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Abstract

Many physical signals including audio (music, speech), medical data (electrocardiogram
(ECG), phonocardiogram (PCG)), marine mammals or gravitational-waves can be accurately
modeled as a superposition of amplitude and frequency-modulated waves (AM-FM modes),
called multicomponent signals (MCSs). Time-frequency (TF) analysis plays a central role in
characterizing such signals and in that framework, numerous methods have been proposed
over the last decade. However, these methods suffer from an intrinsic limitation known as
the uncertainty principle. In this regard, reassignment method (RM) was developed with the
purpose of sharpening TF representations (TFRs) given respectively by the short-time Fourier
transform (STFT) or the continuous wavelet transform (CWT). Unfortunately, it did not
allow for mode reconstruction, in opposition to its recent variant known as synchrosqueezing
transforms (SST). Nevertheless, many critical problems associated with the latter still remain
to be addressed such as the weak frequency modulation condition, the mode retrieval of an MCS
from its downsampled STFT or the TF signature estimation of irregular and discontinuous
signals. This dissertation mainly deals with such problems in order to provide more powerful
and accurate invertible TF methods for analyzing MCSs.

This dissertation gives six valuable contributions. The first one introduces a second-
order extension of wavelet-based SST along with a discussion on its theoretical analysis
and practical implementation. The second one puts forward a generalization of existing
STFT-based synchrosqueezing techniques known as the high-order STFT-based SST (FSSTn)
that enables to better handle a wide range of MCSs. The third one proposes a new technique
established on the second-order STFT-based SST (FSST2) and demodulation procedure,
called demodulation-FSST2-based technique (DSST2), enabling a better performance of mode
reconstruction. The fourth contribution is that of a novel approach allowing for the retrieval
of modes of an MCS from its downsampled STFT. The fifth one presents an improved method
developed in the reassignment framework, called adaptive contour representation computation
(ACRC), for an efficient estimation of TF signatures of a larger class of MCSs. The last
contribution is that of a joint analysis of ACRC with non-negative matrix factorization (NMF)
to enable an effective denoising of phonocardiogram (PCG) signals.

Keywords: time-frequency or time-scale analysis, uncertainty principle, AM-FM signals,
reassignment, synchrosqueezing.
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Résumé

De nombreux signaux physiques incluant des signaux audio (musique, parole), médicaux
(electrocardiogramme (ECG), phonocardiogramme (PCG)), de mammifères marins ou d’ondes
gravitationnelles peuvent être modélisés comme une superposition d’ondes modulées en ampli-
tude et en fréquence (modes AM-FM), appelés signaux multicomposantes (SMCs). L’analyse
temps-fréquence (TF) joue un rôle central pour la caractérisation de tels signaux et, dans
ce cadre, diverses méthodes ont été développées au cours de la dernière décennie. Néan-
moins, ces méthodes souffrent d’une limitation intrinsèque appelée le principe d’incertitude.
Dans ce contexte, la méthode de réallocation (MR) a été développée visant à améliorer les
représentations TF (RTFs) données respectivement par la transformée de Fourier à court
terme (TFCT) et la transformée en ondelette continue (TOC), en les concentrant autour des
lignes de crête correspondant aux fréquences instantanées. Malheureusement, elle ne permet
pas de reconstruction des modes, contrairement à sa variante récente connue sous le nom
de transformée synchrosqueezée (TSS). Toutefois, de nombreux problèmes associés à cette
dernière restent encore à traiter tels que le traitement des fortes modulations en fréquence, la
reconstruction des modes d’un SMC à partir de sa TFCT sous-échantillonnée or l’estimation
des signatures TF de modes irréguliers et discontinus. Cette thèse traite principalement de
tels problèmes afin de construire des nouvelles méthodes TF inversibles plus puissantes et
précises pour l’analyse des SMCs.

Cette thèse offre six nouvelles contributions précieuses. La première contribution introduit
une extension de TSS d’ordre deux appliqué à la TOC ainsi qu’une discussion sur son
analyse théorique et sa mise en œuvre pratique. La seconde contribution propose une
généralisation des techniques de synchrosqueezing construites sur la TFCT, connue sous le
nom de transformée synchrosqueezée d’ordre supérieur (FTSSn), qui permet de mieux traiter
une large gamme de SMCs. La troisième contribution propose une nouvelle technique utilisant
sur la transformée synchrosqueezée appliquée à la TFCT de second ordre (FTSS2) et une
procédure de démodulation, appelée DTSS2, conduisant à une meilleure performance de
la reconstruction des modes. La quatrième contribution est celle d’une nouvelle approche
permettant la récupération des modes d’un SMC à partir de sa TFCT sous-échantillonnée. La
cinquième contribution présente une technique améliorée, appelée calcul de représentation des
contours adaptatifs (CRCA), utilisée pour une estimation efficace des signatures TF d’une
plus grande classe de SMCs. La dernière contribution est celle d’une analyse conjointe entre
l’CRCA et la factorisation matricielle non-négative (FMN) pour un débruitage performant
des signaux phonocardiogrammes (PCG).

Mot clés: Analyse temps-fréquence or temps-échelle, principe d’incertitude, signaux AM-FM,
réallocation, synchrosqueezing.
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Chapter 1

Introduction

1.1 Context and Questions of Research

Signal processing is considered as a key factor in a vast array of applications including audio,
speech recognition, radar, sonar, geophysical exploration, medical biology, physics or systems
related to communication, processing or retrieval of information. The fundamental goal in
such applications is to provide underlying information on the specific problems for the purpose
of making decision (extraction, detection, estimation, classification, recognition of patterns,
synthesis or morphing) [12–15]. One of the most powerful methods developed over the past
century to respond to this goal is probably time-frequency (TF) analysis, pioneered by Alfréd
Haar [16] and Dennis Gabor [17]. The major motivation stems from the fact that time
domain or frequency domain (Fourier transform (FT)) representation alone is not sufficient
to describe non-stationary signals whose frequency content changes with time. Such signals
are indeed very commonly encountered in real-world situations such as musical notes [13, 14],
marine mammals [18], radars and sonars [19], gravitational-wave [20, 21], or biomedicine
[22–24]. One conjectures that these limitations can be effectively overcome by time-frequency
representations (TFR) that study the signal jointly as a two-dimensional object of time and
frequency rather than separately.

One thus has to seek mathematical transformations that enable to map the analyzed
signal into its TF domain. This then brings up the question: which generalized FT establishes
this mapping? The primary answers are the most basic forms of linear TF methods, short-
time Fourier transform (STFT) and wavelet transform (WT). However, one is faced with a
fundamental limitation of such methods, known as the uncertainty principle (UP), which
stipulates that one cannot localize a signal with an arbitrary precision both in time and
frequency. Many attempts have been made to cleverly circumvent this trade-off, among
which the most celebrated Wigner-Ville distribution (WVD). Actually, it belongs to quadratic
TF methods in which one can interpret a signal as energy density. In addition to WVD,
the latter consists of other members, as for instance, Cohen class, a special case of which
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being squared STFT (spectrogram), and affine class illustrated by squared WT (scalogram)
[12, 25, 13]. Although offering a dramatic improvement in terms of TF resolution, WVD
inevitably produces spurious cross-term interference hampering the TF readability of the
so-called multicomponent signals (MCSs) [26, 27, 12]. Such a signal model defined as the
sum of AM-FM components or modes will be extensively studied in this thesis. In fact, it
was successfully used for modeling a variety of physical phenomena, as for example, speech
processing [28], biomedical signal [29–31], or fingerprint [32, 33]. The most significant attempt
to reduce the interference generated by WVD while retaining many useful properties is the
use of a smoothing operation. However, this operation yields the negative effect of spreading
out the signal in the TF plane as a consequence of the UP [12, 25]. A considerable effort
has been put in to address this issue, among which a general methodology to sharpen TFRs,
called reassignment method (RM), was proposed. The concept of RM dates back to Kodera
et al. in the 1970s, in a somehow restricted framework [34, 35], and then further developed in
[36], as a post-processing technique. It, however, faced with the limitation that the reassigned
transform is no longer invertible.

In the context of audio signal analysis [37], Daubechies and Maes proposed another phase-
based technique, called synchrosqueezing transform (SST), whose theoretical analysis followed
in [38]. Its purpose is relatively similar to that of RM, i.e. to sharpen the time-scale (TS)
representation given by CWT, with the additional advantage of allowing for the mode retrieval.
Using the principle of wavelet-based SST (WSST), Thakur and Wu proposed an extension of
SST to the TFR given by STFT that is called STFT-based SST (FSST) [39]. It was then
proven to be robust to small bounded perturbations and noise [40], while other efforts were put
on exploring the bidimensional case, as for instance by using the monogenic synchrosqueezed
wavelet transform [41], developing other types of TFRs as the synchrosqueezed wavelet packet
transform [42, 43], or multi-taper approaches as in the ConceFT technique [44]. In spite of
all these advances, the applicability of SST is somewhat hindered by the requirement of weak
frequency modulation hypothesis for the modes constituting the signal. In contrast, most
real signals are made up of very strongly modulated AM-FM modes, as for instance chirps
involved in radar [45], speech processing [46], or gravitational waves [20, 21]. Many different
approaches and methods have been applied in an effort to deal with this disadvantage, among
which a recent adaptation of FSST to the context of strongly modulated modes, known as
the second-order synchrosqueezing transform (FSST2), was proposed in [47, 48], and further
mathematically analyzed in [49]. Unfortunately, the aforementioned technique was proven to
only provide an ideal invertible TFR for linear chirps with Gaussian modulated amplitudes,
which is still restrictive when processing other more general signals. Arising from these studies,
the first two research questions need to be answered. The first one relates to a lack of a
counterpart of FSST2 established in the wavelet context while the second one puts the focus
on the improvement of the existent synchrosqueezing techniques to enable to handle a wider
class of MCSs.
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Besides, performing signal demodulation before applying SST was of high interest for
taking into account the weak frequency modulation condition [50, 51]. However, such a
demodulation required the phase computation of the analytic signal (AS) associated with
the MCS. It is well-known that the latter cannot be related to the instantaneous frequencies
(IF) of the modes which the MCS consists of, which are considered as a key ingredient
in the demodulation of MCS. In relation to this issue, in [51], an estimate of the IF of a
mono-component signal was computed using local frequency extrema of the spectrogram. An
iterative procedure was proposed to accurately estimate the IFs, but mode retrieval was not
discussed. Therefore, the third research question arises of how to include the demodulation
procedure into the synchrosqueezing framework more appropriately and efficiently to enable
the handling of the above drawbacks.

Moreover, a very important issue related to the use of SST is that while the latter
is sharper than the TFR it is based on, mode reconstruction cannot be carried out from
SST downsampled in time. On the contrary, such a reconstruction can be achieved from
a downsampled STFT: in some sense, SST, by sharpening the frequency representation,
annihilates the time redundancy of the TFR. Then, the fourth research question arises of how
to use the latter correctly so that the reconstruction of the modes of a noisy MCS can be
performed with a better accuracy and using fewer STFT coefficients than the one associated
with SST.

Finally, another critical problem of SST is that it assumes the instantaneous characteristics
(i.e. instantaneous amplitude, frequency, and phase) of the modes to be regular and continuous.
This is in contrast to many practical signals including marine mammals [52], damped tones [53],
musical sounds [54, 55], or thermoacoustic vibration [56] that contain many highly irregular or
discontinuous modes, known as Dirac impulses or vanishing modes. Many different attempts
have been made to tackle this problem, among which the methods, built on the properties of
reassignment vector (RV), draw the most attention [57–59]. However, such methods cannot
handle signals containing noisy Dirac impulses, which is also the main objective of the fifth
research question needed to be addressed. Additionally, another serious problem related
to these RV-based methods is that they do not efficiently handle signals containing highly
energetic noises which are very common in phonocardiogram (PCG) signals [59, 5]. Indeed, in
the case of such signals, the RV-based methods only yield contours in order of descending, but
their nature (signal or noise) cannot be identified. In another direction, an appealing method
for denoising PCG signals that relied upon their analysis accompanied by the one associated
with an electrocardiogram (ECG) recorded simultaneously, was developed in [22]. Such a
method comprises three main steps: first, one decomposes the spectrograms of PGC and ECG
using non-negative matrix factorization (NMF); secondly, one computes the cross-correlation
between the so-called activation functions derived from the above decomposition; thirdly,
one thresholds this cross-correlation enabling an efficient noise elimination. However, the
threshold is fixed a priori making the method not adaptive. Therefore, the sixth research
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question arises as to whether a joint analysis of the RV-based approaches and NMF technique
is profitable for an adaptive denoising for PCG signals and how to perform this analysis.

1.2 Outline of This Dissertation

This dissertation is devoted to a large extent to the SSTs and associated methods for the
analysis of MCSs. The main objective is to bring powerful and efficient solutions to respond
respectively to all the six research questions highlighted above. For a better understanding,
we succinctly summarize such solutions as in the following outline.

In Chapter 2, we provide a concise overview of previous research done in the analysis of
MCSs using TFRs. We first recall the major reason for using TFRs for signal description,
followed by some useful notation, concepts and definitions. Then, we recall several typical
TFRs either belonging to linear or quadratic classes: STFT, WT, spectrogram, WVD, Cohen
class, scalogram, and affine class. We then point out an intrinsic limitation associated with
such methods known as the uncertainty principle (UP). Next, we introduce the RM enabling
to cope with this issue. We then show an inherent limitation associated with RM which states
that it does not allow for the mode reconstruction, and finally introduce its invertible variant
SST.

In Chapter 3, we put forward a novel second-order extension of WSST: second-order
wavelet-based SST (WSST2), for which we conduct a mathematical analysis and discuss
its practical implementation. This work has been just done in [3]. Then, we propose an
improvement of existing STFT-based SSTs by computing more accurate estimates of the IFs
of the modes making up the signal, using higher-order approximations both for the amplitude
and phase. This enables a perfect concentration and reconstruction for a wider variety of
AM-FM modes than what was possible up to now with synchrosqueezing techniques. This
work was published in [5].

In Chapter 4, we provide two new contributions to the analysis of MCSs developed in the
STFT framework. First, we introduce a technique established on the second-order STFT-
based SST (FSST2) and demodulation procedure, called demodulation-FSST2-based technique
(DFSST2). This results in an even sharper TFR as well as a better mode reconstruction than
the ones obtained by only FSST2. This work was published in [6]. Next, we present a novel
method for the retrieval of modes of a noisy MCS carried out from its downsampled STFT
using the key property of STFT: time redundancy. This work has been completed in [1].

In Chapter 5, we first introduce an improved technique, called adaptive contour represen-
tation computation (ACRC) that relies on the use of the properties of the reassignment vector
(RV) to efficiently compute TF signatures of MCSs. In fact, existing RV-based techniques
cannot assess the latter associated with a noisy Dirac impulse. Instead, the improved tech-
nique uses a local averaging rather than a punctual orientation of RV to define the direction
of projection. This results in an effective estimation of that impulse, as well as AM-FM
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modes. Also, the resultant TF estimates enable the definition of particular corresponding TF
regions called basins of attractions (BAs) subsequently used for mode retrieval. This work
was published in [4]. Then, we present a novel method based on a joint analysis between
ACRC and non-negative matrix factorization (NMF). Such a method is called NMF-ACRC
that enables for a better performance in denoising phonocardiogram (PCG) signals. This
work has been just carried out in [2].

In Chapter 6, we summarize the major contributions and results of this dissertation and
give some directions for future research.





Chapter 2

Background and state of the art

This chapter provides a brief state of the art on the analysis of multicomponent signals
(MCSs) from their time-frequency (TF) and time-scale (TS) representations. These tools were
initially proposed respectively in [16] and [17] and historically developed as a key factor for
solving many decision problems [13, 25, 60]. We first recall, in Section 2.1, the motivation for
developing TF representations (TFRs) to describe non-stationary signals, followed by some
useful notation and definitions in Section 2.2. Then, we introduce, in Section 2.3, TFRs either
belonging to linear or quadratic classes: for the first one, the focus is put on the short time
Fourier transform (STFT) and wavelet transform (WT), while for the second, we review some
important examples: spectrogram, Wigner-Ville distribution (WVD), Cohen class, scalogram,
and affine class. We then discuss, in Section 2.4, an intrinsic limitation of such methods
known as the uncertainty principle (UP) which states that a signal cannot be arbitrarily well
concentrated in both time and frequency. To deal with this issue, we recall, in Section 2.5,
the principle of the so-called reassignment method (RM), which enables the concentration of
the energy distribution to improve the readability of TFR. However, RM does not allow for
the mode retrieval, in contrast to its variant called synchrosqueezing transform (SST) that we
present in Section 2.6. Finally, we draw a conclusion of this chapter in Section 2.7.

2.1 From Time and Frequency Representation to Time-Frequency
Representation

Time representation (TR) and frequency representation (FR) are the two most classical
and widespread methods for signal representations [61, 62, 25]. The former shows how the
amplitude of a signal changes with time, whereas the latter, obtained by Fourier Transform (FT)
(see Section 2.2.1 for FT definition of a signal), uncovers its spectral content. However, neither
of them can deal with signals having time-varying frequency content, known as non-stationary
signals, as found in a wide range of applications, such as radar, sonar, telecommunications,
[13, 12], meteorology, structural stability analysis [63–65], or biomedicine [23, 24]. As an



8 Background and state of the art

0 50 100 150

Time (s)

-1

-0.5

0

0.5

1

R
e

a
l 
p

a
rt

(a)

-0.5 0 0.5

Normalized frequency

0

200

400

600

S
p
e
c
tr

u
m

 m
o
d
u
lu

s

(b)

Fig. 2.1 Time and frequency representations of a linear FM signal with duration 128 seconds:
(a): time domain; (b): frequency domain: energy spectrum.

illustration, Figure 2.1 displays TR and FR of a linear frequency-modulated (FM) signal with
constant amplitude. From these figures, it is difficult to tell the type of modulation, i.e. linear,
parabolic or hyperbolic, and the energy spectrum (in normalized frequency)1 only shows what
frequencies are present, but not their time localization.

In order to tackle these issues, one generally combines TR and FR into a single represen-
tation, called time-frequency representation (TFR), which shows how the spectral content of
a signal evolves with time and proves to be an ideal tool to dissect, analyze and interpret
non-stationary signals [25]. A variety of TFRs were proposed and developed in the literature
and mainly categorized as linear or quadratic methods [12, 25, 66, 67]. Linear methods,
which notably include STFT and WT, focus on making FT time-dependent, while quadratic
methods, as for instance the spectrogram, scalogram, and WVD, focus on the associated
spectral density. All of these methods are respectively discussed in the following section, but
before that, we present several key notation and definitions that will be used in the sequel.

2.2 Basis Notation and Definitions

2.2.1 Fourier Transform (FT)

The Fourier Transform (FT) is a mathematical transformation used to map a function from
time to frequency domains. More specifically, one has:

Definition 2.1. The Fourier Transform (FT) f̂ of a function f ∈ L1(R) is defined by:

f̂(η) = F(f(η)) =

∫
R
f(t)e−i2πηtdt. (2.1)

1Ratio between the frequency in Hertz η and the sampling frequency ηs, with respect to the Shannon
sampling theorem.
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If f̂ is also integrable, f can be reconstructed via the inverse FT (IFT).

f(t) =

∫
R
f̂(η)ei2πηtdη. (2.2)

Finally, FT can be extended to L2(R) through Parseval-Plancherel theorem:

Proposition 2.2. If f ∈ L1(R) ∩ L2(R), then its FT f̂ is L2(R), and the function f 7→ f̂ is
an isometry with respect to L2 norm: ∥f∥2 = ∥f̂∥2.

2.2.2 Multicomponent Signal (MCS)

Several types of signal models used to characterize the properties of a given signal were
proposed in the literature and generally dichotomized into two classes: deterministic and
stochastic models [68, 13]. In this dissertation, we make extensive use of a deterministic
model of the so-called multicomponent signal (MCS), defined as the superposition of AM-FM
components or modes [26, 27, 12].

Definition 2.3. An MCS can be defined as:

f(t) =
K∑
k=1

fk(t) with fk(t) = Ak(t)e
i2πϕk(t), (2.3)

for some finite K ∈ N, Ak(t) and ϕk(t) are respectively the instantaneous amplitude (IA)
and instantaneous phase (IP) functions of the kth mode satisfying: Ak(t) > 0, ϕ′k(t) > 0 and
ϕ′k+1(t) > ϕ′k(t) for all t, where ϕ′k(t) is referred to as the instantaneous frequency (IF) of
mode fk at time t.

Remark 2.4. In what follows, three types of modes extensively used are mathematically
defined as.

Definition 2.5. A mode or a chirp is said to be linear if the IF varies exactly linearly with
time: ϕ′k(t) = α0 + α1t with α0, α1 ∈ R being called the starting frequency (at time t = 0),
and the rate of frequency change, respectively.

Definition 2.6. A mode or a chirp is said to be sinusoidal if the IF varies exactly sinusoidally
with time: ϕ′k(t) = α0 + sin(2πα1t) with α0, α1 ∈ R being called the starting frequency (at
time t = 0) and the rate of sinusoidal change in frequency, respectively.

Definition 2.7. A mode or a chirp is said to be exponential if the IF varies exactly exponentially
with time: ϕ′k(t) = α0 + sin(2πα1t) with α0, α1 ∈ R being called the starting frequency (at
time t = 0) and the rate of exponential change in frequency, respectively.

Remark 2.8. It is also noteworthy that as we will see, the modes Ak(t)ei2πϕk(t) are assumed
to be continuous and regular in the first three chapters, while the method adaptive contour
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representation computation (ACRC), presented in the last chapter, works on highly irregular
or discontinuous modes.

the spectrogram is

Definition 2.9. Such a signal is fully described by its ideal TFR (ITFR) defined by:

ITFς(t, η) =

K∑
k=1

Ak(t)
ςδ(η − ϕ′k(t)), (2.4)

where ς = 1 or ς = 2 respectively corresponds to a linear or quadratic TFR and δ denotes the
Dirac distribution.

2.2.3 Analytic Signal (AS)

The underlying rationale for using analytic signal (AS) lies in the fact that the negative
frequency components of the spectrum of the real-valued function f are superfluous, known
as the Hermitian symmetry. To be more specific, a signal is real if and only if f̂(−η) = f̂(η),
which means that the negative frequency components can be discarded without loss of
information. Therefore, this leads to the use of the analytic associate of a given real-valued
signal rather than the signal itself, which is expressed as the following definition [17, 12].

Definition 2.10. The analytic signal (AS) fa associated with a real signal f is defined by:

fa(t) = f(t) + iH{f(t)}, (2.5)

where H(f) is the Hilbert transform of f defined in the time domain as:

H{f(t)} =
1

π
p.v.

{∫
R

f(τ)

t− τ
dτ

}
=

1

π
lim
δ→0

∫
|τ |≥δ

f(τ)

t− τ
dτ. (2.6)

This definition has simple interpretation: in fa, the negative frequency components of f
have been removed, the strictly positive ones have been doubled, and the DC2 component
is kept unchanged: f̂a(η) = f̂(η) + sgn(η)f̂(η), where sgn(η) is the sign function defined as
follows.

sgn(x) :=


−1 if x < 0,

0 if x = 0,

1 if x > 0.

2spectral component at zero frequency
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Let us go back to the above AM-FM signal. The Bedrosian theorem states that if A(t) is
with low frequency and cos(2πϕ(t)) is with high frequency, then one obtains [69, 70]:

H{A(t)cos(2πϕ(t))} = A(t)H{cos(2πϕ(t))}. (2.7)

Finally, AS brings various benefits to signal analysis. For example, it enables to define
instantaneous frequency (IF) and group delay (GD) that we present in the following subsection
or to avoid interference generated by interaction between positive and negative frequency
components when using quadratic TFRs (to be discussed in detail in Section 2.3.4).

2.2.4 Instantaneous Frequency (IF) and Group Delay (GD)

The IF of f is defined as the local rate oscillation of the signal at time instant t. It enables a
full description of time-varying spectral content of the signal [13, 71].

Definition 2.11. The IF of a real signal f is defined as the derivative of the instantaneous
phase (IP) of its associated AS fa:

ηi(t) =
1

2π

d

dt
arg{fa(t)}, (2.8)

where arg{z} denotes the argument of complex number z, and
dfa
dt

is the time derivative of fa.

A dual way for the description of the time-varying spectral content is the group delay
(GD). It is considered as a local time operator and defined as follows.

Definition 2.12. Given a signal f , its GD is defined by:

td(η) = − 1

2π

d

dη
arg{f̂a(η)}. (2.9)
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Fig. 2.2 IF and GD of a linear FM signal: (a): IF; (b): GD
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Fig. 2.3 IF and GD of an MCS: (a): IF; (b): GD

In Figure 2.2, we display the IF and GD of a linear FM signal. We remark that they clearly
offer ideal descriptions of the time localization of the spectral content of this mono-component
signal. Unfortunately, they fail to represent MCSs [13] as illustrated in Figure 2.3, in which
the IF and GD of an MCS as a superposition of two linear FM modes are displayed. It is
clear that they do not show two different frequencies at each time instant t.

To address this limitation, one generally describes TF structures of an MCS by surfaces
defined on the TF plane. Mathematically, this corresponds to joint functions of time t and
frequency η, known as time-frequency representations (TFRs), some of which are discussed in
more details in the following section.

2.3 Some Typical Linear and Quadratic TFRs

Having established the useful notation and concepts, this section reviews several linear and
quadratic TFRs, in particular, the motivation for their use, definitions, and properties. A
linear TFR is generally obtained by taking inner products of the analyzed signal with a
predefined family of templates (called atoms) generated by one or a few basic templates
[71, 38]. Linear TFRs all satisfy the superposition principle, i.e. the TFR of an MCS equals
the sum of the TFRs of its components. This linearity is a desirable property for many
practical applications [72, 61, 13], but quadratic TFRs are more commonly used when one
wants to interpret a representation as an energy distribution or instantaneous power spectrum.
Indeed, as we will see later, a quadratic TFR allows for an approximative description of
the energy density of a signal [71, 12]. For a better understanding of all these methods, we
discuss respectively, in Sections 2.3.1 and 2.3.2, the short time Fourier transform (STFT) and
wavelet transform (WT), while some fundamental examples of quadratic TFRs are reviewed:
spectrogram, Wigner-Ville distribution (WVD) and Cohen class, and then scalogram and
affine class in the rest of this section.
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g(τ-t)

Fig. 2.4 STFT of a signal obtained by computing FT of a block while sliding a time analysis
window g

2.3.1 Short Time Fourier Transform (STFT)

STFT is the most widely used method to study non-stationary signals because of its simplicity
and powerfulness. The key principle is to break up the signal into several small time blocks
that are disjoint or overlapping and then perform FT on each block. This is done by
multiplying the analyzed signal with a family of templates obtained by time-translating and
frequency-modulating a window function. The principle is explicitly presented in Figure 2.4.

A. Continuous STFT

Definition 2.13. Given a signal f ∈ L1(R), and g ∈ L2(R), the (modified) STFT of f is
defined by:

V g
f (t, η) =

∫
R
f(τ)g(τ − t)e−2iπη(τ−t)dτ, (2.10)

where g is the complex conjugate of g.

Remark 2.14. This definition is different from the conventional one by the modulation factor
ei2πηt, which is added for the sake of consistency with the continuous wavelet transform
(CWT) that we will study later.

B. STFT Properties

We here recalled some of nice properties of STFT [13, 73]. First, it can be expressed in terms
of signal and window Fourier spectra.

V g
f (t, η) =

∫
R
f̂(ξ)ĝ(ξ − η)ei2πξtdξ, (2.11)

Secondly, STFT is an invertible linear transform which is expressed as the following
theorem.

Theorem 2.15. Given f ∈ L2(R), then V g
f ∈ L2(R) and can be inverted through:

f(τ) =
1

∥g∥2
∫
R

∫
R
V g
f (t, η)g(τ − t)ei2πη(τ−t)dtdη, (2.12)



14 Background and state of the art

and Parseval-Plancherel equality holds:

∥f∥22 =
∫
R
|f(τ)|2dτ =

∫
R

∫
R
|V g
f (t, η)|2dtdη. (2.13)

Remark 2.16. This formula also indicates that a signal f can be decomposed into a weighted
sum of elementary waveforms:

gt,η(τ) = g(τ − t)ei2πη(τ−t). (2.14)

It is referred to as a building block or atom. Then, STFT is written as: V g
f (t, η) = ⟨f, gt,η⟩.

This corresponds to transformation group of translation in both time and frequency, called
Weyl-Heisenberg group.

Thirdly, another formula allowing for signal reconstruction from STFT, that we will use
later in the STFT-based synchrosqueezing context, are introduced as follows.

Proposition 2.17. Given g ∈ L2(R) and g(0) ̸= 0, then any f ∈ L2(R) can be reconstructed
through:

f(t) =
1

g(0)

∫
R
V g
f (t, η)dη. (2.15)

Remark 2.18. This is called STFT Morlet formula whose proof can be found in [74]. If f is
analytic, i.e. η ≤ 0 then f̂(η) = 0, the integral in (2.15) only takes place on R+. Further, we
can get the same reconstruction formula as above if f, f̂ ∈ L1(R).

Finally, it should be noted that the analysis window g plays a vital role in the TFR
analysis, especially its length [25, 73]. In fact, its choice is associated with a trade-off between
time and frequency resolutions, known as the uncertainty principle (UP). This issue will be
further discussed in Section 2.4.

2.3.2 Wavelet Transform (WT)

The original idea of wavelet transform (WT) emanates from the fact that STFT is associated
with a fixed time and frequency resolution because the length of the analysis window remains
unchanged, while many signals in practice need more flexibility [12, 71]. Indeed, WT leads
to good time resolution for high-frequency events and good frequency resolution for low-
frequency events. In order to better understand this transform, we first recall continuous
wavelet transform (CWT) computed with real wavelets, then CWT with complex wavelets,
and finally some commonly used wavelets.

A. CWT

The principle of CWT is to decompose a signal f over a family of window templates of
variable lengths obtained by translating and rescaling (i.e. dilation and contraction) a window
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function, called mother wavelet [25, 73]:

ψt,a(τ) =
1

a
ψ

(
τ − t

a

)
, (2.16)

where a > 0 represents the scale parameter (a > 1 dilates ψ and a < 1 contracts ψ), and is
inversely proportional to a frequency η, while t is a shifting parameter.

Definition 2.19. A real wavelet ψ ∈ L2(R) is called admissible if it satisfies:

0 < Cψ =

∫
R+

∣∣∣ψ̂(ξ)∣∣∣2 dξ|ξ| <∞. (2.17)

This is also called admissibility condition. Then, CWT is defined as follows:

Definition 2.20. Given f ∈ L2(R) and a real admissible wavelet ψ, its CWT is defined for
(t, a) ∈ R× R∗

+ as:

Wψ
f (t, a) = ⟨f, ψt,a⟩ =

1

a

∫
R
f(τ)ψ

(
τ − t

a

)
dτ. (2.18)

By definition, CWT is more a time-scale (TS) than a TF representation. However, for
wavelets which are well localized around a non-zero frequency η0 at scale a = 1, a TF
interpretation is possible thanks to η = η0/a.

B. CWT Properties

Several important CWT properties are here presented [25]. The first one is the reconstruction
formula from CWT [75, 73].

Theorem 2.21. If ψ is a real admissible wavelet, f ∈ L2(R) can be inverted by:

f(τ) =
1

Cψ

∫
R+∗

∫
R
Wψ
f (t, a)

1

a
ψ(
τ − t

a
)
dadt

a
, (2.19)

and Parseval-Plancherel equality holds:

∥f∥22 =
∫
R
|f(t)|2dt = 1

Cψ

∫
R+∗

∫
R
|Wψ

f (t, a)|2
dadt

a
. (2.20)

Moreover, WT is covariant by translation in time and scale. Finally, like STFT, since it is
a windowed transform, it is associated with a trade-off between TF resolutions as a result of
the uncertainty principle (UP) [25, 13]. This issue will be further discussed in Section 2.4.
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C. CWT with complex wavelets

One of the most critical issues related to the use of CWT is the wavelet choice. In practice,
one often chooses a wavelet such that its FT ψ̂ is real, regular and centered at frequency
η0. However, an analytic wavelet ψ is much more useful because it can separate the phase
and amplitude information of a signal enabling a measurement of the time evolution of
frequency transients [73]. In particular, we recall two reconstruction formulae associated
with an analytic wavelet, widely used in the wavelet-based synchrosqueezing context, in the
following propositions.

Proposition 2.22. f ∈ L2(R) is real and ψ an analytic admissible wavelet (η < 0 ⇒ ψ̂ = 0),
then one has Wψ

f = 1
2W

ψ
fa

and particularly [73]:

f(τ) =
2

Cψ
ℜe
[∫

R∗
+

∫
R
Wψ
f (t, a)

1

a
ψ(
τ − t

a
)
dtda

a

]
, (2.21)

and

∥f∥22 =
2

Cψ

∫
R∗
+

∫
R
|Wψ

f (t, a)|2
dtda

a
, (2.22)

where ℜe{z} denotes the real part of complex number z.

Proposition 2.23. Let ψ ∈ L2(R) such that 0 < C ′
ψ =

∫
R+
ψ̂(ξ)dξξ < +∞, then for any

f ∈ L2(R) and analytic, one has:

f(t) =
1

C ′
ψ

∫
R∗
+

Wψ
f (t, a)

da

a
. (2.23)

The latter is referred to as WT Morlet formula whose proof can be found in [73, 74].

D. Some commonly used mother wavelets

Various wavelets were proposed in the literature, three of which are recalled here [73, 76, 74].

• The most widely used class is that of complex Morlet wavelets defined in the frequency
domain as:

ψ̂σ,η0(η) = aσ,η0e
−πσ2(η−η0)2 , (2.24)

where aσ,η0 is a constant, σ the bandwidth and η0 the central frequency. Having optimal
TF support, they have been extensively used in signal analysis. However, they are not
analytic since a Gaussian function is not null at 0.

• The second class is that of Bump wavelets defined as:

ψ̂µ,σ(η) = aµ,σe
1− 1

1− η−µ
σ 1[µ−σ,µ+σ] (2.25)
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where aµ,σ is a normalizing constant, µ > σ > 0, and 1I the indicator function of I.
Note that ψ̂µ,σ ∈ C∞ supported on [µ− σ, µ+ σ] and admits central frequency η0 = µ.

• The third class is that of generalized Morse wavelets defined as follows:

ψ̂β,γ(η) = U(η)aβ,γη
βe−η

γ
, (2.26)

where aβ,γ is a normalizing constant. Their central frequencies are η0 = (β/γ)
1
γ . For

instance, Mexican hat wavelet, defined as the second derivative of the Gaussian function,
is included in this class.

As an illustration, we display, in Figure 2.5, some commonly used wavelets, related to the
three just mentioned above.
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Fig. 2.5 (a): Morlet Wavelet; (b): Bump wavelet; (c): Mexican hat wavelet.

2.3.3 The Spectrogram

The spectrogram is a good illustration of a quadratic TFR and is defined as the squared
modulus of STFT. It, in fact, enables an estimation of the time-varying spectral content of
the signal by studying its energy concentration.

Definition 2.24. Given f ∈ L1(R) and g ∈ L2(R), the spectrogram is defined by:

|V g
f (t, η)|2 =

∣∣∣∣∫
R
f(τ)g(τ − t)e−2iπη(τ−t)dτ

∣∣∣∣2 . (2.27)

In addition to its quadratic nature, the spectrogram also satisfies time- and frequency-
covariant property. Moreover, it is generally interpreted as a measure of the energy of the
signal contained in the TF domain since it satisfies the global energy conservation property,
namely assuming g is with unit energy [10]:∫

R

∫
R
|V g
f (t, η)|2dtdη =

∫
R
|f(t)|2dt. (2.28)
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Fig. 2.6 Illustration of interference structure in the spectrogram of two linear parallel chirps:
(a) with cross-terms; (b) without cross-terms (using the Toolbox developed in [10]).

Due to this quadratic nature, the spectrogram is also subjected to the so-called cross-
term interference that result from oscillating contributions located midway between any two
interacting components of an MCS. To be more specific, considering an MCS f = f1 + f2, one
obtains |V g

f |2 = |V g
f1
|2 + |V g

f2
|2 + 2ℜe

{
V g
f1
V g
f2

}
, where |V g

f1
|2 and |V g

f2
|2 are called auto-terms,

while 2ℜe
{
V g
f1
V g
f2

}
is a cross-term. It is worth mentioning here that if these two components

are too close in the TF plane, the cross interference will disturb the readability of TFR and,
otherwise they will be essentially zero. To illustrate these phenomena, we display, in Figure
2.6, spectrograms of an MCS composed of two linear parallel chirps computed with the same
Gaussian window but different separation level.

Finally, the spectrogram is a non-invertible transform, namely, it does not allow for signal
reconstruction because the squaring operation destroys the phase information required for that
purpose. Nevertheless, it is used in many practical applications, as for example, fundamental
frequency measurement, cross-synthesis, spectral envelope extraction, sinusoidal modeling
and FFT audio filter banks [77–79]. More details on issues, properties, and application of the
spectrogram can be found in [36, 71, 25].

2.3.4 Wigner-Ville Distribution (WVD) and Cohen Class

In contrast to the spectrogram, WVD is an adaptive quadratic TF method that does not
make use of any analysis window. Instead, it uses g(t) = f−(t) = f(−t), the time-reversed
version of the analyzed signal, which leads to [25, 67]:

V
f−
f (t, η) = Wf (t/2, η/2)/2, (2.29)

where

Wf (t, η) =

∫
R
f(t+ τ/2)f(t− τ/2)e−i2πητdτ. (2.30)
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This expression is referred to as WVD. Figure 2.7 depicts the WVD of the two linear
parallel chirps displayed in Figure 2.6 (b). Compared with the spectrogram, it clearly shows
a more concentrated picture but cross-term still exist [12].
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Fig. 2.7 WVD of two linear parallel chirps (using the Toolbox developed in [10])

While WVD enjoys many useful properties: time or frequency-shift invariance, perfect
localization of linear chirps, etc., it still suffers from cross-term interference. Numerous
techniques were proposed to deal with this issue, among which using analytic signal (AS)
rather than real one is the first simple one [12, 25, 13].

Smoothed versions of WVD also bring a huge benefit in terms of interference attenuation.
They have a general form:

Cof (t, η;Π) =

∫
R

∫
R
Π(s− t, ξ − η)Wf (s, ξ)dsdξ. (2.31)

where Π is smoothing kernel. They satisfy: time and frequency shift invariance and belong to
the so-called Cohen class. Note that WVD and spectrogram are members of this class when
Π(t, η) equals δ(t)δ(η) and Wg(t, η), respectively. However, the smoothing operation inevitably
entails a loss of TF concentration, which leads to a trade-off between TF concentration and
interference attenuation. The most widely used method to address this issue is reassignment
method (RM), which will be discussed in more details in Section 2.5. Other properties and
applications of Cohen class can be found in [25, 13, 73].

2.3.5 The Scalogram and Affine Class

Similar to the spectrogram, ones define the scalogram as the squared modulus of CWT of a
signal.

Definition 2.25. Given f ∈ L2(R) and a real admissible wavelet ψ, its scalogram is defined
as the squared modulus of CWT:

|Wψ
f (t, a)|2 =

∣∣∣∣∣1a
∫
R
f(τ)ψ

(
τ − t

a

)
dτ

∣∣∣∣∣
2

. (2.32)



20 Background and state of the art

It is also a quadratic TF energy distribution but defined in the TS plane. It can be viewed
as the counterpart of Cohen class in the wavelet framework, called the affine class, which
contains all quadratic TF representations covariant by translation in time and dilation. More
details on issues, properties, and application of the scalogram, as well as on the affine class
are available in [73, 13, 25].

2.4 Uncertainty Principle (UP)

One of the most important issues associated with the use of TFR is the uncertainty principle
(UP), which states that one cannot localize a signal with arbitrary precision both in time
and frequency [12, 13, 67]. The UP expresses a fundamental relation between the standard
deviation of a function in time σt and the standard deviation of its FT in frequency ση, which
corresponds to the following theorem.

Theorem 2.26. Given f ∈ L2(R), one defines its mean time and frequency positions:

⟨t⟩ = 1

∥f∥22

∫
R
t|f(t)|2dt and ⟨η⟩ = 1

∥f∥22

∫
R
η|f̂(η)|2dη, (2.33)

and the standard deviations along time and frequency:

σ2t =
1

∥f∥22

∫
R
(t− ⟨t⟩)2|f(t)|2dt and σ2η =

1

∥f∥22

∫
R
(η − ⟨η⟩)2|f̂(η)|2dη. (2.34)

Then, one has:

σtση ≥
1

2
. (2.35)

This expression, known as Heisenberg-Gabor inequality, has a simple interpretation: one

cannot have a signal for which both σt and ση are arbitrarily small. The lower bound σtση =
1

2
is reached for Gaussian signals [13]:

f(t) = Cexp[(−β(t− ⟨t⟩)2) + i2π⟨η⟩(t− ⟨t⟩)], (2.36)

where C ∈ R and β ∈ R+.

To illustrate the UP, we consider an MCS composed of two AM Gaussian modes with
different time shifts whose STFTs are computed with the Gaussian window with different
lengths. The results are depicted in Figure 2.8. In Figure 2.8 (a), the frequency resolution is
very good, but it is almost impossible to give any time variation. In contrast, in Figure 2.8
(b), the frequency resolution is coarser, but the time resolution is sufficiently good to lead to
some information on the change in the behavior of the signal with the time.
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(a) (b)

Fig. 2.8 Two Gaussian atoms analyzed by STFT using a Gaussian window g of different
lengths: (a): 128 samples; (b): 17 samples (using the Toolbox developed in [10]).

2.5 Reassignment Method (RM)

The primary rationale for developing RM stems from the fact that the smoothing operation,
mentioned in Definition (2.31), smears the signal in the TF plane as a result of the uncertainty
principle. For instance, we can see, in Figure 2.6, each AM-FM mode makes up a band of
non-zero coefficients with a non-negligible width in the TF plane. A lot of effort has been put
in over the years to tackle this issue, among which a widely used technique is the reassignment
method (RM). It was first introduced in [34, 35], in a somehow restricted framework, and then
further developed in [36] as a post-processing technique for signal analysis. Indeed, it focuses
the energy of a TFR towards ideal IF curves to lead to a more concentrated TF picture,
thus improving the readability of TFRs. Unfortunately, it suffers from an inherent limitation
which is its non-invertibility, namely, it does not allow for signal reconstruction. For a better
understanding of this method, we introduce, in Section 2.5.1, RM applied to the spectrogram
and to Cohen class in Section 2.5.2, and finally to the scalogram in Section 2.5.3.

2.5.1 RM for the Spectrogram

The key principle of RM, when applied to an MCS, is to map each value of a TFR, as for
instance the spectrogram, to the location corresponding to the IF curve of the nearest mode [36].
To be more specific, the spectrogram can be equivalently written as:

∫
R
∫
RWf (s, ξ)Wg(s−

t, ξ − η)dsdξ, for which the smoothing kernel Wg enables a reduction of interference, but at
the expense of smearing the distribution. To tackle this issue, one considers local energy
distribution Wf (s, ξ)Wg(s− t, ξ − η) as a mass distribution. Then, making an analogy with
mechanical physics, one assigns the total mass of the object to its centroid. This is exactly
what RM does: it moves each value of the spectrogram computed at a point (t, η) to the
centroid (τ̂f (t, η), ω̂f (t, η)) of the energy distribution.
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Definition 2.27. Given f ∈ L2(R), the centroid (called also reassignment operators) of the
spectrogram are defined as:

ω̂f (t, η) =

∫
R
∫
R ξWf (s, ξ)Wg(s− t, ξ − η)dsdξ∫

R
∫
RWf (s, ξ)Wg(s− t, ξ − η)dsdξ

,

τ̂f (t, η) =

∫
R
∫
R sWf (s, ξ)Wg(s− t, ξ − η)dsdξ∫

R
∫
RWf (s, ξ)Wg(s− t, ξ − η)dsdξ

.

(2.37)

(2.38)

Note that the centroid uses phase information of STFT, and can be rewritten as follows:

Proposition 2.28. Given f ∈ L2(R), the reassignment operators of the spectrogram are
defined for all (t, η) such that V g

f (t, η) ̸= 0 by:

ω̂f (t, η) =
1

2π
∂t

{
arg(V g

f (t, η))
}
,

τ̂f (t, η) = t− 1

2π
∂η

{
arg(V g

f (t, η))
}
,

(2.39)

(2.40)

where ∂x denotes the partial derivative of a function with respect to variable x.

Note also that in practice one uses a more efficient procedure [74]:

Proposition 2.29. For a signal f ∈ L2(R), the expressions ω̂f (t, η), τ̂f (t, η) can be written
for wherever V g

f (t, η) ̸= 0 by:

ω̂f (t, η) = η − 1

2π
ℑm

{
V g′

f (t, η)

V g
f (t, η)

}
,

τ̂f (t, η) = t+ ℜe
{
V tg
f (t, η)

V g
f (t, η)

}
,

(2.41)

(2.42)

where V tg
f , V g′

f are respectively STFTs of f computed with windows t 7→ tg(t), g′(t) and ℑm{z}
denotes the imaginary part of complex number z.

Then, the definition of the reassigned spectrogram is derived as follows.

Definition 2.30. Given f ∈ L2(R), the reassigned spectrogram is defined by:

Θ̆gf (τ, ω) =

∫
R

∫
R
|V g
f (t, η)|2δ(τ − τ̂f (t, η))δ(ω − ω̂f (t, η))dtdη, (2.43)

where δ denotes the Dirac distribution.

In order to illustrate this method, reassigned spectrogram of an MCS made of a sinusoidal
FM and a linear FM chirps is shown in Figure 2.9 (b). It is also compared with its STFT
and ITF in Figures (a) and (c), respectively. Obviously, TF concentration given by RM is
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Fig. 2.9 Spectrogram reassignment on an MCS (using the Toolbox developed in [10]): (a)
spectrogram; (b): reassigned spectrogram, (c): ideal TFR.

significantly improved compared with the spectrogram: the two components are much more
localized.

Moreover, the reassigned spectrogram is no longer bilinear and invertible, but it still
satisfies time and frequency shifts invariance, energy conservation provided g is with unit
energy and non-negative property. In particular, it gives a perfect localization for linear chirps,
which is expressed by the following theorem.

Theorem 2.31. For a linear chirp f(t) = Aei2πϕ(t), i.e. A > 0 and ϕ is a second-order
polynomial, one has: ω̂f (t, η) = ϕ′(τ̂f (t, η)).

The proof of this theorem is available in [36, 74].
Finally, a recent extension of the classical RM based on the Levenberg-Marquardt algorithm

enables to adjust the energy localization in the TF plane through a damping parameter µ
[80, 81]. The new reassignment operators are defined as follows.

Definition 2.32. Given f ∈ L2(R), the reassignment operators of the spectrogram are defined
for all (t, η) such that V g

f (t, η) ̸= 0 by:

(
ω̂µf (t, η)

τ̂µf (t, η)

)
=

(
η

t

)
−
(
▽tRµ

f (t, η) + µI2
)−1

Rµ
f (t, η), (2.44)

where Rµ
f (t, η) =

(
η − ω̂f (t, η)

t− τ̂f (t, η)

)
and ▽tRµ

f (t, η) =

(
∂Rµ

f (t, η)

∂η

∂Rµ
f (t, η)

∂t

)
, with I2 is the

2× 2 identity matrix.

Then, the Levenberg-Marquardt reassigned spectrogram is defined by replacing (t̂µf , ω̂
µ
f )

by (t̂µf , ω̂
µ
f ) in (2.43).
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2.5.2 RM for Cohen Class

RM is extended to other distributions of Cohen class by replacing WVD Wg(t, η) by an
arbitrary kernel Π(t, η) in formulae (2.37) and (2.43) [36]:

ĉωf (t, η) =

∫
R
∫
R ξWf (s, ξ)Πg(s− t, ξ − η)dsdξ∫

R
∫
RWf (s, ξ)Πg(s− t, ξ − η)dsdξ

,

ĉτ f (t, η) =

∫
R
∫
R sWf (s, ξ)Πg(s− t, ξ − η)dsdξ∫

R
∫
RWf (s, ξ)Πg(s− t, ξ − η)dsdξ

.

(2.45)

(2.46)

C̆of (τ, ω) =
∫
R

∫
R
Cof (t, η)δ(τ − ĉτ f (t, η))δ(ω − ĉωf (t, η))dtdη. (2.47)

Figures 2.10 (a) and (b) respectively illustrate WVD and its reassigned version of the
two-component signal presented in Section 2.5.1. Like the reassigned spectrogram, the
reassigned WVD generates also a highly concentrated TFR, but there are a few cross-terms
still appearing.
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Fig. 2.10 RM for a member of Cohen class (using the Toolbox developed in [10]): (a): WVD;
(b): reassigned WVD.

2.5.3 RM for the Scalogram

Similarly, one can define RM for the scalogram as follows [36, 25].

Definition 2.33. Given f ∈ L2(R) and an admissible wavelet ψ, the reassignment operators
for the scalogram are defined for all (t, a) such that Wψ

f (t, a) ̸= 0 by:

ω̂f (t, a) = ℜe
{

1

i2π

∂tW
ψ
f (t, a)

Wψ
f (t, a)

}
,

τ̂f (t, a) = ℜe


∫
R τf(τ)

1

a
ψ(
τ − t

a
)dτ

Wψ
f (t, a)

 .

(2.48)

(2.49)
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In what follows, we use the variable notation (t, η) and (t, a) to make the distinction
between frequency and scale. Further, these operators are practically computed in the Fourier
domain by means of only three CWTs as follows:

Proposition 2.34. Given f ∈ L2(R) and an admissible wavelet ψ, the expressions ω̂f (t, a),
τ̂f (t, a) can be written wherever Wψ

f (t, a) ̸= 0 as:

ω̂f (t, a) = − 1

2πa
ℑm

{
Wψ′

f (t, a)

Wψ
f (t, a)

}
,

τ̂f (t, a) = t+ aℜe
{
W tψ
f (t, a)

Wψ
f (t, a)

}
,

(2.50)

(2.51)

where t 7→Wψ′

f ,W tψ
f are respectively CWTs of f computed with wavelets ψ′, tψ.

Then, the definition of the reassigned scalogram is derived as follows.

Definition 2.35. Given f ∈ L2(R) and an admissible wavelet ψ, the reassigned scalogram is
defined by:

Ξ̆g
f (τ, ω) =

∫
R+∗

∫
R
|Wψ

f (t, a)|2δ(τ − τ̂f (t, a))δ(ω − ω̂f (t, a))dtda. (2.52)

Finally, the reassigned scalogram also localizes perfectly linear chirps.

Theorem 2.36. For a linear chirp f(t) = Aei2πϕ(t) and if ψ is such that t 7→ ψ(t), ψ′(t), tψ(t)

are admissible wavelets. Then, one has: ω̂f (t, a) = ϕ′(τ̂f (t, a)).

The proof of this theorem is available in [36].

2.6 Synchrosqueezing Transform (SST)

As mentioned previously, RM proves to be a simple and powerful tool to enhance the
readability of TFRs, it, however, does not allow for mode reconstruction, as opposed to
another phase-based reassigned technique called synchrosqueezing transform (SST). Such a
transform was firstly proposed in the wavelet case [37, 38] and then extended to the STFT
one [39, 66, 74]. It actually corresponds to a nonlinear operator that sharpens the TFR
of a signal, combines the localization and sparsity properties of RM with the invertibility
property of linear TFRs, and is robust to a variety of signal perturbations [82, 76, 40]. To
better understand this technique, we recall the original wavelet-based SST (WSST) in Section
2.6.1. Then, we move to an extension of WSST: STFT-based SST (FSST) in Section 2.6.2, in
which its numerical implementation, associated ridge extraction technique, and numerical
simulations are discussed. Finally, we recall, in Section 2.6.3, an adaptation of FSST, known as
the second-order FSST (FSST2), to better handle signals with strong frequency modulation.



26 Background and state of the art

2.6.1 Wavelet-based Synchrosqueezing Transform (WSST)

A. WSST Principle

The principle of WSST is to sharpen the blurred representation given by CWT using the IF
estimate at time t and scale a mentioned in Definition 2.33, namely:

ω̂f (t, a) = ℜe
{

1

i2π

∂tW
ψ
f (t, a)

Wψ
f (t, a)

}
. (2.53)

In that framework, Wψ
f (t, a) is only reassigned along the scale axis to a new position

(t, ω̂f (t, a)) using the synchrosqueezing operator defining WSST, as follows:

Sψ,γf (t, ω) =

∫
|Wψ

f (t,a)|>γ
Wψ
f (t, a)δ (ω − ω̂f (t, a))

da

a
, (2.54)

with γ some threshold parameter.
Because the reassignment is only carried out along the scale direction, WSST preserves

the causality property, thus making the kth mode approximately reconstructed by integrating
Sψ,γf (t, ω) in the vicinity of the corresponding ridge (t, 1

ϕ′k(t)
). This leads to the associated

reconstruction formula:

fk(t) ≈
1

C ′
ψ

∫
{ω,|ω−φk(t)|<d}

Sψ,γf (t, ω)dω, (2.55)

where C ′
ψ was defined in Proposition 2.23, φk(t) is an estimate of ϕ′k(t), and d, that we call

compensation parameter, enables to compensate for both the inaccurate approximation φk(t)
of ϕ′k(t) and the error made by estimating IF by means of ω̂f (t, a). It is worthy of note here
that approximation φk(t) must be computed before retrieving mode fk. For that purpose,
a commonly used technique relying upon ridge extraction assuming Sψ,γf and K are known.
This technique was initially proposed by Carmona et al. [83] and then successfully used in the
synchrosqueezing context in [38, 66]. Indeed, it relies upon the minimization of the following
energy functional :

Ef (φ1, · · · , φK) =
K∑
k=1

−
∫
R
|Sψ,γf (t, φk(t))|2dt+

∫
R
λφ′

k(t)
2 + βφ′′

k(t)
2dt, (2.56)

where λ and β are regularization parameters chosen such that the trade-off between smoothness
of φk and energy is maximized. In practice, this energy functional is hard to implement
because of its non-convexity, and one has to find tricks to avoid local minima as much
as possible, as for example by using a simulated annealing algorithm proposed in [83]. A
recent algorithm, first introduced in [40], enables the determination of the ridge associated
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with the corresponding mode thanks to a forward-backward approach applied for different
initializations. Finally, the influence of the regularization parameters in this algorithm will be
analyzed and discussed in more details in Section 4.1.1 of Chapter 4. This work was published
recently in [6].

B. WSST Mathematical Framework

WSST is supported by a solid mathematical framework [38] which we now recall. Let us first
define the class of chirp-like functions on which one builds the WSST theory:

Definition 2.37. Let ε > 0 and c > 0. The set Ac,ε of MCSs with modulation ε and
separation c corresponds to signals defined in Section 2.2.2 with fk satisfying:

Ak ∈ C1(R) ∩ L∞(R), ϕk ∈ C2(R),

inf
t∈R

ϕ′k(t) > 0, sup
t∈R

ϕ′k(t) <∞, Ak(t) > 0,

|A′
k(t)| ≤ ϵϕ′k(t), |ϕ′′k(t)| ≤ ϵϕ′k(t) ∀t ∈ R.

(2.57)

Further, the fks are separated with resolution c, i.e., for all k ∈ {1, . . . ,K − 1} and all t

ϕ′k+1(t)− ϕ′k(t) ≥ c(ϕ′k+1(t) + ϕ′k(t)). (2.58)

In what follows, ∆ denotes a real number in ]0, c
c+1 [.

Definition 2.38. Let h be a positive L1-normed window belonging to C∞
c (R) and consider

γ, λ > 0. The wavelet-based synchrosqueezing transform of f (WSST) with threshold γ and
accuracy λ is defined by:

Sψ,λ,γf (t, ω) =

∫
|Wψ

f (t,a)|>γ
Wψ
f (t, a)

1

λ
h

(
ω − ω̂f (t, a)

λ

)
da

a
. (2.59)

If λ→ 0, then Sψ,λ,γf (t, ω) tends, in the sense of distribution, to some value which we formally
write as in (2.54).

Theorem 2.39. Consider f ∈ Ac,ε, set ε̃ = ε
1
3 and let ψ be a wavelet such that supp(ψ̂) ⊂

[1−△, 1 +△]. Then, provided ε is sufficiently small, the following hold:

(a) |Wψ
f (t, a)| > ε̃ only when, there exists k ∈ {1, . . . ,K}, such that (t, a) ∈ Zk :=

{(t, a), s.t. |aϕ′k(t)− 1| < ∆}.

(b) For each k ∈ {1, . . . ,K} and all (t, a) ∈ Zk for which holds |Wψ
f (t, a)| > ε̃, one has:

|ω̂f (t, a)− ϕ′k(t)| ≤ ε̃. (2.60)
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(c) Moreover, for each k ∈ {1, . . . ,K}, there exists a constant DW,1 such that for any t ∈ R∣∣∣∣∣ limλ→0

(
1

C ′
ψ

∫
|ω−ϕ′k(t)|<ε̃

Sψ,λ,ε̃f (t, ω)dω

)
− fk(t)

∣∣∣∣∣ ≤ DW,1ε̃. (2.61)

The proof of this theorem is available in [38] and gives a strong approximation result for
the class Ac,ϵ, since it ensures that the non-zero coefficients of WSST are localized around
the curves (t, 1

ϕ′k(t)
) in the TS space, and that the reconstruction of the modes is easily

obtained from the concentrated representation. However, it is more useful for real-time
applications [84] to extend this result to non-compact wavelet in the Fourier domain. This
development has recently been made in [3] and will be presented in Section 3.1.1 of Chapter 3.
Finally, numerical implementation, simulations and applications of WSST are well presented
in [38, 40, 85].

2.6.2 STFT-based Synchrosqueezing Transform (FSST)

Originally proposed in the wavelet case, SST was extended similarly to the STFT context,
known as STFT-based synchrosqueezing transform (FSST) in a somehow restrictive framework,
in [39, 85]. A more general formulation was proposed in [66] and mathematically analyzed in
[49], all of which we now recall.

A. FSST Mathematical Framework

In the FSST framework, the IF estimate of signal f at time t and frequency η, introduced in
Definition 2.28, reads:

ω̂f (t, η) =
1

2π
∂t

{
arg(V g

f (t, η))
}
,

= η − 1

2π
ℑm

{
V g′

f (t, η)

V g
f (t, η)

}
.

(2.62)

Then, one defines the class of chirp-like functions on which one builds the FSST theory.

Definition 2.40. Let ϵ > 0 and ∆ > 0. The set B∆,ϵ of MCSs with modulation ϵ and
separation ∆ is the set of all MCSs defined in Section 2.2.2 satisfying:

Ak ∈ C1(R) ∩ L∞(R), ϕk ∈ C2(R),

sup
t∈R

ϕ′k(t) <∞, ϕ′k(t) > 0, Ak(t) > 0, ∀t

|A′
k(t)| ≤ ϵ, |ϕ′′k(t)| ≤ ϵ ∀t ∈ R.

(2.63)
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Further, the fks are separated with resolution ∆, i.e., for all k ∈ {1, ...,K − 1} and all t,

ϕ′k+1(t)− ϕ′k(t) ≥ 2∆. (2.64)

Definition 2.41. Let h be a L1-normalized positive function belonging to C∞
c (R), and pick

γ, λ > 0. The STFT-based synchrosqueezing (FSST) of f with threshold γ and accuracy λ is
defined by:

T g,λ,γf (t, ω) =

∫
|V gf (t,η)|>γ

V g
f (t, η)

1

λ
h

(
ω − ω̂f (t, η)

λ

)
dη. (2.65)

If λ→ 0, then T g,λ,γf (t, ω) tends, in the sense of distribution, to some value which we formally
write as follows.

T g,γf (t, ω) =

∫
|V gf (t,η)|>γ

V g
f (t, η)δ(ω − ω̂f (t, η))dη. (2.66)

called FSST in the sequel.

Theorem 2.42. Consider f ∈ B∆,ϵ and put ϵ̃ = ϵ1/3. Let g ∈ S(R), be such that supp(ĝ) ⊂
[−∆,∆]. Then, if ϵ is small enough, the following hold:

(a) |V g
f (t, η)| > ϵ̃ only when there exists k ∈ {1, ...,K} such that (t, η) ∈ Zk := {(t, η), s.t. |η−

ϕ′k(t)| < ∆}.

(b) For all k ∈ {1, ...,K} and all (t, η) ∈ Zk such that |V g
f (t, η)| > ϵ̃, ones has

|ω̂f (t, η)− ϕ′k(t)| ≤ ϵ̃. (2.67)

(c) For all k ∈ {1, ...,K}, there exists a constant DF,1 such that for all t ∈ R,∣∣∣∣∣ limλ→0

(
1

g(0)

∫
|ω−ϕ′k(t)|<ϵ̃

T g,λ,ϵ̃f (t, ω)dω

)
− fk(t)

∣∣∣∣∣ ≤ DF,1ϵ̃. (2.68)

This theorem is very similar to that in the wavelet case, but some differences appear
mainly on the modulation of the mode and the separation condition (see Definition 2.40).
It shows that the synchrosqueezing operator T g,γf is concentrated in narrow bands around
curves (t, ϕ′k(t)) in the TF plane and the modes fks can be reconstructed from T g,γf with a
reasonably high accuracy. The proof of this theorem is presented in [38]. Note that similar to
the wavelet case, an extension of this theorem to a non-compactly supported window in the
Fourier domain was also introduced in [49].
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Fig. 2.11 FSST and RM of an MCS (using Gaussian window of size σF = 0.03): (a): time
representation; (b): STFT modulus; (c): a small patch extracted from (b); (d): RM; (e):
FSST.

B. Numerical Illustrations of FSST

This section provides several numerical examples to illustrate the principle of FSST. In a
nutshell, the FSST of a signal is generally conducted in three main steps: (1) compute T g,γf
using formula (2.66); (2) detect and extract the ridges corresponding to modes from T g,γf
using formula (2.56) (just replacing T g,γf by Sψ,γf in that formula); (3) retrieve mode fk using
detected ridges φk and T g,γf through:

fk(t) ≈
1

g(0)

∫
{ω,|ω−φk(t)|<d}

T g,γf (t, ω)dω, (2.69)

where φk(t) is the estimate of ϕ′k(t) given by the ridge detector, and d is the compensation
parameter.

Let us first consider a complex simulated MCS (f) composed of three different kinds of
AM-FM modes: a sinusoidal chirp f1, a linear FM chirp f2 and a second-order FM chirp f3
all with the same Gaussian modulated amplitude. In our simulations, f is uniformly sampled
over interval [0, 1] with a sampling rate M = 1024 Hz. In addition, STFT is computed with

L1−normalized Gaussian window g(t, σF ) = σ−1
F e

−π t2

σ2
F with σF = 0.03. In Figure 2.11, the

principle of FSST and RM carried out on this MCS are clearly shown: FSST moves the STFT
coefficients only along the frequency axis, while those reassigned by RM along both time
and frequency. In comparison with RM, FSST gives a less concentrated result wherever the
frequency modulation ϕ′′k(t) is large, and otherwise behaves similarly. Moreover, we illustrate,
in Figure 2.12, the procedure of the mode retrieval with FSST on the same MCS as above.
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These results show that all the three modes are separated and reconstructed with a relatively
high accuracy.
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Fig. 2.12 Modes’ retrieval using FSST: (a): FSST modulus; (b): ridge extraction; (c): three
reconstructed modes (only a part of reconstructed modes is displayed together with the
original ones (black lines)).

Furthermore, we illustrate the FSST behavior on a noisy MCS by adding the above signal
with a white Gaussian noise fζ(t) = f(t) + ζ(t), where ζ(t) is a complex white Gaussian
process with variance Var (ℜe {ζ(t)}) = Var (ℑm {ζ(t)}) = σ2ζ . The noise level is measured
by the Signal-to-Noise Ratio (SNR):

SNRintput[dB] = 20 log10
∥f∥2

∥fζ − f∥2
, (2.70)

and ζ(t) is the white Gaussian noise added, and ∥.∥2 is the l2 norm. In Figure 2.13, we display
the procedure of FSST on a noisy MCS with input SNR 10dB. It is clear that FSST produces
a quite focused TFR from the smeared STFT. Moreover, the reconstruction of the modes is
performed by selecting the FSST coefficients only on the detected ridges (i.e. d = 0). The
reconstruction quality of the techniques is measured by the output SNR defined as:

SNRoutput[dB] = 20 log10

( ∥fi∥2
∥fi − fr,i∥2

)
, (2.71)

fr,i is the ith reconstructed mode. In our simulations, the output SNR of each mode is about
15dB, meaning that FSST not only estimates the modes but also performs some kind of
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denoising. Other properties and comparisons of FSST with other methods are introduced in
[40, 74, 49].
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Fig. 2.13 FSST procedure of a noisy MCS: (a): STFT; (b): FSST; (b): ridge extraction; (d):
three reconstructed modes (only a part of reconstructed modes is displayed along with the
original noisy ones (black lines)).

2.6.3 Second Order STFT-based Synchrosqueezing Transform (FSST2)

A. FSST2 Principle

Although FSST proves to be an interesting solution for enhancing TFR while allowing the
mode retrieval, it cannot deal with the modes having significant FMs ϕ′′ which are frequently
met in real-world applications [53, 46, 20, 45, 21]. In this section, we recall second-order FSST
(FSST2), known as an adaptation of FSST to the strongly modulated modes [66, 47]. Let us
first define the second-order local modulation operator q̃t,f (t, η) allowing for a more accurate
IF estimate, which is then used to define an improved synchrosqueezing operator T g,γ2,f .

Proposition 2.43. Given a signal f ∈ L2(R), the complex reassignment operators ω̃f (t, η)
and τ̃f (t, η) are respectively defined for any (t, η) s.t. V g

f (t, η) ̸= 0 as:

ω̃f (t, η) =
∂tV

g
f (t, η)

2iπV g
f (t, η)

,

τ̃f (t, η) = t−
∂ηV

g
f (t, η)

2iπV g
f (t, η)

. (2.72)
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Then, the second-order local complex modulation operator q̃t,f (t, η) is defined by:

q̃t,f (t, η) =
∂tω̃f (t, η)

∂tτ̃f (t, η)
whenever ∂tτ̃f (t, η) ̸= 0. (2.73)

In what follows, the subscript t (resp. η) denotes the obtained function using the derivatives
with respect to the variabl t (resp. η).

In that case, the definition of the improved IF estimate associated with the TF represen-
tation given by STFT is derived as:

Definition 2.44. Let f ∈ L2(R), the second-order local complex IF estimate of f is defined
as:

ω̃
[2]
t,f (t, η) =

ω̃f (t, η) + q̃t,f (t, η)(t− τ̃f (t, η)) if ∂tτ̃f ̸= 0

ω̃f (t, η) otherwise.

Then, its real part ω̂[2]
t,f (t, η) = ℜe{ω̃[2]

t,f (t, η)} is the desired IF estimate.

It was demonstrated in [48] that ℜe {q̃t,f (t, η)} = ϕ′′(t) when f is a Gaussian modulated
linear chirp, i.e. f(t) = A(t)ei2πϕ(t) where both log(A(t)) and ϕ(t) are quadratic. Also,
ω̂
[2]
t,f (t, η) is an exact estimate of ϕ′(t) for this kind of signals. Furthermore, ω̃f (t, η), τ̃f (t, η)

and q̃t,f (t, η) can be computed by means of only five STFTs as follows:

Proposition 2.45. For a signal f ∈ L2(R), the expressions ω̃f , τ̃f and q̃t,f can be written
as:

ω̃f = η − 1

i2π

V g′

f

V g
f

τ̃f = t+
V tg
f

V g
f

q̃t,f =
1

i2π

V g′′

f V g
f −

(
V g′

f

)2
V tg
f V g′

f − V tg′

f V g
f

,

(2.74)

(2.75)

(2.76)

where V g
f denotes V g

f (t, η) for the sake of simplicity and V g′

f , V
tg
f , V g′′

f , V tg′

f are respectively
STFTs of f computed with windows t 7→ g′(t), tg(t), g′′(t) and tg′(t).

The second-order FSST (FSST2) is then defined by replacing ω̂f (t, η) by ω̂
[2]
t,f (t, η) in

(2.66):

T g,γ2,f (t, ω) =

∫
{η,|V gf (t,η)|>γ}

V g
f (t, η)δ

(
ω − ω̂

[2]
t,f (t, η)

)
dη. (2.77)

Mode fk is finally retrieved by replacing T g,γf (t, ω) by T g,γ2,f (t, ω) in (2.69) with a different
normalization as follows.

fk(t) ≈
1

D′
g,k

∫
{ω,|ω−φk(t)|<d}

T g,γ2,f (t, ω)dω, (2.78)
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where D′
g,k =

∫
RF{g(τ)e−iπϕ′′k(t)τ2}(η)dη is a normalization constant that depends on mode

k and is slightly different from g(0) used in the case of non-negligible FM. In practice, ϕ′′k(t)
should be estimated by q̃t,f (t, η) before computing this normalization constant. To implement
the FSST2 in practice, the same procedure as that introduced in Section 2.6.2 FSST are
applied using T g,γ2,f (t, η) instead of T g,γf (t, η) . Finally, numerical simulations to illustrate the
efficiency of FSST2 and its comparison with other methods are well presented in [66, 48, 49, 86]
and also provided in the following chapters.

B. Mathematical Foundations of FSST2

Now, we recall the mathematical framework of FSST2 in the non-compact support case, which
was introduced in [49], by first defining a class of chirp-like functions B[2]

∆,ϵ, which is larger
than B∆,ϵ use in FSST case.

Definition 2.46. Let ϵ > 0,∆ > 0. The set B[2]
∆,ϵ of MCSs with second-order modulation ϵ

and separation ∆ corresponds to the signals defined in Section 2.2.2 satisfying:

(a) fk is such that Ak and ϕk satisfy the following conditions:

Ak(t) ∈ L∞(R) ∩ C2(R), ϕk(t) ∈ C3(R), ϕ′k(t), ϕ′′k(t), ϕ′′′k (t) ∈ L∞(R),

Ak(t) > 0, inf
t∈R

ϕ′k(t) > 0, sup
t∈R

ϕ′k(t) <∞, |A′
k(t)| ≤ ϵ, |A′′

k(t)| ≤ ϵ, and |ϕ′′′k (t)| ≤ ϵ.

(b) the fks are separated with resolution ∆, i.e., for all k ∈ {1, ...,K − 1} and all t,

ϕ′k+1(t)− ϕ′k(t) ≥ 2∆. (2.79)

Now, let us define the second-order FSST as follows.

Definition 2.47. Let h be a L1-normalized positive function belonging to C∞
c (R), and pick

γ, λ > 0. The second-order FSST (FSST2) of f with threshold γ and accuracy λ is defined by:

T g,λ,γ2,f (t, ω) =

∫
|V gf (t,η)|>γ

V g
f (t, η)

1

λ
h

ω − ω̂
[2]
f (t, η)

λ

 dη. (2.80)

If λ→ 0, then T g,λ,γ2,f (t, ω) tends, in the sense of distribution, to some value which we formally
write as in (2.77).

The approximation theorem of FSST2, in which we prove that ω̂[2]
f (t, η) is an accurate IF

estimate for a function f ∈ B[2]
∆,ϵ, is now recalled:
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Theorem 2.48. Consider f ∈ B[2]
∆,ϵ, and put ϵ̃ = ϵ1/6. Let g be a window satisfying,

all k = 1, · · · ,K and r ∈ {0, 1, 2},
∣∣∣F{τ rg(τ)e−iπϕ′′k(t)τ2}(η)

∣∣∣ ≤ Krϵ when |η| ≥ ∆ and,∫
|η|>∆

∣∣∣F{g(τ)e−iπϕ′′k(t)τ2}(η)
∣∣∣ dη ≤ K3ϵ̃, for some constants Kr and K3. Then, provided ϵ is

sufficiently small, the following hold:

(a) |V g
f (t, η)| > ϵ̃ only when there exists k ∈ {1, ...,K} such that (t, η) ∈ Zk := {(t, η), s.t. |η−

ϕ′k(t)| < ∆}.

(b) For all k ∈ {1, ...,K} and all (t, η) ∈ Zk such that |V g
f (t, η)| > ϵ̃ and

∣∣∂tt̃f (t, η)∣∣ > ϵ̃,
one has: ∣∣∣ω̂[2]

t,f (t, η)− ϕ′k(t)
∣∣∣ ≤ ϵ̃. (2.81)

(c) For all k ∈ {1, ...,K}, there exists a constant DF,2 such that for all t ∈ R,∣∣∣∣∣ limλ→0

(
1

D′
g,k

∫
|ω−ϕ′k(t)|<ϵ̃

T g,λ,ϵ̃2,f (t, ω)dω

)
− fk(t)

∣∣∣∣∣ ≤ DF,2ϵ̃. (2.82)

with D′
g,k being defined in (2.78).

The proof of this theorem is available in [49].

2.7 Conclusions

In this chapter, we have conducted a succinct review on TFRs for the analysis of MCSs. We
first introduced the motivation why a TFR is preferred to a time or frequency representation
alone in many applications whose signals have time-varying nature or multiple components.
Then, we recalled some basic notation, definitions, and several principal linear and quadratic
TF methods: short time Fourier transform (STFT), wavelet transform (WT), spectrogram,
Wigner Ville distribution and scalogram. On that matter, we also pointed out the main
limitation associated with a TFR known as the uncertainty principle preventing any accurate
temporal localization of a frequency. To tackle such a limitation, RM aiming at sharpening
TFR was then developed, but it did not allow for signal reconstruction. In this regard, we
recalled its variant, known as synchrosqueezing transform which has the additional advantage
of allowing the mode retrieval. The latter was also developed in both wavelet and STFT
frameworks. Unfortunately, it was shown that these techniques cannot deal with signals
containing modes with strong frequency modulation. In order to handle this case, we presented
the second-order synchrosqueezing transform (FSST2) in the STFT context, an adaptation of
FSST to the strong frequency modulated context, in which the local instantaneous frequency
estimate (ω̂f (t, η)) is replaced by a more accurate one. However, it only perfectly adapts to
the signals that can be locally well approximated by linear chirps, which is still limited when
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processing other general types of signals. In this regard, we put forward, in Chapter 3.2, a
generalization of FSST and FSST2 to the so-called high-order STFT-based synchrosqueezing
transforms (FSSTn) based on a more accurate instantaneous frequency estimate that enables
to circumvent this limitation. This work was published in [5]. Before going into the details of
this method, we introduce, in Chapter 3.1, the counterpart of FSST2 in the wavelet framework,
known as the second-order wavelet-based synchrosqueezing transform (WSST2) accompanied
by its rigorous mathematical analysis, all of which are available in [3].



Chapter 3

Contributions to Synchrosqueezing
Transforms for Multicomponent
Signals Analysis

Contents
1.1 Context and Questions of Research . . . . . . . . . . . . . . . . . 1

1.2 Outline of This Dissertation . . . . . . . . . . . . . . . . . . . . . . 4

In Chapter 2, we introduced three effective synchrosqueezing transforms (WSST, FSST,
FSST2) for analyzing multicomponent signals (MCSs), along with their mathematical founda-
tions. However, these techniques were proven to only provide an ideal invertible TFR for either
pure harmonic or linear chirps with Gaussian modulated amplitudes, which is still restrictive.
Indeed, most real-world signals made of very strongly modulated AM-FM modes, as for
instance chirps involved in radar [45], speech processing [46], or gravitational waves [20, 21],
need more accurate and powerful techniques. With this in mind, we propose to improve exist-
ing STFT-based SSTs by computing more accurate estimates of the instantaneous frequencies
(IFs) of the modes making up the signal, using higher-order approximations both for the
amplitude and phase. This results in perfect concentration and reconstruction for a wider
variety of AM-FM modes than what was possible up to now with synchrosqueezing techniques
[5]. Before characterizing this new approach, we put forward the counterpart of FSST2 in the
wavelet framework a build-up on a second-order extension of WSST: the so-called second-order
wavelet-based synchrosqueezing transform (WSST2), for which we develop a mathematical
analysis and discuss its practical implementation [3].

This chapter is structured as follows: we first revisit WSST assuming the analysis wavelet
is not compactly supported in the Fourier domain in Section 3.1.1. This helps derive, in Section
3.1.2, the second-order wavelet-based synchrosqueezing transform (WSST2) and subsequently
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prove approximations results generalizing those related to WSST. In Section 3.1.3, we detail the
practical implementation of WSST2 and perform several numerical experiments on simulated
signals to compare the latter with other synchrosqueezing techniques in Section 3.1.4. Then, we
introduce, in Section 3.2.1, a different definition of the second-order FSST (FSST2) compared
with the one in Section 2.6.3. In that framework, we present the proposed generalization:
the so-called higher-order STFT-based synchrosqueezing transform (FSSTn), in Section 3.2.2.
Then, numerical simulations are performed on synthetic signals to demonstrate the efficiency of
FSSTn compared with the reassignment method (RM) and other synchrosqueezing techniques,
in Section 3.2.3. Finally, numerical experiments conducted on gravitational-wave signals
illustrate the interest of WSST2 and FSSTn in comparison with the other synchrosqueezing
techniques.

3.1 Second-order Wavelet-based Synchrosqueezing Transform

3.1.1 Wavelet-based Synchrosqueezing Transform with Non-compactly Sup-
ported Wavelet

The wavelet-based synchrosqueezing transform (WSST) using a compactly supported wavelet
in the Fourier domain is supported by a solid mathematical framework, which was recalled in
Section 2.6.1. Now, we define the class of chirp-like signals on which we build the theory for
the non-compact support case.

Definition 3.1. Let ε > 0 and c > 0. The set Ac,ε of MCSs with modulation ε and separation
c corresponds to signals defined in Section 2.2.2 with fk satisfying:

Ak ∈ C1(R) ∩ L1(R) ∩ L∞(R), ϕk ∈ C2(R),

inft∈R ϕ
′
k(t) > 0, supt∈R ϕ

′
k(t) <∞,M = maxk (supt∈R ϕ

′
k(t)) ,

Ak(t) > 0, |A′
k(t)| ≤ εϕ′k(t) ≤ εM, |ϕ′′k(t)| ≤ εϕ′k(t) ≤ εM, ∀t ∈ R.

Further, the fks are separated with resolution c, i.e., for all k ∈ {1, . . . ,K − 1} and all t

ϕ′k+1(t)− ϕ′k(t) ≥ c(ϕ′k+1(t) + ϕ′k(t)). (3.1)

Remark 3.2. Note that the conditions defining this class are slightly different from those
introduced in Definition 2.37 to enables a theoretical analysis associated with the non-
compactly supported wavelet. In what follows ∆ denotes a real number in ]0, c

c+1 [.

Definition 3.3. Let h be a positive L1-normed window belonging to C∞
c (R), and consider

γ, λ > 0. The wavelet-based synchrosqueezing transform of f (WSST) with threshold γ and
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accuracy λ is defined by:

Sψ,λ,γf (t, ω) :=

∫
|Wψ

f (t,a)|>γ
Wψ
f (t, a)

1

λ
h

(
ω − ω̂f (t, a)

λ

)
da

a
. (3.2)

If λ→ 0, then Sψ,λ,γf (t, ω) tends, in the sense of distribution, to some value which we formally
write as in Equation (2.54).

Theorem 3.4. Consider f ∈ Ac,ε, set ε̃ = ε
1
3 and let ψ be a non-compactly supported wavelet

in the Fourier domain satisfying:
∣∣∣ψ̂(η)∣∣∣ ≤ N0ε when |η − 1| > ∆, and

∫
|η−1|>∆

∣∣∣ψ̂(η)∣∣∣ dη
η

≤
N1ε̃, for some constants N0 and N1.

Assuming (t, a) ∈ E = R ×
[
0, 1+∆

inft∈R ϕ′1(t)

]
, then, provided ε is sufficiently small, the

following hold:

(a) |Wψ
f (t, a)| > ε̃ only when, there exists k ∈ {1, . . . ,K}, such that (t, a) ∈ Zk :=

{(t, a), s.t. |aϕ′k(t)− 1| < ∆}.

(b) For each k ∈ {1, . . . ,K} and all (t, a) ∈ Zk for which holds |Wψ
f (t, a)| > ε̃, one has:

|ω̂f (t, a)− ϕ′k(t)| ≤ ε̃. (3.3)

(c) Moreover, for each k ∈ {1, . . . ,K}, there exists a constant D1 such that for any t ∈ R∣∣∣∣∣ limλ→0

(
1

C ′
ψ

∫
|ω−ϕ′k(t)|<ε̃

Sψ,λ,ε̃f (t, ω)dω

)
− fk(t)

∣∣∣∣∣ ≤ D1ε̃, (3.4)

where C ′
ψ was defined in Proposition 2.23.

The proof of this theorem is available in Appendix A.1.

3.1.2 Second-order Wavelet-based Synchrosqueezing Transform (WSST2)

As highlighted above, the inherent limitation associated with WSST is that it is only efficient
to enhance TFRs of MCS composed of slightly perturbed harmonic modes. In order to
overcome this drawback, a recent extension of WSST was introduced based on a more
accurate IF estimate that is then used to define an improved synchrosqueezing operator, called
the second-order wavelet-based synchrosqueezing transform (WSST2) [87], and our goal is to
develop its mathematical study.
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A. WSST2 Principle

Let us first define a second-order local modulation operator subsequently used to compute
the new IF estimate. This modulation operator corresponds to the ratio of the first-order
derivatives, with respect to t, of the reassignment operators, as explained in the following:

Proposition 3.5. Given a signal f ∈ L2(R), the complex reassignment operators ω̃f (t, a)
and τ̃f (t, a) are respectively defined for any (t, a) s.t. Wψ

f (t, a) ̸= 0 as:

ω̃f (t, a) =
1

i2π

∂tW
ψ
f (t, a)

Wψ
f (t, a)

τ̃f (t, a) =

∫
R τf(τ)

1
aψ(

τ−t
a )dτ

Wψ
f (t, a)

= t+ a
W tψ
f (t, a)

Wψ
f (t, a)

,

(3.5)

(3.6)

which are now defined provided tψ and ψ′ are in L1(R). Then, the second-order local complex
modulation operator q̃t,f (t, a) is defined by:

q̃t,f (t, a) =
∂tω̃f (t, a)

∂tτ̃f (t, a)
, whenever ∂tτ̃f (t, a) ̸= 0. (3.7)

Remark 3.6. It is interesting to note that using partial derivatives with respect to a instead of

t, one can obtain a new second-order local modulation operator q̃a,f (t, a) =
∂aω̃f (t, a)

∂aτ̃f (t, a)
, whose

properties are exactly the same as those of q̃t,f (t, a).

In this regard, the definition of the improved IF estimate associated with the TFR given
by CWT is derived as:

Definition 3.7. Let f ∈ L2(R), the second-order local complex IF estimate of f is defined as:

ω̃
[2]
t,f (t, a) =

ω̃f (t, a) + q̃t,f (t, a)(t− τ̃f (t, a)) if ∂tτ̃f (t, a) ̸= 0

ω̃f (t, a) otherwise.
(3.8)

Then, its real part ω̂[2]
t,f (t, a) = ℜe{ω̃[2]

t,f (t, a)} is the desired IF estimate.

Similar to the FSST2 case, ℜe {q̃t,f (t, a)} = ϕ′′(t) when f is a Gaussian modulated linear
chirp. Further, ω̂[2]

t,f (t, a) is an exact estimate of ϕ′(t) for this kind of signals. Furthermore,
ω̃f (t, a) and q̃t,f (t, a) can be computed by means of five CWTs as follows:

Proposition 3.8. Let f ∈ L2(R), ω̃f (t, a) and q̃t,f (t, a) can be written as:

ω̃f (t, a) = − 1

i2πa

Wψ′

f (t, a)

Wψ
f (t, a)

(3.9)
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q̃t,f (t, a) =
1

i2πa2

Wψ′′

f (t, a)Wψ
f (t, a)−Wψ′

f (t, a)2

W tψ
f (t, a)Wψ′

f (t, a)−W tψ′

f (t, a)Wψ
f (t, a)

, (3.10)

where t 7→Wψ′
,W tψ,Wψ′′

,W tψ′ are respectively CWTs of f computed with wavelets ψ′, tψ, ψ′′, tψ′

all in L1(R).

Proof. These expressions are easily derived using ∂ptW
ψ
f (t, a) =

(
− 1
a

)p
Wψ(p)

f (t, a).

The second-order WSST (WSST2) is then defined by replacing ω̂f (t, a) by ω̂[2]
t,f (t, a) in

(2.54):

Sψ,γ2,f (t, ω) :=

∫
|Wψ

f (t,a)|>γ
Wψ
f (t, a)δ

(
ω − ω̂

[2]
t,f (t, a)

) da
a
, (3.11)

and fk is finally retrieved by replacing Sψ,γf (t, ω) by Sψ,γ2,f (t, ω) in (2.55) with a different
normalization as follows:

fk(t) ≈
1

C ′
ψ,k

∫
{ω,|ω−φk(t)|<d}

Sψ,γf (t, ω)dω, (3.12)

where C ′
ψ,k =

∫ ∞

0
F{ψ(τ)e

−iπ
ϕ′′
k
(t)

ϕ′2
k

(t)
η2τ2

}(η)dη
η

depends on mode k and is definitely different

from C ′
ψ as soon as the modulation is non zero. The reason behind this normalization is ex-

plained in the proof of the following Theorem 3.11. Before detailing numerical implementation
of WSST2, the following section introduces a study of WSST2 from the angle of mathematical
analysis.

B. Mathematical Foundations for WSST2

This section begins with the definition of another class of chirp-like functions, larger than
Ac,ε and that can be successfully dealt with WSST2:

Definition 3.9. Let ε > 0. The set A[2]
c,ε of multicomponent signals with second-order

modulation ε and separation c corresponds to the signals defined in Section 2.2.2 satisfying:

(a) fk is such that Ak and ϕk satisfy the following conditions:

Ak(t) ∈ C2(R) ∩ L1(R) ∩ L∞(R), ϕk(t) ∈ C3(R),

ϕ′k(t), ϕ
′′
k(t), ϕ

′′′
k (t) ∈ L∞(R),

Ak(t) > 0, inf
t∈R

ϕ′k(t) > 0, sup
t∈R

ϕ′k(t) <∞, M = max
k

(
sup
t∈R

ϕ′k(t)

)
,

|A′
k(t)| ≤ εϕ′k(t) ≤ εM, |A′′

k(t)| ≤ εϕ′k(t) ≤ εM,

and |ϕ′′′k (t)| ≤ εϕ′k(t) ≤ εM ∀t ∈ R.
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(b) the ϕks satisfy the following separation condition

ϕ′k+1(t)− ϕ′k(t) ≥ c(ϕ′k+1(t) + ϕ′k(t)),∀t ∈ R , ∀k ∈ {1, . . . ,K − 1}.

Note that ∆ is some value in ]0, c
c+1 [. Now, let us define WSST2 as follows:

Definition 3.10. Let h be a positive L1-normed window belonging to C∞
c (R), and consider

γ, λ > 0, the WSST2 of f with threshold γ and accuracy λ is defined by:

Sλ,γ2,f (t, ω) =

∫
|Wψ

f (t,a)|>γ
Wψ
f (t, a)

1

λ
h

ω − ω̂
[2]
t,f (t, a)

λ

 da

a
. (3.13)

In Section 3.1.1, we showed that, for functions f ∈ Ac,ε, a good IF estimate was given by
ω̂f (t, a) and the approximation theorem followed. Here, to assess the approximation property
of WSST2 we have just introduced, we consider f ∈ A[2]

c,ε for which we are going to prove that
ω̂
[2]
t,f (t, a) is a good IF estimate. The approximation theorem is as follows:

Theorem 3.11. Consider f ∈ A[2]
c,ε, set ε̃ = ε1/6. Let ψ be a wavelet satisfying, for all

k = 1, · · · ,K, r ∈ {0, 1} and p ∈ {0, 1},
∣∣∣∣∣F{τ rψ(p)(τ)e

−iπ ϕ
′′
k (t)

ϕ′2
k

(t)
η2τ2

}(η)
∣∣∣∣∣ ≤ Nr,pε when

|η − 1| > ∆, and
∫
|η−1|>∆

∣∣∣∣∣F{ψ(τ)e
−iπ ϕ

′′
k (t)

ϕ′2
k

(t)
η2τ2

}(η)
∣∣∣∣∣ dηη ≤ N2ε̃, for some constants Nr,p and

N2.
Assuming (t, a) ∈ E defined in Theorem 3.4, then, provided ε is sufficiently small, the

following hold:

(a) |Wψ
f (t, a)| > ε̃ on E only when, there exists k ∈ {1, . . . ,K}, such that (t, a) ∈ Zk :=

{(t, a), s.t. |aϕ′k(t)− 1| < ∆}.

(b) For each k ∈ {1, . . . ,K} and for all (t, a) ∈ Zk, for which hold |Wψ
f (t, a)| > ε̃ and

|∂tτ̃f (t, a)| > ε̃, one has

|ω̂[2]
t,f (t, a)− ϕ′k(t)| ≤ ε̃. (3.14)

(c) Moreover, for each k ∈ {1, . . . ,K}, there exists a constant DW,2 such that∣∣∣∣∣
(
lim
λ→0

1

C ′
ψ,k

∫
|ω−ϕ′k(t)|<ε̃

Sλ,ε̃2,f (t, ω)dω

)
− fk(t)

∣∣∣∣∣ ≤ DW,2ε̃, (3.15)

where C ′
ψ,k is defined in (3.12).

The proof of Theorem 3.11 is available in Appendix A.2.
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3.1.3 Numerical Implementation of WSST2

This section details the numerical implementation of WSST2. Let consider a signal f
being assumed to be defined on [0, 1] and then uniformly discretized at time tm = m/n

with m = 0, . . . , n − 1 and n = 2L, L ∈ N. First, we discretize Wψ
f at (m/n, aj), where

aj =
2j/nv
n , j = 0, . . . , Lnv with the voice number nv being a user-defined parameter controlling

the number of scales (nv = 32 or 64 in practice). The discrete wavelet transform (DWT) of f
is computed in the Fourier domain as follows:

Wψ
f (tm, aj) ≈W ψ̂

d,f (m, j) :=
(
F−1

d

((
Fd(f)⊙ ψ̂j,.

)))
m
, (3.16)

where Fd(f) (resp. F−1
d ) denotes the standard (resp. inverse) discrete Fourier transform

(DFT) (resp. IDFT), ⊙ the elementwise multiplication, ψ̂j,q = ψ̂(ajq) with q = 0, . . . , n− 1,
and the subscript d stands for discrete value.

With this in mind, we compute the complex estimate of the second-order modulation
operator q̃t,f defined as in (3.10), as follows:

q̃d,t,f (m, j) =

i2π

(
W ψ̂

d,f (m, j)W
ξ2ψ̂
d,f (m, j)−

(
W ξψ̂

d,f (m, j)
)2)

a2j

[(
W ψ̂

d,f (m, j)
)2

+W ψ̂
d,f (m, j)W

ξψ̂′

d,f (m, j)−W ψ̂′

d,f (m, j)W
ξψ̂
d,f (m, j)

] ,

where W ξ2ψ̂
d,f , W ξψ̂

d,f , W
ξψ̂′

d,f , W ψ̂′

d,f denote respectively DWTs of f computed using the wavelets
ξ 7→ ξ2ψ̂, ξ 7→ ξψ̂, ξ 7→ ξψ̂′, and ξ 7→ ψ̂′. For instance (ξψ̂)j,q = (ajq)ψ̂(ajq).

Introducing ω̃d,f (m, j) =
W ξψ̂

d,f (m, j)

ajW
ψ̂
d,f (m, j)

and τ̃d,f (m, j) = t+
aj
i2π

W ψ̂′

d,f (m, j)

W ψ̂
d,f (m, j)

, enables the

definition of a discrete version of a second-order complex IF estimate of f :

ω̃
[2]
d,f (m, j) =

ω̃d,f (m, j) + q̃d,t,f (m, j)(t− τ̃d,f (m, j)) if ∂tτ̃d,f (m, j) ̸= 0

ω̃d,f (m, j) otherwise,

where ∂tτ̃d,f (m, j) =

(
W ψ̂

d,f (m,j)
)2

+W ψ̂
d,f (m,j)W

ξψ̂′
d,f (m,j)−W

ψ̂′
d,f (m,j)W

ξψ̂
d,f (m,j)

W ψ̂
d,f (m,j)

2
. We then take the

real part ω̂[2]
d,f (m, j) = ℜe{ω̃[2]

d,f (m, j)}, which leads to the desired discreted IF estimate.
We now show how to compute WSST2. First, we highlight how the frequency domain is

split when performing second-order synchrosqueezing transform. First we remark that each
scale aj is the inverse of frequency fj = 1/aj = 2−j/nvn. Putting fLnv = 0 and f−1 = +∞, we
define frequency bins corresponding to the wavelet representation as Wj =

[
fj+1+fj

2 ,
fj+fj−1

2

[
,

where 0 ≤ j ≤ Lnv − 1. With this in mind, the second-order synchrosqueezing operator is
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implemented as follows:

Sψ,γd,2,f (m, fj) =
∑
Gd(j)

W ψ̂
d,f (m, l)

log(2)

nv
, (3.17)

where Gd(j) =
{
0 ≤ l ≤ Lnv − 1 s.t. ω̂

[2]
d,f (m, l) ∈ Wj and |W ψ̂

d,f (m, l)| > γ
}
.

Finally, each mode fk is retrieved by summing Sψ,γd,2,f along the frequency axis in the
vicinity of the kth mode. More precisely, one has, for each tm,

fk(m/n) ≈
1

C ′
d,ψ,k

∑
l∈Υk(m)

Sψ,γd,2,f (m,ωl), (3.18)

where Υk(m) is a set of indices corresponding to a small frequency band located around
the ridge curve of kth mode, which is selected by ridge extraction method [83, 5]. Note also that

C ′
d,ψ,k is a discrete approximation of C ′

ψ,k computed as in (3.12): C ′
ψ,k =

∫ ∞

0
F{ψ(τ)e

−iπ
ϕ′′
k
(t)

ϕ′2
k

(t)
η2τ2

}(η)dη
η

,

in which ϕ′′k(t) and ϕ′k(t) should be first estimated by q̃d,t,f and ω̃[2]
d,f , respectively.

100

200

300

400

500

(a)
1     

3.44  

12.07 

41.5  

145.76

512   

1/
a 

(lo
g)

(b)

Fig. 3.1 (a), (b): modulus of STFT and WT of three constant frequency modes f1, f2, and
f3, with lines corresponding to the frequencies where the transforms are actually computed
(linear scale for STFT and exponential one for WT).

Remark 3.12. It is important to remark here that the set Υk(m) is computed via ridge
extraction on the wavelet representation so that the accuracy of the reconstruction of the
mode depends on the frequency band the mode leaves in. Indeed the size of Wj−1 is 21/nv

the size of Wj , meaning the accuracy of the set Υk(m) depends on the frequency of mode k.
On the contrary, this is not the case when considering a synchrosqueezing operator based on
STFT, for which one uses a uniform sampling of the frequency axis. With STFT, the length
of the frequency bins is 1, while the length of Wj is smaller than 1 for large j and much bigger
for small ones. This is illustrated in Figure 3.1, where we consider three constant frequency
modes: on that figure, we draw a line at each frequency used in the computation of CWT and
STFT (along with the transforms themselves). We notice that while the error associated with



3.1 Second-order Wavelet-based Synchrosqueezing Transform 45

IF estimation by ridge extraction is bounded by 1 for STFT, it depends on the frequency for
CWT (the average IF estimation error associated with ridge extraction ranges from 0.55, 1.74
and 3.34 for f1, f2 and f3 respectively).
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Fig. 3.2 (a), (b) and (c): real part of f1, f2, and f3 respectively with Gaussian modulated
amplitudes A1, A2 and A3 superimposed; (d): real part of f .

3.1.4 Numerical Analysis of the Behavior of WSST2 and Comparisons

In this section, we provide numerical experiments to demonstrate the efficiency of WSST2
compared with other synchrosqueezing transforms including WSST, FSST, and FSST2 as
introduced in the previous chapter. More precisely, we carry out a comparison in terms
of concentration and accuracy of the TFRs obtained. For that purpose, we start with
considering a complex simulated MCS (f) composed of three components: a linear chirp (f1),
a hyperbolic chirp (f2) and an exponential chirp (f3) with Gaussian modulated amplitudes,
whose instantaneous frequencies are respectively linear (ϕ′′(t) ∝ cst), hyperbolic (ϕ′′(t) ∝

ϕ′(t)2) and exponential (ϕ′′(t) ∝ ϕ′(t)). Note also that f1 behaves locally as a Gaussian
modulated linear chirp that is mathematically proved to be perfectly handled by both FSST2
and WSST2, while the other two components contain strong nonlinear frequency modulations.

In our simulations, f is uniformly sampled over time interval [0, 1] with a sampling rate
M = 1024 Hz. In Figures 3.2 (a), (b) and (c), we display respectively the real part of the three
components along with their amplitudes, and, in Figure 3.2 (d), the real part of the whole
signal. Moreover, the CWT (resp. STFT) of f is then computed with the L1− normalized
complex Morlet wavelet (resp. Gaussian window):

ψ(t, σW ) =
1√
σW

e
−π t2

σ2
W ei2πt and g(t, σF ) = σ

− 1
2

F e
−π t2

σ2
F ,
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where σW and σF are optimal values in some sense as explained hereafter. An arbitrary
threshold γ = γ0 = 0.001 is also set for noise-free signals (the results obtained being
relatively insensitive to that threshold). In addition, the wavelet-based (resp. STFT-based)
synchrosqueezing transforms are represented on a logarithmic (resp. linear) scale. The Matlab
codes for synchrosqueezing transforms and the scripts leading to all figures of this chapter
can be found https://github.com/phamduonghung/WSST2.
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Fig. 3.3 Evolution of Rényi entropies with respect to σW and σF either in the noise-free, 5
dB, 0 dB or −5 dB cases for: (a) CWT; (b) STFT.

A. Optimal Wavelet and Window Length Determination

One of the well-known issues regarding the use of CWT (resp. STFT) is the choice of an
appropriate length for Morlet wavelet (resp. Gaussian window) to allow for a good trade-off
between time and frequency localization. In the synchrosqueezing context, this choice has
also a strong impact on the accuracy of mode reconstruction: to use an inappropriate window
may lead to the failure of ridge extraction and then of mode retrieval. To tackle this issue,
a widely used approach is to measure the concentration of CWT (resp. STFT) which then
allows us to pick the optimal window length as the one associated with the most concentrated
representation. For that purpose, a relevant work is [88, 89], in which the concentration of
the CWT (resp. STFT) is measured by means of Rényi entropy:

HWR(σW ) =
1

1− α
log2

(∫ ∫
R2 |Wψ

f (t, a)|αdadt∫ ∫
R2 |Wψ

f (t, a)|dadt

)
,

HFR(σF ) =
1

1− α
log2

(∫ ∫
R2 |V g

f (t, η)|αdηdt∫ ∫
R2 |V g

f (t, η)|dηdt

)
,

(3.19)

(3.20)

https://github.com/phamduonghung/WSST2
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where integer orders α > 2 is recommended. The larger the Rényi entropy, the less concentrated
the CWT (resp. STFT). The optimal wavelet (resp. window) length parameter is thus
determined as: σWopt = argmin

σ
(HWR(σW )) (resp. σFopt = argmin

σ
(HFR(σF ))). Note also

that, as we will see, this optimal determination procedure allows for a relatively fair comparison
between the tested STFT-based and wavelet-based methods.

In Figure 3.3, we display the evolution of Rényi entropies (α = 3) with respect to σ of the
CWT and STFT for the signal f introduced above at different noise levels (noise-free, −5, 0,
5 dB). We notice that it exhibits a local minimum at a specific value for σW or σF and the
corresponding optimal value is relatively stable with the noise levels.
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Fig. 3.4 First row, (a): modulus of the STFT of f ; (b): FSST; (c): FSST2 ; Second row, (d):
modulus of the CWT of f ; (e): WSST; (f) WSST2. Threshold γ0 = 0.001.

Having determined the optimal σWopt and σFopt, we display, still in the noise-free context,
the STFT and CWT of f in the first column of Figure 3.4. Then, on the other two columns
of this figure, the reassigned versions of CWT and STFT given by the aforementioned
synchrosqueezing transforms are depicted. Analyzing these figures, we first remark that, as
expected, FSST leads to a relatively sharp TFR for the linear chirp f1, that looks similar to
the ones given by WSST2 and FSST2, and much better than that corresponding to WSST. It
is worth mentioning here that this worse representation is related to the scale discretization
and not to the quality of the IF estimate as will be shown later. We shall also remark that
FSST fails to reassign correctly the STFT of f2 and f3 where their frequency modulations are
non-negligible. In contrast, the reassigned representations of f2 and f3 provided by WSST
are much more concentrated at these locations. Moreover, it is also of interest to remark that
the quality of the representation corresponding to WSST seems not to depend on the scale
for f2 contrary to what happens with f3. Finally, for f2 and f3, both WSST2 and FSST2
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seem to behave very similarly when considering either of the three studied modes and result
in compact TFRs.

For a better understanding of the performance improvements brought by the use of WSST2
over other studied methods, the following section introduces a quantitative comparison of all
these techniques from the angle of energy concentration of TFRs, and then a measure of their
accuracy by means of the Earth mover’s distance (EMD). But, before detailing them, we first
study the stability of IF estimation with FSST and WSST on a linear chirp and then switch
to that of WSST on a hyperbolic chirp.

B. Stability of IF Estimation with FSST and WSST on a Linear Chirp

In order to explain the different behaviors of STFT and WSST when applied to a linear chirp.
Given a linear chirp hc(t) = Ae2iπϕ(t), and if |η − ϕ

′
(t)| < ∆ and STFT is performed with

gσF (t, σF ), one has:

|ω̂hc(t, η)− ϕ
′
(t)| ≤ ∆

∣∣∣1− 1
1+σ4

Fϕ
′′ (t)2

∣∣∣ ≤ ∆, (3.21)

which means that this IF estimation is stable for all t.
Similarly, in the wavelet case, we study the quality of the estimate ω̂hc(t, a), for which we

have the following result:

Theorem 3.13. If one performs the decomposition with the Morlet wavelet ψ(t, σW ) and if
| 1a − ϕ

′
(t)| ≤ ∆ then:

|ω̂hc(t, a)− ϕ
′
(t)| ≤ ∆, (3.22)

meaning the IF estimation is stable for all t.

The proof of this theorem is available in Appendix A.3.

C. Stability of IF Estimation with WSST on a Hyperbolic Chirp

In this section, we show that WSST is well behaved when applied to an hyperbolic chirp, as
suggested by Figure 3.4 (e). We show, in the following theorem, the stability of IF estimation
with ω̂f (t, a), when a Cauchy wavelet is used for the decomposition (the proof for the Morlet
wavelet still needs to be carried out).

Theorem 3.14. Let f be an hyperbolic chirp defined by f(t) = tiα for 0 < t and any α in
R, and consider the estimate ω̂f (t, a) computed using the Cauchy wavelet with parameter 1,
whose definition of order β, a strictly positive real,

gβ(t) = Γ(β + 1)(1− i2πt)−(1+β), (3.23)
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where for any complex z with strictly positive real part, Γ(z) =
∫ +∞
0 tz−1e−tdt. Then, if

| 1a − ϕ
′
(t)| ≤ ∆, one has:

|ω̂f (t, a)− ϕ
′
(t)| ≤ ∆, (3.24)

meaning the IF estimation is stable for all t.

The proof of this theorem is available in Appendix A.4.
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Fig. 3.5 (a) Normalized energy as a function of the number of sorted TF coefficients for f1.
Abscissa corresponds to the number of coefficients over the size M of the signal; (b): same as
(a) but for f2 ; (c): same as (a) but for f3. Threshold γ0 = 0.001.

D. Evaluation of TF Concentration

The TF concentration is one of the outstanding features used for evaluating the performance
of the different TF techniques. In order to quantify this, an appealing method first introduced
in [48] is used in this chapter. The main goal of such a method is to measure the energy
concentration by considering the proportion of the latter contained in the first nonzero
coefficients associated with the highest amplitudes, which we call normalized energy. When
computed on a mono-component signal, the faster it increases towards 1 with the number
of coefficients involved, the more concentrated the TFR. In Figure 3.5 (a), we depict the
normalized energy corresponding to the reassignment of the STFT of f1 using different
techniques, with respect to the number of coefficients kept divided by the length of f1 (which
corresponds to the sampling rate M in our case). Since we consider only one mode, a good
representation has to have its energy mostly contained in the first M coefficients, which
correspond to abscissa 1 in the graph of Figure 3.5 (a) Not surprisingly, the energy of f1 is
perfectly localized when using either WSST2 or FSST2, since they require only one coefficient
per time instant to recover the signal energy, while WSST and FSST need more coefficients
(5 and 2 respectively). The same computations carried out on f2 and f3 show that WSST2
still better performs than the other three methods, especially WSST or FSST.
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In order to further challenge the different TF reassignment techniques in the presence of
noise, we consider a noisy signal fζ(t) = f(t) + ζ(t), where ζ(t) is a complex white Gaussian
process with variance Var (ℜ{ζ(t)}) = Var (ℑ{ζ(t)}) = σ2ζ . Note also that, in this noisy
context, one of the well-known issue regarding the use of SST is the choice of an appropriate
threshold γ on Wψ

f (t, a) or V g
f (t, η) in the definition of the synchrosqueezing operator to allow

for signal denoising and a fair comparison between the different tested methods. Here, we
propose to use one of the the most commonly used techniques for signal denoising: hard
thresholding (HT) [90, 73]. Such a technique enables adaptive determination of the threshold
γ as a function of the noise level. Indeed, it exploits the linearity of CWT and the fact that,
for a fixed scale a, one has:

Var
(
ℜ
{
Wψ
ζ (t, a)

})
=

1

a
σ2ζ ∥ψ∥22 and Var

(
ℑ
{
Wψ
ζ (t, a)

})
=

1

a
σ2ζ ∥ψ∥22 ,

where Var stands for the variance. From this, we deduce that
∣∣∣Wψ

ζ (t, a)
∣∣∣2/ 1

aσ
2
ζ ∥ψ∥22 is

χ2 distributed with 2 degrees of freedom. If
∣∣∣Wψ

ζ (t, a)
∣∣∣2 is larger than 9 × 1

aσ
2
ζ ∥ψ∥22, the

probability of false alarm is less than 1%. Therefore, assuming the variance of the noise σ2ζ is
known, HT for CWT means to threshold coefficients as:

W
ψ
fζ
(t, a) =

{
Wψ
fζ
(t, a), if

∣∣∣Wψ
fζ
(t, a)

∣∣∣ ≥ γW = 3σζ
1√
a
∥ψ∥2

0 otherwise,
(3.25)

The same arguments applied to the STFT case leads to:

V
g
fζ
(t, η) =

{
V g
fζ
(t, η), if |V g

fζ
(t, η)| ≥ γF = 3σζ∥g∥2

0 otherwise,
(3.26)

which enables to guarantee an efficient noise removal. In real-life applications, threshold levels
γW and γF are unknown and need to be estimated. For example, by considering the median
absolute deviation approach [91], a robust estimator for wavelet decomposition was proposed
in [90]:

γ̂W =
median

a

∣∣∣ℜ{Wψ
fζ
(t, a)

}∣∣∣
0.6745

and γ̂F =
median

η

∣∣∣ℜ{V g
fζ
(t, η)

}∣∣∣
0.6745

,

where median represents the median of the coefficients.
Then, we carry out the same numerical experiments regarding energy concentration as

in the noise-free case, each mode being this time contaminated by a white Gaussian noise
(SNR = 0 dB). The results displayed in Figure 3.6 exhibit a slightly slower growth of the
normalized energy since the coefficients corresponding to noise, that the above technique
cannot completely eliminate, are spread out over the whole TF or TS planes. However, the
normalized energy is still more concentrated when using WSST2 than the other methods, even
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Fig. 3.6 (a) Normalized energy as a function of the number of sorted TF coefficients for noisy
f1 (SNR = 0 dB); (b): same as (a) but for noisy f2 (SNR = 0 dB); (c): same as (a) but for
noisy f3 (SNR = 0 dB).

for mode f1 when compared with FSST2. These facts clearly show that the representation
provided by the former technique is the most concentrated, even in heavy noise situations.
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Fig. 3.7 (a): EMD corresponding to different TFRs of f1 given by the synchrosqueezing
transforms; (b): same as (a) but for f2; (c): same as (a) but for f3.

Although quite informative, the method based on normalized energy does not deliver any
insight into the location accuracy of the reassigned transforms. The latter can alternatively be
quantified by measuring the dissimilarity between the resultant TFR and the corresponding
ideal one by means of the Earth mover’s distance (EMD), a procedure already used in the
synchrosqueezing context in [44]. The EMD is a sliced Wasserstein distance, commonly used
in optimal transport, which gives the amount of work needed to deform one probability
distribution to another. The principle of EMD in the synchrosqueezing context is to compute
the 1D EMD between the resultant TFR and the corresponding ideal one, for each individual
time t, and then take the average overall t to define the global EMD. Mathematically, one
has the following definition of EMD [92, 44].

Definition 3.15. Given two probability distributions ϖ1 and ϖ2 on a metric space (Γ, ϱ) and
an optimization over P(ϖ1, ϖ1), the set of all probability measures on Γ × Γ with ϖ1 and ϖ2
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being considered as marginals, the standard EMD is defined by:

dEMD(ϖ1, ϖ2) =

∫
ϑ∈P(ϖ1,ϖ1)

ϱ(x, y)dϑ(x, y). (3.27)

In particular, if Γ ∈ R and ϱ is the canonical Euclidean distance ϱ(x, y) = |x− y|, then the
standard EMD reduces to 1D EMD as:

d1DEMD(ϖ1, ϖ2) =

∫
Γ
|fϖ1(x)− fϖ2(x)|dx, (3.28)

where fϖi(x) =
∫ x
−∞ dϖi with i = 1, 2.

A smaller EMD means a better TFR concentration to the ground truth and fewer noise
fluctuations. Note also that since EMD is defined for probability distributions, the TFRs
is first normalized such that their integral equal 1 for t. In Figures 3.7 (a), (b) and (c), we
display, respectively for the three modes already tested, the evolution of EMD with respect
to the noise level, for TFRs given either by WSST, WSST2, FSST or FSST2. For linear chirp
f1, WSST2 always achieves the best performance of the TF concentration to the ground truth
whatever the input SNR, even compared with FSST2. Moving to f2 and f3, WSST2 performs
similarly to WSST at the high noise level and is more accurate at the low noise level, while
it consistently outperforms FSST and FSST2. These results confirm the interest of using
WSST2 on many different types of signals, even in the presence of heavy noise.

Table 3.1 Accuracy of mode retrieval in the noise-free case

FSST FSST2 WSST WSST2

Mode f1 8.77 29.4 4.57 50.3

Mode f2 2.64 18.4 8.12 22.9

Mode f3 0.646 18.1 14.6 30.4

MCS f 3.18 20.0 7.11 27.2

Table 3.2 Accuracy of mode retrieval in the noisy case, (SNR = 0 dB)

FSST FSST2 WSST WSST2

Mode f1 4.46 6.01 3.76 6.65

Mode f2 2.62 4.84 4.58 6.00

Mode f3 0.46 3.07 3.06 3.41

MCS f 2.38 4.59 3.80 5.34
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E. Evaluation of Mode Reconstruction Performance

As discussed above, the variants of second-order SST (WSST2) proposed in this chapter
leading to significantly better TFRs, this should translate into better performance in terms of
mode reconstruction. Let us first briefly recall that fk is retrieved from the TFR of f given by
the WSST2 (other SSTs have the same mode retrieval procedure) through the formula (3.18):

fk(m/n) ≈
1

C ′
d,ψ,k

Sψ,γd,2,f (m,φk(m/n)), (3.29)

where φk(m/n) is the estimate of ϕ′k(m/n) given by the ridge detector (see Section 2.6.1 for
details on such a technique). This formula also indicates that we only use the information
on the ridge to reconstruct the mode (i.e. d = 0). In Table 3.1, we display the output SNRs
for modes f1, f2, f3 and also for f , using either FSST, FSST2, WSST or WSST2 for mode
reconstruction. Further, we carry out the same experiments, but each mode is embedded in
a white Gaussian noise at a noise level: SNR = 0 dB. The resultant accuracies for such a
reconstruction are displayed in Table 3.2. From these results, we can see that the improvement
brought by using WSST2 is clear and consistent with the previous study of the accuracy of
the proposed TFRs. In particular, WSST2 always provide better results than FSST2 in both
noise-free and noisy cases although the mathematical analysis shows that they have a similar
behavior. The reason of this phenomena is that the discretization of scale in the wavelet case
is finer the in low-frequency range and coarser in the high-frequency range, whereas that of
frequency in the STFT case is unchanged, all mentioned in Section 3.1.3. As a result, TFRs
given by wavelet-based transforms are generally more accurate than the ones associated with
STFT-based transforms, which leads undoubtedly to a great impact on the accuracy of the
reconstruction results.

3.2 High-order STFT-based Synchrosqueezing Transforms

As highlighted in Section 2.6.3, FSST2 is proven capable of handling a class of chirp signals
that are larger than the original FSST does. Actually, the former is obtained through the
definition of the improved synchrosqueezing operator T g,γ2,f (t, η) using the second-order local
modulation operator q̃t,f (t, η), which corresponds to the ratio of the first-order derivatives,
with respect to t, of the reassignment operators. However, by using partial derivatives with
respect to η instead of t, a new second-order local modulation operator q̃η,f (t, η) showing the
same properties as those of q̃t,f (t, η) can also be obtained as follows.

3.2.1 New Definition of Second Order STFT-based SST (FSST2)

Let first introduce the new definition of the second-order local complex modulation operator
q̃η,f (t, η).
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Definition 3.16. Given a signal f ∈ L2(R), the second-order local complex modulation
operator q̃η,f is defined by:

q̃η,f (t, η) =
∂ηω̃f (t, η)

∂η τ̃f (t, η)
whenever ∂η τ̃f (t, η) ̸= 0, (3.30)

where ω̃f (t, η) and τ̃f (t, η) are respectively defined in Proposition 2.43.

Note that a more practical formula for this operator is also obtained as:

Proposition 3.17. The second-order modulation operator q̃η,f (t, η) can be computed through:

q̃η,f =
1

i2π

(
V g
f

)2
+ V g

f V
tg′

f − V g′

f V
tg
f(

V tg
f

)2
− V g

f V
t2g
f

, (3.31)

where V t2g
f is the STFT of the signal f computed with window t 7→ t2g(t).

Proof. By considering the partial derivatives of ω̃f (t, η) and τ̃f (t, η) with respect to η in the
expressions given in Proposition 2.45, and then using the formula ∂ηV

g
f (t, η) = −i2πV tg

f (t, η),
the expression for q̃η,f follows.

Then, a new definition of the improved IF estimate having the same properties as ω̃[2]
t,f (t, η)

is derived as follows:

Definition 3.18. Let f ∈ L2(R), the second-order local complex IF estimate of signal f is
defined by:

ω̃
[2]
η,f (t, η) =

ω̃f (t, η) + q̃η,f (t, η)(t− τ̃f (t, η)) if ∂η τ̃f (t, η) ̸= 0

ω̃f (t, η) otherwise.

Then, its real part ω̂[2]
η,f (t, η) = ℜe{ω̃[2]

η,f (t, η)} is the desired IF estimate.

The next proposition shows that it perfectly estimates the IF of a Gaussian modulated
linear chirp.

Proposition 3.19. If f(t) = A(t)ei2πϕ(t) is a Gaussian modulated linear chirp, then ω̂[2]
η,f (t, η) =

ϕ′(t).

Proof. Let us consider a mode f(τ) = A(τ)ei2πϕ(τ) where log(A(τ)) and ϕ(τ) are quadratic
functions described by:

log(A(τ)) =
2∑

k=0

αk
k!
τk and ϕ(τ) =

2∑
k=0

βk
k!
τk,
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with αk, βk ∈ R. The STFT of this mode with any window g, at time t and frequency η, can
be written as:

V g
f (t, η) =

∫
R
f(τ + t)g(τ)e−i2πητdτ

=

∫
R
exp

(
2∑

k=0

1

k!
(αk + i2πβk) (τ + t)k

)
g(τ)e−i2πητdτ.

By taking the partial derivative of V g
f (t, η) with respect t, and then dividing by i2πV g

f (t, η),
the local IF estimate ω̃f (t, η) defined in Proposition 2.43 can be obtained for V g

f (t, η) ̸= 0:

ω̃f (t, η) =
2∑

k=1

(
1

i2π
αk + βk

)
tk−1 +

(
1

i2π
α2 + β2

)
V tg
f (t, η)

V g
f (t, η)

. (3.32)

Then, taking the partial derivative of (3.32) with respect to η and recalling from Proposition

2.45 that
V tg
f (t, η)

V g
f (t, η)

= τ̃f (t, η)− t, we get the following expression:

∂ηω̃f (t, η) =

(
1

i2π
α2 + β2

)
∂η τ̃f (t, η). (3.33)

Setting q̃η,f (t, η) =
∂ηω̃f (t, η)

∂η τ̃f (t, η)
assuming ∂η τ̃f (t, η) ̸= 0 and noting that β2 = ϕ′′(t), from (3.32)

and (3.33), we also have the following result:

ϕ′(t) = β1 + β2t

= ℜe
{
ω̃f (t, η)−

(
1

i2π
α2 + β2

)
(τ̃f (t, η)− t)

}
= ℜe {ω̃f (t, η) + q̃η,f (t, η)(t− τ̃f (t, η))} . (3.34)

Putting ω̃[2]
η,f (t, η) = ω̃f (t, η) + q̃η,f (t, η)(t− τ̃f (t, η)), it follows that ϕ′(t) = ℜe

{
ω̃
[2]
η,f (t, η)

}
,

which ends the proof.

Finally, a new definition of second-order FSST (FSST2) is derived by simply replacing
ω̂
[2]
t,f (t, η) by ω̂[2]

η,f (t, η) in (2.77), which then allows for the retrieval of mode fk, as in (2.78).

3.2.2 Higher Order Synchrosqueezing Transform

Despite FSST2 definitely improves the concentration of TFR, it is only demonstrated to work
well on perturbed linear chirps with Gaussian modulated amplitudes. In order to handle
signals containing more general types of AM-FM modes having non-negligible ϕ(n)k (t) for
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n ≥ 3, we are going to define new synchrosqueezing operators, based on approximation orders
higher than three for both amplitude and phase [5].

A. Nth-order IF Estimate

The new IF estimate we define here relies on high-order Taylor expansions of the amplitude
and phase of a mode. To do so, let us first consider a mode defined as in the following:

Definition 3.20. Given a mode f(τ) = A(τ)ei2πϕ(τ) in L2(R) with A(τ) (resp. ϕ(τ)) equal
to its Lth-order (resp. N th-order) Taylor expansion for τ close to t:

log(A(τ)) =
L∑
k=0

[log(A)](k)(t)

k!
(τ − t)k

ϕ(τ) =
N∑
k=0

ϕ(k)(t)

k!
(τ − t)k

where Z(k)(t) denotes the kth derivative of Z evaluated at t.

A mode f defined as above, with L ≤ N , can be written as:

f(τ) = exp

(
N∑
k=0

1

k!

(
[log(A)](k)(t) + i2πϕ(k)(t)

)
(τ − t)k

)
,

since [log(A)](k)(t) = 0 if L+ 1 ≤ k ≤ N . Consequently, the STFT of this mode at time t
and frequency η reads:

V g
f (t, η) =

∫
R
f(τ + t)g(τ)e−i2πητdτ

=

∫
R
exp

(
N∑
k=0

1

k!

(
[log(A)](k)(t) + i2πϕ(k)(t)

)
τk

)
g(τ)e−i2πητdτ.

By taking the partial derivative of V g
f (t, η) with respect to t and then dividing by i2πV g

f (t, η),
the local IF estimate ω̃f (t, η) defined in Proposition 2.43 can be written when V g

f (t, η) ̸= 0 as:

ω̃f (t, η) =

N∑
k=1

rk(t)
V tk−1g
f (t, η)

V g
f (t, η)

=
1

i2π
[log(A)]′(t) + ϕ′(t) +

N∑
k=2

rk(t)
V tk−1g
f (t, η)

V g
f (t, η)

, (3.35)
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where rk(t) are functions of t defined for k = 1, . . . , N as:

rk(t) =
1

(k − 1)!

(
1

i2π
[log(A)](k)(t) + ϕ(k)(t)

)
.

It is clear from (3.35) that, since A(t) and ϕ(t) are real expressions, ℜe {ω̃f (t, η)} = ϕ′(t)

does not hold when the sum on the right hand side of (3.35) has a non-zero real part. As in the
case of the Gaussian modulated linear chirp introduced before, to get the exact IF estimate

for the studied signal, one needs to subtract ℜe

 N∑
k=2

rk(t)
V tk−1g
f (t, η)

V g
f (t, η)

 to ℜe {ω̃f (t, η)}, for

which rk(t), for all k = 2, . . . , N , must be estimated.
For that purpose, inspired by our study of the Gaussian-modulated linear chirp, we

derive a frequency modulation operator q̃[k,N ]
η,f , equal to rk(t) when f satisfies Definition 3.20,

obtained by differentiating different STFTs with respect to η, as explained hereafter. Note
that we choose to differentiate with respect to η rather than t because it leads to much simpler
expressions, mainly as a result of the following formulae:

∂tV
g
f (t, η) = i2πηV g

f (t, η)− V g′

f (t, η)

∂ηV
g
f (t, η) = −i2πV tg

f (t, η). (3.36)

The different modulation operators q̃[k,N ]
η,f for k = 2, . . . , N can then be derived recursively,

as explained in the next proposition:

Proposition 3.21. Given a mode f ∈ L2(R) that satisfies Definition 3.20 with L ≤ N , the

N − 1 local modulation operators q̃[k,N ]
η,f such that ℜe

{
q̃
[k,N ]
η,f (t, η)

}
=

ϕ(k)(t)

(k − 1)!
, k = 2, . . . , N ,

can be determined by:

q̃
[N,N ]
η,f (t, η) = yN (t, η) and

q̃
[j,N ]
η,f (t, η) = yj(t, η)−

N∑
k=j+1

xk,j(t, η)q̃
[k,N ]
η,f (t, η) for j = N − 1, N − 2, . . . , 2,

where yj(t, η) and xk,j(t, η) are defined as follows. For any (t, η) s.t. V g
f (t, η) ̸= 0 and

∂ηxj,j−1(t, η) ̸= 0, we put:

for k = 1 . . . N, y1(t, η) = ω̃f (t, η) and xk,1(t, η) =
V tk−1g
f (t, η)

V g
f (t, η)

,

and then for j = 2 . . . N and k = j . . . N,

yj(t, η) =
∂ηyj−1(t, η)

∂ηxj,j−1(t, η)
and xk,j(t, η) =

∂ηxk,j−1(t, η)

∂ηxj,j−1(t, η)
.
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The proof of Proposition 3.21 is given in Appendix B.1. Then, the definition of the
Nth-order IF estimate follows:

Definition 3.22. Let f ∈ L2(R), the N th-order local complex IF estimate ω̃[N ]
η,f is defined by:

ω̃
[N ]
η,f (t, η) =


ω̃f (t, η) +

N∑
k=2

q̃
[k,N ]
η,f (t, η) (−xk,1(t, η)) , if V g

f (t, η) ̸= 0

and ∂ηxj,j−1(t, η) ̸= 0 for j = 2 . . . N.

ω̃f (t, η) otherwise.

Then, its real part ω̂[N ]
η,f (t, η) = ℜe{ω̃[N ]

η,f (t, η)} is the desired IF estimate.

For this estimate, we have the following approximation result:

Proposition 3.23. Given a mode f ∈ L2(R) that satisfies Definition 3.20 with L ≤ N , then
ϕ′(t) = ω̂

[N ]
η,f (t, η).

Proof. From (3.35), we have:

ϕ′(t) = ℜe

ω̃f (t, η) +
N∑
k=2

rk(t)

−
V tk−1g
f (t, η)

V g
f (t, η)


= ℜe

{
ω̃f (t, η) +

N∑
k=2

rk(t) (−xk,1(t, η))
}

= ℜe

{
ω̃f (t, η) +

N∑
k=2

q̃
[k,N ]
η,f (t, η) (−xk,1(t, η))

}
. (3.37)

Let us put ω̃[N ]
η,f (t, η) = ω̃f (t, η) +

N∑
k=2

q̃
[k,N ]
η,f (t, η) (−xk,1(t, η)), we obtain ϕ′(t) = ω̂

[N ]
η,f (t, η),

which ends the proof.

B. Efficient Computation of Modulation Operators

The local modulation operators q̃[k,N ]
η,f defined in Proposition 3.21 should not be computed

by approximating partial derivatives by means of discrete differentiation since this would
generate numerical instability especially in the presence of noise. Therefore, to address this
issue, we remark that these modulation operators can instead be computed analytically as
functions of different STFTs. This is illustrated for N = 4 through the following proposition:

Proposition 3.24. Let f ∈ L2(R), the modulation operators q̃[k,N ]
η,f for N = 4 and k = 2, 3, 4

can be expressed as:
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q̃
[4,4]
η,f = G4

(
V t0...6g
f , V t0...3g′

f

)
,

q̃
[3,4]
η,f = G3

(
V t0...4g
f , V t0...2g′

f

)
− q̃

[4,4]
η,f G3,4

(
V t0...5g
f

)
,

q̃
[2,4]
η,f = G2

(
V t0...2g
f , V t0...1g′

f

)
− q̃

[3,4]
η,f G2,3

(
V t0...3g
f

)
− q̃

[4,4]
η,f G2,4

(
V t0...4g
f

)
,

where Gk
(
V t0...mg
f , V t0...ng′

f

)
is a function of V tlg

f for l = 0, . . . ,m and V tlg′

f for l = 0, . . . , n

while Gk,j
(
V t0...mg
f

)
is associated with coefficient q̃[j,N ]

η,f in the computation of q̃[k,N ]
η,f for k ≠ j.

Also, we recall that the fourth-order IF estimate can be written as:

ω̃
[4]
η,f (t, η) = ω̃f (t, η) + q̃

[2,4]
η,f (t, η) (−x2,1(t, η)) + q̃

[3,4]
η,f (t, η) (−x3,1(t, η)) + q̃

[4,4]
η,f (t, η) (−x4,1(t, η)) .

The proof of Proposition 3.24 is available in Appendix B.2 where explicit forms for Gk
and Gk,j are given.

Remark 3.25. We first note that when N = 2, i.e. by neglecting q̃[3,4]η,f and q̃[4,4]η,f corresponding

to orders 3 and 4, the second-order IF estimate ω̃[2]
η,f (t, η) defined in Proposition 3.18 is found

again. Secondly, it is clear that the number of STFTs used to compute q̃[4,4]η,f is 11, namely

V tlg
f for l = 0, . . . , 6, and V tlg′

f for l = 0, . . . , 3. Finally, generalizing the procedure detailed in

the proof of Proposition 3.24 to any N , one obtains that q̃[N,N ]
η,f can be computed by means of

3N − 1 STFTs, namely V tlg
f for l = 0, . . . , 2N − 2, and V tlg′

f for l = 0, . . . , N − 1.

C. Nth-order STFT-based SST (FSSTn)

As for FSST2, the N th-order FSST (FSSTn) is defined by replacing ω̂f (t, η) by ω̂[N ]
η,f (t, η) in

(2.66):

Definition 3.26. Given f ∈ L2(R) and a real number γ > 0, one defines the FSSTn operator
with threshold γ as:

T g,γN,f (t, ω) =

∫
|V gf (t,η)|>γ

V g
f (t, η)δ

(
ω − ω̂

[N ]
η,f (t, η)

)
dη. (3.38)

Finally, the modes of the MCS can be reconstructed by replacing T g,γf (t, ω) by T g,γN,f (t, ω)

in (2.69) with a normalization D′
N,g,k =

∫
RF{g(τ)e−iπϕ(N)

k (t)τN }(η)dη instead of g(0), which

depends on the non-zero modulation of each mode k. In practice, ϕ(N)
k (t) should be estimated

by q̃[k,N ]
η,f (t, η) before computing this normalization. Regarding numerical implementation of

FSSTn, the same procedures as introduced in Section 2.6.2 for FSST are used to compute
T g,γN,f (t, η) from V g

f (t, η) by replacing ω̂f (t, η) by ω̂
[N ]
η,f (t, η), and to estimate the associated

ridges for mode reconstruction.
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3.2.3 Numerical Analysis of the Behavior of STFT-based SSTs and Com-
parisons

This section presents numerical investigations to illustrate the improvements brought by our
new technique in comparison with the reassignment method (RM) or existing STFT-based
SSTs (FSST and FSST2) on both simulated and real signals. The steps of these investigations
are followed similarly to those given by WSST2 case in Section 3.1.4. Let us first consider a
simulated MCS composed of two AM-FM components:

f(t) = f1(t) + f2(t) = A1(t)e
i2πϕ1(t) +A2(t)e

i2πϕ2(t),

with Ak(t) and ϕk(t) defined on [0, 1], for k = 1, 2, by:

A1(t) = exp
(
2(1− t)3 + t4

)
, A2(t) = 1 + 5t2 + 7(1− t)6 and

ϕ1(t) = 50t+ 30t3 − 20(1− t)4, ϕ2(t) = 340t− 2 exp (−2(t− 0.2)) sin (14π(t− 0.2)) .

Note that f1 is a polynomial chirp that satisfies Definition 3.20 with L = N = 4, while f2
is a damped-sine function containing very strong nonlinear sinusoidal frequency modulations
and high-order polynomial amplitude modulations. In our simulations, f is sampled at a rate
M = 1024 Hz on [0, 1]. The Matlab codes for synchrosqueezing transforms and the scripts
leading to all figures of this chapter can be found https://github.com/phamduonghung/FSSTn.
In Figures 3.8 (a) and (b), we display the real part of f1 and f2 together with their amplitudes,
and, in Figure 3.8 (c), the real part of f .
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Fig. 3.8 (a) and (b): real part of f1 and f2 with A1 and A2 superimposed; (c): real part of f .

The STFT of f is then computed with the L1−normalized Gaussian window g(t, σF ) =

σ−1
F e

−π t2

σ2
F , where σF is the optimal value that is determined by means of Rényi entropy

technique introduced in Section 3.1.4.A. In Figure 3.9, we display the evolution of Rényi
entropy (α = 3) with respect to σF for the signal f introduced above for different noise levels
(noise-free, -5, 0, 5 dB). This leads to an optimal value in each case (σFopt), relatively stable
with the noise level.

Having determined the optimal σF , we display, in the noise-free context, the STFT of
f on the left of Figure 3.10. Then, on the right of this figure, close-ups of the STFT itself
are depicted, along with reassigned versions of STFT either given by the RM or FSST and
variants.

https://github.com/phamduonghung/FSSTn
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Fig. 3.9 Evolution of Rényi entropies (HF,R) with respect to σF either in the noise-free, 5 dB,
0 dB or -5 dB cases.

Analyzing these close-ups, we remark that, as expected, FSST2 leads to a relatively sharp
TFR for f1, very similar to the one given by RM and much better than the one corresponding
to FSST. However, all these methods fail to reassign the STFT of f2 correctly, especially where
the IF of that mode has a non-negligible curvature ϕ′′′2 (t). In contrast, the TF reassignment of
the STFT of f2 provided by FSST3 or FSST4 is much sharper at these locations. Looking at
what happens for mode f1 also tells us that, FSST3 and FSST4 seem to behave very similarly
to FSST2 or RM in terms of the sharpness of the representation. However, as we shall see
later, the accuracy of the representation is dramatically improved by using one of the former
two methods. Finally, note that since f1 obeys Definition 3.20, the IF estimate used in FSST4
is exact for that mode which results in a perfect reassignment of the STFT.

In what follows, we introduce a quantitative comparison of all these techniques, for both
noise-free and noisy cases, using the energy concentration and a measure of their accuracy by
means of the Earth mover’s distance (EMD) as in 3.1.4.D.

A. Evaluation of TF Concentration

Firstly, we depict, in Figure 3.11 (a), the normalized energy corresponding to the reassignment
of the STFT of f1 using the different techniques, with respect to the number of coefficients
kept divided by the length of f1. From this figure, it is hard to figure out the benefits of using
FFST3 or FSST4 rather than the other two methods. The only thing one can check is that
the energy is perfectly localized with FSST4 because f1 obeys Definition 3.20. The results of
the same computation obtained for mode f2 are displayed in Figure 3.11 (b), showing that
the normalized energy is much more concentrated using FSST4 than the other methods and
that FSST3 also outperforms FSST2 and RM.
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Fig. 3.10 (a): modulus of the STFT of f ; (b): STFT of a small TF patch corresponding to
mode f1 (delimited by green segments) extracted from (a); (c) RM performed on the STFT
shown in (b); from (d) to (g), same as (c) but using respectively FSST, FSST2, FSST3,
FSST4; the same as (b) to (g) but for f2.
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Fig. 3.12 (a): EMD corresponding to different TFRs of f1 either given by RM, FSST2, FSST3
or FSST4; (b): same as (a) but for f2.

Moreover, we study the performance of the TFRs in the presence of noise by HT technique
as introduced in 3.1.4.D. Then, we apply the Earth mover’s distance (EMD) on noisy TFRs
to measure the accuracy of the reassigned transforms of the noisy signal. In Figures 3.12 (a)
and (b), we display, respectively for f1 and f2, the evolution of EMD with respect to the noise
level, for TFRs given either by FSST2, FSST3, FSST4 or RM. This study tells us that, at
low noise level and for mode f1, FSST3 and FSST4 are more accurate than the other studied
methods. Note that this is something that could not be derived from the previous study on
the normalized energy. The same investigations but for mode f2 confirms the interest of using
FSST3 or FSST4 to reassign the STFT of a mode with IF exhibiting the strong curvature.
Note that the benefits of using the proposed new methods remain important even at the high
noise level.

B. Evaluation of Mode Reconstruction Performance

As discussed above, using mode reconstruction is a good way to assess the performance of
TFRs. Let us first briefly recall the procedure to retrieve fk from the TFR of f given by the
FSST of order N :

fk(t) ≈
∫
{ω,|ω−φk(t)|<d}

T g,γN,f (t, ω)dω. (3.39)

Note that φk(t) is estimate of ϕ′k(t) given by the ridge detector (see Section 2.6.1 for details
on such a technique), and d is compensation parameter used to compensate for the inaccuracy
of this estimation and also for the errors caused by approximating the IF by ω̂[N ]

η,f (t, η).
We first analyze the performance of the reconstruction procedure by considering the

information on the ridge only, i.e. we take d = 0, and measuring output SNRs. In Table 3.3,
we display this output SNR for modes f1, f2 and also for f , using either FSST2, FSST3 or
FSST4 for mode reconstruction. The improvement brought by using FSST3 and FSST4 is
clear and coherent with the previous study of the accuracy of the proposed new TFRs.
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Table 3.3 Performance of mode reconstruction in the noise-free case

FSST2 FSST3 FSST4

Mode f1 17.8 25.7 28.8

Mode f2 1.73 3.62 6.87

MCS f 3.57 5.57 8.82
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Fig. 3.13 Reconstruction accuracy measured in SNR, with respect to d, of the noise-free signal.

Parameter d also measures how well the TFR is concentrated around the detected ridges: if
the former is well concentrated, even if one uses a small d, the reconstruction results should be
satisfactory. In order to measure this, we display in Figure 3.13, the output SNR corresponding
to the reconstruction of f when d varies, and when the TFR used for mode reconstruction
is either FSST2, FSST3, and FSST4. From this figure and for all tested methods, it is
clear that a larger d means a more accurate reconstruction of the signal. Nevertheless, the
accuracy of the reconstruction using FSST2 seems to stagnate when some critical value for
d is reached, which is not the case with the other two methods: the parameter d can only
partly compensate for the inaccuracy of IF estimation. For that very reason, it is crucial to
use the most accurate estimate as possible which again pleads in favor of FSST3 and FSST4.

3.3 Application of Synchrosqueezing Transforms to Gravitational-
wave Signals

This section investigates the applicability of synchrosqueezing techniques including FSST2,
our new ones WSST2 and FSST4 to the analysis of a transient gravitational-wave signal. The
first observation of such a signal was made in September 2015 and announced by the (LIGO)
and Virgo collaborations in February 2016, and was named GW150914 [21]. It was detected
by the LIGO detector in Hanford Washington that closely matches the predictions of Albert
Einstein about general relativity for a gravitational wave emanating from the inward spiral
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Fig. 3.14 Illustration of the TFRs of the gravitational-wave event GW150914, (a): observed
Hanford signal; (b): STFT; (c): CWT; (d): FSST2; (e): FSST4; (f): WSST2; (g): the ridge
estimated from FSST2 displayed in (d); (h): same as (g) but on FSST4; (i): same as (g) but
on WSST2.

and merger of a pair of black holes and the subsequent ringdown of the single resulting black
hole. In our simulations, we use a Gaussian window and the Morlet wavelet with respective
optimal lengths computed by the Rényi entropy technique: σF = 0.05 and σW = 1.

We first display the gravitational-wave strain observed by the LIGO Hanford and the
modulus of its STFT and CWT in the top-row panel of Figure 3.14, and then the reassigned
transforms corresponding to FSST2, FSST4 and WSST2 in the middle-row panel of Figure 3.14,
respectively. The sharpened representations provided by these synchrosqueezing techniques
make the TF information more easily interpretable: as a matter of fact, the gravitational-wave
signal consists of only one mode sweeping sharply upwards. However, the difference of the
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performance of these reassigned transforms cannot be seen at this point. Moving on to the
bottom line of Figures 3.14, we perform ridge detection on each of the TFRs given by FSST2,
FSST4 and WSST2. We remark that compared with the others, FSST4 enables a better
ridge detection of the three stages of the collision of two black-holes; especially the ring down
one, which commences when the IF of the mode starts to decrease. This is associated with a
sudden variation of the curvature of its IF which is better taken into account by FSST4. This
thus demonstrates the interest of this new technique in practical applications.

3.4 Conclusion

In this chapter, we have introduced two important contributions to the synchrosqueezing
techniques for the analysis of multicomponent signals. The first one is a novel second-order
wavelet-based synchrosqueezing transform (WSST2) for analyzing signals made of strongly
frequency-modulated modes based on the continuous wavelet transform. It simply consists
of a refinement of the instantaneous frequency estimate, computed using a second-order
expansion of the phase. After having revisited the case of first-order synchrosqueezing (WSST)
while releasing the hypothesis of a wavelet compactly supported in the frequency domain, we
demonstrated a novel approximation theorem involving the proposed new synchrosqueezing
transform applied to multicomponent signals made of strongly modulated modes. In this
regard, we put forward a novel reconstruction technique for the modes. Numerical experiments
showed the benefits of taking into account frequency modulation for both representation and
reconstruction purposes, and also the better performance of the second-order reassignment
based on wavelet compared to that based on STFT. The second contribution of this chapter
is the generalization of the existing STFT-based synchrosqueezing transforms by defining new
synchrosqueezing operators based on the high-order amplitude and phase approximations. Such
a generalization allows us to better handle a wide variety of multicomponent signals containing
very strongly modulated AM-FM modes. The interest of the proposed new technique was also
demonstrated through numerical experiments on simulated signals. Indeed, it successfully
produces a TF picture more concentrated than other methods based on synchrosqueezing or
reassignment, while allowing for a better invertibility of the TFR. Finally, a set of numerical
simulations on the gravitational-wave signal was given to demonstrate the interest of the new
generation technique, FSSTn.
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2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

In this chapter, we put forward two new contributions to the analysis of MCSs developed
in the short time Fourier transform (STFT) framework. The first one is a new technique built
on the second-order STFT-based synchrosqueezing transform (FSST2) and demodulation
procedure, that we coin DFSST2 [6]. It enables an even sharper representation and a better
mode reconstruction than with FSST2. In fact, a previous attempt consisting in signal
demodulation before applying synchrosqueezing transform (SST) was presented in [50, 51], in
which the demodulation relies upon the computation of the phase of the associated analytic
signal (AS). However, it is well known that this phase cannot be related to the instantaneous
frequency (IF) of the modes. In this regard, an iterative approach based on the local frequency
extrema of the spectrogram to accurately estimate the IFs was proposed in [51], unfortunately,
mode reconstruction was not discussed.

The second contribution lies in the fact that although SST and SST-based methods prove
to be effective for enhancing the TFRs they are based on, none of which allows for mode
retrieval of MCSs from their SST downsampled in time. Using the time redundancy of STFT
we here show that the reconstruction of the modes of a noisy MCS can be performed with
a better accuracy and fewer STFT coefficients than when STFT-based SSTs is considered.
This work has been recently accomplished in [1].

For a better understanding of these contributions, we first introduce, in Section 4.1.1, some
new analyses on the practical implementation of ridge estimation carried out on STFT-based
SSTs (i.e FSSTn). Then, we move on to the definition of the demodulation procedure followed
by the proposed reconstruction algorithm, called DFSST2, in Section 4.1.2. Numerical
examples show the relevance of this new technique on both simulated and real data in Section
4.1.3. Then, we recall, in Section 4.2.1, the different signal reconstruction techniques from
shifted downsampled STFT and then study how to use these for signal denoising, in Section
4.2.2, assuming the noise is Gaussian white. Exploiting these findings, we introduce, in Section
4.2.3, a novel algorithm, based on downsampled STFT, to retrieve the modes of an MCS.
A comparison of this new algorithm with two synchrosqueezing techniques: DFSST2 and
FSST2 computed from a full STFT (i.e. without downsampling), on both simulated and real
data, in Section 4.2.4, concludes this chapter.

4.1 On Ridge Detection, Demodulation and Synchrosqueezing

Before delineating the demodulation-FSST2-based technique (DFSST2), the following section
presents some new analyses on the practical implementation of ridge estimation.
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4.1.1 Some New Analyses on Ridge Estimation

Any mode reconstruction techniques based on the STFT-based SSTs (FSSTn) requires an
estimate of the ridges (t, ϕ′k(t)) and for that purpose, we introduced one of the most commonly
used ridge detectors in Chapter 2. In this subsection, we detail this detector and then
investigate the influence of all of the different parameters on the accuracy of ridge estimation
in both noiseless and noisy contexts. To do so, we first show how to numerically implement
the STFT and FSSTn.

A. On the Computation of the STFT, FSSTn and zero-padding

Let us consider a signal f being of finite length, typically defined on the interval [0, T ], and
discretized into f(nTN )n=0,··· ,N−1. Assuming g is supported on [−LT

N , LTN ], with L < N/2,
STFT is then computed as follows:

V g
f (t, η) =

∫
R
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=

∫ LT
N

−LT
N

f(t+ τ)g(τ)e−2iπτηdτ

≈ T

N

L∑
n=−L

f(t+
nT

N
)g(

nT

N
)e−i2π

nT
N
η, (4.1)

from which we infer that:

V g
f

(
qT

N
,
p

T

)
≈ T

N

L∑
n=−L

f

(
(q + n)T

N

)
g

(
nT

N

)
e−i2π

np
N

=
Te

2iπpL
N

N

2L∑
n=0

f

(
(q + (n− L))T

N

)
g

(
(n− L)T

N

)
e−i2π

np
N

= e
2iπpL
N

2L∑
n=0

Γ(q, n)e−i2π
np
N := V g

d,f

(
qT

N
,
p

T

)
, (4.2)

where the subscript d stands for discrete value and the last sum is computed by means of
an FFT. It is common to extend, for each q, the sequence (Γ(q, n))n into a sequence of size
Nf > N by adding Nf −N zeros to it. This operation is known as zero-padding. By doing so,
one obtains an increased frequency resolution in the TF grid but not of the time resolution,
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since:

V g
f

(
qT

N
,
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Nf

p

T

)
≈ T

N

L∑
n=−L

f

(
(q + n)T

N

)
g

(
nT

N

)
e
−i2π np

Nf

=
Te

2iπpL
Nf

N

2L∑
n=0

f

(
(q + (n− L))T

N

)
g

(
(n− L)T

N

)
e
−i2π np
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= e
2iπpL
Nf

2L∑
n=0

Γ(q, n)e
−i2π np

Nf := V g
d,f

(
qT

N
,
N

Nf

p

T

)
. (4.3)

Since V g
d,f

(
qT
N ,

N
Nf

p
T

)
is computed by means of an FFT, only the first half of the fre-

quency set is meaningful. That is, V g
d,f is computed on the TF grid

{
0, TN , · · · ,

(N−1)T
N

}
×{

0, NNf
1
T , · · · , NNf

Nf/2−1
T

}
.

The computation of FSST T g,γd,f from V g
d,f can then be performed as explained in Algorithm

1 (putting tq = qT
N ) [48].

Algorithm 1 STFT-based SSTs
for q = 0 to N − 1 do

for k = 0 to Nf/2− 1 do
T g,γd,f (tq,

N
Nf

k
T ) := 0

for p = 0 to Nf/2− 1 do

Compute ω̂d,f (tq,
N
Nf

p
T ) =

N
Nf

p
T −ℑm

{
1
2π

V g
′

d,f (tq ,
N
Nf

p
T
)

V gd,f (tq ,
N
Nf

p
T
)

}
.

Put k = round(T Nf
N ω̂d,f (tq,

N
Nf

p
T )).

Reassign |V g
d,f (tq,

N
Nf

p
T )| > γ as follows:

T g,γd,f (tq,
N

Nf

k

T
) = T g,γd,f (tq,

N

Nf

k

T
) + V g

d,f (tq,
N

Nf

p

T
).

The same algorithm is applied to get other synchrosqueezing transforms FSSTn T g,γd,N,f

from V g
f , replacing ω̂d,f by ω̂[2]

d,N,t,f , where N denotes order of synchrosqueezing transforms
and we only study N = 1 or N = 2 in this chapter. The role of zero-padding is going to be
further investigated in the sequel.
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B. Ridge Extraction for FSSTn

As mentioned precisely, to compute an estimate of the ridge (t, ϕ′k(t)) assuming knowledge of
the number of modes K, one needs compute a local minimum of the functional as follows:

Ef (φ1, · · · , φK) =

K∑
k=1

−
∫
R
|T g,γN,f (t, φk(t))|2dt+

∫
R
λφ′

k(t)
2dt+ βφ′′

k(t)
2dt, (4.4)

where λ, β are the regularization parameters. However, as presented, formula (4.4) does not
offer any algorithmic means to compute the ridges. Furthermore, T g,γN,f is approximated on a
TF grid to get T g,γd,N,f . Inspired by the above minimization problem, we derive Algorithm 2,
for that purpose.

Algorithm 2 Ridge Extraction on FSSTn
Pick q ∈ {0, · · · , N − 1}
for k = 1 to K do

1. tq = qT
N .

2. Define pq,k = argmax
l

|T g,γd,N,f (tq,
N
Nf

l
T )|.

3. Define Iq,k = {max(0, pq,k − Nf
N T∆), · · · ,min(pq,k +

Nf
N T∆, Nf/2− 1)}.

4. Define pq−1,k = argmax
l∈Iq,k

|T g,γd,N,f (tq−1,
N
Nf

l
T )|.

5. Define pq+1,k = argmax
p∈Iq,k

|T g,γd,N,f (tq+1,
N
Nf

p
T )|2 − λ(p− pq,k)

2 − β(p− 2pq,k + pq−1,k)
2

6. Iterate forward in time.
7. Iterate steps 2-6 backward from time tq.
8. (φk(tq))q = ( NNf

pq,k
T )q

9. T g,γd,N,f = T g,γd,N,f \
⋃
q[φk(tq)−∆, φk(tq) + ∆]

In this algorithm, the ridges are extracted one by one as follows. One first picks a random
time and finds the local maximum of the modulus of T g,γd,N,f at that time (steps 1 and 2, this

point is supposed to be on a ridge), then, since mode modulation is bounded by Nf
N T∆, one

finds neighboring points on the ridge using the fact that the maximum displacement of a
point on a ridge between two successive locations is ±Nf

N T∆ (which means ±Nf
N T∆×N in

terms of indices, steps 3–5), and finally iterates backward and forward (steps 6 and 7). One
then removes the detected ridge and corresponding TF neighborhood (steps 8 and 9, the
ridges are associated with K sufficiently separated local maxima at each time instant), and
proceeds with the remaining ridges.

Note that to improve the robustness of the procedure, several random initializations
are required, leading to the detection of many different ridge sets (φk)k=1,··· ,K , and the one
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retained as the output corresponds to the one maximizing:

K∑
k=1

N−1∑
n=0

|T g,γd,N,f (tn,
N

Nf

pk,n
T

)|2 − λ
N−1∑
n=1

(pk,n − pk,n−1)
2 − β

N−2∑
n=1

(pk,n+1 − 2pk,n + pk,n−1)
2.

Further, at the end of the procedure, the estimated ridges need to be resorted according to
increasing IF.
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Fig. 4.1 (a): STFT of a linear chirp; (b): Zoom on the ridges estimated for the signal whose
STFT is displayed in (a), using the ridge detector based on STFT with no regularization
parameters and for various frequency resolution (corresponding to different values for Nf );
(c): Similar to (b) but for the ridge detector based on FSST; (d): Similar to (b) but for the
ridge detector based on FSST2.

C. Influence of Zero-Padding on Ridge Estimation

To start the discussion on the influence of zero-padding on ridge estimation, we recall, for the
case of a mono-component signal, the following estimate of ϕ′(tn):

φ(tn) = argmax
η

|V g
f (tn, η)|2, (4.5)
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which was studied in [93], for a noisy version of the signal f(t) = A(t)e2iπϕ(t), i.e. fζ(tn) =
f(tn) + ζ(tn), where ζ is a white Gaussian noise with variance σ2ζ . Selecting ∆φ(tn) =

φ(tn)− ϕ′(tn) and assuming g is the Gaussian window, g(x) = 1√
2πσ

e−
x2

2σ2 , it was proven in
[93] that:

Bias{∆φ(tn)} ∼N→+∞

+∞∑
k=1

2πϕ(2k+1)(tn)σ
2k

2kk!

V ar{∆φ(tn)} ∼N→+∞
σ2ζ

8
√
π|A(tn)|2

[
1 +

σ2ζT

2N
√
πσ|A(tn)|2

]
T

Nσ3
. (4.6)

These results are interesting but do not consider the fact that |V g
f (tn, η)| is only available

on a discrete frequency grid, since it is computed using an FFT. More precisely, formula (4.5)
actually corresponds to the ridge detector we would like to study (when λ and β are null),
assuming a continuous frequency representation. To illustrate the impact of the discrete grid
associated with frequency resolution, we perform ridge detection on the linear chirp whose
STFT is depicted in Figure 4.1 (a) (with Nf = N for that plot, setting λ and β to zero).
To study such a simple case is very essential to fully understand the behavior of the ridge
detector introduced above.

Ridge estimates are shown in Figures 4.1 (b) to (d), where the detection is performed for
various frequency resolutions (associated with different values for Nf ) and for different TF
representations. What is striking is the stair-case effect visible in each of the Figures 4.1 (b) to
(d), when the frequency resolution of the sampling grid is insufficiently fine. This arises because,
as already noted, TF representations are evaluated at frequencies

(
N
Nf

p
T

)
p=0,··· ,Nf/2−1

, and

the IF estimate reflects this discretization. This can be quantified by measuring the mean
square error (MSE) between the estimated ridge and the ground truth:

MSE(φ) =

√√√√ 1

N − 1

N−1∑
n=0

(ϕ′(tn)− φ(tn))2, (4.7)

when the frequency resolution varies. In order to better understand what is at work in this
ridge detection, we not only investigate the influence of zero-padding but also of the noise-level.
Since the study of a linear chirp is somewhat limiting, we extend the analysis to three different
types of mono-component signals whose STFT are displayed in Figure 4.2, first row (they
correspond to a linear chirp, a polynomial chirp and a mode with sinusoidal phase).

The results, displayed in Figure 4.2 (d), show that, in a noise-free context, when STFT,
FSST or FSST2 is used for ridge detection, MSEs are the same for the linear chirp, which
corresponds to the fact that the coefficients are reassigned to a maximum of the STFT with
FSST2 (this method being based on an exact IF estimate for linear chirps). For the other
two signals, the detector based on STFT behaves a little bit better than FSST2, but not
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Fig. 4.2 Influence of zero-padding on different types of chirps with different noise levels: (a):
STFT of a linear chirp; (b): STFT of a polynomial chirp; (c): STFT of a mode with sinusoidal
phase; (d): MSE associated with the ridge detection for the linear chirp displayed in (a), for
various frequency resolution (k in abscissa means Nf = kN), different TFRs and noise level;
(e): same as (d) but for the polynomial chirp displayed in (b); (f): same as (d) but for the
mode with sinusoidal phase displayed in (c).
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significantly so. In contrast, since FSST relies on an inaccurate IF estimate (even for the
linear chirp), the results in terms of ridge estimation are significantly worse when the former
is used as TFR. For this reason, we do not consider it in the simulations that follow. Finally,
we remark, that in the noise-free context for the linear and polynomial chirps of Figure 4.2
(a) and (b), MSE when using STFT or FSST2 decreases when the frequency resolution across
the sampling grid is increased. However, this is no longer true with the signal of Figure
4.2 (c). In such a case, since the signal modulation is important, there is no staircase effect
even at a low-frequency resolution such as Nf = N . The conclusion of this study is that the
frequency resolution, for the purpose of ridge estimation, has to be tuned depending on the
signal modulation: a small modulation requires a higher frequency resolution.

Now, we would like to understand what happens in noisy situations, therefore we perform
the ridge detection on the linear, sinusoidal and polynomial chirps with an SNR equal to 5, 0
or -5 dB. The results are depicted in Figures 4.2 from (d) to (f) (for the latter type of signals,
and whatever the TFR used, the ridge detector does not perform well at -5 dB, therefore
the results are not depicted). It is clear from Figures 4.2 (d) and (e) that, while a finer
frequency resolution, associated with a larger Nf , leads to a more accurate IF estimate in
the noise-free case, Nf has a much smaller impact on the quality of the estimation in a noisy
context. Furthermore, the quality of the estimate provided by applying the ridge detector to
FSST2 rather than to STFT is always better: the ridge detection operates on a much sharper
TFR which appears to be less sensitive to noise. Finally, we note that, from these simulations,
Nf = 8N is a good choice for frequency resolution for ridge detection purpose.

D. Influence of Regularization Parameters

Taking into account the study carried out in the previous section, the ridge detector applied
to either STFT or FSST2 both lead to good results when no regularization is used, even
though, as illustrated in Figure 4.2 (second row), to perform ridge detection on FSST2 rather
than STFT is always better in noisy situations.

We now study the behavior of the ridge detector applied to STFT or FSST2 when
regularization terms vary, both in the noise-free and noisy cases. To do so, we consider the
same linear chirp as previously either in the noise-free, 0 dB or -5 dB cases. We remark that
the ridge detector is much more sensitive to regularization parameters when applied to STFT
rather than to FSST2 (see Figure 4.3): the reassignment technique enables a more robust
ridge detection even at high noise level because it corresponds to a sharper TFR. Finally, note
that, the regularization parameters do not offer any improvement in terms of the accuracy of
the ridge estimation, which argues against using them, (the simulations are shown in Figure
4.3 were done for Nf = 8N , but the same results could be derived for any reasonable value of
Nf ). It is important to note here that the same conclusions would hold if the simulations
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Fig. 4.3 Influence of regularization parameters on different types of chirps with different noise
levels: (a): MSE corresponding to the ridge estimation for the linear chirp of Figure 4.2 (a)
with V g

f as TFR (noise-free case, Nf = 8N); (b): same as (a) but at a 0 dB noise level; (c):
same as (a) but at a -5 dB noise level; (d): MSE corresponding to the ridge estimation for
the linear chirp of Figure 4.2 (a) with T g,γ2,f as TFR (noise-free case, Nf = 8N); (e): same as
(d) but at a 0 dB noise level; (h): same as (d) but at a -5 dB noise level.
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were conducted on the polynomial or sinusoidal chirps, as soon the algorithm detects the
ridge.
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Fig. 4.4 Demodulation procedure on mono-component signals: (a): FSST2 of a linear chirp
(noise-free case); (b): FSST2 of a polynomial chirp (noise-free case); (c): FSST2 of a mode
with sinusoidal phase (noise-free case); (d): FSST2 of a linear chirp (noise level 0 dB case);
(e): FSST2 of a polynomial chirp (0 dB case); (f): FSST2 of a mode with sinusoidal phase (0
dB case); (g): demodulated signal (d); (h): demodulated signal (e); (i): demodulated signal
(f).

4.1.2 Demodulation Algorithm and Mode Reconstruction

Once a ridge is detected using an appropriate Nf to avoid the staircase effect mentioned
above, we compute a demodulation operator for each mode subsequently used to extract the
corresponding demodulated mode. Inverting the demodulation operator, we finally obtain
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the desired mode. The modes are extracted in a sequential fashion, i.e. one at a time, a
commonly used technique often referred to as the peeling method in the literature [94, 95].

It is noteworthy here that, in most cases, and in contrast to our approach, when demodu-
lation problems are considered, it is often assumed that knowledge of a phase function v(t)
is available and, this is then used to compute the so-called short time generalized Fourier
transform (STGFT). Indeed, the STGFT corresponds to:

V g,v
f (t, η) =

∫
R
f(t)g(t− τ)e−2iπv(t)e−2iπη(t−τ)dt. (4.8)

This kind of approach has also been used in [96, 97] and ridge detection can be viewed as a
way to estimate this phase function. Attempts have also been made to estimate the ridges
using parametric models [51]. As will be explained later, our approach is fully non-parametric.

A. Definition of Demodulation Operator

Based on the ridge estimate defined above, we introduce the demodulation algorithm for
a mono-component signal f(t) = A(t)e2iπϕ(t), for which we assume the IF estimate φ(t) is
computed. For the case of a linear chirp, i.e. ϕ(t) = at+ bt2, φ(t) approximates a+ 2bt. So,
by multiplying f(t) by e−2iπ(φ(t)t/2), and if the IF estimation is accurate, we should obtain a
demodulated signal fD with constant frequency a/2. However, it is worth remarking that this
demodulation procedure is only well suited to a linear chirp, because it removes only second
order terms. Therefore, to demodulate a more general mode f(t) = A(t)ei2πϕ(t), the following
demodulation operator e−i2π(

∫ t
0 φ(x)dx−φ0t), where φ0 is some positive constant frequency, is a

better choice since, no assumption is made about ϕ. Indeed, by considering the signal:

fD(t) = f(t)e−i2π(
∫ t
0 φ(x)dx−φ0t), (4.9)

one should get a signal with constant frequency φ0.
An illustration of this is shown in Figure 4.4, for three different types of mode, where

φ0 is equal to 100 Hz. In that figure, we display the FSST2 of the considered modes in the
noise-free (resp. 0 dB) case, in the first (resp. second) row. In the bottom row of that figure,
we display the FSST2 of the demodulated signals associated with the three modes represented
in the second row (Nf being taken equal to 8N in the ridge detection). Despite the high
noise level, the demodulation performs well.

Now, let us consider how this procedure works in the MCS case. We will illustrate this by
adopting a signal consisting of the three different modes, displayed in Figure 4.5 (a). Then
by applying Algorithm 2 to the FSST2 computed with Nf = 8N , we obtain the estimates
(φ1, φ2, φ3), which are subsequently used to compute three demodulated signals, as follows:

fD,k(t) = f(t)e−i2π(
∫ t
0 φk(x)dx−φ0t), k = 1, 2, 3. (4.10)
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Fig. 4.5 Demodulation procedure on an MCS (a): three modes signal (noise level 0 dB); (b):
FSST2 of fD,1; (c): FSST2 of fD,2; (d): FSST2 of fD,3.

The FSST2 of the three signals (fD,k)k=1,2,3 are shown in Figures 4.5 (b) to (d), where the
SNR in the original signal equals 0 dB. It is interesting to note that, in fD,k, only the kth
mode is demodulated.

B. Algorithm for Mode Extraction Based on Demodulation

The previous section has provided us with a means to demodulate any of the modes of the
signal f , the number, K, of which is assumed to be known. With that in mind, the new
algorithm for mode extraction that we coin demodulation-FSST2-based technique (DFSST2),
can then be summarized as follows:

Algorithm 3 Demodulation-FSST2-based Technique (DFSST2)

Compute the ridge estimates (φ1, · · · , φK) with Algorithm 2 applied to FSST2.
for k = 1 to K do

1. Compute fD,k(t) = f(t)e−i2π(
∫ t
0 φk(x)dx−φ0t).

2. From T g,γ2,fD,k
, extract the ridge φD,k corresponding to mode k of fD,k, by considering

single ridge detection in the frequency range [φ0 −∆, φ0 +∆].
3. Reconstruct the kth mode of fD,k and then multiply it by the inverse of demodulation

operator to recover fk: fk(t) ≈
(∫

|ω−φD,k(t)|<d T
g,γ
2,fD,k

(t, ω)dω
)
ei2π(

∫ t
0 φk(x)dx−φ0t).

Note here that the TFR used to compute the ridge of fD,k and then mode k could
alternatively be T g,γf since the mode sought is demodulated, there is no need to take into
account the modulation at this stage. Indeed, the kth mode of signal fD,k should be a purely
harmonic signal at frequency φ0 (see Figures 4.5 (b) to (d) for illustrations). Furthermore, while
it is important to fix the frequency resolution parameter Nf according to mode modulation
for ridge estimation, to compute T g,γ2,fD,k

, Nf = N is used because the mode k, extracted at
step 3 of Algorithm 3, is a purely harmonic one.
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4.1.3 Evaluation of the Performance of DFSST2

This section introduces some numerical experiments to demonstrate the superiority offered by
the foregoing technique DFSST2 over the original FSST2 on both simulated (noise-free and
noisy) and real signals in term of the quality of the reconstructed modes. For that purpose,
let us consider test noise-free signals displayed in Figures 4.6 (a) and 4.7 (a). The window
used to build the TFRs is Gaussian whose length is optimized by means of Rényi entropy
technique introduced in Section 3.1.4.A. Note also that an arbitrary threshold γ = γ0 = 0.001

is used for noise-free cases, while the hard-thresholding (HT) technique is applied to noisy
cases.

Moreover, since the ridge computation is influenced by the frequency resolution, we
investigate the impact of Nf used in ridge computation on mode reconstruction. To assess
how the ridge detection impacts mode reconstruction, we also compute the mode reconstruction
assuming the IFs of the modes are known. Finally, it was shown in Section 3.1.4.E. that the
compensation parameter d plays a vital role in mode reconstruction, which is shown again in
this section.

A. Noise-free Signal Case

The results for the noise-free signals are depicted from Figures 4.6 (b) to (d), in which we
represent the output SNR when using DFSST2, and when the frequency resolution used in
the ridge detection varies. In each case, we also display the reconstruction results using the
true IFs of the modes in Algorithm 3 (in the figures we use the term “optimal DFSST2”). We
first remark that, as expected, for Nf = 8N the results given by DFSST2 are very close to
the ones obtained by optimal DFSST2, as illustrated in Figure 4.6 (d). We also display the
results obtained by reconstructing the modes using directly FSST2: whatever the value of d
the reconstruction is better when using DFSST2. Additionally, since the signal studied is
slightly modulated, to choose a sufficiently large Nf for ridge estimation is crucial. Similar
conclusions can be drawn from the study of the signal whose FSST2 is displayed in Figure
4.7 (a): first, to increase Nf clearly improves the reconstruction results, and, then, when
Nf = 8N , the results are close to those that would be obtained if the IFs of the modes were
known. Also, we again remark that DFSST2 provides far better results than those given by
direct FSST2. In this case, however, and since the modes are more modulated than those of
Figure 4.6 (a), the impact of Nf on ridge computation and then mode reconstruction is less
important.

B. Noisy Signal Case

In order to investigate the sensitivity to noise of DFSST2, we consider again the previous
types of signals. Also, ridge computation leads to good reconstruction when Nf = 8N in the
noise-free case, so this value is retained in the simulations that follow.
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Fig. 4.6 DFSST2 application to a noise-free two-component signal: (a): its FSST2; (b): mode
reconstruction (“rec fi” corresponds to reconstructed mode fi) when using DFSST2 computed
with Nf = N , together with the reconstruction when the IFs of the mode are assumed to be
known (“optimal DFSST2” in the figure); (c): same as (b), but when Nf = 4N in the ridge
computation; (d): same as (b), but when Nf = 8N in the ridge computation.

The results displayed in the first row of Figure 4.8, represent the output SNR associated
with mode reconstruction when d = 0 or d = 5, respectively for the first and second mode of
Figure 4.6 (a), with respect to global input SNR. We note that the following based on these
observations: whatever the noise level, the mode reconstruction is improved by using DFSST2
rather than direct FSST2; the discrepancy in terms of reconstruction performance between
the two types of techniques increases when the noise level is decreasing; the gain of DFSST2
is not that important because FSST2 is optimized for linear chirps.

Switching to the study of the signal of Figure 4.7 (a), the benefit of using the demodulation
procedure is much clearer: when a mode is very different from a linear chirp, DFSST2 greatly
improves the reconstruction results. Finally, we remark that, as in the noise-free case, the
parameter d plays a crucial role in the quality of the reconstruction, and that using DFSST2,
we obtain a more concentrated representation since, for a given d, the reconstruction is always
better using demodulation than without.
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Fig. 4.7 DFSST2 application to another noise-free two-component signal: (a): its FSST2;
(b): mode reconstruction (“rec fi”corresponds to reconstructed mode fi) when using DFSST2
computed with Nf = N , along with the reconstruction when the IFs of the modes are assumed
to be known (“optimal DFSST2” in the figure); (c): same as (b), but when Nf = 4N in the
ridge computation; (d): same as (b), but when Nf = 8N in the ridge computation.

C. Application of DFSST2 to Real Data and limitations

Here we consider the reconstruction of a bat echolocation signal whose FSST2 is shown in
Figure 4.9 (a). Assuming the number of modes is 3, which is consistent with the representation
in the aforementioned figure (there is actually a fourth mode but due to aliasing effect we do
not take it into account), we perform ridge extraction on the FSST2 (the extracted ridges are
also depicted in the figure) and then compute the different modes by either using FSST2 or
DFSST2. In this regard, we study the influence of parameter d and frequency resolution on
the reconstruction.

Since the signal studied is real, and as DFSST2 applies to a complex signal, we first
consider the Hilbert transform of the signal before applying that algorithm. Then, the length
of the signal N not being a power of 2, we use N1 = 2⌊log2(N)⌋+1 with ⌊.⌋ being the floor
function, and its multiples, to define the different frequency resolutions subsequently used
in the ridge detection. As previously, we investigate the impact of the frequency resolution
used in the ridge estimation, on signal reconstruction. For this purpose, we compute the
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Fig. 4.8 Illustration of reconstruction procedure for a noisy signal case: (a): SNR after
reconstruction for mode f1 of the signal whose FSST2 is depicted in Figure 4.6 (a) using
either FSST2 or DFSST2, and for d = 0 or d = 5 in both cases; (b): same as (a) but for mode
f2 of the same signal; (c): SNR after reconstruction for mode f1 of the signal whose FSST2 is
depicted in Figure 4.7 (a) using either FSST2 or DFSST2, and for d = 0 or d = 5 in both
cases; of the same signal; (d): same as (c) but for mode f2 of that signal.
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Fig. 4.9 Illustration of DFSST2 on a real signal: (a): FSST2 of a bat echolocation call along
with the corresponding ridges, (b): reconstructed signal based on either DFSST2 or FSST2
and assuming the number of modes equals 3.

output SNR associated with the reconstruction of the signal by summing the first three
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modes. The results depicted in Figure 4.9 (b), again show the benefit of demodulating first
the signal compared to direct computation, the improvement brought by using a higher
frequency resolution being much less obvious than in controlled situations such as those
studied before. In spite of this reconstruction, results are satisfactory, some information is
lost when considering the reconstructed signal obtained using only the first three modes. This
problem arises because, for real-world signals, such as the bat signal considered here, the
number of modes is not constant over time: i.e. some modes vanish but the ridge estimation
assumes that the modes will persist throughout the data record. In the next chapter, we
propose an interesting method, called adaptive contour representation computation, which
enables to tackle this problem.

4.2 On Downsampled Short-Time Fourier Transform (STFT)

This second section investigates the denoising and mode reconstruction of MCSs from their
downsampled STFT. This work has been recently done in [1]. First, we concisely recall three
signal reconstruction techniques based on STFTs in the discrete setting and then show how
to use them for signal denoising.

4.2.1 Signal Reconstruction from Downsampled STFT

Let first consider a signal f in l2(Z), and a discrete real window g also in l2(Z), the STFT
downsampled by a factor of R (a positive integer) and shifted by an integer parameter p (
0 ≤ p < R) is defined for each ω by:

V g
f (mR+ p, ω) =

∑
n∈Z

f [n]g[n−mR− p]e−i2πω(n−mR−p). (4.11)

If one assumes the signal is of length L and supported on {0, · · · , L − 1}, the filter g
supported on {−M, · · · ,M} such that Lg := 2M + 1 ≤ N ≤ L/2, where N is the number of
frequency bins, one may write:

V g
f (mR+ p,

k

N
) =

∑
n∈Z

f [n]g[n−mR− p]e−i2π
k(n−mR−p)

N

=

M∑
n=−M

f [mR+ p+ n]g[n]e−i2π
kn
N

=

2M∑
n=0

f [mR+ p+ n−M ]g[n−M ]e−i2π
k(n−M)

N .
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Since g is null on {M + 1, · · · , N − 1−M}, STFT can be rewritten as:

V g
f (mR+ p,

k

N
)e−i2π

kM
N =

N−1∑
n=0

f [mR+ p+ n−M ]g[n−M ]e−i2π
kn
N .

Using the properties of the discrete Fourier transform (DFT), one obtains, for any n ∈
{0, · · · , N − 1}:

f [mR+ p+ n−M ]g[n−M ] =
1

N

N−1∑
k=0

V g
f (mR+ p,

k

N
)ei2π

k(n−M)
N . (4.12)

When g is non-zero on {−p, · · · , R− 1− p}, one gets, for any q ∈ {0, · · · , R− 1}:

f [mR+ q] =
1

g[q − p]N

N−1∑
k=0

V g
f (mR+ p,

k

N
)ei2π

k(q−p)
N . (4.13)

This reconstruction technique will be referred to as the first reconstruction technique (RT1)
in the sequel. Since p varies in {0, · · · , R− 1}, if one wants to use the same filter g whatever
p, the former has to be non-zero on {−R+ 1, · · · , R− 1}.

Alternatively, using (4.12) and assuming
∑
m∈Z

g[n−mR]2 = 1 for all n, we may write:

f [n] =

N−1∑
k=0

∑
m∈Z

V g
f (mR+ p,

k

N
)g[n−mR− p]

ei2π
k(n−mR−P )

N

N
. (4.14)

The proof of (4.14) is available in Appendix C.1. Furthermore, when such a filter is used, one
also has energy conservation, namely:

∑
n∈Z

f [n]2 =
∑
m∈Z

1

N

N−1∑
k=0

|V g
f (mR+ p,

k

N
)|2, (4.15)

the proof being also available in Appendix C.2. Note that the reconstruction can still be
achieved by making the appropriate renormalization as follows:

f [n] =

N−1∑
k=0

∑
m∈Z

V g
f (mR+ p, kN )g[n−mR− p] e

i2π
k(n−mR−p)

N

N∑
m∈Z

g[n−mR− p]2
, (4.16)

provided
∑
m∈Z

g[n −mR]2 ̸= 0 for all n. This type of reconstruction technique is denoted

second reconstruction technique (RT2) in the sequel.
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Remark 4.1. It is important to remark that such a reconstruction formula was already studied
in [98] but for infinite signals and assuming a continuous frequency. Here, the signal is finite
and the frequencies are discretized. Also, in our context, the number of frequency bins is
much smaller than the signal length for the method to be tractable for long signals.

Alternatively, assuming this time
∑
m∈Z

g[n−mR] = 1 for all n, one similarly has:

f [n] =
N−1∑
k=0

∑
m∈Z

V g
f (mR+ p,

k

N
)
ei2π

k(n−mR−p)
N

N
, (4.17)

the proof being available in Appendix C.3. Note that, as soon as
∑
m∈Z

g[n−mR] ̸= 0 for all n,

one can still reconstruct f through:

f [n] =

N−1∑
k=0

∑
m∈Z

V g
f (mR+ p, kN ) e

i2π
k(n−mR−p)

N

N∑
m∈Z

g[n−mR− p]
. (4.18)

This reconstruction formula is referred to as third reconstruction technique (RT3) in the
sequel.

Remark 4.2. Typical filters g that can be used in RT2 and RT3 are those satisfying the
constant overlap add property [99] with hop-size R (COLA(R)):

∑
m∈Z g[n−mR] = 1, for

all n.
For example, the rectangular window defined on {0, · · · , R − 1} is COLA(R). Other

popular examples of COLA(R) windows is the Bartlett window: w[n] = wr[n]
[
1− |n|

R

]
, for

n ∈ {−R, · · · , R} and where wr is the rectangular window on {−R, · · · , R}, the Hann window
defined, for n ∈ {−R, · · · , R}, by: w[n] = wr[n]

[
1
2 + 1

2 cos(
πn
R )
]
, or the Hamming window,

w[n] = wr[n]
[
0.54 + (1− 0.54) cos(πnR )

]
, for this time n ∈ {−R, · · · , R − 1}, and putting

w[R] = 0. One has, however, to bear in mind that COLA(R) condition is only sufficient for
signal reconstruction from downsampled STFT.

4.2.2 Signal Denoising from Downsampled STFT

To remove noise from a signal, we propose to use an adaptation of hard-thresholding (HT)
technique introduced in Section 3.1.4.D. to the downsampled STFT context. Assuming the
variance of the Gaussian noise σ2ζ is known, HT for downsampled STFT is defined as:

V
g
fζ
(m,

k

N
) =

{
V g
fζ
(m, kN ), if |V g

fζ
(m, kN )| ≥ γF = 3σζ∥g∥2

0 otherwise,
(4.19)
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where m denotes time index. Then, denoised signals are obtained using one of the three
reconstruction formulae replacing V g

f by V g
fζ

. For the sake of simplicity, we will also denote
these techniques by RT1, RT2 and RT3, and fr a reconstructed signal using one of these
methods.
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Fig. 4.10 (a): STFT of a linear chirp; (b): output SNR corresponding to the reconstruction of
signal associated with STFT displayed in (a), when the shift parameter varies, for different
input SNR and for RT1, RT2, and RT3; (c): STFT of an MCS; (d): output SNR corresponding
to the reconstruction of signal associated with STFT displayed in (c), when the shift parameter
varies, for different input SNRs and for RT1, RT2, and RT3.

In order to assess the quality of the reconstruction procedure using a shifted downsampled
STFT, we remark that a good reconstruction technique should be very slightly sensitive to
the shift parameter p. Pointing out that the higher the SNR the lower the l2 error ∥f − fr∥2,
we may write, for RT1:

R−1∑
q=0

|f [mR+ q]− fr[mR+ q]|2

=

R−1∑
q=0

1

g[q − p]2N2
|
N−1∑
k=0

(
V g
f (mR+ p,

k

N
)− V

g
fζ
(mR+ p,

k

N

)
ei2π

k(q−p)
N |2.
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Defining K(p, q) := |
N−1∑
k=0

(
V g
f (mR+ p, kN )− V

g
fζ
(mR+ p, kN )

)
ei2π

k(q−p)
N |2, and assuming

it is independent of p and q, then the l2 error is minimal when
R−1∑
q=0

1
g[q−p]2 is minimal for

some p. For low-pass, positive, and symmetric windows (like Hamming or Bartlett windows,
for instance), this corresponds to considering the central taps of filter g, i.e. p = ⌊R/2⌋.
Regarding method RT2, energy conservation enables us to write:

∑
q∈Z

|f [q]− fr[q]|2 =
∑
m∈Z

1

N

N−1∑
k=0

|V g
f (mR+ p,

k

N
)− V

g
fζ
(mR+ p,

k

N
)|2, (4.20)

which is independent of p, provided K(p, p) is independent of p.
To illustrate this, we consider a linear chirp defined for t in {0, ..., L − 1} by f(t) =

e2iπ(0.05t+(0.10/L)t2), with L = 4096. The maximal reduced frequency is 0.25, and the Shannon-
Nyquist sampling theory tells us that one needs at least L/2 samples to have perfect recon-
struction, meaning the sampling period is half the critical one (i.e. the signal is oversampled
by a factor of 2). Then, we compute the STFT of the signal using the Hamming window with
length Lg = 63 and consider a number N = 256 of frequency bins, and R = 32 (the largest
downsampling factor compatible with the three reconstruction techniques since M = 32).
For p = 0, we obtain the representation of Figure 4.10 (a), corresponding to a 256 × 128

matrix and, changing p does not change the matrix size. So, if one compares with the critical
sampling, requiring 2048 values for f , the downsampling factor actually equals 16. Then, for
different noise levels, shift parameter in {0, · · · , R− 1} and input SNRs, we display in Figure
4.10 (b), the output SNR corresponding to the reconstruction of the linear chirp using either
RT1, RT2, or RT3.

For RT1, having numerically checked that K(p, q) is almost independent of p and q, we
notice that, as expected, best reconstruction results are obtained when p = ⌊R/2⌋. On the
contrary, we check that RT2 is insensitive to p, as a consequence of energy conservation.
The behavior of RT3 is very similar to that of RT2 but is more difficult to analyze. As we
are interested in reconstructing the signal from its downsampled STFT for any given shift
parameter, RT1 should not be used. However, such a reconstruction should be borne in mind
since it is used in the synchrosqueezing techniques discussed at the end of this paper.

It is also worth mentioning that when the SNR is equal to 10 dB, and no downsampling is
applied, the output SNRs for the linear chirp and with either of the three methods RT1, RT2,
and RT3 are 23.39, 23.27 and 22.87 dB respectively: looking at Figure 4.10 (b), we notice
that the denoising performance is not sensitive to downsampling factor since similar results
are obtained using downsampled STFT in RT2, RT3 and also for RT1, provided the shift
parameter is optimally chosen for the latter.

This behavior is also observable when applying the reconstruction techniques to a more
general signal, as the MCS whose downsampled STFT is depicted in Figure 4.10 (c), for which
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the output SNR is displayed in Figure 4.10 (d). In this example, the reduced frequencies are
400
L + 30

L cos(3π t
L) and 1000

L + 60
L cos(3π t

L) with L = 4096, meaning that the maximal reduced
frequency equals 0.38: the signal is over-sampled by a factor less than 2 (so with R = 32, the
downsampling factor compared with the critical Nyquist sampling is even bigger than in the
previous example). As previously, to use downsampled STFT instead of the full transform
does not result in a significant performance loss. In the following section, we are going to
exploit these findings to propose a novel algorithm for the reconstruction and denoising of the
modes of an MCS.

4.2.3 Mode Recontruction from Downsampled STFT of Noisy MCS

This section presents a new technique derived from the HT strategy introduced in the previous
section for denoising and mode reconstruction of an MCS from its downsampled STFT. Bear
in mind that mode reconstruction in the TF plane is carried out by integrating STFT along
the frequency axis and in the vicinity of detected ridges approximating the IFs (ϕ′ls) of the
modes. Therefore, we first explain how ridges are detected and then detail how mode retrieval
is performed.

Algorithm 4 Ridge extraction from downsampled STFT
Pick p ∈ {0, · · · , R− 1}
Define Zp,R = {mR+ p,m ∈ ⌊L−1

R ⌋}
∆f = R×M ×N
for l = 1 to K do

1. Pick tm = mR+ p ∈ Zp,R.
2. pm,l := argmax

k
|V g
fζ
(tm,

k
N )|.

3. Im,l := [pm,l −∆f , pm,l +∆f ]
⋂{0, ..., N − 1}.

4. pm−1,l := argmax
k∈Im,l

|V g
fζ
(tm−1,

k
N )|, iterate backward.

5. pm+1,l := argmax
k∈Im,l

|V g
fζ
(tm+1,

k
N )|, iterate forward.

6. For tm ∈ Zp,R, set V g
fζ
(tm, k/N) := 0, for k ∈ [pm,l −∆N, pm,l +∆N ]

Sort (pm,l)l in increasing order to obtain (p̃m,l)l

(φl[tm])m = (
p̃m,l
N )m

A. Ridge Extraction from Noisy Downsampled STFT

In order to compute an estimate (φl[n]s) of the ridges (n, ϕ′l[n]) in the downsampled STFT
context, we propose an adaption of Algorithm 2 (see Section 4.1.1.B.) in which the downsam-
pling factor R taking into account. As mentioned in 4.1.1.C. that to use regularization terms
in the energy functional results in less accurate ridge estimation. Therefore, we consider the
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following IF estimate:

φ[mR+ p] = argmax
0≤k≤N−1

|V g
fζ
(mR+ p,

k

N
)|, (4.21)

making m vary, where fζ will be a noisy version of f . From this, a procedure used to extract
the ridges of an MCS from its downsampled STFT is summarized in Algorithm 4.

B. Mode Reconstruction

Based on RT2 and HT technique for downsampled STFT introduced in Section 4.2.2, we
define a novel technique for the retrieval of the modes of an MCS (to consider RT3 for
mode reconstruction instead would not change the results that much). Let us focus on the
reconstruction of the l-th mode, assuming φl is known. For that purpose, we recall that a
first-order approximation of STFT close to the lth ridge and in the continuous time setting,
reads [47]:

V g
fζ ,c

(t, ω) ≈ Al(t)ĝ(ω − ϕ′l(t)), (4.22)

If the window g is the Gaussian window σ−1/2e−π
x2

σ2 and considering the approximation
of ϕ′l by φl, and adapting (4.22) to our discrete time and frequency settings, we get at time
tm := mR+ p:

V g
fζ
(tm,

k

N
) ≈ |V g

fζ
(tm, φl[tm])|e−πσ

2( k
N
−φl[tm])2 ,

for k
N sufficiently close to φl[tm]. If, as previously, the noise variance is σ2ζ , the coefficients

associated with mode l one selects at each time tm, following the procedure detailed in Section
4.2.2, correspond to the indices k satisfying:

|V g
fζ
(tm, φl[tm])|e−πσ

2( k
N
−φl[tm])2 ≥ γF = 3σζ∥g∥2,

namely the indices inside the interval Jl,m := [Nφl[tm]− Γl,m, Nφl[tm] + Γl,m], with

Γl,m =
N

σ

√√√√− 1

π
log

(
3σζ∥g∥2

|V g
fζ
(tm, φk[tm])|

)
.

Knowing interval Jl,m, mode fl is reconstructed through:

fr,l[n] :=
∑
m∈Z

∑
k∈Jl,m

V g
fζ
(tm,

k

N
)g[n− tm]

ei2π
k(n−tm)

N

N
. (4.23)

This method will be denoted by M1 in the sequel. Doing so, one selects the portion of the
signal above the noise level in the vicinity of each ridge. However, such a simple expression



4.2 On Downsampled Short-Time Fourier Transform (STFT) 91

for Jl,m exists only because one assumes the window is Gaussian. Also, the width of the
interval Jl,m only depends on the magnitude of STFT at local maxima location, but not on
the frequency modulation of the corresponding modes. Therefore, an alternative to compute
the frequency interval for mode reconstruction is to define η[1]l,m and η[2]l,m:

η
[1]
l,m = argmax

k

{
k

N
< φl[tm], |V g

fζ
(tm,

k

N
)| < 3σζ∥g∥2

}
η
[2]
l,m = argmin

k

{
k

N
> φl[tm], |V g

fζ
(tm,

k

N
)| < 3σζ∥g∥2

}
,

and then set :

Jl,m :=
[
Nφl[tm]− η

[1]
l,m, Nφl[tm] + η

[2]
l,m

]
. (4.24)

In such a case, the interval is no longer symmetric with respect to the maximum amplitude
location and adapts to frequency modulation. This method will be denoted by M2 in the
sequel. The comparison between methods M1 and M2 will be conducted in the following
section.

4.2.4 Numerical Applications

In this section, we first investigate the quality of mode reconstruction with respect to the
type of reconstruction method, i.e. M1 or M2, type of filter, downsampling factor and shift
parameter. Then, we compare the proposed mode reconstruction methods with other ones
based on STFT-based SSTs. In this regard, a particular emphasis is put on the amount of
information needed to perform mode reconstruction.
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Fig. 4.11 (a): Computation of Rényi entropy with respect to σ when the Gaussian window is
used to compute STFT, for different noise level ; (b): same as (a) but when the Hamming
window is used instead

In our simulations, we use both the Gaussian and Hamming windows whose optimal
lengths σ and Lg are determined by the Rényi entropy technique introduced in Section 3.1.4.A.



92 Denoising and Mode Reconstruction of Multicomponent Signals

In Figure 4.11 (a) and (b), we display the Rényi entropy of the STFT of the signal associated
with Figure 4.10 (c), for various input SNRs, and with respect to the filter length parameter,
for the Gaussian and Hamming windows respectively. Looking at these figures, the minimum
entropy clearly puts forward an optimal window length which varies very little with the noise
level. In these simulations, we took N = 512 and then the optimal window parameter σ
equals 0.15 and the optimal Lg equals 161 for the Hamming window.

10 20 30 40 50 60
12

14

16

18

20

22

24

Gaussian, M
2
, 0dB

Gaussian, M
1
, 0dB

Hamming, M
2
, 0dB

Gaussian, M
2
, 10dB

Gaussian, M
1
, 10dB

Hamming, M
2
, 10dB

R

ou
tp

ut
 S

N
R

(a)

10 20 30 40 50 60
8

10

12

14

16

18

20

22

Gaussian, M
2
, 0dB

Gaussian, M
1
, 0dB

Hamming, M
2
, 0dB

Gaussian, M
2
, 10dB

Gaussian, M
1
, 10dB

Hamming, M
2
, 10dB

R

ou
tp

ut
 S

N
R

(b)

Fig. 4.12 (a): output SNR associated with the reconstruction of mode f1 of the signal associated
with Figure 4.10 (c), for different Rs, different optimized filters, for either reconstruction
technique M1 or M2, and when the input SNR is 0 dB or 10 dB; (b): same as (a) but for
mode f2

A. Sensitivity of Mode Reconstruction to Filter Choice, Downsampling Factor,
and Shift Parameter

We here study the sensitivity of mode reconstruction techniques M1 and M2, to the choice
of downsampling factor, shift parameter, and filter g. Our experiments are again based on
noisy versions of the signal associated with Figure 4.10 (c), with N = 512, and the optimal
filters (Gaussian and Hamming) being chosen as explained previously. Taken into account
the optimal length associated with each of these filters, the largest downsampling factor one
can consider is R = 128, but to take R ≤ 64 is sufficiently informative on the behaviors of the
proposed techniques. In order to measure the performance of the different techniques, we
compute the output SNRs associated with the reconstruction of each mode, i.e. SNR(fl, fr,l),
where the output SNR is defined in (2.71) and fr,l in (4.23).

As for the whole signal reconstruction procedure studied in Section 4.2.2, the output SNR,
when considering mode reconstruction, is almost insensitive to the shift parameter. Therefore,
for the sake of simplicity, we omit this parameter in the simulations and consider p = 0. The
results depicted in Figure 4.12 (a), for an input SNR equal to 0 dB or 10dB, show that the
quality of reconstruction for f1 worsens when the downsampling factor increases, whatever
the type of reconstruction method used, but the performance loss is not significant at least



4.2 On Downsampled Short-Time Fourier Transform (STFT) 93

for M2. On that example, M1 behaves slightly better than M2 but the discrepancy between
the results provided by the two methods remains within a range of 1 dB. Finally, to use the
Hamming or the Gaussian window makes very little difference.

If one carries out the same study on mode f2, which is much more modulated than f1, the
importance of taking into account the modulation in the reconstruction procedure transpires.
The gain obtained by using M2 rather than M1 is at least 2 dB at the high noise level, and
the benefits of using the former technique are even greater when the noise level is low. Based
on these results, we will use M2 in the comparison with SSTs that follows.
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Fig. 4.13 (a): output SNR associated with the reconstruction of mode f1 of the signal associated
with Figure 4.10 (c), using different FSST2 techniques and with respect to parameter d, or
M2 with optimized Hamming filter and different downsampling factors R (SNR 0 dB); (b):
same as (a) but for mode f2; (c): same as (a) but with SNR 10 dB; (d): same as (b) but with
SNR 10 dB.

B. Comparison with SST Methods

This section presents a comparison in terms of the quality of reconstructed modes between M2

and SST methods including FSST2 and DFSST2 previously introduced. At first glance, since
the information is reassigned by two latter techniques in the vicinity of the ridge associated
with one mode, for a given time, mode reconstruction involves much fewer coefficients than with
the former. Nevertheless, we have just proven that we could still perform mode reconstruction
from a downsampled version of STFT which is not the case with FSST2 and DFSST2. So,



94 Denoising and Mode Reconstruction of Multicomponent Signals

even though FSST2 leads to a much sharper representation than STFT, if one is interested in
signal reconstruction using the smallest amount of information as possible, we are going to
show that the reconstruction based on STFT performs better than FSST2 and DFSST2.

To quantify this, we compute the mode reconstruction performance for the signal associated
with Figure 4.10 (c). We investigate the behavior of FSST2 and DFSST2 with respect to
parameter d, along with mode reconstruction by M2, using the optimized Hamming filter
and when the downsampling parameter R varies. The output SNRs are displayed in Figures
4.13 from (a) to (d), and correspond to input SNRs 0 or 10 dB (the results are averaged
over 5 realizations). As the reconstruction with M2 does not depend on d, in these figures,
the mode reconstruction results with this technique are displayed as constant functions. As
already noticed, M2 is not much sensitive to the downsampling factor when the latter goes
from R = 16 to R = 64, for both f1 and f2.

Analyzing the results regarding FSST2 and DFSST2, we remark that the DFSST2 results
in better mode reconstruction than when using FSST2. Now comparing M2 with them, M2

leads better results when only the information on the ridge is considered for FSST2 (d = 0),
but when d increases, typically d = 5, mode reconstruction performed with DFSST2 seems to
perform similarly to M2 in most cases.
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Fig. 4.14 Output SNR associated with the reconstruction of the signal associated with Figure
4.10 (c) with respect to the number of coefficients kept divided by the signal length (input
SNR 0 or 10 dB)

However, there is one key issue hidden in the just computed output SNRs, which is the
number of coefficients used to perform the reconstruction with each method. Indeed, for a fair
comparison, we compute the number of coefficients required by the different reconstruction
procedures. If the reconstruction procedure is performed on DFSST2 or FSST2, the total
number of coefficients to be stored is NFSST2 = K(2d+ 1)L. On the contrary, the number of
coefficients used by M2 corresponds to:

NM2 =
K∑
l=1

∑
m

#
{
Jl,m

⋂
Z
}
, (4.25)
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where Jl,m is the interval defined in (4.24) and # {X} the cardinal of set X. Note that the
range for m depends on the downsampling factor R. In Figure 4.14, we depict for input SNRs
equal to 0 or 10 dB, the output SNRs associated with mode reconstruction with respect to
the number of coefficients kept, i.e. NFSST2 or NM2 , divided by signal length L. Doing so, we
highlight the very different nature of the mode reconstruction techniques based on DFSST2
and M2. Indeed, whatever the type of modes considered, for a given output SNR, mode
retrieval is performed using much less information using the latter technique than the former.
But more than that: the latter technique, while denoising the modes, can also compress the
whole signal since the number of coefficients kept over the signal length L is lesser than one
when R ≥ 64. On the contrary, FSST2 based denoising techniques always require more than
L coefficients. In this example, the amount of information needed to get the same output
SNR is about 15 times larger with the technique associated with DFSST2 than with M2.
Note finally that for the former technique the results are not sensitive to the modulation (f1
reconstruction versus that of f2), which is expected because this algorithm demodulates each
mode before proceeding with reconstruction.

C. Application to Real Data

In this section, we investigate the behavior of our new method for the denoising of a bat
echolocation call, whose noise-free STFT is depicted in Figure 4.15 (a). As one does not know
the ground truth in terms of the modes to be extracted, one cannot compute output SNR
for each mode; the only thing one can do is to compute a global output SNR. In this regard,
we are going to check that we do not lose much information by considering mode extraction
as in M2. Another difference between this signal and the one associated with Figure 4.10
(c) is that the modes only last for a certain amount of time, which makes ridge extraction
more complicated. For denoising purpose, we thus investigate three different strategies: M2,
DFSST2, and HT.

We again analyze the quality of denoising with respect to the number of coefficients kept
over the length of the signal, the results depicted in Figure 4.15 (b) and (c), respectively
correspond to a noise level of 0 and 10 dB. The number K of modes is set to 3 or 4 in M2 and
also in DFSST2. We first remark that while the latter technique is sensitive to the number of
modes (NFSST2 is linear with respect to K), M2 is not. Indeed, if one considers an irrelevant
mode number with M2, the corresponding coefficients will be mostly below the noise level
and will thus not be considered. Another interesting fact is that, in such a context, to extract
the mode for denoising purpose may be useless, because the coefficients above the noise
threshold are almost all located in the vicinity of the different ridges: given a downsampling
factor, the number of selected coefficients is almost the same with M2 or HT. Finally, we
also remark that when the downsampling factor is large, the denoising performance becomes
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Fig. 4.15 (a): STFT of a bat echolocation call, (b): output SNR associated with the
reconstruction of the signal associated with (a) with respect to the number of coefficients kept
divided by the signal length (input SNR 0 dB), the sensitivity to the number K of modes is
also tested; (c): same as (b) but with an input SNR of 10 dB.

worse when extracting the ridges in the denoising process: if one wants to denoise the signal
while compressing it, in such a situation, ridge extraction should be precluded.

4.3 Conclusion

In this chapter, we have introduced two contributions to the problem of denoising and mode
reconstruction of multicomponent signals. First, a new algorithm for the retrieval of the
modes from the study of some TFRs is presented. It relies upon a novel technique for
ridge estimation followed by a demodulation procedure. By using an appropriate frequency
resolution, it is possible to compensate for the discretization of the frequencies induced by
the use of FFT in the computation of the TFRs and thus obtained reliable IF estimates. The
simulation conducted on test signals show that, by demodulating the signal first using these
IF estimates, the associated TFR is sharpened and that the accuracy of the reconstruction
is much better than when direct reconstruction is performed, both in noiseless and noisy
situations. Numerical simulations conducted on real signals where the number of modes may
vary with time, however, show the limits of signal reconstruction based on ridge extraction.
To address this issue, the following chapter proposes a new technique called adaptive contour
representation computation based on properties of the reassignment vector (RV) which enables
to estimate any time-frequency signatures of multicomponent signals. This work was published
in [4].

Secondly, we introduced a new technique for the denoising and mode reconstruction of
multicomponent signals from their downsampled STFT that enables to deal with the practical
use of synchrosqueezing transform. We first recalled different signal reconstruction procedure
using downsampled versions of short-time Fourier transform. From this, we have derived a
classical hard thresholding strategy for signal denoising which we have then adapted to the
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denoising of multicomponent signals and mode extraction. We then showed that the proposed
technique compares favorably, on simulated and real data, with the most recent denoising ones
based on synchrosqueezing in terms of the number of coefficients used in the reconstruction
procedure. Recently, we have proposed a technique called Shifted-Symmetrized-Regularized
Hard-Thresholding (SSR-HT) which enables an improvement of denoising behavior compared
with the original HT [7].
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In previous chapters, we introduced a family of synchrosqueezing transforms (SSTs) not
only enhancing time-frequency representations (TFRs), but also allowing for mode retrieval for
a wide class of multicomponent signals (MCSs). Nevertheless, as highlighted above, because
of the assumption on the MCSs being made of a fixed number of AM-FM modes, they cannot
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handle vanishing modes or Dirac impulses that are widely encountered in many practical
situations, as for instance, marine mammals [52], damped tones [53], musical sounds [54, 55],
or thermoacoustic vibration [56]. Substantial methods were proposed to circumvent this
problem, among which the ones based on using the properties of the reassignment vector (RV)
to estimate TF signatures of MCSs have recently gained a renewed interest [57, 59, 58]. In
contrast to the conventional methods which work directly with the ridge detection for AM-FM
modes [100, 83, 101], the RV-based ones consider these modes as particular TF regions,
called basins of attractions (BAs) subsequently used for mode reconstruction. However, the
latter still fail to assess the TF signatures associated with a noisy Dirac impulse. To tackle
this disadvantage, we introduce an improved version of the RV-based techniques based on
using a local averaging rather than a punctual orientation of RV to lead to a more efficient
computation of the direction of projection. As we will see, such an improved technique, coined
adaptive contour representation computation (ACRC), enables to not only handle that type
of impulse but also preserve its main characteristics for AM-FM modes. This work is the first
contribution of this chapter [4].

The second contribution is a novel method for denoising phonocardiogram (PCG) signals
based on a joint analysis between the just proposed technique ACRC and non-negative matrix
factorization (NMF). Indeed, as we will see, this method, called NMF-ACRC, can avail the
strengths of each technique to deal with their intrinsic drawbacks: the former does not work
well on signals containing highly energetic noises that are regularly seen in PCGs [59], while
the latter depends on a priori threshold that limits its adaptivity. This work has been recently
carried out in [2].

This chapter is organized as follows: after having recalled, in Section 5.1.1, the basics
associated with RV-based approaches, we detail, in Section 5.1.2, the new technique ACRC
and then show how to perform mode reconstruction using the associated BAs. The numerical
simulations of Section 5.1.3 demonstrate the improvement brought by ACRC on both a
complex simulated MCS and a real data. Then, we introduce, in Section 5.2.2, the new
method NMF-ACRC for PCG denoising. In Section 5.2.3, numerical simulations conducted
on SiSEC 2016 illustrate the performance of the latter.

5.1 New Adaptive Contour Representation Computation (ACRC)

Before going into details of the new technique ACRC [4], the following section succinctly
reviews the basics that are relevant to the RV-based methods.
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5.1.1 RV-Based methods for TF Signature Estimation

A. RV Definition and Illustrations

Let first us recall the centroid (τ̂f (t, η), ω̂f (t, η)) of the spectrogram in the reassignment
framework introduced in Section 2.5.1, whose coordinates are computed by:

τ̂f (t, η) = t+ ℜe
{
V tg
f (t, η)

V g
f (t, η)

}
, and ω̂f (t, η) = η − 1

2π
ℑm

{
V g′

f (t, η)

V g
f (t, η)

}
. (5.1)

With this in mind, the definition of the reassignment vector (RV) can be derived as follows:

Definition 5.1. RV at time t and frequency η is defined by [57]:

RV (t, η) =

(
τ̂f (t, η)− t

ω̂f (t, η)− η

)
, (5.2)

where the window g is assumed to be real-valued.

As an illustration, considering a Dirac distribution at t0: f = δt0 , one easily obtain:
RV (t, η) = (t0 − t, 0): it has a component only along the time axis. Conversely, for a purely

harmonic mode, f(t) = ei2πη0t, one has V g
f (t, η) = ĝ(η−η0)e2iπη0t and thus

V tg
f (t, η)

V g
f (t, η)

= t̂g(η−η0)
ĝ(η−η0)

which is an imaginary complex number when g is even. Similarly, one has
V g

′
f (t,η)

V gf (t,η)
= ĝ′(η−η0)

ĝ(η−η0) =

2iπ(η− η0), so that, RV (t, η) = (0, η0 − η): it has a component only along the frequency axis.
Another simple case is the one of a constant amplitude linear chirp, whose STFT reads [48]:
V g
f (t, η) = f(t) ̂g(u)eiπϕ′′(t)u2(η − ϕ′(t)). When g(t) = e−σπt

2 , the following two relations can
be easily proven:

V tg
f (t, η) =

1

−2πσ + 2iπϕ′′(t)
̂(g(u)eiπϕ′′(t)u2)′(η − ϕ′(t))

=
i(η − ϕ′(t))

−σ + iϕ′′(t)
V g
f (t, η)

V g′

f (t, η) = −2πσV tg
f (t, η),

leading to RV (t, η) = (η−ϕ′(t))√
σ2+ϕ′′(t)2

(−ϕ′′(t), σ2). The IF of the mode being a straight line whose

orientation is given by vector (1, ϕ′′(t)), RV is orthogonal to the ridge corresponding to the
TF signature only if σ = 1 (the window is unitary in L2). More generally it points to that
ridge following the direction (−ϕ′′(t), σ2).
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Fig. 5.1 (a): STFT modulus of a three-component MCS with the zeros (red points) and three
ridges; (b): a close-up of RV close to a zero (red asterisk): white arrows represent the RV
while the nearby contour is depicted in black; (c): behavior of RV close to a ridge: blue arrows
represent the RV while the ridge is plotted in black.

B. Existing RV-based Methods and Limitations

One of the major challenging problems in the TF analysis is how to detect ridge points
and connect them together to construct smooth contours corresponding to TF signatures
[100]. Here, we briefly recall a ridge detector that was initially proposed in [57] and then
improved in [58, 59]. Such a detector relies upon the properties of RV in the vicinity of
the ridge associated with the TF signatures: when crossing a ridge, RV undergoes a sharp
variation in its orientations. As an illustration, let us consider a simulated MCS made of a
constant and two sinusoidal chirps whose spectrogram is depicted in Figure 5.1 (a). Then,
we display respectively, in Figures 5.1 (b) and (c), close-ups of RV close to a zero and to a
ridge, which enables to illustrate the properties of RVs: on each side of a ridge, RVs have
opposite directions. To determine the changes of the location of these sudden orientation,
a first strategy was developed in [57] and consisted in projecting RV in a specific direction,
given by an angle θ, and then in determining the location of the sign change of the projection.
Thus, contour points (CPs) were defined as the zeros of the projected vector, i.e.

⟨RV (t, η), vθ⟩ = 0, (5.3)

where vθ is the unit vector in the direction θ, and ⟨., .⟩ the inner product on R2. However,
because the direction of projection θ is fixed a priori, the technique did not adapt well to the
determination of CPs corresponding to varying orientations. To deal with this problem, an
improved technique to compute CPs was proposed in [58, 59] that consisted in modifying the
definition of (5.3) as follows.

α(t, η) := ⟨RV (t, η), vθ(t,η) mod π⟩ = 0, (5.4)
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with θ(t, η) the argument of RV (t, η) and where we consider θ(t, η) mod π ∈ [0, π[. It is of
interest to note that when RV (t, η) ∈ [0, π] (resp. [−π, 0]), ⟨RV (t, η), vθ(t,η) mod π⟩ equals 1

(resp. −1). This alternative, called M1 in the sequel, enables the definition of a new type of
CPs that no longer depends on a fixed angle θ. In Figure 5.1 (a), we display three detected
ridges of an MCS using M1.

(a) (b)

Fig. 5.2 (a): a close-up of a zero of the spectrogram and its corresponding contour computed
with M1; (b): STFT of a noisy Dirac impulse (SNR = 0 dB) together with the first 10
contours computed with M1, which clearly point out the failure of the method in detecting
the vertical ridge.

However, this technique suffers from some serious limitations [102]. Firstly, special
structures are created in the vicinity of the zeros of the spectrogram since the mod π

computation induces α(t, η) to be zero on horizontal TF lines crossing the zeros. Secondly, it
is not capable of detecting vertical ridges, still because of the mod π factor, which results
in numerical instabilities. All these phenomena are respectively illustrated in Figure 5.2 (a)
and (b). In the following subsection, we develop a new adaptive method, called adaptive
contour representation computation (ACRC), to enable to effectively overcome such limitations.
Finally, it is worth of note that the CPs are practically chained by considering level zero
contours of α(t, η) using contourc MATLAB function. Then, one segments the resulting
contours with respect to the zeros of the spectrogram and subsequently sorts them into
descending energy order corresponding to a series of decreasing energy ridges of modes.

5.1.2 New Adaptive Contour Representation Computation (ACRC) and
Basins of Attraction (BA)

The applicability of the just recalled approaches based on the projection of RV to compute
CPs is hindered by the fact that the orientation of RV, in the vicinity of the TF signature of
a mode, fluctuates, and all the more so that the noise level increases. This section introduces
a new adaptive technique ACRC that uses a criterion based on a local rather than a punctual
orientation of RV to define a direction of projection. More precisely, the direction of projection
for each RV is defined by considering the average over a squared neighborhood of RV centered
at the point of study instead of considering only one single grid point as in [58, 59]. This
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results in a much more robust estimation of the TF signature of modes like Dirac impulses,
even at the high noise level, while maintaining a good behavior for AM/FM modes. Before
going into the details of ACRC, we first investigate the impact of viewing RV as a displacement
on a grid and not a vector with real coordinates that we call TF discretization effect.

A. Effect of TF discretization on RV orientation

Let us consider the definition of RV in (5.2) in the discrete setting, we remark that in practice,
due to the discrete nature of the studied signals, RV is associated with a displacement on
a grid, not a vector with real coordinates. Indeed, the signal is supposed to be defined on
0, · · · ,M − 1, then the STFT is evaluated at frequencies p

N , p = 0, · · · , N − 1 (N is the
number of frequency bins), so the grid is indexed by (k, p), k denoting a time instant. By
rounding off to the nearest integers both in time and frequency the coordinates of RV, one
obtains RVr.
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Fig. 5.3 (a): histogram of the argument of RV modulo π, for a white Gaussian noise; (b):
same as (a) but with RV having its coordinates rounded to the nearest integers both in time
and frequency (called RVr in the paper), prior to histogram computation; (c): Argument of
RVr for a mode with sinusoidal frequency with some white Gaussian noise added (SNR 0dB);
(d): the corresponding histogram of (c).

Then, in order to illustrate the effect of TF discretization on RV orientation, we depict
the distributions of the argument of RV or RVr (both taken modulo π), respectively in
Figures 5.3 (a), (b), when the signal is a white Gaussian noise. We remark that the argument
of RV (modulo π) is almost uniformly distributed in all directions while RVr (modulo π)
clearly favors four directions: 0, π/4, π/2 and 3π/4. Let us now consider a signal with a
sinusoidal frequency contaminated by the above white Gaussian noise (SNR 0dB), for which
the argument modulo π of RVr and the corresponding histogram are respectively displayed
in Figures 5.3 (c) and (d). Comparing between Figures 5.3 (b) and (d), we notice that the
presence of a mode with sinusoidal frequency does not alter the distribution of the angles.
Despite these four orientations are not informative if one considers the whole TF plane, we
are going to see in the following subsection that they are features enabling definition of the
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new local direction of projection for RVr, so-called local projection angles (LPAs). This helps
improve the performance of the estimator of TF signatures based on the projection of RV.

B. ACRC Algorithm

To determine LPAs, we first consider the argument modulo π of RVr, which we denote
θr(k,

p
N ) and recall that it belongs to [0, π[. Then, at each grid point (p, k), a local projection

angle (LPA) is defined as the most frequent value of θr in a squared neighborhood of size
(2Ts + 1)2 centered at the point of study. We then project RVr onto the direction given by
this just computed LPA and define the new CPs as the zeros of the projection. The whole
procedure called ACRC is detailed in the following algorithm (the mode function returns the
most frequent value in an array):

Algorithm 5 ACRC Algorithm
1: Input: RVr
2: θr := mod (arg(RVr), π), [M,N ] := size(RVr)
3: for (k, p) ∈ {0, · · · ,M − 1} × {0, · · · , N − 1} do
4: tmp = θr(max(0, k − Ts) : min(M − 1, k + Ts),
5: max(0, p− Ts) : min(N − 1, p+ Ts))
6: lpa(k, p/N) = mode(tmp)
7: α(k, p) := ⟨RVr(k, p/N), vlpa(k,p/N)⟩
8: Define CPs as the zeros of α and then chain them using contourc MATLAB function.

We are going to show that the direction of projection is stabilized by using the proposed
local estimation. Ts, controlling the size of the neighborhood, should have a great impact on
CPs computation and will be further studied in Section 5.1.3 ( M1 corresponds to Ts = 0).

C. Determination of Basins of Attraction Using RV and Mode Reconstruction

Having determined the ridges (or contours) associated with the modes making up the signal
using ACRC algorithm, we define the basin of attraction (BA) associated with a ridge, i.e.
the set of coefficients associated with a given contour as in [58]. Since RV points to a ridge in
its vicinity, we determine the BA of a given ridge as the set of points such that RV points to
that ridge. However, because the localization property of RV is only valid for linear chirps,
and also because of the presence of noise, RV does not point exactly to a ridge. Therefore,
it is proposed in [58] to associate with a given coefficient (t, η) the closest ridge to point
(τ̂f (t, η), ω̂f (t, η)). Once the BAs are computed, each corresponding mode fi is reconstructed
through:

fi(t) =
1

g(0)

∫
(t,η)∈Bi

V g
f (t, η)dη, (5.5)

where Bi ⊂ R2 is the BA associated with mode i.
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Fig. 5.4 (a): spectrogram of the simulated signal (SNR 0 dB); (b): BAs associated with
the first 10 contours computed by method M1; (c): same as (a) but computed with ACRC
algorithm (with Ts = 30); (d): reconstructed signal based on the coefficients contained in the
three most energetic BAs depicted in (c) accompanied by the original noise-free signal.

5.1.3 Numerical Experiments

This section investigates the properties of the proposed algorithm for mode TF signature
identification, signal denoising, and mode reconstruction. Indeed, as we will see, the proposed
algorithm enables a fully adaptive denoising and mode reconstruction.

A. Numerical Results

Let us first consider a simulated MCS made of three components: a Dirac impulse, a cosine
chirp, and a purely harmonic mode. This signal is then contaminated by an additive white
Gaussian noise (Signal-to-Noise Ratio (SNR) 0 dB, the signal is sampled at a rate N = 1024Hz
on [0, 1] and its STFT is computed with the Gaussian window σ = 1). We first display in
Figure 5.4 (a) the spectrogram of the signal and then in Figures 5.4 (b) and (c) the basins of
attraction along with the first 10 contours computed with method M1, and ACRC algorithm,
respectively. It is clear that the former cannot detect the Dirac impulse, whereas the latter
manages to capture the TF structures associated with the three modes. Finally, we illustrate
in Figure 5.4 (d) the reconstruction of the signal by selecting the coefficients associated with
the three most energetic BAs (in cyan, orange and blue for decreasing energy order) displayed
in Figure 5.4 (c). The output SNR after reconstruction are 9.6, 12.5 and 10.5 dB for the cosine
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chirp, Dirac impulse, and purely harmonic mode respectively, meaning that the algorithm
not only estimates the modes but also performs some kind of denoising, especially without
requiring any threshold.
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Fig. 5.5 (a): Energy contained in the three most energetic BAs computed by ACRC algorithm
on Fig.5.4 (a) for different values of Ts and noise levels; (b): BAs and the first 10 contours
computed by ACRC algorithm with Ts = 6 and noise level at SNR = 0dB.

B. Sensitivity to Parameter Ts of ACRC Algorithm

The issue we now discuss is how to choose an appropriate parameter Ts for a specific signal
so as to compute CPs efficiently. The measure we use is the energy contained in the first K
most energetic BAs with respect to Ts, namely:

Ef (Ts) =
K∑
i=1

∑
(t,η)∈BTsi

|V g
f (t, η)|2, (5.6)

where we know that BTsi is the ith BA. The larger the quantity Ef , the better the computation
of CPs (provided K is meaningful for the studied signal). In Figure 5.5 (a), we display Ef (Ts)
for K = 3, for the MCS of Figure 5.4 (a), and at three different noise levels (SNR = 0, 5 and
10 dB). We remark that Ef fluctuates when Ts is small whatever the noise level and then
stagnates when some particular value for Ts is reached. The reason for such a behavior is
that when Ts is small and for the Dirac impulse, the neighborhood is too small to enable
the determination of a stable direction of projection. As a result, only part of the contour
associated with the Dirac impulse is taken into account in the first three contours resulting in
a lower Ef . As an illustration, BAs associated with the first 10 contours when Ts = 6 and
Ts = 30 are shown in Figure 5.5 (b) and Figure 5.4 (c)), respectively.

C. Application to Real Signal

We now illustrate the proposed technique ACRC on a bat echolocation signal, made of 400
samples recorded at 143 Hz, to which a white Gaussian noise is added such that the input
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Fig. 5.6 (a): the spectrogram; (b): BAs associated with the first 3 contours computed with
ACRC algorithm; (c): three reconstructed modes based on the coefficients contained in the
three most energetic BAs depicted in (b); (d): reconstructed signal followed by the original
noise-free signal.

SNR equals 5.0 dB. The spectrogram of the noisy bat signal is displayed in Figure 5.6 (a).
Then, it can be seen from Figure 5.6 (b) that the BAs corresponding to the three main
components of the echolocation signal are well estimated by ACRC algorithm, enabling the
reconstruction of the three detected modes (Figure 5.6 (c)). Finally, we compare the total
resulting signal with the original noise-free signal. The output SNR of the final reconstruction
is 10.9 dB, which confirms the potential interest of our new technique for the denoising of a
real MCS.

5.2 A Joint Analysis of NMF and ACRC to Cardiac Signal
Denoising

Having introduced ACRC to estimate TF signatures of a wide class of MCSs, this second
section puts forward a new denoising method based on a joint analysis of ACRC with NMF
to enable to denoise phonocardiogram (PCG) signals. For a better understanding, let us first
present the context and motivation of this study.
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(a)

(b)

Fig. 5.7 (a) The Wiggers diagram to illustrate the cardiac cycle events together with phono-
cardiogram (PCG) signal and electrocardiogram (ECG) trace [11]; (b) two major audible S1
and S2 of a normal PCG signal.

5.2.1 Context and Motivation

Cardiovascular diseases (CVDs) are one of the world’s largest public health problems, causing
the death of nearly 18 million people annually, accounting for one-third of deaths worldwide
[103]. Many efforts have been made to cope with this issue, among which CVDs diagnosis
method based on cardiac auscultation for early-stage detection of heart abnormalities is the
most commonly used. Cardiac auscultation is a non-invasive and low-cost technique defined
as the listening of the heart sounds using an acoustic stethoscope. In fact, such sounds are
the result of the mechanical vibrations controlled by two sets of valves: AV-valves (mitral
and tricuspid) between the atria and ventricles, and semilunar valves (aortic and pulmonary)
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between the ventricles and arteries. Also, during a normal cardiac cycle consisting of two
periods, systole and diastole, they can be categorized into seven main components: S1, S2,
S3, S4, murmurs, clicks, and snaps, among which the first two ones are heard more clearly.
More precisely, S1, (resp. S2,) is associated with the closing of atrioventricular (resp. aortic
and pulmonary) valves corresponding to the beginning of ventricular systole (resp. diastole)
[104]. With the development of electronic stethoscope, the graphical recording of a heart
sound, called phonocardiogram (PCG), can also be displayed on a digital computer and then
analyzed to provide more insightful information on heart condition [105]. As an illustration,
we display, in Figure 5.7 (a), the events and details of the cardiac cycle with phonocardiogram
(PCG) signal and electrocardiogram (ECG) trace. It is referred to as the Wiggers diagram
[11]. Further, we show, in Figure 5.7 (b), the two major audible components S1 and S2
through a normal PCG.

Unfortunately, PCGs are severely contaminated by many different types of noises including
subject movement, subject speech, ambient sources, stethoscope movement, and lung sounds,
making their analysis quite difficult [106]. Various methods for PCG denoising are reported
in the literature. A class of commonly used techniques based on wavelet thresholding and
variants were developed [107–109], or approaches using empirical mode decomposition (EMD)
were introduced in [110–112]. However, these methods are all based on the analysis of the
PCG on its own, while, for denoising purpose, it may be of interest to use an extra non-
invasive recording, as for instance electrocardiogram (ECG). This idea was investigated in
[22], where the analysis of simultaneous PCG and ECG was carried out by decomposing
their respective spectrogram using non-negative matrix factorization (NMF). In that paper,
denoising was performed by computing the cross-correlation between so-called activation
functions associated with PCG and ECG, and then by thresholding this quantity to enable
performant noise removal. Unfortunately, the choice of the threshold needed to be made
a priori, thus limiting the adaptivity of the proposed technique. In addition, the method,
known as adaptive contour representation computation (ACRC), just introduced in Section 5.1,
enables an adaptive mode decomposition and denoising of any complex MCS. Unfortunately,
it does not work well on signals containing highly energetic noises, as for instance, PCG
signals. Therefore, in what follows, we investigate how the joint analysis of noisy PCG signals
with NMF and ACRC for denoising purpose.

STFT Spectrogram NMF

LPF ACRC Reconstruction

fζ(t) = f(t) + ζ(t) V gfζ (t, η) |V gfζ (t, η)|2

f̂1(t) Wwiener

BAs

Contours

V gfζ (t, η)

f̂(t)

Fig. 5.8 Block diagram of the proposed NMF-ACRC denoising method.
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5.2.2 Proposed Method

This section introduces a new algorithm NMF-ACRC for PCG denoising that relies on
successively combining NMF with ACRC. As we will see, this combination will enable to
take advantage of the strengths of each technique, thus resulting in a significant performance
improvement. The explicit block diagram of the proposed algorithm is depicted in Figure 5.8,
in which the two main steps, i.e. NMF and ACRC, are discussed in details in the following
subsections. Before detailing them, the following subsection presents the signal database used
extensively in the sequel.
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Fig. 5.9 (a): noise-free PCG; (b): noisy PCG; (c): synchronous ECG.

A. Database

The simulations are exploiting a database already used during the sixth community-based
Signal Separation Evaluation Campaign (SiSEC 2016), during which PCGs were recorded with
a cardiac microphone MLT210 on three healthy volunteers, while ECGs were simultaneously
acquired by PowerLab instrument. Such signals, sampled at 1KHz, were then passed through
a 15 to 300Hz band-pass filter. In total, sixteen such synchronous PCGs and ECGs were
recorded, lasting from ten seconds to more than a minute. In a second time, PCGs were
artificially contaminated by different real interference (radio, cough, pseudo-periodic breathing
noise, etc.). As an illustration, we display, in Figure 5.9, a noise-free PCG (f(t)), its noisy
version (fζ(t) = f(t) + ζ(t)), and synchronous ECG (ecg(t)).

B. NMF: Filtering out High-energy Noises

The key idea of NMF technique stems from the fact that information of a single natural
phenomenon can be acquired using different devices, called modalities, associated with different
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Fig. 5.10 Illustration of the application of NMF algorithm to PCG displayed in Figure 5.9
(b): (a) noisy spectrogram; (b) denoised spectrogram.

datasets [113, 114]. For instance, ECG corresponds to the recording of the electrical activity
of the heart, while PCG to heart sounds. Modalities have similarities with one another, among
which the most relevant is definitely quasi-periodicity, i.e. activation and inactivation periods
are almost the same. In this context, the use of non-negative matrix factorization (NMF)
enables to reflect this property by putting forward similar parameters, called shared factors
[115]. In a nutshell, NMF approximates a m by n matrix V with non-negative elements by
the product of two non-negative matrices W and H both with non-negative elements and
with respective sizes m × k and k × n: V ≈ WH, where k, much smaller than m or n, is
called the number of estimated components [116, 117]. Note that this factorization is not
exact; WH is a lower-rank approximation to V . The factors W and H are chosen to minimize
the root mean squared error (RMSE):

min
W,H

||V −WH||2, sujet to W ≥ 0, H ≥ 0. (5.7)

Note also that H is the shared factor which varies little across all the recordings of
multimodal datasets, while W is the unshared factor. For physiological signals, NMF applied
to their spectrograms are of particular interest for identifying signals exhibiting similar
temporal behaviors [118]. In this regard, a denoising procedure enabling the elimination
of high-energy noises from noisy PCGs using synchronous ECGs was proposed in [22], and
summarized hereafter. First, one computes the spectrograms of noisy PCG and synchronous
ECG, respectively denoted Vfζ and Vecg (in our simulation a Gaussian window g(t) =

σ−1e−π
t2

σ2 is used). Then, NMF using an alternating least-squares algorithm [119] is applied
to decompose the spectrogram of the noisy PCG into k = 12 (practically chosen number)
components, i.e. V m,n

fζ
(t, η) =Wm,12

fζ
(η)H12,n

fζ
(t), and one component for ECG spectrogram
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V m,n
ecg (t, η) = Wm,1

ecg (η)H1,n
ecg (t) (the size of the matrices added as superscript to emphasize

the size of matrix H varies depending on the type of signal). One then computes the cross-
correlation between Hk,.

fζ
(t) and H1,.

ecg(t), for each k. When it is larger than some a prior

threshold γ, the corresponding Hk,.
fζ
(t) is associated with PCG, and noise otherwise. This

enables the determination of an estimation of the spectrogram of the PCG and of the noise as
follows: Vf̂1(t, η) =Wm,12

fζ
(η)H12,n

f̂1
(t) and Vζ̂1(t, η) =Wm,12

fζ
(η)H12,n

ζ̂1
(t) where H12,n

f̂1
(t) and

H12,n

ζ̂1
(t) are activation components associated with estimated signal and noise, respectively,

and satisfying: H12,n

f̂1
(t) +H12,n

ζ̂1
(t) = H12,n

fζ
(t). In that context, the Wiener filter used for

high-energy noise removal is derived as follows [120, 121]:

Wwiener =
Vf̂1(t, η)

Vf̂1(t, η) + Vζ̂1(t, η)
. (5.8)

In Figure 5.10 (a), we first depict the spectrogram of the noisy PCG displayed in Figure
5.9 (b) in which two high-energy impulse noises appear at the beginning (at time 0.2 seconds)
and in the middle (at time 8.1 seconds). Then, we show, in Figure 5.10 (b), the denoised
spectrogram using the algorithm just described and based on NMF. It is clear that the latter
removes the two high-energy impulse noises. Although NMF proves to be an efficient solution
for PCG denoising, it can still be improved using ACRC as a post-processing step as we are
going to show. A brief summary of how we apply ACRC in PCG denoising context is the
subject of the following section.

C. ACRC: Components Estimation and Signal Retrieval

After having removed high-energy noises using NMF, the ACRC technique is applied on a
low-pass filtered version of the spectrogram. It is worth remembering that the outputs of
ACRC are contours corresponding to the TF signatures of the relevant components, which is
then used to define the basins of attraction (BAs) associated with each contour enabling us
to proceed with signal retrieval.

Before performing ACRC, a low-pass filter (LPF) with a cutoff frequency 80Hz is used
to enable not only a removal of the impact of high-frequency noises but also a significant
reduction of the computational cost of ACRC. Also, we notice that the average number of
contours detected is 3.5 contours/second, and due to the quasi-periodicity of PCG that can
be reflected by ACRC, the total number of contours is close to 3.5N/1000, N being the signal
length. We display, in Figure 5.11 (a) and (b), the basins of attraction along with the first
contours 3.5N/1000 (in red) computed with ACRC on the non-filtered and filtered STFTs
associated with the signals whose spectrograms are displayed in Figure 5.10 (a) and (b),
respectively. From Figure 5.11 (a), it is clear that ACRC computes contours associated with
the two high-energy impulse noises mentioned above, while, after noise removal using the
NMF algorithm, the computed contours are apparently more relevant. Finally, we illustrate
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Fig. 5.11 Illustration of the application of ACRC and LPF with a cutoff frequency 80Hz: (a):
on the signal displayed in Figure 5.9 (b); (b): on the denoised signal whose spectrogram is
displayed in Figure 5.10 (c); (c) reconstructed PCG.

in Figure 5.11 (c) the reconstruction of PCG signal by selecting STFT coefficients associated
with BAs displayed in Figure 5.11 (b). In the following section, we introduce how to assess
the performance of the proposed technique in comparison with the state-of-art methods.

5.2.3 Results and Discussion

This section investigates the performance of the proposed denoising algorithm NMF-ACRC
by comparing it with empirical mode decomposition (EMD) [122], non-negative matrix factor-
ization (NMF), and adaptive contour representation computation (ACRC) on the database of
PCG signals introduced in Section 5.2.2.A.. Before going into the details, we introduce, in
the following subsection, a quantitative measurement for the performance evaluation of the
techniques. The Matlab code implementing the method and the scripts generating all the
figures are available at github.com/phamduonghung/EUSIPCO2018.

A. Evaluation Criteria

To measure the performance of the techniques, we use BSS Eval Toolbox [123], which is based
on the decomposition of each estimated signal into a number of contributions associated with
the target signal, interference of the unwanted sources and artifacts. More precisely, the
following three evaluation criteria corresponding to the three following energy ratios expressed
in decibels (dB) are used:

github.com/phamduonghung/EUSIPCO2018
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• Signal-to-Distortion Ratio (SDR): measures globally the level of all error terms.

• Signal-to-Interference Ratio (SIR): estimates the level of interference from all the other
interfering sources.

• Signal-to-Artifacts Ratio (SAR): estimates the level of algorithmic artifacts and the
linearity separation of the algorithm.

Having defined these criteria, we assess the performance of the different methods by computing
the gain between each evaluation criterion computed on the denoised (output) and initial
noisy (input) signals. For instance, SDR gain = output SDR-input SDR.
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Fig. 5.12 SDR gain for different cross-correlation threshold values γ when applying two
techniques NMF and NMF-ACRC to the noisy PCG signal displayed in Figure 5.9 (b).

B. Sensitivity to Cross-Correlation Threshold of NMF-ACRC

As mentioned above, one of the main drawbacks of NMF is that the choice for threshold γ used
to separate the noise and signal components strongly influences the technique performance. To
illustrate how NMF-ACRC manages to alleviate this dependence on γ, we display, in Figure
5.12, SDR gains obtained when using either NMF or NMF-ACRC algorithms, for different γ
and for the signal depicted in Figure 5.9 (b). It is clear that the SDR gain obtained with
NMF is null when γ is small, meaning, in that case, PCG is not denoised at all. Furthermore,
the SDR gain increases and then stagnates when some particular value for γ is reached. In
contrast, SDR gain obtained when using NMF-ACRC is bigger and also more stable with
respect to parameter γ, especially when γ is small. These results confirm NMF-ACRC is only
slightly sensitive to the choice of threshold γ, which thus makes it more adaptive than NMF.

C. Comparison of Denoising Performance

In this section, we compare NMF-ACRC with the three state-of-art techniques including EMD,
NMF, and ACRC on the database of the sixteen real noisy PCGs of the SiSEC database. We
display the distribution of the different gains using the boxplot representation [124], in which
the central line indicates the median, the bottom and top edges of the box indicating the 25th
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Fig. 5.13 Denoising performance (expressed in dB) of the four techniques on the database of
real noisy PCG signals: (a) SDR gain; (b) SIR gain; (c) SAR.

and 75th percentiles, respectively. In Figure 5.13, we depict the denoising results associated
with each of the tested techniques in terms of SDR, SIR and SAR gains. At first glance,
we remark that NMF-ACRC produces better results than the other studied methods for all
three evaluation criteria. More precisely, in Figure 5.13 (a), SDR median gain obtained using
NMF-ACRC is 7.1 dB, while it equals 6.6, 6.6, and 6.2 dB with EMD, NMF, and ACRC,
respectively. Moving to Figure 5.13 (b), NMF-ACRC leads to an SIR median gain of 12.4
dB bigger than the one obtained with the other three methods (12.2, 8.12, and 10.0 dB for
EMD, NMF, and ACRC, respectively). Finally, Figure 5.13 (c) shows that SAR median gain
with NMF-ACRC is 12.3 dB, while those of EMD, NMF, and ACRC are much smaller: 6.6,
8.7, 5.7 dB, respectively. In addition, the analysis of the standard deviation of the obtained
results shows that NMF-ACRC behaves similarly to the other methods in that respect. All in
all, for PCG denoising, these results plead in favor of mixing NMF with ACRC as is done by
NMF-ACRC.

5.3 Conclusion

In this chapter, we have first introduced a fully adaptive technique ACRC to estimate the TF
signatures or contours of the modes of multicomponent signals by projecting the reassignment
vector along its local orientation. We then defined basins of attraction as the set of coefficients
associated with these contours and used the former to reconstruct the modes. The technique
proves to be efficient to reconstruct non-AM-FM modes like Dirac impulses or discontinuous
modes even at high noise level and can be profitably used to denoise bat echolocation call.

Then, we have presented another application of ACRC for PCG denoising by successively
combining it with NMF. As a result, we managed to circumvent the essential limitations of
NMF and ACRC techniques, which result in a significant improvement in terms of denoising
performance. In a nutshell, NMF was first used to remove the high-energy noises from the
initial noisy PCG signal, while ACRC was carried out as a post-processing step to estimate TF
signatures of relevant components. The resultant TF signatures were subsequently used for
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signal reconstruction. Numerical experiments demonstrated the effectiveness of the proposed
approach on a database of real PCG signals.
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This dissertation was set out to investigate various aspects of the synchrosqueezing and
associated methods in both theoretical analyses and numerical experiments. In what follows,
we highlight the main research contributions of this dissertation, as well as discuss some
directions for future work.

6.1 Main Contributions

After a concise introduction for the context and questions of research in Chapter 1, we gave a
brief overview of the works accomplished with regard to TFR methods for the analysis of
MCSs in Chapter 2. Then, all the major results carried out in the next three chapters are
summarized as follows.

• The second-order wavelet-based SST (WSST2) derived from CWT of an MCS
was first presented to deal with signals made of components or modes with strong
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frequency modulation. It relied on the recalculation of the IF estimate using a second-
order expansion of the phase. Also, we readdressed the theoretical analysis of the
first-order synchrosqueezing (WSST) as proposed in [38] but computed with a non-
compact wavelet in the Fourier domain. In this regard, a novel approximation theorem
for the new technique WSST2 using that type of wavelet was then developed. Finally,
numerical implementation and simulations emphasizing the differences between WSST2
and existent synchrosqueezing techniques (WSST, FSST and FSST2) were introduced.

• A generalization of the STFT-based SSTs was put forward by using the redefinition
of IF estimates using high-order amplitude and phase expansions. Such a technique
was proved not only to achieve a highly concentrated TFR for a wide variety of MCSs
but also reconstruct their modes with a high accuracy. Numerical investigation on a
synthetic signal showed the efficiency of this new approach.

• An appealing application on a real gravitational-wave signal of the synchrosqueezing
techniques (both wavelet and STFT) was also given. In particular, the fourth-order
SST (FSST4) enabled the accurate detection of three stages of the collision of two black
holes including the inspiral, merger and ringdown. This confirms the interest of the
SST generalization on a real-world situation.

• A novel demodulation-FSST2-based (DFSST2) technique was presented for
the retrieval of the modes of an MCS derived from the study of its TFR given by
FSST2. It relied on a novel ridge extraction method, that took into account the
fact that the TF representation is both discrete in time and frequency, followed by a
demodulation procedure. Numerical results showed a better behavior of DFSST2 for
mode reconstruction over similar techniques without using demodulation.

• A new approach for the reconstruction and denoising of MCSs from their
downsampled STFTs was proposed. More precisely, we first recalled signal reconstruction
techniques based on STFTs and how to use them for signal denoising. We then
investigated how to adapt this new approach to the context of MCSs. Numerical
experiments using the proposed approach and other synchrosqueezing techniques (FSST2
and DFSST2) were given to demonstrate the interest of the former.

• A new technique called adaptive contour representation computation (ACRC)
for an adaptive estimation of TF signatures corresponding to the IFs of the components
of MCSs was introduced. It relied on the estimation of the local orientation of the
reassignment vector (RV). The resultant IF estimates enabled the segmentation of the
TF plane into BAs that was subsequently used to reconstruct the modes. Numerical
simulation showed that compared with previous approaches, this new method fully
adapted to any TF complex structures, even those associated with noisy Dirac impulses
or vanishing modes, thus resulting in better reconstruction performance.
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• A novel approach (called NMF-ACRC) for PCG denoising based on an adaptive
combination of two different techniques NMF and ACRC was put forward. NMF was
first used to filter out high-energy noises thanks to the multimodality between PCG and
synchronous ECG signals. Then ACRC was performed on a low-pass filtered version of
the obtained signal to identify the relevant TF components subsequently used for signal
retrieval. This new method was assessed on noisy PCG signals, already studied during
the SiSEC 2016 evaluation campaign, and showed a significant improvement in terms of
denoising performance compared with other state-of-the-art methods.

6.2 Future Research

A variety of synchrosqueezing and associated methods were proposed and developed for the
analysis of MCSs in this dissertation. Much efforts should be pursued in the future in some
specific directions as mentioned hereafter.

As highlighted in Chapter 3, the second-order wavelet-based SST (WSST2) provided better
practical results than the second-order STFT-based SST (FSST2) even though they were
theoretically expected to perform similarly. However, the former was less accurate than the
generalization of the latter (FSST4) when applied to the gravitational-wave signals. Therefore,
it would be interesting to make the same generalization synchrosqueezing in the wavelet
case and then compare them with those based on STFT in terms of both TF concentration
and mode reconstruction performance. Then, we should devote ourselves to the theoretical
analysis of the behavior of all these techniques when applied to noisy signals, as was done in
[40, 125] for the original WSST. Next, the impact of noise on synchrosqueezing operators still
needs to be further studied, in particular in heavy noise situations. From a practical point
of view, different techniques have been developed to handle the noise in the SST context,
among which a very promising one, inspired by multitaper approaches [126], is based on
averaging the SSTs obtained with different kernels [44]. Also, it would be of interest to study
the behavior of the transforms when the type of noise is non-Gaussian, as for instance, Poisson
or autoregressive-moving-average noises (ARMA) [44]. In addition, we should apply the
proposed synchrosqueezing techniques to a more extensive set of practical signals as was done
in [40, 127–131]. Finally, the fact that in this dissertation, the synchrosqueezing techniques
were only compared with each other or with the standard reassignment (RM). Therefore,
it would be interesting to make comparisons between the former and other state-of-the-art
methods, as for instance, dictionary approaches based on chirplet path pursuit [20, 132].

As also mentioned in Chapter 3, the Gaussian window length has a strong influence on
the performance of the SSTs. For a fair comparison of tested TF methods, the optimal value
of such a length was determined by the technique based on Rényi entropy performing on the
TFRs given by STFT, but not by SST. This is because the Rényi-based technique applied
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on the latter no longer works in a very noisy context as emphasized in [6]. Thus, a detailed
study of such a phenomenon should be conducted in the near future.

Furthermore, it is well known that ridge extraction is an essential step prior to mode
reconstruction in the synchrosqueezing context. We introduced, in Chapter 4, a new method
for that purpose carrying out on the TFRs of MCSs given by the reassigned (SSTs) or initial
(STFT and CWT) transforms. However, it does not always behave better on the TFRs given
by the former as those associated with the latter. The reason behind this fact is that the
reassignment sometimes produces time irregularities, which cannot be taken into account by
the ridge extraction technique. Therefore, it would be of interest to develop a ridge extraction
technique better adapted to the reassigned context. Several related works would be useful for
that purpose, as for example, a ridge extraction method using image processing technique of
active contours or snakes [133]. Moreover, as mentioned in Chapter 4, the technique DFSST2
for mode reconstruction was built on the FSST2, thus it could be interesting to extend it to
other synchrosqueezing techniques based on both STFT and wavelet. Regarding the technique
for mode retrieval of MCSs from their downsampled STFT, future work should involve its
generalization to non-Gaussian noises and its application to a wider range of large real signals.

In Chapter 5, we presented an improved technique ARCR for the adaptive estimation
of TF signatures of any complex MCSs, but several issues arising need to be addressed in
the future. First, the fact that the factorization in (5.7) in practice uses an iterative method
starting with random initial values for W and H. However, since the RMSEs have local
minima, repeated factorizations may yield different W and H. The question then arises
as to whether there would be a way in which one can obtain the best factors W and H

enabling optimal results. Secondly, as mentioned in Section 5.2.2.B., the number of estimated
components is experimentally determined (k = 12 for SiSEC2016 database), which requires
an automatic optimal determination procedure. Thirdly, we should devote ourselves to the
application of the proposed method to larger real databases of highly energetic noise signals.

Finally, the ASTRES toolbox comprising a set of Matlab functions has recently introduced
as in [134]. It provides a number of efficient numerical tools for the purpose of “Analysis,
Synthesis and Transformations by Reassignment, EMD and Synchrosqueezing” (ASTRES)
of non-stationary MCSs. It also can be viewed as an extension of the renowned Time-
Frequency ToolBox (TFTB) [10]. Thus, one future work should be focused is to integrate the
contributions developed in this dissertation into the ASTRES toolbox that will allow them to
be more diffused and used in the scientific community.



Appendix A

Proofs of Section 3.1: Second-order
Wavelet-based Synchrosqueezing
Transform

A.1 Proof of Theorem 3.4 on page 39

The main steps for the proof of Theorem 3.4 are detailed hereafter. First, we introduce the
following proposition that is useful to prove item (a) of Theorem 3.4.

Proposition A.1. For any (t, a) ∈ R× R+, one has:∣∣∣∣∣Wψ
f (t, a)−

K∑
k=1

fk(t)ψ̂(aϕ
′
k(t))

∣∣∣∣∣ ≤ εE0(t, a), (A.1)

where Ep(t, a) = aMKJ1,p + πa2MJ2,p
K∑
k=1

Ak(t) and Jn,p =
∫
R
|u|n|ψ(p)(u)|du.

Proof. For each k ∈ {1, . . . ,K}, a zeroth order Taylor expansion of the amplitude and first
order expansion of the phase of fk leads to:

fk(τ) = Ak(τ)e
i2πϕk(τ)

= Ak(t)e
i2π[ϕk(t)+ϕ

′
k(t)(τ−t)] + (Ak(τ)−Ak(t))e

i2πϕk(τ)

+Ak(t)[e
i2π[ϕk(t)+ϕ

′
k(t)(τ−t)+

∫ τ
t ϕ

′′
k(x)(τ−x)dx] − ei2π[ϕk(t)+ϕ

′
k(t)(τ−t)]]

= fk,1(τ) + fk,2(τ) + fk,3(τ).

Then, for any (t, a), the first term can be written as:

Wψ
fk,1

(t, a) =
1

a
Ak(t)e

i2πϕk(t)

∫
R
ei2πϕ

′
k(t)(τ−t)ψ

(
τ − t

a

)
dτ = fk(t)ψ̂(aϕ

′
k(t)).
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The second term is bounded by:∣∣∣Wψ
fk,2

(t, a)
∣∣∣ ≤ 1

a

∫
R
|Ak(τ)−Ak(t)|

∣∣∣∣ψ(τ − t

a

)∣∣∣∣ dτ
≤ εM

a

∫
R
|τ − t|

∣∣∣∣ψ(τ − t

a

)∣∣∣∣ dτ = εaMJ1,0.

and the third term by:∣∣∣Wψ
fk,3

(t, a)
∣∣∣ ≤ 2πAk(t)

a

∫
R

(∫ τ

t
|ϕ′′k(u)||(τ − u)|du

) ∣∣∣∣ψ(τ − t

a

)∣∣∣∣ dτ
≤ επMAk(t)

a

∫
R
|τ − t|2

∣∣∣∣ψ(τ − t

a

)∣∣∣∣ dτ = επa2MJ2,0Ak(t).

Writing |Wψ
f −

K∑
k=1

Wψ
fk,1

| = |
K∑
k=1

(Wψ
fk,2

+Wψ
fk,3

)|, we obtain the desired result.

Now we can prove item (a) of Theorem 3.4: since E0(t, a) is bounded on E, we can
consider:

ε̃ ≤ 1√
2
min

∥E0(t, a)∥
− 1

2
∞,E ,

∥∥∥∥∥N0

K∑
k=1

Ak(t)

∥∥∥∥∥
− 1

2

∞,E

 (A.2)

where ∥z(t, a)∥∞,X = sup(t,a)∈X |z(t, a)|. For (t, a) ∈ E \
K⋃
l=1

Zl, we immediately get

|Wψ
f (t, a)| ≤ ε̃. Thus, if |Wψ

f (t, a)| > ε̃, there is at least one k such that (t, a) ∈ Zk.
Furthermore, because of the separation condition on the modes, one can easily show the Zks
are disjoint sets, so k is unique.

Remark A.2. Note that E0(t, a) is uniformly bounded for (t, a) ∈ E because a is lower than α.
In the seminal paper of Daubechies [38], this constraint on a was missing.

Let us now detail the proof of item (b) of Theorem 3.4. Writing Proposition A.1 with
wavelet ψ′ we get for any (t, a) ∈ R× R+:∣∣∣∣∣Wψ′

f (t, a) +
K∑
k=1

fk(t)2iπaϕ
′
k(t)ψ̂(aϕ

′
k(t))

∣∣∣∣∣ ≤ εE1(t, a),

with E1(t, a) being defined at the end of Proposition A.1. Thus, if (t, a) ∈ Zk, one gets:

∣∣∣Wψ′

f (t, a) + fk(t)2iπaϕ
′
k(t)ψ̂(aϕ

′
k(t))

∣∣∣ ≤ ε

2πN0a
∑
l ̸=k

ϕ′l(t)Al(t) + E1(t, a)

 .
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Note that since ∂tW
ψ
f (t, a) = − 1

aW
ψ′

f (t, a), one can right for (t, a) ∈ Zk satisfying
|Wψ

f (t, a)| > ε̃:

∣∣ω̂f (t, a)− ϕ′k(t)
∣∣ = ∣∣∣∣∣ℜe

{
1

2π

∂tW
ψ
f (t, a)

Wψ
f (t, a)

− ϕ′k(t)

}∣∣∣∣∣
=

∣∣∣∣∣ℜe
{

1

i2πa

Wψ′

f (t, a) + i2πaϕ′k(t)W
ψ
f (t, a)

Wψ
f (t, a)

}∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

i2πa

Wψ′

f (t, a) + 2iπaϕ′k(t)fk(t)ψ̂(aϕ
′
k(t))

Wψ
f (t, a)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ϕ
′
k(t)W

ψ
f (t, a)− ϕ′k(t)fk(t)ψ̂(aϕ

′
k(t))

Wψ
f (t, a)

∣∣∣∣∣∣
≤ ε̃2

N0

∑
l ̸=k

(ϕ′l(t) + ϕ′k(t))Al(t) +
E1(t, a)

2πa
+ ϕ′k(t)E0(t, a)

 .

By putting, Bk(t, a) = N0
∑

l ̸=k(ϕ
′
l(t) + ϕ′k(t))Al(t) +

E1(t,a)
2πa + ϕ′k(t)E0(t, a), and remarking

it is bounded on E, we may choose :

ε̃ ≤ min
k

∥ Bk(t, a)∥−1
∞,E , (A.3)

so that for (t, a) ∈ Zk such that |Wψ
f (t, a)| > ε̃, we immediately get:∣∣ω̂f (t, a)− ϕ′k(t)

∣∣ ≤ ε̃. (A.4)

Let us now introduce the following lemma, which is useful to prove item (c) of Theorem
3.4.

Lemma A.3. Suppose that both (A.2) and (A.3) are satisfied, and that the following condition
is also verified:

ε ≤ 1/8c3(ϕ′1(t) + ϕ′2(t))
3. (A.5)

Consider the following sets:

X = {a s.t. |Wψ
f (t, a)| > ε̃ and |ω̂f (t, a)− ϕ′k(t)| ≤ ε̃},

Y = {a s.t. |Wψ
f (t, a)| > ε̃ and |aϕ′k(t)− 1| < ∆},

then X = Y.

The proof of Lemma A.3 is available in available in [38] .
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Coming back to the proof of item (c) of Theorem 3.4, let t ∈ R and note that Wψ
f (t, a) ∈

L∞(X). Then, since a > 0 on X, 1
aW

ψ
f (t, a) ∈ L1(X), and, thus, using the same type of

technique as in [38] (Estimate 3.9), one gets:∣∣∣∣∣ limλ→0

(
1

C ′
ψ

∫
|ω−ϕ′k(t)|<ε̃

Sψ,λ,ε̃f (t, ω)dω

)
− fk(t)

∣∣∣∣∣ =
∣∣∣∣∣ 1

C ′
ψ

∫
X
Wψ
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da
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ψ
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Wψ
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da
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− fk(t)
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ψ

∫
|Wψ
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Wψ
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da

a
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≤ 1∣∣∣C ′

ψ

∣∣∣
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Ak(t)∣∣∣C ′

ψ

∣∣∣
∫
|aϕ′k(t)−1|≥∆

∣∣∣ψ̂(aϕ′k(t))∣∣∣ daa +

ε̃ log

(
1 + ∆

1−∆

)]

≤ 1∣∣∣C ′
ψ

∣∣∣
∫

|aϕ′k(t)−1|<∆
ε(E0(t, a) +N0

∑
l ̸=k

Al(t))
da

a
+Ak(t)N1ε̃+ ε̃ log

(
1 + ∆

1−∆

)
≤ ε̃

1∣∣∣C ′
ψ

∣∣∣
[
∥Ak∥∞N1 + 2 log

(
1 + ∆

1−∆

)]
≤ D1ε̃,

which ends up proving the theorem.

A.2 Proof of Theorem 3.11 on page 42

Theorem 3.11 is a generalization of Theorem 3.4, so the proof of the former is in principle
similar to that of the latter. Proposition A.1 generalizes into:

Proposition A.4. For any k ∈ {1, . . . ,K}, any r ∈ {0, 1} and p ∈ {0, 1}, and (t, a) ∈ R×R+,
one has:∣∣∣∣∣W τrψ(p)(τ)

f (t, a)−
K∑
k=1

fk(t)F{τ rψ(p)(τ)e−iπϕ
′′
k(t)a

2τ2}(aϕ′k(t))
∣∣∣∣∣ ≤ εEr,p(t, a), (A.6)

with Er,p(t, a) = ar+1MKJr+1,p +
π
3a

r+3MJr+3,p

K∑
k=1

Ak(t).
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Proof. Following the same steps as the proof of Proposition A.1, but using a zeroth order
Taylor expansion of the amplitude and second-order expansion of the phase of fk, one has:

fk(τ) = Ak(τ)e
i2πϕk(τ)

= Ak(t)e
i2π[ϕk(t)+ϕ

′
k(t)(τ−t)+

1
2
ϕ′′k(t)(τ−t)

2] + (Ak(τ)−Ak(t))e
i2πϕk(τ)

+Ak(t)
[
ei2π[ϕk(t)+ϕ

′
k(t)(τ−t)+

1
2
ϕ′′k(t)(τ−t)

2+ 1
2

∫ τ
t ϕ

′′′
k (x)(τ−x)2dx] − ei2π[ϕk(t)+ϕ

′
k(t)(τ−t)+

1
2
ϕ′′k(t)(τ−t)

2]
]

= fk,1(τ) + fk,2(τ) + fk,3(τ).

Then, for any (t, a) ∈ R× R+, one has:

W
τrψ(p)(τ)
fk,1

(t, a) = fk(t)F{τ rψ(p)(τ)e−iπϕ
′′
k(t)a

2τ2}(aϕ′k(t)),∣∣∣W τrψ(p)(τ)
fk,2

(t, a)
∣∣∣ ≤ εar+1MJr+1,p,

and
|W τrψ(p)(τ)

fk,3
(t, a)| ≤ ε

π

3
ar+3MAk(t)Jr+3,p,

from which one easily gets the inequality (A.6).

Item (a) follows from this proposition remarking that if (t, a) ∈ E \
K⋃
l=1

Zl:

|Wψ
f (t, a)| ≤ ε(E0,0(t, a) +N0,0

K∑
k=1

Ak(t)) ≤ ε̃,

when ε̃ is sufficiently small, i.e.:

ε̃ ≤ 1√
2
min

∥ E0,0(t, a)∥
− 1

2
∞,E ,

∥∥∥∥∥ N0,0

K∑
k=1

Ak(t)

∥∥∥∥∥
− 1

2

∞,E

 (A.7)

because E0,0(t, a) is bounded on E.
Now, to prove item (b) of Theorem 3.11, we remark that Proposition A.4 rewrites for any

(t, a) ∈ R× R+: ∣∣∣∣∣W τrψ(p)(τ)
f (t, a)−

K∑
k=1

W
τrψ(p)(τ)
fk,1

(t, a)

∣∣∣∣∣ ≤ εEr,p(t, a), (A.8)

which rewrites when r = 0 using an integration by parts:∣∣∣∣∣Wψ(p)

f (t, a) + 2iπa
K∑
k=1

(
aϕ′′k(t)W

τψ(p−1)(τ)
fk,1

(t, a) + ϕ′k(t)W
ψ(p−1)

fk,1
(t, a)

)∣∣∣∣∣ ≤ εE0,p(t, a). (A.9)
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From equation (A.8), we deduce that if (t, a) ∈ Zk,

∣∣∣W τrψ(p)(τ)
f (t, a)−W

τrψ(p)(τ)
fk,1

(t, a)
∣∣∣ ≤ ε

Er,p(t, a) +∑
l ̸=k

Al(t)Nr,p

 . (A.10)

Proposition A.5. For any (t, a) ∈ Zk such that |Wψ
f (t, a)| > ε̃ and |∂tτ̃f (t, a)| > ε̃ one has:

|q̃t,f (t, a)− ϕ′′k(t)| ≤ ε̃. (A.11)

Proof. For any (t, a) ∈ Zk one has, using (A.9) and (A.10):

|ϕ′′k(t)− q̃t,f (t, a)|

=

∣∣∣∣∣∣ 1

2πa2

Wψ′

f

[
Wψ′

f + i2πa(aϕ′′k(t)W
tψ
f + ϕ′k(t)W

ψ
f )
]
−Wψ

f

[
Wψ′′

f + i2πa(aϕ′′k(t)W
tψ′

f + ϕ′k(t)W
ψ′

f )
]

W tψ
f Wψ′

f −W tψ′

f Wψ
f

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

2πa2

Wψ′

f

[
Wψ′

f + i2πa(aϕ′′k(t)W
tψ
fk,1

+ ϕ′k(t)W
ψ
fk,1

)
]
−Wψ

f

[
Wψ′′

f + i2πa(aϕ′′k(t)W
tψ′

fk,1
+ ϕ′k(t)W

ψ′

fk,1
)
]

W tψ
f Wψ′

f −W tψ′

f Wψ
f

∣∣∣∣∣∣
+
1

a

∣∣∣aϕ′′k(t)Wψ′

f (W tψ
f −W tψ

fk,1
)
∣∣∣+ ϕ′k(t)

∣∣∣Wψ
f −Wψ

fk,1

∣∣∣+ ∣∣∣aϕ′′k(t)Wψ
f (W

tψ′

f −W tψ′

fk,1
)
∣∣∣+ ϕ′k(t)

∣∣∣Wψ′

f −Wψ′

fk,1

∣∣∣∣∣∣W tψ
f Wψ′

f −W tψ′

f Wψ
f

∣∣∣
=

∣∣∣∣∣∣ 1

2πa2

Wψ′

f (Wψ′

f −Wψ′

fk,1
)−Wψ

f (W
ψ′′

f −Wψ′′

fk,1
)

W tψ
f Wψ′

f −W tψ′

f Wψ
f

∣∣∣∣∣∣
+
1

a

∣∣∣aϕ′′k(t)Wψ′

f (W tψ
f −W tψ

fk,1
)
∣∣∣+ ϕ′k(t)

∣∣∣Wψ
f −Wψ

fk,1

∣∣∣+ ∣∣∣aϕ′′k(t)Wψ
f (W

tψ′

f −W tψ′

fk,1
)
∣∣∣+ ϕ′k(t)

∣∣∣Wψ′

f −Wψ′

fk,1

∣∣∣∣∣∣W tψ
f Wψ′

f −W tψ′

f Wψ
f

∣∣∣
≤
ε

((∣∣∣∣Wψ′
f

2πa2

∣∣∣∣+ ∣∣∣ϕ′k(t)a

∣∣∣)E0,1(t, a) +

∣∣∣∣ Wψ
f

2πa2

∣∣∣∣E0,2(t, a)|+
∣∣∣ϕ′′k(t)Wψ′

f

∣∣∣E1,0(t, a) +
ϕ′k(t)
a E0,0(t, a) + |ϕ′′k(t)|E1,1(t, a)

)
∣∣∣W tψ

f Wψ′

f −W tψ′

f Wψ
f

∣∣∣
+ε

∑
l ̸=k

Al(t)

((∣∣∣∣Wψ′
f

2πa2

∣∣∣∣+ ∣∣∣ϕ′k(t)a

∣∣∣)N0,1 +

∣∣∣∣ Wψ
f

2πa2

∣∣∣∣N0,2|+
∣∣∣ϕ′′k(t)Wψ′

f

∣∣∣N1,0 +
ϕ′k(t)
a N0,0 + |ϕ′′k(t)|N1,1

)
∣∣∣W tψ

f Wψ′

f −W tψ′

f Wψ
f

∣∣∣
≤
ε

((∣∣∣∣Wψ′
f

2πa2

∣∣∣∣+ ∣∣∣ϕ′k(t)a

∣∣∣)E0,1(t, a) +

∣∣∣∣ Wψ
f

2πa2

∣∣∣∣E0,2(t, a)|+
∣∣∣ϕ′′k(t)Wψ′

f

∣∣∣E1,0(t, a) +
ϕ′k(t)
a E0,0(t, a) + |ϕ′′k(t)|E1,1(t, a)

)
ε̃3

+ε

∑
l ̸=k

Al(t)

((∣∣∣∣Wψ′
f

2πa2

∣∣∣∣+ ∣∣∣ϕ′k(t)a

∣∣∣)N0,1 +

∣∣∣∣ Wψ
f

2πa2

∣∣∣∣N0,2|+
∣∣∣ϕ′′k(t)Wψ′

f

∣∣∣N1,0 +
ϕ′k(t)
a N0,0 + |ϕ′′k(t)|N1,1

)
ε̃3

≤ ε̃,
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if ε̃ is sufficiently small, the last inequality being obtained by remarking the numerator is
bounded on E. Note also, that |ϕ′′k(t) − q̃t,f (t, a)| is of the order of ε̃3 if ε is sufficiently
small.

Proof of item (b): according to definition of ω̃[2]
t,f (t, a) in (3.8), one has:

ω̃
[2]
t,f (t, a) = ω̃f (t, a) + q̃t,f (t, a)(t− τ̃f (t, a)).

It follows that for (t, a) ∈ Zk, such that |Wψ
f (t, a)| > ε̃ and |∂tτ̃f (t, a)| > ε̃∣∣∣ω̃[2]

t,f (t, a)− ϕ′k(t)
∣∣∣

=

∣∣∣∣∣ 1

i2πa

Wψ′

f (t, a) + i2πaϕ′k(t)W
ψ
f (t, a) + i2πa2ϕ′′k(t)W

tψ
f (t, a)

Wψ
f (t, a)

∣∣∣∣∣+
∣∣∣∣∣a(q̃t,f (t, a)− ϕ′′k(t))W

tψ
f (t, a)

Wψ
f (t, a)

∣∣∣∣∣
≤

1
2πa

∣∣∣Wψ′

f (t, a)−Wψ′

fk,1
(t, a)

∣∣∣+ ϕ′k(t)
∣∣∣Wψ

f (t, a)−Wψ
fk,1

(t, a)
∣∣∣+ a |ϕ′′k(t)|

∣∣∣W tψ(t)
f (t, a)−W

tψ(t)
fk,1

(t, a)
∣∣∣

Wψ
f (t, a)

+

∣∣∣∣∣a(q̃t,f (t, a)− ϕ′′k(t))W
tψ
f (t, a)

Wψ
f (t, a)

∣∣∣∣∣
≤ ε̃5

 1

2πa
(E0,1 +

∑
l ̸=k

Al(t)N0,1)

+ ϕ′k(t)

E0,0 +
∑
l ̸=k

Al(t)N0,0

+ a
∣∣ϕ′′k(t)∣∣

E0,1 +
∑
l ̸=k

Al(t)N1,1)


+

∣∣∣∣∣a(q̃t,f (t, a)− ϕ′′k(t))W
tψ
f (t, a)

ε̃

∣∣∣∣∣ ≤ ε̃

when ε̃ is sufficiently small.
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Proof of item (c): It is exactly the same as in the weak modulation case (item (c) of
Theorem 3.4), except that we use, at the very end of the proof, the following hypotheses:∣∣∣∣∣ limλ→0

(
1

C ′
ψ,k

∫
|ω−ϕ′k(t)|<ε̃

Sψ,λ,ε̃2,f (t, ω)dω

)
− fk(t)

∣∣∣∣∣ =
∣∣∣∣∣ 1

C ′
ψ,k

∫
X
Wψ
f (t, a)

da

a
− fk(t)

∣∣∣∣∣
≤
[∣∣∣∣∣ 1

C ′
ψ,k

∫
|aϕ′k(t)−1|<∆

Wψ
f (t, a)

da

a
− fk(t)

∣∣∣∣∣+
∣∣∣∣∣ 1

C ′
ψ,k

∫
|Wψ

f (t,a)|≤ε̃∩|aϕ′k(t)−1|<∆
Wψ
f (t, a)

da

a

∣∣∣∣∣
]

≤ 1∣∣∣C ′
ψ,k

∣∣∣
[∫

|aϕ′k(t)−1|<∆

∣∣∣Wψ
f (t, a)− fk(t)F{ψ(τ)e−iπϕ′′k(t)a2τ2}(aϕ′k(t))

∣∣∣ da
a
+

Ak(t)

∫
|aϕ′k(t)−1|≥∆

∣∣∣F{ψ(τ)e−iπϕ′′k(t)a2τ2}(aϕ′k(t))
∣∣∣ da
a

+ ε̃ log

(
1 + ∆

1−∆

)]

≤ 1∣∣∣C ′
ψ,k

∣∣∣
ε∫

|aϕ′k(t)−1|<∆

E0,0(t, a) +N0,0

∑
l ̸=k

Al(t)

 da

a
++ε̃(1 +Ak(t)N2) log

(
1 + ∆

1−∆

) ≤ D2ε̃.

A.3 Proofs of Theorem 3.13 on page 48

In such a case, one has, using a second order Taylor expansion of the phase of hc:

Wψ
hc
(t, a) =

∫
R
Ae2iπϕ(τ)σ−1

W e
− π

σ2
W
( τ−ta )

2

e−2iπ( τ−ta )dτ

= hc(t)aσ
−1
W F

{
e
−π

[
1

σ2
W

−ia2ϕ′′ (t)
]
u2
}
(1− aϕ′(t))

= hc(t)aσ
−1
W

(
1

σ2W
− ia2ϕ

′′
(t)

)− 1
2

e

[
−πσ2W (1−aϕ

′
(t))2

1−iσ2
W
a2ϕ

′′
(t)

]
.

With that expression, one can compute the estimate, bearing in mind that ϕ′′(t) is constant
and ℑm(z) is the imaginary part of complex number z:

ω̂hc(t, a) = ℜe
{

1

i2π

∂tW
ψ
hc
(t, a)

Wψ
hc
(a, t)

}
=

1

2π
ℑm

{
∂tW

ψ
hc
(t, a)

Wψ
hc
(t, a)

}

=
1

2π
ℑm

{
hc

′
(t)

hc(t)
+

2πσ2Waϕ
′′
(t)(1− aϕ

′
(t))

1− iσ2Wa
2ϕ′′(t)

}

=
1

2π
ℑm

{
2iπϕ

′
(t)
}
+

(
σ2Waϕ

′′
(t)(1− aϕ

′
(t))

1 + σ4Wa
4ϕ′′(t)2

(σ2Wa
2ϕ

′′
(t))

)
.
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From this one derives:

|ω̂hc(t, a)− ϕ
′
(t)| =

∣∣∣∣∣∣
σ4Wa

4ϕ
′′
(t)

2
(
1
a − ϕ

′
(t)
)

1 + σ4Wa
4ϕ′′(t)2

∣∣∣∣∣∣ .
If | 1a − ϕ

′
(t)| ≤ ∆ then |ω̂hc(t, a)− ϕ

′
(t)| ≤ ∆

∣∣∣1− 1
1+σ4

W a4ϕ′′ (t)2

∣∣∣ ≤ ∆.

A.4 Proofs of Theorem 3.14 on page 48

Note first that when β is an integer, gβ admits the following Fourier transform ĝβ(η) =

ηβe−ηH(η) with H the Heaviside function. So, even if ĝβ is not compactly supported, it has
a fast decay (the behavior of ĝβ being similar for non integer β).

First, let us first consider f(t) = tαH(t), for any α > −1 and let us compute its wavelet
transform with the Cauchy wavelet with β > α:

W
gβ
f (t, a) =

1

a

∫ ∞

0
ταgβ

(
τ − t

a

)
dτ

= aβΓ(β + 1)

∫ ∞

0
τα

1

(a+ i2π(τ − t))−(1+β)
dτ

= aβΓ(β + 1)

∫ ∞

0
τα
( −i
(−2πt− ia) + 2πτ

)1+β

dτ

= aβΓ(β + 1)

∫ ∞

0
τα
( −i
z + 2πτ

)1+β

dτ,

with z = −2πt− ia, so that the wavelet transform can be viewed as analytic function in z.
Now, assuming z is a positive integer, one can rewrite the wavelet transform, making the

appropriate change of variable, as:

W
gβ
f (t, a) = (2π)−α−1aβΓ(β + 1)(−i)1+βzα−β

∫ ∞

0
τα
(

1

1 + τ

)1+β

dτ

= (2π)−α−1aβΓ(β + 1)(−i)1+βzα−βB(α+ 1, β − α)

= (2π)−α−1aβΓ(β + 1)B(α+ 1, β − α)e−iπ
1+β
2 zα−β,

where B is the beta function. The expression is then also true when z is complex using the
analytic continuation theorem.

Now using the analytic continuation theorem with variable α we have for the hyperbolic
chirp f(t) = tiαH(t), α ∈ R:

W
gβ
f (t, a) = (2π)−iα−1aβΓ(β + 1)B(iα+ 1, β − iα)e−iπ

1+β
2 ziα−β,

= (2π)−iα−1aβΓ(β + 1)B(iα+ 1, β − iα)e−iπ
1+β
2 (−2πt− ia)iα−β.
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Note that this expression is valid for any positive β, regardless of α
Using that expression for the wavelet transform, we may then write:

ω̂f (t, a) =
1

2π
I
[
∂tW

gβ
f (t, a)

W
gβ
f (t, a)

]
= I

[
−(iα− β)(2πt+ ia)−1

]
=
α2πt+ aβ

a2 + 4π2t2

Thus one can deduce:
∣∣ω̂f (t, a)− α

2πt

∣∣ = |ω̂f (a, t)− ϕ′(t)| =
∣∣∣∣ β

a
− α

2πt

1+4π2( t
a
)2

∣∣∣∣ .
Finally, if | 1a − ϕ

′
(t)| ≤ ∆ and β = 1: |ω̂f (t, a)− ϕ′(t)| ≤ ∆

1+4π2( t
a
)2

≤ ∆.



Appendix B

Proofs of Section 3.2: High-order
STFT-based Synchrosqueezing
Transforms

B.1 The proof of Proposition 3.21 on page 57

Proof. First of all, we rewrite the expression (3.35) under matrix form:

ω̃f (t, η) = XN (t, η) ·RN (t)
T

where ZT is the transpose of matrix Z and the two row vectors X,R defined as:

XN (t, η) = [1 x2,1(t, η) ... xN,1(t, η)]

RN (t) = [r1(t) r2(t) ... rN (t)]

Let us denote y1 = XN ·RT
N , we may thus write:

y1 =
[
x1,1 x2,1 x3,1 . . . xN,1

]
RT
N . (B.1)

It is noteworthy that ℜe {r1(t)} = ϕ′(t). To get rk, we build up a system of N equations with
variables rk for k = 1, . . . , N from (B.1) using the following procedure. By computing the

partial derivatives of (B.1) with respect to η and using notation y2 =
∂ηy1
∂ηx2,1

and xk,2 =
∂ηxk,1
∂ηx2,1

,

the second equation can be obtained:

y2 =
[
0 1 x3,2 . . . xN,2

]
RT
N .

Doing the same thing iteratively, we can get the jth equation:

yj =
[
0 0 . . . 1 . . . xN,j

]
RT
N .
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Combining all these equations, the desired system of equations can be deduced:

y1

y2
...

yN−1

yN


=



1 x2,1 x3,1 . . . xN,1

0 1 x3,2 . . . xN,2
...

...
. . .

...
...

0 0 0 . . . xN,N−1

0 0 0 . . . 1





r1

r2
...

rN−1

rN


or [

YN

]
=
[
MX

] [
RN

]T
. (B.2)

Since MX is a upper triangular matrix with nonzero diagonal coefficients, we use back-
substitution algorithm to get rk for k = 1, . . . , N as follows:

rN (t) = yN (t, η) and rj(t) = yj(t, η)−
N∑

k=j+1

xk,j(t, η)rk(t) for j = N − 1, N − 2, . . . , 1.

As a result, q̃[k,N ]
η,f (t, η) = rk(t) for k = 2, . . . , N .

From (3.35), we get: ℜe
{
q̃
[k,N ]
η,f (t, η)

}
=

ϕ(k)(t)

(k − 1)!
for k = 2, . . . , N , which finishes the

proof.

B.2 Proof of the Proposition 3.24 on page 58

Proof. By using ∂ηV
tk−1g
f = −i2πV tkg

f for k ∈ N and defining Xk,j = V g
f V

tkg
f −V tj−1g

f V tk−j+1g
f ,

we get the following formula:

∂ηXk,j = −i2π (Xk+1,j +Xk+1,j −Xk+1,2) .

Thus, the upper triangular part of matrix MX defined in (B.2) with N = 4 can be obtained
as follows:

xk,1 =
V tk−1g
f

V g
f

for k = 1 . . . 4,

xk,2 =
∂ηxk,1
∂ηx2,1

=
V g
f V

tkg
f − V tg

f V tk−1g
f

V g
f V

t2g
f −

(
V tg
f

)2 =
Xk,2

X2,2
for k = 2 . . . 4,

xk,3 =
∂ηxk,2
∂ηx3,2

=
Xk+1,3X2,2 −Xk,2X3,3

X4,3X2,2 −X3,2X3,3
for k = 3 . . . 4,

xk,4 = 1 for k = 4
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Also, the elements of vector Y are obtained by:

y1 = ω̃f = η − 1

i2π

V g′

f

V g
f

,

y2 =
∂ηy1
∂ηx2,1

=
1

i2π

(
V g
f

)2
+ V g

f V
tg′

f − V tg
f V g′

f

V g
f V

t2g
f −

(
V tg
f

)2 =
W2

X2,2
, with W2 =

1

i2π

[(
V g
f

)2
+ V g

f V
tg′

f − V tg
f V g′

f

]
.

y3 =
∂ηy2
∂ηx3,2

=
W3X2,2 −W2X3,3

X4,3X2,2 −X3,2X3,3
, with W3 = ∂ηW2.

y4 =
∂ηy3
∂ηx4,4

=

(X4,3X2,2 −X3,2X3,3)W4

− (W3X2,2 −W2X3,3) (X5,4 +X5,3 −X5,2)

+ (W3X3,2 −W2X4,3) (X4,4 +X4,3 −X4,2)

(X4,3X2,2 −X3,2X3,3) (X6,4 +X6,3 −X6,2)

− (X5,3X2,2 −X4,2X3,3) (X5,4 +X5,3 −X5,2)

+ (X5,3X3,2 −X4,2X4,3) (X4,4 +X4,3 −X4,2)

, with W4 = ∂ηW3.

With the help of back-substitution algorithm, the modulation operators read:

q̃
[4,4]
η,f =

(X4,3X2,2 −X3,2X3,3)W4

− (W3X2,2 −W2X3,3) (X5,4 +X5,3 −X5,2)

+ (W3X3,2 −W2X4,3) (X4,4 +X4,3 −X4,2)

(X4,3X2,2 −X3,2X3,3) (X6,4 +X6,3 −X6,2)

− (X5,3X2,2 −X4,2X3,3) (X5,4 +X5,3 −X5,2)

+ (X5,3X3,2 −X4,2X4,3) (X4,4 +X4,3 −X4,2)

q̃
[3,4]
η,f =

W3X2,2 −W2X3,3

X4,3X2,2 −X3,2X3,3
− q̃

[4,4]
η,f

X5,3X2,2 −X4,2X3,3

X4,3X2,2 −X3,2X3,3

q̃
[2,4]
η,f =

W2

X2,2
− q̃

[3,4]
η,f

X3,2

X2,2
− q̃

[4,4]
η,f

X4,2

X2,2
.

Finally, we complete the proof of this proposition by using notation Gk and Gj,k to rewrite
the above expressions.





Appendix C

Proof of Section 4.2: On
Downsampled STFT

C.1 The proof of formula (4.14) on page 85

If g is such that, for any n,
∑
m∈Z

g[n−mR]2 = 1, from (4.12) and putting q = n+mR+p−M ,

one has:

f [q]g[q −mR− p] =
1

N

N−1∑
k=0

V g
f (mR+ p,

k

N
)ei2π

k(q−mR−p)
N .

From this we deduce:

f [q]
∑
m∈Z

g[q −mR− p]2 =
∑
m∈Z

1

N

N−1∑
k=0

V g
f (mR+ p,

k

N
)ei2π

k(q−mR−p)
N g[q −mR− p]

⇔ f [q] =

∑
m∈Z

1
N

N−1∑
k=0

V g
f (mR+ p, kN )ei2π

k(q−mR−p)
N g[q −mR− p]∑

m∈Z
g[q −mR− p]2

.

If
∑
m∈Z

g[n−mR]2 = 1, we get (4.14), and if it is only non-zero for any n, (4.16) follows.

C.2 The proof of formula (4.15) on page 85

Regarding energy conservation, from (4.12) we may write:

∑
m∈Z

N−1+mR+p−M∑
q=mR+p−M

f [q]2g[q −mR− p]2 =
∑
m∈Z

N−1+mR+p−M∑
q=mR+p−M

| 1
N

N−1∑
k=0

V g
f (mR+ p,

k

N
)ei2π

k(q−mR−p)
N |2
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⇔
∑
m∈Z

∑
q∈Z

f [q]2g[q −mR− p]2 =
∑
m∈Z

1

N

N−1∑
k=0

|V g
f (mR+ p,

k

N
)|2

⇔
∑
q∈Z

f [q]2 =
∑
m∈Z

1

N

N−1∑
k=0

|V g
f (mR+ p,

k

N
)|2.

C.3 The proof of formula (4.17) on page 86

The proof of (4.17) is similar to that of (4.14). Indeed, we have:

f [q]
∑
m∈Z

g[q −mR− p] =
∑
m∈Z

1

N

N−1∑
k=0

V g
f (mR+ p,

k

N
)ei2π

k(q−mR−p)
N

⇔ f [q] =

∑
m∈Z

1
N

N−1∑
k=0

V g
f (mR+ p, kN )ei2π

k(q−mR−p)
N∑

m∈Z
g[q −mR− p]

.

If
∑
m∈Z

g[n −mR] = 1 for any n, then one obtains (4.17) and otherwise if the sum is only

non-zero (4.18) follows.
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