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Abstract

Surface shape complexity is a morphological characteristic of folded surfaces
like the cerebral cortex. There is, however, no universal agreement on the notion
of surface complexity and various measures in the literature evaluate different
aspects of it. Most of these measures are not based on a clear definition of the
surface complexity and are likely to be biased by other geometrical features of
a surface e.g. depth of folds or size of surfaces. Moreover, it is not possible to
justify what those methods really measure. Consequently, inconsistent results
from different measures can be found in the literature.

To address this issue, by investigating advantages and disadvantages of exis-
ting measures in the literature, we propose some properties that a standard mea-
sure of surface complexity should possess. We then develop methods with two
approaches to introduce surface complexity measures that satisfy the proposed
properties. The proposed methods are based on the spectral analysis of surfaces
which has been shown to be useful to capture relevant shape features.

In the first approach, we propose two clear definitions of the surface com-
plexity based on surface bending properties. To quantify these definitions, the
recently introduced graph windowed Fourier transform is extended to mesh mo-
del of surfaces. Through this local spectral method, we introduce two new local
measures of complexity that satisfy most of the suggested standard properties.
Especially, they quantify the surface complexity in multi-spatial scales and take
into account the inter-subject size variability.

Through some experiments on synthetic surfaces, we show that surface area-
based measures of surface complexity may not distinguish deep folds from os-
cillating ones with equal area. Furthermore, the proposed method is applied to
a database of 124 healthy adult subjects. Our proposed measures appropriately
assign low values to deep regular folds such as the insula and the central sulcus
and high values to regions consisting of sharp or oscillating folds such as the
prefrontal cortex. The effect of the brain volume on the global and local cortical
complexity is also studied.

In the second approach, we define the surface complexity by the Hölder re-
gularity of fractional Brownian motions defined on manifolds. Then, for the first
time, we develop a spectral-regression algorithm to quantify the Hölder regula-
rity of a given fractional Brownian surface by estimating its Hurst parameter H.
Moreover, we discuss that the estimated H has many properties of a standard
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measure of the surface complexity. Inspiring by the fractional Brownian motions
in 1D, we give a conjecture on the relationship between H and the fractal di-
mension.

The proposed method is evaluated on a set of simulated fractional Brownian
spheres. Moreover, by assuming the cerebral cortex to be a fractional Brownian
surface, the proposed algorithm is applied to estimate the Hurst parameters of a
set of 14 fetal cerebral cortices. The results show consistently the progress of the
brain gyrification process in fetal ages. Last but not least, regarding the proposed
conjecture, the estimated Hurst parameters are in a good accordance with the
fractal dimension of the cerebral cortex, given in the literature.

Keywords : Computational geometry, Shape analysis, Mesh processing, Sur-
face shape complexity, Spectral analysis, Windowed Fourier transform, Gyrifica-
tion index, Fractional Brownian surface, Hurst parameter, Cerebral cortex
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Introduction

The human brain has 100 billion neurons, each neuron connected to
ten thousand other neurons. Sitting on your shoulders is the most
complicated object in the known universe.
– Michio Kaku

Michio Kaku’s statement reflects the brain complexity in the microscopic scale
which is also true in the macroscopic scale. Indeed, the human cerebral cortex in
the macroscopic scale is very smooth in the middle of fetal stage. At this time, the
primary folds appear on the cortex, they wrinkle more and develop side branches
which form secondary and tertiary folds. The process of cortical folding, known
as gyrification, proceeds until few months after the birth when the cortical sur-
face is highly folded and resembles an adult one in terms of surface complexity.

Surface complexity is a morphological characteristic of any surface which des-
cribes its degree of folding. In the case of the cerebral cortex, the surface com-
plexity changes a lot along the brain development. It looks highly variable across
an individual cortex and also humans. This variety roots in genetic factors as well
as mechanical factors and is also affected by environmental conditions. Quanti-
fication of this characteristic helps us to better understand the effect of these
factors on the process of brain development and aging. It also provides valuable
information to investigate the interplay between psychiatric or neurodegenera-
tive disorders and the organization of cortical folds which may help for early
diagnosis, prevention and treatment of such pathologies.

To quantify the surface complexity of the cortical surface, there are some me-
thods in the literature. Almost all recent methods, falling within the context of
computational anatomy and surface-based morphometry, rely on analyses of the
magnetic resonance images (MRIs) of the brain. Once an MRI acquisition of the
brain is performed, it is segmented by using image processing techniques to ex-
tract different tissues such as the white matter, gray matter and cerebro-spinal
fluid etc. Then, the boundary between those tissues are reconstructed as surfaces
modelled by triangular meshes. Finally, morphological analysis can proceed on
those meshed surfaces and results of such analyses can be represented on those
surfaces.

The existing methods of the surface complexity measurement can be catego-
rized in 3 classes based on the geometrical features of the surface that they use
for analysis :
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• Surface area
• Surface curvature
• Surface fractal dimension

Most of these methods provide local measures of the surface complexity. In the
literature, these measures are known as either the gyrification index (GI) in cases
of surface area and curvature based methods or the surface complexity in the
case of the fractal analysis. To avoid any ambiguity, in this thesis, we call all
those measures "GI" and we refer to surface complexity as a characteristic of the
cerebral cortex that is measured by a GI.

The variety of methods and their results imply that there are different implicit
interpretations of the notion of surface complexity. Nevertheless, most of those
methods have not been designed based on a clear definition of the surface com-
plexity which may be misleading i.e. a proposed GI may be biased by other mor-
phometric parameters such as the depth of folds and the brain size. Moreover, it
is not possible to justify what the proposed GI really measure. Consequently, one
may get inconsistent results by using different GIs.

Some inconsistent examples can be found in the literature e.g. most of the
surface area-based methods (e.g. TORO et al. 2008 ; SCHAER et al. 2008) and
even some curvature-based methods (e.g. LUDERS et al. 2006) show that the
frontal cortex is not much folded whereas some other methods (e.g. surface area-
based GI of LEBED et al. 2013 and curvature-based GI of KIM et al. 2016) put
this region among highly folded regions. Another example appears in relation to
pathologies : in patients with 22q11 Deletion Syndrome, SCHAER et al. 2008 and
BAKKER et al. 2016, by using a surface area-based GI, reported only decreased
cortical complexity of some regions while BEARDEN et al. 2009, by using a fractal
dimension-based GI, found only increased complexity of occipital lobe. Other
inconsistent examples can be found in relation to the surface complexity and
brain volume (e.g. ROGERS et al. 2010 ; LI et al. 2014) and gender (e.g. LUDERS

et al. 2006 ; LIU et al. 2003).
Regarding the properties of different GIs in the literature, this question arises :

What are the properties that a GI should possess to consider it as a
standard GI ?

This question may be answered through investigating drawbacks of the existing
methods. For instance, as mentioned before, some proposed GIs are not based
on an explicit definition of the surface complexity. Some GIs have limitations in
locality such that they can assign only one value to a big portion of the brain
while some others work only in very small spatial scales (e.g. KIM et al. 2016).
Some methods do not take into account the inter-subject brain size variability
thus result in inconsistent locality of analysis (e.g. GIs proposed by SCHAER et
al. 2008 and TORO et al. 2008). Some GIs violate essential properties that is
necessary in clinical studies e.g. they do not have geometry invariance properties
thus depend on the embedding of brain surfaces and are hardly reproducible. For
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instance, YOTTER et al. 2011 have shown that the fractal dimension computed
by the box-counting method is not invariant to surface rotation.

To address the above-mentioned question, we define explicitly the notion of
the surface complexity and develop methods to introduce new GIs that overcome
the mentioned issues of existing GIs in the literature by satisfying some standard
properties. The main contributions of this thesis are given below.

Contributions
In this thesis, by reviewing the advantages and disadvantages of the existing

methods, we provide a list of properties that a standard GI should possess. Then,
we develop spectral methods on meshed surfaces to measure the surface com-
plexity in two directions :

1. Analysis of geometrical properties of surfaces

2. Identification of fractional Brownian surfaces

In the first direction, we propose two explicit definitions of the "surface com-
plexity" notion in two intuitive ways that rely on the surface bending properties.
Particularly, a surface has more local complexity in a neighbourhood of each
point if 1) it is more bended (magnitude of bending), or 2) it consists of more
bends (spatial variation of bends). To quantify these definitions, we take advan-
tage of the mean curvature as a geometric tool to measure bending properties.

To avoid the issues of using the mean curvature in spatial domain e.g. too
much locality and sensitivity to noise, it is transferred to a so-called spectral
domain through a local spectral transformation. For this purpose, the recently
introduced graph windowed Fourier transform (SHUMAN et al. 2016) is exten-
ded to the mesh setting by replacing graph Laplacian by finite element (FE) dis-
cretization of Laplace-Beltrami operator defined on a surface. Unlike the graph
Laplacian that is constructed based on the connectivity of graph nodes, the FE
Laplace-Beltrami operator is aware of mesh geometry by taking into account the
local surface area and angles of mesh elements. Moreover, we replace the win-
dow function, used to define neighbourhoods, by an adaptive window function
to overcome the inconsistency of analysis arising from the inter-subject brain size
variability.

Through the proposed method, we introduce two new local GIs and show
that they satisfy most of the suggested standard properties. Especially, they are
constructed based on clear definitions of the surface complexity and we prove
theoretically that they quantify exactly those definitions. Moreover, they are geo-
metric invariant, taking into account the inter-subject brain size variability and
computed directly on the cortical surface with neither of them requiring a non
intrinsic reference surface nor a smoothing procedure. The locality of GIs can be
tuned easily in a wide range of spatial neighbourhoods from a part of a gyrus or
sulcus to a big portion of the cortical surface equivalent to a lobe. Indeed, it is
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done only by changing a parameter of the window function without any ceiling
effect.

Through some experiments on designed synthetic wavy surfaces we show that
the mostly used surface area-based methods cannot distinguish between a deep
regular fold and a set of shallow oscillating folds with the same surface area.
In other words, those measures are biased by the fold depth and tend to give
higher values of GIs to deep folds where much surface area is found. In contrast,
our proposed indices are able to disentangle the effect of depth on the surface
complexity quantification.

In the second direction, we try to measure the surface complexity through
identification of the recently introduced fractional Brownian surfaces. Indeed,
GELBAUM 2014 has introduced a generative model of fractional Brownian mo-
tions (fBm’s) defined on smooth manifolds. Through displacing the points of a
smooth manifold by an fBm defined on it, in direction of normals to the mani-
fold, a fractional Brownian surface (fBs) is constructed. An fBs is a kind of fractal
surface which can be characterized by a so-called Hurst parameter (denoted by
H) of the corresponding fBm. This parameter takes its values in the range of
(0, 1) and determines properties of the fBm e.g. the Hölder regularity : the lower
the value of H of an fBm, the more irregular the corresponding fBs.

Accordingly, we propose to define the surface complexity of a given fBs by
the Hölder regularity of its corresponding fBm. Furthermore, for the first time,
we propose an algorithm to estimate H parameter of a given fBs to measure
its complexity. The proposed algorithm relies mainly on the special structure
of the underlying fBm which has been defined as a random series of Laplace-
Beltrami eigenvalues and eigenvectors of the underlying smooth manifold (GEL-
BAUM 2014). It encourages us to estimate H by using a spectral analysis based
on Laplace-Beltrami eigenpairs.

In the proposed algorithm, first, the underlying smooth manifold and fBm are
approximated through surface smoothing and dilation procedures applied on a
given fBs. Then, the Laplace-Beltrami eigenvalues and eigenvectors of the ap-
proximated smooth manifold are approximated by a linear FE method. By using
the eigenvectors, the spectral powers of the approximated fBm are computed.
Then, the spectral powers of fBm are modelled by a least square linear regres-
sion as a function of the Laplace-Beltrami eigenvalues. Finally, the estimation of
H is extracted from the slope of the regression line.

The smoothing procedure, involved in the proposed algorithm, might result in
non convex smoothed surfaces. Consequently, dilation of a non convex surface
may cause point crossing which corrupts the surface locally, especially when the
amount of dilation is high. To overcome this issue, we propose an iterative di-
lation algorithm with surface surgery. Through this algorithm, dilation is broken
into several iterations with lower amount of dilation. Moreover, in each iteration,
the critical points that are going to cross each other are identified and fixed (not
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dilated). At the end of iterations, the fixed points are relocated by a weighted
interpolation of their normal neighbour points.

By computing the Hurst parameter of a set of fetal cerebral cortices, we show
that the human cerebral cortex can be considered as a fractional Brownian sur-
face, at least in a range of its low frequencies. Moreover, we discuss that the H
have main properties of a standard GI. Especially, it is based on a clear definition
of the surface complexity i.e. the Hölder regularity, it is geometric invariant and
can be computed in a reasonable time.

The Hurst parameter, however, is a global measure of the surface complexity.
To have a local measure, inspired by the idea of multi-fractional Brownian sur-
faces, we bring up the idea of using local spectral analysis (e.g. the windowed
Fourier transform) to estimate the local Hurst parameter. In this manner, it is
expected that other properties of a standard GI i.e. locality and consistency are
also met due to the natural properties of the mesh windowed Fourier transform
with adaptive window function established in the first direction of this thesis.

Since a fractional Brownian surface is a kind of fractal, we wonder if there is
a relationship between its Hurst parameter and fractal dimension. Inspired by
some relationships in case of fBm’s defined on R or rectangular domains in R2,
we give a conjecture on this relationship in case of fBm’s defined on manifolds.
If this conjecture comes to be true, it can be useful in two ways : 1) It provides
a new estimation of the Hurst parameter by using the methods of estimating the
fractal dimensions, 2) By using the generative model of fBm’s, one can generate
a fractal surface with a known FD from arbitrary manifolds.

Organization
The materials of the thesis are organized as follows.
In Chapter 1, first, it is explained shortly what the cortical gyrification is,

how it emerges and why it is useful to quantify it. The existing methods in the
literature to quantify the gyrification are surveyed in Section 1.3. The advantages
and disadvantages of those methods are listed in this section. At the end of this
chapter, we propose a list of properties that a standard GI should possess (cf.
Section 1.4).

In Chapter 2, we review the methods of spectral surface analysis with em-
phasis on the methods developed to analyse the cerebral cortex in Section 2.1.
Specially, we explain the Fourier transform on meshed surfaces in Section 2.2.
The windowed Fourier transform for 1D signals is illustrated through an example
in Section 2.3. The recently introduced graph windowed Fourier transform is gi-
ven here. Our extension of the framework to mesh setting is presented in Section
2.4. The proposed spectral gyrification indices and their properties are given in
Section 2.5. A summary of contributions finalizes this chapter (cf. Section 2.6).

In Chapter 3, the proposed method in the previous chapter is applied to some
synthetic and real surfaces. In Section 3.1, some synthetic wavy surfaces are
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designed to illustrate the features of the proposed GIs. For comparison, a surface
area-based GI proposed by TORO et al. 2008 is also computed on these surfaces.
Through these experiments, the effect of fold depth on surface area-based GIs is
elucidated. Then, the method is applied to real adult brain surfaces in Section
3.2. The individual maps as well as group average maps of our GIs and Toro’s
GI are presented in Section 3.2.2. Some features of our GIs are also shown here
through some examples on an individual brain surface. The relationship between
our proposed GIs and the brain volume is investigated globally and locally in
Section 3.2.3. Finally, a summary of results along with a discussion are given in
the last section of this chapter (cf. Section 3.3).

In Chapter 4, our proposed estimator of the Hurst parameter of fractional
Brownian surfaces is presented. First, the theory of fractional Brownian motion
(fBm) in 1D is reviewed shortly in Section 4.1. The extension to manifolds toge-
ther with the simulation on the sphere surface are also given in this section. Our
proposed algorithm to estimate the Hurst parameter is presented in Section 4.2.
Especially, the proposed technique of dilation of non convex surfaces with mesh
surgery is also given in this section. The method is evaluated on simulated frac-
tional Brownian spheres in Section 4.3.1. The method is then applied on a set of
real cortical surfaces of fetuses in Section 4.3.2. This chapter is ended with some
discussions on how the Hurst parameter can be considered as a global GI and the
relationship between the Hurst parameter and the fractal dimension. The idea of
local estimation of the Hurst parameter is also brought up in this section. Finally,
we mention some limitations of our algorithm (cf. Section 4.4).

In Appendix A, the proof of a proposition about the precision of the proposed
estimator of the Hurst parameter is given.
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1. Gyrification process and
measurements

The human brain changes enormously in size, shape, and complexity during
its development from prenatal life to adulthood. In particular, during prenatal
and early postnatal periods, cortical folds appear and the cortex becomes more
and more convoluted, a process that is known as gyrification. The study and
quantification of gyrification is of great interest to measure the changes occurring
on the brain surface during development, aging and diseases. In this field, one
usually tries to measure and characterize the geometric features of brain like its
volume, surface area and fold properties (e.g. length, depth, complexity etc.).
In this chapter, we review some studies that have attempted to answer these
questions : What is the gyrification ? How does it happen ? What are the effects
of various factors on it ? How can we quantify it and measure these effects ?

1.1. Theories of gyrification
The human brain, in the middle of fetal stage, has a smooth surface. Then it

starts wrinkling and some primary folds appear on this surface as short isolated
shallow grooves or triple junctions. These primary folds become progressively
deeper, more elongated and more wrinkled and develop side branches which
form secondary and tertiary folds. The process of fold appearing on the cerebral
cortex is called gyrification ; see Fig. 1.1. It occurs mostly during the second half
of fetal life but continues changing the shape of the folds during post-natal life
(ARMSTRONG et al. 1995 ; WELKER 1990 ; YU et al. 2007 ; LEFÈVRE et al. 2015).

In spite of space limitations enforced by skull size, gyrification allows brain to
increase its surface area, up to 2500 cm2 in average (JONES et al. 1986), with
advantages for expansion of number of neurons (ROCKEL et al. 1980 ; RAKIC

1995). Moreover, the connections between different parts of the brain will be
more packed i.e. the length of axons become shorter. In this way, brain networks
are optimized in terms of time and energy consumption for information proces-
sing (CHERNIAK 1995 ; KAAS 2000 ; KARBOWSKI 2003 ; LAUGHLIN et al. 2003 ;
ZILLES et al. 2013).

Brain folds consist of concave and convex parts that are called sulci and gyri,
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Figure 1.1.: Gyrification process from fetal to adult ages (adapted from Van Essen
Lab, Washington University in St. Louis)

Figure 1.2.: A cross-section of the human head, from hairs to the white matter. A
gyrus and sulcus are also indicated.

respectively ; see Fig. 1.2. Individual folding patterns show that the position and
orientation of primary folds are not randomly determined and they are stable
across individuals (WELKER 1990). In other words, although there is a high inter-
individual variation in the shape of folds, all normal human brains include well-
known primary folds in specific locations and orientations e.g. central sulcus,
calcarine, superior temporal sulcus etc. This fact suggests that the gyrification
is driven by specific mechanisms although it is not well understood yet. There
are some studies that propose different scenarios behind gyrification process.
Those studies have tried to unveil the underlying mechanisms of gyrification
from different perspectives and scales : from genetic and molecular determinants
to geometric patterns and mechanical forces. Here, we give a short review on
some gyrification scenarios that are the most accepted in the brain development
community.

VAN ESSEN 1997 proposed that axons in white matter pull the regions of
the cortex which are strongly connected together and it forms gyri ; see Fig.
1.3. Accordingly, abnormal gyrification patterns stem from abnormal patterns of
connectivity. In another hypothesis, RICHMAN et al. 1975 explained the gyrifica-
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tion process by the radial gradient of cortical tangential expansion. This suggests
that the increasing expansion of upper layers of the cortex relative to the lower
layers generates compressive stress leading to cortical folding ; see Fig. 1.3b. To
test this hypothesis in practice, TALLINEN et al. 2016 have constructed a soft
elastic tissue brain model based on a smooth fetal brain that mimics the gyrifi-
cation process when immersed in solvents. Although the physical experiments,
computational simulations and morphometric analysis show that the proposed
mechanical approach can mimics the gyrification process at some extent, the fol-
ding pattern in this model is almost uniform in the whole cortex in contrast to
that of a real brain (see e.g. Fig. 1d of TALLINEN et al. 2016). Recently, RONAN

et al. 2014 proposed that differential tangential expansion causes folding. They
supposed the non-uniform cytoarchitecture patterns cause different local growth
rates of cortex. It, in turn, causes in-plane pressure that is mitigated through
out-of-plane folding ; see Fig. 1.3c.

In the above-mentioned works, it is not answered why the position and orien-
tation of the primary folds are reproduced across individuals. Through a joint
analysis of experimental data and computational modelling, ZHANG et al. 2016
proposed that consistent folding patterns might have roots in heterogeneous re-
gional growth in the cortex. They found that regions of cortex with faster growth
rates form gyri consistently while more rigid regions form sulci.

1.2. Gyrification measurement : Applications
Morphological parameters of the cerebral cortex such as volume, surface area,

sulcal shape features (like sulcal length, depth, width, position and asymmetry
indices), cortical thickness, curvature and gyrification index (GI) are commonly
used to quantify the gyrification process. Among these, GI is a direct measure
that attempts to quantify the degree of folding of the cerebral cortex. It pro-
vides valuable information about structural changes occurring on a brain surface
complexity during development, aging, and disease.

Detection of characteristic neuroanatomical patterns caused by abnormal brain
development or neurodegenerative/psychiatric disorders may lead to early diag-
nosis, prevention and treatment of such pathologies. GI can be also employed
to investigate differences in the brain surface structure between groups of in-
dividuals e.g. men vs. women, mediators vs. other people etc. The following
paragraphs review some studies on how measurement of GI helps us to better
understand the effect of various factors on the brain surface complexity. There
are different definitions of GI that are given in the next section. Here, we refer
to GI in its general sense as a descriptor of cortical complexity.
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Figure 1.3.: Three major gyrification hypotheses (adapted from Ronan et al. 2014)
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1.2.1. Development and aging
In many developmental studies, GI is one the most widely used indicators to

identify normal and abnormal brain development from fetal to adult ages. In a
cross-sectional study of gestational age-matched fetuses and preterm newborns,
LEFÈVRE et al. 2015 showed that preterms have higher global GIs than fetuses.
This finding reveals the increasing impact of early exposure to ex utero envi-
ronment on the cortical complexity. In another comparison between term-born,
healthy preterm and pathologic preterm infants, the power of gyrification in-
dex is highlighted where it is the only index among 22 indices that is able to
distinguish those groups (SHIMONY et al. 2016).

KIM et al. 2016 studied the changes of cortical complexity occurring after birth
from 6 to 24 months of age. They found that GI is positively correlated with age
in this period of life. Moreover, they reported some sexual dimorphisms in the
insula, middle cingulate, parieto-occipital sulcus and Broca’s region. In another
longitudinal study of infants from birth to 2 years of age, LI et al. 2014 found
16.1% and 6.6% of increase in global GI in the first and second year of life. Their
results show heterogeneous developmental cortical changes with high-growth
regions located in the association cortex, whereas the low-growth regions located
in sensorimotor, auditory, and visual cortices. They showed that larger brains are
more folded with a significant correlation between GI and the brain size in the
prefrontal cortex. They also detected sexual dimorphisms such that males have
larger GIs than females at 2 years of age.

In a lobar study on children and adults from 8 to 19 years of age, SU et al.
2013 found a gradual decrease in cortical complexity over time. The decreasing
GI with age for adults of age 42.8± 9.9 has been also reported by BONNICI et al.
2007. Another comparison study between young (27.7±4.4 years of age) and old
(74.8 ± 2.6 years of age) subjects shows the decreasing effect of aging on brain
surface complexity (ZHANG et al. 2007b). Moreover, the results of this study
suggest that this decrease is not similar across genders and brain hemispheres,
such that it significantly happens in the left hemisphere in old men but in the
right hemisphere in old women.

In a study on adults between 20 and 86 years old, MADAN et al. 2016 found
that the global cortical complexity of the gray matter decreases with age. Fur-
thermore, the most decrease is observed on the prefrontal lobe followed by the
parietal, occipital and temporal lobes. They also found that the cortical com-
plexity is a more sensitive measure to aging than the whole brain mean cortical
thickness.

In summary, GI measurement reveals that brain degree of folding increases
with age in fetal period and few years after birth. Then it starts to decrease
in school ages and continue to decrease in adulthood. These studies also show
different evolutions of cortical complexity between male and female. Although,
more research on cortical development, especially on longitudinal data, is still
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needed to give more precise inferences about evolution of cortical complexity.

1.2.2. Pathologies
Gyrification index has been also employed in many studies to identify the

relationship between neurodegenerative pathologies/psychiatric disorders and
cortical complexity. For instance, SCHAER et al. 2008 and BAKKER et al. 2016 re-
cognized some cortical regions of patients with 22q11 Deletion Syndrome with
decreased local cortical complexity while BEARDEN et al. 2009 identified an in-
crease in GI of occipital lobe in those patients. In a study on patients with mental
retardation, schizophrenia, comorbid mental retardation and Schizophrenia and
controls, BONNICI et al. 2007 found that patients with mental retardation has the
lowest GI in prefrontal cortex followed by comorbid, schizophrenia and controls.
They also reported a significant age-related decline in GI for all four groups.

A decrease in cortical complexity has been also reported in patients with Schi-
zophrenia (BULLMORE et al. 1994), dyslexia (CASANOVA et al. 2004), epilepsy
(LIN et al. 2007), attention deficit hyperactivity disorder (WOLOSIN et al. 2009),
mental retardation (ZHANG et al. 2010), neurofibromatosis type 1 (VIOLANTE et
al. 2013), Parkinson (LEWIS et al. 2016) and amnestic mild cognitive impairment
(WANG et al. 2016).

Some studies show an increase in GI in patients with manic-depressive di-
sorder (BULLMORE et al. 1994) Williams syndrome (GASER et al. 2006), autism
(JOU et al. 2010), Schizophrenia (SCHULTZ et al. 2013), dyslexia (PŁOŃSKI et al.
2016) major depressive disorder (HAN et al. 2016) and impulsivity (HIRJAK et
al. 2016).

Some neurodegenerative pathologies like dementia (LEBED et al. 2013), Schi-
zophrenia (PALANIYAPPAN et al. 2012 ; YOTTER et al. 2011) and bipolar disorder
(NENADIC et al. 2017) increase the degree of gyrification in some cortical regions
and decrease it in some other regions. Even some diseases that are not directly
related to brain, like severe congenital heart disease, have been reported to re-
duce the degree of cortical folding in newborns (CLAESSENS et al. 2016).

In these studies, it has been argued that some neurological pathologies may
affect the cortical complexity or they even may have roots in altered cortical com-
plexity. Accordingly, altered cortical complexity may be considered as a sensitive
marker for several neurodevelopmental disorders. The last mentioned study by
CLAESSENS et al. 2016 raises this question that how pathologies of other organs
affect the brain shape and folding. Consequently, quantification of changes in
cortical complexity may open a way to investigate neurodegenerative patholo-
gies and psychiatric disorders and even pathologies of other organs.

19



1.2.3. Miscellaneous factors
Besides development and diseases, some other events that happen in human

life, may change the cortical complexity. For example, KELLY et al. 2013 have
shown that children with maltreatment history have a less complex cortex in the
lingual gyrus and the insula extending into pars opercularis in comparison to
normal children. A study on people who had been involved in a motor vehicle
accident in at least 6 month before the analysis revealed that post-traumatic
stress disorder reduces the cortical complexity in the left lateral orbitofrontal
cortex (CHU et al. 2016).

Recently, RICCELLI et al. 2017 have shown that even personality is associated
with variability in cortical anatomy, especially the degree of folding. They studied
the famous five-factor model of human personality and found that 1) neuroticism
is linked to smaller folding in prefrontal–temporal regions, 2) extraversion is
linked to larger folding fusiform gyrus, 3) openness is linked to larger folding
in prefrontal–parietal regions, 4) agreeableness is associated with larger inferior
temporal cortex and 5) conscientiousness is linked to smaller area and folding
in prefrontal regions. The correlation between dispositional anxiety and degree
of folding has been studied by MISKOVICH et al. 2016. Their findings show a link
between this personality trait and smaller folding in the left superior parietal
region.

In a comparison study on gender differences, LUDERS et al. 2006 observed that
the female brains are significantly more convoluted than male brains in all lobes
while ZHANG et al. 2007b got opposite results. In contrast, LIU et al. 2003 did
not detect any difference in brain complexity between men and women.

LUDERS et al. 2008 studied the relation between intelligence quotients (IQ)
and cortical complexity and found a significant positive correlation between IQ
and GI in outermost section of the posterior cingulate gyrus. They also obser-
ved prominent gender differences within the right frontal cortex where "females
showed uncorrected significant positive correlations and males showed a non-
significant trend toward negative correlations." IM et al. 2006 have shown that
people with higher intelligence quotient (IQ) have more complicated cortical
structures and more interestingly, number of years of education has significant
positive effect on the complexity of the cerebral cortex.

The effect of meditation on the brain gyrification has been also studied by
LUDERS et al. 2012. They identified some regions, namely left precentral gyrus,
right fusiform gyrus, right cuneus and left and right anterior dorsal insula with
higher local GI in mediator subjects as well as a positive correlation between GI
and the number of meditation years.

The relationships between the cortical complexity and other morphological
properties of the cerebral cortex have been also investigated in several studies.
IM et al. 2006 found a negative significant correlation between mean cortical
thickness and complexity. They also found significant positive correlation bet-
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ween folding area a and complexity. They could not find any significant relation-
ship between sulcal depth and complexity except in the left temporal lobe. In
contrast, MADAN et al. 2016 found a strong positive correlation between mean
cortical thickness and complexity.

Some studies reveal a positive correlation between cortical complexity and
brain size, For instance TORO et al. 2008 have shown that the cortical com-
plexity varies positively with total cortical surface area with the largest variation
happens in the prefrontal region. IM et al. 2008, GERMANAUD et al. 2012 and
GERMANAUD et al. 2014 found a positive correlation between brain volume and
global cortical complexity. These results are in agreement with some mechanical
models of gyrification process (TALLINEN et al. 2013 ; TALLINEN et al. 2016) and
they support the hypothesis that larger brains are more folded.

1.3. Gyrification measurement : Methods
The extensive research mentioned in the previous section acknowledge the

importance of gyrification measurement for which diverse methods have been
suggested in the literature. A basic classification of these methods may be based
on the level of GI assignment which varies from point-wise to global level. A
method in point-wise level assigns a GI value to each point of the cerebral cor-
tex that is usually computed in a pre-determined neighbourhood of each point.
Some regional studies need to compute a GI for some regions of interest in-
cluding sublobar regions, lobes and hemispheres. Finally, at the highest level, a
single GI value is assigned to the whole brain surface. It is called a global GI
and is a compact measure in which the information of total surface complexity
is summarized. Although a global GI may be enough in some applications, des-
cribing the whole surface of a highly convoluted brain by only a single value is
not sufficient to understand its local complexity. Especially in case of pathologies
that deform cortical regions, a local GI is needed to localize this alteration.

A more sophisticated classification of gyrification measures may be presen-
ted based on the geometrical methodology : Some methods compute a ratio of
surface area or contour perimeter of the brain(ZILLES et al. 1988 ; MOORHEAD

et al. 2006 ; TORO et al. 2008 ; SCHAER et al. 2008 ; LEBED et al. 2013 ; SU et
al. 2013 ; LI et al. 2014). Some other methods employ the surface curvature
(VAN ESSEN et al. 1997 ; LUDERS et al. 2006 ; SHIMONY et al. 2016 ; KIM et al.
2016). There are also methods that mix the concepts and tools of the previous
categories (SHISHEGAR et al. 2015) or are based on other geometrical features
like fractal dimension (HOFMAN 1991 ; FREE et al. 1996 ; KISELEV et al. 2003 ;
ZHANG et al. 2007b ; JIANG et al. 2008 ; YOTTER et al. 2011). In the following,
we give a review of all these categories.

a. Folding area is the ratio between the area occupied by sulci and total cortical surface area.
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GI  = 
Length of pial contour     (          )

Length of outer contour   (          )

Figure 1.4.: Left : A coronal section of a brain hemisphere. The pial contour is
drawn by a solid line while the superficial outer contour is delineated
by a dashed line. Right : Formula of Zilles’ GI (Zilles et al. 1988).

It is noted that, in the literature, the gyrification measures that are based on
surface area or curvature are usually called "Gyrification Index" (GI). On the other
hand, the gyrification measures based on fractal dimension are called "Cortical
Complexity". In this thesis, we call all of those measures as gyrification index and
we refer to cortical complexity as a feature of the brain surface that is quantified
by a gyrification index.

1.3.1. Surface area/perimeter-based GIs
An early attempt to measure the degree of human brain folding has been done

by ZILLES et al. 1988 on post-mortem brains sliced on coronal plane. They defi-
ned the gyrification index of each coronal section of the brain as the ratio bet-
ween the length of the pial contour and the length of a regular superficial outer
contour as a reference contour ; see Fig. 1.4. The idea is that if a brain is more
folded, this ratio will be larger. Despite of its easy interpretation, it raises some
issues in implementation and results. For instance, in this method, the pial and
outer contours have been delineated manually which is very time consuming in
large scale studies and raises questions about reproducibility and reliability of
results. Moreover, it has been discussed that due to complexity of folds in the 3D
space, this measure by considering 2D coronal slices is prone to be biased and
sensitive to slice orientation (ZILLES et al. 1989). Moreover, SCHAER et al. 2008
argued that the standard deviation of results obtained by Zilles’ GI is too high
to reveal group differences. In addition, while significant correlations between
gyrification and brain volume (TORO et al. 2008 ; KAPELLOU et al. 2006 ; GER-
MANAUD et al. 2012) or gender (LUDERS et al. 2004 ; LUDERS et al. 2006) have
been reported recently, Zilles’ GI is not able to show this relation ZILLES et al.
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1988.
Following the development of medical imaging technologies like MRI and ad-

vances in image processing algorithm in recent years, a 3D representation of
brain can be reconstructed. Indeed, after anatomical MRI acquisition, the ce-
rebrospinal fluid, gray and white matters are segmented in 3D volumes. Then,
from the segmentation, the pial surface and white matter surface are reconstruc-
ted and modelled by triangular meshes.

By taking advantage of this representation, some attempts have been done to
modify Zilles’ GI. For instance, to deal with the manual delineation issue of Zilles’
method, MOORHEAD et al. 2006 developed an algorithm to compute the pial and
outer contours in the coronal sections of MR images automatically.

To take into account the 3D nature of the brain surface, SCHAER et al. 2008 ex-
tended Zilles’ GI to 3D and proposed a local GI by the ratio between the area of a
neighbourhood on a superficial outer surface and the area of the corresponding
neighbourhood on the pial surface b. In this work, the outer surface is the hull
surface that fills the sulci and covers the gyri. The outer neighbourhood around
each point is then determined by the intersection of a sphere and the outer sur-
face. Correspondence between the outer neighbourhood and the corresponding
neighbourhood on the pial surface is computed by finding the points with the
closest distance on both surfaces ; see Fig. 1.5a. This method assigns a GI value
to every point of the outer surface. To compare GI values across cortices, an ad-
ditional step has to be done to redistribute GI values from the outer surface to
the pial surface through an averaging procedure.

To avoid this non intuitive step, LEBED et al. 2013 proposed to compute the ou-
ter surface by applying a surface-smoothing procedure. In this way, there exists
a one-to-one vertex correspondence between the pial and the outer surfaces. LI

et al. 2014 found the vertex correspondences between the cortex and the cere-
bral hull surface by solving the Laplace’s equation and following the streamlines
between the two surfaces.

Another method in the first category has been proposed by TORO et al. 2008.
In this method, at each point of the pial surface, a sphere is centered and Toro’s
GI is defined as the ratio between the area of the pial surface contained in the
sphere and the area of the great disc of the sphere c ; see Fig. 1.5b. The idea is
that if the brain was not folded, the pial surface would be the great disc of the
sphere. In this method, akin to Schaer’s method, the neighborhood around each
point is defined by a sphere of a certain radius r. By changing the radius of the
sphere, it is possible to compute the GI in different spatial scales. According to
GI maps shown in SCHAER et al. 2008, Fig. 4 and TORO et al. 2008, Fig. 5a-c,
Toro’s GI, is less sensitive to r than Schaer’s GI.

The locality of results of those methods depends on the radius of the spherical
neighbourhood r. In order to deal with the brain size variability in a database,

b. It is noteworthy that Schaer’s method has been integrated in FreeSurfer software.
c. The great disc is the largest disc that can be included inside a sphere.
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(a)
(b)

Figure 1.5.: (a) Left : the pink surface is the brain hull surface. In Schaer’s method,
a neighbourhood around each point of the hull surface is determined
by intersection of a sphere centred at that point and the hull surface.
Right : the pial surface is shown on blue. The dark region is the pro-
jected neighbourhood from hull surface to pial surface. (b) Left : in
Toro’s method, a neighbourhood around each point of the pial surface
is determined by intersection of a sphere centred at that point and
the pial surface. Right : Such a neighbourhood is depicted. Figures are
adapted from Schaer et al. 2008 and Toro et al. 2008.

the radius would have to be adapted for each subject. Otherwise the locality
of analysis is not consistent between subjects. In other words, by using a fixed
radius for a large and a small subject, the neighbourhood covers a greater portion
of the surface area in small subject in comparison to large subject ; see Section
2.4.3 for more information. It will be more problematic when one is studying
subjects with highly different sizes e.g. fetal brains.

Unfortunately, no intrinsic strategy exists to choose an adaptive neighbou-
rhood in the above methods. To tackle this issue, LEFÈVRE et al. 2015 proposed
to adapt the radius r so that it equals a fraction of the brain length in the rostro-
caudal direction. LI et al. 2014 also managed to deal with the size variability
and to do a consistent analysis by resampling all cortical surfaces to the same
standard mesh and taking N -ring neighbourhood around each vertex instead of
geodesic neighbourhoods.

The main idea of the above methods is that if the brain was not folded, the
local area of the pial surface and the reference surface would be the same. Ac-
cordingly, if the brain is more folded around a cortical point, the neighbourhood
around that point contains a larger surface and the defined ratio will increase.
This idea interprets the notion of cortical complexity based on the surface area.
To our opinion, however, the main drawback of those methods stems from this
interpretation. In fact, this interpretation is true when an unfolded region is to
be compared with a folded region. Although, in case of two folded regions, this
interpretation cannot distinguish between different kinds of folding. More preci-
sely, those methods may not distinguish between deep folds and oscillating folds
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Figure 1.6.: (a) A folded region with few deep folds around Pn. (b) Another folded
region with shallower but more oscillating folds around Pm. Toro’s GI
equals to 2.23 for both Pm and Pn.

(a) (b)

High

Low

Figure 1.7.: GI maps resulted from (a) Schaer’s method and (b) Toro’s method.
The blue and red colors indicate the extremes of low and high degree of
folding respectively. It is seen that both methods tend to give larger GI
values to deeper folds like the insula. Figures are adapted from Schaer
et al. 2008 and Toro et al. 2008.

with equal surface areas.
For instance, in Fig. 1.6, two folded regions with equal surface areas are re-

presented. The region around Pn consists of few deep folds while the region
around Pm includes shallower but more oscillating folds. Due to equal surface
areas around Pm and Pn, the methods in this category give equal GI value to
these points e.g. Toro’s GI is about 2.23 for both Pm and Pn. That is why Schaer’s
and Toro’s methods both give high GI values to deep folds like the insula and the
central sulcus. Indeed, in deep neighbourhoods, much surface area is found. In a
more general way, both methods tend to produce similar GI maps ; see Fig. 1.7.

To address this issue, SU et al. 2013 proposed to weight the GI by the geodesic
sulcal depth. In this method, the pial surface is wrapped by an outer hull surface.
Then, for any ROI on the pial surface, the corresponding region on the hull
surface is extracted by solving an differential equation of the negative gradient
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Figure 1.8.: Maps of Schaer’s GI with different neighbourhood size : from 20mm
to 35mm. The blue and red colors indicate the extremes of low and
high degree of folding respectively. The figure is adapted from Schaer
et al. 2008.

of geodesic sulcal depth for points on the boundary of the pial ROI. Finally,
the ratio between the weighted surface area of the considered ROI on the pial
surface and the surface area of the corresponding region on the outer surface
is computed where the weights are the geodesic sulcal depth. In this way, deep
folds get higher weights than shallow ones.

The advantage of this method on the previous ones is two folded. First, there
is no need for an extrinsic sphere to define a ROI/neighborhood on the cortex or
the outer surface. Second, the weighted surface area ratio is able to discriminate
deep and shallower folds with equal surface area. Nevertheless, we believe that
this weighting strategy is in contradiction with the notion of surface complexity.
In fact, if a cortical region with deep sulci and another region with shallow sulci
have equal areas, the latter region should be more convoluted to keep the same
area as the former one.

Moreover, the gyrification maps produced by these methods may be not locali-
zed enough for some applications. For example, in Fig. 1.8 adopted from Schaer’s
work, for a small spherical neighbourhood, the most folded region of the cortex
is around the Sylvian Fissure and as the radius of the sphere increases, the same
pattern propagates across the cortex. Therefore, it may fail to catch other folded
parts of the brain and affect the reliability of findings.

1.3.2. Curvature-based GIs
Methods in the second category rely on the curvature and its derivatives e.g.

the mean curvature. The mean curvature is a geometric tool that measures lo-
cally how a surface is deviated from being flat. It defines a function on the cere-
bral cortex and assigns positive values to points on gyri and negative values to
points on sulci (see MEYER et al. 2003 and Section 2.5.1 for more information).
The mean curvature map, however, is too local to deliver a helpful insight into
the surface folding (LUDERS et al. 2006). Moreover, as SHIMONY et al. 2016 have
recently shown, the curvature and its derivatives (e.g. the mean curvature, Gaus-
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sian curvature, shape index etc.) by themselves may not be able to discriminate
between normal and aberrant cortical development.

Nevertheless, the curvature contains useful information about the surface ben-
ding. VAN ESSEN et al. 1997 defined a global folding index of each hemisphere
by integrating a function of principal curvatures. To introduce a local measure
of folding, LUDERS et al. 2006 defined a local GI by smoothing the magnitude of
the mean curvature but the Luders’ GI is not scale invariant. Indeed, if a cortical
surface is just scaled while preserving its folding pattern, it is expected to keep
its GI value as well but it is not the case for the Luders’ GI d.

KIM et al. 2016 has recently proposed a new GI by quantification of the shape
index variance in a local region. In each neighbourhood, determined by a geode-
sic radius, the variability of some predefined shape types is computed, followed
by a smoothing procedure. They introduced a two-phase adaptation of neigh-
bourhood to deal with the size variability between subjects. In a longitudinal
database of subjects from 6 to 24 month of age, first, for each 6-month-old sub-
ject, a fixed neighbourhood size is adapted globally by the ratio of the subject’s
hemisphere surface area to the average hemisphere surface area. Then, for older
subjects, the normalized neighbourhood size is scaled by the changes of local
surface area.

This analysis is done in very fine scales of at most 8mm with the advantage
of differentiating between widening and deepening of cortical regions as well
as to identify regions with developing secondary and tertiary sulci. The loca-
lity limitation leads to cortical complexity analysis within a sulcus or gyrus with
neighbourhood size less than 8mm ; otherwise, a ceiling effect appears and less
folded regions are not distinguishable from more folded ones (see Fig. 5a,b of
KIM et al. 2016). The authors have also mentioned that the proposed GI changes
by less than 0.1% when the cortical surface is scaled from 80% to 120%, thus
not completely scale invariant. Moreover, due to the heat kernel smoothing pro-
cedure used in this method and Luders’ method, they are likely to miss some
folding features at fine scales.

In a recent work by SHISHEGAR et al. 2015, a new local GI has been proposed
by computing the differential 1D signed curvature along the level sets of the first
nontrivial Laplace-Beltrami eigenfunction weighted by the geodesic distance bet-
ween each point and two closest gyral tops. In this way, the cortical curvature
features are combined with sulcal depth which enable the method to discrimi-
nate between narrow sulci from wide sulci. This method focuses mainly on sulcal
bending such that it assigns the lowest values to points on gyri and the largest
values to deep narrow folds.

d. Luders’ method has been integrated in CAT toolbox of SPM12 software.
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1.3.3. Fractal dimension-based GIs
In a different direction, the fractal dimension (FD) has been used to quantify

the global degree of cortical folding. In fact, the human cerebral cortex has been
approximately recognized as a fractal structure, at least in a limited range of
spatial scales (HOFMAN 1991 ; FREE et al. 1996 ; KISELEV et al. 2003). Accor-
dingly, FD as a measure of fractal irregularity, is applied as a global gyrification
index. The more complex an object, the larger its FD value (MANDELBROT 1967).
Fractal dimensions of different brain parts can also be computed and combined.
For instance, ZHANG et al. 2007b proposed a hybrid FD consists of FD of white
matter volume, white matter surface and the overall white matter structure (the
sum of two former FDs).

The most widely used method to compute FD for human brain is the "box-
counting method" introduced originally by RUSSELL et al. 1980 in a physics
context (e.g. IM et al. 2006 ; THOMPSON et al. 1996). In this method, the sur-
face of interest is mapped onto a rectangular grid or lattice. The grid consists
of boxes with edges of equal length r. Then, the number of boxes occupied by
one or more vertices of the mapped surface is counted. This procedure is done
several times with different r’s and at each step, the number of occupied boxes
is kept as N(r). It has been shown that N(r) is proportional to FD power of r by
N(r) ∝ (1/r)FD. Now, the slope of the least-square regression line fitted to points
{(1/r,N(r))} in log-log scale gives FD (LIEBOVITCH et al. 1989 ; SARRAILLE et al.
1994 ; JIANG et al. 2008).

The human brain is not a pure fractal i.e. it does not have self-similarity in all
scales. So, the range of box sizes r in the box-counting method should be chosen
carefully such that a linear relationship holds between 1/r and N(r) in log-log
scale (cf. NEZADAL et al. 2001 ; SILVA et al. 2006). Some limited attempts have
been done to find upper and lower bounds for the box size (cf. CHEN et al. 1993 ;
BISOI et al. 2001). Moreover, ASVESTAS et al. 1998 showed experimentally that
the box-counting method is not numerically stable and underestimates the true
value of FD.

Other methods have been also proposed to estimate FD and cover the limi-
tations of box counting method e.g. differential box-counting method (CHAUD-
HURI et al. 1995), extended counting method (SANDAU et al. 1997) and frational
Brownian motion methods (variogram by SOILLE et al. 1996 and power spectrum
by PENTLAND 1984). To the best of our knowledge, none of them has been used
to measure cortical complexity. A comprehensive review on above-mentioned
methods for FD estimation along with their advantages and limitations are given
by LOPES et al. 2009.

YOTTER et al. 2011 proposed recently a new way for estimating the FD through
reconstruction of cortical surfaces by spherical harmonics (SPH). In this work, it
is shown practically that the normalized surface area of reconstructed surfaces
by SPH of degree at most l varies linearly with l in a certain range of l’s in log-
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log scale. The slope of the fitted regression line is then considered as a global GI.
A similar regression analysis in vertex level after a smoothing procedure gives a
local GI. Moreover, they have shown that while this new GI is able to estimate the
FD of fractal surfaces more accurately than the box counting method, the latter
method is not invariant to rotation. As discussed at the end of this chapter, in
practice, it is strongly expected from a well-defined GI to be invariant to isometric
transformations like rotation e.

1.4. Discussion
The aforementioned methods in all categories have different implicit inter-

pretations of the concept of "surface complexity" that underlies GIs. AWATE et al.
2010 discussed the different meanings of surface complexity and categorized GIs
based on their responses to different situations like surface scaling and variable
spatial frequency of folds. It is also seen that sometimes different GIs give incon-
sistent or even conflicting results. For example, while most of the surface area-
based methods and even Luders’ GI show that the frontal cortex is not much
folded, Kim’s GI and Lebed’s GI put this region among highly folded regions.
Another evidence of the inconsistency appears in relation with the brain volume
and the degree of cortical folding : ROGERS et al. 2010, by using an extension
of Zilles’ GI to 3D, showed that GI decreases with brain volume while an inverse
correlation has been reported in some papers by using other surface-area based
methods (see e.g. TORO et al. 2008 ; LI et al. 2014 ; GERMANAUD et al. 2014)
and a curvature-based method (RABIEI et al. 2016).

This inconsistency also occurs when the effects of pathologies on cortical com-
plexity are studied. For example, in patients with 22q11 Deletion Syndrome,
SCHAER et al. 2008 and BAKKER et al. 2016 by using Schaer’s GI reported only
decreased cortical complexity of some regions while BEARDEN et al. 2009 by
using a fractal dimension-based GI found only increased complexity of occipital
lobe. Even in group comparison studies, inconsistent results have been reported.
For instance, by using a curvature-based method, LUDERS et al. 2006 concluded
that female brains are more complicated than men’s while ZHANG et al. 2007b
found that men show more complex brain surface than women and no difference
was detected when the brain complexity is measured by fractal dimension (LIU

et al. 2003).
Accordingly, the concept of the surface complexity needs to be defined expli-

citly. Moreover, a method should be developed to quantify this definition and
satisfy some standard properties. We propose the following properties that a
standard GI should possess :

1. Clear basis : A GI should be defined based on a definition of the "surface
complexity" notion. It means that before developing a method to measure

e. Yotter’s method has been integrated in CAT toolbox of SPM12 software.
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GI, a clear and reasonable definition of surface complexity should be given.
Without having a clear definition of this notion, one may propose a new GI
without knowing what the results are really meant. In this case, the effect
of other geometric factors like the surface area or sulcal depth cannot be
disentangled.

2. Physicality : A GI should have an interpretable physical meaning. In other
words, it should be proven mathematically and practically that the propo-
sed GI quantifies the assumed definition of the surface complexity.

3. Locality : A GI should be defined locally. Although depending on its appli-
cation but in general, it is not adequate to describe a highly convoluted sur-
face like the brain surface only with a single value. So, a good GI should be
computed locally to measure the surface complexity in a reasonable neigh-
bourhood around each point of the cortex. In this case, it is also possible to
derive a single value as global cortical complexity.

4. Multi–spatial scale : It is an advantage if a method can propose GIs in a
wide range of spatial scales. In other words, the locality of method around
each point on the brain surface should be tuned easily from few millimeters
(equivalent to N -ring neighbourhoods with small N ’s) to larger areas ( e.g.
areas of labor size). In this way, the method can be used for a wide range
of applications by changing few parameters of locality.

5. Consistency : To have a consistent analysis across all subjects of a database,
a GI should consider the inter-subject size variability. indeed, the size of
neighbourhoods for each individual brain has to be adapted with the size
of that individual brain surface. Otherwise, by using a fixed neighbourhood
size for a small and a large brain, the neighbourhood covers relatively a
larger proportion of the small brain than the large brain. In other words,
there should exist a mechanism in the GI method to keep the relative spread
of neighbourhoods constant across subjects.

Beside the global size adaptation, for some applications e.g. developmen-
tal studies, it is an advantage for a GI method to have a mechanism of local
size adaptation. It means that corresponding neighbourhoods across sub-
jects should be adapted with respect to the local size of anatomical regions
(see e.g. LI et al. 2014 and KIM et al. 2016).

6. Geometric invariant : Geometric transformations such as translation, rota-
tion, reflection and scaling of a surface do not change its surface complexity.
Consequently, it is reasonable to expect a good GI to preserve its value after
such transformations. Otherwise, a kind of alignment is needed in prepro-
cessing steps. However, as pointed out by YOTTER et al. 2011, "alignment is
a complicated endeavor that often requires manual delineation of areas that
correspond geometrically across subjects, such as gyral landmarks or cortical
sulci."
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7. Efficiency : A GI should to be computed in a reasonable time and memory.
In practice, efficiency is very important. There are some mathematical me-
thods with interesting features that cannot be applied in this framework
due to time and/or memory issues. For example, due to problems occurring
sometimes in MR imaging of fetuses, segmentation algorithms fail which re-
sults in noisy surface triangulation. Consequently, one would like to apply
meshless processing methods instead of mesh-based methods to get rid of
noisy triangulation. But, due to non-sparsity of meshless methods and large
number of vertices needed to model a complicated brain surface, it requires
too much processing time and memory and makes it impractical.
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2. Spectral gyrification indices

A spectral approach for solving a problem consists in transferring the problem
from its own original space to a so called spectral space by using the eigenvalues
and eigenfunctions of functional operators. The advantage of this transformation
is that in the spectral space, data have a different structure that may be more sui-
table to solve a problem which is not easy or even impossible to solve in its origi-
nal space (e.g. ZHANG et al. 2007a). In recent years, spectral methods have been
proposed in the fields of graph theory, computer vision, machine learning, visua-
lization, graph drawing, high performance computing, and computer graphics.
Some important applications of these methods are describing and manipulating
the geometry of a mesh. Such applications include mesh compression, correspon-
dence, parameterization, segmentation, sequencing, smoothing, watermarking,
surface reconstruction, remeshing and simulation ; see ZHANG et al. 2007a for
a review on these applications and also TAUBIN 2000 ; ZHANG 2004 ; FLOATER

et al. 2005 ; SORKINE 2005 among many others.
A growing application of spectral methods is in medical image analysis. They

have been successfully exploited to analysis the volume and surface of organs
reconstructed from magnetic resonance images (e.g. NIETHAMMER et al. 2007 ;
WACHINGER et al. 2015). In neuroscience, the spectral methods have been used
for brain segmentation, matching, surface and functional map smoothing, shape
analysis of sulci and subcortical structures etc. (e.g. REUTER et al. 2007 ; SEO

et al. 2011 ; GERMANAUD et al. 2012 ; LOMBAERT et al. 2015a).
In this chapter, first we survey spectral methods for surface analysis in sections

2.1 and 2.2. Particularly, in Section 2.3, we focus on a recently introduced spec-
tral method on graphs, the graph windowed Fourier transform. We extend this
method to 2D manifolds modelled by triangular meshes to analyse the surface
complexity in Section 2.4. Moreover, an adaptive window function is introduced
to deal with the inter-subject brain size variability. Then, we give two definitions
of surface complexity and quantify these definitions by using the mesh windo-
wed Fourier transform in Section 2.5. It results in definitions of our gyrification
indices (GIs). Finally, in Section 2.6, a summary of contributions of this chapter
is given.
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Table 2.1.: A categorization of mesh operators
Categories Operators References

Combinatorial
Graph Laplacian (Kirchoff) Ohbuchi et al. 2001
Normalized graph Laplacian Chung et al. 1997

Tutte Laplacian Tutte 1963

Geometric

Pinkall Laplacian Pinkall et al. 1993
Meyer Laplacian Meyer et al. 2003

FEM Laplacian Dyer et al. 2005
Reuter et al. 2009a

Others Discrete Schrödinger Verdière 1990
Higher-order Shi et al. 2000 ; Weiss 1999

2.1. Spectral surface analysis
In this section, we give an overview of spectral methods applied on meshes mo-

delling surfaces. Spectral methods for mesh processing and analysis rely mainly
on eigenpairs (eigenvalues and eigenvectors) of an operator defined on the sur-
face. The eigenvalues, eigenvectors or eigenspace projections derived from such
an operator are employed to analyse the mesh in the spatial domain or in a so-
called spectral domain. The common framework of mesh spectral methods has
usually 3 steps :

1. Definition of a discrete operator in a matrix form

2. Computing the eigenpairs of the involved matrix

3. Employing these eigenpairs to do the mesh processing or analysis task

Considering these steps, a great number of spectral methods have been propo-
sed. Those methods vary depending on using different operators and different
use of the eigenpairs to perform a specific task in different fields. According to
these variations, ZHANG et al. 2007a classified the spectral methods based on the
operator used, the eigenstructure, and the dimensionality of the eigenstructure.

Depending on the problem at hand, there are different operators that can be
defined on a mesh. A list of those operators, mostly adapted from ZHANG et al.
2007a and WARDETZKY et al. 2007, is given in Table 2.1. As it is seen in the
table, different versions of discrete Laplacian operator are used in the literature.
A general definition of discrete Laplacian operator is as follows (ZHANG et al.
2007a).

Definition 1. Let G = {V,E} be a triangular mesh modelling the surface S where
V is the set of vertices, V = {P1, P2, ..., PN}, |V | = N < ∞ and E is the set of
edges. If u = [u1, u2, . . . , uN ]T is a function defined on vertices of the mesh, the
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Laplacian L of u at vertex Pi is defined by

(Lu)i := 1
mi

N∑
j=1

wij(ui − uj), (2.1)

where wij ≥ 0 and mi > 0 are arbitrary edge and vertex weights respectively.

Given the notations of Definition 1, it is possible to define the Laplacian in a
matrix form. To do so, let W = [wij] be an N ×N matrix of edge weights, then a
diagonal matrix D = [di] is defined by di = ∑

j 6=iwij. Moreover, let M = [mi] be a
diagonal matrix of vertex weights and A = D −W . Now, the Laplacian operator
is defined as L := M−1A.

According to different ways of choosing weights {wi,j} and {mi} in definition
of Laplacian, one can categorize this operator in two groups : combinatorial
and geometric. The combinatorial Laplacian operators are defined by the graph
associated with the mesh and the weights are chosen from connectivity of edges.
In this manner, W is called the weighted adjacency matrix and di is the degree
of vertex Pi (CHUNG et al. 1997). For instance, when vertices Pi and Pj are
connected by an edge, in graph Laplacian (Kirchoff) mi = wij = 1 (known as
umbrella weights) and in Tutte Laplacian wij = 1/di and mi = di ; otherwise if
Pi and Pj are not connected wij = 0.

In geometric Laplacians, the geometric information of the mesh is included in
the weights. For example, wij ’s contain information about area or angles of mesh
elements. In this case, A is called stiffness matrix and M is called (lumped) mass
matrix. REUTER et al. 2009a gives a quick review on geometric Laplacians. See
also Section 2.4.1 for more information.

Each of these discrete Laplacians has some properties and as it is proved by
WARDETZKY et al. 2007, "discrete Laplacians cannot satisfy all natural properties
simultaneously ; retroactively, this explains the diversity of existing discrete Laplace
operators." By natural properties, they mean the properties of the continuous
Laplacian or Laplace-Beltrami operators a such as symmetry, locality, linearity,
positivity, positive semi-definiteness and those that are useful in practice such
as sparsity and convergence. The mentioned limitation means that there is no
perfect discrete Laplacian. So, according to required properties for solving a pro-
blem, one may choose one of those operators.

Once an operator is chosen, its eigenpairs are computed. In the following,
we survey some applications of the eigenvalues, eigenvectors and eigenspace
projections of Laplacian operator in surface analysis with the main focus on the
human brain surface.

a. Laplace-Beltrami operator is the extension of Laplacian operator from Euclidean space to
Riemannian manifolds e.g. 2D surfaces.
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2.1.1. Laplacian eigenvalues
Laplacian eigenvalues of an object contain substantial geometrical and topo-

logical information of that object, including the volume, surface area, boundary
length, Euler characteristic etc. (REUTER et al. 2006). For instance, WEYL 1911
and WEYL 1912 have proved an interesting result about the relationship between
Laplacian eigenvalues of an object in Rd and its volume :

Theorem 1. Given a bounded region D of Rd with piecewise smooth boundary B
and its Laplacian eigenvalues {λk, k = 1, 2, . . .}, then

N(λ) ∼ ωdvol(D)λd/2

(2π)d , as λ→∞, (2.2)

where N(λ) is the number of eigenvalues ≤ λ, vol(D)is the volume of D and ωd is
the volume of the unit disc in Rd.

Corollary 1. As a result of the Theorem 1, λn grows in order of O(nd/2), i.e.

λn ∼ 4π2
( n

ωdvol(D)
)2/d

, as n→∞. (2.3)

Especially, for d = 2
λn ∼

4π
vol(D)n. (2.4)

It should be noted that in this theorem, vol(D) is the Riemannian volume.
So, for d = 2 it refers to surface area. Furthermore, Laplacian eigenvalues of
an object are proportional to its squared spatial frequencies of vibration (e.g.
GREBENKOV et al. 2013 ; GOLBABAI et al. 2012).

Due to mentioned properties of Laplacian eigenvalues, REUTER et al. 2006 in-
troduced the "Shape-DNA" as a compact global shape descriptor of any 2D or
3D object. It consists of the first few (normalized) eigenvalues of the descritized
Laplace-Beltrami operator computed via FEM on the mesh modelling the ob-
ject. They have shown that the eigenvalues change continuously with topology-
preserving deformations of the object’s geometry. This property makes Shape-
DNA suitable for shape comparison. It has a significant discriminatory power
to identify and retrieve objects in a database such that in a contest with many
other methods to do database retrieval, Shape-DNA performed very well and was
among the 3 best methods (LIAN et al. 2013). Moreover, due to the isometry in-
variance of Laplace-Beltrami operator, it does not need vast mesh preprocessing
like alignment, registration, mapping, or remeshing. It is invariant to pose and
metric-preserving articulations.

The isospectral objects, i.e. the non isometric objects who share the same
Laplace-Beltrami eigenvalues, however, are not distinguishable by this method.
It should be noted that those objects are somewhat artificially constructed and
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appear to be exceptional. Nevertheless, those objects give negative answer to the
famous question "Can one hear the shape of a drum ?" asked by KAC 1966 (see LIU

et al. 2017 and references therein). REUTER et al. 2006, however, showed that
by extracting the Shape-DNA of the 3D volumes together with the 2D boundary
shells of 3D isospectral objects, it is possible to distinguish them.

Given this observation, WACHINGER et al. 2015 collected the complementary
Shape-DNA of 3D volume and 2D boundary surface of brain cortical and subcor-
tical structures in a matrix to introduce the "BrainPrint", a signature of the brain.
Indeed, each row of the BrainPrint matrix includes the first m Laplace-Beltrami
eigenvalues of a considered cerebral segment. The power of the BrainPrint has
been tested for subject identification, age and sex prediction, brain asymmetry
analysis, and potential genetic influences on brain morphology.

In medical image analysis, NIETHAMMER et al. 2007, REUTER et al. 2007 and
REUTER et al. 2009b also applied Shape-DNA to the classification of anatomi-
cal structures. They employed it as a volumetric global shape descriptor of the
caudate nucleus and showed its discriminatory power to identify subjects with
schizotypal personality disorder.

Laplacian eigenvalues of manifolds form digital spectral codes that contain
geometrical and topological information of manifolds. By having appropriate
properties such as isometry invariance, these codes have been successfully used
as quantitative descriptors of manifolds, especially neuroanatomical surfaces.
They have shown high discriminative power on neuroanatomical structures. The
encrypted information in these spectral codes, however, include global features
of surfaces, e.g. surface area, and it is not obvious how to extract local informa-
tion of surfaces from them.

2.1.2. Laplacian eigenvectors
The Laplacian eigenvectors form a family of real-valued orthogonal vectors.

Some of these eigenvectors are represented in Fig. 2.1. These vectors possess
interesting topological properties that provide some tools to investigate geome-
trical features of structures. They show harmonic behavior which relates them to
natural vibration modes of the object. In this sense, the eigenvectors related to
smaller eigenvalues have simpler patterns and they carry information about the
global geometry of the object. In contrast, as the corresponding eigenvalues in-
crease, the eigenvectors show more complex patterns and more local geometric
information are encoded in them. They are also isometry invariant and change
smoothly with deformation of the object. Last but not least, the heat kernel em-
bedding theorem demonstrates that Laplacian eigenvectors by themselves are
able to determine the surface (BÉRARD et al. 1994 ; LAI et al. 2009).

Beside very interesting properties, eigenvectors are not suitable to serve di-
rectly as shape descriptors because they are incompatible across subjects. In
other words, when the eigenvectors of two surfaces are ordered according to
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Low freqs. Middle freqs. High freqs.

+- 0

Figure 2.1.: Some examples of Laplacian eigenvectors of a brain surface. In the left
column, some eigenvectors corresponding to small eigenvalues (low
spatial frequencies) are shown. Eigenvectors in two other columns are
corresponding to larger eigenvalues. The patterns of eigenvectors re-
semble a harmonic behavior and, as eigenvalue increases, the eigen-
vectors get more complex patterns.

the magnitude of their corresponding eigenvalues, they might switch order. This
order switching includes sign or orientation changes and is due to multiplici-
ties of eigenvalues, multiplicities in shape symmetry and numerical instabilities.
These indeterminacies in the choice of signs and the particular ordering of ei-
genvectors makes it hard to consider a correspondence between eigenvectors of
different surfaces.

To address this issue, BATES et al. 2011 proposed spectral shape descriptors
that consist of symmetric functions of squared eigenfunctions weighted by expo-
nentials of corresponding eigenvalues i.e. f(e−λitiφ2

i (x)) for i = 1, 2, . . . at each
point x of the mesh and at each time t. In this work, the eigenpairs are computed
from a graph Laplacian operator defined by Gaussian weights on edges. These
descriptors have been successfully employed in a linear support vector machine
(SVM) to identify subjects who are developing Alzheimer from normal controls.

REUTER et al. 2009a and REUTER 2010 used the nodal lines and nodal do-
mains of eigenfunctions to segment surfaces into subregions. Nodal lines b of an

b. Nodal lines are also called nodal sets in the literature.
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eigenfunction φ are smooth closed contours where the eigenfunction value is
zero i.e. φ−1(0). Every connected component of complements of nodal lines i.e.
M \ φ−1(0) is called a nodal domain. Each nodal domain has a constant sign
(positive or negative) that defines a subregion. The eigenfunctions correspon-
ding to larger eigenvectors usually have more nodal domains. Accordingly, they
segment a surface to more subregions. In this way, a set of eigenfunctions yield
a series of segmentations with different number of subregions. Moreover, this
method yields a symmetric segmentation such that the subregions are somewhat
symmetric and are apparently meaningful parts of the surface. Due to properties
of LBO, the segmentation is isometry invariant and robust to noise and surface
sampling to some extent.

LAI et al. 2009 extracted a numerical sequence from eigenvectors as a shape
descriptor. The proposed descriptor is a sequence of number of nodal domains.
They have shown experimentally that this descriptor may have an advantage
of differentiating between almost isospectral objects like caudate nucleus and
putamen much better than Shape-DNA. Geometrical properties of the caudate
nucleus have been also studied by REUTER et al. 2009b using the topological
properties of selected eigenfunctions as shape descriptor. Specifically, the loca-
tion of extrema, boundary length and surface area of nodal domains of some
eigenvectors are used to localize shape features e.g. thickness and length.

The notion of nodal sets can be extended to level sets. A level set Γα of an
eigenfunction φ is a smooth closed contour where the eigenfunction takes a spe-
cific values α i.e. Γα = φ−1(α). SHISHEGAR et al. 2015 analysed the brain surface
complexity by using the level sets of the LB eigenvector corresponding to the first
non-trivial eigenvalue. In this method, the differential 1D signed curvature along
each level set is computed and weighted by the geodesic distance between each
point and two next gyral tops. In this way, it assigns a gyrification index (GI) to
each point of the brain surface.

By applying the K-means clustering algorithm on the first few non-trivial LB
eigenvectors, LEFÈVRE et al. 2014 proposed an unsupervised segmentation of
brain surface. The results of this segmentation is qualitatively similar to tradi-
tional lobar segmentation produced manually from anatomical landmarks such
as the central and parieto-occipital sulci. The results reveal a link between ana-
tomical landmarks and the structure of Laplacian eigenvectors that is worth to
be explored more. Some evidences of this link can also be seen in the nodal
domains-based segmentation (REUTER et al. 2009a ; REUTER 2010) in which the
segments are meaningful parts of a surface.

LOMBAERT et al. 2013b and LOMBAERT et al. 2013a used the graph Laplacian
eigenvectors for surface matching. With these eigenvectors, they employed the
spectral correspondence as a regularization for direct matching of surface fea-
tures. The method was then applied on shape analysis of subcortical structures
(SHAKERI et al. 2016 ; SHAKERI et al. 2014) and longitudinal analysis of the pre-
term cortex (ORASANU et al. 2016b ; ORASANU et al. 2016a). JAIN et al. 2006,
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MATEUS et al. 2008 and REUTER 2010 also used Laplacian eigenvectors to match
articulated surfaces i.e. surfaces with similar shape but different poses e.g. consi-
der two human hands with different bending of fingers.

The Laplacian eigenfunctions are Morse functions c and it motivated SHI et al.
2008b and SHI et al. 2008a to use the Reeb graph of Laplacian eigenfunctions to
extract stable landmark features as boundary conditions to compute harmonic
maps to the unit sphere. They applied this method on mapping three subcortical
structures such as Hippocampus, Putamen and Caudate nucleus to unit sphere
with a clinical application of deriving the map of local volume losses in the hip-
pocampus of patients with secondary progressive multiple sclerosis.

Laplacian eigenvectors can be also used to introduce a new coordinate system
for surfaces. In the literature, it is called "spectral embedding" through which
a surface is embedded in the spectral domain of its eigenvectors. To do this,
LEFÈVRE et al. 2015 has suggested a mapping by using the three first non trivial
Laplacian eigenvectors (φ1, φ2, φ3) such that every point p of the surface with
Euclidean coordinates (xp, yp, zp) is mapped to the space of these eigenvectors
through

(xp, yp, zp) 7→ (
√
φ1(p)2 + φ2(p)2 + φ3(p)2)−1(φ1(p), φ2(p), φ3(p)).

This mapping suggests a new representation of surfaces, has the advantage over
Euclidean coordinates to be intrinsic to the surface, and accounts for the surface
geometry. They also presented some applications of this mapping in simple and
fast visualization of brain anatomy, registration of different surfaces and detec-
tion of abnormal cortical patterns.

By using an almost similar spectral representation in random decision forests
algorithm, LOMBAERT et al. 2015b introduced the spectral forests which has been
applied in cortical parcellation. Using the spectral representation instead of Eu-
clidean coordinates, in one hand, enables the random decision forests algorithm
to be performed directly on surfaces and improves its accuracy significantly (74%
versus 28% Dice overlaps), specially on highly convoluted cortical regions like
the medial occipital lobe. On the other hand, the spectral forest gives a parcella-
tion as accurate as FreeSurfer parcellation but in a small fraction of FreeSurfer
time (23 seconds vs. 3 to 4 hours).

Laplacian eigenvectors are successfully used in surface analysis for surface em-
bedding, matching and segmentation. They, unlike the Laplacian eigenvalues,
cannot be used directly as shape descriptor. Although, topological features of
them such as nodal lines/domains introduce shape descriptors. Besides their
own feature, they can be used to extract information from functions that are
defined on surfaces. In fact, by using Laplacian eigenvectors of a surface, a func-
tion that is defined on the surface can be projected to a so-called spectral do-

c. A smooth real-valued function on a manifoldM is a Morse function if it has no degenerate
critical points.
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main. This projection is called "eigenfunction projection" or "Fourier Transform on
graph/mesh". Our work is based on this projection and we explain it with more
details in the following section.

2.2. Fourier transform on mesh
In the Euclidean domain, the set of complex exponential functions, {e−2πiω, ω ∈

R}, serves as a basis for Fourier transform. These functions are the eigenfunc-
tions of Laplacian operator in this setting. Accordingly, the eigenvectors of the
discrete Laplacian can be considered as an extension of the Fourier basis to ge-
neral manifolds represented by meshes (QIU et al. 2006). In this scenario, a
smooth function f which is defined on a surface S can be represented as a linear
combination of the surface Laplacian eigenvectors {φ1, φ2, . . . , φn, , . . .} :

f = w1φ1 + w2φ2 + . . .+ wnφn + . . . . (2.5)

In this equation, wk, k = 1, 2, . . . are called spectral (or Fourier) coefficients and
contain intrinsic geometrical properties of the function f at different scales. The
set of {|wk|2, k = 1, 2, . . .} is called power (or Fourier) spectrum and is a repre-
sentation of function f in the so-called spectral (or Fourier) domain and gives
the frequency distribution of this function. An example is given in Fig. 2.2.

A famous example of such spectral basis functions is the spherical harmonics
which are the Laplacian eigenfunctions of the unit sphere. In general, due to the
fact that the basis of Fourier transform, the complex exponential functions, are
the eigenfunctions of Laplacian in Euclidean domain, the Fourier transform on
a meshed manifold is defined naturally based on the eigenvectors of the mesh
discrete Laplacian. By analogy, the Laplacian eigenvalues and eigenvectors are
interpreted as natural frequencies and vibration modes of the surface. This inter-
pretation encourages us to benefit form the power of classical Fourier analysis in
a mesh/graph setting.

The distinction between the discrete Laplacian based and classical Fourier
transforms is that in the latter case, one uses a fixed family of basis functions
while in discrete Laplacian based setting, the eigenvectors that are used as Fou-
rier bases change depending on geometry of manifold (ZHANG et al. 2007a). For
neuroanatomical surfaces with spherical topology, however, it is possible to fix
the bases by using spherical harmonics after a spherical parametrization of the
manifold. The ease of computation of spherical harmonics has motivated much
research, especially for neuroanatomical surface representation and reconstruc-
tion ; see for example GU et al. 2004, CHUNG et al. 2007, YOTTER et al. 2010 and
YOTTER et al. 2011.

Although, since the Laplace-Beltrami eigenfunctions reflect the intrinsic geo-
metry of the manifold, using them as Fourier bases outperforms the conventio-

40



+

-

0 FT

Figure 2.2.: Left : A function that is defined on a brain surface. Right : By applying
the Fourier transform (FT) on this function, its power spectrum is
computed. This is actually a representation of this function in the
spectral domain. See Eq. (2.5) and the explanations after that.

nal spherical harmonics in terms of reconstruction accuracy and compactness ;
at least for reconstruction of the cortical surface and amigdala (SEO et al. 2011).
Moreover, in reconstruction of hippocampus surfaces, SHI et al. 2010 have shown
that the Laplace-Beltrami eigenfunctions produce smooth, more detailed and
more naturally looking surfaces than the spherical harmonics by not generating
the artificial oscillation visible in the spherical harmonic results. Finally, as it is
pointed out by GERMANAUD et al. 2012 "this approach has the advantage of a
direct processing of native data without non linear alignment and spherical para-
metrization steps."

The spectral decomposition of Eq. (2.5) can be used to reconstruct a function
f from spectral weights. In this case, the squared Fourier coefficient |wk|2, also
known as spectral power, can be interpreted as the contribution of k-th Laplacian
eigenvector φk on reconstructing f . A trivial application of this reconstruction is
in smoothing (denoising) the function f by truncating the composition (2.5) on
a specific order while only the eigenfunctions corresponding to low frequencies
are kept. In this way, by truncating the composition in different orders, different
levels of smoothing can be achieved (QIU et al. 2006 ; LOMBAERT et al. 2015a).
As an interesting example, if the function f is the coordinates of points of a
surface, applying this method smooths the surface ; see Fig. 2.3 as an example of
spectral smoothing of a brain surface and a functional map.

The weights of spectral decomposition (2.5) can be potentially used for sur-
face comparison and matching but due to ambiguities of eigenfunction ordering
across surfaces, it is not possible to use those weights directly. LOMBAERT et al.
2015a proposed an optimal spectral transformation of spectral weights between
surfaces. Basically, the spectral decomposition weights of a surface are in a space
that is spanned by the eigenvectors of this surface. This transformation defines a
change of basis so that the decomposition weights of this surface can be transla-
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Figure 2.3.: (Top) Spectral smoothing of a brain surface by using 20 to 600 La-
placian eigenfunctions. As the number of eigenfunctions decreases,
complex geometry of the surface disappear and the surface becomes
smoother. The colormaps shows the sulcal depth. (Bottom) Spectral
smoothing of fMRI map by using 20 to 600 Laplacian eigenfunctions.
Here the function f is a fMRI map of a visual task represented on
the occipital lobe (Retinotopy). As the number of eigenfunctions de-
creases, the fMRI map becomes smoother. The figure is adopted from
Lombaert et al. 2015a.

ted to another surface.
If an appropriate function f is defined on a surface, the Fourier transform of f

provides tools to extract geometric information of the surface. In this direction,
GERMANAUD et al. 2012 applied the Fourier transform to the mean curvature
function of the brain surface to study the brain folding patterns. It transforms the
mean curvature from a spatial domain of brain surface to the spectral domain
of the first 5000 Laplace-Beltrami eigenvectors and generates a power spectrum.
Then, the power spectrum is partitioned into seven spectral bands (B0-B6). A
scheme of this method is shown in Fig. 2.4.

In the next step, the contribution of each band to synthesis of the mean cur-
vature value at each vertex is computed. They observed that the contribution
of the last 3 bands (i.e. B4, B5 and B6) to the total analysed spectral power is
about 93% and they are associated with variations of fold patterns while the
first bands reflect the global shape of the brain. Now, two synthesis strategies
can be considered : non-cumulative or cumulative syntheses. In non-cumulative
synthesis, that is equivalent to a band-pass filtering, each vertex is labelled by
the number of the band that has the most contribution to synthesis of the mean
curvature value. In cumulative synthesis, that is equivalent to low-pass filtering,
each vertex is labelled by the number of the band that determines whether it be-
longs to the sulcal or gyral pattern. This determination is given by the differential
contribution between two consecutive bands e.g. B6-B5 (Fig. 2.5).
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Figure 2.4.: A scheme of the SPANGY method suggested by Germanaud et al.
2012. From a mesh that represents the brain surface (in top left),
the mean curvature function and Laplacian eigenvectors are computed
(step 1). Then, the mean curvature function is decomposed by Lapla-
cian eigenvectors as in Eq. 2.5 to produce the raw power spectrum
(step 2). Finally, the raw power spectrum is binned into 7 bands that
contain spectral information of mean curvature function and folding
pattern. This figure is adopted from Germanaud et al. 2012.
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Figure 2.5.: Spectral parcellation of sulcal regions by determinant band strategy of
SPANGY method. (a) Low-pass filtered mean curvature series, started
from B6, with the 6 spectral bands (B1 to B6). The colormaps reflects
the position of each point on gyri (red) or sulci (blue) resulted from low-
pass filtering. (b) Differential contribution of two consecutive bands
together with zoom on the vicinity of 3 points. The map on the right
shows a cortical segmentation given by the dominant band color. The
map is shown on a smoothed brain surface with a gyral mask (salmon
red). This figure is adopted from Germanaud et al. 2012.
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Both strategies give parcellations of brain surface into segments that are com-
parable to the developmentally-defined segmentation as the primary, secondary
and tertiary folds. Indeed, in those maps, parcels with B4 labels overlap with
primary folds like the central and superior temporal sulci while parcels with B5
and B6 labels coincide with remifications and kinks. The connection between
the spectral bands and the primary, secondary and tertiary folds are supported
by the results given by DUBOIS et al. 2016. Moreover, by using this method, they
suggested 4 folding stages at the individual level during fetal to early post-natal
ages. In case of pathologies, the analysed total spectral power, the power of B4,
B5 and B6 bands and the count of primary, secondary and tertiary parcels resul-
ted from cumulative strategy are successfully employed in allometric modellings
to study the effect of microcephalies related to ASPM, PQBP1 and fetal alcohol
syndrom (GERMANAUD et al. 2014).

Fourier analysis is local in the spectral domain but global in the spatial do-
main. In other words, it doesn’t provide spectral information of functions in a
spatial neighbourhood of a surface point. The spectral powers encode global
information of the function and don’t reflect its local behavior. Post-processing
of spectral powers, however, might give some local information (GERMANAUD

et al. 2012). Nevertheless, for functions that contain highly varying local infor-
mation, it may be better to use a local analysis. Fortunately, some local spectral
analyses have been developed in the literature in continuous and discrete do-
mains. Among them, the windowed Fourier transform is a direct extension of
the standard Fourier transform to local manner. In the next section, this method
is explained completely and we will use it in our proposed surface complexity
analysis.

2.3. Windowed Fourier Transform
Lef f be a function defined on a surface S. The mesh Fourier transform des-

cribed in Section 2.2 gives a global frequency distribution of this function ; see
Fig. 2.2 for an example. In order to find the local frequency distribution of a
1D function f defined in R, the windowed Fourier transform was introduced
(GABOR 1946). In this method, f is localized around a point t in its domain
by using a window function g. So the localized version of f around point t is :
ft(u) = g(u − t)f(u). Now, the Fourier transform of ft is computed and gives
Fourier coefficients as

f̂(ω, t) = F(ft(u)), (2.6)

where F denotes the Fourier transform and ω is the frequency component. Ac-
cordingly, Fourier coefficients {f̂(ω, t)} give local information about f simulta-
neously in its original domain and frequency domain. We explain this method
for a 1D continuous function f(t) defined on the real line R adopted mostly from
KAISER 2011.
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Example 1. f(u) = sin(πu2) is a chirp function defined on the real line R ; see
Fig. 2.6a. This function has an instantaneous frequency ωinst(u) which is given by
the derivative of its phase :

2πωinst(u) = d(πu2)
du

= 2πu. (2.7)

Fourier coefficients of function f is computed by

f̂(ω) := F(f(t)) =
∫ ∞
−∞

e−2πiωuf(u)du. (2.8)

The distribution of frequency powers {|f̂(ω)|2, ω ∈ R≥0} of the chirp function is
represented in Fig. 2.6b. The Fourier analysis computes the frequency components
of function f over the whole domain and accordingly, as it is clear in the figure, it
hides the fact that f has a well-defined instantaneous frequency.
To know the frequency distribution of f around a specific point t, first we localize

f around this point by using a window function. Here, the Gaussian function
g(u) = ( 2

a
)1/4 exp(−πau2) is considered as the window function. Originally, g is

centered at origin but when it is translated to the point t, its energy is concentrated
around this point. For instance, Fig. 2.7a shows the translated window function
with a = 1 to t = 4 i.e. g(u− 4).
The localized version of f around t = 4 is then given by f4(u) = g(u−4)f(u) ; see

Fig. 2.7b. The Fourier transform of f4 is now computed and its power spectrum is
shown in Fig. 2.7c. It is seen that the energy of frequencies is concentrated around
ω = 4, consistent (although not exact) with instantaneous frequency of f (i.e.
ωinst(4) which is equal to 4).
The spectrogram of chirp function that represents frequency distribution over

spatial coordinate is shown in Fig. 2.8a. Now, from this spectrogram, it is clear
that the local frequency of f increases with u while it was not detectable from
global frequency distribution of Fourier transform ; compare Figs. 2.8a and 2.6b.
As it is seen in Fig. 2.7c, the obtained frequency components is not exactly

equal to the true frequency ωinst(4) = 4 but the frequency distribution contains
some other frequencies around ωinst. In fact, due to the Heisenberg’s Uncertainty
Principle, it is not possible to have sharp localizations in spatial domain and in
frequency domain at the same time (Kaiser 2011). In other words, if T is the
spread of window function in spatial domain and Ω is that in frequency domain,
T is proportional to Ω−1. Mathematically speaking, there is a constant c such that

TΩ ≥ c. (2.9)

In the mentioned Gaussian window function g, parameter a controls the spread
of window function and is called "window size". So, a smaller window size gives a
tighter localization in spatial domain which results in a wider frequency distribu-
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Figure 2.6.: (a) Chirp function : f(u) = sin(πu2). It is seen that the local frequency
of f increases with u. (b) The power spectrum of f is given by its
Fourier coefficients and shows the global frequency distribution of f .
From this distribution, however, it is not possible to detect the special
frequency behaviour of f .
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Figure 2.7.: (a) Translation of window function g(u) to u = 4. (b) f4(u) : Localized
version of the original function f shown in Fig. 2.6a around u = 4. (c)
f̂(ω, 4) : Power spectrum of f4. It is seen that the power of frequencies
is concentrated around instantaneous frequency ωinst = 4.
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Figure 2.8.: (a) spectrogram of f with window size a = 1. Right : spectrogram of
f with a tighter window a = 0.1. See Fig. 2.9a to compare window
spreads in spatial domain. It is seen that using a tighter window in
spatial domain (i.e. smaller window size) results in a wider frequency
distribution.

tion.
For instance, for the chirp function, if we set the window size as a = 0.1, a

tighter window is achieved in spatial domain in comparison to a window with the
size a = 1 (Fig. 2.9a), then the function is more localized around t = 4 (Fig. 2.9b)
but a wider frequency distribution is obtained in spectral domain (Fig. 2.9c). The
spectrograms derived from these two windows can be compared in Fig. 2.8. It is
clear that using a tighter window in spatial domain gives a wider distribution of
frequencies. It means that if we focus more in spatial domain, we get less accurate
results in frequency domain. On the other hand, if we choose a very wide window,
what we get is something like the ordinary Fourier transform.
There are a wide range of functions that can serve as a window. However, it has

been shown that the Gaussian function is the unique window that optimizes the
locality trade-off between spatial and frequency domains i.e. the inequality (2.9)
becomes equality (Mallat 2008, Theorem 2.5).

2.3.1. Extension to graphs
SHUMAN et al. 2016 have recently extended the windowed Fourier transform

to graph setting which enables us to do a "vertex-frequency analysis" of a function
that is defined on the vertices of a graph. Akin to continuous case, the general
idea of this method is to localize the function around a vertex by a translated
window function and then, compute the graph Fourier transform of this localized
function.
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Figure 2.9.: The effect of window size on analysis. Blue and red curves are corres-
ponding to window sizes a = 1 and 0.1 respectively. (a) Translation of
window function g(u) to u = 4. For smaller a, the window is tighter.
(b) f4(u) : Localized version of the original function f shown in Fig.
2.6a around u = 4. It is seen that by using a tighter window, f is more
localized. (c) f̂(ω, 4) : Power spectrum of f4. It is seen that : 1) The
power of frequencies is concentrated around instantaneous frequency
ωinst = 4 ; 2) The frequency distribution is more spread for tighter
window (red curve).
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The main problem in graph setting, in comparison to continuous setting, is
that the translation of a function on a graph is not trivial. In fact, the vertices
are spread in space with no trivial origin and ordering direction. To define a
translation operator in vertex domain, SHUMAN et al. 2016 took advantage of
properties of convolution with Dirac delta.

Starting from continuous setting, for functions f, g ∈ L2(R), the classical
convolution h = f ∗ g is defined as

h(u) = (f ∗ g)(u) :=
∫
R
f(τ)g(u− τ)dτ. (2.10)

Two nice properties of convolution is that :
1. The Fourier transform of h is the production of Fourier transforms of f and

g i.e. ĥ = f̂ ĝ. As a result, from the definition of inverse Fourier transform,
we get

h(u) = (f ∗ g)(u) :=
∫
R
ĥ(ω)e2πiωudω =

∫
R
f̂(ω)ĝ(ω)e2πiωudω. (2.11)

2. Translation of any function g ∈ L2(R) can be computed by the convolution
of g with Dirac delta i.e.

(Ttg)(u) := g(u− t) = (g ∗ δt)(u). (2.12)

From Eq. (2.11), we get

(Ttg)(u) := (g ∗ δt)(u) =
∫
R
ĝ(ω)δ̂t(ω)e2πiωudω (2.13)

=
∫
R
ĝ(ω)e−2πiωte2πiωudω. (2.14)

By analogy d, for any function g defined on vertices {P1, P2, . . . , PN} of a graph,
a generalized translation of g to an arbitrary vertex Pi is defined by

(Tig)(n) :=
√
N(g ∗ δi)(n) =

√
N

N∑
l=1

ĝ(l)φl(i)φl(n), (2.15)

where φl’s are graph Laplacian eigenvectors. By using this operator, a window
function g can be translated to any vertex Pi. Now, the localized version of a
function f around vertex Pi is computed by fi(n) = f(n) × (Tig)(n). Finally, the
Fourier coefficients of fi can be computed as usual :

Sf(i, k) = 〈fi, φk〉, i, k = 1, 2, . . . , N. (2.16)

Theoretical aspects of the method together with some examples of signal pro-

d. We remind that e−2πiωu is Fourier basis in continuous 1D setting.
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cessing on graphs are given by SHUMAN et al. 2016. We use this method for
surface complexity analysis where surfaces are modelled by triangular meshes.
For this purpose, we extend the method to mesh setting through replacing the
graph Laplacian by a geometric Laplacian which convey geometrical information
of the underlying mesh, thus is more appropriate for surface analysis. The details
are given in the next section.

2.4. Mesh windowed Fourier transform
In this thesis, we extend the graph windowed Fourier transform to mesh fra-

mework by using geometric Laplacian eigenvectors that account for the surface
geometry. Since a mesh is a special kind of a graph, embedded in a surface, one
may argue that the graph spectral theory tools can be applied on a mesh without
any adaptation. In general, it is true but unlike the graph Laplacian in which only
the connectivity of vertices are considered, the geometric Laplacian takes into
account geometric properties of the surface. Moreover, as ZHANG et al. 2007a
pointed, the geometric Laplacian approximates the continuous Laplace-Beltrami
operator for Riemannian manifolds more accurately than the graph Laplacian.
More discussions and comparisons between the graph Laplacian and the geome-
tric Laplacian can be found in LEVY 2006 ; WARDETZKY et al. 2007 ; PEINECKE

et al. 2007 ; REUTER et al. 2009a ; HAMMOND et al. 2011 ; TAN et al. 2015. In the
following section, a geometric Laplacian is presented through the finite element
discretization of Laplace-Beltrami operator.

2.4.1. Discretization of Laplace-Beltrami operator
For a compact Riemannian manifold S e.g. a 2D surface in R3, one can consider

a set of square integrable functions defined on the surface : L2(S) = {u : S →
R|
∫
S u

2 < ∞}. The Laplace-Beltrami operator ∆, associated with the surface
S, is defined as a combination of the gradient and divergence operators, i.e.
∆ = div ◦ grad and is a generalization of the Laplacian operator in Euclidean
space to Riemannian manifolds. The spectrum of this operator {(λk, uk) ∈ R+ ×
L2(S), k = 1, 2, . . .} is generated by solving the differential eigenvalue problem
of ∆ :

∆uk = −λkuk, (2.17)

in which λk and uk are called the kth-eigenvalue and eigenfunction of ∆ (BER-
GER 2003). The spectral theory based on the Laplace-Beltrami spectrum can be
used to obtain a new representation of the space L2 in the so called spectral
domain. To solve the differential eigenvalue problem of ∆ for a general surface,
the surface is discretized followed by a discretization of Eq. (2.17).

Finite element discretization.
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Here, we use the linear finite (FE) element method (REUTER et al. 2009a) to
discretize the continuous differential eigenvalue equation (2.17). To do so, first
the weak form of this equation is derived :

〈∆ui, ψj〉 = −λi〈ui, ψj〉, ∀ψj ∈ L2(S), (2.18)

where 〈., .〉 denotes the Euclidean inner product of L2(S), i.e. ∀u, v ∈ L2(S) : 〈u, v〉 =∫
S uv. Now, by using the Green Formula we obtain

〈∇ui,∇ψj〉 = −λi〈ui, ψj〉, ∀ψj ∈ L2(S). (2.19)

To derive discretization, let G = {V,E} be a triangular mesh modelling the
surface S where V is the set of vertices, V = {P1, P2, . . . , PN}, |V | = N <∞ and
E is the set of edges. The linear discretized function ψj is defined on the mesh
vertices such that for every vertex Pn, ψj(n) = δjn. In this way, the function ui
can be interpolated by a linear combination of ψj ’s :

ui ' φi =
N∑
k=1

φkiψk where φki = ui(k). (2.20)

Now, by substituting the interpolant of Eq. (4.37) in the weak form (2.19), we
get

N∑
k=1

φki〈∇ψk,∇ψi〉 = −λi
N∑
k=1

φki〈ψk, ψj〉, (2.21)

where 〈., .〉 denotes the Euclidean inner product of l2(G) :

l2(G) = {u : G→ R|
N∑
i=1

u2(i) <∞} and ∀u, v ∈ l2(G) : 〈u, v〉 =
N∑
i=1

u(i)v(i).

(2.22)
In matrix form, this is equivalent to the following algebraic generalized eigen-

value equation
Aφi = λiBφi, (2.23)

where φi = [φ1i, φ2i, . . . , φNi]T and A and B are N × N sparse matrices with the
following elements :

A(i, j) =


cotαij+cotβij

2 if (i, j) ∈ E,
−∑k∈N (i) A(i, k) if i = j,
0 o.w.

(2.24)

and

B(i, j) =


|t1|+|t2|

2 if (i, j) ∈ E,∑
k∈N (i) |tk|

6 if i = j,
0 o.w.

(2.25)
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Figure 2.10.: A triangulation with two triangles t1 and t2 that share the edge PiPj.
The angles αij and βij are those that appear in discretization of
Laplace-Beltrami operator by linear FEM ; see Eqs. (2.24) and (2.25).

where αij and βij are the angles opposite to the edge PiPj in two triangles t1 and
t2 sharing this edge, |tk| indicates the area of the triangle tk and N (i) denotes
the index set of all vertices of the 1-ring neighbourhood of Pi.

The matrix B is positive definite and defines the so called B-inner product in
IRN :

∀f, g ∈ IRN , 〈f, g〉B = f tBg. (2.26)

Solutions of the discrete eigenvalue problem (2.23) are nonnegative real eigen-
values 0 = λ1 < λ2 ≤ . . . ≤ λN and a set of eigenvectors {φj, j = 1, 2, . . . , N} in
IRN which are orthonormal with respect to B-inner product i.e. 〈φi, φj〉B = δij
where δij is Kronecker delta.

Advantages of FE Laplacian.
An advantage of using FE Laplacian of a mesh surface is that it is convergent

to the Laplace-Beltrami operator of the surface. Formally, Let h be the mesh size
i.e. the longest edge of the mesh. By decreasing h, the approximated eigenvalues
and eigenvectors through linear FE scheme converge to their exact values i.e.
those of the Laplace-Betrami operator with orders 2 and 1, respectively. Upper
bounds of the approximation errors are given in the following theorem (STRANG

et al. 1973) :

Theorem 2. Let (λ̃i, φi) be the approximation of (λi, ui) computed by linear FEM.
Then

λi ≤ λ̃i ≤ λi + 2γh2λ2
i , (2.27)

‖ui − φi‖2 ≤ Ch2λi, (2.28)

where γ and C are constants.

Another advantage of FE Laplacian of a mesh surface is that it accounts for
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the geometry of the mesh. In fact, the surface area and angles of mesh elements
appeared in matrices A (2.24) and B (2.25) show how the geometry of neigh-
bouring triangles on the mesh contributes to the definition of Laplacian operator.

Mesh Fourier transform.
Now, the FE Laplacian eigenvectors can be used to define the Fourier trans-

form on a mesh. Given a function f defined on the vertices of a mesh, Fourier
transform coefficients of f are given by the set

f̂(l) := 〈f, φl〉B, l = 1, 2, . . . , N (2.29)

In this setting, the Parseval’s identity is

〈f, g〉B = 〈f̂ , ĝ〉, (2.30)

where 〈., .〉 denotes the Euclidean inner product. It yields ‖f‖B = ‖f̂‖2 where
‖.‖B :=

√
〈., .〉B is the norm induced by the B-inner product.

In following, we prove a lemma explaining the interaction between the mesh
Fourier transform and the FE Laplacian.

Lemma 1. Let f ∈ IRN be a function defined on the vertices of a triangulation
and L ∈ IRN×N be the discrete Laplace-Beltrami operator i.e. L = B−1A. Then,
the Fourier coefficients of the function y = Lf are ŷ(l) = λlf̂(l), l = 1, 2, . . . , N .

Proof. The Fourier coefficients of y are as

ŷ(l) := 〈Lf, φl〉B = f t(B−1A)tBφl
= f tλlBφl (2.31)
= λl〈f, φl〉B (2.32)
= λlf̂(l),

where Eq. (2.31) is given by Eq. (2.23) and the symmetry of matrices A and B,
and the definition of B-inner product (2.26) gives (2.32).

We will use the above lemma later to prove that our proposed gyrification in-
dices quantify exactly the definitions of the surface complexity. It also enables us
to compute the norm of the FE Laplacian L. To this end, we prove the following
theorem.

Theorem 3. For discrete Laplace-Beltrami operator L ∈ IRN×N , we have ‖L‖B =
‖L‖2 = λN .
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Proof. By definition of matrix norm we have

‖L‖B = sup
‖u‖B=1

‖Lu‖B

= sup
‖û‖2=1

‖L̂u‖2 (2.33)

= sup
‖û‖2=1

(
N∑
l=1

λ2
l û

2
l

)1/2

, (2.34)

where (2.33) and (2.34) are derived from Parseval’s identity and Lemma 1 respec-
tively. Since the eigenvalues of L are ordered increasingly, 0 = λ1 ≤ λ2 ≤ . . . ≤ λN ,
one can write

sup
‖û‖2=1

(
N∑
l=1

λ2
l û

2
l

)1/2

≤ λN sup
‖û‖2=1

(
N∑
l=1

û2
l

)1/2

= λN . (2.35)

On the other hand, we know that φ̂N = δN where δN is Kronecker delta. So
φ̂N = [0, 0, . . . , 0, 1] ∈ {u ∈ IRN : ‖û‖2 = 1} and

sup
‖û‖2=1

(
N∑
l=1

λ2
l û

2
l

)1/2

≥
(

N∑
l=1

λ2
l φ̂N(l)2

)1/2

= λN . (2.36)

Inequalities (2.35) and (2.36) together with (2.34) give ‖L‖B = λN . Since L is
symmetric, ‖L‖2 = λN as well.

2.4.2. Window function and translation operator
Now we extend the window Fourier transform from graph setting to mesh

setting by exploiting the eigenvalues and eigenvectors of FEM Laplacian operator
computed in the previous section. Let f : V → R be a function defined on
the vertices of a mesh. To localize this function around a specific vertex, we
need a window function with local support and a translation operator to move
the window function to that specific vertex. Following SHUMAN et al. 2016, we
consider the window function

ĝ(l) = C exp(−τλl), (2.37)

defined in the spectral domain. In this formula, τ is a parameter which deter-
mines the size of the window, λl is the l-th Laplace-Beltrami eigenvalue and C is
chosen such that ‖ĝ‖2 = 1.

The window size parameter τ sets a locality trade-off between the frequency
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and spatial domains (SHUMAN et al. 2016 ; KAISER 2011). By increasing the win-
dow size, we will have a wider window in the spatial domain and the function
f will be localized in a larger neighbourhood around each vertex. On the other
hand, we will obtain more local frequency distribution of the function in that
neighbourhood. The spread of window function in spatial and frequency do-
mains is measured by the area of the Heisenberg box (MALLAT 2008, Section
4.2, SHUMAN et al. 2016, Section 6.6). It is proved that the Gaussian function
is the unique window that minimizes the area of the Heisenberg box (MALLAT

2008, Theorem 2.5). Since λl is proportional to the square of the spatial fre-
quency (GREBENKOV et al. 2013 ; GOLBABAI et al. 2012), i.e. λl ∝ ω2

l , the win-
dow function (2.37) corresponds to a Gaussian function in the frequency domain
ĝ(l) ∝ exp(−τω2

l ).
Akin to graph setting, the fact that there is no canonical origin and direction on

a triangulated mesh makes it non trivial to define a translation operator. Never-
theless, the translation operator of graphs, given by graph convolution operator
Eq. (2.15), can be extended to mesh setting through some modifications to take
into account the orthogonality of FE Laplacian eigenvectors (2.26).

In the following, we obtain the translation operator on mesh setting without
using the convolution operator. In this way, the translation operator is construc-
ted with inspiration from the properties of the generalized Fourier transform in
continuous domain. More precisely, let {φl, l = 1, 2, . . .} be the basis of the gene-
ralized Fourier transform in continuous domain and assume that those functions
are orthonormal with respect to a function ψ i.e. 〈φl, φk〉 =

∫
φlψφk = δkl. From

the properties of the generalized Fourier transform, translation in spatial domain
causes a modulation in the Fourier domain :

h(x) = g(x− x0) ⇔ ĥ(k) = φk(x0)ψ(x0)ĝ(k). (2.38)

In other words, the translation of function g to point x0 is given by the inverse
Fourier transform of the modulated Fourier coefficients ĝ :

(Tx0g)(x) := g(x− x0)
= F−1{φk(x0)ψ(x0)ĝ(k)}, (2.39)

where F−1 denotes the inverse Fourier transform.
In mesh setting, the Fourier basis is the set of Laplace-Beltrami eigenvectors
{φl, l = 1, 2, . . . , N} which are orthonormal with respect to the matrix B. If g is
a function defined on vertices of mesh, inspired by Eq. (2.39), the translation of
g to vertex Pi is defined as

(Tig)(n)
(2.39)
:=
√
NF−1{(B(i, :)φl)(n)ĝ(l)} (2.40)

=
√
N

N∑
l=1

N∑
m=1

φl(n)
(
B(i,m)φl(m)ĝ(l)

)
, (2.41)
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where B(i, :) denotes the i-th row of B.
Eventually, the translation operator on a triangular mesh is defined as,

Ti : IRN → IRN i = 1, 2, . . . , N,

(Tig)(n) :=
√
N

N∑
l=1

N∑
m=1

(
ĝ(l)B(i,m)φl(m)φl(n)

)
. (2.42)

The translation operator Ti shifts the center of the window function g to vertex
Pi. In other words, (Tig)(n) is the value of Pi-centered window function at vertex
Pn. We note again that the same translation operator on mesh setting can be
constructed through the mechanism proposed by SHUMAN et al. 2016 along with
some modifications for orthogonality of FE Laplacian eigenvectors.

Experimental features.
1. Gaussian behavior :
In continuous setting, the inverse Fourier transform of a modulated Gaussian

function is still a Gaussian function in the spatial domain. In other words, Gaus-
sian functions are the fixed points of the Fourier transform. In mesh setting,
given a Gaussian window function g in the spectral domain by Eq. (2.37), Eq.
(2.40) says that Tig is the inverse Fourier transform of a modulation of g. Since
the mesh Fourier transform is a good approximation of the Fourier transform in
continuous setting (due to the convergent properties of FE Laplacian given in
Theorem 2), inspired by the case in the continuous setting, one may expect Tig
to be a Gaussian function. To the best of our knowledge, there is no theoretical
proof for that but it can be observed experimentally. Particularly, the following
properties are observed :

– Tig(n) > 0, ∀i, n = 1, 2, . . . , N
– The maximum value of Tig is obtained at vertex Pi, i.e.

(Tig)(i) = max
1≤n≤N

(Tig)(n).

– The value of (Tig)(n) decreases with distance between Pn and Pi.

2. Window spread :
A Gaussian window function Tig, centered at a point Pi in spatial domain, has

a global support but its values decrease exponentially. Therefore, for points far
from the center, the values of Tig almost vanish thus negligible in computations.
Accordingly, we define the windowed neighbourhood of a point Pi as a set of
mesh points with nonnegligible Tig values. For this purpose, the values of Tig
are thresholded.

Formally, consider a set of vertices around the central vertex Pi where the
value of (Tig)(n) is more than 0.001 of (Tig)(i). We call the set as the windowed
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(a)

(b)

Figure 2.11.: (a) Classic window function Eq. (2.37) and (b) adaptive window func-
tion Eq. (2.44) with τ = 3e−3 around the center point of a small and
a large rectangle. The windowed neighbourhood (WN) of the center
point is shown on red color and the relative spread of window has
been written on each rectangle. It is clear that if the window size pa-
rameter τ is fixed, the relative spread of the classic window changes
dramatically with the surface area while that of the adaptive window
is almost stable.

neighbourhood (WN) of Pi i.e.

WN(Pi) = {Pn | (Tig)(n) ≥ 0.001× (Tig)(i)}. (2.43)

From this definition, one may compute the spread of window function around a
vertex Pi as the sum of area of triangles whose vertices are in WN(Pi). We use the
definition of window spread later to compute the proportion of a brain surface
that is covered by a window function with a specific size.

2.4.3. Adaptive window function
When a database of cortical surfaces with highly different sizes are to be ana-

lysed, choosing an appropriate window size is crucial. With the same window
size, the relative spread of window (i.e. the ratio between the spread of window
and the surface area) should be similar for all subjects. As we will show in fol-
lowing, it is not the case for the Gaussian window function given by Eq. (2.37).
Consequently, using it leads to an inconsistent analysis across subjects. To treat
this issue, we propose to modify the window function so that it is adapted auto-
matically with respect to the surface size of each individual subject. The details
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Figure 2.12.: Translation operator (2.42) moves the adaptive window function
(2.44) with τ = 1e−3 to three different vertices of the mesh. The red
color highlights the window spread around the yellow central vertices.

of this strategy are given in the following.
It is easily seen from Eqs. (2.23)–(2.25) that if the surface area is scaled by a

factor q2, the eigenvalues are scaled by 1/q2. In this case, due to the definition
of window function (2.37), the relative spread of window (i.e. the ratio between
the spread of window and the surface area) is affected by the size of the sur-
face. In other words, given a fixed window size τ for the original and the scaled
surfaces, the window covers relatively larger space on the smaller surface and
vice versa. This leads to an inconsistent large and small scale spectral analysis
for small and large surfaces, respectively ; see Fig. 2.11a.

To keep the relative spread of window constant automatically across surfaces
(see Fig. 2.11b), we introduce an adaptive window function in which the surface
area is incorporated :

ĝ(l) = C exp(−τ |S|λl), (2.44)

where |S| denotes the surface area of surface S. Note that by this definition, a
dimensionless parameter is obtained inside the exponential function. As we will
see in Section 2.5.3.1, the adaptive window function also plays an important role
to derive scale invariant gyrification indices.

Translation of the adaptive window function (2.42) to different vertices is
shown in Fig. 2.12. In Fig. 2.13, the spread of the adaptive window function
(2.44) with 3 different window size parameters, τ = 2e − 4, 1e − 3 and 5e − 3
is plotted on a cortical surface around a specific vertex shown as a yellow point
on the precentral gyrus. As τ increases, the spread of window in spatial domain
increases as well. While the narrow window, τ = 2e− 4, covers a part of a gyrus
and/or sulcus, the medium window, τ = 1e − 3, covers several folds and the
wide window, τ = 5e − 3, covers a big portion of the cortical surface equivalent
to a lobe. Tuning the window size parameter τ changes the spatial scale of the
analysis.

The adaptive window function with the same three sizes is shown in frequency
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(a) (b) (c)

Figure 2.13.: The spread of the adaptive window function (2.44) with 3 different
window sizes around the yellow vertex on a cortical surface. The red
color highlights the window spread around the vertex. (a) A narrow
window, with τ = 2e − 4, covers about 1.5% of the surface. (b) A
medium window, with τ = 1e−3, covers about 8% of the surface. (c)
A wide window, with τ = 5e− 3, covers about 36% of the surface.

domain in Fig. 2.14. As expected, larger window sizes results in tighter windows
in frequency domain. The window function with medium size τ = 1e − 3 is
depicted in spatial and frequency domain in Fig. 2.15. It is clearly seen that the
window function in spatial domain is localized around its center such that it has
high values at points near the center and low values at points far from the center.

The goal of defining a window function and translation operator was to loca-
lize the function f around each vertex of mesh. To this end, by multiplying the
function f by the translated window function Tig, it is localized around vertex
Pi :

f̃i(n) = (Tig)(n)f(n). (2.45)

The localization process is shown in Fig. 2.16.

2.4.4. Mesh windowed Fourier transform coefficients
The mesh windowed Fourier transform coefficients of a function f ∈ RN are

defined as the modulation of the localized function f̃i by Fourier atoms {φk, k =
1, 2, . . . , N} :

Sf(i, k) := 〈f̃i, φk〉B, (2.46)

where i = 1, 2, . . . , N is the index of vertex and k is the index of frequency. This
gives us a frequency spectrum for every vertex Pi of the mesh which consists of
the so called "frequency powers" |Sf(i, k)|2, k = 1, 2, . . . , N ; see Fig. 2.17. The
frequency spectrum can be seen as frequency distribution of function f in a local
neighbourhood around the vertex Pi. The summation of the frequency powers is
called the total power (TP) of the frequency spectrum (MALLAT 2008).
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Figure 2.14.: Adaptive window function (2.44) with three different window sizes
τ = 2e − 4, 1e − 3, 5e − 3 in frequency domain. As the window size
increases, the window becomes tighter in this domain. ωl denotes
frequency component that equals to

√
λl. It is seen that the window

function is a Gaussian function depicted in positive frequency domain.
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Figure 2.15.: (a) Adaptive window function with size τ = 1e− 3 around the yellow
point. It resembles a Gaussian function on the brain surface, with a
peak on the center (yellow point) and lower values as we go far from
the center. (b) The same window in frequency domain.
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Figure 2.16.: This figure visualizes the localization of a function f around the yellow
point on the precentral gyrus ; see Eq. (2.45).

Figure 2.17.: Local frequency distributions of a function computed by the mesh
windowed Fourier transform. In contrast, Fourier transform of this
function gives a global frequency distribution as represented in Fig.
2.2.
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2.5. The proposed gyrification indices
To define new gyrification indices (GIs), we apply the mesh windowed Fourier

transform on the mean curvature of a brain surface. First, the notion of mean
curvature is explained briefly. Then, the new GIs and their properties are intro-
duced.

2.5.1. Mean curvature
Given any smooth curve C and a point P on it, the magnitude of curvature

of the curve in that point is defined to be the reciprocal of the radius of its
osculating circle ; see Fig. 2.18a. In this way, curvature measures locally how a
curve is deviated from being a straight line. Mathematically speaking, if γ(t) =
(x(t), y(t), z(t)) is a parametrization of C, then the curvature is defined by

κ(t) = |γ
′ × γ′′|
|γ′|3

. (2.47)

For a smooth 2D surface S embedded in 3D space, at each point P , one can consi-
der a normal outer vector NP and infinite number of tangent vectors {XiP , i ∈
I ⊂ R} where I is an indexing set. For each tangent vector XiP , there is a unique
plane Si that contains XiP and NP . The intersection of this plane and the surface
is a curve that passes through the point P . The curvature of this curve is called
"normal curvature". Among infinite number of normal curvatures, the minimum
and maximum ones are called "principal curvatures", κ1P and κ2P respectively
that are corresponding to "principal directions" X1P and X2P . These directions
are proved to be orthogonal i.e. X1P ⊥ X2P ; see Fig. 2.18b. Geometrically spea-
king, the mean curvature is an extrinsic parameter and is equal to half of the
trace of the second fundamental form.

Principal curvatures are the maximal and minimal degrees of bending of the
surface at point P . The average of κ1 and κ2 is called the "mean curvature" of
the surface at point P . The mean curvature of point P quantifies the degree of
bending of the surface at this point. As examples, 1) the mean curvature of a
sphere with radius r at every point of the sphere surface is equal to 1/r ; 2) the
mean curvature of a flat surface is 0.

To estimate the principal curvatures of a triangulation, we use the method
proposed by TAUBIN 1995. In this method, first a tensor of curvatures is defined
by a 3 × 3 matrix as a map that assigns normal curvatures to each point of the
surface. Then, the principal curvatures and principal directions are computed
by eigenvalues and eigenvectors of this matrix. The mean curvature of a brain
surface is shown in Fig. 2.2. It has positive values in concave parts (gyri) and
negative values in convex parts (sulci). In walls of gyri, where the surface is
almost flat, the mean curvature is about 0. The readers are referred to KREYSZIG
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Figure 2.18.: (a) Osculating circle of curve C at point P . The curvature of the
curve at point P is inverse of the radius of this circle. (b) Principal
curvatures κ1P and κ2P of surface S at point P shows the maximal
and minimal degree of bending of the surface at that point (Schröder
et al. 2011)

1991 for more details.

2.5.2. New gyrification indices
In this section, we define two new GIs and we show that they satisfy all desi-

rable properties mentioned in Section 1.4. To define a GI that measures "surface
complexity", first we should have a clear interpretation of surface complexity. In
this paper, we interpret this notion explicitly in two intuitive ways based on the
features of the surface bending :

In a neighbourhood around each point of the cerebral cortex, the surface
complexity is quantified by

I. [MAG.] the magnitude of sulcal/gyral bending,

II. [VAR.] the spatial variation of sulcal/gyral bends.

Let Pm and Pn are two points of a surface S. [MAG.] (resp. [VAR.]) means that
the degree of surface complexity of point Pm is less than that of Pn if and only if
in a neighbourhood around Pm the surface is less bended than around Pn (resp. if
and only if in a neighbourhood around Pm the variation of folds is less than that
around Pn). The situation is depicted in Fig. 2.19a (Fig. 2.19b) where a cross-
section of a surface is shown by green points and neighbourhoods around Pm and
Pn are determined by red circles. [MAG.] ([VAR.]) implies that GI(Pm) < GI(Pn).

Due to the natural link between the surface bending and the mean curvature,
the [MAG.]/[VAR.] interpretations mean that in a highly folded region, [MAG.]
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Figure 2.19.: This figure visualizes two features of surface bending that define the
notion of surface complexity. (a) Surface is more complex where it
is more bended. (b) Surface is more complex where the variation
of bends is higher. They mean that we should define GIs such that
GI(Pm) < GI(Pn).

the magnitude / [VAR.] the variations of the mean curvature are higher in com-
parison to other regions.

To quantify those interpretations, we propose two novel local GIs, called spec-
tral gyrification index (sGI) and weighted spectral gyrification index (wGI) based
on a local spectral analysis of the mean curvature. They are scale invariant GIs
computed directly on the cortical surface with neither requiring a reference sur-
face nor a smoothing procedure.

While sGI gives information about the magnitude of the mean curvature in a
neighbourhood around each point on the cortical surface ([MAG.]), wGI takes
into account the spatial variation of folds in that neighbourhood ([VAR.]).

To define gyrification indices that fulfill our interpretations on the surface com-
plexity, i.e. [MAG.] and [VAR.], we take the mean curvature as a function defi-
ned on the vertices of a meshed surface. By applying the mesh windowed Fourier
transform to this function, we will have a local frequency spectrum at each ver-
tex Pi of the mesh. For the total power (TP) of a local frequency spectrum we
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have the following result.

Proposition 1. The TP of the frequency spectrum of the localized mean curvature
function at vertex Pi is equal to the norm of this function i.e. ∑N

k=1 |Sf(i, k)|2 =
‖f̃i‖2

B, where f̃i is the localized version of the mean curvature around vertex Pi and
Sf(i, k) is the mesh windowed Fourier transform coefficient of f̃i at frequency k.

Proof. From the definition of window Fourier coefficient Eq. (2.46) we get

N∑
k=1
|Sf(i, k)|2 =

N∑
k=1
|〈f̃i , φk〉B|2.

by Parseval’s identity (2.30), we move to frequency domain

N∑
k=1
|〈f̃i , φk〉B|2 =

N∑
k=1
|〈 ̂̃fi , φ̂k〉|2.

The Fourier transform of φ̂k is Kronecker delta δk. It gives

N∑
k=1
|〈 ̂̃fi , φ̂k〉|2 =

N∑
k=1
| ̂̃fi(k)|2,

which by definition equals to ‖ ̂̃fi‖2
2. Finally, Parseval’s identity gives

‖ ̂̃fi‖2
2 = ‖f̃i‖2

B,

and it delivers the desired equality :

N∑
k=1
|Sf(i, k)|2 = ‖f̃i‖2

B. (2.48)

Due to our first interpretation [MAG.], the degree of complexity of a region
is determined by the magnitude of the localized mean curvature in that region
which is encoded in its norm. On the other hand, Proposition 1 shows that the
norm of the localized mean curvature at each vertex Pi is equal to the total power
of its local frequency spectrum. All in all, it is understood that the local degree of
complexity can be computed from total frequency power of the localized mean
curvature. Accordingly, it leads to the definition of our first degree of complexity :

Spectral Gyrification Index (sGI) at vertex Pi :

sGI(i,S) =
N∑
k=1
|Sf(i, k)|2. (2.49)
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In this equation, sGI(i,S) denotes the spectral gyrification index of vertex Pi of
surface S which equals to total frequency power of localized mean curvature
around vertex Pi.

On the other hand, based on our second interpretation [VAR.], the variation
of the mean curvature increases in more folded regions. Since the high variation
of a function is encoded in the high frequency band of its frequency spectrum,
we give larger weights to higher frequency powers to take into account this
interpretation. Especially, if the weights are Laplacian eigenvalues, we will have
the following result :

Proposition 2. The weighted TP of the frequency spectrum of the localized mean
curvature function at vertex Pi is equal to norm of the Laplacian this function,
i.e.∑N

k=1

(
λk

λ2

)2
|Sf(i, k)|2 = 1

λ2
2
‖Lf̃i‖2

B where f̃i is the localized version of the mean
curvature around vertex Pi, Sf(i, k) is the mesh windowed Fourier transform co-
efficient of f̃i at frequency k and L = B−1A is the Laplacian operator.

Proof. Since Sf(i, k) is the Fourier coefficient of f̃i, Lemma 1 gives

λk|Sf(i, k)| = (L̂f̃i)(k).

Summation over k gives

N∑
k=1

(λk
λ2

)2
|Sf(i, k)|2 = 1

λ2
2

N∑
k=1

(
(L̂f̃i)(k)

)2

. (2.50)

Due to the definition of norm-2, the right-hand side of Eq. (2.50) is equal to
1
λ2

2
‖L̂f̃i‖2

2. On the other hand, Parseval’s identity gives ‖L̂f̃i‖2 = ‖Lf̃i‖B, which
proves the result.

Since the Laplacian operator L measures how much a function differs at a
point from its average value at neighbour points, (Lf̃i)(m) measures the variation
of f̃i at vertex Pm and then, ‖Lf̃i‖B sums up all of these variations of localized
f around vertex Pi. Consequently, Proposition 2 shows that the weighted total
power of frequency spectrum of the localized mean curvature at each vertex Pi
measures the variations of this function.

It brings us the second GI :

Weighted Spectral Gyrification Index (wGI) :

wGI(i,S) =
N∑
k=1

(
λk
λ2

)2

|Sf(i, k)|2. (2.51)

In this equation, the weights are the normalized eigenvalues of the Laplace-
Beltrami operator that consist an increasing sequence and contain information

68



about the shape of surface (REUTER et al. 2006 ; WACHINGER et al. 2015). The
normalization by the first nonzero eigenvalue λ2 removes the effect of the size
of surface on weighting (LEFÈVRE et al. 2012). In this definition, both Laplace-
Beltrami eigenvalues and eigenvectors are involved.

Global Gyrification indices.
For some medical purposes, we need to describe the cortical complexity with

a global value for the entire cortex. To this end, a global GI can be computed
from the proposed local sGI/wGI. Given a surface mesh with M triangular faces
S = {t1, t2, . . . , tM}, GI defines a function on the vertices of this mesh. We define
the global GI of surface S as the mean value of this function :

GI(S) := 1
|S|

∫
S

GI(t,S)dt

= 1
|S|

M∑
j=1

1
3

3∑
i=1

GIj(i,S)|tj|, (2.52)

where GI(t,S) denotes the GI value (sGI or wGI) of the surface element t, |S| is
the surface area, GIj(i,S) is the GI value of the i-th vertex of the face tj and |tj|
is the area of tj.

2.5.3. Properties of new gyrification indices
The intrinsic nature of the window Fourier transform enables us to compute

the surface complexity at different spatial scales. Indeed, by changing the win-
dow size parameter, the mean curvature function is localized in different scales.
Consequently, different amount of information is considered around each corti-
cal point that results in complexity analysis at different spatial scales.

2.5.3.1. Geometric invariance

We now provide some important properties of the proposed GIs. The Laplace-
Beltrami spectrum is invariant under isometric transformations. It makes sGI and
wGI isometry invariant. Moreover, as demonstrated below, sGI and wGI are both
scale invariant by their constructions.

Proposition 3. The gyrification indices sGI and wGI are scale invariant.

Proof. Assume that the surface S2 is the scaled version of the surface S1 by a
factor q2 i.e. |S2| = q2|S1|. Since the matrix B of Eq. (2.25) in discretization of L
is composed of area of triangles of the mesh, it is scaled by q2. Accordingly, the
Laplace-Beltrami eigenvalues are scaled by 1/q2 while the eigenvectors are scaled
by 1/q to preserve the orthonormality. Mean curvature is also scaled by 1/q.
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Thanks to the adaptive window function (2.44), the translation operator and
the mesh windowed Fourier coefficients Sf(i, k) remain unchanged because

Sf(i, k)S2 = 〈f̃i,S2 , φk,S2〉BS2
= q2〈1

q
f̃i,S1 ,

1
q
φk,S1〉BS1

= Sf(i, k)S1 .

Due to their definitions, it implies that sGI and wGI remain unchanged under
scaling.

It is noteworthy that based on its definition in Eq. (2.52), the global GI is scale
invariant as the local ones.

2.5.3.2. Sensitivity to the number of mesh vertices

The proposed GIs, sGI and wGI, rely on a triangulation of the cortical surface.
Hence, they may have interactions with the number of vertices of this triangula-
tion. This possible interaction becomes more important when studying growing
shapes/brains, due to the large variations of size and geometry across ages, that
affect directly the number of necessary vertices to represent a cortical surface.
The desired situation is that a GI should be robust to changes in number of
vertices. In this section, we empirically show the dependency of our GIs on the
number of vertices, using the unit sphere.

We consider a unit sphere surface triangulated by N = 642 vertices. The trian-
gulation is refined 3 times such that at each time, each triangle is subdivided to
4 smaller triangles with approximately equal areas. Eventually, 4 triangulations
of the unit sphere surface are available with N = 642, 2562, 10242, 40962 vertices.

The mean curvature and the first 500 eigenpairs of Laplace-Beltrami operator
are computed for each surface. The global sGI and wGI of each surface are com-
puted through Eq. (2.52) and the results are shown in Fig. 2.20. In this figure,
the global values of sGI and wGI are plotted versus the natural logarithm of N . It
is seen that while the number of vertices is multiplied approximately by 64, sGI
and wGI are multiplied by 1.03 and 1.12, respectively which are very close to
the desired value 1. Consequently, one may assume that sGI and wGI are almost
robust to sampling and remeshing.

2.6. Summary
In this chapter, we gave two explicit definitions of the surface complexity that

are close to our intuition of this notion. These definitions are based on bending
properties : the magnitude of bending and the spatial variation of bends. To
quantify the introduced definitions, we take advantage of the mean curvature
function which is a geometric tool to measure bending properties of surfaces. To
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Figure 2.20.: global (a) sGI and (b) wGI values of the unit sphere versus number
of vertices N . It’s seen that sGI and wGI are well robust to changes
of N .

make the most out of this function, we decided to transfer it from its original
spatial domain to a so-called spectral domain.

For this purpose, we extended the recently introduced windowed graph Fou-
rier transform to mesh surface setting. In this extension, the graph Laplacian is
replaced by the finite element (FE) discretization of Laplace-Beltrami operator.
The latter operator takes into account the geometry of the mesh while the for-
mer one works only based on the connectivity of mesh vertices. Moreover, FE
Laplacian converges to the Laplace-Beltrami operator (LBO) with advantages of
preserving good properties of LBO.

This method is a local spectral analysis. The locality of the method is deter-
mined by a window function. Using a window function for a variety of surface
with different sizes, e.g. cortical surfaces, leads to inconsistent analysis. To cope
with this issue, we modified the window function to take into account the inter-
subject surface size variability. By using the modified window function, the size
of neighbourhoods are adapted with the size of surface.

By applying the mesh windowed Fourier transform on the mean curvature
function, we proposed two local spectral measures to quantify our definitions of
the surface complexity. These measures are known as spectral gyrification index
(sGI) and weighted spectral gyrification index (wGI). By changing the size of the
window function, it is possible to measure the surface complexity in different
spatial scales. We proved that sGI and wGI are geometric invariant and moreover,
they are almost stable to surface sampling.

From what presented in this chapter it is evidently seen that the proposed GIs
have most of desirable properties of a standard GI given in Section 1.4 :

1. They are based on clear definitions of the surface complexity.
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2. We proved theoretically that they have interpretable physical meanings. It
will be also shown practically in the next chapter.

3. They measure the surface complexity locally.

4. They have flexible degree of locality which is tuned easily by the window
size parameter.

5. The introduced adaptive window function makes the proposed GIs to ana-
lyse the surfaces consistently.

6. They are proved to be geometric invariant.

7. The efficiency of the method is explained in the next chapter, Section 3.2.2.
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3. Results

In Chapter 2, we proposed two definitions for the "surface complexity" notion
based on bending properties. The first definition interprets the surface com-
plexity by the magnitude of bending while in the second definition, this notion
is realized as the variation of bends. In accordance to these definitions, regions
of a surface which are more bended or more oscillating have higher degree of
complexity. We then introduced two gyrification indices, sGI and wGI to quan-
tify these definitions through a local spectral analysis of the mean curvature of
surfaces. We proved theoretically that sGI and wGI measure the magnitude of
bending and the variation of bends respectively.

In this chapter, first, some synthetic wavy surfaces with different properties of
fold depth and frequency are constructed in Section 3.1. Then, we use the propo-
sed method to compute sGI and wGI of the synthetic surfaces. For comparison, a
surface area-based GI proposed by TORO et al. 2008 is also computed for these
surfaces. Through the experiments on synthetic surfaces, we investigate how sGI
and wGI measure the surface complexity in practice. We also explain differences
between our GIs and surface area-based GIs. Especially, the effect of fold depth
on surface area-based GIs are investigated.

Furthermore, the method is applied to 124 real healthy adult brain surfaces
reconstructed from MR images in Section 3.2. The local gyrification maps of sGI
and wGI as well as Toro’s GI of cortical surface of each subject are computed. The
maps are then averaged to give cortical gyrification maps. These maps reveal the
relative degree of complexity across cortical regions. Moreover, the relationship
between our proposed GIs and the brain volume are investigated globally and
locally. It interestingly helps us to understand how the increase of brain volume
affects its global and local complexity.

Finally, a summary of results along with a discussion are given in the last
section of this chapter.

3.1. Synthetic data
In order to illustrate the efficiency of sGI and wGI to quantify the proposed

surface complexity definitions of a surface, and to show the effect of sulcal depth
on surface area-based methods, we compute our GIs and Toro’s GI on some syn-
thetic surfaces for which we control the degree of folding. For this purpose, we
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construct 3 wavy surfaces with different properties. The first surface consists of
folds with varying depth and spatial frequency. Then, we separate the source
of variations so that in the second surface, the depth of folds is constant but the
spatial frequency of folds are still varying along the surface. In contrast, the third
surface is constructed in a way that the spatial frequency of folds are constant
while folds have different depths.

It is noted that these surfaces are not designed to compare between sGI and
wGI but rather to show the difference between our GIs and Toro’s GI.

3.1.1. Wavy surface with varying fold frequency and depth
Construction.
A wavy rectangle in R3 is constructed by the equation

z = 2 sin(60πx2)/(60πx), −0.7 ≤ x ≤ 0.7, 0 ≤ y ≤ 1, (3.1)

The constructed surface, shown in Fig. 3.1a, is a sinusoidal surface composed of
folds with varying frequency and depth. The frequency and depth are dependent
to x coordinate such that when the absolute value of x increases,

• the spatial frequency of folds, computed as ω := |d(60πx2)/dx| = |120πx|,
increases,
• the depth of folds, controlled by the varying coefficient |2/(60πx)|, decreases.

To better visualize the situation, the intersection of the surface with the plane
y = 0.5, indicated on the surface by green points, is plotted in Fig. 3.1b and is
called the "middle line". It gives a 2D scheme of the wavy surface which shows the
behavior of folds. It is seen that as one goes far from the center to the right/left
border of this surface,

• the surface becomes more bended i.e. folds become sharper,
• the variation of folds increases.

Consequently, according to the proposed definitions of the surface complexity,
given in Section 2.5.2, the center of the surface is less complex than the right/left
border. So, one expects that values of the proposed gyrification indices, sGI and
wGI, are lower in the center than those in the right/left border of the surface.

sGI, wGI and Toro’s GI.
To compute the indices, sGI and wG, first, the surface is triangulated with

N = 40, 000 equidistant vertices. Then, the mean curvature of the triangulated
surface is computed. In the next step, the first 3000 finite element Laplacian ei-
genvalues and eigenvectors of the triangulated surface are computed. Then, the
adaptive window function, given by Eq. (2.44), with the window size τ = 2e− 3
is considered and the translation operator (2.42) is computed. The windowed
neighbourhood (WN given by Eq. 2.43) around two vertices, Pm and Pn, of the
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(a)

Pm

Pn

Pm

Pn

(b)

(c)

Figure 3.1.: (a) A wavy rectangle in R3. The "middle line" on the surface is formed
by the vertices lie on the surface with the the same y-coordinate 0.5.
(b) The middle line along with zoom on two neighbourhoods around
vertices Pm and Pn. (c) Plots of sGI, wGI and Toro’s GI of the vertices
located on the middle line.
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middle line is shown in Fig. 3.1b. For both of these points, the relative spread of
the translated adaptive window, i.e. (area of WN)/(total surface area), is about
20%. Then, the mesh windowed Fourier coefficients of the surface mean curva-
ture are computed by Eq. (2.46). Finally, the gyrification indices, sGI and wGI
are computed by using the Eqs. (2.49) and (2.51) respectively.

To compare sGI and wGI with a surface area-based GI, Toro’s GI (TORO et al.
2008) is computed for this surface. In this method, a neighbourhood around each
surface point is determined by a sphere with radius r. Then the GI is defined as
the ratio between the area of the surface surrounded by the sphere and the area
of the great disc of the sphere ; see Section 1.3.1 for more explanations. For the
wavy surface here, the spherical neighbourhood radius of Toro’s GI is considered
as r = 0.22 for which the relative neighbourhood spread is almost equal to that
of our method.

sGI, wGI and Toro’s GI values of the vertices along the green middle line of
the wavy surface are plotted in Fig. 3.1c. As expected, minimum value of sGI
is located at the center of the surface where the folds are smoother (less ben-
ded). In contrast, near the right/left border of the surface, where the folds are
sharper, sGI increases. It is consistent with the role of sGI which is supposed to
measure the magnitude of fold bending i.e. the definition [MAG.] of the surface
complexity (see Section 2.5.2).

A similar situation is happening for wGI. As expected, minimum value of wGI
is located at the center of the surface where the spatial frequency of folds are
low. In contrast, near the right/left border of the surface, where the folds re
more oscillating, wGI increases. It is consistent with the function of wGI which
is supposed to measure the spatial variation of folds i.e. the definition [VAR.] of
the surface complexity.

Toro’s GI is high at the center of the surface where there are deep folds thus
much surface area. By moving to the right/left border, it takes lower values to
some extent. Again, near the right/left border where the folds are shallower but
more oscillating, Toro’s GI increases and may also converge to an asymptotic
value. It is because the high oscillation of folds increases the surface area which
causes Toro’s GI to grow. It reveals that Toro’s GI gives a positive response to
any source of increasing surface area without considering that it may be due to
deep smooth folds or oscillating complex ones. In other words, Toro’s GI may not
distinguish deep smooth folds from oscillating complex ones.

Mechanisms of sGI and wGI.
In order to explain how sGI and wGI work, the spectrogram of the mesh win-

dowed Fourier transform of the mean curvature of the wavy surface, consists of
the frequency powers |Sf(i, k)|2 of the middle line, is shown in Fig. 3.2a. It is
clearly seen that in the center, corresponding to deep and less oscillating folds,
the spectral energy is concentrated around low frequencies while the higher va-
riation of the mean curvature near left and right borders is demonstrated by the
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Table 3.1.: Different GIs for vertices Pm and Pn of the wavy rectangle depicted in
Fig. 3.1b

vertex sGI wGI Toro’s GI
Pm 8.5561e2 2.8090e10 2.2268
Pn 1.8487e2 3.8802e9 2.2271

concentration of energy in high frequencies.
Each column of the spectrogram shows the frequency distribution of the mean

curvature in a neighbourhood of a mesh surface vertex. For instance, consider the
surface neighbourhood around vertex Pn of the middle line, shown in Fig. 3.1b.
In this neighbourhood, there are deep but less oscillating folds. From the fre-
quency distribution of Pn, plotted in Fig. 3.2c, it is seen that the spectral energy
is low and almost concentrated in the low frequency band.

On the other hand, consider the surface neighbourhood around vertex Pm
of the middle line, shown in Fig. 3.1b. In this neighbourhood, folds are more
oscillating. Consistently, in the corresponding frequency distribution, plotted in
Fig. 3.2b, it is seen that the spectral powers are higher than those of Pn and
almost concentrated in the medium frequency band.

Since sGI is simply the summation of frequency powers (Eq. 2.49), evidently
sGI(Pm) > sGI(Pn). On the other hand, wGI gives higher weights to higher fre-
quencies. Therefore, due to the shift of frequency energies from low to medium
frequency bands, wGI(Pm) > wGI(Pn).

The values of sGI, wGI and Toro’s GI for the considered vertices Pm and Pn are
given in Table 3.1 for comparison. While sGI and wGI give appropriately higher
values to vertex Pm, Toro’s GI gives equal values to both vertices. It shows that
surface area-based GIs may not be able to discriminate between deep folds and
complex folds with the same area.

Conclusion.
This example shows how higher local frequency powers increase in regions

with high oscillating folds. It, in turn, explains the mechanisms of the proposed
indices, sGI and wGI, based on a (weighted) summation of frequency powers to
quantify the proposed definitions of the surface complexity.

Moreover, the observations clarify that sGI and wGI discriminate efficiently
deep smooth folds from oscillating complex ones with a clear increase from
the center of the wavy surface towards the left/right borders whereas Toro’s
GI shows high values on the center where there are deep folds as well as on the
borders where there are high oscillating folds.
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(a) Spectrogram
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(b) The local frequency spectrum of the ver-
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(c) The local frequency spectrum of the ver-
tex Pn

Figure 3.2.: (a) The spectrogram of the windowed Fourier transform applied on
the mean curvature of the middle line of the wavy rectangle depicted
in Fig. 3.1b. Two vertical yellow ribbons highlight the local spectrum
of two vertices Pm and Pn depicted in Fig. 3.1b. The local spectrum
of two vertices (b) Pm and (c) Pn. It is clearly seen that for the vertex
Pm where there are more oscillating folds, the higher frequency powers
increase in comparison to that of the vertex Pn where there are less
oscillating folds.
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3.1.2. Wavy surfaces with one source of variation
To better elucidate the effect of the fold depth on the surface area-based GIs,

two other surfaces are constructed. Each surface has one source of variation :
spatial frequency of folds or fold depth. These surfaces are designed to study
the effect of fold frequency and depth separately. sGI, wGI and Toro’s GI are
computed for these surfaces.

Note that, in comparison to the previous example, the following surfaces have
deeper folds. Accordingly, the window size of our GIs and the spherical neighbou-
rhood size of Toro’s GI are increased so that each neighbourhood covers several
folds.

Varying frequency, fixed depth.
The first surface is constructed through the following equation

z =
{

0.1 sin(50πx2), 0 ≤ x ≤ 0.42,
−0.1 sin(50π(x− 0.84)2), 0.42 < x ≤ 0.84, (3.2)

and 0 ≤ y ≤ 1. This is a sinusoidal surface with a quadratic phase which causes
the frequency of folds increases as one moves from the left and right borders
towards the center (x = 0.42). Moreover, the depth of folds are kept fixed. A
cross-section of this surface is represented in Fig. 3.3a.

Toro’s GI (r = 0.39) together with our GIs (τ = 0.02) of the vertices located
on the cross-section are shown in Figs. 3.3b-3.3d, respectively. As expected, all
GIs give higher values to central vertices. From point of view of Toro’s method,
due to more compact folds around the center, there is much surface area in this
region. That is why Toro’s GI gives higher values to that region. On the other
hand, the magnitude of mean curvature increases in the central region because
the folds are sharper than those near borders. So, sGI assigns higher values to
points in that region. Furthermore, due to the special design of the surface, the
spatial variation of folds increases in the center and by its definition, wGI gives
higher values to this part of the surface.

Varying depth, fixed frequency.
The second wavy surface is constructed by using the following equation

z = 0.3 exp(−x2/0.16) sin(20πx), −0.8 ≤ x ≤ 0.8, 0 ≤ y ≤ 1. (3.3)

In this surface, the depth of folds is controlled by the exponential function which
increases in the center. The instantaneous frequency of folds that is determined
by the phase of the sine function is constant (e.g. KAISER 2011). A cross-section
of this surface is represented in Fig. 3.4a.

Toro’s GI (r = 0.75) together with our GIs (τ = 0.01) of the vertices located on
the cross-section are shown in Figs. 3.4b-3.4d, respectively. In a neighbourhood
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Figure 3.3.: (a) A cross section of a wavy surface with folds of varying frequency
but equal depth. (b) Toro’s GI, (c) sGI and (d) wGI of the vertices
located on the cross section.

around a vertex in the center of the surface, due to deep folds, there is much
surface area. It causes Toro’s GI to give higher values to points located in this
region. On the other hand, the variation of folds increases in borders. It means
that a large enough neighbourhood around a vertex near the borders contains
more oscillations of folds than a neighbourhood in the center of the surface
(like the neighbourhood around vertex Pm as shown in Fig. 3.1b). It causes wGI
increases near the borders. In a neighbourhood near the borders, there are more
peaks and valleys where the mean curvature has higher magnitude than the wall
of folds. That is why sGI increases as we move from the center to the borders of
the surface.

Conclusion.
These experiments elucidate how the depth of folds manipulates surface area-

based Toro’s GI as well as our GIs. In a surface consists of folds with equal depth,
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Figure 3.4.: (a) A cross section of a wavy surface with folds of varying depth but
fixed oscillation. (b) Toro’s GI, (c) sGI and (d) wGI of the vertices
located on the cross section.

our GIs and Toro’s GI give higher values to regions with more oscillating folds. In
contrast, in a surface consists of folds with varying depths, Toro’s GI gives higher
values to deep folds whereas our GIs give higher values to shallower folds which
are more oscillating.

As a consequence, Toro’s GI as a representative of surface area-based GIs gives
higher values to regions with larger surface area without taking into account the
fact that large surface area may appear in different situation e.g. deep regular
folds or high oscillating folds. In contrast, our GIs work based on measuring the
local oscillations of folds thus is able to disentangle the effect of the depth of
folds from their complexity.

It is noted that the above experiments were not designed to show how sGI and
wGI quantify different aspects of folding. In the following section, however, it is
shown on a real brain surface.
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3.2. Real data
In this section, the proposed method is applied to a real database of cortical

surfaces. The gyrification maps of an individual subject as well as group average
maps across all subjects are presented. Moreover, it is shown how sGI and wGI
catch different aspects of folds. Furthermore, the relation between the proposed
GIs and the brain volume is studied in global and local scales.

3.2.1. Data and preprocessing
We applied the method to 124 adult subjects from the Open Access Series of

Imaging Studies (OASIS) database a, all healthy, right-handed with 18-34 years
old. The OASIS cross-sectional database is a collection of 416 subjects aged from
18 to 96 years old, including some older adults with dementia. For each subject,
three or four T1 anatomical Magnetic Resonance Images (MRIs) had been ac-
quired at in-plane resolution of 1mm × 1mm, slice thickness = 1.25 mm, TR =
9.7 ms, TE = 4 ms, flip angle = 10u, TI = 20 ms, TD = 200 ms. Images of each
subject were motion corrected and averaged to create a single image per subject
with a high contrast-to-noise ratio.

The resulting anatomical MR images were segmented using BrainVISA b. The
white matter surface of each hemisphere was then meshed using this software
which resulted in triangular meshes with spherical topology and approximately
50,000 vertices depending on the subjects. The Hip-Hop algorithm (AUZIAS et
al. 2013) implemented in BrainVISA was then applied to compute the spherical
inter-individual correspondence between cortical surfaces.

3.2.2. Gyrification maps
To compute the proposed indices, sGI and wGI, of each hemisphere surface,

the mean curvature is computed. Then, the first 5000 FE Laplacian eigenvalues
and eigenvectors of each surface is computed. The adaptive window function,
given by Eq. (2.44) with 3 different window sizes τ = 2e − 4, 1e − 3, 5e − 3,
associated to very local, medium and wide windows respectively, is considered
(see Fig. 2.13 for window sizes). To obtain the localized mean curvature in a
neighbourhood around each surface vertex, the translated window function is
computed and applied on the mean curvature function of the surface (Eq. 2.45).
Now, the mesh windowed Fourier coefficients of the localized mean curvature are
obtained through Eq. (2.46). Finally, the values of sGI and wGI of each vertex
are given by Eqs. (2.49) and (2.51) respectively.

Individual maps.

a. http://www.oasis-brains.org/
b. http://brainvisa.info/
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(a) sGI

(b) wGI

Figure 3.5.: The map of gyrification indices (a) sGI and (b) wGI of the left hemis-
phere of an individual subject from our database in 3 different scales.
In the first column τ = 2e − 4, in the second column τ = 1e − 3 and
in the third column τ = 5e − 3. The blue and red colors indicate the
extremes of low and high degree of folding respectively.

The maps of sGI and wGI of the left hemisphere surface of a subject, cal-
led S∗, in the database is shown in Fig. 3.5. In this figure, it is shown that the
window size parameter τ can be used to control the scale of observations. At
τ = 2e − 4, the spatial scale is fine and high values are located mostly on the
ridge of complex gyri, while low values are located on the walls of regular sulci.
As the window size increases, a more regional effect becomes visible, with a very
smooth and low variation map at value τ = 5e − 3, which gives a coarse scale
observation of the gyrification.

As an illustrative example to show how our method discriminates between
deep and oscillating folds of a cortical surface, the left medial face of the subject
S∗ and its sGI and wGI maps (τ = 1e − 3) are shown in Fig. 3.6a and 3.6b
respectively (the lateral maps are shown in the middle column of Fig. 3.5). Two
lines with equivalent geodesic length were drawn on the medial face : line 1 in
the medial precentral region (blue line, geodesic length 34.63 mm) where both
GIs have low values, and line 2 in the medial prefrontal region (red line, geodesic
length 35.35 mm) where both GIs show high values (Fig. 3.6c).

Geodesic sulcal depth on the cortical surface was computed through the me-
thod described by IM et al. 2008 in order to get depth values at each point of both
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(a) sGI (b) wGI (c) Manual lines

(d) Depth map of Line 1 (e) Depth map of Line 2

Figure 3.6.: Medical view of (a) sGI and (b) wGI maps of the subject S∗. The blue
and red colors indicate the extremes of low and high degree of folding
respectively. (c) Two lines with almost equal geodesic length are drawn
on the medial central region (Line 1, blue, geodesic length=34.63 mm)
and the medial prefrontal region (Line 2, red, geodesic length=35.35
mm). The depth maps of (d) Line 1 and (e) Line 2 show that the
frequency of folds in the medial prefrontal region is double of that in
the medial precentral region while the depth of folds on the medial
prefrontal region is almost half of that in the medial precentral region.

lines and produce depth curves along these lines. These depth curves, plotted in
Fig. 3.6d and 3.6e, show that the frequency of folds in the medial prefrontal
region (Line 2) is double of that in the medial precentral region (Line 1), while
the depth of folds on the medial prefrontal region is almost half of that in the
medial precentral region. This explains the high values of our gyrification index
in the medial prefrontal region : despite an apparent smoothness due to the low
sulcal depth, the folding frequency is higher.

As it has been discussed in Section 2.5.2, the indices sGI and wGI, based on
their constructions, measure complementary properties of surface complexity :
magnitude and oscillation of the mean curvature. This feature is shown in Fig.
3.7 where the mean curvature of the cortical surface S∗ is depicted. Two regions
on this surface, R1 and R2, have been chosen. R1 is a sharp spike located on the
postcentral gyrus and R2 is a very shallow fold located on the superior parietal
lobe. The mean curvature of the region R1 is very high whereas that of the
region R2 varies a lot between positive and negative values. The maps of sGI
and wGI of R1 and R2 are shown in this figure (τ = 2e − 4). Consistent with
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Figure 3.7.: Zoom on 2 regions, R1 and R2, of the cerebral cortex. The colormap of
the cortex encodes its mean curvature (the blue and red colors indicate
the extremes of negative and positive values respectively). sGI and wGI
(τ = 2e− 4) of the regions R1 and R2 are also represented (the blue
and red colors indicate the extremes of low and high degree of folding
respectively).

their definitions, sGI gives high value to R1 while wGI assigns high value to R2.
It shows practically how sGI and wGI can discriminate different aspects of the
surface complexity by measuring different bending properties i.e. magnitude and
frequency of folds.

Group maps.
Individual maps of sGI and wGI in the medium scale (τ = 1e−3) are projected

to the template cortical surface hiphop138 c by using the cortical surface inter-
subject matching method, Hip-Hop (AUZIAS et al. 2013). Then, individual values
of sGI and wGI are averaged at each point of the template surface to obtain
group average maps of sGI and wGI.

Results are depicted on the template cortical surface hiphop138 in Fig. 3.8
for the left and right hemispheres respectively. The average patterns of sGI and
wGI represented in Fig. 3.8 are similar to those observable on an individual
subject (Fig. 3.5) which shows that the spatial patterns of the proposed GIs are
reproducible across subjects.

As Figs. 3.8a and 3.8b shows, sGI gives higher values to vertices on the pre-
frontal and occipital lobes, inferior parietal lobe, inferior temporal sulcus and the
medial area of the superior parietal cortex. wGI, as shown in Figs. 3.8c and 3.8d,
assigns higher values to the prefrontal lobe, medial part of the occipital lobe and
the posterior cingulate gyrus. Some folding is also captured by relatively high
wGI values in the insula.

To compare with our results, the average maps of Toro’s GI across all subjects
in the database are presented in Figs. 3.8e and 3.8f for left and right hemispheres

c. The hiphop138 template is available at http://www.meca-brain.org/softwares/
hiphop138-cortical-surface-group-template/
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respectively. This method gives high GI values to deep folds like the central sul-
cus, the insula, the superior temporal sulcus and the parieto-occipital sulcus.

For all sGI, wGI and Toro’s GI, by visual inspection, we observed no remarkable
difference in gyrification patterns (in the medium neighbourhood size) between
the left and right hemispheres.

Efficiency.
The proposed method has been performed by using MATLAB R©R2014a on a

node of a computation cluster with Xeon X5675 processor d (6 cores, 3.06 GHz),
48 GB of RAM shared among 16 nodes. For the cortical mesh hemisphere with
largest number of vertices in our database, N = 71252, all steps of the method
took about 3.6 hours. A large portion of the runtime (∼ 3 hours) spent on com-
puting the first 5000 Laplacian eigenpairs. Once the Laplacian eigenpairs are
computed, they can be used to compute sGI and wGI in several spatial scales in
a short time.

3.2.3. Scaling analysis
Global scale.
Recent studies show that larger brains are more folded than what is expected

from an isometric scaling (e.g. TORO et al. 2008 ; GERMANAUD et al. 2012 ; GER-
MANAUD et al. 2014 ; IM et al. 2008). To investigate this phenomenon, the global
sGI and wGI of each hemisphere are modelled by the following power law

GI = kV α, (3.4)

where GI denotes the global gyrification index (sGI or wGI) of a hemisphere
computed through Eq. (2.52), V is the hemispheric volume and k and α are
coefficients to be determined.

The power law has been widely used to model the interaction between the
size (volume) and other geometrical features (e.g. length, surface area, shape)
of a population of 3D objects (e.g. KAPELLOU et al. 2006 ; TORO et al. 2008 ;
LEFÈVRE et al. 2015). For example, it is well-known that under the hypothesis
of an isometric scaling, the volume (V ) and surface area (|S|) of simple objects
such as sphere are theoretically related by the power law with α = 2/3 i.e.
|S| = kV (2/3). In this case, if for an object, a different α than the theoretical
one is observed, it is said that a volume-surface area allometric relation is held
for that object. In other words, if the volume increases, the surface area will
increase more (if α > 2/3) or less (if α < 2/3) than what expected from an
isometric scaling. The case of α > 2/3 is called positive allometry whereas the
case of α < 2/3 is called negative allometry.

d. http://ark.intel.com/products/52577/Intel-Xeon-Processor-X5675-12M-Cache-3_
06-GHz-6_40-GTs-Intel-QPI
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(a) sGI – left (b) sGI – right

(c) wGI – left (d) wGI – right

(e) Toro’s GI – left (f) Toro’s GI – right

Figure 3.8.: Average of gyrification indices : (a–b) sGI and (c–d) wGI derived from
the medium window (τ = 1e − 3), and (e–f) Toro’s GI with spherical
neighbourhood radius r = 20 across the left and right hemispheres
of all 124 subjects on the hiphop138 template surface. The blue and
red colors indicate the extremes of low and high degree of folding
respectively.

Since gyrification indices, sGI and wGI, are scale invariant (Proposition 3), the
scaling exponent coefficient α of the power law (3.4), under the hypothesis of
an isometric scaling of the brain volume, should equal 0. It means that if larger
brains in our database were just scaled versions of smaller brains, they would
have similar GIs thus α = 0.

To investigate this relationship, the hemispheric data are considered in a log-
log scale. In this scale, the power law (3.4) takes a linear form as

log(GI) = α log(V ) + log(k). (3.5)

In this manner, the exponent coefficients α and log(k) can be computed from the
slope and intercept of the linear least square regression analysis of the hemis-
pheric data

{(
log(GI), log(V )

)}
respectively.

The hemispheric data along with the fitted power law model in logarithmic
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Figure 3.9.: (a) Relationship between the volume (mL) of the left/right hemis-
pheres and global sGI (τ = 1e− 3). The fitted line for the left hemis-
phere is y = 0.37x + 3.03, R2 = 0.44, p < 0.001. The fitted line for
the right hemisphere is y = 0.36x + 3.2, R2 = 0.47, p < 0.001. (b)
Relationship between the volume (mL) of the left/right hemispheres
and global wGI (τ = 1e− 3). The fitted line for the left hemisphere is
y = 0.67x + 14.57, R2 = 0.36, p < 0.001. The fitted line for the right
hemisphere is y = 0.66x+ 14.74, R2 = 0.34, p < 0.001.

scale are represented in Fig. 3.9. From the plots in this figure, one may draw the
following conclusions :

• The significant positive exponent coefficients α (p < 0.001) reveal a positive
allometric scaling of gyrification indices with volume.
• The positive allometric scaling confirms that the larger brains are more fol-

ded.
• The values of the exponent coefficient α of wGI is more than that of sGI

(0.67 > 0.37 and 0.66 > 0.36 for left and right hemispheres, respectively)
while the proportion of the variance of sGI explained by the volume is higher
than that of wGI (0.44 > 0.36 and 0.47 > 0.34 for left and right hemispheres,
respectively).
• The almost equal linear regression equations of the left and right hemis-

pheres suggest that in the global hemispheric scale, the degree of folding of
the left and right hemispheres increase with volume symmetrically.

Local scale.
The above-mentioned results support this hypothesis that the larger brains are

more folded but they do not illustrate which cortical regions get more folded in
larger brains. To address this question, we perform the scaling analysis at the
vertex level. Thanks to the inter-subject matching by Hip-Hop method (AUZIAS
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et al. 2013), we are able to find the corresponding vertices across all subjects.
More precisely, the sGI and wGI maps of each subject are projected to the tem-
plate cortical surface hiphop138 by Hip-Hop method. Then the power law model
(3.4) is fitted to GI-V data of corresponding vertices in a log-log scale where GI
denotes the sGI or wGI value of a cortical vertex and V is the original hemisphe-
ric volume (i.e. the volume of the hemisphere that the vertex belongs to). In this
way, a pair of (α, log(k)) is obtained for each set of corresponding vertices.

The maps of the significant exponent coefficient α (p < 0.05, corrected for
multiple comparisons using False Discovery Rate (FDR) BENJAMINI et al. 1995)
for sGI and wGI of the left/right hemispheres derived from the medium window
(τ = 1e− 3) are represented in Fig. 3.10. In this figure, the vertices for which α
is not significant are masked by the gray color. Fig. 3.10 shows that in the adult
population, as brain size increases, deep folds with low gyrification (represented
in blue in Figs. 3.8a–3.8d), such as the central sulcus, the insula, the superior
temporal sulcus, and the parieto-occipital sulcus, show the largest increase in
folding complexity.

We have not observed any vertex with significant negative exponent except in
few vertices of the right hemisphere with the most local window (τ = 2e − 4).
In this case, for sGI map, we observed about 0.04% of vertices with significant
negative α exponent located on the anterior cingulate and the superior parietal
cortices. For wGI, there are only 0.02% of vertices with significant negative α
exponent located on the isthmus cingulate cortex.

3.3. Summary and discussion
To quantify the surface complexity, the proposed GIs in Chapter 2, i.e. sGI

and wGI, were computed for some synthetic surfaces as well as a database of
124 healthy adult brains. For comparison, a surface area-based GI, i.e. Toro’s
GI, is also computed for those surfaces. The experiments on synthetic surfaces
elucidates the key feature of our method that surface area-based methods lack :
differentiating deep smooth folds from high oscillating ones. The feature is also
observed on individual and group gyrification maps of cortical surfaces.

Through some experiments on synthetic surfaces, we clarified that Toro’s GI
(TORO et al. 2008) may fail to discriminate between deep and oscillating folds.
These experiments revealed that this method take the surface area ratio as GI
without paying attention to the source of the surface area which may roots in
deep smooth folds or high oscillating folds. Consequently, when computed on a
cortical surface, it gives higher values to deep folds where there are more surface
area than in oscillating shallow ones (Figs. 3.8e and 3.8f). We didn’t repeat the
experiments for other surface area-based methods such as Schaer’s method but
due to similar reasoning behind Toro’s and Schaer’s GI which results in almost
similar GI maps (Fig. 1.7), we believe that a similar behavior can be observed in
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(a) sGI–left (b) sGI–right

(c) wGI–left (d) wGI–right

Figure 3.10.: The colormaps encode the significant exponent α (p < 0.05, corrected
for multiple comparisons using FDR) of vertex-wise allometric analysis
(3.4) of gyrification indices (a–b) sGI and (c–d) wGI of the left and
right hemispheres derived from the medium window (τ = 1e − 3).
The magenta and red colors indicate the extremes of low and high
values of α. The regions where α is not significant (n.s.) are masked
by gray color. The higher the value of α, the higher the variation of
folding with respect to volume.

the case of Schaer’s GI.
In contrast, experiments on synthetic surfaces justify that our proposed GIs

can distinguish deep folds from oscillating ones. They appropriately assign low
values to walls of deep folds that are relatively smooth and high values to regions
consisting of sharp or oscillating folds. The GIs when computed on cortical sur-
faces, demonstrate that the primary folds like the central sulcus and the insula
are less folded than other regions. The central sulcus is a good example since it is
a very deep fold but with a high regularity and straight shape where we expect a
low measure of folding whereas surface area-based methods usually show high
gyrification values (see Fig. 3.8). On an individual brain surface, we also sho-
wed how sGI and wGI distinguish different aspects of the surface complexity :
magnitude of bending and frequency of bends.

Another difference between our method and surface area-based methods is
that the latter may be not localized enough for some applications. For example,
as depicted in Fig. 1.8, Schaer’s GI shows that for a small spherical neighbou-
rhood, the most folded region of the cortex is around the Sylvian Fissure and
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as the size of the neighbourhood increases, the same pattern propagates across
the cortex. Therefore, it may fail to catch other folded parts of the brain, thus
affecting the reliability of findings. In our method, by tuning the neighbourhood
size, we get the results at different spatial scales, ranging from a very local scale
(in order of a part of a sulcus/gyrus) to a more global scale (in order of a lobar
cortex) ; see Figs. 2.13 and 3.5. Especially, distributions of sGI and wGI values
in fine scales (e.g. the window size τ = 2e− 4) justify that the proposed GIs are
able to catch fine complexities of a cortical surface ; see the first column of Fig.
3.5.

To investigate the relationship between the volume and the degree of folding
of the cerebral cortex, we considered a power law to model the GI as a response
to the volume. The resulted positive exponent coefficient α indicates a positive
allometric relation. It implies that if the brain volume is doubled, the GI is multi-
plied by factor 2α. Moreover, it supports the well-known hypothesis in literature
that larger brains are more folded than what expected by an isometric scaling.
This result is predicted by some mechanical models of cortical folding process,
introduced by TORO et al. 2005 and TALLINEN et al. 2013, and deserves further
investigations, in particular in longitudinal databases.

The relative low but still significant coefficient of determination of power law,
R2, clarifies that there is still enough room for other covariates, beyond the vo-
lume, to explain the degree of gyrification. One interesting direction for future
studies is to take into account some biological factors like age, sex, genetic condi-
tions etc. or cognitive factors like IQ and behavioural ones like sport skills, skill
of playing musical instrument etc. in the scaling model. Similar studies by using
different GIs have been documented in Section 1.2.

We also fitted the power law model to GIs at the vertex level to investigate
how the degree of folding of adult brains changes locally with the hemispheric
volume. The results illustrate that the less folded cortical regions, in terms of
either the magnitude of the mean curvature or its variation, like the walls of
the precentral and postcentral gyri and the insula, are more convoluted in larger
brains. Regarding the allometric relation between the brain volume and the cor-
tical surface area (TORO et al. 2008), one may conclude that the cerebral cortex
of a larger brain is twisted in relatively flat walls of deep folds to accommodate
the additional surface.

Finally, it is noteworthy that our method naturally allows us to monitor the
changes of the degree of gyrification at different spatial scales simply by chan-
ging the window size τ . Consequently, the local scaling analysis can be performed
in arbitrary spatial scales. For example, tuning the window size up to a lobar win-
dow spread, makes it possible to see how the complexity of lobar regions change
with the brain size.
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4. Fractional Brownian gyrification
index

Fractional Brownian surfaces have been introduced by GELBAUM 2014 through
the definition of fractional Brownian motions (fBm’s) indexed on manifolds.
Such motions have the same properties as fBm’s that are indexed on R i.e. self-
similarity, Hölder continuous sample paths and stationary increments. An fBm
indexed on a manifold S is defined as a random series of Laplace-Beltrami ei-
genfunctions corresponding to S :

RH(x) = C
∞∑
l=1

(λl)−( d
4 + H

2 )(φl(x)− φl(o))ξl, (4.1)

where C > 0 is an arbitrary coefficient, x is a point of S, o is a fixed point
of S, λl and φl denote the l-th Laplace-Beltrami eigenvalue and eigenfunction
corresponding to S, d is the dimension of S and {ξl} are i.i.d. standard normal
random variables.

In this equation, H ∈ (0, 1) is called the Hurst parameter, named after Harold
Edwin Hurst (1880-1978), the British hydrologist who pioneered the field. It
determines the characteristic of an fBm. Particularly, if H < 1/2, the increments
of fBm are negatively correlated. In contrast, for H > 1/2, the increments of fBm
are positively correlated. It means that in case ofH > 1/2, if RH(x) deviates from
its mean at point x0, it has tendency to deviate more on other points around x0 as
well. In other words, observations of a motion, that are far from each other, are
correlated strongly. This feature is called "long-range dependency" or "long–term
memory" of fBm. H also determines the Hölder regularity of an fBm : the smaller
the H, the less regular the fBm.

Theoretically, the long-range dependency feature is characterized by the asymp-
totic behavior of the autocovariance function of fBm (e.g. COEURJOLLY 2000).
Moreover, due to Weyl’s theorem, we have λn ∼ O(n2/d) (see Corollary 1). Ac-
cordingly, as H increases, the role of lower frequencies in constructing the field
becomes more important which increases the regularity of the motion.

To identify an fBm, estimating its Hurst parameter is essential. To the best
of our knowledge, however, there is no estimation of this parameter for fBm’s
indexed on manifolds. In this chapter, we develop an estimator of the Hurst pa-
rameter of a given fBs by using spectral analysis. We then interpret the Hurst
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parameter as a measure of surface complexity. In fact, large values of H de-
note high regularity of the motion and are associated to less complex fractional
Brownian surfaces. In contrast, low values of H corresponds to more complex
surfaces. Given this interpretation, we employ the Hurst parameter as a gyrifi-
cation index of the cerebral cortex. In this analysis, we assume that the cortical
surface may be recognized as a fractional Brownian surface.

In Section 4.1, we give a brief review on necessary definitions of standard and
fractional Brownian motions indexed on R. The generalization of fBm’s to mani-
folds are also discussed in this section. Some methods for the estimation of Hurst
parameter for fBm’s defined on R are reviewed in Section 4.1.3. We present the
proposed spectral estimator of Hurst parameter for fBm’s indexed on manifolds
in Section 4.2. Then, this estimator is evaluated on synthetic fractional Brow-
nian spheres in Section 4.3. An application of this method to real fetal brains
is also given in this section. Finally, some aspects of the proposed algorithm are
discussed in Section 4.4.

4.1. Fractional Brownian motion
In this section, essentials of fBm’s are reviewed briefly. First, the definitions

and simulations of fBm’s indexed on R are given. Then the extension of fBm’s to
manifolds is explained. Finally, existing estimation methods of Hurst parameter
for fBm’s indexed on R are briefly surveyed.

4.1.1. Fractional Brownian motion indexed on R
Most of the following definitions are found in GELBAUM 2014.

Definition 2. Let (Ω,F , P ) be a complete probability space where Ω is the sample
set (i.e. the set of all possible outcomes), F is the set of events and P is the
probability function that assigns probabilities to events i.e. P : F → [0, 1]. Let I be
an index set that corresponds to points of R. A set of random variables {X(t, ω), t ∈
I, ω ∈ Ω} is called a Gaussian random field (GRF) if for any finite subset {tk, k =
1, 2, . . . , n} ⊂ I, the random vector

(
X(tk)

)n
k=1

has a joint normal distribution.

Definition 3. Let {X(t, ω), t ∈ I, ω ∈ Ω} be a GRF. For each ω ∈ Ω, X(t, ω) or
briefly X(t) defines a real valued function on I that is called a sample path of that
GRF.

Definition 4. A sample path X(t) is said to be Hölder continuous (regular) of
order α if there are nonnegative real constants C and α such that

|X(t)−X(s)| ≤ C|t− s|α, ∀t, s ∈ I. (4.2)
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Definition 5. If E[X(t)] denotes the expectation value of X(t) i.e.

E[X(t)] =
∫

Ω
X(t, ω)dP (ω), t ∈ I, (4.3)

then the covariance of the GRF {X(t), t ∈ I} is defined by

Cov
(
X(s), X(t)

)
:= E[X(s)X(t)]− E[X(s)]E[X(t)], s, t ∈ I. (4.4)

An important feature of GFR’s is that a GFR is uniquely determined by its
covariance. For a centered GRF, i.e. E[X(t)] = 0, ∀t ∈ I, which is the case here,
the covariance of the field is reduced to E[X(s)X(t)], s, t ∈ I.

The standard Brownian motion is an example of GRF on [0,∞) with a specific
covariance function.

Definition 6. The standard Brownian motion B(t) on [0,∞) is the centered GRF
with the covariance given by

E[B(s)B(t)] := min{s, t} = |s|+ |t| − |t− s|2 . (4.5)

The generalization of this field to the fractional Brownian motion (fBm) RH(t) is
obtained by the following covariance for H ∈ (0, 1)

E[RH(s)RH(t)] := |s|
2H + |t|2H − |t− s|2H

2 . (4.6)

In case of H = 0.5, fBm is simply a standard Brownian motion i.e. R0.5(t) = B(t).

The fBm was first defined by MANDELBROT et al. 1968 as a fractional stochastic
integral of a Gaussian pure white noise. It is known to be self-similar of order
H i.e. RH(ct) d= cHRH(t), ∀c > 0 where d= means to have the same statistical
distribution. Moreover, it has stationary increments i.e. RH(t)−RH(s) d= RH(t−
s).

Simulations. In the literature, several methods have been suggested to simu-
late fBm’s. The very first one, proposed by MANDELBROT et al. 1968, roots in an
approximation of the integral definition of fBm. ABRY et al. 1996 suggested to
decompose the Gaussian pure white noise by using wavelets and then do the in-
tegration. Another method is based on Choleski decomposition of the covariance
matrix derived from Eq. (4.6) ; see e.g. ASMUSSEN 1999. Two other methods are
based on the increment process of fBm’s i.e. XH(t) = RH(t+ 1)− RH(t), known
also as fractional Gaussian noise or fGn. In these methods, known as Levin-
son’s (e.g. PELTIER 1998) and Wood-Chan’s (DAVIES et al. 1987 and WOOD et al.
1994) methods, an increment process is generated. Then, an fBm is constructed
by accumulated sums of fGn RH

t = ∑t
s=0X

H
s . A good review on those methods
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Figure 4.1.: An example of an fBm on [0, 1], simulated by Wood-Chan’s method.
From top to bottom, H = 0.3, 0.5, 0.8. The figure is adapted from
Coeurjolly 2000.

and a quantitative comparison between those methods are given by COEURJOLLY

2000. Some other methods and references can also be found in DIEKER 2004.
An example of an fBm, simulated by Wood-Chan’s method, is represented in Fig.
4.1 for different values of Hurst parameter.

4.1.2. Fractional Brownian surfaces
Some research has been done to replace R by other indexing sets e.g. mani-

folds. The first attempt has been done by Paul Lévy who extended the standard
Brownian motion indexed on R to the one on Rd with the covariance function as

E[B(s)B(t)] := ‖s‖+ ‖t‖ − ‖t− s‖, s, t ∈ Rd, (4.7)

where ‖.‖ denotes the Euclidean norm of Rd. A similar generalization can be
done in the case of fBm where the norms get power of H. He, then, extended
this field to the sphere Sd (LÉVY 1965). He constructed a Brownian random field
on Sd through the covariance function given by

d(x, o) + d(y, o)− d(x, y), (4.8)

where d(x, y) denotes the geodesic distance between x and y and o is a fixed
point on the sphere considered as the origin. Further extensions of Fractional
Brownian motions to other manifolds have been done by GANGOLLI 1967 and
MOLCHAN 1988.

In the same direction, ISTAS 2005 extended the fractional Brownian motions
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to some specific manifolds (like spheres and hyperboloids) for a limited range of
Hurst parameter H ∈ (0, 0.5] with covariance

1
2(d(x, o)2H + d(y, o)2H − d(x, y)2H), (4.9)

where d(., .) is the metric of the manifold and o is a fixed point on the mani-
fold considered as the origin. He, however, showed that for a general manifold,
function (4.9) can fail to define a covariance (see also VENET 2016).

Recently, GELBAUM 2014 has generalized the fractional Brownian motions to
a variety of manifolds for the full range of Hurst parameter H ∈ (0, 1). This
variety includes any compact manifold and a wide range of non compact mani-
folds. In this work, instead of considering a covariance function in form of (4.9),
a spectral characterization of the covariance has been chosen in terms of Lapla-
cian operator on Rd which has a straightforward extension to manifolds by the
Laplace-Beltrami operator ∆.

Formally, for a Riemannian manifold M and its Laplace-Beltrami operator
there is a corresponding heat kernel Kt(x, y) which is the fundamental solution
to the heat equation onM× (0,∞){

( ∂
∂t
−∆x)Kt(x, y) = 0,

K0(x, y) = δx(y), (4.10)

where the index x of ∆ underlines that this operator acts only on x and δ is
the Dirac delta. The heat kernel has an eigenfunction expansion based on the
eigenvalues {λl, l = 1, 2, ...} and eigenfunctions {φl(x), l = 1, 2, ... x ∈ M} of
Laplace-Beltrami operator :

Kt(x, y) =
∞∑
l=1

e−λltφl(x)φl(y) (4.11)

Now, from the spectral characterization of the covariance, the covariance of the
fractional Brownian motion RH(x) over M is defined by

E[RH(x)RH(y)] := 1
Γ(d2 +H)

∫ ∞
0

t
d
2 +H−1(Kt(x, y)−Kt(x, o)−Kt(y, o)+Kt(o, o))dt,

(4.12)
where o is a fixed origin onM and Γ denotes the Gamma function. By replacing
Kt from Eq. (4.11) in the covariance (4.12) and taking the integral, a series
expression of RH(x) is computed as below :

RH(x) = C
∞∑
l=2

(λl)−( d
4 + H

2 )(φl(x)− φl(o))ξl (4.13)

where C > 0 is an arbitrary coefficient, o is a fixed origin point on the manifold
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and {ξl} are i.i.d. standard normal random variables.
It has been proved that this series is convergent, thus the motion exists over

manifolds. Basic features of such motions, namely the self similarity, stationary
of increments have been also proven. Especially, the Hölder regularity of RH is
held (GELBAUM 2014, Theorem 3.14) :

Theorem 4. IfM is a compact Riemannian manifold, then the fractional Brow-
nian motion defined on it is Hölder continuous of any order α ≤ H i.e. there exist
a constant C such that

∀α ≤ H,∀x, y ∈M : E[|RH(x)−RH(y)|2] ≤ Cd(x, y)2α. (4.14)

Simulation.
To simulate fractional Brownian surfaces, GELBAUM et al. 2014 applied a trun-

cated series of Eq. (4.13) on triangulated smooth manifolds e.g. cylinder and
sphere. For these manifolds, the analytic Laplace-Beltrami eigenvalues and ei-
genfunctions are known. In general, however, it is possible to use a discretization
of Laplace-Beltrami operator on manifolds.

In this thesis, we use a linear finite element (FE) discretization of Laplace-
Beltrami on a triangulated manifold to compute its eigenpairs ; see Section 2.4.1
for more information on the discretization. In this case, if a manifold is sampled
by N vertices, the FE discretization of Laplace-Beltrami operator gives a set of
eigenvalues {λl, l = 1, 2, . . . , N} and a set of eigenvectors {ψl, l = 1, 2, . . . , N}
which are orthonormal with respect to the B-inner product (2.26). Therefore,
φl = B1/2ψl are orthonormal with respect to Euclidean inner product i.e.

〈φk, φl〉 = δkl.

If the triangulation is fine enough, due to Weyl’s theorem, the contribution of
M th term in Eq. (4.13) is of order O(M−(d/4+H/2)) which becomes negligible for
large M ’s. It means that, in practice, only first M < N eigenpairs are enough
to generate the random field. Thus, for every vertex Pn, the fractional Brownian
random field is approximated by

RH(n) = C
M∑
l=2

(λl)−( d
4 + H

2 )(φl(n)− φl(o))ξl, (4.15)

where o is a fixed vertex considered as origin. By displacing each vertex Pn as
much as RH(n) in direction of the normal vector to the surface at Pn, the frac-
tional Brownian surface is constructed. For example, in Fig. 4.2, a fractional
Brownian sphere is presented with different values of H. It is clear that as H
decreases, the irregularity of the surface increases.
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(a) H = 0.1 (b) H = 0.5 (c) H = 0.9

+0.11-0.15

0

(d) H = 0.1
+0.05-0.09

0

(e) H = 0.5
+0.02-0.06

0

(f) H = 0.9

Figure 4.2.: Top row : fractional Brownian spheres with the same random variables
{ξl} but different H values. Bottom row : Corresponding fractional
Brownian motions.
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4.1.3. Estimation of Hurst parameter for fBm’s indexed on R
Given an fBm realization, to analyse its properties and forecasting its behavior,

one needs to estimate its Hurst parameter. Although, due to the non-stationary
of fBm and its long–range dependency feature, estimation of H is not an easy
and straightforward task. It has been truly expressed in CLEGG 2006 :

"While the Hurst parameter is perfectly well-defined mathematically, it
is, in fact, a very difficult property to measure in real life."

To do so, an extensive research has been done in past decades which results in
several estimators. Here, we will review briefly some of them.

An early method is based on R/S statistic.
R/S statistic. (MANDELBROT et al. 1969)
If R(n) is the range of the first n data, i.e. the difference between the largest and
smallest value of the sample, and S(n) denotes the standard deviation of this
sample, then

E
[
R(n)
S(n)

]
= O(nH), n→∞. (4.16)

Now, the slope of linear regression of E
[
R(n)
S(n)

]
versus n gives an estimation of H.

This estimator is sensitive to outliers. Moreover, choosing a good range of n is an
issue in this method as well as for other methods described below.

An important set of methods are based on a spectral analysis.
Log-periodogram. (GEWEKE et al. 1983)
For any fBm RH(t), its fractional Gaussian noise (fGn)XH(t) := RH(t+1)−RH(t)
admits a spectral density f(λ) for which

f(λ) = O(|λ|1−2H), λ→ 0. (4.17)

On the other hand, the periodogram defined by

IN(λ) = 1
2πN |

N−1∑
t=0

XH(t)e−itλ|2, λ = λk,N = 2πk
N

, (4.18)

is an asymptotic unbiased estimator of f(λ). From Eqs. (4.17) and (4.18), it is
deduced that

log(E[IN(λ)]) ' log(c) + (1− 2H) log(|λ|). (4.19)

Accordingly, the slope of linear regression of log(E(IN(λ))) versus log(|λ|) near 0
gives an estimation of H.

Variant of Lobato and Robinson. (LOBATO et al. 1996)
Let f still denote the spectral density of fGn and F (λ) =

∫ λ
0 f(θ)dθ. Then, for

99



q ∈ (0, 1),
F (qλ)
F (λ) = O(q2−2H), λ→ 0. (4.20)

Now, the logarithm of this equation for a range of values of λ gives an estimation
of H.

Whittle’s estimator. (BERAN 1994 ; ROBINSON 1995)
In this method, a functional of the periodogram IN(λ) is presumed. Then, by
minimising the parameters of this functional through the maximum likelihood,
H is estimated. Choosing an appropriate functional is essential in this method.
An example of such estimator is given by BERAN 1994 :

ĤN = arg min
H

M∑
j=1

IN(λj,N)
f(λj,N , (1, H)) , (4.21)

where f(λj,N , (1, H)) is the spectral density with parameters (1, H) of the fGn
and IN(λ) denotes the periodogram.

Wavelet decomposition. (ABRY et al. 1995) Let {ψj,k, j = 1, 2, . . . , J, k ∈ Z}
be a family of wavelets and {R̂H(j)} denotes the wavelet coefficients of an fBm
RH(t). A linear relationship of the following form can be derived :

log2(E[(R̂H(j))2]) = (2H + 1)j + C. (4.22)

Accordingly, a linear regression of log2(E[(R̂H(j))2]) versus j for a range of j
gives an estimation of H.

Some other methods including correlogram (e.g. BERAN 1994) and temporal
methods (FEUERVERGER et al. 1994 ; COEURJOLLY 2001) can be found in litera-
ture. Some comparisons between these methods on synthetic and real data are
found in COEURJOLLY 2000 and CLEGG 2006.

The above-mentioned methods propose some estimators of H for fBm’s in-
dexed on R. There is, however, no such H estimator in the literature for fBm’s
indexed on manifolds. In the next section, we propose a method to deal with this
situation.

4.2. The proposed spectral H estimator for
fractional Brownian surfaces

In this section, we develop an algorithm to estimate the Hurst parameter H
and C of a given fractional Brownian surface. As explained in Section 4.1.2, a
fractional Brownian motion RH , defined on a smooth manifold, displaces the
points of the manifold and produces a fractional Brownian surface. Accordingly,
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Figure 4.3.: A schematic representation of Algorithm 1. The input to the algorithm
is an observed fractional Brownian surface (Sob) and outputs are es-
timation of the Hurst parameter H and amplitude of the fractional
Brownian motion C.

in this thesis, the original smooth manifold is called the reference surface and is
denoted by Sref . Moreover, the given fractional Brownian surface is called the
observed surface and is denoted by Sob.

In summary, the proposed algorithm is :

Given a fractional Brownian surface Sob, we approximate the fractio-
nal Brownian motion RH and the reference surface Sref . Then, the
spectral powers of approximated RH are modelled by a least square
linear regression to estimate H and C.

The proposed algorithm is given below in Algorithm 1 and is represented in Fig.
4.3. In following, we explain the details of this Algorithm.

Algorithm 1 Estimation of Hurst parameter H
Require: Fractional Brownian surface Sob.
1: Smooth Sob to get a smoothed surface Ssm.
2: Compute R̃H as the centered Euclidean distance between Sob and Ssm.
3: Dilate Ssm to get an approximated reference surface S̃ref .
4: Compute the Fourier coefficients of R̃H on S̃ref .
5: Apply the linear regression analysis in the spectral domain.
6: Return H̃ and C̃ derived from the slope and intercept of the linear regressor.
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1. Smoothing procedure.
To get a smoothed surface from Sob, the mean curvature flow (MCF) is used.

Generally speaking, MCF is based on solving the heat equation on a 2D manifold
Ωt with initial and boundary condition in a finite time (HUISKEN 1984) :

∂f

∂t
= −∆tf, on Ωt × (0, T ] (4.23)

f |t=0 = f 0, on Ωt

where t is time variable, Ωt is a spatial domain that may evolve with t, f denotes
a function of t and spatial variables defined on Ωt and ∆t is the Laplace-Beltrami
operator corresponding to the domain Ωt. If Ωt is bounded, depending on si-
tuation, different boundary conditions can be applied e.g. Dirichlet or Neumann
(see e.g. KREYSZIG 2010). Starting from an initial function f = f 0, as time pro-
gresses, the function f becomes smoother.

To elucidate how the smoothing procedure works, let’s consider an explicit
discretization of the heat equation :

fm+1 − fm

dt
= −∆mf

m ⇒ fm+1 = fm − dt∆mf
m (4.24)

where fm denotes the value of f at time tm and dt is time step such that tm =
m×dt. The Laplace-Beltrami operator ∆m is related to the mean curvature κ and
normal vector

−→
N of Ωm (MEYER et al. 2003) by

∆ ≡ 2κ−→N . (4.25)

These equations together provide an interpretation of the mean curvature flow
smoothing procedure :

fm+1 = fm − 2dtκ−→Nfm. (4.26)

It means that in each time step, the value of f at each spatial point is modified
by a factor proportional to the mean curvature and inner normal vector of that
point.

Let f be the coordinate components of points of a surface Ω. In this case, by
applying Eq. (4.26) on f , the surface becomes smooth gradually. More precisely,
given f 0 as the coordinate components of points of a domain Ω0, fm, m = 1, 2, . . .
will give the points of new domains Ωm, m = 1, 2, . . .. Above equation explains
that at every iteration of the mean curvature flow, each point moves in its corres-
ponding inner normal direction by an amount proportional to the magnitude of
the corresponding mean curvature. In this manner, convex points move inward
whereas concave points move outward and the speed of movement is ruled by
the magnitude of the mean curvature. Independent of the inward and outward
movements, the surface always shrinks so that the total surface area will even-
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Figure 4.4.: A 2D drawing that explains the mean curvature flow smoothing proce-
dure. Smoothing procedure applied on Sob to get Ssmm , m = 1, 2, 3, 4
iteratively. Geodesic paths of two points P ob

i and P ob
j to their corres-

ponding points on the final smoothed surface Ssm4 are shown in blue
and yellow colors respectively.

tually go to zero in a finite time (e.g. COLDING et al. 2015).
A schematic representation of this procedure is given in Fig. 4.4. In this fi-

gure, the smoothing procedure is applied on Ω0 = Sob to get surfaces Ωm =
Ssmm , m = 1, 2, 3, 4 iteratively. Interestingly, the point correspondence between
Sob and Ssmm , m = 1, 2, . . . is preserved i.e. for each vertex P ob

n on Sob, there is a
corresponding vertex P sm

m,n on Ssmm . The movement trajectories of two points P ob
i

and P ob
j are depicted in Fig. 4.4. P ob

i and P ob
j are points of Sob located on valley

and top respectively. The blue and yellow lines show the smoothing trajectory of
these points.

In practice, to solve Eq. (4.23) numerically, the time derivative is discretized
by the first order backward finite difference method :

∂f

∂t

∣∣∣
tm+1
' fm+1 − fm

dt
, (4.27)

The linear finite element method is used to discretize the Laplacian operator, as
explained in Section 2.4.1. It results in two sparse matrices A and B correspon-
ding to a mesh modelling the domain Ω ; see Eqs. (2.24) and (2.25). Therefore,
an implicit discretization of the heat equation (4.23) is :

B
fm+1 − fm

dt
= −Afm+1, (4.28)
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Figure 4.5.: A schematic representation of checking procedure of the relative po-
sitions of Sob and Ssmm by measuring angles. P sm

i is located out of Sob
thus θi > π/2. In contrary, P sm

j is located inside the Sob, so θj < π/2.

which is equivalent to
(B + dtA)fm+1 = Bfm. (4.29)

This approach is proven to be numerically stable even for large time steps and
convergent, at least for convex surfaces (HUISKEN 1984).

It is noted that the mean curvature flow is originally a non-linear procedure.
It is because the Laplacian operator is corresponding to the evolutionary domain
and should be recomputed after each step of smoothing. To be efficient in compu-
ting time, however, we compute the Laplacian operator just once for the initial
observed surface Sob. Moreover, we found that using the non-linear procedure
leads to a smoothed surface with highly non-homogeneous mesh which will be
troublesome for next steps of our algorithm, especially the dilation step.

In case of cortical surfaces, the smoothing iterations stop when the smoothed
surface SsmN is entirely inside the cortical surface Sob. This stopping criterion is
checked automatically by using a heuristic method at each iteration : a vector
from each point P sm

n on Ssm to its corresponding point P ob
n on Sob is considered.

The angle of this vector with the normal vector to Ssm at P sm
n is computed. If

this angle is obtuse, it means that Ssm is still out of Sob. In Fig. 4.5, this checking
procedure is shown.

Finally, it is noted that displacing the points of Sref by RH moves its barycenter
with a small value. The smoothing procedure also moves the barycenter of the
surface after each iteration. Since the barycenter of Sref is not known for us, we
correct the barycenter of the smoothed surface after each iteration of smoothing
to that of Sob. In this way, at the end of smoothing procedure, the barycenter of
SsmN is the same as that of Sob.
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2. Approximation of the fractional Brownian motion.
After obtaining a smoothed surface SsmN in the previous step, we continue with

approximating RH . In theory, RH(n) is the signed distance between a vertex P ref
n

of the reference surface Sref and the corresponding vertex P ob
n on the observed

fBs Sob.
Since the reference surface is not known in practice, we approximate the dis-

tance by a distance between the observed surface and the smoothed surface. For
this purpose, first, RH(n) is approximated by

RH(n) ' d(n)− r(n), (4.30)

where
• d(n) = d(P ob

n , P
sm
N ,n) is the distance between the vertex P ob

n and the corres-
ponding vertex P sm

N ,n of the smooth surface SsmN ,
• r(n) = d(P sm

N ,n, P
ref
n ) is the distance between P sm

N ,n and the corresponding
vertex P ref

n of the unknown reference surface.
Since the exact value of r(n) is unknown, it is approximated by its average i.e.

r = 1/N ∑N
n=1 r(n). So,

RH(n) ' d(n)− r, ∀n = 1, 2, . . . , N. (4.31)

On the other hand, taking the average of each term in Eq. (4.30) gives

1
N

N∑
n=1

RH(n) = 1
N

N∑
n=1

d(n)− 1
N

N∑
n=1

r(n) (4.32)

= d− r, (4.33)

where d denotes the average of d(n)’s.
According to the model (4.15), the expectation of RH(n) is zero, hence d = r.

Consequently, from Eq. (4.31), R̃H , the approximation of RH , is

R̃H(n) = d(n)− d, (4.34)

and d is called the characteristic radius.
In our algorithm, the distance d(n) = d(P sm

N ,n, P
ob
n ) is computed by the Eucli-

dean distance between the corresponding points i.e.

d(n) = |P sm
F,n − P ob

n |. (4.35)

Another choice to compute d(n) could be the geodesic distance. Indeed, due
to point trajectory between P sm

N ,n and P ob
n i.e.

P ob
n ≡ P sm

0,n → P sm
1,n → P sm

2,n → · · ·P sm
N ,n,
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given by the smoothing procedure, a way of computing d(n) might be the geo-
desic distance between P ob

n and P sm
F,n. It can be computed by a summation of the

length of segments P sm
i,n P

sm
i+1,n

d(n) =
F−1∑
i=0
|P sm
i+1,n − P sm

i,n |, (4.36)

where |a−b| denotes the Euclidean length between two points a and b. Although
the geodesic distance seems an intuitive choice, it overestimates the values of
RH(n) for points Pn’s which are located on valleys. This overestimation is due to
the behavior of the adapted smoothing procedure which moves points on valleys
outward and then inward.

For example, as it is shown in Fig. 4.4, it is clearly seen that how P ob
i travels

outward and inward to reach to the final point P sm
4,i . This redundant outward and

inward movements cause overestimation of R̃H(i). In contrast, P ob
j comes inward

directly to its corresponding final point. Consequently, we choose the Euclidean
distance which measures the shortest path between corresponding points thus
causes no redundancy in the measurements.

In the mentioned approximation process of RH , r(n) is replaced by r. Accor-
dingly, the approximation quality depends on the difference between r(n) and r.
So, if the variance of r(n)’s is low, then the approximation will be more precise.

In the following example, the motivation behind the proposed method of ap-
proximation of RH is explained in the case of a fractional Brownian sphere. For
better understanding, a 2D drawing explains the situation in Fig. 4.6.

Example 2. Let the reference surface Sref be a sphere with radius R. Then, RH

is applied on every point of the reference sphere in direction of the normal vector
of the sphere to get the observed surface Sob.
Now, given the observed surface Sob, we want to approximate RH . For this pur-

pose, first, Sob is smoothed by using the mean curvature flow. Let the smoothing
procedure be iterated till we get the center of the sphere, O, as the smoothed surface
SsmN a.
Consider a point P ob

i of Sob for which RH(i) < 0. The Euclidean path between
O and P ob

i overlaps with the radius OP ref
i of the sphere because the normal vector

at P ref
i is in radial direction. So, two paths OP ob

i and P ob
i P

ref
i follow each other.

Specially, d(i)− RH(i) = R where d(i) is the length of OP ob
i . The same situation

is true for a point P ob
j for which RH(j) > 0. In this case, two paths OP ob

j and
P ob
j P

ref
j overlaps and d(j)−RH(j) = R.

Similarly, for each n, the corresponding points P ref
n and P ob

n and the center of
the sphere O are colinear. Therefore, Eq. (4.30) holds exactly. Moreover, ∀n :
d(n) − RH(n) = R. It implies that ∀n : r(n) = R, and specially, r = d = R.

a. The MCF is not convergent to a point for any arbitrary non-convex surface but we observed
it experimentally in the case of fBs’s

106



S
ref

4
sm

�
S

sm
O

S
ob

P
ob

j

P
ob

i

-R  (i)
H R (j)

H

d(j)

r(j)
d(i)

r(i)

P
ref

i

P
ref

j

Figure 4.6.: The reference surface Sref is assumed to be a sphere. Smoothing pro-
cedure is applied on Sob to reach to the center of the reference sphere
as the smoothed surface SsmN . The RH , Euclidean distances d and r
are shown for two points P ob

i and P ob
j . It is seen that r is equal to the

radius of the reference sphere.

That is why d is called the characteristic radius. Consequently, replacing r(n) by d
doesn’t introduce error and the value of RH(n) can be computed exactly by RH(n) =
d(n)− d.

3. Approximation of the reference surface.
In this step, we approximate the reference surface from the small smoothed

surface (SsmN ). This surface is needed for the spectral analysis in the next step.
To do this task, the SsmN should be dilated to compensate the shrinkage induced
by the mean curvature flow smoothing. In the case of the sphere as the reference
surface and its center as the smoothed surface, mentioned in Example 2, if SsmN
is dilated as much as d ≡ R ≡ r in radial directions (equivalent to normal
directions in this case), then the reference surface is recovered ; see Fig. 4.6.

Inspired by the case of the fractional Brownian sphere, we adapt this dilation
strategy in case of other fractional Brownian surfaces to compute an approxima-
tion of the reference surface S̃ref . Precisely, the smoothed surface SsmN is dilated
in direction of its normals as much as its characteristic radius d.

If Ssm is not convex, the dilation may cause some mesh difficulties e.g. point
crossing. Especially, it happens when the amount of dilation is high and vertices
of very obtuse triangles are dilated in transverse directions. In this case, those
triangles may pass through each other or make an excrescence, thus destroy
the mesh locally. An example of this situation is presented in Fig. 4.7. In this
example, a fetal brain hemisphere is smoothed and dilated by using the proce-
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Smoothing Dilation

Figure 4.7.: This figure shows the results of smoothing and dilation processes on
a fetal brain hemisphere. This is an example of dilating a non-convex
smooth surface in one step. As the zoom on the dilated surface shows,
it may corrupt the triangulation locally due to point crossing.

dures explained so far. The zoom on the location of the insular cortex shows how
the triangles merge to each other and corrupt the mesh locally.
To avoid this situation, we introduce the idea of iterative dilation with surgery.

The general concept of this idea is that instead of dilating the smoothed surface
once by the amount of its characteristic radius d, the dilation is done in m itera-
tions. At each iteration, problematic triangles are identified and kept fixed while
other triangles are dilated by the amount of d/m. So, by reducing the amount
of dilation from d to d/m, and by controlling problematic triangles, the issue of
point crossing is treated.

The steps of this strategy is as follow :

(a) A number of iterations m is chosen such that d/m is small enough.

(b) The critical triangles are identified by setting a threshold on their acute
angles. We considered a triangle to be critical if it has an angle less than
π/30. The vertices of such triangles are called critical vertices.

(c) Non-critical vertices are dilated as much as d/m in direction of their corres-
ponding normal vectors while critical triangles are kept fixed (not dilated).

(d) Steps (b) and (c) are iterated m times.

(e) After m iterations, we have a smooth dilated surface with some holes in
locations of critical vertices Pcrit = {P1, P2, . . . , PK}. The holes are filled by
a linear interpolation and faired by the mean curvature flow.
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An example of this process is presented in Fig. 4.8 where the smoothed surface
of Fig. 4.7 is dilated in m = 5 iterations. A zoom on the mesh of the insular
cortex is shown at each iteration. The orange ellipse on each zoom highlights
two specific triangles that are going to be critical after 2 dilation iterations. In
this step, the vertices of these triangles are fixed which causes a hole on the
surface in iteration 3. Two other holes, visible on the lateral surface, have been
already appeared due to to fixing some other critical vertices in those regions.
The zooms of iterations 3 to 5, that are shown in dashed frames, explain what
would happen if the critical vertices were not fixed. It is seen that in this case, the
critical triangles pass through each other in iteration 4 and make an excrescence
in iteration 5.

To fill the holes after dilation iterations, one may use the algorithms existing
in the literature (see e.g. ZHAO et al. 2007 ; BRUNTON et al. 2009). Those algo-
rithms are really useful when there is no mesh structure in holes. In case of our
problem, however, holes are structured. So, we use a simple weighted interpola-
tion to fill the holes. To do so, the first ring neighbourhood of each critical vertex
is identified. It may include some critical vertices as well as non critical ones. The
critical vertex with maximum number of non critical neighbours is identified. Let
us call it Pi ∈ Pcrit. The non-critical neighbour vertices of Pi are considered as
{Pi,1, Pi,2, . . . , Pi,si

} ⊂ V \ Pcrit. Then, the new location of Pi is determined by a
weighted interpolation of its non-critical neighbours :

P i =
si∑
j=1

wjPi,j. (4.37)

The weights wj ’s are the inverse of distance between Pi and Pi,j. As soon as the
new location is designated to this critical vertex by Eq. (4.37), it is removed from
the list of critical vertices i.e. Pcrit = Pcrit \ Pi. This procedure is iterated until no
critical vertex remains in Pcrit. The dilated surface after hole filling is shown in
Fig. 4.9a.

Hole filling algorithms are often followed by a mesh fairing process (see e.g.
the above-mentioned references). The aim of fairing process is to smooth the
filled holes. To do so, the heat equation (4.29) with Dirichlet boundary condition
is applied on holes :

∂f

∂t
= −∆f, in Ω (4.38)

f = f0, on ∂Ω, (4.39)

where f denotes a coordinate component of vertices i.e. x, y or z, Ω is the union
of regions of filled holes, ∂Ω is the boundary of Ω i.e. non-hole region and f0
is the value of f on non-hole region. Applying the heat equation on filled holes
while other vertices (on non-hole region) are kept fixed by the Dirichlet boun-
dary condition, makes the filled holes smoother and doesn’t change the non-hole
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critical

triangles

hole

excrescence

Figure 4.8.: Iterative dilation of a smoothed surface. A zoom on the mesh is presen-
ted for the smoothed surface and in iterations 1 and 2 (top row). The
orange ellipse on these zooms highlights two triangles that become
critical after 2 iterations. So, their vertices are kept fixed in iteration 3
which makes a hole on the surface (bottom row). Zooms in iterations
3 to 5 explain that if those two critical triangles were not fixed, they
would collapse in iteration 4 and make an excrescence on the mesh
in iteration 5, thus corrupting the mesh locally. The yellow vertex on
zooms is represented as a reference to show the movements of vertices
at each iteration.
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fairing needed

(a)

fairing

(b)

Figure 4.9.: Mesh fairing process is applied on filled holes to make them smoother.
A zoom on a filled hole (left panel) shows that although the hole is
filled, it is not smooth. By applying the fairing process, the mesh on
the filled hole region is smother as shown in the right zoom.

region. The result of fairing is shown in Fig. 4.9b.

4, 5. Spectral analysis and linear regression.
Given the fractional Brownian motion (4.15), the Fourier coefficients of this

field is given through the inner product of RH and Laplacian eigenvectors of the
reference surface :

R̂H(k) = 〈RH , φk〉

= C
N∑
n=1

M∑
l=2

λ
−( d

4 + H
2 )

l (φl(n)− φl(o))ξlφk(n)

= Cλ
−( d

4 + H
2 )

k ξk − C
N∑
n=1

φk(n)
M∑
l=2

λ
−( d

4 + H
2 )

l φl(o)ξl, (4.40)

for k = 2, . . . ,M . The first term of Eq. (4.40) is obtained due to orthogonality of
eigenfunctions. It also requires

∑N
n=1 φk(n) = 0 (because of the orthogonality of

φk and φ1 which is a constant vector). So, the spectral powers are

R̂H(k)2 = C2λ
−2( d

4 + H
2 )

k ξ2
k. (4.41)
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The expectation value of spectral powers is

E[R̂H(k)2] = C2λ
−2( d

4 + H
2 )

k E[ξ2
k], k = 2, . . . ,M. (4.42)

Since {ξl} comes from the standard normal distribution, E[ξ2
l ] = V ar(ξl) = 1.

Now by taking the logarithm, we will have

logE[R̂H(k)2] = −(d2 +H) log(λk) + log(C2), k = 2, . . . ,M. (4.43)

This equation shows a linear relationship between logE[R̂H(k)2] and log(λk).
Consequently, H and C can be estimated from the slope and intercept of a least
square linear regression line computed on points {λk,E[R̂H(k)2]} in log-log scale.

The expectation values in Eq. (4.42) could be approximated by using the law
of large numbers if many realization of RH ’s with the same H were available.
Here, however, only one realization of RH is available. To address this situation,
we start from Eq. (4.41). Taking the logarithm of this equation results in

log(R̂H(k)2) = −(d2 +H) log(λk) + log(C2) + log(ξ2
k), k = 2, . . . ,M. (4.44)

In this equation, log(ξ2
k) is a random variable with unknown distribution. So, ap-

plying the least square linear regression analysis is not possible as it was before.
To address this issue, we propose a binning strategy on the spectral index k.

Formally, let {El, l = 1, 2, ..., L} be a partition of spectral indices {2, 3, . . . ,M} i.e.

• ⋃Ll=1El = {2, 3, . . . ,M},
• El

⋂
El′ = ∅, ∀l, l′ ∈ {1, 2, . . . , L}, l 6= l′,

• |El| = Nl

where |El| denotes the cardinal number of El. Now, taking the averages in both
sides of Eq. (4.44) in every bin El gives

1
Nl

∑
k∈El

log(R̂H(k)2) =
−(d2 +H)

Nl

∑
k∈El

log(λk) + 1
Nl

∑
k∈El

log(ξ2
k) + log(C2). (4.45)
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If we denote

xl = 1
Nl

∑
k∈El

log(λk), (4.46)

yl = 1
Nl

∑
k∈El

log(R̂H(k)2), (4.47)

εl = 1
Nl

∑
k∈El

log(ξ2
k),

α = −2
(d

4 + H

2
)
, (4.48)

γ = log(C2), (4.49)

then Eq. (4.45) can be rewritten as

yl = αxl + γ + εl. (4.50)

Due to the Central Limit Theorem, for large Nl, the distribution of εl is approxi-
mated by a normal distribution of mean µ0 and variance σ2

0/Nl i.e.

εl ≈ N
(
µ0,

σ2
0
Nl

)
, such that (4.51)

µ0 = E[log(ξ2
k)], σ2

0 = V[log(ξ2
k)], (4.52)

where E and V denote expectation and variance values. Since {ξk} comes from
a standard normal distribution, {ξ2

k} has χ2 distribution and {log(ξ2
k)} has the

expectation value as

E[log(ξ2
k)] = log(2) + ψ

(1
2
)
, (4.53)

where ψ(.) is called the ψ-function and is actually the first derivative of the
Gamma function (PAV 2015). According to the rule of large numbers, for large
Nl, εl tends to µ0. By replacing µ0 in Eq. (4.50) and defining

β = γ + µ0, (4.54)

we get
yl = αxl + β, l = 1, 2, . . . , L. (4.55)

To find the coefficients α and β, a weighted least square linear regression ana-
lysis may now be used. More precisely, the coefficients are determined through
minimization of the weighted mean square error :

J(α, β) =
L∑
l=1

Nl

σ2
0

(yl − αxl − β)2. (4.56)
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It gives the following values for α and β :

α =
∑L
l=1

Nl

N
xlyl −

(∑L
l=1

Nl

N
xl
)(∑L

l=1
Nl

N
yl
)

∑L
l=1

Nl

N
x2
l −

(∑L
l=1

Nl

N
xl
)2 , (4.57)

β =
L∑
l=1

Nl

N
yl − α

L∑
l=1

Nl

N
xl. (4.58)

Now, by following Eqs. (4.48), (4.49) and (4.54), estimations of H and C are
extracted from α and β respectively.

In this method, different binning strategies may be applied. The first intuitive
strategy is a binning with equal number of elements in each bin i.e. |E1| = |E2| =
. . . = |EM |. Number of elements should be large enough to apply the central limit
theorem truly. It can be investigated by Chi-square goodness of fit hypothesis test
(e.g. « Chi-square Goodness of Fit Test » 2008).

Of course, binning strategies may affect the quality of estimations. Especially,
we found that the precision of α and β is proportional to the inverse of the
variance of xl’s. More precisely, we have the following proposition.

Proposition 4. The variances of α and β computed by the weighted least square
linear regression analysis, given in Eqs. (4.57) and (4.58), are equal to

V(α) = σ2
0

Nσ2
x

, (4.59)

V(β) = σ2
0
N

(
1 + x2

σ4
x

)
, (4.60)

where σ0 comes from the variance of εl-distribution (4.51), and

x =
L∑
l=1

Nl

N
xl, (4.61)

σ2
x =

L∑
l=1

Nl

N
x2
l − x2. (4.62)

Proof. The proof is given in Appendix A.

Once an approximation of the reference surface S̃ref is obtained in the pre-
vious step, its Laplacian eigenpairs {(λ̃l, ψ̃l), l = 1, 2, . . . , N} are computed by
the linear FEM presented in Section 2.4.1. Then the spectral powers of R̃H are
computed by

ˆ̃RH(l)2 = |〈R̃H , φ̃l〉|2. (4.63)

where φl = B1/2ψl. Now, by replacing λ̃l and ˆ̃RH(l)2 in Eqs. (4.46) and (4.47) ,
estimations of H and C are computed from Eqs. (4.57) and (4.58) respectively.
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In following, we prove an important property of the proposed estimators of H
and C.

4.2.1. Scale invariance
The Hurst parameter H and C of a fractional Brownian motion are inde-

pendent parameters that do not change with scaling the corresponding fractio-
nal Brownian surface. Accordingly, it is expected that appropriate estimators of
H and C preserve this property.

Proposition 5. The proposed estimator of H and C are scale invariant.
Proof. Let Sref2 be a scaled version of a reference surface Sref1 by a factor q2 i.e.
|Sref2 | = q2|Sref1 | where |.| denotes the surface area. As discussed in Proposition 3
in Chapter 2, the Laplacian eigenvalues and eigenvectors of Sref2 are those of Sref1
scaled by 1/q2 and 1/q respectively. Moreover, the matrix B of FE discretization
of Laplace–Beltrami operator is scaled by q2. Accordingly, the fractional Brownian
random motion, generated by Eq. (4.15) is scaled as following

RH,2(n) = q( d
2 +H)RH,1(n), n = 1, 2, . . . , N, (4.64)

where RH,i denotes the motion corresponding to Srefi . Therefore, the spectral po-
wers are scaled as

R̂H,2(l)2 = q2( d
2 +H)R̂H,1(l)2, l = 1, 2, . . . ,M. (4.65)

In logarithmic scale, it will be

log(R̂H,2(l)2) = 2(d2 +H) log(q) + log(R̂H,1(l)2). (4.66)

Moreover, for eigenvalues in logarithmic scale we have

log(λl,2) = −2 log(q) + log(λl,1). (4.67)

By replacing Eqs. (4.67) and (4.66) in Eqs. (4.46) and (4.47), it is easily seen that

xl,2 = −2 log(q) + xl,1, (4.68)
yl,2 = (d+ 2H) log(q) + yl,1. (4.69)

Finally, putting Eqs. (4.68) and (4.69) in Eq. (4.57) gives α2 = α1 that proves the
proposition. With similar computations for β, it is easily seen that

β2 = (d+ 2H + 2α1) log(q) + β1. (4.70)

Due to Eq. (4.48), it is proved that β2 = β1.
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4.3. Results
In this section, first, we show the efficiency of the method proposed in Section

4.2, by applying it on a set of synthetic data which includes fractional Brownian
spheres. Then, the method is applied to real data which consists in a database of
fetal cortical surfaces. Assuming that the cerebral cortex is a fractional Brownian
surface, by using the proposed method, we try to find its Hurst parameter.

4.3.1. Synthetic data
To produce fractional Brownian spheres, a triangulated unit sphere with N =

2562 vertices is considered as the reference surface Sref . The first M = 1600
Laplacian eigenpairs of Sref are computed by using the Linear FEM, presented
in Section 2.4.1. Then, fractional Brownian motions RH on Sref are generated
via Eq. (4.15) with C = 1. By displacing the vertices of Sref in direction of their
corresponding normal vectors by amount of RH , fractional Brownian spheres are
constructed. Some examples of such surfaces are given in Fig. 4.2.

Here, we run two experiments. In Experiment 1, we apply the Algorithm 1
on one observed fractional Brownian sphere to illustrate and visualize the steps
of the proposed algorithm. In Experiment 2, the algorithm is applied on 1000
observations with different H parameters to show the quality of estimations.

Experiment 1.
We start with an example to illustrate and visualize the Algorithm 1. Given

an observed fractional Brownian sphere Sob e.g the one of Fig. 4.2a with H =
0.1, the mean curvature flow smoothing with parameter dt = 0.1 and m = 10
iterations is used to smooth the surface. Then the Euclidean distances between
corresponding vertices of Sob and Ssm are computed and centered to obtain the
approximation of RH as given by Eq. (4.34). The R̃H mapped on the sphere
surface is depicted in Fig. 4.10a. In comparison to RH in Fig. 4.2d, it is seen that
both R̃H and RH share a very similar pattern, although their values are a bit
different. The global error is

‖R̃H −RH‖2

‖RH‖2
× 100 = 27%,

and the map of local errors R̃H(n)−RH(n) is given in Fig. 4.11a.
A part of this error is due to movement of barycenter of Sref after displacing

the points of Sref by RH . In this example, the distance between the barycenters
of sphere and Sob is about 8e − 3. If we knew the barycenter of Sref , the global
approximation error of RH would be about 18% and the local error would be as
depicted in Fig. 4.11b.

Now, the reference surface is approximated by dilating the smoothed surface.
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+0.11-0.13
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(a) (b)

Figure 4.10.: (a) R̃H map : approximation of RH depicted in Fig. 4.2d. (b) Approxi-
mated reference surface S̃ref (blue surface) of the observed surface
Sob (gray one) depicted in Fig. 4.2a. S̃ref is computed from Sob by
smoothing and dilation processes.

+0.02

-0.008

0

(a) (b)

Figure 4.11.: Local approximation error of RH : R̃H(n)−RH(n) when the barycen-
ter of Sref (a) is not known, (b) is known.
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Figure 4.12.: Linear regression analysis as proposed in Eq. (4.55) with (a) n = 50
and (b) n = 10 elements in each bin. R2 coefficient of linear fitting
is (a) 0.95 and (b) 0.77 respectively.

Since the smoothed surface is convex and the quality of mesh is good, the dilation
is performed in 1 iteration with amount of d = 0.81. It is reminded that d is the
average of Euclidean distances d(n) between corresponding vertices of Sob and
Ssm. The approximated reference surface S̃ref along with the observed surface
are shown in Fig. 4.10b. As expected, it is seen that wherever the Sob is out of
S̃ref , the value of R̃H is positive and vice versa.

The Fourier coefficients of R̃H are computed through the Laplacian eigenpairs
of S̃ref . Then the linear regression analysis with binning strategy is performed
on spectral powers vs. Laplacian eigenvalues in a log-log scale. In Fig. 4.12 the
regression analysis is shown when there are n = 50 and n = 10 elements in
each bin. As predicted by Eq. (4.55), the linear behavior of yl versus xl is clearly
evident in Fig. 4.12a. Finally, the estimation of H and C are extracted from the
slope and intercept of the least-square regression line.

The results of estimations for this example are given in Table 4.1. The abso-
lute errors of estimations of H and C show that, in the case of this example,
the proposed method can approximate these parameters accurately. Moreover,
changing the number of elements in bins (n = 50, 10) does not have significant
effect of the approximation. In other words, the method is likely not sensitive to
this parameter.

Experiment 2.
To see the quality of estimations for different values of H, we run an expe-

riment with 1000 fractional Brownian spheres (fBs’s) for which H ’s are given
by the uniform distribution in interval (0.05, 0.95). For each fBs, H is estimated
through Algorithm 1 with the parameters used in Experiment 1. The global mean
of biases (mBias) and the root mean square error (rMSE) of H̃ are computed by
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Table 4.1.: Statistics of estimating H and C of the examplar case by linear regres-
sion analysis with a binning strategy (4.55). Bins have equal number of
elements denoted by n.

Statistics Binned regression
n = 50 n = 10

|H̃ −H| 0.0060 0.0067
|C̃ − C| 0.0403 0.0427

R2 coefficient 0.95 0.77

Table 4.2.: Statistics of estimation of H and C by naive regression (4.43) and
regression with a binning strategy (4.55). Bins have equal number of
elements denoted by n.

Statistics Binned regression
n = 50 n = 40 n = 30 n = 20 n = 10

mBias of H̃ -0.011 -0.0089 -0.0069 -0.0041 -0.00039
rMSE of H̃ 0.065 0.065 0.065 0.064 0.064

mBias of C̃ -0.035 -0.029 -0.022 -0.013 -0.0085
rMSE of C̃ 0.219 0.217 0.215 0.213 0.210
R2 coefficient 0.87 0.86 0.85 0.83 0.83

the following formulas :

mBias = 1
N

N∑
k=1

(H̃k −Hk), (4.71)

rMSE =

√√√√ 1
N

N∑
k=1

(H̃k −Hk)2. (4.72)

The same statistics are computed for C̃. The results are presented in Table 4.2 for
different n = 50, 40, 30, 20, 10 number of elements in each bin. Evidently, rMSE
of H and C does not change significantly with n. Consequently, the quality of
estimations is not heavily dependent to n. From now on, we will use n = 10
which ensures that there are enough data for regression analysis, especially in
case of some experiments where due to numerical issues, a few number of data
points can be computed.

To see the local error of estimations, the 1000 considered surfaces are clus-
tered in 9 bins based on their H values : group i contains surfaces with H ∈
[0.05 + (i− 1)× 0.1, 0.05 + i× 0.1) for i = 1, 2, . . . , 9. For each cluster, the mBias
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Figure 4.13.: Mean of biases (mBias) and root mean square errors (rMSE) of es-
timation of (a) H and (b) C for 1000 fractional Brownian surfaces,
shown in different clusters of H.

and rMSE of and are computed by using formula (4.71) and (4.72) while N is
replaced by Ni, the number of surfaces in cluster i.

mBias and rMSE of H and C of clusters are shown in Fig. 4.13. From positive
values of bias for H ≤ 0.35 it is understood that the proposed spectral estimator
overestimates the exact values of H in this range. In contrast, it underestimates
H for 0.35 < H < 0.95. It means that H̃ remains in the appropriate interval
between 0 and 1. Moreover, the most accurate result is achieved for surfaces
with H ∈ [0.45, 0.55) where the rMSE takes its minimum value : 0.049 for H and
0.017 for C.

4.3.2. Fetal data
In this section, we show how the Hurst parameter can be considered as a global

gyrification index. Indeed, the presumption is that each brain hemisphere is a
fractional Brownian surface. So, we apply the proposed Algorithm 1 to estimate
its Hurst parameter. We chose to work on fetal brain cortical surfaces since the
increase of brain surface complexity with gestational age is clearly observable.
Accordingly, we expect H to decrease with age. This is presented in following.

Subjects and preprocessing.
We have a database of fetal subjects provided by the Department of Neurora-
diology in La Timone Hospital (Marseille, France) between 1 January and 31
December 2011. The local ethical committee approved the acquisition protocol.
The subjects have been either suspected of brain anomalies according to ultra-
sounds scans, requiring further examinations by MRI, or have personal-familial
history of anomalies with a risk for fetal brain damage after 28 weeks GA even
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when ultrasounds scans appeared normal (GIRARD et al. 2012). In utero ac-
quisitions were performed on a 1.5-T MRI system (Symphony TIM, Siemens ;
Erlangen, Germany). More details of MR acquisition are given by LEFÈVRE et al.
2015.

From this database, we selected 14 healthy subjects according to radiological
criteria. The gestational age of subjects has been between 21 and 34 weeks at the
time of MRI acquisition (mean age : 29.6±3.5 weeks). For these subjects, at least
3 artifact-free volumes in different orientations (axial, coronal, sagittal) had been
acquired and no disease was reported in the regular clinical follow-up. Image re-
construction is performed to get high-resolution volumes (0.75×0.75×0.75mm3).
Then the interface between the developing cortex and the future white matter
zone, also called inner cortical surface, was segmented and reconstructed in 3D.
These preprocessing steps are explained in details in LEFÈVRE et al. 2015. Finally
we have 28 triangulated hemispheric surfaces. Two surfaces (one left and one
right hemisphere) are excluded due to low quality of triangulations.

Application of the method.
The proposed algorithm 1 is applied on each subject’s hemisphere. First, each
hemisphere (Sob) is smoothed by the mean curvature flow smoothing to get a
smoothed surface Ssm. The iteration of smoothing procedure is stopped when
Ssm is completely inside the Sob. The stopping criterion is checked by the angular
strategy explained in Section 4.2 (see Fig. 4.5).

A left hemisphere of a fetal subject (Sob) along with its smoothed surface (Ssm)
are shown on Fig. 4.14a. Sob is made transparent so that Ssm become visible. The
Euclidean distance between corresponding points on Ssm and Sob are computed.
Then, the Euclidean distance is centered to get R̃H and the characteristic distance
d is computed. In next step, Ssm is dilated as much as d to get a reference surface
S̃ref . This surface together with Sob are represented in Fig. 4.14b. The map of R̃H

depicted on S̃ref is shown in Fig. 4.14c. By comparing the relative positions of
these surfaces and the Euclidean R̃H , a good consistency is seen between them
i.e. in the regions where Sob is inside S̃ref , the value of R̃H is negative and vice
versa. For example, see the areas around the central sulcus and the insula.

If the geodesic distance between Ssm and Sob was considered, we would get
R̃H as depicted in Fig. 4.14d. It is seen that due to smoothing procedure, as
shown in Fig. 4.4, the geodesic distance doesn’t give an appropriate map of folds.
For example, see the map around the central sulcus where it is wrongly shown
that the precentral and postcentral gyri are deeper than the central sulcus !

The next step is to compute the spectral powers ˆ̃RH(k)2 by using the Laplacian
eigenvectors of S̃ref . A binning strategy with 10 elements in each bin is applied
on Laplacian eigenvalues and spectral powers to obtain xl’s and yl’s given by Eqs.
(4.46) and (4.47) respectively. They are shown in Fig. 4.15a. In this figure, it is
seen that the decreasing behavior of yl’s is not similar for low and high values
of xl’s. Moreover, if the regression analysis was performed on this data, from the
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(a) Sob (b) Sob & S̃ref

(c) Euclidean R̃H (d) Geodesic R̃H
+-

Figure 4.14.: (a) Left hemisphere of a subject Sob together with its smoothed sur-
face Ssm shown in green. (b) Sob together with S̃ref . Sob is transpa-
rent to show Ssm and also parts of S̃ref which is inside the Sob. (e)
R̃H as the centralized Euclidean distance between Sob and Ssm. (f)
R̃H as the centralized geodesic distance between Sob and Ssm. It is
noted that Ssm and S̃ref are shown in their original sizes.
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Figure 4.15.: (a) Linear regression analysis on {(yl, xl)} of the surface in Fig. 4.14.
The equation of the regression line is written on the plot. (b) yl
versus l of the smallest surface in our database. The breakpoint of
segmented regression analysis is determined as the point where the
decreasing behavior of yl’s change (i.e. l∗ = 20). (c) Segmented linear
regression on {(yl, xl)} of the surface in Fig. 4.14 with the breakpoint
l∗ = 20. The equation of the regression line of each segment is written
on the plot.
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Figure 4.16.: The 200th Laplacian eigenvector of the smallest approximated refe-
rence surface in the database corresponding to the breakpoint l∗ = 20.

slope of the regression line and Eq. (4.48), H = −(1 − 0.81) = −0.19 which is
not in the expected range (0, 1).

This issue may be due to mesh artefacts or numerical inaccuracy of approxi-
mating larger Laplacian eigenpairs. In fact, as indicated in Theorem 2, by using
the linear finite element method, the absolute error of approximation of Lapla-
cian eigenvalues is bounded by the square of eigenvalues. Moreover, the error
of approximation of Laplacian eigenvectors is bounded by corresponding eigen-
values. In this manner, as eigenvalues increase, the error of approximation of
them and their corresponding eigenvectors may increase as well. They increase
inaccuracies in computing xl and yl.

To deal with this situation, a segmented linear regression is performed. In this
method, xl’s are broken into two segments. The breakpoint (the border of low
and high xl’s) is determined from the data of the smallest surface in database.
In Fig. 4.15b, yl’s of the smallest surface are plotted versus l’s. It is seen that for
l ≤ 20, yl’s are decreasing while after this limit, they are oscillating in a constant
range. Consequently, l∗ = 20 is adapted as the breakpoint. It corresponds to the
200th Laplacian eigenvector which is shown in Fig. 4.16. Due to inaccuracy in
computation of large eigenvalues, we consider only the regression line on the
low frequency segment (small eigenvalues).

It is noteworthy that the smallest surface in our database is modelled by a mesh
with minimum number of vertices (N = 930) in comparison to other surfaces of
the database. On the other hand, the maximum number of Laplacian eigenpairs
of a meshed surface, computed by FEM, is equal to the number of its mesh
vertices. Consequently, we chose the smallest surface for determination of the
breakpoint l∗ to make sure that all surfaces in the database have enough data
points. So, the determined breakpoint l∗ of the smallest subject is used for all
other subjects.

It is also noted that the approximated reference surfaces of all subjects in the
database have similar shapes but different sizes. So, their Laplacian eigenvalues
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Figure 4.17.: (a) H versus gestational age, and (b) H versus hemispheric volume
of fetal subjects.

are almost similar up to a scaling factor (REUTER et al. 2006) : larger surfaces
have smaller eigenvalues. So, the xl∗ value itself cannot be used as the breakpoint
since it is scaled across subjects and results in regression analysis in different
spectral bands across subjects. That is why the index l∗ of the xl∗ is considered as
the breakpoint.

By applying the breakpoint l∗ = 20, the two segmented linear regression is
performed on the data of Fig. 4.15a and the result is plotted in Fig. 4.15c. From
the slopes in regions of low and high frequencies, H will be 0.4 and−0.55 respec-
tively. As mentioned before, the regression analysis in low frequency is adapted
here. Consequently, for this surface, H = −(1− 1.47) = 0.47.

Now, the method is applied on all subjects of dataset. In Fig. 4.17a, the values
of H of left and right hemispheres are represented versus gestational age. It is
seen that older subjects possess smaller values of H. The decreasing behavior of
H with age is expected since during fetal ages, folds appear on the brain surface
and as age increases, the brain becomes more folded (LEFÈVRE et al. 2015).

It is already discussed in literature that larger fetal brains are more folded (LE-
FÈVRE et al. 2015). This is also verified by some mechanical models (TALLINEN

et al. 2013 ; TALLINEN et al. 2016). In Fig. 4.17b, H is plotted versus hemisphe-
ric volume. It is seen that as volume increases, H decreases. It is consistent with
the results in literature and may justify that H can be considered as a global
gyrification index.

4.4. Discussion and perspective
In this section, we discuss about the proposed method as well as the obtained

results. It helps to better understand the method and also opens some perspec-
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tives of this work.

4.4.1. H as a global GI
Based on the results presented in Section 4.3.2, the idea arises that the cerebral

cortex might be a fractional Brownian surface, at least in a range of its low
frequencies. In this manner, the Hurst parameter H, as a measure of regularity
can be considered as a global gyrification index (GI). Here, we elucidate that H
can be potentially an appropriate GI according to the properties of a standard GI
listed in Section 1.4.

Clear definition of the surface complexity.
To define a GI, first a clear definition of the notion of "surface complexity" is nee-
ded. Here, we assume that the cerebral cortex is a fractional Brownian surface.
In this case, the Hölder regularity of the underlying fractional Brownian motion,
mentioned in Theorem 4, defines the surface complexity.

Physicality.
The Hurst parameter H ∈ (0, 1) determines the order of Hölder regularity of
an fBm underlying an fBs. Therefore, by estimating the Hurst parameter of a
given fBs, we can quantify its surface complexity. It is noted that the regularity
is usually measured in a high frequency band. Nevertheless, since we assumed
that the cerebral cortex is a fractional Brownian surface, it has the self similarity
property. In other words, it is supposed to show similar behavior in low and
high frequency bands. Due to inaccuracy of approximation of high frequencies,
however, we measured H in a low frequency band.

Locality.
Hurst parameter in the presented form is a global GI. Possible extensions to a
local measure is discussed in Section 4.4.3.

Geometric invariant.
The Hurst parameter itself is defined independently. It does not change with iso-
metric transformation (e.g. translation, rotation and reflection) nor with scaling.
The proposed spectral estimator of H has the same properties ; see Proposition
5.

Efficiency.
The proposed method has been performed by using MATLAB R©R2014a on a node
of a computation cluster with Xeon X5675 processor b (6 cores, 3.06 GHz), 48 GB
of RAM shared among 16 nodes. For the cortical mesh hemisphere with largest

b. http://ark.intel.com/products/52577/Intel-Xeon-Processor-X5675-12M-Cache-3_
06-GHz-6_40-GTs-Intel-QPI
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(a) H = 0.66 (b) H = 0.47 (c) H = 0.40

+9.3-11.8
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Figure 4.18.: Left hemisphere surfaces as Sob along with their R̃H on corresponding
approximated reference surfaces of 3 subjects in the database with
the same gestational age 29 weeks. From left to right, more folds
appear on surfaces and the value of H decreases consistently.

number of vertices in our database,N = 7910, all steps of Algorithm 1 took about
45 minutes to be performed.

A comparative example.
Here, we try to give a better intuitive picture of how H can be considered as a
global gyrification index. In Fig. 4.18, the left hemispheres of 3 subjects at the
same age 29 are represented. The map of R̃H is also depicted on the correspon-
ding approximated reference surface, S̃ref , of each subject. For these subjects,
the value of H varies between 0.40 and 0.66. Subjects 2 and 3 in Figs. 4.18b
and 4.18c developed the central sulcus and the insula while the Subject 1 in
Fig. 4.18a lacks the central sulcus but started to develop the insula. Apparently,
the surface of Subject 1 is less folded than others. Consistently, it got the largest
value of H among others.

Moreover, due to almost similar distribution of folds on subjects 2 and 3, the
patterns of R̃H for these subjects look almost similar. Although, the values of RH

at anatomically corresponding regions are not the same. It is due to differences
in the depth of corresponding folds. Among these subjects, Subject 3 with deeper
folds (dark blue in color maps) have smaller H.
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4.4.2. Comparison to fractal dimension
From the covariance function of fBm and the fact that fBm has stationary

increments, it is proved that fBm is a self-similar process (e.g. CHOW 2011).
More precisely, for an fBm RH indexed on R

∀c > 0, RH(t0 + ct)−RH(t0) d= cH(RH(t0 + t)−RH(t0)), (4.73)

where the equality is understood in distribution. Especially, since RH(0) = 0
almost surely, we have

∀c > 0, RH(ct) d= cHRH(t). (4.74)

This means that time scaling of fBm doesn’t influence its distribution. In other
words, fBm is a statistical fractal. That’s why it is also called "fractal Brownian
motion" (CHOW 2011). This property holds for fBm’s indexed on manifolds as
well (GELBAUM 2014). In this manner, the model described by Eq. (4.13) gene-
rates fractal surfaces from smooth manifolds. Being fBs a fractal, one may wish
to compute its fractal dimension (FD). Here, we remind the definition of the
fractal dimension adapted from CHOW 2011.

Definition 7 (Barnsley 2014). Let A be a compact subset of a complete metric
space. Given any ε > 0, let N(A, ε) be the minimum amount of closed balls of ε
radius that cover A. If

FD = lim
ε→0

log(N(A, ε))
log(1

ε
)

<∞, (4.75)

then FD is called the fractal dimension of A.

As discussed in Section 1.3, several methods have been suggested in literature
to estimate the FD. Among them the box–counting method is frequently used.
This method is directly based on Definition 7 ; see Section 1.3 or BARNSLEY 2014.

Estimating its FD is a way to characterize an fBm. Moreover, there is a simple
relationship between H and FD of fBm’s :

Theorem 5 (Falconer 2004). Let RH be a fBm indexed in R with Hurst para-
meter H. The fractal dimension of a RH is 2−H.

A generalization of this theorem for fractional Brownian surfaces defined on
the square [0, 1]× [0, 1] has been given by FALCONER 2004, (Chapter 16) :

Theorem 6 (Falconer 2004). Let RH be a fBm indexed in [0, 1] × [0, 1] with
Hurst parameter H. The fractal dimension of a RH is 3−H.

Since this theorem is proved based on the Hölder continuity of RH which also
holds in case of fBm’s indexed on manifolds, we give the following conjecture :

128



Table 4.3.: FD of adult cortical surfaces reported in the literature and that of
fetal cortex estimated from H. The unit of Age for our results is week
whereas it is year for other results.

Surface FD (mean ± SD) Age (mean ± SD) Reference
inner 2.45±− 28.31± 8.24 Cook et al. 1995
inner 2.30± 0.01 27±− Free et al. 1996
inner 2.57± 0.01 27.7± 4.4 Liu et al. 2003

GM volume 2.80± 0.05 range : 21− 56 Kiselev et al. 2003
outer 2.42± 0.02 24.1± 4.8 Ha et al. 2005
central 2.58± 0.0002 32.1± 10.0 Yotter et al. 2010
inner 2.48± 0.2 29.04± 3.8 our results

Conjecture 1. For an fBm indexed in an n-dimensional manifold, the fractal
dimension is equal to n+ 1−H.

So, in the case of fractional Brownian surfaces embedded in R3, the fractal
dimension would be 3 − H. This interesting relationship can be useful in two
directions :

1. Given H and a smooth manifold, one can generate a fractal surface with
known FD. It can be used to evaluate the precision of FD estimators.

2. Given an fBs, one can approximate its FD by using well known methods
such as box-counting method. It is a way to estimate the Hurst parameter
of the given fBs.

In case of the brain surface, it has been considered as a fractal surface – at
least in a limited range of spatial scales. Consequently, some research has been
done to estimate its FD (e.g. HOFMAN 1991 ; FREE et al. 1996 ; KISELEV et al.
2003 ; YOTTER et al. 2011). To the best of our knowledge, however, none of
these studies have been done on fetal brains. By using different estimators and
considering different cortical surfaces (inner/outer/central c) or brain volume,
different FD’s have been reported. Some of those results are summarized in Table
4.3. A comprehensive review on fractal analysis of medical signals, including
brain imaging, is given by LOPES et al. 2009.

For the fetal subjects in this study, the FD computed by 3−H is in the range of
(2.03, 2.77) with mean±SD=2.48 ± 0.2 ; see the last line of Table 4.3. In compa-
rison to other FD’s, presented in Table 4.3, the average values of FD computed
from H across fetal subjects (2.48) is close to the FD of adult subjects (2.30, 2.45
in and 2.57 reported in different studies on inner brain surface). Our results, ho-
wever, show a higher standard deviation. It is, of course, because of vast changes

c. Inner : the white matter/gray matter interface. Outer : the pial surface i.e. gray mat-
ter/cerebrospinal fluid interface. Central : the mean of inner and outer surfaces.
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of cortical complexity due to gyrification process in fetal ages. In contrast, other
results in the table have been computed on subjects in adult ages when the cor-
tical complexity doesn’t change that much which results in FD values with less
variability.

4.4.3. Multi-fractional Brownian surfaces and local Hurst
parameter

Local measures of cortical complexity admit a heterogeneous complexity pat-
tern of brain surface. With such a perspective, a more flexible model than a
fractional Brownian motion as in Eq. (4.13) is needed to describe this surface.
This model can be an extension of the fBs with locally variable Hurst parameter
H(x).

Such models have been defined on R as multifractional Brownian motions
(mBm’s). Two integral definitions of this model have been presented by PELTIER

et al. 1995 and BENASSI et al. 1998. These definitions are proved to be identi-
cal in distribution (COHEN 1999). The covariance of this model is as following,
looking a generalization of that of fBm (4.6) :

E[RH(t)(t)RH(s)(s)] = g(H(t), H(s))
(
|t|H(t)+H(s) + |s|H(t)+H(s) − |t− s|H(t)+H(s)

)
,

(4.76)
where

g(H(t), H(s)) = K(H(t) +H(s))−1
(
K(2H(t))K(2H(s))

)1/2

, (4.77)

and

K(α) = Γ(α + 1)sin(απ/2)
π

. (4.78)

An example of such mBm is plotted in Fig. 4.19.
GELBAUM et al. 2014 proposed that the idea of mBm can be extended to mani-

folds. Although a theory of such extension has not been defined yet, still we can
do some simulations with H on a smooth indexing manifold. In this manner, a
generalization of Eq. (4.13) with varying H will be

RH(x)(x) = C
∞∑
l=2

(λl)−( d
4 + H(x)

2 )(φl(x)− φl(o))ξl. (4.79)

In case of mBm, a spectral estimator ofH(x), akin to the one presented in Section
4.2 for fBm, can be proposed in a local manner. Indeed, instead of taking the
Fourier transform of RH , one may think of the windowed Fourier transform,
presented in Chapter 2, that gives local distribution of spectral powers.
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Figure 4.19.: Upper panel : a Hurst function Ht = 0.35 + 0.4t2, t ∈ (0, 1). Lower
panel : a corresponding mBm realization RH(t)(t) illustrating locally
varying regularity. This figure is adapted from Edvinsson 2015.

Here, we explain this method through an example. A multifractional Brownian
motion on sphere surface is given in Fig. 4.20a. The Hurst parameter H(x) of this
motion is ruled by

H(x) = −0.3 + 1
1 + x2

1 + x2
2
, (4.80)

where x = (x1, x2, x3) denotes the Cartesian coordinates of x. This function is
depicted on Fig. 4.20b. Starting from the equator of the sphere to its poles, H
increases and takes its maximum at the north and south poles of the sphere.
Accordingly, the regions near the poles of the multifractional surface correspon-
ding to this H(x) are less complicated while the region around the equator is
more complicated. The multifractional surface is shown in Fig. 4.20c. To apply
the windowed Fourier transform, as explained in Chapter 2, we use the adaptive
window function g, given by Eq. (2.44), and the translation operator T , given
by Eq. (2.42) to move the window function across mesh vertices. Applying the
translated window function Tig on RH gives a localized RH around each vertex
Pi

RH,i(n) = (Tig)(n)RH(n). (4.81)

An example of such localized RH,i around an exemplar vertex is represented in
Fig. 4.20d. It is seen that RH,i retains a similar pattern as RH near vertex Pi but
vanishes on vertices far from Pi. Now, by computing the windowed Fourier trans-
form coefficients R̂H,i, given by Eq. (2.46), at this vertex, a localized distribution
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Figure 4.20.: (a) A multifrac-
tional Brownian
motion on a sphere
surface. (b) Map
of H(x) given by
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Figure 4.21.: Linear regression analysis on {(xl, yl)} data of the exemplar vertex of
the multifractional sphere shown in Fig. 4.20c

of spectral powers is obtained :

R̂H,i(k)2 = C2λ
−( d

4 + H(i)
2 )

k ξ2
k.

Now, as in case of fBm, taking logarithm along with binning strategy gives

yl = αxl + β, (4.82)

where xl and yl are given by Eqs. (4.46) and (4.47) and α = −(d/2 + H(i)).
For the exemplar vertex, the distribution of yl vs. xl is shown in Fig. 4.21. Now,
the slope of the regression line of this distribution gives an estimation of H(i).
For this example the mean and standard deviation of absolute errors across all
vertices are

mean1≤i≤N |H̃i −Hi| = 0.086, (4.83)
std1≤i≤N |H̃i −Hi| = 0.065. (4.84)

The map of absolute error of H estimation is depicted in Fig. 4.21e. The same
procedure may be applied on cortical surface to give a local gyrification index
H(x).
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4.4.4. Limitations of the proposed method
The proposed algorithm gives an estimation of Hurst parameter of an observed

fractional Brownian surface. In Section 4.3.1, it is seen that the mean square
error of estimation of H for 1000 trials of fractional Brownian spheres is about
0.064. This error roots in the approximation procedures existing in the proposed
algorithm. These procedures are listed here :

1. Approximation of RH

2. Approximation of the reference surface

3. Approximation of Laplacian eigenpairs of the reference surface by using
linear FEM

4. Approximation of H by regression analysis while only one observation is
available

Dependency on several sources of error might be considered as a drawback of
this algorithm. One may suggest more accurate methods for the above-mentioned
approximations. It is worth to note that in the case of 1000 trials on sphere, if
we had the real values of RH and the reference surface (i.e. the sphere itself),
the first two roots of error would be eliminated but the mean square error of H
would be about 0.060. It shows that the procedures of approximating RH and
the reference surface does not contribute mainly on the total error. So, to im-
prove the results, one may consider more accurate approximating methods for
Laplacian eigenpairs (e.g. REUTER et al. 2009a).

In our experiments on fractional Brownian spheres, we considered the coeffi-
cient of fBm as C = 1. Large amplitudes may spoil the estimation. It is mainly
due to the approximation of the reference surface (i.e. sphere). More precisely,
applying RH on a reference surface like sphere moves its barycenter. In fact, the
larger the amplitude of RH , the larger the barycenter movement of the reference
surface. Besides, using the mean curvature flow smoothing for reconstruction of
the reference surface from the fractional surface moves the barycenter at each
step of smoothing. Since, we suppose that the reference surface is not available,
we translate the barycenter of the smoothed surface to that of the observed sur-
face. Consequently, if the barycenter of the observed surface is far from that of
the reference surface because of a large amplitude, the approximated reference
surface is not well superimposed on the real reference surface thus corrupt the
estimation of RH and H.

The method is also sensitive to mesh quality. Especially, if the mesh quality
is poor, the smoothing procedure, the inflation and approximation of Laplacian
eigenvalues will be problematic thus corrupt the approximation of RH , the re-
ference surface and H. This might happen for brain surface data especially for
fetal brains. Indeed the segmentation of white and gray matters of fetal brains
are hard due to low contrast and head movement. So the preprocessing pipeline
of MR images may fail to give a proper mesh surface.
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Conclusion

In this thesis, we dealt with the definition and quantification of the surface
complexity as a morphological characteristic of folded surfaces. We defined the
surface complexity notion and proposed methods to measure it. The proposed
methods were then applied to measuring the degree of folding of the human
cerebral cortex. The conclusions of this thesis are in two directions which are
given below. Some directions for future research are outlined at the end of this
section.

In the first direction, we defined the surface complexity in two ways, inspired
by the intuitive perceptions of it which are based on the properties of the surface
bending : 1) the magnitude of bending and 2) the spatial variation of bends. To
quantify these definitions, we developed a local spectral analysis of surfaces mo-
delled by triangular meshes. Indeed, we extended the graph windowed Fourier
transform to mesh setting through 1) replacing the graph Laplacian operator by
a linear finite element discretization of the Laplace-Beltrami operator of surfaces,
2) modifying the window function to be adapted by the size of surfaces.

We then applied the mesh windowed Fourier transform on the mean curvature
of surfaces, as a local measure of bending, and proposed two local measures of
surface complexity. The first one, called spectral gyrification index (sGI), is the
total power of frequencies of the mean curvature in a neighbourhood around
each mesh vertex. We proved that it measures the magnitude of bending. The
second one, called weighted gyrification index (wGI), is a weighted sum of fre-
quency powers of the mean curvature. Thanks to the special weights which are
normalized Laplace-Beltrami eigenvalues, we proved that wGI measures the va-
riation of bends in a neighbourhood around each mesh vertex. Integration of sGI
or wGI on a surface gives a global measure of complexity of the surface. Finally,
we discussed that sGI and wGI satisfy the most of properties of a standard GI.

The proposed method was then applied to some synthetic wavy surfaces as
well as a database of 124 healthy adult human brain surfaces from OASIS data-
base d. For comparison, a surface area-based GI, i.e. Toro’s GI, is also computed
for those surfaces.

Our experiments on synthetic wavy surfaces elucidated that Toro’s GI may not

d. Open Access Series of Imaging Studies (OASIS) is available at http://www.oasis-brains.
org/
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distinguish deep regular folds from oscillating ones. It reveals the main drawback
of surface area-based GIs that compute a ratio of surface areas as a GI without
paying attention to the configuration of folds thus they are biased by depth of
folds. Consequently, when computed on a cortical surface, they give higher va-
lues to deep folds like the insula and the central sulcus where there is much
surface area than in oscillating shallow ones.

In contrast, our proposed GIs appropriately assign low values to walls of deep
folds that are relatively regular and high values to regions consisting of sharp or
oscillating folds. The GIs, when computed on cortical surfaces, demonstrate that
the primary folds like the central sulcus and the insula are less folded than other
regions. They give highest values to the lateral prefrontal cortex and medial
occipital cortex.

The proposed analysis can be done in different spatial scales which gives the
complexity of the brain surface from gyrus/sulcus scale to a regional scale. The
distribution of sGI and wGI values in fine spatial scales show that our GIs can
catch the complexity of folds all over the brain. It is an advantage of our method
over surface area-based methods which their GI maps in larger scales are a pro-
pagated version of those maps in fine scales. Therefore, they may fail to catch
other folded parts of the brain, thus affecting the reliability of findings.

Our GIs, consistent with some experimental studies and a mechanical model
of brain development, revealed a positive allometry relationship between the
global cortical complexity and brain volume. In other words, the proposed GIs
showed that larger brains are more folded than expected by an isometric scaling.
This global analysis, however, cannot unveil the cortical regions that are more
complex in larger brains. To address this question, a similar analysis has been
performed in the vertex level. The results showed a heterogeneous increase of
cortical complexity with brain volume. The most increasing complexity happens
in the least complex regions like the walls of deep folds e.g. the insula and the
central sulcus.

In the second direction, we worked on identification of the recently introdu-
ced fractional Brownian surfaces. Particularly, we proposed a spectral-regression
algorithm to estimate the Hurst parameter (H) of those surfaces. The algorithm
consists of mesh processing procedures such as smoothing and dilation together
with a mesh Fourier transform and linear least-square regression analysis.

To test the efficiency of the proposed algorithm, we successfully used it to
estimate the Hurst parameter of a set of simulated fractional Brownian spheres.
Furthermore, by measuring the Hurst parameter of fetal cerebral cortices, we
showed that the fetal cerebral cortex can be considered as a fractional Brownian
surface, at least in a range of its low frequency band.
H is a characteristic of fractional Brownian motions (fBm’s) underlying frac-

tional Brownian surfaces. It varies in the range of (0, 1) and indicates the Hölder
regularity of fBm’s. For small H of an fBm, the corresponding fBs is less regu-
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lar. Following that, we defined the surface complexity by the Hölder regularity
and we suggested H as a global GI. We discussed that H potentially has many
properties of a standard GI such as a clear definition of the surface complexity,
physicality, geometric invariance and efficiency. The main lack, however, is the
locality of H. To address this issue, we brought up the idea of replacing the
mesh Fourier transform in the proposed algorithm by the mesh windowed Fou-
rier transform. In this way, the cerebral cortex is considered as a multi-fractional
Brownian surface for which we can estimate local H parameters.

Our results reflect the dynamical process of cortical folding during fetal ages.
For example, the youngest fetus in our database has 21 weeks with a very smooth
cortex without any fold. As expected, it has a high value of H (>0.75). On the
other hand, the oldest subject with 34 weeks developed with highly folded cortex
gets the lowest H value (<0.35). The similar interaction of H to brain volume
is also observed. The small brains have high H values whereas large brains get
low values of H.

Due to self-similarity property of an fBm, the corresponding fBs can be consi-
dered as a fractal. In this way, the fractal dimension (FD) which indicates the
fractal regularity, can be also considered as a measure of surface complexity. For
fBm’s defined in 1D or on a 2D rectangle, there is a relationship between H and
the fractal dimension as FD = n + 1 − H where n is the space dimension. We
conjectured that the same relationship may be true in the case of fBm’s defined
on manifolds.

Accordingly, we compared our Hurst parameter GI (H) with fractal dimension
GIs (FD) in the literature. Although, to the best of our knowledge, the fractal
dimension of fetal subjects has not been reported yet. Nevertheless, the average
values of FD computed from H across fetal subjects (2.48) is close to the FD
of adult subjects (2.30, 2.45 and 2.57 reported in different studies). The vast
changes of the cortical complexity in fetal ages due to fast gyrification process, in
comparison to less variability of that in adult ages, is manifested in high standard
deviation (SD) of our results (= 0.2 ' 20×SD of adult subjects).

Future directions
While this thesis introduced new definitions of the surface complexity and de-

veloped methods to measure it, many theoretical and experimental opportunities
for extending the scope of this thesis still remain. In this section, we present some
of these directions.

• Experimental : The relationship between our proposed GIs and other fac-
tors
In this thesis, we investigated the effect of brain size on the cortical com-
plexity through a power law analysis of our proposed GI as a function of
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the brain volume. The relative low but still significant coefficient of deter-
mination of power law, R2, clarifies that there is still enough room for other
covariates, beyond the volume, to explain the cortical complexity. One in-
teresting direction for future studies is to take into account some other fac-
tors in the power law model. Some potential factors are 1) biological ones
like age, sex, genetic conditions, 2) cognitive ones e.g. IQ, 3) behavioural
ones like special skills e.g. sport skills, skill of playing musical instrument,
4) geometric ones e.g. cortical thickness and fold depth. Some similar stu-
dies by using different GIs have been documented in Section 1.2.

• Theoretical and experimental : comparing different GIs
We compared our spectral GIs with a surface area-based GI proposed by
TORO et al. 2008. Although, the logic behind other surface area-based GIs
is similar to Toro’s GI, they differ on implementation. Accordingly, to have
a better understanding of the function of those GIs as well as other GIs
computed from the surface curvature and fractal dimensions, it is needed
to organize an comprehensive comparison study. For this purpose, desi-
gning synthetic surfaces with special features and measuring their com-
plexity with the existing GIs can be helpful.

• Theoretical : the mesh windowed Fourier transform as a general analysis
tool
We extended the windowed Fourier transform from graph setting to mesh
models of surfaces. Then, we apply it on the mean curvature of surfaces to
compute the surface complexity. Similarly, it is possible to apply the deve-
loped method on other geometrical parameters of surfaces e.g. curvedness,
shape index (e.g. AWATE et al. 2008 ; LEFÈVRE et al. 2015), sulcal depth
(e.g. IM et al. 2008) etc. It potentially reveals other properties of surface
structure.

• Theoretical : non-linear mean curvature flow smoothing
We used the mean curvature flow to smooth the fractional Brownian sur-
faces. In theory, it is an iterative non-linear process due to updating the
Laplace-Beltrami operator at each iteration. To ease the computations, we,
however, used the Laplace-Beltrami operator of the initial surface in all
iterations. Moreover, by using the non-linear process, the mesh of the fi-
nal smoothed surface is highly heterogeneous. Consequently, to continue in
the framework of our algorithm, the smoothed surface needs to be resam-
pled otherwise the dilation procedure does not work properly. Nevertheless,
using the non-linear process may reduce the error of smoothing steps and
it is worth to try it.

• Theoretical : local Hurst parameter as a local GI of the cerebral cortex
We brought up the idea of estimating the local Hurst parameter of a mul-
tifractional Brownian surface by using the mesh windowed Fourier trans-
form. The evaluation of the idea on a simulated multifractional Brownian

138



sphere shows a low error of estimation. On the other hand, the heteroge-
neity of the cerebral cortex complexity suggests that the brain surface may
have a multifractional structure. So, by using the proposed idea, one can
estimate the local Hurst parameter of the cerebral cortex as a local GI.

• Theoretical : the relationship between FD and H

In Section 4.4.2, we presented a conjecture that the relationship between
the fractal dimension (FD) and the Hurst parameter (H) for a fractional
Brownian motion defined on a Euclidean space is true for a fBm defined on
a manifold. If it comes true, it can be used in two directions :

1. Given H and a smooth manifold, one can generates a fractal surface
with known FD. It can be used to evaluate the precision of FD estima-
tors.

2. Given an fBs, one can approximate its FD by using well known me-
thods such as box-counting method. It is a way to estimate the Hurst
parameter of the given fBs.

By using this conjecture, we computed the FD of fetal brain surfaces and
the results are comparable with those in the literature. It may be considered
as an evidence for the conjecture to be true.
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A. Precision of the proposed Hurst
parameter estimator

The proof of Proposition 4 is given in following :

Proof. We start with the variance of α :

V(α) = Cov(α, α)

= 1
σ4
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where y is the weighted average of yl’s

y =
L∑
l=1

Nl

N
yl. (A.2)

Now, we compute each term of Eq. (A.1) separately :
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Figure A.1.: Distribution of xl’s for the first 1600 Laplacian eigenvalues of sphere
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And the third term will be
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Now, by substituting Eqs. (A.3)-(A.5) in Eq. (A.1), we get

V(α) = σ2
0

Nσ4
x
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l=1

Nl

N
x2
k − x2

}

= σ2
0

Nσ2
x

. (A.6)

Similar computations give the variance of β.

This theorem suggests that if bins are chosen in a way that the points xl’s are
more spread, the precision of H and C estimations increases.
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For instance, in case of the sphere, the Laplacian eigenvalues are

λm,l = l(l + 1), |m| ≤ l, l = 0, 1, 2 . . .

Consequently, the eigenvalues are not distributed homogeneously i.e. the density
of eigenvalues is higher for large l’s. So, if The strategy of binning with equal
number of elements in each bin is applied, the dispersion of xl’s will be low,
especially for large l’s ; see Fig. A.1 for the first 1600 eigenvalues. So, one may
think of another binning strategy with higher variance of xl’s.
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