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INTRODUCTION

Machine learning (ML) is a subfield of Artificial Intelligence that focuses on the study of algorithms that "learn" from input data (past experiences) to make decisions (knowledge or expertise) on new data. Typically, the input to a learning algorithm is training data (corresponds to experience) and the output is a model (corresponds to expertise) that make decisions on the new data. In the past few decades, machine learning algorithms have been applied to many real-word applications for example spam filtering, credit card fraud detection, digit recognition, medical diagnostics, recommendation systems, search engines, etc. Machine learning algorithms can be broadly divided into two categories i.e. supervised [START_REF] Mohri | Foundations of Machine Learning, Adaptive computation and machine learning[END_REF][START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF] and unsupervised learning [START_REF] Ghahramani | Unsupervised learning[END_REF] 1 .

• Supervised Learning: The learning algorithm is provided with input examples and their desired outputs (called as labels). The objective is to learn a classification function (referred as classifier) which classifies new examples into different labels (as illustrated in Figure 1.1(a)).

• Unsupervised Learning: The learning algorithm is provided with input examples but without any labels. The objective is to cluster the data into different categories or classes based on similarities between the data points (as illustrated in Figure 1.1 (b)).

In this thesis, we focus on the problem of supervised learning where we learn a classifier using the training data drawn from an unknown distribution D which performs well on new unseen data drawn from the same distribution. In other words, we want the learned classifier to generalize well from the training data to any data drawn from the same distribution. Therefore, we need to study the generalization guarantees in form of generalization bounds [START_REF] Vapnik | Statistical Learning Theory[END_REF][START_REF] Vapnik | On the uniform convergence of relative frequencies of events to their probabilities[END_REF] for learning algorithms. Probabilistic generalization bounds with a high probability on learning sample of size m drawn from distribution D, provides an estimation of true risk (or generalization error) of a classifier in terms of empirical error on training data, complexity of classifier and size of learning sample. In contrast, non-probabilistic generalization bounds are the expectation bounds on all possible learning samples of size m drawn from distribution D. In our work, we derive non-probabilistic generalization bounds for the PAC-Bayesian theory [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF][START_REF] Mcallester | Some PAC-Bayesian theorems[END_REF] which provide theoretical guarantees for models that take the form of majority vote over set of classifiers. Assuming a priori weights (or distribution) over set of classifiers, PAC-Bayesian theory after seeing learning sample, aims at finding a posterior distribution over these set of classifiers leading to well performing weighted majority vote. Therefore, it is interesting to derive the non-probabilistic generalization bounds from PAC-Bayesian standpoint where the posterior distribution is data dependent.

In many real-life applications, we have data collected from different information sources having heterogeneous properties, so it is important to consider these multiple representations or views of the data. This issue is referred as multiview learning. It has been applied to many real applications for example in multilingual regions of the world, including many regions of Europe or in Canada, documents are available in more than one language [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF].

As another example, in multimedia content understanding, multimedia segments can be described by their audio and video signals [START_REF] Atrey | Multimodal fusion for multimedia analysis: a survey[END_REF]. Therefore, multiview learning has become a promising topic with wide applicability.

In literature, there exists different ways to tackle multiview learning, spurred by seminal work of Blum and Mitchell [START_REF] Blum | Combining Labeled and Unlabeled Data with Co-Training[END_REF] on co-training. To adapt multiview learning to single view setting, traditional machine learning algorithms such as support vector machines concatenate all the views of the data (also referred as early fusion [START_REF] Snoek | Early versus late fusion in semantic video analysis[END_REF]). However, this method does not take into account the view-specific properties of the mutliview data therefore tends to overfit in the case when we have small number of training examples [START_REF] Xu | A survey on multi-view learning[END_REF]. Another approach is based on late fusion [START_REF] Bartlett | Rademacher and gaussian complexities: Risk bounds and structural results[END_REF] where we combine classifiers learned on each view (view-specific classifiers) in order to exploit different representations for improving the performance of the final learned model [START_REF] Snoek | Early versus late fusion in semantic video analysis[END_REF]. In such situation, it is important to consider the relationships between the multiple views appropriately or in other words consensus or diversity between the views [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF][START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF][START_REF] Kuncheva | Combining Pattern Classifiers: Methods and Algorithms[END_REF][START_REF] Morvant | Domain adaptation of weighted majority votes via perturbed variationbased self-labeling[END_REF]. In this thesis, we focus on supervised multiview learning, where we see multiview learning as combination of different view-specific classifiers or views.

Therefore, according to our point of view, it is interesting to tackle multiview learning issue through PAC-Bayesian framework. It is an interesting theoretical tool to understand this setting as it allows to directly capture the trade-off between accuracy and diversity between voters [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF][START_REF] Morvant | Domain adaptation of weighted majority votes via perturbed variationbased self-labeling[END_REF]. In consequence, we have extended the single-view PAC-Bayesian analysis to multiview learning. Moreover, compared to the PAC-Bayesian work of Sun et al. [START_REF] Sun | PAC-Bayes analysis of multi-view learning[END_REF], we are interested here to the more general and natural case of multiview learning with more than two views. From practical point of view, we designed three multiview learning algorithms exploiting late fusion and boosting paradigms.

Context of this work

This thesis was carried out in machine learning teams from two establishments: the Data Intelligence group of Laboratoire Hubert Curien UMR CNRS 5516, part of University of Saint-Étienne and University of Lyon, and the Data Analysis, Modeling and Machine Learning (AMA) group of Laboratoire Informatique de Grenoble, part of Grenoble Alps University. This project is partially funded by the "Région Rhône-Alpes" and ANR project LIVES (Learning with Interacting ViEws).

Organization of the thesis

This dissertation is organized as follows. Part I reviews the background work relevant to this thesis:

• Chapter 2 introduces the notions related to statistical learning theory that are necessary for the rest of this document. We begin with two main principles of risk minimization for learning theory: i) empirical risk minimization (ERM) and ii) structural risk minimization (SRM), followed by examples of some classic supervised machine learning algorithms.

• Chapter 3 is dedicated to multiview learning in general. We present basic concepts and background for multiview learning. We introduce two fundamental principles of multiview learning: i) consensus and ii) diversity. For each principle, we present some of multiview learning algorithms.

In Part II, we present the contributions of our work:

• Chapter 4 presents a detailed overview of the PAC-Bayesian theory for single view learning. In this chapter, we derive the non-probabilistic generalization bounds expressed as expected risk bounds for the PAC-Bayesian theory.

• Chapter 5 presents the PAC-Bayesian analysis for multiview learning with more than two views. We considered a hierarchy of distributions, i.e. weights, over the views and the view-specific classifiers: i) for each view a posterior and prior distributions over the view-specific classifiers, and ii) a hyper-posterior and hyper-prior distribution over the set of views. Based on this setting, we derive PAC-Bayesian generalization bounds (both probabilistic and expected risk bounds) for multiview learning with more than two views. Moreover, we derive the generalization bound for the multiview C-Bound which we use to derive boosting based algorithm PB-MVBoost.

• Chapter 6 presents two multiview learning algorithms based on boosting and late fusion approaches. First algorithm is a boosting-based learning algorithm, called as PB-MVBoost. It iteratively learns the weights over the view-specific classifiers and the weights over the views by optimizing the multiview C-Bound which controls a trade-off between the accuracy and the diversity between the views. Second algorithm is a two-step learning algorithm Fusion all Cq which combines the predictions of viewspecific classifiers using a PAC-Bayesian algorithm CqBoost [START_REF] Roy | A column generation bound minimization approach with PAC-Bayesian generalization guarantees[END_REF]. In order, to see the potential of proposed algorithm,

• Chapter 7 shows that the minimization of the classification error of multiview weighted majority vote is equivalent to the minimization of Bregman divergences. This allows us to derive a parallel-update multiview learning algorithm MωMvC 2 . We experimently study our algorithm on three publicly available datasets.

Finally, in Chapter 8 we conclude our work and discuss possible directions for future work. 

Part I

SINGLE VIEW SUPERVISED LEARNING

In machine learning, the goal of supervised learning is to generally learn a classification function or a classifier using a set of labeled examples in order to make predictions on new unseen data. In this chapter, we introduce formally the supervised learning setting (for single view) and describe the main ideas of statistical learning theory, with a focus on binary classification. We present two main principles of risk minimization for learning theory: i) empirical risk minimization (ERM) and ii) structural risk minimization (SRM). Lastly, we recall some of supervised machine learning algorithms.

Introduction

The objective of supervised learning [START_REF] Mohri | Foundations of Machine Learning, Adaptive computation and machine learning[END_REF][START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF] is to learn a classification function or a model using a set of labeled examples in order to make predictions on new unlabeled data 

S = {(x i , y i )} m i =1
, that is assumed to be independently and identically distributed (i.i.d.) according to a unknown joint distribution D over X × Y, where X ∈ R d is a d -dimensional input space and Y is the output space. The notation (D) m stands for the distribution of such a m-sample, and D X for the marginal distribution on X . In this thesis, we consider binary classification tasks where Y = {-1, +1}.

We consider a hypothesis space H consisting of a set of classifiers such that ∀h ∈ H,h : X → Y. In supervised learning, our objective is to learn a function (or in other words a classifier) h S : X → Y belonging to the hypothesis space H using a training sample S, such that h S "best" predicts the label y from x for any input example (x, y) drawn from the unknown distribution D. In order to learn h S , we need a criterion to evaluate the quality of any hypothesis h ∈ H. Therefore, we define the notion of true risk: Definition 2.1. (True Risk). The true risk is the expectation of the classification errors of a classifier h ∈ H over the data distribution D:

R D (h) = E (x,y)∼D 1 [h(x) =y] , (2.1)
where 1 [p] = 1 if predicate p is true and 0 otherwise. The goal of supervised learning is to find a classifier which has the smallest true risk. However, we can not compute the true risk of a classifier h ∈ H as the distribution D over data is unknown. Therefore, we rely on its empirical counterpart, i.e., we compute the error of the classifier on the training sample S. This is referred as the empirical risk.

Definition 2.2. (Empirical Risk). For a given training sample

S = {(x i , y i )} m i =1 consisting of m
examples drawn from the unknown data distribution D, we define the empirical risk of a classifier h ∈ H as:

R S (h) = 1 m m i =1 1 [h(x i ) =y i ] .
(2.2)

Strategies for Minimization of Risk

In order to solve the binary classification task, one natural solution is to pick a classifier h ∈ H which minimizes the empirical risk over the learning sample S. However, in real world scenarios, we have a limited number of training examples and we can always find a complex hypothesis which perfectly fits the training samples, i.e., R S (h) = 0. It can happen that the learned hypothesis h commits a lot of errors on new unseen data drawn from the distribution D. This problem of having the empirical risk tending to zero and large deviation between the true risk and the empirical risk is called overfitting. Therefore, while finding a good hypothesis from hypothesis space we need to control the trade-off between the minimization of empirical risk and complexity of hypothesis space. This trade-off is called bias-variance trade-off. The solution to avoid overfitting is to restrict the hypothesis space to simple ones. In this section, we present two principles of risk minimization for learning theory: i) empirical risk minimization (ERM) and ii) structural risk minimization (SRM) [START_REF] Vapnik | Principles of risk minimization for learning theory[END_REF].

We present these principles in the next sections.

Empirical Risk Minimization (ERM)

The idea behind the ERM principle is to restrict the hypothesis space H (consisting of simple classifiers) and then pick the classifier h * S ∈ H which has the smallest empirical error [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF],

such that

h * S = argmin h∈H R S (h). (2.
3)

The fundamental question with ERM principle is: does the minimization of the empirical risk leads to a good solution in terms of the true risk? The answer to this question lies in statistical notion called consistency. According to this concept, we need to pick the hypothesis h ∈ H which has low deviation between the true risk and the empirical risk when the size of training examples tends to infinity. Vapnik [START_REF] Vapnik | Principles of risk minimization for learning theory[END_REF] proved that ERM principle is consistent if and only if:

∀ > 0, lim m→∞ Pr S∼(D) m sup h∈H R D (h) -R S (h) ≤ = 0, (2.4) 
The direct implication of the above result is the generalization bound which is a tool to evaluate the deviation between the true risk and the empirical risk for all hypothesis h ∈ H learned on a learning sample S. These bounds are referred as PAC (Probably Approximately Correct) bounds [START_REF] Valiant | A theory of the learnable[END_REF]. The general form of PAC bounds is given as:

∀h ∈ H, Pr S∼(D) m R D (h) -R S (h) ≤ ≥ 1 -δ, ( 2.5) 
where ≥ 0 and δ ∈ (0, 1]. It means that with a high probability on the random choice of the learning sample the deviation between the true risk R D (h) and the empirical risk R S (h), for a given h ∈ H, is less than certain value (that we want as small as possible).

In this section, we present two generalization bounds that hold for any hypothesis h ∈ H and takes the form given by Equation (2.5). With a high probability on the random choice of the learning sample, they bound the difference between the true risk of a classifier and its empirical risk in terms of number of examples m and the complexity of hypothesis space H. Note that, these bounds holds for any classifier h ∈ H.

Bound Based on the VC-dimension

One of the possible way to measure the complexity of the hypothesis space H is the VCdimension, proposed by Vapnik and Chervonenkis [START_REF] Vapnik | On the uniform convergence of relative frequencies of events to their probabilities[END_REF]. We consider m data points in learning sample S. These m points can be labeled in 2 m ways for binary classification task. 

R D (h) ≤ R S (h) + V C (H) ln 2m V C (H) + 1 + ln(4/δ) m .
This bound suggests that with a high probability on the random choice of the learning sample, the empirical risk of a classifier tends to its true risk if we have a large number of training examples and a hypothesis space H with a low VC-dimension. In practice, for some cases computation of the VC-dimension is not feasible and there are cases for which the VC-dimension equals to infinity. For example the VC-dimension of the K-nearest neighbour classifier is infinite for K = 1. Moreover, the VC-dimension focuses on the worst labeling of examples for the hypothesis space H. In the next section, we present the generalization bound based on the Rademacher complexity which is calculated on average on all possible labels instead of the worst labeling scenario and that are data dependent.

Bound Based on the Rademacher Complexity

Generalization bounds based on the Rademacher complexity [START_REF] Koltchinskii | Rademacher processes and bounding the risk of function learning[END_REF] measures how well any hypothesis h ∈ H correlates with random noise variables σ i instead of true labels y i . These random variables σ i are called as Rademacher random variables σ i and are defined by

σ i =    +1 with prob. 1/2, -1 with prob. 1/2.
We compute the empirical Rademacher complexity of hypothesis space H with respect to a learning sample S by

R S (H) = E σ sup h∈H 1 m m i =1 σ i h(x i ) . (2.6)
The above expression measures the correlation of H with random noise over the learning sample S and has the advantage of measuring the complexity of a hypothesis space that is data dependent. However, we are interested in measuring the correlation of H with respect to data distribution D X over X . Therefore, we compute the expectation of R S (H) over all learning samples of size m drawn i.i.d. from distribution D X :

R D (H) = E S∼(D) m R S (H) .
This is the Rademacher complexity of a given hypothesis space H. Following theorem presents the classical generalization bound based on Rademacher complexity [START_REF] Bartlett | Rademacher and gaussian complexities: Risk bounds and structural results[END_REF][START_REF] Koltchinskii | Rademacher processes and bounding the risk of function learning[END_REF]:

Theorem 2.2. (Generalization bound based on the Rademacher Complexity). Let D be an unknown distribution on X × Y, let H be a continuous hypothesis space, for any h ∈ H, with probability of at least 1 -δ on the random choice of the learning sample S ∼ (D) m , we have:

R D (h) ≤ R S (h) + R D (H) + log 1 δ 2m , and R D (h) ≤ R S (h) + R S (H) + 3 log 2 δ 2m .
The second bound in the above theorem depends on the empirical Rademacher complexity which can be easily calculated from the learning sample S. These bounds suggests that with a high probability on the random choice of the learning sample, the empirical risk of a classifier tends to its true risk if we have a large number of training examples and hypothesis space H of low Rademacher complexity.

Structural Risk Minimization (SRM)

Since restricting the hypothesis space H requires prior knowledge about the learning task and the data. One solution is to consider an infinite sequence of hypothesis classes H 1 , H 2 , . . . with increasing complexities such that ∀i ∈ {1, 2, . . . }, H i ⊂ H i +1 . For each hypothesis space H i , the learning algorithm selects a hypothesis that minimizes the empirical risk. Finally, from these (sub-)optimal hypotheses, one picks the hypothesis h * S which has smallest empirical risk.

h * S = argmin h∈H i ,i ∈{1,2,... } R S (h) + pen(H i ) , (2.7) 
where pen(H i ) is the penalty of the hypothesis space H i depending upon its complexity.

In the next section, we present classifier combination approaches where instead of picking a h ∈ H, we construct a weighted majority vote over all the classifiers from H. Classifier combination approaches has shown to perform well in practice as it helps to reduce both bias and variance.

Classifier Combination Approaches

Ensemble methods or classifier combination approaches [START_REF] Dietterich | Ensemble methods in machine learning[END_REF][START_REF] Kuncheva | Combining Pattern Classifiers: Methods and Algorithms[END_REF][START_REF] Valentini | Ensemble methods: a review[END_REF] aims at combining the outputs of individual classifiers (weighted or unweighted combination) from the hypothesis space H. In practice, it has been shown that the final learned combination performs better than individual classifiers [START_REF] Dietterich | Ensemble methods in machine learning[END_REF][START_REF] Kuncheva | Combining Pattern Classifiers: Methods and Algorithms[END_REF]. A necessary condition for better performance of ensemble methods is that individual classifiers should be weak and diverse [START_REF] Hansen | Neural network ensembles[END_REF]. A classifier is weak when its error rate is better than random guessing on Reducing Bias: There is a possibility that the considered classifier space does not contain the optimal classifier h * . Then the classifier combination may help us to find a good approximation to the optimal classifier. Figure 2.1 (b) shows the case when the optimal classifier is outside the considered classifier space.

Notations and Setting

In order to learn a weighted combination over all the classifiers in H, we define the majority vote classifier as follows:

B Q (x) = sign E h∼Q h(x) , (2.8) 
where Q is a distribution over h ∈ H. The learner objective is to find the posterior distribution Q that leads to well-performing majority vote B Q . We define the true risk and the empirical risk of the majority vote as follows:

Definition 2.3. (True Risk of the majority vote). The true risk of the weighted majority vote classifier over the data distribution D:

R D (B Q ) = E (x,y)∼D 1 [B Q (x) =y] .
(2.9) 

R S (B Q ) = 1 m m i =1 1 [B Q (x i ) =y i ] .
(2.10)

In the next section, we present the classical PAC-Bayesian generalization bound which upper bounds the deviation between the true risk and the empirical risk of the majority vote classifier in terms of Kullback-Leibler divergence between the prior and the posterior distributions over the set of classifiers and the number of traning examples m.

The PAC-Bayesian Generalization Bound

The 

R D (B Q ) ≤ 2 • E h∼Q R D (h) ≤ 2 •     E h∼Q R S (h) + K L(Q||P ) + ln 2 m δ 2m     , where K L(Q||P ) = E h∼Q ln Q(h) P (h)
is the Kullback-Leibler divergence between the learned posterior distribution Q and P .

From the above theorem, the true risk of the majority vote can be seen as trade-off between expectation of individual classifiers risk, KL divergence term that captures the deviation between prior P and posterior Q distributions over the set of classifiers from hypothesis space H and the number of training examples m. In Chapter 4, we present the general PAC-Bayesian theory in more details. Since by definition the learned posterior distribution Q is data dependent, we propose in Chapter 4 a new formulation of the PAC-Bayesian theorem that aims at bounding the expectation over all the posterior distributions we can learn for a given algorithm (and a learning sample size). Our new PAC-Bayesian theorem is then not anymore expressed as a probabilistic bound over a random choice of learning sample S, but as an expectation risk bound, bringing another point of view on the PAC-Bayesian analysis.

Note that all the generalization bounds we have presented so far are probabilistic bounds.

Some Supervised Learning Algorithms

In this section, we present three algorithms for the supervised machine learning.

Support Vector Machines

Support Vector Machines [START_REF] Boser | A training algorithm for optimal margin classifiers[END_REF][START_REF] Cortes | Support-vector networks[END_REF] is one of the most commonly used supervised learning algorithm for binary classification tasks. Support vector machines (SVM) outputs a classifier which takes the form of an optimal hyperplane classifying a new given example into one of the label. For example, in a two dimensional space this hyperplane is a line dividing the plane in two parts corresponding to each label. Here, "optimal hyperplane" means the seperating hyperplane that maximizes the "margin" of the training sample. In this thesis, we use SVM models to derive a new algorithm for multiview learning (in Chapter 6).

In a d -dimensional input space X ∈ R d , the equation of hyperplane is defined as follows:

〈w, x〉 + b = 0 ⇐⇒ d i =1 w i x i + b = 0,
where 〈•, •〉 is dot product between two vectors, w ∈ R d is the normal vector for the hyperplane and b ∈ R is the intercept of the hyperplane. The hyperplane divides the plane in two classes Y = {-1, +1} and the classifier for the hyperplane is defined as follows:

h(x) = sign 〈w, x〉 + b =    +1 if 〈w, x〉 + b > 0, -1 if 〈w, x〉 + b < 0.
It is clear that there exist an infinite number of hyperplanes (with different w and b) that separate two classes. However, SVM chooses the hyperplane which has the maximum 

h(x) = sign 〈w, x〉 + b =    +1 if 〈w, x〉 + b ≥ , -1 if 〈w, x〉 + b ≤ -.
As we can scale w and b, we can rewrite above equation as follows:

h(x) = sign 〈w, x〉 + b =    +1 if 〈w, x〉 + b ≥ 1, -1 if 〈w, x〉 + b ≤ -1.
From this equation, we can easily deduce that there is no training example between two parallel hyperplanes 〈w, x〉 + b = 1 and 〈w, x〉 + b = -1. Therefore, the distance between two hyperplanes is 2 ||w|| which is referred as margin of the separating hyperplane. For a given learning sample S = {(x i , y i )} m i =1 , support vector machines chooses the hyperplane which maximizes the margin by solving the optimization problem:

min w 1 2 w T w, (2.11) s.t. y i 〈w, x〉 + b ≥ 1, i = 1, . . . , m.
SVM uses the Lagrange duality techniques [START_REF] Boyd | Convex Optimization[END_REF] to transform the above optimization problem into a dual optimization problem:

max µ m i =1 µ i - 1 2 m i , j =1 µ i µ j y i y j x T i x j , (2.12 
) We have assumed that the training data is linearly separable. This is a strong assumption for many real world scenarios. One solution to this issue is to transform the original input space X ∈ R d into some higher dimensional space H (a Hilbert Space) and learn a linear classifier in H .

s.t . µ i ≥ 0, m i =1 y i µ i = 0, i = 1, . . . ,
Assume we have a mapping function φ from the original space R d to a high dimensional space H , then we can rewrite the dual optimization problem (Equation (2.12)) as:

max µ m i =1 µ i - 1 2 m i , j =1 µ i µ j y i y j 〈φ(x i ), φ(x j )〉, s.t . µ i ≥ 0, m i =1 y i µ i = 0, i = 1, . . . , m,
It is trivial to note that the knowledge of 〈φ(x i ), φ(x j )〉 is sufficient to solve the above optimization problem. Therefore, we denote 〈φ(x i ), φ(x j )〉 by a kernel function K (x i , x j ) : R d ×R d → R

and by computing K (x i , x j ) directly, we can avoid the explicit mapping of our data from R d to H . This is called as kernel trick. Finally the classifier becomes:

h(x) = sign m i =1 µ i K (x, x i ) + b . (2.13)
Note that, K is a kernel function if it is a symmetric positive semi-definite (PSD), i.e.,

m i =1 m j =1 c i c j K (x i , x j ) ≥ 0,
for all finite sequences of x 1 , . . . , x m ∈ X and c 1 , . . . , c m ∈ R. The kernel function which satisfies above property are referred as Mercer Kernel. In the literature, there exists different types of Mercer kernels, some of them are:

• Linear Kernel:

∀(x i , x j ) ∈ X 2 , K (x i , x j ) = x T i x j + c,
where constant c is a hyperparameter.

• Polynomial Kernel:

∀(x i , x j ) ∈ X 2 , K (x i , x j ) = ax T i x j + c p ,
where slope a, constant c and degree p are hyperparameters.

• Gaussian Kernel:

∀(x i , x j ) ∈ X 2 , K (x i , x j ) = exp - ||x i -x j || 2 2σ 2 ,
where σ (standard deviation which measures the amount of variation of a set of input examples) is a hyperparameter.

• Radial Basis Function (RBF) kernel:

∀(x i , x j ) ∈ X 2 , K (x i , x j ) = exp -γ||x i -x j || 2 ,
where γ is a hyperparameter. Note that, this kernel can project the data in infinite dimension.

Adaboost

Adaboost [START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF] is a classifier combination approach based on boosting [START_REF] Schapire | The Boosting Approach to Machine Learning: An Overview[END_REF]. Typically, Adaboost repeatedly (T times) learn a "weak"classifier using a learning algorithm with different probability distributions over the learning sample S. Finally, it combines all the weak classifiers in order to have one single strong classifier (B Q ) which performs better than the individual weak classifiers (see Algorithm 1). In this thesis, we use adaboost as one of our

Algorithm 1 Adaboost

Input: Learning Sample S = (x i , y i ), . . . , (x m , y m ), where x i ∈ R d and y i ∈ {-1, 1}.

Hypothesis space H.

Number of iterations T .

1: for x i ∈ S do 2:

D 1 (x i ) ← 1 m 3: for t = 1, . . . , T do 4:
Learn a weak classifier h (t ) using distribution D (t ) 5:

Compute error: (t ) ← E

(x i ,y i )∼D (t ) 1 [h (t ) (x i ) =y i ] 6:
Compute classifier weight:

Q (t ) ← 1 2 ln 1-(t ) (t ) 7:
for x i ∈ S do 8:

D (t +1) (x i ) ← D (t ) (x i ) exp -y i Q (t ) h (t ) (x i ) m j =1 D (t ) (x j ) exp -y j Q (t ) h (t ) (x j ) 9: Return: B Q (x) = T t =1 Q (t ) h (t ) (x)
baselines and we also exploit the boosting paradigm to derive new algorithms for multiview learning (in Chapters 6 and 7).

At each iteration t of the algorithm, we select a weak classifier (Step 4) and compute the weight over the classifier (Step 6) as follows:

Q (t ) = 1 2 ln 1 -(t ) (t )
,

where (t ) = E (x i ,y i )∼D t 1 [h (t ) (x i ) =y i ]
is the classification error of the selected classifier. Intuitively, we give more weight to the classifiers (in the final combination) which have low classification error on the learning sample. Finally, we update the weight for any example x i (Step 8) as follows:

D (t +1) (x i ) ← D (t ) (x i ) exp -y i Q (t ) h (t ) (x i ) m j =1 D (t ) (x j ) exp -y j Q (t ) h (t ) (x j )
.

Intuitively, we are increasing the weight of the examples which are misclassified by the current classifier. This is done to learn a classifier at the next iteration t + 1 which focuses on these misclassified examples.

CqBoost

CqBoost [START_REF] Roy | A column generation bound minimization approach with PAC-Bayesian generalization guarantees[END_REF] is a column generation ensemble learning algorithm based on the C-Bound [START_REF] Lacasse | PAC-Bayes bounds for the risk of the majority vote and the variance of the Gibbs classifier[END_REF] (recalled in Theorem 2.4 below). In this thesis, we use this algorithm to derive a multi-view learning algorithm in Chapter 6.

The C-Bound gives a tight upper bound on the risk of the majority vote defined by Equation (2.9). It depends on the first and second statistical moments of the margin of the majority vote B Q , defined as: Definition 2.5. (Margin) Let M Q be a random variable that outputs the margin of the majority vote on the example (x, y) drawn from distribution D, given by

M Q (x, y) = E h∼Q yh(x),
The first and second statistical moments of the margin are respectively given by

µ 1 (M D Q ) = E (x,y)∼D M Q (x, y), µ 2 (M D Q ) = E (x,y)∼D M Q (x, y) 2 .
According to this definition, the risk of the weighted majority vote can be rewritten as:

R D (B Q ) = Pr (x,y)∼D M Q (x, y) ≤ 0 .
From this observation, one can derive the C-Bound stated as follows:

Theorem 2.4. (The C-Bound [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF][START_REF] Roy | From pac-bayes bounds to quadratic programs for majority votes[END_REF][START_REF] Roy | A column generation bound minimization approach with PAC-Bayesian generalization guarantees[END_REF]) For any distribution Q over H and for any distri

- bution D, if µ 1 M D Q ≥ 0, we have: R D (B Q ) ≤ 1 - µ 1 M D Q 2 µ 2 M D Q .
The minimization of the empirical counterpart of the C-Bound is a natural way to learn the distribution Q in order to lead a well performing majority vote B Q (x). CqBoost minimizes the second moment of margin by fixing its first moment µ 1 (M S Q ) = µ (hyperparameter to tune).

Let H be the classification matrix of size m × n where m is the number of examples and n is the number of classifiers in H. Each element H i j = h j (x i ) contains the output of the classifier h j ∈ H for any input example x i . Let y be the vector of labels of the training examples and q be the vector of weights over set of classifiers. Now, we can rewrite the first and second

Algorithm 2 CqBoost

Initialize: Let q be the vector of n zeros, α be the vector of m values with 1 m and let Ĥ be a empty matrix. Select the column j violating the most constraint of dual problem (Equation 2.15).

3:

If m i =1 α i y i H i j ≤ ν + : 4: Break 5:
Add the j -th column of H to matrix Ĥ.

6:

Update q, α and ν by solving the primal or dual optimization problem of Equations 2.14 or 2.15 using matrix Ĥ. 7: Return: q moments of margin as follows:

µ 1 (M D Q ) = 1 m m i =1 M Q (x i , y k ) = 1 m y Hq,
and µ 2 (M D Q ) = 1 m m i =1 M Q (x i , y k ) 2 = 1 m q H Hq.
Finally, CqBoost solves the following constrained optimization problem:

argmin q,γ 1 m γ γ, (2.14) s.t . γ = diag(y)Hq, 1 m 1 γ ≤ µ, q ≥ 0, 1 q = 1,
where 0 and 1 are the vector of zeros and ones of size n. CqBoost uses the Lagrange duality techniques [START_REF] Boyd | Convex Optimization[END_REF] 

Conclusion

In this chapter, we introduce the basic concepts of supervised machine learning for classification where we consider a labeled training sample. Here, our objective is to learn a classifier in order to make predictions on new data coming from same distribution than the one that have generated the learning sample. In addition, we introduce three supervised learning algorithms: SVM, Adaboost and Cqboost. In many real-life applications, we can have data produced by more than one source and are so-called as multiview data. In this thesis, we are particularly interested in deriving supervised learning algorithms for multiview learning when we have multiple representations of the input data. In the next chapter, we introduce the concepts and state-of-art methods for multiview learning.

Introduction

With the tremendous generation of data, we have data collected from different information sources having heterogeneous properties, thus it is important to consider these representations or views of the data. This problem of machine learning is referred as multiview learning, spurred by the seminal work of Blum and Mitchell on co-training [START_REF] Blum | Combining Labeled and Unlabeled Data with Co-Training[END_REF]. Multiview learning has many applications (see Figure 3.1), some of them are

• Image Classification: We can represent each image by different sets of features such as Histograms of Oriented Gradient (HOG) and Region-Of-Interest (ROI). These different features can be seen as different views of data [START_REF] Van Breukelen | Handwritten digit recognition by combined classifiers[END_REF].

• Multilingual Document Classification: We have documents written in different languages like French, German, English etc. We can see different languages as different views of data [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF].

• Webpage Classification: We can represent each webpage with different descriptions for example textual content, images, inbound and outbound hyperlinks etc [START_REF] Blum | Combining Labeled and Unlabeled Data with Co-Training[END_REF]. • Multimedia Data Processing: We can describe each multimedia segment by their audio and video signals [START_REF] Atrey | Multimodal fusion for multimedia analysis: a survey[END_REF].

• Medical Imaging: We can represent human brain with different set of features for example MRI, t-fMRI, fMRI, EEG etc [START_REF] Nunez | On the relationship of synaptic activity to macroscopic measurements: Does co-registration of eeg with fmri make sense?[END_REF].

One natural solution is to adapt multiview learning problem to monoview setting by concatenating all the views of the data and learn the final model using traditional machine learning algorithms such as support vector machines (see Section 2.4.1) This method is referred as early fusion [START_REF] Snoek | Early versus late fusion in semantic video analysis[END_REF]. However, early fusion based approaches do not take into account the view-specific properties of the multiview data, therefore they tend to overfit when we have a small number of training examples [START_REF] Xu | A survey on multi-view learning[END_REF]. Another approach is to see multiview learning as a combination of different view-specific classifiers corresponding to each view. The goal is to learn a multiview model over the predictions of view-specific classifiers. This method of learning a multiview model in two stages is called as late fusion [START_REF] Snoek | Early versus late fusion in semantic video analysis[END_REF] (sometimes referred as stacking [START_REF] Wolpert | Stacked generalization[END_REF]), as illustrated in Figure 3.2. In contrast to monoview learning, multiview fundamental principles which ensures their success: i) consensus, and ii) diversity principles.

In the next section, we first present basic notations and setting for multiview learning. In sections 3.3 and 3.4, we present consensus and diversity principles in more details followed by conclusion in Section 3.5.

Notations and Setting

We consider multiview binary classification tasks where the examples are described with V ≥ 2 different representation spaces, i.e., views; let V be the set of these V views. Formally, we focus on tasks for which the input space is

X = X 1 × • • • × X V , where ∀v ∈ V, X v ⊆ R d v is a d v -dimensional
input space, and the binary output space is Y = {-1, +1}. We assume that D is an unknown distribution over X × Y.

Each multiview example x = (x 1 , x 2 , . . . , x V ) ∈ X
is given with its label y ∈ Y, and is independently and identically drawn (i.i.d.) from D. In the case of supervised learning, an algorithm is provided with a training sample

S of m examples i.i.d. from D: S = {(x i , y i )} m i =1 ∼ (D) m
, where (D) m stands for the distribution of a m-sample. Note that, in the case of semi-supervised learning one has access to an additional

unlabeled training data S u = {x j } m u j =1 ∼ (D X ) m u along with labeled data S l = {(x i , y i )} m l i =1 ∼ (D) m l . Moreover, for each view, we consider a view-specific set H v of classifiers h v : X v → Y.
The goal of multiview learning is to exploit multiple representations of the input data and improve the learning performance.

Consensus Principle

The consensus principle [START_REF] Dasgupta | Pac generalization bounds for co-training[END_REF][START_REF] Kuncheva | Combining Pattern Classifiers: Methods and Algorithms[END_REF] seeks to maximize the agreement between multiple representations of the data. Consider a two-view multiview data (i.e. V = 2) where each input example x = (x 1 , x 2 ) ∈ X with its label y ∈ Y. The agreement between two classifiers on two views can be formulated as follows

Agreement = Pr x∼D X h 1 (x 1 ) = h 2 (x 2 ) . (3.1)
In recent years, many multiview learning algorithms have been proposed based on the above consensus principle. In this section, we present some approaches which exploits this principle.

Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) [START_REF] Hotelling | Relations Between Two Sets of Variates[END_REF] based approaches maximize the inter-relationships between two (or more) sets of variables. CCA has been applied to multiview learning [START_REF] Akaho | A kernel method for canonical correlation analysis[END_REF][START_REF] Chaudhuri | Multi-view clustering via canonical correlation analysis[END_REF][START_REF] Diethe | Multiview fisher discriminant analysis[END_REF][START_REF] Zhang | A novel ensemble construction method for multi-view data using random cross-view correlation between within-class examples[END_REF] which aims at learning a latent subspace shared by multiple views by assuming that the input views are generated from this subspace. The dimensionality of this latent subspace is lower than the original views, so CCA is an effective way to eliminate the curse of dimensionality problem.

Consider a two-view multiview data (i.e. V = 2) where the input examples are drawn from 

X 1 ∈ R d 1 and X 1 ∈ R d 2 input spaces. Let
Corr = cov w 1 X 1 , w 2 X 2 var w 1 X 1 var w 2 X 2 = w 1 C 12 w 2 w 1 C 11 w 1 w 2 C 22 w 2 , ( 3.2) 
where covariance matrices C 11 ,C 22 ,C 12 are defined as follows:

C 11 = 1 m m i =1 x 1 i -x1 x 1 i -x1 , C 22 = 1 m m i =1 x 2 i -x2 x 2 i -x2 , C 12 = 1 m m i =1 x 1 i -x1 x 2 i -x2 ,
where x1 and x2 are the means for two views:

x1 = 1 m m i =1 x 1 i , and x2 = 1 m m i =1 x 2 i .
Since the correlation (Equation (3.2)) does not change with a rescaling of w 1 and w 2 , CCA can be formulated as following: max

w 1 ,w 2 w 1 C 12 w 2 , (3.3) 
s.t. w 1 C 11 w 1 = 1, w 2 C 11 w 2 = 1.
The above maximization problem is solved using Lagrange multiplier technique [START_REF] Boyd | Convex Optimization[END_REF] . The Lagrangian function for above problem is defined as:

L = w 1 C 12 w 2 - λ 1 2 w 1 C 11 w 1 -1 - λ 2 2 w 2 C 22 w 2 -1 , (3.4) 
where λ 1 and λ 2 are the Lagrange multipliers. Differentiating L with respect to w 1 and w 2 , we obtain

C 12 w 2 -λ 1 C 11 w 1 = 0, (3.5) 
and

C 21 w 1 -λ 2 C 22 w 2 = 0. (3.6)
By multiplying w 1 and w 2 , we respectively have

w 1 C 12 w 2 -λ 1 w 1 C 11 w 1 = 0,
and

w 2 C 21 w 1 -λ 2 w 2 C 22 w 2 = 0.
Since w 1 C 11 w 1 = 1 and w 2 C 11 w 2 = 1, we can deduce that λ 1 = λ 2 = λ. Substituting λ in Equations (3.5) and (3.6) and solving for w 1 and w 2 , we obtain:

w 1 = C -1 11 C 12 w 2 λ , (3.7) 
and

C 21 C -1 11 C 12 w 2 = λ 2 C 22 w 2 . (3.8)
Form above, Equation (3.8) is equivalent to solving standard eigenvalue problem given as

C -1 22 C 21 C -1 11 C 12 w 2 = λ 2 w 2 .
Finally, the correlation between different views is provided by the eigenvector corresponding to the largest eigenvalues.

This method leverages only two views data, extending it to multiple views is achieved with generalized version of CCA by Kettenring [START_REF] Kettenring | Canonical analysis of several sets of variables[END_REF]. Moreover, CCA based approaches does 

Co-training and Co-regularization

Semi-supervised learning is the problem of learning when we have both labeled and unlabeled training data. In many real-world scenarios, it is both expensive and time consuming to annotate the data. Therefore, it is interesting to consider both labeled and unlabeled data in order to learn an effective classification model.

The Co-training algorithm proposed by Blum and Mitchell [START_REF] Blum | Combining Labeled and Unlabeled Data with Co-Training[END_REF] is a classical algorithm in multiview semi-supervised learning. This algorithm combines both labeled and unlabeled data under the two-view setting. It iteratively learns two classifiers corresponding to each view using the labeled data. Then at each iteration, the learner on one view is used to label the unlabeled data which is added to the training pool of the other learner. In this way, on the unlabeled data, classifiers learned on two views exchange informations on the two views The Co-EM algorithm, proposed by Nigam and Ghani [START_REF] Nigam | Analyzing the effectiveness and applicability of co-training[END_REF], is a variant of co-training algorithm which combines the co-training with the probabilistic expectation maximization approach [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF]. Basically, it gives unlabeled examples probabilistic labels using the naive Bayes algorithm [START_REF] Duda | Pattern classification and scene analysis[END_REF][START_REF] Friedman | Bayesian network classifiers[END_REF]. As SVM (described in Section 2.4.1) is known to be a better fit for many classification problems, Brefeld and Scheffer [START_REF] Brefeld | Co-em support vector learning[END_REF] developed the SVM version of the co-EM algorithm.

Co-regularization based approaches can be seen as regularized versions of co-training algorithm. The co-regularization based algorithms [START_REF] Poggio | Regularization algorithms for learning that are equivalent to multilayer networks[END_REF] return two classifiers corresponding to each view by simultaneously maximizing the agreement between the two views on unlabeled data and the empirical error on the labeled data. Sindhwani et al. [START_REF] Sindhwani | A co-regularized approach to semi-supervised learning with multiple views[END_REF] proposed a co-regularized least squared approach for multiview learning with two views where the following objective function is optimized:

h * 1 , h * 2 = argmin h 1 ∈H 1 ,h 2 ∈H 2 i ∈S l y i -h 1 (x 1 i ) 2 +µ i ∈S l y i -h 2 (x 1 i ) 2 (3.9) +γ 1 ||h 1 || 2 H 1 + γ 2 ||h 2 || 2 H 2 + γ C m u m u i =1 h 1 x 1 i -h 2 x 2 i 2 ,
where parameter µ, γ 1 , γ 2 and γ C are regularization parameters. In Equation (3.9), the first two terms evaluate the classification error made by the labeled data on the two views, the third and fourth terms measure the complexity of the hypothesis space using L 2 norm and the final term enforces the agreement among the classifiers on unlabeled data. Finally, the prediction for any new input example x is given as follows:

h * (x) = sign 1 2 h * 1 (x 1 ) + h * 2 (x 2 ) .
Following a similar strategy as co-training, Amini et al. [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF] proposed a self-learning multiview algorithm for more general and natural of multiview learning with more than two views.

Firstly, it learns view-specific classifiers for each view separately using the labeled data.

Given the view-specific classifiers, it iteratively assigns the labels (which is generally referred as pseudo-labels) to the unlabeled data for which all classifier predictions agree. Finally, it trains the new view-specific classifiers using the labeled data and pseudo-labeled unlabeled examples.

SVM-like Algorithms

Farquhar et al. [START_REF] Farquhar | Two view learning: Svm-2k, theory and practice[END_REF] combined the kernel Canonical Correlation Analysis (KCCA) with the Support Vector Machines (recalled in Section 2.4.1) to derive a single optimization problem called as SVM-2K for two views. This is done by introducing the agreement constraint between the projections of two SVMs corresponding to each view. Formally, the constraint is defined as:

w 1 φ 1 (x 1 i ) + b 1 -w 2 φ 2 (x 2 i ) -b 2 ≤ η i +
where w 1 and w 2 are the weight vectors for two SVMs, b 1 and b 2 are biases for two SVMs and η i is the slack variable. Note that φ v (x v i ) is the feature projection (ideally, in high dimension) for any example x i for view v ∈ {1, 2} with corresponding kernel function K v . Basically, the above constraint measures the amount by which the examples fail to meet similarity.

Finally, combining the above constraint with the usual SVM constraints for two views leads to the minimization of the following optimization problem:

min w 1 ,w 2 ,b 1 ,b2 1 2 w 1 2 + 1 2 w 2 2 +C 1 m i =1 ξ 1 i +C 2 m i =1 ξ 2 i + D m i =1 η i s.t . w 1 φ 1 (x 1 i ) + b 1 -w 2 φ 2 (x 2 i ) -b 2 ≤ η i + , ∀1 ≤ i ≤ m y i w 1 φ 1 (x 1 i ) + b 1 ≥ 1 -ξ 1 i , ∀1 ≤ i ≤ m y i w 2 φ 2 (x 2 i ) + b 2 ≥ 1 -ξ 2 i , ∀1 ≤ i ≤ m ξ 1 i ≥ 0, ξ 2 i ≥ 0, η i ≥ 0, ∀1 ≤ i ≤ m
where, ξ 1 and ξ 2 are the slack variables and C 1 ,C 2 and D are the hyperparameters. The final prediction function for any input example x is defined as follows:

h(x) = 1 2 sign w 1 φ 1 (x 1 ) + b 1 + w 1 φ 2 (x 2 ) + b 2 .
SVM-2K exploits only two-view data. However, in many real world scenarios we can have data represented by more than two views. In this thesis, we are interested in more general case of supervised multiview learning when we have data represented by more than two views.

In order to handle multiview learning with more than two views, one natural solution is to see multiview learning as combination of different view-specific classifiers corresponding to each view. The goal is to learn a final combination over the set of view-specific classifiers which performs better than individual view-specific classifiers (as shown in figure 3.2). Amini et al. [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF] proposed a multiview majority voting scheme (MV-MV) for more than two views, where view-specific classifiers are learned using SVM by minimizing the following empirical risk:

h * v = argmin h v ∈H v 1 m (x i ,y i )∼(D) m 1 [h v (x v i ) =y i ] . (3.10)
Finally, the prediction for a multiview example x is then based on the majority vote over these view-specific classifiers: 

MV-MV(x) = sign 1 V V v=1 h * v (x v ) . ( 3 
R D (MV -MV) ≤ 1 V V v=1 R S (h * v ) + 2 V V v=1 R S (H v ) + 6 log 2 δ 2m .
where R S (H v ) is the empirical Rademacher complexity for hypothesis space H v defined by Equation (2.6).

PAC-Bayesian Analysis of Multiview Learning

Sun et al. [START_REF] Sun | PAC-Bayes analysis of multi-view learning[END_REF] proposed a PAC-Bayesian analysis (introduced in Section 2.3.2) for coregularization style multiview learning approaches with two views. In order to derive PAC-Bayesian generalization bounds, they considered the linear classifiers of the following form

h(x) = sign u φ(X ) , (3.12) 
where u = u 1 , u 2 is the concatenated weight vector for two views and φ(x) is the kernelinduced feature projection for concatenated views where X = x 1 , x 2 . Similar to the usual PAC-Bayesian theory, they assume a prior distribution for a classifier defined as

P (u) ∝ N (0, I) × V (u 1 , u 2 ) , (3.13) 
where N (0, I) is a Gaussian distribution with zero mean and identity covariance matrix I, and

V (u 1 , u 2 ) = exp - 1 2σ 2 E (x 1 ,x 2 ) x 1 u 1 -x 2 u 2 2 ,
V (u 1 , u 2 ) emphasizes those classifiers which has high view agreements. By defining X =

x 1 , -x 2 and solving the prior distribution given by Equation 3.13, we have

P (u) ∝ N (0, I) × V (u 1 , u 2 ) ∝ exp - 1 2 u I + E( X X ) σ 2 u .
Finally, P (u) = N (0, ), where = I + E( X X )

σ 2 -1
. The posterior is chosen to be of the following form

Q(u) = N µw, I , (3.14) 
where ||w|| = 1 and therefore the distance between the center of posterior and origin is µ.

Finally, the PAC-Bayesian generalization bound for multiview learning with two views in specific case of linear classifiers is given by the following theorem Theorem 3.2. (PAC-Bayesian generalization bound for multiview learning [START_REF] Sun | PAC-Bayes analysis of multi-view learning[END_REF]) For linear classifier (Equation (3.12)) with prior and posterior given by Equations (3.13) and (3.14), for any unknown distribution D over X × Y, with a high probability 1 -δ over the random choice of learning sample S ∼ (D) m , we have

∀w, µ : K L R S h(w, µ) R D h(w, µ) ≤ -d ln f - 2 (R/σ) 2 + 1 -1 1 2m ln 3 δ + H σ 2 + (1+µ 2 )R 2 2σ 2 1 2m ln 3 δ + µ 2 + 2 ln m+1 δ/3 2m , where h(w, µ) = F µ y w φ(x) ||φ(x)|| , f = 1 m m i =1 I + X i X i σ 2 d 2 , H = 1 m m i =1 X i X i + µ 2 w X i 2 , ||w|| = 1, d is the sum of dimensions of both views, R = sup X ||X || and F (z) is the Gaussian cumulative distribution F (z) = ∞ z 1 2π e -z 2 2 d z.
The above generalization bound has allowed them to derive a SVM-like learning algorithm but limited to two views. The objective function of the multiview SVMs (MvSVMs) is given by: min

w 1 ,w 2 ,ξ 1 ,ξ2 1 2 w 1 2 + w 2 2 +C 1 m i =1 ξ 1 i + ξ 2 i +C 2 m i =1 w 1 x 1 i -w 2 x 2 i 2 s.t . y i w 1 x 1 i ≥ 1 -ξ 1 i , ∀1 ≤ i ≤ m y i w 2 x 2 i ≥ 1 -ξ 2 i , ∀1 ≤ i ≤ m ξ 1 i ≥ 0, ξ 2 i ≥ 0, ∀1 ≤ i ≤ m
where w 1 and w 2 are the weight vectors for two SVMs corresponding to each view, ξ 1 and ξ 2 are the slack variables and C 1 and C 2 are the hyperparameters. The final prediction function for any input example x is given as follows:

h * (x) = 1 2 sign w 1 x 1 + w 1 x 2 .
Note that they also extended above PAC-Bayesian bound for a data dependent prior distribution and the semi-supervised learning setting. In this thesis, our objective is to derive PAC-Bayesian generalization bounds for more general and natural case of multiview learning with more than two views and not limited to linear classifiers.

Diversity Principle

The diversity principle demonstrates that in a multiview learning problem, each representation or view of the data may contain some information which other views do not have.

Intuitively, while combining different views, we want views to be as accurate as possible, in case they make errors, these errors should be on different examples. In contrary to consensus principle, the diversity based approaches tries to increase the disagreement between the views while controlling the accuracy of the view-specific classifiers. Many multiview learning algorithms based on ensemble learning have been proposed which takes into account the diversity between views [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF][START_REF] Janodet | Boosting Classifiers built from Different Subsets of Features[END_REF][START_REF] Koço | A boosting approach to multiview classification with cooperation[END_REF][START_REF] Peng | Multiview boosting with information propagation for classification[END_REF][START_REF] Peng | Shareboost: Boosting for multi-view learning with performance guarantees[END_REF][START_REF] Xiao | Multi-view adaboost for multilingual subjectivity analysis[END_REF][START_REF] Xu | An algorithm on multi-view adaboost[END_REF] in different manners.

Janodet et al. [START_REF] Janodet | Boosting Classifiers built from Different Subsets of Features[END_REF] proposed a boosting based multiview learning algorithm for 2 views, called 2-Boost. At each iteration, the algorithm learns the weights over the view-specific voters by maintaining a single distribution over the learning examples. Conversely, Koço et al. [START_REF] Koço | A boosting approach to multiview classification with cooperation[END_REF] proposed Mumbo that maintains separate distributions for each view. For each view, the algorithm reduces the weights associated with the examples that are hard to classify, and increases the weights of those examples on the other views. This trick allows a communication between the views such that other views can compensate the information lacked by a particular view.

Xu and Sun [START_REF] Xu | An algorithm on multi-view adaboost[END_REF] proposed EMV-AdaBoost, an embedded multiview Adaboost algorithm, restricted to two views. At each iteration, an example contributes to the error if it is misclassified by any of the view-specific voters and the diversity between the views is captured by weighting the error by the agreement between the views. Xiao and Guo [START_REF] Xiao | Multi-view adaboost for multilingual subjectivity analysis[END_REF] derived a weighted majority voting Adaboost algorithm MVWAB (for more than two views) which learns weights over view-specific voters at each iteration of the algorithm. Peng et al. [START_REF] Peng | Multiview boosting with information propagation for classification[END_REF][START_REF] Peng | Shareboost: Boosting for multi-view learning with performance guarantees[END_REF] proposed variants of Boost.SH (boosting with SHared weight distribution) which controls the diversity for more than two views. They maintain a single global distribution over the learning examples for all the views. In order to control the diversity between the views, at each iteration they update the distribution over the views by casting the algorithm in two ways: i) a multiarmed bandit framework (rBoost.SH) and ii) an expert strategy framework (eBoost.SH) consisting of set of strategies (distribution over views) for weighing views.

Moreover, Morvant et al [START_REF] Morvant | Majority vote of diverse classifiers for late fusion[END_REF] proposed a late fusion [START_REF] Snoek | Early versus late fusion in semantic video analysis[END_REF] approach to handle multimedia data in a PAC-Bayesian fashion, but without any theoretical justifications and in a ranking setting.

Concretely, they learn a multiview model over the predictions of view-specific classifiers using a PAC-Bayesian algorithm MinCq [START_REF] Roy | From pac-bayes bounds to quadratic programs for majority votes[END_REF]. MinCq algorithm is based on C-Bound (given by Theorem 2.4) which is able to control the trade-off between the accuracy and the diversity between the view-specific classifiers.

In the next sections, we formally present MVWAB and rBoost.SH algorithms.

Multiview Weighted Adaboost (MVWAB)

Algorithm 3 MVWAB

Input:

Training set S = {(x i , y i ), . . . , (x m , y m )}, where x i = (x 1 , x 2 , . . . , x V ) and y i ∈ {-1, 1}.

For each view v ∈ V, a view-specific hypothesis set H v .

Number of iterations T .

for x i ∈ S do D 1 (x i ) ← 1 n for t = 1, . . . , T do ∀v ∈ V, h (t ) v ← argmin h v ∈H v E (x i ,y i )∼D (t ) 1 [h v (x v i ) =y i ]
Optimize the weighted least square loss to learn the weight parameters

{β v } V v=1 min β m i =1 D (t ) (i ) V v=1 β v h (t ) v (x v i ) -y i 2 , s.t . 0 ≤ β v ≤ 1 and V v=1 β v = 1.
Compute the base classifier

h (t ) (x) = sign V v=1 β v h (t ) v (x v ) Compute error: (t ) ← E (x i ,y i )∼D (t ) 1 [h (t ) (x v i ) =y i ]
Compute weight over the base classifier:

Q (t ) ← 1 2 ln 1 -(t ) (t ) for x i ∈ S do D (t +1) (x i ) ← D (t ) (x i ) exp -y i Q (t ) h (t ) (x i ) m j =1 D (t ) (x j ) exp -y j Q (t ) h (t ) (x j ) Return: B MV Q (x) = T t =1 Q (t ) h (t ) (x)
Xiao et al. [START_REF] Xiao | Multi-view adaboost for multilingual subjectivity analysis[END_REF] combined multiview learning and the Adaboost (presented in Section 2.4.2)

techniques to derive a boosting based algorithm (see Algorithm 3) for multiview learning.

At each iteration t , the Multiview Weighted Adaboost (MVWAB) algorithm separately trains the view-specific classifiers h (t ) v for each view v ∈ V using the probability distribution (D (t ) )

over the learning sample S. Then, the base classifier h (t ) is a linear combination of the viewspecific classifiers which are weighted according to the set of weight parameters {β v } V v=1 :

h (t ) (x) = sign V v=1 β v h (t ) v (x v ) , (3.15) 
where 0 ≤ β v ≤ 1 and V v=1 β v = 1. The weight parameters {β v } V v=1 are obtained by minimizing the following weighted least square loss:

min β m i =1 D (t ) (i ) V v=1 β v h (t ) v (x v i ) -y i 2 , (3.16 
)

s.t . 0 ≤ β v ≤ 1 and V v=1 β v = 1.
Following the similar strategy as in Adaboost, weight over the base classifier (Equation 3.15)

is computed as follows:

Q (t ) = 1 2 ln 1 -(t ) (t )
,

where (t ) = E (x i ,y i )∼D (t )
1 h (t ) (x i ) =y i is the classification error of the base classifier. Finally, the distribution D (t ) over the learning sample S is updated as follows:

D (t +1) (x i ) ← D (t ) (x i ) exp -y i Q (t ) h (t ) (x v i ) m j =1 D (t ) (x j ) exp -y j Q (t ) h (t ) (x v j )
.

Finally, after T iterations, the algorithm returns following classifier:

B MV Q (x) = T t =1 Q (t ) h (t ) (x).
(3.17)

Randomized Boosting with SHared weight distribution (rBoost.SH)

Peng et al. [START_REF] Peng | Multiview boosting with information propagation for classification[END_REF][START_REF] Peng | Shareboost: Boosting for multi-view learning with performance guarantees[END_REF] proposed a multiview boosting algorithm called rBoost.SH that learns the view-specific classifiers independently for each view but maintains a shared distribution over the learning sample to propagate the information among the different views. Moreover, in order to capture the diversity between the views, they learn a distribution over the views using the multiarmed bandit framework [START_REF] Auer | The nonstochastic multiarmed bandit problem[END_REF]. In multiarmed bandit framework, an algorithm tries one out of V actions (in this case, number of views) at any time t . For each action, there is an associated reward and the objective of the algorithm is to maximize the total reward after taking the actions over a period of time.

rBoost.SH maintains a probability distribution π over the views. It updates the distribution π according to the estimated cumulative reward at step 10(i i ) of the Algorithm 4. At step 5, a view is chosen according to the distribution ρ which is weighted combination of uniform Algorithm 4 rBoost.SH

Input:

Training set S = {(x i , y i ), . . . , (x m , y m )}, where x i = (x 1 , x 2 , . . . , x V ) and y i ∈ {-1, 1}.

For each view v ∈ V, a view-specific hypothesis set H v .

Number of iterations T , σ > 0 and γ ∈ (0, 1].

1: for x i ∈ S do 2:

D 1 (x i ) ← 1 n 3: ∀v ∈ V, π 1 v ← exp σγ 3 T M 4: for t = 1, . . . , T do 5: ∀v ∈ V,ρ (t ) v ← (1 -γ) π (t ) v V i =1 π (t ) i + γ V 6:
Let j be the selected view according to distribution ρ (t ) 7:

For j -th view,

h (t ) j ← argmin h j ∈H j E (x i ,y i )∼D t 1 [h j (x j i ) =y i ] 8:
Compute edge θ of view-specific weak classifier h (t ) j :

θ (t ) ( j ) = E (x i ,y i )∼D (t ) y i h (t ) j (x j i ) 9:
Compute the reward function for j -th view:

r (t ) ( j ) = 1 -θ 2 (t ) ( j ) 10: ∀v ∈ V, set: i) r(t) (v) = r (t ) (v) ρ (t ) v if v = j 0 otherwise ii) π (t +1) v = π (t ) v exp γ 3V r(t) (v) + σ ρ (t ) v T V 11:
Let h (t ) * = h (t ) j and compute weight over the classifier:

Q (t ) ← 1 2 ln 1 + θ (t ) ( j ) 1 -θ (t ) ( j ) 12:
for x i ∈ S do 13:

D (t +1) (x i ) ← D (t ) (x i ) exp -y i Q (t ) h (t ) * (x * i ) m j =1 D (t ) (x j ) exp -y j Q (t ) h (t ) * (x * j ) 14: Return: B MV Q (x) = T t =1 Q (t ) h (t ) * (x * )
distribution over the views and π, which encourages exploration of different views. For the chosen view j , a weak view-specific classifier is learned and weight over the classifier is computed as following:

Q (t ) ← 1 2 ln 1 + θ (t ) ( j ) 1 -θ (t ) ( j ) ,
where

θ (t ) ( j ) = E (x i ,y i )∼D t y i h (t ) j (x j i
) is the edge of view-specific weak classifier. Then, the distribution D (t ) over the learning sample S is updated as follows:

D (t +1) (x i ) ← D (t ) (x i ) exp -y i Q (t ) h (t ) * (x * i ) m j =1 D (t ) (x j ) exp -y j Q (t ) h (t ) * (x * j )
, where h (t ) * is the learned view-specific classifier at iteration t . Finally, after T iterations, rBoost.SH returns a weighted majority of T view-specific classifiers:

B MV Q (x) = T t =1 Q (t ) h (t ) * (x * ).

Conclusion

In this chapter, we introduced basic concepts and background for multiview learning where we have multiple representations or views of the input data. The objective of multiview learning is to learn a multiview classifier which takes into account different views of the data in order to improve the learning performance. We present two fundamental principles of multiview learning i.e. i) consensus, and ii) diversity principles. In addition, for each principle, we introduced some of multiview learning algorithms.

In this thesis, we derive a PAC-Bayesian generalization bound for multiview learning (with more than two views) on the risk of the multiview majority vote which exhibits a term of diversity in the predictions of the view-specific classifiers. This is done by considering a hierarchy of distributions over the view-specific classifiers and views. Based on this hierarchy of weights, we derive three multiview learning algorithms. We will discuss these contributions in the next part of this thesis. [START_REF] Goyal | Une borne pac-bayésienne en espérance et son extension à l'apprentissage multivues[END_REF] and published in the proceedings of ECML-PKDD, 2017 [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF].

Part II Contributions

Introduction

The PAC-Bayesian approach introduced by McAllester [START_REF] Mcallester | Some PAC-Bayesian theorems[END_REF] provides Probably Approximately Correct (PAC) generalization guarantees for models expressed as a weighted majority vote over the hypothesis space H. 1 In this framework one assumes a prior distribution P over H which models the a priori weights associated with each classifier 2 in H. After observing the learning sample S, the learner aims at finding a posterior distribution Q (that modalizes the weight associated to each voter in the majority vote ) over H that leads to a well-performing majority vote (see Figure 4.1). It is well-known that the error of deterministic majority vote is upper bounded by twice the error of stochastic Gibbs classifier. PAC-Bayesian theorems 

The Usual PAC-Bayesian Theory

In this section, we first recall the usual PAC-Bayesian theorem in the form proposed by Germain et al. [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF][START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF]. This general result can be seen as a theoretical tool to recover most of the known PAC-Bayesian probabilistic bounds (among them, the one recalled in Theorem 2.3 in Chapter 2). Then, in Section 4.3, we provide a novel formulation of the PAC-Bayesian theorem expressed as an expectation bound.

Notations and Setting

For a binary classification task, in a single view setting, on data drawn from a fixed yet unknown distribution D over X ×Y, the PAC-Bayesian approach assumes a prior distribution

THE USUAL PAC-BAYESIAN THEORY

P over the hypothesis space H that models on a priori belief3 on the classifiers from H before the observation of the learning sample S. Given the learning sample

S = {(x i , y i )} m i =1 ∼ (D) m ,
the learner objective is then to find a posterior distribution Q over H leading to an accurate weighted majority vote B Q (x) defined as

B Q (x) = sign E h∼Q h(x) = sign 1 |H| |H| i =1 Q(h)h(x) .
In other words, one wants to learn Q over H such that it minimizes the true risk

R D (B Q ) of B Q (x): R D (B Q ) = E (x,y)∼D 1 [B Q (x) =y] ,
where 1 [p] = 1 if predicate p holds, and 0 otherwise. However, a PAC-Bayesian generalization bound does not directly focus on the risk of the deterministic weighted majority vote B Q .

Instead, it upper-bounds the risk of the stochastic Gibbs classifier G Q , which predicts the label of an example x by drawing h from H according to the posterior distribution Q and predicts h(x). Therefore, the true risk R D (G Q ) of the Gibbs classifier on a data distribution D, and its empirical risk R S (G Q ) estimated on a sample S ∼ (D) m are respectively given by

R D (G Q ) = E (x,y)∼D E h∼Q 1 [h(x) =y] ,
and

R S (G Q ) = 1 m m i =1 E h∼Q 1 [h(x i ) =y i ] .
The above Gibbs classifier is closely related to the weighted majority vote B Q . Indeed, if B Q misclassifies x ∈ X , then at least half of the classifiers (under measure Q) make an error on

x. Therefore, we have

R D (B Q ) ≤ 2R D (G Q ). (4.1) 
Thus, an upper bound on R D (G Q ) gives rise to an upper bound on R D (B Q ). Other tighter relations exist [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF][START_REF] Lacasse | PAC-Bayes bounds for the risk of the majority vote and the variance of the Gibbs classifier[END_REF][START_REF] Langford | PAC-Bayes & margins[END_REF], such as the so-called C-Bound [START_REF] Lacasse | PAC-Bayes bounds for the risk of the majority vote and the variance of the Gibbs classifier[END_REF] that involves the expected disagreement d D (Q) between all the pair of classifiers, and that can be expressed as follows

(when R D < 1 2 ): R D (B Q ) ≤ 1 - 1 -2R D (G Q ) 2 1 -2d D (Q) , (4.2) 
where d D (Q) is the expected disagreement between the pair of classifiers, defined as:

d D (Q) = E x∼D X E (h,h )∼Q 2 1 [h(x) =h (x)] .
Note that, we presented the another form of the C-bound in Section 2.4.3 of Chapter 2 and we provide the proof of C-bound in Appendix B.1. Moreover, Germain et al. [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF] have shown that the Gibbs classifier's risk can be rewritten in terms of d D (Q) and expected joint error e D (Q) between all the pair of classifiers as

R D (G Q ) = 1 2 d D (Q) + e D (Q) , (4.3) 
where

e D (Q) = E (x,y)∼D E (h,h )∼Q 2 1 [h(x) =y] 1 [h (x) =y] .
It is worth noting that from a multiview learning standpoint where the notion of diversity [ [START_REF] Morvant | Domain adaptation of weighted majority votes via perturbed variationbased self-labeling[END_REF][START_REF] Morvant | Majority vote of diverse classifiers for late fusion[END_REF] to derive well-performing PAC-Bayesian algorithms that aims at minimizing it.

Last but not least, PAC-Bayesian generalization bounds take into account the given prior distribution P on H through the Kullback-Leibler divergence between the learned posterior distribution Q and P :

KL(Q P ) = E h∼Q ln Q(h) P (h) .

The usual PAC-Bayesian Theorem

In this section, we present the general PAC-Bayesian theorem in its probabilistic form. A key step in PAC-Bayesian proofs is the use of a change of measure inequality [START_REF] Mcallester | PAC-Bayesian stochastic model selection[END_REF], based on the Donsker-Varadhan inequality [START_REF] Varadhan | Asymptotic evaluation of certain markov process expectations for large time, i[END_REF]. The change of measure inequality is recalled in the following Lemma: 

D R S (G Q ), R D (G Q ) ≤ 1 m KL(Q P )+ln 1 δ E S∼(D) m E h∼P e m D(R S (h),R D (h)) ,
where R D (h) and R S (h) are respectively the true and the empirical risks of individual voters, and KL(Q

P ) = E h∼Q ln Q(h) P (h)
is the Kullback-Leibler divergence between the learned posterior distribution Q and P .

Proof. Deferred to Appendix B.3.

As stated by Germain et al. [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF][START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF], we can retrieve the classical versions of the PAC-Bayesian theorem [START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF][START_REF] Mcallester | PAC-Bayesian stochastic model selection[END_REF][START_REF] Seeger | PAC-Bayesian generalisation error bounds for gaussian process classification[END_REF] by selecting a well-suited deviation function D, and by upper-bounding E S E h e m D(R S (h),R D (h)) . Note that, we recalled one of the classical version in in Theorem 2.3 in Chapter 2. In the next section, we provide a novel formulation of the PAC-Bayesian theorem expressed as an expectation bound.

A New PAC-Bayesian Theorem as an Expected Risk

Bound

In this section, we introduce a new variation of the general PAC-Bayesian theorem of Germain et al. [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF][START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF]. While most of the PAC-Bayesian bounds are probabilistic bounds, we state here an expected risk bound. More specifically, Theorem 4. 

[0, 1] × [0, 1] → R, we have D E S∼(D) m R S (G Q S ), E S∼(D) m R D (G Q S ) ≤ 1 m E S∼(D) m KL(Q S P ) + ln E S∼(D) m E h∼P e m D(R S (h),R D (h)) ,
where R D (h) and R S (h) are respectively the true and the empirical risks of individual classifiers.

Similarly to Germain et al. [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF][START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF], by selecting a well-suited deviation function D and by upper-bounding E S E h e m D(R S (h),R D (h)) , we can prove the expected bound counterparts of the classical PAC-Bayesian theorems of [START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF][START_REF] Mcallester | PAC-Bayesian stochastic model selection[END_REF][START_REF] Seeger | PAC-Bayesian generalisation error bounds for gaussian process classification[END_REF]. The proof presented below borrows the straightforward proof technique of Bégin et al. [START_REF] Bégin | PAC-Bayesian bounds based on the Rényi divergence[END_REF]. Interestingly, this approach highlights that the expectation bounds are obtained simply by replacing the Markov inequality by the Jensen inequality (respectively Theorems A.1 and A.2, in Appendix).

Proof of Theorem 4.2

The last three inequalities below are obtained by applying Jensen's inequality on the convex function D (Theorem A.2), the change of measure inequality (Lemma 4.1), and Jensen's inequality on the concave function ln.

mD E S∼(D) m R S (G Q S ), E S∼(D) m R D (G Q S ) = mD E S∼(D) m E h∼Q S R S (h), E S∼(D) m E h∼Q S R D (h) ≤ E S∼(D) m E h∼Q S mD (R S (h), R D (h)) ≤ E S∼(D) m KL(Q S P ) + ln E h∼P e m D(R S (h),R D (h)) ≤ E S∼(D) m KL(Q S P ) + ln E S∼(D) m E h∼P e m D(R S (h),R D (h)) .
Since the C-bound of Equation ( 4 

[0, 1] × [0, 1] → R, we have D E S∼(D) m d S (Q S ), E S∼(D) m d D (Q S ) ≤ 2 m E S∼(D) m KL(Q S P ) + ln E S∼(D) m E (h,h )∼P 2 e mD(d S (h,h ),d D (h,h ))
,

where d D (h, h ) = E x∼D X 1 [h(x) =h (x)]
is the disagreement between classifiers h and h on the distribution D, and d S (h, h ) is its empirical counterpart.

Proof. The last three inequalities below are obtained by applying Jensen's inequality on the convex function D (Theorem A.2), the change of measure inequality (Lemma 4.1), and Jensen's inequality on the concave function ln.

mD E S∼(D) m d S (Q S ), E S∼(D) m d D (Q S ) = mD E S∼(D) m E (h,h )∼Q 2 S d S (h, h ), E S∼(D) m E (h,h )∼Q 2 S d D (h, h ) ≤ E S∼(D) m E (h,h )∼Q 2 S mD d S (h, h ), d D (h, h ) ≤ E S∼(D) m KL(Q 2 S P 2 ) + ln E (h,h )∼P 2 e m D(d S (h,h ),d D (h,h )) ≤ E S∼(D) m KL(Q 2 S P 2 ) + ln E S∼D m E (h,h )∼P 2 e mD(d S (h,h ),d D (h,h )) .
Then, we use the fact that KL(Q 2 S P 2 ) = 2 KL(Q S P ) [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF], which is detailed below:

KL(Q 2 S P 2 ) = E (h,h )∼Q 2 S ln Q S (h)Q S (h ) P (h)P (h ) = E (h,h )∼Q 2 S ln Q S (h) P (h) + ln Q S (h ) P (h ) = 2 KL(Q S P )
In the next section for sake of completeness, we derive the expected bound variations associated to the classical PAC-Bayesian theorems of [START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF][START_REF] Mcallester | PAC-Bayesian stochastic model selection[END_REF][START_REF] Seeger | PAC-Bayesian generalisation error bounds for gaussian process classification[END_REF], by selecting a well-suited deviation function D and by upper-bounding E S E h e m D(R S (h),R D (h)) .

Specialization of our Theorem to the Classical

Approaches

In this section, we provide the specialization of our PAC-Bayesian theorem (Theorem 4.2) to the most popular PAC-Bayesian approaches [START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF][START_REF] Mcallester | PAC-Bayesian stochastic model selection[END_REF][START_REF] Seeger | PAC-Bayesian generalisation error bounds for gaussian process classification[END_REF].

Square Root Bound

We derive in Corollary 4. 

E S∼(D) m R D (G Q S ) ≤ E S∼(D) m R S (G Q S ) + 1 2m E S∼(D) m KL(Q S P ) + ln 2 m . Proof. Deferred to Appendix B.4
The generalization bound presented in Corollary 4.1 suggests that in order to minimize expectation of true risk of Gibbs classifier over all possible posterior distributions, one needs to control the trade-off between its empirical counterpart E S∼(D) m R S (G Q S ) and KLdivergence term E S∼(D) m KL(Q S P ). This bound is easy to interpret as it links the true risk and the empirical risk of the Gibbs classifier by a linear relation.

Parametrized Bound

To derive the generalization bound with the Catoni's [START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF] point of view, given a convex function F and a real number C > 0 we define the measure of deviation between the empirical disagreement/joint error and the true risk as D(a, b) = F -C a [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF][START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF]. Then, we obtain following generalization bound. Corollary 4.2. For any distribution D on X × Y, for any set of voters H, for any prior distribution P on H, for all C > 0, we have:

E S∼(D) m R D (G Q S ) ≤ 1 1 -e -C 1 -exp -C E S∼(D) m R S (G Q S ) - 1 m E S∼(D) m KL(Q S P ) .
Proof. Deferred to Appendix B.5

The generalization bound given by Corollary 4.2 allows us to explicitly control the tradeoff between empirical risk E S∼(D) m R S (G Q S ) and KL-divergence term E S∼(D) m KL(Q S P ) using the hyperparameter C . It appears to be a natural tool to design PAC-Bayesian algorithms.

Moreover, following the similar approach as Germain et al. [START_REF] Germain | From pacbayes bounds to kl regularization[END_REF], we can derive a simplified form of above generalization bound using 1e -x ≤ x:

E S∼(D) m R D (G Q S ) ≤ C 1 -e -C E S∼(D) m R S (G Q S ) + 1 m ×C E S∼(D) m KL(Q S P ) .

Small kl Bound

If we make use, for function D(a, b) between the empirical risk and the true risk, of the Kullback-Leibler divergence between two Bernoulli distributions with probability of success a and b, we can obtain a bound similar to [START_REF] Langford | Tutorial on practical prediction theory for classification[END_REF][START_REF] Seeger | PAC-Bayesian generalisation error bounds for gaussian process classification[END_REF]. Concretely, we apply Theorem 3 with:

D(a, b) ≤ kl(a, b) = a ln a b + (1 -a) ln 1 -a 1 -b .
Corollary 4.3. For any distribution D on X × Y, for any set of voters H, for any prior distribution P on H, we have:

kl E S∼(D) m R D (G Q S ) E S∼(D) m R S (G Q S ) ≤ 1 m E S∼(D) m KL(Q S P ) + ln 2 m .

Proof. Deferred to Appendix B.6

The generalization bound given by Corollary 4.3 controls the trade-off between the KL divergence term and the empirical risk using kl(•||•). It is difficult to interpret due to kldivergence term between true risk and empirical risk of Gibbs classifier. In order to upper bound the true risk, one needs to solve the following problem:

max b s.t . kl b E S∼(D) m R S (G Q S ) = 1 m E S∼(D) m KL(Q S P ) + ln 2 m and 0 ≤ b ≤ 1.

Conclusion

In this chapter, we propose a new PAC-Bayesian theorem that is not a probabilistic bound as usual. Indeed, it is expressed as an expectation over the posterior distributions that we can learn for a given learning sample size, while the usual PAC-Bayesian theorem stands uniformly for all the possible posterior distributions but with high probability over the random choice of the learning sample. Since by definition posterior distributions are data dependent, this different point of view on PAC-Bayesian analysis has the advantage to involve an expectation over all the possible learning samples (of a given size m) in bounds itself. Moreover, we specialize our PAC-Bayesian theorem to three most popular PAC-Bayesian approaches. In the next chapter, we provide an extension of this bound to mutlview learning where we have multiple representations or views of the input data.

PAC-BAYESIAN ANALYSIS OF MULTIVIEW LEARNING

In this chapter, we study a two-level multiview learning learning with more than two views under the PAC-Bayesian framework. This approach, sometimes referred as late fusion, consists in learning sequentially multiple view-specific classifiers at the first level, and then combining these view-specific classifiers at the second level. Our main theoretical result is a generalization bound on the risk of the majority vote which exhibits a term of diversity in the predictions of the view-specific classifiers. From this result it comes out that controlling the trade-off between diversity and accuracy is a key element for multiview learning, which complements other results (Theorems 3.1 and 3.2 in Chapter 3) in multiview learning. This work has been done in collaboration with Dr. Pascal Germain from INRIA, Lille, France. It has been accepted at CAp, 2016 [START_REF] Goyal | Théorèmes pac-bayésiens pour l'apprentissage multi-vues[END_REF] and CAp, 2017 [START_REF] Goyal | Une borne pac-bayésienne en espérance et son extension à l'apprentissage multivues[END_REF]; published in the proceedings of ECML-PKDD, 2017 [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF]; and submitted to Neurocomputing Journal.

Introduction

We make use of the PAC-Bayesian framework [START_REF] Mcallester | Some PAC-Bayesian theorems[END_REF] of Chapter 4 to study the issue of learning a binary classification model while taking into account different information sources. This issue is referred as multiview learning [START_REF] Atrey | Multimodal fusion for multimedia analysis: a survey[END_REF][START_REF] Sun | A survey of multi-view machine learning[END_REF] and is described in Chapter 3. Here, our goal is to propose a theoretically grounded criteria to "correctly" combine different views while taking into account the diversity between the views (see Section 3.4 for more details). With this in mind we propose to study multiview learning through the PAC-Bayesian framework that allows to derive generalization bounds for models that are expressed as a combination over a set of classifiers or views (in our case). In this chapter, we extend the PAC-Bayesian theory (both the probabilistic and the expected risk generalization bounds) to multiview with more than two views. Concretely, given a set of view-specific voters, we define a hierarchy of posterior and prior distributions over the views, such that (i) for each view v, we consider a prior P v distribution and learn a posterior Q v distribution over each view-specific voters' set, and (ii) we consider a prior π and learn a posterior ρ distribution over the set of views (see Figure 5.1), respectively called hyper-prior and hyper-posterior 1 . In this way, our proposed approach encompasses the one of Amini et al. [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF] (recalled in Theorem 3.1) that considered uniform distribution to combine the view-specific classifiers' predictions.

Moreover, compared to the PAC-Bayesian work of Sun et al. [START_REF] Sun | PAC-Bayes analysis of multi-view learning[END_REF] (recalled in Theorem 3.2), we are interested here to the more general and natural case of multiview learning with more than two views.

Our theoretical study also includes a notion of disagreement between all the voters, allowing to take into account a notion of diversity between them which is known as a key element in multiview learning [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF][START_REF] Chapelle | Semi-Supervised Learning[END_REF][START_REF] Kuncheva | Combining Pattern Classifiers: Methods and Algorithms[END_REF][START_REF] Maillard | Complexity versus agreement for many views[END_REF].

In Section 5.2, we present the notations and setting for our two-level hierarchical multiview learning followed by the instantiation of the PAC-Bayesian generalization bounds to the two-level multiview approach (in Section 5.3). We present the generalization bound for the multiview C-bound in Section 5.5. Before concluding in Section 5.7, we discuss the relation between our analysis and previous works in Section 5.6.

Notations and Setting

We consider binary classification problems where the multiview observations x = (x 1 , . . . , x V ) belong to a multiview input set X = X 1 × . . . × X V , where V ≥ 2 is the number of views of notnecessarily the same dimension. We denote V the set of the V views. In binary classification, we assume that examples are pairs (x, y), with y ∈ Y = {-1, +1}, drawn according to an unknown distribution D over X × Y. To model the two-level multiview approach, we follow the next setting. For each view v ∈ V, we consider a view-specific set H v of voters h v : X v → Y, and a prior distribution P v on H v . Given a hyper-prior distribution π over the views V, and a multiview learning sample S = {(x i , y i )} m i =1 ∼ (D) m , our PAC-Bayesian learner objective v } on which we consider a prior P v view-specific distribution (in blue). A hyper-prior π distribution (in green) over the set of 3 views is also considered. The objective is to learn a set of posterior {Q v } 3 v=1 (in red) viewspecific distributions and a hyper-posterior ρ distribution (in orange) leading to a good model. The length of a rectangle represents the weight (or probability) assigned to a voter or a view. is twofold: (i) finding a posterior distribution Q v over H v for all views v ∈ V; (ii) finding a hyper-posterior distribution ρ on the set of views V. This hierarchy of distributions is illustrated by Figure 5.1. The learned distributions express a multiview weighted majority vote B MV ρ defined as

B MV ρ (x) = sign E v∼ρ E h v ∼Q v h(x v ) . (5.1)
Thus, the learner aims at constructing the posterior and hyper-posterior distributions that minimize the true risk R D (B MV ρ ) of the multiview weighted majority vote:

R D (B MV ρ ) = E (x,y)∼D 1 [B MV ρ (x) =y] .
As pointed out in Section 4.2, the PAC-Bayesian approach deals with the risk of the stochastic Gibbs classifier G MV ρ defined as follows in our multiview setting, and that can be rewritten in terms of expected disagreement d MV D (ρ) and expected joint error e MV D (ρ):

R D (G MV ρ ) = E (x,y)∼D E v∼ρ E h v ∼Q v 1 [h v (x v ) =y]
(5.2)

= 1 2 d MV D (ρ) + e MV D (ρ) , (5.3) 
where

d MV D (ρ) = E x∼D X E v∼ρ E v ∼ρ E h v ∼Q v E h v ∼Q v 1 [h v (x v ) =h v (x v )] ,
and

e MV D (ρ) = E (x,y)∼D E v∼ρ E v ∼ρ E h v ∼Q v E h v ∼Q v 1 [h v (x v ) =y] 1 [h v (x v ) =y] .
Obviously, the empirical counterpart of the Gibbs classifier's risk 

R D (G MV ρ ) is R S (G MV ρ ) = 1 m m i =1 E v∼ρ E h v ∼Q v 1 [h v (x v i ) =y i ] = 1 2 d MV S (ρ) + e MV S (
V, if R D (G MV ρ ) < 1 2 , then we have R D (B MV ρ ) ≤ 1 - 1 -2R D (G MV ρ ) 2 1 -2d MV D (ρ) (5.4) ≤ 1 - 1 -2 E v∼ρ R D (G Q v ) 2 1 -2 E v∼ρ d D (Q v ) , (5.5) 
where R D (G Q v ) and d D (Q v ) are respectively the true view-specific Gibbs risk and the expected disagreement defined as

R D (G Q v ) = E (x,y)∼D E h v ∼Q v 1 [h v (x v ) =y] ,
and

d D (Q v ) = E x∼D X E h v ∼Q v E h v ∼Q v 1 [h v (x v ) =h v (x v )] .
Proof. Proof of Equation (5.4) is given in Appendix C.1. To prove Equation (5.5), we first notice that in the binary setting where y ∈ {-1, 1} and h v : X → {-1, 1}, we have

1 [h v (x v ) =y] = 1 2 (1 -y h v (x v ))
and

R D (G MV ρ ) = E (x,y)∼D E v∼ρ E h v ∼Q v 1 [h v (x v ) =y] = 1 2 1 -E (x,y)∼D E v∼ρ E h v ∼Q v y h v (x v ) = E v∼ρ R D (G Q v ) .
Moreover, we have

d MV D (ρ) = E x∼D X E v∼ρ E v ∼ρ E h v ∼Q v E h v ∼Q v 1 [h v (x v ) =h v (x v )] = 1 2 1 -E x∼D X E v∼ρ E v ∼ρ E h v ∼Q v E h v ∼Q v h v (x v ) × h v (x v ) = 1 2 1 -E x∼D X E v∼ρ E h v ∼Q v h v (x v ) 2 .
From Jensen's inequality (Theorem A.2, in Appendix) it comes

d MV D (ρ) ≥ 1 2 1 -E x∼D X E v∼ρ E h v ∼Q v h v (x v ) 2 = E v∼ρ 1 2 1 -E x∼D X E h v ∼Q v h v (x v ) 2 = E v∼ρ d D (Q v ) .
By replacing R D (G MV ρ ) and d MV D (ρ) in Equation (5.4), we obtain

1 - 1 -2R D (G MV ρ ) 2 1 -2d MV D (ρ) ≤ 1 - 1 -2 E v∼ρ R D (G Q v ) 2 1 -2 E v∼ρ d D (Q v ) .
Similarly than for the mono-view setting, Equations (5.3) and (5.4) suggest that a good trade-off between the risk of the Gibbs classifier G MV ρ and the disagreement d MV D (ρ) between pairs of voters will lead to a well-performing majority vote. Equation (5.5) exhibits the role of diversity among the views thanks to the disagreement's expectation over the views

E v∼ρ d D (Q v ).

General Multiview PAC-Bayesian Theorem

Now we state our general PAC-Bayesian theorem suitable for the above multiview learning setting with a two-level hierarchy of distributions over views (or voters). As pointed out in Chapter 4, ap key step in PAC-Bayesian proofs is the use of a change of measure inequality [START_REF] Mcallester | PAC-Bayesian stochastic model selection[END_REF], based on the Donsker-Varadhan inequality [START_REF] Varadhan | Asymptotic evaluation of certain markov process expectations for large time, i[END_REF]. Lemma 5.2 below extends this tool to our multiview setting.

Lemma 5.2. For any set of prior distributions {P v } V v=1 and any set of posterior distributions

{Q v } V v=1 over {H v } V
v=1 , for any hyper-prior distribution π on views V and hyper-posterior distribution ρ on V, and for any measurable function φ : H v → R, we have

E v∼ρ E h v ∼Q v φ(h v ) ≤ E v∼ρ KL(Q v P v ) + KL(ρ π) + ln E v∼π E h v ∼P v e φ(h v ) .
Proof. We have

E v∼ρ E h v ∼Q v φ(h v ) = E v∼ρ E h v ∼Q v ln e φ(h v ) = E v∼ρ E h v ∼Q v ln Q v (h v ) P v (h v ) P v (h v ) Q v (h v ) e φ(h v ) = E v∼ρ E h v ∼Q v ln Q v (h v ) P v (h v ) + E h v ∼Q v ln P v (h v ) Q v (h v ) e φ(h v ) .
According to the definition of Kullback-Leibler divergence, we have

E v∼ρ E h v ∼Q v φ(h v ) = E v∼ρ KL(Q v P v ) + E h v ∼Q v ln P v (h v ) Q v (h v ) e φ(h v ) .
By applying Jensen's inequality (Theorem A.2, in Appendix) on the concave function ln, we have

E v∼ρ E h v ∼Q v φ(h v ) ≤ E v∼ρ KL(Q v P v ) + ln E h v ∼P v e φ(h v ) = E v∼ρ KL(Q v P v ) + E v∼ρ ln ρ(v) π(v) π(v) ρ(v) E h v ∼P v e φ(h v ) = E v∼ρ KL(Q v P v ) + KL(ρ π) + E v∼ρ ln π(v) ρ(v) E h v ∼P v e φ(h v ) .
Finally, we apply again the Jensen inequality (Theorem A.2) on ln to obtain the lemma.

Based on Lemma 5.2, the following theorems can be seen as a generalization of Theorem 4.1 and Theorem 4.2 to multiview respectively. Note that we still rely on a general convex function D : [0, 1] × [0, 1] → R, that measures the "deviation" between the empirical disagreement/joint error and the true risk of the Gibbs classifier. Note that, in both of following theorems, we split empirical Gibbs risk into empirical expected disagreement and expected joint error using Equation (4.3). This is done in order to highlight the trade-off between disagreement (or diversity between views) and joint error which is important for multiview learning (as discussed in Chapter 3). 

{Q v } V v=1 over {H v } V
v=1 and hyper-posterior ρ over V distributions, we have:

D 1 2 d MV S (ρ S ) + e MV S (ρ S ), R D (G MV ρ ) ≤ 1 m E v∼ρ KL(Q v P v ) + KL(ρ π) + ln 1 δ E S∼(D) m E v∼π E h∼P v e mD(R S (h),R D (h)) .
Proof. Deferred to Appendix C.2.; 

E S∼(D) m d MV S (ρ S ) + E S∼(D) m e MV S (ρ S ), E S∼(D) m R D (G MV ρ S ) ≤ 1 m E S∼(D) m E v∼ρ S KL(Q v,S P v ) + E S∼(D) m KL(ρ S π) + ln E S∼(D) m E v∼π E h v ∼P v e mD(R S (h v ),R D (h v )) .
Proof. We follow the same steps as in Theorem 4.2 proof.

mD E S∼(D) m R S (G MV ρ S ), E S∼(D) m R D (G MV ρ S ) = mD E S∼(D) m E v∼ρ S E h v ∼Q v,S R S (h v ), E S∼(D) m E v∼ρ S E h v ∼Q v,S R D (h v ) ≤ E S∼(D) m E v∼ρ S E h v ∼Q v,S mD (R S (h v ), R D (h v )) ≤ E S∼(D) m E v∼ρ S KL(Q v,S P v ) + KL(ρ S π) + ln E v∼π E h v ∼P v e mD(R S (h v ),R D (h v )) ,
where the last inequality is obtained using Lemma 5.2. After distributing the expectation of S ∼ (D) m , the final statement follows from Jensen's inequality (Theorem A.2)

E S∼(D) m ln E v∼π E h v ∼P v e mD(R S (h v ),R D (h v )) ≤ ln E S∼(D) m E v∼π E h v ∼P v e mD(R S (h v ),R D (h v )) ,
and from Equation (4. We also introduce the empirical disagreement allowing us to directly highlight the presence of the diversity between voters and between views. As Theorem 4.2 (and Theorem 4.2), Theorem 5.1 (and Theorem 5.

2) provides a tool to derive PAC-Bayesian generalization bounds for two-level multiview supervised learning setting. Indeed, by making use of the same trick as Germain et al. [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF][START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF], generalization bounds can be derived from Theorem 5.1 (and Theorem 5.2) by choosing a suitable convex function D and upper-bounding

E S E v E h v e m D(R S (h v ),R D (h v ))
. We provide the specialization to the three most popular PAC-Bayesian approaches [START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF][START_REF] Langford | Tutorial on practical prediction theory for classification[END_REF][START_REF] Mcallester | PAC-Bayesian stochastic model selection[END_REF][START_REF] Seeger | PAC-Bayesian generalisation error bounds for gaussian process classification[END_REF] in the next section.

Since the multiview C-bound of Equation ( 5 

Pr S∼(D) m D d MV S (ρ), d MV D (ρ) ≤ 2 m E v∼ρ KL(Q v P v ) + KL(ρ π) + ln E S∼(D) m E (h v ,h v )∼P 2 e mD(d S (h v ,h v ),d D (h v ,h v )) ≥ 1 -δ ,
and

D E S∼(D) m d MV S (ρ S ), E S∼(D) m d MV D (ρ S ) ≤ 2 m E S∼(D) m E v∼ρ S KL(Q v,S P v ) + E S∼(D) m KL(ρ S π) + ln E S∼(D) m E (h v ,h v )∼P 2 e mD(d S (h v ,h v ),d D (h v ,h v )) .
Proof. The result is obtained straightforwardly by following the proof steps of Theorem 5.1 and Theorem 5.2 respectively, using the disagreement instead of the Gibbs risk. 

Specialization of our Theorem to the Classical

Approaches

In this section, we provide specialization of our multiview theorem to the most popular PAC-Bayesian approaches [START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF][START_REF] Langford | Tutorial on practical prediction theory for classification[END_REF][START_REF] Mcallester | Some PAC-Bayesian theorems[END_REF][START_REF] Seeger | PAC-Bayesian generalisation error bounds for gaussian process classification[END_REF]. To do so, we follow the same principles as Germain et al. [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF][START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF] as recalled in Chapter 4.

Square Root Bound

We derive here the specialization of our multiview PAC-Bayesian theorem to the McAllester [START_REF] Mcallester | PAC-Bayesian stochastic model selection[END_REF]'s point of view.

Corollary 5.1. Let V ≥ 2 be the number of views. For any distribution D on X × Y, for any set of prior distributions {P v } V v=1 over {H} V v=1 , for any hyper-prior distribution π over V, we have

Pr S∼(D) m R D (G MV ρ ) ≤ 1 2 d MV S (ρ) + e MV S (ρ) + E v∼ρ S KL(Q v,S P v ) + E S∼(D) m KL(ρ S π) + ln 2 m δ 2m ≥ 1 -δ and E S∼(D) m R D (G MV ρ S ) ≤ 1 2 E S∼(D) m d MV S (ρ S ) + E S∼(D) m e MV S (ρ S ) + E S∼(D) m E v∼ρ S KL(Q v,S P v ) + E S∼(D) m KL(ρ S π) + ln 2 m 2m .
Proof. Deferred to Appendix C.3.

Parametrized Bound

To derive a generalization bound with the Catoni's [START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF] point of view-given a convex function F and a real number C > 0-define the measure of deviation between the empirical disagreement/joint error and the true risk as D(a, b) = F (b) -C a [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF][START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF]. We obtain the following generalization bound.

Corollary 5.2. Let V ≥ 2 be the number of views. For any distribution D on X × Y, for any set of prior distributions {P v } V v=1 over {H} V v=1 , for any hyper-prior distributions π over V, for all C > 0, we have:

Pr S∼(D) m R D (G MV ρ ) ≤ 1 1 -e -C 1 -exp -C 1 2 d MV S (ρ) + e MV S (ρ) + 1 m E S∼(D) m E v∼ρ S KL(Q v,S P v ) + E S∼(D) m KL(ρ S π) + ln 1 δ ≥ 1 -δ and E S∼(D) m R D (G MV ρ S ) ≤ 1 1 -e -C 1 -exp -C 1 2 E S∼(D) m d MV S (ρ S ) + E S∼(D) m e MV S (ρ S ) + 1 m E S∼(D) m E v∼ρ S KL(Q v,S P v ) + E S∼(D) m KL(ρ S π)
Proof. Deferred to Appendix C.4.

Small kl Bound

If we make use, for function D(a, b) between the empirical risk and the true risk, of the Kullback-Leibler divergence between two Bernoulli distributions with probability of success a and b, we can obtain a bound similar to [START_REF] Langford | Tutorial on practical prediction theory for classification[END_REF][START_REF] Seeger | PAC-Bayesian generalisation error bounds for gaussian process classification[END_REF]. Concretely, we apply Theorem 5.1 and Theorem 5. we have:

Pr S∼(D) m kl 1 2 d MV S (ρ) + e MV S (ρ), R D (G MV ρ S ) ≤ 1 m E S∼(D) m E v∼ρ S KL(Q v,S P v ) + E S∼(D) m KL(ρ S π) + ln 2 m δ ≥ 1 -δ and kl 1 2 E S∼(D) m d MV S (ρ S ) + E S∼(D) m e MV S (ρ S ), E S∼(D) m R D (G MV ρ S ) ≤ 1 m E S∼(D) m E v∼ρ S KL(Q v,S P v ) + E S∼(D) m KL(ρ S π) + ln 2 m .
Proof. Deferred to Appendix C.5.

Generalization Bound for the Multiview C-Bound

From a practical standpoint, as pointed out before, controlling the multiview C-Bound of Equation ( 5 

R D (B MV ρ ) ≤ 1 - 1 -2 E v∼ρ sup r δ/2 Q v ,S 2 1 -2 E v∼ρ inf d δ/2 Q v ,S
, where

r δ/2 Q v ,S = r : kl(R S (G Q v ) r ) ≤ 1 m KL(Q v P v ) + ln 4 m δ and r ≤ 1 2 (5.6
)

and d δ/2 Q v ,S = d : kl(d S Q v d ) ≤ 1 m 2. KL(Q v P v ) + ln 4 m δ (5.7)
Proof. Let assume that the Gibbs risk

R D (G Q v ) ≤ 1 2 .
Then with a high probability over the random choice of learning sample, probabilistic bound of Corollary 5.3 in Chapter 5 says that the true Gibbs risk R D (G Q v ) is included in the continuous set r δ Q v ,S defined as

r δ Q v ,S = r : kl(R S (G Q v ) r ) ≤ 1 m KL(Q v P v ) + ln 2 m δ and r ≤ 1 2
Thus, an upper bound on

R D (G Q v ) is obtained from maximum value of r δ Q v ,S .
From probabilistic small kl bound of expected disagreement (see Theorem 5.3), we can easily derive the continuous set d δ Q v ,S defined as

d δ Q v ,S = d : kl(d S Q v d ) ≤ 1 m 2 KL(Q v P v ) + ln 2 m δ
Finally, the bound is obtained (from Equation (5.5) of Lemma 5.1) by replacing the view-

specific Gibbs risk R D (G Q v ) by its upper bound sup r δ/2 Q v ,S and expected disagreement d D (Q v ) by its lower bound inf d δ/2 Q v ,S .

Discussion on Related Works

In this section, we discuss two related theoretical studies of multiview learning (that are recalled in Chapter 3) related to the notion of majority vote.

Massih et al. [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF] proposed a Rademacher analysis (Theorem 3.1 in Chapter 3) of the risk of the multiview majority vote over the view-specific classifiers (for more than two views) where the distribution over the views is restricted to the uniform distribution. In their work, each viewspecific classifier is learned by minimizing the empirical risk:

h * v = argmin h v ∈H v 1 m (x,y)∼(D) m 1 [h v (x v ) =y] .
Finally, the prediction for any multiview example x is based on the majority vote over these view-specific classifiers. The risk of the multiview majority vote (MV-MV) is hence given by

R D (MV-MV(x)) = E (x,y)∼D 1 V V v=1 1 [h * v (x v ) =y] .
In comparison to our work, we considered a non-uniform distribution over the views by following a hierarchy of distributions over the view-specific classifiers. Moreover, in our bounds (Theorem 5.1 and Theorem 5.1), we have explicitly highlighted the term to control the diversity between the views, which is important for multiview learning.

Sun et al. [START_REF] Sun | PAC-Bayes analysis of multi-view learning[END_REF] proposed a PAC-Bayesian analysis for co-regularization style multiview learning approaches (Theorem 3.2 in Chapter 3) but limited to two views and in a more restrictive setting. Indeed, they considered linear classifiers over the concatenation of two views and defined a prior distribution over the classifiers that promotes similar classification among the two views (see Section 3.3.4 for more details). In contrast to our work, we are interested in more general case when we have more than two views. Moreover, our generalization bounds are not specific to any type of classifiers and the notion of diversity among the views is handled in a different way and is inherent of the definition of the Gibbs Risk.

Lastly, both of the above approaches exploit the consensus principle (Section 3.3 in Chapter 3) of multiview learning where the objective is to maximize the agreement between the multiple views of the data. Whereas, our bounds exploits the diversity principle (Section 3.4

in Chapter 3) where our objective is to control the trade-off between the diversity between the views and the accuracy of the view-specific voters. According to the diversity principle, we exploit different informations from different views of the data. This is done by following a two-level hierarchical strategy over the view-specific classifiers and the views.

Conclusion

In this chapter, we propose a first PAC-Bayesian analysis of weighted majority vote classifiers for multiview learning when observations are described by more than two views. Here, our goal is to correctly combine the multiple views of the data while taking into account the diversity between the views. Therefore, we study multview learning using the PAC-Bayesian theory which allows us to derive generalization bounds for models expressed as a combination over the view-specific voters and the views. Our analysis is based on a hierarchy of distributions, i.e. weights, over the views and voters: (i) for each view v a posterior and prior distributions over the view-specific voter's set, and (ii) a hyper-posterior and hyper-prior distribution over the set of views. We derive general PAC-Bayesian theorems (probabilistic and expected risk bounds ) tailored for this setting, that can be specialized to any convex function to compare the empirical and true risks of the stochastic Gibbs classifier associated with the weighted majority vote. We also presented a similar theorem for the expected disagreement, a notion that turns out to be crucial in multiview learning.

Moreover, we derive the generalization bound for the multiview C-bound which we use to design a boosting based algorithm PB-MVBoost in the next chapter. We present multiview learning algorithms based on this two-level hierarchical strategy in the next chapters. 

Introduction

We follow the two-level hierarchical learning strategy proposed in Chapter 5, in order to design a multview learning algorithm based on the idea of boosting [START_REF] Freund | Boosting a weak learning algorithm by majority[END_REF][START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF][START_REF] Schapire | A brief introduction to boosting[END_REF][START_REF] Schapire | The Boosting Approach to Machine Learning: An Overview[END_REF]. We recall the idea of the two-level hierarchical learning strategy in Figure 6.1. Concretely, i) for each 

v ∈ {1, 2, 3}, we have a set of n v voters H v = {h 1 v , . . . , h n v
v } on which we consider a prior P v view-specific distribution (in blue). A hyper-prior π distribution (in green) over the set of 3 views is also considered. The objective is to learn a set of posterior {Q v } 3 v=1 (in red) viewspecific distributions and a hyper-posterior ρ distribution (in orange) leading to a good model. The length of a rectangle represents the weight (or probability) assigned to a voter or a view. view v, we consider a prior P v and a posterior Q v distributions over view-specific voters to capture view-specific informations and ii) a hyper-prior π v and a hyper-posterior ρ v distributions over the set of views to capture the accuracy of view-specific classifiers and diversity between the views. Following this distributions' hierarchy, we define a multiview majority vote classifier where view-specific classifiers are weighted according to posterior and hyper-posterior distributions. By doing so, we extended the usual monoview C-Bound to multview C-Bound (Lemma 5.1) which bounds the error of the multiview majority vote in terms of multiview gibbs classifier and the expected disagreement (see Equation (5.2)).

From the practical point of view, we design two algorithms based on the idea of boosting [START_REF] Freund | Boosting a weak learning algorithm by majority[END_REF][START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF][START_REF] Schapire | A brief introduction to boosting[END_REF][START_REF] Schapire | The Boosting Approach to Machine Learning: An Overview[END_REF] and late fusion [START_REF] Snoek | Early versus late fusion in semantic video analysis[END_REF] (also referred as stacking [START_REF] Wolpert | Stacked generalization[END_REF]). Our boosting-based multiview learning algorithm, called PB-MVBoost, deals with the two-level hierarchical learning strategy. PB-MVBoost is an ensemble method and outputs a multiview classifier that is a combination of view-specific voters. It is well known that controlling the diversity Algorithm 5 PB-MVBoost Input: Training set S = {(x i , y i ), . . . , (x m , y m )}, where x i = (x 1 , x 2 , . . . , x V ) and y i ∈ {-1, 1}.

For each view v ∈ V, a view-specific hypothesis set H v .

Number of iterations T .

1: for x i ∈ S do 2: D 1 (x i ) ← 1 m 3: ∀v ∈ V, ρ 1 v ← 1 V and H v ← φ 4: for t = 1, . . . , T do 5:
For each view v ∈ V, learn a view-specific weak classifier h (t ) v using distribution D (t ) 6:

Compute error:

∀v ∈ V, (t ) v ← E (x i ,y i )∼D (t ) 1 [h t v (x v i ) =y i ] 7:
Compute classifier's weight (taking into account view specific information):

∀v ∈ V,Q (t ) v ← 1 2 ln 1 -(t ) v (t ) v 8: ∀v ∈ V, H v ← H v ∪ {h (t ) v } 9:
Optimize the multiview C-Bound to learn weights over the views

max ρ 1 -2 V v=1 ρ (t ) v r (t ) v 2 1 -2 V v=1 ρ (t ) v d (t ) v s.t . V v=1 ρ (t ) v = 1, ρ (t ) v ≥ 0 ∀v ∈ {1, ...,V } where, ∀v ∈ V, r (t ) v ← E (x i ,y i )∼D (t ) E h v ∼H v 1 [h v (x v i ) =y i ] ∀v ∈ V, d (t ) v ← E (x i ,y i )∼D (t ) E h v ,h v ∼H v 1 [h v (x v i ) =h v (x v i )]
10:

for x i ∈ S do 11:

D (t +1) (x i ) ← D (t ) (x i ) exp(-y i V v=1 ρ (t ) v (Q (t ) v h (t ) v (x v i ))) m j =1 D (t ) (x j ) exp(-y j V v=1 ρ (t ) v (Q (t ) v h (t ) v (x v j )))
12: Return: For each view v ∈ V, weights over view-specific voters and weights over views i.e. ρ T . Such that, for any input example x multiview weighted majority vote is defined as:

B MV ρ (x) = sign V v=1 ρ T v T t =1 Q (t ) v h (t ) v (x v ) .
algorithm PB-MVBoost (see Algorithm 5) for our setting.

Note that we keep the same notations and setting as in Section 5. Similarly to the Adaboost algorithm [START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF] (recalled in Section 2.4.2 of Chapter 2), the weights of each view-specific classifier (Q (t ) v ) 1≤v≤V are then computed with respect to these errors as :

∀v ∈ V,Q (t ) v ← 1 2 ln 1 -(t ) v (t ) v
To learn the weights (ρ v ) 1≤v≤V over the views, we optimize the multiview C-Bound, given by Equation (5.5) of Chapter 5 (Step 8 of algorithm). The multiview C-Bound controls the trade-off between the expectation of the Gibbs risk E v∼ρ r (t ) v and the expected disagreement

E v∼ρ d (t )
v over all view-specific classifiers defined as follows

E v∼ρ r (t ) v = E (x i ,y i )∼D (t ) E v∼ρ E h v ∼H v I[h v (x v i ) = y i ], (6.1) 
and

E v∼ρ d (t ) v = E (x i ,y i )∼D (t ) E v∼ρ E h v ,h v ∼H v I[h v (x v i ) = h v (x v i )]. (6.2) 
Intuitively, the minimization of the multiview C-Bound tries to diversify the view-specific voters and views (Equation (6.2)) while controlling the classification error of the view-specific classifiers (Equation (6.1)). This allows us to control the accuracy and the diversity between the views which is an important ingredient in multiview learning [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF][START_REF] Morvant | Majority vote of diverse classifiers for late fusion[END_REF][START_REF] Peng | Multiview boosting with information propagation for classification[END_REF][START_REF] Peng | Shareboost: Boosting for multi-view learning with performance guarantees[END_REF][START_REF] Xu | An algorithm on multi-view adaboost[END_REF] as 

discussed
D (t +1) (x i ) ← D (t ) (x i ) exp(-y i V v=1 ρ (t ) v (Q (t ) v h (t ) v (x v i ))) m j =1 D (t ) (x j ) exp(-y j V v=1 ρ (t ) v (Q (t ) v h (t ) v (x v j )))
Intuitively, this forces the view-specific classifiers to be consistent with each other, which is important for multiview learning [START_REF] Janodet | Boosting Classifiers built from Different Subsets of Features[END_REF][START_REF] Koço | A boosting approach to multiview classification with cooperation[END_REF][START_REF] Xiao | Multi-view adaboost for multilingual subjectivity analysis[END_REF]. Finally, after T iterations of algorithm, we learn the weights over the view-specific voters and weights over the views leading to a well-performing weighted multiview majority vote

B MV ρ (x) = sign V v=1 ρ T v T t =1 Q (t ) v h (t ) v (x v ) .

Discussion on Related Works

In this section, we compare existing ensemble-based multiview learning algorithms [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF][START_REF] Janodet | Boosting Classifiers built from Different Subsets of Features[END_REF][START_REF] Koço | A boosting approach to multiview classification with cooperation[END_REF][START_REF] Peng | Multiview boosting with information propagation for classification[END_REF][START_REF] Peng | Shareboost: Boosting for multi-view learning with performance guarantees[END_REF][START_REF] Sun | PAC-Bayes analysis of multi-view learning[END_REF][START_REF] Xiao | Multi-view adaboost for multilingual subjectivity analysis[END_REF][START_REF] Xu | An algorithm on multi-view adaboost[END_REF] (discussed in Sections 3.3 and 3.4 of Chapter 3) with our approach.

Janodet et al. [START_REF] Janodet | Boosting Classifiers built from Different Subsets of Features[END_REF] and Xu and Sun [START_REF] Xu | An algorithm on multi-view adaboost[END_REF] designed boosting based multiview learning algorithms 2-Boost and EMV-AdaBoost respectively for two-view setting. In this work, we are interested in deriving multiview learning algorithms for more general and natural case of more than two views. Koço et al. [START_REF] Koço | A boosting approach to multiview classification with cooperation[END_REF] proposed Mumbo that maintains separate distributions for each view in order to communicate between the views or in other words, to control the diversity between the views. On the other hand, Peng et al. [START_REF] Peng | Multiview boosting with information propagation for classification[END_REF][START_REF] Peng | Shareboost: Boosting for multi-view learning with performance guarantees[END_REF], for controlling the diversity between the views, learn the weights over the views by casting the algorithm in two ways: i) a multiarmed bandit framework (rBoost.SH) (Algorithm 4 in Chapter 3) and

ii) an expert strategy framework (eBoost.SH) consisting of set of strategies (distribution over views) for weighing views. Whereas, we follow a two-level learning strategy where we learn (hyper-)posterior distributions/weights over the view-specific voters and the views. In order to take into account the accuracy and the diversity between the views, we optimize the multiview C-Bound (an upper-bound over the risk of the multiview majority vote learned, see e.g. [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF][START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF][START_REF] Roy | A column generation bound minimization approach with PAC-Bayesian generalization guarantees[END_REF]) Furthermore, our approach encompasses the one of Amini et al. [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF] and Xiao and Guo [START_REF] Xiao | Multi-view adaboost for multilingual subjectivity analysis[END_REF].

Amini et al. [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF] proposed a Rademacher analysis (Theorem 3.1 in Chapter 3) for the majority vote over the set of view-specific classifiers (for more than two views). Xiao and Guo [START_REF] Xiao | Multi-view adaboost for multilingual subjectivity analysis[END_REF] derived a weighted majority voting Adaboost algorithm (Algorithm 3 in Chapter 3) which learns weights over view-specific voters at each iteration of the algorithm. Both of these approaches maintain a uniform distribution over the views whereas our algorithm learns the weights over the views such that they capture diversity between the views. Moreover, Sun et al. [START_REF] Sun | PAC-Bayes analysis of multi-view learning[END_REF] proposed a PAC-Bayesian analysis for multiview learning over the concatena-tion of views but limited to two views and to a particular kind of voters: linear classifiers (as discussed in Section 3.3.4 of Chapter 3). This has allowed them to derive a SVM-like learning algorithm but dedicated to multiview with exactly two views. In our work, we are interested in learning from more than two views and no restriction on the classifier type.

Contrary to them, we followed a two-level distributions' hierarchy where we learn weights over view-specific classifiers and weights over views.

Experimental Results

In this section, we present experiments to show the potential of our algorithms on the following datasets.

Datasets

MNIST

MNIST is a publicly available dataset consisting of 70, 000 images of handwritten digits distributed over ten classes [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. The size of the different classes in the number of images is given in Table 6.1. For our experiments, we generated 2 four-view datasets where each view is a vector of R 14×14 . Similarly than done by Chen et al. [START_REF] Chen | Multi-view generative adversarial networks[END_REF], the first dataset (MNIST 1 ) is generated by considering 4 quarters of image as 4 views. For the second dataset (MNIST 2 )

we consider 4 overlapping views around centre of image: this dataset brings redundancy between the views. These two datasets allow us to check if our algorithm is able to capture redundancy between the views. We reserve 

Experimental Protocol

While the datasets are multiclass, we transformed them as binary tasks by considering onevs-all classification problems: for each class we learn a binary classifier by considering all the learning samples from that class as positive examples and the others as negative examples.

We consider different size of learning samples S (150, 200, 250, 300, 500, 800, 1000) that are chosen randomly from the training data. Since the classes are unbalanced, we report the accuracy along with the standard F1-measure [START_REF] Powers | Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation[END_REF], which is the harmonic average of precision and recall defined as

F 1 = 2 × P r eci si on × Rec al l P r eci si on + Rec al l .
Experiments are repeated 20 times by at each time splitting the training and the test sets at random over the initial datasets and all the scores are averaged over all the one-vs-all classification problems.

We design two multiview learning algorithms based on our two-step hierarchical strategy. The first algorithm is the boosting based multiview learning algorithm PB-MVBoost

• MV-MV: We compute a multiview uniform majority vote (similar to approach followed by Amini et al. [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF]) over all the view-specific classifiers' outputs in order to make final prediction. We learn view-specific classifiers using decision tree classifier (Equation (3.11) in Chapter 3).

• rBoost.SH (Algorithm 4 in Chapter 3): This is the multiview learning algorithm proposed by Peng et al. [START_REF] Peng | Multiview boosting with information propagation for classification[END_REF][START_REF] Peng | Shareboost: Boosting for multi-view learning with performance guarantees[END_REF] where a single global distribution is maintained over the learning sample for all the views and the distribution over views are updated using multiarmed bandit framework. At each iteration, rBoost.SH selects a view according to the current distribution and learns the corresponding view-specific voter. For tuning the parameters, we followed the same experimental setting as Peng et al. [START_REF] Peng | Multiview boosting with information propagation for classification[END_REF].

• MV-AdaBoost: This is a majority vote classifier over the view-specific voters trained using Adaboost algorithm. Here, our objective is to see the effect of maintaining separate distributions for all the views.

• MV-Boost (Algorithm 6): This is a variant of our algorithm PB-MVBoost but without learning weights over views by optimizing multiview C-Bound. Here, our objective is to see the effect of learning the weights over the views for multiview learning tasks.

For all boosting based approaches (rBoost.SH, MV-AdaBoost, MV-Boost and PB-MVBoost),

we learn the view-specific voters using a decision tree classifier with depth 2 and 4 as a weak classifier for MNIST, and Reuters RCV1/RCV2 datasets respectively. For all these approaches, we set the number of iterations to T = 100. For optimizing the multiview C-Bound, we used Sequential Least SQuares Programming (SLSQP) implementation provided by scikitlearn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. Note that we made use of the scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] implementation for learning the decision tree models.

Results

Firstly, we report the comparison of our algorithms Fusion all Cq and PB-MVBoost (for m = 500) with all the considered baseline methods in Table 6.3. Secondly, Figure 6.2 and Figure 6.3, illustrates the evolution of the accuracy and the F 1 -measure according to the size of the learning sample. From the table, the proposed two-step learning algorithm Fusion all Cq is significantly better than the baseline approaches for Reuters dataset. Whereas, our boosting based algorithm PB-MVBoost is significantly better than all the baseline approaches for all the datasets. This shows that considering a two-level hierarchical strategy in a PAC-Bayesian manner is an effective way to handle multiview learning. 

Algorithm 6 MV-Boost

Input: Training set S = {(x i , y i ), . . . , (x m , y m )}, where x i = (x 1 , x 2 , . . . , x V ) and y i ∈ {-1, 1}.

For each view v ∈ V, a view-specific hypothesis set H v .

Number of iterations T .

1: for x i ∈ S do For each view v ∈ V, learn a view-specific weak classifier h (t ) v using distribution D (t ) 5:

Compute error: ∀v ∈ V, (t ) v ← E

(x i ,y i )∼D (t ) 1 [h (t ) v (x v i ) =y i ] 6:
Compute classifier's weight (taking into account view specific information):

∀v ∈ V,Q (t ) v ← 1 2 ln 1 -(t ) v (t ) v 7:
for x i ∈ S do 8:

D (t +1) (x i ) ← D (t ) (x i ) exp(-y i V v=1 (1/V )(Q (t ) v h (t ) v (x v i ))) m j =1 D (t ) (x j ) exp(-y j V v=1 (1/V ) t (Q (t ) v h (t ) v (x v j )))
9: Return: For each view v ∈ V, weights over view-specific voters.

In Figure 6.4, we compare proposed algorithms Fusion all Cq and PB-MVBoost in terms of accuracy, F 1 -score and time complexity for m = 500 examples. For MNIST datasets, PB-MVBoost is significantly better than Fusion all Cq . For Reuters dataset, Fusion all Cq performs better than PB-MVBoost but the computation time for Fusion all Cq is much higher than the one of PB-MVBoost. Moreover, in Figure 6.3, we can see that the performance (in terms of F 1measure) for Fusion all Cq is worse than PB-MVBoost when we have less number of training examples (m = 150 and 200). This shows that the proposed boosting based one-step algorithm PB-MVBoost is more stable and more effective for multiview learning.

From Table 6.3, Figure 6. large publicly available corpus of multilingual documents extracted from the Reuters RCV1 and RCV2 corpora as well as MNIST 1 and MNIST 2 collections, we show that our approach consistently improves over other methods, in the particular when there are only few training examples available for learning. This is a particularly interesting setting when resources are limited, and corresponds, for example, to the common situation of multilingual data.

In the next section, we present the double weighted majority vote classifier for multiview learning. Section 7.3 shows that the learning problem is equivalent to a Bregman-divergence minimization and describes the Boosting-based algorithm we developed to learn the classifier. In Section 7.4, we present experimental results obtained with our approach. Finally, in Section 7.5 we discuss the outcomes of this study and give some pointers to further research.

Notations and Setting

We consider binary classification problems where the multiview observations x = (x 1 , . . . , x V ) belong to a multiview input set X = X 1 × . . . × X V , where V ≥ 2 is the number of views of not-necessarily the same dimension. We denote V the set of the V views. In binary classification, we assume that examples are pairs (x, y), with y ∈ Y = {-1, +1}, drawn according to an unknown distribution D over X × Y. We further assume that we have a finite set of weak classifiers H v = {h andρ=(ρ v ) 1≤v≤V , such that the multiview weighted majority vote classifier

Q = (Q v ) 1≤v≤V , where ∀v ∈ V, Q v =(Q j v ) 1≤ j ≤n v ,
B MV ρ B MV ρ (x) = V v=1 ρ v n v j =1 Q j v h j v (x v ) (7.1)
has the smallest possible generalization error on D. We follow the Empirical Risk Minimization principle [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF], and aim at minimizing the 0/1-loss over S:

R S (B MV ρ ) = 1 m m i =1 1 [y i B MV ρ (x i )≤0] ,
all views 

v = 1 h 1 1 h 2 1 h 3 1 h 4 1 v = 2 h 1 2 h 2 2 h 3 2 h 4 2 h 5 2 v = 3 h 1 3 h 2 3 h 3 3 Figure 7
R S (B MV ρ ) = a m m i =1 ln 1 + exp -y i B MV ρ (x i ) , (7.2) 
and the objective would be then to find the optimal combination weights Q and ρ that minimize this surrogate logistic loss.

Note that the two-level hierarchical strategy considered in Chapters 5 and 6 is different from this one. In the PAC-Bayesian theory, for a given set of view-specific classifiers, we assume (hyper-)prior distributions over the view-specific classifiers and the views. Then, after seeing the learning sample, our objective is to learn the (hyper-)posterior distributions over the view-specific classifiers and the views leading to a well-performing multiview majority vote. However, in this chapter, there is no notion of (hyper-)prior distributions over the set of view-specific classifiers. Here, the objective is to learn the optimal combination weights Q and ρ by minimizing surrogate logistic loss defined by Equation (7.2).

According to our multiview setting and to optimize Equation (7.2) through a Bregman divergence, we consider the function F defined for all p∈Ω=[0, 1] m as

F (p) = m i =1 p i ln(p i ) + (1 -p i ) ln(1 -p i ),
which from Definition 7.1 and the definition of the Legendre transform, yields that for all (p, q) ∈ Ω × Ω and r ∈ Ω

D F (p||q) = m i =1 p i ln p i q i + (1 -p i ) ln 1 -p i 1 -q i , (7.4) 
and ∀i ∈ [m], L F (q, r) i = q i e -r i 1q i + q i e -r i , (

with a i the i t h characteristic of a=(a i ) 1≤i ≤m (a being p, q, r or L F (q, r)).

Now, let q 0 = 1 2 1 m be the vector with all its components set to 1 2 . For all i ∈ {1, . . . , m}, we define L F (q 0 , v

) i = σ(v i ) with σ(z) = (1 + e z ) -1 , ∀z ∈ R. We set the matrix M v of size m × n v , (M v ) i j = y i h j v (x v i ).
Then using Equations (7.4) and (7.5), it comes

D F 0 L F q 0 , V v=1 ρ v M v Q v = m i =1 ln 1+exp -y i V v=1 ρ v n v j =1 Q j v h j v (x v i ) . (7.6) 
As a consequence, minimizing Equation (7.2) is equivalent to minimizing D F (0||q) over q ∈ Q0 , where for

Ω = [0, 1] m Q 0 = q ∈ Ω q i = σ y i V v=1 ρ v n v j =1 Q j v h j v (x v i ) ; ρ, Q . (7.7)
For a set of weak-classifiers (H v ) 1≤v≤V learned over a training set S; this equivalence allows us to adapt the parallel-update optimization algorithm described in [START_REF] Collins | Logistic regression, adaboost and bregman distances[END_REF] to find the optimal weights Q and ρ defining MωMvC 2 of Equation (7.1), as described in Algorithm 7.

A Multiview Parallel Update Algorithm

Once all view-specific weak classifiers (H v ) 1≤v≤V have been trained, we start from an initial point q (1) ∈ Q 0 (Equation (7.7)) corresponding to uniform values of weights ρ

(1) = 1 V 1 V and ∀v ∈ [V ], Q (1) v = 1 n v 1 n v .
Then, we iteratively update the weights such that at each iteration t , using the current parameters ρ (t ) , Q (t ) and q (t ) ∈ Q 0 , we seek new parameters ρ (t +1) and δ (t ) v such that for

q (t +1) = L F (q 0 , V v=1 ρ (t +1) v M v (Q (t ) v + δ (t ) v )), (7.9) 
Algorithm 7 Learning MωMvC 2

Input:

Training set S = {(x i , y i )} m i =1 , where ∀i , x i = (x 1 i , . . . , x V i ) and y i ∈ {-1, 1}; and a maximal number of iterations T .

Initialization: ρ (1) ← 1 V 1 V and ∀v, Q (1) v ← 1 n V 1 n v Train the weak classifiers (H v ) 1≤v≤V over S For v ∈ V set the m × n v matrix M v such that (M v ) i j = y i h j v (x v i ) 1: for t = 1, . . . , T do 2:
for i = 1, . . . , m do 3:

q (t ) i = σ y i V v=1 ρ (t ) v n v j =1 Q j (t ) v h j v (x v i ) 4:
for v = 1, . . . ,V do 5:

for j = 1, . . . , n v do 6:

W (t )+ v, j = i :sign((M v ) i j )=+1 q (t ) i |(M v ) i j | 7: W (t )- v, j = i :sign((M v ) i j )=-1 q (t ) i |(M v ) i j | 8: δ (t ) v, j = 1 2 ln W (t )+ v, j W (t )- v, j 9: Q (t +1) v = Q (t ) v + δ (t ) v 10:
Set ρ (t +1) , as the solution of :

min ρ - V v=1 ρ v n v j =1 W (t )+ v, j -W (t )- v, j 2 (7.8) s.t. V v=1 ρ v = 1, ρ v ≥ 0 ∀v ∈ V
Return: Weights ρ (T ) and Q (T ) .

we get D F (0||q (t +1) ) ≤ D F (0||q (t ) ).

Following the same strategy as in [START_REF] Collins | Logistic regression, adaboost and bregman distances[END_REF]Theorem 3], it is straightforward to show that in this case, the following inequality holds:

D F (0||q (t +1) ) -D F (0||q (t ) ) ≤ A (t ) , (7.10) 
where

A (t ) = - V v=1 ρ (t +1) v n v j =1 W (t )+ v, j (e -δ (t ) v, j -1) -W (t )- v, j (e δ (t ) v, j -1) 2 , with ∀ j ∈ {1, . . . , n v };W (t )± v, j = i :sign((M v ) i j )=±1 q (t ) i |(M v ) i j |.
Note that we provide the proof of Equation 7.10 in Appendix D.

By fixing the set of parameters ρ (t +1) ; the parameters δ (t ) v that minimize A (t ) are defined as

• Concat is an early fusion approach, where a mono-view decision tree operates over the concatenation of all views of multiview observations.

• Fusion is a late fusion approach, sometimes referred to as stacking, where view- • MVMLsp2 [START_REF] Huusari | Multi-view Metric Learning in Vector-valued Kernel Spaces[END_REF] is a multiview metric learning approach, where multiview kernels are learned to capture the view-specific information and relation between the views. We kept the experimental setup of [START_REF] Huusari | Multi-view Metric Learning in Vector-valued Kernel Spaces[END_REF] with Nyström parameter 0.24.3 

• MV-MV [2] is a multiview algorithm where view-specific classifiers are trained over the views using all the training examples. The final model is the uniformly weighted majority vote (Equation 3.11 in Chapter 3).

• MVWAB [START_REF] Xiao | Multi-view adaboost for multilingual subjectivity analysis[END_REF] (Algorithm 3 in Chapter 3) is a Multiview Weighted Voting AdaBoost algorithm, where multiview learning and ababoost techniques are combined to learn a weighted majority vote over view-specific classifiers but without any notion of learning weights over views.

• rBoost.SH [66, 67] (Algorithm 4 in Chapter 3) is a multiview boosting approach where a single distribution over different views of training examples is maintained and, the distribution over the views are updated using the multiarmed bandit framework. For the tuning of parameters, we followed the experimental setup of [START_REF] Peng | Multiview boosting with information propagation for classification[END_REF].

Fusion, MV-MV, MVWAB, and rBoost.SH make decision based on some majority vote strategies, as the proposed MωMvC 2 classifier. The difference relies on how the view-specific classifiers are combined. For MVWAB and rBoost.SH, we used decision tree model to learn view-specific weak classifiers at each iteration of algorithm and fixed the maximum number of iterations to T = 100. To learn MωMvC 2 , we generated the matrix M v by considering a set of weak decision tree classifiers with different depths (from 1 to max d -2, where max d is maximum possible depth of a decision tree). We tuned the maximum number of iterations by cross-validation which came out to be T = 2 in most of the cases and that we fixed throughout all of the experiments. To solve the optimization problem for finding the weights ρ (Equation 7.8), we used the Sequential Least SQuares Programming (SLSQP) implementation of scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF], that we also used to learn the decision trees. Results are computed over the test set using the accuracy and the standard F 1 -score [START_REF] Powers | Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation[END_REF], which is the harmonic average of precision and recall. Experiments are repeated 20 times by each time splitting the training and the test sets at random over the initial datasets. 4 .

Results

From these results it becomes clear that late fusion and other multiview approaches (except MVMLsp) provide consistent improvements over training independent mono-view classifiers and with early fusion, when the size of the training set is small. Furthermore, MωMvC 2 outperforms the other approaches and compared to the second best strategy the gain in accuracy (resp. F 1 -score) varies between 0.8% and 1.3% (resp. 1.5% and 2%) across the collections.

These results provide evidence that majority voting for multiview learning is an effective way to overcome the lack of labeled information and that all the views do not have the same strength (or do not bring information in the same way) as the learning of weights, as it is done in MωMvC 2 , is much more effective than the uniform combination of view-specific classifiers as it is done in MV-MV.

We also analyze the behavior of the algorithms for growing initial amounts of labeled data. 

Conclusion

In this chapter, we show that the minimization of the multiview classification error is equivalent to the minimization of Bregman divergences. This embedding allowed us to derive a parallel-update optimization boosting-like algorithm (referred as MωMvC 2 ) in order to learn the weights of over the view-specific classifiers and the views. Our results show clearly that our method allows to reach high performance in terms of accuracy and Cq ) where we combine the predictions of view-specific classifiers using the PAC-Bayesian algorithm CqBoost [START_REF] Roy | A column generation bound minimization approach with PAC-Bayesian generalization guarantees[END_REF] which controls the trade-off between the accuracy and the diversity between the view-specific classifiers. We empirically evaluated both of above algorithms on three publicly available datasets MNIST 1 , MNIST 2 and Reuters. We empirically show that the proposed algorithms performs better than considered baseline approaches. We show that PB-MVBoost minimizes the multiview C-Bound over the iterations and able to handle the unbalanced classes. Moreover, we compare PB-MVBoost with Fusion all Cq and show that PB-MVBoost is more stable algorithm across different datasets and computationally faster.

Finally, we show that minimization of classification error for multiview weighted majority vote is equivalent to the minimization of Bregman divergences. This allowed us to derive a parallel-update optimization algorithm (referred as MωMvC 2 ) to learn our multiview weighted majority vote. We experimentally evaluated our algorithms on three publicly available datasets and showed that proposed algorithm performs better than the considered baseline approaches. Moreover, MωMvC 2 is computationally faster than PB-MVBoost. However, it unable to handle the unbalanced classes.

As future work, we would like to specialize our PAC-Bayesian generalization bounds to linear classifiers for which PAC-Bayesian approaches are known to lead to tight bounds and efficient learning algorithms [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF]. This clearly opens the door to derive theoretically founded algorithms for multiview learning. Another perspective is to extend our bounds for diversity-dependent prior similar to the approach used by Sun et al. [START_REF] Sun | PAC-Bayes analysis of multi-view learning[END_REF] for more than two views to additionally consider a priori knowledge on the diversity. In addition, we would like to explore our proposed expectation risk bound for PAC-Bayesian theory from algorithmic point of view.

For PB-MVBoost, we fix the number of iterations to T = 100. Therefore, we would like to find the suitable stopping criteria for our boosting algorithm. As shown in our experiments (Figure 6.5 in Chapter 6), the F1-measure on test data keeps on increasing even if the classification accuracy and F1-measure on training data reaches to maximal value. Schapire et al. [START_REF] Schapire | Boosting the margin: A new explanation for the effectiveness of voting methods[END_REF] explained this behaviour for boosting methods using margins explanation. They showed that boosting is effective if margins of the training examples keeps on increasing over the iterations. In our case, one of the possible direction to find the suitable stopping criteria is to exploit the margin behaviour for PB-MVBoost. The major drawback of MωMvC 2 algorithm is that it is unable to handle the unbalanced data. One possible solution to handle the unbalanced data is to learn the view-specific classifiers (input to our algorithm) such that they take into account original class distributions in the training data.

Another possible direction is to explore semi-supervised multiview learning where we have

unlabeled data S u = {x j } m u j =1 along with labeled data S l = {(x i , y i )} m l i =1 during training.
For our algorithms, one of the possible way is to learn a view-specific classifier using pseudo-labels (for unlabeled data) generated from the classifiers trained from other views, e.g. [START_REF] Fakeri-Tabrizi | Multiview self-learning[END_REF][START_REF] Xu | Co-labeling for multi-view weakly labeled learning[END_REF]. For PB-MVBoost, another possible direction is to make use of unlabeled data while computing view-specific disagreement for optimizing multiview C-Bound.

Moreover, the question of extending our work to the case where all the views are not necessarily available or not complete (missing views or incomplete views, e.g. [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF][START_REF] Xu | Multi-view learning with incomplete views[END_REF]), is very exciting. For PB-MVBoost, one possible solution is to learn the view-specific voters using In this section, we present the proof of Lemma ?? [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF]. Firstly, we need to define the margin of the weighted majority vote B Q and its first and second statistical moments. Definition B.1. Let M Q is a random variable that outputs the margin of the weighted majority vote on the example (x, y) drawn from distribution D, given by:

M Q (x, y) = E h∼Q y h(x).
The first and second statistical moments of the margin are respectively given by

µ 1 (M D Q ) = E (x,y)∼D M Q (x, y). (B.1)
and, 

µ 2 (M D Q ) = E (x,y)∼D M Q (x, y) 2 = E x∼D X y 2 E h∼Q h(x v ) 2 = E x∼D X E h∼Q h(x)
= 1 2 (1 -µ 1 (M D Q )) .
Similarly, the expected disagreement can be expressed thanks to the second statistical moment of the margin by

d D (Q) = E x∼D X E h∼Q E h ∼Q 1 [h(x) =h (x)] = 1 2 1 -E x∼D X E h∼Q E h ∼Q h(x) × h (x) = 1 2 1 -E x∼D X E h∼Q h(x) × E h ∼Q h (x) = 1 2 1 -E x∼D X E h∼Q h(x) 2 (B.4) = 1 2 (1 -µ 2 (M D Q )) .
From above, we can easily deduce that 0 ≤ d D (Q) ≤ 1/2 as 0 ≤ µ 2 (M D Q ) ≤ 1. Therefore, the variance of the margin can be written as: 

Var(M D Q ) = Var
M Q (x, y) 2 = Var(M D Q ) µ 2 (M D Q ) -µ 1 (M D Q ) 2 + µ 1 (M D Q ) 2 = Var(M D Q ) µ 2 (M D Q ) = µ 2 (M D Q ) -µ 1 (M D Q ) 2 µ 2 (M D Q ) = 1 - µ 1 (M D Q ) 2 µ 2 (M D Q ) = 1 - 1 -2 R D (G Q ) 2 1 -2 d D (Q)

B.2 Proof of Change of measure inequality

We have The corollary is obtained with

E
F (p) = ln 1 (1 -p[1 -e -C ]) .

B.6 Proof of Small kl Bound

We apply Theorem 4. In this section, we present the proof of Lemma 5.1, inspired by the proof provided by Germain et al. [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF]. Firstly, we need to define the margin of the multiview weighted majority vote B ρ and its first and second statistical moments.

Definition C.1. Let M ρ is a random variable that outputs the margin of the multiview weighted majority vote on the example (x, y) drawn from distribution D, given by:

M ρ (x, y) = E v∼ρ E h∼Q v y h(x v ).
The first and second statistical moments of the margin are respectively given by Moreover, the risk of the multiview Gibbs classifier can be expressed thanks to the first statistical moment of the margin. Note that in the binary setting where y ∈ {-1, 1} and h : X → {-1, 1}, we have 1 [h(x v ) =y] = 1 2 (1y h(x v )), and therefore

R D (G ρ ) = E (x,y)∼D E v∼ρ E h∼Q v 1 [h(x v ) =y] = 1 2 1 -E (x,y)∼D E v∼ρ E h∼Q v y h(x v ) (C.3) = 1 2 (1 -µ 1 (M D ρ )) .
Similarly, the expected disagreement can be expressed thanks to the second statistical moment of the margin by

d MV D (ρ) = E x∼D X E v∼ρ E v ∼ρ E h∼Q v E h ∼Q v 1 [h(x v ) =h (x v )] = 1 2 1 -E x∼D X E v∼ρ E v ∼ρ E h∼Q v E h∼Q v h(x v ) × h (x v ) = 1 2 1 -E x∼D X E v∼ρ E h∼Q v h(x v ) × E v ∼ρ E h ∼Q v h (x v ) = 1 2 1 -E x∼D X E v∼ρ E h∼Q v h(x v ) 2 (C.4) = 1 2 (1 -µ 2 (M D ρ )) .
From above, we can easily deduce that 0 ≤ d MV D (ρ) ≤ 1/2 as 0 ≤ µ 2 (M D ρ ) ≤ 1. Therefore, the variance of the margin can be written as: ≥ m

Var(M D ρ ) = Var
E v∼ρ E h∼Q v D(R S (h), R D (h)) -E v∼ρ KL(Q v P v ) -KL(ρ π) ≥ m D E v∼ρ E h∼Q v R S (h), E v∼ρ E h∼Q v R D (h) -E v∼ρ KL(Q v P v ) -KL(ρ π),
where the last inequality is obtained by applying Jensen's inequality on the convex function D. By rearranging the terms, we have

D E v∼ρ E h∼Q v R S (h), E v∼ρ E h∼Q v R D (h) ≤ 1 m E v∼ρ KL(Q v P v ) + KL(ρ π) + ln 1 δ E S∼(D) m E v∼π E h∼P v e n D(R S (h),R D (h)) .
Finally, the theorem statement is obtained by rewriting 

C.3 Proof of Square Root Bound

To prove the above result, we apply Theorem 5. 

E S∼(D) m E v∼π E h v ∼P v e m D(R S (h v ),R D (h v )) ≤ E S∼(D) m E v∼π E h v ∼P v e m kl(R S (h v ),R D (h v )) = E v∼π E h v ∼P v E S∼(D) m R S (h v ) R D (h v ) mR S (h v ) 1 -R S (h v ) 1 -R D (h v ) m(1-R S (h v )) = E v∼π E h v ∼P v m k=0 Pr S∼(D) m R S (h v ) = k m k/m R D (h v ) k 1 -k/m 1 -R D (h v ) m-k = m k=0 m k k m k 1 - k m m-k ≤ 2 m .

C.4 Proof of Parametrized Bound

The result comes from Theorem 5.1 and Theorem 5. e mD(R S (h v ),R D (h v )) . We consider R S (h v ) as a random variable following a binomial distribution of m trials with a probability of success R(h v ). We have:

E S∼(D) m E v∼π E h v ∼P v e m D(R S (h v ),R D (h v )) = E S∼(D) m E v∼π E h∼P v e m F (R D (h v )-C m R S (h v )) = E S∼(D) m E v∼π E h v ∼P v e m F (R D (h v )) m k=0 Pr S∼(D) m R S (h v ) = k m e -C k = E S∼(D) m E v∼π E h v ∼P v e mF (R D (h v )) m k=0 m k R D (h v ) k (1-R D (h v )) m-k e -C k = E S∼(D) m E v∼π E h v ∼P v e mF (R D (h v )) R D (h v ) e -C + (1 -R D (h v )) m .
The corollary is obtained with

F (p) = ln 1 (1 -p[1 -e -C ])
.

C.5 Proof of Small kl Bound

The result follows from Theorem 5.1 and Theorem 5. . By considering R S (h v ) as a random variable which follows a binomial distribution of m trials with a probability of success R(h v ), we can prove:

E S∼(D) m E v∼π E h v ∼P v e m kl(R S (h v ),R D (h v )) = E v∼π E h v ∼P v E S∼(D) m R S (h v ) R D (h v ) mR S (h v ) 1 -R S (h v ) 1 -R D (h) m(1-R S (h v )) = E v∼π E h v ∼P v m k=0 Pr S∼(D) m R S (h v ) = k m k/m R D (h v ) k 1 -k/m 1 -R D (h v ) m-k = m k=0 m k k m k 1 - k m m-k = ξ(m).
where ξ(m) = Firstly, we can show that distribution q (t +1) is a simple function of previous distribution q (t ) q (t +1) = L F q 0 , V v=1

ρ (t +1) v M v (Q (t ) v + δ (t ) v ) = L F q 0 + V v=1 ρ (t +1) v M v Q (t ) v , V v=1 ρ (t +1) v M v δ (t ) v = L F q (t ) , V v=1 ρ (t +1) v M v δ (t ) v . (D.1)
From the definition of D F (p||q) and L F (q, r) given by equations (7.4) and (7.5) respectively, we can show that,

D F (0||L F (q, r)) -D F (0||q) ≤ m i =1
q i (e -r i -1). (D.2)

Let s i j v = sign (M v ) i j and from Equations (D.1) and (D.2), we have following

D F (0||q (t +1) ) -D F (0||q (t ) ) = D F 0 L F q (t ) , V v=1 ρ (t +1) v M v δ (t ) v -D F (0||q (t ) ) ≤ m i =1 q (t ) i exp V v=1 ρ (t +1) v n v j =1 δ (t ) v, j s i j v (M v ) i j -1 , ≤ m i =1 q (t ) i V v=1 ρ (t +1) v n v j =1
(M v ) i j e -δ (t ) v, j s i j v -1 , (D.3) by assuming ∀ j ∈ {1, . . . , n v }; W (t )± v, j = i :sign((M v ) i j )=±1 q (t ) i |(M v ) i j |, we have D F (0||q (t +1) ) -D F (0||q (t ) ) ≤ -

V v=1 ρ (t +1) v n v j =1 W (t )+ v, j e -δ (t )
v, j -W (t )- v, j e δ (t ) v, j -W (t )+ v, j + W (t )- v, j put ∀v ∈ V,∀j ∈ 1, . . . , n v ; δ (t ) v, j = 1 2 ln

W (t )+ v, j W (t )- v, j
, we have D F (0||q (t +1) ) -D F (0||q (t ) ) ≤ A (t ) ,

where 

A (t ) = - V v=1 ρ (t +1) v n v j =1 W (t )+ v, j -W (t )-
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Figure 1 . 1 :

 11 Figure 1.1: An example of (a) Supervised Learning (classification of cats and dogs) and (b) Unsupervised Learning (clustering of cats and dogs)

  any new example x drawn from the unknown distribution D and two classifiers are diverse if they make errors on different examples. If these conditions are satisfied then the reason for better performance of ensemble methods is that they try to decrease both variance and bias. Variance is the amount by which the prediction, over one training sample, differs from the expected value over all the training sample. Bias is the amount by which the expected classifier prediction differs from the true prediction of the training sample.Reducing Variance. We can learn different classifiers from a classifier space H having the same empirical risk on the training data. However, the learned classifiers can have different generalization guarantees. Therefore, instead of picking a single classifier we can combine the classifiers. The combination may not perform better than a single classifier but it will eliminate the risk of picking a bad single classifier. This scenario is illustrated by

Figure 2 .Figure 2 . 1 :

 221 Figure 2.1 (a). In the figure, {h 1 , . . . , h 4 } are single classifiers which has similar empirical risk but different generalization guarantees and h * is an optimal classifier in the terms of the true risk. By combining the four accurate classifiers, we can find a good approximation to h * .

Definition 2 . 4 .

 24 (Empirical Risk of the majority vote). For a given training sample S = {(x i , y i )} m i =1 consisting of m examples drawn from the unknown data distribution D, we define the empirical risk of the majority vote classifier as:

Figure 2 . 2 :

 22 Figure 2.2: Maximum-margin hyperplane for a binary SVM. Support vectors are marked with a green outline.

  m, where µ i are the Lagrange multipliers corresponding to each example in the training sample S. Training examples which have non-zero Lagrange multipliers are called as support vectors and they lie on two parallel hyperplanes 〈w, x〉 + b = 1 and 〈w, x〉 + b = -1 (see Figure 2.2 for illustration).

Figure 3 . 1 :

 31 Figure 3.1: Examples of multiview learning data: (a) Multilingual document classification, (b) Webpage classification based on both textual and image data, (c) Medical Imaging where each brain image is represented by its MRI and t-fMRI images and (d) Multimedia data which is combination of both video and audio signals.

Figure 3 . 2 :

 32 Figure 3.2: Classifier Combination approach to multiview learning

  X 1 and X 2 be m × d 1 and m × d 2 data matrices corresponding to each view v 1 and v 2 respectively. The goal of CCA is to find two projection vectors w 1 ∈ R d 1 and w 2 ∈ R d 2 such that the projected data on w 1 and w 2 have a maximum correlation, Corr defined as following:

  not scale well as for large training datasets the inversion of matrix C 11 in Equation (3.7) is tedious. CCA is a linear feature extraction algorithm and Akaho[START_REF] Akaho | A kernel method for canonical correlation analysis[END_REF] derived a kernel version of original CCA algorithm (KCCA) to handle non-linear data. The non-linear projections learned by KCCA are limited by the choice of a fixed kernel, Andrew et al.[START_REF] Andrew | Deep canonical correlation analysis[END_REF] proposed deep CCA approach using neural networks in order to learn more flexible representations.In contrast to CCA, which ignores label information of input examples, Diethe et al.[START_REF] Diethe | Multiview fisher discriminant analysis[END_REF] generalized Fisher's Discriminant analysis to find the projections for multiview data which takes into account the labels of examples.

Figure 3 . 3 :

 33 Figure 3.3: Co-training style algorithm: It iteratively learns two classifiers corresponding to each view of data. Then, the classifier on one view labels the unlabeled data for another view.

. 11 )

 11 Amini et al.[START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF] proposed a Rademacher analysis of the risk of above multiview majority vote classifier. The generalization bound is given by following theorem Theorem 3.1. (Generalization bound for MV-MV). Let D be an unknown distribution X × Y, for each view v ∈ V we consider a continuous hypothesis space H v , with probability of at least 1 -δ on the random choice of the learning sample S ∼ (D) m , we have:

4 THE

 4 PAC-BAYESIAN THEOREM AS AN EXPECTED RISK BOUNDThe PAC-Bayesian theory provides generalization guarantees for classifiers expressed as a weighted combination of voters. In this chapter, we derive a new kind of PAC-Bayesian generalization bounds which are expressed as expected risk bounds instead of probabilistic bound (presented in Section 2.3.2 of Chapter 2). Note that in this chapter, we are in single view setting and we present extension to multiview learning of Chapter 5. This work has been done in collaboration with Dr. Pascal Germain from INRIA, Lille, France. It has been accepted at CAp, 2017

Figure 4 . 1 :

 41 Figure 4.1: The PAC-Bayesian theory assumes a prior distribution P (in blue) over the hypothesis space H and aims at learning -from the learning sample S -a posterior distribution Q (in red).

  among classifiers is known to be important[START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF][START_REF] Atrey | Multimodal fusion for multimedia analysis: a survey[END_REF][START_REF] Kuncheva | Combining Pattern Classifiers: Methods and Algorithms[END_REF][START_REF] Maillard | Complexity versus agreement for many views[END_REF][START_REF] Sun | PAC-Bayes analysis of multi-view learning[END_REF], Equations (4.2) and (4.3) directly capture the trade-off between diversity and accuracy. Indeed, d D (Q) involves the diversity between classifiers, while e D (Q) takes into account the errors. Note that the principle of controlling the trade-off between diversity and accuracy through the C-bound of Equation (4.2) (also Section 2.4.3 of Chapter 2) has been exploited by Roy et al.[START_REF] Roy | From pac-bayes bounds to quadratic programs for majority votes[END_REF][START_REF] Roy | A column generation bound minimization approach with PAC-Bayesian generalization guarantees[END_REF] andMorvant et al. 

Lemma 4 . 1 .

 41 For any hypothesis space H, for any prior P and any posterior Q on H, and for any measurable function φ : H → R, we haveE h∼Q φ(h) ≤ KL(Q P ) + ln E h∼P e φ(h) .Proof. Deferred to Appendix B.2Based on Lemma 4.1, the following theorem can be seen as a general PAC-Bayesian theorem which takes the form of a probabilistic bound (we recalled its one form in Theorem 2.34.3. A NEW PAC-BAYESIAN THEOREM AS AN EXPECTED RISK BOUNDin Chapter 2). Concretely, with a high probability over the random choice of the learning sample, it upper-bounds the "deviation" between the true and empirical risks of the Gibbs classifier uniformly for all distribution Q, according to a convex function D : [0, 1]×[0, 1]→R.

Theorem 4 . 1 (

 41 Germain et al.[START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF][START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF]). For any distribution D on X ×Y, for any set of voters H, for any prior distribution P on H, for any δ∈(0, 1], for any convex function D : [0, 1]×[0, 1]→R, with a probability at least 1-δ over the random choice of S ∼(D) m , we have for all posterior distribution Q on H:

  2 below is a tool to upperbound E S∼D m R D (G Q S )-where Q S is the posterior distribution outputted after observing the learning sample S-while PAC-Bayes usually bounds R D (G Q ) uniformly for all distribution Q, but with high probability over the random choice of learning sample S ∼ (D) m . Since by definition posterior distributions are data dependent, this different point of view on PAC-Bayesian analysis has the advantage to involve an expectation over all the possible learning samples (of a given size m) in bounds itself.

Theorem 4 . 2 .

 42 For any distribution D on X × Y, for any set of voters H, for any prior distribution P on H, for any convex function D :

Theorem 4 . 3 .

 43 .2) involves the expected disagreement d D (Q), we also derive below the expected bound that upper-bounds the deviation between E S∼(D) m d S (Q S ) and E S∼(D) m d D (Q S ) under a convex function D. Theorem 4.3 can be seen as the expectation version of probabilistic bounds over d S (Q S ) proposed in[START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF][START_REF] Lacasse | PAC-Bayes bounds for the risk of the majority vote and the variance of the Gibbs classifier[END_REF]. For any distribution D on X × Y, for any set of voters H, for any prior distribution P on H, for any convex function D :

Figure 5 . 1 :

 51 Figure 5.1: Example of the multiview distributions hierarchy with 3 views. For all views v ∈ {1, 2, 3}, we have a set of n v voters H v = {h 1 v , . . . , h n v

Lemma 5 . 1 .

 51 ρ) , where d MV S (ρ) and e MV S (ρ) are respectively the empirical estimations of d MV D (ρ) and e MV D (ρ) on the learning sample S. As in the single-view PAC-Bayesian setting, the multiview weighted majority vote B MV ρ is closely related to this stochastic multiview Gibbs classifier G MV ρ , and a generalization bound for G MV ρ gives rise to a generalization bound for B MV ρ . Indeed, it is easy to show that R D (B MV ρ ) ≤ 2R D (G MV ρ ), meaning that an upper bound over R D (G MV ρ ) gives an upper bound for the majority vote. Moreover the C-Bound of Equation (4.2) can be extended to our multiview setting by Lemma 5.1 below. Equation (5.4) is a straightforward generalization of the single-view C-bound of Equation (4.2). Afterward, Equation (5.5) is a looser version obtained by rewriting R D (G MV ρ ) as the ρ-average of the risk associated to each view, and lower-bounding d MV D (ρ) by the ρ-average of the disagreement associated to each view. Let V ≥ 2 be the number of views. For all posterior {Q v } V v=1 distributions over {H v } V v=1 and hyper-posterior ρ distributions on views

Theorem 5 . 1 (

 51 Probabilistic bound for Multiview Learning). Let V ≥ 2 be the number of views. For any distribution D on X × Y, for any set of prior distributions {P v } V v=1 over {H v } V v=1 , for any hyper-prior distributions π over V, for any convex function D : [0, 1] × [0, 1] → R, for any δ ∈ (0, 1], with a probability at least 1 -δ over the random choice of S ∼ (D) m , for all posterior

Theorem 5 . 2 (

 52 Expected Risk Bound for Multiview Learning). Let V ≥ 2 be the number of views. For any distribution D on X × Y, for any set of prior distributions {P v } V v=1 , for any hyper-prior distribution π over V, for any convex function D : [0, 1] × [0, 1] → R, we have D 1 2

  3): R S (G MV ρ S ) = 1 2 d MV S (ρ S ) + e MV S (ρ S ). It is interesting to compare this generalization bound to Theorem 4.1 (and Theorem 4.2). The main difference relies on the introduction of view-specific prior and posterior distributions, which mainly leads to an additional term E v∼ρ KL(Q v P v ) and E S∼(D) m E v∼ρ S KL(Q v,S P v ) , expressed as the expectation of the view-specific Kullback-Leibler divergence term over the views V according to the hyper-posterior distribution ρ. This additional term captures the deviation between the view-specific posterior and prior distributions over all the views.

. 4 )Theorem 5 . 3 .

 453 involves the expected disagreement d MV D (ρ), we also derive below the probabilistic and expected bounds that upper-bounds the deviation between d MV S (ρ) and d MV D (ρ) under a convex function D. Theorem 5.3 can be seen as the of probabilistic and expected bounds over d MV S (ρ) proposed by [35, 51]. Let V ≥ 2 be the number of views. For any distribution D on X × Y, for any set of prior distributions {P v } V v=1 , for any hyper-prior distribution π over V, for any convex function D : [0, 1] × [0, 1] → R, we have

Corollary 5 . 3 .

 53 2 with: D(a, b) = kl(a, b) = a ln a b + (1a) ln 1a 1b . Let V ≥ 2 be the number of views. For any distribution D on X × Y, for any set of prior distributions {P v } V v=1 over {H} V v=1 , for any hyper-prior distributions π over views V,

. 5 )Theorem 5 . 4 .

 554 can be very useful for tackling multiview learning. The next theorem is a generalization bound that justify the empirical minimization of the multiview C-bound (we use in our algorithm PB-MVBoost derived in Section 6.2 of Chapter 6). Let V ≥ 2 be the number of views. For any distribution D on X × Y, for any set of prior distributions {P v } V v=1 over {H} V v=1 , for any hyper-prior distributions π over views V, and for any convex function D : [0, 1] × [0, 1] → R, with a probability at least 1 -δ over the random choice of S ∼ (D) m for all posterior {Q v } v v=1 and hyper-posterior ρ distributions, we have:

6 MULTIVIEW

 6 BOOSTING ALGORITHM BASED ON THE MULTIVIEWC-BOUNDIn this chapter, we design a boosting based multiview learning algorithm based on two-level hierarchical strategy presented in Chapter 5, referred as PB-MVBoost. It iteratively learns i) weights over view-specific voters capturing view-specific information, and ii) weights over views by optimizing a PAC-Bayesian multiview C-Bound (Equation (5.5) of Lemma 5.1) that takes into account the accuracy of the view-specific voters and the diversity between the views. Moreover, we derive another two-step multiview algorithm based on late fusion [79] strategy. It learns view-specific voters at the base level of hierarchy and then learn a multiview model over the predictions of the view-specific voters using PAC-Bayesian algorithm CqBoost (Algorithm 2 in Chapter 2). Different experiments on three publicly available datasets show the efficiency of the proposed approaches with respect to stateof-art models. This work has been done in collaboration with Dr. Pascal Germain from INRIA, Lille, France. It has been published in the proceedings of ECML-PKDD, 2017 [41] and submitted to Neurocomputing Journal.

Figure 6 . 1 :

 61 Figure 6.1: Example of the multiview distributions hierarchy with 3 views. For all views

  2 of Chapter 5. For a given training set S = {(x i , y i ), . . . , (x m , y m )} ∈ (X × {-1, +1}) m of size m; our proposed algorithm (Algorithm 5) maintains a distribution over the examples which is initialized as the uniform distribution. Then at each iteration t , V view-specific weak classifiers are learned according to the current distribution D t (Step 5), and their corresponding errors t v are estimated (Step 6).

in Chapters 3 and 5 .

 5 In Section 6.4, we empirically show that our algorithm minimizes the multiview C-Bound over the iterations of the algorithm (this is theoretically justified by the generalization bound of Theorem 5.4). Finally, we update the distribution over training examples x i (Step 9), by following the Adaboost algorithm and in a way that the weights of misclassified (resp. well classified) examples by the final weigthed majority classifier increase (resp. decrease).

(a) MNIST 1 (Figure 6 . 2 :

 162 Figure 6.2: Evolution of accuracy with respect to the number of labeled examples in the initial labeled training sets on MNIST 1 , MNIST 2 and Reuters datasets.

(a) MNIST 1 (Figure 6 . 3 :

 163 Figure 6.3: Evolution of F 1 -measure with respect to the number of labeled examples in the initial labeled training sets on MNIST 1 , MNIST 2 and Reuters datasets.

2 :D 1 (x i ) ← 1 m 3 :

 2113 for t = 1, . . . , T do 4:

2 and Figure 6 . 3 ,Figure 6 . 4 :Figure 6 . 5

 636465 Figure 6.4: Comparison between Fusion all Cq and PB-MVBoost in terms Accuracy (a), F1-Measure (b) and Time Complexity (c) for m = 500

(a) MNIST 1 (Figure 6 . 5 :

 165 Figure 6.5: Plots for classification accuracy and F1-measure on training and test data; and empirical multiview C-Bound on training data over the iterations for all datasets with m = 500. 81

jv:

  X v → {-1, +1} | j ∈ {1, . . . , n v }}, where n v is number of view-specific weak classifiers. We aim at learning a two-level encompassed weighted majority vote classifier where at the first level a weighted majority vote is build for each view v∈V over the associated set of weak classifiers H v , and the final classifier, referred to as the Multiview double ωeighted Majority vote Classifier (MωMvC 2 ), is a weighted majority vote over the previous view-specific majority vote classifiers (see Figure7.1 for an illustration). Given a training set S={(x i , y i )} m i =1 of size m drawn i.i.d. with respect to a fixed, yet unknown, distributionD over (X 1 × • • • ×X V )×Y, the learning objective is to train the weak view-specific classifiers (H v ) 1≤v≤V and to choose two sets of weights;

  specific classifiers are trained independently over different views using 60% of the training examples. A final multiview model is then trained over the predictions of the view-specific classifiers using the rest of the training examples.

Figure 7 . 1 (Figure 7 . 2 :

 7172 Figure 7.2 and Figure 7.3 illustrates this by showing the evolution of the accuracy and the

(a) MNIST 1 (Figure 7 . 3 :

 173 Figure 7.3: Evolution of F 1 -measure w.r.t the number of labeled examples in the initial labeled training sets on MNIST 1 , MNIST 2 and Reuters datasets.

Figure 7 . 4 :

 74 Figure 7.4: Comparison between MωMvC 2 , Fusion all Cq and PB-MVBoost in terms of (a) Accuracy , (b) F1-Measure and (c) Time Complexity for m = 500.

  F 1 -score on three datasets in the situation where few initial labeled training documents are available. It also comes out that compared to the uniform combination of view-specific classifiers, the learning of weights allows to better capture the strengths of different views. Moreover, we show that this new algorithm is computationally much faster than our previous algorithms (Fusion all Cq and PB-MVBoost) based on PAC-Bayesian theory. a posterior distribution over the view-specific voters, and ii) we consider a hyper-prior distribution and learn a hyper-posterior distribution over the views. Based on this strategy, we derived PAC-Bayesian generalization bounds (both probabilistic and expected risk bounds) for multiview learning. Our generalization bounds include a notion of disagreement between all the voters and the views which allowed us to take into account the diversity between them which is known to be a key element in multiview learning. Note that, compared to PAC-Bayesian analysis of Sun et al.[START_REF] Sun | PAC-Bayes analysis of multi-view learning[END_REF] we are interested in more natural case of multiview learning with more than two views. Moreover, Amini et al.[START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF] derived a generalization bounds based on Rademacher complexity for the risk of multiview majority vote over the view-specific classifiers where the distribution over the views is restricted to the uniform distribution (not in our case). Additionally, we derived the generalization bound for the multiview C-bound which we use to design a boosting based algorithm for multiview learning.From practical point of view, we designed two multiview learning algorithms based on our two-level PAC-Bayesian strategy. The first algorithm is a one-step boosting based multiview learning algorithm called as PB-MVBoost. It iteratively learns the weights over the view-specific classifiers (in order to capture the view-specific informations) and the weights over the views by optimizing the multiview C-Bound which controls the trade-off between the accuracy and the diversity between the views. The second algorithm is based on late fusion approach (referred as Fusion all

4 B. 1

 41 available view-specific training examples and adapt the distribution over the learning sam-Proof of C-bound

2 . (B. 2 ) 1 2 ( 1 -

 2211 According to this definition, the risk of the weighted majority vote can be rewritten as follows:R D (B Q ) = Pr (x,y)∼D M Q (x, y) ≤ 0 .Moreover, the risk of the Gibbs classifier can be expressed thanks to the first statistical moment of the margin. Note that in the binary setting where y ∈ {-1, 1} and h : X → {-1, 1}, we have 1 [h(x) =y] = y h(x)), and thereforeR D (G Q ) = E

  (x,y)∼D (M Q (x, y)) = µ 2 (M D Q ) -(µ 1 (M D Q )) 2 . (B.5)The proof of the C-bound Proof. By making use of one-sided Chebyshev inequality (Theorem A.3 of A), with X = -M Q (x, y), µ = E (x,y)∼D (M Q (x, y)) and a = E (x,y)∼D M Q (x, y), we have R D (B Q ) = Pr (x,y)∼D M Q (x, y) ≤ 0 = Pr (x,y)∼D -M Q (x, y) + E (x,y)∼D M Q (x, y) ≥ E (x,y)∼D M Q (x, y) ≤ Var (x,y)∼D (M Q (x,y)) Var (x,y)∼D (M Q (x, y)) + E (x,y)∼D

1 mB. 4 B. 5

 145 h∼P e m D(R S (h),R D (h)) is a non-negative random variable. Using Markov's inequality (Theorem A.1 in Appendix A), with δ ∈ (0, 1], and a probability at least 1 -δ over the random choice of the learning sample S ∼ (D) m , we haveE h∼P e m D(R S (h),R D (h)) ≤ 1 δ E S∼(D) m E h∼P e m D(R S (h),R D (h))By taking the logarithm on both sides, with a probability at least 1-δ over S ∼ (D) m , we have lnE h∼P e m D(R S (h),R D (h)) ≤ ln 1 δ E S∼(D) m E h∼P e m D(R S (h),R D (h))We now apply Lemma 4.1 on the left-hand side of the above inequality withφ(h) = m D (R S (h), R D (h)).Therefore, for any Q on H with a probability at least 1 -δ over S ∼ (D) m , we have lnE h∼P e m D(R S (h),R D (h)) ≥ m E h∼Q D(R S (h), R D (h)) -K L(Q||P ) ≥ mD( E h∼Q R S (h), E h∼Q R D (h)) -K L(Q||P )where the last inequality is obtained by applying Jensen's inequality (Theorem A.2 in Appendix A) on the convex function D. By rearranging the terms we haveD R S (G Q ), R D (G Q ) ≤ KL(Q P )+ln 1 δ E S∼(D) m E h∼P e m D(R S (h),R D (h)) Proof of Square Root BoundWe apply Theorem 4.2 with D(a, b)=2(a-b) 2 . Then, we upper-bound E S∼(D) m E h∼P e m D(R S (h),R D (h)) . By considering R S (h) as a random variable following a binomial distribution of m trials with a prob. of success R(h), we have B.5. PROOF OF PARAMETRIZED BOUND E S∼(D) m E h∼P e m D(R S (h),R D (h)) ≤ E S∼(D) m E h∼P e m kl(R S (h),R D (h)) Proof of Parametrized Bound The result comes from Theorem 4.2 by taking D(a, b) = F -C a , for a convex function F and C > 0, and upper-bounding E S∼(D) m E h∼P e m D(R S (h),R D (h)) . We consider R S (h) as a random variable following a binomial distribution of m trials with a prob. of success R(h). We have E S∼(D) m E h∼P e m D(R S (h),R D (h)) = E S∼(D) m E h∼P e m F (R D (h)-C m R S (h)) (h) k (1 -R D (h)) m-k e -C k = E S∼(D) m E h∼P e mF (R D (h)) R D (h) e -C + (1 -R D (h)) m .

5 C. 1

 51 2 with D(a, b) ≤ kl(a, b). Then, we upper-bound E S∼(D) m E h∼P e m D(R S (h),R D (h)). By considering R S (h) as a random variable following a binomial distribution of m trials with a prob. of success R(h), we haveE S∼(D) m E h∼P e m D(R S (h),R D (h)) ≤ E S∼(D) m E h∼P e m kl(R S (h),R D (h)) Proof of C-Bound for Multiview Learning

2 )

 2 According to this definition, the risk of the multiview weighted majority vote can be rewritten as follows:R D (B MV ρ ) = P (x,y)∼D M ρ (x, y) ≤ 0 .

  (x,y)∼D (M ρ (x, y))= µ 2 (M D ρ ) -(µ 1 (M D ρ )) 2 . R S (h),R D (h)) is a non-negative random variable. Using Markov's inequality (Theorem A.1), with δ ∈ (0, 1], and a probability at least 1 -δ over the random choice of the multiview learning sample S ∼ (D) m , we haveE R S (h),R D (h)) .By taking the logarithm on both sides, with a probability at least 1-δ over S ∼ (D) m , we have lnE v∼π E h∼P v e m D(R S (h),R D (h)) ≤ ln 1 δ E S∼(D) m E v∼π E h∼P v e mD(R S (h),R D (h)) .(C.6)We now apply Lemma 5.2 on the left-hand side of the Inequality (C.6) with φ(h) = m D(R S (h), R D (h)).Therefore, for any Q v on H v for all views v ∈ V, and for any ρ on views V, with a probability at least 1 -δ over S ∼ (D) m , we have ln E v∼π E h∼P v e m D(R S (h),R D (h))

R

  D (h) = R D (G MV ρ ). and from Equation (4.3): R S (G MV ρ ) = 1 2 d MV S (ρ) + e MV S (ρ).

  1 and Theorem 5.2 with D(a, b) = 2(ab) 2 .Then, we upper-boundE S∼(D) m E v∼π E h v ∼P v e m D(R S (h v ),R D (h v )). According to Pinsker's inequality, we haveD(a, b) ≤ kl(a, b) = a ln a b + (1a) ln 1a 1b . 114 C.4. PROOF OF PARAMETRIZED BOUNDBy considering R S (h) as a random variable which follows a binomial distribution of m trials with a probability of success R(h), we obtain

  2 by taking D(a, b) = F (b) -C a, for a convex F and C > 0, and by upper-boundingE S∼(D) m E v∼π E h v ∼P v

  2 by taking D(a, b) = kl(a, b), and upperboundingE S∼(D) m E v∼π E h v ∼P v e m kl(R S (h v ),R D (h v ))

v, j 2 . 4 )

 24 Equation (D.3) uses the fact that, for any z j v 's, for ρ v ≥ 0 with v ρ v ≤ 1 and for p j v is obtained using the Jensen's inequality applied to convex function exponential.
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  Therefore, we can define 2 m different classification problems with m data points. If for any of these classification problems, we can find h ∈ H that separates the two classes with a zero empirical error, then we say H shatters m points. The maximum number of data points that can be shattered by any hypothesis space H is the VC-dimension of H. For example, the VC-dimension for linear classifiers is d + 1, where d is the dimension of the hypothesis space H. It helps us to measure the complexity of the hypothesis space or in other words the learning capacity of the hypothesis space. Using this notion of calculating the learning capacity of a hypothesis space, Vapnik & Chervonenkis[START_REF] Vapnik | On the uniform convergence of relative frequencies of events to their probabilities[END_REF] derived following generalization

bound: Theorem 2.1. (Generalization bound based on the VC-dimension). Let D be an unknown distribution on X × Y, let H be a continuous hypothesis space with VC-dimension V C (H).

For any h ∈ H, with probability of at least 1 -δ on the random choice of the learning sample S ∼ (D) m , we have:

  PAC-Bayesian theory, introduced by McAllester[START_REF] Mcallester | Some PAC-Bayesian theorems[END_REF], is a tool to derive theoretical guarantees for models that take the form of a majority vote over the hypothesis space H

	(defined as in Equation (2.8)). The PAC-Bayesian theory assumes a prior distribution P over
	the set of classifiers from hypothesis space H, aims at learning -from the learning sample
	S -a posterior distribution Q that leads to a well-performing weighted majority vote B Q
	i.e with a low true risk. The following theorem is the PAC-Bayesian generalization bound
	proposed by McAllester [58]:
	Theorem 2.3. (The PAC-Bayesian Theorem [58]) For any distribution D over X × Y, for any
	hypothesis space H, for any prior distribution P over H, for any δ ∈ (0, 1], with a probability
	of at least 1 -δ over the learning sample S ∼ (D) m , we have for all posterior distributions Q
	over H:

  Note that the C-Bound has led to another algorithm MinCq[START_REF] Roy | From pac-bayes bounds to quadratic programs for majority votes[END_REF].

	to transform the above optimization problem to a dual optimization
	problem:							
	argmin α,β,ν	m 4	α α +	β 2	1 α +	β 2 4	+ βµ + ν,	(2.15)
	s.t . H diag(y)α ≤ ν1, β ≥ 0,		
	where, α, β and ν are Lagrange multipliers. A column generation based algorithm CqBoost
	[73] (see Algorithm 2) is designed based on above optimization problem. At each iteration t ,
	the algorithm selects a new column from matrix H which is added to the problem. Finally,
	it solves the primal or dual problem of original problem. It stops when no more column
	violates the dual constraint.							

  For any distribution D on X × Y, for any set of voters H, for any prior distribution P on H, we have:

1 the specialization of Theorem 4.2 to the McAllester [58]'s point of view. Corollary 4.1.

Table 6 .

 6 10, 000 of images as test samples and remaining as training samples.

	Class	zero one	two	three four
	# Images 6903 7877 6990	7141	6824
	Class	five six seven eight nine
	# Images 6313 6876 7293	6825	6958

1: Number of images per class in MNIST.

Table 6 .

 6 2. We reserve 30% of documents as test samples and remaining as training data.

	Language # Docs	Class # Docs
	English	18,758	C15	18,816
	French	26,648	CCAT 21,426
	German	29,953	E21	13,701
	Italian	24,039	ECAT 19,198
	Spanish	12,342	GCAT 19,178
	Total	111,740	M11	19,421

Table 6 .

 6 

2: Number of documents per language (left) and per class (right) in Reuters RCV1/RCV2 corpus.

  .1: Illustration of MωMvC 2 with V =3. For all views v ∈ {1, 2, 3}, we have a set of viewspecific weak classifiers (H v ) 1≤v≤V that are learned over a multiview training set. The objective is then to learn the weights Q (red histograms) associated to (H v ) 1≤v≤V ; and the weights ρ (orange histograms) associated to weighted majority vote classifiers such that the multiview weighted majority vote classifier B ρ (Equation7.1) will have the smallest possible generalization error.where 1 p is equal to 1 if the predicate p is true, and 0 otherwise. As this loss function is non-continuous and non-differentiable, it is typically replaced by an appropriate convex and differentiable proxy. Here, we replace 1 z≤0 by the logistic upper bound a log(1 + e -z ), with a=(log 2) -1 . The misclassification cost becomes

Table 7 .

 7 1: Test classification accuracy and F 1 -score of different approaches averaged over all the classes and over 20 random sets of m = 100 labeled examples per training set. Along each column, the best result is in bold, and second one in italic. ↓ indicates that a result is statistically significantly worse than the best result, according to a Wilcoxon rank sum test with p < 0.02. Mono v .8369 ± .002 ↓ .5206 ± .003 ↓ .8540 ± .003 ↓ .5523 ± .004 ↓ .7651 ± .005 ↓ .5276 ± .005 ↓ Concat .8708 ± .005 ↓ .5851 ± .011 ↓ .8719 ± .004 ↓ .5866 ± .010 ↓ .7661 ± .009 ↓ .5298 ± .008 ↓ Fusion .8708 ± .005 ↓ .5851 ± .010 ↓ .9029 ± .009 ↓ .6559 ± .018 ↓ .7926 ± .013 ↓ .5533 ± .015 ↓ MVMLsp .7783 ± .041 ↓ .4185 ± .051 ↓ .7766 ± .062 ↓ .4813 ± .067 ↓ .6241 ± .032 ↓ .3488 ± .045 ↓ Aggreg L .8956 ± .003 ↓ .6404 ± .005 ↓ .9045 ± .004 ↓ .6627 ± .009 ↓ .8179 ± .007 ↓ .6083 ± .007 ↓ MVWAB .9175 ± .003 ↓ .7011 ± .009 ↓ .9038 ± .003 ↓ .6838 ± .008 ↓ .8147 ± .007 ↓ .6045 ± .009 ↓ rBoost.SH .7950 ± .006 ↓ .4652 ± .006 ↓ .8762 ± .004 ↓ .6089 ± .007 ↓ .8200 ± .007 .6164 ± .007 ↓

	Strategy	MNIST 1 Accuracy	F 1	MNIST 2 Accuracy	F 1	Reuters Accuracy	F 1
	MωMvC 2						

.9260 ± .004 .7122 ± .010 .9169 ± .005 .6977 ± .012 .8269 ± .013 .6280 ± .010

Table 7 .

 7 1 reports the results obtained for m=500 training examples by different methods averaged over all classes and the 20 test results obtained over 20 random experiments

There exists other learning paradigms, such as semi-supervised learning[START_REF]Semi-Supervised Learning[END_REF], transfer learning[START_REF] Pan | A survey on transfer learning[END_REF],reinforcement learning[START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF], etc.

Note that there exists other learning paradigms, such as unsupervised learning[START_REF] Ghahramani | Unsupervised learning[END_REF], semi-supervised learning[START_REF]Semi-Supervised Learning[END_REF], transfer learning[START_REF] Pan | A survey on transfer learning[END_REF], reinforcement learning[START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF], etc.

Note that the majority vote setting is not too restrictive since many machine learning approaches can be considered as majority vote learning, notably ensemble methods[START_REF] Dietterich | Ensemble methods in machine learning[END_REF][START_REF] Valentini | Ensemble methods: a review[END_REF] (as pointed out in Section

2.3 inChapter 2).[START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF] For example, the voters expected to be most accurate for the task can have the largest weights under P .

When one has no priori information, one usually use P as uniform distribution as shown in Figure

4.1. 

Our notion of hyper-prior and hyper-posterior distributions is different than the one proposed for lifelong learning[START_REF] Lampert | A PAC-Bayesian bound for lifelong learning[END_REF], where they basically consider hyper-prior and hyper-posterior over the set of possible priors: The prior distribution P over the voters' set is viewed as a random variable, which is not the case in this thesis.

https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual, +Multiview+Text+Categorization+Test+collection

Note that, the experimental protocol in Chapter 6 is different from this one. In Chapter 6, we kept the original distribution of classes whereas in this chapter we reduce the imbalance by subsampling.

We used the Python code available from https://lives.lif.univ-mrs.fr/?page_id=12

Note that, based on Nyström parameter, this algorithm uses the part of learning sample while training.

We also did experiments for Mono v , Concat, Fusion, MV-MV using Adaboost. The performance of Adaboost for these baselines is similar to that of decision trees.
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between the view-specific classifiers or the views is a key element in multiview learning [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF][START_REF] Chapelle | Semi-Supervised Learning[END_REF][START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF][START_REF] Kuncheva | Combining Pattern Classifiers: Methods and Algorithms[END_REF][START_REF] Maillard | Complexity versus agreement for many views[END_REF][START_REF] Morvant | Majority vote of diverse classifiers for late fusion[END_REF] (as discussed in Chapters 3 and 5). Therefore, to learn the weights over the views, we minimize an upper-bound on the error of the majority vote using the multiview C-bound [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF][START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF][START_REF] Roy | A column generation bound minimization approach with PAC-Bayesian generalization guarantees[END_REF] (proposed in Lemma 5.1), allowing us to control a trade-off between accuracy and diversity. Concretely, at each iteration of our multiview algorithm, we learn i) weights over view-specific voters based on their ability to deal with examples on the corresponding view (capturing view-specific informations); and ii) weights over views by minimizing the multiview C-bound. Second algorithm is a two-step learning algorithm Fusion all Cq [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF] based on the PAC-Bayesian theory. It learns the view-specific voters at the base level of hierarchy. Finally, at second level, we combine the predictions of view-specific voters using a PAC-Bayesian algorithm CqBoost [START_REF] Roy | A column generation bound minimization approach with PAC-Bayesian generalization guarantees[END_REF] (Algorithm 2 in Chapter 2) which captures both accuracy and diversity between view-specific voters.

In order to show the potential of our algorithms, we empirically evaluate our approach on MNIST 1 , MNIST 2 [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] and Reuters RCV1/RCV2 collections [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF]. We observe that our algorithm PB-MVBoost, empirically minimizes the multiview C-Bound over iterations, and lead to good performances even when the classes are unbalanced. We compare PB-MVBoost with our two-step learning algorithm Fusion all Cq and it came out that PB-MVBoost is more stable algorithm across different datasets and computationally faster than Fusion all Cq .

In the next section, we derive our multiview learning algorithm PB-MVBoost. In Section 6.3, we discuss the relation between our algorithm with previous works. Before concluding in Section 6.5, we experiment our algorithms in Section 6.4.

PB-MVBoost

Following our two-level hierarchical strategy (see Figure 6.1), we aim at combining the view-specific voters (or views) leading to a well performing multiview majority vote given by Equation (5.1). Boosting [START_REF] Schapire | The Boosting Approach to Machine Learning: An Overview[END_REF] (presented in Sections 2.3 and 2.4.2 of Chapter 2) is a well known approach which aims at combining a set of weak voters in order to build a more efficient classifier than each of the view-specific classifiers alone. Typically, boosting algorithms repeatedly learn a "weak" voter using a learning algorithm with different probability distribution over the learning sample S. Finally, it combines all the weak voters in order to have one single strong classifier expressed as a majority vote which performs better than the individual weak voters. We exploit boosting paradigm to derive a multiview learning [START_REF] Snoek | Early versus late fusion in semantic video analysis[END_REF]. We call this algorithm Fusion all Cq [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF]. Concretely, at first level, we learn different view-specific linear SVM models (recalled in Section 2.4.1 of Chapter 2) with different hyperparameter C values (12 values between 10 -8 and 10 3 ). Finally, at the second level, we learn a weighted combination over the predictions of view-specific voters using PAC-Bayesian algorithm CqBoost [START_REF] Roy | A column generation bound minimization approach with PAC-Bayesian generalization guarantees[END_REF] (recalled in Section 2.4.3 of Chapter 2) with a RBF kernel. Note that, CqBoost tends to minimize the PAC-Bayesian C-Bound [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF] controlling the trade-off between accuracy and disagreement between voters. The hyperparameter γ of the RBF kernel (presented in Section 2.4.1 of Chapter 2 ) is chosen over a set of 9 values between 10 -6 and 10 2 ; and hyperparameter µ of Fusion all Cq is chosen over a set of 8 values between 10 -8 and 10 -1 . To study the potential of our algorithms (Fusion all Cq and PB-MVBoost), we considered following 7 baseline approaches:

• Mono v : We learn a view-specific model for each view using a decision tree classifier and report the results of the best performing view.

• Concat: We learn one model using a decision tree classifier by concatenating features of all the views.

• Fusion dt : This is a late fusion approach where we first learn the view-specific classifiers using 60% of learning sample Then, we learn a final multiview weighted model over the predictions of the view-specific classifiers. For this approach, we used decision tree classifier at both levels of learning.

A note on the Complexity of PB-MVBoost

The complexity of learning decision tree classifiers is O(d ml og (m)), where d is depth of decision tree. We learn the weights over the views by optimizing Equation (5.5) (Step 8 of our algorithm) using SLSQP method which has time complexity of O(V 3 ). Therefore, the overall

. Note that it is easy to parallelize our algorithm: by using V different machines, we can learn the view-specific classifiers and weights over them (Steps 4 to 7).

Conclusion

We propose a boosting-based learning algorithm, called as PB-MVBoost. At each iteration of the algorithm, we learn the weights over the view-specific voters and the weights over the views by optimizing an upper-bound over the risk of the majority vote (the multiview C-Bound) that has the advantage to allow to control a trade-off between accuracy and the diversity between the views. The empirical evaluation shows that PB-MVBoost leads to good performances and confirms that our two-level PAC-Bayesian strategy is indeed a nice way to tackle multiview learning. Moreover, we compare the effect of maintaining separate distributions over learning sample for each view; single global distribution over views; and single global distribution along with learning weights over views on results of multiview learning. We show that by maintaining a single global distribution over learning sample for all the views and learning the weights over the views is effective way to deal with multiview learning. In this way, we are able to capture the view-specific informations and control the diversity between the views. Moreover, we proposed a two-step learning algorithm

Fusion all

Cq which is based on PAC-Bayesian theory. Finally, we experimentally show that PB-MVBoost is more stable and computationally faster than Fusion all Cq . In the next chapter, we show that the empirical risk minimization of the multiview majority vote is equivalent to the minimization of Bregman divergences. This allowed us to derive a parallel-update optimization algorithm for multiview learning.

C H A P T E R 7 MULTIVIEW LEARNING AS BREGMAN DISTANCE OPTIMIZATION

In this chapter, we derive a multiview learning algorithm where we jointly learns viewspecific weighted majority vote classifiers (i.e. for each view) over a set of base voters, and a second weighted majority vote classifier over the set of these view-specific weighted majority vote classifiers. We show that the empirical risk minimization of the final majority vote given a multiview training set can be cast as the minimization of Bregman divergences. This allows us to derive a parallel-update optimization algorithm for learning our multiview model.

We empirically study our algorithm with a particular focus on the impact of the training set size on the multiview learning results. The experiments show that our approach is able to overcome the lack of labeled information. It has been accepted at CAp, 2018 [START_REF] Goyal | Apprentissage d'un vote de majorité hiérarchique pour l'apprentissage multivue[END_REF] and published in the proceedings of IDA, 2018 [START_REF] Goyal | Multiview Learning of Weighted Majority Vote by Bregman Divergence Minimization[END_REF].

Introduction

In this chapter, we propose a multiview Boosting-based algorithm, called MωMvC 2 , for the general case where observations are described by more than two views. Our algorithm combines previously learned view-specific classifiers as in [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF] but with the difference that it jointly learns two sets of weights for, first, combining view-specific weak classifiers; and then combining the obtained view-specific weighted majority vote classifiers to get a final weighted majority vote classifier. We show that the minimization of the classification error over a multiview training set can be cast as the minimization of Bregman divergences allowing the development of an efficient parallel update scheme to learn the weights. Using a

An Iterative Parallel update Algorithm to Learn MωMvC 2

In this section, we first show how the minimization of the surrogate loss of Equation (7.2) is equivalent to the minimization of a given Bregman divergence (Definition 7.1). Then, this equivalence allows us to employ a parallel-update optimization algorithm to learn the weights Q=(Q v ) 1≤v≤V and ρ leading to this minimization.

Bregman-divergence optimization

We first recall the definition of a Bregman divergence [START_REF] Bregman | The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming[END_REF][START_REF] Lafferty | Additive models, boosting, and inference for generalized divergences[END_REF].

Definition 7.1 (Bregman divergence).

Let Ω ⊆ R m and F : Ω → R be a continuously differentiable and strictly convex real-valued function. The Bregman divergence D F associated to F is defined for all (p, q) ∈ Ω × Ω as

where ∇F (q) is the gradient of F estimated at q, and the operator 〈•, •〉 is the dot product function.

The optimization problem arising from this definition that we are interested in, is to find a vector p ∈ Ω-that is the closest to a given vector q 0 ∈ Ω-under the set P of V linear constraints

where p ∈ Ω is a specified vector, and M v is a m×n v matrix with n v =|H v | the number of weak classifiers for view v∈V. Defining the Legendre transform as

the dual optimization problem can be stated as finding a vector q in Q, the closure of the set

for which D F ( p||q ) is the lowest. It can be shown that both of these optimization problems have the same unique solution [START_REF] Pietra | Inducing features of random fields[END_REF][START_REF] Lafferty | Additive models, boosting, and inference for generalized divergences[END_REF], with the advantage of having parallel-update optimization algorithms to find the solution of the dual form in the mono-view case [START_REF] Collins | Logistic regression, adaboost and bregman distances[END_REF][START_REF] Darroch | Generalized iterative scaling for log-linear models[END_REF][START_REF] Pietra | Inducing features of random fields[END_REF],

making the use of the latter more appealing.

∀v ∈ V,∀j ∈ 1, . . . , n v ; δ (t ) v, j = 1 2 ln

. Plugging back these values into the above equation gives

Now by fixing the set of parameters (W (t )± v, j ) v, j , the weights ρ (t +1) are found by minimizing Equation (7.11) under the linear constraints ∀v ∈ V,ρ v ≥ 0 and V v=1 ρ v = 1. This alternating optimization of A (t ) bears similarity with the block-coordinate descent technique [START_REF] Bertsekas | Nonlinear Programming[END_REF], where at each iteration, variables are split into two subsets-the set of the active variables, and the set of the inactive ones-and the objective function is minimized along active dimensions while inactive variables are fixed at current values.

Convergence of Algorithm.

The sequences of weights (Q (t ) ) t ∈N and (ρ (t ) ) t ∈N found by Algorithm 7 converge to the minimizers of the multiview classification loss (Equation (7.2)), as with the resulting sequence (q (t ) ) t ∈N (Equation 7.9), the sequence (D F (0||q (t ) )) t ∈N is decreasing and since it is lower-bounded (Equation (7.6)), it converges to the minimum of Equation (7.2).

Experimental Results

We present below the results of the experiments we have performed to evaluate the efficiency of Algorithm 7 to learn the set of weights Q and ρ involved in the definition of the multiview weighted majority vote classifier B MV ρ (Equation (7.1)). Note that we keep the same datasets as of Chapter 6.

Experimental Protocol

In our experiments, we set up binary classification tasks by using all multiview observations from one class as positive examples and all the others as negative examples. We reduced the imbalance between positive and negative examples by subsampling the latter in the training sets, and used decision trees as view specific weak classifiers 1 . We compare our approach to the following seven algorithms.

• Mono v is the best performing decision tree model operating on a single view. the performance increase of all algorithms actually begins to slow, suggesting that the labeled data carries sufficient information and that the different views do not bring additional information.

An important point here is that rBoost.SH-which takes into account both view-consistency and diversity between views-provides the worst results on MNIST 1 where there is no overlapping between the views, while the weighted majority vote as it is performed in MωMvC 2 still provides an efficient model. Furthermore, MVMLsp-which learns multiview kernels to capture views-specific informations and relation between views-performs worst on all the datasets. We believe that the superior performance of our method stands in our two-level framework. Indeed, thanks to this trick, we are able to consider the view-specific information by learning weights over view-specific classifiers, and to capture the importance of each view in the final ensemble by learning weights over the views.

A note on the Complexity of the Algorithm

For each view v, the complexity of learning decision tree classifiers is O(d v ml og (m)). We learn the weights over the views by optimizing Equation (7.11) (Step 10 of our algorithm) using SLSQP method which has time complexity of O(V 3 ). Therefore, the overall complexity is O(V d v m.l og (m) + T V 3 ). Note that it is easy to parallelize our algorithm: by using V different machines, we can learn the view-specific classifiers and weights over them (Steps 4 to 9).

Comparison with Fusion all

Cq and PB-MVBoost Our second contribution was to extend the PAC-Bayesian theory to multiview learning with more than two views. We considered a two-level hierarchy of distributions over the view-specific voters and the views, such that i) for each view, we consider a prior and learn ple accordingly. For MωMvC 2 , one solution could be to adapt the definition of the matrix M v to allow to deal with incomplete data; this may be done by considering the notion of diversity to complete M v . 

LIST OF PUBLICATIONS