’effectue en deux étapes : nous considérons le cas
d’un modèle à une période avec données initiales déterministes. Il s’agit alors d’un
problème relativement simple d’optimisation dans R𝑑. Ensuite, dans le cas multi-
période (qui est la partie techniquement difficile), il s’agit d’utiliser le résultat ob-
tenu dans le cas une période. Notre démonstration repose sur deux idées essen-
tielles : il s’agit d’utiliser des outils de sélection mesurable ainsi que le principe de
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programmation dynamique pour construire pour chaque étape une solution opti-
male en recollant bout à bout les solutions obtenues dans le cas une période avec
conditions initales déterministes. Le résultat essentiel est obtenu dans la Propo-
sition 2.6.10 qui est le principal outils utilisé dans la démonstration du théorème.
Cette démonstration s’effectue elle aussi en deux étapes : nous contruisons grâce
à la Proposition 2.6.10 une stratégie qui sera notre candidate pour être la solution
optimale. Ensuite, nous vérifions qu’elle est effectivement une solution optimale.
Nous proposons ensuite dans le Théorème 2.4.17 une application dans un cadre
général de notre résultat. Finalement, en appendice, nous reprenons précisement
un certain nombres de détails techniques utilisés dans le chapitre. Nous proposons
également un certain nombres de rappels sur les ensembles aléatoires ainsi que
les problèmes de mesurabilité sous-jacents. Ces notions seront d’ailleurs utilisées
à travers toute la dissertation et ce chapitre qui peut aussi être vu comme une pré-
paration en vue du Chapitre 4.
En conclusion de ce chapitre, il semble naturel de se demander si et comment l’on
peut étendre les résultats obtenus à des fonctions d’utilités définies sur l’ensemble
des réels. Une partie de la réponse a déjà été apportée dans [33]. Toutefois la
condition d’intégrabilité proposée ([33, Assumption 2.9]) n’est pas totalement sa-
tisfaisante car elle n’est pas facile à vérifier en pratique. De plus d’un point de
vue technique (et aussi esthétique), cela rend la preuve délicate et complexe car la
condition d’intégrabilié doit être vérifiée par récurence ascendante (contrairement
à ce que nous faisons dans ce chapitre) alors que les autres conditions nécessaires
pour appliquer le principe de programmation dynamique sont, elles, vérifiées par
une récurence descendante qui est plus naturelle. Malheureusement il n’est pas
évident de remplacer cette hypothèse par des hypothèses similaires à celles intro-
duites dans ce chapitre (voir Assumptions 2.4.7 and 2.4.8) qui ne soient pas trop
restrictives. En effet dans le cas de fonctions définies sur l’ensemble des réels, l’ar-
gument de compacité (c’est à dire l’equivalent du Lemma 2.5.10) demande plus
de travail et la borne obtenue dans le modèle une période dépend de la fonction
d’utliité. Il n’est donc pas évident de trouver une condition d’intégrabilité qui soit
préservée dans la programmation dynamique. Dit autrement et de façon plus in-
tuitive : dans le cas d’une fonction définie sur les réels positifs il n’est finalement
pas vraiment restrictif d’imposer des conditions d’integrabilité puisque cette condi-
tion est d’une certaine façon déjà imposé par la contrainte d’admissibilité (à savoir
que l’agent ne veut pas perdre d’argent et donc que la valeur du portefeuille doit
rester postive ou nulle). Dans le cas d’une fonction définie sur tous les réels, cette
contraintes n’existe pas (l’agent n’a pas de limite de perte) et les conditions d’inté-
grabilités sont une vraie contrainte. En effet rien n’empêche un investisseur d’avoir
une stratégie qui lui procure une utilité très importante dans certaines situations.
Bien sur, la condition d’arbitrage implique que ce type de stratégie conduira à des
utilités très négatives pour certains évènements et donc que de telles strategies ne
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sont vraisemblablement pas optimales. Mais on voit pourquoi une conditions d’inté-
grabilité sur toutes les stratégies est, sur le plan mathématique, trop contraignant.
La généralisation de notre résultat et de notre preuve à des fonctions définies sur R
est donc un problème intéressant mais dont la résolution n’est pas une adaptation
tout à fait évidente du cas (0,∞). Ce sera donc le sujet de recherches futures.

Chapitre 3
Le Chapitre 3 peut également être considéré comme un chapitre préparatif au Cha-
pitre 4. Nous nous intéressons à un marché financier en temps discret avec un
horizon de temps fini mais en présence cette fois d’incertitude. Les deux résultats
principaux sont les suivants

Theorem 0.0.3 Supposons que les hypothèses 3.2.1 et 3.2.2 soient verifiéds. Alors
le non- arbitrage quantitatif (voir Définition 3.4.4), le non-arbitrage géometirque
(voir Définition 3.4.6) et la condition 𝑁𝐴(𝒬𝑇 ) (voir Définition 3.4.1) sont équivalent
et Ω𝑡

𝑁𝐴 = Ω𝑡
𝑞𝑁𝐴 = Ω𝑡

𝑔𝑁𝐴 for all 0 ≤ 𝑡 ≤ 𝑇 . De plus , pour tout 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴 on peut choisir

𝛼𝑡(𝜔
𝑡) = 𝜀(𝜔𝑡) tels que (3.5) et (3.6) soient vraies.

Theorem 0.0.4 Supposons que les hypothèses 3.2.1 et 3.2.2 soient vraies . Alors
les affirmations suivantes sont équivalentes
1. 𝑠𝑁𝐴(𝒬𝑇 ) est vraie.
2. Pour tout 0 ≤ 𝑡 ≤ 𝑇 − 1, Ω𝑡

𝑠𝑁𝐴 ∈ 𝒞𝒜(Ω𝑡) est un ensemble de pleine mesure pour
𝒬𝑡.

La proposition suivante est également importante.

Proposition 0.0.5 Supposons que la condition 𝑠𝑁𝐴(𝒬𝑇 ) et que les hypothèses
3.2.1 et 3.2.2 soient vérifiées. Soit 0 ≤ 𝑡 ≤ 𝑇 − 1. Fixons 𝑃 = 𝑄1 ⊗ 𝑞2 ⊗ · · · ⊗ 𝑞𝑇 ∈ 𝒬𝑇 .
Alors il existe Ω𝑡

𝑃 ∈ ℬ(Ω𝑡) tel que 𝑃𝑡(Ω𝑡
𝑃 ) = 1 et pour tout 𝜔𝑡 ∈ Ω𝑡

𝑃 , 𝐷𝑡+1
𝑃 (𝜔𝑡) est un

sous-espace vectoriel et il existe 𝛼𝑃𝑡 (𝜔𝑡) ∈ (0, 1] tel que pour tout ℎ ∈ 𝐷𝑡+1
𝑃 (𝑡), ℎ ̸= 0

𝑞𝑡+1

(︀
ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≤ −𝛼𝑃𝑡 (𝜔𝑡)|ℎ|, 𝜔𝑡
)︀
≥ 𝛼𝑃𝑡 (𝜔

𝑡).

Enfin, 𝜔𝑡 → 𝛼𝑃𝑡 (𝜔
𝑡) est ℬ(Ω𝑡)-mesurable.

Pour cela nous nous plaçons dans le cadre introduit dans [25] que nous présen-
tons en détails après une partie introductive. Ce cadre utilise des outils de théorie
de la mesure et, en particulier, la notion d’ensemble analytique qui est au coeur
de difficultés techniques du cadre à croyances multiples non-dominées. Nous in-
troduisons ensuite la notion de support (dans le cadre de croyance multiples et
non-dominées) du processus de prix des actifs. C’est un outil important à travers
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toute la dissertation qui permet de se débarasser des actifs "redondants" et dont
nous établissons des propriétés de mesurabilités importantes. Ces propriétés se-
ront utilisées de façon récurente à travers la dissertation. Leur preuve repose sur
des théorèmes de projection ce qui justifie l’introduction des ensembles analytiques
introduit plus haut.
Nous rappelons ensuite la définition de la condition de non-arbitrage quasi-sûre,
ainsi que sa caractérisation locale. Cette notion sera essentielle par la suite. Nous
proposons ensuite des définitions alternatives, mais équivalentes, de cette condi-
tion de non-arbitrage. Plus précisement, il s’agit d’une caractérisation dite quanti-
tative du non-arbitrage et d’une caractérisation dite géométrique et nous prouvons
dans le Théorème 3.4.7 que ces définitions sont bien équivalentes ce qui généra-
lise un résultat bien connu dans le cadre classique (sans croyances multiples). La
preuve du Théorème 3.4.7 s’effectue en deux étapes : en Proposotion 3.4.14 nous
établissons l’équivalence des différentes définitions dans un modèle une période
avec données initiales deterministes. Pour cela nous utilisons des résultats clas-
siques de séparation d’ensemble convexe dans R𝑑. La preuve du Théorème 3.4.7 re-
pose ensuite sur la caracterisation locale du non-arbitrage quasi-sûre établie dans
[25, Theorem 4.5]. Ce résultat utilise des techniques de selection mesurable et les
ensembles analytiques. A l’aide du Théorème 3.4.7, nous établissons aussi la pro-
position 3.4.9 dans laquelle nous obtenons des propriétes de mesurabilités utiles
par la suite.
Dans la section suivante et afin d’illustrer l’intérêt de la caractérisation quantita-
tive de la notion de non-arbitrage, nous étudions le problème de la maximisation
d’espérance d’utilité la plus défavorable pour une fonction d’utilité définie sur R,
non bornée et toujours dans le cadre de croyance multiples et non-dominées. Le
Lemme 3.5.12 est la clé de voûte de la preuve du Théorème 3.5.13 : la caracterisa-
tion quantitative du non-arbitrage permet d’utiliser un argument de compacité, en
obtenant une borne sur la norme des éventuelles stratégies optimales. Toutefois,
nous nous limitons au cas une période et nous reverrons dans le Chapitre 4 pour-
quoi l’extension au cas multi-période est délicate.
Enfin, dans une dernière section nous introduisons la condition dite de non-arbitrage
fort. C’est une condition plus contraignante que la condition de non-arbitrage quasi-
sûre introduite précédemment. Elle sera utilisée dans le Chapitre 4 dans un théo-
rème d’application car elle simplifie certaines questions techniques. Nous illustrons
ces aspects techniques à travers quelques résultats de mesurabilité liés à la carac-
térisation locale de cette condition. C’est l’occasion de manipuler les ensembles
analytiques (et coanalytiques) et de se familiariser avec certaines des difficultés
techniques sous-jacentes qui apparaitront dans le Chapitre 4. Puis, nous propo-
sons à nouveau une caractérisation quantitative de cet arbitrage qui sera aussi
utilisée dans le Chapitre 4. Finalement, nous établissons en Proposition 3.6.12, un
théorème fondamental pour la condition de non-arbitrage fort.
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Pour conclure ce chapitre citons deux axes éventuels pour des recherches futures.
Le premier consiste à creuser plus encore la relation entre la condition de non-
arbitrage fort et la condition de non-arbitrage quasi-sure. On a vu en effet dans ce
chapitre que la condition de non-arbitrage fort est d’un point de vue de technique
mathématique plus facile à manipuler mais qu’elle est plus forte que la condition de
non-arbitrage quasi-sure. Il serait donc intéressant de trouver sous quelles condi-
tions on peut par exemple espérer obtenir l’implication réciproque.
Par ailleurs il est bien connu que dans le cadre classique si la preuve initiale
du Théorème Fondamental de l’évaluation des actifs financiers proposée dans ci-
tepdmw repose sur des outils puissants de théorie de la mesure et de selection
mesurable d’autres preuves, reposant par exemples sur des outils d’analyse fonc-
tionnelle, sur une version aléatoire du Lemme de Bolzano-Weistrass ou les fonc-
tions d’utilités, furent ensuite proposées (voir par exemple [86], [117] et [49]). Il
serait alors intéressant de voir si des approches similaires peuvent aboutir à une
preuve alternative du Théorème Fondamental de l’évaluation des actifs financiers
obtenu par [25] dans le cadre de croyances multiples non-dominées.

Chapitre 4
Dans le Chapitre 4, nous nous intéressons cette fois au problème de maximisation
de la plus défavorable des espérances d’utilité pour une fonction concave et non
bornée, définie sur l’axe des réels positif. Les deux résultats principaux sont les
suivants

Theorem 0.0.6 Supposons que la condition𝑁𝐴(𝒬𝑇 ) et les hyptothèses 4.2.1, 4.2.2,
4.2.4, 4.4.2 et 4.4.12 soient verifiées. Soit 𝑥 ≥ 0. Alors, il existe une stratégie opti-
male 𝜑* ∈ Φ(𝑥, 𝑈,𝒬𝑇 ) telle que

𝑢(𝑥) = inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝑉 𝑥,𝜑*

𝑇 (·)) <∞.

De plus, 𝜑*
𝑡 (·) ∈ 𝐷𝑡(·) 𝒬𝑡-q.s. pour tout 0 ≤ 𝑡 ≤ 𝑇 .

Theorem 0.0.7 Supposons que la condition𝑠𝑁𝐴(𝒬𝑇 ) et les hyptothèses 4.2.1, 4.2.2,
4.2.4 et 4.4.2 soient verifiées. Supposons en plus que 𝑈+(·, 1), 𝑈−(·, 1

4
) ∈ 𝒲𝑇 et que

pour tout 1 ≤ 𝑡 ≤ 𝑇 , 𝑃 ∈ 𝒬𝑡, Δ𝑆𝑡, 1
𝛼𝑃
𝑡
∈ 𝒲𝑡 (voir Proposition 4.3.6 pour la définition

de 𝛼𝑃𝑡 ). Soit 𝑥 ≥ 0. Alors, pour tout 𝑃 ∈ 𝒬𝑇 , 𝜑 ∈ Φ(𝑥, 𝑃 ) et 0 ≤ 𝑡 ≤ 𝑇 , 𝑉 𝑥,𝜑
𝑡 ∈ ̂︁𝒲𝑡. De

plus, il existe une stratégie optimale 𝜑* ∈ Φ(𝑥, 𝑈,𝒬𝑇 ) telle que

𝑢(𝑥) = inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝑉 𝑥,𝜑*

𝑇 (·)) <∞.
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Nous utilisons les résultats obtenus dans [25] ainsi que dans le Chapitre 3.
Nous sommes donc encore donc dans un cadre de croyances multiples dans lequel
nous ne supposons pas que l’ensemble de lois de probablité est dominé. Comme
nous l’avons déjà indiqué dans cette introduction, ce cadre augmente la difficulté
mathématique du problème mais semble tout à fait justifié d’un point de vue pra-
tique. Nous établissons le premier(à notre connaissance) résultat déxistence dans
un cadre de croyances multiples et non-dominées pour des fonctions d’utilité non-
bornées. Nous généralisons ainsi le résultat obtenu dans [99] pour des fonctions
bornées par dessus. Nous introduisons deux conditions d’intégrabilité : les hypo-
theses 4.4.2 et 4.4.12. La preuve repose, comme dans le Chapitre 2, sur le principe
de programmation dynamique ainsi que sur des outils de théorie de la mesure et
de sélection mesurable. Cependant, comme dans le Chapitre 3 déjà, le cadre de
croyances multiples non-dominées complique les problématiques de mesurabilités.
Nous utilisons à nouveau les ensembles analytiques et des théorèmes de selec-
tion mesurable relatifs aux ensembles analytiques. Rappelons que les ensembles
analytiques interviennent car ils sont stables par projection contrairement aux en-
sembles boréliens par exemple. Ils sont aussi stables par unions ou intersections
dénombrables mais pas par passage au complémentaire. Et c’est la raison pour la-
quelle beaucoup de problèmes de mesurabilité ne peuvent pas être résolus aussi
facilement que dans le cas du Chapitre 2. Les problématiques liées aux conditions
d’integrabilités ajoutent des difficultés techniques supplémentaires.
Le chapitre est structuré de façon similaire au Chapitre 2. Après une partie in-
troductive, nous présentons de façon détaillée le cadre, les notations, ainsi que les
outils de théorie de la mesure qui seront utilisés dans le chapitre. Nous rapellons
ensuite les résultats sur le support conditionnel des variations des prix des actifs
sous-jacent et sur la condition de non-arbitrage quasi-sûre et sa caractérisation
quantitative. Tout comme dans la Section 3.5 du Chapitre 3, cette caractérisation
sera utilisée pour obtenir de la compacité. Ensuite, après avoir formulé explicite-
ment le problème que nous cherchons à résoudre, les hypothèses utilisées et les
résultats obtenus, nous nous attaquons à la preuve, celle-ci s’articulant en deux
temps. Dans un premier temps, nous traitons le cas une période avec données ini-
tiales déterministes. Le résultat principal de cette section est le Théorème 4.5.23,
il donne des conditions sous lesquelles une strategie optimale existe dans ce cadre
et il sera utilisé dans le cadre multi-periode. Nous établissons aussi dans cette
partie des résultats techniques (Lemmes 4.5.17, 4.5.18, 4.5.22). Ils seront utilisés
pour résoudre des questions de mesurabilité et d’intégrabilité dans le cadre multi-
periode. Ces problèmes sont propres au cadre de croyances multiples non-dominées
de ce chapitre. Enfin dans un second temps en utilisant à la fois des outils de sélec-
tion mesurable et programmation dynamique nous prouvons notre théorème. La
structure de la preuve est tout à fait similaire à celle du Chapitre 2, mais les ar-
guments sont beaucoup plus délicats pour les raisons de mesurabilité mentionnées
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plus haut. La Proposition 4.6.12 permet de construire pour chaque période une so-
lution optimale en recollant de façon mesurable les solutions obtenues dans le cas
une période. Puis, nous contruisons grâce à la Proposition 4.6.12 une stratégie qui
sera notre candidate pour être la solution optimale et vérifions qu’elle est en effet
une solution optimale. Finalement, en utilisant la condition de non-arbitrage fort
qui se révèle plus adaptée à la condition d’intégrabilité que nous avons introduite,
nous appliquons notre résultat dans un cadre relativement large. Enfin l’appen-
dice reprend les détails de certains résultats techniques et revient aussi sur un
problème de mesurabilité identifié dans [25].
En conclusion de ce chapitre, nous proposons des pistes pour des recherches fu-
tures afin d’améliorer ce résultat. Tout d’abord il serait interessant d’etudier le
généralisation suivante de notre problème d’óptimisation

sup
𝜑∈Φ𝐺(𝑥,𝑈,𝒬𝑇 )

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝑉 𝑥,𝜑
𝑇 (·)−𝐺(·))

où 𝐺 : Ω𝑇 → [0,∞) est une variable aléatoire et

𝜑𝐺(𝑥, 𝑈,𝒬𝑇 ) = {𝜑 ∈ 𝜑(𝑥, 𝑈,𝒬𝑇 ), 𝑉 𝑥,𝜑
𝑇 (·)−𝐺(·) ≥ 0𝒬𝑇 -q.s}.

En effet cela pourrait permettre dans le Chapitre 5, d’obtenir une strategie opti-
male pour realiser le prix d’indifférence d’utilité. En s’inspirant de [112], en sup-
posant 𝐺 bornée et vérifiant de bonnes conditions de mesurabilité et en utilisant
[25, SuperHedging Theorem, Lemma 4.10], notre preuve pourrait être adaptée en
introduisant 𝐺𝑡(

𝑡) = sup𝑃∈𝒬𝑡+1(𝑡)𝐸𝑃𝐺𝑡+1(
𝑡, ·) et en replacant ℋ𝑡+1(𝑡) avec ℋ𝑡+1(𝑡) :={︀

ℎ ∈ R𝑑, 𝑥+ ℎΔ𝑆𝑡+1(
𝑡, ·) ≥ 𝐺𝑡(

𝑡) 𝒬𝑡+1(
𝑡)-q.s.

}︀
. La vérification de ce travail minutieux

est toutefois laissé pour des recherches futures.
Une autre amélioration importante serait de supprimer l’hypothèse de concavité
imposée dans la Définition 4.4.1. En effet on a vu que cette hypothèse n’est pas
requise dans le Chapitre 2 et comme nous l’avons déjà mentionné qu’elle n’est
pas toujours justifié d’un point de vue pratique. Malheureusement dans un cadre
à croyances multiples non-dominés, même si la concavité n’est pas indispensable
pour le problème d’optimisation en lui-même, elle est essentielle pour obtenir les
bonnes proprietés de mesurabilités (comme c’est illustré dans l’Example 4.8.2 et
le Lemme 4.8.3). Nous avons exploré différentes alternatives mais aucune ne s’est
révélée satisfaisante.
Enfin, la question de la condition d’intégrabilité reste ouverte : en effet initialement
nous espérions pouvoir utiliser la condition suivante

sup
𝑃∈𝒬𝑇

sup
𝜑∈Φ(1,𝒬𝑇 )

𝐸𝑃𝑈
+(·, 𝑉 1,𝜑

𝑇 (·)) <∞.

qui est moins contraignante et plus esthétique que l’hypothèse 4.4.12 puisque Φ(1,𝒬𝑇 ) ⊂
Φ(1, 𝑃 ) for all 𝑃 ∈ 𝒬𝑇 . Malheureusement l’utilisation de cette condition soulève des
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problémes de mesurabilité pour la fonction 𝐼𝑡 (dont la définition doit être adaptée)
que nous n’avons pas réussi à résoudre.
Pour des fonctions d’utilités définies sur l’ensemble des réels, [98] ont obtenus des
résultats pour des fonctions bornées par au-dessus. Le cas de fonctions non-bornées
(par au-dessus) reste donc ouvert. Comme cela a été évoqué plus haut, déjà dans le
cas classique il n’est pas évident de remplacer l’hypothése traditionnelle 𝑢(𝑥) < ∞
par une hypothése du type 𝐸𝑃𝑈(𝑉 𝑥,𝜑

𝑇 ) qui ne soit pas trop restrictive. Dans le cadre
à croyances multiples non-dominées cette difficulté est amplifiée par deux facteurs :
d’abord parce que même la condition 𝑢(𝑥) < ∞ ne peut pas fonctionner (pour des
raisons similaires à celles qui sont exposées dans la Remarque 4.5.15) et ensuite
parce que des problèmes techniques de mesurabilité apparaissent.

Chapitre 5
Finalement, dans le Chapitre 5 qui conclut cette dissertation, nous nous intéres-
sons à la notion d’évaluation par indifférence d’utilité.
Les résultats principaux obtenus sont les suivants

Theorem 0.0.8 Soit𝐺 ∈ 𝒲0,+
𝑇 et𝐺 ̸= 0𝒬𝑇 -q.s. Supposons que les hypothèses 5.2.1,

5.2.2, 5.2.3 et 5.4.1 soient vraies ainsi que les hypothèses 5.4.2 and 5.4.4 pour un
𝑥0 > 0.
Alors pour tout 𝑛 ≥ 1, 𝑝𝑛(𝐺, 𝑥0) est bien défini et lim𝑛→+∞ 𝑝𝑛(𝐺, 𝑥0) = 𝜋(𝐺).

Theorem 0.0.9 Soit 𝐺 ∈ 𝒲0,+
𝑇 et 𝐺 ̸= 0 𝒬𝑇 -q.s. Supposons que les hypothèses

5.2.1, 5.2.2, 5.2.3 et 5.4.1 soient vraies. Supposons de plus que 𝑈𝑛 est une fonction
d’utilité non aléatoire pour tout 𝑛 ≥ 1 et que lim𝑛→∞ 𝑟𝑛(𝑥) = +∞ pour tout 𝑥 > 0.
Alors, lim𝑛→+∞ 𝑝𝑛(𝐺, 𝑥) = 𝜋(𝐺) pour tout 𝑥 > 0.

Les trois propositions suivantes sont également des résultats importants. La pre-
mière est une conséquence des deux résultats précédents.

Proposition 0.0.10 Soit 𝐺 ∈ 𝒲0,+
𝑇 et 𝐺 ̸= 0 𝒬𝑇 -q.s. Supposons que les hypothèses

5.2.1, 5.2.2, 5.2.3 et 5.4.1 soient vraies ainsi que les hypothèses 5.4.2 et 5.4.4 pour
un 𝑥0 > 0. Alors, pour tout 𝑛 ≥ 1, 𝑝𝐵𝑛 (𝐺, 𝑥0) est bien défini et lim𝑛→+∞ 𝑝𝐵𝑛 (𝐺, 𝑥0) =

𝜋𝑠𝑢𝑏(𝐺).

Proposition 0.0.11 Soit 𝑥 ≥ 0. Supposons que 𝒜(𝑈,𝐺, 𝑥) = 𝒜(𝐺, 𝑥) pour tout 𝐺 ∈
𝒲0

𝑇 .
1. Alors la fonction 𝜌𝑥 est une mesure de risque monétaire sur 𝒲0

𝑇 .
2. Si les hypothèses 5.2.2 et 5.2.3 sont vérifiées et 𝑢(0, 𝑥) > −∞ alors 𝜌𝑥 est une
mesure de risque monétaire convexe sur {𝐺 ∈ 𝒲0

𝑇 , 𝑢(−𝐺, 𝑧) <∞,∀𝑧 ∈ R}.
3. Si de plus nous supposons que 𝑢(0, 𝑥) > −∞, 𝑢(0, 𝑥− 𝛿) < 𝑢(0, 𝑥) pour tout 𝛿 > 0,
alors 𝜌𝑥 est normalisée.
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Proposition 0.0.12 Soient 𝑈𝐴, 𝑈𝐵 des fonctions d’utilités non aléatoires définies
sur (0,∞) et qui vérifient la Définition 5.2.11. Soit

𝒲+
𝑇 (𝑈) := 𝒲0,+

𝑇 ∩

{︃
𝐺, 𝑃 (𝐺(·) < +∞) = 1, 𝐸𝑃𝑈

+(𝐺(·)) <∞, ∀𝑃 ∈ 𝒬𝑇 , sup
𝑃∈𝒬𝑇

𝐸𝑃𝑈
−(𝐺(·)) <∞

}︃
.

1. Si pour tout 𝑥 > 0, 𝑟𝐴(𝑥) ≥ 𝑟𝐵(𝑥), alors 𝑒𝐴(𝐺) ≤ 𝑒𝐵(𝐺) pour tout 𝐺 ∈ 𝒲+
𝑇 (𝑈).

2. Si pour tout 𝐺 ∈ 𝒲+
𝑇 (𝑈) 𝑒𝐴(𝐺) < 𝑒𝐵(𝐺) alors 𝑟𝐴(𝑥) ≥ 𝑟𝐵(𝑥) pour tout 𝑥 > 0.

Rappelons tout d’abord la définition de la notion de prix de sur-réplication (dans
un cadre de croyances multiples non-dominés) que nous avons déjà mentionné plus
haut dans l’introduction : il correspond au prix minimum que demande un agent
économique vendant un actif contingent afin de pouvoir le sur-répliquer en ache-
tant et vendant dynamiquement dans le marché. En d’autres termes, la stratégie
de sur-réplication doit permettre à l’agent de délivrer l’actif contingent dans toutes
les situations possibles : c’est à dire tous les évènement qui ont une probablité
strictement positive pour au moins une des lois de probabilité de l’ensemble consi-
déré. Le prix d’indifference d’utilité, introduit initialement par [82], correspond à
la quantité d’argent minimum que demande un agent économique vendant un ac-
tif contingent pour que, ajouté à sa richesse initiale, son utilité en vendant l’actif
contingent et en traitant dynamiquement sur le marché soit supérieure ou égale à
son utilité si elle n’avait rien fait. On voit donc qu’il s’agit d’un prix qui fait inter-
venir les préférences de l’agent économique et qui donc semble plus réaliste d’un
point de vue pratique.
Le résultat principal obtenu montre que sous de bonnes conditions, le prix d’indif-
férence d’utilité converge vers le prix de sur-réplication dans le cadre de croyances
multiples et non-dominées. Dans le cas de fonctions d’utilité non-aleatoires si l’aver-
sion au risque de l’agent économique tends vers +∞ alors les conditions d’applica-
tion du théorème sont vérifées. Cela généralise un résultat bien connu dans le cas
classique et correspond aussi à l’intuition initiale selon laquelle le prix de sur-
réplication correspond à un agent ayant une aversion au risque infinie.
Nous commençons le chapitre par un rappel du cadre dans lequel nous travaillons.
Le cadre est similaire à celui des Chapitres 3 et 4 toutefois les difficultés tech-
niques seront moindres. Nous rappelons ensuite les définitions précises que nous
utiliserons : le prix de sur-réplication (et le prix de sous-réplication qui correspond
à la situation d’achat) le prix d’indifférence d’utilité pour l’acheteur et le vendeur.
Nous faisons le lien entre prix d’utilité et mesure de risque, une notion importante
en finance puisqu’elle permet de quantifier le risque d’une position donnée. Dans la
Proposition 5.2.19, nous montrons que sous de bonnes hypothèses, le prix d’indif-
férence d’utilité est effectivement une mesure convexe de risque (dont la définition
est rapellée en Définition 5.2.17).



Table des matières 21

Dans la Section 5.3, nous revisitons aussi la notion d’équivalent certain intro-
duite dans [108]. La Proposition 5.3.2 que nous rappelons ci-dessous généralise le
concept d’équivalent certain dans notre cadre à croyances multiples pour des fonc-
tions d’utilités éventuellement aléatoires et en présence de croyances multiples et
non-dominées. Nous obtenons en particulier en Proposition 5.3.4 une généralisa-
tion du résultat classique qui relie l’équivalent certain et le coéfficient d’aversion au
risque. La Section 5.4 présente et demontre les differents résultats de convergence
obtenus, ainsi que les hypothèses utilisées. En particulier, nous considérons des
fonctions d’utilité éventuellement aléatoires ce qui complique la démonstration,
mais une fois encore, est justifié sur le plan pratique. Le Théorème 5.4.8 constitue
le résultat principal. L’hypothèse 5.33 remplace dans le cas de fonctions aléatoires
la convergence vers l’infini du coefficient d’aversion au risque, ce qui est illustré
dans le Théorème 5.4.10. La preuve du théorème de convergence est ensuite décou-
pée en plusieurs étapes. En dehors des difficultés techniques liées à des problèmes
d’integrabilité, le Lemma 5.2.6 est la clé de voûte de la preuve : il repose sur [25,
Theorem 2.2]. Comme précisé plus haut, la preuve n’est pas aussi technique que
celles du Chapitre 4. La caractérisation quantitative de l’arbitrage introduite au
Chapitre 3 est à nouveau utilisée car elle permet de contrôler le comportement de
la valeur du portefeuille de couverture et donc de résoudre les problèmes d’integra-
bilité.
L’approche adoptée dans ce chapitre est volontairement théorique. L’évaluation par
indifférence d’utilité ayany un interêt pratique important nous nous efforcerons
dans le cadre de future recherches nous nous efforcerons d’étudier et de proposer
des modélisations qui permettent des applications concrètes des résultats obtenus.

Conclusion

En conclusion, rappelons tout d’abord que les difficultés techniques liées aux ques-
tions de mesurabilité sont bien entendu au coeur de cette dissertation. Beaucoup
de preuves utilisent des outils fins de théorie de la mesure. Cela nécessite une ap-
proche minutieuse rendant les preuves souvent assez fastidieuses. Dans un souci
de précision et de minutie, mais au risque de paraitre parfois trop prudent et sans
aucun doute de rendre la lecture des preuves difficiles, nous avons détaillé la plu-
part de ces preuves.
Par ailleurs, si dans le Chapitre 2, c’est à dire dans un cadre classique sans croyances
multiples, les problèmes de mesurabilité peuvent tous être (relativement) facile-
ment réglés (ce qui n’est pas une surprise puisque l’on sait que dans ce cas les
outils classiques tels que espérances conditionnelles et supremum essentiel sont
adaptés), ce n’est pas toujours le cas dans un cadre à croyances multiples non-
dominées. C’est bien sur particulièrement évident dans le Chapitre 4 où ces dif-
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ficultés nous obligent souvent à des "gymnastiques" mathématiques délicates. La
raison sous-jacente principale de ces difficultés est simple : les ensembles boreliens
(respectivement universellement mesurables, voir la Section 3.2 dans le Chapitre 3
pour un rappel de leurs définitions) ne sont pas stables par projection. C’est à dire,
si𝑋, 𝑌 sont des espaces Polonais et si𝐴 ∈ ℬ(𝑋×𝑌 ) (respectivement𝑋 ∈ ℬ𝑐(𝑋×𝑌 )),
on ne sait pas à priori si 𝑃𝑟𝑜𝑗𝑋(𝐴) ∈ ℬ(𝑋) (respectivement 𝑃𝑟𝑜𝑗𝑋(𝐴) ∈ ℬ𝑐(𝑋)) et
c’est la raison pour laquelle on doit introduire les ensembles analytiques qui sont
eux stables pr projection. Toutefois le prix à payer est que l’ensemble des ensembles
analytiques n’est pas stable par passage au complementaire.
Est-ce qu’il existe une alternative aux ensembles analytiques et à une utilisation
intensive d’outils puissants de théorie de la mesure pour résoudre ces problémes
tout en gardant le même degres de généralité ? La question reste ouverte. Nous ne
sommes en tout cas pas parvenus à en trouver. Notons toutefois que si𝑂 ⊂ 𝑋×𝑌 est
un ensemble ouvert de𝑋×𝑌 (pour la topologie produit) alors 𝑃𝑟𝑜𝑗𝑋×𝑌 (𝑂) est encore
ouvert dans 𝑋. Ainsi en introduisant des conditions de continuité on peut espérer
remplacer les ensembles analytiques par des ouverts et ainsi simplifier considéra-
blement toutes les questions techniques de mesurabilités. L’étude de cette question
est bien entendu un axe naturel de recherches futures. Parmis les questions inté-
ressantes et stimulantes sur cette thématique, citons à nouveau celle de l’obtention
d’une preuve du Théorème Fondamental de l’évaluation des actifs financiers dans
le cadre de croyances multiples non-dominées obtenus par [25] qui ne repose pas
(autant) sur des outils de théorie de la mesure.
Dans le prolongement du travail effectué dans cette dissertation, l’étude du cas de
fonctions d’utilités non-concaves ainsi que celui des fonctions d’utilités non-bornées
définies sur l’ensemble des réels (et éventuellement non-concaves) sont bien enten-
dus des axes naturels de recherches futures qui devraient être plus accessibles.
L’introduction de distorsion est également (dans un cadre de croyance multiples
non-dominées) une généralisation interéssante non seulement sur le plan mathé-
matiques mais aussi en terme d’applications.
Finalement, il nous semble important et essentiel à plus moyen terme d’étudier et
tester des applications peut-être plus concrètes et pratiques de ces résultats dans
des domaines tels que la modélisation economique qui reste en plus de l’aspect
purement mathématiques, l’une des principales motivations de cette dissertation.



CHAPTER 1

Introduction

This dissertation evolves around the following three main general thematics: un-
certainty, utility and non-arbitrage. In this introduction, we propose a brief and
general overview of these subjects and related literature. In particular, we will try
to give a flavour of some of the innovative mathematical tools developed to treat
problems of risk and randomness under the uncertainty of probability measures.
Note that at this stage, however, we do not intend to give a mathematically rigor-
ous presentation. On the contrary we hope that it could be accessible and of some
interest for non-specialists. We will also emphasise the fact that these issues are
not only of mathematical interest but are deeply enshrined in reality: not only
do they relate to very concrete questions arising in financial markets concerning
issues such as pricing, risk management and regulations but they can also be ap-
plied to a large range of other fields such as economics, theory of decision under
risk, policy making and psychology amongst many others.

1.1 Randomness, risk and uncertainty

1.1.1 Some motivating examples
Randomness is a constant part of our life that appears in many domains and dis-
ciplines. During the 20th century, mathematicians have developed a set of very
powerful tools to study and analyse these situations, namely probability and stat-
istic. These tools have been an essential element to understand and model complex
phenomenon from quantum mechanics to genetics or to the recent development of
big data. In a similar spirit, finance and quantitative finance, mostly since the
seventies, have triggered a tremendous amount of research and progress in these
domains, which in turn have profoundly modified the way finance and financial
market works and operates.

Recent researchs and developments in the domain of psychology, as made popu-
lar and accessible to a wide audience in [87] for instance or [125] for a more specific
public, have led to a profound rethinking of how to model the way economic agents
behave when facing randomness. Very roughly speaking, these studies show that
our minds are ill-suited to properly deal with random events: we are easily "fooled
by randomness" to quote again Nassim Taleb. Even when we think that we behave
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rationally (whatever this means!), we are very often subject to various conscious or
unconscious biases (confirmation bias, conjunction fallacy, illusion of understand-
ing, illusion of validity,...). Somehow our brains are biologically not equipped to
properly handle probability and statistics: think of how easily our intuition is
wrong when it comes to issues involving conditional probabilities and Bayes’s The-
orem. The following famous excerpt from [p158][87] is truly puzzling and not only
for mathematicians. "Linda is 31 years old, single, outspoken and very bright. She
majored in philosophy. As a student, she was deeply concerned with the issues of
discrimination and social justice, and she participated in antinuclear demonstra-
tions" Rank the following two descriptions in terms of the probability that they de-
scribe: a) Linda is a bank teller, b) Linda is a bank teller who is active in a feminist
movement. Surprisingly, some experiences have shown that very often b) is seen
as more likely than a) despite the fact that a) describes a more general situation
than b). There are many reasons for this and clearly the way the question is for-
mulated is not neutral. We invite the interested and curious reader to dive into the
whole book for further insight. As a second illustration of how “poorly" we perform
when faced with randomness, we mention the results from [72]. Some students
were invited to play a game where they are given upfront some money and can bet
as much and as many times as they want within the next 30 minutes on coin toss.
They are also told that the coin is biased and has a 0.6 probability of coming up
with heads. The aim is obviously to maximise their gain at the end of the period
(in the experience their maximum gain is capped). Note that the students involved
were supposedly already familiar with concepts related to financial markets, asset
management and underlying mathematical techniques and ideas. Still, the results
of the experience were very disappointing with for instance almost one third of the
students ending up the game with less money than they started with.
It is obviously out of our scope to go through an exhaustive review of these type
of issues. But, in the next paragraph, we would like to illustrate further the kind
of irrational mistakes typical "rational agents" do through a few simples examples
that are also connected to the mathematical problems we will study. An inter-
esting concept, particularly relevant when modelling the behaviour of agents, is
the notion of risk aversion. We will see in Section 1.2 that in the expected utility
paradigm it is related to the concavity property of the utility function and "ra-
tional agents" have for a long time been deemed to be risk adverse: they tend to
prefer a sure thing rather than a risky bet. However, it was shown that if agents
are generally risk adverse when it comes to gain (an agent prefers receiving 50

rather than tossing a fair coin where he will receive 100 or 0 with probability 1/2),
this is not the case when losses are involved. In this case, agents may actually
be risk seeking. The agent tends to prefer playing a game where he can lose 100

or nothing each with probability 1/2 rather than losing surely 50. Note that from
a risk-management perspective this is a rather unfortunate and worrying feature
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that needs to be seriously taken into account when looking at regulation issues.
From a mathematical point of view, this is one of the motivation behind Chapter 2,
where we study utility functions that are not assumed to be concave.
Moving to another concept, there is, both in economics and mathematics, a long his-
tory of debates on the distinction between objective and subjective probability: is
probability an objective feature of the phenomena under study, or merely a subject-
ive judgment of the decision maker. We will see in Section 1.2 how this plays out in
the context of expected utility. The issue of probability distortion introduced by [88]
in the context of cumulative prospect theory goes on step further: it has been shown
indeed that not only can an agent have her own subjective probability but she can
also mentally modify and distort it. In particular the agent tends to overweight
the probability of rare events. From a mathematical point of view, it is modelled
by introducing a non-decreasing function 𝑓 : [0, 1] → [0, 1] such that 𝑓(0) = 0 and
𝑓(1) = 1 and replacing the probability 𝑃 (𝐴) of an event with 𝑐(𝐴) = 𝑓(𝑃 (𝐴)). Note
that by doing so, there is no reason for the set function 𝑐 to still be a probability
measure. This approach leads to the notion of capacity, Choquet Integrals (see [41])
and non-linear expectation that we will briefly present below.

1.1.2 Risk vs uncertainty, model risk and related mathemat-
ical developments

We now move to a fundamental distinction regarding random events that is at
the heart of this PhD dissertation: namely the distinction between risk and un-
certainty. More precisely, by risk we refer to the “known unknown", and by un-
certainty to the “unknown unknown". The fatherhood of the concept is attributed
to F. Knight ([90]) and often called Knightian uncertainty. Consider the following
situation inspired by the Ellsberg Paradox that we will revisit later. You are asked
to play a game where you have to choose between receiving surely 20 or drawing a
ball from a box and receiving 100 if you pick a red ball and nothing otherwise. You
are told that there 100 balls in the box in total and between 20 and 80 red balls.
If you knew exactly how many red balls there are, your risk aversion would de-
termine your choice: if there are only 20 red balls, most people would take the cash
while if there are 50 or 80 red balls a larger proportion is likely to take the risk.
But here the situation slightly differs. It is not only about risk aversion: how do
you evaluate your expected gain from the bet? Do you consider the worst case (20
red balls), the best case (80 red balls) or some kind of average case (50 red balls)?
In general faced with this kind of situation, an agent will demonstrate uncertainty
aversion: she will tend to choose a situation where the uncertainty is reduced. For
instance, if in the case where there are exactly 50 red balls she is happy to take the
bet, this will not be the case in the situation described above (even if one could say
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that in average there is also 50 red balls in the box). We will come back in Section
1.2.1 on some of the consequences uncertainty aversion has when modelling agents
preferences and behaviour. Note that it is easy to come up with concrete and real
life examples of similar situations, illustrating how relevant the concept of uncer-
tainty is.
This is not a new concept but it has re-emerged in the context of financial markets
over the last 15 to 20 years. Indeed, it is a very appropriate framework to study
model risk. Roughly speaking, we can somehow distinguish between two forms of
uncertainty. The first one is related to robust questions: rather than fixing a given
model, we take a set of models resulting from small perturbations of the initial
reference model. This is a "mild" form of uncertainty where the deviation from
the initial model is understood to be relatively limited. This can be the case for
instance because we can only partially estimate the parameters of the model. But
the issue of model risk can be of another and more serious kind: simply put the
underlying assumption of the model do not describe accurately enough the phe-
nomenon modelled (namely the price of a given asset). These questions of model
risk are best illustrated with the issue of the volatility of financial assets (stocks,
bonds, ...) where actually a lot of these problems were initiated. There is a very
long history on the subject starting with the seminal work of [18] where the volat-
ility of the underlying asset is assumed to be a constant. Very quickly, it was clear
that the constant volatility assumption was wrong and that the model needed to
be improved: indeed each option (𝑖.𝑒 for a given strike and a maturity) on a given
underlying was quoted with a specific volatility. New approaches were considered:
from local volatility models (see [56]) where the volatility is a function of the value
of the asset, to stochastic volatility models (such as the Hull and White model
[83], the Heston model [77], and the SABR model [71]) where the volatility is itself
random and to the recent work on "rough" volatility (see [65]), academics and prac-
titioners alike have developed a wide range of techniques and model to deal with
the issue. In all of these frameworks a robust approach consists of taking small
variations of some of the parameters used in the model. This is actually applied
in practice where risk managers and traders will use bid-offer or reserves (when
the parameters are not directly tradable). But each of the above models relies on
complex (sometimes hidden) assumptions and provides an accurate representation
of the reality only under certain conditions. If one wants to fully understand (𝑖.𝑒.
measure) the risk taken, somehow all of the models have to be taken into account.
This is also what happen very often in practice, where a blend of all the models is
used especially to account for period of acute stress where the dynamic of markets
can become very surprising. But this needs to be formalised: for instance if the
risk manager of a complex derivatives book uses different models to price and risk-
manage positions depending on the characteristic of each product, how can he be
sure that this is not leading to arbitrage opportunity? In a similar spirit but with
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a rigorous analysis, the uncertain volatility approach (see [5], [93], on which we
will come back later) is not directly modelling the dynamic of the volatility process
but only assumes that the volatility of the underlying asset lies between certain
bounds (this is similar to the previous example where we only knew that there was
between 20 and 80 red balls).
These kinds of questions have followed the profound evolution of the way financial
markets operates, becoming even more endogenous and seemingly disconnected
from the underlying economics. Some of the recent extreme behaviour observed
in markets such as so-called flash crashes or huge bout of volatility surrounding
certain political events are without doubt also a source of concern at least from a
regulation and stability point of view. In this context, the concept of uncertainty is
also a very powerful framework to describe and model the behaviour of investors
and their interactions, especially in periods of acute stress and uncertainty such as
financial crisis. This was evidentely the case after the 2008 Great Financial Crisis
since the investors’s behaviours played a crucial role in its development (see for in-
stance [29]). This is obviously a much deeper form of uncertainty that goes beyond
the issue of model misspecification.
From a mathematical point of view, these questions have triggered interesting de-
velopment to formalise and model the uncertainty of the underlying distribution.
We would like to illustrate this through a brief overview of non-linear expectations
and stochastic calculus under uncertainty which are important topics underlying
the problems we will study. We obviously do not aim to give a mathematically
rigorous presentation here. For more details we refer the reader to [103] and [104]
and the references therein, we will also revisit more precisely some of these aspects
later. Given a measurable space (Ω,𝒮) representing the set of possible scenarii and
a linear space ℋ of real valued measurable functions defined on Ω (containing the
constant functions) that represent the monetary outcome of a decision, we consider
a sublinear expectation: 𝑖.𝑒 a functional ℰ : ℋ → R satisfying

∙ Monotonicity: if 𝑋 ≥ 𝑌 then ℰ(𝑋) ≥ ℰ(𝑌 )

∙ Constant preserving: for 𝑐 ∈ R, ℰ(𝑐) = 𝑐

∙ Sub-additivity: for 𝑋, 𝑌 ∈ ℋ, ℰ(𝑋 + 𝑌 ) ≤ ℰ(𝑋) + ℰ(𝑌 )

∙ Positive homogeneity: for 𝜆 ≥ 0, 𝑋 ∈ ℋ, ℰ(𝜆𝑋) = 𝜆E(𝑋).

The underlying motivation and link with uncertainty is as follow. One way to model
uncertainty is indeed to introduce, rather than a single probability 𝑃 measure
defined on (Ω,𝒮), a set of probability measures 𝒫. Thus, for a real valued random
variable 𝑋 it seems natural to replace the expectation 𝐸𝑃𝑋 with ℰ = sup𝑃∈𝒫 𝐸𝑃𝑋

1.

1Note that inf𝑃∈𝒫 𝐸𝑃𝑋 = − sup𝑃∈𝒫 𝐸𝑃 (−𝑋)
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Hence, the mean of a random variable 𝑋 ∈ ℋ is replaced by the mean-uncertainty
interval [−ℰ(−𝑋), ℰ(𝑋)], and its variance is replaced by the variance-uncertainty
[−ℰ(−𝑋2), ℰ(𝑋2)]. Interestingly, it is shown in [103] how in this framework, most
of the notions and tools of probability spaces can be extended. To name a few, the
notions of identically distributed and independent random variables and of conver-
gence in law in the sense of sublinear expectations can be introduced and one can
seek to obtain a law of large numbers and a central limit theorem in the context
of uncertainty. Similarly, the pendant of the normal law in the context of multiple-
priors gives rise to the 𝐺-normal law, 𝐺-brownian motion and a 𝐺-Ito-integral can
then be constructed using similar ideas as in the classical case.
The notion of sub-linear expectation is also strongly related to the problem of co-
herent risk-measure (see [62, Chapter 4] for a general presentation), which cor-
responds to a very acute and concrete question in quantitative finance, namely
measuring the risk of a given financial position.
From a more probabilistic point of view, non-linear expectations are also related
to the notion of capacity 2, the non-additive pendant of a probability measure. For
instance, from the set of probability measures introduced previously, we can set
𝑐(𝐴) = sup𝑃∈𝒫 𝑃 (𝐴) for all 𝐴 ∈ 𝒮 and another sublinear expectation can be defined
(using the Choquet Integral) which is actually different from the previous one, even
if they agree on the function of the form 1𝐴 for 𝐴 ∈ 𝒮. We refer for instance to [70,
Section 0.2] for more details and a general overview. Using the notion of capacity,
one can also develop a quasi-sure stochastic analysis which is the pendant of the
𝑃 -almost sure stochastic analysis. We refer here to [53], [51] and again [103] for
more details on this. The notion of capacity is also useful when the set of probab-
ility measures 𝒫 is non-dominated. Recall that when there is just one probability
measure, the null-set consists of all the events whose probability is zero (for simpli-
city we do not mention the issue of measurability of these sets). When considering
different models (probability measures), the distinction between the events that
can or cannot happen is as important as the quantification of the probability of
each event. As a typical illustration: does a given model allow for negative in-
terest rate? Today’s answer to this modelling question is probably very different
to the one we would have given 10 or 15 years ago. When we deal with a set of
probabilities measure, this distinction is crucial. If we are lucky, there exists some
probability measure 𝑃 * such that for all 𝐴 ∈ 𝒮, 𝑃 (𝐴*) = 0 implies that 𝑃 (𝐴) = 0 for
all 𝑃 ∈ 𝒫. We say that 𝒫 is dominated by 𝑃 * and 𝑃 * determines the events that
are possible or not 3. But if we are not lucky and our set of probability measures
is non-dominated, then from a mathematical point of view the situation is more
challenging. Indeed, the classical tools of probability theory such as conditional

2A capacity is a set function 𝑐 : 𝒮 → [0, 1], normalised (𝑐(∅) = 0, 𝑐(Ω) = 1) and monotone (𝑐(𝐴) ≤
𝑐(𝐵) if 𝐴 ⊂ 𝐵).

3Note that if 𝒫 is finite or countable one can always find such a 𝑃 *
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expectations or essential supremum are defined 𝑃 -almost-surely (𝑖.𝑒 they are valid
only for all events visible for 𝑃 ) and are therefore ill-suited for non-dominated set
of probabilities measures. This leads to the non-trivial aggregation issue (see for
instance [124] or [43]). Importantly, the issue of a non-dominated set of probabil-
ity measures is not only of theoretical interest but linked to real life problems: in
the already mentioned context of volatility uncertainty certain sets of probability
measures are mutually singular. These aggregation problems and related measur-
ability issues will be at the heart of the problem we face in Chapter 4 when trying
to find a version of the value function having the required properties.

1.2 Utility functions

1.2.1 The concept of expected utility
We now move to the second fundamental topic of this PhD dissertation: the expec-
ted utility paradigm. It would be too long to retrace the full history and all the
evolutions and ramifications of the concept over the last 50 to 60 years. We refer
to [62, Chapter 2] for a detailed presentation and further references. Very briefly,
the concept of utility is related to the numerical representation of the preferences
of agents. The underlying axiomatic of the theory was initiated by [126]. We as-
sume that the set of possible scenarios is given by a measurable space (Ω,ℱ) and
that each decisions (an investment for instance) is represented by some random
variable 𝑋 : Ω → R that corresponds to its monetary outcome. Furthermore, we
assume that there exists an objective known probability 𝑃 on (Ω,ℱ) that describes
the distribution of the monetary outcome of each decision. In other words the
agent is facing risk and not uncertainty. Under the axiomatic proposed in [126],
for a given agent, each decision can be represented by

𝑢(𝑋) = 𝐸𝑃𝑈(𝑋) (1.1)

where 𝑈 : R → R is a non-decreasing and concave function called a utility function
that depends on the agent. Thus, 𝑢(𝑋) represents the expected utility of 𝑋 and de-
cision 𝑋 will be preferred over 𝑌 if and only if 𝑢(𝑋) = 𝐸𝑃𝑈(𝑋) ≥ 𝑢(𝑌 ) = 𝐸𝑃𝑈(𝑌 ).
An agent will always try to maximise her expected utility over all the actions 𝑋
available to her. We usually distinguish between two cases: either the utility func-
tion is defined (and finite) on all R or it is only finite on (𝑎,∞) for some real number
𝑎 (and equals −∞ below 𝑎). In this case, it means that the agent cannot lose more
than some capital 𝑎. Typical examples of utility functions are given by: logarithm,
power functions (know as Constant Relative Risk Aversion utility ) and exponential
(Constant Absolute Risk Aversion). The underlying intuition of the expected util-
ity is very simple: for each possible outcome 𝜔, 𝑋(𝜔) is measured using its utility
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𝑈(𝑋(𝜔)) (rather than 𝑋(𝜔)) and the agent then takes the average of all outcomes.
This formulation provides for instance an answer to the St. Petersburg Paradox
(see for instance [62]) where an agent is asked how much she is willing to pay to
play a game where she will receive 2𝑛 where 𝑛 is the number of successive tails she
will obtain when playing a coin toss. The expected value of the bet is infinite, still in
practice no-one will pay more than a few euros to play it. The non-decreasing prop-
erty of the utility function is relatively natural: more is deemed to be always better.
The concavity of the utility function is related to risk-aversion: for an outcome 𝑋,
we denote by 𝑚(𝑋) = 𝐸𝑃𝑋 its expected value under 𝑃 . Risk aversion means that
the agent prefers to receive 𝑚(𝑋) rather than 𝑋 (unless 𝑋 is not random). This is
a crucial assumption. But, as already eluded to, agents are not always risk adverse
in real life situations. This is one of the reasons why in Chapter 2 we will study
the case of non-concave utility functions.
Irrespective of the risk-aversion, the previous representation presents serious flaws:
most importantly, can we really assume the existence of an objective probability 𝑃
? The well-known Allais Paradox (see for instance [62, Example 2.32]) illustrates
that some of the underlying assumptions of the von Neumann and Morgenstern
representation are not verified in real life situation. To answer this L.J. Savage
([120]) proposed an improved approach. In his framework the assumption that
the distributions of the outcome are known at time 0 is dropped (hence we do not
assume the existence of an "objective" probability 𝑃 ) but under additional assump-
tions, he shows that the numerical representation of the agent’s preferences can be
written as

𝑢(𝑋) = 𝐸𝑄𝑈(𝑋) (1.2)

where 𝑄 is a subjective probability on (Ω,ℱ) (that depends on the agent) and
𝑈 : R → R is still a concave and monotone function if the preference relation is
monotone and risk-adverse. In this framework, the agent is still a utility maxim-
iser but she is using her own belief.
Unfortunately, the representation in (1.2) is still not satisfying. Indeed, the Ells-
berg Paradox [62, Exemple 2.32] reveals that Savage’s representation are not sat-
isfied in concrete situations. The concept underpinning the Ellsberg Paradox is
called ambiguity aversion and is somehow the pendant in presence of uncertainty
of the risk aversion in presence of risk. An answer to this challenge and a new
axiomatic of expected utility was provided by [69]. Under their axiomatic, the pref-
erence of the agent can be written as

𝑢(𝑋) = inf
𝑃∈𝒫

𝐸𝑃𝑈(𝑋) (1.3)

where 𝒫 is a subjective set of probability on (Ω,ℱ) representing all the possible be-
liefs of the agent and 𝑈 : R → R is still a concave and monotone function. In other
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words, the agent tries to maximise her wort-case expected utility according to her
own beliefs. Note that in this case, her beliefs are still assumed to be represented
by a probability measure, in other words there is no distortion: introducing un-
certainty and distortion together would be a nice extension of this approach. Note
that if the functionals (1.1) and (1.2) are linear this is not the case for (1.3) which
is in the form already mentioned in Section 1.1.2.
As already mentioned previously, this approach can also be seen as a form of ro-
bust approach: rather than fixing a given model, we take a set of models resulting
from small perturbations of the initial reference model. This is related to the work
of [73]. The framework introduced in [69] was extended in [94] who introduced
a penalty function 𝑐(𝑃 ) to the utility functional. Finally, in [39] the preferences
are represented by a more general functional inf𝑃∈𝒬𝐺(𝐸𝑃𝑈(𝑋), 𝑃 ) where 𝐺 is a
so-called uncertainty index reflecting the decision maker’s attitudes toward un-
certainty. This is obviously not the only answer to the criticism of the expected
utility paradigm and we refer for example to [42] for insight on the various related
and non-linear theory of utility developed such as Choquet expected utility theory,
Yaari’s dual theory [127] and Rank-dependent expected utility theory [109].
In the context of financial markets utility functions have not been used as much
as some other techniques for pricing or risk management: one of the reasons being
that they depend on the preferences of the agents and thus cannot provide general
results. Note that this could also be seen as an advantage as it allows to consider
agent with different preferences. They have gained in popularity when perfect
hedging is not feasible (or reasonable) and partial hedging is considered with some
residual risk tolerated. We illustrate this with the notion of utility indifference. For
a general overview of the subject we refer to the book [36] and we will also revisit
the concept in more detail in Chapter 5. Utility indifference pricing was first intro-
duced in [82] and represents the minimal amount of money to be paid to an agent
selling a contingent claim 𝐺 so that added to her initial capital, her utility when
selling 𝐺 and hedging it by trading dynamically in the market is greater than or
equal to the one she would get without selling the product. It is particularly useful
in the context of incomplete markets ( for instance you have traded a derivative
on an instrument that you cannot trade directly but only use an other instrument
as a proxy) and provide prices that are cheaper than the price obtained by trying
to superreplicate the claim. These prices are more acceptable from a marketing
point of view while still controlling in a way the downside risks (by using different
utility functions for instance). Utility indifference pricing and utility functions are
also related to the concept of risk measure that we have already mentioned. We
will only briefly touch upon issues related to risk measure but it is a subject very
close to our problems.
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1.2.2 Mathematic literature

The problem of maximisation of expected utility has a very long history and has
been extensively studied. In mathematical terms, 𝐸𝑈(𝑋) needs to be maximised
in 𝑋 where 𝑋 runs over values of admissible portfolios. We propose here a few
references from the literature. For more detailed presentations of the discrete time
and the continuous time cases, we refer to [62, Section 3] and [89]. It was initiated
by [96] in a continuous time setting with power utility function and a geometric
brownian dynamic for the risky asset (Merton-Black and Scholes model). In con-
tinuous time setting for incomplete markets and in a mono-prior setting [91] and
[121] used a duality approach for utility functions defined on the half-real line and
the whole real line. In this context, the concept of “asymptotic elasticity” plays a
key role (see [91, Section 6] for further insight) and if the utility function 𝑈 is differ-
entiable it also has a nice economic interpretation as the ratio of “marginal utility”:
𝑈 ′ and the “average utility” 𝑥 → 𝑈(𝑥)

𝑥
. We will come back to this more precisely in

Chapter 2. Always in continuous time, a direct approach through the primal prob-
lem was used in [122] for utility functions defined on the half-real line and recently
in [110] for utility functions defined on the whole-real line. Orlicz spaces were also
introduced (see for instance [15]) as an appropriate framework for utility maxim-
isation. Now, in discrete time (and with a single probability measure), [111], [112]
work directly on the primal problem and used dynamic programming: we will fol-
low a similar approach both in Chapter 2 and 4. We make a small comment on
dynamic programming which is a powerful technic to solve multi-period problems.
It corresponds to a form of induction as the optimisation part of the problem is
somehow reduced to a one-step optimisation. However, it crucially relies on the
time-consistency of the problem which is a very well-known issue for risk measure.
Very roughly speaking, it means that if in the future the agent prefers a decision
over another one, it has also to be true seen from today. We refer to the surveys
[2] and [16] for detailed overviews. This will be also an important issue to keep
in mind in a multiple-priors setting: in [113, Appendix D] a simple example illus-
trates what can happen if one is not careful enough on the structure of the initial
set of priors. Most importantly in this case one cannot hope to solve an optimisa-
tion problem such as maximising expected utility by dynamic programming.
Finally, note that in most of these maximisation problems, the existence of an op-
timal trading strategy relies generally on some compacity argument that is implied
by some form of no-arbitrage condition (we will revisit this when we study the so-
called quantitative characterisation of the no-arbitrage in Chapter 3). This is one
of the reason why we also study no-arbitrage question.
We now focus on some of the more recent developments on the question of max-
imising expected utility. In [105] and [106], a general duality framework is in-
troduced that covers a large range of stochastic optimisation and mathematical
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finance problem (amongst other utility maximisation) in discrete time and offers
a very insightful approach. They combine convex analysis and measure theory
technics (namely normal-integrand and horizon function see for instance [116]).
Interestingly, to obtain the existence of an optimal solution (in a general setting) a
linearity condition is introduced that once translated in the context of mathemat-
ical finance corresponds exactly to the notion of no-arbitrage even in the presence
of transaction costs. As mentioned previously, the maximisation of non-concave
utility functions is not only of theoretical interest but is supported by empirical
evidence and has seen renewed interest. We cite for instance [33], [34] where the
case of utility function defined on R and (0,+∞) are studied and solved using again
dynamic programming arguments. In [107] the techniques of [106] and [105] cited
previously are generalised.
Now in the case of uncertainty the problem has also triggered a lot of interest. As
already mentioned previously, the distinction between the dominated case and non-
dominated case is essential. In the dominated case we refer to [63] for a general
survey: the technics used are usually built on the mono-prior case solutions. How-
ever, the non-dominated case is more involved and requires to adapt the traditional
approach and techniques. In [52] the existence of an optimal strategy, a worst case
measure as well as some “minmax" results are obtained under some compacity as-
sumption on the set of probability measures and with a bounded (from above and
below) utility function. Techniques related to quasi-sure stochastic analysis, the
theory of capacity and also some duality results are used. In the context of volat-
ility uncertainty, [95] obtained some results for specific utility functions (namely
exponential, power utility and logarithmic utility) using second-order backward
stochastic differential equations (BSDE) techniques. Finally we mention [59] that
used similar technique to study the issue of recursive utility.
In the discrete time case, [99], using the framework introduced in [25], was able to
obtain the first result using a functional as in (1.3) for a non-dominated and non-
compact set of probability measures and for a utility function bounded from above
and defined on the half real line with unbounded endowments. The proof uses dy-
namic programming as in [111], [112] but in a specific measure-theory setting and
making extensive use of measurable selection arguments. The same framework
has been used in [7] where the case of an exponential utility function defined on
R is studied and some duality result obtained. Finally, [98] managed to generalise
the approach used in [106] based on normal-integrand together with the frame-
work introduced in [99] and obtained results for a utility function defined on both
the real line and the half real line with frictions but for utility functions bounded
from above. We will revisit some of these aspects in Chapter 4, where in a similar
framework we tackle the case of unbounded utility functions. Extending the result
for functional where we introduce the uncertainty index𝐺 as presented above leads
to difficult questions related to the time-consistency of the functional involved and
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therefore on the ability to use dynamic programming. This was done in [8] in the
case where 𝐺 takes the form of a penalty function.

1.3 Arbitrage

1.3.1 The concept of arbitrage in mathematical finance

In this section we give a brief overview of our third main concept: the notion of
arbitrage. Arbitrage, or more accurately the absence of arbitrage opportunity is a
fundamental concept in mathematical finance. Roughly speaking, it means that
an investor cannot make a certain profit without taking risk, 𝑖.𝑒. without facing
the possibility of losing money in some scenarios. It is obviously an idealised view
of markets: in practice there may be arbitrage opportunities for many reasons.
However it is reasonable to assume that once the opportunity is detected some
"arbitrageur" will quickly make the opportunity disappear. It is also interesting
to study the notion of arbitrage when there are constraints: the case of no-short
sale is practically important as regulators introduce very often such constraints in
periods of acute stress.
The mathematical notion of no-arbitrage and the consequence in terms of pricing
measure is at the root of development of modern finance since the seventies. It has
profoundly altered the way financial markets work and contributed to the exponen-
tial development of the derivatives markets in particular. It has happened in con-
junction with the development of complex mathematics which in turn have pushed
market participants to gain confidence, sometimes blindly and despite recurrent
crisis, in trading more and more complex financial products. This is without any
doubt a source of concern but probably out of the scope of this dissertation.
In a few words, the intuition underpinning the arbitrage theory for derivatives
pricing was initiated by [18]. A rigorous theory was then formalised in [74], [75]
and [92]. One of the main results is the so-called Fundamental Theorem of Asset
Pricing (FTAP in short) that makes the link between the notion of non-arbitrage
and the risk-neutral probability measure (also called martingale measures, pricing
measures): a model is arbitrage free if and only if the set of martingale measure
is not empty. Roughly speaking a martingale measure is a probability measure
that makes the discounted underlying asset a fair game, 𝑖.𝑒 where the value of the
asset at time 𝑡 is exactly the expected value of the asset a 𝑡 + 1 given the informa-
tion available at time 𝑡. These results are now well-known and well established in
the finance community, however their importance and revolutionary nature should
not be underestimated. They introduced a profound shift in the way markets and
financial markets operate.
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1.3.2 Mathematic literature

We now give a small and incomplete list of references on the FTAP. Most of the
proofs rely on the use of some version of the Hahn-Banach separation argument.
In discrete time [46] were the first to obtain the result in a general setting. Their
proof makes use of measure theory tool and measurable selection arguments. Al-
ternative proofs of the theorem were later offered without making us of measurable
selection: we mention for instance [86] and also [117] for a proof using utility func-
tions. Anecdotally, when dealing with no-arbitrage in the multiple-priors case, the
approach of [25] is really in the same spirit as [46]. Finding an alternative proof of
[25, Theorem 3.1] without making use of heavy measure theory tools remains an
open and interesting mathematical question.
In the discrete time setting the mathematical formulation of no-arbitrage is relat-
ively straightforward. However, in continuous time and already in the mono-prior
case, it is a bit more subtle and mathematically more involved. These questions are
not at the heart of our study as we will remain in a discrete-time setting. Briefly,
one of the main issue is related to finding the “good” set of trading strategies to be
used in order to define arbitrage. This raises topological questions as well as prob-
lems related to stochastic integration. We refer to [49] for a detailed presentation
and overview. The concept of arbitrage is also related to the notion of superreplica-
tion price of contingent claims (or equivalently the subreplication). Roughly speak-
ing, the superreplication price of a contingent claim 𝐺 is the minimun amount of
money required so that an agent can put in place a trading strategy that will al-
ways deliver at maturity at least 𝐺. Hence, this is somehow the minimum price
at which an agent that replicates the strategy and doesn’t want to incur any loss
would be willing to sell the contingent claim 𝐺 (and the subreplication is the sym-
metric version for buying, 𝑖.𝑒 the maximum price at which an agent would be will-
ing to buy the contingent claim 𝐺). This concept is particularly relevant in in-
complete markets, where for a given claim, one cannot find in general a strategy
that exactly replicates it. Indeed, in complete markets the superreplication price is
just the replication price which can be computed as the expectation of the discoun-
ted value of 𝐺 under the (unique) risk neutral probability measure. The relation
between arbitrage and the superreplication price (or subreplication price) is the
so-called Superhedging Theorem that makes the link between the pricing measure
and the set of on-arbitrage prices for a given contingent claim. In this case, there is
dual representation of the lower and upper arbitrage free prices and the infimum
of prices of super-hedging strategies is equal to the supremum over the martingale
measures equivalent to the historical probability measure.
We will now focus on the concept of no-arbitrage under uncertainty. As already
eluded to, studying no-arbitrage in the presence of uncertainty has triggered re-
newed interest. The first attempt is not recent and was first developed in [78],
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[79]. This corresponds to a model independent approach, 𝑖.𝑒 where no specific un-
derlying model or set of models is chosen. The initial approach corresponds to a
very practical question: given a risky asset, assuming that the prices of a certain
set of vanilla options (puts and calls) for different dates and strikes are observed,
can we establish t if an arbitrage free model that matches the observed prices ex-
ists? If this is the case, the second question is to describe the set of models that can
fit the observed prices and in particular to find some bounds for the prices of exotic
options on the same underlying (say a digital option for instance). This problem is
related to the Skorokhod Embedding Problem. This area has been very active and
many results have been obtained for specific exotic options. We refer to [80] for a
detailed presentation and further references.
Model independent arbitrage has been studied in other settings also. In [1], the au-
thors obtain a FTAP considering static trading on options and under the additional
assumption that there exists an option with a super-linearly growing payoff (used
to obtained some compacity). In [26], [27] and [28] a scenario based approach is
chosen. Rather than selecting a model or a set of possible models, the authors con-
sider a general set of admissible scenarii 𝒮 which represents the relevant events
(corresponding for instance to the agent’s belief). Note that from a practical point
of view, this corresponds to a very natural behaviour where a risk-manager or a
trader will in certain circumstances manages its position based on some scenarii.
An “arbitrage de la classe 𝒮" is a trading strategy that will always be non-negative
on 𝒮 and strictly positive for some event in 𝒮. This approach encompasses a wide
ranges of settings (and therefore different kinds of arbitrage) as 𝒮 can be determ-
ined by a given probability measure, a set of probability measure or some topolo-
gical properties (see [28, Section 4.1]). In this framework various versions of the
FTAP and of the superhedging duality results are obtained. In a similar spirit,
a model free approach is also used in [40] where the notion of acceptance set is
introduced. In a one-period setting and under some continuity assumption on the
asset’s payoff [114] also proves a multiple-priors FTAP using the concept of full-
measure support martingale measure.
In [25] the uncertainty is modelled by introducing a (non-dominated) set of probab-
ility measures 𝒫 and a multiple-priors version of the no-arbitrage denoted 𝑁𝐴(𝒫)

which seems like a very natural generalisation of the classical no-arbitrage (𝑖.𝑒
when 𝒫 is reduced to a singleton). The corresponding FTAP yields a family ℛ of
martingale measures having the same polar sets (in a sense) as 𝒫. This formu-
lation of no-arbitrage is reminiscent of Hypothesis (H) introduced in a continuous
time framework (and without the compacity assumption) in [52]. The technics and
difficulties arising from this approach are at the heart of some of the topics we have
already mentioned such as quasi-sure stochastic analysis, non-linear expectations,
aggregation and will also be at the heart of our results (we will also propose in
Chapters 4 and 3 an alternative definition of no-arbitrage that simplifies some of
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the measurability issues). Still in [25], an extension of the classical duality result
is also obtained where the multiple-priors superreplication price for european pay-
offs is equal to the supremum of the model prices, 𝑖.𝑒. their expectations computed
under the measures of ℛ: their is no duality gap. The superreplication results have
been extended to the case of an american payoff in [9]. However, in the context of
multiple priors, the concept of semi-static strategy as it is defined raises some is-
sues (see Remark 1.3.1). Note that this framework has also been extended in the
continuous time case, see [14], where another generalisation of the FTAP has been
proved allowing the set of martingales to visit a cemetery state invisible from the
initial set of models.
To conclude this introduction on arbitrage, we would also like to mention that the
dual problem to superhedging can also be seen as a so-called martingale optimal
transport problem. This approach has proven to be very fruitful in recent years:
we refer for instance to [10] in the discrete time case and to [64] in the continuous
time.

Remark 1.3.1 A semi-static strategy refers to a strategy where some assets are
traded dynamically (typically the stocks prices) while some other assets (typically
some options) are traded statically: 𝑖.𝑒 bought at time 0 and held to maturity. How-
ever and specifically in the context of uncertainty, the distinction between two types
of assets seems problematic. Indeed, by studying uncertainty, one of the goals is
to forego any specific assumptions on the underlying dynamics and in particular
not to prevent "a priori" a given scenario or situation to happen because it seems
unlikely or unrealistic. By considering static instruments we just remove a large
set of scenarii. Furthermore this is not a realistic description of the way markets
works and behave: each single instrument (a simple stock but also a vanilla option
or even a more complex derivative product) has its own life and thus a bid-offer
price everyday.
The no-arbitrage condition allowing all instruments to be dynamically traded would
also provide much more informations (and constraints) on the dynamic of each op-
tions and stocks. Moreover, taking for instance [1, Definition 1.2] or [25, Definition
1.1], some form of "time-consistency" is broken since the arbitrage is only defined
for a given time horizon, while nothing can be said for smaller period and in par-
ticular for a one-period. When considering european payoffs this is not an issue
as everything depends on what will happen at maturity 𝑇 . However considering
american payoffs and at the same time instruments that cannot be traded after
time 0 and whose price dynamics over the period is not taken into account sounds
inconsistent. Unsurprisingly, this raises serious mathematical difficulties (see for
instance [9, Remark 2.1] and also [81]). In particular the set of equivalent mar-
tingales measures fails to be stable by pasting which is an issue when looking at
time-consistency issues, see for instance the discussion in Chapter 5. Some of these
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problems could probably be avoided by allowing the less liquid instruments to be
traded. Thus, introducing transaction costs as in [100] seems to be a more realistic
model.

1.4 Brief overview of the dissertation
The work presented in this dissertation is the result of different papers (see [20],
[19], [21], [22]) some of them submitted for publications. The content of the follow-
ing chapters corresponds to a detailed version of these papers.
There are often repetitions and redundancies between different chapters: for in-
stance the notations and set-up are to a large extend repeated between Section 3.2
in Chapter 3, Section 4.2 in Chapter 4 and Section 5.2.1 in Chapter 5 or the proof
of certain results, especially between Chapter 2 and 4 use similar arguments. Sim-
ilarly, the introduction of each chapter often recall some elements of this general
introduction. Overall, we have chosen to do so, so that each chapter can be read
independently from others.

In Chapter 2 we study in a mono-prior framework a non-concave and non-
smooth random utility functions with domain of definition equal to the non-negative
half-line. In this setting, we provide to the best of our knowledge, the most complete
result on the existence of an optimal strategy. Our proof relies on dynamic pro-
gramming and measurable selection arguments. The paper is self-contained and
in particular we prove in this specific framework all the required results related to
the no-arbitrage condition. From an economic point of view, we have already men-
tioned some underlying motivation for introducing utility functions that are not
concave: agents are not always consistently risk adverse. They can for instance
exhibit risk aversion above a certain threshold but not below (where somehow they
have nothing to loose so to speak). It is interesting also to allow the utility function
to jump. From a mathematical point of view, we use an approach based on measure
theory rather than a traditional probabilistic approach that can be seen as a pre-
paration ahead of Chapters 3 and 4. Technical details are often tedious but work
well which is not surprising as we know that the usual tools from probability the-
ory such as conditional expectations and essential supremum would also work well.

Chapter 3 can be seen as a prelude to Chapter 4. We consider a discrete-time
financial market model with a finite horizon but under non-dominated model un-
certainty: in other words, we introduce a multiple-priors setting. We first recall
the definition of the quasi-sure no-arbitrage introduced in [25] and its local charac-
terisation. We then introduce alternative definitions of the no-arbitrage: namely a
quantitative and a geometric version and establish the equivalence between these
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different definitions. The so-called quantitative version of the no-arbitrage will be
useful in Chapter 4 and we prove in this chapter some related measurability prop-
erties. As an application we establish also the existence of an optimal strategy for
an unbounded utility function defined on the whole real line but for a one-period
model with deterministic initial data. Finally, we introduce a different notion of
no-arbitrage: the so-called strong no-arbitrage. It is more restrictive than the pre-
vious definition, however we illustrate how some of the technical measurability
difficulties can be simplified. This will used and further developed in Chapter 4.

Then, in Chapter 4 we investigate a problem of maximising worst-case expected
terminal concave utility in the framework introduced in Chapter 3: 𝑖.𝑒 in a discrete-
time financial market model with a finite horizon but under non-dominated model
uncertainty. Here again, we use a dynamic programming framework together with
measurable selection arguments to prove that under mild integrability conditions,
an optimal portfolio exists for an unbounded utility function defined on the half-
real line. We use the notion of the quasi-sure no-arbitrage introduced in [25] and
build on the results of Chapter 3 on its quantitative formulation. We hope that
from the previous introduction the underlying motivation for this result is clear.
At a technical level, the issues arising are more involved than in Chapter 2. They
stem from the difficulties in carrying out integrability and measurability proper-
ties through the dynamic programming. Finally, we apply our result together with
the strong no-arbitrage condition introduced in Chapter 3 in a large range of set-
tings.

In Chapter 5 we move on to the concept of utility indifference pricing. The
main result of the chapter is to prove a convergence theorem: namely that the
multiple-priors utility indifference price of a contingent claim converges under ap-
propriate conditions to its multiple-priors superreplication prices: for non-random
utility function this is the case when the risk aversion of the agents tends to infin-
ity. We also review briefly the connection between utility indifference pricing and
risk measure and revisit some important concepts such as certainty equivalent
that we extend for random utility functions under uncertainty. In this chapter the
technical aspects are lighter than in the previous three chapters and rely mostly
on simple elements of quasi-sure stochastic analysis.

As general a comment, a lot of our proofs rely heavily on measure theory tools
and can be sometimes tedious. At the risk of sounding sometimes to cautious and
burdening the text, we have purposely spelled out a lot of details to be as accurate
as possible.





CHAPTER 2

Non-concave optimal investment
and no-arbitrage: a measure

theoretical approach

This chapter is an extended version of [22] that has been submitted for publication.

We consider non-concave and non-smooth random utility functions with domain
of definition equal to the non-negative half-line. We use a dynamic programming
framework together with measurable selection arguments to establish both the
no-arbitrage condition characterisation and the existence of an optimal portfolio
in a (generically incomplete) discrete-time financial market model with finite time
horizon.

2.1 Introduction
We consider investors trading in a multi-asset and discrete-time financial market.
We revisit two classical problems: the characterisation of no-arbitrage and the
maximisation of the expected utility of the terminal wealth of an investor.

We consider a general random, possibly non-concave and non-smooth utility
function 𝑈 , defined on the non-negative half-line (that can be “𝑆-shaped” but our
results apply to a broader class of utility functions e.g. to piecewise concave ones)
and we provide sufficient conditions which guarantee the existence of an optimal
strategy. Similar optimization problems constitute an area of intensive study in
recent years, see e.g. [12] , [76], [85] and [35].

We are working in the setting of [34] and remove certain restrictive hypothesis.
Furthermore, we use methods that are different from the ones in [111], [112], [33]
and [34] where similar multistep problems were treated. In contrast to the exist-
ing literature, we propose to consider a probability space which is not necessarily
complete.

We extend the paper of [34] in several directions. First, we propose an al-
ternative integrability condition (see Assumption 2.4.8 and Proposition 2.6.1) to
the rather restrictive one of [34] stipulating that 𝐸−𝑈(·, 0) < ∞. The property
𝑈(0) = −∞ holds for a number of important (non-random and concave) utility
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functions (logarithm, −𝑥𝛼 for 𝛼 < 0). It is a rather natural requirement since it
expresses the fear of investor for defaulting (𝑖.𝑒 reaching 0). We also introduce
a new (weaker) version of the asymptotic elasticity assumption (see Assumption
2.4.10). In particular, Assumption 2.4.10 holds true for concave functions (see Re-
mark 2.4.15) and therefore our result extends the one obtained in [112] to random
utility function and incomplete probability spaces. Next, we do not require that
the value function is finite for all initial wealth as it was postulated in [34]; instead
we only assumed the less restrictive and more tractable Assumption 2.4.7. Finally,
instead of using some Carathéodory utility function 𝑈 as in [34] (𝑖.𝑒 function meas-
urable in 𝜔 and continuous in 𝑥, see [3, Definition 4.50, Lemma 4.51] for instance),
we consider function which is measurable in 𝜔 and upper semicontinuous (usc in
the rest of the chapter) in 𝑥. As 𝑈 is also non-decreasing, we point out that this
implies that 𝑈 is jointly measurable in (𝜔, 𝑥). Note that in the case of complete
sigma-algebra -𝑈 is then a normal integrand (see Definition 2.8.23 and Remark
2.8.24). This will play an important role in the dynamic programming part to ob-
tain certain measurability properties. Allowing non-continuous 𝑈 is unusual in the
financial mathematics literature (though it is common in optimization). We high-
light that this generalisation has a potential to model investor’s behaviour which
can change suddenly after reaching a desired wealth level. Such a change can be
expressed by a jump of 𝑈 at the given level.
To solve our optimisation problem, we use dynamic programming as in [111], [112],
[33] and [34] but here we propose a different approach which provides simpler
proofs. As in [99], we consider first a one period case with strategy in R𝑑. Then
we use dynamic programming and measurable selection arguments, namely the
Aumann Theorem (see, for example [119, Corollary 1]) to solve the multi-period
problem. Our modelisation of (Ω,ℱ ,F, 𝑃 ) is more general than in [99] and Chapter
4 as there is only one probability measure and we don’t have to postulate Borel
space or analytic sets. We also use the same methodology to reprove classical res-
ults on no-arbitrage characterisation (see [111] and [84]) in our context of possibly
incomplete sigma-algebras.
The chapter is organised as follows: in section 2.2 we introduce our setup; section
2.3 contains the main results on no-arbitrage; section 2.4 presents the main the-
orem on terminal wealth expected utility maximisation; section 2.5 establishes the
existence of an optimal strategy for the one period case; we prove our main theorem
on utility maximisation in section 2.6. Finally, section 2.8 collects some elements
about generalised integral, random sets measurability and normal integrand (that
will actually be used throughout the disseration) and the proof of Lemma 2.2.2. We
propose also some theoretical results that are not directly used in this chapter.
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2.2 Set-up
Fix a time horizon 𝑇 ∈ N and let (Ω𝑡)1≤𝑡≤𝑇 be a sequence of spaces and (𝒢𝑡)1≤𝑡≤𝑇 be
a sequence of sigma-algebra where 𝒢𝑡 is a sigma-algebra on Ω𝑡 for all 𝑡 = 1, . . . , 𝑇 .
For 𝑡 = 1, . . . , 𝑇 , we denote by Ω𝑡 the 𝑡-fold Cartesian product

Ω𝑡 = Ω1 × . . .× Ω𝑡.

An element of Ω𝑡 will be denoted by 𝜔𝑡 = (𝜔1, . . . , 𝜔𝑡) for (𝜔1, . . . , 𝜔𝑡) ∈ Ω1 × . . .× Ω𝑡.
We also denote by ℱ𝑡 the product sigma-algebra on Ω𝑡

ℱ𝑡 = 𝒢1 ⊗ . . .⊗ 𝒢𝑡.

For the sake of simplicity we consider that the state 𝑡 = 0 is deterministic and
set Ω0 := {𝜔0} and ℱ0 = 𝒢0 = {∅,Ω0}. To avoid heavy notations we will omit the
dependency in 𝜔0 in the rest of the chapter. We denote by F the filtration (ℱ𝑡)0≤𝑡≤𝑇 .

Let 𝑃1 be a probability measure on ℱ1 and 𝑞𝑡+1 be a stochastic kernel on 𝒢𝑡+1×Ω𝑡

for 𝑡 = 1, . . . , 𝑇 − 1. Namely we assume that for all 𝜔𝑡 ∈ Ω𝑡, 𝐵 ∈ 𝒢𝑡+1 → 𝑞𝑡+1(𝐵|𝜔𝑡)
is a probability measure on 𝒢𝑡+1 and for all 𝐵 ∈ 𝒢𝑡+1, 𝜔𝑡 ∈ Ω𝑡 → 𝑞𝑡+1(𝐵|𝜔𝑡) is ℱ𝑡-
measurable. Here we DO NOT assume that 𝒢1 contains the null sets of 𝑃1 and that
𝒢𝑡+1 contains the null sets of 𝑞𝑡+1(.|𝜔𝑡) for all 𝜔𝑡 ∈ Ω𝑡. Then we define for 𝐴 ∈ ℱ𝑡 the
probability 𝑃𝑡 by Fubini’s Theorem for stochastic kernel (see Lemma 2.8.1).

𝑃𝑡(𝐴) =

∫︁
Ω1

∫︁
Ω2

· · ·
∫︁
Ω𝑡

1𝐴(𝜔1, . . . , 𝜔𝑡)𝑞𝑡(𝑑𝜔𝑡|𝜔𝑡−1) · · · 𝑞2(𝑑𝜔2|𝜔1)𝑃1(𝑑𝜔1). (2.1)

Finally (Ω,ℱ ,F, 𝑃 ) := (Ω𝑇 ,ℱ𝑇 ,F, 𝑃𝑇 ) will be our basic measurable space. The ex-
pectation under 𝑃𝑡 will be denoted by 𝐸𝑃𝑡 ; when 𝑡 = 𝑇 , we simply write 𝐸.

Remark 2.2.1 If we choose for Ω some Polish space, then any probability measure
𝑃 can be decomposed in the form of (2.1) (see the measure decomposition theorem
in [50, III.70-7]).

From now on the positive (resp. negative) part of some number or random variable
𝑋 is denoted by𝑋+ (resp. 𝑋−). We will also write 𝑓±(𝑋) for (𝑓(𝑋))± for any random
variable 𝑋 and (possibly random) function 𝑓 .
In the rest of the chapter we will use generalised integral: for some 𝑓𝑡 : Ω𝑡 →
R∪{±∞}, ℱ𝑡-measurable, such that

∫︀
Ω𝑡 𝑓

+
𝑡 (𝜔

𝑡)𝑃𝑡(𝑑𝜔
𝑡) <∞ or

∫︀
Ω𝑡 𝑓

−
𝑡 (𝜔

𝑡)𝑃𝑡(𝑑𝜔
𝑡) <∞,

we define ∫︁
Ω𝑡

𝑓𝑡(𝜔
𝑡)𝑃𝑡(𝑑𝜔

𝑡) :=

∫︁
Ω𝑡

𝑓+
𝑡 (𝜔

𝑡)𝑃𝑡(𝑑𝜔
𝑡)−

∫︁
Ω𝑡

𝑓−
𝑡 (𝜔

𝑡)𝑃𝑡(𝑑𝜔
𝑡),

where the equality holds in R ∪ {±∞}. We refer to Lemma 2.8.1, Definition 2.8.2
and Proposition 2.8.4 of the Appendix for more details and properties. In particular,
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if 𝑓𝑡 is non-negative or if 𝑓𝑡 is such that
∫︀
Ω𝑡 𝑓

+
𝑡 (𝜔

𝑡)𝑃𝑡(𝑑𝜔
𝑡) < ∞ (this will be the two

cases of interest in the chapter) we can apply Fubini’s Theorem 1 and we have∫︁
Ω𝑡

𝑓𝑡(𝜔
𝑡)𝑃𝑡(𝑑𝜔

𝑡) =

∫︁
Ω1

∫︁
Ω2

· · ·
∫︁
Ω𝑡

𝑓𝑡(𝜔1, . . . , 𝜔𝑡)𝑞𝑡(𝑑𝜔𝑡|𝜔𝑡−1) · · · 𝑞2(𝑑𝜔2|𝜔1)𝑃1(𝑑𝜔1),

where the equality holds in [0,∞] if 𝑓𝑡 is non-negative and in [−∞,∞) if
∫︀
Ω𝑡 𝑓

+
𝑡 (𝜔

𝑡)𝑃𝑡(𝑑𝜔
𝑡) <

∞.
Finally, we give some notations about completion of the probability space (Ω𝑡,ℱ𝑡, 𝑃𝑡)

for some 𝑡 ∈ {1, . . . , 𝑇}. We will denote by 𝒩𝑃𝑡 the set of 𝑃𝑡 negligible sets of Ω𝑡 𝑖.𝑒

𝒩𝑃𝑡 =
{︀
𝑁 ⊂ Ω𝑡, ∃𝑀 ∈ ℱ𝑡, 𝑁 ⊂𝑀 and 𝑃𝑡(𝑀) = 0

}︀
. (2.2)

Let ℱ 𝑡 = {𝐴 ∪ 𝑁,𝐴 ∈ ℱ𝑡, 𝑁 ∈ 𝒩𝑃𝑡} and 𝑃 𝑡(𝐴 ∪ 𝑁) = 𝑃𝑡(𝐴) for 𝐴 ∪ 𝑁 ∈ ℱ 𝑡. Then
it is well known that 𝑃 𝑡 is a measure on ℱ 𝑡 which coincides with 𝑃𝑡 on ℱ𝑡, that
(Ω𝑡,ℱ 𝑡, 𝑃 𝑡) is a complete probability space and that 𝑃 𝑡 restricted to 𝒩𝑃𝑡 is equal to
zero.

For 𝑡 = 0, . . . , 𝑇−1, let Ξ𝑡 be the set of ℱ𝑡-measurable random variables mapping
Ω𝑡 to R𝑑.

The following lemma makes the link between conditional expectation and ker-
nel. To do that, we introduce ℱ𝑇

𝑡 , the filtration on Ω𝑇 associated to ℱ𝑡, defined
by

ℱ𝑇
𝑡 = 𝒢1 ⊗ . . .⊗ 𝒢𝑡 ⊗ {∅,Ω𝑡+1} . . .⊗ {∅,Ω𝑇}.

Let Ξ𝑇𝑡 be the set of ℱ𝑇
𝑡 -measurable random variables from Ω𝑇 to R𝑑 and let also 𝑋𝑡

: Ω𝑇 → Ω𝑡, 𝑋𝑡(𝜔1, . . . , 𝜔𝑇 ) = 𝜔𝑡 be the coordinate mapping corresponding to 𝑡. Then
ℱ𝑇
𝑡 = 𝜎(𝑋1, . . . , 𝑋𝑡). So ℎ ∈ Ξ𝑇𝑡 if and only if there exists some 𝑔 ∈ Ξ𝑡 such that

ℎ = 𝑔(𝑋1, . . . , 𝑋𝑡). This implies that ℎ(𝜔𝑇 ) = 𝑔(𝜔𝑡). For ease of notation we will
identify ℎ and 𝑔 and also ℱ𝑡, ℱ𝑇

𝑡 , Ξ𝑡 and Ξ𝑇𝑡 .

Lemma 2.2.2 Let 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 . Let ℎ ∈ Ξ𝑡 such that
∫︀
Ω𝑡 ℎ

+𝑑𝑃𝑡 <∞ then

𝐸(ℎ|ℱ𝑠) = 𝜙(𝑋1, . . . , 𝑋𝑠)𝑃𝑠 𝑎.𝑠.

𝜙(𝜔1, . . . , 𝜔𝑠) =

∫︁
Ω𝑠+1×...×Ω𝑡

ℎ(𝜔1, . . . , 𝜔𝑠, 𝜔𝑠+1, . . . 𝜔𝑡)𝑞𝑡(𝜔𝑡|𝜔𝑡−1) . . . 𝑞𝑠+1(𝜔𝑠+1|𝜔𝑠).

Proof. For the sake of completeness, the proof is reported in Section 2.8.4 of the
Appendix. 2

1From now, we call Fubini’s theorem the Fubini theorem for stochastic kernel (see eg Lemma
2.8.1, Proposition 2.8.4).
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Let {𝑆𝑡, 0 ≤ 𝑡 ≤ 𝑇} be a 𝑑-dimensional ℱ𝑡-adapted process representing the
price of 𝑑 risky securities in the financial market in consideration. There exists
also a riskless asset for which we assume a constant price equal to 1, for the sake
of simplicity. Without this assumption, all the developments below could be carried
out using discounted prices. The notation Δ𝑆𝑡 := 𝑆𝑡 − 𝑆𝑡−1 will often be used. If
𝑥, 𝑦 ∈ R𝑑 then the concatenation 𝑥𝑦 stands for their scalar product. The symbol | · |
denotes the Euclidean norm on R𝑑 (or on R).

Trading strategies are represented by 𝑑-dimensional predictable processes (𝜑𝑡)1≤𝑡≤𝑇 ,
where 𝜑𝑖𝑡 denotes the investor’s holdings in asset 𝑖 at time 𝑡; predictability means
that 𝜑𝑡 ∈ Ξ𝑡−1. The family of all predictable trading strategies is denoted by Φ.

We assume that trading is self-financing. As the riskless asset’s price is con-
stant 1, the value at time 𝑡 of a portfolio 𝜑 starting from initial capital 𝑥 ∈ R is
given by

𝑉 𝑥,𝜑
𝑡 = 𝑥+

𝑡∑︁
𝑖=1

𝜑𝑖Δ𝑆𝑖.

2.3 No-arbitrage condition
The following absence of arbitrage condition or NA condition is standard, it is equi-
valent to the existence of a risk-neutral measure in discrete-time markets with
finite horizon, see e.g. [46].

(NA) If 𝑉 0,𝜑
𝑇 ≥ 0 𝑃 -a.s. for some 𝜑 ∈ Φ then 𝑉 0,𝜑

𝑇 = 0 𝑃 -a.s.

Remark 2.3.1 It is proved in [112, Proposition 1.1] that (NA) is equivalent to the
no-arbitrage assumption which stipulates that no investor should be allowed to
make a profit out of nothing and without risk, even with a budget constraint: for
all 𝑥0 ≥ 0 if 𝜑 ∈ Φ is such that with 𝑉 𝑥0,𝜑

𝑇 ≥ 𝑥0 a.s., then 𝑉 𝑥0,𝜑
𝑇 = 𝑥0 a.s.

We now provide classical tools and results about the (NA) condition and its “con-
crete" local characterisation, see Proposition 2.3.7, that we will use in the rest of
the chapter. We start by introducing a random set (see Definition 2.8.18) that is
denoted 𝐷𝑡+1 and is the smallest affine subspace of R𝑑 containing the support of
the distribution of Δ𝑆𝑡+1(𝜔

𝑡, .) under 𝑞𝑡+1(.|𝜔𝑡) and If 𝐷𝑡+1(𝜔𝑡) = R𝑑 then, intuit-
ively, there are no redundant assets. Otherwise, for 𝜑𝑡+1 ∈ Ξ𝑡, one may always re-
place 𝜑𝑡+1(𝜔

𝑡, ·) by its orthogonal projection 𝜑⊥
𝑡+1(𝜔

𝑡, ·) on 𝐷𝑡+1(𝜔𝑡) without changing
the portfolio value since 𝜑𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, ·) = 𝜑⊥

𝑡+1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, ·), 𝑞𝑡+1(·|𝜔𝑡) a.s., see
Lemma 2.3.5 and Remark 2.5.3 below as well as [62, Remark 9.1].

Definition 2.3.2 Let 0 ≤ 𝑡 ≤ 𝑇 be fixed. We define the random set (recall Defini-
tion 2.8.18) ̃︀𝐷𝑡+1 : Ω𝑡 � R𝑑 bỹ︀𝐷𝑡+1(𝜔𝑡) :=

⋂︁{︀
𝐴 ⊂ R𝑑, closed, 𝑞𝑡+1

(︀
Δ𝑆𝑡+1(𝜔

𝑡, .) ∈ 𝐴|𝜔𝑡) = 1
)︀}︀
. (2.3)
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For 𝜔𝑡 ∈ Ω𝑡, ̃︀𝐷𝑡+1(𝜔𝑡) ⊂ R𝑑 is the support of the distribution of Δ𝑆𝑡+1(𝜔
𝑡, ·) under

𝑞𝑡+1(·|𝜔𝑡). We also define the random set 𝐷𝑡+1 : Ω𝑡 � R𝑑 by

𝐷𝑡+1(𝜔𝑡) := Aff
(︁ ̃︀𝐷𝑡+1(𝜔𝑡)

)︁
, (2.4)

where Aff denotes the affine hull of a set.

The following lemma establishes some important properties of ̃︀𝐷𝑡+1 and 𝐷𝑡+1 and
in particular 𝐺𝑟𝑎𝑝ℎ(𝐷𝑡+1) ∈ ℱ𝑡 ⊗ ℬ(R𝑑). This result will be central in the proof of
most of our results.

Lemma 2.3.3 Let 0 ≤ 𝑡 ≤ 𝑇 be fixed. Let ̃︀𝐷𝑡+1 : Ω𝑡 � R𝑑 and 𝐷𝑡+1 : Ω𝑡 � R𝑑 be
the random sets defined in (2.3) and (2.4) of Definition 2.3.2. Then ̃︀𝐷𝑡+1 and 𝐷𝑡+1

are both non-empty, closed-valued and ℱ𝑡-measurable random sets (see Definition
2.8.19). In particular, 𝐺𝑟𝑎𝑝ℎ(𝐷𝑡+1) ∈ ℱ𝑡 ⊗ ℬ(R𝑑).

Proof. We first prove that ̃︀𝐷𝑡+1 is a non-empty, closed-valued and ℱ𝑡-measurable
random set. It is clear from its definition (see (2.3)) that for all 𝜔𝑡 ∈ Ω𝑡, ̃︀𝐷𝑡+1(𝜔𝑡) is
a non-empty and closed subset of R𝑑. We now show that ̃︀𝐷𝑡+1 is measurable. Let 𝑂
be a fixed open set in R𝑑 and introduce

𝜇𝑂 : 𝜔𝑡 ∈ Ω𝑡 → 𝜇𝑂(𝜔
𝑡) := 𝑞𝑡+1

(︀
Δ𝑆𝑡+1(𝜔

𝑡, .) ∈ 𝑂|𝜔𝑡
)︀

=

∫︁
Ω𝑡+1

1Δ𝑆𝑡+1(·,·)∈𝑂(𝜔
𝑡, 𝜔𝑡+1)𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡).

We prove that 𝜇𝑂 is ℱ𝑡-measurable. As (𝜔𝑡, 𝜔𝑡+1) ∈ Ω𝑡 × Ω𝑡+1 → Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1) is

ℱ𝑡 ⊗ 𝒢𝑡+1-measurable and 𝑂 ∈ ℬ(R𝑑), (𝜔𝑡, 𝜔𝑡+1) → 1Δ𝑆𝑡+1(·,·)∈𝑂(𝜔
𝑡, 𝜔𝑡+1) is ℱ𝑡 ⊗ 𝒢𝑡+1-

measurable and the result follows from Proposition 2.8.9.
By definition of ̃︀𝐷𝑡+1(𝜔𝑡) we get that

{𝜔𝑡 ∈ Ω𝑡, ̃︀𝐷𝑡+1(𝜔𝑡) ∩𝑂 ̸= ∅} = {𝜔𝑡 ∈ Ω𝑡, 𝜇𝑂(𝜔
𝑡) > 0} ∈ ℱ𝑡.

Next we prove that 𝐷𝑡+1 is a non-empty, closed-valued and ℱ𝑡-measurable random
set. Using (2.4), 𝐷𝑡+1 is a non-empty and closed-valued random set. It remains
to prove that 𝐷𝑡+1 is ℱ𝑡-measurable. 2 As ̃︀𝐷𝑡+1 is ℱ𝑡-measurable, applying the
Castaing representation (see Proposition 2.8.20), we obtain a countable family of
ℱ𝑡-measurable functions (𝑓𝑛)𝑛≥1 : Ω𝑡 → R𝑑 such that for all 𝜔𝑡 ∈ Ω𝑡, ̃︀𝐷𝑡+1(𝜔𝑡) =

{𝑓𝑛(𝜔𝑡), 𝑛 ≥ 1} (where the closure is taken in R𝑑 with respect to the usual topology).
Let 𝜔𝑡 ∈ Ω𝑡 be fixed. It can be easily shown that

𝐷𝑡+1(𝜔𝑡) = Aff( ̃︀𝐷𝑡+1(𝜔𝑡)) =

{︃
𝑓1(𝜔𝑡) +

𝑝∑︁
𝑖=2

𝜆𝑖(𝑓𝑖(𝜔𝑡)− 𝑓1(𝜔𝑡)), (𝜆2, . . . , 𝜆𝑝) ∈ Q𝑝−1, 𝑝 ≥ 2

}︃
.

2This is the proof of [116, Exercise 14.12] that we provide for sake of completeness as we will
use it again.
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So, using again the Castaing representation (see Proposition 2.8.20), we obtain
that𝐷𝑡+1(𝜔𝑡) is ℱ𝑡-measurable. From [116, Theorem 14.8] (see (2.72)),𝐺𝑟𝑎𝑝ℎ(𝐷𝑡+1) ∈
ℱ𝑡 ⊗ ℬ(R𝑑) (recall that 𝐷𝑡+1 is closed-valued). 2

In Lemma 2.3.4, which is used in the proof of Lemma 2.3.6 for projection pur-
poses, we obtain a well-know result : for 𝜔𝑡 ∈ Ω𝑡 fixed and under a local version
of (NA), 𝐷𝑡+1(𝜔𝑡) is a vector subspace of R𝑑 (see for instance [62, Theorem 1.48] or
[111, Proposition 3.2]). Then in Lemma 2.3.6 we prove that under the (NA) as-
sumption, for 𝑃𝑡-almost all 𝜔𝑡, 𝐷𝑡+1(𝜔𝑡) is a vector subspace of R𝑑. We also provide
a local version of the (NA) condition (see (2.8)). Note that Lemma 2.3.6 is a direct
consequence of [111, Proposition 3.3] (which doesn’t use measurable selection ar-
guments and provides directly the ℱ𝑡 measurability of 𝛼𝑡) combined with Lemma
2.2.2. We propose alternative proofs of Lemmata 2.3.4, 2.3.5 and 2.3.6 which are
coherent with our framework and our methodology. We will also revisit similar
issues in Chapter 3 in the presence of uncertainty.

Lemma 2.3.4 Let 0 ≤ 𝑡 ≤ 𝑇 and 𝜔𝑡 ∈ Ω𝑡 be fixed. Assume that for all ℎ ∈
𝐷𝑡+1(𝜔𝑡)∖{0}

𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0|𝜔𝑡) < 1.

Then 0 ∈ 𝐷𝑡+1(𝜔𝑡) and the set 𝐷𝑡+1(𝜔𝑡) is actually a vector subspace of R𝑑.

Proof. Introduce 𝐶𝑡+1(𝜔𝑡) := Conv( ̃︀𝐷𝑡+1(𝜔𝑡)) the closed convex hull generated bỹ︀𝐷𝑡+1(𝜔𝑡). As 𝐶𝑡+1(𝜔𝑡) ⊂ 𝐷𝑡+1(𝜔𝑡) we will prove that 0 ∈ 𝐶𝑡+1(𝜔𝑡). Since 𝐶𝑡+1(𝜔𝑡) ⊂
𝐷𝑡+1(𝜔𝑡), for all ℎ ∈ 𝐶𝑡+1(𝜔𝑡)∖{0} we know by assumption that

𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0|𝜔𝑡) < 1. (2.5)

Thus if we find some ℎ0 ∈ 𝐶𝑡+1(𝜔𝑡) such that 𝑞𝑡+1(ℎ0Δ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0|𝜔𝑡) = 1 then

ℎ0 = 0.
We distinguish two cases. First assume that for all ℎ ∈ R𝑑, ℎ ̸= 0, 𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔

𝑡, .) ≥
0|𝜔𝑡) < 1. Then the polar cone of 𝐶𝑡+1(𝜔𝑡), 𝑖.𝑒 the set(︀

𝐶𝑡+1(𝜔𝑡)
)︀∘

:= {𝑦 ∈ R𝑑, 𝑦𝑥 ≤ 0, ∀𝑥 ∈ 𝐶𝑡+1(𝜔𝑡)}

is reduced to {0}. Indeed if this is not the case there exists 𝑦0 ∈ R𝑑∖{0} such
that −𝑦0𝑥 ≥ 0 for all 𝑥 ∈ 𝐶𝑡+1(𝜔𝑡). As 𝐴 := {𝜔𝑡+1 ∈ Ω𝑡+1, Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1) ∈̃︀𝐷𝑡+1(𝜔𝑡)} ⊂ {𝜔𝑡+1 ∈ Ω𝑡+1, −𝑦0Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1) ≥ 0} and 𝑞𝑡+1(𝐴|𝜔𝑡) = 1 we ob-

tain that 𝑞𝑡+1(−𝑦0Δ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0|𝜔𝑡) = 1 a contradiction. As

(︀
(𝐶𝑡+1(𝜔𝑡))

∘)︀∘
=

cone (𝐶𝑡+1(𝜔𝑡)) where cone (𝐶𝑡+1(𝜔𝑡)) denotes the cone generated by 𝐶𝑡+1(𝜔𝑡) we get
that cone (𝐶𝑡+1(𝜔𝑡)) = R𝑑. Let 𝑢 ̸= 0 ∈ cone (𝐶𝑡+1(𝜔𝑡)) then −𝑢 ∈ cone (𝐶𝑡+1(𝜔𝑡)) and
there exist 𝜆1 > 0, 𝜆2 > 0 and 𝑣1, 𝑣2 ∈ 𝐶𝑡+1(𝜔𝑡) such that 𝑢 = 𝜆1𝑣1 and −𝑢 = 𝜆2𝑣2.
Thus 0 = 𝜆1

𝜆1+𝜆2
𝑣1 +

𝜆2
𝜆1+𝜆2

𝑣2 ∈ 𝐶𝑡+1(𝜔𝑡) by convexity of 𝐶𝑡+1(𝜔𝑡).
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Now we assume that there exists some ℎ0 ∈ R𝑑, ℎ0 ̸= 0 such that 𝑞𝑡+1(ℎ0Δ𝑆𝑡+1(𝜔
𝑡, .) ≥

0|𝜔𝑡) = 1. Note that since ℎ0 ∈ R𝑑 we cannot use (2.5). Introduce the orthogonal
projection on 𝐶𝑡+1(𝜔𝑡) (recall that 𝐶𝑡+1(𝜔𝑡) is a closed convex subset of R𝑑)

𝑝 : ℎ ∈ R𝑑 → 𝑝(ℎ) ∈ 𝐶𝑡+1(𝜔𝑡).

Then 𝑝 is continuous and we have (ℎ− 𝑝(ℎ)) (𝑥− 𝑝(ℎ)) ≤ 0 for all 𝑥 ∈ 𝐶𝑡+1(𝜔𝑡). Fix
𝜔𝑡+1 ∈ {𝜔𝑡+1 ∈ Ω𝑡+1, Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1) ∈ ̃︀𝐷𝑡+1(𝜔𝑡)}∩{𝜔𝑡+1 ∈ Ω𝑡+1, ℎ0Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1) ≥ 0}

and 𝜆 ≥ 0. Let ℎ = 𝜆ℎ0 and 𝑥 = Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1) ∈ 𝐶𝑡+1(𝜔𝑡) in the previous equation,

we obtain (recall that ̃︀𝐷𝑡+1(𝜔𝑡) ⊂ 𝐶𝑡+1(𝜔𝑡))

0 ≤ 𝜆ℎ0Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1) = (𝜆ℎ0 − 𝑝(𝜆ℎ0))Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1) + 𝑝(𝜆ℎ0)Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1)

≤ (𝜆ℎ0 − 𝑝(𝜆ℎ0)) 𝑝(𝜆ℎ0) + 𝑝(𝜆ℎ0)Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1).

As this is true for all 𝜆 ≥ 0 we may take the limit when 𝜆 goes to zero and use the
continuity of 𝑝

𝑝(0)Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1) ≥ |𝑝(0)|2 ≥ 0

As 𝑞𝑡+1

(︁{︁
𝜔𝑡+1 ∈ Ω𝑡+1, Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1) ∈ ̃︀𝐷𝑡+1(𝜔𝑡)
}︁
|𝜔𝑡
)︁
= 1 by definition of ̃︀𝐷𝑡+1(𝜔𝑡)

and as 𝑞𝑡+1(ℎ0Δ𝑆𝑡+1(𝜔
𝑡, .) ≥ 0|𝜔𝑡) = 1 as well we have obtained that

𝑞𝑡+1(𝑝(0)Δ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0|𝜔𝑡) = 1.

The fact that 𝑝(0) ∈ 𝐶𝑡+1(𝜔𝑡) together with (2.5) implies that 𝑝(0) = 0 and 0 ∈
𝐶𝑡+1(𝜔𝑡) follows. 2

We introduce now for all 𝜔𝑡 ∈ Ω𝑡 the orthogonal space of 𝐷𝑡+1(𝜔𝑡)

𝐿𝑡+1(𝜔𝑡) :=
(︀
𝐷𝑡+1(𝜔𝑡)

)︀⊥
. (2.6)

and we prove the following lemma that will be used in the proof of Lemma 2.3.6. It
corresponds to [99, Lemma 2.5] adapted to our setting.

Lemma 2.3.5 Let 𝜔𝑡 ∈ Ω𝑡 be fixed. Then for ℎ ∈ R𝑑 we have that

𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) = 0|𝜔𝑡) = 1 ⇐⇒ ℎ ∈ 𝐿𝑡+1(𝜔𝑡).

Proof. Assume that ℎ ∈ 𝐿𝑡+1(𝜔𝑡). Then {𝜔 ∈ Ω𝑡, Δ𝑆𝑡+1(𝜔
𝑡, 𝜔) ∈ 𝐷𝑡+1(𝜔𝑡)} ⊂ {𝜔 ∈

Ω𝑡, ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔) = 0}. As by definition of 𝐷𝑡+1(𝜔𝑡), 𝑞𝑡+1(Δ𝑆𝑡+1(𝜔

𝑡, .) ∈ 𝐷𝑡+1(𝜔𝑡)|𝜔𝑡) =
1, we conclude that 𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔

𝑡, .) = 0|𝜔𝑡) = 1. Conversely, we assume that ℎ /∈
𝐿𝑡+1(𝜔𝑡) and we show that 𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔

𝑡, .) = 0|𝜔𝑡) < 1. We first show that there
exists 𝑣 ∈ ̃︀𝐷𝑡+1(𝜔𝑡) such that ℎ𝑣 ̸= 0. If not, for all 𝑣 ∈ ̃︀𝐷𝑡+1(𝜔𝑡), ℎ𝑣 = 0 and for any
𝑤 ∈ 𝐷𝑡+1(𝜔𝑡) with 𝑤 =

∑︀𝑚
𝑖=1 𝜆𝑖𝑣𝑖 where 𝜆𝑖 ∈ R,

∑︀𝑚
𝑖=1 𝜆𝑖 = 1 and 𝑣𝑖 ∈ ̃︀𝐷𝑡+1(𝜔𝑡), we

get that ℎ𝑤 = 0, a contradiction. Furthermore there exists an open ball centered
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in 𝑣 with radius 𝜀 > 0, 𝐵(𝑣, 𝜀), such that ℎ𝑣′ ̸= 0 for all 𝑣′ ∈ 𝐵(𝑣, 𝜀). Assume
that 𝑞𝑡+1(Δ𝑆𝑡+1(𝜔

𝑡, .) ∈ 𝐵(𝑣, 𝜀)|𝜔𝑡) = 0 or equivalently that 𝑞𝑡+1(Δ𝑆𝑡+1(𝜔
𝑡, .) ∈ R𝑑 ∖

𝐵(𝑣, 𝜀)|𝜔𝑡) = 1. By definition of the support, ̃︀𝐷𝑡+1(𝜔𝑡) ⊂ R𝑑 ∖𝐵(𝑣, 𝜀): this contradicts
𝑣 ∈ ̃︀𝐷𝑡+1(𝜔𝑡). Therefore 𝑞𝑡+1(Δ𝑆𝑡+1(𝜔

𝑡, .) ∈ 𝐵(𝑣, 𝜀)|𝜔𝑡) > 0. Let 𝜔 ∈ {Δ𝑆𝑡+1(𝜔
𝑡, .) ∈

𝐵(𝑣, 𝜀)}, then ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔) ̸= 0 𝑖.𝑒 𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔

𝑡, .) = 0|𝜔𝑡)) < 1. 2

Lemma 2.3.6 Assume that the (NA) condition holds true. Then for all 0 ≤ 𝑡 ≤
𝑇 − 1, there exists a full measure set Ω𝑡

𝑁𝐴1 such that for all 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴1, 0 ∈ 𝐷𝑡+1(𝜔𝑡),

𝑖.𝑒 𝐷𝑡+1(𝜔𝑡) is a vector space of R𝑑. Moreover, for all 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴1 and all ℎ ∈ R𝑑 we get

that

𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0|𝜔𝑡) = 1 ⇒ 𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) = 0|𝜔𝑡) = 1. (2.7)

In particular, if 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴1 and ℎ ∈ 𝐷𝑡+1(𝜔𝑡) we obtain that

𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0|𝜔𝑡) = 1 ⇒ ℎ = 0. (2.8)

Proof. Let 0 ≤ 𝑡 ≤ 𝑇 be fixed. Recall that ℱ 𝑡 is the 𝑃𝑡-completion of ℱ𝑡 and that 𝑃 𝑡

is the (unique) extension of 𝑃𝑡 to ℱ 𝑡. We introduce the following random set Π𝑡

Π𝑡 :=
{︀
𝜔𝑡 ∈ Ω𝑡, ∃ℎ ∈ 𝐷𝑡+1(𝜔𝑡), ℎ ̸= 0, 𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0|𝜔𝑡) = 1
}︀
.

Assume for a moment that Π𝑡 ∈ ℱ 𝑡 and that 𝑃 𝑡(Π
𝑡) = 0 (this will be proven be-

low). Let 𝜔𝑡 ∈ Ω𝑡 ∖ Π𝑡. The fact that 0 ∈ 𝐷𝑡+1(𝜔𝑡) is a direct consequence of the
definition of Π𝑡 and of Lemma 2.3.4. We now prove (2.7). Let ℎ ∈ R𝑑 be fixed such
that 𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0|𝜔𝑡) = 1. We prove that 𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) = 0|𝜔𝑡) = 1.

If ℎ = 0 this is straightforward. If ℎ ∈ 𝐷𝑡+1(𝜔𝑡) ∖ {0}, 𝜔𝑡 ∈ Π𝑡 which is im-
possible. Now if ℎ /∈ 𝐷𝑡+1(𝜔𝑡) and ℎ ̸= 0, let ℎ′ be the orthogonal projection of
ℎ on 𝐷𝑡+1(𝜔𝑡) (recall that since 𝜔𝑡 /∈ Π𝑡, 𝐷𝑡+1(𝜔𝑡) is a vector subspace). We first
show that 𝑞𝑡+1(ℎ

′Δ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0|𝜔𝑡) = 1. Indeed, if it were not the case the set

𝐵 := {𝜔𝑡+1 ∈ Ω𝑡+1, ℎ′Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1) < 0} would verify 𝑞𝑡+1(𝐵|𝜔𝑡) > 0. Recall

that 𝐿𝑡+1(𝜔𝑡) is the orthogonal space of 𝐷𝑡+1(𝜔𝑡) (see (2.6)) As (ℎ − ℎ′) ∈ 𝐿𝑡+1(𝜔𝑡)

(recall that 𝐷𝑡+1(𝜔𝑡) is a vector subspace), by Lemma 2.3.5 the set 𝐴 := {𝜔𝑡+1 ∈
Ω𝑡+1, (ℎ − ℎ′)Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1) = 0} verify 𝑞𝑡+1(𝐴|𝜔𝑡) = 1. We would therefore obtain
that 𝑞𝑡+1(𝐴∩𝐵|𝜔𝑡) > 0 which implies that 𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔

𝑡, .) ≥ 0|𝜔𝑡) < 1, a contradic-
tion. Thus 𝑞𝑡+1(ℎ

′Δ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0|𝜔𝑡) = 1. If ℎ′ ̸= 0 as ℎ′ ∈ 𝐷𝑡+1(𝜔𝑡), 𝜔𝑡 ∈ Π𝑡 which is

again a contradiction. Thus ℎ′ = 0 and as 𝐴∩{ℎ′Δ𝑆𝑡+1(𝜔
𝑡, ·) = 0} ⊂ {ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) =
0}, 𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) = 0|𝜔𝑡) = 1.
As Ω𝑡 ∖ Π𝑡 ∈ ℱ𝑡 there exists Ω𝑡

𝑁𝐴1 ∈ ℱ𝑡 and 𝑁 𝑡 ∈ 𝒩𝑃𝑡 (the collection of negligible
set of (Ω𝑡, 𝑃𝑡)) such that Ω𝑡 ∖ Π𝑡 = Ω𝑡

𝑁𝐴1 ∪ 𝑁 𝑡 and 𝑃𝑡(Ω
𝑡
𝑁𝐴1) = 𝑃 𝑡(Ω

𝑡∖Π𝑡) = 1. Since
Ω𝑡
𝑁𝐴1 ⊂ Ω𝑡 ∖Π𝑡, it follows that for all 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴1, 0 ∈ 𝐷𝑡+1(𝜔𝑡) and for all ℎ ∈ R𝑑, (2.7)
holds true.
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We prove (2.8). Assume now that 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴1 and ℎ ∈ 𝐷𝑡+1(𝜔𝑡) are such that

𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0|𝜔𝑡) = 1. Using (2.7) and Lemma 2.3.5 we get that ℎ ∈ 𝐿𝑡+1(𝜔𝑡).

So ℎ ∈ 𝐷𝑡+1(𝜔𝑡) ∩ 𝐿𝑡+1(𝜔𝑡) = {0} and (2.8) holds true.
It remains to prove that Π𝑡 ∈ ℱ 𝑡 and 𝑃 𝑡(Π

𝑡) = 0. To do that we introduce the
following random set 𝐻 𝑡 : Ω𝑡 � R𝑑

𝐻 𝑡(𝜔𝑡) :=
{︀
ℎ ∈ 𝐷𝑡+1(𝜔𝑡), ℎ ̸= 0, 𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0|𝜔𝑡) = 1
}︀
.

Then

Π𝑡 =
{︀
𝜔𝑡 ∈ Ω𝑡, 𝐻 𝑡(𝜔𝑡) ̸= ∅

}︀
= proj|Ω𝑡𝐺𝑟𝑎𝑝ℎ(𝐻 𝑡)

since 𝐺𝑟𝑎𝑝ℎ(𝐻 𝑡) = {(𝜔𝑡, ℎ) ∈ Ω𝑡 × R𝑑, ℎ ∈ 𝐻 𝑡(𝜔𝑡)}.
We prove now that 𝐺𝑟𝑎𝑝ℎ(𝐻 𝑡) ∈ ℱ𝑡 ⊗ ℬ(R𝑑). Indeed, we can rewrite that

𝐺𝑟𝑎𝑝ℎ(𝐻 𝑡) = 𝐺𝑟𝑎𝑝ℎ(𝐷𝑡+1)
⋂︁

{(𝜔𝑡, ℎ) ∈ Ω𝑡 × R𝑑, 𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0|𝜔𝑡) = 1}⋂︁(︀
Ω𝑡 × R𝑑∖{0}

)︀
.

As from Lemma 2.8.9,
{︀
(𝜔𝑡, ℎ) ∈ Ω𝑡 × R𝑑, 𝑞𝑡+1(ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0|𝜔𝑡) = 1
}︀

∈ ℱ𝑡 ⊗
ℬ(R𝑑) and from Lemma 2.3.3, 𝐺𝑟𝑎𝑝ℎ(𝐷𝑡+1) ∈ ℱ𝑡⊗ℬ(R𝑑), we obtain that𝐺𝑟𝑎𝑝ℎ(𝐻 𝑡) ∈
ℱ𝑡 ⊗ ℬ(R𝑑). The Projection Theorem (see for example [37, Theorem 3.23]) applies
and Π𝑡 = {𝐻 𝑡 ̸= ∅} = proj|Ω𝑡𝐺𝑟𝑎𝑝ℎ(𝐻 𝑡) ∈ ℱ 𝑡. From the Aumann Theorem (see
[119, Corollary 1]) there exists a ℱ 𝑡-measurable selector ℎ𝑡+1 : Π𝑡 → R𝑑 such that
ℎ𝑡+1(𝜔

𝑡) ∈ 𝐻 𝑡(𝜔𝑡) for every 𝜔𝑡 ∈ Π𝑡. We now extend ℎ𝑡+1 on Ω𝑡 by setting ℎ𝑡+1(𝜔
𝑡) = 0

for 𝜔𝑡 ∈ Ω𝑡∖Π𝑡. It is clear that ℎ𝑡+1 remains ℱ 𝑡-measurable. Applying Lemma
2.8.10, there exists ℎ𝑡+1 : Ω

𝑡 → R𝑑 which is ℱ𝑡-measurable and satisfies ℎ𝑡+1 = ℎ𝑡+1

𝑃𝑡-almost surely. Then if we set

𝜙(𝜔𝑡) = 𝑞𝑡+1(ℎ𝑡+1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, .) ≥ 0|𝜔𝑡),
𝜙(𝜔𝑡) = 𝑞𝑡+1(ℎ𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, .) ≥ 0|𝜔𝑡),

we get from Proposition 2.8.9 that 𝜙 is ℱ𝑡-measurable and from Proposition 2.8.6
𝑖𝑖𝑖) that 𝜙 is ℱ 𝑡-measurable. Furthermore as {𝜔𝑡 ∈ Ω𝑡, 𝜙(𝜔𝑡) ̸= 𝜙(𝜔𝑡)} ⊂ {𝜔𝑡 ∈
Ω𝑡, ℎ𝑡(𝜔

𝑡) ̸= ℎ𝑡+1(𝜔
𝑡)}, 𝜙 = 𝜙 𝑃𝑡-almost surely. This implies that

∫︀
Ω𝑡 𝜙𝑑𝑃 𝑡 =

∫︀
Ω𝑡 𝜙𝑑𝑃𝑡.

Now we define the predictable process (𝜑𝑡)1≤𝑡≤𝑇 by 𝜑𝑡+1 = ℎ𝑡+1 and 𝜑𝑖 = 0 for 𝑖 ̸= 𝑡+1.
Then

𝑃 (𝑉 0,𝜑
𝑇 ≥ 0) = 𝑃 (ℎ𝑡+1Δ𝑆𝑡+1 ≥ 0) = 𝑃𝑡+1(ℎ𝑡+1Δ𝑆𝑡+1 ≥ 0) =

∫︁
Ω𝑡

𝜙(𝜔𝑡)𝑃𝑡(𝑑𝜔
𝑡) =

∫︁
Ω𝑡

𝜙(𝜔𝑡)𝑃 𝑡(𝑑𝜔
𝑡).

Thus

𝑃 (𝑉 0,𝜑
𝑇 ≥ 0) =

∫︁
Π𝑡

𝑞𝑡+1

(︀
ℎ𝑡(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0|𝜔𝑡

)︀
𝑃 𝑡(𝑑𝜔

𝑡) +

∫︁
Ω𝑡∖Π𝑡

𝑞𝑡+1

(︀
0 ≥ 0|𝜔𝑡

)︀
𝑃 𝑡(𝑑𝜔

𝑡)

= 𝑃 𝑡(Π
𝑡) + 𝑃 𝑡(Ω

𝑡 ∖Π𝑡) = 1,
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where we have used that if 𝜔𝑡 ∈ Π𝑡, ℎ𝑡+1(𝜔
𝑡) ∈ 𝐻 𝑡(𝜔𝑡) and otherwise ℎ𝑡+1(𝜔

𝑡) = 0.
With the same arguments we obtain that

𝑃 (𝑉 0,𝜑
𝑇 > 0) = 𝑃𝑡(ℎ𝑡+1Δ𝑆𝑡+1 > 0)

=

∫︁
Π𝑡

𝑞𝑡+1

(︀
ℎ𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, ·) > 0|𝜔𝑡

)︀
𝑃 𝑡(𝑑𝜔

𝑡) +

∫︁
Ω𝑡∖Π𝑡

𝑞𝑡+1

(︀
0 > 0|𝜔𝑡

)︀
𝑃 𝑡(𝑑𝜔

𝑡)

=

∫︁
Π𝑡

𝑞𝑡+1

(︀
ℎ𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, ·) > 0|𝜔𝑡

)︀
𝑃 𝑡(𝑑𝜔

𝑡).

Let 𝜔𝑡 ∈ Π𝑡 then 𝑞𝑡+1

(︀
ℎ𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, ·) > 0|𝜔𝑡

)︀
> 0. Indeed, if it is not the case

then 𝑞𝑡+1

(︀
ℎ𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, ·) ≤ 0|𝜔𝑡

)︀
= 1. As 𝜔𝑡 ∈ Π𝑡, ℎ𝑡+1(𝜔

𝑡) ∈ 𝐷𝑡+1(𝜔𝑡) and
𝑞𝑡+1

(︀
ℎ𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0|𝜔𝑡

)︀
= 1, Lemma 2.3.5 applies and ℎ𝑡+1(𝜔

𝑡) ∈ 𝐿𝑡+1(𝜔𝑡).
Thus we get that ℎ𝑡+1(𝜔

𝑡) ∈ 𝐿𝑡+1(𝜔𝑡) ∩ 𝐷𝑡+1(𝜔𝑡) = {0}, a contradiction. So if
𝑃 𝑡(Π

𝑡) > 0 we obtain that 𝑃 (𝑉 0,𝜑
𝑇 > 0) > 0. This contradicts the (NA) condition

and we obtain 𝑃 𝑡(Π
𝑡) = 0, the required result. 2

Similarly as in [111] and [84], we prove a “quantitative” characterisation of
(NA).

Proposition 2.3.7 Assume that the (𝑁𝐴) condition holds true and let 0 ≤ 𝑡 ≤ 𝑇 .
Then there exists Ω𝑡

𝑁𝐴 ∈ ℱ𝑡 with 𝑃𝑡(Ω
𝑡
𝑁𝐴) = 1 and Ω𝑡

𝑁𝐴 ⊂ Ω𝑡
𝑁𝐴1 (see Lemma 2.3.6

for the definition of Ω𝑡
𝑁𝐴1) such that for all 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴, there exists 𝛼𝑡(𝜔𝑡) ∈ (0, 1] such
that for all ℎ ∈ 𝐷𝑡+1(𝜔𝑡)

𝑞𝑡+1

(︀
ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≤ −𝛼𝑡(𝜔𝑡)|ℎ||𝜔𝑡
)︀
≥ 𝛼𝑡(𝜔

𝑡). (2.9)

Furthermore 𝜔𝑡 → 𝛼𝑡(𝜔
𝑡) is ℱ𝑡-measurable.

Proof. Let 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴1 be fixed (Ω𝑡

𝑁𝐴1 is defined in Lemma 2.3.6).
Step 1 : Proof of (2.9). Introduce the following set for 𝑛 ≥ 1

𝐴𝑛(𝜔
𝑡) :=

{︂
ℎ ∈ 𝐷𝑡+1(𝜔𝑡), |ℎ| = 1, 𝑞𝑡+1

(︂
ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≤ − 1

𝑛
|𝜔𝑡
)︂
<

1

𝑛

}︂
. (2.10)

Let 𝑛0(𝜔
𝑡) := inf{𝑛 ≥ 1, 𝐴𝑛(𝜔

𝑡) = ∅} with the convention that inf ∅ = +∞. Note that
if 𝐷𝑡+1(𝜔𝑡) = {0}, then 𝑛0(𝜔

𝑡) = 1 < ∞. We assume now that 𝐷𝑡+1(𝜔𝑡) ̸= {0} and we
prove by contradiction that 𝑛0(𝜔

𝑡) < ∞. Assume that 𝑛0(𝜔
𝑡) = ∞ 𝑖.𝑒 for all 𝑛 ≥ 1,

𝐴𝑛(𝜔
𝑡) ̸= ∅. We thus get ℎ𝑛(𝜔𝑡) ∈ 𝐷𝑡+1(𝜔𝑡) with |ℎ𝑛(𝜔𝑡)| = 1 and such that

𝑞𝑡+1

(︂
ℎ𝑛(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, ·) ≤ − 1

𝑛
|𝜔𝑡
)︂
<

1

𝑛
.
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By passing to a sub-sequence we can assume that ℎ𝑛(𝜔𝑡) tends to some ℎ*(𝜔𝑡) ∈
𝐷𝑡+1(𝜔𝑡) (recall that the set 𝐷𝑡+1(𝜔𝑡) is closed by definition) with |ℎ*(𝜔𝑡)| = 1. Intro-
duce

𝐵(𝜔𝑡) := {𝜔𝑡+1 ∈ Ω𝑡+1, ℎ
*(𝜔𝑡)Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1) < 0}
𝐵𝑛(𝜔

𝑡) := {𝜔𝑡+1 ∈ Ω𝑡+1, ℎ𝑛(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1) ≤ −1/𝑛}.

Then 𝐵(𝜔𝑡) ⊂ lim inf𝑛𝐵𝑛(𝜔
𝑡). Indeed fix some 𝜔𝑡+1 ∈ 𝐵(𝜔𝑡). Then, there exists some

𝜀 > 0 such that ℎ*(𝜔𝑡+1)Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1) < −𝜀. Now there exists some 𝑁 ≥ 1 such

that for all 𝑛 ≥ 𝑁 , |ℎ𝑛(𝜔𝑡)− ℎ*(𝜔𝑡)| ≤ 𝜀
2(1+|Δ𝑆𝑡+1(𝜔𝑡,𝜔𝑡+1)|) and 1

𝑛
≤ 𝜀

2
and it follows that

ℎ𝑛(𝜔
𝑡)Δ𝑆𝑡+1(𝜔𝑡+1) = ℎ*(𝜔𝑡)Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1) + (ℎ𝑛(𝜔
𝑡)− ℎ(𝜔𝑡))Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1)

≤ −𝜀+ |ℎ𝑛(𝜔𝑡)− ℎ(𝜔𝑡)||Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1)| ≤ −𝜀

2
≤ − 1

𝑛
.

Furthermore as 1lim inf𝑛𝐵𝑛(𝜔𝑡) = lim inf𝑛 1𝐵𝑛(𝜔𝑡), Fatou’s Lemma implies that

𝑞𝑡+1

(︀
ℎ*(𝜔𝑡)Δ𝑆𝑡+1(𝜔

𝑡, ·) < 0|𝜔𝑡
)︀
≤
∫︁
Ω𝑡+1

1lim inf𝑛𝐵𝑛(𝜔𝑡)(𝜔𝑡+1)𝑞𝑡+1(𝜔𝑡+1|𝜔𝑡)

≤ lim inf
𝑛

∫︁
Ω𝑡+1

1𝐵𝑛(𝜔𝑡)(𝜔𝑡+1)𝑞𝑡+1(𝜔𝑡+1|𝜔𝑡) = 0.

This implies that 𝑞𝑡+1 (ℎ
*(𝜔𝑡)Δ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0|𝜔𝑡) = 1, and thus from (2.8) in Lemma
2.3.6 we get that ℎ*(𝜔𝑡) = 0 which contradicts |ℎ*(𝜔𝑡)| = 1. Thus 𝑛0(𝜔

𝑡) <∞ and we
can set for 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴1

𝛼𝑡(𝜔
𝑡) =

1

𝑛0(𝜔𝑡)
.

It is clear that 𝛼𝑡 ∈ (0, 1]. Then for all 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴1, for all ℎ ∈ 𝐷𝑡+1(𝜔𝑡) with |ℎ| = 1,

by definition of 𝐴𝑛0(𝜔𝑡)(𝜔
𝑡) we obtain

𝑞𝑡+1

(︀
ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≤ −𝛼𝑡(𝜔𝑡)|𝜔𝑡
)︀
≥ 𝛼𝑡(𝜔

𝑡). (2.11)

Step 2 : measurability issue.
We now construct a function 𝛼𝑡 which is ℱ𝑡-measurable and satisfies (2.9) as well.
To do that we use the Aumann Theorem again as in the proof of Lemma 2.3.6 but
this time applied to the random set 𝐴𝑛 : Ω𝑡 � R𝑑 where 𝐴𝑛(𝜔𝑡) is defined in (3.11)
if 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴1 and 𝐴𝑛(𝜔𝑡) = ∅ otherwise.
We prove that 𝑔𝑟𝑎𝑝ℎ(𝐴𝑛) ∈ ℱ𝑡⊗ℬ(R𝑑). From Lemma 2.8.9, the function (𝜔𝑡, ℎ) →

𝑞𝑡+1

(︀
ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≤ − 1
𝑛
|𝜔𝑡
)︀

is ℱ𝑡⊗ℬ(R𝑑)-measurable. From Lemma 2.3.3,𝐺𝑟𝑎𝑝ℎ(𝐷𝑡+1) ∈
ℱ𝑡 ⊗ ℬ(R𝑑) and the result follows from

𝐺𝑟𝑎𝑝ℎ(𝐴𝑛) = 𝐺𝑟𝑎𝑝ℎ(𝐷𝑡+1)
⋂︁(︀

Ω𝑡
𝑁𝐴1 × {ℎ ∈ R𝑑, |ℎ| = 1}

)︀
⋂︁{︂

(𝜔𝑡, ℎ) ∈ Ω𝑡 × R𝑑, 𝑞𝑡+1

(︂
ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≤ − 1

𝑛
|𝜔𝑡
)︂
<

1

𝑛

}︂
.
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Using the Projection Theorem (see for example [37, Theorem 3.23]), we get that
{𝜔𝑡 ∈ Ω𝑡, 𝐴𝑛(𝜔

𝑡) ̸= ∅} ∈ ℱ 𝑡. We now extend 𝑛0 to Ω𝑡 by setting 𝑛0(𝜔
𝑡) = 1 if

𝜔𝑡 /∈ Ω𝑡
𝑁𝐴1. Then {𝑛0 ≥ 1} = Ω𝑡 ∈ ℱ𝑡 ⊂ ℱ 𝑡 and for 𝑘 > 1

{𝑛0 ≥ 𝑘} = Ω𝑡
𝑁𝐴1 ∩

⋂︁
1≤𝑛≤𝑘−1

{𝐴𝑛 ̸= ∅} ∈ ℱ 𝑡,

this implies that 𝑛0 and thus 𝛼𝑡 is ℱ 𝑡-measurable. Using Lemma 2.8.10, we get
some ℱ𝑡-measurable function 𝛼𝑡 such that 𝛼𝑡 = 𝛼𝑡 𝑃𝑡-almost surely, 𝑖.𝑒 there exists
𝑀 𝑡 ∈ ℱ𝑡 such that 𝑃𝑡(𝑀 𝑡) = 0 and {𝛼𝑡 ̸= 𝛼𝑡} ⊂ 𝑀 𝑡. We set Ω𝑡

𝑁𝐴 := Ω𝑡
𝑁𝐴1

⋂︀
(Ω𝑡 ∖𝑀𝑡).

Then 𝑃𝑡(Ω
𝑡
𝑁𝐴) = 1 and as 𝛼𝑡 is ℱ𝑡-measurable it remains to check that (2.9) holds

true.
For 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴, 𝛼𝑡(𝜔𝑡) = 𝛼𝑡(𝜔
𝑡) (recall that 𝜔𝑡 ∈ Ω𝑡 ∖𝑀𝑡) and since 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴1, (2.11)
holds true and consequently (2.9) as well. It is also clear that 𝛼𝑡(𝜔𝑡) ∈ (0, 1] and the
proof is completed. 2

Remark 2.3.8 In Definition 2.3.2, Lemmata 2.3.3, 2.3.4, 2.3.6 and Proposition 2.3.7
we have included the case 𝑡 = 0. Note however that since Ω0 = {𝜔0}, the various
statements and their respective proofs could be considerably simplified.

Remark 2.3.9 The characterisation of (NA) given by (2.9) works only for ℎ ∈ 𝐷𝑡+1(𝜔𝑡).
This is the reason why we will have to project the strategy 𝜑𝑡+1 ∈ Ξ𝑡 onto 𝐷𝑡+1(𝜔𝑡)

in our proofs.

2.4 Utility problem and main result
We now describe the investor’s risk preferences by a possibly non-concave, random
utility function.

Definition 2.4.1 A random utility is any function 𝑈 : Ω×R → R∪{±∞} satisfying
the following conditions

∙ for every 𝑥 ∈ R, the function 𝑈 (·, 𝑥) : Ω → R ∪ {±∞} is ℱ-measurable,

∙ for all 𝜔 ∈ Ω, the function 𝑈 (𝜔, ·) : R → R ∪ {±∞} is non-decreasing and usc
on R,

∙ 𝑈(·, 𝑥) = −∞, for all 𝑥 < 0.

We introduce the following notations.
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Definition 2.4.2 For all 𝑥 ≥ 0, we denote by Φ(𝑥) the set of all strategies 𝜑 ∈ Φ

such that 𝑃𝑇 (𝑉 𝑥,𝜑
𝑇 (·) ≥ 0) = 1 and by Φ(𝑈, 𝑥) the set of all strategies 𝜑 ∈ Φ(𝑥)

such that 𝐸𝑈(·, 𝑉 𝑥,𝜑
𝑇 ) exists in a generalised sense, 𝑖.𝑒. either 𝐸𝑈+(·, 𝑉 𝑥,𝜑

𝑇 (·)) <∞ or
𝐸𝑈−(·, 𝑉 𝑥,𝜑

𝑇 (·)) <∞.

We prove in the next lemma, that under (NA), if 𝜑 ∈ Φ(𝑥) then we have that
𝑃𝑡(𝑉

𝑥,𝜑
𝑡 (·) ≥ 0) = 1 for all 1 ≤ 𝑡 ≤ 𝑇 .

Lemma 2.4.3 Assume that (NA) holds true. Let 𝜑 ∈ Φ(𝑥) for some 𝑥 ≥ 0, then
𝑉 𝑥,𝜑
𝑡 ≥ 0 𝑃𝑡-𝑎.𝑠. for all 1 ≤ 𝑡 ≤ 𝑇 .

Proof. Assume that there is some 𝑡 such that 𝑃𝑡(𝑉 𝑥,𝜑
𝑡 ≥ 0) < 1 or equivalently

𝑃𝑡(𝑉
𝑥,𝜑
𝑡 < 0) > 0 and let 𝑛 = sup{𝑡|𝑃𝑡(𝑉 𝑥,𝜑

𝑡 < 0) > 0}. Then 𝑃𝑛(𝑉
𝑥,𝜑
𝑛 < 0) > 0 and for

all 𝑠 ≥ 𝑛+1, 𝑃𝑠(𝑉 𝑥,𝜑
𝑠 ≥ 0) = 1. Let Ψ𝑠(𝜔) = 0 if 𝑠 ≤ 𝑛 and Ψ𝑠(𝜔) = 1𝐴𝜑𝑠(𝜔) if 𝑠 ≥ 𝑛+1

with 𝐴 = {𝑉 Φ
𝑛 < 0}. Then

𝑉 0,Ψ
𝑠 =

𝑠∑︁
𝑘=1

Ψ𝑠Δ𝑆𝑠 =
𝑠∑︁

𝑘=𝑛+1

Ψ𝑠Δ𝑆𝑠 = 1𝐴
(︀
𝑉 𝑥,𝜑
𝑠 − 𝑉 𝑥,𝜑

𝑛

)︀
.

If 𝑠 ≥ 𝑛+ 1 𝑃𝑠(𝑉
𝑥,𝜑
𝑠 ≥ 0) = 1 and on 𝐴, −𝑉 Φ

𝑛 > 0 thus 𝑃𝑇 (𝑉 0,Ψ
𝑇 ≥ 0) = 1 and 𝑉 0,Ψ

𝑇 > 0

on 𝐴. As by the (usual) Fubini Theorem 𝑃𝑇 (𝐴) = 𝑃𝑛(𝑉
𝑥,𝜑
𝑛 < 0) > 0, we get an arbit-

rage opportunity. Thus for all 𝑡 ≤ 𝑇 , 𝑃𝑡(𝑉 𝑥,𝜑
𝑡 ≥ 0) = 1. 2

We now formulate the problem which is our main concern in the sequel.

Definition 2.4.4 Let 𝑥 ≥ 0. The non-concave portfolio problem on a finite horizon
𝑇 with initial wealth 𝑥 is

𝑢(𝑥) := sup
𝜑∈Φ(𝑈,𝑥)

𝐸𝑈(·, 𝑉 𝑥,𝜑
𝑇 (·)). (2.12)

Remark 2.4.5 Assume that there exists some 𝑃 -full measure set ̃︀Ω ∈ ℱ such that
for all 𝜔 ∈ ̃︀Ω, 𝑥 → 𝑈(𝜔, 𝑥) is non-decreasing and usc on [0,+∞), 𝑖.𝑒. 𝑥 → 𝑈(𝜔, 𝑥) is
usc on (0,∞) and for any (𝑥𝑛)𝑛≥1 ⊂ (0,+∞) converging to 0, 𝑈(𝜔, 0) ≥ lim sup𝑛 𝑈(𝜔, 𝑥𝑛).
We set 𝑈 : Ω× R → R ∪ {±∞}

𝑈(𝜔, 𝑥) := 𝑈(𝜔, 𝑥)1̃︀Ω×[0,+∞)(𝜔, 𝑥) + (−∞)1Ω×(−∞,0)(𝜔, 𝑥).

Then 𝑈 satisfies Definition 2.4.1, see Lemma 2.8.11 for the second item. Moreover,
the value function does not change

𝑢(𝑥) = sup
𝜑∈Φ(𝑈,𝑥)

𝐸𝑈(·, 𝑉 𝑥,𝜑
𝑇 (·)),

and if there exists some 𝜑* ∈ Φ(𝑈, 𝑥) such that 𝑢(𝑥) = 𝐸𝑈(·, 𝑉 𝑥,𝜑*

𝑇 (·)), then 𝜑* is an
optimal solution for (2.12).
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Remark 2.4.6 Let 𝑈 be a utility function defined only on (0,∞) and verifying for
every 𝑥 ∈ (0,∞), 𝑈 (·, 𝑥) : Ω → R ∪ {±∞} is ℱ-measurable and for all 𝜔 ∈ Ω,
𝑈 (𝜔, ·) : (0,∞) → R∪{±∞} is non-decreasing and usc on (0,∞). We may extend 𝑈
on R by setting, for all 𝜔 ∈ Ω, 𝑈(𝜔, 0) = lim𝑥↘0 𝑈(𝜔, 𝑥) and for 𝑥 < 0, 𝑈(𝜔, 𝑥) = −∞.
Then, as before, 𝑈 verifies Definition 2.4.1 and the value function has not changed.
Note that we could have considered a closed interval 𝐹 = [𝑎,∞) of R instead of
[0,∞), we could have adapted our notion of upper semicontinuity and all the sequel
would apply.

We now present conditions on 𝑈 which allows to assert that if 𝜑 ∈ Φ(𝑥) then
𝐸𝑈(·, 𝑉 𝑥,𝜑

𝑇 (·)) is well-defined and that there exists some optimal solution for (2.12).

Assumption 2.4.7 For all 𝜑 ∈ Φ(𝑈, 1), 𝐸𝑈+
(︁
·, 𝑉 1,𝜑

𝑇 (·)
)︁
<∞.

Assumption 2.4.8 Φ(𝑈, 1) = Φ(1).

Remark 2.4.9 Assumptions 2.4.7 and 2.4.8 are connected but play a different role.
Assumption 2.4.8 guarantees that 𝐸𝑈

(︁
·, 𝑉 1,𝜑

𝑇 (·)
)︁

is well-defined for all Φ ∈ Φ(1)

and allows us to relax [34, Assumption 2.7] on the behavior of 𝑈 around 0, namely
that 𝐸𝑈−(·, 0) < ∞. Then Assumption 2.4.7 (together with Assumption 2.4.10) is
used to show that 𝑢(𝑥) < ∞ for all 𝑥 > 0. Note that Assumption 2.4.7 is much
more easy to verify that the classical assumption that 𝑢(𝑥) < ∞ (for all or some
𝑥 > 0), which is usually made in the theory of maximisation of the terminal wealth
expected utility.

In Proposition 2.6.1, we will show that under Assumptions 2.4.7, 2.4.8 and
2.4.10, 𝐸𝑈+

(︁
·, 𝑉 𝑥,𝜑

𝑇 (·)
)︁
< ∞ for all 𝑥 ≥ 0 and 𝜑 ∈ Φ(𝑥). Thus Φ(𝑈, 𝑥) = Φ(𝑥).

Note that if there exists some Φ ∈ Φ(𝑈, 𝑥) such that 𝐸𝑈+
(︁
·, 𝑉 𝑥,𝜑

𝑇 (·)
)︁

= ∞ and

𝐸𝑈−
(︁
·, 𝑉 𝑥,𝜑

𝑇 (·)
)︁
<∞ then 𝑢(𝑥) = ∞ and the problem is ill-posed.

We propose some examples where Assumptions 2.4.7 or 2.4.8 hold true. Ex-
ample 𝑖𝑖) illustrates the distinction between Assumptions 2.4.7 and 2.4.8 and jus-
tifies we do not merge both assumptions and postulate that 𝐸𝑈+

(︁
·, 𝑉 1,𝜑

𝑇 (·)
)︁
< ∞

for all 𝜑 ∈ Φ(1).

i) If 𝑈 is bounded from above then both Assumptions are trivially true. We get
directly that Φ(𝑈, 𝑥) = Φ(𝑥) for all 𝑥 ≥ 0.

ii) Assume that 𝐸𝑈−(·, 0) <∞ holds true. Let 𝑥 ≥ 0 and 𝜑 ∈ Φ(𝑥) be fixed. Using
that 𝑈− is non-decreasing for all 𝜔 ∈ Ω we get that

𝐸𝑈−(·, 𝑉 𝑥,𝜑
𝑇 (·)) ≤ 𝐸𝑈−(·, 0) < +∞,
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Thus 𝐸𝑈(·, 𝑉 𝑥,𝜑
𝑇 (·)) is well-defined, Φ(𝑈, 𝑥) = Φ(𝑥) and Assumption 2.4.8 holds

true.

iii) Assume that there exists some 𝑥̂ ≥ 1 such that 𝑈(·, 𝑥̂− 1) ≥ 0 𝑃 -almost surely
and ̂︀𝑢(𝑥̂) := sup

𝜑∈Φ(𝑥̂)

𝐸𝑈(·, 𝑉 𝑥̂,𝜑
𝑇 (·)) <∞,

where we set for 𝜑 ∈ Φ(𝑥̂)∖Φ(𝑈, 𝑥̂), 𝐸𝑈(·, 𝑉 𝑥̂,𝜑
𝑇 (·)) = −∞. Let 𝜑 ∈ Φ(1) be fixed.

Then using that 𝑈 is non-decreasing for all 𝜔 ∈ Ω, we have that 𝑃 -almost
surely

𝑈(·, 𝑉 1,𝜑
𝑇 (·) + 𝑥̂− 1) ≥ 𝑈(·, 𝑥̂− 1) ≥ 0.

Therefore 𝑈(·, 𝑉 1,𝜑
𝑇 (·) + 𝑥̂ − 1) = 𝑈+(·, 𝑉 1,𝜑

𝑇 (·) + 𝑥̂ − 1) 𝑃 -almost surely. Now
using that 𝑈+ is non-decreasing for all 𝜔 ∈ Ω we get that for all 𝜑 ∈ Φ(1)

𝐸𝑈+(·, 𝑉 1,𝜑
𝑇 (·)) ≤ 𝐸𝑈+(·, 𝑉 1,𝜑

𝑇 (·) + 𝑥̂− 1) = 𝐸𝑈(·, 𝑉 1,𝜑
𝑇 (·) + 𝑥̂− 1) ≤ ̂︀𝑢(𝑥̂) < +∞

and Assumptions 2.4.7 and 2.4.8 are satisfied. Instead of stipulating that̂︀𝑢(𝑥̂) <∞ it is enough to assume that 𝐸𝑈(·, 𝑉 𝑥̂,𝜑
𝑇 (·)) <∞ for all 𝜑 ∈ Φ(𝑥̂).

iv) We will prove in Theorem 2.4.17 that under the (NA) condition and Assump-
tion 2.4.10 below, Assumptions 2.4.7 and 2.4.8 hold true if 𝐸𝑈+(·, 1) < +∞
and if for all 0 ≤ 𝑡 ≤ 𝑇 |Δ𝑆𝑡|, 1

𝛼𝑡
∈ 𝒲𝑡 (see (2.18) for the definition of 𝒲𝑡).

Assumption 2.4.10 We assume that there exist some constants 𝛾 ≥ 0, 𝐾 > 0, as
well as a random variable 𝐶 satisfying 𝐶(𝜔) ≥ 0 for all 𝜔 ∈ Ω and 𝐸(𝐶) < ∞ such
that for all 𝜔 ∈ Ω, 𝜆 ≥ 1 and 𝑥 ∈ R, we have

𝑈(𝜔, 𝜆𝑥) ≤ 𝐾𝜆𝛾
(︂
𝑈

(︂
𝜔, 𝑥+

1

2

)︂
+ 𝐶(𝜔)

)︂
. (2.13)

Remark 2.4.11 First note that the constant 1
2

in (2.13) has been chosen arbitrarily
to simplify the presentation. This can be done without loss of generality. Indeed,
assume there exists some constant 𝑥 ≥ 0 such that for all 𝜔 ∈ Ω, 𝜆 ≥ 1 and 𝑥 ∈ R

𝑈(𝜔, 𝜆𝑥) ≤ 𝐾𝜆𝛾 (𝑈(𝜔, 𝑥+ 𝑥) + 𝐶(𝜔)) . (2.14)

Using the monotonicity of 𝑈 , we can always assume 𝑥 > 0. Set for all 𝜔 ∈ Ω and
𝑥 ∈ R, 𝑈(𝜔, 𝑥) = 𝑈(𝜔, 2𝑥𝑥). Then for all 𝜔 ∈ Ω, 𝜆 ≥ 1 and 𝑥 ∈ R, we have that

𝑈(𝜔, 𝜆𝑥) = 𝑈(𝜔, 2𝜆𝑥𝑥) ≤ 𝐾𝜆𝛾 (𝑈(𝜔, 2𝑥𝑥+ 𝑥) + 𝐶(𝜔)) = 𝐾𝜆𝛾
(︂
𝑈

(︂
𝜔, 𝑥+

1

2

)︂
+ 𝐶(𝜔)

)︂
,

and 𝑈 satisfies (2.13). It is clear that if 𝜑* is an optimal solution for the problem
𝑢(𝑥) := sup𝜑∈Φ(𝑈, 𝑥

2𝑥
)𝐸𝑈(·, 𝑉

𝑥
2𝑥
,𝜑

𝑇 (·)) then 2𝑥𝜑* is an optimal solution for (2.12). Note
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as well that, since 𝐾 > 0 and 𝐶 ≥ 0, it is immediate to see that for all 𝜔 ∈ Ω, 𝜆 ≥ 1

and 𝑥 ∈ R

𝑈+(𝜔, 𝜆𝑥) ≤𝐾𝜆𝛾
(︂
𝑈+

(︂
𝜔, 𝑥+

1

2

)︂
+ 𝐶(𝜔)

)︂
. (2.15)

Remark 2.4.12 We now provide some insight on Assumption 2.4.10. As the in-
equality (2.13) is used to control the behaviour of 𝑈+(·, 𝑥) for large values of 𝑥, the
usual assumption in the non-concave case (see [34, Assumption 2.7]) is that there
exists some 𝑥̂ ≥ 0 such that 𝐸𝑈+(·, 𝑥̂) < ∞ as well as a random variable 𝐶1 sat-
isfying 𝐸(𝐶1) < ∞ and 𝐶1(𝜔) ≥ 0 for all 𝜔 3 such that for all 𝑥 ≥ 𝑥̂, 𝜆 ≥ 1 and
𝜔 ∈ Ω

𝑈(𝜔, 𝜆𝑥) ≤ 𝜆𝛾 (𝑈(𝜔, 𝑥) + 𝐶1(𝜔)) . (2.16)

We prove now that if (2.16) holds true then (2.14) is verified with 𝑥 = 𝑥̂, 𝐾 = 1 and
𝐶 = 𝐶1. Indeed, assume that (2.16) is verified. For 𝑥 ≥ 0, using the monotonicity of
𝑈 , we have for all 𝜔 ∈ Ω and 𝜆 ≥ 1 that

𝑈(𝜔, 𝜆𝑥) ≤ 𝑈(𝜔, 𝜆(𝑥+ 𝑥̂)) ≤ 𝜆𝛾 (𝑈(𝜔, 𝑥+ 𝑥̂) + 𝐶1(𝜔)) .

And for 𝑥 < 0 this is true as well since 𝑈(𝜔, 𝑥) = −∞.
Therefore (2.14) is a weaker assumption than (2.16). Note as well that if we assume
that (2.16) holds true for all 𝑥 > 0, then if 0 < 𝑥 < 1 and 𝜔 ∈ Ω we have

𝑈(𝜔, 1) ≤
(︂
1

𝑥

)︂𝛾
(𝑈(𝜔, 𝑥) + 𝐶1(𝜔)) ,

and 𝑈(𝜔, 0) := lim𝑥↘0 𝑈(𝜔, 𝑥) ≥ −𝐶1(𝜔). This excludes for instance the case where
𝑈 is the logarithm. Furthermore, this also implies that 𝐸𝑈−(·, 0) ≤ 𝐸𝐶1 < ∞ and
we are back to [34, Assumption 2.7]
Alternatively, recalling the way the concave case is handled (see [111, Lemma 2]),
we could have assumed that there exists a random variable 𝐶2 satisfying 𝐸(𝐶2) <

∞ and 𝐶2 ≥ 0 such that for all 𝑥 ∈ R, 𝜔 ∈ Ω

𝑈+(𝜔, 𝜆𝑥) ≤ 𝜆𝛾
(︀
𝑈+(𝜔, 𝑥) + 𝐶2(𝜔)

)︀
. (2.17)

We have not done so as it is difficult to prove that this inequality is preserved
through the dynamic programming procedure when considering non-concave func-
tions unless we assume that 𝐸𝑈−(·, 0) <∞ as in [34].

3In the cited paper 𝐶1 ≥ 0 a.s but this is not an issue, see Remark 2.4.13 below
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Remark 2.4.13 If there exists some set Ω𝑎𝑒 ∈ ℱ with 𝑃 (Ω𝑎𝑒) = 1 such that (2.13)
holds true only for 𝜔 ∈ Ω𝑎𝑒, then setting as in Remark 2.4.5, 𝑈(𝜔, 𝑥) := 𝑈(𝜔, 𝑥)1Ω𝑎𝑒×R(𝜔, 𝑥),

𝑈 satisfies (2.13) and the value function in (2.12) does not change. We also assume
without loss of generality that 𝐶(𝜔) ≥ 0 for all 𝜔 in (2.13). Indeed, if 𝐶 ≥ 0 𝑃 -a.s,
we could consider ̃︀𝐶 := 𝐶I𝐶≥0. Then Assumption 2.4.10 would hold true with ̃︀𝐶
instead of 𝐶.

Remark 2.4.14 In the case where (2.16) holds true, we refer to [33, Remark 2.5] and
[34, Remark 2.10] for the interpretation of 𝛾 : for 𝐶1 = 0, it can be seen as a gen-
eralization of the “asymptotic elasticity” of 𝑈 at +∞ (see [91]). So (2.16) requires
that the (generalized) asymptotic elasticity at +∞ is finite. In this case and if 𝑈 is
differentiable there is a nice economic interpretation of the “asymptotic elasticity”
as the ratio of “marginal utility”: 𝑈 ′(𝑥) and the “average utility”: 𝑈(𝑥)

𝑥
, see again

[91, Section 6] for further discussions. The case 𝐶1 > 0 allows bounded utilities. In
[34] it is proved that unlike in the concave case, the fact that 𝑈 is bounded from
above (and therefore satisfies (2.14)) does not implies that the asymptotic elasticity
is bounded.
We propose now an example of an unbounded utility function satisfying (2.14) and
such that lim sup𝑥→∞

𝑥𝑈 ′(𝑥)
𝑈(𝑥)

= +∞. This shows (as the counterexample of [34]),
that Assumption 2.4.10 is less strong than the usual “asymptotic elasticity". Let
𝑈 : R → R be defined by

𝑈(𝑥) = −∞1(−∞,0)(𝑥) +
∑︁
𝑝≥0

𝑝1[𝑝,𝑝+1− 1
2𝑝+1 )

(𝑥) + 𝑓𝑝(𝑥)1[𝑝+1− 1
2𝑝+1 ,𝑝+1)(𝑥)

where 𝑓𝑝(𝑥) = 2𝑝+1𝑥 + (𝑝 + 1) (1− 2𝑝+1) for 𝑝 ∈ N. Then 𝑈 satisfies Definition 2.4.1
and we have

𝑈 ′(𝑥) =
∑︁
𝑝≥0

2𝑝+11[𝑝+1− 1
2𝑝+1 ,𝑝+1)(𝑥).

We prove that (2.14) holds true. Note that for all 𝑥 ≥ 0 we have 𝑥−1 ≤ 𝑈(𝑥) ≤ 𝑥+1.
Let 𝑥 ≥ 0 and 𝜆 ≥ 1 be fixed. Then we get that

𝑈(𝜆𝑥) ≤ 𝜆𝑥+ 1 ≤ 𝜆 (𝑈(𝑥+ 1) + 1) + 1 ≤ 𝜆 (𝑈(𝑥+ 1) + 2) ,

and (2.14) is true with 𝐾 = 𝑥 = 1 and 𝐶 = 2. Now for 𝑘 ≥ 0, let 𝑥𝑘 = 𝑘 + 1 − 1
2𝑘+2 .

We have 𝑈(𝑥𝑘) = 𝑓𝑘(𝑥𝑘) = 𝑘 + 1
2

and

𝑥𝑘𝑈
′(𝑥𝑘)

𝑈(𝑥𝑘)
= 2𝑘+1

(︀
𝑘 + 1− 1

2𝑘+2

)︀
𝑘 + 1

2

→𝑘→∞ +∞.

Remark 2.4.15 We propose further examples where Assumption 2.4.10 holds true.
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i) Assume that 𝑈 is bounded from above by some integrable random constant
𝐶1 ≥ 0 and that 𝐸𝑈−(·, 1

2
) <∞. Then for all 𝑥 ≥ 0, 𝜆 ≥ 1, 𝜔 ∈ Ω we have

𝑈(𝜔, 𝜆𝑥) ≤ 𝐶1(𝜔) ≤ 𝜆𝑈

(︂
𝜔, 𝑥+

1

2

)︂
+ 𝜆

(︂
𝐶1(𝜔)− 𝑈

(︂
𝜔, 𝑥+

1

2

)︂)︂
≤ 𝜆𝑈

(︂
𝜔, 𝑥+

1

2

)︂
+ 𝜆

(︂
𝐶1(𝜔) + 𝑈−

(︂
𝜔,

1

2

)︂)︂
,

and (2.13) holds true for 𝑥 ≥ 0 with 𝐾 = 1, 𝛾 = 1 and 𝐶(·) = 𝐶1(·) + 𝑈−(·, 1
2
).

As 𝑈(·, 𝑥) = −∞ for 𝑥 < 0, (2.13) is true for all 𝑥 ∈ R.

ii) Assume that 𝑈 satisfies Definition 2.4.1 and that the restriction of 𝑈 to [0,∞)

is concave and non-decreasing and that 𝐸𝑈−(·, 1) < ∞. We use similar argu-
ments as in [112, Lemma 2], see also Proposition 4.5.19 in Chapter 4. Indeed,
let 𝑥 ≥ 2, 𝜆 ≥ 1 be fixed we have

𝑈(𝜔, 𝜆𝑥) ≤ 𝑈(𝜔, 𝑥) +
𝑈(𝜔, 𝑥)− 𝑈(𝜔, 1)

𝑥− 1
(𝜆− 1)𝑥

≤ 𝑈(𝜔, 𝑥) + 2(𝜆− 1) (𝑈(𝜔, 𝑥)− 𝑈(𝜔, 1))

≤ 𝑈(𝜔, 𝑥) + 3(𝜆− 1

3
) (𝑈(𝜔, 𝑥)− 𝑈(𝜔, 1))

≤ 3𝜆
(︀
𝑈(𝜔, 𝑥) + 𝑈−(𝜔, 1)

)︀
,

where we have used the concavity of 𝑈 for the first inequality and the fact
that 𝑥 ≥ 2 and 𝑈 is non-decreasing for the other ones. Thus from the proof
that (2.16) implies (2.14), we obtain that (2.14) holds true with 𝐾 = 3, 𝛾 = 1,
𝑥 = 2 and 𝐶(·) = 𝑈−(·, 1).

We can now state our main result.

Theorem 2.4.16 Assume the (NA) condition and that Assumptions 2.4.7, 2.4.8
and 2.4.10 hold true. Let 𝑥 ≥ 0. Then, 𝑢(𝑥) < ∞ and there exists some optimal
strategy 𝜑* ∈ Φ(𝑈, 𝑥) such that

𝑢(𝑥) = 𝐸𝑈(·, 𝑉 𝑥,𝜑*

𝑇 (·)).

Moreover 𝜑*
𝑡 (·) ∈ 𝐷𝑡(·) a.s. for all 0 ≤ 𝑡 ≤ 𝑇 .

We will use dynamic programming in order to prove our main result. We will
combine the approach of [111], [112], [33], [34] and [99]. As in [99], we will consider
a one period case where the initial filtration is trivial (so that strategies are in
R𝑑) and thus the proofs are much simpler than the ones of [111], [112], [33] and
[34]. The price to pay is that in the multi-period case where we use intensively
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measurable selection arguments (as in [99]) in order to obtain Theorem 2.4.16.
In our model, there is only one probability measure, so we don’t have to introduce
Borel spaces and analytic sets. Thus our modelisation of (Ω,ℱ ,F, 𝑃 ) is more general
than the one of [99] restricted to one probability measure. As we are in a non
concave setting we use similar ideas to theses of [33] and [34].

Finally, as in [111], [112], [33] and [34], we propose the following result as a
simpler but still general setting where Theorem 2.4.16 applies. We introduce for
all 0 ≤ 𝑡 ≤ 𝑇

𝒲𝑡 :=
{︀
𝑋 : Ω𝑡 → R ∪ {±∞}, ℱ𝑡-measurable, 𝐸|𝑋|𝑝 <∞ for all 𝑝 > 0

}︀
(2.18)

Theorem 2.4.17 Assume the (NA) condition and that Assumption 2.4.10 hold true.
Assume furthermore that 𝐸𝑈+(·, 1) < +∞ and that for all 0 ≤ 𝑡 ≤ 𝑇 |Δ𝑆𝑡|, 1

𝛼𝑡
∈ 𝒲𝑡.

Let 𝑥 ≥ 0. Then, for all 𝜑 ∈ Φ(𝑥) and all 0 ≤ 𝑡 ≤ 𝑇 , 𝑉 𝑥,𝜑
𝑡 ∈ 𝒲𝑡. Moreover, there

exists some optimal strategy 𝜑* ∈ Φ(𝑈, 𝑥) such that

𝑢(𝑥) = 𝐸𝑈(·, 𝑉 𝑥,𝜑*

𝑇 (·)) <∞

2.5 One period case
Let (Ω,ℋ, 𝑄) be a probability space (we denote by 𝐸 the expectation under 𝑄) and
𝑌 (·) a ℋ-measurable R𝑑-valued random variable. 𝑌 (·) could represent the change
of value of the price process. Let 𝐷 ⊂ R𝑑 be the smallest affine subspace of R𝑑

containing the support of the distribution of 𝑌 (·). We assume that 𝐷 contains 0, so
that 𝐷 is in fact a non-empty vector subspace of R𝑑. The condition corresponding
to (NA) in the present setting is

Assumption 2.5.1 There exists some constant 0 < 𝛼 ≤ 1 such that for all ℎ ∈ 𝐷

𝑄(ℎ𝑌 (·) ≤ −𝛼|ℎ|) ≥ 𝛼. (2.19)

Remark 2.5.2 If 𝐷 = {0} then (2.19) is trivially true.

Remark 2.5.3 below is exactly [33, Remark 8] (see also [99, Lemma 2.6]).

Remark 2.5.3 Let ℎ ∈ R𝑑 and let ℎ′ ∈ R𝑑 be the orthogonal projection of ℎ on 𝐷.
Then ℎ− ℎ′ ⊥ 𝐷 hence {𝑌 (·) ∈ 𝐷} ⊂ {(ℎ− ℎ′)𝑌 (·) = 0}. It follows that

𝑄(ℎ𝑌 (·) = ℎ′𝑌 (·)) = 𝑄((ℎ− ℎ′)𝑌 (·) = 0) ≥ 𝑄(𝑌 (·) ∈ 𝐷) = 1

by the definition of 𝐷. Hence 𝑄(ℎ𝑌 (·) = ℎ′𝑌 (·)) = 1.
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Assumption 2.5.4 We consider a random utility 𝑉 : Ω×R → R∪{±∞} satisfying
the following two conditions

∙ for every 𝑥 ∈ R, the function 𝑉 (·, 𝑥) : Ω → R is ℋ-measurable,

∙ for every 𝜔 ∈ Ω, the function 𝑉 (𝜔, ·) : R → R is non-decreasing and usc on R,

∙ 𝑉 (·, 𝑥) = −∞, for all 𝑥 < 0.

Let 𝑥 ≥ 0 be fixed. We define

ℋ𝑥 :=
{︀
ℎ ∈ R𝑑, 𝑄(𝑥+ ℎ𝑌 (·) ≥ 0) = 1

}︀
, (2.20)

𝐷𝑥 := ℋ𝑥 ∩𝐷. (2.21)

It is clear that ℋ𝑥 and 𝐷𝑥 are closed subsets of R𝑑. We now define the function
which is our main concern in the one period case

𝑣(𝑥) = (−∞)1(−∞,0)(𝑥) + 1[0,+∞)(𝑥) sup
ℎ∈ℋ𝑥

𝐸𝑉 (·, 𝑥+ ℎ𝑌 (·)) . (2.22)

Remark 2.5.5 First note that, from Remark 2.5.3,

𝑣(𝑥) = (−∞)1(−∞,0)(𝑥) + 1[0,+∞)(𝑥) sup
ℎ∈𝐷𝑥

𝐸𝑉 (·, 𝑥+ ℎ𝑌 (·)). (2.23)

Remark 2.5.6 It will be shown in Lemma 2.5.11 that under Assumptions 2.5.1,
2.5.4, 2.5.7 and 2.5.9, for all ℎ ∈ ℋ𝑥, 𝐸(𝑉 (·, 𝑥 + ℎ𝑌 (·)) is well-defined and more
precisely that 𝐸𝑉 +(·, 𝑥 + ℎ𝑌 (·)) < +∞. So, under this set of assumptions, Φ(𝑉, 𝑥),
the set of ℎ ∈ ℋ𝑥 such that 𝐸𝑉 (·, 𝑥+ ℎ𝑌 (·)) is well-defined, equals ℋ𝑥.

We present now the assumptions which allow to assert that there exists some op-
timal solution for (2.22). First we introduce the “asymptotic elasticity" assumption.

Assumption 2.5.7 There exist some constants 𝛾 ≥ 0, 𝐾 > 0, as well as some ℋ-
measurable 𝐶 with 𝐶(𝜔) ≥ 0 for all 𝜔 ∈ Ω and 𝐸(𝐶) < ∞, such that for all 𝜔 ∈ Ω,
for all 𝜆 ≥ 1, 𝑥 ∈ R we have

𝑉 (𝜔, 𝜆𝑥) ≤ 𝐾𝜆𝛾
(︂
𝑉

(︂
𝜔, 𝑥+

1

2

)︂
+ 𝐶(𝜔)

)︂
. (2.24)

Remark 2.5.8 The same comments as in Remark 2.4.13 apply. Furthermore, note
that since 𝐾 > 0 and 𝐶 ≥ 0 we also have that for all 𝜔 ∈ Ω, all 𝜆 ≥ 1 and 𝑥 ∈ R

𝑉 +(𝜔, 𝜆𝑥) ≤ 𝐾𝜆𝛾
(︂
𝑉 +

(︂
𝜔, 𝑥+

1

2

)︂
+ 𝐶(𝜔)

)︂
. (2.25)
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We introduce now some integrability assumption on 𝑉 +.

Assumption 2.5.9 For every ℎ ∈ ℋ1,

𝐸𝑉 +(·, 1 + ℎ𝑌 (·)) <∞. (2.26)

The following lemma corresponds to [112, Lemma 2.1] in the deterministic case.

Lemma 2.5.10 Assume that Assumption 2.5.1 holds true. Let 𝑥 ≥ 0 be fixed. Then
𝐷𝑥 ⊂ 𝐵(0, 𝑥

𝛼
) (see (2.21) for the definition of 𝐷𝑥), where 𝐵(0, 𝑥

𝛼
) = {ℎ ∈ R𝑑, |ℎ| ≤ 𝑥

𝛼
}

and 𝐷𝑥 is a convex, compact subspace of R𝑑.

Note that if 𝑥 = 0, it follows that 𝐷𝑥 = {0}.
Proof. Let ℎ ∈ 𝐷𝑥. Assume that |ℎ| > 𝑥

𝛼
and let 𝜔 ∈ {ℎ𝑌 (·) ≤ −𝛼|ℎ|}. Then

𝑥 + ℎ𝑌 (𝜔) ≤ 𝑥− 𝛼|ℎ| < 0 and from Assumption 2.5.1 𝑄(𝑥 + ℎ𝑌 (·) < 0) ≥ 𝑄(ℎ𝑌 (·) ≤
−𝛼|ℎ|) ≥ 𝛼 > 0, a contradiction. The convexity and the closedness of 𝐷𝑥 are clear
and the compactness follows from the boundness property. 2

This lemma corresponds in the deterministic case to [34, Lemma 4.8] (see also
[112, Lemma 2.3] and [99, Lemma 2.8]).

Lemma 2.5.11 Assume that Assumptions 2.5.1, 2.5.4, 2.5.7 and 2.5.9 hold true.
Then there exists a ℋ-measurable 𝐿 ≥ 0 satisfying 𝐸(𝐿) < ∞ and such that for all
𝑥 ≥ 0 and ℎ ∈ ℋ𝑥

𝑉 +(·, 𝑥+ ℎ𝑌 (·)) ≤
(︀
(2𝑥)𝛾𝐾 + 1

)︀
𝐿(·) 𝑄− 𝑎.𝑠. (2.27)

Proof. We start with the proof of (2.27) when ℎ ∈ 𝐷𝑥. Since𝐷 is a vectorial subspace
of R𝑑 and 0 ∈ ℋ𝑥, the affine hull of 𝐷𝑥 is also a vector space that we denote by
Aff(𝐷𝑥). If 𝑥 ≤ 1 we have by Assumption 2.5.4 that for all 𝜔 ∈ Ω, ℎ ∈ 𝐷𝑥,

𝑉 +(𝜔, 𝑥+ ℎ𝑌 (𝜔)) ≤ 𝑉 + (𝜔, 1 + ℎ𝑌 (𝜔)) . (2.28)

If 𝑥 > 1 using Assumption 2.5.7 (see (2.25) in Remark 2.5.8) we get that for all
𝜔 ∈ Ω, ℎ ∈ 𝐷𝑥

𝑉 +(𝜔, 𝑥+ ℎ𝑌 (𝜔)) = 𝑉 +

(︂
𝜔, 2𝑥

(︂
1

2
+

ℎ

2𝑥
𝑌 (𝜔)

)︂)︂
≤ (2𝑥)𝛾𝐾

(︂
𝑉 +

(︂
𝜔, 1 +

ℎ

2𝑥
𝑌 (𝜔)

)︂
+ 𝐶(𝜔)

)︂
. (2.29)

First we treat the case of 𝐷𝑖𝑚(Aff(𝐷𝑥)) = 0, 𝑖.𝑒 𝐷𝑥 = {0}. For all 𝜔 ∈ Ω, ℎ ∈ 𝐷𝑥 =

{0}, using (2.28) and (2.29), we obtain for all 𝑥 ≥ 0 that

𝑉 +(𝜔, 𝑥+ ℎ𝑌 (𝜔)) ≤ 𝑉 +(𝜔, 1) + (2𝑥)𝛾𝐾
(︀
𝑉 + (𝜔, 1) + 𝐶(𝜔)

)︀
≤ ((2𝑥)𝛾𝐾 + 1)(𝑉 +(𝜔, 1) + 𝐶(𝜔)). (2.30)
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We assume now that 𝐷𝑖𝑚(Aff(𝐷𝑥)) > 0. If 𝑥 = 0 then 𝑌 = 0 𝑄-a.s. If this is not
the case then we should have 𝐷0 = {0} a contradiction. Indeed if there exists some
ℎ ∈ 𝐷0 with ℎ ̸= 0, then 𝑄

(︁
ℎ
|ℎ|𝑌 (·) < 0

)︁
> 0 by Assumption 2.5.1 which contradicts

ℎ ∈ 𝐷0. So for 𝑥 = 0, 𝑌 = 0 𝑄-a.s and by Assumption 2.5.4 we get that for all 𝜔 ∈ Ω,
ℎ ∈ 𝐷0,

𝑉 +(𝜔, 0 + ℎ𝑌 (𝜔)) ≤ 𝑉 +(𝜔, 1).

From now we assume that 𝑥 > 0. Then as for 𝑔 ∈ R𝑑, 𝑔 ∈ 𝐷𝑥 if and only if 𝑔
𝑥
∈ 𝐷1,

we have that Aff(𝐷𝑥) = Aff(𝐷1). We set 𝑑′ := 𝐷𝑖𝑚(Aff(𝐷1)). Let (𝑒1, . . . , 𝑒𝑑′) be
an orthonormal basis of Aff(𝐷1) (which is a sub-vector space of R𝑑) and let 𝜙 :

(𝜆1, . . . , 𝜆𝑑′) ∈ R𝑑′ → Σ𝑑′
𝑖=1𝜆𝑖𝑒𝑖 ∈ Aff(𝐷1). Then 𝜙 is an isomorphism (recall that

(𝑒1, . . . , 𝑒𝑑′) is a basis of Aff(𝐷1)). As 𝜙 is linear and the spaces considered are of
finite dimension, it is also an homeomorphism between R𝑑′ and Aff(𝐷1). Since
𝐷1 is compact by Lemma 2.5.10, 𝜙−1(𝐷1) is a compact subspace of R𝑑′. So there
exists some 𝑐 ≥ 0 such that for all ℎ = Σ𝑑′

𝑖=1𝜆𝑖𝑒𝑖 ∈ 𝐷1, |𝜆𝑖| ≤ 𝑐 for all 𝑖 = 1, . . . , 𝑑′.
We complete the family of vector (𝑒1, . . . , 𝑒𝑑′) in order to obtain an orthonormal
basis of R𝑑, denoted by (𝑒1, . . . , 𝑒𝑑′ , 𝑒𝑑′+1, . . . 𝑒𝑑). For all 𝜔 ∈ Ω, let (𝑦𝑖(𝜔))𝑖=1,...,𝑑 be the
coordinate of 𝑌 (𝜔) in this basis.
Now let ℎ ∈ 𝐷𝑥 be fixed. Then ℎ

2𝑥
∈ 𝐷 1

2
⊂ 𝐷1 and ℎ

2𝑥
= Σ𝑑′

𝑖=1𝜆𝑖𝑒𝑖 for some (𝜆1, . . . 𝜆𝑑′) ∈
R𝑑′ with |𝜆𝑖| ≤ 𝑐 for all 𝑖 = 1, . . . , 𝑑′. Note that as ℎ

2𝑥
∈ 𝐷1, 𝜆𝑖 = 0 for 𝑖 ≥ 𝑑′ + 1. Then

as (𝑒1, . . . , 𝑒𝑑) is an orthonormal basis of R𝑑, we obtain for all 𝜔 ∈ Ω

1 +
ℎ

2𝑥
𝑌 (𝜔) = 1 + Σ𝑑′

𝑖=1𝜆𝑖𝑦𝑖(𝜔) ≤ 1 + Σ𝑑′

𝑖=1|𝜆𝑖||𝑦𝑖(𝜔)| ≤ 1 + 𝑐Σ𝑑′

𝑖=1|𝑦𝑖(𝜔)|.

Thus from Assumption 2.5.4 for all 𝜔 ∈ Ω we get that

𝑉 +

(︂
𝜔, 1 +

ℎ

2𝑥
𝑌 (𝜔)

)︂
≤ 𝑉 +

(︁
𝜔, 1 + 𝑐Σ𝑑′

𝑖=1|𝑦𝑖(𝜔)|
)︁
.

We set
𝐿(·) := 𝑉 +

(︁
𝜔, 1 + 𝑐Σ𝑑′

𝑖=1|𝑦𝑖(𝜔)|
)︁
1𝑑′>0 + 𝑉 +(·, 1) + 𝐶(·).

As 𝑑′ = 𝐷𝑖𝑚(Aff(𝐷1)) it is clear that 𝐿 does not depend on 𝑥. It is also clear that 𝐿
is ℋ-measurable.
Then using (2.28), (2.29) and (2.30) we obtain that for all 𝜔 ∈ Ω

𝑉 +(𝜔, 𝑥+ ℎ𝑌 (𝜔)) ≤ ((2𝑥)𝛾𝐾 + 1)𝐿(𝜔).

Note that the first term in 𝐿 is used in the above inequality if 𝑥 ̸= 0 and𝐷𝑖𝑚(Aff(𝐷𝑥)) >

0. The second and the third one are there for both the case of 𝐷𝑖𝑚(Aff(𝐷𝑥)) = 0

and the case of 𝑥 = 0 and 𝐷𝑖𝑚(Aff(𝐷𝑥)) > 0. As by Assumptions 2.5.7 and 2.5.9,
𝐸(𝑉 +(·, 1)+𝐶(·)) <∞, it remains to prove that 𝑑′ > 0 implies𝐸

(︀
𝑉 +
(︀
·, 1 + 𝑐Σ𝑑′

𝑖=1|𝑦𝑖(·)|
)︀)︀
<
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∞.
Introduce 𝑊 , the finite set of R𝑑 whose coordinates on (𝑒1, . . . , 𝑒𝑑′) are 1 or −1 and
0 on (𝑒𝑑′+1, . . . 𝑒𝑑). Then 𝑊 ⊂ Aff(𝐷1) and the vectors of 𝑊 will be denoted by
𝜃𝑗 for 𝑗 ∈ {1, . . . , 2𝑑′}. Let 𝜃𝜔 be the vector whose coordinates on (𝑒1, . . . , 𝑒𝑑′) are
(𝑠𝑖𝑔𝑛(𝑦𝑖(𝜔)))𝑖=1...𝑑′ and 0 on (𝑒𝑑′+1, . . . 𝑒𝑑). Then 𝜃𝜔 ∈ 𝑊 and we get that

𝑉 +
(︁
𝜔, 1 + 𝑐Σ𝑑′

𝑖=1|𝑦𝑖(𝜔)|
)︁
= 𝑉 +(𝜔, 1 + 𝑐𝜃𝜔𝑌 (𝜔)) ≤

2𝑑
′∑︁

𝑗=1

𝑉 +(𝜔, 1 + 𝑐𝜃𝑗𝑌 (𝜔)).

So to prove that 𝐸𝐿 < ∞ it is sufficient to prove that if 𝑑′ > 0 for all 1 ≤ 𝑗 ≤ 2𝑑
′,

𝐸𝑉 +(·, 1 + 𝑐𝜃𝑗𝑌 (·)) < ∞. Recall that 𝜃𝑗 ∈ Aff(𝐷1). We introduce now Ri(𝐷1) the
relative interior of 𝐷1. Recall from [115, Section 6]) that Ri(𝐷1) = {𝑦 ∈ 𝐷1, ∃𝛼 >
0 𝑠.𝑡 Aff(𝐷1)∩𝐵(𝑦, 𝛼) ⊂ 𝐷1}. 4 As𝐷1 is convex and non-empty (recall 𝑑′ > 0), 𝑟𝑖(𝐷1) is
also non-empty and convex and we fix some 𝑒* ∈ 𝑟𝑖(𝐷1). We prove that 𝑒*

2
∈ 𝑟𝑖(𝐷1).

Let 𝛼 > 0 be such that Aff(𝐷1)∩𝐵(𝑒*, 𝛼) ⊂ 𝐷1 and 𝑔 ∈ Aff(𝐷1)∩𝐵( 𝑒
*

2
, 𝛼
2
). Then 2𝑔 ∈

Aff(𝐷1) ∩ 𝐵(𝑒*, 𝛼) (recall that Aff(𝐷1) is actually a vector space) and thus 2𝑔 ∈ 𝐷1.
As 𝐷1 is convex and 0 ∈ 𝐷1, we get that 𝑔 ∈ 𝐷1 and Aff(𝐷1) ∩ 𝐵( 𝑒

*

2
, 𝛼
2
) ⊂ 𝐷1 which

proves that 𝑒*

2
∈ 𝑟𝑖(𝐷1). Now let 𝜀𝑗 be such that 𝜀𝑗( 𝑐2𝜃

𝑗 − 𝑒*

2
) ∈ 𝐵(0, 𝛼

2
). It is easy to

see that one can chose 𝜀𝑗 ∈ (0, 1). Then as 𝑒𝑗 := 𝑒*

2
+

𝜀𝑗
2
(𝑐𝜃𝑗 − 𝑒*) ∈ Aff(𝐷1) ∩𝐵( 𝑒

*

2
, 𝛼
2
)

(recall that 𝜃𝑗 ∈ 𝑊 ⊂ Aff(𝐷1)), we deduce that 𝑒𝑗 ∈ 𝐷1. Using (2.25) we obtain that
for 𝑄-almost all 𝜔

𝑉 +(𝜔, 1 + 𝑐𝜃𝑗𝑌 (𝜔)) = 𝑉 +(𝜔, 1 + 𝑒*𝑌 (𝜔) + (𝑐𝜃𝑗 − 𝑒*)𝑌 (𝜔))

≤
(︂

2

𝜀𝑗

)︂𝛾
𝐾

[︂
𝑉 +

(︂
𝜔,
𝜀𝑗
2
(1 + 𝑒*𝑌 (𝜔)) +

𝜀𝑗
2
(𝑐𝜃𝑗 − 𝑒*)𝑌 (𝜔) +

1

2

)︂
+ 𝐶(𝜔)

]︂
≤
(︂

2

𝜀𝑗

)︂𝛾
𝐾

[︂
𝑉 +

(︂
𝜔,

1

2
+
𝑒*

2
𝑌 (𝜔) +

𝜀𝑗
2
(𝑐𝜃𝑗 − 𝑒*)𝑌 (𝜔) +

1

2

)︂
+ 𝐶(𝜔)

]︂
≤
(︂

2

𝜀𝑗

)︂𝛾
𝐾
[︀
𝑉 +(𝜔, 1 + 𝑒𝑗𝑌 (𝜔)) + 𝐶(𝜔))

]︀
,

where the second inequality follows from the fact that 1 + 𝑒*𝑌 (·) ≥ 0 𝑄-a.s (recall
that 𝑒* ∈ 𝑟𝑖(𝐷1)) and the monotonicity property of 𝑉 in Assumption 2.4.1. Note
that the above inequalities are true even if 1+ 𝑐𝜃𝑗𝑌 (𝜔) < 0 since (2.25) (see remark
2.5.8) and the monotonicity property of 𝑉 hold true for all 𝑥 ∈ R.
From Assumption 2.5.9 we get that 𝐸𝑉 +(·, 1 + 𝑒𝑗𝑌 (·)) < ∞ (recall that 𝑒𝑗 ∈ 𝐷1)
and Assumption 2.5.7 implies 𝐸𝐶 < ∞, therefore 𝐸𝑉 +(·, 1 + 𝑐𝜃𝑗𝑌 (·)) < ∞ and
(2.27) is proven for ℎ ∈ 𝐷𝑥. Now let ℎ ∈ ℋ𝑥 and ℎ′ its orthogonal projection on
𝐷, then ℎ𝑌 (·) = ℎ′𝑌 (·) 𝑄-a.s (see Remark 2.5.3). It is clear that ℎ′ ∈ 𝐷𝑥 thus
𝑉 +(·, 𝑥+ ℎ𝑌 (·)) = 𝑉 +(·, 𝑥+ ℎ′𝑌 (·)) 𝑄-a.s and (2.27) is true also for ℎ ∈ ℋ𝑥. 2

4Here 𝐵(𝑦, 𝛼) is the ball of R𝑑 centered at 𝑦 and with radius 𝛼.
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Lemma 2.5.12 Assume that Assumptions 2.5.1, 2.5.4, 2.5.7 and 2.5.9 hold true.
Let 𝒟 be the set valued function that assigns to each 𝑥 ≥ 0 the set 𝐷𝑥. Then
𝐺𝑟𝑎𝑝ℎ(𝒟) := {(𝑥, ℎ) ∈ [0,+∞) × R𝑑, ℎ ∈ 𝐷𝑥} is a closed subset of R × R𝑑. Let
𝜓 : R× R𝑑 → R ∪ {±∞} be defined by

𝜓(𝑥, ℎ) :=

{︃
𝐸𝑉 (·, 𝑥+ ℎ𝑌 (·)), if (𝑥, ℎ) ∈ 𝐺𝑟𝑎𝑝ℎ(𝒟)

−∞, otherwise.
(2.31)

Then 𝜓 is usc on R× R𝑑 and 𝜓 < +∞ on 𝐺𝑟𝑎𝑝ℎ(𝒟).

Proof. Let (𝑥𝑛, ℎ𝑛)𝑛≥1 ∈ 𝐺𝑟𝑎𝑝ℎ(𝒟) be a sequence converging to some (𝑥*, ℎ*) ∈ R×R𝑑.
We prove first that (𝑥*, ℎ*) ∈ 𝐺𝑟𝑎𝑝ℎ(𝒟), 𝑖.𝑒 that 𝐺𝑟𝑎𝑝ℎ(𝒟) is a closed set. It is clear
that 𝑥* ≥ 0. Set for 𝑛 ≥ 1 𝐸𝑛 := {𝜔 ∈ Ω, 𝑥𝑛 + ℎ𝑛𝑌 (𝜔) ≥ 0} and 𝐸* := {𝜔 ∈
Ω, 𝑥* + ℎ*𝑌 (𝜔) ≥ 0}. It is clear that lim sup𝑛𝐸𝑛 ⊂ 𝐸* and applying the Fatou
Lemma (the 𝑙𝑖𝑚𝑠𝑢𝑝 version) we get

𝑄 (𝑥* + ℎ*𝑌 (·) ≥ 0) = 𝐸1𝐸*(·) ≥ 𝐸 lim sup
𝑛

1𝐸𝑛(·) ≥ lim sup
𝑛

𝐸1𝐸𝑛(·) = 1,

and ℎ* ∈ ℋ𝑥*. Since 𝐷 is closed by definition we have ℎ* ∈ 𝐷𝑥* and (𝑥*, ℎ*) ∈
𝐺𝑟𝑎𝑝ℎ(𝒟).
We prove now that 𝜓 is usc on 𝐺𝑟𝑎𝑝ℎ(𝒟). The upper semicontinuity on R× R𝑑 will
follow immediately from Lemma 2.8.11. By Assumption 2.5.4 𝑥 ∈ R → 𝑉 (𝑥, 𝜔) is
usc on R for all 𝜔 ∈ Ω and thus

lim sup
𝑛

𝑉 (𝜔, 𝑥𝑛 + ℎ𝑛𝑌 (𝜔)) ≤ 𝑉 (𝜔, 𝑥* + ℎ*𝑌 (𝜔)).

By Lemma 2.5.11 for all 𝜔 ∈ Ω

𝑉 (𝜔, 𝑥𝑛 + ℎ𝑛𝑌 (·)) ≤ 𝑉 +(𝜔, 𝑥𝑛 + ℎ𝑛𝑌 (·)) ≤ (|2𝑥𝑛|𝛾𝐾 + 1)𝐿(𝜔) ≤ (|2𝑥*|𝛾𝐾 + 2)𝐿(𝜔)

for 𝑛 big enough. We can apply Fatou’s Lemma (the 𝑙𝑖𝑚𝑠𝑢𝑝 version) and 𝜓 is usc on
𝐺𝑟𝑎𝑝ℎ(𝒟). From Lemma 2.5.11 it is also clear that 𝜓 < +∞ on 𝐺𝑟𝑎𝑝ℎ(𝒟). 2

We are now able to state our main result.

Theorem 2.5.13 Assume that Assumptions 2.5.1, 2.5.4, 2.5.7 and 2.5.9 hold true.
Then for all 𝑥 ≥ 0, 𝑣(𝑥) < ∞ and there exists some optimal strategy ̂︀ℎ ∈ 𝐷𝑥 such
that

𝑣(𝑥) = 𝐸(𝑉 (·, 𝑥+ ̂︀ℎ𝑌 (·))).

Moreover, 𝑣 : R → [−∞, ∞) is non-decreasing and usc on R.

Proof. Let 𝑥 ≥ 0 be fixed. We show first that 𝑣(𝑥) < ∞. Indeed, using Lemma
2.5.11,

𝐸(𝑉 (·, 𝑥+ ℎ𝑌 (·))) ≤ 𝐸(𝑉 +(·, 𝑥+ ℎ𝑌 (·))) ≤
(︀
(2𝑥)𝛾𝐾 + 1

)︀
𝐸𝐿(·),
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for all ℎ ∈ 𝐷𝑥. Thus, recalling (2.23), 𝑣(𝑥) ≤ ((2𝑥)𝛾𝐾 + 1)𝐸𝐿(·) <∞.
It follows from Lemma 2.5.12 that ℎ ∈ R𝑑 → 𝜓(𝑥, ℎ) := 𝐸(𝑉 (·, 𝑥 + ℎ𝑌 (·))) is usc on
R𝑑 and thus on 𝐷𝑥 (recall that 𝐷𝑥 is closed and see Lemma 2.8.11). Since by (2.23),
𝑣(𝑥) = supℎ∈𝐷𝑥

𝐸(·, 𝑉 (𝑥 + ℎ𝑌 (·))) and 𝐷𝑥 is compact (see Lemma 2.5.10), applying
[3, Theorem 2.43] there exists some ̂︀ℎ ∈ 𝐷𝑥 such that

𝑣(𝑥) = 𝐸(𝑉 (·, 𝑥+ ̂︀ℎ𝑌 (·))). (2.32)

We show that 𝑣 is usc on [0,+∞). As previously, the upper semicontinuity on R will
follow immediately from Lemma 2.8.11. Let (𝑥𝑛)𝑛≥0 be a sequence of non-negative
numbers converging to some 𝑥* ∈ [0,+∞). Let ̂︀ℎ𝑛 ∈ 𝐷𝑥𝑛 be the associated optimal
strategies to 𝑥𝑛 in (2.32). Let (𝑛𝑘)𝑘≥1 be a subsequence such that lim sup𝑛 𝑣(𝑥𝑛) =

lim𝑘 𝑣(𝑥𝑛𝑘
). By Lemma 2.5.10 |̂︀ℎ𝑛𝑘

| ≤ 𝑥𝑛𝑘
/𝛽 ≤ (𝑥* +1)/𝛽 for 𝑘 big enough. So we can

extract a subsequence (that we still denote by (𝑛𝑘)𝑘≥1) such that there exists some
ℎ* with ̂︀ℎ𝑛𝑘

→ ℎ*. As the sequence (𝑥𝑛𝑘
, ℎ̂𝑛𝑘

)𝑘≥1 ∈ 𝐺𝑟𝑎𝑝ℎ(𝒟) converges to (𝑥*, ℎ*) and
𝐺𝑟𝑎𝑝ℎ(𝒟) is closed (see Lemma 2.5.12), we get that ℎ* ∈ 𝒟𝑥*. Using Lemma 2.5.12

lim sup
𝑛

𝑣(𝑥𝑛) = lim
𝑘
𝑣(𝑥𝑛𝑘

) = lim
𝑘
𝐸𝑉 (·, 𝑥𝑛𝑘

+ ̂︀ℎ𝑛𝑘
𝑌 (·)) ≤ 𝐸𝑉 (·, 𝑥* + ℎ*𝑌 (·)) ≤ 𝑣(𝑥*),

where the last inequality holds true because ℎ* ∈ 𝐷𝑥* and therefore 𝑣 is usc on
[0,+∞). Now as, by Assumption 2.5.4, 𝑉 (𝜔, ·) is non-decreasing for all 𝜔 ∈ Ω, 𝑣 is
also non-decreasing on [0,+∞) and since 𝑣(𝑥) = −∞ on (−∞, 0), 𝑣 is non-decreasing
on R. 2

2.6 Multi-period case
We first prove the following proposition.

Proposition 2.6.1 Let Assumptions 2.4.7, 2.4.8 and 2.4.10 hold true. Then
𝐸𝑈+

(︁
·, 𝑉 𝑥,𝜑

𝑇 (·)
)︁
<∞ for all 𝑥 ≥ 0 and 𝜑 ∈ Φ(𝑥). This implies that Φ(𝑈, 𝑥) = Φ(𝑥).

Proof. Fix 0 ≤ 𝑥 ≤ 1 and let 𝜑 ∈ Φ(𝑥). Then 𝑉 𝑥,𝜑
𝑇 ≤ 𝑉 1,𝜑

𝑇 and 𝜑 ∈ Φ(1) = Φ(1, 𝑈)
(recall Assumption 2.4.8). For any 𝜔 ∈ Ω, the function 𝑦 → 𝑈(𝜔, 𝑦) is non-decreasing
on R, so that 𝐸𝑈+

(︁
·, 𝑉 𝑥,𝜑

𝑇 (·)
)︁
≤ 𝐸𝑈+

(︁
·, 𝑉 1,𝜑

𝑇 (·)
)︁
< ∞ by Assumption 2.4.7. Now, if

𝑥 ≥ 1, let 𝜑 ∈ Φ(𝑥) be fixed. From Assumption 2.4.10 we get that for all 𝜔 ∈ Ω

𝑈(𝜔, 𝑉 𝑥,𝜑
𝑇 (𝜔)) = 𝑈

(︃
𝜔, 2𝑥

(︃
1

2
+

𝑇∑︁
𝑡=1

𝜑𝑡(𝜔
𝑡−1)

2𝑥
Δ𝑆𝑡(𝜔

𝑡)

)︃)︃
≤ (2𝑥)𝛾𝐾

(︂
𝑈(𝜔, 𝑉

1, 𝜑
2𝑥

𝑇 (𝜔)) + 𝐶(𝜔)

)︂
.
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By Assumption 2.4.8, 𝜑
2𝑥

∈ Φ(1
2
) ⊂ Φ(1) = Φ(1, 𝑈). Thus

𝐸𝑈+
(︁
·, 𝑉 𝑥,𝜑

𝑇 (·)
)︁
≤ (2𝑥)𝛾𝐾

(︂
𝐸𝑈+

(︂
·, 𝑉 1, 𝜑

2𝑥
𝑇 (·)

)︂
+ 𝐸(𝐶)

)︂
<∞,

using Assumption 2.4.7 and the fact that 𝐶 is integrable (see Assumption 2.4.10).
In both cases, we conclude that Φ(𝑥) = Φ(𝑈, 𝑥). 2

We introduce now the dynamic programming procedure. First we set for all
𝑡 ∈ {0, . . . , 𝑇 − 1}, 𝜔𝑡 ∈ Ω𝑡 and 𝑥 ≥ 0

ℋ𝑡+1
𝑥 (𝜔𝑡) :=

{︀
ℎ ∈ R𝑑, 𝑞𝑡+1(𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0|𝜔𝑡) = 1
}︀
, (2.33)

𝒟𝑡+1
𝑥 (𝜔𝑡) := ℋ𝑡+1

𝑥 (𝜔𝑡) ∩𝐷𝑡+1(𝜔𝑡), (2.34)

where 𝐷𝑡+1 was introduced in Definition 2.3.2. For 𝑥 < 0 we set ℋ𝑡+1
𝑥 (𝜔𝑡) = ∅.

We define for all 𝑡 ∈ {0, . . . , 𝑇} the following functions 𝑈𝑡 from Ω𝑡×R → R. Starting
with 𝑡 = 𝑇 , we set for all 𝑥 ∈ R, all 𝜔𝑇 ∈ Ω

𝑈𝑇 (𝜔
𝑇 , 𝑥) := 𝑈(𝜔𝑇 , 𝑥). (2.35)

Recall that 𝑈(𝜔𝑇 , 𝑥) = −∞ for all (𝜔𝑇 , 𝑥) ∈ Ω× (−∞, 0).
Using for 𝑡 ≥ 1 the full-measure set ̃︀Ω𝑡 ∈ ℱ𝑡 that will be defined by induction in
Propositions 2.6.9 and 2.6.10, we set for all 𝑥 ∈ R and 𝜔𝑡 ∈ Ω𝑡

𝑈𝑡(𝜔
𝑡, 𝑥) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
supℎ∈ℋ𝑡+1

𝑥 (𝜔𝑡)

∫︀
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡),
if (𝜔𝑡, 𝑥) ∈ ̃︀Ω𝑡 × [0,+∞)

0 if 𝑥 ≥ 0 and 𝜔𝑡 /∈ ̃︀Ω𝑡

−∞ if 𝑥 < 0.
(2.36)

Finally for 𝑡 = 0

𝑈0(𝑥) :=

{︃
supℎ∈ℋ1

𝑥

∫︀
Ω1
𝑈1(𝜔1, 𝑥+ ℎΔ𝑆1(𝜔1))𝑃1(𝑑𝜔1) if 𝑥 ≥ 0.

−∞ otherwise
(2.37)

Remark 2.6.2 We will prove by induction that 𝑈𝑡 is well-defined (see (2.39)), 𝑖.𝑒 the
integrals in (2.36) and (2.37) are well-defined in the generalised sense.

Remark 2.6.3 Before going further we provide some explanations on the choice of
𝑈𝑡. The natural definition of 𝑈𝑡 should have been

𝒰𝑡(𝜔𝑡, 𝑥) :=

⎧⎪⎪⎨⎪⎪⎩
supℎ∈ℋ𝑡+1

𝑥 (𝜔𝑡)

∫︀
Ω𝑡+1

𝒰𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡)
if 𝑥 ≥ 0

−∞ otherwise.
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Introducing the 𝑃𝑡 full measure set ̃︀Ω𝑡 in (2.36) is related to measurability issues
that will be tackled in Proposition 2.6.11. This is not a surprise as this is related
to the use of conditional expectations which are defined only almost everywhere.

Lemma 2.6.4 Let 0 ≤ 𝑡 ≤ 𝑇 − 1 and 𝐻 be a fixed R-valued and ℱ𝑡-measurable
random variable. Consider the following random sets

ℋ𝑡+1
𝐻 : 𝜔𝑡 ∈ Ω𝑡 � ℋ𝑡+1

𝐻(𝜔𝑡)(𝜔
𝑡) and 𝒟𝑡+1

𝐻 : 𝜔𝑡 ∈ Ω𝑡 � 𝒟𝑡+1
𝐻(𝜔𝑡)(𝜔

𝑡).

Then those random sets are all closed-valued and with graph valued in ℱ𝑡⊗ℬ(R𝑑).

Proof. First it is clear that ℋ𝑡+1
𝐻 is closed-valued. As 𝐷𝑡+1 is closed-valued (see

Lemma 2.3.3) it follows that 𝒟𝑡+1
𝐻 is closed-valued as well. The fact that𝐺𝑟𝑎𝑝ℎ(ℋ𝑡+1

𝐻 ) ∈
ℱ𝑡 ⊗ ℬ(R𝑑) follows immediately from

𝐺𝑟𝑎𝑝ℎ(ℋ𝑡+1
𝐻 ) =

{︀
(𝜔𝑡, ℎ) ∈ Ω𝑡 × R𝑑, 𝐻(𝜔𝑡) ≥ 0, 𝑞𝑡+1

(︀{︀
𝐻(𝜔𝑡) + ℎΔ𝑆𝑡+1(𝜔

𝑡, .) ≥ 0
}︀
= 1|𝜔𝑡

)︀}︀
,

and Lemma 2.8.9 (recall that 𝐻 is ℱ𝑡-measurable). We know from Lemma 2.3.3
that 𝐺𝑟𝑎𝑝ℎ(𝐷𝑡+1) ∈ ℱ𝑡 ⊗ ℬ(R𝑑) and it follows that

𝐺𝑟𝑎𝑝ℎ(𝒟𝑡+1
𝐻 ) = 𝐺𝑟𝑎𝑝ℎ(𝐷𝑡+1) ∩𝐺𝑟𝑎𝑝ℎ(ℋ𝑡+1

𝐻 ) ∈ ℱ𝑡 ⊗ ℬ(R𝑑).

2

Finally we introduce

𝐶𝑇 (𝜔
𝑇 ) := 𝐶(𝜔𝑇 ), for 𝜔𝑇 ∈ Ω𝑇 , where 𝐶 is defined in Assumption 2.4.10

𝐶𝑡(𝜔
𝑡) :=

∫︁
Ω𝑡+1

𝐶𝑡+1(𝜔
𝑡, 𝜔𝑡+1)𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡) for 𝑡 ∈ {0, . . . , 𝑇 − 1}, 𝜔𝑡 ∈ Ω𝑡. (2.38)

Lemma 2.6.5 The functions 𝜔𝑡 ∈ Ω𝑡 → 𝐶𝑡(𝜔
𝑡) are well-defined, non-negative (for

all 𝜔𝑡), ℱ𝑡-measurable and satisfy 𝐸(𝐶𝑡) = 𝐸(𝐶𝑇 ) < ∞. Furthermore, for all 𝑡 ∈
{1, . . . , 𝑇}, there exists Ω𝑡

𝐶 ∈ ℱ𝑡 and with 𝑃𝑡(Ω
𝑡
𝐶) = 1 and such that 𝐶𝑡(·) <∞ on Ω𝑡

𝐶 .
For 𝑡 = 0 we have 𝐶0 <∞.

Proof. We proceed by induction. For 𝑡 = 𝑇 by Assumption 2.4.10 𝐶𝑇 = 𝐶 is ℱ𝑇 -
measurable, 𝐶𝑇 ≥ 0 and 𝐸(𝐶𝑇 ) < ∞. Assume now that 𝐶𝑡+1 is ℱ𝑡+1-measurable,
𝐶𝑡+1 ≥ 0 and 𝐸(𝐶𝑡+1) = 𝐸(𝐶𝑇 ) < ∞. From Proposition 2.8.6 𝑖) applied to 𝑓 = 𝐶𝑡+1

we get that 𝜔𝑡 → 𝐶𝑡(𝜔
𝑡) =

∫︀
Ω𝑡+1

𝐶𝑡+1(𝜔
𝑡, 𝜔𝑡+1)𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡) is ℱ𝑡-measurable. As

𝐶𝑡+1(𝜔
𝑡+1) ≥ 0 for all 𝜔𝑡+1, it is clear that 𝐶𝑡(𝜔𝑡) ≥ 0 for all 𝜔𝑡. Applying the Fubini

Theorem (see Lemma 2.8.1) we get that

𝐸(𝐶𝑡) =

∫︁
Ω𝑡

∫︁
Ω𝑡+1

𝐶𝑡+1(𝜔
𝑡, 𝜔𝑡+1)𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡)𝑃𝑡(𝑑𝜔𝑡)

=

∫︁
Ω𝑡+1

𝐶𝑡+1(𝜔
𝑡+1)𝑃𝑡+1(𝑑𝜔

𝑡+1) = 𝐸(𝐶𝑡+1) = 𝐸(𝐶𝑇 ) <∞
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and the induction step is complete. For the second part of the lemma, we apply
Lemma 2.8.7 to 𝑓 = 𝐶𝑡+1 and we obtain that Ω𝑡

𝐶 := {𝜔𝑡 ∈ Ω𝑡, 𝐶𝑡(𝜔
𝑡) < ∞} ∈ ℱ𝑡 and

𝑃𝑡(Ω
𝑡
𝐶) = 1. 2

Propositions 2.6.7 to 2.6.11 below solve the dynamic programming procedure
and hold true under the following set of conditions. Let 1 ≤ 𝑡 ≤ 𝑇 be fixed.

𝑈𝑡
(︀
𝜔𝑡, ·

)︀
: R → R is well-defined, non-decreasing and usc on R for all 𝜔𝑡 ∈ Ω𝑡, (2.39)

𝑈𝑡 (·, ·) : Ω𝑡 × R → R{±∞} is ℱ𝑡 ⊗ B(R)-measurable, (2.40)∫︁
Ω𝑡

𝑈+
𝑡 (𝜔𝑡, 𝐻(𝜔𝑡−1) + 𝜉(𝜔𝑡−1)Δ𝑆𝑡(𝜔

𝑡))𝑃𝑡(𝑑𝜔
𝑡) <∞, (2.41)

for all 𝜉 ∈ Ξ𝑡−1 and 𝐻 = 𝑥+
∑︀𝑡−1

𝑠=1 𝜑𝑠Δ𝑆𝑠 where 𝑥 ≥ 0, 𝜑1 ∈ Ξ0, . . . , 𝜑𝑡−1 ∈ Ξ𝑡−2

and 𝑃𝑡(𝐻(·) + 𝜉(·)Δ𝑆𝑡(·) ≥ 0) = 1,

𝑈𝑡(𝜔
𝑡, 𝜆𝑥) ≤ 𝜆𝛾𝐾

(︂
𝑈𝑡

(︂
𝜔𝑡, 𝑥+

1

2

)︂
+ 𝐶𝑡(𝜔

𝑡)

)︂
, for all 𝜔𝑡 ∈ Ω𝑡, 𝜆 ≥ 1, 𝑥 ∈ R. (2.42)

Remark 2.6.6 Note that from (2.39) and (2.40) we have that −𝑈𝑡 is a ℱ𝑡-normal
integrand (see Definition 2.8.23 and Remark 2.8.24 in Section 2.8.3). However to
prove that this property is preserved in the dynamic programming procedure we
need to show separately that (2.39) and (2.40) are true. Furthermore, as our sigma-
algebras are not assumed to be complete, obtaining some ℱ𝑡-normal integrand from
−𝑈𝑡 would introduce yet another layer of difficulty. For these reasons we choose to
prove (2.39) and (2.40) instead of some normal integrand property. Nevertheless
we will use again the properties of normal integrands in the proof of Lemma 2.6.11.

The next proposition is a first step in the construction of ̃︀Ω𝑡.

Proposition 2.6.7 Let 0 ≤ 𝑡 ≤ 𝑇 − 1 be fixed. Assume that (NA) condition holds
true and that (2.39), (2.40), (2.41) and (2.42) hold true at stage 𝑡 + 1. Then there
exists ̃︀Ω𝑡

1 ∈ ℱ𝑡 such that 𝑃𝑡(̃︀Ω𝑡
1) = 1 and such that for all 𝜔𝑡 ∈ ̃︀Ω𝑡

1 the function
(𝜔𝑡+1, 𝑥) → 𝑈𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥) satisfies the assumptions of Theorem 2.5.13 with Ω =

Ω𝑡+1, ℋ = 𝒢𝑡+1, 𝑄(·) = 𝑞𝑡+1(·|𝜔𝑡), 𝑌 (·) = Δ𝑆𝑡+1(𝜔
𝑡, ·), 𝑉 (·, 𝑦) = 𝑈𝑡+1(𝜔

𝑡, ·, 𝑦) where 𝑉 is
defined on Ω𝑡+1 × R.

Remark 2.6.8 Note that Lemmata 2.5.11, 2.5.12 and Theorem 2.5.13 hold true un-
der the same set of assumptions. Therefore we can replace Theorem 2.5.13 by
either Lemmata 2.5.11 or 2.5.12 in the above proposition.

Proof. To prove the proposition we will review one by one the assumptions needed
to apply Theorem 2.5.13 in the context Ω = Ω𝑡+1, ℋ = 𝒢𝑡+1, 𝑄(·) = 𝑞𝑡+1(·|𝜔𝑡),
𝑌 (·) = Δ𝑆𝑡+1(𝜔

𝑡, ·), 𝑉 (·, 𝑦) = 𝑈𝑡+1(𝜔
𝑡, ·, 𝑦) where 𝑉 is defined on Ω𝑡+1 × R. In the
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sequel we shortly call this the context 𝑡+ 1.
From (2.39) at 𝑡+1 for all 𝜔𝑡 ∈ Ω𝑡 and 𝜔𝑡+1 ∈ Ω𝑡+1, the function 𝑥 ∈ R → 𝑈𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥)

is non-decreasing and usc on R. From (2.40) at 𝑡+ 1 for all fixed 𝜔𝑡 ∈ Ω𝑡 and 𝑥 ∈ R,
the function 𝜔𝑡+1 ∈ Ω𝑡+1 → 𝑈𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥) is 𝒢𝑡+1-measurable and thus Assumption
2.5.4 is satisfied in the context 𝑡 + 1 (recall that 𝑈𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥) = −∞ for all 𝑥 < 0

by assumption).
We move now to the assumptions that are verified for 𝜔𝑡 chosen in some specific
𝑃𝑡-full measure set. First from Lemma 2.3.6 for all 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴1 we have 0 ∈ 𝐷𝑡+1(𝜔𝑡)

(recall that in Section 2.5 we have assumed that 𝐷 contains 0). From Proposition
2.3.7, Assumption 2.5.1 holds true for all 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴 in the context 𝑡+ 1.
We handle now Assumption 2.5.7 on asymptotic elasticity in context 𝑡 + 1. Let
𝜔𝑡 ∈ Ω𝑡

𝐶 be fixed where Ω𝑡
𝐶 is defined in Lemma 2.6.5. From (2.42) at 𝑡+ 1 we have

that for all 𝜔𝑡+1 ∈ Ω𝑡+1, 𝜆 ≥ 1 and 𝑥 ∈ R

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝜆𝑥) ≤ 𝜆𝛾𝐾

(︂
𝑈𝑡+1

(︂
𝜔𝑡, 𝜔𝑡+1, 𝑥+

1

2

)︂
+ 𝐶𝑡+1(𝜔

𝑡, 𝜔𝑡+1)

)︂
.

Now from Lemma 2.6.5 since 𝜔𝑡 ∈ Ω𝑡
𝐶 , we get that∫︁

Ω𝑡+1

𝐶𝑡+1(𝜔
𝑡, 𝜔𝑡+1)𝑞𝑡+1(𝜔𝑡+1|𝑑𝜔𝑡) = 𝐶𝑡(𝜔

𝑡) <∞

and thus Assumption 2.5.7 in context 𝑡 + 1 is verified for all 𝜔𝑡 ∈ Ω𝑡
𝐶 . We want

to show that for 𝜔𝑡 in some 𝑃𝑡 full measure set to be determined and for all ℎ ∈
ℋ𝑡+1

1 (𝜔𝑡) we have that∫︁
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 1 + ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡) <∞.

We introduce the following random set 𝐼1 : Ω𝑡 � R𝑑

𝐼1(𝜔
𝑡) :=

{︂
ℎ ∈ ℋ𝑡+1

1 (𝜔𝑡),

∫︁
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 1 + ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡) = ∞

}︂
.

(2.43)

Arguing by contradiction and using measurable selection arguments we will prove
that 𝐼1(𝜔𝑡) = ∅ for 𝑃𝑡-almost all 𝜔𝑡 ∈ Ω𝑡. We show first that 𝐺𝑟𝑎𝑝ℎ(𝐼1) ∈ ℱ𝑡 ⊗ ℬ(R𝑑).
It is clear from (2.40) at 𝑡 + 1 that (𝜔𝑡, 𝜔𝑡+1, ℎ) → 𝑈+

𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 1 + ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))

is ℱ𝑡 ⊗ 𝒢𝑡+1 ⊗ ℬ(R𝑑)-measurable. Using Proposition 2.8.6 𝑖𝑖) we get that (𝜔𝑡, ℎ) →∫︀
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 1+ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡) is ℱ𝑡⊗ℬ(R𝑑)-measurable (taking

potentially the value +∞). From Lemma 2.6.4, we obtain 𝐺𝑟𝑎𝑝ℎ(ℋ𝑡+1
1 ) ∈ ℱ𝑡⊗ℬ(R𝑑)

and 𝐺𝑟𝑎𝑝ℎ(𝐼1) ∈ ℱ𝑡 ⊗ ℬ(R𝑑) follows.
Applying the Projection Theorem (see for example [37, Theorem 3.23]) we obtain
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that {𝐼1 ̸= ∅} ∈ ℱ 𝑡 and using the Aumann Theorem (see [119, Corollary 1]) there
exists some ℱ 𝑡-measurable ℎ1 : {𝐼1 ̸= ∅} → R𝑑 such that for all 𝜔𝑡 ∈ {𝐼1 ̸= ∅},
ℎ1(𝜔

𝑡) ∈ 𝐼1(𝜔
𝑡). We extend ℎ1 on all Ω𝑡 by setting ℎ1(𝜔

𝑡) = 0 on Ω𝑡 ∖ {𝐼1 ̸= ∅}. As
{𝐼1 ̸= ∅} ∈ ℱ 𝑡 it is clear that ℎ1 remains ℱ 𝑡-measurable. Using Lemma 2.8.10
we get some ℱ𝑡-measurable ℎ1 : Ω𝑡 → R𝑑 and Ω𝑡

𝐼1
∈ ℱ𝑡 such that 𝑃𝑡(Ω𝑡

𝐼1
) = 1 and

Ω𝑡
𝐼1

⊂ {𝜔𝑡 ∈ Ω𝑡, ℎ1(𝜔
𝑡) = ℎ1(𝜔

𝑡)}. Arguing as in the proof of Lemma 2.3.6 and using
the Fubini Theorem (see Lemma 2.8.1) we get that

𝑃𝑡+1 (1 + ℎ1(·)Δ𝑆𝑡+1(·) ≥ 0) =

∫︁
Ω𝑡

𝑞𝑡+1(1 + ℎ1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0|𝜔𝑡)𝑃𝑡(𝑑𝜔𝑡)

=

∫︁
Ω𝑡

𝑞𝑡+1(1 + ℎ1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0|𝜔𝑡)𝑃 𝑡(𝑑𝜔
𝑡)

= 1.

Now assume that 𝑃 𝑡({𝐼1 ̸= ∅}) > 0. Since ℎ1 ∈ Ξ𝑡 and 𝑃𝑡+1(1 + ℎ1(·)Δ𝑆𝑡+1(·) ≥ 0) = 1

from (2.41) at 𝑡+ 1 applied to 𝐻 = 1∫︁
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡+1, 1 + ℎ1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡+1))𝑃𝑡+1(𝑑𝜔
𝑡+1) <∞.

We argue as in Lemma 2.3.6 again. Let

𝜙1(𝜔
𝑡) =

∫︁
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 1 + ℎ1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡),

𝜙1(𝜔
𝑡) =

∫︁
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 1 + ℎ1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡).

We have already seen that

(𝜔𝑡, ℎ) ∈ Ω𝑡 × R𝑑 →
∫︁
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 1 + ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡)

is ℱ𝑡 ⊗ ℬ(R𝑑)-measurable (taking potentially value +∞). By composition it is clear
that 𝜙1 is ℱ𝑡-measurable and that 𝜙1 is ℱ 𝑡-measurable. Furthermore as {𝜔𝑡 ∈
Ω𝑡, 𝜙1(𝜔

𝑡) ̸= 𝜙1(𝜔
𝑡)} ⊂ {𝜔𝑡 ∈ Ω𝑡, ℎ1(𝜔

𝑡) ̸= ℎ1(𝜔
𝑡)}, 𝜙1 = 𝜙1 𝑃𝑡-almost surely. This

implies that
∫︀
Ω𝑡 𝜙1𝑑𝑃 𝑡 =

∫︀
Ω𝑡 𝜙1𝑑𝑃𝑡 and using again the Fubini Theorem (see Lemma

2.8.1) we get that∫︁
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡+1, 𝑥+ ℎ1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡+1)𝑃𝑡+1(𝑑𝜔
𝑡+1)

=

∫︁
Ω𝑡

∫︁
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 1 + ℎ1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡)𝑃𝑡(𝑑𝜔𝑡)

=

∫︁
Ω𝑡

∫︁
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 1 + ℎ1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡)𝑃 𝑡(𝑑𝜔
𝑡)

≥
∫︁
{𝐼1 ̸=∅}

(+∞)𝑃 𝑡(𝑑𝜔
𝑡) = +∞.
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Therefore we must have 𝑃 𝑡({𝐼1 ̸= ∅}) = 0 𝑖.𝑒 𝑃 𝑡({𝐼1 = ∅}) = 1. Now since {𝐼1 = ∅} ∈
ℱ 𝑡 there exists Ω𝑡

𝑖𝑛𝑡 ⊂ {𝐼1 = ∅} such that Ω𝑡
𝑖𝑛𝑡 ∈ ℱ𝑡 and 𝑃𝑡(Ω

𝑡
𝑖𝑛𝑡) = 𝑃 𝑡({𝐼1 = ∅}) = 1.

For all 𝜔𝑡 ∈ Ω𝑡
𝑖𝑛𝑡, Assumption 2.5.9 in the context 𝑡+1 is true and we can now definẽ︀Ω𝑡

1 ⊂ Ω𝑡

̃︀Ω𝑡
1 := Ω𝑡

𝑁𝐴 ∩ Ω𝑡
𝑖𝑛𝑡 ∩ Ω𝑡

𝐶 . (2.44)

It is clear that ̃︀Ω𝑡
1 ∈ ℱ𝑡, 𝑃𝑡(̃︀Ω𝑡

1) = 1 and the proof is complete. 2

The next proposition enables us to initialize the induction argument that will
be carried on in Proposition 2.6.11.

Proposition 2.6.9 Assume that the (NA) condition and Assumptions 2.4.7, 2.4.8
and 2.4.10 hold true. Then 𝑈𝑇 satisfies (2.39), (2.40), (2.41) and (2.42) for 𝑡 = 𝑇 .
We set ̃︀Ω𝑇 = Ω.

Proof. We start with (2.39) for 𝑡 = 𝑇 . As 𝑈𝑇 = 𝑈 (see (2.35)), using Definition 2.4.1,
𝑥 ∈ R → 𝑈𝑇 (𝜔

𝑇 , 𝑥) is well-defined, non-decreasing and usc on R and (2.39) for 𝑡 = 𝑇

is true. We prove now (2.40) for 𝑡 = 𝑇 𝑖.𝑒 that 𝑈𝑇 = 𝑈 is ℱ𝑇 ⊗ ℬ(R)-measurable.
To do that we show that for all 𝜔𝑇 ∈ Ω𝑇 , 𝑥 ∈ R → 𝑈𝑇 (𝜔

𝑇 , 𝑥) is right-continuous
and for all 𝑥 ∈ R, 𝜔𝑇 ∈ Ω𝑇 → 𝑈𝑇 (𝑥, 𝜔

𝑇 ) is ℱ𝑇 -measurable (this is just the second
point of Definition 2.4.1) so that we can use Lemma 2.8.16 and establish (2.40)
for 𝑡 = 𝑇 . Let 𝜔𝑇 ∈ Ω𝑇 be fixed. From (2.39) at 𝑇 that we have just proved,
𝑥 ∈ R → 𝑈𝑇 (𝜔

𝑇 , 𝑥) is non-decreasing and usc on R, thus applying Lemma 2.8.12 we
get that 𝑥 ∈ R → 𝑈𝑇 (𝜔

𝑇 , 𝑥) is right-continuous on R.
We prove now that (2.41) is true for 𝑡 = 𝑇 . Let 𝜉 ∈ Ξ𝑇−1 and 𝐻 = 𝑥 +

∑︀𝑇−1
𝑡=1 𝜑𝑡Δ𝑆𝑡

where 𝑥 ≥ 0, 𝜑1 ∈ Ξ0, . . . ,𝜑𝑇−1 ∈ Ξ𝑇−2 and 𝑃𝑇 (𝐻(·) + 𝜉(·)Δ𝑆𝑇 (·) ≥ 0) = 1. Let
(𝜑𝜉𝑖 )1≤𝑖≤𝑇 ∈ Φ be defined by 𝜑𝜉𝑇 = 𝜉 and 𝜑𝜉𝑖 = 𝜑𝑖 for 1 ≤ 𝑖 ≤ 𝑇 − 1 then 𝑉 𝑥,𝜑𝜉

𝑇 =

𝐻+ 𝜉Δ𝑆𝑇 and thus 𝜑𝜉 ∈ Φ(𝑥). Using Proposition 2.6.1 we get that 𝐸𝑈+(·, 𝑉 𝑥,𝜑𝜉

𝑇 (·)) =
𝐸𝑈+

𝑇 (·, 𝐻(·) + 𝜉(·)Δ𝑆𝑇 (·)) < ∞ (recall that 𝑈 = 𝑈𝑇 ). Therefore (2.41) is verified for
𝑡 = 𝑇 . Finally, from Assumption 2.4.10, (2.42) for 𝑡 = 𝑇 is true. 2

The next proposition proves that if (2.39), (2.40), (2.41) and (2.42) hold true at
𝑡+ 1 then they are also true at 𝑈𝑡 for some well chosen ̃︀Ω𝑡.

Proposition 2.6.10 Let 0 ≤ 𝑡 ≤ 𝑇 − 1 be fixed. Assume that the (NA) condition
holds true and that (2.39), (2.40), (2.41) and (2.42) are true at 𝑡 + 1 (where 𝑈𝑡+1 is
defined from a given ̃︀Ω𝑡+1 see (2.36)). Then there exists some ̃︀Ω𝑡 ∈ ℱ𝑡 with 𝑃𝑡(̃︀Ω𝑡) = 1

such that (2.39), (2.40), (2.41) and (2.42) are true for 𝑡.
Moreover for all 𝐻 = 𝑥 +

∑︀𝑡
𝑠=1 𝜑𝑠Δ𝑆𝑠, with 𝑥 ≥ 0 and 𝜑1 ∈ Ξ0, . . . , 𝜑𝑡 ∈ Ξ𝑡−1, such

that 𝑃𝑡(𝐻 ≥ 0) = 1 there exists some ̃︀Ω𝑡
𝐻 ∈ ℱ𝑡 such that 𝑃 (̃︀Ω𝑡

𝐻) = 1, ̃︀Ω𝑡
𝐻 ⊂ ̃︀Ω𝑡 and
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some ̂︀ℎ𝐻𝑡+1 ∈ Ξ𝑡 such that for all 𝜔𝑡 ∈ ̃︀Ω𝑡
𝐻 , ̂︀ℎ𝐻𝑡+1(𝜔

𝑡) ∈ 𝒟𝑡+1
𝐻(𝜔𝑡)(𝜔

𝑡) and 5

𝑈𝑡(𝜔
𝑡, 𝐻(𝜔𝑡)) =

∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝐻(𝜔𝑡) + ̂︀ℎ𝐻𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡).

(2.45)

Proof. First we define ̃︀Ω𝑡 and prove that (2.39) and (2.40) are true for 𝑈𝑡. Applying
Proposition 2.6.7, we get that for all 𝜔𝑡 ∈ ̃︀Ω𝑡

1, the function (𝜔𝑡+1, 𝑥) → 𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥)

satisfies the assumptions of Lemma 2.5.11 and Theorem 2.5.13 with Ω = Ω𝑡+1,
ℋ = 𝒢𝑡+1, 𝑄 = 𝑞𝑡+1(·|𝜔𝑡), 𝑌 (·) = Δ𝑆𝑡+1(𝜔

𝑡, ·), 𝑉 (·, 𝑦) = 𝑈𝑡+1(𝜔
𝑡, ·, 𝑦) where 𝑉 is defined

on Ω𝑡+1 × R. In particular, for 𝜔𝑡 ∈ ̃︀Ω𝑡
1 and all ℎ ∈ ℋ𝑡+1

𝑥 (𝜔𝑡), recalling (2.27) we have∫︁
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥+ ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡) <∞. (2.46)

Now, we introduce 𝑈 𝑡 : Ω
𝑡 × R ∪ {±∞} defined by

𝑈 𝑡(𝜔
𝑡, 𝑥) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
supℎ∈𝒟𝑡+1

𝑥 (𝜔𝑡)

∫︀
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡)
if (𝜔𝑡, 𝑥) ∈ ̃︀Ω𝑡

1 × [0,∞)

0 if 𝑥 ≥ 0 and 𝜔𝑡 /∈ ̃︀Ω𝑡
1

−∞ if 𝑥 < 0.

(2.47)

From (2.46), 𝑈 𝑡 is well-defined (in the generalised sense). First, we prove that 𝑈 𝑡

is ℱ 𝑡 ⊗ R-measurable and then we will show that this implies that 𝑈𝑡 is ℱ𝑡 ⊗ R-
measurable for a well chosen ̃︀Ω𝑡. To show that 𝑈 𝑡 is ℱ 𝑡 ⊗ ℬ(R)-measurable, we
use Lemma 2.8.16 (and Remark 2.8.17) after having proved that it is an extended
Carathéodory function (see Definition 2.8.15). Applying Theorem 2.5.13, we get
that for all 𝜔𝑡 ∈ ̃︀Ω𝑡

1, the function 𝑥 ∈ R → 𝑈 𝑡(𝜔
𝑡, 𝑥) is non-decreasing and usc

on R. Actually, this is true for all 𝜔𝑡 ∈ Ω𝑡 since outside ̃︀Ω𝑡
1, 𝑥 ∈ R → 𝑈𝑡(𝜔

𝑡, 𝑥) is
constant equal to zero on [0,∞) and to −∞ on (−∞, 0). Let now 𝜔𝑡 ∈ Ω𝑡 be fixed. As
𝑥 ∈ R → 𝑈 𝑡(𝜔

𝑡, 𝑥) is non-decreasing and usc on R we can apply Lemma 2.8.12 and
we get that 𝑥 ∈ R → 𝑈 𝑡(𝜔

𝑡, 𝑥) is right-continuous on R. For 𝑥 ≥ 0 fixed, applying
Lemma 2.6.11 with 𝐻 = 𝑥 (here Ω𝑡

𝐻 = ̃︀Ω𝑡
1) we obtain that 𝜔𝑡 ∈ Ω𝑡 → supℎ∈R𝑑 𝑢𝑥(𝜔

𝑡, ℎ)

is ℱ 𝑡-measurable. Finally, from the definitions of 𝑈 𝑡 and 𝑢𝑥, we get that

𝑈 𝑡(𝜔
𝑡, 𝑥) = (−∞)1(−∞,0) + 1[0,∞)(𝑥)1̃︀Ω𝑡

1
(𝜔𝑡) sup

ℎ∈R𝑑

𝑢𝑥(𝜔
𝑡, ℎ),

and this implies that 𝜔𝑡 ∈ Ω𝑡 → 𝑈 𝑡(𝜔
𝑡, 𝑥) is ℱ 𝑡-measurable for all 𝑥 ∈ R and thus

that 𝑈 𝑡 is an extended Carathéodory function as claimed.
5Recall that the integral on the right hand side is defined in the generalised sense.
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Finally, we prove the ℱ𝑡 ⊗ ℬ(R)-measurability of 𝑈𝑡. To do that we apply Lemma
2.8.13 and we obtain some Ω𝑡

𝑚𝑒𝑠 ∈ ℱ𝑡 such that 𝑃𝑡(Ω𝑡
𝑚𝑒𝑠) = 1 and some ℱ𝑡 ⊗ R-

measurable ̃︀𝑈𝑡 : Ω𝑡 × R → R ∪ {±∞} such that for all 𝑥 ∈ R, {𝜔𝑡 ∈ Ω𝑡, 𝑈 𝑡(𝜔
𝑡, 𝑥) ̸=̃︀𝑈𝑡(𝜔𝑡, 𝑥)} ⊂ Ω𝑡∖Ω𝑡

𝑚𝑒𝑠. We are now in a position to define ̃︀Ω𝑡 and set

̃︀Ω𝑡 := ̃︀Ω𝑡
1 ∩ Ω𝑡

𝑚𝑒𝑠. (2.48)

It is clear that ̃︀Ω𝑡 ∈ ℱ𝑡 and that 𝑃𝑡(̃︀Ω𝑡) = 1 Furthermore, recalling (2.36), Remark
2.5.5 (see (2.23)) and the definition of 𝑈 𝑡 we have that for all 𝑥 ∈ R, 𝜔𝑡 ∈ Ω𝑡

𝑈𝑡(𝜔
𝑡, 𝑥) = (−∞)1(−∞,0)(𝑥)+

1[0,∞)(𝑥)1Ω𝑡
𝑚𝑒𝑠

(𝜔𝑡)1̃︀Ω𝑡
1
(𝜔𝑡) sup

ℎ∈ℋ𝑡+1
𝑥 (𝜔𝑡)

∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡)

= (−∞)1(−∞,0)(𝑥)+

1[0,∞)(𝑥)1Ω𝑡
𝑚𝑒𝑠

(𝜔𝑡)1̃︀Ω𝑡
1
(𝜔𝑡) sup

ℎ∈𝒟𝑡+1
𝑥 (𝜔𝑡)

∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡)

= 1Ω𝑡
𝑚𝑒𝑠

(𝜔𝑡)𝑈 𝑡(𝜔
𝑡, 𝑥) + (−∞)1Ω𝑡∖Ω𝑡

𝑚𝑒𝑠
(𝜔𝑡)1(−∞,0)(𝑥)

= 1Ω𝑡
𝑚𝑒𝑠

(𝜔𝑡)̃︀𝑈𝑡(𝜔𝑡, 𝑥) + (−∞)1Ω𝑡∖Ω𝑡
𝑚𝑒𝑠

(𝜔𝑡)1(−∞,0)(𝑥),

and the ℱ𝑡 ⊗ℬ(R)-measurability of 𝑈𝑡 follows immediately, 𝑖.𝑒 (2.40) is true at 𝑡. It
is clear as well from the third equality that (2.39) is true for 𝑡 since we have proven
that for all 𝜔𝑡 ∈ Ω𝑡, 𝑥 ∈ R → 𝑈 𝑡(𝜔

𝑡, 𝑥) is well-defined, non-decreasing and usc on R.
We turn now to the assumption on asymptotic elasticity 𝑖.𝑒 (2.42) for 𝑡. If 𝜔𝑡 /∈ ̃︀Ω𝑡,
then (2.42) is true since 𝐶𝑡(𝜔𝑡) ≥ 0 for all 𝜔𝑡. Let 𝜔𝑡 ∈ ̃︀Ω𝑡 be fixed. Let 𝑥 ≥ 0, 𝜆 ≥ 1,
ℎ ∈ R𝑑 such that 𝑞𝑡+1(𝜆𝑥 + ℎΔ𝑆𝑡+1(𝜔

𝑡, .) ≥ 0|𝜔𝑡) = 1 be fixed. By (2.42) for 𝑡 + 1 for
all 𝜔𝑡+1 ∈ Ω𝑡+1, we have that

𝑈𝑡+1

(︀
𝜔𝑡, 𝜔𝑡+1, 𝜆𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1)
)︀
≤ 𝜆𝛾𝐾𝑈𝑡+1

(︂
𝜔𝑡, 𝜔𝑡+1, 𝑥+

1

2
+
ℎ

𝜆
Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1)

)︂
+ 𝜆𝛾𝐶𝑡+1(𝜔

𝑡, 𝜔𝑡+1).

By integrating both sides (recall (2.46)) we get that

∫︁
Ω𝑡+1

𝑈𝑡+1

(︀
𝜔𝑡, 𝜔𝑡+1, 𝜆𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1)
)︀
𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡) ≤

𝜆𝛾𝐾

∫︁
Ω𝑡+1

𝑈𝑡+1

(︂
𝜔𝑡, 𝜔𝑡+1, 𝑥+

1

2
+
ℎ

𝜆
Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1)

)︂
𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡)

+ 𝜆𝛾𝐾

∫︁
Ω𝑡+1

𝐶𝑡+1(𝜔
𝑡, 𝜔𝑡+1)𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡).
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Since 𝐶𝑡(𝜔𝑡) =
∫︀
Ω𝑡+1

𝐶𝑡+1(𝜔
𝑡, 𝜔𝑡+1)𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡) (see Lemma 2.6.5) and ℎ ∈ ℋ𝑡+1

𝜆𝑥 (𝜔𝑡)

implies that ℎ
𝜆
∈ ℋ𝑡+1

𝑥 (𝜔𝑡) ⊂ ℋ𝑡+1
𝑥+ 1

2

(𝜔𝑡), we obtain by definition of 𝑈𝑡 (see (2.36)) that∫︁
Ω𝑡+1

𝑈𝑡+1

(︀
𝜔𝑡, 𝜔𝑡+1, 𝜆𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1)
)︀
𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡)

≤𝜆𝛾𝐾𝑈𝑡
(︂
𝜔𝑡, 𝑥+

1

2

)︂
+ 𝜆𝛾𝐾𝐶𝑡(𝜔

𝑡).

Taking the supremum over all ℎ ∈ ℋ𝑡+1
𝜆𝑥 (𝜔𝑡) we conclude that (2.42) is true for 𝑡

for 𝑥 ≥ 0. If 𝑥 < 0, then (2.42) is true by definition of 𝑈𝑡. Note that we might have
𝜔𝑡 ∈ Ω𝑡∖Ω𝑡

𝐶 and 𝐶𝑡(𝜔𝑡) = +∞ since (2.42) does not require that 𝐶𝑡(𝜔𝑡) < +∞.
We now prove (2.45) for 𝑈𝑡. First, from Proposition 2.6.7 and Theorem 2.5.13 and

since ̃︀Ω𝑡 ⊂ ̃︀Ω𝑡
1, we have for all 𝜔𝑡 ∈ ̃︀Ω𝑡 and 𝑥 ≥ 0 that there exists some 𝜉* ∈ 𝒟𝑡+1

𝑥 (𝜔𝑡)

such that

𝑈𝑡(𝜔
𝑡, 𝑥) =

∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ 𝜉*Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡), (2.49)

where the integral on the right hand side is defined in the generalised sense (recall
(2.46) and Lemma 2.5.11). Let 𝐻 = 𝑥 +

∑︀𝑡−1
𝑠=1 𝜑𝑠Δ𝑆𝑠, with 𝑥 ≥ 0 and 𝜑𝑠 ∈ Ξ𝑠 for

𝑠 ∈ {1, . . . , 𝑡−1}, be fixed such that 𝑃 (𝐻 ≥ 0) = 1. Let ̃︀Ω𝑡
𝐻 := ̃︀Ω𝑡∩{𝜔𝑡 ∈ Ω𝑡, 𝐻(𝜔) ≥ 0}.

Then ̃︀Ω𝑡
𝐻 ∈ ℱ𝑡 and 𝑃 (̃︀Ω𝑡

𝐻) = 1. We introduce the following random set 𝜓 : Ω𝑡 � R𝑑

𝜓𝐻(𝜔𝑡) :=

{︂
ℎ ∈ 𝒟𝑡+1

𝐻(𝜔𝑡)(𝜔
𝑡), 𝑈𝑡(𝜔

𝑡, 𝐻(𝜔𝑡)) =

∫︁
Ω𝑡+1

𝑈𝑡+1

(︀
𝜔𝑡, 𝜔𝑡+1, 𝐻(𝜔𝑡) + ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1)
)︀
𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡)

}︂
,

for 𝜔𝑡 ∈ ̃︀Ω𝑡
𝐻 and 𝜓𝐻(𝜔

𝑡) = ∅ otherwise. To prove (2.45) it is enough to find a
ℱ𝑡-measurable selector for 𝜓𝐻 . From the definitions of 𝜓𝐻 and 𝑢𝐻 (see (2.51)) we
obtain that (recall that ̃︀Ω𝑡

𝐻 ⊂ ̃︀Ω𝑡 and ̃︀Ω𝑡
𝐻 ⊂ Ω𝑡

𝐻 , see (2.48) and the definition of Ω𝑡
𝐻

in Lemma 2.6.11).

𝐺𝑟𝑎𝑝ℎ(𝜓𝐻) =
{︁
(𝜔𝑡, ℎ) ∈

(︁̃︀Ω𝑡
𝐻 × R𝑑

)︁
∩𝐺𝑟𝑎𝑝ℎ(𝒟𝑡+1

𝐻 ), 𝑈𝑡(𝜔
𝑡, 𝐻(𝜔𝑡)) = 𝑢𝐻(𝜔

𝑡, ℎ)
}︁
.

From Lemma 2.6.4 we have that 𝐺𝑟𝑎𝑝ℎ(𝒟𝑡+1
𝐻 ) ∈ ℱ𝑡⊗ℬ(R𝑑). We have already proved

that (𝜔𝑡, 𝑦) → 𝑈𝑡(𝜔
𝑡, 𝑦) is ℱ𝑡 ⊗ ℬ(R)-measurable and, as 𝐻 is ℱ𝑡-measurable, we

obtain that 𝜔𝑡 → 𝑈𝑡(𝜔
𝑡, 𝐻(𝜔𝑡)) is ℱ𝑡-measurable. Now applying Lemma 2.6.11 we

obtain that 𝑢𝐻 is ℱ𝑡 ⊗ ℬ(R𝑑)-measurable. The fact that 𝐺𝑟𝑎𝑝ℎ(𝜓𝐻) ∈ ℱ𝑡 ⊗ ℬ(R𝑑)

follows immediately.
So we can apply the Projection Theorem (see for example [37, Theorem 3.23])

and we get that {𝜓𝐻 ̸= ∅} ∈ ℱ 𝑡 and using the Aumann Theorem (see [119, Corollary
1]) that there exists some ℱ 𝑡-measurable ℎ

𝐻

𝑡+1 : {𝜓𝐻 ̸= ∅} → R𝑑 such that for all
𝜔𝑡 ∈ {𝜓𝐻 ̸= ∅}, ℎ𝐻𝑡+1(𝜔

𝑡) ∈ 𝜓𝐻(𝜔
𝑡). Then we extend ℎ

𝐻

𝑡+1 on all Ω𝑡 by setting ℎ𝐻𝑡+1 = 0

on Ω𝑡 ∖ {𝜓𝐻 ̸= ∅}. Now applying Lemma 2.8.10 we get some ℱ𝑡-measurable ̂︀ℎ𝐻𝑡+1 :
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Ω𝑡 → R𝑑 and some Ω
𝑡

𝐻 ∈ ℱ𝑡 such that 𝑃 (Ω𝑡

𝐻) = 1 and Ω
𝑡

𝐻 ⊂ {ℎ𝐻𝑡+1 =
̂︀ℎ𝐻𝑡+1}. We prove

now that the set {𝜓𝐻 ̸= ∅} is of full measure. Indeed, let 𝜔𝑡 ∈ ̃︀Ω𝑡
𝐻 be fixed. Using

(2.49) for 𝑥 = 𝐻(𝜔𝑡) ≥ 0, there exists ℎ*(𝜔𝑡) ∈ 𝜓𝐻(𝜔
𝑡). Therefore ̃︀Ω𝑡

𝐻 ⊂ {𝜓𝐻 ̸= ∅} and
𝑃 𝑡({𝜓𝐻 ̸= ∅}) = 1. So for all 𝜔𝑡 ∈ Ω

𝑡

𝐻 ∩ ̃︀Ω𝑡
𝐻 we have

𝑈𝑡(𝜔
𝑡, 𝐻(𝜔𝑡)) =

∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝐻(𝜔𝑡) + ℎ

𝐻

𝑡+1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡)

=

∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝐻(𝜔𝑡) + ̂︀ℎ𝐻𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡).

So setting

̃︀Ω𝑡
𝐻 = ̃︀Ω𝑡

𝐻 ∩ Ω
𝑡

𝐻 ⊂ ̃︀Ω𝑡 (2.50)

(2.45) is proved for 𝑡.
We are now left with the proof of (2.41) for 𝑈𝑡. Let 𝜉 ∈ Ξ𝑡−1 and 𝐻 = 𝑥 +∑︀𝑡−1
𝑠=1 𝜑𝑠Δ𝑆𝑠 where 𝑥 ≥ 0 and 𝜑1 ∈ Ξ0, . . . , 𝜑𝑡−1 ∈ Ξ𝑡−2 and such that 𝑃𝑡(𝐻(·) +

𝜉(·)Δ𝑆𝑡(·) ≥ 0) = 1. We fix some 𝜔𝑡 ∈ ̃︀Ω𝑡. Let 𝑋(𝜔𝑡) = 𝐻(𝜔𝑡−1) + 𝜉(𝜔𝑡−1)Δ𝑆𝑡(𝜔
𝑡)

then 𝑋 is ℱ𝑡-measurable. We apply (2.45) to 𝑋(𝜔𝑡) (and 𝒟𝑡+1
𝑋(𝜔𝑡)(𝜔

𝑡)), and we get
some 𝜔𝑡 ∈ Ω𝑡 → ̂︀ℎ𝑡+1(𝜔

𝑡) which is ℱ𝑡-measurable and ̃︀Ω𝑡
𝑋 ∈ ℱ𝑡 such that 𝑃𝑡(̃︀Ω𝑡

𝑋) = 1

and such that for all 𝜔𝑡 ∈ ̃︀Ω𝑡
𝑋 , 𝑞𝑡+1

(︁
𝑋(𝜔𝑡) + ̂︀ℎ𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0|𝜔𝑡

)︁
= 1 and

𝑈𝑡(𝜔
𝑡, 𝑋(𝜔𝑡)) =

∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑋(𝜔𝑡) + ̂︀ℎ𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡).

Using Jensen’s Inequality

𝑈+
𝑡 (𝜔

𝑡, 𝑋(𝜔𝑡)) ≤
∫︁
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑋(𝜔𝑡) + ̂︀ℎ𝑡+1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡).

Thus as 𝑃𝑡(̃︀Ω𝑡
𝑋) = 1∫︁

̃︀Ω𝑡
𝑋

𝑈+
𝑡 (𝜔𝑡, 𝑋(𝜔𝑡))𝑃𝑡(𝑑𝜔

𝑡) =

∫︁
Ω𝑡

𝑈+
𝑡 (𝜔𝑡, 𝑋(𝜔𝑡))𝑃𝑡(𝑑𝜔

𝑡)

≤
∫︁
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡+1, 𝑋(𝜔𝑡) + ̂︀ℎ𝑡+1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡+1))𝑃𝑡+1(𝑑𝜔
𝑡+1) <∞,

because of (2.41) for 𝑡 + 1 which applies since 𝑋 = 𝑥 +
∑︀𝑡−1

𝑠=1 𝜑𝑠Δ𝑆𝑠 + 𝜉Δ𝑆𝑡 where
𝑥 ≥ 0, 𝜑1 ∈ Ξ1, . . . , 𝜑𝑡−1 ∈ Ξ𝑡−2, 𝜉 ∈ Ξ𝑡−1 and ̂︀ℎ𝑡+1 ∈ Ξ𝑡 : (2.41) for 𝑡 is proved. 2

The following lemma was essential to obtain measurability issues in the proof
of Lemma 2.6.10.
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Lemma 2.6.11 Fix some 0 ≤ 𝑡 ≤ 𝑇 − 1 and 𝑥 ≥ 0. Let 𝐻 := 𝑥+
∑︀𝑡−1

𝑠=1 𝜑𝑠Δ𝑆𝑠, where
𝜑1 ∈ Ξ0, . . . , 𝜑𝑡−1 ∈ Ξ𝑡−2 and 𝑃𝑡(𝐻 ≥ 0) = 1. Assume that the (NA) condition holds
true and that (2.39), (2.40), (2.41) and (2.42) are true at 𝑡 + 1. Let 𝑢𝐻 : Ω𝑡 × R𝑑 →
R ∪ {±∞} be defined by

𝑢𝐻(𝜔
𝑡, ℎ) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫︀
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝐻(𝜔𝑡) + ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡),
if (𝜔𝑡, ℎ) ∈

(︀
Ω𝑡
𝐻 × R𝑑

)︀
∩𝐺𝑟𝑎𝑝ℎ(𝒟𝑡+1

𝐻 ),

−∞ if (𝜔𝑡, ℎ) /∈ 𝐺𝑟𝑎𝑝ℎ(𝒟𝑡+1
𝐻 ),

0 otherwise.

(2.51)

where 𝒟𝑡+1
𝐻 is defined in Lemma 2.6.4 and Ω𝑡

𝐻 := ̃︀Ω𝑡
1

⋂︀
{𝜔𝑡 ∈ Ω𝑡, 𝐻(𝜔𝑡) ≥ 0} (see

(2.44) for the definition of ̃︀Ω𝑡
1). Then 𝑢𝐻 is well-defined, ℱ𝑡 ⊗ ℬ(R𝑑)-measurable and

for all 𝜔𝑡 ∈ Ω𝑡, ℎ ∈ R𝑑 → 𝑢𝐻(𝜔
𝑡, ℎ) is usc. Morevover, 𝜔𝑡 ∈ Ω𝑡 → supℎ∈R𝑑 𝑢𝐻(𝜔

𝑡, ℎ) is
ℱ 𝑡-measurable.

Remark 2.6.12 In the proof below we will show that for (𝜔𝑡, ℎ) ∈
(︀
Ω𝑡
𝐻 × R𝑑

)︀
∩

𝐺𝑟𝑎𝑝ℎ(𝒟𝑡+1
𝐻 ) the integral in (2.51) is well-defined. Note that this is not the case for

all (𝜔𝑡, ℎ) ∈ Ω𝑡×R𝑑. Indeed, let (𝜔𝑡, ℎ) be fixed such that 𝑞𝑡+1(𝐻(𝜔𝑡)+ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) <

0|𝜔𝑡) > 0. Then it is clear that
∫︀
Ω𝑡+1

𝑈−
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝐻(𝜔𝑡)+ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡) =

∞ and as without further assumption we cannot prove that
∫︀
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝐻(𝜔𝑡)+

ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡) <∞ (it is easy to find some counterexamples), the in-

tegral in (2.51) may fail to be well-defined. We could have circumvented this issue
by using the convention ∞−∞ = −∞ but we prefer to refrain from doing so.

Proof. From (2.40) at 𝑡 + 1, 𝑈𝑡+1 is ℱ𝑡 ⊗ 𝒢𝑡+1 ⊗ ℬ(R𝑑)-measurable and since 𝐻

and Δ𝑆𝑡+1 are respectively ℱ𝑡 and ℱ𝑡+1-measurable, we obtain that (𝜔𝑡, 𝜔𝑡+1, ℎ) ∈
Ω𝑡 × Ω𝑡+1 × R𝑑 → 𝑈𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝐻(𝜔𝑡) + ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1)) is also ℱ𝑡 ⊗ 𝒢𝑡+1 ⊗ ℬ(R𝑑)-

measurable. In order to prove that for (𝜔𝑡, ℎ) ∈
(︀
Ω𝑡
𝐻 × R𝑑

)︀
∩𝐺𝑟𝑎𝑝ℎ(𝒟𝑡+1

𝐻 ) the integral
in (2.51) is well-defined, we introduce ̃︀𝑢𝐻 :

(︀
Ω𝑡
𝐻 × R𝑑

)︀
∩ 𝐺𝑟𝑎𝑝ℎ(𝒟𝑡+1

𝐻 ) → R ∪ {±∞}
defined by

̃︀𝑢𝐻(𝜔𝑡, ℎ) = ∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝐻(𝜔𝑡) + ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡).

First we show that ̃︀𝑢𝐻 is well-defined in the generalised sense. Indeed, let (𝜔𝑡, ℎ) ∈(︀
Ω𝑡
𝐻 × R𝑑

)︀
∩𝐺𝑟𝑎𝑝ℎ(𝒟𝑡+1

𝐻 ) be fixed. As 𝜔𝑡 is fixed in Ω𝑡
𝐻 , we can show as in Proposition

2.6.10 that (2.46) holds true (here 𝐻(𝜔𝑡) is a fixed number as 𝜔𝑡 is fixed) and thus∫︁
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝐻(𝜔𝑡) + ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡) <∞,

So ̃︀𝑢𝐻 is well-defined (but may be infinite-valued).
We now prove that 𝑢𝐻 is ℱ𝑡⊗ℬ(R𝑑)-measurable. We can apply Proposition 2.8.6 𝑖𝑣)
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to 𝒮 =
(︀
Ω𝑡
𝐻 × R𝑑

)︀
∩𝐺𝑟𝑎𝑝ℎ(𝒟𝑡+1

𝐻 ), with 𝑓(𝜔𝑡, ℎ, 𝜔𝑡+1) equal to both 𝑈±
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝐻(𝜔𝑡)+

ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1)), since

(︀
Ω𝑡
𝐻 × R𝑑

)︀
∩𝐺𝑟𝑎𝑝ℎ(𝒟𝑡+1

𝐻 ) ∈ ℱ𝑡⊗ℬ(R𝑑) (see Lemma 2.6.4), and
both (𝜔𝑡, ℎ, 𝜔𝑡+1) ∈ Ω𝑡 × R𝑑 × Ω𝑡+1 → 𝑈±

𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝐻(𝜔𝑡) + ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1)) are ℱ𝑡 ⊗
ℬ(R𝑑)⊗𝒢𝑡+1-measurable. So we obtain that ̃︀𝑢𝐻 is

[︀
ℱ𝑡 ⊗ ℬ(R𝑑)

]︀
𝒮-measurable, where[︀

ℱ𝑡 ⊗ ℬ(R𝑑)
]︀
𝒮 denotes the trace sigma-algebra of ℱ𝑡 ⊗ ℬ(R𝑑) on 𝒮. Now we extend̃︀𝑢𝐻 to Ω𝑡 × R𝑑 by setting ̃︀𝑢𝐻(𝜔𝑡, ℎ) = −∞ if (𝜔𝑡, ℎ) /∈ 𝐺𝑟𝑎𝑝ℎ(𝒟𝑡+1

𝐻 ) and ̃︀𝑢𝐻(𝜔𝑡, ℎ) = 0

if (𝜔𝑡, ℎ) ∈ 𝐺𝑟𝑎𝑝ℎ(𝒟𝑡+1
𝐻 ) and 𝜔𝑡 /∈ Ω𝑡

𝐻 . Since
[︀
ℱ𝑡 ⊗ ℬ(R𝑑)

]︀
𝒮 ⊂ ℱ𝑡 ⊗ ℬ(R𝑑), Ω𝑡

𝐻 ∈ ℱ𝑡

and 𝐺𝑟𝑎𝑝ℎ(𝒟𝑡+1
𝐻 ) ∈ ℱ𝑡⊗ℬ(R𝑑), this extension of ̃︀𝑢𝐻 is again ℱ𝑡⊗ℬ(R𝑑)-measurable.

As it is clear that this extension of ̃︀𝑢𝐻 and 𝑢𝐻 coincide, the measurability of 𝑢𝐻 is
proved.
We turn now to the usc property. Let 𝜔𝑡 ∈ Ω𝑡

𝐻 ⊂ ̃︀Ω𝑡
1 be fixed. We apply Proposition

2.6.7 to 𝑈𝑡+1 and we get, as 𝜔𝑡 ∈ ̃︀Ω𝑡
1, that the function (𝜔𝑡+1, 𝑥) → 𝑈𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥)

satisfies the assumptions of Lemma 2.5.12 (see Remark 2.6.8) with Ω = Ω𝑡+1, ℋ =

𝒢𝑡+1, 𝑄 = 𝑞𝑡+1(·|𝜔𝑡), 𝑌 (·) = Δ𝑆𝑡+1(𝜔
𝑡, ·), 𝑉 (·, 𝑦) = 𝑈𝑡+1(𝜔

𝑡, ·, 𝑦) where 𝑉 is defined on
Ω𝑡+1 × R. Therefore the function 𝜑𝜔𝑡(·, ·) defined on R× R𝑑 by

𝜑𝜔𝑡(𝑥, ℎ) =

⎧⎪⎪⎨⎪⎪⎩
∫︀
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡)
if 𝑥 ≥ 0 and ℎ ∈ 𝐷𝑡+1

𝑥 (𝜔𝑡)

−∞ otherwise.

is usc on R × R𝑑 (see (2.31)). In particular, for 𝑥 = 𝐻(𝜔𝑡) ≥ 0 fixed, the function
ℎ ∈ R𝑑 → 𝑢𝐻(𝜔

𝑡, ℎ) = 𝜑𝜔𝑡(𝐻(𝜔𝑡), ℎ) is usc on R𝑑. Now for 𝜔𝑡 /∈ Ω𝑡
𝐻 , as 𝑢𝐻 is equal

to 0 if ℎ ∈ 𝒟𝑡+1
𝐻(𝜔𝑡)(𝜔

𝑡) and to −∞ otherwise, Lemma 2.8.11 applies (recall that the
random set 𝒟𝑡+1

𝐻 is closed-valued) and ℎ ∈ R𝑑 → 𝑢𝐻(𝜔
𝑡, ℎ) is usc on all R𝑑.

Finally, we apply [116, Corollary 14.34] and find that −𝑢𝐻 is a ℱ 𝑡-normal integ-
rand 6. Now from [116, Theorem 14.37], we obtain that 𝜔𝑡 ∈ Ω𝑡 → supℎ∈R𝑑 𝑢𝐻(𝜔

𝑡, ℎ)

is ℱ 𝑡-measurable and this concludes the proof. 2

Proof. of Theorem 2.4.16. We proceed in three steps. First, we handle some in-
tegrability issues that are essential to the proof. Then, we build by induction a
candidate for the optimal strategy and finally we establish its optimality.

Integrability Issues
We fix some 𝜑 ∈ Φ(𝑥) = Φ(𝑈, 𝑥) (recall Proposition 2.6.1). Since Proposition 2.6.9
holds true, we can apply Proposition 2.6.10 for 𝑡 = 𝑇−1, and by backward induction,
we can therefore apply Proposition 2.6.10 for all 𝑡 = 𝑇 − 2, . . . , 0. In particular, we
get that (2.41) holds true for all 0 ≤ 𝑡 ≤ 𝑇 . So choosing 𝐻 = 𝑉 𝑥,𝜑

𝑡−1 and 𝜉 = 𝜑𝑡 we get

6 [116, Corollary 14.34] holds true only for complete 𝜎-algebra. That is the reason why −𝑢𝐻 is a
ℱ 𝑡-normal integrand and not a ℱ𝑡-normal integrand.
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that (recall Lemma 2.4.3, for 𝜑 ∈ Φ(𝑥), 𝑃𝑡(𝑉 𝑥,𝜑
𝑡 (·) ≥ 0) = 1)∫︁

Ω𝑡

𝑈+
𝑡

(︁
𝜔𝑡, 𝑉 𝑥,𝜑

𝑡 (𝜔𝑡)
)︁
𝑃𝑡(𝑑𝜔

𝑡) <∞. (2.52)

This implies that
∫︀
Ω𝑡 𝑈𝑡

(︁
𝜔𝑡, 𝑉 𝑥,𝜑

𝑡 (𝜔𝑡)
)︁
𝑃𝑡(𝑑𝜔

𝑡) is defined in the generalised sense and
that we can apply the Fubini Theorem for generalised integral (see Proposition
2.8.4)∫︁

Ω𝑡

𝑈𝑡

(︁
𝜔𝑡, 𝑉 𝑥,𝜑

𝑡 (𝜔𝑡)
)︁
𝑃𝑡(𝑑𝜔

𝑡) =

∫︁
Ω𝑡−1

∫︁
Ω𝑡

𝑈𝑡

(︁
𝜔𝑡−1, 𝜔𝑡, 𝑉

𝑥,𝜑
𝑡 (𝜔𝑡−1, 𝜔𝑡)

)︁
𝑞𝑡−1(𝑑𝜔𝑡|𝜔𝑡−1)𝑃𝑡−1(𝑑𝜔

𝑡−1).

(2.53)

Construction of 𝜑*

We fix some 𝑥 ≥ 0 and build our candidate for the optimal strategy by induction.
We start at 𝑡 = 0 and use (2.45) in Proposition 2.6.10 with 𝐻 = 𝑥 ≥ 0. We set
𝜑*
1 :=

̂︀ℎ𝑥1 and we obtain that (recall that ℱ0 = {∅,Ω0})

𝑃1(𝑥+ 𝜑*
1Δ𝑆1(.) ≥ 0) = 1 and 𝑈0(𝑥) =

∫︁
Ω1

𝑈1 (𝜔1, 𝑥+ 𝜑*
1Δ𝑆1(𝜔1)𝑃1(𝑑𝜔1).

Recall from (2.52) that the above integral is well-defined in the generalised sense.
Assume that until some 𝑡 ≥ 1 we have found some 𝜑*

1 ∈ Ξ0, . . . , 𝜑
*
𝑡 ∈ Ξ𝑡−1 and some

Ω
1 ∈ ℱ1, . . . ,Ω

𝑡−1 ∈ ℱ𝑡−1 such that for all 𝑖 = 1, . . . , 𝑡 − 1, Ω𝑖 ⊂ ̃︀Ω𝑖, 𝑃𝑖(Ω
𝑖
) = 1, for all

𝑖 = 0, . . . , 𝑡− 1, 𝜑*
𝑖+1(𝜔

𝑖) ∈ 𝐷𝑖+1(𝜔𝑖) and

𝑃𝑡
(︀
𝑥+ 𝜑*

1Δ𝑆1(𝜔1) + · · ·+ 𝜑*
𝑡 (𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, 𝜔𝑡) ≥ 0

)︀
= 1,

and finally, for all 𝜔𝑡 ∈ Ω
𝑡

𝑈𝑡−1

(︁
𝜔𝑡−1, 𝑉 𝑥,𝜑*

𝑡−1 (𝜔𝑡−1)
)︁
=

∫︁
Ω𝑡

𝑈𝑡

(︁
𝜔𝑡−1, 𝜔𝑡, 𝑉

𝑥,𝜑*

𝑡−1 (𝜔𝑡−1) + 𝜑*𝑡 (𝜔
𝑡−1)Δ𝑆𝑡(𝜔

𝑡−1, ·)
)︁
𝑞𝑡(𝑑𝜔𝑡|𝜔𝑡−1),

where again the integral is well-defined in the generalised sense (see (2.52)). We
apply Proposition 2.6.10 with 𝐻(·) = 𝑉 𝑥,𝜑*

𝑡 (·) = 𝑉 𝑥,𝜑*

𝑡−1 (·) + 𝜑*
𝑡 (·)Δ𝑆𝑡(·) (recall that

𝑃𝑡(𝑉
𝑥,𝜑*

𝑡 ≥ 0 = 1) and there exists Ω
𝑡
:= ̃︀Ω𝑡

𝑉 𝑥,𝜑*
𝑡

∈ ℱ𝑡 such that Ω
𝑡 ⊂ ̃︀Ω𝑡, 𝑃𝑡(Ω

𝑡
) = 1

and some some ℱ𝑡-measurable 𝜔𝑡 → 𝜑*
𝑡+1(𝜔

𝑡) := ̂︀ℎ𝑉 𝑥,𝜑*
𝑡
𝑡+1 (𝜔𝑡) such that for all 𝜔𝑡 ∈ Ω

𝑡,
𝜑*
𝑡+1(𝜔

𝑡) ∈ 𝐷𝑡+1(𝜔𝑡)

𝑞𝑡+1(𝑉
𝑥,𝜑*

𝑡 (𝜔𝑡) + 𝜑*𝑡+1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0|𝜔𝑡) = 1,

𝑈𝑡

(︁
𝜔𝑡, 𝑉 𝑥,𝜑*

𝑡 (𝜔𝑡)
)︁
=

∫︁
Ω𝑡+1

𝑈𝑡+1

(︁
𝜔𝑡, 𝜔𝑡+1, 𝑉

𝑥,𝜑*

𝑡 (𝜔𝑡) + 𝜑*𝑡+1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, ·)
)︁
𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡). (2.54)

Now since 𝑃𝑡(Ω
𝑡
) = 1, we obtain by the Fubini Theorem that

𝑃𝑡+1(𝑉
𝑥,𝜑*

𝑡+1 ≥ 0) =

∫︁
Ω𝑡

𝑞𝑡+1(𝑉
𝑥,𝜑*

𝑡 (𝜔𝑡) + 𝜑*
𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0|𝜔𝑡)𝑃𝑡(𝑑𝜔𝑡) = 1
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and we can continue the recursion.
Thus, we have found 𝜑* = (𝜑*

𝑡 )1≤𝑡≤𝑇 such that for all 𝑡 = 0, . . . , 𝑇 , 𝑃𝑡(𝑉 𝑥,𝜑*

𝑡 ≥ 0) = 1,
𝑖.𝑒 𝜑* ∈ Φ(𝑥). We have also found some Ω

𝑡 ∈ ℱ𝑡, such that Ω
𝑡 ⊂ ̃︀Ω𝑡, 𝑃𝑡(Ω

𝑡
) = 1 and

for all 𝜔𝑡 ∈ Ω
𝑡, (2.54) holds true for all 𝑡 = 0, . . . , 𝑇 − 1. Moreover, from Proposition

2.6.1, 𝜑* ∈ Φ(𝑈, 𝑥) and we have that 𝐸(𝑈(𝑉 𝑥,𝜑*

𝑇 )) <∞.

Optimality of 𝜑*

We prove that 𝜑* is optimal in two steps.
Step 1: Using (2.53) with 𝜑 = 𝜑* and the fact that 𝑃𝑇−1(Ω𝑇−1) = 1, we get that

𝐸(𝑈(𝑉 𝑥,𝜑*

𝑇 )) =

∫︁
Ω𝑇−1

∫︁
Ω𝑇

𝑈
(︁
𝜔𝑇−1, 𝜔𝑇 , 𝑉

𝑥,𝜑*

𝑇−1 (𝜔
𝑇−1) + 𝜑*𝑇 (𝜔

𝑇−1)Δ𝑆𝑇 (𝜔
𝑇−1, 𝜔𝑇 )

)︁
𝑞𝑇 (𝑑𝜔𝑇 |𝜔𝑇−1)𝑃𝑇−1(𝑑𝜔

𝑇−1)

=

∫︁
Ω

𝑇−1

∫︁
Ω𝑇

𝑈𝑇

(︁
𝜔𝑇−1, 𝜔𝑇 , 𝑉

𝑥,𝜑*

𝑇−1 (𝜔
𝑇−1) + 𝜑*𝑇 (𝜔

𝑇−1)Δ𝑆𝑇 (𝜔
𝑇−1, 𝜔𝑇 )

)︁
𝑞𝑇 (𝑑𝜔𝑇 |𝜔𝑇−1)𝑃𝑇−1(𝑑𝜔

𝑇−1).

Using (2.54) for 𝑡 = 𝑇 − 1 and again the fact that 𝑃𝑇−1(Ω
𝑇−1

) = 1, we have that

𝐸(𝑈(𝑉 𝑥,𝜑*

𝑇 )) =

∫︁
Ω𝑇−1

𝑈𝑇−1

(︁
𝜔𝑇−1, 𝑉 𝑥,𝜑*

𝑇−1 (𝜔
𝑇−1)

)︁
𝑃𝑇−1(𝑑𝜔

𝑇−1).

We iterate the process for 𝑇−1: using the Fubini Theorem (see (2.53)), 𝑃𝑇−2(Ω
𝑇−2

) =

1 and (2.54), we obtain that

𝐸(𝑈(𝑉 𝑥,𝜑*

𝑇 )) =

∫︁
Ω𝑇−2

𝑈𝑇−2

(︁
𝜔𝑇−2, 𝑉 𝑥,𝜑*

𝑇−2 (𝜔
𝑇−2)

)︁
𝑃𝑇−2(𝑑𝜔

𝑇−2).

By backward induction, we therefore obtain that (recall Ω0 := {𝜔0})

𝐸(𝑈(𝑉 𝑥,𝜑*

𝑇 )) = 𝑈0(𝑥).

As 𝜑* ∈ Φ(𝑈, 𝑥), we get that 𝑈0(𝑥) ≤ 𝑢(𝑥). So 𝜑* will be optimal if 𝑈0(𝑥) ≥ 𝑢(𝑥).

Step 2: We fix again some 𝜑 ∈ Φ(𝑈, 𝑥) (recall Proposition 2.6.1). We get that
𝑉 𝑥,𝜑
𝑡 ≥ 0 𝑃𝑡-a.s. for all 𝑡 = 1, . . . , 𝑇 (recall Lemma 2.4.3). As 𝜑1 ∈ ℋ1

𝑥 we obtain that

𝑈0(𝑥) ≥
∫︁
Ω1

𝑈1(𝜔1, 𝑥+ 𝜑1Δ𝑆1(𝜔1))𝑃1(𝑑𝜔1).

As 𝑃2(𝑉
𝑥,𝜑
1 +𝜑2Δ𝑆2 ≥ 0) = 1, there exists some 𝑃1-full measure set ̂︀Ω1 ∈ ℱ1 such that

for all 𝜔1 ∈ ̂︀Ω1, 𝑞2
(︁
𝑉 𝑥,𝜑
1 (𝜔1) + 𝜑2(𝜔1)Δ𝑆2(𝜔1, ·)) ≥ 0|𝜔1

)︁
= 1 𝑖.𝑒 𝑞2

(︁
𝜑2(𝜔1) ∈ ℋ2

𝑉 𝑥,𝜑
1 (𝜔1)

(𝜔1)|𝜔1

)︁
=

1 (see Lemma 2.8.9). So for 𝜔1 ∈ ̂︀Ω1, we have that

𝑈1(𝜔1, 𝑉
𝑥,𝜑
1 (𝜔1)) ≥

∫︁
Ω2

𝑈2

(︁
𝜔1, 𝜔2, 𝑉

𝑥,𝜑
1 (𝜔1) + 𝜑2(𝜔1)Δ𝑆1(𝜔1, 𝜔2)

)︁
𝑞2(𝑑𝜔2|𝜔1). (2.55)
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From (2.52),
∫︀
Ω2 𝑈

+
2

(︁
𝜔2, 𝑉 𝑥,𝜑

2 (𝜔2)
)︁
𝑃2(𝑑𝜔

2) < ∞ and we can apply the Fubini The-
orem (see (2.53)) and∫︁

Ω2

𝑈2

(︁
𝜔2, 𝑉 𝑥,𝜑

2 (𝜔2)
)︁
𝑃2(𝑑𝜔

2) =

∫︁
Ω1

∫︁
Ω2

𝑈2

(︁
𝜔1, 𝜔2, 𝑉

𝑥,𝜑
1 (𝜔1) + 𝜑2Δ𝑆1(𝜔1, 𝜔2)

)︁
𝑞2(𝑑𝜔2|𝜔1)𝑃1(𝑑𝜔1)

=

∫︁
̂︀Ω1

∫︁
Ω2

𝑈2

(︁
𝜔1, 𝜔2, 𝑉

𝑥,𝜑
1 (𝜔1) + 𝜑2Δ𝑆1(𝜔1, 𝜔2)

)︁
𝑞2(𝑑𝜔2|𝜔1)𝑃1(𝑑𝜔1).

Using again (2.52),
∫︀
Ω1 𝑈

+
1

(︁
𝜔1, 𝑉 𝑥,𝜑

1 (𝜔1)
)︁
𝑃1(𝑑𝜔

1) < ∞ and integrating (in the gen-
eralised sense) both side of (2.55) we obtain∫︁
Ω1

𝑈1(𝜔1, 𝑉
𝑥,𝜑
1 (𝜔1))𝑃1(𝑑𝜔1) =

∫︁
̂︀Ω1

𝑈1(𝜔1, 𝑉
𝑥,𝜑
1 (𝜔1))𝑃1(𝑑𝜔1)

≥
∫︁
̂︀Ω1

∫︁
Ω2

𝑈2

(︁
𝜔1, 𝜔2, 𝑉

𝑥,𝜑
1 (𝜔1) + 𝜑2Δ𝑆1(𝜔1, 𝜔2)

)︁
𝑞2(𝑑𝜔2|𝜔1)𝑃1(𝑑𝜔1)

=

∫︁
Ω2

𝑈2

(︁
𝜔2, 𝑉 𝑥,𝜑

2 (𝜔2)
)︁
𝑃2(𝑑𝜔

2).

Therefore

𝑈0(𝑥) ≥
∫︁
Ω2

𝑈2

(︁
𝜔2, 𝑉 𝑥,𝜑

2 (𝜔2)
)︁
𝑃2(𝑑𝜔

2).

We can go forward since for 𝑃2-almost all 𝜔2 we have that 𝑞3
(︁
𝜑3(𝜔

2) ∈ ℋ3

𝑉 𝑥,𝜑
2 (𝜔2)

(𝜔2)|𝜔2
)︁
=

1, . . . , for 𝑃𝑇−1-almost all 𝜔𝑇−1 we have that 𝑞𝑇
(︂
𝜑𝑇 (𝜔

𝑇−1) ∈ ℋ𝑇

𝑉 𝑥,𝜑
𝑇−1(𝜔

𝑇−1)
(𝜔𝑇−1)|𝜔𝑇−1

)︂
=

1, we obtain using again (2.52) and the Fubini Theorem (see (2.53)) that

𝑈0(𝑥) ≥
∫︁
Ω1

∫︁
Ω2

· · ·
∫︁
Ω𝑇

𝑈
(︁
𝜔𝑇 , 𝑉 𝑥,𝜑

𝑇 (𝜔𝑇 )
)︁
𝑞𝑇 (𝑑𝜔𝑇 |𝜔𝑇−1) · · · 𝑞2(𝑑𝜔2|𝜔1)𝑃1(𝑑𝜔1). (2.56)

So we have that 𝑈0(𝑥) ≥ 𝐸(𝑈(·, 𝑉 𝑥,𝜑
𝑇 (·))) for any 𝜑 ∈ Φ(𝑈, 𝑥) and the proof is com-

plete since 𝑢(𝑥) = 𝐸(𝑈(·, 𝑉 𝑥,𝜑*

𝑇 (·))) <∞. 2

Proof. of Theorem 2.4.17. To prove Theorem 2.4.17, we want to apply Theorem
2.4.16 and thus we need to establish that Assumptions 2.4.7 and 2.4.8 hold true.
To do so we will prove (2.59) below. First we show that for all 𝑥 ≥ 0, 𝜑 ∈ Φ(𝑥) and
0 ≤ 𝑡 ≤ 𝑇 , we have for 𝑃𝑡-almost all 𝜔𝑡 ∈ Ω𝑡

|𝑉 𝑥,𝜑
𝑡 (𝜔𝑡)| ≤ 𝑥

𝑡∏︁
𝑠=1

(︂
1 +

|Δ𝑆𝑠(𝜔𝑠)|
𝛼𝑠−1(𝜔𝑠−1)

)︂
. (2.57)

To do so we first fix 𝑥 ≥ 0, some 𝜑 = (𝜑𝑡)𝑡=1,...𝑇 ∈ Φ(𝑥) and 1 ≤ 𝑡 ≤ 𝑇 . For 𝜔𝑡−1 ∈
Ω𝑡−1 fixed, we denote by 𝜑⊥

𝑡 (𝜔
𝑡−1) the orthogonal projection of 𝜑𝑡(𝜔𝑡−1) on 𝐷𝑡(𝜔𝑡).

Recalling Remark 2.5.3 we have

𝑞𝑡
(︀
𝜑⊥
𝑡 (𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, ·) = 𝜑𝑡(𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, ·)|𝜔𝑡−1

)︀
= 1,
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and thus 𝜑⊥
𝑡 (𝜔

𝑡−1) ∈ 𝒟𝑡

𝑉 𝑥,𝜑
𝑡−1 (𝜔

𝑡−1)
(𝜔𝑡−1) (see (4.44) for the definition of 𝒟𝑡

𝑥). As the NA

condition holds true, Lemma 2.3.6 applies and 0 ∈ 𝐷𝑡(𝜔𝑡+1). We can then apply
Lemma 2.5.10 and we obtain that

|𝜑⊥
𝑡 (𝜔

𝑡−1)| ≤
|𝑉 𝑥,𝜑
𝑡−1 (𝜔

𝑡−1)|
𝛼𝑡−1(𝜔𝑡−1)

. (2.58)

Furthermore, it is well-know that 𝜔𝑡−1 ∈ Ω𝑡−1 → 𝜑⊥
𝑡 (𝜔

𝑡−1) is ℱ𝑡−1-measurable (see
for example [116, Exercice 14.17 p655]) and we obtain, applying the Fubini The-
orem (see Lemma 2.8.1), that 𝑃𝑡

(︀
𝜑⊥
𝑡 Δ𝑆𝑡 = 𝜑𝑡Δ𝑆𝑡

)︀
= 1 and we denote by Ω𝑡

𝐸𝑄 the
𝑃𝑡-full measure set on which this equality is verified. We need to slightly modify
the set Ω𝑡

𝐸𝑄 to use it for different periods. We proceed by induction. We start at
𝑡 = 1 (recall that Ω0 := {𝜔0}) with Ω1

𝐸𝑄. For 𝑡 = 2 we reset, with an abuse of nota-
tion, Ω2

𝐸𝑄 = Ω2
𝐸𝑄 ∩

(︀
Ω1
𝐸𝑄 × Ω2

)︀
and we reiterate the process until 𝑇 . To prove (2.57)

we proceed by induction. It is clear at 𝑡 = 0. Fix some 𝑡 ≥ 0 and assume that (2.57)
holds true at 𝑡. Let 𝜔𝑡+1 ∈ Ω𝑡+1

𝐸𝑄 , using (2.57) at 𝑡 and (2.58) we get that

|𝑉 𝑥,𝜑
𝑡+1 (𝜔

𝑡+1)| =
⃒⃒⃒
𝑉 𝑥,𝜑
𝑡 (𝜔𝑡) + 𝜑𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡+1)

⃒⃒⃒
=
⃒⃒⃒
𝑉 𝑥,𝜑
𝑡 (𝜔𝑡) + 𝜑⊥

𝑡+1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡+1)
⃒⃒⃒

≤
⃒⃒⃒
𝑉 𝑥,𝜑
𝑡 (𝜔𝑡)

⃒⃒⃒ (︂
1 +

|Δ𝑆𝑡+1(𝜔
𝑡+1)|

𝛼𝑡(𝜔𝑡)

)︂
≤ 𝑥

𝑡+1∏︁
𝑠=1

(︂
1 +

|Δ𝑆𝑠(𝜔𝑠)|
𝛼𝑠−1(𝜔𝑠−1)

)︂
and (2.57) is proven for 𝑡 + 1. It follows since for all 0 ≤ 𝑠 ≤ 𝑡, |Δ𝑆𝑠| ∈ 𝒲𝑠 and
1
𝛼𝑠

∈ 𝒲𝑠 that 𝑉 𝑥,𝜑
𝑡 ∈ 𝒲𝑡. We will prove that for all Φ ∈ Φ(𝑥) and 𝜔𝑇 in a full measure

set

𝑈+(𝜔𝑇 , 𝑉 𝑥,𝜑
𝑇 (𝜔𝑇 )) ≤ 2𝛾𝐾max(𝑥, 1)𝛾

(︃
𝑇∏︁
𝑠=1

(︂
1 +

|Δ𝑆𝑠(𝜔𝑠)|
𝛼𝑠−1(𝜔𝑠−1)

)︂)︃𝛾 (︀
𝑈+(𝜔𝑇 , 1) + 𝐶𝑇 (𝜔

𝑇 )
)︀
.

(2.59)

Since by assumptions 𝐸𝑈+(·, 1) < ∞, 𝐸𝐶𝑇 < ∞ and since for all 0 ≤ 𝑡 ≤ 𝑇 ,
|Δ𝑆𝑡| ∈ 𝒲𝑡 and 1

𝛼𝑡
∈ 𝒲𝑡, we get that 𝐸𝑈+(·, 𝑉 𝑥,𝜑

𝑇 (·)) < ∞ for all Φ ∈ Φ(𝑥) and both
Assumptions 2.4.7 and 2.4.8 hold true. We prove now (2.59). We fix some 𝑥 ≥ 0 and
𝜑 ∈ Φ(𝑥). Then from the monotonicity of 𝑈+, (2.57), Assumption 2.4.10, the fact
that

∏︀𝑇
𝑠=1

(︁
1 + |Δ𝑆𝑠(𝜔𝑠)|

𝛼𝑠−1(𝜔𝑠−1)

)︁
≥ 1, we have for all 𝜔𝑇 ∈ Ω𝑇

𝐸𝑄

⋂︀ ̃︀Ω𝑇 that

𝑈+
(︁
𝜔𝑇 , 𝑉 𝑥,𝜑

𝑇 (𝜔𝑇 )
)︁
≤ 𝑈+

(︃
𝜔𝑇 ,max(𝑥, 1)

𝑇∏︁
𝑠=1

(︂
1 +

|Δ𝑆𝑠(𝜔𝑠)|
𝛼𝑠−1(𝜔𝑠−1)

)︂)︃

≤ 𝐾

(︃
2max(𝑥, 1)

𝑇∏︁
𝑠=1

(︂
1 +

|Δ𝑆𝑠(𝜔𝑠)|
𝛼𝑠−1(𝜔𝑠−1)

)︂)︃𝛾 (︀
𝑈+(𝜔𝑇 , 1) + 𝐶𝑇 (𝜔

𝑇 )
)︀
.

2
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2.7 Conclusion
A natural question regarding this chapter is how the results can be generalised for
a utility function defined on the whole-real line. Part of the answer was already
provided in [33]. However the integrability assumption is not fully satisfying (see
[33, Assumption 2.9]) as it is not easy to check. Moreover, from a purely technical
point of view (and also from an aesthetic point of view), this makes the proof very
painful and cumbersome as the integrability condition has to be verified with an
upward induction (unlike in our case) while the others conditions required to ap-
ply the dynamic programming are verified by a more natural backward induction.
Unfortunately, it seems difficult to replace this assumption with an assumption
similar to Assumptions 2.4.7 and 2.4.8 that is not too restrictive. The reason for
this is that when the utility function is defined on the whole-real line, the compa-
city argument (the equivalent of Lemma 2.5.10) requires more work and the bound
obtained in the one-period model is a function of some parameters depending on
the utility function. Thus it is not clear how to formulate a proper integrability
condition at the terminal date 𝑇 that would be preserved in the dynamic program-
ming and this is left this for further research. Note that this issue will also be
present in the multiple-priors case if one want to generalise the result of Chapter
4 for utility functions defined on the whole real line where this is compounded by
other difficulties specific to the multiple-priors setting.

2.8 Appendix
In this appendix we report basic facts about generalised integral, measurable se-
lection theorems, random sets and normal integrand. We also provide the proof
Lemma 2.2.2 and of some theoretical result not directly used in the chapter.

2.8.1 Generalised integral and Fubini’s Theorem
For ease of the reader we provide some well know results on measure theory,
stochastic kernels and integrals. The first lemma provides a version of the Fu-
bini Theorem for non-negative functions (see for instance to [23, Theorem 10.7.2]).
We then present our definition of generalised integral and provide another version
of the Fubini Theorem for generalised integral (see Proposition 2.8.4), which was
used throughout the chapter.

Let (𝐻,ℋ) and (𝐾,𝒦) be two measurable spaces, 𝑝 be a probabilty measure
on (𝐻,ℋ) and 𝑞 a stochastic kernel on (𝐾,𝒦) given (𝐻,ℋ) , 𝑖.𝑒 such that for any
ℎ ∈ 𝐻, 𝐶 ∈ 𝒦 → 𝑞(𝐶|ℎ) is a probability measure on (𝐾,𝒦) and for any 𝐶 ∈ 𝒦,
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ℎ ∈ 𝐻 → 𝑞(𝐶|ℎ) is ℋ-measurable. Furthermore, for any 𝐴 ∈ ℋ ⊗𝒦 and any ℎ ∈ 𝐻,
the section of 𝐴 along ℎ is defined by

(𝐴)ℎ := {𝑘 ∈ 𝐾, (ℎ, 𝑘) ∈ 𝐴} . (2.60)

Lemma 2.8.1 Let 𝐴 ∈ ℋ ⊗ 𝒦 be fixed. For any ℎ ∈ 𝐻 we have (𝐴)ℎ ∈ 𝒦 and we
define 𝑃 by

𝑃 (𝐴) :=

∫︁
𝐻

∫︁
𝐾

1𝐴(ℎ, 𝑘)𝑞(𝑑𝑘|ℎ)𝑝(𝑑ℎ) =
∫︁
𝐻

𝑞((𝐴)ℎ |ℎ)𝑝(𝑑ℎ). (2.61)

Then 𝑃 is a probability measure on (𝐻 ×𝐾,ℋ⊗ℋ).

Furthermore, if 𝑓 : 𝐻 × 𝐾 → R+ ∪ {+∞} is non-negative and ℋ ⊗ 𝒦-measurable
then ℎ ∈ 𝐻 →

∫︀
𝐾
𝑓(ℎ, 𝑘)𝑞(𝑑𝑘|ℎ) is ℋ-measurable with value in R+ ∪ {∞} and we

have ∫︁
𝐻×𝐾

𝑓𝑑𝑃 :=

∫︁
𝐻×𝐾

𝑓(ℎ, 𝑘)𝑃 (𝑑ℎ, 𝑑𝑘) =

∫︁
𝐻

∫︁
𝐾

𝑓(ℎ, 𝑘)𝑞(𝑑𝑘|ℎ)𝑝(𝑑ℎ). (2.62)

Proof. Let ℎ ∈ 𝐻 be fixed. Let 𝒯 = {𝐴 ∈ ℋ ⊗ 𝒦 | (𝐴)ℎ ∈ 𝒦}. It is easy to see that 𝒯
is a sigma algebra on 𝐻 ×𝐾 and is included in ℋ⊗𝒦. Let 𝐴 = 𝐵×𝐶 ∈ ℋ×𝒦 then
(𝐴)ℎ = ∅ if ℎ /∈ 𝐵 and (𝐴)ℎ = 𝐶 if ℎ ∈ 𝐵. Thus (𝐴)ℎ ∈ 𝒦 and ℋ × 𝒦 ⊂ 𝒯 . As 𝒯 is a
sigma-algebra, ℋ⊗𝒦 ⊂ 𝒯 and 𝒯 = ℋ⊗𝒦 follows.
We show now that

ℎ→
∫︁
𝐾

1𝐴(ℎ, 𝑘)𝑞(𝑑𝑘|ℎ) =
∫︁
𝐾

1(𝐴)ℎ(𝑘)𝑞(𝑑𝑘|ℎ) = 𝑞 ((𝐴)ℎ |ℎ)

is ℋ-measurable for any 𝐴 ∈ ℋ ⊗𝒦.
Let ℰ = {𝐴 ∈ ℋ ⊗𝒦 |ℎ ∈ 𝐻 → 𝑞 ((𝐴)ℎ |ℎ) is ℋ-measurable}. It is easy to see that ℰ
is a sigma algebra on 𝐻 × 𝐾 and is included in ℋ ⊗ 𝒦. Let 𝐴 = 𝐵 × 𝐶 ∈ ℋ × 𝒦
then 𝑞 ((𝐴)ℎ)|ℎ) equals to 0 if ℎ /∈ 𝐵 and to 𝑞(𝐶|ℎ) if ℎ ∈ 𝐵. So by definition of 𝑞(·|·),
ℋ×𝒦 ⊂ ℰ . As ℰ is a sigma-algebra, ℋ⊗𝒦 ⊂ ℰ and ℰ = ℋ⊗𝒦 follows. Thus the last
integral in (2.61) is well-defined. We verify that 𝑃 defines a probability measure on
(𝐻 ×𝐾,ℋ ⊗ℋ). It is clear that 𝑃 (∅) = 0 and 𝑃 (𝐻 ×𝐾) = 1. The sigma-additivity
property follows from the monotone convergence theorem.
We prove now that for 𝑓 : 𝐻×𝐾 → R+∪{+∞} non-negative and ℋ⊗𝒦-measurable,
ℎ ∈ 𝐻 →

∫︀
𝐾
𝑓(ℎ, 𝑘)𝑞(𝑑𝑘|ℎ) is ℋ-measurable and (2.62) holds true. If 𝑓 = 1𝐴 for

𝐴 ∈ ℋ ⊗ 𝒦 the claim is proved. By taking linear combinations, it is proved for
ℋ ⊗ 𝒦-measurable step functions. Then if 𝑓 : 𝐻 ×𝐾 → R ∪ {+∞} is non-negative
and ℋ ⊗ 𝒦-measurable, then there exists some increasing sequence (𝑓𝑛)𝑛≥1 such
that 𝑓𝑛 : 𝐻 × 𝐾 → R is a ℋ ⊗ 𝒦-measurable step function and (𝑓𝑛)𝑛≥1 converge
to 𝑓 . Using the monotone convergence theorem and (2.62) for steps functions, we
conclude that (2.62) holds true for 𝑓 . 2



2.8. Appendix 85

Definition 2.8.2 Let 𝑓 : 𝐻 ×𝐾 → R ∪ {±∞} be a ℋ ⊗ 𝒦-measurable function. If∫︀
𝐻×𝐾 𝑓

+𝑑𝑃 <∞ or
∫︀
𝐻×𝐾 𝑓

−𝑑𝑃 <∞, we define the generalised integral of 𝑓 by∫︁
𝐻×𝐾

𝑓𝑑𝑃 :=

∫︁
𝐻×𝐾

𝑓+𝑑𝑃 −
∫︁
𝐻×𝐾

𝑓−𝑑𝑃.

Remark 2.8.3 Note that if both
∫︀
𝐻×𝐾 𝑓

+𝑑𝑃 = ∞ and
∫︀
𝐻×𝐾 𝑓

−𝑑𝑃 = ∞, the integral
above is not defined. We could have introduced some convention to handle this
situation, however, as in most of the cases we treat we have

∫︀
𝐻×𝐾 𝑓

+𝑑𝑃 < ∞, we
refrain from doing so.

Proposition 2.8.4 Let 𝑓 : 𝐻 × 𝐾 → R ∪ {±∞} be a ℋ ⊗ 𝒦-measurable function
such that

∫︀
𝐻×𝐾 𝑓

+𝑑𝑃 <∞. Then, we have∫︁
𝐻×𝐾

𝑓𝑑𝑃 =

∫︁
𝐻

∫︁
𝐾

𝑓(ℎ, 𝑘)𝑞(𝑑𝑘|ℎ)𝑝(𝑑ℎ). (2.63)

Remark 2.8.5 Note that we can assume instead that
∫︀
𝐻×𝐾 𝑓

−𝑑𝑃 <∞ and the result
holds as well. We will use this in the proof of Lemma 2.2.2 later in the Appendix.

Proof. Using Definition 2.8.2 and applying Lemma 2.8.1 to 𝑓+ and 𝑓− we obtain
that ∫︁

𝐻×𝐾
𝑓𝑑𝑃 =

∫︁
𝐻×𝐾

𝑓+𝑑𝑃 −
∫︁
𝐻×𝐾

𝑓−𝑑𝑃

=

∫︁
𝐻

∫︁
𝐾

𝑓+𝑞(𝑑𝑘|ℎ)𝑝(𝑑ℎ) +
∫︁
𝐻

∫︁
𝐾

𝑓−𝑞(𝑑𝑘|ℎ)𝑝(𝑑ℎ).

To establish (2.63), assume for a moment that the followng linearity result have
been proved: let 𝑔𝑖 : 𝐻 ×𝐾 → R∪ {±∞} be some ℋ⊗𝒦-measurable functions such
that

∫︀
𝐻×𝐾 𝑔

+
𝑖 𝑑𝑃 <∞ for 𝑖 = 1, 2. Then∫︁

𝐻

(𝑔1 + 𝑔2) 𝑑𝑝 =

∫︁
𝐻

𝑔1𝑑𝑝+

∫︁
𝐻

𝑔2𝑑𝑝. (2.64)

We apply (2.64) with 𝑔1(ℎ) =
∫︀
𝐾
𝑓+(ℎ, 𝑘)𝑞(𝑑ℎ|𝑘) and 𝑔2 = −

∫︀
𝐾
𝑓−(ℎ, 𝑘)𝑞(𝑑ℎ|𝑘) since

by Lemma 2.8.1,∫︁
𝐻

𝑔+1 𝑑𝑝 =

∫︁
𝐻

(︂∫︁
𝐾

𝑓+(ℎ, 𝑘)𝑞(𝑑ℎ|𝑘)
)︂
𝑝(𝑑ℎ)

=

∫︁
𝐻×𝐾

𝑓+(ℎ, 𝑘)𝑞(𝑑ℎ|𝑘)𝑝(𝑑ℎ) =
∫︁
𝐻×𝐾

𝑓+𝑑𝑃 <∞
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and clearly
∫︀
𝐻
𝑔+2 𝑑𝑝 = 0 <∞. So we obtain that∫︁

𝐻

∫︁
𝐾

𝑓+(ℎ, 𝑘)𝑞(𝑑𝑘|ℎ)𝑝(𝑑ℎ)−
∫︁
𝐻

∫︁
𝐾

𝑓−(ℎ, 𝑘)𝑞(𝑑𝑘|ℎ)𝑝(𝑑ℎ)

=

∫︁
𝐻

(︂∫︁
𝐾

𝑓+(ℎ, 𝑘)𝑞(𝑑𝑘|ℎ)−
∫︁
𝐾

𝑓−(ℎ, 𝑘)𝑞(𝑑𝑘|ℎ)
)︂
𝑝(𝑑ℎ)

=

∫︁
𝐻

∫︁
𝐾

𝑓(ℎ, 𝑘)𝑞(𝑑𝑘|ℎ)𝑝(𝑑ℎ),

where the second equality comes from the definition of the generalised integral of
𝑓(ℎ, ·) with respect to 𝑞(·|ℎ) and (2.63) is proven.
We prove now (2.64). If

∫︀
𝐻
𝑔−𝑖 𝑑𝑝 < ∞ for 𝑖 = 1, 2 this is trivial. From

∫︀
𝐻
𝑔+𝑖 𝑑𝑝 < ∞

we get that 𝑔+𝑖 <∞ 𝑝-almost surely for 𝑖 = 1, 2, so the sum 𝑔1+ 𝑔2 is 𝑝-almost surely
well-defined, taking its value in [−∞,∞). As (𝑔1+𝑔2)+ ≤ 𝑔+1 +𝑔

+
2 , using the linearity

of the integral for non-negative functions we get that∫︁
𝐻

(𝑔1 + 𝑔2)
+ (ℎ)𝑝(𝑑ℎ) ≤

∫︁
𝐻

𝑔+1 𝑑𝑝+

∫︁
𝐻

𝑔+2 𝑑𝑝 <∞.

Now from
𝑔+1 + 𝑔+2 − 𝑔−1 − 𝑔−2 = 𝑔1 + 𝑔2 = (𝑔1 + 𝑔2)

+ − (𝑔1 + 𝑔2)
− ,

using again the linearity of the integral for non-negative functions we get that∫︁
𝐻

(𝑔1 + 𝑔2)
+ 𝑑𝑝+

∫︁
𝐻

𝑔−1 𝑑𝑝+

∫︁
𝐻

𝑔−2 𝑑𝑝 =

∫︁
𝐻

(𝑔1 + 𝑔2)
− 𝑑𝑝+

∫︁
𝐻

𝑔+1 𝑑𝑝+

∫︁
𝐻

𝑔+2 𝑑𝑝.

Checking the different cases, 𝑖.𝑒
∫︀
𝐻
𝑔−1 𝑑𝑝 = ∞ and

∫︀
𝐻
𝑔−2 𝑑𝑝 < ∞ (and the opposite

case) as well as
∫︀
𝐻
𝑔−𝑖 𝑑𝑝 = ∞ for 𝑖 = 1, 2 we get that (2.64) is true. 2

2.8.2 Further measure theory issues
We present now specific applications or results that are used throughout the chapter.
We start with four extensions of the Fubini results presented previously. As noted
in Remark 2.6.12, the introduction of the trace sigma-algebra is the price to pay in
order to avoid using the convention ∞−∞ = −∞.

Proposition 2.8.6 Fix some 𝑡 ∈ {1, . . . , 𝑇}.

i) Let 𝑓 : Ω𝑡 → R+ ∪ {+∞} be a non-negative ℱ𝑡-measurable function. Then
𝜔𝑡−1 ∈ Ω𝑡−1 →

∫︀
Ω𝑡
𝑓(𝜔𝑡−1, 𝜔𝑡)𝑞𝑡(𝑑𝜔𝑡|𝜔𝑡−1) is ℱ𝑡−1-measurable with values in R+∪

{+∞}.

ii) Let 𝑓 : Ω𝑡 × R𝑑 → R+ ∪ {+∞} be a non-negative ℱ𝑡 ⊗ ℬ(R𝑑)-measurable func-
tion. Then (𝜔𝑡−1, ℎ) ∈ Ω𝑡−1 × R𝑑 →

∫︀
Ω𝑡
𝑓(𝜔𝑡−1, 𝜔𝑡, ℎ)𝑞𝑡(𝑑𝜔𝑡|𝜔𝑡−1) is ℱ𝑡−1 ⊗ ℬ(R𝑑)-

measurable with values in R+ ∪ {+∞}
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iii) Let 𝑓 : Ω𝑡 → R+ ∪ {+∞} be a non-negative ℱ 𝑡−1 ⊗ 𝒢𝑡-measurable function.
Then 𝜔𝑡−1 ∈ Ω𝑡−1 →

∫︀
Ω𝑡
𝑓(𝜔𝑡−1, 𝜔𝑡)𝑞𝑡(𝑑𝜔𝑡|𝜔𝑡−1) is ℱ 𝑡−1-measurable with values

in R+ ∪ {+∞}.

iv) Let 𝒮 ∈ ℱ𝑡−1 ⊗ℬ(R𝑑). Introduce
[︀
ℱ𝑡−1 ⊗ ℬ(R𝑑)

]︀
𝒮 :=

{︀
𝐴 ∩ 𝒮, 𝐴 ∈ ℱ𝑡−1 ⊗ ℬ(R𝑑)

}︀
the trace sigma-algebra of ℱ𝑡−1⊗ℬ(R𝑑) on 𝒮. Let 𝑓 : Ω𝑡−1×R𝑑×Ω𝑡 → R+∪{+∞}
be a non-negative ℱ𝑡−1 ⊗ ℬ(R𝑑) ⊗ 𝒢𝑡-measurable function. Then (𝜔𝑡−1, ℎ) ∈
𝒮 →

∫︀
Ω𝑡
𝑓(𝜔𝑡−1, ℎ, 𝜔𝑡)𝑞𝑡(𝑑𝜔𝑡|𝜔𝑡−1) is

[︀
ℱ𝑡−1 ⊗ ℬ(R𝑑)

]︀
𝒮-measurable with values in

R+ ∪ {+∞}.

Proof. Statement 𝑖) is a direct application of Lemma 2.8.1 for 𝐻 = Ω𝑡−1, ℋ = ℱ𝑡−1,
𝐾 = Ω𝑡, 𝒦 = 𝒢𝑡 and 𝑞(·|·) = 𝑞𝑡(·|·). To prove statement 𝑖𝑖), let 𝑞𝑡 be defined by

𝑞𝑡 : (𝐺,𝜔
𝑡−1, ℎ) ∈ 𝒢𝑡 × Ω𝑡−1 × R𝑑 → 𝑞𝑡(𝐺|𝜔𝑡−1, ℎ) := 𝑞𝑡(𝐺|𝜔𝑡−1). (2.65)

We first prove that 𝑞𝑡 is a stochastic kernel on 𝒢𝑡 given Ω𝑡−1 × R𝑑 where measurab-
ility is with respect to ℱ𝑡−1 ⊗ ℬ(R𝑑). Let (𝜔𝑡−1, ℎ) ∈ Ω𝑡−1 × R𝑑 be fixed, 𝐵 ∈ 𝒢𝑡 →
𝑞𝑡(𝐵|𝜔𝑡−1, ℎ) = 𝑞𝑡(𝐵|𝜔𝑡−1) is a probability measure on (Ω𝑡,𝒢𝑡) by definition of 𝑞𝑡. Let
𝐵 ∈ 𝒢𝑡 be fixed, then (𝜔𝑡−1, ℎ) ∈ Ω𝑡−1×R → 𝑞𝑡(𝐵|𝜔𝑡−1, ℎ) = 𝑞𝑡(𝐵|𝜔𝑡−1) is ℱ𝑡−1⊗ℬ(R𝑑)-
measurable since for any 𝐵′ ∈ ℬ(R), we have, by definition of 𝑞𝑡,{︀

(𝜔𝑡−1, ℎ) ∈ Ω𝑡−1 × R𝑑, 𝑞𝑡(𝐵|𝜔𝑡−1, ℎ) ∈ 𝐵′}︀
=
{︀
𝜔𝑡−1 ∈ Ω𝑡−1, 𝑞𝑡(𝐵|𝜔𝑡−1) ∈ 𝐵′}︀× R𝑑 ∈ ℱ𝑡−1 ⊗ ℬ(R𝑑)

Statement 𝑖𝑖) follows by an application of Lemma 2.8.1 for 𝐻 = Ω𝑡−1 × R𝑑, ℋ =

ℱ𝑡−1 ⊗ ℬ(R𝑑), 𝐾 = Ω𝑡, 𝒦 = 𝒢𝑡 and 𝑞(·|·) = 𝑞𝑡(·|·). To prove statement 𝑖𝑖𝑖) note
that since ℱ𝑡−1 ⊂ ℱ 𝑡−1 it is clear that 𝑞𝑡 is a stochastic kernel on (Ω𝑡,𝒢𝑡) given
(Ω𝑡−1,ℱ 𝑡−1) (𝑖.𝑒 measurability is with respect to ℱ 𝑡−1). And statement 𝑖𝑖𝑖) follows
immediately from an application of Lemma 2.8.1 for 𝐻 = Ω𝑡−1, ℋ = ℱ 𝑡−1, 𝐾 = Ω𝑡,
𝒦 = 𝒢𝑡 and 𝑞(·|·) = 𝑞𝑡(·|·). We prove now the last statement. It is well known that
(𝑆,
[︀
ℱ𝑡−1 ⊗ ℬ(R𝑑)

]︀
𝒮) is a measurable space. Let 𝑞𝑡 be defined by

𝑞𝑡 : (𝐺,𝜔
𝑡−1, ℎ) ∈ 𝒢𝑡 × 𝑆 → 𝑞𝑡(𝐺|𝜔𝑡−1, ℎ) := 𝑞𝑡(𝐺|𝜔𝑡−1). (2.66)

We prove that 𝑞𝑡 is a stochastic kernel on (Ω𝑡,𝒢𝑡) given
(︀
𝒮,
[︀
ℱ𝑡−1 ⊗ ℬ(R𝑑)

]︀
𝒮

)︀
. In-

deed, let (𝜔𝑡−1, ℎ) ∈ 𝑆 be fixed, 𝐵 ∈ 𝒢𝑡 → 𝑞𝑡(𝐵|𝜔𝑡−1, ℎ) = 𝑞𝑡(𝐵|𝜔𝑡−1) is a probability
measure on (Ω𝑡,𝒢𝑡), by definition of 𝑞𝑡. Let 𝐵 ∈ 𝒢𝑡 be fixed, then (𝜔𝑡−1, ℎ) ∈ 𝑆 →
𝑞𝑡(𝐵|𝜔𝑡−1, ℎ) = 𝑞𝑡(𝐵|𝜔𝑡−1) is

[︀
ℱ𝑡−1 ⊗ ℬ(R𝑑)

]︀
𝒮-measurable since for any 𝐵′ ∈ ℬ(R), we

have, by definition of 𝑞𝑡{︀
(𝜔𝑡−1, ℎ) ∈ 𝑆, 𝑞𝑡(𝐵|𝜔𝑡−1, ℎ) ∈ 𝐵′}︀ =

(︀{︀
𝜔𝑡−1 ∈ Ω𝑡−1, 𝑞𝑡(𝐵|𝜔𝑡−1) ∈ 𝐵′}︀× R𝑑

)︀⋂︁
𝑆

∈
[︀
ℱ𝑡−1 ⊗ ℬ(R𝑑)

]︀
𝒮 .
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Now let 𝑓𝑆 be the restriction of 𝑓 to 𝒮 × Ω𝑡. Using similar arguments and the fact
that [︀

ℱ𝑡−1 ⊗ ℬ(R𝑑)⊗ 𝒢𝑡
]︀
𝒮×Ω𝑡

=
[︀
ℱ𝑡−1 ⊗ ℬ(R𝑑)

]︀
𝒮 ⊗ 𝒢𝑡, (2.67)

we obtain that 𝑓𝑆 is
[︀
ℱ𝑡−1 ⊗ ℬ(R𝑑)

]︀
𝒮 ⊗𝒢𝑡-measurable. Finally, statement 𝑖𝑣) follows

from another application of Lemma 2.8.1 for 𝐻 = 𝑆, ℋ =
[︀
ℱ𝑡−1 ⊗ ℬ(R𝑑)

]︀
𝒮 , 𝐾 = Ω𝑡,

𝒦 = 𝒢𝑡 and 𝑞(·|·) = 𝑞𝑡(·|·). 2

Lemma 2.8.7 Let 𝑓 : Ω𝑡+1 → R+∪{∞} be ℱ𝑡+1-measurable, non-negative and such
that

∫︀
Ω𝑡+1 𝑓(𝜔

𝑡+1)𝑃𝑡+1(𝑑𝜔
𝑡+1) < ∞. Then 𝜔𝑡 ∈ Ω𝑡 →

∫︀
Ω𝑡+1

𝑓(𝜔𝑡, 𝜔𝑡+1)𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡) is
ℱ𝑡-measurable. Furthermore, let

𝑁 𝑡 :=

{︂
𝜔𝑡 ∈ Ω𝑡,

∫︁
Ω𝑡+1

𝑓(𝜔𝑡, 𝜔𝑡+1)𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡) = ∞
}︂
.

Then 𝑁𝑡 ∈ ℱ𝑡 and 𝑃𝑡(𝑁 𝑡) = 0

Proof. The first assertion of the lemma is a direct application of 𝑖) of Proposition
2.8.6. So it is clear that 𝑁 𝑡 ∈ ℱ𝑡. Furthermore, applying the Fubini Theorem (see
Lemma 2.8.1) we get that∫︁

Ω𝑡

∫︁
Ω𝑡+1

𝑓(𝜔𝑡, 𝜔𝑡+1)𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡)𝑃𝑡(𝑑𝜔𝑡) =
∫︁
Ω𝑡+1

𝑓(𝜔𝑡+1)𝑃𝑡+1(𝑑𝜔
𝑡+1) <∞.

Assume that 𝑃𝑡(𝑁 𝑡) > 0. Then∫︁
Ω𝑡+1

𝑓(𝜔𝑡+1)𝑃𝑡+1(𝑑𝜔
𝑡+1) ≥

∫︁
𝑁𝑡

∫︁
Ω𝑡+1

𝑓(𝜔𝑡, 𝜔𝑡+1)𝑞𝑡+1(𝑑𝜔𝑡+1|𝜔𝑡)𝑃𝑡(𝑑𝜔𝑡) = ∞.

We get a contradiction : 𝑃𝑡(𝑁 𝑡) = 0. 2

The next lemma, loosely speaking, allows to obtain “nice" sections (𝑖.𝑒 set of full
measure for a certain probability measure). We use it in the proofs of Theorem
2.4.17 and Lemma 2.8.9.

Lemma 2.8.8 Fix some 𝑡 ∈ {1, . . . , 𝑇}. Let ̃︀Ω𝑡 ∈ ℱ𝑡 such that 𝑃𝑡(̃︀Ω𝑡) = 1 and ̃︀Ω𝑡−1 ∈
ℱ𝑡−1 such that 𝑃𝑡−1(̃︀Ω𝑡−1) = 1 and set

Ω
𝑡−1

:=
{︁
𝜔𝑡−1 ∈ ̃︀Ω𝑡−1, 𝑞𝑡

(︁(︁̃︀Ω𝑡
)︁
𝜔𝑡−1

|𝜔𝑡−1
)︁
= 1
}︁

see Lemma 2.8.1 for the definition of
(︁̃︀Ω𝑡

)︁
𝜔𝑡−1

. Then Ω
𝑡−1 ∈ ℱ𝑡−1 and 𝑃𝑡(Ω

𝑡−1
) = 1.
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Proof. From Lemma 2.8.1 we know 𝜔𝑡−1 → 𝑞𝑡

(︁(︁̃︀Ω𝑡
)︁
𝜔𝑡−1

|𝜔𝑡−1
)︁

is ℱ𝑡−1-measurable

and the fact that Ω𝑡−1 ∈ ℱ𝑡−1 follows immediately.
Furthermore, using the Fubini Theorem (see Lemma 2.8.1) we have that

1 = 𝑃𝑡(̃︀Ω𝑡) =

∫︁
Ω𝑡−1

∫︁
Ω𝑡

1̃︀Ω𝑡(𝜔
𝑡−1, 𝜔𝑡)𝑞𝑡(𝑑𝜔𝑡|𝜔𝑡−1)𝑃𝑡−1(𝑑𝜔

𝑡−1)

=

∫︁
Ω𝑡−1

∫︁
Ω𝑡

1(̃︀Ω𝑡)
𝜔𝑡−1

(𝜔𝑡)𝑞𝑡(𝑑𝜔𝑡|𝜔𝑡−1)𝑃𝑡−1(𝑑𝜔
𝑡−1)

=

∫︁
̃︀Ω𝑡−1

∫︁
Ω𝑡

1(̃︀Ω𝑡)
𝜔𝑡−1

(𝜔𝑡)𝑞𝑡(𝑑𝜔𝑡|𝜔𝑡−1)𝑃𝑡−1(𝑑𝜔
𝑡−1)

=

∫︁
̃︀Ω𝑡−1

𝑞𝑡

(︁(︁̃︀Ω𝑡
)︁
𝜔𝑡−1

|𝜔𝑡−1
)︁
𝑃𝑡−1(𝑑𝜔

𝑡−1)

=

∫︁
Ω

𝑡−1
1× 𝑃𝑡−1(𝑑𝜔

𝑡−1) +

∫︁
̃︀Ω𝑡−1∖Ω𝑡−1

𝑞𝑡

(︁(︁̃︀Ω𝑡
)︁
𝜔𝑡−1

|𝜔𝑡−1
)︁
𝑃𝑡−1(𝑑𝜔

𝑡−1),

where we have used for the third line the fact that 𝑃 (̃︀Ω𝑡−1) = 1.
But if 𝑃 (̃︀Ω𝑡−1∖Ω𝑡−1

) > 0 then we have that by definition of Ω𝑡−1 that∫︁
̃︀Ω𝑡−1∖Ω𝑡−1

𝑞𝑡

(︁(︁̃︀Ω𝑡
)︁
𝜔𝑡−1

|𝜔𝑡−1
)︁
𝑃𝑡−1(𝑑𝜔

𝑡−1) < 𝑃𝑡−1(̃︀Ω𝑡−1∖Ω𝑡−1
),

and thus

1 < 𝑃𝑡−1(Ω
𝑡−1

) + 𝑃𝑡−1(̃︀Ω𝑡−1∖Ω𝑡−1
) = 1,

which is absurd and thus 𝑃𝑡−1(̃︀Ω𝑡−1∖Ω𝑡−1
) = 0. We conclude using again that

𝑃𝑡−1(̃︀Ω𝑡−1) = 1. 2

The following lemma is used throughout the chapter. In particular, the last state-
ment is used in the proof of the main theorem

Lemma 2.8.9 Let 0 ≤ 𝑡 ≤ 𝑇 − 1, 𝐵 ∈ ℬ(R), 𝐻 : Ω𝑡 → R and ℎ𝑡 : Ω𝑡 → R𝑑 be
ℱ𝑡-measurable be fixed. Then the functions

(𝜔𝑡, ℎ) ∈ Ω𝑡 × R𝑑 → 𝑞𝑡+1(𝐻(𝜔𝑡) + ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) ∈ 𝐵|𝜔𝑡), (2.68)

𝜔𝑡 ∈ Ω𝑡 → 𝑞𝑡+1(𝐻(𝜔𝑡) + ℎ𝑡(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, ·) ∈ 𝐵|𝜔𝑡), (2.69)

are respectively ℱ𝑡 ⊗ ℬ(R𝑑)-measurable and ℱ𝑡-measurable. Furthermore, assume
that 𝑃𝑡+1 (𝐻(·) + ℎ𝑡(·)Δ𝑆𝑡+1(·) ∈ 𝐵) = 1, then there exists some 𝑃𝑡-full measure set
Ω
𝑡 such that for all 𝜔𝑡 ∈ Ω

𝑡, 𝑞𝑡+1(𝐻(𝜔𝑡) + ℎ𝑡(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, ·) ∈ 𝐵|𝜔𝑡) = 1.

Proof. As ℎ ∈ R𝑑 → ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1) is continuous for all (𝜔𝑡, 𝜔𝑡+1) ∈ Ω𝑡 × Ω𝑡+1 and

(𝜔𝑡, 𝜔𝑡+1) ∈ Ω𝑡×Ω𝑡+1 → ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1) is ℱ𝑡+1 = ℱ𝑡⊗𝒢𝑡+1-measurable for all ℎ ∈ R𝑑
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(recall that 𝑆𝑡 and 𝑆𝑡+1 are respectively ℱ𝑡 and ℱ𝑡+1 measurable by assumption),
(𝜔𝑡, 𝜔𝑡+1, ℎ) ∈ Ω𝑡 × Ω𝑡+1 × R𝑑 → ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1) is ℱ𝑡 ⊗ 𝒢𝑡+1 ⊗ ℬ(R𝑑)-measurable as
a Carathéodory function (see [3, Definition 4.50, Lemma 4.51] for instance). As
𝐻 is ℱ𝑡-measurable we obtain that 𝜓 : (𝜔𝑡, 𝜔𝑡+1, ℎ) ∈ Ω𝑡 × Ω𝑡+1 × R𝑑 → 𝐻(𝜔𝑡) +

ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1) is also ℱ𝑡 ⊗ 𝒢𝑡+1 ⊗ ℬ(R𝑑)-measurable. Therefore, for any 𝐵 ∈ ℬ(R),

𝑓𝐵 : (𝜔𝑡, 𝜔𝑡+1, ℎ) ∈ Ω𝑡 × Ω𝑡+1 × R𝑑 → 1𝜓(·,·,·)∈𝐵(𝜔
𝑡, 𝜔𝑡+1, ℎ) is ℱ𝑡 ⊗ 𝒢𝑡+1 ⊗ ℬ(R𝑑). We

conclude using statement 𝑖) of Proposition 2.8.6 applied to 𝑓𝐵 and (2.68) is proved.
We prove (2.69) using similar arguments. Since ℎ𝑡 is ℱ𝑡-measurable, it is clear that
𝜓ℎ𝑡 : (𝜔

𝑡, 𝜔𝑡+1) ∈ Ω𝑡 × Ω𝑡+1 → 𝐻(𝜔𝑡) + ℎ𝑡(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1) is ℱ𝑡 ⊗ 𝒢𝑡+1-measurable.
Therefore, for any 𝐵 ∈ ℬ(R), 𝑓𝐵,ℎ𝑡 : (𝜔𝑡, 𝜔𝑡+1) ∈ Ω𝑡 × Ω𝑡+1 → 1𝜓ℎ𝑡

(·,·)∈𝐵(𝜔
𝑡, 𝜔𝑡+1) is

ℱ𝑡 ⊗ 𝒢𝑡+1-measurable. We conclude applying 𝑖) of Proposition 2.8.6 to 𝑓𝐵,ℎ𝑡.
For the last statement, we set

̃︀Ω𝑡+1 :=
{︀
𝜔𝑡+1 = (𝜔𝑡, 𝜔𝑡+1) ∈ Ω𝑡 × Ω𝑡+1, 𝐻(𝜔𝑡) + ℎ𝑡(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1) ∈ 𝐵

}︀
.

It is clear that ̃︀Ω𝑡+1 ∈ ℱ𝑡+1 and that 𝑃𝑡+1(̃︀Ω𝑡+1) = 1. We can then apply Lemma 2.8.8
and we obtain some 𝑃𝑡-full measure set Ω

𝑡 such that for all 𝜔𝑡 ∈ Ω
𝑡, 𝑞𝑡+1(𝐻(𝜔𝑡) +

ℎ𝑡(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, ·) ∈ 𝐵|𝜔𝑡) = 1. 2

Lemma 2.8.10 is often used in conjunction with the Aumann Theorem (see [119,
Corollary 1]) to obtain a ℱ𝑡-measurable selector.

Lemma 2.8.10 Let 𝑓 : Ω𝑡 → R be ℱ 𝑡-measurable. Then there exists 𝑔 : Ω𝑡 → R that
is ℱ𝑡-measurable and such that 𝑓 = 𝑔 𝑃𝑡-almost surely, 𝑖.𝑒 there exists Ω𝑡

𝑓𝑔 ∈ ℱ𝑡 with
𝑃𝑡
(︀
Ω𝑡
𝑓𝑔

)︀
= 1 and Ω𝑡

𝑓𝑔 ⊂ {𝑓 = 𝑔}.

Proof. Let 𝑓 = 1𝐵 with 𝐵 ∈ ℱ 𝑡 then 𝐵 = 𝐴 ∪ 𝑁 , with 𝐴 ∈ ℱ𝑡 and 𝑁 ∈ 𝒩𝑃𝑡 (see
(2.2). Let 𝑔 = 1𝐴. Then 𝑔 is ℱ𝑡-measurable. Clearly, {𝑓 ̸= 𝑔} = 𝑁 ∈ 𝒩𝑃𝑡, thus
𝑓 = 𝑔 𝑃𝑡 a.s. By taking linear combinations, the lemma is proven for step functions
using the same argument for each indicator function. Then it is always possible to
approximate some ℱ 𝑡-measurable function 𝑓 by a sequence of step function (𝑓𝑛)𝑛≥1.
From the preceding step for all 𝑛 ≥ 1, we get some ℱ𝑡-measurable step functions
𝑔𝑛 such that 𝑓𝑛 = 𝑔𝑛 𝑃𝑡-almost surely. Let 𝑔 = lim sup 𝑔𝑛, 𝑔 is ℱ𝑡-measurable and we
conclude since {𝑓 ̸= 𝑔} ⊂ ∪𝑛≥1{𝑓𝑛 ̸= 𝑔𝑛} which is again in 𝒩𝑃𝑡. 2

Next we provide some simple but useful results on usc functions.

Lemma 2.8.11 Let 𝐶 be a closed subset of R𝑚 for some 𝑚 ≥ 1. Let 𝑔 : R𝑚 →
R∪ {±∞} be such that 𝑔 = −∞ on R𝑚∖𝐶. Then 𝑔 is usc on R𝑚 if and only if 𝑔 is usc
on 𝐶.

Proof. We prove that if 𝑔 is usc on 𝐶 then it is usc on R𝑚 as the reverse implication
is trivial. Let 𝛼 ∈ R be fixed. We prove that 𝑆𝛼 := {𝑥 ∈ R𝑚, 𝑔(𝑥) ≥ 𝛼} is closed in
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R𝑚. Let (𝑥𝑛)𝑛≥1 ⊂ 𝑆𝛼 converge to 𝑥 ∈ R𝑚. Then 𝑥𝑛 ∈ 𝐶 for all 𝑛 ≥ 1 and as 𝐶 is a
closed set, 𝑥 ∈ 𝐶. As 𝑔 is usc on 𝐶, (𝑖.𝑒 the set {𝑥 ∈ 𝐶, 𝑔(𝑥) ≥ 𝛼} is closed for the
induced topology of R𝑚 on 𝐶) we get that 𝑔(𝑥) ≥ 𝛼, 𝑖.𝑒 𝑥 ∈ 𝑆𝛼 and 𝑔 is usc on R𝑚. 2

Lemma 2.8.12 Let 𝑆 ⊂ R be a closed subset of R. Let 𝑓 : R → R ∪ {±∞} be such
that 𝑓 is usc and non-decreasing on 𝑆. Then 𝑓 is right-continuous on 𝑆.

Proof. Let (𝑥𝑛)𝑛≥1 ⊂ 𝑆 be a sequence converging to some 𝑥* from above. Then 𝑥* ∈ 𝑆

since 𝑆 is closed. As 𝑥 ∈ 𝑆 → 𝑓(𝑥) is non-decreasing, for all 𝑛 ≥ 1 we have that
𝑓(𝑥𝑛) ≥ 𝑓(𝑥*) and thus lim inf𝑛 𝑓(𝑥𝑛) ≥ 𝑓(𝑥*). Now as 𝑓 is usc on 𝑆, we get that
lim sup𝑛 𝑓(𝑥𝑛) ≤ 𝑓(𝑥*). The right-continuity of 𝑓 on 𝑆 follows immediately. 2

We now establish a useful extension of Lemma 2.8.10.

Lemma 2.8.13 Let 𝑓 : Ω𝑡 × R → R ∪ {±∞} be an ℱ 𝑡 ⊗ ℬ(R)-measurable function
such that for all 𝜔𝑡 ∈ Ω𝑡, 𝑥 ∈ R → 𝑓(𝜔𝑡, 𝑥) is usc and non-decreasing. Then, there
exists some ℱ𝑡 ⊗ ℬ(R)-measurable function 𝑔 from Ω𝑡 × R to R ∪ {±∞} and some
Ω𝑡
𝑚𝑒𝑠 ∈ ℱ𝑡 such that 𝑃𝑡(Ω𝑡

𝑚𝑒𝑠) = 1 and 𝑓(𝜔𝑡, 𝑥) = 𝑔(𝜔𝑡, 𝑥) for all (𝜔𝑡, 𝑥) ∈ Ω𝑡
𝑚𝑒𝑠 × R.

Remark 2.8.14 In particular, for all 𝜔𝑡 ∈ Ω𝑡
𝑚𝑒𝑠, 𝑥 ∈ R → 𝑔(𝜔𝑡, 𝑥) is usc and non-

decreasing.

Proof. Let 𝑛 ≥ 1 and 𝑘 ∈ Z be fixed. We apply Lemma 2.8.10 to 𝑓(·) = 𝑓(·, 𝑘
2𝑛
) that is

ℱ 𝑡-measurable by assumption and we get some ℱ𝑡-measurable 𝑔𝑛,𝑘 : Ω𝑡 → R∪{±∞}
and some Ω𝑡

𝑛,𝑘 ∈ ℱ𝑡 such that 𝑃𝑡(Ω𝑡
𝑛,𝑘) = 1 and Ω𝑡

𝑛,𝑘 ⊂
{︀
𝜔𝑡 ∈ Ω𝑡, 𝑓(𝜔𝑡, 𝑘

2𝑛
) = 𝑔𝑛,𝑘(𝜔

𝑡)
}︀

.
We set

Ω𝑡
𝑚𝑒𝑠 :=

⋂︁
𝑛≥1,𝑘∈Z

Ω𝑡
𝑛,𝑘. (2.70)

It is clear that Ω𝑡
𝑚𝑒𝑠 ∈ ℱ𝑡 and that 𝑃𝑡(Ω𝑡

𝑚𝑒𝑠) = 1.
Now, we define for all 𝑛 ≥ 1, 𝑔𝑛 : Ω𝑡 × R → R ∪ {±∞} by

𝑔𝑛(𝜔
𝑡, 𝑥) :=

∑︁
𝑘∈Z

1(︀ 𝑘−1
2𝑛

, 𝑘
2𝑛

]︀(𝑥)𝑔𝑛,𝑘(𝜔𝑡).
It is clear that 𝑔𝑛 is ℱ𝑡 ⊗ ℬ(R)-measurable for all 𝑛 ≥ 1. Finally, we define 𝑔 :

Ω𝑡 × R → R ∪ {±∞} by

𝑔(𝜔𝑡, 𝑥) := lim
𝑛
𝑔𝑛(𝜔

𝑡, 𝑥). (2.71)

Then 𝑔 is again ℱ𝑡⊗ℬ(R)-measurable and it remains to prove that 𝑓(𝜔𝑡, 𝑥) = 𝑔(𝜔𝑡, 𝑥)

for all (𝜔𝑡, 𝑥) ∈ Ω𝑡
𝑚𝑒𝑠 × R. Let (𝜔𝑡, 𝑥) ∈ Ω𝑡

𝑚𝑒𝑠 × R be fixed. For all 𝑛 ≥ 1, there exists
𝑘𝑛 ∈ Z such that 𝑘𝑛−1

2𝑛
< 𝑥 ≤ 𝑘𝑛

2𝑛
and such that 𝑔𝑛(𝜔𝑡, 𝑥) = 𝑔𝑛,𝑘𝑛(𝜔

𝑡) = 𝑓(𝜔𝑡, 𝑘𝑛
2𝑛
).

Applying Lemma 2.8.12 to 𝑓(·) = 𝑓(𝜔𝑡, ·) (and 𝑆 = R), we get that 𝑥 ∈ R → 𝑓(𝜔𝑡, 𝑥)

is right-continuous on R. As
(︀
𝑘𝑛
2𝑛

)︀
𝑛≥1

converges to 𝑥 from above, it follows that
𝑔(𝜔𝑡, 𝑥) = lim𝑛 𝑓(𝜔

𝑡, 𝑘𝑛
2𝑛
) = 𝑓(𝜔𝑡, 𝑥) and this concludes the proof. 2

Finally, we introduce the following definition.
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Definition 2.8.15 Let 𝑆 be a closed interval of R. A function 𝑓 : Ω𝑡 × 𝑆 → R is an
extended Carathéodory function if

i) for all 𝜔𝑡 ∈ Ω𝑡, 𝑥 ∈ 𝑆 → 𝑓(𝜔𝑡, 𝑥) is right-continuous,

ii) for all 𝑥 ∈ 𝑆, 𝜔𝑡 ∈ Ω𝑡 → 𝑓(𝜔𝑡, 𝑥) is ℱ𝑡-measurable.

And we prove the following lemma that is an extension of a well-know result on
Carathéodory functions (see [3, Definition 4.50, Lemma 4.51]).

Lemma 2.8.16 Let 𝑆 ⊂ R be a closed interval of R and 𝑓 : Ω𝑡 × 𝑆 → R be an
extended Carathéodory function. Then 𝑓 is ℱ𝑡 ⊗ ℬ(R)-measurable.

Proof. We define for all 𝑛 ≥ 1, 𝑓𝑛 : Ω𝑡 × R → R by

𝑓𝑛(𝜔
𝑡, 𝑥) :=

∑︁
𝑘∈Z

1(︀ 𝑘−1
2𝑛

, 𝑘
2𝑛

]︀(𝑥)1𝑆 (︂ 𝑘

2𝑛

)︂
𝑓

(︂
𝜔𝑡,

𝑘

2𝑛

)︂
.

It is clear that 𝑓𝑛 is ℱ𝑡 ⊗ ℬ(R)-measurable. From the right continuity of 𝑓 , we can
show as in the proof of Lemma 2.8.13 that 𝑓(𝜔𝑡, 𝑥) = lim𝑛 𝑓𝑛(𝜔

𝑡, 𝑥) for all (𝜔𝑡, 𝑥) ∈
Ω𝑡×𝑆 and the proof is complete (recall that Ω×𝑆 ∈ ℱ𝑡⊗ℬ(R) as 𝑆 is a closed subset
of R). 2

Remark 2.8.17 Note that we have the same result if we replace ℱ𝑡 with ℱ𝑡.

2.8.3 Random sets, normal integrands and related results
In this section, we first recall the definition of random set, of the measurability of a
random set as well as the definition of normal integrands. These notions were used
in Chapter 2 and will be used again in different setting throughout the dissertation.
We propose also in Lemmata 2.8.21, 2.8.22 and 2.8.25 some theoretical results that
are not directly used in the chapter but still worth mentioning. Let (Ω,ℱ) be a
measurable space and (𝑇, 𝒯 ) be a topological space.

Definition 2.8.18 A random set 𝑅 is a set valued function that assigns to each
𝜔 ∈ Ω a subset 𝑅(𝜔) of 𝑇 . We write 𝑅 : Ω � 𝑇 .

Definition 2.8.19 Let 𝑅 : Ω � 𝑇 be a random set. We say that 𝑅 is ℱ-measurable
if for any open set 𝑂 in 𝑇 the set {𝜔 ∈ Ω, 𝑅(𝜔) ∩𝑂 ̸= ∅} ∈ ℱ .

It is possible to introduce alternative definitions of the measurability of a random
set. This is related to the fact that for a set 𝐴 ⊂ 𝑇 , 𝑅−1(𝐴) can be defined in differ-
ent ways. We refer to [116, Chapter 14] and [3, Chapter 17-18] for more details. For
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instance [116, Theorem 14.3] proposes various equivalent definitions of the meas-
urability of a random set when 𝑇 = R𝑑 and 𝑅 is closed valued (𝑖.𝑒 for all 𝜔, 𝑅(𝜔) is
a closed subset of R𝑑). The open sets of 𝑇 in Definition 2.8.19 can be replaced with
the closed sets or the Borel sets of 𝑇 for example.

An other different definition of the measurability of a random set that we will use
throughout the disseration involves Graph(𝑅) := {(𝜔𝑡, 𝑡) ∈ Ω × 𝑇, 𝑡 ∈ 𝑅(𝜔)}. If
𝑇 = R𝑛 and ℬ(𝒯 ) = ℬ(R𝑛) is the usual Borel sigma-algebra on R𝑛 and if 𝑅 is closed
valued then

ℱ-measurable ⇒ Graph(𝑅) ∈ ℱ ⊗ ℬ(𝒯 ) (2.72)

If furthermore (Ω,ℱ) is complete for some measure 𝜇 then the reverse implication
holds also true see [116, Theorem 14.8], even if 𝑅 is not closed valued.

We now recall the following well-know measurability related result, that was used
in the proof of Lemma 2.3.3 and will be used again below.

Proposition 2.8.20 Castaing representation
Let (Ω,ℱ) a measurable space. Let 𝑅 : Ω � R𝑑 be a closed valued random set.

Then 𝑅 is ℱ-measurable if and only if there exists a countable family (𝑓𝑛)𝑛≥1 of
ℱ-measurable functions Ω → R𝑑 (called Castaing representation) such that for all
𝜔 ∈ Ω, 𝑅(𝜔) = {𝑓𝑛(𝜔), 𝑛 ≥ 1} (where the closure is taken in R𝑑 with respect to the
usual topology)

Proof. See [116, Theorem 14.5] or [3, Corollary 18.14]. 2

Using Proposition 2.8.20, we prove following lemma which is the pendant of Lemma
2.8.10 for random sets. We fix some probability 𝑃 on (Ω,ℱ) and denote by ℱ the 𝑃
completion of ℱ .

Lemma 2.8.21 Fix some 𝑚 ≥ 1 and let 𝑆 : Ω � R𝑚 be a ℱ-measurable and closed
valued random set. Then, there exists some ℱ-measurable and closed valued ran-
dom set ̃︀𝑆 : Ω � R𝑚 and some ̃︀Ω ∈ ℱ such that 𝑃 (̃︀Ω) = 1 and 𝑆(𝜔) = ̃︀𝑆(𝜔) for all
𝜔 ∈ ̃︀Ω.

Proof. As 𝑆 is ℱ-measurable and closed valued, we apply Proposition 2.8.20 and
get a countable family ( ̂︀𝑓𝑝 : Ω → R𝑚)𝑝≥1 of ℱ-measurable functions such that for all
𝜔 ∈ Ω

𝑆(𝜔) =
{︁̂︀𝑓𝑝(𝜔), 𝑝 ≥ 1

}︁
,

where the closure is taken in R𝑚. Fix some 𝑝 ≥ 1. We apply Lemma 2.8.10 to ̂︀𝑓𝑝
and obtain some ℱ-measurable 𝑓𝑝 : Ω → R𝑚, some Ω𝑝 ∈ ℱ𝑡 such that 𝑃 (Ω𝑝) = 1 and
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𝑓𝑝(𝜔) = ̂︀𝑓𝑝(𝜔) for all 𝜔 ∈ Ω𝑝. Introduce

̃︀Ω :=
⋂︁
𝑝≥1

Ω𝑝.

It is clear that ̃︀Ω ∈ ℱ and 𝑃 (̃︀Ω) = 1. We modify 𝑓𝑝 by setting with a slight abuse of
notation 𝑓𝑝(𝜔) = 1̃︀Ω(𝜔)𝑓𝑝(𝜔) for all 𝜔 ∈ Ω and finally, we define ̃︀𝑆 : Ω � R𝑚 by

̃︀𝑆(𝜔) := {𝑓𝑝(𝜔), 𝑝 ≥ 1},

where the closure is taken again in R𝑚. Note that for 𝜔 /∈ ̃︀Ω we have ̃︀𝑆(𝜔) = {0}. As
the countable family (𝑓𝑝 : Ω → R𝑚)𝑝≥1 is ℱ-measurable, applying again Proposition
2.8.20, we obtain that ̃︀𝑆 is ℱ-measurable. Finally, as for all 𝜔 ∈ ̃︀Ω, 𝑓𝑝(𝜔) = ̂︀𝑓𝑝(𝜔) for
all 𝑝 ≥ 1, we have that 𝑆(𝜔) = ̃︀𝑆(𝜔) and the proof is complete. 2

We propose an application of the above lemma. Recall that when the sigma-algebra
ℱ is not-complete, we only have that (loosely speaking) "measurability implies that
the graph is measurable" (see (2.72)). In the following lemma we study the reverse
implication.

Lemma 2.8.22 Fix some 𝑚 ≥ 1 and let some closed valued random set 𝑆 : Ω � R𝑚

be such that Graph(𝑆) ∈ ℱ ⊗ ℬ(R𝑛). Then, there exists some ℱ-measurable and
closed valued random set ̃︀𝑆 : Ω � R𝑚 and ̃︀Ω ∈ ℱ such that 𝑃 (̃︀Ω) = 1 and 𝑆(𝜔) =̃︀𝑆(𝜔) for all 𝜔 ∈ ̃︀Ω.

Proof. First, we establish that 𝑆 is ℱ-measurable. Let 𝒪 be an open set of R𝑚. Then
Ω×𝒪 ∈ ℱ⊗ℬ(R𝑚) and as 𝑆 is ℱ-graph measurable we have𝐺 := 𝐺𝑟𝑎𝑝ℎ(𝑆)

⋂︀
(Ω×𝒪) ∈

ℱ ⊗ ℬ(R𝑚). Then

{𝜔 ∈ Ω, 𝑆(𝜔) ∩ 𝒪 ≠ ∅} = {𝜔 ∈ Ω, ∃ℎ ∈ R𝑚, ℎ ∈ 𝑆(𝜔) ∩ 𝒪}
= {𝜔 ∈ Ω, ∃ℎ ∈ R𝑚, (𝜔, ℎ) ∈ 𝐺}
= 𝑝𝑟𝑜𝑗Ω𝐺,

and applying the Projection Theorem (see for example Theorem 3.23 in [37]) we
obtain that {𝜔 ∈ Ω, 𝑆(𝜔) ∩ 𝒪 ≠ ∅} ∈ ℱ : 𝑆 is ℱ-measurable.
Now, we can apply Lemma 2.8.21 and obtain a ℱ-measurable and closed valued
random set ̃︀𝑆 : Ω � R𝑚, ̃︀Ω ∈ ℱ such that 𝑃 (̃︀Ω) = 1 and 𝑆(𝜔) = ̃︀𝑆(𝜔), for all 𝜔 ∈ ̃︀Ω.
This achieves the proof. 2

We finish this section with the definition of a normal integrand (see also [116,
Definition 14.27] or [97, Section 3, Chapter 5] ) which is a fundamental underlying
concept also this chapter and in Chapter 4. The relevance of the normal integrand
concept in this type of optimisation problems was illustrated for instance in [106]
or [107].
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Definition 2.8.23 A function 𝑁 : Ω × R𝑑 → R ∪ {±∞} is a ℱ-normal integrand if
the following random set 𝑆𝑁 : Ω � R× R𝑑 defined by

𝑆𝑁(𝜔) :=
{︀
(𝑙, ℎ) ∈ R× R𝑑, 𝑁(𝜔, ℎ) ≤ 𝑙

}︀
,

is closed valued and ℱ-measurable.

Remark 2.8.24 [116, Corollary 14.34 ] provides interesting insight: a normal in-
tegrand is jointly-measurable and lower semicontinus in ℎ and the reverse holds
true if ℱ is complete. As our sigma-algebra are not complete we will not be able
to use this result and the essential ingredient will be [116, Theorem 14.37] that
guarantees that 𝜔 ∈ Ω → infℎ∈R𝑛 𝑁(𝜔𝑡, ℎ) is ℱ-measurable and is used in the proof
of of Lemma 2.6.11.

We have just seen that a normal integrand is always jointly-measurable and lower
semicontinous in ℎ and that the reverse is true only if the sigma-algebra is com-
plete. In the following lemma, we study the reverse implication when the sigma-
algebra is not complete.

Lemma 2.8.25 Let 𝑁 : Ω × R𝑚 → R ∪ {±∞}, for some 𝑚 ≥ 1 fixed, be a ℱ ⊗
ℬ(R𝑚)-measurable random set such that for all 𝜔 ∈ Ω, ℎ ∈ R𝑚 → 𝑁(𝜔, ℎ) is lower
semicontinous. Then there exists ̃︀Ω ∈ ℱ such that 𝑃 (̃︀Ω) = 1 and such that 𝑁1̃︀Ω×R𝑚

is a ℱ-normal integrand.

Proof. We introduce 𝑆𝑁 : Ω � R× R𝑚 (see Definition 2.8.23)

𝑆𝑁(𝜔) := {(𝑙, ℎ) ∈ R× R𝑚, 𝑁(𝜔, ℎ) ≤ 𝑙} .

As for all 𝜔 ∈ Ω, ℎ ∈ R𝑚 → 𝑁(𝜔, ℎ) is lower semicontinous, 𝑆𝑁 is closed valued. Set

𝐺 :=
⋂︁

𝑛∈N, 𝑛≥1

⋃︁
𝑞∈Q

{︂
(𝜔𝑡, 𝑙, ℎ) ∈ Ω𝑡 × R× R𝑚, 𝑞 ≤ 𝑙 ≤ 𝑞 +

1

𝑛
,𝑁(𝜔, ℎ) ≤ 𝑞 +

1

𝑛

}︂
As 𝑁 is ℱ ⊗ ℬ(R𝑚)-measurable we have for some 𝑞 ∈ Q, 𝑛 ≥ fixed that{︂

(𝜔, ℎ) ∈ Ω× R𝑚, 𝑁(𝜔, ℎ) ≤ 𝑞 +
1

𝑛

}︂
∈ ℱ ⊗ ℬ(R𝑚),

therefore
{︀
(𝜔𝑡, 𝑙, ℎ) ∈ Ω𝑡 × R× R𝑚, 𝑞 ≤ 𝑙 ≤ 𝑞 + 1

𝑛
, 𝑁(𝜔, ℎ) ≤ 𝑞 + 1

𝑛

}︀
∈ ℱ⊗ℬ(R)⊗ℬ(R𝑚)

and 𝐺 ∈ ℱ ⊗ℬ(R)⊗ℬ(R𝑚) follows immediately. The fact that 𝑆𝑁 is ℱ-graph meas-
urable follows from 𝐺 = Graph(𝑆𝑁). Indeed, Let (𝜔𝑡, 𝑙, ℎ) ∈ Graph(𝑆𝑁). It is clear
that for all 𝑛 ≥ 1, there exists some rational 𝑞𝑛 such that 𝑞𝑛 ≤ 𝑙 ≤ 𝑞𝑛 +

1
𝑛

and such
that 𝑁(𝜔, ℎ) ≤ 𝑙 ≤ 𝑞𝑛 +

1
𝑛

and (𝜔𝑡, 𝑙, ℎ) ∈ 𝐺. Now, let (𝜔𝑡, 𝑙, ℎ) ∈ 𝐺. There exists a
sequence (𝑞𝑛)𝑛≥1 of rational numbers converging to 𝑙, such that 𝑞𝑛 ≤ 𝑙 ≤ 𝑞𝑛 +

1
𝑛

and
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𝑁(𝜔, ℎ) ≤ 𝑞𝑛 +
1
𝑛

for all 𝑛. Thus 𝑁(𝜔, ℎ) ≤ 𝑙 and (𝜔𝑡, 𝑥, ℎ) ∈ Graph(𝑆𝑁) follows.
Therefore, we can apply Lemma 2.8.22 to 𝑆𝑁 (with 𝑚 = 𝑚+ 1) and we obtain some
ℱ-measurable and closed valued random set ̃︀𝑆 : Ω � R𝑚 and ̃︀Ω ∈ ℱ such that
𝑃 (̃︀Ω) = 1 and 𝑆𝑁(𝜔) = ̃︀𝑆(𝜔) for all 𝜔 ∈ ̃︀Ω. For 𝜔 /∈ ̃︀Ω we set ̃︀𝑆(𝜔) = R+ × R𝑚. It is
easy to see that ̃︀𝑆𝑁 is still closed valued and ℱ-measurability. We prove now that
𝑁1̃︀Ω×R𝑚 is a ℱ-normal integrand. For ease of notation, we set ̃︀𝑁 := 𝑁1̃︀Ω×R𝑚. Then

𝑆 ̃︀𝑁(𝜔) :=
{︁
(𝑙, ℎ) ∈ R× R𝑚, ̃︀𝑁(𝜔, ℎ) ≤ 𝑙

}︁
=

{︃
{(𝑙, ℎ) ∈ R× R𝑚, 𝑁(𝜔, ℎ) ≤ 𝑙} = 𝑆𝑁(𝜔) = ̃︀𝑆(𝜔), if 𝜔 ∈ ̃︀Ω
{(𝑙, ℎ) ∈ R× R𝑚, 0 ≤ 𝑙} = R+ × R𝑚 = ̃︀𝑆(𝜔), otherwise

= ̃︀𝑆(𝜔).
Recalling Definition 2.8.23, we have proven that ̃︀𝑁 is a ℱ-normal integrand. 2

2.8.4 Proof of technical results
Finally, we provide the missing result of the chapter: the proof of Lemma 2.2.2
Proof of Lemma 2.2.2. We refer to [33, Section 6.1] for the definition and vari-
ous properties of generalized conditional expectations. In particular since 𝐸(ℎ+) =∫︀
Ω𝑡 ℎ

+𝑑𝑃𝑡 < ∞, 𝐸(ℎ|ℱ𝑠) is well-defined (in the generalised sense) for all 0 ≤ 𝑠 ≤ 𝑡
(see [33, Lemma 6.2] ). Similarly, from Proposition 2.8.4 we have that 𝜙 : Ω𝑠 →
R ∪ {±∞} is well-defined (in the generalised sense) and ℱ𝑠-measurable.
As 𝜙(𝑋1, . . . , 𝑋𝑠) is ℱ𝑠-measurable, it remains to prove that𝐸(𝑔ℎ) = 𝐸(𝑔𝜙(𝑋1, . . . , 𝑋𝑠))
for all 𝑔 : Ω𝑠 → R+ non-negative, ℱ𝑠-measurable and such that 𝐸(𝑔ℎ) is well-defined
in the generalised sense, 𝑖.𝑒 such that 𝐸 (𝑔ℎ)+ < ∞ or 𝐸 (𝑔ℎ)− < ∞. Recalling the
notations of the beginning of Section 2.2 and using the Fubini Theorem for the
third and fourth equality (see Proposition 2.8.4 and Remark 2.8.5), we get that

𝐸(𝑔ℎ) = 𝐸(𝑔(𝑋1, . . . , 𝑋𝑠)ℎ(𝑋1, . . . , 𝑋𝑡)) =

∫︁
Ω𝑇

𝑔(𝜔1, . . . , 𝜔𝑠)ℎ(𝜔1, . . . , 𝜔𝑡)𝑃 (𝑑𝜔
𝑇 )

=

∫︁
Ω𝑡

𝑔(𝜔1, . . . , 𝜔𝑠)ℎ(𝜔1, . . . , 𝜔𝑡)𝑞𝑡(𝜔𝑡|𝜔𝑡−1) . . . 𝑞𝑠+1(𝜔𝑠+1|𝜔𝑠)𝑃𝑠(𝑑𝜔𝑠)

=

∫︁
Ω𝑠

𝑔(𝜔1, . . . , 𝜔𝑠)

(︃∫︁
Ω𝑠+1×...×Ω𝑡

ℎ(𝜔1, . . . , 𝜔𝑠, 𝜔𝑠+1, . . . , 𝜔𝑡)𝑞𝑡(𝜔𝑡|𝜔𝑡−1) . . . 𝑞𝑠+1(𝜔𝑠+1|𝜔𝑠)

)︃
𝑃𝑠(𝑑𝜔

𝑠)

=

∫︁
Ω𝑠

𝑔(𝜔1, . . . , 𝜔𝑠)𝜙(𝜔1, . . . , 𝜔𝑠)𝑃𝑠(𝑑𝜔
𝑠)

= 𝐸(𝑔(𝑋1, . . . , 𝑋𝑠)𝜙(𝑋1, . . . , 𝑋𝑡)),

which concludes the proof. 2



CHAPTER 3

No-arbitrage with multiple-priors

This chapter presents some results on the no-arbitrage condition with multiple-
priors (𝑖.𝑒. in the presence of uncertainty) obtained in [20] (submitted for publica-
tion) and in [21] which is in preparation.

3.1 Introduction
In this chapter, we study some characterisation of no-arbitrage with multiple-
priors that can be seen as a prelude to Chapter 4. Indeed, one of the main reason
why we focus on the question of no-arbitrage in the presence of uncertainty is its
central role to solve the maximisation of worst-case expected utility problem by
primal approach (as already evident in Chapter 2 in a mono-prior setting) and as
we will see in Chapter 4. Recall from Chapter 1 that by uncertainty we refers
to Knightian uncertainty a concept that distinguishes between the “unknown un-
known", or uncertainty, and the “known unknown", or risk.
First, we revisit the definxition introduced in [25] (the 𝑁𝐴(𝒬𝑇 ) condition or quasi-
sure no-arbitrage, see Assumption 3.4.1) which is a natural extension of the clas-
sical arbitrage. This is justified by the extension in [25, Fundamental Pricing The-
orem] of the classical and well-know FTAP (where a set of martingale measures
equivalent, in a certain sense, to the initial family is introduced) together with sub-
sequent results on worst-case utility maximisation (see [99], [7], [98] and Chapter
4). We recall however that Assumption 3.4.1 is by far not the only solution: model
independent arbitrage as in [1] or a scenarii based approach as in [26], [27] and [28]
are alternative choices (see Chapter 1 for a more detailed discussion on the subject).
In this chapter, we are first interested in providing alternative but equivalent for-
mulation of the 𝑁𝐴(𝒬𝑇 ) condition: namely a quantitative (Definition 3.4.4) and a
geometric (Definition 3.4.6) characterisation. Both the quantitative and geometric
interpretations are not new and can be seen as generalisations of [112, Proposition
3.3] and [84, Theorem 3] (see also [62, Theorem 1.48 p30]) in the presence of un-
certainty and in the framework of [25]. As already evident in Chapter 2 and as we
will see in Chapter 4, the quantitative characterisation is particularly relevant in
the context of expected utility maximisation for utility function defined on the half
real line. Indeed, in the primal approach, the proof of the existence of a maxim-
iser relies on some compacity argument provided by the no-arbitrage condition. In
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the case of unbounded utility function defined on the whole real line, the quant-
itative characterisation (together with some condition on asymptotic elasticity) is
also essential: the idea was introduced in [112] and will be illustrated in Section
3.5 when we use it in a simple one-period model with multiple-priors and prove
Theorem 3.5.13. The geometric interpretation is somehow a different formulation
of the quantitative interpretation that is actually very intuitive. It is related to the
concept of the conditional support of the traded asset price increments which plays
an important role when looking at arbitrage question (see Section 3.3) and will be
useful to obtain some measurability result in Proposition 3.4.9.
We also focus on some of the measurability issues underpinning the framework
introduced in [25]. A key element of this framework is the equivalence between
the global and local version of the no-arbitrage: namely [25, Theorem 5.5] that
uses measurable selection and Castaing’s representation (see Proposition 2.8.20 in
Chapter 2). We will rely on this theorem to prove the equivalence of the different
assumptions in Theorem 3.4.7. Then, in Proposition 3.4.9, we obtain as well some
key measurability properties. This property (together with some integrability con-
dition) is important to control the behaviour of the optimal strategy in the case
maximisation of expected utility function defined on the half real-line: this was
the case in mono-prior situation (see Theorem 2.4.17 in Chapter 2) and we will use
the result in Chapter 5. Finally, we introduce another stronger no-arbitrage defin-
ition that will be used in Chapter 4. In Theorem 3.6.4 we establish the equivalence
between the local and global version of the strong no-arbitrage condition and prove
that the full-measure set on which the local strong no-arbitrage holds is coanalytic
(see Section 3.2.2) while in the case of the no-arbitrage of [25] the full-measure set
is only universally-measurable. We illustrate how the fact that we obtain a coana-
lytic set can be useful in Propositions 3.6.6 and 3.6.7. These questions are related
to issues arising when handling non-dominated set of probability measures in the
dynamic programming and will be at the heart of the difficulties of Chapter 4. In
the same spirit, [7, Theorem 3.3, Remark 3.6] proposes a stronger version of As-
sumption 3.4.1: the local no-arbitrage condition is assumed to hold for all 𝜔𝑡 which
is an other way to simplify measurability issues (see also Remark 3.6.9). Finally,
in Proposition 3.6.11 and 3.6.12 we propose a quantitative characterisation of the
strong no-arbitrage condition and in Proposition, we present an extension of the
classical FTAP in a setting that does not require technical measurability assump-
tions.
As in [25] and [99] our proof relies heavily on measure theory tools, namely on ana-
lytic sets that will be used again in Chapter 4.
The chapter is structured as follows: section 3.2 recall some important definitions
and some key properties of analytic sets before our framework presentation. Sec-
tion 3.3 introduces the multiple-priors conditional support and establish important
measurabiliy properties. Section 3.4 presents the various no-arbitrage conditions
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and proves their equivalence in Theorem 3.4.7. As a simple application in Section
3.5, Theorem 3.4.7 is used in a one period model to solve the problem of maximising
worst-case expected utility for an unbounded utility function defined on R. In sec-
tion 3.6 we revisit the strong no-arbitrage condition 𝑠𝑁𝐴(𝒬𝑇 ) and illustrate some
of its properties. Finally, section 3.7 collects some technical results and proofs.

3.2 Definitions and set-up
To model uncertainty and describe the multi-period financial market where in-
vestors can trade actively at each period we work under the framework introduced
in [25] that we describe together with our notations below.
The same framework and notation will also be used in Chapters 4 and 5 where
some of these elements will be recalled for the convenience of the reader.

3.2.1 Polar sets and universal sigma-algebra
For any Polish space 𝑋 (𝑖.𝑒 complete and separable metric space), we denote by
ℬ(𝑋) its Borel sigma-algebra and by P(𝑋) the set of all probability measures on
(𝑋,ℬ(𝑋)). We recall that P(𝑋) endowed with the weak topology is a Polish space
(see [13, Propositions 7.20 p127, 7.23 p131]). If 𝑃 in P(𝑋), ℬ𝑃 (𝑋) will be the
completion of ℬ(𝑋) with respect to 𝑃 and the universal sigma-algebra is defined by

ℬ𝑐(𝑋) :=
⋂︁

𝑃∈P(𝑋)

ℬ𝑃 (𝑋).

It is clear that ℬ(𝑋) ⊂ ℬ𝑐(𝑋). In the rest of the chapter we will use the same nota-
tion for 𝑃 in P(𝑋) and for its (unique) extension on ℬ𝑐(𝑋). A function 𝑓 : 𝑋 → 𝑌

(where 𝑌 is an other Polish space) is universally-measurable or ℬ𝑐(𝑋)-measurable
(resp. Borel-measurable or ℬ(𝑋)-measurable) if for all 𝐵 ∈ ℬ(𝑌 ), 𝑓−1(𝐵) ∈ ℬ𝑐(𝑋)

(resp. 𝑓−1(𝐵) ∈ ℬ(𝑋)).
For a given 𝒫 ⊂ P(𝑋), a set 𝑁 ⊂ 𝑋 is called a 𝒫-polar if for all 𝑃 ∈ 𝒫, there exists
some 𝐴𝑃 ∈ ℬ𝑐(𝑋) such that 𝑃 (𝐴𝑃 ) = 0 and 𝑁 ⊂ 𝐴𝑃 . We say that a property holds
true 𝒫-quasi-surely (q.s.), if it is true outside a 𝒫-polar set. Finally we say that a
set is of 𝒫-full measure if its complement is a 𝒫-polar set.

3.2.2 Analytic sets
An analytic set of 𝑋 is the continuous image of a Polish space, see [3, Theorem
12.24 p447]. We denote by 𝒜(𝑋) the set of analytic sets of 𝑋 and recall some key
properties that will be often used in the rest of the chapter. The projection of an
analytic set is an analytic set see [13, Proposition 7.39 p165]) and a countable union
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or intersection of analytic sets is an analytic set (see [13, Corollary 7.35.2 p160]).
However the complement of an analytic set does not need to be an analytic set. We
denote by 𝒞𝐴(𝑋) := {𝐴 ∈ 𝑋, 𝑋∖𝐴 ∈ 𝒜(𝑋)} the set of all coanalytic sets of 𝑋. We
have that (see [13, Proposition 7.36 p161, Corollary 7.42.1 p169])

ℬ(𝑋) ⊂ 𝒜(𝑋) ∩ 𝒞𝒜(𝑋) and 𝒜(𝑋) ∪ 𝒞𝒜(𝑋) ⊂ ℬ𝑐(𝑋). (3.1)

Now, for 𝐷 ∈ 𝒜(𝑋), a function 𝑓 : 𝐷 → R ∪ {±∞} is lower-semianalytic (resp.
upper-semianalytic) on 𝑋 if {𝑥 ∈ 𝑋 𝑓(𝑥) < 𝑐} ∈ 𝒜(𝑋) (resp. {𝑥 ∈ 𝑋 𝑓(𝑥) > 𝑐} ∈
𝒜(𝑋)) for all 𝑐 ∈ R. We denote by ℒ𝑆𝐴(𝑋) (resp. 𝒰𝑆𝐴(𝑋)) the set of all lower-
semianalytic (resp. upper-semianalytic) functions on 𝑋. From (3.1) it is clear that
if 𝑓 ∈ ℒ𝑆𝐴(𝑋)∪𝒰𝑆𝐴(𝑋) then 𝑓 is ℬ𝑐(𝑋)-measurable. Finally, a function 𝑓 : 𝑋 → 𝑌

(where 𝑌 is another Polish space) is analytically-measurable if for all 𝐵 ∈ ℬ(𝑌 ),
𝑓−1(𝐵) belongs to the sigma-algebra generated by 𝒜(𝑋). From (3.1), it is clear that
if 𝑓 is analytically-measurable, then 𝑓 is universally-measurable.

3.2.3 The measurable spaces
We fix a time horizon 𝑇 ∈ N and introduce a sequence (Ω𝑡)1≤𝑡≤𝑇 of Polish spaces.
We denote by

Ω𝑡 := Ω1 × · · · × Ω𝑡,

with the convention that Ω0 is reduced to a singleton. An element of Ω𝑡 will be
denoted by 𝜔𝑡 = (𝜔1, . . . , 𝜔𝑡) = (𝜔𝑡−1, 𝜔𝑡) for (𝜔1, . . . , 𝜔𝑡) ∈ Ω1×· · ·×Ω𝑡 and (𝜔𝑡−1, 𝜔𝑡) ∈
Ω𝑡−1 × Ω𝑡 (to avoid heavy notation we drop the dependancy in 𝜔0). It is well know
that ℬ(Ω𝑡) = ℬ(Ω𝑡−1) ⊗ ℬ(Ω𝑡), see [3, Theorem 4.44 p149]. However we have only
that ℬ𝑐(Ω𝑡−1)⊗ ℬ𝑐(Ω𝑡) ⊂ ℬ𝑐(Ω𝑡).

3.2.4 Stochastic kernels and definition of 𝒬𝑇

For all 0 ≤ 𝑡 ≤ 𝑇 − 1, we denote by 𝒮𝐾𝑡+1 the set of universally-measurable
stochastic kernel on Ω𝑡+1 given Ω𝑡 (see [13, Definition 7.12 p134, Lemma 7.28 p174]
). Fix some 1 ≤ 𝑡 ≤ 𝑇 , 𝑃𝑡−1 ∈ P(Ω𝑡−1) and 𝑝𝑡 ∈ 𝒮𝐾𝑡. Using Fubini’s Theorem, see
[13, Proposition 7.45 p175], we define a probability on Ω𝑡 by setting for all 𝐴 ∈ ℬ(Ω𝑡)

𝑃𝑡−1 ⊗ 𝑝𝑡(𝐴) :=

∫︁
Ω𝑡−1

∫︁
Ω𝑡

1𝐴(𝜔
𝑡−1, 𝜔𝑡)𝑝𝑡(𝑑𝜔𝑡, 𝜔

𝑡−1)𝑃𝑡−1(𝑑𝜔
𝑡−1). (3.2)

For all 0 ≤ 𝑡 ≤ 𝑇 − 1, we consider a random set 𝒬𝑡+1 : Ω
𝑡 � P(Ω𝑡+1): 𝒬𝑡+1(𝜔

𝑡) can be
seen as the set of possible priors for the 𝑡-th period given the state 𝜔𝑡 until time 𝑡.

Assumption 3.2.1 For all 0 ≤ 𝑡 ≤ 𝑇 − 1, 𝒬𝑡+1 is a non-empty and convex valued
random set such that

Graph(𝒬𝑡+1) =
{︀
(𝜔𝑡, 𝑃 ) ∈ Ω𝑡 ×P(Ω𝑡+1), 𝑃 ∈ 𝒬𝑡+1(𝜔

𝑡)
}︀
∈ 𝒜

(︀
Ω𝑡 ×P(Ω𝑡+1)

)︀
.
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From the Jankov-von Neumann Theorem, see [13, Proposition 7.49 p182], there
exists some analytically-measurable and thus ℬ𝑐(Ω𝑡)-measurable 𝑞𝑡+1 : Ω

𝑡 → P(Ω𝑡+1)
such that for all 𝜔𝑡 ∈ Ω𝑡, 𝑞𝑡+1(·, 𝜔𝑡) ∈ 𝒬𝑡+1(𝜔

𝑡) (recall that for all 𝜔𝑡 ∈ Ω𝑡, 𝒬𝑡+1(𝜔
𝑡) ̸=

∅). In other words 𝑞𝑡+1 is a universally-measurable selector of 𝒬𝑡+1. Note as well
that 𝑞𝑡+1 ∈ 𝒮𝐾𝑡+1. For all 1 ≤ 𝑡 ≤ 𝑇 we define 𝒬𝑡 ⊂ P (Ω𝑡) by

𝒬𝑡 := {𝑄1 ⊗ 𝑞2 ⊗ · · · ⊗ 𝑞𝑡, 𝑄1 ∈ 𝒬1, 𝑞𝑠+1 ∈ 𝒮𝐾𝑠+1, 𝑞𝑠+1(·, 𝜔𝑠) ∈ 𝒬𝑠+1(𝜔
𝑠) 𝑄𝑠-a.s. ∀ 1 ≤ 𝑠 ≤ 𝑡− 1 },

(3.3)

where if 𝑄𝑡 = 𝑄1 ⊗ 𝑞2 ⊗ · · · ⊗ 𝑞𝑡 ∈ 𝒬𝑡 we denote by 𝑄𝑠 := 𝑄1 ⊗ 𝑞2 ⊗ · · · ⊗ 𝑞𝑠 for any
2 ≤ 𝑠 ≤ 𝑡. It is clear that 𝑄𝑠 ∈ 𝒬𝑠. We will often use in the chapter the following
construction: let 𝑄 = 𝑄0⊗ 𝑞1 · · · ⊗ 𝑞𝑡 ∈ 𝒬𝑡 be fixed and let some 𝑞*𝑡+1 ∈ 𝒮𝐾𝑡+1 be such
that there exists ̃︀Ω𝑡 ∈ ℬ𝑐(Ω𝑡) with 𝑄(̃︀Ω𝑡) = 1 and 𝑞*𝑡+1(·, 𝜔𝑡) ∈ 𝒬𝑡+1(𝜔

𝑡) for all 𝜔𝑡 ∈ ̃︀Ω𝑡.
We define 𝑄* ∈ P(Ω𝑡+1) by

𝑄* = 𝑄0 ⊗ 𝑞1 · · · ⊗ 𝑞𝑡 ⊗ 𝑞*𝑡+1 = 𝑄⊗ 𝑞*𝑡+1.

Then, it is clear that 𝑄* ∈ 𝒬𝑡+1.

3.2.5 The traded assets and strategies
Let 𝑆 := {𝑆𝑡, 0 ≤ 𝑡 ≤ 𝑇} be a (ℬ𝑐(Ω𝑡))0≤𝑡≤𝑇 -adapted 𝑑-dimensional process where for
0 ≤ 𝑡 ≤ 𝑇 , 𝑆𝑡 = (𝑆𝑖𝑡)1≤𝑖≤𝑑 represents the price of 𝑑 risky securities in the financial
market in consideration. We make the following assumptions already stated in
[99].

Assumption 3.2.2 We have that 𝑆 is (ℬ(Ω𝑡))0≤𝑡≤𝑇 -adapted.

Remark 3.2.3 If we do not assume Assumption 3.2.2, we cannot obtain some crucial
measurability properties in Lemma 3.3.2

There exists also a riskless asset for which we assume a price constant equal to
1, for sake of simplicity. Without this assumption, all the developments below could
be carried out using discounted prices. The notation Δ𝑆𝑡 := 𝑆𝑡 − 𝑆𝑡−1 will often be
used. If 𝑥, 𝑦 ∈ R𝑑 then the concatenation 𝑥𝑦 stands for their scalar product. The
symbol | · | denotes the Euclidean norm on R𝑑 (or on R).
Trading strategies are represented by 𝑑-dimensional processes 𝜑 := {𝜑𝑡, 1 ≤ 𝑡 ≤ 𝑇}
where for all 1 ≤ 𝑡 ≤ 𝑇 , 𝜑𝑡 = (𝜑𝑖𝑡)1≤𝑖≤𝑑 represents the investor’s holdings in each of
the 𝑑 assets at time 𝑡. We assume that 𝜑𝑡 is ℬ𝑐(Ω𝑡−1)-measurable for all 1 ≤ 𝑡 ≤ 𝑇 .
The family of all such trading strategies is denoted by Φ. We assume that trading
is self-financing. As the riskless asset’s price is constant 1, the value at time 𝑡 of a
portfolio 𝜑 starting from initial capital 𝑥 ∈ R is given by

𝑉 𝑥,𝜑
𝑡 = 𝑥+

𝑡∑︁
𝑠=1

𝜑𝑠Δ𝑆𝑠.
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3.3 The multiple-priors conditional support of Δ𝑆𝑡+1

and related results
We introduce the following definitions which is the pendant in the multiple-priors
setting of Definition 2.3.2 in Chapter 2.

Definition 3.3.1 For all 0 ≤ 𝑡 ≤ 𝑇 − 1, the random sets ̃︀𝐷𝑡+1, ̂︀𝐷𝑡+1 and 𝐷𝑡+1 : Ω𝑡 �
R𝑑 are defined bỹ︀𝐷𝑡+1(𝜔𝑡) :=

⋂︁{︀
𝐴 ⊂ R𝑑, closed, 𝑃𝑡+1

(︀
Δ𝑆𝑡+1(𝜔

𝑡, .) ∈ 𝐴
)︀
= 1, ∀𝑃𝑡+1 ∈ 𝒬𝑡+1(𝜔

𝑡)
}︀
,̂︀𝐷𝑡+1(𝜔𝑡) := Conv ̃︀𝐷𝑡+1(𝜔𝑡) and 𝐷𝑡+1(𝜔𝑡) := Aff

(︁ ̃︀𝐷𝑡+1(𝜔𝑡)
)︁
,

where the closure in taken in R𝑑 for the usual topology.

The reasons for introducing 𝐷𝑡+1 are twofold. First, from a theoretical stand-
point, we want to relate the properties of the support of Δ𝑆𝑡+1 to the no-arbitrage
definition. Secondly, and this will be important in Chapter 4, for a strategy 𝜑 ∈ Φ

such that 𝜑𝑡+1(𝜔𝑡) ∈ 𝐷𝑡+1(𝜔𝑡) one have nice properties (see (3.5) in Definition 3.4.4).
If 𝐷𝑡+1(𝜔𝑡) = R𝑑 then, intuitively, there are no redundant assets for all model spe-
cification. Otherwise, for any ℬ𝑐(Ω𝑡)-measurable strategy 𝜑𝑡+1, one may always
replace 𝜑𝑡+1 by its orthogonal projection 𝜑⊥

𝑡+1(𝜔
𝑡, ·) on 𝐷𝑡+1(𝜔𝑡) without changing

the portfolio value (see Remark 4.5.5 in Chapter 4 below and [99, Lemma 2.6]). .
The following lemma, similar to [25, Lemma 4.3] or Lemma 2.3.3 in Chapter 2
establishes some important measurability properties of 𝐷𝑡+1.

Lemma 3.3.2 Let Assumption 3.2.1 and 3.2.2 hold true and 0 ≤ 𝑡 ≤ 𝑇 − 1 be fixed.
Then ̃︀𝐷𝑡+1, ̂︀𝐷𝑡+1 and 𝐷𝑡+1 are non-empty, closed valued and for all open set 𝑂 ⊂ R𝑑{︁

𝜔𝑡 ∈ Ω𝑡, 𝑂 ∩ ̃︀𝐷𝑡+1(𝜔𝑡) ̸= ∅
}︁
∈ 𝒜(Ω𝑡). (3.4)

Furthermore ̃︀𝐷𝑡+1, ̂︀𝐷𝑡+1 and𝐷𝑡+1 are ℬ𝑐(Ω𝑡)-measurable and we have that Graph(𝐷𝑡+1) ∈
ℬ𝑐(Ω𝑡)⊗ ℬ(R𝑑).

Remark 3.3.3 It is possible to show that {𝜔𝑡 ∈ Ω𝑡, 𝑂 ∩𝐷𝑡+1(𝜔𝑡) ̸= ∅} ∈ 𝒜(Ω𝑡) and
that Graph(𝐷𝑡+1) ∈ 𝒜(Ω𝑡) × ℬ(R𝑑) ⊂ 𝒜(Ω𝑡 × R𝑑). As this will not be used we have
not included the proof which is technically not difficult but rather long and tedius.

Proof. We use similar arguments as in the proof of [25, Lemma 4.3]. The proof
relies also on Lemma 4.8.5 stated in the appendix of Chapter 4. It is clear from its
definition that for all 𝜔𝑡 ∈ Ω𝑡, ̃︀𝐷𝑡+1(𝜔𝑡) is a non-empty and closed subset of R𝑑. Let
𝑂 be an open set in R𝑑. We set

𝜇𝑂 : (𝜔𝑡, 𝑃 ) ∈ Ω𝑡 ×P(Ω𝑡+1) → 𝜇𝑂(𝜔
𝑡, 𝑃 ) := 𝑃

(︀
Δ𝑆𝑡+1(𝜔

𝑡, .) ∈ 𝑂
)︀
= 𝐹𝑂(𝜔

𝑡, 𝑃, 1, 0)
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(see (4.92) for the definition of 𝐹𝑂) and we prove that (3.4) holds true. Using Lemma
4.8.5, we get that 𝜇𝑂 is ℬ(Ω𝑡)⊗ℬ(P(Ω𝑡+1))-measurable. By definition of ̃︀𝐷𝑡+1(𝜔𝑡) we
get that

{𝜔𝑡 ∈ Ω𝑡, ̃︀𝐷𝑡+1(𝜔𝑡) ∩𝑂 ̸= ∅} = {𝜔𝑡 ∈ Ω𝑡,∃𝑃 ∈ 𝒬𝑡+1(𝜔
𝑡), 𝜇𝑂(𝜔

𝑡, 𝑃 ) > 0}
= 𝑃𝑟𝑜𝑗Ω𝑡

(︀{︀
(𝜔𝑡, 𝑃 ) ∈ Ω𝑡 ×P(Ω𝑡+1), 𝜇𝑂(𝜔

𝑡, 𝑃 ) > 0
}︀
∩ Graph(𝒬𝑡+1)

)︀
.

We have that{︀
(𝜔𝑡, 𝑃 ) ∈ Ω𝑡 ×P(Ω𝑡+1), 𝜇𝑂(𝜔

𝑡, 𝑃 ) > 0
}︀
∈ ℬ(Ω𝑡)⊗ ℬ(P(Ω𝑡+1)) ⊂ 𝒜(Ω𝑡 ×P(Ω𝑡+1)),

see (3.1) and as Graph(𝒬𝑡+1) ∈ 𝒜(Ω𝑡 × P(Ω𝑡+1)) (see Assumption 3.2.1, [13, Pro-
position 7.39] we obtain that {𝜔𝑡 ∈ Ω𝑡, ̃︀𝐷𝑡+1(𝜔𝑡) ∩ 𝑂 ̸= ∅} ∈ 𝒜(Ω𝑡) ⊂ ℬ𝑐(Ω𝑡) and
therefore (3.4) is true. Recalling the definition of measurability for random set (see
Definition 2.8.19 in Chapter 2) and (3.1), ̃︀𝐷𝑡+1 is ℬ𝑐(Ω𝑡)-measurable . We apply now
[116, Exercise 14.12] and obtain that 𝐷𝑡+1 is ℬ𝑐(Ω𝑡)-measurable 1. Similarly using
[116, Exercise 14.12, Proposition 14.2], we get that ̂︀𝐷𝑡+1 is ℬ𝑐(Ω𝑡)-measurable. The
fact that Graph(𝐷𝑡+1) ∈ ℬ𝑐(Ω𝑡)⊗ ℬ(R𝑑) follows from [116, Theorem 14.8]. 2

3.4 Quantitative no-arbitrage, geometric no-arbitrage
and 𝑁𝐴(𝒬𝑇 )

3.4.1 Different notions of no-arbitrage and main results
First, we recall the no-arbitrage condition 𝑁𝐴(𝒬𝑇 ) (also referred to as quasi-sure
no-arbitrage) as introduced in [25].

Definition 3.4.1 The𝑁𝐴(𝒬𝑇 ) condition holds true if for all 𝜑 ∈ Φ, 𝑉 0,𝜑
𝑇 ≥ 0 𝒬𝑇 -q.s. ⇒

𝑉 0,𝜑
𝑇 = 0 𝒬𝑇 -q.s.

Defintion 3.4.1 is a natural and intuitive extension of the classical mono-prior
arbitrage condition. This argument is strengthened by the FTAP generalisation
proved in [25]: under appropriate measurability conditions the 𝑁𝐴(𝒬𝑇 ) is equival-
ent to the following: for all 𝑄 ∈ 𝒬𝑇 , there exists some 𝑃 ∈ ℛ𝑇 such that 𝑄 ≪ 𝑃

where

ℛ𝑇 := {𝑃 ∈ P(Ω𝑇 ), ∃𝑄′ ∈ 𝒬𝑇 , 𝑃 ≪ 𝑄
′
and 𝑅 is a martingale measure}.

The classical notion of equivalent martingale measure is replaced by the fact that
for all prior 𝑄 ∈ 𝒬𝑇 , there exists a martingale measure 𝑃 such that 𝑄 is absolutely

1Recall that in the proof of Lemma 2.3.3 in Chapter 2 we have given the details of the arguments
of [116, Exercise 14.12]
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continuous with respect to 𝑃 and one can find an other prior 𝑄′ ∈ 𝒬𝑇 such that 𝑃
is absolutely continuous with respect to 𝑄′.
The following local version of the no-arbitrage will be very useful.

Definition 3.4.2 For 𝜔𝑡 ∈ Ω𝑡 fixed, we say that the 𝑁𝐴(𝒬𝑡+1(𝜔
𝑡)) condition holds

true if for all ℎ ∈ R𝑑, ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0 𝒬𝑡+1(𝜔

𝑡)-q.s. implies that ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) =

0 𝒬𝑡+1(𝜔
𝑡)-q.s. We define also

Ω𝑡
𝑁𝐴 := {𝜔𝑡 ∈ Ω𝑡, 𝑁𝐴(𝒬𝑡+1(𝜔

𝑡)) holds true}.

We recall the first part of [25, Theorem 4.5] which establishes the link between the
global version 𝑁𝐴(𝒬𝑇 ) and the local version of the no-arbitrage that we will use
below.

Theorem 3.4.3 Assume that Assumptions 3.2.1 and 3.2.2 hold true. Then the
following statements are equivalent
1. 𝑁𝐴(𝒬𝑇 ) hold true.
2. For all 0 ≤ 𝑡 ≤ 𝑇 − 1, Ω𝑡

𝑁𝐴 ∈ ℬ𝑐(Ω𝑡) is a 𝒬𝑡-full measure set.

We propose now our alternative formulations of no-arbitrage definition. First, in
the spirit of [111] and [84] (see also Chapter 2), we introduce the following quant-
itative no-arbitrage condition.

Definition 3.4.4 The quantitative no-arbitrage condition holds true if for all 0 ≤
𝑡 ≤ 𝑇 − 1, there exists some 𝒬𝑡-full measure set Ω𝑡

𝑞𝑁𝐴 ∈ ℬ𝑐(Ω𝑡) such that for all
𝜔𝑡 ∈ Ω𝑡

𝑞𝑁𝐴, there exists 𝛼𝑡(𝜔𝑡) > 0 such that for all ℎ ∈ 𝐷𝑡+1(𝜔𝑡) , ℎ ̸= 0 there exists
𝑃ℎ ∈ 𝒬𝑡+1(𝜔

𝑡) satisfying

𝑃ℎ

(︂
ℎ

|ℎ|
Δ𝑆𝑡+1(𝜔

𝑡, ·) < −𝛼𝑡(𝜔𝑡)
)︂
> 𝛼𝑡(𝜔

𝑡). (3.5)

In the case where there is only one risky asset and one period, the interpretation
of (3.5) is straightforward. It simply means that there exists a prior (i.e. some
probability 𝑃+) for which the price of the risky asset increases enough and an other
one (𝑃−) for which the price decreases, 𝑖.𝑒 𝑃± (±Δ𝑆(·) < −𝛼) > 𝛼 where 𝛼 > 0. The
number 𝛼 serves as a measure of the gain/loss and of their size. Note that for an
agent buying or selling some quantity of the risky asset, there is always a prior in
which she is exposed to a potential loss.

Remark 3.4.5 Note that (3.5) in Definition 3.4.4 can be equivalently written using
large or strict inequalities. Indeed, if (3.5) is verified: fix some 𝜔𝑡 ∈ Ω𝑡

𝑞𝑁𝐴, ℎ ∈
𝐷𝑡+1(𝜔𝑡) , ℎ ̸= 0. Then it is immediate to see that

𝑃ℎ

(︂
ℎ

|ℎ|
Δ𝑆𝑡+1(𝜔

𝑡, ·) ≤ −𝛼𝑡(𝜔𝑡)
)︂

≥ 𝑃ℎ

(︂
ℎ

|ℎ|
Δ𝑆𝑡+1(𝜔

𝑡, ·) < −𝛼𝑡(𝜔𝑡)
)︂

≥ 𝛼𝑡(𝜔
𝑡).
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Now, if (3.5) is verified but with large inequalities, then again for some 𝜔𝑡 ∈ Ω𝑡
𝑞𝑁𝐴,

ℎ ∈ 𝐷𝑡+1(𝜔𝑡) , ℎ ̸= 0 fixed, we have that
{︁

ℎ
|ℎ|Δ𝑆𝑡+1(𝜔

𝑡, ·) ≤ −𝛼𝑡(𝜔𝑡)
}︁
⊂
{︁

ℎ
|ℎ|Δ𝑆𝑡+1(𝜔

𝑡, ·) < −𝛼𝑡(𝜔𝑡)
2

}︁
.

Thus

𝑃ℎ

(︂{︂
ℎ

|ℎ|
Δ𝑆𝑡+1(𝜔

𝑡, ·) < −𝛼𝑡(𝜔
𝑡)

2

}︂)︂
>
𝛼𝑡(𝜔

𝑡)

2
.

Before introducing the geometric no-arbitrage condition, we recall that for a convex
set 𝐶 ⊂ R𝑑, the relative interior of 𝐶 (see [115, Section 6]) is Ri(𝐶) = {𝑦 ∈ 𝐶, ∃ 𝜀 >
0, Aff(𝐶) ∩ 𝐵(𝑦, 𝜀) ⊂ 𝐶} (the relative interior was already introduced in the proof
of Lemma 2.5.11 in Chapter 2).

Definition 3.4.6 The geometric no-arbitrage condition holds true if for all 0 ≤ 𝑡 ≤
𝑇 − 1, there exists some 𝒬𝑡-full measure set Ω𝑡

𝑔𝑁𝐴 ∈ ℬ𝑐(Ω𝑡) such that for all 𝜔𝑡 ∈
Ω𝑡
𝑔𝑁𝐴, 0 ∈ Ri

(︁ ̂︀𝐷𝑡+1(𝜔𝑡)
)︁

. In this case there exists 𝜀𝑡(𝜔𝑡) > 0 such that

𝐵(0, 𝜀𝑡(𝜔
𝑡)) ∩𝐷𝑡+1(𝜔𝑡) ⊂ ̂︀𝐷𝑡+1(𝜔𝑡) (3.6)

Theorem 3.4.7 Assume that Assumptions 3.2.1 and 3.2.2 hold true. Then the
quantitative no-arbitrage (see Definition 3.4.4), the geometric no-arbitrage (see
Definition 3.4.6) and the 𝑁𝐴(𝒬𝑇 ) conditions (see Definition 3.4.1) are equivalent
and Ω𝑡

𝑁𝐴 = Ω𝑡
𝑞𝑁𝐴 = Ω𝑡

𝑔𝑁𝐴 for all 0 ≤ 𝑡 ≤ 𝑇 . Moreover, for all 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴 one can

choose 𝛼𝑡(𝜔𝑡) = 𝜀(𝜔𝑡) and (3.5) and (3.6) holds true (where Ω𝑡
𝑁𝐴 was introduced in

Definition 3.4.2).

Remark 3.4.8 It is clear that in this case for all 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴, 𝐷𝑡+1(𝜔𝑡) is a vector space.

The proof of Theorem 3.4.7 is presented in Section 3.4.2 just below. In a first step,
we look at a one-period model with determinist initial data where the problem is
easier to formulate since strategies are vectors in R𝑑. We prove the equivalence
of the different no-arbitrage condition in this setting in Proposition 3.4.14. The
second step extend the result to the multi-period: this is an immediate application
of Theorem 3.4.3 that we have recalled above. Note that the proof of Theorem 3.4.3
requires heavy technical considerations related to measurability issues and relies
on the framework introduced in Section 3.2 and in particular Assumptions 3.2.1
and 3.2.2.
To conclude this section, we propose the following proposition that establishes some
tricky measurability properties. It will be used in Chapter 5.

Proposition 3.4.9 Assume that Assumptions 3.2.1 and 3.2.2 hold true. Under one
of the no-arbitrage condition (see Definitions 3.4.1, 3.4.4 and 3.4.6) one can choose
𝛼𝑡 in (3.5) such that 𝜔𝑡 ∈ Ω𝑡 → 𝛼𝑡(𝜔

𝑡) is ℬ𝑐(Ω𝑡)-measurable.
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3.4.2 Proof of Theorem 3.4.7
We start with a one-period model. Let (Ω,𝒢) be a measured space, P(Ω) the set of
all probabilities on Ω defined on 𝒢 and 𝒬 a non-empty convex subset of P(Ω). For
𝑃 ∈ 𝒬 fixed, we denote by 𝐸𝑃 the expectation under 𝑃 . Let 𝑌 (·) := (𝑌𝑖(·), 𝑖 = 1 · · · 𝑑)
a 𝒢-measurable R𝑑-valued random variable. We introduce the following sets which
are the pendant in the one-period case of Definition 3.3.1. The support of the dis-
tribution of 𝑌 (·) under 𝑃 for all 𝑃 ∈ 𝒬 is the following set

̃︀𝐷 :=
⋂︁{︀

𝐴 ⊂ R𝑑, closed, 𝑃 (𝑌 (·) ∈ 𝐴) = 1, ∀𝑃 ∈ 𝒬
}︀

We also introduce the closed (for the usual topology in R𝑑) convex hull and the
affine hull of ̃︀𝐷 ̂︀𝐷 := Conv( ̃︀𝐷), 𝐷 := Aff

(︁ ̃︀𝐷)︁ . (3.7)

It is clear that ̃︀𝐷 ̸= ∅ and that ̃︀𝐷 ⊂ ̂︀𝐷 ⊂ 𝐷. We then introduce the following
definitions of no-arbitrage in this setting: the first one is the one-period pendant of
𝑁𝐴(𝒬𝑡+1(𝜔𝑡)) for 𝜔𝑡 fixed while the two others are the pendant of Definitions 3.4.4
and 3.4.6.

Definition 3.4.10 The one-period no-arbitrage condition holds true if for all ℎ ∈
R𝑑, ℎ𝑌 ≥ 0 𝒬-q.s implies that ℎ𝑌 = 0 𝒬-q.s.

Definition 3.4.11 The one-period quantitative no-arbitrage condition holds true if
there exists some constant 0 < 𝛼 ≤ 1 such that for all ℎ ∈ 𝐷, ℎ ̸= 0 there exists
𝑃ℎ ∈ 𝒬 satisfying

𝑃ℎ(ℎ𝑌 (·) < −𝛼|ℎ|) > 𝛼. (3.8)

Definition 3.4.12 The one-period geometric no-arbitrage condition holds true if
0 ∈ Ri( ̂︀𝐷).

If Assumption 3.4.12 holds true, 0 ∈ ̂︀𝐷 ⊂ 𝐷 and 𝐷 is a vector subspace. Moreover,
there exists some 𝜀 such that

(𝐵(0, 𝜀) ∩𝐷) ⊂ ̂︀𝐷, (3.9)

where 𝐵(0, 𝜀) is the open ball in R𝑑 centred in 0 with radius 𝜀.
In Proposition 3.4.14 we establish that these three assumptions are actually equi-
valent. We first establish the following lemma that will be used in Proposition
3.4.14 and is based on well-know separation results for convex sets in R𝑑.

Lemma 3.4.13 If 0 /∈ Ri
(︁ ̂︀𝐷)︁, there exists some ℎ* ∈ 𝐷, ℎ* ̸= 0 such that ℎ*𝑌 ≥ 0

𝒬-q.s.



3.4. Quantitative no-arbitrage, geometric no-arbitrage and 𝑁𝐴(𝒬𝑇 ) 107

Proof. First note that since ̂︀𝐷 ̸= ∅, we get that Ri
(︁ ̂︀𝐷)︁ ̸= ∅ (see [115, Theorem

6.2 p45]). Now to prove the lemma, note that it is enough to find some ℎ* ∈ 𝐷,
ℎ* ̸= 0 such that ℎ*𝑦 ≥ 0 for all 𝑦 ∈ ̂︀𝐷. Indeed if ℎ*𝑦 ≥ 0 for all 𝑦 ∈ ̂︀𝐷, as ̃︀𝐷 ⊂ ̂︀𝐷,
𝑃
(︁
{𝑌 (·) ∈ ̃︀𝐷}

)︁
= 1 for all 𝑃 ∈ 𝒬 and {𝑌 (·) ∈ ̃︀𝐷} ⊂ {ℎ*𝑌 (·) ≥ 0} we get that

ℎ*𝑌 (·) ≥ 0 𝒬-q.s.
We now build ℎ*. As 0 /∈ Ri

(︁ ̂︀𝐷)︁, we apply [115, Theorem 11.1, 11.3 p97] and

obtain some ℎ1 ∈ R𝑑, ℎ1 ̸= 0, such that ℎ1𝑦 ≥ 0 for all 𝑦 ∈ ̂︀𝐷 and some 𝑦0 ∈ ̂︀𝐷
such that ℎ1𝑦0 > 0 (and it is clear that 𝑦0 ̸= 0). For sake of completeness we
give the details of the arguments. From [115, Theorem 11.3], there is a hyperplan
separating properly the two convex sets ̂︀𝐷 and {0}. Now from [115, Theorem 11.1]
we get some ℎ1 ∈ R𝑑 such that inf𝑦∈ ̂︀𝐷(ℎ1𝑦) ≥ sup𝑦∈{0}(ℎ1𝑦) = 0. and sup𝑦∈ ̂︀𝐷(ℎ1𝑦) > 0

and thus there exists some 𝑦0 ∈ ̂︀𝐷 such that ℎ1𝑦0 > 0.
We distinguishes two cases. If ℎ1 ∈ 𝐷, then we set ℎ* = ℎ1 ̸= 0 and we are done.
Assume now that ℎ1 /∈ 𝐷. We introduce the orthogonal projection on 𝐷 𝑝 : ℎ ∈ R𝑑 →
𝑝(ℎ) ∈ 𝐷. We have that

(ℎ− 𝑝(ℎ)) (𝑦 − 𝑝(ℎ)) ≤ 0

for all ℎ ∈ R𝑑, 𝑦 ∈ 𝐷. Thus, for all 𝜆 ≥ 0, 𝑦 ∈ 𝐷 we get that 𝜆ℎ1𝑦 ≤ (𝜆ℎ1 −
𝑝(𝜆ℎ1))𝑝(𝜆ℎ1) + 𝑦𝑝(𝜆ℎ1). Taking the limit when 𝜆 goes to zero and recalling that 𝑝
is continuous, we find that 𝑝(0)𝑦 ≥ |𝑝(0)|2 for all 𝑦 ∈ 𝐷 and thus for all 𝑦 ∈ ̂︀𝐷 ⊂ 𝐷.
If 𝑝(0) ̸= 0, then we set ℎ* = 𝑝(0) ∈ 𝐷 , ℎ* ̸= 0, ℎ*𝑦 ≥ 0 for all 𝑦 ∈ ̂︀𝐷: we are done.
If 𝑝(0) = 0, then 0 ∈ 𝐷 and 𝐷 is actually a vector space. Thus 𝑝(ℎ1)𝑦 = ℎ1𝑦 for all
𝑦 ∈ 𝐷 and in particular, for all 𝑦 ∈ ̂︀𝐷 ⊂ 𝐷 we have that 𝑝(ℎ1)𝑦 = ℎ1𝑦 ≥ 0. For
𝑦 = 𝑦0 ̸= 0 we also get that 𝑝(ℎ1)𝑦0 = ℎ1𝑦0 > 0. Thus 𝑝(ℎ1) ̸= 0, 𝑝(ℎ1) ∈ 𝐷, 𝑝(ℎ1)𝑦 ≥ 0

for all 𝑦 ∈ ̂︀𝐷. We set ℎ* = 𝑝(ℎ1) and we are done. 2

Proposition 3.4.14 The three different notions of no-arbitrage (see Definition 3.4.10,
3.4.11 and 3.4.12) are equivalent. Furthermore if one of this condition holds true,
one can choose 𝛼 = 𝜀 in (3.8) and (3.9).

Proof. We will prove first that Definition 3.4.10 implies that both Definitions 3.4.12
and 3.4.11 hold true. In a second step we prove the reverse implication for both
Definitions 3.4.12 and 3.4.11.
First note that from Definition 3.4.10 we have that for all ℎ ∈ 𝐷

ℎ𝑌 (·) ≥ 0 𝒬-q.s. ⇒ ℎ = 0. (3.10)

Indeed, assume that there exists some ℎ ∈ 𝐷, ℎ ̸= 0 such that ℎ𝑌 (·) ≥ 0 𝒬-q.s.
From Definition 3.4.10, we get that ℎ𝑌 (·) = 0 𝒬-q.s. and thus ℎ ∈ ̃︀𝐿 := {ℎ ∈
R𝑑, ℎ𝑦 = 0 for all 𝑦 ∈ ̃︀𝐷} =

(︁ ̃︀𝐷)︁⊥ the orthogonal space of ̃︀𝐷. Indeed, if ℎ /∈ ̃︀𝐿, there
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exists some 𝑦1 ∈ ̃︀𝐷 such that either ℎ𝑦1 < 0 (resp. ℎ𝑦1 > 0) and some 𝛿 > 0 such
that ℎ𝑦 < 0 (resp. ℎ𝑦 > 0) for all 𝑦 ∈ 𝐵(𝑦1, 𝛿). By the minimal property of ̃︀𝐷, there
exists some 𝑃 ∈ 𝒬 such that 𝑃 (𝑌 ∈ 𝐵(𝑦1, 𝛿)) > 0 but this contradicts the fact that
ℎ𝑌 = 0 𝒬-q.s. (see also the proof [99, Lemma 2.6]). We claim that ̃︀𝐿 = 𝐿 := (𝐷)⊥

the orthogonal space of 𝐷. Indeed as ̃︀𝐷 ⊂ 𝐷, if ℎ ∈ 𝐿 it is clear that ℎ ∈ ̃︀𝐿. But if
ℎ ∈ ̃︀𝐿, then by affine combination it is also clear that ℎ ∈ 𝐿. Thus ℎ ∈ 𝐷 ∩ 𝐿 ⊂ {0},
a contradiction.
We prove now that Definition 3.4.10 implies that Definition 3.4.12 holds true. In-
deed if 0 /∈ Ri

(︁ ̂︀𝐷)︁, from Lemma 3.4.13, there exists some ℎ* ∈ 𝐷, ℎ* ̸= 0 such that
ℎ*𝑌 ≥ 0 𝒬-q.s. which contradicts (3.10).
Then, we show that Definition 3.4.10 implies that Definition 3.4.11 holds true. We
introduce for 𝑛 ≥ 1

𝐴𝑛 :=

{︂
ℎ ∈ 𝐷, |ℎ| = 1, 𝑃

(︂
ℎ𝑌 (·) < − 1

𝑛

)︂
<

1

𝑛
, ∀𝑃 ∈ 𝒬

}︂
(3.11)

and we define 𝑛0 := inf{𝑛 ≥ 1, 𝐴𝑛 = ∅} with the convention that inf ∅ = +∞.
From the previous step, Definition 3.4.12 holds also true and thus we have that
0 ∈ Ri

(︁ ̂︀𝐷)︁ ⊂ 𝐷: 𝑖.𝑒 𝐷 is a vector space. If 𝐷 = {0}, then 𝑛0 = 1 < ∞. We
assume now that 𝐷 ̸= {0} and we prove by contradiction that 𝑛0 <∞. Assume that
𝑛0 = ∞. For all 𝑛 ≥ 1, we get some ℎ𝑛 ∈ 𝐷 with |ℎ𝑛| = 1 and such that for all 𝑃 ∈ 𝒬
𝑃
(︀
ℎ𝑛𝑌 (·) ≤ − 1

𝑛

)︀
≥ 𝑃

(︀
ℎ𝑛𝑌 (·) < − 1

𝑛

)︀
≥ − 1

𝑛
. By passing to a sub-sequence we can

assume that ℎ𝑛 tends to some ℎ* ∈ 𝐷 (𝐷 is closed by definition) with |ℎ*| = 1. Fix
some 𝑃 ∈ 𝒬 and introduce 𝐵 := {𝜔 ∈ Ω, ℎ*𝑌 (𝜔) < 0} and 𝐵𝑛 := {𝜔 ∈ Ω, ℎ𝑛𝑌 (𝜔) ≤
−1/𝑛}. Then 𝐵 ⊂ lim inf𝑛𝐵𝑛. Indeed fix some 𝜔𝑡 ∈ 𝐵. Then, there exists some 𝜀 > 0

such that ℎ*𝑌 (𝜔) < −𝜀. Now there exists some 𝑁 ≥ 1 such that for all 𝑛 ≥ 𝑁

|ℎ𝑛 − ℎ| ≤ 𝜀
2(1+|𝑌 (𝜔))

and such that 1
𝑛
≤ 𝜀

2
and it follows that

ℎ𝑛𝑌 (𝜔) = ℎ𝑌 (𝜔) + (ℎ𝑛 − ℎ)𝑌 (𝜔) ≤ −𝜀+ |ℎ𝑛 − ℎ||𝑌 (𝜔)| ≤ 𝜀

2
≤ − 1

𝑛
.

Furthermore as 1lim inf𝑛𝐵𝑛 = lim inf𝑛 1𝐵𝑛, Fatou’s Lemma implies that

𝑃 (ℎ*𝑌 (·) < 0) ≤
∫︁
Ω

1lim inf𝑛𝐵𝑛(𝜔)𝑃 (𝑑𝜔) ≤ lim inf
𝑛

∫︁
Ω

1𝐵𝑛(𝜔)𝑃 (𝑑𝜔) = 0.

This implies that 𝑃 (ℎ*𝑌 (·) ≥ 0) = 1. As this is true for all 𝑃 ∈ 𝒬, we get from (3.10)
that ℎ* = 0 which contradicts |ℎ*| = 1. Thus 𝑛0 <∞ and we can set for 𝛼 = 1

𝑛0
. It is

clear that 𝛼 ∈ (0, 1] and by definition of 𝐴𝑛0, (3.8) holds true.
We prove now that Definition 3.4.11 implies Definition 3.4.12. Indeed, if this is not
the case, using Lemma 3.4.13, we find some ℎ* ∈ 𝐷, ℎ* ̸= 0 such that ℎ*𝑌 (·) ≥ 0 for
𝒬-q.s.: a contradiction with (3.8).
Finally, we prove that Definition 3.4.12 implies Definition 3.4.10. We fix some
ℎ ∈ R𝑑 such that ℎ𝑌 ≥ 0 𝒬-q.s. We claim that this implies that ℎ𝑦 ≥ 0 for all 𝑦 ∈ ̃︀𝐷.
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Indeed, if this is not the case there exists some 𝑦0 ∈ ̃︀𝐷 and some 𝛿 > 0 such that
ℎ𝑦0 < 0 for all 𝑦 ∈ 𝐵(𝑦0, 𝛿). By the minimal property of ̃︀𝐷, there exists some 𝑃 ∈ 𝒬
such that 𝑃 (𝑌 ∈ 𝐵(𝑦0, 𝛿)) > 0 but this contradicts the fact that ℎ𝑌 ≥ 0 𝒬-q.s. By
convex combination and closure, we also have that

ℎ𝑦 ≥ 0 for all 𝑦 ∈ ̂︀𝐷. (3.12)

Now let again 𝑝(ℎ) be the orthogonal projection of ℎ on 𝐷 (recall that here 𝐷 is a
vector space since 0 ∈ Ri( ̂︀𝐷) ⊂ 𝐷) and thus we have that 𝑝(ℎ)𝑦 = ℎ𝑦 ≥ 0 for all
𝑦 ∈ ̂︀𝐷 ⊂ 𝐷. As 𝑃 ({𝑌 ∈ ̃︀𝐷}) = 1 for all 𝑃 ∈ 𝒬 and ̃︀𝐷 ⊂ 𝐷, we also have that
ℎ𝑌 = 𝑝(ℎ)𝑌 𝒬𝑇 -q.s. If 𝑝(ℎ) = 0 we are done. We assume that 𝑝(ℎ) ̸= 0. As 0 ∈ Ri( ̂︀𝐷),
there exists some 𝜀 > 0 such that 𝐵(0, 𝜀)∩𝐷 ⊂ ̂︀𝐷. Therefore (recall that we assume
that 𝑝(ℎ) ̸= 0) we have that −𝜀 𝑝(ℎ)

|𝑝(ℎ)| ∈ ̂︀𝐷 and −𝜀 𝑝(ℎ)
|𝑝(ℎ)|𝑝(ℎ) < 0. This contradicts (3.12).

Thus we must have 𝑝(ℎ) = 0 and it follows that ℎ𝑌 = 𝑝(ℎ)𝑌 = 0 𝒬-q.s.
We prove the last statement of the proposition. If any of the definition holds true
we know that there exists some 0 < 𝜀 < 1 such that (𝐵(0, 𝜀) ∩𝐷) ⊂ ̂︀𝐷 and some
0 < 𝛼 < 1 such that (3.8) holds true. It is easy to verify that (3.8) and (3.9) both
hold true for min(𝛼, 𝜀). 2

Finally we conclude with the proof of Theorem 3.4.7.
Proof. of Theorem 3.4.7. This is a straightforward application of Theorem 3.4.3
together with Proposition 3.4.14. Indeed from Theorem 3.4.3, we get that Defini-
tion 3.4.1 is equivalent to the fact that Ω𝑡

𝑁𝐴 = {𝜔𝑡 ∈ Ω𝑡, 𝑁𝐴(𝒬𝑡+1(𝜔
𝑡)) holds true}

is a 𝒬𝑡-full measure set and belongs to ℬ𝑐(Ω𝑡) and from Proposition 3.4.14 for all
𝜔𝑡 ∈ Ω𝑡

𝑁𝐴, we have that 𝑁𝐴(𝒬𝑡+1(𝜔
𝑡)) is equivalent to (3.5) and (3.6). It is also clear

from Proposition 3.4.14 that for all 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴 one can choose 𝛼𝑡(𝜔𝑡) = 𝜀𝑡(𝜔

𝑡) such
that (3.5) and (3.6) holds true. 2

3.4.3 Proof of Proposition 3.4.9

Proof. of Proposition 3.4.9
To prove that we fin a version of 𝛼𝑡 that is ℬ𝑐(Ω𝑇 ) measurable, we use Theorem
3.4.7 and the fact that for all 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴 one can choose 𝛼𝑡(𝜔
𝑡) = 𝜀(𝜔𝑡) such that

(3.5) and (3.6) holds true. Thus we use the geometric no-arbitrage condition (see
Definition 3.4.6) to build a measurable version of 𝛼𝑡. We fix some 0 ≤ 𝑡 ≤ 𝑇 − 1 and
set for all 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴

Γ𝑡+1(𝜔𝑡) :=
{︁
𝛼 ∈ Q, 𝛼 > 0, 𝐵(0, 𝛼) ∩𝐷𝑡+1(𝜔𝑡) ⊂ ̃︀𝐷𝑡+1(𝜔𝑡)

}︁
and we set Γ𝑡+1(𝜔𝑡) = ∅ outside of Ω𝑡

𝑁𝐴. We assume that Graph Γ𝑡+1 ∈ ℬ𝑐(Ω𝑡)⊗ℬ(R𝑑)

(this will be proven below). From the Aumann Theorem (see [119, Corollary 1])
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there exists a ℬ𝑐(Ω𝑡)-measurable selector 𝛼𝑡 : {Γ𝑡+1 ̸= ∅} → R such that 𝛼𝑡(𝜔𝑡) ∈
Γ𝑡+1(𝜔𝑡) for every 𝜔𝑡 ∈ {Γ𝑡+1 ̸= ∅}. Now, using Theorem 3.4.7, we get that Ω𝑡

𝑁𝐴 ⊂
{Γ(𝜔𝑡) ̸= ∅}: indeed for 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴, Definition 3.4.6 holds true, hence there exists
some 𝛼 ∈ R, 𝛼 > 0 such that 𝐵(0, 𝛼)∩𝐷𝑡+1(𝜔𝑡) ⊂ ̃︀𝐷𝑡+1(𝜔𝑡) and we can always choose
𝛼𝑞 ∈ Q with 0 < 𝛼𝑞 ≤ 𝛼 such that 𝐵(0, 𝛼𝑞)∩𝐷𝑡+1(𝜔𝑡) ⊂ 𝐵(0, 𝛼)∩𝐷𝑡+1(𝜔𝑡) ⊂ ̃︀𝐷𝑡+1(𝜔𝑡)

(note that as Γ𝑡+1(𝜔𝑡) = ∅ outside of Ω𝑡
𝑁𝐴 we have actually that Ω𝑡

𝑁𝐴 = {Γ(𝜔𝑡) ̸= ∅}).
We set 𝛼𝑡 = 0 outside of Ω𝑡

𝑁𝐴 and thus we have found a ℬ𝑐(Ω𝑡)-measurable version
of 𝛼𝑡. Hence, if Graph Γ𝑡+1 ∈ ℬ𝑐(Ω𝑡)⊗ ℬ(R𝑑) the theorem is proved.
We prove now that Graph Γ𝑡+1 ∈ ℬ𝑐(Ω𝑡)⊗ ℬ(R𝑑). For all 𝛼 > 0, 𝛼 ∈ Q, we set

𝐴𝛼 :=
{︁
𝜔𝑡 ∈ Ω𝑡

𝑁𝐴, 𝐵(0, 𝛼) ∩𝐷𝑡+1(𝜔𝑡) ⊂ ̃︀𝐷𝑡+1(𝜔𝑡)
}︁
.

It is clear that
Graph Γ =

⋃︁
𝛼∈Q, 𝛼>0

𝐴𝛼 × {𝛼}.

Thus to prove that Graph Γ𝑡+1 ∈ ℬ𝑐(Ω𝑡) ⊗ ℬ(R𝑑) it is enough to prove that 𝐴𝛼 ∈
ℬ𝑐(Ω𝑡). To do so, we need a bit of preparatory work. We first define for all 𝜔𝑡 ∈ Ω𝑡

𝛿𝑡+1(𝜔𝑡) := 1Ω𝑡
𝑁𝐴

(𝜔𝑡)Dim(𝐷𝑡+1(𝜔𝑡)) (3.13)

(recall that if 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴, 𝐷𝑡+1(𝜔𝑡) is a vector space). From Lemma 3.4.15, we obtain

that 𝛿𝑡+1 is ℬ𝑐(Ω𝑡)-measurable and that there exists a family of ℬ𝑐(Ω𝑡)-measurable
functions (𝑒𝑗)1≤𝑗≤𝑑 (with 𝑒𝑗 : 𝜔𝑡 ∈ Ω𝑡 → R𝑑 for all 1 ≤ 𝑗 ≤ 𝑑) such that for all
0 ≤ 𝑖 ≤ 𝑑, 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴∩{𝛿𝑡+1 = 𝑖}, (𝑒𝑗(𝜔𝑡))1≤𝑗≤𝑖 is an orthonormal basis of 𝐷𝑡+1(𝜔𝑡) and
𝑒𝑖+1(𝜔

𝑡) = · · · = 𝑒𝑑(𝜔
𝑡) = 0 if 𝑖 < 𝑑. We can now introduce the following random sets

𝐷𝑡+1
Q (𝜔𝑡) :=

⎧⎨⎩
𝛿𝑡+1(𝜔𝑡)∑︁
𝑖=1

𝜆𝑖𝑒𝑖(𝜔
𝑡), 𝜆𝑖 ∈ Q, 𝑖 ∈ {1, · · · , 𝛿𝑡+1(𝜔𝑡)}

⎫⎬⎭ (3.14)

for all 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴 and 𝐷𝑡+1

Q (𝜔𝑡) = ∅ for 𝜔𝑡 /∈ Ω𝑡
𝑁𝐴. It is clear that for all 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴

𝐷𝑡+1
Q (𝜔𝑡) = 𝐷𝑡+1(𝜔𝑡) 2. Indeed it is clear that 𝐷𝑡+1

Q (𝜔𝑡) ⊂ 𝐷𝑡+1(𝜔𝑡). We prove the
reverse inclusion and fix some ℎ ∈ 𝐷𝑡+1(𝜔𝑡). From Lemma 3.4.15, 𝛿𝑡+1(𝜔𝑡) = 𝑖

for some 0 ≤ 𝑖 ≤ 𝑑 and (𝑒𝑗(𝜔
𝑡))1≤𝑗≤𝑖 is an orthonormal basis of 𝐷𝑡+1(𝜔𝑡). Thus

there exists (𝜆𝑗)1≤𝑗≤𝑖 such that ℎ =
∑︀𝑖

𝑗=1 𝜆𝑗𝑒𝑗(𝜔
𝑡). Now for each 1 ≤ 𝑗 ≤ 𝑖, there

exists a sequence (𝜆𝑗,𝑞)𝑞≥1 in Q such that lim𝑞 𝜆𝑗,𝑞 = 𝜆𝑗. Set for all 𝑞 ≥ 1, ℎ𝑞 =∑︀𝑖
𝑗=1 𝜆𝑗,𝑞𝑒𝑗(𝜔

𝑡) ∈ 𝐷𝑡+1
Q (𝜔𝑡) and it is clear that lim𝑞 ℎ𝑞 = ℎ.

Now, we claim that for 𝛼 > 0, 𝛼 ∈ Q

𝜔𝑡 ∈ 𝐴𝛼 ⇐⇒ ∀ℎ ∈ 𝐷𝑡+1
Q (𝜔𝑡), |ℎ| ≤ 𝛼, ℎ ∈ ̃︀𝐷𝑡+1(𝜔𝑡). (3.15)

2where the closure is taken in R𝑑 with respect to the euclidien topology.
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As for all 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴, ̃︀𝐷𝑡+1

Q (𝜔𝑡) ⊂ ̃︀𝐷𝑡+1(𝜔𝑡) the first implication is trivial. Assume
now that for some 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴, for all ℎ ∈ 𝐷𝑡+1
Q (𝜔𝑡), |ℎ| ≤ 𝛼 then ℎ ∈ ̃︀𝐷𝑡+1(𝜔𝑡). We

prove that 𝜔𝑡 ∈ 𝐴𝛼. Let ℎ ∈ 𝐷𝑡+1(𝜔𝑡) such that |ℎ| ≤ 𝛼. If ℎ ∈ 𝐷𝑡+1
Q (𝜔𝑡) there is

nothing to prove. Otherwise, we use again Lemma 3.4.15: 𝛿𝑡+1(𝜔𝑡) = 𝑖 for some
0 ≤ 𝑖 ≤ 𝑑 and (𝑒𝑗(𝜔

𝑡))1≤𝑗≤𝑖 is an orthonormal basis of 𝐷𝑡+1(𝜔𝑡). Thus there exists
(𝜆𝑗)1≤𝑗≤𝑖 such that ℎ =

∑︀𝑖
𝑗=1 𝜆𝑗𝑒𝑗(𝜔

𝑡) and |ℎ|2 =
∑︀𝑖

𝑗=1 𝜆
2
𝑗 ≤ 𝛼2. Now for each 1 ≤ 𝑗 ≤

𝑖, there exists a sequence (𝜆𝑗,𝑞)𝑞≥1 in Q such that lim𝑞 𝜆𝑗,𝑞 = 𝜆𝑗 and 𝜆𝑗,𝑞 ≤ 𝜆𝑗 for all
𝑞 ≥ 1. Set for all 𝑞 ≥ 1, ℎ𝑞 =

∑︀𝑖
𝑗=1 𝜆𝑗,𝑞𝑒𝑗(𝜔

𝑡) ∈ 𝐷𝑡+1
Q (𝜔𝑡), it is clear that lim𝑞 ℎ𝑞 = ℎ

and that |ℎ𝑞| =
∑︀𝑑

𝑗=1 𝜆
2
𝑗,𝑞 ≤ 𝛼 for all 𝑞 ≥ 1. By assumption for all 𝑞 ≥ 1, ℎ𝑞 ∈ ̃︀𝐷𝑡+1(𝜔𝑡)

and since ̃︀𝐷𝑡+1(𝜔𝑡) is a closed subset of R𝑑, ℎ ∈ ̃︀𝐷𝑡+1(𝜔𝑡). As this is true for all
ℎ ∈ 𝐷𝑡+1(𝜔𝑡) such that |ℎ| ≤ 𝛼, 𝜔𝑡 ∈ 𝐴𝛼 follows.
From (3.15) we get that

𝐴𝛼 :=
⋂︁

(𝜆1,···𝜆𝑑)∈Q𝑑,
∑︀𝑑

𝑖=1 𝜆
2
𝑖≤𝛼2

{︃
𝜔𝑡,

{︃
𝑑∑︁
𝑖

𝜆𝑖𝑒𝑖(𝜔
𝑡)

}︃
∩ ̃︀𝐷𝑡+1(𝜔𝑡) ̸= ∅

}︃
.

Indeed, 𝜔𝑡 ∈ 𝐴𝛼 if and only if for all ℎ ∈ 𝐷𝑡+1
Q (𝜔𝑡) such that |ℎ| ≤ 𝛼, ℎ ∈ ̃︀𝐷𝑡+1(𝜔𝑡)

which is equivalent to the fact that for (𝜆1, · · ·𝜆𝑞) ∈ Q𝑑 such that
∑︀𝑑

𝑖=1 𝜆
2
𝑖 ≤ 𝛼,

ℎ :=
∑︀𝑑

𝑖=1 𝜆𝑖𝑒𝑖(𝜔
𝑡) ∈ ̃︀𝐷𝑡+1(𝜔𝑡).

We prove now for that (𝜆1, · · · , 𝜆𝑞) ∈ Q𝑑 fixed,
{︁
𝜔𝑡,

{︁∑︀𝑑
𝑖 𝜆𝑖𝑒𝑖(𝜔

𝑡)
}︁
∩ ̃︀𝐷𝑡+1(𝜔𝑡) ̸= ∅

}︁
∈

ℬ𝑐(Ω𝑡) and the fact that𝐴𝛼 ∈ ℬ𝑐(Ω𝑡) will follow immediately. We fix some (𝜆1, · · · , 𝜆𝑞) ∈
Q𝑑. From Lemma 3.4.15, 𝑒 : 𝜔𝑡 →

∑︀𝑑
𝑖=1 𝜆𝑖𝑒𝑖(𝜔

𝑡) is ℬ𝑐(Ω𝑡)-measurable and us-
ing [3, Theorem 4.45], we obtain that Graph 𝑒 ∈ ℬ𝑐(Ω𝑡) ⊗ ℬ(R𝑑). From Lemma
3.3.2 we have that Graph ̃︀𝐷𝑡+1 ∈ ℬ𝑐(Ω𝑡) ⊗ ℬ(R𝑑). Thus Graph 𝑒

⋂︀
Graph ̃︀𝐷𝑡+1 ∈

ℬ𝑐(Ω𝑡) ⊗ ℬ(R𝑑) and from the Projection Theorem (see [37, Theorem 3.23 p75]),
ProjΩ𝑡

(︁
Graph𝑒

⋂︀
Graph ̃︀𝐷𝑡+1

)︁
∈ ℬ𝑐(Ω𝑡). Now it is easy to see that

𝜔𝑡 ∈ ProjΩ𝑡

(︁
Graph 𝑒

⋂︁
Graph ̃︀𝐷𝑡+1

)︁
⇐⇒

{︃
𝑑∑︁
𝑖

𝜆𝑖𝑒𝑖(𝜔
𝑡)

}︃
∩ ̃︀𝐷𝑡+1(𝜔𝑡) ̸= ∅,

Indeed 𝜔𝑡 ∈ ProjΩ𝑡

(︁
Graph 𝑒

⋂︀
Graph ̃︀𝐷𝑡+1

)︁
if and only if there exists some ℎ ∈

R𝑑, such that ℎ =
∑︀𝑑

𝑖 𝜆𝑖𝑒𝑖(𝜔
𝑡) and ℎ ∈ ̃︀𝐷𝑡+1(𝜔𝑡), 𝑖.𝑒. if and only if

{︁∑︀𝑑
𝑖 𝜆𝑖𝑒𝑖(𝜔

𝑡)
}︁
∩̃︀𝐷𝑡+1(𝜔𝑡) ̸= ∅. This concludes the proof. 2

The following lemma was used in the previous proof. Its purpose is to build a
measurable orthonormal basis for the random set 𝐷𝑡+1.

Lemma 3.4.15 Assume that Assumptions 3.2.1, 3.2.2 hold true. Then for all 0 ≤
𝑡 ≤ 𝑇 − 1, 𝛿𝑡+1 (see (3.13)) is ℬ𝑐(Ω𝑡)-measurable and there exists a family of ℬ𝑐(Ω𝑡)-
measurable functions (𝑒𝑗)1≤𝑗≤𝑑 (with 𝑒𝑗 : 𝜔

𝑡 ∈ Ω𝑡 → R𝑑 for all 1 ≤ 𝑗 ≤ 𝑑) such that
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for all 0 ≤ 𝑖 ≤ 𝑑, 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴 ∩ {𝛿𝑡+1 = 𝑖}, (𝑒𝑗(𝜔𝑡))1≤𝑗≤𝑖 is an orthonormal basis of

𝐷𝑡+1(𝜔𝑡) and 𝑒𝑖+1(𝜔
𝑡) = · · · = 𝑒𝑑(𝜔

𝑡) = 0 if 𝑖 < 𝑑.

Proof. From Theorem 3.4.7 (see Remark 3.4.8), we get that 0 ∈ 𝐷𝑡+1(𝜔𝑡) and
𝐷𝑡+1(𝜔𝑡) is a vector space for 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴.
We construct the family (𝑒𝑗)1≤𝑗≤𝑑 by induction on the dimension 𝛿𝑡+1. We start with
𝑖 = 1 and set ̃︀𝐷𝑡+1

1 (𝜔𝑡) := 𝐷𝑡+1(𝜔𝑡)∖{0} for all 𝜔𝑡 ∈ Ω𝑡. From Lemma 3.3.2, we
get that Graph( ̃︀𝐷𝑡+1

1 ) = Graph(𝐷𝑡+1)∖(Ω𝑡 × {0}) ∈ ℬ𝑐(Ω𝑡) ⊗ ℬ(R𝑑). So we can ap-
ply the Projection Theorem (see [37, Theorem 3.23 p75]) and the Auman Theorem
(see [119, Corollary 1]) and we get that { ̃︀𝐷𝑡+1

1 ̸= ∅} ∈ ℬ𝑐(Ω𝑡) and that there exists
some ℬ𝑐(Ω𝑡)-measurable ̃︀𝑒1 : { ̃︀𝐷𝑡+1

1 ̸= ∅} → R𝑑 such that ̃︀𝑒1(𝜔𝑡) ∈ ̃︀𝐷𝑡+1
1 (𝜔𝑡) for all

𝜔𝑡 ∈ { ̃︀𝐷𝑡+1
1 ̸= ∅}. We set for all 𝜔𝑡 ∈ Ω𝑡, 𝑒1(𝜔𝑡) := 1{ ̃︀𝐷𝑡+1

1 ̸=∅}(𝜔
𝑡) ̃︀𝑒1(𝜔𝑡)

|̃︀𝑒1(𝜔𝑡)| . It is clear
that 𝑒1 is ℬ𝑐(Ω𝑡)-measurable and that 𝑒1(𝜔𝑡) ∈ 𝐷𝑡+1(𝜔𝑡) for all 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴 (recall that
0 ∈ 𝐷𝑡+1(𝜔𝑡)). Moreover it is easy to verify that {𝜔𝑡 ∈ Ω𝑡, 𝛿𝑡+1(𝜔𝑡) = 0} = {𝜔𝑡 ∈
Ω𝑡
𝑁𝐴, 𝑒1(𝜔

𝑡) = 0} ∪ Ω𝑡∖Ω𝑡
𝑁𝐴 ∈ ℬ𝑐(Ω𝑡). Finally, for all 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴 such that 𝛿𝑡+1(𝜔𝑡) = 1,
𝑒1(𝜔

𝑡) is an orthonormal basis of 𝐷𝑡+1(𝜔𝑡).
Assume now that for some 𝑖 ≥ 1 we have build a family of ℬ𝑐(Ω𝑡)-measurable func-
tions (𝑒𝑗)𝑗=1,...,𝑖 such that

1) 𝑒𝑗(𝜔𝑡) ∈ 𝐷𝑡+1(𝜔𝑡) and 𝑒𝑝(𝜔𝑡)𝑒𝑗(𝜔𝑡) = 0 for all 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴, 1 ≤ 𝑗, 𝑝 ≤ 𝑖 with 𝑝 ̸= 𝑗,

2) if 𝛿𝑡+1(𝜔𝑡) = 𝑙 for some 1 ≤ 𝑙 ≤ 𝑖 and 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴, then (𝑒1(𝜔

𝑡), · · · , 𝑒𝑙(𝜔𝑡)) is an
orthonormal basis of 𝐷𝑡+1(𝜔𝑡),

3) {𝜔𝑡 ∈ Ω𝑡, 𝛿𝑡+1(𝜔𝑡) = 𝑙 − 1} = {𝜔𝑡 ∈ Ω𝑡
𝑁𝐴, 𝑒𝑝(𝜔

𝑡) ̸= 0, 𝑝 ∈ {1, · · · , 𝑙 − 1}, 𝑒𝑘(𝜔𝑡) =
0, 𝑘 ∈ {𝑙, · · · , 𝑖}} ∈ ℬ𝑐(Ω𝑡) for all 2 ≤ 𝑙 ≤ 𝑖 and {𝜔𝑡 ∈ Ω𝑡

𝑁𝐴, 𝛿
𝑡+1(𝜔𝑡) = 0} = {𝜔𝑡 ∈

Ω𝑡
𝑁𝐴, 𝑒𝑘(𝜔

𝑡) = 0, 𝑘 ∈ {1, · · · , 𝑖}} ∈ ℬ𝑐(Ω𝑡).

We set ̃︀𝐷𝑡+1
𝑖+1(𝜔

𝑡) =
{︁
ℎ ∈ R𝑑, ℎ ∈ ̃︀𝐷𝑡+1

1 (𝜔𝑡), ℎ𝑒𝑗(𝜔
𝑡) = 0, 𝑗 ∈ {1, . . . , 𝑖}

}︁
.

It is clear that ̃︀𝐷𝑡+1
𝑖+1(𝜔

𝑡) ⊂ ̃︀𝐷𝑡+1
𝑖 (𝜔𝑡) for all 𝜔𝑡 ∈ Ω𝑡. Since 𝑒𝑗 is ℬ𝑐(Ω𝑡)-measurable for

all 𝑗 = 1, · · · , 𝑖, we get that

Graph( ̃︀𝐷𝑡+1
𝑖+1) =

(︃
𝑖⋂︁

𝑗=1

{(𝜔𝑡, ℎ) ∈ Ω𝑡 × R𝑑, ℎ𝑒𝑗(𝜔
𝑡) = 0}

)︃
⋂︁

Graph( ̃︀𝐷𝑡+1
1 ) ∈ ℬ𝑐(Ω𝑡)× ℬ(R𝑑).

As before we can apply the Projection Theorem and Auman Theorem and we ob-
tain that { ̃︀𝐷𝑡+1

𝑖+1 ̸= ∅} ∈ ℬ𝑐(Ω𝑡) and some ℬ𝑐(Ω𝑡)-measurable ̃︀𝑒𝑖+1 : { ̃︀𝐷𝑡+1
𝑖+1 ̸= ∅} →

R𝑑 such that ̃︀𝑒𝑖+1(𝜔
𝑡) ∈ ̃︀𝐷𝑡+1

𝑖+1(𝜔
𝑡) for all 𝜔𝑡 ∈ { ̃︀𝐷𝑡+1

𝑖+1 ̸= ∅}. We set 𝑒𝑖+1(𝜔
𝑡) :=

1{ ̃︀𝐷𝑡+1
𝑖+1 ̸=∅}(𝜔

𝑡) ̃︀𝑒𝑖+1(𝜔
𝑡)

|̃︀𝑒𝑖+1(𝜔𝑡)| for all 𝜔𝑡 ∈ Ω𝑡. It is clear that 𝑒𝑖+1 is ℬ𝑐(Ω𝑡)-measurable and
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that 𝑒𝑖+1(𝜔
𝑡) ∈ 𝐷𝑡+1(𝜔𝑡) for all 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴. Furthermore it is easy to verify that for
all 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴, 𝑒𝑝(𝜔𝑡)𝑒𝑖+1(𝜔
𝑡) = 0 for 1 ≤ 𝑝 ≤ 𝑖 and that 𝑒1(𝜔𝑡), · · · , 𝑒𝑖+1(𝜔

𝑡) are linearly
independent. Thus, for all 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴 such that 𝛿𝑡+1(𝜔𝑡) = 𝑖 + 1, (𝑒1(𝜔𝑡), · · · , 𝑒𝑖+1(𝜔
𝑡))

is an orthonormal basis of 𝐷𝑡+1(𝜔𝑡). Items 1) and 2) are proved. We show now that
for all 2 ≤ 𝑙 ≤ 𝑖+ 1

{𝜔𝑡 ∈ Ω𝑡, 𝛿𝑡+1(𝜔𝑡) = 𝑙 − 1} = {𝜔𝑡 ∈ Ω𝑡
𝑁𝐴, 𝑒𝑝(𝜔

𝑡) ̸= 0, 𝑝 ∈ {1, · · · , 𝑙 − 1}
𝑒𝑘(𝜔

𝑡) = 0, 𝑘 ∈ {𝑙, · · · , 𝑖+ 1}}.

Fix some 2 ≤ 𝑙 ≤ 𝑖+ 1 and let 𝜔𝑡 ∈ Ω𝑡 be such that 𝛿𝑡+1(𝜔𝑡) = 𝑙− 1. As 𝑙 ≥ 2, this im-
plies that 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴 and by induction hypothesis we know that (𝑒1(𝜔𝑡), · · · , 𝑒𝑙−1(𝜔
𝑡))

is an orthonormal basis of 𝐷𝑡+1(𝜔𝑡), thus 𝑒𝑗(𝜔
𝑡) ̸= 0 for 𝑗 ∈ {1, · · · , 𝑙 − 1}. So,̃︀𝐷𝑡+1

𝑙 (𝜔𝑡) = ∅ and ̃︀𝐷𝑡+1
𝑘 (𝜔𝑡) = ∅ for 𝑘 ∈ {𝑙 + 1, · · · , 𝑖+ 1} which implies that 𝑒𝑘(𝜔𝑡) = 0

for 𝑘 = 𝑙, · · · , 𝑖 + 1 and the first inclusion is proved. Now let 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴 be such

that 𝑒𝑗(𝜔𝑡) ̸= 0 for 𝑗 ∈ {1, · · · , 𝑙 − 1} and 𝑒𝑘(𝜔
𝑡) = 0 for 𝑘 ∈ {𝑙, · · · , 𝑖 + 1}. By in-

duction hypothesis again, the family (𝑒𝑗(𝜔
𝑡))1≤𝑗≤𝑙−1 is linearly independent thus

𝛿𝑡+1(𝜔𝑡) ≥ 𝑙 − 1. As 𝑒𝑙(𝜔𝑡) = 0, we have that ̃︀𝐷𝑡+1
𝑙 = ∅ (recall that ̃︀𝑒𝑙(𝜔𝑡) ̸= 0) and

therefore 𝛿𝑡+1(𝜔𝑡) = 𝑙 − 1 and the second inclusion is proved. The second part of
3) can be proved using the same arguments. Now the measurability of 𝛿𝑡+1 follows
directly from 3) and the ℬ𝑐(Ω𝑡)-measurability of the (𝑒𝑗)1≤𝑗≤𝑑. 2

3.5 The quantitative no-arbitrage condition for max-
imising worst-case expected utility defined on
R

In this section, we illustrate how the quantitative no-arbitrage comes into play
when maximising worst-case expected utility for unbounded utility functions defined
on R. As we want to focus on a relatively simple application of Assumption 3.4.11,
we keep the presentation in a one-period model framework without trying to get
the sharpest result or to formulate assumptions adapted to the multi-period case
and the application of dynamic programming. As already mentioned (see also
Chapter 4), some difficult measurability and integrability issues arise in the multi-
period: they are left for further research.
We use the same one-period framework as in Section 3.4.2.

First, to simplify the issue of redundant assets in this section we make the
following assumption (recall the definition of 𝐷 in (3.7)).

Assumption 3.5.1 We have that 𝐷 = R𝑑.
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Assumption 3.5.2 We consider a random utility 𝑉 : Ω × R → R satisfying the
following conditions

∙ for every 𝑥 ∈ R, the function 𝑉 (·, 𝑥) : Ω → R is 𝒢-measurable,

∙ for every 𝜔 ∈ Ω, the function 𝑉 (𝜔, ·) : R → R is non-decreasing and concave on
R,

Remark 3.5.3 Note that for all 𝜔 ∈ Ω, as 𝑉 (𝜔, ·) is concave and finite, it is continu-
ous on R. The result could be for instance extended to R ∪ {±∞}-valued upper
semi-continuous concave functions.

Assumption 3.5.4 The function 𝑉 satisfies the so-called Asymptotic Elasticity
Conditions at +∞ and −∞, 𝑖.𝑒. there exist some constant 0 < 𝛾 < 1 and a non
negative 𝒢-measurable random variable 𝐶 verifying sup𝑃∈𝒬𝐸𝑃 (𝐶) < ∞ such that
for all 𝜔 ∈ Ω, all 𝑥 ∈ R and 𝜆 ≥ 1:

𝑉 (𝜔, 𝜆𝑥) ≤ 𝜆𝑉 (𝜔, 𝑥) + 𝐶(𝜔)𝜆𝛾, (3.16)
𝑉 (𝜔, 𝜆𝑥) ≤ 𝜆𝛾𝑉 (𝜔, 𝑥) + 𝐶(𝜔)𝜆𝛾. (3.17)

Remark 3.5.5 The above condition is inspired from [111, (10)], see also the slightly
more general [33, Assumption 2.3, Proposition 4.2] for non-concave functions. We
refer also to [34] for some economic interpretation on the Asymptotic Elasticity for
random utility functions. We give some further insight on this assumption. As 𝑉
is not bounded from above, (3.16) is used to control the behaviour of 𝑉 −(·, 𝑥) while
(3.17) is used for 𝑉 +(·, 𝑥). Indeed from (3.16), recalling that 𝐶 is non-negative, we
get that

𝑉 −(𝜔, 𝜆𝑥) + 𝐶(𝜔)𝜆𝛾 ≥ max(−𝑉 (𝜔, 𝜆𝑥) + 𝐶(𝜔)𝜆𝛾, 0) ≥ max(−𝜆𝑉 (𝜔, 𝑥), 0) = 𝜆𝑉 −(𝜔, 𝑥)

and from (3.17), we have that

𝑉 +(𝜔, 𝜆𝑥) ≤ 𝜆𝛾𝑉 +(𝜔, 𝑥) + 𝐶(𝜔)𝜆𝛾.

Roughly speaking the fact that 𝛾 < 1 means that the value of 𝑉 (𝜔, 𝑥) decreases
more quickly for large negative value of 𝑥 than it increases for large positive value
of 𝑥. In other words if a trading strategy yields very large outcome (both positive
and negative), the utility of the negative outcome will dominate the utility of the
positive outcome and the strategy is unlikely to be optimal. The fact that any
trading strategy yielding very large positive outcome will also yields very large
negative outcome is provided by the no-arbitrage condition. This will be proved
precisely in Lemma 3.5.12.
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We also need some integrability assumptions. We introduce

𝑊 := {−1, 1}𝑑 (3.18)

Assumption 3.5.6 The following conditions are satisfied

sup
𝑃∈𝒬

𝐸𝑃𝑉
+ (., 1 + 𝜃𝑌 (.)) <∞, ∀ 𝜃 ∈ 𝑊 (3.19)

sup
𝑃∈𝒬

𝐸𝑃𝑉
−(., 𝑥) <∞, ∀𝑥 ∈ R (3.20)

Remark 3.5.7 If (3.19) is not true it is possible to find a counterexample as in [99,
Example 2.3] where 𝑣(𝑥) <∞ but the supremum is not attained in (3.22).

Assumption 3.5.8 There exists some 𝑛0 ≥ 1 such that

𝑃

(︂
𝑉 (., 𝑛0) < −2

sup𝑄∈𝒫 𝐸𝑄(𝐶)

𝛼
− 1

)︂
≥ 1− 𝛼

2
, ∀𝑃 ∈ 𝒬. (3.21)

where 𝛼 was introduced in Assumption 3.4.11.

Note that if (3.21) is true we have as well 𝑃 (𝑉 (., 𝑛0) < −1) ≥ 1− 𝛼
2

for all 𝑃 ∈ 𝒬.

Remark 3.5.9 In a multi-period framework, to prove that Assumption 3.5.8 is pre-
served in the dynamic programming, one can borrow ideas used in [33] where a
similar situation arise. However note that we will need some measurability prop-
erty for the 𝛼 introduced in Assumptions 3.4.11. This illustrate the importance of
Proposition 3.4.9.

Remark 3.5.10 Remark that if 𝑉 is a non-random utility function then this as-
sumption is trivially satisfied. Indeed we know that any concave function on R
goes to −∞ as 𝑥 goes to −∞.

Our main concern in the one period case is the following optimisation problem

𝑣(𝑥) := sup
ℎ∈R𝑑

inf
𝑃∈𝒬

𝐸𝑃𝑉 (·, 𝑥+ ℎ𝑌 (·)) . (3.22)

Remark 3.5.11 We will prove in Lemma 3.5.12, that if Assumption 3.5.6 holds true,
then the integral in (3.22) are well-defined, 𝑖.𝑒. 𝐸𝑃𝑉 + (·, 𝑥+ ℎ𝑌 (·)) < ∞, but poten-
tially equals to −∞.
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Lemma 3.5.12 Assume that Assumptions 3.4.11, 3.5.1 3.5.2, 3.5.4, 3.5.6 and 3.5.8
hold true. Let 𝜓 : R× R𝑑 → R ∪ {±∞} be defined by

𝜓(𝑥, ℎ) := inf
𝑃∈𝒬

𝐸𝑃𝑉 (·, 𝑥+ ℎ𝑌 (·)) (3.23)

First, 𝐸𝑃𝑉 (·, 𝑥+ ℎ𝑌 (·)) is well defined (potentially equals to −∞) for all 𝑃 ∈ 𝒬 and
all (𝑥, ℎ) ∈ R × R𝑑. Then, 𝜓 is usc and concave on R × R𝑑, 𝜓 < +∞ on R × R𝑑 and
𝜓(𝑥, 0) > −∞ for all 𝑥 ∈ R. Finally, there exists some constant 𝐵 ≥ 0 such that for
all 𝑥 ∈ R there exists 𝐾(𝑥, 𝑛0, 𝛼, 𝛾) := max

(︁
1, 𝑥+, 𝑥

++𝑛0

𝛼
, (𝑥

++𝑛0

𝛼
)

2
1−𝛾

)︁
such that for all

ℎ ∈ R𝑑

|ℎ| > 𝐾(𝑥, 𝑛0, 𝛼, 𝛾) ⇒ 𝜓(𝑥, ℎ) ≤ 𝐵|ℎ|𝛾 − 𝛼

2
|ℎ|

1+𝛾
2 . (3.24)

Proof. For all 𝑃 ∈ 𝒬, we introduce, 𝜓𝑃 : R× R𝑑 → R ∪ {±∞} defined by

𝜓𝑃 (𝑥, ℎ) := 𝐸𝑃𝑉 (·, 𝑥+ ℎ𝑌 (·))

First, for some fixed 𝑃 ∈ 𝒬, we establish that for all (𝑥, ℎ) ∈ R×R𝑑, 𝐸𝑃𝑉 (𝑥+ ℎ𝑌 (·))
is well-defined potentially equals to −∞. We fix some (𝑥, ℎ) ∈ R × R𝑑. For some
𝜔 ∈ Ω, let 𝜃𝜔 := (𝑠𝑖𝑔𝑛(𝑌𝑖(𝜔)))𝑖=1...𝑑 ∈ R𝑑. We have that

|𝑌 (𝜔)| =

(︃
𝑑∑︁
𝑖=1

𝑌𝑖(𝜔)
2

)︃ 1
2

≤

⎛⎝ 𝑑∑︁
𝑖=1

𝑌𝑖(𝜔)
2 +

∑︁
𝑖 ̸=𝑗

|𝑌𝑖(𝜔)|𝑌𝑗(𝜔)|

⎞⎠ 1
2

=

𝑑∑︁
𝑖=1

|𝑌𝑖(𝜔)| = 𝜃𝜔𝑌 (𝜔).

As 𝜃𝜔 ∈ 𝑊 (see (3.18)), using the monotonicity of 𝑉 and (3.16) (see Remark 3.5.5),
we obtain that

𝑉 +(𝜔, 𝑥+ ℎ𝑌 (𝜔)) ≤ 𝑉 +
(︀
𝜔, 𝑥+ + |ℎ||𝑌 (𝜔)|

)︀
≤ 𝐾𝑥,ℎ𝑉

+ (𝜔, 1 + 𝜃𝜔𝑌 (𝜔)|) +𝐾𝛾
𝑥,ℎ𝐶(𝜔)

≤
∑︁
𝜃∈𝑊

𝐾𝑥,ℎ𝑉
+ (𝜔, 1 + 𝜃𝑌 (𝜔)) +𝐾𝛾

𝑥,ℎ𝐶(𝜔) (3.25)

where 𝐾𝑥,ℎ = 𝑥+ + |ℎ|. Now, 𝐸𝑃𝑉 +(𝑥 + ℎ𝑌 (·)) < ∞ follows from Assumption 3.5.6
(see (3.19)) and 𝐸𝑃 (𝐶) <∞ (see Assumption 3.5.4).
Now, it is clear from the concavity of 𝑉 that 𝜓𝑃 is concave, thus 𝜓 = inf𝑃∈𝒬 𝜓𝑃 is
also concave as the infimum of concave functions. We now prove that 𝜑𝑃 is usc. The
fact that 𝜓 is usc will follow from the same argument. Note that as Dom(𝜓𝑃 ) might
not be equal to R×R𝑑, we cannot directly conclude that 𝜑𝑃 is continuous using the
concavity of 𝜑𝑃 . We fix again some (𝑥, ℎ) ∈ R× R𝑑 and let (𝑥𝑛, ℎ𝑛)𝑛∈N be a sequence
converging to (𝑥, ℎ). Let 𝜀 > 0 and 𝑁 ≥ 1 be such that max(|𝑥𝑛 − 𝑥|, |ℎ𝑛 − ℎ|) ≤ 𝜀 for
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all 𝑛 ≥ 𝑁 . Then 𝑥𝑛 + ℎ𝑛𝑌 (𝜔) ≤ 𝑥+ + 𝜀+ (𝜀+ |ℎ|)|𝑌 |(𝜔) for all 𝜔 ∈ Ω. From (3.25) we
obtain for all 𝑛 ≥ 𝑁

𝑉 (𝜔, 𝑥𝑛 + ℎ𝑛𝑌 (𝜔)) ≤ 𝑉 +
(︀
𝜔, 𝑥+ + 𝜀+ (𝜀+ |ℎ|)|𝑌 (𝜔)|

)︀
≤
∑︁
𝜃∈𝑊

𝐾𝑥++2𝜀,ℎ𝑉
+ (𝜔, 1 + 𝜃𝑌 (𝜔)) +𝐾𝛾

𝑥++2𝜀,ℎ𝐶(𝜔).

Thus, using (3.19) (see Assumption 3.5.6), the (lim sup) Fatou Lemma applies and
as 𝑉 is continuous (see Remark 3.5.3) we get that

lim sup
𝑛

𝜓𝑃 (𝑥𝑛, ℎ𝑛) = lim sup
𝑛

𝐸𝑃 (𝑉 (., 𝑥𝑛 + ℎ𝑛𝑌 )) ≤ 𝐸𝑃 (𝑉 (., 𝑥+ ℎ𝑌 )) = 𝜓𝑃 (𝑥, ℎ),

and 𝜓𝑃 is usc as claimed. Again from Assumption 3.5.6 (see (3.20)) we also have
that 𝜓(𝑥, 0) > −∞.
We prove now (3.24). Let again (𝑥, ℎ) ∈ R × R𝑑 be fixed and assume that |ℎ| ≥
𝑚𝑎𝑥(1, 𝑥+). From the monotonicity of 𝑉 and (3.17) (see Assumption 3.5.4 and Re-
mark 3.5.5) we have for all 𝜔 ∈ Ω that

𝑉 +(𝜔, 𝑥+ ℎ𝑌 (𝜔)) = 𝑉 +

(︂
𝜔, |ℎ|

(︂
𝑥

|ℎ|
+

ℎ

|ℎ|
𝑌 (𝜔)

)︂)︂
≤ |ℎ|𝛾

(︂
𝑉 +

(︂
𝜔,
𝑥+

|ℎ|
+

ℎ

|ℎ|
𝑌 (𝜔)

)︂
+ 𝐶(𝜔)

)︂
.

As |ℎ| ≥ max(1, 𝑥+), using as previously the monotonicity of 𝑉 , again 𝜃𝜔 ∈ 𝑊 (see
(3.18)) , we get for all 𝜔 ∈ Ω that

𝑉 +

(︂
𝜔,
𝑥+

|ℎ|
+

ℎ

|ℎ|
𝑌 (𝜔)

)︂
≤ 𝑉 + (𝜔, 1 + |𝑌 (𝜔)|) ≤ 𝑉 + (𝜔, 1 + 𝜃𝜔𝑌 (𝜔)) ≤

∑︁
𝜃∈𝑊

𝑉 + (𝜔, 1 + 𝜃𝑌 (𝜔)) .

Setting 𝐿(𝜔) :=
∑︀

𝜃∈𝑊 𝑉 + (𝜔, 1 + 𝜃𝑌 (𝜔)), for all 𝜔 ∈ Ω, we get that for all 𝑃 in 𝒬

E𝑃
(︀
𝑉 + (., 𝑥+ ℎ𝑌 (.))

)︀
≤ |ℎ|𝛾

(︂
sup
𝑃∈𝒫

𝐸𝑃𝐿(.) + sup
𝑃∈𝒫

𝐸𝑃𝐶(.)

)︂
<∞ (3.26)

using again (3.19) (see Assumption 3.5.6) and the fact that sup𝑃∈𝒫 𝐸𝑃𝐶(·) <∞ (see
Assumption 3.5.4).
To study 𝑉 −(𝜔, 𝑥+ ℎ𝑌 (𝜔)) we use the quantitative version of the no-arbitrage (As-
sumption 3.4.11) together with (3.16) (see Assumption 3.5.4) and Assumption 3.5.8.
Recall that 𝑥 is fixed and that |ℎ| ≥ 𝑚𝑎𝑥(1, 𝑥+). We first consider the following set

𝐵𝑛0,ℎ :=

{︂
𝜔 ∈ Ω,

ℎ

|ℎ|
𝑌 (𝜔) ≤ −𝛼, 𝑉 (𝜔,−𝑛0) < −2

sup𝑃∈𝒫 𝐸𝑃 (𝐶)

𝛼
− 1

}︂
.
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It is clear that 𝐵𝑛0,ℎ is 𝒢-measurable. Using Assumption 3.4.11 (see (3.8)), there ex-
ists 𝑃ℎ ∈ 𝒬 such that 𝑃

(︁
ℎ
|ℎ|𝑌 (.) ≤ −𝛼

)︁
≥ 𝛼 and together with (3.21) in Assumption

3.5.8 we get that

𝑃ℎ(𝐵𝑛0,ℎ) ≥ 𝑃ℎ

(︂
ℎ

|ℎ|
𝑌 (.) ≤ −𝛼

)︂
+ 𝑃ℎ

(︂
𝑉 (.,−𝑛0) < −2

sup𝑃∈𝒫 𝐸𝑃 (𝐶)

𝛼
− 1

)︂
− 1

≥ 𝛼

2
. (3.27)

In the rest of the proof we will use that if 𝜔 ∈ 𝐵𝑛0,ℎ then 𝑉 (𝜔,−𝑛0) < −1. Assume
now that 𝑥+ − 𝛼|ℎ| ≤ −𝑛0 then 𝐵𝑛0,ℎ ⊂ {𝜔 ∈ Ω, 𝑉 (𝜔, 𝑥 + ℎ𝑌 (𝜔)) < 0} since 𝑉 is
monotone. Thus, for all 𝜔 ∈ Ω we have that

𝑉 − (𝜔, 𝑥+ ℎ𝑌 (𝜔)) = −1{𝑉 (.,𝑥+ℎ𝑌 (.))<0}(𝜔)𝑉 (𝜔, 𝑥+ ℎ𝑌 (𝜔))

≥ −1𝐵𝑛0,ℎ
(𝜔)𝑉 (𝜔, 𝑥+ ℎ𝑌 (𝜔)) . (3.28)

And using condition (3.16) in Assumption 3.5.4 together with the monotonicity of
𝑉 we get that

1𝐵𝑛0,ℎ
(𝜔)𝑉 (𝜔, 𝑥+ ℎ𝑌 (𝜔))

= 1𝐵𝑛0,ℎ
(𝜔)𝑉

(︃
𝜔, |ℎ|

1+𝛾
2

(︃
𝑥

|ℎ| 1+𝛾
2

+ |ℎ|
1−𝛾
2
ℎ

|ℎ|
𝑌 (𝜔)

)︃)︃

≤ 1𝐵𝑛0,ℎ
(𝜔)

[︃
|ℎ|

1+𝛾
2 𝑉

(︃
𝜔,

𝑥+

|ℎ| 1+𝛾
2

+ |ℎ|
1−𝛾
2
ℎ

|ℎ|
𝑌 (𝜔)

)︃
+ 𝐶(𝜔)|ℎ|

𝛾(1+𝛾)
2

]︃
.

Now if we impose as well that 𝑥+

|ℎ|
1+𝛾
2

− 𝛼|ℎ| 1−𝛾
2 < −𝑛0, recalling that 𝛾 < 1 we obtain

that

1𝐵𝑛0,ℎ
(𝜔)𝑉 (𝜔, 𝑥+ ℎ𝑌 (𝜔)) ≤ 1𝐵𝑛0,ℎ

(𝜔)|ℎ|
1+𝛾
2 𝑉 (𝜔,−𝑛0) + 𝐶(𝜔)|ℎ|

𝛾(1+𝛾)
2

≤ −1𝐵𝑛0,ℎ
(𝜔)|ℎ|

1+𝛾
2 + 𝐶(𝜔)|ℎ|𝛾

and together with (3.28) we obtain that

𝑉 − (𝜔, 𝑥+ ℎ𝑌 (𝜔)) ≥ 1𝐵𝑛0,ℎ
(𝜔)|ℎ|

1+𝛾
2 − 𝐶(𝜔)|ℎ|𝛾 (3.29)

To conclude if ℎ satisfies that

𝑥+ − 𝛼|ℎ| ≤ −𝑛0,
𝑥+

|ℎ| 1+𝛾
2

− 𝛼|ℎ|
(1−𝛾)

2 < −𝑛0, |ℎ| ≥ max(1, 𝑥+),

using (3.27) and (3.29) we obtain that

𝐸𝑃ℎ

(︀
𝑉 −(, .𝑥+ ℎ𝑌 (.))

)︀
≥ 𝛼

2
|ℎ|

1+𝛾
2 − sup

𝑃∈𝒫
𝐸𝑃𝐶(.)|ℎ|𝛾. (3.30)
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This is the case if |ℎ| ≥ 𝐾(𝑥, 𝑛0, 𝛼, 𝛾) := max(1, 𝑥+, 𝑥
++𝑛0

𝛼
, (𝑥

++𝑛0

𝛼
)

2
1−𝛾 ). Indeed if

|ℎ| ≥ 1, then 𝑥+

|ℎ|
1+𝛾
2

−𝛼|ℎ|
(1−𝛾)

2 ≤ 𝑥+−𝛼|ℎ|
(1−𝛾)

2 , thus if |ℎ| ≥ (𝑥
++𝑛0

𝛼
)

2
1−𝛾 , it is clear that

𝑥+

|ℎ|
1+𝛾
2

− 𝛼|ℎ|
(1−𝛾)

2 ≤ −𝑛0. The other conditions are immediate.

Note that 𝐾(𝑥, 𝑛0, 𝛼, 𝛾) does not depend of 𝑃ℎ since 𝛼, 𝑛0 and 𝛾 don’t and thus
𝐾(𝑥, 𝑛0, 𝛼, 𝛾) does not depend of ℎ. Finally, combining (3.26) and (3.30) for a given
𝑥 and for all ℎ ∈ R𝑑 such that |ℎ| > 𝐾(𝑥, 𝑛0, 𝛼, 𝛾) there exists 𝑃ℎ in 𝒬 such that

𝜓(𝑥, ℎ) ≤ 𝜓𝑃ℎ
(𝑥, ℎ) = 𝐸𝑃ℎ

(𝑉 (., 𝑥+ ℎ.𝑌 (.))) ≤ 𝐵|ℎ|𝛾 − 𝛼

2
|ℎ|

1+𝛾
2 .

where 0 ≤ 𝐵 := sup𝑃∈𝒫 𝐸𝑃 (𝐿) + 2 sup𝑃∈𝒫 𝐸𝑃𝐶 <∞ and (3.24) is proven. 2

We can now state our main result.

Theorem 3.5.13 Assume that Assumptions 3.4.11, 3.5.1, 3.5.2, 3.5.4, 3.5.6 and
3.5.8 hold true. Then 𝑣 is finite and there exists some optimal strategy ̂︀ℎ ∈ R𝑑 such
that

𝑣(𝑥) = inf
𝑃∈𝒬

𝐸𝑃 (𝑉 (·, 𝑥+ ̂︀ℎ𝑌 (·))). (3.31)

Moreover 𝑣 is concave and non-decreasing.

Remark 3.5.14 As in Remark 3.5.3, 𝑣 is continuous.

Proof. Let 𝑥 ∈ R be fixed. Applying Lemma 3.5.12, we obtain that 𝑣(𝑥) ≥ 𝜓(𝑥, 0) >

−∞, that 𝜓 is concave, usc on R × R𝑑 and from (3.24) for all |ℎ| > 𝐾(𝑥, 𝑛0, 𝛼, 𝛾) we
have 𝜓(𝑥, ℎ) ≤ 𝐵|ℎ|𝛾 − 𝛼

2
|ℎ| 1+𝛾

2 . Since 𝐵 ≥ 0, 𝛼 > 0 and 0 < 𝛾 < 1 (see Assumption
3.5.4) we obtain that lim𝜆→∞ 𝜓(𝑥, 𝜆ℎ) = −∞. Therefore we can apply [62, Lemma
3.5 p113] and we obtain ̂︀ℎ such that supℎ∈R𝑑 𝜓(𝑥, ℎ) = 𝜓(𝑥,̂︀ℎ) < +∞.
As 𝑉 is non-decreasing, it is clear that 𝑣 is also non-decreasing. The proof of the
concavity of 𝑣 on R relies on a midpoint concavity argument and on Ostrowski The-
orem, see [55, p12]. It is very similar to [112, Proposition 2] and [99, Lemma 3.5]
and thus omitted (see also Lemma 4.5.17 in Chapter 4). 2

3.6 The strong no-arbitrage condition: 𝑠𝑁𝐴(𝒬𝑇 )

In this section we introduce the strong no-arbitrage condition 𝑠𝑁𝐴(𝒬𝑇 ) which will
be used in Chapter 4 in order to apply a theorem of multiple-priors expected utility
maximisation for unbounded function defined on (0,∞) (namely Theorem 4.4.14) in
a large range of setting as it is more suited to the integrability assumption required
in this case.
A strategy 𝜑 ∈ Φ will be a so called p-arbitrage if there exists some 𝑃 ∈ 𝒬𝑇 such
that 𝑉 0,𝜑

𝑇 ≥ 0 𝑃 -a.s. and 𝑃 (𝑉 0,𝜑
𝑇 > 0) > 0.
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3.6.1 Local characterisation and applications
Definition 3.6.1 We say that the 𝑠𝑁𝐴(𝒬𝑇 ) condition holds true if for all 𝜑 ∈ Φ and
𝑃 ∈ 𝒬𝑇 𝑉 0,𝜑

𝑇 ≥ 0 𝑃 -a.s. implies that 𝑉 0,𝜑
𝑇 = 0 𝑃 -a.s.

In other words, the 𝑠𝑁𝐴(𝒬𝑇 ) condition holds true if for all 𝑃 ∈ 𝒬𝑇 , the “clas-
sical" no-arbitrage condition in model 𝑃 , 𝑁𝐴(𝑃 ) holds true. Note as well that if
𝒬𝑇 = {𝑃} then 𝑠𝑁𝐴(𝒬𝑇 ) = 𝑁𝐴(𝒬𝑇 ) = 𝑁𝐴(𝑃 ). It is clear that the 𝑠𝑁𝐴(𝒬𝑇 ) condi-
tion is stronger than the 𝑁𝐴(𝒬𝑇 ) condition. Indeed if the 𝑁𝐴(𝒬𝑇 ) condition fails,
there exists some 𝜑 ∈ Φ and 𝑃 ∈ 𝒬𝑇 such that 𝑉 0,𝜑

𝑇 ≥ 0 𝒬𝑇 -q.s. and 𝑃 (𝑉 0,𝜑
𝑇 > 0) > 0.

Then, it is clear that 𝜑 is as well a p-arbitrage, hence the 𝑠𝑁𝐴(𝒬𝑇 ) condition also
fails.
First we study the local characterisation of the 𝑠𝑁𝐴(𝒬𝑇 ) and introduce the follow-
ing definition

Definition 3.6.2 For 𝜔𝑡 ∈ Ω𝑡 fixed, we say that the 𝑠𝑁𝐴(𝒬𝑡+1(𝜔
𝑡)) condition holds

true if for all ℎ ∈ R𝑑 and 𝑃 ∈ 𝒬𝑡+1(𝜔
𝑡), ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0 𝑃 -a.s ⇒ ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) =

0 𝑃 -a.s and we define

Ω𝑡
𝑠𝑁𝐴 := {𝜔𝑡 ∈ Ω𝑡, 𝑠𝑁𝐴(𝒬𝑡+1(𝜔

𝑡)) holds true}.

Remark 3.6.3 It is clear that if for some 𝜔𝑡 ∈ Ω𝑡 fixed, the 𝑠𝑁𝐴(𝒬𝑡+1(𝜔
𝑡)) condition

holds true, then the 𝑁𝐴(𝒬𝑡+1(𝜔
𝑡)) condition (see Definition 3.4.2) holds true also.

In particular, recalling Remark 3.4.8, in this case 0 ∈ 𝐷𝑡+1(𝜔𝑡).

We prove the following proposition which is the pendant of local characterisation
in Theorem 3.4.3.

Theorem 3.6.4 Assume that Assumptions 3.2.1 and 3.2.2 hold true. Then the
following statements are equivalent
1. 𝑠𝑁𝐴(𝒬𝑇 ) hold true.
2. For all 0 ≤ 𝑡 ≤ 𝑇 − 1, Ω𝑡

𝑠𝑁𝐴 ∈ 𝒞𝒜(Ω𝑡) is a 𝒬𝑡-full measure set.

Proof. We fixe some 1 ≤ 𝑡 ≤ 𝑇 − 1 and introduce the following random set 𝑁𝑡 : Ω
𝑡 �

R𝑑 ×P(Ω𝑡+1) defined by

𝑁𝑡(𝜔
𝑡) := {(ℎ, 𝑃 ) ∈R𝑑 ×P(Ω𝑡+1), 𝑃 ∈ 𝒬𝑡+1(𝜔

𝑡),

𝑃 (ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0) = 1, 𝑃 (ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ̸= 0) > 0}.

Then {𝑁𝑡 = ∅} = {𝜔𝑡 ∈ Ω𝑡, 𝑠𝑁𝐴(𝒬𝑡+1(𝜔
𝑡)) holds true}. We prove first that Graph(𝑁𝑡) ∈

𝒜(Ω𝑡 × R𝑑 × P(Ω𝑡+1)). From Assumption 3.2.1, we have that {(𝜔𝑡, ℎ, 𝑃 ) ∈ Ω𝑡 ×
R𝑑 × P(Ω𝑡+1), 𝑃 ∈ 𝒬𝑡+1(𝜔

𝑡)} ∈ 𝒜(Ω𝑡 × R𝑑 × P(Ω𝑡+1)). Now using Lemma 4.8.5
in Chapter 4, it is clear that {(𝜔𝑡, ℎ, 𝑃 ) ∈ Ω𝑡 × R𝑑 × P(Ω𝑡+1), 𝑃 (ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≥
0) = 1, 𝑃 (ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ̸= 0) > 0} ∈ ℬ(Ω𝑡) ⊗ ℬ(R𝑑) ⊗ ℬ (P(Ω𝑡+1)). The fact that
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Graph(𝑁𝑡) ∈ 𝒜(Ω𝑡 × R𝑑 × P(Ω𝑡+1)) follows from [13, Proposition 7.36]. We can
thus apply the Jankov-von Neumann Projection Theorem (see [13, Proposition
7.49 p182]) and we obtain that {𝑁𝑡 ̸= ∅} ∈ 𝒜(Ω𝑡). Thus Ω𝑡

𝑠𝑁𝐴 ∈ 𝒞𝒜(Ω𝑡). We
also obtain some analytically-measurable and therefore ℬ𝑐(Ω𝑡)-measurable func-
tion 𝜔𝑡 ∈ {𝑁𝑡 ̸= ∅} → (ℎ𝑎(𝜔𝑡), 𝑝𝑎(·, 𝜔𝑡)) ∈ R𝑑×P(Ω𝑡+1) such that for all 𝜔𝑡 ∈ {𝑁𝑡 ̸= ∅},
(ℎ𝑎(𝜔𝑡), 𝑝𝑎(·, 𝜔𝑡)) ∈ 𝑁𝑡(𝜔

𝑡). We extend ℎ𝑎 and 𝑝𝑎 on all Ω𝑡 by setting for all 𝜔𝑡 ∈
Ω𝑡 ∖ {𝑁𝑡 ̸= ∅}, ℎ𝑎(𝜔𝑡) = 0 and 𝑝𝑎(·, 𝜔𝑡) = ̂︀𝑝(·, 𝜔𝑡) where ̂︀𝑝(·, 𝜔𝑡) is a given ℬ𝑐(Ω𝑡)-
measurable selector of Graph(𝒬𝑡+1). As {𝑁𝑡 ̸= ∅} ∈ ℬ𝑐(Ω𝑡), it is clear that ℎ𝑎 and 𝑝𝑎
remain ℬ𝑐(Ω𝑡)-measurable.
We prove now by contradiction that the 𝑠𝑁𝐴(𝒬𝑇 ) implies that Ω𝑇

𝑠𝑁𝐴 is a 𝒬𝑡-full
measure set. We assume that there exists some 1 ≤ 𝑡 ≤ 𝑇 − 1 and some 𝑃 *

𝑡 ∈ 𝒬𝑡

such that 𝑃 *
𝑡 ({𝑁𝑡 ̸= ∅}) > 0. Using the selector (ℎ𝑎, 𝑝𝑎) defined previously, we set

𝑃 * = 𝑃 *
𝑡 ⊗ 𝑝𝑎 ⊗ 𝑝𝑡+2 ⊗ · · · ⊗ 𝑝𝑇 where 𝑝𝑠 is a given ℬ𝑐(Ω𝑠−1)-measurable selector of

Graph(𝒬𝑠) for 𝑠 = 𝑡 + 2, · · · , 𝑇 . We also set 𝜑𝑡+1 = ℎ𝑎 and 𝜑𝑠 = 0 for 𝑠 ̸= 𝑡 + 1. It
is clear that 𝜑 = (𝜑𝑠)1≤𝑠≤𝑇 ∈ Φ. Recalling the definition of 𝑁𝑡, of (ℎ𝑎, 𝑝𝑎)and that
𝑃 *
𝑡 ({𝑁𝑡 ̸= ∅}) > 0 we obtain that

𝑃 *(𝑉 0,𝜑
𝑇 ≥ 0) = 𝑃 *

𝑡+1(ℎ
𝑎(·)Δ𝑆𝑡+1 ≥ 0)

=

∫︁
Ω𝑡∖{𝑁𝑡 ̸=∅}

1𝑃 *
𝑡 (𝑑𝜔

𝑡) +

∫︁
{𝑁𝑡 ̸=∅}

𝑝𝑎(ℎ𝑎(𝜔𝑡)Δ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0, 𝜔𝑡)𝑃 *

𝑡 (𝑑𝜔
𝑡) = 1

while at the same time

𝑃 *(𝑉 0,𝜑
𝑇 > 0) = 𝑃 *

𝑡+1(ℎ
𝑎(·)Δ𝑆𝑡+1 > 0) =

∫︁
{𝑁 ̸=∅}

𝑝𝑎(ℎ𝑎(𝜔𝑡)Δ𝑆𝑡+1(𝜔
𝑡, ·) > 0, 𝜔𝑡)𝑃 *

𝑡 (𝑑𝜔
𝑡) > 0

which means that the 𝑠𝑁𝐴(𝒬𝑇 ) is violated.
The proof of the reverse implication is based on Lemmata 3.7.1 and 3.7.2 presented
in the appendix. We assume that Ω𝑇

𝑠𝑁𝐴 ∈ 𝒞𝒜(Ω𝑡) is a 𝒬𝑡-full measure set. Let 𝜑 ∈ Φ

and 𝑃 ∈ 𝒬𝑇 be such that 𝑃 (𝑉 0,𝜑
𝑇 ≥ 0) = 1. From Lemma 3.7.1 below, we get that

𝑉 0,𝜑
𝑡 ≥ 0 𝑃𝑡-a.s. for all 1 ≤ 𝑡 ≤ 𝑇 . Now, we prove by upward induction that 𝑉 0,𝜑

𝑇 = 0

𝑃 -a.s. For 𝑡 = 1, we have that 𝑉 0,𝜑
1 = 𝜑1Δ𝑆1 ≥ 0 𝑃1-a.s. and from Lemma 3.7.2 (see

(3.37)), we obtain that 𝜑1Δ𝑆1 = 0 𝑃1-a.s. Then, 𝑉 0,𝜑
2 = 𝜑2Δ𝑆2 ≥ 0 𝑃2-a.s. and again

from Lemma 3.7.2 (see (3.37)) we get that 𝜑2Δ𝑆2 = 0 𝑃2-a.s. Finally, by induction
we obtain that 𝑉 0,𝜑

𝑇 = 0 𝑃 -a.s. as claimed. 2

Remark 3.6.5 Note that the proof of the direct implication is very similar to the
proof of Theorem 3.4.3. (see [25, Theorem 4.5]) but the measurable-selection argu-
ment is somehow simplified by the fact that {𝑁𝑡 ̸= ∅} ∈ 𝒜(Ω𝑡) which avoids the use
of Castaing’s representation.

From a technical point of view, the fact that Ω𝑡
𝑠𝑁𝐴 ∈ 𝒞𝒜(Ω𝑡) is sometimes useful.

We provide two illustrations.
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Proposition 3.6.6 Fix some 1 ≤ 𝑡 ≤ 𝑇 − 1 and let 𝐹 : Ω𝑡 → R ∪ {±∞} ∈ ℒ𝑆𝐴(Ω𝑡),
𝐴 ∈ 𝒜(Ω𝑡) and 𝐶 ∈ 𝒞𝒜(Ω𝑡) be fixed. Then 𝐹𝐴 := +∞1Ω𝑡∖𝐴 + 1𝐴𝐹 ∈ ℒ𝑆𝐴(Ω𝑡) and
𝐹𝐶 := −∞1Ω𝑡∖𝐶 + 1𝐶𝐹 ∈ ℒ𝑆𝐴(Ω𝑡)

Proof. The proof is straightforward. Lets 𝑐 ∈ R, then {𝐹𝐴 ≤ 𝑐} = {𝐹 ≤ 𝑐}∩𝐴 ∈ 𝒜(Ω𝑡)

and similarly {𝐹𝐶 ≤ 𝑐} = (Ω𝑡∖𝐶) ∪ ({𝐹 ≤ 𝑐} ∩ 𝐶) = (Ω𝑡∖𝐶𝑡) ∪ {𝐹 ≤ 𝑐} ∈ 𝒜(Ω𝑡). 2

It is easy to obtain the equivalent result if 𝐹 ∈ 𝒰𝑆𝐴(Ω𝑡). Note that for some
𝐵 ∈ ℬ𝑐(Ω𝑡) then whatever value we put outside of 𝐵 is it not possible to preserve
the lower (or upper) semi-analyticity of 𝐹 . This kind of problematic will arise for
instance in Chapter 4 where the full-measure sets induced by the 𝑁𝐴(𝒬𝑇 ) condi-
tion are only in ℬ𝑐(Ω𝑡).
The next lemma could be used in the dynamic programming resolution of maxim-
izing worst-case expected utility under the 𝑠𝑁𝐴(𝒬𝑇 ) condition. Roughly speaking
assume that you have found at time 𝑡 a 𝒬𝑡-full-measure 𝐶𝑡 such that a given prop-
erty 𝐻(𝜔𝑡) is true if you take 𝜔𝑡 ∈ 𝐶𝑡. Now, you want to find a 𝒬𝑡−1-full-measure set
𝐶𝑡−1 at time 𝑡 − 1 such that if you take 𝜔𝑡−1 ∈ 𝐶𝑡−1 the property 𝐻(𝜔𝑡−1, ·) is valid
on a 𝒬𝑡(𝜔

𝑡−1)-full measure set and this is the case in particular if the section of 𝐶𝑡

along 𝜔𝑡−1 is a 𝒬𝑡(𝜔
𝑡−1)-full measure set.

In the next lemma, we denote by (𝐶𝑡)𝜔𝑡−1 := {𝜔𝑡 ∈ Ω𝑡, (𝜔
𝑡−1, 𝜔𝑡) ∈ 𝐶𝑡} the section of

𝐶𝑡 along 𝜔𝑡−1.

Lemma 3.6.7 Fix some 1 ≤ 𝑡 ≤ 𝑇 − 1 and let Assumption 3.2.1 holds true. Let
𝐶𝑡 ∈ 𝒞𝐴(Ω𝑡) such that 𝑃 (𝐶𝑡) = 1 for all 𝑃 ∈ 𝒬𝑡 and set

𝐶𝑡−1 :=
{︀
𝜔𝑡−1 ∈ Ω𝑡−1, 𝑃

(︀(︀
𝐶𝑡
)︀
𝜔𝑡−1

)︀
= 1, ∀𝑃 ∈ 𝒬𝑡(𝜔

𝑡−1)
}︀
. (3.32)

Then 𝐶𝑡−1 ∈ 𝒞𝐴(Ω𝑡−1) and 𝑃 (𝐶𝑡−1) = 1 for all 𝑃 ∈ 𝒬𝑡−1.

Proof. As 𝐶𝑡 ∈ 𝒞𝐴(Ω𝑡), 𝐹𝐶 : 𝜔𝑡 ∈ Ω𝑡 → 1𝐶𝑡(𝜔𝑡) ∈ ℒ𝑆𝐴(Ω𝑡). Using [13, Propos-
ition 7.48 p180], we get that (𝜔𝑡−1, 𝑃 ) ∈ Ω𝑡−1 × P(Ω𝑡) →

∫︀
Ω𝑡
1𝐶𝑡(𝜔𝑡−1, 𝜔𝑡)𝑃 (𝑑𝜔𝑡) ∈

ℒ𝑆𝐴(Ω𝑡−1 × P(Ω𝑡)). Since Graph(𝒬𝑡) ∈ 𝒜(Ω𝑡−1 × P(Ω𝑡)) (see Assumption 3.2.1),
applying [13, Proposition 7.47 p179] we get that

𝐹 *
𝐶𝑡(𝜔𝑡−1) := inf

𝑃∈𝒬𝑡(𝜔𝑡−1)

∫︁
Ω𝑡

1𝐶𝑡(𝜔𝑡−1, 𝜔𝑡)𝑃 (𝑑𝜔𝑡)

= inf
𝑃∈𝒬𝑡(𝜔𝑡−1)

𝑃
(︀(︀
𝐶𝑡
)︀
𝜔𝑡−1 , 𝜔

𝑡−1
)︀
∈ ℒ𝑆𝐴(Ω𝑡−1).

Then using the definition of 𝐶𝑡−1 in (3.32)

𝐶𝑡−1 =
{︀
𝜔𝑡−1 ∈ Ω𝑡−1, 𝐹 *

𝐶𝑡(𝜔𝑡−1) ≥ 1
}︀
∈ 𝒞𝐴(Ω𝑡−1).
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We prove now that 𝑃 (𝐶𝑡−1) = 1 for all 𝑃 ∈ 𝒬𝑡−1. Assume that this is not the
case. Then, there exists some ̃︀𝑃 ∈ 𝒬𝑡−1, such that ̃︀𝑃 (𝐶𝑡−1) < 1. For 𝑛 ≥ 1, Set
𝐵𝑡−1
𝑛 := {𝜔𝑡−1 ∈ Ω𝑡−1, 𝐹 *

𝐶𝑡(𝜔𝑡−1) ≤ 1 − 1
𝑛
}. Then Ω𝑡−1∖𝐶𝑡−1 = ∪𝑛≥1𝐵

𝑡−1
𝑛 Hence, there

exist also some 𝑛 ≥ 1 such that ̃︀𝑃 (𝐵𝑡−1
𝑛 ) > 0. Now, from [13, Proposition 7.50 p184],

there exists some analytically-measurable (and therefore ℬ𝑐(Ω𝑡−1)-measurable) 𝑝𝑛 :

𝜔𝑡−1 ∈ Ω𝑡−1 → P(Ω𝑡), such that for all 𝜔𝑡−1 ∈ 𝐶𝑡−1, 𝑝𝑛(·, 𝜔𝑡−1) ∈ 𝒬𝑡(𝜔
𝑡−1) and

𝑝𝑛
(︀(︀
𝐶𝑡
)︀
𝜔𝑡−1 , 𝜔

𝑡−1
)︀
≤ 𝐹 *

𝐶𝑡(𝜔𝑡−1) +
1

2𝑛

(since 𝐹 *
𝐶𝑡(·) ≥ 0). Setting ̃︀𝑃𝑛 := ̃︀𝑃 ⊗ 𝑝𝑛 ∈ 𝒬𝑡 (see (3.3)) we get that

̃︀𝑃𝑛(𝐶𝑡) = ∫︁
Ω𝑡−1

𝑝𝑛
(︀(︀
𝐶𝑡
)︀
𝜔𝑡−1 , 𝜔

𝑡−1
)︀ ̃︀𝑃 (𝑑𝜔𝑡−1)

=

∫︁
𝐵𝑡−1

𝑛

𝑝𝑛
(︀(︀
𝐶𝑡
)︀
𝜔𝑡−1 , 𝜔

𝑡−1
)︀ ̃︀𝑃 (𝑑𝜔𝑡−1) +

∫︁
Ω𝑡−1∖𝐵𝑡−1

𝑛

𝑝𝑛
(︀(︀
𝐶𝑡
)︀
𝜔𝑡−1 , 𝜔

𝑡−1
)︀ ̃︀𝑃 (𝑑𝜔𝑡−1)

≤ ̃︀𝑃 (𝐵𝑡−1
𝑛 )(1− 1

2𝑛
) + 1− ̃︀𝑃 (𝐵𝑡−1

𝑛 ) < 1,

a contradiction. Therefore 𝑃 (𝐶𝑡−1) = 1 for all 𝑃 ∈ 𝒬𝑡−1. 2

Remark 3.6.8 Note that the previous argument do no apply if 𝐴𝑡 ∈ 𝒜(Ω𝑡). Indeed
using the same notation as in the proof of Lemma 3.6.7, one cannot prove that
𝐹 *
𝐴𝑡 ∈ ℒ𝑆𝐴(Ω𝑡−1). However, using again [13, Propositions 7.47, 7.48 p179, p180],

we get that

𝐹+
𝐴𝑡(𝜔

𝑡−1) := sup
𝑃∈𝒬𝑡(𝜔𝑡−1)

∫︁
Ω𝑡

1𝐴𝑡(𝜔𝑡−1, 𝜔𝑡)𝑃 (𝑑𝜔𝑡)

= sup
𝑃∈𝒬𝑡(𝜔𝑡−1)

𝑃
(︀(︀
𝐴𝑡
)︀
𝜔𝑡−1 , 𝜔

𝑡−1
)︀
∈ 𝒰𝑆𝐴(Ω𝑡−1).

And it follows that

𝐴𝑡−1
2 :=

{︀
𝜔𝑡−1 ∈ Ω𝑡−1, ∃𝑃 ∈ 𝒬𝑡(𝜔

𝑡−1), 𝑃
(︀(︀
𝐴𝑡
)︀
𝜔𝑡−1

)︀
≥ 1
}︀

=
{︀
𝜔𝑡−1 ∈ Ω𝑡−1, 𝐹+

𝐴𝑡(𝜔
𝑡−1) ≥ 1

}︀
∈ 𝒜(Ω𝑡−1).

But this set is not the one we are interested in.
Finally, if 𝐴𝑡 ∈ ℬ𝑐(Ω𝑡) the argument simply does not apply: indeed one can show
that (𝜔𝑡−1, 𝑃 ) →

∫︀
Ω𝑡

1𝐴𝑡(𝜔𝑡−1, 𝜔𝑡)𝑃 (𝑑𝜔𝑡) is ℬ𝑐(Ω𝑡−1×P(Ω𝑡))-measurable (see [13, Pro-
position 7.46 p177]) but as the projection of an universally-measurable set is not
universally-measurable in general one cannot obtain any measurability of the in-
finimum or supremum over 𝑃 . This problem will arise again in Chapter 4.
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Remark 3.6.9 As already mentioned in the introduction in [7, Theorem 3.3] an
other (stronger) alternative no-arbitrage is introduced where the local-no arbit-
rage 𝑁𝐴(𝒬𝑡+1(𝜔𝑡)) is assumed to be true for all 𝜔𝑡 ∈ Ω𝑡. This is an other way to
solve the measurability issues. Note that if 𝑁𝐴(𝒬𝑇 ) hold true and that we modify
𝑆𝑡 outside of the full-measure set Ω𝑡

𝑁𝐴 (setting it to 0 for instance), we obtain that
the local-no arbitrage is valid for all 𝜔𝑡 but we loose the Borel-measurability of 𝑆𝑡
(Assumption 3.2.2) which is essential to obtain some other measurability results
such as Lemma 3.3.2.

3.6.2 Quantitative characterisation of the 𝑠𝑁𝐴(𝒬𝑇 )

We propose now the following quantitative characterisation of the 𝑠𝑁𝐴(𝒬𝑇 ) that
will be used in Chapter 4. First, as in Definition 2.3.2 in Chapter 2 and also Defin-
ition 3.3.1, we introduce for all 𝑃 = 𝑄1 ⊗ 𝑞2 ⊗ · · · ⊗ 𝑞𝑇 ∈ 𝒬𝑇 (see (3.3)) and for all
1 ≤ 𝑡 ≤ 𝑇 − 1̃︀𝐷𝑡+1

𝑃 (𝜔𝑡) :=
⋂︁{︀

𝐴 ⊂ R𝑑, closed, 𝑞𝑡+1

(︀
Δ𝑆𝑡+1(𝜔

𝑡, .) ∈ 𝐴, 𝜔𝑡
)︀
= 1
}︀

(3.33)

𝐷𝑡+1
𝑃 (𝜔𝑡) := Aff

(︁ ̃︀𝐷𝑡+1
𝑃 (𝜔𝑡)

)︁
. (3.34)

The case 𝑡 = 0 is obtained by replacing 𝑞𝑡+1(·, 𝜔𝑡) by 𝑄1(·). We have the following
result which is the pendant of Lemma 2.3.3 in Chapter 2 in our setting.

Lemma 3.6.10 Let Assumption 3.2.1 and 3.2.2 hold true and 0 ≤ 𝑡 ≤ 𝑇 − 1 be
fixed. Then 𝐷𝑡+1

𝑃 is a non-empty, closed valued and ℬ𝑐(Ω𝑡)-measurable random set
and Graph(𝐷𝑡+1

𝑃 ) ∈ ℬ𝑐(Ω𝑡)⊗ ℬ(R𝑑).

Proof. The proof is a simple adaptation of Lemma 2.3.3 in Chapter 2 (as ℬ𝑐(Ω𝑠) is
not a product sigma-algebra) and is provided for sake of completeness. It is clear
that for all 𝜔𝑡 ∈ Ω𝑡, ̃︀𝐷𝑡+1

𝑃 (𝜔𝑡) is a non-empty and closed subset of R𝑑. We now
show that ̃︀𝐷𝑡+1

𝑃 is ℬ𝑐(Ω𝑡)-measurable. Since 𝑃 ∈ 𝒬𝑇 and Assumption 3.2.1 holds
true, 𝑞𝑠+1 ∈ 𝒮𝐾𝑠+1 for all 1 ≤ 𝑠 ≤ 𝑇 − 1 (see (3.3)), in other words the 𝑞𝑠+1 are
ℬ𝑐(Ω𝑠)-measurable stochastic kernels on Ω𝑠+1 given Ω𝑠. Let 𝑂 be a fixed open set
in R𝑑. Recalling Assumption 3.2.2, 𝜔𝑡+1 → 1{Δ𝑆𝑡+1(·)∈𝑂}(𝜔

𝑡+1) is ℬ(Ω𝑡+1)-measurable
(and thus also ℬ𝑐(Ω𝑡)-measurable) and as 𝑞𝑡+1 ∈ 𝒮𝐾𝑡+1, using [13, Proposition 7.46
p177], we get that 𝜔𝑡 ∈ Ω𝑡 → 𝑞𝑡+1 (Δ𝑆𝑡+1(𝜔

𝑡, .) ∈ 𝑂|𝜔𝑡) is ℬ𝑐(Ω𝑡)-measurable. By
definition of ̃︀𝐷𝑡+1

𝑃 (𝜔𝑡) we get that

{𝜔𝑡 ∈ Ω𝑡, ̃︀𝐷𝑡+1
𝑃 (𝜔𝑡) ∩𝑂 ̸= ∅} = {𝜔𝑡 ∈ Ω𝑡, 𝑞𝑡+1

(︀
Δ𝑆𝑡+1(𝜔

𝑡, .) ∈ 𝑂|𝜔𝑡
)︀
> 0} ∈ ℬ𝑐(Ω𝑡).

It is immediate to verify that 𝐷𝑡+1
𝑃 is a non-empty, closed-valued and applying [116,

Exercise 14.12] we obtain that 𝐷𝑡+1
𝑃 is ℬ𝑐(Ω𝑡)-measurable. Finally, from [116, The-

orem 14.8] we get that 𝐺𝑟𝑎𝑝ℎ(𝐷𝑡+1
𝑃 ) ∈ ℬ𝑐(Ω𝑡)⊗ ℬ(R𝑑). 2
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Proposition 3.6.11 Assume that the 𝑠𝑁𝐴(𝒬𝑇 ) condition and Assumptions 3.2.1
and 3.2.2 hold true and let 0 ≤ 𝑡 ≤ 𝑇 − 1. Fix some 𝑃 = 𝑄1 ⊗ 𝑞2 ⊗ · · · ⊗ 𝑞𝑇 ∈ 𝒬𝑇 .
Then there exists Ω𝑡

𝑃 ∈ ℬ(Ω𝑡) with 𝑃𝑡(Ω𝑡
𝑃 ) = 1 such that for all 𝜔𝑡 ∈ Ω𝑡

𝑃 , 𝐷𝑡+1
𝑃 (𝜔𝑡) is a

vector subspace and there exists 𝛼𝑃𝑡 (𝜔𝑡) ∈ (0, 1] such that for all ℎ ∈ 𝐷𝑡+1
𝑃 (𝜔𝑡), ℎ ̸= 0

𝑞𝑡+1

(︀
ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≤ −𝛼𝑃𝑡 (𝜔𝑡)|ℎ|, 𝜔𝑡
)︀
≥ 𝛼𝑃𝑡 (𝜔

𝑡). (3.35)

Furthermore 𝜔𝑡 → 𝛼𝑃𝑡 (𝜔
𝑡) is ℬ(Ω𝑡)-measurable.

Proof. We want to apply Propositions 2.3.6 and 2.3.7 of Chapter 2. Since 𝑃 ∈ 𝒬𝑇

and Assumption 3.2.1 holds true, 𝑞𝑠+1 ∈ 𝒮𝐾𝑠+1 for all 1 ≤ 𝑠 ≤ 𝑇 − 1 (see (3.3)),
in other words the 𝑞𝑠+1 are ℬ𝑐(Ω𝑠)-measurable stochastic kernels on Ω𝑠+1 given Ω𝑠.
However, as ℬ𝑐(Ω𝑠) is not a product sigma-algebra, we need to be a bit cautious.
For all 1 ≤ 𝑠 ≤ 𝑇 − 1, we apply first [13, Lemma 7.28 (c) p174] and we obtain some
ℬ(Ω𝑠)-measurable stochastic kernels 𝑞𝑠+1 (see [13, Definition 7.12 p134]), and somê︀Ω𝑠 ⊂ ℬ𝑐(Ω𝑠) such that 𝑃𝑠(̂︀Ω𝑠) = 1 and 𝑞𝑠+1(·, 𝜔𝑠) = 𝑞𝑠+1(·, 𝜔𝑠) for all 𝜔𝑠 ∈ ̂︀Ω𝑠. We set
𝑃 = 𝑄1⊗𝑞2⊗· · ·⊗𝑞𝑇 . Then, it is easy to prove by induction that 𝑃𝑠(𝐴𝑠) = 𝑃 𝑠(𝐴𝑠) for
all 𝐴𝑠 ∈ ℬ(Ω𝑠), 1 ≤ 𝑠 ≤ 𝑇 . Indeed, for 𝑠 = 1 there is nothing to prove. Assume that
until some 1 ≤ 𝑠 < 𝑇 , 𝑃𝑠(𝐴𝑠) = 𝑃 𝑠(𝐴𝑠) for all 𝐴𝑠 ∈ ℬ(Ω𝑠). Fix some 𝐴𝑠+1 ∈ ℬ(Ω𝑠+1).
Using (3.2) we find that

𝑃𝑠+1(𝐴𝑠+1) =

∫︁
Ω𝑠

∫︁
Ω𝑠+1

1𝐴𝑠+1(𝜔
𝑠, 𝜔𝑠+1)𝑞𝑠+1(𝑑𝜔𝑠+1, 𝜔

𝑠)𝑃𝑠(𝑑𝜔
𝑠)

=

∫︁
Ω

𝑠

∫︁
Ω𝑠+1

1𝐴𝑠+1(𝜔
𝑠, 𝜔𝑠+1)𝑞𝑠+1(𝑑𝜔𝑠+1, 𝜔

𝑠)𝑃 𝑠(𝑑𝜔
𝑠) = 𝑃 𝑠+1(𝐴𝑠+1),

where we have used the induction hypothesis for the second equality. Since this is
true for all 𝐴𝑠+1 ∈ ℬ(Ω𝑠+1), the induction is complete.
So, as 𝑁𝐴(𝑃 ) holds true, we get that 𝑁𝐴(𝑃 ) holds also true. Since ̂︀Ω𝑡 ∈ ℬ𝑐(Ω𝑡),
there exists some Ω

𝑡 ∈ ℬ(Ω𝑡) as well as a 𝑃 𝑡-null set 𝑁 𝑡 such that ̂︀Ω𝑡 = Ω
𝑡 ∪𝑁 𝑡. We

have also that for all 𝜔𝑡 ∈ Ω
𝑡, 𝐷𝑡+1

𝑃 (𝜔𝑡) = 𝐷𝑡+1

𝑃
(𝜔𝑡). We can now apply Propositions

2.3.6 and 2.3.7 of Chapter 2 for 𝑃 and ℱ𝑡 = ℬ(Ω1)⊗· · ·⊗ℬ(Ω𝑡) = ℬ(Ω𝑡): 𝐷𝑡+1

𝑃
(𝜔𝑡) is a

vector subspace and there exists some Ω𝑡
𝑃
∈ ℬ(Ω𝑡) with 𝑃 𝑡(Ω

𝑡
𝑃
) = 1 and some ℬ(Ω𝑡)-

measurable 𝜔𝑡 → 𝛼𝑃𝑡 (𝜔
𝑡) such that (3.35) holds true for all 𝜔𝑡 ∈ Ω𝑡

𝑃
and ℎ ∈ 𝐷𝑡+1

𝑃
(𝜔𝑡).

We finally set Ω𝑡
𝑃 = Ω𝑡

𝑃
∩ Ω

𝑡, 𝛼𝑃𝑡 = 𝛼𝑃𝑡 . It is easy to verify that 𝑃𝑡(Ω𝑡
𝑃 ) = 1, that

𝐷𝑡+1
𝑃 (𝜔𝑡) is a vector subspace for 𝜔𝑡 ∈ Ω𝑡

𝑃 , that (3.35) holds true and that 𝛼𝑃𝑡 is
ℬ(Ω𝑡)-measurable. 2

3.6.3 First Fundamental Theorem for the 𝑠𝑁𝐴(𝒬𝑇 )

The next proposition can be seen as the pendant of [25, First Fundamental The-
orem] for the 𝑠𝑁𝐴(𝒬𝑇 ) condition. We propose it in a slightly more general setting
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and in particular we do not use the technical assumptions related to measurabil-
ity issues such as Assumptions 3.2.1 and 3.2.2. Note that it is a straightforward
extension of the FTAP in a mono-prior setting.

Proposition 3.6.12 We consider a general measurable space (Ω,ℱ𝑇 ) and a filtra-
tion ℱ := (ℱ𝑡)1≤𝑡≤𝑇 . We denote by P the set of all probability measures defined on
(Ω,ℱ𝑇 ). Let 𝑆 := {𝑆𝑡, 0 ≤ 𝑡 ≤ 𝑇} be a (ℱ𝑡)1≤𝑡≤𝑇 -adapted 𝑑-dimensional process rep-
resenting the price process of the 𝑑 traded assets while the trading strategies are
represented by 𝑑-dimensional processes 𝜑 := {𝜑𝑡, 1 ≤ 𝑡 ≤ 𝑇} where for all 1 ≤ 𝑡 ≤ 𝑇 ,
𝜑𝑡 is ℱ𝑡−1-measurable (the set of all such trading strategies is still denoted by Φ).
Let also 𝒬 be a subset of P. For any 𝑃 ∈ 𝒬 we define

ℛ(𝑃 ) := {𝑅 ∈ P, 𝑅 ∼ 𝑃 such that 𝑆 is a martingale-measure under 𝑅}.

Then the following statements are equivalent

i) For all 𝑃 ∈ 𝒬, 𝜑 ∈ Φ, 𝑉 0,𝜑
𝑇 ≥ 0 𝑃 -a.s. implies that 𝑉 0,𝜑

𝑇 = 0 𝑃 -a.s. (𝑖.𝑒 Assump-
tion 3.6.1 holds true in the setting of this proposition).

ii) For all 𝑃 ∈ 𝒬, ℛ(𝑃 ) ̸= ∅.

Proof. This is a simple application of [62, Theorem 5.17] for all 𝑃 ∈ 𝒬. 2

So, under the 𝑠𝑁𝐴(𝒬𝑇 ) condition, the set of martingale measures obtained is⋃︁
𝑃∈𝒬

ℛ(𝑃 ) = {𝑅 ∈ P, ∃𝑃 ∈ 𝒬, 𝑅 ∼ 𝑃 and such that 𝑆 is a martingale-measure under 𝑅}}

and is a subset of the the one obtained in [25, First Fundamental Theorem] which
can be written as

ℛ𝑇 := {𝑅 ∈ P, ∃𝑃1, 𝑃2 ∈ 𝒬, 𝑃1 ≪ 𝑅 ≪ 𝑃2 𝑆 is a martingale-measure under 𝑅}.

Note also that in a continuous time framework, [14] the no-arbitrage condition
introduced (namely the 𝑁𝐴1(𝒫)) holds true if and only if for every 𝑃 ∈ 𝒬, there
exists a local martingale measure 𝑄 such that 𝑄 and 𝑃 are equivalent prior to 𝜉
(where 𝜉 is a random time, corresponding to the time where the process jump into
a cemetery state that is invisible from all model 𝑃 ∈ 𝒫).

Remark 3.6.13 In the spirit of [47], we could also introduce the notion of weak-
arbitrage (or model-dependant arbitrage). There is a weak-arbitrage if for all prior
(or model) 𝑃 ∈ 𝒬, we can find a strategy 𝜑𝑃 that is an arbitrage for this specific
prior (or model). In other words, we say that the 𝑁𝑤𝐴(𝒬𝑇 ) condition holds true
if there exists some 𝑃 * ∈ 𝒬𝑇 such that for all 𝜑 ∈ Φ 𝑉 0,𝜑

𝑇 ≥ 0 𝑃 *-a.s. implies that
𝑉 0,𝜑
𝑇 = 0 𝑃 *-a.s.. It is clear that the𝑁𝑤𝐴(𝒬𝑇 ) condition is weaker than the 𝑠𝑁𝐴(𝒬𝑇 )

condition. However the local characterisation is fundamentally different as we do
not obtain a 𝒬𝑇 -full measure set.
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3.7 Appendix
The following two lemmata were used in the proof of Theorem 3.6.4. Recall that for
𝑃 = 𝑄1 ⊗ 𝑞2 ⊗ · · · ⊗ 𝑞𝑇 ∈ 𝒬𝑇 we denote by 𝑃𝑡 := 𝑄1 ⊗ 𝑞2 ⊗ · · · ⊗ 𝑞𝑡 for any 1 ≤ 𝑡 ≤ 𝑇 .

Lemma 3.7.1 Assume that Assumptions 3.2.1, 3.2.2 and that for all 0 ≤ 𝑡 ≤ 𝑇 − 1,
Ω𝑡
𝑠𝑁𝐴 (see Definition 3.6.2) is a 𝒬𝑡-full measure set. Let 𝑥 ≥ 0, 𝑃 ∈ 𝒬𝑇 be fixed and

let 𝜑 ∈ Φ such that 𝑉 𝑥,𝜑
𝑇 ≥ 0 𝑃 -a.s. Then for all 1 ≤ 𝑡 ≤ 𝑇 , 𝑉 𝑥,𝜑

𝑡 ≥ 0 𝑃 -a.s.

Proof. We prove the lemma by backward induction. This is obviously true for
𝑡 = 𝑇 . We fix some 𝑡 ≤ 𝑇 − 1 and assume that 𝑉 𝑥,𝜑

𝑡+1 ≥ 0 𝑃𝑡+1-a.s. We set 𝐴𝑡 := {𝜔𝑡 ∈
Ω𝑡, 𝑉 𝑥,𝜑

𝑡 (𝜔𝑡) < 0} ∈ ℬ𝑐(Ω𝑡) and prove that 𝑃𝑡(𝐴𝑡) = 0. To do so, we proceed by contra-
diction and assume that 𝑃𝑡(𝐴𝑡) > 0. We set for all 𝜔𝑡 ∈ Ω𝑡, 𝜑𝐴𝑡+1(𝜔

𝑡) := 1𝐴𝑡(𝜔
𝑡)𝜑𝑡+1(𝜔

𝑡).
It is clear that 𝜑𝐴𝑡+1 is ℬ𝑐(Ω𝑡)-measurable. We prove that 𝜑𝐴𝑡+1Δ𝑆𝑡+1 ≥ 0 𝑃𝑡+1-a.s. Let
𝐴𝑡+1 := {𝜔𝑡+1 ∈ Ω𝑡+1, 𝑉 𝑥,𝜑

𝑡+1 (𝜔
𝑡+1) ≥ 0} ∈ ℬ𝑐(Ω𝑡+1). By induction hypothesis 𝐴𝑡+1

is a 𝑃𝑡+1-full measure set. We fix some 𝜔𝑡+1 = (𝜔𝑡, 𝜔𝑡+1) ∈ 𝐴𝑡+1. If 𝜔𝑡 /∈ 𝐴𝑡, then
𝜑𝐴𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1) = 0 and if 𝜔𝑡 ∈ 𝐴𝑡, we have that 𝜑𝐴𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1) =

𝜑𝑡+1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1) = 𝑉 𝑥,𝜑
𝑡+1 (𝜔

𝑡, 𝜔𝑡+1)−𝑉 𝑥,𝜑
𝑡 (𝜔𝑡) > 0. Thus we can use Lemma 3.7.2

(see (3.37)) and we get that

𝜑𝐴𝑡+1Δ𝑆𝑡+1 = 0 𝑃𝑡+1-a.s. (3.36)

As 𝐴𝑡+1 ∈ ℬ𝑐(Ω𝑡+1) is a 𝑃𝑡+1-full measure set, using Lemma 3.7.3, we get that

̃︀Ω𝑡 :=
{︀
𝜔𝑡 ∈ Ω𝑡, 𝑞𝑡+1

(︀
(𝐴𝑡+1)𝜔𝑡 , 𝜔

𝑡
)︀
= 1
}︀
∈ ℬ𝑐(Ω𝑡)3

is a 𝑃𝑡-full measure set. Thus, we have that

𝑃𝑡+1(𝜑
𝐴
𝑡+1Δ𝑆𝑡+1 > 0) ≥

∫︁
𝐴𝑡∩̃︀Ω𝑡

𝑞𝑡+1(𝜑
𝐴
𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, ·) > 0, 𝜔𝑡)𝑃𝑡(𝑑𝜔

𝑡) > 0

where we have used the fact that 𝑃𝑡(𝐴𝑡∩̃︀Ω𝑡) = 𝑃𝑡(𝐴𝑡) > 0 and that for all 𝜔𝑡 ∈ 𝐴𝑡∩̃︀Ω𝑡,
𝑞𝑡+1(𝜑

𝐴
𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, ·) > 0, 𝜔𝑡) > 0. Indeed 𝑞𝑡+1 ((𝐴𝑡+1)𝜔𝑡 , 𝜔𝑡) = 1 and for all 𝜔𝑡+1 ∈

(𝐴𝑡+1)𝜔𝑡, 𝜑𝐴𝑡+1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1) ≥ −𝑉 𝑥,𝜑
𝑡 (𝜔𝑡) > 0 since 𝜔𝑡 ∈ 𝐴𝑡 and 𝜔𝑡+1 ∈ 𝐴𝑡+1. But

this contradicts (3.36). Thus we must have that 𝑃𝑡(𝐴𝑡) = 0, 𝑖.𝑒 𝑉 𝑥,𝜑
𝑡 ≥ 0 𝑃𝑡-q.s. 2

Lemma 3.7.2 Assume that Assumptions 3.2.1, 3.2.2 hold true and that for all 0 ≤
𝑡 ≤ 𝑇 −1, Ω𝑡

𝑠𝑁𝐴 (see Definition 3.6.2) is a 𝒬𝑡-full measure set. Then for all 1 ≤ 𝑡 ≤ 𝑇 ,
all 𝑃 ∈ 𝒬𝑇 and any R𝑑-valued ℬ𝑐(Ω𝑡−1)-measurable 𝜑𝑡,

𝜑𝑡Δ𝑆𝑡 ≥ 0 𝑃𝑡-a.s. ⇒ 𝜑𝑡Δ𝑆𝑡 = 0 𝑃𝑡-a.s. (3.37)

3Recall that (𝐴𝑡+1)𝜔𝑡 := {𝜔𝑡+1 ∈ Ω𝑡+1, (𝜔
𝑡, 𝜔𝑡+1) ∈ 𝐴𝑡+1} is the section of 𝐴𝑡+1 along 𝜔𝑡.
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Proof. We fix some 𝑃 ∈ 𝒬𝑇 , some 1 ≤ 𝑡 ≤ 𝑇 and some ℬ𝑐(Ω𝑡−1)-measurable 𝜑𝑡 such
that 𝜑𝑡Δ𝑆𝑡 ≥ 0 𝑃𝑡-a.s. For 𝜔𝑡−1 ∈ Ω𝑡−1 fixed, we denote by 𝜑⊥

𝑡 (𝜔
𝑡−1) the orthogonal

projection of 𝜑𝑡(𝜔𝑡−1) on 𝐷𝑡
𝑃 (𝜔

𝑡−1) (a convex and closed set of R𝑑, see (3.34)). As
Assumptions 3.2.1 and 3.2.2 hold true, from Lemma 3.6.10 we get that the ran-
dom set 𝐷𝑡

𝑃 is ℬ𝑐(Ω𝑡−1)-measurable and Graph(𝐷𝑡
𝑃 ) ∈ ℬ𝑐(Ω𝑡−1) ⊗ ℬ(R𝑑). Applying

for example [116, Exercice 14.17 p655], we obtain that 𝜔𝑡−1 ∈ Ω𝑡−1 → 𝜑⊥
𝑡 (𝜔

𝑡−1) is
ℬ𝑐(Ω𝑡−1)-measurable. We reset Ω𝑡−1

𝑠𝑁𝐴 := Ω𝑡−1
𝑠𝑁𝐴 ∩Ω𝑡

𝑃 where Ω𝑡
𝑃 was introduced in Pro-

position 3.6.11. In particular it follows that for all 𝜔𝑡−1 ∈ Ω𝑡−1
𝑠𝑁𝐴, 𝐷𝑡

𝑃 (𝜔
𝑡−1) is a vector

space, thus we have that

𝜑𝑡(𝜔
𝑡−1)Δ𝑆𝑡(𝜔

𝑡−1, ·) = 𝜑⊥
𝑡 (𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, ·) 𝑞𝑡(𝜔𝑡−1)-a.s. (3.38)

Indeed, for 𝜔𝑡−1 ∈ Ω𝑡−1
𝑠𝑁𝐴, we have that {Δ𝑆𝑡(𝜔𝑡−1, ·) ∈ 𝐷𝑡

𝑃 (𝜔
𝑡−1)} ⊂ {𝜑𝑡(𝜔𝑡−1)Δ𝑆𝑡(𝜔

𝑡−1, ·) =
𝜑⊥
𝑡 (𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, ·)} and by definition of𝐷𝑡

𝑃 (𝜔
𝑡−1), it follows that 𝑞𝑡({𝜑𝑡(𝜔𝑡−1)Δ𝑆𝑡(𝜔

𝑡−1, ·) =
𝜑⊥
𝑡 (𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, ·)} = 1. We set now

𝐸𝑡−1 := {𝜔𝑡−1 ∈ Ω𝑡−1
𝑠𝑁𝐴, 𝜑

⊥
𝑡 (𝜔

𝑡−1) ̸= 0} ∈ ℬ𝑐(Ω𝑡−1).

Note that from Proposition 3.6.11, 𝑞𝑡
(︀
𝜑⊥
𝑡 (𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, ·) ̸= 0, 𝜔𝑡−1

)︀
> 0 for 𝜔𝑡−1 ∈

𝐸𝑡−1.
Assume for a moment that we have proved that 𝑃𝑡−1(𝐸𝑡−1) = 0. Then using Fubini’s
Theorem (see [13, Proposition 7.45 p175]), we obtain that

𝑃𝑡(𝜑𝑡Δ𝑆𝑡 = 0) =

∫︁
Ω𝑡−1

𝑞𝑡
(︀
𝜑𝑡(𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, ·) = 0, 𝜔𝑡−1

)︀
𝑃𝑡−1(𝑑𝜔

𝑡−1)

=

∫︁
Ω𝑡−1∖𝐸𝑡−1

𝑞𝑡
(︀
𝜑⊥
𝑡 (𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, ·) = 0, 𝜔𝑡−1

)︀
𝑃𝑡−1(𝑑𝜔

𝑡−1) = 1 (3.39)

where we have used that 𝑞𝑡(·, 𝜔𝑡−1) ∈ 𝒬𝑡(𝜔
𝑡−1), 𝑃𝑡−1(𝐸𝑡−1) = 0, (3.38) and

𝑞𝑡
(︀
𝜑⊥
𝑡 (𝜔

𝑇−1)Δ𝑆𝑡(𝜔
𝑇−1, ·) = 0, 𝜔𝑡−1

)︀
= 1 for all 𝜔𝑡−1 ∈ Ω𝑡−1∖𝐸𝑡−1. Thus, we get that

𝜑𝑡Δ𝑆𝑡 = 0 𝑃𝑡-a.s. and (3.37) is proved.
We establish now that 𝑃𝑡−1(𝐸𝑡−1) = 0. If 𝑃𝑡−1(𝐸𝑡−1) > 0 using the same argument
as in (3.39), we obtain that

𝑃𝑡 (𝜑𝑡(·)Δ𝑆𝑡(·) ̸= 0) = 𝑃𝑡
(︀
𝜑⊥
𝑡 (·)Δ𝑆𝑡(·) ̸= 0

)︀
≥
∫︁
𝐸𝑡−1

𝑞𝑡
(︀
𝜑⊥
𝑡 (𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, ·) ̸= 0, 𝜔𝑡−1

)︀
𝑃𝑡−1(𝑑𝜔

𝑡−1) > 0

where we have used the fact that for 𝜔𝑡−1 ∈ 𝐸𝑡−1 𝑞𝑡
(︀
𝜑⊥
𝑡 (𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, ·) ̸= 0

)︀
> 0:

thus 𝑠𝑁𝐴(𝒬𝑡(𝜔𝑡−1) is violated. Thus 𝑃𝑡−1(𝐸𝑡−1) = 0 as claimed. 2

The following lemma was used in the proof of Lemma 3.7.1. It is a slight modifica-
tion of Lemma 2.8.8 in Chapter 2 to deal with the fact that ℬ𝑐(Ω𝑡+1) is not a product
sigma-algebra.
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Lemma 3.7.3 Fix some 0 ≤ 𝑡 ≤ 𝑇 − 1. For all 𝐴 ∈ ℬ𝑐(Ω𝑡+1) and 𝜔𝑡 ∈ Ω𝑡 we denote
by (𝐴)𝜔𝑡 := {𝜔𝑡+1 ∈ Ω𝑡+1, (𝜔𝑡, 𝜔𝑡+1) ∈ 𝐴} the section of 𝐴 along 𝜔𝑡. Let 𝑃𝑡 ∈ P(Ω𝑡)

and 𝑞𝑡+1 ∈ 𝒮𝐾𝑡+1. We set 𝑃𝑡+1 = 𝑃𝑡 ⊗ 𝑞𝑡+1 ∈ P(Ω𝑡+1). Let ̃︀Ω𝑡+1 ∈ ℬ𝑐(Ω𝑡+1) such that
𝑃𝑡+1(̃︀Ω𝑡+1) = 1. Then

̃︀Ω𝑡 :=
{︁
𝜔𝑡 ∈ Ω𝑡, 𝑞𝑡+1

(︁(︁̃︀Ω𝑡+1
)︁
𝜔𝑡
, 𝜔𝑡
)︁
= 1
}︁
∈ ℬ𝑐(Ω𝑡)

and is a 𝑃𝑡-full measure set

Proof. We prove first that 𝜔𝑡 ∈ Ω𝑡 → 𝑞𝑡+1

(︁(︁̃︀Ω𝑡+1
)︁
𝜔𝑡
, 𝜔𝑡
)︁

is ℬ𝑐(Ω𝑡)-measurable.

The fact that ̃︀Ω𝑡 ∈ ℬ𝑐(Ω𝑡) will follow immediately. As (𝜔𝑡, 𝜔𝑡+1) → 1̃︀Ω𝑡+1(𝜔𝑡, 𝜔𝑡+1) is
ℬ𝑐(Ω𝑡+1) measurable and 𝑞𝑡+1 is a ℬ𝑐(Ω𝑡)-measurable stochastic kernel, we can apply
[13, Proposition 7.46 p177] and we obtain that 𝜔𝑡 ∈ Ω𝑡 →

∫︀
Ω𝑡+1

1̃︀Ω𝑡+1(𝜔𝑡, 𝜔𝑡+1)𝑞𝑡+1(𝑑𝜔𝑡+1, 𝜔
𝑡) =

𝑞𝑡+1

(︁(︁̃︀Ω𝑡+1
)︁
𝜔𝑡
, 𝜔𝑡
)︁

is ℬ𝑐(Ω𝑡)-measurable. Assume that 𝑃𝑡(̃︀Ω𝑡) < 1 we obtain that

1 = 𝑃𝑡+1(̃︀Ω𝑡+1) =

∫︁
Ω𝑡

𝑞𝑡+1

(︁(︁̃︀Ω𝑡+1
)︁
𝜔𝑡
, 𝜔𝑡
)︁
𝑃𝑡(𝑑𝜔

𝑡)

= 𝑃𝑡(̃︀Ω𝑡) +

∫︁
Ω𝑡∖̃︀Ω𝑡

𝑞𝑡+1

(︁(︁̃︀Ω𝑡+1
)︁
𝜔𝑡
, 𝜔𝑡
)︁
𝑃𝑡(𝑑𝜔

𝑡)

< 𝑃𝑡(̃︀Ω𝑡) + 𝑃𝑡(Ω
𝑡∖̃︀Ω𝑡) = 1

where we have used that 𝑞𝑡+1

(︁(︁̃︀Ω𝑡+1
)︁
𝜔𝑡
, 𝜔𝑡
)︁
< 1 on Ω𝑡∖̃︀Ω𝑡. This contradiction shows

that 𝑃𝑡(̃︀Ω𝑡) = 1. 2





CHAPTER 4

Multiple-priors optimal investment
in discrete time for unbounded

utility function

This chapter is an extended version of the results on multiple-priors utility max-
imisation obtained in [20] that has been submitted for publication.

This chapter investigates the problem of maximizing multiple-priors expected ter-
minal utility in a discrete-time financial market model with a finite horizon under
non-dominated model uncertainty. We use a dynamic programming framework to-
gether with measurable selection arguments to prove that under mild integrability
conditions, an optimal portfolio exists for an unbounded utility function defined on
the half-real line.

4.1 Introduction
We consider investors trading in a multi-period and discrete-time financial mar-
ket. We study the problem of terminal wealth expected utility maximisation under
Knightian uncertainty. It was first introduced by F. Knight ([90]) and refers to
the “unknown unknown", or uncertainty, as opposed to the “known unknown", or
risk. This concept is very appropriate in the context of financial mathematics as it
describes accurately market behaviors which are becoming more and more surpris-
ing. The belief of investors are modeled with a set of probability measures rather
than a single one. This can be related to model mispecification issues or model risk
and has triggered a renewed and strong interest by practitioners and academics
alike.
The axiomatic theory of the classical expected utility was initiated by [126]. They
provided conditions on investor preferences under which the expected utility of a
contingent claim 𝑋 can be expressed as 𝐸𝑃𝑈(𝑋) where 𝑃 is a given probability
measure and 𝑈 is a so-called utility function. The problem of maximising the von
Neumann and Morgenstern expected utility has been extensively studied, we refer
to [111] and [112] for the discrete-time case and to [91] and [121] for the continuous-
time one. In the presence of Knightian uncertainty, [69] provided a pioneering con-
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tribution by extending the axiomatic of von Neumann and Morgenstern. In this
case, under suitable conditions on the investor preferences, the utility functional is
of the form inf𝑃∈𝒬𝑇 𝐸𝑃𝑈(𝑋) where 𝒬𝑇 is the set of all possible probability measures
representing the agent beliefs. Most of the literature on the so-called multiple-
priors or robust expected utility maximisation assumes that 𝒬𝑇 is dominated by a
reference measure. We refer to [63] for an extensive survey.
However assuming the existence of a dominating reference measure does not al-
ways provide the required degree of generality from an economic and practical
perspective. Indeed, uncertain volatility models (see [5], [53], [93]) are concrete ex-
amples where this hypothesis fails. On the other hand, assuming a non-dominated
set of probability measures significantly raises the mathematical difficulty of the
problem as some of the usual tools of probability theory do not apply. In the
multiple-priors non-dominated case, [52] obtained the existence of an optimal strategy,
a worst case measure as well as some “minmax" results under some compacity as-
sumption on the set of probability measures and with a bounded (from above and
below) utility function. This result is obtained in the continuous-time case. In the
discrete-time case, [99] (where further references to multiple-priors non-dominated
problematic can be found) obtained the first existence result without any compa-
city assumption on the set of probability measures but for a bounded (from above)
utility function. We also mention two articles subsequent to our contribution. The
first one (see [7]) provides a dual representation in the case of an exponential utility
function with a random endowment and the second one (see [98]) studies a market
with frictions in the spirit of [106] for a bounded from above utility function.
To the best of our knowledge, this chapter provides the first general result for
unbounded utility functions assuming a non-dominated set of probability meas-
ures (and without compacity assumption). This includes for example, the useful
case of Constant Relative Risk Aversion utility functions (𝑖.𝑒 logarithm or power
functions). In Theorem 4.4.14, we give sufficient conditions for the existence of
an optimizer to our “maxmin" problem (see Definition 4.4.8). We work under the
framework of [25] and [99]. The market is governed by a non-dominated set of prob-
ability measures 𝒬𝑇 that determines which events are relevant or not. Assumption
4.2.1, which is related to measurability issues, is the only assumption made on 𝒬𝑇

and is the cornerstone of the proof. We introduce two integrability assumptions.
The first one (Assumption 4.4.2) is related to measurability and continuity issues.
The second one (Assumption 4.4.12) replaces the boundedness assumption of [99]
and allows us to use auxiliary functions which play the role of properly integrable
bounds for the value functions at each step. The no-arbitrage condition is essen-
tial as well, we use the 𝑁𝐴(𝒬𝑇 ) introduced in [25] (see also Chapter 3) and use its
equivalent “quantitative" characterisation (see Definition 3.4.4 and Theorem 3.4.7
in Chapter 3). Finally, we will use also the “strong" no-arbitrage condition 𝑠𝑁𝐴(𝒬𝑇 )

introduced in Definition 3.6.1 in Chapter 3 and prove in Theorem 4.4.15 that under
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the 𝑠𝑁𝐴(𝒬𝑇 ) condition, Theorem 4.4.14 applies to a large range of settings.
As in [25] and [99] our proof relies heavily on measure theory tools, namely on
analytic sets. Those sets display the nice property of being stable by projection or
countable unions and intersections. However they fail to be stable by complement-
ation, hence the sigma-algebra generated by analytic sets contains sets that are not
analytic which leads to significant measurability issues. Such difficulties arise for
instance in Lemma 4.6.5, where we are still able to prove some tricky measurability
properties, as well as in Proposition 4.6.12 which is pivotal in solving the dynamic
programming. Note as well, that we have identified (and corrected) a small issue in
[25, Lemma 4.12] which is also used in [99] to prove some important measurability
properties. Indeed it is not enough in order to have joint-measurability of a func-
tion 𝜃(𝜔, 𝑥) to assume that 𝜃(·, 𝑥) is measurable and 𝜃(𝜔, ·) is lower-semicontinuous,
one has to assume for example that 𝜃(𝜔, ·) is convex (see Lemma 4.8.3 as well as
the counterexample 4.8.2).
To solve our optimisation problem we follow a similar approach as [99]. We first
consider a one-period case with strategy in R𝑑. To “glue" together the solutions
found in the one-period case we use dynamic programming as in [111], [112], [33],
[34], [99] (and also Chapter 2) together with measurable selection arguments (Au-
man and Jankov-von Neumann Theorems).
The chapter is structured as follows. In Section 4.2, we recall some important prop-
erties of analytic sets, present our framework and state our main result. In section
4.3 we recall some useful results from Chapter 3 and in particular the quantitative
characterisation of the quasi-sure no-arbitrage condition. Section 4.4 presents the
main theorem on terminal wealth worst-case expected utility maximisation; sec-
tion 4.5 establishes the existence of an optimal strategy for the one period case and
the main theorem is proved in section 4.6. Finally, section 4.8 collects some tech-
nical results and propose a correction to a measurability issue identified in [25,
Lemma 4.12].

4.2 Definitions and set-up
This section is similar to Section 3.2 in Chapitre 3. Section 4.2.4 was added in
order to define generalised integrals that are used throughout this chapter and the
next one. Assumption 4.2.4 is also specific to the optimisation problem.

4.2.1 Polar sets and universal sigma-algebra
For any Polish space 𝑋 (𝑖.𝑒 complete and separable metric space), we denote by
ℬ(𝑋) its Borel sigma-algebra and by P(𝑋) the set of all probability measures on
(𝑋,ℬ(𝑋)). We recall that P(𝑋) endowed with the weak topology is a Polish space
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(see [13, Propositions 7.20 p127, 7.23 p131]). If 𝑃 in P(𝑋), ℬ𝑃 (𝑋) will be the
completion of ℬ(𝑋) with respect to 𝑃 and the universal sigma-algebra is defined by

ℬ𝑐(𝑋) :=
⋂︁

𝑃∈P(𝑋)

ℬ𝑃 (𝑋).

It is clear that ℬ(𝑋) ⊂ ℬ𝑐(𝑋). In the rest of the chapter we will use the same nota-
tion for 𝑃 in P(𝑋) and for its (unique) extension on ℬ𝑐(𝑋). A function 𝑓 : 𝑋 → 𝑌

(where 𝑌 is an other Polish space) is universally-measurable or ℬ𝑐(𝑋)-measurable
(resp. Borel-measurable or ℬ(𝑋)-measurable) if for all 𝐵 ∈ ℬ(𝑌 ), 𝑓−1(𝐵) ∈ ℬ𝑐(𝑋)

(resp. 𝑓−1(𝐵) ∈ ℬ(𝑋)).
For a given 𝒫 ⊂ P(𝑋), a set 𝑁 ⊂ 𝑋 is called a 𝒫-polar if for all 𝑃 ∈ 𝒫, there exists
some 𝐴𝑃 ∈ ℬ𝑐(𝑋) such that 𝑃 (𝐴𝑃 ) = 0 and 𝑁 ⊂ 𝐴𝑃 . We say that a property holds
true 𝒫-quasi-surely (q.s.), if it is true outside a 𝒫-polar set. Finally we say that a
set is of 𝒫-full measure if its complement is a 𝒫-polar set.

4.2.2 Analytic sets
An analytic set of 𝑋 is the continuous image of a Polish space, see [3, Theorem
12.24 p447]. We denote by 𝒜(𝑋) the set of analytic sets of 𝑋 and recall some key
properties that will be often used in the rest of the chapter. The projection of an
analytic set is an analytic set see [13, Proposition 7.39 p165]) and a countable union
or intersection of analytic sets is an analytic set (see [13, Corollary 7.35.2 p160]).
However the complement of an analytic set does not need to be an analytic set. We
denote by 𝒞𝐴(𝑋) := {𝐴 ∈ 𝑋, 𝑋∖𝐴 ∈ 𝒜(𝑋)} the set of all coanalytic sets of 𝑋. We
have that (see [13, Proposition 7.36 p161, Corollary 7.42.1 p169])

ℬ(𝑋) ⊂ 𝒜(𝑋) ∩ 𝒞𝒜(𝑋) and 𝒜(𝑋) ∪ 𝒞𝒜(𝑋) ⊂ ℬ𝑐(𝑋). (4.1)

Now, for 𝐷 ∈ 𝒜(𝑋), a function 𝑓 : 𝐷 → R ∪ {±∞} is lower-semianalytic (resp.
upper-semianalytic) on 𝑋 if {𝑥 ∈ 𝑋 𝑓(𝑥) < 𝑐} ∈ 𝒜(𝑋) (resp. {𝑥 ∈ 𝑋 𝑓(𝑥) > 𝑐} ∈
𝒜(𝑋)) for all 𝑐 ∈ R. We denote by ℒ𝑆𝐴(𝑋) (resp. 𝒰𝑆𝐴(𝑋)) the set of all lower-
semianalytic (resp. upper-semianalytic) functions on 𝑋. From (4.1) it is clear that
if 𝑓 ∈ ℒ𝑆𝐴(𝑋)∪𝒰𝑆𝐴(𝑋) then 𝑓 is ℬ𝑐(𝑋)-measurable. Finally, a function 𝑓 : 𝑋 → 𝑌

(where 𝑌 is another Polish space) is analytically-measurable if for all 𝐵 ∈ ℬ(𝑌 ),
𝑓−1(𝐵) belongs to the sigma-algebra generated by 𝒜(𝑋). From (4.1), it is clear that
if 𝑓 is analytically-measurable, then 𝑓 is universally-measurable.

4.2.3 The measurable spaces
We fix a time horizon 𝑇 ∈ N and introduce a sequence (Ω𝑡)1≤𝑡≤𝑇 of Polish spaces.
We denote by

Ω𝑡 := Ω1 × · · · × Ω𝑡,
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with the convention that Ω0 is reduced to a singleton. An element of Ω𝑡 will be
denoted by 𝜔𝑡 = (𝜔1, . . . , 𝜔𝑡) = (𝜔𝑡−1, 𝜔𝑡) for (𝜔1, . . . , 𝜔𝑡) ∈ Ω1×· · ·×Ω𝑡 and (𝜔𝑡−1, 𝜔𝑡) ∈
Ω𝑡−1 × Ω𝑡 (to avoid heavy notation we drop the dependancy in 𝜔0). It is well know
that ℬ(Ω𝑡) = ℬ(Ω𝑡−1) ⊗ ℬ(Ω𝑡), see [3, Theorem 4.44 p149]. However we have only
that ℬ𝑐(Ω𝑡−1)⊗ ℬ𝑐(Ω𝑡) ⊂ ℬ𝑐(Ω𝑡).

4.2.4 Generalised integral
From now on the positive (resp. negative) part of some number or random variable
𝑌 is denoted by 𝑌 + (resp. 𝑌 −). We will also write 𝑓±(𝑌 ) for (𝑓(𝑌 ))± for any random
variable 𝑌 and (possibly random) function 𝑓 .
We fix some 1 ≤ 𝑡 ≤ 𝑇 and 𝑃𝑡 ∈ P(Ω𝑡). For some ℬ𝑐(Ω𝑡)-measurable function 𝑔𝑡 :

Ω𝑡 → [0,∞], applying [13, Lemma 7.27 p173], there exists some ℬ(Ω𝑡)-measurable
function 𝑔𝑡 : Ω

𝑡 → [0,∞] such that 𝑔𝑡 = 𝑔𝑡 𝑃𝑡-almost surely and we set∫︁
Ω𝑡

𝑔𝑡(𝜔
𝑡)𝑃𝑡(𝑑𝜔

𝑡) :=

∫︁
Ω𝑡

𝑔𝑡(𝜔
𝑡)𝑃𝑡(𝑑𝜔

𝑡). (4.2)

It is easy to verify that (4.2) does not depend on the choice of 𝑔𝑡.
In the rest of the chapter we will use generalised integrals. For some ℬ𝑐(Ω𝑡)-
measurable function 𝑓𝑡 : Ω

𝑡 → R ∪ {±∞}, we define∫︁
Ω𝑡

𝑓𝑡(𝜔
𝑡)𝑃𝑡(𝑑𝜔

𝑡) :=

∫︁
Ω𝑡

𝑓+
𝑡 (𝜔

𝑡)𝑃𝑡(𝑑𝜔
𝑡)−

∫︁
Ω𝑡

𝑓−
𝑡 (𝜔

𝑡)𝑃𝑡(𝑑𝜔
𝑡), (4.3)

using (4.2) for 𝑓+
𝑡 and 𝑓−

𝑡 . Note that if both
∫︀
Ω𝑡 𝑓

+
𝑡 (𝜔

𝑡)𝑃𝑡(𝑑𝜔
𝑡) = ∞ and

∫︀
Ω𝑡 𝑓

−
𝑡 (𝜔

𝑡)𝑃𝑡(𝑑𝜔
𝑡) =

∞ the integral above is not defined. In this case we set
∫︀
Ω𝑡 𝑓𝑡(𝜔

𝑡)𝑃𝑡(𝑑𝜔
𝑡) = +∞: see

also Remark 4.4.9 for further discussion on this. Note that unlike in Chapter 2 we
could not avoid the use of this convention.

4.2.5 Stochastic kernels and definition of 𝒬𝑇

For all 0 ≤ 𝑡 ≤ 𝑇 − 1, we denote by 𝒮𝐾𝑡+1 the set of universally-measurable
stochastic kernel on Ω𝑡+1 given Ω𝑡 (see [13, Definition 7.12 p134, Lemma 7.28 p174]
). Fix some 1 ≤ 𝑡 ≤ 𝑇 , 𝑃𝑡−1 ∈ P(Ω𝑡−1) and 𝑝𝑡 ∈ 𝒮𝐾𝑡. Using Fubini’s Theorem, see
[13, Proposition 7.45 p175], we define a probability on Ω𝑡 by setting for all 𝐴 ∈ ℬ(Ω𝑡)

𝑃𝑡−1 ⊗ 𝑝𝑡(𝐴) :=

∫︁
Ω𝑡−1

∫︁
Ω𝑡

1𝐴(𝜔
𝑡−1, 𝜔𝑡)𝑝𝑡(𝑑𝜔𝑡, 𝜔

𝑡−1)𝑃𝑡−1(𝑑𝜔
𝑡−1). (4.4)

For all 0 ≤ 𝑡 ≤ 𝑇 − 1, we consider a random set 𝒬𝑡+1 : Ω
𝑡 � P(Ω𝑡+1): 𝒬𝑡+1(𝜔

𝑡) can be
seen as the set of possible priors for the 𝑡-th period given the state 𝜔𝑡 until time 𝑡.
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Assumption 4.2.1 For all 0 ≤ 𝑡 ≤ 𝑇 − 1, 𝒬𝑡+1 is a non-empty and convex valued
random set such that

Graph(𝒬𝑡+1) =
{︀
(𝜔𝑡, 𝑃 ) ∈ Ω𝑡 ×P(Ω𝑡+1), 𝑃 ∈ 𝒬𝑡+1(𝜔

𝑡)
}︀
∈ 𝒜

(︀
Ω𝑡 ×P(Ω𝑡+1)

)︀
.

From the Jankov-von Neumann Theorem, see [13, Proposition 7.49 p182], there
exists some analytically-measurable and thus ℬ𝑐(Ω𝑡)-measurable 𝑞𝑡+1 : Ω

𝑡 → P(Ω𝑡+1)
such that for all 𝜔𝑡 ∈ Ω𝑡, 𝑞𝑡+1(·, 𝜔𝑡) ∈ 𝒬𝑡+1(𝜔

𝑡) (recall that for all 𝜔𝑡 ∈ Ω𝑡, 𝒬𝑡+1(𝜔
𝑡) ̸=

∅). In other words 𝑞𝑡+1 is a universally-measurable selector of 𝒬𝑡+1. Note as well
that 𝑞𝑡+1 ∈ 𝒮𝐾𝑡+1. For all 1 ≤ 𝑡 ≤ 𝑇 we define 𝒬𝑡 ⊂ P (Ω𝑡) by

𝒬𝑡 := {𝑄1 ⊗ 𝑞2 ⊗ · · · ⊗ 𝑞𝑡, 𝑄1 ∈ 𝒬1, 𝑞𝑠+1 ∈ 𝒮𝐾𝑠+1, 𝑞𝑠+1(·, 𝜔𝑠) ∈ 𝒬𝑠+1(𝜔
𝑠) 𝑄𝑠-a.s. ∀ 1 ≤ 𝑠 ≤ 𝑡− 1 },

(4.5)

where if 𝑄𝑡 = 𝑄1 ⊗ 𝑞2 ⊗ · · · ⊗ 𝑞𝑡 ∈ 𝒬𝑡 we denote by 𝑄𝑠 := 𝑄1 ⊗ 𝑞2 ⊗ · · · ⊗ 𝑞𝑠 for any
2 ≤ 𝑠 ≤ 𝑡. It is clear that 𝑄𝑠 ∈ 𝒬𝑠. We will often use in the chapter the following
construction: let 𝑄 = 𝑄0⊗ 𝑞1 · · · ⊗ 𝑞𝑡 ∈ 𝒬𝑡 be fixed and let some 𝑞*𝑡+1 ∈ 𝒮𝐾𝑡+1 be such
that there exists ̃︀Ω𝑡 ∈ ℬ𝑐(Ω𝑡) with 𝑄(̃︀Ω𝑡) = 1 and 𝑞*𝑡+1(·, 𝜔𝑡) ∈ 𝒬𝑡+1(𝜔

𝑡) for all 𝜔𝑡 ∈ ̃︀Ω𝑡.
We define 𝑄* ∈ P(Ω𝑡+1) by

𝑄* = 𝑄0 ⊗ 𝑞1 · · · ⊗ 𝑞𝑡 ⊗ 𝑞*𝑡+1 = 𝑄⊗ 𝑞*𝑡+1.

Then, it is clear that 𝑄* ∈ 𝒬𝑡+1.

4.2.6 The traded assets and strategies
Let 𝑆 := {𝑆𝑡, 0 ≤ 𝑡 ≤ 𝑇} be a (ℬ𝑐(Ω𝑡))0≤𝑡≤𝑇 -adapted 𝑑-dimensional process where for
0 ≤ 𝑡 ≤ 𝑇 , 𝑆𝑡 = (𝑆𝑖𝑡)1≤𝑖≤𝑑 represents the price of 𝑑 risky securities in the financial
market in consideration. We make the following assumptions already stated in
[99].

Assumption 4.2.2 We have that 𝑆 is (ℬ(Ω𝑡))0≤𝑡≤𝑇 -adapted.

Remark 4.2.3 As already stated in Remark 3.2.3 in Chapter 3, if we do not as-
sume Assumption 4.2.2, we cannot obtain some crucial measurability properties in
Lemma 4.3.2. In this chapter Assumption 4.2.2 will also be needed to obtain (4.57)
and (4.58) and to use [13, Lemma 7.30 (3) p178]). Note that we do no need this
assumption in the one period case.

The next assumption was not present in Chapter 3 as it is specific to the optimisa-
tion problem (it appears also in [99]).

Assumption 4.2.4 There exists some 0 ≤ 𝑠 < ∞ such that −𝑠 ≤ 𝑆𝑖𝑡(𝜔
𝑡) < +∞ for

all 1 ≤ 𝑖 ≤ 𝑑, 𝜔𝑡 ∈ Ω𝑡 and 0 ≤ 𝑡 ≤ 𝑇 .
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Remark 4.2.5 If 𝑆 is (ℬ(Ω𝑡))0≤𝑡≤𝑇 -adapted and for 𝑡 = 1, · · · , 𝑇 there exists some
𝒬𝑡-full measure set Ω𝑡

𝑆 ∈ ℬ(Ω𝑡) such that −𝑠 ≤ 𝑆𝑖𝑡(𝜔
𝑡) < +∞ for all 1 ≤ 𝑖 ≤ 𝑑 and

𝜔𝑡 ∈ Ω𝑡
𝑆, we set 𝑆𝑡 = 1Ω𝑡

𝑆
𝑆𝑡 and 𝑆 :=

{︀
𝑆𝑡, 0 ≤ 𝑡 ≤ 𝑇

}︀
satisfies Assumptions 4.2.2 and

4.2.4.

There exists also a riskless asset for which we assume a price constant equal to 1,
for sake of simplicity. Without this assumption, all the developments below could
be carried out using discounted prices. The notation Δ𝑆𝑡 := 𝑆𝑡 − 𝑆𝑡−1 will often be
used. If 𝑥, 𝑦 ∈ R𝑑 then the concatenation 𝑥𝑦 stands for their scalar product. The
symbol | · | denotes the Euclidean norm on R𝑑 (or on R).
Trading strategies are represented by 𝑑-dimensional processes 𝜑 := {𝜑𝑡, 1 ≤ 𝑡 ≤ 𝑇}
where for all 1 ≤ 𝑡 ≤ 𝑇 , 𝜑𝑡 = (𝜑𝑖𝑡)1≤𝑖≤𝑑 represents the investor’s holdings in each of
the 𝑑 assets at time 𝑡. We assume that 𝜑𝑡 is ℬ𝑐(Ω𝑡−1)-measurable for all 1 ≤ 𝑡 ≤ 𝑇 .
The family of all such trading strategies is denoted by Φ. We assume that trading
is self-financing. As the riskless asset’s price is constant 1, the value at time 𝑡 of a
portfolio 𝜑 starting from initial capital 𝑥 ∈ R is given by

𝑉 𝑥,𝜑
𝑡 = 𝑥+

𝑡∑︁
𝑠=1

𝜑𝑠Δ𝑆𝑠.

4.3 Conditional support and no-arbitrage: useful
results

For ease of reading, this section collects some important definitions and useful
results from Chapter 3.

4.3.1 Conditional support
First, we recall the following definitions and propositions from Section 3.3 in Chapter
3 concerning the multiple-priors conditional support of the price increments and its
affine hull (denoted by Aff).

Definition 4.3.1 For all 0 ≤ 𝑡 ≤ 𝑇 − 1, we define the random sets ̃︀𝐷𝑡+1 : Ω𝑡 � R𝑑

and 𝐷𝑡+1 : Ω𝑡 � R𝑑 by

̃︀𝐷𝑡+1(𝜔𝑡) :=
⋂︁{︁

𝐴 ⊂ R𝑑, closed, 𝑃𝑡+1

(︀
Δ𝑆𝑡+1(𝜔

𝑡, .) ∈ 𝐴
)︀
= 1, ∀𝑃𝑡+1 ∈ 𝒬𝑡+1(𝜔

𝑡)
}︁
,

𝐷𝑡+1(𝜔𝑡) := Aff
(︁ ̃︀𝐷𝑡+1(𝜔𝑡)

)︁
,

The following measurability results were proved in Lemma 3.3.2 in Chapter 3.
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Lemma 4.3.2 Let Assumption 4.2.1 and 4.2.2 hold true and 0 ≤ 𝑡 ≤ 𝑇 − 1 be fixed.
Then ̃︀𝐷𝑡+1 and 𝐷𝑡+1 are non-empty, closed valued and ℬ𝑐(Ω𝑡)-measurable (recall
Definition 2.8.19 in Chapter 2) random sets. We have also that Graph(𝐷𝑡+1) ∈
ℬ𝑐(Ω𝑡)⊗ ℬ(R𝑑).

4.3.2 No-arbitrage conditions
We recall now the definition of the 𝑁𝐴(𝒬𝑇 ) condition (also referred to as quasi-sure
no-arbitrage) introduced in [25] (see also Definition 3.4.1 in Chapter 3).

Definition 4.3.3 The 𝑁𝐴(𝒬𝑇 ) condition holds true if for 𝜑 ∈ Φ, 𝑉 0,𝜑
𝑇 ≥ 0 𝒬𝑇 -q.s. ⇒

𝑉 0,𝜑
𝑇 = 0 𝒬𝑇 -q.s.

The following one-period version (see Definition 3.4.2 in Chapter 3) will often be
used. For 𝜔𝑡 ∈ Ω𝑡 fixed we will say that 𝑁𝐴(𝒬𝑡+1(𝜔

𝑡)) condition holds true if for all
ℎ ∈ R𝑑

ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0 𝒬𝑡+1(𝜔

𝑡)-q.s. ⇒ ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) = 0 𝒬𝑡+1(𝜔

𝑡)-q.s. (4.6)

And we denote
Ω𝑡
𝑁𝐴 := {𝜔𝑡 ∈ Ω𝑡, 𝑁𝐴(𝒬𝑡+1(𝜔

𝑡)) holds true}.

We state now the following “quantitative” characterisation of 𝑁𝐴(𝒬𝑇 ) condition.
This is a direct application of Theorem 3.4.7 in Chapter 3 where it was proved that
there is in fact an equivalence between the 𝑁𝐴(𝒬𝑇 ) condition and (4.7) (but the
reverse implication is not required in this chapter).

Proposition 4.3.4 Assume that the 𝑁𝐴(𝒬𝑇 ) condition and Assumptions 4.2.1,
4.2.2 hold true. Then for all 0 ≤ 𝑡 ≤ 𝑇 − 1, Ω𝑡

𝑁𝐴 ∈ ℬ𝑐(Ω𝑡) is a 𝒬𝑡-full measure
set and for all 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴, 𝑁𝐴(𝒬𝑡+1(𝜔
𝑡)) holds true and 𝐷𝑡+1(𝜔𝑡) is a vector space.

For all 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴 there exists 𝛼𝑡(𝜔𝑡) > 0 such that for all ℎ ∈ 𝐷𝑡+1(𝜔𝑡) there exists

𝑃ℎ ∈ 𝒬𝑡+1(𝜔
𝑡) satisfying

𝑃ℎ

(︂
ℎ

|ℎ|
Δ𝑆𝑡+1(𝜔

𝑡, .) < −𝛼𝑡(𝜔𝑡)
)︂
> 𝛼𝑡(𝜔

𝑡). (4.7)

Proof. The proof is a direct application of Theorem 3.4.7 in Chapter 3. 2

Finally, we recall the alternative notion of strong no-arbitrage already introduced
in Definition 3.6.1 in Chapter 3. This will be use in Theorem 4.4.15.

Definition 4.3.5 We say that the 𝑠𝑁𝐴(𝒬𝑇 ) condition holds true if for all 𝜑 ∈ Φ and
𝑃 ∈ 𝒬𝑇

𝑉 0,𝜑
𝑇 ≥ 0 𝑃 -a.s. ⇒ 𝑉 0,𝜑

𝑇 = 0 𝑃 -a.s. (4.8)
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In Chapter 3 (see (3.33) and (3.34)), for all 𝑃 = 𝑄1⊗𝑞2⊗· · ·⊗𝑞𝑇 ∈ 𝒬𝑇 and for all 1 ≤
𝑡 ≤ 𝑇 − 1 the conditional support of Δ𝑆𝑡+1 with respect to 𝑃 and its corresponding
affine hull were defined as follow

̃︀𝐷𝑡+1
𝑃 (𝜔𝑡) :=

⋂︁{︁
𝐴 ⊂ R𝑑, closed, 𝑞𝑡+1

(︀
Δ𝑆𝑡+1(𝜔

𝑡, .) ∈ 𝐴,𝜔𝑡
)︀
= 1
}︁

𝐷𝑡+1
𝑃 (𝜔𝑡) := Aff

(︁ ̃︀𝐷𝑡+1(𝜔𝑡)
)︁
,

(where the case 𝑡 = 0 is obtained by replacing 𝑞𝑡+1(·, 𝜔𝑡) by 𝑄1(·)) and the following
quantitative characterisation of the 𝑠𝑁𝐴(𝒬𝑇 ) was obtained in Proposition 3.6.11 in
Chapter 3.

Proposition 4.3.6 Assume that the 𝑠𝑁𝐴(𝒬𝑇 ) condition and Assumptions 4.2.1
and 4.2.2 hold true and let 0 ≤ 𝑡 ≤ 𝑇 − 1. Fix some 𝑃 = 𝑄1 ⊗ 𝑞2 ⊗ · · · ⊗ 𝑞𝑇 ∈ 𝒬𝑇 .
Then there exists Ω𝑡

𝑃 ∈ ℬ(Ω𝑡) with 𝑃𝑡(Ω
𝑡
𝑃 ) = 1 such that for all 𝜔𝑡 ∈ Ω𝑡

𝑃 , 𝐷𝑡+1
𝑃 (𝜔𝑡) is

a vector subspace and there exists 𝛼𝑃𝑡 (𝜔𝑡) ∈ (0, 1] such that for all ℎ ∈ 𝐷𝑡+1
𝑃 (𝜔𝑡)

𝑞𝑡+1

(︀
ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≤ −𝛼𝑃𝑡 (𝜔𝑡)|ℎ|, 𝜔𝑡
)︀
≥ 𝛼𝑃𝑡 (𝜔

𝑡). (4.9)

Furthermore 𝜔𝑡 → 𝛼𝑃𝑡 (𝜔
𝑡) is ℬ(Ω𝑡)-measurable.

4.4 Utility problem and main result
We now describe the investor’s risk preferences by a concave, random utility func-
tion.

Definition 4.4.1 A random utility is any function 𝑈 : Ω𝑇 × R → R ∪ {±∞} satis-
fying the following conditions

∙ for every 𝑥 ∈ R, the function 𝑈 (·, 𝑥) : Ω𝑇 → R ∪ {±∞} is ℬ(Ω𝑇 )-measurable,

∙ for all 𝜔𝑇 ∈ Ω𝑇 , the function 𝑈
(︀
𝜔𝑇 , ·

)︀
: R → R ∪ {±∞} is non-decreasing, usc

and concave on R,

∙ 𝑈(·, 𝑥) = −∞, for all 𝑥 < 0.

Fix some 𝜔𝑇 ∈ Ω𝑇 and let Dom𝑈(𝜔𝑇 , ·) := {𝑥 ∈ R, 𝑈(𝜔𝑇 , 𝑥) > −∞} be the domain of
𝑈(𝜔𝑇 , ·). It is clear that Dom𝑈(𝜔𝑇 , ·) ⊂ [0,∞). We need some assumptions ensuring
that Ri(Dom𝑈(𝜔𝑇 , ·)), the relative interior of the domain of 𝑈(𝜔𝑇 , ·), is in fact equal
to (0,∞) 𝒬𝑇 -q.s.

Assumption 4.4.2 For all 𝑟 ∈ Q, 𝑟 > 0 sup𝑃∈𝒬𝑇 𝐸𝑃𝑈
−(·, 𝑟) < +∞.
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Remark 4.4.3 In the mono-prior case, this assumption does not appear (see Chapter
2). The reason for introducing Assumption 4.4.2 is related to the dynamic pro-
gramming part. First and crucially, Assumption 4.4.2 ensures that the functions
𝑈𝑡 defined in (4.47) and (4.48) are versions of the value functions which have “good"
measurability properties. We will come back to this in Remark 4.5.11. Moreover
we will prove (see Proposition 4.6.7) that Assumption 4.4.2 is preserved through
the dynamic programming procedure. Note that in the case of non-random util-
ity function, Assumption 4.4.2 is equivalent to Ri(Dom𝑈) = (0,∞). If 𝑈 does not
satisfy this assumption, then one can apply the arguments of Remark 4.4.10: in
other words, Assumption 4.4.2 is superfluous in the case of a non-random utility
function.

Example 4.4.4 We propose the following example where Assumption 4.4.2 holds
true. Assume that there exists some 𝑥0 > 0 such that sup𝑃∈𝒬𝑇 𝐸𝑃𝑈

−(·, 𝑥0) < ∞.
Assume also that there exists some functions 𝑓1, 𝑓2 : (0, 1] → (0,∞) as well as some
non-negative ℬ𝑐(Ω𝑇 )-measurable random variable 𝐷 verifying sup𝑃∈𝒬𝑇 𝐸𝑃𝐷(·) <∞
such that for all 𝜔𝑇 ∈ Ω𝑇 , 𝑥 ≥ 0, 0 < 𝜆 ≤ 1

𝑈(𝜔𝑇 , 𝜆𝑥) ≥ 𝑓1(𝜆)𝑈(𝜔
𝑇 , 𝑥)− 𝑓2(𝜆)𝐷(𝜔𝑇 ). (4.10)

This condition is a kind of elasticity assumption around zero. It is satisfied for
example by the logarithm function. Fix some 𝑟 ∈ Q, 𝑟 > 0. If 𝑟 ≥ 𝑥0, it is clear
from Definition 4.4.1 that sup𝑃∈𝒬𝑇 𝐸𝑃𝑈

−(·, 𝑟) < ∞. If 𝑟 < 𝑥0, we have for all 𝜔𝑇 ∈
Ω𝑇 , 𝑈(𝜔𝑇 , 𝑟) ≥ 𝑓1(

𝑟
𝑥0
)𝑈(𝜔𝑇 , 𝑥0) − 𝑓2(

𝑟
𝑥0
)𝐷(𝜔𝑇 ) and sup𝑃∈𝒬𝑇 𝐸𝑃𝑈

−(·, 𝑟) < ∞ follows
immediatly.

Proposition 4.4.5 Assume that Assumption 4.4.2 holds true. Set Ω𝑇
𝐷𝑜𝑚 := {𝜔𝑇 ∈

Ω𝑇 , 𝑈(𝜔𝑇 , 𝑟) > −∞, ∀𝑟 ∈ Q, 𝑟 > 0}. Then 𝑃 (Ω𝑇
𝐷𝑜𝑚) = 1 for all 𝑃 ∈ 𝒬𝑇 . Further-

more, for all 𝜔𝑇 ∈ Ω𝑇
𝐷𝑜𝑚

∙ Ri(Dom𝑈(𝜔𝑇 , ·)) = (0,∞),

∙ 𝑈(𝜔𝑇 , ·) is continuous on (0,∞) and right-continuous in 0.

Proof. From Definition 4.4.1 it is clear that Ω𝑇
𝐷𝑜𝑚 ∈ ℬ(Ω𝑇 ). From Assumption

4.4.2, for all 𝑃 ∈ 𝒬𝑇 there exists some Ω𝑇
𝑃 ⊂ Ω𝑇

𝐷𝑜𝑚 such that 𝑃 (Ω𝑇
𝑃 ) = 1. Hence

𝑃 (Ω𝑇
𝐷𝑜𝑚) = 1 for all 𝑃 ∈ 𝒬𝑇 . Now fix 𝜔𝑇 ∈ Ω𝑇

𝐷𝑜𝑚. As 𝑈(𝜔𝑇 , ·) is non-decreasing
we get that (0,∞) ⊂ Dom𝑈(𝜔𝑇 , ·) ⊂ [0,∞) and thus Ri(Dom𝑈(𝜔𝑇 , ·)) = (0,∞). As
𝑈(𝜔𝑇 , ·) is concave, it is continuous on (0,∞), see [116, Theorem 2.35 p59]. Finally
as 𝑈(𝜔𝑇 , ·) is usc and non-decreasing it is right-continuous in 0 (see for example
Lemma 2.8.12 of Chapter 2). 2

We introduce the following notations.
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Definition 4.4.6 Fix some 𝑥 ≥ 0. For 𝑃 ∈ P(Ω𝑇 ) fixed, we denote by Φ(𝑥, 𝑃 ) the
set of all strategies 𝜑 ∈ Φ such that 𝑉 𝑥,𝜑

𝑇 (·) ≥ 0 𝑃 -a.s. and by Φ(𝑥, 𝑈, 𝑃 ) the set of all
strategies 𝜑 ∈ Φ(𝑥, 𝑃 ) such that either 𝐸𝑃𝑈+(·, 𝑉 𝑥,𝜑

𝑇 (·)) <∞ or 𝐸𝑃𝑈−(·, 𝑉 𝑥,𝜑
𝑇 (·)) <∞.

We denote by Φ(𝑥,𝒬𝑇 ) the set of all strategies 𝜑 ∈ Φ such that 𝑉 𝑥,𝜑
𝑇 (·) ≥ 0 𝒬𝑇 -

q.s. and by Φ(𝑥, 𝑈,𝒬𝑇 ) the set of all strategies 𝜑 ∈ Φ(𝑥,𝒬𝑇 ) such that either
𝐸𝑃𝑈

+(·, 𝑉 𝑥,𝜑
𝑇 (·)) <∞ or 𝐸𝑃𝑈−(·, 𝑉 𝑥,𝜑

𝑇 (·)) <∞ for all 𝑃 ∈ 𝒬𝑇 . In other words

Φ(𝑥,𝒬𝑇 ) =
⋂︁

𝑃∈𝒬𝑇

Φ(𝑥, 𝑃 ) and Φ(𝑥, 𝑈,𝒬𝑇 ) =
⋂︁

𝑃∈𝒬𝑇

Φ(𝑥, 𝑈, 𝑃 ). (4.11)

The following lemma shows that under𝑁𝐴(𝒬𝑇 ), if 𝜑 ∈ Φ(𝑥,𝒬𝑇 ) then 𝑃𝑡(𝑉 𝑥,𝜑
𝑡 (·) ≥

0) = 1 for all 𝑃 ∈ 𝒬𝑡 and 1 ≤ 𝑡 ≤ 𝑇 . Note that in [99, Definition of ℋ𝑥, top of p10],
this intertemporal budget imposed.

Lemma 4.4.7 Assume that the 𝑁𝐴(𝒬𝑇 ) condition holds true. Let 𝑥 ≥ 0 and 𝜑 ∈ Φ

such that 𝑉 𝑥,𝜑
𝑇 ≥ 0 𝒬𝑇 -q.s., then 𝑉 𝑥,𝜑

𝑡 ≥ 0 𝒬𝑡-q.s.

Proof. We assume that this is not the case. Let 𝑛 = sup{𝑡, ∃𝑃𝑡 ∈ 𝒬𝑡, 𝑃𝑡(𝑉
𝑥,𝜑
𝑡 <

0) > 0}. Thus 𝑛 < 𝑇 and there exists some ̂︀𝑃𝑛 ∈ 𝒬𝑛 such that ̂︀𝑃𝑛(𝑉 𝑥,𝜑
𝑛 < 0) > 0

and for all 𝑠 ≥ 𝑛 + 1, 𝑃 ∈ 𝒬𝑠, 𝑃 (𝑉 𝑥,𝜑
𝑠 ≥ 0) = 1. Let Ψ𝑠(𝜔

𝑠−1) = 0 if 1 ≤ 𝑠 ≤ 𝑛 and
Ψ𝑠(𝜔

𝑠−1) = 1𝐴(𝜔
𝑛)𝜑𝑠(𝜔

𝑠−1) if 𝑠 ≥ 𝑛 + 1 with 𝐴 = {𝜔𝑛 ∈ Ω𝑛, 𝑉 Φ
𝑛 (𝜔𝑛) < 0} ∈ ℬ𝑐(Ω𝑛). It

is clear that Ψ ∈ Φ. Then

𝑉 0,Ψ
𝑠 =

𝑠∑︁
𝑘=1

Ψ𝑠Δ𝑆𝑠 =
𝑠∑︁

𝑘=𝑛+1

Ψ𝑠Δ𝑆𝑠 = 1𝐴
(︀
𝑉 𝑥,𝜑
𝑠 − 𝑉 𝑥,𝜑

𝑛

)︀
If 𝑠 ≥ 𝑛+ 1 𝑃 (𝑉 𝑥,𝜑

𝑠 ≥ 0) = 1 for all 𝑃 ∈ 𝒬𝑠 and on 𝐴, −𝑉 Φ
𝑛 > 0 thus 𝑃𝑇 (𝑉 0,Ψ

𝑇 ≥ 0) = 1

and 𝑉 0,Ψ
𝑇 > 0 on 𝐴. Let ̂︀𝑃𝑇 := ̂︀𝑃𝑛 ⊗ 𝑝𝑛+1 · · · ⊗ 𝑝𝑇 ∈ 𝒬𝑇 where for 𝑠 = 𝑛 + 1, ·, 𝑇 ,

𝑝𝑠(·, ·) is a given universally-measurable selector of 𝒬𝑠 (see (4.5)). It is clear that̂︀𝑃𝑇 (𝐴) = ̂︀𝑃𝑛(𝑉 𝑥,𝜑
𝑛 < 0) > 0, hence we get an arbitrage opportunity. Thus for all 𝑡 ≤ 𝑇 ,

𝑉 𝑥,𝜑
𝑡 ≥ 0 𝒬𝑡-q.s. 2

We now state our main concern.

Definition 4.4.8 Let 𝑥 ≥ 0, the multiple-priors portfolio problem on a finite hori-
zon 𝑇 with initial wealth 𝑥 is

𝑢(𝑥) := sup
𝜑∈Φ(𝑥,𝑈,𝒬𝑇 )

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝑉 𝑥,𝜑
𝑇 (·)). (4.12)

Remark 4.4.9 As already mentioned, we use the convention +∞−∞ = +∞ through-
out the chapter. This choice is rather unnatural when studying maximisation prob-
lem. It is justified by the fact that we will use [13, Proposition 7.48 p180] (which
relies on [13, Lemma 7.30 (4) p177]) for lower-semianalytic function.
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Remark 4.4.10 We propose some alternative solution when we do not have that
Ri(Dom𝑈(𝜔𝑡, ·)) = (0,∞) for 𝒬𝑇 -q.s. all 𝜔𝑇 ∈ Ω𝑇 (see Proposition 4.4.5). We intro-
duce

𝑚(𝜔𝑇 ) := inf{𝑥 ∈ R, 𝑈(𝜔𝑇 , 𝑥) > −∞} ≥ 0.

As 𝑈(𝜔𝑇 , ·) is a non-decreasing function, (𝑚(𝜔𝑇 ),+∞) ⊂ Dom𝑈(𝜔𝑇 , ·) ⊂ [𝑚(𝜔𝑇 ),∞)

and therefore Ri(Dom𝑈(𝜔𝑇 , ·)) = (𝑚(𝜔𝑇 ),∞). First𝑚 is ℬ(Ω𝑇 )-measurable. Indeed,
for any 𝑐 ∈ R be fixed we have that

{𝜔𝑇 ∈ Ω𝑇 ,𝑚(𝜔𝑇 ) > 𝑐} =
⋃︁

𝑛∈N∖{0}

{︂
𝜔𝑇 ∈ Ω𝑇 , 𝑈

(︂
𝜔𝑇 , 𝑐+

1

𝑛

)︂
= −∞

}︂
∈ ℬ(Ω𝑡),

recalling Definition 4.4.1. Now we set for all 𝜔𝑇 ∈ Ω𝑇 , 𝑥 ∈ R, 𝑈(𝜔𝑇 , 𝑥) = 𝑈(𝜔𝑇 , 𝑥 +

𝑚(𝜔𝑇 )). It is clear that (0,∞) ⊂ Dom𝑈(𝜔𝑇 , ·) ⊂ [0,∞) and that Ri(Dom𝑈(𝜔𝑇 , ·)) =
(0,∞). We show that 𝑈 satisfies Definition 4.4.1. For 𝜔𝑇 ∈ Ω𝑇 fixed, 𝑈(𝜔𝑇 , ·) is usc
and non-decreasing and thus right-continuous (see Lemma 2.8.12 of Chapter 2).
For 𝑥 ∈ R fixed, 𝑈(·, 𝑥) is ℬ(Ω𝑡)-measurable and we deduce that 𝑈 is ℬ(Ω𝑡) ⊗ ℬ(R)-
measurable applying Lemma 2.8.16 of Chapter 2. So for all 𝑥 ∈ R fixed, 𝑈(·, 𝑥) is
ℬ(Ω𝑇 )-measurable (recall that 𝑚 is ℬ(Ω𝑇 )-measurable). The fact that for 𝜔𝑇 ∈ Ω𝑇 ,
𝑈(𝜔𝑇 , ·) is non-decreasing, concave and usc is clear. Consider now

𝑢(𝑥) := sup
𝜑∈Φ(𝑥,𝑈,𝒬𝑇 )

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝑉 𝑥,𝜑
𝑇 (·)) (4.13)

Unfortunately, without further assumption, we cannot deduce from a solution 𝜑
*

of 𝑢(𝑥) some solution for 𝑢(𝑥). However, assume that there is some 𝑥𝑚 ≥ 0 and
𝜑𝑚 ∈ Φ(𝑥𝑚, 𝑈,𝒬𝑇 ) such that 𝑚 = 𝑉 𝑥𝑚,𝜑𝑚

𝑇 . Then as 𝜑 ∈ Φ(𝑥, 𝑈,𝒬𝑇 ) if and only if
𝜑+ 𝜑𝑚 ∈ Φ(𝑥+ 𝑥𝑚, 𝑈,𝒬𝑇 ) we have that

𝑢(𝑥) = sup
𝜑, 𝜑+𝜑𝑚∈Φ(𝑥+𝑥𝑚,𝑈,𝒬𝑇 )

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝑉 𝑥𝑚+𝑥,𝜑+𝜑𝑚
𝑇 (·)) = 𝑢(𝑥+ 𝑥𝑚).

Thus if 𝜑* is a solution of (4.13) with an initial wealth 𝑥, then 𝜑
*
+ 𝜑𝑚 will be a

solution for (4.12) starting from 𝑥 + 𝑥𝑚. A simple example of a replicable 𝑚 is
obtained for a non-random utility function 𝑈 with Ri(Dom𝑈) = (𝑚,∞), as 𝑚 is
constant in this case.

Remark 4.4.11 Note that if we study a utility function 𝑈 defined only on (0,∞)

and such that there exists some 𝒬𝑇 -full measure set ̃︀Ω𝑇 ∈ ℬ(Ω𝑇 ) such that for
all 𝜔𝑇 ∈ ̃︀Ω𝑇 , 𝑥 → 𝑈(𝜔𝑇 , 𝑥) is non-decreasing, usc and concave on (0,+∞). We
extend 𝑈 by (right) continuity in 0 by setting 𝑈(·, 0) = lim𝑥→0

𝑥>0
𝑈(·, 0) and we set

𝑈 : Ω𝑇 × R → R ∪ {±∞}

𝑈(𝜔𝑇 , 𝑥) := 𝑈(𝜔𝑇 , 𝑥)1̃︀Ω𝑇×[0,+∞)(𝜔
𝑇 , 𝑥) + (−∞)1Ω𝑇×(−∞,0)(𝜔𝑇 , 𝑥).
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Then 𝑈 satisfies Definition 4.4.1. Moreover, the value function does not change and
if there exists some 𝜑* ∈ Φ(𝑥, 𝑈,𝒬𝑇 ) such that 𝑢(𝑥) = inf𝑃∈𝒬𝑇 𝐸𝑃𝑈(·, 𝑉 𝑥,𝜑*

𝑇 (·)), then
𝜑* is an optimal solution for (4.12).

We now present condition on 𝑈 which allow to assert that if 𝜑 ∈ Φ(𝑥,𝒬𝑇 ) then
𝐸𝑃𝑈(·, 𝑉 𝑥,𝜑

𝑇 (·)) is well defined for all 𝑃 ∈ 𝒬𝑇 . It also allows us to work with auxiliary
functions which play the role of properly integrable bounds for the value functions
at each step (see (4.50), (4.58), (4.59) and (4.60))

Assumption 4.4.12 We have that sup𝑃∈𝒬𝑇 sup𝜑∈Φ(1,𝑃 )𝐸𝑃𝑈
+(·, 𝑉 1,𝜑

𝑇 (·)) <∞.

Remark 4.4.13 From Assumption 4.4.12 we get that Φ(1, 𝑃 ) = Φ(1, 𝑈, 𝑃 ) for all
𝑃 ∈ 𝒬𝑇 and therefore Φ(1,𝒬𝑇 ) = Φ(1, 𝑈,𝒬𝑇 ). In Proposition 4.6.2, we will show that
under Assumption 4.4.12, for all 𝑥 ≥ 0, sup𝑃∈𝒬𝑇 sup𝜑∈Φ(𝑥,𝑃 )𝐸𝑃𝑈

+(·, 𝑉 𝑥,𝜑
𝑇 (·)) < ∞.

Thus Φ(𝑥, 𝑃 ) = Φ(𝑥, 𝑈, 𝑃 ) for all 𝑃 ∈ 𝒬𝑇 and 𝑥 ≥ 0 and also Φ(𝑥,𝒬𝑇 ) = Φ(𝑥, 𝑈,𝒬𝑇 )

for all 𝑥 ≥ 0.

We can now state our main result.

Theorem 4.4.14 Assume that the𝑁𝐴(𝒬𝑇 ) condition and Assumptions 4.2.1, 4.2.2,
4.2.4, 4.4.2 and 4.4.12 hold true. Let 𝑥 ≥ 0. Then, there exists some optimal
strategy 𝜑* ∈ Φ(𝑥, 𝑈,𝒬𝑇 ) such that

𝑢(𝑥) = inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝑉 𝑥,𝜑*

𝑇 (·)) <∞.

Moreover 𝜑*
𝑡 (·) ∈ 𝐷𝑡(·) 𝒬𝑡-q.s. for all 0 ≤ 𝑡 ≤ 𝑇 .

Assumption 4.4.12 is not easy to verify: we propose an application of Theorem
4.4.14 in the following fairly general set-up where Assumption 4.4.12 is automat-
ically satisfied. We introduce for all 1 ≤ 𝑡 ≤ 𝑇 , 𝑟 > 0,

𝒲𝑟
𝑡 :=

{︂
𝑋 : Ω𝑡 → R ∪ {±∞}, ℬ(Ω𝑡)-measurable, sup

𝑃∈𝒬𝑡

𝐸𝑃 |𝑋|𝑟 <∞
}︂

(4.14)

𝒲𝑡 :=
⋂︁
𝑟>0

𝒲𝑟
𝑡 . (4.15)

In [51, Proposition 14] it is proved that 𝒲𝑟
𝑡 is a Banach space (up to the usual

quotient identifying two random variables that are 𝒬𝑡-q.s. equal) for the norm
||𝑋|| := (sup𝑃∈𝒬𝑡 𝐸𝑃 |𝑋|𝑟)

1
𝑟 . Hence, the space 𝒲𝑡 is the “natural" extension of the

one introduced in the mono-prior case (see [33] or see Chapter 2). We introduce as
well

̂︁𝒲𝑡 :=

{︂
𝑋 : Ω𝑡 → R ∪ {±∞}, ℬ𝑐(Ω𝑡)-measurable, sup

𝑃∈𝒬𝑡

𝐸𝑃 |𝑋|𝑟 <∞ for all 𝑟 > 0

}︂
.



144
Chapter 4. Multiple-priors optimal investment in discrete time for

unbounded utility function

Theorem 4.4.15 Assume that the 𝑠𝑁𝐴(𝒬𝑇 ) condition and Assumptions 4.2.1, 4.2.2,
4.2.4 and 4.4.2 hold true. Assume furthermore that 𝑈+(·, 1), 𝑈−(·, 1

4
) ∈ 𝒲𝑇 and that

for all 1 ≤ 𝑡 ≤ 𝑇 , 𝑃 ∈ 𝒬𝑡, Δ𝑆𝑡, 1
𝛼𝑃
𝑡
∈ 𝒲𝑡 (recall Proposition 4.3.6 for the definition

of 𝛼𝑃𝑡 ). Let 𝑥 ≥ 0. Then, for all 𝑃 ∈ 𝒬𝑇 , 𝜑 ∈ Φ(𝑥, 𝑃 ) and 0 ≤ 𝑡 ≤ 𝑇 , 𝑉 𝑥,𝜑
𝑡 ∈ ̂︁𝒲𝑡.

Moreover, there exists some optimal strategy 𝜑* ∈ Φ(𝑥, 𝑈,𝒬𝑇 ) such that

𝑢(𝑥) = inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝑉 𝑥,𝜑*

𝑇 (·)) <∞.

4.5 One period case
Let (Ω,𝒢) be a measured space, P(Ω) the set of all probability measures on Ω

defined on 𝒢 and 𝒬 a non-empty convex subset of P(Ω). For 𝑃 ∈ 𝒬 fixed, we denote
by 𝐸𝑃 the expectation under 𝑃 . Let 𝑌 (·) := (𝑌1(·), · · ·𝑌𝑑(·)) be a 𝒢-measurable R𝑑-
valued random variable. The random variable 𝑌 (·) could represent the change of
value of the price process.

Assumption 4.5.1 We assume that there exists some constant 0 < 𝑏 < ∞ such
that 𝑌𝑖(𝜔) ≥ −𝑏 for all 𝜔 ∈ Ω and 𝑖 = 1, · · · , 𝑑.

Finally, let 𝐷 ⊂ R𝑑 be the smallest affine subspace of R𝑑 containing the support of
the distribution of 𝑌 (·) under 𝑃 for all 𝑃 ∈ 𝒬, 𝑖.𝑒

𝐷 = Aff
(︁⋂︁{︀

𝐴 ⊂ R𝑑, closed, 𝑃 (𝑌 (·) ∈ 𝐴) = 1, ∀𝑃 ∈ 𝒬
}︀)︁

.

Assumption 4.5.2 We assume that 𝐷 contains 0, so that 𝐷 is in fact a non-empty
vector subspace of R𝑑.

The pendant of the 𝑁𝐴(𝒬𝑇 ) condition in the one-period model is given by

Assumption 4.5.3 There exists some constant 0 < 𝛼 ≤ 1 such that for all ℎ ∈ 𝐷

there exists 𝑃ℎ ∈ 𝒬 satisfying

𝑃ℎ(ℎ𝑌 (·) < −𝛼|ℎ|) > 𝛼. (4.16)

Remark 4.5.4 If 𝐷 = {0} then (4.16) is trivially true.

Remark 4.5.5 Let ℎ ∈ R𝑑 and ℎ′ ∈ R𝑑 be the orthogonal projection of ℎ on 𝐷. Then
ℎ− ℎ′ ⊥ 𝐷 hence

{𝑌 (·) ∈ 𝐷} ⊂ {(ℎ− ℎ′)𝑌 (·) = 0} = {ℎ𝑌 (·) = ℎ′𝑌 (·)}.

By definition of 𝐷 we have 𝑃 (𝑌 (·) ∈ 𝐷) = 1 for all 𝑃 ∈ 𝒬 and therefore ℎ𝑌 = ℎ′𝑌

𝒬-q.s.
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For 𝑥 ≥ 0 and 𝑎 ≥ 0 we define

ℋ𝑎
𝑥 :=

{︀
ℎ ∈ R𝑑, 𝑥+ ℎ𝑌 ≥ 𝑎 𝒬-q.s.

}︀
(4.17)

ℋ𝑥 := ℋ0
𝑥 =

{︀
ℎ ∈ R𝑑, 𝑥+ ℎ𝑌 ≥ 0 𝒬-q.s.

}︀
(4.18)

𝐷𝑥 := ℋ𝑥 ∩𝐷. (4.19)

It is clear that for all 𝑎 ≥ 0, 𝑥 ≥ 0, ℋ𝑎
𝑥 and 𝐷𝑥 are closed subset of R𝑑.

Remark 4.5.6 Note that we have for 𝑥 ≥ 0, 𝑎 ≥ 0

ℋ𝑎
𝑥 =

{︁
ℎ ∈ R𝑑, 𝑃 (𝑥+ ℎ𝑌 (·) ≥ 𝑎) = 1, ∀𝑃 ∈ 𝒬

}︁
=

{︂
ℎ ∈ R𝑑, inf

𝑃∈𝒬
𝑃 (𝑥+ ℎ𝑌 (·) ≥ 𝑎) = 1

}︂
.

Lemma 4.5.7 Assume that Assumption 4.5.3 holds true. Then for all 𝑥 ≥ 0, 𝐷𝑥 ⊂
𝐵(0, 𝑥

𝛼
) where 𝐵(0, 𝑥

𝛼
) = {ℎ ∈ R𝑑, |ℎ| ≤ 𝑥

𝛼
} and 𝐷𝑥 is a convex and compact subspace

of R𝑑 .

Proof. For 𝑥 ≥ 0, the convexity and the closedness of 𝐷𝑥 are clear. Let ℎ ∈ 𝐷𝑥 be
fixed. Assume that |ℎ| > 𝑥

𝛼
and let 𝜔 ∈ {ℎ𝑌 (·) < −𝛼|ℎ|}. Then 𝑥+ℎ𝑌 (𝜔) < 𝑥−𝛼|ℎ| <

0 and from Assumption 4.5.3, there exists 𝑃ℎ ∈ 𝒬 such that 𝑃ℎ(𝑥 + ℎ𝑌 (·) < 0) ≥
𝑃ℎ(ℎ𝑌 (·) ≤ −𝛼|ℎ|) > 𝛼 > 0, a contradiction. The compactness of 𝐷𝑥 follows from the
boundness property. 2

Assumption 4.5.8 We consider a random utility 𝑉 : Ω×R → R∪{±∞} satisfying
the following conditions

∙ for every 𝑥 ∈ R, the function 𝑉 (·, 𝑥) : Ω → R is 𝒢-measurable,

∙ for every 𝜔 ∈ Ω, the function 𝑉 (𝜔, ·) : R → R is non-decreasing, concave and
usc on R,

∙ 𝑉 (·, 𝑥) = −∞, for all 𝑥 < 0.

As in the previous section we introduce the following assumption, which en-
sures that Ri(Dom𝑉 (𝜔, ·)) = (0,∞) for 𝒬-q.s. all 𝜔 ∈ Ω.

Assumption 4.5.9 For all 𝑟 ∈ Q, 𝑟 > 0, sup𝑃∈𝒬𝐸𝑃𝑉
− (·, 𝑟) <∞.

Remark 4.5.10 Set

Ω𝐷𝑜𝑚 := {𝜔 ∈ Ω, 𝑉 (𝜔, 𝑟) > −∞, ∀𝑟 ∈ Q, 𝑟 > 0}. (4.20)

Under Assumptions 4.5.8 and 4.5.9, applying Proposition 4.4.5 we get that 𝑃 (Ω𝐷𝑜𝑚) =

1 for all 𝑃 ∈ 𝒬. Furthermore, for all 𝜔 ∈ Ω𝐷𝑜𝑚, Ri(𝐷𝑜𝑚𝑉 (𝜔, ·)) = (0,∞) and 𝑉 (𝜔, ·)
is continuous on (0,∞) and right-continuous in 0.
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Remark 4.5.11 Assumption 4.5.9 is the one-period pendant of Assumption 4.4.2.
This assumption is essential to prove in Theorem 4.5.23 that (4.39) holds true as
it allows to prove that Q𝑑 is dense in Ri ({ℎ ∈ ℋ𝑥, inf𝑃∈𝒬𝐸𝑉 (·, 𝑥+ ℎ𝑌 (·)) > −∞}).
However, the one-period optimisation problem in (4.21) could be solved without
this assumption.

Our main concern in the one period case is the following optimisation problem

𝑣(𝑥) :=

{︃
supℎ∈ℋ𝑥

inf𝑃∈𝒬𝐸𝑃𝑉 (·, 𝑥+ ℎ𝑌 (·)) , if 𝑥 ≥ 0

−∞, otherwise.
(4.21)

Remark 4.5.12 Recall (see (4.3)) that we set 𝐸𝑃𝑉 (·, 𝑥+ ℎ𝑌 (·)) = +∞ in (4.21) if
the integral is not well-defined for some 𝑃 ∈ 𝒬. It will be shown in Lemma 4.5.20
that under Assumptions 4.5.2, 4.5.3, 4.5.8, 4.5.9 and 4.5.14, 𝐸𝑃 (𝑉 (·, 𝑥 + ℎ𝑌 (·)) is
well-defined and more precisely that 𝐸𝑃𝑉 +(·, 𝑥 + ℎ𝑌 (·)) < +∞ for all ℎ ∈ ℋ𝑥 and
𝑃 ∈ 𝒬.

Remark 4.5.13 Note as well that from Remark 4.5.5, for 𝑥 ≥ 0

𝑣(𝑥) = sup
ℎ∈𝐷𝑥

inf
𝑃∈𝒬

𝐸𝑃𝑉 (·, 𝑥+ ℎ𝑌 (·)). (4.22)

We present now some integrability assumptions on 𝑉 + which allow to assert
that there exists some optimal solution for (4.21).

Assumption 4.5.14 For every 𝑃 ∈ 𝒬, ℎ ∈ ℋ1, 𝐸𝑃𝑉 +(·, 1 + ℎ𝑌 (·)) <∞.

Remark 4.5.15 If Assumption 4.5.14 is not true, [99, Example 2.3] shows that one
can find a counterexample where 𝑣(𝑥) < ∞ but the supremum is not attained in
(4.21). So one cannot use the “natural" extension of the mono-prior approach, which
should be that there exists some 𝑃 ∈ 𝒬 such that 𝐸𝑃𝑉 +(·, 1 + ℎ𝑌 (·)) < ∞ for all
ℎ ∈ ℋ1 (see 2.5.9 in Chapter 2).

We define now

𝑣Q(𝑥) :=

{︃
supℎ∈ℋ𝑥∩Q𝑑 inf𝑃∈𝒬𝐸𝑃𝑉 (·, 𝑥+ ℎ𝑌 (·)) , if 𝑥 ≥ 0

−∞, otherwise.
(4.23)

Finally, we introduce the closure of 𝑣Q denoted by Cl(𝑣Q) which is the smallest usc
function 𝑤 : R → R ∪ {±∞} such that 𝑤 ≥ 𝑣Q. We know that (see for example [116,
1(7) p14])

Cl(𝑣Q)(𝑥) = lim sup
𝑦→𝑥

𝑣Q(𝑦). (4.24)
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We will show in Theorem 4.5.23 that under Assumptions 4.5.1, 4.5.2, 4.5.3, 4.5.8,
4.5.9 and 4.5.14

𝑣(𝑥) = 𝑣Q(𝑥) = Cl(𝑣Q)(𝑥).

Remark 4.5.16 The reasons for introducing 𝑣Q and Cl(𝑣Q) are related to the multi-
period setting and the issues arising from the definition of 𝑈𝑡 in (4.47) and (4.48):
It allows in the multiperiod case to work with a countable supremum (for measur-
ability issues) and an usc function.

We now provide two lemmata which are stated under Assumption 4.5.8 only. They
will be used in the multi-period part to prove that the value function is usc, con-
cave (see (4.55) and (4.56)) and dominated (see (4.59)) for all 𝜔𝑡. This avoid difficult
measurability issues when proving (4.57) and (4.58) coming from full-measure sets
which are not Borel and on which Assumptions 4.5.2, 3.4.10, 4.5.9 and 4.5.14 hold
true. This can be seen for example in the beginning of the proof of Proposition
4.6.12 where we need to apply Lemma 4.5.17 using only Assumption 4.5.8. They
are somehow technical lemmata used to solved measurability issues while not dir-
ectly related to the optimisation problem.

Lemma 4.5.17 Assume that Assumption 4.5.8 holds true. Then 𝑣Q and Cl(𝑣Q) are
concave and non-decreasing on R and

Cl(𝑣Q)(𝑥) = lim
𝛿→0
𝛿>0

𝑣Q(𝑥+ 𝛿). (4.25)

Proof. Assume for a moment that 𝑣Q is concave and non-decreasing on R. Using
[116, Proposition 2.32 p57], we obtain that Cl(𝑣Q) is concave on R. Then, recalling
(4.24), for all 𝑥 ∈ R we have that

Cl(𝑣Q)(𝑥) = lim
𝛿→0

sup
|𝑦−𝑥|<𝛿

𝑣Q(𝑦) = lim
𝛿→0
𝛿>0

𝑣Q(𝑥+ 𝛿). (4.26)

Hence (4.25) holds true and the fact that Cl(𝑣Q) is non-decreasing follows imme-
diately. We prove now that 𝑣Q is concave and non-decreasing on R. As 𝑉 is non-
decreasing (see Assumption 4.5.8), 𝑣Q is clearly non-decreasing. To prove that 𝑣Q is
concave, we use similar arguments as in the proof of [99, Lemma 3.5] and [112, Pro-
position 2] and we first establish that 𝑣Q is midpoint concave. Let 𝑥1, 𝑥2 ∈ Dom 𝑣Q

and 𝜀 > 0 be fixed. Assume that 𝑣Q(𝑥𝑖) < ∞ for 𝑖 = 1, 2. Recalling (4.23), for 𝑖 = 1, 2

there exists ℎ𝑖 ∈ ℋ𝑥𝑖 ∩Q𝑑 such that

𝑣Q(𝑥𝑖)− 𝜀 ≤ inf
𝑃∈𝒬

𝐸𝑃𝑉 (·, 𝑥𝑖 + ℎ𝑖𝑌 (·)). (4.27)
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Therefore using the concavity of 𝑉 (see Assumption 4.5.8) we get

𝑣Q(𝑥1) + 𝑣Q(𝑥2)

2
≤ 𝜀+

inf𝑃∈𝒬𝐸𝑃𝑉 (·, 𝑥1 + ℎ1𝑌 (·)) + inf𝑃∈𝒬𝐸𝑃𝑉 (·, 𝑥2 + ℎ2𝑌 (·))
2

≤ 𝜀+ inf
𝑃∈𝒬

𝐸𝑃𝑉 (·, 𝑥1 + ℎ1𝑌 (·)) + 𝐸𝑃𝑉 (·, 𝑥2 + ℎ2𝑌 (·))
2

≤ 𝜀+ inf
𝑃∈𝒬

𝐸𝑃𝑉

(︂
·, 𝑥1 + 𝑥2

2
+
ℎ1 + ℎ2

2
𝑌 (·)

)︂
≤ 𝜀+ sup

ℎ∈ℋ𝑥1+𝑥2
2

∩Q𝑑

inf
𝑃∈𝒬

𝐸𝑃𝑉

(︂
·, 𝑥1 + 𝑥2

2
+ ℎ𝑌 (·)

)︂

= 𝜀+ 𝑣Q
(︂
𝑥1 + 𝑥2

2

)︂
.

As this is true for all 𝜀 > 0 we obtain that 𝑣Q(𝑥1)+𝑣Q(𝑥2)
2

≤ 𝑣Q
(︀
𝑥1+𝑥2

2

)︀
. Fix again some

𝜀 > 0. If now 𝑣Q(𝑥1) = +∞ and 𝑣Q(𝑥2) < ∞, then there exists some ℎ1 such that
1
𝜀
≤ inf𝑃∈𝒬𝐸𝑃𝑉 (·, 𝑥1 + ℎ1𝑌 (·)). And combining this with (4.27) for 𝑖 = 2, we get as

previously that 1
2𝜀

+ 𝑣Q(𝑥2)
2

≤ 𝜀
2
+ 𝑣Q

(︀
𝑥1+𝑥2

2

)︀
. As this is true for all 𝜀 > 0 we get that

𝑣Q
(︀
𝑥1+𝑥2

2

)︀
= ∞ and 𝑣Q(𝑥1)+𝑣Q(𝑥2)

2
≤ 𝑣Q

(︀
𝑥1+𝑥2

2

)︀
holds true again. The case 𝑣Q(𝑥1) = +∞

and 𝑣Q(𝑥2) = +∞ is solved similarly.
We introduce 𝑀 := sup{𝑥 ≥ 0, 𝑣Q(𝑥) < ∞}. Assume that 0 ≤ 𝑀 < ∞. Then we
have 𝑣Q = +∞ on (𝑀,∞). If 𝑣Q = −∞ on (−∞,𝑀) then 𝑣Q is concave on R. If there
exists some 0 ≤ 𝑥 < 𝑀 such that 𝑣Q(𝑥) is finite, we choose 𝜀 > 0 such that 𝑥+𝜀 < 𝑀

(thus 𝑀+𝜀+𝑥
2

< 𝑀 ). From the mid-point concavity we have that

𝑣Q
(︂
𝑀 + 𝜀+ 𝑥

2

)︂
≥ 𝑣Q(𝑥) + 𝑣Q(𝑀 + 𝜀)

2
= ∞.

But this implies 𝑀+𝜀+𝑥
2

≥ 𝑀 : a contradiction. Therefore we must have 𝑀 = +∞.
Let now 𝑎 < 𝑏 with 𝑎 ∈ Dom 𝑣Q. As 𝑣Q is non-decreasing, 𝑏 ∈ Dom 𝑣Q and −∞ <

𝑣Q(𝑎) ≤ 𝑣Q(𝑥) ≤ 𝑣Q(𝑏) < ∞ for all 𝑥 ∈ [𝑎, 𝑏]. So applying Ostrowski Theorem, see
[55, p12], 𝑣Q is concave on [𝑎, 𝑏] and therefore on all Dom 𝑣Q. Applying [115, The-
orem 4.2 p25], 𝑣Q is concave on R. 2

Let 𝑥 ≥ 0 and 𝑃 ∈ 𝒬 be fixed. We introduce𝐻𝑥(𝑃 ) :=
{︀
ℎ ∈ R𝑑, 𝑥+ ℎ𝑌 ≥ 0 𝑃 -a.s.

}︀
.

Note that ℋ𝑥 =
⋂︀
𝑃∈𝒬𝐻𝑥(𝑃 ) (see (4.18)).

Lemma 4.5.18 Assume that Assumption 4.5.8 holds true. Let 𝐼 : Ω×R → [0,∞] be
a function such that for all 𝑥 ∈ R and ℎ ∈ R𝑑, 𝐼(·, 𝑥+ ℎ𝑌 (·)) is 𝒢-measurable, 𝐼(𝜔, ·)
is non-decreasing and non-negative for all 𝜔 ∈ Ω and 𝑉 ≤ 𝐼. Set

𝑖(𝑥) := 1[0,∞)(𝑥) sup
ℎ∈R𝑑

sup
𝑃∈𝒬

1𝐻𝑥(𝑃 )(ℎ)𝐸𝑃 𝐼(·, 𝑥+ ℎ𝑌 (·)).

Then 𝑖 is non-decreasing, non-negative on R and Cl(𝑣Q)(𝑥) ≤ 𝑖(𝑥+ 1) for all 𝑥 ∈ R.
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Proof. Since 𝜔 ∈ Ω → 𝐼(𝜔, 𝑥 + ℎ𝑌 (𝜔)) is 𝒢-measurable for all 𝑥 ∈ R and 𝐼(𝜔, 𝑥) ≥ 0

for (𝜔, 𝑥) ∈ Ω × R, the integral in the definition of 𝑖 is well-defined (potentially
equals to +∞). It is clear that 𝑖 is non-decreasing and non-negative on R.
As 𝑉 (𝜔, 𝑥) ≤ 𝐼(𝜔, 𝑥) for all (𝜔, 𝑥) ∈ Ω × R and ℋ𝑥 ⊂ 𝐻𝑥(𝑃 ) if 𝑃 ∈ 𝒬, it is clear that
𝑣Q(𝑥) ≤ 𝑖(𝑥) for 𝑥 ≥ 0. And since 𝑣Q(𝑥) = −∞ < 𝑖(𝑥) = 0 for 𝑥 < 0, 𝑣Q ≤ 𝑖 on R (note
that 𝑣 ≤ 𝑖 on R for the same reasons). Applying Lemma 4.5.17 (see (4.25)), we have
that Cl(𝑣Q)(𝑥) ≤ 𝑣Q(𝑥 + 1) ≤ 𝑖(𝑥 + 1) for all 𝑥 ∈ R. Note that if Assumptions 4.5.1,
4.5.2, 4.5.3, 4.5.9 and 4.5.14 hold true as well, then from Theorem 4.5.23 we have
directly that Cl(𝑣Q)(𝑥) = 𝑣Q(𝑥) ≤ 𝑖(𝑥) ≤ 𝑖(𝑥+ 1) for all 𝑥 ∈ R. 2

Proposition 4.5.19 Assume that Assumptions 4.5.8 and 4.5.9 hold true. Then
there exists some 𝒢-measurable 𝐶 with sup𝑃∈𝒬𝐸𝑃 (𝐶) < ∞ and 𝐶(𝜔) ≥ 0 for all
𝜔 ∈ Ω, such that for all 𝜔 ∈ Ω𝐷𝑜𝑚 (see (4.20)), 𝜆 ≥ 1, 𝑥 ∈ R we have

𝑉 (𝜔, 𝜆𝑥) ≤ 2𝜆

(︂
𝑉

(︂
𝜔, 𝑥+

1

2

)︂
+ 𝐶(𝜔)

)︂
, (4.28)

Proof. We use similar arguments as [112, Lemma 2]. We fix 𝜔 ∈ Ω𝐷𝑜𝑚, 𝑥 ≥ 1
2

and
𝜆 ≥ 1. As 𝜔 ∈ Ω𝐷𝑜𝑚, we have that Ri(Dom𝑉 (𝜔, ·)) = (0,∞) (recall Remark 4.5.10).
We assume first that there exists some 𝑥0 ∈ Dom𝑉 (𝜔, ·) such that 𝑉 (𝜔, 𝑥0) < ∞.
Since 𝑉 (𝜔, ·) is usc and concave, using similar arguments as in [115, Corollary 7.2.1
p53], we get that 𝑉 (𝜔, ·) <∞ on R. Using the concavity property we get that (recall
that 𝑥 ≥ 1

2
)

𝑉 (𝜔, 𝜆𝑥)− 𝑉 (𝜔, 𝑥) ≤
𝑉 (𝜔, 𝑥)− 𝑉

(︀
𝜔, 14

)︀
𝑥− 1

4

(𝜆− 1)𝑥 ≤ 2(𝜆− 1)

(︂
𝑉 (𝜔, 𝑥)− 𝑉

(︂
𝜔,

1

4

)︂)︂
.

If follows that

𝑉 (𝜔, 𝜆𝑥) ≤ 𝑉 (𝜔, 𝑥) + 2

(︂
𝜆− 1

2

)︂(︂
𝑉 (𝜔, 𝑥)− 𝑉

(︂
𝜔,

1

4

)︂)︂
≤ 2𝜆

(︂
𝑉 (𝜔, 𝑥) + 𝑉 −

(︂
𝜔,

1

4

)︂)︂
(4.29)

≤ 2𝜆

(︂
𝑉

(︂
𝜔, 𝑥+

1

2

)︂
+ 𝑉 −

(︂
𝜔,

1

4

)︂)︂
where we have used that 𝑉 (𝜔, ·) is non-decreasing. Fix now 0 ≤ 𝑥 ≤ 1

2
and 𝜆 ≥ 1.

Using again the fact that 𝑉 (𝜔, ·) is non-decreasing and (4.29)

𝑉 (𝜔, 𝜆𝑥) ≤ 𝑉

(︂
𝜔, 𝜆

(︂
𝑥+

1

2

)︂)︂
≤ 2𝜆

(︂
𝑉

(︂
𝜔, 𝑥+

1

2

)︂
+ 𝑉 −

(︂
𝜔,

1

4

)︂)︂
.

We set 𝐶(𝜔) = 𝑉 − (︀𝜔, 1
4

)︀
. As 𝐶(𝜔) ≥ 0 for all 𝜔 ∈ Ω and sup𝑃∈𝒬𝐸𝑃𝐶 < ∞ (see As-

sumption 4.5.9), (4.28) holds true for all 𝑥 ≥ 0 if there exists some 𝑥0 ∈ Dom𝑉 (𝜔, ·)
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such that 𝑉 (𝜔, 𝑥0) < ∞. Now, if this is not the case, we know that 𝑉 (𝜔, 𝑥) = ∞ for
all 𝑥 ∈ Dom𝑉 (𝜔, ·). Then 𝐶(𝜔) = 𝑉 − (︀𝜔, 1

4

)︀
= 0 and (4.28) also holds true for all

𝑥 ≥ 0. Finally, as in all cases 𝑉 (𝜔, 𝑥) = −∞ for 𝑥 < 0, (4.28) holds true for all 𝑥 ∈ R
and the proof is complete. 2

The following lemma is the pendant of Lemma 2.5.11 in Chapter 2.

Lemma 4.5.20 Assume that Assumptions 4.5.2, 4.5.3, 4.5.8, 4.5.9 and 4.5.14 hold
true. Then there exists a 𝒢-measurable 𝐿 ≥ 0 satisfying for all 𝑃 ∈ 𝒬, 𝐸𝑃 (𝐿) < ∞
and such that for all 𝑥 ≥ 0 and ℎ ∈ ℋ𝑥

𝑉 +(·, 𝑥+ ℎ𝑌 (·)) ≤ (4𝑥+ 1)𝐿(·) 𝒬-q.s. (4.30)

Proof. The proof use similar arguments as in Lemma 2.8 in [99] and is almost a
copy word for word of to Lemma 2.5.11 in Chapter 2. We start with the proof of
(4.30) when ℎ ∈ 𝐷𝑥. Since 𝐷 is a vectorial subspace of R𝑑 (see Assumption 4.5.2)
and 0 ∈ ℋ𝑥, the affine hull of 𝐷𝑥 is also a vector space that we denote by Aff(𝐷𝑥). If
𝑥 ≤ 1 we have by Assumption 4.5.8 that for all 𝜔 ∈ Ω, ℎ ∈ 𝐷𝑥,

𝑉 +(𝜔, 𝑥+ ℎ𝑌 (𝜔)) ≤ 𝑉 + (𝜔, 1 + ℎ𝑌 (𝜔)) . (4.31)

If 𝑥 > 1 from Proposition 4.5.19, we get that for all 𝜔 ∈ Ω𝐷𝑜𝑚, ℎ ∈ 𝐷𝑥

𝑉 +(𝜔, 𝑥+ ℎ𝑌 (𝜔)) = 𝑉 +

(︂
2𝑥

(︂
1

2
+

ℎ

2𝑥
𝑌 (𝜔)

)︂)︂
≤ 4𝑥

(︂
𝑉 +

(︂
𝜔, 1 +

ℎ

2𝑥
𝑌 (𝜔)

)︂
+ 𝐶(𝜔)

)︂
. (4.32)

First we treat the case of 𝐷𝑖𝑚(Aff(𝐷𝑥)) = 0, 𝑖.𝑒 𝐷𝑥 = {0}. For all 𝜔 ∈ Ω𝐷𝑜𝑚,
ℎ ∈ 𝐷𝑥 = {0}, using (4.31) and (4.32), we obtain for all 𝑥 ≥ 0 that

𝑉 +(𝜔, 𝑥+ ℎ𝑌 (𝜔)) ≤ 𝑉 +(𝜔, 1) + 4𝑥
(︀
𝑉 + (𝜔, 1) + 𝐶(𝜔)

)︀
≤ (4𝑥+ 1)(𝑉 +(𝜔, 1) + 𝐶(𝜔)). (4.33)

We assume now that 𝐷𝑖𝑚(Aff(𝐷𝑥)) > 0. If 𝑥 = 0 then 𝑌 = 0 𝒬-q.s. If this is not
the case then we should have 𝐷0 = {0} a contradiction. Indeed if not, there exists
some ℎ ∈ 𝐷0 with ℎ ̸= 0 and by Assumption 4.5.3 there exist 𝑃ℎ ∈ 𝒬 such that
𝑃ℎ

(︁
ℎ
|ℎ|𝑌 (·) < 0

)︁
> 0 which contradicts ℎ ∈ 𝐷0. So for 𝑥 = 0, 𝑌 = 0 𝒬-q.s. and by

Assumption 4.5.8 we get that for all 𝜔 ∈ Ω, ℎ ∈ 𝐷0,

𝑉 +(𝜔, 0 + ℎ𝑌 (𝜔)) ≤ 𝑉 +(𝜔, 1).

From now we assume that 𝑥 > 0. Then as for 𝑔 ∈ R𝑑, 𝑔 ∈ 𝐷𝑥 if and only if
𝑔
𝑥
∈ 𝐷1, we have that Aff(𝐷𝑥) = Aff(𝐷1). We set 𝑑′ := 𝐷𝑖𝑚(Aff(𝐷1)). Let (𝑒1, . . . , 𝑒𝑑′)
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be an orthonormal basis of Aff(𝐷1) (which is a sub-vector space of R𝑑) and 𝜙 :

(𝜆1, . . . , 𝜆𝑑′) ∈ R𝑑′ → Σ𝑑′
𝑖=1𝜆𝑖𝑒𝑖 ∈ Aff(𝐷1). Then 𝜙 is an isomorphism (recall that

(𝑒1, . . . , 𝑒𝑑′) is a basis of Aff(𝐷1)). As 𝜙 is linear and the spaces considered are of
finite dimension, it is also an homeomorphism between R𝑑′ and Aff(𝐷1). Since 𝐷1

is compact by Lemma 4.5.7, 𝜙−1(𝐷1) is a compact subspace of R𝑑′ . So there exists
some 𝑐 ≥ 0 such that for all ℎ = Σ𝑑′

𝑖=1𝜆𝑖𝑒𝑖 ∈ 𝐷1, |𝜆𝑖| ≤ 𝑐 for all 𝑖 = 1, . . . , 𝑑′. We com-
plete the family of vector (𝑒1, . . . , 𝑒𝑑′) in order to obtain an orthonormal basis of R𝑑,
denoted by (𝑒1, . . . , 𝑒𝑑′ , 𝑒𝑑′+1, . . . 𝑒𝑑). For all 𝜔 ∈ Ω, let (𝑦𝑖(𝜔))𝑖=1,...,𝑑 be the coordinate
of 𝑌 (𝜔) in this basis.
Now let ℎ ∈ 𝐷𝑥 be fixed. Then ℎ

2𝑥
∈ 𝐷 1

2
⊂ 𝐷1 and ℎ

2𝑥
= Σ𝑑′

𝑖=1𝜆𝑖𝑒𝑖 for some (𝜆1, . . . 𝜆𝑑′) ∈
R𝑑′ with |𝜆𝑖| ≤ 𝑐 for all 𝑖 = 1, . . . , 𝑑′. Note that as ℎ

2𝑥
∈ 𝐷1, 𝜆𝑖 = 0 for 𝑖 ≥ 𝑑′ + 1. Then

as (𝑒1, . . . , 𝑒𝑑) is an orthonormal basis of R𝑑, we obtain for all 𝜔 ∈ Ω

1 +
ℎ

2𝑥
𝑌 (𝜔) = 1 + Σ𝑑′

𝑖=1𝜆𝑖𝑦𝑖(𝜔) ≤ 1 + Σ𝑑′

𝑖=1|𝜆𝑖||𝑦𝑖(𝜔)| ≤ 1 + 𝑐Σ𝑑′

𝑖=1|𝑦𝑖(𝜔)|.

Thus from Assumption 4.5.8 for all 𝜔 ∈ Ω we get that

𝑉 +

(︂
𝜔, 1 +

ℎ

2𝑥
𝑌 (𝜔)

)︂
≤ 𝑉 +

(︁
𝜔, 1 + 𝑐Σ𝑑′

𝑖=1|𝑦𝑖(𝜔)|
)︁
.

We set for all 𝜔 ∈ Ω

𝐿(𝜔) := 𝑉 +
(︁
𝜔, 1 + 𝑐Σ𝑑′

𝑖=1|𝑦𝑖(𝜔)|
)︁
1𝑑′>0 + 𝑉 +(𝜔, 1) + 𝐶(𝜔).

As 𝑑′ = 𝐷𝑖𝑚(Aff(𝐷1)) it is clear that 𝐿 does not dependent on 𝑥. It is also clear that
𝐿 is 𝒢-measurable.
Then using (4.31), (4.32) and (4.33) we obtain that for all 𝜔 ∈ Ω𝐷𝑜𝑚

𝑉 +(𝜔, 𝑥+ ℎ𝑌 (𝜔)) ≤ (4𝑥+ 1)𝐿(𝜔).

Note that the first term in 𝐿 is used in the above inequality if 𝑥 ̸= 0 and𝐷𝑖𝑚(Aff(𝐷𝑥)) >

0. The second and the third one are there for both the case of 𝐷𝑖𝑚(Aff(𝐷𝑥)) = 0 and
the case of 𝑥 = 0 and 𝐷𝑖𝑚(Aff(𝐷𝑥)) > 0. Now by Assumptions 4.5.14 and Proposi-
tion 4.5.19, we get that 𝐸𝑃 (𝑉 +(·, 1)+𝐶(·)) <∞ for all 𝑃 ∈ 𝒬, so it remains to prove
if 𝑑′ > 0 that for all 𝑃 ∈ 𝒬

𝐸𝑃

(︁
𝑉 +
(︁
·, 1 + 𝑐Σ𝑑′

𝑖=1|𝑦𝑖(·)|
)︁)︁

<∞.

Introduce 𝑊 the finite set of R𝑑 whose coordinates on (𝑒1, . . . , 𝑒𝑑′) are 1 or −1 and
0 on (𝑒𝑑′+1, . . . 𝑒𝑑). Then 𝑊 ⊂ Aff(𝐷1) and the vectors of 𝑊 will be denoted by
𝜃𝑗 for 𝑗 ∈ {1, . . . , 2𝑑′}. Let 𝜃𝜔 be the vector whose coordinates on (𝑒1, . . . , 𝑒𝑑′) are
(𝑠𝑖𝑔𝑛(𝑦𝑖(𝜔)))𝑖=1...𝑑′ and 0 on (𝑒𝑑′+1, . . . 𝑒𝑑). Then 𝜃𝜔 ∈ 𝑊 and we get that

𝑉 +
(︁
𝜔, 1 + 𝑐Σ𝑑′

𝑖=1|𝑦𝑖(𝜔)|
)︁
= 𝑉 +(𝜔, 1 + 𝑐𝜃𝜔𝑌 (𝜔)) ≤

2𝑑
′∑︁

𝑗=1

𝑉 +(𝜔, 1 + 𝑐𝜃𝑗𝑌 (𝜔)).
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So to prove that for all 𝑃 ∈ 𝒬, 𝐸𝑃𝐿 < ∞ it is sufficient to prove that if 𝑑′ > 0,
𝐸𝑃𝑉

+(·, 1 + 𝑐𝜃𝑗𝑌 (·)) < ∞ for all 1 ≤ 𝑗 ≤ 2𝑑
′ and 𝑃 ∈ 𝒬. Recall that 𝜃𝑗 ∈ Aff(𝐷1).

As 𝐷1 is convex and non-empty (recall 𝑑′ > 0), Ri(𝐷1) is also non-empty and convex
and we fix some 𝑒* ∈ Ri(𝐷1). It is easy to prove that 𝑒*

2
∈ Ri(𝐷1). (see the proof of

Lemma 2.5.11 in Chapter 2). Now let 𝛽 > 0 be such that Aff(𝐷1) ∩ 𝐵(𝑒*, 𝛽) ⊂ 𝐷1

and 𝜀𝑗 be such that 𝜀𝑗( 𝑐2𝜃
𝑗 − 𝑒*

2
) ∈ 𝐵(0, 𝛽

2
) where one can chose 𝜀𝑗 ∈ (0, 1). Then as

𝑒𝑗 := 𝑒*

2
+

𝜀𝑗
2
(𝑐𝜃𝑗 − 𝑒*) ∈ Aff(𝐷1) ∩ 𝐵( 𝑒

*

2
, 𝛽
2
) (recall that 𝜃𝑗 ∈ 𝑊 ⊂ Aff(𝐷1)), we deduce

that 𝑒𝑗 ∈ 𝐷1. Using (4.28) we obtain that for 𝒬-almost all 𝜔

𝑉 +(𝜔, 1 + 𝑐𝜃𝑗𝑌 (𝜔)) = 𝑉 +(𝜔, 1 + 𝑒*𝑌 (𝜔) + (𝑐𝜃𝑗 − 𝑒*)𝑌 (𝜔))

≤
(︂

4

𝜀𝑗

)︂[︂
𝑉 +

(︂
𝜔,
𝜀𝑗
2
(1 + 𝑒*𝑌 (𝜔)) +

𝜀𝑗
2
(𝑐𝜃𝑗 − 𝑒*)𝑌 (𝜔) +

1

2

)︂
+ 𝐶(𝜔)

]︂
≤
(︂

4

𝜀𝑗

)︂[︀
𝑉 +(𝜔, 1 + 𝑒𝑗𝑌 (𝜔)) + 𝐶(𝜔))

]︀
,

where the second inequality follows from the fact that 1 + 𝑒*𝑌 (·) ≥ 0 𝒬-q.s. (recall
that 𝑒* ∈ Ri(𝐷1)) and the monotonicity property of 𝑉 in Assumption 4.5.8. Note
that the above inequalities are true even if 1 + 𝑐𝜃𝑗𝑌 (𝜔) < 0 since (4.28) and the
monotonicity property of 𝑉 holds true for all 𝑥 ∈ R.
For all 𝑃 ∈ 𝒬, Assumption 4.5.14 implies that 𝐸𝑃𝑉 +(·, 1 + 𝑒𝑗𝑌 (·)) < ∞ (recall
that 𝑒𝑗 ∈ 𝐷1) and Proposition 4.5.19 implies that 𝐸𝑃𝐶 < ∞, therefore 𝐸𝑃𝑉 +(·, 1 +
𝑐𝜃𝑗𝑌 (·)) <∞ and (4.30) is proven for ℎ ∈ 𝐷𝑥.
Now let ℎ ∈ ℋ𝑥 and ℎ′ its orthogonal projection on 𝐷, then ℎ𝑌 (·) = ℎ′𝑌 (·) 𝒬-q.s.
(see Remark 4.5.5). It is clear that ℎ′ ∈ 𝐷𝑥 thus 𝑉 +(·, 𝑥 + ℎ𝑌 (·)) = 𝑉 +(·, 𝑥 + ℎ′𝑌 (·))
𝒬-q.s. and (4.30) is true also for ℎ ∈ ℋ𝑥. 2

Lemma 4.5.21 Assume that Assumptions 4.5.2, 4.5.3, 4.5.8, 4.5.9 and 4.5.14 hold
true. Let ℋ be the set valued function that assigns to each 𝑥 ≥ 0 the set ℋ𝑥. Then
Graph(ℋ) := {(𝑥, ℎ) ∈ [0,+∞)×R𝑑, ℎ ∈ ℋ𝑥} is a closed and convex subset of R×R𝑑.
Let 𝜓 : R× R𝑑 → R ∪ {±∞} be defined by

𝜓(𝑥, ℎ) :=

{︃
inf𝑃∈𝒬𝐸𝑃𝑉 (·, 𝑥+ ℎ𝑌 (·)) if (𝑥, ℎ) ∈ Graph(ℋ),

−∞ otherwise.
(4.34)

Then 𝜓 is usc and concave on R × R𝑑, 𝜓 < +∞ on Graph(ℋ) and 𝜓(𝑥, 0) > −∞ for
all 𝑥 > 0.

Proof. For all 𝑃 ∈ 𝒬, we introduce, 𝜓𝑃 : R× R𝑑 → R ∪ {±∞} defined by

𝜓𝑃 (𝑥, ℎ) :=

{︃
𝐸𝑃𝑉 (·, 𝑥+ ℎ𝑌 (·)) if (𝑥, ℎ) ∈ Graph(ℋ),

−∞ otherwise.
(4.35)



4.5. One period case 153

As in Lemma 2.5.12 in Chapter 2, Graph(ℋ) is a closed convex subset of R×R𝑑, 𝜓𝑃
is usc on R×R𝑑 and 𝜓𝑃 <∞ on Graph(ℋ) for all 𝑃 ∈ 𝒬. Furthermore the concavity
of 𝜓𝑃 follows immedialty from the one of 𝑉 .
The function 𝜓 = inf𝑃∈𝒬 𝜓𝑃 is usc (resp. concave) as the infimum of usc (resp.
concave) functions. As 𝜓𝑃 < ∞ on Graph(ℋ) for all 𝑃 ∈ 𝒬, it is clear that 𝜓 < +∞
on Graph(ℋ). Finally let 𝑥 > 0 be fixed and let 𝑟 ∈ Q, 𝑟 < 𝑥 . From Assumptions
4.5.8 and 4.5.9 we have −∞ < 𝜓(𝑟, 0) ≤ 𝜓(𝑥, 0) and this concludes the proof. 2

The next results is used in the proof of Theorem 4.5.23 (and also in the multi-period
part in the proof of Proposition 4.6.6).

Lemma 4.5.22 Assume that Assumption 4.5.1 holds true. For all 𝑥 > 0, we have
Aff(ℋ𝑥) = R𝑑, Ri(ℋ𝑥) is an open set in R𝑑 and Q𝑑 is dense in Ri(ℋ𝑥)

1 . Moreover

Ri(ℋ𝑥) ⊂
⋃︁

𝑟∈Q, 𝑟>0

ℋ𝑟
𝑥 ⊂ ℋ𝑥 (4.36)

and therefore
⋃︀
𝑟∈Q, 𝑟>0ℋ𝑟

𝑥 = ℋ𝑥,where the closure is taken in R𝑑. If furthermore,
we assume that there exists some 0 ≤ 𝑐 <∞ such that 𝑌𝑖(𝜔) ≤ 𝑐 for all 𝑖 = 1, · · · , 𝑑,
𝜔 ∈ Ω (recalling Assumption 4.5.1, |𝑌 | is bounded) then

Ri(ℋ𝑥) =
⋃︁

𝑟∈Q, 𝑟>0

ℋ𝑟
𝑥. (4.37)

Proof. Fix some 𝑥 > 0. Let 𝜀 > 0 be such that 𝑥 − 𝜀 > 0. Using Assumption
4.5.1, for ℎ ∈ R𝑑 such that 0 ≤ ℎ𝑖 <

𝑥−𝜀
𝑑𝑏

for all 𝑖 = 1, · · · , 𝑑, we get that for
all 𝜔 ∈ Ω, 𝑥 + ℎ𝑌 (𝜔) ≥ 𝑥 − 𝑏

∑︀𝑑
𝑖=1 ℎ𝑖 ≥ 𝜀. Hence ℎ ∈ ℋ𝜀

𝑥 ⊂ ℋ𝑥. Thus the set
𝑅 := {ℎ ∈ R𝑑, 0 ≤ ℎ𝑖 ≤ 𝑥−𝜀

𝑑𝑏
} ⊂ ℋ𝑥. As Aff(𝑅) = R𝑑, we obtain that Aff(ℋ𝑥) = R𝑑

(recall that 0 ∈ ℋ𝑥). Therefore Ri(ℋ𝑥) is the interior of ℋ𝑥 in R𝑑 and thus an open
set in R𝑑 and the fact that Q𝑑 is dense in Ri(ℋ𝑥) follows immediatly.
We prove now (4.36). The second inclusion is trivial. Fix now some ℎ ∈ Ri(ℋ𝑥). As
0 ∈ ℋ𝑥, there exists some 𝜀 > 0 such that (1+ 𝜀)ℎ ∈ ℋ𝑥, see [115, Theorem 6.4 p47],
𝑖.𝑒 𝑥 + (1 + 𝜀)ℎ𝑌 (·) ≥ 0 𝒬-q.s. It follows that 𝑥 + ℎ𝑌 (·) ≥ 𝜀

1+𝜀
𝑥 > 0 𝒬-q.s., hence for

0 < 𝑟 ≤ 𝜀
1+𝜀

𝑥, 𝑟 ∈ Q, we have that ℎ ∈ ℋ𝑟
𝑥 and (4.36) is proved. The last equation

follows from the fact that Ri(ℋ𝑥) = ℋ𝑥 (recall that Ri(ℋ𝑥) the interior of ℋ𝑥 in R𝑑).
We prove now (4.37) under the assumption that |𝑌 | is bounded by some constant
𝐾 > 0. We fix some ℎ ∈

⋃︀
𝑟∈Q, 𝑟>0ℋ𝑟

𝑥 and we establish that ℎ belongs to the in-
terior of ℋ𝑥 and therefore to Ri(ℋ𝑥). Let 𝑟 ∈ Q, 𝑟 > 0 be such that ℎ ∈ ℋ𝑟

𝑥

and set 𝜀 := 𝑟
2𝐾

. Then for any 𝑔 ∈ 𝐵(0, 𝜀), we have for 𝒬-almost all 𝜔 ∈ Ω that
𝑥+ (ℎ+ 𝑔)𝑌 (𝜔) ≥ 𝑟 + 𝑔𝑌 (𝜔) ≥ 𝑟 − |𝑔||𝑌 (𝜔)| ≥ 𝑟

2
, hence ℎ+ 𝑔 ∈ ℋ𝑥 and 𝐵(ℎ, 𝜀) ⊂ ℋ𝑥.

1For a Polish space 𝑋, we say that a set 𝐷 ⊂ 𝑋 is dense in 𝐵 ⊂ 𝑋 if for all 𝜀 > 0, 𝑏 ∈ 𝐵, there
exists 𝑑 ∈ 𝐷 ∩𝐵 such that 𝑑(𝑏, 𝑑) < 𝜀 where 𝑑 is a metric on 𝑋 consistant with its topology.
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2

We are now able to state our main result.

Theorem 4.5.23 Assume that Assumptions 4.5.1, 4.5.2, 4.5.3, 4.5.8, 4.5.9 and
4.5.14 hold true. Then for all 𝑥 ≥ 0, 𝑣(𝑥) < ∞ and there exists some optimal
strategy ̂︀ℎ ∈ 𝐷𝑥 such that

𝑣(𝑥) = inf
𝑃∈𝒬

𝐸𝑃 (𝑉 (·, 𝑥+ ̂︀ℎ𝑌 (·))). (4.38)

Moreover 𝑣 is usc, concave and non-decreasing, Dom 𝑣 = (0,∞). For all 𝑥 ∈ R

𝑣(𝑥) = 𝑣Q(𝑥) = Cl(𝑣Q)(𝑥). (4.39)

Proof. Let 𝑥 ≥ 0 be fixed. Fix some 𝑃 ∈ 𝒬. Using Lemma 4.5.20 we have that
𝐸𝑃𝑉 (·, 𝑥 + ℎ𝑌 (·)) ≤ 𝐸𝑃𝑉

+(·, 𝑥 + ℎ𝑌 (·)) ≤ (4𝑥+ 1)𝐸𝑃𝐿(·) < ∞, for all ℎ ∈ ℋ𝑥. Thus
𝑣(𝑥) < ∞. Now if 𝑥 > 0, 𝑣(𝑥) ≥ 𝜓(𝑥, 0) > −∞ (see Lemma 4.5.21). Using Lemma
4.5.17, 𝑣 is concave and non-decreasing. Thus 𝑣 is continuous on (0,∞).
From Lemma 4.5.21, ℎ → 𝜓(𝑥, ℎ) is usc on R𝑑 and thus on 𝐷𝑥 (recall that 𝐷𝑥 is
closed and use Lemma 2.8.11 in Chapter 2. Since 𝐷𝑥 is compact (see Lemma 4.5.7),
recalling (4.22) and applying [3, Theorem 2.43 p44], we find that there exists somê︀ℎ ∈ 𝐷𝑥 such that (3.31) holds true.
We prove now that 𝑣 is usc in 0 (the proof works as well for all 𝑥* ≥ 0). Let (𝑥𝑛)𝑛≥0

be a sequence of non-negative numbers converging to 0. Let ̂︀ℎ𝑛 ∈ 𝐷𝑥𝑛 be the op-
timal strategies associated to 𝑥𝑛 in (3.31). Let (𝑛𝑘)𝑘≥1 be a subsequence such that
lim sup𝑛 𝑣(𝑥𝑛) = lim𝑘 𝑣(𝑥𝑛𝑘

). Using Lemma 4.5.7, |̂︀ℎ𝑛𝑘
| ≤ 𝑥𝑛𝑘

/𝛼 ≤ 1/𝛼 for 𝑘 big
enough. So we can extract a subsequence (that we still denote by (𝑛𝑘)𝑘≥1) such that
there exists some ℎ* with ̂︀ℎ𝑛𝑘

→ ℎ*. As (𝑥𝑛𝑘
, ℎ̂𝑛𝑘

)𝑘≥1 ∈ Graph(ℋ) which is a closed
subset of R×R𝑑 (see Lemma 4.5.21), ℎ* ∈ ℋ0. Thus using that 𝜓 is usc, we get that

lim sup
𝑛

𝑣(𝑥𝑛) = lim
𝑘

inf
𝑃∈𝒬

𝐸𝑃𝑉 (·, 𝑥𝑛𝑘
+ ̂︀ℎ𝑛𝑘

𝑌 (·)) = lim
𝑘
𝜓(𝑥𝑛𝑘

, ℎ𝑛𝑘
)

≤ 𝜓(0, ℎ*) = inf
𝑃∈𝒬

𝐸𝑃𝑉 (·, ℎ*𝑌 (·)) ≤ 𝑣(0).

For 𝑥 < 0 all the equalities in (4.39) are trivial. We prove the first equality in (4.39)
for 𝑥 ≥ 0 fixed. We start with the case 𝑥 = 0. If 𝑌 = 0 𝒬-q.s. then the first equality
is trivial. If 𝑌 ̸= 0 𝒬-q.s., then it is clear that 𝐷0 = {0} (recall Assumption 4.5.2)
and the first equality in (4.39) is true again. We assume now that 𝑥 > 0. From
Lemma 4.5.21, 𝜓𝑥 : ℎ → 𝜓(𝑥, ℎ) is concave, 0 ∈ Dom𝜓𝑥. Thus Ri(Dom𝜓𝑥) ̸= ∅ (see
[115, Theorem 6.2 p45]) and we can apply Lemma 4.8.1. Assume for a moment that
we have proved that Q𝑑 is dense in Ri(Dom𝜓𝑥). As 𝜓𝑥 is continuous on Ri(Dom𝜓𝑥)
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(recall that 𝜓𝑥 is concave), we obtain that

𝑣(𝑥) = sup
ℎ∈ℋ𝑥

𝜓𝑥(ℎ) = sup
ℎ∈Dom𝜓𝑥

𝜓𝑥(ℎ) = sup
ℎ∈Ri(Dom𝜓𝑥)

𝜓𝑥(ℎ)

= sup
ℎ∈Ri(Dom𝜓𝑥)∩Q𝑑

𝜓𝑥(ℎ)

≤ sup
ℎ∈ℋ𝑥∩Q𝑑

𝜓𝑥(ℎ) = 𝑣Q(𝑥),

since Ri(Dom𝜓𝑥) ⊂ ℋ𝑥 and the first equality in (4.39) is proved. It remains to
prove that Q𝑑 is dense in Ri(Dom𝜓𝑥). Fix some ℎ ∈ Ri(ℋ𝑥). From Lemma 4.5.22,
there is some 𝑟 ∈ Q, 𝑟 > 0 such that ℎ ∈ ℋ𝑟

𝑥. Using Lemma 4.5.21 we obtain
that 𝜓𝑥(ℎ) ≥ 𝜓(𝑟, 0) > −∞ thus ℎ ∈ Dom𝜓𝑥 and Ri(ℋ𝑥) ⊂ Dom𝜓𝑥. Recalling that
0 ∈ Dom𝜓𝑥 and that Ri(ℋ𝑥) is an open set in R𝑑 (see Lemma 4.5.22) we obtain that
Aff(Dom𝜓𝑥) = R𝑑. Then Ri(Dom𝜓𝑥) is an open set in R𝑑 and the fact that Q𝑑 is
dense in Ri(Dom𝜓𝑥) follows easily.
The second equality in (4.39) follows immediately : 𝑣Q(𝑥) = 𝑣(𝑥) for all 𝑥 ≥ 0 and 𝑣
is usc on [0,∞) thus Cl(𝑣Q)(𝑥) = 𝑣Q(𝑥) for all 𝑥 ≥ 0. 2

4.6 Multiperiod case
Proposition 4.6.1 Assume that Assumption 4.4.2 holds true. Then there exists
some Ω𝑇

𝐷𝑜𝑚 ∈ ℬ(Ω𝑇 ) such that 𝑃 (Ω𝑇
𝐷𝑜𝑚) = 1 for all 𝑃 ∈ 𝒬𝑇 and a ℬ(Ω𝑇 )-measurable

random variable 𝐶𝑇 , satisfying 𝐶𝑇 (𝜔
𝑇 ) ≥ 0 for all 𝜔𝑇 ∈ Ω𝑇 , sup𝑃∈𝒬𝑇 𝐸𝑃 (𝐶𝑇 ) < ∞

and such that for all 𝜔𝑇 ∈ Ω𝑇
𝐷𝑜𝑚, 𝜆 ≥ 1 and 𝑥 ∈ R, we have

𝑈(𝜔𝑇 , 𝜆𝑥) ≤ 2𝜆

(︂
𝑈

(︂
𝜔𝑇 , 𝑥+

1

2

)︂
+ 𝐶𝑇 (𝜔

𝑇 )

)︂
𝑈+(𝜔𝑇 , 𝜆𝑥) ≤ 2𝜆

(︂
𝑈+

(︂
𝜔𝑇 , 𝑥+

1

2

)︂
+ 𝐶𝑇 (𝜔

𝑇 )

)︂
.

Proof. This is just Proposition 4.5.19 for 𝑉 = 𝑈 and 𝒢 = ℬ(Ω𝑇 ). Here we set (see
(4.20))

Ω𝑇
𝐷𝑜𝑚 := {𝜔𝑇 ∈ Ω𝑇 , 𝑈(𝜔𝑇 , 𝑟) > −∞, ∀𝑟 ∈ Q, 𝑟 > 0} (4.40)

and 𝐶𝑇 (𝜔𝑇 ) = 𝑈− (︀𝜔𝑇 , 1
4

)︀
. From Assumption 4.4.2, it is clear that sup𝑃∈𝒬𝑇 𝐸𝑃 (𝐶𝑇 ) <

∞. The second inequality follows immediatly since 𝐶𝑇 is non-negative. 2
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Proposition 4.6.2 Let Assumptions 4.4.2 and 4.4.12 hold true and fix some 𝑥 ≥ 0.
Then

𝑀𝑥 := sup
𝑃∈𝒬𝑇

sup
𝜑∈𝜑(𝑥,𝑃 )

𝐸𝑃𝑈
+(·, 𝑉 𝑥,𝜑

𝑇 (·)) <∞. (4.41)

Moreover, Φ(𝑥, 𝑈, 𝑃 ) = Φ(𝑥, 𝑃 ) for all 𝑃 ∈ 𝒬𝑇 and thus Φ(𝑥, 𝑈,𝒬𝑇 ) = Φ(𝑥,𝒬𝑇 ).

Proof. Fix some 𝑃 ∈ 𝒬𝑇 . From Assumption 4.4.12 we know that Φ(1, 𝑃 ) = Φ(1, 𝑈, 𝑃 ).
Let 𝑥 ≥ 0 and 𝜑 ∈ Φ(𝑥, 𝑃 ) be fixed. If 𝑥 ≤ 1 then 𝑉 𝑥,𝜑

𝑇 ≤ 𝑉 1,𝜑
𝑇 and therefore using As-

sumption 4.4.12, 𝑀𝑥 ≤ 𝑀1 < ∞ and Φ(𝑥, 𝑃 ) = Φ(𝑥, 𝑈, 𝑃 ). If 𝑥 ≥ 1, from Proposition
4.6.1 we get that for all 𝜔𝑇 ∈ Ω𝑇

𝐷𝑜𝑚

𝑈+(𝜔𝑇 , 𝑉 𝑥,𝜑
𝑇 (𝜔𝑇 )) = 𝑈+

(︃
𝜔𝑇 , 2𝑥

(︃
1

2
+

𝑇∑︁
𝑡=1

𝜑𝑡(𝜔
𝑡−1)

2𝑥
Δ𝑆𝑡(𝜔

𝑡)

)︃)︃

≤ 4𝑥

(︂
𝑈+(𝜔𝑇 , 𝑉

1, 𝜑
2𝑥

𝑇 (𝜔)) + 𝐶𝑇 (𝜔
𝑇 )

)︂
.

As since 𝜑
2𝑥

∈ Φ(1
2
, 𝑃 ) ⊂ Φ(1, 𝑃 ) = Φ(1, 𝑈, 𝑃 ), we find using Proposition 4.6.1 again

that 𝑀𝑥 ≤ 4𝑥 (𝑀1 + sup𝑃∈𝒬𝑇 𝐸𝑃𝐶𝑇 ) < ∞. Thus Φ(𝑥, 𝑃 ) = Φ(𝑥, 𝑈, 𝑃 ) and the last
assertion follows from (4.11). 2

We introduce now the dynamic programming procedure. First we set for all
𝑡 ∈ {0, . . . , 𝑇 − 1}, 𝜔𝑡 ∈ Ω𝑡, 𝑃 ∈ P(Ω𝑡+1) and 𝑥 ≥ 0

𝐻 𝑡+1
𝑥 (𝜔𝑡, 𝑃 ) :=

{︀
ℎ ∈ R𝑑, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0 𝑃 -a.s.
}︀
, (4.42)

ℋ𝑡+1
𝑥 (𝜔𝑡) :=

{︀
ℎ ∈ R𝑑, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0 𝒬𝑡+1(𝜔
𝑡)-q.s.

}︀
, (4.43)

𝒟𝑡+1
𝑥 (𝜔𝑡) := ℋ𝑡+1

𝑥 (𝜔𝑡) ∩𝐷𝑡+1(𝜔𝑡), (4.44)

where 𝐷𝑡+1 was introduced in Definition 4.3.1. For all 𝑡 ∈ {0, . . . , 𝑇 − 1}, 𝜔𝑡 ∈ Ω𝑡,
𝑃 ∈ P(Ω𝑡+1) and 𝑥 < 0, we set 𝐻 𝑡+1

𝑥 (𝜔𝑡, 𝑃 ) = ℋ𝑡+1
𝑥 (𝜔𝑡) = ∅. We introduce the

following notation. Let 𝐹 : Ω𝑡 × R → R ∪ {±∞} and fix 𝜔𝑡 ∈ Ω𝑡. Then, 𝑥 ∈ R →
𝐹𝜔𝑡(𝑥) := 𝐹 (𝜔𝑡, 𝑥) is a real-valued function and we denote its closure by Cl (𝐹𝜔𝑡).
Now Cl(𝐹 ) : Ω𝑡 × R → R ∪ {±∞} is defined for all 𝜔𝑡 ∈ Ω𝑡, 𝑥 ∈ R by

Cl(𝐹 )(𝜔𝑡, 𝑥) := Cl (𝐹𝜔𝑡) (𝑥). (4.45)

We define for all 𝑡 ∈ {0, . . . , 𝑇} the following functions 𝑈𝑡 from Ω𝑡×R → R. Starting
with 𝑡 = 𝑇 , we set for all 𝑥 ∈ R, 𝜔𝑇 ∈ Ω𝑇

𝑈𝑇 (𝜔
𝑇 , 𝑥) := 𝑈(𝜔𝑇 , 𝑥). (4.46)
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Recall that 𝑈(𝜔𝑇 , 𝑥) = −∞ for all (𝜔𝑇 , 𝑥) ∈ Ω𝑇 × (−∞, 0). By Definition 4.4.1, it is
clear that 𝑈𝑇 (𝜔𝑇 , 𝑥) = Cl(𝑈)(𝜔𝑇 , 𝑥). For 0 ≤ 𝑡 ≤ 𝑇 − 1, we set for all 𝑥 ∈ R and
𝜔𝑡 ∈ Ω𝑡

𝒰𝑡(𝜔
𝑡, 𝑥) :=

{︃
supℎ∈ℋ𝑡+1

𝑥 (𝜔𝑡)∩Q𝑑 inf𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︀
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1),

if 𝑥 ≥ 0 and −∞ if 𝑥 < 0

(4.47)

𝑈𝑡(𝜔
𝑡, 𝑥) := Cl(𝒰𝑡)(𝜔

𝑡, 𝑥). (4.48)

As already mentioned for 𝑡 = 0 we drop the dependancy in 𝜔0 and note 𝒰0(𝑥) =

𝒰0(𝜔
0, 𝑥) and 𝑈0(𝑥) = 𝑈0(𝜔

0, 𝑥).

Remark 4.6.3 Recall that in (4.47) if for some 𝜔𝑡 ∈ Ω𝑡 and 𝑃 ∈ 𝒬𝑡+1(𝜔
𝑡),
∫︀
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥+

ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1) = +∞ and

∫︀
Ω𝑡+1

𝑈−
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥+ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1) =

∞, we set
∫︀
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1) = ∞.

Remark 4.6.4 The natural definition of 𝑈𝑡 should have been (for 𝑥 ≥ 0)

U𝑡(𝜔
𝑡, 𝑥) = sup

ℎ∈ℋ𝑡+1
𝑥 (𝜔𝑡)

inf
𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︁
Ω𝑡+1

U𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1).

However proving directly some measurability properties for U𝑡 is problematic. Hence
we define 𝑈𝑡 thanks to (4.47) and (4.48).

We also introduce the function 𝐼𝑡 : Ω𝑡×R → [0,∞] which will be used for integrabil-
ity issues. Starting with 𝑡 = 𝑇 , we set for all 𝑥 ∈ R, 𝜔𝑇 ∈ Ω𝑇 ,

𝐼𝑇 (𝜔
𝑇 , 𝑥) := 𝑈+(𝜔𝑇 , 𝑥). (4.49)

And for 0 ≤ 𝑡 ≤ 𝑇 − 1, 𝜔𝑡 ∈ Ω𝑡,

𝐼𝑡(𝜔
𝑡, 𝑥) := 1[0,∞)(𝑥) sup

ℎ∈R𝑑,𝑃∈𝒬𝑡+1(𝜔𝑡)

1𝐻𝑡+1
𝑥 (𝜔𝑡,𝑃 )(ℎ)

∫︁
Ω𝑡+1

𝐼𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1).

(4.50)

Lemma 4.6.5 Assume that Assumptions 4.2.1 and 4.2.2 hold true. Let 0 ≤ 𝑡 ≤ 𝑇−1

be fixed, 𝐺 be a fixed non-negative real-valued, ℬ𝑐(Ω𝑡)-measurable random variable
and consider the following random sets:

𝐻 𝑡+1 : (𝜔𝑡, 𝑥, 𝑃 ) ∈ Ω𝑡 × R×P(Ω𝑡+1) � 𝐻 𝑡+1
𝑥 (𝜔𝑡, 𝑃 ),

ℋ𝑡+1 : (𝜔𝑡, 𝑥) ∈ Ω𝑡 × R � ℋ𝑡+1
𝑥 (𝜔𝑡),

ℋ𝑡+1
𝐺 : 𝜔𝑡 ∈ Ω𝑡 � ℋ𝑡+1

𝐺(𝜔𝑡)(𝜔
𝑡),

𝒟𝑡+1
𝐺 : 𝜔𝑡 ∈ Ω𝑡 � 𝒟𝑡+1

𝐺(𝜔𝑡)(𝜔
𝑡).
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Then those random sets are all closed valued. Furthermore we have that Graph(𝐻 𝑡+1) ∈
ℬ(Ω𝑡)⊗ℬ(R)⊗ℬ(P(Ω𝑡+1))⊗ℬ(R𝑑), Graph(ℋ𝑡+1) ∈ 𝒞𝐴(Ω𝑡 ×R×R𝑑). Graph(ℋ𝑡+1) ∈
ℬ𝑐(Ω𝑡) ⊗ ℬ(R) ⊗ ℬ(R𝑑), Graph(ℋ𝑡+1

𝐺 ) ∈ ℬ𝑐(Ω𝑡) ⊗ ℬ(R𝑑) and Graph(𝒟𝑡+1
𝐺 ) ∈ ℬ𝑐(Ω𝑡) ⊗

ℬ(R𝑑).

Remark 4.6.6 From Lemma 4.6.5 we get that (𝜔𝑡, 𝑃, ℎ, 𝑥) ∈ Ω𝑡×P(Ω𝑡+1)×R𝑑×R →
1𝐻𝑡+1

𝑥 (𝜔𝑡,𝑃 )(ℎ) is ℬ(Ω𝑡)⊗ ℬ(P(Ω𝑡+1))⊗ ℬ(R𝑑)⊗ ℬ(R)-measurable.

Proof. It is clear that 𝐻 𝑡+1, ℋ𝑡+1, ℋ𝐺 and 𝒟𝐺 are closed valued. Now, using Lemma
4.8.5 (see (4.92)) we get that

Graph(𝐻 𝑡+1) =
{︀
(𝜔𝑡, 𝑥, 𝑃, ℎ) ∈ Ω𝑡 × R×P(Ω𝑡+1)× R𝑑, 𝑃 (𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0) = 1
}︀

∈ ℬ(Ω𝑡)⊗ ℬ(R)⊗ ℬ(P(Ω𝑡+1))⊗ ℬ(R𝑑).

Using Lemma 4.8.5 (see (4.93)), we get that

Graph(ℋ𝑡+1) =

{︂
(𝜔𝑡, 𝑥, ℎ) ∈ Ω𝑡 × R× R𝑑, inf

𝑃∈𝒬𝑡+1(𝜔𝑡)
𝑃
(︀
𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0
)︀
= 1

}︂
∈ 𝒞𝐴(Ω𝑡 × R× R𝑑).

We prove now the second part of the lemma. Fix some 𝑥 ∈ R. For any integer 𝑘 ≥ 1,
𝑟 ∈ Q, 𝑟 > 0 we introduce the following R𝑑-valued random variable and random
sets

Δ𝑆𝑘,𝑡+1(𝜔
𝑡+1) := Δ𝑆𝑡+1(𝜔

𝑡+1)1{|Δ𝑆𝑡+1(·)|≤𝑘}(𝜔
𝑡+1),

ℋ𝑟,𝑡+1
𝑘,𝑥 (𝜔𝑡) :=

{︀
ℎ ∈ R𝑑, 𝑥+Δ𝑆𝑘,𝑡+1(𝜔

𝑡, ·) ≥ 𝑟 𝒬𝑡+1(𝜔
𝑡)-q.s.

}︀
,

for all 𝜔𝑡+1 ∈ Ω𝑡, 𝜔𝑡 ∈ Ω𝑡. In the sequel, we will write ℋ𝑡+1
𝑘,𝑥 (𝜔

𝑡) instead of ℋ0,𝑡+1
𝑘,𝑥 (𝜔𝑡).

We first prove that Graph (ℋ𝑡+1
𝑥 ) ∈ ℬ𝑐(Ω𝑡)⊗ ℬ(R𝑑). We fix some 𝑘 ≥ 1. As Δ𝑆𝑘,𝑡+1 is

bounded, we can apply Lemma 4.5.22 and we get that for all 𝜔𝑡 ∈ Ω𝑡, Ri(ℋ𝑡+1
𝑘,𝑥 (𝜔

𝑡))

is the interior of ℋ𝑡+1
𝑘,𝑥 (𝜔

𝑡) and that

Ri(ℋ𝑡+1
𝑘,𝑥 )(𝜔

𝑡) =
⋃︁

𝑟∈Q, 𝑟>0

ℋ𝑟,𝑡+1
𝑘,𝑥 (𝜔𝑡). (4.51)

Now, using Lemma 4.8.5 (see (4.93)) and Lemma 4.8.4 (it is clear that Δ𝑆𝑘,𝑡+1 is
ℬ(Ω𝑡+1)-measurable) we obtain that for all 𝑟 ∈ Q, 𝑟 > 0,

Graph
(︀
ℋ𝑟,𝑡+1
𝑘,𝑥

)︀
=

{︂
(𝜔𝑡, ℎ) ∈ Ω𝑡 × R𝑑, inf

𝑃∈𝒬𝑡+1(𝜔𝑡)
𝑃
(︀
𝑥+ ℎΔ𝑆𝑘,𝑡+1(𝜔

𝑡, ·) ≥ 𝑟
)︀
= 1

}︂
∈ 𝒞𝐴(Ω𝑡 × R𝑑).

So from (4.51) and [13, Corollary 7.35.2 p160], we obtain that Graph
(︀
Ri(ℋ𝑡+1

𝑘,𝑥 )
)︀
∈

𝒞𝐴(Ω𝑡 × R𝑑). We can now apply Lemma 4.8.6 𝑖𝑖) to Ri(ℋ𝑡+1
𝑘,𝑥 ) and we obtain that
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Graph
(︀
Ri(ℋ𝑡+1

𝑘,𝑥 )
)︀
∈ ℬ𝑐(Ω𝑡)⊗ℬ(R𝑑). Using that Ri(ℋ𝑡+1

𝑘,𝑥 )(𝜔
𝑡) = ℋ𝑡+1

𝑘,𝑥 (𝜔
𝑡) for all 𝜔𝑡 ∈ Ω𝑡

and applying Lemma 4.8.6 𝑖) we get that Graph
(︀
ℋ𝑡+1
𝑘,𝑥

)︀
∈ ℬ𝑐(Ω𝑡) ⊗ ℬ(R𝑑). Then for

all 𝜔𝑡 ∈ Ω𝑡 we have that ℋ𝑡+1
𝑥 (𝜔𝑡) =

⋂︀
𝑘∈N, 𝑘≥1ℋ

𝑡+1
𝑘,𝑥 (𝜔

𝑡), since for any ℎ ∈ R𝑑{︀
𝜔𝑡+1 ∈ Ω𝑡+1, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1) ≥ 0)
}︀

=
⋂︁
𝑘≥1

{︀
𝜔𝑡+1 ∈ Ω𝑡+1, 𝑥+ ℎΔ𝑆𝑘,𝑡+1(𝜔

𝑡, 𝜔𝑡+1) ≥ 0)
}︀
.

So 𝐺𝑟𝑎𝑝ℎ(ℋ𝑡+1
𝑥 ) ∈ ℬ𝑐(Ω𝑡)⊗ ℬ(R𝑑) follows immediately. We set

𝐵 :=
⋂︁

𝑛∈N, 𝑛≥1

⋃︁
𝑞∈Q, 𝑞≥0

{︂
(𝜔𝑡, 𝑥, ℎ) ∈ Ω𝑡 × R× R𝑑, 𝑞 ≤ 𝑥 ≤ 𝑞 +

1

𝑛
, ℎ ∈ Graph

(︁
ℋ𝑡+1
𝑞+ 1

𝑛

)︁}︂
For some integer 𝑛 ≥ 1 and 𝑞 ∈ Q, 𝑞 ≥ 0 fixed, since 𝐺𝑟𝑎𝑝ℎ(ℋ𝑡+1

𝑞 ) ∈ ℬ𝑐(Ω𝑡)⊗ ℬ(R𝑑),
we get that{︂
(𝜔𝑡, 𝑥, ℎ) ∈ Ω𝑡 × R× R𝑑, 𝑞 ≤ 𝑥 ≤ 𝑞 +

1

𝑛
, ℎ ∈ 𝐺𝑟𝑎𝑝ℎ(ℋ𝑡+1

𝑞 )

}︂
∈ ℬ𝑐(Ω𝑡)⊗ ℬ(R)⊗ ℬ(R𝑑)

and thus 𝐵 ∈ ℬ𝑐(Ω𝑡)⊗ℬ(R)⊗ℬ(R𝑑). We prove now that Graph(ℋ𝑡+1) = 𝐵 and thus
Graph(ℋ𝑡+1) ∈ ℬ𝑐(Ω𝑡) ⊗ ℬ(R) ⊗ ℬ(R𝑑). Let (𝜔𝑡, 𝑥, ℎ) ∈ Graph(ℋ𝑡+1). It is clear that
𝑥 ≥ 0, hence for all 𝑛 ≥ 1, there exists some non-negative rational 𝑞𝑛 such that 𝑞𝑛 ≤
𝑥 ≤ 𝑞𝑛+

1
𝑛
. It follows that 𝑞𝑛+ 1

𝑛
+ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 𝑥+ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0𝒬𝑡+1(𝜔𝑡)-q.s for

all 𝑛 ≥ 1 and (𝜔𝑡, 𝑥, ℎ) ∈ 𝐵. Now, let (𝜔𝑡, 𝑥, ℎ) ∈ 𝐵. There exists a sequence (𝑞𝑛)𝑛≥1 of
rational numbers converging to 𝑥, such that 𝑞𝑛 ≤ 𝑥 ≤ 𝑞𝑛+

1
𝑛

and ℎ ∈ Graph
(︁
ℋ𝑡+1
𝑞𝑛+

1
𝑛

)︁
.

Set 𝐶𝑛 := {𝑞𝑛 + 1
𝑛
+ ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0} and 𝐶 := {𝑥 + ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0}. It is clear

that ∩𝑛≥1𝐶𝑛 ⊂ 𝐶, therefore for all 𝑃 ∈ 𝒬𝑡+1(𝜔
𝑡) we have that 𝑃 (𝐶) ≥ 𝑃 (∩𝑛≥1𝐶𝑛) = 1

and (𝜔𝑡, 𝑥, ℎ) ∈ Graph(ℋ𝑡+1) follows.
We prove now that Graph(ℋ𝑡+1

𝐺 ) ∈ ℬ𝑐(Ω𝑡) ⊗ ℬ(R𝑑). Using similar arguments as
before and the fact that 𝐺 is ℬ𝑐(Ω𝑡)-measurable we obtain that

Graph(ℋ𝑡+1
𝐺 )

=
⋂︁

𝑛∈N, 𝑛≥1

⋃︁
𝑞∈Q, 𝑞≥0

{︂
(𝜔𝑡, ℎ) ∈ Ω𝑡 × R× R𝑑, 𝑞 ≤ 𝐺(𝜔𝑡) ≤ 𝑞 +

1

𝑛
, ℎ ∈ Graph(ℋ𝑡+1

𝑞+ 1
𝑛

)

}︂
∈ ℬ𝑐(Ω𝑡)⊗ ℬ(R𝑑).

Finally using Lemma 4.3.2 and since Graph(𝒟𝑡+1
𝐺 ) = Graph(ℋ𝑡+1

𝐺 ) ∩ Graph(𝒟), we
obtain that Graph(𝒟𝑡+1

𝐺 ) ∈ ℬ𝑐(Ω𝑡)⊗ ℬ(R𝑑) and this concludes the proof 2

We introduce for all 𝑟 ∈ Q, 𝑟 > 0

𝐽𝑟𝑇 (𝜔
𝑇 ) := 𝑈−(𝜔𝑇 , 𝑟), for 𝜔𝑇 ∈ Ω𝑇 , (4.52)

𝐽𝑟𝑡 (𝜔
𝑡) := sup

𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︁
Ω𝑡+1

𝐽𝑟𝑡+1(𝜔
𝑡, 𝜔𝑡+1)𝑃 (𝑑𝜔𝑡+1) for 𝑡 ∈ {0, . . . , 𝑇 − 1}, 𝜔𝑡 ∈ Ω𝑡. (4.53)



160
Chapter 4. Multiple-priors optimal investment in discrete time for

unbounded utility function

As usual we will denote 𝐽𝑟0 = 𝐽 𝑡0(𝜔
0).

Proposition 4.6.7 Assume that Assumptions 4.2.1 and 4.4.2 hold true. Then for
any 𝑡 ∈ {0, . . . , 𝑇}, 𝑟 ∈ Q, 𝑟 > 0, the function 𝜔𝑡 ∈ Ω𝑡 → 𝐽𝑟𝑡 (𝜔

𝑡) is well defined,
non-negative, belongs to 𝒰𝑆𝐴(Ω𝑡) and verifies sup𝑃∈𝒬𝑡 𝐸𝑃𝐽

𝑟
𝑡 < ∞. Furthermore,

there exists ̂︀Ω𝑡 ∈ 𝒞𝐴(Ω𝑡) ⊂ ℬ𝑐(Ω𝑡), with 𝑃 (̂︀Ω𝑡) = 1 for all 𝑃 ∈ 𝒬𝑡 and satisfaying
𝐽𝑟𝑡 (𝜔

𝑡) <∞ for all 𝜔𝑡 ∈ ̂︀Ω𝑡.

Proof. We proceed by induction on 𝑡. Fix some 𝑟 ∈ Q, 𝑟 > 0. For 𝑡 = 𝑇 , 𝐽𝑟𝑇 (𝜔𝑇 ) =

𝑈−(𝜔𝑇 , 𝑟) is ℬ(Ω𝑇 )-measurable by Definition 4.4.1 and 𝐽𝑟𝑇 ∈ 𝒰𝑆𝐴(Ω𝑇 ) (see (4.1)). It
is clear that 𝐽𝑟𝑇 (𝜔𝑇 ) ≥ 0 for all 𝜔𝑇 ∈ Ω𝑇 and we have that sup𝑃∈𝒬𝑇 𝐸𝑃 (𝐽

𝑟
𝑇 ) < ∞ by

Assumption 4.4.2. We set now ̂︀Ω𝑇 := Ω𝑇
𝐷𝑜𝑚 (see (4.40)). Using Proposition 4.6.1,

we have that ̂︀Ω𝑇 ∈ ℬ(Ω𝑇 ) ⊂ 𝒞𝐴(Ω𝑇 ) ⊂ ℬ𝑐(Ω𝑇 ) (see (4.1)) and 𝑃
(︁̂︀Ω𝑇

)︁
= 1 for all

𝑃 ∈ 𝒬𝑇 . Moreover it is clear that 𝐽𝑟𝑇 < ∞ on ̂︀Ω𝑇 (see (4.40)). Assume now that
for some 𝑡 ≤ 𝑇 − 1, 𝐽𝑟𝑡+1 ∈ 𝒰𝑆𝐴(Ω𝑡+1), 𝐽𝑟𝑡+1(𝜔

𝑡+1) ≥ 0 for all 𝜔𝑡+1 ∈ Ω𝑡+1 and that
sup𝑃∈𝒬𝑡+1 𝐸𝑃 (𝐽

𝑟
𝑡+1) <∞.

We apply [13, Proposition 7.48 p180] 2 with𝑋 = Ω𝑡×P(Ω𝑡+1), 𝑌 = Ω𝑡+1, 𝑓(𝜔𝑡, 𝑃, 𝜔𝑡+1) =

𝐽𝑟𝑡+1(𝜔
𝑡, 𝜔𝑡+1) and 𝑞(𝑑𝜔𝑡+1|𝜔𝑡, 𝑃 ) = 𝑃 (𝑑𝜔𝑡+1). First as 𝐽𝑟𝑡+1 ∈ 𝒰𝑆𝐴(Ω𝑡+1), it is clear

that 𝑓 ∈ 𝒰𝑆𝐴(Ω𝑡 × P(Ω𝑡+1) × Ω𝑡+1), see [13, Proposition 7.38 p165]. Furthermore
(𝜔𝑡, 𝑃 ) ∈ Ω𝑡 × P(Ω𝑡+1) → 𝑃 (𝑑𝜔𝑡+1) ∈ P(Ω𝑡+1) is a ℬ(Ω𝑡) ⊗ ℬ(P(Ω𝑡+1))-measurable
stochastic kernel (see [13, Definition 7.12 p134], it is even continuous). So [13,
Proposition 7.48 p180] applies and we get that

𝑗𝑟𝑡 : (𝜔
𝑡, 𝑃 ) ∈ Ω𝑡 ×P(Ω𝑡+1) →

∫︁
Ω𝑡+1

𝐽𝑟𝑡+1(𝜔
𝑡, 𝜔𝑡+1)𝑃 (𝑑𝜔𝑡+1) ∈ 𝒰𝑆𝐴(Ω𝑡 ×P(Ω𝑡+1)).

As Assumption 4.2.1 holds true (ProjΩ𝑡 (Graph(𝒬𝑡+1)) = Ω𝑡 since 𝒬𝑡+1 is a non-
empty random set), we can apply [13, Proposition 7.47 p179] and we get that

𝜔𝑡 ∈ Ω𝑡 → sup
𝑃∈𝒬𝑡+1(𝜔𝑡)

𝑗𝑟𝑡 (𝜔
𝑡, 𝑃 ) = 𝐽𝑟𝑡 (𝜔

𝑡) ∈ 𝒰𝑆𝐴(Ω𝑡).

As 𝐽𝑟𝑡+1(𝜔
𝑡+1) ≥ 0 for all 𝜔𝑡+1 ∈ Ω𝑡+1, it is clear that 𝐽𝑟𝑡 (𝜔𝑡) ≥ 0 for all 𝜔𝑡 ∈ Ω𝑡.

We prove now that sup𝑃∈𝒬𝑡 𝐸𝑃𝐽
𝑟
𝑡 < ∞ and that there exists Ω𝑡

𝑟 ∈ 𝒞𝐴(Ω𝑡) with
𝑃 (Ω𝑡

𝑟) = 1 for all 𝑃 ∈ 𝒬𝑡 and such that 𝐽𝑟𝑡 < ∞ on Ω𝑡
𝑟. We set Ω𝑡

𝑟 := {𝜔𝑡 ∈
Ω𝑡, 𝐽𝑟𝑡 (𝜔

𝑡) < ∞}. Using [13, Corollary 7.35.2 p160], we get that Ω𝑡
𝑟 =

⋃︀
𝑛≥1{𝜔𝑡 ∈

Ω𝑡, 𝐽𝑟𝑡 (𝜔
𝑡) ≤ 𝑛} ∈ 𝒞𝐴(Ω𝑡) ⊂ ℬ𝑐(Ω𝑡).

Fix some 𝜀 > 0. From [13, Proposition 7.50 p184] (recall Assumption 4.2.1), there
exists some analytically-measurable 𝑝𝜀 : 𝜔𝑡 ∈ Ω𝑡 → P(Ω𝑡+1), such that 𝑝𝜀(·, 𝜔𝑡) ∈

2As we will often use similar arguments in the rest of the chapter, we provide some details at
this stage.
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𝒬𝑡+1(𝜔
𝑡) for all 𝜔𝑡 ∈ Ω𝑡 and

𝑗𝑟𝑡 (𝜔
𝑡, 𝑝𝜀(·, 𝜔𝑡)) =

∫︁
Ω𝑡+1

𝐽𝑟𝑡+1(𝜔
𝑡, 𝜔𝑡+1)𝑝𝜀(𝑑𝜔𝑡+1, 𝜔

𝑡) ≥

{︃
𝐽𝑟𝑡 (𝜔

𝑡)− 𝜀, if 𝐽𝑟𝑡 (𝜔𝑡) <∞
1
𝜀
, otherwise.

(4.54)

We prove now that 𝑃 (Ω𝑡
𝑟) = 1 for all 𝑃 ∈ 𝒬𝑡. Assume this is not the case and

that there exists some 𝑃 * ∈ 𝒬𝑡 such that 𝑃 *(Ω𝑡
𝑟) < 1. Set 𝑃 *

𝜀 := 𝑃 * ⊗ 𝑝𝜀. As 𝑝𝜀 is
analytically-measurable, 𝑝𝜀 ∈ 𝒮𝐾𝑡+1. Moreover, 𝑝𝜀(·, 𝜔𝑡) ∈ 𝒬𝑡+1(𝜔

𝑡) for all 𝜔𝑡 ∈ Ω𝑡

and we get that 𝑃 *
𝜀 ∈ 𝒬𝑡+1 (see (4.5)). Then we have that

sup
𝑃∈𝒬𝑡+1

𝐸𝑃𝐽
𝑟
𝑡+1 ≥ 𝐸𝑃 *

𝜀
𝐽𝑟𝑡+1 =

∫︁
Ω𝑡

∫︁
Ω𝑡+1

𝐽𝑟𝑡+1(𝜔
𝑡, 𝜔𝑡+1)𝑝𝜀(𝑑𝜔𝑡+1, 𝜔

𝑡)𝑃 *(𝑑𝜔𝑡)

≥ 1

𝜀

∫︁
Ω𝑡

1{𝐽𝑟
𝑡 (·)=∞}(𝜔

𝑡)𝑃 *(𝑑𝜔𝑡) +

∫︁
Ω𝑡

1{𝐽𝑟
𝑡 (·)<∞}(𝜔

𝑡)
(︀
𝐽𝑟𝑡 (𝜔

𝑡)− 𝜀
)︀
𝑃 *(𝑑𝜔𝑡)

≥ 1

𝜀
(1− 𝑃 *(Ω𝑡

𝑟))− 𝜀𝑃 *(Ω𝑡
𝑟).

As the previous inequality holds true for all 𝜀 > 0, we obtain sup𝑃∈𝒬𝑡+1 𝐸𝑃 (𝐽
𝑟
𝑡+1) =

+∞ letting 𝜀 go to 0, a contradiction. Thus 𝑃 (Ω𝑡
𝑟) = 1 for all 𝑃 ∈ 𝒬𝑡.

Now, for all 𝑃 ∈ 𝒬𝑡, we set 𝑃𝜀 = 𝑃 ⊗ 𝑝𝜀 ∈ 𝒬𝑡+1 (see (4.5)). Then, using (4.54) we get
that

𝐸𝑃𝐽
𝑟
𝑡 − 𝜀 = 𝐸𝑃1Ω𝑡

𝑟
𝐽 𝑡𝑡 − 𝜀 ≤ 𝐸𝑃𝜀𝐽

𝑟
𝑡+1 ≤ sup

𝑃∈𝒬𝑡+1

𝐸𝑃 (𝐽
𝑟
𝑡+1).

Again, as this is true for all 𝜀 > 0 and all 𝑃 ∈ 𝒬𝑡 we obtain that sup𝑃∈𝒬𝑡 𝐸𝑃 (𝐽
𝑟
𝑡 ) ≤

sup𝑃∈𝒬𝑡+1 𝐸𝑃 (𝐽
𝑟
𝑡+1) < ∞. Finally we set ̂︀Ω𝑡 =

⋂︀
𝑟∈Q, 𝑟>0Ω

𝑡
𝑟. It is clear that ̂︀Ω𝑡 ∈

𝒞𝐴(Ω𝑡) ⊂ ℬ𝑐(Ω𝑡), that 𝑃 (̂︀Ω𝑡) = 1 for all 𝑃 ∈ 𝒬𝑡 and that 𝐽𝑟𝑡 < ∞ on ̂︀Ω𝑡 for all
𝑟 ∈ Q, 𝑟 > 0. 2

Let 1 ≤ 𝑡 ≤ 𝑇 be fixed. We introduce the following notation: for any ℬ𝑐(Ω𝑡−1)-
measurable random variable 𝐺 and any 𝑃 ∈ 𝒬𝑡, 𝜑𝑡(𝐺,𝑃 ) is the set of all ℬ𝑐(Ω𝑡−1)-
measurable random variable 𝜉 (one-step strategy), such that 𝐺(·) + 𝜉Δ𝑆𝑡(·) ≥ 0
𝑃 -a.s. Propositions 4.6.8 to 4.6.12 solve the dynamic programming procedure and
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hold true under the following set of conditions.

∀𝜔𝑡 ∈ Ω𝑡, 𝑈𝑡
(︀
𝜔𝑡, ·

)︀
: R → R ∪ {±∞} is non-decreasing, usc and concave on R, (4.55)

∀𝜔𝑡 ∈ Ω𝑡, 𝐼𝑡
(︀
𝜔𝑡, ·

)︀
: R → R ∪ {+∞} is non-decreasing and non-negative on R, (4.56)

𝑈𝑡 ∈ ℒ𝑆𝐴(Ω𝑡 × R), (4.57)
𝐼𝑡 ∈ 𝒰𝑆𝐴(Ω𝑡 × R), (4.58)
𝑈𝑡
(︀
𝜔𝑡, 𝑥

)︀
≤ 𝐼𝑡(𝜔

𝑡, 𝑥+ 1) for all (𝜔𝑡, 𝑥) ∈ Ω𝑡 × R, (4.59)

sup
𝑃∈𝒬𝑡

sup
𝜉∈𝜑𝑡(𝐺,𝑃 )

∫︁
Ω𝑡

𝐼𝑡(𝜔
𝑡, 𝐺(𝜔𝑡−1) + 𝜉(𝜔𝑡−1)Δ𝑆𝑡(𝜔

𝑡))𝑃 (𝑑𝜔𝑡) <∞, (4.60)

for any 𝐺 := 𝑥+
∑︀𝑡−1

𝑠=1 𝜑𝑠Δ𝑆𝑠, where 𝑥 ≥ 0, (𝜑𝑠)1≤𝑠≤𝑡−1 is
(︀
ℬ𝑐(Ω𝑠−1)

)︀
1≤𝑠≤𝑡−1

-adapted,

𝑈𝑡(𝜔
𝑡, 𝑟) ≥ −𝐽𝑟𝑡 (𝜔𝑡) for all 𝜔𝑡 ∈ Ω𝑡, all 𝑟 ∈ Q, 𝑟 > 0. (4.61)

Proposition 4.6.8 Let 0 ≤ 𝑡 ≤ 𝑇 − 1 be fixed. Assume that the (NA) condition
and Assumptions 4.2.1, 4.2.2, 4.2.4 hold true and that (4.55), (4.56), (4.57), (4.58),
(4.59), (4.60) and (4.61) hold true at stage 𝑡 + 1. Then there exists ̃︀Ω𝑡 ∈ ℬ𝑐(Ω𝑡),
such that 𝑃 (̃︀Ω𝑡) = 1 for all 𝑃 ∈ 𝒬𝑡 and such that for all 𝜔𝑡 ∈ ̃︀Ω𝑡 the function
(𝜔𝑡+1, 𝑥) → 𝑈𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥) satisfies the assumptions of Theorem 4.5.23 with Ω =

Ω𝑡+1, 𝒢 = ℬ𝑐(Ω𝑡+1), 𝒬 = 𝒬𝑡+1(𝜔
𝑡), 𝑌 (·) = Δ𝑆𝑡+1(𝜔

𝑡, ·), 𝑉 (·, ·) = 𝑈𝑡+1(𝜔
𝑡, ·, ·) where 𝑉 is

defined on Ω𝑡+1 × R.

Remark 4.6.9 Note that under the assumptions of Proposition 4.6.8 (see (4.39),
(4.47) and (4.48)), for all 𝜔𝑡 ∈ ̃︀Ω𝑡 and 𝑥 ≥ 0 we have that

𝑈𝑡(𝜔
𝑡, 𝑥) = 𝒰𝑡(𝜔

𝑡, 𝑥) = sup
ℎ∈ℋ𝑡+1

𝑥 (𝜔𝑡)

inf
𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1).

(4.62)

Remark 4.6.10 Note that Lemmata 4.5.20, 4.5.21 hold true under a weaker set of
assumptions than Theorem 4.5.23. Therefore we can replace Theorem 4.5.23 by
either Lemmata 4.5.20 or 4.5.21 in the above proposition.

Proof. To prove the proposition we will review one by one the assumptions needed
to apply Theorem 4.5.23 in the context Ω = Ω𝑡+1, 𝒢 = ℬ𝑐(Ω𝑡+1), 𝒬 = 𝒬𝑡+1(𝜔

𝑡),
𝑌 (·) = Δ𝑆𝑡+1(𝜔

𝑡, ·), 𝑉 (·, ·) = 𝑈𝑡+1(𝜔
𝑡, ·, ·) where 𝑉 is defined on Ω𝑡+1 × R. In the se-

quel we shortly call this the context 𝑡+ 1.
First from Assumption 4.2.4 for 𝜔𝑡 ∈ Ω𝑡 fixed we have 𝑌 (·) = Δ𝑆𝑡+1(𝜔

𝑡, ·) ≥ −𝑠 −
𝑆𝑡(𝜔

𝑡). So setting 𝑏 := max(1 + 𝑠 + 𝑆𝑖𝑡(𝜔
𝑡), 𝑖 ∈ {1, . . . , 𝑑}) we have that 𝑌𝑖(·) =

Δ𝑆𝑖𝑡+1(𝜔
𝑡, ·) ≥ −𝑏 and 0 < 𝑏 <∞: Assumption 4.5.1 holds true.

From (4.55) at 𝑡+1 for all 𝜔𝑡 ∈ Ω𝑡 and 𝜔𝑡+1 ∈ Ω𝑡+1, 𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, ·) is non-decreasing,

concave and usc on R. From (4.57) at 𝑡+1 and (4.1), 𝑈𝑡+1 is ℬ𝑐(Ω𝑡+1×R)-measurable.
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Fix some 𝑥 ∈ R and 𝜔𝑡 ∈ Ω𝑡, then 𝜔𝑡+1 ∈ Ω𝑡+1 → 𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥) is ℬ𝑐(Ω𝑡+1)-

measurable, see [13, Lemma 7.29 p174]. Thus Assumption 4.5.8 is satisfied in
the context 𝑡+ 1 (recall that 𝑈𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥) = −∞ for all 𝑥 < 0).
We now prove the assumptions that are verified for 𝜔𝑡 in some well chosen 𝒬𝑡-full
measure set. First from Proposition 4.3.4, for all 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴, Assumptions 4.5.2 and
4.5.3 hold true in the context 𝑡+ 1.
We handle now Assumption 4.5.9. Fix 𝜔𝑡 ∈ ̂︀Ω𝑡 and some 𝑟 ∈ Q, 𝑟 > 0 (̂︀Ω𝑡 has been
defined in Proposition 4.6.7). Since 𝐽𝑟𝑡+1(𝜔

𝑡+1) ≥ 0 for all 𝜔𝑡+1 ∈ Ω𝑡+1 (see Propos-
ition 4.6.7), using (4.61) at 𝑡 + 1 we get for all 𝜔𝑡+1 ∈ Ω𝑡+1 that 𝑈−

𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑟) ≤

𝐽𝑟𝑡+1(𝜔
𝑡, 𝜔𝑡+1). Thus since 𝜔𝑡 ∈ ̂︀Ω𝑡 (see Proposition 4.6.7)

sup
𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︁
Ω𝑡+1

𝑈−
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑟)𝑃 (𝑑𝜔
𝑡) ≤ sup

𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︁
Ω𝑡+1

𝐽𝑟𝑡+1(𝜔
𝑡, 𝜔𝑡+1)𝑃 (𝑑𝜔

𝑡)

= 𝐽𝑟𝑡 (𝜔
𝑡) <∞,

and Assumption 4.5.9 in context 𝑡+ 1 is verified for all 𝜔𝑡 ∈ ̂︀Ω𝑡.
We finish with Assumption 4.5.14 in context 𝑡+1 whose proof is more involved. We
want to show that for 𝜔𝑡 in some 𝒬𝑡-full measure set to be determined and for all
ℎ ∈ ℋ𝑡+1

1 (𝜔𝑡) and 𝑃 ∈ 𝒬𝑡+1(𝜔
𝑡) we have that∫︁

Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 1 + ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1) <∞. (4.63)

We introduce

𝑖𝑡 : (𝜔
𝑡, ℎ, 𝑃 ) ∈ Ω𝑡 × R𝑑 ×P(Ω𝑡+1) →

∫︁
Ω𝑡+1

𝐼𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 2 + ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1)

𝐼1(𝜔
𝑡) :=

{︀
(ℎ, 𝑃 ) ∈ R𝑑 ×𝒬𝑡+1(𝜔

𝑡), 𝑃
(︀
1 + ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0
)︀
= 1, 𝑖𝑡(𝜔

𝑡, ℎ, 𝑃 ) = ∞
}︀
.

(4.64)

Arguing by contradiction and using measurable selection arguments we will prove
that 𝐼1(𝜔𝑡) = ∅ for 𝒬𝑡-almost all 𝜔𝑡 ∈ Ω𝑡. Then from (4.56) and (4.59) at 𝑡 + 1 we
have that{︃

(ℎ, 𝑃 ) ∈ ℋ𝑡+1
1 (𝜔𝑡)×𝒬𝑡+1(𝜔

𝑡),

∫︁
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 1 + ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1) = ∞

}︃
(4.65)

⊂ 𝐼1(𝜔
𝑡), for all 𝜔𝑡 ∈ Ω𝑡.

So (4.63) holds true if 𝜔𝑡 ∈ {𝐼1 = ∅}.
We first prove that Graph(𝐼1) ∈ 𝒜(Ω𝑡 × R𝑑 ×P(Ω𝑡+1)). From (4.58) at 𝑡+ 1 and [13,
Lemma 7.30 (3) p178], (𝜔𝑡, ℎ, 𝜔𝑡+1) → 𝐼𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 2 + ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1)) ∈ 𝒰𝑆𝐴(Ω𝑡 ×
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R𝑑 × Ω𝑡+1) (recall that Δ𝑆𝑡+1 is ℬ(Ω𝑡+1)-measurable, see Assumption 4.2.2). Then
using [13, Proposition 7.48 p180] (which can be used with similar arguments as in
the proof of Proposition 4.6.7), we get that 𝑖𝑡 ∈ 𝒰𝑆𝐴(Ω𝑡 × R𝑑 ×P(Ω𝑡+1)). It follows
that, see [13, Corollary 7.35.2 p160],

𝑖−1
𝑡 ({∞}) =

⋂︁
𝑛≥1

{︀
(𝜔𝑡, ℎ, 𝑃 ) ∈ Ω𝑡 × R𝑑 ×P(Ω𝑡+1), 𝑖𝑡(𝜔

𝑡, ℎ, 𝑃 ) > 𝑛
}︀

∈ 𝒜(Ω𝑡 × R𝑑 ×P(Ω𝑡+1)).

Now using Assumption 4.2.1, [13, Proposition 7.38 p165] together with (4.92) in
Lemma 4.8.5 and (4.1) we get that

{(𝜔𝑡, ℎ, 𝑃 ) ∈ Ω𝑡 × R𝑑 ×P(Ω𝑡+1), 𝑃 ∈ 𝒬𝑡+1(𝜔
𝑡), 𝑃

(︀
1 + ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 0
)︀
= 1}

∈ 𝒜(Ω𝑡 × R𝑑 ×P(Ω𝑡+1))

and Graph(𝐼1) ∈ 𝒜(Ω𝑡 × R𝑑 ×P(Ω𝑡+1)) follows immediately.
Applying [13, Proposition 7.39 p165] and the Jankov-von Neumann Projection The-
orem, see [13, Proposition 7.49 p182], we obtain that

𝑃𝑟𝑜𝑗Ω𝑡 (Graph(𝐼1)) = {𝐼1 ̸= ∅} ∈ 𝒜(Ω𝑡)

and that there exists some analytically-measurable and therefore ℬ𝑐(Ω𝑡)-measurable
function 𝜔𝑡 ∈ {𝐼1 ̸= ∅} → (ℎ*(𝜔𝑡), 𝑝*(·, 𝜔𝑡)) ∈ R𝑑 × P(Ω𝑡+1) such that for all 𝜔𝑡 ∈
{𝐼1 ̸= ∅}, (ℎ*(𝜔𝑡), 𝑝*(·, 𝜔𝑡)) ∈ 𝐼1(𝜔

𝑡). We extend ℎ* and 𝑝* on all Ω𝑡 by setting for all
𝜔𝑡 ∈ Ω𝑡 ∖ {𝐼1 ̸= ∅}, ℎ*(𝜔𝑡) = 0 and 𝑝*(·, 𝜔𝑡) = ̂︀𝑝(·, 𝜔𝑡) where ̂︀𝑝(·, 𝜔𝑡) is a given ℬ𝑐(Ω𝑡)-
measurable selector of Graph(𝒬𝑡+1). As {𝐼1 ̸= ∅} ∈ ℬ𝑐(Ω𝑡) (see (4.1)) it is clear that
ℎ* and 𝑝* remain ℬ𝑐(Ω𝑡)-measurable.
We prove now that 𝑃 ({𝐼1 ̸= ∅}) = 0 for all 𝑃 ∈ 𝒬𝑡. We proceed by contradiction
and assume that there exists some ̃︀𝑃 ∈ 𝒬𝑡 such that ̃︀𝑃 ({𝐼1 ̸= ∅}) > 0. We set̃︀𝑃 * = ̃︀𝑃 ⊗ 𝑝*. Since 𝑝* ∈ 𝑆𝐾𝑡+1 and 𝑝*(·, 𝜔𝑡) ∈ 𝒬𝑡+1(𝜔

𝑡) for all 𝜔𝑡 ∈ Ω𝑡, it is clear that̃︀𝑃 * ∈ 𝒬𝑡+1 (see (4.5)) and that ̃︀𝑃 * (2 + ℎ*(·)Δ𝑆𝑡+1(·) ≥ 0) = 1. For all 𝜔𝑡 ∈ {𝐼1 ̸= ∅},
we have that∫︁

Ω𝑡+1

𝐼𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 2 + ℎ*(𝜔𝑡)Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑝
*(𝑑𝜔𝑡+1, 𝜔

𝑡) = 𝑖𝑡(𝜔
𝑡, ℎ*(𝜔𝑡), 𝑝*(·, 𝜔𝑡)) = ∞.

Finally∫︁
Ω𝑡+1

𝐼𝑡+1

(︀
𝜔𝑡+1, 2 + ℎ*(𝜔𝑡)Δ𝑆𝑡+1(𝜔

𝑡+1)
)︀ ̃︀𝑃 *(𝑑𝜔𝑡+1) ≥

∫︁
{𝐼1 ̸=∅}

(+∞) ̃︀𝑃 (𝑑𝜔𝑡) = +∞

a contradiction with (4.60) at 𝑡+ 1. Therefore we must have 𝑃 ({𝐼1 ̸= ∅}) = 0 for all
𝑃 ∈ 𝒬𝑡 as claimed. Thus, recalling (4.65), for 𝜔𝑡 ∈ {𝐼1 = ∅}, Assumption 4.5.14 in
the context 𝑡 + 1 is true. We can now define ̃︀Ω𝑡 := {𝐼1 = ∅} ∩ ̂︀Ω𝑡 ∩ Ω𝑡

𝑁𝐴 ⊂ ̂︀Ω𝑡. It is
clear, recalling Propositions 4.3.4 and 4.6.7, that ̃︀Ω𝑡 ∈ ℬ𝑐(Ω𝑡) and that 𝑃 (̃︀Ω𝑡) = 1 for
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all 𝑃 ∈ 𝒬𝑡 and the proof is complete. 2

The next proposition enables us to initialize the induction proof that will be carried
on in the proof of the main theorem.

Proposition 4.6.11 Assume that the (NA) condition, Assumptions 4.4.2 and 4.4.12
hold true. Then (4.55), (4.56), (4.57), (4.58), (4.59), (4.60) and (4.61) hold true for
𝑡 = 𝑇 .

Proof. Using Definition 4.4.1, as 𝑈𝑇 = 𝑈 (see (4.46)) and 𝐼𝑇 = 𝑈+ (see (4.49)), (4.55),
(4.56), (4.59) and (4.61) (recall (4.52)) for 𝑡 = 𝑇 are true. As (4.55) is true at 𝑇 , for all
𝜔𝑇 ∈ Ω𝑇 , 𝑈(𝜔𝑇 , ·) is non-decreasing and usc, hence is right-continuous (see Lemma
2.8.12 in Chapter 2). From Definition 4.4.1 again, 𝑈(·, 𝑥) is ℬ(Ω𝑇 )-measurable
for all 𝑥 ∈ R and Lemma 2.8.16 in Chapter 2implies that 𝑈 is ℬ(Ω𝑇 ) ⊗ ℬ(R𝑑)-
measurable and thus (4.57) and (4.58) hold true for 𝑡 = 𝑇 (recall (4.1)). It remains to
prove that (4.60) is true for 𝑡 = 𝑇 . Let 𝐺 := 𝑥+

∑︀𝑇−1
𝑡=1 𝜑𝑡Δ𝑆𝑡 where 𝑥 ≥ 0, (𝜑𝑠)1≤𝑠≤𝑇−1

is (ℬ𝑐(Ω𝑠−1))1≤𝑠≤𝑇−1-adapted. Fix some 𝑃 ∈ 𝒬𝑇 and 𝜉 ∈ 𝜑𝑇 (𝐺,𝑃 ). Let (𝜑𝜉𝑖 )1≤𝑖≤𝑇 ∈ Φ

be defined by 𝜑𝜉𝑇 = 𝜉 and 𝜑𝜉𝑠 = 𝜑𝑠 for 1 ≤ 𝑠 ≤ 𝑇 − 1 then 𝑉 𝑥,𝜑𝜉

𝑇 = 𝐺 + 𝜉Δ𝑆𝑇 and 𝜑𝜉 ∈
Φ(𝑥, 𝑃 ). We have

∫︀
Ω𝑇 𝐼𝑇

(︀
𝜔𝑇 , 𝐺(𝜔𝑇−1) + 𝜉(𝜔𝑇−1)Δ𝑆𝑇 (𝜔

𝑇 )
)︀
𝑃 (𝑑𝜔𝑇 ) = 𝐸𝑃𝑈

+(·, 𝑉 𝑥,𝜑𝜉

𝑇 (·))
and (4.60) follows from Proposition 4.6.2. 2

The next proposition proves the induction step.

Proposition 4.6.12 Let 0 ≤ 𝑡 ≤ 𝑇 − 1 be fixed. Assume that the (NA) condition
holds true as well as Assumptions 4.2.1, 4.2.2, 4.2.4 and (4.55), (4.56), (4.57), (4.58),
(4.59), (4.60) and (4.61) at 𝑡+1. Then (4.55), (4.56), (4.57), (4.58), (4.59), (4.60) and
(4.61) are true for 𝑡.
Moreover for all 𝑋 = 𝑥 +

∑︀𝑡
𝑠=1 𝜑𝑠Δ𝑆𝑠, where 𝑥 ≥ 0, (𝜑𝑠)1≤𝑠≤𝑡 is (ℬ𝑐(Ω𝑠−1))1≤𝑠≤𝑡-

adapted, such that 𝑃 (𝑋 ≥ 0) = 1 for all 𝑃 ∈ 𝒬𝑡, there exists some Ω𝑡
𝑋 ∈ ℬ𝑐(Ω𝑡) such

that 𝑃 (Ω𝑡
𝑋) = 1 for all 𝑃 ∈ 𝒬𝑡, Ω𝑡

𝑋 ⊂ ̃︀Ω𝑡 (see Proposition 4.6.8 for the definition
of ̃︀Ω𝑡) and some ℬ𝑐(Ω𝑡)-measurable random variable ̂︀ℎ𝑋𝑡+1 such that for all 𝜔𝑡 ∈ Ω𝑡

𝑋 ,̂︀ℎ𝑋𝑡+1(𝜔
𝑡) ∈ 𝒟𝑡+1

𝑋(𝜔𝑡)(𝜔
𝑡) and

𝑈𝑡(𝜔
𝑡, 𝑋(𝜔𝑡)) = inf

𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑋(𝜔𝑡) + ̂︀ℎ𝑋𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1).

(4.66)

Proof. First we prove that (4.55) is true at 𝑡. We fix some 𝜔𝑡 ∈ Ω𝑡. From (4.55) at
𝑡 + 1, the function 𝑈𝑡+1(𝜔

𝑡, 𝜔𝑡+1, ·) is usc, concave and non-decreasing on R for all
𝜔𝑡+1 ∈ Ω𝑡+1. From (4.47) and (4.48), 𝑈𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥) = −∞ for all 𝑥 < 0 and 𝜔𝑡+1 ∈
Ω𝑡+1. Then using (4.57) at 𝑡 + 1, Lemma 4.8.4 and (4.1), we find that 𝑈𝑡+1(𝜔

𝑡, ·, 𝑥)
is ℬ𝑐(Ω𝑡+1)-measurable for all 𝑥 ∈ R. Hence, Assumption 4.5.8 of Lemma 4.5.17
holds true for Ω = Ω𝑡+1, 𝒢 = ℬ𝑐(Ω𝑡+1), 𝒬 = 𝒬𝑡+1(𝜔

𝑡), 𝑌 (·) = Δ𝑆𝑡+1(𝜔
𝑡, ·), 𝑉 (·, ·) =
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𝑈𝑡+1(𝜔
𝑡, ·, ·) and we obtain that 𝑥 ∈ R → 𝑈𝑡(𝜔

𝑡, 𝑥) = Cl(𝒰𝑡)(𝜔𝑡, 𝑥) (see (4.47) and
(4.48)) is usc, concave and non-decreasing. As this is true for all 𝜔𝑡 ∈ Ω𝑡, (4.55)
at 𝑡 is proved. Note that we also obtain that 𝑥 ∈ R → 𝒰𝑡(𝜔𝑡, 𝑥) is non-decreasing
for all 𝜔𝑡 ∈ Ω𝑡. Now we prove that (4.57) is true for 𝑈𝑡. Since integrals might
not always be well defined we need to be a bit cautious. We introduce first 𝑢𝑡 :

Ω𝑡 × R𝑑 × [0,∞)×P(Ω𝑡+1) → R ∪ {±∞}

𝑢𝑡(𝜔
𝑡, ℎ, 𝑥, 𝑃 ) =

∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1). (4.67)

Recall that we set 𝑢𝑡(𝜔𝑡, ℎ, 𝑥, 𝑃 ) = +∞ if
∫︀
Ω𝑡+1

𝑈+
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥+ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1) =

∞ and
∫︀
Ω𝑡+1

𝑈−
𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥 + ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1) = ∞. We prove that 𝑢𝑡 ∈

ℒ𝑆𝐴(Ω𝑡×R𝑑×R×P(Ω𝑡+1)). As Δ𝑆𝑡+1 is ℬ(Ω𝑡+1)-measurable (see Assumption 4.2.2)
and 𝑈𝑡+1 ∈ ℒ𝑆𝐴(Ω𝑡 × Ω𝑡+1 × R𝑑) (see (4.57) at 𝑡 + 1), applying [13, Lemma 7.30 (3)
p177], we obtain that

(𝜔𝑡, 𝜔𝑡+1, ℎ, 𝑥) ∈ Ω𝑡 × Ω𝑡+1 × R𝑑 × R → 𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))

∈ ℒ𝑆𝐴(Ω𝑡 × Ω𝑡+1 × R𝑑 × R).

Applying [13, Proposition 7.48 p180], we get that 𝑢𝑡 ∈ ℒ𝑆𝐴(Ω𝑡×R𝑑×R×P(Ω𝑡+1))
3

4. We define ̂︀𝑢𝑡 : (𝜔𝑡, ℎ, 𝑥, 𝑃 ) ∈ Ω𝑡 × R𝑑 × [0,+∞)×P(Ω𝑡+1) → R ∪ {±∞} by

̂︀𝑢𝑡(𝜔𝑡, ℎ, 𝑥, 𝑃 ) = 1ℋ𝑡+1
𝑥 (𝜔𝑡)(ℎ)𝑢𝑡(𝜔

𝑡, ℎ, 𝑥, 𝑃 ) + (−∞)1R𝑑∖ℋ𝑡+1
𝑥 (𝜔𝑡)(ℎ). (4.68)

We prove that ̂︀𝑢𝑡 ∈ ℒ𝑆𝐴(Ω𝑡 × R𝑑 × R×P(Ω𝑡+1)). Fix some 𝑐 ∈ R and set

̂︀𝐶 := {(𝜔𝑡, ℎ, 𝑥, 𝑃 ) ∈ Ω𝑡 × R𝑑 × R×P(Ω𝑡+1), ̂︀𝑢𝑡(𝜔𝑡, ℎ, 𝑥, 𝑃 ) < 𝑐},
𝐶 :=

{︀
(𝜔𝑡, ℎ, 𝑥, 𝑃 ) ∈ Ω𝑡 × R𝑑 × R×P(Ω𝑡+1), 𝑢𝑡(𝜔

𝑡, ℎ, 𝑥, 𝑃 ) < 𝑐}
}︀
.

𝐴 :=
{︀
(𝜔𝑡, ℎ, 𝑥) ∈ Ω𝑡 × R𝑑 × R, ℎ ∈ ℋ𝑡+1

𝑥 (𝜔𝑡)
}︀
×P(Ω𝑡+1),

𝐴𝑐 :=
{︀
(𝜔𝑡, ℎ, 𝑥) ∈ Ω𝑡 × R𝑑 × R, ℎ /∈ ℋ𝑡+1

𝑥 (𝜔𝑡)
}︀
×P(Ω𝑡+1).

Then we have that ̂︀𝐶 = (𝐶 ∩ 𝐴) ∪𝐴𝑐 = 𝐶 ∪𝐴𝑐. As 𝑢𝑡 ∈ ℒ𝑆𝐴(Ω𝑡 ×R𝑑 ×R×P(Ω𝑡+1)),
we get that 𝐶 ∈ 𝒜(Ω𝑡 × R𝑑 × R×P(Ω𝑡+1)). Using Lemma 4.6.5 we get that{︁
(𝜔𝑡, ℎ, 𝑥) ∈ Ω𝑡 × R𝑑 × R, ℎ /∈ ℋ𝑡+1

𝑥 (𝜔𝑡)
}︁
= {(𝜔𝑡, ℎ, 𝑥) ∈ Ω𝑡 × R𝑑 × R, (𝜔𝑡, 𝑥, ℎ) /∈ Graph(ℋ𝑡+1)}

∈ 𝒜(Ω𝑡 × R𝑑 × R),

and therefore 𝐴𝑐 ∈ 𝒜(Ω𝑡 × R𝑑 × R × P(Ω𝑡+1)) (see [13, Proposition 7.38 p165]). It
follows that ̂︀𝐶 ∈ 𝒜(Ω𝑡 × R𝑑 × R × P(Ω𝑡+1)) and ̂︀𝑢𝑡 ∈ ℒ𝑆𝐴(Ω𝑡 × R𝑑 × R × P(Ω𝑡+1))

3Note that [13, Proposition 7.48 p180] relies on [13, Lemma 7.30 (4) p177] applied for lower-
semianalytic functions where the convention +∞−∞ = +∞ needs to be used.

4Note as well that it is clear that Ω𝑡 × R𝑑 × [0,∞)×P(Ω𝑡+1) ∈ 𝒜(Ω𝑡 × R𝑑 × R×P(Ω𝑡+1)).
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as claimed. Since Graph(𝒬𝑡+1) ∈ 𝒜(Ω𝑡 × P(Ω𝑡+1)) (see Assumption 4.2.1), we can
apply [13, Proposition 7.47 p179] and we get that

̃︀𝑢𝑡 : (𝜔𝑡, ℎ, 𝑥) ∈ Ω𝑡 × R𝑑 × [0,∞) → inf
𝑃∈𝒬𝑡+1(𝜔𝑡)

̂︀𝑢𝑡(𝜔𝑡, ℎ, 𝑥, 𝑃 ) ∈ ℒ𝑆𝐴(Ω𝑡 × R𝑑 × R).

(4.69)

Then from [13, Lemma 7.30 (2) p178], we get that

̃︀𝒰𝑡 : (𝜔𝑡, 𝑥) ∈ Ω𝑡 × [0,∞) → sup
ℎ∈Q𝑑

̃︀𝑢𝑡(𝜔𝑡, ℎ, 𝑥) ∈ ℒ𝑆𝐴(Ω𝑡 × R). (4.70)

Let 𝑥 ≥ 0 and 𝜔𝑡 ∈ Ω𝑡, recalling (4.47), (4.68), (4.69) and (4.70) we have that

̃︀𝒰𝑡(𝜔𝑡, 𝑥) = sup
ℎ∈Q𝑑

inf
𝑃∈𝒬𝑡+1(𝜔𝑡)

(︁
1ℋ𝑡+1

𝑥 (𝜔𝑡)(ℎ)𝑢𝑡(𝜔
𝑡, ℎ, 𝑥, 𝑃 ) + (−∞)1R𝑑∖ℋ𝑡+1

𝑥 (𝜔𝑡)(ℎ)
)︁

= sup
ℎ∈Q𝑑

(︂
1ℋ𝑡+1

𝑥 (𝜔𝑡)(ℎ) inf
𝑃∈𝒬𝑡+1(𝜔𝑡)

𝑢𝑡(𝜔
𝑡, ℎ, 𝑥, 𝑃 ) + (−∞)1R𝑑∖ℋ𝑡+1

𝑥 (𝜔𝑡)(ℎ)

)︂
= sup

(︀
𝒰𝑡(𝜔𝑡, 𝑥),−∞

)︀
= 𝒰𝑡(𝜔𝑡, 𝑥).

As 𝒰𝑡 = −∞ if 𝑥 < 0, it follows that 𝒰𝑡 ∈ ℒ𝑆𝐴(Ω𝑡 × R). It remains to prove
that 𝑈𝑡 ∈ ℒ𝑆𝐴(Ω𝑡 × R). We have already seen that 𝜔𝑡 ∈ Ω𝑡, 𝑥 ∈ R → 𝒰𝑡(𝜔𝑡, 𝑥) is
non-decreasing, thus, for all 𝜔𝑡 ∈ Ω𝑡 and 𝑥 ∈ R we get that (recall (4.48))

𝑈𝑡(𝜔
𝑡, 𝑥) = Cl(𝒰𝑡(𝜔𝑡, 𝑥)) = lim sup

𝑦→𝑥
𝒰𝑡(𝜔𝑡, 𝑥) = lim

𝑛→∞
𝒰𝑡(𝜔𝑡, 𝑥+

1

𝑛
).

As (𝜔𝑡, 𝑥) ∈ Ω𝑡×R → 𝒰𝑡(𝜔𝑡, 𝑥+ 1
𝑛
) ∈ ℒ𝑆𝐴(Ω𝑡×R), [13, Lemma 7.30 (3) p178] implies

that 𝑈𝑡 ∈ ℒ𝑆𝐴(Ω𝑡 × R).
We prove now that 𝑈𝑡 is ℬ𝑐(Ω𝑡)⊗ℬ(R) as we will need it below. Since 𝑈𝑡 ∈ ℒ𝑆𝐴(Ω𝑡×
R), 𝑈𝑡 is ℬ𝑐(Ω𝑡 × R)-measurable. Applying [13, Lemma 7.29 p177] for 𝑥 ∈ R fixed,
we get that 𝑈𝑡(·, 𝑥) is ℬ𝑐(Ω𝑡)-measurable. Now for 𝜔𝑡 ∈ Ω𝑡 fixed, we have just proved
(see (4.55) for 𝑡) that 𝑈𝑡(𝜔𝑡, ·) is usc and non-decreasing. Thus, from Lemma 2.8.12
in Chapter 2, we get that 𝑈𝑡 is ℬ𝑐(Ω𝑡)⊗ ℬ(R)-measurable.
We prove now that (4.58) holds true for 𝑡. We introduce 𝑖̂𝑡 : Ω𝑡 × R𝑑 × [0,∞) ×
P(Ω𝑡+1) → R ∪ {+∞} (recall (4.42) for the definition of 𝐻 𝑡+1

𝑥 (𝜔𝑡, 𝑃 ))

𝑖̂𝑡(𝜔
𝑡, ℎ, 𝑥, 𝑃 ) = 1𝐻𝑡+1

𝑥 (𝜔𝑡,𝑃 )(ℎ)

∫︁
Ω𝑡+1

𝐼𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ 1 + ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1). (4.71)

Note that, using (4.56) at 𝑡 + 1, for 𝜔𝑡 ∈ Ω𝑡, 𝑥 ≥ 0, ℎ ∈ R𝑑, 𝑃 ∈ P(Ω𝑡+1) fixed
𝐼𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥+1+ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1)) ≥ 0 for all 𝜔𝑡+1 ∈ Ω𝑡+1 and the integral in (4.71)

is well defined (potentially infinite valued). From (4.58) at 𝑡+ 1, 𝐼𝑡+1 ∈ 𝒰𝑆𝐴(Ω𝑡+1 ×
R) and since (𝜔𝑡+1, ℎ, 𝑥, 𝑃 ) ∈ Ω𝑡+1 × R𝑑 × R × P(Ω𝑡+1) → 𝑥 + 1 + ℎΔ𝑆𝑡+1(𝜔

𝑡+1) is
ℬ(Ω𝑡+1) ⊗ ℬ(R𝑑) ⊗ ℬ(R) ⊗ ℬ(P(Ω𝑡+1))- measurable (recall Assumption 4.2.2), using
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[13, Lemma 7.30 (3) p178] we find that (𝜔𝑡+1, ℎ, 𝑥, 𝑃 ) ∈ Ω𝑡+1 × R𝑑 × R ×P(Ω𝑡+1) →
𝐼𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥+1+ ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1)) ∈ 𝒰𝑆𝐴(Ω𝑡+1 ×R𝑑×R×P(Ω𝑡+1). We apply now

[13, Proposition 7.48 p179] 5 and we obtain that

(𝜔𝑡, ℎ, 𝑥, 𝑃 ) →
∫︁
Ω𝑡+1

𝐼𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ 1 + ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1)

∈ 𝒰𝑆𝐴(Ω𝑡 × R𝑑 × R×P(Ω𝑡+1)).

Finally, [13, Lemma 7.30 (3) p177] together with Lemma 4.6.5 (see Remark 4.6.6)
imply that 𝑖̂𝑡 ∈ 𝒰𝑆𝐴(Ω𝑡 × R𝑑 × R × P(Ω𝑡+1)). As {(𝜔𝑡, ℎ, 𝑥, 𝑃 ) ∈ Ω𝑡 × R𝑑 × R ×
P(Ω𝑡+1), 𝑃 ∈ 𝒬𝑡+1(𝜔

𝑡)} ∈ 𝒜(Ω𝑡 × R𝑑 × R × P(Ω𝑡+1)), we get from [13, Proposition
7.47 p179, Lemma 7.30 (3) p178] (recalling (4.50) and (4.71)), that

𝐼𝑡(𝜔
𝑡, 𝑥) = 1[0,∞)(𝑥) sup

ℎ∈R𝑑

sup
𝑃∈𝒬𝑡+1(𝜔𝑡)

𝑖̂𝑡(𝜔
𝑡, ℎ, 𝑥, 𝑃 ) ∈ 𝒰𝑆𝐴(Ω𝑡 × R) (4.72)

and (4.58) for 𝑡 is proved. For later purpose, we set 𝑖𝑡 : Ω𝑡×R𝑑× [0,∞)×P(Ω𝑡+1) →
R ∪ {±∞}

𝑖𝑡(𝜔
𝑡, ℎ, 𝑥, 𝑃 ) := 𝑖̂𝑡(𝜔

𝑡, ℎ, 𝑥, 𝑃 ) + (−∞)1R𝑑∖𝐻𝑡+1
𝑥 (𝜔𝑡,𝑃 )(ℎ). (4.73)

Using again Lemma 4.6.5, it is easy to see that 𝑖𝑡 ∈ 𝒰𝑆𝐴(Ω𝑡×R𝑑×R×P(Ω𝑡+1)) and
using as before [13, Proposition 7.47 p179]

𝐼 𝑡(𝜔
𝑡, 𝑥) = 1[0,∞)(𝑥) sup

ℎ∈R𝑑

sup
𝑃∈𝒬𝑡+1(𝜔𝑡)

𝑖𝑡(𝜔
𝑡, ℎ, 𝑥, 𝑃 ) ∈ 𝒰𝑆𝐴(Ω𝑡 × R).

Furthemore as 𝑖̂𝑡 ≥ 0 we have that for all (𝜔𝑡, 𝑥) ∈ Ω𝑡 × R

𝐼 𝑡(𝜔
𝑡, 𝑥) = 1[0,∞)(𝑥) sup

ℎ∈R𝑑

sup
𝑃∈𝒬𝑡+1(𝜔𝑡)

𝑖̂𝑡(𝜔
𝑡, ℎ, 𝑥, 𝑃 ) = 𝐼𝑡(𝜔

𝑡, 𝑥). (4.74)

We prove (4.56) and (4.59) at 𝑡. Fix some 𝜔𝑡 ∈ Ω𝑡. We want to apply Lemma 4.5.18
to 𝑉 (𝜔𝑡+1, 𝑥) = 𝑈𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥), 𝐼(𝜔𝑡+1, 𝑥) = 𝐼𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ 1) and 𝒢 = ℬ𝑐(Ω𝑡+1). We

have already proved (see the proof of (4.55) at 𝑡) that Assumption 4.5.8 holds true
for 𝑉 . From (4.56) and (4.59) at 𝑡 + 1, for all (𝜔𝑡, 𝜔𝑡+1) ∈ Ω𝑡+1, the function 𝑥 ∈ R →
𝐼𝑡+1(𝜔

𝑡, 𝜔𝑡+1, 𝑥 + 1) is non-decreasing and non-negative on R and 𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥) ≤

𝐼𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥 + 1) for all 𝑥 ∈ R. Now for 𝑥 ∈ R, ℎ ∈ R𝑑 fixed, the function 𝜔𝑡+1 ∈

Ω𝑡+1 → 𝑥 + 1 + ℎΔ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1) is ℬ(Ω𝑡+1)-measurable (see Assumption 4.2.2) and

from (4.58) at 𝑡+1, we have that (𝜔𝑡+1, 𝑦) ∈ Ω𝑡+1×R → 𝐼𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑦) ∈ 𝒰𝑆𝐴(Ω𝑡+1×

R) (see Lemma 4.8.4). Using [13, Lemma 7.30 p177] and (4.1), we obtain that
5As already mentioned, [13, Proposition 7.48 p180] relies on [13, Lemma 7.30 (4) p177] applied

for upper-semianalytic functions where the convention −∞+∞ = −∞ needs to be used. But here,
as we deal with a non-negative function we do not need to use the convention.
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𝜔𝑡+1 ∈ Ω𝑡+1 → 𝐼𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ 1+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡)) is ℬ𝑐(Ω𝑡+1)-measurable. Therefore
we can apply Lemma 4.5.18 and we get that 𝑥 ∈ R → 𝐼𝑡(𝜔

𝑡, 𝑥) (recall (4.50)) is non-
decreasing and non-negative on R and that 𝑈𝑡(𝜔𝑡, 𝑥) ≤ 𝐼𝑡(𝜔

𝑡, 𝑥+ 1) for all 𝑥 ∈ R. As
this is true for all 𝜔𝑡 ∈ Ω𝑡, (4.56) and (4.59) are true at 𝑡.
We prove now (4.61) at 𝑡. Fix some 𝑟 ∈ Q, 𝑟 > 0. We have from the definition of 𝑈𝑡
(see (4.47) and (4.48))

𝑈𝑡
(︀
𝜔𝑡, 𝑟

)︀
≥ 𝒰𝑡

(︀
𝜔𝑡, 𝑟

)︀
≥ inf

𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︁
Ω𝑡+1

𝑈𝑡+1

(︀
𝜔𝑡, 𝜔𝑡+1, 𝑟

)︀
𝑃 (𝑑𝜔𝑡+1). (4.75)

Using (4.61) at 𝑡+ 1 and the definition of 𝐽𝑟𝑡 (see (4.53)) we have that

inf
𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︁
Ω𝑡+1

𝑈𝑡+1

(︀
𝜔𝑡, 𝜔𝑡+1, 𝑟

)︀
𝑃 (𝑑𝜔𝑡+1) ≥ inf

𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︁
Ω𝑡+1

−𝐽𝑟𝑡+1(𝜔
𝑡, 𝜔𝑡+1)𝑃 (𝑑𝜔𝑡+1)

= −𝐽𝑟𝑡 (𝜔𝑡).

And therefore using (4.75) we obtain (4.61) at 𝑡.
We prove now (4.60) at 𝑡. Let 𝑥 ≥ 0 and (𝜑𝑠)1≤𝑠≤𝑡−1 (ℬ𝑐(Ω𝑠−1))1≤𝑠≤𝑡−1-adapted ran-
dom variables be fixed. We set 𝐺 := 𝑥 +

∑︀𝑡−1
𝑠=1 𝜑𝑠Δ𝑆𝑠. Furthermore, we fix some

𝑃 ∈ 𝒬𝑡, 𝜉 ∈ 𝜑𝑡(𝐺,𝑃 ) and set 𝐺(·) := 𝐺(·) + 𝜉(·)Δ𝑆𝑡(·).
We fix now some 𝜀 > 0 and we apply [13, Proposition 7.50 p184] to 𝑖𝑡 (see (4.73)) in
order to obtain a selector 𝑆𝜀 : (𝜔𝑡, 𝑥) ∈ Ω𝑡×R → (ℎ𝜀(𝜔𝑡, 𝑥), 𝑝𝜀(·, 𝜔𝑡, 𝑥)) ∈ R𝑑×P(Ω𝑡+1)

that is analytically-measurable (and therefore ℬ𝑐(Ω𝑡 × R)-measurable) such that
𝑝𝜀(·, 𝜔𝑡, 𝑥) ∈ 𝒬𝑡+1(𝜔

𝑡) for all 𝜔𝑡 ∈ Ω𝑡, 𝑥 ≥ 0 and (recall (4.74))

𝑖𝑡(𝜔
𝑡, ℎ𝜀(𝜔𝑡, 𝑥), 𝑥, 𝑝𝜀(·, 𝜔𝑡, 𝑥)) ≥

{︃
1
𝜀
, if 𝐼𝑡(𝜔𝑡, 𝑥) = ∞
𝐼𝑡(𝜔

𝑡, 𝑥)− 𝜀, otherwise.
(4.76)

Let ℎ𝜀𝐺(𝜔𝑡) := ℎ𝜀(𝜔𝑡, 1{𝐺≥0}(𝜔
𝑡)𝐺(𝜔𝑡)) and 𝑝𝜀𝐺(·, 𝜔𝑡) := 𝑝𝜀(·, 𝜔𝑡, 1{𝐺≥0}(𝜔

𝑡)𝐺(𝜔𝑡)). Using
[13, Proposition 7.44 p172], both ℎ𝜀𝐺 and 𝑝𝜀𝐺 are ℬ𝑐(Ω𝑡)-measurable. For some 𝜔𝑡 ∈
Ω𝑡, 𝑦 ≥ 0 fixed, if ℎ𝜀(𝜔𝑡, 𝑦) /∈ 𝐻 𝑡+1

𝑦 (𝜔𝑡, 𝑝𝜀(·, 𝜔𝑡, 𝑦)), using (4.73), we have 𝑖𝑡(𝜔𝑡, ℎ𝜀(𝜔𝑡, 𝑦), 𝑦, 𝑝𝜀(·, 𝜔𝑡, 𝑦)) =
−∞ < min

(︀
1
𝜀
, 𝐼𝑡(𝜔

𝑡, 𝑦)− 𝜀
)︀
. This contradicts (4.76) (indeed from (4.56) at 𝑡, 𝐼𝑡 ≥

0) and therefore we must have that ℎ𝜀(𝜔𝑡, 𝑦) ∈ 𝐻 𝑡+1
𝑦 (𝜔𝑡, 𝑝𝜀(·, 𝜔𝑡, 𝑦)) and also that

ℎ𝜀𝐺(𝜔
𝑡) ∈ 𝐻 𝑡+1

𝐺(𝜔𝑡)(𝜔
𝑡, 𝑝𝜀𝐺(·, 𝜔𝑡)) for 𝜔𝑡 ∈ {𝐺 ≥ 0}. We set 𝑃 𝜀

𝐺 := 𝑃 ⊗ 𝑝𝜀𝐺 ∈ 𝒬𝑡+1 (recall
that 𝑝𝜀𝐺(·, 𝜔𝑡) ∈ 𝒬𝑡+1(𝜔

𝑡) for all 𝜔𝑡 ∈ Ω𝑡 and see (4.5)), we get that

𝑃 𝜀𝐺(𝐺(·) + ℎ𝜀𝐺(·)Δ𝑆𝑡+1(·) ≥ 0) =

∫︁
{𝐺≥0}

∫︁
Ω𝑡+1

𝑝𝜀𝐺(𝐺(𝜔
𝑡) + ℎ𝜀𝐺(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, 𝜔𝑡+1) ≥ 0, 𝜔𝑡)𝑃 (𝑑𝜔𝑡)

= 1,

since {𝐺 ≥ 0} is a 𝑃 -full measure set and thus we have that ℎ𝜀𝐺 ∈ 𝜑𝑡+1(𝐺,𝑃
𝜀
𝐺). We

have as well for 𝜔𝑡 ∈ {𝐺 ≥ 0} that (see (4.71) and (4.73))

𝑖𝑡(𝜔
𝑡, ℎ𝜀𝐺(𝜔

𝑡), 𝐺(𝜔𝑡), 𝑝𝜀𝐺(·, 𝜔𝑡)) =

∫︁
Ω𝑡+1

𝐼𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝐺(𝜔

𝑡) + 1 + ℎ𝜀𝐺(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑝
𝜀
𝐺(𝑑𝜔𝑡+1, 𝜔

𝑡)
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and using again that {𝐺 ≥ 0} is a 𝑃 -full measure set, we obtain that∫︁
Ω𝑡

𝑖𝑡(𝜔
𝑡, ℎ𝜀𝐺(𝜔

𝑡), 𝑝𝜀𝐺(𝜔
𝑡), 𝐺(𝜔𝑡))𝑃 (𝑑𝜔𝑡) =

∫︁
Ω𝑡+1

𝐼𝑡+1(𝜔
𝑡+1, 𝐺(𝜔𝑡) + 1 + ℎ𝜀𝐺(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡+1))𝑃 𝜀

𝐺(𝑑𝜔
𝑡+1)

≤ 𝐴𝑥 <∞

where we have used (4.60) at 𝑡+ 1 (𝜑𝑡+1(𝐺,𝑃 ) ⊂ 𝜑𝑡+1(𝐺+ 1, 𝑃 )) and we have set

𝐴𝑥 := sup
𝑃∈𝒬𝑡+1

sup
𝜉∈𝜑𝑡+1(𝐺+1,𝑃 )

∫︁
Ω𝑡+1

𝐼𝑡+1

(︀
𝜔𝑡+1, 𝐺(𝜔𝑡) + 1 + 𝜉(𝜔𝑡)Δ𝑆𝑡+1(𝜔

𝑡+1)
)︀
𝑃 (𝑑𝜔𝑡+1).

Combining with (4.76) we find that

1

𝜀

∫︁
{𝐼𝑡(·,𝐺(·))=∞}

𝑃 (𝑑𝜔𝑡) +

∫︁
{𝐼𝑡(·,𝐺(·))<∞}

(︀
𝐼𝑡(𝜔

𝑡, 𝐺(𝜔𝑡))− 𝜀
)︀
𝑃 (𝑑𝜔𝑡)

≤
∫︁
Ω𝑡

𝑖𝑡(𝜔
𝑡, ℎ𝜀𝐺(𝜔

𝑡), 𝐺(𝜔𝑡), 𝑝𝜀𝐺(·, 𝜔𝑡))𝑃 (𝑑𝜔𝑡) ≤ 𝐴𝑥 <∞. (4.77)

As this is true for all 𝜀 > 0, 𝑃 ({𝐼𝑡(·, 𝐺(·)) = ∞}) = 0 follows and thus using again
(4.77) we find that

∫︀
Ω𝑡 𝐼𝑡(𝜔

𝑡, 𝐺(𝜔𝑡−1) + 𝜉Δ𝑆𝑡(𝜔
𝑡))𝑃 (𝑑𝜔𝑡) ≤ 𝐴𝑥. Finally as this is true

for all 𝑃 ∈ 𝒬𝑡 and 𝜉 ∈ 𝜑𝑡(𝐺,𝑃 ), we obtain that sup𝑃∈𝒬𝑡 sup𝜉∈𝜑𝑡(𝐺,𝑃 )

∫︀
Ω𝑡 𝐼𝑡(𝜔

𝑡, 𝐺(𝜔𝑡−1)+

𝜉(𝜔𝑡−1)Δ𝑆𝑡(𝜔
𝑡))𝑃 (𝑑𝜔𝑡) ≤ 𝐴𝑥 <∞ and (4.60) is true for 𝑡.

We are left with the proof of (4.66) for 𝑈𝑡. Let 𝑋 = 𝑥 +
∑︀𝑡−1

𝑠=1 𝜑𝑠Δ𝑆𝑠+1, with 𝑥 ≥ 0
and (𝜑𝑠)1≤𝑠≤𝑡−1 some (ℬ𝑐(Ω𝑠−1))1≤𝑠≤𝑡−1-adapted random variables, be fixed such that
𝑋 ≥ 0 𝒬𝑡-q.s. Let Ω𝑡

𝑋 := ̃︀Ω𝑡 ∩ {𝜔𝑡 ∈ Ω𝑡, 𝑋(𝜔𝑡) ≥ 0}. Then Ω𝑡
𝑋 ∈ ℬ𝑐(Ω𝑡) and 𝑃 (Ω𝑡

𝑋) = 1
for all 𝑃 ∈ 𝒬𝑡. We introduce the following random set 𝜓𝑋 : Ω𝑡 � R𝑑

𝜓𝑋(𝜔𝑡) :={ℎ ∈ 𝒟𝑡+1
𝑋(𝜔𝑡)(𝜔

𝑡), 𝑈𝑡(𝜔
𝑡, 𝑋(𝜔𝑡)) =

inf
𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︁
Ω𝑡+1

𝑈𝑡+1

(︀
𝜔𝑡, 𝜔𝑡+1, 𝑋(𝜔𝑡) + ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1)
)︀
𝑃 (𝑑𝜔𝑡+1)}, (4.78)

for 𝜔𝑡 ∈ Ω𝑡
𝑋 and 𝜓𝑋(𝜔

𝑡) = ∅ otherwise (see (4.44) for the definition of 𝒟𝑡+1
𝑋(𝜔𝑡)(𝜔

𝑡)).
First we prove that Ω𝑡

𝑋 ⊂ {𝜓𝑋 ̸= ∅} and consequently 𝑃 ({𝜓𝑋 ̸= ∅}) = 1 for all
𝑃 ∈ 𝒬𝑡. Indeed, from Proposition 4.6.8 and Theorem 4.5.23 (see (4.38), (4.39), (4.47)
and (4.48)), we have for all 𝜔𝑡 ∈ ̃︀Ω𝑡 and 𝑥 ≥ 0 that there exists some 𝜉* ∈ 𝒟𝑡+1

𝑥 (𝜔𝑡)
such that

𝑈𝑡(𝜔
𝑡, 𝑥) = inf

𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ 𝜉*Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1), (4.79)

Thus for 𝜔𝑡 ∈ Ω𝑡
𝑋 ⊂ ̃︀Ω𝑡 fixed, using (4.79) for 𝑥 = 𝑋(𝜔𝑡) ≥ 0, there exists 𝜉* ∈

𝜓𝑋(𝜔
𝑡). To prove (4.66), we want to find some ℬ𝑐(Ω𝑡)-measurable selector for 𝜓𝑋 .

Let 𝑢𝑋 : Ω𝑡 × R𝑑 → R ∪ {± ∞}

𝑢𝑋(𝜔
𝑡, ℎ) = 1Ω𝑡

𝑋
(𝜔𝑡)̃︀𝑢𝑡(𝜔𝑡, ℎ,𝑋(𝜔𝑡)), (4.80)
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(see (4.69) for the definition of ̃︀𝑢𝑡). We first establish that 𝑢𝑋 is ℬ𝑐(Ω𝑡) ⊗ ℬ(R𝑑)-
measurable. To do that we prove that −𝑢𝑋 is a ℬ𝑐(Ω𝑡)-normal integrand, see Defini-
tion 2.8.23 in Chapter 2. Since ̃︀𝑢𝑡 ∈ ℒ𝑆𝐴(Ω𝑡×R𝑑×R) (and therefore is ℬ𝑐(Ω𝑡×R𝑑×R)-
measurable), 𝑋 is ℬ𝑐(Ω𝑡)-measurable and Ω𝑡

𝑋 ∈ ℬ𝑐(Ω𝑡), we can use [13, Proposition
7.44 p172] and 𝑢𝑋 is ℬ𝑐(Ω𝑡×R𝑑)-measurable. So for ℎ ∈ R𝑑 fixed, 𝜔𝑡 ∈ Ω𝑡 → 𝑢𝑋(𝜔

𝑡, ℎ)

is ℬ𝑐(Ω𝑡)-measurable, see [13, Lemma 7.29 p177]). Now we fix 𝜔𝑡 ∈ Ω𝑡. If 𝜔𝑡 /∈ Ω𝑡
𝑋 ,

it is clear that ℎ ∈ R𝑑 → 𝑢𝑋(𝜔
𝑡, ℎ) is usc and concave. Now if 𝜔𝑡 ∈ Ω𝑡

𝑋 ⊂ ̃︀Ω𝑡, we
know from Proposition 4.6.8 and Remark 4.6.10, that we can apply Lemma 4.5.21
and the function 𝜑𝜔𝑡(·, ·) defined on R× R𝑑 by

𝜑𝜔𝑡(𝑥, ℎ) =

⎧⎪⎪⎨⎪⎪⎩
inf𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︀
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1)

if 𝑥 ≥ 0 and ℎ ∈ ℋ𝑡+1
𝑥 (𝜔𝑡)

−∞ otherwise,
(4.81)

is usc and concave. In particular for 𝜔𝑡 ∈ Ω𝑡
𝑋 and 𝑥 = 𝑋(𝜔𝑡) we get that ℎ ∈ R𝑑 →

𝜑𝜔𝑡(𝑋(𝜔𝑡), ℎ) = 𝑢𝑋(𝜔
𝑡, ℎ) is usc and concave (see (4.68), (4.69) and (4.80)). We apply

now [116, Proposition 14.39 p666, Corollary 14.34 p664] and obtain that −𝑢𝑋 is a
ℬ𝑐(Ω𝑡)-normal integrand and 𝑢𝑋 is ℬ𝑐(Ω𝑡)⊗ ℬ(R𝑑)-measurable.
Now, from the definitions of 𝜓𝑋 and 𝑢𝑋 (see (4.78) and (4.80)) we obtain that for
𝜔𝑡 ∈ Ω𝑡

𝑋

𝜓𝑋(𝜔
𝑡) =

{︁
ℎ ∈ 𝒟𝑡+1

𝑋(𝜔𝑡)(𝜔
𝑡), 𝑈𝑡(𝜔

𝑡, 𝑋(𝜔𝑡)) = 𝑢𝑋(𝜔
𝑡, ℎ)

}︁
.

From Lemma 4.6.5, we have that Graph
(︀
𝒟𝑡+1
𝑋

)︀
∈ ℬ𝑐(Ω𝑡) ⊗ ℬ(R𝑑). Since we have

already proved that 𝑈𝑡 is ℬ𝑐(Ω𝑡) ⊗ ℬ(R)-measurable and 𝑋 is ℬ𝑐(Ω𝑡)-measurable,
we obtain that 𝜔𝑡 → 𝑈𝑡(𝜔

𝑡, 𝑋(𝜔𝑡)) is ℬ𝑐(Ω𝑡)-measurable, see [13, Proposition 7.44
p172]. It follows that Graph(𝜓𝑋) ∈ ℬ𝑐(Ω𝑡)⊗ ℬ(R𝑑) and we can apply the Projection
Theorem (see [37, Theorem 3.23 p75]) and we get that {𝜓𝑋 ̸= ∅} ∈ ℬ𝑐(Ω𝑡). Using
the Auman Theorem (see [119, Corollary 1]) there exists some ℬ𝑐(Ω𝑡)-measurablê︀ℎ𝑋𝑡+1 : {𝜓𝑋 ̸= ∅} → R𝑑 such that for all 𝜔𝑡 ∈ {𝜓𝑋 ̸= ∅}, ̂︀ℎ𝑋𝑡+1(𝜔

𝑡) ∈ 𝜓𝑋(𝜔
𝑡). Then we

extend ̂︀ℎ𝑋𝑡+1 on all Ω𝑡 by setting ̂︀ℎ𝑋𝑡+1 = 0 on Ω𝑡 ∖ {𝜓𝑋 ̸= ∅}. This concludes the proof
of (4.66) since Ω𝑡

𝑋 ⊂ {𝜓𝑋 ̸= ∅} and thus ̂︀ℎ𝑋𝑡+1 is a ℬ𝑐(Ω𝑡)-measurable selector for 𝜓𝑋
on Ω𝑡

𝑋 . 2

Proof. of Theorem 4.4.14. We proceed in three steps. First, we handle some integ-
rability issues that are essential to the proof. Then, we build by induction a can-
didate for the optimal strategy and finally we establish its optimality. The proof is
very similar to the one of [99].
Integrability Issues
First from Proposition 4.6.2 and (4.12), 𝑢(𝑥) ≤ 𝑀𝑥 < ∞. We fix some 𝑥 ≥ 0 and
𝜑 ∈ Φ(𝑥,𝒬𝑇 ) = Φ(𝑥, 𝑈,𝒬𝑇 ) (recall Assumptions 4.4.2 and 4.4.12 and Proposition
4.6.2). From Proposition 4.6.11, we can apply by backward induction Proposition
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4.6.12 for 𝑡 = 𝑇 − 1, 𝑇 − 2, . . . , 0. In particular, we get that (4.60) holds true for
all 0 ≤ 𝑡 ≤ 𝑇 . So choosing 𝐺 = 𝑉 𝑥+1,𝜑

𝑡−1 and 𝜉 = 𝜑𝑡 (recall from Lemma 4.4.7 that
𝜑 ∈ Φ(𝑥,𝒬𝑇 ) implies that 𝑃𝑡(𝑉 𝑥,𝜑

𝑡 (·) ≥ 0) = 1 for all 𝑃 ∈ 𝒬𝑡), we get using (4.59) and
(4.60) that for all 𝑃 ∈ 𝒬𝑡,∫︁

Ω𝑡

𝑈+
𝑡

(︁
𝜔𝑡, 𝑉 𝑥,𝜑

𝑡 (𝜔𝑡)
)︁
𝑃 (𝑑𝜔𝑡) <∞. (4.82)

So for all 𝑃 = 𝑃𝑡−1 ⊗ 𝑝 ∈ 𝒬𝑡 (see (4.5)) we can use [13, Proposition 7.45 p175] and
we get that∫︁

Ω𝑡

𝑈𝑡

(︁
𝜔𝑡, 𝑉 𝑥,𝜑

𝑡 (𝜔𝑡)
)︁
𝑃 (𝑑𝜔𝑡) =

∫︁
Ω𝑡−1

∫︁
Ω𝑡

𝑈𝑡

(︁
𝜔𝑡−1, 𝜔𝑡, 𝑉

𝑥,𝜑
𝑡 (𝜔𝑡−1, 𝜔𝑡)

)︁
𝑝(𝑑𝜔𝑡, 𝜔

𝑡−1)𝑃𝑡−1(𝑑𝜔
𝑡−1).

(4.83)

Recall as well (see (4.62)) that for all 1 ≤ 𝑡 ≤ 𝑇 , 𝑥 ∈ R, 𝜔𝑡 ∈ ̃︀Ω𝑡, 𝑈𝑡(𝜔𝑡, 𝑥) = 𝒰𝑡(𝜔𝑡, 𝑥)
and also 𝑈0(𝑥) = 𝒰0(𝑥).
Construction of 𝜑*

We fix some 𝑥 ≥ 0 and build by induction our candidate for the optimal strategy.
We start at 𝑡 = 0 and use (4.66) in Proposition 4.6.12 with 𝑋 = 𝑥 ≥ 0. We set
𝜑*
1 :=

̂︀ℎ𝑥1 ∈ 𝒟1
𝑥 and we obtain that 𝑃1(𝑥+ 𝜑*

1Δ𝑆1(.) ≥ 0) = 1 for all 𝑃 ∈ 𝒬1 and

𝑈0(𝑥) = inf
𝑃∈𝒬1

∫︁
Ω

𝑈1 (𝜔1, 𝑥+ 𝜑*
1Δ𝑆1(𝜔1))𝑃 (𝑑𝜔1).

Assume that until some 𝑡 ≥ 1 we have found some (𝜑*
𝑠)1≤𝑠≤𝑡 (ℬ𝑐(Ω𝑠−1))1≤𝑠≤𝑡-adapted

random variables and some Ω
1 ∈ ℬ𝑐(Ω1), . . . ,Ω

𝑡−1 ∈ ℬ𝑐(Ω𝑡−1) such that 𝑃𝑠(Ω
𝑠
) = 1,

𝜑*
𝑠+1(𝜔

𝑠) ∈ 𝐷𝑠+1(𝜔𝑠) for all 𝜔𝑠 ∈ Ω
𝑠, 𝑠 = 1, . . . , 𝑡− 1, for all 𝑃 ∈ 𝒬𝑡

𝑃 (𝑥+ 𝜑*
1Δ𝑆1(·) + · · ·+ 𝜑*

𝑡 (·)Δ𝑆𝑡(·) ≥ 0) = 1 and for all 𝜔𝑡 ∈ Ω
𝑡−1

𝑈𝑡−1

(︁
𝜔𝑡−1, 𝑉 𝑥,𝜑*

𝑡−1 (𝜔𝑡−1)
)︁

= inf
𝑃∈𝒬𝑡(𝜔𝑡−1)

∫︁
Ω𝑡

𝑈𝑡

(︁
𝜔𝑡−1, 𝜔𝑡, 𝑉

𝑥,𝜑*

𝑡−1 (𝜔𝑡−1) + 𝜑*𝑡 (𝜔
𝑡−1)Δ𝑆𝑡(𝜔

𝑡−1, 𝜔𝑡+1)
)︁
𝑃 (𝑑𝜔𝑡).

We apply Proposition 4.6.12 with 𝑋 = 𝑉 𝑥,𝜑*

𝑡 (·) = 𝑉 𝑥,𝜑*

𝑡−1 (·) + 𝜑*
𝑡 (·)Δ𝑆𝑡(·) (recall that

𝑃
(︁
𝑉 𝑥,𝜑*

𝑡 ≥ 0
)︁
= 1 for all 𝑃 ∈ 𝒬𝑡) and there exists Ω

𝑡
:= Ω𝑡

𝑉 𝑥,𝜑*
𝑡

∈ ℬ𝑐(Ω𝑡) such that

𝑃 (Ω
𝑡
) = 1 for all 𝑃 ∈ 𝒬𝑡 and some ℬ𝑐(Ω𝑡)-measurable 𝜔𝑡 → 𝜑*

𝑡+1(𝜔
𝑡) := ̂︀ℎ𝑉 𝑥,𝜑*

𝑡
𝑡+1 (𝜔𝑡)

such that 𝜑*
𝑡+1(𝜔

𝑡) ∈ 𝒟𝑡+1

𝑉 𝑥,𝜑*
𝑡 (𝜔𝑡)

(𝜔𝑡) for all 𝜔𝑡 ∈ Ω
𝑡 and

𝑈𝑡

(︁
𝜔𝑡, 𝑉 𝑥,𝜑*

𝑡 (𝜔𝑡)
)︁
= inf

𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︁
Ω𝑡+1

𝑈𝑡+1

(︁
𝜔𝑡, 𝜔𝑡+1, 𝑉

𝑥,𝜑*

𝑡 (𝜔𝑡) + 𝜑*𝑡+1(𝜔
𝑡)Δ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1)
)︁
𝑃 (𝑑𝜔𝑡+1).

(4.84)
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Let 𝑃 𝑡+1 = 𝑃 ⊗ 𝑝 ∈ 𝒬𝑡+1 where 𝑃 ∈ 𝒬𝑡 and 𝑝 ∈ 𝒮𝐾𝑡+1 with 𝑝(·, 𝜔𝑡) ∈ 𝒬𝑡+1(𝜔
𝑡) for all

𝜔𝑡 ∈ Ω
𝑡 (see (4.5)). From [13, Proposition 7.45 p175] we get that

𝑃𝑡+1(𝑉
𝑥,𝜑*

𝑡+1 ≥ 0) =

∫︁
Ω𝑡

𝑝(𝑉 𝑥,𝜑*

𝑡 (𝜔𝑡) + 𝜑*
𝑡+1(𝜔

𝑡)Δ𝑆𝑡+1(𝜔
𝑡, ·) ≥ 0, 𝜔𝑡)𝑃 (𝑑𝜔𝑡) = 1,

where we have used that 𝜑*
𝑡+1(𝜔

𝑡) ∈ ℋ𝑡+1

𝑉 𝑥,𝜑*
𝑡 (𝜔𝑡)

(𝜔𝑡) for all 𝜔𝑡 ∈ Ω
𝑡 and 𝑃 (Ω

𝑡
) = 1 and

we can continue the recursion.
Thus, we have found 𝜑* = (𝜑*

𝑡 )1≤𝑡≤𝑇 such that for all 𝑡 = 0, . . . , 𝑇 , all 𝑃 ∈ 𝒬𝑇 ,
𝑃𝑡(𝑉

𝑥,𝜑*

𝑡 ≥ 0) = 1, 𝑖.𝑒 𝜑* ∈ Φ(𝑥,𝒬𝑇 ). We have also found some Ω
𝑡 ∈ ℬ𝑐(Ω𝑡), with

𝑃𝑡(Ω
𝑡
) = 1 for all 𝑃 ∈ 𝒬𝑇 and such that (4.84) holds true for all 𝜔𝑡 ∈ Ω

𝑡, all 𝑡 =

0, . . . , 𝑇−1. Moreover from Proposition 4.6.2, 𝜑* ∈ Φ(𝑥, 𝑈,𝒬𝑇 ) and𝐸𝑃𝑈𝑇 (·, 𝑉 𝑥,𝜑*

𝑇 (·)) <
∞ for all 𝑃 ∈ 𝒬𝑇 .
Optimality of 𝜑*

We prove in two steps that 𝜑* is an optimal strategy.
Step 1: Fix some 𝑃 = 𝑃𝑇−1 ⊗ 𝑝𝑇 ∈ 𝒬𝑇 . Using (4.83), 𝑃𝑇−1(Ω

𝑇−1
) = 1 and (4.84) for

𝑡 = 𝑇 − 1 we get that

𝐸𝑃𝑈(·, 𝑉 𝑥,𝜑*

𝑇 (·))

=

∫︁
Ω

𝑇−1

∫︁
Ω𝑇

𝑈𝑇

(︁
𝜔𝑇−1, 𝜔𝑇 , 𝑉

𝑥,𝜑*

𝑇−1 (𝜔
𝑇−1) + 𝜑*𝑇 (𝜔

𝑇−1)Δ𝑆𝑇 (𝜔
𝑇−1, 𝜔𝑇 )

)︁
𝑝𝑇 (𝑑𝜔𝑇 , 𝜔

𝑇−1)𝑃𝑇−1(𝑑𝜔
𝑇−1)

≥
∫︁
Ω𝑇−1

𝑈𝑇−1

(︁
𝜔𝑇−1, 𝑉 𝑥,𝜑*

𝑇−1 (𝜔
𝑇−1)

)︁
𝑃𝑇−1(𝑑𝜔

𝑇−1).

We iterate the process by backward induction and obtain that (recall that Ω0 :=

{𝜔0})

𝑈0(𝑥) ≤ 𝐸𝑃𝑈(·, 𝑉 𝑥,𝜑*

𝑇 (·)). (4.85)

As the preceding equality holds true for all 𝑃 ∈ 𝒬𝑇 and as 𝜑* ∈ Φ(𝑥, 𝑈,𝒬𝑇 ), we get
that 𝑈0(𝑥) ≤ 𝑢(𝑥) (see (4.12)). So 𝜑* will be optimal if 𝑈0(𝑥) ≥ 𝑢(𝑥).
Step 2: Now we fix some 𝜑 ∈ Φ(𝑥, 𝑈,𝒬𝑇 ) and also some 0 ≤ 𝑡 ≤ 𝑇 − 1. For all
𝜔𝑡 ∈ ̃︀Ω𝑡 ∩ {𝜔𝑡 ∈ Ω𝑡, 𝑉 𝑥,𝜑

𝑡 (𝜔𝑡) ≥ 0}, we get that

inf
𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑉

𝑥,𝜑
𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1)

≤ sup
ℎ∈ℋ𝑡+1

𝑉
𝑥,𝜑
𝑡 (𝜔𝑡)

(𝜔𝑡)

inf
𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑉

𝑥,𝜑
𝑡 (𝜔𝑡) + ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1)

= 𝑈𝑡(𝜔
𝑡, 𝑉 𝑥,𝜑

𝑡 (𝜔𝑡)), (4.86)

where we have used Remark 4.6.9. Now fix some 𝜀 > 0. As (𝜔𝑡, 𝑦, ℎ, 𝑃, 𝜔𝑡+1) ∈
Ω𝑡×R×R𝑑×P(Ω𝑡+1)×Ω𝑡+1 → 𝑦+ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1) is ℬ(Ω𝑡)⊗ℬ(R)⊗ℬ(R𝑑)⊗ℬ(P(Ω𝑡+1))⊗



174
Chapter 4. Multiple-priors optimal investment in discrete time for

unbounded utility function

ℬ(Ω𝑡+1)-measurable (recall Assumption 4.2.2) and 𝑈𝑡+1 is ℒ𝑆𝐴(Ω𝑡+1×R) (see (4.57)),
we can use [13, Lemma 7.30 (3) p178, Proposition 7.48 p180] in order to obtain that

(𝜔𝑡, 𝑦, ℎ, 𝑃 ) →
∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑦+ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑃 (𝑑𝜔𝑡+1) ∈ ℒ𝑆𝐴(Ω𝑡×R×R𝑑×P(Ω𝑡+1)).

We then apply [13, Proposition 7.50 p184] and there exists some ̃︀𝑝𝜀𝑡+1 : (𝜔𝑡, 𝑦, ℎ) ∈
Ω𝑡×R×R𝑑 → P(Ω𝑡+1) that is ℬ𝑐(Ω𝑡×R×R𝑑)-measurable and such that ̃︀𝑝𝜀𝑡+1(·, 𝜔𝑡, 𝑦, ℎ) ∈
𝒬𝑡+1(𝜔

𝑡) for all (𝜔𝑡, 𝑦, ℎ) ∈ Ω𝑡 × R× R𝑑 and∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑦 + ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1))̃︀𝑝𝜀𝑡(𝑑𝜔𝑡+1, 𝜔
𝑡, 𝑦, ℎ)

≤

⎧⎪⎪⎨⎪⎪⎩
inf𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︀
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑦 + ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1)))𝑃 (𝑑𝜔𝑡+1) + 𝜀,

if inf𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︀
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑦 + ℎΔ𝑆𝑡+1(𝜔

𝑡, 𝜔𝑡+1)))𝑃 (𝑑𝜔𝑡+1) > −∞
−1
𝜀
, otherwise.

(4.87)

We define 𝑝𝜀𝑡+1 : Ω𝑡 → P(Ω𝑡+1) by 𝑝𝜀𝑡+1(·, 𝜔𝑡) = ̃︀𝑝𝜀𝑡+1

(︁
·, 𝜔𝑡, 𝑉 𝑥,𝜑

𝑡 (𝜔𝑡), 𝜑𝑡+1(𝜔
𝑡)
)︁

and [13,
Proposition 7.44 p172] implies that 𝑝𝜀𝑡+1 is ℬ𝑐(Ω𝑡)-measurable. Now, choosing 𝑦 =

𝑉 𝑥,𝜑
𝑡 (𝜔𝑡), ℎ = 𝜑𝑡+1(𝜔

𝑡) in (4.87) and using (4.86), we find that for all 𝜔𝑡 ∈ ̃︀Ω𝑡 ∩ {𝜔𝑡 ∈
Ω𝑡, 𝑉 𝑥,𝜑

𝑡 (𝜔𝑡) ≥ 0}∫︁
Ω𝑡+1

𝑈𝑡+1(𝜔
𝑡, 𝜔𝑡+1, 𝑉

𝑥,𝜑
𝑡+1(𝜔

𝑡, 𝜔𝑡+1))𝑝
𝜀
𝑡+1(𝑑𝜔𝑡+1, 𝜔

𝑡)− 𝜀 ≤ max

(︂
𝑈𝑡(𝜔

𝑡, 𝑉 𝑥,𝜑
𝑡 (𝜔𝑡)),−1

𝜀
− 𝜀

)︂
.

(4.88)

Fix some 𝑄 ∈ 𝒬𝑡 and set 𝑃 𝜀 := 𝑄 ⊗ 𝑝𝜀𝑡+1 ∈ 𝒬𝑡+1 (see (4.5)). Using (4.83) and sincẽ︀Ω𝑡 ∩ {𝜔𝑡 ∈ Ω𝑡, 𝑉 𝑥,𝜑
𝑡 (𝜔𝑡) ≥ 0} is a 𝒬𝑡 full measure set (recall that 𝜑 ∈ Φ(𝑥,𝒬𝑇 ) and

Lemma 4.4.7) , we get from (4.88) that

inf
𝑃∈𝒬𝑡+1

𝐸𝑃𝑈𝑡+1(·, 𝑉 𝑥,𝜑
𝑡+1(·))− 𝜀 ≤ 𝐸𝑃 𝜀𝑈𝑡+1(·, 𝑉 𝑥,𝜑

𝑡+1(·))− 𝜀 ≤ 𝐸𝑄max

(︂
𝑈𝑡(·, 𝑉 𝑥,𝜑

𝑡 (·)),−1

𝜀
− 𝜀

)︂
.

Since for all 0 < 𝜀 < 1, max
(︁
𝑈𝑡(·, 𝑉 𝑥,𝜑

𝑡 (·)),−1
𝜀
− 𝜀
)︁
≤ −1 + 𝑈+

𝑡 (·, 𝑉
𝑥,𝜑
𝑡 (·)), recalling

(4.82), letting 𝜀 go to zero and applying Fatou’s Lemma, we obtain that

inf
𝑃∈𝒬𝑡+1

𝐸𝑃𝑈𝑡+1(·, 𝑉 𝑥,𝜑
𝑡+1 (·)) ≤ 𝐸𝑄𝑈𝑡(·, 𝑉 𝑥,𝜑

𝑡 (·)).

As this holds true for all 𝑄 ∈ 𝒬𝑡 we get that

inf
𝑃∈𝒬𝑡+1

𝐸𝑃𝑈𝑡+1(·, 𝑉 𝑥,𝜑
𝑡+1 (·)) ≤ inf

𝑄∈𝒬𝑡
𝐸𝑄𝑈𝑡(·, 𝑉 𝑥,𝜑

𝑡 (·)).

So recursively we obtain that (recall (4.47), (4.48) and Remark 4.6.9)

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈𝑇 (·, 𝑉 𝑥,𝜑
𝑇 (·)) ≤ inf

𝑄∈𝒬1
𝐸𝑄𝑈1(·, 𝑉 𝑥,𝜑

1 (·)) ≤ 𝑈0(𝑥).
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As this is true for all 𝜑 ∈ Φ(𝑥, 𝑈,𝒬𝑇 ) we have that 𝑢(𝑥) ≤ 𝑈0(𝑥) < ∞ and the proof
is complete. 2

Proof. of Theorem 4.4.15. Since the 𝑠𝑁𝐴(𝒬𝑇 ) condition holds true, we know that the
𝑁𝐴(𝒬𝑇 ) condition holds true as well. Hence, to apply Theorem 4.4.14 it remains
to prove that Assumption 4.4.12 holds true. We fix some 𝑃 ∈ 𝒬𝑇 𝑥 ≥ 0 and some
𝜑 ∈ 𝜑(𝑥, 𝑃 ). Since the 𝑁𝐴(𝑃 ) condition holds true, using similar arguments as in
the proof of Theorem 2.4.17 in Chapter 4, we find that for 𝑃 𝑡-almost all 𝜔𝑡 ∈ Ω𝑡 (see
the proof of Proposition 4.3.6 for the definition of 𝑃 𝑡)

|𝑉 𝑥,𝜑
𝑡 (𝜔𝑡)| ≤

𝑡∏︁
𝑠=1

(︂
𝑥+

|Δ𝑆𝑠(𝜔𝑠)|
𝛼𝑃𝑠−1(𝜔

𝑠−1)

)︂
. (4.89)

As Δ𝑆𝑠,
1
𝛼𝑃
𝑠

∈ 𝒲𝑠 for all 𝑠 ≥ 1, we obtain that 𝑉 𝑥,𝜑
𝑡 ∈ ̂︁𝒲𝑡 (recall that the trading

strategies are universally-measurable). Now we use (5.38) for 𝑥 = 1, 𝑡 = 𝑇 , the
monotonicity of 𝑈+, the fact that 2

∏︀𝑇
𝑠=1

(︁
1 + |Δ𝑆𝑠(𝜔𝑠)|

𝛼𝑃
𝑠−1(𝜔

𝑠−1)

)︁
≥ 1 and Proposition 4.6.1

and we obtain that for 𝑃 𝑡-almost all 𝜔𝑡 ∈ Ω𝑡

𝑈+(𝜔𝑇 , 𝑉 1,𝜑
𝑇 (𝜔𝑇 )) ≤ 4

(︃
𝑇∏︁
𝑠=1

(︂
1 +

|Δ𝑆𝑠(𝜔𝑠)|
𝛼𝑃𝑠−1(𝜔

𝑠−1)

)︂)︃(︀
𝑈+(𝜔𝑇 , 1) + 𝐶𝑇 (𝜔

𝑇 )
)︀
. (4.90)

We set 𝑁 := 4 sup𝑃∈𝒬𝑇 𝐸𝑃

(︁∏︀𝑇
𝑠=1

(︁
1 + |Δ𝑆𝑠(𝜔𝑠)|

𝛼𝑃
𝑠−1(𝜔

𝑠−1)

)︁)︁ (︀
𝑈+(𝜔𝑇 , 1) + 𝐶𝑇 (𝜔

𝑇 )
)︀
.

Since 𝑈+(·, 1), 𝑈−(·, 1
4
) ∈ 𝒲𝑇 and Δ𝑆𝑠,

1
𝛼𝑃
𝑠

∈ 𝒲𝑠 for all 𝑠 ≥ 1, we obtain that
𝑁 < ∞ (recall the definition of 𝐶𝑇 in Proposition 4.6.1). Using (4.90) we find that
𝐸𝑃𝑈

+(·, 𝑉 1,𝜑
𝑇 (·)) ≤ 𝑁 < ∞ and as this is true for all 𝑃 ∈ 𝒬𝑇 and 𝜑 ∈ Φ(1, 𝑃 ),

Assumption 4.4.12 holds true. 2

4.7 Conclusion
As a conclusion we propose a list of potential improvements to the current res-
ults. First we could introduce a random endowment 𝑖.𝑒. some 𝐺 : Ω𝑇 → [0,∞)

and study sup𝜑∈Φ𝐺(𝑥,𝑈,𝒬𝑇 ) inf𝑃∈𝒬𝑇 𝐸𝑃𝑈(·, 𝑉 𝑥,𝜑
𝑇 (·) − 𝐺(·)) where 𝜑𝐺(𝑥, 𝑈,𝒬𝑇 ) = {𝜑 ∈

𝜑(𝑥, 𝑈,𝒬𝑇 ), 𝑉 𝑥,𝜑
𝑇 (·)−𝐺(·) ≥ 0𝒬𝑇 -q.s}. This is a useful generalisation, especially in

the context of Chapter 5 where we could obtain some optimal strategy to realise the
utility indifference price. In the spirit of [112] assuming that 𝐺 is usa and bounded
and using [25, SuperHedging Theorem, Lemma 4.10], the current proof can be ad-
apted introducing 𝐺𝑡(𝜔

𝑡) = sup𝑃∈𝒬𝑡+1(𝜔𝑡)𝐸𝑃𝐺𝑡+1(𝜔
𝑡, ·) and replacing ℋ𝑡+1(𝜔𝑡) with

ℋ𝑡+1(𝜔𝑡) :=
{︀
ℎ ∈ R𝑑, 𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ≥ 𝐺𝑡(𝜔
𝑡) 𝒬𝑡+1(𝜔

𝑡)-q.s.
}︀

. The precise and care-
ful adaptation of the proof is left for further research.
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An other significant improvement would be to remove the concavity assumption in
Definition 4.4.1. Indeed, this assumption is not required in the mono-prior case
(see Chapter 2) and as already discussed is not always verified in practice. Unfor-
tunately in the multiple-priors framework, even if it is not essential to the optim-
isation problem in itself, it is still crucial to obtain measurability property. This
occurs for instance in (4.39) where the concavity is essential so that our version
of 𝑈𝑡 ((4.47), (4.48)) is lsa. And this is also the case in Example 4.8.2 and Lemma
4.8.3 which are used to prove that 𝑢𝑋 (see (4.80)) is a normal-integrand. We have
explored alternative assumptions but none of them was conclusive and the ques-
tion remains open.
Lastly, it is not clear what the final word could be in term of integrability con-
dition (see (4.4.12)). We were initially aiming for the following sharper (since
Φ(1,𝒬𝑇 ) ⊂ Φ(1, 𝑃 ) for all 𝑃 ∈ 𝒬𝑇 ) and nicer condition to Assumption 4.4.12

sup
𝑃∈𝒬𝑇

sup
𝜑∈Φ(1,𝒬𝑇 )

𝐸𝑃𝑈
+(·, 𝑉 1,𝜑

𝑇 (·)) <∞. (4.91)

Unfortunately this raises measurability issues when establishing that 𝐼𝑡 is usa
(whose definition has to be slightly adapted) that we could not solve.
For utility function defined on R, [98] obtained some results for utility function
bounded from above. Note however that in the unbounded case the question re-
mains open: as pointed out in the conclusion of Chapter 2 already in the mono-
prior case it seems difficult to replace the usual assumption: 𝑢(𝑥) < ∞ with an
assumption on 𝐸𝑃𝑈(𝑉

𝑥,𝜑
𝑇 ) that would not be too restrictive. In the multiple-priors

case this is compounded by measurability issues. Note that even 𝑢(𝑥) < ∞ can-
not work for similar reasons as in Remark 4.5.15. In the same spirit as what we
have done, an integrability condition that would look like 𝐼0(𝑥) <∞ (see (4.49) and
(4.50)) might work but is clearly not very satisfying as very difficult to establish in
practice. We have provided some details in Chapter 3 on how the one-period model
can be tackled but the study of the multi-period model is left for further research.
As already eluded to before, introducing on top of the uncertainty some distortions
on the probability would also be an other very interesting generalisation.
As a a last remark, note that while in Chapter 2 in a mono-prior approach all
the measurability questions could be worked out relatively smoothly, this is not
always the case in the multiple-priors framework. The main reason is that univer-
sally measurable sets are not stable by projection: if 𝑋, 𝑌 are Polish spaces and
𝐴 ∈ ℬ𝑐(𝑋 × 𝑌 ), we don’t know if 𝑃𝑟𝑜𝑗𝑋(𝐴) ∈ ℬ𝑐(𝑋) and this is the reason why the
class of analytic sets is introduced. The price to pay is that analytic sets are not
stable by complementation. Is there a way to avoid the use of analytic sets: if yes
this is far from trivial. Note however that if we have 𝑂 ⊂ 𝑋 × 𝑌 open in 𝑋 × 𝑌 (for
the product topology) then 𝑃𝑟𝑜𝑗𝑋×𝑌 (𝑂) is open in 𝑋. So an alternative to analytics
sets is to use open sets and thus introduce some continuity assumption. This would
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greatly simplify all measurability arguments.

4.8 Appendix

4.8.1 Technical results
The following lemma is a well-known result on concave functions which proof is
given since we did not find some reference.

Lemma 4.8.1 Let 𝑓 : R𝑑 → R∪{±∞} be a concave function such that Ri(Dom 𝑓) ̸=
∅. Then

sup
ℎ∈Dom 𝑓

𝑓(ℎ) = sup
ℎ∈Ri(Dom 𝑓)

𝑓(ℎ).

Proof. Let 𝐶 := supℎ∈Ri(Dom 𝑓) 𝑓(ℎ) and ℎ1 ∈ Dom 𝑓∖Ri(Dom 𝑓) be fixed. We have
to prove that 𝑓(ℎ1) ≤ 𝐶. If 𝐶 = ∞ there is nothing to show. So we assume that
𝐶 < +∞. Let ℎ0 ∈ Ri(Dom 𝑓) and introduce 𝜑 : 𝑡 ∈ R → 𝑓(𝑡ℎ1 + (1− 𝑡)ℎ0) if 𝑡 ∈ [0, 1]

and −∞ otherwise. From [115, Theorem 6.1 p45], 𝑡ℎ1 + (1 − 𝑡)ℎ0 ∈ Ri(Dom 𝑓) if
𝑡 ∈ [0, 1) and thus [0, 1) ⊂ {𝑡 ∈ [0, 1], 𝜑(𝑡) ≤ 𝐶}. Clearly, 𝜑 is concave on R. Fur-
thermore from the convexity of Dom 𝑓 , we have that Dom𝜑 = [0, 1]. So, using [62,
Proposition A.4 p400], we get that 𝜑 is lsc on [0, 1] and {𝑡 ∈ [0, 1], 𝜑(𝑡) ≤ 𝐶} is a
closed set in R. It follows that 1 ∈ {𝑡 ∈ [0, 1], 𝜑(𝑡) ≤ 𝐶}, 𝑖.𝑒 𝜑(1) = 𝑓(ℎ1) ≤ 𝐶 and the
proof is complete. 2

4.8.2 Measure theory issues
In this section, we first provide some counterexamples to [25, Lemma 4.12] and
propose an alternative to this lemma. Our counterexample 4.8.2 is based on a
result from [66] originally due [123]. An other counterexample can be found [116,
Proposition 14.28 p661].

Example 4.8.2 We denote by ℒ(R2) the Lebesgue sigma-algebra on R2. Recall that
ℬ(R2) ⊂ ℒ(R2). Let 𝐴 /∈ ℒ(R2) be such that every line has at most two common
points with 𝐴 (see [66, Example 22 p142] for the proof of the existence of 𝐴) and
define 𝐹 : R2 → R by 𝐹 (𝑥, 𝑦) := 1𝐴(𝑥, 𝑦). We fix some 𝑥 ∈ R and prove that the
function 𝐹 (𝑥, ·) is usc. Let 𝐴1

𝑥 := {𝑦 ∈ R, (𝑥, 𝑦) ∈ 𝐴}. Since every line has at
most two common points with 𝐴, 𝐴1

𝑥 contains at most two points: thus it is a closed
subset of R. It follows that {𝑦 ∈ R, 𝐹 (𝑥, 𝑦) ≥ 𝑐} is a closed subset of R for all 𝑐 ∈ R
and 𝐹 (𝑥, ·) is usc as claimed.
Similarly the function 𝐹 (·, 𝑦) is usc and thus ℬ(R)-measurable for all 𝑦 ∈ R fixed.
But since 𝐴 /∈ ℒ(R2), 𝐹 is not ℒ(R2)-measurable and therefore not ℬ(R) ⊗ ℬ(R)-
measurable.
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We propose now the following correction to [25, Lemma 4.12]. Note that Lemma
4.8.3 can be applied in the proof of [99, Lemma 3.7] since the considered function is
concave (as well as in the proof of [25, Lemma 4.10] where the considered function
is convex).

Lemma 4.8.3 Let (𝐴,𝒜) be a measurable space and let 𝜃 : R𝑑 × 𝐴 → R ∪ {±∞} be
a function such that 𝜔 → 𝜃(𝑦, 𝜔) is 𝒜-measurable for all 𝑦 ∈ R𝑑 and 𝑦 → 𝜃(𝑦, 𝜔) is
lsc and convex for all 𝜔 ∈ 𝐴. Then 𝜃 is ℬ(R𝑑)⊗𝒜-measurable.

Proof. It is a direct application of [116, Proposition 14.39 p666, Corollary 14.34
p664]. 2

We give the following three useful lemmata related to measure theory issues
that are used throughout the chapter.

Lemma 4.8.4 Let 𝑋, 𝑌 be two Polish spaces and 𝐹 : 𝑋×𝑌 → R∪{±∞} ∈ 𝒰𝑆𝐴(𝑋×
𝑌 ) (resp. ℒ𝑆𝐴(𝑋 × 𝑌 )). Then, for 𝑥 ∈ 𝑋 fixed, the function 𝐹𝑥 : 𝑦 ∈ 𝑌 → 𝐹 (𝑥, 𝑦) ∈
R ∪ {±∞} belongs to 𝒰𝑆𝐴(𝑌 ) (resp. ℒ𝑆𝐴(𝑌 )).

Proof. Fix some 𝑐 ∈ R. By assumption we have that 𝐶 := {(𝑥, 𝑦) ∈ 𝑋 × 𝑌, 𝐹 (𝑥, 𝑦) >

𝑐} ∈ 𝒜(𝑋 × 𝑌 ). Fix now some 𝑥 ∈ 𝑋. Since the function 𝐼𝑥 : 𝑦 ∈ 𝑌 → (𝑥, 𝑦) ∈ 𝑋 × 𝑌

is ℬ(𝑌 )-measurable (it is even continuous), applying [13, Proposition 7.40 p165],
we get that {𝑦 ∈ 𝑌, 𝐹𝑥(𝑦) > 𝑐} = {𝑦 ∈ 𝑌, (𝑥, 𝑦) ∈ 𝐶} = 𝐼−1

𝑥 (𝐶) ∈ 𝒜(𝑌 ). 2

Lemma 4.8.5 Assume that Assumptions 4.2.1 and 4.2.2 hold true. Let 0 ≤ 𝑡 ≤
𝑇 − 1, 𝐵 ∈ ℬ(R). Introduce the following functions

𝐹𝐵 : (𝜔𝑡, 𝑃, ℎ, 𝑥) ∈ Ω𝑡 ×P(Ω𝑡+1)× R𝑑 × R → 𝑃
(︀
𝑥+ ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ∈ 𝐵
)︀
, (4.92)

𝐻𝐵 : (𝜔𝑡, ℎ, 𝑥) ∈ Ω𝑡 × R𝑑 × R → inf
𝑃∈𝒬𝑡+1(𝜔𝑡)

𝑃 (𝑥+ ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) ∈ 𝐵), (4.93)

𝐾𝐵 : (𝜔𝑡, ℎ) ∈ Ω𝑡 × R𝑑 → sup
𝑃∈𝒬𝑡+1(𝜔𝑡)

𝑃 (𝑥+ ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) ∈ 𝐵). (4.94)

Then 𝐹𝐵 is ℬ(Ω𝑡)⊗ℬ(P(Ω𝑡+1))⊗ℬ(R𝑑)⊗ℬ(R)-measurable, 𝐻𝐵 ∈ ℒ𝑆𝐴(Ω𝑡×R𝑑×R)
and 𝐾𝐵 ∈ 𝒰𝑆𝐴(Ω𝑡 × R𝑑).

Proof. Applying [13, Proposition 7.29 p144], with 𝑌 = Ω𝑡+1, 𝑋 = Ω𝑡 × P(Ω𝑡+1) ×
R𝑑 × R, 𝑓(𝜔𝑡+1, 𝜔

𝑡, 𝑃, 𝑥, ℎ) = 1𝑥+ℎΔ𝑆𝑡+1(𝜔𝑡,𝜔𝑡+1)∈𝐵(𝜔𝑡+1) (recall Assumption 4.2.2) and
the Borel-measurable stochastic kernel 𝑞(𝑑𝜔𝑡+1|𝜔𝑡, 𝑃, 𝑥, ℎ) = 𝑃 (𝑑𝜔𝑡+1), we get that
𝐹𝐵 is ℬ(Ω𝑡)⊗ ℬ(P(Ω𝑡+1))⊗ ℬ(R𝑑)⊗ ℬ(R)-measurable.
To prove that 𝐻𝐵 ∈ ℒ𝑆𝐴(Ω𝑡 × R𝑑 × R), we apply [13, Proposition 7.47 p179] to 𝐹𝐵
with 𝑋 = Ω𝑡 × R𝑑 × R, 𝑌 = P(Ω𝑡+1) and

𝐷 =
{︀
(𝜔𝑡, ℎ, 𝑥, 𝑃 ) ∈ Ω𝑡 × R𝑑 × R×P(Ω𝑡+1), (𝜔

𝑡, 𝑃 ) ∈ Graph(𝒬𝑡+1)
}︀

∈ 𝒜(Ω𝑡 × R𝑑 × R×P(Ω𝑡+1))
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(recall Assumption 4.2.1 and [13, Proposition 7.38 p165]). Using Lemma 4.8.4
and the fact that sup𝑃∈𝒬𝑡+1(𝜔𝑡) 𝑃 (𝑥 + ℎΔ𝑆𝑡+1(𝜔

𝑡, ·) ∈ 𝐵) = 1 − inf𝑃∈𝒬𝑡+1(𝜔𝑡) 𝑃 (𝑥 +

ℎΔ𝑆𝑡+1(𝜔
𝑡, ·) ∈ 𝐵𝑐) we obtain (4.94). 2

Lemma 4.8.6 Let 𝑋 be a Polish space and Λ be an R𝑑-valued random.

i) Assume that Graph(Λ) ∈ ℬ𝑐(𝑋) ⊗ ℬ(R𝑑). Then Graph(Λ) ∈ ℬ𝑐(𝑋) ⊗ ℬ(R𝑑)

where Λ is defined by Λ(𝑥) = Λ(𝑥) for all 𝑥 ∈ 𝑋 (where the closure is taken in
R𝑑).

ii) Assume now that Λ is open valued and that Graph(Λ) ∈ 𝒞𝐴(𝑋 × R𝑑). Then
Graph(Λ) ∈ ℬ𝑐(𝑋)⊗ ℬ(R𝑑).

Proof. We prove 𝑖). Applying [116, Theorem 14.8 p648] (recall that ℬ𝑐(𝑋) is com-
plete) we obtain that Λ is ℬ𝑐(𝑋)-measurable (see Definition 2.8.19 in Chapter 2)
and using then [3, Theorem 18.6 p596] we get that Graph(Λ) ∈ ℬ𝑐(𝑋)⊗ ℬ(R𝑑).
We prove now 𝑖𝑖). Fix some open set 𝑂 ⊂ R𝑑 and let Λ𝑐(𝑥) = R𝑑∖Λ(𝑥). Then applying
[13, Proposition 7.39 p165] we get that

{𝑥 ∈ 𝑋, Λ𝑐(𝑥) ∩𝑂 ̸= ∅} = 𝑃𝑟𝑜𝑗𝑋 ((𝑋 ×𝑂) ∩ Graph(Λ𝑐)) ∈ 𝒜(𝑋) ⊂ ℬ𝑐(𝑋),

since𝑋×𝑂 ∈ ℬ(𝑋)⊗ℬ(R𝑑) ⊂ 𝒜(𝑋×R𝑑) (see (4.1)) and Graph(Λ𝑐) =
(︀
𝑋 × R𝑑

)︀
∖Graph(Λ) ∈

𝒜(𝑋 × R𝑑). Thus Λ𝑐 is ℬ𝑐(𝑋)-measurable and as Λ𝑐 is closed valued, we can apply
[116, Theorem 14.8 p648] and we get that Graph(Λ𝑐) ∈ ℬ𝑐(𝑋) ⊗ ℬ(R𝑑). The fact
that Graph(Λ) ∈ ℬ𝑐(𝑋)⊗ ℬ(R𝑑) follows immediatly. 2





CHAPTER 5

Asymptotic of utility indifference
prices to the superreplication

price in a multiple-priors
framework

The content of this chapter is very close to [19] which will be submitted soon for
publication.

This chapter formulates an utility indifference pricing model for investors trad-
ing in a discrete time financial market under non-dominated model uncertainty.
The investors preferences are described by strictly increasing concave random func-
tions defined on the positive axis. We prove that under suitable conditions the
multiple-priors utility indifference prices of a contingent claim converge to its multiple-
priors superreplication price when the investors absolute risk-aversion tends to in-
finity. We also revisit the notion of certainty equivalent for random utility functions
and establish its relation with the absolute risk aversion.

5.1 Introduction
In this chapter, we are interested in different notions of prices for a contingent
claim and their relation in the context of uncertainty. Risk and uncertainty are
at the heart of economic life and modeling the way an agent will react to them
is a central thematic of the economic research (see for instance [68]). By uncer-
tainty we refer to Knightian uncertainty and we distinguish between the know
unknown (risk) and unknown unknown (uncertainty) as introduced by F. Knight
([90]). In different words the agent cannot be certain about the choice of a given
prior to model the outcome of a situation. Issues related to uncertainty arise in
various concrete situations in social science and economics such as policy making
but also in many aspects of modern finance such as model risk when pricing and
risk managing complex derivatives products or capital requirement quantification
when looking at the banks regulation and others financial entities. As illustrated
for instance in the Ellsberg Paradox (see [58]), when facing uncertainty an agent
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displays uncertainty aversion: she tends to prefer a situation where the unknown
unknown is reduced. This is the pendant of the risk aversion when the agent faces
only risk. And it is well know that if one want to represent the preferences of
the agent in this context, the axiomatic of the von Neumann and Morgenstern ex-
pected utility criterium (see [126]) are not verified even if the Savage’s extension
(see [120]), where subjective probability measures depending on each agent are
introduced, is considered. In this chapter, we follows the pioneering approach in-
troduced by [69] where under suitable axiomatic on the investor preferences, the
utility functional is of the form of a worst case expected utility: inf𝑃∈𝒬𝐸𝑃𝑈(·, 𝑋),
where 𝒬 is the set of all possible probability measures representing the agent be-
liefs. Note that this approach can also be used for robustness considerations where
a set of models resulting from small perturbations of the initial reference model is
taken. This is related for instance to the work of [73] where a term corresponding
to the relative entropy given a certain reference probability measure is added to
the utility functional. The framework of [69] was extended by [94] who introduced
a penalty term to the utility functional. Finally, [39] represent the preferences by
a more general functional inf𝑃∈𝒬𝐺(𝐸𝑃𝑈(𝑋), 𝑃 ) where 𝐺 is a so-called uncertainty
index reflecting the decision maker’s attitudes toward uncertainty.

From an economical and practical point of view an important and welcomed
feature is to consider a set of probability measures 𝒬 which is a non-dominated.
This means that no probability measure determines the set of events that can hap-
pen or not. The relevance of this idea is illustrated by the concrete example of
volatility uncertainty, see [5], [93] and [59]. However this raises significantly the
mathematical difficulty as some of the classical tools of probability theory such as
conditional expectation or essential supremum are ill-suited (since they are defined
with respect to a given probability measure). These type of issues have contributed
to the development of innovative mathematical tools such as quasi-sure stochastic
analysis, non-linear expectations, G-Brownian motions. On these topics, we refer
amongst others to [104], [124] or [43].

The No Arbitrage (NA) notion is central to many problems in quantitative fin-
ance. It asserts that starting from a zero wealth it is not possible to reach a positive
one (non negative almost surely and strictly positive with strictly positive probab-
ility). The characterisation of this condition or of the No Free Lunch condition is
called the Fundamental Theorem of Asset Pricing (FTAP in short) and makes the
link between those notions and the existence of equivalent risk-neutral probability
measures (also called martingale measures or pricing measures) which are equi-
valent probability measures that turn the (discounted) asset price process into a
martingale. This was initially formalised in [74], [75] and [92] while [46] obtain
the FTAP in a general discrete time setting under the NA condition. The literature
on the subject is huge and we refer to [49] for a general overview. The martingale
measures allow for pricing issues and an other fundamental result, the Super-
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hedging Theorem (see for instance [57], [44]) relates those pricing measures to the
set of no-arbitrage prices for a given contingent claim. The so-called superreplic-
ation price is the minimal amount needed for an agent selling a claim in order to
superreplicate it by trading in the market. To the best of our knowledge it was
first introduced in [11] in the context of transaction costs. This is a hedging price
with no risk but unfortunately it is not always of practical use as it is often to
onerous: for example the superreplication price of a call option may be equal to the
underlying initial price in an incomplete market (see [45]).

All these concepts have seen a renewed interest in the context of uncertainty,
see amongst others [114], [1], [10], [54], [25], [38], [6], [28] and [40]. In this chapter,
we have chosen to work under the discrete time framework introduced in [25]. We
outline briefly in Section 5.2.1 some of the interesting features of this framework,
in particular with respect to time-consistency.

Utility indifference price or reservation price was first introduced in [82] in the
context of transaction costs as the minimal amount of money to be paid to an agent
selling a contingent claim 𝐺 so that added to her initial capital, her utility when
selling 𝐺 and hedging it by trading dynamically in the market is greater or equal
to the one she would get without selling this product (see Definition 5.2.13). This
notion of price is linked to certainty equivalent and allows to take into account the
preferences of the agent. Unfortunately it is very difficult to compute outside the
constant absolute risk aversion case (i.e. for exponential utility functions).

Note also that the notions of superreplication or utility indifference pricing can
be related to the concept of risk measures introduced by [4] as illustrated in Pro-
positions 5.2.18 and 5.2.19. For more details on risk measures in the context of
multiple-priors we refer for instance to [61], [17] and more recently [8].

Intuitively speaking, the utility indifference price allows for some preference
base risk-seeking behavior while the superreplication price corresponds to a totally
risk averse agent (see Theorem 5.4.8). In the chapter we investigate the effect
of increasing risk aversion on utility based prices: when absolute risk aversion
tends to infinity, the reservation price should tend to the superreplication price.
Our main contribution is presented in Theorem 5.4.8. We consider a sequence
of investors whose preferences are represented by a sequence of random utility
functions (see Definition 5.2.11) trading in a discrete-time financial market in the
presence of uncertainty. We establish that under suitable conditions, the multiple-
priors utility indifference prices of a given contingent claim (for the seller) converge
to its multiple-priors superreplication price. For non random utility functions those
conditions are implied by the convergence to infinity of the absolute risk-aversion
(see Definition 5.3.1) of the agents.

In the mono-prior case for constant absolute risk averse agents, the convergence
of reservation prices to the superreplication price was shown by [118] for Brownian
models and in [48] in a general semimartingale setting. A nonexponential case was
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treated in [24], but with severe restrictions on the utility functions. The case of
general utilities was considered in [30] in discrete-time market models and in [32]
for continuous time ones.

To the best of your knowledge Theorem 5.4.8 is the first general asymptotic res-
ult in the multiple-priors framework. Note that simultaneously [7] obtains some
convergence result for constant absolute risk averse agents. In Theorem 5.4.10,
we apply Theorem 5.4.8 and prove that the convergence result occurs for a large
class of non-random utility functions while in Proposition 5.4.11 we obtain the
pendant asymptotic result for the multiple-priors subreplication and utility indif-
ference buyer prices. We also show the convergence of the associated risk measures
(see Proposition 5.4.9). To solve our problem, we use some arguments of [30] that
are adapted to our multiple-priors framework together with results of [25] (namely
Theorems 2.2 and 2.3). We also use some elements of quasi-sure stochastic analysis
as developed in [53] and [51].

We revisit as well in a static context, the notion of certainty equivalent intro-
duced in [108]. We extend it for random utility functions and in the presence of
multiple-priors and we establish that the absolute risk aversion allows to rank the
multiple-priors certainty equivalent despite the presence of uncertainty aversion
(see Proposition 5.3.4). This part is also related to [67] where an alternative no-
tion of indifference buyer (and seller) prices are introduced for non-random utility
functions in a static setting under the representation of [39].

The chapter is structured as follows: Section 5.2 presents our framework, some
definitions and results needed in the rest of the chapter. Section 5.3 revisits the
link between certainty equivalent and absolute risk aversion in our set-up. Section
5.4 presents the main theorem on the convergence of the utility indifference prices
to the superreplication price. Finally, section 5.5 contains the remaining proofs and
technical results.

5.2 The model
This section presents our multiple-priors framework and the definitions of the sub-
and superreplication prices and of the utility buyer and seller indifference prices.

5.2.1 Uncertainty modelisation
We model uncertainty as in [25] and [99]. We use the same framework and nota-
tions as in in Chapter 3 and 4.
For any Polish space 𝑋 (𝑖.𝑒 complete and separable metric space), we denote by
ℬ(𝑋) its Borel sigma-algebra and by P(𝑋) the set of all probability measures
on (𝑋,ℬ(𝑋)). For some 𝑃 ∈ P(𝑋) fixed, we denote by ℬ𝑃 (𝑋) the completion of
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ℬ(𝑋) with respect to 𝑃 and we introduce the universal sigma-algebra defined by
ℬ𝑐(𝑋) :=

⋂︀
𝑃∈P(𝑋) ℬ𝑃 (𝑋). It is clear that ℬ(𝑋) ⊂ ℬ𝑐(𝑋). In the rest of the chapter,

we will use the same notation for 𝑃 ∈ P(𝑋) and for its (unique) extension on
ℬ𝑐(𝑋). For a given 𝒬 ⊂ P(𝑋), a set 𝑁 ⊂ 𝑋 is called a 𝒬-polar if for all 𝑃 ∈ 𝒬,
there exists some 𝐴𝑃 ∈ ℬ𝑐(𝑋) such that 𝑃 (𝐴𝑃 ) = 0 and 𝑁 ⊂ 𝐴𝑃 . We say that a
property holds true 𝒬-quasi-surely (q.s.), if it is true outside a 𝒬-polar set. Finally
we say that a set is of 𝒬-full measure if its complement is a 𝒬-polar set. A function
𝑓 : 𝑋 → 𝑌 (where 𝑌 is an other Polish space) is universally-measurable or ℬ𝑐(𝑋)-
measurable (resp. Borel-measurable or ℬ(𝑋)-measurable) if for all 𝐵 ∈ ℬ(𝑌 ),
𝑓−1(𝐵) ∈ ℬ𝑐(𝑋) (resp. 𝑓−1(𝐵) ∈ ℬ(𝑋)). Similarly we will speak of universally-
adapted or universally-predictable (resp. Borel-adapted or Borel-predictable) pro-
cesses.
We fix a time horizon 𝑇 ∈ N and introduce a sequence (Ω𝑡)1≤𝑡≤𝑇 of Polish spaces.
We denote by Ω𝑡 := Ω1 × · · · × Ω𝑡, with the convention that Ω0 is reduced to a
singleton. An element of Ω𝑡 will be denoted by 𝜔𝑡 = (𝜔1, . . . , 𝜔𝑡) = (𝜔𝑡−1, 𝜔𝑡) for
(𝜔1, . . . , 𝜔𝑡) ∈ Ω1 × · · · × Ω𝑡 and (𝜔𝑡−1, 𝜔𝑡) ∈ Ω𝑡−1 × Ω𝑡 (to avoid heavy notation we
drop the dependency in 𝜔0). For all 0 ≤ 𝑡 ≤ 𝑇 − 1, we denote by 𝒮𝐾𝑡+1 the set of
universally-measurable stochastic kernel on Ω𝑡+1 given Ω𝑡 (see [13, Definition 7.12
p134, Lemma 7.28 p174] ). Fix some 1 ≤ 𝑡 ≤ 𝑇 , 𝑃𝑡−1 ∈ P(Ω𝑡−1) and 𝑝𝑡 ∈ 𝒮𝐾𝑡. Using
Fubini’s Theorem, see [13, Proposition 7.45 p175], we define a probability measure
on ℬ𝑐(Ω𝑡) as follows

𝑃𝑡−1 ⊗ 𝑝𝑡(𝐴) :=

∫︁
Ω𝑡−1

∫︁
Ω𝑡

1𝐴(𝜔
𝑡−1, 𝜔𝑡)𝑝𝑡(𝑑𝜔𝑡, 𝜔

𝑡−1)𝑃𝑡−1(𝑑𝜔
𝑡−1), (5.1)

where 𝐴 ∈ ℬ𝑐(Ω𝑡). To model the uncertainty we consider a family of random sets
𝒬𝑡+1 : Ω

𝑡 � P(Ω𝑡+1), for all 0 ≤ 𝑡 ≤ 𝑇 − 1. The set 𝒬𝑡+1(𝜔
𝑡) can be seen as the set of

all possible models for the 𝑡 + 1-th period given the state 𝜔𝑡 until time 𝑡. From the
random sets (𝒬𝑡+1)0≤𝑡≤𝑇−1 we build the sets of probability measures (𝒬𝑡)1≤𝑡≤𝑇 where
𝒬𝑡 governs the market until time 𝑡 and determines which events are relevant or not
in ℬ𝑐(Ω𝑡). To do that, as in [25], [99], we have to make the following assumption
which is now classical in the recent litterature on multiple-priors model.

Assumption 5.2.1 For all 0 ≤ 𝑡 ≤ 𝑇 − 1, 𝒬𝑡+1 is a non-empty and convex valued
random set such that Graph(𝒬𝑡+1) = {(𝜔𝑡, 𝑃 ) ∈ Ω𝑡 ×P(Ω𝑡+1), 𝑃 ∈ 𝒬𝑡+1(𝜔

𝑡)} is an
analytic set.

Recall that an analytic set is the continuous image of some Polish space, see [3,
Theorem 12.24 p447]), see also [13, Chapter 7] for more details on analytic sets.
Assumption 5.2.1 allows to apply the Jankov-von Neumann Theorem (see [13, Pro-
position 7.49 p182]) and gets some universally-measurable selector 𝑞𝑡+1 of 𝒬𝑡+1.
Then, for each time 1 ≤ 𝑡 ≤ 𝑇 , the set 𝒬𝑡 ⊂ P(Ω𝑡) is completely determined by the
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random sets of one-step models 𝒬𝑠+1 (for 𝑠 = 0, · · · , 𝑡− 1) in the following way

𝒬𝑡 := {𝑄1 ⊗ 𝑞2 ⊗ · · · ⊗ 𝑞𝑡, 𝑄1 ∈ 𝒬1, 𝑞𝑠+1 ∈ 𝒮𝐾𝑠+1, (5.2)
𝑞𝑠+1(·, 𝜔𝑠) ∈ 𝒬𝑠+1(𝜔

𝑠) 𝑄𝑠-a.s. 𝑠 ∈ {1, . . . , 𝑡− 1}},

where we denote 𝑄𝑠 := 𝑄1 ⊗ 𝑞2 ⊗ · · · ⊗ 𝑞𝑠 for any 2 ≤ 𝑠 ≤ 𝑡.
The technical Assumption 5.2.1 plays a key role to obtain measurability proper-
ties required to prove the FTAP, the Superreplication Theorem and also to apply a
dynamic programming procedure in multiple-priors utility maximisation problem
(see for instance [99], [7] or [98] and also Chapter 4). More precisely, if𝑋𝑡+1 : Ω

𝑡+1 →
R is lower-semianalytic (see [13, Definition 7.21]), then 𝑋𝑡 : Ω𝑡 → R defined by
𝑋𝑡(𝜔

𝑡) = inf𝑃∈𝒬𝑡+1(𝜔𝑡)

∫︀
Ω𝑡+1

𝑋𝑡+1(𝜔
𝑡, 𝜔𝑡+1)𝑃 (𝑑𝜔𝑡+1) remains lower-semianalytic. More

generally, this framework allows to construct families of dynamic sublinear expect-
ations (see [25, Lemma 4.10] and also [8]). For similar issues in the continuous-
time setting we also refer also amongst others to [102], [101] and [59]. Apart from
Assumption 5.2.1, we make no specific assumptions on the set of priors: 𝒬𝑇 is
neither assumed to be dominated by a given reference probability measure nor to
be weakly compact. For example, in the continuous-time case, dominated set of pri-
ors can arise when there is uncertainty on the drift of the underlying process while
non-dominated set of priors may arise if there is uncertainty on the volatility of
this process (see for example [59]). In the case of volatility uncertainty, the corres-
ponding set is however weakly compact (see for instance [5], [93], [52, Proposition
3]) and also [59].

We focus briefly on the time-consistency issue: how are the agent decisions or
risk evaluations at different times interrelated once the information has been up-
dated. Roughly speaking, time-consistency means that a decision taken tomorrow
will satisfies today’s objective. Recall that this issue appears already in mono-prior
setting, in the study of dynamic risk measures for instance, and is linked with the
law of iterated conditional expectations and the dynamic programming principle.
We refer to the surveys [2] and [16] for detailed overviews.
Now when introducing multiple-priors one has to be even more careful with time-
consistency. In [113, Appendix D] a simple example illustrates what can hap-
pen if one is not cautious on the structure of the initial set of priors: one cannot
hope to find an optimal solution using the dynamic programming principle when
trying for instance to maximise a worst case expected utility problem. To deal
with this, one has to assume that the set of prior is stable under pasting which
roughly means that different priors can be mixed together (see [113, Assumption
4]). Given (5.2), it is clear that our set of priors are stable under pasting. In-
deed, if 𝑄1, 𝑄2 ∈ 𝒬𝑇 with 𝑄1 = 𝑄1

1 ⊗ 𝑞12 ⊗ · · · ⊗ 𝑞1𝑇 , 𝑄2 = 𝑄2
1 ⊗ 𝑞22 ⊗ · · · ⊗ 𝑞2𝑇 , then

𝑅 := 𝑄1
1 ⊗ 𝑞12 · · · ⊗ 𝑞1𝑡−1 ⊗ 𝑞2𝑡 ⊗ · · · ⊗ 𝑞2𝑇 ∈ 𝒬𝑇 for all 2 ≤ 𝑡 ≤ 𝑇 − 1. In other words,
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the set 𝒬𝑇 is large enough (unlike in the example considered in [113, Appendix D]
). In [60, Definition 3.1] the equivalent notion of rectangularity is introduced (see
also [60, Sections 3, 4] for more details and a graphical interpretation). An im-
portant feature of rectangularity is that it implies that the set of priors is uniquely
determined by the set of one-step-ahead priors: this is an other way to verify that
our approach satisfies this property (see (5.2)).

For 1 ≤ 𝑡 ≤ 𝑇 fixed, we introduce the following spaces

𝒲0
𝑡 :=

{︀
𝑋 : Ω𝑡 → R ∪ {±∞}, ℬ𝑐(Ω𝑡)-measurable

}︀
,

𝒲∞
𝑡 := 𝒲0

𝑡 ∩
{︀
𝑋, ∃𝑀 ≥ 0, |𝑋| ≤𝑀 𝒬𝑡-q.s.

}︀
.

Finally, we will add a superscript + when considering non-negative elements (it
will be also used for denoting positive parts).

5.2.2 The traded assets and the trading strategies

Let 𝑆 := {𝑆𝑡, 0 ≤ 𝑡 ≤ 𝑇} be a universally-adapted 𝑑-dimensional process where for
0 ≤ 𝑡 ≤ 𝑇 , 𝑆𝑡 = (𝑆𝑖𝑡)1≤𝑖≤𝑑 represents the price of 𝑑 risky securities in the financial
market in consideration. To solve measurability issues, we make the following
assumption already present in [25] and [99].

Assumption 5.2.2 The price process 𝑆 is Borel-adapted.

Trading strategies are represented by universally-adapted 𝑑-dimensional processes
𝜑 := {𝜑𝑡, 1 ≤ 𝑡 ≤ 𝑇} where for all 1 ≤ 𝑡 ≤ 𝑇 , 𝜑𝑡 = (𝜑𝑖𝑡)1≤𝑖≤𝑑 represents the investor’s
holdings in each of the 𝑑 assets at time 𝑡. The set of trading strategies is denoted
by Φ.
We assume that trading is self-financing and that the riskless asset’s price is con-
stant equal to 1. The value at time 𝑡 of a portfolio 𝜑 starting from initial capital
𝑥 ∈ R is given by 𝑉 𝑥,𝜑

𝑡 = 𝑥+
∑︀𝑡

𝑠=1 𝜑𝑠Δ𝑆𝑠.

5.2.3 Multiple-priors no-arbitrage condition

As already eluded to in the introduction, the issue of no-arbitrage in the context of
uncertainty has seen a renewed interest. In this chaptuer we follow the definition
introduced by [25] that we recall below. We outline briefly some of the interesting
feature of this definition. First it looks like a natural and intuitive extension of the
classical mono-prior arbitrage condition. This argument is strengthened by the
FTAP generalisation proved by [25]. Under appropriated measurability conditions
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the 𝑁𝐴(𝒬𝑇 ) is equivalent to the following: for all 𝑄 ∈ 𝒬𝑇 , there exists some 𝑃 ∈ ℛ𝑇

such that 𝑄≪ 𝑃 where

ℛ𝑇 := {𝑃 ∈ P(Ω𝑇 ), ∃𝑄′ ∈ 𝒬𝑇 , 𝑃 ≪ 𝑄
′
and 𝑃 is a martingale measure}. (5.3)

The classical notion of equivalent martingale measure is replaced by the fact that
for all priors 𝑄 ∈ 𝒬𝑇 , there exists a martingale measure 𝑃 such that 𝑄 is absolutely
continuous with respect to 𝑃 and one can find an other prior 𝑄′ ∈ 𝒬𝑇 such that 𝑃 is
absolutely continuous with respect to𝑄′. The extension in the same multiple-priors
setting of the Superhedging Theorem and subsequent results on worst-case expec-
ted utility maximisation (see [99], [7], [98] and Chapter 4) is an other convincing
element.

Assumption 5.2.3 The 𝑁𝐴(𝒬𝑇 ) condition holds true if for 𝜑 ∈ Φ, 𝑉 0,𝜑
𝑇 ≥ 0 𝒬𝑇 -q.s.

implies that 𝑉 0,𝜑
𝑇 = 0 𝒬𝑇 -q.s.

For the convenience of the reader we recall the following definition and pro-
position from Chapter 3 (see Sections 3.3 and 3.4) concerning the multiple-priors
conditional support of the price increments or more precisely of its affine hull (de-
noted by Aff).

Definition 5.2.4 For all 0 ≤ 𝑡 ≤ 𝑇 − 1 we define the random set 𝐷𝑡+1 : Ω𝑡 � R𝑑 by

𝐷𝑡+1(𝜔𝑡) := Aff
(︁⋂︁{︁

𝐴 ⊂ R𝑑, closed, 𝑃𝑡+1

(︀
Δ𝑆𝑡+1(𝜔

𝑡, .) ∈ 𝐴
)︀
= 1, ∀𝑃𝑡+1 ∈ 𝒬𝑡+1(𝜔

𝑡)
}︁)︁

.

(5.4)

Proposition 5.2.5 Assume that the 𝑁𝐴(𝒬𝑇 ) condition and Assumptions 5.2.1,
5.2.2 hold true. Then for all 0 ≤ 𝑡 ≤ 𝑇 − 1, there exists some 𝒬𝑡-full measure set
Ω𝑡
𝑁𝐴 ∈ ℬ𝑐(Ω𝑡) such that for all 𝜔𝑡 ∈ Ω𝑡

𝑁𝐴, 𝐷𝑡+1(𝜔𝑡) is a vector space. For all 𝜔𝑡 ∈ Ω𝑡
𝑁𝐴

there exists 𝛼𝑡(𝜔𝑡) > 0 such that for all ℎ ∈ 𝐷𝑡+1(𝜔𝑡) there exists 𝑃ℎ ∈ 𝒬𝑡+1(𝜔
𝑡)

satisfying

𝑃ℎ

(︂
ℎ

|ℎ|
Δ𝑆𝑡+1(𝜔

𝑡, .) < −𝛼𝑡(𝜔𝑡)
)︂
> 𝛼𝑡(𝜔

𝑡). (5.5)

Note that in Theorem 3.4.7 Chapter 3, the equivalence between Assumption 5.2.3
and condition 5.5 is established.
For all 𝑥 ≥ 0, we introduce the set of terminal wealth including the possibility of
throwing away money defined by

𝒞𝑇𝑥 := {𝑉 𝑥,𝜑
𝑇 , 𝜑 ∈ Φ} −𝒲0,+

𝑇 . (5.6)

In the sequel we will write 𝑋 ∈ 𝒞𝑇𝑥 if there exists some 𝜑 ∈ Φ and 𝑍 ∈ 𝒲0,+
𝑇 such

that 𝑋 = 𝑉 𝑥,𝜑
𝑇 − 𝑍 𝒬𝑇 q.s. Under the assumptions of Lemma 5.2.6 (which will

be crucial in Section 5.4), the set 𝒞𝑇𝑥 has a classical closure property (in the 𝒬𝑇

quasi-sure sense, see [25, Theorem 2.2]).
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Lemma 5.2.6 Assume that Assumptions 5.2.2 and 5.2.3 hold true. Fix some 𝑧 ≥ 0

and let 𝐵 ∈ 𝒲0
𝑇 such that 𝐵 /∈ 𝒞𝑇𝑧 . Then there exists some 𝜀 > 0 such that

inf
𝜑∈Φ

sup
𝑃∈𝒬𝑇

𝑃 (𝑉 𝑧,𝜑
𝑇 < 𝐵 − 𝜀) > 𝜀. (5.7)

Proof. Assume that (5.7) does not hold true. Then, for all 𝑛 ≥ 1, there exist some
𝜑𝑛 ∈ Φ such that 𝑃 (𝑉𝑛 < 𝐵 − 1

𝑛
) ≤ 1

𝑛
for all 𝑃 ∈ 𝒬𝑇 , where 𝑉𝑛 := 𝑉 𝑧,𝜑𝑛

𝑇 . Set 𝐾𝑛 :=(︀
𝑉𝑛 − (𝐵 − 1

𝑛
)
)︀
1{𝑉𝑛≥𝐵− 1

𝑛
} ∈ 𝒲0,+

𝑇 , then 𝑉𝑛 − 𝐾𝑛 ∈ 𝒞𝑇𝑧 . Moreover 𝑃 (|𝑉𝑛 − 𝐾𝑛 − 𝐵| >
1
𝑛
) = 𝑃 (𝑉𝑛 < 𝐵− 1

𝑛
) ≤ 1

𝑛
for all 𝑃 ∈ 𝒬𝑇 . Thus lim𝑛→∞ sup𝑃∈𝒬𝑇 𝑃 (|𝑉𝑛−𝐾𝑛−𝐵| > 1

𝑛
) = 0

for any 1
𝑛
> 0 and using Proposition 5.5.1, there exists a subsequence (𝑛𝑘)𝑘≥1 such

that (𝑉𝑛𝑘
−𝐾𝑛𝑘

)𝑘≥1 converges to 𝐵 𝒬𝑇 -q.s. (i.e. on a 𝒬𝑇 -full measure set). Applying
[25, Theorem 2.2], we get that 𝐵 ∈ 𝒞𝑇𝑧 , a contradiction. 2

Remark 5.2.7 Note that to apply [25, Theorem 2.2] we do not need Assumptions
5.2.1 to hold true. Similarly it applies under a weaker assumption than Assump-
tion 5.2.2.

5.2.4 Multiple-priors superreplication and subreplication prices
The multiple-priors superreplication price is the minimal initial amount that an
agent will ask for delivering some contingent claim 𝐺 ∈ 𝒲0

𝑇 so that she is fully
hedged at 𝑇 when trading in the market. The multiple-priors subreplication price
is the maximal amount an agent will accept to pay in order to receive some con-
tingent claim while being fully hedge at 𝑇 by trading in the market. Note that
the superreplication price is a seller price while the subreplication price is a buyer
price. We also introduce the set of strategies which dominate 𝐺 𝒬𝑇 -q.s. starting
from a given wealth 𝑥 ∈ R

𝒜(𝐺, 𝑥) :=
{︁
𝜑 ∈ Φ, 𝑉 𝑥,𝜑

𝑇 ≥ 𝐺 𝒬𝑇q.s.
}︁
. (5.8)

Definition 5.2.8 Let 𝐺 ∈ 𝒲0
𝑇 . The multiple-priors superreplication price of 𝐺 is

defined by

𝜋(𝐺) := inf {𝑧 ∈ R, 𝒜(𝐺, 𝑧) ̸= ∅} , (5.9)

and 𝜋(𝐺) = +∞ if 𝒜(𝐺, 𝑧) = ∅ for all 𝑧 ∈ R. The multiple-priors subreplication
price of 𝐺 is defined by

𝜋𝑠𝑢𝑏(𝐺) := sup {𝑧 ∈ R, 𝒜(−𝐺,−𝑧) ̸= ∅} , (5.10)

and 𝜋𝑠𝑢𝑏(𝐺) = −∞ if 𝒜(−𝐺,−𝑧) = ∅ for all 𝑧 ∈ R.
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We recall now for the convenience of the reader [25, Theorem 2.3] slightly ad-
apted to our setup (the same comment as in Remark 5.2.7 applies)

Theorem 5.2.9 Assume that Assumptions 5.2.2 and 5.2.3 hold true and let 𝐺 ∈
𝒲0

𝑇 be fixed. Then 𝜋(𝐺) > −∞ and 𝒜(𝐺, 𝜋(𝐺)) ̸= ∅, 𝑖.𝑒. there exists some 𝜑𝐺 ∈ Φ

such that 𝑉 𝜋(𝐺),𝜑𝐺
𝑇 ≥ 𝐺 𝒬𝑇 -q.s.

If𝐺 is replicable, 𝑖.𝑒. if there exists some 𝑥𝐺 and 𝜑𝐺 ∈ Φ such that𝐺 = 𝑉 𝑥𝐺,𝜑𝐺
𝑇 𝒬𝑇 -

q.s., then 𝜋(𝐺) = 𝑥𝐺 = 𝜋
(︁
𝑉 𝑥𝐺,𝜑𝐺
𝑇

)︁
. Note that under some measurability assumption

on 𝐺, the Superreplication Theorem is still true: 𝜋(𝐺) = sup𝑃∈ℛ𝑇 𝐸𝑃𝐺 (see [25,
Superhedging Theorem] and (5.3) for the definition of ℛ𝑇 ).

Note that if 𝐺 ∈ 𝒲∞
𝑇 , it is clear that 𝜋(𝐺) ≤ ||𝐺||∞. This is the case if 𝐺 repres-

ents the payoff of a put option or a digital but not for a call option. This illustrates
that the case 𝐺 ∈ 𝒲∞

𝑇 can be sometimes too restrictive especially in a multiple-
priors setting and explains why in the rest of the chapter, we will try to avoid
results limited to 𝒲∞

𝑇 . The price to pay is often related to integrability issues. The
next lemma resumes some basic results on superreplication prices.

Lemma 5.2.10 Let 𝐺 ∈ 𝒲0
𝑇 then 𝜋𝑠𝑢𝑏(𝐺) = −𝜋(−𝐺). Moreover 𝜋(𝐺) = +∞ if and

only if 𝒜(𝐺, 𝑧) = ∅ for all 𝑧 ∈ R. If Assumption 5.2.3 holds true then 𝜋(0) = 0 and if
𝐺 ∈ 𝒲0,+

𝑇 , then 𝜋(𝐺) = 0 implies that 𝐺 = 0 𝒬𝑇 -q.s.

Proof. The two asssertions are clear. Indeed by definition if 𝒜(𝐺, 𝑧) = ∅ for all
𝑧 ∈ R, then 𝜋(𝐺) = +∞. Assume that there exits some 𝑧 ∈ R such that 𝒜(𝐺, 𝑧) ̸= ∅,
then 𝜋(𝐺) ≤ 𝑧 < +∞.
By definition 𝜋(0) ≤ 0. Assume that 𝜋(0) < 0 and let 𝜀 > 0 such that 𝜋(0) < −𝜀.
Then there exists some 𝜑 ∈ Φ such that 𝑉 0,𝜑

𝑇 ≥ 𝜀 > 0𝒬𝑇 -q.s. a contradiction. For the
last assertion, assume that there exists some 𝑃 ∈ 𝒬𝑇 such that 𝑃 (𝐺(·) > 0) > 0.
Using Theorem 5.2.9 there exists 𝜑0 ∈ Φ such that 𝑉 𝜋(𝐺),𝜑0

𝑇 ≥ 𝐺 𝒬𝑇 -q.s. Thus
𝑃 (𝑉 0,𝜑0

𝑇 > 0) > 0 which contradics 𝑁𝐴(𝒬𝑇 ) . 2

We now turn to some pricing rules which takes into account the preferences of the
agents.

5.2.5 Utility functions and utility indifference prices
In this chapter we focus on utility function defined on the half-real line whose
definition follows.

Definition 5.2.11 A random utility function 𝑈 : Ω𝑇 × (0,∞) → R ∪ {−∞} satisfies
the following conditions

i) for every 𝑥 > 0, 𝑈 (·, 𝑥) : Ω𝑇 → R is universally-measurable,
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ii) for all 𝜔𝑇 ∈ Ω𝑇 , 𝑈
(︀
𝜔𝑇 , ·

)︀
: (0,∞) → R is concave, strictly increasing and twice

continuously differentiable on (0,∞).

We extend 𝑈 by (right) continuity in 0 and set 𝑈(·, 𝑥) = −∞ if 𝑥 < 0.

Example 5.2.12 We give some concrete examples of random utility functions. The
first one arises if the agent analyzes her gain or loss with respect to a (random)
reference point 𝐵 rather than with respect to zero has suggested for instance by
[88]. Formally, let 𝑈 be a non-random function satisfying Definition 5.2.11 and
𝐵 ∈ 𝒲∞,+

𝑇 . Set for all 𝜔𝑇 ∈ Ω𝑇 , 𝑥 ≥ 0, 𝑈(𝜔𝑇 , 𝑥) = 𝑈(𝑥 + ||𝐵||∞ − 𝐵(𝜔𝑇 )) and
𝑈(𝜔𝑇 , 𝑥) = −∞ for 𝑥 < 0. Then it is clear that 𝑈 satisfies also the condition of
Definition 5.2.11.
The second example allows to consider random absolute risk aversion (see Defin-
ition 5.3.1 for the precise statement of this concept). The idea is to use clas-
sical utility functions but with random coefficients. For example, we can consider
𝑈(𝜔𝑇 , 𝑥) = 𝑥𝛽1(𝜔

𝑇 ) or 𝑈(𝜔𝑇 , 𝑥) = −𝑒−𝛽2(𝜔𝑇 )𝑥 for 𝑥 ≥ 0 (and 𝑈(·, 𝑥) = −∞ for 𝑥 < 0)
where 𝛽1, 𝛽2 ∈ 𝒲0

𝑇 and 0 < 𝛽1(·) < 1, 𝛽2(·) > 0 𝒬𝑇 -q.s. We can imagine various situ-
ations for 𝛽2 (which can be easily adapted for 𝛽1): 𝛽2 can be uniformly distributed
on [𝛽𝑃𝑚𝑖𝑛, 𝛽

𝑃
𝑚𝑎𝑥] for all 𝑃 ∈ 𝒬𝑇 (with 𝛽𝑃𝑚𝑎𝑥 ≥ 𝛽𝑃𝑚𝑖𝑛 > 0) or alternatively it could follow

a Poisson law of parameter 𝜆𝑃 > 0 for all 𝑃 ∈ 𝒬𝑇 .

We now turn to pricing issues and first define some particular sets of strategies for
a claim 𝐺 ∈ 𝒲0

𝑇 and some 𝑥 ∈ R (recall (5.8))

Φ(𝑈,𝐺, 𝑥) :=
{︁
𝜑 ∈ Φ, 𝐸𝑃𝑈

+(·, 𝑉 𝑥,𝜑
𝑇 (·)−𝐺(·)) < +∞,∀𝑃 ∈ 𝒬𝑇

}︁
𝒜(𝑈,𝐺, 𝑥) := Φ(𝑈,𝐺, 𝑥) ∩ 𝒜(𝐺, 𝑥).

Note that for 𝑥 ≥ 𝜋(𝐺), 𝒜(𝑈,𝐺, 𝑥) might be empty. Indeed, from Theorem 5.2.9
there exists some 𝜑 ∈ 𝒜(𝐺, 𝑥), but 𝜑 might not belong to Φ(𝑈,𝐺, 𝑥). In Lemma
5.4.14 we will prove that under suitable conditions, 𝒜(𝐺, 𝑥) = 𝒜(𝑈,𝐺, 𝑥) for all
𝑥 ≥ 0. This is the reason why in Φ(𝑈,𝐺, 𝑥) we do not consider strategies such that
𝐸𝑃𝑈

−(·, 𝑉 𝑥,𝜑
𝑇 (·)−𝐺(·)) <∞.

We now introduce the quantity 𝑢(𝐺, 𝑥) which represents the maximum worst-
case expected utility starting from initial capital 𝑥 and delivering 𝐺 at the terminal
date

𝑢(𝐺, 𝑥) := sup
𝜑∈𝒜(𝑈,𝐺,𝑥)

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈
(︁
·, 𝑉 𝑥,𝜑

𝑇 (·)−𝐺(·)
)︁
, (5.11)

where we set 𝑢(𝐺, 𝑥) = −∞ if 𝒜(𝑈,𝐺, 𝑥) is empty.
We are now in position to define the (seller) multiple-priors utility indifference
price or reservation price, which generalizes in the presence of uncertainty, the
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concept introduced by [82]. It represents the minimal amount of money to be paid
to an agent selling a contingent claim 𝐺 so that added to her initial capital, her
multiple-priors utility when selling 𝐺 and hedging it by trading dynamically in
the market is greater or equal than the one she would get without selling this
product. Similarly the (buyer) multiple-priors utility indifference price represents
the maximum amount of money an agent is ready to pay in order to buy 𝐺 so that
substracted to her initial capital, her multiple-priors expected utility when buying
𝐺 and hedging it by trading dynamically in the market is greater or equal than the
one she would get without buying this product.

Definition 5.2.13 Let 𝐺 ∈ 𝒲0
𝑇 be a contingent claim. The (seller) multiple-priors

utility indifference price is given by

𝑝(𝐺, 𝑥) := inf {𝑧 ∈ R, 𝑢(𝐺, 𝑥+ 𝑧) ≥ 𝑢(0, 𝑥)} , (5.12)

where we set 𝑝(𝐺, 𝑥) = +∞ if 𝑢(𝐺, 𝑥 + 𝑧) < 𝑢(0, 𝑥), for all 𝑧 ∈ R. The (buyer)
multiple-priors utility indifference price is given by

𝑝𝐵(𝐺, 𝑥) := sup {𝑧 ∈ R, 𝑢(−𝐺, 𝑥− 𝑧) ≥ 𝑢(0, 𝑥)} , (5.13)

where we set 𝑝𝐵(𝐺, 𝑥) = −∞ if 𝑢(−𝐺, 𝑥− 𝑧) < 𝑢(0, 𝑥), for all 𝑧 ∈ R.

It is easy to see that 𝑝𝐵(𝐺, 𝑥) = −𝑝(−𝐺, 𝑥). We will see in Lemma 5.4.14, that un-
der suitable integrability conditions, 𝑝(𝐺, 𝑥) ≤ 𝜋(𝐺) for all 𝐺 ∈ 𝒲0,+

𝑇 . Whatever
the preference of the agent is, she will always evaluate a reservation price which
is lower than the superreplication price. The superreplication price is, in the sense
that we will precise below, the price corresponding to an infinite absolute risk
averse agent. The following proposition presents some other properties.

Proposition 5.2.14 We fixe some 𝑥 ≥ 0 and assume that Assumptions 5.2.2 and
5.2.3 hold true and that 𝑢(0, 𝑥) > −∞.
1. For any 𝐺 ∈ 𝒲0

𝑇 , 𝑝(𝐺, 𝑥) ≥ 𝜋(𝐺) − 𝑥 > −∞, 𝑝𝐵(𝐺, 𝑥) ≤ 𝜋𝑠𝑢𝑏(𝐺) + 𝑥 < ∞. In
particular −𝑥 ≤ 𝑝(0, 𝑥) ≤ 0.
2. If 𝒜(𝑈,𝐺, 𝑥) = 𝒜(𝐺, 𝑥) then 𝑝(𝐺, 𝑥) ≥ 𝑝(0, 𝑥) for any 𝐺 ∈ 𝒲0,+

𝑇 .
3. If 𝑢(0, 𝑥− 𝛿) < 𝑢(0, 𝑥) for all 𝛿 > 0, then 𝑝(0, 𝑥) = 𝑝𝐵(0, 𝑥) = 0.

Proof. 1. For any 𝐺 ∈ 𝒲0
𝑇 since Assumptions 5.2.2 and 5.2.3 hold true, Theorem

5.2.9 yields to 𝜋(𝐺) > −∞. Let 𝑧 ∈ R be such that 𝑥 + 𝑧 < 𝜋(𝐺). By definition of
𝜋(𝐺), 𝒜(𝐺, 𝑥 + 𝑧) = ∅ and thus 𝑢(𝐺, 𝑥 + 𝑧) = −∞ (see (5.11)). This implies that
𝑢(𝐺, 𝑥 + 𝑧) < 𝑢(0, 𝑥) and recalling (5.12), we get that 𝑝(𝐺, 𝑥) > 𝑧. Letting 𝑧 go to
𝜋(𝐺)− 𝑥, we obtain that 𝑝(𝐺, 𝑥) ≥ 𝜋(𝐺)− 𝑥 > −∞. Applying the preceding inequal-
ity to −𝐺 and recalling (5.10) and (5.13), 𝑝𝐵(𝐺, 𝑥) ≤ 𝜋𝑠𝑢𝑏(𝐺)+𝑥 < +∞. By definition
𝑝(0, 𝑥) ≤ 0. Since from Lemma 5.2.10 𝜋(0) = 0, −𝑥 ≤ 𝑝(0, 𝑥) is immediate.
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2. The fact that 𝑝(𝐺, 𝑥) ≥ 𝑝(0, 𝑥) for 𝐺 ∈ 𝒲0,+
𝑇 follows from the monotonicity prop-

erty that will be proven in Proposition 5.2.19 below.
3. We assume now that 𝑢(0, 𝑥 − 𝛿) < 𝑢(0, 𝑥) for all 𝛿 > 0. Then (5.12) implies that
𝑝(0, 𝑥) ≥ 0 and 𝑝(0, 𝑥) = 𝑝𝐵(0, 𝑥) = 0 follows immediately. 2

Remark 5.2.15 Assume that 𝒜(𝑈, 0, 𝑦) = 𝒜(0, 𝑦) for all 𝑦 ∈ R, that 𝑢(0, 𝑥) > −∞ and
that

𝑙(𝑥) := inf
𝜑∈𝒜(𝑈,0,𝑥)

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈
′
(·, 𝑉 𝑥,𝜑

𝑇 (·)) > 0

then 𝑢(0, 𝑥− 𝛿) < 𝑢(0, 𝑥) for all 𝛿 > 0. Indeed fix some 𝛿 > 0, then

𝑈(·, 𝑉 𝑥−𝛿,𝜑
𝑇 (·)) + 𝛿𝑈 ′(·, 𝑉 𝑥,𝜑

𝑇 (·)) ≤ 𝑈(·, 𝑉 𝑥,𝜑
𝑇 (·)).

For all 𝜑 ∈ 𝒜(𝑈, 0, 𝑥− 𝛿) = 𝒜(0, 𝑥− 𝛿) ⊂ 𝒜(0, 𝑥) = 𝒜(𝑈, 0, 𝑥) we obtain that

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝑉 𝑥−𝛿,𝜑
𝑇 (·)) + 𝛿𝑙(𝑥) ≤ inf

𝑃∈𝒬𝑇
𝐸𝑃𝑈(·, 𝑉 𝑥−𝛿,𝜑

𝑇 (·)) + 𝛿 inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈
′(·, 𝑉 𝑥,𝜑

𝑇 (·))

≤ inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝑉 𝑥,𝜑
𝑇 (·)).

If 𝒜(𝑈, 0, 𝑥− 𝛿) = ∅, then 𝑢(0, 𝑥− 𝛿) = −∞ and there is nothing to prove. Otherwise,
for all 𝑛 ≥ 1, there exists some 𝜑𝑛 ∈ 𝒜(𝑈, 0, 𝑥− 𝛿) such that

𝑢(0, 𝑥− 𝛿) ≤ inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝑉 𝑥−𝛿,𝜑𝑛
𝑇 (·)) + 1

𝑛

≤ inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝑉 𝑥,𝜑𝑛
𝑇 (·)) + 1

𝑛
− 𝛿𝑙(𝑥) ≤ 𝑢(0, 𝑥) +

1

𝑛
− 𝛿𝑙(𝑥).

and taking 𝑛 > 1
𝛿𝑙(𝑥)

, we obtain that 𝑢(0, 𝑥− 𝛿) < 𝑢(0, 𝑥).

Remark 5.2.16 We discuss briefly the issue of finding a trading strategy that can
realize the (seller) multiple-priors utility indifference price. To do so, the two sides
of the inequation in (5.12) need to be evaluated. To evaluate 𝑢(0, 𝑥), in other
word the maximise the multiple-priors expected utility without trading 𝐺, The-
orem 4.4.14 in Chapter 4 provides some conditions under which 𝑢(0, 𝑥) <∞ and an
optimal strategy exists. However proving the existence of an optimal strategy to
𝑢(𝐺, 𝑥 + 𝑧) remains an open question: see the Conclusion section in Chapter 4 for
some discussion on this problem.

5.2.6 Risk measures
We make the link with monetary risk measures introduced in [4], see also [36].
Recall that a risk measure allows to quantify by some number 𝜌(𝑋) a financial
position described by some 𝑋 ∈ 𝒳 where 𝒳 ⊂ 𝒲0

𝑇 is a linear space of random
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variables (containing the constant random variables) and 𝑋(𝜔𝑇 ) represents the
discounted net worth of the position at the end of the trading period if the scenario
𝜔𝑇 ∈ Ω𝑇 is realized. More precisely,

Definition 5.2.17 A monetary risk measure is a mapping 𝜌 : 𝐺 ∈ 𝒳 → 𝜌(𝐺) ∈
R ∪ {±∞} that verifies
1. for 𝐺,𝐻 ∈ 𝒳 , if 𝐺 ≥ 𝐻 𝒬𝑇 -q.s., then 𝜌(𝐺) ≤ 𝜌(𝐻) (monotonicity),
2. if 𝑚 ∈ R, then 𝜌(𝐺+𝑚) = 𝜌(𝐺)−𝑚 (cash invariance).
The measure 𝜌 is said to be a normalized if 𝜌(0) = 0 and convex if
3. for all 0 ≤ 𝜆 ≤ 1, 𝐺,𝐻 ∈ 𝒳 , 𝜌(𝜆𝐺+ (1− 𝜆)𝐻) ≤ 𝜆𝜌(𝐺) + (1− 𝜆)𝜌(𝐻) (convexity).

We refer to [62, Section 4] (where similar definitions are introduced) for a detailed
interpretation of these properties.
We now discuss the relations with the multiple-priors sub- and superreplication
prices as well as with the buying and selling prices. From the cash invariance
property, a risk-measure can also be seen as a capital requirement: 𝜌(𝐺) is the
amount of cash to be held in addition to the financial instrument 𝐺 for the aggreg-
ate position to be acceptable (from the point of view of a risk-manager, regulator,...).
With this in mind, the acceptance set of 𝜌 is often defined by {𝐺 ∈ 𝒳 , 𝜌(𝐺) ≤ 0}. In
our context, to measure the risk of a position one can set for some 𝑥 ≥ 0

𝜌𝑥 : 𝐺 ∈ 𝒳 → 𝑝(−𝐺, 𝑥), (5.14)

see for example [36, Definition 1.2]. We also consider the following measure

𝜌 : 𝐺 ∈ 𝒳 → 𝜋(−𝐺). (5.15)

Assume for a moment that 𝜌𝑥 and 𝜌 verify the cash invariance property of Definition
5.2.17. We consider an agent with initial capital 𝑥 who is willing to buy and hedge
(by trading dynamically in the market) an option whose non-negative payoff is rep-
resented by some 𝐺 ∈ 𝒳+ for a price 𝑝𝑏. Then we have that 𝜌𝑥(𝐺−𝑝𝑏) = 𝜌𝑥(𝐺)+𝑝𝑏 =

𝑝(−𝐺, 𝑥)+𝑝𝑏 = −𝑝𝐵(𝐺, 𝑥)+𝑝𝑏 (see (5.12) and (5.13)) and the position is acceptable for
the measure 𝜌𝑥 as long as she can buy the contingent claim at or below her buyer
multiple-priors utility indifference price 𝑝𝐵(𝐺, 𝑥). From the point of view of the
measure 𝜌, the position is acceptable as soon as 𝜌(𝐺−𝑝𝑏) = 𝜋(−𝐺)+𝑝𝑏 = −𝜋𝑠𝑢𝑏(𝐺)+𝑝𝑏
(see Lemma 5.2.10) and the position is acceptable as long as she can buy the con-
tingent claim at or below her multiple-priors subreplication price 𝜋𝑠𝑢𝑏(𝐺).

Alternatively, if the agent is now considering selling the option at price 𝑝𝑠 and
hedging it, the short position in the contingent claim is represented by −𝐺 ∈ 𝒳−

and in this case the risk of her position is measured by 𝜌𝑥(−𝐺+𝑝𝑠) = 𝜌𝑥(−𝐺)−𝑝𝑠 =

𝑝(𝐺, 𝑥) − 𝑝𝑠: this position will be acceptable if she can sell the option at or above
her seller multiple-priors utility indifference price. From the point of view of the
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measure 𝜌 the position will be acceptable if she can sell the option at or above her
multiple-priors superreplication price 𝜋(𝐺).

Note finally that if 𝜌𝑥 is a normalized convex monetary measure of risk on 𝒲0
𝑇 ,

we have that 0 = 𝜌𝑥(0) ≤ 1
2
(𝜌𝑥(𝐺) + 𝜌𝑥(−𝐺)). Recalling Definition 5.2.13, this

implies that 𝑝𝑠𝑢𝑏(𝐺, 𝑥) ≤ 𝑝(𝐺, 𝑥). Similarly one gets 𝜋𝑠𝑢𝑏(𝐺) ≤ 𝜋(𝐺) (see Lemma
5.2.10).

The two following propositions establish under which conditions 𝜌 and 𝜌𝑥 (see
(5.14) and (5.15)) are normalized convex monetary measures of risk.

Proposition 5.2.18 If Assumptions 5.2.2 and 5.2.3 holds true then 𝜌 is a normal-
ized convex monetary measure of risk on 𝒲0

𝑇 .

Proof. We prove 1. of Definition 5.2.17. Fix some 𝐺,𝐻 ∈ 𝒲0
𝑇 such that 𝐺 ≥ 𝐻

𝒬𝑇 -q.s. From Theorem 5.2.9 there exists 𝜑 ∈ Φ such that 𝑉 𝜋(−𝐻),𝜑
𝑇 ≥ −𝐻 ≥ −𝐺

𝒬𝑇 -q.s. and 𝜋(−𝐻) ≥ 𝜋(−𝐺). The cash invariance and the convexity are also
straightforward and the normalization condition follows from Lemma 5.2.10. 2

Proposition 5.2.19 Let 𝑥 ≥ 0 be fixed. Assume that 𝒜(𝑈,𝐺, 𝑥) = 𝒜(𝐺, 𝑥) for all
𝐺 ∈ 𝒲0

𝑇 .
1. The mapping 𝜌𝑥 is a monetary measure of risk on 𝒲0

𝑇 .
2. If Assumptions 5.2.2 and 5.2.3 holds true and 𝑢(0, 𝑥) > −∞ then 𝜌𝑥 is a convex
monetary measure of risk on {𝐺 ∈ 𝒲0

𝑇 , 𝑢(−𝐺, 𝑧) <∞,∀𝑧 ∈ R}.
3. If furthermore we assume that 𝑢(0, 𝑥) > −∞, 𝑢(0, 𝑥 − 𝛿) < 𝑢(0, 𝑥) for all 𝛿 > 0,
then 𝜌𝑥 is normalized.

Remark 5.2.20 To prove the cash invariance property it is not necessary to assume
that 𝒜(𝑈,𝐺, 𝑥) = 𝒜(𝐺, 𝑥) for all 𝐺 ∈ 𝒲0

𝑇 . We will give in Proposition 5.4.13 and
Lemma 5.4.14 some conditions under which 𝒜(𝑈,𝐺, 𝑥) = 𝒜(𝐺, 𝑥) and 𝑢(𝐺, 𝑧) < ∞.
Those conditions are needed in order to prove our asymptotic result (see Theorem
5.4.8). Note that if we assume that 𝑈 is bounded from above the two preceding
conditions are obviously satisfied.

Proof. We prove 1. of Definition 5.2.17. Fix some 𝐺,𝐻 ∈ 𝒲0
𝑇 such that 𝐺 ≥ 𝐻

𝒬𝑇 -q.s. As 𝒜(𝑈,−𝐻, 𝑥) = 𝒜(−𝐻, 𝑥) ⊂ 𝒜(−𝐺, 𝑥) = 𝒜(𝑈,−𝐺, 𝑥), it is easy to check
that for all 𝑧 ∈ R, 𝑢(−𝐻, 𝑥 + 𝑧) ≤ 𝑢(−𝐺, 𝑥 + 𝑧). If 𝜌𝑥(𝐻) = +∞, there is nothing
to prove, while if 𝜌𝑥(𝐻) = −∞, it is clear that 𝜌𝑥(𝐺) = −∞ also. Assume now
that 𝜌𝑥(𝐻) is finite and fix some 𝜀 > 0. Then 𝑢(0, 𝑥) ≤ 𝑢(−𝐻, 𝑥 + 𝑝(−𝐻, 𝑥) + 𝜀) ≤
𝑢(−𝐺, 𝑥 + 𝑝(−𝐻, 𝑥) + 𝜀) and we get that 𝑝(−𝐺, 𝑥) ≤ 𝑝(−𝐻, 𝑥) + 𝜀. As this is true for
all 𝜀, 𝜌𝑥(𝐺) ≤ 𝜌𝑥(𝐻) follows immediately.
We prove 2. of Definition 5.2.17. We fix some 𝑚 ∈ R. It is clear (without the
assumption that 𝒜(𝑈,𝐺, 𝑥) = 𝒜(𝐺, 𝑥) for all 𝐼 ∈ 𝒲0

𝑇 ) that 𝒜(𝑈,−(𝐺 + 𝑚), 𝑥) =

𝒜(𝑈,−𝐺, 𝑥 +𝑚) and it follows that 𝑢(−(𝐺 +𝑚), 𝑥) = 𝑢(−𝐺, 𝑥 +𝑚). One can easily
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see that 𝜌𝑥(𝐺 + 𝑚), 𝑥) = +∞ (resp. = −∞) if and only if 𝜌𝑥(𝐺, 𝑥) = +∞ (resp.
= −∞). So we may assume that 𝜌𝑥(𝐺+𝑚,𝑥) is finite and fix some 𝜀 > 0. Then

𝑢(0, 𝑥) ≤ 𝑢(−(𝐺+𝑚), 𝑥+ 𝑝(−(𝐺+𝑚), 𝑥) + 𝜀) = 𝑢(−𝐺, 𝑥+ 𝑝(−(𝐺+𝑚), 𝑥) +𝑚+ 𝜀).

Thus 𝑝(−𝐺, 𝑥) ≤ 𝑝(−(𝐺+𝑚), 𝑥) +𝑚+ 𝜀 follows. We have also that

𝑢(0, 𝑥) ≤ 𝑢(−𝐺, 𝑥+ 𝑝(−𝐺, 𝑥) + 𝜀) = 𝑢(−(𝐺+𝑚), 𝑥−𝑚+ 𝑝(−𝐺, 𝑥) + 𝜀)

and 𝑝(−(𝐺+𝑚), 𝑥) ≤ 𝑝(−𝐺, 𝑥)−𝑚+𝜀. letting 𝜀 > 0 go to 0, we get that 𝑝(−𝐺, 𝑥)−𝑚 =

𝑝(−(𝐺+𝑚), 𝑥) as claimed.
We prove now the second part of the proposition. From Proposition 5.2.14, one get
that 𝑝(−𝐺, 𝑥) > −∞ and 𝑝(−𝐻, 𝑥) > −∞ for some fixed𝐺,𝐻 ∈ {𝑋 ∈ 𝒲0

𝑇 , 𝑢(−𝑋, 𝑧) <
∞,∀𝑧 ∈ R}. We want to show that for all 0 < 𝜆 < 1

𝜆𝑝(−𝐺, 𝑥) + (1− 𝜆)𝑝(−𝐻, 𝑥) ≥ 𝑝(−(𝜆𝐺+ (1− 𝜆)𝐻), 𝑥). (5.16)

First if either 𝑝(−𝐺, 𝑥) = +∞ or 𝑝(−𝐻, 𝑥) = +∞, (5.16) is immediate (recall that
𝑝(−𝐺, 𝑥) > −∞ and 𝑝(−𝐻, 𝑥) > −∞). So assume that 𝑝(−𝐺, 𝑥) and 𝑝(−𝐻, 𝑥) are
both finite and fix some 𝜀 > 0. Then

𝑢(0, 𝑥) ≤ 𝑢(−𝐺, 𝑥+ 𝜀+ 𝑝(−𝐺, 𝑥)) and 𝑢(0, 𝑥) ≤ 𝑢(−𝐻, 𝑥+ 𝜀+ 𝑝(−𝐻, 𝑥)).

Since both right-hand side are finite we get that

𝑢(0, 𝑥) ≤ 𝜆𝑢(−𝐺, 𝑥+ 𝜀+ 𝑝(−𝐺, 𝑥)) + (1− 𝜆)𝑢(−𝐻, 𝑥+ 𝜀+ 𝑝(−𝐻, 𝑥)).

Set 𝑧𝐺 = 𝑥+ 𝜀+ 𝑝(−𝐺, 𝑥) and 𝑧𝐻 = 𝑥+ 𝜀+ 𝑝(−𝐻, 𝑥). It remains to prove that

𝜆𝑢(−𝐺, 𝑧𝐺) + (1− 𝜆)𝑢(−𝐻, 𝑧𝐻) ≤ 𝑢(−(𝜆𝐺+ (1− 𝜆)𝐻), 𝜆𝑧𝐺 + (1− 𝜆)𝑧𝐻). (5.17)

If 𝑢(−𝐺, 𝑧𝐺) = −∞ or 𝑢(−𝐻, 𝑧𝐻) = −∞ there is nothing to prove (recall that
𝑢(−𝐺, 𝑧𝐺) < +∞ and 𝑢(−𝐻, 𝑧𝐻) < +∞). We assume now that 𝑢(−𝐺, 𝑧𝐺) and
𝑢(−𝐻, 𝑧𝐻) are both finite. Recalling (5.11), there exists some 𝜑𝐺 ∈ 𝒜(𝑈,−𝐺, 𝑧𝐺),
𝜑𝐻 ∈ 𝒜(𝑈,−𝐻, 𝑧𝐻) such that

𝑢(−𝐺, 𝑧𝐺)− 𝜀 ≤ inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈
(︁
·, 𝑉 𝑧𝐺,𝜑𝐺

𝑇 (·) +𝐺(·)
)︁
,

𝑢(−𝐻, 𝑧𝐻)− 𝜀 ≤ inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈
(︁
·, 𝑉 𝑧𝐻 ,𝜑𝐻

𝑇 (·) +𝐻(·)
)︁
.

It follows that

𝜆𝑢(−𝐺, 𝑧𝐺) + (1− 𝜆)𝑢(−𝐻, 𝑧𝐻)− 𝜀

≤ 𝜆 inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈
(︁
·, 𝑉 𝑧𝐺,𝜑𝐺

𝑇 (·) +𝐺(·)
)︁
+ (1− 𝜆) inf

𝑃∈𝒬𝑇
𝐸𝑃𝑈

(︁
·, 𝑉 𝑧𝐻 ,𝜑𝐻

𝑇 (·) +𝐻(·)
)︁

≤ inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈
(︁
·, 𝑉 𝜆𝑧𝐺+(1−𝜆)𝑧𝐻 ,𝜆𝜑𝐺+(1−𝜆)𝜑𝐻

𝑇 (·) + (𝜆𝐺(·) + (1− 𝜆)𝐻(·))
)︁

≤ 𝑢(−(𝜆𝐺+ (1− 𝜆)𝐻), 𝜆𝑧𝐺 + (1− 𝜆)𝑧𝐻),
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where we have used the concavity of 𝑈 and the fact that if 𝜑𝐺 ∈ 𝒜(𝑈,−𝐺, 𝑧𝐺) =

𝒜(−𝐺, 𝑧𝐺) and 𝜑𝐻 ∈ 𝒜(𝑈,−𝐻, 𝑧𝐻) = 𝒜(−𝐻, 𝑧𝐻), then 𝜆𝜑𝐺 + (1 − 𝜆)𝜑𝐻 ∈ 𝒜(−(𝜆𝐺 +

(1−𝜆)𝐻), 𝜆𝑧𝐻 +(1−𝜆)𝑧𝐺) = 𝒜(𝑈,−(𝜆𝐺+(1−𝜆)𝐻), 𝜆𝑧𝐺+(1−𝜆)𝑧𝐻) by assumption.
As the previous inequality is true for all 𝜀, (5.17) is proven. So

𝑢(0, 𝑥) ≤ 𝑢(−(𝜆𝐺+ (1− 𝜆)𝐻), 𝑥+ 𝜀+ 𝜆𝑝(−𝐺, 𝑥) + (1− 𝜆)𝑝(−𝐻, 𝑥)).

It follows that 𝜀+ 𝜆𝑝(−𝐺, 𝑥) + (1− 𝜆)𝑝(−𝐻, 𝑥) ≥ 𝑝(−(𝜆𝐺+ (1− 𝜆)𝐻), 𝑥) and as this
is true for all 𝜀 > 0, the convexity of 𝜌𝑥 is proven.
The third part of the proposition follows from Proposition 5.2.14 under the addi-
tional assumption. 2

5.3 Absolute risk aversion and certainty equival-
ent

We present now a formal definition of the notion of absolute risk aversion for a
general random utility function.

Definition 5.3.1 For any function 𝑈 satisfying Definition 5.2.11, the absolute risk
aversion is defined for all (𝜔𝑇 , 𝑥) ∈ Ω𝑇 × (0,+∞) by

𝑟(𝜔𝑇 , 𝑥) := −𝑈
′′
(𝜔𝑇 , 𝑥)

𝑈 ′(𝜔𝑇 , 𝑥)
.

In the mono-prior case, 𝑖.𝑒 when 𝒬𝑇 = {𝑃}, the absolute risk aversion is related to
the notion of certainty equivalent. If the preferences of an agent are represented
by a non-random utility function 𝑈 and given an asset whose payoff at maturity
is 𝐺, the certainty equivalent 𝑒(𝐺,𝑃 ) is the amount of cash that will make her
indifferent (in the sense of the expected utility evaluation) between receiving the
cash and the asset 𝐺

𝐸𝑃𝑈(𝑒(𝐺,𝑃 )) = 𝑈(𝑒(𝐺,𝑃 )) = 𝐸𝑃𝑈(𝐺(·)).

The risk premium 𝜌(𝐺,𝑃 ) := 𝐸𝑃𝐺(·)−𝑒(𝐺,𝑃 ) is the amount that the agent is ready
to loose in order to be indifferent (in the sense of the expected utility evaluation)
between the sure quantity 𝐸𝑃𝐺(·)− 𝜌(𝐺,𝑃 ) and the random variable 𝐺 since

𝐸𝑃𝑈(𝐸𝑃𝐺(·)− 𝜌(𝐺,𝑃 )) = 𝑈(𝑒(𝐺,𝑃 )) = 𝐸𝑃𝑈(𝐺(·)).

We will see in Proposition 5.3.2 that under suitable assumptions 𝜌(𝐺,𝑃 ) ≥ 0. The
risk premium is thus a measure of the risk-aversion of the agent: the higher the
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risk premium, the more risk-adverse the agent is as she will accept a smaller
amount of cash rather than 𝐺.
The following proposition recalls the definition of the certainty equivalent in a
mono-prior framework but for random utility functions and proposes an extension
to the multiple-priors framework.

Proposition 5.3.2 Let 𝐺 ∈ 𝒲0,+
𝑇 such that 𝐺(·) < +∞ 𝒬𝑇 -q.s.

1. Assume that 𝑈 is an utility function verifying Definition 5.2.11, such that
sup𝑃∈𝒬𝑇 𝐸𝑃𝑈

−(·, 𝑦) < +∞ for all 𝑦 > 0, 𝐸𝑃𝑈+(·, 1) < +∞ and 𝐸𝑃 |𝑈(·, 𝐺(·))| < +∞
for all 𝑃 ∈ 𝒬𝑇 .
1.𝑎. For all 𝑃 ∈ 𝒬𝑇 , there exists a unique constant 𝑒(𝐺,𝑃 ) ∈ [0,+∞) such that

𝐸𝑃𝑈(·, 𝑒(𝐺,𝑃 )) = 𝐸𝑃𝑈(·, 𝐺(·)). (5.18)

1.𝑏 If furthermore 𝐺 ∈ 𝒲∞,+
𝑇 , sup𝑃∈𝒬𝑇 𝐸𝑃𝑈

−(·, 𝐺(·)) < ∞ and inf𝑃∈𝒬𝑇 𝐸𝑃𝑈
′(·, 𝑧) > 0

for all 𝑧 > 0, then there exists also an unique 𝑒(𝐺) ∈ [0, ||𝐺||∞] such that

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝑒(𝐺)) = inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝐺(·)) (5.19)

and in this case, we have that 𝑒(𝐺) ≥ inf𝑃∈𝒬𝑇 𝑒(𝐺,𝑃 ). We call 𝑒(𝐺) the multiple-
priors certainty equivalent of 𝐺.
2. Assume now that 𝑈 is a non-random utility function verifying Definition 5.2.11
such that Dom 𝑈 = {𝑥 ∈ R, 𝑈(𝑥) > −∞} = (0,∞), 𝐸𝑃𝑈+(𝐺(·)) < ∞ for all 𝑃 ∈ 𝒬𝑇

and sup𝑃∈𝒬𝑇 𝐸𝑃𝑈
−(𝐺(·)) < ∞. Then, there exists some unique 𝑒(𝐺,𝑃 ) and 𝑒(𝐺) in

[0,∞) such that

𝑈(𝑒(𝐺,𝑃 )) =𝐸𝑃𝑈(𝐺(·)), ∀𝑃 ∈ 𝒬𝑇 (5.20)
𝑈(𝑒(𝐺)) = inf

𝑃∈𝒬𝑇
𝐸𝑃𝑈(𝐺(·)). (5.21)

Moreover, 𝑒(𝐺,𝑃 ) ≤ 𝐸𝑃𝐺(·) for all 𝑃 ∈ 𝒬𝑇 and

𝑒(𝐺) = inf
𝑃∈𝒬𝑇

𝑒(𝐺,𝑃 ) ≤ inf
𝑃∈𝒬𝑇

𝐸𝑃𝐺(·).

Furthermore the multiple-priors risk premium defined by 𝜌(𝐺) := sup𝑃∈𝒬𝑇 𝜌(𝐺,𝑃 )

satisfies
0 ≤ 𝜌(𝐺) ≤ sup

𝑃∈𝒬𝑇

𝐸𝑃𝐺(·)− 𝑒(𝐺).

Remark that (5.20) is true assuming only that 𝐸𝑃𝑈−(𝐺(·)) <∞ for all 𝑃 ∈ 𝒬𝑇 .
Proof. 1. We set for all 𝑦 ≥ 0, 𝑃 ∈ 𝒬𝑇 𝜓𝑃 (𝑦) = 𝐸𝑃𝑈(·, 𝑦) and 𝜓(𝑦) = inf𝑃∈𝒬𝑇 𝜓𝑃 (𝑦).
In the rest of the proof, the properties concerning 𝜓𝑃 will be stated for all 𝑃 ∈ 𝒬𝑇 .
It is clear that 𝜓𝑃 is concave, strictly increasing and that 𝜓 is concave and non-
decreasing. As for all 𝑦 > 0, sup𝑃∈𝒬𝑇 𝐸𝑃𝑈

−(·, 𝑦) < +∞, we have that Ri (Dom 𝜓) =
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Ri (Dom 𝜓𝑃 ) = (0,+∞) (where Dom 𝜓 = {𝑦, 𝜓(𝑦) > −∞} and Ri(Dom 𝜓) is its re-
lative interior). So 𝜓 and 𝜓𝑃 are continuous on (0,∞). Using the monotonicity of
𝑈 , for all 0 ≤ 𝑦 ≤ 1 𝑈(·, 𝑦) ≤ 𝑈+(·, 1) and as 𝐸𝑃𝑈+(·, 1) < +∞, the monotone con-
vergence theorem applies and we get that lim𝑦↘0 𝜓𝑃 (𝑦) = 𝜓𝑃 (0). Thus the function
𝜓𝑃 is right-continuous in 0 and it follows easily that 𝜓 is also right-continuous in 0.
Indeed let again (𝑥𝑛)𝑛≥1 be a sequence of positive real number converging to 0, then
for all 𝑛 ≥ 1 𝜓(𝑥𝑛) ≥ 𝜓(0) and therefore lim inf𝑛 𝜓(𝑥𝑛) ≥ 𝜓(0). Now, for all 𝑃 ∈ 𝒬𝑇 ,
𝑛 ≥ 1 we also have that 𝜓(𝑥𝑛) ≤ 𝜓𝑃 (𝑥𝑛), thus lim sup𝑛 𝜓(𝑥𝑛) ≤ lim sup𝑛 𝜓𝑃 (𝑥𝑛) =

𝜓𝑃 (0) and lim sup𝑛 𝜓(𝑥𝑛) ≤ inf𝑃∈𝒬𝑇 𝜓𝑃 (0) = 𝜓(0) follows.
Now let 𝐹 (·) := lim𝑦→+∞ 𝑈(·, 𝑦) ∈ (−∞,∞]. Since 𝐸𝑃𝑈−(·, 1) < +∞ by assumption,
the monotone convergence theorem applied and we get that

lim
𝑦↗+∞

𝜓𝑃 (𝑦) = 𝐸𝑃𝐹 (·) ∈ (−∞,+∞]. (5.22)

Moreover as 𝑃 (𝐺(·) <∞) = 1 and 𝑈 is strictly increasing

𝐹 (·)− 𝑈(·, 𝐺(·)) > 0 𝑃 -a.s. (5.23)

1.𝑎. Set for all 𝑦 ≥ 0, 𝜓𝑃 (𝑦) = 𝜓𝑃 (𝑦) − 𝐸𝑃𝑈(·, 𝐺(·)) which is well-defined since
𝐸𝑃 |𝑈(·, 𝐺(·))| < +∞ for all 𝑃 ∈ 𝒬𝑇 . It is clear that 𝜓𝑃 is continuous on (0,+∞) and
right-continuous in 0. Thus

𝜓𝑃 (0) = 𝐸𝑃𝑈(·, 0)− 𝐸𝑃𝑈(·, 𝐺(·)) ≤ 0, (5.24)

since 𝑈 is non-decreasing and 𝐺 ∈ 𝒲0,+
𝑇 . As 𝐸𝑃𝑈(·, 𝐺(·)) ≤ 𝐸𝑃 |𝑈(·, 𝐺(·))| < ∞

by assumption, if lim𝑦↗+∞ 𝜓𝑃 (𝑦) = +∞ then for 𝑦 large enough 𝜓𝑃 (𝑦) > 0. Now
if lim𝑦↗+∞ 𝜓𝑃 (𝑦) < +∞, then (5.22) and (5.23) imply that 𝐸𝑃𝑈(·, 𝐺(·)) < 𝐸𝑃𝐹 (·) =
lim𝑦↗+∞ 𝜓𝑃 (𝑦) and 𝜓𝑃 (𝑦) > 0 again for some 𝑦 large enough. In both cases, the inter-
mediate value theorem gives a unique 𝑒(𝐺,𝑃 ) ∈ [0,+∞) such that 𝜓𝑃 (𝑒(𝐺,𝑃 )) = 0

and (5.18) is proved.

1.𝑏. Set 𝜓(𝑦) = 𝜓(𝑦) − inf𝑃∈𝒬𝑇 𝐸𝑃𝑈(·, 𝐺(·)) which is well-defined since we have that
sup𝑃∈𝒬𝑇 𝐸𝑃𝑈

−(·, 𝐺(·)) < ∞ and inf𝑃∈𝒬𝑇 𝐸𝑃𝑈
+(·, 𝐺(·)) < ∞. The function 𝜓 is con-

tinuous on (0,+∞) and right-continuous in 0 and using (5.24), we get that

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝐺(·)) ≥ inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 0) = 𝜓(0),

𝜓(0) ≤ 0 follows. Since inf𝑃∈𝒬𝑇 𝐸𝑃𝑈
′(·, 𝑧) > 0 for all 𝑧 > 0, 𝜓 is strictly increasing on

(0,+∞). Indeed let 0 < 𝑥 < 𝑦, then 𝑈(·, 𝑥) + (𝑦 − 𝑥)𝑈 ′(·, 𝑦) ≤ 𝑈(·, 𝑦) and this implies
that

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝑥) + (𝑦 − 𝑥) inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈
′(·, 𝑦) ≤ inf

𝑃∈𝒬𝑇
𝐸𝑃𝑈(·, 𝑦). (5.25)
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As 𝐺 ∈ 𝒲∞,+
𝑇 , using the monotonicity of 𝑈 we obtain for any 𝜀 > 0

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝐺(·)) ≤ inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, ||𝐺||∞) = 𝜓(||𝐺||∞) < 𝜓(||𝐺||∞ + 𝜀)

and thus 𝜓(||𝐺||∞ + 𝜀) > 0. We apply again the intermediate value theorem and
there exist a unique 𝑒(𝐺) ∈ [0, ||𝐺||∞] such that 𝜓(𝑒(𝐺)) = 0 and (5.19) is proved.
Now for any 𝑄 ∈ 𝒬𝑇 , (5.18) implies that

𝐸𝑄𝑈(·, inf
𝑃∈𝒬𝑇

𝑒(𝐺,𝑃 )) ≤ 𝐸𝑄𝑈(·, 𝑒(𝐺,𝑄)) = 𝐸𝑄𝑈(·, 𝐺(·)). (5.26)

Therefore using (5.19), 𝜓(inf𝑃∈𝒬𝑇 𝑒(𝐺,𝑃 )) ≤ 𝜓(𝑒(𝐺)) and 𝑒(𝐺) ≥ inf𝑃∈𝒬𝑇 𝑒(𝐺,𝑃 ) fol-
lows since 𝜓 is strictly increasing.

2. From Definition 5.2.11 and Dom(𝑈) = (0,∞), 𝑈 is continuous on (0,∞) and
right-continuous in 0. Fix some 𝑃 ∈ 𝒬𝑇 . As 𝐸𝑃𝑈−(𝐺(·)) < +∞, 𝐺 ∈ 𝒲0,+

𝑇 and 𝑈

is non-decreasing, 𝐸𝑃𝑈(𝐺(·)) − 𝑈(0) ≥ 0 (recall that 𝑈 is non random). Now as
before 𝑃 -a.s 𝑈(𝐺(𝜔𝑇 )) < lim𝑦→+∞ 𝑈(𝑦) and since 𝐸𝑃𝑈+(𝐺(·)) < +∞, one can always
conclude that 𝐸𝑃𝑈(𝐺(·))− 𝑈(𝑦) < 0 for 𝑦 large enough and the intermediate value
theorem implies that (5.20) holds true.

Now since 𝐸𝑃𝑈(𝐺(·)) ≥ 𝑈(0), inf𝑃∈𝒬𝑇 𝐸𝑃𝑈(𝐺(·)) − 𝑈(0) ≥ 0. Moreover since
inf𝑃∈𝒬𝑇 𝐸𝑃𝑈(𝐺(·)) − 𝑈(𝑦) ≤ 𝐸𝑃𝑈(𝐺(·)) − 𝑈(𝑦) < 0, the intermediate value theorem
implies (5.21). As before (see (5.26)) one can prove that inf𝑃∈𝒬𝑇 𝑒(𝐺,𝑃 ) ≤ 𝑒(𝐺). For
some 𝑃 ∈ 𝒬𝑇 fixed, using Jensen’s inequality we have that

𝑈(𝑒(𝐺)) ≤ 𝐸𝑃𝑈(𝐺(·)) = 𝑈(𝑒(𝐺,𝑃 )) ≤ 𝑈 (𝐸𝑃𝐺(·)) .

Thus, by strict monotonicity of 𝑈 , 𝑒(𝐺) ≤ 𝑒(𝐺,𝑃 ) ≤ 𝐸𝑃𝐺(·) and since this is true for
all 𝑃 ∈ 𝒬𝑇 , we find that

𝑒(𝐺) ≤ inf
𝑃∈𝒬𝑇

𝑒(𝐺,𝑃 ) ≤ inf
𝑃∈𝒬𝑇

𝐸𝑃𝐺(·).

2

Note that it is easy to find an example where 𝜓 is constant and thus 𝑒(𝐺) is not
unique if inf𝑃∈𝒬𝑇 𝐸𝑃𝑈

′(·, 𝑧) = 0

Example 5.3.3 We illustrate with a simple example why in Proposition 5.3.2, when
dealing with random utility function we need to impose that inf𝑃∈𝒬𝑇 𝐸𝑃𝑈

′(·, 𝑧) > 0

for all 𝑧 > 0 in order to get a unique 𝑒(𝐺) such that (5.21) holds true (otherwise
𝜓 might be constant). We consider a one-period model and set Ω = (0,∞) and
𝒬 = Conv{𝑃𝑛, 𝑛 ≥ 1} where 𝑃𝑛 = 𝛿𝑛 for all 𝑛 ≥ 1. We choose the random util-
ity function 𝑈(𝜔, 𝑥) = 𝑙𝑛(1+𝑥)

𝜔
defined for all (𝜔, 𝑥) ∈ Ω × [0,∞). For all 𝑧 > 0

we have that inf𝑃∈𝒬𝐸𝑃𝑈
′
(𝜔, 𝑧) = inf𝑛≥1

1
𝑛(1+𝑧)

= 0. Now, using the notation in-
troduced in the proof of Proposition 5.3.2, we have for some 𝑛 ≥ 1 and all 𝑥 > 0
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𝜓𝑃𝑛(𝑥) = 𝐸𝑃𝑛𝑈(·, 𝑥) = 𝑙𝑛(1+𝑥)
𝑛

while 𝜓(𝑥) = inf𝑃∈𝒬𝐸𝑃𝑈(·, 𝑥) = inf𝑛≥1
𝑙𝑛(1+𝑥)

𝑛
= 0.

Hence if we consider the (bounded) random variable 𝐺(𝜔) = 𝑒−𝜔, then 𝜓𝑃𝑛
(𝑥) =

𝑙𝑛(1+𝑥)
𝑛

− 𝐸𝑃𝑛𝑈(·, 𝐺(·)) =
𝑙𝑛(1+𝑥)

𝑛
− 𝑙𝑛(1+𝑒−𝑛)

𝑛
and we get obviously that 𝑒(𝐺,𝑃𝑛) = 𝑒−𝑛.

However 𝜓(𝑥) = 𝜓(𝑥)− inf𝑛𝐸𝑃𝑛𝑈(·, 𝐺(·)) = 0 for all 𝑥 ≥ 0.

Finally, we consider two investors 𝐴 and 𝐵 with respective non-random utility
functions 𝑈𝐴 and 𝑈𝐵 satisfying Definition 5.2.11. Recall that in the mono-prior case
with 𝒬𝑇 = {𝑃} investor 𝐴 has greater absolute risk-aversion than investor B (𝑖.𝑒.
𝑟𝐴(𝑥) ≥ 𝑟𝐵(𝑥) for all 𝑥 > 0) if and only if investor 𝐴 is globally more risk averse
than investor 𝐵, in the sense that the certainty equivalent of every contingent
claim is smaller for 𝐴 than for 𝐵 (𝑖.𝑒 𝑒𝐴(𝐺,𝑃 ) ≤ 𝑒𝐵(𝐺,𝑃 ) for any 𝐺 ∈ 𝒲0,+

𝑇 ), see
[108]. We propose the following generalization of this result in the multiple-priors
framework.

Proposition 5.3.4 Let 𝑈𝐴, 𝑈𝐵 be non-random utility functions with domain equal
to (0,∞) verifying Definition 5.2.11. Let

𝒲+
𝑇 (𝑈) := 𝒲0,+

𝑇 ∩

{︃
𝐺, 𝐺(·) < +∞ = 𝒬𝑇 − q.s𝐸𝑃𝑈+(𝐺(·)) <∞, ∀𝑃 ∈ 𝒬𝑇 , sup

𝑃∈𝒬𝑇

𝐸𝑃𝑈
−(𝐺(·)) <∞

}︃
.

1. If for all 𝑥 > 0, 𝑟𝐴(𝑥) ≥ 𝑟𝐵(𝑥), then 𝑒𝐴(𝐺) ≤ 𝑒𝐵(𝐺) for all 𝐺 ∈ 𝒲+
𝑇 (𝑈).

2. If for all 𝐺 ∈ 𝒲+
𝑇 (𝑈), 𝑒𝐴(𝐺) < 𝑒𝐵(𝐺) then 𝑟𝐴(𝑥) ≥ 𝑟𝐵(𝑥) for all 𝑥 > 0.

We prove in Proposition 5.3.4 that the absolute risk aversion allows to rank the
multiple-priors certainty equivalent despite the presence of uncertainty (and thus
uncertainty aversion). The reason for this is related to the specific multiple-priors
representation we have chosen. For more details we refer to [67, Theorem 5, Ex-
ample 2].

Proof. The proof is a straightforward adaptation of [62, Proposition 2.47]. 1. We
first show that if for all 𝑥 > 0, 𝑟𝐴(𝑥) ≥ 𝑟𝐵(𝑥), then 𝑒𝐴(𝐺,𝑃 ) ≤ 𝑒𝐵(𝐺,𝑃 ) for all
𝑃 ∈ 𝒬𝑇 and 𝐺 ∈ 𝒲+

𝑇 (𝑈). This will imply that 𝑒𝐴(𝐺) ≤ 𝑒𝐵(𝐺) using the second item
of Proposition 5.3.2. We fix some 𝐺 ∈ 𝒲+

𝑇 (𝑈) and 𝑃 ∈ 𝒬𝑇 . Let 𝐷 := 𝑈𝐵((0,∞)) ⊂
(−∞,∞) and define 𝐹 : 𝐷 → R by 𝐹 (𝑦) = 𝑈𝐴

(︀
𝑈−1
𝐵 (𝑦)

)︀
. Then on 𝐷

𝐹 ′(·) = 𝑈 ′
𝐴(𝑈

−1
𝐵 (·))

𝑈
′
𝐵(𝑈

−1
𝐵 (·))

and 𝐹 ′′(·) = 𝑈 ′
𝐴(𝑈

−1
𝐵 (·))(︀

𝑈 ′
𝐵(𝑈

−1
𝐵 (·))

)︀2 (︀𝑟𝐵(𝑈−1
𝐵 (·))− 𝑟𝐴(𝑈

−1
𝐵 (·))

)︀
. (5.27)

As 𝑈−1
𝐵 (·) > 0 on 𝐷, 𝐹 is increasing and concave on 𝐷 and 𝑈𝐴(𝑥) = 𝐹 (𝑈𝐵(𝑥)) for

all 𝑥 > 0. Now let 𝑑 := 𝑈𝐵(0) ∈ [−∞,∞) be the lower bound of 𝐷. We distinguish
between two cases. First if 𝑑 > −∞, we extend 𝐹 by continuity in 𝑑, setting 𝐹 (𝑑) =
𝑈𝐴
(︀
𝑈−1
𝐵 (𝑑)

)︀
= 𝑈𝐴(0) ∈ [−∞,∞). It is clear that 𝐹 (𝑑) ≤ 𝐹 (𝑦) for all 𝑦 ∈ [𝑑,+∞), that
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𝐹 is concave on [𝑑,+∞) and that 𝑈𝐴(𝑥) = 𝐹 (𝑈𝐵(𝑥)) holds also true for all 𝑥 ≥ 0.
Now, using the fact that 𝑈𝐴 and 𝑈𝐵 are non-random, (5.20) and Jensen’s inequality,
we get that

𝑈𝐴(𝑒𝐴(𝐺,𝑃 )) = 𝐸𝑃𝑈𝐴(𝐺(·)) = 𝐸𝑃𝐹 (𝑈𝐵(𝐺(·))) ≤ 𝐹 (𝐸𝑃 (𝑈𝐵(𝐺(·)))) (5.28)
= 𝐹 (𝑈𝐵(𝑒𝐵(𝐺,𝑃 ))) = 𝑈𝐴(𝑒𝐵(𝐺,𝑃 ))

and since 𝑈𝐴 is strictly increasing, we obtain that 𝑒𝐴(𝐺,𝑃 ) ≤ 𝑒𝐵(𝐺,𝑃 ) as claimed.
Now we treat the case where 𝑑 = −∞. First 𝑃 (𝐺 > 0) = 1. Indeed if 𝑃 (𝐺 = 0) > 0,
𝐸𝑃𝑈

−
𝐵 (𝐺(·)) = 𝐸𝑃𝑈

−
𝐵 (𝐺(·))1{𝐺>0}(·) + 𝑈−

𝐵 (0)𝑃 (𝐺 = 0) = +∞, a case that we have
excluded. Thus 𝑃 (𝐺 > 0) = 1 and the previous argument applies, we also obtain
𝑒𝐴(𝐺,𝑃 ) ≤ 𝑒𝐵(𝐺,𝑃 ).
2. Assume that there exists some 𝑥0 > 0 such that 𝑟𝐴(𝑥0) < 𝑟𝐵(𝑥0). By continuity,
there exists 𝛼 > 0, such that 𝑟𝐴(𝑥) < 𝑟𝐵(𝑥) on (𝑥0 −𝛼, 𝑥0 +𝛼). We can choose 𝛼 such
that 𝑥0 − 𝛼 > 0. Let 𝐼 := (𝑈𝐵(𝑥0 − 𝛼), 𝑈𝐵(𝑥0 + 𝛼)) ⊂ 𝐷, then 𝐹 is strictly convex on
𝐼 (see (5.27)). Fix ̃︀𝐺 ∈ 𝒲+

𝑇 (𝑈) and set 𝐺 := 𝑥0 − 𝛼 + 2𝛼
̃︀𝐺̃︀𝐺+1

∈ 𝒲+
𝑇 (𝑈). It is clear

that 𝐺(·) ∈ (𝑥0 − 𝛼, 𝑥0 + 𝛼). As in (5.28), using Jensen inequality, the fact that 𝐹 is
(strictly) convex on 𝐼 we get that for any 𝑃 ∈ 𝒬𝑇

𝑈𝐴(𝑒𝐴(𝐺,𝑃 )) = 𝐸𝑃𝐹 (𝑈𝐵(𝐺(·))) ≥ 𝐹 (𝐸𝑃 (𝑈𝐵(𝐺(·))) = 𝐹 (𝑈𝐵(𝑒𝐵(𝐺,𝑃 ))) = 𝑈𝐴(𝑒𝐵(𝐺,𝑃 )).

(5.29)

This implies that 𝑒𝐴(𝐺,𝑃 ) ≥ 𝑒𝐵(𝐺,𝑃 ) for all 𝑃 ∈ 𝒬𝑇 , thus 𝑒𝐴(𝐺) ≥ 𝑒𝐵(𝐺): a
contradiction. Note that if 𝑃 is such that one can find some ̃︀𝐺 which is not constant
then the first inequality in (5.29) is strict and one gets that 𝑒𝐴(𝐺,𝑃 ) > 𝑒𝐵(𝐺,𝑃 ). 2

5.4 Convergence of utility indifference prices
Intuitively speaking an agent which is totally risk averse will use the superreplic-
ation price : whatever the possible outcome (where possible outcome are defined
by a set of probability measures), she doesn’t want to incur any loss (see (5.9)). We
are going to prove that under suitable conditions, the multiple-priors utility indif-
ference prices of a given contingent claim (for the seller) converge to its multiple-
priors superreplication price. For non random utility functions those conditions
are implied by the convergence of the absolute risk-aversion (see Definition 5.3.1)
of the agents to infinity.

First we give some intuition of this result and show that for a utility function
that has a sort of infinite absolute risk aversion, the utility indifference price is
equal to the superreplication price for some contingent claim 𝐺 ∈ 𝒲0,+

𝑇 . Fix some
𝑥 ≥ 𝜋(𝐺) and introduce the following utility function 𝑈∞ : R → R ∪ {−∞} defined
by 𝑈∞(𝑦) = −∞1(−∞,𝑥)(𝑦). Note that the absolute risk aversion of 𝑈∞ is not defined.
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However 𝑈𝑛(𝑦) = −𝑒−𝑛(𝑦−𝑥) for 𝑦 ≥ 0 and 𝑈𝑛(𝑦) = −∞ for 𝑦 < 0 satisfies Definition
5.2.11 and for 𝑦 ≥ 0 fixed with 𝑦 ̸= 𝑥, lim𝑛→+∞ 𝑈𝑛(𝑦) = 𝑈∞(𝑦). Then the absolute
risk aversion of the utility function 𝑈𝑛 satisfies lim𝑛→+∞ 𝑟𝑛(𝑦) = +∞ for all 𝑦 ≥ 0.
Hence, one may say that 𝑈∞ has an infinite absolute risk aversion. We now show
that the superreplication price of 𝐺 ∈ 𝒲0,+

𝑇 is equal it utility indifference price
evaluated with the function 𝑈∞. Since for all 𝜑 ∈ Φ, 𝑦 ∈ R, 𝑈+

∞(𝑉 𝑦,𝜑
𝑇 (·) − 𝐺(·)) = 0,

we have that Φ(𝑈∞, 𝐺, 𝑦) = Φ(𝑈∞, 0, 𝑦) = Φ and 𝒜(𝑈∞, 𝑦) = 𝒜(𝑈∞, 𝐺, 𝑦). Moreover
𝒜(𝑈∞, 𝐺, 𝑦) is not empty for all 𝑦 ≥ 𝜋(𝐺) (see Theorem 5.2.9). First, it is easy to
see that 𝑢∞(0, 𝑥) = 0. Now we fix some 0 ≤ 𝑧 < 𝜋(𝐺) and 𝜑 ∈ 𝒜(𝑈∞, 𝐺, 𝑥 + 𝑧).
There exists some 𝑃 ∈ 𝒬𝑇 such that 𝑃 (𝑉 𝑧,𝜑

𝑇 (·) − 𝐺(·) < 0) > 0 or equivalently
𝑃 (𝑉 𝑧+𝑥,𝜑

𝑇 (·) − 𝐺(·) < 𝑥) > 0 which implies that 𝐸𝑃𝑈∞(·, 𝑉 𝑥+𝑧,𝜑
𝑇 (·) − 𝐺(·)) = −∞.

Hence for all 𝜑 ∈ 𝒜(𝑈∞, 𝐺, 𝑥+ 𝑧), inf𝑃∈𝒬𝑇 𝐸𝑃𝑈∞(·, 𝑉 𝑥+𝑧,𝜑
𝑇 (·)−𝐺(·)) = −∞ and it fol-

lows that 𝑢∞(𝐺, 𝑥 + 𝑧) = −∞ < 𝑢∞(0, 𝑥). From the definition of 𝑝(𝐺, 𝑥) we get that
𝑝(𝐺, 𝑥) ≥ 𝑧 and letting 𝑧 go to 𝜋(𝐺), 𝑝(𝐺, 𝑥) ≥ 𝜋(𝐺). Combining this with Lemma
5.4.14 below we have that 𝑝(𝐺, 𝑥) = 𝜋(𝐺).

Now we state precisely our convergence result. We consider a sequence of utility
functions (see Definition 5.2.11) 𝑈𝑛 : Ω𝑇×R → R∪{−∞}, 𝑛 ≥ 1 and some contingent
claim 𝐺 ∈ 𝒲0,+

𝑇 . We denote for all 𝑛 ≥ 1, 𝑥 ≥ 0, 𝜔𝑇 ∈ Ω𝑇

𝑢𝑛(𝐺, 𝑥) := sup
𝜑∈𝒜(𝑈𝑛,𝐺,𝑥)

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈𝑛

(︁
·, 𝑉 𝑥,𝜑

𝑇 (·)−𝐺(·)
)︁

(5.30)

𝑝𝑛(𝐺, 𝑥) := inf {𝑧 ∈ R, 𝑢𝑛(𝐺, 𝑥+ 𝑧) ≥ 𝑢𝑛(0, 𝑥)} (5.31)

𝑟𝑛(𝜔
𝑇 , 𝑥) := −𝑈

′′
𝑛 (𝜔

𝑇 , 𝑥)

𝑈 ′
𝑛(𝜔

𝑇 , 𝑥)
. (5.32)

We review the assumptions needed in Theorem 5.4.8 in order to have the conver-
gence result.

Assumption 5.4.1 We have that Δ𝑆𝑡,
1
𝛼𝑡

∈ 𝒲𝑟
𝑡 for all 1 ≤ 𝑡 ≤ 𝑇 and 0 < 𝑟 < ∞

where 𝒲𝑟
𝑡 := {𝑋 : Ω𝑡 → R ∪ {±∞}, ℬ𝑐(Ω𝑡)-measurable, sup𝑃∈𝒬𝑡 𝐸𝑃 |𝑋|𝑟 <∞}.

Note that as in [51, Propositions 14, 15] one can prove that for all 𝑟 ∈ [1,∞],
𝒲𝑟

𝑡 is a Banach space (up to the usual quotient identifying two random variables
that are 𝒬𝑡-q.s. equal) for the norm ||𝑋||𝑟,𝑡 := (sup𝑃∈𝒬𝑡 𝐸𝑃 |𝑋|𝑟)

1
𝑟 if 𝑟 < ∞ and

||𝑋||∞,𝑡 := inf{𝑀 ≥ 0, 𝑋(·) ≤𝑀 𝒬𝑡q.s.}. We will omit the index 𝑡 when 𝑡 = 𝑇 .
In the light of Proposition 5.2.5, the condition 1

𝛼𝑡
∈ 𝒲𝑟

𝑡 is a kind of strong form of
no-arbitrage. Note that if 𝛼𝑡 is not constant, then even in the mono-prior case util-
ity maximisation problem may be ill posed (see Example 3.3 in [31]), so an integ-
rability assumption on 1

𝛼𝑡
looks reasonable. Assumption 5.4.1 could be weakened

to the existence of the 𝒲𝑁
𝑇 -th moment for 𝑁 large enough but this would lead to
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complicated book-keeping with no essential gain in generality, which we prefer to
avoid.

The asymptotic result for general random utility functions will be stated for
some fixed 𝑥0 > 0. However in the case of non-random utility functions we can avoid
Assumption 5.4.2 below and obtain the convergence result for all 𝑥 > 0. We can also
use the natural assumption that lim𝑛→+∞ 𝑟𝑛(𝑥) = +∞ instead of Assumption 5.4.4,
see Theorem 5.4.10. The first assumption states that 𝑈𝑛 is sufficiently measurable
and regular in 𝑥0.

Assumption 5.4.2 We have that sup𝑛 ||𝑈±
𝑛 (·, 𝑥0)||1 < ∞ and for some 𝑞 > 1 that

sup𝑛 ||𝑈 ′
𝑛(·, 𝑥0)||𝑞 <∞.

Remark 5.4.3 If we assume that sup𝑛 𝑈
±
𝑛 (·, 𝑥0) ∈ 𝒲1

𝑇 and that there exists some
𝑞 > 1 such that sup𝑛 ||𝑈

′
𝑛(·, 𝑥0)||𝑞 <∞, then Assumption 5.4.2 is verified. Indeed let’s

prove for instance that sup𝑛 ||𝐸𝑃𝑈+
𝑛 (·, 𝑥0)||1 < +∞. For all 𝑃 ∈ 𝒬𝑇 , 𝑛 ≥ 1 we have

that 𝐸𝑃𝑈+
𝑛 (·, 𝑥0) ≤ 𝐸𝑃 sup𝑛 𝑈

+
𝑛 (·, 𝑥0) and it follows that sup𝑛 sup𝑃∈𝒬𝑇 𝐸𝑃𝑈

+
𝑛 (·, 𝑥0) ≤

|| sup𝑛 𝑈+
𝑛 (·, 𝑥0)||1.

We postulate now the assumption which will play the role of the convergence of the
absolute risk aversion to infinity for random utility functions.

Assumption 5.4.4 For all 𝜀 > 0 such that 𝑥0 > 𝜀 and all 𝐶 ≥ 0

lim
𝑛→∞

inf
𝑃∈𝒬𝑇

𝑃

(︃{︃∫︁ 𝑥0

𝑥0− 𝜀
2

𝑈 ′′
𝑛(·, 𝑣)𝑑𝑣 ≤ −𝐶

𝜀

}︃)︃
= 1. (5.33)

We first provide a lemma which gives natural sets of assumptions under which
Assumption 5.4.4 is satisfied. It is stated under the assumption that 𝑈𝑛 is strictly
increasing in 𝑥0 uniformly in 𝑛.

Lemma 5.4.5 Let 𝜀 > 0 such that 𝑥0 > 𝜀 and 𝐶 ≥ 0. Assume that there exists
a random variable 𝜆 such that 𝜆 > 0 𝒬𝑇 -q.s, 𝑈 ′

𝑛(𝜔
𝑇 , 𝑥0) ≥ 𝜆(𝜔𝑇 ) for all 𝜔𝑇 ∈ Ω𝑇 ,

𝑛 ≥ 1 and that either 1. or 2. below are satisfied. Then (5.33) in Assumption 5.4.4
is satisfied for these 𝜀, 𝑥0 and 𝐶.
1. For all 𝑛 and 𝜔𝑇 ∈ Ω𝑇 , 𝑈 ′′

𝑛(𝜔
𝑇 , ·) is non decreasing, and

lim
𝑛→∞

inf
𝑃∈𝒬𝑇

𝑃

(︂{︂
𝜆(·)𝑟𝑛(·, 𝑥0) ≥

2𝐶

𝜀2

}︂)︂
= 1. (5.34)

2. We have that

lim
𝑛→∞

inf
𝑃∈𝒬𝑇

𝑃

(︃
𝜆(·)

∫︁ 𝑥0

𝑥0− 𝜀
2

𝑟𝑛(·, 𝑣)𝑑𝑣 ≥ 𝐶

𝜀

)︃
= 1. (5.35)
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Note that in 2. if we only assume for all 𝑥 ∈ (0, 𝑥0], 𝜔𝑇 ∈ Ω𝑇 , that lim𝑛→+∞ 𝑟𝑛(𝜔
𝑇 , 𝑥) =

+∞, applying Fatou’s Lemma for all 𝜔𝑇 ∈ Ω𝑇 , there exists 𝑁𝜔𝑇 such that for all
𝑘 ≥ 𝑁𝜔𝑇 , 𝜆(𝜔𝑇 )

∫︀ 𝑥0
𝑥0− 𝜀

2
𝑟𝑛(𝜔

𝑇 , 𝑣)𝑑𝑣 ≥ 𝐶
𝜀
, this means that

Ω𝑇 = ∪𝑛 ∩𝑘>𝑛

{︃
𝜆(·)

∫︁ 𝑥0

𝑥0− 𝜀
2

𝑟𝑘(·, 𝑣)𝑑𝑣 >
𝐶

𝜀

}︃

and using [51, Theorem 1] this implies that

lim
𝑛→∞

sup
𝑃∈𝒬𝑇

𝑃

(︃
𝜆(·)

∫︁ 𝑥0

𝑥0− 𝜀
2

𝑟𝑛(·, 𝑣)𝑑𝑣 ≥ 𝐶

𝜀

)︃
= 1.

Before proving Lemma 5.4.5 we discuss the conditions 1. and 2.

Remark 5.4.6 In this remark, we assume that there exists some constant 𝑙 > 0

such that 𝜆(·) ≥ 𝑙, which means that 𝑈𝑛 is strictly increasing in 𝑥0 uniformly in 𝑛

and in 𝜔𝑇 . We start with 1. Power utility functions or exponential utility functions
(with random coefficients) are examples where 𝑈 ′′

𝑛(𝜔
𝑇 , ·) is non decreasing for all 𝑛

and 𝜔𝑇 ∈ Ω𝑇 . Then (5.34) means that 𝑟𝑛(·, 𝑥0) → ∞ with respect to inf𝑃∈𝒬𝑇 𝑃 or
equivalently that lim𝑛→∞ sup𝑃∈𝒬𝑇 𝑃 ({𝑟𝑛(·, 𝑥0) ≤𝑀}) = 0 for all 𝑀 > 0.
We now discuss 2. Assume that there exists some deterministic functions (𝑟𝑛)𝑛≥1

satisfying lim𝑛 𝑟𝑛(𝑥) = +∞ and 𝑟𝑛(𝜔
𝑇 , 𝑥) ≥ 𝑟𝑛(𝑥) for all 0 < 𝑥 ≤ 𝑥0. Then 2. holds

true. Indeed Fatou’s lemma implies that lim𝑛→∞
∫︀ 𝑥0
𝑥0− 𝜀

2
𝑟𝑛(𝑣)𝑑𝑣 = +∞ and we con-

clude since {𝜆
∫︀ 𝑥0
𝑥0− 𝜀

2
𝑟𝑛(𝑣)𝑑𝑣 ≥ 𝐶

𝜀
} ⊂ {𝜆(·)

∫︀ 𝑥0
𝑥0− 𝜀

2
𝑟𝑛(·, 𝑣)𝑑𝑣 ≥ 𝐶

𝜀
}.

Proof. of Lemma 5.4.5 We start with 1. Since for all 𝑛 and 𝜔𝑇 ∈ Ω𝑇 , 𝑈 ′′
𝑛(𝜔

𝑇 , ·) is non
decreasing and 𝑈 ′

𝑛(𝜔
𝑇 , 𝑥0) ≥ 𝜆(𝜔𝑇 ), we get that∫︁ 𝑥0

𝑥0− 𝜀
2

𝑈 ′′
𝑛(·, 𝑣)𝑑𝑣 ≤ 𝜀

2
𝑈 ′′
𝑛(·, 𝑥0) = −𝜀

2
𝑈 ′
𝑛(·, 𝑥0)𝑟𝑛(·, 𝑥0) ≤ −𝜀

2
𝜆(·)𝑟𝑛(·, 𝑥0).

Thus (5.34) implies (5.33).
For 2. since for all 𝑛 and 𝜔𝑇 ∈ Ω𝑇 , 𝑈 ′

𝑛(𝜔
𝑇 , 𝑥0) ≥ 𝜆(𝜔𝑇 ), we get that∫︁ 𝑥0

𝑥0− 𝜀
2

𝑈 ′′
𝑛(·, 𝑣)𝑑𝑣 = −

∫︁ 𝑥0

𝑥0− 𝜀
2

𝑈 ′
𝑛(·, 𝑣)𝑟𝑛(·, 𝑣)𝑑𝑣 ≤ −𝜆(·)

∫︁ 𝑥0

𝑥0− 𝜀
2

𝑟𝑛(·, 𝑣)𝑑𝑣.

Thus (5.35) implies (5.33). 2

Note that it is easy to see that Definition 5.2.11 𝑖𝑖) and the fact that 𝑈𝑛 is strictly
increasing in 𝑥0 uniformly in 𝑛 can be postulate only on a 𝒬𝑇 -full measure set.
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Example 5.4.7 We give a concrete example of some random utility functions sat-
isfying Definition 5.2.11 and Assumptions 5.4.2 and 5.4.4. For all 𝑛 ≥ 1, let 𝑅𝑛 be
a random variable uniformly distributed in [𝑏𝑛, 𝐵𝑛] for all 𝑃 ∈ 𝒬𝑇 with 𝑏𝑛 > 0,
lim𝑛→∞ 𝑏𝑛 = ∞ and 𝐵3

𝑛 − 𝑏3𝑛 < 𝐴 for some 𝐴 > 0. Note that as 𝑏𝑛 > 0 and
lim𝑛→∞ 𝑏𝑛 = ∞, there exists some 𝑏 > 0 such that 𝑏𝑛 ≥ 𝑏 for all 𝑛 ≥ 1. Set now
𝑈𝑛(𝜔

𝑇 , 𝑥) = −𝑒−𝑅𝑛(𝜔𝑇 )(𝑥−1) for 𝑥 ≥ 0 and 𝑈𝑛(𝜔𝑇 , 𝑥) = −∞ for 𝑥 < 0. We choose 𝑥0 = 1.
As 𝑈 ′

𝑛(·, 1) = 𝑅𝑛(·) ≥ 𝑏 > 0 𝒬𝑇 q.s., 𝑈𝑛(·, 1) is uniformly decrasing in 𝑛 and 𝜔𝑇 . Now
||𝑈 ′

𝑛(·, 1)||22 =
𝐵3

𝑛−𝑏3𝑛
3

, thus sup𝑛 ||𝑈 ′
𝑛(·, 1)||2 < ∞. Then as 𝑈𝑛(·, 1) = −1, it is clear that

sup𝑛 𝑈
±
𝑛 (·, 1) ∈ 𝒲1

𝑇 and the fact that Assumption 5.4.2 holds true follows from Re-
mark 5.4.3. Finally for all 𝑛 ≥ 1, 𝑥 > 0 and 𝜔𝑇 ∈ Ω𝑇 we have 𝑟𝑛(𝜔𝑇 , 𝑥) = 𝑅𝑛(𝜔

𝑇 ) ≥ 𝑏𝑛
and lim𝑛 𝑏𝑛 = +∞, so using Lemma 5.4.5 and Remark 5.4.6, Assumption 5.4.4 is
verified.

Theorem 5.4.8 Let 𝐺 ∈ 𝒲0,+
𝑇 and 𝐺 ̸= 0 𝒬𝑇 -q.s. Assume that Assumptions 5.2.1,

5.2.2, 5.2.3 and 5.4.1, holds true as well as Assumptions 5.4.2 and 5.4.4 for some
𝑥0 > 0. For all 𝑛 ≥ 1, 𝑝𝑛(𝐺, 𝑥0) is well defined and lim𝑛→+∞ 𝑝𝑛(𝐺, 𝑥0) = 𝜋(𝐺).

If 𝐺 = 0 𝒬𝑇 -q.s. then 𝜋(𝐺) = 0 (see Lemma 5.2.10) but in order to have that
𝑝𝑛(𝐺, 𝑥0) = 0, one have to make further assumptions (see Proposition 5.2.14).
Applying Theorem 5.4.8 and Propositions 5.2.18 and 5.2.19 and we obtain immedi-
ately the following proposition on the convergence of risk measures.

Proposition 5.4.9 Assume that Assumptions 5.2.1, 5.2.2, 5.2.3 and 5.4.1 holds
true as well as Assumptions 5.4.2 and 5.4.4 for some 𝑥0 > 0. For all 𝑛 ≥ 1,
lim𝑛→+∞ 𝜌𝑛𝑥0(𝐺) = 𝜌(𝐺) for all 𝐺 ∈ 𝒲0,+

𝑇 such that 𝐺 ̸= 0 𝒬𝑇 -q.s., where 𝜌𝑛𝑥0 and
𝜌 are the monetary risk measures defined in (5.14) and (5.15).

Theorem 5.4.10 Let 𝐺 ∈ 𝒲0,+
𝑇 𝐺 ̸= 0 𝒬𝑇 -q.s. Assume that Assumptions 5.2.1,

5.2.2, 5.2.3, 5.4.1 hold true. Assume furthermore that 𝑈𝑛 is a non-random util-
ity function for all 𝑛 ≥ 1 and that lim𝑛→∞ 𝑟𝑛(𝑥) = +∞ for all 𝑥 > 0. Then,
lim𝑛→+∞ 𝑝𝑛(𝐺, 𝑥) = 𝜋(𝐺) for all 𝑥 > 0.

Proof of Theorem 5.4.10. We fix some 𝑥 > 0. As in [30], if we replace 𝑈𝑛 by
𝑈̂𝑛 := 𝛼𝑛𝑈𝑛 + 𝛽𝑛 for some 𝛼𝑛 > 0 and 𝛽𝑛 ∈ R, 𝑈̂𝑛 is still a non-random, concave,
strictly increasing and twice continuously differentiable function. The absolute
risk aversion and the utility indifference price for 𝑈𝑛 and 𝑈̂𝑛 (see (5.31)) are the
same, thus lim𝑛→∞ 𝑟𝑛(𝑥) = +∞ for all 𝑥 > 0 for 𝑈̂𝑛. Now, if we choose, 𝛼𝑛 = 1

𝑈 ′
𝑛(𝑥)

and
𝛽𝑛 = −𝑈𝑛(𝑥)

𝑈 ′
𝑛(𝑥)

we have that 𝑈̂𝑛(𝑥) = 0 and 𝑈̂ ′
𝑛(𝑥) = 1 for all 𝑛 ≥ 1. Thus 𝑈̂𝑛 satisfies

Assumptions 5.4.2 for 𝑥0 = 𝑥. Using Lemma 5.4.5 and Remark 5.4.6, Assumption
5.4.4 holds true for 𝑥0 = 𝑥 since lim𝑛→∞ 𝑟𝑛(𝑥) = +∞ for all 𝑥 > 0 and Theorem 5.4.8
applies to 𝑈̂𝑛. 2
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Recalling the definition of the subreplication price (see (5.10)) and the buyer
multiple-priors utility indifference price (see (5.13)), the following proposition is a
simple consequence of Theorem 5.4.8.

Proposition 5.4.11 Let 𝐺 ∈ 𝒲∞,+
𝑇 such that 𝐺 ̸= 0 𝒬𝑇 -q.s.Assume that Assump-

tions 5.2.1, 5.2.2, 5.2.3 and 5.4.1 holds true as well as Assumptions 5.4.2 and 5.4.4
for some 𝑥0 > 0. Then, for all 𝑛 ≥ 1, 𝑝𝐵𝑛 (𝐺, 𝑥0) is well defined and lim𝑛→+∞ 𝑝𝐵𝑛 (𝐺, 𝑥0) =

𝜋𝑠𝑢𝑏(𝐺).

Proof of Proposition 5.4.11. We set ̂︀𝐺 = −𝐺 + ||𝐺||∞ ∈ 𝒲0,+
𝑇 . From the cash

invariance property in Proposition 5.2.18, we get that 𝜋( ̂︀𝐺) = 𝜋(−𝐺) + ||𝐺||∞ =

−𝜋𝑠𝑢𝑏(𝐺)+||𝐺||∞, see Lemma 5.2.10. Thus, applying Theorem 5.4.8 to ̂︀𝐺, we get that
lim𝑛→∞ 𝑝𝑛( ̂︀𝐺, 𝑥0) = 𝜋( ̂︀𝐺). Now for 𝑛 ≥ 1, using the cash invariance property in Pro-
position 5.2.19 and recalling (5.13) we obtain that 𝑝𝑛( ̂︀𝐺, 𝑥0) = 𝑝𝑛(−𝐺+ ||𝐺||∞, 𝑥0) =
𝑝𝑛(−𝐺, 𝑥0) + ||𝐺||∞ = −𝑝𝐵𝑛 (𝐺, 𝑥0) + ||𝐺||∞ and the result follows. 2

To prove Theorem 5.4.8 we borrow some ideas of [30] adapted to the multiple-
priors case.

Lemma 5.4.12 Suppose that for all 𝑛 ≥ 1, 𝑈𝑛 verifies Assumptions 5.4.2 and 5.4.4.
Then for all 𝜀 > 0 such that 𝑥0 ≥ 𝜀 and 𝑀 ≥ 0,

lim
𝑛→+∞

inf
𝑃∈𝒬𝑇

𝑃 (𝑈𝑛(·, 𝑥0 − 𝜀) ≤ −𝑀) = 1. (5.36)

Proof. Fix some 𝜀 > 0 such that 𝑥0 > 𝜀 and 𝑀 ≥ 0. For all 𝜔𝑇 ∈ Ω𝑇 𝑈𝑛(𝜔
𝑇 , 𝑥0 −

𝜀) = 𝑈𝑛(𝜔
𝑇 , 𝑥0) −

∫︀ 𝑥0
𝑥0−𝜀 𝑈

′
𝑛(𝜔

𝑇 , 𝑢)𝑑𝑢. Using that 𝑈 ′
𝑛(𝜔

𝑇 , ·) is non negative and non
decreasing (see Definition 5.2.11), we obtain that

𝑈𝑛(𝜔
𝑇 , 𝑥0 − 𝜀) +

𝜀

2
𝑈 ′
𝑛

(︁
𝜔𝑇 , 𝑥0 −

𝜀

2

)︁
≤ 𝑈𝑛(𝜔

𝑇 , 𝑥0 − 𝜀) +

∫︁ 𝑥0− 𝜀
2

𝑥0−𝜀
𝑈 ′
𝑛(𝜔

𝑇 , 𝑣)𝑑𝑣

≤ 𝑈𝑛(𝜔
𝑇 , 𝑥0 − 𝜀) +

∫︁ 𝑥0

𝑥0−𝜀
𝑈 ′
𝑛(𝜔

𝑇 , 𝑣)𝑑𝑣 = 𝑈𝑛(𝜔
𝑇 , 𝑥0).

Thus

𝑈𝑛(𝜔
𝑇 , 𝑥0 − 𝜀) ≤ 𝑈𝑛(𝜔

𝑇 , 𝑥0)−
𝜀

2
𝑈 ′
𝑛

(︁
𝜔𝑇 , 𝑥0 −

𝜀

2

)︁
.

Now

𝑈 ′
𝑛

(︁
𝜔𝑇 , 𝑥0 −

𝜀

2

)︁
= 𝑈 ′

𝑛(𝜔
𝑇 , 𝑥0)−

∫︁ 𝑥0

𝑥0− 𝜀
2

𝑈 ′′
𝑛(𝜔

𝑇 , 𝑣)𝑑𝑣 ≥ −
∫︁ 𝑥0

𝑥0− 𝜀
2

𝑈 ′′
𝑛(𝜔

𝑇 , 𝑣)𝑑𝑣,
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and all together

𝑈𝑛(𝜔
𝑇 , 𝑥0 − 𝜀) ≤ |𝑈𝑛(𝜔𝑇 , 𝑥0)|+

𝜀

2

∫︁ 𝑥0

𝑥0− 𝜀
2

𝑈 ′′
𝑛(𝜔

𝑇 , 𝑣)𝑑𝑣. (5.37)

We fix some 𝜂 > 0 and show now that there exists some 𝑁𝜂 > 0 such that

inf
𝑃∈𝒬𝑇

𝑃 (|𝑈𝑛(·, 𝑥0)| ≤ 𝑁𝜂) > 1− 𝜂

2

for all 𝑛. Indeed using [51, Lemma 13] and Assumption 5.4.2, we get that

sup
𝑃∈𝒬𝑇

𝑃 (|𝑈𝑛(·, 𝑥0)| > 𝑘) ≤ 1

𝑘
sup
𝑃∈𝒬𝑇

𝐸𝑃 (|𝑈𝑛(·, 𝑥0)|) ≤
1

𝑘
sup
𝑛

‖𝑈𝑛(·, 𝑥0)‖1.

Thus there exists 𝑁𝜂 > 0 such that sup𝑃∈𝒬𝑇 𝑃 (|𝑈𝑛(·, 𝑥0)| > 𝑁𝜂) <
𝜂
2

for all 𝑛. From
(5.33) with 𝐶 = 2(𝑁𝜂 +𝑀) together with (5.37), there exists 𝑁 := 𝑁(𝑞,𝑀, 𝜀, 𝜂) such
that for all 𝑛 ≥ 𝑁 ,

inf
𝑃∈𝒬𝑇

𝑃 (𝑈𝑛(·, 𝑥0 − 𝜀) ≤ −𝑀)

≥ inf
𝑃∈𝒬𝑇

𝑃

(︃
{|𝑈𝑛(·, 𝑥0)| ≤ 𝑁𝜂} ∩

{︃∫︁ 𝑥0

𝑥0− 𝜀
2

𝑈 ′′
𝑛(𝜔

𝑇 , 𝑣)𝑑𝑣 ≤ −2(𝑁𝜂 +𝑀)

𝜀

}︃)︃

≥ inf
𝑃∈𝒬𝑇

𝑃 ({|𝑈𝑛(·, 𝑥0)| ≤ 𝑁𝜂}) + inf
𝑃∈𝒬𝑇

𝑃

(︃{︃∫︁ 𝑥0

𝑥0− 𝜀
2

𝑈 ′′
𝑛(𝜔

𝑇 , 𝑣)𝑑𝑣 ≤ −2(𝑁𝜂 +𝑀)

𝜀

}︃)︃
− 1

> 1− 𝜂.

Thus, (5.36) is proved for all 𝑥0 > 𝜀. Since 𝑈𝑛 is (strictly) increasing (5.36) is also
true for 𝑥0 = 𝜀 and this concludes the proof. 2

The following proposition shows that whatever the strategy is, the wealth is
uniformly bounded.

Proposition 5.4.13 Fix some 𝑥 ≥ 0. Assume that Assumptions 5.2.1, 5.2.2, 5.2.3,
5.4.1 and 5.4.2 hold true. Then for all 𝜑 ∈ 𝒜(0, 𝑥) and for all 0 ≤ 𝑡 ≤ 𝑇 , we have for
𝒬𝑡-q.s. all 𝜔𝑡 ∈ Ω𝑡 that

|𝑉 𝑥,𝜑
𝑡 (𝜔𝑡)| ≤ 𝑥

𝑡∏︁
𝑠=1

(︂
1 +

|Δ𝑆𝑠(𝜔𝑠)|
𝛼𝑠−1(𝜔𝑠−1)

)︂
:= 𝑥𝑀𝑡(𝜔

𝑡), (5.38)

where 𝑀1 = 1. Furthermore for all 1 ≤ 𝑡 ≤ 𝑇 , we have that 𝑀𝑡 ≥ 1, that 𝑀𝑡, 𝑉
𝑥,𝜑
𝑡 ∈

𝒲𝑟
𝑡 for all 𝑟 ∈ [0,∞) and that for all 𝑃 ∈ 𝒬𝑇 and 𝑛 ≥ 1

𝐸𝑃𝑈
+
𝑛 (·, 𝑉

𝑥,𝜑
𝑇 (·)) ≤ 𝐾𝑥, (5.39)

where 𝐾𝑥 := sup𝑛 ||𝑈+
𝑛 (·, 𝑥0)||1 + 𝑥||𝑀𝑇 (·)||𝑝 sup𝑛 ||𝑈 ′

𝑛(·, 𝑥0)||𝑞 < ∞ and where 𝑞 is
defined in Assumption 5.4.2 and 𝑝 is such that 1

𝑝
+ 1

𝑞
= 1.
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Proof. We use similar arguments as in the proof of Theorem 2.4.17 in Chapter
2. We fix 𝑥 ≥ 0, 𝜑 = (𝜑𝑡)1≤𝑡≤𝑇 ∈ Φ such that 𝜑 ∈ 𝒜(0, 𝑥). For all 1 ≤ 𝑡 ≤ 𝑇

and 𝜔𝑡−1 ∈ Ω𝑡−1
𝑁𝐴, we denote by 𝜑⊥

𝑡 (𝜔
𝑡−1) the orthogonal projection of 𝜑𝑡(𝜔𝑡−1) on the

vector space 𝐷𝑡(𝜔𝑡−1) (recall Proposition 5.2.5). We have for all 𝜔𝑡−1 ∈ Ω𝑡−1
𝑁𝐴, that

𝜑𝑡(𝜔
𝑡−1)Δ𝑆𝑡(𝜔

𝑡−1, ·) = 𝜑⊥
𝑡 (𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, ·) 𝒬𝑡(𝜔

𝑡−1)-q.s. (5.40)

As 𝑉 𝑥,𝜑
𝑇 ≥ 0 𝒬𝑇 -q.s. and as Assumptions 5.2.1, 5.2.2 and 5.2.3 hold true, Lemma

4.4.7 in Chapter 4 applies together with [99, Lemma 3.4] and we obtain that the
set ℋ𝑡−1 := {𝜔𝑡−1 ∈ Ω𝑡−1, 𝑉 𝑥,𝜑

𝑡−1 (𝜔
𝑡−1) + 𝜑𝑡(𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, ·) ≥ 0 𝒬𝑡(𝜔

𝑡−1)-q.s.} is a
𝒬𝑡−1-full measure set. We fix now some 1 ≤ 𝑡 ≤ 𝑇 , 𝜔𝑡−1 ∈ ℋ𝑡−1 ∩ Ω𝑡−1

𝑁𝐴 and we prove
that

|𝜑⊥
𝑡 (𝜔

𝑡−1)| ≤
|𝑉 𝑥,𝜑
𝑡−1 (𝜔

𝑡−1)|
𝛼𝑡−1(𝜔𝑡−1)

. (5.41)

If 𝜑⊥
𝑡 (𝜔

𝑡−1) = 0 there is nothing to prove. So we can assume that 𝜑⊥
𝑡 (𝜔

𝑡−1) ̸= 0. First,
using (5.40), since 𝜔𝑡−1 ∈ ℋ𝑡−1 ∩ Ω𝑡−1

𝑁𝐴, we get that

𝑉 𝑥,𝜑
𝑡−1 (𝜔

𝑡−1) + 𝜑⊥
𝑡 (𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, ·) ≥ 0 𝒬𝑡(𝜔

𝑡−1)-q.s. (5.42)

Now, we proceed by contradiction and assume that (5.41) does not hold true. We set
𝐵 := {𝜑⊥

𝑡 (𝜔
𝑡−1)Δ𝑆𝑡(𝜔

𝑡−1, ·) < −𝛼𝑡−1(𝜔
𝑡−1)|𝜑⊥

𝑡 (𝜔
𝑡−1)|}. From Proposition 5.2.5, there

exists some 𝑃𝜑 ∈ 𝒬𝑡(𝜔
𝑡−1) such that 𝑃𝜑(𝐵) > 𝛼𝑡−1(𝜔

𝑡−1) > 0. But, for all 𝜔𝑡 ∈ 𝐵 we
have that

𝑉 𝑥,𝜑
𝑡−1 (𝜔

𝑡−1) + 𝜑⊥
𝑡 (𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, 𝜔𝑡) < |𝑉 𝑥,𝜑

𝑡−1 (𝜔
𝑡−1)| − 𝛼𝑡−1(𝜔

𝑡−1)|𝜑⊥
𝑡 (𝜔

𝑡−1)| < 0,

a contradiction with (5.42) and therefore (5.41) holds true.
We now establish (5.38) by induction. For 𝑡 = 0 this is trivial. Assume now that for
some 𝑡 ≥ 1, there exists some 𝒬𝑡−1-full measure set ̃︀Ω𝑡−1 ∈ ℬ𝑐(Ω𝑡−1) on which (5.38)
is true at stage 𝑡− 1. We denote by

Ω𝑡
𝐸𝑄 := {(𝜔𝑡−1, 𝜔𝑡) ∈ Ω𝑡−1 × Ω𝑡, 𝜑

⊥
𝑡 (𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, 𝜔𝑡) = 𝜑𝑡(𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, 𝜔𝑡)}.

It is clear that Ω𝑡
𝐸𝑄 ∈ ℬ𝑐(Ω𝑡). For some 𝑃 = 𝑃𝑡−1 ⊗ 𝑝𝑡 ∈ 𝒬𝑡, recalling (5.40) and

applying Fubini’s Theorem (see [13, Proposition 7.45 p175]), we have that

𝑃 (Ω𝑡
𝐸𝑄) =

∫︁
Ω𝑡−1

∫︁
Ω𝑡

1Ω𝑡
𝐸𝑄

(𝜔𝑡−1, 𝜔𝑡)𝑝𝑡(𝑑𝜔𝑡, 𝜔
𝑡−1)𝑃𝑡−1(𝑑𝜔

𝑡−1)

=

∫︁
Ω𝑡−1

𝑁𝐴

∫︁
Ω𝑡

𝑝𝑡
(︀
𝜑⊥
𝑡 (𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, ·) = 𝜑𝑡(𝜔

𝑡−1)Δ𝑆𝑡(𝜔
𝑡−1, ·), 𝜔𝑡−1

)︀
𝑃𝑡−1(𝑑𝜔

𝑡−1)

= 1.
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Set ̂︀Ω𝑡−1 := ̃︀Ω𝑡−1∩ℋ𝑡−1∩Ω𝑡−1
𝑁𝐴 and ̃︀Ω𝑡 = Ω𝑡

𝐸𝑄∩
(︁̂︀Ω𝑡−1 × Ω𝑡

)︁
. It is clear that ̃︀Ω𝑡 ∈ ℬ𝑐(Ω𝑡)

and is a 𝒬𝑡-full measure set. We have that for all 𝜔𝑡 = (𝜔𝑡−1, 𝜔𝑡) ∈ ̃︀Ω𝑡

|𝑉 𝑥,𝜑
𝑡 (𝜔𝑡−1, 𝜔𝑡)| = |𝑉 𝑥,𝜑

𝑡−1 (𝜔
𝑡−1) + 𝜑⊥

𝑡 (𝜔
𝑡−1)Δ𝑆𝑡(𝜔

𝑡−1, 𝜔𝑡)|

≤ |𝑉 𝑥,𝜑
𝑡−1 (𝜔

𝑡−1)|
(︂
1 +

|Δ𝑆𝑡(𝜔𝑡−1, 𝜔𝑡)|
𝛼𝑡−1(𝜔𝑡−1)

)︂
≤ 𝑥𝑀𝑡−1(𝜔

𝑡−1)

(︂
1 +

|Δ𝑆𝑡(𝜔𝑡−1, 𝜔𝑡)|
𝛼𝑡−1(𝜔𝑡−1)

)︂
,

where we have used the fact that 𝜔𝑡 ∈ Ω𝑡
𝐸𝑄 for the first equality, 𝜔𝑡−1 ∈ ℋ𝑡−1 ∩ Ω𝑡−1

𝑁𝐴

and (5.41) for the second inequality and 𝜔𝑡−1 ∈ ̃︀Ω𝑡−1 for the last one: (5.38) is proved.
For all 0 ≤ 𝑟 < ∞ and 1 ≤ 𝑠 ≤ 𝑇 , as Δ𝑆𝑠,

1
𝛼𝑠

∈ 𝒲𝑟
𝑠 (see Assumption 5.4.1), so both

𝑀𝑡 and 𝑉 𝑥,𝜑
𝑡 belong to 𝒲𝑟

𝑡 for all 1 ≤ 𝑡 ≤ 𝑇 .
Fix now some 𝑛 ≥ 1. Using the monotonicity, concavity and differentiability of
𝑈𝑛(𝜔

𝑇 , ·), we get for all 𝜔𝑇 ∈ Ω𝑇 that

𝑈𝑛(𝜔
𝑇 , 𝑥) ≤ 𝑈𝑛(𝜔

𝑇 ,max(𝑥, 𝑥0)) ≤ 𝑈𝑛(𝜔
𝑇 , 𝑥0) + max(𝑥− 𝑥0, 0)𝑈

′
𝑛(𝜔

𝑇 , 𝑥0).

Thus

𝑈+
𝑛 (𝜔

𝑇 , 𝑥) ≤ 𝑈+
𝑛 (𝜔

𝑇 , 𝑥0) + |𝑥|𝑈 ′
𝑛(𝜔

𝑇 , 𝑥0). (5.43)

And it follows that for all 𝑃 ∈ 𝒬𝑇

𝐸𝑃𝑈
+
𝑛 (𝜔

𝑇 , 𝑉 𝑥,𝜑
𝑇 (𝜔𝑇 ))

≤ sup
𝑃∈𝒬𝑇

𝐸𝑃𝑈
+
𝑛 (·, 𝑥0) + sup

𝑃∈𝒬𝑇

𝐸𝑃

(︁⃒⃒⃒
𝑉 𝑥,𝜑
𝑇 (·)

⃒⃒⃒
𝑈 ′
𝑛(·, 𝑥0)

)︁
≤ sup

𝑃∈𝒬𝑇

𝐸𝑃𝑈
+
𝑛 (·, 𝑥0) + 𝑥

(︂
sup
𝑃∈𝒬𝑇

𝐸𝑃 (𝑀𝑇 (·))𝑝
)︂ 1

𝑝
(︂

sup
𝑃∈𝒬𝑇

𝐸𝑃 (𝑈 ′
𝑛(·, 𝑥0))

𝑞

)︂ 1
𝑞

≤ sup
𝑛

||𝑈+
𝑛 (·, 𝑥0)||1 + 𝑥||𝑀𝑇 (·)||𝑝 sup

𝑛
||𝑈 ′

𝑛(·, 𝑥0)||𝑞 = 𝐾𝑥 <∞,

where we have used (5.43), (5.38), 𝑀𝑇 ∈ 𝒲𝑟
𝑇 for all 𝑟 ≥ 1, Assumption 5.4.2, [51,

Proposition 16] ( 𝑝 verifies 1
𝑝
+ 1

𝑞
= 1) and finally, again Assumption 5.4.2 for the

last inequality. As this is true for all 𝑃 ∈ 𝒬𝑇 and as 𝐾𝑥 does not depend on 𝑃 and
𝑛, (5.39) is proved. 2

Lemma 5.4.14 Assume that Assumptions 5.2.2 and 5.2.3 hold true. Fix some 𝐺 ∈
𝒲0

𝑇 , 𝑥 ≥ 0 and some random utility function 𝑈 verifying Definition 5.2.11.
1. Assume that 𝒜(𝑈,𝐺, 𝜋(𝐺) + 𝑥) = 𝒜(𝐺, 𝜋(𝐺) + 𝑥). Then 𝑝(𝐺, 𝑥) ≤ 𝜋(𝐺).
2. Assume that 𝒜(𝑈,−𝐺, 𝜋(−𝐺) + 𝑥) = 𝒜(−𝐺, 𝜋(−𝐺) + 𝑥). Then 𝜋𝑠𝑢𝑏(𝐺) ≤ 𝑝𝐵(𝐺, 𝑥).
3. Assume that Assumptions 5.4.1 and 5.4.2 hold true and that 𝐺 ∈ 𝒲0,+

𝑇 . Then for
all 𝑛 ≥ 1, 𝒜(𝑈𝑛, 𝐺, 𝑥) = 𝒜(𝐺, 𝑥) and 𝑢𝑛(𝐺, 𝑥) <∞.
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Proof. 1. We apply Theorem 5.2.9 and obtain some 𝜑𝐺 ∈ 𝒜(𝐺, 𝜋(𝐺)). As 𝑈 is non-
decreasing we have that

𝑢(0, 𝑥) = sup
𝜑∈𝒜(𝑈,0,𝑥)

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈(·, 𝑉 𝑥,𝜑
𝑇 (·))

≤ sup
𝜑∈𝒜(𝑈,0,𝑥)

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈
(︁
·, 𝑉 𝑥+𝜋(𝐺),𝜑+𝜑𝐺

𝑇 (·)−𝐺(·)
)︁

≤ sup
𝜑∈𝒜(𝑈,𝐺,𝑥+𝜋(𝐺))

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈
(︁
·, 𝑉 𝑥+𝜋(𝐺),𝜑

𝑇 (·)−𝐺(·)
)︁

= 𝑢(𝐺, 𝑥+ 𝜋(𝐺)),

where the second inequality follows from the fact that when 𝜑 ∈ 𝒜(𝑈, 0, 𝑥) ⊂ 𝒜(0, 𝑥),
𝜑+𝜑𝐺 ∈ 𝒜(𝐺, 𝜋(𝐺)+𝑥) = 𝒜(𝑈,𝐺, 𝜋(𝐺)+𝑥) by assumption. So 𝑝(𝐺, 𝑥) ≤ 𝜋(𝐺) follows
from (5.12).
2. Now if 𝒜(𝑈,−𝐺, 𝜋(−𝐺)+𝑥) = 𝒜(−𝐺, 𝜋(−𝐺)+𝑥), we obtain that 𝑝(−𝐺, 𝑥) ≤ 𝜋(−𝐺)
and recalling (5.10) and (5.13), we get that 𝜋𝑠𝑢𝑏(𝐺) ≤ 𝑝𝐵(𝐺, 𝑥).
3. If 𝒜(𝐺, 𝑥) = ∅ then 𝒜(𝑈𝑛, 𝐺, 𝑥) = ∅ and 𝑢𝑛(𝐺, 𝑥) = −∞ < ∞ for all 𝑛 ≥ 1. We
assume now that 𝒜(𝐺, 𝑥) ̸= ∅. For all 𝑛 ≥ 1, using the monotonicity of 𝑈𝑛, the fact
that 𝐺 ≥ 0 𝒬𝑇 -q.s., Proposition 5.4.13 (see (5.39)), we get that for any 𝜑 ∈ 𝒜(𝐺, 𝑥)

and 𝑃 ∈ 𝒬𝑇

𝐸𝑃𝑈
+
𝑛 (·, 𝑉

𝑥,𝜑
𝑇 (·)−𝐺(·)) ≤ 𝐸𝑃𝑈

+
𝑛 (·, 𝑉

𝑥,𝜑
𝑇 (·)) ≤ 𝐾𝑥 <∞ (5.44)

Hence the integrals in (5.11) are well defined and we get that 𝒜(𝑈𝑛, 𝐺, 𝑥) = 𝒜(𝐺, 𝑥).
The fact that 𝑢𝑛(𝐺, 𝑥) <∞ for all 𝑛 ≥ 1 follows immediately (5.44). 2

Proof. of Theorem 5.4.8 Since 𝐺 ∈ 𝒲0,+
𝑇 is such that 𝐺 ̸= 0 𝒬𝑇 -q.s., 𝜋(𝐺) > 0 (see

Lemma 5.2.10 and the monotonicity property in Proposition 5.2.18).
We treat first the case where 𝜋(𝐺) = +∞. We have seen that for all 𝑥 ∈ R, 𝑛 ≥ 1,

∅ = 𝒜(𝐺, 𝑥) = 𝒜(𝑈𝑛, 𝐺, 𝑥) and recalling (5.11), 𝑢𝑛(𝐺, 𝑥0 + 𝑧) = −∞ for all 𝑧 ∈ R.
From Assumption 5.4.2, sup𝑛 ||𝑈+

𝑛 (·, 𝑥0)||1 < ∞, so that 0 ∈ 𝒜(𝑈𝑛, 0, 𝑥0) (recall that
𝑥0 > 0) for all 𝑛 ≥ 1 . This implies that for all 𝑛 ≥ 1

𝑢𝑛(0, 𝑥0) ≥ inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈𝑛(·, 𝑥0) ≥ − sup
𝑛

||𝑈−
𝑛 (·, 𝑥0)||1 > −∞, (5.45)

using Assumption 5.4.2 again. Recalling (5.12) we get that 𝑝𝑛(𝐺, 𝑥0) = +∞ for all
𝑛 ≥ 1.

We assume now that 𝜋(𝐺) < ∞. Using Lemma 5.4.14 we have that 𝑝𝑛(𝐺, 𝑥0) ≤
𝜋(𝐺) < ∞ for all 𝑛 ≥ 1. Thus, to prove that lim𝑛→∞ 𝑝𝑛(𝐺, 𝑥0) = 𝜋(𝐺) it is enough
to show that lim inf𝑛 𝑝𝑛(𝐺, 𝑥0) ≥ 𝜋(𝐺). Assume that this is not the case. Hence we
can find a subsequence (𝑛𝑘)𝑘≥1 and some 𝜂 > 0 such that 𝑝𝑛𝑘

(𝐺, 𝑥0) ≤ 𝜋(𝐺) − 𝜂 for
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all 𝑘 ≥ 1. Since 𝑥0 > 0 and 𝜋(𝐺) > 0, we may and will assume that 𝜂 < 𝜋(𝐺) and
𝜂 < 𝑥0. By definition of 𝑝𝑛𝑘

(𝐺, 𝑥0) we have that

𝑢𝑛𝑘
(𝐺, 𝑥0 + 𝜋(𝐺)− 𝜂) ≥ 𝑢𝑛𝑘

(0, 𝑥0).

Assume that lim𝑘→+∞ 𝑢𝑛𝑘
(𝐺, 𝑥0 + 𝜋(𝐺) − 𝜂) = −∞ is proved. Then we have that

lim inf𝑘→+∞ 𝑢𝑛𝑘
(0, 𝑥0) = −∞. But using Assumption 5.4.2 (see (5.45)) lim inf𝑘→+∞ 𝑢𝑛𝑘

(0, 𝑥0) >

−∞, a contradiction.
It remains to prove that lim𝑘→+∞ 𝑢𝑛𝑘

(𝐺, 𝑦) = −∞ with 𝑦 = 𝑥0+𝜋(𝐺)−𝜂 < 𝑥0+𝜋(𝐺).
For ease of notation, we will prove that lim𝑛→+∞ 𝑢𝑛(𝐺, 𝑦) = −∞. First we show
that 𝑥0 + 𝐺 /∈ 𝒞𝑇𝑦 (see (5.6) for the definition of 𝒞𝑇𝑦 ). Indeed if this is not the case,
there exists some 𝑋 ∈ 𝒲0,+

𝑇 and 𝜑 ∈ Φ such that 𝑥0 + 𝐺 = 𝑉 𝑦,𝜑
𝑇 −𝑋 𝒬𝑇 -q.s., hence

𝐺 ≤ 𝑉 𝑦−𝑥0,𝜑
𝑇 𝒬𝑇 -q.s. Therefore we must have 𝑦 − 𝑥0 ≥ 𝜋(𝐺): a contradiction. Ap-

plying Lemma 5.2.6, we get some 𝜀 > 0 such that inf𝜑∈Φ sup𝑃∈𝒬𝑇 𝑃 (𝐴𝜑) > 𝜀, where
𝐴𝜑 := {𝑉 𝑦,𝜑

𝑇 (·) < 𝑥0 +𝐺(·)− 𝜀}. Note that we can always assume that 𝑥0 ≥ 𝜀. Hence
for all 𝜑 ∈ Φ, there exists some 𝑃𝜀,𝜑 ∈ 𝒬𝑇 such that 𝑃𝜀,𝜑(𝐴𝜑) > 𝜀. From Lemma
5.4.14 and Theorem 5.2.9, we get that 𝒜(𝑈𝑛, 𝐺, 𝑦) = 𝒜(𝐺, 𝑦) ̸= ∅ since 𝑦 ≥ 𝜋(𝐺).
We choose some 𝜑 ∈ 𝒜(𝐺, 𝑦). Using the monotonicity of 𝑈𝑛 and recalling (5.39) (as
𝐺(·) ≥ 0 𝒬𝑇 -q.s., 𝜑 ∈ 𝒜(0, 𝑦)) we get that

𝐸𝑃𝜀,𝜑
1Ω𝑇 ∖𝐴𝜑

𝑈𝑛(·, 𝑉 𝑦,𝜑
𝑇 (·)−𝐺(·)) ≤ 𝐸𝑃𝜀,𝜑

𝑈+
𝑛 (·, 𝑉

𝑦,𝜑
𝑇 (·)) ≤ 𝐾𝑦 ≤ 𝐾𝑥0+𝜋(𝐺). (5.46)

Fix some 𝐽 > 0 and set 𝐶𝐽 := 2
𝜀

(︀
𝐽 +𝐾𝑥0 +𝐾𝑥0+𝜋(𝐺)

)︀
and 𝐵𝐽,𝑛 := {𝑈𝑛(·, 𝑥0 − 𝜀) ≤

−𝐶𝐽}. We apply Lemma 5.4.12 and obtain that there exists some 𝑁𝐽 ≥ 1 (which
does not depend on 𝜑) such that for all 𝑛 ≥ 𝑁𝐽 ,

𝑃𝜀,𝜑 (𝐵𝐽,𝑛) ≥ inf
𝑃∈𝒬𝑇

𝑃 (𝐵𝐽,𝑛) > 1− 𝜀

2
.

It follows that for all 𝑛 ≥ 𝑁𝐽 , 𝑃𝜀,𝜑 (𝐵𝐽,𝑛 ∩ 𝐴𝜑) > 𝜀
2

and we get that

𝐸𝑃𝜀,𝜑
1𝐴𝜑

𝑈𝑛

(︁
·, 𝑉 𝑦,𝜑

𝑇 (·)−𝐺(·)
)︁
≤ 𝐸𝑃𝜀,𝜑

1𝐴𝜑
𝑈𝑛(·, 𝑥0 − 𝜀)

= 𝐸𝑃𝜀,𝜑
1𝐴𝜑∩𝐵𝐽,𝑛

𝑈𝑛(·, 𝑥0 − 𝜀) + 𝐸𝑃𝜀,𝜑
1𝐴𝜑∖𝐵𝐽,𝑛

𝑈𝑛(·, 𝑥0 − 𝜀)

≤ −𝐸𝑃𝜀,𝜑
1𝐴𝜑∩𝐵𝐽,𝑛

𝐶𝐽 + 𝐸𝑃𝜀,𝜑
𝑈+
𝑛 (·, 𝑥0)

≤ −𝜀𝐶𝐽
2

+𝐾𝑥0 = −𝐽 −𝐾𝑥0+𝜋(𝐺),

using (5.39) and the definition of 𝐶𝐽 . Combining the previous equation with (5.46),
we obtain for all 𝑛 ≥ 𝑁𝐽 that

inf
𝑃∈𝒬𝑇

𝐸𝑃𝑈𝑛

(︁
·, 𝑉 𝑦,𝜑

𝑇 (·)−𝐺(·)
)︁
≤ 𝐸𝑃𝜀,𝜑

𝑈𝑛

(︁
·, 𝑉 𝑦,𝜑

𝑇 (·)−𝐺(·)
)︁
≤ −𝐽.

As 𝑁𝐽 doesn’t depend on 𝜑, recalling the definition of 𝑢𝑛 (see (5.30)), we obtain for
all that 𝑛 ≥ 𝑁𝐽 , 𝑢𝑛(𝑦,𝐺) ≤ −𝐽 . Since this is true for all 𝐽 ≥ 0, lim𝑛→∞ 𝑢𝑛(𝐺, 𝑦) = −∞
and the proof is complete. 2
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5.5 Appendix
Proposition 5.5.1 Let (𝑋𝑛)𝑛≥1 and 𝑋 be R𝑑-valued and ℬ𝑐(Ω𝑇 )-measurable ran-
dom variables. If lim𝑛→∞ sup𝑃∈𝒬𝑇 𝑃 (|𝑋𝑛 − 𝑋| > 1

𝑛
) = 0, then there exists a sub-

sequence (𝑋𝑛𝑘
)𝑘≥1 that converges to 𝑋 𝒬𝑇 -q.s. (i.e. on a 𝒬𝑇 -full measure set).

Proof. Consider the sub-sequence (𝑋𝑛𝑘
)𝑘≥1 such that sup𝑃∈𝒬𝑇 𝑃 (𝐴𝑘) ≤ 1

2𝑘
where

𝐴𝑘 := {|𝑋𝑛𝑘
(·) − 𝑋(·)| ≥ 1

𝑘
}. As

∑︀
𝑘≥1 sup𝑃∈𝒬𝑇 𝑃 (𝐴𝑘) < ∞, using Borel-Cantelli’s

Lemma for capacity (see [51, Lemma 5]), we obtain that
sup𝑃∈𝒬𝑇 𝑃 (lim sup𝑘 𝐴𝑘) = 0. Hence Ω𝑇∖lim sup𝑘 𝐴𝑘 is a 𝒬𝑇 -full measure set on which
lim𝑘𝑋𝑛𝑘

(·) = 𝑋(·) holds true. 2
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Application du contrôle stochastique en théorie de la décision avec croyances multiples et non dominées à temps 

discret 

Cette dissertation traite des thématiques suivantes: incertitude, fonctions d’utilité et non-arbitrage. 

Dans le premier chapitre, il n’y a pas d’incertitude sur les croyances. Nous établissons l’existence d’un portefeuille 

optimal pour un investisseur qui opère dans un marché financier multi-période à temps discret et maximise son 

espérance terminale d’utilité. Les fonctions d’utilité sont aléatoires, non concaves, non continues et définies sur l’axe 

réel positif. La preuve repose sur de la programmation dynamique et des outils de théorie de la mesure. 

Dans les chapitres suivants nous introduisons le concept d’incertitude Knightienne et adoptons le modèle de marché 

financier multi-période à temps discret avec  croyances multiples et non dominées  introduit par [25]. Dans le second 

chapitre, nous étudions la notion de non-arbitrage quasi-sûre introduite dans [25] et en proposons deux 

formulations équivalentes: une version quantitative et une version géométrique. Nous proposons aussi une 

condition forte de non-arbitrage permettant de simplifier des difficultés techniques. 

Nous utilisons ces résultats dans le troisième chapitre pour résoudre  le problème de la maximisation d’espérance 

d’utilité, sous la plus défavorable des croyances, pour des  fonctions d’utilité concaves, définies sur l’axe positif réel 

et non-bornées. La preuve utilise de la programmation dynamique et des techniques de sélection mesurable. 

Finalement, dans le dernier chapitre, nous développons un modèle d’évaluation par méthode d’indifférence d’utilité 

et démontrons que sous de bonnes conditions, le prix d’indifférence d’un actif contingent converge vers son prix de 

sur-réplication. 

Incertitude Knightienne, arbitrage, maximisation d’utilité, prix d’indifférence d’utilité, croyances multiples non 

dominées , programmation dynamique, théorie de la mesure, sélection mesurable, ensemble analytique 

 Stochastic control applied in the theory of decision in a discrete time non-dominated multiple-priors framework  

This dissertation evolves around the following thematics: uncertainty, utility functions and no-arbitrage. 

In the first chapter, there is no uncertainty and we establish the existence of an optimal portfolio for an investor 

trading in a multi-period and discrete-time financial market and maximising its terminal wealth expected utility. We 

consider general non-concave and non-smooth random utility function defined on the half real-line. The proof is 

based on dynamic programming and measure theory tools. 

In the next chapters, we introduce the concept of Knightian uncertainty and adopt the non-dominated multi-priors 

framework introduced in [25] in discrete time. We first study in the second chapter the notion of quasi-sure no-

arbitrage introduced in [25] and propose two equivalent definitions: a quantitative and geometric characterisation. 

We also introduce a stronger no-arbitrage condition that simplifies some of the measurability difficulties. 

In the third chapter, we build on these results to study the maximisation of non-dominated multiple-priors worst-

case expected utility for investors trading in a multi-period and discrete-time financial for general concave utility 

functions defined on the half-real line and unbounded from above. The proof uses again a dynamic programming 

framework together with measurable selection tools. 

Finally the last chapter formulates a utility indifference pricing model for investor trading in a multi-period and 

discrete-time financial market.  We prove that under suitable conditions the utility indifference prices of a 

contingent claim converge to its superreplication price. 

Knightian uncertainty, arbitrage, utility maximisation, utility indifference prices, multiple-priors, dynamic programing,  

measure theory, measurable selection, analytic set 
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