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Résumé. On modélise la dynamique temporelle de populations de moustiques soumises à des in-
terventions humaines par des systèmes déterministes, possédant ou non une structure spatiale, com-
partimentale ou en phénotype. En particulier, l’étude se concentre sur deux types d’interventions
reposant sur des lâchers de moustiques appartenant à la même espèce que la population sauvage :
mâles incompatibles seuls, en vue de l’élimination de population, ou bien mâles et femelles ensemble
en vue de la modification de population, les individus relâchés présentant alors un autre phénotype
que la population sauvage. Ces méthodes visent d’une part la réduction de la nuisance causée par
les moustiques là où elle est la plus forte, et surtout, d’autre part, la diminution voire l’arrêt de la
circulation des maladies infectieuse dont l’agent pathogène est transmis par leurs piqûres.

Les résultats mathématiques portent : d’abord sur le comportement asymptotique des solutions
de systèmes paraboliques modélisant la dynamique de la fréquence d’individus qui présentent le
phénotype introduit, dans le cas de la modification de population; puis sur une propriété qualitative
(convergence vers un cycle limite périodique) des solutions de systèmes d’équations différentielles
ordinaires modélisant des populations structurées en compartiments; ensuite sur le contrôle opti-
mal par des lâchers d’individus d’un système d’équations différentielles ordinaires modélisant la
modification de population en milieu homogène ainsi que le contrôle vers 0 d’un système modélisant
des lâchers de mâles incompatibles pour l’élimination de population; et enfin, sur l’évolution de la
structure en phénotype d’une population sexuée.

Ces résultats sont spécifiés aussi souvent que possible à des paramétrisations issues de données
expérimentales, et illustrés par des simulations numériques. Leur interprétation pratique et leur
éventuelle importance pour l’application sont systématiquement mises en lumière.

Mots-clefs: Dynamique de populations; lutte anti-vectorielle; modélisation; analyse asymp-
totique; réaction-diffusion; Wolbachia; Aedes; contrôle

Abstract. Deterministic systems are used to model time dynamics of mosquito populations
undergoing human intervention. The models can have a spatial, compartmental or phentoypical
structure. This study focuses on two kinds of intervention relying on releases of mosquitoes from
the same species as the wild population: incompatible males for population elimination or males-
and-females together for population replacement (there the released individuals have a phenotype
different from that of the wild population). These methods aim at reducing the nuisance in highly
infested areas and more importantly at limiting (or even stopping) vector-borne disease circulation.

Mathematical result are concerned with: asymptotic behavior of solutions to parabolic systems
modeling the frequency of the introduced phenotype in the population, motivated by population
replacement; a qualitative property of solutions to some ordinary differential systems (conver-
gence to a periodic limit cycle) stemming from a compartmental structure; optimal control by
males-and-females releases of an ordinary differential system modeling population replacement in
a homogeneous environment, and the control to 0 of a model of population elimination by incom-
patible males releases; lastly time dynamics of the phenotypical structure in a sexual population.

As often as possible these results are specified using experimental data parametrization and
illustrated through numerical simulations. Practical conclusions are drawn and the relevance with
respect to the application is systematically highlighted.

Keywords: Population dynamics; vector control; modeling; asymptotic analysis; reaction-
diffusion; Wolbachia; Aedes; control
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mes directeurs de thèse, pour son accueil et ses conseils, et aussi pour son parcours d’IPEF et
chercheuse en mathématiques appliquées qui m’a inspiré. Merci beaucoup de me faire l’honneur
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Alexandre Bliman pour nos discussions toujours instructives (aussi bien à Paris qu’à Rio, Asuncion
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appartient de continuer à faire vivre ce bon esprit ! Merci aux autres doctorants du laboratoire
avec qui j’ai interagi, en particulier Cécile et Camille en maths-bio.

Merci aux auteurs dont les livres m’ont nourri et accompagné pendant la thèse, et dont certains
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que tu puisses puiser dans ce travail ce qu’il faudra de ténacité et de passion pour aller à ton tour
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Chapter 1

Introduction en français

Quand même les différences très sensibles, que j’ai remarquées dans
les diverses contrées où j’ai abordé, ne m’auraient pas empêché de
me livrer à cet esprit de système, si commun aujourd’hui, et cepen-
dant si peu compatible avec la vraie philosophie, comment aurais-je
pu espérer que ma chimère, quelque vraisemblance que je susse lui
donner, pût jamais faire fortune ?

Louis-Antoine de Bougainville, Voyage autour du monde par la
frégate la Boudeuse et la flûte l’Etoile.

1.1 Aspects généraux

1.1.1 Organisation du mémoire

Cette thèse est divisée en quatre parties. La partie I est dédiée à la présentation du contexte,
c’est-à-dire des travaux, méthodes et problèmes dans le cadre desquels le travail s’est inscrit.
La partie II rassemble les travaux concernant les équations de réaction-diffusion, qui sont les
seuls à avoir inclus une ou plusieurs dimensions spatiales tandis que la partie III regroupe les
études de dynamiques temporelles en dimension finie, décrites par des équations différentielles
ordinaires. Enfin, la partie IV contient d’une part une étude de dynamique de population structurée
en phénotype (Chapitre 12) et d’autre part des perspectives mathématiques (Chapitre 13).

Dans le détail, les Chapitres 3 et 4 sont dédiés à la présentation du contexte applicatif (c’est-
à-dire l’entomologie médicale) d’une part, et mathématique d’autre part. A partir du Chapitre 5
jusqu’au Chapitre 12, cette thèse expose des résultats nouveaux, dont certains ont déjà été publiés
dans des revues scientifiques (les références sont précisées en début de chapitre le cas échéant
et listées ci-dessous). Avant la conclusion, le Chapitre 13 est destiné à motiver ou orienter une
éventuelle poursuite des travaux de thèse : elle expose plusieurs problèmes ouverts apparus durant
ces travaux, dont certains sont partiellement résolus.

Trois articles ont été publiés et un soumis dans des revues scientifiques :

� le Chapitre 5 a été publié dans SIAM Journal on Applied Mathematics [211] ;

� le Chapitre 6 a été publié dans Journal of Mathematical Biology [176] ;

� le Chapitre 7 a été publié dans Mathematical Biosciences and Engineering [212] ;

� le Chapitre 8 a été soumis.

1.1.2 Mathématiques et entomologie

Le sujet de cette thèse de mathématiques appliquées est orienté vers l’interface avec l’entomologie,
et plus particulièrement avec la lutte anti-vectorielle. C’est pourquoi il importe de décrire en
premier lieu en quoi cette interface a consisté, et quels en ont été les fruits.

J’ai bénéficié (en tant que module de formation de mon école doctorale) du cours intensif de
l’Institut Pasteur de Paris intitulé “Insectes vecteurs et transmission d’agents pathogènes”, au
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mois de mars 2016. Cette formation en entomologie médicale a été précieuse parce qu’elle a permis
ensuite des échanges fructueux avec des chercheurs d’autres disciplines que la mienne. Par ailleurs,
la première année et demie de thèse a été ponctuée de temps d’interaction forte avec des partenaires
brésiliens de mes directeurs, à Paris et à Rio de Janeiro. Cette interaction s’est traduite par deux
projets de recherche ayant abouti, qui constituent les Chapitres 7 et 8 de cette thèse. Les années
2016 et 2017 ont également vu se réaliser le projet STIC-AmSud Mosticaw, coordonné par Pierre-
Alexandre Bliman (Inria) en France. Deux réunions, la première au Paraguay et la seconde en
France, ont permis de créer des liens et un réseau avec des chercheurs sud-américains motivés par
l’utilisation de Wolbachia chez les moustiques du genre Aedes. Par la suite, j’ai mis en place, grâce à
Yves Dumont (rencontré dans le cadre du projet Mosticaw) et à la confiance de mes directeurs, une
collaboration entre le Laboratoire Jacques-Louis Lions et l’unité d’entomologie de l’Institut Louis
Malardé (Polynésie Française) qui, je l’espère, ira en se développant, et dont l’apport scientifique
à cette thèse est constitué par le Chapitre 9.

Du point de vue des mathématiques appliquées, l’autre versant de l’interface à laquelle se situe
cette thèse, j’ai bénéficié d’un environnement exceptionnel au sein du laboratoire Jacques-Louis
Lions, qui s’est traduit par de multiples collaborations par lesquelles j’ai notamment pu acquérir
ou affiner des connaissances techniques en analyse. Le Chapitre 5 est l’aboutissement d’un travail
commencé durant mon stage de Master 2 (encadré par Benoit Perthame et Nicolas Vauchelet) et
a servi de point d’entrée dans la thématique de la modélisation de la lutte anti-vectorielle. Les
Chapitres 6, 10, 11 et 12 sont eux issus de collaborations diverses avec des membres du LJLL
intéressés par les mathématiques appliquées à la biologie.

Compte-tenu de ce contexte, il s’est agi de construire et d’étudier des modèles mathématiques
de dynamique de population pouvant s’appliquer à des problèmes pratiques soulevés par des tech-
niques innovantes de lutte anti-vectorielle contre des moustiques appartenant au genre Aedes. Il
faut préciser que certains travaux présentés ici ont été directement motivés par des entomologistes,
d’autres ont été élaborés en dialogue constant avec eux, et d’autres enfin ont été menés avant tout
pour leur intérêt mathématique, sans jamais perdre de vue leur motivation biologique.

Travailler à l’interface soulève bien des écueils, et d’abord celui déjà relevé par Bougainville
dans son Voyage autour du monde [63, p. 19] :

Je suis voyageur et marin, c’est-à-dire un menteur et un imbécile aux yeux de cette
classe d’écrivains paresseux et superbes qui, dans l’ombre de leur cabinet, philosophent
à perte de vue sur le monde et ses habitants, et soumettent impérieusement la nature
à leurs imaginations. Procédé bien singulier, bien inconcevable de la part des gens
qui, n’ayant rien observé par eux-mêmes, n’écrivent, ne dogmatisent que d’après des
observations empruntées de ces mêmes voyageurs auxquels ils refusent la faculté de voir
et de penser.

C’est ainsi qu’en faisant des mathématiques motivées par l’entomologie on s’expose à la critique
justifiée des “hommes de terrain” dès lors qu’on est tenté de “soumettre impérieusement” le système
biologique aux conclusions toutes théoriques de l’étude d’un modèle mathématique. Pour autant,
on ne doit pas non plus quémander l’indulgence des mathématiciens pour des résultats incomplets
ou des preuves hasardeuses au motif qu’elles seraient justifiés par une interprétation biologique.
Entre ces deux écueils dangereux se situe la route qu’on a tenté de prendre ici, voie étroite et
parfois éreintante dans laquelle on n’a de cesse de confronter le modèle à notre connaissance de la
réalité, et de soumettre les résultats conjecturés à l’examen mathématique le plus rigoureux. Ce
travail à l’interface, avec les questions nouvelles qu’il soulève et les points de vue originaux qu’il
pousse à adopter, est aussi une richesse qui, je l’espère, pourra parfois transparâıtre à la lecture
des pages qui suivent.

Dans le domaine de l’entomologie, la modélisation mathématique se trouve face à des diffi-
cultés bien spécifiques, ainsi que des opportunités considérables. Les données collectées sont bien
minces pour espérer en tirer une description fine d’une population. Du fait de la petite taille
des organismes concernés, il s’avère difficile de suivre l’évolution d’une population à l’échelle in-
dividuelle. Cependant, du fait de leurs capacités importantes de dissémination et leur capacité à
atteindre et à se développer dans des zones difficiles d’accès, le périmètre géographique n’est que
rarement bien délimité. Ces difficultés de terrain étant posées, on voit au Chapitre 3 que les moyens
d’investigation à la disposition des entomologistes médicaux permettent néanmoins d’acquérir une
assez bonne connaissance des populations, au moins relativement, et rendent déjà pertinentes les
conclusions d’un modèle bien informé, à condition qu’elles restent prudentes.
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Les quelques travaux rassemblés dans cette thèse ne se conçoivent que comme une étape, qu’on
espère utile, dans la constitution de modèles mathématiques bien adaptés et bien compris per-
mettant d’anticiper et d’optimiser les effets de techniques innovantes de lutte anti-vectorielle re-
posant sur des lâchers d’individus. On justifie au Chapitre 4 la recherche de modèle simples, voire
simplistes, mettant l’accent sur quelques mécanismes clairement identifiés et tentant d’en définir
précisément les effets combinés.

1.2 Outils

Avant de présenter les résultats obtenus, nous mettons en lumière quelques aspects importants des
outils employés.

1.2.1 Modélisation

Ces travaux reposent sur des modèles mathématiques déterministes, approche qui est détaillée
au Chapitre 4. La description de la population d’insectes à un instant donné se trouve ainsi
réduite soit à un nombre fini de quantités pouvant être comprises comme des effectifs (équations
différentielles ordinaires), soit à une (ou deux, dans le cas de deux sous-populations en interaction)
densité spatiale (équations de réaction-diffusion), soit enfin à une densité phénotypique (équations
différentielles ordinaires structurées).

Il est crucial, dans la constitution de ces différents modèles, de bien identifier à la fois son
périmètre (les questions auxquelles on souhaiterait répondre) et les mécanismes qu’il doit prendre en
compte. Notre choix a toujours été d’aller vers le modèle le plus simple intégrant ces deux facteurs
(périmètre et mécanismes impliqués). Là où les questions posées le nécessitaient, pour comprendre
la dispersion de l’infection par Wolbachia à grande échelle, on a ainsi utilisé des équations de
réaction-diffusion (Partie II) prenant en compte l’espace. A l’inverse, lorsqu’on s’intéressait à une
population locale, ou au moins homogène, on s’est contenté d’une description temporelle de la
dynamique (Partie III).

1.2.2 Systèmes monotones

Sauf dans les Chapitres 8 et 12, les modèles de dynamiques de populations étudiés dans cette
thèse peuvent être vus comme des systèmes dynamiques monotones. Cette propriété structurelle -
préserver une relation d’ordre sur l’espace d’états au cours de l’évolution temporelle - a été théorisée
et étudiée de façon parallèle par Hirsch et Matano dans les années 1980 (voir par exemple [114]).
Une conséquence remarquable en est la convergence générique vers un équilibre (voir le Chapitre 4
pour une discussion détaillée).

Ainsi, les modèles considérés induisent des dynamiques stéréotypées (convergence vers un
équilibre), qui peuvent être décrites en se contentant de connâıtre les états d’équilibre et leur sta-
bilité locale. Par ailleurs, la structure de monotonie permet d’avoir recours à un outil mathématique
très adapté et particulièrement simple : les sur- et sous-solutions.

Du point de vue de l’interprétation biologique, la monotonie est satisfaisante si les mécanismes
considérés sont univoques. Dans le cas des moustiques qui sera décrit plus bas, on peut considérer
qu’un œuf se contente d’éclore pour donner une larve, qui devient pupe (nymphe) puis émerge
comme adulte (imago), et (s’il s’agit d’une femelle) que cet adulte pond de nouveaux œufs (voir le
Chapitre 3). Tant que le cycle de vie peut être décrit en ces termes, il est naturel qu’un accroisse-
ment initial du nombre d’œufs, par exemple, induise à tout instant ultérieur un accroissement non
seulement du nombre d’œufs, mais aussi du nombre de larves, de nymphes et d’adultes par rap-
port à ce qu’aurait été la population en l’absence de cet accroissement initial. Cependant, comme
l’illustre le Chapitre 8, dans la nature les relations sont rarement univoques, et des interactions -
ou des châınes d’interactions - complexes, notamment non-linéaires, peuvent mettre à mal cette
intuition de monotonie. Plus précisément, dans le modèle étudié au Chapitre 8, on fait l’hypothèse
que les larves présentes dans le milieu ont tendance à augmenter le taux d’éclosion des œufs. Cette
rétro-action très simple suffit - sous conditions sur les paramètres - à déstabiliser la population
d’équilibre et à induire des oscillations stables de la taille de la population qui peuvent être aussi
importantes qu’on veut. En particulier, le comportement stéréotypé de convergence vers l’équilibre
est ici perdu au profit d’une convergence vers une solution périodique.
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Un autre exemple de perte de monotonie est fourni par le Chapitre 12. Dans ce chapitre,
on considère un modèle de population structurée en phénotype (motivé par l’étude du trait de
résistance à un insecticide). Ce travail s’inspire notamment de l’article de Pierre-Emmanuel Jabin
et Gaël Raoul [123] dans lequel la dynamique de sélection selon un trait phénotypique d’une
population en interaction compétitive globale est décrite. Bien qu’il ne s’agisse pas à proprement
parler d’un système monotone, il faut noter que la structure particulière de cette équation confère
une propriété de convergence générique vers une distribution d’équilibre (un ESD ou “distribution
évolutivement stable” dans le vocabulaire de la dynamique adaptative), qui peut être décrite par
une fonction de Lyapunov, fournie dans [123] par la méthode de l’entropie relative. Le travail du
Chapitre 12 reprend cette étude en la modifiant pour modéliser la reproduction sexuée. Dès lors,
les sous-populations présentant deux traits phénotypiques distincts sont à la fois en interaction
compétitive (pour l’accès aux ressources) et coopérative par la reproduction (pour la transmission
de leur trait par hérédité) : il n’y a pas de structure de monotonie.

1.2.3 Bistabilité

Une caractéristique commune des deux situations de lutte anti-vectorielle modélisées dans le cadre
de cette thèse (plus précisément aux Chapitres 7, 9 et 10) est la bistabilité1. Dans le remplacement
de population par Wolbachia (voir Section 3.3.2) comme dans l’élimination de population par la
technique de l’insecte stérile ou incompatible (TIS/TII, voir Section 3.3.1), la situation initiale est
une population de moustiques établie de façon stable dans un écosystème. Il s’agit du premier des
deux équilibres stables du système : l’équilibre “sauvage” ou “naturel”. L’intervention humaine,
par des lâchers répétés de mâles et femelles (dans le premier cas) ou seulement de mâles (dans le
second cas) vise à atteindre un autre équilibre stable. Dans le cas du remplacement, il s’agit de la
situation où tous les individus sont porteurs de Wolbachia. Dans le cas de l’élimination, il s’agit
de l’extinction de la population, laquelle est supposée stable (au sens où l’immigration d’individus,
si elle est assez faible, ne suffit pas à implanter une population).

Le cadre mathématique adopté permet une analogie complète entre les deux situations, au moins
au niveau des dynamiques temporelles2. La bistabilité, dans ce contexte où depuis l’un des deux
états stables on cherche, par une intervention humaine ciblée, à atteindre l’autre état stable, pose
ainsi une question simple et naturelle : comment faire passer le système d’un équilibre à l’autre ?
Autrement formulée : par où passe la frontière entre les deux bassins d’attraction, et comment
l’atteindre ? Pour formuler cette question en termes mathématiques, il importe de modéliser
convenablement l’action humaine, et donc de définir soigneusement le problème de contrôle associé.

1.2.4 Théorie du contrôle

L’outil puissant constitué par la théorie du contrôle (optimal) des systèmes dynamiques différentiels
s’est alors imposé (comme l’illustre le Chapitre 10), pour introduire rigoureusement dans les
modèles les termes décrivant l’action humaine sur la population de moustiques.

Ce formalisme simple, où l’on voit l’état de la population à un instant donné comme la variable
sur laquelle on agit, permet de formuler mathématiquement un objectif concret de lutte anti-
vectorielle. On obtient ainsi un problème d’optimisation dont l’inconnue est le contrôle, c’est-à-dire
l’action humaine sur le système.

1.3 Présentation des principaux résultats

1.3.1 Systèmes de réaction-diffusion

Dans trois articles, publiés à deux ou à trois avec Nicolas Vauchelet (directeur de thèse), Grégoire
Nadin et Jorge P. Zubelli ([211], [176] et [212]), l’étude s’est focalisée sur des systèmes de deux
équations de réaction-diffusion particuliers, posés sur un domaine spatial infini Ω = Rd. En y

1On qualifie de bistable un système dynamique possédant exactement deux états d’équilibre stables.
2Cependant, même en dimension 2, il faut noter que la séparatrice entre les deux bassins d’attractions n’est

pas tout à fait de la même nature topologique. Comme me l’a fait remarquer Jean-Pierre Françoise, il contient
deux équilibres distincts et donc une orbite hétérocline dans le cas du remplacement de population, tandis qu’il
ne contient qu’un seul équilibre dans le cas de l’élimination de population, voir les Chapitres 9 et 10 pour plus de
détails.
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adjoignant un contrôle sous la forme d’une mesure positive u, ces systèmes s’écrivent
∂tn1 −∇ ·

(
A(x)∇n1

)
= b1n1(1− sh

n2

n1 + n2
)(1− n1 + n2

K
)− d1n1 dans [0, T ]× Rd,

∂tn2 −∇ ·

(
A(x)∇n2

)
= b2n2(1− n1 + n2

K
)− d2n2 + u dans [0, T ]× Rd,

ni(0, · ) = n0
i ≥ 0 (i ∈ {1, 2}).

(1.1)

Ici, bi (resp. di) désigne le taux de fécondité (resp. de mortalité) nette de la population i (sauvage
pour i = 1, porteuse de Wolbachia pour i = 2). K > 0 est la capacité de charge de l’environnement
et sh ∈ [0, 1] est le taux d’incompatibilité cytoplasmique (parfaite lorsque sh = 1). Dans [211] (qui
fait l’objet du Chapitre 5 de cette thèse), avec u ≡ 0 et pour bi = b0i /ε on montre que lorsque
ε→ 0, la proportion de la population 2, p := n2/(n1 + n2) converge vers la solution de ∂tp−∇ ·

(
A(x)∇p

)
= d2

p(1− p)(p− θ)
shp2 − (sf + sh)p+ 1

,

p(0, · ) = n0
2/(n

0
1 + n0

2),

(1.2)

où

sf := 1− b02
b01
, δ :=

d2

d1
, θ :=

sf + δ − 1

δsh
,

sous l’hypothèse sf < sh (c’est-à-dire pour une incompatibilité cytoplasmique assez forte et un
impact sur la fécondité assez faible).

Ce résultat (Théorème 5.1) peut en réalité être étendu à des termes de réaction un peu plus
généraux, notamment pour prendre en compte une transmission verticale (= de la femelle à sa
descendance) imparfaite ou encore des effets plus généraux de la fréquence d’infection p sur les
différents termes (voir les hypothèses 5.2 et 5.3 pour l’énoncé général). En substance, il s’agit
d’une réduction de dimension par l’utilisation d’une réaction rapide3. Sa justification repose sur des
estimations a priori dans des espaces de Sobolev appropriés permettant de prouver de la compacité
par un lemme de Lions-Aubin, puis la convergence par unicité de la solution du problème limite.

L’intérêt d’une telle convergence est multiple. D’abord mathématiquement, l’équation (1.2),
scalaire, dispose d’une formulation variationnelle qui permet de simplifier considérablement l’étude
asymptotique. On peut également décrire en détail des sous-solutions (“bubbles”) qui s’avèrent
utiles (dans [212], mais aussi dans [176]) pour obtenir des conditions de non-extinction.

D’autre part sur le plan de la modélisation, notre motivation principale pour l’étude de (1.1)
provient de l’article de Barton et Turelli [29], où un modèle en proportion du type de (1.2) est
directement introduit pour modéliser la propagation spatiale d’un trait “variant”, en présence
de ce que les auteurs nomment “effets cytoplasmiques analogues à l’effet Allee” (en particulier,
l’incompatibilité cytoplasmique causée par Wolbachia chez des espèces du genre Aedes entre dans
cette catégorie). Il nous a semblé opportun de comprendre dans quelle mesure un modèle scalaire
tel que (1.2), en proportion seulement, est capable de représenter simultanément l’évolution de deux
sous-populations en interaction. Notre résultat de convergence permet de montrer rigoureusement
que le modèle scalaire est proche du système (1.1), tout en dévoilant qu’en dehors de la limite
ε→ 0, la correspondance avec (1.2) est nécessairement imparfaite.

Enfin, l’équation non contrôlée (1.2), classique et bien comprise, possède pour A = I une
propriété remarquable lorsque la donnée initiale est localisée : l’établissement de la population
est quasiment4 équivalente à sa propagation, cette dernière s’effectuant asymptotiquement (dans
toute direction) selon un profil d’onde progressive (voir Section 4.3.2 infra). C’est d’ailleurs cette
propagation à vitesse et profil constants qui a en premier lieu motivé l’utilisation de tels modèles
pour Wolbachia, sur la base d’observations de terrain (voir les travaux de Turelli et Hoffmann,
[222] et [223]).

Il apparâıt que la correspondance (1.1)-(1.2) fournit un cadre idoine pour l’étude mathématique
de mécanismes variés, selon le schéma suivant :

1. Modélisation dans (1.1) ;

3Lorsque d = 0 (cf. Chapitre 10), on obtient d’ailleurs un système lent-rapide classique en dimension 2 (voir
Section 4.2.2), pour lequel cette réduction de dimension revient à une projection de la dynamique sur la variété
lente.

4Au sens où l’établissement doit se faire dans un domaine suffisamment grand.
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2. Passage à la limite vers (1.2) ;

3. Etude mathématique complète du problème limite ;

4. Comparaison à des résultats numériques sur (1.1).

C’est ce schéma qui est adopté dans le Chapitre 10, dans le cas particulier d = 0 (c’est-à-dire
homogène en espace, ce qui peut aussi être vu comme la solution de (1.1) issue d’une donnée
initiale constante). On y étudie le comportement des solutions lorsque u = uε résout un problème
de contrôle optimal.

Dans [176] (qui fait l’objet du Chapitre 6), on se limite à la dimension 1 d’espace et on étudie
le problème scalaire (1.2). L’étude est motivée par une remarque développée dans [29] au sujet
de l’influence des variations spatiales de la taille de la population. Dans le modèle scalaire (de la
forme (1.2)), Barton et Turelli notent que si le flux de gènes (gene flow) est modélisé par un terme
d’advection faisant intervenir la taille de la population, c’est-à-dire si p satisfait

∂tp− ∂xxp− 2
∂xN

N
∂xp = f(p), (1.3)

où N : R→ R+ est donnée et f est un terme de réaction bistable, alors pour ∂xN
N assez grand, la

propagation de l’onde progressive est stoppée - le signe de sa vitesse de propagation peut même
être modifié. On étudie de façon complète le cas où ∂xN

N = C1[−L,L](x) pour C,L > 0, pour lequel
on obtient le Théorème 6.2. En substance, à L fixé si C est assez grand, ou bien à C fixé si L est
assez grand, alors on montre qu’il y a blocage de l’onde progressive. Sinon, l’onde est simplement
retardée.

La Proposition 6.4 décrit le comportement asymptotique, lorsque L tend vers 0, du produit
LC∗(L), où C∗(L) est la valeur critique à partir de laquelle le blocage a lieu. L’interprétation de
ce résultat est la suivante : le long d’une direction de propagation de l’invasion, si la taille de la
population augmente de façon trop rapide, ou augmente de façon assez soutenue sur une distance
assez longue, alors l’invasion est bloquée. A la limite, un saut brutal de la taille de la population
suffit à stopper l’invasion si et seulement si son ampleur, mesurée par le rapport NR/NL entre la
taille de la population après le saut et celle avant le saut, excède

[N ]crit :=
(
1−

∫ 1

0
f(p)dp∫ θ

0
f(p)dp

)1/4
.

Cette limite est pertinente pour l’application à des population d’insectes, dont la densité peut
varier brutalement en fonction de la végétation ou de la proximité de l’eau, par exemple. Ainsi,
l’introduction de ce gene flow permet de modéliser ce type d’hétérogénéité spatiale.

Le Théorème 6.1 énonce quant à lui que si N est en réalité une fonction de p, alors la nature de
l’équation (1.3) n’est pas différente de celle sans advection : il s’agit d’une équation de réaction-
diffusion bistable. Cependant, le signe de la vitesse de l’onde progressive peut être modifié.

Dans [212], qui fait l’objet du Chapitre 7, l’étude est centrée sur les données initiales. Le
problème auquel on cherche à répondre consiste à déterminer, en présence d’incertitudes, comment
relâcher à un instant donné des moustiques infectés afin d’assurer l’établissement de l’infection -
et par conséquent sa diffusion, les deux concepts étant équivalents dans ce cas du point de vue
pratique.

Le périmètre spatial dans lequel s’effectuent les lâchers étant borné, on montre dans un premier
temps que la probabilité de succès tend vers 1 lorsque le nombre de points de lâcher tend vers
l’infini (Proposition 7.2). Ensuite, on construit des profils de référence à support compact (sous-
solutions en dimension 1 à l’aide de la résolution du problème stationnaire elliptique en domaine
borné; profils d’énergie négative en dimension quelconque), nommés “bubbles” ou “propagules”
tels que si le profil d’infection est, à un instant donné, partout supérieur à une propagule, alors
l’infection se maintiendra pour tout temps, et envahira tout le domaine (Théorème 7.1).

On prouve ensuite que ces conditions suffisantes d’invasion (se trouver au-dessus d’une propag-
ule) sont très difficiles à obtenir sur une donnée initiale issue d’un seul point de lâcher. Pour
des points multiples de lâchers induisant une distribution de population infectée sous forme de
somme de gaussiennes, on donne des résultats analytiques permettant de quantifier la probabilité
d’invasion, ces résultats étant illustrés par des simulations numériques.

Une conséquence remarquable de cette étude est la mise en évidence d’une taille optimale
pour le domaine de lâcher : même en présence d’incertitudes, un expérimentateur peut chercher à
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définir la taille de la zone dans laquelle les moustiques seront lâchés afin d’optimiser la probabilité
de succès. Si les lâchers sont trop concentrés, l’effet de la diffusion sera trop important et l’infection
n’atteindra pas l’ étendue spatiale critique pour se propager. A l’inverse, si les lâchers sont dispersés
alors l’infection n’atteindra nulle part la fréquence critique pour se propager.

Du point de vue des systèmes monotones, on a affaire à une frontière entre bassins d’attraction
qui passe aussi bien par des profils faibles en valeur mais étendus en espace que par des profils très
localisés en espace avec des valeurs typiquement fortes.

Ce travail est à rapprocher de [93], où les auteurs ont étudié numériquement l’effet de deux
observables macroscopiques de la donnée initiale, la fragmentation et l’abondance, sur la probabilité
d’établissement de la population, pour une équation de réaction-diffusion bistable. Leur conclusion
est que la fragmentation est plutôt délétère, avec un effet différencié selon le niveau d’abondance.
On retrouve donc dans le travail du Chapitre 7 des questionnements similaires, puisque la taille du
domaine maximisant la probabilité d’invasion varie selon l’abondance permise, et que cette taille
joue typiquement sur la fragmentation de la donnée initiale : un périmètre plus étendu favorise la
fragmentation.

1.3.2 Systèmes d’équations différentielles ordinaires

La plupart des autres travaux menés durant la thèse ont concerné des systèmes d’équations
différentielles ordinaires.

D’abord, dans le Chapitre 8 on étudie un système très simple de dimension 2, issu d’un modèle
à compartiments. Les deux dimensions restantes après simplification modélisent les œufs et les
larves, et la particularité du modèle consiste à supposer que le taux d’éclosion h ≥ 0 dépend de la
densité larvaire (les autres paramètres étant des constantes positives):

dE

dt
= bL− (h(L) + dE)E,

dL

dt
= h(L)E − (cL+ dL)L.

(1.4)

Sur la base de cette hypothèse simple, on met en évidence le fait que si h′ > 0 (c’est-à-dire si la
rétro-action est positive), alors le système (1.4) peut effectivement être déstabilisé5 et ses solutions
peuvent présenter des oscillations périodiques. Ces oscillations apparaissent sous la forme d’une
bifurcation de Hopf selon un paramètre décrivant l’intensité de la rétro-action, h′(L) (où (L,E)
est un équilibre positif stable pour des valeurs assez faibles de h′(L), Théorème 8.2), ou bien à
l’aide d’une dynamique lente-rapide lorsqu’on considère que le stock d’œufs E est grand et varie
lentement (Théorème 8.1).

La mise en évidence de la possibilité - sur le plan de la modélisation - de telles oscillations
simplement causées par une rétro-action au niveau de l’éclosion fournit une première pierre à une
éventuelle explication de fluctuations observées dans la nature et qui ne semblent pas pouvoir
être expliquées par les variations environnementales (voir [119], [141]). Cette étude devrait être
poursuivie afin de mieux décrire, dans les modèles compartimentaux plus élaborés que (1.4), la
dynamique d’éclosion des œufs dans le genre Aedes : il s’agit d’un phénomène non-linéaire cer-
tainement crucial pour bien comprendre ces populations.

Les deux chapitres suivants s’intéressent à des problèmes opérationnels posés par des méthodes
de lutte anti-vectorielle, qui peuvent être vus comme des questions de contrôle de systèmes dy-
namiques différentiels.

L’utilisation de la technique dite de l’insecte incompatible (TII, voir Section 3.3.1) motive
l’étude présentée au Chapitre 9. Il s’agit, par des lâchers de mâles stérilisants (qui rendent stériles
les femelles avec lesquelles ils s’accouplent), de réduire voire d’éliminer une population d’insectes
nuisibles, en l’occurrence des moustiques appartenant au genre Aedes. Le modèle proposé, volon-
tairement simple, permet néanmoins de prendre en compte la dynamique des œufs (qui est con-
sidérée comme importante pour les espèces appartenant à ce genre) ainsi qu’un éventuel effet Allee6

5A l’inverse, si h′ ≤ 0 (1.4) devient monotone coopératif et possède 1 ou 0 équilibre positif. S’il possède un
équilibre positif alors celui-ci est globalement asymptotiquement stable dans (R∗+)2, et sinon (0, 0) est globalement
asymptotiquement stable. Ce comportement justifie qu’on parle de “déstabilisation” dans le cas d’une rétroaction
positive.

6Lorsque la densité de mâles est faible, on considère que certaines femelles ne sont pas fécondées.
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quantifié par un paramètre β > 0 :

dE

dt
= bF (1− E

K
)− (νE + µE)E,

dM

dt
= (1− r)νEE − µMM,

dF

dt
= rνEE

(
1− e−β(M+Mi)

) M

M +Mi
− µFF,

dMi

dt
= u(t)− µiMi.

(1.5)

Ici, E modélise tous les stades immatures, M est la densité de mâles et F la densité de femelles
fertiles, c’est-à-dire ayant été fécondée par un mâle compatible. Mi est la densité de mâles incom-
patibles et u le flux de mâles relâchés.

L’effet Allee se traduit mathématiquement par la stabilité locale pour (1.5) de l’état trivial 0
où la population est éteinte, même lorsque u ≡ 0. Il s’agit d’une nouveauté dans les modèles de ce
type, qui permet d’aborder les questions naturelles posées par cette méthode (amplitude et nombre
des lâchers à effectuer typiquement) d’un point de vue analytique et géométrique : on se ramène
de fait à la description d’une séparatrice qui est une sous-variété de co-dimension 1.

Après avoir défini, sur la base de la littérature entomologique, une gamme de valeurs pour les
paramètres du modèles, on montre dans un premier temps que la dynamique temporelle est de
nature bistable en général, l’équilibre positif stable étant noté E+. Quelques propriétés élémentaires
mais utiles de la séparatrice entre les bassins d’attraction de 0 et E+ sont alors décrits dans
la Proposition 9.2. En particulier, on établit qu’à partir d’un certain nombre (fini) d’œufs ou
de femelles fertiles, la population se rétablit nécessairement vers son équilibre sauvage lorsqu’on
cesse les lâchers. Le système dynamique induit par (1.5) sur (E,M,F,Mi) étant par ailleurs
monotone par rapport au cône Ko := R3

+ × R−, on montre que la population est conduite vers
l’extinction lorsqu’elle est soumise à un lâcher continu de mâles stérilisants d’amplitude assez
grande, Mi(t) ≡ Mi > M crit

i . On établit alors des bornes analytiques sur le temps que prend
l’extinction de la population à l’aide de sur- et sous-solutions (Proposition 9.3). On obtient des
estimations de même nature lorsque les lâchers sont de type impulsionnel périodique d’amplitude
Λ et de période τ (Propositions 9.6 et 9.7). On montre pour cela que Mi(t) converge en temps long

vers la τ -périodisation de t 7→ Λe−µit

1−e−µiτ . Ces estimations permettent d’estimer de façon analytique
en fonction des paramètres un nombre de lâchers suffisant pour assurer l’extinction, à Λ et τ
fixés. L’étude numérique d’un cas particulier (une population isolée d’Aedes polynesiensis) permet
d’illustrer ces résultats et de conforter leur intérêt pratique.

Complémentaire du chapitre précédent, le Chapitre 10 adopte le point de vue de la théorie
du contrôle sur un problème similaire : celui de diriger un système d’équations différentielles
ordinaires vers un équilibre stable, en partant d’un autre équilibre stable. Les systèmes étudiés
aux Chapitres 9 et 10 présentent en outre le point commun d’être monotones et munis d’un contrôle
monotone : des lâchers de mâles stérilisants dans le premier cas, et de moustiques mâles et femelles
porteurs de Wolbachia dans le second. Le système étudié est donné par (1.1) homogène en espace,
c’est-à-dire :

dn1

dt
= b1n1(1− sh

n2

n1 + n2
)(1− n1 + n2

K
)− d1n1, n1(0) = K(1− d1

b1
),

dn2

dt
= b2n2(1− n1 + n2

K
)− d2n2 + u, n2(0) = 0.

(1.6)

Le système contrôlé (1.6) est complété par un critère décrivant la proximité de l’état du système
au temps T > 0 par rapport au remplacement de population, c’est-à-dire à l’établissement de la
population 2 au détriment de la population 1 :

J(u) :=
1

2
n1(T )2 +

1

2

(
K(1− d2

b2
)− n2(T )

)2
+
. (1.7)

Le problème de minimisation sous contrainte associé à (1.6)-(1.7), pour u ∈ L∞(0, T ) tel que

0 ≤ u ≤M et
∫ T

0
u(t)dt ≤ C pour C,M > 0 donnés est alors noté (Pfull).

On montre rigoureusement (Proposition 10.2) que lorsqu’on suppose que les paramètres de
fécondité sont grands, bi = b0i /ε (i ∈ {1, 2}) et que l’on considère la limite ε → 0, alors (Pfull)
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converge vers un problème réduit (Preduced) défini par la minimisation, par rapport au même
contrôle u, de la fonctionnelle

J0(u) := (1− p(T ))2,

où p est solution de l’équation suivante :

dp

dt
= p(1− p) d1b

0
2 − d2b

0
1(1− shp)

b01(1− p)(1− shp) + b02p
+
u

K

b01(1− p)(1− shp)
b01(1− p)(1− shp) + b02p

, p(0) = 0. (1.8)

L’équation (1.8) est intéressante car elle permet de décrire précisément le transfert d’un contrôle
à la modélisation simple (lâchers d’individus porteurs de Wolbachia, u(t) est donc le débit de
moustiques relâchés dans (1.6)) vers un système de contrôle scalaire portant sur la proportion
d’individus porteurs de Wolbachia seulement.

Le problème (Preduced) peut quant à lui être résolu analytiquement (Théorème 10.1) : pour
tout M > 0 il existe un C∗(M) > 0 exprimable en fonction des paramètres (b0i , di, sh et K) tel que
si C > C∗(M) la solution de (Preduced) est unique et donnée par u∗ = M1[0,C/M ], si C < C∗(M)
cette solution est également unique et donnée par u∗ = M1[T−C/M,T ], et si C = C∗(M) alors
l’ensemble des minimiseurs est donné par u∗λ = M1[λ,λ+C/M ] pour λ ∈ [0, T − C/M ].

La combinaison de ces deux résultats (convergence et résolution du problème limite) permet
d’affirmer que dans le cas où le remplacement de population est possible, et si les fécondités sont
grandes, on est proche de l’optimalité en lâchant toute la population au plus grand débit possible,
le plus tôt possible. L’étude numérique du problème (Pfull) permet toutefois de montrer qu’en
dehors de la limite ε→ 0, les stratégies optimales de remplacement diffèrent, parfois sensiblement,
de la stratégie limite.

La partie III se clôt par le Chapitre 11, qui est une contribution théorique à l’étude de dy-
namiques saisonnières. La question de départ consiste à se demander quelles sont les conséquences
de la prise en compte de saisons différenciées dans les dynamiques de populations étudiées plus
haut. En premier lieu, on s’attache à décrire aussi bien que possible le cas où deux saisons alternent,
l’une favorable et l’autre défavorable. On prouve (Théorème 11.2) que sous hypothèse de concavité
des non-linéarités, on peut assez aisément trouver des conditions sous lesquelles la durée relative
des deux saisons est un paramètre discriminant de façon simple la dynamique : soit la population
s’éteint (si la saison défavorable est régulièrement trop longue), soit elle tend vers un unique profil
périodique (si la saison défavorable est assez brève). Ce résultat préliminaire demande à être mis en
rapport avec les problèmes de contrôle associés aux techniques de lutte anti-vectorielle modélisées
(notamment par l’étude des propriétés du cycle limite périodique), et son extension à d’autres types
de non-linéarités doit être étudiée (par exemple, alternance saisonnière de dynamiques bistable et
monostable d’extinction).

1.3.3 Equation d’évolution pour une population structurée

Enfin, le Chapitre 12 étudie une population structurée en phénotype. L’état de la population y est
décrit par une mesure positive sur un espace P de phénotypes, typiquement P ⊆ Rd. Le modèle
étudié est motivé par le problème actuel posé par la dynamique de résistance aux insecticides
dans les populations de moustiques. Le modèle d’équation différentielles ordinaires étudié par
Schechtman et Souza dans [200] a permis aux auteurs de décrire l’asymétrie entre l’apparition de
la résistance lors de l’exposition d’une population à un insecticide, typiquement sur une échelle
de temps courte, et sa disparition lorsque l’insecticide n’est plus utilisé, sur une échelle de temps
longue. Ce résultat a été obtenu sur un modèle simple de résistance causée par deux mutations
successives, la première engendrant une résistance correcte pour un coût (en fitness, c’est-à-dire en
adaptation au milieu) élevé, et la seconde renforçant la résistance tout en réduisant drastiquement
son coût. Notre objectif est de décrire ce type d’asymétrie (ou d’autres dynamiques temporelles
intéressantes) pour une population à structure continue, en tenant compte de la nature sexuée de la
reproduction. Ceci constitue une nouveauté importante par rapport aux travaux de modélisation
existants, dont beaucoup s’intéressent à la résistance aux traitements dans des populations de
bactéries ou de cellules où la reproduction de type clonal domine (voir par exemple [153]).

Le modèle proposé est de facture générique, et le traitement est surtout mathématique. On vise
à décrire des outils permettant de traiter le terme de reproduction sexuée, par nature non-linéaire
et non-local, quoique homogène, pour une équation d’évolution de la forme suivante :

∂tn(t, x) =
1

ρ(t)

x

P2

K(x, y, z)n(t, y)n(t, z)dydz −R(x, ρ(t))n(t, x), ρ(t) =

∫
P
n(t, x)dx. (1.9)
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Ici, K(x, y, z) ≥ 0 est la distribution pondérée de la progéniture issue de la fécondation d’une
femelle de trait y par un mâle de trait z et R(x, ρ) est la mortalité des individus de trait x lorsque
la population totale est égale à ρ. Un tel modèle n’est justifié que dans la mesure où on suppose
que le rapport entre mâles et femelles est constant, aussi bien en temps qu’entre les différents traits
x ∈ P. On suppose typiquement que R(x, · ) est une fonction croissante et non bornée qui modélise
la saturation du milieu, ce qui permet de borner ρ uniformément le long des orbites.

Dans un premier temps, on décrit les propriétés particulières des modèles dits “imitatifs” (ce
terme provient de la théorie des jeux, voir [199]), où la progéniture hérite toujours du trait exact
de l’un de ses parents. Pour ces modèles particuliers, une fonctionnelle de Lyapunov peut être
introduite dans certains cas, qui permet de prouver la concentration de la population vers le
trait le plus adapté (Théorème 12.5). Ensuite, on s’intéresse à la dynamique en temps long,
dans la limite où l’échelle des mutations (c’est-à-dire l’écart à une dynamique imitative) devient
petite. Cette approche donne lieu à la construction (classique) d’un objet limite sous la forme
d’une équation de Hamilton-Jacobi avec contrainte, qui présente ici un aspect nouveau, dû au
terme de reproduction sexuée (Théorème 12.4 et Section 12.6). En supposant par exemple que
εKε(x, y, z) = B(y)α(x−zε , y) où

∫
α(z′, y)dz′ ≡ 1, c’est-à-dire que la fécondité du croisement entre

un mâle z et une femelle y ne dépend que de y, alors on obtient à la limite ε→ 0 :

∂tu(t, x) =

∫
B(y)q(t, y)L[α( · , y)](∂xu(t, x))dy −R(x, ρ(t)), max

x∈R
u(t, x) ≡ 0,

où L[α( · , y)] est la transformée de Laplace de α( · , y) :

L[α](p) :=

∫
α(z)e−p · zdz,

et q(t, y) = limε→0 nε(t, y)/ρε(t) est la distribution (normalisée) de la population. L’étude de
cette équation limite, inachevée dans l’état actuel de ce travail, est rendue difficile par la présence
de termes dépendant de t, R(x, ρ(t)) d’une part et q(t, y) d’autre part, qui doivent être définis
précisément par passage à la limite dans l’équation au niveau ε. Une première étape dans cette
étude est l’obtention de bornes uniformes en variation totale locale sur ρε(t), ce qui est l’objet des
Théorèmes 12.1, 12.2 et 12.3, pour trois situations particulières. L’extension de ces résultats et
méthodes à des noyaux de reproduction K plus généraux est également discutée.

Les questions de l’existence et de l’unicité des états d’équilibres pour (1.9) sont proposées
comme problèmes ouverts dans la Section 13.4.
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Chapter 2

English introduction

Quand même les différences très sensibles, que j’ai remarquées dans
les diverses contrées où j’ai abordé, ne m’auraient pas empêché de
me livrer à cet esprit de système, si commun aujourd’hui, et cepen-
dant si peu compatible avec la vraie philosophie, comment aurais-je
pu espérer que ma chimère, quelque vraisemblance que je susse lui
donner, pût jamais faire fortune ?

Louis-Antoine de Bougainville, Voyage autour du monde par la
frégate la Boudeuse et la flûte l’Etoile.

2.1 General aspects

2.1.1 Dissertation outline

This manuscript is split into four parts. Part I is devoted to context presentation (i.e. existing
works, methods and problems which frame the present work). Part II gathers studies on reaction-
diffusion equations. These are the only ones which include one or several spatial dimensions.
Part III groups together works concerned with time dynamics in finite dimension described by
ordinary differential equations. Finally Part IV contains the study of the dynamics of a populations
with a phenotype structure (Chapter 12) and mathematical perspectives (Chapter 13).

In details, Chapters 3 and 4 are devoted to the application context (medical entomology) and
to the mathematical context, respectively. From Chapter 5 to Chapter 12 this thesis presents new
results, some of which have already appeared in scientific journals (the corresponding references
are given at the beginning of each chapter) as listed below. Before conclusion, Chapter 13 is an
attempt to motivate or guide possible extensions of the present work. Several open problems are
stated (some of them being partly solves), which appeared during the thesis completion.

Three articles were published and one submitted in scientific journals:

� Chapter 5 was published in SIAM Journal on Applied Mathematics [211] ;

� Chapter 6 was published in the Journal of Mathematical Biology [176] ;

� Chapter 7 was published in Mathematical Biosciences and Engineering [212] ;

� Chapter 8 has been submitted.

2.1.2 Mathematics ans entomology

This thesis in applied mathematics interfaces with entomology, more precisely with vector control.
Therefore, in the first place we describe what this interface was, and what have been its benefits.

In march 2016 I took the intensive course from Institut Pasteur de Paris on vector insects
and pathogens transmission (as a module from my doctoral school). This training in medical
entomology has been precious to nurture exchanges with researchers in other fields than mine.
Moreover strong interactions with Brazilian partners of my advisors punctuated the first year and
a half of the thesis, in Paris and Rio de Janeiro. This interaction brought about two research
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projects that were completed to yield Chapters 7 and 8. In 2016 and 2017 also, the STIC-AmSud
Mosticaw project was developed under the supervision of Pierre-Alexandre Bliman (Inria) for
the French part. Two meetings in Paraguay and France made it possible to exchange and build
a network with researchers from South America motivated by the use of Wolbachia to control
mosquitoes in genus Aedes. Afterwards, with the help from Yves Dumont (met during Mosticaw
meetings) and trust from my advisors I put in place a collaboration between Laboratoire Jacques-
Louis Lions (LJLL) and the entomology unit from Institut Louis Malardé (French Polynesia). So
far, the scientific outcome of this joint effort is embodied by Chapter 9, which I hope will be
pursued.

The other facet of the interface are applied mathematics. In this area LJLL is an outstanding
environment where I could work with various researchers and learn a lot technically from them
especially in analysis. Chapter 5 is the completion of a study I began during my Master 2 internship
(under the supervision of Benoit Perthame and Nicolas Vauchelet). It was the starting point for
vector control modeling. Chapters 6, 10, 11 and 12 are joint works with members of LJLL interested
in bio-mathematics.

Considering this context, I built and studied mathematical models of population dynamics
which can be applied to practical problems raised by innovative vector control techniques directed
against mosquitoes in genus Aedes. Some of the works presented here were directly motivated by
entomologists, some other works were joint efforts in tight connection with them and yet other
works were performed out of mathematical interest, while keeping in mind their biological motiva-
tion.

Interfaces are rich in pitfalls. Bougainville in Voyage autour du monde [63, p. 19] already noted
(loose translation)

I am a traveler and a sailor, that is a liar and a fool in the eyes of those lazy and
haughty writers in the shadows of their cabinets who philosophize endlessly about the
world and its inhabitants, imperatively submitting nature to their thoughts. What a
singular, utterly unbelievable manner to those people: they haven’t observed anything
themselves but write and get dogmatic about observations they borrow to the very
same travelers to whom they deny the ability to see or think.

When doing mathematics motivated by entomology, one get exposed to the criticism of “hands-
on people” as soon as one gives way to the temptation of “submitting imperatively” a biological
system to purely theoretical conclusions drawn from a mathematical model. Yet, one mustn’t
expect the leniency of mathematicians for incomplete or slippery proofs on behalf of biological
interpretations. Right between these two pitfalls goes the way we tried to travel here. Walking
this narrow and sometimes exhausting path one never ceases to bring model face to face with
evidence-based knowledge, submitting conjectures to the most thorough mathematical analysis.
The work at interface is also rich in new questions and original viewpoints. I hope that this will
show through these pages.

When dealing with entomology the mathematical modelers are faced with specific problems
and opportunities. The available data are too coarse (or costly, see Chapter 3) to hope for a very
fine description of a given population. Due to their small size, it is hopeless to try and follow
individual mosquitoes. However these insects can disperse, getting hard to reach: their geographic
area is seldom well-defined. Considering these field difficulties, medical entomologists can still gain
a pretty good knowledge (at least in relative terms) of populations thanks to their investigation
tools (see Chapter 3). Therefore, humble conclusions from a well-used model can already prove
relevant.

The works gathered in this dissertation are nothing but a step (a useful one, hopefully) in
designing well-adapted and well-understood mathematical models that allow for anticipating and
optimizing the outcomes of innovative vector control methods, relying on releases of individuals.
In Chapter 4 we justify our quest for simple (or even simplistic) models which stress a few clearly
identified mechanisms and can predict precisely the results of their combination.

2.2 Tools

Before presenting our results we highlight some important aspects of the tools involved.
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2.2.1 Modeling

The present work is based upon deterministic mathematical models. The approach is detailed in
Chapter 4. The insect population at a given moment in time is thus reduced either to a finite
number of figures, the headcounts (ordinary differential equations), to one or two (in case of two
interacting sub-populations) spatial densities (reaction-diffusion equations), or to a density over a
phenotype space (structured ordinary differential equations).

When shaping such a model, two features are critical: its range (what questions would it answer)
and the mechanisms it takes into account. We always targeted the simplest model incorporating
these two features. When necessary, to understand Wolbachia infection dispersal at large scale we
used reaction-diffusion equations (Part II) that take space into account. On the contrary, for local
or homogeneous populations we sticked to temporal dynamics (Part III).

2.2.2 Monotone systems

Except in Chapters 8 and 12, all population dynamics models in this dissertation can be seen as
monotone dynamical systems. The monotonicity property (to preserve an order on the state space
throughout time evolution) is structural and was studied simultaneously by Hirsch and Matano in
the 1980s (see for instance [114]). A remarkable consequence is generic convergence to equilibrium
(see Chapter 4 for a detailed account).

Thus, the models we consider induce standard dynamics (convergence to equilibrium), which
require only the knowledge of the steady states and their local stability. In addition, monotonicity
provides a very convenient and simple mathematical tool: sub- and super-solutions.

From the biological point of view, monotonicity is satisfactory if the mechanisms are unequivo-
cal. Let us expand on the mosquito case. At first sight, an egg hatches and produces a larva, which
becomes a pupa and emerges as an adult; if it is a female, it will lay new eggs (see Chapter 3). As
long as the life-cycle goes along these lines, it makes sense that any increase in the initial number of
eggs, for instance, results in an increase not only of the number of eggs but also of the numbers of
larvae, pupae and adults compared to what they would have been without this increase. However,
Chapter 8 illustrates the fact that natural interactions are almost never unequivocal. Complex,
nonlinear interactions (or interaction chains) jeopardize the intuitive monotonicity. In the model
from Chapter 8, we hypothesize that larvae are a cue for egg hatching. This very simple feedback
is enough (under some parameter conditions) to destabilize the equilibrium population and induce
stable oscillations of the population sizes, which can be arbitrarily large. In particular the “generic
convergence to equilibrium” behavior disappears, it is replaced by the convergence to a periodic
solution.

Monotonicity is also lost in Chapter 12. In this chapter, a population is structured by its phe-
notype. The study is motivated by the insecticide resistance trait and is inspired by the paper [123]
by Pierre-Emmanuel Jabin and Gaël Raoul. The authors describe the selection dynamics of a trait
under global competitive interactions in the population. Although this is not stricto sensu a mono-
tone system, the singular structure of the equation yields the generic convergence to equilibrium
property (in fact, toward an ESD for “evolutionarily stable distribution”), which can be proved
by using a Lyapunov function relying on the relative entropy in [123]. In Chapter 12 we modify
the model to take into account sexual reproduction. Any two sub-populations with different traits
are then simultaneously in competitive interaction (for resources) and in cooperative interaction
by reproduction (for the transmission of their trait by heredity): there is no monotonicity.

2.2.3 Bistability

The two vector control methods we model here (more precisely in Chapters 7, 9 and 10) share
a bistable1 nature. In Wolbachia population replacement (see Section 3.3.2) as in population
elimination by sterile or incompatible insect technique (SIT/IIT, see Section 3.3.1), the initial
state consists in an established wild mosquito population: this it the first stable steady state.
Human interventions repeatedly release males and females (for replacement) or males only (for
elimination). It aims at another stable steady state: established Wolbachia infection in the first
case and population eradication in the second case (which is assumed to be stable in the sense that
immigrants cannot implant a population if they are too few).

1A dynamical system is termed bistable when it has exactly two stable steady states.
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Our mathematical framework stresses the analogy between the two situations, at least for
temporal dynamics2. Since we use a human intervention to make the system go from a stable
steady state to another stable steady state, bistability raises a simple and natural question: how to
make the system move from a steady state to the other? In other words, where lies the boundary
between the two basins of attraction, and how to reach it? To express this mathematically, the
human intervention itself must be modeled properly: the associated control problem must be
carefully defined.

2.2.4 Control theory

(Optimal) control theory for differential dynamical systems is a powerful tool, which was a must
to tackle the previous problem. Chapter 10 illustrates the rigorous introduction of control terms
in mosquito population dynamics models to describe human intervention.

In this simple formalism the population state at a given moment in time is the variable we act
upon. A practical problem of vector control can then translate mathematically into an optimization
problem whose unknown is precisely the human intervention on the system.

2.3 Presentation of the main results

2.3.1 Reaction-diffusion systems

In the three papers [211], [176] and [212] (co-authored with Nicolas Vauchelet, doctoral supervisor
and Grégoire Nadin or Jorge P. Zubelli) we focused on special reaction-diffusion systems with two
components posed on the infinite domain Ω = Rd. Adding a positive measure u as a control term
these systems read


∂tn1 −∇ ·

(
A(x)∇n1

)
= b1n1(1− sh

n2

n1 + n2
)(1− n1 + n2

K
)− d1n1 in [0, T ]× Rd,

∂tn2 −∇ ·

(
A(x)∇n2

)
= b2n2(1− n1 + n2

K
)− d2n2 + u in [0, T ]× Rd,

ni(0, · ) = n0
i ≥ 0 (i ∈ {1, 2}).

(2.1)

Here, bi (resp. di) is the net fecundity (resp. death) rate of population i (wild for i = 1, carrying
Wolbachia for i = 2). K > 0 is the environmental carrying capacity, sh ∈ [0, 1] is the cytoplasmic
incompatibility (CI) rate (CI is perfect when sh = 1). In [211] (which is Chapter 5), with u ≡ 0
and bi = b0i /ε we show that the frequency of Wolbachia infection p := n2/(n1 + n2) converges as
ε→ 0 to the solution of ∂tp−∇ ·

(
A(x)∇p

)
= d2

p(1− p)(p− θ)
shp2 − (sf + sh)p+ 1

,

p(0, · ) = n0
2/(n

0
1 + n0

2),

(2.2)

where

sf := 1− b02
b01
, δ :=

d2

d1
, θ :=

sf + δ − 1

δsh
,

under the assumption sf < sh (i.e. if CI is strong enough and fecundity reduction is limited).
As a matter of fact this result (Theorem 5.1) extends to slightly more general reaction terms,

including imperfect vertical (=from mother to offspring) transmission, or more general effects of
the infection frequency p on the various terms (the general statement holds under assumptions 5.2
and 5.3). In substance the dimension is reduced due to fast reaction3. It is proved by means of a
priori estimates in suitable Sobolev spaces, yielding compactness thanks to a Lions-Aubin lemma
and the full convergence by uniqueness of the solution to the limit problem.

2However, even in dimension 2 it must be emphasized that the separatrix between the two basins of attraction
does not have the same topological nature. Jean-Pierre Françoise made me notice that in the case of population
replacement the separatrix contains two distinct (unstable) steady states, hence a heteroclinic orbit, while it contains
only one (unstable) steady state in the case of population elimination. See Chapters 9 and 10 for further details.

3When d = 0 (cf. Chapter 10), we obtain a classical slow-fast system in dimension 2 (see Section 4.2.2) for which
this dimension reduction is equivalent to the projection of the dynamics on the slow manifold.
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The interest of this convergence result is manifold. First mathematically: equation (2.2) is
scalar and enjoys a variational formulation which simplifies a lot the asymptotic study. Some
sub-solutions (“bubbles”) can also be described in details and prove useful to get non-extinction
conditions (in [212] and also in [176]).

Then from the modeling point of view, our starting motivation for studying (2.1) stems from
the paper by Barton and Turelli [29] where a frequency model similar to (2.2) is used directly
to model the dispersion of a variant trait in the presence of so-called “cytoplasmic and genetic
analogues of Allee effects” (in particular, cytoplasmic incompatibility caused by Wolbachia is one
of these effects). We found that it was worthy of interest to understand to which extend a scalar
model such as (2.2), dealing only with infection frequency, is able to represent simultaneously the
dynamics of two interacting sub-populations. Our convergence results shows rigorously that the
scalar model is close to system (2.1) but also unveils the imperfect correspondence with (2.2) when
ε > 0.

Lastly the (uncontrolled) equation (2.2) is classical and well-understood. When A = I it
possesses a remarkable property for localized initial data: establishment of the population is prac-
tically4 equivalent to propagation, and in this case it propagates (along any direction) as a traveling
wave asymptotically (see section 4.3.2 infra). It is precisely this constant-speed, constant-profile
propagation of Wolbachia which aroused the interest for such models, based upon field observations
(see the works of Turelli and Hoffmann [222] and [223]).

It appears that the correspondence (2.1)-(2.2) provides a suitable framework to study mathe-
matically various mechanisms along these lines:

1. Modeling in (2.1);

2. Passing to the limit ε→ 0 in (2.2);

3. Mathematical study of the limit problem;

4. Numerical comparison with (2.1).

This is the scheme of Chapter 10 in the case d = 0 (i.e. space-homogeneous, which can also
be interpreted as a solution to (2.1) with homogeneous initial data). We study the behavior of
solutions as u = uε solves an optimal control problem.

In [176] (which is Chapter 6) we stick to dimension d = 1 and study (2.2). The study is
motivated by a remark in [29] about the influence of spatial variations of the population size. In
the scalar model (of the form (2.2)), Barton and Turelli note that if the gene flow is modeled
through an advection term, that is if p satisfies

∂tp− ∂xxp− 2
∂xN

N
∂xp = f(p), (2.3)

where N : R → R+ is given (it is the population size) and f is a bistable reaction term then for
∂xN
N large enough the traveling wave stops - the sign of its speed can even be reversed. We solve

completely the case ∂xN
N = C1[−L,L](x) for C,L > 0 to obtain Theorem 6.2. In substance, for fixed

L and large enough C (or for fixed C and large enough L) we show wave blocking. Otherwise the
wave is merely delayed.

In Proposition 6.4 we describe the asymptotic behavior of LC∗(L) as L goes to 0, where C∗(L)
is the critical value of C upon which blocking occurs. This result is interpreted as follows: along
a propagation direction, if the population size increases too rapidly, or steadily on a long enough
distance then the invasion stops. A jump in the population size is sufficient to block invasion if
and only if its magnitude measured by NR/NL (population size after the jump over population
size before the jump) exceeds

[N ]crit :=
(
1−

∫ 1

0
f(p)dp∫ θ

0
f(p)dp

)1/4
.

This limit is relevant for application to insect populations, since the abundance can vary brutally
depending on ground cover or water availability. Thus the gene flow term is able to model such
spatial heterogeneity.

4The population must establish in a large enough area.
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As for Theorem 6.1, it states that if N depends in fact on p the (2.3) has the same nature as
before (without advection): it is a bistable reaction-diffusion equation. However the traveling wave
speed sign can be reversed.

In [212] (which is Chapter 7) we focus on initial data. The problem consists in determining
how to release Wolbachia-carrying mosquitoes at a given moment in time to ensure infection
establishment, in the presence of uncertainty - and thus to ensure its dispersal since the two
concepts are practically equivalent in this case.

The domain where mosquitoes are released is bounded. There, we first show that the success
probability goes to 1 as the number of release points goes to +∞ (Proposition 7.2). Then we
build compactly supported reference profiles (sub-solutions in dimension 1 obtained by solving
the stationary elliptic problem on bounded domains; negative energy profiles in dimension > 1)
which are called “bubbles” or “propagules”. If the infection profile, at any moment in time, stands
above one of these reference profiles then the infection will maintain and invade the whole domain
(Theorem 7.1).

Then we show that these sufficient invasion conditions (standing above a propagule) are very
hard to reach with only one release point. Multiple release points induce an initial data as a sum
of gaussian profiles, for which we provide analytical results. By doing so we quantify the invasion
probability, and the results are illustrated by numerical simulations.

As a notable consequence, there exists an optimal size for the release domain. Even in the
presence of uncertainty, an experimenter may seek for designing the area where the mosquitoes
will be released in order to maximize the success probability. If releases are too grouped, the
diffusion will dominate and the infection will never reach the critical spatial range to propagate.
On the contrary if they are overly scattered then there is no place where the infection will reach
the critical frequency to propagate.

From a monotone systems viewpoint, the boundary between the two basins of attraction con-
tains simultaneously profiles with low values but extensive range, and profiles reaching high values
on very localized ranges.

This work is connected to [93] where the authors quantified numerically the impact on popula-
tion establishment success of two macroscopic observables of the initial data: fragmentation and
abundance, in bistable reaction-diffusion. They conclude that fragmentation is rather detrimental
although its effect depends on the abundance level. In Chapter 7 we recover similar questions,
since the release domain area which maximizes the invasion success varies with abundance, and
this size typically affects initial data fragmentation: larger domains favor fragmentation.

2.3.2 Ordinary differential systems

Most of the remainder of the thesis is concerned with systems of ordinary differential equations.

First, in Chapter 8 we study a very simple two-dimensional system coming from a compartmen-
tal model. The two remaining dimensions model the eggs and larvae populations. The interesting
feature of the model is that the hatching rate h ≥ 0 depends on larval density (the other parameters
are positive constants): 

dE

dt
= bL− (h(L) + dE)E,

dL

dt
= h(L)E − (cL+ dL)L.

(2.4)

Building on this simple hypothesis we prove that if h′ > 0 (positive feedback) then system (2.4)
is destabilized5 and its solutions exhibit periodic oscillations. These oscillations occur in the form
of a Hopf bifurcation along a parameter which describes the feedback magnitude, h′(L) (where
(L,E) is a stable positive steady state when h′(L) is small enough, Theorem 8.2), or by means of
a slow-fast analysis when the egg stock E is large and slowly varying (Theorem 8.1).

By highlighting the possibility (from a modeling point of view) that such oscillations can be
caused by a positive feedback on hatching is a first step toward a possible explanation of some
field observations. Some fluctuations indeed do not seem to correlate with environment variations
(see [119], [141]). This study ought to be continued in order to describe more precisely (in more

5On the contrary, if h′ ≤ 0 then (2.4) is monotone cooperative and possesses 1 or 0 positive steady states. If
it has a positive steady state then this one is globally asymptotically stable in (R∗+)2, otherwise (0, 0) is globally
asymptotically stable. This is why we speak of “destabilization” under positive feedback.
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complex compartmental models than (2.4)) the hatching dynamics in genus Aedes. Hatching is
certainly a nonlinear phenomenon critical to understand these populations.

The next two chapters are concerned with practical problems raised by vector control methods.
They appear as control problems for differential dynamical systems.

Chapter 9 is motivated by the use of the incompatible insect technique (IIT, see Section 3.3.1).
By repeated releases of sterilizing males (i.e. males which make sterile the females they copulate
with) the aim is to reduce or even eliminate a pest insect population (here, mosquitoes in genus
Aedes). The model we build is deliberately simple but takes into account the eggs dynamics (which
is thought to be very important for these species) and a hypothetical Allee effect6 quantified by a
parameter β > 0. 

dE

dt
= bF (1− E

K
)− (νE + µE)E,

dM

dt
= (1− r)νEE − µMM,

dF

dt
= rνEE

(
1− e−β(M+Mi)

) M

M +Mi
− µFF,

dMi

dt
= u(t)− µiMi

(2.5)

Here, E stands for all immature stages, M is the male density and F is the fertile females density
(those which were inseminated by a compatible male). Mi is the incompatible male density and
u(t) is the release flux.

Mathematically, the Allee effect makes the trivial (extinction) state 0 stable for (2.5) even with
u ≡ 0. It is a new feature for such models, which provides a new insight into the natural questions
associated with IIT (how large must the releases be, and how many of them are necessary), both
analytical and geometrical: we are faced with the description of a separatrix, which is a co-
dimension 1 sub-manifold.

Thanks to the entomological literature we define a range of values of the various parameters.
We show that the time dynamics is bistable in general, and the stable positive steady state is
denoted by E+. Some elementary (but useful) properties of the separatrix are stated in Proposi-
tion 9.2. In particular we show that above some (finite) given number of eggs or fertile females
the population will always recover toward its wild state if the releases are stopped. The dynamical
system on (E,M,F,Mi) induced by (2.5) is monotone with respect to the cone Ko := R3

+×R−. We
show that the population is driven toward extinction under constant release of sterilizing males,
provided the amplitude of the release is large enough (Mi(t) ≡ Mi > M crit

i ). Then we prove
analytical bounds on the time it takes to reach the extinction basin, using sub- and super-solutions
(Proposition 9.3). We obtain similar bounds for impulsive periodic releases with amplitude Λ
and period τ (Propositions 9.6 and 9.7). To this aim we show that Mi(t) converges toward the

τ -periodization of t 7→ Λe−µit

1−e−µiτ . These bounds can be used to estimate analytically (as functions

of the parameters) a number of releases sufficient to ensure extinction, for fixed Λ and τ . The
detailed numerical study of a special case (isolated population of Aedes polynesiensis) illustrates
the results and bolsters their practical interest.

Chapter 10 complements the previous chapter. It takes the control theory viewpoint on a
similar problem: to steer a system of ordinary differential equations toward a stable equilibrium,
starting from another stable equilibrium. The systems from Chapters 9 and 10 are both monotone
with monotone control: releases of sterilizing males in the first place and of males-and-females
Wolbachia-carrying mosquitoes here. The system from (10) is deduced from the homogeneous (2.1):

dn1

dt
= b1n1(1− sh

n2

n1 + n2
)(1− n1 + n2

K
)− d1n1, n1(0) = K(1− d1

b1
),

dn2

dt
= b2n2(1− n1 + n2

K
)− d2n2 + u, n2(0) = 0.

(2.6)

The controlled system (2.6) is complemented with a criterion describing the distance between
the system’s state at fixed time T > 0 and population replacement, that is the establishment of
population 2 to the detriment of population 1:

J(u) :=
1

2
n1(T )2 +

1

2

(
K(1− d2

b2
)− n2(T )

)2
+
. (2.7)

6When males are scarce, some females cannot get inseminated.
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The constrained minimization problem associated with (2.6)-(2.7), for u ∈ L∞(0, T ) such that

0 ≤ u ≤M and
∫ T

0
u(t)dt ≤ C for some C,M > 0 is denoted (Pfull).

We show rigorously (Proposition 10.2) that if fecundity is large (bi = b0i /ε, i ∈ {1, 2}) and we
take ε→ 0 then (Pfull) converges toward a reduced problem (Preduced) defined by the minimization,
with respect to the same control u of the following functional:

J0(u) := (1− p(T ))2,

where p solves

dp

dt
= p(1− p) d1b

0
2 − d2b

0
1(1− shp)

b01(1− p)(1− shp) + b02p
+
u

K

b01(1− p)(1− shp)
b01(1− p)(1− shp) + b02p

, p(0) = 0. (2.8)

Equation (2.8) is interesting because it describes precisely how the simple (from a modeling
point of view) control in (2.6) (releases of Wolbachia-carrying mosquitoes: u(t) is the release flux)
is transferred to a scalar control on the infection frequency.

As for problem (Preduced), it can be solved analytically (Theorem 10.1): for all M > 0 there
exists C∗(M) > 0 (which can be expressed in terms of b0i , di, sh and K) such that if C > C∗(M)
the solution of (Preduced) is unique and equal to u∗ = M1[0,C/M ] while if C < C∗(M) this solution
is unique and equal to u∗ = M1[T−C/M,T ]. If C = C∗(M) then the set of minimizers is equal to
{u∗λ := M1[λ,λ+C/M ], λ ∈ [0, T − C/M ]}.

Combining both results (convergence and limit problem resolution) we state that if population
replacement is possible, and if fecundity rates are large, then it is near-optimal to release all
individuals at the beginning with the largest possible flux. The numerical study of problem (Pfull)
shows however that for ε > 0, the actual optimal strategies can differ greatly from this limit
strategy.

Part III ends with Chapter 11, which is a theoretical contribution to the study of seasonal
dynamics. The starting questions is: what are the effects of taking into account different seasons
in the previous population dynamics? First we try to describe as precisely as possible the case
when there are only two seasons, one being favorable and the other one unfavorable. We show
(Theorem 11.2) that if the nonlinearities are concave then we can easily find sufficient conditions
for a “sharp seasonal threshold property”. By this we mean that the relative duration of the two
seasons is a critical parameter: if it is below some threshold then the population extincts, and if
it is above then the dynamics converges toward a unique periodic profile. This preliminary result
should be put in perspective with control problems associated with vector control methods. In
particular, the study of the periodic limit cycle may prove useful. The extension to other types of
nonlinearities should also be discussed, with a particular emphasis on the seasonal alternation of
bistable and (extinction) monostable dynamics.

2.3.3 Evolution equation for a structured population

Finally, Chapter 12 is concerned with a population structured by its phenotype. The population
state is described by a positive measure on a phenotype space P, typically P ⊆ Rd. The model is
motivated by the burning issue of insecticide resistance dynamics in mosquito populations. In [200],
Schechtman and Souza used an ordinary differential equations model to describe an asymmetry
between the time it takes for resistance to appear in a population exposed to insecticide and the
reversal time, that is the time it takes to disappear after the insecticide is no longer used. This
result was obtained in the case of a genetic resistance caused by two successive mutations. The first
one yields a good resistance level at a high fitness cost, and the second strengthens resistance while
largely mitigating the fitness cost. Our goal is to describe that kind of asymmetry (or any other
interesting time dynamics) for a continuously structured population with sexual reproduction. This
is an important novelty compared with existing models, many of which dealing with resistance to
treatment in bacteria or cells populations with clonal reproduction (see for instance [153]).

We propose a fairly general model and treat it only mathematically. We aim at designing tools
to treat the sexual reproduction term, which is nonlinear and nonlocal, though 1-homogeneous.
The equation reads

∂tn(t, x) =
1

ρ(t)

x

P2

K(x, y, z)n(t, y)n(t, z)dydz −R(x, ρ(t))n(t, x), ρ(t) =

∫
P
n(t, x)dx. (2.9)
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Here, K(x, y, z) ≥ 0 is the weighted distribution of the progeny from a female with trait y mated
with a male with trait z. R(x, ρ) is the death rate of individuals with trait x when the total
population is equal to ρ. Such a model is justified only if the sex ratio is constant in time and
also between different traits x ∈ P. We also assume that R(x, · ) is an increasing and unbounded
function which models environment saturation. This allows to bound ρ uniformly along forward
orbits. First, we describe the singular properties of “imitative” models (this term comes from
game theory, see [199]), where the offspring inherits exactly the trait of one of its parents. For
these special models, a Lyapunov functional can be designed in some cases, allowing to prove
concentration of the phenotypes toward the fittest trait (Theorem 12.5). Then we study the long
time dynamics, when the mutation scale (measuring the distance to an imitative dynamics) becomes
small. In this approach we construct a (classical) limit object in the form of a constrained Hamilton-
Jacobi equation, which appears with new terms due to sexual reproduction (Theorem 12.4 and
Section 12.6). Assuming for instance εKε(x, y, z) = B(y)α(x−zε , y), where

∫
α(z′, y)dz′ ≡ 1, i.e.

the fecundity of a crossing between a z male and a y female only depends on y, then in the limit
ε→ 0 we get

∂tu(t, x) =

∫
B(y)q(t, y)L[α( · , y)](∂xu(t, x))dy −R(x, ρ(t)), max

x∈R
u(t, x) ≡ 0,

where L[α( · , y)]is the Laplace transform of α( · , y) :

L[a](p) :=

∫
a(z)e−p · zdz,

and q(t, y) = limε→0 nε(t, y)/ρε(t) is the population distribution.
At this stage the study of the limit equation is incomplete. It is difficult due to time-dependent

terms, R(x, ρ(t)) on the first hand and q(t, y) on the other hand, which must be defined precisely
by passing to the limit at the ε level equation. A first step has been made by obtaining uniform
bounds in local total variation on ρε(t) (Theorems 12.1, 12.2 and 12.3, for three particular cases).
The extension of these results to more general reproduction kernels K is discussed.

The problems of existence and uniqueness of steady state distributions for (2.9) are proposed
as open problems in Section 13.4.
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Chapter 3

Mosquitoes and vector control

In this chapter, we start the context presentation by collecting important facts about vector
mosquito species of genus Aedes (Diptera:Culicidae). These mosquitoes, in particular the species
Ae. aegypti and Ae. albopictus (but also locally Ae. polynesiensis) are the main vectors of various
arboviruses (dengue, chikungunya, zika). The population dynamics models developed during this
thesis can apply to these species.

First we give a quick overview of what Aedes mosquitoes are, where they live and how they
behave. Then, we define the vector-borne diseases under study and discuss important consequences
for vector control. Finally, we describe in greater details two current approaches in vector control:
population reduction by Sterile and/or Incompatible Insect Technique (SIT/IIT) and population
replacement strategies.

3.1 Bio-ecology and monitoring of Aedes mosquitoes

Aedes1 is traditionally the name of a ”large genus comprising 931 species divided among 78 subgen-
era” (after [4]), whose first description is usually credited to Meigen [166]. The Culicidae taxonomy
has been revised (since [108]), and the three insects of interest in this thesis, once belonging to
Aedes genus, are now classified in Stegomyia2 genus. Yet, they are widely known (in particular in
tropical medicine) under their old names, which we retain throughout this work. The “new” Ste-
gomyia genus comprises 128 species (in April 2018, [4]), among which Aedes aegypti (= Stegomyia
aegypti) and Aedes albopictus (= Stegomyia albopicta) are major arbovirus vectors (see Section 3.2
for more details about vector-borne diseases).

Once a zoophilic and forest species from Africa [173], some Ae. aegypti populations adapted
towards anthropophilic behavior, making it one of the most dangerous (for humans) mosquito
species.

3.1.1 Life-cycle

The Aedes mosquitoes are holometabolous insects, which means that the larvae undergo a full
metamorphosis to become adults. For this reason adults and juveniles have totally different ecology
and behavior. Before moving to modeling works, it is important to keep in mind a clear notion of
the mosquito’s life-cycle. We reproduce below the overall description of the life-cycle in sub-family
Culicinae (Diptera:Culicidae) that can be found in the review [76, Chapitre 11, pp. 251-253].

The life-cycle of Culicinae is divided into two phases: aquatic (egg, larva, pupa) and aerial
(adults or “imago”, both male and female). Adult females are usually considered to be inseminated
by a single male, although multiple mating is possible (on this topic, see [180]). Roughly speaking,
egg maturation takes about 3 days (but depends on temperature and varies among species) and a
female can lay 40 − 80 eggs per oviposition. A female Ae. aegypti or Ae. albopictus can split its
eggs clutch between several breeding sites (see [48], [62]).

In particular for the three species under consideration, eggs can resist dessication and wait for
several months before hatching. Eggs from Ae. albopictus are known to resist to low temperatures,

1The name Aedes comes from the greek word for “unpleasant“ [2].
2Described in [210] citing [215] as “having scales completely covering the dorsal surface of the adult fly”, whence

this name from the greek words for “covered, roofed” and “fly”.
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allowing for the colonization of tempered areas, including Europe (see [104], and also [97] for a
modeling work).

When stimulated, eggs hatch3 and give rise to larvae, who feed on small particles in the water,
and take from 3 days to several weeks (in particular in tempered areas) to develop fully and reach
the pupa stage. Pupae still move in the water but do not feed anymore. This stage lasts 1 − 3
days and leads to emergence, that is the beginning of the (aerial) adult stage.

Only females suck blood (on vertebrates), and usually take 2−5 days between two blood meals
(although one meal can consist in several bites if the insect is disturbed). It uses the proteins from
the blood to maturate its eggs. Therefore, the ovipositions also occur every 2− 5 days. The mean
lifespan for adults is estimated at a few weeks (for Ae. albopictus in laboratory conditions, 18 days
for males and 30 days females according to [76, pp. 252-253]). In particular, a single female will
perform several blood meals and ovipositions during its life, on average.

Adults can fly and their dispersal (depending on the environmental conditions like blood or
breeding sites availability) is usually less than 1 km. Due to the excellent resistance of eggs,
however, Aedes species have been transported between continents by human activity (see [165]).

3.1.2 Behaviors

The urban Ae. aegypti populations (for instance in Rio de Janeiro, Brazil, as studied in Chapter 8)
is highly domesticated (see [76, pp. 259 - 260]) and lays eggs mostly in artificial containers (see
for instance [119], [158]). It is anthropophilic (feeding preferentially if not only on humans),
endophagic (feeding in houses) and endophilic (resting in houses). Ae. aegypti females bite
during the day, with peak activity in the morning and late afternoon. The species is limited to
tropical areas since it cannot resist low temperatures.

On the contrary, the range of Ae. albopictus (see [76, p. 260 - 261]) is much wider (in 2015, it
was established in at least 20 European countries). It can use both natural and artificial containers
and is overall opportunistic, feeding on humans as well as on many other vertebrate species. In
particular in Rio de Janeiro, and also in any place where they are sympatric, Ae. albopictus and Ae.
aegypti compete at the larval stage. In America, in Africa and in the Indian Ocean this interaction
seems to be in favor of Ae. albopictus, while in South-East Asia the converse seems true.

According to [105, p. 8], in French Polynesia for Ae. polynesiensis the “aquatic stage lasts for
9− 16 days, adults can live up to 25− 30 days, laying around 5 egg batches of approximately 100
eggs each”. Ae. polynesiensis is distributed throughout the eastern part of the South Pacific (see
[105, p. 10]). Interestingly, this population shares with the Ae. albopictus population from Rio
de Janeiro the ability to use both natural and artificial breeding sites. In the area under study in
Chapter 9, coconuts (in particular rat-eaten ones) seem to be the main breeding site (see [105] and
the references therein). This species is exophilic, opportunistic with a bias towards anthropophily.

3.1.3 Data acquisition

Acquiring data on mosquito populations is by no means an easy task. We gather here the four types
of data collection that we have encountered during this thesis, and explain their main advantages
and drawbacks.

First, trapping counts are widely used to measure at least relative variations in population
abundance. The usual process relies on installing a trap in the field, and collecting on a regular
basis the captured individuals (it can be adults but also eggs, or even preferentially gravid females,
depending on the trap). Then, these specimens are identified. The data are typically counts of
individuals captured in a trap at a given location, over time. Such data are used in [141] to try
and estimate the relative abundance of Ae. aegypti in Rio de Janeiro during different seasons, and
in [142] for surveillance quality assessment purposes. Such data are rather easy and cheap to collect,
although it may require a large workforce in particular in remote locations or in the presence of
many different species. They are rather good at estimating relative population abundance, when
adequate traps are used in similar conditions. However, the trapping process itself is non-trivial (so
that it needs to be modeled in order to interpret properly the data, see for instance [71, Chapters
3 and 4]), and in the long run the local population may adapt to the trap, inducing new biases.

3For further discussion of the hatching behavior of Aedes mosquitoes, see [78], [151], the modeling in [17] and
[16] for Argentinian (=tempered) climate, the reference “life-table” model by Focks et al. [88] and the Chapter 8.
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Second, once a lab colony has been established, laboratory data are commonly used to
estimate vital parameters (see for instance [106] for Ae. polynesiensis) or vector competence (for
instance in [34] for an Ae. albopictus population carrying Wolbachia, see Section 3.2 for a discussion
on vector-borne diseases). When using a controlled environment with field-like conditions (like a
large outdoor cage rather than a smaller one within an insectary), such experiments are called
“semi-field” (as in [49]). These data are the easiest ones to collect (of course, only once the lab
colony exists). However, one cannot expect that they inform precisely the field behavior, since
the controlled conditions can never imitate perfectly the field ones, and over time (in spite of
back-crossing), the lab population gradually digresses from the field one where it originated.

Comparing lab results (obtained from a lab colony) with similar experimental results obtained
from field collected individuals (thanks to traps) is usually a good way to try and validate a
hypothesis, as is done in [130] for the so-called “competition-longevity” hypothesis in Ae. aegypti.

Third, the genetic data can be used very efficiently, for instance among trapped individuals,
to study the population’s structure (see for instance [240]) and get much more detailed information
than mere counts at each trap location. Such analyses are still expensive and can usually not be
applied to a whole field collection, limiting the outcomes. However, the obtained data are extremely
valuable, as was shown in [201] for confirming and quantifying barriers in the spread of introduced
Wolbachia infection.

Finally, mark-release recapture (MRR) experiments rely on the release of marked (usually
with powder) adults (or even pupae) from the lab into the field, with a trapping network around
the release locations (see details and references in [71, Section 1.5.2]). This method was used for
instance in [5] to estimate comparative dispersal of Ae. aegypti and Ae. albopictus, and in [229]
to estimate population abundance of Ae. aegypti. It can also be used to estimate adult dispersal.
The process itself is not very expensive (although it requires good logistics) but the data are not
necessarily easy to use, depending a lot on the recapture rate. In addition, the behavior of a large
number of adults released at a single (or at a few locations) after being raised in laboratory cannot
be expected to mimic closely the natural behavior of a wild adult. Still, at this stage MRR seems
hard to overcome as a standard tool to improve our knowledge about mosquito behavior in the
field.

3.2 Vector-borne diseases

3.2.1 Vectors and vector-borne diseases

The three mosquito species presented above (Ae. aegypti, Ae. albopictus and Ae. polynesiensis)
are of interest in medical entomology because they are vectors. After [76, Chapitre 2, p.44], we
define:

Definition 3.1. A vector is an arthropod which actively transmits an infectious agent.

In medical entomology, a vector-borne disease (VBD) is any infectious human disease whose
agent (parasite, virus, bacterium etc.) can be transmitted by a vector.

Here, the vector is a blood-sucking arthropod (a mosquito of genus Aedes) and the infectious
agent is a virus (for instance, dengue).

Ae. aegypti and Ae. albopictus are main vectors for dengue, which is currently the most severe
mosquito-transmitted arboviral disease worldwide (see [32] where the authors estimate that 390
million infections occur annually, of which 96 million are manifest). Other arboviral diseases have
emerged in the past years (in particular zika), and the overall burden of these for public health is
still hard to assess (see [184] for a recent account of the (re-)emergence of dengue, chikungunya and
zika). In 2016 however, an analysis [204] attempted to estimate the economic burden of dengue,
which is expected to be huge (in particular, the cited paper estimates that there have been 13586
fatal cases in 2013, with 95% uncertainty interval 4200-35700).

The main focus of the thesis is the mathematical mosquito population modeling, and therefore
we do not delve any further into epidemiology and vector-borne diseases modeling, and refer the
interested reader to [76, pp. 271 - 288] and the references therein for a more thorough discussion
of infectious diseases transmitted by Culicinae mosquitoes from a public health point of view.
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3.2.2 Vector competence and vectorial capacity

Only adult female mosquitoes bite, at least once per gonotrophic cycle: the female needs a blood
meal to maturate eggs, and therefore every oviposition is preceded (by a few days in general) by a
blood meal on a vertebrate. Each blood meal is an opportunity for the infectious agent to circulate
either from the vertebrate’s blood to the arthropod’s gut or from the arthropod’s saliva to the
vertebrate’s blood. (For more details on Aedes mosquitoes, see Section 3.1)

The transmission of the virus from mosquito to human being is done through the saliva, during
a bite. It is therefore called biological, since biological (and not merely mechanical) processes are
required for the virus to move from the infected blood meal to the mosquito’s salivary glands.

Following [76, Chapitre 2, p. 52 et seq.], the arbovirus transmission is divided in three main
steps:

The virus infects the vector during a blood meal on an infected vertebrate with sufficiently
high viremia;

The virus multiplies in the vector and manages to reach the salivary glands;

The virus leaves the vector in its saliva.

Note that the first step occurs only if the vector effectively feeds on infected vertebrate, while the
second and the third step require a good match between the virus and the vector. After these steps,
the vector is qualified as infective, which means that any of its following bites can potentially
infect a vertebrate.

Definition 3.2. The time required to complete the three steps of arbovirus transmission is called
the extrinsic incubation period (EIP).

The ability of a vector population to get infective for a given infectious agent is called vector
competence. It can be quantified as the frequency of vector individuals which get infective after a
blood meal on an infected vertebrate (cf. [77],[152]).

Vector competence must be handled with care since it may vary a lot depending on the viremia
of the vertebrate, the population, or even slight mutations of the virus (cf. [228]).

In principle, the shorter the EIP and the larger the vector competence, the better the VBD
can circulate. However, other factors come into play, mostly from ecology: the vector and the
vertebrate species must have frequent and strong enough contact for the VBD to circulate. This
leads to the concept of vectorial capacity:

Definition 3.3 (After [77]). The vectorial capacity quantifies the ability of a vector population,
in a given environment, to transmit a given virus to a given human population. It is the daily rate
at which future inoculations arise from a currently infective case.

Mathematically, vectorial capacity has been defined from a basic case reproduction number in
an epidemiological model (see [66] for the definition) for malaria transmission (see [157], [94] and
[77]). According to [77], this approach has proved very useful. Although the absolute threshold
computation is virtually impossible due to data availability for each parameter, it allows for effective
comparison either between diseases, areas or species and gives valuable insight into vector control.
Dye [77] gives the following formula for vectorial capacity:

V C =
ma2bpτEIP

− log(p)
,

where τEIP is the duration of the extrinsic incubation period, a is the biting rate (number of bites
on humans per female per day), m is the relative abundance (number of active females per human),
p is the daily survival rate of females (− log(p) is expressed in days), and b ∈ [0, 1] is the vector
competence (as defined above).

3.2.3 Vector control

Vector control (VC) measures are human intervention with two objectives (see [76, Chapitre 5]):

� protect individuals from infectious bites,
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� prevent or reduce the circulation of VBD within a community.

Key parameters of vectorial capacity are natural targets for VC: vector density and contact with
host (reduce m, a) and vector lifespan (reduce p). According to the classification in [22], vector con-
trol measures include environmental fight (breeding site destruction), mechanical fight (trapping),
chemical fight (use of chemical or bacterial insecticide), biological fight (predator introduction
or Wolbachia replacement strategy) and genetic fight (RIDL, gene drive, sterile insect technique,
see [7]). Apart from gene drive and Wolbachia replacement strategies, these measures focus on
reducing m and/or p.

Recently, population replacement strategies using the natural bacteria Wolbachia have
been developed for Ae. aegypti (see the 2008 review [38] and the series of papers during the
period 2009-2014, in particular [172], [232], [118] and [117]). Their primary target is the vector
competence b, which is a new feature for vector control. This is beneficial at several levels (see
[164] for a detailed account). Being specific to the vector species, it does not raise the ecological
issues that chemical control does. The reduction of vector competence for several viruses in Ae.
aegypti, if stable in time, could practically suppress disease circulation and the need for further
vector control measures in some areas. (See Section 3.3.2 for more details).

Meanwhile, there has been a renewed interest for population reduction or elimination
programs relying on releases of sterile (or sterilizing) males, as detailed below in Section 3.3.1.

3.3 Two vector control methods by releases

3.3.1 Population reduction by SIT/IIT

The Chapter 9 introduces a new model for population reduction by releases of sterilizing males,
developed to address an experimental setting in the French Polynesian atoll of Tetiaroa.

Pest management through the Sterile Insect Technique (SIT) has a long history. SIT is a
promising technique that has been first studied by E. Knipling and collaborators, and first experi-
mented successfully in the early 1950s by nearly eradicating screw-worm population in Florida (see
the biographical note [6]). Since then, SIT has been applied on different pests and vectors, like
fruit fly or mosquito. The classical SIT relies on the mass releases of males sterilized by ionizing
radiation. The released sterile males transfer their sterile sperm to wild females, which results in
a progressive reduction of the target population. For mosquito control in particular, SIT has been
adapted using Wolbachia. Wolbachia is a bacterium that infects many Arthropods, and among
them some mosquito species in nature. It was discovered in 1924 by Hertig and Wolbach [110].
Since then, various interesting features of these bacteria have been unveiled in many arthropod
species, many of which are summarized in [233]. One of these properties is particularly useful
for the control of Aedes populations: the cytoplasmic incompatibility (CI) [206]. CI can be used
for two control strategies: Incompatible Insect Technique (IIT) or population replacement (see
Section 3.3.2 for the latter).

IIT relies on the fact that the sperm of males carrying a CI-inducing Wolbachia strain is altered
by the bacterium so that it can no longer successfully fertilize eggs from females who do not carry
this strain of Wolbachia. This can result in a progressive reduction of the target population when
incompatible males are released. Prior experiments [179] have shown the potential effectiveness of
this method for lab and field Ae. polynesiensis populations. One limitation of IIT with respect
to SIT is that in case of accidental release of females, the introduced Wolbachia population could
establish in the field, which is not the case for SIT where the irradiation dose also sterilizes females,
making sexing errors much less risky. Still, once a lab colony is established, IIT does not require
costly equipments.

As was pointed out in [144], SIT/IIT techniques, potentially combining CI-inducing Wolbachia
and irradiation (until the sexing is sufficiently accurate), are now considered again as promising
tools for vector control.

3.3.2 Population replacement strategies using Wolbachia

Chapters 6, 7, 10 are direclty concerned with the modeling of population replacement strategies
using Wolbachia.

This technique was published in 2011 both for caged populations [232] and field establish-
ment [118]. It originates from the discovery of virus replication blocking phenotype of Wolbachia
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strain wMelPop in Ae. aegypti [172] (known as pathogen interference or PI), for dengue, zika
and chikungunya viruses.

When sufficiently many males and females carrying Wolbachia are released in a susceptible pop-
ulation, the CI phenotype will tend to favor the introduced Wolbachia-carrying population, and
since the bacterium is maternally inherited, a long-lasting infection will establish in the field popu-
lation. In other words, there can be a population replacement by Wolbachia-carrying mosquitoes,
and this is why this technique is sometimes qualified as self-sustaining (as opposed to self-limiting
ones such as SIT). Once the infection is established, the PI phenotype effectively limits the disease
circulation (as explained in [118]).

It has been stated in [127] that statistical studies based on the data from the successful popu-
lation replacement trial in Cairns, Australia have confirmed the local sustainability of this method
(see [202]).

It is worth emphasizing that unlike any other VC method, population replacement strategies
do not harm either the ecosystem or the mosquito population in itself, in the sense that the main
effect of carrying Wolbachia in this context is the PI phenotype (this depends of course on the
Wolbachia strain to be used, and of the species).

At the end of this chapter, we also underline the ongoing development of Wolbachia-based bio-
engineering methods for pest management in general, which may be a source for new and alternative
vector controls techniques, as suggested for instance by [12]. The need for further mathematical
modeling and optimization of these techniques may therefore be growing in the years to come, as
innovative pest management concepts become real.
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Chapter 4

Population dynamics modeling

In this chapter, we introduce the mathematical tools used to model population dynamics in this
thesis, with a particular emphasis on the biological interpretation of the mathematical properties.
The history of population dynamics modeling is not developed in this chapter and we simply refer
readers interested in this topic to the book [18]. A clear presentation of population dynamics
modeling with relevant references can also be found in the PhD thesis of Claire Dufourd [71,
Section 1.4].

First we give notations, definitions and our biological motivation. Then we gather some general
results on differential equations, on reaction-diffusion equations and also some other results used
in the following chapters.

4.1 Notations, framework and motivation

4.1.1 Notations

We use the following notations without reference or re-definition:

� := stands for a definition,

� R is the field of real numbers, R∗+ is the set of positive real numbers, R+ := R∪{0}, Z is the
ring of integers, Z>0 is the set of positive integers and Z≥0 := Z>0 ∪ {0},

� for x ∈ R, the notation bxc stands for the largest integer n ∈ Z such that n ≤ x,

� for n,m ∈ Z>0, Mn,m(R) is the set of matrices with n × m entries in R: n lines and m
columns. The algebra of square matrices of size n is denoted Mn(R) := Mn,n(R),

� for n ∈ Z>0, In ∈ Mn(R) is the identity matrix in dimension n (the subscript n is dropped
when unambiguous),

� the group of invertible matrices in Mn(R) is denoted by GLn(R),

� the largest real part (resp. modulus) of an eigenvalue of A ∈ Mn(R) is denoted by µ(A)
(resp. ρ(A)).

� the euclidean scalar product in Rd is denoted by 〈 · , · 〉. The same notation is sometimes
used for the dual evaluation: given a continuous linear form f on a Banach space E, and
x ∈ E, we write 〈f, x〉 = f(x).

Let d ∈ Z>0 and Ω ⊂ Rd be an open set.

� If f : Ω → Rd′ is Fréchet-differentiable, we denote the differential of f at x ∈ Ω (which is a
matrix in Md,d′(R)) either by DFx, ∇Fx or (∂xif(x))1≤i≤d, dropping the subscript x when
convenient. The two notations ∂xi and ∂

∂xi
(1 ≤ i ≤ d) are used equally. The notation D is

also used when Ω is an open subset of a normed real vector space.

� A multi-index is α ∈ Zd≥0, and the multi-derivative of a function f : Ω → R is denoted by

Dαf(x) := ∂α1

∂x
α1
1

· · · ∂
αd

∂x
αd
d

f . The length of a multi-index is denoted by |α| :=
∑d
i=1 αi.
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� For m ∈ Z>0 and p ∈ [1,∞), we use the Sobolev spaces (see [40])

Lp(Ω) := {f : Ω→ R measurable,

∫
Ω

|f(x)|pdx < +∞},

Wm,p(Ω) := {f : Ω→ R, Dαf ∈ Lp(Ω) for all multi-index α, |α| ≤ m}.

We also define Hm(Ω) := Wm,2(Ω), which is a Hilbert space. For p ∈ [1,∞) and f ∈ Lp(Ω),

the Lp-norm of f is ‖f‖Lp(Ω) :=
( ∫

Ω
|f(x)|pdx

)1/p
. The L∞ space and the corresponding

norm are defined by

L∞(Ω) = {f : Ω→ R measurable, ∃C > 0, |f(x)| ≤ C for a.e. x ∈ Ω},

and ‖f‖L∞ := inf{C > 0, |f(x)| ≤ C for a.e. x ∈ Ω}. For p ∈ [1,∞], we use equally the
notations ‖ · ‖Lp(Ω) and ‖ · ‖p, when convenient.

� If X is a complete metric space,M(X) denotes the set of Radon measures on X,M+(X) the
pointed cone of positive measures and M1

+(X) ⊂M+(X) the set of probability measures.

4.1.2 Mathematical framework

From an abstract viewpoint, the population state at time t ∈ R is described by a quantity n(t) ∈ K,
where K is a cone and a subset of a normed vector space X . In order to get practical, let us describe
in brief the state spaces X used thereafter.

� when using differential systems, we consider that the population state at a given time is
defined as a finite number of values: the headcount of each group. Hence X = RNd (where
Nd ∈ Z>0 is the number of components) and K = RNd+ .

� when dealing with reaction-diffusion equations, we take into account the spatial dispersal of
the population, so for each group in the population the state is a locally integrable (and non-

negative) function of the space variable. We will typically consider X =
(
H1(Ω)

)Nd (where
Ω ⊂ Rd is a domain and d ∈ Z>0 is the physical space dimension, typically d ∈ {1, 2}), and
K = {u ∈ H1(Ω), u ≥ 0 almost everywhere}Nd .

� for structured populations, the number of groups within the population no longer needs to be
finite; we rather group individuals sharing the same phenotype, which may vary continuously
(for instance, size or age). Formally, there is a base phenotype space P (a complete metric
space, typically P = Rd for some d ∈ Z>0) and X =M(P), K =M+(P).

Deterministic population dynamics considered here take the form of a differential equation on the
Banach space X , defined by some function F : R×X → X with

dn

dt
= F(t, n(t)). (4.1)

In all cases, we assume that all orbits starting in K remain in K.

Definition 4.1 (Positive differential dynamical systems). The dynamics of (4.1) is called K-
positive (or “positive”) if

∀t < t′ and n0 ∈ K such that the solution n to (4.1) with n(t) = n0 is defined on [t, t′], n(t′) ∈ K.

Positive systems are suitable for population dynamics modeling because no non-positive state
n ∈ X\K could be interpreted as a population: therefore it is a bare requirement of the models
that they always represent a population as a positive quantity.

We introduce the now classical comparison notations for the partial order on X induced by a
cone Ko (widely used in monotone systems theory, see [115])

Definition 4.2 (Partial order induced by a cone). For A,B ∈ X and A,B ⊂ X :

� A ≤Ko B if and only if B −A ∈ Ko,

� A <Ko B if and only if A ≤Ko B and A 6= B,
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� A�Ko B if and only if B −A ∈ K̊o,

� ARKoB if and only if ∀(A,B) ∈ A× B, ARKoB (for R ∈ {≤, <,�}).

The subscript Ko is dropped hereafter when it is obvious from the context. Many of the
dynamical systems studied in this thesis are monotone in the sense of [114]:

Definition 4.3 (Monotone differential dynamical systems). The dynamics induced by (4.1) is
called Ko-monotone (or simply “monotone”) if for all solutions n1, n2 of (4.1) and t < t′, if
n1(t) ≤Ko n2(t) then n1(t′) ≤Ko n2(t′). It is called “strongly monotone” if

∀t < t′, n1(t) <Ko n2(t) =⇒ n1(t′)�Ko n2(t′).

It is called “strongly order-preserving” (SOP1) if for all n0
1 <Ko n

0
2 there exists neighborhoods U

and V of n0
1 and n0

2 and t0 ≥ 0 such that for all t > t0, the images of U and V by the semiflow φt

of (4.1) satisfy φt(U) ≤Ko φt(V ).

Monotonicity means that the partial order induced by Ko is preserved by the time-dynamics.
For monotone systems, “more” population at a given time will always yield “still more” population
at further times. Note that the order-inducing cone Ko needs not be equal to the positive cone K.
For competitive differential systems we will typically have Nd = N+

d + N−d for some N±d ∈ Z>0

and Ko = RN
+
d

+ × RN
−
d
− .

4.1.3 Interpretation and motivation

The above three base state spaces X correspond to different modeling levels. Differential equa-
tions (X = RNd) are sometimes termed “mean-field” approaches (see [74]). In this approach,
individuals within the population are classified into a finite number of categories, depending on
macroscopic features such as “being an adult”, “being a male” or “being an egg laid at a given
oviposition site”. This approach can be very efficient in reducing the system’s dimensionality.
However, it erases the individual variations, and therefore in many cases it neglects parameters
(such as the age or the amount of resources left in a given egg) that may reveal crucial in de-
termining the future individual behavior (for instance, mating or hatching). Reaction-diffusion
equations (see, for instance, [187]) are used as simple generalizations of the mean-field approach
to space-varying population densities. They take into account the spatial parameter, which is
usually of tremendous importance for any interaction: individuals that are further apart are much
less likely to interact with each other. Structured populations (see, for instance, [186, Chapter
1]) offer a rich formalism in which individuals can be classified using much finer feature than the
macroscopic ones from the mean-field approach. In particular, continuous phenotypes are possible
and have proved very relevant to model age, size, the expression level of some protein, or any
combination of features.

The modeling philosophy in this thesis aims at defining low-dimensional or simple models to
represent a very complex and little-known natural population of insects (see Chapter 3). Therefore,
we stress that the models we propose and study mathematically are only able to answer practical
questions assuming that all neglected features or parameters play a minor role. The bright side
of this approach is that our results are analytical, and rely on mathematical proofs. They do
not depend on particular numerical or biological experiments and are, in this sense, perfectly
reproducible, while the underlying assumptions are clearly stated. On the downside, these results
are in some sense too rigid, due to the structural properties of the models: a deterministic outcome
is usually irrelevant in practice since many factors are stochastic. However, this determinism in
itself is very useful when the models are used properly, that is to study qualitatively and also
quantitatively the relative influence of various parameters or mechanisms. Moreover, one should
not forget that we model population counts (which are in fact integers) by continuous functions.

The validation of such models is a tricky point, and has been little explored during this thesis. It
is worth repeating that the expected outcomes are not population dynamics prediction indeed, but
rather proofs of qualitative facts such as “these mechanisms can (or cannot) explain by themselves
these observations”, or answers to comparative questions. In addition to these qualitative out-
comes, some quantitative outputs are still relevant, mostly in terms of scales or of key parameters
identification.

1In spite of its technical statement, the SOP property boils down to an irreducibility condition on the Jacobian
of the right-hand side for ordinary differential equations, see for instance [209].
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When building new models (in Chapters 5, 8, 9 and 12), the starting point has always been a
double observation:

� that some experimental data where consistently suggesting non-linear effects, with reasonable
biological hypotheses clearly formulated on the possibly involved mechanisms;

� that no existing mathematical model had been, up to our knowledge, proved satisfactory in
reproducing the observed output using only the hypothesized mechanisms.

Some details on the motivation and the modeling process are given below (see also the introduction
of the cited chapters for academic background on these topics).

The spreading of Wolbachia in an insect population was pretty well understood (see [29]) using
a scalar reaction-diffusion equation on the proportion of infected individuals (this model is studied
in Chapters 6 and 7); however, the underlying assumption that the dynamics only depends on
the proportion and not on the total population size was not justified (except assuming that the
population size is infinite). We propose in Chapter 5 a derivation of the scalar model from a
two-populations model, in a small-parameter regime (= singular limit) corresponding to large
fecundity.

Likewise, the oscillations in the trapping data were thought to be well-explained by climate
variations (in particular, rainfall and temperature), but field data from Rio de Janeiro (see [119])
suggested that this was not enough, and some underlying oscillating behavior was in place in the
local Aedes aegypti population. Researchers from Fundação Oswaldo Cruz hypothesized that a
previously identified egg hatching stimulation by larvae (see [78]) could account for these oscilla-
tions. We introduced with them and study mathematically in Chapter 8 a simple non-linear model
to try and confirm this assumption from a modeling point of view.

A recent experiment in a small island in French Polynesia led by the Institut Louis Malardé
(ILM) showed a very good success for population elimination using an Incompatible Insect Tech-
nique (IIT). The existing mathematical models for SIT (Sterile Insect Technique, see Section 3.3.1),
which can apply in this context, all assumed that the population extinction state was unstable in
the absence of sterile male releases. In other words, as soon as the control is stopped, in these
models, the insect population recovers towards its initial state. In Chapter 9, we develop and
study a model incorporating the stability of extinction (with a tunable basin of attraction) to draw
consequences and get a new insight into this problem.

Finally, Chapter 12 is a preliminary attempt at involving sexual reproduction into resistance
to insecticide pattern formation, where the resistance level (= phenotypical trait) can vary con-
tinuously (which makes sense if it is associated with a protein expression level, for instance), can
affect the fecundity (and not only the mortality, contrary to most existing models) and where
the crossing between two individuals with known resistance levels determines the offspring trait
distribution.

4.2 Differential equations

In Part III, the models under study are differential equations, since the population state is described
by a finite number of (non-negative) real values, which vary continuously.

4.2.1 Monotone bistable differential systems

In Chapters 9 and 10, the systems (respectively in R4 and in R2) are monotone and bistable. We
collect here some useful facts from the monotone dynamical systems theory concerning monotone
bistable differential systems with linear control, in any dimension. The state is n ∈ Rd (d ≥ 1),
f : Rd → Rd is smooth, ι ∈ Rd is a fixed unitary vector and u : R+ → R+ is a control term. Let
(ei)1≤i≤d denote the canonical basis of Rd.

Let us consider
ṅ = f(n) + ιu, n(0) = n0. (4.2)

After [115], we assume that for all i, j ∈ J1, dK the following holds:

Positivity. f(n) · ei ≥ 0 if ni = 0,

Forward boundedness. There exists a compact subset X0 of Rd+ stable for (4.2),
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Sign stability. σi,j := sgn
(
∂fi
∂xj

)
does not change sign on X̊0,

Sign symmetry. σi,jσj,i > 0,

Sign consistency. the signed incidence graph associated with the Jacobian matrix Df(x), that
is the graph with undirected edge joining vertices i and j if there exists x, y ∈ X0

∂fi
∂xj

(x) +
∂fj
∂xj

(y) 6= 0, the edge being given the sign of this sum, has the property that every loop has

an even number of negative signs (negative feedbacks).

Under these assumptions, (4.2) is positive, forward bounded, and there exists a unique orthant (up
to the sign) Ko of Rd such that it is Ko-monotone on X0. We assume in addition that the control
itself is monotone:

Control monotonicity. ι ∈ −Ko.

Proposition 4.1. Under these assumptions, if u1, u2 : R+ → R+ are bounded in L1(R+) with
compact support and satisfy u1 ≤ u2, the semiflow (φti)t≥0 defined by (4.2) with u = ui (i ∈ {1, 2})
are monotone, that is for all t > 0 and n1 ≤Ko n2, φt1(n1) ≤Ko φt2(n2).

Proof. This follows from Kamke’s theorem (see [114, Section 3.1]).

We address the specific context of bistability:

Bistability. X0 contains exactly two hyperbolic stable steady states denoted 0 and E+, such that
f(0) = f(E+) = 0 and 0�Ko E+.

Proposition 4.2. The closed order interval [0,E+] is a global attractor.

Proof. By [114, Theorem 3.14], the set of points converging to 0 or E+ is dense in X0. In addition,
the basins of attraction of 0 and E+ are p-convex (that is, order-convex, in the sense that if u < v
then the set contains the line segment spanned by u and v). Using the comparison principle, the
result follows immediately.

Let us define the basins of attraction of these steady states and the separatrix:

Σ+ := {n0 ∈ X0, n(t) −−−−→
t→+∞

E+}, (4.3)

Σ− := {n0 ∈ X0, n(t) −−−−→
t→+∞

0}, (4.4)

Σ := X0\
(
Σ− ∪ Σ+

)
. (4.5)

Proposition 4.3. The basins of attraction Σ± are open. Let x ∈ X0. If there exists y ∈ Σ+ such
that y ≤Ko x then x ∈ Σ+. Similarly, if there exists y ∈ Σ− such that y ≥Ko x then x ∈ Σ−. The
union Σ+ ∪ Σ− is dense in X0. The separatrix Σ contains at least one (unstable) steady state. It
contains no pair of points related by �Ko . It is in fact a d− 1 dimensional submanifold.

Proof. This result is in fact a consequence of the classical properties of SOP semiflows collected
in [114]. We focus on the proof of the last point. Let Sd−1

+ denote the intersection of the (d− 1)-
dimensional sphere (embedded in Rd) with the order orthant Ko. Then we can build a diffeomor-
phism ψ : Σ→ Sd−1

+ by associating each point v ∈ Σ to the unique w ∈ Sd−1
+ such that v−0 ∈ R+w.

Existence and uniqueness are straightforward since v > 0. The inverse definition comes from the
comparison principle: in any given direction w ∈ Sd−1

+ , there is at most one “separatrix value”
λ(w) such that ψ−1(w) := 0 + λ(w)w ∈ Σ since Σ cannot contain two ordered points. Regularity
of ψ−1 and its inverse comes from smoothness of f and the facts that the basins Σ± are open and
their reunion is dense.

4.2.2 Slow-fast dynamics

Chapters 8 and 10 provide two different examples of two-dimensional slow-fast dynamics. In the
former the small parameter is due to the assumption that the egg population is large and has slow
dynamics compared with the larvae population, while in the latter it comes from the assumption
that the fecundity rate is large compared with mortality rate. In both cases, the outcome is the
simplification of the dynamics as the small parameter goes to 0.
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A prototypical slow-fast system is given by:
duε
dt = f(uε, vε),

εdvεdt = g(uε, vε),
uε(0) = u0, vε(0) = v0,

(4.6)

where f and g satisfy suitable assumptions. In fact, f and g can be replaced by (for instance)
uniformly converging nets (fε)ε and (gε)ε (and also u0 and v0 by u0

ε and v0
ε ) under additional

assumptions. In [217], Tikhonov proved asymptotic properties for non-autonomous systems of the
form (4.6), and also further extensions. We state a simple result (the hypotheses are far from being
optimal) to get the gist of these properties:

Proposition 4.4 (Tikhonov). In (4.6), assume that uε, vε are defined on [0,+∞) and uniformly
bounded by Ku,Kv > 0 (with respect to ε), and that for all u ∈ [−Ku,Ku], there exists a unique
v = Υ(u) ∈ [−Kv,Kv] such that g(u, v) = 0, and Υ(u) is asymptotically stable for the equation

dV

dt
= g(u, V (t)).

Then uε converges to a limit u which satisfies almost-everywhere:

du

dt
= f(u,Υ(u)).

A more detailed result and a proof are given in Chapter 8, Theorem 8.1.

4.2.3 Numerical analysis

The numerical integration of slow-fast dynamics raises some well-known issues. Any suitable
integration scheme should be asymptotic preserving, which means that one should not need to
reduce the time-step overly to maintain convergence as ε is decreased. Many implicit Runge-Kutta
schemes satisfy this property (see [98]), which explicit schemes do not. For relevant numerical
results, see Chapter 10.

Non-standard finite differences (NSFD) schemes were introduced by Mickens “during the period
1982-1992” (see [11], [168]) to avoid some numerical instabilities, and get numerical solutions whose
transient behavior is consistent with what can be known of analytical solutions. Following [169],
we have usually chosen a scheme satisfying the Discrete Consistency (DC) principle, i.e. producing
discrete numerical solutions sharing some qualitative properties with the continuous solutions, in
the context of bistable monotone systems (as presented in Section 4.2.1). Namely, we expect the
discrete solution to be monotone increasing for all k ≥ k0 if it is increasing at step k0, and also to
satisfy a comparison principle at the discrete level. A discussion can be found in Chapter 9.

4.3 Reaction-diffusion equations

The use of reaction-diffusion (semilinear parabolic) equations in mathematical biology has a long
history (see [187, Chapter 1] and the references therein). Reaction-diffusion equations have been
introduced simultaneously and independently by Fisher [87] and Kolmogorov, Petrovskii and
Piskunov [138] in 1937 in population dynamics modeling. The paper of Fisher is overtly motivated
by the propagation of advantageous genes as waves, and seeks “the simplest possible conditions”2.

Advection-reaction-diffusion equations (or reaction-diffusion equations for short) take the gen-
eral form of semi-linear parabolic equations, that is:

∂tn−∇ · (A∇n)︸ ︷︷ ︸
“diffusion”: random movement

+ B∇n︸ ︷︷ ︸
“advection”: drift

= f(t, x,n),︸ ︷︷ ︸
“reaction”: birth and death

2Fisher already notes in the introduction of [87] “The use of the analogy of physical diffusion will only be
satisfactory when the distances of dispersion in a single generation are small compared with the length of the wave.
In reality, diffusion is a complex process, compounded often of the diffusion of gametes, and that of larvae, in addition
to adult forms; a more exact treatment than that supplied by a simple coefficient would involve the interaction of
these components, and the stages at which the selective advantage was enjoyed. So far as it is applicable, the
analogy of physical diffusion, therefore, greatly simplifies the problem”.
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combining the random movement through a heat operator, the preferential drift through a B∇
operator (left-hand side) and birth and death processes through a non-conservative (i.e. the total
population may vary in time) nonlinearity (right-hand side). The reaction terms can be interpreted
in population dynamics as a growth rate, which may depend on the population size n, but also on
the location x and of the time t (for instance, of temperature or season).

To fix mathematical terms, let Ω ⊂ Rd be a smooth domain. The reaction-diffusion equations
considered here take the form of “Lotka-Volterra systems” (in the sense of [187]):

∂tn(t, x)−∇ ·

(
A(t, x)⊗∇n(t, x)

)
+ B(t, x)⊗∇n(t, x) = n(t, x)� F(t, x,n(t, x))

for (t, x) ∈ R+ × Ω,

n(0, x) = n0(x) for x ∈ Ω.

(4.7)

where A,B : R+ × Ω→Md(R)Nd , F : R+ × Ω× R→ R, and the solution is n : R+ × Ω→ RNd .
The basic assumption is that A is elliptic, that is:

∃ν > 0, ∀i ∈ J1, NdK,∀(t, x) ∈ R+ × Rd, ∀ξ ∈ Rd, ξ∗Aiξ ≥ ν|ξ|2, (Ell)

where | · | is the Euclidean norm on Rd. The assumption (Ell) is obviously satisfied, with ν = 1, if
for all i ∈ J1, NdK, Ai ≡ Id.

Assuming (Ell) and that the reaction terms in (4.7) are bounded, a non-negativity property
holds ([187, Lemma 1.1])):

Lemma (Non-negativity principle). Assume that initial data n0
i ∈ L2(Ω) are nonnegative (for

i ∈ J1, NdK), that B ≡ 0 and that there is a locally bounded function Γ(t) such that |F(t, x,n(t, x))| ≤
Γ(t) for almost every x ∈ Ω along any weak solution n in C0

(
R+, (L

2(Ω))Nd
)
. Then these weak

solutions satisfy ni ≥ 0.

Apart from this important qualitative feature (which justifies the use of such equations for
population dynamics modeling), not much can be said unless further assumptions are made on the
various parameters and functions.

4.3.1 Modeling framework

Reaction-diffusion systems of the form (4.7) are considered in Part II. They have at most two
components: Nd ∈ {1, 2}, representing individuals from the same (mosquito) species that are
grouped together depending on their infection status with respect to some Wolbachia bacterium
(see Chapter 3, in particular Section 3.3.2 for further details).

We also assume that these two groups (which we often call “populations”, following the standard
use in applied mathematics although they cannot be distinguished as different populations in the
biological sense of non-mixing groups) are in competitive interaction, that is:

∂F1

∂n2
,
∂F2

∂n1
≤ 0.

Using continuous densities when dealing with finite populations can only be justified if the
population sizes are large enough, and the diffusion approximation can be valid only within large
enough time and space scales. These two restrictions must be kept in mind when ecological
consequences are drawn from model analysis. Several mitigations could be introduced in order to
go beyond these limitations, and in particular the elliptic operator ∇ ·

(
A∇

)
could be replaced by

a more adapted dispersion operator, based on experimental data. This is far beyond the scope of
this thesis.

However, the bistable nature of the systems we consider escapes at least one known issue
of reaction-diffusion waves (or fronts), that is solutions which propagate a steady state (as the
advantageous gene of [87]). The behavior of the so-called “monostable” or “pulled” fronts is
determined by the linearization at the edge of the front, precisely where the population is small
and the diffusion approximation is not well justified. On the contrary, the “bistable” or “pushed”
front that occur in the models studied here are not ruled by their edge linearization, but rather
by their profile on a wider area, in a nonlinear fashion. We refer to [92] for a very interesting
discussion on the nature of the front (pushed or pulled) and its genetic consequences.
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4.3.2 Some properties of the scalar equation

We now recall some well-known properties of homogeneous semi-linear scalar reaction-diffusion
equations. For more involved dynamical properties and a monotone systems viewpoint, we refer
the reader to the review by Polacik [189]. We simplify (4.7) as

∂tu− Lu = f(u) in Ω, ∀t > 0, u(t, · ) = g( · ) on ∂Ω, u(0, · ) = u0( · ) in Ω, (4.8)

where L is an elliptic operator L := ∆ + k(x)∇ and k, g are smooth function Ω→ R and ∂Ω→ R,
respectively.

We assume that
f is Lipschitz, f(0) = 0 and f(1) = 0. (4.9)

First, we define the sub- and super-solutions in this context (see [192] for a detailed account):

Definition 4.4. A subsolution (resp. a supersolution) of the elliptic problem

− Lu = f(u) in Ω, u = g on ∂Ω (4.10)

is u ∈ C2(Ω) ∩ C0(Ω) (resp. u ∈ C2(Ω) ∩ C0(Ω)) such that

−Lu ≤ f(u) in Ω, u ≤ g on ∂Ω

(respectively such that
−Lu ≥ f(u) in Ω, u ≥ g on ∂Ω.)

Similarly, a subsolution (resp. a supersolution) to the parabolic problem (4.8) is any u ∈
C1
(
R+; C2(Ω) ∩ C0(Ω)

)
such that

∂tu− Lu ≤ f(u) in Ω, ∀t > 0, u(t, · ) ≤ g(t, · ) on ∂Ω, u(0, · ) ≤ u0( · ) in Ω.

(respectively u ∈
(
R+; C2(Ω) ∩ C0(Ω)

)
such that

∂tu− Lu ≥ f(u) in Ω, ∀t > 0, u(t, · ) ≥ g(t, · ) on ∂Ω, u(0, · ) ≥ u0( · ) in Ω.)

By definition, a solution is any function which is simultaneously a sub- and a super-solution.

Sub- and super-solution provide an iterative scheme to build solutions:

Proposition 4.5 (Sub- and super-solution method). Let u be a subsolution (respectively u a
supersolution) to (4.10). If u < u (which means u(x) ≤ u(x) and u 6= u) then there exist minimal
and maximal solutions u∗ ≤ u∗ such that u ≤ u∗ ≤ u∗ ≤ u.

These objects also yields the parabolic comparison principle :

Proposition 4.6 (Parabolic comparison principle). For all T > 0 we introduce the “parabolic
boundary”

∂TΩ :=
(

[0, T )× ∂Ω
) ⋃ (

{0} × Ω
)
.

If u (resp. u) is a sub-solution (resp. a super-solution) to (4.8), and u is a solution such that
u ≥ u (resp. u ≤ u) on ∂TΩ then the inequality holds on Ω× [0, T ].

In addition, the maximum (resp. the minimum) of two sub-solutions (resp. super-solutions) is
again a sub-solution (resp. a super-solution). We also define the stability from below and above:

Definition 4.5. A solution u to an elliptic problem is said to be stable from below (resp. above)
if for all ε > 0 small enough, there exists a subsolution u (resp. a supersolution u) to the problem
such that u− ε ≤ u ≤ u. (resp. u ≤ u ≤ u+ ε).

It is said unstable from below (resp. above) if for all ε > 0 small enough there exists a super-
solution u (resp. a subsolution u) to the problem such that u − ε ≤ u ≤ u (resp. u ≤ u ≤ u + ε).

Some specific nonlinearities have received considerable attention in the mathematical literature.
We focus here on two of them3:

3The ignition nonlinearity ought to be mentioned also. It is defined by a reaction f equal to 0 on [0, θ0] and
positive on (θ0, 1). Among monostable nonlinearities we can highlight the so-called “Fisher-KPP” (after [87] and
[138]). They are such that f is C1 on [0, δ] for some δ > 0 and for all p ∈ (0, 1), 0 < f(p) < f ′(0)p. For the Fisher-

KPP reaction, there exists a (unique up to translation) traveling wave with speed c for all c ≥ c∗ := 2
√
f ′(0).
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Definition 4.6. We call f monostable if, in addition to (4.9), f > 0 on (0, 1). We call f
bistable if, in addition to (4.9), there exists θ ∈ (0, 1) such that f(θ) = 0, f < 0 on (0, θ) and
f > 0 on (θ, 1).

In all cases, we also assume that f < 0 on (−∞, 0)∪ (1,+∞) (this is a technical assumption to
facilitate some proofs, p remains between 0 and 1 if 0 ≤ p0 ≤ 1).

In the bistable case, we also assume without loss of generality (up to changing p into 1 − p)
that

∫ 1

0
f(x)dx ≥ 0 and define θc as the unique real number in (0, 1] such that∫ θc

0

f(x)dx = 0. (4.11)

(Obviously, θc > θ). We define F (x) =
∫ x

0
f(ξ)dξ, so that F (θc) = 0.

When considering compactly supported (or at least localized) initial data for the bistable scalar
equation, a sharp threshold principle applies. For instance, with Ω = R, [70, Theorem 1.3] reads:

Theorem 4.1. Let φλ, λ > 0 be a family of L∞(R) nonnegative, compactly supported initial data
such that
(i) λ 7→ φλ is continuous from R+ to L1(R);
(ii) if 0 < λ1 < λ2 then φλ1

≤ φλ2
and φλ1

6= φλ2
;

(iii) limλ→0 φλ(x) = 0 a.e. in R.
Let pλ be the solution to (4.8) with initial data pλ(0, · ) = φλ, and assume that the nonlinearity

f is bistable. Then, one of the following alternative holds:

(a) limt→∞ pλ(t, x) = 0 uniformly in R for every λ > 0;

(b) there exists λ∗ ≥ 0 and x0 ∈ R such that

lim
t→∞

pλ(t, x) =

 0 uniformly in R (0 ≤ λ < λ∗),
uθc(x− x0) uniformly in R (λ = λ∗),
1 locally uniformly in R (λ > λ∗),

where uθc is the unique ground state4.

Complementary results on sharp thresholds can also be found in [174] and [163]. The first
author to prove sharpness was Zlatos in [243], for the particular case of indicator functions of
increasing intervals.

This nice property justifies the interest of studying initial data in the context of localized
releases (see Chapter 7), as they can be classified (except for an essentially zero-measure set) into
the two groups of “initiating propagation” or “decaying to the original state”.

Finally, we discuss the traveling wave solutions, which are wave solutions traveling at a constant
speed with a constant shape. They are most simply described in the specific case of the real line
(and without drift), when Ω = R, that is for:

∂tp−D∂xxp = f(p) in R+ × R. (4.12)

Definition 4.7. A traveling wave solution to (4.12) is (φ, c) where φ is a profile (in C2(R, [0, 1]))
and c is a speed (in R) such that φ(−∞) = 1, φ(+∞) = 0 and (t, x) 7→ φ(x − ct) is an entire
solution to (4.12).

We recall the following fact (see classical literature [85] and [13] or [52] for a more recent proof)

Proposition 4.7 (Bistable traveling wave). If f is bistable, then there exists a unique c = c∗(f),
and a unique (up to translations) p∗ solution of

−p′′∗ − cp′∗ = f(p∗) in R, p∗(−∞) = 1, p∗(+∞) = 0.

In addition, p∗ is positive and decreasing. We call c∗ the bistable wave speed, and p∗ the bistable
traveling wave, because u(t, x) = p∗(x− ct) is a solution to (6.1) on R.

The extension of this concept to competitive systems is explained below.

4A ground state in this context is a solution to −∂xxu = f(u) such that u > 0. See section 7.3.1 below for
further details.
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4.3.3 Some properties of the competitive two-dimensional systems

We now assume that Ω = Rd and Nd = 2 and consider with homogeneous diffusion D1, D2 > 0
(which is a specific case of (4.7)) as

∂tn1 −D1∆n1 = f1(n1, n2) in R+ × Ω,

∂tn2 −D2∆n2 = f2(n1, n2) in R+ × Ω,

ni(0, x) = n0
i (x), i ∈ {1, 2}.

(4.13)

We assume that the solutions to (4.13) are nonnegative and uniformly bounded by K > 0 in
supremum norm if initial data are nonnegative and bounded by K. (This holds typically for
Lotka-Volterra reaction terms, as in the example (4.15) below). We consider only competitive
systems, that is:

∀n1, n2 ∈ R2
+,

∂f1

∂n2
,
∂f2

∂n1
≤ 0. (4.14)

Then, a comparison principle holds (or “operator monotonicity”, [187, Lemma 1.2]):

Lemma (Comparison principle). Let n0
i,j ∈ L2(Ω) such that 0 ≤ n0

i,j ≤ K for i, j ∈ {1, 2}2, and

assume that f1, f2 along with their first-order partial derivatives are bounded on [0,K]2. Then

n0
1,1 ≤ n0

1,2 and n0
2,1 ≥ n0

2,2 =⇒ ∀t ≥ 0, n1,1(t) ≤ n1,2(t) and n2,1(t) ≥ n2,2(t).

This lemma makes possible use of a comparison principle as for scalar equations (extending
Proposition 4.6), but is limited to monotone reaction terms. In particular, it can be used to study
the properties of traveling waves. Restricting to dimension d = 1 and to the case of homogeneous
diffusion, we consider the problem (1.1) to illustrate this fact:

∂tn1 −D1∂xxn1 = b1(1− sh n2

n1+n2
)(1− n1+n2

K1
)− d1n1 in R+ × R,

∂tn2 −D2∂xxn2 = b2n2(1− n1+n2

K2
)− d2n2 in R+ × R,

ni(0, x) = n0
i (x) ≥ 0, i ∈ {1, 2}.

(4.15)

This system is of Lotka-Volterra form, so that the non-negativity principle applies: for all
t ≥ 0 and i ∈ {1, 2}, ni(t, · ) ≥ 0. Moreover, the reaction terms are both negative as soon as
n1 +n2 ≥ max(K1,K2) =: K. From this it can be shown that n1, n2 ≤ K (more details are shown
in Chapter 5, Lemma 5.3). Let X1 := K1(1 − d1/b1) and X2 := K2(1 − d2/b2). There are two
exclusion steady states, E1 := (X1, 0) and E2 := (0, X2). We assume that these steady states are
positive:

b1 > d1, b2 > d2. (H1)

The unique coexistence equilibrium EC := (XC
1 , X

C
2 ) is

NC := XC
1 +XC

2 = K2

(
1− d2

b2

)
= X2, pC :=

XC
2

XC
1 +XC

2

=
1

sh

X1 −NC

K1 −NC
.

Under (H1), EC is positive if and only if X1−X2

K1−X2
∈ (0, sh). We notice that there always holds

X1 −X2 < K1 −X2 so in particular if K1 < X2 then there is no positive coexistence equilibrium.
In general we assume

X1 > X2. (H2)

We also state the assumption
X1 −X2

K1 −X2
∈ (0, sh). (H3)

Proposition 4.8. If (H1) and (H3) hold then there are exactly four steady states for (4.15)
standing in the non-negative quadrant: 0, E1, E2 and EC . Under (H2), E1 and E2 are stable
while EC is unstable and the trivial steady state 0 is unstable in any direction for the reaction (=
space-homogeneous) equations.

If only (H1) holds then there are only three steady states: 0, E1 and E2.

50



CHAPTER 4. POPULATION DYNAMICS 4.3. REACTION-DIFFUSION EQUATIONS

n1

n2

0 E1

E2

EC

Figure 4.1: Schematic phase diagram for the reaction equations associated with (4.15), showing the
nullclines and steady states. Under assumptions (H1), (H3) and (H2), filled (respectively empty)
circles stand for stable (respectively unstable) equilibria.

As seen above in the case of scalar equations, traveling-wave solutions on the real line are
particular solutions to parabolic equations connecting different steady states at its ends, and moving
with constant profile and speed5. Here:

Definition 4.8. A traveling-wave solution to (4.15) is a couple
(
nc, c

)
where c ∈ R and nc =

(ncu, n
c
i ) is a couple of monotone functions R → R+, with lim+∞ nc = E1, lim−∞ nc = E2 and

(t, x) 7→
(
ncu(x− ct), nci (x− ct)

)
is a solution to (4.15).

For the bistable system (4.15) we can extend the scalar Proposition 4.7:

Theorem. Under assumptions (H1), (H2), (H3), there exists a unique (up to translation) traveling
wave solution (nc∗ , c∗) to (4.15), which is asymptotically stable.

However, to our best knowledge the sign of c∗ can no longer be determined in a simple way (in
particular, the issue of nonlinear determinacy - associated with pulled fronts - has been studied
in details since [131], see for instance [147] and [96]), but we refer to Chapter 13 for additional
discussion.

Pioneering works on this topic include the results of Gardner [91], which cannot be applied
directly here6, and Conley and Gardner [58].

The approach followed in the latter article is suitable here, since the zero sets of f1 and f2 are

already in the form [58, Figure 8], satisfy
∫X1

0
f1(s, 0)ds > 0 and

∫X2

0
f2(0, s)ds > 0 and the system

5In this light, a traveling-wave solution can also be seen as a heteroclinic orbit of a first-order ODE system of
four equations with parameter c.

6The specific shape assumptions on the functions M,N defined by
M(x, y) :=

f1(x,y)
x

= b1(1− sh y
x+y

)(1− x+y
K1

)− d1,

N(x, y) :=
f2(x,y)

y
= b2(1− x+y

K2
)− d2,

is not satisfied here. Specifically, to apply [91, Theorem 1.2],

� conditions (i) and (ii) of the cited article are met. Indeed, M,N < 0 if max(x, y) ≥ max(K1,K2) and

∂yM = −
b1

K1
(1− sh

y

x+ y
)− b1sh

x

(x+ y)2
(1−

x+ y

K1
), ∂xN = −

b2

K2
< 0,

so ∂yM < 0 in the interesting region of the nonnegative quadrant;

� assumption [91, Theorem 1.2, (b)] is met thanks to Proposition 4.8;

� assumption [91, Theorem 1.2, (c)], which (up to a misprint of the cited article) should read in the vocabulary
of the present paper

∂xf2(E1)2 < 4∂xf1(E1)∂yf2(E1), ∂yf1(E2)2 < 4∂xf1(E2)∂yf2(E2),

is satisfied.

But assumption [91, Theorem 1.2, (a)] does not hold. Indeed, the set {M = 0}∪R2
+ is not the graph of a monotone

decreasing function y = k(x): it is rather the graph of an increasing-decreasing function. However, the remainder of

the assumption holds: the zero set of N is the graph of the monotone decreasing function x = l(y) := K2(1− d2
b2

)−y,

and the zero sets of M and N intersect exactly once, at EC , in the positive quadrant, under assumptions (H1),
(H2) and (H3). This suggests that the proof in [91] should be adapted to suit the present problem: Gardner states
explicitly [91, p.346] that assumption (c) and the monotonicity of k and l can be relaxed.
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is competitive with resource limitation at level K. Therefore [58, Theorem p.6] applies and there
exists a traveling wave solution to (4.15).

We also have stability and uniqueness of this traveling wave solution. Up to an affine change
of variables (replacing n2 by ñ2 := X2 − n2), we can apply [235, Theorem 2.7] to get uniqueness
and [235, Theorem 2.6] to get the global asymptotic stability of this unique traveling wave7.

In Chapter 13, we state a conjecture (Conjecture 13.1) extending the sharp threshold principle
(Theorem 4.1) to such bistable systems, relying on the comparison principle.

4.3.4 Numerical analysis

Some numerical simulations or reaction-diffusion systems of the form (4.7) have been performed
to illustrate various results throughout Part II, in dimension d ∈ {1, 2} and with Nd ∈ {1, 2}. As
it gave satisfactory results for our purposes, we have sticked to centered finite-differences scheme
for diffusion with Euler implicit time integration.

In short, for (4.12), we discretize the space interval [−L,L] into Nx + 1 points xi = −L+ i∆x
with i ∈ J0, NxK and ∆x = 2L/Nx. Then, the time interval is discretized into Nt+1 times tk = k∆t,
with ∆t = T/Nt. The simplest scheme for the discrete solution (nk,i)0≤k≤Nt

0≤i≤Nx
reads


nk+1,i − nk,i

∆t
−Dn

k+1,i+1 + nk+1,i−1 − 2nk+1,i

(∆x)2
= f(nk,i), k ∈ J0, Nt − 1K, i ∈ J1, Nx − 1K,

nk,0 = nk,1, nk,Nx = nk,Nx−1,

n0,i = n0(xi).

Introducing nk := (nk,i)0≤i≤Nx , this scheme is written in condensed form as a linear system
M1nk+1 = nk + ∆t · fk, where fki = f(nki ) and with ξ := D∆t

(∆x)2 ,

M1 = M1(ξ) :=



1 + ξ −ξ 0 · · · 0

−ξ 1 + 2ξ
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 1 + 2ξ −ξ
0 · · · 0 −ξ 1 + ξ


.

This scheme is known to be unconditionally stable (it is studied in [193, Section 12.2]), and M1

is a symmetric positive-definite M -matrix (following8 [193, Exercise 12.8.2, p. 578]), so that this
scheme satisfies a discrete non-negativity principle: if nk + ∆t · fk ≥ 0 then nk+1 ≥ 0. Therefore,
in the bistable case a sufficient condition for positivity of (nk,i)k,i is that

∆t ≤ inf
p∈(0,θ)

p

−f(p)
. (4.16)

Likewise, under a condition on ∆t the comparison principle holds at the discrete level since we
get M1(nk1 − nk2) = nk1 − nk2 + ∆t · (fk1 − fk2 ), so that n0

1 ≥ n0
2 implies nk1 ≥ nk2 for all k ∈ Z≥0 if

∆t ≤ −1

infp∈[0,1] min(f ′(p), 0)
. (4.17)

(Note that assuming that f is of class C1 with f(0) = 0 = f(1) implies that the right-hand side is
positive.)

In addition, the constant vector 1 is an eigenvector of M associated with the eigenvalue 1,
so that constants are fixed points for this scheme. Combining this with the discrete comparison
principle shows that the solutions remain upper bounded by K > 0 if the initial data is upper
bounded by K such that f(K) = 0.

This analysis can be extended to systems, where we typically write the scheme as

M1
1n

k+1
1 = nk1 + ∆t · fk1 , M1

2n
k+1
2 = nk2 + ∆t · fk2 ,

7It seems that these results could be proved by applying the methods in [52] to monotone systems.
8In fact, in our case the matrix is slightly different but the proof is the same, it suffices to show that M1x+αx ≥

0 =⇒ x ≥ 0 for α > 0, and then to pass to the limit α→ 0.
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with [fkj ]i = fj([n
k
1 ]i, [n

k
2 ]i) for j ∈ {1, 2} and i ∈ J1, NxK, and where M1

i = M1( Di∆t(∆x)2 ). Condi-

tion (4.16) rewrites in this case

∀i ∈ {1, 2}, ∆t ≤ inf
(n1,n2)∈[0,K]2

−ni
min(fi(n1, n2), 0)

,

under which assumption the non-negativity property holds for the system. The discrete comparison
principle can also be stated in this context under the assumption (extending (4.17)):

∀i ∈ {1, 2},∆t ≤ −1

inf(n1,n2)∈[0,K]2 min(∂ifi(n1, n2), 0)
.

As in the scalar case, by applying the discrete comparison principle we have that if the initial data
belongs to some interval [E2,E1] for the order induced by Ko = RNx+1

+ ×RNx+1
− , with E1 ≥Ko E2,

then so does the discrete solution.

We emphasize that the numerical resolution of linear systems M1X = Y does not require the
inversion of M1 and can be done in O(Nx) computations using the Thomas algorithm (see [193,
Section 3.7.1]).

The two-dimensional analogue of this scheme is built on a rectangular grid, thanks to the
pentadiagonal matrix

M2 = M2(ξ) :=



MNx
2,3 (ξ) ξINx+1 0 · · · 0

ξINx+1 MNx
3,4

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . MNx
3,4 ξINx+1

0 · · · 0 ξINx+1 MNx
2,3


∈M(Nx+1) · (Ny+1)(R),

where we define

MNx
α,β(ξ) :=



1 + αξ −ξ 0 · · · 0

−ξ 1 + βξ
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 1 + βξ −ξ
0 · · · 0 −ξ 1 + αξ


∈MNx+1(R).

Again, we note that 1(Nx+1) · (Ny+1) is an eigenvector of M2 associated with the eigenvalue 1, so
the constants are fixed points of the scheme. The previous properties are extended to this case
upon noting that M2 is again a symmetric positive-definite M -matrix.

To check this fact, we simply check that for x ∈ R(Nx+1) · (Ny+1),

x∗M2x =

Nx∑
i=1

Ny−1∑
j=0

x2
i+jNx + ξ

( Nx∑
i=1

Ny−1∑
j=0

(xi+jNx − xi−1+jNx)2 +

Nx∑
i=0

Ny−1∑
j=1

(xi+jNx − xi+(j−1)Nx)2
)
,

so that M is positive definite. It is also diagonally dominant. Finally, the trick from [193, Exercise
12.8.2, p. 578] also applies here, yielding the conclusion.

Here also, a generalization of Thomas algorithm allows the resolution of the pentadiagonal
linear system in an efficient way (that is, in O(Nx ·Ny) operations).

4.4 Important auxiliary results

For the completeness of the context exposition, we gather here some classical mathematical results
that are used during the thesis, although they do not necessarily come from population dynamics,
originally.
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4.4.1 Perron-Frobenius theory

In various places and in particular in Chapter 11, Metzler matrices arise as natural objects.

Definition 4.9. A Metzler matrix is a square matrix A ∈Mn(R) whose off-diagonal coefficients
are non-negative, Aij ≥ 0 for all i 6= j.

A matrix A ∈Mn(R) is called irreducible if it is not similar by a permutation to a block upper
triangular matrix. Defining the graph G with vertices (Vi)i∈J1,nK and a directed edge from Vi to Vj
if and only if Aij 6= 0, it is well-known that A is irreducible if and only if G is strongly connected
(which means that it contains a directed path from i to j for any i, j ∈ J1, nK).

Since some translate A+ αI (α ∈ R) of a Metzler matrix is a non-negative matrix (i.e. A+ αI
has non-negative coefficients and is non-zero), the Perron-Frobenius theorem for positive (or non-
negative irreducible) matrices extends to Metzler matrices.

We merely state the result and refer to [31] for a proof:

Theorem 4.2 (Perron-Frobenius). Let A ∈ Mn(R) be an irreducible Metzler matrix. Then µ(A)
is an eigenvalue of A associated with a strictly positive eigenvector V � 0, called the Perron
eigenvector of A. The eigenvalue µ(A) is simple and there is no other eigenvector of A which is
strictly positive.

If A is positive then the same property applies, with µ(A) = ρ(A).

Since this theorem also applies to the adjoint A∗, it is natural to normalize the strictly positive
right and left Perron eigenvectors of A (that is, the Perron eigenvectors of A and A∗), respectively
V and V∗, by 〈V, V∗〉 = 1.

This useful property is extended to infinite-dimensional compact and positive linear operators
on Banach spaces by the Krein-Rutman theorem (proved in [139], see the book [69]).

4.4.2 Lyapunov functions

We recall some useful definitions and the state and prove an abstract result on Lyapunov functions,
which is used in Chapter 12 for a population structured by its phenotype belonging to a metric
space P.

For a dynamic ẏ = V (y) defined on a metric space Y such that any orbit is relatively com-
pact, we call f : Y → R a global Lyapunov function for this dynamic if f is continuous,
Fréchet-differentiable and t 7→ f(y(t)) is increasing along any orbit of the V -dynamic, with strict
monotonicity except if V (y) = 0 (that is, at rest points of V ).

For any f : Y → R we call A ⊂ Y a local maximizer set of f if f(A) is a singleton {fA}, A
is connected and there exists a neighborhood B of A in Y such that for all y ∈ B\A, f(y) < fA.

We call f a strict Lyapunov function for the set A ⊂ Y if it is a global Lyapunov function
and if in addition, A is a local maximizer set of f and there exists a neighborhood B of A such
that for all y ∈ B\A, 〈Dfy, V (y)〉 > 0.

If a dynamic is given on Y , we say that A is Lyapunov-stable (with respect to this dynamic)
if every neighborhood B of A contains a neighborhood B′ of A such that if y0 ∈ B′, then for all
t > 0, y(t) ∈ B. We say that A is asymptotically stable if there exists a neighborhood B of A
such that if x ∈ B then ω(x) ⊆ A.

The following is adapted from [198, Theorem 4.4] (the first part is [155, Proposition 1]):

Proposition 4.9. Let Y be a complete metric space on which a dynamic ẏ = V (y) is given, such
that for all y0 ∈ Y the orbit {y(t), t ≥ 0} ⊂ Y is relatively compact. Let J : Y → R be a global
Lyapunov function for this dynamic.

Then, the ω-limit set of any y0 ∈ Y is non-empty, compact, connected, consists entirely of rest
points of V and f(ω(y0)) is a singleton.

In addition, if A ⊂ Y is a local maximizer set of J then it is Lyapunov-stable.
Finally, if J is a strict Lyapunov function for the set A ⊂ Y then A is asymptotically stable.

This type of convergence result has appeared in the economic literature devoted to game theory
with continuous strategy space, which we denote here by P (for “phenotype”). For instance it is
stated in [55, Theorem 3.a] and follows from [54, Theorem 2]. However, the main part of the proof
is to be found in [199] and the gist is already contained in the paper [198, Theorem 4.4] (and the
appendix of the cited paper exhibits a proof).
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We want to apply Proposition 4.9 for a dynamic defined on M1
+(P), equipped with weak*

topology. In all the cited papers, the set of strategies P is assumed to be compact, and the
equivalent of Proposition 4.9 is stated under this restriction, which is required in order to get
compactness for the weak convergence topology on probability measures. Thanks to a theorem of
Prohorov, we can relax this assumption into P ⊆ Rd (precisely, P is a locally compact Hausdorff
space), provided that the dynamic preserves some tightness of the measures: what we need to

prevent is the loss of mass at infinity. We define the tight measures set M̂1
+(P) ⊂M1

+(P) as:

M̂1
+(P) :=

{
q0 ∈M1

+(P), ∀ε > 0,∃K ⊂ P compact s.t. q0(P\K) < ε
}

Then, we assume that P is a locally compact Hausdorff space and that the V -dynamic is uniformly
tight, that is:

∀q0 ∈ M̂1
+(P), ∀ε > 0,∃K ⊂ P compact s.t. ∀t ≥ 0, q(t)(P\K) < ε. (4.18)

Under these assumptions, we claim that Proposition 4.9 applies to Y = M̂1
+(P). By Prohorov’s

theorem and the assumption (4.18), any orbit from an initial data in M̂1
+(P) is relatively compact

in the weak* topology when P is locally compact Hausdorff. This implies that ω(q0) is non-empty,
and the remaining of Proposition 4.9 follows from the same arguments as in the classical case where
P is assumed to be compact.

Proof of Proposition 4.9. Let y0 ∈ Y . Since t 7→ f(y(t)) is an increasing function R+ → R, and
is bounded (since it is continuous and the orbit of y0 is relatively compact), it must converge to
some f ∈ R.

The set ω(y0) is non-empty because the closure of the closure of the orbit Adh{y(t), t ≥ 0} is
compact, hence it has a cluster point by Bolzano-Weierstrass theorem. Moreover, it is compact
and connected because

ω(y0) =
⋂
t≥0

Adh{y(s), s ≥ t},

and therefore it writes as the decreasing intersection of connected and compact sets.
Let y1 ∈ ω(y0). Since y1 = limn→+∞ y(tn) for some increasing sequence (tn)n, by continuity of

f we can write

f = lim
t→+∞

f(y(t)) = lim
n→+∞

f(y(tn)) = f( lim
n→+∞

y(tn)) = f(y1).

Hence f(ω(y0)) is a singleton.
Then, by construction ω(y0) is invariant under the V -dynamic. Since f is strictly increasing

along orbits unless evaluated at rest points of the V -dynamic, it implies that ω(y0) consists of rest
points of the V -dynamic, that is V (ω(y0)) = {0}.

Now, let A ⊂ Y be a local maximizer set of f . We want to prove that it is Lyapunov-stable.
Let B be a neighborhood of A. By definition of local maximizers, there exists a neighborhood

C ⊂ B of A such that for all y ∈ C\A, f(y) < fA, and Adh(C) ⊂ B (using the compactness of Y ).
Let B′ε := B ∩ {fA − ε < f < fA}. By continuity of f and the local maximizer property, for all
ε > 0, C ∩B′ε 6= ∅ and B′ε is an open subset of B. Let ε > 0 be small enough so that Adh(B′ε) ⊂ C
(namely, maxAdh(C)\C f < fA − ε), and let y0 ∈ B′ε. Then for all t > 0 we have f(y(t)) > fA − ε.
Let t0 := inf{t ≥ 0, y(t) 6∈ B′ε}. If t0 < +∞ then we find that necessarily f(y(t0)) = fA. Since
y(t0) ∈ Adh(B′ε) ⊂ C, this implies that y(t0) ∈ A, and so y(t) ∈ A ⊂ B for all t ≥ t0. Indeed, A is
stable under the V -dynamic.

All in all, either t0 = +∞ and y(t) ∈ B′ε ⊂ B for all t ≥ 0, or t0 < +∞ and y(t) ∈ B′ε ∪A ⊂ B
for all t ≥ 0, whence Lyapunov-stability of A.

For the last point, we simply need to say that if for some x ∈ B (where the neighborhood B
of A is given by the definition of the strict Lyapunov function f), there exists y ∈ ω(x) ∩ (B\A),
then y cannot be a rest point of the V -dynamic since 〈Dfy, V (y)〉 > 0, which is a contradiction.
Thanks to Lyapunov stability, upon shrinking B we know that for all x ∈ B, ω(x) ⊂ B. Since
ω(x) ∩ (B\A) = ∅ and ω(x) is non-empty, we can conclude that ω(x) ⊂ A.
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Chapter 5

Reduction to a single equation for
some 2-by-2 systems

[...] – comme si l’oeil enchanté, au matin de la création, eût pu voir
se dérouler le mystère näıf de la séparation des éléments.

Julien Gracq, Au Château d’Argol.

This chapter is a joint work with Nicolas Vauchelet. It was published as an article in SIAM
Journal on Applied Mathematics [211].

Abstract. We consider general models of coupled reaction-diffusion systems for interacting vari-
ants of the same species. When the total population becomes large with intensive competition, we
prove that the frequencies (i.e. proportions) of the variants can be approached by the solution of a
simpler reaction-diffusion system, through a singular limit method and a relative compactness ar-
gument. As an example of application, we retrieve the classical bistable equation for Wolbachia’s
spread into an arthropod population from a system modeling interaction between infected and
uninfected individuals.

5.1 Introduction

We are interested in modeling situations when two biological populations of the same species
interact with each other, especially move, reproduce and compete. The dynamics of these two
populations are commonly described by a reaction-diffusion system of two equations in the whole
space Rd (d ≥ 1). In this setting, reaction terms encompass the whole interaction. Usually, they
are non-linear, in order to account for competition or mutualistic interaction. Denoting n1(t, x) and
n2(t, x) the densities of each species’ variant at time t > 0 and position x ∈ Rd, the mathematical
model reads: {

∂tn1 −∇ · (A(x)∇n1) = n1f1(n1, n2),

∂tn2 −∇ · (A(x)∇n2) = n2f2(n1, n2),
(5.1)

where the diffusion matrix A is elliptic and the regular functions f1 and f2 describe the interaction
between variants. This system is complemented with initial conditions. Since the analysis of such
systems is actually delicate, one prefers considering the proportion of one population, for instance
p = n1

n1+n2
. Then the interactions are described through the dynamics of the proportion p by a

reaction-diffusion system:
∂tp−∇ · (A(x)∇p) = pF (p). (5.2)

Since the pioneering works of Fisher [87] and Kolmogorov, Petrovskii, Piskunov [138], this kind
of reaction-diffusion equation has been extensively studied in mathematical literature. In particular
many effort have been done to establish the existence of traveling waves and to describe the
invasion phenomena (see e.g. [84], [230]). However, when considering systems of reaction-diffusion
equations, many difficulties make such analysis harder. For instance, we mention the work [91] for
competitive system. The aim of this paper, is to focus on the link between system (5.1) and (5.2).
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More precisely, the main question we want to address is to know if solutions of system (5.1) can be
rigorously approximated by system (5.2) for the proportion p of one species. In our main result, we
show that under suitable assumptions on the reaction terms in (5.1), the proportion p = n1

n1+n2
is

close (in a sense which will be defined below) to a solution to system (5.2). More precisely, we show
that when the total population becomes large with intensive competition, the frequency p = n1

n1+n2

for system (5.1) converges to the solution of equation (5.2) where the non-linear function in the
right hand side F is explicitly given with f1 and f2. Our proof is based on a compactness argument
resulting from a priori estimates. The closest results of model reduction for competition-diffusion
systems, are those of [111] and [112] (in bounded domains, with a specific and extensive discussion
on the boundary issues).

Our first interest in this topic comes from the biological phenomenon of cytoplasmic incompati-
bility, caused by the endo-symbiotic bacterium Wolbachia in some arthropod species (see [233], [29],
[121]). These bacteria have gained interest lately because of their potential use as a tool to fight
arboviruses (see [118], [232]). For this situation, modeled by a reaction-diffusion system, we prove
that if reaction terms scale in a proper way, then the frequency of Wolbachia infection approaches
the solution of a single closed reaction-diffusion equation, which is bistable. Bistable equations
have been suggested long ago for this problem (see [29] for an account on this topic, and [203] for
a specific discussion). When these models encompass a space-dependent total population density
ρ (as proposed e.g. in [177, 26, 29]), they read

∂tp−∇ · (A(x)∇p)− 2
∇ρ
ρ
A(x)∇p = pF (p). (5.3)

In some sense our result justifies their use thanks to a rigorous singular limit method. We do
not assume that ρ and p vary independently, and find that (5.3) must be corrected since F is a
function of p and ρ. We warn the reader that in order to simplify the computations, we will define
a “reduced total population density” n, instead of using the total population density ρ directly.

The outline of the paper is the following. In the next Section, we present the setting of the
problem. In particular the assumptions on the reaction terms and the main result are presented.
Section 5.3 is devoted to an example of application: the interaction between an infected and an
uninfected mosquitoes population. A numerical illustration is also provided in dimension d = 1.
The proof of our main result is provided in Section 5.4. This proof relies strongly on a priori
estimates that make us able to prove relative compactness of solutions families when a parameter
describing the size of the population goes to +∞. We give in Section 5.5 some extension to our
main result. Finally, Section 5.6 highlights questions this work opens.

5.2 Setting of the problem for typical Lotka-Volterra sys-
tems

In this section, we first define the setting where our result applies (typical Lotka-Volterra systems),
and then state it in Theorem 5.1.

5.2.1 System and assumptions

For ε > 0, let f ε1 , f
ε
2 : R2 → R be two functions. We start from the following system in Rd{

∂tn
ε
1 −∇ · (A(x)∇nε1) = nε1f

ε
1(nε1, n

ε
2),

∂tn
ε
2 −∇ · (A(x)∇nε2) = nε2f

ε
2(nε1, n

ε
2),

(5.4)

with given initial data nεi(t = 0, x) = ninit,ε
i ≥ 0 for i ∈ {1, 2}. We assume that the matrix A

is elliptic and that f ε1 , f
ε
2 are smooth enough to guarantee existence and uniqueness of a global

solution for fixed ε > 0. More precisely,

Assumption 5.1 (Ellipticity and symmetry of A). The diffusion matrix A : Rd → Rd×d is
symmetric and the system (5.4) is uniformly elliptic, i.e.

∃ν0 ∈ R∗+,∀x, ζ ∈ Rd, ζ · (A(x)ζ) ≥ ν0|ζ|2,

where | · | stands for the euclidean norm in Rd.
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We define “reduced total population” nε and frequency (i.e. proportion of population 1) pε by

nε :=
1

ε
− nε1 − nε2, pε :=

nε1
nε1 + nε2

. (5.5)

Since 0 is a sub-solution for each equation in (5.4), and since initial data are nonnegative, we have
nεi(t, · ) ≥ 0, for any t ≥ 0. By convention, we take pε = 0 whenever nε1 = nε2 = 0.

We want to compute the limit as ε → 0 of the frequency pε under the above assumption on
A : Rd → Rd×d and on some assumptions on the families of functions (f ε1 , f

ε
2)ε>0.

As a typical Lotka-Volterra system, we note that absence of either population of type 1 or 2 is
a solution to this system: there is no spontaneous generation of one population from the other. In
addition, the system is positive: for non-negative initial data, 0 ≤ pε ≤ 1. Now, we state our key
assumptions.

Assumption 5.2 (Dependence in ε). Functions f ε1 , f
ε
2 are of class C2(R2

+−{0}), and for i ∈ {1, 2}
there exists Fi ∈ C2(R2

+) (independent of ε > 0) such that

f εi (nε1, n
ε
2) = Fi(n

ε, pε). (5.6)

In other words, for any n1, n2 ≥ 0, we may write f εi (n1, n2) = Fi(
1
ε − n1 − n2,

n1

n1+n2
).

From now on we drop, the superscript ε when it is not equivocal.
Adding the two equations in system (5.4) and using also the identity

∇ · (A(x)∇p) =
1

n1 + n2
∇ · (A(x)∇n1) +

p

n1 + n2
∇ · (A(x)∇n) + 2

1

n1 + n2
∇p · (A(x)∇n),

we deduce, after straightforward computations, that (n, p) satisfies
∂tn−∇ · (A(x)∇n) =

(
n− 1

ε

)(
pF1(n, p) + (1− p)F2(n, p)

)
,

∂tp−∇ · (A(x)∇p) + 2∇p · A(x)∇n
1
ε − n

= p(1− p)
(
F1(n, p)− F2(n, p)

)
,

(5.7)

complemented with well-defined initial data. According to the first equation in (5.7), it appears
interesting, when ε→ 0, to consider the function

H(n, p) := −pF1(n, p)− (1− p)F2(n, p). (5.8)

The following assumption guarantees existence of zeros (n, p) = (h(p), p) for each p ∈ [0, 1] for the
above function H.

Assumption 5.3 (Nature of the interaction). In addition to Assumption 5.2, we assume

(i) ∃B > 0 such that ∀n ≥ 0, ∀p ∈ [0, 1], ∂nH(n, p) ≤ −B ;

(ii) ∀p ∈ [0, 1], H(0, p) > 0.

Conditions (i) and (ii) imply that for all p ∈ [0, 1], there exists a unique n =: h(p) ∈ R∗+ such
that H(n, p) = 0. We assume H ∈ C2(R2

+) (which is true if Assumption 5.2 holds), and thus
h ∈ C2(0, 1;R), with H(h(p), p) = 0 for all p ∈ [0, 1].

In particular, h(0) = 1
ε −n

ε
2, obtained at the population 1-free equilibrium (0, nε2) for (5.4). By

Assumption 5.3, this equilibrium is unique and the reduced population nε does not depend on ε.
Assumption 5.3 may seem a little awkward, therefore we would like to point out a sufficient

condition.

Lemma 5.1. We assume that both f ε1 and f ε2 are smooth (say, of class C2(R2
+ − {(0, 0)})). We

define the “triangle” Tε = {(n1, n2) ∈ R2
+ such that n1 + n2 ≤ 1

ε }. In addition to Assumption 5.2,
if f ε1 , f

ε
2 satisfy the following inequalities in Tε,

∀n = (n1, n2) ∈ Tε, n2
1∂n1

f ε1(n) + n1n2(∂n2
f ε1 + ∂n1

f ε2)(n) + n2
2∂n2

f ε2(n) ≤ −B(n1 + n2)2, (5.9)

together with a “boundary condition”: for all n ∈ R2
+ with ‖n‖1 = 1

ε ,

n1f
ε
1(n) + n2f

ε
2(n) < 0. (5.10)

Then Assumption 5.3 holds.
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Remark 5.1. Equation (5.9) on the lines n1 = 0 and n2 = 0 means that the profiles of f1, f2

are below concave parabolic profiles. More generally, it ensures that the total population n1 + n2,
in (5.7), will start decreasing (in time) before reaching the value 1

ε .

Proof of Lemma 5.1. We verify each point (i) and (ii) in Assumption 5.3. (i) We first recall that
∂nH = −(p∂nF1 + (1− p)∂nF2). From (5.6), we express ∂nif

ε
1 and ∂nif

ε
2 ,

∂nif
ε
j = −∂nFj +

n3−i

n1 + n2
∂pFj , i, j = 1, 2.

Collecting these expressions yields straightforwardly

∂nH = −p∂nF1 − (1− p)∂nF2 = p
n1

n1 + n2
∂n1

f ε1 + p
n2

n1 + n2
∂n2

f ε1

+(1− p) n1

n1 + n2
∂n1f

ε
2 + (1− p) n2

n1 + n2
∂n2f

ε
2 ,

whence the equivalence with (5.9).
(ii) For the boundary condition, we compute from (5.8)

H(0, p) = −
(
pF1(0, p) + (1− p)F2(0, p)

)
.

Then it suffices to recall that, by definition in (5.6), for i ∈ {1, 2}, Fi(0, p) = f εi (pε ,
1−p
ε ).

5.2.2 Main result

We are now in position to state our main result. We recall that we associate to any initial data
ninit,ε
i the corresponding solutions of (5.4), (nεi), and their relative variable nε and pε, as defined

in (5.5). In addition we may define

ninit,ε =
1

ε
− ninit,ε

1 − ninit,ε
2 , pinit,ε =

ninit,ε
1

ninit,ε
1 + ninit,ε

2

.

Theorem 5.1. We assume that Assumptions 5.1, 5.2, and 5.3 are satisfied. We consider the
solutions of (5.4) with initial data nεi(t = 0) = ninit,εi ∈ L∞(Rd;R+) for i ∈ {1, 2}. We assume
moreover that there exists pinit ∈ L2(Rd) such that

pinit,ε ⇀
ε→0

pinit in L2(Rd)− weak, ninit,ε − h(0) ∈ L2 ∩ L∞(Rd), (5.11)

with uniform bounds in ε > 0.
Then, for all T > 0, defining H1

T = L2(0, T ;L2(Rd)) and H2
T = L2(0, T ;H1(Rd)), we have the

convergence p
ε −−−→
ε→0

p0 strongly in H1
T , weakly in H2

T ,

nε − h(p0) −−−→
ε→0

0 strongly in HT , weakly in H2
T ,

(5.12)

where p0 is the unique solution of the following initial value problem{
∂tp

0 −∇ · (A(x)∇p0) = p0F1(h(p0), p0),

p0(t = 0) = pinit.
(5.13)

This result asserts that, locally in time, the proportion of the first population, p, solution to
system (5.4), under suitable assumption on the reaction term and on the initial data, is close to
the solution of a single reaction-diffusion system (5.13). This latter system have been intensively
studied, in particular existence of traveling waves, describing propagation phenomena (see [84]
or [230]). The main interest in this reduction process is that since the behavior of solutions to the
scalar equation (5.13) is well-known. Therefore we can deduce, for small values of ε, the local in
time behavior of solutions to (5.4).

We observe that the limit reaction term r(p) := pF1(h(p), p) in (5.13) satisfies

r(0) = 0, r(1) = F1(h(1), 1) = 0,
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because H(h(p), p) = 0 = −pF1(h(p), p)− (1− p)F2(h(p), p). It means that the states p0 = 0 (only
population 2) and p0 = 1 (only population 1) are equilibria for this system.

Moreover,
r′(0) = F1(h(0), 0)

and
r′(1) = h′(1)∂nF1(h(1), 1) + ∂pF1(h(1), 1).

Hence under some direct sign assumptions on F1 and ∂pF1, the equilibria 0 and 1 for p can be
made stable in the limit equation, if r′(0) and r′(1) are negative. In particular, in the example in
Section 5.3, the function r is bistable.

Remark 5.2. The assumption ninit,ε−h(0) uniformly bounded with respect to ε in L2(Rd) together
with the uniform bound of pinit,ε in L2(Rd) imply, thanks to Assumption 5.3, that ninit − h(pinit,ε)
is bounded in L2(Rd), uniformly in ε > 0. Indeed, h is Lipschitz on (0, 1) and by the triangle
inequality, we have ‖ninit − h(pinit,ε)‖L2 ≤ ‖ninit,ε − h(0)‖L2 + ‖h‖Lip‖pinit,ε‖L2 .

Remark 5.3. One might be interested by the effect of the local introduction of a variant into a
population at equilibrium. In this situation, at the time of introduction, variant 2 is at equilibrium
whereas the introduction of variant 1 is modeled by a compactly supported continuous nonnegative
function φ. Then we have ninit,ε2 = 1

ε − h(0) on Rd \ supp φ, and we set ninit,ε1 = φninit,ε2 . Then,

pinit = φ
1+φ and Theorem’s assumption (5.11) boils down to assume that

1

ε
− (1 + φ)ninit,ε2 − h(0) is uniformly bounded with respect to ε in L∞(Rd).

Finally, we mention that we can relax the assumption (5.11) by assuming that the sequence
(pinit,ε)ε is uniformly bounded with respect to ε in L2(Rd) instead of assuming its convergence. In
fact, we can extract a subsequence of (pinit,ε)ε that converges weakly towards pinit and the result
applies. But the uniqueness of the weak limit pinit is not guaranteed and therefore, the result in
Theorem 5.1 is available only up to an extraction of a subsequence.

5.3 Application to a biological example

5.3.1 Presentation of the model

We consider the case of Wolbachia in arthropod species (for the biology of this bacterium, see [233]
; for mathematical modeling, see [29], [83], [121], [50]). It is an endo-symbiont that is maternally
transmitted, causes cytoplasmic incompatibility (CI), and has several other effects on its host.
Here, we understand CI as a mechanism through which one of the possible crossings is less viable.
More precisely, if an uninfected female is fertilized by an infected male, a fraction only of its eggs
will eventually hatch and give birth to viable larvae. For more details about CI, we refer to [233].
In the case of Aedes mosquitoes, Wolbachia reduces lifespan, changes fecundity and blocks the
development of dengue virus (see [172], [232], [128]). It is then a potential biological tool to fight
dengue epidemics. However, it does not change the way mosquitoes move. Therefore, in order to
model a Wolbachia invasion (assessed in the field in [118]) we are precisely in our setting. Several
(two) variants of the same species interact with each other in a complex way.

Specifically, we define the uninfected death rate du. This rate is multiplied by δ > 1 for infected
mosquitoes: di = δdu. We also define an uninfected fecundity Fu for uninfected mosquitoes,
Fi = (1− sf )Fu for infected mosquitoes ; a resource parameter σ ; and a CI parameter 0 < sh ≤ 1,
which means that a fraction sh of uninfected females’ eggs fertilized by infected males won’t hatch.
Parameters δ, sf and sh have been estimated in several cases and can be found in the literature
(see [29] and references therein). We will always assume sh > sf . (In practice, we usually have
sf close to 0 and sh close to 1). Let us denote ni(t, x), resp. nu(t, x), the density of the infected,
resp. uninfected, mosquitoes at time t ≥ 0, position x ∈ Rd.

Several models have been written, using these parameters. In [50] (if we ignore the drift speed
v ∈ Rd they used, which amounts at a change of coordinates) one find{

∂tni −∇ · (A(x)∇ni) = ni(1− σ(nu + ni))− duni,
∂tnu −∇ · (A(x)∇nu) = nuFu(1− sh ni

nu+ni
)(1− σ(nu + ni))− dunu.

(5.14)
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In this model, δ = 1 and variables are scaled so that Fu(1 − sf ) = Fi = 1. Here the reduced
population is defined by n = 1

σ − (ni + nu). The corresponding dynamics in (n, p) for (5.14) is
written {

∂tn−∇ · (A(x)∇n) =
(
σn(p+ Fu(1− p)(1− shp))− du

)
,

∂tp−∇ · (A(x)∇p) + 2∇nn A(x)∇p = σnp(1− p)
(
du − Fu(1− shp)

)
,

(5.15)

In (5.15), the reaction term for p depends on n merely for its intensity (it is a multiplicative
factor). In particular, the unstable steady state (defining, in some sense, a possible “threshold for
invasion”) is equal to 1

sh
(1− du

Fu
) does not depend on n.

To further reduce this class of models and prove the convergence towards (5.3), we introduce
the parameter ε to characterize the high fertility and competition that result in a carrying capacity
of order 1

ε . Then we propose the following generalization of (5.14), which incorporates also the
different death rate and the reduction of fecundity,{

∂tni −∇ · (A(x)∇ni) = (1− sf )Funi
(

1
ε − σ(ni + nu)

)
− δduni,

∂tnu −∇ · (A(x)∇nu) = Funu(1− sh ni
ni+nu

)
(

1
ε − σ(ni + nu)

)
− dunu,

(5.16)

Straightforwardly, we can compute the equilibria for the associated dynamical system.

Lemma 5.2. As soon as sf + δ− 1 < δsh, there are four distinct equilibria associated with (5.16)
in the non-negative quadrant.

� Wolbachia invasion steady state (n∗iW , n
∗
uW ) := ( 1

σε −
du
Fu

δ
1−sf , 0) is stable;

� Wolbachia extinction steady state (n∗iE , n
∗
uE) := (0, 1

σε −
du
Fu

) is stable;

� The co-existence steady state is unstable and reads

(n∗iC , n
∗
uC) :=

(( 1

σε
− du
Fu

δ

1− sf
)δ − (1− sf )

δsh
,
( 1

σε
− du
Fu

δ

1− sf
)δ(sh − 1) + (1− sf )

δsh

)
;

� The steady state (0, 0) is unstable.

5.3.2 Large population asymptotic

We perform the limit ε→ 0 for system (5.16). To recover notations from Theorem 5.1, we identify
n1 = ni, n2 = nu. As above we define the reduced quantity n = 1

σε − (n1 + n2) and p = n1

n1+n2
.

Then with the notations in Section 5.2, one has

F1(n, p) = σn(1− sf )Fu − δdu,
F2(n, p) = σnFu(1− shp)− du.

Therefore, by definition (5.8), we compute

H(n, p) = −p(σn(1− sf )Fu − δdu)− (1− p)(σnFu(1− shp)− du)

= −σFun(shp
2 − (sf + sh)p+ 1) + du((δ − 1)p+ 1).

And Assumption 5.2 is satisfied. Then, Assumption 5.3 is easy to check since H(0, p) = du((δ −
1)p + 1) > 0 and using the fact that the polynomial x 7→ shx

2 − (sf + sh)x + 1 is minimal for

x =
sf+sh

2sh
, we have

∂nH(n, p) = −σFu(shp
2 − (sf + sh)p+ 1) ≤ −σFu(1− (sf + sh)2

4sh
) < 0,

since we have sf < sh. We notice also that this computation implies that the above second order
polynomial in p is always away from 0 on [0, 1]. Moreover, recalling the definition H(n, p) = 0 if

and only if n = h(p) from Assumption 5.3, we can compute h(p) = du
σFu

(δ−1)p+1
shp2−(sf+sh)p+1 . Under

Assumption 5.1 on A, Theorem 5.1 applies, and pε converges towards the solution of the following
equation {

∂tp
0 −∇ · (A(x)∇p0) = r(p0),

p0(t = 0) = pinit,
(5.17)
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and the reaction term writes

r(p) = δdush
p(1− p)(p− θ)

shp2 − (sf + sh)p+ 1
, θ =

sf + δ − 1

δsh
,

which is bistable provided δ satisfies the condition from Lemma 5.2:

sf + δ − 1 < δsh. (5.18)

If δ = 1, we find the ubiquitous value θ(= p∗) =
sf
sh

, which corresponds to the model of spacial

spread of Wolbachia proposed in [29]. In addition, this expression is coherent with the one in [203]
for general δ. Even though the equation for p has already been suggested for a while, as far as we
know, no convergence result as ours had been proved before from a two-populations model to the
bistable equation.

A direct application of Theorem 5.1 establishes that, in the limit ε→ 0, the derivation in [29]
holds true in a strong topology.

Corollary 5.1. Assume that A satisfies Assumption 5.1. Given ninit,ε1 and ninit,ε2 such that there

exists pinit ∈ L2(Rd) such that pinit,ε ⇀ pinit as ε → 0 in L2(Rd)-weak and 1
σε − n

init,ε
1 − ninit,ε2 −

du
σFu
∈ L2 ∩ L∞(Rd) with uniform bounds in ε > 0, then Theorem 5.1 applies and the solutions

(nεi , n
ε
u)ε>0 of (5.16) satisfy the convergence result in (5.12) where the limiting equation is given

in (5.17).

5.3.3 Numerical illustration

A numerical illustration of this convergence result is shown in Figure 5.1. Parameters are fixed
according to biologically relevant data (freely adapted from [88]). Time unit is the day, and
parameters per day are Fi = Fu = 1.12 (hence sf = 0), du = 0.27 and di = 0.3, then δ = di

du
= 10

9 .
We choose sf = 0.1 and sh = 0.8. We take σ = 1, and A(x) ≡ 0.1, which amounts at choosing a
space scale.

We discretize the one-dimensional computational domain [−15; 15] with space step ∆x = 0.05
and take a time step ∆t = 0.005. The reaction diffusion equations are discretized thanks to
semi-implicit finite difference scheme, the diffusion operator being treated implicitly (to avoid too
restrictive stability conditions), while the reaction term is treated explicitly. Curves are plotted
every 5000 iterations, at times (in days) T1 = 25, T2 = 50, T3 = 75, T4 = 100 and T5 = 125. We
display 4 numerical tests with the same initial data pinit compactly supported, plotted in pluses
(+). The blue lines represent the solution of the limiting system (5.17). In dashed red lines
are plotted the numerical results for the system of two populations (5.16). We observe that the
solution of the limiting bistable system (5.17) exhibits a traveling front which propagates into the
whole domain. Then the numerical results for 4 different values of the parameter ε are represented.
For large populations, we observe that as ε goes to 0 (recall that the order of magnitude of the
population size is 1

σε ), the solution to the whole system (5.16) gets closer to the one of the limiting
system. However, for ε = 0.6, the introduced population goes extinct, and p does not converge
towards a traveling wave. This illustrates how the 2 by 2 system qualitatively differs from the limit
reaction-diffusion equation.

An additional conclusion we can draw from Figure 5.1 is that our approximation result will
always be local in time. Indeed, for small ε we see a traveling wave appear in dashed red, that has
a slower speed than the blue one. Hence the norm of their difference will be constantly growing
in time.

5.4 Proof of convergence

This Section is devoted to the proof of Theorem 5.1. We write the system of equations satisfied
by (nε, pε) 

∂tn
ε −∇ · (A(x)∇nε) =

(
1
ε − n

ε
)
H(nε, pε),

∂tp
ε −∇ · (A(x)∇pε) + 2ε∇pε · A(x)∇nε

1−εnε = pε(1− pε)
(
F1 − F2

)
(nε, pε),

nε(t = 0) = ninit,ε, pε(t = 0) = pinit,ε .

(5.19)
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Figure 5.1: Initial data (+) creating a traveling wave in the limit system (blue) and convergence
of the two-population solution (dashed red) as ε diminishes.

We recall that the initial data are assumed to satisfy (5.11). Then the sequence (pinit,ε)ε is bounded
uniformly in ε in L2(Rd) and (ninit,ε−h(0))ε is bounded uniformly in ε in L2∩L∞(Rd). The proof of
Theorem 5.1 relies strongly on a sequence of a priori estimates uniform in ε, which give compactness
and allow to pass to the limit in the equation for pε.

From now on, we will drop the superscript ε in the notations.

5.4.1 Estimates

For ε > 0 fixed, existence of solutions to (5.19) is classical (see e.g. [187]). Now we establish some
a priori estimates uniform in ε > 0. First, we have the following L∞ bounds.

Lemma 5.3. Under the assumptions of Theorem 5.1, for any positive initial data, the unique
solution (p, n) to (5.19) satisfies

∀t > 0, x ∈ Rd, 0 ≤ p(t, x) ≤ 1

and n ∈ L∞(R+ × Rd). Moreover, there exists ε0 > 0 such that the L∞ bound on n is uniform in
ε0 > ε > 0.

Proof. As stated before, positivity of n1, n2 is straightforward and implies the uniform bounds on
p in L∞.

Using Stampacchia’s method for the bound on n, we notice that, from Assumption 5.3, for all
p ∈ [0, 1],

(
1
ε − n

)
H(n, p) is positive for n between 0 and h(p) and negative afterwards until 1

ε .

Then, for K̃ = maxp∈[0,1] h(p), we define y(t) =
∫
Rd
(
n(t, x) − K̃

)
+
dx. Multiplying the equation

on n− K̃ by 1n>K̃ and integrating over Rd gives, for ε < 1
K̃

d

dt
y(t) +

∫
Rd
∇(n− K̃)+ ·A(x)∇(n− K̃)+dx ≤ 0.
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And in particular, d
dty < 0. Since, from Assumption (5.11), ninit is bounded in L∞ uniformly with

respect to ε, we can pick K̃ such that K̃ > ‖ninit‖∞. Then y(0) = 0. We deduce that y ≡ 0.
To conclude, the result is proved with

ε0 =
(

max ( max
p∈[0,1]

h(p), ‖ninit‖∞)
)−1

.

Now, we aim at getting the following boundedness result.

Proposition 5.1. Let T > 0. Under the assumptions in Theorem 5.1, we define M := n− h(p).
Then, there exists ε0 > 0 such that M and p are uniformly bounded in H1

T ∩H2
T , for all ε ≤ ε0.

We recall that the function h is defined in Assumption 5.3 and belongs to C2([0, 1]). Then we
may define

h0 = ‖h‖L∞([0,1]), h′0 = ‖h′‖L∞([0,1]), h′′0 = ‖h′′‖L∞([0,1]). (5.20)

We notice that, by definition and from Lemma 5.3, we have that M is uniformly bounded in L∞

for ε ≤ ε0. The proof of this result relies on estimates on p and M , and we postpone the proof of
Proposition 5.1 after proving them in the two following technical Lemma. The first one is for p.

Lemma 5.4. There is a positive constant K independent of ε such that ∀ε > 0,

1

2

d

dt

∫
Rd
p2dx+ (1− εC1)

∫
Rd
∇pA(x)∇pdx ≤ εC2

∫
Rd
∇MA(x)∇Mdx+K

∫
Rd
p2dx,

where C1 = 2
(
1 +

h′0
2 + (h′0)2

)
and C2 = 2(1 +

h′0
2 ).

Proof. We multiply by p the equation satisfied by p in (5.19), and integrate over Rd

1

2

d

dt

∫
Rd
p2dx+

∫
Rd
∇pA(x)∇pdx+ 2ε

∫
Rd

p

1− εn
∇p ·A(x)∇ndx

≤
∫
Rd
p2(1− p)

(
F1 − F2

)
(n, p)dx. (5.21)

Thanks to Lemma 5.3, we know that p
1−εn is well-defined for ε small enough, and the denominator

is uniformly positive. Hence we may use a Cauchy-Schwarz inequality,∫
Rd

p

1− εn
∇nA(x)∇pdx ≤ 1

2

∫
Rd

p

1− εn
∇pA(x)∇pdx+

1

2

∫
Rd

p

1− εn
∇nA(x)∇ndx.

Since n = M + h(p), we have ∇n = ∇M + h′(p)∇p. We may also write,∫
Rd
∇nA(x)∇ndx ≤ ((h′0)2 +

h′0
2

)

∫
Rd
∇pA(x)∇pdx+ (1 +

h′0
2

)

∫
Rd
∇MA(x)∇Mdx.

Now, collecting these inequalities for ε small enough, such that p
1−εn ≤ 2 yields

1

2

d

dt

∫
Rd
p2dx+

(
1− 2ε

(
1 + h′0(h′0 +

1

2
)
)) ∫

Rd
∇pA(x)∇p

≤ 2ε
(
1 +

h′0
2

) ∫
Rd
∇MA(x)∇M +KF

∫
Rd
p2dx,

where

KF := sup{|(1− p)(F1 − F2)(n, p)|, as |n| 6 sup
0<ε6ε0

‖n‖L∞ and 0 6 p 6 1}. (5.22)

Thanks to Lemma 5.3 and the continuity of the functions F1 and F2, the constant KF is finite.
This is the expected estimate.

Similarly, on M := n− h(p),
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Lemma 5.5. There are positive constants C3, C4, C5, C6 independent of ε such that, for all ε > 0,

1

2

d

dt

∫
Rd
M2dx+ (1− εC3)

∫
Rd
∇MA(x)∇Mdx

≤
(
C4 −

C5

ε

) ∫
Rd
M2dx+ C6

( ∫
Rd
p2dx+

∫
Rd
∇pA(x)∇pdx

)
,

where C3 =
h′0
2 , C4 = B(h0 + K̃ ′) +

h′0KF
2 , C5 = B and C6 = max

(h′0KF
2 , K̃ ′h′′0 + εh′0(h′0 + 1

2 )
)
,

and K̃ ′,KF are positive constants defined in (5.22) and (5.26).

Proof. The quantity M satisfies the following equation (obtained from (5.19))

∂tM −∇ · (A(x)∇M) = ∂tn−∇ · (A(x)∇n)− h′(p)∂tp+∇ · (h′(p)A(x)∇p)

=
(1

ε
−M − h(p)

)
H(M + h(p), p) + h′′(p)∇p · (A(x)∇p)

− h′(p)
(

(1− p)(−F2 −H)(M + h(p), p)

− 2ε
1

1− εn
(A(x)∇M + h′(p)A(x)∇p) ·∇p

)
, (5.23)

it is associated with an initial data M init = ninit − h(pinit) bounded in L2(Rd). Indeed, as noted
in Remark 5.3, we have,

|ninit − h(pinit)| ≤ |ninit − h(0)|+ |h(0)− h(pinit)| ≤ |ninit − h(0)|+ h′0|pinit|.

Moreover, from (5.11), pinit is bounded in L2(Rd) and ninit − h(0) is bounded in L2(Rd), with
uniform bounds in ε. It implies the uniform bound of M init in L2(Rd).

Now, we assume that ε is small enough, so that the term 1
ε −M − h(p) remains positive (this

is possible thanks to Lemma 5.3). We multiply by M equation (5.23), and integrate over Rd

d

dt

∫
Rd
M2dx+

∫
Rd
∇M · (A(x)∇M)dx

≤ −B
∫
Rd
M2
(1

ε
−M − h(p)

)
dx

+

∫
Rd

2Mh′(p)ε
1

1− εn
(A(x)∇M + h′(p)A(x)∇p) ·∇pdx

+

∫
Rd
Mh′′(p)∇p · (A(x)∇p)dx

−
∫
Rd
Mh′(p)(1− p)(−F2 −H)(M + h(p), p)dx (5.24)

Since ∂nH ≤ −B (Assumption 5.3),
H(M + h(p), p)−H(h(p), p)

M
≤ −B. Multiplying this in-

equality by M2 > 0 we get MH(M + h(p)) ≤ −BM2 because H(h(p), p) = 0 for all p ∈ [0, 1].
Now, we bound each one of these terms of the right hand side of (5.24) separately (keeping in

mind the fact that ε will be chosen small enough)

−B
∫
Rd
M2
(1

ε
−M − h(p)

)
dx ≤ −B

(1

ε
− h0 − K̃ ′

) ∫
Rd
M2dx, (5.25)

where
K̃ ′ = sup{|n− h(p)|, as |n| ≤ sup

0<ε6ε0
‖n‖L∞ and 0 6 p 6 1}. (5.26)

From Lemma 5.3, K̃ ′ is finite and by definition M = n − h(p), K̃ ′ bounds |M |. We pick ε < ε0
such that 1− εn > 1

2 (again, using Lemma 5.3). After using a Cauchy-Schwarz inequality, we get∣∣∣∣∫
Rd

2Mh′(p)ε
1

1− εn
(A(x)∇M + h′(p)A(x)∇p) ·∇pdx

∣∣∣∣
6 h′0K̃

′ε
(

(h′0 +
1

2
)

∫
Rd
∇p · (A(x)∇p)dx+

1

2

∫
Rd
∇M · (A(x)∇M)dx

)
. (5.27)
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Finally, by definition of H in (5.8), we have

(−F2 −H)(n, p) = p(F1 − F2)(n, p).

Then using the constant KF defined in (5.22), we deduce, applying a Cauchy-Schwarz inequality,∣∣∣∣∫
Rd

(
Mh′′(p)∇p · (A(x)∇p)−Mh′(p)(1− p)(−F2 −H)(M + h(p), p)

)
dx

∣∣∣∣
6 h′′0K̃

′
∫
Rd
∇p · (A(x)∇p)dx+

h′0KF

2

∫
Rd
M2dx+

h′0KF

2

∫
Rd
p2dx. (5.28)

Combining (5.25), (5.27) and (5.28) we get

1

2

d

dt

∫
Rd
M2dx+

∫
Rd
∇M · (A(x)∇M)dx

6 −B(
1

ε
− h0 − K̃ ′ −

h′0KF

2B
)

∫
Rd
M2dx+

h′0KF

2

∫
Rd
p2dx

+
(
K̃ ′h′′0 + h′0ε(h

′
0 +

1

2
)
) ∫

Rd
∇p · (A(x)∇p)dx

+ h′0
ε

2

∫
Rd
∇M · (A(x)∇M)dx.

This is the expected estimate.

With Lemmas 5.4 and 5.5 we can proceed to prove Proposition 5.1.

Proof of Proposition 5.1. Let α > 0, summing the inequality in Lemmas 5.4 and 5.5, we obtain

1

2

d

dt

∫
Rd

(M2 + αp2)dx+ (1− εC3 − αεC2)

∫
Rd
∇M · (A(x)∇M)dx

+ (α(1− εC1)− C6)

∫
Rd
∇p · (A(x)∇p)dx ≤

(
C4 −

C5

ε

) ∫
Rd
M2dx+

(
C6 + αK

) ∫
Rd
p2dx.

Now, we can pick α > 0, ε′0 ∈ (0, ε0) such that for all 0 < ε < ε′0,

1− ε(C3 + αC2) ≥ 1

2
, and α(1− εC1)− C6 ≥

1

2
.

The choice α = C6 + 1, then ε′0 = min( 1
2(C3+C2(C6+1)) ,

1
2C1(C6+1) ) suffices. Hence we arrive at

d

dt

∫
Rd

(M2 + αp2)dx+

∫
Rd
∇M · (A(x)∇M)dx+

∫
Rd
∇p · (A(x)∇p)dx

≤ 2
(
C4 −

C5

ε

) ∫
Rd
M2dx+ 2

(
C6 + αK

) ∫
Rd
p2dx. (5.29)

Next, using the positivity of A, we may write for all ε > 0 smaller than ε0 and C4/C5

d

dt

∫
Rd

(M2 + αp2)dx ≤ 2
C6 + αK

α

∫
Rd

(αp2 +M2)dx,

and thus by Gronwall’s lemma, for all ε > 0 small enough, with C0 := 2C6+αK
α∫

Rd

(
M2(t, x) + αp2(t, x)

)
dx ≤ eC0t

(
‖M init‖2L2(Rd) + α‖pinit‖2L2(Rd)

)
.

Since initial data are uniformly bounded in L2(Rd) thanks to (5.11) and Remark 5.2, the first part
of Proposition 5.1 is proved. For all T > 0, M and p are uniformly bounded in H1

T for ε small
enough.

The second part follows easily from a time integration of (5.29). If ε is small enough, we get∫ t

0

∫
Rd

(
∇M · (A(x)∇M) +∇p · (A(x)∇p)

)
dxds ≤ 2

(
C6 + αK

) ∫ t

0

∫
Rd
p2dxds

+

∫
Rd

(
(M init)2 + α(pinit)2

)
dx.

Since we have proved the uniform L2-bound of p, we conclude from the positivity of A (Assump-
tion 5.1), and the uniform bounds on the initial data.
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5.4.2 Convergence of M

Until now we have not used the strength of the negative term in 1
ε in the right hand side of (5.29).

Thanks to it, we can even get convergence of M .

Lemma 5.6. Under the assumptions of Theorem 5.1, for all T > 0, M −−−→
ε→0

0 strongly in H1
T .

Proof. Back to the estimate in Lemma 5.5, and thanks to Proposition 5.1, we may write

d

dt

∫
Rd
M2dx ≤

(
2C4 −

2C5

ε

) ∫
Rd
M2dx+ C(t),

where C(t) := 2C6

( ∫
Rd p

2dx +
∫
Rd ∇p · (A(x)∇p)dx). From Proposition 5.1, we deduce that C is

bounded in L1(0, T ). Applying a Gronwall’s lemma, we may write∫
Rd
M2dx ≤ e−2(

C5
ε −C4)t

(
‖M init‖L2(Rd) +

∫ t

0

e2(
C5
ε −C4)t′C(t′)dt′

)
.

Let ε be small enough such that C5

ε > C4. Then integrating the latter inequality for t ∈ [0, T ], we
deduce ∫ T

0

∫
Rd
M2dxdt ≤ ε

2(C5 − εC4)
‖M init‖L2(Rd) +

∫ T

0

∫ t

0

e2(
C5
ε −C4)(t′−t)C(t′)dt′.

We make a change of variable to estimate the last term in the right hand side:∫ T

0

∫ t

0

e2(
C5
ε −C4)(t′−t)C(t′)dt′dt =

∫ T

0

∫ T

t′
e2(

C5
ε −C4)(t′−t)dtC(t′)dt′

=

∫ T

0

∫ 0

t′−T
e2(

C5
ε −C4)τdτ C(t′)dt′

≤ ε

2(C5 − εC4)

∫ T

0

C(t′)dt′.

We conclude that∫ T

0

∫
Rd
M2dxdt ≤ ε

2(C5 − εC4)

(
‖M init‖L2(Rd) +

∫ T

0

C(t′)dt′

)
.

It implies the expected convergence as ε→ 0.

5.4.3 Compactness result and proof of Theorem 5.1

Before proving our main result, we recall the following compactness result (see [205]).

Lemma (Lions-Aubin). Let T > 0, q ∈ (1,∞), (ψn)n a bounded sequence in Lq(0, T ;H), where H
is a Banach space. If ψn is bounded in Lq(0, T ;V ) and V compactly embeds in H, and if (∂tψn)n is
bounded in Lq(0, T ;V ′) uniformly with respect to n, then (ψn)n is relatively compact in Lq(0, T ;H).

Proof of Theorem 5.1. We split the proof into three steps. First, our previous estimates together
with Lions-Aubin lemma enable us to prove relative compactness on bounded domains. Then,
through a diagonal extraction process, we prove that there exists (up to extracting a subsequence)
a global limit. Finally, thanks to our uniform estimates, we prove that this limit satisfies a universal
equation whose solution is unique, which in turn implies convergence of the whole sequence.

Step 1: Local relative compactness. For R > 0 we define the increasing sequence (BR)R
of balls of radius R with center 0 in Rd, and HR = L2(BR), VR = H1(BR) ∩ L∞(BR), and pick
T > 0. Then, we check that Lions-Aubin Lemma with q = 2 can be applied to

ψ(R)
ε = pε BR .
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Lemma 5.4 gives boundedness in Lq(0, T ;VR). The compact embedding is classical (Rellich-
Kondrachov). We check that the time derivative is bounded. Let χ ∈ VR, 〈 · , · 〉 = 〈 · , · 〉V ′R,VR and
t ∈ (0, T ).∫ t

0

|〈∂tpε(τ), χ〉|2dτ =

∫ t

0

∣∣〈∇ · (A(x)∇pε)−2ε∇pε · A(x)∇nε

1− εnε
+pε(1−pε)(F1−F2)(nε, pε), χ〉

∣∣2dτ.
This can be bounded∫ t

0

|〈∂tpε(τ), χ〉|2dτ ≤
(∫ t

0

∫
BR

|A(x)∇pε ·∇χ|
)2

+ ε
(∫ t

0

∫
BR

|A(x)∇nε ·∇pε|
)2

+ Ct

∫
BR

χ2

≤ ‖∇χ‖2HR‖∇p
ε‖2L2(0,T ;HR)

+ 2ε‖∇nε‖2L2(0,T ;HR)‖∇p
ε‖2L2(0,T ;HR)‖χ‖

2
∞ + CT‖χ‖2HR ,

which gives the required bound, uniform in 0 < ε < ε0, for ε0 small enough. This holds thanks to
Lemmas 5.4 and 5.5.

Step 2: Global convergence. Now, for allR ∈ Z>0, one can extract converging (in L2(0, T ;HR))
subsequence from (pε)ε by Lions-Aubin Lemma. We perform a diagonal extraction process succes-
sively in R, so that

pε
(R)
m −−−−→

m→∞
p(R) in L2(0, T ;HR),

and by construction (ε
(R1)
m )m is a subsequence of (ε

(R2)
m )m if R2 > R1. Because the whole family

(pε)ε is in L2(0, T ;H1(Rd)) uniformly in ε (by Lemma 5.4), one gets weak convergence of gradient

∇pε
(R)
m −−−−⇀

m→∞
∇p(R) in L2(0, T ;HR).

Thanks to Lemma 5.4, we know that the limits p(R) are well-defined, do not depend on the extracted
subsequences, satisfy the same bounds as (pε)ε and

R2 > R1 =⇒ p(R2)
BR1

= p(R1).

Therefore we can define p0 ∈ L2(0, T ;L2(Rd)) and we have constructed a subsequence, still denoted
(pε)ε, such that pε −−−→

ε→0
p0 strongly in L2(0, T ;L2(BR)) for all R > 0.

To pass from local to global convergence, we need to have uniform in ε estimate in the tails
|x| > R. To do so, let us introduce φ ∈ C∞(Rd) such that 0 ≤ φ ≤ 1, φ(x) = 0 if |x| < 1/2 and
φ(x) = 1 if |x| > 1. Then we denote φR(x) = φ(x/R). Multiplying the equation satisfied by pε in
(5.19) by pεφR and integrating over Rd, we deduce

1

2

d

dt

∫
Rd

(pε)2φR dx+

∫
Rd
∇(pεφR) ·A(x)∇pε dx+

∫
Rd

2ε

1− εnε
φRp

ε∇pε ·A(x)∇nε dx

≤ KF

∫
Rd

(pε)2φR dx,

where KF has been defined in (5.22). Using a Cauchy-Schwarz inequality, we have∫
Rd
∇(φRp

ε) ·A(x)∇pε dx =

∫
Rd
pε∇φR ·A(x)∇pε dx+

∫
Rd
φR∇pε ·A(x)∇pε dx

≥ −
(∫

Rd
∇φR ·A(x)∇φR dx

)1/2(∫
Rd
∇pε ·A(x)∇pε dx

)1/2

.

By definition of φR we have that ∇φR(x) = 1
R∇φ(x/R) and ∇φR(x) = 0 on BR/2 ∪ Rd \ BR. As

above, we take ε small enough such that 1 − εnε ≥ 1
2 , which can be done thanks to Lemma 5.3.

Then, as in the proof of Proposition 5.1, there exists a nonnegative function C(t) ∈ L1(0, T ) such
that, thanks to a Cauchy-Schwarz inequality∣∣∣∣∫

Rd

2ε

1− εnε
φRp

ε∇pε ·A(x)∇nε dx
∣∣∣∣ ≤ C(t)ε, and −

∫
Rd
∇φR ·A(x)∇pε dx ≤ C(t)

R
.
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Then, we have obtained

1

2

d

dt

∫
Rd

(pε)2φR dx ≤ C(t)
( 1

R
+ ε
)

+KF

∫
Rd

(pε)2φR dx.

Using a Gronwall Lemma, it implies∫
Rd

(pε)2φR dx ≤ e2KF t

∫
Rd

(pinit)2φR dx+
( 1

R
+ ε
) ∫ t

0

2C(τ)e2KF (t−τ) dτ.

By definition of φR (φR(x) = 1 on Rd \ BR), we deduce that for all ε > 0 small enough and all
R > 0,∫ T

0

∫
Rd\BR

|pε|2 dx ≤
∫ T

0

∫
Rd

(pε)2φR dx

≤ e2KFT − 1

2KF

(∫
Rd\BR/2

(pinit)2 dx+ (
1

R
+ ε)

∫ T

0

2C(t) dt

)
. (5.30)

It implies a uniform bound, since pinit ∈ L2(Rd).
Finally, we conclude that the subsequence (pε)ε converges strongly towards p0 in L2(0, T ;L2(Rd))

as ε→ 0. Indeed, we have∫ T

0

∫
Rd
|pε − p0|2 dxdt =

∫ T

0

∫
BR

|pε − p0|2 dxdt+

∫ T

0

∫
Rd\BR

|pε − p0|2 dxdt.

The second term of the right hand side is uniformly bounded for R large enough thanks to (5.30)
and the fact that p0 ∈ L2(0, T ;L2(Rd)). For the first term we use the local convergence.

Step 3: Limit equation. From the strong convergence of the sequence (pε)ε in L2(0, T ;L2(Rd))
and the Lipschitz continuity of the function h, we deduce that (h(pε))ε converges strongly in
L2(0, T ;L2(Rd)) towards h(p0). Moreover, using the triangle inequality, we have

|nε − h(p0)| ≤ |nε − h(pε)|+ h′0|pε − p0|.

Applying Lemma 5.6, we deduce that

nε −−−→
ε→0

n0 := h(p0) strongly in L2(0, T ;L2(Rd)). (5.31)

Then, we obtain the equation satisfied by p0 using the weak forms of the equations on pε

in (5.19): for all χ ∈ C∞c (Rd),∫
Rd
pε(T, x)χ(x)dx−

∫
Rd
pinit,ε(x)χ(x)dx︸ ︷︷ ︸

weak convergence

+

∫ T

0

∫
Rd
∇pε(t, x) ·A(x)∇χ(x)dxdt︸ ︷︷ ︸

weak convergence

+2ε

∫ T

0

∫
Rd
χ(x)∇pε(t, x) ·

A(x)∇nε(t, x)

1− εnε(t, x)
dxdt︸ ︷︷ ︸

bounded as ε→0

=

∫ T

0

∫
Rd
χ(x) pε(1− pε)(F1 − F2)(nε, pε)︸ ︷︷ ︸

strong convergence

dxdt

We can pass to the limit in each term, using also (5.11) for the second term.
Hence p0 is in L2(0, T ;H1(Rd)) and is a weak solution of the initial value problem{

∂tp
0 −∇ · (A(x)∇p0 = p0(1− p0)(F1 − F2)(n0, p0),

p0(t = 0, · ) = pinit.
(5.32)

Using (5.31) in (5.32) yields a self-contained initial valued reaction-diffusion system on p0 that has
a unique solution. It defines in turn uniquely n0 through (5.31). Since solutions to the initial value
system (5.32) are unique, all extracted subsequences converge to the same limit. Therefore, the
whole sequences converge, strongly in L2 with weak convergence of gradients.

This concludes the proof of Theorem 5.1.
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5.5 Generalization of the result

We have stated Theorem 5.1 so as to keep simplicity and stick to the biological application in
Section 5.3. It can be slightly generalized in order to encompass spontaneous transition between
variants.

Individuals in state 1 may give birth to individuals in state 2, and vice versa. To do so, we
consider more general reaction term and replace system (5.1) by{

∂tn1 −∇ · (A(x)∇n1) = f̃1(n1, n2),

∂tn2 −∇ · (A(x)∇n2) = f̃2(n1, n2),

In fact, the basic property we require in our proof is that p stays between 0 and 1, that is, ni
remain non-negative. Here is the minimal hypothesis ensuring positivity (in the spirit of [187]).

Assumption 5.4 (Positivity). We assume

∀n1, n2 ∈ R+, f̃1(0, n2) ≥ 0 and f̃2(n1, 0) ≥ 0.

Proof of “Assumption 5.4 implies positivity“. We prove that if the initial data ninit
1 , ninit

2 are non-
negative and if Assumption 5.4 holds, then n1 and n2 remain non-negative. It is a simple application
of the comparison principle for this parabolic system. A solution that lies initially above a sub-
solution remains above it. The constant (0, 0) is indeed a sub-solution.

For the sake of clarity of the presentation, we only consider an extension of the biological
example from Section 5.3. This allows us to take into account imperfect maternal transmission.
We assume that at a rate µ, infected females lay eggs which do not carry Wolbachia. This quantity
is very commonly tested by entomologists, and usually shown to be close to 0 (see [233] and
references, and for example [75] where they obtained µ = 0.04 and µ = 0). This feature is included
in the following model taken from [83] (neglecting the pathogen effect),{

∂tni −∇ · (A(x)∇ni) = niFu(1− sf )(1− µ)− ni(di + σ(ni + nu)),

∂tnu −∇ · (A(x)∇nu) = nuFu(1− sh ni
nu+ni

) + µFu(1− sf )ni − nu(du + σ(ni + nu)).
(5.33)

Here, the reduced population would be n = σ(ni + nu). The corresponding dynamics in (n, p)
reads, ∂tn−∇ · (A(x)∇n) = n

(
Fu
(
p(1− sf ) + (1− p)(1− shp)

)
− du

(
(δ − 1)p+ 1

)
− n

)
,

∂tp−∇ · (A(x)∇p)− 2∇nn A(x)∇p = p
(

(1− p)
(
Fu(1− shp)− du(δ − 1)

)
− µFu(1− sf )

)
.

(5.34)
We notice in particular that the reaction term for p in (5.34) does not depend on n. It yields
directly the equation (5.3) with a function n in the left hand side that depends on p, whereas
in [29] the function n in the gradient in the left hand side is assumed to be given.

As in Section 5.3, we introduce the parameter ε to characterize the high fertility and strong
competition and propose the following extension of system (5.16), with imperfect maternal trans-
mission,{

∂tni −∇ · (A(x)∇ni) = (1− µ)(1− sf )Funi
(

1
ε − σ(ni + nu)

)
+
− δduni,

∂tnu −∇ · (A(x)∇nu) = Fu
(
nu(1− shp) + µ(1− sf )nip

)(
1
ε − σ(ni + nu)

)
+
− dunu,

(5.35)

with p = ni
ni+nu

as usual. In this system, the notation a+ = max{0, a} denotes the positive part of
a ∈ R.

For the reduction, as above, we identify n1 = ni and n2 = nu and we deduce from (5.35) the
equations satisfied by n = 1

ε − σ(ni + nu) and p,

∂tn−∇ · (A(x)∇n) = −
(1

ε
− n

)
Fu
(
(1− sf )((1− µ)p+ µp2) + (1− p)(1− shp)

)
n+

+du(δp+ 1− p)
(1

ε
− n

)
,

(5.36)
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∂tp−∇ · (A(x)∇p) + 2
∇n
n
A(x)∇p = Fup

(
(1− p)

(
(1− µ)(1− sf )− (1− sh)p

)
+µ(1− sf )p2

)
n+ + p(1− p)du(1− δ).

(5.37)

Using the notation in (5.5), we define as in (5.8) the function H by

H(n, p) := −Fun
(
p(1− µ)(1− sf ) + (1− p)(1− shp) + µ(1− sf )p2

)
+ du(p(δ − 1) + 1)

= −Fun
(
(sh + µ(1− sf ))p2 − (sf + sh + µ(1− sf ))p+ 1

)
+ du((δ − 1)p+ 1).

When µ = 0, we notice that we recover the same expression as in the case of perfect maternal
transmission in Section 5.3. Then, the function h and the reaction term are modified.

In this case, as in Lemma 5.2, we may investigate the equilibria of (5.36)–(5.37). We get from
straightforward computations:

Lemma 5.7. Let

∆ =
(
δ(sf + sh) + (δ − 1− µ)(1− sf )

)2 − 4δ
(
sh + µ(1− sf )

)(
δ − (1− µ)(1− sf )

)
.

Let us assume that ∆ > 0. When µ = 0, the condition ∆ > 0 is equivalent to
(
δsh−δ+(1−sf )

)2
> 0

which is always satisfied. Then, there are 4 equilibria associated to the system (5.37)–(5.36) in the
reduced variable (n, p):

� The co-existence equilibrium reads
p∗C = 1− δ(sf + sh) + (δ − 1 + µ)(1− sf )−

√
∆

2δ(sh + µ(1− sf ))
,

n∗C =
δdu

(1− µ)(1− sf )Fu
,

it remains unstable.

� The steady state (0, 0) is unstable.

� The stable Wolbachia invasion equilibrium reads
p∗W = 1− δ(sf + sh) + (δ − 1 + µ)(1− sf ) +

√
∆

2δ(sh + µ(1− sf ))
< 1,

n∗W =
δdu

(1− µ)(1− sf )Fu
= n∗C .

� The stable Wolbachia extinction equilibrium is unchanged: n∗E =
du
Fu

, p∗E = 0.

From straightforward computation, we may adapt Theorem 5.1 in this framework. Then, the
analogue of Corollary 5.1 reads

Corollary 5.2. Assume that A satisfies Assumption 5.1. Given ninit,ε1 and ninit,ε2 such that there

exists pinit ∈ L2(Rd) such that pinit,ε ⇀ pinit as ε→ 0 in L2(Rd)-weak and 1
ε −σ(ninit,ε1 +ninit,ε2 )−

du
Fu
∈ L2 ∩ L∞(Rd) with uniform bounds in ε > 0, then Theorem 5.1 applies and the solutions

(nεi , n
ε
u)ε>0 of (5.35) satisfy the convergence result in (5.12). The limiting equation reads

∂tp−∇ · (A(x)∇p) = rµ(p), (5.38)

where

rµ(p) = dup
(

(1− µ)(1− sf )
(δ − 1)p+ 1

(sh + µ(1− sf ))p2 − (sf + sh + µ(1− sf ))p+ 1
− δ
)
.

For small µ, rµ is still a bistable function provided ∆ > 0, however the stable state 1 is displaced.
The profile of this function appears on Figure 5.2

We give a numerical illustration of this case in Figure 5.3. We use the same parameters as for
Figure 5.1, except that sf = 0, µ = .04 and the initial data is smaller (less infected mosquitoes are
introduced).
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Figure 5.2: Bistable profiles of the reaction terms in (5.17) (left) and (5.38) (right), between 0
and 1.

For Figure 5.3, we use the same discretization and numerical scheme as in Figure 5.1. The
blue lines represent the solution of the limiting system (5.38). In dashed red lines are plotted the
numerical results for the system of two populations (5.37). We observe that the solution of the
limiting bistable system (5.38) exhibits a traveling front which propagates into the whole domain.
Then the numerical results for 4 different values of the parameter ε are represented. For large
populations, we observe that as ε goes to 0 (recall that the order of magnitude of the population
size is 1

σε ), the solution to the whole system (5.37) gets closer to the one of the limiting system.
However, for small populations, we see a clear modification of the wave’s shape and speed, which
is slower than the limit wave.

5.6 Conclusion and perspectives

We have established in this paper the rigorous convergence, under suitable assumptions, of a 2
by 2 reaction diffusion model of Lotka-Volterra type towards a simple model for the frequency of
a variant. It justifies the use of such reduced model in applications. Let us discuss quickly our
scaling choice in Assumption 5.2, in the case of Wolbachia.

Another biologically relevant scaling assumption would not give a limiting system consisting in
only one equation on frequency. Indeed, if we consider the following alternative model{

∂tni −∇ · (A(x)∇ni) = (1− sf )Funi
(
1− εσ(ni + nu)

)
− δduni,

∂tnu −∇ · (A(x)∇nu) = Funu(1− sh ni
ni+nu

)
(
1− εσ(ni + nu)

)
− dunu.

(5.39)

Then, n and p satisfy the following system, that does not depend on ε{
∂tn−∇ · (A(x)∇n) = Fu

(
1− n

)(
A(p)−B(p)n

)
,

∂tp−∇ · (A(x)∇p) + 2∇p ·A(x)∇n
1−n = p(1− p)

(
Fun(shp− sf )− du(δ − 1)

)
,

(5.40)

where {
A(p) = ((δ − 1)p+ 1) duFu ,

B(p) = shp
2 − (sf + sh)p+ 1.

The dependency in ε in the resulting model is only through the initial data. Thus, ε→ 0 does not

imply n− A(p)
B(p) → 0 in (5.39), (5.40).

We conclude that the use of simple bistable models for the spatial spread of Wolbachia can be
justified mathematically. This is the object of Theorem 5.1. However, we must keep in mind that
this result applies only if population size and fecundity scale properly.

In the context of Wolbachia modeling, bistable equations like (5.3) have been used (for example
in [29] or [203]) because they provide with a unique (up to translations) and linearly stable traveling
wave solution. Hence, with a bistable model at hand we can compute a speed that may be
interpreted as an invasion speed.
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Figure 5.3: Initial data (+) creating a traveling wave in the limit system (blue) and convergence
of the two-population solution (dashed red) as ε diminishes.

Therefore a natural continuation of the present work would be to try and specify Theorem 5.1
to traveling waves. The open question reads: does the frequency in the two-populations model
converge to the unique traveling wave solution of the limit bistable equation? If yes, in what sense?
Indeed, there are two types of convergence involved: on the first hand in the singular limit (where
we identified a small parameter ε), that proves convergence of the system’s frequency to a solution
of the limit bistable equation; and on the other hand the well-known attractiveness result of the
unique traveling wave solution in the bistable case. Moreover, existence and (local) stability of
traveling waves has been proved for competitive systems (see [91] for example). How to compare
the traveling speed for competitive system with the one for the reduced model on the frequency?
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Chapter 6

Hindrances to bistable
propagation: wave-blocking,
wave-delaying

Si quelque chose s’oppose à toi et te déchire, laisse crôıtre, c’est que
tu prends racine et que tu mues.

Antoine de Saint-Exupéry, Citadelle.

This chapter is a joint work with Nicolas Vauchelet and Grégoire Nadin. It was published as
an article in the Journal of Mathematical Biology [176]. Compared with the published version,
the reminder section 6.3 has been moved to the context presentation of the thesis (Section 4.3.2)
and an appendix has been added to give some additional results. Therefore, the references to
this manuscript that appear in the published version have been redirected to Appendix 6.A. In
addition, four misprints showing X−1

α instead of Xα have been corrected, and also a missing 2 in
the expression of L∗(C) given in the proof of Proposition 6.13.

Abstract. We study the biological situation when an invading population propagates and re-
places an existing population with different characteristics. For instance, this may occur in the
presence of a vertically transmitted infection causing a cytoplasmic effect similar to the Allee effect
(e.g. Wolbachia in Aedes mosquitoes): the invading dynamics we model is bistable.

We aim at quantifying the propagules (what does it take for an invasion to start?) and the
invasive power (how far can an invading front go, and what can stop it?).

We rigorously show that a heterogeneous environment inducing a strong enough population
gradient can stop an invading front, which will converge in this case to a stable front. We charac-
terize the critical population jump, and also prove the existence of unstable fronts above the stable
(blocking) fronts. Being above the maximal unstable front enables an invading front to clear the
obstacle and propagate further.

We are particularly interested in the case of artificial Wolbachia infection, used as a tool to
fight arboviruses.

6.1 Introduction

The fight against world-wide plague of dengue (see [32]) and of other arboviruses has motivated
extensive work among the scientific community. Investigation of innovative vector-control tech-
niques has become a well-developed area of research. Among them, the use of Wolbachia in
Aedes mosquitoes to control diseases (see [232, 8]) has received considerable attention. This endo-
symbiotic bacterium is transmitted from mother to offspring, it induces cytoplasmic incompatibility
(crossings between infected males and uninfected females are unfertile) and blocks virus replication
in the mosquito’s body. Artificial infection can be performed in the lab, and vertical transmis-
sion (from mother to progeny) allows quick and massive rearing of an infected colony. Pioneer
mathematical modeling works on this technique include [29, 121, 102].
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We are mostly interested in the way space interferes during the vector-control processes. More
precisely, we would like to understand when mathematical models including space can effectively
predict the blocking of an on-going biological invasion, which may have been caused, for example,
by releases during a vector-control program.

The observation of biological invasions, and of their blocking, has a long and rich history. We
simply give an example connected with Wolbachia. In the experimental work [15], it was proved
that a stable coexistence of several (three) natural strains of Wolbachia can exist, in a Culex pipiens
population. The authors mentioned several hypotheses to explain this stability. Our findings in
the present paper - using a very simplified mathematical model - partly supports the analysis
conducted in the cited article. Namely, “differential adaptation” cannot explain the blocking,
while a large enough “population gradient” can, and we are able to quantify the strength of this
gradient, potentially helping validating or discarding this hypothesis.

Although the field experiments have not yet been conducted for a significantly long period,
artificial releases of Wolbachia-infected mosquitoes (see [118, 178]) also seem to experience such
“stable fronts” or blocking phenomena (see [117, 239]). This issue was studied from a modeling
point of view in [29, 50] (reaction-diffusion models), [100] (heterogeneity in the habitat) and [103]
(density-dependent effects slowing the invasion), among others.

In order to represent a biological invasion in mathematical terms as simply as possible, reaction-
diffusion equations have been introduced (for the first time in [87] and [138]) in the form

∂tu−∆u = f(u), (6.1)

where t ≥ 0 and x ∈ Rd are respectively time and space variables, d is the spatial dimension and
u(t, x) is a density of alleles in a population, at time t and location x. This very common model to
study propagation across space in population dynamics enhances a celebrated and useful feature:
existence (under some assumptions on f) of traveling wave solutions. In space dimension 1, a
traveling wave is a solution u(t, x) = ũ(x − ct) to (6.1), where c ∈ R, ũ is a monotone function
from R to R, and ũ(±∞) ∈ f−1(0). By convention, we will always use decreasing traveling waves.
They have a constant shape and move at the constant speed c.

The quantity u may represent the frequency of a given trait (phenotype, genotype, behavior,
infection, etc.) in a population. In this case, the model below has been introduced in order to
account for the effect of spatial variations in the total population density N (see [26, 29]) in the
dynamics of a frequency p

∂tp−∆p− 2
∇N ·∇p

N
= f(p). (6.2)

The additional∇(log(N)) term is known as the “gene flow”. It represents the fact that the genotype
of individuals from high-abundance areas tends to be over-represented (due to their number) in
the offspring from neighboring low-abundance areas, due to dispersion (see [26]).

The effect of gene flow at the edge of the invasion fronts (where total population N ' 0) has
been studied by many authors in numerous models, e.g. in [135], and with an adaptive point of
view in [46] and [171]. They showed that it can pin an invasion and limit the range of an invading
species. In the present article, although the total population N stays uniformly positive, we still
observe invasion pinning phenomena.

In [29] Barton and Turelli pointed out the fact that cytoplasmic incompatibility can be seen,
from a modeling point of view, as an analogue of an Allee effect. Mathematically speaking, the main
consequence is that both states p = 0 (the trait disappears) and p = 1 (the trait is everywhere)
are locally stable, that is, we consider a bistable nonlinearity. Allee effects alone were proved
numerically in [132] to be able to limit the range of an invading species, in discrete space models.
For continuous models, it is known that one needs heterogeneous coefficients in order to observe
a similar phenomenon (see [132]). Here we consider a continuous heterogeneous model where
heterogeneity comes from the gene flow.

Indeed, we study a slightly different situation where the species has already sprawled all over
the domain. In this context, gene flow does not affect the species’ range but the spread of a
new “trait” appearing in the population, by hindering trait propagation from low-abundance to
high-abundance areas.

In some cases, the total population density N may be affected by the trait frequency p, and
even depend explicitly on it. In the large fecundity asymptotic for the spread of Wolbachia (we
refer to a detailed derivation in Section 6.6.2), where p stands for the infection frequency, it was
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proved (in [211]) that there exists a function h : [0, 1]→ (0,+∞) such that N = h(p) + o(1) in the
limit when fecundity goes to +∞.

Hence we can write the first-order approximation

∂tp−∆p− 2
h′(p)

h(p)
|∇p|2 = f(p). (6.3)

Our main results are the characterization of the asymptotic behavior of p in two settings: for
equation (6.2) when N only depends on x (which can also be seen as a limit obtained from two-
populations models, see the derivation in Section 6.6.2), and for equation (6.3) in all generality.
Both of them may be seen as special cases of the general problem

∂tp−∆p− 2∇
(
V
(
x, p(t, x)

))
·∇p = f(p).

For (6.2) with d = 1, our characterization is sharp when ∂x logN is equal to a constant times the
characteristic function of an interval. Overall, two possible sets of asymptotic behaviors appear.
On the first hand, the equation can exhibit a sharp threshold property, dividing the initial data
between those leading to invasion of the infection (p→ 1) and those leading to extinction (p→ 0)
as time goes to infinity. In this case, the threshold is constituted by initial data leading convergence
to a ground state (positive non-constant stationary solution, going to 0 at infinity). It is a sharp
threshold, which implies that the ground state is unstable. We show that such a threshold property
always holds for equation (6.3), and occurs in some cases for equation (6.2). On the other hand, the
infection propagation can be blocked by what we call here a “barrier” that is a stationary solution
or, in the biological context, a blocked propagation front. We show that this happens in (6.2),
essentially when ∂x logN is large enough. This asymptotic behavior differs from convergence
towards a ground state in the homogeneous case. Indeed, even though the solution converges
towards a positive stationary solution, we prove that in this barrier case, the blocking is actually
stable. Some crucial implications for practical purposes (use of Wolbachia in the field) of this stable
failure of infection propagation are discussed.

Even though all our results are new, the pinning effect of gene flow in bistable models was
already identified. In the context of Allee effect-induced bistability, [132] shows indeed that dis-
crete models can predict invasion failure (or “pinning”) while continuous models fail to do so in
homogeneous environments. Our results confirm this intuition, and also depict an intermediate
modeling level consisting of a continuous model with heterogeneous environment. We can give a
precise characterization of the constant population gradient in a bounded area which is required
to pin the invasion.

From the mathematical point of view, our work on (6.2) makes use of a phase-plane method
that can be found in [148] (and also in [51] and [191]) to study similar problems. It helps getting a
good intuition of the results, coupled with a double-shooting argument. We note that a shooting
method was also used in [161] for ignition-type nonlinearity, in a non-autonomous setting, to get
similar results under monotonicity assumptions we do not require here.

The paper is organized as follows. Main results on both (6.3) and (6.2) are stated in Section 6.2,
where their biological meaning is explained. We also give illustrative numerical simulations. After
a brief recall of well-known facts on bistable reaction-diffusion in Section 6.3, we prove our results
on (6.3) in Section 6.4, and on (6.2) in Section 6.5. Finally, Section 6.6 is devoted to a discussion
on our results, and on possible extensions. Moreover, because it was the work that first attracted
us to this topic, we expand in Section 6.6.3 on the concept of local barrier developed by Barton
and Turelli in [29], and relate it to the present article.

6.2 Main results

6.2.1 Statement of the results

Results on the infection-dependent case

Our first set of results is concerned with (6.3), where the total population is a function of the
infection frequency.

We notice that the problem (6.3) is left invariant by multiplying h by any λ ∈ R∗. Without

loss of generality we therefore fix
∫ 1

0
h2(ξ) dξ = 1, and state
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Theorem 6.1. Let H be the antiderivative of h2 which vanishes at 0, that is H(x) :=
∫ x

0
h2(ξ) dξ.

H is a C1 diffeomorphism from [0, 1] into [0, 1].
Let g : [0, 1]→ [0, 1] such that for all x ∈ [0, 1], g(H(x)) = f(x)h2(x).
There exists a traveling wave for (6.3) if and only if there exists a traveling wave for (6.1) with

reaction term g (i.e. for the equation ∂tu− ∂xxu = g(u)). In addition:

1. If f satisfies the KPP (named after [138]) condition f(x) ≤ f ′(0)x and if H is concave (which
is equivalent to h′ ≤ 0), then there exists a minimal wave speed c∗ := 2

√
g′(0) for traveling

wave solutions to (6.3). This means that for all c ≥ c∗, there exists a unique traveling wave
solution to (6.3) with speed c.

2. If f is bistable then there exists a unique traveling wave for (6.3). Its speed has the sign of∫ 1

0

f(x)h4(x)dx.

Depending on the initial data, in this case, solution can converge to 1 (“invasion”), initiating a
traveling wave with positive speed, or to 0 (“extinction”). Note that non-constant h may have a
huge impact in the asymptotic behavior, possibly reversing the traveling wave speed: in this case,
0 would become the invading state instead of 1.

In the case of Wolbachia, we discuss the expression of h in Subsection 6.4.1, and give a numerical
example of this situation in Subsection 6.2.3.

We can construct a family of compactly supported “propagules”, that is functions which ensure
invasion.

Proposition 6.1. There exists θc ∈ (0, 1) (defined below by (4.11)) such that for all α ∈ (θc, 1),
there exists vα ∈ C2

p(R, [0, α]) (vα is continuous and piecewise twice continuously differentiable),
whose support is equal to [−Lα, Lα] for a known Lα ∈ (0,+∞) (given below by (6.12)), such
that 0 ≤ vα ≤ α, max vα = vα(0) = α, vα is symmetric and radial-non-increasing, and vα is a
sub-solution to (6.3).

We call vα an α-bubble (associated with (6.3)), or α-propagule, following the definition in [29].

Results on the heterogeneous case

Our second set of results deals with the situation where the total population of mosquitoes strongly
increases in a given region of the domain. In this case, the total population N is given and we
consider the model (6.2). Before stating our main result on equation (6.2), we introduce the concept
of propagation barrier (which we will simply call barrier below).

To fix the ideas and get a tractable problem, we assume that N increases (exponentially) in
a given region of spatial domain and is constant in the rest of the domain. We consider that the
domain is one-dimensional and therefore investigate the differential equation

∂tp− ∂xxp− 2∂x(logN)∂xp = f(p). (6.4)

In view of the setting we have in mind for N we let, for some C,L > 0:

∂x log(N) =

{
C

2
, on [−L,L],

0, on R \ [−L,L].
(6.5)

Existence of a stationary wave for this problem boils down to the existence of a solution to −p
′′ − Cp′ = f(p), on [−L,L],

−p′′ = f(p), on R \ [−L,L],
p(−∞) = 1, p(+∞) = 0, p > 0,

(6.6)

which is a well-defined problem in the space of continuously differentiable real functions which are
twice continuously differentiable on (−L,L) and on R\[−L,L].

In the context of our study, stationary solutions to (6.4) with prescribed behavior at infinity,
that is solutions of (6.6), play the role of barriers, blocking the propagation of the infection.
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Definition 6.1. We name a (C,L)-barrier any solution to (6.6). For any bistable function f we
define the barrier set

B(f) :=
{

(C,L) ∈ (0,+∞)2, there exists a (C,L)-barrier
}
. (6.7)

As we will recall in Section 6.3, in the bistable case there exists a unique (up to translations)
traveling wave solution to (6.1). This solution can be seen as a solution to the limit problem of (6.6)
as L→ +∞. We make this intuition more precise in this paper (see in particular Proposition 6.4
below).

The bistable traveling wave is associated with a unique speed that we denote c∗(f) (see Section
6.3 for definitions and a brief review of classical results on bistable reaction-diffusion equation).

Theorem 6.2. Let C > 0, L > 0 and assume N is given by (6.5). For C > c∗(f), there exists
L∗(C) ∈ (0,+∞) such that (C,L) ∈ B(f) if and only if L ≥ L∗(C).

Existence of a barrier, as stated in Theorem 6.2, has strong and direct consequences on the
asymptotic behavior of solutions to (6.2).

Proposition 6.2. Assume N is defined by (6.5). If (C,L) ∈ B(f) we denote by pB a solution
to the standing wave problem (6.6). Then any solution of (6.4) with initial value p0 satisfying
p0 ≤ pB has limited propagation, which means that ∀x ∈ R, lim supt→∞ p(t, x) < 1. More precisely,

∀t ≥ 0, p(t, x) ≤ pB(x).

On the contrary, assume that either (6.6) has no solution (i.e. (C,L) 6∈ B(f)) and p0 has a
limit at −∞ equal to 1, or there exists a solution pB to (6.6) which is unstable from above (in the
sense of Definition 4.5), such that p0 > pB and there is no other solution pB′ to (6.6) satisfying
pB′ > pB. In this case p propagates, that is:

∀x ∈ R, lim sup
t→∞

p(t, x) = 1.

We also characterize the barriers

Proposition 6.3. Let (C,L) ∈ B(f). Then

1. Any (C,L)-barrier (i.e. solution of (6.6)) is decreasing.

2. If L > L∗(C) then there exists at least two (C,L)-barriers.

3. The (C,L)-barriers are totally ordered (in the sense that given two (C,L)-barriers pB and
pB′ then either pB(x) ≤ pB′(x) for all x ∈ R or pB(x) ≥ pB′(x) for all x ∈ R), hence we can
define a maximal and a minimal element among them.

4. The maximal (C,L)-barrier is unstable from above and the minimal one is stable from below
(in the sense of Definition 4.5 below).

We also get a picture of the behavior of L∗(C):

Proposition 6.4. The function L∗ is decreasing and satisfies

lim
C→c∗(f)+

L∗(C) = +∞, L∗(C) ∼ 1

4C
log
(
1− F (1)

F (θ)

)
when C → +∞.

Instead of restricting to a constant (logarithmic) population gradient, we can very well let it
vary freely. To do so we introduce a set of gradient profiles which we denote by X . For example,

X := {h : R→ R+, h ∈ L∞ with compact support.} (6.8)

Then, the barriers may be defined in a similar fashion as before.
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Definition 6.2. For h ∈ X , a h-barrier is any solution to the “standing wave equation” −p
′′ − h(x)p′ = f(p) on R,

p(−∞) = 1, p(+∞) = 0.
(6.9)

We define the barrier set associated with (6.8)

BX (f) := {h ∈ X , there exists a h-barrier}.

In this setting, a meaningful extension of Theorem 6.2 is the following

Corollary 6.1. Let h ∈ X . If (C,L) ∈ B(f) and h ≥ C1[−L,L] then h ∈ BX (f). Conversely, if
(C,L) 6∈ B(f) and h ≤ C1[−L,L] then h 6∈ BX (f).

Remark 6.1. We do not require more regularity on functions in X because Corollary 6.1 only
relies on a comparison principle.

6.2.2 Biological interpretation

Our results on possible propagation failures can be summarized and interpreted easily.
On the first hand, if the size of the population is regulated only by the level of the infection

(or the trait frequency), then in a homogeneous medium no stable blocked front can appear (this
is the sharp threshold property implied by Theorem 6.1), except in the very particular case when∫ 1

0
f(x)h4(x)dx = 0. This situation can be understood as the limit when local demographic

equilibrium is reached much faster than the infection process (or when the population is typically
large, as in the asymptotic from [211]), which makes sense in the context of Wolbachia because the
infection is vertically transmitted.

On the second hand, if the carrying capacity (or “nominal population size”) is heterogeneous
(in space), then an increase in the population size raises a hindrance to propagation, that can be
sufficient to effectively block an invading front (Theorem 6.2), and give rise to a stable transition
area (as observed in [15]), even if the infection status does not modify the individuals’ fitness. This
situation is particularly adapted to a wide range of Wolbachia infections, when several natural or
artificial strains do not have very different impacts on the host’s fitness. We note that the case
when the heterogeneity concerns the diffusivity rather than the population size was treated in [148],
yielding the same conclusion: a large-enough area of low-enough diffusivity stops the propagation.

From our results, we draw two conclusions that are relevant in the context of biological invasions.
First, fitness cost (and cytoplasmic incompatibility level, in the case of Wolbachia) determines

the existence of an invading front in a homogeneous setting, and eventually its speed. However,
ecological heterogeneity (rather than fitness cost) seems to play a prominent role in propagation
failure - or success - of a given infection.

Second, the existence of a stable (from below) front implies the existence of an unstable (from
above) one, as stated in Proposition 6.3. Therefore, any of the heterogeneity-induced hindrances to
propagation that have been identified (here and in [148]) can be jumped upon. It suffices that the
infection wave reaches the unstable front level. Computing the location and level of this theoretical
“unstable front”, in the presence of an actual “stable front”, is extremely useful: either to estimate
the risk that the infection propagates through the barrier into the sound area, or to know the cost
of the supplementary introduction to be performed in order to propagate the infection through the
obstacle (in the case of blocked propagation following artificial releases of Wolbachia, for example,
as seems to be the case in the experimental situation described in [117]).

6.2.3 Numerical illustration

Figure 6.1 is an illustration of Theorem 6.1. We choose f and h from the case of Wolbachia (see
discussion on h in Subsection 6.4.1) with perfect vertical transmission and biological parameters
selected after the choices in [211]:

f(p) = dsp
−shδp2 +

(
δ(1 + sh)− (1− sf )

)
p+ (1− sf )− δ

shp2 − (sf + sh)p+ 1
,

hε(p) = 1− ε du
σFu

(δ − 1)p+ 1

shp2 − (sf + sh)p+ 1
,
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Figure 6.1: The function κ : ε 7→
∫ 1

0
f(p)h4

ε(p)dp, whose sign is equal to that of the bistable
traveling wave speed. The top-right angle plot is a zoom in the region where this sign is negative.

and κ(ε) =
∫ 1

0
f(p)hε(p)dp. We stick to this choice of f for the other figures of this paper.

Figures 6.2, 6.3 and 6.4 must be interpreted as follows: the y-axis, oriented to the bottom,
is time t ∈ [0, 400], while the x-axis is the space, x ∈ [−20, 20]. The value of p(t, x) ∈ [0, 1] is
represented by a color, with the legend on the right-side of the plots. Simulations were done using
a centered finite-difference scheme for diffusion and Euler implicit for time, with discretization
steps ∆t = 0.05 in time and ∆x = 0.1 in space. Vertical dotted red lines mark the spatial range
(=support) of the population gradient.

Figures 6.2 and 6.3 are illustrations of Proposition 6.2. On Figure 6.2, the two plots differ
only by the value of the population gradient C (respectively equal to 2 and 1), imposed in both
cases on the interval [−0.5, 0.5]. The initial data is front-like, i.e. equal to 1 on [−20,−14]. On
Figure 6.3, the population gradient is fixed at C = 0.35 with L = 3. The two plots differ by their
initial data: they are still front-like, but on [−20,−15] on the left-hand side, and on [−20, 2] on the
right-hand side. On Figure 6.2, on the left-hand plot we notice that a wave forms and propagates
at a constant speed before being blocked, giving rise to a stable front ; while on the right-hand
plot, the propagation occurs, and its speed is perturbed first by the heterogeneity, and then by the
boundary of the discretization domain. The interpretation is similar for Figure 6.3.

Then, Figure 6.4 is an illustration of Corollary 6.1: it reproduces the behavior shown in Fig-
ure 6.2 for more sophisticated population gradients. We choose h(x) = 4C(x−L)(x+L)/L2, with
L = 6 and respectively C = 0.5 (left-hand side) and C = 0.2 (right-hand side), yielding blocking
or propagation.

Finally Figures 6.5 and 6.6 illustrate Proposition 6.4. Because of the high convergence speed
of CL∗(C) towards its finite limit for large C, we draw its logarithm in Figure 6.6 to get a better
picture of convergence order.

We also note on Figure 6.6 that C 7→ CL∗(C) appears to be decreasing. We were only able
to prove this fact asymptotically (as C → ∞) and we refer to Appendix 6.A for the explicit
computations.

6.3 A brief reminder on bistable reaction-diffusion in R

We refer to Section 4.3.2.
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Figure 6.2: Plot of the proportion p of the invading population in the total population with respect
to time (y-axis) and space (x-axis). Two different population gradients are used with the same
front-like initial data. The vertical red dotted lines mark the region [−L,L] where the spatial
gradient is applied. Left: Blocking with L = 0.5 and C = 2. Right: Propagation with L = 0.5 and
C = 1.
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Figure 6.3: Plot of the proportion p of the invading population in the total population with respect
to time (y-axis) and space (x-axis). Two different front-like initial data are used with the same
population gradient, L = 3 and C = 0.35. The vertical red dotted lines mark the region [−L,L]
where the spatial gradient is applied. Left: Blocking with a Heaviside initial datum located at
−15. Right: Propagation with a Heaviside initial datum located at 2.

6.4 Proofs for the infection-dependent population gradient
model

We recall equation (6.3), in dimension d = 1, for which we are going to prove Theorem 6.1

∂tp− ∂xxp− 2
h′(p)

h(p)
|∂xp|2 = f(p).

After giving an expression for h in the case of Wolbachia, we prove that there exist traveling
wave solutions to (6.3), whose speed sign can be determined easily, and eventually compared with
traveling waves for (6.1). They can be initiated by “α-propagules” (or “α-bubbles”) as in the case
of (6.1), which was studied in [29] and [212]. Due to the classical sharp-threshold phenomenon for
bistable reaction-diffusion (see [243] for the first proof with initial data as characteristic functions
of intervals, [190] for extension to higher dimensions, [70, 163] and [174] for extension to localized
initial data in dimension 1) solutions then have a simple asymptotic behavior. The infection can
either invade the whole space or extinct (or, for a “lean” set of initial data, converge to a ground
state profile, and this is an unstable phenomenon).
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Figure 6.4: Plot of the proportion p of the invading population in the total population with
respect to time (y-axis) and space (x-axis). Two different, nontrivial population gradients (h(x) =
4C(x−L)(x+L)/L2) are used, with the same front-like initial data. The vertical red dotted lines
mark the region [−L,L] where the spatial gradient is applied. Left: Blocking with L = 6, C = 0.5.
Right: Propagation with L = 6, C = 0.2.
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Figure 6.5: The minimal interval length C 7→ L∗(C) for which a logarithmic gradient constant
equal to C is sufficient to block invasion.

Hence when the population gradient is a function of the infection rate, there is no wave-blocking
phenomenon.

6.4.1 In the case of Wolbachia, h is not monotone

Clearly, if h is non-increasing, h′ ≤ 0, then the solution p to (6.3) is a sub-solution to (6.1),
assuming we complete them with the same initial data. Hence p ≤ u for all time.

However, in the case of Wolbachia, the function h (computed in the large population asymptotic
developed in [211]) is not monotone. It reads

N = h(p) = 1− ε du
σFu

(δ − 1)p+ 1

shp2 − (sf + sh)p+ 1
,

hence

h′(p) = ε
du
σFu

(δ − 1)shp
2 + 2shp− (δ − 1 + sf + sh)(

shp2 − (sf + sh)p+ 1
)2 .

We can compute h′(0) < 0, h′(1) > 0, for δsh − δ + 1− sf > 0 (this condition being necessary to
ensure bistability in the limit equation, see details in [211]).
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Figure 6.6: Left: The curve C 7→ 4CL∗(C) converges to the constant log
(
1− F (1)/F (θ)

)
. Right:

Visualization of the exponential rate of convergence: C 7→ log
(

4CL∗(C)− log
(
1− F (1)

F (θ) )
)

.

We can show that h′ vanishes at a single point in [0, 1], where its sign changes. This point is

θ0 :=
1

δ − 1

(
−1 +

√
1 + (δ − 1)(

δ − 1 + sf
sh

+ 1)

)

for δ 6= 1, and if δ = 1, then θ0 =
1

2
+

sf
2sh

.

Hence if p ≤ θ0 then h′(p) ≤ 0. As a consequence, for an initial datum uinit = pinit such that
‖pinit‖∞ ≤ θ0, p ≤ u holds as long as ‖p‖∞ ≤ θ0. But no more can be said simply from (6.1).

6.4.2 A change of variable to recover traveling waves

Theorem 6.1. First, we note that the function H(x) =
∫ x

0
h2(ξ)dξ is invertible on [0, 1], since it is

increasing (h2 > 0).

Multiplying (6.3) by h2(p) yields

h2(p)∂tp− ∂x(h2(p)∂xp) = f(p)h2(p).

We set y(x) = H(p(x)) (equivalently, p(x) = H−1(y(x))). Then

∂ty − ∂xxy = f(H−1(y))h2(H−1(y)).

And we are left with the following problem

∂ty − ∂xxy = g(y), g(y) = f(H−1(y))h2(H−1(y)). (6.10)

Since f is defined on [0, 1], g is also defined on [H(0), H(1)] = [0, 1]. Because of (4.9),

g(0) = g(H(0)) = 0, g(1) = g(H(1)) = 0, g has the same sign as f ◦H−1.

Hence if f is monostable then g is monostable. If f is bistable with f(θ) = 0 for some θ ∈ (0, 1),
then g is also bistable with g(H(θ)) = 0, and H(θ) ∈ (H(0), H(1)) = (0, 1).

We compute

g′(y) = f ′
(
H−1(y)

)
+ 2f(H−1(y))

h′(H−1(y))

h(H−1(y))
.

In particular, g′(0) = f ′
(
0
)
.

Obviously, if there exists a traveling wave for (6.10), y(t, x) = ỹ(x− ct), connecting 1 to 0, then
p(t, x) := H−1

(
H(0) + (H(1)−H(0))ỹ(x− ct)

)
is a traveling wave for (6.3), connecting 1 to 0.

Then we can compare the wave speeds for (6.10) and for (6.1).
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1. If f is monostable, then there exists a minimal traveling speed c∗. such that for all c ≥ c∗,
there exists a unique, decreasing, traveling wave 0 ≤ y ≤ 1 for (6.10), connecting 1 to 0.
Moreover, if KPP condition g(x) ≤ g′(0)x holds on [0, 1], then c∗ = 2

√
g′(0) = 2

√
f ′(0).

We notice that the KPP condition g(x) ≤ g′(0)x for all x ∈ (0, 1) holds if and only if
f(z)h2(z) ≤ H(z)f ′(0), by setting z = H−1(x). Hence if f itself satisfies the KPP condition,

i.e. satisfies f(z) ≤ f ′(0)z, it suffices to check h2(z) ≤ H(z)−H(0)
z , ∀ z ∈ (0, 1). This condition

is equivalent to concavity of H on (0, 1), i.e. h′ ≤ 0 on (0, 1).

2. If f is bistable, then there exists a unique traveling wave (c∗, v) for (6.10), decreasing, con-
necting 1 to 0 and c∗ < 0 if G(1) < 0, c∗ = 0 if G(1) = 0, c∗ > 0 if G(1) > 0, where

G(1) =
∫ 1

0
g(v) dv (see [187]). Using the definition of g in (6.10) we get

G(1) =

∫ 1

0

g(y)dy =

∫ 1

0

f(x)h4(x)dx.

Remark 6.2. If h ≡ 1 then H = Id and we recover f = g = g̃.

Remark 6.3. In the monostable case we find c∗ = 2
√
f ′(0), so the minimal speed for (6.3) and

for (6.1) are the same.

If f is bistable and G(1) > 0, the sharp threshold property (see [163]) applies to equation (6.10),
hence to equation (6.3).

6.4.3 Critical propagule size

To identify the initial data that induce invasion, we can compute “propagules” (also called “bub-
bles”), that is, compactly supported subsolutions to the parabolic problem (6.3). This was stated
in Proposition 6.1, that we are going to prove below.

The concept of critical propagule size, that is the minimal “size” of an initial data to ensure
invasion, was studied in [29]. We reproduce here for equation (6.10) the computations that can be
found in [29] and [212], and deduce an expression of the critical propagule for equation (6.3).

Proposition 6.1. We introduce the following Cauchy system associated with (6.3) p′′ + 2
h′(p)

h(p)
(p′)2 + f(p) = 0, on [0,+∞)

p(0) = α, p′(0) = 0

(6.11)

Multiplying equation (6.11) by h(p)2 yields
(
h(p)2p′

)′
= −f(p)h(p)2. Then, multiplying by h(p)2p′

and integrating over [0, x) yields

1

2

((
h(p)2p′)2 −

(
h(α)2p′(0)

)2)
= −F(p) + F(p(0)),

where F is an antiderivative of p 7→ f(p)h(p)4.
We are looking for a decreasing solution p on [0,+∞). Since p′(0) = 0 we get

p′ = −
√

2(F(α)−F(p))

h(p)2
.

Note that since h(p)4 > 0, F ′ has the same sign as f . If h is constant, we recover the case of
equation (6.3) without correction term.

We make a change of variable and check that vα := max(p, 0) has support equal to [0, Lα] where

Lα :=

∫ α

0

h(p)2√
2(F(α)−F(p))

dp. (6.12)

As for the “classical case” (without h) treated in [212], convergence of this integral is straightfor-
ward (recalling α > θ). Thus Lα <∞.

Hence we constructed a family (vα)θc<α<1 of compactly supported sub-solutions, where 0 ≤
vα ≤ α.
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6.5 Proofs for the heterogeneous case: blocking waves and
barrier sets

This section is devoted to the proof of the main results concerning existence of blocking fronts, i.e.
Theorem 6.2 and Proposition 6.3. This proof is divided in several steps.

The general strategy is to derive as much as possible from the comparison principle alone. This
allows for a simple description of the barrier set as positively invariant, and of barriers themselves
as decreasing profiles. This is the object of Subsection 6.5.1, where we prove Proposition 6.2 and
first point of Proposition 6.3.

Then, we adopt the viewpoint of an equivalent (double-)shooting problem. This is done in
Subsection 6.5.2, and enables us to prove that the gradient strength C must be greater than the
speed of the traveling wave solution to the homogeneous problem c∗(f).

In order to study this shooting problem, we use on the first hand a phase-plane method,
developed in Subsection 6.5.3. This method proves that barriers can be compared to each other,
and also provides useful ingredients for the remainder of the proofs.

On the second hand, we get both qualitative (monotonicity) and quantitative (limiting values)
results for the solutions of the double-shooting problem without using the phase-plane method,
but rather from direct computations, in Subsection 6.5.4.

Then the main results (Theorem 6.2 and Proposition 6.4) are proved in Subsection 6.5.5. This
Subsection is the most substantial one, because we gather the ideas and results of the two previous
Subsections, introduce a Wronskian argument and also state an additional result on the behavior
of barriers as C goes to +∞ (Lemma 6.7).

The final Proposition 6.3 is proved directly from results of Subsection 6.5.6, and the extension
to non-constant gradients (Corollary 6.1), which relies simply on a comparison principle, is proved
in Subsection 6.5.7.

6.5.1 Preliminaries

In this first Subsection we mainly use the comparison principle and sub- and supersolutions method
from Section 6.3. We prove here that the barriers (see Definition 6.1) are decreasing. This is the
first point of Proposition 6.3.

Lemma 6.1. If (C,L) ∈ B(f) and p is a (C,L)-barrier, then p is decreasing.

Proof. For any x ∈ (−∞,−L], we have

1

2
p′(x)2 + F (p(x)) = F (1).

Hence p′ = 0 if and only if p(x) = 1, but the maximum principle forbids it (1 is a super-solution
so p cannot touch it).

Similarly, p′ does not change its sign on [L,+∞), except possibly if p = θc or p = 0. p = 0 is
impossible by the same argument as before. Assume p(L) < θc. Then:

1

2
p′(L)2 + F (p(L)) = F (0) = 0.

In addition we claim p′(L) < 0. To prove this last fact we introduce

xm := inf{x > −L, p′(x) = 0}.

By contradiction, we assume xm < L. There are two possibilities.
Either p(xm) < θc. In this case, 1

2p
′(xm)2 + F (p(xm)) < 0. Since ψ : x 7→ 1

2p
′(x)2 + F (p(x))

is decreasing and is equal to 0 at x = L, this contradicts xm < L. (Indeed, for all x ∈ (−L,L),
ψ(x) = F (1)−CN

∫ x
−L p

′(x′)2dx′.) Or p(xm) ≥ θc. If 1 > p(xm) ≥ θc then −p′′(xm) = −p′′(xm)−
Cp′(xm) = f(p(xm)) > 0, hence p reaches a local maximum at xm, which is absurd because this
contradicts the definition of xm. Hence p′ < 0 on [−L,L].

Because 0 ≤ p ≤ 1 and because of its limits at ±∞, p is necessarily decreasing on (−∞,−L] ∪
[L,+∞).

Existence of a barrier means that the (logarithmic) gradient of total population is enough to
stop the bistable propagation. On the contrary, when there is no barrier, then bistable propagation
takes place. This is the object of Proposition 6.2, which we prove below.
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Proposition 6.2. The first point comes directly from the comparison principle (Proposition 4.6),
since pB is a stationary solution, hence a super-solution to (6.4). It is easily checked that pB < 1
by considering a maximum of this function.

First, assume (C,L) ∈ B(f) and p0 > pB for the maximal barrier pB . By hypothesis, it is
unstable from above, hence there exists a sub-solution φ to (6.6) between pB and p0. Hence by
the comparison principle p(t, · ) is bounded from below by pφ(t, · ), for all t ≥ 0, where pφ is
the solution to (6.4) with initial datum φ. Since pφ is increasing in t (because initial datum is a
subsolution), it converges to some p∗φ as t → ∞. However, p∗φ is a solution to (6.6) with the last
hypotheses on p(±∞) relaxed. Because pB is a maximal barrier (there is no element above it),
p∗φ(−∞) = 1 and p∗φ > pB , this implies that p∗φ(+∞) is a zero of f which is not 0, hence it must
be either θ or 1. By contradiction, assume p∗φ(+∞) = θ. Then by monotonicity p∗φ ≥ θ and thus
−(p∗φ)′′ = f(p∗φ) ≥ 0, so p∗φ is concave. Because p∗φ is also decreasing, we get the contradicting
conclusion that p∗φ cannot have a finite limit at +∞. Hence p∗φ(+∞) = 1 and thus p∗φ ≡ 1.

Finally, if (C,L) 6∈ B(f), because p0 > pB or lim−∞ p0 = 1, we can always pick a sub-solution
φ which is below p0. For example, a translated α-bubble (from Proposition 6.1 in the case h = 0)
vα( · − τ) for some τ > 0 large enough. The solution to (6.4) with initial datum φ, say pφ(t, · ) is
increasing in t, and by the comparison principle it is below p for all t. Because it is increasing, its
limit as t→∞ is well-defined and it is a solution to (6.6) without the final conditions (on p(±∞)).
Since (6.6) has no solution, this implies that pφ(t, · )→ 1. Hence p→ 1.

To simplify notably the study of the barrier set B(f), we obtain a simple positivity property.

Proposition 6.5. For all B1 ∈ B(f) and B2 ∈ [0,+∞)2, B1 +B2 ∈ B(f).

Proof. Let B1 = (C1, L1), p1 be a solution to (6.6) where C = C1 and L = L1. Let B2 = (C2, L2).
Then, p1 is decreasing (by Lemma 6.1), hence

−p′′1 − (C1 + C2)p′1 ≥ p′′1 − C1p
′
1 = f(p1) on [−L1, L1],

−p′′1 − (C1 + C2)p′1 ≥ p′′1 = f(p1) on [−(L1 + L2),−L1]
⋃

[L1, L1 + L2],

−p′′1 = f(p1) on R\[−(L1 + L2), L1 + L2].

In other words, p1 is a supersolution of (6.6) for C = C1 + C2, L = L1 + L2.
On the other hand, the α-bubbles from Proposition 6.1 give us subsolutions, and we can select

any of them. Upon moving it far enough towards −∞, it will be below p1. We simply need to
consider vα( · − τ) for τ > 0 large enough, which will be the required subsolution.

This implies that we can construct a solution p to (6.6) for C = C1 + C2 and L = L1 + L2,
lying between the α-bubble and p1, by Proposition 4.5. As p1 is decreasing, one could check that
p is decreasing as well, and thus it admits limits at ±∞. Then one could check that p(+∞) = 0
and p(−∞) = 1, whence p is a barrier. Hence B1 +B2 ∈ B(f).

6.5.2 A double shooting-argument.

To get a better description of B(f) than allowed by comparison principle alone, we introduce a
double shooting-argument. We separate the study of equation (6.6) on [−L,L] by introducing

β = p(−L), α = p(L).

We are left with a slightly differently rephrased problem: given 0 < α < β < 1, we are looking for
C,L > 0 such that 

−p′′ − Cp′ = f(p),

p(−L) = β, p(L) = α,

1
2p
′(−L)2 + F (β) = F (1), 1

2p
′(L)2 + F (α) = 0.

(6.13)

The two equations (6.6) and (6.13) are obviously directly related.

Proposition 6.6. Let C,L > 0. If (C,L) ∈ B(f), then there exists (α, β) such that (6.13) has a
solution. Conversely, if there are α, β and C,L such that (6.13) has a solution, then its solutions
are also solutions to (6.6).
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The proof is a straightforward computation. A first property of (6.13) can easily be proven:

Proposition 6.7. For any 0 < α < β < 1 with α < θc, there exists a unique C = γ(α, β) such
that the system (6.13) has a solution, associated with a unique L = λ(α, β).

Proof. Here we employ a shooting argument. Let pα be the unique (by Cauchy-Lipschitz theorem),
decreasing (by similar arguments as in Lemma 6.1) solution to −p

′′
α − Cp′α = f(pα),

pα(L) = α, 1
2p
′
α(L)2 + F (α) = 0.

(6.14)

Because pα is decreasing, we can introduce Xα : [pα(L), pα(−L)]→ [−L,L] such that pα(Xα(p)) =
p. Using the method of [30] we also introduce wα(p) := 1

2p
′
α(Xα(p))2 + F (p). Then: w′α(p) = C

√
2
(
wα(p)− F (p)

)
,

wα(α) = 0.

(6.15)

The solution of this problem exists as long as wα(p) ≥ F (p). For α < θc, since F (p) < 0 for
p ∈ (0, θc), we deduce that the solution exists at least on (α, θc). Let us denote p0 ≤ 1 such that
(α, p0) is the maximum interval in (α, 1) of existence of a solution to (6.15). We have p0 ≥ θc.

Then, let β > α. We are going to show that we can choose C such that wα(β) = F (1).
We first notice that on (α, θc), we have F (p) < 0 thus w′α(p) > C

√
2wα(p). It implies that

wα(p) > 1
2C

2(p− α)2 on (α, θc). Thus if C is large enough, surely we will have wα(β) > F (1).

Conversely, we have w′α(p) ≤ C
√

2(wα(p)− F (θ)), since F (θ) = min[0,1] F . Integrating on

(α, p), we deduce wα(p) ≤ F (θ) +
(

1√
2
C(p−α) +

√
−F (θ)

)2
. Thus we may choose C small enough

such that wα(β) < F (1). Finally, by differentiating (6.15) with respect to C, we deduce that the
solution w is increasing with respect to C.

Hence for each β there exists a unique C = γ(α, β) such that wα(β) = F (1). We rename this
solution as wα,β , so that  w′α,β(p) = γ(α, β)

√
2
(
wα,β(p)− F (p)

)
,

wα,β(α) = 0, wα,β(β) = F (1).

(6.16)

To retrieve the value of L, such that wα,β comes from a pα solution of (6.14) with pα(−L) = β,
1
2

(
p′α(−L)

)2
+ F (pα(−L)) = F (1), we simply have to remark that L = 1

2

∫ α
β

(
Xα

)′
(p)dp. To

compute it from wα,β we notice that (Xα)′(p) = 1/p′α
(
Xα(p)

)
. Hence we define

λ(α, β) :=
1

2

∫ β

α

1√
2
(
wα,β(p)− F (p)

)dp. (6.17)

(Indeed, recall that p′ < 0 on (−L,L)). Then L = λ(α, β) is uniquely defined.

Lemma 6.2. Functions γ and λ defined in Proposition 6.7 are continuous on {(α, β), 0 < α <
θc, and α < β < 1}.

Proof. We transform problem (6.16) into a ordinary differential equation w′(p) = γJ(w(p), p), with
either w(α) = 0 or w(β) = F (1), and γ > 0.

On the prescribed set for α, β, the function J is uniformly Lipschitz along any forward tra-
jectory. This implies the continuity of w with respect to γ, and finally the continuity of γ with
respect to β (in the case when we impose w(α) = 0), and with respect to α (when we impose
w(β) = F (1)).

This implies the continuity of λ.

At this stage we can already get a simple consequence of the shooting viewpoint:

Proposition 6.8. Let L > 0. If (C,L) ∈ B(f) then C > c∗(f).
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Proof. This comes from the fact that there exists w0,1 such that w′0,1 = c∗(f)
√

2(w0,1 − F ),

w0,1(0) = 0, w0,1(1) = F (1).
(6.18)

And the associated λ(0, 1) is equal to +∞. By comparison of solutions to (6.16), no (α, β) 6= (0, 1)
could give a wα,β associated with C ≤ c∗(f).

6.5.3 A graphical digression on phase plane analysis.

Equation (6.13) can be easily interpreted in the phase plane (p, p′). In addition, phase plane
arguments allow us to study the structure of the barrier set in detail, and are necessary to solve
the double-shooting problem in Subsection 6.5.5 below. For this interpretation, we follow the
presentation of [148]. Let X = p, Y = p′. Equation (6.13) rewrites into the system X ′ = Y, X(0) = X0,

Y ′ = −CY − f(X), Y (0) = Y0.
(6.19)

The energy E : R2 → R may be defined as

E(X,Y ) :=
1

2
Y 2 + F (X). (6.20)

Two interesting curves appear:

E−1
(
F (1)

)
⊃ ΓB :=

{
(x, y) ∈ [0, 1]× (−∞, 0], y = −

√
2
(
F (1)− F (x)

)}
, (6.21)

E−1
(
0
)
⊃ ΓA :=

{
(x, y) ∈ [0, θc]× (−∞, 0], y = −

√
−2F (x)

}
. (6.22)

Indeed, a (C,L)-barrier can be seen there as a trajectory of (6.19) such that
(
X(L), Y (L)

)
∈ ΓA,

with
(
X(−L), Y (−L)

)
∈ ΓB .

Therefore, we are left studying the image of ΓB by the flow of (6.19), which we denote by
φCt : R2 × R2, at time t.

Lemma 6.3. The energy decreases along trajectories:

d

dt
E
(
X(t), Y (t)

)
= −CY (t)2.

At the three equilibrium points of the system it is equal to:

E(0, 0) = 0, E(θ, 0) = F (θ) < 0, E(1, 0) = F (1) > 0.

It is therefore minimal at (θ, 0).

This is a straightforward computation.
Let χ ∈ [θc, 1]. We define the level set of E

Γχ := E−1
(
F (χ)

)
=
{

(x, y) ∈ [0, χ]× (−∞, 0], y = −
√

2
(
F (χ)− F (x)

)}
.

Note that Γ1 = ΓA and Γθc = ΓB , by definition.
For χ ∈ [θc, 1] and P ∈ Γχ, let νχ(P ) be the inward normal vector (“inward” meaning pointing

towards y = 0). Then we claim

Lemma 6.4. For all χ ∈ [θc, 1], P ∈ Γχ, C > 0, the flow of (6.19) is inward: d
dtφ

C
0 (P ) · νA(P ) > 0.

Proof. First, system (6.19) may be rewritten u̇ = G(u), u(0) = u0, where u = (X,Y ) and u0 =
(X0, Y0). Then, d

dtφ
C
0 (u0) = G(u0), obviously (and similarly, d

dtφ
C
t (u0) = G(u(t))). Now, recall

that Γχ = {(α,−
√

2
(
F (χ)− F (α)

)
where 0 ≤ α ≤ χ}.
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Hence if P = (α,−
√

2(F (χ)− F (α))),

νχ(P ) =

− f(α)√
2(F (χ)− F (α))

1


and

d

dt
φC0 (P ) = G(p) =

(
−
√

2(F (χ)− F (α))

C
√

2(F (χ)− F (α))− f(α)

)
.

Hence
DφC0 (P ) · νχ(P ) = C

√
2(F (χ)− F (α)) > 0.

The following crucial property will make us able to show that barriers are ordered. Its graphical
interpretation is shown on Figure 6.7.

Lemma 6.5. Let p1, p2 ∈ (0, 1) with p1 < p2. We denote (X1, Y1) (resp. (X2, Y2)) the unique

solution of (6.19) with X1(0) = p1 (resp. X2(0) = p2) and Y1(0) = −
√

2
(
F (1)− F (p1)

)
(resp.

Y2(0) = −
√

2
(
F (1)− F (p2)

)
.

Let tM > 0 be such that for all t < tM , Y1, Y2 < 0, X1, X2 > 0. Then

∀t < tM , X1(t) < X2(t). (6.23)

X

Y

X = p00

ΓA

θc

p1

p2

ΓB
1θ

(X
1 , Y

1)

(p0, Y1(x0))

(X2, Y2)
(p0, Y2(x0))

K

Figure 6.7: Sketch of the phase-plane argument in the proof of Lemma 6.5. Because the trajectories
satisfy Ẋ = Y , this picture is impossible. On the other hand, Y1(x0) > Y2(x0) would imply that
the two trajectories cross each other, which is impossible as well. Whence the claim.

Proof. To prove this we introduce

t0 := inf{t > 0, X1(t) = X2(t)}.

If t0 = +∞, we are done. If t0 < +∞, we first note that if t < t0 then X1(t) < X2(t), by definition
of t0 and continuity of X1, X2. As a consequence, d

dt (X2 −X1)(t0) ≤ 0, and Y1(t0) ≥ Y2(t0).
We show that phase-plane reasoning imposes

Y1(t0) ≤ Y2(t0).
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To prove this fact, we first observe that (6.19) has its flow from the right to the left along any
vertical line (X = constant), in the quadrant X > 0, Y < 0 (because Ẋ = Y ).

Moreover, Y2(t0) > −
√

2
(
F (1)− F (t0)

)
, because E(X2(t0), Y2(t0)) < F (1) = E(X2(0), Y2(0)),

by Lemma 6.3 (E was defined in (6.20)).
Hence the trajectory of (X1, Y1) enters at x = 0+ the compact set K defined by the vertical

line X = X1(t0), the trajectory of (X2, Y2) and ΓB (that is, the level set F (1) of E). Indeed,
(X1(0), Y1(0)) is on the part of ΓB which defines the border of K, and the flow of (6.19) is inward
at this point (by Lemma 6.4).

Moreover the trajectory of (X1, Y1) cannot exit K but on the line X = X1(x0) =: p0: its energy
decreases and it cannot cross the trajectory of (X2, Y2). More precisely, it exits K on the segment[(

p0, −
√

2(F (1)− F (t0))
)
,
(
p0, Y2(t0)

)]
⊂ {X = p0}.

As a consequence, Y1(t0) ≤ Y2(t0).
Hence Y1(t0) = Y2(t0), which contradicts the uniqueness of the solutions of (6.19) (since

X1(t0) = X2(t0)). Finally, t0 = +∞ and Lemma 6.5 is proved.

6.5.4 Back to the double-shooting.

Thanks to the double-shooting argument (6.5.2), determining B(f) amounts to computing the
image of {0 < α < β < 1, α < θc} by (γ, λ) defined in Proposition 6.7. Even without the phase-
plane viewpoint from the previous Subsection, we can prove that these functions γ, λ have nice
monotonicity properties, compute their limits, and already get a good description of the barrier
set.

Proposition 6.9. Let γ and λ be defined as in Proposition 6.7 on the set {(α, β) ∈ (0, 1)2, 0 ≤
α ≤ θc, β > α}. γ(α, β) is increasing in α, decreasing in β. λ(α, β) is increasing in β.

Proof. Take 0 < α < β with α < θc, C = γ(α, β) and w be the solution of (6.16) associated with
C and β. Similarly, take β̃ > β and let C̃ := γ(α, β̃) and w̃ the solution of (6.16) associated with
C̃ and β̃ (i.e. w̃(β̃) = F (1)). Assume by contradiction that C̃ ≥ C. Then w̃ is a supersolution
of the equation satisfied by w, with initial datum w̃(α) = 0. Hence w̃ ≥ w on [α, β] and w̃(β) ≥
F (1) = w̃(β̃). This is a contradiction since w̃ is increasing.

Hence, C̃ < C and thus, as w(α) = w̃(α) = 0, one gets w̃ < w on (α, β). We can therefore
compute

2λ(α, β̃) =

∫ β̃

α

dx√
2
(
w̃(x)− F (x)

) > ∫ β

α

dx√
2
(
w(x)− F (x)

) = 2λ(α, β),

proving the monotonicity of λ as a function of β.
The monotonicity of γ with respect to α is proved similarly.

In addition, some limits of γ and λ can be computed directly.

Proposition 6.10. Functions γ, λ satisfy: γ(α, β)→ +∞ as β ↘ α.
λ(α, β)→ +∞ as β → 1, λ(α, β)→ +∞ as α→ 0. λ(α, β)→ 0 as β − α→ 0.

Proof. We have already proved in Proposition 6.7 that

w(p) ≤ F (θ) +
( 1√

2
γ(α, β)(p− α) +

√
−F (θ)

)2
.

Hence, taking p = β, one has F (1) − F (θ) ≤
(

1√
2
γ(α, β)(β − α) +

√
−F (θ)

)2
. If γ(α, β) does

not diverge to +∞ when β ↘ α, this function would be bounded since it is monotonic, and thus,

passing to the limit in the inequality: F (1)− F (θ) ≤
(√
−F (θ)

)2
= −F (θ), this would contradict

F (1) > 0.
Now, the function γ(α, · ) being decreasing and bounded from below by c∗, it converges to some

limit C∞ as β ↗ 1. As λ(α, · ) is increasing, if it does not diverge to +∞ then it converges to
some limit λ∞. We could thus derive a solution p of −p

′′ − C∞p′ = f(p), on (−λ∞, 0),
1
2 (p′(−λ∞))2 + F (1) = F (1),
1
2 (p′(λ∞))2 + F (α) = 0.
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This implies p′(−λ∞) = 0 and thus p ≡ 1 by uniqueness, which contradicts 1
2 (p′(0))2 + F (α) = 0.

The convergence of λ( · , β) when α→ 0 is proved similarly.
Finally, we know that wα,β(p)−F (p) ≥ −min[α,β] F , since wα,β ≥ 0. Hence if β is close enough

to α, wα,β(p)− F (p) ≥ − 1
2F (α) (uniformly in β). Then,

2λ(α, β) =

∫ β

α

dp√
2wα,β(p)− F (p)

≤ β − α√
−F (α)

As β → α, we deduce that λ(α, β)→ 0, and similarly when α→ β ∈ (0, θc).

Lemma 6.6. For all α ∈ (0, θc), β ∈ (α, 1),

2λ(α, β)γ(α, β) ≥ 1−

√
−F (θ)

F (1)− F (θ)
. (6.24)

Moreover, for 0 < β < θc, we have

lim
α→β−

2λ(α, β)γ(α, β) =
1

2
ln

(
1− F (1)

F (β)

)
. (6.25)

Proof. The estimate from below is only based on the following inequalities

F (1) ≥ wα,β(p) ≥ F (p) ≥ F (θ).

They imply, as stated before (in the proof of Proposition 6.10):

γ(α, β) ≥
√

2

β − α

(√
F (1)− F (θ)−

√
−F (θ)

)
.

Moreover,
√
wα,β(p)− F (p) ≤

√
F (1)− F (θ). Thus,

2λ(α, β) ≥ (β − α)
1√

2
(
F (1)− F (θ)

) . (6.26)

Combining these estimates yields (6.24).
Let us fix β ∈ (0, θc), for 0 < α < β, we have, using (6.17) and (6.16),

2λ(α, β)γ(α, β) =

∫ β

α

w′(x)

2(w(x)− F (x))
dx.

On the one hand, we have∫ β

α

w′(x)

2(w(x)− F (x))
dx−

∫ β

α

w′(x)

2(w(x)− F (β))
dx =

∫ β

α

w′(x)

2

F (x)− F (β)

(w(x)− F (x))(w(x)− F (β))
dx.

For any 0 < α < β < θc, we have 0 ≤ w(x) ≤ F (1) then

|F (x)− F (β)|
(w(x)− F (x))(w(x)− F (β))

≤ |F (x)− F (β)|
F (x)F (β)

≤
∣∣∣∣ 1

F (β)
− 1

F (x)

∣∣∣∣ .
Then, for α close enough to β, we have∣∣∣∣∣

∫ β

α

w′(x)

2

F (x)− F (β)

(w(x)− F (x))(w(x)− F (β))
dx

∣∣∣∣∣ ≤
∫ β

α

w′(x)

2
dx

∣∣∣∣ 1

F (β)
− 1

F (α)

∣∣∣∣
=
F (1)

2

∣∣∣∣ 1

F (β)
− 1

F (α)

∣∣∣∣ .
We deduce that∫ β

α

w′(x)

2(w(x)− F (x))
dx−

∫ β

α

w′(x)

2(w(x)− F (β))
dx→ 0, as α→ β−.

On the other hand, we compute∫ β

α

w′(x)

2(w(x)− F (β))
dx =

1

2
ln

(
1− F (1)

F (β)

)
.

Combining these last identities allows to recover (6.25).
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Proposition 6.11. For all ε > 0 small enough, there exists αε < βε with

γ(αε, βε) = c∗(f) + ε,

and αε → 0, βε → 1 as ε→ 0. Moreover, λ(αε, βε)
ε→0−−−→ +∞.

Proof. The limit of γ(α, β) as α → 0 and β → 1 exists because of the monotonicity properties of
Proposition 6.9. Moreover, γ(α, β) is bounded from below by c∗(f). Simultaneously, we know that
λ(α, β)→ +∞ as α→ 0 and β → 1 by Proposition 6.10.

The uniqueness of the bistable traveling wave and continuity of γ (Lemma 6.2) imply that

lim
α→0,β→1

γ(α, β) = c∗(f).

Indeed, let c be this limit. At the limit (wα,β and its derivative being uniformly bounded), we get
a solution of  w′ = c

√
2(w − F )

w(0) = 0, w(1) = F (1).

This exists if and only if c = c∗(f), by uniqueness of the traveling wave solution to the bistable
reaction-diffusion equation. These facts imply the existence of αε, βε.

The following fact may be proved using phase-plane (and more precisely Lemma 6.5), but it
also enjoys a simple proof using the properties of γ, which we propose below.

Proposition 6.12. If γ(α1, β1) = γ(α2, β2), then α1 < α2 if and only if β1 < β2.

Proof. Let C = γ(α1, β1) = γ(α2, β2). Assume α1 < α2. We can compare w1 := wα1,β1
and

w2 := wα2,β2
because w2(α2) = 0 < w1(α1) and as long as w2 < w1 we also get w′2 < w′1. Hence

w1(β1)− w2(β1) > w1(α1). Since w1(β1) = F (1) we get

w2(β1) < F (1)− w1(α1) < F (1).

Since w2 is increasing and w2(β2) = F (1), this implies β2 > β1.
Conversely, if β1 < β2, we get w2(β1) < w1(β1) = F (1) and w′2 < w′1 as long as w2 < w1. By

contradiction assume α1 > α2. Then we find w1(α1) = 0 < w2(α1) and by the previous remark
w2 < w1. This is absurd, whence the result.

6.5.5 Advanced properties of the barrier set.

At this stage, by connecting the phase-plane method and the shooting problem we are ready
to prove the following description of B(f), which encompasses Theorem 6.2 and first point of
Proposition 6.4.

Proposition 6.13. For all L > 0, there exists C∗(L) > c∗(f) such that (C,L) ∈ B(f) ⇐⇒ C ≥
C∗(L). For all C > c∗(f), there exists L∗(C) > 0 such that (C,L) ∈ B(f) ⇐⇒ L ≥ L∗(C).

Furthermore, C∗(L∗(C)) = C and L∗(C∗(L)) = L.

Proof. By Propositions 6.9 and 6.10, for any α ∈ (0, θc) and L > 0, there exists a unique βL(α) > α
such that λ(α, βL(α)) = L. In particular,

(
γ(α, βL(α)), L

)
∈ B(f).

Hence C∗(L) := inf{C > 0, (C,L) ∈ B(f)} is well-defined and because of Proposition 6.5, if
C > C∗(L) then (C,L) ∈ B(f). Moreover, C∗(L) > c∗(f) by Proposition 6.8

Let C > c∗(f). Then we claim there exists α, β such that γ(α, β) = C. First, for ε > 0
small enough, there exists αε (close to 0) and βε (close to 1) such that γ(αε, βε) = c∗(f) + ε, by
Proposition 6.11.

Hence we can find α0, β0 such that γ(α0, β0) < C.
Then since γ(α0, β) → +∞ as β ↘ α0 (Proposition 6.10) and γ(α0, β) is decreasing in β

(Proposition 6.9), there exists a unique βC(α0) such that γ(α0, βC(α0)) = C. Like before, L∗(C) :=
inf{L > 0, (C,L) ∈ B(f)} fulfills all properties.

Let ε > 0. By definition there exists αε, βε such that

γ(αε, βε) = C, λ(αε, βε) = L∗(C) + ε.
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Up to extraction we pass to the limit ε→ 0 (the couple (αε, βε) is in a compact set). Since γ and
λ are continuous, we get (C,L∗(C)) ∈ B(f), and (C∗(L), L) ∈ B(f) by a similar argument.

Last point boils down to strict monotonicity of L∗. The solution (X(t), Y (t)) of
Ẋ = Y, X(0) = β,

Ẏ = −CY − f(X), Y (0) = −
√

2
(
F (1)− F (β)

)
depends smoothly on C and β, so we write it

(
X(t;C, β), Y (t;C, β)

)
. We note that by definition

2L∗(C) = inf
β∈(0,1)

inf
t>0

{
t, E

(
X(t;C, β), Y (t;C, β)

)
= 0
}

We denote by (XC , YC) (resp. (Xβ , Yβ)) its derivative with respect to C (resp. β).

From now on we only consider solutions such that Y < 0, X ∈ [0, 1], truncating in time if
necessary.

Using indifferently the notations E = E
(
X(t;C, β), Y (t;C, β)

)
= E(t;C, β) we find

∂CE(t) =
∂E

∂C
(t;C, β) = YC(t)Y (t) +XC(t)f(X(t)), (6.27)

∂βE(t) =
∂E

∂β
(t;C, β) = Yβ(t)Y (t) +Xβ(t)f(X(t)). (6.28)

Let t∗ = L∗(C) = infβ∈(0,1) inf{t > 0, E(t;C, β) = 0}, and assume β∗(C) ∈ (0, 1) realizes this
infimum. We claim that if ∂CE(t∗(C);C, β∗(C)) < 0, then L∗ is strictly monotone at C.

Indeed, let t∗, β∗ be minimal such that E
(
X(t∗), Y (t∗)

)
= 0 and assume ∂CE(t∗) < 0. For

ε > 0 small enough, E(t∗;C + ε, β∗) < 0 by ∂CE < 0. Hence there exists t′∗ < t∗ such that
E(t′∗;C + ε, β∗) = 0. This yields L∗(C + ε) ≤ t′∗ < t∗ = L∗(C), that is strict monotonicity.

To prove ∂CE < 0, we notice that (XC , YC) and (Xβ , Yβ) are solutions to affine differential
systems, with the same homogeneous parts. ẊC = YC , XC(0) = 0,

ẎC = −CYC − Y −XCf
′(X), YC(0) = 0,

(6.29)

and 
Ẋβ = Yβ , Xβ(0) = 1,

Ẏβ = −CYβ −Xβf
′(X), Yβ(0) =

f(β)√
2
(
F (1)− F (β)

) . (6.30)

Moreover we notice that Xβ(t) > 0 for all t ≥ 0. Indeed, because of Lemma 6.5, X is monotone
with respect to its boundary data, that is Xβ ≥ 0. Then, it suffices to show that Xβ cannot
reach 0 in finite time. This is a straightforward application of Cauchy-Lipschitz theorem: indeed,
since Xβ ≥ 0, if Xβ(t0) = 0 for some t0 > 0 then Ẋβ(t0) = 0, hence Yβ(t0) = 0 and finally
(Xβ , Yβ) ≡ (0, 0) by Cauchy-Lipschitz theorem.

Then, we compute the differential equation satisfied by the Wronskian w(t) := YCXβ − YβXC :

w′(t) = ẎCXβ − ẎβXC

= −Cw − Y Xβ .

Because Y < 0 and Xβ > 0 we get (w′ + Cw)(t) ≥ 0 ∀t, (w′ + Cw)(t = 0) > 0,

w(0) = 0.

Hence if t > 0 then w(t) > 0. We can then compute w at (t∗, β∗). At this point, necessarily
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∂βE = 0 (necessary condition for minimality on β). And w(t∗) > 0 is equivalent to

YCXβ > XCYβ

⇐⇒ YC >
XCYβ
Xβ

⇐⇒ YCY <
XCYβ
Xβ

Y by multiplication by Y < 0

⇐⇒ YCY < −Xβf(X)XC

Xβ
by (6.28)

⇐⇒ YCY < −XCf(X).

This last inequality is exactly ∂CE < 0, and the proof is complete.

Remark 6.4. Note that we did not use E = 0 to prove ∂CE < 0. Therefore, our proof applies
for any t: the derivative of E with respect to C is negative at the point where E is minimal (with
respect to the initial data β). However, we only use this property when the minimum of E is equal
to 0 for our purpose.

The proposition below is equivalent to Proposition 6.4, thanks to Proposition 6.13. It describes
the asymptotic behavior of the limit set as L goes to 0 or to +∞.

Proposition 6.14. The function C∗ is non-increasing and satisfies

(i) limL→∞ C∗(L) = c∗(f),

(ii) C∗(L) ∼ 1

4L
log
(
1− F (1)

F (θ)

)
when L→ 0.

Proof. The proof of (ii) is a direct consequence of Lemma 6.6. Indeed from estimate (6.26) we
deduce that λ goes to 0 only if β − α → 0. It can occur only if β < θc. Then with (6.25), we
deduce that when L→ 0, we have

C∗(L) ∼ 1

4L
min
β

ln

(
1− F (1)

F (β)

)
=

1

4L
ln

(
1− F (1)

F (θ)

)
.

For the point (i), we have by Proposition 6.11 that for all ε > 0, there exists αε (close to 0) and
βε (close to 1) such that

γ(αε, βε) = c∗(f) + ε.

Simultaneously, λ(αε, βε)→ +∞ as ε→ 0. Thus limL→+∞ C∗(L) = c∗(f).

We now state two auxiliary facts before getting to the proof of our last main result (remaining
parts of Proposition 6.3):

Proposition 6.15. For all C ≥ c∗(f) there exists unique αC and βC such that the generalized
problem (6.13) (i.e. we impose that its solutions are of class C1 and let L = +∞) has solutions with
(α, β) = (αC , 1) and (α, β) = (0, βC). When C = c∗(f) this property holds with (α, β) = (0, 1):
αc∗(f) = 0 and βc∗(f) = 1 for the (unique) traveling wave.

The functions C 7→ αC and C 7→ βC are respectively increasing and decreasing. They converge
to 0 and 1, respectively, as C → +∞

Conversely, for any α ∈ [0, θc) there exists a unique C ≥ c∗(f) such that α = αC . For any
β ∈ (0, 1], there exists a unique C ≥ c∗(f) such that β = βC .

Proof. First we introduce, for all α ∈ (0, θc) and β ∈ (0, 1):

Cα := lim
β→1

γ(α, β), Cβ := lim
α→0

γ(α, β).

Let us fix C > c ∗ (f). We are going to show that there exists a unique α ∈ (0, θc) such that
Cα = C. To this aim, we notice that α 7→ Cα is continuous, increasing (from Proposition 6.9) and
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C0 = c∗(f). Then it suffices to prove that limα→θc Cα = +∞. Once this will be done, defining αC
by CαC = C will yield the result.

Similarly, we are going show that there exists a unique β ∈ (0, 1) such that Cβ = C. Again,
we notice that β 7→ Cβ is continuous, decreasing, and C1 = c∗(f). Then it suffices to prove that
limβ→0 C

β = +∞.
Let Cθc := limα→θc Cα, C0 := limβ→0 C

β . We are going to prove Cθc = C0 = +∞.
The claim for C0 is a straightforward consequence of Proposition 6.10. For Cθc , let us assume

by contradiction that Cθc < +∞. In this case we find a solution to
−p′′ − Cθcp′ = f(p) on (−∞, 0)

−p′′ = f(p) on (0,+∞),

p(−∞) = 1, p(+∞) = 0,

(6.31)

such that p(0) = θc. Multiplying the equation by p′ and integrating over (0,+∞) yields p′(0) = 0.
However, this cannot hold because by hypothesis (f is bistable), f(θc) > 0, and then this imposes
p′′(0) < 0: p would reach a local maximum at 0, which contradicts the fact that it has to decrease
on (−∞, 0). (Similarly, Hopf Lemma gives that p′(0) < 0, which contradicts p′(0) = 0.)

Remark 6.5. In other words, αC and βC may be defined respectively as αC = p(0) where p is the
unique solution of class C1 of 

−p′′ − Cp′ = f(p) on (−∞, 0),

−p′′ = f(p) on (0,+∞),

p(−∞) = 1, p(+∞) = 0, p > 0.

and as βC = p(0) where p be the unique solution of class C1 of
−p′′ = f(p) on (−∞, 0),

−p′′ − Cp′ = f(p) on (0,+∞),

p(−∞) = 1, p(+∞) = 0, p > 0.

See [99] for existence and uniqueness of these solutions: the results therein apply directly up to
transforming p( · ) into p(− · ) for the first problem, and into 1− p( · ) for the second one.

Lemma 6.7. Let C > c∗(f). For all β ∈ (βC , 1), there exists a unique α+
C(β) ∈ (0, αC) such that

γ(α+
C(β), β) = C. We introduce LC(β) := λ(α+

C(β), β).
At the limits, α+

C(βC) = 0 and α+
C(1) = αC . In addition,

∃ lim
β→βC

LC(β) = lim
β→1

LC(β) = +∞.

Hence we can define
Lm(C) := min

β∈(βC ,1)
LC(β).

Then, Lm is decreasing and limC→+∞ Lm(C) = 0.

Proof. Existence and uniqueness for α+
C (whence the definition of LC) comes from the fact that

the equation’s flow is strictly inward on the level sets of E (by Lemma 6.4).
The two limits at βC and 1 of α+

C are straightforward, as well as those of LC (this may be seen
as a corollary of Proposition 6.15). This justifies the existence of a minimum for LC .

Everything being monotone with respect to C, this implies that Lm is decreasing. Finally, the
minimality of Lm implies that Lm → 0 as C → +∞, because (by Proposition 6.13) for all L > 0,
there exists C∗(L), (C∗(L), L) ∈ B(f). Hence, for C ≥ C∗(L), necessarily Lm(C) < L.

We end this subsection by stating and proving an auxiliary fact on the “limit” barrier (with
minimal length, equal to L∗(C), at a fixed logarithmic gradient C). This fact is not directly useful
for proving results of Section 6.2 but receives a relevant interpretation for the biological problem
in Appendix 6.6.3.
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Lemma 6.8. Let C > c∗(f). Let α∗(C), β∗(C) be such that

γ
(
α∗(C), β∗(C)

)
= C, 2λ

(
α∗(C), β∗(C)

)
= L∗(C).

Then α∗ and β∗ have a limit as C → +∞, and

lim
C→∞

α∗(C) = θ = lim
C→∞

β∗(C).

In addition, for all C > c∗(f), α∗(C) < θ < β∗(C), and

β∗(C)− α∗(C) =
1

C

(√
2(F (1)− F (θ))−

√
−2F (θ)

)
+ o(

1

C
).

Proof. For C > c∗(f), there exists p = pC∗ a solution (recall that it is not necessarily unique) of −p
′′ − Cp′ = f(p),

1
2p
′(−L∗(C))2 + F (p(−L∗(C))) = F (1), 1

2p
′(L∗(C))2 + F (p(L∗(C))) = 0.

such that
pC∗
(
L∗(C)

)
= α∗(C), pC∗

(
− L∗(C)

)
= β∗(C).

We define vC : [−1, 1]→ [0, 1] by vC(x) = pC∗ (xL∗(C)). Then vC satisfies
−v′′C − CL∗(C)v′C =

(
L∗(C)

)2
f(vC)

1

2
(
L∗(C)

)2 v′C(−1)2 + F (vC(−1)) = F (1),
1

2
(
L∗(C)

)2 v′C(1)2 + F (vC(1)) = 0.

We introduce y = v′C . Recalling that CL∗(C) ∼C→∞ 1
4 log(1− F (1)

F (θ) ) (by Proposition 6.14), for

all z ∈ (−1, 1) we find

y(z) = y(−1)e−CL∗(C)(z+1) +O(
1

C2
).

It follows that vC(z) = vC(−1) +
v′C(−1)
CL∗(C)

(
1− e−CL∗(C)(z+1)

)
+O( 1

C2 ).

Hence vC(1) = vC(−1)+
v′C(−1)
CL∗(C)

(
1−e−2CL∗(C)

)
+O( 1

C2 ) and v′C(1) = v′C(−1)e−2CL∗(C)+O( 1
C2 ).

From this, we deduce
1

2
(
L∗(C)

)2 v′C(−1)2 + F (vC(−1)) = F (1)

1

2
(
L∗(C)

)2 v′C(−1)2e−4CL∗(C) + F
(
vC(−1) +

v′C(−1)
CL∗(C)

(
1− e−2CL∗(C)

))
= O( 1

C2 )
(6.32)

Let z = vC(−1) and y = v′C(−1). The first equation gives y = O(1/C), so at the limit C → ∞
we find limC→∞ vC(−1) = limC→∞ vC(1): vC itself converges to a constant z∞. Using the first
equation in the second we find

(F (1)− F (z))e−4CL∗(C) + F
(
z +O(

1

C
)
)

= O(
1

C2
).

Recalling that e4CL∗(C) −−−−→
C→∞

1− F (1)
F (θ) we recover as C →∞

F (1)− F (z∞) + (1− F (1)

F (θ)
)F (z∞) = 0,

that is F (1)
(
1− F (z∞)

F (θ)

)
= 0, or equivalently F (z∞) = F (θ).

Hence limC→∞ z = θ. Recalling z = vC(−1) = β∗(C), we find that both α∗(C) and β∗(C)
converge to θ.

Let us fix C > c∗(f). For all α ∈ (0, αC), there exists a unique β(C,α) such that γ(α, β(C,α)) =
C. Obviously, α 7→ β(C,α) is increasing.
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Then, we claim that if θ ≤ α0 < α1 < αC then λ(α0, β(C,α0)) < λ(α1, β(C,α1)). Symmetri-
cally, if α0 < α1 < αC are such that β(C,α1) < θ, then λ(α0, β(C,α0)) > λ(α1, β(C,α1)). This is
a simple consequence of the expression of λ and of the fact that F is decreasing on [0, θ], increasing
on [θ, 1].

Differentiating (6.16) with respect to p, choosing α = α∗(C) and β = β∗(C) and integrating
between α and β yields

C
√

2(w − F )(p) = C
√
−2F (α) + C2(p− α)− C

∫ p

α

f(p′)dp′√
2(w − F )(p′)

.

From this we get

2CL∗(C) = C

∫ β

α

dp√
2(w − F )(p)

=

∫ β

α

dp

p− α+

√
−2F (α)

C − 1
C

∫ p
α

f(p′)dp′√
2(w−F )(p′)

. (6.33)

By Proposition 6.14 we know that 2CL∗(C) = 1
2 log

(F (1)−F (θ)
−F (θ)

)
+ o(1) (where the o is taken as

C →∞). Rewriting the right-hand side of (6.33) (recalling that β∗ − α∗ = o(1)), we find

1

2
log
(F (1)− F (θ)

−F (θ)

)
= log

(
1 + C

β − α√
−2F (α)

)
+ o(1).

Since α→ θ as C → +∞, taking the exponential of both sides we obtain

(1 + o(1))
√

2(F (1)− F (θ)) =
√
−2F (θ) + C(β∗(C)− α∗(C)),

and the claim is proved.

6.5.6 Gathering the results on the barrier set.

We can now prove the remaining parts of Proposition 6.3, concerning order and extremal elements
(recalling the first point has been stated and proved in Lemma 6.1).

Proposition 6.3. First, we know the α’s and the β’s are in the same order. More precisely, if there
are (C,L)-barriers from β0 to α0 and from β1 to α1, and β0 < β1, then α0 < α1 by Proposition 6.12.
We then crucially use Lemma 6.5.

Applying Lemma 6.5 to two barriers, on [−L,L] (or equivalently on [0, 2L], to fit the notations
in (6.19)) yields the global ordering of all barriers. Barriers obviously satisfy X > 0, Y < 0, by
Lemma 6.1

Now we take λ+ associated with maximal β+ = pλ+
(−L) and α+ = pλ+

(L). For all ε > 0 small
enough, we construct a subsolution to (6.6) by letting

−p′′ε − Cp′ε = f(pε) in (−L,L), pε(−L) = β+ + ε,

−p′′ε = f(pε) in R− (−L,L),

F (pε(−L)) + 1
2 (p′ε(−L))2 = F (1), F (pε(L)) + 1

2 (p′ε(L
+))2 = 0

(6.34)

where pε is continuous, but p′ε exhibits a jump at L.
Then we can prove that pε(L) > pλ+

(L) and the jump has the good sign to provide a sub-
solution p′ε(L

−) < p′ε(L+), by maximality of β+. The second point can be seen easily in the phase
plane. It is in fact a straightforward consequence of the continuity of β 7→ E(2L;C, β)

Now, it remains to see that pε(x) > pλ+
(x) for all x ∈ [−L,L], hence for all x ∈ R. In fact, this

is a simple consequence of Lemma 6.5. One simply has to check that by continuity of the solutions
of differential equations with respect to the initial data, for ε > 0 small enough, pε remains in (0, 1)
on [−L,L] and pε′ remains negative.

The proof is totally similar for the stability from below of pλ− (defined by minimality of
β− = pλ−(−L) and α− = pλ−(L), making use of Lemma 6.5 again, hence we don’t reproduce
it here.
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The last point comes from the fact that λ(α+
C(β), β), which is defined on (βC , 1), goes to +∞ at

βC and at 1 (Lemma 6.7), hence reaches its minimum (which is necessarily equal to L∗(C)) at some
β0(C) ∈ (βC , 1). For L > L∗(C), there exists (β1, β2) with βC < β1 < β0(C) and β0(C) < β2 < 1
such that λ(αC(β1), β1) = λ(αC(β2), β2) = L, yielding two distinct barriers defined by (αC(βi), βi)
for i ∈ {1, 2}.

Remark 6.6. We interpret Proposition 6.3 in terms of asymptotic behavior of solutions to (6.4)
thanks to Proposition 6.2. Any initial datum below pλ− will be unable to pass and propagate (the
wave it may have “initiated” on (−∞,−L) will be blocked), while any initial datum above pλ+

will
propagate.

Remark 6.7. Proposition 6.3 applies in particular when there exists a unique (C,L) barrier (which
should generically hold when L = L∗(C)). In this case, this barrier is simultaneously stable from
below and unstable from above. As before, either the solution is blocked below this barrier (“stable
from below”), or the solution passes the barrier, in which case it propagates to +∞ (“unstable from
above”).

6.5.7 Generalizing the barriers.

Now we move to the proof of Corollary 6.1.

Remark 6.8. If Y := {C1[−L,L], C, L > 0}, then B(f) = BY(f) (in fact, (6.6) is a special case of
(6.9)).

First, we note that these “generalized” barriers are still decreasing, as long as η is. The set of
gradient profiles X was introduced in (6.8)

Lemma 6.9. For η ∈ X , a η-barrier is necessarily monotone decreasing.

Proof. Let L > 0 be such that Supp(η) ⊆ [−L,L].
For x ∈ (−∞,−L), since −p′′ = f(p) we get by multiplication by p′ and integration:

1

2
(p′(x))2 + F (p(x)) = F (1).

Hence p′ cannot vanish unless p = 1, which is impossible.
Now, for x ∈ (L,+∞) we get similarly

1

2
(p′(x))2 + F (p(x)) = 0,

so p′ can vanish only if p = 0 or p = θc. As before, p = 0 is impossible. We will show that
p(L) < θc, which is equivalent to p′(L) 6= 0, and will be done.

For x ∈ (−L,L), we define E(x) := 1
2 (p′(x))2 + F (p(x)). Then

E′(x) = −η(x)p′(x)2 ≤ 0,

so E is non-increasing. (Here it is crucial that η ∈ X =⇒ η ≥ 0.) In addition, E(−L) = F (1)
and E(L) = 0.

Let xm := inf{x > −L, p′(x) = 0} and assume by contradiction xm ≤ L. If p(xm) < θc then
E(xm) = 0 + F (p(xm)) < 0, which is absurd because E is non-increasing and E(L) = 0. We are
left with p(xm) ≥ θc > θ. This implies that p′′(xm) = −f(p(xm)) − η(xm)p′(xm) < 0. In this
case, p reaches a local maximum at xm, which is absurd because by definition of xm, p′ < 0 on
(−L, xm).

Hence p is monotone decreasing.

Proposition 6.16. For all η, η1 ∈ X , η ∈ BX (f) =⇒ η + η1 ∈ BX (f).
If λ > 0 then η ∈ BX (f) is equivalent to λη(λ · ) ∈ BX (λ2f). This point enables us to assume

F (1) = 1 without loss of generality.

Proof. The last two points are simple: apart from η the rest of the problem is translation-invariant;
q(x) := p(λx) satisfies

− 1

λ2
q′′(x)− 1

λ
η(λx)q′(x) = f(q(x)) on R.
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Multiplying this equation by λ2 yields the result.

The first point however requires a complete proof, which mimics that of Proposition 6.5. Let
pη be a η-barrier. Then

−p′′η −
(
η + η1

)
p′η ≥ −p′′η − ηp′η = f(pη).

Hence pη is a super-solution to the (η + η1)-problem.

Simultaneously, as in the proof of Proposition 6.5, the (translated) α-bubble gives a sub-solution
to the (η + η1)-problem which lies below pη.

By the sub- and super-solution method, this provides a (η + η1)-barrier.

Then, Corollary 6.1 follows directly from the first point (positivity) in Proposition 6.16 and
Theorem 6.2.

6.6 Discussion and extensions

6.6.1 Summary of the results

Before discussing the derivation of the models and some extensions of our results, we sum up the
content of the article.

On the first hand, thanks to a change of variables, we established a sharp threshold property
for equation (6.3) in the bistable case and gave a full description of the situation in the KPP
case (Theorem 6.1). Therefore in this simple and homogeneous model, when total population is
approximated as a function of infection frequency, no stable propagation blocking can occur. We
also described the propagules in this case (Proposition 6.1).

On the other hand, when the total population is increasing along a line, we characterized
the constant logarithmic gradients that create stable blocking fronts (Theorem 6.2), and gave a
sufficient condition in Corollary 6.1 for the non-constant case. We stated the asymptotic behavior
of solutions in Proposition 6.2, when there are no barriers or when initial data can be compared
to some of the barriers. Then, a deeper understanding of the barriers (Proposition 6.3) and of
the barrier set (Proposition 6.4) enabled us to describe the important “unstable front” associated
with stable blocking fronts. Computing this unstable front in the context of a blocked artificial
introduction of Wolbachia, for example, may help designing future releases of infected mosquitoes
in order to clear the propagation hindrance.

The remainder of this section is organized as follows. We explain in Subsection 6.6.2 how (6.3)
and (6.2) are derived from a two-population model, then in Subsection 6.6.3 we discuss the link
between the barriers we considered in this paper and the local barrier studied in [29], and finally
we gather in Subsection 6.6.4 some numerical conjectures we were not able to prove so far.

6.6.2 Derivation from a two-population model

Both (6.3) and (6.2) may be derived in some sense from a single two-population model (posed on
Rd with d ∈ {1, 2}). To perform this derivation we consider the model for infected and uninfected
mosquitoes proposed in [211]. We denote by ni, resp nu, the density of infected, resp. uninfected,
mosquitoes.

∂tni −D∆ni = (1− sf )Funi
(
1− N

K

)
− δduni, (6.35)

∂tnu −D∆nu = Funu(1− shp)
(
1− N

K

)
− dunu. (6.36)

This model uses 7 parameters: D is the (constant) diffusion rate, Fu is the fecundity of un-
infected mosquitoes, sf ∈ (0, 1) is a dimensionless parameter taking into account the fecundity
reduction for infected mosquitoes (Fi = (1 − sf )Fu is the fecundity of infected mosquitoes), K is
the environmental capacity, du is the death rate, di = δdu is the death rate of infected mosquitoes
(δ > 1), sh ∈ (0, 1) is the cytoplasmic incompatibility parameter.
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We introduce the total population N = ni + nu and the fraction of infected mosquitoes p =
ni

ni+nu
. After straightforward computations, we obtain the system

∂tN −D∆N = N

(
Fu
(
1− N

K

)(
(1− sf )p+ (1− p)(1− shp)

)
− du(δp+ 1− p)

)
, (6.37)

∂tp−D∆p− 2D
∇p ·∇N

N
= p(1− p)

(
Fu
(
1− N

K

)
(shp− sf ) + du(1− δ)

)
. (6.38)

We make the assumption of large fecundity (as in [211]) and introduce ε� 1, so that Fu scales

as F̃u/ε, and we can rewrite (6.37) as

∂tN −D∆N = N

(
F̃u
(1

ε
− N

K

)(
(1− sf )p+ (1− p)(1− shp)

)
− du(δp+ 1− p)

)
. (6.39)

Assuming in this way that fecundity is of a bigger order of magnitude than the death rate ap-
peared as a technical assumption in [211] to recover a proper limit as ε goes to 0 for the equation on
the infected proportion p. Bio-ecology of Aedes mosquitoes gives a quick but relevant justification
of this assumption by the process of “skip oviposition”: the availability of good-quality containers
affects the egg-laying behavior of females, inducing more extensive and energy-consuming search
when breeding sites are scarce. This phenomenon has been documented in [48] (for Ae. aegypti)
and [62] (for Ae. albopictus), for example.

There is more to say about the values of the parameters. In the modeling work [50], the
authors used the experimental values of [238] at a temperature of 30◦C. In our model these
values would yield Fu ' 10 day−1 and du ' 0.3 day−1 (taking into account the immature stages
mortality). It makes sense to consider that the dimensionless quantity Fu/du ' 33 is large.
Estimating the diffusion coefficient may be difficult, but here we are mainly interested in the
relative orders of magnitude of the parameters. Sticking to the choices of [50] we can consider
D ' 1.25× 10−2 km2.day−1.

We also assume that the carrying capacity may depend on space, that is K = K(x). Then we
introduce a development of N = N ε(t, x) by letting

N = N ε(t, x) = K(x)
(

1− εzε(t, x) + ε2wε(t, x)
)
.

Equating the leading terms in (6.39) yields

zε(t, x) =
du
(
(δ − 1)p(t, x) + 1

)
−D∆K(x)/K(x)

(1− sf )p(t, x) + (1− p(t, x))(1− shp(t, x))
.

We know that zε is uniformly bounded with respect to ε. Under the assumption that for all x ∈ Rd,
du min(1, δ) > D∆K(x)/K(x) we claim that wε is uniformly bounded with respect to ε.

Equation (6.38) then rewrites

∂tp−D∆p− 2D
∇K
K

·∇p− 2D∇p ·∇
(

log(1− εzε + ε2wε
)

=

p(1− p)
(

(shp− sf )
du
(
(δ − 1)p+ 1

)
−D∆K/K

(1− sf )p+ (1− p)(1− shp)
− du(δ − 1)

)
. (6.40)

We study (6.40) with two different settings. First, we assume that K is constant. Like in Section
6.4.1, let hε(p) = 1− ε duσFuh0. In this case (6.40) rewrites

∂tp−D∆p+ 2|∇p|2h
′
ε(p)

hε(p)
= p(1− p)

(
du(shp− sf )h(p)− du(δ − 1)− εw

)
. (6.41)

Neglecting the εwε term in the right-hand side of (6.41) yields problem (6.3), with h′ε/hε as a
first-order correction term. We claim that this approximation does not change the structure of the
problem because the right-hand side always keeps a bistable structure, for ε small enough.

In a second setting we assume that K varies with space and keep only the leading terms to
obtain

∂tp−D∆p− 2D
∇K
K

·∇p = p(1− p)
(

(shp− sf )
du
(
(δ − 1)p+ 1

)
−D∆K/K

(1− sf )p+ (1− p)(1− shp)
−du(δ− 1)

)
. (6.42)
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Then, we get problem (6.2) from (6.42) under the assumption that D∆K/K is much smaller than
du min(1, δ). In order to understand the actual meaning of this assumption, let δ ≥ 1. If d = 1

and K(x) = K0e
C
2 (x−x0) on some set (x0, x1) ⊂ R and is constant otherwise (this is the specific

case we studied in this article, see (6.5)), then ∆K/K is either equal to 0 or to C2/4, and C
can be expressed for example in km−1. On the area (x0, x1) where carrying capacity varies, the
population is doubled every 2 log(2)/C kilometer. Our assumption D∆K/K < du with the values
of [238] at 30◦C then reads approximately C < 2

√
0.3/0.0125 ' 9.8 km−1, which means that the

carrying capacity is at most doubled approximately every 140 m. If the gradient is steeper than

this, then our approximation does not hold in (x0, x1). All in all, for C ∈
(
c∗
D , 2

√
du
D

)
, where

c∗ is the (unique) bistable traveling wave speed (which scales by the way as
√
duD), we get a

gradient value which allows for wave blocking (if applied on a large enough area) while justifying
our approximation. With these parameter values, c∗ is approximately equal to 7.2 m.day−1, so
that the range for C is approximately equal to (1.59, 9.8) (in km−1). Here, we chose δ = 10/9,
sf = 0.1 and sh = 0.8. Note that taking different values of δ, sf and sh would yield a different
value of c∗ (independently from du and D), possibly allowing a wider range for C.

Elaborating on this derivation suggests the study of another problem of interest, which would
complement the simplification (6.2) (inspired by the seminal work [29]) studied in the present
article. It consists of (6.42), where we keep the term in ∆K/K rather than neglecting it. This is
a direction for future works on this topic.

6.6.3 Critical population jump

In this section we make a link with the concept of barrier strength used in [29] for local barriers.
First, we define

Definition 6.3. A local barrier is a jump (i.e. a discontinuity) in the size of the total population
N which is sufficient to block a propagating wave.

Starting from our (L,C)-barriers, we get a local barrier by letting L −→ 0. Simultaneously, we
scale C as C(α(L), β(L);L) for some α(L) < β(L). The jump in the total population, from NL
(on the left) to NR > NL (on the right) always reads

NR = exp(

∫ L

−L

C

2
dx)NL = exp(LC)NL.

The limit equation as L→ 0 reads −p
′′ − limL→0

{
C(α(L), β(L);L)1−L≤x≤Lp

′} = f(p) on R,
p(0−) = β0, p(0+) = α0,
p(−∞) = 1, p(+∞) = 0,

(6.43)

where we assumed α(L) −−−→
L→0

α0, β(L) −−−→
L→0

β0. Now, recall that by (6.26), necessarily α0 = β0.

This means that N = NL on (−∞, 0) and N = NR on (0,+∞), with

NR = eK(α0)NL,

where K(α0) = limL→0 L ·C(α(L), β(L);L). K depends only on α0 indeed: by formula (6.25) in
Lemma 6.6,

K(α0) =
1

4
log
(
1− F (1)

F (α0)

)
.

This implies that

NR =
(

1− F (1)

F (α0)

)1/4

NL.

Equation (6.43) then rewrites −p
′′ + 1

4 log
(
1− F (1)

F (α0)

)
〈δ′0, p〉 = f(p) on R,

p(0) = α0,
p(−∞) = 1, p(+∞) = 0,

(6.44)

and the derivation of (6.44) is legitimate for α0 = limL→0 α(L) = θ, by Lemma 6.8.
As a consequence,
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Proposition 6.17. The minimal “jump” in the total population that can block a wave is:

NR =
(

1− F (1)

F (θ)

)1/4

NL.

If we understand [29] correctly, the authors addressed the situation where for (6.43), p′(0−) =
p′(0+). In view of our result, it means F (1) = 0. But simultaneously they wanted p(0−) 6= p(0+).
We find that this cannot be obtained by using equation (6.2). However, if the reaction term f
depends itself on N (as it is expected to do, see Section 6.6.2), then this becomes possible.

A good intuition is that the stronger the population gradient, the smaller the population “jump”
required for blocking. In the limit of a real, discontinuous jump, we recover the critical value from
Proposition 6.17.

We can state this result in more generality using the notations of this paper.

Proposition 6.18. Let H(f,K) := {C > c∗(f), (C, KC ) ∈ B(f)}. There exists a minimal K0(f) >
0 such that if K > K0(f) then H(f,K) is non-empty.

Proof. We remark that (C,K/C) ∈ B(f) if and only if K ≥ CL∗(C), by Theorem 6.2.
Let K0 = minC CL∗(C) > 0, and K > K0. Then there exists at least one C(K) > c∗(f) such

that C(K)L∗(C(K)) = K.

Assuming C 7→ CL∗(C) is decreasing (as seems to be the case, see Figure 6.6 above), a stronger
result holds, which confirms the above intuition. In this case, H(f,K) is equal to a half-line for

any K >
(

1 − F (1)
F (θ)

)1/4

, and is empty otherwise. We refer to 6.A for further discussion on this

topic.

6.6.4 Numerical conjectures

About Lemma 6.8, it is a numerical conjecture that for generic bistable function f , α∗ is increasing,
β∗ is decreasing, and both are uniquely defined (see Figure 6.8).
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Figure 6.8: Plot of α∗ (in blue, below) and β∗ (in red, above) as functions of C (respectively
increasing and decreasing), obtained by simulating the ODE system (6.19) with f as in Subsec-
tion 6.2.3.
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Figure 6.9: Plot of the proportion of the invading population with respect to time (y-axis) and
space (x-axis). These are two numerical simulations of the two-population model (6.35)-(6.36)
with same front-like initial data, L = 4 (space interval with non-zero carrying capacity gradient
[−L,L] marked by the two vertical dotted red lines) and two different carrying capacities. We
recover the same behavior as for the single population model (6.2) Left: Blocking for C = 0.2.
Right: Propagation for C = 0.1.

For generic bistable functions, we also conjecture that there exists exactly two barriers when
L > L∗(C).

Finally, the behavior we identified appears, numerically, to apply in the case of the two-
population model (6.35)-(6.36), where we take K = K(x) a heterogeneous carrying capacity.
Figure 6.9 shows an example of the propagating/blocking alternative in this setting. As in Sub-
section 6.2.3, color represents the value of p, which is here equal to ni/(nu + ni). We fix L = 4
and choose carrying capacities as

K(x) = KL exp
(
C min

(
(x+ L)+, 2L

))
.
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Appendices

6.A An additional result

In the setting of (6.4), (6.5), when C and L are fixed, we define the population jump as eCL, that
is the quotient between the population size at the right edge of the heterogeneous area and the
population size at the left edge.

We show in this appendix that the critical population jump is typically decreasing for large
values of C. First, we draw an interesting consequence of this fact.

By definition, C > c∗(f) belongs to H(f,K) if and only if K/C > L∗(C), that is CL∗(C) < K.

Assuming that C 7→ CL∗(C) is decreasing, we obtain that H(f,K) is a half-line (Ĉ(f,K),+∞).
The interpretation of this fact is useful: for a given population jump eK (K > 0), the exponential
profiles for such a population increase that induce wave blocking are those which are steep enough
(that is, with C large enough). In particular, by smoothing the steepness of the population increase
one always favors invasion, in this case.

Now, we compute the derivative of κ : C 7→ 2CL∗(C) in order to estimate it as C → +∞. By
the same construction as in the proof of Proposition 6.13, we have

κ(C) = Ct∗(β∗(C), C),

where X,Y solve {
X ′ = Y, X(0, C, β) = β,

Y ′ = −CY − f(X), Y (0, C, β) = −
√

2(F (1)− F (β),

t∗(β,C) is the first time such that

E
[
X(t∗(β,C), C, β), Y (t∗(β,C), C, β)

]
= 0,

(which is well-defined for C large enough and β well-chosen) and β∗(C) is the value of β ∈ (0, 1)
which minimizes t∗(β,C). In particular

Using as in the proof of Proposition 6.13 subscripts to denote partial derivatives we have

κ′(C) = t∗(β∗(C), C) + Ct∗C(β∗(C), C) + Cβ∗C(C)t∗β(β∗(C), C),

and in addition t∗β(β∗(C), C) = 0 since β∗(C) is a minimizer. By differentiation of E(X,Y ) = 0
with respect to C we also obtain

−CY 2t∗C(β∗(C), C) + β∗C(C)(Xβf(X) + YβY ) + f(X)XC + Y YC = 0.

Using the condition ∂βE = 0, we deduce that

κ′(C) = t∗(β∗(C), C) +
f(X)XC + Y YC

Y 2
. (6.45)

For large C we have X → θ uniformly and Y → −
√

2(F (1)− F (θ)) uniformly, thanks to
Lemma 6.8. Let

A(C) :=

(
0 1

−f ′(θ) −C

)
,

then (at least formally) (XC , YC)(t) is close to(
X̃C

ỸC

)
(t) := eA(C)t

∫ t

0

e−A(C)t′
(

0√
2(F (1)− F (θ)

)
dt′.
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Using the fact that t∗ goes to 0 as C goes to +∞ and that t∗C converges to a positive constant
K as C goes to +∞, we deduce (after straightforward computation and estimation of eA(C)t′ for
t′ ∈ [0, 2L∗(C)]) that asymptotically (as C is large),

κ′(C) ∼ 1

C

(
K − eK(eK − 1)

)
,

and the numerator K − eK(eK − 1) is negative as soon as K > 0. To make the computation less

formal one simply need to develop asymptotically (W,Z) := (XC − X̃C , YC − ỸC), which solves a
linear differential equation with inhomogeneous terms of magnitude at most O(1/C), whence the
estimation.

Therefore, at least for large values of C, the population jump κ : C 7→ CL∗(C) is decreasing.
However, proving this fact for all C > c∗(f) is still an open problem, and could perhaps be obtained
from (6.45).
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Chapter 7

Uncertainty quantification for the
invasion success

This chapter is a joint work with Nicolas Vauchelet and Jorge P. Zubelli. It was published as an
article in Mathematical Biosciences and Engineering [212].

Abstract. Artificial releases of Wolbachia-infected Aedes mosquitoes have been under study in
the past years for fighting vector-borne diseases such as dengue, chikungunya and zika. Several
strains of this bacterium cause cytoplasmic incompatibility (CI) and can also affect their host’s
fecundity or lifespan, while highly reducing vector competence for the main arboviruses.

We consider and answer the following questions: 1) what should be the initial condition (i.e.
size of the initial mosquito population) to have invasion with one mosquito release source? We
note that it is hard to have an invasion in such case. 2) How many release points does one need to
have sufficiently high probability of invasion? 3) What happens if one accounts for uncertainty in
the release protocol (e.g. unequal spacing among release points)?

We build a framework based on existing reaction-diffusion models for the uncertainty quantifi-
cation in this context, obtain both theoretical and numerical lower bounds for the probability of
release success and give new quantitative results on the one dimensional case.

7.1 Introduction

In recent years, the spread of chikungunya, dengue, and zika has become a major public health
issue, especially in tropical areas of the planet [3, 32]. All those diseases are caused by arboviruses
whose main transmission vector is the Aedes aegypti. One of the most important and innovative
ways of vector control is the artificial introduction of a maternally transmitted bacterium of genus
Wolbachia in the mosquito population (see [34, 129, 232]). This process has been successfully
implemented on the field (see [118]). It requires the release of Wolbachia-infected mosquitoes on
the field and ultimately depends on the prevalence of one sub-population over the other. Other
human interventions on mosquito populations may require such spatial release protocols (see [7, 8]
for a review of past and current field trials for genetic mosquito population modification). Designing
and optimizing these protocols remains a challenging problem for today (see [102, 227]), and may
be enriched by the lessons learned from previous release experiments (see [117, 178, 240])

This article studies a spatially distributed model for the spread of Wolbachia-infected mosquitoes
in a population and its success as far as non-extinction probabilities are concerned. We address
the question of the release protocol to guarantee a high probability of invasion. More precisely,
what quantity of mosquitoes need to be released to ensure invasion, if we have only one release
point? What if we have multiple release points and if there is some uncertainty in the release
protocol? We obtain lower bounds so as to quantify the success probability of spatial spread of
the introduced population according to a mathematical model.

We define here an ad hoc framework for the computation of this success probability. As a
totally new feature added to the previous works on this topic (see [60, 100, 101, 125, 220, 239]),
it involves space variable as a key ingredient. In this paper we provide quantitative estimate and
numerical results in dimension 1.
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It is well accepted that stochasticity plays a significant role in biological modeling. Probabilities
of introduction success have already been investigated for genes or other agents into a wild biological
population. The recent work [29] makes use of reaction-diffusion PDEs to describe the biological
phenomena underlying sucessful introduction as cytoplasmic analogues of the Allee effect. The
infection of the mosquito population by Wolbachia is seen as an “alternative trait”, spreading across
a population having initially a homogeneous regular trait. Other recent models have been proposed
either to compute the invasion speed ([50]), or get an insight into the induced time dynamics of
more complex systems, including humans or pathogens (see [83, 121]). In the mosquito part, models
usually feature two stable steady states: invasion (the regular trait disappears) and extinction (the
alternative trait disappears). Since this phenomenon is currently being investigated as a tool to
fight Aedes transmitted diseases, the problem of determination of thresholds for invasion in this
equation is of tremendous importance.

The issue of survival probability of invading species has attracted a lot of attention by many
researchers. Among such we may cite [28] and [196]. We stress, however, that this is not the
direction followed in this paper. In the cited articles indeed, the basic underlying model is either
a stochastic PDE or its discretization, and the uncertainty concerning the initial state is not
considered.

In other words, although in a deterministic model as ours one can in principle numerically check
for a specific initial configuration whether the invasion by the Wolbachia-infected mosquitoes will
be successful or not, in practice such a specific initial condition is subject to uncertainty, and
therefore the uncertainty quantification of the success probability is a natural question.

Our modeling goes as follows: We consider on a domain Ω ⊆ Rd (usually d ∈ {1, 2} and
Ω = Rd), a frequency p : Ω → [0, 1] that models the prevalence of the Wolbachia infection trait.
More specifically, in the case of cytoplasmic incompatibility caused in Aedes mosquitoes by the
endo-symbiotic bacterium Wolbachia, p is the proportion of mosquitoes infected by the bacterium
(e.g. p = 1 means that the whole population is infected). Then, this frequency obeys a bistable
reaction-diffusion equation. We aim at estimating the invasion success probability with respect to
the initial data (= release profile).

In [29, 211] it was obtained an expression for the reaction term f in the limit Allen-Cahn
equation

∂tp− σ∆p = f(p) (7.1)

in terms of the following biological parameters: σ diffusivity (in square-meters per day, for exam-
ple), sf (effect of Wolbachia on fecundity, = 0 if it has no effect); sh (strength of the cytoplasmic
incompatibility, = 1 if it is perfect); δ (effect on death rate, di = δds where ds is the regular death
rate without Wolbachia) and µ (imperfection of vertical transmission, expected to be small). It
reads as follows:

f(p) = δdsp
−shp2 +

(
1 + sh − (1− sf )( 1−µ

δ + µ)
)
p+ (1− sf ) 1−µ

δ − 1

shp2 − (sf + sh)p+ 1
. (7.2)

Bistable reaction terms are such that f < 0 on (0, θ) and f > 0 on (θ, θ+). Usually, we consider
θ+ = 1. This is the case if µ = 0.

The outline of the paper is the following. In the next section, we explain how to use a threshold
property for bistable reaction-diffusion equation in order to obtain explicit sufficient conditions
for invasion success of a release protocol (Theorem 7.1). In a relevant stochastic framework, we
show in Section 7.2.2 how these conditions provide uncertainty quantification for invasion success
when release locations are random. Thanks to this, we prove in Section 7.2.3 that if the release
domain is wide enough (with an explicit bound), the success probability goes to 1 as the number of
releases goes to +∞. Our main tool is the construction of compactly supported radially symmetric
functions (in Section 7.2.4 for any dimension, and in Section 7.3 for the 1-dimensional case) such
that if the initial data is above one of such functions, then invasion occurs. Section 7.3 and the
following are devoted to the one dimensional case. We prove in Section 7.4.1 that the sufficient
conditions for invasion are very hard to meet with a single release point (Proposition 7.5), and this
leads to considering multiple release locations. For a deterministic (Section 7.4.2, Lemma 7.2) and
a stochastic (Sections 7.4.3 and 7.4.4, Proposition 7.7) set of release profiles, we give analytical
formulae for uncertainty quantification. Numerical simulations illustrate these results in dimension
1 in Section 7.5. We conclude in Section 7.6. Finally an appendix is devoted to the study of the
minimization of the perimeter of release in one dimension.
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7.2 Setting the problem: How to use a threshold property
to design a release protocol?

7.2.1 The threshold phenomenon for bistable equations

In Equation (7.1), we assume that ∃ θ ∈ (0, 1), f(0) = f(θ) = f(1) = 0,

f < 0 on (0, θ), f > 0 on (θ, 1),
∫ 1

0
f(x)dx > 0.

(7.3)

A consequence of this hypothesis is the existence of invading traveling waves. From now on, we
denote F the anti-derivative of f which vanishes at 0,

F (x) :=

∫ x

0

f(y) dy. (7.4)

Since we have assumed F (1) > 0, by the bistability of the function f , there exists a unique
θc ∈ (0, 1) such that

F (θc) =

∫ θc

0

f(x)dx = 0.

In all numerical simulations we use the following values taken from [121, 75, 181] for the
Wolbachia and mosquito parameters:

ds = 0.27day−1, sf = 0.1, µ = 0, sh = 0.8,

δ = 0.3/0.27 = 10/9 and σ = 877m2.day−1.
(7.5)

In particular we obtain the profiles for f and its anti-derivative in Figure 7.1. In [121], the authors
used the notations φ = 1− sf , δ = di/ds, u = 1− sh and v = 1− µ. They gave a range of values
of these parameters for three Wolbachia strains, namely wAlbB, which has no impact on death
(δ = 1) but reduces fecundity, wMelPop which highly increases death rate but isn’t detrimental to
fecundity, and wMel which has a moderate impact on both. Values are given in Table 3 of the cited
article (which contains also a parameter r, standing for differential vector competence of Wolbachia-
infected mosquitoes for dengue, a feature we do not include in our modeling since we focus on the
mosquito population dynamics), see the references therein for more details. According to the
aforementioned references, the authors always assumed perfect CI and maternal transmission, that
is, with our notations sh = 1 and µ = 0. Our notations mimic those of [29, 83], where they did not
give as detailed tables for the parameters as in [121], although we refer the reader to the references
they gave, which contain some quantitative estimations of these parameters. Our choices in (7.5)
for ds, sf and δ reflect the field data exposed in [75], for the (life-shortening) wMel strain in the
context of the city of Rio de Janeiro, in Brazil.

We will always assume µ = 0 (perfect vertical transmission) in the following. Complex dy-
namical behaviors can arise in the case when µ exceeds some threshold, as was proved in [242]
for a system of two ordinary differential equations. For such values of µ, in particular, population
replacement may not be guaranteed by invasion success. Note however that our results apply when
µ > 0 is small. In this case the “invasion” state is not exactly p = 1, but p = p+(µ) < 1, because
of the flaw in Wolbachia vertical (=maternal) transmission.

Moreover, following estimates from [75, 229] for Aedes aegypti in Rio de Janeiro (Brazil), and
general literature review and discussion in Section 3 of [181] we consider that mosquitoes spread at
around σ = 830m2/day (see the references given in [181] for more details). With these estimations
of the parameters, the quantitative results we get are satisfactory because they appear to be
relevant for practical purposes. For example, in order to get a significant probability of success,
the release perimeter we find is around 595m wide (in one dimension). In the example from
Figure 7.1, θc ' 0.36.

We say that a radially symmetric function φ on Rd is non-increasing if φ(x) = g(|x|) for some
g that is non-increasing on R+.

The following result gives a criterion on the initial data to guarantee invasion.

111



7.2. SETTING THE PROBLEM CHAPTER 7. UNCERTAINTY QUANTIFICATION

0 10.2 0.4 0.6 0.8

0

2

1

3

−0.5

0.5

1.5

2.5

3.5

0 10.2 0.4 0.6 0.8

0

1

−0.2

0.2

0.4

0.6

0.8

1.2

1.4

Figure 7.1: Profile of f defined in (7.2) (left) and of its anti-derivative F (right) with parameters
given by (7.5).

Theorem 7.1. Let us assume that f is bistable in the sense of (7.3). Then, for all α ∈ (θc, 1]
there exists a compactly supported, radially symmetric non-increasing function vα(|x|), with vα :
R+ → R+ non-increasing, vα(0) = α (called “α-bubble”), such that if p is a solution of

∂tp− σ∆p = f(p), (7.6)

p(t = 0, x) = p0(x) ≥ vα(|x|),

then p −−−→
t→∞

1 locally uniformly. Moreover, we can take Supp(vα) = BRα with

Rα =
√
σ inf
ρ∈Γ

√√√√ 1− ρd
(1− ρ)2

1( ∫ α
0

(
1− 1−ρ

α x
)d
f(x)dx

)
+

, (7.7)

where Γ = {ρ ∈ (0, 1),
∫ α

0
(1− 1−ρ

α x)df(x)dx > 0}.
In one dimension, we have the sharper estimate Supp(vα) = [−Lα, Lα] with

Lα =

√
σ

2

∫ α

0

dv√
F (α)− F (v)

. (7.8)

Remark 7.1. Clearly, the set Γ is nonempty. Indeed for ρ ∼ 1,∫ α

0

(1− 1− ρ
α

x)df(x)dx > 0,

since F (α) > 0. However, it is hard to say more unless we consider a specific function f .

(Sharp) threshold phenomena are well-known for bistable reaction-diffusion equations (see [70,
163, 174, 190, 243]). In Theorem 7.1, we use this property to derive the new formula (7.7), and
(7.8), which are very useful to quantify invasion success uncertainty. We postpone to Section 7.2.4
the proof of this result for dimension d ≥ 1, which is based upon an energy method developed
in [174]. When d = 1, we give an alternative proof using sharp critical bubbles and a result of
[70] in Section 7.3.1. To the best of our knowledge, we give in Section 7.3.2 the first comparison
between the two approaches.

We recall the definition of a “ground state” as a positive stationary solution v of (7.1), i.e.:

−∆v = f(v)
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that decays to 0 at infinity. In dimension d = 1 (and in some special cases in higher dimensions,
see [174]), such a ground state is unique up to translations. When d = 1 we denote vθc the ground
state which is maximal at x = 0. It is symmetric decreasing and vθc(0) = θc, which is consistent
with the notation vα in Theorem 7.1. Although we won’t use it in the rest of the paper, we note
that with a similar argument, we have a sufficient condition for the extinction:

Proposition 7.1. In dimension d = 1, let p be a solution of equation (7.1), associated with the
initial value p0. If p0 < θ or p0 < vθc( · − ζ) for some ζ ∈ R, then p goes extinct: p −−−→

t→∞
0

uniformly on R.

7.2.2 The stochastic framework for release profiles

When mosquitoes are released in the field, the actual profile of Wolbachia infection in the days
right after the release is very uncertain. In order to quantify this uncertainty, we define in this
section an adequate space of release profiles. The pre-existing mosquito population is assumed to
be homogeneously dense, at a level N0 ∈ R+.

From now on, we assume that we have fixed a space unit, so that we may talk of numbers or
densities of mosquitoes without any trouble.

We define a spatial process X · (ω) = X( · , ω) : Rd → R+ as the introduced mosquitoes profile.
We expect that the time dynamics of the infection frequency will be given by

∂tp− σ∆p = f(p),

p(t = 0, τ ;ω) =
Xτ (ω)

Xτ (ω) +N0
.

(7.9)

We want to measure the probability of establishment associated with this set of initial profiles.
Making use of Theorem 7.1, we want to give a lower bound for the probability of non-extinction

(which is equivalent to the probability of invasion, by the sharpness of threshold solutions, as
described in [163, 174]).

An initial condition Xτ ensures non-extinction if

∃α ∈ (θc, 1], ∃τ0 ∈ R, ∀τ ∈ Rd,
Xτ

Xτ +N0
≥ vα(τ + τ0), (NEC)

where vα is the “α-bubble” used in Theorem 7.1.

Example 1. Now, we assume that we have a fixed number of mosquitoes to release, say N .
When we release mosquitoes in the field (out of boxes), they will spread out to find vertebrates to
feed on (if not fed in the lab prior to the release), to mate or to rest. Many environmental factors
may influence their spread (see [158]). As a very rough estimate we consider that the distribution
of the released mosquitoes can be described by a Gaussian. A Gaussian profile is typically the
result of a diffusion process. However, we shall not use very fine properties of these profiles, and
mainly focus on a “significant spread radius”, so that this assumption is not too restrictive.

Due to the above simplification, the set of releases profiles (“RP”) for a total of N mosquitoes
at k locations in a domain [−L,L]d is defined as

RP dk (N) :=
{
τ 7→ N

k

k∑
i=1

e
− (τ−τi)

2

2σi

(2πσi)d/2
, with τi ∈ [−L,L]d, σi ∈ [σ0 − ε, σ0 + ε]

}
, (7.10)

where σ0 is an estimated diffusion coefficient and ε > 0 represents the uncertainty on this parameter
(σi is the “significant spread radius”). In other words, for any i between 1 and k, the release profile
is locally at the i-th release point a centered Gaussian with fixed amplitude N/k and variance σi.

The basic requirement for a release profile is that
∫
Rd Xτdτ = N . It is obviously satisfied for

the elements in RP dk (N).

We use uniform measure on
(
[−L,L]d × [σ0 − ε, σ0 + ε]

)k
to equip RP dk (N) with a probability

measure, denoted by M in the following.
According to our estimate, the success probability satisfies

P[Non-extinction after releasing N mosquitoes at k locations ]

≥ P[Xτ (ω) satisfies (NEC)], (SP)
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where Xτ (ω) is taken in RP dk (N) according to the uniform probability measure.

7.2.3 First result: relevance of under-estimating success

Though it may seem naive, our under-estimation by radii given in Theorem 7.1 is rather good, and
this can be quantified in any dimension d. Indeed, in any dimension we can prove convergence of
our under-estimation in (SP) to 1 as the number of releases goes to infinity, if we fix the number
of mosquitoes per release.

More precisely, we define for a domain Ω ⊂ Rd,

P dk (N,Ω) :=M
{

(xi)1≤i≤k,∃α ∈ (θc, 1),∃x0 ∈ Ω,

x0 +BRα ⊂ Ω and ∀x ∈ x0 +BRα ,
N

k

k∑
i=1

Gσ,d(x− xi) ≥ α
}
, (7.11)

where Gσ,d(y) = 1
(2πσ)d/2

e−|y|
2/2σ and BRα = BRα(0) is the ball of radius Rα, centered at 0. Then,

the probability of success of a random (in the sense of Section 7.2.2) k-release of N mosquitoes in
the d-dimensional domain Ω is bigger than P dk (N,Ω), because of Theorem 7.1.

Fixing the number of mosquitoes per release and letting the number of releases go to ∞ yield:

Proposition 7.2. Let 1 > α > θc, N ≥ N∗ := (2πσ)d/2 α
1−αN0 and Ω ⊂ Rd be a compact set

containing a ball of radius Rα. Then,

P dk (kN,Ω) −−−−→
k→∞

1. (7.12)

Proof. There are two ingredients for the proof: First, we minimize a Gaussian at x on a ball
centered at x by its value on the border of the ball. Second, if we pick uniformly an increasing
number of balls with fixed radius and center in a compact domain, then their union covers almost-
surely any given subset (this second ingredient is connected with the well-known coupon collector’s
problem). Namely,

‖y‖ ≤
√

2σ log(2) =⇒ e−‖y‖
2/2σ ≥ 1/2.

Now, when we pick uniformly in a compact set the centers of balls of fixed radius α, the
probability of covering a given subset Ωc ⊂ Ω increases with the number k of balls. Therefore it
has a limit as k → +∞. In fact, this limit is equal to 1.

One can prove this claim using the coupon collector problem (see the classical work [79] for the
main results on this problem), after selecting a mesh for the compact domain Ωc. We take this
mesh such that each cell has diameter less than

√
2σ log(2)/2, and positive measure. The domain

Ω is compact, hence finitely many cells is enough. Picking the center of a random ball in a given
cell of the mesh has probability > 0, and we simply need to have picked one center in each element
to be done. It remains to choose the (compact) set Ωc = BRα + x0 ⊂ Ω to conclude the proof.

Remark 7.2. We could have been a little more precise, and get an estimate for the expected value
of the number k of small balls required to cover the domain. According to classical results [79] on
the coupon collector problem, it typically grows as Nc log(Nc), where Nc is the number of cells. If
the domain Ω has diameter R, Nc is typically (2R/

√
2σ log(2))d, in dimension d.

Therefore we should expect E[k] ∼ d
(

2R√
2σ log(2)

)d
log( 2R√

2σ log(2)
), and for a typical release area

R should be of the same order as Rα.

In fact, any N > 0 enjoys the same property, but then we need to assume that each cell contains
a large enough number of release points.

Corollary 7.1. For any N > 0 and α ∈ (θc, 1), for Ω ⊂ Rd a compact set containing a ball of
radius Rα, then for any compact subset Ωc ⊂ Ω containing a ball of radius Rα we have

P dk (kN,Ωc) −−−−→
k→∞

1.

Proof. Let ι = VN
∗

N W. With the same technique as for proving Proposition 7.2, we get a coupon
collector problem where ι coupons of each kind must be collected, whence the result.
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7.2.4 Proof of invasiveness in Theorem 7.1 in any dimension

We consider in this section the proof of Theorem 7.1 in any dimension. The case d = 1 is postponed
to the next section.

We use an approach based on the energy as proposed by [174]. In the present context, the
energy is defined by

E[u] =

∫
Rd

(σ
2
|∇u|2 − F (u(x))

)
dx. (7.13)

It is straightforward to see that if p is a solution to (7.6), then the energy is non-increasing along
a solution, i.e.,

d

dt
E[p] = −

∫
Rd

(
σ∆p+ f(p)

)2
dx ≤ 0.

Thus, E[p](t) ≤ E[p0] for all nonnegative t and for p solution to (7.6). Moreover, Theorem 2 of
[174] states that if limt→+∞E[p(t, · )] < 0, then p(t, · ) → 1 locally uniformly in Rd as t → +∞.
Thus, since t 7→ E[p(t, · )] is non-increasing, it is enough to choose p0 such that E[p0] < 0 to
conclude the proof of Theorem 7.1.

For any α > θc, we construct p0(x) = vα(|x|) as defined in the statements of Theorem 7.1.
To do so, consider the family of non-increasing radially symmetric functions, compactly supported
in BR0

with R0 > 0, indexed by a small radius 0 < r0 < R0, defined by φ(r) = 1 if r ≤ r0,
φ(r) = R0−r

R0−r0 if r0 < r < R0, and φ(r) ≡ 0 if r > R0.
For any 0 < r0 < R0, φ is continuous and piecewise linear. We define vα(r) = αφ(r), for

r ≥ 0. By the comparison principle, it suffices to find (r0, R0) such that E[αφ] < 0 to ensure that
Rα = R0 is suitable in Equation (7.7) of Theorem 7.1. To do so, we introduce

Jd(r0, R0, α, φ) :=
E[αφ]

|Sd−1|
= α2σ

∫ ∞
0

rd−1|∇φ(r)|2dr

−
(rd0
d
F (α) +

∫ R0

r0

rd−1

∫ αφ(r)

0

f(s)dsdr
)
. (7.14)

Now, we use our specific choice of non-increasing radially symmetric function φ. Introducing
ρ := r0/R0, and with obvious abuses of notation, Jd stands again for

Jd(ρ,R0, α) := Rd0

( σ

dR2
0

1− ρd

(1− ρ)2
− F (α)

ρd

d
− 1− ρ

α

∫ α

0

(
1− 1− ρ

α
x
)d−1

F (x)dx
)
, (7.15)

where F is the antiderivative of f (as introduced in (7.4)). After an integration by parts, we have

Jd(ρ,R0, α) = Rd0

( σ

dR2
0

1− ρd

(1− ρ)2
−
∫ α

0

(
1− 1− ρ

α
x
)d
f(x)dx

)
.

We choose ρ ∈ (0, 1) such that ∫ α

0

(
1− 1− ρ

α
x
)d
f(x)dx > 0 (7.16)

Then the energy Jd(ρ,R0, α) decreases to −∞ with R0 and is positive for R0 → 0, so the minimal

scaling ensuring negative energy is obtained for some known value of R0 =: R
(d)
α (ρ), such that

Jd(ρ,R
(d)
α (ρ), α) = 0. Namely,

(
R(d)
α (ρ)

)2
= σ

1− ρd

(1− ρ)2

1∫ α
0

(
1− 1−ρ

α x
)d
f(x)dx

, (7.17)

which is a rational fraction in ρ. Thus we recover formula (7.7) in Theorem 7.1 by minimizing with
respect to those ρ satisfying constraint (7.16).

We examine in particular formula (7.17) in the case d = 1. To do so, we introduce

U(α) := F (α)− 1

α

∫ α

0

F (x)dx, V (α) :=
1

α

∫ α

0

F (x)dx. (7.18)
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Since F (x) ≤ F (α) for x ≤ α, we know that U is positive and V is increasing with respect to α
(V ′(α) = 1

αU(α)). Moreover, V (θc) < 0. We get

R(1)
α (ρ) =

α
√
σ√

(1− ρ)(V (α) + ρU(α))
, (7.19)

under the constraint V (α) + ρU(α) > 0. The optimal choice for ρ is then ρ∗1(α) := 1
2 −

1
2
V (α)
U(α) . It

satisfies V (α) + ρ∗1(α)U(α) > 0 since U(α) = F (α)− V (α) > 0 and F (α) > 0.
Finally, ρ∗1 corresponds to a minimal radius

R(1),∗
α := R(1)

α (ρ∗1(α)) = 2
√
σ
α
√
U(α)

F (α)
, (7.20)

with U(α) as in (7.18).

Remark 7.3. We emphasize that Rα quantifies the minimal radius which ensures invasion from
level α, in the sense that it provides an upper bound for it. However, we were not able to perform
an analytical computation of the actual optimal radius (=support size) of a critical bubble.

Remark 7.4. We note in passing that the same energy (7.13) appears for instance in the review
paper [27] and in associated literature, but is used in a different spirit (stemming from statistical
physics).

Before restricting to dimension 1 in the sequel, we end the general exposition in this section
with a numerical illustration. In order to help the reader getting a clearer picture of the invasion
problem we investigate in the present paper, Figure 7.2 displays the time dynamics of equation
(7.1) in two spatial dimensions, with three different initial conditions. In this simulation we use
the function f defined in (7.2) with parameter values given in (7.5). It illustrates the fact that
with a fixed number of release points taken uniformly in a rectangle, invasion typically appears
only if the size of the rectangle is well chosen.

If it is too small (Figure 7.2-Right) the pressure of the surrounding Wolbachia-free environment
is too strong for the infection to propagate. If it is too large (Figure 7.2-Left), the release points
are likely to be too scattered and never reach and invasion threshold. Whereas in Figure 7.2-
Center, the release area and the number of releases is sufficient to generate a wide enough domain
of Wolbachia-infected mosquitoes which spreads for larger times.

7.3 Critical bubbles of non-extinction in dimension 1

7.3.1 Construction

In this section, we consider the particular one dimensional case for which we can construct a sharp
critical bubble. To do so, we consider the following differential system:

σu′′α + f(uα) = 0 in R+, uα(0) = α, u′α(0) = 0. (7.21)

Proposition 7.3. System (7.21) admits a unique maximal solution uα; it is global and can be
extended by symmetry on R as a function of class C2. Moreover, if α > θc, then Lα defined in
(7.8) is finite and uα is monotonically decreasing on R+ and vanishes at Lα.

Definition 7.1. For α ∈ (θc, 1], we denote by an α-bubble in one dimension the function vα defined
by

vα(x) = uα(|x|)+ := max{0, uα(|x|)} .

From Proposition 7.3 and Definition 7.1 we have that vα is compactly supported with supp(vα) =
[−Lα, Lα].

Proof. Local existence is granted by Cauchy-Lipschitz theorem. Then, we multiply Equation (7.21)
by u′α,

σ

2

(
(u′α)2

)′
+
(
F (uα)

)′
= 0,
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Figure 7.2: Time dynamics with three different initial releases belonging to the set RP 2
50(N)

of (7.10), with N/(N+N0) = 0.75. Integration is performed on the domain [−L,L] with L = 50km.
The release box is plotted in dashed red on the first picture of each configuration. Left: Release
box [−2L/3, 2L/3]2. Center: Release box [−L/2, L/2]2. Right: Release box [−L/12.5, L/12.5]2.
From top to bottom: increasing time t ∈ {0, 1, 25, 50, 75}, in days. The color indicates the value of
p (with the scale on the right).
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which implies (since u′α(0) = 0, uα(0) = α and the domain is connected) that:

σ

2
(u′α)2 = F (α)− F (uα).

Recall that F (x) =
∫ x

0
f(y)dy is positive and increasing from θc. Hence, for α > θc, uα stays

strictly below α except at 0; u′α cannot vanish unless uα = α. Hence, uα is decreasing on R+.

Because uα is decreasing, its derivative is negative and thus:

√
σ
duα
dx

= −
√

2(F (α)− F (uα)). (7.22)

Then, uα, being monotonic, is invertible on its range. Let us define χα(uα(x)) = x, so that
uα(χα(ω)) = ω. By the chain rule, we have

dχα
dω

= −
√

σ

2(F (α)− F (ω))
,

so that,

χα(ω) =

∫ α

ω

√
σ

2(F (α)− F (v))
dv. (7.23)

Thus the function χα evaluated at ω is equal to the unique radius at which the solution of (7.21)
takes the value ω. It remains to prove that Lα = χα(0) is finite, i.e. that v 7→ 1√

F (α)−F (v)
is

integrable on (0, α). This function has the following equivalents at α and 0:

1√
F (α)− F (v)

∼
v→α

1√
f(α)

1√
α− v

,

1√
F (α)− F (v)

∼
v→0+


1
v

√
− 2
f ′(0) if α = θc,

1√
F (α)

if α > θc.

Therefore Lα is finite if and only if α > θc.

Proposition 7.4. The limit bubble uθc (also known as the “ground state”) is exponentially decaying
at infinity.

Proof. The function uθc satisfies the following equation:

σ

2
(u′θc)

2 = F (θc)− F (uθc) = −F (uθc).

Hence, √
σu′θc = −

√
−2F (uθc) on R+.

Moreover, for small ε,
√
−2F (ε) = ε

√
−f ′(0) + o(ε).

As a consequence, as uθc gets small (at infinity), it is equivalent to the solution of

y′ = −
√
−f ′(0)y,

that is x 7→ e−
√
−f ′(0)x.

Proof of Theorem 7.1 in dimension d=1. Let α ∈ (θc, 1], and let us assume that the initial data
for system (7.1) satisfies p(0, · ) ≥ vα where vα is the α-bubble defined in Definition 7.1. From
Proposition 7.3, it suffices to prove that p(t, · )→ 1 locally uniformly on R as t→ +∞.

We first notice that the α-bubble vα is a sub-solution for (7.1). Indeed it is the minimum
between the two sub-solutions 0 and uα. Therefore, by the comparison principle, if p(0, · ) ≥ vα,
then for all t > 0, p(t, · ) ≥ vα.

Then, the proof follows from the “sharp threshold phenomenon” for bistable equations, as
exposed for example in [70, Theorem 1.3], which we recall below:
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Theorem 7.2. [70, Theorem 1.3] Let φλ, λ > 0 be a family of L∞(R) nonnegative, compactly
supported initial data such that
(i) λ 7→ φλ is continuous from R+ to L1(R);
(ii) if 0 < λ1 < λ2 then φλ1 ≤ φλ2 and φλ1 6= φλ2 ;
(iii) limλ→0 φλ(x) = 0 a.e. in R.

Let pλ be the solution to (7.1) with initial data pλ(0, · ) = φλ. Then, one of the following
alternative holds:
(a) limt→∞ pλ(t, x) = 0 uniformly in R for every λ > 0;
(b) there exists λ∗ ≥ 0 and x0 ∈ R such that

lim
t→∞

pλ(t, x) =

 0 uniformly in R (0 ≤ λ < λ∗),
uθc(x− x0) uniformly in R (λ = λ∗),
1 locally uniformly in R (λ > λ∗).

In our case, we define φλ(x) = vα(xλ ) for λ > 0. We have φ1 = vα. Since vα is a sub-solution
to (7.1), the solution to this equation with initial data φ1 stays above vα for all positive time.
From the alternative in the above Theorem, we deduce that the solution to (7.1) with initial data
vα converges to 1 as time goes to +∞ locally uniformly on R. (Indeed, the ground state uθc is
bounded from above by θc < α.) By the comparison principle, we conclude that if p(0, · ) ≥ vα,
then limt→+∞ p(t, · ) = 1 locally uniformly as t→ +∞.

7.3.2 Comparison of the energy and critical bubble methods

Our construction of a critical α-bubble, inspired by [29], holds in dimension 1. In this context we
may compare the “minimal invasion radius” at level α for initial data, given by the two sufficient
conditions: being above an α-bubble (which is the maximum of two stationary solutions), or being
above an initial condition with negative energy.
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Figure 7.3: Comparison of minimal invasion radii Rα (obtained by energy) in dashed line and Lα
(obtained by critical bubbles) in solid line, varying with the maximal infection frequency level α.
The scale is such that σ = 1.
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We first compute the energy of the critical α-bubble vα of Definition 7.1,

E[vα] =

∫
R

(σ
2
|v′α|2 − F (vα)

)
dx.

From Equation (7.21), we have

E[vα] =

∫ Lα

−Lα

(
σ|v′α|2 − F (α)

)
dx = 2

∫ Lα

0

σ|v′α|2 dx− 2LαF (α).

Performing the change of variable v = vα(x) we have∫ Lα

0

|v′α|2dx =

∫ α

0

v′α(v−1
α (v)) dv =

1√
σ

∫ α

0

√
2(F (α)− F (v))dv,

where we use Equation (7.22) for the last equality. Finally, using the expression of Lα in (7.8) we
arrive at

E[vα] = 2
√
σ

∫ α

0

F (α)− 2F (v)√
2(F (α)− F (v))

dv.

To emphasize the difference between the two sufficient conditions, we observe that when α→ θc,
since F (θc) = 0, we obtain

E[vθc ] = 2
√
σ

∫ θc

0

√
−2F (v) dv > 0.

By continuity of α 7→ E[vα] we deduce

Lemma 7.1. The α-bubbles vα have positive energy if α is close to θc.

Remark 7.5. In particular, the energy estimate alone does not imply invasiveness of the α-bubbles,
which justifies the interest of our particular approach in one dimension. We do not claim that the
“energy” or the “bubble” method is better, but we highlight the fact that they do not perfectly
overlap.

Figure 7.3 gives a numerical illustration of the fact that α-bubbles give smaller radii at level
α, except for α ∼ 1, and at any rate provide a smaller minimal radius for invasion when the same
parameters as in Figure 7.1 are used.

7.4 Specific study of a relevant set of release profiles

In this section we discuss a specific release protocol, with a total of N mosquitoes divided equally
into k locations, in a space of dimension 1. It yields a release profile in the set RP dk (N) we defined
in (7.10).

7.4.1 Analytical study of the case of a single release

In the case of a single release (k = 1), we can easily describe the relationship between the mosquito
diffusivity σ and the total number of mosquitoes to release. Morally, as long as the mosquitoes dif-
fuse they could theoretically invade (in dimension 1) by a single release, by introducing a sufficiently
large amount of mosquitoes. This is the object of the next proposition:

Proposition 7.5. Let Gσ(τ) := Gσ,1(τ) = 1√
2πσ

e−τ
2/2σ. The following equivalent properties hold:

(i) There exists σ+ : R∗+ → R∗+ such that NGσ satisfies (NEC) with τ0 = 0 if and only if
σ ∈ (0, σ+(N)].

(ii) There exists Nm : R∗+ → R∗+ such that NGσ satisfies (NEC) with τ0 = 0 if and only if
N ≥ Nm(σ).

Moreover, σ+ and Nm = σ−1
+ are increasing and in both cases, evolution in (7.1) with initial data

pσ,N := NGσ
NGσ+N0

yields invasion by the introduced population.
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Part (i) of Proposition 7.5 asserts that if we fix the total number N of mosquitoes to introduce,
single introduction is a failure if diffusivity is too large. Part (ii) is just the converse viewpoint: if
we know estimates on the diffusivity (thanks to field experiments like mark-release-recapture for
example [229]), then we can define a minimal number Nm of mosquitoes to introduce at a single
location to succeed.

Remark 7.6. If α ∈ (θc, 1) makes NGσ satisfy (NEC) (“be above the α-bubble”), then necessarily
(evaluating at 0 to take the maximum of Gσ), α ≤ N

N+
√

2πσN0
. In particular, our under-estimation

of the probability is equal to 0 as soon as

N <
√

2πσN0
θc

1− θc
.

Equivalently, the density of mosquitoes at the center of the single release location N√
2πσ

should

exceed θc
1−θcN0 for our estimate to prove useful. (If θc = 0.8, this is already 4 times the existing

mosquito density. If θc = 2
3 , then it is only 2 times; in the case of Figure 7.1, θc = 0.36 and then

the ratio is only 0.56).

Proof of Proposition 7.5. Both the introduction profile given by the fraction
NGσ(τ)

NGσ(τ) +N0
and

non-extinction bubbles from Theorem 7.1 built by (7.21) (uα(τ))α are symmetric, radial-decreasing
functions. Instead of comparing them, we compare their reciprocals. We define Tσ,N such that for
all p ∈ [0, α],

NGσ
(
Tσ,N (p)

)
NGσ

(
Tσ,N (p)

)
+N0

= p,

and χα such that uα(χα(p)) = p. Respectively, they read
Tσ,N (p) =

√
2σ

√
log
( N

N0

√
2πσ

1− p
p

)
,

χα(p) =

√
σ

2

∫ α

p

dv√
F (α)− F (v)

.

(7.24)

By construction, the following equivalence holds

∀τ ∈ R+,
NGσ(τ)

NGσ(τ) +N0
≥ uα(τ) ⇐⇒ ∀p s.t. 0 ≤ p ≤ α, χα(p) ≤ Tσ,N (p).

Using (7.24) this rewrites as

log
( N

N0

√
2πσ

)
≥
( ∫ α

p

dv

2
√
F (α)− F (v)

)2 − log
(1− p

p

)
,∀p ∈ [0, α]. (7.25)

From (7.25), we define

Jα(p) := log(p)− log(1− p) +
( ∫ α

p

dv

2
√
F (α)− F (v)

)2
, (7.26)

I(σ,N) := log
( N√

2πσN0

)
. (7.27)

For any given N , the problem we want to solve amounts at finding couples (α, σ) such that

∀p ∈ [0, α], Jα(p) ≤ I(σ,N). (7.28)

We study the function Jα. First, we note that Jα(p) −−−→
p→0

−∞, Jα(α) = log
(

α
1−α

)
and it is

continuous. Moreover,

J ′α(p) =
1

p(1− p)
− 1√

F (α)− F (p)

∫ α

p

dv

2
√
F (α)− F (v)

,
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and we may compute limp→α J
′
α(p) = 1

α(1−α) −
1

f(α) . Then, we can define

jα := max
p∈[0,α]

Jα(p), j∗ := min
α∈(θc,1]

jα.

Thus there exists α ∈ (θc, 1] such that (7.25) holds if and only if N ≥ N0

√
2πσej

∗
. This gives

Proposition 7.5 (i) with σ+(N) = e−2j∗

2π

(
N
N0

)2
and Proposition 7.5 (ii) with Nm = N0

√
2πσ+e

j∗ .

Remark 7.7. With parameter values from (7.5), the expected number of mosquitoes to release is
huge, since we need to have Nm

N0

√
2πσ

= ej
∗ ' 7 · 1010 with j∗ ' 25, where Nm

N0

√
2πσ

is the quotient

between total mosquitoes to release and wild initial population in an area of typical size
√

2πσ. (This
is approximately the distance diffused in 1 day, equal to 72m in this case). To obtain j∗ numerically,
we used MATLAB function fminbnd. Here, the model has a clear and crucial conclusion: it is very
hard to invade an area with a single, localized release. Therefore, we must model several releases
(whether in time or in space). In the rest of the paper we discuss the case of releases at multiple
locations at same time t = 0.

7.4.2 Equally spaced releases

If we space the k release points regularly in the interval [−Lα, Lα], we want to check that (NEC)
holds for

Xτ =
N

k

k−1∑
i=0

Gσ
(
τ + Lα(−1 +

2i

k − 1
)
)
.

Within a fairly good approximation, this is the case if

∀τ ∈ [−Lα, Lα],
Xτ

Xτ +N0
≥ α.

This holds in particular if

N ≥ Ñ(k, α, σ) =
N0

√
2πσ

2

α

1− α
ke

L2
α

2σ(k−1)2 .

If we fix σ then we may try to find optimal k and α in order to minimize Ñ . Alternatively, we can
do the same, fixing N or N/k (number of mosquitoes per release), and find the optimal number of
releases k.

It is straightforward, keeping in mind that Lα is proportional to
√
σ, that the optimal α here

merely depends on k, not on σ. We may introduce

j∗(k) := min
α∈(θc,1)

α

1− α
eL

2
α/(2σ(k−1)2).

and find the minimal (in view of our sufficient criterion) value Ñ∗ for Ñ :

Lemma 7.2. For k equally spaced releases on the line, there exists an invading release profile with
L1 norm:

Ñ∗(k, σ) = N0

√
2πσ

k

2
j∗(k). (7.29)

However, we want to take into account the uncertainties and variability in the release protocol
and population fixation. Namely, the release points might not be exactly equally spaced, so that
introducing Ñ∗ mosquitoes would only give some probability of success. This is what we want to
quantify now and shall be addressed in Section 7.4.3.

7.4.3 Multiple release locations: towards a geometric problem

When we sum several Gaussians, the profile is neither symmetric (in general), nor monotone.
Therefore the previous analytical argument does not apply. However, at the cost of fixing σ we
are left with a simple geometric problem.

122



CHAPTER 7. UNCERTAINTY QUANTIFICATION 7.4. A SET OF RELEASE PROFILES

First step: fixing σ and bounding by level rather than profile. We assume first that there
is no uncertainty on σ, which is taken as σ0 (ε = 0 in (7.10)). As a further simplification, we shall
not compare the introduction frequency profile to some α-bubble (because it is too hard), but rather
to the very simple upper bound of an α-bubble: the characteristic function τ 7→ α1−Lα≤τ≤Lα .

Moreover, we assume that our k release locations (xi)1≤i≤k are within the compact set [−L,L],
for some L > 0. As above, we write

Gσ(y) :=
1√
2πσ

e−y
2/2σ,

and

G =
N

k

k∑
i=1

Gσ( · − xi).

We define

P (σ,
N

k
, (xi)1≤i≤k, L0, α) := min

[−Lα+L0,Lα+L0]
G (7.30)

Then, the probability of success for the release of N mosquitoes in a total of k different sites
in [−L,L]k, when they all spread according to σ diffusivity, and the initial population density was
N0, is given by:

Pk(N,L) = P
[
∃L0 ∈ R, ∃α ∈ (θc, 1), P (σ,

N

k
, (xi)1≤i≤k, L0, α) ≥ α

1− α
N0

]
. (7.31)

Here, the probability P is taken over all the real k-uples (xl)1≤l≤k such that −L < x1 ≤ · · · ≤ xk <
L, and [−L,L]k is equipped with the uniform measure.

Second step: transformation into a geometric problem. In order to get a more tractable
bound, we make use of the following property:

Proposition 7.6. Let (xi)i ∈ [−L,L]k with x1 ≤ · · · ≤ xk. We define G = N
k

∑k
i=1Gσ( · − xi).

If there is α ∈ (θc, 1) such that

N

k

1√
2πσ

≥ α

1− α
N0

and 1 ≤ l < m ≤ k such that

(i) ∀l ≤ j ≤ m− 1, xj+1 − xj ≤ 2
√

2 log(2)
√
σ,

(ii) xm − xl ≥ 2Lα,

then
G

G +N0
≥ vα

(
· − xm + xl

2

)
.

We notice that the constant 2
√

2 log(2) ' 2.35 is optimal with this property: if two translated

Gaussians centered at x0, x1 are at a distance x1 − x0 = λ
√
σ, with λ > 2

√
2 log(2), then their

sum is smaller at x0+x1

2 than at x0.

Proof. This property relies on the simple computation of the sum of two Gσs, centered at −h and
h (h > 0), is greater than Gσ(0) on [−h, h] as soon as h ≤

√
2 log(2)

√
σ. Figure 7.4 illustrates this

property.
Indeed, considering the sum of two Gaussian Gσ,

ξ(x) =
1√
2πσ

(
e−

(x+h)2

2σ + e−
(x−h)2

2σ

)
= 2e−

h2

2σGσ(x) cosh(
xh

σ
).

Then, recalling that σG′σ(z) = −zGσ(z), we compute

1

2
e
h2

2σ σξ′(x) = −xGσ(x) cosh(
xh

σ
) + hGσ(x) sinh(

xh

σ
)

1

2
e
h2

2σ σ2ξ′′(x) = (h2 + x2 − 1

σ
)Gσ(x) cosh(

xh

σ
)− 2hxGσ(x) sinh(

xh

σ
).
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Figure 7.4: Two Gσ profiles and their sum (in thick line). The level Gσ(0) is the dashed line. On
the left, h =

√
2 log(2)σ. On the right, h >

√
2 log(2)σ.

As a consequence, the sign of ξ′′(x) is that of

γ(x) := h2 + x2 − 2hx tanh(
xh

σ
)− 1

σ
.

We notice that γ(0) = h2 − 1
σ . Hence, ξ has a local maximum (resp. a local minimum) at x = 0 if

h <
√
σ (resp. h >

√
σ). Since ξ(0) = 2e−

h2

2σGσ(0), the maximal h > 0 that ensures ξ(0) ≥ Gσ(0)
is h = h0 :=

√
2 log(2)σ.

Now, we examine the necessary condition ξ′(x) = 0 for a local extremum on (−h, h). It implies

x = h tanh(
xh

σ
).

This is true for x = 0 (and we have seen the condition on h−
√
σ to have a local extremum indeed).

Then, there is a solution x+ > 0 if, and only if, h2

σ > 1, i.e. h >
√
σ. In this case, x+ is unique

(and x− := −x+ is a solution as well).
So, for h = h0 >

√
σ, we know that ξ has a local minimum at x = 0, is smooth, has at most

one local extremum on (0,+∞), and goes to 0 at +∞. Hence, this local extremum exists and is
a maximum. Therefore (and by symmetry), the minimum of ξ on (−h, h) is attained at x = 0 or
x = h. Since h = h0, ξ(h) > ξ(0) = Gσ(0). We deduce that ξ > Gσ(0) on (−h, h).

We may use this property to prove Proposition 7.6. By condition (i) the above lower-bound
holds between xl and xm, and not only between two adjacent locations xj , xj+1. Now, the first
condition implies that Gσ(0) ≥ α

1−αN0. Combining these two facts with xm − xl ≥ 2Lα implies
that

G
G +N0

≥ α,

on [xl, xm] which is an interval of length at least 2Lα. Precisely, for all x ∈ R,

G(x− xm+xl
2 )

G(x− xm+xl
2 ) +N0

≥ α ≥ vα(x− xm + xl
2

).

As a consequence, we may translate the generic inequality (SP) into:

P 1
k (N, (−L,L)) = Pk(N,L) ≥ P

[
∃α ∈ (θc,

1

1 + N0

N k
√

2πσ
),∃1 ≤ l < m ≤ k,

xm − xl ≥ 2Lα and ∀l ≤ j ≤ m− 1, xj+1 − xj ≤ 2
√

2 log(2)
√
σ
]

(7.32)

Then, we define
L∗ := min

θc<α≤ 1

1+
N0
N
k
√

2πσ

Lα,
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and equivalently estimate (7.32) reads

Pk(N,L) ≥ P
[
∃1 ≤ l < m ≤ k, xm − xl ≥ 2L∗ and

max
l≤j≤m−1

(xj+1 − xj) ≤ 2
√

2 log(2)
√
σ
]
. (7.33)

The study of the minimization of Lα with respect to α is discussed further in Appendix.

Remark 7.8. Note that for this estimate, we only consider initial data that are above a charac-
teristic function at level α on an interval of length 2Lα. This is far from being the optimal way to
be above the α-bubble vα.

Remark 7.9. It is easy to check that our estimate yields 0 (no information) as long as k is too
small, namely k

√
2 log(2)

√
σ ≤ L∗. A necessary condition for our estimate not to yield 0 may

read:

k ≥ 1√
2 log(2)

min
θc<α≤1

∫ α

0

dv√
2
(
F (α)− F (v)

) .
Specific discussion for α = θc. By Proposition 7.4, uθc decays exponentially. As a consequence,
no sum of Gσs may be above it. This is why this profile cannot be used in our approach (because
we consider that introduction profiles should be Gaussian).

7.4.4 Analytical computations of the probability of success: recursive
formulae

In order to compute analytically the right-hand-side in (7.33), we may introduce the following
notations:

� Tk(u, v) is the set of ordered k-uples between u and v (u < v ∈ R), the measure of which is

τk(u, v) =
(v − u)k+

k!
.

� Cλk (u, v) ⊆ Tk(u, v) is the subset of k-uples such that y1 = u, yk = v and for all l ∈ J1, k− 1K,
yl+1 − yl ≤ λ. Its measure is denoted γλk (u, v).

� Bλ,R
∗

k (u, v) ⊆ Tk(u, v) is the subset of k-uples such that ∃1 ≤ l < m ≤ k, ym − yl ≥ R∗ and

maxl≤j≤m−1(yj+1 − yj) ≤ λ. We denote βL,R
∗

k (u, v) its measure.

Remark 7.10. Back to problem (7.33), we recover the problem of estimating β with the notations
of Proposition 7.7 through a simple change of variables. We divide all positions (x1, . . . , xk) by√

2σ. Then in the right-hand side of (7.33) we replace 2L∗ by

R∗ := min
α

∫ α

0

dv√
F (α)− F (v)

,

and 2
√

2 log(2)σ by λ := 2
√

log(2). This was done in order to simplify computations. Moreover,
it shows that the success probabilities do not depend on diffusivity. In fact, scaling in σ as we did
merely amounts at choosing a space scale such that σ = 1. Even though probabilities themselves do
not make σ appear, one must keep in mind that the corresponding release protocols (including the
space between release points or the size of the release box) are proportional to

√
σ.

We want to under-estimate the probability of success with k releases in the box [−L,L]. In

view of (SP), it amounts to computing
βλ,R

∗
k (−L,L)

τk(−L,L) . In fact, we get a general recursive formula for

β in the following proposition.

Proposition 7.7. Let k0 := VR
∗

λ W + 1. Then,

βλ,R
∗

k (−L, χ) =

k∑
i=k0

k−i+1∑
j=1

∫ χ−R∗

−L

∫ min(χ,u+(k−1)λ)

u+R∗
γλi (u, v)(

τj−1

(
− L, u− λ

)
− βλ,R

∗

j−1

(
− L, u− λ

))
τk−(i+j−1)

(
v + λ, χ

)
dvdu. (7.34)
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Proof. The idea is simple: we count each “positive initial data”, that is an ordered k-uple (yi)i
such that a subfamily satisfies ym − yl ≥ R∗ and yi+1 − yi ≤ λ between l and m, according to its
leftmost “positive sub-family”, which is then taken of maximal length.

We shall use the index i to denote the length of this maximal family (between k0 and k), and
j its first rank (1 ≤ j ≤ k − i+ 1). Then,

βλ,R
∗

k (−L, χ) =

∫
[−L,χ]k

1{y1≤y2≤···≤yk}1{(y1,...,yk)∈Bλ,R
∗

k (−L,χ)}dy1 . . . dyk. (7.35)

Now, we split:

1{(y1,...,yk)∈Bλ,R
∗

k (−L,χ)} =

k∑
i=k0

k−i+1∑
j=1

1{yi+j−1−yj≥R∗}

j+i−2∏
l=j

1{yl+1−yl≤λ}

1{(y1,...,yj−1)6∈Bλ,R
∗

j−1 (−L,χ)}1{yj−yj−1>λ}1{yi+j−yi+j−1>λ}. (7.36)

This identity requires some explanations. It comes from the partition of B using maximal leftmost
positive sub-family, as described above. Then, the term 1{(y1,...,yj−1)6∈Bλ,R

∗
j−1 (−L,χ)} simply comes

from the definition of B. Since we consider the leftmost positive subfamily, no family on its left
should be positive. Moreover no element on its left can be added, which justifies the 1{yj−yj−1>λ}.
Then, we have in addition that for j > 1 and yj ≤ χ,

1{(y1,...,yj−1)6∈Bλ,R
∗

j−1 (−L,χ)}1{yj−1≤yj}1{yj−yj−1>λ} = 1{(y1,...,yj−1)6∈Bλ,R
∗

j−1 (−L,yj−λ)},

with the obvious convention that B(u, v) = ∅ if v < u.
In addition, for i+ j − 1 < k∫

[−L,χ]k−(i+j−1)

1{yi+j−1≤···≤yk}1{yi+j−yi+j−1>λ}dyi+j . . . dyk

= τk−(i+j−1)(yi+j−1 + λ, χ)

=

(
χ− yi+j−1 − λ

)k−(i+j−1)

+(
k − (i+ j − 1)

)
!

.

Combining these results, and using (7.35) and (7.36) yields

βλ,R
∗

k (−L, χ) =

k∑
i=k0

k−i+1∑
j=1

∫ χ

−L
· · ·
∫ χ

xi+j−2

1{yj+i−1−yj≥R∗}

j+i−2∏
l=j

1{0≤yl+1−yl≤λ}

(
τj−1

(
− L, yj − λ

)
− βλ,R

∗

j−1

(
− L, yj − λ

))
τk−(i+j−1)

(
yi+j−1 + λ, χ

)
dyj . . . dyi+j−1, (7.37)

with conventions τ0 = 1 and β0 = 0, regardless of their arguments.

We assume χ ≥ −L + R∗ (otherwise βλ,R
∗

k (−L, χ) = 0). Using the notation γ we introduced,
Equation (7.37) is simplified again into:

βλ,R
∗

k (−L, χ) =

k∑
i=k0

k−i+1∑
j=1

∫ χ−R∗

−L

∫ min(χ,u+(k−1)λ)

u+R∗
γλi (u, v)(

τj−1

(
− L, u− λ

)
− βλ,R

∗

j−1

(
− L, u− λ

))
τk−(i+j−1)

(
v + λ, χ

)
dvdu,

where u stands for yj and v for yi+j−1. This is our recursive formula (7.34).

Now, we may give an explicit formula for γλi (u, v). We should notice that by definition,

γλi+2(u, v) =

∫ u+λ

u

∫ u1+λ

u1

· · ·
∫ ui−1+λ

ui−1

1v≥ui≥v−λdui . . . du1,
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that is

γλi+2(u, v) =

∫ u+λ

u

γλi+1(u1, v)du1. (7.38)

Hence, we deduce the recursive formula,

Lemma 7.3. For all i, λ, u, v as above,

γλi+2(u, v) = λi +

i+1∑
k=1

(−1)k

i!

(( i

k − 1

)(
v − u− kλ)i+ + (−1)i+1

(
i− 1

k − 1

)(
kλ− (v − u)

)i
+

)
. (7.39)

Proof. Obviously, γλ2 (u, v) = 1v≥u≥v−λ and we deduce from (7.38)

γλ3 (u, v) = λ+
(
v − u− 2λ

)
+
−
(
λ− (v − u)

)
+
−
(
v − u− λ

)
+

Then, using (7.38) again proves (7.39) by induction.

Remark 7.11. For k < 2k0, formula (7.34) simplifies a lot for it is no longer recursive. It enables

us to compute βλ,R
∗

k0
(−L,L).

βλ,R
∗

k0
(−L,L) =

∫ L−R∗

−L

∫ min(L,u+(k0−1)λ)

u+R∗
γλk0

(u, v)dvdu. (7.40)

Then by (7.39) we know γλk0
(u, v). With the change of variables w = v+u, when L > −L+(k0−1)λ,

equation (7.40) becomes

βλ,R
∗

k0
(−L,L) =

∫ L−(k0−1)λ

−L

∫ (k0−1)λ

R∗

(
λk0−2+

k0−1∑
k=1

(−1)k

(k0 − 2)!

((k0 − 2

k − 1

)
(w − kλ)k0−2

+ + (−1)k0−1

(
k0 − 3

k − 1

)
(kλ− w)k0−2

+

))
dwdu

+

∫ L−R∗

L−(k0−1)λ

∫ L−u

R∗
γλk0

(u, u+ w)dwdu. (7.41)

Clearly, the first integral in the right-hand side of (7.41) may be written as(
2L− (k0 − 1)λ

)
f1(λ,R∗),

where f1 does not depend on L. With the change of variables z = L − u, the second term in the
right-hand side of (7.41) becomes

f2(λ,R∗) :=

∫ (k0−1)λ

R∗

∫ z

R∗

(
λk0−2 +

k0−1∑
k=1

(−1)k

(k0 − 2)!

((k0 − 1

k − 1

)
(w − kλ)k0−2

+

+ (−1)k0−1

(
k0 − 3

k − 1

)
(kλ− w)k0−2

+

))
dwdz.

In particular, it appears that it does not depend on L. (Recall that by definition, k0 = VR
∗

λ W + 1).
For χ ∈ (−L+R∗,−L+ (k0 − 1)λ), we can compute similarly

βλ,R
∗

k0
(−L, χ) =

∫ χ−(−L)

R∗

∫ z

R∗
γλk0

(0, w)dwdz,

and notice that our expressions are consistent since

βλ,R
∗

k0
(−L,−L+ (k0 − 1)λ) =

∫ −L+(k0−1)λ−(−L)

R∗

∫ z

R∗
γλk0

(0, w)dwdz = f2(λ,R∗).

All in all, βk0
is expressed as follows:

βλ,R
∗

k0
(−L, χ) =


0 if χ+ L ≤ R∗∫ χ−(−L)

R∗

∫ z

R∗
γλk0

(0, w)dwdz if χ+ L ∈ (R∗, (k0 − 1)λ),(
χ+ L− (k0 − 1)λ)

)
f1 + f2 if χ+ L > (k0 − 1)λ

(7.42)
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(This is an affine function for χ+ L > (k0 − 1)λ, with pent f1(λ,R∗)).
Then, we obtain a bound on the probability of success with k0 (the minimal number of) releases

after dividing by τk0
(−L,L) :

Pk0
(L) ≥

βλ,R
∗

k0

τk0

(−L,L) =
k0!

(2L)k0

(
(2L− (k0 − 1)λ)f1(λ,R∗) + f2(λ,R∗)

)
.

In particular, we see that this underestimation of the success probability is increasing and then
decreasing, and thus reaches a unique maximum at L = L̂.

We find

2L̂ = λ
(
V
R∗

λ
W + 1

)
− k0

k0 − 1

f2(λ,R∗)

f1(λ,R∗)
.

We may note that introducing the non-negative and non-decreasing function

Γλ,R
∗

k (z) :=

∫ z

R∗
γλk (0, w)dw

we get

f1(λ,R∗) = Γλ,R
∗

k0

(
(k0 − 1)λ

)
,

f2(λ,R∗) =

∫ (k0−1)λ

R∗
Γλ,R

∗

k0
(z)dz.

As a consequence, f2 ≤
(
(k0 − 1)λ−R∗

)
f1 and thus

2L̂ ≥ k0

k0 − 1
R∗.

7.5 Numerical results

Now, we present some numerical results we obtained on this set of release profiles. Numerical
simulations confirm the intuition of Proposition 7.2. Our under-estimation is not very bad. Indeed,
as one increases the number of release points (k) in a fixed perimeter, with a fixed number of
mosquitoes per release, then our under-estimation of the probability of success converges to 1.

Figure 7.5 shows the probability profile as a function of the size L of the release box, for 20,
40 and 80 release points. With parameter values from (7.5), R∗ = 10.981, λ = 1.665 and thus
k0 = 8. The curves are obtained by a simple Monte-Carlo method. They lead to the appearance
of an optimal size for the release box (6.3 in this example), that does not seem to depend on the
number of release points between 20 and 80.

However, for small (relatively to k0) numbers of releases, the probabilities are very small. In
the case of 10 release points, the maximal probability we find is about 1.10−5.

Our numerical values are somehow consistent with field experiments: typically, the space be-
tween release points is less than λ

√
2σ, which is about 68m, and the optimal box size is approxi-

mately equal to 6.3×
√

2σ ' 257m, with the values from (7.5).
The factor 2

√
2 log(2) is crucial with this respect. Losing it changes λ from 2

√
log(2) ' 1.665

to 1/
√

2 ' 0.707 and makes k0 (“the minimal theoretical number of releases to make our under-
estimation of the probability of success positive”) increase from 8 to 17. We show in Figure 7.6
the probability profile for 80 releases in this case, to illustrate the loss with this “worse” geometric
estimation. It culminates at around 50% only and is comparable with the green curve (for 40
release points) of Figure 7.5.

7.6 Conclusion and perspectives

We considered spatial aspects of a biological invasion mechanism associated to release programs
and their uncertainty. We validated the framework in the one-dimensional case, and the two-
dimensional case is the natural extension.

Two difficulties must be tackled in higher dimensions. First, the radial-symmetric “α-bubbles”
may still exist, but we no longer have an exact formula like (7.8) for their support. Second, the
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Figure 7.5: Under-estimation βλ,R
∗
(−L,L) of introduction success probability for L ranging from

R∗/2 = 5.49 to 3R∗/2 = 16.47. The seven curves correspond to increasing number of release
points. (From bottom to top: 20 to 80 release points).

geometric problem underlying our estimation gets harder, but not impossible to manage. To deal
with it, we need an analogue of Proposition 7.6 in order to get a lower bound for a sum of Gaussians
in two dimensions.

An interesting feature of the approach we introduced is that it can be extended to cases when
neither sub-solutions nor geometric properties are available. Heuristically, we need first a criterion
to tell us if a given initial data belongs to a “set of interest”. Second, we need to put a probability
measure on the set of “feasible initial data”. Combining these, we compute the probability that
the criterion is satisfied. This probability gives an insight into the role any given aspect of the
release protocol plays.

We used a sufficient condition for invasion, the criterion from Theorem 7.1. However, we proved
that our under-estimation of probability is rather good: in particular, it converges to 1 when the
number k of releases goes to ∞. This fact is the object of Proposition 7.2, holds true in any
dimension, and is supported by numerical simulations in dimension 1.

We have always considered a homogeneous “context of introduction”, so that the stochasticity
would only affect the release process itself. Another natural continuation of this work, trying to
go further into spatial stochasticity for release protocols, is the use of other stochastic parameters,
such as the diffusion process (here it is given by a deterministic diffusivity σ), or the local carrying
capacity. We let this open for further research.

Some other questions remain open. For instance: in one dimension, we considered releases in
[−L,L]. We know that if 2L < L∗ then our condition in the right-hand side of (7.33) is zero.
On the other hand, this right-hand side goes to 0 as L → +∞. This suggests that there exists a
(non-necessarily unique) size L̂ that maximizes this right-hand side. Back to (7.40), we obtained

in Remark 7.11 a lower bound for L̂ in this case:

L̂ ≥ R∗
1 + VR

∗

λ W
VR∗λ W

. (7.43)
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Figure 7.6: Effect of losing the constant 2
√

2 log(2) in Proposition 7.6: under-estimation

βλ,R
∗
(−L,L) of introduction success probability for L ranging from R∗/2 = 5.49 to 3R∗/2 = 16.47,

with 80 release points.

It is a numerical conjecture that the optimal value of L is close to 1
2 (λ + R∗) for any k. For this

particular protocol feature (the optimal size of the release area), our approach already provides an
interesting indication which - to the best of our knowledge - has not been used in previous release
experiments.

As a possible follow-up to this work, one can set up several optimization problems. First, on
a purely theoretical side, how to optimize the threshold functions in Theorem 7.1 with respect to
a cost functional such as the L1 norm (for the total number of released mosquitoes)? Then, if we
fix a cost, how to maximize the under-estimated probability of success with respect to the size of
the release area? Ultimately, how to optimize a release protocol (playing on the probability law of
the release profiles space)?
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Appendices

7.A Uniqueness of the minimal radius

In this appendix we investigate sufficient conditions for the uniqueness of a minimal radius among
the α bubbles we constructed in Section 7.3. More precisely, we establish the number of bubbles
of a given radius (which is typically 2). General results in any dimension on the exact multiplicity
of solutions for such problems (semilinear elliptic Dirichlet problems) have been obtained in [182]
and [183], so in essence the results below are not new and are even contained in the cited articles.
However we emphasize that our proof, limited to dimension 1, uses very simple arguments and
even provides an equivalent formulation of the problem in terms of a single real function h built
from f and F , see formula (7.45) below.

Let f ∈ C2([0, 1],R) be a bistable function in the sense of (7.3) and F (x) =
∫ x

0
f(y)dy its

antiderivative as introduced in (7.4).
We make the following assumptions, with θc, α1 defined below:

f ′(0) < 0, f ′(θ) > 0, f ′(1) < 0, (B0)

F (1) > 0, (B1)

∀x ∈ [0, 1],
(
f ′(x) + xf ′′(x)

)
f(x) ≤ x

(
f ′(x)

)2
, (B2)

∀1 ≥ α > max(θc, α1), F (α)
(
f(α) + αf ′(α)

)
≤ α

(
f(α)

)2
. (B3)

Under assumption (B1), there exists a unique θc ∈ (θ, 1) such that F (θc) = 0. We introduce

g(x) := xf ′(x)/f(x). (7.44)

By simple computation we have

Lemma 7.4. Under assumption (B0), (B2), g is decreasing on [0, θ) and on (θ, 1]. In addition,
g(0) = 1, g(θ−) = −∞, g(θ+) = +∞ and g(1) = −∞. As a consequence, there exists a unique
α1 ∈ (θ, 1) such that

g(α1) = 1.

Now, we recall the α-bubble radius, as introduced before, for α ∈ (θc, 1]:

Lα =
√
σ

∫ α

0

dv√
2
(
F (α)− F (v)

) .
Proposition 7.8. Under conditions (B0), (B1), the bistable (in the sense of (7.3)) function f is
such that Lα reaches its minimum on (θc, 1] (which is well-defined) at points in (θc, 1).

If in addition (B2), (B3) hold, then there exists a unique α0 ∈ (θc, 1) such that

Lα0
= min

α
Lα,

and for all L > Lα0 , there exists unique α±(L) with α−(L) ∈ (θc, α0) and α+(L) ∈ (α0, 1) such
that Lα±(L) = L.

Remark 7.12. Although assumptions (B0) and (B1) are very general, (B2) and (B3) are debat-
able. They yield a simple sufficient condition for uniqueness of minimum (which is the object of
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Proposition 7.8), but are by no means necessary to get it. We expect that they can be refined and
improved in order to get uniqueness for a wider class of bistable functions.

Using f defined by (7.2) with values from (7.5), we verified numerically that (B2)-(B3) are
satisfied. Indeed, using MATLAB we found that x(f ′(x))2 − f(x)(f ′(x) + xf ′′(x)) and x(f(x))2 −
F (x)(f(x) + xf ′(x)) are increasing on [0, 1] and [α1, 1] (with max(θc, α1) = α1), respectively. The
former is equal to 0 at 0, and the latter is approximately equal to 2 · 10−4 > 0 at α1 in this case,
hence the two assumptions hold.

Generally, we can check that (B2)-(B3) hold for the classical bistable function f(x) = x(1 −
x)(x− θ) with θ ∈ (0, 1/2). We first compute

f ′(x) + xf ′′(x) = −9x2 + 4(1 + θ)x− θ.

Then (B2) is equivalent to

(9x2 − 4(1 + θ)x+ θ)x(x2 − (1 + θ)x+ θ) ≤ x(3x2 − 2(1 + θ)x+ θ)2

⇐⇒
−13(1 + θ)x2 + 10θx− 5θ(1 + θ) ≤ −12(1 + θ)x2 + 6θx− 4θ(1 + θ)

⇐⇒
0 ≤ (1 + θ)x2 − 4θx+ θ(1 + θ).

The discriminant of this second-order polynomial is −4θ(1 − θ)2 < 0, so this inequality holds for
any θ ∈ (0, 1). Then a straightforard computation shows that α1 = 1+θ

2 .
Now, we want to check (B3). To do so we compute

F (x) = −1

4
x4 +

1 + θ

3
x3 − θ

2
x2.

Then (B3) is equivalent to

x2(
1

4
x2 − 1 + θ

3
x+

θ

2
)(4x2 − 3(1 + θ)x+ 2θ) ≤ x3(x2 − (1 + θ)x+ θ)2

⇐⇒

x2(1 + θ)(2− 3

4
− 4

3
) +

θ

2
x+ θ(1 + θ)(2− 3

2
− 2

3
) ≤ 0.

Then we recall that 2− 3
4 −

4
3 = − 1

12 < 0, so we just need to show that the discriminant is negative.
This discriminant is equal to

θ2

4
− θ(1 + θ)2

9
=
θ

4

(
θ − 4

9
(1 + θ)2

)
< 0.

Hence simplest bistable functions of the form f(x) = x(1− x)(x− θ) satisfy our assumptions (B2)
and (B3), and in particular the set of such functions is non-empty.

Proof. Without loss of generality we assume
√
σ =
√

2 to get rid of the constant. From (7.8), we
deduce the equivalent expression:

Lα =

∫ α

0

( 1√
F (α)− F (v)

− 1√
f(α)(α− v)

)
dv +

∫ α

0

dv√
f(α)(α− v)

=
1√
f(α)

(∫ α

0

( √
f(α)√

F (α)− F (v)
− 1√

α− v
)
dv + 2

√
α
)

Hence
d

dα
Lα =

1√
αf(α)

+
1

2
√
f(α)

∫ α

0

( 1

(α− v)3/2
−
( f(α)

F (α)− F (v)

)3/2)
dv,

which is a continuous function from (θc, 1) to R. It is easily seen that d
dαLα goes to −∞ as

α → θ+
c , and to +∞ as α → 1− (recalling f(1) = 0). Therefore, we know that Lα reaches its

minimum (which is well-defined) at points strictly in the interior of (θc, 1). This is the first point
of Proposition 7.8.
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Then, d
dαLα = 0 if and only if

1√
α

+
1

2

∫ α

0

( 1

(α− v)3/2
−
( f(α)

F (α)− F (v)

)3/2)
dv = 0.

For α ∈ (θc, 1), we introduce

h(α) :=

∫ 1

0

( 1

(1− w)3/2
−
( αf(α)

F (α)− F (αw)

)3/2)
dw. (7.45)

Then d
dαLα = 0 if and only if h(α) = −2. In addition, h(θc) = −∞ and h(1) = +∞ are

well-defined by continuity.
We compute

h′(α) = −3

2

∫ 1

0

(
αf(α)

)1/2(
F (α)− F (αw)

)5/2((f(α) + αf ′(α)
)(
F (α)− F (αw)

)
− αf(α)

(
f(α)− wf(αw)

))
dw,

and introduce

z(α,w) :=
(
f(α) + αf ′(α)

)(
F (α)− F (αw)

)
− αf(α)

(
f(α)− wf(αw)

)
.

Now, we are going to prove that under conditions (B2), (B3), for all α ∈ (θc, 1], w ∈ [0, 1],

z(α,w) ≤ 0,

with strict inequality almost everywhere. First, we notice that z(α, 1) = 0 and

z(α, 0) = F (α)
(
f(α) + αf ′(α)

)
− αf(α)2.

Then we compute

∂wz = −αf(αw)
(
f(α) + αf ′(α)

)
+ αf(α)f(αw) + α2wf(α)f ′(αw)

= α2wf(α)f ′(αw)− α2f(αw)f ′(α).

Now, denoting g(x) = xf ′(x)/f(x), we get

∂wz = αf(αw)f(α)
(
g(αw)− g(α)

)
. (7.46)

We are going to make use of the assumptions on f and equation (7.46) to prove that z ≤ 0.
Recall that there exists a unique α1 ∈ (θ, 1) such that g(α1) = 1. If α ≤ α1, then for all

w ∈ [0, α/θ), g(αw) ≤ g(α) while for all w ∈ (α/θ, 1], g(αw) ≥ g(α) (these facts are stated in
Lemma 7.4).

Hence w 7→ z(α,w) is increasing on [0, 1]. Since z(α, 1) = 0, it implies that z ≤ 0.
Now, if α > α1, there exists a unique β(α) ∈ (0, θ) such that g(β(α)) = g(α). In this case, if

w ∈ [0, α/β(α)] ∪ (θ, 1], g(αw) ≥ g(α). If w ∈ (α/β(α), θ), then g(αw) < g(α). Hence, ∂wz ≤ 0
on [0, β(α)/α] and ∂wz ≥ 0 on [β(α)/α, 1]. It implies that z ≤ 0 if, and only if, z(α, 0) ≤ 0 for all
α > α1. This is assumption (B3).

All in all, we proved that z ≤ 0 for all α,w. Hence h′(α) > 0, and there exists a unique
α0 ∈ (θc, 1) such that h(α0) = −2.

We conclude that Lα is decreasing on (θc, α0) and increasing on (α0, 1]. Hence α0 is the unique
minimum point of Lα, and the uniqueness of α±(L) follows.

133





Part III

Temporal models

135





Chapter 8

Oscillatory regimes in a simplified
model of hatching enhancement by
larvae

– Ce serait une erreur de jugement, dont je ne te crois pas capable,
que de donner à un fait accidentel et, si attristant soit-il, secondaire
la valeur d’un événement révélateur, lui remontra le chancelier.
– Un fait peut être terriblement exemplaire, voire symptomatique -
au reste s’agit-il d’un cas unique ? -, et je crains bien que celui-ci
n’apparaisse tel [...]

Jacques Abeille, Le Veilleur du jour.

This chapter is a joint work with Laetitia Dufour, Nicolas Vauchelet, Luis Almeida, Benôıt
Perthame and Daniel A.M. Villela. It originated in stimulating discussions with Claudia T. Codeço
and Daniel A.M. Villela when they were visiting LJLL in June 2015, and the Hopf bifurcation part
was investigated as the main topic for the master’s thesis of Laetitia Dufour (March-July 2016).
This work was submitted to a journal in January 2018.

Abstract. Understanding mosquitoes life cycle is of great interest presently because of the in-
creasing impact of vector borne diseases in several countries. There is evidence of oscillations in
mosquito populations independent of seasonality, still unexplained, based on observations both in
laboratories and in nature. We propose a simple mathematical model of egg hatching enhancement
by larvae which produces such oscillations that conveys a possible explanation. We propose both
a theoretical analysis, based on slow-fast dynamics and Hopf bifurcation, and numerical investiga-
tions in order to shed some light on the mechanisms at work in this model.

Introduction

Today numerous areas of the world are severely affected by mosquito-borne viral diseases, with
notable examples including dengue, chikungunya and Zika (see [32]). Scientists are hard at work
to find new and efficient ways to mitigate the impact of, or even eradicate these arboviral diseases,
and especially target vector control.

A beneficial implementation of any of the vector control methods requires a good understanding
of the local vector population’s bio-ecology, and a reliable monitoring of its dynamics. To achieve
better knowledge, this monitoring needs not only be demographic (using trap counts), but can
also use genetic data - for the example of Wolbachia see [117] and [240]. However, studies in Rio
de Janeiro throughout the past decade have shown that monitoring urban populations of Aedes
aegypti is a difficult task (see [119], [75], [229]), largely because of environmental variations (spatial
heterogeneity, seasonality, etc.). A first - to the best of our knowledge - systematic comparison
of two complex models of Aedes aegypti population dynamics, relevant for a control program, was
done recently in [146]. Another application of proper modeling of mosquito’s life-cycle is the risk
estimation for disease emergence (see [97]).
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We believe that the intrinsic life cycle of Aedes aegpyti may still be improperly modeled, and
effort should be put in the direction of integrating several key features in the models. Among
these features, we have in mind the transitions between the stages (egg, larva, pupa, adult) or even
within these stages (larval instars, etc.) because in theory, any of these transitions (ovipositing
behavior, hatching, pupation, mating, etc.) can give rise to nonlinearity. Nonlinearities ought to
be taken into account when using collected data, so that they do not blur the picture we get of
the actual population’s dynamics. In addition, synchronizing or de-synchronizing effects, either in
time or space, are possible outputs of these nonlinearities, and can result in variations in crucial
traits of the mosquito populations, such as vector capacity (see [130], [24])

We focus exclusively in this work on one single aspect of the evolution of the mosquito popula-
tion, setting the hypothesis that the larval density in breeding sites directly impacts the hatching
rate. Previous works on hatching and larvae dynamics include [17], [16], where stochastic models
with food dynamics were used. However, to the best of our knowledge, no mathematical work has
been published on the very topic of hatching enhancement through larval density since the exper-
imental findings of [151]. Observations on this phenomenon are uneasy to obtain in the field but
can be assessed in the lab (see [78]). Further research in this field could benefit from mathematical
modeling tools able to take it into account and this may help monitoring the dynamics of mosquito
populations.

We develop a mathematical model of the dynamics of mosquito population, with the require-
ments that this model be sufficiently generic to match experimental observations across various
conditions and sufficiently simple so that it is possible to handle it theoretically and interpret it.
Therefore we choose to develop a deterministic model based on a system of ordinary differential
equations, as was done, for example, in [137]. Our simplistic model involves the positive influence
of larvae on the system, acting on hatching rate. We show that this feature can explain oscillations.

We draw a general picture of the system’s properties in Section 8.2, and justify rigorously the
use of a two-population model as a further simplification for the identification of the qualitative
properties induced by hatching feedback. Then we focus on two parameter regimes of particular
interest. Firstly (Section 8.3) when the quantity of eggs is large compared to the quantity of
larvae, oscillations can appear and we are faced to a slow-fast oscillatory regime giving rise to
oscillation profiles comparable to those of the FitzHugh-Nagumo system (Theorem 8.1). We can
compute the amplitude of the oscillations in this case, where they are typically large, and also their
period. Secondly (Section 8.4), we show that our model presents a Hopf bifurcation at any positive
equilibrium of the system, assuming the quantity of larvae promotes hatching. The bifurcation
occurs as the feedback becomes stronger (Theorem 8.2). In this case we can compute the period of
the oscillations at the bifurcation point. We provide numerical results for the system parametrized
(roughly) for a tropical area such as Rio de Janeiro, showing that the range of possible oscillations
is wide.

8.1 Models and their reduction

The life cycle of a mosquito (male and female) consists of two main stages: the aquatic stage (egg,
larva, pupa), and the adult stage. We adopt a population biology point of view, which means that
we describe the mosquitoes life-cycle thanks to a system of ordinary differential equations. For the
purpose of studying the impact of larval density on hatching, we introduce the number densities
of each population: A(t) (adults), E(t) (eggs), L(t) (larvae) and P (t) (pupae).

In a compartmental model, one can suppose the following type of dynamics

d

dt
E = βEA− E

(
H(E,L) + δE

)
,

d

dt
L = EH(E,L)− L

(
φ(L) + δL + τL

)
,

d

dt
P = τLL− δPP − τPP,

d

dt
A = τPP − δAA.

(S4)

We interpret the parameters as follows: βE > 0 is the intrinsic oviposition rate; δE , δL, δP , δA >
0 are the death rates for eggs, larvae, pupae and adults, respectively; τL, τP > 0 are the transition
rates from larvae to pupae and pupae to adults, respectively ; φ tunes an extra-death term due to
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intra-specific competition (this term is non-linear and we assume that it depends only on the larval
density); finally, H(E,L) is the hatching rate, which may in general depend on larval density L
and on egg density E, neglecting a possible effect of pupae.

In order to reduce (S4) to a simpler model we suppose pupa population at equilibrium. This
boils down to assuming that the time dynamics for pupae is fast compared to the other compart-

ments and thus P =
τL

δP + τP
L.

To justify this approximation more rigorously, we assume τP , δP = O(1/ε) (quantifying the
“fast dynamics” for pupae) and define τP = ετP , δP = εδP . We introduce P = εM and then we
find the following equations on M and A (those on E and L are untouched)

ε
dM

dt
= τLL− εM(τP + δP ),

dA

dt
= ετPM − δAA.

This method follows the classical justification of Michaelis-Menten laws (see [175], [187]). We end
up with 

ε
dM

dt
= τLL−M(τP + δP ),

dA

dt
= τPM − δAA,

and in the limit ε→ 0, we recover our claim under the form M = τL
τP+δP

L.

This simplification enables us to reduce the model to dimension 3. From now on we also assume
H(E,L) = h(L) and φ(L) = cL in order to obtain the simplified system

d

dt
E = βEA− δEE − h(L)E,

d

dt
L = h(L)E − δLL− cL2 − τLL,

d

dt
A =

τP τL
δP + τP

L− δAA.

(S3)

We can proceed to a further reduction by supposing adult population at equilibrium. This
boils down to assuming that the time dynamics for adult mosquitoes is fast compared to the other
compartments. Exactly as above with the pupae, in the approximation when δA and βE are large
(and A itself is small), it makes sense to set in this system, at first order, A = τP τL

(δP+τP )δA
L.

Finally, system (S4) reduces to the following system in dimension 2:
d

dt
E = bEL− dEE − h(L)E,

d

dt
L = h(L)E − dLL− cL2,

(8.1)

where bE = βE
τP τL

(δP+τP )δA
> 0, dE = δE > 0 and dL = δL + τL > 0.

We perform this model reduction because it is sufficient to take into account the larval effect.
Indeed, we show and quantify how the larval density-dependent hatching rate effectively generates
oscillations, without any other source of instability (like time-delay, temperature variations or other
environment-related effects). However, for future practical applications, further studies including
the use of a more biologically realistic model will be mandatory.

According to experimental data (results from [78]) and mainly guided by a biological intuition
we assume the hatching undergoes saturation for large values of L:

h ∈ C1([0,∞)), h > 0, max
L

h(L) =: h0 < +∞. (8.2)

For later purposes (mainly to rule out population extinction) we also assume

bE > dL + dE , (8.3)

dEdL < h(0)(bE − dL). (8.4)
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For several mosquito species, it is actually possible to identify the biological parameters τL,
δA, δE , δL and the adult density at equilibrium on the field (i.e A such that d

dtA = 0). From the

formula L = A δA
τL

, we deduce larvae density at equilibrium on the field (this density is called L
throughout this paper).

We warn the reader about what we call “equilibrium density on the field” and about parameter
values. We do not claim they can precisely reproduce population variations as observed in field
experiments. We simply use rough estimation of their orders of magnitude so as to prove the
concept of population oscillations due to density-dependent hatching rate. See paragraph 8.2.2 for
additional comments.

This warning made, from now on we consider that parameters bE , dE , dL, adults and larvae
density at equilibrium on the field are known; the competition parameter c and the hatching
function h are unknown. The known parameters are set at a given place and temperature (see
[229], [238]) and we work with a fixed temperature, so the previous biological parameters are fixed
and time-independent.

Our general goal is thus to assert the possible range of remaining parameters c and h(L)
depending on the qualitative properties of solutions.

8.2 Study of the reduced model

8.2.1 Basic properties, equilibria and their stability

With the assumption (8.2) we know that solutions remain non-negative. Furthermore, the trivial
equilibrium (0, 0) is a steady state of (8.1) and all the other steady states (E,L) are determined
by a non-linear relation on L 

E =
bEL

dE + h(L)
,

cL = bE − dL −
dEbE

dE + h(L)
.

(8.5)

We observe that solutions of (8.5) are positive if and only if h(L) > dEdL
bE−dL . In addition:

Lemma 8.1. Assume (8.2) and (8.3) hold. Then there is a constant K > 0 such that for all
non-negative t, L(t) + E(t) ≤ K. Moreover, there exists at least one positive steady state of (8.1)
if and only if

min
x≥0

(
cx+

dEbE
dE + h(x)

)
≤ bE − dL. (8.6)

Furthermore, all steady states (E,L) 6= (0, 0) satisfy 0 < cL < bE − dL − dEbE
dE+h0

.

For the first point, we do not use any property of h, but merely the fact that cL2/L → +∞
as L → +∞. Note that with estimates on h, more restrictive properties can be obtained, in the
sense that one could construct strictly smaller positively stable and attractive sets.

Proof. We notice that

d

dt

(
E + L

)
= bEL− dEE − dLL− cL2 ≤ −dE(E + L) + UM ,

where UM := (bE+dE−dL)2

4c is the maximum of L 7→ (bE +dE−dL)L−cL2. Consequently the claim
holds with K = UM/dE .

Let

f(x) = cx+
dEbE

dE + h(x)
− (bE − dL).

Then L defines a steady state of (8.1) if and only if f(L) = 0, by (8.5).
Continuity of f yields the conclusion since h0 = maxh.

From now on we always assume that (8.6) holds, so that there exists at least one positive steady
state of (8.1). Then we analyze the stability of those steady states.
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Lemma 8.2. The steady state (0, 0) is unstable (locally linearly) if and only if (8.4) holds.
A non-trivial steady state (E,L) of (8.1) is unstable (locally linearly) if and only if either

h′(L)E − dL − 2cL− dE − h(L) > 0, (8.7)

or
cdEL− dEh′(L)E + cLh(L) < 0 and h′(L)E − dL − 2cL− dE − h(L) ≤ 0. (8.8)

Proof. We divide the proof into three steps.
Firstly we linearize system (8.1) around a steady state (E,L). Setting E = E + e + . . . and

L = L+ `+ . . ., we find 
d

dt
e = bE`− dEe− h(L)e− h′(L)E`,

d

dt
` = h(L)e+ h′(L)E`− dL`− 2cL`.

The eigenvalues λ of the above linear system are given by the determinant∣∣∣∣∣∣
−dE − h(L)− λ bE − h′(L)E

h(L) h′(L)E − dL − 2cL− λ

∣∣∣∣∣∣ = 0.

After straightforward computations, we obtain:

λ2−λ
(
h′(L)E−dL−2cL−dE−h(L)

)
+dE

(
dL+2cL−h′(L)E

)
+h(L)

(
dL+2cL−bE

)
= 0. (8.9)

Secondly we look at the trivial steady-state. Taking E = L = 0 in equation (8.9), we obtain:

P (λ) := λ2 + λ(dL + dE + h(0)) + dEdL + h(0)(dL − bE) = 0. (8.10)

We are looking for the condition such that (0, 0) is linearly unstable (we are interested in the
conditions when the mosquito population does not tend to zero in nature). In other words, we
expect that the polynomial P has a root with positive real part. Since the first order coefficient is
positive we end up with condition (8.4) and the first point of the lemma is proved.

Finally we consider non-trivial steady states. We rewrite (8.9) as

λ2 − tr(A)λ+ det(A) = 0,

where A is the Jacobian matrix of the linearized system (8.1). Using (8.5) we find

dE
(
dL + 2cL− h′(L)E

)
+ h(L)

(
dL + 2cL− bE

)
= cdEL− dEh′(L)E + cLh(L),

and thus  tr(A) = h′(L)E − dL − 2cL− dE − h(L),

det(A) = cdEL− dEh′(L)E + cLh(L).
(8.11)

The discriminant ∆ of this polynomial is ∆ =
(
tr(A)

)2− 4 det(A) and the steady state is unstable
if and only if there exists a root with positive real part.

There are two cases: If ∆ < 0 then the real part of the roots is tr(A)
2 . The steady state is

unstable if and only if tr(A) > 0.

If ∆ ≥ 0 then the bigger root is tr(A)+
√

∆
2 . Hence the steady state is unstable if and only if

tr(A) > −
√

∆. This is true if and only if either tr(A) > 0 or if det(A) < 0 and tr(A) ≤ 0.

Remark 8.1. There is a link with the basic offspring number Q0 (defined in [66]). This dimen-
sionless number is the average number of offspring generated by a single fertilized mosquito: from

the method in [225], we can compute Q0 =

√
bEh(0)

dL(dE + h(0))
.

We remark that the first statement in Lemma 8.2 boils down to the classical property: trivial
equilibrium point is unstable if and only if Q0 > 1.
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Remark 8.2. As in nature we can observe oscillations of eggs and larvae density [119], we pay
attention in this work to oscillations around the positive steady states described in Lemma 8.2.
We show in Section 8.4 that these solutions exhibit oscillations, by applying the Hopf bifurcation
theorem. This behavior occurs only if the non-trivial steady state is unstable.

For the sake of conciseness we define the following functions:
T (k) =

1

L

(
2k +

k + dE
bE

(k + dE − dL)
)
,

D(k) =
1

L

k + dE
bEdE

(
k(bE − dL)− dEdL

)
.

(8.12)

We can rephrase Lemma 8.2 into: Let (k, k′) = (h(L), h′(L)) at some equilibrium L. The state
(E,L) is unstable if and only if either k′ > T (k) or T (k) ≥ k′ > D(k). We define

k± :=
dE(bE + 2dE + dL)±

√
4d3
E(bE − dE − dL) + d2

E(bE + 2dE + dL)2

2(bE − dE − dL)
. (8.13)

Lemma 8.3. Assume (8.6) holds. If k > k+ then T (k) < D(k), and if k ∈ (0, k+) then T (k) >
D(k).

Proof. We are looking for the k > 0 such that T (k) > D(k), that is also written from (8.12)

k2(bE − dE − dL)− kdE(bE + 2dE + dL)− d3
E < 0.

Recalling that bE > dE + dL by (8.6), the discriminant is:

∆ = d2
E(bE + 2dE + dL)2 + 4d3

E(bE − dE − dL) > 0.

The roots are exactly k±, so the polynomial is negative when k ∈ (k−, k+).
We note that k− < 0, so T (k) < D(k) if and only if k > k+, and T (k) > D(k) if and only if

k ∈ (k−, k+). Since k > 0, this is equivalent to k ∈ (0, k+).

Collecting our results on the equilibria we can state

Proposition 8.1. Assume (8.6) holds, and let (E,L) be a positive steady state of (8.1). Then

k+ >
dEdL
bE − dL

and necessarily h(L) >
dEdL
bE − dL

.

If h(L) > k+, then (E,L) is unstable if and only if h′(L) > T
(
h(L)

)
. If dEdL

bE−dL < h(L) < k+,

then it is unstable if and only if h′(L) > D
(
h(L)

)
.

Finally, the eigenvalues of the linearized of (8.1) at (E,L) are complex conjugate and pure
imaginary if and only if h(L) > k+ and h′(L) = T

(
h(L)

)
.

Proof. This is a direct consequence of the previous calculations, except for

k+ =
dE(bE + 2dE + dL) +

√
4d3
E(bE − dE − dL) + d2

E(bE + 2dE + dL)2

2(bE − dE − dL)
>

dEdL
bE − dL

. (8.14)

Inequality (8.14) is equivalent to

bE − dL
bE − dL − dE

(
bE + dL + 2dE +

√
(bE + 2dE + dL)2 + 4dE(bE − dE − dL)

)
> 2dL.

This inequality holds because bE > dL (thanks to (8.3)). Indeed,

bE − dL
bE − dL − dE

(
bE + dL + 2dE +

√
(bE + 2dE + dL)2 + 4dE(bE − dE − dL)

)
>
(
bE + dL + 2dE +

√
(bE + 2dE + dL)2 + 4dE(bE − dE − dL)

)
> bE + dL > 2dL.

Then, setting k = h(L), k′ = h′(L) and using the notations (8.11), the eigenvalues of the
linearized operator are roots of the polynomial

P (λ) = λ2 − λtr(A) + det(A).

Hence the roots are pure imaginary if and only if tr(A) = 0 and det(A) > 0. From the definition
of T,D in (8.12), tr(A) = 0 if and only if k′ = T (k). As det(A) > 0 if and only if k′ < D(k), by
Lemma 8.3 this holds whenever k > k+.
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8.2.2 Discussion on the nonlinearities and the equilibrium values

We discuss in this paragraph the nonlinearities of system (8.1), and the role they play.
First we justify the use of a competition term. Solutions of (8.1) are bounded (Lemma 8.1), but

this holds only thanks to the nonlinear competition term −cL2 in the equation describing the larvae
dynamics. More generally, any competition term φ(L), as in Section 8.1 such that φ(L)→ +∞ as
L → +∞ yields the same result. However, in the absence of such a competition, a priori bound
on the solutions cannot be obtained, and no phenomenon keeps the population finite. For Aedes
mosquitoes, the amount of available food in the breeding sites is an actual resource limitation that
can trigger massive death of larvae if the amount of food per larva drops down too low (see [16]).
Therefore, we choose the simplest (i.e. quadratic) competition term to represent this competition
for resources, and this ensures mathematically that solutions remain bounded.

Still, the competition parameter c is extremely hard to assess from experimental data, and
the values we use in this work should be handled with care. Usually, we fix a value for a positive
equilibrium L (which corresponds to choosing a type of breeding site). Then, to each value k = h(L)
corresponds a non-necessarily unique c(k) that makes L an equilibrium of (8.1). We treat k as
a free parameter in this study. It has been observed that the hatching rate indeed is extremely
dispersed (see for instance the experimental results of [151]), depending not only on the mosquito
population and the environmental conditions but also on the egg batches themselves. In future
works expanding on the simplest oscillatory behavior we describe here, this variability in the actual
value of k should be taken into account if the model outputs are to be linked with experimental
data.

Second, we discuss the hatching rate function h, which is crucial to our study. From now on,
we require h to be increasing. Indeed, Proposition 8.1 shows that a steady state is always stable
if h is decreasing. Hence only an increasing h can produce stable oscillations. This mathematical
assumption is supported by a simple biological hypothesis: larvae promote hatching.

An interesting feature of this intuition is that it can be subsequently extended to higher-
dimensional systems such as (S4). In other words, it is not an artifact produced by considering
only a 2-dimensional system but a robust qualitative property for these systems.

Indeed, for (S4) the Jacobian matrix at any point X = (E,L, P,A) reads

J(X) =


−δE − h(L) −Eh′(L) 0 βE

h(L) h′(L)E − δL − τL − 2cL 0 0
0 τL −δP − τP 0
0 0 τP −δA

 ,

hence if h′(L) < 0 then J(X) is a Metzler matrix (it has positive extra-diagonal coefficients): the
system is cooperative in this case. Its characteristic polynomial may be written

P (λ) = (λ+A1)(λ+A2)(λ2 +A3λ+A4)− C,

where Ai, C > 0. Being a Metzler matrix, J has a real dominant eigenvalue. This matrix is stable if
and only if this eigenvalue is negative; in other words, if and only if P (0) > 0 (since P is increasing
on (0,+∞)). This condition reads

δA(δP + τP )
(
(δE + h(L))(−h′(L)E + τL + δL + 2cL) + Eh(L)h′(L)

)
> βEτLτPh(L).

At equilibrium,

δL + τL + cL =
h(L)

h(L) + δE

βEτLτP
δA(δP + τP )

,

therefore P (0) > 0 and thus any equilibrium where h′ < 0 must be (locally) stable, in system (S4)
as well as in system (8.1). Adding “neutral” compartments keeps this property true and we can
be confident in concluding that only a positive effect of larvae on hatching rate can destabilize the
equilibrium and lead to (local) oscillations.

Some preliminary experiments ran by one of the authors seem to indicate that the larval impact
on hatching may depend on larval development stage. Taking this into account would require to
make the model more complex. For instance, to model hatching impact discrepancies between first
instar (positive) and last instar larvae (negative) we could add at least one compartment in (8.1).
However, we focus here on the simplest oscillations-producing mechanism. The hatching function
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being increasing and bounded, it is reasonable to assume that h is S-shaped and smooth, which is
what we use in the rest of the paper.

Third, having discussed the two nonlinearities in (8.1), we are left with an important question
about steady states: how to ensure that L is actually unique? The second equation in (8.5) is also
written

h(L) = dE
dL + cL

bE − dL − cL
. (8.15)

The number of positive steady states depends strongly on function h. Being a S-shaped function
does not guarantee uniqueness. Therefore, it should be checked case by case except for some simple
function families. We illustrate this fact in next subsection with Hill functions. Still, we notice

that κ : L 7→ dE
dL + cL

bE − dL − cL
is convex on (0, (bE −dL)/c) and goes to +∞ at (bE −dL)/c. So for

instance uniqueness is guaranteed if (8.4) holds and either, for all L ∈ (0, (bE − dL)/c), h′′(L) < 0
or

h′(L) < κ′(L) =
dEcbE

(bE − dL − cL)2
.

8.2.3 Observations on a class of hatching functions

Among the many possible choices for a S-shaped hatching function h( · ), we numerically and
theoretically explore the typical family of Hill functions. We assume the following form

h(L) = hm + a
Lp

λp + Lp
, hm >

dEdL
bE − dL

, (8.16)

with the parameters a, λ, p > 0.
Steady states (E,L) of (8.1) are such that L is a solution of Q(L) = 0, where

Q(L) = −cLp+1
(
hm + a+ dE

)
+ Lp

(
(hm + a)(bE − dL)− dEdL

)
− cλpL(hm + dE) + λp

(
hm(bE − dL)− dEdL

)
.

The following lemma is a straightforward consequence of this computation

Lemma 8.4. When p = 1 and h is of type (8.16), there is a unique steady state of (8.1).

When p = 1 and h is of type (8.16), then h′′ < 0, a property that is lost when p > 1. Therefore,
to simplify the choice of the parameters, now we assume

dE = 0. (8.17)

Then, condition (8.6) is fulfilled, the steady state of (8.1) is unique and is given by

L =
bE − dL

c
, E =

bEL

h(L)
.

Proposition 8.2. Let h be of type (8.16) and assume condition (8.17) holds. Then (8.1) has a
unique positive steady state (E,L) and its linearization has eigenvalues with negative real parts if
and only if

k >
a

1 + αp
>
αp + 1

pαp
k
(
2 +

k − dL
bE

)
, α =

λ

L
, k = h(L). (8.18)

Proof. Necessarily k > k+ = 0 (where k+ is defined in (8.13)). Hence the eigenvalues of the
linearized system at (E,L) are in C\R and the condition for instability of the steady state from
Proposition 8.1 simply reads h′(L) > T (h(L)), where T is defined in (8.12). Then we compute

h(L) = hm +
a

1 + αp
, h′(L) =

apαp

L
(
αp + 1

)2 .
The right-hand side inequality in (8.18) comes from h′(L) > T (k) and the left-hand side from
hm > 0.
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If all parameters but α and a are fixed, then condition (8.18) can be fulfilled if and only if

k < (p− 2)bE + dL. (8.19)

Indeed, we need to find α > 0 such that 2 + k−dL
bE

< p αp

1+αp . Note that in particular, this is

impossible when p ≤ 1 (since cL = bE − dL > 0 by hypothesis).
We refer to Appendix 8.A for numerical results showing consistent oscillations under condi-

tion (8.19), for 2- and 3-dimensional systems (8.1) and (S3).

8.3 The slow-fast oscillatory regime

In order to understand periodic solutions to (8.1), we examine a possible regime with a small
parameter and then prove the oscillation result (Theorem 8.1). We have in mind here the analysis
of the FitzHugh-Nagumo system. Numerical illustration, amplitude and period computation in
some particular cases can be found in Appendix 8.B.

8.3.1 Parameter regime and main result

Here, we assume that the egg stock is large, and its dynamics slow compared with the larvae stock.
This identifies a small parameter leading to a slow-fast system.

More precisely, let ε > 0, η : R+ → R+, and assume at first that all parameters (except for h)
may depend on ε. We transform the variables (E,L) from (8.1) into vε := εE and uε := 1

η(ε)L.

These new variables satisfy v̇ε = εη(ε)bEuε −
(
dE + h(η(ε)uε)

)
vε =: fε(uε, vε),

εu̇ε = 1
η(ε)h(η(ε)uε)vε − dLεuε − cη(ε)εu2

ε =: gε(uε, vε).
(8.20)

We assume that parameters scale in such a way that the following limits exist, as ε→ 0: fε
L∞−−→ f, gε

L∞−−→ g,

uε(t = 0) = u0
ε −→ u0, vε(t = 0) = v0

ε −→ v0.

(8.21)

In addition, we assume that the zero set of g is “non-degenerate” in the sense:

∀v ≥ 0,
{
σ ≥ 0, g(σ, v) = 0

}
does not contain any open interval. (8.22)

We give below a simple proof of the following fact, in the spirit of Tikhonov’s theorem on
dynamical systems [90].

Theorem 8.1. Consider system (8.20) with dE , dL, L and h fixed, bE(ε) = h(L)+dE
εL

, η(ε) =

L
2

h(L)−εdLL
, for ε small enough, and cε = 1

εη(ε) . Let E(ε) := 1/ε. Then (εE(ε), 1
η(ε)L) = (1, h(L)−εdLL

L
)

is a steady state of (8.20) for all ε > 0 and (8.21) holds.
In addition, solutions of system (8.20) along with any bounded initial data admits a limit as

ε → 0: there exists u, v ∈ L1 ∩ L∞(0, T ) for all T > 0 such that vε → v uniformly and uε → u in
Lp(0, T ) for all p <∞.

Moreover, if initial data u0
ε , v

0
ε are such that

(
sgn(gε), sgn(fε)

)
(u0
ε , v

0
ε ) is constant for ε small

enough, then (u, v) is periodic, g(u(t), v(t)) = 0 for almost every t > 0 and the trajectory is uniquely
defined from f and g with dv

dt = f(u, v).

Figure 8.1 illustrates the slow-fast dynamics. Before proving Theorem 8.1, we justify the
particular scaling choices in its statement. Non-trivial equilibrium (E,L) of (8.1) are given by (8.5)

dL + cL =
h(L)bE

h(L) + dE
, E =

bEL

h(L) + dE
.

Thus in all generality (allowing all parameters to depend on ε), the scalings fit for our purpose

(i.e. with E(ε) = 1/ε) are exactly those for which ε = h(L(ε))+dE(ε)

bE(ε)L(ε)
and there exists η(ε) = O(1)

such that

dL(ε)
(
h(L(ε)) + dE(ε)

)
+
bE(ε)L

2
(ε)

η(ε)
= h(L(ε))bE(ε).
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Figure 8.1: u is in x-axis, v in y-axis. Red dashed curves correspond to nullclines gε = 0 (u̇ε = 0)
and blue dotted curves to nullclines fε = 0 (v̇ε = 0). The four figures correspond to decreasing
values of ε from top-left to bottom-right (0.5, 0.1, 0.01 and 0.001). In yellow and purple, two
trajectories t 7→ (uε(t), vε(t)) are shown, for two different initial conditions (respectively (0.35, 1.2)
and (0.2, 0.5)).

It turns out that L(ε)
(
ε(bE − dL)− 1

η

)
= dE . Hence to guarantee η(ε) = O(1) it is required that

bE − dL = O(1/ε).

Therefore the scaling choice made in Theorem 8.1 is in some sense “generic”.
Note that for every possible parameter scaling we get a (possibly different) limit in (8.21). For

instance, assuming εcε and εbE(ε) have limits 1/η0, ξ > 0 respectively as ε → 0 (this is the case
with the scaling used in Theorem 8.1), we choose η(ε) = O(1) such that cεη(ε)ε = 1 and end up
with  v̇ = εηbEu−

(
dE + h(ηu)

)
v =: fε(u, v),

εu̇ = 1
ηh(ηu)v − dLεu− u2 =: gε(u, v).

The limits f and g are given by

f(u, v) = η0ξu−
(
dE + h(η0u)

)
v, g(u, v) =

1

η0
h(η0u)v − u2. (8.23)

8.3.2 Proof of the main result

We proceed to the proof of Theorem 8.1 in three steps. First, scaled quantities uε and vε remain
uniformly bounded independently of ε, as can be proved from direct computation using the bound
K from Lemma 8.1.

Lemma 8.5. There exists C > 0 such that for all ε > 0 and t > 0,

|uε(t)|, |vε(t)|, |fε(uε(t), vε(t))|, |gε(uε(t), vε(t))| ≤ C.
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Hence, up to extraction, vε converges to v uniformly on compact sets [0, T ] by the Ascoli
theorem. Then, the convergence of an auxiliary quantity gives convergence of uε:

Lemma 8.6. For all T > 0.
‖gε(uε, vε)‖L2(0,T ) = O(

√
ε). (8.24)

Moreover, there exists u, v ∈ L1 ∩ L∞ such that after extraction of a subsequence uε → u in
Lp(0, T ) for all 1 ≤ p <∞, as vε → v uniformly.

Proof. Let B(t, u) :=
∫ u

0
g2(σ, v(t))dσ, where v is the limit of vε (obtained by the Ascoli theorem)

and g is the limit of gε (from (8.21)). From (8.22) we deduce that for all t, u 7→ B(t, u) is increasing.
Hence there exists a smooth function A(t, u) such that for all t, u, A(t, B(t, u)) = u.

If there exists w(t) ∈ Lp(0, T ) for all p <∞ and T > 0 such that∫ uε(t)

0

g2
ε (σ, vε(t))dσ

Lp(0,T )−−−−−→
ε→0

w(t), (8.25)

then defining u(t) := A(t, w(t)) we can conclude that uε = A
(
· ,
∫ uε

0
g2(σ, v)dσ

) Lp(0,T )−−−−−→
ε→0

u =

A( · , w).
Indeed, we notice that∫ uε(t)

0

g2
ε (σ, vε(t))dσ −

∫ uε(t)

0

g2(σ, vε(t))dσ → 0,

and ∫ uε(t)

0

g2(σ, vε(t))dσ −
∫ uε(t)

0

g2(σ, v(t))dσ → 0.

Since uε is uniformly bounded,

∣∣ ∫ uε(t)

0

g2
ε (σ, vε(t))dσ −

∫ uε(t)

0

g2(σ, v(t))dσ
∣∣ ≤ uε(t)(‖g2

ε − g2‖∞ + C‖vε − v‖∞
)
,

for some C > 0 which depends only on ∂vg. Hence (8.25) implies∫ uε(t)

0

g2(σ, v(t))dσ
Lp(0,T )−−−−−→
ε→0

w(t).

Therefore we only need to prove (8.25) to complete the proof. To do so we first obtain (8.24)
by computing

gε(uε(t), vε(t))
2

ε
= gε(uε(t), vε(t))u̇ε

=
d

dt

∫ uε(t)

0

gε(σ, vε(t))dσ − fε(uε, vε)
∫ uε(t)

0

∂vgε(σ, vε(t))dσ.

Hence

1

ε

∫ T

0

(
gε(uε(t), vε(t))

)2
dt =

∫ uε(T )

uε(0)

gε(σ, vε(t))dσ −
∫ T

0

fε(uε(t), vε(t))

∫ uε(t)

0

∂vgε(σ, vε(t))dσdt.

Since fε, gε and ∂vgε = 1
η(ε)h(η(ε)uε) are uniformly bounded, we deduce that∫ T

0

gε(uε(t), vε(t))
2dt = O(ε).

This gives (8.24). Then we introduce

wε(t) :=

∫ uε(t)

0

g2
ε (σ, vε(t))dσ.
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We compute

ẇε(t) =
1

ε
g2
ε (uε(t), vε(t))εu̇ε + fε(uε(t), vε(t))

∫ uε(t)

0

2gε(σ, vε(t))∂vgε(σ, vε(t))dσ.

By the previous point, t 7→ 1
ε g

2
ε (uε(t), vε(t)) is uniformly (in ε) bounded in L1. In addition,

t 7→ εu̇ε(t) is uniformly (in ε) bounded in L∞, by the Lemma 8.5. The second term fε
∫
gε∂vgε is

uniformly bounded as well.
As a consequence, wε is uniformly (in ε) bounded in BVloc. This implies that up to extraction,

wε → w in L1. Because wε is also bounded in L∞, convergence actually takes place in all Lp

spaces.

Finally, the shapes of (f, g) allow us to describe simply the limit trajectories. We use the follow-
ing assumptions: for all ε > 0 small enough, we assume that the right-hand sides of system (8.20)
satisfy

(R.1) the set R2\{fε = 0, gε = 0} has exactly 4 connected components, whose measures do not
vanish as ε→ 0,

(R.2) f(u0, v0) 6= 0, g(u0, v0) 6= 0 and the couple
(
sgn(fε(u

ε
0, v

ε
0), sgn(gε(u

ε
0, v

ε
0)
)

is constant and

equal to
(
sgn(f(u0, v0)), sgn(g(u0, v0))

)
.

We also assume that the uniform limits f, g of fε, gε satisfy

(L.1) the curve Υ := {g = 0} is the graph of a function φ ∈ C1(R+,R+) with φ(∞) = ∞ and
φ(0) = 0,

(L.2) the function g is positive on the epigraph of φ,

(L.3) the function φ has exactly two local extrema,

(L.4) on the graph of φ, sgn(f) = −1 except for a bounded set.

Lemma 8.7. With these assumptions we have:
There exists a unique τ > 0 and a (unique up to translations) τ -periodic function (uτ , vτ ) :

R+ → Υ such that vτ is Lipschitz-continuous, uτ is piecewise continuous, for all t ≥ 0, vτ = φ(uτ )
everywhere, v̇τ = f(uτ , vτ ) almost everywhere and the discontinuities of uτ are located at times t
such that φ has a local extremum at uτ (t−).

There exists τ1 ≥ 0 and τ2 ∈ [0, τ) such that for all t > τ1, (u, v)(t) = (uτ , vτ )(t+τ2). Moreover,
by construction τ1 and τ2 are uniquely defined from u0 and v0, so the limit (u, v) is in fact unique
and the whole family (uε, vε)ε converges as ε goes to 0.

Clearly from (8.23), Lemma 8.7 applies with the hypotheses of Theorem 8.1 and

φ(u) =
η0u

2

h(η0u)
, η0 =

L
2

h(L)
, (8.26)

thus proving the remaining part of the theorem.

Proof of Lemma 8.7. Thanks to assumptions (R.1), (L.1), (L.3) and (L.4), the construction of
(uτ , vτ ) is classical and can be done by pasting together solutions of Cauchy problems given (locally)
by v̇τ = f(φ−1(vτ ), vτ ), on intervals where φ is invertible. Uniqueness comes from the crucial fact
that discontinuities of uτ are assumed to be located at local extrema of φ.

From the previous lemmas we know that (u, v) ∈ Υ almost everywhere. In addition, uniform
boundedness of fε(uε, vε) ensures that v is Lipschitz continuous.

Then, we claim that if t > 0 is such that φ has no local extremum at u(t+), then there exists
τ0 > 0 such that (u, v) is continuous on (t, t+ τ0). This point is the key of the proof. To prove it,
let ui be such that φ′(ui) < 0. We solve only the simpler problem

˙̂vε = f(ûε, v̂ε), v̂ε(0) = φ(ui) +O(ε),

ε ˙̂uε = g(ûε, v̂ε), ûε(0) = ui +O(ε).
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Introducing ŵε := ûε − φ−1(v̂ε), where the inverse of φ is taken locally (this is possible for ε small
enough since φ′(ui) < 0 and v̂ε is uniformly Lipschitz-continuous), we obtain

˙̂wε =
ŵε
ε
∂1g(r̂ε(t), v̂ε(t))−

f(ûε, v̂ε)

φ′(φ−1(v̂ε))
, ŵε(0) = O(ε),

for some r̂ε(t) between ûε(t) and φ−1(v̂ε(t)). We have ∂1g ≤ −α < 0 on a neighborhood of
(ui, φ(ui)), so on this neighborhood ŵε remains small (it is a o(ε)), which in turn proves that
(r̂ε, v̂ε) remains in this neighborhood. In particular, ûε converges to some function û which is
continuous at t = 0 (since it is equal to φ−1(v̂(t)) on a positive neighborhood of 0). We do not
write the full proof because the derivation we use here extends readily at the price of tedious
notations. A full proof should use fε, gε rather than f, g, and rise some analogue φε of φ at level
ε > 0, for ε small enough, which is locally invertible on a neighborhood of the initial data. It does
not require more assumptions than the ones we stated.

This is enough to get all the results of Lemma 8.7, except for the initial layer which we treat
now. To fix the notations, we assume that φ has a local minimum equal to φm at um and a local
maximum equal to φM > φm at uM < um. Moreover, let u0

m < uM such that φ(u0
m) = φ(um). For

α, β ∈ {1,−1}, we also introduce Zβα := {sgn(f) = α, sgn(g) = β}.
We define a mapping π : R2 → Υ by π = Id on Υ and if (u, v) ∈ Zβα then π(u, v) = (u1, v) such

that φ(u1) = v and sgn(u1−u) = β. The projection π is well-defined thanks to the assumptions on
φ and g, except on (u0

m,+∞)×{φm}, on which we let π ≡ (u0
m, φm). Then (u, v)(0+) = π(u0, v0).

To prove this, one simply has to check the behavior of uε (since vε and v are Lipschitz continuous).
As above, we claim that the first-order behavior is simply given by the “layer equation”

ε ˙̃uε = g(ũε, v0), ũε(0) = u0,

which makes ũε converge exponentially fast to π(u0, v0)1, thanks to assumptions (R.2) and (L.2).
Up to tedious notations and thanks to (8.21) and (R.2), this result extends to uε0, vε and gε.

Let Υu = Υ ∩
(
[uM , um] × R+

)
and Υs = Υ − Υu. (Note that π(R2

+ − Υu) = Υs.) After
the initial layer, the trajectory of (u, v) remains on Υs. This follows from the sign of f on Υu:
because of the continuity property, the trajectory cannot exit Υs but at (um, φm) (or (uM , φM ),
respectively). At these points however, Υu is repulsive since v must be continuous, v̇ < 0 (v̇ > 0,
respectively) and Υu lies locally in {v > φm} (respectively in {v < φM}).

Still, the initial data does not need to be projected directly by π on Υs ∩ R+ × [φm, φM ].
Therefore, we introduce τ1 ≥ 0 as

τ1 := max
(
0, sup{t ≥ 0, v(t) 6∈ [φm, φM ]}

)
.

It remains to check that τ1 < +∞. For all T > 0, as long as φ has no local extremum at u(t) for
t ∈ (0, T ), u is continuous. Thanks to our assumption (R.1), there are two connected components
in Υs, on each one of whom sgn(f) is constant. Because of assumption (L.4), f must be negative
on the unbounded connected component. Therefore (u, v) remains on (0, T ) in a part of Υ where
|f | is positively bounded from below (one of the two connected components of Υs) and has the
appropriate sign. This yields the existence of τ1 < +∞.

Then for all t ≥ τ1 we have v(t) ∈ [φm, φM ], and the trajectory is uniquely defined onwards.

Remark 8.3. We did not treat the case when the limit of (uε0, v
ε
0) belongs to Υ (relaxing assump-

tion (R.2)). In this case indeed, no general result can be obtained, unless the various convergence
speeds (of fε, gε, u

ε
0 and vε0) are quantified.

Remark 8.4. The last point of Theorem 8.1 implies that the amplitude of the oscillations (in u, v)
at the limit ε → 0 can be computed if one knows these parameter scale in ε thanks to only f and
g. Their period τ can also be computed directly from f and φ. As in the proof of Lemma 8.7 we
denote the intervals of values taken by u(t) where it is continuous (and thus C∞) as [u0

m, uM ] and
[um, u

0
M ] respectively, and let

Ψ(u, v) =

∫ v

u

φ′(u′)

f(u′, φ(u′))
du′.

Then we have

τ = Ψ(u0
m, uM ) + Ψ(u0

M , um). (8.27)
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8.4 Hopf bifurcation

Numerical observations (see Section 8.2.3 and Appendix 8.A) show that the system (8.1) has a
stable periodic solution oscillating around the non-zero steady state, even far from the slow-fast
asymptotic we explored in the previous section. We now prove the local existence of this periodic
solution using the Hopf bifurcation theorem (Theorem 8.8 from [167], with a classical proof in [162];
see also [90]) for 2× 2 systems of differential equations.

8.4.1 The function class HL

To find out a possible bifurcation parameter, we choose the hatching function h within a special
class, for which we fix the value of one specific steady state L. With this setting, we can state a
bifurcation theorem using the simple bifurcation parameter h′(L), which represents the sensitivity
of hatching rate to larval density at equilibrium.

However, it is worth noting that our argument does not rely on the structure of this class of
functions, and may be adapted.

For a fixed L the class of functions under consideration that fits our purposes is

HL :=
{
h(L) = a

(
arctan(b(L− L)) +

π

2

)
, a, b ∈ R+

}
. (8.28)

Graphs of these functions are shown in Figure 8.2. We use the immediate properties that these
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Figure 8.2: Function h ∈ HL with L = 2. Left: a = 1, b = {0.5, 1, 2}. Right: a = {1, 1.5, 2}, b = 2.
Curve styles with increasing values in a and b: dotted blue, solid red, dashed yellow.

functions are positive and increasing. For any couple (k, k′) ∈ R∗+ × R∗+, there exists a unique

function h of class HL with h(L) = k and h′(L) = k′. Finally, for all c > 0, the steady state

relation h(L) = dE(dL+cL)

bE−dL−cL
has a positive solution in L if a > dEdL

bE−dL
2
π . Indeed, for given values

(k, k′) ∈ R2
+, the choice of a = 2k

π and b = k′

a gives the solution since

h(L) = a
π

2
=

2k

π

π

2
= k and h′(L) = ab =

2k

π

k′

2k
π

= k′.

Also we can solve the equation in L, aπ
2 = dE(dL+cL)

bE−dL−cL
, which yields L =

aπ
2 (bE−dL)−dEdL

c aπ2 +cdE
. Hence L

is positive under the stated condition.

Remark 8.5. From Lemma 8.2, for h of class HL, the state (0, 0) is unstable if and only if

a >
dEdL

(bE − dL)(π2 + arctan(−bL))
.

8.4.2 Transformation into a canonical form

Let P = (a, b) ∈ R2
+ and the function hP of class HL

hP (L) = a
(

arctan(b(L− L)) +
π

2

)
. (8.29)
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We use the notation k := hP (L) = aπ2 . Let P : γ 7→ P (γ) = (a0, b0 + γ) where (a0, b0) ∈ R∗2+ .
Then we can associate P (γ) to a new system (Sγ(a0, b0)) obtained from (8.1){

Ė = bEL− dEE − hP (γ)(L)E,

L̇ = hP (γ)(L)E − dLL− cL2.
(Sγ(a0, b0))

This system has a positive equilibrium (E,L) and the Jacobian matrix of the system evaluated in
(E,L) is:

JP (γ) =

 −dE − hP (γ)(L) bE − h′P (γ)(L)E

hP (γ)(L) h′P (γ)(L)E − dL − 2cL

 ,

We set λ1,2(γ) = α(γ)± iβ(γ) the eigenvalues of JP (γ), when the discriminant of the characteristic
polynomial of JP (γ) is negative.

8.4.3 Main result

Using function T from (8.12), we define

b(a) :=
T (a)

a
, acrit :=

2k+

π
> 0. (8.30)

Theorem 8.2. There exists ã > 0 such that: If a > max(ã, acrit), (Sγ(a, b(a))) has a supercritical
Hopf Bifurcation in γ = 0. In particular:

1. there exists γ1¡0 such that for all γ ∈ (γ1, 0], (E,L) is a stable focus,

2. for all U neighborhood of (E,L), there exists γ2 > 0 such that for all γ ∈ [0, γ2), (E,L) is
an unstable focus surrounded by a stable limit cycle contained in U , which has an amplitude
that grows when γ grows.

Remark 8.6. k+ is given by (8.13), and ã is such that the normal form coefficient αN (see [167])
of our system is negative if a > ã. We simply give a numerical justification of the existence of ã
as the computations appear to be very long (see the proof below).

Remark 8.7. The value of a must be greater than acrit to ensure that the linearized operator has
complex eigenvalues.

The bifurcation diagram for Sγ(a0, b0) in Figure 8.3 is obtained by XPPAUT software [80].

Figure 8.3: Supercritical Hopf bifurcation diagram with a0 = 0.2. The bifurcation parameter b is
in x-axis, the diagram shows extreme values of the periodic solution for L (the L scale is in y-axis).
The steady state is stable (red line) until the bifurcation point (point number 2) is reached. A
periodic solution appears and is stable (green points) until a bigger value of b, where it becomes
unstable (blue circles). The amplitude of the periodic solution grows with the parameter b.

151



8.4. HOPF BIFURCATION CHAPTER 8. OSCILLATORY REGIMES

Proof of Theorem 8.2. We set λ1,2(γ) = α(γ)±iβ(γ) (with γ a real parameter), the two eigenvalues
of JP (γ) the Jacobian matrix associated to our system and computed in (0, 0). We call γc a
bifurcation value, and αN (γ) the normal form coefficient of the system (see [167]).

Firstly, we only need to study complex conjugate and pure imaginary eigenvalues of JP (γ) to
find the bifurcation value γc, which means also to look for γc such that α(γc) = 0 and β(γc) 6= 0.
Thanks to Proposition 8.1 we know that this is the case when k > k+ i.e. aπ

2 > k+ or equivalently

a > acrit (by definition, acrit = 2k+

π ). Moreover since h′(L) = ab (direct computation from (8.29)),
we know that the bifurcation value is located at the level of the graph G of function b defined
in (8.30)

G := {(a, b) ∈ R2, a > acrit, T (a) = ab = h′P (γ)(L)}. (8.31)

And we can set γc = 0.
Secondly, we have to see if dα

dγ (γc) > 0, this means to check that tr(JP (γ)) changes sign at the

bifurcation value γc. Let γ 7−→ z(γ) = α(a0, b(a0) + γ). We recall that α(γ) depends on a and b.
Since

α =
tr(JP (γ))

2
=

1

2

(
− dE −

aπ

2
+ abE − dL − 2cL

)
,

we have z′(γ) = ∂bα = aE
2 and we obtain that z′(γc) = z′(0) = aE

2 and it is always positive.
Thirdly, we have to study the normal form coefficient of the system computed in γc = 0

and find when αN (γc) 6= 0. To get the normal form coefficient, we have to transform the system
(Sγ(a0, b0)) and we use the steps from [167]. In a first step we reduce the initial system (Sγ(a0, b0))
to a system where the equilibrium (E,L) becomes the origin. By the change of variables x = E−E
and y = L− L, (Sγ(a0, b0)) becomes:

ẋ = bE(y + L)− dE(x+ E)− a
(

arctan(by) +
π

2

)
(x+ E),

ẏ = a
(

arctan(by) +
π

2

)
(x+ E)− dL(y + L)− c(y + L)2.

(8.32)

Then as (E,L) is an equilibrium, we can simplify (8.32) into
ẋ = bEy − dEx−

aπ

2
x− a

(
arctan(by)

)
(x+ E),

ẏ = a
(

arctan(by) +
π

2

)
(x+ E) +

aπ

2
x− dLy − cy2 − 2cyL,

(8.33)

which we write as  ẋ = bEy − dEx−
aπ

2
x− abyE + f(x, y),

ẏ =
aπ

2
x− dLy − 2cyL+ abyE + g(x, y),

(8.34)

where

f(x, y) = abyE − a arctan(by)(x+ E),

g(x, y) = −abyE + a arctan(by)(x+ E)− cy2.

The system (8.34) can also be written under the matrix form ẋ

ẏ

 =

 −aπ2 − dE bE − abE

aπ
2 −dL − 2cL+ abE

 x

y

+

 f(x, y)

g(x, y)

 .

We call M the first (2× 2) matrix in the right-hand-side.
Now, to obtain the normal form coefficient, one way is to perform a linear change of variables

so as to get  Ẋ

Ẏ

 = N

 X

Y

+

 F (X,Y )

G(X,Y )

 , N :=

 0 −ω

ω 0

 . (8.35)

In our case, we can have an idea of the normal coefficient only in a neighborhood of γ = 0.
Because we want to make a simple linear change of variables, we are looking for a matrix P such
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that PMP−1 = N and that at the bifurcation value γ = 0, tr(M) = 0 = tr(N) and det(M) =
−A2 −BC = ω2 > 0.

We set M =

 A B

C −A

 and we can choose P =

(
ω+A
2Bω

1
2ω

ω−A
2Bω − 1

2ω

)
, P−1 =

(
B B

ω −A −A− ω

)
.

Next we obtain the matrix system (8.35) where(
X
Y

)
= P

(
x
y

)
=

(
x(ω+A)

2Bω + y
2ω

x(ω−A)
2Bω − y

2ω

)
,

(
x
y

)
= P−1

(
X
Y

)
=

(
(X + Y )B

(ω −A)X + (−ω −A)Y

)
,

(
F (X,Y )
G(X,Y )

)
= P

(
f(x, y)
g(x, y)

)
=

(
ω+A
2Bω f(x, y) + 1

2ω g(x, y)
ω−A
2Bω f(x, y)− 1

2ω g(x, y)

)
=

f(x, y)
(
ω+A
2Bω −

1
2ω

)
− 1

2ω cy
2

f(x, y)
(
ω−A
2Bω + 1

2ω

)
+ 1

2ω cy
2

 .

In a final step we compute the normal form coefficient using the previous formulas and the
expression that exists in two dimensions given in [167] which is:

αN (γ = 0) =
1

16

(
FXXX + FXY Y +GXXY +GY Y Y

)
− 1

16ω

(
GXY (GXX +GY Y )− FXY (FXX + FY Y ) + FXXGXX − FY YGY Y

)
.

The coefficient is easy but very tedious to compute, and we used the computer algebra system
Maple [1] to get its expression.

In our case the coefficient is equal to zero for some value ã > 0, and is always negative for a > ã
(as it appears that ã < acrit, this is sufficient by definition of (8.31)). Then αN (γc) 6= 0 for a 6= ã.

Finally, we want to have for all real γ in a neighborhood of 0, αN (γ)α(γ) < 0. Thanks to Maple
we have αN (0) < 0, in a neighborhood of γ = 0, for a > ã with ã small.

So we can apply the Hopf bifurcation theorem that ensures there exists a limit cycle (periodic
solution) when α(γ) > 0 (i.e tr(JP (γ)) > 0), and moreover this cycle is stable as α(γ) > 0: we are
faced to a supercritical bifurcation.

8.4.4 Discussion on the period of the oscillations

Another point is the study of periods of these solutions because they can be compared with
observations in nature.

Proposition 8.3. As γ → 0+, the periodic solution of the system (Sγ(a, b(a))) has a frequency ω
and a period T0 = 2π/ω given by the expression

ω =
1√

dE + k

[
k2(bE − dL − dE) + k(−2dE

2 − bEdE − dEdL)− dE3
] 1

2

.

Proof. As γ → 0+, the oscillations frequency is given by the imaginary part of the root of the poly-
nomial equation (8.9) in the case of non-trivial steady state. The frequency is ωγ =

√
det(JP (γ)),

where the expression of det(JP (γ)) is

det(JP (γ)) =
1

dE + k

[
k2(bE − dL − dE) + k(−2dE

2 − bEdE − dEdL)− dE3
]
.

Then the expression of ω = ω0 follows.

Remark 8.8. At the bifurcation value, the parameter k can be linked with the period T0. Let T0

a given period observed experimentally, then k is the positive root of the following characteristic
polynomial:

k2
[
T 2

0 (bE − dL − dE)
]

+ k
[
T 2

0 (−2d2
E − bEdE − dEdL)− 4π2

]
− T 2

0 d
3
E − 4π2dE .

Away from the bifurcation value, the real part of the eigenvalues is greater than zero and the
period of the oscillations can only be obtain numerically. Unfortunately, this case is more relevant
as the Hopf bifurcation theorem asserts that the amplitude is increasing with the parameter γ. In
other words, for fixed a the amplitude of the oscillations is an increasing function of b.
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8.5 Conclusion

We show that introducing internal regulation in the form of a larval-density-mediated hatching rate
in a compartmental model for mosquito population dynamics induces stable oscillations. These
oscillations can be rather simply understood from the mathematical point of view either as cycles
produced by a Hopf bifurcation (Theorem 8.2), in a first parameter regime, or as the typical
slow-fast behavior (close to FitzHugh-Nagumo model, Theorem 8.1) in a second parameter regime.

Our study supports the idea that understanding internal life-cycle regulation can effectively
help modeling and simulating population dynamics properly. Ongoing experiments of some of the
authors try to reproduce the larval density impact on hatching which was observed in [78] and may
shed some light on this misunderstood phenomenon. In particular, restricting the parameters and
possible oscillations range could only be reached by assessing as precisely as possible the actual
hatching feedback.

A limitation of our strategy is that it neglects environmental variations. Therefore it leaves
open for future studies the deep question of linking internal life-cycle regulation and external
variations (induced, for instance, by rainfall and temperature) in order to get a better description
of the mosquito populations dynamics. However, it was observed that population oscillations may
happen on periods much shorter than seasonal variations, and this justifies the study of internal
regulations as possible triggers.

Another possible extension of our works is the adaptive dynamics of hatching regulation trait.
Indeed, synchronizing the egg hatching may be beneficial for a population in a given environment,
but also be detrimental if rare and extreme events can annihilate larval population, for instance.
The egg stage can be seen indeed as a quiescent, refuge state for the species (this approached was
studied in [237]). Here we prove that positive feedback of larvae on egg hatching tends to make
the population size oscillate, creating distinct generations (synchronizing effect) while negative
feedback tends to stabilize the population size, which may be detrimental on the long run if, for
example, the favorable period for larvae and adult development is typically short.
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Appendices

8.A Numerical tests for hatching rate given by Hill func-
tions

To explore the possible behaviors depending on the function h of type (8.16), we fix the biological
parameters (including L), p > 1 and k = h(L) > 0 such that (8.19) holds. We introduce the
notation X(k) := 1

p (2 + k−dL
bE

) < 1 and use two parameters: ι ∈ (0, 1 − X(k)) and ζ ∈ (0, 1),

in order to represent the full range of (8.18). More precisely, we will parametrize a and α with
ι, ζ, as functions of k, and then we can go back to a function in (8.16) by letting λ = αL and
hm = k − a/(1 + αp).
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Figure 8.A.1: Egg dynamics from (8.1) for h of Hill function type. All parameters being fixed,
including p = 3 and k = 0.5, ι = 0.05 (top) or ι = 0.2 (bottom) and ζ = 0.2 (left) or ζ = 0.8
(right).

We choose

αι(k) =
( X(k) + ι

1−
(
X(k) + ι

))1/p
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Figure 8.A.2: Numerical solutions of (S3) for h defined by two different Hill functions. All pa-

rameters being fixed, including p = 3, k = 0.5, ι = 1−X(k)
10 and choosing ζ = 0.1 (top) or ζ = 0.9

(bottom).

and

aζ,ι(k) = ζk(1 + αpι ) + (1− ζ)k
(1 + αpι )

2

αpι
X(k)

= k
1− ζ(1− (X(k) + ι))

(X(k) + ι)(1− (X(k) + ι))
.

For any choice of ι and ζ, we end up with system (8.1), h given by (8.16), featuring a unique,
(locally linearly) unstable positive steady state. At least numerically, solutions always exhibit
periodic oscillations, as can be seen in Figure 8.A.1 for egg dynamics.

The above computations extend to the full, 3-dimensional system (S3), and numerical obser-
vations are very similar. Indeed, the condition (8.19) guaranteeing positivity of the trace of the
Jacobian at the unique positive equilibrium, rewrites for system (S3) as

(p− 2)
βEτL
δA

+ δL + τL − δA > k.

In this case we define

X(k) :=
δA

pβEτL

(
2
βE
δA
τL − δL − τL + δA + k

)
,

and the above condition is equivalent to X(k) < 1.
Exactly as in the two-dimensional case, we explore the full range of (8.18) by choosing the pa-

rameters (ι, ζ) ∈ (0, 1−X(k))×(0, 1) and defining αι(k) and aι,ζ(k) by the same formulas as before.
For all the numerical values we took for ι and ζ, we always found oscillating solutions. Examples
(dynamics of larvae and of (E,L,A) in the three dimensional space) are shown in Figure 8.A.2.

156



CHAPTER 8. OSCILLATORY REGIMES 8.B. SLOW-FAST COMPUTATIONS

8.B Amplitude and period computation in slow-fast regime

In the slow-fast approach, system (8.1) exhibits oscillations with known amplitude and period at
the limit ε → 0. We show here how to compute this amplitude analytically. To do so, we simply

compute the local extrema of u 7→ ηu2

h(ηu) . The first-order necessary condition yields

xh′(x) = 2h(x), x = ηu.

This provides with a general method to determine the limit trajectories. With the previous example

from (8.16), h(x) = hm + a
xp(

αL
)p

+ xp
, this boils down to

2(hm + a)x2p + (αL)p
(
(2− p)a+ 4hm

)
xp + 2hm(αL)2p = 0.

Letting y = xp, we end up with a second-order polynomial, for which the analytical computation
can be pushed a few steps further. In particular, its discriminant is

∆ = (αL)2p
((

(2− p)a+ 4hm
)2 − 16hm(hm + a)

)
= (αL)2pa

(
(2− p)2a− 8phm

)
.

Hence there are exactly two positive local extrema if and only if

(2− p)2a > 8phm and (2− p)a+ 4hm < 0.

The first condition implies the second one if p > 2, and the second one is impossible if p ≤ 2.
Therefore the only case when there are two local extrema is when p > 2 and

hm
a

<
(p− 2)2

8p
. (8.36)

Under assumption (8.36) we find that the extrema (yM < ym) are located at

(αL)p
(p− 2)a− 4hm ±

√
a2(p− 2)2 − 8aphm

4(hm + a)
.

Let ξ± = (p− 2)a− 4hm ±
√
a2(p− 2)2 − 8aphm. With the notations of Lemma 8.7,

um =
α

η
L
( ξ+

4(hm + a)

)1/p

, φm =
ηu2

m

h(ηum)
,

uM =
α

η
L
( ξ−

4(hm + a)

)1/p

, φM =
ηu2

M

h(ηuM )
.

Then we can compute u0
r for r ∈ {m,M} by solving

η · (u0
r)2

h(ηu0
r) = φr. Unfortunately this cannot

be done analytically. However, the amplitude of the oscillations in terms of v is equal to

Av := φM − φm.

With E = 1/ε, we expect that the oscillations of E have amplitude

φM − φm
ε

=
α2L

2

ηε

( ( ξ−
4(hm+a)

)2/p
hm + a ξ−

hm+ξ−

−

( ξ+
4(hm+a)

)2/p
hm + a ξ+

hm+ξ+

)
,

where η = L
2

h(L)
= L

2

hm+ a
1+αp

, by (8.26). Hence the amplitude of egg oscillations is equal to

1

ε
Av =

1

ε

α2(hm + a
1+αp )

(4(hm + a))2/p

( ξ
2/p
−

hm + a ξ−
hm+ξ−

−
ξ

2/p
+

hm + a ξ+
hm+ξ+

)
.
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We can simplify this expression one step further by letting ρ := hm/a. Then we notice that
q± := ξ±/a = p− 2− 4ρ±

√
(p− 2)2 − 8pρ and deduce

Av =
α2

1 + αp
1 + ρ+ αp

(4(1 + ρ))2/p

( (ρq−)2/p

1 + ρ2q−
1+ρq−

− (ρq+)2/p

1 + ρ2q+
1+ρq+

)
.

In particular we notice that the amplitude depends only on the function h through ρ, α (hence
L) and p, and not on any other biological parameter, under the constraints

p > 2, ρ <
(p− 2)2

8p
.

An interesting case is when p→ +∞, where h approaches a step function from hm to hm + a,
with its jump located at αL. In this limit we can compute the amplitudes in u and v: Au = α

L
(hm + a1α<1 + a

2 δα=1)
(√

ρ+1
ρ −

√
ρ
ρ+1

)
,

Av = α2(hm + a1α<1 + a
2 δα=1) 1

ρ(hm+a) .

Using formula (8.27), we can also obtain in this case an analytical expression for the period of
the oscillations:

τ =
2

hm
log
( hm + a/2− αL
hm + a/2− αL

√
ρ

1+ρ

)
+

2

hm + a
log
(hm + a/2− αL

√
1+ρ
ρ

hm + a/2− αL

)

Indeed, h(u) = hm if u < αL and h(u) = hm + a if u > αL so that if we assume dE = 0 (for
simplicity), we get f(u, φ(u)) = η0u

(
ξ − u

)
and φ′(u) = 2η0

hm
u if u < αL and φ′(u) = 2η0

hm+au if

u > αL.

8.C Numerical oscillations, period and amplitude close to
the bifurcation

We illustrate the statements from Section 8.4 with numerical examples. Biological parameters
of (8.1) are taken at a temperature around 25◦C which leads to A = 3.4 mosquitoes per 100
square meters (taken from a physical situation described in [229]) and bE = 20.94, dL = 0.15.
(taken from [238]). To fit the condition dE � dL, dE is fixed arbitrarily at 1

180 . We note that
condition (8.3) is satisfied: bE = 20.94 > 0.15 + 1

180 = dL + dE .
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Figure 8.C.1: Time dynamics of eggs (left) and larvae (right) for a1 = 0.1, b0.05
1 = 2.91.

The parameters a and b are chosen so that Theorem 8.2 applies, which proves the existence
of periodic solutions close to the non-trivial steady states. We perform numerical test by letting
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a parameter j vary in a set J of 18 values between 0.05 and 4 in order to obtain 162 couples
(ai, b

j
i )i=1,...,9;j∈J by

ai = 0.1 + 0.05(i− 1) and bji = bi,min + j × bi,min,

where bi,min is the minimal b that can be chosen for ai to obtain oscillations (if b < bi,min the
solutions can not oscillate), i.e. for which the trace of the linearized operator is equal to 0.

The hatching functions are:

hji (L) = ai

(
arctan(bji (L− L)) +

π

2

)
.

In our tests the steady state changes with i (for example E1 = 145.92, E4 = 59.59 and E9 = 30)
but we always have L = A δA

τL
= 1.13.
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Figure 8.C.2: Time dynamics of eggs (left) and larvae (right) for a2 = 0.25, b0.52 = 4.18.
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Figure 8.C.3: Time dynamics of eggs (left) and larvae (right) for a3 = 0.5, b23 = 8.44.

a = 0.1 Period (days) E L Larvae amplitude (%L)
b = 2.91 5.18 23.1
b = 4.16 15.06 145.92 1.13 51.3
b = 8.32 61.54 110.22
b = 3.52 9.6 42.08

Table 8.C.1: Steady states, period and amplitude of oscillations for a = .1
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a = 0.25 Period (days) E L Larvae amplitude (%L)
b = 2.93 2.68 20.35
b = 4.18 6.96 59.59 1.13 50.67
b = 8.37 22.64 110.2
b = 4.99 9.98 63.03

Table 8.C.2: Steady states, period and amplitude of oscillations for a = .25

a = 0.5 Period (days) E L Larvae amplitude (%L)
b = 2.96 1.72 18.03
b = 4.22 3.8 30 1.13 49.8
b = 8.44 11.5 109.9
b = 7.6 10.1 99.43

Table 8.C.3: Steady states, period and amplitude of oscillations for a = .5

We provide numerical results for i ∈ {1, 4, 9} and j ∈ {0.1, 0.25, 0.5} initial data close to the
steady state (which is drawn in dashed line). Two sets of initial data are chosen, (E(0), L(0)) =
(E,L) (green) and (E(0), L(0)) = (E,L + 0.02) (blue), which gives oscillations that appear to be
periodic in time. Simulations are made with a = a1 in Figure 8.C.1 (with b = b0.05

1 ) and a time
variable evaluated in [0, 100] days ; a = a2 in Figure 8.C.2 (with b = b0.52 ) and a time variable
evaluated in [0, 100] days ; a = a3 in Figure 8.C.3 (with b = b23) and a time variable evaluated in
[0, 150] days.
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Figure 8.C.4: Larvae dynamics period T0 in days (left) and larvae dynamics amplitude (Amp) in
percentage of L (right), for different couples (a, b).

Considering the blue curves, we sum up in the Tables 8.C.1, 8.C.2 and 8.C.3 what we obtain
for the period and the oscillations’ amplitude taken by the solutions. In the last line of the tables
we give a value of b that can be chosen to obtain a period of about 10 days. Relative amplitude of
the oscillations is expressed as a percentage of the (constant) value L.

It is possible to achieve the same period T0 for different couples of parameters (a, b). For a
fixed a, when b is increasing, the period T0 and the amplitude of larvae are increasing too. The
amplitude, on the contrary, mainly depends on b. This is illustrated in Figure 8.C.4.
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Chapter 9

Using sterilizing males to reduce
or eliminate Aedes populations:
insights from a mathematical
model

Les étrangers blêmes, parfois si ridicules, ont beaucoup d’ingéniosité :
ils tatouent leurs étoffes de petits signes noirs qui marquent des
noms, des rites, des nombres. Et ils peuvent, longtemps ensuite,
les rechanter tout à loisir

Victor Segalen, Les Immémoriaux.

This chapter is a joint work with Hervé Bossin and Yves Dumont.
Abstract. We propose a new mathematical model for population elimination of mosquitoes by

means of releases of sterilizing (sterile or incompatible) males, featuring the possibility of an Allee
effect. This feature implies that the extinction state is locally stable, and therefore a key object
of study appears as the separatrix between the basins of attraction of extinction and wild steady
states. We derive exact conditions for population elimination in the case of constant releases, and
both sufficient or necessary conditions in the case of impulsive releases. In particular, we obtain
analytical estimations of the entrance time into the basin of attraction of the extinction state. The
relative importance of the model’s parameters is inferred from these results.

Biological parameters are estimated from a case study of an Aedes polynesiensis population,
for which extensive numerical investigations illustrate the analytical results.

Introduction

Sterile insect technique (SIT) is a promising technique that has been first studied by E. Knipling and
collaborators and first experimented successfully in the early 50’s by nearly eradicating screw-worm
population in Florida. Since then, SIT has been applied on different pest and disease vectors, like
fruit flies or mosquitoes. The classical SIT relies on the mass releases of males sterilized by ionizing
radiations. The released sterile males transfer their sterile sperms to wild females, which results in a
progressive reduction of the target population. For mosquito control in particular, new approaches
stemming from SIT have emerged, namely the RIDL technique, and the Wolbachia technique.
Wolbachia is a bacterium that infects many Arthropods, and among them some mosquito species
in nature. It was discovered in 1924 [110]. Since then, particular properties of these bacteria have
been unveiled. One of of these properties is particularly useful for vector control: the cytoplasmic
incompatibility (CI) property [206, 38]. CI can serve two different control strategies:

� Incompatible Insect Technique (IIT): the sperm of W-males (males infected with CI-inducing
Wolbachia) is altered so that it can no longer successfully fertilize uninfected eggs. This can
result in a progressive reduction of the target population. Thus, when only W-males are
released the IIT can be seen as classical SIT. This also supposes that releases are made
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regularly until extinction is achieved (when possible) or until a certain threshold is reached
(in order to reduce exposure to mosquito bites and the epidemiological risk).

� Population replacement: when males and W-females are released in a susceptible (unin-
fected) population, and because Wolbachia is maternally inherited, W-females will produce
offspring while uninfected females won’t. This will result in a population replacement by
Wolbachia infected mosquitoes. It has been showed that this technique may be very interest-
ing with Aedes aegypti, shortening their lifespan (see for instance [203]), or more importantly,
practically losing their competence for dengue virus transmission [172]. However, it is also
acknowledged that Wolbachia infection can have drawbacks, like fecundity reduction, so that
the use of Wolbachia in the the field can fail [203].

Based on all these biological properties, classical SIT and IIT have been modeled and studied
theoretically in a large number of papers in order to derive results to explain the success or not
of these strategies using discrete, continuous or hybrid modeling approaches, temporal and spatio-
temporal models (see for instance [120, 149, 72, 73, 212, 81, 176, 82] and references therein). More
recently, the theory of monotone dynamical systems has been applied efficiently to study SIT and
W-SIT systems [35, 197, 9].

The outline of the paper is as follows. First, we explain in Section 9.1 the biological situation
considered and the practical questions we want to answer, namely: how to quantify the release
effort required to eliminate an Aedes population using SIT/IIT, with particular emphasis on the
timing and size of the releases. We also justify our modeling choices and give value intervals for
most biological parameters in Table 9.1. Then, we perform the theoretical analysis of a simple,
compartimentalized population model featuring an Allee effect and a constant sterilizing male
population in Section 9.2. Proposition 9.2 gives the bistable asymptotic behavior of the system, and
introduces the crucial separatrix between extinction and survival of the population. We also provide
analytical inequalities on the entrance time of a trajectory into the extinction set (Proposition 9.3),
which is extremely useful to understand what parameters are really relevant and how they interact.
We then analyze the model as a control system, after adding a release term. Finally, Section 9.3
exposes numerical investigations of the various models.

In general, all mathematical results are immediately interpreted biologically. To keep the expo-
sition as readable as possible, we gather all technical developments of the proofs into Appendices.

9.1 Modeling and biological parameter estimation

9.1.1 Modeling context

Our modeling effort is oriented towards an understanding of large-scale time dynamics of a mosquito
population in the Aedes genus exposed to artificial releases of sterilizing males. These males can be
either sterilized by irradiation (Sterile Insect Technique approach) or simply have a sterile crossing
with wild females due, for instance, to incompatible strains of Wolbachia bacteria (Incompatible
Insect Technique approach). In either techniques (SIT or IIT), the released males are effectively
sterilizing the wild females they mate with.

Eggs from mosquitoes of various species in the Aedes genus resist to dessication and can wait
for months before hatching. Due to rainfall-dependency of natural breeding sites availability, this
feature allows for maintaining a large quiescent egg stock through the dry season, which triggers a
boom in mosquito abundance when the rainy season resumes. For the populations we model here,
natural breeding sites are considered to be prominent, and therefore it is absolutely necessary that
our models take the egg stock into account.

We use a system biology approach to model population dynamics. In the present work we
neglect the seasonal variations and assume all biological parameters to be constant over time.

Our first compartmental model features egg, larva, adult male and adult female (fertile or
sterile) populations. Most transitions between compartments are assumed to be linear. Only three
non-linear effects are accounted for.

First, the population size is bounded due to an environmental carrying capacity for eggs, which
we model by a logistic term. Secondly, the sterilizing effect creates two sub-populations among
inseminated females. Some are inseminated by wild males and become fertile while the others
are inseminated by sterilizing males and become sterile. Hence the relative abundance (or more
precisely the relative mating power) of sterilizing males with respect to wild males must appear in
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the model, and is naturally a nonlinear ratio. Many other parameters may interfere with the mating
process for Aedes mosquitoes, but this process is not currently totally understood in particular from
the male point of view [145, 180], and we stick here to the simplest possible modeling. Thirdly,
as a result of sterilizing matings, we expect that the male population can drop down to a very
low level. We introduce an Allee effect which come into play in this near-elimination regime. This
effect reduces the insemination rate at low male density, as a consequence of difficult mate-finding.
It can also be interpreted as a quantification of the size of the mating area relative to the total size
of the domain, and compensates in some ways the intrinsic limitations of a mean-field model for
a small and dispersed population (cf. [74] and see Remark 9.1). Indeed, we model here temporal
dynamics by neglecting spatial variations and assuming homogeneous spatial distribution of the
populations. In nature, the distribution of Aedes mosquitoes is mostly heterogenous, depending
on environmental factors such as vegetation coverage, availability of breeding containers and blood
hosts. The proposed simplified homogenous model will thus be exposed to potential criticism.

9.1.2 Models and their basic properties

We denote by E the eggs, L the larvae, M the fertile males, F the fertile females and Fst the sterile
females (either inseminated by sterilizing males or not inseminated at all, due to male scarcity).
The time-varying sterilizing male population is denoted Mi. We use Greek letters µ for mortality
rates, ν for transition rates and denote fecundity by b (viable eggs laid per female and per unit of
time) and egg carrying capacity by K. The full model reads:

dE

dt
= bF (1− E

K
)− (ν̃E + µE)E,

dL

dt
= ν̃EE − (νL + µL)L,

dM

dt
= (1− r)νLL− µMM,

dF

dt
= rνLL(1− e−β(M+γiMi))

M

M + γiMi
− µFF,

dFst
dt

= rνLL
(
e−β(M+γiMi) +

γiMi

M + γiMi
(1− e−β(M+γiMi))

)
− µFFst.

(9.1)

Dynamics of the full system (9.1) is not different from that of the following simplified, three-
populations system. We only keep egg, fertile and sterilizing male, and fertile female populations.
The value of the hatching parameter νE must be updated to take into account survivorship and
development time in the larval stage.

dE

dt
= bF (1− E

K
)− (νE + µE)E,

dM

dt
= (1− r)νEE − µMM,

dF

dt
= rνEE(1− e−β(M+γiMi))

M

M + γiMi
− µFF.

(9.2)

The following straightforward lemma means that (9.1) and (9.2) are well-suited for population
dynamics modeling since all populations, in these systems, remain positive and bounded.

Lemma 9.1. Let Mi be a non-negative, piecewise continuous function on R+. The solution to the
Cauchy problems associated with (9.1), (9.2) and non-negative initial data is unique, exists on R+,
is continuous and piecewise continuously differentiable. This solution is also forward-bounded and
remains non-negative. It is positive for all positive times if F (0) or E(0) (or also L(0) in the case
of (9.1)) is positive.

In addition, these systems are monotone in the sense of the monotone systems theory (see
[208]).

Lemma 9.2. The system (9.2) is monotone on the set E3 := {E ≤ K} ⊂ R3
+ for the order induced

by R3
+ and the restriction of system (9.1) to the four first coordinates (omitting Fst, which does
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not appear in any other compartment) is monotone on the set E4 := {E ≤ K} ⊂ R4
+ for the order

induced by R4
+.

Moreover, E3 (respectively E4) is forward invariant for (9.2) (respectively for the restriction
of (9.1) to the four first coordinates), and any trajectory enters it in finite time.

Proof. We compute the Jacobian matrix of the system (9.2):

J =

 − bFK − (νE + µE) 0 b(1− E
K )

(1− r)νE −µM 0

rνE(1− e−β(M+γiMi)) M
M+γiMi

rνEE
M+γiMi

(
βMe−β(M+γiMi) + (1− e−β(M+γiMi)) γiMi

M+γiMi

)
−µF

 .

It has non-negative extra-diagonal coefficients on E3, which proves that the system is indeed mono-
tone on this set. In addition, if E(t0) > K then let T [t0] := {t ≥ t0, ∀t′ ∈ [t0, t), E(t′) > K} ⊂ R.
Let T+[t0] := supT [t0]. For any t ∈ T [t0] we have Ė(t) ≤ −(νE + µE)E(t). Hence by integration
we find that T+[t0] ≤ t0 + 1

νE+µE
log(K/E(t0)) < +∞, which proves Lemma 9.2 (the proof being

similar for the claims on (9.1)).

Remark 9.1. The Allee effect term 1 − exp(−βM) can also be interpreted in the light of [74].
This is the probability that an emerging female finds a male to mate with in her neighborhood.

Using a ”mean-field” model of ordinary differential equations here is certainly debatable, since in
the case of population extinction the individuals may eventually be very dispersed, and heterogeneity
would play a very important role. However, we think that getting a neat mathematical understanding
of the simplest system we study here is a necessary first step before moving to more complex
systems. The Allee term compensates, as far as the qualitative behavior is concerned, what the
model structurally lacks. Here, we are able to perform proofs and analytical computations. This
gives a starting point for benchmarking what to expect as an output of release programs using
sterilizing males, according to the models.

9.1.3 Parameter estimation from experimental data

Symbol Name Value interval Source
rviable Proportion of viable eggs 95− 99% Field collection, [105, p. 121]
Neggs Number of eggs laid per laying 55− 75 [195]
τgono Duration of gonotrophic cycle 4− 7 days [124, 213, 195]
τE Egg half-life 15− 30 days Estimation (to be determined)
τL Time from hatching to emergence 8− 11 days Lab data, [105, p. 104]
rL Survivorship from larva first instar to pupa 67− 69% Lab data, [105, p. 106]
r Sex ratio (male:female) 49% Production data (ILM)
τM Adult male half-life 5− 9 days Lab data, [105, p. 50]
τF Adult female half-life 15− 21 days Lab data, [105, p. 50]
γi Mating competitiveness of sterilizing males 1 Lab [105, pp. 51–53], field [179]

Table 9.1: Parameter values for some populations of Aedes polynesiensis in French Polynesia at a
temperature of 27◦C.

For numerical simulations, we use experimental (lab and field) values of the biological parame-
ters in (9.1)-(9.2). We consider specifically a population of Aedes polynesiensis in French Polynesia
which has been studied in [124, 213, 195], and more recently in [49, 106, 107, 105].

Values of most parameters are given in Table 9.2, and are deduced from experimental data
gathered in Table 9.1. Some data come from unpublished results obtained at Institut Louis Malardé
during the rearing of Aedes polynesiensis for a pilot IIT program. They are labelled as “Production
data (ILM)”. Note that we do not give values for β and ν̃E because they are very hard to estimate.
Ongoing experiments of one of the author may help approximating them in the future for this
Aedes polynesiensis population. Finally when it exists, we use the knowledge about population
size (male and female) granted by mark-release-recapture experiments to adjust the environmental
carrying capacity K for population and season.
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Symbol Name Formula Value interval

b Effective fecundity
rviableNeggs

τgono
7.46− 14.85

µL Larva death rate
− log(rL)

τL
0.034− 0.05

νL Larva to adult transition rate
1

τL
0.09− 0.125

νE
ν̃E

Larval coefficient for effective hatching rate
νL

νL + µL
0.64− 0.79

µE Egg death rate
log(2)

τE
0.023− 0.046

µM Adult male death rate
log(2)

τM
0.077− 0.139

µF Adult female death rate
log(2)

τF
0.033− 0.046

Table 9.2: Conversion of the biological parameter from Table 9.1 into mathematical parameters
for systems (9.1) and (9.2)

9.2 Theoretical study of the simplified model

For later use, we introduce the usual relations�, < and ≤ on Rd (where d ≥ 1) as the coordinate-
wise partial orders on Rd induced by the cone Rd+. More precisely, for x, y ∈ Rd,

� x ≤ y if and only if for all 1 ≤ i ≤ d, xi ≤ yi,

� x < y if and only if x ≤ y and x 6= y,

� x� y if and only if for all 1 ≤ i ≤ d, xi < yi.

9.2.1 Constant incompatible male density

First we study system (9.2) with constant incompatible male density Mi(t) ≡Mi.
We introduce the three scalars

N :=
brνE

µF (νE + µE)
, λ :=

µM
(1− r)νEK

, ψ :=
λ

β
(9.3)

and define the function f : R2
+ → R, with the two parameters N and ψ:

f(x, y) := x(1− ψx)(1− e−(x+y))− 1

N
(x+ y). (9.4)

The two aggregated numbers, N and ψ essentially contain all the information about sys-
tem (9.2): N is the classical basic offspring number, ψ is the ratio between the typical male
population size at which the Allee effect comes into play and the male population size at wild
equilibrium, as prescribed by the egg carrying capacity.

The ODE system (9.2) has simple dynamical properties because it is monotone and we can
count its steady states and even know their local stability. Let Mi ≥ 0. It is straightforward to
show that system (9.2) always admits a trivial steady-state (0, 0, 0) and eventually one (at least)
non-trivial steady state (E∗,M∗, F ∗) ∈ R3

+ solution of

E =
b

νE + µE
F (1− E

K
), E =

µM
(1− r)νE

M, F =
rνE
µF

E(1− e−β(M+γiMi))
M

M + γiMi
.

Using the first two equation into the third one yields

µF (νE + µE)

brνE
(M + γiMi) = M(1− µM

(1− r)νEK
M)(1− e−β(M+γiMi)),

from which we deduce 
E∗ = KλM∗,

F ∗ =
K(νE + µE)

b

λM∗

1− λM∗
,

f(βM∗, γiβMi) = 0.
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Hence for a given value Mi ≥ 0, the number of steady states of (9.2) is equal to the number
of positive solutions M∗ to f(βM∗, βγiMi) = 0, plus 1. The trivial steady state (0, 0, 0) is also
locally asymptotically stable (LAS). The following lemma give us additional informations about
the positive steady state(s):

Lemma 9.3. Assume N > 4ψ. Let θ0 ∈ (0, 1) be the unique solution to 1− θ0 = − 4ψ
N log(θ0), and

Mcrit
i :=

1

γiβ
max
θ∈[θ0,1]

(
− log(θ)− 1

2ψ

(
1−

√
1 +

4ψ

N
log(θ)

1− θ
))
.

If Mcrit
i > 0 then (9.2) has:

� 0 positive steady state if Mi > Mcrit
i ,

� 2 positive steady states E− � E+ if Mi ∈ [0,Mcrit
i ),

� 1 positive steady state E if Mi = Mcrit
i .

In addition, E− is unstable and E+ is locally asymptotically stable. If Mcrit
i < 0 then (9.2) has no

positive steady state, and if Mcrit
i = 0 then there exists a unique positive steady state. In particular,

if N ≤ 1 then Mcrit
i < 0.

On the contrary, if N ≤ 4ψ then there is no positive steady state.

Proof. Let us give a quick overview of the remainder of the proof, which is detailed in Appendix
9.A, page 179. We are going to study in details the solutions (x, y) to f(x, y) = 0. First, we prove
that x < 1/ψ. Then, we check that for any y > 0, x 7→ f(x, y) is either concave or convex-concave.
In addition, it is straightforward that f(0, y) < 0 and limx→+∞ f(x, y) = −∞, so that for any
y > 0, we conclude that there are either 0, 1 or 2 real numbers x > 0 such that f(x, y) = 0.

Then, we introduce ξ = 4ψ/N . In fact, in order to determine (x, y) ∈ R2
+ such that f(x, y) = 0

we can introduce θ = e−(x+y) and then check easily that y = h±(θ), where

h±(θ) = − log(θ)− 1

2ψ
± 1

2ψ

√
1 + ξ

log(θ)

1− θ
. (9.5)

Let θ0(ξ) be the unique solution in (0, 1) to 1− θ0(ξ) = −ξ log(θ0(ξ)), and

αcrit(ξ,N ) := max
θ∈[θ0(ξ),1]

− log(θ)− 1

2ψ

(
1−

√
1 + ξ

log(θ)

1− θ
)
. (9.6)

Collecting the previous facts, and studying the function h± (see Appendix 9.A.2, page 180), we
can prove that the next point of Lemma 9.3 holds with the threshold M crit

i = N
4ψβγi

αcrit(ξ,N ).

We remark that if N ≤ 1 then it is easily checked that M crit
i < 0, using the fact that if α ∈ (0, 1)

then
√

1− α ≤ (1− α)/2. If θ ∈ (θ0, 1) then 4ψ log(θ)
N (1−θ) < 1, and therefore

− log(θ)− 1

4ψ

(
1−

√
1 +

4ψ

N
log(θ)

1− θ
)
≤ − log(θ)

(
1− 1

N
)
− 1

4ψ
< 0.

In the final part of the proof, we show that 0 is always locally stable and then treat separately
the cases Mi = 0 and Mi > 0, showing that, when they exist, the greater positive steady state is
locally stable while the smaller one is unstable.

Remark 9.2. In Lemma 9.3, the condition to have at least one positive equilibrium, N > 4ψ, is

very interesting and particularly makes sense when rewritten as
N
λ
>

4

β
. Indeed

N
λ

can be seen as

the theoretical male progeny at next generation, starting from wild equilibrium. If this amount is
large enough (larger than some constant times the population size at which the Allee effect comes
into play) then the population can maintain. In any case, if this condition is not satisfied, then the
population collapses. For the population to maintain: either the fitness is good and thus N is very
large, or the probability of one female to mate is high and thus 1/β is small. However, whatever
the values taken by N and β, if, for any reason, the male population at equilibrium decays, the
population can be controlled and possibly collapses.
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Remark 9.3. If β is not too small, then the “wild” steady state is approximately given by M∗(Mi =

0) ' 1
λ (1− 1

N ) and the critical sterilizing level is approximately Mcrit
i ' ỹ = N

4λγi

(
1− 1

N
)2

(see the

definition in Appendix 9.A, in particular we know that Mcrit
i ≤ ỹ). As a consequence, the target

minimal constant density of sterilizing males compared to wild males in order to get unconditional
extinction (i.e. to make (0, 0, 0) globally asymptotically stable, see Proposition 9.1, page 167) is
well approximated by the simple formula

ρ∗ :=
Mcrit
i

M∗(Mi = 0)
' N − 1

4γi
.

With the values from Tables 9.1 and 9.2, for γi = 1 (this means that introduced male are as
competitive as wild ones for mating with wild females), we find

ρ∗ ∈
( 7.46 · 0.46 · νE

4 · 0.046 · (νE + 0.046)
− 0.25,

14.85 · 0.48 · νE
4 · 0.033 · (νE + 0.023)

− 0.25
)

For instance, if νE = 0.01 then this interval is (3.5, 22, 7), if νE = 0.05 then this interval is
(10.6, 51.7) and if νE = 0.1 then this interval is (14.1, 61.4). As νE goes to +∞, the interval goes
to (20.7, 75.7). This example agrees with standard SIT Protocol that indicates to release at least
10 times more sterile males than wild males, recalling that here we deal with a highly reproductive
species (with the above values, the lowest estimated basic reproduction number is 14.9, obtained for
νE = 0.01).

Asymptotic dynamics are easily deduced from the characterization of steady states and local
behavior of the system (Lemma 9.3), because of the monotonicity (see [208]).

Proposition 9.1. If (9.2) has only the steady state (0, 0, 0) then it is globally asymptotically stable.
If there are two other steady states E− � E+ then almost every orbit converges to E+ or

(0, 0, 0). Let K+ := [(0, 0, 0),E+]. The compact set K+ is globally attractive and positively invari-
ant. The basin of attraction of (0, 0, 0) contains [0,E−) and the basin of attraction of E+ contains
(E−,∞).

Now that we have established that the system is typically bistable, the main object to investigate
is the separatrix between the two basins of attraction. This is the aim of the next proposition.

Proposition 9.2. Assume Mcrit
i > 0 and Mi ∈ [0,Mcrit

i ).
Then there exists a separatrix Σ ⊂ R3

+, which is a sub-manifold of dimension 2, such that for

all X 6= Y ∈ Σ, X 6≤ Y and Y 6≤ X, and for all X̂ ∈ Σ, X0 > X̂ implies that X(t) converges to

E+, and X0 < X̂ implies that X(t) converges to 0. In particular, E− ∈ Σ.

Let Σ+ :=
{
X ∈ R3

+, ∃X̂ ∈ Σ, X > X̂
}

and Σ− :=
{
X ∈ R3

+, ∃X̂ ∈ Σ, X < X̂
}

. Then
R3

+ = Σ− ∪ Σ ∪ Σ+, Σ+ is the basin of attraction of E+ and Σ− is the basin of attraction of 0.
In addition, there exists EM , FM > 0 such that

Σ− ⊂
{
X ∈ R3

+, X1 ≤ EM , X3 ≤ FM
}
.

Remark 9.4. In order to reach extinction, the last point of Proposition 9.2 states that both egg
and fertile female populations must stand simultaneously below given thresholds. This obvious fact
receives here a mathematical quantification. With simple words: no matter how low the fertile
female population F has dropped, if there remains at least EM eggs then the wild population will
recover.

Proposition 9.2. We state a preliminary fact: For all v0 ∈ {v ∈ R3
+, ∀i, vi > 0,

∑
i vi = 1} =: S2

+,
there exists a unique ρ0(v0) such that the solution to (9.2) with initial data ρv0 converges to 0 if
ρ < ρ0(v0) and to E+ if ρ > ρ0(v0).

This fact comes from the strict monotonicity of the system, and from the estimate ρ0(v0) ≤
maxi

v0
i

(E−)i
< +∞, combined with Proposition 9.1.

Then we claim that Σ = {ρ0(v0)v0, v0 ∈ S2
+}. The direct inclusion is a corollary of the

previous fact. The converse follows from the fact that Σ±, being the basins of attraction of
attracting points, are open sets.
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The remainder of the proof consists of a simple computation showing that if F0 or E0 is
large enough then for some t > 0 we have (E,M,F )(t) > E−. In details, we can prove that
if F0 is large enough then for any E0,M0 and ε > 0, we can get E(s) ≥ (1 − ε)K for s ∈
(t0(ε, E0, F0), t1(ε, E0, F0)), where t0 is decreasing in F0 and t1 is increasing in F0 and unbounded
as F0 goes to +∞. Then, if E > (1− ε)K for ε small enough on a large enough time-interval, we
deduce M(t) > (1 − ε)2(1 − r) νEµMK for some t > 0. Upon choosing ε small enough and F0 large

enough we finally get (E,M,F )(t) > E−. The scheme is similar when taking E0 large enough.

At this stage, we know that starting from the positive equilibrium, and assuming that the
population of sterile males Mi is greater than M crit

i , the solution will reach the basin of attraction
of the trivial equilibrium in a finite time, τ(Mi). We obtain now quantitative estimates on the
duration of this transitory regime. Rigorously, we define

τ(Mi) := inf
{
t ≥ 0, (E,M,F )(t) ∈ Σ−(Mi = 0),

where (E,M,F )(0) = E+(Mi = 0) and (E,M,F ) satisfies (9.2)
}
. (9.7)

We obtain simple upper and lower bounds for τ(Mi) in terms of various parameters:

Proposition 9.3. Let Mi > Mcrit
i , and Z = Z(ψ) be the unique real number in (0, 1

2ψ ) such that

e−Z =
ψ

1 + ψ − ψZ
,

and Z0 := 1 + ψ − ψZ. Then

τ(Mi) ≥
1

µF
log
(
1 +
N 2(1− ψZ)3

ψZZ2
0

− N (1− ψZ)

ψZZ0

)
. (9.8)

Let σ = sgn(νE + µE − µF ), σE := µM/(νE + µE) and σF := µM/µF . If ε :=
M∗+

M∗++Mi
< 1/N , let

g(ε) :=

√
1 +

4NσEσF ε
(σF − σE)2

.

Assume that σF , σE > 1,

g(ε)σ(σF − σE) < max
(
(2N − 1)σF + σE , (2σE − 1)σF

)
, (σF − 1)(σE − 1) > εN .

Then

τ(Mi) ≤
2σE

µF
(
σF + σE − g(ε)σ(σF − σE)

) log
(N − 1

ψ

( (N − 1)σF + 1− εN
(σF − 1)(σE − 1)− εN

+
σEσF

(
g(ε)σ(σF − σE) + (2N − 1)σF + σE

)(
2σEσF − (σE + σF ) + σ(σF − σE)g(ε)

)
g(ε)σ(σF − σE)

))
. (9.9)

Proof. The proof relies on explicit computation of sub- and super-solutions, detailed in Ap-
pendix 9.B.

Remark 9.5. The dependency in ψ of Proposition 9.3’s upper estimate on τ is approximately
equal to 1

min(νE+µE ,µF ) . One order of magnitude of ψ (the ratio between the wild population size

and the Allee population size) therefore typically corresponds to the maximum of one adult female
and one egg lifespan in terms of release duration needed to get extinction.

Remark 9.6. At this stage, we obtain an analytic upper bound only in the case of massive releases
(ε small enough). A more refined upper bound could theoretically be obtained, see the derivation in
Appendix 9.B, in particular Lemma 9.12.
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9.2.2 Adding a control by means of releases

In a slightly more realistic model, the level of sterilizing male population should vary with time,
depending on the releases t 7→ u(t) ≥ 0 and on a fixed death rate µi. This model reads

dE

dt
= bF (1− E

K
)− (νE + µE)E,

dM

dt
= (1− r)νEE − µMM,

dMi

dt
= u(t)− µiMi,

dF

dt
= rνEE(1− e−β(M+γiMi))

M

M + γiMi
− µFF.

(9.10)

In (9.10), the number of sterilizing males released between times t1 and t2 > t1 is simply equal to∫ t2
t1
u(t)dt.

First, if the release is constant, say u(t) ≡ u0, then Mi(t) = e−µitM0
i + u0

µi
(1 − e−µit). The

special case M0
i = u0

µi
leads back to system (9.2), with Mi ≡ M0

i . For general M0
i ≥ 0, we notice

that Mi(t) converges to u0

µi
as t goes to +∞.

Proposition 9.4. Assume u(t) ≡ u0.

If u0 > µiM
crit
i (defined in Lemma 9.3) then 0 is globally asymptotically stable.

If u0 < µiM
crit
i , then there exists open sets Σ−(u0),Σ+(u0) ⊂ R4

+, respectively the basins of
attraction of 0 and E+ (defined for (9.2) with Mi = u0

µi
), separated by a set Σ(u0) which enjoys

the same properties as those of Σ(0), listed in Proposition 9.2.

(We do not treat the case u0 = µiM
crit
i ).

Proof. Since system (9.10) is monotone with respect to the control u (with sign pattern (−,−,−,+)),
we can use Lemma 9.3 and Proposition 9.2 with sub- and super-solution to get this result in a
straightforward way.

From now on we will restrict ourselves to (possibly truncated) time-periodic controls, which
means that we assume that there exists Nr ∈ Z+∪{+∞} (the number of release periods), a period
T > 0 and a function u0 : [0, T ]→ R+ such that

u(t) =

{
u0(t− nT ) if nT ≤ t < (n+ 1)T for some Nr > n ∈ Z+,

0 otherwise.
(9.11)

We use the notation u ≡ [T, u0, Nr] to describe this control u.

As before, we can compute in case (9.11)

Mi(t) = e−µitM0
i +

∫ t

0

u(t′)e−µi(t−t
′)dt′

= e−µit
(
M0
i +

eµi(b
t
T c∧Nr)T − 1

eµiT − 1

∫ T

0

u0(t′)eµit
′
dt′ +

∫ t

T (b tT c∧Nr)

u(t′)eµit
′
dt′
)

(Here, for a, b ∈ Z, we let a ∧ b = min(a, b)).

If Nr = +∞, for any u0 6= 0 there exists a unique periodic solution Mi, uniquely defined by its
initial value

M0,per
i =

1

1− e−µiT

∫ T

0

u0(t′)eµit
′
dt′,

and which we denote by Mper
i [u0].
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Lemma 9.4. Solutions to (9.10) with u ≡ [T, u0,+∞] are such that Mi converges to Mper
i [u0],

and the other compartments converge to a solution of

dE

dt
= bF (1− E

K
)− (νE + µE)E,

dM

dt
= (1− r)νEE − µMM,

dF

dt
= rνEE(1− e−β(M+γiM

per
i [u0]))

M

M + γiM
per
i [u0]

− µFF.

(9.12)

Convergence takes place in the sense that the L∞ norm on (t,+∞) of the difference converges to
0 as t goes to +∞.

Proof. Convergence of Mi is direct from the previous formula. Then, as for Proposition 9.4 the
monotonicity of the system implies the convergence.

Let M i[u0] := maxMper
i [u0] and M i[u0] := minMper

i [u0].

Proposition 9.5. If M i[u0] > Mcrit
i then 0 is globally asymptotically stable for (9.12).

On the contrary, if M i[u0] < Mcrit
i then (9.12) has at least one positive periodic orbit. In this

case the basin of attraction of 0 contains the interval
(
0,E−(Mi = M i[u0])

)
, and any initial data

above E+(Mi = M i[u0]) converges to X
per

[u0].

Proof. System (9.12) is a periodic monotone dynamical system. It admits a unique non-negative
solution X = (E,M,F ). In fact, we consider the constant sterile population model

dEm
dt

= bFm

(
1− Em

K

)
− (νE + µE)Em,

dMm

dt
= (1− r)νEEm − µMMm,

dFm
dt

= rνE
Mm

Mm +M i[u0]

(
1− e−β(Mm+γiMi[u0])

)
Em − µFFm.

(9.13)

such that, using a comparison principle, the solution Xm = (Em,Mm, Fm) verifies Xm ≥ X for all
time t > 0. Thus if Xm converges to 0, so will X. The behavior of system (9.13) follows from the
results obtained in the previous section. A sufficient condition to have 0 globally asymptotically
stable in (9.12) is therefore given by Mper

i > M crit
i .

The remainder of the claim is better seen at the level of the discrete dynamical system defined
by (9.12). Periodic orbits are in one-to-one correspondence with the fixed points of the monotone
mapping Φ[u0] : R3

+ → R3
+ defined as the Poincaré application of (9.12) (mapping an initial data

to the solution at time t = T ). Now, if X∗ := (E∗,M∗, F ∗) is the biggest (i.e. stable) steady state
of (9.2) at level Mi = M i[u0] < M crit

i , then for any (E,M,F ) � (E∗,M∗, F ∗) and M ′i ≤ Mi,
writing the right-hand side as Ψ = (Ψ1,Ψ2,Ψ3) we have

Ψ1(E∗,M, F,M ′i) > 0,

Ψ2(E,M∗, F,M ′i) > 0,

Ψ3(E,M,F ∗,M ′i) > 0.

In other words, the interval
(
X∗,+∞

)
is a positively invariant set. Therefore, Φ[u0](X∗) > X∗.

Thus the sequence
(
Φ[u0]k(X∗)

)
k

is increasing and bounded in R3
+: it must converge to some

X∗ > X∗. The same reasoning (with reversed inequalities) applies with the sequence starting at
the stable equilibrium associated with Mi = M i[u0]: it must decrease, and thus converge to some

X
∗ ≥ X∗.

By our proof we have shown that the open interval
(
E+(Mi = M i[u0]),+∞

)
belongs to the

basin of attraction of X
per

, and we can also assert that
(
E−(Mi = M i[u0]),E+(Mi = M i[u0])

)
belongs to the basin of attraction of Xper, while as usual

(
0,E−(Mi = M i[u0])

)
is in the basin of

attraction of 0.
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By a direct application of the previous results

Lemma 9.5. If M i[u0] > Mcrit
i then the control u ≡ [T, u0, n] (with n ∈ Z+) leads to extinction

(i.e. the solution with initial data E+ goes to 0 as t goes to +∞) as soon as

n ≥ τ(M i[u0])

T
. (9.14)

A special case of (9.10)-(9.12) is obtained by choosing u0 = uε0 = Λ
ε 1[0,ε] for some Λ > 0 and

letting ε go to 0. Then there exists a unique limit as ε goes to 0, which is given by the following
impulsive differential system derived from (9.10):

dE

dt
= bF (1− E

K
)− (νE + µE)E,

dM

dt
= (1− r)νEE − µMM,

dMi

dt
= −µiMi,

Mi(nT
+) = Mi(nT ) + Λ for n ∈ Z+ with 0 ≤ n < Nr,

dF

dt
= rνEE(1− e−β(M+γiMi))

M

M + γiMi
− µFF.

(9.15)

In (9.15), Mi converges to the periodic solution

M imp
i (t) := lim

ε→0
Mper
i [uε0] =

Λe−µi(t−b
t
T cT )

1− e−µiT

We can compute explicitly M imp
i := Λe−µiT

1−e−µiT and M
imp

i := Λ
1−e−µiT , respectively the minimum and

the maximum of M imp
i . We also define the following periodic monotone system as a special case

of (9.12): 

dE

dt
= bF (1− E

K
)− (νE + µE)E,

dM

dt
= (1− r)νEE − µMM,

dF

dt
= rνEE(1− e−β(M+γiM

imp
i ))

M

M + γiM
imp
i

− µFF.

(9.16)

The right-hand side of system (9.15) is locally Lipschitz continuous on R3. Thus, using a classic
existence theorem (Theorem 1.1, p. 3 in [21] ), there exists Te > 0 and a unique solution defined
from (0, Te) → R3. Using standard arguments, it is straightforward to show that the positive
orthant R3

+ is an invariant region for system (9.15).
We estimate the (minimum) size of the releases Λ and periodicity T , such that the wild popu-

lation goes to extinction.

Proposition 9.6. Let S :=

(
1− r

)
νEN

4µMγi

(
1− 1

N
)2
K. If

T ≤ 1

µi
log
(
1 +

Λ

S
)

(9.17)

then 0 is globally asymptotically stable in (9.16). Condition (9.17) is equivalent to Λ ≥ S
(
eµiT−1

)
.

Proof. We know (see Appendix 9.A and Remark 9.3) that M crit
i ≤ N

4λγi

(
1 − 1

N
)2

. Hence the
following is a sufficient condition for global asymptotic stability of 0:

M imp
i ≥ N

4λγi

(
1− 1

N

)2

=
(1− r) νEN

4µMγi

(
1− 1

N

)2

K.
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That is
Λe−µiτ

1− e−µiτ
≥ (1− r) νEN

4µMγi

(
1− 1

N

)2

K,

and the result is proved.

Remark 9.7. As a continuation of Remark 9.3, we note that Proposition 9.6 gives a very simple
estimate for the target ratio of sterilizing males per release over initial wild male population as a
function of the period between impulsive releases in the form

ρ(T ) :=
Λ

M∗(Mi = 0)
'
(
eµiT − 1

)N − 1

4γi
.

We can specify Lemma 9.5 for impulses and combine it with Proposition 9.3 to get a sufficient
condition for extinction in the impulsive cases:

Proposition 9.7. The impulsive control of amplitude Λ > 0 and period T > 0 satisfying Λ ≥
S
(
eµiT − 1

)
leads to extinction in n impulses if

n ≥ τ(M imp
i )

T
, where M imp

i =
Λe−µiT

1− e−µiT
. (9.18)

9.3 Numerical study

9.3.1 Numerical method and parametrization

In order to preserve positivity of solutions and comparison principle, we use a nonstandard finite-
differences (NSFD) scheme to integrate the differential systems (see for instance [10] for an overview).

For system (9.10), it reads

En+1 − En

Φ(∆t)
= bFnS (1− En+1

K
)− (νE + µE)En,

Mn+1 −Mn

Φ(∆t)
= (1− r)νEEn − µMMn,

Mn+1
i −Mn

i

Φ(∆t)
= −µiMn

i + un,

Fn+1 − Fn

Φ(∆t)
= rνE

Mn+1

Mn+1 +Mn+1
i

(
1− e−β(Mn+1+Mn+1

i ))En − µFFn,
(9.19)

where ∆t is the time discretization parameter, Φ(∆t) = 1−e−Q∆t

Q , Q = max{µM , µF , νE + µE , µi}
and Xn (respectively un) is the approximation of X(n∆t) (respectively u(n∆t)) for n ∈ N.

Parameter β b r µE νE µF µM γi µi ∆t
Value 10−4 − 1 10 0.49 0.03 0.001− 0.25 0.04 0.1 1 0.12 0.1

Table 9.3: Numerical values fixed for the simulations.

We fix the value of some parameters using the values from Tables 9.1 and 9.2 (see Table 9.3).
Then, in order to get results relevant for an island of 74 ha with an estimated male population of
about 69 ha−1, we let νE and β vary, and fix K such that

M∗+ = 69 · 74 = 5106,

that is

K =
5106 ·µM

(1− r)νE(1− 1
N (1−e−β · 5106)

)
.

Recall that for the choice from Table 9.3, page 172, we have

N = 117.5
νE

νE + 0.03
.
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Remark 9.8. Thus according to the values taken by νE in Table 9.3, page 172, we have the
following bounds for N :

29 ≤ N ≤ 105.

The other aggregated value of interest, ψ = µM
(1−r)νEβK = N−(1−e−βM

∗
+ )

NM∗+β
, ranges from 1.4 · 10−4 to

2, approximately.

All computations were performed using Python programming language (version 3.6.2). The
most costly operation was the separatrix approximation, which needed to be done once for each
set of parameter values. We first compute points close to the separatrix (see details in Section 9.3.3),
starting from a regular triangular mesh with 40 points on each side, then we reduce the points if
any comparable pairs appeared. From these (at most 861) scattered points we build recursively
a comparison tree by selecting the point P which minimizes the distance to all other points, and
distributing the remaining points into six subtrees, corresponding to each affine orthant whose
vertex is P . Each tree was saved using pickle module, and loaded when necessary. This was
done to reduce the number of operations for checking if a point is below the separatrix, as this
needs to be done several times along each computed trajectory. Indeed, using the fact that two
points on the separatrix cannot be related by the partial order, one only needs to investigate 3 of
the 6 remaining orthants to determine if the candidate point is below any of the scattered points
or not. For any given input of released sterilizing males, the computation of a trajectory ended
either when the maximal number of iterations was reached (here, we fixed that value at 3 · 105) or
when it was found below the separatrix, using the comparison tree. Trial CPU times (on a laptop
computer with Intel® Core� i5-2410M CPU @ 2.30GHz x 4 processor) for all these operations are
given in Table 9.4.

Operation Approximation Reduction Tree building Save Load Full trajectory Stopped trajectory
CPU time (s) 267 12 6.8 1.8 · 10−3 1 · 10−3 17 0.25

Table 9.4: CPU times for the numerical simulations

9.3.2 Equilibria and effort ratio

We first compute the position of equilibria for a range of values of β and ν̃E . This enables us to
compute the effort ratio ρ∗, defined in Remark 9.3 as the ratio between the wild steady state male
population M∗(Mi = 0) and the critical constant value of sterilizing males M crit

i necessary in order
to make 0 globally asymptotically stable. Values are shown in Table 9.5.

νE 0.005 0.010 0.020 0.030 0.050 0.100 0.150 0.200 0.250
ρ∗ 16 30 48 60 76 93 101 106 108

Table 9.5: Effort ratio ρ∗ = M crit
i /M∗(Mi = 0) for various values of νE . For this range of

parameters, ρ∗ is practically independent on β ∈ [10−4, 1].

We note that ρ∗ depends practically only on νE , because the Allee (with parameter β) does
not apply at high population levels. In fact the ratio (and thus the control effort) increases with
increasing values of νE , that favor the maintenance of the wild population (the larger the value of
νE , the larger the value of N and the shorter the period in the eggs compartment).

9.3.3 Computation of the basin of attraction of 0 for (9.2)

We start from a regular triangular mesh of the triangle {(E,M,F ) ∈ R3
+, E+M +F = 1}, with

40 points on each side. Given ε > 0, for each vertex V of this mesh we compute λ ∈ (0,+∞) such
that λV ∈ Σ− and (1 + ε)λV ∈ Σ+. The points λV (which are numerically at distance at most ε
of the separatrix Σ) are then plotted.

Figure 9.1 is typically the kind of figure that we can draw for each set of parameters. Depending
on the parameters values, the basin of attraction of 0 can be tiny, or not. Its shape emphasizes the
important role of eggs and, even, males abundance in the maintenance of the wild population. In
fact, even if almost all females have disappeared, the control must go on in order to further reduce
the stock of eggs before eventually reaching the separatrix.
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Figure 9.1: Two viewpoints of scattered points lying around the separatrix (ε = 10−2) for νE = 0.1
and β = 10−4. In this case, 5 females or 900 eggs are enough to prevent population elimination.

9.3.4 Constant releases and entrance time into basin

For the same set of parameters as before, we compute the entrance time into the basin of 0.
First, we use Proposition 9.3 to get in Table 9.6 an underestimation of the entrance time,

whatever the releasing effort could be, these entrance times represent the minimal time under
which the SIT control cannot be successful (in fact, this under-estimation corresponds to the
situation where Mi = +∞, that is an infinite releasing effort).

νE\β 10−4 10−3 10−2 10−1 100

0.005 63 151 204 253 303
0.010 93 180 232 281 331
0.020 118 203 256 304 354
0.030 130 215 267 315 365
0.050 141 226 278 327 377
0.100 152 236 289 337 387
0.150 156 240 293 341 391
0.200 158 242 295 343 393
0.250 160 244 296 344 395

10−4 10−3 10−2 10−1 100

258 351 448 545 642
286 374 464 553 643
301 381 462 544 625
307 383 461 538 615
332 404 477 550 623
N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

10−4 10−3 10−2 10−1 100

323 445 571 697 824
361 475 592 708 825
381 485 590 695 800
391 488 587 685 783
440 530 621 713 804
N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

Table 9.6: Left: under-estimation of the entrance time into the basin of 0 from the analytic
formula (9.8). Middle and right: over-estimation of the entrance time into the basin of 0 from

formula (9.9) with ε =
M∗+

M∗++φMcrit
i

, when applicable, for φ = 8 (middle) and φ = 4 (right).

Then we compute numerically the entrance time for a range of releasing efforts. In details,
computations were performed for Mi = φM crit

i with φ ∈ {1.2, 1.4, 1.6, 1.8, 2, 4, 8}. Results are
shown in Table 9.7 for φ = 1.2, φ = 2 and φ = 8.

νE\β 10−4 10−3 10−2 10−1 100

0.005 168 286 363 435 504
0.010 200 305 376 441 505
0.020 219 313 377 437 495
0.030 225 314 375 434 492
0.050 228 314 373 431 488
0.100 231 314 372 430 488
0.150 232 315 373 431 489
0.200 233 316 375 433 491
0.250 234 318 376 434 493

10−4 10−3 10−2 10−1 100

148 262 338 409 478
180 283 352 417 480
199 292 355 415 473
207 295 355 413 471
212 297 355 413 470
215 298 356 414 472
217 300 358 416 474
219 302 360 418 476
220 303 362 420 478

10−4 10−3 10−2 10−1 100

128 237 311 380 449
160 258 326 391 454
180 270 333 392 450
188 274 334 392 450
194 278 336 394 452
200 282 340 398 456
202 285 343 401 459
205 287 345 403 462
206 289 347 406 464

Table 9.7: Entrance time into the basin of 0 (in days) for various values of (νE , β), with Mi =
1.2M crit

i (left), Mi = 2M crit
i (middle) and Mi = 8M crit

i (right).

We notice that the entrance times corresponding to the biggest effort ratio are of the same
order of magnitude as the analytic under-estimation from formula (9.8).

Another interesting output of Table 9.7 is that the release effort ratio is not so important in
terms of duration of the control: depending on the values taken by νE and β, the lowest ratio

174



CHAPTER 9. STERILIZING MALES 9.3. NUMERICAL STUDY

νE\β 10−4 10−3 10−2 10−1 100

0.005 399 680 863 1034 1199
0.010 854 1302 1603 1880 2154
0.020 1513 2166 2603 3022 3423
0.030 1950 2726 3253 3761 4264
0.050 2482 3421 4059 4686 5315
0.100 3100 4218 5000 5777 6553
0.150 3383 4581 5434 6278 7122
0.200 3545 4806 5694 6578 7461
0.250 3649 4956 5869 6779 7689

10−4 10−3 10−2 10−1 100

587 1036 1338 1619 1893
1283 2009 2499 2962 3416
2296 3367 4092 4782 5452
2989 4260 5132 5976 6815
3837 5381 6434 7483 8529
4817 6675 7975 9268 10563
5274 7268 8688 10095 11502
5549 7638 9117 10588 12060
5717 7884 9405 10922 12438

10−4 10−3 10−2 10−1 100

2024 3749 4920 6027 7115
4548 7343 9257 11112 12912
8317 12451 15331 18040 20736
10862 15871 19319 22691 26040
14058 20188 24395 28588 32774
17891 25266 30457 35640 40813
19651 27618 33285 38913 44541
20757 29073 34979 40865 46750
21443 30036 36123 42188 48254

Table 9.8: Total effort ratio to get into the basin of 0 for various values of (νE , β), with Mi =
1.2M crit

i (left), Mi = 2M crit
i (middle) and Mi = 8M crit

i (right). The total effort ratio in this case
is defined as Mi/M

∗
+ multiplied by µi times the entrance time, and corresponds to the number of

males that should be released at a constant level, divided by the initial male population.

needs between 4 to 7 more weeks to reach the basin, than the largest ratio. Contrary to what
could have been expected, there is no linear relationship. This can be explained by the fact that a
female mates only once. Thus if males are in abundance, all females have mated, and then many
released males become useless with regards to sterilization. Of course, this has to be mitigated
taking into account that our model implicitly assumes a homogeneous distribution, while in real,
environmental parameters (like vegetation, climate, etc.) have to be taken into account [72]. Last
but not least, Table 9.8, page 175, clearly emphasizes that a large effort ratio, i.e. φ = 8, means
the use (and then the production) of a large number of sterile males with a really small time-saving
compared to the case φ = 2. For instance with νE = 0.05 and β = 10−2, the total effort ratio for
φ = 8 is approximately 6 times larger than for φ = 2 (24395 against 4059), with a time-saving of
37 days, that is approximately one tenth of the total protocol duration (336 days against 373).

In other words, releasing a large number of sterile males is not necessarily a good strategy, from
the economical point of view, but also from the control point of view.

In the next subsection, We consider a more realistic scenario, where sterile males are released
periodically and instantaneously (system (9.16)).

9.3.5 Periodic releases

In the case of periodic releases by pulses u = [T,Λδ0,∞], for a given couple (νE , β) we compute the
first time t > 0 such that (E,M,F )(t) is below one point of the previously computed separatrix.

We performed the computations with T ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, choosing

Λ = K
φ(1− r)νEN

4µM

(
1− 1

N
)2(

eµiT − 1
)

for φ ∈ {1.2, 1.4, 1.6, 1.8, 2, 4, 8}.
For all combinations of (νE , β), we indicate in Table 9.9 the maximal and minimal (with respect

to (T, φ)) total effort ratio ρtot defined as the number of released mosquitoes at the time when the
basin of 0 is reached, divided by the initial male population that is:

ρtot := ntotΛ/M
∗
+, ntot = min{bt/T c, (E,M,F )(t) ∈ Σ−}.

These extremal values are obtained for a period T and with an entrance time t∗ that are shown
in parentheses. We also indicate in Table 9.10 the maximal and minimal entrance times, obtained
for a period T and an effort ratio ρtot that are shown in parentheses. Note that consistently,
the minimal entrance time is always obtained for φ = 8 and corresponds to the maximal effort
ratio. Maximal entrance time is obtained for T = 1 (minimal tested period) and the minimal
entrance time is obtained for T = 10 (maximal tested period). However, the minimal effort ratio
is sometimes obtained with T = 2.

Comparing Tables 9.8 and 9.9 shows that in general, a periodic control achieves the target of
bringing the population into Σ− at a smaller cost than the constant control (in terms of total
number of released mosquitoes, counted with respect to the wild population).

9.3.6 Case study: Onetahi motu

We now parametrize explicitly our model to the case of Onetahi motu in Tetiaroa atoll (French
Polynesia), where weekly (T = 7 days) releases have been performed over a year. Male population
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νE\β 10−4 10−3 10−2 10−1 100

0.005 282 (2, 287) 384 (2, 491) 448 (1, 608) 502 (1, 682) 554 (1, 752)
0.010 547 (1, 344) 698 (2, 497) 796 (1, 602) 884 (1, 669) 969 (2, 805)
0.020 900 (1, 357) 1112 (1, 519) 1253 (1, 585) 1386 (1, 647) 1504 (2, 771)
0.030 1125 (3, 363) 1371 (1, 510) 1538 (1, 572) 1696 (2, 693) 1839 (2, 752)
0.050 1383 (2, 379) 1669 (1, 496) 1875 (1, 556) 2066 (2, 672) 2238 (2, 730)
0.100 1655 (2, 370) 1997 (1, 480) 2238 (1, 539) 2458 (2, 650) 2678 (2, 708)
0.150 1772 (1, 388) 2134 (1, 473) 2394 (2, 583) 2632 (2, 641) 2871 (2, 699)
0.200 1834 (1, 384) 2213 (1, 470) 2482 (2, 578) 2731 (2, 636) 2979 (1, 738)
0.250 1873 (1, 382) 2263 (1, 468) 2531 (2, 575) 2787 (2, 633) 3043 (2, 692)

10−4 10−3 10−2 10−1 100

1095 (10, 135) 1838 (10, 248) 2450 (10, 323) 2986 (10, 393) 3522 (10, 462)
2317 (10, 168) 3575 (10, 268) 4536 (10, 337) 5499 (10, 402) 6323 (10, 466)
4139 (10, 188) 6015 (10, 280) 7573 (10, 343) 8909 (10, 402) 10246 (10, 460)
5448 (10, 196) 7829 (10, 283) 9506 (10, 343) 11183 (10, 402) 12581 (10, 460)
7155 (10, 201) 9818 (10, 286) 11921 (10, 344) 14025 (10, 402) 15778 (10, 460)
8794 (10, 206) 12114 (10, 289) 14709 (10, 347) 17305 (10, 405) 19900 (10, 463)
9522 (10, 209) 13603 (10, 291) 15948 (10, 350) 18762 (10, 408) 21576 (10, 466)
10431 (10, 211) 14201 (10, 293) 17138 (10, 352) 19586 (10, 410) 22524 (10, 468)
10709 (10, 212) 14584 (10, 295) 17601 (10, 353) 20618 (10, 412) 23133 (10, 470)

Table 9.9: Minimal (left) and maximal (right) total effort ratio to get into the basin of 0 (in days)
for various values of (νE , β), the minimum and maximum being taken with respect to (T, φ), with
a period and an entrance time shown in parentheses. The total effort ratio is defined as the total
number of released male mosquitoes divided by the initial (wild) male mosquito population.

νE\β 10−4 10−3 10−2 10−1 100

0.005 135 (10, 1095) 248 (10, 1838) 323 (10, 2450) 393 (10, 2986) 462 (10, 3522)
0.010 168 (10, 2317) 268 (10, 3575) 337 (10, 4536) 402 (10, 5499) 466 (10, 6323)
0.020 188 (10, 4139) 280 (10, 6015) 343 (10, 7573) 402 (10, 8909) 460 (10, 10246)
0.030 196 (10, 5448) 283 (10, 7829) 343 (10, 9506) 402 (10, 11183) 460 (10, 12581)
0.050 201 (10, 7155) 286 (10, 9818) 344 (10, 11921) 402 (10, 14025) 460 (10, 15778)
0.100 206 (10, 8794) 289 (10, 12114) 347 (10, 14709) 405 (10, 17305) 463 (10, 19900)
0.150 209 (10, 9522) 291 (10, 13603) 350 (10, 15948) 408 (10, 18762) 466 (10, 21576)
0.200 211 (10, 10431) 293 (10, 14201) 352 (10, 17138) 410 (10, 19586) 468 (10, 22524)
0.250 212 (10, 10709) 295 (10, 14584) 353 (10, 17601) 412 (10, 20618) 470 (10, 23133)

10−4 10−3 10−2 10−1 100

456 (1, 317) 667 (1, 420) 752 (1, 474) 826 (1, 521) 896 (1, 565)
528 (1, 629) 661 (1, 749) 735 (1, 833) 803 (1, 909) 868 (1, 982)
534 (1, 1012) 642 (1, 1179) 708 (1, 1300) 771 (1, 1414) 830 (1, 1522)
527 (1, 1246) 627 (1, 1445) 690 (1, 1588) 749 (1, 1724) 807 (1, 1860)
514 (1, 1513) 605 (1, 1749) 666 (1, 1925) 724 (1, 2090) 782 (1, 2257)
494 (1, 1787) 581 (1, 2072) 640 (1, 2279) 698 (1, 2485) 755 (1, 2692)
483 (1, 1896) 569 (1, 2200) 628 (1, 2428) 686 (1, 2652) 744 (1, 2877)
477 (1, 1953) 563 (1, 2272) 622 (1, 2510) 680 (1, 2745) 738 (1, 2979)
473 (1, 1988) 559 (1, 2317) 618 (1, 2562) 676 (1, 2802) 734 (1, 3043)

Table 9.10: Minimal (left) and maximal (right) entrance time into the basin of 0 (in days) for
various values of (νE , β), the minimum and maximum being taken with respect to (T, φ), with a
period and a total effort ratio shown in parentheses.

νE\β 10−4 10−3 10−2 10−1 100

0.001 39 200 295 376 453
0.002 142 310 402 480 555
0.005 877 1094 1178 1252 1323
0.008 N/A N/A N/A N/A N/A
0.010 N/A N/A N/A N/A N/A
0.015 N/A N/A N/A N/A N/A

10−4 10−3 10−2 10−1 100

34 181 272 352 430
111 262 350 428 503
350 471 554 627 697
1167 1091 1168 1238 1305
N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

10−4 10−3 10−2 10−1 100

30 171 261 341 418
97 241 327 404 480
260 381 462 535 605
443 541 618 687 754
676 728 802 870 935
N/A N/A N/A N/A N/A

Table 9.11: Entrance time into the basin of 0 (in days) for various values of (νE , β) with constant
weekly (T = 7 days) releases at p = 4 (left), p = 6 (center) or p = 8 (right).

was estimated at 69 · 74 ' 5000 individuals, and the initial effort ratio p := Λ/M∗+ was estimated
at 8.

νE\β 10−4 10−3 10−2 10−1 100

0.001 0.943252 0.147678 0.020134 0.002495 0.000283
0.002 0.567382 0.071552 0.009875 0.001247 0.000141
0.005 0.205116 0.031070 0.004439 0.000568 0.000069
0.008 0.133889 0.021388 0.003170 0.000425 0.000052
0.010 0.111803 0.018284 0.002779 0.000380 0.000047
0.015 N/A N/A N/A N/A N/A

Table 9.12: Final total female ratio (F+Fst)(t)
F∗+F∗st

at time t when the trajectory enter into the basin

of 0 for various values of (νE , β) with constant weekly (T = 7 days) releases at p = 8.

For p ∈ {4, 6, 8}, entrance times (in days) are shown in Table 9.11 and final total female ratio in
Table 9.12. This last quantity is important for practical purposes to help answering the question:
when is it time to stop the releases? The trap counts during the experiment are to be compared
with the initial trap counts (before the releases), and roughly, the process can be stopped once the
ratio between the counts goes below the values in Table 9.12. Interestingly, β determines the order
of magnitude of this final ratio.

Table 9.11 provides us interesting information on the entrance time versus the transition rate
νE and the mating parameter β. If the effort ratio p is not large enough, the SIT treatment can
fail, and even if it is large enough (say p = 8) the time to reach the basin of 0 can be very large.

In the 3-dimensional state space (E,M,F ) we draw the full trajectory for the same sample
value (νE = 0.008, β = 10−3, p = 8) along with a zoom in the last 30 days of treatment showing
also the separatrix between the basins of E+ and 0 as dots in Figure 9.2. According to Table 9.11,
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Figure 9.2: Trajectory t 7→ (E(t),M(t), F (t)) for νE = 0.008 and β = 10−3 (left) and a zoom in
the last 30 days of treatment displaying also the separatrix as dots (right).
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Figure 9.3: Time dynamics of different ratios for νE = 0.008 and β = 10−3.

page 176, the entrance time is 541, which justifies that the control should last for more than one
year. Our system being monotone, the trajectory is monotone decreasing (see Figure 9.2 (left),
page 177). However, the rate of the decrease is relatively large at the beginning of the treatment,
and then becomes small and, almost, constant. We also show time dynamics of four relevant
normalized quantities, for the same sample value (νE = 0.008, β = 10−3, p = 8) in Figure 9.3.
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9.4 Conclusion

In this paper we have derived a minimalistic model to control mosquito population by Sterile In-
sect Technique, using either irradiation or the cytoplasmic incompatibility of Wolbachia to release
sterilizing males. We particularly focus on the chance of collapsing the wild population, provided
that the selected area allows elimination. Thus contrary to previous SIT and IIT models, the
trivial equilibrium, 0 is always Locally Asymptotically Stable, at least. We consider different type
of releases (constant, continuous, or periodic and instantaneous) and show necessary conditions to
reach eradication, in each case. We also derived the minimal time under which eradication cannot
occur, (i.e. entrance into the basin of attraction of 0 is impossible), whatever the control effort.
Obviously, the knowledge on the mosquito parameters are very important, particularly the duration

of the egg compartment,
1

µE + νE
and the mating parameter, β. Surprisingly, mosquito entomol-

ogists have not yet really focused their experiments on β or the probability of meeting/mating
between one male and one female according to the size of the domains. Our model illustrates the
importance of this parameter (and others) in the duration of the SIT control. In general, SIT ento-
mologists recommend to release a minimum of ten times more sterile males than (estimated) wild
males: this can be necessary if the competitiveness of the sterile male is weak compared to the wild
ones (this can be the case with irradiation SIT approach). Our approach may help standardizing
and quantifying this estimated ratio.

Finally, we focus on a real case, the Onetahi motu, where a Wolbachia experiment has been con-
ducted by Dr. Hervé Bossin and his collaborators, driving the local mosquito, Aedes polynesiensis,
to nearly elimination. Our preliminary results show some good agreement with field observation
(mainly trapping).

Our results also show the importance of eggs in the survival of the wild population. If the egg
stock is sufficiently large, and depending on weather parameters, the wild population can re-emerge
after the control has stopped. That is why, according to our model and numerical results, it is
recommended to pursue the release of sterilizing males even after wild mosquito females are no
longer collected in monitoring traps.

Last but not least, we hope that our theoretical results will be helpful to improve future SIT
experiments and particularly to take into account the long term dynamics of eggs.
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Appendices

9.A Study of the steady states

This section is devoted to the proof of Lemma 9.3.

9.A.1 Study of f

We first study function f defined in (9.4). For any y ≥ 0, if x ≥ 1
ψ then f(x, y) < − 1

N (x + y) so

in particular f(x, y) < 0. Therefore all steady states must satisfy βM∗ < 1
ψ . Likewise,

y ≥ 0, 0 ≤ x < 1

ψ
=⇒ (1− ψx)(1− e−(x+y)) < 1.

Hence for all x < 1
ψ we find f(x, y) < (1− 1

N )x− 1
N y. As a consequence, if N ≤ 1 then f(x, y) < 0

for all (x, y) ∈ R2
+\{0}, and system (9.2) has no positive steady state. From now on we assume

that N > 1.
We also compute directly f(0, y) = − 1

N y < 0 and limx→+∞ f(x, y) = −∞.

Remark 9.9. For all x ∈ (0, 1/ψ), we notice that

f(x, y) < Qy(x) = −ψx2 + (1− 1

N
)x− y

N
.

The discriminant of the second-order polynomial Qy is

∆y = (1− 1

N
)2 − 4yψ

N
.

Let ỹ := N
4ψ (1− 1

N )2. If y ≥ ỹ then ∆y ≤ 0, hence f < 0. At this stage we know that if βγiMi ≥ ỹ
then there is no positive steady state.

The quantity ỹ is used in Remark 9.3 to obtain a first-order approximation of the target release
ration.

We now compute the derivatives of f :

∂xf = (1− 2ψx)(1− e−(x+y))− 1

N
+ x(1− ψx)e−(x+y),

∂2
xxf = −2ψ(1− e−(x+y)) + e−(x+y)

(
2− (4ψ + 1)x+ ψx2

)
∂3
xxxf = e−(x+y)

(
− 6ψ − 3 + (6ψ + 1)x− ψx2

)
=: e−(x+y)Q3(x)

∂yf = x(1− ψx)e−(x+y) − 1

N
,

∂2
yyf = −x(1− ψx)e−(x+y) < 0 for x ∈ (0, 1/ψ).

Obviously, ∂xf(x, y) < 0 if x ≥ 1
ψ and ∂xf(0, y) = 1− e−y − 1

N , which is positive if and only if

y > − log(1− 1
N ) = log(1 + 1

N−1 ).

In order to know the variations of ∂3
xxxf we study the second-order polynomial

Q3(x) = −6ψ − 3β + x
(
6ψ + 1

)
− ψx2.

179



9.A. STUDY OF THE STEADY STATES CHAPTER 9. STERILIZING MALES

Its discriminant is
∆3 = (6ψ + 1)2 − 4ψ(6ψ + 3) = 1 + 12ψ2,

which is positive. Therefore ∂3
xxxf is negative-positive-negative. More precisely, Q3 is positive on

(w−, w+) :=
(6ψ + 1−

√
1 + 12ψ2

2ψ
,

6ψ + 1 +
√

1 + 12ψ2

2ψ

)
.

To go one step further, we need to know the signs of ∂2
xxf(w+, y) and ∂2

xxf(0, y). We write

∂2
xxf(x, y) > 0 ⇐⇒ e−(x+y)

(
2 + 2ψ − (4ψ + 1)x+ ψx2

)
> 2ψ

Hence ∂2
xxf(0, y) > 0 if and only if y < log(1 + 1

ψ ). Similarly, ∂2
xxf(w+, y) < 0 if and only if

y > log
(
1 +

1

ψ
− (2 +

1

2ψ
)w+ +

1

2
w2

+

)
− w+.

This is always true:

Lemma 9.6. For all ψ > 0,

log
(
1 +

1

ψ
− (2 +

1

2ψ
)w+ +

1

2
w2

+

)
− w+ < 0.

Proof. To prove it, we introduce γ = 1
2ψ so that we are left with

log
(
7 + 3γ + γ2 + (4 + γ)

√
3 + γ2

)
− (3 + γ +

√
3 + γ2) < 0.

To check this we introduce

g(x) := log(7 + 3x+ x2 + (4 + x)
√

3 + x2)− (3 + x+
√

3 + x2),

and we want to prove that g is negative. We compute that the sign of g′(x) is equal to that of

−(4 + x)(3 + x2)− 2x−
√

3 + x2(8 + 2x+ x2) < 0.

It remains to check that g(0) = log(7 + 4
√

3)− (3 +
√

3) < 0, which is true since

e3+
√

3 > e4 > 24 > 7 + 8 > 7 + 4
√

3,

where we used e > 2 and 1 <
√

3 < 2.

Thus we obtain that x 7→ ∂2
xxf(x, y) is either positive-negative (if y < log(1 + 1

ψ )) or always

negative (otherwise).
The conclusion of all these computations is that in both cases (f is either convex-concave or

simply concave), for any y, f(0, y) < 0, f(+∞, y) = −∞ so that all in all there are either 0, 1 or
2 solutions to f(x, y) = 0, depending merely on the sign of the maximum of x 7→ f(x, y).

9.A.2 Study of functions h±

We move on to the next step of the proof, studying the functions h± defined in (9.5). Recall that
solving f(x, y) = 0 (for x, y > 0) is equivalent to picking θ = e−(x+y) ∈ (0, 1) and y = h±(θ).

First, to check that h+ and h− are well-defined we need to check that 1 + ξ log(θ)
1−θ > 0 for some

θ ∈ (0, 1). It is easily checked that this is the case on (θ0(ξ), 1), and θ0(ξ) is well-defined as soon
as ξ < 1.

Hence if ξ ≥ 1 then there is no nonzero steady state. Assume therefore that ξ < 1. Then there
exists a unique θ0(ξ) ∈ (0, 1) such that 1− θ − ξ log(θ) has the same sign as θ − θ0 on (0, 1), that
is, 1− θ0 = 4ψ

N log(θ0).
We can check that h− is decreasing, h− < h+ on (θ0, 1],

h±(θ0) = − 1

2ψ
− log(θ0),
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and

h−(1) < h+(1) =
1

2ψ

(
− 1 +

√
1− ξ

)
< 0.

Indeed (recall that N ξ = 4ψ),

h′−(θ) = −1

θ
− 1

N

1
θ(1−θ) + log(θ)

(1−θ)2√
1 + ξ log(θ)

1−θ

< 0,

since

− log(θ)

1− θ
<

1

θ
.

Let ycrit := maxθ∈[θ0(ξ),1] h+(θ). If y = ycrit then there is exactly one solution to f(x, y) = 0.
For any y ∈ [0, ycrit), there are at least two solutions. By the previous computations we know
that there are at most two solutions. So in this case there are exactly two solutions. To describe
them one should consider I1 := [0, h−(θ0(ξ))], if h−(θ0(ξ)) > 0 (I1 = ∅ otherwise), and I2 =
(max(θ0(ξ), 0), ycrit). If y ∈ I1 then there is a solution of the form h−(θ−) and one of the form
h+(θ−). If y ∈ I2 then both solutions are of the form h+(θ), for two values of θ whose range
contains the argument of ycrit. And for y > ycrit there is no solution.

At this stage we proved that if ξ ≥ 1 then there is no positive steady state; if ξ < 1 then if
ycrit > 0 then there are two positive steady states for βγiMi ∈ [0, ycrit), 1 for βγiMi = ycrit and
0 for βγiMi > ycrit. If ycrit = 0 then there is a unique positive steady state and if ycrit < 0 then
there is no positive steady state for any Mi ≥ 0.

9.A.3 Stability

Finally, in order to compute the linearized stability of the steady states, we decompose J = M0+N0,
where M0 is non-negative and N0 is diagonal non-positive. Then J (being Metzler, since E < K
at steady states) is stable if and only if ρ(−N−1

0 M0) < 1. We compute

N0 =

− bFK − (νE + µE) 0 0
0 −µM 0
0 0 −µF


and

M0 =

 0 0 b(1− E
K )

(1− r)νE 0 0
rνEM
M+γiMi

(1− e−β(M+γiMi)) rνEE
M+γiMi

(
βMe−β(M+γiMi) + γiMi

M+γiMi
(1− e−β(M+γiMi))

)
0


so that for some X1, X2 ∈ R (which we compute below at steady states) we have

−N−1
0 M0 =

 0 0
b(1− E

K )

b FK+νE+µE
(1−r)νE
µM

0 0
X1

µF
X2

µF
0

 .

At the steady state (0, 0, 0), we have directly unconditional stability as

J =

−(νE + µE) 0 b
(1− r)νE −µM 0

0 0 −µF

 ,

whose eigenvalues are −(νE + µE), −µM and −µF .
At a non-zero steady state we recall that

bF =
(νE + µE)E

1− E
K

,

E = λKM,

rνE(1− e−β(M+γiMi))
M

M + γiMi
= µF

F

E
=
µF (νE + µE)

b

1

1− λM
,

e−β(M+γiMi) = 1− 1

N (1− λM)

M + γiMi

M
,
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so that

X1 =
rνE

N (1− λM)
,

X2 =
rνEλKM

M + γiMi

(
βM

(
1− M + γiMi

NM(1− λM)

)
+
γiMi

M

1

N (1− λM)

)
.

The characteristic polynomial of −N−1
0 M0 is

P (z) = −z3 +
b(1− λM)2

νE + µE

( (1− r)νEX2

µMµF
+ z

X1

µF

)
,

which is equal to

P (z) = −z3 +N (1−λM)2
( M

M + γiMi

(
βM(1− M + γiMi

NM(1− λM)
)+

γiMi

MN (1− λM)

)
+

z

N (1− λM)

)
,

and we rewrite it as

P (z) = −z3 + (1− λM)
(
βNM2(1− λM)

M + γiMi
− βM +

γiMi

M + γiMi
+ z
)

We find P (0) > 0 (since X2 > 0) and

P ′(z) = −3z2 + (1− λM),

so that J is stable if and only if P (1) < 0. (P is increasing and then decreasing on (0,+∞)). This
condition reads

(1− λM)
(

1 +
γiMi

M + γiMi
+ βM

(
− 1 +N M

M + γiMi
(1− λM)

))
< 1. (9.20)

Let us treat first the case when Mi = 0. The stability condition rewrites

(1− λM)
(
1 + βM(−1 +N (1− λM))

)
< 1,

that is, for a nonzero steady state,

−λ+ β(−1 +N (1− λM))− λβM(−1 +N (1− λM)) < 0.

If M crit
i > 0, we know that there are exactly two steady states between 0 and 1/λ for Mi = 0,

which we denote by 0 < M− < M+ < 1/λ. Let φ(x) = 1 − 1
N − λx + e−βx(λx − 1). We have

φ(M±) = 0 and ∓φ′(M±)) > 0.
In particular, φ′(M+) > 0 so

M+ >
1

λ
+

1

β
(1− eβM+) =

1

λ
− 1

β

1

(1− λM+)N − 1
.

Multiplying this inequality by λβ
(
(1 − λM+)N − 1

)
yields exactly the stability of M+, since

(1− λM+)N > 1. Indeed,

N (1− λM±) =
eβM±

eβM± − 1
> 1.

By a similar computation one can show that the smaller steady state M− is unstable.
We move now to the general case Mi ≥ 0, assume Mi < M crit

i and write that ∂xf < 0 (which
was proved to hold at the bigger steady state) is equivalent to

(1− 2λM)(1− e−β(M+γiMi)) + βM(1− λM)e−β(M+γiMi) <
1

N
.

Using as before the fact that M is a steady state allows us to rewrite this last inequality as

(1− 2λM)
1

N
M + γiMi

M(1− λM)
+ βM(1− λM)

(
1− M + γiMi

N (1− λM)M

)
<

1

N
.

Multiplying this inequality by N (1− λM) M
M+γiMi

yields

(1− 2λM) + β(1− λM)
(
NM2 1− λM

M + γiMi
−M

)
< (1− λM)

M

M + γiMi
,

that is

(1− λM)
(

2− M

M + γiMi
+ βM

(
− 1 +NM 1− λM

M + γiMi

))
< 1,

whence the stability of the bigger steady state, since we recover (9.20). Likewise, at the smaller
steady state we have ∂xf > 0, and the reverse inequality holds. This concludes the proof.

182



CHAPTER 9. STERILIZING MALES 9.B. BASIN ENTRANCE TIME APPROXIMATION

9.B Basin entrance time approximation

9.B.1 Bounds on the wild equilibria

For Mi = 0, under the assumptions of Lemma 9.3 such that there are two positive steady states
E− � E+ for (9.2), we get explicit bounds on these states. In particular, we assume N > 4ψ.
We recall that the positive equilibria can be expressed as an increasing function of their second
coordinate M ∈ (0, 1/λ):

E(M) :=

 KλM
M

νE+µE
b

λM
(1−λM)

 ,

and E(M) is an equilibrium if and only if f(βM) = 0, where

f(x) = (1− ψx)(1− e−x)− 1

N
. (9.21)

Lemma 9.7. The function f (defined in (9.21)) is concave on [0, 1/ψ]. It reaches its maximum
value on this interval at Z(ψ) ∈ (0, 1

2ψ ), where we define

e−Z(ψ) =
ψ

1 + ψ − ψZ(ψ)
, F (ψ) :=

1 + ψ − ψZ(ψ)

(1− ψZ(ψ))2
. (9.22)

Then f on [0, 1/ψ] has no zero if N < F (ψ), exactly 1 zero if N = F (ψ) and exactly 2 zeros if
N > F (ψ).

In addition, Z and F have the following asymptotics:

Z(ψ) ∼ψ→+∞
1

2ψ
, Z(ψ) ∼ψ→0 log

( 1

ψ

)
, F (ψ) ∼ψ→+∞ 4ψ, F −−−→

ψ→0
1.

Proof. We compute

f ′(x) = e−x
(
1 + ψ − ψx

)
− ψ, f ′′(x) = e−x

(
ψx− 1− 2ψ

)
,

hence f ′′ < 0 on [0, 1/ψ]. Since f(0) = f(1/ψ) = −1/N < 0, f reaches a unique maximum at the
(necessarily unique) point Z(ψ) ∈ (0, 1/ψ) such that f ′(Z(ψ)) = 0. The claim that Z(ψ) < 1/(2ψ)
follows from the inequality ex > 1 + x, which implies that

1

ψ
f ′(

1

2ψ
) = e−1/2ψ

(
1 +

1

2ψ

)
− 1 < 0.

Moreover, the sign of f(Z(ψ)) is exactly that of N − F (ψ). The equivalents and limit follow from
straightforward computations.

Remark 9.10. We notice that Z is related to a well-known special function: let us introduce the
(principal branch of the) special Lambert W function, that is:

W (y) = z, z ≥ −1 ⇐⇒ zez = y.

Since if y > 1 then z > 0, we obtain

Z(ψ) = log
(
W (e1+1/ψ)

)
.

Assume N > F (ψ) (defined in (9.22)), and denote by x− < x+ the two positive zeros of f .

Lemma 9.8. We have x− > 1/N .

1

N
< x− <

1

ψ

(
1− κ∗

N
)
< Z(ψ) <

1

ψ

(
1− κ∗
N
)
< x+,

where

κ∗ = 1 +
ψ

1− ψZ(ψ)
, κ∗ = N − ψZ(ψ)(1 + ψ − ψZ(ψ))

(1− ψZ(ψ))2
.

If in addition N > 2 then x+ < 1
ψ

(
1− 1

N
)
.
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Proof. The first inequality is obtained by using the inequalities 1− e−x ≤ x and 1−
√

1− x > x/2
for x ∈ (0, 1). The first one implies that f(x) ≤ x(1 − ψx) − 1/N , which is a second order
polynomial equal to f at 0 and at 1/ψ, with roots located at

(
1±

√
1− 4ψ/N

)
/(2ψ) (recall that

we have N > 4ψ). Hence x− >
(
1−

√
1− 4ψ/N

)
/(2ψ) > 1/N by the second inequality.

The upper bound on x+ comes from the fact that if N > 2 then by Lemma 9.7(
1− 1

N
) 1

ψ
>

1

2ψ
> Z(ψ).

Finally to get the two other bounds, we introduce

H(κ) := f
( 1

ψ
(1− κ

N
)
)

= κ
(
1− e−

1
ψ (1− κ

N )
)
− 1.

By Lemma 9.7, it is concave on [0,N ], equal to −1 at 0 and N and reaches its maximum at
κ̂ := N (1 − ψZ(ψ)). To get κ∗ and κ∗, we simply use the fact that the graph of H is above the
segments from (0,−1) to (κ̂,H(κ̂)) on the first hand, and from (κ̂,H(κ̂)) to (N , 0) on the other
hand, so that we define

−1 +
H(κ̂) + 1

κ̂
κ∗ = 0 = −1− (κ∗ −N )

H(κ̂) + 1

N − κ̂
,

and the expressions of κ∗ < κ̂ < κ∗ follow from a straightforward computation.

Back to the steady states of (9.2), we deduce from Lemma 9.8 the following bounds, assuming
N > 2:

Ê− :=


λK
Nβ
1
Nβ

νE+µE
b

λK
Nβ

 ≤E− ≤
(
1− κ∗

N
) K

1
λ

νE+µE
b

KN
κ∗

 =: Ê− (9.23)

Ê+ :=
(
1− κ∗
N
) K

1
λ

νE+µE
b

KN
κ∗

 ≤E+ ≤
(
1− 1

N
) K

1
λ

KN (νE+µE)
b

 =: Ê+. (9.24)

9.B.2 Results

A lower bound. First, we give a lower bound on the entrance times. We consider the fact that
for a solution to (9.2) with initial data given by E+, thanks to the overestimation in (9.24),

F (t) ≥ F̂+e
−µF t =: F̂ [(t).

This implies

E(t) ≥ e−(νE+µE)t−
bF̂+
K (1−e−µF t)Ê+ + bF̂+

∫ t
0
e−µF t

′
e−(νE+µE)(t−t′)e−

bF̂+
K (e−µF t

′
−e−µF t)dt′ =: Ê[(t),

and

M(t) ≥ e−µM tM̂+ + (1− r)νE
∫ t

0

e−µM ((t−t′)Ê[(t
′)dt′ =: M̂ [(t).

Using the underestimation of E− from (9.23), we define tZ[ := min{t ≥ 0, Ẑ[(t) ≤ Ẑ−} for
Z ∈ {E,M,F}.

Lemma 9.9. We have the following lower bound: τ(Mi) ≥ min
(
tE[ , t

M
[ , t

F
[

)
.

Explicitly we find, with Z = Z(ψ) and Z0 = 1 + ψ − ψZ:

tF[ =
1

µF
log
(κ∗(N − κ∗)
κ∗(N − κ∗

)
=

1

µF
log
(
1 +
N 2(1− ψZ)3

ψZZ2
0

− N (1− ψZ)

ψZZ0

)
.

However it must be expected that min(tE[ , t
M
[ ) > tF[ , and we can give explicit approximations of

tE[ and tM[ .
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A first upper bound. We compare the solution of (9.2) with the solution of the linear system

dEe
dt

= bFe − (νE + µE)Ee,

dMe

dt
= (1− r)νEEe − µMMe,

dFe
dt

= rνEε(Mi)Ee − µFFe,

(9.25)

where ε(Mi) = maxt≥0
M(t)

M(t)+Mi
< 1, typically ε(Mi) = M∗

M∗+Mi
. The following property follows

from the fact that (9.2) is cooperative:

Lemma 9.10. Solutions of (9.2) and (9.25) with initial data such that (E0,M0, F 0) ≤ (E0
e ,M

0
e , F

0
e )

satisfy:
∀t ≥ 0, (E(t),M(t), F (t)) ≤ (Ee(t),Me(t), Fe(t)).

We use the under-estimation of E− given by (9.23), to define, for X = (Xi)i = (E,M,F ) and
i ∈ {1, 2, 3},

tX
i

min := inf{t ≥ 0, Xi
e(t) ≤ [Ê−]i}.

Lemma 9.11. For any solution Xe to (9.25) satisfying the assumption of Lemma 9.10, we have
the upper bound on the entrance time: τ(Mi) ≤ max

(
tEmin, t

M
min, t

F
min

)
.

Analytic computations are made in Section 9.B.3.

An second upper bound in two steps. Let ρ∗ := Mi/M̂+ be the under-estimated effort ratio.
When using the above one-step approach, we conclude with a finite upper bound for τ(Mi) if and

only if M̂+/(Mi + M̂+) < 1/N , that is

ρ∗ > N − 1. (9.26)

Expanding upon the same idea as for the lower bound, we let ε = M̂+/(M̂+ +Mi) so

F (t) ≤ F̂+e
−µF t + Ê+rνEε(1− e−µF t) =: F̂ ].

Then, we construct the explicit solution (E,M) = (Ê], M̂ ]) to

Ė = bF̂ ] −
(
νE + µE +

F̂ ]
K

)
E, E(0) = Ê+,

Ṁ = (1− r)νEE − µMM, M(0) = M̂+.

In details:

F̂ ](t) = Ê+rνEε+ e−µF t
(
F̂+ − rνEεÊ+

)
,

Ê](t) = e
−(νE+µE+

Ê+rνEε

K )t− F̂+−rνEεÊ+
KµF

(1−e−µF t)
(
Ê+ +

∫ t
0

(
bÊ+rνEε

+be−µF t
′
(F̂+ − rνEεÊ+)

)
e

(νE+µE+
Ê+rνEε

K )t′− F̂++rνEεÊ+
KµF

(1−e−µF t
′
)
dt′
)
,

M̂ ](t) = e−µF tM̂+ + (1− r)νE
∫ t

0
eµF t

′
Ê](t

′)dt′.

We use this super-solution on [0, t0] (for some t0 > 0 to be determined), and then glue the
solution on [t0,+∞) of 

Ė = bF − (νE + µE)E, E(t0) = Ê](t0),

Ṁ = (1− r)νEE − µMM, M(t0) = M̂ ](t0),

Ḟ = rνEε0E − µFF, F (t0) = F̂ ](t0),
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with ε0 = M̂ ](t0)/(M̂ ](t0) +Mi) < ε.
For Z ∈ {E,M,F} we let

tZ] (t0) := min{t ≥ t0, Ẑ] ≤ Ẑ−}.

Then as before:

Lemma 9.12. For all t0 > 0, τ(Mi) ≤ t](t0) := max(tE] (t0), tM] (t0), tF] (t0)).

By using Lemma 9.12, we can theoretically obtain a finite upper bound for τ(Mi) (upon choosing
a suitable t0) as soon as ε0 < 1/N for t0 large enough, that is if and only if

ρ∗
(
(ρ∗ + 1)

µM
(1− r)νE

+N − 1) > N − 1. (9.27)

Condition (9.27) is weaker than (9.26) (and in general, much weaker). It holds if and only if

ρ∗ >
−(N − 1 + φ) +

√
(N − 1 + φ)2 + 4φ(N − 1)

2φ
, φ := λK =

µM
(1− r)νE

,

which is true for instance if ρ∗ >
√

(N − 1)/φ. However, we do not develop any further these
analytic computations in the present paper.

9.B.3 Analytic computations

Applying Lemma 9.11, in order to express analytically the solution Xe := (Ee,Me, Fe) of (9.25),
we only need to diagonalize the matrix

Re :=

(
−(νE + µE) b

rνEε −µF

)
.

Re has negative trace, and positive determinant if and only if 1
N > ε. Hence if N ε(Mi) < 1 then

0 is globally asymptotically stable for (9.25).
In this case its eigenvalues are real, negative and equal to κ± associated respectively with

eigenvectors

(
1
x±

)
, where

κ± :=
−(νE + µE + µF )±

√
(νE + µE − µF )2 + 4brνEε

2
,

x± :=
νE + µE − µF ±

√
(νE + µE − µF )2 + 4brνEε

2b
.

Then we deduce that for some real numbers (r0
±, s

0
±) ∈ R4,

Ee(t) = r0
+e

κ+t + r0
−e

κ−t,

Fe(t) = s0
+e

κ+t + s0
−e

κ−t,

Me(t) = e−µM tM0
e + (1− r)νE

∫ t

0

e−µM (t−t′)(r0
+e

κ+t
′
+ r0
−e

κ−t
′)
dt′.

In details, we find

r0
+ =

x−
x− − x+

E0
e −

1

x− − x+
F 0
e , r0

− =
−x+

x− − x+
E0
e +

1

x− − x+
F 0
e

s0
+ =

x+x−
x− − x+

E0
e −

x+

x− − x+
F 0
e , s0

− =
−x+x−
x− − x+

E0
e +

x−
x− − x+

F 0
e .

Assuming κ+ 6= −µM and κ− 6= −µM (which must hold generically since these are biological
parameters), we get

Me(t) = e−µM tM0
e + (1− r)νE

(
r0
+

eκ+t − e−µM t

µM + κ+
+ r0
−
eκ−t − e−µM t

µM + κ−

)
.
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Assuming N > 2, we use the overestimation (9.24) of E+ as an initial data (E0
e ,M

0
e , F

0
e ), and

with the notations

g(ε) =

√
1 +

4brνEε

(νE + µE − µF )2
, σ = sgn(νE + µE − µF ),

we deduce

r0
± =

K

2

(
1− 1

N
)(

1± (2N − 1)(νE + µE) + µF
g(ε)|νE + µE − µF |

)
,

s0
± =

K|νE + µE − µF |
4bg(ε)

(
1− 1

N
)(
σ ± g(ε)

)(
g(ε)± (2N − 1)(νE + µE) + µF

|νE + µE − µF |
)
.

If r0
− < 0 the we can use the simple upper bound Ee(t) ≤ r0

+e
κ+t. This condition reads

g(ε)|νE + µE − µF | < (2N − 1)(νE + µE) + µF .

In this case, we know that Ee(t) ≤
[
Ê−
]
1

if r0
+e

κ+t ≤ λK
Nβ , that is if

t ≥ tEmin :=
2

νE + µE + µF − g(ε)|νE + µE − µF |
log
( (N − 1)

2ψ

(
1 +

(2N − 1)(νE + µE) + µF
g(ε)|νE + µE − µF |

))
(9.28)

Then, under the same condition we have s0
± > 0. By using the fact that s0

+ + s0
− = F̂+, we

deduce that Fe(t) ≤
[
Ê−
]
3

if F̂+e
κ+t ≤ F̂−, that is if

t ≥ tFmin :=
2

νE + µE + µF − g(ε)|νE + µE − µF |
log
(N (N − 1)

ψ

)
. (9.29)

In addition, we have tEmin > tFmin if and only if

(2N − 1)(νE + µE) + µF > (N − 1)g(ε)|νE + µE − µF |.

Remark 9.11. For small ε, the previous estimations roughly show that

tmin ≥
1

min(νE + µE , µF )
log
(N 2

ψ

)
.

Finally, we need to compute the condition Me(t) ≤ 1
Nβ . Let σE := µM/(νE + µE) and

σF := µM/µF . We rewrite Me(t) as

Me(t) =
1

λ

(
1− 1

N
)(
αe−µM t + α+e

κ+t + α−e
κ−t
)
,

with

α =
(N − 1)σF + 1− εN

(σF − 1)(σE − 1)− εN
, α± =

µM
µM + κ±

r̃0
±,

where

r̃0
± :=

1

2

(
1± 2N − 1 + σE/σF

g(ε)σ(1− σE/σF )

)
, g(ε) =

√
1 +

4NσEσF ε
(σF − σE)2

and
µM

µM + κ±
=

2σEσF
2σEσF − (σE + σF )± σ(σF − σE)g(ε)

.

The condition we need to compute is therefore

αe−µM t + α+e
κ+t + α−e

κ−t ≤ ψ

N − 1
.

We assume that the male half-life is shorter than that of the females and of the eggs, so that
σF , σE > 1. Under the stronger assumptions that r− < 0 < r+ and

εN < 1, (σF − 1)(σE − 1) > εN ,
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we obtain that α > 0. We simply treat two subcases: first if µM + κ+ < 0 (small µM ) then we
obtain α+ < 0 < α− and thus

tMmin :=
1

µM
log
(

(N − 1)
α+ α−
ψ

)
.

Second, if µM + κ− > 0 (large µM ) then we obtain α− < 0 < α+ and thus

tMmin :=
1

−κ+
log
(

(N − 1)
α+ α+

ψ

)
.

In the last case (when µM is large), we can check that tMmin > tEmin is equivalent to

α+ α+ > r̃0
+,

which holds since α > 0 and α+ > r̃0
+.

In this case we obtain

max
(
tEmin, t

F
min, t

M
min

)
= tMmin

=
2σE

µF
(
σF + σE − g(ε)σ(σF − σE)

) log
(N − 1

ψ

( (N − 1)σF + 1− εN
(σF − 1)(σE − 1)− εN

+
σEσF

(
g(ε)σ(σF − σE) + (2N − 1)σF + σE

)(
2σEσF − (σE + σF ) + σ(σF − σE)g(ε)

)
g(ε)σ(σF − σE)

))
.
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Chapter 10

Optimal releases for population
replacement strategies, application
to Wolbachia

’So the problem will solve itself,’ said Philip.
’Only by destroying itself. When humanity’s destroyed, obviously
there’ll be no more problem. But it seems a poor sort of solution.
I believe there may be another, even within the framewok of the
present system. A temporary one while the system’s being modified
in the direction of a permanent solution. (...)’

Aldous Huxley, Point Counter Point.

This chapter is a joint work with Luis Almeida, Yannick Privat and Nicolas Vauchelet.

Abstract. In this article, we consider a simplified model of time dynamics for a mosquito
population subject to the artificial introduction of Wolbachia-infected mosquitoes, in order to fight
arboviruses transmission. Indeed, it has been observed that when some mosquito populations are
infected by some Wolbachia bacteria, various reproductive alterations are induced in mosquitoes,
including cytoplasmic incompatibility. Some of these Wolbachia bacteria greatly reduce the ability
of insects to become infected with viruses such as the dengue ones, cutting down their vector
competence and thus effectively stopping local dengue transmission.

The behavior of infected and uninfected mosquitoes is assumed to be driven by a compartmental
system enriched with the presence of an internal control source term standing for releases of infected
mosquitoes, distributed in time. We model and design an optimal releasing control strategy with
the help of a least square problem. In a nutshell, one wants to minimize the number of uninfected
mosquitoes at a given horizon of time, under some relevant biological constraints. We derive
properties of optimal controls, highlight a limit problem providing useful asymptotic properties of
optimal controls. We numerically illustrate the relevance of our approach.

10.1 Introduction

For many years (since [110]), scientists have been studying Wolbachia, a bacterium living only
inside insect cells. Recently, there has been increasing interest in the biology of Wolbachia and in
its application as an agent for control of vector mosquito populations, by taking advantage of a
phenomenon called cytoplasmic incompatibility. In key vector species such as Aedes aegypti, if a
male mosquito infected with Wolbachia mates with a non-infected female, the embryos die early in
development, in the first mitotic divisions (see [233]). This also happens even if the male and female
are both infected with Wolbachia but are carrying mutually incompatible strains. Interestingly,
an infected female can mate with an uninfected male producing healthy eggs just fine. Hence,
using cytoplasmic incompatibility (CI) allows scientists to produce functionally sterile males that
can be released in the field as an elimination tool against mosquitoes. This vector control method
is known as incompatible insect technique (IIT).
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Another promising application of this symbiotic bacteria is the control of endemic mosquito-
borne diseases by means of population replacement. This control relies on the pathogen interference
(PI) phenotype of some Wolbachia strains, especially with Zika, dengue and chikungunya viruses
in Aedes mosquitoes (see [232]). Population replacement methods have the benefit of being more
environmentally benign than insecticide-based approaches (since they are species specific) and
potentially more cost effective (since they are long-lasting). Despite the broad range of arthropods
carrying Wolbachia, no transmission event to any warm-blooded animals has been reported. The
principle is to release Wolbachia carrying mosquitoes in endemic areas. Once released, they breed
with wild mosquitoes. Over time and if releases are large and long enough, one can expect the
majority of mosquitoes to carry Wolbachia, thanks to CI. Due to PI, the mosquito population then
has a reduced vector competence, decreasing the risk of Zika, dengue and chikungunya outbreaks.

Both IIT and population replacement procedure have been imagined since a long time (see e.g.
the work by Laven in 1967 [143] for population replacement, or the one by Curtis and Adak [61]
in 1974 for population elimination, both on mosquitoes in genus Culex), but there has been a
resurgence of interest lately for both techniques due to the increasing burden of arboviral diseases
transmitted by mosquitoes in genus Aedes, and their operational implementation is a hot topic
since the first report in [118] of field success in Australian Aedes aegypti (see [144] for IIT). We
focus here on population replacement strategies.

Motivated by the issue of controlling a population of wild Aedes mosquitoes by means of Wol-
bachia infected ones, we investigate here a simplified control model of population replacement
strategies, where one acts on the wild population by means of time-distributed releases of infected
individuals. The evolution equations we use incorporates the competition of released individuals
with the wild ones. Formally, let n1(t) denote the density of Wolbachia-free mosquitoes (the wild
individuals) and n2(t) the density of Wolbachia-infected mosquitoes (the introduced ones) at time t.
We model population densities dynamics by the following competitive compartmental system:

dn1

dt
(t) = f1(n1(t), n2(t)),

dn2

dt
(t) = f2(n1(t), n2(t)) + u(t), t > 0,

n1(0) = n0
1, n2(0) = n0

2,

(10.1)

where u( · ) is a non-negative function standing for a control (it models the release of Wolbachia-
infected mosquitoes). The terms fi(n1, n2), i = 1, 2, are defined by

f1(n1, n2) =b1n1

(
1− sh

n2

n1 + n2

)(
1− n1 + n2

K

)
− d1n1, (10.2)

f2(n1, n2) =b2n2

(
1− n1 + n2

K

)
− d2n2. (10.3)

The term (1− sh n2

n1+n2
) models the cytoplasmic incompatibility (CI): the parameter sh is the

CI rate; one has 0 ≤ sh ≤ 1 and when sh = 1, CI is perfect, whereas when sh = 0 there is no
CI. The other parameters (bi, di) for i ∈ {1, 2} are respectively mortality and birth rates, and K
denotes the environmental carrying capacity.

A model such as (10.2)-(10.3) for mosquito population dynamics with Wolbachia has been intro-
duced in [83], and also studied [121] where it was coupled with an epidemiological model. In [50],
similar dynamics have been described (including also a spatial dimension); further discussion on
these various models can be found in [211]. We note that the addition of a control term was already
proposed in [44] for population replacement and in [216] for IIT (coupled with insecticide), where
some associated optimization problems were described.

To make it closed, this system is complemented with nonnegative initial data (n0
1, n

0
2) and we

will assume to be, at time t = 0, in the “worst” initial situation where there are no Wolbachia-
infected mosquitoes in the population, in other words n0

2 = 0. When useful, we will use the
notations

n = (n1, n2) and f = (f1, f2)

to denote respectively the density mosquitoes vector and the right-hand side functions vector
in (10.2)-(10.3).

The mathematical model (10.1)-(10.2)-(10.3) in the absence of control (in other words when
u = 0) will be analyzed and commented in Section 10.2.1. The starting point of our analysis is to
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notice that this system has, as steady states (in addition to the trivial one (0, 0))

(n∗1, 0) and (0, n∗2), with n∗i = K

(
1− bi

di

)
, i = 1, 2,

corresponding to the invasion of the total population of mosquitoes, either by the wild ones or
the Wolbachia-infected one. In the following, we will make several assumptions guaranteeing that
System (10.1) is bistable and monotone. Our main objective is to build a strategy allowing us to
reach the stable state (0, n∗2), starting from the other stable state (n∗1, 0), by determining in an
optimal way a control law u(t). Any path leading from (n∗1, 0) to the basin of attraction of (0, n∗2)
will be called a population replacement strategy. Our aim is thus to steer the control system as
closely as possible to the steady state (0, n∗2) at time T > 0. In an informal way, we investigate
the following issue:

How to design optimally the releases of Wolbachia-carrying mosquitoes (in other words, how to
choose a good control function u( · )) in order to favor the establishment of Wolbachia infection?

Of course, to make this issue relevant, it is necessary to assume some constraints on the control
function u( · ), modeling in particular the fact that the ability of scientists to create Wolbachia-
infected mosquitoes is limited. In the converse case, it is likely that a trivial answer would be to
release the maximal possible number of mosquitoes at each time t. In the sequel, we will hence
consider the following constraints (of pointwise and integral types) on the control function u( · )

0 ≤ u(t) ≤M a.e. on (0, T ) and

∫ T

0

u(t) dt ≤ C

for some positive constants M and C, meaning that the flux of Wolbachia-infected mosquitoes that
can be released at each time t is limited, as well as their total amount over the horizon of time T .

In the analysis to follow, we use the essential property that System (10.1) is competitive,
meaning that it enjoys a comparison principle (see Lemma 10.1).

From the mathematical point of view, problems investigated within this article are related
to optimal control theory for biological systems. Such kind of application has not been much
investigated at this time. We nevertheless mention [45, 140, 218] on optimal control problems for
mono/bi-stable systems, on the understanding that this list is far from being exhaustive.

Let us describe our main results. When b1, b2 are large, we show that the proportion of
Wolbachia-infected mosquitoes p = n2/(n1 +n2) converges to the solution of a reduced problem of
the form

dp

dt
= f(p) + ug(p), (10.4)

with g ≥ 0 and f of bistable type1. Bistable frequency-based models such as (10.4) have been
studied extensively (see in particular [29]) for cytoplasmic incompatibility modeling since the works
of Caspari and Watson [47]. Yet, as a new feature (10.4) incorporates rigorously a control term.
The typical control for this biological system being the releases of individuals, it was unclear to
understand how that control would act on the proportion p of infected individuals. Our approach
thus provides a way to derive a relevant control system on p from the standard control system (10.1)
where the input is a density of released individuals. We first prove that the optimization problems
converge along with the equations (Γ-convergence result stated in Proposition 10.2) to a limit
problem, and then solve it completely (Theorem 10.1). It appears that the solutions to the limit
problem consist of a single release phase where the maximal flux capacity M is used. Generically,
this phase occurs either at the very beginning or at the very end of the time frame [0, T ], depending
on whether the constraints allow for the existence of a population replacement strategy or not.

Numerical investigations illustrate this behavior and also hint that the optimal strategies for
steering system (10.1) toward infection establishment may differ significantly from those suitable
for (10.4).

The article is organized as follows. Section 10.2 is devoted to modeling issues: we introduce
the simplified dynamics we consider for the system of wild versus Wolbachia-carrying mosquitoes,
as well as the optimal control problem (Pfull) used to design a release strategy.

1The wording “bistable function” means that f(0) = f(1) = 0 and there exists θ ∈ (0, 1) such that f(x)(x−θ) <
0 on (0, 1) (in particular, one has necessarily f(θ) = 0 whenever f is smooth).
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This problem is then analyzed in Section 10.3. More precisely, we show in Section 10.3.1
that (Pfull) and its solution converge to a population replacement strategy optimization prob-
lem (Preduced) for the simplified model (10.4), in the limit when birth rates are assumed to be
large. Numerical experiments validating our approach are presented in Section 10.3.2. Some
additional qualitative properties of the solutions to (Pfull) are proved in Appendix 10.B.

For the sake of readability, all the proofs are postponed to Appendix 10.A.

10.2 Toward an optimal control problem

10.2.1 On the dynamics without control

First we describe precisely the asymptotic behavior of System (10.1) in the absence of control (in
other words, when u( · ) = 0). An example of phase portrait illustrating this lemma is provided on
Fig 10.1. There and for all numerical illustrations of our results, the parameter values we choose
for bi, di and sh reflect the effects of a Wolbachia infection in Aedes mosquitoes. In the well-
documented case of the Wolbachia strain wMel in Aedes aegypti and according to [232, 75], it is
relevant to choose: slight fecundity reduction (b2/b1 ' 0.9), slight life-span reduction (d2/d1 ' 1.1)
and almost perfect CI (sh = 0.9). We do not fix a time scale, hence the last biologically meaningful
parameter is b1/d1, the basic reproduction number for the wild population. Freely inspiring from
literature estimates (see [88, 181, 121]) we assume that this number is large, at least equal to 3
(and describing all the range [3.7, 7400] in Section 7.5). Since these values are used only for results
illustration, they are not intended to represent precisely a well-identified mosquito population-
Wolbachia strain couple.

Lemma 10.1. System (10.1) is positive and (monotone) competitive2.

Let us assume that

b1 > d1 and b2 > d2. (10.5)

Then, System (10.2)-(10.3) with u( · ) = 0 has at least three non-negative steady states:

(0, 0), (n∗1, 0), (0, n∗2), with n∗i = K

(
1− di

bi

)
, i ∈ {1, 2}.

In this case, each population can sustain itself in the absence of the other one. In addition, (0, 0)
is (locally linearly) unstable.

Moreover, there exists a fourth distinct positive steady state if and only if

1− sh <
d1b2
d2b1

< 1. (10.6)

In this case, this coexistence equilibrium is (locally linearly) unstable, and is given by

nC = K

((
1− 1

sh

(
1− d1b2

d2b1

))(
1− d2

b2

)
,

1

sh

(
1− d1b2

d2b1

)(
1− d2

b2

))
.

Moreover, the two other nontrivial steady states are locally asymptotically stable in this case.

Notice that conditions (10.5) and (10.6) on the parameters are relevant since Wolbachia-infected
Aedes mosquitoes typically have (even slightly) reduced fecundity and lifespan (for instance in the
case of wMel strain, [232]). Moreover CI is almost perfect in these species-strain combination (see
[75]), i.e. sh is close to 1.

Interpretation. In short, under the biologically relevant conditions (10.5) and (10.6), the
two mutual exclusion steady states are stable while whole population extinction and coexistence
state are unstable: in our model, either one of the two phenotypes must prevail in the long run,
eliminating the other one.

2This means that if (n±1 , n
±
2 ) are solutions of (10.1) such that n−1 (0) < n+

1 (0) and n−2 (0) > n+
2 (0) then one has

n−1 (t) < n+
1 (t) and n−2 (t) > n+

2 (t) for every time t ∈ [0, T ], where (n−1 , n
−
2 ) (resp. (n+

1 , n
+
2 )) denotes the solution

of System (10.1) associated to the choice of initial conditions (n0
1, n

0
2) = (n−1 , n

−
2 ) (resp. (n0

1, n
0
2) = (n+

1 , n
+
2 ))
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Figure 10.1: Phase portrait of System (10.1) for the parameters choice: b1 = 0.8, b2 = 0.6,
d1 = 0.27, d2 = 0.3, sh = 0.8 and K = 1 for which conditions (10.5) and (10.6) are satisfied.
Examples of trajectories are plotted with continuous lines. The dots locate the four steady states.

10.2.2 Objective function and constraints on the control

Let us fix a horizon of time T > 0. In this section, we propose a relevant choice of objective
function u 7→ J(u), trying to model that we expect the control be chosen so that the final state
(at time T ) of System (10.1) be as close as possible to the steady state (0, n∗2) corresponding to a
population replacement situation. Since there is no obvious choice, we will consider a least square
type functional, having the property to decrease as n(T ) gets closer to (0, n∗2).

This leads to introduce

J(u) =
1

2
n1(T )2 +

1

2
(n∗2 − n2(T ))2

+, (10.7)

where the we used the notation X+ = max{X, 0} for X ∈ R and n = (n1, n2) is the solution of
(10.1) associated to, in some sense, the worst initial data n(0) = (n∗1, 0). Notice that, to ensure
consistency of our model, any larger value of the introduced population than the equilibrium value
n∗2 is beneficial for J(u). This objective function differs from the ones introduced in [44], where a
L2 norm is used to optimize a similar protocol of Wolbachia infection establishment by releases.
Here, we are only interested in the state at the end of the treatment, which determines protocol
success or failure.

Let us enumerate the mathematical constraints we will assume on the control function u( · ),
stemming from biology.

� u(t) corresponds to the density of Wolbachia-infected released mosquitoes and must be non-
negative (since we assume that we only release individuals and cannot remove them).

� Since System (10.1) is monotone, it is relevant to assume an upper bound on the total number
of released individuals, namely ∫ T

0

u(t)dt ≤ C

for some given C > 0. Indeed, releasing more and more individuals can never be detrimental.
Without such a constraint, the solution of the considered optimal control problem is trivial
and consists in releasing as much individuals as possible at each time.
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� For practical reasons, it is neither possible to create an infinite number of Wolbachia-infected
individuals nor to release them “instantly” at time t. Hence, this leads to assume a pointwise
upper bound on the control, by setting u(t) ≤ M for some M > 0 and all t ∈ [0, T ]. This
constraint models that a release is necessarily distributed in time (possibly on a very short
period of time) and cannot be an impulse.

All these considerations lead us to introduce the following set of admissible controls

UT,C,M = {u ∈ L∞([0, T ]), 0 ≤ u ≤M a.e. ,

∫ T

0

u(t) dt ≤ C} . (10.8)

We then deal with the following optimal control problem.

inf
u∈UT,C,M

J(u). (Pfull)

where J is defined by (10.7) and UT,C,M is defined by (10.8).
Interpretation. Problem (Pfull) amounts to finding a constrained release protocol (in terms of

total number of released individuals and maximal release flux) which steers the system as close as
possible to the target state: elimination of the wild phenotype and establishment of the introduced
one.

10.2.3 System and problem reductions

From a practical point of view, it appears relevant to consider that birth rates are large compared
with death rates, since vector Aedes species typically have a very high reproductive power. For
this reason, we will introduce (at the end of this section) and then analyze (in Section 10.3) a
simplified version of Problem (Pfull) that will help to infer some interesting qualitative properties
of the solution of Problem (Pfull). This way, we will reduce System (10.1) into a simple scalar
equation on the proportion of Wolbachia-infected mosquitoes in the spirit of [211]. To do so, let
us introduce a small parameter ε > 0 and the birth rates

b1 = b01/ε and b2 = b02/ε (10.9)

for some positive numbers b01, b02.
It is notable that, in that case, the steady-states (n∗1, 0) and (0, n∗2) respectively converge to

(K, 0) and (0,K) as ε↘ 0, since n∗i = K(1− εdi
b0i

), i = 1, 2. Notice also that (10.5) is automatically

satisfied as soon as ε is small enough.
In what follows, we will denote by Jε the functional defined by

Jε(u) =
1

2
nε1(T )2 +

1

2
(n∗2 − nε2(T ))2

+, (10.10)

where (nε1, n
ε
2) denote the solution to Problem (10.1) with b1 and b2 given by (10.9). Let us

introduce the variables
N ε = nε1 + nε2 and pε = nε2/N

ε. (10.11)

Setting nε = 1
ε

(
1− Nε

K

)
, we have the following (technical but crucial) convergence result, saying

that the pair (nε, pε) converges in some sense to a well-identified limit (u, p).

Proposition 10.1. Let uε ∈ UT,C,M such that (uε)ε>0 converges weakly-star3 to u ∈ UT,C,M in
L∞(0, T ) as ε↘ 0.

The pair (nε, pε) associated to the control uε and the parameter scaling (10.9) solves a slow-fast
system of the form

ε
dnε

dt
= (1− εnε)a(pε)

(
Z(pε)− nε

)
− uε

K
,

dpε

dt
= pε(1− pε)

(
nε(b02 − b01(1− shpε)) + d1 − d2

)
+

uε(1− pε)
K(1− εnε)

, t > 0

nε(0) =
d0

1

b01
, pε(0) = 0,

(10.12)

3This means that

∀v ∈ L1(0, T ),

∫ T

0
uεv →

∫ T

0
uv as ε↘ 0.
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where a(p) and Z(p) are defined by

a(p) = b01(1− p)(1− shp) + b02p > 0, Z(p) =
d1(1− p) + d2p

a(p)
> 0.

Let us assume that (10.6) holds and let ε0 > 0 be such that

d1

b01
<

1

ε0
and max

[0,1]
Z <

1

ε0
. (10.13)

Then for all ε ∈ (0, ε0) we have the uniform estimates

0 ≤ pε(t) ≤ 1 and n− ≤ nε(t) ≤ n+ (10.14)

for all t ∈ [0, T ] where

n− = min

{
d1

b01
, min
ε∈[0,ε0]

min
p∈[0,1]

1 + εZ(p)−
√

(1− εZ(p))2 + 4εM/(Ka(p))

2ε

}

n+ = max

{
d1

b01
, max
p∈[0,1]

Z(p)

}
.

Then up to a subfamily, (pε)ε>0 converges uniformly to p as ε↘ 0, where p is the solution to
dp

dt
= p(1− p) d1b

0
2 − d2b

0
1(1− shp)

b01(1− p)(1− shp) + b02p
+
u

K

b01(1− p)(1− shp)
b01(1− p)(1− shp) + b02p

, t > 0

p(0) = 0.

(10.15)

Interpretation. Proposition 10.1 is a rigorous result showing that a single equation on the
proportion of Wolbachia-carrying mosquitoes (equation (10.15)) is a fair approximation of the time
dynamics induced by the model with two populations (10.1), provided that the fecundity is large.

Remark 10.1. It is notable that the function [0, ε0] 3 ε 7→ 1+εZ(p)−
√

(1−εZ(p))2+4εM/(Ka(p))

2ε used
to define n− in the statement of Proposition 10.1 above converges to the finite (and bounded in
p ∈ [0, 1]) value Z(p)−M/(Ka(p)) as ε→ 0. Therefore n− is uniformly bounded for ε ∈ [0, ε0].
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Figure 10.2: Equation (10.15) is the form dp
dt = f(p)+ug(p), with f of bistable type (see Footnote 1).

Plot of the right-hand side function f with the same parameters values as in Figure 10.1.

We are now in position to determine the asymptotic behavior of the solutions of Problem (Pfull)
as ε↘ 0, in the case where (10.9) is assumed.

We have already observed that the invasion equilibrium (0, n∗2) is in particular changed into
(0,K(1− εd2

b02
)), which converges to (0,K) as ε↘ 0. By using the result stated in Proposition 10.1,
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we formally infer that (N ε(T ))ε>0 converges to K and (pε(T ))ε>0 converges to some limit p(T ) ∈
[0, 1] as ε↘ 0, meaning that (nε1(T ), nε2(T )))ε>0 converges to (K(1−p(T )),Kp(T )). It follows that
Jε(u) converges, as ε↘ 0 to

K2

2
(1− p(T ))2 +

K2

2
(1− p(T ))2 = K2(1− p(T ))2,

where p denotes the solution of (10.15).
This leads to introduce the cost function (10.7) defined by

J0(u) = K2(1− p(T ))2, (10.16)

as well as an asymptotic version of Problem (Pfull) reading

inf
u∈UT,C,M

(1− p(T ))2, (Preduced)

where p solves (10.15) and UT,C,M is defined by (10.8).

In Section 10.3, we will analyze the connections between Problem (Pfull) and Problem (Preduced),
by providing a partial description of minimizers and highlighting good convergence properties as
ε↘ 0.

10.3 Analysis of Problem (Pfull) and numerics

10.3.1 Description of minimizers

This section is devoted to the analysis of Problems (Pfull) and (Preduced). It mainly contains two
results:

� In Prop. 10.2, we state a Γ-convergence type result relating the asymptotic behavior of the
solutions of Problem (Pfull) to the ones of Problem (Preduced). We also investigate existence
issues for these problems.

� In Theorem 10.1, we completely describe the solutions of Problem (Preduced).

Proposition 10.2. Let T,C,M > 0 and assume that (10.5) and (10.6) hold. Problem (Pfull) and
Problem (Preduced) have (at least) a solution.

Moreover, let (uε)ε>0 be a family of minimizers for Problem (Pfull). Then, one has

lim
ε↘0

inf
u∈UT,C,M

Jε(u) = inf
u∈UT,C,M

J0(u)

and any closure point of this family (as ε ↘ 0, for the L∞-weak star topology) is a solution of
Problem (Preduced).

Interpretation. Proposition 10.2 establishes that the controlled scalar equation (10.15) is
not only a fair approximation of the time dynamics of the infection frequency n2/(n1 + n2) from
system (10.1), but also provides a sound framework for studying optimization problems. Morally, a
release protocol defined by solving the simpler problem (Preduced) will be typically good for (Pfull)
as well, provided that the fecundity is large.

We now solve Problem (Preduced) involving p, the solution to (10.4), in other words

dp

dt
= f(p) + ug(p),

with

f(p) = p(1− p) d1b
0
2 − d2b

0
1(1− shp)

b01(1− p)(1− shp) + b02p
and g(p) =

1

K
·

b01(1− p)(1− shp)
b01(1− p)(1− shp) + b02p

. (10.17)

In what follows, we will mainly use structural properties of f and g, namely that they are C1

functions on [0, 1] such that g > 0 on [0, 1), g(1) = 0, and under assumption (10.6) f is a bistable
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function (see Footnote 1). In what follows, we assume that (10.6) is satisfied and we denote by θ
the unique real number satisfying

f(θ) = 0 and θ ∈ (0, 1),

where f is given by (10.17), in other words,

θ =
1

sh

(
1− d1b

0
2

d2b01

)
. (10.18)

Theorem 10.1. Let T , C, M be three positive numbers and assume that T > C/M (in other words
that the horizon of time is large enough). Let us assume that (10.6) is satisfied. Any solution u to

(Preduced) satisfies
∫ T

0
u∗(t)dt = C and is bang-bang (i.e. equal a.e. to 0 or M).

If M ≤ maxp∈[0,θ]−f(p)/g(p) then the unique solution to (Preduced) is given by M1[T−C/M,T ].
Otherwise, defining

C∗(M) =

∫ θ

0

Mdp

f(p) +Mg(p)
, (10.19)

one has

� if C < C∗(M) then the solution to (Preduced) is unique and equal to u∗ = M1[T−C/M,T ]. In
this case J0(u∗) > (1− θ)2;

� if C > C∗(M) then the solution to (Preduced) is unique and equal to u∗ = M1[0,C/M ]. In this
case J0(u∗) < (1− θ)2;

� if C = C∗(M) then there is a continuum of solutions to (Preduced) given by u∗λ = M1[λ,λ+C/M ]

for λ ∈ [0, T − C/M ], with J0(u∗λ) = (1− θ)2,

where θ is given by (10.18).

Theorem 10.1 is illustrated on Fig. 10.3.
Interpretation. Theorem 10.1 implies that the best release protocol in the framework of the

frequency model (10.15) consists in a single release phase, either at the beginning of the time frame
if the desirable state is reachable, or at the end otherwise. To what extent must this strategy be
adapted when ε > 0 is small but nonzero (i.e. in the real situation where fecundity is large but
finite)? Numerical results in Section 10.3.2 begin to answer this challenging question.

Remark 10.2. It is notable that the proof of Theorem 10.1 rests upon a property of the functions
involved in Equation (10.15), namely the existence of a unique p∗ ∈ (0, 1) such that (f/g)′(p∗) = 0,

and C 6= −Tf(p∗)/g(p∗). Indeed, letting ξ =
d1b

0
2

d2b01
we have

f

g
(p) = Kd2

( p

1− shp
ξ − p

)
,
(f
g

)′
(p) = Kd2

( 1

(1− shp)2
ξ − 1

)
.

The roots of the second-order polynomial at the numerator of the right-hand side read

p± =
1

sh

(
1±

√
ξ
)
,

so assuming (10.6) (i.e. ξ < 1) yields

p∗ =
1

sh

(
1−

√
ξ
)

(which indeed belongs to [0, θ) as a consequence of (10.6): from 1 − sh < ξ < 1 it follows that
0 < p∗ < (1 −

√
1− sh)/sh < 1 since sh ∈ (0, 1]). On the contrary, assuming d2b

0
1 < d1b

0
2 (i.e.

ξ > 1) implies that there is no such p∗ in [0, 1] (and in this case the control must be bang-bang, as
a consequence of Lemma 10.8 below).

From Proposition 10.2 and Theorem 10.1, we provide hereafter a more precise result about the
convergence of optimal values for Problem (Pfull) as ε↘ 0.

Corollary 10.1. Let (uε)ε>0 be a family of minimizers for Problem (Pfull). Then, (uε)ε>0 con-
verges strongly in L1(0, T ) to a solution of Problem (Preduced) as ε↘ 0 (which is unique whenever
C 6= C∗(M) with the notations of Theorem 10.1).
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Figure 10.3: Left: solution u∗ in the case M > maxp∈[0,θ]−f(p)/g(p) and C > C∗(M). Middle:
one solution u∗λ in the case M > maxp∈[0,θ]−f(p)/g(p) and C = C∗(M). Right: solution u∗ in the
case M ≤ maxp∈[0,θ]−f(p)/g(p) or M > maxp∈[0,θ]−f(p)/g(p) and C < C∗(M). .

10.3.2 Numerics

This section is devoted to computing the solution of Problem (Pfull) and to illustrating the relations
with its reduced version (Preduced).

All the simulations are obtained with a direct method applied to the optimal control problem
(Pfull), consisting in discretizing System (10.1), the control, and to reduce the optimal control
problem to some minimization problem with constraints. To this aim, we used the open-source
optimization routine from IPOPT (see [231]) combined with AMPL modeling language (see [89]).
This enables the computation of a local minimizer for a discretized version of (Pfull).

Choice of numerical parameters and methods. Populations are normalized by setting K =
1, and Table 10.1 yields the values used for the other parameters. The time-dynamics (the slow-fast
system (10.12) depending on ε) are discretized with the Runge-Kutta implicit scheme Lobatto IIIC
of order 2 (two stages). This scheme is asymptotic preserving in ε (see [98]) and allows for sound
comparison of the simulations across a range of values of this parameter.

We obtain a solution n∆t ∈ (R+)2Nd as well as an approximate local minimizer for the dis-
cretized problem (Pfull), û

ε,∆t ∈ [0,M ]Nd .

Category Parameter Name Value or range
Discretization ∆t Time step [0.0004, 0.0015]
Singular limit 1/ε Birth rates normalization [1, 2000]

Optimization
T Final time 10
C Maximal release number [0.15, 0.75]
M Maximal release flux 10

Biology

b01 Normalized wild birth rate 1
b02 Normalized infected birth rate 0.9
d1 Wild death rate 0.27
d2 Infected death rate 0.3
sh Cytoplasmic incompatibility level 0.9

Table 10.1: Parameters for the numerical resolution of (Pfull)

Results. It is convenient to introduce the number of steps in the time discretization Nd = T/∆t.
For the parameters given in Table 10.1, we can compute the critical value C∗(M) from The-

orem 10.1 numerically: it is close to 0.24. Therefore we choose three values of C (0.15, 0.4 and
0.75) both above and below this threshold, so as to get contrasting results. On Figure 10.4 below,
solutions of Problem (Pfull) are computed for these three different values of the integral bound C

and for ε = 1. We observe that the set I∆t,κ
M := {k ∈ J1, NdK, û

ε,∆t
k ≥ M − κ} (approximating

the set {u = M}), for κ small enough, is made of two segments containing either 1 or Nd. Let us
denote these two segments J1, k0(∆t)K and Jk1(∆t), NdK. It seems that
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Figure 10.4: Top: time dynamics (plots of the wild mosquitoes density n1 starting from a positive
value versus the Wolbachia-infected mosquitoes density n2 starting from 0). Bottom: numerical
optimal control. From the left to the right: C = 0.15, C = 0.4 and C = 0.75. The parameter ε is
fixed to 1.

� a relaxation type phenomenon may occur for optimal controls meaning that the solution is
not bang-bang.

� the set I∆t,κ
relax := {k ∈ J1, NdK, κ ≤ ûε,∆tk ≤ M − κ} (approximating the set {0 < u < M})

seems to be a segment for κ small enough.

� for small values of C, k0 = 0, k1 = Nd and there is replacement failure, suggesting that
it is necessary to release a minimal number of infected mosquitoes in order to guarantee
population replacement.

Figures 10.5 and 10.6 are used to validate our approach of considering the asymptotic problem
(Preduced) instead of the real one (Pfull), with C = 0.75 (leading to replacement success) and
C = 0.15 (leading to replacement failure), respectively. We compare the numerical values of
J(u = ûε,∆t) obtained either by using the direct optimization routine described above, or by
choosing u = u∗0 as the (explicit) solution of Problem (Preduced). As expected, the ratio

Jε(u∗0)− Jε(ûε,∆t)
Jε(ûε,∆t)

visually converges to 0 as ε ↘ 0. The bottom panels in figures 10.5 and 10.6 illustrate the
convergence properties for pε stated in Proposition 10.1, and for uε stated in Corollary 10.1.

10.4 Conclusion

In this article, we proposed a strategy of Wolbachia-infected mosquitoes releases to control a sim-
plified competitive compartmental system involving wild and infected individuals. Our approach
is validated by numerical results that seem promising. Hereafter, we enumerate a list of issues that
remain open and will be investigated in a future work.

Partial or complete solving of Problem (Pfull). When investigating numerically this problem
(see Section 10.3.2), we observed several interesting properties of minimizers, at least for several
relevant values of parameters: relaxation phenomena may appear (meaning that the minimizer u∗

is not bang-bang anymore). The set {u∗ = M} seems to have two connected components meeting
0 and T . Some qualitative properties of the solutions to (Pfull) are discussed in Appendix 10.B.
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Figure 10.5: Case C = 0.75. Top left: numerical minimum value Jε(ûε,∆t) and Jε(u∗0) w.r.t. ε.
Top right: relative error between the value of Jε at the numerical minimizer ûε,∆t and at the exact
solution u∗ of the asymptotic problem (Preduced) w.r.t. ε. Bottom left: plot of the absolute error
between p̂ε and p∗0. Bottom right: L1 error between ûε,∆t and u∗0

Asymptotic of Problem (Pfull) when one makes simultaneously ε go to zero and M (the
pointwise upper-bound constraint on u) go to +∞. According to Theorem 10.1, one shows
easily that making successively ε tend to 0 and then M tend to +∞ yields to a new asymptotic
problem whose minimizers are a (typically unique) Dirac mass. When making simultaneously ε
tend to 0 and then M tend to +∞, the behavior of minimizers is not so clear and a careful analysis
must be led to understand it. We refer to Section 13.3 for further discussion on this topic.

Investigation of a more realistic model. Coming back to the initial Wolbachia-infected
mosquitoes control problem, it is likely that a model taking into account dispersal effects would
provide more satisfying and workable results. To this aim, System (10.1) could be replaced by a
more general reaction-diffusion system of partial differential equations. It is likely that numerical
difficulties may arise for the related optimization problem, needing to develop an adapted approach.
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Figure 10.6: Case C = 0.15. Top left: numerical minimum value Jε(ûε,∆t) and Jε(u∗0) w.r.t. ε.
Top right: relative error between the value of Jε at the numerical minimizer ûε,∆t and at the exact
solution u∗ of the asymptotic problem (Preduced) w.r.t. ε. Bottom left: plot of the absolute error
between p̂ε and p∗0. Bottom right: L1 error between ûε,∆t and u∗0
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Appendices

10.A Proofs

10.A.1 Proof of Lemma 10.1

Solving the equation f(n1, n2) = 0 yields the steady states by direct computation. Let us use the
notations N = (n1 +n2)/K and p = n2/(n1 +n2). The Jacobian associated to the right-hand side
f of the system reads

Jac(n) =(
b1
(
(1− shp)(1− (2− p)N) + shp(1− p)(1−N)

)
− d1 −b1(1− p)

(
sh(1− p) +N(1− sh)

)
−b2pN b2(1− (1 + p)N)− d2

)
.

It is readily seen that the extra-diagonal terms are non-positive (and even negative if p ∈ (0, 1)
and N > 0). By Kamke-Muller conditions (see [114]), this implies that the system is monotone
with respect to the cone R+ × R−, in other words it is competitive.

In particular,

Jac(n∗1, 0) =

(
−(b1 − d1) −b1 + (1− sh)d1

0 b2d1/b1 − d2

)
,

Jac(0, n∗2) =

(
b1d2(1− sh)/b2 − d1 0

−(b2 − d2) −(b2 − d2)

)
,

so that conditions (10.5) and (10.6) easily yield the linear stability of (n∗1, 0) and (0, n∗2). Combined
with the monotonicity property of the system, we get the asymptotic stability.

Then, nC belongs to the interior of the interval [(n∗1, 0), (0, n∗2)] (for the order induced by the
comparison principle recalled in Footnote 2), whose bounds are stable steady states, and there is
no other steady state in the interior of this interval. Hence it must be unstable, since the dynamics
of (10.1) is order-preserving.

At (0, 0), we compute the directional derivative in direction (h, k) as

Df(h, k) = lim
t→0

f(th, tk)

t
=

(
(b1(1− sh k

h+k )− d1)h

(b2 − d2)k

)
,

and in particular we find that the direction (0, 1) is unstable.

10.A.2 Proof of Proposition 10.1

System (10.1) reads 
dnε1
dt

= b01n
ε
1(1− shpε)nε − d1n

ε
1

dnε2
dt

= b02n
ε
2n
ε − d2n

ε
2 + uε.

(10.20)

Hence, the resulting system (10.12) on (nε, pε) in Proposition 10.1 is obtained from straightforward
computations.

Let us now provide a priori bounds on (nε(t), pε(t)) (uniform in ε ≤ ε0, for all t ≥ 0). Note
that 0 ≤ pε ≤ 1 is an easy consequence of the Cauchy-Lipschitz theorem since pε = 0 and pε = 1
are respectively sub- and super-solutions.
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We infer that the right-hand side of the equation on nε in (10.12) is bounded from below by

a(p)(1− εn)(Z(p)− n)− M

K
,

which is positive as soon as n is smaller than the smallest root of this second order polynomial in
n given by

a(p)(1 + εZ(p))− a(p)
√

(1− εZ(p))2 + 4εM/(Ka(p))

2a(p)ε
.

Moreover, the right-hand side of the equation on nε in (10.12) is bounded from above by

a(p)(1− εn)(Z(p)− n),

which is negative as soon as n is between Z(p) and 1/ε. We then infer the expected uniform
estimates on nε as soon as ε0 is small enough.

We are then driven to the slow-fast system (10.12). Using the uniform bounds on nε, pε, uε,
we infer that the right-hand sides are bounded. Hence, by using the Arzelà-Ascoli theorem, we
get that (pε)ε>0 converges up to a subfamily uniformly to some function p such that p(0) = 0 and
0 ≤ p ≤ 1 as ε↘ 0. Moreover, dp/dt is uniformly bounded since dpε/dt is.

Lemma 10.2. Up to a subfamily, the family (nε)ε>0 converges weakly to Z(p) − u
K as ε ↘ 0 in

(W 1,1)′, with p the uniform limit of any subfamily (pε)ε>0.

Proof. Let φ ∈ W 1,1 and multiply the differential equation satisfied by nε by φ and integrate by
parts over [0, T ]. We get

ε[φnε]T0 − ε
∫ T

0

dφ

dt
nε =

∫ T

0

φa(pε)(Z(pε)− nε)−
∫ T

0

φ
uε

K
.

By weak-star convergence of uε in L∞, uniform convergence of pε in L∞ and uniform boundedness
of nε we infer that

0 = lim
ε→0

∫ T

0

φa(pε)(Z(pε)− nε)−
∫ T

0

φ
u

K
,

leading to the expected result.

Lemma 10.3. Up to a subfamily, (pε)ε>0 converges uniformly to p solving the ordinary differential
equation

dp

dt
= β(n, p, u), p(0) = 0.

Proof. Let us first recast the equation on pε in system (10.12) under the form

dpε

dt
= βε(n

ε, pε, uε), pε(0) = 0,

with

βε(n, p, u) = p(1− p)
(
n(b02 − b01(1− shp)) + d1 − d2

)
+

u(1− p)
K(1− εn)

so that we easily infer (with obvious notations) that βε → β as ε ↘ 0 with βε(n, p, u) = nβ̂(p) +

β0(p) + uβ̃ε(n, p) and β(n, p, u) = nβ̂(p) + β0(p) + uβ̃(p).
Using the previous considerations (and in particular the uniform boundedness of pε, nε and

uε), we deduce that p is in fact Lipschitz-continuous, and that β̂ and β̃ are continuous on [0, 1].
Now, let us show that p satisfies the limit equation in a weak sense. Let φ ∈ C∞c (0, T ). We

compute each term separately: the terms in dpε/dt and β0(pε) converge by uniform convergence
of pε. Therefore, we have∫ T

0

φnεβ̂(pε) =

∫ T

0

φnεβ̂(p)︸ ︷︷ ︸
→

∫ T
0
φnβ̂(p)

+

∫ T

0

φnε
(
β̂(pε)− β̂(p)

)
︸ ︷︷ ︸

| · |≤‖nε‖∞o(1)

.
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and ∫ T

0

φuεβ̃ε(nε, pε) =

∫ T

0

φuεβ̃(p)︸ ︷︷ ︸
→

∫ T
0
φuβ̃(p)

+

∫ T

0

φuε
(
β̃ε(nε, pε)− β̃(p)

)
︸ ︷︷ ︸

| · |≤Mo(1)

.

by using simultaneously the weak convergence properties of (uε)ε>0 and (nε)ε>0 (see Lemma 10.2)

as well as the aforementioned convergence of βε to β. Here, it is crucial that the limit β̃ does not
depend on n but merely on p, and we rely on the uniform estimate on nε.

Finally a standard argument yields that p must satisfy the equation in a strong sense since it
is Lipschitz-continuous.

We are now in position to conclude the proof of Proposition 10.1. Indeed, the limit p satisfies
(with obvious notations) an equation of the form

dp

dt
= f(p) + ug(p).

Since the solution to this equation is unique, we finally get the uniform convergence of the whole
family (pε)ε>0 to p.

10.A.3 Proof of Proposition 10.2

Let us first investigate the existence of solutions for Problem (Pfull) under the assumption (10.9).
Fix ε > 0 and consider (uεn)n∈Z≥0

a minimizing sequence. According to the Banach-Alaoglu
Bourbaki theorem, the set UT,C,M is compact for the weak star topology of L∞(0, T ). Therefore,
up to a subsequence, (uεn)n∈Z≥0

converges to some element uε ∈ UT,C,M . Let us use the same
notation to denote (uεn)n∈Z≥0

and any converging subsequence (with a slight abuse of notation).
An immediate adaptation of the proof of Proposition 10.1 yields successively that (nεn)n∈Z≥0

(the sequence of solutions nεn of System (10.1) corresponding to u = uεn) is uniformly bounded and
converges uniformly to some limit nε as n → +∞, which corresponds to the solution of system
(10.1) with u = uε. We then infer that (Jε(uεn))n∈Z≥0

converges to Jε(uε) and the conclusion
follows.

To prove the convergence of minimizers as ε ↘ 0 and the existence of solutions for Problem
(Preduced), we will show that Jε Γ-converges4 to J0 as ε → 0, and conclude by using for instance
[39, Theorem 2.1].

We compute

Jε(uε) =
K2

2

(
(1− εnε(T ))2(1− pε(T ))2 +

(
1− pε(T )− ε(d2

b02
− pε(T )nε(T ))

)2
+

)
so that if ε > 0 is small enough,

Jε(uε) =
K2

2

(
2(1− pε(T ))2 − 2εnε(T )(1− pε(T ))(2pε(T )− 1)− 2ε(1− pε(T ))

d2

b02

+ ε2(
d2

b02
)2 − 2ε2pε(T )nε(T ) + ε2nε(T )2((1− pε(T ))2 + pε(T )2)

))
.

By the uniform estimates on nε, pε provided in Proposition 10.1, we get that dpε/dt is uniformly
bounded in ε on [0, T ], and thus by Arzelà-Ascoli theorem up to extraction pε converges uniformly
to some p.

In the particular case where uε = u we get that limε→0 J
ε(u) = J0(u), which implies (10.22).

Indeed, according to Proposition 10.1, the limit p is unique and solves precisely

dp

dt
= f(p) + ug(p), p(0) = 0.

4Reminder about Γ-convergence: one says that Jε Γ-converges to J0 if for u ∈ UT,C,M and (uε)ε>0 converging
weak-star to u in L∞(0, T ), one has

lim inf
ε→0

Jε(uε) ≥ J0(u) (10.21)

and there exists a sequence (uε)ε, with uε ⇀ u, such that

lim sup
ε→0

Jε(uε) ≤ J0(u). (10.22)
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Note that Proposition 10.1 proves in fact the stronger result that Jε(uε) converges to J0(u) as
ε goes to 0, whence (10.21).

10.A.4 Proof of Theorem 10.1

The proof relies on several intermediary lemmas which we state and prove below. We first prove
that the L1 constraint on the control u is saturated.

Lemma 10.4. If u∗ solves the optimization problem (Preduced), then

∫ T

0

u∗(t) dt = min(C, TM).

Proof. This is a consequence of the fact that the function g defined by (10.17) satisfies g(p) > 0 for
p ∈ [0, 1). Indeed, if u1 < u2 then if there exists a time τ ≥ 0 such that the corresponding solution
to (10.4) satisfies q1(τ) = q2(τ) < 1. We deduce from (10.4) that q̇1(τ) < q̇2(τ). Thus there exists
τ1 > τ such that q1(t) < q2(t) on [τ, τ1].

As a consequence, if h is a nonnegative function such that
∫

[0,T ]
h > 0 then J0(u+αh) < J0(u)

whenever α is small enough. Thus, the constraint is saturated.

Let us define the adjoint state q defined by

− q̇ =
(
f ′(p) + ug′(p)

)
q on (0, T ), q(T ) = −2(1− p(T )). (10.23)

Standard arguments yield existence and uniqueness of a solution for System (10.23). Moreover,
since 0 < p( · ) < 1, we deduce that q( · ) < 0 on [0, T ].

Let us now state the (necessary) first order optimality conditions for Problem (Preduced).

Lemma 10.5. Let u ∈ UT,C,M . Then, for every admissible perturbation5 h, the Gâteaux-derivative
of J0 at u in the direction h reads

〈dJ0(u), h〉 =

∫ T

0

h(t)q(t)g(p(t))dt.

Proof. Let h be an admissible perturbation of u (see Footnote 5). The Gâteaux-differentiability
of J0 is standard and follows from the differentiability of the mapping UT,C,M 3 u 7→ p, where p
denotes the unique solution of (10.15), itself deriving from the application of the implicit functions
theorem combined with variational arguments.

Let us then compute the Gâteaux-derivative of J0 at u in the direction h, defined by

〈dJ0(u), h〉 = lim
ε→0

J0(u+ εh)− J0(u)

ε
.

Let us introduce δp, the Gâteaux-differential of p at u in the direction h. Straightforward compu-
tations yield that δp solves the linearized problem to (10.4),

δ̇p(t) = f ′(p)δp+ ug′(p)δp+ hg(p), δp(0) = 0.

Then, one has
〈dJ0(u), h〉 = −2(1− p(T ))δp(T ) = q(T )δp(T ),

where q is the solution to the adjoint equation (10.23). Then, we compute

0 =

∫ T

0

δp(q̇ + f(p)q + ug′(p)q) dt = δp(T )q(T )− δp(0)q(0)−
∫ T

0

h(t)q(t)g(p(t)) dt

and we infer that

〈dJ0(u), h〉 =

∫ T

0

h(t)q(t)g(p(t)) dt.

5More precisely, we call “admissible perturbation” any element of the tangent cone Tu,UT,C,M to the set UT,C,M
at u. The cone Tu,UT,C,M is the set of functions h ∈ L∞(0, T ) such that, for any sequence of positive real

numbers εn decreasing to 0, there exists a sequence of functions hn ∈ L∞(0, T ) converging to h as n → +∞, and
u+ εnhn ∈ UT,C,M for every n ∈ Z≥0 (see e.g. [109, chapter 7]).
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Lemma 10.6. Let u ∈ UT,C,M be a solution of Problem (Preduced). Define the switching function
w by w(t) = g(p(t))q(t) for all t ∈ [0, T ]. There exists Λ < 0 such that

� u(t) = M ⇐⇒ w(t) < Λ,

� 0 < u(t) < M ⇐⇒ w(t) = Λ,

� u(t) = 0 ⇐⇒ w(t) > Λ,

each equality being understood up to a zero Lebesgue-measure set.

Proof. Introduce the Lagrangian function L associated to Problem (Preduced), defined by

L : UT,C,M × R 3 (u,Λ) 7→ J0(u)− Λ

(∫ T

0

u(t) dt− C

)
.

Standard arguments enable to show the existence of a Lagrange multiplier Λ such that (u,Λ) is
a saddle-point of the Lagrangian functional L. Moreover, according to Lemma 10.4 and since

T > C/M , we have necessarily
∫ T

0
u = C.

Let x0 be a density-one point of {u = M}. Let (Gk,n)n∈Z≥0
be a sequence of measurable

subsets with Gn,k included in {u = M} and containing x0. Let us consider h = 1Gk,n and notice
that u− ηh belongs to UT,C,M whenever η is small enough. Writing

L(u− ηh,Λ) ≥ L(u,Λ),

dividing this inequality by η and letting η go to 0, it follows that

−〈dJ0(u), h〉+ Λ

∫ T

0

h(t) dt ≥ 0

or equivalently that

−
∫
Gn,k

q(t)g(p(t)) + Λ|Gn,k| ≥ 0.

according to Lemma 10.5. Dividing this inequality by |Gk,n| and letting Gk,n shrink to {x0} as
n → +∞ shows the first point of Lemma 10.6, according to the Lebesgue Density Theorem. The
proof of the third point is similar, and consists in considering perturbations of the form u + ηh
where h denotes a positive admissible perturbation of u supported in {u(t) = 0}. Finally, the proof
of the second point follows the same lines, by considering bilateral perturbations of the form u±ηh
where h denotes an admissible perturbation of u supported in {0 < u(t) < M}.

Note also that the obtained properties are in fact equivalent by observing that the sets {w(t) <
Λ}, {w(t) > Λ} and {w(t) = Λ} realize a partition of [0, T ].

Lemma 10.7. Let u ∈ UT,C,M be a solution of Problem (Preduced). One has 0 < u(t) < M on an
open interval containing t if and only if w′(t) = 0, which rewrites f ′(p(t))g(p(t)) = f(p(t))g′(p(t)).

Under the assumption (10.6), there exists a unique p∗ ∈ (0, 1) such that (f/g)′(p∗) = 0 and
therefore, {u ∈ (0,M)} is an open interval containing t if and only if p(t) = p∗, which implies
u(t) = −f(p∗)/g(p∗).

Proof. Let us differentiate t 7→ g(p(t))q(t). We get

d

dt

(
q(t)g(p(t))

)
= q′g + p′g′q

= (−f ′ − ug′)gq + (f + ug)g′q

= q(t)
(
f(p(t))g′(p(t))− f ′(p(t))g(p(t))

)
.

Combining this computation with Remark 10.2 yields the expected result.

From this general fact we deduce

Lemma 10.8. Let u ∈ UT,C,M be a solution of Problem (Preduced). Under the assumption (10.6)
and if M > max[0,1]−f/g, u is either bang-bang or constant and equal to −f(p∗)/g(p∗) (the latter
case may occur only if C = −Tf(p∗)/g(p∗)).
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Proof. Between 0 and 1, f changes sign only once, at θ. In addition, the switching function
w : t 7→ q(t)g(p(t)) is decreasing if p(t) < p∗ and increasing if p(t) > p∗, since it is positively
proportional to (f/g)′, which changes sign only once, and f/g changes sign only once, and is
decreasing at 0, so (f/g)′ has the same sign as p− p∗.

Necessarily, θ ≥ p∗. Indeed, f/g is decreasing on (0, p∗) and equal to 0 at 0 and θ.
Let I = (t1, t2) be the maximal interval on which p(t) = p∗, u(t) = −f(p∗)/g(p∗), w(t) = Λ. If

at t+2 we have u = 0 then p must decrease since p∗ < θ, so p(t) < p∗ at t+2 , and therefore w must
decrease at t2, but this contradicts the necessary optimality condition of Lemma 10.6. If at t+2 we
have u = M then p must increase if M is large enough. Then w must increase, and again this is
in contradiction with Lemma 10.6. Hence I = ∅ or I = [0, T ]. But I = [0, T ] is admissible if and
only if −Tf(p∗)/g(p∗) = C.

Let us define pM as the solution of

dpM
dt

= f(pM ) +Mg(pM ), pM (0) = 0.

Assume that M > maxp∈[0,θ]− f(p)
g(p) . Then dpM

dt = f(pM ) + Mg(pM ) > 0. Introduce the function

GM defined by G′M (p) = 1
f(p)+Mg(p) and GM (0) = 0. Then, GM is an increasing function and we

have

GM (pM (t)) = GM (pM (t0)) + t− t0, and GM (pM (C/M)) =
C

M
.

The use of all these results allows us to conclude the proof of Theorem 10.1.

Proof of Theorem 10.1. We split the proof into three cases :

� Case pM (C/M) < θ. This condition is equivalent to GM (pM (C/M)) < GM (θ) (since GM is
increasing). By Lemma 10.8, the control u is bang-bang and the set where u = M is open,
(since from Lemma 10.6, it is the set of interval on which g(p)q < Λ). Consider that u is
given by u(t) = M

∑
i∈Z≥0

1(t2i,t2i+1), where (ti)i∈Z≥0
is an increasing sequence of times in

[0, T ]. We denote by p the corresponding solution to (10.4).

We want to compare with the control ū = M1[T−C/M,T ], for which the corresponding solution

to (10.4) is denoted p̄. Then, p̄(T ) = G−1
M (C/M).

Let us show that p(T ) < p̄(T ) = G−1
M (C/M). We use an induction to prove that for all

i ∈ Z≥0, p(t2i) < G−1
M (C/M). Indeed, if we assume that for a i ∈ Z∗≥0, we have for every

k ≤ i, p(t2k) < G−1
M (C/M) < θ. Then, on (t2i, t2i+1), we solve the equation

ṗ = f(p), p(t2i) < θ.

Since f < 0 on (0, θ), it implies that p is decreasing on (t2i, t2i+1), thus p(t2i+1) < p(t2i). On
[t2i+1, t2i+2), we have

GM (p(t2i+2)) = GM (p(t2i+1)) + t2i+2 − t2i+1 < GM (p(t2i)) + t2i+2 − t2i+1.

By induction, we deduce that

GM (p(t2i+2)) <GM (p(t2i−2)) + t2i − t2i−1 + t2i+2 − t2i+1

<G(p(t0)) + t2 − t1 + . . .+ t2i+2 − t2i+1 ≤ C/M,

since p(t0) = 0 and

i∑
k=0

(t2k+2 − t2k+1) ≤ C

M
. We infer

p(t2i+2) < G−1
M (C/M).

This concludes the induction and the proof in this first case.

� Case pM (C/M) > θ. We use the same strategy and introduce the solution p to (10.4) with
u given by u(t) = M

∑
i∈Z≥0

1(t2i,t2i+1), where (ti)i∈Z≥0
is an increasing sequence of time in

[0, T ]. We want to compare with the solution p̄ for ū = M1[0,C/M ].
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We first observe that since p̄(C/M) = pM (C/M) > θ and f > 0 on (θ, 1), we have p̄ increasing
on [C/M,T ] and p̄(C/M) = G−1

M (C/M). If at time t1, we have p(t1) < θ, then on (t1, t2),
p is decreasing. Then p(t2) < p(t1) ≤ p̄(t1 − t0) and we may prove as above that as long as

p(t2i+1) < θ, we have p(t2i+2) < p̄
(∑i

k=0(t2k+1 − t2k)
)

.

As a consequence the solution p associated with the optimal control should satisfy p(t1) > θ.
Then, on (t1, T ) the function p solving (10.4) is increasing, thus on (t1, T ), we have p > θ > p∗.
Then the switch function w is increasing. However, we have w > Λ on (t1, t2) since u = 0
from Lemma 10.6. Hence, it is not possible to have u = M for larger times.

� In the case where pM (C/M) = θ. In this case, we have u = M1(λ,C/M+λ) for any 0 ≤ λ ≤
T − C/M . Indeed, for such a function, we have p ≡ 0 on [0, λ] and p ≡ θ on [C/M + τ, T ].
By contradiction, assume there is an interval on which u = 0 between two intervals on which
u = M , then on this interval p is decreasing, and thus p cannot reach the value θ at the final
time of control, by comparison.

10.A.5 Proof of Corollary 10.1

According to Proposition 10.2, we know that (uε)ε>0 converges weak star in L∞(0, T ) to a solution
of Problem (Preduced), say u∗.

Since u∗ is an extremal point of the convex set UT,C,M to which all elements of the sequence (uε)ε
belong, it follows from [23] that the L∞-weak∗ convergence (that is here, L1-weak convergence)
implies strong convergence in L1, and therefore

lim
ε→0

∫ T

0

|uε(t)− u∗(t)|dt = 0.

Finally, we conclude by observing that, whenever C 6= C∗(M), the solution to Problem (Preduced)
is unique according to Theorem 10.1.

10.B Qualitative properties of the minimizers

In this section, we treat a slight extension of (Pfull) to more general final time criteria. We state
in Proposition 10.3 useful qualitative properties of solutions, under additional assumptions on the
biological parameters.

We let G : R2
+ → R be a smooth function such that ∂1G ≥ 0 ≥ ∂2G, and define J (u) =

G(n(T )).

Proposition 10.3. Let u∗ be a local minimizer of J in UT,C,M On the set I∗ := {u∗ ∈ (0,M)}
we have u∗ =

(
H − f2

)
(n), where

H =
−∂2f1∂2f2∂1f1 + ∂1f2(∂2f1)2 − f1∂

2
21f2∂2f1 + ∂2f2f1∂

2
21f1

∂2
22f2∂2f1 − ∂2

22f1∂2f2
.

Let N(C) := K max(1− d1

b1
, 1− d2

b2
) + C,

Nmin := K min
p∈[0,1]

(
b1(1− shp)− d1

)
(1− p) +

(
b2 − d2

)
p

b1(1− p)(1− shp) + b2p
.

and
M(C) := max

(N,p)∈[Nmin,N(C)]×[0,1]

(
H((1− p)N, pN)− f2((1− p)N, pN)

)
.

Then M(C) is finite. In addition if M > M(C) and the biological parameters satisfy a nonlinear
condition G ≥ 0 (defined below in (10.24)) then there exists t0, t1 ∈ [0, T ] with t0M+(T−t1)M ≤ C
such that set IM := {u∗ = M} is equal to [0, t0] ∪ [t1, T ].

Interpretation. Under reasonable assumptions on the biological parameters, the optimal
replacement strategies use the maximal possible release flux only at the beginning and at the end
of the protocol.

We split the proof into
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� estimates on the dynamics of (10.2)-(10.3) yielding bounds on H and other quantities,

� the use of a first-order necessary optimality condition.

10.B.1 Estimates on the dynamics

We normalize (10.2)-(10.3) by letting x = n1/K, y = n2/K, so by an abuse of notations f1(x, y) = b1x(1− shy/(x+ y))(1− (x+ y))− d1x,

f2(x, y) = b2y(1− (x+ y))− d2y.

We compute:

∂1f1(x, y) = b1(1− (2x+ y))(1− sh y
x+y )− d1 + shb1(1− (x+ y)) xy

(x+y)2 ,

∂2f1(x, y) = −b1x(1− sh y
x+y )− shb1(1− (x+ y)) x2

(x+y)2 ,

∂1f2(x, y) = −b2y,

∂2f2(x, y) = b2(1− (x+ 2y))− d2.

We also compute the second-order derivatives of the form ∂2
2ifj , pour i, j ∈ {1, 2}:

∂2
21f1(x, y) = −b1(1− sh y

x+y ) + shb1
x2−xy
(x+y)2 − 2shb1

xy
(x+y)3 (1− (x+ y)),

∂2
22f1(x, y) = 2shb1

x2

(x+y)3 ,

∂2
21f2(x, y) = −b2,

∂2
22f2(x, y) = −2b2.

The function χ := ∂2f2(n)∂2
22f1(n)− ∂2f1(n)∂2

22f2(n) involved in the denominator of H reads

χ(x, y) = 2shb1
x2

(x+ y)3
(1− (x+ y))

(
b2(1− (x+ 2y))− d2

)
− 2b2

(
b1x(1− sh

y

x+ y
)− shb1(1− (x+ y))

x2

(x+ y)2

)
.

In general we have

χ(x, y) = 2b1b2x
( shx

(x+ y)3

(
1− (x+ y)

)(
1− d2/b2 − (2x+ 3y)

)
− (1− sh

y

x+ y
)
)
.

With an abuse of notations and letting s2 = d2/b2 ∈ (0, 1)) we rewrite χ as

χ(p,N) = 2b1b2(1− p)
(sh(1− p)(1− s2)

N
− sh(1− p)(2 + p)−N(1− sh)

)
,

where as usual p = y/N and N = x+ y.

Remark 10.3. In the special case when there is no cytoplasmic incompatibility, sh = 0 and

χ = −2b2b1x < 0.

In all generality, the sign of χ is given by

Q(p,N) := sh(1− s2)(1− p)− sh(1− p)(2 + p)N −N2(1− sh),

which we need to compute along trajectories.

Lemma 10.9. Let N+ be the following, non-negative and bounded function on [0, 1]:

N+(p) :=
−sh(1− p)(2 + p) +

√
s2
h(1− p)2(2 + p)2 + 4sh(1− sh)(1− s2)(1− p)

2(1− sh)
.

Then χ(p,N) < 0 with N > 0 if and only if N > N+(p).
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Proof. We compute the roots of Q as a polynomial in N , Q(p,N±(p)) = 0 where

N±(p) =
−sh(1− p)(2 + p)±

√
s2
h(1− p)2(2 + p)2 + 4sh(1− sh)(1− s2)(1− p)

2(1− sh)
.

Obviously, N−(p) ≤ 0 ≤ N+(p). Since the leading coefficient of Q is negative, it follows that
Q(p,N) < 0 if and only if N > N+(p) or N < N−(p). The sign of Q gives the sign of χ, and the
result is proved.

For a solution to (10.2)-(10.3) we have

dN

dt
= N

((
b1(1− shp)− d1

)
(1− p) +

(
b2 − d2

)
p−

(
b1(1− p)(1− shp) + b2p

)
N
)

+ u.

Since u ≥ 0, in particular N is increasing as soon as

N ≤
(
b1(1− shp)− d1

)
(1− p) +

(
b2 − d2

)
p

b1(1− p)(1− shp) + b2p
=: ψ(p).

Let Nmin := minp∈[0,1] ψ(p) and N+ := maxp∈[0,1]N+(p).

Lemma 10.10. The following inequality holds: Nmin ≥ N+ if and only if G(δ, s1, s2, sh) ≥ 0 (for
some non-linear function G defined below in (10.24)).

In this case, χ < 0 along all trajectories of (10.2)-(10.3) with u ≥ 0, n1(0) ≥ 0, n2(0) ≥ 0 and
n1(0) + n2(0) > Nmin.

Proof. First, by the above computations we have that dN
dt > 0 as soon as N < ψ(p). If N < Nmin

then this always holds, and in particular the set {N ≥ Nmin} is absorbing for the dynamics
of (10.2)-(10.3) with u ≥ 0. Therefore, Nmin ≥ N+ suffices to have that N > N+ along all the
trajectories in consideration, and thus χ < 0 by Lemma 10.9.

Secondly we notice that N+(1) = 0, and we compute, letting λ = (1− sh)(1− s2)/sh:

2
1− sh
sh

N ′+(p) = 1 + 2p− (1− p)(2 + p)(1 + 2p) + 2λ√
(1− p)2(2 + p)2 + 4λ(1− p)

.

In particular, lim1− N
′
+ = −∞.

In addition N ′+ = 0 if and only if

(1 + 2p)2
(
(1− p)2(2 + p)2 + 4λ(1− p)

)
=
(
(1− p)(2 + p)(1 + 2p) + 2λ

)2
,

which is equivalent to
−(1 + 2p)(1− p)2 = λ.

There is no solution p ∈ [0, 1] since 1 + 2p > 0 and λ > 0, so N+ is monotone decreasing and
therefore

N+ = N+(0) =
sh

1− sh
(
− 1 +

√
1 +

(1− sh)(1− s2)

sh

)
.

(Note that as sh → 1, N+ → (1− s2)/2.)
Thirdly, we rewrite δ = d2/d1 and

ψ(p) = 1− s1
(δ − 1)p+ 1

(1− p)(1− shp) + δs1
s2
p
.

A direct computation shows that ψ′ is positively proportional to

R(p) := sh(δ − 1)p2 + 2shp+ δ
(s1

s2
− 1
)
− sh,

which is a second-order polynomial in p. We compute its discriminant

∆R = 4shδ
(
sh − (δ − 1)(

s1

s2
− 1)

)
.
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Let ξ =
(δ−1)(

s1
s2
−1)

sh
. The roots of R if ∆R ≥ 0 (that is ξ ≤ 1) are given by

pR± =
−1±

√
δ(1− ξ)

δ − 1
.

We gather the various cases below, using the notations pmin = arg minψ:

� If δ < 1, then either ξ < 1 and pR− > pR+ > 0 with pR− > 1, so the minimum of ψ is reached
at pmin = min(1, pR+), or ξ ≥ 1 and ψ is decreasing, in which case pmin = 1.

� If δ = 1 then R(p) = 2shp+ s1
s2
−1−sh. Let ζ =

1+sh−
s1
s2

2sh
. If ζ ≤ 0 then the minimum of ψ is

reached at pmin = 0, if ζ ≥ 1 then the minimum of ψ is reached at pmin = 1 and if ζ ∈ (0, 1)
then the minimum of ψ is reached at pmin = ζ. In short, pmin = min(max(0, ζ), 1).

� If δ > 1:

– if ξ ≥ 1 then pmin = 0 (ψ is increasing);

– if ξ < 1:

* if δ(1− ξ) ≤ 1 then the two roots of R are negative and pmin = 0;

* if δ(1 − ξ) > 1 then ψ is either decreasing or decreasing-increasing, and pmin =
min(1, pR+);

We can summarize all this into:

pmin = min
(

max
(
0, pm(δ,

s1

s2
, sh)

)
, 1
)
,

where pm is the following continuous map R+ × R+ × (0, 1]→ R:

pm(δ, σ, sh) =


−1+

√
δ
(

1− (δ−1)(σ−1)
sh

)
δ−1 if δ 6= 1 and (δ − 1)(σ − 1) < sh,

−1
δ−1 if δ 6= 1 and (δ − 1)(σ − 1) ≥ sh,
1+sh−σ

2sh
if δ = 1.

Back to ψ, we find that Nmin can be equal to either ψ(0) = 1− s1, ψ(1) = 1− s2, ψ( 1+sh−σ
2sh

) =

1− 4s1sh
(1+sh−σ)(3−σ−sh) (in the case δ = 1 and 0 < 1+sh−σ

2sh
< 1), or to

ψ
(−1 +

√
δ
(
1− (δ−1)(σ−1)

sh

)
δ − 1

)
= 1−

s1(δ − 1)2
√
δ(1− (δ−1)(σ−1)

sh
)

δ2
(
sh − (σ − 1)(δ − 1)

)
+
(
(δ − 1)(σδ − 1)− sh(1 + δ)

)√
δ(1− (δ−1)(σ−1)

sh
)

if δ 6= 1, (δ − 1)(σ − 1) < sh and 0 <
−1+

√
δ
(

1− (δ−1)(σ−1)
sh

)
δ−1 < 1.

Finally, we obtain that Nmin ≥ N+ if and only if G ≥ 0, where

G(δ, s1, s2, sh) = ψ(pmin)− sh
1− sh

(
− 1 +

√
1 +

(1− sh)(1− s2)

sh

)
, (10.24)

where we recall that

ψ(p) = 1− s1
(δ − 1)p+ 1

(1− p)(1− shp) + δσp
, pmin = min

(
max

(
0, pm(δ,

s1

s2
, sh)

)
, 1
)
,

and

pm(δ, σ, sh) =


−1+

√
δ
(

1− (δ−1)(σ−1)
sh

)
δ−1 if δ 6= 1 and (δ − 1)(σ − 1) < sh,

−1
δ−1 if δ 6= 1 and (δ − 1)(σ − 1) ≥ sh,
1+sh−σ

2sh
if δ = 1,

and where the second term in G must be replaced by its limit sh → 1 if sh = 1, namely by
(1− s2)/2.
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Remark 10.4. For instance, if sh = 1 and δ = 1 we find that

G(1, s1, s2, 1) =
1 + s2 − s1/s2

2
,

so that the property holds if and only if s1 ≤ s2(1+s2). The usual set of assumptions for Wolbachia
is δ ≥ 1 (it is life-shortening) and s1 ≤ s2 (the wild population is fitter than the introduced one,
recalling that the population at equilibrium is K(1 − si), where K is the environmental carrying
capacity).

The property holds in particular if CI is perfect (sh = 1), there is no life-shortening effect
(δ = 1) and the wild population has higher birth rate, b1 ≥ b2 (but of course it holds for many
other cases as well).

Remark 10.5. We can also notice that since −1 +
√

1 + z ≤ z/2 for all z ≥ 0, we have that
if ψ(p) ≥ (1 − s2)/2 for all p ∈ [0, 1] then G ≥ 0. By taking the even more restrictive sufficient
condition ψ(p) ≥ (1− s2)/2 for all p ∈ R, we get the following, simpler sufficient condition:

(
δ
s1

2
(

1

s2
− 1) + s1 −

(1 + sh)(1 + s2)

2

)2 ≤ sh(1 + s2 − 2s1).

However, the condition G ≥ 0 is obviously better than this one.

By a straightforward computation using the equation on N , we can bound uniformly the total
population along trajectories of (10.2)-(10.3):

Lemma 10.11. If N(0) ≤ maxp∈[0,1] ψ(p) then along all trajectories with u ≥ 0 and
∫ T

0
u(t)dt ≤ C

we have

N ≤ max
p∈[0,1]

ψ(p) + C =: N(C).

In addition,

N(C) = max(1− s1, 1− s2) + C. (10.25)

Proof. Equation (10.25) follows from the previous study of ψ, in the proof of Lemma 10.10.

Finally, we bound the function H (defining the value of the optimal controls along singular arcs
in Proposition 10.3):

Lemma 10.12. Assume G ≥ 0. Then the function H : [Nmin, N(C)] × [0, 1] → R from (5.8) is
bounded.

Proof. It appears that the denominator in (5.8) is χ, which is negative and vanishes only at p = 1,
with order 1 if sh < 1, and order 2 if sh = 1. (Indeed, by Lemma 10.10, G ≥ 0 is sufficient to
get this property for N ≥ Nmin). To get the boundedness of H, we must therefore check that the
numerator also vanishes at p = 1, with appropriate order in (1− p).

The numerator is comprised of four terms, being equal to

−∂2f1∂2f2∂1f1 + ∂1f2(∂2f1)2 − f1∂
2
21f2∂2f1 + ∂2f2f1∂

2
21f1.

The first three terms have ∂2f1, which is equal to

−b1(1− p)(1− shp)N − shb1(1−N)(1− p)2,

and is therefore of order 1 if sh < 1, and of order 2 if sh = 1.
The last term has

∂2
21f1 = b1

(
− (1− shp) + sh(1− p)2 + shp(1− p)−

2shp(1− p)
N

)
,

which is of order 0 is sh < 1, and of order 1 if sh = 1, and it also has f1, which is alwyas of order
1. Therefore the numerator of H is globally of order 1 in (1− p) at p = 1 if sh < 1, and of order 2
if sh = 1, and thus H is bounded.
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10.B.2 Derivation of qualitative properties of minimizers

To conclude the proof of Proposition 10.3 we simply need to use the first-order necessary condition
of optimality (as in Lemma 10.6).

Indeed, a straightforward computation shows that u∗ (associated with a solution n∗ to (10.2)-
(10.3)) is a local minimizer only if there exists Λ < 0 such that

� IM := {u∗ = M} = {q2 < Λ},

� I∗ := {u∗ ∈ (0,M)} = {q2 = Λ},

� I0 := {u∗ = 0} = {q2 > Λ},

where q = (q1, q2) solves

−dq
dt

=

(
∂1f1 ∂1f2

∂2f1 ∂2f2

)
q, q(T ) =

(
∂1G(n∗(T ))
∂2G(n∗(T ))

)
The fact that Λ < 0 comes from q2(t) < 0 on [0, T ), which is a direct consequence of the assumptions
on G (∂1G ≥ 0 ≥ ∂2G) and the fact that the system is competitive: ∂1f2, ∂2f1 < 0.

From this, we can derive the expression of H: by q2 ≡ Λ on I∗ we can deduce that for t ∈ I̊∗,

∂2f1(n(t))q1(t) = −∂2f2(n(t))Λ.

This equality holds on a neighborhood of t, and we can use it in the equation on q1 to deduce that

−dq1

dt
= Λ

d

dt

(−∂2f2(n(t))

∂2f1(n(t))

)
= −Λ∂1f1(n(t))

∂2f2(n(t))

∂2f1(n(t))
+ Λ∂1f2(n(t)).

After division by Λ, and recalling that dn
dt = f(n) +

(
0
u

)
we obtain the expression of H.

It only remains to prove the claim that IM = [0, t0] ∪ [t1, T ]. It can be seen easily that the
switch function q2 solves in fact the following Cauchy problem:

a(n)q̈2 + b(n, u∗)q̇2 + c(n, u∗)q2 = 0 on [0, T ],

q2(T ) = −
(
K(1− d2

b2
)− n2(T )

)
+
,

q̇2(T ) = −∂2f1(n(T ))n1(T ) + ∂2f2(n(T ))(X2 − n2(T ))+,

(10.26)

where

c(n, u) = χ(n)(u+ f2(n)−H(n)), a(n) = −∂2f1(n),

b(n, u) = −(∂1f1(n) + ∂2f2(n))∂2f1(n) + f1(n)∂2
12f1(n) + (f2(n) + u)∂2

22f1(n).

Thus, as long as χ < 0 on a trajectory associated with an optimal control u∗, and M >
max(f2 −H) then q2 has no local minimum in IM . Since q2 < Λ in the interior of IM and q2 = Λ
at boundary points of IM that are interior to [0, T ], this suffices to show that IM = [0, t0]∪ [t1, T ].
The conditions are met, as can be seen from the facts gathered in Section 10.B.1: if the parameters
satisfy G ≥ 0 then χ < 0 on all trajectories (Lemma 10.9), and ifM > M(C) thenM > max(f2−H)
where the maximum is taken on the admissible set.
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Chapter 11

Sharp seasonal threshold property
for cooperative population
dynamics with concave
nonlinearities

This chapter is a work in collaboration with Hongjun Ji.

Abstract. We consider a biological population whose environment varies periodically in time,
exhibiting two very different “seasons”: one is favorable and the other one is unfavorable. For
monotone differential models with concave nonlinearities, we address the following question: the
system’s period being fixed, under what conditions does there exist a critical duration for the
unfavorable season? By “critical duration” we mean that above some threshold, the population
cannot sustain and extincts, while below this threshold, the system converges to a unique periodic
and positive solution. We term this a “sharp seasonal threshold property” (SSTP, for short).
Building upon a previous result, we obtain sufficient conditions for SSTP in any dimension and
apply our criterion to a two-dimensional model featuring juvenile and adult populations of insects.

11.1 Introduction

We study differential dynamical systems arising from nonlinear periodic positive differential equa-
tions of the form

dx

dt
= F (t, x), (11.1)

where F is monotone and concave. These systems exhibit well-known contraction properties when
F is continuous (see [113], [207], [126]). We extend in Theorem 11.1 these properties to non-
linearities that are only piecewise-continuous in time. This extension is motivated by the study of
typical seasonal systems in population dynamics.

We denote by θ ∈ [0, 1] the proportion of the year spent in unfavorable season. Then, we
convene that time t belongs to an unfavorable (resp. a favorable) season if nT ≤ t < (n + θ)T
(resp. if (n+ θ)T ≤ t < (n+ 1)T ) for some n ∈ Z+. In other words, we study the solutions to:

dX

dt
= G(πθ(t), X), πθ(t) =

{
πU if t

T − b
t
T c ∈ [0, θ),

πF if t
T − b

t
T c ∈ [θ, 1),

(11.2)

for some G : P ×RN → RN , with πU , πF ∈ P where P is the parameter space. We are looking for
conditions ensuring that a sharp seasonal threshold property holds, that is:

∃θ∗ ∈ [0, 1] such that


if θ < θ∗,∃!q : R+ → RN , T -periodic, q � 0 and

∀X0 ∈ RN+\{0}, X converges to q,

if θ > θ∗,∀X0 ∈ RN+ , X converges to 0.

(SSTP)
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Ecologically, the respective duration of dry and wet seasons is crucial for population sustainability
in various species. The property (SSTP) means that if the dry season is longer than θ∗T then the
population collapses and if it is shorter then the population densities will tend to be periodic.

Assume that F (t, 0) ≡ 0. Thanks to the contraction properties of concave nonlinearities, the
whole problem reduces to the study of the Floquet eigenvalue with maximum modulus of the
linearization of (11.1) at X = 0:

dz

dt
= DxF (t, 0)z. (11.3)

In fact, this eigenvalue is equal to the spectral radius of the Poincaré application for (11.3), which
we compute here for piecewise-autonomous systems.

Our proof uses the Perron-Frobenius theorem and relies on the Perron eigenvalue and (left and
right) eigenvectors. The importance of this eigenvalue for quantifying the effects of seasonality
has been acknowledged continuously in mathematical biology in at least three application fields:
circadian rhythms (in particular in connection with cell division and tumor growth), harvesting
and epidemiology.

It was noted in [56] that Floquet eigenvalue with maximum modulus of (11.3) is always larger
that the Perron eigenvalue of some averaged (over a period) matrix F defined from the entries of
DxF (t, 0). There has been a continued interest in this eigenvalue for linear models of cell division
since and we refer to [95] in particular for a detailed study of the monotonicity of the Perron
eigenvalue with respect to parameters of a structured model for cell division. In a stochastic
framework for growth and fragmentation, [43] establishes a similar monotonicity property. In this
context, the Perron eigenvalue is seen as the cell growth rate, and this is why its dependence in
the model parameters is important. Here, we connect the eigenvalue monotonicity with a non-
extinction condition to derive the (SSTP). We emphasize that our Theorem 11.2 gives some
sufficient conditions for the monotonicity of the Perron eigenvalue, in the case when there are only
two different seasons.

In dimension 1, for the logistic equation with harvesting, Xiao has shown in [236] a sharp
threshold property, where the two different “seasons” correspond to one harvesting period (”un-
favorable season“) and one rest period (”favorable season“). Contrary to the case of cell division,
the model treated there is non-linear, though 1-dimensional. Our results extend a part of those
of [236] to n-dimensional concave monotone systems. Note that the cited article also studies the
maximal sustainable yield, which can be seen as an objective function of the periodic solution q.
On this topic, [170, Section 5] studies a structured problem of adaptive dynamics with concave
nonlinearity and periodic forcing to show a similar effect as in [236] (there, for population size): in
both cases, time fluctuations can improve an objective value.

For applications in epidemiology, where seasonality often has dramatic effects, we refer to [20]
and [19] for the computation of case reproduction numbers with seasonal forcing.

The organization of the paper is as follows. The motivating model is detailed in Section 11.2,
where we also define some concepts. In Section 11.3 we state our results: first (Theorem 11.1)
an extension to piecewise-continuous nonlinearities of the well-known results on monotone concave
nonlinearities, then (Theorem 11.2) fairly general sufficient conditions for systems in any space
dimension N ∈ Z>0 to satisfy (SSTP), and finally (Theorem 11.3) an application to the two-
dimensional system (11.2), for which we are able to show the threshold property (SSTP) for a
wide range of parameters. The proofs are detailed in Section 11.4 (and in Appendix 11.A for
Theorem 11.1), while extensions and possible research directions are gathered in Section 11.5.

11.2 Context and motivation

Our reference model is a simplistic description of the population dynamics of some insects, with a
juvenile stage exposed to quadratic competition and an adult stage. Let J(t), A(t) represent the
populations of juveniles and adults at time t, respectively. A very simple dynamic is defined by

dJ

dt
= bA− J(h+ dJ + cJJ),

dA

dt
= hJ − dAA,

(11.4)

where dY (Y ∈ {J,A}) stands for the (linear) death rate, b is the birth rate, h is the hatching rate
and the parameter cJ tunes the only non-linearity: quadratic competition (=density-dependent
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death rate) among juveniles. This term effectively limits the total population size, as we will
prove below. We use it to represent resource limitation both for breeding sites availability and for
nutrient availability during growth. In principle, the parameters may depend on time:

∀t ∈ R, π(t) := (b, h, dJ , cJ , dA) ∈ R5
+. (11.5)

For convenience, we rewrite the right-hand side of (11.4) as G(π,X) with X = (J,A) ∈ R2, and
G : R5

+ × R2 → R2.
In the tempered areas where mosquito populations are established, dramatic seasonal variations

in population abundance are usually observed. Namely, there is explosive growth in summer after
rain events, whereas mosquitoes are very scarce in winter. This phenomenon is possible thanks to
dormant (or ”quiescent” or ”refuge”) phases in the mosquito’s life-cycle. These seasonal variations
imply that the natural environment (temperature, rainfall, humidity etc.) is very important for
the mosquito.

We propose to study population dynamics in simple models such as (11.4) under periodic
seasonal forcing. As a rough approximation, we set up (11.4) with periodic piecewise-constant
coefficients of period T = 1 year, each one possibly taking two different values over one period.
Thus, the year is divided into unfavorable and favorable seasons, defined by parameter values
πU , πF ∈ R5

+ such that −dFJ + dUJ bF − dFA − (bU − dUA)

hF − hU −dFA + dUA

 > 0. (11.6)

The four scalar inequalities of condition (11.6) deserve a biological justification. It implies that
during the favorable season, the hatching rate is larger than during the unfavorable season, while
death rates (for juveniles, and adults) are smaller. These assumptions rely on the facts that
breeding sites availability and quality is much higher in good season (whence higher hatching rate
and birth rate and lower juvenile competition), while the temperature increase can be expected to
extend the life-span of both adults and juveniles. The first component in (11.6) implies that the
growth coefficients b − dA are ordered: bF − dFA > bU − dUA. This is true in particular if bF > bU ,
but holds in more generality.

We emphasize that the systems under study are excessively simple because, in mathematical
terms, they are cooperative with concave nonlinearity, and as such they have strong asymptotic
convergence properties.

Let F : Rt × RNx → RN be piecewise continuous in t and continuously differentiable in x. The
system (11.1) is cooperative if its Jacobian matrix is Metzler:

∀(t, x) ∈ R+ × RN+ , i 6= j =⇒ ∂Fi
∂xj

(t, x) ≥ 0, (M)

It is positive (i.e., RN+ is an invariant set) if

∀t ∈ R+, ∀1 ≤ i ≤ N, ∀x ≥ 0, xi = 0 =⇒ Fi(t, x) ≥ 0. (P)

Under condition (M), (11.1) is positive if ∀t ∈ R+, F (t, 0) ≥ 0. We say that (11.1) defines a
concave dynamics on RN+ if

∀0� x� y, DxF (t, x) ≥ DxF (t, y), (C)

and that (11.3) is irreducible if

∀t ∈ R+, DxF (t, 0) is irreducible in MN (R). (I)

11.3 Results

11.3.1 General results

In order to study the asymptotic behavior of (11.2), we generalize a result by Smith [207] (refined
by Jiang in [126]) about continuous concave and cooperative nonlinearities to piecewise-continuous
(in time) nonlinearities.
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Theorem 11.1. Let F : Rt×RNx → RN be T -periodic and piecewise-continuous in t and such that
for all t ∈ R+, F (t, · ) ∈ C1(RN ,RN ). Assume that F satisfies assumptions (P), (M), (C) and (I),
so that the associated differential system (11.1) is positive, monotone and concave with irreducible
linearization at 0. Let λ ∈ R denote the Floquet multiplier with maximal modulus of (11.3).

If λ ≤ 1 then every non-negative solution of (11.1) converges to 0. Otherwise,

(i) either every non-negative solution of (11.1) satisfies lim
t→∞

x(t) =∞,

(ii) or (11.1) possesses a unique (nonzero) T -periodic solution q(t).

In case (ii), q � 0 and lim
t→∞

(x(t)− q(t)) = 0 for every non-negative solution of (11.1).

The proof of Theorem 11.1 (in Appendix 11.A) follows closely the lines of [207] and [126].
An illuminating example when Theorem 11.1 applies is for T -periodic piecewise autonomous

differential systems, where for all x ∈ RN , F ( · , x) is a piecewise-constant function. Namely, we
assume that there exists K ∈ Z>0 and functions (F k)1≤k≤K : RN+ → RN+ such that:

F (t, x) = F k(x) if
t

T
−
⌊ t
T

⌋
∈ [θk−1, θk), (11.7)

where (θk)0≤k≤K ∈ [0, 1]K+1 is a non-decreasing family such that θ0 = 0 and θK = 1. To verify
the hypotheses of Theorem 11.1, we need to assume that for all 1 ≤ k ≤ K, F k is continuously dif-
ferentiable, monotone, concave and satisfies F k(0) = 0; and in addition that DF k(0) is irreducible
for all 1 ≤ k ≤ K.

The main advantage of piecewise-constant non-linearities is that for such dynamics (and al-
most only for these dynamics), the Floquet multiplier with maximal modulus λ can be computed
explicitly as the following spectral radius:

λ = ρ
(
e(θK−θK−1)T ·DFK(0) · · · e(θ1−θ0)T ·DF 1(0)

)
. (11.8)

In the case K = 2, with θ := θ1, the Perron-Frobenius theorem applies to

M(θ) := e(1−θ)T ·DF 2(0)eθT ·DF 1(0),

which is positive since DF k(0) are (irreducible) Metzler matrix by (M) (and (I)). Therefore there
exists unique vectors V (θ), V∗(θ)� 0 with ‖V (θ)‖ = 1 and 〈V (θ), V∗(θ)〉 = 1, and a unique positive
number ρ(θ) such that

M(θ)V (θ) = ρ(θ)V (θ), M(θ)∗V∗(θ) = ρ(θ)V∗(θ). (11.9)

In this setting, assume without loss of generality that µ(DF 2(0)) ≥ µ(DF 1(0)), and denote S :=
DF 1(0)−DF 2(0). We consider two specific cases:

(A) DF 1(0) and DF 2(0) have the same principal right or left eigenvector;

(B) for all θ ∈ [0, 1], one of the following holds:

(B-1) ∃P ∈ GLN (R), PS < 0 and (P−1)∗V∗(θ) > 0;

(B-2) ∃P ∈ GLN (R), SP < 0 and P−1V (θ) > 0;

(B-3) ∃P,Q ∈MN (R), S < P ∗Q and PV∗(θ) = −QV (θ).

Theorem 11.2. Let F of the form (11.7) with K = 2 satisfy the assumptions of Theorem 11.1.
Assume that the forward orbits of (11.1) are bounded. Then under (A) or (B), (SSTP) holds.

Remark 11.1. In addition, condition (B − 1) (resp. (B − 2)) is equivalent to

S∗V∗(θ) < 0 (resp. SV (θ) < 0),

and if condition (A) holds then V (θ) ≡ V or V∗(θ) ≡ V∗, where V (resp. V∗) is the right (resp.
left) principal eigenvector of DF i(0), i ∈ {1, 2}.

Proof. We apply Theorem 11.1 and check that the value of λ (determining if case (i) or (ii) occurs)
is a decreasing function of θ under assumptions (A) or (B). The forward-boundedness of orbits
rules out the case x→ +∞, thus leading to the result. More details in Section 11.4.1.
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Remark 11.2. In the case DF 2(0) > DF 1(0), we note that conditions (B-1) and (B-2) are
obviously satisfied with P = I (identity matrix), and condition (B-3) is obviously satisfied with
P = Q = 0.

Remark 11.3. As will be seen below, in practical situations it is sometimes easier to check con-
dition (B-1) rather than computing S∗V∗(θ).

11.3.2 Application to a two-dimensional model of insect population dy-
namics

We can now specify Theorem 11.2 to the two-dimensional (N = 2) case of (11.4). First we describe
the general properties of this system

Proposition 11.1. For system (11.4) written as Ẋ = G(π(t), X) =: F (t,X), where π is defined
by (11.5), assume that π(t) � 0, there exists c, C ∈ R∗+ such that πi(t) ≥ c for i ∈ {4, 5} and
π(t) ≤ C1. Then, it is positive, forward-bounded, cooperative and concave.

Then, we give the dynamics of the non-seasonal (=autonomous) system (11.4) with π(t) ≡ π =
(b, h, dJ , cJ , dA). We define the basic offspring number:

R0 = R(π) :=
bh

dA(h+ dJ)
. (11.10)

Proposition 11.2. If R0 ≤ 1, then (11.4) has no positive steady state and the trivial equilibrium
is a global attractor. If R0 > 1 then (11.4) has exactly one positive steady state S∗1 = (R0 −
1)
(
h+dJ
cJ

, h(h+dJ )
cJdA

)
, which is a global attractor in R2

+\{0}.

The proofs of Proposition 11.2 and Proposition 11.1 are to be found in Section 11.4.2.
We finally state the sharp seasonal threshold property for (11.2):

Theorem 11.3. For (11.2) under assumption (11.6), if R0(πU ) < 1 < R0(πF ) and bU +dUJ > dUA
(where πU = (bU , hU , dUJ , c

U
J , d

U
A)) then (SSTP) holds with θ∗ ∈ (0, 1).

Proof. We check assumption (B − 1) with

P =

(
1 1
0 1

)
, (P−1)∗ =

(
1 0
−1 1

)
.

More details in Section 11.4.3.

Remark 11.4. If instead of (11.6) we assume the stronger condition(
−(hF + dFJ ) + hU + dUJ bF − bU

hF − hU −dFA + dUA

)
> 0, (11.11)

then assumption (B − 1) (or (B − 2)) of Theorem 11.2 applies with P = I and no further compu-
tations are needed.

We emphasize that (11.6) is more biologically relevant than (11.11). The latter requires that
the increase of the hatching rate between favorable and unfavorable season does more than com-
pensate the decrease of juvenile death rate, which is highly debatable. This justifies the technical
computations of Section 11.4.3.

Note that in any case, no assumptions are made on cUJ and cFJ , since the behavior is only
determined by the linearization at 0.

11.4 Proofs

11.4.1 Proof of Theorem 11.2

When there are only two dynamics within a period, that is when K = 2, we notice that the
alternative (i)− (ii) from Theorem 11.1 is uniquely determined by the sign of the real function:

θ 7→ ρ
(
e(1−θ)T ·DF 2(0)eθT ·DF 1(0)

)
− 1.

We notice that
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Lemma 11.1. The function ρ : [0, 1]→ R is C1 and satisfies

ρ′(θ) = Tρ(θ)〈(DF 1(0)−DF 2(0))V (θ), V∗(θ)〉. (11.12)

Proof. By Perron-Frobenius theorem, ρ(θ) is the maximal root of the characteristic polynomial of
M(θ), whose entries are analytic functions of θ. In particular, it is C1.

The principal eigenvector of norm 1 of M(θ), that is V (θ), depends smoothly of θ, as can be seen
by uniqueness for all θ. Then, V∗(θ) also depends smoothly of θ since the same argument applies to
M∗(θ) and V∗(θ) is equal to the principal eigenvector Y∗(θ) of M∗(θ) divided by 〈V (θ), Y∗(θ)〉 > 0,
which is a smooth function of θ.

Let us writeMi := DF i(0) for i ∈ {1, 2}. We differentiate the identity ρ(θ) = 〈M(θ)V (θ), V∗(θ)〉
to obtain

ρ′(θ) = 〈M(θ)V ′(θ), V∗(θ)〉+ 〈M ′(θ)V (θ), V∗(θ)〉+ 〈M(θ)V (θ), V ′∗(θ)〉,

= ρ(θ)
(
〈V ′(θ), V∗(θ)〉+ T

(
〈V (θ),M∗1V∗(θ)〉 − 〈M2V (θ), V∗(θ)〉

)
+ 〈V (θ), V ′∗(θ)〉

)
,

= Tρ(θ)〈(M1 −M2)V (θ), V∗(θ)〉,

since M ′(θ) = Te(1−θ)TM2
(
M1 −M2

)
eθTM1 and 〈V (θ), V∗(θ)〉 ≡ 1.

Applying Theorem 11.1 with the assumption that the forward orbits are bounded, we are left
with either global asymptotic stability of 0 is λ ≤ 1, or the global stability of the unique positive
periodic solution, if λ > 1. Using formula (11.8), we obtain (SSTP) with ρ(θ∗) = 1 (or θ∗ = 0 if
ρ(0) > 1, and θ∗ = 1 if ρ(1) ≤ 1) if ρ is a decreasing function of θ.

It remains to prove that any of the conditions (A) or (B) implies that ρ is decreasing. Under
assumption (B − 1), with S = DF 1(0)−DF 2(0) we get by Lemma 11.1

ρ′(θ)

Tρ(θ)
= 〈SV (θ), V∗(θ)〉 = 〈PSV (θ), (P−1)∗V∗(θ)〉 < 0,

since PS < 0, V (θ)� 0 and (P−1)∗V∗(θ) > 0 by assumption. Note that this condition is equivalent
to S∗V∗(θ) < 0. Reasoning by density of GLN (R) in MN (R), we assume that S is invertible and
check that if S∗V∗ < 0 then P = −S−1 satisfies the assumption, and conversely if PS = Q < 0,
upon writing (P−1)∗ = (Q−1)∗S∗ we get (Q−1)∗S∗V∗ > 0, and by multiplication by Q∗ < 0 this
implies S∗V∗ < 0. The argument is symmetrical for assumption (B − 2) and is omitted here.

Under assumption (B − 3) we get by Lemma 11.1

ρ′(θ)

Tρ(θ)
= 〈SV (θ), V∗(θ)〉 < 〈P∗(θ)Q(θ)V (θ), V∗(θ)〉 = −‖Q(θ)V (θ)‖2 ≤ 0,

since V (θ), V∗(θ)� 0 (for the inequality), and PV∗ = −QV (for the equality).
Finally, under assumption (A) we get that V (θ) ≡ V and V∗(θ) ≡ V∗ where V (resp. V∗) is the

principal eigenvector (resp. left principal eigenvector) of DF 1(0) (which is the same as the one of
DF 2(0)). In this case,

ρ′(θ)

Tρ(θ)
= 〈SV, V∗〉 = µ(DF 1(0))− µ(DF 2(0)),

whence the result.

11.4.2 Proofs of Proposition 11.1 and Proposition 11.2

Recall that by definition,

∀X ∈ R2, F (t,X) = G(π(t), X) :=

(
π1X2 − (π2 + π3 + π4X1)X1

π2X1 − π5X2

)
.

We first proceed to the proof of Proposition 11.1. If Xi = 0 for some i ∈ {1, 2}, then since
π(t) ≥ 0, Fi(t,X) ≥ 0. Therefore the system is positive.
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We recall the notation π = (b, h, dJ , cJ , dA). We have:

DXF =

(
−h− dJ − 2cJJ b

h −dA

)
.

Thus, DXF is a Metzler matrix, so (11.4) is monotone cooperative.
To check the concavity property, let X � Y . We simply compute

DXF (t,X)−DXF (t, Y ) =

(
2cJ(Y1 −X1) 0

0 0

)
> 0.

Then, we proceed to the proof of Proposition 11.2. Calculating the equations of nullclines

bA− hJ − dJJ − cJJ2 = 0,
hJ − dAA = 0,

immediately yields all steady states as:

S∗0 = (0, 0), S∗1 = (
bh

dJ
− h− dJ)

( 1

cJ
,

h

cJdA

)
.

Then, the sign of both components of S∗1 is equal to the sign of R0 − 1, whence the result.
The stability and local behavior of solutions is detailed in

Proposition 11.3. If R0 ≤ 1 the unique equilibrium point S∗0 = (0, 0) is either a stable node (when
R0 < 1) or a singular point of superior order and of attracting type (when R0 = 1), in which case
all the orbits in the neighborhood of the S∗0 tend to S∗0 along direction θ1 := arctan h+dJ

b .
If R0 > 1, the equilibrium point S∗0 = (0, 0) is of saddle type, and the direction of unstable

manifold is
h+dJ−dA+

√
(h+dJ−dA)2+4bh

2b . The equilibrium point S∗1 is a stable node.

Proof. We divide the proof into three parts, depending on the sign of R0 − 1.

When R0 = 1. Then (11.4) becomes

dJ

dt
= − bh

dA
J + bA− cJJ2,

dA

dt
= hA− dAA.

(11.13)

The determinant of its Jacobian matrix is∣∣∣∣− bh
dA

b

h −dA

∣∣∣∣ = 0.

Hence, the equilibrium point S∗0 of system (11.13) is an isolated critical point of higher order.
Obviously, system (11.13) is analytic in a neighborhood of the origin. By [241, Theorem 3.10,

p. 70], any orbit of (11.13) tending to the origin must tend to it spirally or along a fixed direction,
which depends on the characteristic equation of system (11.13). First of all, we introduce the polar
coordinates J = r cos δ, A = r sin δ, where δ ∈ [0, π2 ], r ∈ R+ and we get the relation{

ṙ = r−1(JJ̇ +AȦ) = rm[R(δ) + o(1)],

δ̇ = r−2(JȦ−AJ̇) = rm−1[G(δ) + o(1)].

This yields{
ṙ = r(− bh

dA
cos2 δ + b cos δ sin δ + h cos δ sin δ − dA sin2 δ − cJr cos3 δ),

δ̇ = h cos2 δ − dA cos δ sin δ + (h+ dJ) cos δ sin δ − b sin2 δ + cJr cos2 δ sin δ.

Then the characteristic equation of system (11.13) takes the form

G(δ) = h cos2 δ − dA cos δ sin δ + (h+ dJ) cos δ sin δ − b sin2 δ = 0, (11.14)
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and we have

R(δ) = − bh
dA

cos2 δ + b cos δ sin δ + h cos δ sin δ − dA sin2 δ.

After equation (11.14), we get

(
h+ dJ
b

cos δ − sin δ)(dA cos δ + b sin δ) = 0. (11.15)

Thus {
tan δ1 = h+dJ

b ,

tan δ2 = −dAb .
Clearly, G(δ) = 0 has two real roots which we denote by δ1 and δ2. By the results in [241,

Section 2], we know that neither the case no orbit of system (11.13) can tend to the critical point
S∗0 spirally nor the singular case (if G(δ) ≡ 0).

The orbits of the system tend to the origin along a characteristic direction δi, given by solutions
of the equation (11.14). Since the system is positive we need to consider δ ∈ [0, π2 ], so δ1 =

arctan h+dJ
b is in first orthant and the orbits of the system approach the origin along the direction

δ = δJ .

When R0 > 1. We now write the Jacobian matrix Jac of the system

Jac :=

(
−h− dJ − 2cJE b

h −dA

)
,

and consider Jac0 and Jac1 are the Jacobian matrices respectively at equilibrium point S∗0 and
S∗1 . At S0

∗,

Jac0 =

(
−h− dJ b

h −dJ

)
,

whose eigenvalues read

λ1 = −(h+dJ+dA)+
√

∆
2 ,

λ2 = −(h+dJ+dA)−
√

∆
2 ,

where ∆ := (h+ dJ + dA)2 − 4[(h+ dJ)dA − hb] > 0 (since (h+ dJ)dA − hb < 0). Then

λ1 + λ2 = −(h+ dJ + dA) < 0,
λ1λ2 = (h+ dJ)dA − hb < 0,

so that one eigenvalue is positive and the another one is negative: S∗0 is a saddle point.
To find the direction of the stable manifold or unstable manifold at S∗0 , we write

Ȧ

J̇
=
dA

dt
=

hJ − dAA
−hJ − dJJ + bA− cJJ2

=
h− A

J

−h− dJ + bAJ − cJJ
.

Consider (J,A) tending to S∗0 and let k := A
J . Then k is a solution to

k =
h− dAk

−h− dJ + bk
,

which leads to two solutions (k1, k2) ∈ R∗+ × R∗− given by

h+ dJ − dA ±
√

(h+ dJ − dA)2 + 4bh

2b
.

Hence, the boundary lines are A = k1J and A = k2J and by unstable manifold theorem we know
that k1 is the direction of unstable manifold at (0, 0)

Then, at equilibrium point S∗1 ,

Jac1 =

(
h+ dJ − 2bh

dA
b

h −dA

)
,

whose eigenvalues λ1, λ2 are real and satisfy

λ1 + λ2 = h+ dJ − 2bh
dA
− dA < 0,

λ1λ2 = −dA(h+ dJ) + bh > 0.

This implies that the two eigenvalues are real and negative, hence S∗1 is a stable node.

222



CHAPTER 11. SEASONALITY 11.4. PROOFS

Finally, if R0 < 1. Then at equilibrium point S∗0

Jac0 =

(
−h− dJ b

h −dA

)
.

Because (h+ dJ)dA − hb > 0, the eigenvalues are such that

λ1 + λ2 = −(h+ dJ + dA) < 0,
λ1λ2 = (h+ dJ)dA − hb > 0,

with also the discriminant (−h − dJ + dA)2 + 4bh > 0, hence they are both negative and the
equilibrium point S∗0 is a stable node.

Remark 11.5. In particular when h = 0 (no hatching), and the trivial equilibrium point S∗0 is a
stable node.

We now prove that all the orbits of (11.4) are forward bounded.

Lemma 11.2. Let

τ∗ := sup
t≥0

h(t)

dA(t)
, J∗ := sup

t≥0

b(t)τ∗ − h(t)− dJ(t)

cJ(t)
.

Under the assumptions of Proposition 11.1, τ∗ and J∗ are finite. For all X0 ∈ R2
+ and all real

number L ≥ max(0, J∗) such that X0 ∈ ΩL := [0, L] × [0, τ∗L], the solution X(t) of (11.4) with
initial data X0 belongs to ΩM .

Proof. Under the assumptions of Proposition 11.1, cJ ≥ c > 0 and dA ≥ c while all parameters are
smaller than C > 0, hence J∗ and ρ∗ are finite.

For L > 0 we define the area rectangle ΩL surrounded by four line segments `i with outward
normal vector νi:

`1 = {(J,A)|J = 0, 0 ≤ A ≤ τ∗L)}, ν1 = (−1, 0),

`2 = {(J,A)|J = L, 0 ≤ A ≤ τ∗L)}, ν2 = (1, 0),

`3 = {(J,A)|0 ≤ J ≤ L,A = 0}, ν3 = (0,−1)

`4 = {(J,A)|0 ≤ J ≤ L,A = τ∗L}, ν4 = (0, 1).

To prove that ΩL is positively invariant, since the system is positive, we only need to show that
the scalar products of dX

dt and νi on `i for i ∈ {2, 4} are non-positive:

ν4 ·G(π,X) = hJ − dAτ∗L ≤ 0 since J ≤ L and dAτ
∗ ≥ h,

ν2 ·G(π,X) = bA− hL− dJL− cJL2.

Since A < τ∗L, ν2 ·G(π,X) ≤ 0 on `2 as soon as bτ∗ − h− dJ − cJL ≤ 0, that is

L ≥ bτ∗ − h− dJ
cJ

.

Upon taking L ≥ J∗ this inequality is satisfied. For L large enough such that X0 ∈ ΩL, we have
proved that for all t > 0, the solution X(t) of (11.4) belongs to ΩL.

The Dulac (divergence) criterion ensures that the system has no limit cycle, since:

div(F ) = −(h+ dJ + cJJ + dA) < 0.

This concludes the proof.

11.4.3 Proof of Theorem 11.3

Theorem 11.3 is a consequence of Theorem 11.2, condition (B-1). To check this condition, we
apply the following result (specific to the dimension N = 2) to the positive matrix M(θ):

Lemma 11.3. Let S ∈M2(R) be a positive matrix, and assume vector W = (w1, w2)� 0 satisfies
S∗W = µW for some µ > 0 (i.e. W is the principal eigenvector of S∗). Then, w2 > w1 if and
only if

s11 + s21 < s12 + s22, (11.16)

Where s11, s21, s12 and s22 are the elements of matrix S.
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Proof. We write SW = µW as{
s11w1 + s21w2 = µw1,

s12w1 + s22w2 = µw2,
⇐⇒

{
s11 + s21

w2

w1
= µ,

s12
w1

w2
+ s22 = µ.

If 0 < w1 < w2, since S � 0 we deduce that s11 + s21 < ρ < s12 + s22.
Conversely, if s11 + s21 < s12 + s22, subtracting the previous equalities we obtain

µ(1− w2

w1
) = s11 − s12 +

w2

w1
(s21 − s22) < (s22 − s21)(1− w2

w1
).

By contradiction, we assume that w2 < w1. Then µ < s22 − s21. Injecting this inequality into the
previous equality we obtain

s12 +
w2

w1
s22 < (s22 − s21)

w2

w1
,

whence s12 < −w2

w1
s21, which contradicts S > 0. Hence w2 > w1.

Lemma 11.3 is satisfied by M(θ), so that condition (B − 1) holds with P =

(
1 1
0 1

)
. Indeed,

(P−1)∗ =

(
1 0
−1 1

)
and (P−1)∗V∗ > 0 with V∗ � 0 if and only if [V∗]2 > [V∗]1, hence by (11.6)

we have P
(
DF 2(0)−DF 1(0)

)
< 0.

The remaining of the proof is devoted to checking that M12(θ)+M22(θ)−M11(θ)−M21(θ) > 0.
To this aim, we diagonalize

DF 1(0) =

(
−hU − dUJ bU

hU −dUA

)
and DF 2(0) =

(
−hF − dFJ bF

hF −dFA

)
by

DF 1(0) = PU

(
λ+
U 0
0 λ−U

)
P−1
U , DF 2(0) = PF

(
λ+
F 0
0 λ−F

)
P−1
F ,

where for ] ∈ {U,F},

P] =

(
1 1
x+
] x−]

)
, P−1

] =
1

x−] − x
+
]

(
x−] −1

−x+
] 1

)
and

λ±] = −1

2
(h] + d]J + d]A)± 1

2

√
(h] + d]J − d

]
A)2 + 4h]b],

x±] =
λ±] + h] + d]J

b]
,

=
1

2b]
(h] + d]J − d

]
A)± 1

2b]

√
(h] + d]J − d

]
A)2 + 4h]b].

The condition of Lemma 11.3 will follow from:

Lemma 11.4. For ] ∈ {U,F}, we have x−] < 0 < x+
] and 1 + x−] > 0.

Proof. The first inequalities follow directly from the above expression of x±] . Then, we compute

1 + x−] =
2b]+h]+d]J−d

]
A−
√

(h]+d]J−d
]
A)2+4h]b]

2b]
. We have

(2b] + h] + d]J − d
]
A)2 = 4(b])2 + 4b](h] + d]J − d

]
A) + (h] + d]J − d

]
A)2

> (h] + d]J − d
]
A)2 + 4h]b]

since b] + d]J − d
]
A > 0 (explicit assumption in Proposition 11.2 for ] = U , and from R(πF ) > 1 for

] = F ). It implies 1 + x−] > 0.
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Thanks to the above diagonalization, we can write M = M(θ) = (mij)1≤i,j≤2 as

m11 = (β+x−F − β−x
+
F )(γ+x−U − γ−x

+
U ) + (−β+ + β−)(x+

Ux
−
Uγ

+ − x+
Ux
−
Uγ
−),

m12 = (β+x−F − β−x
+
F )(−γ+ + γ−) + (−β+ + β−)(−x+

Uγ
+ + x−Uγ

−),

m21 = (x+
Fx
−
Fβ

+ − x+
Fx
−
Fβ
−)(γ+x−U − γ−x

+
U ) + (−x+

Fβ
+ + x−Fβ

−)(x+
Ux
−
Uγ

+ − x+
Ux
−
Uγ
−),

m22 = (x+
Fx
−
Fβ

+ − x+
Fx
−
Fβ
−)(−γ+ + γ−) + (−x+

Fβ
+ + x−Fβ

−)(−x+
Uγ

+ + x−Uγ
−),

where

β+ := eλ
+
F (1−θ)T , β− := eλ

−
F (1−θ)T ,

γ+ := eλ
+
UθT , γ− := eλ

−
U θT ,

α :=
bUbF√(

(hU + dUJ − dUA)2 + 4hUbU
)(

(hF + dFJ − dFA)2 + 4hF bF
) .

Proving m11 +m21 < m12 +m22 therefore amounts to checking

β+γ+(x−F − x
+
U )(1 + x+

F )(1 + x−U ) + β+γ−(x−U − x
−
F )(1 + x+

F )(1 + x+
U )

+ β−γ+(x+
U − x

+
F )(1 + x−U )(1 + x−F ) + β−γ−(x+

F − x
−
U )(1 + x−F )(1 + x+

U ) < 0. (11.17)

We introduce Ψ : R2
+ → R as

Ψ(β, γ) := βγ(x−F − x
+
U )(1 + x+

F )(1 + x−U ) + β(x−U − x
−
F )(1 + x+

F )(1 + x+
U )

+ γ(x+
U − x

+
F )(1 + x−U )(1 + x−F ) + (x+

F − x
−
U )(1 + x−F )(1 + x+

U ),

so that (11.17) is equivalent to Ψ(β
+

β− ,
γ+

γ− ) < 0. First, it is easily checked that Ψ(1, 1) = 0, β+ > β−

and γ+ > γ−. Then, by Lemma 11.4, x−F < 0 < x+
U and 1 + x[] > 0 for ] ∈ {U,F} and [ ∈ {+,−}.

Hence for β > 1, we have

∂Ψ(β, γ)

∂γ
= β(x−F − x

+
U )(1 + x+

F )(1 + x−U ) + (x+
U − x

+
F )(1 + x−U )(1 + x−F )

< (x−F − x
+
U )(1 + x+

F )(1 + x−U ) + (x+
U − x

+
F )(1 + x−U )(1 + x−F )

= (x−F − x
+
F )(1 + x−U )(1 + x+

U ).

Symmetrically, for γ > 1 we have

∂Ψ(β, γ)

∂β
= γ(x−F − x

+
U )(1 + x+

F )(1 + x−U ) + (x−U − x
−
F )(1 + x+

F )(1 + x+
U )

< (x−F − x
+
U )(1 + x+

F )(1 + x−U ) + (x−U − x
−
F )(1 + x+

F )(1 + x+
U )

= (x−U − x
+
U )(1 + x−F )(1 + x+

F ).

Applying Lemma 11.4 again, we deduce that if β, γ > 1 then

∂Ψ

∂γ
,
∂Ψ

∂β
< 0.

In particular Ψ(β
+

β− ,
γ+

γ− ) < 0, and this concludes the proof.

11.5 Discussion and extensions

Geometric viewpoint. We denote by Υ×Υ∗ the graph of υ := (V, V∗) : [0, 1]→ (R∗+)2N . Then

we define r(θ) := ρ′(θ)
Tρ(θ) = 〈SV (θ), V∗(θ)〉. Denoting by ψS : RN × RN → R the bilinear form

(V,W ) 7→ 〈AV,W 〉, we get r = ψS ◦ υ. Let XS := {ψS < 0}, it is an open and radial subset of
R2N (if Y ∈ XS and λ > 0, then λY ∈ XS). ρ(M) is decreasing if and only if r is decreasing,
which is equivalent to Υ × Υ∗ ⊂ XS . Up to changing S into −S, assumption (11.18) amounts to
υ(0), υ(1) ∈ XS .

The case (A) implies that Υ×Υ∗ is a singleton. Then (11.18) simply rewrites (µ2 − µ1)2 > 0.
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Practical computations in higher dimension. Theorem 11.2 suggests 4 different sufficient
conditions on DF 1(0) and DF 2(0) to obtain (SSTP). Apart from the trivial situations when
DF 1(0)−DF 2(0) has a sign or when the two matrices share the same principal eigenvector, how
applicable are these conditions when N > 2 If DF i(0) is diagonalizable for i ∈ {1, 2}, which we
write

DF i(0) = P−1
i diag((λ

(k)
i )1≤k≤N )Pi,

then we can compute

Mi,j(θ) =

N∑
j′,j′′=1

P−1
1 (i, j′)Q(j′, j′′)P2(j′′, j)eT

(
θλ

(j′)
1 +(1−θ)λ(j′′)

2

)
,

where Q(j′, j′′) =
∑N
k=1 P1(j′, k)P−1

2 (k, j′′). For any matrix Γ = (γ(i, j))1≤i,j≤N ∈ GLN (R)
such that ΓM(θ) > 0, we obtain ΓV (θ) > 0 (where V (θ) is the principal eigenvector of M(θ)).
Then, a sufficient condition for (SSTP) is given by (DF 2(0)−DF 1(0))Γ−1 < 0. Symmetrically, if
M(θ)Γ > 0 then a sufficient condition is given by Γ−1(DF 2(0)−DF 1(0)) < 0.

In order to get better conditions than the obvious ones, we require that Γ 6≥ 0. We note that

[
ΓM(θ)

]
i,j

=

N∑
k,j′,j′′=1

γ(i, k)P−1
1 (k, j′)P2(j′′, j)Q(j′, j′′)eT

(
θλ

(j′)
1 +(1−θ)λ(j′′)

2

)
.

Log-convexity of the spectral radius. A celebrated result of Kingman [134] asserts that if the
entries of a nonnegative matrix are log convex functions of a variable then so is the spectral radius
of the matrix. If this property applies to the positive matrix M(θ), θ 7→ ρ(M(θ)) is log-convex. In
this case, it is monotone (yielding (SSTP)) provided that the derivatives at 0 and 1 have the same
sign, that is: (

µ2 − 〈DF 1(0)V 2, V 2
∗ 〉
)(
〈DF 2(0)V 1, V 1

∗ 〉 − µ1

)
> 0, (11.18)

where µi = µ(DF i(0)), and V i (resp. V i∗ ) is the principal eigenvector of DF i(0) (resp. of DF i(0)∗)
with V i, V i∗ � 0 and 〈V i, V i〉 = 1 = 〈V i, V i∗ 〉.

When DF i(0) are diagonalizable (i ∈ {1, 2}), the above formula shows that

Mi,j(θ) =

N2∑
n=1

αn(i, j)eβn(i,j)θ

for some α, β. In cases when Mi,j can be proved to be a log-convex function of θ, (SSTP) holds
under assumption (11.18).

Computation of the second-order derivative. A more general condition for (SSTP) than
the monotonicity of ρ would be that ρ is either concave or convex (or log-concave, or log-convex).
To formulate this condition we compute the second-order derivative of log(ρ) from (11.12) as

d

dθ

(
log(ρ(θ))

)
= r′(θ) = 〈SV ′(θ), V∗(θ)〉︸ ︷︷ ︸

=:R1

+ 〈SV (θ), V ′∗(θ)〉︸ ︷︷ ︸
=:R2

,

where
S = DF 1(0)−DF 2(0). (11.19)

Differentiating with respect to θ the eigenvector equations for V (θ) and V∗(θ) along with their
normalizations 〈V (θ), V (θ)〉 = 1 and 〈V (θ), V∗(θ)〉 = 1 yields:

(M(θ)− ρ(θ)I)V ′(θ) = (ρ′(θ)I −M ′(θ))V (θ),

(M∗(θ)− ρ(θ)I)V ′∗(θ) = (ρ′(θ)I − (M∗)′(θ))V∗(θ),

〈V (θ), V ′(θ)〉 = 0 = 〈V ′(θ), V∗(θ)〉+ 〈V (θ), V ′∗(θ)〉.

Dropping the argument θ, we note that V ′, V ′∗ are well-defined from these linear equations since
Im(M − ρI) = (V∗R)⊥ (and symmetrically Im(M∗ − ρI) = (V R)⊥) and the scalar product con-
ditions give uniqueness. We introduce the notation H := (V R)⊥ (resp. H∗ := (V∗R)⊥) for the
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hyperplane with normal vector V (resp. V∗). We also introduce the Perron projection operator
Π := V∗V

∗ ∈ L(RN ), and its adjoint Π∗ = V V∗
∗.

In particular, M − ρI ∈ L(H,H∗) is an invertible linear application, whose inverse is denoted
Mr ∈ L(H∗, H), and we have

V ′ = Mr

(
(ρ′I −M ′)V

)
.

Symmetrically, M∗ − ρI ∈ L(H) is invertible (since V∗ 6∈ H), its inverse is denoted M∗a ∈ L(H)
and

V ′∗ = M∗a
(
(ρ′I −M ′∗)V∗

)
− 〈V∗, V ′〉V∗.

Using the notation Mi = DF i(0) (i ∈ {1, 2}), from the definition M(θ) = eT (1−θ)M2eTθM1 we also
have:

M ′ = T (MM1 −M2M), (11.20)

(M∗)′ = T
(
(M1)∗M∗ −M∗(M2)∗

)
. (11.21)

In order to compute the two terms in r′, we note two preliminary identities. First, using (11.20)
and (11.12) we get

1

T
(ρ′I −M ′)V = ρ(Π∗ − I)SV − (M − ρI)M1V, (11.22)

where both terms in the right-hand side belong to H∗. Symmetrically, using (11.21) and (11.12)
we get

1

T
(ρ′I − (M∗)′)V∗ = (M∗ − ρI)M∗2V∗ + ρ(Π− I)S∗V∗, (11.23)

where both terms in the right-hand side belong to H.
Then, using (11.22), Mr ∈ L(H∗, H) and Mr ◦ (M − ρI) = IH we can compute

R1 =
〈
Mr

(
(ρ′I −M ′)V

)
, S∗V∗

〉
,

= Tρ
〈
Mr(Π

∗ − I)SV, S∗V∗
〉
− T 〈M1V, S

∗V∗〉.

Symmetrically, using (11.23), M∗a ∈ L(H) and M∗a ◦ (M∗ − ρI) = IH we obtain

R2 = 〈SV,M∗a
(
(ρ′I −M ′∗)V∗

)
− 〈V∗, V ′〉V∗〉,

= Tρ
〈
SV,M∗a (Π− I)S∗V∗

〉
+ T 〈SV,M∗2V∗〉 − 〈SV, V∗〉〈V∗, V ′〉.

Using (11.22) with Mr ∈ L(H∗, H) and (M − ρI) ◦Mr = IH we also get

〈V∗, V ′〉 = 〈V∗,Mr

(
(ρ′I −M ′)V

)
〉,

= Tρ
〈
V∗,Mr(Π

∗ − I)SV
〉
− T 〈V∗,M1V 〉.

Gathering R1 and R2 we obtain

r′

T
=

r1︷ ︸︸ ︷(
〈SV, V∗〉

)2
+
〈
(M2S − SM1)V, V∗

〉
+

ρ
〈
Mr(Π

∗ − I)SV, (S∗ − 〈SV, V∗〉I)V∗
〉︸ ︷︷ ︸

r2

+ ρ
〈
M∗a (Π− I)S∗V∗, SV

〉︸ ︷︷ ︸
r3

.

We notice that

r2 = ρ
〈
Mr(Π

∗ − I)SV, (I −Π)S∗V∗
〉

= ρ
〈
SV, (I −Π)M∗r (Π− I)S∗V∗

〉
and

r3 = ρ
〈
SV,M∗a (Π− I)S∗V∗

〉
,

so r2 = r3, since (M∗ − ρI) ◦M∗a = IH , (M∗ − ρI) ◦M∗r = IH and (M∗ − ρI) ◦ΠM∗r = 0
Finally ρ′′ = T 2ρr2 + Tρr′ whence

ρ′′

T 2ρ
= 2
(
〈SV, V∗〉

)2
+
〈
(M2S − SM1)V, V∗

〉
+ 2ρ

〈
M∗a (Π− I)S∗V∗, SV

〉
. (11.24)

In principle, the identity (11.24) could be used to derive (SSTP) under more general conditions
on M1 = DF 1(0),M2 = DF 2(0) than those given in Theorem 11.2. However, we do not explore
such conditions in the present article.
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Time scaling. Until now we have considered that the period T > 0 was fixed. Letting T go to
0 or +∞ yields interesting limits. For an irreducible Metzler matrix U ,

e−Tµ(U)eTU −−−−−→
T→+∞

V V ∗∗

where V is the principal eigenvector of U and V∗ is the principal eigenvector of U∗, normalized by
V ∗∗ V = 1. From this fact, we have

e−T (θµ(DF 1(0))+(1−θ)µ(DF 2(0))M(θ) −−−−−→
T→+∞

V (0)V∗(0)∗V (1)V∗(1)∗,

from which we deduce that

1

T
log(ρ(θ)) ∼T→+∞ θµ(DF 1(0)) + (1− θ)µ(DF 2(0)).

In fact, we even get the next term in the asymptotic development:

log(ρ(θ))− T
(
θµ(DF 1(0)) + (1− θ)µ(DF 2(0))

)
− log

(
V∗(0)∗V (1)V∗(1)∗V (0)

)
= oT→∞(1).

Therefore, for T large enough, ρ is close to be monotone, and even close to be equal to the
exponential interpolation of Tµ(DF 1(0)) and Tµ(DF 2(0)).

Meanwhile, limT→0 ρ(θ) ≡ 1.

Optimization problems. For a general two-seasonal model defined by a monotone and concave
map G : P × RN → RN and πU , πF ∈ P, a natural question is the optimization of the spectral
radius when the favorable and unfavorable seasons can be split throughout the year. Let M] :=
T ·DG(π], 0) (with ] ∈ {U,F}). For K ∈ Z+, we define:

ρMU ,MF
(θ,K) = max

(σ,σ′)∈ϕK(θ)
ρ(MMU ,MF

(σ, σ′)), (11.25)

ρ
MU ,MF

(θ,K) = min
(σ,σ′)∈ϕK(θ)

ρ(MMU ,MF
(σ, σ′)), (11.26)

where

ϕK(θ) :=
{(

(θk)k, (θ
′
k)k
)
∈ [0, 1]2K ,

K∑
k=1

θk = θ,

K∑
k=1

θ′k = 1− θ
}

is compact and for (σ, σ′) ∈ ϕK(θ) and M1,M2 ∈MN (R),

MM1,M2
(σ, σ′) := eθ

′
KM2eθKM1 · · · eθ

′
1M2eθ1M1 .

Note that by Gelfand’s formula,

ρ(M(σ, σ′)) ≤
∏
k

ρ(eθ
′
kM2)ρ(eθkM1) = eθµ1+(1−θ)µ2 ,

where µi = µ(Mi).

Remark 11.6. In the specific case when MU and MF are irreducible Metzler matrices with the
same principal eigenvector (that is, condition (A)) , ρ(M(σ, σ′)) does not depend on (σ, σ′) ∈ SK(θ)
and does even not depend on K ∈ Z+: we have

∀K ∈ Z+,∀θ ∈ [0, 1], ρMU ,MF
(θ,K) = e

(
θµU+(1−θ)µF

)
= ρ

MU ,MF
(θ,K),

with µ] = µ(M]).
In this case, assuming µF > 0 > µU we recover Theorem 11.3 with

θ∗ =
µF

µF − µU
.
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Appendices

11.A Proof of Theorem 11.1

We consider the following T -periodic piecewise-autonomous differential equation

dx

dt
= F (t, x), (11.27)

where for all x ∈ RN , F ( · , x) is a piecewise-constant function. We assume that there is a family
of functions (F k)k : RN+ → RN+ such that:

F (t, x) = F k(x) if
t

T
−
⌊ t
T

⌋
∈ [θk−1, θk)

where (θi)0≤i≤N ∈ [0, 1]N+1 is a non-decreasing family such that θ0 = 0 and θN = 1. For x ∈ R,
the notation bxc stands for the largest integer n ∈ Z such that n ≤ x.

We assume that for all 1 ≤ k ≤ K, F k : RN+ → RN+ is continuously differentiable, monotone
(that is, if x � y then F k(x) � F k(y)), concave (that is, if x � y then DF k(x) � DF k(y)) and
satisfies F k(0) = 0.

Following the lines of [207] and [126], to prove Theorem 11.1 we split into four assertions the
various hypotheses of [207, Theorem 2.1], to check that they hold for the Poincaré map for (11.27).
We begin with:

Lemma 11.5. If x(t) is a solution of (11.27) with x(t0) ≥ 0, then x(t) can be extended to [t0,+∞]
and x(t) ≥ 0 for t ≥ t0.

Proof. Let t ≥ 0. For all y ≥ 0, by concavity of all F k (1 ≤ k ≤ K), we have DxF (t, y) ≤ DxF (t, 0).
Hence for all t ≥ 0 and x ≥ 0,

F (t, x) = F (t, 0) +
( ∫ 1

0

DxF (t, sx)ds
)
x

≤ F (t, 0) +DxF (t, 0)x since x ≥ 0.

Let y be the solution to the affine differential equation y′ = F (t, 0) +DxF (t, 0)y, y(t0) = x(t0).
From Kamke’s theorem, we deduce that x(t) ≤ y(t) on the maximal interval of existence [t0, w) of
x(t). Since y(t) is defined for all t ≥ t0, it follows that w = +∞.

The standard positivity property (P) implies x(t) ≥ 0 for t ≥ t0.

Then, as an immediate consequence of monotonicity and Kamke’s theorem:

Lemma 11.6. If x(t) and y(t) are solutions of (11.27) with 0 ≤ y(t0) � x(t0), then y(t) � x(t)
for t > t0.

For all s ∈ R and x0 ∈ RN , we denote by t 7→ φ(t; s, x0) the solution of (11.27) which satisfies
x(s) = x0. In particular, φ(s; s, x) = x. For all 1 ≤ k ≤ K, we also introduce t 7→ φk(t; s, x0) as
the solution to

dx

dt
= F k(x), x(s) = x0.

By regularity of F k, each φk(θkT, θk−1T, · ) is a C1 function.
With these notations it follows from Lemmas 11.5 and 11.6 that the Poincaré map

P (x) := φ(T ; 0, x) = φK
(
θKT ; θK−1T, φ

K−1
(
· · ·φ1(θ1T ; 0, x)

))
, x ≥ 0 (11.28)
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is well defined as a C1 map P : RN+ → RN+ because it is a composition of functions of class C1. In
order to apply [207, Theorem 2.1], we must verify that the differential DP satisfies:

DP (0)� 0 and DP (x) ≥ 0 if x� 0, (M0)

DP (y) < DP (x) if 0� x� y. (C0)

Introducing the notations, for x ∈ RN

φ̃k(x) := φk
(
θkT ; θk−1T, φ̃

k−1(x)
)
∈ RN for 1 ≤ k ≤ K, φ̃0(x) := x,

φ̂k(x) :=
∂φk

∂x
(θkT ; θk−1T, x) ∈ RN×N ,

we can compute

DP (x) =
∂φ

∂x
(T ; 0, x) =

K∏
k=1

φ̂k ◦ φ̃k−1(x). (11.29)

We write Φ(t, x) := ∂φ
∂x (t; 0, x), so that DP = Φ(T, · ). By construction, Φ(t, x) is the funda-

mental matrix for the variational equation

X ′ = DxF (t, φ(t; 0, x))X, X(0) = I (11.30)

where I is the N ×N identity matrix. Lemma 11.7 below is a direct consequence of (M)

Lemma 11.7. If x� 0, then Φ(t, x) > 0 for t > 0. In addition, Φ(t, 0)� 0 for t > 0.

Proof. Let T > 0 and x ∈ RN . Let M = MT,x ∈ (0,+∞) such that DxF (t, φ(t; 0, x)) + MI ≥ 0
for all t ∈ [0, T ]. As long as Φ(t, x) ≥ 0 on [0, T ] we have on this interval d

dtΦ(t, x) ≥ −MΦ(t, x),
hence Φ(t, x) ≥ e−MtI > 0.

Then, Φ(t, 0) solves (11.3) with Φ(0, 0) = I. Since DxF (t, 0) is an irreducible (by (I)) Metzler
matrix, Φ(t, 0)� 0 for t > 0.

Applying Lemma 11.7 with t = T yields (M0). It remains only to verify (C0), which is the
object of the next lemma

Lemma 11.8. If 0� x� y, then DP (x) > DP (y).

Proof. We write Z(t, x) = DxF (t, φ(t; 0, x)) for short. If 0 � x � y, from Lemma 11.6, we have
φ(t; 0, x)� φ(t; 0, y) for all t ≥ 0. By (C), we deduce that Z(t, x) > Z(t, y). Hence

Φ′(t, x) = Z(t, x)Φ(t, x)

≥ Z(t, y)Φ(t, x),

since Φ(t, x) ≥ 0 by Lemma 11.7. Therefore, it follows from Kamke’s theorem that Φ(t, x) ≥ Φ(t, y).
Then, we follow [14, Lemma 1] by letting Y (t) = Φ(t, x)− Φ(t, y). Y (t) satisfies

Y ′(t) = Z(t, x)Y (t) + [Z(t, x)− Z(t, y)]Φ(t, y), Y (0) = 0.

Using the fundamental matrix Φ we get

Y (T ) =

∫ T

0

Φ(T, x)Φ(s, x)
−1

[Z(s, x)− Z(s, y)]Φ(s, y)ds

Now, Z(t, s) ≡ Φ(t, x)Φ(s, x)
−1

> 0 for t > s since it is the fundamental matrix at t = s of
z′ = Z(t, x)z (exactly as in Lemma 11.7). Since Φ(s, y) > 0 for 0 < s ≤ T and Z(s, x)−Z(s, y)� 0
for 0 ≤ s ≤ T , it follows that Y (T ) > 0. This is the desired conclusion.

We have verified all assumptions and can apply [207, Theorem 2.1] and Theorem 11.1 follows
immediately on noting that λ = ρ(DP (0)) = ρ(Φ(T, 0)) is the characteristic multiplier of (11.3) of
maximum modulus.
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Chapter 12

Selection-mutation dynamics with
sexual reproduction

Alors même que tous les hommes apprennent à parler et la plupart
à lire, les enfants continuent à nâıtre en ne sachant ni parler ni lire.

Michel Tournier, Le Miroir des idées.

This chapter is a joint work with Cécile Taing and Benôıt Perthame. An earlier version has
appeared in the PhD thesis of Cécile Taing [214, Chapter 3].

Abstract. We study a family of selection-mutation models of a sexual population structured by a
phenotypical trait. The main feature of these models is the asymmetric trait heredity or fecundity
between the parents: we assume that each individual inherits mostly its trait from the female
or that the trait modifies the female fecundity but not the male one. Following previous works
inspired from principles of adaptive dynamics, we rescale time and assume that mutations have
limited effects on the phenotype. Our goal is to study the asymptotic behavior of the population
distribution. We derive non-extinction conditions and BV estimates on the total population. We
also obtain Lipschitz estimates on the solutions of Hamilton-Jacobi equations that arise from
the study of the population distribution concentration at fittest traits. Concentration results are
obtained in some special cases by using a Lyapunov functional.

12.1 Introduction

We introduce and study mathematically a family of models of selection-mutation for a continuous
phenotype, which we call ”trait”, denoted by x ∈ P. The set of phenotypes P is a complete metric
space, typically P = R. We assume that all individuals compete for survival because they share
the same resources. This assumption implies the boundedness of the total population.

Although our approach is formal and mathematical, the models under study are motivated
by the issue of insecticide resistance. This phenomenon has appeared in many insects of interest
for human health, in particular in species of mosquitoes that are vectors for dengue (in the Aedes
genus) or malaria (in the Anopheles genus). For this specific problem of selection-mutation, the trait
variable should contain, for instance, the expression level for the kdr gene (knock-down resistance,
see [185]). The present study is part of a more general program on the analysis of models, and
their control, in the context of evolutionary epidemiology (see [36, 176, 211, 212]).

Because of this motivation, and as a new feature, our models have a sexual reproduction kernel.
This is not the case in similar selection-mutation models developed for bacteria or resistance to
treatment in cancer (see [153]), where the reproduction is clonal. The major feature of equations
for sexual reproduction is to yield nonlinear and nonlocal birth terms with a quadratic aspect
though 1-homogeneous. All models studied in the present paper are derived from the general form{

ε∂tnε(t, x) = 1
ρε(t)

s
Kε(x, y, z)nε(t, y)nε(t, z)dy dz −R(x, ρε(t))nε(t, x),

ρε(t) =
∫
P nε(t, x)dx, nε(0, x) = n0

ε(x).
(12.1)
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The variable t stands for time, nε(t, x) ∈ [0,+∞) is the population density at time t and trait x
and ρε(t) is the total population. The positive function R is here the saturation term, which
contains the death rate and the insecticide effect. Competition is taken into account through the
dependency of R in its second variable.

In equation (12.1), we interpret y (the second variable for Kε) as the female trait, and z (the
third variable) as the male trait. Thus x 7→ Kε(x, y, z) is equal to the distribution of individuals
that are born from any encounter between a female of trait y and a male of trait z, per unit of
time. Of course, this model is valid only if we assume that the sex ratio is constant in time and the
same for each value of the trait. We make this simplification in order to obtain a single equation
rather than a system.

It is worth highlighting that we aim here at general properties and methods for dealing with the
nonlinear and nonlocal birth term, rather than at a realistic model for the evolution of a specific
trait (see [219, 221] for more realistic models). We hope that the techniques developed here will
be successfully applied to specific contexts. We also point out that the same kind of equation
structure appears in models of cell population exchanging genetic information (see [33, 159]) or
proteins (see [160]).

The relationships between sexual selection and speciation are not well understood. Models of
sexual reproduction have already been discussed in different contexts. Studies of individual-based
models of sexual population were performed to determine the necessary conditions to evolutionary
branching in [65, 136, 226]. Mendelian populations, i.e. structured by genetic types, were also
considered (see [41, 42] and the discussion in Section 13.4 below). In [57] for instance, the authors
investigate a stochastic birth and death process model for sexually reproducing diploids with
Lotka-Volterra type dynamics and single locus genetics. At the small mutation steps limit, they
derive a differential equation in allele space, referred to as a form of the canonical equation of the
adaptive dynamics. In [59], another stochastic birth and death process model is studied with sexual
reproduction according to mating preferences and a space structure with patches. In this case,
reproductive isolation between patches occurs, and the authors prove that the time needed for this
isolation to occur is a function of the population size. In [200], a deterministic system with three
phenotypes (two alleles at a single locus) was studied for which the “reversal time” (measuring the
persistence of resistance in a population after exposition to insecticide) was studied.

From a full population point of view, in [171] the authors considered sexual populations struc-
tured by a trait and a space variable in a non-homogeneous environment, and after performing
an asymptotic limit and a simplification of the model, they derived an estimate of the invasion
speed or extinction speed of the population. In [37], the authors study the same kind of models as
in the present paper, where the traits of the newborns are distributed through a gaussian kernel
centered on the mean of the parents’ traits and with a constant variance, as in [68]. They prove
the existence of principal eigenelements for the corresponding eigenproblem, using the Schauder
fixed point theorem.

The main results of this paper regard the behavior of ρε and nε in the asymptotic of large time
scale and mutations with limited effect on the phenotype, for several models of the form (12.1). We
also identify some difficulties raised by the application of our methods to the general case of (12.1).

In the present paper, we study two classes of models with the common idea that new individuals
inherit mostly their trait from the female. We consider a first model with asymmetric fecundity
(AF in short)

ε∂tnε(t, x) =
1

ρε(t)

x
B(y)αε(x, y, z)nε(t, y)nε(t, z)dy dz −R(x, ρε(t))nε(t, x), (AF)

where B is a positive function (crossing fecundity, which is assumed to depend only on the female’s
trait), αε( · , y, z) is the probability distribution of the offspring from a y female and a z male,

Kε(x, y, z) = B(y)αε(x, y, z),

∫
αε(x, y, z) dx = 1 for all y, z.

The second model features an asymmetric trait heredity (ATH in short) with P = R, which
reads

ε∂tnε(t, x) =
1

ρε(t)

x
K0(x− z)Gε(x− y)nε(t, y)nε(t, z)dy dz −R(x, ρε(t))nε(t, x), (ATH)

where
Kε(x, y, z) = K0(x− z)Gε(x− y), (12.2)
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with K0, Gε positive functions such that there exists a positive function G,
∫
G(z)dz = 1 and

Gε(x− z) = 1
εG
(
x−z
ε

)
.

We study two ingredients of proof for convergence: first, we identify a consistent limit object as
ε→ 0, which is here a constrained Hamilton-Jacobi equation; secondly we obtain time compactness
estimates on the solutions at the ε-level in order to be able to extract converging subsequences and
to use the stability property of viscosity solutions. The first and most intricate step to obtain this
second ingredient is the study of the variations of ρε.

For simplification, we first study a model without mutations, which is a particular case of the
two models presented above, in order to introduce the ingredients that we use and to highlight the
new arguments of the proofs. This model with no mutations, posed on P = R reads

ε∂tnε(t, x) =

(
1

ρε(t)
K0 ∗ nε(t, · )(x)− νρε(t)

)
nε(t, x), (nM)

with ν > 0. This equation can be written under the form of equation (AF) with

B ≡ 1, R(x, ρ) ≡ νρ and αε(x, y, z) = K0(x− z)δ0(x− y),

and also under the form of (ATH) with
Gε = δ0.

We also generalize (nM) to any (complete metric) phenotype space P with

ε∂tnε(t, x) =
( 1

ρε(t)

∫
K(x, y)nε(t, y)dy −

(
R0(x) +R1(ρε)

))
nε(t, x), nε(0, x) = n0(x), (gnM)

for some symmetric kernel K : P2 → R+, and obtain Lyapunov convergence results for (gnM).
The paper is organized as follows. In Section 12.2, we state our assumptions and results. We

also establish some non-extinction conditions and bounds on the total population. In Section 12.3,
we focus on the models without mutations (nM)-(gnM) in order to introduce the main arguments
that will be used for the more general cases. In particular we derive BV estimates for the total
population and discuss the formal limit of the population distribution. In Section 12.4, we address
the derivation of BV estimates for the (ATH) and (AF) models when R only depends on the total
population variable and we explain the difficulties encountered when R is generic. In Section 12.5
we briefly explain the settings leading to Lyapunov convergence results. In Section 12.6, we deal
with the Hamilton-Jacobi approach.

12.2 Main results

12.2.1 Assumptions and statements

The function R stands for the death rate and the competition effects. We make the standing
assumption that it increases with the total population:

∀x, ρ, ∂ρR(x, ρ) > 0. (12.3)

Some important results are obtained when R has the very simple form

R(x, ρ) = νρ, ∀x ∈ R, with ν > 0. (12.4)

We also assume usually that the initial data satisfies

ε(ρ̇ε)−(0) =

(∫
n0
ε(x)

K0 ∗ n0
ε

ρ0
ε

(x) dx− (ρ0
ε)

2

)
−

is uniformly bounded, (12.5)

where for a ∈ R we use the notation a− = max(−a, 0).
For models with no mutations (nM) and asymmetric trait heredity (ATH), we assume

K0 ∈ Cb(R,R+) is a symmetric kernel, (12.6)

where Cb(R,R+) is the space of continuous and bounded functions R→ R+.
We state the following result for (nM), whose proof is given in Section 12.3.
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Theorem 12.1 (BV bound for model (nM)). Let T > 0 and let nε be the solution to (nM)
associated with initial data n0

ε . We assume (12.5) and (12.6).
Then, ρε is uniformly bounded in BV (0, T ). Namely, we obtain∫ T

0

|ρ̇ε(t)| dt ≤ ρM + 2(ρ̇ε)−(0)
ε

κ′′m

(
1− e−

κ′′mT
ε

)
,

with ρM and κ′′m defined later on. This implies that, up to extraction of subsequences, there exist
limits ρε → ρ in L1(0, T ), and nε −⇀ n ∈ L∞t (0, T ;M+(R)) in the sense of measures.

Moreover, we have ∫ T

0

∫
R
nε
(K0 ∗ nε

ρε
− νρε

)2
dx dt = O(ε). (12.7)

For the model with asymmetric fecundity (AF), we need the following assumption on B and α:

∃C > 0,∀ε > 0,∀φ ∈M1
+(P),

y
αε(x, y, z)B(x)B(y)φ(y)φ(z)dx dy dz −

(∫
B(y)φ(y)dy

)2

≥ −Cε.
(12.8)

This means that the fecundity variation from one generation to the next is controlled and in fact is
non-decreasing as ε goes to 0. We obtain the following result whose proof is given in Section 12.4.

Theorem 12.2 (BV bound for (AF)). Let T > 0 and let nε be the solution to (AF) associated
with initial data n0

ε . Assume (12.4) and (12.8).
Then, ρε is uniformly bounded in BV (0, T ). Namely, we have∫ T

0

|ρ̇ε(t)| dt ≤ ρM + 2(ρ̇ε)−(0)
ε

νρm

(
1− e−

νρmT
ε

)
+ 2

C

νρm

(
T +

ε

νρm
(e−

νρmT
ε − 1)

)
.

with C, ρM and ρm defined later on. This implies that, up to extraction of subsequences, there
exist limits ρε → ρ in L1(0, T ), and nε −⇀ n ∈ L∞t (0, T ;M+(P)) in the sense of measures.

For (ATH), we also need to assume that, for all φ ∈ L1 ∩W 1,∞, Gε ∗φ = φ+O(ε), in the sense

1

ε‖φ‖Lip
‖Gε ∗ φ− φ‖L1 is uniformly bounded in ε. (12.9)

Additionally, we assume that K0 is Lipschitz in this case. We obtain the following result whose
proof is given in Section 12.4.

Theorem 12.3 (BV bound for (ATH)). Let nε be the solution to (ATH) associated with initial
data n0

ε . Assume (12.5), (12.6) and (12.9). Assume also the following (”non-extinction” in this
case) condition

∃η0 > 0, ∀ε > 0, ηε := inf
φ∈M1

+(R)

∫
K0 ∗ φ ·Gε ∗ φdx ≥ η0. (12.10)

Then ρε is uniformly bounded in BV (0, T ). Namely, we have∫ T

0

|ρ̇ε(t)| dt ≤ ρM + 2(ρ̇ε(0))−
ε

C1
(1− e−C1T/ε) + 2

εC2

C2
1

(e−C1T/ε − 1) + 2
C2

C1
T.

Then, up to extraction there exist ρ ∈ L1
loc(0,∞) and n ∈ L∞t (0, T ;M+(R)) such that (ρε) con-

verges towards ρ in L1
loc(0,∞), and (nε) towards n in the sense of measures, when ε goes to 0.

Moreover, for all T > 0, we have∫ T

0

∫
R

(Gε ∗ nε)
[
K0 ∗ nε
ρε

− νρε
]2

dx dt = O(ε),

In the general case of a death rate depending on both traits and the total population, we can
perform the Hopf-Cole transform

uε(t, x) = ε lnnε(t, x),

and apply a Hamilton-Jacobi approach. For the models under investigation, we obtain the following
result that is the topic of Section 12.6.
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Theorem 12.4 (Lipschitz estimates for uε). Under some assumptions on the initial data u0
ε , for

both models (AF) and (ATH), the corresponding uε are locally Lipschitz uniformly in ε.
Moreover, we have a global upper bound on uε. Namely, there exists a constant C, such that

uε(t, x) ≤ ε ln

(
C +

C(1 + t)

ε

)
.

The assumptions required for the proof of this theorem in each case are specified in the corre-
sponding section.

12.2.2 Boundedness of ρε and non-extinction

The total population ρε satisfies

ερ̇ε(t) =

∫ (x
Kε(x, y, z)

nε(t, z)

ρε(t)
nε(t, y)dy dz −R(x, ρε(t))nε(t, x)

)
dx.

To ensure that ρε remains bounded along all trajectories, we complement (12.3) with

∃Rm : R+ → R+, increasing, with Rm(0) = 0,

Rm(+∞) = +∞ and ∀x, R(x, ρ) ≥ Rm(ρ).
(12.11)

We also assume that

KM := sup
0<ε≤1

sup
φ∈M+

1 (P)

sup
y

x
Kε(x, y, z)dxφ(z)dz < +∞. (12.12)

Then, let ρM := R−1
m (KM ). The following boundedness result is straightforward:

Proposition 12.1 (Upper bound for ρε). Under assumptions (12.3), (12.11) and (12.12), all
trajectories of (12.1) are forward-ρM -bounded from above in ρε, by which we mean that ρ̇ε(t) < 0
as long as ρε(t) > ρM .

Conversely, we can study conditions that ensure non-extinction of the population: ρε(t) ≥ ρm >
0. For instance, let

κm(ρ) := inf
0<ε≤1

inf
φ∈M1

+(P)
inf
y

x
Kε(x, y, z)dxφ(z)dz −R(y, ρ). (12.13)

Proposition 12.2 (Lower bound for ρε under assumption (12.13)). Under assumption (12.3) and
if there exists ρm > 0 such that κm(ρm) = 0, with κm defined in (12.13), then all trajectories
of (12.1) are forward-ρm-bounded from below in ρε, by which we mean that ρ̇ε(t) > 0 as long as
ρε(t) < ρm.

However, κm(0) > 0 is not expected to be a necessary condition. It is an open and challenging
question to determine more general conditions for non-extinction, and study the set of extinction
trajectories in cases when these conditions are not met.

For instance, let

κ′m(ρ) := inf
0<ε≤1

inf
φ∈M1

+(P)

∫ (x
Kε(x, y, z)dxφ(z)dz −R(y, ρ)

)
φ(y)dy. (12.14)

Proposition 12.3 (Lower bound for ρε with a condition on (12.14)). Under assumption (12.3) and
if there exists ρm > 0 such that κ′m(ρm) = 0 then all trajectories of (12.1) are forward-ρm-bounded
from below in ρε.

And likewise, let

κ′′m := inf
0<ε≤1

inf
φ∈M1

+(P)

y
Kε(x, y, z)φ(y)φ(z) dx dy dz. (12.15)

Then, assuming also
∃RM : R+ → R+, increasing, with RM (0) ≥ 0,

RM (+∞) = +∞ and ∀x, R(x, ρ) ≤ RM (ρ),
(12.16)

we have ρ̇ ≥
(
κ′′m −RM (ρ)

)
ρ.

Proposition 12.4 (Lower bound for ρε with a condition on (12.15)). Assume (12.16) holds and
κ′′m > RM (0) defined in (12.15). Then all trajectories of (12.1) are forward-ρm-bounded from below
in ρε, with ρm = R−1

M (κ′′m) > 0.
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12.3 The model without mutations

In order to see clearly the kind of results to be expected, we first study in detail a very simple
example, which is equation (nM). The form of the birth rate assumes that the trait is perfectly
transmitted from the females to their progeny, and the cross-fecundity between a male of trait z
and a female of trait x depends only on the distance between x and z through K0.

Assumptions (12.3) and (12.11) (for Rm = νρ) obviously hold in case (nM). Assumption (12.12)
holds with KM = maxxK0(x). However, κm(ρ) = inf K0 − ρ so the non-extinction condition from
Proposition 12.2 holds if and only if infxK0(x) > 0.

Even though infxK0(x) = 0, it seems standard to assume that K0 is such that Proposition 12.4
holds, that is

κ′′m = inf
φ∈M1

+(R)

∫ (
K0 ∗ φ

)
(x)φ(x) dx > 0.

The same kind of assumption is used in [123] to prove an entropy-based stability result.

12.3.1 Proof of Theorem 12.1

In this section we prove Theorem 12.1. From equation (nM) we can compute

ερ̇ε(t) =

∫
nε(t, x)

K0 ∗ nε(t, · )
ρε(t)

(x) dx− νρ2
ε .

Assuming (12.6) yields d
dt

∫
nK0 ∗ n = 2

∫
nK0 ∗ (∂tn). Hence

ερ̈ε = −νρερ̇ε − νρερ̇ε −
ρ̇ε
ρ2
ε

∫
nεK0 ∗ nε +

1

2ρε

d

dt

∫
nεK0 ∗ nε +

1

ρε

∫
∂tnεK0 ∗ nε.

We rewrite this as

ερ̈ε = −νρερ̇ε −
ρ̇ε

2ρ2
ε

∫
nεK0 ∗ nε +

1

2

d

dt

( 1

ρε

∫
nεK0 ∗ nε − νρ2

ε

)
+

1

ε

∫ (nε(K0 ∗ nε)2

ρ2
ε

− νnεK0 ∗ nε
)
,

and since ερ̇ε = 1
ρε

∫
nεK0 ∗ nε − νρ2

ε , we get

ε

2
ρ̈ε = − ρ̇ε

2ρ2
ε

∫
nεK0 ∗ nε +

1

ε

∫
nε
(K0 ∗ nε

ρε
− νρε

)2
. (12.17)

From (12.17) a lot can be said. First, ρ̈ε ≥ − ρ̇ε
ερ2
ε

∫
nεK0 ∗ nε, hence if ρ̇ε = 0 then ρ̈ε ≥ 0. In

particular, ρε has no strict local maximum. We can conclude that ρε is either decreasing, increasing
or decreasing-increasing, and since it is bounded, ρε(t) must converge to some finite value ρ∞ε as t
goes to +∞.

Let bε(t) := 1
ρ2
ε(t)

∫
nε(t, x)(K0 ∗ nε(t, · ))(x)dx ≥ κ′′m > 0. Then from (12.17),

d

dt
(ρ̇ε)− ≤ −

κ′′m
ε

(ρ̇ε)−.

Hence (ρ̇ε)−(t) ≤ e−
κ′′mt
ε (ρ̇ε)−(0). We write∫ T

0

|ρ̇ε(t)| dt ≤
∫ T

0

ρ̇ε(t) dt+ 2

∫ T

0

(ρ̇ε)− (t)dt

≤ ρM + 2(ρ̇ε)−(0)

∫ T

0

e−
κ′′mt
ε dt

≤ ρM + 2(ρ̇ε)−(0)
ε

κ′′m

(
1− e−

κ′′mT
ε

)
.

Therefore, under the mild assumption (12.5), the family (ρε)ε is uniformly bounded in BV (R+).
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We now establish equation (12.7). Going back to equation (12.17), and integrating this one
over [0, T ] for T > 0, we obtain∫ T

0

∫
R
nε
(K0 ∗ nε

ρε
− νρε

)2
dx dt = ε

∫ T

0

ρ̇ε
2ρ2

∫
nεK0 ∗ nε dx dt+

ε2

2
(ρ̇ε(T )− ρ̇ε(0)). (12.18)

Since ρε is locally BV uniformly in ε and using (12.5) and (12.6), we deduce that∫ T

0

∫
R
nε
(K0 ∗ nε

ρε
− νρε

)2
dx dt = O(ε),

which is equation (12.7).

12.3.2 Concentration of Dirac masses

Formally, in the limit ε→ 0 the previous estimation yields∫
n(t, x)

(K0 ∗ n(t, · )

ρ(t)
(x)− νρ(t)

)2

dx = 0. (12.19)

It turns out that combinations of Dirac masses are admissible solutions to (12.19), n =
∑N
i=1 ρiδxi ,

ρi > 0 with
∑N
i=1 ρi = ρ, and

N∑
i=1

ρi

( N∑
j=1

ρj
ρ
K0(xi − xj)− νρ

)2

= 0,

so for all i ∈ {1, . . . , N},
N∑
j=1

ρj
ρ
K0(xi − xj) = νρ. (12.20)

We define the matrix K, whose coefficient with indices (i, j) is equal to K0(xi − xj). K is
symmetric with positive coefficients and constant main diagonal (equal to K0(0)). If the family
(xi)1≤i≤N is given, the problem amounts to finding a positive vector P such that KP = 1. (Then
ρ = 1/1TP and ρi = Piρ

2).

It is easily checked that if

max
i 6=j

K0(xi − xj) <
K0(0)

N − 1

then K is invertible (in this case indeed, K is strictly diagonally dominant). It is worth noting
that if N = 2 and maxK0 = K0(0), with the maximum of K0 being reached only at 0, then this
is always satisfied. However, in the generic case when (xi)i is such that K is invertible, it remains
unclear whether P := K−11 > 0 or not.

In spite of this, an alternative viewpoint using a Lyapunov functional helps describing the
asymptotically stable solutions, as detailed below.

12.3.3 A Lyapunov concentration result

Let n0 ∈ M+(P) and q0 = n0/
∫
X
n0 ∈ M1

+(P). We introduce KS : P2 → R+, R0 : P → R+ and
R1 : R+ → R+ satisfying the following assumptions:

KS ∈ Cb(P2,R+) is symmetric: ∀x, y ∈ P, KS(x, y) = KS(y, x), (KSS)

∀ξ ∈M(P)\{0},
x

KS(x, y)ξ(x)ξ(y)dxdy > 0, (KSP)

supp(q0) is compact or R0 is proper, (R0P)

R1 is increasing and proper, (R1P)

∃!xM ∈ supp(q0), y 7→ KS(xM , y)−R0(y) reaches its maximum at xM . (Max)
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Then, we consider the special form of equation (12.1) given by (gnM). Defining q(t, x) :=
nε(εt, x)/ρε(t) in this case, we obtain

∂tq(t, x) = q(t, x)
( ∫

KS(x, y)q(t, y)dy −R0(x)
)

− q(t, x)

∫
q(t, x′)

( ∫
KS(x′, y)q(t, y)dy −R0(x′)

)
dx′, q(0, x) = q0(x). (12.21)

Then we simply need to study the asymptotic behavior of q as t→ +∞ to be able to describe that
of nε as ε→ 0. Thanks to the structure of (12.21) we have:

Theorem 12.5. Under assumptions (KSS),(KSP),(R0P),(R1P) and (Max), δxM is asymptotically
stable for (12.21).

The proof relies on Proposition 4.9 (stated in Section 4.4.2, where relevant definitions for
Lyapunov functions and a proof are given). We get a Lyapunov functional for (12.21) by defining

J(q) :=
1

2

x
KS(x, y)q(x)q(y)dxdy −

∫
R0(x)q(x)dx. (12.22)

Indeed, along an orbit of (12.21) we have

d

dt
J(q(t, · )) =

∫
q(t, x)

( ∫
KS(x, y)q(t, y)dy −R0(x)

)2
dx

−
(∫

q(t, x)
( ∫

KS(x, y)q(t, y)dy −R0(x)
)
dx
)2

≥ 0,

with equality (by Cauchy-Schwarz inequality) if and only if∫
KS(x, y)q(t, y)dy −R0(x) ≡ C ∈ R on supp(q(t, · )),

so that we have strict monotonicity except if q(t, · ) is a rest point for the dynamics of (12.21). This
Lyapunov functional can be seen as an embodiment of the “positive correlation” property from
game dynamics (see [116]), and this feature has been exploited to get a gradient flow formulation
of a non-local model with a diffusion term in [122], where the kernel acts for death induced by
competition rather than for birth as is the case here.

In order to use the Lyapunov functional properly, we need {q(t, · ), t ≥ 0} ⊂ M1
+(P) to be

relatively compact for a topology for which J is continuous and Fréchet-differentiable. This is the
case if either q0 is compactly supported in P, or if K is bounded and R0 is proper (by Prohorov’s
theorem), for the weak* topology on M1

+(P).
The study of the maximizer sets for J is greatly simplified by (KSP):

Lemma 12.1. Under (KSP), the functional J is strictly convex on the convex set M1
+(P).

Therefore its local maximum points are extreme points of M1
+(P), that is Dirac masses. The

Dirac mass δx is a local maximizer of J only if y 7→ KS(x, y)−R0(y) reaches its maximum at x.

Proof. For q1, q2 ∈M1
+(P) and θ ∈ [0, 1] we compute

J(θq1 + (1− θ)q2) =
x

KS

(
θ2q1q1 + (1− θ)2q2q2 + 2θ(1− θ)q1q2

)
−
∫
R0

(
θq1 + (1− θ)q2

)
= θJ(q1) + (1− θ)J(q2)− θ(1− θ)

x
KS(x, y)(q1 − q2)(x)(q1 − q2)(y)dxdy.

Therefore (KSP) (with ξ = q1 − q2) implies that J is strictly convex.
If J reaches a local maximum at ξ ∈ M1

+(P) belonging to some interval (ξ−, ξ+), that is
ξ = θξ− + (1− θ)ξ+ for some θ ∈ (0, 1) with ξ± ∈M1

+(P), then for ε > 0 small enough we have

J(ξ) <
1

2

(
J(ξ + ε(ξ+ − ξ−)) + J(ξ − ε(ξ+ − ξ−))

)
≤ J(ξ),

where the left inequality holds by strict convexity and the right one by the local maximum condi-
tion. This is absurd, hence local maxima are only reached at extreme points.
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The support of an extreme probability measure must be reduced to a singleton: otherwise, we
can construct a segment on which the measure lies by exchanging mass between any two separable
points of the support. Conversely, a Dirac mass is obviously extreme, as any segment to which it
belongs would consist of probability measures with the same support, reduced to a singleton.

Then, the first-order optimality condition for J at δx reads: for all admissible perturbation h,∫ (
K(x, y)−R0(y)

)
h(y)dy ≤ 0,

and admissible perturbations have the general form h = −δx + h0, with h0 ∈M1
+(P), whence the

last point.

Thanks to (Max) we get that {δxM } is a local maximizer set of J for which J is a strict
Lyapunov function (and that there is no other local maximizer set of J). By Proposition 4.9, it is
asymptotically stable.

12.4 BV estimates on the total population

In this section, we derive BV estimates assuming that R is independent from the trait variable and
features a linear dependency on ρ, which is specified by assumption (12.4). Thereafter we address
the difficulties encountered when R has a general form.

12.4.1 Linear dependency on the competition variable in the AF model

Although the asymptotic behavior of nε solution to (12.1) may be difficult to obtain in general,
under some assumptions on K and R, the total population ρε can be proved to have bounded
variations.

Recall that, integrating equation (12.1), we have

ερ̇ε =
1

ρε

y
Kε(x, y, z)nε(t, y)nε(t, z)dx dy dz −

∫
R(x, ρε)nε(t, x) dx.

The proofs of Theorems 12.2 and 12.3 rely on estimates obtained through the equation satisfied
by ρ̈ε. In general, we start from

ερ̈ε = − ρ̇ε
ρ2
ε

y
Kε(x, y, z)nε(t, y)nε(t, z)dx dy dz

+
1

ρε

y
Kε(x, y, z)

(
∂tnε(t, y)nε(t, z) + nε(t, y)∂tnε(t, z)

)
dx dy dz

− ρ̇ε
∫
∂ρR(x, ρ)nε(t, x)dx

−
∫
R(x, ρε)

( 1

ερε

x
Kε(x, y, z)nε(t, y)nε(t, z)dy dz −R(x, ρε)nε(t, x)

)
dx. (12.23)

Proof of Theorem 12.2. We treat the case of the model with asymmetric fecundity. Then, ρε
satisfies

ερ̇ε =

∫
B(x)nε(t, x)dx− νρ2

ε ,

and (12.23) reads

ερ̈ =

∫
B(x)∂tnε(t, x)dx− 2νρερ̇ε

= −νρερ̇ε +
ν2

ε
ρ3
ε −

νρε
ε

∫
B(x)nε(t, x)dx

+
1

ερε

y
αε(x, y, z)B(x)B(y)nε(t, y)nε(t, z)dx dy dz −

νρε
ε

∫
B(x)nε(t, x)dx.
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Which we rewrite as

ε
d

dt
ρ̇ε = −νρερ̇ε +

demographic stabilization︷ ︸︸ ︷
ρε
ε

(∫
B(x)nε(t, x)dx

ρε
− νρε

)2

+
1

ερε

(y
αε(x, y, z)B(x)B(y)nε(t, y)nε(t, z)dx dy dz −

( ∫
B(x)nε(t, x)dx

)2)
︸ ︷︷ ︸

mixing-induced fecundity variation

. (12.24)

In order to apply the same technique as for the simple case (nM), we need to assume that the
mixing-induced fecundity variation term is bounded from below.

Under (12.8), we obtain from (12.24) and Proposition 12.1

ε
d

dt
ρ̇ε ≥ −νρερ̇ε − C. (12.25)

And from Proposition 12.4, we deduce

d

dt
(ρ̇ε)− ≤ −

νρm
ε

(ρ̇ε)− +
C

ε
,

and thus (ρ̇ε)−(t) ≤ e−
νρmt
ε (ρ̇ε)−(0) + C

νρm

(
1− e−

νρmt
ε

)
. Then we use the same argument we used

to treat case without mutations in the previous section, which proves uniform boundedness of (ρε)ε
in BV (0, T ), for all T > 0.

We discuss assumption (12.8). First, if B is constant then it is obviously satisfied. Secondly,
by taking φ concentrated at a point xM where B reaches its maximum, we obtain∫

αε(x, xM , xM )B(x)dx ≥ B(xM )− Cε.

Recalling that
∫
αε(x, y, z)dx = 1 for all y, z, this implies that as ε goes to 0, αε( · , xM , xM ) is

concentrated at points where B is equal to its maximum B(xM ), which is a restrictive necessary
condition for (12.8) to hold.

Thirdly, we state a sufficient condition: if αε( · , y, z)→ α0(y, z) ∈M1
+(P) with either

∀y, z,
∫
α0(y, z)(x)B(x)dx ≥ B(y)

or

∀y, z,
∫
α0(y, z)(x)B(x)dx ≥ B(z),

and if convergence is sufficiently fast, then (12.8) holds. In the first case this is a consequence of
the Cauchy-Schwarz inequality, and in the second case we simply obtain that the left-hand side
in (12.8) converges to 0 as ε→ 0. In particular, we may assume αε(x, y, z) = 1

εG
(
x−y
ε

)
or 1

εG
(
x−z
ε

)
for some appropriate kernel G. These situations are those we have in mind, although (12.8) in all
generality may allow for some other cases.

All in all, (12.8) means that the trait inheritance pattern αε does not allow next-generation’s
fecundity to get smaller than the current one’s as ε → 0. Unsurprisingly, this dissipative feature
implies that the variations of ρ can be controlled as ε→ 0, as stated in Theorem 12.2.

12.4.2 Linear dependency on the competition variable in the ATH model

We now address the case of the model with asymmetric trait heredity, which we refer to as the
ATH model.

Remark 12.1. In order to apply the same technique as for the model without mutations addressed
in Section 12.3, we need a convergence assumption on Gε as ε goes to 0. Specifically, we use the
following assumption: for all Lipschitz function φ, we have

Gε ∗ φ = φ+O(ε). (12.26)
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This assumption on the convergence of Gε as ε goes to 0 holds in the typical example where Gε is
Gaussian with variance ε2. It means that there exists C ∈ R∗+ such that for all ε > 0, φ ∈ W 1,∞

with ‖φ‖Lip ≤ 1 and ψ ∈ L∞ with ‖ψ‖L∞ ≤ 1,∣∣∣ ∫ ψ(x)(Gε ∗ φ)(x)dx−
∫
ψ(x)φ(x)dx

∣∣∣ ≤ Cε.
Specifically, we write Gε(x) = 1

(2πε2)d/2 e
−x2/2ε2 . Then we compute

δ :=
∣∣∣ ∫ ψ(x)(Gε ∗ φ)(x)dx−

∫
ψ(x)φ(x)dx

∣∣∣
≤
∫
|ψ(x)||Gε ∗ φ(x)− φ(x)|dx ≤

∫ ∫
1

(2πε2)d/2
e−

(x−y)2

2ε2 |φ(y)− φ(x)|dydx.

We apply the change of variables ŷ = (2ε)−1(y − x), so dŷ = (2ε)−ddy, to get

δ ≤ π−d/2
∫ ∫

e−ŷ
2

|φ(x+ 2εŷ)− φ(x)|dŷdx ≤ 2‖φ‖Lip
(2π)d/2

ε.

Proof of Theorem 12.3. Departing from (ATH), the equation satisfied by ρε reads

ε
d

dt
ρε(t) =

∫
R

(
1

ρε(t)
K ∗ nε(t, · )(x)Gε ∗ nε(t, · )(x)− νρε(t)nε(t, x)

)
dx.

Differentiating this equation, we obtain

ερ̈ε(t) =
1

ρε(t)

∫
R

[K0 ∗ ∂tnε(t, · )(x)Gε ∗ nε(t, · )(x) +K0 ∗ nε(t, · )(x)Gε ∗ ∂tnε(t, · )(x)] dx

− νρε(t)
d

dt
ρε(t)− ν

∫
∂tnε(t, x)ρε(t)dx

− ρ̇ε(t)

ρ2
ε(t)

∫
[K0 ∗ nε(t, · )(x)Gε ∗ nε(t, · )(x)] dx

By the same trick as in Section 12.3, assuming (12.6) induces

ερ̈ε(t) =
1

2ρε(t)

d

dt

[∫
K0 ∗ nε(t, · )(x)Gε ∗ nε(t, · )(x)dx

]
+

1

ρε(t)

∫
[Gε ∗ (K0 ∗ nε(t, · ))(x)∂tnε(t, x)] dx

− νρε(t)
d

dt
ρε(t)− ν

∫
∂tnε(t, x)ρε(t)dx

− ρ̇ε(t)

ρ2
ε(t)

∫
[K0 ∗ nε(t, · )(x)Gε ∗ nε(t, · )(x)] dx.

Then we compute

ερ̈ε(t) =
1

2ρε(t)

d

dt

[∫
K0 ∗ nε(t, · )(x)Gε ∗ nε(t, · )(x)dx

]
+

1

ε

1

ρε(t)

∫
Gε ∗ (K0 ∗ nε(t, · ))(x)

[
1

ρε(t)
K0 ∗ nε(t, · )(x)Gε ∗ nε(t, · )(x)− νnε(t, x)ρε(t)

]
dx

− νρε(t)
d

dt
ρε(t)−

ν

ε
ρε(t)

∫ [
1

ρε(t)
K0 ∗ nε(t, · )(x)Gε ∗ nε(t, · )(x)− νnε(t, x)ρε(t)

]
dx

− ρ̇ε(t)

ρ2
ε(t)

∫
[K0 ∗ nε(t, · )(x)Gε ∗ nε(t, · )(x)] dx,

and get

ερ̈ε(t) = −νρε(t)
d

dt
ρε(t) +

1

2

d

dt

[∫
1

ρε(t)
K0 ∗ nε(t, · )(x)Gε ∗ nε(t, · )(x)dx

]
− 1

2

ρ̇ε(t)

ρ2
ε(t)

∫
[K0 ∗ nε(t, · )(x)Gε ∗ nε(t, · )(x)] dx

+
1

ε

∫
(Gε ∗ nε)

[
Gε ∗ (K0 ∗ nε)

(K0 ∗ nε)
ρ2
ε

− 2νK0 ∗ n
]
dx+

1

ε
ν2ρ2

ε

∫
Gε ∗ nε dx.
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We rewrite this as

ερ̈ε(t) = −νρε(t)ρ̇ε(t)−
1

2

ρ̇ε(t)

ρ2
ε(t)

∫
K0 ∗ nε(t, · )Gε ∗ nε(t, · )

+
1

ε

∫
(Gε ∗ nε)

[
(K0 ∗ nε)

ρε
− νρε

]2

dx

+
1

ερ2
ε(t)

∫
(K0 ∗ nε)(Gε ∗ nε)

(
Gε ∗ (K0 ∗ nε)−K0 ∗ nε

)
dx.

Now we use the convergence assumption (12.26) on Gε. We simply need to check that φ(x) :=∫
K0(x− y)nε(t, y)dy is Lipschitz. But obviously, |φ′| ≤ ‖K ′0‖L∞ρε(t). Hence

ε

2
ρ̈ε(t) = −νρε(t)ρ̇ε(t)−

1

2

ρ̇ε(t)

ρ2
ε(t)

∫
K0 ∗ nε(t, · )Gε ∗ nε(t, · )

+
1

ε

∫
(Gε ∗ nε)

[
(K0 ∗ nε)

ρε
− νρε

]2

dx+O(1).

(12.27)

Thanks to (12.10), we obtain

ε

2

d

dt
(ρ̇ε(t))− ≤ −

(1

2
η0 + νρε(t)

)
(ρ̇ε(t))− +O(1).

Then, ρε is bounded in BVloc(R+) uniformly in ε. Indeed, we obtain that for some constants
C1, C2 > 0,

(ρ̇ε(t))− ≤ e−C1t/ε
(

(ρ̇ε(0))− +
C2

ε

∫ t

0

eC1t
′/εdt′

)
,

hence

(ρ̇ε(t))− ≤ (ρ̇ε(0))−e
−C1t/ε +

C2

C1

(
1− e−C1t/ε

)
.

As in the proof of Theorem 12.1, we deduce that for all T > 0, (ρε)ε is uniformly (in ε) bounded
in BV ([0, T ]).

Going back to (12.27), we deduce the estimate, for T > 0∫ T

0

∫
x

(Gε ∗ nε)
[
K0 ∗ nε
ρε

− νρε
]2

dxdt = O(ε),

as in the proof of Theorem 12.1.

12.4.3 Questions and difficulties for the general case

Firstly, we address the case of a general saturation term for the AF model, featuring the competition
effect and the trait-dependency:

R ∈ C1(Rd × R+;R+), K(x, y, z) = B(y)αε(x, y, z), ∀y, z,
∫
αε(x, y, z)dx = 1.

Then, we find

ε
d

dt
ρ̇ε =

∫ (
B(x)−R(x, ρε)

)
∂tnε(t, x)dx− ρ̇ε

∫
∂ρR(x, ρε)nε(t, x)dx

= −ρ̇ε
∫
∂ρR(x, ρε)nε(t, x)dx+

1

ε

∫
nε(t, x)

(
R(x, ρε)−B(x)

)2
+

1

ε

∫ (
B(x)−R(x, ρε)

)( 1

ρε

x
αε(x, y, z)B(y)nε(t, y)nε(t, z)dy dz −B(x)nε(t, x)

)
dx

The last term can be seen as the integral of the net fitness B − R( · , ρε) weighted by a fecundity
variation ∆nε(t, · )B (with

∫
∆nε(t, · )B(x)dx = 0).
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To apply the same argument as before, we need to assume

∃C > 0, ∀ε > 0, ∀y, z, ∀φ ∈ L1
+ with ‖φ‖L1 = 1,∥∥x

αε( · , y, z)B(y)φ(y)φ(z)dydz −B( · )φ( · )
∥∥
L1 ≤ Cε,

(12.28)

and we also assume that

∀ρ ≤ ρM , Cf (ρ) := ‖B( · )−R( · , ρ)‖∞ <∞, Cf = sup
0≤ρ≤ρM

Cf (ρ). (12.29)

Under assumptions (12.28) and (12.29), this additional term is treated as in the case (12.4),
replacing the negative constant on the right-hand side of (12.25) by −ρMCCf , which gives

ε
d

dt
ρ̇ε(t) ≥ −ρ̇ε

∫
∂ρR(x, ρε)nε(t, x)dx− ρMCCf .

Therefore, similarly to the proof of Theorem 12.2 we obtain

Lemma 12.2. Assume (12.28) and (12.29). Then, for all T > 0, (ρε)ε is uniformly in ε bounded
in BV ([0, T ]).

Secondly, we address the case of a general death term for the ATH model:

R ∈ C1(Rd × R+;R+), Kε(x, y, z) = Gε(x− z)K0(x− y).

To see clearly where the difficulty lies, we replace Gε(x − z) by δx=z (letting ε → 0 in this term
only). For simplicity, we define

ζ(t, x) :=
K0 ∗ nε(t, · )

ρε(t)
, Q(t) :=

∫
∂ρR(x, ρε(t))nε(t, x)dx.

After computations similar to the previous ones, we find

1

2
ε
d

dt
ρ̇ε = − ρ̇ε

2ρε

∫
nεζ +

1

ε

∫
nε

[
ζ2 −Rζ +

R+Q

2

(
R− ζ

)]
, (12.30)

and the term in 1
ε rewrites ∫

n(ζ − R+Q

2
)(ζ −R).

Meanwhile, one can check that

ερ̇ε =

∫
nε(ζ −R).

When ρ̇ε ≤ 0 we would like to prove that the term in 1
ε in (12.30) is non-negative. We could

be less restrictive and simply require ρ̈ε ≥ 0. This reads (with qε(t, x) = nε(t, x)/ρε(t)):∫
qε(t, x)

(
ζ(t, x)−R(x, ρε(t))

)(
ζ(t, x)− R(x, ρε(t)) +Q(t)

2
−
∫
qε(t, y)ζ(t, y)dy

)
dx ≥ 0

if ∫
qε(t, x)

(
ζ(t, x)−R(x, ρε(t))

)
dx ≤ 0.

We do not treat the general case but by a straightforward computation we can deduce

Lemma 12.3. If R(x, ρ) = R1(ρ) and ρR′1(ρ) ≥ R1(ρ), then ρ̇ε ≤ 0 implies ρ̈ε ≥ − ρ̇ε
2ρε

∫
nζ. Then

in particular for all T > 0, (ρε)ε is uniformly in ε bounded in BV ([0, T ]).

For instance, this is the case if R1(ρ) = νργ for some γ ≥ 1.
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12.5 Lyapunov approach

As in Section 12.3.3, we define qε(t, x) := nε(εt, x)/ρε(t). In the general case (12.1) under the single
assumption R(x, ρ) = R0(x) +R1(ρ) we derive the following equation:

∂tqε(t, x) =
s
Kε(x, y, z)qε(t, y)qε(t, z)dydz −R0(x)qε(t, x)

−qε(t, x)
(t

Kε(x
′, y, z)qε(t, y)qε(t, z)dx

′dydz −
∫
R0(x′)qε(t, x

′)dx′
)
,

qε(0, x) = q0
ε (x).

(12.31)

A natural candidate Lyapunov functional is given by

Jε(q) :=
1

2

y
KS
ε (x, y, z)q(y)q(z)dxdydz −

∫
R0(x)q(x)dx,

where KS
ε is the symmetrization of Kε:

KS
ε (x, y, z) =

Kε(x, z, y) +Kε(x, y, z)

2
.

We can compute along an orbit of (12.31):

d

dt
Jε(qε(t, · )) =

∫
∂tqε(t, y)

(x
KS
ε (x, y, z)qε(t, z)dzdx−R0(y)

)
dy,

=

∫
· · ·
∫
KS
ε (x, y, z)KS

ε (y, y′, z′)qε(t, y
′)qε(t, z

′)qε(t, z)dz
′dy′dzdydx

−
y

KS
ε (x, y, z)

(
R0(x) +R0(y)

)
qε(t, y)qε(t, z)dxdydz +

∫
qε(t, x)R2

0(x)dx

−
(y

KS
ε (x, y, z)qε(t, y)qε(t, z)dxdydz −

∫
qε(t, y)R0(y)dy

)2

.

First, in the special case R0 ≡ 0, to get a non-decreasing Jε along orbits we need to assume

∀ξ ∈M1
+(P),

∫
· · ·
∫
KS
ε (x, y, z)KS

ε (y, y′, z′)ξ(y′)ξ(z′)ξ(z)dz′dy′dzdydx

≥
(y

KS
ε (x, y, z)ξ(y)ξ(z)dxdydz

)2

, (12.32)

which should be interpreted as an increase of fecundity from parents to offspring, with equality
only if the dynamic is at rest, that is

x
KS
ε ( · , y, z)ξ(y)ξ(z)dydz is constant on supp(ξ).

In other words, to get a Lyapunov functional requires a perfect analogue of Cauchy-Schwarz in-
equality.

Another case where this approach seems to yield some results is for (AF) with constant B, that
is under the assumption

∃B > 0, ∀ε > 0, ∀y, z,
∫
Kε(x, y, z)dx = B.

In this case we write Kε = Bαε and get Jε(q) = B
2 −

∫
q(y)R0(y)dy so that

d

dt
Jε(qε(t, · )) =

∫
qε(t, y)R2

0(y)dy −
( ∫

qε(t, y)R0(y)dy
)2

+B
( ∫

qε(t, y)R0(y)dy −
y

R0(x)αε(x, y, z)qε(t, y)qε(t, z)dxdydz
)
.

One possible additional assumption is therefore

∀ξ ∈M1
+(P),

∫
R0(y)ξ(y)dy ≥

y
R0(x)αε(x, y, z)ξ(y)ξ(z)dxdydz, (12.33)
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which should be interpreted as a decrease of the death rate from parents to offspring.
In either one of the two above cases (R0 = 0 and (12.32) or Kε = Bαε and (12.33)), and in the

intermediate case when we assume a more complex inequality involving Kε and R, the consequence
of the assumptions is that Jε is a Lyapunov function indeed for the dynamics of (12.31). As in
Section 12.3.3, under additional assumptions to get orbit relative compactness (proper death rate
yielding uniform tightness in the sense of Section 4.4.2), and functional convexity, we could obtain
concentration to Dirac masses extending Theorem 12.5.

In fact, the more realistic assumptions such as (12.8), (12.28) or (12.26) do not imply that Jε

itself is a Lyapunov function, but rather that along an orbit of (12.31),

d

dt
Jε(qε(t, · )) = j0(qε(t, · )) + εj1

ε (qε(t, · )),

where j1
ε is uniformly bounded, and j0(q) ≥ 0 with equality if and only if q is a rest point of the

limit dynamics. In this light, we only get Lyapunov stability asymptotically as ε→ 0. The possible
outcomes of this approach are still to be studied rigorously.

12.6 The Hamilton-Jacobi equation

In our context, the Hamilton-Jacobi approach has been introduced in [67] and then developed
in [188, 154] to study the concentration effect for phenotypically structured PDEs. This consists
in determining the possible Dirac distributions through the zeros of uε defined from the Hopf-Cole
transform

uε(t, x) = ε lnnε(t, x).

In the mentioned works, the convergence of uε as ε goes to 0 is rigorously established and the
limit u satisfies a constrained Hamilton-Jacobi equation, using the theory of viscosity solutions
(see [25] for an introduction). The constraint on the solution u reads

max
x∈R

u(t, x) = 0, ∀t > 0

and comes from the control in L1 of the total population. Then, some properties on the concen-
tration points can be derived from the study of the constrained Hamilton-Jacobi equation and the
solution u. In some particular cases, it is proved that the population density remains monomor-
phic, that is composed of a single Dirac mass, and then a form of canonical equation is derived,
giving the dynamics of the dominant trait.

In the present work, a Hamilton-Jacobi structure arises in the different situations presented
above. We show in this section different results obtained by applying the Hamilton-Jacobi ap-
proach, especially on the regularity of uε. The main difficulties that we encounter are the time-
dependency of the coefficients and their lack of regularity.
Asymmetric fecundity: we use the particular form

Kε(x, y, z) = B(y)
1

ε
α

(
x− z
ε

, y

)
with

∫
α(z′, y)dz′ = 1 for all y,

and define

bε(t, x) := R(x, ρε(t)), qε(t, y) =
nε(t, y)

ρε(t)
. (12.34)

In this case, the equation on uε reads

∂tuε(t, x) =

∫
B(y)qε(t, y)

∫
α(z, y)e

uε(t,x−εz)−uε(t,x)
ε dzdy − bε(t, x), (12.35)

and we compute the formal limiting equation

∂tu(t, x) =

∫
B(y)q(t, y)

∫
α(z, y)e−∂xu(t,x) · zdzdy − b(t, x)

=

∫
B(y)q(t, y)L[α( · , y)](∂xu(t, x))dy − b(t, x),

(12.36)
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with L[α( · , y)] the Laplace transform of α( · , y) for all y:

L[α](p) :=

∫
α(z)e−p · zdz,

for α a probability density function.
Asymmetric trait heredity: The interest of this problem comes from the time- and trait-
dependent coefficients of the Hamiltonian. We use the generic form

Kε(x, y, z) = Gε(x− z)K1(x, y).

After the change of variable z′ = x−z
ε , the equation on uε reads

∂tuε(t, x) =
1

ρε(t)

∫
K1(x, y)nε(t, y)dy ·

∫
G(z′)e

uε(t,x−εz′)−uε(t,x)
ε dz′ − bε(t, x). (12.37)

For clarity, we define

aε(t, x) :=

∫
K1(x, y)qε(t, y)dy ≥ 0. (12.38)

At the limit ε→ 0, we obtain the formal limiting equation

∂tu(t, x) = a(t, x)

∫
G(z)e−∂xu(t,x) · zdz − b(t, x)

= a(t, x)L[G](∂xu(t, x))− b(t, x),

(12.39)

with a and b the formal limits of aε and bε defined in (12.38) and (12.34), and L[G] the Laplace
transform of G. From now on, we choose G such that its Laplace transform is well defined on R.

In the case G is the gaussian density, the equation on uε reads

∂tuε(t, x) = aε(t, x)

∫
1√
2π
e−
|z|2

2 e
uε(t,x−εz)−uε(t,x)

ε dz − bε(t, x). (12.40)

Then, passing formally to the limit ε→ 0, we arrive at

∂tu(t, x) = a(t, x)

∫
1√
2π
e−
|z|2

2 e−∂xu(t,x) · zdz − b(t, x)

= a(t, x)e(∂xu(t,x))2/2 − b(t, x).

The purpose of this section is to prove for these models the convergence of uε as ε vanishes. To
this end, we derive a priori estimates on the sequence uε in order to use compactness arguments.
The uniqueness of the solution to the limit equation has not been determined, thus we only derive
convergence up to extraction of subsequences. Moreover, the stability result is not complete, since
we do not have convergence results on the coefficients.

We mostly focus on the equation on uε (12.40) for the proof of Theorem 12.4, but the arguments
are identical for the generic ATH case. The proof of the theorem in the AF case is similar and we
also give the formal ideas where it is necessary.

Assumptions: We assume on the function R

∃C0 > 0, ∀ρm ≤ ρ ≤ ρM , ∀x ∈ R, R(x, ρ) ≤ C0(1 + |x|), (12.41)

∃Lb > 0,∀ρm ≤ ρ ≤ ρM , ∀x ∈ R, |∂xR(x, ρ)| ≤ Lb. (12.42)

We choose the positive function K1 bounded

∃K̄ > 0,∀x, y ∈ R, K1(x, y) ≤ K̄, (12.43)

and such that,

∃λ > 0,∃Cλ > 0,∀ε > 0, t ≥ 0, x ∈ R, e
|∂xaε(t,x)|
λaε(t,x) λaε(t, x) ≤ Cλ. (12.44)

This assumption is satisfied for example when K1 is bounded and there exists a constant LK such
that

|∂xK1(x, y)| ≤ LK |K1(x, y)|, ∀x, y ∈ R,
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or, when K1 induces a gaussian type distribution for aε, that is,

aε(t, x) ∼ Ce
−(x−m)2

σ2 .

We also assume on the initial condition

u0
ε(x) ≤ −A|x|+ C, ‖∂xu0

ε‖ ≤ L0. (12.45)

For the model with asymmetric fecundity, we assume that B and α are positive and bounded. For
both models under investigation, we prove Theorem 12.4.

12.6.1 A priori bounds

We begin with the estimates for the ATH case, and especially with a gaussian trait female heredity
distribution.

Lemma 12.4. Let uε be solution to equation (12.40). Then, there exist constants C1 > 0 and
C2 > 0, such that for all t > 0, x ∈ R and ε > 0 we have

−C1(1 + t)(1 + |x|) ≤ uε(t, x) ≤ −A|x|+ C2(1 + t).

We prove this lemma in the case of a gaussian trait female heredity distribution, but the
argument exactly applies to equation (12.37) in the generic ATH case.

Proof. We first prove the lower bound

uε(t, x) ≥ −C1(1 + t)(1 + |x|).

Indeed, because aε ≥ 0 and L(G) ≥ 0, we deduce from (12.41) that

∂tuε ≥ −bε(t, x) ≥ −C0(1 + |x|).

From (12.45) we obtain

uε(t, x) ≥ inf
ε
u0
ε(0)− inf

ε
‖∂xu0

ε‖ − C0t(1 + |x|).

Hence the lower bound.

We also derive the inequality

uε(t, x) ≤ −A|x|+ C2(1 + t),

where C2 = K̄ 1√
2π

∫
e−|z|

2/2eA|z|dz. Indeed, defining v(t, x) := −A|x|+ C2(1 + t), we compute

∂tv(t, x)− aε(t, x)

∫
1√
2π
e−|z|

2/2e
v(t,x−εz)−v(t,x)

ε dz ≥ C2 − K̄
1√
2π

∫
e−|z|

2/2eA|z|dz ≥ 0.

Thus, v is a super-solution of (12.40), and since u0(x) ≤ v(0, x) we deduce that uε(t, x) ≤ v(t, x)
by a comparison principle argument.

We obtain the same kind of bounds for the asymmetric fecundity case.

Lemma 12.5. Let uε be solution to equation (12.35). Then, there exist constants C1 > 0 and
C2 > 0, such that for all t > 0, x ∈ R and ε > 0 we have

−C1(1 + t)(1 + |x|) ≤ uε(t, x) ≤ −A|x|+ C2(1 + t),

where C2 = supy B(y)
∫
α(z, y)e|A|zdz.
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12.6.2 Regularity in space

We prove the following

Lemma 12.6. Let uε be the solution to the equation (12.40). For λ > 0 given by (12.44) and for
all t > 0, x ∈ R, we have

|∂xuε(t, x)| ≤ ‖∂xu0
ε‖L∞ + (Cλ + Lb)t+ λ

(
sup
ε
‖u0

ε‖L∞ + C1(1 + t)(1 + |x|)
)
.

This implies that uε is Lipschitz in space, uniformly in ε and locally in time.

Proof. We use the notations

pε(t, x) = ∂xuε(t, x), p(t, x) = ∂xu(t, x).

Differentiating (12.40), pε satisfies

∂tpε(t, x) = ∂xaε(t, x) ·

∫
1√
π
e−|z|

2

e
uε(t,x−εz)−uε(t,x)

ε dz

+ aε(t, x)

∫
1√
π
e−|z|

2

e
uε(t,x−εz)−uε(t,x)

ε

(
pε(t, x− εz)− pε(t, x)

ε

)
dz − ∂xbε(t, x).

Let λ > 0. We define

wλε (t, x) = pε(t, x) + λuε(t, x), Dε(t, x, z) =
uε(t, x− εz)− uε(t, x)

ε
.

Then, wλε satisfies

∂tw
λ
ε = aε ·

∫
1√
π
e−|z|

2

eDε(t,x,z)
(
wλε (t, x− εz)− wλε (t, x)

ε

)
dz

− λ
[
aε ·

∫
1√
π
e−|z|

2

eDε(t,x,z)(Dε(t, x, z)− 1)

]
dy

+ ∂xaε ·

∫
1√
π
e−|z|

2

eDε(t,x,z)dz − (∂xbε + λbε).

Then, using (12.42), we have

∂tw
λ
ε − Lb − aε ·

∫
1√
π
e−|z|

2

eDε
(
wλε (t, x− εz)− wλε (t, x)

ε

)
dz

≤
∫

1√
π
e−|z|

2

eDε [∂xaε + λaε − λaεDε] dz.

Defining f(D) := eD(∂xaε + λaε − λaεD), the maximum of f on R is reached at D∗ := ∂xaε
λaε

and
equals

e
∂xaε
λaε λaε ≤ Cλ,

from (12.44). Then we have the upper bound

wλε (t, x) ≤ max
R

wλε (0, x) + Ct, C = Cλ + Lb,

which implies the upper bound on pε

pε(t, x) ≤ ‖∂xu0
ε‖L∞ + Ct+ λ

(
sup
ε
‖u0

ε‖L∞ + C1(1 + t)(1 + |x|)
)
.

We have the same estimate for −pε.

For the AF model, we have the following estimate on the derivative in space of uε:

Lemma 12.7. Let uε be the solution of equation (12.35). Then, for all t > 0, x ∈ R and ε > 0,
we have

|∂xuε(t, x)| ≤ ‖∂xu0
ε‖L∞ + Lbt.

This implies that uε is Lipschitz in space, uniformly in ε and locally in time.
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We address the limit equation

∂tp(t, x) = (−∂xp(t, x))

∫
B(y)q(t, y)

∫
zα(z, y)e−p(t,x) · zdzdy − ∂xb(t, x), (12.46)

and give formal arguments, since the proof for the ε-level problem is similar to the one of the ATH
case. We compute that w(t) := ‖∂xu0

ε‖L∞+Lbt is a super-solution of (12.46). Since p(0, x) ≤ w(0)
for all x ∈ R, we deduce that, from the comparison principle, uε is Lipschitz in space, uniformly
in ε and locally in time.

12.6.3 Regularity in time

In the ATH case, since we proved that uε is uniformly Lipschitz in space locally in time, we can
deduce that ∂tuε is locally uniformly bounded.

Lemma 12.8. Let uε be the solution to equation (12.37) and let T > 0 and r > 0 be fixed. Assume
(12.42) and (12.43). Then, there exists C(T, r) > 0 such that, for all t ∈ [0, T ], x ∈ B(0, r), we
have

|∂tuε| ≤ C(T, r) + sup
0≤ρ≤ρM

‖R( · , ρ)‖L∞(B(0,r)).

This implies that uε is Lipschitz in time, uniformly in ε.

Proof. Let T > 0 and R > r > 0 be fixed with R large enough. We choose some constants L1 and
L2 such that

uε(t, x) < −L1, ∀(t, x) ∈ [0, T ]× R\B(0, R),

|pε| < L2, ∀(t, x) ∈ [0, T ]×B(0, R).

Then, we obtain for t ∈ [0, T ], x ∈ B(0, r),

|∂tuε| ≤ sup
0≤ρ≤ρM

‖R( · , ρ)‖L∞(B(0,r))

+
1

ρε(t)

∫
K(x, z)nε(t, z)dz ·

(∫
|x−εy|<R

e−|y|
2

eL2ydy +

∫
|x−εy|>R

e−|y|
2

e
uε(t,x−εy)−uε(t,x)

ε dy

)
.

Thus, for ε small enough, and assuming that

uε(t, x) > −L1, ∀t ∈ [0, T ],∀x ∈ B(0, r),

uε(t, x) < −L1, ∀t ∈ [0, T ],∀x ∈ R\B(0, R),

we have

|∂tuε| ≤ K

(∫
|x−εy|<R

e−|y|
2

eL2ydy +

∫
|x−εy|>R

e−|y|
2

e
−L1−uε(t,x)

ε dy

)
+ sup

0≤ρ≤ρM
‖R( · , ρ)‖L∞(B(0,r))

≤ K

(∫
e−|y|

2

eL2ydy +

∫
|x−εy|>R

e−|y|
2

dy

)
+ sup

0≤ρ≤ρM
‖R( · , ρ)‖L∞(B(0,r))

≤ K
(∫

e−|y|
2

eL2ydy +
√
π

)
+ sup

0≤ρ≤ρM
‖R( · , ρ)‖L∞(B(0,r)).

Hence the local uniform bound on ∂tuε.

The proof is similar for the AF case.

Lemma 12.9. Let uε be the solution to equation (12.35) and let T > 0 and r > 0 be fixed. Then,
there exists C(T, r) > 0 such that, for all t ∈ [0, T ], x ∈ B(0, r), we have

|∂tuε| ≤ C(T, r) + sup
0≤ρ≤ρM

‖R( · , ρ)‖L∞(B(0,r)).

This implies that uε is Lipschitz in time, uniformly in ε.
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12.6.4 A more precise upper bound

The following argument concerns both cases and gives a sharper upper bound on uε.

Lemma 12.10. Let uε be the solution to equation (12.35) or (12.37). Then, for all x, y ∈ R, we
have

uε(t, x) ≤ ε ln
(
ρMmx,

C(1+t)
ε

)
,

where mx,A > 0 is the minimum on R of gx,A : y 7→ A 1+max(|x|,|y|)
1−e−|y−x|A(1+max(|x|,|y|)) .

In addition, if A > 0 we have A < mx,A ≤ A+ 3/2. Thus, we obtain the global upper bound

uε(t, x) ≤ ε ln
(
ρM (3/2 + C(1 + t)/ε)

) ε→0−−−→ 0.

Proof. For all z ∈ (x, y), by the mean value theorem there exists θε(t, x, z) between x and y such
that

uε(t, z) = uε(t, x) + (z − x)∂xuε(t, θε(t, x, z)).

In addition, by the previous point there exists C (independent of t, x and ε) such that for all t, x,
|∂xuε(t, x)| ≤ C(1 + t)(1 + |x|). Hence

uε(t, z) ≥ uε(t, x)− (z − x)C(1 + t)
(
1 + max(|x|, |y|)

)
.

Since we have, for x < y, ∫ y

x

e
uε(t,z)

ε dz ≤ ρM ,

we deduce that

εe
uε(t,x)

ε
1− e−(y−x)

C(1+t)(1+max(|x|,|y|))
ε

C(1 + t)
(
1 + max(|x|, |y|)

) ≤ ρM , ∀y.

Then, we compute

uε(t, x) ≤ ε ln
( ρMC(1 + t)

(
1 + max(|x|, |y|)

)
ε
(
1− e−(y−x)

C(1+t)(1+max(|x|,|y|))
ε

)),
and this holds for all y > x. We can also choose y < x and get in more generality

uε(t, x) ≤ ε ln
( ρMC(1 + t)

(
1 + max(|x|, |y|)

)
ε
(
1− e−|y−x|

C(1+t)(1+max(|x|,|y|))
ε

)) = ε ln
(
ρMgx,C(1+t)

ε
(y)
)
.

Observe that gx,A is positive and goes to +∞ at y = ±∞ and at y = x. Minimizing in y, we find
that

uε(t, x) ≤ ε ln
(
ρMmx,

C(1+t)
ε

)
.

To conclude we first remark that if A > 0 and x, y ∈ R, then we have

1 + max(|x|, |y|)
1− e−|y−x|A(1+max(|x|,|y|) > 1,

so gx,A(y) > A for all y ∈ R and thus mx,A > A. Then, with A > 0 we also have

g1/A,A(−1/A) =
A+ 1

1− e−2(1+A)
≤ A+ 3/2,

which implies mx,A ≤ A+ 3/2. Thus, we obtain the global upper bound

uε(t, x) ≤ ε ln
(
ρM (3/2 + C(1 + t)/ε)

) ε→0−−−→ 0.

The proof of Theorem 12.4 is achieved.
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12.6.5 Discussion on the formal limiting equation

By Lipschitz regularity, as is classically proved with the Hamilton-Jacobi approach to adaptive
dynamics (see [214]), the limit function u satisfies the constraint

max
x∈R

u(t, x) = 0, ∀t > 0.

Then, when u is differentiable at maximum points, we deduce that ∂tu equals 0 and, going back
to (12.36) and (12.39), we obtain

supp n̄ ⊂ {(t, x) ∈ (0,∞)× R|B(x)− b(t, x) = 0}, in case (AF),

supp n̄ ⊂ {(t, x) ∈ (0,∞)× R|a(t, x)− b(t, x) = 0}, in case (ATH).

It would be then interesting to determine the conditions required to have these null sets reduced
to an isolated point. If, for all t > 0, we identify a unique point x̄(t) satisfying

B(x̄(t))− b(t, x̄(t)) = B(x̄(t))−R(x̄(t), ρ̄(t)) = 0, in case (AF),

a(t, x̄(t))−R(x̄(t), ρ̄(t)) = 0, in case (ATH),

then the population is monomorphic, that composed of a single Dirac mass located on x̄(t).
Provided some regularity properties on uε, we could derive a canonical equation for both (AF)
and (ATH).

Back to (nM), we define n ∈M+(R) as an Evolutionary Stable Distribution (ESD) in the sense
of [64, 123] by

K0 ∗ n = νρ2 on supp(n), (12.47)

K0 ∗ n ≤ νρ2 on R, (12.48)

where ρ =
∫
n. The interest of the ESD concept is huge: it is readily established that a stationary

solution to (nM) is asymptotically stable if and only if it satisfies (12.47) and (12.48).
If we assume that K0 is radial-decreasing, then we prove that extreme points in supp(n) (if

it is bounded) cannot support a positive Dirac mass, by using (12.48). In particular, among all
combinations of Dirac masses, only the single-point measure nx(x) := K0(0)/νδx=x is an ESD.
Indeed, assume that n̄ is composed of k ≥ 2 Dirac masses located on (xi)1≤i≤k, then defining

K(x) := K0 ∗ n̄(x) =

k∑
i=1

ρiK0(x− xi),

we deduce from (12.47) and (12.48) that K is maximal on the support of n̄, that is the points xi.
With no loss of generality, we assume that the sequence (xi) is ordered and x1 = mini xi. Then,
differentiating K, we obtain

K
′
(x1) =

∑
i≥1

ρiK
′
0(x1 − xi) > 0,

which contradicts the optimality of K on the support of n̄.

12.7 Conclusion and perspectives

We investigated adaptive dynamics for population dynamics model including sexual reproduction,
when the trait is mainly inherited from the mother. We determined non-extinction conditions and
a control on the total population. In the particular case of a saturation term R depending only
on the competition, we derived BV estimates on the total population. In general, estimating the
variations of ρε when R depends on both trait variable and competition seems difficult, although
an approach using a Lyapunov functional yields interesting results in some cases. More appropriate
assumptions need to be considered.

Concerning the sequences uε = ε lnnε associated to each model, we obtained local Lipschitz
estimates uniform in ε. To deduce the convergence of uε to the solution of the limiting Hamilton-
Jacobi equation with constraint, we still need time compactness on the coefficients of (12.35)
and (12.37). As a special case of both, for the Hamilton-Jacobi equation associated to the model
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without mutations (gnM), if we provide some convergence result on
∫
K(x, y) ∗ nε(t, y)/ρε(t) and

on ρε, then, up to extraction of a subsequence, the limit function u has an explicit formulation
and its maximum points can be described. In general, Hamilton-Jacobi equations with time- and
space-dependent coefficients are difficult to deal with when there is a lack of regularity. The authors
in [150] developed a theory of stochastic viscosity solutions to tackle nonlinear stochastic PDEs. In
particular, they prove existence, regularity and uniqueness results for the viscosity solution when
the time-dependent coefficient of the Hamiltonian can be written as the derivative of a trajectory.
This theory does not apply to our models since the coefficients in front of the gradient-dependent
term are not under the form of a time derivative.

Another question is the determination of a convenient framework to observe Dirac concentra-
tions. The convergence of the population distribution to a sum of Dirac masses illustrates the
selection of well-adapted or dominant phenotypical traits. In [154], the Hamilton-Jacobi approach
enables to characterize the dynamics of the dominant traits under specific assumptions of regularity.
The required hypotheses to observe Dirac concentrations are to be clarified.

Another viewpoint has been recently developed in [194] using the Wasserstein distance to study
a spatial infinitesimal model. It is proved that the sexual reproduction operator in the infinitesimal
model induces a contraction for the Wasserstein distance on the phenotypical trait space, which
enables to derive a macroscopic limit for the model, using also some parabolic estimates for the
space regularity of the solution. It could be interesting to explore the Wasserstein approach to
investigate general sexual population models, although at first sight the key inequality in [194]
seems lost when the normalized gaussian kernel is replaced by a general K(x, y, z) such that the
total progeny

∫
K(x, y, z)dx effectively depends on the traits of the parents, y and/or z.
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Chapter 13

Mathematical perspectives

Ignoranti quem portum petat nullus suus ventus est.

Seneca, Epistulae morales ad Lucilium.

In this chapter we collect four problems that we came across during the thesis but did not have
time to tackle fully. We take this list of open problems as an opportunity for motivating further
research in these topics.

13.1 Bubbles for elliptic systems

Motivated by the study of the two-dimensional competitive reaction-diffusion system from Sec-
tion 4.3.3, we conjecture that the sharp threshold principle for scalar bistable equation extends to
such bistable systems. The systems we consider are of the form ∂tn1 −D1∆n1 = f1(n1, n2) in R+ × Rd,

∂tn2 −D2∆n2 = f2(n1, n2) in R+ × Rd,
(n1(0, · ), n2(0, · )) = n0 in Rd,

(13.1)

where the non-linearities are such that the system is monotone with respect to some orthant K0.
We further assume that there are exactly two stable steady states 0�Ko E+ for (13.1). We state
a sharp threshold conjecture in this context:

Conjecture 13.1. Let (n0
λ)λ≥0 be an increasing (with respect to Ko) family of initial data for the

system (13.1), continuous in L1 norm and such that n0
0 leads to 0. Then, there exists a unique

λ0 ∈ (0,+∞] such that:

� if λ < λ0 then the solution converges to 0,

� if λ > λ0 then the solution converges to E+.

A first step towards the proof of such a conjecture could be the construction of “bubbles” or
“propagules”. In other words, we are looking for solutions to the Dirichlet elliptic problem in
dimension d = 1, with L > 0: −D1n

′′
1 = f1(n1, n2),

−D2n
′′
2 = f2(n1, n2),

(n1, n2)(±L) = 0, n1, n2 ∈ (0,E+) in (−L,L),
(13.2)

or to  −D1n
′′
1 = f1(n1, n2),

−D2n
′′
2 = f2(n1, n2),

(n1, n2)(±L) = E+, n1, n2 ∈ (0,E+) in (−L,L),
(13.3)

where by n ∈ (0,E+) we mean 0�Ko n�Ko E+.
Such problems are extensions to systems of the scalar ones solved in [182] and [183]. Existence,

uniqueness and stability properties for monotone systems in dimension Nd = 2 have been obtained
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under (too) specific conditions on the nonlinearities in [53] (see the introduction of the cited
article for a historical and synthetic presentation of the techniques of proof). This result has been
extended to cooperative systems in any dimension Nd ≥ 2, under suitable assumptions in [234]
(this approach has been pursued in [156]). However, to the best of our knowledge no result has
been obtained yet for rather general nonlinearities such as these in (1.1).

First, we claim that in general there cannot be solutions to both problems (13.2) and (13.3)
simultaneously. By classical results on competitive systems (see the discussion in Section 4.3.3),
there exists a traveling wave ψ := (ψ1, ψ2) connecting 0 at −∞ to E+ at +∞ and traveling at
speed c ∈ R. Using this particular solution and the comparison principle yields:

Proposition 13.1. Assume c 6= 0. If there exists L > 0 such that (13.2) (resp. (13.3)) has a
solution, then c < 0 (resp. c > 0) and for all L > 0, (13.3) (resp. (13.2)) has no solution.

In case c < 0 (resp. c > 0), if there exists L∗ ∈ (0,+∞] such that for (13.2) (resp. (13.3))
has a solution then for all L > L∗ it also has a solution, denoted nL, such that if L∗ < L < L′,
nL <Ko nL′ (resp. nL <Ko nL′) on (−L,L).

Proof. Let n := (n1, n2) be a solution to (13.2) for some L > 0, which we extend by 0 on R\(−L,L).
Then n is a constant sub-solution to (13.1). By convergence to E+ at +∞, there exists ξ ∈ R
such that ψ( · − ξ) ≥Ko n. This inequality is preserved by the time-dynamics, and in particular 0
cannot be the invading state: if c 6= 0 then c < 0.

By the symmetric construction (extending by E+ on R\(−L,L)), we can show that any solution
to (13.3) gives rise to a “bubble“ super-solution, which prevents E+ from being the invading state
and imposes c > 0 if c 6= 0.

In particular, assuming c 6= 0 implies that for any L1, L2 > 0, the existence of a solution
to (13.2) with L = L1 and to (13.3) with L = L2 are incompatible, whence the first part of the
result.

Then, the sub- and super- solution method exposed in Chapter 4, Proposition 4.5 for scalar
elliptic equations extends to systems (by the same process of building monotone and bounded
sequences of sub- and super-solutions). Assume that (13.2) has a solution nL on (−L,L). The
constant function E+1[−L′,L′] is a super-solution for (13.2) posed on (−L′, L′), and nL extended
by 0 on (−L′,−L)∪(L,L′) is a sub-solution. Since none of them are solutions, the iterative process
converge to a solution which lies between nL and E+ and can be equal to none of them. Because
of this property, the set of L > 0 such that (13.2) has a solution is either empty or a half-line
containing its infimum [L∗,+∞) ⊂ R+.

The argument is symmetrical for (13.3), where naturally the solution on (−L,L) is extended
by E+ on (−L′,−L) ∪ (L,L′).

Remark 13.1. Note that the proof applies also in the scalar case. The bubbles studied in Chapter 7
(see in particular Theorem 7.1 and Section 7.3) also possess the comparison property. Under the
additional assumptions of Proposition 7.8, we know that there is exactly one bubble of radius L∗ > 0
and two bubbles of radius L for all L > L∗. In this case, applying Proposition 13.1 we can extract
one subfamily (pL)L>L∗ such that pL has radius L and the pL are ordered: for L < L′, pL < pL′

on (−L,L).

By continuity of c with respect to perturbations of f1 and f2 (or D1 and D2), we can indeed
deduce from Proposition 13.1 that generically, (13.2) and (13.3) cannot be solved simultaneously.

As noted in Section 4.3.3, the sign of c is usually not simple to determine. With the bubble
viewpoint, it amounts to checking which Dirichlet problem has solutions among (13.2) and (13.3).

Numerical simulations lead us to the following conjecture, which may hold under specific addi-
tional assumptions on f1 and f2:

Conjecture 13.2. Assume c > 0 (resp. c < 0). There exists L∗ > 0 such that (13.3) (resp. (13.2))
has

� 0 non-negative solution for L < L∗,

� 1 non-negative solution for L = L∗,

� 2 non-negative solutions for L > L∗.
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Remark 13.2. Problems such as (13.2), (13.3) can also arise from small parameter reduction of
a degenerate reaction-diffusion system featuring non-diffusing compartments (mixing for instance
Chapters 8 and 5). Indeed, a simple mosquito population model with spatial structure on adults
(a) and juveniles (j), infected (subscript i) or not (subscript u) by a CI-inducing Wolbachia could
read 

∂tju(t, x) = buau(t, x)
(
1− sh ai(t,x)

au(t,x)+ai(t,x)

)(
1− J(t,x)

K

)
− (νuj + µuj )ju(t, x),

∂tji(t, x) = biai(t, x)
(
1− J(t,x)

K

)
− (νij + µij)ji(t, x),

∂tau(t, x)−D∆au(t, x) = νuj ju(t, x)− µuaau(t, x),

∂tai(t, x)−D∆ai(t, x) = νijji(t, x)− µiaai(t, x),

J(t, x) = ju(t, x) + ji(t, x).

(13.4)

Under the scaling assumption bz = bz0/ε (z ∈ {u, i}), when ε → 0 we can prove system reduction
for (13.4), as is done in Chapter 5. The study of sub- or super-solutions to (13.4), even in the
reduced system, naturally leads to problems such as (13.2), (13.3).

13.2 Wave-delaying

In Chapter 6, when C > 0 and L < L∗(C), we have proved that there is no (C,L)-barrier. Can
we construct an entire solution in this case, converging to the bistable traveling wave at t→ ±∞?
Can we compute the associated delay? These interesting and natural questions were raised by
Luca Rossi after the communication of the results of Chapter 6.

Until now we have not obtained satisfactory estimations, but for the sake of completeness we
detail below an approach which seems to indicate the possibility of a quantitative answer.

For simplicity we consider only the cubic bistable nonlinearity and study the following equation:

∂tp− ∂xxp− εC1[0,2L](x)∂xp = p(1− p)(p− θ), (13.5)

where ε, C, L > 0 and θ ∈ (0, 1).
The unique (up to translation) traveling wave solution (connecting 1 at −∞ to 0 at +∞) of

the homogeneous problem (as C = 0 or L = 0) is given by the profile U and speed c:

U(ξ) :=
1

1 + eξ/
√

2
, c =

1− 2θ√
2

. (13.6)

Following the approach in [224] (initiated by Fife and McLeod in [85]), one possibility is to look
first for a sub-solution to (13.5) of the form u(t, x) = U(x − ct + ξε(t)) − εv(t, x). The interest of
such an ansatz, in the context of wave-delaying, is that ξε(t)/c is an underestimation of the delay

at time t. If we can find limits ξε± = limt→±∞ ξε(t), then ξ := (ξε+ − ξε−)/c =
∫ +∞
−∞ ξ′ε(t)dt/c is an

overestimation of the delay induced by the obstacle εC1[0,2L].
By definition, u is a sub-solution if and only if

−ε
(
∂tv − ∂xxv − εC1[0,2L]∂xv

)
+ ξ′ε(t)U

′ − εCU ′1[0,2L] ≤ f(U − εv)− f(U),

where f : p 7→ p(1− p)(p− θ).
Recalling that U ′ < 0, we get

ξ′ε(t) ≥
f(U − εv)− f(U) + ε

(
∂tv − ∂xxv − εC1[0,2L]∂xv

)
U ′

+ εC1[0,2L]..

We introduce

Φεx(t, ξ) :=

f(U(x− ct+ ξ)− εv(t, x))− f(U(x− ct+ ξ)) + ε
(
∂tv(t, x)− ∂xxv(t, x)− εC1[0,2L](x)∂xv(t, x)

)
U ′(x− ct+ ξ)

,

so that the previous inequality now reads

∀x ∈ R, ξ′ε(t) ≥ Φεx(t, ξε(t)) + εC1[0,2L](x).
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To obtain as small delay overestimation as possible, it makes sense to define

ξ′ε(t) = sup
x∈R

(
Φεx(t, ξε(t)) + εC1[0,2L](x)

)
.

At this stage, one still has the freedom of defining v.
It seems natural to take v with support in [0, 2L], and when dealing only with the time-

forward problem, exponentially decreasing over time, so we take v(t, x) = e−γtw(x). In order
that Φεx(t, ξ) ≤ −εC as t goes to +∞ (so that the delay stabilizes), since U(x− ct− ξ) converges
uniformly to 1 as t → +∞ for x ∈ [0, 2L] and a bounded delay ξ and since U ′(x − ct − ξ) decays

as e−ct/
√

2, it suffices to take γ < c/
√

2 = 1/2− θ, and for w the solution to{
−∂xxw − εC∂xw − (f ′(1) + γ)w = 1 in (0, 2L),
w(0) = w(2L) = 0, w > 0 in (0, 2L),

(13.7)

where for our particular choice we have f ′(1) = −(1− θ) so that −(f ′(1) + γ) > 1/2. We find

w(x) = 1 + e−
εC
2 x
(cosh(Lλ)− eεCL

sinh(Lλ)
sinh

(λx
2

)
− cosh

(λx
2

))
,

with λ :=
√

4(1− θ − γ) + ε2C2, which satisfies w > 0 on (0, 2L) at least for ε > 0 small enough.
With this ansatz, we obtain

Φεx(t, ξ) = εe−γt
1 + w(x)

(
2θ + 3U2(x− ct+ ξ)− 2(1 + θ)U(x− ct+ ξ)− 1

)
U ′(x− ct+ ξ)

+ ε2
v2(t, x)(1 + θ − 3U(x− ct+ ξ))

U ′(x− ct+ ξ)
+ ε3

v3(t, x)

U ′(x− ct+ ξ)
.

Keeping only the first-order term in ε yields coefficient

Ξγ(t, ξ) := e−γt max
x∈[0,2L]

1 + w(x)
(
2θ + 3U2(x− ct+ ξ)− 2(1 + θ)U(x− ct+ ξ)− 1

)
U ′(x− ct+ ξ)

,

with
ξ′ε(t) = ε

(
Ξγ(t, ξε(t)) + C

)
+
.

At this stage, one should try to estimate Ξγ to go further. At least, we know that as ε goes to 0,
w converges to

w0(x) := 1 +
cosh(2L

√
1− θ − γ)− 1

sinh(2L
√

1− θ − γ)
sinh(x

√
1− θ − γ)− cosh(x

√
1− θ − γ),

and that Ξγ(t, ξ) < 0 as soon as ct− ξ is large enough.
Let us fix W = max[0,2L] w(x) > 0. Then it is readily seen (since the sign of the terms are

known) that as a rough estimate,

Ξγ(t, ξ) ≤
√

2e−γt max
x∈[0,2L]

(1 + V )2 +W
(
3− 2(1 + θ)(1 + V ) + (2θ − 1)(1 + V )2

)
−V

,

with V = e(x−ct−ξ)/
√

2. In the subcase W (1− 2θ) ≥ 1, we can deduce that

Ξγ(t, ξ) ≤
√

2e−γt
((
W (1− 2θ)− 1

)
e(2L−ct+ξ)/

√
2 + 2W (2− θ)− e(ct−ξ−2L)/

√
2
)
.

Hence we get a super-solution for ξ by solving an equation of the form Y = eξ/
√

2,

Y ′ = ε
(
αY 2e−κ1t + βY − ηeκ2t

)
+
, Y (0) = Y0 ∈ (1,+∞), (13.8)

where α, β, κ1, κ2 > 0, with κ1 = κ2 + 2γ. This equation reaches a constant value at the first time
t ≥ 0 such that

Y (t) ≤ −β +
√
β2 + 4αηe−2γt

2α
eκ1t ∼t→+∞

η

β
eκ2t.
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In details, we have

α = (W (1− 2θ)− 1)eL
√

2, β = 2W (2− θ) +
C√

2
, η = e−L

√
2, κ1 =

c√
2

+ γ, κ2 =
c√
2
− γ.

The solution is non-constant as soon as Y0 ≥
−β+
√
β2+4αη

2α , that is if initially the sub-solution is
rather on the left of the obstacle (ξ0 large enough).

Assume this equation (13.8) yields some limit value Y∞ε (Y0) as t → +∞. In the limit ε → 0,
the expected delay overestimation is of order 1 in ε, with first-order coefficient equal to

ξ1(ξ0) := lim
ε→0

√
2 log

(
e−ξ0/

√
2Y∞ε (eξ0/

√
2)
)
/ε.

In order to go further in the resolution of (13.8), we introduce Z = Y e−κ1t, so that the equation
becomes, as long as the solution Y is non-constant:

Z ′ = εαZ2 + (εβ − κ1)Z − εηe−2γt, (13.9)

that is as long as

Z(t) >
−β +

√
β2 + 4αηe−2γt

2α
.

It is well-known that if a particular solution Z1 to (13.9) is given, then Z = Z1 + 1/v is also a
solution, where v solves the linear equation

v′ = −(εβ − κ1 + 2εαZ1)v − εα.

Then, we would like to approximate solutions to (13.9) as ε→ 0. Using a formal approach with
the Duhamel integral formula, we develop:

Zε(t) = Z0e
−κ1t + ε

(
βtZ0e

−κ1t + α
1− e−κ1t

κ1
− η e

κ2t − 1

κ2

)
+ o(ε).

Then, we are looking for the first time t = t(ε) > 0 such that

Z0e
−κ1t + ε

(
βtZ0e

−κ1t + α
1− e−κ1t

κ1
− η e

κ2t − 1

κ2

)
=
−β +

√
β2 + 4αηe−2γt

2α
.

Assume that t(ε) has a limit t as ε→ 0, namely the solution to

Z0e
−κ1t =

−β +
√
β2 + 4αηe−2γt

2α
.

Then, with Z0 = eξ0/
√

2,

ξ1(
√

2 log(Z0)) =
√

2 lim
ε→0

1

ε
log
(Zε(t(ε))eκ1t(ε)

Z0

)
,

=
√

2 lim
ε→0

1

ε
log
(

1 + ε
(
βt(ε) +

α

Z0

eκ1t(ε) − 1

κ1
− η

Z0

e(κ1+κ2)t(ε) − eκ1t(ε)

κ2

))
,

=
√

2
(
βt+

α

Z0

eκ1t − 1

κ1
− η

Z0

e(κ1+κ2)t − eκ1t

κ2

)
.

This yields an analytical overestimation of the delay (in forward time) ξ0 → ξ1 for any suitable γ.
Symmetrically, we can build a super-solution using the ansatz u(t, x) = U(x−ct+ζε(t))+εv(t, x).

Then, u is a super-solution if and only if

ε
(
∂tv − ∂xxv − εC1[0,2L]∂xv

)
+ ζ ′ε(t)U

′ − εC1[0,2L](x)U ′ ≥ f(U + εv)− f(U),

or equivalently

ζ ′ε(t) ≤ εC1[0,2L](x) +
f(U + εv)− f(U)− ε

(
∂tv − ∂xxv − εC1[0,2L]∂xv

)
U ′︸ ︷︷ ︸

=:Ψεx(t,ζ)

.
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To obtain a delay underestimation as large as possible, it makes sense to define

ζ ′ε(t) = inf
x∈R

(
Ψε
x(t, ζε(t)) + εC1[0,2L](x)

)
.

Using a similar ansatz as before for v: v(t, x) = e−γtw(x) (with the same w), this time with
γ > c/

√
2, we obtain

Ψε
x(t, ζ) = εe−γt

−1 + w(x)
(
1− 2θ + 2(1 + θ)U(x− ct+ ζ)− 3U2(x− ct+ ζ)

)
U ′(x− ct+ ζ)

+ ε2e−2γtw
2(x)(1 + θ − 3U(x− ct+ ξ))

U ′(x− ct+ ζ)
− ε3e−3γt w3(x)

U ′(x− ct+ ζ)
.

Other choices are possible. For instance, choosing γ < c/
√

2 and v(t, x) = e−γtz(x) where z
solves {

−∂xxz − εC∂xz − (f ′(1) + γ)z = 0 in (0, 2L),
z(0) = z(2L) = 0, z > 0 in (0, 2L),

would yield

Ψε
x(t, ζ) = εe−γt

z(x)
(
1− 2θ + 2(1 + θ)U(x− ct+ ζ)− 3U2(x− ct+ ζ)

)
U ′(x− ct+ ζ)

+ ε2e−2γt z
2(x)(1 + θ − 3U(x− ct+ ξ))

U ′(x− ct+ ζ)
− ε3e−3γt z3(x)

U ′(x− ct+ ζ)
.

From this, similar computations as above could be performed to deduce delay underestimations.
We note that although we developed the computations only in the case of a cubic nonlinearity

given by (13.6), this approach also applies to general bistable reaction terms, upon replacing the

exponential decay rate of U ′(K− ct), c/
√

2, by the general formula
−c+
√
c2−4f ′(1)

2 . In this setting,
when looking for a sub-solution with the same ansatz as in the cubic case, v(t, x) = w(x)e−γt

where

w solves (13.7), 0 < γ <
−c+

√
c2 − 4f ′(1)

2
,

we obtain that the first-order term (in ε) of Φεx(t, ξ) has coefficient

Ξγ(t, ξ) = e−γt max
x∈[0,2L]

1− w(x)
(
f ′(U(x− ct+ ξ))− f ′(1)

)
U ′(x− ct+ ξ)

,

and it remains to solve
ξ′ε(t) = ε

(
Ξγ(t, ξε(t)) + C

)
+

to obtain a delay over-estimation. Explicitly,

w(x) = 1 + e−
εC
2 x
(cosh(Lλ)− eεCL

sinh(Lλ)
sinh

(λx
2

)
− cosh

(λx
2

))
,

with λ :=
√

4(−f ′(1)− γ) + ε2C2, which satisfies w > 0 on (0, 2L) at least for ε > 0 small enough.

13.3 Time-scales and limits for controlled slow-fast dynam-
ics

We recall the notations from Chapter 10, where we considered a singular limit for a control system
modeling mosquito population replacement by releases of Wolbachia-carrying individuals. Let nε1
(resp. nε2) denote the wild (resp. introduced) population, with fecundity b01/ε (resp. b02/ε) and
death rate d1 (resp. d2), with di, b

0
i > 0 (i ∈ {1, 2}), in an environment with capacity K > 0,

and uni-directional sterile crossings (due to cytoplasmic incompatibility) with rate sh ∈ (0, 1]. We
recall the definition 10.8:

UT,C,M = {u ∈ L∞([0, T ]), 0 ≤ u ≤M a.e. ,

∫ T

0

u(t) dt ≤ C}.
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Then, u ∈ UT,C,M models the flux of released mosquitoes. The two-dimensional system under
study reads:

dnε1
dt

=
b01
ε
nε1(1− sh

n2

nε1 + nε2
)(1− nε1 + nε2

K
)− d1n

ε
1, nε1(0) = K(1− εd1

b01
),

dnε2
dt

=
b02
ε
nε2(1− nε1 + nε2

K
)− d2n

ε
2 + u, nε2(0) = 0.

(13.10)

The non-linear functions in right-hand sides are denoted respectively f ε1 and f ε2 . We define the set
of reachable states:

X εT,C,M := {
(
nε1(t), nε2(t)

)
∈ R2, u ∈ UT,C,M , t ∈ [0, T ]} ⊂ R2

+.

Given a smooth function Gε : R2
+ → R such that almost-everywhere in X εT,C,M , ∂1G

ε ≥ 0 and

∂2G
ε ≤ 0, we define the functional JεT,C,M : u 7→ Gε

(
nε1(T ), nε2(T )

)
. Our aim is to minimize JεT,C,M

on UT,C,M .
Expanding upon the conclusion of Chapter 10, we derive formally limit problems when M scales

in M0/εα, for α > 0. By taking this scaling, we actually compare the two short time-scales for the
release process: time concentration of controls on the first hand and the fast environment-filling
due to large fecundity on the other hand. In other words, we compare the short time-scale of a
slow-fast system and the time-scale at which a control is applied on this system.

The following diagram is a comprehensive picture of the problems, for any α ∈ (0, 1):

uε,M u0,M

u0,∞
[

uε,∞ u0,∞
] u0,∞

\

M
→

+
∞

ε→0
ε→0,M=M 0

ε−α

ε→
0,M

=M 0
ε −1

ε→
0,M

=
M

0
ε −

1
/
α

M→+∞

ε→0

,

where uε,M is a minimizer of JεT,C,M in UT,C,M . We expect that u0,∞
] 6= u0,∞

[ in general.
We have already solved (essentially with Proposition 10.1) the situation α ∈ (0, 1), when the

environment-filling is much faster than the release process. In this case, the limit problem appears
to have in general exactly one solution, given by a Dirac mass either at t = 0 or at t = T (see
Theorem 10.1, written for Gε(x, y) = 1

2x
2 + 1

2 (K(1− εd2/b
0
2)− y)2

+, which can be extended easily
to the general final criterion under study).

However it would be necessary for applications to understand also the converse situation, where
the control can be concentrated on a time-scale typically shorter than the free system’s character-
istic time-scale. When α ∈ (1,+∞) (or α = 1 and M0 is large enough, but we do not explore this
case in details here) we can use an interesting qualitative property of the minimizers, stated and
proved in Section 10.B, Proposition 10.3.

We formulate an additional conjecture, inspired by numerical results and formal arguments (see
Section 10.3.2):

Conjecture 13.3. Let u∗ be a local minimizer of JεT,C,M in UT,C,M . The set I∗ = {u∗ ∈ (0,M)}
is an interval.

Combining Proposition 10.3 and Conjecture 13.3 reduces the problem to four dimensions: the
bounds t0, t1 in IM = [0, t0] ∪ [t1, T ] and the interval I∗ which we denote [t2, t3] characterize the
minimizers.

So far, we have understood the arrows leading to u0,∞
[ , by Proposition 10.1. We also have a

good knowledge of uε,∞ as noted above, assuming Conjecture 13.3:

uε,∞ = Cε0δ0 + CεT δT +
(
Hε(nε(t))− f ε2(nε(t))

)
1[t2(ε),t3(ε)]

for some (Cε0, C
ε
T ) ∈ TC := {(C1, C2) ∈ [0, C]2, C1 + C2 ≤ C} and 0 ≤ t2(ε) ≤ t3(ε) ≤ T .

Therefore along the horizontal arrow leading to u0,∞
] we can actually take controls in a set isometric

to a compact subset of R4. We claim that the limit criterion can be expressed as J](C
0
0 , C

0
T , tH) =
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(1− p(T ))2, assuming that t2(ε), t3(ε) converge to tH as ε→ 0, upon defining carefully p. Morally,
on most of [0, T ] the limit p simply satisfies

ṗ = p(1− p) d1b
0
2 − d2b

0
1(1− shp)

b01(1− p)(1− shp) + b02p
=: f(p).

However, we need to understand precisely the limit (layer) problems as ε→ 0, happening at t = 0,
t = tH and t = T , and possibly combining if tH = 0 or tH = T . To this aim, we construct below
two mappings

Φ1 : R+ × R2 → R2, Φ2 : R2 → R,

where Φ1 represents the jump (as ε→ 0) due to a singular arc with prescribed limit mass, and Φ2

represents the relaxation of the slow-fast system in (nε, pε) towards its attracting curve (when uε

vanishes) its value being the limit projection (as ε→ 0) of p.
In details we let H := limε→0 εH

ε and

� Φ1(C, x0, y0) = (x(tf ), y(tf )) where (x, y) solves ẋ = b01x(1− sh y
x+y )(1− x+y

K ), x(0) = x0,

ẏ = H(x, y), y(0) = y0,

and tf is given by
∫ tf

0

(
H(x(t), y(t))− b02y(t)(1− x(t)+y(t)

K

)
dt = C;

� Φ2(x0, y0) = z(∞) where (w, z) solves ẇ = −w(1− w)
(
b01(1− z)(1− shz) + b02z

)
, w(0) = 1− x0+y0

K ,

ż = wz(1− z)
(
b02 − b01(1− shz)

)
, z(0) = y0

x0+y0
.

To find p(0+) we need to compute either Φ2(K,C0
0 ) (in case u is a Dirac mass at 0 with limit

mass C0
0 ) or Φ2 ◦ Φ1(CH0 ,K,C

0
0 ) in case u is a Dirac mass at 0 with limit mass C0

0 immediately
followed by a singular arc with limit mass CH0 .

Similar computations give the jumps of p at times tH and T where the mass of uε concentrates
as ε → 0, depending on the type of control: uε = M/εα (at T , relying on Φ2) or uε = Hε(n

ε) (at
tH relying on both Φ2 and Φ1 since the system needs to be projected immediately after the control
is stopped).

On the intervals (0, tH) and (tH , T ), one simply needs to solve ṗ = f(p), and consider that the
total population is N = K at t−H (if tH > 0) and T− (if tH < T ).

These formal derivations should be proved carefully (using precise estimated on rescaled quan-
tities of the form nε(t∗ + εt)), but already suggest that the investigation of qualitative properties
of minimizers (such as Proposition 10.3 and Conjecture 13.3), using indirect method, can result
in dramatic simplification of the optimization problem, reducing effectively to finite dimension in
this case.

13.4 Stationary distributions for sexual reproduction ker-
nels

Motivated by the problem of insecticide resistance in a mosquito population, hence with sexual
reproduction, Pierre-Alexandre Bliman has suggested two modeling approaches to take into account
this particular feature, seldom studied (apart from single locus genetics, see in particular [57]) in
the mathematical literature although considerable theories have been developed in population
genetics (dating back to the works of Fisher [86] in the 1920s and Kimura [133] in the 1960s,
among others). We note however that the so-called infinitesimal model with gaussian progeny
distribution and trait-independent fecundity has been developed (in particular, see the discussion
of [37]).

On the first hand, we can see the trait of insecticide resistance as a continuous phenotype, by
which we structure the population. This is the approach of Chapter 12. On the other hand, we can
rather emphasize the genetic basis of this mechanism and structure the population by its genotype.
This approach is not pursued here.
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In both cases, even under then natural simplifying assumptions (constant sex-ratio and con-
stant parameters over time) it appears that the questions of existence, stability and uniqueness of
stationary distributions is still open. More precisely, the question is to derive the nature of the
stationary distributions under sensible sets of assumptions on the reproduction kernels.

Setting. Summarizing the two situations (a population structured either in phenotype or geno-
type), the stationary problem reads

∀x ∈ X, 1

ρ

x

X2

K(x, y, z)n(y)n(z)dydz = R(x, ρ)n(x), (13.11)

where ρ =
∫
X
n(x)dx. Upon defining q(x) := n(x)/ρ (which is a probability measure on X), (13.11)

reads, for some ρ > 0,
Qρ(q) := Bρ(q, q) = q, q ∈M1

+(X), (13.12)

where Bρ is the bilinear application M+(X)×M+(X)→M+(X) defined by

Bρ(q, q)(x) =
x

X2

K(x, y, z)

R(x, ρ)
q(y)q(z)dydz.

Let us denote by Eρ the set of solutions to (13.12), and E := ∪ρ>0E(ρ).

Question. Under what assumptions is E non-empty/a singleton?

Tentative answer. First, we tackle the existence problem. Assume that R( · , ρ) is uniformly
increasing, in the sense that ∂ρR ≥ ν > 0 for all (x, ρ) ∈ X × R. For q ∈ M1

+(X), let ρ∗(q)

be the unique real number such that
t

X3

K(x,y,z)
R(x,ρ∗(q))q(y)q(z)dydzdx = 1. We note that Q∗ρ :

q 7→
s
X2

K(x,y,z)
R(x,ρ∗(q))q(y)q(z)dydz is a well-defined and continuous mapping of the closed convex set

M1
+(X) into itself. If its image is compact then Schauder’s fixed-point theorem applies and yields

the existence of a fixed point q∗. If ρ∗(q∗) > 0 then we get a solution to (13.12).
Under mild assumptions on K and R, one can guarantee that ρ∗ > 0. Image compactness is

more difficult - but holds for instance if X itself is compact and Q∗ρ is continuous for the topology
of the weak convergence of measures.

Then, we consider the question of uniqueness. Let N1(ρ) := {q,
∫
Qρ(q) = 1}. A solution q

to (13.12) must belong to N1(ρ) and therefore also to N2(ρ) := N1(ρ)∩Q−1
ρ (N1(ρ)). Iterating this

argument one can define the decreasing sequence
(
Nk(ρ)

)
k

of subsets ofM1
+(X) by the relationship

Nk+1(ρ) := Nk(ρ) ∩Q−1
ρ (Nk(ρ)), so that

Eρ ⊆
⋂
k≥1

Nk(ρ) =: N∞(ρ).

We can show that Nk(ρ) is empty for any ρ 6∈ (ρ
k
, ρk), where (ρ

k
)k (resp. (ρk)k) is an increasing

(resp. decreasing) sequence, without the need for further assumptions. Let

ρ∞ = lim
k→+∞

ρ
k
≤ ρ∞ = lim

k→+∞
ρk.

Under what assumptions can we get ρ∞ = ρ∞ =: ρ∗? And that N∞(ρ∗) is a singleton?

We end up with an additional remark: let K̃ρ(y, z) :=
∫
X
K(x,y,z)
R(x,ρ) dx. Assume that

∀ρ > 0, ∀ξ ∈M(X),
x

K̃ρ(y, z)ξ(y)ξ(z)dydz > 0.

Then q 7→
∫
X
Qρ(q)(x)dx is strictly concave in M1

+(X), therefore it reaches its minimum at some
Dirac mass q = δy (i.e., at an extreme point in the convex set M1

+(X)), where it is equal to∫
X
K(x,y,y)
R(x,ρ) dx, and has a unique maximum point, if it reaches its maximum at qM in the interior

of M1
+(X). In this case, the first-order optimality conditions imply that

BM : z 7→
x

X2

K(x, y, z) +K(x, z, y)

R(x, ρ)
qM (y)dxdy

is constant, equal to some BM∗ , on supp(qM ), and that is satisfies BM (z) ≤ BM∗ for all z ∈
X\supp(qM ). One interest of this remark is that if q is a steady state then

∫
X
Qρ(q)(x)dx = 1.
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Overview

The works gathered in this thesis were motivated by the issue of vector mosquito populations
control. Much attention was devoted to two innovative techniques: population replacement strate-
gies (using cytoplasmic incompatibility and pathogen interference inducing Wolbachia strains) and
incompatible or sterile insect techniques (SIT/IIT) for population reduction or elimination (using
cytoplasmic incompatibility inducing Wolbachia strains and/or irradiation).

These pest management techniques share a main advantage: they are species-specific, and
therefore have in principle limited impact on the environment (especially compared with the use
of chemical control), although the ecological consequences in case of eradication following the use
of SIT/IIT must be taken into account. Moreover, both of them rely on field releases of lab- or
factory-reared individuals.

Compelling pilot or field trials have proved the feasibility and efficiency of these techniques
in specific contexts, in particular targeting urban Aedes aegypti (primary vector of dengue) with
population replacement and (small) island population of Aedes polynesiensis with IIT. This fact,
and the outstanding importance of various species in Aedes genus for human health (as vectors of
arboviral diseases such as dengue) have justified the focusing of our modeling effort towards this
genus (presented in Chapter 3).

Our modeling viewpoint (presented in Chapter 4) was determined by the fact that acquiring
detailed and reliable data on mosquito populations is a hard task. Therefore the models we
developed and studied were not judged on their ability to fit necessarily incomplete data but rather
on their explanatory power regarding first the mechanisms involved in qualitative observations and
secondly the relative parameter importance in determining qualitative properties or quantitative
values of practical interest, such as release protocol design.

In Part II we have built upon an existing scalar reaction-diffusion model used to get an intuition
of Wolbachia dispersal in population replacement. This model represents only the frequency of
Wolbachia infection in population in time and space. We have shown (Chapter 5) that it can be
derived from a more realistic two-populations system. Then, we have analyzed two issues:

� how to ensure the success (i.e. the local establishment of infection) of a release protocol?
(Chapter 7)

� how can the infection propagation be stopped by environmental hindrances, and can this
blocking be alleviated? (Chapter 6)

In Part III, we have studied several nonlinear aspects of time dynamics for mosquito popula-
tions, neglecting the spatial dimensions. In an exploratory work, we established simple conditions
for population sustainability in general seasonal systems (Chapter 11). In the remainder of the
models, parameters were assumed to be constant over time. We proved (Chapter 8) that egg
hatching enhancement by larvae can sustain synchronization and thus population size oscillations,
which opens a possible explanation to unexpected variations (i.e. which do not seem to be related
with environmental conditions) in abundance monitoring from trapping data. Using a mean-field
model we established new criteria for population elimination using SIT/IIT (Chapter 9) and esti-
mations on the protocol duration. This was made possible only by introducing an Allee effect in the
model, which changes completely the nature of the problem compared with previous works on this
topic. We introduced an optimal control viewpoint for population replacement (Chapter 10) with
sensible criteria and constraints, suited to the practical application rather than to the available
mathematical tools. We established that a fairly simple optimal control problem on the Wolbachia
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infection frequency can be seen as a natural limit for the general protocol optimization problem.
We also explained how the coarse recommendation that comes from the reduced problem (release
as many mosquitoes as possible as soon as possible) must be altered in general.

In Part IV, we built a framework and proved preliminary results for a selection model with
sexual reproduction (Chapter 12). A mosquito population does not only vary in time and space
of course, but also in phenotype structure. The question leading this particular research is to
understand the impact of control measures (such as mosquito releases or use of insecticide) on a
key phenotype: insecticide resistance.

Directions

Mathematically, a series of open questions have emerged during the thesis, several of which are
gathered in Chapter 13. Any one of these selected problems could help understanding issues
relevant for the applications, be it the design of a release protocol area, the support of a struggling
Wolbachia infection wave or the optimization of the releases (in time) for population replacement
strategies, or a finer description of insecticide resistance patterns.

More importantly, key practical questions raised by population replacement and SIT/IIT cannot
be answered in a simple and unequivocal way by mathematical models alone. The quest for
tighter connections between mathematicians (especially in the biomathematics community) and
entomologists must be carried on. Two clear directions appear:

� the mathematical community needs challenging feedback from entomologists in order to iden-
tify and construct together mathematical problems in line with the current concerns in vector
control,

� vector control programs can benefit greatly from well-understood mathematical models, for
instance to help identifying experiments and measurements that are the most relevant for
protocol monitoring, or optimization.

At the end of this work, let us wish that this contribution may help bridging gaps between
scientific communities which most certainly have a lot to gain from mutualism.
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[20] N. Bacaër and N. Ait Dads, Sur l’interprétation biologique d’une définition du paramètre
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[216] R. C. A. Thomé, H. M. Yang, and L. Esteva, Optimal control of Aedes aegypti
mosquitoes by the sterile insect technique and insecticide, Math. Biosci., 223 (2010), pp. 12–
23.

[217] A. N. Tikhonov, Systems of differential equations containing small parameters in the
derivatives, Mat. Sb. (N.S.), 31(73) (1952), pp. 575–586.
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